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.

The course of algebra embodied in the present work is substantially

that pursued by students in our besi preparatory and scientific schools

and colleges, with such extensions as seemed necessary to afford an

improved basis fur more advanced studies. For the convenience of

teachers the work is divided into two parts, the first adapted to well-

prepared beginners and comprising about what is conunonly required for

admission to college ; and the second designed for the more advanced

general student,- As the w^rk deviates in several points from the models

most familiar to our teachers, a statement of the principles on which it is

constructed may be deemed appropriate.

One well-known principle underlying the acquisition of knowledge is

that an idea cannot be fully grasped by the youthful mind unless it is

presented under a concrete form. Whenever possible an abstrart idea

nmst be embodied in some visible representation, and all general theorems

must be presented in a variety of special forms in which they may be

seen inductively. In accordance with this principle, numerical exam-

ples of nearly all algebraic operations and theorems have been presented.

For the purpose of illustrauon, numbers have been preferred to literal

synabols when they would serve the purpose equally well. The relations

of positive and negative algebraic quantities have been represented by

lines and directions from tlie beginning in order that the pupil might be

able to give, not only a numerical, but a visible, meaning to all algebraic

quantities. Should it appear to any one that we thus detract from the

generality of algebraic quantities, it is sufficient to reply that the system

is thiC same which mathematicians use to assist their conceptions of

advanced algebra, and without which they would never have been able

to grasp the complicated relations of imaginary (juantities. Algebraic
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operations with pure numbers ure nuido to precede the use oi" aymbols,

;iii(l tii(! latter are introdnc(!(l only aCtor tiir pupil has had a certain

amount of familiarity with the distinction between algebraic and numer-

ical opcrationn.

Another, but, unfortunately, a less familiar fact is, that all mathematical

conceptions require time to become engrafted upon the mind, and the

more time the greater their abstruseness. It is, the author conceives,

from a failure to take account of this fact, rather than from any inherent

defect in the minds of our youth, that we are to attribute the backward

state of mathematical instruction in this country, as compared \vith the

continent of Europe. Let us take for instance the case of the student

commencing the calculus. On the system which was almost universal

among us a few years ago, and which is still widely prevalent, he is con-

fronted at the outset with a number of entirely new conceptions, such

as those of variables, functions, increments, infinitesimals and limits.

In his first lesson he finds these all combined with a notation so entirely

different from that to which he has been accustomed, that before the

new ideas and forms of thought can take permanent root in his mind,

he is through with the subject, and all that he hsis learned is apt to vanish

from his memory in a few months.

The author conceives that the true method of meeting this difficulty is

to adopt the French and Grcrman plan of teaching algebra in a broader

way, and of introducing the more advanced conceptions at the earliest

practicable period in the course Accordingly, the attempt is made in the

present work to introduce each advanced conception, disguised perhaps

under some simple form, in advance of its general enunciation and at as

early a period as the student can be expected to understand it. In doing

this, logical order is frequently sacrificed lu the exigencies of the case,

because there are several subjects with which a certain amount of famil-

iarity must be acquired before the pupil can even clearly comprehend

general statements respecting them.

A Aird feature of the work is that of subdividing each subject as

minutely as possible, and exercising the pupil on the details preparatory to

combining them into a whole. To cite one or two instances : a difficulty

which not only the beginner but the expert mathematician frequently

meets is that of stating his conceptions in algebraic language. Exercises

in such statements have therefore been made to precede any solution of

i
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problems. In peiiprnl each principle which i,s to he prPHentod or ut*v(\ is

Htiitcd Hiiij?ly, and the pupil irt practiced u|»'tn it before proceeding to

uiiotlicr.

riulijccts have tor the most part been omitted which do not find aj)pli-

cation either in the n\ k itself or in .subaeciuent partH of the usual course

o? mathematics, or whic>i do not conduce to a uiutheniatical t'-aining.

Sturm's Theorem has been entirely omitted, and a more sinipk^ process

substituted. The subject of the greatest common divisor of two polyno-

mials has been postponed to what the author considers its proper place,

in the general theory of equations. It has, however, been presentv^d in

such a form that it can be taught to puiuls preparing for colleges where

it is stili re(piired for admission.

Thoroughness at each step has been aimed at rather than multiplicity

of subjects. It is, the author :'onc(nves^ a gi'eat ami too common

mi.^take to present a matheniatioal subject to the mind of tlie student

wtrkout sufTicient f.iliioss of explanation a.nd variety of illustration to

enable hini to comprelicnd and iip|i!y it. II' lie has not time to master a

complete course, it is bette" to omit entirely what is least necessary th.an

to gain time by going rapidly over a great number of things. Some

hints to those who may not liave time to master the whole work may

there.' )'v be acceptable.

Pa.t T is essential to every one desiring to make use of algebra. Book

VIII, especially tlic concluding sections on notation, is to be thoroughly

mastered, before going farther, as forming tlie foundation of advanced

alf^ebra ; and affording n very easy and valuable disciplire in the language

vl' mathematics. Afterward, a selection may bo made according to cir-

cumstances. The student who is pursuing the subject for the sole

purpose of liberal training, and without intending to advance beyoml it,

will find the theories of numbers and the combinatory analysis most,

worthy of stud^ . The theory of probabilities and the method in which

it is applied to such practical questions as those connected with insurance

will be of especial value in training his judgment to the affairs of life.

The student who intentls to take a full course of mathematics with a

view of its application to physics, engineering, or other subjects, may, if

necessary, omit the book on the theoiy of numbers, and portions of tlu'

chapter on the snmmatiou of series. Fiuiciions and the fiuictiiinal notation,

the doctrine of limits, and the general theory of equaliour will claim his
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especial attention, while the theory of iiiaginary qnnntitirs will be studied

iiiJiiiily to secure thoroufjhncss in subsequent parts of his course.

As it lifus frequently been u part of tlie author's duty to ascertain what

is really left of a ;;uurse of matliematical study in the minds of those

who have been through college, some hints on the best methods of

study in conncjction with the present work may bo excused. If askeil

to point out the greatest error in our usual system of mathematical

instruction from the conunon school upward, he would reply that it con-

sisted in expending too much of the mental power of the student upon

j)roblem3 and exeicises above Iiis capacity. With tiie exception of tho

lundamental routine-operations, problems and exercises should be confined

to insuring a proper understanding of the principles involved: this onco

ascertained, it is better that the student should go on rather than expend

time in doing what it is certain he can do. Problems of some difficuity

are found among the exercises of the present work; they are inserted

rather to give the teacher a good choice from which to select than to

require that any student should <lo them all.

It would, the author conceives, be found an improvement on our usual

system of teaching algebra and geometry successively if the analytic and

the geometric courses of mathematics were pursued simultaneously. The

former would include algebra and the calculus, the latter elementary

geonietiy, trigonometry, and analytic geometry. The analytic course

woulil then furnish nuithods for the geometric one, and tlie latter would

furnisli ;ipi)lications and illustrations for the analytic one.

The Key to the work, which will be issued as soon as practicable, will

contain not only the usual solutions, but. tho explanations and demonstra-

tions of the less familiar theorems, ami a number of additional problems.

The author desires, in conclusion, to express his obligation tu the many

frienils who have given him suggestions respecting the work, and espe-

cially to Professor J. Howard Gore of the Columbian University who

has furnished solutions to most of the problems, and given the benefit of

his experience on many points of detail.
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BOOK I.

rilE ALGEBRAIC LANGUAGE,

CHAPTER I.

OF ALGEBRAIC NUMBERS AND OPERATIONS.

General Definitions.

1. Definition. Mathematics is the science which

treats of the relations ofmagnitudes.

The magnitudes of matliematics are time, space, force,

vahie, or other things which can be thought of as entirely

made up of parts.

3. Bef. A Quantity is a definite portion of any
magnitude.

Example. Any definite number of feet, miles, acres,

bushels, years, pounds, or dollars, is a quantity.

3. Def. Algebra treats of those relations which

are true of quantities of every kind of magnitude.

4. The relations treated of in Algebra are discovered

by means of numbers.

To measure a quantity by number, we take a certain por-

tion of the magnitude to be measured as a unit, and express

how many of the units the quantity contains.

Remark. It is obviously essential that the quantity and

its unit shall be the same kind of magnitude.

5. Def. A Concrete Number is one in which the

kind of quantity which it measures is expressed or

understood ; as 7 miles, 3 days, or 10 pounds.
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C>. Def. An Abstract Number is one in which no
particular kind of unit is expressed ; as 7, 3, or 10.

lluMAiiK. An al)stract number may be considered as a

concrete one expressing a certain number of u.iits, ivitliout

respect to the kind of units. Thus, 7 means 7 units.

Algebraic Numbers.

7. In Arithmetic, the numbers begin at 0, and in-

crease without limit, as 0, 1, 2, 3, 4, etc. But the

quantities we usur^ly measure by numbers, as time

and space, do not reully begin at any point, but extend

without end in opposite directions.

For example, time has no beginning and no end. An
epoch of time 1000 years from Christ may be cither 1000 years

after Christ, or 1000 years before Christ.

A heavy body tends to fall to the ground. A body which

did not tend to move at all when unsupported would have no

weight, or its weight would be 0. If it t..nded to rise upward,

like a balloon, it would have the opposite of Aveight.

If we have to measure a distance from any point on a

straight line, \\<i mp.y measure out in either direction on the

line. If the one direction is east, the other will be west.

One who measures his wealth is poorer by all that he owes.

If he ( wes more than he possesses, he is worth less than

nothing, and there is no limit to the amount he may owe.

8. In order to measure such quantities on a uni-

form system, the numbers of Algebra are considered as

increasing from in two opposite directions. Those in

one direction are called Positive; those in the other

direction Negative.

9. Positive numbers are distinguished by the sign

-f, plus ; negative ones by the sign — , minus.

If a positive number measures years after Christ, a negative

one will mean years before Christ.

If a positive number is used to measure toward the right, a

negative one will measure toward the left.
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If a positive numl)cr measures weight, the negative ouo

will imply levity, or tehdency to rise from the earth.

IE a positive nnniber measures property, or credit, the nega-

tive one w ill imi)ly debt.

10. The scries o^ algebraic numbers will therefore

be considered as arranged in the following way, the

series going o'lt to infinity in both directions.

-S» NEGATIVE DIRECTION.

Before.

Downward,
Debt,

etc.

POSITIVE DIRECYION. f^"

After.

Upward.
Credit,

etc.

etc. -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, etc.

Rem. It matters not which direction we take as the

positive one, so long as we take the opposite one as

negative.

If we take ;me before as positive, ti!he after will be nega-

tive ; if we take west as the positive direction, east will be

negative; if we take debt as positive, credit will be negative.

11. Positive and negative numbers may be conceived

as measuring distances from a fixed point on a straight

line, extending indefinitely in both directions, the dis-

tances one way being positive, and the other way
negative, as in the following scheme :

*

etc. —7, —6, —5, -4, -3. -2, -1, 0, +1. +2, +3, +4, +5, +6. +7 , etc.

I i I I I I I

I

I i I I I I I

In this scale, the distance between any two consecu-

tive numbers is considered a unit or unit step.

13. Def. The signs + and — are called the Alge-

braic Signs, because they mark the direction in which
the numbers following them are to be taken.

* The student sliould copy this scale of numbers, and have it before

him in studying the present chapter.
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The sign 4- may bo omitted before positive mimbers, Avhcn

no jimbigiii'y is thius produced. The mimbcrs 'I, 6, Vi, taken

ulone, signify 4-3, +5, 4-1;:^. But the negative sign must

always be written wiien a negative number is intended.

13. Def. One number is said to be Algebraically-

Greater tlian another when on tlie preceding scale it

lies to the positive (right hand) side. Thus, \

— 2 is algebraically greater than — 7
;

" "
.
" " -2;

6 " " ' « « -5.

Algebraic Addition.

14. Def. In Algebra, Addition means the combi-

nation of quantities according to their algebraic signs,

tlie positive quantities being counted one way or added,

and negative ones the opposite way or subtracted.

15. Def. The^lgebraic Sum of several quantities

is the surplus of the positive quantities over the nega-

tive ones, or of the negative quantities over the positive

ones, according as tlie one or the other is the greater.

The sum has the same algebraic sign as the prepon-

derating quantity.

Example. Tlie sum of

+ 7 and -7 is 0;

+ 9 " _7 " + 2;

+ 5 " _7 " — 2.

The sum of several positive numbers may be represented

on the line of numbers, § 11, by the length of the line formed

by placing the lengths represented by the several numbers

end to end. The total length will be the sum of the partial

lengths.

If any of the numbers are negative, the algebraic sum is

represented by laying their lengths off in the opposite direction.

Example 1. The algebraic sum of the four numbers 9,

— 7, 1, — G, would be represented thus

:

J

t
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ALGEBRAIC ADDITION.

+ 9

ET

Here, starting from 0, we measure 9 to tJie right, then 7

to the left, tlien 1 to the riglit, then G to the left The result

would be 3 steps to the left from 0, that is, — 3, Thus, — 3

is the algebraic sum of +9, —7, +1, and — 6.

Ex. 2. If we imagine a person to walk back and forth

along the line of num! jrs, his distance from the starting-

point will ahvays be the algebraic sum of the separate distances

he has walked.

Ex. 3. A man's wealth is the algebraic sum of his posses-

sions and credits, the debts which lie owes being negative

credits. If he has in money SIOOO, due from A 11200, due to

X 1500, due to Y $350, his possessions would, in the language

of algebra, be summed up as follows

:

Cash, . . . . + $1000

Due from A, .....+ 1200

Due from X, .... — 500

Due from Y, .... — 350

Sum total, . . . . + $1350

[In the language of Algebra, the fact that he owes X $500

may be expressed by saying that X owes him — $500.]

16. Def. To distinguish between ordinary and
algebraic addition, the former is called Numerxced or

Arithmetical addition.

Hence, the numerical sum of several numbers
means their sum as in arithmetic, without regard to

their signs.

17. Rem. In Algebra, whenever the word su??i

is used without an adjective, the algebraic sum is

understood.
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Alfjobrjiic Subtraction.

18. Mnnnraiultim of arithmcliral d'Jlnitions andopcraliuns.

'I'lio Subtrahend is the (|iiiuitity tj be subtnicted.

'I'lie Minuend is tlic (iiuintitv ^"^ni which the subtnihcnd
is taken.

The Remainder or Difference is whiit is left.

If we subtract 4 from 7, the remainder 3 is tlie number of

unit steps on the scale of numbers (§ 11) from +4 to +7.
Tbirf is true of any arithmetical ditl'erenee of numbers. In

Algebra, the oi)eration is generalized as fc^llows:

19, Dcf. The Algebraic Difference of two num-
bers is represented by the distance from one to the

other on the scale of numbers.

The number from which we measure is the Subtra-

hend.

That to which we m(\isure is the Minuend.
If the minuend is algebraically the greater (§ 13),

the difference is positive.

If the minuend is less than the subtrahend, the dif-

ference is negative.

In Arithmetic we cannot subtract a greater number from a

less one. But there is no such restriction in Algebra, because

algebraic subtraction does not mean taking away, but finding

a ditference. However the minuend and subtrahend may bo

situated on the scale, a certain number of spaces toward the

right or toward the left will always carry us from the subtra-

hend to the minuend, and these sjjaces make \\\} the difference

of the two numbers.

30. The general rule for algebraic subtraction may be

deduced as follows : It is evident that if we pass from the

subtrahend to on the scale, and then from to the minuend,

the algebraic sum of these two motions will be the entire space

between the subtrahend and minuend, and will therefore be

the remainder required. But the first motion will be equal to

the subtrahend, but ]K)sitive if that quantity is negative, and

vice versa, and the second motion will be equal to the minuend.

4
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Hence the rcnuiiiKlcr will be found by c'han<(iii,c: the al<^('bniio

sign of the subtruhoud, and thou adding it algebraically to tho

mi'uicnd.

EXAMPLES.
Subtracting +5 from + 8, the ditlerence is 8 — 5 = 3.

+ 8 + 5,
«< 5 _ 8 = - 3.

+ 8 -5, <' — 5 — 8 = -13.
-8 5,

*' 5 -f 8 = + 13.

+ 13 0, " - 13.

-13 0, + 13.

21. By comparing algebraic addition and subtraction, it

will bo soon that to subtract a positive number is the same

thing as to add its negative, and vice versa. Thus,

To subtract 5 from 8 gives the same result as to add — 5

to 8, namely 3.

To subtract — 5 from 8 gives 8 -f- 5, namely 13.

Hence, algebraic subtraction is equivalent to the

algebraic addition of a number with, the oi)posite

algebraic sign. Algebraists, therefore, do not consider

subtraction as an operation distinct from addition.

Algebraic ^lultipHcatioii,

22. Memorandum of arithmetical definitions.

The Multiplicand is the quantity to be multiplied.

The Multiplier is the number by which it is multiplied.

Tlio result is called the Product.

Factors of a number are the multiplicand and multiplier

which produce it.

23. To multiply any algebraic quantity by a posi-

tive whole number means, as in Arithmetic, to take it a
number of times equal to the multiplier.

Thus, 4x3= 4 + 4 + 4=4-12;
— 4 <3 = -4 — 4 — 4=-12.

The product of a negative multiplicand by a positive

multiplier will therefore be negative. . .
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24. If the multiplier is nop^tativo, the sign of tlio

product will be the opposite of what it would be if tiie

iimltiplior were positive.

Tims, +4 X -3 = -12;
'—4 X -3 = 4- 1^.^

The product of two negative factors is therefore

positive.

25. Tlio most simple way of mjistoriii^ tlio use of jil^t'lu-iiio

si^ns in multiplication is to think of tho ni^^ii — us incaniti;^

opposite in direction. Thus, in §11, —t is opposite in

direction to + •!> the direction being thiit from 0. If we mul-

tiidy this negative factor by a negative multiplier, the direction

will he the npposi/c of negative, that is, it will he positice. A
third negative factor will make tho product negative again, a

fourth one positive, and so on. For example,

-3 X -4 = +13;
—2 X —3 X — 4 = -3 X +12 = — 24;

—3 X —2 X -3 X —4 = -3 X -24 = + 72

;

etc. etc.

Hence,

26. TJicorem, The continued product of an even

number of negative factors is jiositive ; of an odd nuni-

"ber, negative.

Rem. Multiplying a number by —1 simply changes

its sign.

Thus, +4 X — 1 = — 4;
-4 X -1 = + 4.

EXERCISES.

Find the algebraic sums of the following quantities

:

1. 4 — G + 12 — 1 — 18.

2. _ G — 3 — 8.

3. _ 6 — 10 — 9 + 34.

4. Subtract the sum in Ex. 3 from the sum in Ex. 2.

5. Subtract the sum 5 — 6 + 3 — 1 — IG, from the sum

III!
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sum

6. Siiblnu't the sum 5 — G + 3 — 1 — 10, from the sum

7 _ 3 - 8 -f- 4.

7. Form the i)rofluct — 7 X 8.

8. Form the product —8x7.
9. Form the product Gx— 5x7x — 4.

10. Form the product — Gx— llx8x— 2.

11. Form the product — Ix— Ix— Ix— 1.

12. Suhtnict the 8um in Ex. 1 from the .sum iu F].\, 3, ami

multiply the remiiindcr hy the sum in FjX. 'i.

13. Suhtnict 8 from — J), — ;} from — 1, — 1 from 8, iind

lind the sum of the three remiiindcrs.

14. kSuhtnict 7 from — 9 and the reniiiiiulcr from *^, mul

multiply the result hy the i»roduct in Ex. <•

Algebniic Division.

27. Memnrnndnm of arithmetical ihlinitions.

The Dividend is the (pumtity to ho divided.

The Divisor is the numher hy which it is divided.

The Quotient is the result.

28. Rule of Signs in Division. The roquircmcnt

of division in Algebra is the same as iu Arithmetic
;

namely,

Tlie product of the quotient hy the divisor must he

cqii(d to the dividend.

In Algehra, two quantities are not equal unless they have

tliG same algehraic sign. Therefore the product,

quotient x divisor

must have the same algehraic sign as the dividend. From
this we can deduce the rule of signs in division.

Let us divide G hy 2, giving G and 3 both algebraic signs,

and find the signs of the quotient 3

:

+3x+2=+G; therefore, -f G divided by +2 gives +3.

+ 3 X — 2 = — G; *' — G '' " —2 " +3.

-3x+2=— G; " — G ** *' +2 " -3.
-3 X — 2 = 4-G; " -f-G " " —2 " -3.
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' ncnce, tlie rule of signs is the same in division as in mul-

tiplication, namely :

Like si^ns in dividend and divisor give +. Unlike

signs give —

.

EXERCISES,

Expcnte the following algebraic divisions, expressing each

result as a whole number or vulgar fraction

:

Dividend, — T + 10 — 11 + 25 ; divisor, 20 — 3.

Dividend, 12 — 3 + 15 — 10 ; divisor, 3 — 10.

Dividend, 25 — 3G + 6 — 20
;

Dividend, — 7 x — 8
;

Dividend, 50 + 8 x — 3
;

Dividend, — 24 x — 1

;

I.

2.

3-

4.

5-

6.

7-

divisor, — 3 + 8.

divisor, —8 + 4.

divisor, — 4 — 4.

divisor, — 3 x — 3.

Dividend, —13 x —10 x -— 8 ; divisor, —4x5x— G.

8. Divie: nd, — 1 x — 1

;

divisor, — 3 x — 3.

ha

US(

syi

eh

syi

in

nil

•»

CHAPTER II.

ALGEBRAIC SYM BOLS.

Symbols of Quantity.

29. Alfi:ebraic quantities may be represented by
letters of the alphabet, or other characters.

The characters of Algebra are called Symbols.

30. Def. The Value of an algebraic symbol is the

quantity which it rejiresents or to which it is equal.

The value of a symbol may be any algebraic quan-

tity whatever, positive or negative, which we choose to

assign to the symbol.

31. The language of Algebra differs in one respect from

ordinary language. In the latter, each special word or sign

I
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has a definite and invariable meaning, which every one who
uses the language must learn once for all. But in Algebra a

symbol may stand for any quantity which the writer or speaker

chooses, and his results must be interpreted according to this

mean nig.

33. The same character may be used to represent several

quantities by applying accents or attaching numbers to it to

distinguish the different quantities. Thus, the four symbols,

a, a, a", a'", may represent four different quantities. The
symbols rt'if a.,, a.^, c(i, a^, etc., maybe u.«ed to designate any

numl)er of (piantities which are distinguished by the small

number written after the letter a.

Signs of Operation,

33. In Algebra, tlie signs +, — , and x are used,

as in Aritlimetic, to represent addition, subtraction, and
multipllcaiion, these operations being algebraic, not

numerical.

34. Sf'r/ns of Addition and Subtraction. The com-
bination a-\-h means the algebraic sum of the quantities

a and h, and a — h means their algebraic difference.

EXAMPLES.

If rtj = + 4 and J = + 3, then a-^h= +7, a—h =4-1.
If « = + 5 and b = — 7, then a-\-h= —3, a—h = +12.

If a = — G and Z» = + 3, then a +b= —3, a—h = —9.

If a= — and b r= — 3, then «-f-(5> = —9, a—h = —3.

The signs of addition and sul)traction are the same as those

nsed to indicate positive and negative quantities, but the two

applications may be made without confusion, because the

opposite positive and negative directions correspond to the

opposite operations of adding and subtracting.

35. Sign of Multiplication. The sign of multipli-

cation, X , is generally omitted in Algebra, and when
different symbols are to be multiplied, the multiplier is
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written before the multiplicand witliout any sign be-

tween them.

Thus, 4a means a x ^.

ax " X X a.

^ahmy " y x m x b X a x 3.

If numbGrs are used instead of symbols, some sign of mul-

ti[)lication must be inserted between them to avoid confusion.

Thus, 34 would be confounded with the number thirtij-fuur.

A simple dot is therefore inserted instead of the sigu x

.

Thus, 3-4 = 4x3 = 13.

3-12.2 = 72.

1-2-3-4-5 = 120.

1.2-3. 4. 5-6 = 720.

The only reason why the poiut is used instead of x, is

that it is more easily written and takes up less space.

36. Division in Algebra is sometimes represented

by the symbol -r-, the dividend being placed to the left

and the divisor to the right of this symbol.

Ex. a -v-h means the quotient of a di"ided by h.

But division is more generally represented by writing

the dividend as the numerator and the divisor as the

denominator of a fraction.

Ex. The quotient of a divided by l is written y-

It is shown in Arithmetic that a fraction is equal to the

quotient of its numerator divided by its denominator ; hence

this expression for a quotient is a vulgar fraction.

37. Powers and Exponents. A Power of a quan-

tity is the i)roduct obtained by taking that quantity a

certain number of times as a factor.

Def. The Degree of the power means the number
of times the quantity is taken as a factor.

If a quantity is to be raised to a power, the result

may, in accordance with the rule for multiplication, be

4

exy

of

an(
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X, IS

expressed by writing the quantity the required number
of times.

Examples. The fifth power of a may be written

nxaxaxaxa or aaaaa
;

and the fourth power of 7, 7-7-7.7 = 2401.

To save repetition, the symbol of which the power is

to be expressed is written but once, and tlm number of

times it is taken as a factor is written in small figures

after and above it.

Thus, is written

^4 .

<( <l x\

aaaaa

7.7.7.7

XXX

Def. A figure written to indicate a power is called

an Exponent.

D(f. The operation of forming a x:)ower is called

Involution.

38. Boots. A Root is one of the equal factors

into which a number can be divided.

Def. Tlie figure or letter showing the number of

equal factors into which a quantity is to be divided is

called the Index of the root.

The square root of a symbol is expressed by writing

the sign ^/ (called root) before it.

Ex. I. V49 means the square root of 49, that is, 7.

Ex. 2. VaJ means the square root of x.

Any other root than the square is represented by
writing its index before the sign of the root.

Ex. I. v^ic means the cube root of a:.

Ex. 2. ^/x means the fourth root of a;.

Def. The operation of extracting a root is called

Evolution.

39. The operations of Addition, Subtraction, Multi-

plication, Division, Involution, and Evolution, are the

six fundamental operations of Algebra.
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40. Def. An Algebraic Expression is any combi-

nation of algebraic symbols made in accordance with

the foregoing principles.

EXERCISES.

In the following expressions, suppose

9, and com0, m = 3, 11=^ 4, 2^

« = - 7, J = - 5,

pute their numerical

Yahies.

I. a \- h -\- m {- p.

3. m — n — a — b.

5. 3a — m \- h — 2fi.

2. a + m + n.

4. n + p — m — a.

6. 'Za — 7p + 2b — m.

7. ?>)} np. 8, mncp.

9- bmn. 10. bnp.

II. ahmp. 12. 2'^abnp.

IS- am -\- 1)71. 14. am — b)i.

IS- hp — ayi. 16. Q>p + an.

17- n'^p + 7)1^1), 18. m^n — ap^.

19. a^ + V^' 20. «3 + ¥.

21. «3 _ hK 22. a^m — b^n.

23- aW — m^n\ 24. a%-^ — Wm\
25. ab^ + a^. 26. ab^ — a%.

27.
ab + mn

•

ab — 7nn
28.

ac — bp

b)i — vip

2mhi^ — 10^3 ab — mp
29. , «

p — bcm
30. m — n

In the following expressions, suppose « = 8, J = — 3, and

X to have in succession the fifteen values — 7, — 6, — 5, etc,

to +7, and compute the fifteen corresponding values of each

expression

:

a + bx

-ft-

31. x^ -{-bx {• a. 32.
bx

Arrange the results in a table, thus :

a; = -7; Expression 31 = 78
;

Exp. 32 =

X z= —Q; « " = 62
;

etc.

X = —5
;

" « = 48.

etc. etc. etc.

4

i
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CHAPTER III.

FORMATION OF COMPOUND EXPRESSIONS.

17

Fuiidaiiieiittil Principles.

41. Tlie following are two fundamental principles of

the algebraic language

:

First Principle. Every algebraic expression, how-

ever complex, represents a quantity, and may be

operated upon as if it were a single symbol of that

quantity.

Second Principle. A single symbol may be used

to represent any algebraic expression whatever.

43. When an expression is to be operated ux)on as

a single quantity, it is enclosed between pan^nthesc^s,

but the parentheses may be omitted, when no ambiguity

or error will result from the omission.

Example. Let us have to subtract h from a, and mnlti})ly

the remainder by the factor m. The remainder will be ex-

pressed by ffi — h, and if we w'rite the product of this quantity

by m, in the way of § 35, the result all be

ma — 5.

But this will mean h subtracted from mn, which is not what

we want, because it is not a, but a — b which is to be muUi-

plied by m. To express the required operations, we enclose

a — h in brackets or parentheses, and write m outside, tLi;s :

m (a — I)).

NUMERICAL EXAMPLES.

7(8-2) = 7-G = 42; but 7-8-2 = 50 — 2

12(3 +4) = 12-7 = 84.

(G +3) (2 + G) = 9.8 = 72.

(7 -4) (1-5) (2+ 7) = 3 X -4-9 = -108.
2

= 54.
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Example 2. Suppose lliat the expression a — b -\- c is to

be added to m, siibtracled Irom m, iiuiltli)Uod by m, divided

by m, raised to the third power, or have the cube root extracted.

