The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couieur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitied from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison
\square Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

CANADIAN NATURALIST

AND
Quatery fidmual pi sximat.

CANADIAN PHOSPHATES

CONSIDERED WITH REFERENCE TO THEIR USE IN AGRICULTURE.

By Gordon Groome, F.G.S., of the Geological Survey of Canada.
Among the numerous sources of wealth included within the vast thickness of the Laurentian system,-those ancient metamorphic rocks developed on such a grand scale in our Canadian geology,-few are invested with a larger amount of scientific interest than the mineral apatite, a substance already ranking among our economics, and probably destined to constitute, in the future, one of the most important of the raw materials of Canada, one of those sinews of the country, upon which her industrial adrancement must ever: be primarily founded.

It is, therefore, highly desirable that what is at present known of the extent and character of the apatite deposits of Canada should at once be made available; and that the attention of this and other societies in the Dominion should be, to a proper extent, directed to facts relating to a mineral, at once so interesting and so practically useful.

With this in view, we would state, first of all, what are the purposes to which the mineral is adapted; the processes by which it is rendered available; and, as far as can be ascertained, the past and present extent of its usefulness.

Vol. $\mathrm{\nabla}$.
Q
No. 3.

Apatite, although of some importance to the manufacturer of the clement phosphorus, and in the preparation of certain varictics of porcelain, derives its chief interest from its power, when used in conjunction with nitrogenous substances, of restoring cxhausted lands to their original fertility, and of increasing the value, for agricultural purposes, of such as have always been, more or less, sterile and unproductive.

Phosphoric acid is an essential clement of all but the lowest animal structures; and the large quantities of phosphate of lime found in the chitinous tests of Lingula, as well as in the shiclds of the Trilobitide, prove that the element phosphorus possessed, from the earliest geological epochs, the same importance, in its relation to the animal kingdom, as at the present day; and, since the sole source of the phosphorus in animal organisms is from the vegetable kingdom, it is not surprizing to find that the element is equally essential to the higher orders of plants, and, more especially to those which are the most adapted to the wants of animals.

The following Table, extracted, partly from the works of S. W. Johnson, and in part derived from Emmons' Report, on the Geology of North Carolina, exhibits this relation in a very striking manner, and proves, moreover, that not only the most nutritious plants, but also the most valuable portions of the same species contain the highest percentages of phosphoric acid:-

> TABLE I.

Phosphomic acid in the asies of Plants.

Scries A-Wdible Substances. \|i Scries B-Miscellancous substances.		
P. O_{5}	P. O_{5}	P. 0.5
${ }_{\text {jer cent. }}$		
12ye...... 50	Rye straw.... 4	
Wheat... 50	Wheat straw.. 3	Twigs.....................12•7
Mraize....4is	Maize straw.: 17	3 Do. do. Wood.. 4.5
Oats...... 44	Oat straw..... 3	4 Cotton (rool of)............ll. 6
Barley . . 39	Barley straw.. 3	5 Tobacco 6.5
I3eans.... 38	Beau straw... 7	7 Fibre of Flax............. 6.2
Pcas...... 33	Pease strarr... 5	Scaweed (arerage)........ 0.
Turnips. . 13	Turnip tops... 9	AUTHORITIES:
Potatoes. 13	Potatoe tops.. 8	Scries I. Johnson.
Clover ... 118	Beet root..... 8	Series II. 1-6 inch. Emmons.
Cabbage..12	Mcadow grass.. 8	7. Way.

The phosphorus of plants appears, for the most part, to be confined to the softer and more highly organized portions of
the structure: there is but little to answer to the lime and magnesia phosphates constituting the main frame-work of the hard internal skelcton of vertebrata, or to those composing the exoskeleton of crustacea and lower orders. The phosphorus of a plant would seem to correspond more closely to that of the nervous and vascular animal tissues; as, for example, to that of the brain in man,-which amounts to 0.9 per cent. of the cerebric acid,-or of the albumin and fibrin of the blood.

The following Table (II), which might be greatly amplified, has been compiled for the sake of comparison:-

TABLE II.
Imosphorus in Aximal Substances.

From the researches of chemists and physiologists it is now fully established that the element phosphorus plays a most important part in the performance of nerve functions; that it undergoes many, at present, inexplicable changes within the bodics of vertebrate animals; and that various of its oxy-compounds, produced by such changes, as well as the phosphates resulting from the waste of the bones, are constantly rejected from the system in a soluble condition.

There is, therefore, in the history of the element phosphorus, a beautiful example of a complete circle of changes; and of a number of substances existing, at one time or

[^0]another, in each of the three great divisions of nature, and handed on, from the world of vegetable existence to that of animal life, hefore being finally returned to inorganic nature, thenceforth to be subjected to a number of chemical changes, preparing them for a now round of usefulness. But, in order to enable this great principle to operate completely and offectually, one thing is necessary; for, owing to the concentration of populations in towns and cities, one link, so to speak, in the chain, becomes faulty, and the return of phosphates to the soil must bo aided by artificial means.

From whatever lands vegetable matters are removed in the annual crops, there is a constant withdrawal of the necessary mineral constituents of the plant, including, of course, the phosphoric acid ; and, although poor or exhausted lands do not shew the entire absence of phosphates, yet they have become deficient in stch phosphorus salts as aro available for the use of the growing plant; and do not, especially, contain enough to suffice for the cereals, containing, as they do, a larger proportion of phosphoric acid than any other family of plants.

The grain of wheat contains about 8-10ths per cent. of phosphoric acid, which proportion amouns to 16 lbs . of the acid to each ton (=2,000 lbs.) weight of wheat. Now the amount of phosphoric acid in soil may said to average 0.2 per cent. ; although, except in clays the proportion is usually less. Taking $0 \cdot 2$ per cent. as the average cuantity, and assuming the specific gravity of soil to be 2.5 , there exists in the soil covering one acre of land, to the depth of 12 inches, about 68.6 lls . of phosphoric acid ; or only enough to supply the phosphates to 4.16 tons of wheat. The total weight of wheat, (whether as grain, or in the state of flowr) exported from the port of Montreal in 1869, amounted to about $292,534.5$ tons* ; or a weight requiring the total abstraction of phosphoric acid from $70,320.8$ acres ($=109.8$ square miles) of good average land. This withdrawal of phosphoric

[^1]acid, cqualling 2,340 tons ($292,534.5 \times 16=4,680,552$. lbs. $=2,340$ tons) would require, in order to counterbalance the loss, the amual employment of 5,850 tons of apatite, containing 88 per cent. of phosphate of lime; a quantity equivalent to $6,86 \pm$ tons of apatite of 75 per cent., or to 13,728 tons of "super-phosphates" of good quality.

The corresponding money value, at $\$ 35$ per ton, makes the total anmual deficiency no less than $\$ 480,480$.

The losses resultir.g from the exportation of wheat alone (either as grain or flowr) have been here estimated; and the following table, compiled from Mr. Patterson's Statistical Report, will afford some idea of the approximate worth of all the phosphates contained in crops annually shipped from this port:-

TABLE III.

Scbstances C'alsing Loss of Phosphomic Acid.

Shipments in the year 1869 for Montreal.	Amount or Weight.	Equivalent Phosphoric Acid Tons of $2,000 \mathrm{lbs}$	Approximate Yalue of Phosphoric Acid.
Flowr (barrels)	966,067		St80,480.00
Wheat (bushels)	6,595,332	2,340.0	
Comin do.	108,018	94.3	4,989.60
Peas do.	576,984	115.4	23,695.40
Barley do.	163,372	$29-4$	6,036.80
Oats do.	330,738	65.5	14,989.20
Totals		2,574.6	\$530,191.00

Morcover, the exports of wheat from British North America are only about $7 \frac{1}{2}$ per cent. of the total amount received by Britain: so that the phosphoric acid, exported by foreign countries for consumption in England, in the shape 0^{f} wheat alone, amounts to no less than 31,200 tons, and repre sents a money value of about $\$ 6,406,400$ annually.

Adding to this the imports of mineral phosphates, we have a grand total of $\$ 15,156,400$.

From these figures it is at once evident that, wherever no restorative agents containing available phosphoric acid are employed by agriculturalists, the exhaustion of lands by
wheat crops is by no means a slow process; even if the utmost allorance be made for the action of springs, and of waters flowing from uncultivated lands, in bearing to the soil minute quantities of phosphates, which might retard, although they would be by no means sufficient to prevent a gradual impoverishment.

It becomes, therefore, absolutely necessary to follow the principles laid down by Liebig," and to restore to the soils the cinereal elements of which they have been despoiled. Hence the utility of farmyard and vegetable manures, as well as of various products of the chemical manufactures applicable to this necessary work of restoration. In no country, however, can such a return of the valuable components of its soils be sufficient to counterbalance the constant drain required merely to furnish the elements of growth to its inhabitants: for, if the utilization of sewage-matter and of every other kind of organic residua were effected to the uttermost possible extent,-a condition very far from being realized,there would still always be a great unavoidable waste, by which the essential constituents of the soils would, in process of time, be sensibly diminished ; and, since there are but ferr countries whose entire vegetable product is applied to the use of the inhabitants, but that, on the contrary, a certain proportion is almost always exported for the benefit of other lands, there is usually a far greater deficiency than that resulting from irrecoverable waste. This further loss is especially great to those newly peopled lands, whose rich virgin soils have constituted them the granarics of the Old World.

Thus a very large proportion of the vegetable produce of North America, in the shape of cotton, wheat, sugar, and tobacco, is employed in ministering to the necessities of European countries; and the result is a stupendous annual withdrawal of their necessary constituents from all soils occupied in satisfying these ever-increasing demands, and this is especially true with regard to their limited quantities of the salts of phosphoric acid.

[^2]The amexed table (No. iv.), derived from the analyses of Dr. T. Sterry Hunt,* shows how small is the proportion of phosphoric acid usually existing in soils of even the best quality; and hence it arises that there already exist so many partially, or ceven wholly exhausted soils in Canada, and more especially in the Province of Quebec, which might have been still yielding large returns of wheat crops had they been, from the first, subjected to a rational system of tillage, coupled with the judicious and periodical use of phosphatic manures.

TABLE IV.
Asalyses of Canadias Sohs, showna mhe Proportions of Phosmoric Acid Present.

Character.	Locality.	PO_{5} per cent.
(1) Saudy Soil	St. Charles.	. 215
(2) Clayey Soil	St. Hilaire.	.390
(4) Sandy Clay	St. IIyacintlie .	.189
(5) Clay Soil	St. do.	25\%
(6) Clay	Chambly	126

It is true that attempts have been made to utilize the residua of the Newfoundland fisheries, and that Dr. Hunt called attention to the subject in an Essay on Fish Manures in 1857 ; \dagger but very little success has been met with in their employment in this country, chiefly owing to a want of the necessary knowledge or spirit of enterprise amongst the farmers themselves.

On procceding to inquire into the means adopted by various nations to prevent the impoverishment of their soils, it is somewhat surprising to find that the great principles of agriculture, in respect to manures, were understood from the carliest times, and that the practice of some, apparently less

[^3]civilized, communities was even far in advance of that existing among European nations,-at least, until the beginning of the present century, when the more systematic research of modern agriculturists was soon rewarded by a correspondingly rapid improvement in the practice of farming. From the carliest dates in their history, the Chinese appear to he ve been strict economists in respect to manures, the filth of the cities being most scrupulously collected for the enrichment of surrounding lands. Several passages in the Bible prove that Eastern nations were also aware of the importance of manures, and that the Romans were in the habit of employing them, is evident fros 1 the writings of Virgil ; especially where, in his first Georgic,* he recommended the use of ordure, and of ashes, to fertilize the exhausted fields.

In no place, probably, are hatural manures more religiously farmed than in the Chamel Islands, on the coast of Nัormandy, celebrated for their rich pastures and excellent breed of cattle ; and on the Jersey coasts, the extensive flats, existing between high and low water-mark, are actually portioned out into lots belonging to the different farmers, who, in the autumn season,-for the law only then permits its removal,gather in the rank sea-week (termed Vrjack) as serupulously as they harvest the produce of their fields, which mainly owe their fertility to the rich saline ashes resulting from the combustion of the sea-weed, itself a minute fragment of the enormous waste constantly poured into the sea from the rivers upon which London and other great cities are situated. \dagger Innumerable have been the plans proposed by engineers and men of science for the utilization of this vast waste of animal products; and the partial success already attained begins to

> * "Sed tamen alteris facilis labor, arida tantum Ne saturare fimo pingui pudeat sola, nere Effetos cinerem immundum jactare per agros,"
> \quad Georgicon, lib. i , lines $79-81$.

[^4]be shown in the increased productiveness of many fields and gardens upon the confines of London.
With regard to bones, their employment as fertilizers certainly dates as far back as 1770 ;* and the supplies at present required in England are chiefly derived from Germany, Prussia, and the Baltic consts. \dagger The catacombs of Egypt have actually been ransazked for their supplies of bones; and the mummies of her kings and warriors, scrupulously preserved for a thousand years, have at length been sold by their descendants, to aid in the nourishment of far off lands. \ddagger

Of the enormous importations of guano, nothing seed here be said, except that their annual amount is said to be 200,000 tons, with a valuc of about $\$ 12,500,000$.
The attention of English merchants was first turned to purely mineral sources of manures by the statement, made by Liebig, in 1840, that, by treatment with sulphuric acid in certain proportions, they could be converted into soluble compounds; § and, two years later, J. B. Lawes obtained a patent for the preparation of superphosphates from the mineral apatite, instead of from bones, which had even then reached a high price.|| The supply of mineral phosphates was at first drawn from the great deposits of Estramadura, in Spain, (Vide table vr., for analysis of the phosphates from that locality); but the better kinds of the mineral were soon, to a great extent, exhausted, and the attention of manufacturers was then directed to the coprolithic phosphates-or fossilized exuvie of the tertiary strata of Suffolk, and the older rocks of Cambridgeshire and North Wales, all of which are comparittively poor in phosphates, containing only from 30 to 50 per cent. of phosphate of lime. In 1854 , the value of the " superphosphates" manufactured from mineral sources in England

[^5]was as much as $\$ 8,750,000$; and the demand for the cotton lands of the Southern States of the American Union is now probably fully one-third of that amount.*

The coprolites are fast becoming dearer and poorer, and, consequently, owners of works in England are becoming every year more eager to satisfy themselves from foreign scources; of which those of Camada and South Carolina only are of any considerable magnitude.

The South Carolina phosphates are very comparable in character to some of the phosphatic beds of Great Britain; their quantity is apparently very great; but they are by no means rich, and average from 2.5 to 60 per cent. of phosphates. Large quantities, on the other hand; of the Laurentian apatites, on the shores of L. Ridcau, in Canada, can be obtained, averaging from 60 to 85 per cent.; and the only wonder is that 'they have not been utilized long since, comprising, as they undoubtedly do, a source of much prosperity.

It is not the object of the present paper to describe the mincralogical characters of the Canadian apatites: much information upon the subject will be found in the Reports of the Geological Survey of Canada, for 1863 and $1866 \dagger$; and as, since those dates, many new localities have been discovered, subsequent Reports will probably complete the description. In this comnection, the author would desire, in an especial mamer, to acknowledge his indebtedness to Dr. IJ. Sterry Hunt, F.l.S.S., who has for many years past been periodically making public, in a readily available form, the results of his systematic and admirable researches in this branch of Chemical Geology, and, more particularly, in his valuable Reports issued by the Geological Survey of Canada. Reference may especially be made to the Reports of 1848, 1863, and 1861; to an Essay written for the Exposition (Paris) of 18157, and to the Report of $1847-48 \div$ where he mentions the first

[^6]discovery by himself, in 1847, of the Apatite of Lanark Co., Ontario, and moreover, remarks on the probable value of the deposits, and their application to the manufacture of mineral manures,-a branch of industry then but in its infancy.
Λ few remarks upon the geological portion of the subject will be found in a paper read by the author at the Troy meeting of the American Association for the Advancement of Science,* in August last; as well as in a note, shortly to be laid before the Geological Society of London \dagger : but the history of these interesting deposits is by no means complete; and it is hoped to return to the subject in a future communication to this Socicty.

Facts upon the modus operandi of the phosphatic and other mineral manures are more especially desirable; and it may be well here to briefly to discuss a few points connected with their action upon arable lands.

With regard to the relation of phosphorus to plant-life, we have, first of all, the well established fact that a deficiency of that element in the parent soils produces a corresponding diminution in the weight of the crop, and renders it, moreover, very liable to various diseases; and that the addition of phosphorus compounds, in a state fit for the nourishment of the plant, always effects a great increase of fertility. But, with regard to this increase, it has been found to be out of all proportion to the actual recquirements of the growing plant with respect to phosphoric acil. The waters in contact with
mentioned Reports, but it will be desirable to quote from that of 1847-43, now, uufortunately, almost inaccessible :-
"The phosphate of lime is largely contained in wheat, and the exhaustion of this ingredient is one great cause of the sterility of our wornout wheat lands. In a grain-growing couniry liko Cauada, therefore, the existence of such deposits as these will prove of great importnuee."
" Under these circumstauces, the limestone just described, which contains throughout it a large supply of this importaut substauce, is cer tainly well worthy of the atteution of our agriculturalists."

* On Apatites of Lamark Co., Ont., by Gordon Dromme, P.(i S Proc. Amer. Assoc., 1570.

Laurentian Apatites of Cauada, ly the same. Quar. Jour Geol, Suc. circ. Feloruary, 1570.
the roots may, and often do, contain a sufficiency of phosphates for maintaining unchanged the composition of the plant, and yet the addition of phosphatic manures produce a vastly increased yield. The only rational explanation of these facts, and that which the researches of agricultural chemists appear to corroborate, is that the phosphates, besides forming important elements in the actual material of the plant, are also able to ari as carxicrs of the requisite nomishment to the growing parts; and that, just as, in the animal economy, certain substances, as, for example, the salts of iron, give a tone to the system by aiding the powers of secretion and cell-formation; so, in the vegetable world, and, more especially, in the important familics of Graminacear and Leguminc, phosphoric acid stimulates the assimilative powers, excites an increase of vitality, and, in consequence, augments the fecundity of the germ, and enlarges the proportional rate of increase. The consideration of certain analyses of Woods, published in the first volume of Dr. Percy's Metallurgy, and also of a series in Emmons' Report on the Geology of South Carolina for 1858, pp. 59-78, (and also the second series of table I., ante p. S) has led me to this conclusion; for such analysis shew that the twigs and leares are richer in phosphates, and other mineral clements, than the bark or the solid wood; whilst, in the cotton-plant, Crace-Calvert has shown that more soluble acid-phosphate of magnesia exists in the pod, than in the husk or stalk.*

From Table I., it will be seen that, whilst the ashes of solid oak contain 4.5 per cent. of phosphoric acid, the quantity present in those of the young twigs amounts to 127 per cent., or more than $2 \cdot 75$ times the proportion present in the wood.

Those parts, therefore, which are pre-eminently in a state of rapid development, are the most abundantly furnished with phosphates, doubtless, having their own peculiar functions to perform in assisting the developmental process.

As to the manner in which plants derive their saline con-

[^7]stituents from the soil, there is still some degree of uncertainty; whether they imbibe those salts already existing in a state of solution, and thus obtain the matter required for their growth; or whether they dissolve out certain elements from the soil, by the solvent action of their own juices.

Eichhorn's results demonstrate that pure distilled water can dissolve from the soil much more of mineral matter than would be requisite for the supply of an ordinary crop.* The solvent powers of waters are also in almost every case, much augmented by the presence of carbonic acid, and occasionally, doubtless, by the existence in them of dissolved organic acids. \dagger these acids do not, in all probability, exert any very important influence in dissolving food for the plant, so long as they exist in growing vegetation, but only on their being eliminated by processes of natural decay. When thus released, they are probably very active in dissolving compounds of sesquioxide of iron, and alumina; as is, indeed, abundantly proved by the occurrence in nature of such minerals as beauxite, mellite, pigotite and oxalite, compounds in which sesfuioxide of iron or alumina, exist, combined with water and an organic acid. \ddagger
The utility of decaying vegetable matters as a mauure, may, conserquently, be due as well to the solvent action of certain products of their decomposition, as to the fertilizing properties of their several mineral constituents.
The absorptive powers of soils tend, moreorer, to concontrate within thcir mass certain mincral constituents, derived from small proportional quantitios of them existing in infiltrating waters; and this absorption is very marked between phosphoric-acid compounds aud soils of a claycy character, which scem especially adapted for their retention.
For the sake of demonstrating this fact, an experiment

[^8]was made upon a gray, infusible fire-clay, which proved, upun analysis, to possess the following percentage composition :-

One hundred grammes of this clay were washed upon a large filter, until the filtrate was quite free from solid matter, and a solution (containing 10 grm . to 1 litre) of phosphate of soda was then caused to filter slowly through the mass, by a syphon arrangement, in about $2 \pm$ hours.

The solution extracted a quantity of humic acid, dissolved out by the action of the alkaline salt, and contained only S•312 grammes of phosphate of soda, with a littic alumina, lime, and sescuioxide of iron. Such a clay being, practically a pure silicate of alumina and water, the large absorption is in a great measure due to a reaction between the hydrated silicate of alumina, or clay, and the phosphate of soda, resulting in the formation of a phosphate of alumina, and the fixing of a portion of soda at the same time by the aluminous silicatc.
'This power of clay was first explained by Way and Thomson; * though it was remarked by the Dean of Westminster in 1849, \dagger who suggests that it is shown by the concentration of phosphates occurring in certain clayey nodules, termed Scptaria, common in the Lias of England.

It is probable, that the formation of many great phosphatic deposits, of marine origin, including perhaps the Canadian apatites, is most reasonably explicable by referring to these

[^9]absorptive powers; and this is rendered the more likely by the fact that all of the mineral waters occuring in the Palocozoic rocks of Canada, which Dr. Hunt beautifully designates as fossil sea-waters,* contain traces of phosphoric acid, resembling in this respect the waters of modern seas.

The absorptive powers of soils are due to a combined chemical and molecular action, the completeness of which is, to a very great extent, dependont upon the mechanical condition of the mass.

Soluble phosphates of lime, when thrown over the surface of the land, are quickly converted into the insoluble tribasic salt, by the action of carbonates and basic compounds; but the product, being in a state of extreme division, is readily dissolved by water charged with carbonic acid, and also, as shown by licbig, by solutions of ammoniacal salts, or of the chlorides and nitrates of the alkalies.

These modes of solution are cxceclingly important from an agricultural point of view, since they shew the advantage of compound manures, formed by the addition of ammonia or potash salts to the ordinary "super-phosphates." In an experiment, recently made by me, for the purpose of ascertaining the solubility of apatitc in carbonic-acid water, it was found that, by digestion of the fincly pulverized mincral for twenty-four hours, at a temperature of 60° F., agitating frequently, a saturated solution of carbonic acid is capable of dissolving nsy parts of the mincral. Similarly conducted experiments with solutions of sal ammoniac, and of potassic chloride, gave respectively, the proportions $\mathrm{rs}^{\frac{1}{2} \bar{x}}$ and $\mathrm{mi}^{1} \mathrm{~T} . \dagger$

Alkaline carbonates also dissolve apatite, with the formation of carbonate of lime and a phosphate of the alkali; and these reactions explain the existence of phosphate of lime in sea-water, a fact long since demonstrated by Clemm and Forchammer. \ddagger

[^10][^11]By means of sulphurous acid, also, in a state of aqueous srlation, apatite may be dissolved to the extent of about $r^{\prime} \times \Sigma$ parts, under the above conditions; but this last reaction has not such an important bearing upon the theory of agriculture as those already described.

The researches of Thenard, upon the action of clays on phosphate of lime in carbonic-acid solution, show that insoluble phosphate of alumina is formed, whilst the solution contains all the lime, as carbonate*; but, as the alumina in clays is not in the free state, an acid silicate of alumina is probably at the same time produced.

Thenard also stated (loc. cit.) that, by the action of an arfueous solution of silicate of lime upon phosphate of alumina, silicate of alumina is precipitated, whilst tribasic phosphate of lime (scparable by means of carbonic acid) is also produced. By repeating Thenard's experiment, a solution was obtained, containing .011 gm . of lime silicate to the litre of water, which was completely decomposed in the manner indicated by Thenard, by long boiling with pure artificial phosphate of alumina, or with the clay previously used, which contains some phosphoric acid. Since, however, heat is requisite to the success of this reaction, it is more probable that, in nature, double silicates of alkalies with lime or magnesia, play the part here assigned to solution of simple silicate of lime.

Deherain \dagger asserts that the reverse of this reaction results betireen phosphate of sesqui-oxyd of iron and carbonate of lime: and it is probable that the surrounding conditions, as to temperature, relative amounts, and mechanical division, determine the nature of the resulting change. This was notably the case in Eichhorn's remarkable experiments upon the solubility of chabazite and natrolite in various saline solutions; and, on the whole, it would seem that the numerous known instances of departure from a regular order of affinities in such reactions tend to show that the relations of many bodies, with regard to their mutual affinities, are disposed to vary in

[^12]obedience to changes in the physical conditions under whech they may be brought together.

Jinally, in concluding this branch of our enquiries, it may be stated that, reasoning from the researches of Thenard, Fichhom, Way, and others, Johmson was led to conclude that the efficiency of mineral manures is, in most cases, to be abscribed to their indirect action, and not, as had been previously supposed, to their direct influence as sources of food to the growing plant.

We may now pass o: to consider the mauufacture of "superphosphates" from the mineral apatite, which is at present in progress at but one factory in the Dominion oif Canada, namely, at the Brockville Chemical Works, under the management of Mr. A. Cowan, to whose kindness I am indebted for the sample of "superphos;hate," the analysis of which will be found below, as woll as for valuable information with regard to the process cmployed. An engine of about fifteen-horse power suffices for grinding the mineral, for turning the agitator during the digastion of the apatite with crude oil of vitriol, and for sumplying steam to the sulphuricasid chambers, which are adjacent to the mills. The quantity of superphosphate of lime obtainel does not, at present, exceed six tons pee diem, owing to the insuffeient yield of the acid chambers. The quality of the product will be seen from the following complets analysis recently mate upon a fresh sample:

To proauce this fertilizer equal weights of crude sulphuric acid (of chamber strength,) and of the finely divided mineral, are thoronghly mixed in a suitable rat, or tub, until the conversion is deemed complete, when a trap is raised at the bottom of the ressel, and the thick, pasty mass allowed to flow over the floor, where it soon becomes sufficiently consolidated to be packed in barrels. * English manufacturers are in the habit of storing their "superphosphates" in pits or cellars built for the purpose, and they thus obtain a fertilizer containing a comparatively small quantity of water. They also employ somewhat stroniger acid, and agitate the misture in covered ressels.

Table III shows the composition of six apatites, representing the pure mineral of different districts; the first analysis being one made upon a crystal of pure translucent sea-green apatite, from the "crystal vein," on lot 5 , of the fifth concession of \mathbf{N}. Burgess, which had a specific gravity of 3.209 .

T:ABLE VI.

Comparatife Anhiysis of Apatites and Phosphorite.

[^13][^14]Apart from all associated matters, the apatite employed at the Brockville works may be said to contain 92 per cent. of phosphate of lime, and 7.2 per cent. of fluoride of calcium. When such a mincral, commingled with its gangue of calcite, is digested with a proper proportion of sulphuxic acid, three scparate reactions result:-
(a.) The tribasic phosphate yields up two thirds of its lime to the free acid, the remaining atom forming, with the whole of the phosphoric acid present, the super-phosphate of lime (acid phosphate of lime).
(b.) The calcite is wholly converted into gypsum, with evolution of carbonic acid.
(c.) The fluoride is decomprosed, with formation of hydrefluoric acid and gypsum.*

These reactions may be represented as follows:-
(a.) $3 \mathrm{Ca} \mathrm{O}, \mathrm{PO}_{3}+2 \mathrm{HO}, \mathrm{SO}_{3}=2 \mathrm{CaO}, \mathrm{SO}_{3}+\mathrm{CaO}$, $\mathrm{HO}, \mathrm{PO}_{\mathrm{s}}$.
(b.) $\mathrm{CaO}, \mathrm{CO}_{2} \div \mathrm{MO}, \mathrm{SO}_{3}=\mathrm{CaO}, \mathrm{SO}_{3}+\mathrm{HO}+\mathrm{CO}_{2}{ }^{\dagger}$.
(c.) $\mathrm{Ca} \mathrm{F}+\mathrm{HO}, \mathrm{SO}_{3}=\mathrm{CaO}^{\prime} \mathrm{O}, \mathrm{SO}_{3} \div \mathrm{HFF}^{\text {. }}$.

From the consideration of the atomic weights of these substances, it will appear that 100.00 parts of phosphate of lime (tribasic) will require 51.61 parts of anhydrous acid (SO:), to convert it completely into the acid phosphate; that 100.00 parts of fluoride of calcium recquires 99.00 parts of the same anhydrous acid (or, in round numbers, an equal amount) to produce the reaction shewn in equation (c); and that 100.00 parts of calcspar will require 66.00 parts of acid for its complete decomposition.

One part of apatite, of the percentage indicated as representing the pure mineral of the Drockville works, will require $\cdot 92+(\cdot 5161 \times \cdot 07)=$,545 parts of anhydrous sulphuric acid exactly to effect the desired changes.

The following table ('lable No. rir.), compiled from these

[^15]clata, cxhibits the amounts of anhydrous acid, and also of acid, of specific gravity 1.712 (i.e., of the usual chamber strength), necessary for the complete conversion of one hundred parts, by weight, of mineral containing various percentagce of apatite, of the above composition, with a wholly calcarcous matrix:-

TABLE VII.
Acid nencined to chavge Apamtes to "Superphosphates."

The use of this table is that it ought to prevent any danger of having free sulphuric acid in the product, or of proceeding further than the complete conversion of apatite into soluble phosphate. By means of a table of specific gravities, the quantity of acid, of any required strength, may be easily estimated for treatment of a given mineral.

