The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se paut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étye uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminaied/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

V. P. JOLIRNAかb.

VOL. II.] OCTOBER, 1834.
[NO. 4.

NOTES.

The first papers on "Sunbeams" and 'The Mystery of Creation" were published in our August num ber. In this number the two articles are completer.

We have especial pleasure this month in giving our readers an article from the pen of our energetic and talented friend, Dr. George M. Meachan, of Tokio, Japan. Dr. Meacham's work for the past seven years has been principally among the young men-Japanese students-and he has had peculiar advantages in gaining an acy paintance with the progress, the present condition, and the prospects of education among this advancing mation. The second part of his article will be of great interest to young men, and young women as well, who are looking away across the Pacitic for fields of usefulness. Who will help him?

The great scientists have come and gone, have seen and been seen. They have had a grand, a glorious holiday trip, and Canadian capital has paid the bill. We do not begrudge the cost; the moncy has been well laid out, and will in time return in many fold. Interest has been aroused in Canadian affairs, attention directer to our scientific and literary institutions, sume of our savants have been brought into contrast with English savants, and a new glory has been thrown around our own ambitious Royal Society. How long before Canada will be ahle to send across the occan six hundred men and women of
equal ability and fame, led by a Thomson, a Rayleigh, a Temple or a Roscoe? These men were brought over to see our people and our country. Some of us have seen and heard them, and these far-off celebrated thinkers have before us taken the form of real, living men. Canadians will be well repaid if they remember, "What men have done men can do."

There is no risitor more unexpected, more unwelcome, get more regular, than Diath. Just as we have completed our month's wo:k and are about to lay by our pen with the satisfaction of work completed, a jarred note breaks in upon the harmony and proclaims another chord of life is snapped asunder. For the third time since the inauguration of our Journal have we to dip the pen in darker ink to record the absence of another friend. After seven months' illness Joseph Adam Clarke, M.A.. B.Sc., died at Smith's Falls August 26th. 188t, aged thirty-five. He graduated some years ago at Victoria University as a Bachelor of Arts, since which time he has heen most of the time engaged in high school teaching. Being an ardent and zealous lover of natural science he afterwards returned to college and completed the science course. It was at this time that we became intimately acquainted with him. He then was appointed head master of Smith's Falls high school, afterwards married, and through ill-health was compelled to resign his position in the early part of the present year. He was a man deeply respected wherever he was known, and in him we have lost a warm friend, and the cause of education an earnest and energetic worker.

Good works of Nature-heautiful, symmetrical, harmonious, and withal perfectly alapted to their uses-are strewn around our daily paths, and are as accessible to the poorest country: child as to the millionaire.-Durison.

No life can be pure in its purpose and strong in its strife, and all life not be purer and stronger thereby.-Uwen Meredith.

NOVELS AND SCIENCE.

NOVEL writers are becoming prolific, and in their eager anxicty to catch the eye and ear of the reading public are secking subjects in new and interesting fields. Heretofore the fiell of scientific discovery and fancy has been the sport of that imaginative and curious writer, Jules Verne. Herbert E. Chase, however, has lately entered the field as a rival, and we can venture to predict that there will be more to follow. Fiction is interesting, lut fact is more so ; and the queer, quaint aml curious characters that stand out isolated and apart afford histories, some sad and sorrowful, others interesting and delightful, and all true but apparently incredible. There are some writers, however, who take delight in trying to improve upon nature, and thereby mar their pictures. Chase has written a romance entitlcd, "A Double Life; or, Star Cross. An Hypnotic Romance." The Literary World, in a criticism, thus refers to one of the characters:-
"We have left little room to narrate how this young prodigy of magnetic power and vivisective tastes is discovered and recorered by his father, a Professor Barlow, or to describe Professor Barlow himself, with his still more wonderful marnetic and clairvoyant gifts, his command of electricity, his chamber of marvels if not of horrors, and the magical if not almost supernatural crifts of which he is the consummate master. In this Professor Barlow centres all possible occult applications of the scientific knowledge of the hour. He enslaves the wills of whom he chooses; he turns his servants into clairvoyants at phasure; he adorns his reception-room with petrified human lomlies in place of statues, as natural as life ; the pictures on his walls come and go like slides in the stereoscopic camera; flowering shrubs grow right up through his carpeted floor; he draws his light from an unseen source; he entertains his visitors with in-xplicable music; he enters to greet them like an apparition; he lifts a fifty-pound weight as if it were a feather, thus amililating gravitation; and he is on the point of effecting
the resuscitation of human life when an unhappy accident makes an end of him.
"Such are the general features of this 'hypnotic romance,' which is as fanciful as a fable, as extravagant as Jules Verne, as rational as the phonograph, as philosophical as Piazzi Smith, as coherent as a dream, and as credible as electricity. As a story its merit is small, but as a fantastic presentation of theories in practical science it is a sign of the times."

FOSSILS.

THERE certainly is a science of human character and nature ; there must be if the principle of continuity holds true. We study the stars and group them; we study plants and classify them; we study rocks and arrange them; we study men, but do not classify them. The subject is a difficult and somewhat mysterious one ; but that is not a satisfactory answer. There are men and men. We classify men as to color, as to size, but not yet clearly as to nature. The science of character development and mental diagnosis is one truly, as Fham has well proven, worthy of serious thought and study. The subject must, we believe, be approached as other subjects have been approached, l,y classification, from general to particulars. H.ere. then, is the first point for consideration-What is the basis of classification in human nature? Into what comprehensive and naturally distinctive classes may man be divided mentully! Then will come the consideration of the differences, their causes. how one class may be developed from another, how the ideal may be evolved out of the most undeveloped. But one step at a time. Our first question is, How are men's natures to be classed naturally? We hope that our thoughtful readers (which includes all) will give this matter attention and give us the benefit of their conclusions.

The terms so far made use of in the distinctions necessarily arising and frequently heard are generally taken from the other
sciences-the natural sciences. Some of them are expressive, more so than intended, and convey meanings which, though true, are yet somewhat concealed. There are so many places suitable for the study of this interesting subject, either in individual cases or in collected groups, on the street, in the house, on the railway, in the assembly. In the gathering of the young and mirthful, the gay, giddy and reckless, the jovial and jolly, there is sometimes found a character whose appearance and nature relegate him to another class, another formation, another age. Shrivelled and distorted, sober and sedate, the feelings driel up apparently, the life quenchell, the usefulness doubted, the intruder is termed a "fossil." Fossils do not form a natural class, merely a useful distinction; for to the geologist there are fossils and fossils. So with men-fossil men and fossil men. Some common and uninteresting, serving, as is the case with many limestone fossils, to fill up, having no written history. To the uneducated fossils are rocks, nothing more; to the geologist they are petrified histories; they are beautiful, interesting; they are still alive. To the human-geologist, the homologist perhaps, there are beanties in these living fossils. They have histories rivalling fiction's most ingenious stories: they have interest outweighing far the senseless, silly actions of the Hitting butterfilies of the day's existence.

Fossils are the recognized remains of former life. We can recognize the shape, the appearance, trace the motions, find out the modes of life, and gain a more accurate history, than of many of the animals still living. But we can learn more; for the twisting, wrenching, scratching and pressing tell us of torture and death, so terrible as still to send a shiver through the beholder's frame. Human fossils still live; but the bent form, the distorted countenance, the wrinkled scratches, the lifelessness, tell a story that, if we study it aright and learn considerately, will arouse our sympathy and interest, not our ridicule and scorn. Some fossils are despicable, but some are interesting. Ere our smaller nature is aroused our curiosity should be satisfied. The man may be a fossil from laziness, or he may be a
fossil from oppression. Fossils are either human beings deteriorated or human natures oppressed.

In the classification of character and in the completed work we hope and expect to find a chapter on human fossils, their origin and nature.

The study of human nature is one of universal importance, and each can pursue it for himself, no further tools or books being necessary. You can begin with the study of your own nature if you wish. Should you prefer a particular discussion of the subject to a general, you could first consider these questions: Are you a fossil already? If not, are you fossilizing? Are you twisting, torturing, grinding any others into fossils?

These settled satisfactorily, choose your fossils, those whom, perhaps, you have been accustomed to treat with ridicule; trace their history and learn a lesson in human geology. Fossils, mercly as fossils, are objects of interest more than of usefulness; hut by change and reformation they may become useful.

MYSTERY OF CREATION.

II.

(Contimucl from page Si.)