The results will be written:

Added, ^o m,

Subtracted from m,

Multiplied by m,

Divided by w,

Cubed,

Cube root extracted.

m -\- {a — b -{- 6').

m— {a — b -\- c).

7)1 {a — b + c).

{a — b-\-c)

{a — b + cy.

\^{a — b + c).

There are two of these six cases in which the parentheses

are unnecessary, although they do no harm, namely, addition

and division, because in the case of addition,

m + [a — b -\- c)

is the same as m -\- a — b -{ c.

[For example, 10 + (8 - 5 + 4) = 10 + 7 = 17,

and 10 + 8 — 5 + 4 = 17 also.]

Again, in the case of the fraction, it will be seen that it has

exactly the same meaning with or without the parentheses.

43. An algebraic expression having parentheses as

a part of it may be itself enclosed in parentheses with

other expressions, and this may be repeated to any
extent. Each order of parentheses must then be made
larger or thicker, or different in shape to distinguish it.

Examples, i. Suppose that we have to subtract a from

b, the remainder from c, that remainder from d, and so on.

We shall have,

Eirst remainder,

Second,

Third,

Fourth,

Fifth, /.

b — a.

c — {b — a),

d —[c — {b — a)],

e — \d — [c — {b — a)]\.

b-\d-[c-{b-aml

qu|

ret

W
wi|

•v an

i fr(

to
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2. Suppose that we have to muUiply the dilTcrence of ilie

quantities a and b hy p and subtract the product from m. The
result or remainder will be

m —p{a — li).

Suppose now that we have to multiply this result by p-\-q.

We must enclose both factors in parentheses, and the result

will then be written :

{p + q) [ni -p (« - 5)].

EXERCISES.
In the following expression?, suppose

a = — 1, i = 3, 7n =. b. a; = — 3, — 1, + 1, + 3,

and calculate the four values of each expression which result

from giving x the above four values in succession.

X {x — a){x — 2a) {x — 3a)
I.

2.

1.2. 3-4

[a{b-x)-b{a- x)Y—— m

m {b — x) + b {m — x)

3-

4-

[ax -\- b{x — ay -{•m{x — aYY
X — m
X + m

l^{:mx^ ^-b) — ^{mx^ — Z>)] ^(w^> — a).

Note. When the square root is not an integer, it will be sufficient

to express it without competing it in full.

Thus, for ar = — 3, we shall have

^(wx« + &) - ^{m^ -V) = ^748 - ^/i2.

This is a sufficient answer without extracting the roots.

Definitions.

44. Coeffi,c'enf. Any number which multiplies a

quantity is called a Coefl&cient of that quantity. A
coefficient is therefore a multiplier.

Example. In the expression ^abx,

4 is the coefficient of abxj

4rt " « « bx,

iab u (( X.
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I)ef. A Numerical Coefficient is a simi)le number,

as 4, in the above c xaniple.

Dcf. A Literal Coefficient is one containing one

or more letters used as algebraic symbols.

Rem. Any cxuantity may be considered as having

tlie coefficient 1. because \x is the same as x.

Reciprocal. The Reciprocal of a number is unity

divided by that number. In the language of Algebra,

1
Reciprocal of ISf =z N

Formula. A Formula is an expression used to

show how a quantity is to be expressed or calculated.

Term. When an expression is made up of several

parts connected by the signs + or — , each of these

parts is called a Term.

Example.—In the expression,

a + hx {- dmj^,

there are tlu'cc terms, a, bx, and 'dmxK

When several terms are enelosed ])etwoen parentheses, so

as to be operated on as a single symbol, they form a single

term.

Thus, the expression

{a + ix -f 3mx^) (a + b)

forms but a single term, though both numerator and denom-

inator are each a product of several terms. Such expressions

may be called compound terms.

Aggregate. A sum of several terms enclosed be-

tween parentheses in order to be operated upon as a

single quantity is called an Aggregate.

Algebraic expressions are divided into monomials
and polynomials.

A Monomial consists of a single term.

i
%

to sj

ofsil

pre^

etc.
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A Polynomial consists of more than one term.

A Binomial is a polynomial of two terms.

A Trinomial is a 'polynomial of three tenns.

Note. Tlie last three words are commonly applied only

to sums of simple terms, formed of single symbols or [)roduct8

of single symbols.

Entire. An Entire Quantity is one which is ex-

l~)ressed without any denominator or divisor, as 2, 3, 4,

etc. ; a, &, a?, etc. ; 2«6, 2m^, ah {x — y\ etc.

A Theorem is the statement of any general truth.

45. OtJier Algebraic Signs. Besides the signs al-

ready defined, others are of occasional use in Algebra.

> , the Sign of Inequality, shows when placed be-

tween tw^o quantities, that the one at the open end of

the angle is the greater.

Ex. I. « > 5 means a is greater than 5.

Ex. 2. m <Cx <C.n means x is greater than m, hut less

than n.

: , another Sign of Division, is placed between two
quantities to express their ratio.

Thus, a : b means the ratio of a to b,, or the quotient of a

divided by ^.
"

.'. means Hence, or Consequently ; as,

a 4- 2 = 5
;

.'. a = 3.

OD means a quantity infinitely great, or Infinity.

, the Vinculum, is sometimes placed over an
aggregate to include it in one mass, in lieu of paren-

theses.

Ex. a — b c — d is the same as {a — b){c — d).

It is mostly used with the radical sign. We often write

Va + b -\- c instead of a/(« -\- b -^ c).
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CHAPTER IV.

CONSTRUCTION OF ALGEBRAIC EXPRESSIONS.

4G. All operations upon algebraic quantities, however

coni])lo.\, consist in combinations of the elementally operations

already described. The result of each single operation will be

an aggregate, a product, a quotient, or a root, and every such

result may, in subsequent operations, be operated upon as a

single symbol. There are only three cases in Avliich an expres-

sion needs any modilication in order to be operated upon,

namely

:

Case I. An aggregate must be enclosed in parentheses, if

any other operations than addition or division arc to be per-

formed upon it. (§ 43.)

Case II. When a product is to be raised to a power, or to

have a root extracted, it may be enclosed in parentheses in

order to show that the operation extends to all the factors.

If we take the product ahc, and write an exponent, 2 for

instance, after it thus, ahc^^ it Avould upply only to c, and

would mean a x b x cK So with the radical sign
;
^abc

might mean only ^a xbxc. To indicate that the power

or root is that of the product as a whole, we may enclose it

in parentheses, thus :

S(iuare root of abc = ^(alc).

Square of abc = {abcy.

But a root sign is commonly made to include the whole

product by simply extending a vinculum over all the factors

of the product, thus : Square root of abc = Vcibc.

Case III. If negative quantities are to be multiplied,

merely Avriting them after each other would lead to mistakes.

Thus, the product ax —b x —c, if written Avithout the x
sign, would bo a — b ~ c, and would not mean a product at

all. But, by enclosing —b and — c in parentheses, we have

a{~b){-r),
which would correctly express the product required.

bo c<u

Ti

encL' 1

p-r
sul)tri

X of

to a a

dilTen

tracte

foriuc

noniii

Tl

M
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1

I

47. The following example will show how operations may

be eoni))'ne(l to any extent.

The quantity a is to be subtracted from J, and the differ-

ence multiplied by y, forming a product P. The quotient of

p — r divided by q is to be multiplied by m, and the i)roduct

subtracted from P. The ditference is to form the numeratnr

JV' of a fraction. To form the denominator, b is to be added

to a and subtracted from it, and the product Q of the sum and

dllTt'renco formed. The (piantity q is to be added to and sub-

tracted from ;;, and the product R of the sum and dilTcrence

formed. The quotient of Q divided by R is to form the de-

iiomiiuitor of the fraction of which the numerator is P,

The quantity h subtracted from a leaves b — a.

Multiplying it by y, the product P is y {b — a).

Quotient oi p — r divided by q
p — r

Multiplying it ])y m, m p — r

[If instead of multiplying the fraction as a whole by m,

we had multiplied its numerator, we should have had to

enclose the 2^ — ^ ^^ parentheses, thus: -

—

—• But

when the multipliir is written at the end of the line, between

the terms of the fraction, as above, it indicates that the frac-

tion, as a whole, is multiplied by 7/?.]

Subtracting the last product from/*, it is y(b—a)—m ~ •

Adding b to a, a -{- b.

Subtracting b from a, a — b.

The product Q of the sum and difference, (a -\- b){a — b).

The product R o^ p + q hy p — q, {p + q) {p — q)*

{a -f J) (rt — b)
The quotient of Q divided by i?,

{p-\-fl){p — Q)

* Tn mathematical languap^e, when a substantive is followed by a

symlx)l ill tliis manner, the latter is used as a sort of proper name to

dcsigniito the substantive, so that the latter can be afterward referred to

by the letter without ambiguity.

In the present case, the cajjital letters arc used in accordance with

the second general principle, g 41.
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Tlio fraction Imving iVfor its numerator and this ([uoticnt

fur its dcnomiiiutor is

ij(b — a) — tn^-~-

(g -H b)
{
a ^^

48. By the second gcncnil ijriiiciplc, § 41, a sinjijle sym-

l)oI niiiy bo written in j)lace of any iil^^cbriiic expression wimtevor.

When several symbols indicating such expressions are com-

bined, the orijxinal expressions may bo substituted for them,

and bo treated in accordance with tiic lirst principle.

a — 7)X

EXAMPLES.

Suppose P = a -{- bx

;

Q

T z= X — f/; V = mpq

It is required to form the expression

PQ -^TV
PT— QV'

The answer is

(rt + Ix) —^^ {x- y) mpq

I IK, \ a — hx
(rt + ox) (a; — y) —^— mpqm

EXERCISES
Form the expressions

:

I. P-T.

7. ^/{P-T).

9. V\
VP- OT

II.

13-

IS.

Qi _ 7^2

(P+ T){P-T)
\Q'ry){Q-V)'
P^- T

^{P - Tf

2. T-P.
4. Q-V.
6. ViP-i-T).
8. P^T^.

PT^

qv
{3P-2T)

10.

12. -;;,

14.

16.

2

— •

HP±J'y^

1
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EXERCISK8.

i^-(<2+r)(c>-r)

32.

94

25

,8 _^^_- ^

30. T
/"+<?»

( F - y'j ( K + 7')

EXERCISES IN ALGEBRAIC LANGUAGE.

Tlin foUowliifj (lUOHtions nre proixwod to practice the student in ox-

proHsiii^ tii«! relations of ((iiantiticH in al'^»'braic laii^iin^e. Should any

u( thcTu otter diHicultieH, he ih reconunendod to HubHtitute numbers fur

the al^'ebraic letters, examine the process by which he |)r()ceedH, and then

ai»iily the same process to the lettJTS that ho applied to the numbers. No
Bolutiuns of equations are ru(juired.

1. IIow many cents arc tlicrc in m dollars ?

2. IIow numy dollars in tn cents?

3. A man had a dollars in one ])ockot, and b cents in the

other ; how many cents had he in all ? IIow many dollars ?

4. The sum of the quantities a and b is to be multiplied

by m. Exi)ress the })roduct, and its scjuarc.

5. A man having b dollars paid out in dollars to one per-

son and n dollars to another. Exi)ress what he had left in

two ways ?

6. IIow many chickens at k cents a piece can be purchased
for m dollars ?

7. A man Avalked from home a distance of in miles at 4
miles an hour, and returned at the rate of 3 miles an hour.
IIow long did it take him to go and come ?

8. A man going to market bought tomatoes at h cents per
pock and })otatoes at k cents a peck, of each an equal number.
They cost him m cents. IIow many pecks of each did he buy ?

9. How many minutes will it require to go a miles, at the
rate of b miles an hour ?

10. A man bought from his grocer a pounds of tea at x
cents a pound, b pounds of sugar at y cents a pound, and e

]K)unds of coffee at z cents a pound. How many cents will

the whole amount to ? IIow many dollars ? IIow many mills ?

11. A man bought / pounds of flour at m cents a pound,
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and liandefl the grocer an a:-dollar bill to bo changed ? How
many cents ought he to receive in change?

12. From two cities a miles apart two men started out at

the same time to meet each other, one going m miles an hcur

and tlie other ii miles an hour. How long before they will

meet? How far will the lirst one have gone ? Jlow far will

the second one have gone ?

13. A man left his n children a bonds worth x dollars

each, and b acres of land wortii y dollars an acre ; but he

owed m dollars to each of q creditors. What was each child's

share of the estate ?

14. Two numbers, x and y, are to be added together, their

sum multiplied by s, that product divided by «+ ^*, and the

quotient subtracted from h. Express the result.

15. The sum of the numbers p and q is to be divided by
the sum of the numbers a and b, forming one ((uotient. The
ditfcrence of the numbers p and q is to be divided by the dif-

ference of the numbers a and b, forming another quotient.

The sum of the two quotients is to be multii^lied by ?'-f s.

Express the product.

16. The quotient of x divided by a is to be subtracted

from the quotient of y divided by b, and the remainder multi-

plied by the sura of x and y divided by the difference between
X and y. Express the result.

17. The number x is to be increased by G, the sum is to be
multiplieil by a+ b, q is to be added to the product, and the

sum is to be divided by r — s. Express the result.

18. A family of brothers a in number each had a house
worth a thousand dollars each. What Avas the total value of

all the houses in dollars ? What was it in cents ?

19. A grocer mixed a pounds of tea wortli x cents a pound,
and b pounds worth y cents a pound. How much a pound
was the mixture worth ?

20. x-{-y houses each had a-\-b rooms, and each room
m+ n pieces of furniture. How many pieces of furniture were
there in all ?

21. In a library wTre p-\-q volumes, each volume had p + q
pages, each page p + q Avords, and each word on the average

8 letters. How many letters Avere there in all the books of the

library ?

22. A post-bov started out from a station, travelling h
miles an hour. Tliree hours afterw\'ird, nnother one started

after him, riding ui miles an hour. How far Avas the first one

al

St;

A
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ahead of the second at the end of x hofirs after the second

started ?

23. Two men started to make the same journey of m miles,

one going r miles an hour, aiul the other s miles an hour.

][o\v much sooner will the man going /• miles an hour make
iiis journey than the one going s miles an hour? How mueh
sooner will the one going s miles an hour make his journey

than the one going ; miles an hour ?

24. One train runs from Boston to New York in h hours,

at the rate of n miles ar. hour. IIow long will it take another
train running 5 miles an hour faster to perform the journey 'i

25. If a man bought h horses for t dollars, and n yoke of

oxen for m dollars, how much more did one horse cost than one
yoke of oxen ? lIow much more did one yoke of oxen cost

than one horse ?

26. A train making a journey of ^m miles goes the first

half of the way at the rate of /• miles an hour, and the second
hiilf at the rate of s miles an hour. IIow long did it take it to

go ? What was the average speed for the journey':'

27. Two men, A and li, started to walk from Hartford to

New Haven and back, the distance between the two fitios

being a miles. A goes p miles an hour and B q miles t n hour.

IIow far Avill A have got on his return journey when B reaches

Hartford?

28. A man having Ic dollars bought h books at 8G each.

IIow many books at $1 each can lie buy with the balance of

his money?

29. A man going to his grocer with m dollars, bought s

pounds of sugar at a cents a pound, and /• pouuds of colt'ee at

b cents a pound. How numy barrels of ilour at q dollars a

barrel can he buy with the balance of his money ?

30. A man divided m dollars equally among a poor Chinese
and n dollars equally among* h orplians. Two of the Chinese
and three of the orplians put their shares together and bought
X Bibles for the heathen. How much did each Bible cost ?

31. A pedestrian having agreed to wtilk the n miles from
Boston to Natick in h hours, travels the first k hours at the
rate of in miles an hour. At what rate must he travel the

remainder of the time?

32. A train having to make a journey of x miles in li hours,

ran for k hours at the rate of r miles an hour, and then made
a stoj) of m minutes. How fast must it go during the remain-
der of its journey to arrive on time ?

\<\



BOOK II.

ALGEBRAIC OPERA TIONS

General Remarks.
The algebraic expressions formed in accordiince with the

rules of the preceding book admit of being transformed and

simplitied m a variety of ways. This transformation is eli'ected

by operations which have some resemblance to the arithmetical

operations of addition, subtraction, multiplication, and division,

and which are therefore called by the same names.

In performing thesf algebraic operations, the student is not,

as in Arithmetic, seeking for a result which can be written in

only one way, but is selecting out of a great variety of forms of

expression some one form which is the simplest or the best for

certain purposes. Sometimes one form and sometimes another

is the best for a particular problem. Hence, it is essential

that the algebraist, in studying an expression, should be able to

see the different ways in which it may be written.

Definitions.

49. Function, An algebraic expression containing

any symbol is called a Function of the quantity repre-

sented by that symbol.

Ex. I. The expression Zx^ is a function of x,

a function of x and also a
mi . a -\- X .

2. The expression is

function of a.

When an expression contains several symbols, we may
select one of them for sptcial consideration, and call the ex-

pression a function of that particular one. Fur instance,

although the expressions,
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m + iWx,

contain other symbols besides oc, they are both functions

of X.

50. An Entire Function is one in wliicli the quan-

tity is used only in the operations of addition, subtrac-

tion and multiplication.

Example. The expressions

ax + y,

(«2 _ 2/2) ^ — {I)i -^.y)x^ — x + d,

arc entire functions of x. But the expressions

ax y and 3\/^
ax — y

are not entire functions of .r, because in the one x appears as

part of a divisor, and in the other its square root is extracted.

> n entire function of x can always be expressed as a sum
CI terms, arranged according to the powers of o: which they

contain as factors. The form of the expression will then be

A-^ Bx+ Ct? ^ D:^ ^ Ex^^ etc.,

where A, B, (7, etc., may represent any algebraic expressions

wliich do not contain x.

51. Like Terms are those which are formed of the

same algebraic symbols, comliined in the same way,

and differ only in their numerical coefficients.

Ex. The terms ax, 3«.r, —hax are like terms.

53. Tlie Degree of any term is the number of its

literal factors.

Examples. The expression alxy is of the fourth degree,

because it contains four literal factors.

Tlie expression :i^ is of the tliird degree, because the letter

X is taken three times as a factor.

The expression ab'^x?' is of the sixth degree, because it con-

tains a once, 5 twice, and x tiiree times as a factor.

When an exi)ression consists of several terms, its

degree is that of its highest term.

hi
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1

CHAPTER I.

ALGEBRAIC ADDITION AND SUBTRACTION.

Algebraic Atlditioii.

53. By the language of Algebra, the sum of any number

of quantities, positive or negative, may be expressed by Avriting

them in a row, Avith the sign + before all the positive quan-

tities, and the sign — before the negative ones.

Ex. A-{-B—D—X-\- Yy etc., is the algebraic sum of the

several quantities A, B, —D, —X, Y, etc.

54. To simplify an expression of tie sum of several

quantities.

1. When dissimilar tenns are to be added, no sim-

plification can be effected.

Ex. If we require the sum of the five expressions, a, —xij^

mj), 7iq, and —hhs, we can only write,

a — xy -{ mp + nq — hhs,

according to the language ot Algebra, and cannot reduce the

expression to a shnpler form.

2. If mere numbers are among the quantities to be
added, tlieii algebraic sum may be formed.

Ex. The sum of the five quantities —8, ab, 5, mjij), —15,
is found to be —IS -\- ab -\- mil}}.

3. When several terms are similar, add the coeffi-

cients and affix the common symbol to the sum.

When no numerical coefficient is written, the coefficient

-fl or —1 is understood. (§ 44.)

EXAMPLES.
a -\- a =. 2a [because 1 + 1 = 2].

2r« — a = a [because 3 — 1 = 1].
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3rt + 4rt — 7a = [because 3 + 4 — 7 = 0].
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o
t-
— 3^^ — hx=. — "Za— 3.T [adding the r^'s and the z's].

— 'daxy -\- Abm — 2axi/ + bm = — 5axi/ + bbm.

Add the expressions,

1. Ix + 5Z»y^ 2.<; — 3bf, — 4.x - 5%«, 6x — i/, a- — bf.
WORK.

7a; + 5/y?/'

2x — 3///
— 4A' — 5/>//-

x- by
Sinn, 11a: — 5/^^^

2. 8aa: — y — 2?/ + 6, 7ax—y—d + am, 2ax—y—'d-\-b2h

Here 2.r, «/?«, and p, work.

8aa:2 — y — 2a: + 5

— 7r/a^ — y — 9 + «?»

— «7,r2 — y — 3 + 5;>

For convenience, tlio several terms may bo

written under each other, as in the margin. The

coi'llicients of X are 7, 3, —4, 5, and 1, of which

the algebraic sum is 11. Tlie coefficients of .y*

are 5, —3, —5, —1, — 1 ; the sum is —5. Hence

the result.

all being different sym-

bols, the terms contain

ing them do noi, adn *

of siini)lification (§ 54,

1), 'i'he numbers 5,

—9. —3, are added by

Sum, —'Mj — 2x — 7 + am + hp

the rule (§ 54, 3). The coefficients of ax^ cancel each other (8—7—1 = 0)

3. Add (S{x-\- y), 5 {x + y) + a, 2 {x + y) - 3a.

Here the aggregate, x+ y, enclosed ia

parentheses, is treated as a simple symbol.

Note. When the student can add

the coeihcients mentally, it is not neces-

sary to write the expressions under each

other. Nor is it necessary to repeat the

symbol after each coefficient.

WORK.

6 [x 4- y)
5 + a

_2 -3
Sum, 13 {x-\-y)— 2a

EXERCISES.

1. 3a-\-n — ^c^d,3a — 2b-\-c — e,—a — b — c—d.

2. 7a — {x + y), 8a — {x + y), 3 {x + y) — IGa.

3. 7a-2 — 2x — 5, 2x'^ — 3a: +'
8, — 9:^2 + 5a: + 3.

4. x^ \-2x — y, 4.1-2 _|. 7.C _ 2^, _ 2x^' -\-x — ^y, — 3a:2

5. 9 (a + bf, 10 (a + bf, {a+ bf, 2 {a-\-bf, ^x-y-z.
6. 2 {m -f 7z) + 3 (a + b), {a + b) — {m + n), (a + b)

— {m 4- n).

•j. 7a3— 2a2 -f 3aa', — a? — a^ — ax, — Ga^ + 3a2 — 2ax.

I
ii
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12.

13. -

14.

15-

m X m
6 — , 4 4 —

<

11 y n

8. (m + nf \-x, 2 {m + w)^ — y, 3 (m + w)' — 5ia;,

(m 4- nf — y.

9. (P + (if - «» (i» + (?)' + ^'^ (i'^+'Z)' + ^ (;>+^7)Hc.

10. Ga {x — y)i 5a {x — y), 2a {x — y), a{x — y).

11. 2 {m — ?0 a; 4 2, 3 (/« + ?i) :c — 5, 5 {m + ?i) x -— G,

7(»i -\- n)x — b.

a'
''«*"

6' a 6' /^ 7' «~7'

?_- 2- — 3— 3-
y n' y n' y

Of two fanners, the first had 2a; — 3y acres, and the

Bccond liad x — y acres more than the first. How many acres

had they botli ?

16. A had %x dollars, B had y dollars less than A, and C
had 'iy dollars more than A and B together. How many had
they all ?

17. A father gave his eldest son x dollars, his second 5 dol-

lars less than the first, his third 5 dollars less than his second,

and his fourth 5 dollars less than his third. How much did

he give them all ?

55. Addition with Literal Coefficients. When dif-

ferent terms contain the same symbol, multiplied by
different literal coefficients, these coeflScients may be
added and the common symbol be affixed to their

aggregate.

EXAM PLES.

1. As we reduce the polynomial

6a; + 5a; — 2a;

to the single term (6 + 5 — 2) a; = 3a;,

so we may reduce the polynomial

ax -{ bx — ex

to the single term, {a }- b — c)x,

2. The expression

mx -\- ny — bx -\- dy -i- a -{ b

may be expressed in the form

(/» — b)x-\- {71 -h d)y -i- a -\- b.
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?

EXERCISES.

Collect the coefricicnts of x and y in the following ex-

pressions:

I. ax + by -\- mx -\- ny.

mnx 4- %by + p(l^ — 45^.

Zx — 2y 4- Gbx — 4y + 7rta: + wz + ^.

Sax + "sio; + iy + 7^ — 5y + a; — oy.

ax -\- by -{- cz — rnx — ny — pz.

2dx + 3ey + 4fz — 2/>; — ^dy + ^ez.

2 3

2«a; — by — 3bx — ^ay.

1 2, 1 , 3
-^ax + ^by - -mx ^ ^^7iy.

2 1 ;

4wa: 4- 2?/ — 3rta; — Gere + ay — -mx + ^</.r.

5f/ia: — dm7iy — «Ja; + 4(?<^/?/ — dx.

1

^i

2.

3-

4-

5-

6.

7-

8.

lO.

II.

12.

13-

14.

15-

16.

17.

3«y 4- 2bx — -^dx 4- 2ay — 3bx.

\ay-^x + 2y--ay-hx-\-y.

3mx — ax ^^ay + X -{ dx — y.

Zabx — my + 2cV^^— dy + Vx.

bmV'y — Gx + Wy — SVx — y-\-\^f.

4^^x — (jy + aVy + cx — Vy — '^(iVy + Vx.

Algebraic Subtraction.

50. Def. Algebraic Subtraction consists in ex-

pressing the difference of two algebraic quantities.

Jiide of Subtraction. It has been shown (§ 21) that

to subtract a positive quantity, b, is the same as to

adcl, algebraically, the negative quantity, -b. Also,

that to subtract -b is equivalent to adding +b. Hence

the rule

:

Change the algebraic sign of all the teim-s of the

suUraheud, or conceive them to he changed, and then

pj'oeced as in addition. 1. 1-
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NUMERICAL EXAMPLES.
Min., 10+ = 10 10+ = 10 10-i- = 10 10+ =
Subt, 9 =9 9— 4= 5 9— 8= 1 9— 12 =
Kcm., 1 + 0= 7 1 + 10=11 1 + U=15 1 + 18^

10

—3
10

ALGEBRAIC EXERCISES.

I. From
Subtract

ox — 4ay + 5/5> + c,

X — 7aj/ — 8b i- d.

WOBK.

]\Iiniicncl, 3x — Aay + 5^ + c

(Subtrtihcud with signs changed, — x + 7ai/ + ?b — d

Differenco, 2x + '3ai/ + I'Sb -\- c — d

Next we may simply imagine the signs changed.

2. From 7x — 4bxi/ — 12cj/ + 8J + Sac

Take 2x + Uxy + Scj/ — 5b — 2d

Diff., 5x — llbxy — 4c// + VSb + Sac + 2^/

3. From Sa -^ Ob — 12c — ISd — 4a; + dcy

Take 19(? — 7^* — 8c — 25r/ + 3a; — 4;/

4. From 257;? + 201^2 + 92y + 35«a: —
Take 140g — 82z'^ + 20// + d2((X + 14

5. From Sa + lib subtract Ga + 205.

6. From « — & + c — d take — « + Z» — c + rZ.

7. From Sa — 2b + 3c subtract 4:a — Gb — c — 2d.

8. From 2x'^ — Sx — 1 suljtract bx'^ — Gx + 3.

9. From ix* — dx^ — 2x^ — 7x + 9 subtract q:^—2x^—2x'^

+ 7a; — 9.

10. From 2x? — 2ax + Sa^ subtract x^ — ax + a\

11. From a^ — Sa^b + 3«i2 — b"^ subtract — a^ ^ Sa^b.

12. From 7;?:3 — 2.?;3 + 2a; + 2 subtract 4a;3--2a'2— 2a;— 14.

13. From 5 (a; — ?/) + 7 (a; — 2;) + 9 {z—x) take 9 (a; — ^)
+ 7 (a; — ;?) + 5 (^ - a-).

14. From 12 {a — b) — S {a + b) -{- 7a— 2b take 7 (a— ^')

— 5 (a + *).

.X _ ?/ _ 2
15. take -5^ + 0^

y z X y z
From 7- — 11"' — Id 7^ + 8^.

a; 6



SUBTRACTION. 35

Clearing of Piirentlicses.

57. In § 42, 2, it was shown that an aggregate of terms in-

cliulod between parentheses might be added or subtracted by

simi)ly writing -f or — before the i)aren theses.

When an aggregate not multiplied by a factor is to be added

or subtracted, the parentheses may be removed by tbc rules

for addition and subtraction; as follows:

r»8. Plus S/f//i hefore ParentJieses. If the paren-

theses are preceded hy the sign +, they may be
removed, and all the terms added without change.

Example: I. 27 + (8—5-4+ 7) = 27+8—5—4+ 7 = 33.

2. m + {a — X — y -\- z) z= m -{- a — x — i/ + z.

3. 2x + (- 3.*; - by) + (3?/-4r/) + (2y-2«)
— 2x — 3x — by -1- dy — 4a + 2y — 2a

= — X — Ga.

The sign + which precedes the parentheses should also be

considered as removed, but if the first term within the paren-

thesis has no sign, the sign + is understood, and must be

written after removing the parentheses.

EXERCISES.
Clear of parentheses and simplify

^ — y + i-^' + y)'

^ + y \- {y — ^)-

dab — 2in]j + {ab — 3x — 2mp).