The conversion of apatite into acid phosphate of lime may may also be cfiected by the use of hydrochloric acid, and, under certain circumstances, this method may be preferable to the use of the oil of vitriol. For 36.5 parts of hydro-
chloric acid (HCl .) will convert the same amount of phosphate inte a soluble form as 40.0 parts of sulphuric acid $\left(\mathrm{SO}_{3}\right)$; whilst in the case of an apatite, a further amount of vitriol is employed in the decomposition of fluoride of calcium. By the employment of oil of vitriol to form hydrochloric acid, by acting on common salt, and using the product for the conversion of apatite, one part of ritriol may be made to answer to 1.14 parts of vitriol applied by a direct method ; and, in the decomposition of calcite, one part of hydrochloric acid will answer to 1.090 parts of sulphuyic acid.*

The saving of the acid employed, by the adoption of this method, would more than counterbalance the extra expense, and the chance of further loss by a multiplication of the operations ; and another advantage over the ordinary process would result from the lime salt produced being the soluble chloride, and not insoluble (comparatively) gypsum, which, by mechanically protecting a portion of the apatite from complete conversion, doubtless accounts for the presence of $2 \cdot 39$ per cent. of ummodified lime-phosphate in the product analysed. \dagger

The deliquescent properties of chloride of calcium have, however, been foumd, by many English manufacturers, to constitute a scrious objection to the employment of hydrochloric acid: the product being apt to remain in a moist unsaleable condition.

It will not, however, be difficult to understand, from the remarks already made, that combined ammoniacal, or potassic, and phosphatic manures possess many advantages orer simple "superphosphates," and that such composts are likely more and more to replace the ordinary soluble phosphates. English and German manufacturers are, indeed, fast learning to produce such compounds; and numerous nitrogenous substances have been utilized for this purpose, including products

[^16]obtained from blood, or animal refuse, (as for example, the waste of the enormous butcheries at Chicago) ; others from the refuse of tan-yards; from the ammoniacal products of gas-works; and a number of the residua resulting from various chemical manufactories. "Superphosphates," produced by the action of muriatic acid upon apatites, might readily be dried up by these materials; thus overcoming the objections arising from the pastey condition of the product, and, at the same time nearly doubling the value of the fertilizer.*

Sulphurous acid, also, produced directly from the roasting of pyrites, has been applied successfully for the formation of "superphosphates" from animal sources; but further cxperiments on the subject are necessary, to shew whether it would, or world not, be applicable for the conversion of apatites or other mincral phosphates.

Before concluding the subject, one very ingenious process, patented by MM. M. L. Hemrionnct and L. C. Boblique, in Nov. 1860, \dagger (sec Patent Abridgements, in Appendix to Richardson and Watt's Chemical I'echnology) may be noticed, in which hydrochloric acid, generated during the process itself, by the reaction taking place between steam, silicic acid, and common salt, is employed in the manufacture of soluble phosphates.

The finely pulverized apatite, mixed with 2-3rds parts of common salt, and about 18 per cent. of silica, is heated, in a current of steam, upon the bed of a reverberatory furnace; when the following reactions are produced:

> (a) $\mathrm{Si}_{2}+\mathrm{NaCl}+\mathrm{HO}=\mathrm{HICl}+\mathrm{NaO}, \mathrm{SiO} \mathrm{O}_{2}$
> (b) $3 \mathrm{CaO}, \mathrm{PO}_{3}+2 \mathrm{HCl}=\mathrm{CaO}, 2 \mathrm{HO}, \mathrm{PO}_{3}^{-}+2 \mathrm{CaCl}$

[^17][^18]The process possesses considerable theoretical interest, and would be, if practically effective, exceedingly cconomical.

And here my remarks must, for the present, be drawn to a close ; much that remains to be said upon this comprechensive subject being postponed for a future opportunity : but I cannot conclude without giving expression to one thought, strongly impressed upon my mind by the consideration of these topics; namely, that the comparatirely dormant state of this, and many equally obvions sources of industry in Canada, arises from a great deficiency in a most important division of our national education; and that nothing, sare a liberal augmentation of the ordinary courses of instruction in modern subjects, can ever prove effectual in dispelling the immense existing cloud of ignorance and prejudice. It is, therefore, sincerely to be hoped that the rery able remarks, recently made by Principal Dawson upon this question, may have their desired effect; and that Canada may speedily obtain a share in the improvements that have, of late, almost revolutionized the systems of education prevailing in the universities of the mother country.

SCIENCE EDUCATION ABROAD.

(Extracts from a Lecture by Princinal Dauson, LL.D., F.R.S.)

Wilat is science education?

In speaking of science, then, I would restrict your attention to the physical scienees, or those which relate to what we call material things. In this great group of sciences we may recegnize three subdivisions, distinguished by the modes in which they are pursued, though shading into each other. (1) Mathematical sciences, or those in which the methods chiefly pursued are those of mathematical reasoning and calculations, as; for instance, astronomy; (2) Expcrimental sciences, of which chemistry and several departments of natural philosophy may be taken as
examples; (3) Observational sciences, such as zoology, botany and geology. Each of these classcs of subjects must be treated according to its orn methods; and unless so treated, is useless whether as a means of training or for practical application. The learning, for example, of any of the natural sciences by "getting up" a text book without actual examples and work, is not of the nature of seience education; and much of the undervaluing of science studies as a meams of elucation, on the part of practical teachers, is due to their want of acquaintance with this first truth. Natural listory or experimental science taught merely from books is only an indifferent form of verbal training, and it is no wonder that those who know it only in this say should form a very low estimate of its celucational value. To be ussfully taught, the pupil must be familiar with the actual objects of study, and he must understand experimentally the modes of attaining to results with regard to them. Ife will then receive a real and raluable kind of education, the bencfits of which may be summed up as follows:-(1) The student is taught to observe, compare, and reason for himself, and this in a practical manuer, not so casily attainable in other subjects, and tending to give an accuracy of method and quickness of pereeption, and of forming conclusions most valuable in actual life. (2) Much knowledse of a useful and interesting character is acquired; and the student, whic learning the uses and properties of common things, may rise to large and enlightened conceptions of the works of God, and the natural laws under which man exists. (3) Men are trained to pursue orisinal investigations, and thus to colarge the boundaries of seience. (t) The means are afforded to utilize matural resources and improve ats and manufactures. With regard to the extent and nature of such science education, it appears to be the result of experience in all the more advanced countrics; (1) That there should be special practieal schools to train investigntors and practical science workers in the departnents most important to the welfare of the commanity. (2) That science study should form some part of a liberal cducation. (3) That the elements of some of the natural ot physical sciences should be taught in all the common schools. (d) That means should be employed to train competent teachers of science. This being what I understand by science education, with reference to its nature, results and methods, let us glanee at some of the efforts put forth on its behalf, more especiaily in the mother comutry.

THE ROYAL SCHOOL OF MINES, LONDON.

In London the principal institution for science cducation, supported directly by the Government, is the Royal School of Mines, Jermyn street, with which is associated the Royal College of Chemistry in Oxford strect.

The Royal School of Mines is an outgrowth of the Geological Survey of Great Britain, whose building it shares, and whose officers are its chief directors and instructors. This association gives it great advantages in securing the influence and management of the distinguished head of the Survey, Sir R. I. Murchison, and the services of such eminent practical geologists and naturalists as Huxley, Etheridge and Smyth, as professors, in giving the students access to large and admirable collections in geology and an extensive scientific library, and in placing the young men under the immediate superintendence of those who have the best opportunities for opening up to them the paths of usefulness and success. The very atmosphere of such an institution savours of practical science, its appliances for work and study are of the most inviting description, and it has screral prizes and scholarships for its more deserving stndents, and gives the title of "associate" to those who pass its final cxamination. Notwithstanding these advantages, though it has many occasional or partial students, the number of regular students has been much smaller than could be desired. This may in part be accounted for by its situation in a city not directly interested in mining, and remote from the great manufacturing districts; in part, jerhaps, by the mant of appreciation of the adrantages of science training on the part of the English public. It is certain, however, that the School of Mines, though its instructing officers are second to none in the world, is inferior to the great science schools of America and the continent of Europe in its academical orgamization, in the coupleteness of its course, more cspecially in the direction of literary and mathematical culture, and in the standard of attainment required for entrance. Were it improved in these respects, and enabled to offer a larger number of direct prizes to students, its uscfulness might be greatly increased. Still, with these limitations, the success of the school has been great. It has trained a succession of competent men for geological surreys in the United Kingdom and the colonies. Among others, the present head of the Geological Survey of Canada is one of its graduates.

It has also sent forth a number of trained men into mines and manufactures, who have been very successful, not only in introducing new improvements and inventions, but in realizing fortunes for themselves; and it is stated that the demand for these men is much greater than the supply. The course of study in the School of Mines extends over three years, and in the senior year the students are allowed options, by virtue of which they may devote themselves specially to chemistry, mining or geology.

The Royal College of Chemistry is a distinct institution, situated in a different part of the town, which is a cause of some inconvenience to the students of the School of Mines, who have to attend its lectures and classes in practical chemistry. It was established originally by a private subscription, but has been adopted by Goverument. Under the able mamagement of Prof. Frankland, it is a useful institution, and always crowded with pupils. It has, however, accommodation for ouly 42 practical students, and this by no means of the airy and sumptuous character to be found in the laboratories of the continent of Europe and the United States. Crowded among the shops of a noisy business strect, it has no room for extension, and its teachers and students have to submit to many inconveniences which 1.ight readily be obviated were it remored to a more central locality, and provided with a laboratory fitted up with modern improvements. It must, however, be admitted that the utmost possible use has been made of its too limited accommodation.

THE DEPARTMENT OF SCIE.FCE AND AR'.

The Royal School of Mines, as well as the Royal College of Science, Dublin, and the Edinburgh Muscum of Science and Art, are under the direction of the Government Department of Science and $\Delta r t$; but its largest sphere of operations is in the great South Kensington Muscum, and the schools comnected with it throughout the country. In its last report these schools and classes are stated at 525 in all, with an agregatc of 24,565 pupils. This represents much science teaching; all, however, of in elementary character, and of small amount relatively to the great population of Britain and Ireland. Much of the teaching is necessarily done by teachers of a very humble grade of scientific attiinment; bat the most effectual means are taken to ascertain that it is faithfully done, and to give it opportunities for improrement. The principle adopted is that of giving money aids to teachers, building
grants, grants for apparatus, \&c., scholarships and exhibitions, medals and prizes to pupils. All of these are arrarded on the results of rigid examination, conducted by papers sent from London and reported on by examiners, amoug whom are some of the first scientific men in the country. The aids to teachers are at the rate of $£ 2$ per annum for cach first-class pupil, and $£ 1$ for each second-elass pupil; and the teacher, in order to receive aid, if not a University graduate, must have obtained at least a second class in the advanced grade of these caminations. Of the aids given to pupils a number are in the form of exhibitions in aid of attendance on higher science schools, and in the case of the higher Government schools the fees are remitted in favor of students taling these exhibitions. It would be difficult to imagine a system likely to do more good, and all that is wanted is that it should be further extended, and that more thorough means should be adopted for training the teachers.

SOUTM KEN:BGGTON MLUSEUM.

The most conspicuous part of the establishment at South Kensington is its muscum, embracing a vast collection of objects illustrative of industrial products, art and manufactures, and one of the most popular and useful places of instruction by the eye in London. It is proposed to remove to the extensive buildings at South Kensington the vast Natural Mistory collections of the British Museum, and also the collections of the Geological Survey, so as to promote seicnce study as well as that of art. Art education on an extensive scale is conducted at South Kensington itself, as well as in a multitude of affiliated art schools. More especially, youns persons are trained as teachers, and with refercuce to practical applications to decorative art of every description. As illustrations of these, I was shown laree collections of patterns for wall papers, table cloths, pottery, and coloured and engraved glass, prepared by the pupils for competition for prizes offered by manufacturers; while in a gallery of the muscum, assistants were busy in arranging a rast collection of drawings and paintings sent in from affiliated schools for competition. In the Art training school I saw hundreds of pupils engaged in all kiuds of work, from the elements of drawing to studies in painting and modelling from life. In addition to the study in the schools, the students, of whom there are between eight and niue hundred, have access to the Galleries of Art in the

Museum, and to an Art Library of 25,000 volumes, and a collection of 55,000 engravings and photographs. Last year 107 schools were conducted under the "Department" with 20,000 pupils; and in addition to these, elementary drawing was taught in 1,094 schools to 120,928 children. Though art is distinct from science, I think it proper, when speaking of South Kensington, to refer to its work in art as well as in science. Not only is seience the hamdmaid of art, but art is also the handmaid of science, and both must flourish or decay together. More especially the siuly of art in its application to the wants of ordinary life, camot fail to be auxiliary to the advancement of science. It is a matter of profuoud regret that the Boards of Art, organized in this country more than ten years ago, have been permitted to languish, and have not been enabied to establish here institutes on the phan of those of the Pepartment of Science and Art in England.

IIIE LONDON UNIVERSITY.

University Culloge, London, has no organized science school, but it traims men fur the Bachelor of Science examination of the London Cuiversity. This is a general science esamination, implying the trainiag necessary for matriculation, and subsequent studics in Physies, Chemistry, Animal Physiology, Geology, Loyic, and Moral Philosophy. Bachelors of Science of two years standing c.n go up fur an cxamination for the degree of Doctor of Scinice. These seimene deyrees of the University of ILondon do not leal directly to practical work, and this is an important defoct in the system, but they are, no doubt, very important as stimuli to the gencral preparatory training required by ciery man of scicuce. The Bachelor of Science degrec, as offerd by the Cuivirsty of Liondon, has also undoubtedly tended to raice science to its proper status in connection with the higher education, but it is not as yet largely taken. At the graduation in May last, at which I was present, there were only eleven Bachelors in Sciunce and scienty Bachelors in Arts. This arises in part from the want of prestige and antiquity in the degree itself, and in part from its having to compete with the honours in seicnce which may be taken in courses in arts, aud with the special science sehools.

The Birhleek laboratory of University Col'ege accommodat $2 \cdot \frac{1}{x}$ practical students; and I was pleased with the ingenious
arrangement of its theatre, by means of which 9 S students can be employed simultancously in making experiments with tests, under the direction of Professor Williamsen and his assistants. This is only one among many indications which I observed of the tendency to give to examinations and instructions in science a practical character, an cridence that its true nature is being more and more appreciated.

THE ROYAL INSTITUTRON.

It would be wrong to leave London without referring to the remarkable and unique establishment knorm as the Royal Institution, founded in 1799, at the suggestion of Count Rumford, and celebrated throughout the world as the theatre of the labours of Dary, Faraday and Tyndall, while in London itself it is known and valued as an agreeable and popular ceponent of science by means of its lectures and discourses. The Rioyal Institution has a good building in Albemarle strect, containing its theatre, laboratories, library and reading-room. Its function is two-fold. First, it sustains as its professors eminent scientific men, and provides them with the means for prosecuting original research; scoondly, it provides, by its afternoon and cerening lectures, the means of presenting to the more refined and celucated classes information as to the latest results of scientifie discorery from the lips of the actual discoverers themselves. Its lecture-room is almays filled with a cultivated and attentive audience, who have the advantage of learning orally and at first hand what others must gather from reading, or from secondary sources.

The Royal Institution thus occupics a middle place between the general public and those Scientific Societies, like the hoyal, Geological and Linnem, whose oljeets are strictly scientific or special, and whose meetings are consequently almost entirely composed of scientific men. At the same time, it promotes original research in a manner peculiar to itself, and in the highest degrec successful. It undoubtedly exerts a most important influence in keeping those who move in the higher stratia of society in London abreast of the science of the day, and thas in procuring moral as well as material support for scintific researches; more especially for those which, not being of direct educational or practical utility, are liable to be neglected even by the more intelligent portion of a community engrossed in the accumulation of mealth or in the still more laborious pursuit of spending it.

owen's college, mancirester.

In the great manufacturing community of Manchester, academical cducation rears its head in an institution of no mean repute in the matter of science education. Oren's College is, like our own MeGill, based on the liberality of a wealthy merchant, whose name it bears, supplemented by numerous additional bencfactions. Among these I find a sum of $£ 10,000$, subscribed by 118 merchants and others, for a chemical laboratory and a library; a sum of $£ 9,472$ subseribed by the principal engineers of Manchester and neighbouring towns, for the foundation of a chair of civil and mechanica! enginecring, and a fund of $\mathfrak{E 2 0 0}$ per annum to augment the endowment of the Professorship of Chemistry. These noble bencfactions remind us of the liberality of some of our Montreal merchants and professional men, and should act as a stimulus to others.

I am indebted to Principal Greenwood and Professor Williamson for enabling me to learn the nature and results of the science teaching at Owen's College, which, in many essential respects, more nearly resembles one of our Canadian colleges than any other institution which I saw in England. The department of general literature and science, or, as we should say, the course in arts, extends over thres years. and, like our own, includes a certain amount of modern languages, and physical, natural, and mental science. The department of theoretical and applied science, or science course proper, also extends over three years. The first is identical with the first in arts. The second and third are occupied entirely with science subjects, along with the French or German language. The students in this department are prepared for the Bachelor of Science examination at London. This course is said to be suited to prepare "for the higher departments of manufacturing art, and for pursuits and profecsions purely scientific." It is also said to be "adapted for such as are hereafter to be cogaged in commercial pursuits," a remarkable testimony to the idens of education on the part of business men at Manchester, who, in this respect, come up more nearly than any others in England and her colonies to the standard of the New England cities. The Principal informed me that there were, last session, 100 students taking this science course. The third department in Owen's College is that of civil and mechanical engineering, in which students are prepared for the examinations
in engincering in the Indian Public Works Department, and also for entering on the higher branches of the engincering profession. The course extends over three years. It had only trenty stadents last year.

Auother and most interesting feature of 0 wen's College, suited to its position in a great manufacturing town, is the provision made for evening classes. Thesc include the subjects of the general course, and also a pharmaccutical course intended to prepare chemists and druggists for the examinations under the Pharmacy Act. Most of the students in these classes are what we would call partial students; but some study for the degree of B.A. of London University. The intention of the college is to accommodate those whose business engagements prevent them from attending lectures in the day time; and the number of students last year was no less than 400 . This is a remarkable indication of the avidity for learning on the part of the young business men of Manchester, who enter on this somewhat severe course of study as an employment for their evenings, and after the toils of the day. It is further to be considered that many of these young men have to walk or drive considerable distances in order to attend these classes; but in all the cities of England distance is much less regarded than it is in this country. Prof. Roscoc delivers a separate course of lectures on chemistry to women, which, I was informed, had been successful, though I did not note the number of students. The authorities of the college have under consideration the establishment of a regular academical course for women, which will be largely of a scientific character.

Uwen's College has its class rooms at present in an old building adapted to its use; but an elegant new building is now in process of erection at a cost of $£ 90,000$, and a sum of $£ 130,000$ is said to have been raised as a building fund. The foundation stone of this building was publicly laid in September last. It is to be observed that Mr. Owen wisely prohibited any portion of his endurment fund being expended in buildings, and that the Government of Great Britain has given no aid to Owen's College, so that this large sum is a product of private munificence, chiefly in the town of Manchester.

SCIENCE TEACHING AT CAMBRIDGE.

The two great English Universities of Oxford and Cambridge are obviously not content to lie under the aspersion some time ago
cast on them by an eminent scientist that their "atmosphere" is unfavourable to scientific study. Both are making rapid strides in this direction.

At Cambridge, under the kind guidance of Prof. Stokes, himself one of the most eminent of living physicists, and of the patriarchal Sedgwick, and his able assistant Secley, I saw the improvements which in late fears have beeu made in the means of study in natural and physical science, and which tend, with other changes, to give greater effect to the regulations in favor of the natural science tripos. Still more recent movements in this direction are the appointment of a university professor of pure physiology, and the movement in aid. of a university professorship and demonstratorship of experimental physies, towards the buildings and apparatus for which, the Chancellor, the Duke of Devonshire, has offered a contribution of $\mathfrak{E 6 , 3 0 0}$.

WIIAT OXFORD IS DOING.

Oxford has, homever, taken the lead of its sister University in this matter, and I shall therefore notice more in detail what I had the pleasure of secing there in the way of provision for practical science teaching.
The new muscum, now of world-wide reputation, is not mercly a museum in the more modern sense of the term, but a series of scientific labcratories and class-rooms, attached to a magnificent library and muscum. The muscum proper had been largely increased and improved in its collections since my last visit in 1865, and its great central glass-roofed court, more than 100 feet square, with its surrounding galleries, is now well filled with specimens in Geology and Zoology. On the south and west sides the maseum is cucompassed with class-rooms and laboratorics in geolong, chemistry and physical science. On the north side are the laboratories and class-rooms in physiology. Prof. Phillips was absent, owing to an attack of illness, and in his department I salw only assistants engaged in laboriously piecing together the huge bones of the Cetiosaurus, a gigantic reptile with thigh bones more than five feet in length, of which a magnificent skeleton has recently been discovered in a quarry not far from Oxford. I had, however, the pleasure of secing the students at work in the laboratory of practical chemistry, under Prof. Brodie, and of examining the admirable arrangements of - Prof. Rolleston for practical work in physiology. Among other
things which I saw in the physiological laboratory, were excellent dissections of mollusks and worms made by students as a part of their examinations in the honour course of Natural Science.

Though the museum contains rooms for experimental physies, the Unicersity has greatly enlargel its means of instruction in this department, by the erection in the vicinity of the museum of a physical laboratory, which I believe will cost about $£ \pm 0,000$, and which, in the perfection and completeness of its arrangements, will surpass all similar workshops of science, not only in Eogland, but in the wordd. l'rol: Clifton, who himself showed me the building, and explained its plan, has endeavoured to make this laboratory in itself a model of practical science, considered as the art of doing everything in the best way, by applying in the most perfect mamer every known improvement and many origiaal inventions of his own, to secure convenience and accuracy of working. The building has a central hall for apparatus, and for certain experiments requiring large space; a class-room, which is a model of acoustic perfection and mechanical arrangement; and a number of work-rooms, in which all the most delicate kinds of operations in weighing and measuring can be carried on with the best apparatus and with every precaution against error. This laboratory was to be opened in the present autumn, and I was informed by Prof. Clifton that he expected to begin with about thirty practical students. The object of the laboratory is two-fold-(1) to train observers and experimenters more thoroughly than heretofore; (2) to undertake original physical researches with more perfect appliances than those now available.

The Oxford new Muscum, with the neighbouring Plysical Laboratory, thus constitutes in itself a great educational institution in physical science, managed by some of the ablest instructors aud original investigators of the day, and providing for studies in experimental physies, chemistry, miucralogy, geology, physiology, aud zoology, botany being otherwise provided for in connection with the Botanic Garien: It has seven large class-rooms and a multitude of working-rooms and laboratories, with the scientific department of the Radeliffe Library. These appliances are as yet large in comparison with the number of students who use then; but the number of students is increasing, and this apparently not at the expense of the literary courses of study. It is to be observed, moreover, that the aim of the Oxford Science School is high. Its object is not so much to train practical workers in
science as applied to the arts, as to give the education necessary to cnable those who receive it to take their places as original investigators in the advancement of theoretical science, and in connection with this to bring out the true valuc of physical science as a means of sccuring the highest mental culture. Viewed with reference to these ends, Oxford is undoubtedly an excellent Science school ; and a University which offers its highest honours, in courses. in which practical chemistry and physics, and dissections of invertebrate animals, constitute importint parts, camot be regarded as unfavourable to the cultivation of science. It must be admitted however that these improvements have been effected only after severe contests between the adrocates of modern science and the conservative element in the University, contests in which my valued friend, Dr_{r}. Acland, well known to many of us here, has borne an influential part.

MOVEMENT IN EDINBURGII.

Ediuburgh has as yet no organized Science school, and has undoubtedly been falling behind the English schools in its reputation for training in natural science. This is, however, a relative rather than an actual decadence, and there is a very strong desire on the part of many of the friends of the University to restore its ancient reputation in this respect. In evidence of this we have the recent endowment of the Baxter Chair of Engineering, and the still more recent offer of Sir Roderick I. Murchison to gire $E 6,000$ as the endowment of a Chair of Geology, which I am informed the Government is likely to supplement with a like sum. The Department of Science and Art has also attached to the University a museum on the plan of that of South Kensington, under Prof. Archer; but few lectures are delivered in comnection with it. No Institution in Great Britain has a better field for science education than Edinburgh, and it possesses many excellent teachers, but their action is to some extent paralyzed by want of facility for mutual co-operation, and by the want of some professorships necessary to complete the course of study. In the meantime, there are excellent practical classes in chemistry, experimental physics and botany, and there is an academical course for a science degree. In this course the candidate is required to have the degree of B.A., M.A., or M.D., or to hold certificates of having passed the examinations in two of the departments of the University course, or to have matriculated in the University of

Ioudon. Otherwise he must pass a preliminary examiuation. Me must then pass a general examination in mathematies, physies. chemistry, zoology, and botimy; but may omit this examination if in M.A. who has taken honours in natural science, or an M.B. or M. D. who has taken honours in natural history, and has passed the examinations in physics, higher mathematics, and logic. Where is then a final examination, in which the student may select one of three branches in which to pass, viz.: (1) Mathematical science; (2) physical and experimental science; (3) natural seience. On passing this exmmination he is entitled to ihe Degree of Bachelor of Science; and at the end of twelve months may come up for the degree of Doctor of Science, in the cramination for which he must show profound knowledge of a special scientific subject. The number of candidates for these degrees is not as jet large, but is increasing. They might obviously be rendered much more valuable and attractive by comection with special science courses, leading to applications to the arts or to definite branches of original research.

It may be well to mention here that the Prineipal of Edinburgh University, in his inaugural address, has suggested the omission of Greek from the T'niversity course for M.A., to make room for science culture, and that the chaiman of the cadowed Schoo's Committee has, as already mentioned, put this idea in a practical shape before the Fuglish Universities, in an official letter to the Viec-Chancellors, in which he intimates the design of the Commissioners to establish schools in which Satin alone shall be taught, in addition to science and modern languages and literature, and invites them to open their ceaminations for degrees and honours to the pupils of such schools. While it is to be doubted whether any such change is required here, where classics have not been so exclusively insisted on in the schools as in England, the arguments adduced by Lord Lyttleton in his circular are weil deserving of study, as indicating the strong feeling among parents and cducated persons in England that science education for their children is a matter of absolute necessity, and that, if it cannot otherwise be obtained, some portion even of their cherished literary culture must be sucrificed to a want, on the supply of which even national existence may depend.

GERMANY AND SWITLERLAND.
But though much is being done in Eugland and the United

States, science and techmical education are carried to a still higher point in Germany and Switzerland, which perhaps excel all other countries in this respect. In the former country, while every one is educated, general education is made to lead to techmical education in a great variety of schools, suited topersons in all conditions of life, and culminating in the great technical Universities, a kind of institation as yet unknown in the Buglish-speaking world, unless Cornell University can be regarded as a step in this direction. In Germany there are now no less than six techmical Universities, and a large number of technical colleges or higher schools to train students for these Universities, or for directly entering into employments in arts and manufactures.

TECINICAL LNiVERSITIES.

Mr. Scott Russell, in his work on 'l'echnical Education, takes the Polytechnicon, or Technical University of Switzerland, as an example of the most perfect orgmization of this kind; and I may abridge from his notes the following facts as to its scope and organization. Its courses of study are arranged under 145 subjects, divided among 31 professors, 10 assistant professors, and 16 private teachers and lecturers. They consist entirely of science, applications of seience to the arts, and modern languages, literature and history. Among the few subjects not included under these heads are the Swiss federal consititution and rights, and the Biblical History of Creation, a subject searcely thought of in the English world, even in the education of theological students. The students are either regular or "free," the latter taking selected courses; but of 762 students only 173 are free or occasional. In the regular programme of study the 145 subjects above referred to are divided into cight groups: (1) Preparatory subjects necessary for those who come imperfectly prepared; (2) subjects relating to architecture and building; (3) civil engineering ; (4) mechanical enginecring ; (5) practical chemistry ; (6) agriculture and forestry ; (7) subjects necessary for scientific workers, professors and teachers; (S) a general course of philosophy, statemanship, literature, art, and political economy. In aid of these courses of study the University possesses an astronomical observatory, arranged for teaching observers; a chemical and mechanical laboratory, for experiments in new inventions, \&c.; a chemical laboratory, for ordinary practical , teaching, which Mr. Scott Russell calls a palace of science in
comparison with similar places in England; collections of drawi_{ng}, models and machines; a collection of architectural models and sculpture ; collections in zoology, geology, and autiquities; and a botanical garden. To the foundation of the University the Federal Government of Switzerland contributed $£ 20,000$, and the canton of /hurich $£ 136,000$. Its amual expense is very moderate, being only $£ 13,459$ sterling. From such institutions in Germany and Switzerland amually proceed numbers of educated young men who are prepared to advance every branch of art by the applications of science, who are distancing England in so many manufactures, and who are now contributing so largely to the wonderful success of the Cerman armies. It is well for us to remember that the Technical University of Zurich ministers to the wants of a population of only two millions and a half, or considerably less than that of Canada, and that even the little state of Wurtemburg, with a population of less than two millions, has its I'echnical University at Stuttgardt, with no fewer than 57 professors and teachers. It is further to be observed that these Universities are but the higher principles of a complete system of technical clucation, descending from them to the humblest schools of practical science, for the children of labourers. It is scarcely necessary to add that they do not detract from or iuterfere with the great general Universities of Germany, in which seholarship and philosophy have reached so hig̣h a pitch of development.

A recent English writer thus culogizes the Prussian system:-
"Ihe Prussians, whatever their other qualities, are emphatically a scientific people, and to that predominating chamacteristic first and foremost are their recent military triumphs due. We (i) not meam that because they are great chemists, astronomers, and physicists, therefore are they necessarily great soldiers; so marrow a proposition would hardly be tenable. What we mean is that the spirit of seience possesses the entire nation, and shows utself, not only by the encouragement given throughout Germany to pinsical research, but above all by the scientific method conspicuous in all their arrangements. What does the word Science, used in its wider sense, imply? Simpiy the cmployment of mears adequate to the attaimment of a desired end. Whether that end be the constitution of a govermment, the orgamization of an army or naty, the sprad of learning, or the repression of crime, if the means adopted have altained the object, then science has been at
work. The method is the same, to whatever purpose applied. The same method is necessary to raise, organize, and equip a battalion, as to perform a chemical experiment. It is this great truth that the Germans, above all other nations, if not alone amongst nations, have thoroughly realized and applied, In all the vast combinations and enterprises with which they have astonished the world, no one has been able to point to a single defiecency in any one essential clement. Frery post has been adequately filled and every want provided for ; from the monarch, the statesman, atad the stretegist, to the lowest grade in the army. Whis is the method of science, literally the same method which teaches the chemist to prepare his retort, his furnace, and his re-argents, before commencing his experiment."