THE Nebular Hypothesis has exceeded the expectations of its first champions; but still there are some phenomena which it seems to fail to explain directly and finally as yet. Time, however, may clear away these objections and harmonize all, as man's knowledge of the workings and laws of the celestial world becomes enlarged; and so we should not altogether condemn it because it does not seem to explain all, but retain it until we have found something superior to it, or until it is proven to be opposed to the laws of nature. It is contended that in the Nebular Hypothesis we not only have no reason for the origin of comets and meteors, but that everything is directly opposed to them. Comets are supposed to be under the same influences and to move in the same manner as meteors
which revolve in large systems around some central sun. Around our own sun there are many of these revolving systems whose orbits must interlace and approach each other. Thus at times these systems of meteors come into contact and collide, motion is lessened, and they are drawn into the sun by the powerful grasp of gravity, thus helping to feed its continual fires. Some scientists ascribe to this the continued supply of the sun's heat, and, reasoning backward, have to this cause ascribed the source of all the sun's heat and that of the whole universe. This idea Proctor has taken in regard to the formation of the entire solar system. Motion is in this hypothesis, as in that of LaPlace, presupposed. "Countless millions of meteoric systems travelling in orbits of every degree of eccentricity and inclination; travelling also in all conceivable directions around the centre of gravity of the whole, would go to the making up of each individual planet. A marked tendency to aggregate around one definite plane, and to move in directions which referred to that plane corresponding to the present direction of planctary motion, would suffice to account for the present state of things. The effect of multiplied collisions would necessarily bu to eliminate orbits of exaggerated eccentricity, and to form systems travelling nearly in the mean plane of the aggregate motions, and with a direct motion. Further, where collisions were most numerous there would be found not only the most circular resulting orbits; not only the greatest approach to exact coincidence of such orbits with the mean plane of the whole system, but the bodies formed out of the resulting systems would there exhibit rotations coinciding most nearly with the mean plane of the entire syibem." This, it is maintained, will explain the strange varieties in the size of the planets, the retrograde and almost perpendicular motion of the satellites of Uranus, and the systems of meteors whish do not find full explanation in the Nebular Hypothesis. By this Meteoric Hypothesis many of the seeming irregularities of the solar system are explained as possible, since in it clucuce plays a greater part, and the sequence of phenomena cannot be calcu-
lated as mathematic:llly as in the Nebular Hypothesis. But while it can perhaps account for the few irregularities better. than the Nebular Hypothesis, it cannot account for the many regularities as well, unless we concede about as much regularity and order to the meteoric systems as in our present solar system. The Nebular Hypothesis takes us back farther in the order of time and origin, and starts more from first principles and the primordial condition of matter. If we accept the Meteoric Hypothesis we must bring forward another hypothesis to explain the origin of the meteoric systems; and that we contend would he more difficult and complicated than the explanation of the origin of our present solar system, since the motions would be much more complex, and thus we would be going into greater difficulties and more abstruse explanations. For simplicity's sake we prefer the Nebular Hypothesis to the Meteoric; but still we do not feel satisfied as yet to endorse it in its full extent, and so do not come to any definite and decided opinion in this paper. Nor would it be wise in any of us to rashly and hastily concur in any hypothesis until it has fully and satisfactorily explained all of the seeming defects. Though we may not be able to form decided opinions, still our thought will be aroused and quickened, and our mind directed back to the investigation of first causes; and herein consist.s our chief reason for bringing this subject before our readers. However, we cannot help a decided leaning in favor of the Nehular Hy fothesis; for if that is not the true hypothesis concerning the formation of the universe, one somewhat similar, and involving its leading principles, must have been the true one; for modern science, from the observation of present phenomena and the records of the past, has made it evident that by following back the cooling processes now observed in progress in nature, we must arrive at a time when the planets were enveloped in the sun's fiery atmosphere, and were themselves in a molten, vaporous state. The reverse problem, however, is much more difficult, and we cannot say that we have as yet an altogether satisfactory explanation of the process by which, from a nebu-
lous mass, there could be formed by condensation a system of such wonderful symmetry as our own. Still we must conclude, as we sail before, that either the Nebular Hypothesis is true or something founded on similar principles and nearly allied to it is true. There are many difficulties connected with it, of which the principal one is to show mathematically how a ring of vapor could be detached from the sun and form into a single planet. One of the modern scientists has summed up his conclusions as follows:-" At the present time we can only say that the Nebular Hypothesis is indicated by the general tendencies of the laws of nature ; that it has not been proved to be inconsistent with any fact; that it is almost a necessary consequence of the only theory by which we cain account for the origin and conservation of the sun's heat; but that it rests upon the assumption that this conservation is to be explained by the laws of nature, as we now see them in operation."

There are some who reject the hypotheses thus put forward which indicate the workings of the Creator through processes or by means of second causes, thinking that they not only are in opposition to the teachings of the Bible, but also that they take away from the wisdom, grandeur of working, and power of God. But to such we would quote the words of a modern astronomer, that "It gives an altogether higher idea of that wisdom, which must in any case be far above our conceptions, to regard the laws of God as so perfect that they operate always to work out His will without the necessity of special interference on His part, than to see His hand directly operative in all the phenomena of the universe."

[^0]
scNBEAMS.

II.
(Continued from patye (!e.)

1N a total eclipse the black body of the moon is surrounded by a kind of grlory consisting of long, red, flame-like protuberance which, according to Lockyer, are sometimes eighty or ninety thousand miles long. These have been observed to change their shape at the rate of a thousand miles a minute, and altogether are very singular objects. Every scientific man was curious to know what the spectroscope would find in these Hames. At the next total eclipse expeditions were sent to different parts of the world to observe them with the spectroscope. In the few minutes of totality the observers did not generally make very accurate measurements, par 1y, no doubt, from nervous excitement, for had not the supreme five minutes arrived for which they had spent months of preparation? But enough was made certain to assure us that these flames were hydrogen.

Soon after, Lockyer in England, and Janssen, a French physicist, in Guntoor, India, at aloout the same time found that these flames might be observed whenever the sun shone, as well as during an eclipse. The portion of sumlight entering the slit of a spectroscope is spread over the whole length of the spectrum, and therely greatly diluted; while the hydrogen lines are not widened lout only spread farther apart, since their light is homogeneous. By using a large number of prisms of high dispersive power the intense light of the sun was so spread out and weakened that the comparatively freble light of the hydrogen lines could be ohserved at any time, as though the continuous spectrum were not present. It has heen found that the greater the pressure upon a gas the broader its lines are until, as a certain point of condensation, the spectrum hecomes continnous. The hydrogen lines of the sun were found to vary astonishingly in width, showing great and sudden changes of pressure. In this way the spectroscope gives us some idea of the state of the
barometer on the sun. Sometimes, again, the lines were bent all out of shape. This is readily explained. Once more using the analogy of sound, if a railway locomotive whistles while approaching at full speed, the sound is considerably shriller than when receding. The height or depth of a note depends on the number of sound waves reaching the ear in a second. If the sounding lody approaches, evidently the wares will be as much shorter as the distance passed between two waves, and the note to that extent higher. In the same way, if the hydrogen Hame is darting toward the earth at an enormous speed, it will have the effect of shortening the waves of light; and, as the shortest waves are at the violet end, the line will shift its position toward the riolet. Thus by the spectroscope we may follow quite as accurately the progress of a solar cyclone large enough to engulf half-i-dozen puny worlds like ours as the weather department in Washington can follow the motions of a sterm a few hundred miles wide on this earth.

Huggins, who has done so much in stellar spectroscope analysis, tells us that we need no longer teach our children-

> "Twinkle, twinkle, little star, How I wonder what you are,"
since we already know what they are. Philosophers, young and old, had wondered what the stars were ever since men could think, and had wondered in vain so far as any definite answer was concerned; for before Huggins pointed his spectroscope toward the stars, everything which was said of their composition was mere speculation; but he soon gave a definite answer. The fixed stars were suns like ours, and contained, for the most part, a number of our own familiar terrestrial rements. Red stars, however, had more lines in the green and Whe than in the red, and like stars had most lines in the red rml of the spectrum. He proved, by the shifting of the lines of hydrogen in Sirius, that twenty-one rears ago that sun was receding from us at the rate of twenty-nine miles a second. I ay twenty-one years ago, for it takes that long for Sirius' light tir reach us with news of his condition.

In the year 1866 an almost unnoticed little star in the Northern Crown sudlenly blazed out so as almost to equal in brightness the largest stars in the heavens. The spectrum of this star showed not only the ordinary black lines, but also bright lines of hydrogen. Its brilliance soon began to diminish. and as it diminished the hydrogen lines faded till, when the star once more descended to the eighth magnitude, the lright hydrogen lines became invisible. The only conclusion we can come to is, that there was a sudilen conflagration of hydrogenthe star was on fire The intensity of its light was increased nearly eight hundred fold. If the intensity of the sun's rays were increased eight hundred fold our earth would soon be dissipated into rapor. Can we help thinking of that day mentioned by Peter, "wherein the heavens being on fire shall be dissolven, and the elements shall melt with fervent heat."

The difficulties encountered by Mr. Huggins in his investigations were not small. The moon, as is well known, is a bad sitter for a photograph, since the motion of the earth on its axis has to he exactly counterbalancer by clockwork, and the impression in the photograph is often blured. The difficulty is increased when a fixel star, a mathematical point, is to be kept within the width of a slit the one-three-humdredth of an inch wide hy clockwork. Again, if a point is lengthened out it forms only a line, not a band; so that the alrealy feehle light of a star mont he further reduced liy a cylindrical prism, which changes the point into a line which, when expanded, forms a band. (If course, dark cross lines could not he noticed in a mathematical line which has no thickness. Another difficulty was the fickle English weather. The slightest haze would put a complet. stop to his work. Taking all things into account his succes, was really wonderful.

Several nebula have been examined, and their spectrum consists generally of one bright line in the green or three lines. Of the three lines one corresponds to a hydrogen line, another to a nitrogen line. and a third between these two does not correspond to any known line. The bright line spectrum indi-
cates that the nebula is in a gaseous state. Other nebulæ, however, give very faint continuous spectra, showing them not to be merely gaseous. As only one line each of hydrogen and nitrogen appeared in the spectrum, observers were at first in doubt whether this was conclusive ; but it has been found that if the intensity of the light from glowing nitrosen and hydrogen be reduced, only one line remains visible in each, and that corresponds with the line in nebula.

According to the celebrated Nebular Hypothesis, these cloudy hodies are the raw material of which suns are made; so that all the other elements must be made from hydrogen, nitrogen, and some unknown element, if we are to accept the results of ipectroscope analysis as conclusive. It is possible, however, that other elements may exist in the nebule, but so feebly luminons as not to show their lines in the spectrum.