2ax — 3by + {vix — 2ax — 2^^ + 3i^).

I.

2.

3-

4-

«• 3f+(l-«"7) + G+^^)-
59. Minus Sign hefore Parentheses. If the paren-

theses are preceded by the sign — , they may be

removed and the algebraic sign of each of the included

terms changed, according to the rule for subtraction in

§56.

5I. 27 _ (8 _
that is, 27 — = 21.

EXAMPLES.
-4 + 7) = 27 -8 + 5 + 4-7 = 21;
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2. m — {— a— p + y + x) = m-{-a + p — y — X.

3. 3rt + X — (2a — bx) — (9a; — a) = 3a 4- a; — 2a + 5a;

— \)x + a.

Sim 3lifying as in § 54, this reduces to 2a — 3a;.

EXERCISES.
Clear the following expressions of parentheses and reduce

the results to the simplest form by the method of § 54.

1. ah — {m — 3ab + 2aa;) — 7ab.

2. X — {a — x) + (a; — a).

3. 2b -f {b — 2c) — {b+ 2c).

4. ix — 3y -I- 2z — {—7x + 5y — 3z) — (x — y).

5. 7aa; — 2by — {Sax + 3%) — (8aa; — 3^*^).

6. (a — a;) — (a -I- a;) + 2:c.

7. — (a — ^i) — (J — c) — (c — a).

8. — {3m -]• 2?i) — (3w — 2n) + 9m.

60. We may reverse the process of clearing of parentheses

by collecting several terms into a single aggregate, and chang-

ing their signs when we wish the parentheses to be preceded

by the minus sign. The proof of the operation is to clear the

parentheses introduced, and thus obtain the original expression.

EXERCISES.
Reduce the following expressions to the form

X — {an aggregate).

1. X — a — b. Ans. x — (a + b).

2. X — m — n.

3. a -\- X — 3x -{- 2y. Ans. x — {— a \- 3x — 2y).

4. — 3b -\- X + 2c -It hd.

5. 2a; — 2a + 2b. Ans. x — {— x + 2a — 2b).

6. 2x -\- a — b.

7. 3x — 2m 4- 2}i.

8. 3x -{- ab — m — 3ab + 2m.

9. X — 2m — {3a — 2^). A71S. x — {2m -f- 3a — 2b).

10. a; 4- 3 — (a + b).

11. X -1^ a — {b — c) -\- {m — n).

12. X — {am -\- h) — {p — q) — {am — n).

13. X — {a + b) — {p — q) — {m — n).
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Compound Parentheses.

61« When parentheses of addition or subtraction are en-

closed between others, they may be separately removed by the

preceding rules.

Wo may either begin with the outer ones and go inward,

or begin with the inner ones and go outward.

It is common to begin with the inner ones.

EXAMPLES.
Clear of parentheses:

,. f-le-.\d-[c-{h-a)-\\\
Beginning with the inner parentheses, the expression takes,

in succession, the foUowiijg forms:

f_le-\d-{c-h + a-]\^

= f-[_e-\d-c-rh-a\\
= f—[e — d-Vc — h-\-a\

= f— e-\-d — c-\-h — a.

2. a;-[-(« + J) + (wj +«)-CT-y)].

Removing the inner parentheses, one by one, we have,

x—[—a — h + m-\-n — x + y\

z= X + a -{- b — m — n -\- X — y.

EXERCISES.

Remove the parentheses in the following expressions, and

combine term^^. containing x and y, us in §§ 54 and 55.

m + [- {p - (?) -h («-*) + (- c + r7)].

m — [—{a — b) — {]) + q) + {fi — k)l

7^a; - [{2ax + by) - {3ax - by) + (- 7ax + 2by)].

a — {a—\a — [a — {a — a)]\].

p ^ [a — b — {s + f -\- a) -^ {— m — 71)1

2ax — [Sax — by — {7ax + 2by) — {6ax — 3%)].

ax-^by-\ cz + [2ax—dcz — {2cz-\-bax) — {Uy—Zcz)],

X - \ 2x - y - [3x - 2;/ - {4x - dy)] \.

ax — bz—\ ax + bz — [ax — bz — {ax + bz)] \.

my — { a; + 3?/ + [2m^ — 3 (a; — ?/) — ^ab'] + 5 }.

I.

2.

3-

4-

5-

6.

7-

8.

9-

lo.

\\
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11. rt.r 4- 4cx — {mx -\- ex — y) -f [mx — {rx 4- y)].

12. 'ittx — Ux — ( - ^ay — 3nz + 'Sby) — Mz.

13. 13flx -f 2.r/^ -d- l^ad f (ry -f- d)] - 4rry.

14. w? + 4.r — [— 4// H- 2.« + (^// — ^) -f ;>]•

15. ^rtV^ - 3wi - [Z'v'i - Gil + {Vy - y Vi/)].

eac

-^•- or

CHAPTER II.

MULTIPLICATION.

02. Tlie product of several factors can always l)e

ex])r('sse<l hy writing tlieiii after each other, and enclos-

ing tliose wliicli are aggregates within parentheses.

EXAMPLES.
The product ot a + b hy c = c (a + b).

f 4- w X -\- 11

The product of '—~- hy x — y = {x — y) '--,— •

The product ot a {- b hy c -{ d = {c -i- d) (a + b).

Such products may be transformed and simplified by the

operation of algebraic multijilication.

General Laws of Multiplication.

G.3. Laio of Covfirmdatlon. Multiplier and multi-

plicand may be interchanged without altering the

product.

This law is proved for whole numbers in the following way.

Form several rows of quantities, each represented by the

letter «, with an equal number in each row, thus,

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a
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y)J.

ays ha
enclos-

es.

by the

multi-

ig the

ng way.

by tho

Lot in bo tho miinbcr of rows, aiul n tho number uf a's iu

cacli row. Then, counting by rows there will be

m X n (luantiLies.

Counting by columns, tliere will be

n X M quantities.

Therefore, m x n = n x m,

or nm = mn.

(»4. Lrno of Association. When there are three

factors, //i, n, and re,

)n {n(t) — (inn) a.

Example. 3 x (5 x 8) = .3 x 40 = 120. ^

(3x5)x8 = lo + 8 = 120.

Proof for Wlwh Nnmbvn^. If a in the al)ovc sHiomo

represents u number, tho Kum of each row will be lui. Beeuuse

there arc m rows, the whole sum will l)e >if (na).

But the whole number of r/'s is mn. Therefore,

711 (iia) = (inn) a.

Ciii, Tlie Dlslrlhut'n'e Law. Tlie product of an ag-

gregate by a factor is equal to the sum of the products

of each of the parts which form the aggregate, by the

same factor. That is,

m {p -\- q + r) = mp + mq + mr. (1)

Prooffor Mliole Numhcrs. Let us write each of the quan-

tities p, 7, r, etc., m times in a horizontal line, thus.

P + P -i- P -\- etc., 7n times ~ mp.

q -h q -}- q + etc., vi times = viq.

r + r + r + etc., m times = 7nr.

etc. etc. etc.

If we add up each vertical column on the left-hand side,

the sum of each will be ^^ + (/ + ^* + etc., the columns being

all alike.

Therefore the sum of the in columns, or of all the quanti-

ties, will be
m{p }• q -{- r, etc.).

II

ll

(S-
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The first horizontal line of /?'s being mp, the second mq^

etc., the sum of the right-hand column will be

mp + mq + mr, etc.

Since these two expressions are the sums of the same quan-

tities, they are equal, as asserted in the equation (1).

3Iultiplicatio<. of Positive Monomials.

G6. Rule of Exponents. Let us form the product

a;"» X x\

I^y § 37, x"" means xzx, etc., taken m times as factor.

x" means xxx, etc., taken n times as factor.

The product is xx.xx, etc., taken {in-\-n) times as factor.

Therefore, af* x a:" = ic'"^".

Hence,

Theorem. The exponent of the product of like sym-
bols is the sum of the exponents of the factors.

67. As a result of the laws of commutation and
association, the fr*,'ioi.> jf a product may be arranged

and multiplied \is ?noh order as will give the product

the simplest form.

08. Any product rf monon ials may be formed by
combining these principles.

Example. Multiply h 11111^01^1/ by '^hnx^y.

By the rules of algebraic language, the product may be put

into the form
bmn^j^i/lhnx^y.

By interchanging the factors so as to bring identical sym-

bols together,

h-1 h m n^ nx? a^ 1/ y.

Multiplying the numerical factors and adding the exponents,

the product becomes
35 ftm n^^ y\
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69. We thus derive the following

Rule. Midtiphj the ninncrlcnl coefficients of the

factors, affix all the literal parts of the factors, and give

to each the sum of its exponents in the separate factors.

A71S. i^y\

3-

5-

7-

9-

Multiply hni^ij by "im^x.

Multi})ly 'Zam by 'ima.

Multii)ly 'ixyz by 'ixyz.

Multiply 3rtZ'2.c3 ^y 'da%\x.

13. Multijily -7 M^/; by 4wi^*.

EXERCISES
1. Multiply xy by x'^y.

2. Multiply 3rt.T by 2ahx^.

4. Multi})ly "Z\my by 'Zahn.

6. Multiply bx''yh by x^yH.

8. Multij)ly '^abm by 2mba.

10. Multiply 2-(})np(jr by 2-Gpqrs.

11. Multiply 12«.T^ by 12a-^z.

3 2
12. Multiply -mV by ^.m^y'.

7
14. Multiply - aJcc? by 4f?r/^.

70. When we have to find the product of three or more

quantities, we multiply two of them, then that product by the

third, that product again by the fourth, and so on.

Ex. 2ah X 2«2J x 3«J2 x Umxy = 3(ja*l/^mxy.

Exercises. Multiply

1 5 . mx X 7)1y X mz. 16. axx hx x ex x dx.

dahn x 4:b^n X m7i. 18. abx 2bc x lea.

dmn^ X 5)ip^ X 9pm?'.

abxacx ad x am3 xyx 2yz x zx.

amx X a?ix x amxy x anxy x amxyz.

17-

19.

20.

21.

22.

23-

a^x X a^y x ax^ x ay'^ x a\i^ x a^y^ x xhf.

2am X 'Sail x a^ x m^ x 4:mx x 2nx.

Rule of Signs in Multiplication.

71. It was shown in § 25 that a product of two factors is

)>()sitive when the factors have like signs, and negative when

they have unlike signs. Hence the rule of signs,

+ X + makes +,
+ X -
- X +
- X - " +.

it

«

i!!

I



ALGEBRAIC OPERATIONS.

Examples. The quantity a

Multiplied by 3

2

makes + 3«.

+ 205.

(( a 1 a + a.

u te a
0.

a a _-1 u — a.

a « _-2 a — 2a.

The quantity — (%

Multiplied by 3

2

makes — 3fl5.

— 2a.

a a 1 a — a.

a li a 0.

cc a _-1 a + a.

a a a + 2a.

73. Geometrical lUufttrafion of the Rule ofSigtis. Suppose

the quantity a to represent a length of one centimetre from

the zero point toward the right on the scale of § 11.

Then we shall have

a = this line
|

|

The product of the line by the factors from -1-3 to —3
will be

a X S,

a X 2,

a X 1,

a X 0,

a X —1,

a X —2f

a X —3,
I

We shall also have

a

I

— a = this line f
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The products by the same factors will be

- « X 3, I
, ,

1

— a X 2,

— rt X 1,

— « X 0,

— « X — 1,

— ax — 3,

— rt X — 3,

r

These results are embodied in the following two theorems :

1. Multiplying a niao;iiitude by a negative factor,

multiplies it by the factor and turns it in the opposite

direction.

2. Multiplying by —1 turns it in the opposite direc-

tion without altering its length. .

Note. When more than two factors enter a product, the

sign may be determined by the theorem, § :^G.

I

3

4

5

6

7

8

9

lo

II

12

13

14

15

EXERCISES,
am X ah X ac X ad. 2. ax x -

X X —ax X —ahx x — ahcx.

^ax X —'la%^ X — ha^mx,

— 7i)i'^i/ X —''^ahf' X 5ax.

—2uzn X —5mV' X — ?i^i/z — x!^,

2m X n X —a x —2b.

—Sax X —2/cm x —7x x —^bmx,
— uy X (ly X —2yx Sbm.

xy X 2/y2 X y^x x 2ayxK

•5?/2 X —
-V/?/ X —2z'^ X —ax^z.

bax X anx x 3;; x b^xy.

— ^bz X —xz X —yz X agz.

2c^ii X 2/h X —z^x —hgz\
—(Px X 3^ X cb^ X ay.

•hx X ex X clx.

i)
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1 6.

17.

18.

19.

20.

21.

22.

23.

24.

25-

26.

27.

28.

29.

30.

— 2e X —2y X rt X 5a;.

—4a.?; X 3«y x —"^a^y x — a;^.

rt'^:c X —aif X ax^ x —x-y.

ax^ X — ^'^ X —1 X ^ax x —a^
?m2.c X — n^x X — wj?i^ X mx x — 7?i*.

— «5a; X —ay^x ax x «'^.^'^.

px^ X (72/^ X .ry X —ax.

abc X — £?^ X aa;2 X — 1 X Sax.

-jttx X 3ca; x
4 ^ wo; X — 4^/^ X Gm.

—Qmx X —2h^x X 7;ac X rWi''

—a X Jc X — 1 X T X 3a2 X ixy x y.

—1 X «a; X a^x x a^x^ x bx x d.

—anx 2cfm2 x —d)nn x ^n^y x —m,
—mx X nx X —mn x —xy x — 1.

—2px X —dqx X ^mH X -zy^ X —1.

Products of Polynomials by Monomials.

73. The rule for multiplying a polynomial is given by the

distributive law (§ 65).

Rule. Multiply each term of the polynomial by the

monomial, and take the algebraic sum of the products.

Exercises. Multiply

1. dix^ — ^xy — 5y2 by — Aax.

A71S. — 12ax^ 4- IGax^y + 20axi/\

2. 3.?;2 — xy-\- y^ by 3.c.

3. x^ }- xy 4- ?/2 by Sx. 4. ax -\- hy -{- cz by axyz.

5. Saofi—bmf—^ by ^ahx. 6. 4:mp — Gnq by — 'dmq,

7. ba?y^ — 7a^y^ — 7a*y by Sab.

74. The products of aggregates by factors are formed

in the same way, the i)arentheses being removed, and
each term of the aggregate multiplied by the factor.
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Example. Clear the following expression of parentheses:

am {a — h-{-c) —]) [a — {h — k) — m {a — h)].

By the rule of § 73, the first term will be reduced to

ahn — amb + amc. (1)

The aggregate of the second term within the large paren-

theses will be

a — li-\-k — m {a — b)

z=a — h-\-k — ma-\- mh, (3)

because, by the rule of signs in multiplication,

— m {a — h) = —m x a — m x —b = — ma -\- ml.

Multiplying the sum (2) by —p and adding it to (1), we

have for the result required:

a^m — ami) + amc — pa -\-2)h — ph + pma —pml.

EXERCISES.
Clear the following expressions of parentheses :

1. p {a -\- m — p) -{- q{b — c) — r{b -^ c).

2. (m — an) x — {?n + a7i) y + {an — m) z.

3. a{x — ij)c — b{x — y)d+f{x-{-y) cd.

Here note that the coefficient of x — y in the first term is ae.

4

5

6

7

8

9
10

am [x — a{b — c)] — b7i [ax + i (c -f d)].

p [— a {m-\-?i)-\-b (m—n)] — q[b {m—n)—a{m-\-n)].

3.r {2q — 7ic) -r 2y (5.r — 3c)—z (2m + 7m)-

am [m {a — b)c — Sh {2k — 4rf) + 4w].

2pq [3a — bb — 6c — pq {2m — 3n)].

In [_ 7rt _ 7^» (rt — c) — (3 — a - b)\

P{q — r) + q{r — p) + r{p — q).

75. The reverse operation, of summing several terms into

one or more aggregates, each multiplied by a factor, is of fre-

quent application. Thus, in § 65, having given

mp + 7nq -f mVf

we express the sum in the form

m {p + q + r).

If

ilii

ill I
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The rule for the operation is

// the sum of several terms having n cmnmnn facinr

is io he formed, the coejfieients of this foetor may he

added, and their aggregate he midti/died' hij the factor.

Note. This (jperutiou is, in piiuciplc, idonticul with that of g 55,

EXAMPLES.
dbx — hex — (uhj+ 3di/— 3bx -\- 4:adi/+ my—amy—'icmx -\- hmx.

Collecting the coefficients of x unci y as directed, we have

{(d) — be — 3b — dcm + bm) x + {—nd-\-3d-\-4ad+m—a7n) y.

Applying the same rule to the terms within the parentheses,

we lind

ah — be — ?,h = b{a — c — 3).

— 3em + bm = m {b — 3c).

— ad-{- 3d + 4.ad = 3ad + 3d

= {3a + 3) d

= 3{a + 1) d.

m — am = m. (1 — a).

Substituting these expressions, the reduced expression

becomes

[^, (a _ c — 3) + m (b — 3c)] x i- [3 {a -{- 1) d -\- m. (1 — «)] ;/.

The student should now be able to reverse the process, and

reduce this last expression to its original form by the method

of § 74.

EXERCISES.
In the following exercises, the coefficients of y, 2, and

their products are to be aggregated, so that the results shall

be expressed as entire functions of x, y, and z, as in § 55.

1. ax -\- bx — 3ax + 3bx \- Qx — 7x.

Ans. {— 'Ha -\- '\:b — 1) X.

2. my + py — my — 2py — 3r/y.

3. mx — ny -\- jtx — <jy -\- rx — sy.

Ans. {in -\- ]> -\- r) x — {n -\- g -\- s) y.

4. 3az — y — 2az -[ z — az -{- y.
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Zxy.

5. ahxy — hcxji -\- hdxy.

6. 'dijab.iij — "Z^x — ax -

7. ay — by — may — nby + ^•^«

8. amy — bmij -\- any — bay.

9. pi'z — 2qrz — 4pj)Z + 8(//iz.

10. c?ix 4- i;w; — «v>/^ — 'Zbny.

10. All entire function of two quantities can be regarded

as an entire function of either of them (§§ 49, 50), and wlien

expressed as a function of one may be transformed into a func-

tion of the other.

Example. Tlie expression

{2a + 3) a.-3 — (-l«2 _ 2a) .t^ + {a^ — 2a -{ 1) x — a^

lias the form of an entire function of x. It is required to

express it as an entire function of a.

Clearing of })arontlieses, it becomes

2ax^ -\- 3.j;3 — 4^2:^2 4- ^r/.^a 4- a^x — 2ax + x — a^

Now, collecting the coefficients of a^, a^, etc., separately, it

becomes

(_ 4.7;2 ^ a; — 1 ) a^ -\- {2x^ 4- 2x^ — 2x) a + 3x^ + x,

which is the required form.

EXERCISES.
Express the following as entire functions of y :

1. (3,y2_4^/).^3_,_(2/3_o^2^i) ^^^ {2y^+ by^—':!)x—y^-G.

2. (y* — if) x^ 4- (?/3 — y)x 4- y^ ~ 1.

3. if - 2//) .^•« +'(// - 2//2) .r^ 4- (/ - 2//) X 4- y' - 2.

4. (v/5 + 3/0 -^-^ + {f + ^f) ^^ + (^'+ %) •^'^ 4- (i/2 4- 3) 2:.

3Iultii)licjition of Polynomials by Polynomials.

et us consider the producti i,

{a 4- b) {p + q + ?').

This is of the same form as equation (1) of § G5, {a 4- b)

taking the place of m. Therefore the product just written is

equ d to

{a + b)p + {a + b)q 4- {a-[-b)r.

.<!
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But {a + h)2^ = ftp + b^h

(a -\- b) q =1 aq -\- bq.

{a -\- b) r =^ ar + br.

Therefore the product is

ap 4- bp -\- aq -\- bq + ar + Jr.

It Avould have been still sliorter to first clear the paren-

theses from (rt 4- b), putting the product into the form

a{P + q + r) \-b{p + q + r).

Clearing the parentheses again, we should get the same

result as before.

"VVe have therefore the following rule for multiplying aggre-

gates:

78. Rule. Multiply each term of the niultipUeajid

hy each term of the midtlplier, and add the coefficients

with their proper algebraic signs.

EXERCISES.
{a 4- b) (2r. - bn^ — 2bti^).

{a — b) (3wi + 2n — habmn).

{m^ — n^) {2m)i + jnn + q?i).

(;j2 4- ^2 + 7-2) {pq 4- qr 4- rp).

(2a — 3i) {2a f 2b).

{mx — ny) {mx 4- ny).

79. It is frequently necessary to multiply polynomials

containing powers of the same letter. In this case the begin-

ner may find it easier to arrange multiplicand, multiplier, and

product under each other, as in arithmetical multiplication.

Ex. I. Multiply W — Qx^ + bx — i by 3a;2 _ 4^ _ 5.

The first line under work.

7.^-3_Ga:2 4-5a;—

4

U^—ix —5
tlie multiplier contains

the products of the sev-

eral terms of the multipli-

cand by 3a;''. The second

contains the products by
— 4j*, and the third by —5.

Like terms are placed

under each other to facil-

itate the addition.

21a;5_iaT4 4- Ibx^—I2xi

— 28.c4 4-24a;3_20.t;2 4-10a:

— 35a:3 4- ^Qx^—2bx-\- 20

2\7^—^(jx^+ 4a;3— 2x^— ^x+20
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same

5.

Ex. 2. Multiply 7)1 + nx + px"^ by « — bx.

m + nx + 2^^^

a bx

am -f- anx -{• apu^

— bmx — biix^ bpa^

am + {an — bm) x + {ap — bn) x^ — bpT?

In the folluwin<T cxeroiKcs arrange the terms according to

the powers and i)roduct8 of the leading letters, «, bj x, y, or z.

Multiply

3a^ + 5a + 7 by 'Za^ — 3« + 4.

a^ 4- ab -^ b"^ hy a — b.

I.

2.

3-

4.

5-

6.

7.

8.

9-

lo.

II.

12.

13-

14.

15.

16.

17.

18.

19.

20.

21.

22.

23-

24.

25-

26.

a^ + a^ + r/w^ 4- x^ by a — a;.

«3 — a^ ^ a — 1 by a^ — a + 1.

ar* + aa^ -f «^.c2 ^ ^3^ _|_ ^^4 |jy ^ — a.

a + bz + cz^ 4- cl^ by ?«. — W2; -j- 2JzK

3a8 f 5a + 7 by 2^2 + 3a — 4.

a^ — ab + b^ by a -\- b.

a^ + r/S^ -\- ax"^ + x^ hj a — X.

«2 — a^ + a — 1 by a^ _|_ ^ — 1.

X* + ax-^ + a^x^ + rt% + a* by a; + a.

1 + bz -\- cz^ -\- dz^ by m + 7iz —pz\
(a 4- bx) {m -\- nx).

{a + bx 4- f.T^) (m 4- 'y«a; 4- j^a:^).

(/ - 3^ 4- 2) if ~ 2).

(y3 4. 2/2 + y _!_ 1) (^2 ^_ y ^ 1)

(y3 _ 5>y. 4- 3// - 4) if 4- 2/ 4- 3^ 4- 4).

da-"'x — 3a2_y -(- 2^2" by a'" — a"

a^ 4. Qab -\- r.b hj a — ;^b.

{a 4- i) 4- (« — />) by {a i- b) — {a — b).

(fi — p^[a — b) by a2 4- Z»« 4- (a 4- ^').

a -{ b -}- c hj a — b -\- c.

r<2 4- ^2 _ (3^<2 ^ ^,2) by 2a 4- 2J — 2 (a — b),

2(a — b)+x — y hy a -\- b — {x + y).

ax'"- 4- bx" — abx by a^ 4- Z'a;^.

a"' — J" by a'" 4- b\

ilil

r
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ir^x^y + 3.r//2 — Uf by — Tx/y.

1

28. .,.^3 4- 3rt.r — . rt' l)y 2:1-3 _ ^^-^ _ ^i.

NoTi:. A^T^gro^'iites oiitoring into either factor should bo

siinplilied before inuUiplying.

Special Forms of Multiplication.

80. 1. To find the square of a binomial, aa a + b. "Wo

multiply a -\- b by a -{ b.

a (a -t- Z>) = a' + a5

b {a -\-b) = ab +^
(a -^b){a-^b) = «2 + ''iftb + b^

Hence, {a + by = a^ + 2ab ^-i- U^ (1)

2. We find, in the same way,

(rt - by = rt2 _ 2ab + b\ (2)

These forms may be expressed in words thus:

Tlieorem. The square of a binomial is equal to the

sum of the squares of its two terms, jjIus or minus twice

their product.

3. To find the product of « + J by « — Zi.

a{a \-b) = c^ ^ ab

— b{a + ^) - —ah-W
Adding, {a + b) [a-b) =a^- b\ (3)

That is

:

Theorem. The product of the sum and difference of

two numbers is equal to the difference of their squares.

The fonns (1), (2), and (3) should be meinorized by the student, owing

to their constant occurrence.

When J = 1, the form (3) becomes

{a + 1) (rt _ 1) = a2 - 1.

The student should test these formulae by examples like

the following

:

(9 + 4)2 = 92 + 2.9-4 + 42 = 81 + 72 + IG = 109.

(9 _ 4)2 = 92 — 2-9.4 + 42 = 81 - 72 + IG = 25.

n

it

a

nc.

wli

thi,

wli
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Wo

(1)

(2)

(3)

A

(9 ^ 4) (9 _ 4) = 92 _ 4. = r.5.

Prove tlicse three C([uatioiis by computing the left-ljuiul

mcniMer directly.

EXERCISES.

"Write on sight the values of

I. {m + )tn)\ 2. (m — 2n)'.

3. {:Mi-^zbY. 4. (-i.^-.^y)2.

5. {-Ix + y) {'Ix - y), 6. (32: + 1) (32- - 1).

7. (4x2 + 1) (ia:« - 1). 8. (oar^ - 3) {bu^ -f :3).

81, Because the product of two negative factors is positive,

it follows that the square of a negative quantity is i)o.sitive.

Examples. (— af = «« = (+ ay.

(i _ af = a^ _ ^lab + i^ = (a - h)\

Hence,

TliG cxprcsfiinii a' — 2«5 + V^ is the S(/uaj'e huth of
h ami of b — a.a

— a X a ^ a\83. We have

Hence,

Tlie proiliict of equal factors with opposite si^iis is a
negative square.

Example. —{n — l) (a _ Z<) = _ «» + 2ab — b^

which is the negative of (2). Because — {a — b) = b — a,

this equation nuiy be written in the form,

(5 _ a) {a -b) = —a^ + 'Zab- 1?,

which is readily obtained by direct multiplication.

EXERCISES.
Write on sight the values of

I. — (rt + 5) X — (a 4- b).

2- (-^ - y) (!/ — -c)- 3- (^ + y) (-a: — y).

4. {2a - 3b) {3b - 2a). 5. (3* - "ia) {- 3b + 2a).

6. {am — bn) {bn — am). 7. {.ry _ 2) (2 — xy).

M\
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V

CHAPTER III.

DIVISION.

8,'J. Tlic problem of jil;rol)rjiic division is to find sucli un

expression tliut, when miillipliod by the divisor, the product

sliull l)C the dividend.

Tiiis expression is called the quotient.

In Algcbrii, the (piotient of two quantities niuy always bo

indicated by a fraction, of which the numerator is the divi-

dend and the denominator the divisor.

Sometimes the numerator cannot be exactly divided by the

denominator. The expression must then be treated us a frac-

tion, l)y methods to be ex])lained in the next chapter.

Sometimes the divisor Avill exactly divide the dividend.

Such cases form the subject of llie present cha[)ter.

Division of 3[oiioiiiial.s by 3IoiioiniiilM.

84. Ill order tliat a divideiul may bo exactly divisi-

ble by a divisor, it is necessary that it shall contain the

divisor as a factor.

Ex. I. 15 is exactly divisible by 3, because 3' 5 = 15.

2. The product ab-c is exactly divisible by ac, because ac is

a factor of it.

To divide one expression by another which is an exact

divisor of it:

Rule. licinoie from the (lividend those factors the

product of irhich is eqival to the divisor. The reniaiii-

ing factors ivill he the c/uotieiit.

85. Rule of Exponents. If ])oth dividend and divisor

contain the same symbol, with different exponents, say m and

w, then, because tlie dividend contains this symbol m times as

a factor, and the divisor n times, the quotient will contain it

?« — 71 times. Hence,

ti

nil

tic

tha

bra
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exact

\

Til dividing, exponents of like symbols arc to he sub'

tracted.

EXERCISES.

1. Divide 207?/ by 'lij. Ans. 13.r.

2. J)ivi(lo -lidHtc by ''ibc,

3. Divide r^ by x"^. Ans. x,

4. Divide \^<d^ by Gat. Ans. 'Ml.

5. Divide \hd^m by 3^. Ans, ham,

6. Divide XWn^ hy Ham.

7. Divide Hki^tn* by 8^/3,;/«. 8. Divide :H',.nfz^ by G.n/^.

9. Divide -lOaW by lOalt,?^. 10. Divide [ibul/^ by ;«i^.

Kiile of Slffiis ill Division.