WANT OF SGIENCE TEACHING IN C.NNA!A.

Let us now turn to our own dountry, and study its mems and appliances for the pursuit of practical science. Whe task is an casy one, for with the exception of two or three small and poorly supported asricultural schools, this Dominion does not possess a school of practical science. With mining resources second to those of no country in the world, we have not a school where a young Canadian can thoroughly learn mining or metallurgy; and, as a consequence, our mines are undeveloped or so to waste under ruinous and unskilful experiments. With immense public works, and constant surveys of new territories, we have not a school fitted to train a competent civil engincer or survejor. Attempting a great variety of mamufactures, we have not schools wherein young men and young women can learn mechanical engincering, practical chemistry, or the art of design, or we are very. feebly beginnins such schools. We have scarcely begun to train scientific agriculturists or agricu!tural amalysts. Our means for giving the necessury education to original scientific workers in any department, or of training teachers of science are rery defective, Ilitherto we have been obliged to limit ourselves to the provision of sencral academical courses of study, and of the schools necessary for training men in medicine, law and theology. Other aventes of higher professional life are, to a great extent, shut against our young men, while we are importing from abroad the second-rate men of other countries to do work which our own men, if trained here, could do better. Leet us encquire then what we are doing in sid of science education, more especially in this commercial and
manuficturing metropolis of Canada, which we may surely venture to regard as at least a Canadian Manchester, and something more important than a Canadian Zurich.

WHAT IS MEING DONE IN MONTREAL.

(1) We have at least advanced so far as to regard physical science as a necessary part of a liberal education. In MeGill University some part of natural or physical science is studied in each year of the College course, and we provide for honour studies in these subjects, which are at least sufficient to cuable any one whe has faithfully pursued them to enter on origiual research in some department of the natural productions and resources of the country, and to receive some considerable portion of the training which such studies can give. We have provided in our apparatus, muscum, and observatory, the means of obtaining a practical acquaintance with several important departments of science. But in a general academical course of study too many other subjects require attention to allow science to take a leading place; and it is not the proper course of educational reform to endeavour to intrude science in the place of other subjects at least quite as necessary for general culture. We require to add to our general course of instruction special courses of practical science, presided orer by their proper professors, and attended by their own techoical students.
(2) The lower departments of science education are to some suall extent provided for by the teaching of elementary science in the schools. This, imperfect though it is, is of value, and I attribute to the partial awakening of the thirst for scientific knowledge by the small amount of science teaching in the ordinary schools in the United States and in this country much of that quiekness of apprehension and ready adaptation to new conditions, and inventive ingenuity which we find in the more educated portions of the common people. The Provincial Board of Arts and Manufactures also deserves eredit for the attempts which it has made, under many discouragements, to provide seience and art classes fur the children of artisaus. Proposals are also before the Local Leerislature for Schools of Agriculture. The Local Gorermment has procured reports on this subject from the Principals oi the Normal Schools, and has also sent a special agent to study and report on the Agricultural Schools of France and Belgium, which are well worthy of imitation. A still more important sur-
sestion has been made to the Dominion Gorernment by the Director of the Geological Survey for the erection of a School of Mining.

These arrangements and proposals are valmable as far as they extend ; but they fill short of providing the full measure of the higher science education, whether with reference to the training of original investigators, or of the various kinds of professional men required for the developement of the resources of the country. Let us enguire how this wider and higher science culture can be sscured.

The higher technical and seience education may be provided for in cither of the folloring ways. (1.) We may have special schools of mining, enginecring, de., cach pursuing its own course, and not connected with any genpral institution. The objections to this are, that it is not conomical, that it camot provide the necessary liecrary and general training, that the pupils of such schools are very likely to be of rarious degrees of excellence and very partially trained. Such objections are applicalle to schools like the Royal School of Mines in London, and I think they would prove fatal to the influcnce of such schools in this country: (2.) We might imitate the German technical universities. This would be the most thorongh course possible; and were the means fortheoming, I camot conceive of any greater educational bencfit to this country than the institution of such an University. Wut it may be long before we shall find in our laegishatures, gencral and local, the wisdom and patriotism which actuated those of Switzerland in establishing the Kurich School; and we may have to wait quite as long for the appearance of a Camadian Comell to sive and to stimulate legislative liberality by his giving. (3.) The last, and, it appears to me, the only practicable course at present, is to ask for cudorments similar to those of Lawrence and Sheffield, and thus to establish special courses of Science in connection with academical institutions, on the phan so well carried out in ()wens' Collese, Manchester, and in the Sheffield School of Jale. This has proved the course most successful in the Tinited States and in the Mother Country, and I have no doubt will prove so here. It is to be observed in this connection that I would not propose mercly the institution of a Science degrec. We have in this University the means to do this now, but I doubt its expe-
diency, more especially as our honour course in Mathematical and Natural Science is equivalent to that for such a degree and something more, and can be as readily and casily pursucd. Nor could I follow the advice above referred to as given by the Principal of Edinburgh Criversity and the chairman of the Endowed Schools Commission, to curtail the classical part of the ordinary course in favor of science studies. Such an arrangement would, I have little doubt, injure the literary part of the academical course more than it would benefit science. I would prefer a regular and definite science school, with a course extending over theec or four years-the first year to be identical with or similar to that of the ordinary course, or an equiralent cxamination to be exacted, at least, in modern literature and seience; and the remaining years to be occupied with mathomatical, physical and matural science, and modern languages, branching in the closing two years into special studies leading to particular scientific professions. The staff and appliances of such an institution would depend on the cxtent of its range; and this, to ensure success, should not be small.

It may be asked, would students be fortheoning? I may with confidence answer the question in the affirmatice. From the applications made to me on the part of young men for whom I can do little or nothing, I believe that one central well-appointed technical university in this Dommion, would be well sustained, in so firr is the number of students is conecrned; and that the extension of population, of mines, manufactures, railroads, and other works, would afford an ample outlet for all the men it could train, while the professional work of such men would itself tend to increase the demand.

It is certain, l:owever, that if the Govemment of this comiry could be induced to sustain a system of clementiny technical schools similar to those of the Department of Science and Artin Singland, or similar to those of Prussia, a double benefit would be secured, in so far as the higher seience education. is concerned, in finding occupation as teachers of science for some of the graduates, and in giving the necessary preliminary training to students. it the same time the effects of such sehools would be of incalculable importance to the working clases of this coumtry. Jeceal bencfictors might do something for such schools; but for a proper system the L_{e} gislature must intervenc, and it em secure the end only by payment for results on the Englisin system; under proper arrangements for camination and inspection.

TLIE JARTHQUAKE OF OCTOBRR 20th, 1870.

One of the uses of this Journal is to record, in a permanent manuer, any rare or masmal natural phenomena, the notices of which, in the daily and weekly press, would soon perish. Ihis function ihe Teturulist has hitherto performed with respect to Farthguakes. In our number for October, 1560, a detailed account was given of the Garthquake of the 17th of that month, which, in many respects, resembled that of this year.

In comection with that event, a general notice of the received theories of Earthguakes was given, and also a cataloguc of all the previously recorded Farthquakes felt in Eastern America, about $S 7$ in number, of which at last 29 were felt in Canada, more or less severely-by far the most violent having apparently been that of February 5 th, If $60 . \%$ The next earthquake of any importance was that of April, 1S64, a detailed notice of which will be found in the Neturetist, Vol. 1., N.S.. p. 15G.

The following extracts from newspapers show the intensity of the shock, and, approximately, its time at different places, armaged in the order of their longitudes.

Fmemerickos, N. B. - Shock felt at 11.45.
Bre. - An carthquake was sensibly felt here at 11.30 this morning, lasting half a minute. The direction seems to be from West to East.

River du Jourp, an bas, 11.13.-The shock commenced and lasted 45 seconds; appeared to come from N. W.; accompanied by rather heary rumbling.

Pont Lewi, 11.15. - A dreadful shock of earthquake was felt here at 1.1.15.

Quebec-At 11.17 a.m. a severe shock of earthquake was felt here. Buildings shook and bells rang ; several chimncys were knocked down in Desfosses strect, and two persons nearly killed.

Boston- - A shock of earthquake was felt here and all along the line from Montreal.

The Earmquake- - Tnverness, P. Q., Oct. eoth. - 1 severe sheck of earthquake was felt here to day at about 11.35 a.m., which lasted for over a minute. The course of the undulation seenied to be in an easterly direction. It caused great alarm in this vicinity.

Sinerboome.- Felt earthquake lere at 11.25. Shook the office books off the table, and the clock down.
Ricinmond, $11.17 \mathrm{a} . \mathrm{m}$. - A severe shock just felt here. Buildings at station rocked a good deal.

Durmam, P. Q., Oct. 20.-A slight shock of an earthquake passed here about 11.15 a am., moving north. It shook the houses quite perceptibly, and lasted several moments.

Thinee Rivers, $11.25 .-$ A very severe carthruake has been experienced in this city. The vibrations were very severe, lasting several minutes. The people ran out of their houses.

Nicolet. - A violent carthruake was felt here at 11.19. The whole building tottered, as if about falling. It lasted abont 20 seconds.

Berminer.-We had an carthquake very stroug in Berthier at half.past eleven to-day.

Sorfl, 11.14 a.m.-A shock of earithquake was distinctly felt here, of nearly a minute duration.

St. Hyacnemine. - A strong shock of earthquake was felt here at 11.15 , lasting about thirty seconds.
Waterloo Vimlage, P. Q., Oct. 20th.- The shock of an carthquake was felt here at 11.30 to-day; duration about fifty seconds. It commenced with a low rumbling noise. Buildings shook and trembled, and people rushed out of their houses terrified.
Rouse's Ponnt, 11.20.-Severe shock of carthrquake here. The Railroad depot shook very much.

St. Jonv's P. Q.-Quite a serere shock of earthquake at 11.15.

Montreal.-The shock was felt at (eucbee about 30 seconds before it reached here. The operator at Quebee was just in the act of askiug his confrere of Montreal if any shock was felt, when wall and instrument. began to rock and shake.
Ambany. - Not felt within 16 miles from here. Felt in Schenectady, N. Y., Cambridgc, N. Y., and Cooper's Mown, N. Y.

New York.-A severe shock of carthquake was felt in this city this morning about 11 o'clock. Shocks were also felt in Schenectady, N. Y., Cleveland, O., Bostou, Burlington, Vt., Portland, Me., Troy, Saratoga, Warrensburg and Wirsaw, N. X.
St. Andrews.-Shock of carthquake this morning; lasted 30 scconds.

I'Origixim, 11.15.-We felt a very severe shock of earthquake, which lasted about half a minute. It shook the Court House in which the telegraph office is.

Comene landint.-Sercre shock of carthquake this morning; shook buildings.

Orraw , Oct. ©0.-A strong shock of carthquake here this formoon. Drizzling rain and cold.

St. Cithemines.-A shock of earthquake felt here.
Owen Sorxn, Oct. y0.-A shock of carthquake was felt here this moming, commoncing at 10.5 , and lasted about 3 minutes.

In seremal phaces it is noticed that the shock was much more severe on sandy and loose gromed than on solid rock. This is an ordinary occurrence, depending on the rapid and unobstructed passage of the vilmations through solid rock. This same cause no duabt accomnts for the circumstimec that at some places the shock was not felt at all, while in others not far distant it wals felt severely.

The following notice sent to one of the newspapers by Mr, Bemnetts, of the Capel Mine, is curious, as in other cases such shocks are often felt severely in mines; but the rapid or vertical transmision of the shock may account for it in comection, perhaps, with the dircetion of the rein and of the workings.-" At this mine the shook of the carthquake was very plainly felt at the surfaes; but at the time of its occurence I was some 200 feet underground and neither the miners, of whom there were about twenty, nor myself, felt the shock or noticed anything unusual. Could it be ascertained, it mould be interesting to know to what extent other mines were affected by such an unusual occurrence."

On the other hand I am informed by Mr. James Douglas, of Quebec, that in the Marvey Ilill Mine, in rock not dissimilar from that at the Capel Mine, and in the same region, though more to the castrard, the shock was sufficiently violent to throw down masses of rock, and greatly to terrify the miners, then at work in the mine.

In a notice contributed to Silliman's Journal, fur November, by Prof. Newton, it is stated that the first shock began at New Haven, at 11h. 19.m45s. A.M., New IIaven mean time. "It l.sted 10 seconds, and its individual vibrations were about two thirds of a second in duration, or one and one third of a second
for a complete double vibration. The second series of vibrations vecuized after an interval of $\overline{5}$ seconds, and lasted 11 secouds.

The dircetion of vibration was NNL and SSW. It was felt at Boston a minute and three quarters before reaching New Ifaven. At Cleveland, Ohio, it was felt at the same time as at New laven. "Slight vibrations were felt as far south as Richmond, Fir., and as fir west as Dubuque, Iowa." Prof. Bell, of the Geological Survey, informs me that the shock was felt at Salt St. Manie, and on the North Shore of Lake Superior, and was ace companied by a cracking or rending sound in the rocks.

The following account of the Meteorological Phenomena, attending the earthquake at Montreal, is contributed by Dr. Smallwood of the McGill College observatory.
" Rain fell on the 13th day, followed by a rise in the Barometer, and a splendid display of the Aurora Borealis on the night of the 1.tth day: Numerous and very large spots were present on the solar dise, which had been the case for some considerable time, more especially during the presence of the Aurora on the nights of the 23 rd, 24th, 25 th, and 26 th days of last month (September.)
"The maximum readiug of the Barometer at 7 a. m. on the morning of the 16 th day, indicated 30.215 inches, and was suceeeded by a very fine, warm day, the mean temperature of which was 63.9 degrees, wind S. W. Showers of rain fell on the 17 th from 10 a. m. till $3 \mathrm{p} . \mathrm{m}$., with a west wind and with a falling Barometer, which at $9 \mathrm{p} . \mathrm{m}$. of that day stood at 30.000 inches. lirom $1 \mathrm{a} . \mathrm{m}$. of the 1 Sth (IUesday) a very rapid and sudden fall was observed, viz: 0.639 of an inch in six hours, and it attained its minimum, 29.361 inches, at $7 \mathrm{a} . \mathrm{m}$. on that day.
" From that hour a gradual and somewhat sudden rise took place accompanied by a very heavy gale of wind. The clouds were passing from the West, but the wind veered to all points of the compass. The register of the Anemometer at the Observatory shows a complete dise of concentric circles, with a velocity varying from 35 to 15 miles per hour.
" There was also a rise of 0.507 of an inch in the 3 arometer, with a falling temperature. Frost occurred during the might, and a good breeze continued from the West. The Thermometer at 7 a.m. showed 33.1 degrees, and the Barometer 30.070 inches.
"From this time the temperature rose and the Barometer fell, and this morving at $7 \mathrm{a} . \mathrm{m}$., stood at 29.499 inches. Rain set in
during the night, aud at 7 o'clock $0.21 \cdot 1$ of an inch had fallen. Thermometer 42 degrees. Wind S. W. Mean velocity, 3.14 miles per liour.
"At 11 h .17 m . Montreal mean time, a very considerable shock of an earthquake was felt generally throughout the city; the first series of vibrations lasted for from 10 to 15 secouds, and was succeeded by a slight interval of a few sceonds, when a second shock occurred, of less duration and of less intensity, lasting from 5to S seconds. No wave of sound was perceptible, and the wave of motion was undulating and in a straight line (rectilinear) and of considerable relasation. Domestic articles rocked to and fro, but no damage to buildings has resulted.
"The magnets were very seriously affected at 10.30.
"The barometer continued to fall after the first shock. At 2 p. m. it stood at 99.290 inches; thermometer 4.4 . degrees; wind S. W., with rain. Professor Kingston telegraphed me that the magnets at the Toronto Observatory showed slight shocks at 10 minutes to 11."
"As usual with Canadian carthquakes, this was felt most severely on the Lower St. Lawrence, more especially at the junction of the Lower Silurian and Laurentian formations in the vicinity of Bay St. Paul, Murray Bay; and the Sagucmay. The following graphic account is given by Rev. Mr. Plamondon, Parish Priest of Bay St. Paul, in a letter to "L'Evenement."
" (in mot à la hate pour rous faire connaítre les désastres causés, tout à coup ici ct dans les environs, par le tremblement de terre le plus ctrange qui soit arrivé de mémoire d'hommes. Ensiron une demi-hcure avant midi, un coup de foudre (e'sst la scule dénomination que je puisse lui donner) une énorme détonation a jeté tout le monde dans la stupeur et la terre s'est mise non à trembler, mais à bouillonner de manière à donuer le vertige, nonsculement à tous ceux qui étaient dans les maisons, mais encore ì ceux qui étaient en plein air. Woutes les habitations semblaient être sur un volcan, et la terre se fendillant en cinq ou six endroits, lançait des colomes d'cau à six, huit et peut-être quinze pieds en l'air, entraînant après elles unc quantité de sable qui s'est étendu sur le sol. Presque toutes les cheminées se sont écroulées, de sorte que je ne pense pas qu'il en soit resté six debout dans tout le village. Des pans de maisons se sout abattus, et ici et là les poëles, meubles et autres objets out èté reaversés, emportant avec cux les ustensiles, la vaisselle, etc.
"Notre couvent, qui était sous la direction des bonnes socurs de la Congrégation est inhabitable pour le moment, trois cheminées et le plafond des mansardes étant démolis en partic. Trois èleves et une servante de cet établissement on été blessées par des pierres provenant de l'éboulement des cheminées: cependant aucune d'elles n'est gravement atteinte.
" L'église a beaucoup souffert; une partie de son portail s'est ćcroulée, emportant un morçeau de la roûte, et le reste des murs est tellement lésardé quill est doutcux qu'on puisse les réparer.
"La stupeur a été telle que pendant les trois on quatre minutes qu'a duré la secousse, tout le monde pensait que c'eu était fini, et que nous allions tous perir. Nous sommes encore sur le qui vive ; car de temps en temps de légères secousses se font encore sentir. Chacun redoute la nuit prochaine et se demande où il sera demain matin. Il est certain que si cette catastrophe fut arrivéc pendant la uuit, nous aurions à déplorer la perte d’un grand nombre de vies.
" Il nous est venu des gens de diverses concessions, de sorte que nous avons des nouvelles d'un circuit d'environ quatre licues et nulle part il n'est resté une habitation intacte, partout lia secousse a été aussi violente. A l'heure où j'écris ces ligucs, la terre tremble encore, et qui sait si je pourrai terminer. Aussi veuillez excuscr le décousu de ces quelques détails que je vous donne à la hâte, ainsi que les fautes qui peurent s'y être glissées."

Other correspondents mention the opening of chasms in the ground, from which streams of water and sand burst forth. This phenomenon arises from the landslips proluced in the terraces of Post-pliocene clay which in that part of the comentry rest against the steep sides of the Laurentian hills. These are ready to shde downward with any slight movement of the earth, and to press the water out of the sandy layers associated with them, or give outlet to hidden springs and strcaus.

It is also stated, that a mass of rock 400 feet in length fell from the face of the cliff, at Cape 'lrinity, in the Saguenay. Cape Trinity is a cliff of Laurentian guciss, presenting to the river a vertical front about 1500 feet high.

It will be observed that the earthquake of Oct. 20th cxtended over 25 degrees of longitude, from the Bay of Juudy westward, and over at least 12 degrees of latitude from the North Shore of the St. Lawrence, southward. Its extension to the northward into Rupert's Land, is not yet known.

The gencral direction of the vibration，as shown by the times at the different places mentioned above，and by observatious of J＇rof．Winslow，at Cambridge，and by Mr．Douglas，at Quebee， was from north east to south west．The shock must therefore have been propagated from the laturentian regions north of the St．Lawrence，into the Silurian and later formations to the south－ ward．This is of interest in comection with the facts already related as to its severity at the edge of the Saurentian formation at Bay St．Paul，and elsewhere．

It is also deserving of notice，that at Bay St．Paul and Jaes Fiboulements sereral shocks are recorded；and that additional shocks are stated to have occurred at the latter place on the 20th October，six days after the principal shock．

It has been observed on previous occasions that the Barome－ ter is low at the time of the occurrence of carthquakes，in Eastern America．Dr．Smallwood，has kindly furnished the following table in illustration of this．It gives the state of the Barometer at Montreal，on the days of cleven of the most recent carthquakes felt here．

Date of Earthquake．	Barometer．
155\％．Feb．is	29.8015
－ 10	29.800
15056．Jam． 1	30．16：3
$12587.0 c t .16$	．． 29.308
1ニ゙ら．Jan．〕\％	．．30．29\％
May 10	．29．800
June 27	．．29．800
1：3io．Oct．iz	．． 29.964
1：6．1．Apre 0	． 29.900
1870．Man． 4	． 30.300
1870．Oct． 20	．29．299

It will be observed that the Barometer was unusually low on the day of the late earthquake，and according to information kindly sent to Dr．Smallwood from the observatory at Washing－ ton，this was very general over the continent．

It is thus extremely probable，that，whatever the primary cause of the movement，its oceurrence on the particular day in question，may have been determined by this removal of pressure from the surface of the land．It is further to be observed，that this would place the phenomena in harmony with that general cause to which the frequent small earthquakes on the Eastern Const of America，were formerly assigned by the writer，namely the removal of material from the land，and its aceumulation on the banks off the American Coast，producing unequal pressure and
consequent tension of the carth's crust, and this connected with the ascertained slow subsidence of the coast, and perhaps with slight elevation of the interior of the continent.

In a notice of the earthquake in Silliman's Journal, for January, 1S71, by Mr. A. C. Twining, the following statement occurs with reference to the intensity of the shocks at Bay St. Paul and Les Eboulements-" They are in general conformity to what has long been known to British geologists, respecting the voleanic character of the region specified," with some other remarks based on this strange statement, which has actually no foundation in fact, other than the junction, at those places, of the Yaurentian and Lower Silurian rocks, and the occurrence of thick beds of Post-pliocenc clay, resting on inclined rock surfaces, and therefore very liable to slip. Captain Bonnycastle's ideas on the subject, referred to by Mr. Twining, were probably founded merely on the irregular contour of the surface, the occurrence of crystallioe Laurentian rocks, and the exaggerated accounts of land-slips in previous earthquakes, contained in the memoirs of the Jesuits.

Note- - A slight shock of Larthquake mas felt at Dawkesbury on the Ottara, on the 3rd Jamary. Br. Smallwood states that, though not appreciable at Montreal, it was indicated by the Scismometer.

NOTES ON THE BIRDS OF NEWFOUNDLAND.

By Mevry Reeks, f.L.S., de.
(Continued from page 159.)

Tetraonide.

Canada Grouse, or Spruce Partridge, Tetrao canadensis, Linn. -A very rare and uncertain visitor from the mainland: two killed, and two others seen by the settlers during my residence at Cow Head.

Willow Grouse, Lagopus albus (Gmelin).-Common throughout the year, and the only lowland or subalpine species indigenous to derfoundland. From my own experience I think the willow grouse invariably roost on the ground, although I have frequently shot then when feeding in the tops of bireh and alder trees, more
especially when the ground is covered with deep and light enow. Their food consists chiefly of tho buds and tender shoots of birch, alder, black spruce (Abies nigra), juniper (Lurix americana), \&e., but they seem partial at other seasons to the partridge berry (Nitcliella repens) and cranberry (Oxycoccus palustris). I do not possess specimens of willow grouse from Europe or northera North Ameriea (Hudson's Bay, \&e.), but Professor Baird says, "I find a considerable difference in different specimens of the large ptarmigan [L, albus] before me. Those from eastern Labrador and Newfoundland appear to have decidedly broader, stouter and more conves bills than those from the Hudson's Bay and more northern countries. I think it not improbable that there may be two species." Professor Newton, however, informs me that "none of Professor Baird's later mritings have gone to strengthen the suspicion expressed by him formerly as to the existence of a second species of willor grouse," and adds, "I have compared a pretty good series of skins from many parts of North Awerica, estending from Alaska to Newfoundland, and so far as I can judge I hare no doubt they are all of one and the same species, which is further identical with the willow grouso of Europe ('letrao saliceti, Temminck; T. subalpinus, Niilsson)." I have never suceeeded in driving the willow grouse into a bauk of snow, as Sir John Richardson states in ' Fauna Boreali Americana,' vol. ii., p. 352, as , being a habit peculiar to the species, nor had the settlers observed anything of the kind. They aro sometimes so tame that they may be killed with a stick; at other times so wild that they will not allow you to approach within gunshot, and such is generally the case in winter when the snow is hard and crusty, and the noise of your rackets (snow-shoos) alarms them. They are shot at all seasons by the settlers, and generally when sitting on the ground although there is every escuse for doing so, especially in thick woods, for if once flushed there is rarely a chance of coming up with the covey again, and this an important consideration where food and powder and shot are not too plentiful among the poorer population. In one of my walks soon after I landed on the island I came up with a small covey of willow grouse and killed a brace, but owing to my doga borrowed one, which was evidently more used to rushing into the water for wounded seals and ducks, than retriering grouse,I was unable to get another shot at the birds. Upon showing the brace I had killed to the owner of the dog, on my return, the
following conversation ensued :-" Got two pattridges then, sir ?" "Yes." "All there was there, I'spose?" "Oh, no ; there were ten in all, I think." "Then they was wild I 'spose, sir ?" "No, they allowed me to get sufficiently near to kill one with each barrel as they rose." "What, sir, you never fired at 'cm to wing l" "Of course I did; how would you have me shoot at them?" "Why, sir, if I had been there I should have walked round and round them pattridgis till I had got 'em all in a heap, and then I should have killed nearly all at a shot: I never heard of nobody firing at a pattridge to wing." If the settlers could be induced to observe a close time for these and other valuable game birds, the practice of shooting them in this apparently wholesale manner would not greatly diminish their numbers. The willow grouse is called the "partridge" by the settlers, and frequents beds of alder and dwarf birch in swampy places, especially on the borders of lakes and rivers. It breeds on the ground among stunted black spruce, in rather drier situations. One peculiarity in the Newfoundland bird is, that I have very rarely found the middle, or iucumbent pair of tail-coverts "entirely white" in winter, as they are stated to be in 'Birds of North America,' p. 634.

Rock Ptarmigan, L. rupestris (Gmelin).-A truly alpine species in Newfoundland; rarely found below the line of stunted black spruce, exeept in the depth of winter, when they descend to the low land and feed on the buds of dwarf trees, sometimes in company with the willow grouse, but I never saw this species perch on trees: it is called by the settlers the "mountain partridge."

Gruide.

I was informed by one of the settlers that a "brown crane" was killed a few years since at Codroy, Newfundland, and someothers seen. I am of opinion that they must have been "stragglers," and it is therefore hard to determine the species. Did they really belong to the genus Grus?

Ardeide.

American Bittcrn, Botaurus lentiginosus, (Montagu).- $\mathbf{\Lambda}$ summer migrant to Newfoundland, and the only species of the heron family that I met with. A pair of bitterus are generally found frequenting the margins of wooded lakes and ponds in the lowlands throughout the summer, arriving early in May and
departing again about the last of September. Yarrell describes the legs and feet as "greenish brown;" they are, however, of a pretty yellow-green, but soon lose this colour after death. The American bittern makes a curious thumping noise, very much resembling the noise made by fishermen when driting oakum into the seams of their boats; hence prolably arose its popular name of "stake-driver" in the United States, and "co:ker" (? caulker) in Newfoundland.

Cimaradryde.

American Golden Plover, Charadrius vireinicus (Borch).Visits Newfoundland abundautly in the autumnal migration, but very rarely, if at all, in the vermal.

Killdecr, Egialitis rociferus (Limn.)-Wiot so common as the preceding, otherwise the remariss on that species are cqually applicable here.

Ring Plover, or Scmipaimeticel Plover, A. scmipalmatus (Bon.) -A summer migrant and breeds on the coast: this and the following species are called "beach birds."

Piping Plover, A. melodus (Ort.) - Appeared to be a common autumn migrant, congregating in large flocks.

Gircy Plover, or Bleclibellicd Plover, Squat:rola helvetica (Simn.)-Vury common in the fall of the year, but I did not meet with it in spring: the plovers evidently take some other, and probably more direct route than via Newfoundland to their breeding grounds in the far north.

Menatopomids.

Turnstonc, Strepsilas inturpres (Linn.) -Abundant on the seashore in the fall of the year, and gencrally so fat that the settlers have bestowed on the appropriate name of "fat oxen."

Of the Recurvinostride I did not meet with cither Fecurvirostra americana, Gnecia, or Ifimantopus nigricolis, Vicillot, although both, but more erpecially the furmer, may rc:ann:bly be expected to occur periodically.

Pialargpomdes.

Red Phalarape, Phalaropus fulicarius (Limn.)-Yisits Nerfoundland generially in the month of Juve, and is sometimes tolerably common, but I doubt whether it breeds on the islind. This is undoubtedly our old fricud Phalarorus lobatus in its nup-
tial dress, and the Amenican authors have done well in restoring to it the Limean name of fulicarius, because it is yet a matter of doubt whether the Tringa Lobata of Limmeus in Systeme Nature ever applied, or was intended to apply, to this species. It is the oniy species of phalarope I got in Newfoundland, and was called by the settlers the "gale bird." It is wonderful to watch these pretty and delicate-looking little birds swimming and taking their tiny food from the crests of waves that would "swamp" any boat and many schooners. They are very tame, and swim almost within arm's length of the rocks, giving one the idea that the nest immense wave which is fast approaching will east them on shore, or smash them against the rocks: at such times it takes a quick shot to kill them on the water.