The spectroscope tells us somrthing about comets, too; those moths of the solar system that dash in from the darkness toward the light, flutter a moment dangerously near the flame, singe their wings and fall into it, or escape aml fit once more out into the darkness. Those vagrant loolies-sometimes wandering years in the hank outer regions of space far beyond the beaten paths of the steady-going planets, always ready to change their couse under the influence of any attracting lody, sometimes getting fairly entangled among the satellites of one of the larger planet-have always interested the scientitic man, while they have been oljects of terror to the ignorant. Their strange and portentous shapes have been thought to foretell war, famine and pestilence. In the spectroscope they show three bands of wolor in the greenish blue, green, and greenish yellow. These agree quite exactly with three bands in the centre of the carbon pectrum ; so that these strange visitors are composed of our familiar friend carbon, but in such a state of tenuity that, though sometimes a million miles in diameter, the smallest arteroid or satellite sails past without noticing them, while they are drawn all out of their course. Ten thousand miles thickness uf cometary matter does not dim the light of the smallest star.

But meantime some inveterate utilitarian is asking in his mind: "What good is there in all this? Why do these visionary men of science squander thousands of dollars on a few threecornered bits of dense glass with a telescope attached, and go into ecstasies over a streak of red or blue light that they see through them?" It is true spectrum analysis is but beginning to be of practical importance. Shall it therefore le neglected? Never: When it was discovered that a magnetized needle Hoating on straws in a basin of water pointed always toward the north, who would have predicted that ships as populous and as complete as a town should traverse with confidence the trackless ocean by the aid of this trembling guide ; that, relying on its direction, men should sail boldly out to discover new continents; and that through it civilization should advance with giant strides in unthought-of directions: that broad seas should henceforth be bonds of union between nations instead of impassable barriers? The man who prophesied it would have been thought insane. But no real discovery in science is wasted. Every gear seemingly valueless discoveries are found ts, have immense practical importance. No doubt it will be so in the case of spectrum analysis; but even if not, should it he put aside as unworthy of attention? Who can think so ?

All nature speaks to us in a strange and unknown language, telling us of the wonders of its creation and continuance. Every wind moans some weird history; every wavering leat or hanging Hower has a tale to tell : every rugged and storm-battered rock mutely asks attention to the story of its origin; every rippling brook murmurs in silvery accents strange passages in the history of the world ; and the waves on our coasts thunder forth with thick and stuttering utterance a record of the past: but, more wonderful than all, every sumbean, every quivering pencil of rays from the most distant star is a swift-wingerl messenger from far countries hastening to write in letters of light the great events there transpiring, and the mysterious story of creation. Not one but steadfastly bears testimony to the majesty and glory of the Creator and Sustainer of all thing.

It is true that many of the messages we receive we cannot comprehend, very many of the mystic characters are still undeciphered, many that are deciphered are meaningless to us as ret: but the scattered passages which scientists have so far been alle to translate for us have such an amaring fulness of meaning, are of such transcendent interest, that we can no longer wonder when men of genius, who have partly learned the alphabet of this language, sacritice all that others deem pleasure, and devote their lives to bringing to view the previously hidien meaning of pages in the vast book of nature.

Of all the attractive modes of interrogating nature none is more attractive than this latest one of spectrum analysis. It tells us through the microscope that a red speck on the knife of a suspected murderer is blood, and no accidental stain; and tells us just as confidently through the telescope that vaporized iron Hoats in the atmosphere of that twinkling star so distant that even light takes jears to reach us; or that a tornado of incandescent hydrogen is sweeping at the rate of five thousand miles a minute over the surface of our sun.

Philosophers have described man's condition, as regards his knowledge of things around, as that of one standing in a dimlylighted circle, while but a short distance from him all things are lost in the unknown night which settles down around his horizon; and even in the brightest part of his circle the long, dark shadows lurk about his feet. Who would not rejoice at any discovery which sent out a stream of light, driving back the horrible shadows farther into the void of space? The spectroscope enables us to feel the pulsings, the throbbings of the surrounding ocean of ether, that life-blood of the universe whose trembling, quivering motions are light and heat and enurgy, without which, so far as we can know from science, the hamkness and blackness of universal darkness and death would close us in forever. Can we say more for this newest and most fascinating of the sciences than that it tells us more of the final composition of things near and distant than any other since man first studied nature.

EdUCATION IN JAPAN.

THERE is perhaps no country in the world that has within the last twenty years awakened a deeper interest in Europe and America than Japan has done. One reason is, that on account of its long isolation from the rest of the world it has developed a civilization of its own, and another, that it has exhibited from a very remote period a profound interest in the subject of education. Perhaps we may not go back further than the 4 th or 5 th century of the Christian era to reach the limits of trustworthy history in Japan. But it is claimed that before the beginning of our Christian era written characters were brought into Japan from Corea, and there is reason for believing that about A.D. $28 \pm$ scholars from Corea and China were brought over to teach the son of the Mikado and government officials the Chinese language and literature. Early in the 6ith century the Emperor Ketai selected his public officers for their learning as well as for their integrity, and Corean scholars seem at that time to have been in great demand. About A.J). 540 a fresh stimulus was given to this study by the introduction of the Buddhist religion. A university, with a Corean scho.ar at the head, was founded by the Emperor Tenji A.I. (i6S; to which were added departments of music and medicine by the Emperor Moumu, who established schools in several provinces. By the 11th century of our era Burldhism had effected the conquest of the nation, Chinese literature having been dominant in the land already for nearly three centuries. But from this time forward, on account of the civil wars consecuent upon the development of feudalism, learning was less cultivated than arms; the university was neglected, and ultimately discontinued. Still, while ambitious soldiers wielded the powers of governme t, confined the Emperor in his palace, and left him only an empty title, scholars never ceased to exercise a powerful influence over public affairs. Meanwhile strife and disorder continued till the leginning of the 17th century. when Iyeyasu, the founder of the Tokugawa dynasty, attainel
the rank of shogu", male the office hereditary, and wielded aholute power in the land. Iyeyasu was a liberal triend of learning. So also his successors. Tsumayoshi (A.I). 16s1-17099) fombled at Seido, Yedo, a Confucian university; and Iyenori (A.1). 1787-183s) threw it open to the puhlic. Xavier says that in his day there were fom acarlemies near Kiyoto, cach with 3,000 or 4,000 pupilis. In the high-class schools, which: made up the university of Yedo, sons of nobles met with foung people of the midhle class. Uthers of the line of Tokugawa founded many famous schools in various parts of the rmpire, where the nolles were taught in Chinese literature and philosophy, and a popular carcer of the likeral professions was "pened to the strmurci or gentry class. Once more arms and letters were united in education. Private schools for children of farmers, merchants and mechanics abounded in all the cities, and it is said every village excent the smallest had at least one. In hamlets too small for the ordinary school the principal inhahitants secured a young man as teacher, one giving him clothes, amother board and lodging, the poorer giving monthly fees, while the porrest got their children educated gratuitously. In these elementary schools the pupils learned something of Japaurse history, a little geography, and the exploits and amours of their ancient heroes, and were taught to read and write their simplest characters, and to perform casy calculations upon the "hucles. But despite the fact that the valuable literature "it their country was as far leyond their reach as the knowledge of the Rig Veda or the Iliad is heyond the common school bupil in C'anarla, not lo per cent. of the male population was utterly illiterate. Must could real and write well enongh for lmsinens purposes. As for the educatel higher orders, years of dhilhood and youth were spent in mastering some thousand of chinese characters. In the classical schools the works of ('onfucius and other Chinese sages were real; books of ceremonies were learned: Chinese proverbs and poens were committed to memory : and facility açuired in writing impromptu hort poems in Chinese characters. Elucation embraced morals
and mamers, the minutest laws of etiguette, and knowledge of how to perform harr-kiri, or abdomen-ripping, by which methor gentlemen were often compelled to put an end to their lives. Education, such as it was, was little calculated to expand the mind. It consisted rather of cramming than teaching, and learning by heart than sound mental culture.

Such was the state of education till the country was thrown open to foreigners in 18.59. The Dutch enjoy the credit of having sown at an emrlier late the seeds of reformation in plucation. As soon as treaties were concluded with foreign countries, the Japanese sent abroad for able teachers, and committed large numbers of gifted young men to the care and training of Western colleges and universities. In $1 s 71$ the work of national education was placed in the hands of the Mombusho, the Department of Education, and the old educational system disappeared. Vast changes were quickly made. In 1ste the new educational sysiem was launched. The plan then proposed was to divide the empire south of the island of Ye\%o into s "great-learning districts," es.h to le sub-livided into :32 "middle-learning listricts," and each of these into 210 "small-learning districts," so as to give one school for every (if() inhalitants, in which the keaching should be based on Western principles. Thus was organized a free system of compulsory ellucation for all the children of the empire between if and it years of age, with a course of study covering is years. This plan has heen moditied. In place of s there are 7 "greatlearning districts," in each of which it is proposed to establish a university. By the end of 1573 the number of pupils in gorermment schools exceeded $400,0(0)$. Py the year 1576 , as seen in the report of the Minister of Education, published in $157!$ the nunber of pupils was multiplied more than is times. The number of elementary schools was 25,4.59, and the number of
 The children learn their own syllabary and Chinese characterto the number of 3,000 , geography, history, arithmetic with Western numerals ame signs, ete. Oftern the school-house in
the most noticeable and lest-furnished building in town, with school apparatus, maps, blackboards, etc., and everywhere the people take great interest in their schooks. (If middle schools there were in 1876389 , instructing over 20,000 , mostly males. The course in them lasts from two and one-half to five years, and includes a good acalemic education, embracing writing, grammar, composition, look-keeping, mathematics, drawing, geography, geology, physics, chemistry, astronomy, physiology, natural history, moral philosophy, political economy, agriculture, commerce, law, the languages of the West, besides a course in Chinese and Japanese literature. These elementary and mildle schools are supported from four sources-a govermment tas, a local tax on property, a smail fee collecterl from the pupils, and private donations. The government of Japan acts as it it believed the saying of Elmond Burke, that "erlucation is the chief defence of nations," for it spenils twice as much upon elementary schools as upon the navy.