86. Tlio rule of signs in division corresponds to that in

multiplication, namely:

If dividend and divisor have the same si£n, the quo-

ticnt is positive.

If they have opposite si^ns, the cpcoticnt is negative.

Proof.

•\-m.v -T- i+ ni) = -\-x, because -\-x x ( + w) = -\-7nx.

-\-mx -r- {— m) = —X, " — ^' X (— wj) = -{-mx.

—mx -h { + ni) = —X, " —X X ( + w) = —?nx.

—mx -7- {—m) = +.r, " +.t x {— m) = —mx.

Tlic condition to be fulfdlcd in all four of these cases is

that the product, quotient x divisor, shall have the same alge-

braic sign as the dividend.

EXERCISES.
Divide

I. + a by + a. Ans. + 1.

2. -\- a by — a. Ans. — 1.

3. — a by + a. Ans. — 1.

4. — a l)y — a. Ans. + 1.

5. — '.y^ahnx by Wax. A ns. — ',}am.

6. — 24.r2y/z by XZryz. Ans. — 2x.

7. 'Ziani-x'" by — ;a//<x". A ns. — '3mx"'-".

m

iiii

t;
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8. — ISa^y/" by — Ca"/?. Ans, ^a^'^})^-^.

9. — IGa^x^y'^ by Aa.r^i/\

10. 14i*// by — :^//?.

11. — 12^^*X:'» by — 4Z'"M'».

12. 12 {a - bye* by 3 {'i — If c. Ans. 4 {a — V) (^,

13. 42 {x — ?/)'» by — 7 {.c — yyK

14. — 44rt« {x — t/Y by 11«' (.<; — ;/)<.

15. — 45^ {a — by by yi« (« — i)^

16. — 48 {m -f w)'' kv — 8 (wi 4- «)^.

17. G4 {a 4- ^)'' {x — y)"' by 4 (« + Z/) (a: — y).

Division of Poljiioniials by Moiioiiiial.s.

87. By the distribntive law in multiplication, whatever

quantities the symbols m, a, b, c, etc., may represent, we have:

(rt + 5 -}- c + etc.) X m = ma + mb + mc + etc.

Tlicrcfore, by the condition of division,

{iim + mb + mc + etc.) -7- m =z a { b -\- c + etc.

We therefore conclude,

1. In order that a polynomial may be exactly divisi-

ble by a monomial, each of its terms must be so

divisible.

2. The quotient will be the algebraic sum of the

separate quotients found by dividing the different terms

of the polynomial.

EXERCISES.
Divide

1. 2«2 + 6a^x — 8rt5j4 |,y 2^2. A71S. 1 -f 3rta; — ^a^x\

2. Gm^n — 12m'/i* — li<nui^ by Ctinn.

3. Sfi^ffi — lOrr^b* + Sr/5^/3 by Aa^bK

4. 4r//^ — Sx^y^ -f Ax^y by — 4.ry.

5. Viabx— 2-iabx^ by — 12^7^?-.

6. 21^/«2/-^ — Ua-m*x^ -f 2Sa^m^x^ by — 7a7n3f^.

7. T2rif3^ _|_ 04^^ _|_ 4fiffjfS ]^y 2Aax.

8. a{b — c) J^ b{c — a) + c {a — b) -{- abc by abc.

9. 27 (^^ - ^)' - 18 (a - //)3 + (a - i)8 by 9 {a - b).

10. «»» ((f — i)« — a'* {(( — b)"" by «" (a — i)".

wli

Th
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I

I

II. {a + hy (a - by + {(i-[-by {a-hy by {n+ h) {a-h).

12. 10 {x + y)'^{x - yY - 5 1^ + yY {( - yf
by 5 (a; + 2/) (a; - y).

13. (« + J) (rt - h) by a2 _ ^^a.

Factors and Multiples,

88. As in Arithmetic some numbers are composite inid

others prime, so in Algebra some expressions admit of bciiii;-

divided into algebraic factors, while others do not. I'iio lalU-r

are by analogy called Prime and the former Composite.
A single symbol, as a or x, is necessarily prime.

A ]»roduct of several symbols is of course composite, and

can be divided into factors at sight.

A binomial or polynomial is sometimes prime and some-

times composite, but no universal rule can be given for dis-

tinguishing the two cases.

89. When the same symbol or expression is a factor of all

the terms of a polynomial, the latter is divisible by it.

EXAMPLES.
1. ax + ahx^ + a^csi^ =z a {x -\- hx^ -\- ac.c').

2. aWx + rr^Z»V — aW-x {h + ax).

3.
«'^'* + a"x" — rt'i (rt" + .^•«).

EXERCISES.
Factor

I. ax^ -f- a'^x.

3. rt2«//« + a'^b^.

5. «« Z>^» C^n + ft""
^»3n en _^ ^3n ^n (,-in^

2. a%hy -\- aV)c^y + ab^cy.

4. ft3«
^n _ ((in ^5n _|_ ^n ^^Qn^

90. There are certain forms of composite expressions

which should be memorized, so as to be easily recognized.

The following are the inverse of those derived in § 80.

1. «2 4- Ub + b"^ = {a -{ b)\

2. «'i — 2ftZ> + /y2 — [a — by
3. ft2 - b'i = (ft -H b) (ft - b).

The form (3) can be ai)plied to any difference of even

powers ; thus,
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and, in general, d^^ — ¥'^ = (a" + b'^) {a" — b").

If tlic exponent is a multiple of 4, tlie second factor can be

again divided.

EXAMPLES.
a'-b* =z (rt2 + b^) (u^ - b') = (rt'H^) (a + b) (a-b).

a'-b'= {a^ + b'){a^-b') = {a'-}-b^) {a'^+ b-^ {a + b){a-b).

When b is equal to 1 or 2, the forms bectmio

«2_1 - (^a + l)(a-l).
«3 - 4 = (rt + 2) {a - 2).

rt2 4- 2a 4- 1 = (rt + 1)2.

a2 ^ 4a + 4 = (rt + 2)1

d'-2a-\-l = {a - 1)2 = (1 - ay.

cr2 _ 4a. 4- 4 = (a - 2)^ = (2 - ay.

By putting 2b for Z>, they give

a2 - 4/>»2 = ^a + 2i) (a - 2b).

a2 + 4a^' + 4^2 = (a + 2^)2.

EXERCISES.

Divide the following expressions into as many factors as

possible :

A71S. (a;2 + 4) {x + 2) (re — 2).

4

5

7

9

II,

13.

1. a;4_i6.

2. _?/ — 16a:4.

3. a;2 + ()x + 9.

:c2 — Ox + 9.

4a2.c2 — dbY.
92-2 - 12:r^ + 4^2.

4a2a;2 + iab.nj + l^y^-

X* — 2.1-y + ?/4.

rt4 _ 4^^2/^2 ^ 4^4.

^»5. (a; + 3)2.

6. ir.r^^.i-4— 1.

8. ff2<;2 -f 2a.r// 4- yl

10. a* + \:dW H- 4/A

12. a-4 — 4;r2//3 4- 4/.
14. «•' a262.

a,2n '^nH!a" + 1. 16. x"^ — 4ax" + 4a2.15-

17. 1 — ?A
18. X^Z 4- 2.f3//3;j + /;?.

Ahs. z {j^ 4- 2.i-3/y3 -}- /) = ^ (.r3 4- iff.
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20. ci^ — h^"-.

22. 4r'^« — 1J.<%2.

19. (fi— ia% + 4r^i2^

23. 4i-^//4 — VZx^yi + U-f^.

25. .T»'" — 'Zx'^'Uf + </-''». 26. x^ — ;>x'»» + 1.

1 . „„ 1
27. ic- + a; +

24. x^ -^ x'if.

- 2x^'

28. a;2»» + X'" 4-
4 — " "

- 4

91. By combining the preceding forms, yet other forms

may be found.

For example, the factors

(a2 + ah + ^2) (,^3 _ f(j, ^7,2)^ ( 1

)

arc respectively the sum and dilference of the quantities

«'• 4- b' and a/).

Hence the product (I) is e(|ual to the diifcrence of the

squares of these (pumlities, or to

Hence the latter (|uantity can be factored as follows:

a» + «2^,3 + Ji = (ai + aO + fj-') {(e~ - ah + h%

EXERCISES.
Factor

I. .r« + .'^•y + ?y*. 2. a^ + 8a7y2 -f lOR
3. «* -f !V?2/.' ^ 81.^•^. 4. rt^« 4- «'-'" /^2/i ^ ^4n^

5. rtU^ + -i^rVA/'-' + l(V/'.i;2. 6. (fi + 8«'^2 _,_ lo^a^i.

7.
.'?••''« 4- a;3" //-" 4- .7;"//'".

8. w/2 _ ^8 4- 'Zab — k J«.s'. (y» —a-\-h) {m 4- ^ — Z').

Here tlio last three terms are a negative square. Compare ij 83.

9. a^ — 4^2 4- 4bc — c\ 1 o. (i^ — 4r/Z''- 4- 4rtZ»6" — r/c-'.

1)'5. The following expression occurs in investigating the

area of a triangle of which the sides are given :

{(( -\- h + r) {a + b — r) {a — b + c) {n — b — c).

By § 80, 3, the ])roduct of the first pair of factors is

(a 4. by - r-' = rt2 4- 2ab + I/i — c^

;

and that of the second i)air,

[a - by - r^ = a-- 2ab + b^ - c^.

(1)

1
i' \

11)
if
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! ».

By the same priiicii)le, the product of these products is

(^8 + i^ — c^f - ^aW,

wliicli we readily find to be

«4 -\-h^ -\-c^ — 2«2Z>2 _ ^hh"^ — 2c^a\ (2)

Ilenco this expression (2) can be divided into the four

factors (I).

Factors of Binomials.

1)3. Let us multiply

OI'EUATION.

X — a

— <y.Z;"-l — r/23;n-2 _ ^,3,.n-3 ^n 1^^ _ ^^n

Prod., x^ rt'*

The intermediate terms all cancel each other in the product,

leaving only the two extreme terms.

The i)ro.v;ict of the niuUi})li('iind by x — a is therefore

a:" — «". llonce, if we divide x^ — r/'* by x — a, the ([uotient

will be the above expression. Hence the binomial x'^ — «"

may be factored as follows:

a;« — a^ = {x — a) {x''-^-{-ax"-^+ n'X''-^+ +rt«-2.f+ ««-i).

Therefore we luive,

Tlieorem. The difforenco of any powor of two num-
bers is divisible by the difference of the numbers
themselves.

Illustuatiox. The difference between any power of 7
\

and the same power of 2 is divisible by 7 — 2 = 5. For

instance,

r- - 22 =r 45 = 5.9.

73 _ 23 _ 3;j5 _ 5.07.

7^ - 2« = 2:385 = 5.477.

etc. etc. etc
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(2)

an-l

For

i

94, Let us multiply

xn-\ _ axn-'i ^ (i^^n-Z ^. (_ r,)n-2^ ^ (_ ^^n-l

by a; + a = a; — (— «).

Rem. This expression is exactly like the preceding, except

that — rt IS substituted for a. It will be noticed that the

cocfKcients of the powers of x in the multiplicand are the

powers of — a, because a

(_rt)2 = +a\

{-ay = +«*,

etc. etc.

The sigu of the last term will be positive or negative,

according as n — 1 is an even or odd number.

OPERATION.

X -f- a = X — {— a)

_1_ axn-i _ a^jn-2 ^ (^s^n-a ...._(_ a)n-\x _ (_«)«

Prod., x"

The multiplier re 4- « is the same as x — {— n) (§ 50).

Ill nuiltiplying the first terms, we use + a, and in the last

ones — (— a)y because the latter shows the form better.

Hence, reasoning as in (1), the expression «;«•—(—«)'*

admits of being factored thus :

a;« _ (_ rt)« = (re + «) [.i-w-i — ax^-"^ + a^x^-^ —
+ (— a^-^x -f (— rt)"~M-

If n is an even number, then (— «)» = «", and.

a;" — (— «)" = x^ — rt".

If n is an odd number, then (— «") = — «", and

a"« — (— (lY = a;» + a«.

Therefore,

Tfieorem 1. Wlieii n is odd, the biiiomiiil x'^-^-W is

divisible by a;+ a.

f'^'MLffiniiiiinBaw
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Tlieorem 2. When n is even, the biuomial x^—a^ is

divisible \iy x^-a.

NoTK. These tlicorems could have hecn deduced imme-

diately from that of § *JIJ, hy clian^inj]; a into — «, because

X — a would then have been changed to x + a, and x^ — itP-

to x^ + rt" or it" — oJ^y according as n was odd or even.

The forms of the factors in the two cases are :

"When n is odd,

a;" + rt» = {x + u) (;?'»-i — «.c«-« + rt2.c«-3 — ....+ 0"-!).

When w is even,

a;" — a" = (a; + r^ (a^-i — rta:«-2 _|_ ^,2tn-3 _ . . . .
_<<n-i).

(«)

In the latter case, the last factor can still be divided, be-

cause a;" — «" is divisil)le by x — a as well as by a; + a. Wo
find, by multiplication,

{x — a) (:r''-2 + ^a.^n-i ^ ^,i^^fi-6 + . ... + r;n-2)

Tlicrefore, from the last etjuation {it) wc have

:

"When n is even,

x^ - a" = (x+ a) {x—a) {x''-^ -\- a-x"-*+ a^x''-^ — .... + «"-2).

EXERCISES.
Factor the following expressions, and when they are purely

numerical, prove the results.

I. 52-22. Ans. (5 + o)(5_2).

[Proof. 52 — 22 = 25 — 4 = 21
;

(5 + 2) (5 -2) = 7-:J = 21.]

2. O-* — '4\

4- 55 - 2'.

6. 73 + 23.

8. 1^ - 2*.

10. a^ — a\

12. a^ — a^.

14. x^ + a\

16, 8^3 _ 27R
18. ;^-3 _|_ S//3.

20. 8«3 + 21/^3,

3- 5^ - 2\

5- 5« - 2«.

7- 73 - 23.

9- .t2 — a\

II. X* — a*.

13* .t-3 + ^3^

15- a^ — 8*3.

17- 10«« — /A

19. ;*-» - 1 «'.//.

21. .<;« - Glk

1

fa
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{a)

LOfist Coiiiinoii ^Iiiltiple.

05. Def. A Common Multiple of several quanti-

ties is any expression of which all the quantities are

factors.

Example. The expression aiu^n^ is a common nuiUiplo of

the (lUiUitities a, m, n, am, awn, ai/i^, m^n^, etc., and tinally of

tlie expression itself, ain^/i'\ But it is not a multiple of ^r*, nor

of .r, nor of any other symbol which does not enter into it as a

factor.

Drf. The Least Common Multiple of several

quantities is the common mnlti])le which is of lowest

degree. It is written for shortness L. C. ^I.

BUI.R FOR FIXDING THE L. C. M. FdCtuV tJlC SCVCrul

quantifies as far as jmssible.

If tJie qudntitics have no cmmnoii factor, the least

comnioii maUipJe is their prmluct.

If several of the quantities have a coDiinon faetor,

the inaJtij)le required is the jn'otluet of a/l the /'actors,

earJh of theDi I^eiiig rtn'sed to the hi^Jicsb power which it

has ill any of the o'iveu (piantitics.

Ex. I. Let the given quantities be

'Zab, \Wr, {jac.

The factors arc 2, IJ, a, b, and c. The highest power of b is

I^, while a and c only enter to the tlrst power. Hence,

L. C. U. = Gat^c.

Ex. 2. rt2 _ I'i^ ffi + Oat, + b% a"' — 2ab + b^ a* - b\

Factoring, wc find the expressions to be,

{a + b) {a - Ir), {a + bf, {a - bf, {a^ + ^^M«+ *) («

By the rule, the L. C. M. required is

{a-\- bf{a-bY{a' + l^).

b).

i'
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EXERCISES.
Find the L. C. M. of

I. xy^ xz, \jz. 2. a%, Wc, (?d, d^a.

3. a, ab, abc, abctf. 4. a^, o.b^, be*.

5. a;« — //-', X +11, x — y.

6. .r* — 4, iT^ — Ax + 4, .T? -1- 4a; -f 4.

7. IGrt'x^ — 4;;t', '2^3* f w^ 2rta: — m.

8. a:2 — 1, x^ + 1, a;2 — 2.r f 1, a;^ + 2.r + 1.

9. 4rt (6 + c), b{a — c), 2ab.

10. 2 (r« — Z')2, 2 {a + <:)-', 2 (a — b) {a + b).

11. 3ix + y), 3 :-) SCr^ + y^).

12.

13-

14.

15-

16.

a J, rt2 _ ^v; 3 _ rt' Z**.

a-' — a\ x^ + fl3, a:^ — a% x -^ a.

afi — G4a8, X* — lGa\ x^ — Aa\

a + b, «« + 2rtJ 4- b"^, a* — b*.

Division of one Polynomial by another.

If the dividend and divisor are hoth polynomials, and entire

functions of the same symbol, and if the degree of the numer-

ator is not less than that of the denominator, a division may
be performed and a remainder obtained. Tiie method of

dividing is similar to long division in Arithmetic.

9(5. Case I. When fJirre is oiihj one algehraic sym-
bol ill the dividend and divisor.

Let us perform the division,

3ar» — 4a;3 + 2a-2 + 3a: — 1 -^ a^J — a; + 1.

We first find the quotient of the highest term of the divi-

sor .r^, into the highest term of the dividend ',\x\ multiidy (he

Avholo divisor by the fpiotient 'ix^, and subtract the product

from the dividend. We repeat the })rocess on tlie remainder,

and continue doing so until tlie remainder has no power of x

80 high as the highest term of the divisor. The work is most

conveniently arranged as follows:

to
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Sir' X Divisor,

FirHt Remainder,

—X X Divisor,

Sccoud Itcinuindur,

—8 X DlvlBor,

Tliird and last Reinainder,

Dividend.

3.^-1 — 3.^3 4- 3.c2

- 3^- :<;3 + 3a: -
a;8— X

-1

1

'~~ 'Ix^ 4- 4x -
2a?« + 22; -

-1

Dlvlnor.

32?* — a; — 2 Quotient.

22; + 1

Tho division can 1)C carriod no fartlicr witlioiit fractions,

because .r^ will not ^^o into x. We now apply the .«anie rule as

in Arithmetic, hy adding to the quotient a tract ion of which

the numei'ator is the remainder and the denominator the

divisor. The result is,

3^« _ 4r3 + 22;2 + 3.r — 1 = 32;8— a; — 2 +
2.r+

{a)
a;2 — a; + 1 a;^— 2;-, 1

This result may now he proved hy multiplying th^ quotient

by the divisor and adding the remainder.

There is an analogy between the result {a) and the cor-

resp(mding one of Arithmetic. An algebraic frac -^w like (r/),

in which the degree of tho numerator is greater tiian that of

the denominator may be called an improper fraction. As in

Arithmetic an improper fraction may be reduced to an entire

nuinJjer plus a ])roper fraction, so in Algebra an im]m)j»er frac-

tion may he reduced to an entire function of a symbol plus a

proper fi'action.

EXERCISES.
Execute the following divisions, and reduce the quotients

to the form {a) when there is any remainder.

1. Divido a;^ — 22* — 1 by x -\- 1.

2. Divide x^ + 2a^' — 2.c — 1 by a; — 1.

3. Divide j"^ — ^x^ 4- 2a: — 1 by a? — x.

2x^ 4- x^ — a; — 5
4. Reduce

5

0,-t
/».'

a^ — X -^ i

Divide 24^3 — SSa^ — :]2a 4- 50 by 2a — 3.

Ana. Qiiot. = i:la^ — a — \'
; Keni. = —

):
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*•

6. Divide X* — 1 by .c — 1.

Wlu'ii terms are wanting in the tlividcnd, tli(>y may bo conHidcrcd hh

z«'m. In this la.st cxcrt'if^c, the terms in ./', .r', and ./ are wanting;. l?iit

the U'ginner may write the dividend and i»erl'orin th(! operation tiiuti

:

jc^ -t O./"' + 0/'' + Ox- - 1
\
x-\

a-*- ar^

x" + Ox'^

a;- + 0.C

J--' — X

x-X
x-\

6

Tlio oi)(>rntien is thus nssimihited to tliut in which the expression is

cnnipietf ; hut tlie aMual writinj; oC tlie zero terms in tills way is iin-

net'essary, and sliould bo dispensed with as soon at) the btudent is uIjIo

tu do it.

7. Divide a^ — 'la + 1 by a — 1.

8. Divide x^ + 1 by x+ I.

9. Divide 8f<^ + Vi'y by '4a 4 5.

Divide a^ + 1 by a -{- \.

Divide a^ + 'ia- + I> by a" + 2rf + 3.

Divide «« — 1 by a^ + 'Za'^ + 2rt + 1.

10.

II.

12.

13- Divide :r« — !:>./' + SG.r* — .'J'-i by tf=« — 2.

14. Divide (j^ — 2j!: 4- 1) (•''' — l''-'' — D>) by a:- — 10.

For some pur|)oses, we may ecjually well perform the operation hy

hcfrinniii;;: with the term containing the lowest ])ower of the quantity,

or not containing it at all. Tak<', for instance, Kxample 9 :

12") + 8^t3
\Jy±'>'

12."> + oOfl!

-ma
- 'Ma - 20rt'

In

25 - \0a + ia'

20a' + 8a^

15. Divide 1 + 3.T + 3.i-' + x^ by 1 + x.

16. Divide 1 — 4.C 4- 4.c« — x^ by 1 — r.

17. Divide 15 + 'la — oa^ + a^ + 2^/^ — a-' Ity 5 + 4rt

18. Divide 1 — //' by 1 + 2i/ + If -f f.

19. Divide (il— (Mz-fKU-— .S.f=*+ 4.r*— .<•'• by _4 + 2.c-|-.c2.

20. Divide G-4 — IG./^ -f-
:<;6 by 4 — ix + a?^.

rt''.
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a\

07. Cask TI. ^Wtrn, tJirrv arc several algebraic syni-

bols hi the divisor diul dividend.

Let us suppose the dividend and divisor nrranfred acrordin*:^

to powers of some one at" tjjc symbols, uliicli we may sui)i)oso

to be X, as in >J 70.

Tjot us eall .1 the coetlieient of the highest power of x in

the dividend, and // the term independent of x, so that the

dividend is of the Ibrm

yla;" + (terms with lower powers of j) + //.

Lot us call a the coeflieient of the highest power of x in

the divisor, and h the term of the divisor independent of x, so

that the divisor is of the form

ax"^ -\- (terms w ith lower powers of x) + h.

Then we have the following

Tlivorem. In order that the dividend may be exact-

ly divisible by the divisor, it is necessary :

1. That the term containing the higliest power of x
in the dividend shall be exactly divisible by the cor-

responding term of the divisor,

2. That the term inde])endent of x in the dividend

shall be exactly divisible by the corresponding term of

the divisor.

Jienson. The reason of this theorem is that if we suppose

the quotient also arranged according to the powers of .r. then,

1. The highest term of the dividend, .1./", will be given l»y

multiplying the highest term of the divisor, nuf^, by the high-

est term of the quotient. Hence we must have,

Highest term of quotient = - •

2. The lowest term of the dividend will be given by multi-

plying the lowest term of the dividend by the lowest term of

the <iuotient. Hence, we must have.

Lowest term of quotient = ff

llE^i. 1. Since we may arrange the dividend and divisor

according to the jwwers of any one of the ^symbols, the aljove

b
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tlu'ore'm must Ijc true whatever symbol we tuko in tlio place

of ;c.

UvM. 2. It (loos not follow that when the conditions of

the theorem are fulfilled, thf division can always be performed.

This (|uestion can be decided only by trial.

Wc now reach the folhjwing rule

:

I. Arrange both diiudcnd ami du'isov acmrdin'J to

the (tsccndinjj or dcsccmlinjj puivcrs of some com in on
si/nihol.

II. Fowl the frst term of the quotieut hi/ (ViviiViii;^

the first term of the dividend by the first term of the

divisor.

III. MiiUiphj the jrhole divisor bij the term thus

found, and sulttroet the prodnet from the dividend.

IV. Treat the remainder as n new dividend in the

same way, and repeat the process until a remainder is

found ivhieh is not divisible by the qiwtient.

Ex. I. Divide ofi + Zax^ + ^a^x + a? h-^ x -\- a,

OPERATION.

Cf^ -|_ ^ax^ + 3rt2x + rt3 \x-irn
0^

-f- aji^

2ax^ + 3^22;

2ax^ + 2a^x

z^ + 2ax + ««

ci^t 4- a^

o^x 4- rt^

Ex. 2. Divide 7? — a:i^ -\- a {h -\- c) x — ahc—hx^—cx^^lcx
by a: — a.

Arranging according to § 76, we have the dividend as follows;

.T^ — (« 4- i + c) x^ + {ah \-l)C -\- ca) x — aha \x — a

a^ — ax^

— {h-\-c) x"^ + {(lb+ hc+ ca) x

— {b -\-c)x^ -\- {ab 4- ac) x

x^ — {b+ c) X -\- be

hex — abc

hex — abc

I.

2.

3-

4-

5-
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1. Divide

2. Divide

3. Divide

4. Divide

5. Divide

6. Divide

7. Divide

8. Divide

9. Divide

10. Divide

11. Divide

»2. Divide

13. Divide

EXERCISES.

the dividend of Ex. 2 above hy x — b,

tiie dividend of Kx. 2 ubove l)y ;/• — c,

<i^ -f /y — r-3 4- '.hibc l)y rt + & — r.

a^ + i'' + Dab — 1 by a + />» — 1.

aV/^ + 'inbx^ — (r/« f ^) r^ by ab + {n — h) x.

[,{i _ hcf -f H/»V by rt'^ + be.

{a + b + r) {(lb -f- be -f m) — abc by rt + J.

(^f -f- i — c) {b + c — a) (e 4- « — ''O

by rt» — ^rJ — c2 -f 2*c.

r/'' + Zr» + c3 — 3rtJc by a 4- ^ 4- c.

.r» 4- 4^«< by a;''-* — 2ax 4- ^a'.

rt'J (b ^x) — bii{x — a) + {a — b)x^ + abx

by a; 4- a 4- 5.

T^ — ax^ — />2r 4- aP ])y (a- — a) (r 4- /;).

I;ia^.f9 — lAn'^x^ 4- 1^«''.<'-^ — a' by ^a'^x^ — a^.

m

----

^J/c

CHAPTER IV.

OF ALGEBRAIC FRACTIONS.

OS. Drf. An Algebraic Fraction is tlie expression

of an indicated qnotient when the divisor will not ex-

actly divide the dividend.

Example. The quotient oi p -— q is the fraction -•

Drf. The numerator and denominator of a frac-

tion are called its two Terms.

Trnusforniation of Single Fractions.

99. Rediiotlon to Loicesf Terms. If the two tenns

of a fraction are multi])lied or divided by the same
quantity, the value of the fraction will not be altered.

:|i

/,
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(IX
Example. Coneidcr the fraction • 11' \vc diviik' both

X
teniis ^)y a, the fraction will become -•

y
ax _x
«y ~ y

Corolhirif. If the miiiuTator and (L^noiiiinator con-

tain cunmion factors, tlicy may be cancelled.

Def. Wlien all tlie factors common to the two

lerms of a fraction are cancelled, the fraction is said to

Ibe reduced to it.s Ixj-west Terms.

To reduce a fvnrtimi to its hticcfit tennis, factor both

terms, irhcii ncccsstiry, and cancel all Ike common
factors.

Ex. I.

acmf en

Ex. 2.

The factor inf comraou to both terms is cancelled.

(m _ n^

The factor d^l? common to loth terms is cancelled.

Ex. \. Itt'dnce —.-•
a'x

Here a^x is a divisor of both terms of the fraction. Di-

a\c
vidiiiff l)y it, the result is -,• Ilencc ~- =

a'

Ex. 4.

Ex. 5.

(i^ + Ub -Ju I?

a*x

1^

rt2

a -f 1}

«' — i/i {a + b){a — b) a — b

mu — nu (m — n)u u

mx — nx ~ (m — n) x
~~

x

^

EXERCISES.
Reduce the followinci fractions to their lowest terms :

I.

1 0/irfi^

l-Jyry-*"

2.
am

1 'iff.ri/

1 ^ui'ir^t/'^
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i both

' con-

I two

id to

• hofJi

Linuib

I)i-

5-

7-

9-

II. —.

13-

IS-

17-

7-) (r, _^7-) (/^— r)_

aji — hy

ax — ba-

d^-1fi

u'i-iab + 1?'

a^ -\- y^

a{x~-^ y)'

a^-^b*

a^ — y^

axm — axn

byHI — by II

6.

8.

10.

12.

14.

16.

18.

69

__20(f( -]- x)(m — }f)

24: {d^—2ax+ x^){m— u)

ay — by
'

d^ + 4ax + 4a^

a^—J:^

_—

.

«

ay 4- ^^/y

rt'^ + ab + /»2^

«4 ^^;.^2 _^-^4*

awX an

7;/.r — 7? a;

(« H- b) {m — w)

100. Rnh of Sifpi!^ in Fraclion.'^. Since a fraction is an

indicutod ([uotient, the rule ol' si<,'ns corresponds to that for

division. The followini^ theorems ibllow from the laws of

ninltiiilication and division:

1. If the tcniiH 'AY(\ of tlie same sign, tlio fraction is

positive ; if of ()i)i)osito signs, it is negative.