Scolopacine.
European Woodeock, Scolopax rusticola, Limn.-A single specimen is said to have been lilled in the neighbourhood of St. Johns, in Jmuary, 1502 (Sce " Mbis," 1S62, pp.2St, 2S5). If no deception has been practised here, it is certainly a very extraordinary capture, as is also that of another specimen since taken ne:ar New York. To those who have spent any length of time on the coast of North America, the problem of the occurrence of so many American birds in Europe is soon solved: it is undoubtedly caused by the prevalenec, especially in the fall, of great gales of westerly winds, which probably take most of our Americion strigsglers off the cast coast of Newfoundiand; but how to account for the appearance of two stray specimens of S. rusticoln being killed in America-fir apart, but in each case near a populons city, and by those so well up in ornithological literature as to be aware of the value of such captures, presents a difficulty by no means so casily disposed of. Of course it is probable that land birds may occasionally get blown of our west coasts by rough easterly winds, but it is equally probable that berore they had gone one-third across the ithantic they would take the wind dead ahend, which mould cause then to "bout ship and be thankful for a fair breeze home. It docs not require a great stretch of the imagination to account for the appearance of an Icelandic species in Greculansl, or the northern parts of the American continent, or cren in Nicerfoundland, but if I remember right the European woodeock is not found in Iceland.

American Woodcoct, Philokela miuor (Gmelin).-Probably
occurs on the island, but my accident prevented my thoroughly searching situations likely to produce this species. It would only occur as a summer migrant.

Wilson's Snipe, Gallinago Wilsoni (Temm.)-A common summer migrant, arriving generally about the last week in April, and soon commences breeding. When the female is sitting on her nest the male frequently rises in the air, drumming and making a peculiar rushing noise with its tail, which may be heard a considerable distince.

Gray Suipe, Macrorhamphus griseus (Gmelin).-A summer migrant. The remarks appended to the proceeding species appear equally applicable to this.

Gray Back; Rolin Snipe, or Knot, Tringa canutus (Limn.) Visits Newfoundland only in its periodical migrations.

Purple Sundpiper, Tringa maritina, Brumich.-A summer migrant, but rather rare at Cow IIead; probably more common on the southern shores of the island.

American Dunlin, T. alpina. var. americana, Cassin.-A summer migrant, but much more abundant in the fall of the year.

Americun Jack Shipe, T. maculata, Vieill.-A summer migrant, and tolerably common.

Least Sandpiper, T. wilsonii, Nuttall.-A common summer migrant.

Bonaparte's Sandpiper, T. bomapartii, Schlegcl.-A common summer migrant, collecting in flocks in the fall of the year at the seaside, and generally so tame that a dozen to treenty may often be killed at a shot. This remark applies also to some other allied species of sandpipers and small ringed plovers which congregate on the coast every autumn, from some flocks of which upwards of sisty have been killed at a shot; giving some idea of the immense quantitics of these little birds. The pretty little piscon hawk (Fulco columbarius) is a crucl attendant on these flocks of small Tringe. Professor Newton informs me that "Tringa bonapartii is the Schinz's Sandpiper of Yarrell and other English authors, though not the true T. schinzi."

Sanderiing, Calidris arenaria (Linn.)-Visits Newfoundland periodically: abundantly in the fall, but very sparingly, if at all, in the spring.

Semipalmxted Sandpiper, Ercunctes petrificatus, Illiger.Another commou species on the coast in the fall.

Stilt Sandpiper, Macropalama himantopus (Bon.)-Not com-
mon at Cow Head. I killed one specimen in September, 1867, and saw a few others which appeared of the same species.

Willet, Symphemia semipalmata (Gmelin).-Common in the fall of the year, especially in the spotted or immature plumage.

T'ell Tale, or, Stone Snipe, Gambetta melanoleuca (Gmelin).A summer migrant, but not so common as the following species.

Yellow Legs, or Yellouskanked Sunclpiper, G. flavipes (G'melin). -A summer migrant, arriving in May and departing again in October. A great many pairs breed in the marshes, but I think the majority pass on to more northern regions, and return in August and September in increased numbers, generally at that season very fat and much appreciated for the table, but being small birds they are not usually shot at by the settlers unless four or five can be killed at a shot. Sometimes they are very tame and take little notice of men or dogs: at other times they are so wild that I know no bird more difficult of approach, and then they are a perfect nuisance to the sportsman, as they not only keep out of range themselves, but alarm every other bird by their incessant cry of "t twillick," "twillich." Many a blessing (?) have I bestowed on these birds when, after crawling on my hands and knees a quarter of a mile through long wet grass on boggy soil to get a shot at a flock of black ducks (Anas olscura), I have heard the everlasting "twillick" and seen the ducks take wing instantly, perhaps not eighty yards from me. I fear, since my visit, many a skeleton of poor "twillick" lies bleaching in the marshes by the sea-coast near Cow Head. Provincial names of this bird are "twillick," "twillet" and "nansary"-the latter name more frequently in the south of the island.

Solitary Sendpiper, Rhyacophilus solitarius (Wilson.)—Not uncommon in summer, generally towards autumn.

Spotted Sundpiper, Tringoides macularius (Linn.)-A common summer migrant, arriving early in May : breeds on the coast, and lays its four egrs sometimes in a holluw on the bare shingle; at other times in short grass, but always just above high-water mark. Provincial name "wagtail."

Bartrom's Sundpiper, Aetiturus bartramius (IFilson).-Visits Nerfoundland periodically, but it is rarely met with during the vernal migration. I doubt if it breeds in Newfoundland, although known to do so on the mainland both north and south of that island. Like the peevit at home this species prefers inland and cultivated districta.

Buffurcasted Sandpipar, Tryngites rufescens (Vicill).-A summer migrant, but not very common. I did not succeed in taking egns of this species, but I think it brecels on some of the drier spots in marshes in Newfoundland.

Marbled Godwit, Limosa fedoa (Linn).-Only a periodical visitor; most common in the fall. This and the following species are called "dotterels" by the settlers.

Huclsonian Godwit, L. hudsonica (Latham).-Visits Newfoundland in its periodical migrations, but is most common in the fall of the year, when it is generally very fat aud much appieciated for the table.

Longbilled Curler, Numenius longirostris, Wilson.-A periodical migrant much sought after by the settlers, who are great adepts in imitating its whistle, by which means they kill many that would otherwise pass a loug distance out of range. It is a fat, good-eating bird in the fall.

Inedsonian Curlew, N. hudsonicus, Latham.-Frequently confoundel by the settlers, under the name of "Jack Curlew," with the preceding species, with which it is about equally common, and like that visits Newfoundland in its migrations, but does not breed there.

Esquimaux Curler, N. borealis (Forster). - By far the most common species of curlew, but like the preceding species is only a periodical risitor; coming by thousands in the fall, but very rarely in the spring; in fact, I think they take some other and more direct route at that season. They feed on the berrics of Empetrum nigrum, which stain the feathers posteriorly a rich dark purple. These birds arrive in Newfoundland on their migration about the last week in August, and remain until the end of September, when they are always very fat, and delicious cating. I was told by one of the old Euglish settlers that they rere so abundant some seasons that he had himself shot fifty in one morning before sumrise.

Virginia Rail, Rallus virgimianus, Limn.- λ summer migrant, and apparently rare - T saw only one specimen; but the well known habits of the Rallidec-that of conccalment among reeds in marshy places-may account for a secming paucity in individuals.

Common Americun Rail, Porzana carolina, Ticill.-A summer migrant, and, although not common, is probably more so than the preceding.

American Coot, Fulica americana, Gmelin.-Alhough this bird
is perhaps a regular summer migrant to Newfoundland I never met with it, neither do I think it is the "Coot" of the settlers; if so, I know it is frequently confounded with Pelionetta perspicilluta (Linn.), the surf scoter.

Anatide.

American Stuan, Cygnus americanus? Sharpless.-Apparently a rare and accidental visitor to the western coast of Newfoundland: I saw only one specimen, which was au adult bird flying south in the fall of 1867 .

Show Goose, Anser hyperboreus, Pallas.-Very rare: I heard of one or two being obtained in the north of the island, and an equal number on the west coast.

American Whitcfrontecl Goose, A. gambeli, Irartlaub.Equally rare with the preceding, or perhaps more so. It scems extraordinary that these two common species of American geese should be so rare when we consider that Newfoundland, in one place, is only, separated by twelve or fiftecn miles of water from the mainland.

Canada Goose, Bernicla canadensis (Linn.) - A regular summer migrant, and by far the most abundant species, arriving in April and in May by "countiess thousands." The majority pass on to more northern regions to breed, although a great many remain for that purpuse in Newfomdland; but, besides a gencral discrepancy in size, I have almost invariably found the northern migrauts of this species much darker on the breast; in fact, so much so, that we used to call them the "little blackbreasted northerners." The colour of the "down" appears a good distinction between the sexes; on the male it is light gray, and on the female dark gray, almost black. This was pointed out to me by the settlers, who, however, know how to separate the sexes by the shorter bill and head of the goose. The Camada goose is greatly prized for the table, and the settlers are adepts in "toling" them within gunshot in the spring of the year, but it cannot be done in the fall, or during the autumnal migration : a dog is generally used for this purpose. The sportsman secretes himseif in the bushes or long grass by the sides of any water on which gecse are seen, and keeps timowing a glove or stick in the direction of the geese, each time making his dog retriere the object thrown: this has to be repeated until the curiosity of the geese is aroused, and they commence srimming towards the moving object. If the geese are a
considerable distance from the land, the dog is sent into the water, but as the birds approach nearer and nearer the dog is allowed to show himself less and less: in this manner they are easily toled within gunshot. When the sportsman has no dog with him he has to act the part of one by cramling in and out of the long grass on his hands and knees, and sometimes this has to be repeated continuously for nearly an hour, making it rather a laborious undertaking, but I have frequently known this device succeed when others have failed. The stuffed skin of a yellow fox (Thulpes fulvus) is sometimes used for toling geese, and answers the purpose remarkably well, especially when the geese are near the shore, by tying it to a long stick and imitating the motions of a dog retrieving the glove or stick. Foxes have frequently been observed to practice the same device in a state of nature, and the settlers who prize fur more than feathers commence toling poor Reynard within range of the fatal shot, which, strange to say, considering the general craftiness of the animal, is very easily done. The Canada groose may often be toled from a long distance when on wing, by "cronking" or imitating its cry. When these gecse fly, either in pairs or in flocks, a gander invariably leads: this fact is so well known to the settlers that when firing at a pair of geese they invariably shoot at the hinder bird, not only because the goose is the fattest (in the spring), but because the gander will generally fly round and round its dead mate for some little time: such affection but too often proves fatal, especially when the shooter has the use of two barrels, but such is not generally the case among the settlers, who chicfly use the old-fashioned long duck guns, single barrelled, of ten or twelve bore. Ice-gazes and false geese are also employed on the ice for killing these beautiful birds in the spring of the year. Like the domestic goose, which has been known to live upwards of a hundred years, these birds are supposed by the settlers to live to a great age. A few years ago a specimen of the Canada goose was shot at Grassrrater Bay, on the Labrador, which had a thin brass collar on its leg initialed and dated just thirty years previous to its capture. This species does not commence laying until three years old, and from examining the ovaries of several evidently young females I found them to contain from 180 to 190 eggs, which, averaging six per annum, would limit the laying period to some thirty or thirty-one years; so that, bar accidents, the birds would not probably live more than ferty or forty-five years.

Brent Goose, B. brenta, Stephens.-Very common on the southern and western parts of Newfoundland, in its periodical migrations, but very rare farther north than St. Gecrge's Bay, in $48 \frac{1}{2}$ North latitude, or occasionally Port au Port, whence it crosses to Anticosti, and thence up the Labrador shore. Two specimens were said to have been scen on wing at Cow Head last spring (1868,) but the double-crested cormorant (Graculus dilophus) flies much like a small goose, and I fancy the birds thought to be Brents were of this species.

Mallard, or Common Wild Duck, Anas boschas, Limn.-Very rare; I only examined one normal specimen of this species, also one of the supposed hybrids, betreen this species and the Muscovy, (Cairina moschata,) which had been shot and skinned by two of the settlers a few years since, and preserved as curiosities. The larger bird was considered by them a dake of the domesticated variety, and I have certainly seen some of the descendants of the "Lincolnshire". breed much resembling it; but as I was informed no ducks, except ciders (S. mollissima, were kept domesticated on the island, the bird had probably wandered north in company with a flock of some other species.

Black Duck, A. obscura, Gmelin.-This is the common wild duck of the island, and is abundant throughout the summer. It breerls among rushes and long grass on the borders of lakes and rivers, and lays from ten to fifteen eggs, which much resemble those of the preceding species. The black duck is much esteemed for the table, but is usually a very shy bird, and not easily approached, except from the leeward, as it will "wind you like a decr."

Pintail Duck, Dafila acuta (Limn.)-Very rare, but known to some of the settlers as the "long-tailed duck."
N. B. - The true " long-tailed duck" (Harelda glacialis) is called a "hound" in Newfoundland.

Grern-winged Teal, Nettion carolinensis (Gmelin.)-A summer migrant, and appears to be the "common teal" of the island.

Blue-winged Teal, Querquedula discors (Linn.)-Rare in the neighbourhood of Cow Head, and probably nowhere on the island so common as the preceding species.

Shoveller, Spatula clypeata (Linn.)-A summer migrant, and generally distributed over the island, but is by no means common. It is called "Pond diver" by the settlers.

Gadwall, or Gray Ducl, Chaulelasmus streperus (Linn.)Rare: does not breed on the island, but is occasionally killed during its periodical migration.

Beldpute, or American Tidlycon,* Nareca americana (Gmelin.) - A common summer migrant, and when fat one of the best flaveured of American ducks. The adult male of this species, which is called a "Cock Widgeon" by the settlers, is, in summer plumage and fresh killed, one of the handsomest ducks in Newfoundland.

English Widgeon, M. Penclope? (Limn.)—Although only a stragyler ts the continent of North America, it is not improbable that this specics occasionally occurs in Newfoundland, especially en route from Greenland to the Cnited States, whence most of the captures are recorded.

Scaup Duck, or Big Blackhead, Fulis marila (Linn.)-A very rare struggler to the N. W. coast.

American S'coup Duck, I. aftinis, (Eyton).--Occasioually shot in spring or fall, but rarely seen at Cow Head.

Ping-necked Duck, F. collaris (Donovan).-Equally rave with the preceding species.

Aythya americana (Eyton) and A. vallisneria (Filson) may reasonably be expected to occur in Newfoundland.

American Golden Eyc, Bucephala americana (Bon.)-A very common summer migrant; one of the first to arrive in spring and remains until frozen out in the fall. Breeds in holes in trees, sometimes near the ground, but very frequently fifteen or trenty fect high, and often a considerable distance from water. The hole is generally made in a rotteu tree, and I think always by the bird itself: it is called the "pic duck" by the settlers, and the young birds are considered good cating.

Buffel-headed Ducl, or Butter Ball, B. albeola (Linn.)Rare; at least at Cow Head, where it is called the "Spirit Duck."

[^19]Harlequin Duck, Histrionicus torquatus (Limn.)-A common summer migrant, and breeds on the borders of lakes and rivers flowing into the sea, frequently many miles in the country, whence it brings its young in July. The male of this species, which is called a "lord" in Newfoundland, is decidedly the haudsomest little duck imhabiting those cold regions, and is a most expert diver. It seems extraordinary that any bird when quietly settled on the water, and within twenty jards of you, should escape by diving from the shot of a percrission gun; but how fir more astonishing is it that birds on the wing, and rithin easy range, should employ the same device, and yet the litile " lords" and "ladies" (females) frequently cscape by doing so! The amateur sportsman, unacquainted with this fact, is amazed at his own prowess, when, having shot at eight or ten of these birds on the wing: he sees the whole flock drop apparently "stone dead" into the water; but his rexation perhaps exceeds his amazement when, in a few scoonds, he again sees lis little flock of harlequins on wing, and that too just out of range for his second barrel. The harlecquin duck is frequently found sitting on rocks many feet above the water, but, from its small size and resemblance to the parti-coloured rocks, is very dificult to see in time to get a shot by stalking. Adult males are generally distinguished as " old lords," and females as "jennies."

Long-tailed Duck, Harelda glacialis (Limn.) -This handsome species is very common all along the coast in fall and spring, in fact, as long there is any open water throughout the winter; but I think does not breed anywhere in Newfoundland, although I have an adult male, in summer plumage, which was shot at Cow IIead on the 13th of June, 1S6S.

To the naturalist and sporisman there can be fery more interesting sights than secing sereral hundreds of "hounds," as these birds are called by the settlers, in a flock, and hearing their clamorous cry of "Cow-cow-wit;" "Cow-cow-wit," which, when borne on the breeze from a distance, has a fancied resemblance to a pack of hounds in full cry, and, however fanciful the comparison, it always proved sufficiently obvious to recall many pleasant reminiscences of bygone days. The longt:iled ducks usually frequent shoals and beds of "killup" (kelp) in one to five fathoms of water, but I have seen them diving for food in thirty fathoms of water. Like many other occanic birds they are expert divers, and it is sometimes almost impossible to kill them when sitting on
the water; and I really think the nearer you are to them the more likely are they to evade the shot, but, of course, everything depends on the day; if dull and cloudy, or with snow on the ground, they dive at the flash with the rapidity of lightning, while on bright sunny days they are shot as casily as any non-diving birds. On the 12th of October, 1S67, I killed two males of this species at a shot. It was a lovely day, frosty in the morning but the thermometer marked 50 degrees Fahr. at noon, and the ducks which were fishing side by side, at the distance of about forty yards, made no attempt to dive. "Old Wife" is another provincial name for this species.

Labrador Duch. Camptolæmus labradorius (Gmelin).-Probably occurs on some parts of the coast, but I did not meet with it during my stay at Cow Mfead.

Trelvet Duck, Melanetta velvetina (Cassin).-Common, and probably breeds on the island, as individuals may be seen throughout the summer; although supposing the birds to assume the adult plumage the second year, which I have reason to doubt they may be non-breeding birds, as they certainly do not breed until the third year. Provincial name " Whitewinged diver."

Surf Duck, Pelionctta perspicillata (Linn.)-Common, especially during the migratory season. The remarks on the plumage and breeding habits of the preceding species applies equally to this and the following species. Provincial names "Bottle-nosed diver" and "Bald coot."

American Scoter, ©demia americana (Swainson).-Very common throughout the year; at least until driven from the coast by drift ice, which is not usual until the first week in January. It is called the "sleepy diver" and" little black diver" when adult, by the settlers.

American Eider Duck;* Somateria mollissima? (Linn).-By far the most abundant species of duck in Newfoundland, but not so plentiful now as a few years since, owing in a measure to an increase in population, but more particularly to a wholesale robbery of cggs which is carried on with impunity from the islauds along the coast, and others in the straits of Labrador and Belle Isle.

[^20]Several hundreds of these beautiful ducks breed on some islands in the Bay of St. Paul, about five miles west of Cow Mead, and are strictly preserved by an old Englishman, the only human resident in the bay. So abuudant were these birds in Newfoundland a few years ago that a man living at Cow Head killed one hendred and ten ciders at two shots in one day, and on another oceasion fifty-three at one shot: forty, also, had frequently been killed at a shot, and I saw a youth, seventeen years of age, knock down twenty at a shot in January, 1S6S, but even this last number is now rarely obtaincd so casily. To the sportsman who is content with a duck to each barrel this comparative scarcity is of small import, but to the poor settlers it is a matter of great consideration. The common cider does not breed or assume the adult plumage until the third year: it is called the "sea duck" by the settlers. The young males resemble the females, but lack the tinge of redulish brown which is characteristic of adult females of this and the following species.

King Eider, S. spectabilis (Lim.)-The adult male of this species is a large handsome bird and much sought for by ornithologists, especially those who go to the trouble and expense of visiting either its summer or winter haunts. The king eider, which is called "king bird" in Newfoundland, is tolerably common during its periodical migrations, and is frequently shot in company with the preceding species. On the 17 th of December, 1S67, I obtained an adult male " ling bind;" and on the 19th an immature male: the latter was one of two killed at a shot with cight of the common cider. King eiders are more abundant some seasons than others: in 1865 twenty of these birds were killed at a double shot by one of the settlers at Cow Head. Young males the first year resemble the females, but in the second year have the throat and neek copiously spotted with white. The adult female of this species is easily scparated from its congener, (S. mollissima) by its much smaller size, its shorter bill, and by having a more decided rufous tinge on the upper plumage.

Ruddy Duck, Erismatura rubida (Wilson).-A rare and uncertain visitor on the north-west coast.

Goosander, Mergus americanus, Cassin.-A summer migrant and tolerably common : it breeds on the margins of lakes and rivers, and is called the "gozzard" by the settlers.

Redlreasted Merganser, M. serrator, Linn.-A very common summer migrant, remaining in Nerfoundland as long as any open
water can be found. At carly morning the redbreasted mergansers fly out to sea in large flocks, but return to fresh water in the evening : its provincial name is "shell bird."

Hooded Merganser, Lophodytes cucullatus (Limn.) Apparently rare on the north-west coast, and generally obtained in the inmature p.umage.

(Tu le Continued.)

ON the origin and classification of ORIGINAL OR CRYS'TALLINE ROCKS.

By Thomas alacfarlade. (Continucd firom Junc N'umber.)

```
IV.-CIIEMMC.IL COMPOSITION.
```

Crystalline or original rocks have been hitherto regarded and described as aggregates of minerals. No doubt the larger number of them may be correctly enough thus characterised, but it is doubtful whether the description applies to all the original rocks. For instance, obsidiau has always been classed among these, and, on all hands, it is admitted that no minerals are diseernable in it, that it is perfectly ritreous, as much so as bottle or window glass. Λ similar vitreous substance, unresolvable by the microscope, forms, according to Vogelgesang, part of the matrix of all true porplyries. Then we have many instances of rocks, almost impalpable in texture, belonging to various families, in which the microscope certainly reveals the presence of separate minerals, but, frequently, leare their nature and, always, their composition undetermined. Besides the uncertainty which thus very frequently smrounds our knowledge of the mineralogical constitution of fine-grained rocks, there are other considerations which tend to shew that the composition of a rock is not ascertained even after its constituent minerals have been determined. In the first place, the relative quantities of these present cannot be ascertained, and, secondly, even when this is done approximatively, the uncertain composition of the mineral species renders the chemical composition of the rock almost as doubtful as before. It would therefore appear simpler and tend to a juster view of the nature of original rocks, to regard them
not so much as agegregates of minerals, as mixtures of their chemical components, alkaline and carthy silicates, which, during erystallisation. arranged themselves into compounds of more defuite atomic composition, namely, into minerals.

As has been already remarked, the primary souree of all original rocks must have been the original fluid globe, and also that part of it, which, until the present day, has remained in a state of igncous tluidity. The elements which originally composed the fluid-globe must have been the same as those which cuter into the compusition of the earth at the present day. If, howerer, we leave out of consideration those volatile and gaseous elements which, from their nature, must have gone to form the primitive atmosphere, and also the greater bulk of the metals: which, from their gravity, mast have accumulated at the centre of the earth, we have the following list of substances, which in ail likelihood, constituted the upper zone of the original fluid-globe:-Silicic, boracic, phosphoric, stannic, titanic, niobic, tung. stic, and tantalic acids: among bases, potash, soda, lithia, lime, magnesia, alumina, ferric oxide, zirconia, manganic oxide, mangraons oxide, ferrons oxide, glucina, ceria, yttia, oxides of \%ine, lanthanum and uranium. All of these substances make their appearance in original rocks, many of them howerer in comparatively minute guantity and entering only into the composition of their so-called accessorial constituents. If we, for the sake of elearness, leate these rarer substances aside for the present, we have the following, which may be regarded as the essential chemical constituents of original rocks:

$$
\begin{aligned}
& \text { Silicic Acinl,Alumin:a................... Protoxide of Iron, } \\
& \text { Mrynceia, Lime,Soda,.........Potash. }
\end{aligned}
$$

These substances, we may suppose, were, in the original fluid magmas from which original rocks crystallised, present in the same mamer in which we see them combined together in furnace shatss or glass. Bach of these constituents, the alkalies exeepted, is of a most refiactory nature by itself, but, when several of the carths unite with the silica, compounds result of various degrees of fusibility. In this there is merely a repetition of the well-known phenomena of chemical combination, where elements the most antaronistic combine to form a substance innocent of any of the properties of its constituents. The silica or quartz, infusible and chemically, indifferent as it may appear under ordinary circumrtances, acts in this case as an acid, and, with the aid of heat,

Ňo. 3.
combines with the equally refractory bases, forming readily fusible compounds. 'The simple silicates, formed by the union of silica or silicie acid with one base, are not always fusible. Those of the athalies and iron oxides are, but the silicates of ammana (elay). maguesia (serpentine), and lime (wollastonite), are almost or completely infusible. Nevertheless, the three latter combined form the seoriac of most frecquent occurrence in the arts, namely, those of irou furnaces. In these slags the proportion of silica present often mounts as high as 7 j per cent., while those from pudding: furnaces do not contain more than :35. The former are termed rery acid or silicoous, and the latter very basic slage. Such rariations in the silic: contents of these componds are accompamied by corresponding changes in their chemical and physical propertics. Basic slags are more easily fused than silicenas slage. although the latter do not sdidify ats rapidly as the former.

The same variations in the quantity of silica which necur in funace slags are also to be found in original rocks, and just as furmace scoria have been rangel under different chemical formulie. so, likerise, it has become possible to classify original rocks in a similar manner. When the student of chemistry has gradually: added an acid to :an alkali, or other base, until the mixture neither reldens litmus nor browns turmeric paper, he has formed a neutral salt consisting of one atom of base to one of acid, such as sulphate of iron ($\mathrm{FeOS} \mathrm{O}_{3}$) and nitrate of potash ($\mathrm{KO} \mathrm{N} . \mathrm{O} . \mathrm{n}$). The salts of the peroxides, although frecuently possessing acid properties, are, nevertheless, also regarded as neutral or nomal and contain, for every atom of base, three of acid, such as persulphate of iron ($\mathrm{Fec}_{2} \mathrm{O}_{3} 3 \mathrm{SO}_{n}$) or tersulphate of alumina ($\mathrm{A}_{2} \mathrm{O}_{3}$ 3 s ()$\left._{3}\right)$. Similariy in mincralogy those silicates are regarded as neutral which contain one atom of monoxide combined with one of silica acid or silica, or one atom of sesquioxide combined with threc of silica. Thus the mincral leucite, which consists of one atom of potash; one of alumina, and four of silicic acid, may be resarded as the type of a neutral mineral. Its formula is Fi 0 . $\mathrm{Al}_{2} \mathrm{O}_{\mathrm{E}} \cdot+\mathrm{Si} \mathrm{O}_{2}$ and it will be observed that its beses contain four while its acid contains cight equivalents of oxysen. Neutral or monosilicates, thercfore, are those in which the proportion of oxyeren in the bases, to that in the acid, is as 1 is to $\stackrel{O}{\text {. If we }}$ search :mong crystalline rocks for those in which this oxyereu ratio exists, we shall find them to be well-defined rock species: which are mot usually considered from a chemical point of view
at all．These rock species are syenite，melaphyre and andesite， which respectively represent the neutral development of the gramular，porphyritic，and trachytic orders of original rocks．If， from among the syenites，melaphyres and andesites which have been subjected to analysis，we select those whose oxygen ratio best corresponds to nentrality，we have the following：－

	traver．	$0 \text { osxin or }$	Gnamity of sitic：In biar
1．Sremite from the steilen stiene， in the llart $\%$－venchs．．．．．．．．．	1	1818	5030
Jr．Syenite from Monte Margole， ne：ur lredazzo，－Kjerulf．．．．．．	1	$2 \cdots 0$	53.0 .0
111．Sirenite from the schonberger ＇Mhal ia the liemertrasse，－（i．			
Itischot．．．．．．．．．．．．．．．．．．	1	20.01	5． 5.90
IV．Siemite from Plauensehen （irmal，bear lhe den，－Kirkel．	1	ごごら	\％9），
A verate	1	$\stackrel{2}{ } \cdot 10.4$	\％e．is
1．Melaphyre fom Sclmeidmät－ Heriberys，in lhatenthal，ne：u Hmeman，－Ion Richthofen．．．	1	193 －	inil
11．Rimombie porporey of Vetta－ kolien，chased with the mela－ phrves，by ※imumam，Delesic Gerulf：	！	2017	Ei：
111．Slelaphyre firom bairethal， near libed，－Stimar．．．．．．．．．．	1	$2 \cdot 011$	56\％
18．Melaphere from henchthere， in the गhemingiat forest，－ sochotine	1	ご13：	29．15
Averye．．．．．．．．．．．．	1	20．0： $0 \cdot 1$	50.73
11．Ausitic ：mdesite from Lowen－ hurs，in Sicbengrehirge，－－Kjeralf	Ir	1056	53：6：
11．Inomblencie－Imbeste，from Mre：api，in bava，－l＇rolsis．．．．．	1	1975	5760
111．Hor：ablembic imedeste from Stay swirtha，－Tsehermak．	1	20101	542
il．Homblentic Andesite，from Stomelbers，in Siebengebirge， －R：ammelsheتr ．．．．．．．．．．．．．．．	i	2\％：3	519：
Average．．．．．．．．．．．	1	2066	こえご为

It would secm therefore from these figures，that those roeks which；in composition，are neutral or monosilicates，contain an amome of siiiea aremgins 57.62 per cent．

As in chemistry we have acid salts，in which ouc atom of base is combined with mure than one atom of acid，so in lithology we have rocks in which the silica is present in much lager quantity than is reduired for monosilieates．At very well defmed series of roeks is known in which the silica is present in such excess as to
give them the composition of bi-silicates, in which two atoms of silica are present for every one of mon-oxide, and six for every two of sesqui-oxide, or in which the oxygen ratio between bases and acid is as one to four. The gramular, porphyritic and thachytic developements of those rocks are respectively represented by granite, felsitic porphyry and rhyolite. Proceeding in the same mamer as with the neuiral rocks we find the following among this series to approach most closely in composition to bi-silicates:

	(1. Misto.		Quantity of silical la lins parts rock.
	13nces.	Silis...	
1. (iramite from Heidelberg, -Strent	1	$38: 13$	72.11
If. Granite from Doochary Bridge,			
Doneral,-Houghton	1	3.760	72.2.4
HIf. Granite of Fox Rock, near			
Dublin,-lloughton.	1	1.077	73
IV. Gramite of Stricyam nearsilesia,			
IV. Granite of Blackstairs Mownlian, Wexford,-Houghton ...	15. Granite of Mlackstairs Moms-		73.20
A verate	1	4 (10:)	72.73
I. Felsitic jorphyry from Mühlberg near Halle,-hasperves	i	4.0 .51	72.24
I. Quarzose trachyt from Hohen-			
the Sichengelirge, lischof..	1	:3.SU4	72.23
II. (uartzose trachyte from the ls-			
limd of Pomat.- bibich	1	4.15\%	73.46
A verage.	1	3.923	72. 0

It appears, thercfore, that the oxygen ratio 1 to 4 corresponds to an average siiica percentage of 72.61 , and to such bi-silicate rocks the name silicic might be applied.