To provide teachers for common schools in place of foreign teachers, who were at first employed at great expense, a normal schoul was established in 1572 in Tokiyo; and by 1876 no less than 96 schools of that grade had been inaugruated, besides two normal colleges, the graduates of which were to be teacher:s of the milille schools. The normal school course is wide and thorough.

Besides, there are 52 schools for special studies, where are taught law, medicine, agriculture, commerce, navigation, chemistry, and mathematics. There are also forcign language schools, and commercial colleges like those of Canala, it college for sons: of nohlemen, a naval college under English, and a military college under French officers. The old shrine-cure of the priesthood, the Chinese system of medicine, which was full of ignorance, superstitions, and absurdities, and the Dutch ystem of 200 years ago, which till recently commended itself to the most enlightened Japanese, are all becoming discardel as Western medical science is finding its way into Japan; and a Geman medical college in Tokiyo, under the most accom-
plished scientitic men, is turning out yearly well-trained native physicians, who have openel medical schools and hospitals in every province.

In 1 st 2 Mr. Arinori Mori, now Japanese minister to Englaml. at that time Charge d'Affaires of Japan to the United States, in a letter to Prof. Whitney, of Yale College, proposed the arloption of the English language ly the entire population of the Japanese Empire. He stated that Japanese scholars founc: their vernacular inadequate for expression of Western idear, so that either there must be the development of their own language by an increase of its rocabulary, or the adoption of a new medium for the expression of thought. Mr. Muri preferred the latter comse. His letter awakened a hope in many that. the Japanese would, before very long, possess themselves of our language, the key to largest intellectual treasures, anl, above all, to the Word of Gorl. But all hope of that in the near future has been abandoned, for it is the intention of the Department of Education to give up the foreign language schools as soon as it may seem safe to make the Japanese langruage the medium of instruction in the universities and special schools. Hal Mr. Mori's scheme leen carried out, it would have been an unspeakably great gain in many respects to the people of that empire. How great in one respect may be seen in the fact that a man who has any clam to scholarship must lee alle to read and write from ten t_{0} twelse thousand Chinese characters, while men of great learning must le perfectly familiar with from four to sis tens of thonsands.

The best-huilt institution in Japan is the Kolu-dai-gakkothe Imperial College of Engineering-and was a few years ago confersedly the most complete and hest-erguipped engineering college in the work. It is a very spacious institution, with museums, laloratories, and apparatus: and three years auo it hal a very able staff of professors and instructors from Great Britain. Unhappily, after their too lavish expenditures upon the institution, in their attempts at economy they dismissed nearly all the foreign gentlemen connected with the college,
and placed in their stead natives not sufficiently qualified. The general and scientific course, which is the foundation of their technical applications, includes English language and literature, gergraphy, elementary mathematics, elementary mechanics, chemistry and drawing (geometrical and mechanical). They attempt to train sturlents in the following branches of technical education: Civil engineering, mechanical engineering, naval architecture, telegraphy, architecture, practical chemistry; mining. and metallurgy. The examination papers presuppose students of large and varied learning, and indicate a great thoroughness in the teaching of the college. The course is sir years long, and much practical instruction is given at the wellequipped works at Akabane.

Formerly, Japanese girls received but little instruction, and that little was seldom in schools. Since 1871 they have had all the advantages of the elementary and middle schools; and five normal schools for girls are sending out women well qualified for teaching in the elementary schools, in which, according to the last report, there are $1,5.58$ female teachers. To crown this good work for the gentler sex, the Empress Haraku has establisherl a normal college for ladies, who now enjoy educational adrantages equal to those of most of the young men of the land.

The Tokiyo university includes departments of law, literature, and science, a medical college (the German medical college referred to above), the Yobimon (a preparatory college), and a botanical garden. The different curriculd are very extensive, and the examination papers, Joseph Cooke says, " are as searching as those of Harvard, or Yale, or Oxford, or Cambridge, the classics only excepted."

A second university has been established at Osaka, and it is the intention of the authorities, as the needs of the country arise to organize others in the remaining five "great-learning districts." Surely the poet is right:
"Better fifty years of Europe than a cycle of ('athay."
so much for the national system of education.

To gret a clear and comprehensive view of the situation we need to climb to an elevation. This paper is written on the bluttis which overlook the Bay of Quinte and the Ctlenora stone mills, while close hy is" "the Lake on the Mountain." To one standing at the foot of the hill, the bay is simply a fine sheet of water bounded irregularly by wooded lands. To us on the summit it is the loveliest spot in Canada. The ear takes in all the sounds-the roar of machinery below. the hoarse shouts of men in the distance, the varied songs of birds, the hum of insects, and the sweet roices of children-and all are blemed into music. The ere embraces the beautiful panorama which stretches before us and on either side for many miles-the phacid shect of water reflecting the sapphire sky and the emerald foliage along the shores, dotted by steamers and sailing vessels: the coves and bays formed hy the outjutting points and promontories: the bluffis in the Long Reach: magnificent forents, the growth of a hundred years: young plantations now under cultivation; fields of grain yellowing for the reaper: villages springing up here and there under the magic wand of lahor: church spires shining in the sumbeams: the far-distant mainland, and the smoke of the railway train-all the irreconcilabilities melted into unity by the sunshine, which possessen the splendid power of harmonizing what is unharmonious in color and incongruous in form and of softening them while uniting. So it is only as we are lifted up to a lofty moral elevationto fellowship in the hearenly places with the Lord Jesusthat we are alle to survey the whole field and see its completeness or what it lacks. What do we see in Japan to-lay? We see a nation stirred to its depths as if by some master. passion, adopting best results of Western thought, reorganizing and equipping army and nary, rearing lighthouses along her-rock-hound coasts, constructing railways and telegraphs, organizing a postal system, and an admirable system of educatron, from the common school up to the university. The Titan begins to feel his strength. He is turning to account the forces of nature. He is alding indefinitely to past acquisi-
tions. He is pouring his spirit into nature around him and making it live. We see, too, a tremendous struggle going on leetween monarchical and democratic ideas; between a lesire to stand in the front rank of mations and a desire not to appear to follow in the wake of any; between the press bent upon freedom, and the govemment, ever and anon putting its foot upon some too outspoken editor: in short, between the old era and its feudalism and the new era with its letter spirit. And we see confidence in the old religions declining: and with the loss of faith, no exchange of the old faith for a lietter, but a loss of self-restraint, and a deeper plunge into the excesses of sensuality, to which alrealy they hal been, when faithful to their gords, too much addicted. This is the result of the quickening influence of Western thought. If we wish to understand why this is, we must regarr' the matter in the light from the eternal throne. It is said that a great master, Hollein, loved to paint with the light coming down froin above upon his work. He used to say that a light from above put mbjects in their proper lights, and showed them in their just proportions, while a light from beneath reversed all their natural shadows. Uniloubtedly the stutus quo in Japan is a stage in the development of the plan of Jehovah in regarl to that interesting people. God is going to take Japan for Himselt. This enormous intellectual growth is to the end that the more firmly the gospel of the grace of (iod may, while it quickens the moral nature, take hold of the entire individual and of the nation. Man is swayed by his animal propensities or hy his moral and religions elements. Intellect by itself is not a motive power ; it is only a light. Elucation per se is no antidote to vice. Voltaire was educated, but Strauss acknowledges that he could perjure himself upon occasion. It is not enough that Minerva is at hand to restrain Achilles from blinuly following his impulses and appetites. The Parthenon, deroted for ages to the worship of Minerva, or rather of intellect, of which she was the embodiment, long agro became " disastrous wreck. And the hope of Greece to-day is not in the Parthenon,
or Minerva, or the intellect, hut in her mission schools and Christian Church. Intellect serves it: purpose undoultedlyand an andirable purpose it is-but it will he in the way indicated ") Lilman in his History of Chri-tianity: "('hristianity may exiot," says he, "in a certain form in a nation of sarages as well as in a nation of philosophers: yet its specific character will almost entirely repend upon the character of the people who are its rotaries. It must lee considered, therefore in constant connection with that character; it will darken with the darkness and hrighten with the light of each succeeding century: in an uncongenial time it will recede so far from its essential nature as scarcely to retain any sign of its divinc original: it will adrance with the adrancement of human nature, and keep up the moral to the utmost height of the intellectuch culdu, of man." And even the increased immorality of the people since they lost their faith in their old relicrions has served the purpose of causing the rulers and the more thoughtful of the people to see the insufficiency of intellectual culture to regulate the moral conduct, and the absolute necessity there is of some religion to save the nation from atrophy and ultimate ruin.