2. Cyiumging tin' sign of either term changes tlio

sign of the fraction.

3. Changing the signs of both terms leaves tlie frac-

tion v»itli its ori^',inal sign.

4. Tlu^ sign of the traction may bo changed by
changing tlie sign written l)efore it.

5. To these may be? added thegenei'al princijde that

an even nnmber of changes of sign restores the fraction

to its oiiginal sign.

Ex. I.

Ex. 2.

Ex. 3

n — a — a a

b~^~b
- ~

b " ~ -b
n — n —a a

~b ~
' -b ~ T ~ - b'

a — b b — a a — h b — a
^^~^ -^2. — r::^ __ —

m — n ;/ — III n — III m — u

l>
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EXERCISES.
Express tlie following fractious in four different ways witjj

resi)L'ct to si;:^us

:

I.

5- -

X

a

m
V — !7

m — n

2.

4-

6.

X — 1/

a — b

a
-

a — b + c

a 4- m X

p + q — r a — in -\- x

Write the followinir fnictions so that the symbols a; and y
shall be positive in both terms :

X — b

c — y
a -{- X — /;

a — X -\- b

X — a -\-b

7-

9-

+

+

8.

lO.

II. —

n -
-X

•

-y
a — X

b- X

a + b-— X

a — b + yb — X

101. Whon the numerator is a product, any one or

more of its factors can be removed from the numerator
and made a multiplier.

abmx , mx ^ on ,1= a6 ~ - = abm =: abmx

—

Ex.
P + ^I

= abmx
p + q V-Vq

EXERCISES.
Express the following fractions in as many forms as possi-

I.

bio with respect to factors :

pi'X ab
'

, 2. -
1)\ )h C

rf2 y-i ffi

ir^b' 5.
-

abc
3- a + b

b*

X

X*
6. -- IGa*

X -\- :ia

103. Ilediictlon to Given Benom'niator. A quan-

tity may be expressed as a fraction with any required

denominator, i>, by sui)po8ing it to have tlie denomi-

nator 1, and then niulti])lying both terms by I).

For, if wo call a the (quantity, we have a = .- — -.-\

'
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Ex. If wc wisli to express tlic quantity ah as a fraction

having xy for its dencjminator, we write

(ilKiy^

xy
'

If the quantity is fractional, both torms of tlie

fraction must be multiplied by that factor which will

produce the requirc^d denominator.

Ex. To express .- with the denominator n¥, we multii)ly

both members by nb'^ -h i = nl^. Thus,

a aul)^

b 7lb^

This process is the reverse of reduction to lowest terms.

EXERCISES.
Express the quantity

I. a with the denominator b.

2. ax u u a ax.

3- ab » U « ab'K

4-
m
n

u u (( n (x — y).

5- -1 t( it M
m*

6.
w {n — p)

a + b

a a ((
a? - b\

7-

x + y
X — y

« 11 it x^ - y\

8.
x^ +'l

X +1
(( « it 3-2 + 2.T + 1.

0.
« + l

(( (( <( a^ — 1.a-i

Nojifativc ExpoiH'iits.

103, 13y the principle of i< S5, we have

If we have k > n, the exponent of the second nieml)cr of

the equation will be negative, and the first member, by can-

h\
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eolliiif^ n factors from each torni ol' the fraction, will Lcomo
1

ikn i^-"
— «» *.

i>y ^Hitting for sliortneHS k — n=. s, the equation will bo

a*

He lire,

A n('!j((tin' cxpnvcnt iiulirdtes the rrri/n'orrtJ of the

co?'rcfif)on(lini,' (/iKiiUiti/ itith a, positiue exponent.

a
If ill the formula «""* =r v we suppose k = n, it will

a
<i'

Leconie a" =: ^ , or r/" — 1. Jlence, because a may be any

quantity whatever,

Any qaaiititij with the exponent in equal to nnity.

Tills result may 1)0 nuule more clear by suc-

cessivf divisions of n powiT of (t by a. Kvory

tliii" wo crti'ct this division, we diminish the cx-

pontMit by 1, luul \vi' may suppose; this diminution

to continue aljrebrainilly to nepitive values of

the exponent. On the left hand Hi(U' of th«

rcpiatioMs in tlie mar^dn, the division is efVected

Hymlxiiically by diminishing tlu* ex|)onents; on

the right tlie result ia written out in the usual

waj.

EXERCISES.
In the following exercisi's, write t),,- juotients which am

fractional both a.s fractions rciluced tc; fh* ir lowest terms, wwX

OH entire <juantities with negative exponents, on the j)rinciple.

(l^ = a<«i

«2 =: aa

r/l = a

ao = 1

a-1 = 1

a

«-a = 1

an

etc. etc.

a (I= (^^'\ yi == «^^~^ etc.

I. ^ by ;«r.

t. by ufl.

3. — 2lr' by /A

4.
4,,r l,v -?,>(/«*.

-/l«.s'. or .t~'.

^,,.9. _ ^
,. or - 2rra/y2.

I'

tern
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IS, Mll'l

luiple,

x-\

9

lo

II

12

13

M
IS

i6

17

i8

19

6. V]a^/P.ri/ hy Uthx.

2Aapif.i;/ l»y Ibuuc.

— SftV) l)y Irr/r.

14r<VA-3 by - 7«2^'f». {

— 'MUiy.c'-t/ l)y — 24(;^r/y.

4Srt^ (a; - 7/)-' by uG (:f - //).

22 {a — Z») (yy< — ;/) by 15 (a + />) (m + -V

25 (a2 — ^/^) (;//2 _ ji-i) by 15 (r« - />) (/yi + ^O-

{X-* - 1) (rt2 - 4^2) Ijy (;c2 _ 1) ^(i + JJ^).

a:6 — 1 by .f3 + 1. .

«-^.37^^5 by rt'''(!/».r''y/3.

m^ti^yh by mn^y^A

m {m 4-
1 ) (//i + 2) (///+;>) l>y w (m— 1) (^/?— 2) (w— 3).

a"' by «". 20. «i"'6n by ql'^c'^K

Diss<»<*tu)ii <)f Fractions.

104. If the mimerator is a ])c)lyn()mial, racli of its

t<M-nis may bo divided Heparatcly l)y tlie denominator,

and tlie several fractions connected by the signs + or —

.

The ])riiu'i])le is that on wliich the division of polynomials

is founded (5^ ST). Tlie general form is

A + B -^-C -\- etc.

m
A B a ^- + -+- + etc.
Vl 111 III

(I)

The separate fractions may then be reduced to tlieir lowest

terms.

Example. Dissect the fraction

^^Iqihh' — ISaun/ 4- 1 5/y»z — 12&Vt^_

Wadx
The general form (1) gives for the sei)arate fractio«»,

d-idVAr. mimi/
,
Wbiiz ni?}iht

lijabx
+

ICutbx ' lintbx \^\abx

Reducing cacli fraction to its lowest terms, the sum becomes

Unhv— — — •2iib
Umj/ ]5«2

bbx idax



T4 ALOEPnATC OPERATIONS.

EXERCISES.
Separalc into .'iiins <»f t'nictions,

abc -f- bed + nla -f dab

abed

— XIJZU -f- J-\l/ZN' -f Xl/Z'U — jfijI^Z^U^

a^-h^
xhfzhi^

(fix — b'j/

ab ax

{m — v) {n + q) — (m -{- n){p — g)

^

(^ui — n) {p — q)

{x - a) {y-b) + {x - ij) {a - b) + (x b) 0/ - a)

x^ — y"^

{a + b) (>n — ;/) — (a — b) {in + n)

a3 ->

Agrsrrosratioii of Fractions.^r>?^

105. Wlien several fractions liave equal denomina-

tors, tlieir sum maybe ex])ressed as a single fraction

by aggregating: their numerators and writing the com-

mon denominator under them.

A II a A — B-^a
Lx. I. 1- = •

ni 111 III m
T-, a — b b — c c — a
Ex. 2. " -1- - -f —

x — y y — J^ -c — y
a — b c — b c — a 2e — 2b 2(c — b)

~ x — y x — y x — y~'x — y~ x - y
Kem. This jtroct'.SH is the reversn of that of dissecting a t'luction.

EXSRCISES.
Aggregate

a lib abc a

-{n-bY'a^c abc ' abc
*"

(a — bf

^ x —ay^-ba + bx — y
^' a'x ^ n\c

"*"
a'^x '^ a^xah c d

a — b b — a a — b b — a

a — b a — c c ~b
,

c -\- a
S« T

m a

m — n ill — n n — m n — m
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(i)

100. Wlion all tlio frnetious havo not tlio pamo (lonomina-

tor, llu-y iiiiist l)c rt'diiced tu a cummoii (k'nomiiiator by tlio

process of i^ lO::^.

Any conmion iniiltiplc of the dinoininators may bo takon

as the comniou deuouiiuutor, but the leuiit cuuimon multiple is

the simplest.

To UEDUCK TO A COMMON DeXOMINATOU. CJlOOSC (I

coDinion. niuUiple of the dcnouiiiiatorfi.

MiUliphj hotli terms of each fvdction hij the witJti-

plier iicvesfidvij to change its dcnoinimUor to tJic chosen

viuJti//lc.

Note 1. The rofniired multii»liers will be the finoiionls of

the chosen multiple by the denominator of each separate

fruetion.

Note H. AV'hcn the denominators have no common fac-

tors, the niultii)lier for each fraction will be the ju'oduct of the

denominators of all the other fractions.

Note ',]. An entire (|uantity must bo regarded as having

the denominator 1. (j< 10"^.)

--- •

EXAMPLES.
1. Af?Ln*c']rate the sum

J
_1 1 __1 , _!_

a lib ahc abed
in a single fraction.

The least common multii)le of the denominators is nhcil.

The separate multipliers necessary to reduce to this com-

mon denominator arc

abed, bed, cd, d, 1.

The fractions reduced to the common denominator «Z»Cf/ ure

abed — Ited -\- ed — d -\- \

ubed^ abed ^ abed* abed* abed

abed — bed -f cd — d -\- I
The sum is

abed

By disscctin.tj; this fraction as in § 104, it may be reduced

to its oriixinal foiin.
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2. Keiluce tlie siuii

1 a b rabed
to a single fraction.

'The nuiltiplifn are. by Note 2, bed, anl, abil, abc.

XJ:5iiig tiicse multipliers, the I'niclionis become

bnl, — (Ord all'd — (dx^

abed* abed ' abeil^ abed *

from Avbicb \hv nM|uiro(l snm is readily formed.

.'^. lieduce the snm

Tbc least common miiltii)le of tlic denominators is x^

The mnltipiiers are, by Note 1,

^•2—1, x-{-l, .r — 1, 1.

The snm of the fractions is fonnd to be

;,2 _ 1 _,..,. 4. 1 4_ j.i _ ,,. + 3.2 ;).,2

-1.

x^ x^

EXERCISES.

Kcdnce to a single fraction the sums,

I. 1 4- ;• 2. 1 ---.
.< — 1 X -j- 1

1 — X r+ x' ^' ' - +3

5. ^

7.

9-

10.

ax x^

a -\- X a + X

a X

X {a — x) n {a — x)

1 2?/ 1

6.

8.

i —X 1 -i- X

a b

+ -i2
a; -I- y/ X- — y X — IJ

_1 I
_

1

r/ — b b — c c — a

a a
II. —,~ +

x-\- ij x — y
12.

a — b a -\- b

'Zx — 5
+

5

4x-2— 1 ' "Zx — l

3
— •

a;

a + b n — b

a — b a \- b
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3

X

13-

14.

15-

16.

18.

19.

20.

21.

22,

23-

24.

25'

26.

27.

28.

29.

30-

i rt

di—i;i ~ a — b ' a {- b

1 1__ _ 1

^ {x - 1) 'Z{x + I) ;^

a I

.

h

a — b (-.-.)•
m -\- n X — //

1)1 —

1 -

m — n X + y

a

17.
V *" + y
m^ m {)u — I/)

3-2

a — X d^ — x^

a — b b — c c — a (a — h) {h — c) {c — a)

ba
I

b
,

f^ \

~\a -b ^b~-^il'

m — {x — (i)

^+ y
~

ab be iic

m — {x \- (i)

X — y
~'

a
-^ +

b
+

{a — b) [a — c) ' {b — a) {b — c) ' {c — a) {c — b)

X + I X — I

X — I X -\- 1
+ ix.

ab r/2 a (^/^ 4. //i)

a -\- b a

a
1

1

(j

"^"
^~di\- (ji

X

X -\- a X — a

.'C2 — 2:r?y -j- yi

:<;2 4- y[3

1 _^l.'tJf
'Zay

1

,2 _ .,.2

(,f + A)2 (,< _ /,)2
+

^f2 _ ^2

^2 _ '^)r?/; + /;2

1 r

M

III!

iaii
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Factoring? FrJU'tioiiH.

107. If Rovcml tcima of tlio immorator contain a
romiMon fjictor, the coclIiciciitH of this fjictor iiuiy bo

added, and their a^jj^iv^ate niuitiplicd by the factor for

a nuw form of the numerator.

EXAMPLES.

ax — b.r + ex -\- dx {<i — h -\- r + d) x
I.

m m
X

2.

= {a-b + c-\-d)~. (§101.)

ohx -f hex -f nnjf — ahf/ (ah { hr) x {ne — nh) y
ahn obn abn

= {a + c)~ + ic-b)f '

EXERCISES,

3

4

S

6

8

9

lO

Reduce

abi/ — bry — acy

abq + brq -\- abr 4- brr

mnn + mpu -f- pun
Ian

abc

ax — /;// — 3J.r — iay

'4ma

4nix -\~ 2y — 3ax — C)rx + ay

a^ 4- 2^2* -f al^ a^x — iabr — (3?/ — 4r) n
. y, .

xy I) + Y

ygy — [ 4.g + X (2b — Ac) 4- 3ry.r]

rt.r' — \r,x — 3 [/??.r -f w {a — x) — am'\
_._ _

^^^ ^^ _^^^

4a^x — 2f;\/;r + 2b^/x — 2 (nniVx — 4\/y)
.

II(

I.
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3fii1tii>1i<'ati<>ii and Division of FnicnouM.

lOS. Fundamental Tluorems lu the MulliidlattUni
and Dlcision of Fractions

:

Theorem I. A fractifui may \w imilti])li((l bv any
quantity by ritljcrinultipl^in^Mts miiueratur or dividing

its duiioniiimtor by that (juaiitity.

Cor. 1. A fniclioii may bo multiplied by its (leiiominator

by simply cuncolling it.

L'ur.'l. If the ilenominator of the fraetioTi is a fnetor in

the multiplier, oaiurl the denominator to multiitly by this

factor, and then multiply the numerator l>y the other factors.

Ex. -- "
-7^ X ^'- (./•« - IP) = am {x + i),

a {x — a)
^

because the mult i^jlier a' {x"^ — IP) = a{x — h) a (x + b).

Theorem, II. A fraction may be dividiul by rithcr

dividing its nnnn'rator or multiidying its denominator.

Th(i>rem III. To multii>ly by a fraction, the midti-

plicand must bo multi))li<'d by the numerator of the

fraction, and this j)roduct must bu divided by its de-

nominator.

Lot us MUlltiplv , bv —

AVe multiply by in by multiplying]^ the numerator (Th. T),

and we divide by )i by multi])lying the denominator (Th. II).

Hence the product is
am

•

bu

That is, tJir product of the innvrrntnvfi 7.'? ihc nunirr-

ator of tlic rcf/uin'd fnirfion, (tnd the /nvditct of tlie

denomlniitors is its dcnoniinator.

Multiply

I. by x — a.
X — a •'

ab ,

3- -_^. i>y ^1/-

EXERCISES.

ab
2.

1 ^by -'

A by ar* — c?,
x — a -'
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ahn
::

by ^'f
m

by ax^ -\-
m — a

X — m
a — h , a + b

7. by 8. a A DY n A
11 ^ m

-. .X , y—ah m -\- n , n — m
o. ah by r/y 4- • 10. by —
^

y X 111 — n '' in + u
,, ,,. ,

bx , a 1) X
II. Multii)ly a -\ by 7 4- - A

^ ^ m •' b X a

Ans. —'

12. lieduce \in A \\m 1.
V m — 111 \ m + nl

13. Reduce (« — - ) U}—j-\'

14. Multiply b — -^ by -•
^ -^

a -^ X

15. Divide — by /?.

16. Divide , by a + b.
a — b -^

1 7. Divide by x — 1.
X -{-I -^

18. Divide -—^^ by 1 + x\

19. Divide-— -——
- — by i« — rt«.

a" -\- b^

109. Beciprocal of a Fraction. The reciprocal of

a fraction is formed by simply inverting its terms.

For, let T >)e the fraction. By definition, its reciprocal

will be

a

Multiplying both terms by b, the numerator will be h and

the denominator
, x b, that is, a.
b

Hence the reciprocal required will be , or, in alirebraic
1 a °
language,
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a a

110. Bif. A Complex Fraction is one of wliich

either of tlie terms is itself fmctional.

a

b
Example.

m +
X

y

IS a complex fraction, of which , is the numerator, and m + -

the denominator. V

Tlie terms of the h.^sser fractions wliich (Miter into the

numerator and denominator of tlie main fraction may
be called Minor Terms.

Thus, h and y are minor denominators, and a and x are

minor numerators.

To reduce a complex fraction to a simple one, miilti-

plij both terms hij a multiple of tlie minor denominators.

am

Example. Reduce ?/

b h
- + -

y X

Multiplying both terms by xif, the result will be

amx
bxij -f- ][}f^

wliich is a simple fraction.

EXERCISES.
Reduce to simple fractions :

1 +
X

I.
y

1

a

X
~~y

— X

a + x

n -\-x

a +
x

2.

a —
X

4.

a — x

6

ah

711)1

hm
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II.

13-

1 +
1}

1 -

am +

/* + 1

7i'—

T

6.

w -(- 1

ail.—
8.

1 +

n

1 — ^2 - rt^

2ab

10.

w'^ + -, + 3
r/.^

12.

- + «

a + ^Z* ft
14.

a + b

1 + x 1 X

1 — X + i "+ X
1 + :>' 1 — x

1 — X

2x - 3

1 +

•

x

a + d — x

1 a

1 + a
+ I a

1 a

1 — « 1 + a

^2 1

^3 + a
•

^ 1 1

6 b
+

a

X -y
+ V + X

X + // f — X?

X + // x^ — t
X -y x^ — t

Division of one Fraction by Anotlier.

a m
111. Let us divide ^ by — The result will be expressed

by the complex fraction

a

J

n

Reducing this fraction by the rule of § 110, it becomes

an

bm'

which is equal to
a n
y X —

-

m That is,

To (Uvide hy a fraction, we have only to multiply hy
its reciprocal.
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Divide

ah
I.

3-

8.

a

a-b^'U
X

X

X

EXERCISES.

x — 1^ xi—l

X -\-\ , 2x
2. -g-byy

a' - lA

a

b

^y
a^+ nb

a

, a m , b n
6. rr -\ by .

a m
a be. 7)1 71 p
+ - + - by — + - + ^ •

"J
z '' X y zX

a

z " X

b

a
b} r +

a

a + b '' a— I) a + b

Reciprocal Relations of Miiliiplicatioii and
Division,

113. The fuiidamental principles of the operations npon

fractions are included in tlie following summary, the under-

standing of which will afford the student a test of his grasp of

the subject.

1. The reciprocal of the reci})rocal of a number is

equal to the number itself. In the language of Algebra,

J_T
a

= a.

2. The reciprocal of a monomial may be expressed

by chauginp: the algebraic sign of its exponent.

3. To multiply by a number is equivalent to dividing

"by iia veciiproc'dl, vnd vice versa. That is,

I^

and vice versa,

a or —- = aiV",

a

iV X - = — •

a a 4
'ill
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4. When tlie numerator or denominator of a fraction

is a product of H(n<'ral factors, any of tlies(» factoi's may
1)0 transferred from on<; term of the fraction to the other

by changing it to its reciprocah That is,

ttbc

V<1''

he _ 2^

ahc

a

Or,

pqr

he

qr
etc.

etc.
nbc he p~k(hc

pqr (r^pqr rjr '

5. JfuUfplleation hy a ftictor

gr(?ater than unity increases

y

h^ss tlian unity diminishes.

Division by a divisor

greater than unity diminisltes,

less than unity increases.

6. («) Wlien a factor becomes zero, the product also

becomes zero.

{ft) AVhen a denominator becomes zero, the product

becomes infinite. That is,

a = infinitv.

N"oTE. The folloAV'iiig way of expressing what is meant by

this last statement is less simple, but is logically more correct:

If a fraction has a fixed numerator, no matter how
small, we can make the detiominator so much smaller

that the fraction shall.be greater than any quantity we
choose to assign.

EXERCISE.
If the numerator of a fraction is '2. how small must the

denominator 1)0 in order that the fraction nuiy exceed one

thousand? That it may exceed one mihion ? That it may
exceed one thousand millions?

'{
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BOOK III.

OF EQUA TIONS.

CHAPTER I.

THE REDUCTION OF EQUATIONS.

Definitions.

113. Def. An Equation is a statement, in the lan-

gTiag<.^ of Algebra, tliat two exx)ressions are equal.

114. Def. The two equal expressions are called

Members of the equation.

11.3. Def. An Identical Equation is one which is

tnie for all values c»f the algebraic symbols wliicli enter

into it, or which has numbers only for its members.

Examples. The equations

14 + = 29 — G,

5 + 13 — 3 X 4 — G = 0,

which contain no algehraic symbols, are identical equations.

So also are tlie equations

X -m X,

X — X — 0.

{x + ({) {x — a) = x^ — (fi,

a + y)(i-^)-i + y/-o,

because tliey are necessarily true, whatever values we assign to

X. a. and ?/•

Rem. Ail the e((uations used in the preceding two hooks

to express the relations of algebraic quantities arc identical

one?, because they are true for all values of thcsj quantities.
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1 1(5. Dt'f. All Equation of Condition is one wliicli

cfin 1)(3 true only wlien tlic Jilgcbiaic symbols Jire cciiuil

to certain quantities, or have certain relations among
themselves.

Examples. Tlu equation

a: 4- C = 22

can bo true only when x is equal to IG, and is therefore an

equation of condition.

The equation
X -\- h = a

can be true only Avlien x is equal to the difference of the two

quantities a and h.

Rem. In an equation of conditivm, some of tbe quantities

may be supi)osed to be known and others to be unknown.

lit. Def. To Solve an equation means to lind

some number or algebraic expression which, being sub-

stituted for the unknown quantity, will render the

equation identically true.

This value of the unknown quantity is called a Root
of the equation.

EXAM PLE S.

1. The number 3 is a root of the equation

?:.7,3 — 18 = 0,

because when we put 3 in jdace of x, the equation is satisfied

identically.

2. The expression is a root of the cquntion

'zcx — 4rt + 2Z> = 0,

when X is the unknoAvn quantity, l)ecausc when we substitute

tli's expression in place of ;r, we have

<1n — b\
2c

or 4rt — 2b

which is identically true.

(ll.Zl^) _ 4« + 2^- = 0,

4a 4- 2& = 0, one
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Rkm. It is common in Elcmctitury Alc;ol)ni to iv}>rcsi'nt

unknown (luantities l)y tlic last letters of the til})li!il)et, luid

(juantities snppused to bo known by the llrst letters. Uut this

is not at all necessary, and the student should accustom hini-

scK to regard any (va symbol as an unknown (juautity.

Axioms.

118, Def. An Axiom is a proposition wliicli is

talien for granted, without proof.

Equations arc solved by o}ierations founded upon the fol-

lowing axioms, which arc seli'-evident, and so need no prouf.

Ax. I. If equal quantities be added to the two
members of an equation, the members will st'll be equal.

Ax. II. If equal quantities be subtracted from the

two members of aa equation, they will still be equal.

Ax. IIx. If the tvro members be multiplied by equal

factors, they will still be equal.

Ax. IV. If the two members be divided by equal

divisors (the divisors being difierent from zero), they

will still be equal.

Ax, V. Similar roots of the two members are equal.

Tlieso axioms may be summed up in the single one,

liiiiiilar opcrtdioiis upon equal quantities i^ive equal

results.

IH). An algebraic equation is solved by performing

uch similar operations upon its two members that i\\Q

unknown qujuitity shall finally stand alone as one

member of an equation.

Operations of Addiiioii and SiLbtractioii—Trans-
posinj]^ Terms.

130. Theorem. Any tenn may be transposed from

one member of an equation to the other member, if its

sign be changed.

' I

. ^..1.:

I

u
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Proof. Let us put, in nccordanrc willi g W, 2cl Prin.,

/, uiiy term of eitluT nit'iulrjr of the c((utilioii.

((, nil the olluT terms of the same member.

b, tlie opposite member.

The ccpuuion iis then

a -{- i — b.

Now su])tract / from both sides (Axiom II),

« + / — / = /> — /;

or by reduction, a = h — i.

This e(|Uii(ion is the same us tjje one from wliieli we started,

cxcei)t tb;it / has been transposed to tbu second member, with

its si<:fii (•lKinp;ed fi-om + to —

.

If (he equation is

b — i = n,

we may add / to both members, wliieh woukl givo

b = a -{- f.

NUMERICAL EXAMPLE.
The learner will test each side of the following equations :

19 +3_9 + 4 = 7 + 10.

10 + 3— — 7 + 10—4.

19 + ;i = 7 + 10—4+ 9.

3 = 7 + 10—4+ — 19.

— 7 + 10—4 + — 19—3.

131. Rem. All the tonus of either member of an
equation may bo transposed to the other member,
leaving only on one side.

Example. If in the equation

b = a + f,

we transpose b, we have =: a -\- t — b.

By transi)osing a and /, we have

b — a — t = 0.

133. CJ/atif/uif/ Sif/us of Mt'Dibcrs. If we change tlie signs

of all the terms in both members of an equation, it will still

be true. The result will be the same as multiplying both

Transposing 4,

9,

19,

3,

it

it

u

or
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mcml)C'r.s by — 1 )r triiiispo.-in^ all the terms of each nii'iiibcr

to tliu oLlior side, uiid thtii cxclmiiging lliu lermd.

Exami'm:. The c((iiati()n

17 -f 8 = 11 + 11

may Ik- traiislormed into = 11 + II: — 17 _ 8,

or, = — 11 — 11 + ir -f- 8,

or, 17 — 8 = — li_U.

Operation of MiiIlix>li<'utiGii.

12J?. Charing of Frarfiona. T]io opcrsition of muKipll-

cation is usually pcrforuied u{)i)ii thy two sides of au c<|uati()ii,

iu order to clear the e([uatiou of fractious.

To clear an eciuatiou of fractious:

First Mirnroi). .Mitltiplii iU Dtmihrrs hy the least

comniofb initUi])le of till Us ilciioniiiidtoi's.

Sk(;ond Mktiiod, .MHIfinhf its mcnihrrs hij each of

tha deiu)i)ii]i(tiors in succession.

Rem. 1. Sometimes the one and sometimes tlic otluT of

these methods is the uioro conveuieut.

Rhm. '^. The operalion of cleariug of fractious is similar

to that of reducing fractions to a commou deiu»iniuator.

Example of Fikst Method. Clear from fraclious the

e(iuatiou

4 + U + 8 - ^^-

Hero 24 is the least common multiple of the denominators.

Multiplying each term by it, \vc have,

Qx+ Ax-\- 3.^• = G2-1,

or l^x = 62-i.

Example of Second Method. Clear the equation

a

X a

n c

X -f- a X
0.

Multiplying by x — a, we find

ax
a 4-

X -\- a
+

ex ea

X
= 0.

l^

\^=r



a I

'9

00 EiiUATiONii.

Multiplyinpf by x -\- a^

ax -f- a^ + ^^r — rt' +
X

= 0.

lit'tlucing ;iiul miillijilying by x,

)lax^ + cx^ — ca^ = 0.

EXERCISES.
Clear (lie following C([iiiiLions ol' IVuctions :

I.
2.r

2.
a; X

5
""7 = 70.

3'

a: .r a: _
4-

a: a:8 b
" ' •

If-

5-
^ 4.:'/ + ^ ==.!.. 6.

a h

3 + 4

X
~ 5'

7.

r» a; _
8.

a*

a; — a

2x

X — a X i- a
~ ~ X + b

9-

X -{ ff .7;3 -j- 2nx

X — a X — a
10.

X — 2

x-b
X + 2

""
a: 4- 5

11.
X y _ a
y~ x~ V 12.

X ~ a

X + a

a; 4- rt a;

x — a a

13-
X

, y
« — 6 6 — rt

Hero tLe second term is the same as —
a

-y
-b

1 A.
a; 4- a a- — i

.
. ' •

= 0.

a — a; a; — a

Reduction to the Xormjil Form.

124. Dcf. An equation is in its Normal Form
when its terms are reduced and arranged according to

the powers of the unknown quantity.

In tbc normal form one mcml)C'r of the ecjuution is expressed

as tin entire function of the unknown <jiiantity, and the other

is zero. (Compare §§ 50, 70.)