But besides this silicie series of rocks there is found another serics of very different chemical constitution, and in which the bases, and not the silica, preponderate. It is only, however, in rare iustances among these rocks that the silica disappears to such an extent as to form a disilicate, i.e., a compound of one equivalent of silica with two of base, or in which the ruantities of oxysen contained in acid and base are equal. A very well marked series of busic rocks may, however, be pointed out in which two equivalents of silica are combined with three of base, and in which the oxygen ratio is as $\overline{7}$ t to 1 . The rocks which represent this basic development of the porphyritic and trachytic textures: are, respectively, augitic porphyry and nephelinite. The following are instance of these rocks in which the axygen ratio most closely approaches $1 \cdot 333=1$:-

Augitio porphyry from Fassathal	oxigex matro.		Quantity or shlfaliil $1(x)$ parts rock.
	Bascs.	Sllica.	
		$1: 391$	4505
Nephelinite from Wickenstein in Lower Silesia,-Lowo	1	1 347	41:37

The number of analyses of these basic rocks being somewhat limited, it is not possible to arrive at their arerage silica contents so closely as in the ease of the neutral and silicic rocks. These instances, however, shew that the oxygen ratio $1 \cdot 333: 1$ corresponds to a percentage of about 43.46 silica. Rocks thus constituted being two-third silicates, might be conveniently called sub-silicates, and, in contradistinction to the silicic series, might be termed the basic rocks.

Between the basic and neutral rocks, on the one hand, and the latter and the silicie rocks on the other, there exist many other rocks of intermediate composition and forming gradual transitions betireen each of the serics, which have been more minutely referred to in the foregoing. It thus becomes possible to point vout a series of rocks passiug gradually from the basic extreme to that of acidity in composition, not only for each of the gramular porphyritic and trachytic order of rocks, but also for every varicty of texture specified in the preceding chapter. The following 'Table gives an arrangement of these various scries of rocks and an exhibition of the distinctive characters as to texture and chemical composition possessed by each. In constructing this table, it has been found that by limiting the variations in silica contents of cach family to 7 per cent. very correct lines of separation may be drawn betwixt them :-

Thble I,
Showing the General Chemical Composition of the Families of Original Rocks.

	Bacous Itachs containing fronn 49 tins ier cent. Sillica		Sillccous llocis. containins from 63 to 0 percent. Sllion	Silacic Rorkn, cullizining more than foce cene. sillica
1. Coarse and sualt ${ }^{\text {a }}$ -				
11 Emar ed............. inorthnsite-	Greenstome.	Eyenite.	Grantle. lencls:	Granlte. (inisite.
	Hornblemte chls:.			
II. Slaty...............	Grecustono	Clisy slite.	Slll.cons sh,ate.	Sritcicstate.
V. Porphyrto Aunlte por-	Grcanione	Melaphyre.	porphyrlte.	Felsilic por.
bhrs,	naryh			
${ }^{1}$	Crap).	basaltite.	E:arit	
I. Trachyife........ ${ }^{\text {a }}$ ephelinte.	Dolerit	Aisitesite.	Trachite.	'Mhwolic.
Thif VolcanicNephelinito	Duleits: lava	A dicsito	trachyt!c	cutsidlan.

Before proceeding to explain the foregoing table, it may be mentioned that no new names have been used in its construction; that names to which definite ideas as to minemalogical constitution are attached, have been, as much as possible, excluded. Such names as trap, greenstone, and melaphyre, which have been, in the carly history of the science, much abused and misapplied, and more recently condemned as useless for the purpose of indicating any special rock, are introduced into our table, and adrantaseously used in designating the families of rocks to which they were originally applied. If it were made a rule in the seience (1) exclude from it all names which have been at one time or other misused, very few petrological terms would cicape obliteration: and the fact that the names above mentioned, in spite of their condemnation by some lithologists, continue in common use, sulticiently proves that they possess a certain decrere of usefulness and applicability.

It will be observed that in the tabie the terms basie and basons, silicic and siliceous, are used in a maner :malogous to that in which the stronger and weaker bases and the strouger and weaker acids are indicated in chemical nomenclature. A basic slate always contains a larger percentage of bases tham a basous one, and a silicic porphery in the same way contans more silica than a siliccous one. [t will next be observed that we have in the table cight different horizontal series of rocks, or rather rock families, corresponding to the eight different varieties of texture which have been before particularizel. On passing in each of these series from left to right, we pass from the basic to the siliceons extremes, through rock families gradually increasing in silica contents, as the figures at the head of the vertical columns shew. With this inerease in the amount of silica a corresponding change in the nature of the bases with which it is combined takes place. 'Lowards the basic extreme these are principally magnesia, lime, and protoxide of iron; but as the silica increases these bases diminish, and alumina with the alkalies inerease until, at the silicic extreme, alumima and potash become the preponderating bases. We have also in the table five different vertical series, among which the neutral, basic and silicic groups already referred to, occupy places in the middle and at the sides, while the intermediate groups, which were also mentioned abore, and which have been called the basous and siliccous rocks, occupy positions immediately to the ieft and right of the central column. Tho
roek families of each of these vertical series, although they may differ widely as regards their texture, all possess a similar chemieal composition. The chemical nature, texture, and affinities of any original rock or rock family are seen from this table at a glance. Jhhe, porphyrite appears as the porphyritic developement of the siliccous group of roeks; as less siliceous than felsitic porphyry, and more so than melaphyre. Basalt is seen to be the most basic member of the fine-grained order, and to contain less than forty-nine per cent. of silica. The aflinities of any rock may be ascertained by observing the names of the rocks piaced next to it, for in almost every case it is into these that it is most prome to graduate.

There are other of the gencral relations amoug original rocks visible from this table than those which refer to their composition testure and affinities. Not only do the rock families mentioned in each vertical column rasemble each other in chemical composition, but they also exhibit similar coincidences as regards their general colour, hardness and fusibility, and gradual transitions in each of these respects are found to exist from rock to rock along each horizontal serics. The basie rocks are generally darker coloured, less hard, and more readily fusible tham the rocks which correspond to them in texture but differ from them in containing a larger pereentage of siliza. On the other hand the more siliceous a rock is, the lighter it will generally be found to be in colour, the harder and more difficult to penctrate or excarate, and the more reffactory on exposure to high temper:tures.

There is yet another physical property belonging to those original rocks, in which they show a similar correspoudence with their chemical composition. Still speaking generally, the more siliccous a roek the lighter it is, not only in colour, but in weight; the more basic the rock, the heavier it becomes. Thus it is the case that, in each order of texture on passing from the siliccons to the basic rocks, a gradual increase of density takes place, and, on the other hand, the tramsition from the basic rocks to the more siliccous exhibits a gradual diminution of specific gravity. So constant is this relation that it may be taken adrantage of in determining the gencral composition of a rock. Tlo take as an
instance the coarsely gramular series of rock families the gencral range of their specific gravities may be said to be as follows:-

This part of the subject is one of very great interest, but it would be premature at present to discuss it minutely.
(To lie continuctl)

NOTES ON THE BOTAYY OF A PORTION UF THE COLYMIRS OF IHASTINGS AND ADDINGTON:

Br. I. J. hambagtos, D.a.,

During a portion of the summer of 1809 , I accompanied Mr. Yemor as his assistant in his exploration, among the faurentian rocks of Ontario, and although my labours were of necessity for the most part grologizal, I could not resist the temptation of taking an oceasional botanical stroll, and jotting down the names of a few old and familiar friends. While many other Townships were entered, it was principally in those of Elzerir, Kaladar and Barrie that attention was given to lootany. The hilly and broken character of the Laurentian country is well known, and this, together with the imperfect drainage of the crystalline rocks, and the frequently scanty and light soil arising from their disintegration, cannot well fail to excrt a marked influence upon the regetation. Thus, among the granitic hills of Elzevir, Caprifoliacea are exceedingly abumdant, fourtecn species being represented. Of the genu: Viburnum there were five species, several of these being very commou. In the lower ground Ericaceous shrubs, and in some places, more particularly in cedar (Thuje occichentalis) swamps, several species of northern Orehids were found. I say low ground, but there is much of the country having this character which i.; in reality elevated, the imperfect drainage, mentioned above, causing the formation of hoge, marshes and lakes in the hollows amons the hills.

On the 10th June we left Belleville by stage for lbridgewater, a village about thirty miles back. The road for the first twenty miles passes through a beautiful farming country, with here and there a grove of Maples and Beech (Fagus ferruginea). In elumps along the fences, the Dogwood (Comus stolonifera), with its red stems and nerrly-opened fiowers, was occasionally to le seen, and just before reaching the bridge orer the Moira, we saw the May-Apple (Podophyllum zeltatum) with its umbrella-like leaf. Sext morning found us among the Laurentian hills at Bridgewater, with the river Scutomatto ("turbulent water") rolling past, in the low ground near which we found two species of Crow-foot (Ranunculus recurvatus et abortivus) : a Meadow-Ruc (Thalictrum dioicum); the Cranberry Tree (Tibumum Opulus), an Elder (Sumbucus pubens), the Choke-cherry (Prumus Virginiena) and Red Cherry (P. Pennsyluanica) were in full bloom, and a little higher up, the showy Buach-berry (Cormus Canadensis), the Service berry (Amelunchier (Cunadensis), the Barren Strawberry (Waldsteinia fragarioides), the Indian Turmip (Arisama triphyllume) and the Wild Sarsparilla (Aralia nudicaulis). Close to the river the Star-Lily (Smilacina stellata) grew, its starry flowers lookiug all the whiter over the black mud, and a short distance from the buhk seceral species of Horsetail were waving like plumes in the brecze, the most common being Equisetum. sylvaticum. Here and there a Trillium (T. grandiforom) was expanding its petals to receive th: sunshine after being watered by nearly a week's rain, and two Violets (Viola cucullata ct blanda) dotted the meadow with their tiny flowers. On the road-side some of the usual stragglers (Cynoglossum officinale, Verbascum Thaps!s and Capsella Bursa-pastoris) were groming in abundauce, as if preferring the society of man to the retirement of the forest; and hard by in a swamp I gathered the three Flowering Ferns (Osmunda regalis, O. Claytoniana and O. cinnamomea), the fertile fronds of the last standing straight as soldiers on duty. Alongside these grew the Sensitive Fers (Onoclea sensililis); and, where the ground was dryer, the Bracken (Pleris aquilina). On a ridge of granitic gneiss to the East, we found the Fly-Honeysuckle (Loniceracilia'a), the Wild Gooseberry (Ribes Cynosbati), the Fringe.Sointed Knotreed (Polygonum cilinode) and the Sheep Sorrel (Rumex Acetosella). On the highest point of the rock, the common Polypody (Polypodium vulgare) seemed to find sufficient nourishment to grow quite lusuriantly,
while its less aspiring brother (1 '. Dryopteris) hat chosen a more congenial spot in the hollow at the base. The delicate I3lader Fern (C'ystopteris fragilis) peeped out from crevices in the rock, while two Shicld-Ferns (Aspidium spinulosum and A. merginule) and the Lady.Fern (Aspleniun Filic-femince) clothed the borders of a little brook. In the dry fields the Plantain-leaved Everlastingr (Antemanric plantuginifolia) was everywhere abundant.

Throughout the Iaurentian country the soil upon limestone bands is in general much richer than that upon other kinds of rock, and its influence upon the regetation is very marked. The Pines and other evergreens which gencrally accompany gncissose rocks, give place to hard-wood trees; the shrubs, and other plants, too, are those which are usually foum in rich, moist woods. The following list of plants, collected on the 12th of June, while following the Bridgewater limestone southwards, makes this evident:-

Acer rubrum,

- saccharinum,
- spicatum, Aquilegia Canadensis, Sanguinaria C'anadensis, Osmorriza brevistylis, Actea spicata, Tvularia grandifora, Smilacina bifolia,
- racemosa, Dicentra Canadensis, Caulophyllum thatictroides, Aralia trifolia, Mitella diphylia,
'Liarella cordifolia.
Trillium erectum, Trientalis Americana, Dentaria diphylla, Ampelopsis quinquefolia. Tiola Canadensis, Tiburnm lantanoides, Polygonatum biflormu, Streptopus roseus, Adiantum pedatmo, Aspidium acrostichoides, Polypodium Phegopteris, and Intrychimm Virginianum.

On the 13th June, we followed the limestone in the opposite direction from the day before, and found other circumstances coming in to alter the character of the vegetation. The limestons occupied a depression, bordered on either side by high ridges of gaciss, and the water accumulating in this hollow had formed a Cedar and Black Ash (Fraxinus sambucifolia) swamp, which would be well nigh impenctrable to any but an enthusiastic maturalist. On the borders of this swamp we found Aspidium I'hclypteris and A. cristatum, and just within its dismal confines: gathered -Asplenium thelypteroides. Λ little further and the Clintonia (C. lorealis) spread its broad leaves over the moss, and seemed to tinkle its bell-like flowers, and the delicate Twin-fower (Linncex borcalis) corered the stumps as if to con-
ecal their rottemess, searce leaving room for the little Goldthread (Coput trifolia). Here and there might be seen the downy little Dalibarda (D. repens), and but a short distance beyond, the northern green Orehis (Pletentherce hyperborece) stood as stiff and straight as an obelisk. In a spot a litile more open, but still wet and mossy, I gathered a Coral-root (Corallorthiza Mfacraci) in full bloom; it was not again met with during the summer. Club-Mosses (Lycopodium dendroidem, L. cmotinum and I. cluvatum) were there very abundant.

Returning by the road, we found among the rocky hills a Sumach (Rhus typhine) growing in abundance, also the Blackberry (RuZus villosus) and Red Raspberry (R. strigosus). On the borders of a moist wood, the little Ineputica triloza grew in the shade of a Basswood (Tilia Americana). The lons, green racemes huag like carrings from the Striped Maple (Acer Pennsylrunicum), contrasting strongly with the broad, white cymes of a Cornel (Cormus alternifolia). Within the wood we found Pyrole secunde, Medeola Firginica, Circees alpina and Gunthenia procumbens. In the fields near the road the Crowfoot (Ranunculus ucris), Chickweed (Cerustium vulgatum), and Dandelion (I'uraxucum Dens-lconis) were growing everywhere.

On the day following, I found the first Strawberry (Fragaria Firginiona) of the season, and among the granitic hills on the Flinton Road, Corydalis glauca, Gerantum Carolinianum, and Diervilla trifida, all three in flower. In the swampy depressions, before mentioned, the white blossoms of the Choke-berry (Pyrus arbutifolice) were now and then to be seen.

From Bridgewater to Flinton (a small settlement in Kaladar) is a distance of about twelve miles by the direct road; there is, however, another, known as the Old Flinton Road, which is more circuitous, and passes through the corner of Hungerford. Upon this road, about five miles from Bridgewater, the following plants were collected on the 16 th of June:-

Mitchella repens,
Chimaphila umbellata,
Calla palustris, Cicuta maculata, Sium lineare, Samicula Marilandica, Rubus odoratus, lyysalis viscosa,

Gicum rivale,
Galium trifloram,
Tris versicolor,
Eupatorium purpureum,
Saumburgia thyrsillora,
Senecio aurens,
Myosotis arrensis, and
Erigeron Philadolphicum.

A few days later, in crossing over to the village of Madoc, we
lefis the road and took a short cut through the woods, where wo found the Yellow Wood-Sorrel (Oxalis strictu). On reaching the river Moira, the Persicaria (Polygonum amphibium) was growing in the shallow water, its elliptical leaves floating upon the surface, and not far off the Water Plantain (Alisma Plantago).

The road from Bridgerrater to Qucensborough (a small village near the western boundary of Jizevir) follows for the most part the course of the green dioritic rocks which succeed the great geanitic area of Elzevir. The soil is light and sandy nearly all the way, but there are occasional marshy spots. Along this road the following plants were collected ou the 25th of June:-
I.edum latifolium, Caltha palustris, Eupatorium perfoliatum, Triosteum perfoliatum, Galium circezaus, Tiburnum ntidum,

> Sepeta Cataria; Leucanthemum rulgare, Tanacetum rulgare,
> : (inaphalium polycephalum, aud Anemone Pemsslranica.

At a place called Hasard's Corners, a few miles from Queensborough, we saw a few Butternut trees (Juglans cinerea). This was the only place in which this tree was met with during the summer, and the reason of its occurrence here is probably to he found in the deposits of drift, which form a richer soil than that derived from the wear of the metamorphic rocks.

Proceeding, we took the direct road across the granitic area of Elzevir, gathering by the way a number of plants. On a sandy hill, near Bridgewater, we found Tiburnum pubescens, and on the road sides Erigeron strigosum, Potentilla norvegica and Silene noctiflora. In the depressions among the granitic hills, the Common Meadow-Swect (Spircca salicifolia) was exceedingly abundant, and S. tomentosa not uncommon. The shrubbery was composed of different species of Arrow-wood, and in addition to those already mentioned, the Tiburnum acerifolium. The white blossoms of the Mountain-Ash (Pyrus Americana) were here and there to be seen, and where fire had been at work, the great Willow-herb (Epilobium angustifolium). Growing upon the almost bare rock, we found everywhere the Bristly Sarsparilla (Aralia hispida). On the borders of a litlle pond were growing the Calium trifidum and the Sarracenia purpurea, and in the water, Nuphar advena. In a moist wood on the eastern side of' the granitic area, we found the Wocd-Sorrel (Oxalis Acetosella):
the Gossamer-Fern (Dicksonia punctilobula) and the Moose-rood (Dirca palustris.)
The day following, June 29th, we started to survey the old road from Flinton towards Bridgewater. A considerable portion of this road passes through dry Pine woods (Pinus Strolus); here we found IIoneysuckles (Lonicera hirsuta) in full bloom, and L. parviflore in fruit; also Plyrole rotundijolia both in flower and fruit. The Goldenrod (Solidago squarrosa) was seen oceasionally, but had not yot spread its showy rays; but the Loosestrife ($L_{y s i m a c h i x}$ quadrifoliu) grew in abundance. On the way back to Flinton, we saw in the sandy fields the common Yarrow (Achi\%. lea millefolium).

At the beginning of July we left for the Township of Barrie, and on the Addington Road found the following species:-

Epilobium coloratum,	Laportea Canadensis,
Apacynum audrosemifolium,	Verbena hastata,
Jolygonum Convolrulus, and	
Thalictrum Conuti,	Alnus incana.

Barrie is studded with numerous and beautiful lakes, and much of our time was spent in following their shores in canoesthis being the easiest way of obtaining sections across the Towrship. The first lake visited is known by the name of 'Mazinaw,' or, among the settlers, 'Michinog'; it is about nine miles long: varying greatly in width. On the eastern side the Mazinaw Cliff rises from the water to a height of about 200 feet perpen. dicular, at one part slightly orerhanging. The Red-man gazes with awe upon this rock, and, if you question him, tells you that it is the abode of the Evil Spirit. In years long past he has rentured to approach the base in his birch canoe, and paint upon it figures of men and various animals. The oldest settlers say that the figures were there when they were young, but that they still retain their original brightness. Much as we had desired to see them, we only obtained a glimpse of the top of an Indian's head, since a dan had been built at the foot of the lake, raising. the water several feet The settlers have much to tell about the rock ; they say that it contains wealth untold, and that in days gone by the silver could be seen hauging from the face like great icicles. Some persons have spent weeks of seareh, but have always been obliged to come to the conclusion that the rock is nothing but a great mass of granitic gnciss, and that whatever silver may have been there in the past, the Hivil Spirit has since
appropriated. As we paddled along, we could not wonder at the superstitions of the savage, for we were awed to silence by the grandeur of the seene. Our tiny craft seemed to grow more and more tiny as we advanced; we felt like pigmies, and feared lest the plash of the padde might arouse the ire of the Spirit who had chosen the rock for his abode. The summit of the rock is envered with evergreens, and on the stecp sides a little Evergreen or a Birch (Betula papp!racer) is here and there seen struggling for a foothold. By a clear spring which trickled down the rock, the Poison Iry (Rhus Toricolendron) trailed, and along the face of the rock the Harebell (C'ampanula rotamalifulia) nodded in the breeze. Pentstemon pubescens was very aboudant, and here and there we saw tufts of Hootsia Ilvensis and of Cystopteris fragilis.

In the neighbourhood of Litke Mazinaw, we found at different times during the month of July, the following plants:-
(corallorihza multillom,
linus resinosa, Moneses uniflora, Pyrola chlorantha, Monotropa Hypopitys. Ilatanthera orbiculata,

- bracteata,
- pesyodes, Sambucus Camadensis, Cephalanthus oceideutalis. Corylus Americana, (Enothcra pumila, - biemis, Aster punicens, - cordifolius, Ls:imachia stricta, Hypericum perfolitum, Scutellaia galericulata, brumella ruigaris, Shepherdia Camadensis,

Adlumia cirrhosa,]'otentilla palustris,
Geun strictum,
Pragatia vesca,
Ribes prostratum,
Saxifraga Virginiensis,
A ralia racemosa,
Comus circinata.
Sagittaria variabilis,
Aspidium Noreboracense.
Betula excelsa, Quercus rubra,
Jarix Americima,
Kalmia glauca,
Indromeda polifolia.
Cassaudra calyculata.
Diplopappus umbellatus,
Mypericum ellipticum, and
Ulmus Americana.

On the fth of August we crossed from Marainaw to Buckshot Sake. If any one rould test his powers of endurance, let him shoulder his pack and try this "portage," much of which passe; through s.wamps and beaver-meadow, where the mud and water are knee decp, and the mosquitos make their onset with a ferocity beyond description. Here we found -

- Potentilla fruticosa, pontederia comiata.

Monotropa uniflora, Cymipedium acaule,

Campamula apariniodes, Ginoolyera pubescens, and Clematis Tirginiana, Lycopodium complamatum. Josa Carolima,

White spending a few days on and about the Frontenac Road, near the Mississippi River, we found the following plants:-
lubuclia inflata, - ardinalis, Mimulus ringens, Seutellavia lateriflora, L, eopus Suropens,

Eupatorium ageratoides, Solidargo Canalensis,
-altissim,
Agrimonia Sapatoria, and Asclepias incarnata.

Such, then, is an imperfeet account of the plamts collected from the middle of Jume until the latter part of August, in a small portion of our Laurentian country. The lists were not intended for publication, but were kept merely for private gratifieation. otherwise they might and would have been more complete. Being fully aware of their imperfection, I have only been persuaded to publish them in the hope that they may be of some small serviee to those who are studying the distribution of plants in Camadi.

MEDTANG OF TILA BRITISII ASSOCLATION,

Ifcld at Liverpool in Scptember, 1 S70.
tife president's address.
My Lords, Jadies, and Gentlemen,--Tt has long been the custom for the newly-installed President of the British Association for the advaucement of Science to take advantage of the elevation of the position in which the suffrages of his colleagues had, for the time, placed him, and casting his eyes around the horizon of the scientific world, to report to them what could be seen from his watch-tower; in what directions the multitudinous divisions of the noble army of the improvers of natural knowledge were marching; what important strongholds of the great cnemy of us all, Ignorance, lad been recently captured; and, also, with due impartiality, to mark where the advanced posts of science had been driven in, or a long-continued sicge had made no progress.

I propose to enderrour to follow this ancient precedent, in a mancer suited to the limitations of my knowledge and of my
capacity. I shall not presume to attempt a panoramic survey of the world of Science, nor ceen to give a sketch of what is doing in the ove great province of Biology, with some portions of which m; ordinary occupations render me familar. Hut I shail endeavour to put before you the history of the rise and progress of a single biological doctrine ; and I shall try to give some notion of the fruits, both intellectual and practical, which we owe, direcily or indirectly: to the working out, by seven generations of patient and laborious investigators: of the thoughts which arose, more than two centuries ar . in the mind of a sagacious and obserramt Italian naturalist.

It is a matter of every-day experience that it is difficult th prevent many articies of fiood from becoming covered with mould; that fruit, sound enough to all appearance, often contains grubs at. the core ; that meat leit to itself in the air, is apt to putrefy and swarm with margrots. Even ordinary water, if allowed to stand in an open reseel, somer or later becomes turbid and full of livins: matter.

The philosophers of antiquity, interrogated as to the canse of these fhenomena, were provided with a ready and a phausible answer. It did not center their minds ceen to doubt that these low forms of life were generated in the matters in which they made their appearance. Lucretius, who had drunk deeper of the scientific spirit than any poct of ancient or modern times except Goethe, intends to speak as a philosopher, rather than as a pori. when he writes thai " with good reason the carth has ge sen the mame of mother, sinece all things are produced out of the earth. And many living ercatures, even, now spring out of the earth, taking form by the rains and the heat of the sum." The axiom of amcient science, "that the compuption of one ihing is the birth of another," had its popular embodiment in the notion that a seed dies before the young phant springs from it; a beliclso widespread and so fixed, that St. Paulappeals to it in one of the most splendid outoursts of his fervid cloquence:-" Thou fool, that which thou sorrest is not quickened, execpt it dic:" (1 Corinthiams, xr. $3(6)$ The proposition that life may; and enes, proceed from that which has no life, then, was helualike by the philosophers, the peets, and the people of the most molightened nations, cighteen hundred years ago; and it remained the accepted dectrine of learned and unlarned Europe, through the Middle Ages down even to the seventeenth century.

It is commonly comted amone the many merits of our gro:ii
countryman, IIarvey, that he was the first to declare the opposition of fact to vencrable authority in this, as in other matters; but I can discover no justification for this wide-spread notion. After careful search through the 'Exercitationes de Generatione,' the most that appears clear to me is, that Marvey believed all animals and plamts to spring from what he terms a "primordium vegetale," a phrase which may now-a-days be rendered "a vegetative gern"; and this, he says, is " oriforme," or "egg-like"; not, he is carcful to add, that it necessarily has the shape of an egg, but because it has the constitution and nature of one. That this "primordium oviforme" must needs, in all cases, proceed from a living parent is nowhere expressly maintained by Marvey, though such an opinion may be thought to be implied in one or two passages; while, on the other hand, he does, more than onee, use language which is consistent only with a full belief in spontancous or equirocal generation. In fact, the main concern of Harvey's wonderful little treatise is not with generation, in the physiological sense, at all, but with developement; and his great object is the establishment of the doctrine of Epigenesis.

The first distinct enunciation of the lypothesis that all living matter has sprung from pre-existing living matter, came from a contemporary; though a junior, of Harrey, a mative of that country; fertile in men great in all departments of human activity, which was to intellectual Europe, in the sixteenth and seventeenth centuries, what Germany is in the ninetcenth. It was in Italy, and from Italian teachers, that Harvey received the most important part of lis scientific education. And it was a student trained in the same schools, Francesco Redi-a man of the widest knowledge and most versatile abilities, distinguished alike as scholar, poct, physician, and naturalist,-who, just 202 years ago, published his 'Esperienze intorno alla Gencrazione degl' Insetti,' and gare to the world the idea, the growth of which it is my purpose to trace. Redi's book went through five editions in twenty years; and the extreme simplicity of his experiments, and the clearness of his arguments, gained for his vievs, and for their consequences, almost universal acceptance.

Redi did not trouble himself much with speculative considerations, but attacked particular cases of what was supposed ii) be "spontaucous generation" experimentally. Here are dead animals, or pieces of meat, says he ; I expose them to the air in hot weather, and in a few days they swarm rith maggots. Yout tell
me that these are generated in the dead flesh; but if I put similar bodies, while quite fresh, into a jar, and tic some fine gauze over the top of the jar, not a magrot makes its appearance, while the dead substances, nevertheless, putrefy just in the same way as before. It is obvious, thercfore, that the maggots are not generated by the corruption of the meat; and that the cause of their formation must be a something which is kept away by gauze. But gauze will not kecp away aëriform bodies, or fluids. This something must, therefore, exist in the form of solid particles too big to get through the gauze. Nor is one long left in doubt what these solid particles are; for the blow-flies, attracted by the odour of the meat, swarm round the vessel, and, urged by a powerful but, in this case misleading instinct, lay eqges, out of which maggots are immediately hatched, upon the gauze. The conclusion, therefore, is unawoidable; the margots are not generated by the meat, but the eggs which give rise to them are brought through the air loy the flies.

These experiments seem almost childishly simple, and ono wonders how it was that no one ever thought of them before. Simple as they are, howerer, they are worthy of the most careful study, for every piece of experimental work since done, in regard to this subject, has been shaped upon the model furnished by the Italian philosopher. As the results of his experiments were tho same, however varied the nature of the materials he used, it is not wonderful that there arose in Redi's mind a presumption, that in all such cases of the seeming production of life from dead matter, the real explamation was the introduction of living germs from without into that dead matter-(Redi, .Esperienze, pp. 14-16). And thus the hypothesis that living matter almays arises by the agency of pre existing living matter, took definite shape; and had henceforward a right to be considered and a claim to be refuted, in each particular case, before the production of living matter in any other way could be admitted by carcful reasoncrs. It will be necessary for me to refer to this hypothesis so frequently, that, to save circumlocution, I shall call it the hypothesis of Biogenesis; and I shall term the contrary doctrine-that living matter may bo produced by not living matter--the hypothesis of Abiogenesis.