In the circumstances our duty is clear. A young missionary on reaching his field of labor was invited to visit the governor of the region, who said: "Your chances of success are smallthe people are so debased and wretched." To whom he replied: " Fet we should not forget that God is able to lift up this degradend prople as well as others." "Oh," said the govemor, "of course: if you take the supernatural into accomet, that make all the lifference." Yess: this is our confidence that there is nu nation so refined as not to need the geopel, and no nation is sw degraded as to be heyond the reach of the gospel. For incarnated in it is almighty power, the power of the Lord lesus Christ to sate from the uttermost to the utterment. As Jean Paul Richter sayss. "the Tree of Knowledge should he grafterl on the "Tree of Life." (a) yomber without the supernatural. and some day the people, harn to believe, to reverence and to
adore, as well as to think, to feel aml to act, hereft of their faith, which is their life, and stripped of all the joy and musicand Hower of life, will come to those who have desporited them with the despairing cry-

> "(iive back our faith, ye mystery-solving lynves, loobe us once more in heaven-aspiring creeds; Happier was dreaming Esyp with her sphynes, The stony convent with its cross and heals:"

But go with that gospol which invigorates erery faculty of man and mareotizes none, and in the enjoyment of a persmal and intimate affection for the living Jesus, and taking with fou as much of science amp philosophy and art as you canthe more the hetter-and you are embarked in a cause which is lomol up with the happiness and destinies of the Japanese. The wifts of the orator and of the poet, the largesses of the philanthropist, were never enlisted in an enterprise more glorions, or which premised a larger success. But the time has come when we must make a forwarl movement. "The army"," vaid Napoleon, "that stays in its entrenchments is alrealy heaten." We camot be too thankful to such men as Duff, who hook away from the traditions of the pant and boldly entab)lishuel mission schools to educate the people for a nohler. Christimity: We must have a first-class collegiate institute, umer Christian teaching and influence, for instruction in secular harning, with the aim refinitely and constantly kept hefore it of propring students for matriculation in the university, of doing miversity work, and of developing ultimately into a miversity: We must have such an institution for the followiug rasons: (1) Our native ministers reguice the training such a college will impart: they cannot arail themselves of the univirsity, for it is thoroughly infidel. (2) The young men of (ur ("hureh who want a good and Jiberal education go to schools where the teaching of seeptics leads them astray. We must haver such an institution to conserve the results of our labors. (i3) We cannot expect to have the confidence of the masses of the . lipanese public who do not believe in Christianity, but do
believe in education, unless we engage in educational work. The churches that are doing educational work are growing rapidly. Sion after they are opened, mission schools are filled with eager students. A much larger proportion of the students brought under the influence of Christianity in these mission schools in Japan becomes Christian than in similar schook in India or China.

We need now, at once, in addition to Prof. Whittington, three excellent men* who will use the English language as the medium of their instructions, equipped, each of them, fur his poit as a planet for her orbit, willing to perform, amid graver toils, the lowliest offices for the Lord's sake, like the angel, in certain "Illu:strations of the Lord's Prayer," who, amid his lofty ministries, was not above filling little cups of honey for the exhausted bee. How grand a work such an institution can do. we can gather from the glorious results already secured by the Doshisha, the mission sehool of the American Board, the Sapporo aspicultural college and the schools of the Preshyterians and American Nethodists. It is the well-instructed young men. brought unler the constant care of Christian teachers, who are far more susceptible to the appeals which Christianity makethan those who see their teachers only once or twice a week. or not as often Coleridge has well said: "The water lily in the midst of water lifts up its broal leavers and expands its petals at the first pattering of the shower, and rejoices in the rain with a puicker sympathy than the parcherl shrub in a sandy desert." The Christian teacher in yon field groes to certain success. The religions of the lamd are already demoralized. They stamd like the ancient barbarian pugilist. defending the place struck last. lout utterly unable to guess where next the blow shall fall. The battle with the agnostic party is fairly hegon, and alriaty rictory is perching on our hamers. With the right kime of

[^1]men in our school-and may they soon be fortheoning:-w. hall do our part toward the conquest of that land for Christ.

We call for largest consecration of greatest gifts and ripest cholarship, and yet, when victory is won, we shall ascribe all tw (iod. "It is," said Plato, "neither the reins, nor the whip. ner the steeds that draw the chariot; the charioteer, who holds the reins and applies the whip or the brakes, it is he who draws it." Method and opportunity, apparatus and machinery, faithful and able men, these we need, but it is only as all are in the hands of Christ that they will prove a blessing. Nor shall we wait for the hour of victory. "Now unto Him that i able to do exceeding ahundantly above all that we ask or think, according to the power that worketh in us, unto Hinn be glory in the Church by Christ Jesus throughout all ages. wonl without and."
(i. M. Meacham.

Hocse of the Dinmosd.-Diamome, it follows logically from the recent discoveries of M. Chaper, the French geologist. may exist in all rocks formed from the degratation or erosion of pegmatite, in quartaites, with or withont mica: clays, purd-dling-stones, etc. He form the diamond at Naixam, near Bullary, in Marlras, India, in a matris of rose pegmatite, associated with corunctum. The region is hare and rockr, and nearlydentitute of trees. The rock is traversed bey veins of telldyar aml epidotiferous quartz: and the rains wasting the rock cleposit freh diamonds in the soil year by year. The dimond crystah are perceptibly octahedral. This sermin to dispose of the question regarding the mother rock of the most precious of ali stones.
Tue I'nited States postal authorities must plead guilte either of teaching the youth of the great country south of us hat stammar or of spreading brondeast a palpable lie. Secking to sive unnecessary instructions to the correponding pullic, the 5 prorlaim upon their postal cards. "Nothing lout the address ra" lup placed on this side." ('anadian postal cards hear the more truthful remark, "The address to be written on this side."
'THE NAND PLAINS AND CHAN(iEN OF WVTER LEVEL ()F THE CPPER OTTAW゙.

BY the IPper (Ottawa, in this paper, is meant that portion of it which extencls from the head of Coulonge Lake, a little helow the lower end of Allumette Island, to the entrance of Jeep River, about seven miles abore the head of the same islame. This takes in a streteh of nearly forty miles, following the coast line. Enough, indeed, for one attempt-too much to he very minutely handled.

By a word picture we shall hurriedly outline the position and nature of this portion of the ()ttawa Valley.
(1) The town of Pembroke is situated on the south side of the I pper Allumette Lake, and ahout twenty miles from each 'nd of this section. This town furnishes a good point of refer. ance.
(b) The Allumette extends throughout a great part of the locality under examination.
(r) The Cullute Hows on the north between Allmmette Isiamil and the (quebee shore.
(d) The Upper and Lower Allumette Lakes separate Allumette Island from! Ontario on the south.
(r) At the hearl of the island, westward about eight miles from Pembroke, are the Narrows, where the water Hows in a swift current.
(i) Eastward from Pembroke, about four miles, are thre rapids almost parallel, and unnavigable. These are the Allumette. Lost Chenal, and Beckett's. The last is farthest south, the first farthest north, the last Chenal in the centre.
(y) Morrison's Island lies hetween the two first mentionnel. and Beckett's Island hetween the two last.
(1) At the lower end of the Allumette are Papuette's Rapid. a series of swift but not very langerous currents, extending alwat four miles from Westmeath Village to the head of (oulonge Lake. From the foot of these rapids the ()ttawa-grand. Macid, and majestic-glides along, joined by the Culloute, into
which the Black River enters from Quebec, a couple of miles from its mouth.

The heantiful Coulonge Lake lies spreal out eastward from this point, and is the eastern limit of our subject of study.
'Iuming our attention to the western limit, we may safoly ay that the scenery among the island; of the Paquette's, up the Culbute. around the Lost Chenal, through the Allunette Lakes, Allumette Bay with its many islands, the Sturgeon Lake: aml entrance to Deep River, is as fine and enchanting as any to be seen in Canada east of the Rocky Mountains. Dr. Perkins. wi Boston, accompanied the writer last summer in circummarigating the Allumette, and passed through a large part of the listrict mentioned. This gentleman pronounced it as "gramel and beautiful" as anything he had seen in Eurcpe, and he had at that time travelled over most of the continent. It has been the privilege of the writer to travel over and around our large lakes, through the prairies of the North-West, the Thousand Nands of the St. Lawrence, the Ten Thousand Islands of Lake Huron to the head waters of the (Ittawa, through the States of Michigan. Minnesota. 1)akota and New York, wer every trilutary on the north shore of the mighty st. Lawrence, from the hear of Lake Superior to Montreal city : and in all these glorycontaining resions the scencry of the Fppere ()taza is not sumpassed, and seldom equalled.

To locate more accurately, we may notice that this district
 hroke being 77 10'. Height ahove the sea level of the T Purer . Ihnmette, 400 fect. The Meteorological Station of Pembroke. muler the charse of Mr. A. Thompson, is +2.3 feet above the sea level.

For the most part the important sand plains lie on the south Siln of the (Ottawa. The ancient Laurentians skirt the north sid. of the river, scarcely retreating over a mile at any place. We may contrast the coast lines of the two provinces as follow: Ontario lies comparatively low, undulating, and quitumuretentions, hut is well supported by ranges of hills farther
wouth: Quebee, on the north, presents a rugged, massive, broken and harren appearance.
(ri) (In the Ontario side, the ('halk River sand plain begins a little above Chalk River Station, twenty miles west of Pemhroke, which town it almost reaches. There are a few broken range interruptions toward the lower end of this plain. Thes. interruptions harmonize in position with the rapids, and are parts of natural barriers between a higher level westward and a lower level eastward. At places may be noticed sand ridgen. These lie between ancient mouths of rivers, some of which remain to this day-as the Indian, Muskrat, and Petawawawhile others are quite extinct. Following these sand ridgementioned, or in the direction of the diverging rivers, we invariahly come gradually to higher ridges of native rock. The Chalk River Plain wants only the grass to give us a beautiful and extensive tract of prairie land; but as it is wretchedly. harren sand, nothing will grow on it to any extent except ferns. small pines, and hlue herries, the latter in great abundance.
(1) Eastward from Pembroke the sand stretches strugglwith the rising and rocky hase of distant hills which skirt the(Itawa from Wrestmeath in the direction of Renfrew town. At last the old hills, with their stores of marble, get the upper hand, and the sand fracts are terminated for a time.
(c) Back from the Ottawa, and between Pemlnoke and Renfrew, there is another factor to be taken into consideration. This stretch of nearly forty miles, extending beyond our presemt limits. is variegated with sand, clay, and irregular hills of rock. One low and rery even clay bed contains over 1,000 acren of yood and well cultivated land. Before passing to the Quehwe side of the river, a few facts may he given which will afterwards form a groundwork of some explanatory remarks.