To reduce an ecpiation to tlie normal form:

I. Transpose all the terms to one mnnhcr of the equa-

tion, so as to leave as tlie other nieinher.
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IT. Clear the rqua tion nf fvacthnfi.

III. I'lcar the ('(/Hftfion of pftrcnt/icsrs hij prrfoi'unit'i

(ill llic ()/)(r(tfions intlicafcit.

IV. Collect vuclh stf of firms ronhfininjj li/\:c poH'cr^f

of the itnkiioii'ii (jmiiifilij info <i sinijlc our.

V. Dirhir hij nin/ cinunioii fdctur wkicli docs nob con-

tain the unknoirn (jnantitn.

T?i:m. This ordrr of opernlions may be deviated (Vom

ac'C'onling tocircimistanci'S. Aftcra little j)raetiee, tlieKtiident

may take the shortest way of reaching the re.'jult, without re-

spect to rules.

EXAMPLES.
I. lleduce io the normal rurm

{x - 2) (x - 3) ^ {x + 2 ) (x + A)

X — 6 X + xi

1. Clearing of fractions,

(x + 5) {x - 2) {X - ;5) = {x - 5) {x f 2) {x + 4).

2. Performing the indicated operations,

a;3 — VJx + 30 = x^ -f- x^ — ^2.^ — 40.

3. Transposi\»g all the terms to the second member and

reducing, \

= .r2 - 3x — 70,

which is the normal form of the equation.

Rem. Had we transposed the terms of the second member
to the lirst one, the result would have been

— x^ + 3x -j- TO =: 0.

Either form of the equation is correct, but, for the sake of

uniformity, it is customary to transpose the terms so that the

coelUcient of the highest power of x shall be positive. If it

comes out negative, it is only necessary to change the signs of

all the terms of the equation.

Ex. 2. lleduce to the nornud form,

bmx^

X a

2fix duix^ „ _

o -« = 2mx — int.

X -{- ti x^ — «*
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1

1. Transposing to the first member,

:, 5 — 2mx -\- 6a =: 0.
X — a X -\- a "'- "^it? — d^

2. To ck'iir of fractions, we notice that the least common

multii)lo of the denominators is x- — a^. Multiplying each

term by this i'actor, Ave have,

5mx'^ {x+a)—2ax{x—a)—3mx^—2uix{x^—a''^)-{-ba{x^—a') = 0.

3. Performing the indicated operations,

bmx^ + ixcinx^ —2ax^ + 2ci?x— 3inx^—2mx^ + 2cfimx + bax^—ba^=0,

4. Collecting like powers of .r, as in § 7G,

(3a + bam) x^ + (2rt2 + 2a~rn) x — 5«3 = 0.

5. Every term of the eqnation contains the factor a. By

Axiom IV, § 118, if both memlters of the equation be divided

by a, the ecpiation Avill still be true. The second member

being zero, Avill remain zero "when divided by a. Dividing

both members, we have

^^3 -1- hm) x^ + 2a (1 + m) x — ba^ = 0,

Avhich is the normal form.

*
>

EXERCISES.
Eeducc the following equations to the normal form, x, y,

or ;; being the unknown quantity

:

X — a _x -\- a

A,
' X -\- a ~ X

x — '7 2x-\-6

3f + 2ij _ 71-J^

3-

4.

6.

7-

2x + 10 4x — 2

a;3 _ SaJ^x + 2«3

2x -\- a

i^^ — bax^
x^— bax = --T •

2x — a

5- ~'^. + --^^ + ;:& = ^•

+
a

+
a i- b h -\- z a + z

«8

- = 0.

+
Z^ ah

a — z ' a^ — x^ z^ — a^
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8.

10.

II.

13-

14.

15.

16.

^ G 5 4 ^
7 + + , + -3 = 0.

a; — a
+ x^- cfi

4

5

z
-1-

¥
^c — 2 . ;;'

r^ = b

X —
— •

a
12.

6- 1

X

«
+

a^ «3

""
a;3*

a — 1
cfi-

1

x^

32!

2 +
T

2

— 5^2

3z —
3

z

1
' -~ •

2

ai 1

1

hx

1 -
X

1

+ a

1
1

it — «

a

a

h

aX i
—- X

- 1.

J6

b

X
a —

m m

nx
71

X
x +

X

'I:

%

Degree of Equations.

135. I)ef. An equation is said to be of tlie n*^ de-

gree wlien n is the highest power of the unknown
quantity wliicli appears in the equation after it is re-

duced to the normal form.

EXAMPLES,

The equation Ax -\- B = ^ is of the first degree.

Ax^ -^ B — ^ " " second "

Ax^ j^Bx-\- C —^ " " tliird «

etc. etc.

An equation of the second degree is also called a

Quadratic Equation.
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An oqiiation of the third degree is also called a

Cubic Equation.

Example. Tlie o(iu:ition

ax^ + hx^if + y^ + n^^" —
is a quadratic equation in x, because oi? is of the highest power

of .r which enters into it.

It is a cubic equation in y.

It is of tlic first degree in z.

->-

'»'!
1

'%

CHAPTER II.

EQUATIONS OF THE FIRST DEGREE WITH ONE
UNKNOWN QUANTITY.

12(5. Remark. By the preceding definition of the degree

of an equation, it will be seen that x\\ equation of the first

degree, with x as the quantity supposed to be unknown, is one

which can be reduced to the form

lix + D = <), (a)

A and B being any numbers or algebraic expressions wliich

do not contain x.

Such an equation is f'-'^quently called a Simple Equation.

Solution of Equations of the First Degree.

127. If, in the above equation, we transpose the terra B
to the second member, we have

Ax = —B.
If we divide both members by A (§ 118, Ax. IV), we have,

B
•

A
Here we have attained our object of so transforming the

equation that one member shall consist of x alone, and the

other member shall not contain x.

x =

i^
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To prove that — -. is the required vahie of .r, we sub.sti-

tute it for x in the equation («). The equation then becomes,

-'^- + i; = C;

or, by reducing, -i? + B 0,

an equation which is identically true. Therefore, r is

the required root of the equation («). (§ 117, Dvf^

138. In an equation of the first degree, it will be unnecc??-

sary to reduce the equation entirely to the normal form Ijy

transposing all the terms to one member. It will generally 1)0

more convenient to place the terms Avhich do not contain x in

the opposite member from those which are multiplied by it.

Example. Let the equation be

mx + rt = nx -\- 1). (1)

TVe may begin by transposing a to the second member and

nx to the first, giving at once,

mx — nx r=z 1) — a,

or {m — n) x = h — a,

without reducing to the normal form. The final result is the

eame, Avhatever course we adopt, and the division of both

members by vi — n gives

X = h — a

III n

139. The rule which may be followed in solving equations

of the first degree with one unknown quantity is this

:

I. Clear the equation of fractions.

II. Transpose the terms irh'ich are mnlti plied hy the

unlcnoiun qiuintity to one member ; those ichich do not

contain it to the other.

III. Divide hy the total coefficient of the unknown
quantity.

C M

«;

m
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NoTK. Rules in Algobra arn given only to enable the beginner to go
to work in a way which will always be Huie, thougii it nniy not always

be the ahortest. In solving equations, be should emancipate himself

fiom the rules as soon as i)ossible, and be prepared to solve each ecjua-

tion jjresented by such jjrocess us apjxsars most concise and elegant. No
ojx'ration ui)on the two nu-mbers in accordanci? with tlie axioms (^ 118)

can lead to incorrect results (provided that no <iuuntity which becomes
zero is used as a multiplier or divisor), and the student is therefore free

to operate at his own pleasure ou every equation presented. »

":;
I-

"r

I. Given

EXAMPLES.

ax

hil

= 1.

It is required to find the value of eacli of tlie quantities a,

h, X, and //, in terms of the others.

Clearing of fractions, Ave have

ax = I))/.

To find a, we divide by . , which gives

In/

X

To find b, we divide by y, which gives

ax

y
= h.

To find x, we divide by a, which gives

hii
a: = — •

a

To find y, we divide by h, which gives

ax

Thus, when any three of the four quantities a, l, x, and y,

are given, the fourth can be found.

2. Let us take the equation,

x — 'i _ 2x + 6

2a: + 10 ~ 4.« — 2

Clearing of fractions, we have

4.f2 — 30.1- + 14 = 4a;'2 + 32x + GO.
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Transposing and reducing,

— ij-Zx =z 4G.

Dividing both members by — G2,

40 _ _ 40 _ _ 23

— G2
""

\}2
~ ~

3l'

97

This result should now be proved by computing the value of both

2:} .

members of the original e(iuation when — [" - is substituted for a*.

ol

X X ax 1

m n b m
Proceeding in the regular way, we clear of fractions l)y

multii)lying by m)ih. This gives

nbx 4- mbx = amnx — nb.

Transposing and reducing,

{nb + mb — amn) x •= — nb.

Dividing by the coefficient of x,

_ nb _ nb
~ nb + mb — amn ~ amn — mb — nb

These tAvo values are equivalent forms (§ 100).

But we can obtain a solution without clearing of fractions.

ax
Transposing — , we have

X X ax 1

m 71 b m'

which may be expressed in the form

/I 1 a\ 1
(- H j)x =
\m n bl m

Dividing by the coefficient of x,

m

1 j_ 1 _?
m 71 b

This expression can be reduced to the other by § 110.

1
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\i i

(P i

k a.

EXERCISES.
Fiml the values of x, //, or u in the following cqiuitioiis:

5_— '.\x _ 8,/' — \)

3

5

7

9

II

12

13

14

15

16

17

18

19

20

3

re a; ^ _ 90

a b c

2. .'• =^ a.

4. =- = 9.
X — \

6 ~~ — —
V. —h ~ u

n u u
3
— ^ + p = ?. - 2G. 8. a — Ix = h + ax.

u 7t _1 1

7t'^ b ~ 7i^ b

n ,
3 — .r

10. ox H ;~- = X.
o

a _ c

c — X. a — X

X— l_rr — 3_r?— 5 a- — G

x — 'z x — ',^~x~{j~ X — Y
— jj 7:= a — h.

_J 1_ ^ 1 1_
X — 'Z X — 4:~ X — yj X — 8*

I
— a

a b — a b -{- a

-. X 1
ax + 6 = - + y

rt b

!ilL^
_l_

^^ ~ ^
,

^^ — g _ ?^ — (rr 4- J + c)

^ c « ~ 7ihc

m [x + «) ,
n (x + Z»)

~x-TT- + -tT'^T" =^ ^« + ''-

(:,_«)3 +-(.,_^i)3 + (.,._^)3 ^ 3 (..,_^) (,_j) ^^,_^^^

Find the values of each of the four quantities, a, b, c, and
d, in terms of the other three, from the eq^'ations

21.
(^

,

(I
r,

f'b ,+ / 77 = 0. 22. -. + 1 = 0.
Z> — c b — d
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i'robloms le'»'liiijjf to Siinplo Eciiiatioiis.

loO, Tlie fir,;t. (liilieulty wliicli tlio boirinncr meets witli in

the s<.»lu lion of an algebraic ])roblein is to st;ite it in the tbriii

of an equation. This is a i)roecss in whieh the student must

dt'iiend upon his own powers. The following is the general

pliiii of jtroeeeding :

1. Study tne pro])lcm, to ascertain what quantities in it

are unknown. There may be several such quantities, but the

problems of the present chapter are such that all these quan-

tities Ciiu be expressed in terms of some one of them. Scleeti

that one by whieh this can be most easily done as the unknown
quamity.

'Z. Represent this unknown quantity by any algebraic .^^ym-

bol whatever.

It xs, common to select one of the last letters of the alpha-

bet for the symliol, but the student should accustom himself

to work equally well with any symbol.

3. PerfoF! on and with these symbols the operations rc-

qninxl by the problem. These ope-rations are the same that

wouW l>e necessary to verify the adopted value of the unknown

finanlity.

4- Express the conditions stated or implied in the problem

by means of an ecpiation.

5. The solution of this equation by the methods already

explained will give the value of the unknown (pumtity. It is

always Ix^st to verify the value found for the unknown (puin-

tiiy by operating upon it as described in the equation.

\

-c).

and

EXAMPLES.
I. A sum of 440 dollars is to Ije divided among three people

so that tlie share of the second shall be 30 dollars more than

that of the first, and the share of the third SO dollars less than

those of the first and second together. What is the share of

each?

SOLCTiox. 1. Iloro thoro are really throe unknown qnantitios, l)iit

it is only necessary to represent the share of the lirat by an unknown

i ; M
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2 Therefore let U3 put

X =z share- of the first.

3. Then, by the terJis of the atatenient, the share of the second will bo

X + ;}o.

To find the share of the third we add these two together, which makes

2x + 30.

Subtracting 80, we have

2x — 50
as the share if the third.

"We now add the throe shares together, thus,

Share of first, x
" seeoml, x + 30
" third, 2rc^-J)0

Shares of all, ix — 20

4. By the conditions of the problem, these three shares must together

make up 4-10 dollars. Expressing this in the form of an equation, we
have

ix — 20 = 440.

5. Solving, we And
X =: llij — sliare of first.

Whence, 115 + 30 = 145 = sliare of second.

115 + 145 — 80 =180 = share of third.

Sum -- 440. Proof.

Ex. 2. Divide tlie number 00 into four parts, such tliat

the lirst increased by 2, the second diminished by 2, the third

multiplied by 2, and the fourth divided by 2, shall all be ccpuil

to the same quantity.

Here there are really five unknown quantities, namely, the four parts

and the quantity to which they are all to be equal when the o])eration of

adding to, subtracting, etc., is performed upon them. It will be most

convenient to take this last as the unknown quantity. Let us therefore

put it equal to u. Then,

Since the first part increased by 3 must be equal to u, its value will

he u — 2.

Since the second part diminished by 2 must be equal to u, its value

w!n be u + 3.

Since the third part multiplied by ^ must be u, its value will be

Since the fourth part divided by 3 must make a, its value will be 2w.

3
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Adding these four parts up, their sum is found to bo •

Wy the conditions of the problem, this sum must make up the num-

ber DO. Therefore wo have

5}
- -^w-

Solving this equation, we find

U
Therefore

20.

1st part z= u — 2 = \^.

2a '' = u 4 2 = 22.

3d '' =:?^-i-2 = 10.

4ti
<;

'hi = 40.

The sum of the four e([ualsOO as required, and the first part increased

by 2, the secoud diminished by 3, etc., all malio the number 30, as re-

quired.

PROBLEMS FOR EXERCISE.

1. What number is tliat from whicli avc obtain the pnmc
resiilL whether we multiply it by 4 or subtract it from 100?

2. Whiit number is that which <(ivcs the same result when
we divide it by 8 as when we subtract it from 81 ?

3. Divide 284 dollars among two people so that the share

of tlie first shall be three times that of the second and $10
more.

4. Find a number such that \ of it shall exceed \ of it

by 12.

5. A shepherd describes the number of his sheep by saying
that if he had 10 sheep more, and sold them lor 5 dollars each,

he would have G times as many dollars as he now has sheep.

How many sheep has he ?

6. An applewoman bought a number of apples, of which
00 proved to be rotten. She sold the remainder at the rate of

2 for 3 cents, and found that they averaged her one cent each
for the whole. IIow many had slie at first?

7. If you divide my age 10 years hence by my age 20 years
ago, you will get the same tjuotlent as if you should divide my
present age by my age 26 years ago. What is my present age?

8. Divide $500 among A, B, and C, so that ]3^*hTlTrTiave T
$20 less than A, and C $20 more than A and B twfietlmv-' "*

"
''
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|:i

'y

9. A fadicr left, JjflOOOO lo bo dividcvl nmon^u: his five chil-

dren, (liivc'tiii<,Mliii( oiicli should receive %')0K) iiKtre than the

uext yoiin^'er one. What was the .share of each 'i

10. A man is f) y.-ars ol(h'r than his wife. After tliey havo
hien niani('<l VI years, 8 times her aue wuuld make '\ timen
his ULje. What was their age when m- ' -dv

11. Of three hrotiiers, the youiiL, ' . 8 years younger than
the second, and tJie ehk'st is as okl as the otiier two together.

In 10 years the sum ol' their ages will he VIK). What are their

present agesV

II. 'rh(> head of a fish is inches long, the tail is as long

as the head and half the hody, and the hody is as long as the

Jiead and tail together. What is the whole length of the (Ish?

13. In dividing a year's profits between three ])artners. A,
B, and C', A got one-fourth and iM')<) more, Ji got one-third

and >^;)(i() nu)rc, and C got one-lifth and -sGU more. What was
the sum divitled ?

14. A traveller inquiring the distance to a city, was told

that after he had gone one-third the distance and one-third

the remaining distance, he would still have 'M\ miles more to

go. What was the distaucc of the city?

15. In making a journey, a traveller went on the first day
one-lifth of the distance and 8 miles more ; on the second day
he went one-fifth the distance that remained and 15 miles

more; on the third day he went one-third the distance that

remained and \'l miles more ; on the fourth he went '.^7^ miles

and finished his journey. What was the whole distance

travelled ?

16. "When two i^artners divided their profits, A had twice

as much as B. If he paid B 'S;)()(), he would only have half as

much ag;iin as B had. W'hat was the share of each ?

17. At noon a ship of war sees an enemy's merehnnt vessel

15 nules away sailing at the rate of miles an hour. How fast

must the shi])of war stiil in order to get within a mile of the

vessel by G o'clock ?

18. A train moves away from a station at the rate of li

miles an hour. Half an hour afterward another train follows

it, running \i\ miles an hour. How long will it take the latter

to overtake it ?

19. AVhat two numbers are they of which the difference is

0, and the difi'erence of their S(iuares ;)51 ?

20. A man bought 25 horses for $;35UO, giving $80 a piece

•
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for poor liorso.s and ^i;JO cacli for good ones. How many of
each kind did ho huy ?

2 1. A man is T) years oldor tlian Ids wit'o. In 15 years tlio

sums of tlieir aires will ho three linios tlie present age of tho
wil'u. What is the age of each '/

22. ITow f;ir can a person who lia^ S honrs to spare ride in

a coach at the rate of ndlcs an honi'. so that he can return at
the rate of 4 ndles an hour ami arrive home in time?

23. A working alone can (h) a i)ieco of work in 1.") days,
and \\ alone can perform it in 1"^ days. \\\ what time can they
perform it if hoth work together ?

RIktiioi) ok Soi.ctiox, In one day A rnn do -,'.t of tlio whole work
and B ciin do

i\^.
lltiucf, both togt'tlicr can do (,'^,-!- j'^,) '>f 't.

If both together can do it in .r days, then they can do of it in 1 day.

UA + 1
X la 15

Hence,

is tho equation to bo solved.

24. A cistern can ho filled in 1'.' minutes 1)y two ])i))es which,

run into it. One of them alone will till it in' 20 minutes. In
what time would the other one alone iill it?

25. A cistern can he em])lied hy three pipes. The second
pijie runs twice as much as the first, and the third as much as

the lirst and second together. All thive together can emi)ty
the cistern in one hour. In what time would each one sepa-

rately empty it ?

26. A marketwoman bought apples at the rfite of 5 for two
cents, and sold half of them at 2 for a cent and the other half

at ;] for a cent. Her profits were 50 cents. IIow many did
she buy ?

27. A grocer having 50 pounds of tea worth 90 cents a
pound, mixed with it so much tea at 60 cents a pound that

the combined mixture was worth TO cents. IIow much did

he add ?

28. A laborer was hired voi 40 days, on the condition that

every day he worked he shouk'. receive $1.50, but slioidd for-

feit .50 cents for every day h^ was idle. At the end of the

time $52 were due him. llow many days was he idle ?

29. A father left an estate to his three children, on the

condition that the eldest should be paid 81200 and the second
8800 for services they had rendered. Tiie remainder was to bo
C(pudly divided among all three. Under this arrangement,

<

I
• r I,

I
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the yoinipfcst pot oiic-fourlh of the t'statc. What was tho

aiiiouiit (lividi'd ?

30. A person liavlnff a pum of nioiioy to divide among
three people ^^ave the first (»ne-lliird and ^'l^) inor(>, tiie second
one-tliird of \vh:it wns hi't and ij^'JO more, and the third one-
third of what was then hd'tand ^^M) more, whicli exiiautjLed tho

anionnt. How iniieii had they to divide ?

31. One slu'])herd spent $T'.M) in sheep, and anotliergot tho

same nnmlter of sheep for 84S(), l)ayin^' %i a pieee less. What
])riee did each l>ay ^

32. A erew wldeh ran pull at the rate of miles an hour,

finds that it takes twieo as \o\vr to ^o \\\) the river as to go
down. At what rate does the river flow ?

33. A person who possesses !!<|t2()00 emjdoys a portion of

the money in iaiildin*; a house. 01' the money which remains,

lie invests one-third at four per eent. and the other two-tiiirds

at Hve per (!ent., and ohtains from these two investments un
annual ineome of %''V.)'l. What was the eost of the house ?

34. An income tax is levied on the condition that the first

*r»0() of every income shall he untaxed, the next ^;{()0() shall

be taxed at two percent, and all incomes in excess of ^.'JOUO

shali he taxed three per eent. on the excess. A i)erson finds

that hy a uniform tax of two per cent, on all incomes he would
save $:^00. What was his income ?

35. Atwluit th.ie between W and 1 o'clock is the niinute-

liand 5 minutes ahead of the hour hand?

36. One vase, holdinjjj a jiallons, is fnll of water; a second,

holding b gallons, is full of brandy, l^'ind tht' cai)acity of a

dii)per such that whether it is tilled IVoju the first vase and the

water removed replaced by brandy, or filled from the secotul

vase and the latter then fdled with water, the strength of the

mixture will be the same.

37. Divide a number m into four such parts that the first

part increased by a, the second diminished by rr, the third

multiplied by a, and the fourth divided by ti shall all he e((ual.

38. Divide o dollars among five brothers, so that each shall

have n dollars more than the next younger.

39. A courier starts out fnmi his station riding S miles an
hour. Four hours afterwards he is followed by another riding

10 miles an hour. Tfow long will it require for the second to

overtake the first, and what will he the distance travelled ?

If X be the nuiiibfr of hours required, tho srrond will have travelled

X hours and tin; first (j'4-4) hours whcu they meet. At this timo they

must have travelled equal distances.
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l*rohloiii of (Ik» C'oiirh'rH,

Let us jjonoruli/c the ])r('('<'(linnr |)r<)])leni tluis :

l.*M. ./ rofirirr sftn'fs out J'nnii his stnlimi ritlin^ e

inihs <in, liiKir ; h hours Jnlrr, he is ftilloii'rd Inj uiiothrr

ridiiKj ff ini/rs on hour. Ihur Ion 'J will Ihr In/frr he in,

orrrfnkin^' Ihr jirsi , and what irill be the distance J'roni

the fioint o/' (li'p/trlnrc.

Let U8 put / for tlio timo roqiiircd. Tlu'ii the first roiirii-r

will liavo tnivi'llcd {l-\-lt) hours, juul the second / hourn.

Since the lirst travelled r miles an hour, his whole distance at

the end of t-\-li hours will he (l-\-/i)r. In the same way, the

distance travelled hv the other will he (/I. When the latter

overtakes the former, the distances will he e(|ual; hence,

at = c{l + h).

Solving this equation with respect to /, we find

t = -^'—
a — c

(1)

(•i)

Multiidying l)y a gives us the wliole distance travelled,

which is

Distance = -•
a — c

This equation solves every prohlem of this kind hy suhsti-

tuting lor a, c, and h their values in numhcrs su])posed in the

prohlem. For example, in Prohlem 39, we supposed a= 10,

c = 8, h := 4. Substituting these values in e(puition (:i), we

find

t = in,

which is the nnnihcr of hours required.

To illustrate the generality of an algehraic prohlem, we
shall now inquire what values t shall have when we make dif-

ferent suppositions respecting a, c, and h.

(1.) Lot us suppose (( = r, or a — c—=0, that is, the rates

of travelling equal. Then equation (5i) will become

nh
'- 0'

ill

I
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f

an cxprcssioh for infinity (§ 112, G), showing tliat tho oiio oonrier

would never overtake the other. This is phiiu enough. liiit,

(2.) Let us supjiosc that the second courier does not ride

so fast as the first, that is, a less than c, and a — c negative.

Tlien the fj-action will not be infinite, but will Ijc nejra-
a — c °

five, because it has a positive numerator and a negative denom-
inator. It is plain that the second courier would never o\ ertakc

tlie first in this case eitlier, because the latter would gain on

him all the time
;
yet the fraction is not infinite.

AVhat does this mean ?

It means that the })ro])lem solved by Algebra is more gcn-

ci'al, that is, involves more particular proljlems than were

im])lied in tho statement. If we count the hours ((fler the

second courier set out as positive, then a negative time will

mean so many I, ours before he set out, and this Avill ])ring out

a time when, according to our idea of the problem, the horses

were still in the stable.

The exi)lanati(m of the difficulty is this. Sujipose S to be

the point from which the couriers started, and AB the road

along which they travelled from AS
S toward r>. Suppose also that .^-i.^—»..»...^^_

the first courier started out

fi'om S at 8 o'clock and the second at 13 o'clock. By the rule

of positive and negative' quantities, distances towards A arc

negative. Now, because algebraic ([uantities do not commence
at 0, but extend in l)oth the negative and positive directions,

the algebraic problem does not suppose the couriers to have

really C(mnnenced their journey at S, but to have come from

the direction of A, so (hat the first one passes S, without stop-

l»ing, at 8 o'clock, aiul the second at 12. It i< })lain that if the

first courier is travelling the faster, he must have passed the

other before reaching S, that is. the time and distance arc

both negative, just as the problem gives them.

'^rhe general i)rin('l[)le here involveil may he ex})resscd thus:

In Ahji'bra, roads and journeys, Ui-e time, have no hcfjln-

ni)H) and no end.

B

V

t
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t

(3.) Let us suppose that tlie couriers start out at the same

time and ride Avitli the same speed. Tlieii h and a — c aro

both zero, and the expression for t assumes the form,

t =

This is an expression whieh may have one vaUic as well as

anotlier, and is therefore indeterminate. The result is correct, i

because the couriers arc always together, so that all values of

t arc equally correct.

The equation (1) can be used to solve the problem in other

forms. In this ecpiation are four quantities, a, c, h, and I, and

when any three of those aro given, the fourth can be found.

There are therefore four problems, all of which can be solved

from this equation.

First Problem, that already given, in which the time

required for one courier to overtake the other is the unknown
quantity.

Secoxd Problem. A courier sets out from a station,

riding c miles an hour. After It hours another follows

him from the same station, intending to overtake Jiinv

in t hours. How fast must he Hde?

The problem can be put into the form of an equation in

the same way as before, and we shall have tlie equation (1),

only a will now be the unknown quantity. If we use the

numbers of Prob. 39 instead of the letters, we shall have, in-

stead of equation (1), the following :

1G« = 8 (IG + 4) = 8-20 = IGO,

whence « = 10.

If we use letters, we find from (1),

c{t-\-h)
a =

t

and the problem is solved in either case.

Third Problem. Tlie second courier can ride just a
miles an hour, and the first courier starts out h hours

! I
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*»

hefore Jdni. IIow fast must the latter ride in order that

tlie other may take t hours to overtake him?

Hcc c, the rate of tlie first courier, is the uuknown quan-

tity, and hy solving equation (1), we find

at

Fourth Problem. The swiftest of tivo couriers can
ride a luiles an hour, and the slower c miles an hour.

How long a start must the latter have in order that tlie

other may require t hours to overtake him?

Here, in equation (1), h is the unknown quantity. By
solving the equation with respect to h, we find,

, at — ct

which solves the problem.

PROBLEMS OF CIRCULAR MOTION.

40. Two men start from the same point to rnn repeatedly
round a circle one mile in circumference. If A runs 7 miles
an hour and B 5, it is required to know

:

1. At what intervals of time will A pass B ?

2. At how many different points on the circle Avill they be

together ?

We reason thus : Bince A runs 2 miles an hour faster than B, he cets
away from him at tlie rate of 3 miles an hour. When he overiakes him,
he will have gained up m him one circumference, that i.s, 1 mile. This
will require ;}0 minutes, whicli is therefore the refjuired interval. In
this interval A will have gone round iJ^ and B 2i times, so that they will

be together at the point opposite that where they were together 30
minutes previous. Hence, tliey are together at two opposite points of
the circle.

41. AVhat would be the answer to the preceding ques-

tion if A should run 8 miles an hour, and 1> 5?

42. Two race-horses run round and round a course, the

one makiuij: tlie circuit in 30, the other in 35 seconds. If

they start out

toixethcr airain ?

Note. In x seconds one will make ..
- circuit and the other _=.

43. If one ]tlanct revolves round the sun in T and the

other in T' years, what will be the interval between their

conjunctions?

together, how long before they will be

*i
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CHAPTER III.

EQUATIONS OF THE FIRST DEGREE WITH SEVERAL
UNKNOWN QUANTITIES.

Case I. Equations ivith Two TJnknowii Quan-
tities.

133. Def. An equation of tlie first degree with two
unknown quantities is one which admits of being re-

duced to the form

ax -^b?/ = c,

in whicli x and ?/ are tlie unknown quantities and a, ?;,

and c represent any numbers or cxlg(d)raic equations

which do not contain either of the unknown quantities.