In the seventeenth century, as I have said, the latter was the dominant view, sanctioned alike by antiquity and by authority; and it is intercsting to observe that lhedi did not escape the customary tax upon a discoverer, of having to defend himself
against the charge of impugning the authority of the Scriptures (Redi, l. c. p. 45, Esperienze, p. 120); for his adversaries declared that the gencration of bees from the carcase of a dead lion is affirmed, in the Book of Judges, to have been the origin of the famous riddle rith which Samson perplexed the Philistines:

Out of the eater came forth meat, And out of the strong came forth sweetness.
Against all odds, horever, Redi, strong with the strength of demonstrable fact, did splendid battle for Biogenesis; but it is remarkable that he held the doctrine in a sense which, if he had lived in these times, would have infallibly caused him to be classed among the defenders of "spontancous generation." "Omne vivum ex vino," "no life without antecedent life," aphoristically sums up Redi's doctrine; but he went no further. It is most remarkable evidence of the philosophic caution and impartiality of his mind, that, although he had speculatively anticipated the manner in which grubs really are deposited in fruits and in the galls of phants, he deliberately admits that the evidence is insufficient to bear him out; and he therefore prefers the supposition that they are generated by a modification of the living substance of the plants themselves. Indeed, he regards these regetable growths as organs, by means of which the plant gives rise to am amimal, and looks upon this production of specific animals as the final cause of the galls and of, at any rate, some fruits. And he proposes to explain the occurrence of parasites within the animal body in the same way.

It is of great importance to apprehend Redi's position rightly; for the lines of thought he laid down for us are those upon which naturalists have been working ever since. Clearly he held Biogenesis as against Abingenesis; and I shall immediately proceed, in the first place, to inquire how far subsequent investigation has bome him out in so doing.

But liedi also thought that there were two modes of Biogenesis. By the one method, which is that of common and ordinary occurrence, the living parent gives rise to offspring which passes through the same cycle of changes as itself-like gives rise to like; and this has been termed Homogenesis. By the other mode, the living parent was supposed to give rise to offspring which passed through a totally different series of states from those exhibited by the parent, and did not return into the cycle of the parent: this is what ought to be called Heterogenesis, the offspring being
altogether, and permanently, unlike the parent. The term Heterogenesis, however, has unfortunately been used in a different sense, and M. Milne-Edwards has therefore substituted for it Xencgmesis, which means the generation of something foreign. After discusing Redi's hypothesis of universal Biogenesis, then, I shall go on to ask how far the growth of seience justifies his other hypothesis of Xenogenesis.

The progress of the hypothesis of Biogenesis was triumphant and unchecked for nearly a century. The application of the microscope to anatomy, in the hands of Crew, Yecuwenhock, Swammerdam, Lyonet, Vallisnieri, Reaumur, and other illustrious investigators of nature of that day, displayed such a complesity of organization in the lowest and minutest forms, and everywhere revealed such a prodigality of provision for their multiplication by germs of one sort or another, that the hypothesis of Abiogenesis began to appear not only untrue, but absurd; and in the middle of the eighteenth century, when Needham and Buffon took up the question, it was almost universally discredited. ('Nourelles Obscrvations', p. 169 and 176.)

But the skill of the microsconc-makers of the eighteenth century soun reached its limit. A microscope magnifying 400 diameters was a chef-l'ceuve of the opticians of that day; and, at the same time, by no means trustworthy. But a magnifyingpower of 400 diameters, even when definition reaches the exquisite perfection of our modern achromatic lenses, hardly suffices for the mere discernment of the smallest forms of life. A speck, only $\begin{aligned} & 15 \\ & \text { of an inch in diameter, has, at ten inches from the eje, the }\end{aligned}$ same apparent size as an object fotath of an inch in diameter, when magnified 400 times; but forms of living matter abound, the diameter of which is not more than witouth of an inch. A filtered infusion of hay allowed to stand for two days, will swarm with living things, among which, any which reaches the diameter of a human red blood-sorpuscle, or about jatoth of an inch, is a giant. It is only by bearing these fiets in mind, that we'can deal farly with the remarkable statements and speculations put forward by Buffon and Nieedham in the middle of the cightecuth century.

Wheu a portion of any animal or vegetable body is infused in water, it gradually softens and disintegrates; and as it does so, the water is found to swarm with minute active creatures, the socalled Infusorial Animalcules, none of which can be seen except
by the aid of the microscope; while a large proportion belong to the category of smallest things of which I have spoken, and which must have all looked like mere dots and lines under the ordinary mieroscopes of the eighteenth century.

Led by various theoretical considerations, which I cannot now discuss, but which looked promising enough in the lights of that day, Buffon and Necdham doubted the applicability of Redi's hypothesis to the infusorial animalcules, and Needham very properly endeavoured to put the question to an experimental test. He said to himself, if these infusorial animalcules come from germs; their germs must exist either in the substance infused, or in the water witn which the infusion is made, or in the superjacent air. Now the vitality of all germs is destroyed by heat. Therefore, if I boil the infusion, cork it up carefully, cementing the cork orer with mastic, and then heat the whole vessel by heaping hot ashes over it, I must needs kill whaterer germs are present. Consequently, if Redi's hypothesis hold good, when the infusion is taken away and allowed to cool, no animalcules ought to be developed in it; whereas, if the animalcules are not dependent on pre-existing germs, but are generated from the infused substance, they ought, by:and-by, to make their appearance. Needham found that, under the circumstances in which he made his experiments, auimalcules always did arise in the infusions, when a sufficient time had elapsed to allow for their developement.

In much of his work Needham was associated with Bufion, and the results of their experiments fitted in admirably with the great French naturalist's hypothesis of " organic molecules," according to which, life is the indefeasible property of certain indestructible molecules of matter, which exist in all living things, and have iuherent activities by which they are distinguished from not living matter. Dach individual living organism is formed by their temporary combination. They stand to it in the relation of the particles of water to a cascade or whirlpool ; or to a mould, into which the water is poured. The form of the organism is thus determined by the reaction between external conditions and the inherent activities of the organic molecules of which it is composed; and, as the stoppage of a whirlpool destroys nothing but a form, and leaves the molecules of the water, with all their imherent activities intact, so what we call the death and
putrefaction of an animal or a plant ia merely the breaking up of the form, or manuer of association, of its constitucut organic molecules, which are then set free as infusorial animalcules.

It will be perceived that this doctrine is by no meams identical with Abiogenesis, with which it is often confounded. On this hypothesis, a piece of beef or a handful of hay is dead only in a limited sense. The beef is dead ox, and the hay is dead grass; but the "organic molecules" of the beef or the hay are not dead, but are ready to manifest their vitality as soon as the bovine or herbaccous shrouds in which they are imprisoned are rent by the macerating action of water. The hypothesis, therefore, must be classified under Xenogenesis rather than under Abiogenesis. Such as it was, I think it will appear, to those who will be just enough to remember that it was propounded before the birth of modern chemistry and of the modern optical arts, to be a most ingenious and suggestive speculation.

But the great tragedy of science-the slaying of a beautiful hypothesis by an ugly fact-which is so constantly being enacted under the eyes of philosophers, was played almost immediately, for the beuefit of Buffon and Needham.

Once more, an Italian, the Abbe Spallanzani, a worthy successor and representative of Redi in his acuteucss, his ingenuity, and his learning, subjected the experiments and the conclusions of Needham to a searching criticism. It might be true that Needham's experiments yielded results such as he had described, but did they bear out his arguments? Was it not possible, in the first place, that he had not completely excluded the air by his corks and mastic? And was it not possible; in the second place, that he had not sufficiently heated his infusions and the superjacent air? Spallanzani joined issue with the English naturalist on both these pleas; and he showed that if, in the first place, the glass vessels in which the infusions were contained were hermetically sealed by fusing their neeis, and if, in the second place, they were exposed to the temperature of boiling-water for three quarters of an hour (sec Spallanzani, 'Opere' vi. pp. 42 and 51), no animalcules ever made their appearance within them. It must be admitted that the experiments and arguments of Spallanzani furnish a complete and a crushing reply to those of Needham. But we all too often forget that it is one thing to refute a proposition, and another to prove the truth of a doctrine which
implicitly, or explicitly, contradicts the proposition; and the advance of science soon showed that though Needham might be quite wrong, it did not follow that Spallanzani was quite right.

Modern Chemistry, the birth of the latter half of the eighteenth century, grew apace, and soon found herself face to face with the great problems which Biology had vainly tried to attack without her help. The discovery of oxygen led to the laying of the foundations of a scientific theory of respiriation, and to an examination of the marvellous interactions of orgamic substances with oxygen. The presence of free oxygen appeared to be one of the conditions of the existence of life, and of those singular changes in organic matters which are known as fermentation and putrefaction. The question of the generation of the infusorial animacules thus passed into a new phase. For what might not have happened to the organic matter of the infusions, or to the oxygen of the air, in Spallanzan's experiments? What security was there that the developement of life which ought to have taken place had not been checked, or prevented, by these changes?

The battle had to be fought again. It was needful to repeat the experiments under conditions which would make sure that neither the oxygen of the air, nor the composition of the organic matter, was altered, in such a manner as to interfere with the existence of life.

Schulze and Schwann took up the question from this point of view in 1836 and 1837. The passage of air through red-hotglass tubes, or through strong sulphuric acid, does not alter the proportion of its oxygen, while it must ueeds arrest, or destroy, any organic matter which may be contained in the air. These experi. menters, therefore, contrived arrangements by which the ouly air which should come into contact with a boiled infusion should be such as had either passed through red-lot tubes or through strong sulphuric acid. The result which they obtained was that an infusion so treated developed no living things, while if the same infusion was afterwards exposed to the air such things appeared rapidly and abundantly. The accuracy of these experiments has been alternately deuied and affirmed. Supposing them to be accepted, however, all that they really proved was, that the treatment to which the air was subjected destroyed something that was essential to the developement of life in the infusion. This "something" might be gaseous, fluid, or solid; that it cousisted of germs rewained only an hypothesis of greater or less probability.

Contemporaneously with these investigations a remarkable discorery was made by Cagniard de La Tour. He found that common yeast is composed of a vast accumulation of minute plants. The fermentation of must, or of wort, in the fabrication of wine and beer, is always accompanied by the rapid growth and multiplication of these Torule. Thus fermentation, in so far as it was accompanied by the developement of microseopical organisms in enormous numbers, became assimilated to the decompesition of an infusion of ordinary animal or vegetable matter; and it was an obvious suggestion that the organisms were, in some way or other, the causes both of fermentation and putrefaction. The chemists, with Berzelius and Liebig at their head, at first laughed this idea to scorn; but in 1843, a man then very young, who has since performed the unexampled feat of attaining to ligh eminence alike in Mathematics, Physics and Physiology,-I speak of the illustrious Helmholtz,-reduced the matter to a test of experiment by a method alike elegant and conclusive. Helmholtz separated a putrefying, or fermenting liquid, from one which was simply putrescible, or fermentable, by a membrane, which allowed the fluids to pass through and become intermised, but stopped the passage of solids. The result was, that while the putrescible, or the fermentable, liquids became impregnated with the results of the putrescence, or fermentation, which was going on on the other side of the membrane, they neither putrefied (in the ordinary way) nor fermented; nor were any of the organisms which abounded in the fermenting, or putrefying, liquid generated in them. Therefrere the cause of the developement of these organisms must lie in something which canuot pass through membrane; and as Helmholtz's investigations were long antecedent to Graham's researches upon colloids, his natural conclusion was, that the agent thus intercepted nust be a solid material. In point of fact Melmholtz's experiments narrowed the issue to this: that which excites fermentation and putrefaction, and at the same time gives rise to living forms in a fermentable, or putrescible tluid, is not a gas and is not a diffusible fluid; therefore it is cither a colloid, or it is matter divided into very minute solid particles.

The rescarches of Schroeder and Dusch in 1854, and of Schroeder alone,'in 1859, cleared up this point by experiments which are simply refinements upon those of Redi. A lump of cottonwool is, physically speaking, a pile of many thicknesses of yery fine gauze, the fiueness of the meshes of which depends upon the close-
ness of the compression of the wool. Now, Schroeder and Dusch found, that, in the case of all the putrefiable materials which they used (except milk and yolk of egg), an infusion boiled, and then allowed to come in contact with no air but such as had been filtered through cotton-wool, neither putrified nor fermented, nor developed living forms. It is hard to imagine what the fine sieve formed by the cotton-wool could have stopped except minute solid particles. Still the evidence was incomplete until it had been positively shown, first, that ordinary air does contain such particles; and, secondly, that filteration through cotton-wool arrests these particles and allows only physically pure air to pass. This demonstration has been furnished within the last year by the remarkable experiments of Prof. Tyndall. It has been a common objection of Abiogenists that, if the doctrine of Biogeny is true, the air must be thick with germs; and they regard this as the height of absurdity. But nature occasionally is exceedingly unreasonable, and Prof. Tlyndall has proved that this particular absurdity may nevertheless be a reality. He has demonstrated that ordinary air is no better than a sort of stirabout of excessively minute solid particles; that these particles are almost wholly destructible by heat; and that they are strained off, and the air rendered optically pure, by being passed through cottonwool.
But it remains yet in the order of logic though not of history, to show that, among these solid destructible particles, there really do exist germs capable of giving rise to the developement of living forms in suitable menstrua. This piece of work was done by M. Pasteur in those beautiful researches which will ever render his name famous, and which, in spite of all attacks upon them, appoar to me now, as they did seven years ago ('Lectures to Working Men on the Causes of the Phenomena of Organic Nature,' 1863, to be models of acurate experimentation and logical reasoning. He strained air through cotton-wool, and found, as Schroederand Dusch had done, that it contained nothing competent to give rise to the developement of life in fluids highly fitted for that purpose. But the important further links in the chain of evidence added by Pasteur are three. In the first place, he submitted to microscopic examination the cotton-wool which had served as strainer, and found that sundry bodies, clearly recognizable as germs, were among the solid particles strained off. Sccondly, he proved that these germs were competent to give rise to living forms by simply
sowing them in a solution fitted for their developement. And, thirdly, he showed that the incapacity of air strained through cottonwool to give rise to life was not due to any occult change effected in constituents of the air by the wool, by proving that the cottonwool might be dispensed with altogether, and perfectly free aceess left between the exterior air and that in the experimental flask. If the neck of the flask is drawn out into a tube and bent downwards, and if, after the contained fluid has been carefully boiled, the tube is heated sufficiently to destroy any germs which may be present in the air which enters as the fluid cools, the apparatus may be left to itself for any time, and no life will appear in the fluid. The reason is plain. Altiough there is free communication between the atmosphere laden with germs and the germless air in the flask, contact between the two takes place only in the tube; and as the germs cannot fall upwards, and there are no currents, they never reach the interior of the flask. But if the tube be broken short off where it proceeds from the flask, and free access be thus given to germs falling vertically out of the air, the fluid, which has remained clear and desert for months, becomes, in a few days, turbid and full of life.

These experiments have been repeated over and over again by independent observers with entire success; and there is one very simple mode of seeing the fact for oneself, which I may as well describe.

Prepare a solution (much used by MI. Pasteur, and often called "Pasteur"s solution") composed of water with tartrate of ammonia, sugar, and yeast-ash dissolved thercin. Infusion of hay treated in the same way, yiclds similar results; but as it contains organic matter, the argument which follows cannot be based upon it. Divide it into three portions in as many flasks; boil all three for a quarter of an hour; and, while the steam is passing out, stop the neck of one with a large plug of cotton-wool, so that this also may be thoroughly steamed. Now set the flasks aside to cool, and when their contents are cold, add to one of the open oues a drop of filtered infusion of hay which has stood for twenty-four hours, and is consequently full of the active and excessively minute organisms known as Bacterii. In a couple of days of ordinary warm weather, the contents of this flask will be milky, from the enormous multiplication of Bacteria. The other flasks, open and exposed to the air, will, sooner or later, become milky with Bacteria, and patches of mould may appear in it; while the liquid in
the flask, the neck of which is plugged with cotton-wool, will remain clear for an indefinite time. I have sought in vain for any explanation of these facts, except the obvious one, that the air contains germs competent to give rise to Bacteria, such as those with which the firsi solution has been knowingly and purposely inoculated, and to the mould Fungi. And I have not yet been able to meet any advocate of A biogenesis who seriously maintains that the atoms of sugar, tartrate of amonia, yeast-ash and water, under no influeuce but that of free access of air and the ordinary temperature, re-arrange themselves and give rise to the protoplasm of Bacterium. But the alternative is to admit that these Bacteria arise from germs in the air; and, if they are thus propagated, the burden of proof, that other like forms are generated in a different manner, must rest with the asserter of that proposition.

To sum up the effect of this long chain of evidence:-
It is demonstrable, that a fluid eminently fit for the developement of the lowest forms of life, but which contains neither germs nor any protein compound, gives rise to living things in great abundance, if it is exposed to ordinary air; while no such developement takes place if the air with which it is in contact is mechanically freed from the solid particles, which ordinary float in it, and which may be made visible by appropriate means.

It is demonstrable, that the great majority of these particles are destructible by heat, and that some of them are germs, or living particles, capable of giving rise to the same form of life as those which appear when the fluid is exposed to unpurified air.

It is demonstrable, that inoculation of the experimental fluid with a drop of liquid known to contain living particles, gives rise to the same phenomena as exposure to unpurified air.
And it is further certain that these living particles are so minute that the assumption of their suspension in ordinary air present not the slightest difficulty. On the contrary, considering their lightuess and the wide diffusion of the organisms which produce them, it is impossible to conceive that they should not be suspended in the atmosphere in myriads.

Thus the evidence, direct and indirect, in favour of Biogenesis for all known forms of life must, I think, be admitted to be of great weight.

On the other side, the sole assertions worthy of attention are, that hermetically sealed fluids, which have been exposed to great
and long-continued heat, have sometimes exhibited living forms of low organization when they have been opened.

The first reply that suggests itself is the probability that there must be some error about these experiments, because they are performed on an cuermous scale every day, with quite contrary results. Meat, fruits, vegetables, the very materials of the most fermentable and putrescible infusions, are preserved to the extent I suppose I may say, of thousands of tons every year, by a method which is a mere application of Spallanzani's experiment. The matters to be preserved are well boiled in a tin case provided with a small hole, and this hole is soldered up when all the air in the ease has been replaced by steam. 'By this method they may be kept for years, without putrefying, fermenting, or getting mouldy. Now this is not because oxygen is excluded, inasmuch as it is now proved that free oxygen is not necessary for either fermentation or putrefaction. It is not because the tins are exhausted of air, for Vibriones and Bacteria live, as Pasteur has shown, without air or free oxygen. It is not because the boiled meats or vegetables are not putrescible or fermentable, as those who have had the misfortune to be in a ship supplied with unskillfully closed tins well know. What is it, therefore, but the exclusion of the germs? I think that Abiogenists are bound to answer this question before they ask us to consider new experiments of precisely the same order.

And in the next place, if the results of the experiments I refer to are really trustrorthy, it by no means follows that Abiogenesis has taken place. The resistance of living matter to heat is known to vary within considerable limits, and to depend, to some extent, upon the chemical and physical qualities of the surrounding medium. But if, in the present state of science, the alternative is offered us, either gorms can stand a greater heat than has been supposed, or the molecules of dead matter, for no valid or intelligible reason that is assigned, are able to re-axrange themselves into living bodies, exactly such as can be demonstrated to be frequently produced in another way, I cannot understand how choice can be, even for a moment, doubtful.

But though I cannot express this conviction of mine too strongly; \ddot{I} must carefully guard myself against the supposition that I intend to suggest that no such thing as Abiogenesis ever has taken place in the past, or ever will tike place in the future. With
organic chemistry, molccular physics, and physiology yet in their infancy, and every day making prodigious strides, I think it would be the height of presumption for any man to say that the conditions under which matter assumes the properties we call "vital" may not, some day, be artificially brought together. All I feel justified in affirming is, that I see no reason for believing that the feat has been performed yet.

And, looking back through the prodigious vista of the past, I find no record of the commencement of life, and therefore I am devoid of any means of forming a definite conclusion as to the conditions of its appearance. Belief, in the scientific sense of the word, is a serious matter and needs strong foundations. To say, therefore, in the admitted absence of evidence, that I have any belief as to the mode in which the existing forms of life have originated, would be using words in a wrong sense. But expectation is permissible where belief is not; and if it were given to me to look beyond the abyss of geologically recorded time to the still more remote period when the earth was passing through physical and chemical conditions, which it can no more seo again than a man may recall his infancy, I should expect to be a witness of the evolution of living protoplasm from not living matter. I should expect to see it appear under forms of great simplicity, endowed, like existiog Fungi, with the power of determining the formation of new protoplasm from such matters as ammonium carbonates, oxalates and tartrates, alkaline and earthy phosphates, and water, without the aid of light. That is the expectation to which analogical reasoning leads me; but I beg you once more to recollect that I have no right to call my opinion anything but an act of philosophical faith.
So much for the history of the progress of Redi's great doctrine of Biogenesis, which appears to me, with the limitations I have expressed, to be victorious along the whole line at the present day.

As regards the second problem offered to us by Redi, whether Xenogenesis obtains, side by side with Homogenesis; whether, that is, there exist not only the ordinary living things, giving rise to offspring which run through the same cycle as themselves, but also others, producing offspring which are of a totally different character from themselves, the researches of two centuries have led to a different result. That the grubs found in galls are no product of the plants on which the galls grow, but are the result of
the introduction of the cggs of insects into the substance of these plants, was made out by Vallisnieri, Reaumur, and others, before the end of the first half of the cighteenth century.

The taperworms, bladderworms and flukes continued to be a stronghold of the advocates of Xenogenesis for a much longer period. Indeed, it is only within the last thirty years that the splendid patience of Von Siebold, V゙an Bencden, Ieuckart, Kuchenmeister, and other helminthologists, has succeeded in tracing every such parasite, often throughthe strangest wanderings and metamorphoses, to an egg derived from a parent actually or potentially like itself; and the tendency of inquiries elsewhere has all been in the same direction. A plant may throw off bulbs, but these, sooner or later, give rise to seeds or spores, which develope into the original form.

A polype may give rise to Meduse, or a plutcus to an Eechinoderm, but the Medusa and ithe Echinoderm give rise to eggs which produce polypes or plutei, and they are therefore only stages in the cyele of life of the species.

But if we turn to Pathology, it offers us some remarkable approximations to true Xenogenesis.

As I have already mentioned, it has been known since the time of Vallisnieri and of Reaumur that galls in plants and tumours in cattle are caused by insects, which lay their eggs in those parts of the animal or vegetable frame of which these morbid structures are outgrowths. Again, it is a matter of familiar experience to everybody that mere pressure on the skin will give rise to a corn. Now the gall, the tumour, and the corn are parts of the living body, which have become, to a certain degree, independent and distinct organisms. Under the influence of certain external conditions, elements of the body, which should have developed in due subordination to its general plan, set up for themselves, and apply the; nourishment which they receive to their own purposes.

From such innocent productions as corns and warts there are all gradations to the serious tumours which, by their mere size and the mecinanical obstruction they causc, destroy the organism out of which they are developed; while, finally, in those terrible structures known as cancers, the abnormal growth has acquired powers of reproduction and multiplication, and is only morpholngically distinguishable from the parasitic worm, the life of which is neither more nor less closely bound up with that of the infested organism.

If there were a kind of discased structure, the histological elements of which were capable of maintaining a separate and
independent existence out of the body, it seems to me that the shadowy boundary between morbid growth and Xenogenesis would be effaced. And I am inclined to think that the progress of discovery has almost brought us to this point already. I have been favoured by Mr. Simon with an early copy of the last published of the valuable 'Reports on the Public Health,' whioh, in his capacity of their Medical Officer, he annually presents to the Lords of the Privy Council. The Appendix to this Report contains an introductory essay 'On the intimate Pathology of Contagion,' by Dr. Burdon Sanderson, which is one of the clearest, most comprehensive, and well-reasoned discussions of a great question which has come under my notiee for a long time. I refer you to it for details and for the authorities for the statements I am about to make.

You are familiar with what happens in vaccination. A minnte cut is made in the skin, and an infinitesimal quantity of vaccine matter is inserted into the wound. Within a certain time, a vesicle appears in the place of the wound, and the fluid which distends this vesicle is vaccine matter, in quantity a hundred or a thousandfold that which was originally inserted. Now what has taken place in the course of this operation? Has the vaccine matter by its irritative property produced a mere blister, the fluid of which has the same irritative porperty? Or does the vaccine matter contain living particles, which have grown and multiplied where they have been planted? The observations of M. Chauveau, extended and confirmed by Dr. Sanderson himself, appear to leavo no doubt upon this head. Experiments, similar in principle to those of IIelmholtz on fermentation and putrefaction, have proved that the active element in the vaccine lymph is non-diffusible, and consists of minute particles not exceeding হovor of an inch in diameter, which are made visible in the lymph by the mieroscope. Similar experiments have proved that two of the most destructive of epizootic diseases, sheep-pox and glanders, are also dependent for their existence and their propagation upon extremely small living solid particles, to which the title of microzymes is applied. An animal suffering under either of these terrible discases is a source of infection and contagion to others, for precisely the same reason as a tub of fermenting beer is capable of propagating its fermentation "by infection," or "contacion," to fresh wort. In both cases it is the solid living particles which are cfficient; the liquid in which they float, and at the expense of which they live, being altogether passive.

Now arises the question, are these microzymes the results of Homogenesis or of Xenogenesis; are they capable, like the T'crule of yeast, of arising only by the developement of pre-existing germs; or may they be, like the constituents of a nut-gall, the results of a modification and individualization of the tissues of the body in which they are found, resulting from the operation of certain conditions? Are they parasites in the zoological sense, or are they merely, what Virchow has called "heterologous growths"? It is obvious that this question has the most profound importance, whether we look at it from a practical, or from a theoretical, point of view. A parasite may be stamped out by destroyirg its germs, but a pathological product can oniy be aunihilated by removing the conditions which give rise to it.

It appears to me that this great problem will have to be solved for each zymotic disease separately, for analogy cuts two ways. I have dwelt upon the analogy of pathological modification, which is in favour of the xenogenetic origin of microzymes; but I must now speak of the equally strong analogies in favour of the origin of such pestiferous partieles by the ordinary process of the generation of like from like.

It is, at present, a well-established fact that certain diseases, both of plants and of animals, which have all the characters of contagious and infectious cpidemics, are caused by minute organisms. The smut of wheat is a well-known instance of such a disease, and it cannot be doubted that the grape-disease and the potato-disease fall under the sanie category. Among animals, insects are wonderfully liable to the ravages of contagious and infectious diseases caused by microscopic Furgi.

In autumb, it is not uncommon to see flies, motionless, upon a window-pane, with a sort of magic circle, in white, drawn round them. On microscopic examination, the magic circle is found to consist of innumerable spores, which have been thrown off in all directions by a minute fungus called Empusa musca, the sporeforming filaments of which stand out like a pile of velvet from the body of the fly. These spore-forming filaments are connected with others, which fill the interior of the fly's body like so much fine wool, having caten away and destroyed the creature's viscera. This is the full-grown condition of the Empusa. If traced back to its earlier stages, in flies which are still active, and to all appearance healthy, it is found to exist in the form of minute corpuscles which float in the blood of the fly. These multiply and lengthen
into filaments, at the expense of the fly's substance; and when they have at last killed the patient, they grow out of its body and give off spores. Ifealthy files shut up with diseased ones catch this mortal disease and perish like the others. A most eompetent observer, M. Com, who studied the development of the Empusa in the fly very carcfully, was utterly uuable to discover in what mamer the smallest germs of the Empusa got into the fly. The spores could not be made to give rise to such germs by cultivation ; nor were such germs discoverable in the air, or in the food of the fly. It looked exceedingly like a case of Abiogenesis, or, at any rate, of Xenogenesis; and it is only quite recently that the real course of events has been made out. It has been ascertained, that when one of the spores falls upon the body of a fly, it begins to germinate, and sends out a process which bores its way through the fly's skin; this, having reached the interior caritics of its body, gives off the minute floating corpuscles which are the earliest stage of the Empusa. The disease is "contagious," because a healthy fly coming in contact with a diseased one, from which the sporebearing flliments protrude, is pretty sure to carry off a spore or two. It is "infectious" because the spores become seattered about all sorts of matter in the neighbourhood of the slain flies.

The silkworm has long been known to be subject to a very fatal contagious and infectious disease called the Muscadine. Audouin transmitted it by inoculation. This disease is entirely due to the devclopment of a fungus, Botrytis Bussianu, in the body of the caterpillar; and its contagiousness and infectiousness are accounted for in the same way as those of the fly disease. But of late years a still more serious epizootic has appeared among the silk worms; and I may mention a fer facts which will give you some conception of the gravity of the injury which it has inflicted on France alone.

The production of silk has been, for centuries, an important branch of industry in Southern France, and in the year 1853 it had attaived such in magnitude, that the annual produce of the Freuch sericulture was estimated to amount to a tenth of that of the whole world, and represented a money value of $117,000,000$ franes, or nearly five millions sterling. What may be the sum which would represent the money-value of all the industries connected with the working up of the raw silk thus produced, is more than I can pretend to estimate. Suffice it to say, that the City of Lyons is built upon French silk, as much as Manchester was upon American cotton before the civil war.
You. V.
W
No. 3.

Silkworms are liable to many diseases; and cven, before 1853, a peculiar epizootic, frequently accompanied by the appearance of dark spots upon the slin (whence the name of "Pébrine" which it has received), had been noted for its mortality. But in the years following 1853 this malady broke out with such extreme violence, that, in 1856, the silk-crop was reduced to a third of the amount which it had reached in 1853 ; and, up till within the last year or two, it has never attained half the yield of 1853. This means not only that the great number of people engaged in silkgrowing are some thirty millions sterling poorer than they might have been; it means not ouly that high prices have had to he paid for imported silk-worm-eggs, and that, after investing his money in them, in paying for mulberry-leaves and for attendance, the cultivator has constantly seen his silk-worms perish and himself plunged in ruin,-but it means that the looms of Lyons have lacked employment, and that, for years, enforecd idleness and miscry have been the portion of a vast population which, in former days, was industrious and well to do.