There are many small patches of sand, varying from, say, tem acren to a few square yards. Most of these are easily understod. The operations which are forming the smaller are going on in the presence of the olserver. The larger accumulation are met with sulforuly after passing ridges of rock in the
direction of the rumning water, while they gronkully disnppear as we approach the next range. Wherever there is a small sand patch there is an old hut weather-worn rilge of rock close at hand. Nearly always the order is this: Hard, massive rock: next large angular houlders of the same: then rolling stones, after which come pebbles; then coarse, followed hy fine, sand. The tirst is always up stream, while the others range in regular wrer, ending with fine sand farthest down the current. Where therr are clay beds mixed with sand the rock ridges are genrally farther away, and show a variation in their composition. Speaking carefully, we may say that " clay is a soft earth which is plastic and may be moulded with the hands, consisting of alumina, to which it owes its plasticity, and also silica with water." Patting it chemically, we get alumina $\left(O_{\mathrm{s}} \mathrm{Al}_{\mathrm{t}}\right)$, silica (Si (O) and water (H_{2} ()).

It results from the slow disintegration of one of the constituents of granite rocks, and when chemically pure is called almmina. The farther from the source of formation the purer is the clay: the nearer to its source the more sand is mised up with it.

Lime, magnesia, oxide of iron, and other ingredients are often prearnt. The oxide of iron is a very common and abundant lactur along the Ottawa Valley.

By careful examination, the basins of ancient rivers can be rasily followed, with their rapirls and stretches of calm water. Even the small bays of olden times may he noted. The kinds, pualities, and layers of sand must be our guile, always aided, of comrer, hy the contiguration of the immediate locality. Having refured to the qualities of sand and clay, we shall now specify.

Lu far as soils are concerned, they may be said to come from twokinels of rock, ! fre, 11 ite and trep. liremites consist of guart\%. f.Wlyar, and mica, the latter generally an insignificant factor. Guart\% is llint, or the silica of the chemist. When the granite hills and ridges are washed down by water, the coarse quart\% samblies along the sides and at the immediate base of the hill, while the feldspar is ground to a fine tenacions clay and is car-
ried forward into the valleys. Hence the soil in the Hats of granite districts consists of a colld, stiff, wet and impervious clay, which needs much manure, draining, and labour to make it productive. The hillsides are almost useless, as ther comsist nearly altogether of guart\% grit. Such are the (Quchec slopes of the district we are now stmlying, but the vallers ine too narrow, cramped, and water-hedged to give sufficient space for the sifting out of the feldspar from the quartz silt. Hence these narrow valleys are formed of ground-down feldspar and the finer quart\% sand, the coarser being left along the momatain siders and close to their bases. It is on this account that the French luelituruts rejoice in their moderately fertile fichls. In some places the writer has noticed solid hodies of feldspathic clay, but always at a distance from the rock ranges. This clay is known to many under the appellation of pipecley, and is finer in texture and more coherent than marl.

Trap rocks, on the other hand, consist of feldspar anil hornWemle. From this we see that feldspar is common to both granite and trap. Out of 100 parts of feldspar there are (6.) parts of silica. $1 s$ of almmina, and 17 of potash and soda: whild. of 100 parts of homblende there are 42 parts of silica. It of alumina. I2 of lime 14 of magnesia, 14 of oxide of iron. A gramite soil, in aldition to the silicious sand. consists chiefly of silica, alumina, and potash, derived from the feldspar. A trap will. in addition to the silica, alumina, and potash of the feld-- par, contains abo much lime, magnesia, and iron oxide, derived from its homblende. Hence, as a hornblende soil-or, more comprehensively, a trap soil-contains more of the inorsamisubstances most important to plant composition, it is morr valuahle because more productive than granite soil.

There are a few fine stretches of the former, hat many of the latter, along the Epper Ottawa. I sing this methoil of comparison, we must conclule that the Ipper (Ottawa recion will never he a first-class farming country: at the very bent. is can only expect to be considered midlling.

But we must retum to our line of general observation. Large
tracts, containing thousands of acre, like the Chalk River Plain, are difficult to explain. The student must travel to the mountains miles away, and take in the different ranges, their hearings, and the various streams and rivers which have operated during the long ages of the past. In fact, it is necessary to make ont the differences of water level orer vast areas, and the caluses of the changes in the water line.

It is remarkahle to see how the terraced work of Jomrison's Island fits into the lower system of terraces at the month of Black River, where it enters the Culbute. These points are about ten miles apart. The broad Chalk River Plain corresponds in its two levels with the two definitely marked steppes standing out on the Laurentians near the head of Coulonge Lake. These two points are at least thirty miles apart. They appear to have been formed during the same water level.

At one time, and probably within a thousand years, there was a grand and mighty lake, in whose depths were hidden all the Chalk River Plain, the Pembroke district, Alhmette Island, and thousands of the arable acres between Renfrew and Pembroke.

There were, in fact, two distinct periods, one of which iepresented a lake two hundred feet deeper than the Upper Allumette, and the other one hundred feet deeper. In passing down the Culbute, or emerging from among the islands of the Paguette's, the terraced ranges which remain as marks of old water levels show themselves quite prominently, and add much to the beauty, splendour, and majesty of the scenery.

In tracing the various systems of change in the water coast line, the interest becomes intense as it is discovered, without loubt, that at one time there was a vast hody of fresh water lying over the present Ottawa River, and extending in length over a hundred miles and in width from ten to thirty.

In climbing many old weather-beaten and water-washed rock ranges one can see clearly the holes, cauldrons, and water-scored chamels of bygone days. At the head of Allumette Bay, into which an ancient river emptied, there are many markings left as guides for the future generations.

To aid the sceptic, who is naturally hard to convince, in understanding that the writer is not simply drawing on his imagination concerning this ancient lake, with its far-reaching systems of rivers, most of which are now either wholly dried up or turned into other outlets than the Ottawa River, we shall ask him to add two hundred, or even three hundred, feet to the depth of water already indicated. In such case he will have before his vision a body of water as large or larger than Superior itself.

During the summer of 1876, A. P. Coleman, Ph.D., at present Professor of Geology and Natural History in Victoria University; B. E. McKenzie, B.A., M.D., of Riverside, Toronto: F. Munson, B.Sc., and the writer had the pleasure of exploring the whole valley from Ottawa City to the head waters of the Ottawa River.

At the head of Lake Temiscamingue we noticed a magnificent range of fossiliferous limestone. It appeared to be perched on the top of the granite rock, lout part of it reached into the waters of the lake and was lost to view. We climbed to it, top, two hundred feet or more from the water level, and examined it very carefully. In richest profusion and in every direction fossils of many linds were lying. Of course this alone proves the presence of an inland sea, or a continental oceam. But the point of present interest is the fact that in every direction the operations of water may be noticed. Now. if there were grinding, wearing, and boring operations of water, we conclude that these took place under the action of rushins rivers.

To anyone who has a knowledge of the configuration of the. Ottawa Valley the above-mentioned fact is enough to prove the presence of a vast inland sea, which has passed through all the necessary changes in the direction of diminution and contraction in order to leave us our present beautiful river, with its islands, lakes, rapids, narrows, and variegated coastings.

On the Quehee side of the river there are several interesting patçhes of sand, ranging from fifty to three hundred acres in
extent, and many smaller. The most important are at Fort William, the Chapean, and Lynch's Bay. With these may be included the lower half of Allumette Island. No observer need look long for the cause of these sand beds. Every step of the formation, which is still going on in some parts, may be seen at any time that the snow is off the ground. At one time there were small rivers at many of these places, which were among the ancient feeders of the great lake system of the Ottawa Valley. These are forever gone from the face of the earth.

The Chapeau district is important from the fact that there are two distinct and prominent water lines. One of these corresponds with the second steppe at the head of the Coulonge Lake, and also with the Chalk River P!ain, which is the largest within the forty miles under consideration.
The average height of the lower of these two near Chapeau is ahout twenty feet, and of the upper about one hundred and twenty. Through the upper, and almost on a level with the lower, a large creek or small river meanders from among the Laurentians, and quietly loses itself in the gently-flowing Culbute.

The lower part of Allumette Island is a solid mass of sand, and is on the same general plain as the lower range at the Chapeau.

Ahout four-fifths of the whole surface of the island, and fully three-fourths of its entire length, were formed by sand washed down from the mountains of Quebec, as were also many of the saml patches on the Ontario side.

Let us now look into the causes of these formations and changes. It may seem almost superfluous to make any special aul minute references to the origin of these or any sand plains; lut it will be of help to some if a few of the particulars are given.

Sand is finely-ground rock. Mountain ranges are constantly Win down by the action of heat, frost, wind, and rains of the ever-varying seasons.