Def. A set of several equations containing tlie same
unknown quantities is called a System of Simulta-

neous Equations.

Solution of a Pair of Siimiltaneoiis Equations
containing^ Two Unknown Quantities.

l.*>3. To solve two or more simultaneous equations,

it is necessary to combine them in such a way as to

form an equation containing only one unknown quan-

tity.

134. Def. Tlie process of combining equations so

that one or more of the unknown quantities shall dis-

ap]x\'ir is cjiILmI Elimination.

The term "elimination" is used because tlic unknown

quantities which disapi)ear arc rliniiua/cd.

There arc tliree methods of eliminating an unknown (|nan-

tity from two ^iiniullaneous equations.
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Eliiiiiiiiitioii by Comparison.

135. Rule. Solve each of the cqiuitions irith rcftpcct

to one of the luihiiouni (iiudititles (nul piittJte two values

of the iLiikiioivii qaaiititij thus ubtaliicd equal to each
other.

This ivill i>ij'e an eqaatioji iritJv only one ujiA'jiojvji

quantltij, of ivhleh the value can he found from tJte

equ,ation.

Tlie valm of the other unknown quantity is then

found hy substitution.

Example. Let the cqiuitions be

ax -\- hj =. c,
\

ax + h'y = c.
j

From the first equation wc obtain,

C — 1)11

X = -'
a

From the second we obtain,

~~
a'

Putting these tAvo values equal, we have

c — hf c' — l)'y

(1)

(2)

(3)

a a

Reducing and solving this equation as in Chapter II, we

find,

y
ac — ae

ab'^^aV

which is the required value of y. Substituting this value of y
in eitlicr of the equations (1), (2), or (3), and solving, we shall

find

I'c - hr'

ah' — ab

If the work is correct, the result will be the same in which-

ever of the equations we make the substitution.

X =

¥l
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Numerical Example. Let tlic equations bo

3.1- — 'Zy = 20. f
^*'

From the first cqiiiition we find

X = -^S — Iff

and from the second x = -—-—
'-

,

o

Of) I Ow
from which wc have 28 — ?/ = -— .,

—
-,

ij = 11.

Substituting tliis vaUie in tlio first equation in x, it becomes

a: = 28 -11 = 17.

If Ave substitute it in the second, it becomes

20 + 22 51
X = .,

= ^ = 17,

tlie same vahie, thus proving the correctness of the Avorl^:.

(

EliiiiiiiJitioii by Substitution.

13(5. Rule. Find the value of one of the unhnouii

qunntitics in terms of the other from cither cijiudioii,

and snbstitnte it in the other eqaation. Hie latter will

have hut one unknown quantitij.

Example. Taking tlie same jquations as before,

ax -\- hij = <7,

a'x + Vy = c,

the first equation gives x =.
a

Substituting this value instead of x in the second equation,

it becomes
a'c — a'hy

a
+ //// rr C'.

Solving this e(iuatiou with respect to y, we get the samo

result as before.
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Numerical Example. To solve in this way the lust nu-

mcricjil example, wc have from the tirst equation (-1),

X = 'l^ — ij.

Substituting this value in the second equation, it becomes

84 — 3// - 2y = 29,

from which we obtain as before,

84 — -30

y = '- = 11.

This method may be applied to any pair of equations in

four ways :

1. Find X from the first equation and substitute its value

in the second.

2. Find X from the second equation and substitute its

value in the first.

3. Find y from the first equation and substitute its value

in the second.

4. Find y from the second equation and substitute its

yalue in the first.

ti

*»

Elimillation by Addition or Subtraction.

13*7. Rule. Midtipln each equation hij such a factor

that tJi'6 cocjficlciits of one of the unkiwwn quantities

shall hccoDie uiimerically equal in the two equations.

TJien, by adding or subtracting the equations, ire

shall have an equation luitli but one unknown quantity.

Rem. AVc may always take for the factor of each erjuation

the coefficient of the unknown quantity to Ix: eliminated in the

other equation.

Example. Let us take once more the general equation

ax -\-hy = c,

a'x -\- by = c.

Multiplying the first equation by a , it becomes

aax + ahy = a'c.

Multiplying the second by a, it becomes

aa!x -\- ah'y = ac.
i
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The unknown quantity x has the same cntfiicicnt in the

last two equations. Subtracting them, from each other, we

obuia
{a'b — ah') y =z a'c — ac\

y =
a ac

a'b — ati

Rem. "We shall always obtain the same result, whichever

the above three methods we use. But as

last method is the most simple and elegant.

of the above three methods we use. But as a general rule the

Problem of the Sum and Difference.

The following simple problem is of such wide application

that it should be well understood.

138. Problem. T]i6 sum and difference of two num-
hers bein'Ji given, to find the nunihci's.

Let the numbers be x and y.

Let .V be their sum and d their ditTerence.

Then, by the conditions of the problem,

x-\-y = s,

X — y = d.

Adding the two equations, we have

2a; = .s -|- d.

Subtracting the second from the first,

'ly =z s — d.

Dividing these equations by 2,

X = s + d

2
z=.

s

2 -t

y =
s — d

2
=

2

d

2

We therefore conclude

:

JJie greater mtnihcr is found hy adding half the dif-

ference to half the sum.
Hie lesser iiujuher is found hy subtracting half the

difference from half the sum.
8

.Ji
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i

B C
I

I

P

This result can be illiistrjitcd geometrically. Let AB and

BC be two liiK's ])laced end to end, so that AC is their .sum.

To find tlu'ir (lilTcienee, we

cut oil" from AB a lengtli
,

AC — BC ; then C'B is the

dillerenee of the two lines.

If P is half way between C and B, it is tie middle point

of the whole line, so tliat

AP = PC = I^AC = I sum of lines.

C'P = PB = iC'B = i dill'erenco of lines.

If to the half sum AP we add tlie half difference PB, "we

have AB, the greater line.

If from tlie half sum AP we take the half diilereucc C P,

WG have left AC, the lesser line.

th

'^,^^

wh(

'»

EXERCISES.
Solve the following equations

:

I.

2.

3-

4.

5-

6;

8.

3.K

3.r

6"^
7

4^5

9.y = 33, 2.?; — 3;/ r= 18.

by — 13, %€ + 7// =z 81.

Gx -\- i')i/ = Z».

2x — 3y = w.

ax — hi/ = q.

^ y _ o

^ ,y _
8^2

7y + Qy =: a,

2x + 3// = 7)1,

ax -\-Jjy ~ p,

= 20,

= 18, 20.

y
2+3 =^'

X

2

y- =h.

9- < (•'• + ?/) + 3 {x - y) ^'^ 102,

7{x + y)-^{x-y) =GG.
Note. Solvo tins equation first as if .r + ?/ and x—y were sinfrle syni-

bois. of which the values are to be found. Then find x and y by § 138

l)rec'ediiig.

10. X + // + ('^ - y) = 14' ^ + 2/ — (-^ - 2/) = 10-

I
6ec(

wh

II.
x +^= X 2/ -12
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id

u.

it

'G

Note. Equations in this form can bo best solved as if - and wero
the uuiinowu (luantitius. See next exercise

3_2
X y

12.
5

10' x'^y-'^'

Solution. If we multiply the first equation by 4, and the second by
3, we have

12_ 8 _ 44 _ 22
5'

ss y 10

12 15 . 45
r= 'J = -v"

x y

Subtracting the first from the second, we have

23 _ 23

y ~ ^'
whence,

y = 5.

Again, to eliminate , we multiply the first equation by 5 and the

second by 2 and add. Thus,

15 _ 10 _ n
X 7 - T'
8 10 . 12

whence,

13.

14.

15-

17.

23 23

» ~"
2

'

X = 2.

X y

723 1

~ 12' X y~ 12

' + '-

X y

5 2 15
"~ 12' X y ~ 24'

5 3

X y

13 11
""

G' « 2/
~~ 30*

5 3 1 3 1

X -\-l y — l~ G' .-r + 1 y-l
2 3 _ 7 2 3

30

a: + ?/ — 3 12' a; + 2 y —

3

12
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1 8. 4- = c,
X y ' X y

19.

20.

a b J— = a.

X

X — y ' X -\- a

a^b^ a-b~ "' ^ab " ^'

Case IT. !Ef/Kftffon.9 of the First jycffree with
Three or More Unknotvn Quantities,

139. Wlion the viiluos of scvcnil unknown quantities arc

to be found, it is necc.'^sjiry to luivc as many equations as un-

known ([uantities.

If there are more unknown quantities than equations, it

will be impossible to determine the values of all of them from

the equations. All that can be done is to determine the value

of some in terms of the others.

If the number of e([uations exceeds that of unknown quan-

tities, the excess of equations will be superlliious. If there

are n unknown quantities, their values can be found from any

n of the equations. If any selection of n equations we choose

to make gives the same values of the unknown quantities, the

equations, though superfluous, will be consistent. If different

values tire obtained, it will be impossible to satisfy them all.

'I

Eliiiiiiiatioii.

140. "When the number of unknown quantities exceeds

two, the most convenient method of elimination is generally

that by addition or subtraction. The unknown quantities arc

to be eliminated one at a time by the following method :

I. Select an milaioiun quantity to he first cliniinafed.

It is best to begin irith the qnantitij wliicli appears in

the fewest equations or has the simplest coefficients.

II. Select one of the equations containing this un-
known quantity as an eliniinatii/g equation.

III. Eliminate the quantity bctu'ccn this equation

and each of the others in succession.

f^
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^-

Wc shiiU then liiive a socoiul system of equations loss by

one ill nunihtT than the ()ri<,'iiiiil system and containing' a num-

ber of unknown quantities one K'ss.

IV. liCjM'nt the /jfoccssi uu, the new fujsteni of equation a,

(Hid continue tlie rejxtition until oniijoncequdtion wilk

one unknown qnuntitij Is left.

V. IfariinJ found the vulue of this hist unknown
fjuftntiti/, the ludues of the others eunl/e found Ijij suC'

cessive suhstitittion in one equcttiun of each system.

Example. Solve the equations

(1) 4:c — 3^— z+ u— 7 = 0,

(3) X— v/ + 22 + 'in — 10 = 0,

(3) ^x + 2f/ — z — 'ln— 2 = 0,

(4) a; 4- 2y + 2; + u — 19 = 0.

We shall seloct .t as tlu; first quantity to be eliminate' I, and take tlie

last ('(jiiatioii as the elimiiiiitiiii^^ one. Wo first multiply iliis ecjuation by

three such factors that the cocincieut of X shall become ('(jiial to the co-

eilicient of x in each of the other e(|uations. These factors are 4, 1, and 2.

We write the products under each of the other ecjuations, thus :

(«)

7 = 0,4./; — 3// — z -\- u -

4x + K'/ + -12 + 4w — 70 = 0.

X — ?/ + 2z -\- 2u

X 4- 2// -{- z \- V

— 10 = 0,

— 10 = 0.

^x + 2}/ — z — 2u.

2x + 4// -^ 2z + 2u

-2 = 0,

— 38 = 0.

Eq. (1),

(4) X 4,

E(i. (2),

(4) X 1,

Eq. (3),

(4) X 2,

By subtracting the one of each i)air from tlie otlier, we obtain the

equations,

11^ + 52 + ^u — 09 = 0, \

3// — z— u— 9 = 0, V (J)

2^ + 3;^ + 42t — 30 = 0. )

The unknown quantity x is here eliminated, and we have three equa-

tions with only three unknown (luantities. Now eliminatin<r ,v by means
of the last equation, in the same way, and clearing of fractions, we find

the two equations,

23^; + 38?^ — 258 = 0,

Uz + Uu — 90 0.
(P)

(a

m\

%^
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Till' prolilcin Ih now rcdiuvMl t<i two ('<|iiatinnM with two unknown
quiiMtilitH, whicU w«) liavo ulrcuily bIiowu how to Molvr. We (iml liy

ttolvillj^r tllt'lll,

« = — a,

11 — 8.

Wo next find the value of y liy Hulistitiitin^' these valiicM of z and it,

in cither of tlic c'liinitioiiH {h). The lii'Ht of them thuH becuna'tf

;

11^ _ 10 + 2-4 — GO = 0,

from whieli wo find,

y 5.

We now Huhstitufe the values of y, ?, and u in pith(>r of equations (a),

riio second of the latter heconjes

a: _ 5 _ -1 4- IG — 10 = 0,

and the fourth becomes,

:,.. 4- 10 — J2 -t- 8 — m = 0,

either of which gives

X — 3.

We can now yirnvo the results hy suhstitutinpf the values of .t, //, ?,

and H in all ftnir of ciiuatiuns {a), and seeing whetlier they are all satislicd.

'I

EXERCISES.

1. One of tlic ))Ost exorcises for llie sliuleiit Avill ])e tliat of

resolviiiof the i)revioiis e(|iiiitions {a) hy takiii;,^ the last c'(|ua-

iioii as the eliiniiialni.i,' one, {iiul perform iiiiif (he eniiiiiiatioii

ill (litTereiit orders; that is, he^nii hy eliiiiiiialinu: u, then
rejx'at I lie whole ])ro(ess heginniiig with z, etc. The liiiul

results will alwavs he the same.

2. Find the values of x^, a-„, :i\, and x^, from the ccfua-

tions,

x^ + ^\ + >f 3 + ^'4 = ^^-i'

^1 + ^\ — ^% — ^\ = 34,

ft'j Xn H~ ^3 X^ ^= O,

X\ — X

n

X-^ -\- X
/^

=^ 4.

This oxamplo requires no nuiltii)licatiou, but only addition and sub-

traction of the dill'ercnt cMiuatious.

3. 'Ix -f 5?/ + 3^ = 13,

'Ix + ^?,y — 2; = 12,

hx +.by — 'Zz — 21).

1
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'.U' -f- //
— \u — 0,

.,. + 7^ _ «;// = ;j;{,

:)Z — )lx — 8y f-
:.'/« = 15.

X + 1/ + z = (I,

Z -\- U {• X := Cy

u -\- X + 1/ = d*

6. — = ;/?,

— = «,

X y
1 1

.'/
2;

1 1

«
+

X
= 1>-

\i\

I of

|U;i-

ioii

lien

iiKil

PROBLEMS FOR SOLUTION.

1. A man liad ii saddlo \V(irth 81") uiul twD liorscs. Tf llio

Siuldlc he pill on horse A lu' will he doiildi- ihc value of H, itiit

if it l)e piit oil !> his value will bu ctiuul to thai oi' A, What
is tliu value of eaeh horse ?

2. What nuniher of two di^i^its is equal to 7 times th^ sum
of its digits, and to 'Zi times the dill'ereiice of its digits!'

Lot X 1)0 tlio firnt (li^nt, or the iiiimbor of tens, niid // tlio unltH. Then
the nuniluT itself will be 10.r + //. Seven tinu-s the sum of the dibits iin^

7.r + 7//, 1111(1 'i\ tiiiii'S the (liflcrence are 21/— ;21//. Uiiitiii^f iiiio solviiijj

the equations, wo find j; = 0, y = ;j ; the muuljor is therefore 01'.

3. A inimher of two digits is equal to times the sum of

its digits, ami if U be subtracted from the number the digits

are reversed. What is the number?

4. Find a numl)erof two digits sueh that it shall be equal

to G times the sum of its digits inereasi'd by 1, whili' if IS be

subtracted from the number the digits will f)e reversed.

5. Find a number Avhich is greater by 2 than 5 times the

sum of its digits, and if 9 be added to it the digits will be

reversed.

6. What number is that whicli is equal to limes the sum
of its digits and is -4 greater than 11 times their ditlerenceV

7. What fraction is that which becomes e(|ual to f when
the numerator is increased by ^, and e(|ual to ^ when the de-

nominator is increased by 4.

8. Two drovers A and B went to market witli cattle. A
sold 50 and then had left half as many as H, who had sold

none. Then 15 sold 54 and had remaining half as many as A.
Ilow many did each have ? •

nJ!
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9. A Itoy hou^Mil I'i :i|)|>l<'s l'(U- a (li)lljir, jj^iviii*? .'J rrnis onch
for (lie <j^()()(l (»iirs Mild 'J ('('nls I'licli lor (lie pcior ones. JIow
iiiaiiy of each kind did lie l)iiy?

10. I''ind a IVaclion wliicli becomes e(|iial to \ when i(>?

(leiioniinalor is increased Ity i;j, and to 5 when 4 is snbli'acU'd

fnnn lis nnnieralor.

1 1. I"'iiid a IVaclion which will lieeonie 0(|nal lo 3 hyaddin<j;

"i lo ils nuinenilor, or hy adding l.o its deiioniinalor \\, will he-

come J^.

12. A Jiuclvster hon«i;lit a certain numher of «hickens at;

',Vl (HMits (>a,ch and of turkeys at. 75 cents each, payin^^ !i?l I for

till' whole. lie sold the chickens at IS cents each, and the

tnrkeysat ^\ t>acli, reali/ini,' ^'li) for the whole. Jlow many
c'hit'kens and how many turkeys had he ?

13. An apjiU'woman l)ou<;ht a lot of a|>|)les at 1 cent each,

and a lot of pears at 2 cents each, payin^j^ J^l.TO for the whole.

1 1 of the apjiK's and 7 of (he pears were had, hut she sold the

<:ood a|)pli>s at '^ cents i>;icli and the <;ood pears at ;{ centseach,

realiziui^ i^'J.CiO. Now many of each fruit did slu' buy?

14. Wlu'u Mr. Smith was marrit'd he was \ olih>rtlian his

Avil'i' ; twi'lve years al'terward ho was \ older. What were their

ages when married ?

15. A and W toiivlher can do a jtiece of work in (> days, hut
A workiuiX alone can ^\o it !> days sooner than B workin<5

aloni'. In what time could I'ach of them do it sinu^ly ?

i(), A husband beini^ asked the a<j:e of himself and wife,

replied: **lf you divide mv a_«::e (1 years hence by her ai,a^

(i yeai's ago, the ([uotient will he 'i. Hut if you divide her ago

Iv' years hence bv nunc 'IV years ago. the (luotient will be 5.

^"•. The sum of two aues is it times their ditfercnce, hut
seven years ago it was only sovoii times their ditrerence. What
are the ages now ?

iS. Two trains set out at the same moment, the (me to go
from Boston to Springlield. the other from Sj>ringlield to Bos-

ton. The distance between the two cities is !>S miles. They
meet each other at theend of 1 hr. "24 min.. aiul the train from
lit>stou travels as far in 4 hrs. as theotlier in 3. What was llio

siJoeil of eai'h train ?

K), A grocer bought 50 lbs. of tea and 100 lbs. of cotTeo for

$•10. He sold the tea at an advanci> of } on his price, and the

cotTi'c at an advance of J^, realizing *T 7 from both. At what
])rice per pound did ho buy and sell each article ?

NoTK. If X ami y are the prices at which he bought, theu \x aud ly

are the prices at which lie sold.
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IH'-

20. Im)!' /> (lolliirs I ran ptirclmsc cillicr ^r poimd.s of lea and
h piinnds ol' colTcc, or ni pounds of lea ujid // })(<und.s <)!" (;oilc((.

\Vlia( is (lie price per pound orcacli ?

2r. A ;^n»ldsrnilli luid (wo in;:;o(s, The (irsi is composed (d"

c(pial parlsoT^old and silver, while! the second contains.") parts

)d' ^oid t>o 1 ol'silver. lie watits to tak(! from tJieni a walch-
cas(! hiivinii^ 1 ounces of (-old and I oiinco of silver. Jlow

^t he tuko from eacli in^^ot,mucii niusl lie iuko

22. A I)ankor lias two kinds of (;oin, sucli tliah a ])ieres of

tlie lirsi kind or b j)ieces of the second will luake a dollar, if

he wants lo select c i)ieces which shall be woilii a dollar^ liow
many of each kind must he take?

23. A has a sum of money invested at a cerlaiii rate of

interest, li has ^loOO more invested, at a rate 1 per cent,

hinher, and thus <j:ains $S() more interest than A. C has in-

vested ^^7^{)() more than 15, at a I'ate still hi^dier hy 1 [)er cent,,

and thus Ljains $70 more than H. What is the amount each
l)erson has invested and the rate of interest r*

24. A <i^r()cei- had three casks of wine, coidainini^ in all

344 gallons, lie sells ")() ^falloiis iVom the first cask; then
])ours into the first one-third of what is in the second, and
then into the secoiul oni'-til'th of what is in the third, after

which the first contains 10 gallons more than the second,

and the second 10 more than the third. How v.nuAx wine did
each cask contain at first ?

o fro

Ui>S-

They
from

tis the

>e for

d the

what
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Equivalent iiiul Inconsistent Equations.

111. It is not always tlie case tliat values of two unknown
quantities can l)e found from two eejuations. If, for example,

A\ e have the etjuations

X 4- ^>// r- ;],

j).f + 4'// = G,

we sec that the scc(;nd can be derived from the first by multi-

plyini^ both members by 2. llcnce every pair of values of x

ami
II
which s:itisfy the one will satisfy the other also, so that

the two are ecpiivalent to a single one.

If the cqiuitions were
a; + Sy = 5,

2x + 42/ = G,

there wonld be no values of x and y which wonld satisfy both

e( [nations.
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For, if \ve multiply the first by 2 and subtract the second

from the product, we shall have,

2a; 4- 4y = 10

2ri; + 4?/ = 6

1st eq. X 2,

2d cq.,

Remainder, 0=4,
an impossible result, which shows that the equations are incon-

sistent. This will be evident from the equations themselves,

because every pair of values of x and y which gives

2a; + 4y = 6,

must also give a; + 2?/ = 3,

and therefore cannot give a; + 2?/ = 5.

143. Generalization of the preceding result. If we take

any two equations of the first degree between x and y which

we may represent in the form

ax + hy = c,
\

, .

a'x + b'y = c', )

^^'

and eliminate x by addition or subtraction, as in § 137, we have

for the equation in y,

{a'b — ah) y =z a'c — ac'.

Now it may happen that we have,

a'l) — ab' = identically. (2)

In this case y will disappear as well as x, and the result

will be
a'c — ac' = 0.

If this equation is identically true, the two equations (1)

will be equivalent ; if not true, they will be inconsistent. In

neither case can we derive any value of y or x.

If we divide the above equation, (2), by aa' we shall have

b _ 5'^

a ~ a''

Hence,

TJieorem. If the quoti ;nt of the coefficients of the

unknown quantities is the same in the two equations,

they will be either equivalent or inconsistent.

I

L

VJ

ti.

SI

01

0.



INEQUALITIES. 123

This theorem can be expressed in the following form

:

// the terms containing the unknown quantity in the

one equation can he multiplied by such a factor that

they shall hotli become equal to the corresponding terms

of the other equation, the two equations will be either

equivalent or inconsistent.

Proof. If there be such a factor m that multiplying the

first equation (1) by it, we shall have

ma = a'

J

mb = b'.

Eliminating m, we find

a'b — ab' = 0,

the criterion of inconsistency or equivalence.

143. When two equations are inconsistent, there are no

values of the unknown quantities which will satisfy both equa-

tions.

When they are equivalent, it is the same as if we had a

single equation ; that is, we may assign any value we please to

one of the unknown quantities, and find a corresponding value

of the other.

-"--

IS (1)

:. In

have

)f the

Itions,

CHAPTER IV.

OF I NEQUALITIES.

144. Def. An Inequality is a statement, in the

language of Algebra, that one quantity is algebraically

greater or less than another,

Def. The quantities declared unequal are called

Members of the inequality.

The statement that A is greater than B, or that ^ — ^ is

positive, is expressed by
A> B.
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That A is less thtin B, or that ^1 — i> is negative is

cxi)icsse(l by
A < /?.

The form .1 > />' > C

indicates that the (juantity B is less than A but greater tliau (J,

The form A^ B
indicates tliat A may bo either equal to or greater than B, but

cannot be less than B.

Properties of Inequalities.

145. TJieoTcm I. An incHxnality will still suosist

aft(T tlu^ sanio quantity lias been added to or subtracted

Ironi each member.

Proof. If the incf[uahty be A y B, A — B must be posi-

tive. If wo add the same quantity //to A and B, or subtract

it from them, we shall have ^1 i ^/ — (/>±-^^)> which is

equal to .1 — B, and therefore positive. Hence, if

A > /;,

tlien A±II> B ± II.

Cor. If any term of an inequality be transposed

and its sign changed, the inequality will remain true.

TJicoreni II. An inequality will still subsist after

its members have been multiplied or divided by the

same positive number.

Proof. If ^ — B is positive, then {m or ??, being positive)

m {A — B) or mA — mB will be positive, and so will

A-B A
or

Qi n

B
n

Hence, if A> B,

then

and

771A > VIB,

n n

'

, ^
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It may bo shown in the same way that if m or n is negative,

mA — 7nB or will he nerativc. ITeiice,

Tlieorcm III. If both members of an inequality bo
multiplied or divided by the same negative number,

the direction of tlie inequality will be reversed.

That is, if A > B, •

then ~ 7nA < — mB,

and
n <

B—- •

n

TJicorem IV. If the corresponding members of

several inequalities be added, the sum of the greater

members will exceed the sum of the lesser members.

Tlieore, > r If the members of one inequality be
subtracted from the non-corresponding members of

anotluM', the inequality will still subt>ist in the direction

of tlie latter.

That is, if Ay B,

then A — y y B — x.

The proof of the last three theorems is so simple that it may he sup-

plied by the student.

Theorem VI. If two positive members of an in-

equality be raised to any power, the inequality will

still subsist in the same direction.

Proof. Let the ineqnality he

A> B. (a)

Becanse A is positive, we i^hall have, by multiplying by A
(Th. II),

A^ > AB. (1)

Also, because B is positive, wc have, by multiplying (a)

hy B,
AB > /A {:l)
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Therefore, from (1) and (2),

A'^yB^, (3)

Multiplying the last inequality by A,

A^ > A IP. (4)

Multiplying (3) by i?,

AJP > B^. (5)

Whence, A^ > B^.

The process may be continued to any extent.

Examples of the Use of Inequalities.

14G. Ex. I. If a and b be two positive quantities, such

that

we must have a + Z» > 1.

Proof. If a-\-i^l,

we should have, by squaring the members (Th, YI),

a2 + 2aJ + ^2 = 1

.

and by transposing the product 2ab (Th. I, Cor.),

a2 + 52 ^ 1 _ 2ab.

Because a and b are positive, 2ab is positive, and *

l — 2ab< 1.

Therefore we should have

«« + *2 < 1,

and could not have 0,^ + 1^=1^ as was originally supposed.

Ex. 2. If a, b, m, and n are positive quantities, such that

am
b^ n'

(a)

then the value of the fraction will be contained between
a 4- w

{I 711

the values of , and — ; that is,

b n

w

ze

th<

•

I
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een

'i

(1)

(2)

(3)

a a -^ m m

To prove the first inequality, we must show that

a a -\- m
b
~~ V+li

is positive. Reducing this expression by § lOG, it becomes

an — hn
bJbT^'

From the original inequality (a) we have, by multiplying

by the positive factor biif

a?i y bm.

That is, a7i — 5m is positive ; therefore the fraction (3)

with this positive numerator is also positive, and (2) is positive

ae asserted.

The second inequality (1) may be proved in the same way.

EXERCISES.

I. Prove that if a and b be any quantities diflferent from

zero, and 1 > a; > — 1, we must have

a2 — 2abx + i^ > 0.

2. Prove that y^-j-) > «^-

3. U dx — 5> 13, then x > 6.

Sx
4. li Gx>~-\- 18, then a; > 4.

5. If y-f >|-3, thenx>5.

6. If fit — nxyp — qx, then x > -^— •

' m y
and m is positive, then x <C y.

8. If «2 -f 52 ^ ^2 =: 1, and a, b, and c are not all equal,

then ab \- be + ca <. 1.

Sr«<3EBTi0N. The B(iuares of a — h,h — c, and c — a cannot be

nregalive.



BOOK IV.

A'ATIO A ND PR OPOR PIO N.

CHAPTER I.

NATURE OF A RATIO.

147. Drf. The Ratio of a quantity A to another

quantity B is a number expressing the value of A wlien

com])ared with B as the standard or unit of measure.

Examples. Comparing

the lengths A, B, C, D, it

will be seen that

A is 2|- times D\
^ is ^ of D',

C is I of D.

A
li

C

J)

I I I I I
I

I I I I I

Wc express this relation hy saying.
to'

The ratio oi A to D is 2^ or _ t

'4'

t<

ft

" B to D is
2

(1)

{( C to i) is 7-
4

1-18. The ratio of one quantity to another is expressed hy

writing the unit of measure after the quantity measured, and

inserting a colon between them.

The statements (1) will then he expressed thus :

A:D = 2} 4' B:D=: C'.D
3
4"

Dff. The two quantities compared to form a ratio

are called its Terms.

"1
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tlier

lien

e.

0)

Jl.y

and

1

atio

Dcf. The qiuiiitity nu'asured, or the liist term ol'

the ]*iitio, is ciilh'd the Antecedent.

The unit of lueiisure, or tlie second term of the ratio,

is called the Consequent.

Rem. When tlio antecedent is greater than the conse(iuentj

the ratio is greater than nnity.