In 1858 the gravity of the situation caused the French Academy of Sciences to appoint Commissioners, of whom a distinguished naturalist, M. de Quatrefages, was one, to inquire into the nature of this disease, and, if possible, to devise some means of staying the plague. In reading the Report (Etudes sur les Maladies Actuelles des Vers à Soie, p. 53) made by MI. de Quatrefages, in 1859, it is exceedingly interesting to observe that his elaborate study of the Pebrine forced the conviction upon his mind that, in its mode of occurrence and propagation, the disease of the silkworm is, in every respect, comparable to the cholera among mankind. But it differs from the cholera, aud, so farr, is a more formidable disease, in being hereditary, and in being under some circumstances contagious, as well as infectious.

The Italian naturalist, Filippi, discovered in the blood of the silkworm affected by this strange disease, a multitude of cylindrical corpuscles, each about oilou of an inch long. These have been carefully studied by Lebert, and named by him Panhistophyton ; for the reason that, in subjects in which the disease is strongly developed, the corpuscles swarm in every tissuc and organ of the body, and even pass into the undeveloped egys of the female moth. But are these corpuscles causes, or mere concomitants, of the disease? Some naturalists took one view and some another ; and , it was not until the French Government, alarmed by the continued
ravages of the malidy, aud the inefficiency of the remedies which had been suggested, despatched M. Pasteur to study it, that the question received its fiual settlement; at a great sacrifice, not only of the time and peace of mind of that eminent philosopher, but, I regret to have to add, of his health.
But the sacrifice has not been in vain. It is now certain that this devastating, cholera-like, Pébrine is the effect of the growth and multiplication of the Pauhistophyton in the silkwerm. It is contagious and infections because the corpuscles of the Panhistophyton pass away from the bodies of the disensed eaterpillars, directly or indirectly, to the alimentary canal of healthy silkworms in their neighbourhood; it is hereditary, because the corpuscles cuter into the eggs while they are being formed, and conscquently are carried within them when they are laid; and for this reason, also, it presents the very singular peculiarity of being inherited only on the mother's side. 'There is not a single one of all the apparently capricious and unaccountable phenomena presented by the Pebrine, but has received its explanation from the fact that the disease is the result of the presence of the mieroscopic organism, Panhistophyton.
Such being the facts with respect to the Pébrine, what are the indications as to the method of preventing it? It is obvious that this depends upon the way in which the Panhistophyton is generated. If it may be generited by Abiogenesis, or by Xeno genesis, within the silkworm or its moth, the extirpation of the disease must depend upon the prevention of the occurrence of the conditions under which this generation takes place. But if, on the other hand, the Panhistophyton is an independent organism, which is no more generated by the silkworm than the mistletoe is generated by the oak, or the apple-tree, on which it grows, though it may need the silkworm for its developement, in the same way as the mistletoe needs the tree, then the indications are totally different. The sole thing to be done is to getrid of and keep away the germs of the Panhistophyton. As might be imagined, from the course of his previous investigations, MI. Pasteur was led to believe that the latter was the right theory; and guided by that theory, he has devised a method of extirpating the disease, which has proved to be completely suceessful wherever it has been properly carried out.
There can be no reason, then, for doubting that, among iusects, contagious and infectious diseases of great malignity are caused by
minute organisms which are produced by pre-existing germs, or by Homogenesis ; and there is no reason, that I know of, for believing that what happens in insects may not take place in the highest animals. Indeed, there is already stroug evidence that some diseases of an extremely malignant and fatal character to which man is subject, are as much the work of minute organisms as is the Pebrine. I refer for this evidence to the very striking facts adduced by Prof. Lister in his various well-known publications on the antiseptic method of treatment. It seems to me impossible to rise from the perusal of those publications without a strong conviction that the lamentable mortality which so frequently dogs the footsteps of the most skilful operator, and those deadly consequences of wounds and injuries which seem to haunt the very walls of great hospitals, and are even now destroying more men than die of bullet or bayouet, are due to the importation of minute organisms into wounds, and their increase and multiplication; and that the surgeon who saves most lives will be he who best works out the practical consequences of the hypothesis of Redi.

I commenced this Address by asking you to follow me in an attempt to trace the path which has been followed by a scientific idea, in its long and slow progress from the position of a probable hypothesis to that of an established Law of Nature. Our survey has not taken us into very attractive regions; it has lain chiefly in a land flowing with the abominable, and peopled with mere grubs and mouldiness. And it may be imagined with what smiles and shrugs practical and serious contemporaries of Redi and of Spallanzani may have commented on the waste of their high abilities in toiling at the solution of problems which, though curious enough in themselves, could be of no conccivable utility to mankind.

Nevertheless, you will have observed that before we had travelled very far upon our road, there appeared, on the right band and on the left, fields laden with a harvest of golden grain, immediately convertable into those things which the most sordidly praclical of men will admit to have value,-namely money and life.

The direct loss to France caused by the Pébriue in seventeen years cannot be estimated at less than fifty millions sterling; and if we add to this what Redi's idea, in Pasteur's hands, has done for the wine-grower and for the vincgar-maker, and try to capitalize its valuc, we shail find that it will go a long way towards repairing the money losses caused by the frightful and calamitous war of this autumn.

And as to the equivalent of Redi's thought in life, how can we over-cstimate the value of that knowledge of the nature of epidemic and epizootic discases, and, consequently, of the means of checking or eradicating them, the dawn of which has assuredly commenced ?

Looking back no further than ten years, it is possible to select three (1863, $186 \pm$ and 1869), in which the total number of deaths from scarlet fever alone amounted to 90,000 . That is the return of killed, the maimed and disabled being left out of sight. Why, it is to be hoped that the list of killed in the present bloodiest of all wars will not amount to more than this! But the facts which I have placed before you must leave the least sanguine without a doubt that the nature and the causes of this scourge will one day be as well understood as those of the Pebrine are now; and that the long-suffered massacre of our innocents will come to an end.

And thus mankind will have one more admonition that the "people perish for lack of knowledge"; and that the alleviation of the miseries and the promotion of the welfare of men must be sought, by those who will not lose their pains, in that diligent, patient, loving study, of all the multitudinous aspects of Nature, the results of which coustitute exact knowledge, or Science.

It is the justification and the glory of this great Meeting that it is gathered together for no other object than the advancement of the moiety of Science which deals with those phenomena of Nature which we call Physical. May its endeavours be crowned with a full measure of success !

GEOLOGY AND MINERALOGY.

The Student's Elemexts of Geology. By Sir Charles Lyell, Bart., F.R.S.-The Elements and Principles of Geology, by Sir Charles Lyell, have been probably the most successful works on that science ever published. The former has gone through six cditions, and the latter is now in its tenth. A new edition of the Blements being required, Sir Charles was induced to curtail it to such dimensions as would make it a more suitable manual for students; without sacrificing any of its essential features. This he has accomplished in the present "Student's Elements," which is a perfect gem in its way. Com-
pact in size, admirably arranged, its well filled pages benutifully illustrated, it brings up every department of geulogy to the latest point in regard to facts, while the discussions in regard to theoretical views are very strict, pithy and well-weighed. While the formations of Europe are, as is usual in Briti.h text-books, taken as types, those of other parts of the world are well worked in; and a fiar share of attention is given to the discoveries which have recently been made on this continent.

Sir Charles notices fully the recent remarkable discoveries of fossils in the Lower Cambrian of Britain, which extend a rich fiuma back into :'le Longmynd Group, at one time supposed to be nearly barren of fossils. He proposes, in connection with this to establish firmly the once debateable Cambrian system, and to extend it as far upward as the Tremadoc. He thus arranges these rocks:-

> Upper Cambrian:
> Tremudoc Slates (Primordial of Barrande in part.) Lingula Flags (Primordial of Barrande.)

> Lower Cambrian :
> Menevian Beds (Primordial of Barrande.)
> Longmynd Group $\left\{\begin{array}{l}\text { a. Harlech grits. } \\ \text { b. Llanberis slates. }\end{array}\right.$

Ife regards the Potsdam Sandstone as equivalent to the Upper Cambrian, and places the Huronian as the possible equivalent of the Lower Cambrian. He barely notices our richly fossiliferous Lower Potsdam or Acadian group, and does not include it in his table, though it would have enabled him to find an equivalent for his Menevian beds. He still regards Histiodermet as a wormburrow, not being, apparently, aware of Mr. Billings' more probable explanation of it as a cast of a sponge.

It would, however, be useless to follow in detail a work of this kind, which every student and amateur in geology should have in his hands as a book of reference, and which as nearly as is possible in that science whose goal to-day is its starting point to-morrow, brings up the subject to a level with the present state of knowledge, and compresses all its more importast facts into the shortest possible space, while exhibiting them with the utmost clearness.

Geological Discoveries in Brazil.-The following letter to one of the Editors from Prof. Martt, a Nova Scotian by birth
and cducation, and now Professor in Cornell University, gives some interesting notes on his present explorations in Brazil. The letter is dated from near Mont Alegre, Rio des Amazonas:-
"I have been making some discoveries down here that I think will interest you. On the Rio Tapajos I found a large area occupied by Carboniferous (lower) strata, affording fossils in profusion. The rocks are sandstone, limestone and shale,- the two former full of fossils. The strata are horizontal. The fossils bear a very close resemblance, many of them, to Nova Scotian species. There is a Productus cora and a P. semireticulatus wonderfully like the forms found at Windsor. I have between one and tro hundred species of these fossils, and most of them will admit of determination. Many of the brachiopods, \&c., are perfectly free from the rock, and shew interiors, loops, \&c. I have one species of Trilobite, probably Phillipsia. Of fishes I have teeth .uales, and spines. I am in doubt whether the deposits are Sud Carboniferous or Sower Coal Measures; I think the latter the most probable. I am going to give up my little steamer, which, through the kindness of the President of the Province I have had for two months, and divide up my party. I shall then return to the Tapajos to study out carefully these carboniferous deposits and Agassiz's drift. By the bye in this last there are, at Mont Alegre and Aveiros, trap beds."

BOTANY AND ZOOLOGY.

Tile Geograpiitcal Handbook of Ferns; by Kabharine M. Lyell, London, 1870.—Mrs. Lyell has done good service to botanical students by compiling and publishing this excellent and most laboriously prepared handbook. The labor incident to such work can be appreciated only by those who have made similar attempts at compilation and geographical distribution. The globe is divided into eighteen sections or botanical areas, and the catalogues of all the species known to occur in each of these sec. tions occupies the bulk of the volume; an indication of the distribution of species throughout the section is given in addition to the name,- thus Nephrodium fragrans occurs in three of these catalogues, first in one of the sections of Asia, "Northern,

Central and Western Asia，China and Japan＂where its habi－ iat is said to be＂high－aretic and sub－arctic regions，Caucasus ＂to Kamtschatka，Manchuria，and Amur；＂－and then in two of the N．A．areas．The last forty pages of the book are occupied by a systematic catalogue of all the species，with the occurrence of each throughout these cighteen areas tabulated in parallel columns． North America is bot：mically deemed to go no further south than the northern Mexican boundary and is divided into three arcas：－ 1st，British America east of the Rocky mountains，and Greenland， Snd，the United States east of the Rocky mountains and Bermuda， and 3rd，the territory west of the Rocky Mountains from Alaska to the Nexican boundary．As the two first are not botanically separable by any geographical line perhaps that chosen by Mrs． Lyell is as good as any．Of the forty－four species given as occuring in the Canadian division，four have probably been inserted without sufficient authority；Woodsia scopulina，Loma－ ria Spicant and Polypodian alpestre are known only from the west side of the Rocky Mountains，and the occurrence of Asplenizun marinum in New Brunswick still awaits rerification．On the other hand nine undoubted natives have been omitted，some of them through an inadvertence as Mrs．Lyell informs me；they are，－

Cheilanthes gracilis（＂base of the Rocky aromatains，Aus．13， lise，＂Bowreau no． 36 G 9 in IIerb．Look．＊），
Pteris aquilina， Thoodwardia Virginica， Scolopendrium vulgare， Toodsia Oregana（Lake Wimnepeg and westward，

Aspidiam Tomehitis，入゙ephrotimm Novebosacense， Bonychimm matricariafolinm．1．hr （inclutins 13 ．Tanceolutum and $=$ I）．rutaccum in Syn．Fil． of Hooker，but not oi Swart\％）， and
Opinogros：mm rulgatum．

Of these forty－aine species at least twenty are common to both sides of the liocky Mountains，all of which（with a doubt as to

[^21]the two species which are marked) are also known to occur on the mountains themselves; these are,-

Woodsia Oregana, Cystea fragilis, Adiautum pedatum? Cryptogramme crispa, Pellea atropurpurea, Pteris aquilina, Asplenium riride, ——Trichomanes: -_Milix-fomina, Aspidium Lonchitis,

Aspidium aculeatum,
acephoolium Filis-mas,

- fragrans,
-_mpinulosim,
Tolypodium rulgare,
- Phegopteris,
-_Dryopteris,
Botrychium Limaria,
—— termatum, and
———rirginianum.

On the east side of the Rocky Mountains, but apparently not extending as far west as the mountinins, are twenty-three species, as follows, -
Onoclea sensibilis, - Struthiopteris, Troodsia glabella, -- hyperborea, Dicksouia punctilobuha, Cystea bulbifera, Pellen gracilis, Woodwardia Virginica, Asplenium ebencum, - angustifolium, \longrightarrow thelypteroides, Scolopendrium rizophyilum, Sephrolium Thelypteris, - Noveboracense, - Goldiennum, Polypodium hexagonopterm, Osmmuda regalis, - Clay toniama, -_ cimmanomea, Botrychium simplex, -mantricaricfolium, and Ophioglossum rulgatum. Scolopendrium rulgare,

The remaining sis species of this area are found ou the Rocky mountains, all of them (except Cl. gracilis which is not known cast of Illincis) also extending castrard to the Atlantic; they are, Cheilanthes gracilis, Cystea montana, Woodsia Ilvensis,

Aspidium acrostichoides,
īephrodium cristatum, and

- marginale;
making forty-nine species indigenous to that portion of British America to the cast of the Rocky mountains. From the mountains westward to the Pacific we have but eleven other species which may be noted here. They are,
-On the Mocky Mountains and westward, Woodsia scopuima, Folvpodium alpestre.
-On the West Coast, but not extending as far cast as the liocky Mountains, Wondsia obtusa,"

Cheilazthes sracillima,

[^22]Pellea densa,
Lomaria Spicant,
Polypodium Scouleri,

- intermedium, and

Gymuogramme triangularis,
Nephrodium vigidum, (A. argutum, Tinulf.),
Aspidium mmitum,
thus giving British America a known fern-flora of sixty species of which twenty-cight occur on the Rocky mountains.

On another page is given a list of the ferns of Labrador which includes some species not hitherto published. Thanks to Mr. Becket (one of the staff of the Geological Survey of the Islaud) and to Dr. Bell (this journal vol. iv. 1869, p. 256) we have now a tolerably long list of the ferns of Newfoundland though doubtless eight or ten species more would reward any careful collector. It is as follows:-
Onoclea sensibilis, Woudsia Ilvensis,
—_glabella (Becket-robust
specimens like some of
Macoun's from Lake Superior). Cystea fragilis,
-—bulibifera,
Pellxa gracilis,
Pteris aquilima, Asplenium riride (Becket),

- thelypuroides (Bell),
- Filix-femina, Aspidium aculeatum (Bell-the rar. Bramuii),
A list oí the ferns of Greenland, an outlying province of North America but with a European flora cven aloug its western shores, has an interest in this connection. It is copicd from Prof. Lange's catalogue in Rink's "Grönland" the author's nomenclature being preserved.
Polypodium Dryopteris L.
- Phegopteris L.
—— alpestre Hoppc,
Aspidium Iunchitis Sce.
- fragrans Filld.

Lastrea Filix-mas presl,
Cystopteris fragilis 3 Berna.
Woodsia ilvensis R. Br.

- hyperborea R. Br.

Butrychinum Lunaria Sio.
—_rutaceum Frics ($=\mathrm{B}$. matricariacfolium . A. Br.)

Neplrodium fragrams (Bell),

- Filix-mas (Kumze),
- spinulosum (verum et dilatatum),
Polypodium Drsopteris,
- Phegopteris,
ugare,
Osmunda regalis,
- Claytomima,
-_ cimamome,
Botrychium Lumaria (Lycll),
- ternatum (IIooker),
—— virginianum (Hooker).

giving her authority and probably in error. Not oue of these twelve species is peculiar to America; none of them are likely to have come from America unless Aspidium fragrans, a nonEuropean plant wide-spread in north Asia.

Turning to Mrs. Jyell's second area, the United States cast of the Rocky Mountains and north of Mexico, we find that the admitted species number seventy-eight, of which these fow have probably been inserted in error:-
(irstea moutana (the Rocky Mountains habitat of which is uorth of N. lat. 49°),
Pellea densa ("Washington" Ter-

Cheilanthes qracillima, and
Troodsia seopulina (neither of which ocem on the east side of the mountains). xitory being on the west side),
A good many species should be added which may be conveniently divided into various groups:-
A. Species which occur on the Rocky Mountains, but not as far north as lat. 490 -
Cheilanthes Fendleri, Asplenium Septentrionale,

Ňcthochlana Fendleri, ——_dealbata:-
[These four species added to the tirenty-cight above noted, gives thirty-tro species as the fern flora of the Rocky Jountains.]
B. Species which occur on both sides of the mountains (California, Arizona or New Mexico, and Texas)-

I'ellæa Wrightiama,

- mucronata,

Nothoclema sulphurea (Mr. J3aker's species is mrobably too com. prehensive).
C. Species which have to be removed from the third area into this-

Cheilauthes Wrightii, ——— Lindhcimeri, Pellea aspera, - - pulchella, ——cordata, Aspidium juglaudifolium,

Nothochlacua simuata, - - ferruginca, Grmmogramme pedata, Ancimia Mexicama.

This division must be held to include the traus-Mississippi States east and north of the Rio Grande, some of which (is 'l'exas, Missouri, etc.) Mrs. Lyeil erroncously quotes as belonging to her third area.
D. Two Easteru species are omitted, probably in crror-Woodsia glabella (New York and northward); Woodsia hyperborea (Vermont, H. Mann, and northward).

These additions bring up the number of the known species inhabiting this area, to nincty-four; to which may be added

Woodsiu Peruviana, should Chas. Wright's no. 2120 prove to be that species, and a new Asplenium recently found by Prof. Bradley in I'mnessec.

Mrs. Lyell's third division, embracing all North America to the west of the Rocky Momentains and north of Mexico, is weil separated into a botanical area, but, considering its extent and variety of climate, its fern flora is small though in many respects peculiar. Mrs. Jyell emumerates sixty species which number must, I fear, be considerably reduced, inasmuch as a great part of the range of mountains known as Sierra Madre is in (old) Mexico, not in New Mexico, and while such States as that last named and Colorada are common to both second and third areas, others, such as T'exas, Kansas, Missouri, and Nebraska, are wholly in the second. The omissions should probably be as follows:-
A. The eleven species above enumerated as belonging to the second area not being known to occur on the west side of New Mexico.
B. Jight species not known on the west coast further north than Mexico proper :-
A.diantum Capilus-reneris (which, howerer, occurs on the east side from Alabama southward),
Cheilanthes Seemami

- microphylla (there is a Fer tradition that this species occurs in Teras, but it needs confirmation),

Cheilanthes riscosa, Polypodium Madrense, Gymnogramme tartarea, - podephylla, Acrostieham conforme.

A few species should be added, some of which I enumerate:Cheilanthes argentea (said to have been collected by a Russian botanist in Alaska),

- Newberrii Eaton (San Jiego, Dr. Newbery and Prof. Wood), Jellara- (Sierras, 1569, Prof. Bolander - probably a wew species),
The scanty fern flora of the west coast may be seen from the following list copied from "A Catalogue of the Plants of San Francisco"" by II. N. B3olander, 1S70, which is said to include all the " specics found about a hundred miles north and souti of "Sau Fraucisco, and as far cast as Mount Diablo": Polypodium Scouleri, -- Californicum,

Adiantum pedatum, - Chileuse,

Petris aquilina, Pellan mucronata,
——densa, ——andromedefolia, Gymnogramme triangularis, Woodrardia radicans, or only fifteen species in all. Within the same distances of Montreal we could muster nearly three times as many.

Mrs. Lyell has followed the "Synopsis Filicum" of Hooker and Baker in nomenclature and species limitation, and, in the foregoing remarks, I have more or less closely followed her example.

Notice of fucus Serratus found in Pictou Marbour. By Rev. A. F. Kemp, M.A.-On the 29th June, 1869, I had an opportunity of examining the shores of the harbour of Pictou, Nova Scotia, and was fortunate enough in finding very fine specimens of Fucus serratus Liun. This plant is very common on the rocky sea-shores of Europe, and specially so in the northern parts of the British Islands. Harvey, in his Preface to the Nereis Boreali-Americ:ma, says that Fucus serratus has not yet (1851) been detected in America. In the supplement to that work (1858), he says: "I have received a small fraguent of this " common European plant, stated to have been found at Newbury" port, Mass, U.S. It is hardly probable that it is cither con" fined to one locality, or creu rare, wherever it occurs; yet none " of my other correspondents have sent it, nor do I know " the circumstances under which Captain Pike obtained it. I " hope this notice may lead some one on the coast to investigate " the subject; for Riuropean botanists are yet uncertain whether " l. scrratus be really bona fide native of the American coast, or " merely a stray waif accidentally cast ashore." I have myself examined several points on the eastern coast of America where, if anywhere, this plant might be expected to grow, but have never seen a fragment of it. At Portland, and along the coast of Maine, northward, the shore is highly favourable for the growth of the larger fuci. At Peak's Island I found a peculiar analogue of F. serratus, occupying very much its place, and having nearly the same formiand habit, escepting the serratures of the margins. It was very abundant on the outer shores of the islands in Casco Bay, but seems very much to be confined to that locality. I did not find it on the northern shores of the State around Eastport. Harvey thinks the plant is Fucus anceps. It is as prolific and
abundant as F. serratus is in Europe. I have also cxamined several localitics on the northern shores of Nova Scotia and in the harbour of Halifis, and have not seen a fragment of F. serrutus, nor have I ever found it in the collections of amateurs. It was on the western shore of the harbour of Pictou, north of the town, that I first met with this plamt. It was cast ashore along with other sei-weeds. I however found it nowhere growing there. F. nodosus and F. vesiculosus were abundant in situ, but not this onc. I searched carefully for it at low water, and only found at last a few fronds of it growing on a flat stone about a foot and a half in length and six inches in breadth, and lying loose on other stones, on the shore about a mile to the south of the torn. From the quantity that lay on the shores, it was obvious that it grew abundantly in the harbour, but in deep water. This is not its usual habit. Along with allied species it generally occupies the space between tide marks. From these circumstanees I have been led to think that F. serratus is not indigenous to this continent, and has been introduced from Europe. Probably it has been brought in the ballast of British ships, which used at a former time to be discharged in to the deeper parts of the harbour. This will also account for its deep-sea habitat. Whe fronds which I found growing were, as I have noted, on a flat stone that might easily have been washed ashore by the foree of the waves, floated, as it, would be to some extent, by the lusuriant regetation which covered it. I have every reason to believe that this is the first authenticated instance of the existence of this plant on the eastern coast of America; and is probably the first instance in modern times of a naturalised European alga.

Labrador Plavis.-The Rev. S. R. Butler, who has recently returned from a residence extending over several years in Labrador, has been good enough to give me a list of all the plants collected by him when there, from which I have compiled the following cataloguc. Mr. Butler explains his localities thus:"The two places I have most thoroughly examined are Caribou " Island and Forteau Bay. When a plant is marked 'Caribou,' "it is meant that I found it ouly at that place; when 'Forteau' " is mentioned, the plant may occur all round Forteau Bay, "while 'Amour' means that I have found it only in 'L'ance "Amour,' and that it is not likely to occur elsewhere in the Bay;
" and when no locality is specified, the species may be expected to " occur at many places, if not all along the coast." A mour Point is in the Strait of Belle Isle in long. $56^{\circ} 50^{\prime}$, and is thus in Labrador proper, while Caribou, three-fourths of a degree to the westward, is in the Dominion. Mr. Butler adds that he collected neither pines, willows nor glumaceous plants, and that his more obscure species were named for him by Prof. Eaton, of New Haven. This gentleman has kindly furnished me with a list of the collections of Miss Macfarlane in and around the same localities, which contained several species not mentioned by Mr. Butler; these I have inserted in their proper places, with the collector's name attached:

Ranunculus acris Limn.-level' Stellaria longipes Goldie-near the grassy places, Forteau.
Anemone parviflora Mickx-hillsides, Forteau.
Thalictrum dioicum Linn.-hillsides and along brooks, Caribou and Fortean.
——Cornuti Lim.- (Niss Macfarlane No. 1).
Coptis trifolia Salisb.-in swamps along the coast.
Nuphar advena Ailon-in ponds, Caribou.
Arabis alpina Linn.-brook-sides, Forteau.
Draba incana Linn.-Caribou.
C'ochlearia tridactylites Linn.-seashore, Caribou.
-_ Forteau.
Viola blanda Willd.-moist places, common along the coast.
—— Nuhlenbergii Torrey-hillsides, common.
Drosera rotundifolia Linn.-in swamps.
Parnassia parvifora Cand.-hillsides, Amour.
Silene acaulis limn.-hill-tops Anour, also Old Fort Island.
Arenaria Gromlandica Spreng.-hill-sides, Baic des Rochers.
——peploides Linn.-in sand near the sea-shore, Caribou and Forteau.
—_verna Linn. - hill-sides, Amour.
——laterifora Linn.—level grassy places.
——— Edwardsii R. Br.-Miss Macfarlane No. 9. Torrey \& Gray very properly reduce this to a variety of the last species).
_- borealis Bigelou-hill-sides, Caribou.
__ crassifolia Ehrh.-marshy flats.
Cerastium alpinum Linn. $\}$ arvense Linn. $\}$ -abundant about Forteau. Astragalus alpinus Limn.
Hedysarum lworeale Ninttall\} -hill-sides, Amour.
Lathyrus maritimus Bigelow-Caribou and Amour.
-_ palustris Linn.-Caribou.
Oxytropis campestris Cand.-hill-side-near Forteau lighthouse.
Sanguisorba Canadensis Limn.abundant on hill-sides.
Alchemilla vulgaris Limn.-abundant on hill-sides, Amour.
Dryas octopetala Linn.-hill-tops, Amour.
Geum rivale Linn.-brook-sides.
Potentilla Norvegica Linn.-along: the sea-shore.
———Anserina Linn.-flats near shore
——palustris Scopoli-marshy places, Caribou.
——tridentata Aiton-abumdaut everywhere.
——maculata Pourret-hills, Amour.

Fragaria Virginiama Ehrh.-sparingly on hill-sides.
Rubus Chamemorus Kim.-abundant everywhere.
———articus Limn. - in level grassy places.
__triflortus Ricln-on hillsides.
——_strigosus Michi-in inland gulches.
-_ castoreus Frics? - Forteau.
I'yrus Americana Cand.-in gulches and on hills.
Amelanchicr Canadensis Iorrey et Gray var. oligocarpa Gray -in swamps.
Epilobimm angustifolium Iimnon hill-sides, Caribon.
—_ alpinum Lim.-wet places, Fortean.
-_ palustre Iim. - marshy places, common.
——_ latifolium Linn.—sea-shore, Amour.
Ribes lacustre Poiret
—— prostratum L'Ifer. $\}$ -ravines, common in the interior.
Sedum Ihodiolia Cand.-on rocks and hill-sides.
Saxifraga aizoides Limn.-on rocks, Fortean.
oppositifolia Limn. - on rocks, Amour.
caespitosa Limn.-in level seindy places, Forteau.
Miteila muda Linn. - hill-sides, Fortean.
Cornus Canadensis Iinn.- common everywhere.
Iferacleum lanatum Michx
Archangelica atropurpurea $\}$ Ifofm. ?
-hill-sides and ravines.
Ligusticum Scoticum Linn.-Caribou.
Lonicera carulea Linn. \}
Linnaa borcalis Gronov. $\}$ on hill-sides.
Viburnum pauciflorum Pylaie-in ravines.
Galium trifidum, var. pusillum A. Gray-(Miss Macfarlane No. 25).
Senecio pseudo-Arnica Lessing-mon hill-sides.
-aureus Linn. var. Balsamitae Gray-in swamps.

Aster Radula Aiton-on the senshore.
Vaccinum caspitosum Mich x - on hill-sides.
uliginosum Linn. - in swamps. Vitis-Iden Xinn.-on hills. Oxycoccus Linn. - in swamps.
———Pennsylvanicum Lam. var. angustifolium Gray.-on hill-sides.
Chiogenes hispidula Torrey et Gray -(Miss MacF. No. 35).
Cassandra calyculata Don-in marshy places.
Andromeda polifolia Linn. - in swamps.
Kalmia slauca Aiton-hill-sides and swamps.
Rhodora Canadensis Limn.-hillsides, Caribou.
Ledum latifolium Aiton-common on hills.
Rhododendron Lapponicum Wrh. -on a hill-top near Amour.
Loisclemia procumbens Desv.-on hills, Caribou.
Pyrola rotundifolia Limn. - in swamps, Amour.
Moneses uniflora Gray-in damp shady places.
Armeria Labradorica Boissier-on a hill-top, Amour.
Primula farinosa Linn.-aloug shore and on hill-sides.
——_stricta IIornem.-Fox Island near Caribou (P. Mistassinica Michx.)
Trientalis Americana Pursh-common on hills.
Plantago pauciflora Pursh-(Miss Nacfarlane No. 42).
Pinguicula vulgaris Linn.-in moist places.
Euphrasia officinalis Linn.-on hillsides, Caribou.
Rhinanthus Crista-galli Linn.common on hill-sides and on flats.
Mertensia maritima Don-in sand on the sea-shore.
Diapensia Lapponica Linn.-common on hill-tops at Caribou.
Gentiana acuta Michx-on flats, Caribou,

Hapropinqua Richn
Halenia deflexa Griseb.
-on hill-sides, Amour.
Pleurogyne rotata Griseb.-on flats at Caribou and shores of Lisquimaux river.
Menyanthes trifoliata Linn.
Diapensia Lapponica Linn.-common on hill-tops, Caribou.
Polygonum viviparum Linn.-common.
Empetrum nigrum Ximn.-everywhere common.
Myrica Gale Limn.-(Miss Macfarlane No. 56).
Betula nana Limn.
——_glandulosa Michx $\}$
-on hill-sides everywhere.
———pumila Linn.- Miss Macfarlane No. 57).
Larix Americana alfichx - in swamps and ravines.
Juniperus communis Limn.-on hill-tops.
Sparganium simplex IIudson-(the vars. genuinum and angustifolium of (iray)-in ponds, Caribon.
Habenaria obtusata Richn-on hillsides, Caribon.
——dilatata Gray
———hyperborea Kl. Br. \}
-in swamps and on hillsides.
Listera cordata R. $B r$ r.-in ravines, Caribou.
Iris versicolor Limn.-common on flats and hill-sides.