It is instructive to watch closely all these agents as they do
their work. Any day in the year, any hour in the day, the student may examine and learn much. To quote from notes of a trip through the mountains last July will aid us in this connection :-
"We left our camp near the Chapean, walked along the sand, among the beautiful pines on the lower level a little way liack from the Cullute, and ascended the first height of one humbled and twenty feet. The view thus gained was fine, and a very pleasing foretaste of what was to follow. Directing our step. towards the mountains, about three miles distant, we crossed a beautiful river with wonderful embankments of sand over one hundred feet high. Here we sat, observed, and wondered. During perfect calmness of the air the sand kept sliding down in ten thousand almost imperceptible streams, and was hurried along by the swift waters of the river. This sand is forming a bed near and beyond the mouth of the river.
"At one place in this plateau valley there is a washout close to the point of observation. By a rough but sufficiently careful method of calculation, we concluded that from two million to four million cubic feet of sand has been washed away from one small field. Rain legins to fall. The ascent is liegun in earnest. The top of the highest peak must be reached. More than an hour is spent in climbing from crag to oriag. At length we look down hundreds of feet below us on clouds and rainstorm.
"To stand on the Laurentians during a July rainstorm. and to take in all the strange, hazy, and mistified grandeur, is one of the richest treats of a lifetime. The heavens are cleared in patches, the sun shines through the rifts, the rain falls, and rainbow-tinted glory decorates the heavens. The sight is truly grand.
"In ascending these mountains we started from their resting places large and small stones, which rolled down hundreds of feet. Boulders, when displaced, bounded forth with tremendous force and crashed through the trees below with irresistible violence.
"Streams caused by the falling rain werc hastening down the precipices and gorges, carrying with them myriads of shining sant grains. These, if examined under the microscope, woull be found to he granules of mica, quarta, feldspar, and hornhlende. On the very summit could be seen the simplest formation of these streams. Many almost invisible streams, each formed by a few drops of rain, were uniting and forming minute currents of water, following the inclines and slightest indentations of the rocks. On careful examination, fine grains of sand could be detected even in the spreading-out rain drops and on the bare head of the hardest and smoothest gneiss rock. In lescending we reached the converging points of the smaller streams, and finally the home of the torrents, furiously leaping through the deep gorges, and issuing with terrific force to join 'the brimming river.' Here we noticed something more than sanil. Pebbles and small-sized stones were violently borne along and deposited in the less rapid water: They are covered by the sand and soon lost to sight, but aid in filling up the valley.
"In sunshine and calm we ascended the same peaks the next day. Along the top, at the very summit, we looked carefully to see if any sand grains were left. To our great astonishment, in every direction we found it in quantities varying from a culic foot to a single grain.
" Our curiosity being aroused, we examined not only the top of the bare peak, but the tops of loose boulders, and even the upper edges of small-sized stones. Strange, but true, this next day after a drenching rainstorm, which finished up not suddenly; but very gradually, and in the warm month of July, grains of sand were lying loose on every spot which was examined.
" Another similar rainstorm would wash these grains away, and their places in turn would be occupied at once by other sparkling points.
"On further observation we discovered a constant movement of exceedingly fine sand clust caused by the gentlest zephyrs.

While descending we noticed several places where the sand was actually trickling down the crevices. Streams of sand, varying and spasmodically fluctuating, were constantly lessening the mass above and filling the hollows below.
"So far we have said but little concerning the cause of sand formation, or rather rock-wearing, during summer weather. At any time during the warm summer months fine sand dust may be discerned even on clear-looking boulders by means of a small magnifier.
"The weather-beaten exterior of all rocks is more or less cracked and granulated. Numberless fine cracks ramify in all possible directions. Many of these are invisible to the naked rye. When the rain falls the water saturates the surface. After a little while the temperature rises. The expansion of the moisture in the cracks pries off many small grains of sand. In fact, we are safe in saying that during the months of warm weather the contraction of the rock surface in the night, and the expansion consequent upon the heat of the following day; without any reference to dampness, wears away the rocks constantly."

When we rememher that this section of the valley under consideration belongs to the oldest of all geologrical periods, our interest must increase. Geologists have marked out over thirty geological divisions. Here, however, there is one, the oldest. the Archean, of which Dana says: "There was first an age or division of time when there was no life on the glohe; or, it amy existed, this was only true in the later part of the age, and the life was probably of the very simplest kinds. The Archaan stands apart as preparatory to the age of invertebrates." Now, in saying that this district belongs to only one geological period, we do not mean that there has been no change during the many ages of the past. But we do mean that the rocks are Archaan. with a base surrounding of their own refuse and ruins. Som would prefer to say that the first and last geological perions meet in this valley. Here the Aozoic stands out in majestic sublimity, looking down upon the only child of its many year-

This could be called the Quaternary period, and, Minerva like, came from the head rather than the loins of its progenitor. Since the latter is nothing but the ground grit of the former, it is immaterial whether we say there is a blending of two periods or the full age and chronicled history of the Archean alone. This history may be epitomized as follows:
(ci) The earth's foundation rocks were formed during the first grelogical period.
(b) In many parts of the world the earth building went forward.
(c) Various courses of material, called stratifications, have been deposited upon these foundation stones.
(d) Many parts of the old formation rock were never utilized for building purposes, as the Laurentians of the Ottawa district.
(e) As they were not built upon, they were left unprotecterl.
(f) The warring elements during the many cycles of time have continued to grind these foundation stones to powder, which still lies at their base in the form of sand plains.

Passing forward to another part of this subject, we acknowledge frankly that there are serious difliculties staring us in the face. The changes of the water level are necessarily linked with the different simd plains. It is absolutely essential to have different kinds of measurements for our work, such as present water depths, mountain heights, and water levels as compared with the sea. The length and breadth of rivers, lakes, and plains are also needed.
Anyone knows that the acpuisition of all these and many uther measurements involve much labour, time, and expense. F.w earnest students of nature are blessed with all the requiites for accurate olservation concerning much of vast importance. Besides, the time marks of the Ottawa Valley are very imdistinct. Their language is scarcely known as yet. and is hard to master. One kind of measurement alone is left us, and that may give us some help when acquired and used. This is sutce and lineal measurement. We venture to express an ardent wish that hefore many years hare passed away a tabulated list
of careful ohserations and measurements may be oltainalle. In this comnection we deem it quite in place to suggest that the Gowemment estalolish a meteorological station at the Chapean. and also at leseooachims. We think, moreover, that the weather gangers at these stations should be required to grive extensive and accurate lists of actual measurements of beights and distances.

In this paper it has heen already assumed that at one time there was an extensive inland lake, which has gradually lessened till a few small lakes and river stretches alone remain. The cause of the diminution is easily seen. The water has worn down the channels at what were formerly rapids. When rast quantities of water rush annually over rock surfaces, the river beels must be lowered. Observation will show that the rapins of the Upper Ottawa are natural barriers leetween an upper and a lower water level, and between the rapids ther. are even lakes or large river expansions. With a given quantity of water, a constant unit of time, and a homogenous hardness of rock, the rate of lowering of chamel must be regular. unless the seasons, rains, and freshets vary greatly. Even if all these were constant and regular at present, we would be unabl. to locate the time in the past when the mountains were one hundred feet higher, or when any given river channel was twenty feet higher than now.

By an examination of the rocks we can easily perceive that the harlness varies. For example, the rock beds at the Narrows, a few miles west of Pembroke, are very hard, say seven legrees out of a possible ten. But the channel rocks of the. Allumette Rapids, at the opposite end of the lake from the Narrows, are only five degrees of hardness. These rocks are a fine sandstone compacted with a bluish or brown clay. The corroding action of the water tells readily upon the clay, and thus the sand grit is washed from the surface.

What do we learn from this simple fact? This: The space between the two rapids must be gradually drained of its water by the greater corrosion of the lower rapids. This means that
the present 'Tpper Allumette Lake is drying up, or draining off' t.moush the Allumette Rapids hecoming lower.

This in turn means that the now narigable "Narrows" will in time lecome too stecep and shallow for steamboats to pass: hat the now umarigathe Allumette Rapids by that time will be narigable. These are changes going forward to-day, and will he facts of the future.

Again, let us compare four parallel rapids, the Allumette, the Lest Chenal, Becket's Chenal, and the "High Water Portage," an ohl chamel of the river, but now completely dry even during ligh water. The rocks of these four channels are all of different degrees of harlness. The "High Water Portage" rocks are the hardest, Becket's Chenal next, then the Lost Chemal, and lastly the Allumette.

After examining these different channels, their positions, their volumes of water, and the whole basin, we find that the volumes of water vary in inverse order, beginning with the Allumette, the largest; which means that the oldest channel has least water (it has none now), while the youngest has most, Howing orer the soft bed of which the bulk of the Ottawa rushes with a constimtly-increasing effect.

My attention was attracted to the "High Wiater Portage" by the hare and dry water-eaten recks. The channel is as easily traced as if carrying water. The rocks are extremely hard. Becket's Chenal shows a softenirg in its bed, but the Lost Chenal is more marked in this respect, clayey sandstone beginning to show itself. But when the Allumette bed is examined the conclusion must be that this channel is destined to carry all the water of the Ottawa alone. Then there will be three old aml dry chamels. This is an inevitable result unless the present soft Allumette chamnel hed is thinly built upon a hard and more rnduring foundation. By this particular comparison and conclusion we are now prepared to rise to a higher plane of study. In such a system of scattering mountains as the Laurentians there are and have been many rivers. These rivers have had many mountain barriers to overcome. They have passed over
the lower parts and cut their way through the softer ridges. At one time in the past a river has rushed wildly along through a rugged and adamantine channel. Now, in the later ages of the world, the same river lashes itself into fury as it passes through a channel one hundred feet below.

Some beautiful and clearly outlined old channels of the Ottawa are easily seen not far below Aylmer.

The Paquette's Rapids, at the head of the Coulonge Lake, are composed of harder rock than the bed of the Allumette. The result will be that the Upper and Lower Allumette Lakes will eventually form one navigable stretch, limited at the western extremity by the "Narrows," and at the eastern by the Paquette's.

At one time the ridges back from Westmeath connected with the ranges on the Quebec side of the river. Over these ridges the mighty Ottawa River Lake hurled itself into a vast abyss of seething waters at least two hundred feet below. From this fact, and also from many observations at scores of points westward along both shores and for hundreds of miles up the river, we have concluded that there was once a mighty and expansive inland lake of fresh water, as previonsly stated.

In the interests of science and natural history, this and other science associations should memorialize the Government to aid in accumulating vast stores of facts and observations. The present meteorological system is good, but needs extending and perfecting. More work needs to be performed. Not only should the general geology of Canada be studied on an extensive plan, but the ten thousand points of minutest details should be secured and placed within the reach of the earnest students of nature.

[^2]
SCIENCE-MATHEMATICS-LANGUAGES.

|N estimating the present position and prospects of experimental science, there is good ground for encouragement. The multiplication of laboratories gives to the younger generation opportunities such as have never existed before, and which excite the envy of those who have had to learn in middle life much that now forms part of an undergraduate course. As to the management of such institutions there is room for a healthy difference of opinion. For many kinds of original work, especially in connection with accurate measurement, there is need of expensive apparatus; and it is often difficult. to persuade a student to do his best with imperfect appliances when he knows that by other means a better result could be attained with greater facility. Nevertheless it seems to me important to discourage too great reliance upon the instrument maker. Much of the best original work has been done with the homeliest appliances; and the endeavor to turn to the best account the means that may be at hand develops ingenuity and resource more than the most elaborate determinations with ready-made instruments. There is danger otherwise that the experimental education of a plodding student should be too mechanical and artificial, so that he is puzzled by small changes of apparatus much as many school-boys are puzzled by a transposition of the letters in a diagram of Euclid.

From the general spread of a more scientific education we are warranted in expecting important results. Just as there are some brilliant literary men with an inability, or at least a distaste practically amounting to inability, for scientific ideas, so there are a few with scientific tastes whose imaginations are never touched by merely literary studies. To save these from intellectual stagnation during several important years of their lives is something gained; but the thorough-going advocates of scientific education aim at much more. To them it appears strange, and almost monstrous, that the dead languages should hold the place they do in general education; and it can hardly
he denied that their supremacy is the result of routine rather thim of argment. I lo not myself take up the extreme position. I doult whether an exclusively scientific training woudd he satisfactory; and where there is plenty of time and a liturary aptitude I can helieve that Latin and (rreek may make a goonl foundation. But it is useless to discuss the question upon the supposition that the majority of boys attain either to a knowledge of the languages, or to an appreciation of the writ-ing- of the ancient authurs. The contrary is notoriously the truth: and the defenders of the existing system usually take their stand upon the excellence of its discipline. From this point of view there is something to be said. The laziest boy must exert himself a little in puzzling out a sentence with grammar and dictionary, while instruction and supervision are easy to organize, and not too costly. But when the case is statel plainly, few will agree that we can afford so entirely to disrerard results. In after life the intellectual energies are usually engrossed with business, and no further opportunity is found for attacking the clifficulties which block the gateways of knowledge. Mathematics, especially, if not learned young, are likely to remain unlearnel. I will not further insist upon the relucational importance of mathematics and science, because with respect to them I shall prohably be supposed to be prejudiced. But of modern languages I am ignorant enough to give value to my advocacy: I believe that French and German, if properly taught-which I admit they rarely are ate presentwould go far to replace Latin and Greek from a disciplinary point of view; while the actual value of the acquisition would. in the majority of cases, be incomparably greater. In half the time usually devoted, without success, to the classical languagen. most hoys could acquire a really serviceable knowledge of French ani German. History and the serious study of English literature, now shamefully neerlected, would also find a place in such a scheme.

There is one objection often felt to a morlernized education. as to which a word may not be without use. Many excellent
people are afraid of science as tending towards materialization. That such apprehension should exist is not surprising. for unfortunately there are writers, speaking in the name of science, who have set themselves to foster it. It is true that among scientific men, as in other classes, crude views are to be met with as to the deeper things of nature ; but that the lifelong beliefs of Newton, of Faraday, and of Maxwell are inconsistent with the scientific habits of minl, is surely a proposition which I need not pause to refute. It would be eass. however: to lay too much stress upon the opinions of even such distinguished workers as these. Men who devote their lives to investigation cultivate a love of truth for its own sake, and endeavor instinctively to clear up, and not, as is too often the olject in business and politics, to obscure a difficult question. So far the opinion of a scientific worker may have a special value; but I do not think that he has a claim, superior to that of other educated men, to assume the attitude of a prophet. In his heart he knows that underneath the theories that he constructs there lic contradictions which he cannot reconcile. The higher mysteries of heing, if penetrable at all by human intellect. require other weapons than those of calculation and experiment.

Without encroaching upon grounds appertaining to the theologian and the philosopher, the domain of natural science is surely broad enough to satisfy the wildest ambition of its levotees. In other departments of human life and interest true progress is rather an article of faith than a rational belief: lut in science a retrograde movement is, from the nature of the case, almost impossible. Increasing knowledge brings with it increasing power; and great as are the triumphs of the present century, we may well believe that they are but a foretaste of what discovery and invention have ytt in store for mankind. Encouraged by the thought that our labors cannot be thrown away, let us redouble our efforts in the noble struggle. In the (Ond World and in the New recruits must be enlisted to fill the place of those whose work is done. Happy should I be if,
through this risit of the Association, or by any words of mine, a large measure of the youthful activity of the West could be drawn into this service. The work may be hard, and the discipline severe ; but the interest never fails, and great is the privilege of achievement.-Lord Rayleigh.

CARBON.

CARBON is one of the most abundant materials in nature, forming nearly half of the vegetable kingdom, and entering largely into the composition of all animal matter. Then it exists locked up in combination in limestone, coral and other carbonates, rast beds of these substances occurring in numerous sections of the world. And again, we meet with this useful article stored away in immense layers in the interior of the earth as mineral coal, a material hidden away for the comfort of coming man, millions of years ago, during that geological period of our earliest history, classed as the carboniferou. age. Carbon is found in two distinct crystallized forms or morlifications, diamond, the clearest and most brilliant of all substances, and as graphite, this black and dirty material.

On account of its great brilliancy and remarkable hardness, the diamond has ever been valued as a precious stone. Up tw the year 1777 this gem was supposed to be a kind of rock crystal; but, during that year, by means of the blow pipe, it was shown that it did not contain silica, and then it was looked upon as a fossil resin, something of the order of amber. That diamond was combustible seems to have been known at an eailly age, and, strange to say, there are some very remarkable statements just the reverse, e. g.: One authority states that his father, at the command of a prince, heated diamonds in a gold-melting furnace for about thirty weeks with no perceptible change. Newton, who seemed to hesitate at no prohem, and at the same time solvel whatever he undertook, first gave convincing arguments to prove the combustibility of this
precious substance: his proof being based on the high refractive power of diamond, a property peculiar to the class of all assimilating bodies. This theoretical proof was afterwards experimentally proved by placing the diamond in the focus of a large burning lens, when it extirely disappeared.

Yarious observers experimented with it, until finally the product of the combustion was proven to be carbonic acid, the same as results from the burning of charcoal; hence the truth was finally reached that diamond is nothing but carbon in its purest form. This royal stone was brought to Europe from the East, but the mines that were once so famous are now entirely exhausted.

Owing to the crystalline forms of the pure article, it admits: of lieing split into thin pieces, and these sheets are taken and used as a veneering on the facets of the glass body, giving an imitation that does not lose its lustre. Then imperíect stones are stuck together so as to produce large ones, and this work of patching up the diamond into the spurious article is done in such a skilful manner as often to defy the most acute experts.

So much time has been given to carbon in its purest form, it will only be possible to mention the other forms before taking up the compounds and a series of experiments. The other crystalline form is the sulstance graphite, or familialy known as black lead, a name given to it on account of its producing a mark similar to lead on paper, and was supposed to contain lead. Graphite is the substance used in pencils, and is the hasis of all stove polishes. In the arts this material is of great value, because it will stand the strong heat of metal furnaces, and is much used for crucibles where an intense heat is required, as in the casting of brass and in steel works. The amorphous forms of this wonderful element you are all familiar with under the names of gas carbon; the deposit on the iron retorts in which bituminous coal is heated to produce illuminating gas; anthracite and bituminous coal, coke, charcoal, and lampblack. Charcoal, besides the ordinary uses of everday life. is much used as a disinfectant, owing to its great absorp-
tive power for gases, then it has the valualle quality of remoring coloring matter from organic solutions, and in the form of animal charcoal is uned in very large quantities liy sugar refiners to remove coloring matter from brown sugar in order to produce the beautiful white sugar we now see on our tables. This peculiar property is thought to be due to the capillary spaces permeating charcoal, a culic inch of it leeing so crowded with these minute pores that it is estimated to give 100 fect (square) surface.

Starting with this precious sem, the diamond, the hardest known substance, the type of all that is pure and beautiful, we see this wonderful sulustance passing downward in hardness and beauty, finally to sink to the level of this black soot which darkens our atmosphere and soils our persons and all we have that is beautiful. What an immense range of properties and usefulness it covers! As lampllack it sometimes burns spontaneous; as graphite it resists the action of the smelting furnace : in diamond it is a non-conductor of electricity; as gas carbon it forms one of the best conductors; in one form the person is adorned, in another our books and papers are printed with it; the electrician takes and uses it fur the promotion of our comfort, while as charcoal crayon the artist handles it: as coal and coke it gives us light, transports great distances at a rapid speed, smelts our metals, cooks food, warms the borly, and in numberless ways adds to the comfort of mankind. To man this is the most useful of all the elements, and ardds more to his comfort in this temporary home than any substance that finite mind can conceive of.-Electrical Reriew.

Lnmed space compels us to hold over much interesting matter for another issue. We hope to give our readers something in ficror of Confederation next month.

The Parisians have a system of card telegrams. The cards are dropped in boxes and shot through air tubees to different parts of the city. Fifty words or more can be written on a card that costs six cents to convey.

[^0]: Mr. E. R. L. Gould, B.A. (Victoria University), a Fellow of Tolms Hopkins University, has heen appointed to a Professor's chair in Washington. He will take the degree of Doctor of Philosophy in 1885. We offer him our congratulations on his success as a Canadian student.

[^1]: * (analian young men ambitions of doing gool and of getting a phace ought not to go to bipmin the hope of "sromething turning up." Noholy should g" there who does not know what he is going to do, and how he is gring to ine supported.

[^2]: Noxe.-The above article, which was read for the author (Mr. E. Odhm, M.A., Pembroke), by Rev. James Allen, was followed by an interesting discussion, in which Mr. Odlum's views were aceepted and endorsed by many members of the Ottawa Field Naturalist's Club.