Smilacina bifolia Ker
—— trifulia Desf. $\}$
-in marshy places.

- stellata Desf.-on the seashorc.
Clintonia horealis Rafin.-on hillsides.
Streptopus roscus Michx - in ravines.
——_ amplexifolius Cand.-(Miss Macfarlane No. 62).
Eriophorm capitatum llost-on hill-tops.
——russeolum Fries-in swamps and on high hills.
Luzula parvifulia Desu.-on hills.
Por pratensis limn.-on the seashore.
Hierochloa borealis Roem. et Schultes
Elymus mollis Trinius \quad -on the sea-shore.
Lycopodium annotinum Linn.ravines and hill-sides.
Polypodium Dryopteris Linn.-on rocks.
—— Phegopteris Linn. - in ravines.
Pellxa gracilis IHook. rocks, Cystca fragilis Smith $\}$ Amour. __ montana (Lam.)-Amour. Aspidium spinulosum Swartz ravines and hills, common. A.thyrium Filix-fomina Roth-on hill-sides.
Botrỵ̣chium Lunaria Suarlz-hillsides, Amour.

Tife Students Floma of me Britisif Islands. By J. D. Hooker, C.B., etc. London: MacMillan d Co:-Yet another flora of Britain! is one's involuntary exclamation on opening this book-making not a fifth wheel but something like a tenth wheel to the proverbial coach. Nor is this feeling modified after a carcful perusal of the book; the work is, of course, well done-remarkably well done, as is everything that Dr Hooker does-but why should one of the first botanists of the day waste such good work on a thread-bare subject? Had Dr. Hooker given us a condensed flora of north Furope, or better still, taking in Ledebour's ground, of the northern portion of the eastern hemisphere, not merely British students, but students the world over would have thanked him; as it is, one cannot help feeling that a great deal of good work has been thrown away. Dr.

Hooker may well afford to leave the naming and describing of some twenty varieties of Ranunculus aquatilis and the thirty varicties of Rubus fruticosus to less busy pens. There are in this book some remarkably good features well worked out. Dr. Hnoker gives the affinities of each family, oftentimes a note of its propertics (p .259 , "a few are purgative or emetic or intensely bitter or very poisonous"), always its distribution throughout the world and the numbers of genera and species comprised in it. IIe gives the same details under each genus and the geographical distribution of each species. As regards our personal hobby, the ferns, his notes on such of the species as are also American are remarkably correct, much more so than in any foreign flora we have seen. I note only the following corrections: Trichomanes rudicans occurs in Alabama which is not " trop. Am."; Asplenium marinum is still given as "Brit. N. America"; and Scolopendrium vulgare is said to occur in "N. W. America," while it is known only from Western Canada and New York. Dr. Hooker in orthodox in his mode of quoting authors; hence he writes the name of a well-known Linnean plant as "Selaginella selaginoides Gray," thus depriving Link of what little credit may be due to him, but giving compensation elsewhere by writing "Cystopteris montana Linh;" which species is certainly Bernhardi's in view of what he wrote in Schrader's neus Journal for 1806, part 2nd, p. 26 ; moreover this old blunderer's impossible genus (loc. cit., table ii., fig. 9) having been accepted, he may as well get the beuefit of any doubt touching one of the species. Dr. H. introduces a new name to fern honors, the Acrostichum septentrionale of Linneaus being referred to its proper genus Asplenium as A. septentrionale Mull, an author unknown to us. It would add greatly to the value of such manuals if the reference were given in addition to the name of the author of the species; Asplenium germanicum Weis Plantæ Crypt. p. 299, or Scolopendrium Smith in 'Turin Mem., v., p. : 421, do not occupy much space, and are necessary to the proper understanding of the names quoted. Dr. Hooker writes "Nephrodium cristatum Rich." probably for Richarả, and referring to Michaux's Flora, of which work he was author. If this be correct some other author's name must be'found to attach to this well-known Linuean plant, inasmuch as Prof. Eaton has shewn that Michaux's cristatum is spinulosum, as might have been surmised from the omission of the latter species from that work, thourgh it is much more general
than cristatum, and is one of the commonest of ferns in this country. The reference, "A. cristatum Sw." under Nephrodium, Filis-mas, is probably a slip of the pen. The "var. uliginosum (Rabenhorst, no. 19) is correctly referred to this species, and is the same as our Aspidium Boottii of Tuckerman in Hovey's Mag. of Hort. and Bot. vol. ix. (1843), p. 145, which Dr. Hooker, however, quotes as a varicty of his "sub sp. dilatatum" under " N. spinulosum Desv."-wherein, I think, he errs. The lastnamed species is divided into three sub-species: (1) "spinulosum proper"; (2) dilatatum having four varieties - glandulosum, nanum, Boottii and dumetorum, and also, as I suppose dilatatum proper, ; and (3) remotum. Of dilatatum it is said that it "extends into W. Asia and E.N. America,)" but if I be correct in referring Seemann's uo. 1760 and some of Dr. Lyall's British Columbia specimens to this variety, its range in North America is much more extensive. The usually noted differences between it and spinulosum, as color and shape of scales, color of the frond, and whether glandulose or otherwise, are all inconsistent; the outline of the frond I judge to be the only consistent character. The publishers have done their part well; the letter-press is remarkably clear and distinct, and the type well chosen, after the style first set by Dr. Gray. The paper, though good, is too soft to bear ink, and the fifty pages of advertisements are rather too heavy an imposition.

Saponaceols Plants.-Many plants in different countries furnish useful substitutes for soap to the natives, where there are no conveniences or materials for manufacturing the ordinary soap of commerce. Prominent among these are the soapworts, tropical plants belonging to the genus Sapindus. The Hindoos use the pulp of the fruit of Sapindus detergens for washing linen. Several of the species are used for the same purpose instead of soap, owing to the presence of the vegetable principle called saponine. The root and bark also of some species are said to be saponaccous. The capsule of Sapindus emarginatus has a detergent quality when bruised, forming suds if agitated in hot water. The natives of India use this as a soap for washing the hair, silk, \&c. The berries of Sapindus laurifolius, another Indian species, are also saponaceous. The name of the genus is merely altered from Sapo-indicus, Indian soap, the aril which surrounds the seed of S. Saponaria being used as soap in South America.

According to Brorne, the secd-vessels are very acrid; they lather freely in water, and will cleanse more linen than thirty times their weight of soap, but in time they corrode or burn the linen. This assertion, however, requires confirmation. Ifumboldt tells us that proceeding along the river Carenicuar, in the Gulf of Cariaco, he saw the native Indian women washing their linen with the fruit of this tree, there called the Pua para. Saponaceous berrics are also used in Java, for washing. The fresh bark of the root Mominue polystachia called "Yalioi," pounded and moulded into balls, is used by the Peruvians in place of soap. Saponine exists in many other seeds and roots-in the legumes of Acacia concinna, in which a considerable trade is carried on in some parts of India, and in the root of Vuccaria vulgaris, Agrostemma Githago and Anagallis arvensis. It also occurs in various species of Dianthusi and Lyychnis, and in the bark of Silene influta. Gypsopyila struthium is used by the Spaniards for scouring instead of soap. The bruised leaves of Saponaria offirinalis, a native of England, forms a lather which much resembles that of soap, and is similarly efficacious in removing grease spots. The bark of Quillaia saponaria of Central America answers the same purpose, and is used as a detergent by wool dyers. It has been even imported largely into France, Belgium, \&c., and sold in the shops as a cheap substitute for soap. The fruit of the Bromelia l'inguin has also been found useful as a soap substitute. A vegetable soap was prepared some ycars ago in Jamaica from the leaves of the American aloc (Agave Americana), which was found as detergent as Castile soap for mashing linen, and had the superior quality of mixing and forming a lather with salt water as well as fresh. Dr. Robinson, the naturalist, thus describes the process he adopted in 1767 , and for which he was awarded a grant by the House of Assembly of Jomaica:-"The lower leaves of the Curaca or Coratoe (Agave Zaratu) were pressed between heavy rollers to express the juice, which, after being strained through a hair cloth, was merely inspissated by the action of the sun, or a slow fire, and cast into balls or cakes. The only precaution deemed necessary was to prevent the mixture of any unctuous materials, which destroyed the efficacy of the soap. Another' vegetable soap, which has been found excellent for washing silk, dic. may be thus obtained:-To one part of the Ackee, add one and a-half parts of the before-named Agave Faratu, macerated in one part of boiling water for twenty four hours, and
with the extract from this decoction mix four per cent, of rosin." In Peru, the leaves of the Maguey agave are used instead of soap; the clothes are wetted, and then beaten with a leaf which has been crushed; a thick white froth is produced, and after rinsing the clothes are quite clean. The pulpy matter contained in the hard kernel of a tree called locally 'Del Joboncillo' is also used there for the same purpose. On being mised with water it produces a white froth. In Brazil, soap is made from the ashes of the bassena or broom plant (Sida lancooluta), which abounds with alkali. There are also some barks and pods of native plants used for sonps in China. The soap-plant of California, Phelangium pomeridianum, is stated by Mr. Edwin Bryant to be exceedingly useful. The bulbous root, which is the saponaceons portion, resembles the onion, but possesses the quality of cleansing linen equal to any olive soap manufactured. From a paper read before the Boston Society of Natural History, it appears that this soap-plant grows all over California. The leaves make their appearance about the middle of November, or about six weeks after the rainy season has fairly set in ; the plants never gros more than a foot high, and the leaves and stalk drop entirely off in May, though the bulbs remain in the ground all the summer without decaying. It is used to wash with, in all parts of the country, and, by those who know its vietues, it is preferred to the best of soap. The method of using it is merely to strip off the husk, dip the clothes into the water, and rub the bulb on them. It makes a thick lather, and smells not unlike brown soap. Al St. Nicholas, one of the Cape Verde Islands, thej make a soap from the oil of the Jatropha curcas seeds, and the ashes of the papaw tree leaf. The oil and ashes are mised in an iron pot heated over a fire, and stirred until properly blended. When cool it is rolled up into balls about the size of a six pound shot, looking much like our mottled soap, and producing a very good lather.-P. L. S. in the Journal of Applied Science.

The -iaures and Humbing Birds of Tropical Ajrerica. -At the recent meeting of the American Association for the Advancement of Science, held at Troy, N.Y., in August, 1870, Prof. James Orton reod a paper upon the "Condor and the Humming Birds of the Equatorial Region." The following abstract of the Professur's paper is taken from the October (1870) number of the American Naturalist:-
"He remarked that probably no bird is so unfortunate in the hands of the curious and scientific as the Condor. Fifty years have elapsed since the first specimen reached Europe, yet to-day the exaggerated stories of its size and strength are repeated in many of our text books, and the very latest ornithological work leaves us in doubt as to its relation to the other vultures. No one credits the assertion of the old geographer, Marco Paulo, that the Condor can lift an elephant from the ground high enough to kill it by the fall; nor the story of the traveller, so late as 1830 , who declared that a Condor of moderate size, just killed, was lying before him, a single quill feather of which was twenty paces long. Yet the statement continues to be published that the ordinary expanse of a full grown Condor, is from fifteen to twenty feet, whereas it is very doubtful if it ever esceeds or even equals twelve fect. I have a full grown male from the most celebrated locality in the Andes, and the stretch of its wings is nine feet. Humboldt never found one to measure over nine feet; and the largest specimen which Darwin saw, was eight and one half feet from tip to tip. An old male in the Zoological Gardens of Lond. 7 , measures eleren feet. It is not yet settled that this greatest of unclean birds is generically distinct from the other great vultures. My own observation of the structure and habits of the Condor, incline me to think it should stand alone. Associated with the great Condor is a smaller vulture, having brown or ash-colored plumage instead of black and white, a beak wholly black instead of black at the base and white at the tip, and no caruncle. In inhabits the high altitudes, and is rather common. This was formerly thought to be a distinct species; but lately ornithologists have with one accord pronounced it the joung of the Sarcoramphus gryphus-a conclusion which the speaker did not seem wholly to endorse.

As to the royal Condor, Professor Orton offered the following observations, either new or corroborative: Its usual habitation is betreen the altitudes of ten thousand and sisteen thousand feet. The largest seem to make their home around the volcano of Cayambi, which stands esactly on the Equator. In the rainy season they frequently descend to the coast, where they may be seen roosting on trees; on the mountains they rarely perch, but stand on the rocks. They are most commonly seen around vertical cliffs, perhaps because their nests are there, and also , because cattle are likely to fall there. Flocks are never seen
except around a large carcass. It is often seen singly, soaring at a great height in vast circles. Its flight is slow. It never flaps its wings in the air, but its head is always in motion as if in search of food belows. Its mouth is leept open and its tail spread. To rise from the ground it must needs run for some distance; then it flaps its wings three times and soars away. A narrow pen is therefore sufficient to imprison it. In walking the wings trail on the ground and the head takes a crouching position. Though a carrion bird it breathes the purest air, spends much of its time soaring three miles above the sea. Humboldt saw one fly over Chimborazo. I have seen them sailing at one thousand feet above the crater of Pichincha. Its gormandizing poreer has hardly been overstated. I have known a single Condor, not of the largest size, to make away in one week with a calf, a sheep, and a dog. It prefers carrion, but will sometimes attack live sheep, deer, dogs, ete. The cyes and tongue of a careass are the farorite parts and first devoured; next the intestines. I never heard an authenticated casc of its carrying off children, nor of it attacking adults, except in defence of its cergs. In captivity it will eat cverything cxcept pork and fried or boiled meat. When full fed it is exceedingly stupid, and can be caught by the hand; but at other times it is a match for the stoutest man. It passes the greater part of the day sleeping, scarching for prey in the morning and evening. It is seldom shot (though it is not invulnerable as once thought), but is generally caught in traps. The only noise it makes, is a hiss like that of a goose-ithe usual tracheal muscle being absent. It lays two white ergss on an inaccessible ledge. It makes no nest proper, but places a few sticks around the eggs. By no amount of bribery could I tempt an Indian to search for Condor's eggs, and Mr. Smith, who had hunted nearly trelve years in the Quito Valley, was never able to get sight of one. Incubation occupies about sewen weeks, ending in April or May (in Patagonia much carlier, or about February.) The young are scarcely covered with dirty white down, and are not able to fly until nearly tro years oid. D'Orbigny says they take the wing in about a month and a half after being hatched, a manifest error, for they are then as downy as goslings. It is five months moulting, and while at that stage when its wings are useless, it is fed by its companion. As may be inferred the moulting time is not uniform. Though it has neither the smelling powers of the dog (as proved by Darwin), nor the bright eyes of the eagle, someliow
it distinguishes a carcass afar off. He described in full the appearance of the Condor, remarking that the female is smaller than the male, an unusual circunstance in this order, the feminine engles and hawhs being larger than their mates.

Professor Orton next spoke of the Fumming Bird, of the habits and cconomy of which our knowledge is very meagre. The relationship between the genera is not clear, and one species is no more typical than another. The only well marked divisions we can discover, are those adopted by Gould and Gray, the Pherthornithine and Polytmines. The former are dull colored and frequent the dense forests. They are more numerous on the Amazon than the other group; and I know of no specimen from the Quito Valley, or from an altitude above ten thousand fect. Their nest are long, covered with lichens, lined with silk and hung over water courses. Tlie latter comprises the vast majority of the Inumming Birds, or nearly ninc-tenths. They delight in sunshine, and the males generally are remarkable for their brilliant plum:rge. Their head-guarters seem to be near New Granada; some species are confined to particular volcanoes, or an area of a few miles square. Of the fur hundred and thirty known species of IIumming Birds, thirty-five are found in and around the valley of Quito, thirty-two on the Pacific slope, and seventeen on the Oriental side of the Andes, making a total of eighty-four, or about one-fifth of the fimily within the Republic of Ecuador. If the wanton destruction of Humming Birds for mere decorative purposes, continues for the next decade, as it has during the last, several genera may become utterly extinct. This is evident when we consider that many a genus is represented by a single species, which species has a rery circumscribed habitat, and multiplies slowly, producing but tro exgs in a year. He noticed one fact in regard to the nests of Ilumming Birds, which he could not explain. Our northern hmmer glues lichens all over the outside; so do a number of species in Brazil, Guiana, cte. But in the valley of Quito moss invariably is used, theugh lichens abound. A similar variation is seen in the nests of the chimney swallow-our species building of twigs glued together with saliva, while its Quito representative builds of mud and moss. The time of incubation at Quito is twelre days, and there is but one brood in a year."

MISCELLANEOUS.

On me Comparative Steadiness of tine Ross and the Jackson Microscope-Stands.- In most of the older Microscopes the Body was a fisture, and the focal adjustment was obtained by giving motion to the Stage. This plan, however, was very soon abandoned when the improvement of the Microscope, in its mechanical as well as its Optical arrangements, was seriously taken in hand by men of real constructive ability; and the Stage being made a fixture, two different modes were adopted for supporting and giving motion to the Body, of one or the other of which nearly all the different patterns devised by our now numerous makers may be regarded as modifications. The one in which the Body is attached at its base only to a transverse Arm, borne on the summit of a racked stem, I have elsewhere terned the Ross model; not because Mr. Ross could in any sense be considered its inventor, but merely because he was among the first to cmploy it, and his original patterns are now in general use, with extremely little modification. The other, in which the Body, having the rack attached to it, is supported for a great part of its length on a solid Limb, to the lower part of which the Stage is fixed, may with more propriety be distinguished as the Jackson * model; sinee it was originally devised by Mr. Jackson, and was thenceforth almost uniformly adopted by the Firm which may be considered as the representative of his ideas.

It has always appeared to me that the Jackson model is so obviously preferable mechanically, that if it had been introduced before the Ross model had come into use, it would have been the one more generally adopted; and having lately had an opportumity of comparing the performance of two instruments, one constructed on the Ross and the other on the Jackson model, under peculiarly trying circumstances, and having found my previous opinion most fully confirmed, I have thought it well to bring my experience in this matter before those whom it most especially concerns, namely, Microscope-makers and practical

[^23]Microscopists. In order that the bearing of that experience may be rightly understood, it will be desirable in the first instance to examine the conditions on which tremor of the Microscopie image depends.

When the building in which the Microscopist is at work is thrown into vibration as a whole, as by the passage of a heavilyladen cart in the strect outside,-or the floor of the room in which he is seated is made to vibrate by the tread of a person crossing it,-the Microseope and the observer move together; and if the frame of the Microscope were perfectly rigit, there would be no tremor of the image. For this tremor is the result, not of the vibration of the Microscope as a whole, but either (1) of the difference between the vibration of the Body as a whole and that of the object on the Stage; or (2) of the difference between the vibration of the tro extremities of the Body, the ocular and the objective.

Now it scarcely seems to me possible to conceive a method of construction which should be more favourable to this differential vibration, especially at the ocular end of the Body, than that which is adopted in the Ross model. The long tubular body, fixed only at its base, is peculiarly subject to it; and although the oblique stays with which it is sometimes furnished diminish the vibrations of the tube, they by no means prevent it. The transverse arm and the stem which bears it, each have a vibration of their own; and it is obvious that the nearer to the fixed point of the whole system-which, in this arrangement, is the part of the racked Stem embraced by the tube that carries the Stage-flexure takes place, the greater will be the vibration of the Eyepiece, which is at the greatest distance from that fixed point. The only mode in which this vibration can be kept in check, is the giving great solidity to the Stem, the Arm, and the Body, especially the tro former; and this, while objectionable ou account of the cumbrousness which it imparts to the Micros-cope-stand, is by no means effectual for its purpose; as every Microscopist knows to his cost, when using very high porers under any condition but that of the most perfect stillness of the support.

On the other hand, in the Jackson model, the support of the Body along a great part of its length reduces to a minimum the vibration of the tube, and the consequent differential vibration of the eye-piece; and eren in those modifications of it in which the
tube has but a short bearing, as the support is given to it in the middle of its length, iustead of at its lower extremity; the vibration equally affects its ocular and its objective extremities. The form of the Limb makes the Body much less liable to vibration as a whole, than when supported on the transverse Arm and vertical Stem of the Ross model; and as there is no fixed pois's from which vibration can commence, inereasing in extent with the distance from that point, the Body and Stage are much more likely to move together, such motion imparting no tremor to the image.

In the "Porcupine" Expedition for the Exploration of the Deep Sea, in which I took part last summer, microseopis inquiry had to be carried on under conditions very different from those which obtain on shore. When our ship was lying-to under sail, even if the swell was sufficient to produce considerable pitching and rolling, the motion, being imparted equally to the Mieroscope as a whole and to the Ubserver, did not produce any tremor of the image; and the only difficulty lay in the maintenance of the observer's own position, which was most effectually sccured by firmly grasping the leg of the table (which was fixed to the floor of the cabin) between his knees. When the ship was going under "casy steam," with either a fair wind or a light contrary breeze, there was enough general vibration to produce a considerable differential vibration in any Mieroscope liable to it, and thus to occasion a decided tremor in the image even when only moderate powers were employed. But when we were steaming with full power against a head-sea, the general vibration became so great as to be the severest test of the mechanical arrangements of our Microscopes. Now, it happened that whilst my own instrument-a portable Binocular Microscope weighing less than sever pounds, which is my usual travelling companion-is constructed on the Jackson model, Professor Wyville Thomson was provided with an instrument of about the same scale, but heavicr by some pounds, made upon the Ross model; and we thus had an opportunity of fairly testing the tro plans of construction under circumstances peculiarly critical. The difference in their performance was even more remarkable than I had anticipated. I found that I could use a 1 -4th-inch objective on my own Microscone, with an even greater freedow from tremor in the image than I could use a $2-3 \mathrm{rds}$-inch objective on Professor Wyville Thomson's. In fact the image "danced" very
perceptibly in the latter, even when the 12 -inch objective was in use.

Now I purposely abstain (for obvious reasons) from naming the Makers of these two instruments. But I think it well to say this much, in order to mect the possible objection, that the difference lay rather in the workmanship of the two instruments than in their plan of construction,- that the advantage, if any, lay on the side of the Ross model. And my own very decided conviction is, that the adoption of the principles of the Jackson model would be decidedly advantagcous, alike for first class Microscopes, in which the steadiness of the image when the highest powers are being employed ought to be a primary consideration,-for those second-class instruments, which are iutended, at a less cost, to do as much of the work of the first-class as they can be made to perform, portability being here of essential importance,-and for those third-class instruments in which everything has to be reduced to its simplest form, so as to permit the greatest reduction in their cost. - Dr. W. B. Curpenter, in Transactions of the Ruyal Microscopic Society.

- Mr. J. Gwyn Jeffreys, who had just returned from the snuth of Europs, after having accomplished his part of this year's deep-sea exploring expedition in II.M.S. Pursupinc, stated that in this cruise he had dredged across the Bay of Biscay, and along the coasts of Spain and Portugal to Gibraltar. The weather had not been favourable; but the depth reached was 1,095 fathoms. A large enllection of Mollusea, Echinoderms, Corals, Sponges, and Mydrozon, had been made. Inalf a-dozen specimens of a beautiful new l'entacrinus (l^{\prime}. wyville-thomsoni) had been taken in 795 fathoms depth, between Vigo and Lisbon. Both Northern and Mediterranean species of shells were met with.
- Congress has granted $\$ 30,000$ for the erection of a Government Winter Garden, either at New York or Washington, somewhat similar to that at K cw , but on a smaller scale. This will partake partly of the nature of an cconomic garden, in which useful plants can be raised and then disseminated far and wide throughout the States.

Published, April 10, 1871.

[^0]: *Chemical Techuology, rol. ii, Article "Solub'e Phosphates."
 \dagger First discorered by Dr. 'S. Sterry Hunt, who, in 1854, showed the shells of Liugula to have a composition identical with the bones of vertebrates. (Silliman's Journal [2], vol. xvii., p. 235.)
 \ddagger Report South Carolina Phosphates, 1868 About 30 per cent. organic matter lost by decomposition, while the recent Lingula examined by 1 dr . Hunt had previously lost 35 per cent. of organic matter by calcination.

[^1]: - This information was kindly furnished by Wm. T.. Patterson, Lsq, Secretary to the Mrontreal Board of Trade.

[^2]: * Agricultural Lectures, Letters, etc., by Baron Liebig.

[^3]: * Cauada Geological Survey Reports, 1849 and 185. ; also, in abridgement, Report of 1863, pp. 636-642.
 \ddagger Gool. Surres Report, 1857, pp. 218-229; and Canadian Naturalist, fol. Iv.

[^4]: \dagger From Horace's epithet " vilior algâ," it is probable that the Romans mere not aware of the fertilizing properties of sea-reed The stigma implied can no louger apply to the source of so many valuable salts, and of so much productiveness when used as a manure.

[^5]: * See the works of Arthur Young, published abont 1770.
 \dagger Fide Richardson and Watt's Chemical T'echnology, vol. ii., article "Soluble Phosphates."
 \$ Had Shakespeare lived in the nincteenth century, there would hare been an awful significance in the words-" Cursed be he that moves my bones!"
 § Vide Liebig's Lectures on Agricultural Chemistry.
 || Fide Specifications for British Patents, 1842. (No. 9,253, May 23rd.)

[^6]: *IRchardson and Watt's Chemical lechnology; rol, ii., Article "Soluble Phosphates."
 t Vide Geol. of Canada, 186:3, and .Report of Dr. T. S. Munt, for 1:66.
 \ddagger Reports of Dr. T. S. IIunt, 1848, p. ; 1863, p. ; 1506, p. .
 neferences to other labours in this subject will be found in the abore-

[^7]: * Brit. Assoc. Rep. 1 F60.

[^8]: Joumal, [2] xxriii., 1869.
 \dagger Tide Chemistry of Natwal Waters: by Dr. I'. Sterry Munt, in Sillimans Jommal, 1565.

[^9]: * R. Agric. Soc. Joum. Eng. (xi. 68-74 xii. 317-380; xiii. 123-140.)
 † Brit. Assoc. Report, 1849.

[^10]: * Tide Gcology of Canada, 1863, pp. 561-56.4.
 i Portions of a fine sea-green prismatic crystal of the Burgess apatite were used in these trials. For its composition, see Analgsis on p. IS.

[^11]: ; J. fur Prakt. Chim. xxxir., JS̃̃; also Berzelius, Jaluresb, xxir., 393.

[^12]: * Compt. Irend. de l'dead. des Sciences, Fel. 1, 1 E6s.
 † Quoted by Johnson, in the paper previously cited.

[^13]: T. Burgess, Canada.-Broome. IV. Tokorain, Ural.-Pusirevski.

 Ir. Krarexoé, Norway-Volekler. V. Estmamadura, Spain.-Danienr.
 In. Faldigl. Tryol-Jos.
 VI. Hurdstown, New Jersey, V.S.
 I.. II., ILI., and LV., Fluor-Apatites.
 -Jackson.
 II. Chlor-Apatite. V. Phosphorite

[^14]: * Each of which contains 236 lbs.

[^15]: This irritates the workmen's langs so greatly that they are in the babit of using rude respirators. formed of sponge. It is much more obmoxious in fogry, still weather, than when any breeze is blowing, which soon frees the works from the most penetrating and disagreeable odour.

[^16]: * 40 parts of SO_{3} will produce from $\hat{N} \mathrm{~N}$. Cl. $36: 5$ parts of $\mathrm{II} . \mathrm{Cl}$.
 t Corrosion of chambers or vessels, and accessibility of the acid must in all cases bo taken into account.

[^17]: * Sawdust, prerionsly saturated with sulphuric acid, has been patented, by Messrs. Sugden and Maryatt, for the absorption of ammonia from coal-gas. When exhausted, it contains from 40 to 60 per cent. of sulphate of ammonia, and is ralued at from $\$ 25$ to $\$ 30$ per ton of $2,240 \mathrm{lbs}$.-Vide Report on Industrial Chemistry (Paris Expusition) 1867, by J. Lawrence Smith, C. S. Commissioner.

[^18]: \dagger Berzelius Jahresbericht.

[^19]: * A male ALurca which I obtained in Xerrfoundland differs from type specimens in being of an uniform dark brown on the back, without the ordinary tranrerse bars; in its smaller size (barely 19 inches; wing 10; tarsus 1.10); legs and fect blue; inides white; culmen less conver ; aud by haring a broad conspichons white band on the rings. Mr. G. R. Gray and Profesion Xewton are unable to refer the specimen to any other species than MI. americana.-H. R.

[^20]: * Professor Nerrton is of opinion that the American cider differs from the Europeau far more strikingly than do some other so-called American species of ducks (especially the genus Celcmia), and I quite agree with him.-II. R.

[^21]: ＊Prof．Eaton was kind enoigh to trace ont the exact locabity for me
 a 1）r．Ifector＇s joumal m the＇Blue Dook＇on Capt．Palliser＇s Expedition．＇ This station is probalby its northern limit．In the U．S．it oeemes on bot？ sides of the liocky mountains and as fire sonth as Arizona（ITerb．Eatom） and New Mexico（Ch．Wright nos．81s，？32i）．It is the Ch．vostita of Hook．Fl．Bor．Am．ii，p． 26.1 and Sp．Fil．ii，p．9S，the Ch．lanuginosa of －Gray＇s Mramal．

[^22]: - It is somewhat singular that this species which is common throughout Prof. Chapman's ana Dr. Gray's limits, coming right up to our borders

[^23]: * In the last cedition of my '3ficroscone' I inadvertently designated this as the Lister model, having supposed it to hare been derised by Mr. J. J. Iister.