When the antecedent is Itos tlum the consequent, the ratio

is less than unity.

141). To find the ratio of a quantity yl to a standard U,

\ve imagine ourselves as measuring oil: the quantity A witli 6''as

a cari)enter meiisurcs a hoard with his foot-rule.

There are then tlirec cases to he considered, according to

the wav the measures come out.

Case I. AVe may find tluit, at tlic end, A comes out an

exact nunil)er of times V. The ratio is then a whole numljer,

and Ave say that U exactly measures A, or tiiat A is a

multiple of U.

Case II. We may find that, at the end, the measure docs

not come out exact, hut a i)iccc of A less than U is left over.

Or, A may itself he less than U. We must then fiiul what

fraction of U the piece left over is equal to. This is done hy

dividing U up into such a numher of equal parts that one of

these parts shall exactly measure A or the piece of A which is

left over. The ratio will then ho a fraction of Avhich the num-
her of parts into which U is divided will ho the denominator,

and the numher of these parts in A the numerator.

Example. If we find that
,

hy dividing U into 7 parts, 4 of

these parts will exactly make A, I \ I 1 = A
then A = 4" <^f U, and Ave have for the ratio of A to U,

A:U=t
If we find that A contains U 3 times, and that there is

then a piece equal to -\ of U left over, Ave have

A '.U=^= y

i!l

- m

9
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The 3 C/''s arc equal to ^ of U, so that wc may also say

AA=^oiU, or u = f

.

Avhicli i? simply the result of reducing the ratio 3^ to an im-

l)ro])or Iriietion.

In general, if we find that by dividing U into n parts, -I

will be exactly m of these parts, then

A '. U = —,
n

•whether m is greater or less than n.

When the magnitude of A measured by U can be exactly

expressed by a vulgar fraction, A and U are said to be com-
mensurable.

Case III. It may happen that there is no number or frac-

tion which will exactly express the ratio of the two magnitudes.

The latter are then said to be incommensurable.

150. Theorem. The ratio of two incommensurable

magnitudes may always be expressed as near the true

value as we please by means of a fraction, if we only

make the denominator large enough.

Examples. Let us divide the unit of measure into 20

parts, and suppose that the antecedent contains more than 28

but less than 29 of these parts. Then, by supposing it to con-

tain 28 i)arts, the limit of error will be one part, or ^^ of the

standard unit.

In general, if we wish to express the ratio within 1 n^h of

the unit, we can certainly do it by dividing the unit into n or

more parts, or by taking as the denominator of the fraction a

number not less than n.

llludration hy Decimal Fractions. The square root of 2

cannot be rigorously expressed as a vulgar or decimal fraction.

But, if we suppose

Vs = 1.4 = i^, the error will be < ^V 5

^2 = 1.41 =\U, " " <tU;
V2 = 1.414 = HU, " " <ToW-
etc. etc. etc. etc.
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20

V.

^ \.

Since the decimals may be continued without end, tlio

square root of 2 can be expressed as a decimal fraction wi(li an

error less tlian any assignable (quantity. This general fact is

expressed by saying

:

Tlie Umib of the ciTor which ive make by representing

an iiicmnincnsiu'uhlo ratio as a fraction' is zero.

151. Batio Hfi a Quotient. From Ciise II and the explana-

tions wliieli i)recedc it we see that when we say

wc mean the same thing as if we had said,

A is I of C7, or A = \U.

If A and U are nmnbcrSy wc may divide both sides of this

equation by U, and obtain,

^ _ 4

J/
" 7*

.

"We therefore conclude that when A and U arc numbers.

That IS, (/

Tlieorem. The ratio of two numbers is equal to the

quotient obtained by dividing the antecedent term by
tlie consequent.

In the case of magnitudes, the relation of a ratio to a quo-

tient may be shown thus :

Let us have two magnitucics M and F, such that M is

4 times V. Then we may write the relation,

J/=4F.
Dividing by 4, we have

M
:= V.

Since V is not a number, we cannot, strictly speaking,

multiply or divide by it. But we may take the ratio of M to

F without regard to number, a.id thus find,

M : F = 4.

I i

!l{l

I I

ii

ii
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Iii:m. Tlio tlioory of ralioH llic (cniis of wliich arc imijjni-

liidcs and not niunlH'i's, is treated in (iconietry.

In Ai<,'el)ni we consider t lie ratios of numbers, or of nia^'-

nitudes represented by niinil)ers.

15'^. Dcf. If w(» iiitvrchungi^ tlio teriua of u ratio,

the result is called the Inverse ratio.

That is, U : A is tlio inverse of A \ U.

If

then

U : A = —.
n

U m
n
A,

and wc have, by dividing by —

,

A =

or A : U =

n

m
n

m

r^.

Because — is the reciprocal of , wo conclude

:

TJii'orcin. The inverse ratio is the reciprocal of the

direct ratio.

Properties of Ratios.

1 i*.*?. TJieorem I. If both terms of a ratio be multi-

plied by the same factor or divided by the same divisor,

the ratio is not altered.

Proof. Ratio of B to A = B \ A =

If m be the ftictor, then

/>'

7nB B
Eatio of mB to mA = mB : mA = — -j = -?>mA A

the same as the ratio of i? to ^1.

154. Theorem II. If both terms of a ratio be in-

creased by the same quantity, the ratio will be increased
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ifil is less tli.'in 1, niid (rmiiiiislird il'lt ls;j;ivaU'i' than I ;

tliat is, it will be broiiglit nv.nvv to unity.

RvAMl'l.K. Let tlioorl^iniil ratio be 2 : 5 If we rrpratnllv luM

1 to Itotii iiimicmtor ami druuiuiiiulur uf ihu fmctiuu, wc hhull Iiuvd tlio

BcricH of I'mctiuiiH,

> tf» 7' N» ^*»"»

each of wliich is grcator tlmn the pri'cediii},'. becnuso

* - s = A ; wlicncc, « > «.

^
3 _ a .

11
— \i '

* _ I !» .

ulxMicc, i > i}.

wlu'iicc, 5 > 7.

etc. etc.

General J'rnnf. Lot // : Z* be tlic ori^^iiial ratio, and let

both tiTiiis bo increased l)y the quantity //, niakiii;^' the now

ratio «+ u : 0-\-u. The now ratio viiniis tlic old one will bo

{b — ft) u

If h is greater than a, this (|iiaiitity Avill be ]>ositive, show-

ing tliat the ratio i- increased l)y adding n. It'/' is icss tlian a,

tlie ([uantity will l»c negative, showing that the ratio is dimin-

ished by adding u.

-- r

I

CHAPTER II.

PROPORTION.

1,15. Dif. Proportion is an equality of two or

more ratios.

Since each ratio has two terms, a proportion must have at

least four terms.

D<f. Tlu^ forms wliicli enter into two equal ratios

are called Terms of the proportion.

1( a : b bo one of the ratios, and jj ; q the other, the pro-

portion will be,

a : b = p : q. (1)

i''^;!ii!

]i

•It
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A proportion is sometimes written,

a : b : : p '.

q,

which is read, " As a is to h so is p to q." The first form is to be pre-

ferred, because no other sign than that of equality is necessary, but the

equation may be read, " As a is to 6 so is p to q" whenever that expres-

sion is the clearer.

Def. Tlie first and fourtli terms of a proportion are

called tli(; Extreme.?, the second and third are called

the Me£ais.

Theorems of Proportion.

150. TJieorem I. In a proportion the product of

the extremes is equal to the product of the means.

Proof. Let us w.-'te the ratios in the proportion (1) in the

form of fractions. It will give the equation,

a _p
(3)

Multiplying both sides of this equation by Iq, we shall have

(tr = hp. (3)

Cor. If there fi re two unknown terms in a propor-

tion, they may l^e exp essed by a single unknown
symbol.

Example. If it be required that one quantity shall be to

another as p to q, we may call the first px and the second qx,

because

px : qx zsi p '. q (identically).

157. Theorem II. If the means in a proportion be
inter(!hanged, the proportion will still be true.

PrQof. Divide the equation (3) by j^Q.' We shall then

liave, instead of the proportion (1),

a_h
p~ q'

or a \ p =. h '. q.
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\

Def. The proportion in which the means are inter-

changed is called the Alternate of the original pro-

portion.

The following examples of alternate proportions should be studied,

and the truth of the equations proved by calculation :

1:2= 4:8; alteniate, 1:4 =2:8.
2:3=G:9; " 2:0=3:9.
5 : 2 = 25 : 10

;

" 5 : 25 = 2 : 10.

158. TJieorem III. If, in a proportion, we increase

or diminish each antecedent hy its consequent, or each

consi'quent by its own antecedent, the proportion will

still be true.

Example. In the proportion,

5 : 2 = 25 : 10,

the antecedents are 5 and 25, the consequents 2 and 10 (§ 148). Increasing

eacl'i antecedent by its own consequent, the proportion will be

5 +2:2 = 25 + 10:10, or 7:2^35:10.

Diminishing each antecedent by its consequent, the proportion will

U6COIIl(3
'

5 - 2 : 2 = 25 - 10 : 10, or 3 : 2 = 15 : 10.

Increasing each consequent by its antecedent, the jtroportion will be

5 : 2 + 5 - 25 : 10 + 25, or 5 : 7 = 25 : 35.

These equations are all to be proved numerically.

General Proof. Let us put the proportion in the f( rm

b q .
^ '

If we add 1 to eacli side of this equation and reduce each

side, it will give

b ~ q '

that is, a -\- b : b = p -{- q : q. (5)

In the same way, by subtracting 1 from cacli side, it will he

a ~b ', h = }) — q '. q. (0)

'§..

Mai



130 PItOPOllTION.

If we invert tlie fractions in equation (4), the liittor will

become

a P

M

By adding or subtracting 1 from each side of tliis equation,

and then again inverting tlie terms of tlie reduced fractions,

we shall lind,

a : h -\- a =: 2^ : q -\- 2^

;

a : b — a =^ p : q — 2^'

The form (5) was formerly designatod as formed " by composition,"

and (0) as formed " by division." But these terms are now useless, be-

cause all the above forms are only special cases of a more general one to

be now explained.

IVSO. Theorem IV. If four quantities form the pro-

portion
a : h = c : (7, (a)

and if m, n, ^;, and q be any multipliers whatever, we
shall have

ma + nh : ^y« -\- qh — mc + nd : ^:>c + qd.

Proof. The proportion {(() gives the equation.

a _ c

b ~ d

VMultiplying this ecpiation by - and adding 1 to each

member,

qb + ^ - qd + ^•

Itedueing eaeli member to a fraction and inverting the

terms,

qb __ jjd

2m 4- ([I)
~ pc -\- qd

Dividing both members by q,

2m \- qb pc + (jd ^ '

The original proportion {a) also gives, by inversion,

an
i\n

of
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etach

ig the

(^)

a
~~

c*

from which we obtain, by nmUiplying by -, addhig 1, etc.,

(jb 4- pfi Q(^ + pc

2M pc

a e

])a -\- qb ji^c + qd

(8) X m + ( <) X n gives tlic equation,

ma -\- nb inc \- nd

pa -\- qb pc -{- qd
*

or ma -\- nh : pa -{- qb = vie -f nd : 21c + qd,

which is the result to be demonstrated.

C^)

(9)

KJO. TV) corem V. If each term of a proportion be
rais<*d to the same power, the proportion will still

subsist.

Pi

or

oof. If a : b -

a

b
~

= p : q,

.P
-q'

then. bv mult iplying each mcmljer by itself repe itedly, we

shall have
«2 ^P\

•

«3

etc. etc.

Hence, in general,

Cor. n
then

and

fl» : h^ z= pn
.

qn,

a : b = p '

q,

an : a" ± b'' = p"' : p'^ ± r/«
;

f(n _|_ /,n . //I _ ^^n -j_ f^n . ,j?i^

Til corem VI. When throe terms of a proportion

are given, the fourth can always be found fi-om the

theorem that the i)roduct of the means is equal to that

of the extremes.

1.1

ijillii

ri^
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We have shown that whenever

a : b = p '. q,

lIlOil aq =z bp.

Considering the different terms in succession as unknown
quantities, wc lind,

a

h

hp
- t'
_aq
~~P'

aq
- b'

q =z
a

Cor. 1. If, in the general equation of tlie fir^'

degree
ax + hy = c,

the term c vaiiislies, the equation determmes the ratio

of tlie unknown quantities.

Proof. If ax -\- by = 0,

then ax z=z — by,

X b
and - =

,

y a

or X : y = — b : a.

Cor. 2. Conversely, if the ratio of two unknown
quantities is given, the relation between them may be
expressed by an equation of the iirst degree.

The Mean Proportional,

IGl. D(f. When the middle terms of a proportion

are equal, either of them is called the Mean Propor-

tional between the extremes.

Tlic fact that b is the mean proportional between a and c

is expressed in the form,

a : b = b : c.
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Theorem I tlien gives, b^ = ac.

Extracting the square root of both members, wc have

b = Vac.
Hence,

Tlieorem VII. The mean proportional of two quan-

tities is equal to the square root of their product.

)rtion

|opor-

and c

Multiple Proportions.

1G3. We may have any number of ratios equal to each

other, as

a \ b = c : d =^ e '.

f, etc.

G : 4 = 9 : G = 3 : 3 = 21 : 14. {a)

Such proportions are sometimes written in tlie form

6 : 9 : 3 : 21 = 4 : G : 2 : 14. {b)

In the form {b) the antecedents are all written on one side

of the equation, and tlie consequents on the other. Any two

numbers on one side then have the same ratio as tlie cor-

responding two on the other, and the proportions expressed by

this equality of ratios are the alternates of the original propor-

tions (rt). For instance, in the proportion {b) we have,

6:9 =4:6, which is the alternate of 6 : 4 = 9

6:3=4:2," " " 6:4=3
6 : 21 = 4 : 14, " " " 6:4 = 21

9 : 21 = 6 : 14,
a i( It 9 : 6 = 21

6.

2.

14.

14.

163. A multiple proportion may also be expressed by a

number of equations equal to that of the ratios. Since

a : b = c : d = e '•

f, etc.,

let U3 call r the common value of these ratios, so that

a
— — 7'

b~ '

Then

d

a = rb,

c = rdy

e — rfy

= r, etc.

(^)

i1
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w

will express tlic same relations between the c^uantities a, h, c,

d, e, f, etc., that is (3xpre.<setl hy

a : b =z c : d -= e : ff etc., {a)

or a '. c '. e : etc. = b : d : f -. etc. (/;)

It will be seen that where r enters in the form {<•) there is one more
equation than in the first form {a). [In this form each = rci)resents an
etiuation.] This is becaust; the additional quantity r is introduced, by

eliininaiiiig which wo diniinish the number of e(juations by one, as in

eliminating an unknown quantity.

1G4. Tlieorem. In a multiple proportion, the snm
of any number of the antecedents is to the sum of the

corresponding consequents as any one antecedent is to

its consequent.
2 10 1?

Ex. We have Tlien

302 + ()4-104-l*2

5 + 15 + 2T+~i]0

which has the same value as the other four functions.

General Proof. Let A, B, C\ etc.. ho the antecedents, and

a, b, c, etc., the corresponding consequents, so that

A \ a = B '. b = C '. €, etc. (1)

Let us call r the common ratio A i a^ B : b, etc., so that

A = ray

B = rby

C = re.

etc. etc.

Adding these equations, we have

yl + 7? + 6' + etc. = r {a -{- b -]- c -i- etc.),

^ + // 4- C 4- etc.
or — /•;

a -{- b -\- c + etc.

that is, the ratio .1 + /> + T'-f etc. : r(-f 6-fr+ ctc. is equal to

r, the common value of the ratios A : a. B : b, etc.

it

PROBLEMS,
I. A nuip of a country is made on a scale of 5 miles to

3 inches.
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{a)

(1.) What will be the length of 8, VI, 17, 20, 33 miles on
the map?

i'L) How nifiny miles will be represented by 0, 8, 10, 20,
21» iljrljc.> 1)11 the llUlj) ?

I»i:m. 1. If .V, I/, J, //, r b(3 the nMiuircd spaces on the maj), we .shall

5 : ;3 - 8 : ;? - 13 : ?/, etc.

If a, h, r, etc., he tlio rc(iuired number of miles, we shall have

3 : T) = Q : a = 8 : b - U : r, etc.

Rem. 2. When there are several ratios comi)are(l, a.s in this problem,

it will be more convenient to take the inverse of the common ratio, and

maMjilr the antecedent of each following'' ratio by it to obtain the conse-

qntjjl 111 the tirst of the above proportions the inverse ratio is 3, and

X = ^ of 8, y = l
of 12, etc.

In the second, a = -i; of G, & =
jj
of 8, etc.

2. To divide a aiven quantify A into throe ])arts Avhieh

sham l>e i)roportioiial to tiie given quantities «, 0, c, that is,

iiit*> tlie parts x, ij, and z, sueh tluit

X '. a ^ y : h =z z \ c,

or X : y \ z =z a '. h : c.

SoLUTlOX. By Theorem IV,

X y z _ X -\- y -\- z A
a ~ b ~ c

~ a -\- b + c a + b -\- c

Therefore,

((A 1)A cA
:.' yX =

a -{- b a -\- b -Y
6-'

z =
a -\- b -\- c

miles to

%. r>ivi(le 102 into three parts which shall be proportional

to the numbers 2, 4, 11.

4. Divide 1000 into five parts which shall be proportional

to t!ie numbers 1, 2, 3, 4, 5.

5. Find tAvo fractions Avhose ratio shall be that of « : 5, and
wiio.'^e ^um sliall be 1.

6. Wliat two numbers arc those whose ratio is that of 7 : 3

and whdse dili'erenec is 24.

7. What two numbers are those whose ratio is m : n, and

whose difference is unity ?

8. Find x and y from the conditions,

X : y =z a '. b,

HX — h; =r rt + b.

i'

'I!
I

, liU

mm
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9. Show that if

"vvc must iilso liave

a : b = A '. B,

c : d = C \ D,

ac : bd = AC : IID.

10. Having given x = ay, lind the vuluc of ^-^-^-.
X ~'Zy

II. Ilav ing given

find the value of
x + y
x — y

12. If a '. b = 2^ \ q,

prove a2 + ^2 :

a + b ^ ^ P + 'I

and a" + i« :

a + b-^ ^ ^ ' p + q

13. If
a + b-{- c -\- d a — b + c — d

a -{- b — c — d ~ a — b — c + d'

show that a : b = c : d.

14. A year's profits were divided among three partners, A,
B, and C, proportional to the numbers 2, 3, and 7. If C
should i)ay B $l:i56, their shares would be equal. What was
the amount divided ?

15. In a first year's partnership between A and B, A had
2 shares and B had 5. In the second year, A had 3 and B had 4.

In the second year, A's i)rofits were $3200 greater and B's were
$1700 greater than they were the first. What was each year's

profits ?

16. In a poultry yard there are 7 chickens to every 2 ducks,
and 3 ducks to every 2 geese. How many geese were there to

, every 42 chickens ?

17. A drover started with a herd containing 4 hordes to'

every 9 cattle. He sold 148 horses and 108 cattle, and then
liad 1 horse to every 3 cattle. How many horses and cattle

had he at first ?

18. If a l)owl of punch contains a parts of water and b

parts of wine, wliat is the ratio of the wine to the whole
punch ? What is the ratio of the water ? What are the sums
of these ratios ?

th(

in(

wi



PIWPOIITIOK 113

ers, A,
If

lut was

A had
had 4.

Ts wore
year's

lucks,

here to
: c

or.«es to

id then
cattle

icr and b

whole

he sums

19. One in.crot consists of equal i)iir<s of ffohl and silver,

while another has two parts ot *^t>ltl to one of silver. 11" I

conibiiie equal weights IVom these intj^ots, what jtroportion of

the coin])ound will he f:j()kl and what i)ro])ortion silver?

20. What will he the jtroportions if. in the y)reeeding proh-

leni, I conihine one ounce from the lirst ingot with three from
the second ?

21. One cask contains a gallons of water and b gallons of

alcohol, while another contains m gallons of water and u of

alcolud. If I draw one gallon from each cask and mix them,
what will be the quantities of alcolud and water ?

22. What will be the ratio of the lifpiors in the last case, if

I mix two ])arts from the first cask with one from the second ?

23. WHiat will it be if I mix 2^ parts from the first with q
parts from the second ?

24. A goldsmith has two ingots, each consisting of an alloy

of gold and silver. If he comlnnes two ])arts from the first

ingot with one from the second, he will have ecpial parts of

gold and silver. If he combines one part from the first with
two from the second, he will have 3 parts of gold to 5 of silver.

What is the composition of each ingot ?

SuoGESTiox. Calf r tlie ratio of the wei^lit of pold in the first ingot

to the whole weiglit of tlie ingot ; then 1—7' will bo tlie ratio of the sil-

ver in the first to the wliole weight of the ingot. See tlie following

question.

Note. Problems iH-24 form a graduated series, introductory to the

processes of Problem 24.

25. Point out the mistake which would be made if the

solution of the preceding problem were commenced in the fol-

lowing way :

If the first ingot contains p parts of gold to q parts of silver, and the

second contains ?• parts of gold to s of silver, then

Two parts from the first ingot will have 2;) of gold and 2g of silver.

One part from the second ingot will have r of gold and .<? of silver.

Therefore, the combination will contain 2p + r parts of gold, and

2^ + 8 parts of silver.

Show also that if we subject p, q, r, and s to the condition

p + q = r + s,

the process would be correct.

26. Show that if the second term of a proportion lie a
mean proportional between the third and foiirtli, the third

will be a mean proportional between the first and second.

^'1

1 il

\ 4\\
1

'

'i
<

^

,

!
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BOOK V.

OF PO WER S A ND R O O TS\

CHAPTER I.

INVOLUTION.

Case I. Involution of Products and Quotients.

1<>5. Def. The result of takiiiii; a (luautity, A^
n times as a factor is called the a/"' power of A, and
as already kno^vIl may be written either

AAA, etc., n times, or A'\

Def. The number n is called the Index of the

power.

Def. Involution is the operation of finding the

powers of algebraic eAjn'essions.

Tlic operation of invohition may always he expressed hy

ihe apphcation of the proper exponcnl, the expression to be

involved being inelosed in parentheses.

Example. The n*''- power of i -{ h is {a + ly.

The n*''- power of ahc is {abcY.

IGG. Lwolution of Products. The n"'- power of the

product of several factors a, h, c, may bo expressed witliout

exponents as follows:

ahc ahc nlc, etc.,

each factor being repeated n times.

tiej

the

exp(

IS m.

ii
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eiits.

t, luid

of the

iig tlie

Used l)y

11 to be

of the

without

IFore Ihoro will he iiUoirethor n a\ n b\ air] n c's, so

that, nsh\(i; exponents, tlie whole i)ower will be «'*i"6'" (g 00, 01).

Hence, {aOc)"' = a''b"c".

Tiuit is,

Theorem. Tlio i)Ower of a i)ioduct is equal to the

product of the powers of the several factors.

1G7. Inrohifion of Quotients. Applying the same methods

to fractions, we find that the ?i"' iiower of - is -- •

y r
For

(xY X X X ,

I = - " , etc., n times
;

y' y y y
XXX, etc., n times

ijyij^ etc., n times
(§ 100)

;

EXERCISES,
Express the cubes of

I. ttbc. 2.
ah
-— •

c

a — h

3. abc~K

, mn (a + b)
o.

pq {a — b)

Express the n^^ powers of the same quantities, the quanti-

ties between parentheses being treated as single symbols.

Case II. Involution of Powers.

108. Problem. It is required to raise the quantity a^ to

the n'^ i)ower.

Solution. The n*^ power of a^ is, by definition,

a"* X rt^ X a*", etc., n times.

By § GG, the exponents of a are all to be added, and as the

exponent m is repeated n times, the sum

m + m + m -f etc., n times,

is mn. Hence the result is a'"", or, in the language of Algebra,

(rt'")» =r «'«».

10

M̂

m

1.

"ill

r
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Hence,

TJieorcm,. If any powor of a quantity is itself to Ih^

raised to a ])()wer, the indices of tiie powers must be

multiplied together.

EXAMPLES.

Note. It will ho HO(>n tlmt this ihooreni coincidos with that of Case I

when Jiny of tho fuctora havo tho exponent unity undtTHtood.

EXEHCISES.

Write the cubes of the following (lUJintitics:

I. 3ri/2.

4. hx*.

2.
,m

5. "Zahn^

3. w

6.

"Write the ?i'^ jjowers of

7. a. 8. (fib.

10. (i^a^, II. 'Zp^hf.

14. l{a + b — c){(i — h)P.

Ans. 7" {f( -h h — c)» {a — h)>'P.

9. aWc,

12. {(t + h) (c-hd).

IS
a

• r 16. 17'
X —

//

Ans. — „ „„-

•

iS. —^.
^^

ff^ (c - (If

Reduce

:

20. i^ZaWn^y. 21. {—^mnx^y.
22. 2rt(— ;Ji2/„;i3)3. 23. (7;yr^)4.

24. (rtZ/«)*. 25. (2«2,;3)«. 26. {m^y.

Note 1. If the student find any of these exponential exiiressions

difficult of expression, he may lirst express them by writing each quantity

a number of times indicated by its exponent.

Note 2. The student is expected to treat the quantities in paren-

theses as single symbols.
exp( 1
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t bo

Case I

(c + ^0-

hyp.

IproKsions

1 (luuntity

liu parcn-

llv.u. Tho procodiiif? tlioorom limls ;i practiciil iipplicalioii

"vvlu'ii it is noc't'ssary to raise a small niimlHT (o a high ixiwir.

If, lor t'.\aini>k', \vc iiavo to raise 'i to the .'JOtli power, we
jshoiiltl, willutut this theoivni, have to iiiultiply by '4 no less

than '>i\) times, lint we may also proceed thus:

2» = 4,

2* = y«.22 = 4-4 = IC,

29 = a^.2« =: KJ.iG = )ir>r,,

2" = 2».28 = 25';'^ = Vib'j'M'i,

Case ol* Xc'jjative ExpoiiciitH.

1(»9. Tho profiHlinfT theorom may he a])))li('(l to nogalivc

exponents. J>y the delinition of sneh exponents,

liaising the Qrst member to the w'^* power, we have,

(1)

a'lp = a'^vb "?.

This is the same result we should get by a))plyin,2f tho

theorem to the second member of (1), and i)rove,s the proposi.

tion.

EXERCISES.
Express the Gth powers of

lU
'.-1 a^h-\

3. amp •*.

5. (a^l>y{a-V)-
a-m 7.-71

6. {x + ijY {x + z)-n

7.
{a-b)

tn

Ticduce

9. [{a + 7>)-i {a - b)Y. 10. (r/i-i6--2)

I. {ab'^c-'^y

13. t}i-i\-i[xhj-i)

12.

14.

{mhrJyK

After forming the expressions, write them all with positive

exponents, in the form of fractions.

lit

v.w
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Algebraic Sigfiis of Powers.

170. Since tho continued proiluct of any nunil)er of jjosi-

tivo factors is positive, all the powers of u positive (piautiiy are

positive.

By § 20, tlie ])rodnct of an odd number of neirutivc fac-

tors is negative, and the product of an even number is i)ositivc.

Hence,

Theorem. Tlie evon powers of iiogativo quantities

are x^oaitive, and the odd powers are negative.

EXAMPLES.
(— ((f z= a2 . (_ ^,)3 _ _ f^3. (_

(^Y
— (ji^

e^^c.

EXERCISES.
Find tlie value of

I. (-2)2. 2. (-3)3.

4. (-^>)'^. 5- (-5)3.

7. {—a — h)\ 8. {—wn)\
lo. {-af'K II. l-hY'^'K

13. (— 1)2«. 14. (_l)2nHl,

3- 4*.

6. {-ly.

9. {— vif.
12. {-a — hyri-\

15. (-1)2-'.

Case III. Involution of Binomials—the lilno'

nilal Theoi'cni.

171. It is required to find the n^^ pmvcr of a hinomial.

1. Let a -\- h be the binomial ; its w'* power may be written

{a + by.

Let us now transform this expression by dividing it by n^,

and then multi})lying it by «", which will reduce it to its orig-

inal value. AVe have (§ 107),

«» \ ~a I \ '^ (J
'

Multiplying this last exjnvssion by ««, by writing this

power outside the parent liescs, it l)ecomes

«"0+:)" (I)

;
I

I

ns

of

I
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\llW'

by a"^,

Is orig-

ig this

(1)

wliicli is equal to {a + ly. Next let us put for shortness x to

represent - , when the expression will become

(rt + hY = (C (1 + ar)«. (2)

2. Now let as form tlie successive ])owers of (1 + a:)". Wo
multiply according to the method of § T'J:

{1 + xy = 1 -{- X

Multiplier, 1 -f ^

4- a: -f- r/;2

(1 + xY =z 1 + •.>./; + x-2

Multiplier, 1 -\- x

1 -^2x + x^

X -\-2xi -\-a^

(1 + .r)3 = 1 + '3x -f- :3.f2 H- a-3

Multiplier, 1 -f-_x

' 1 + ;}a; + 3.r a:^

a: + 'i-^ + 'i'-^ + X*

(I + a:)4 = 1 + 4a; + (^.f'^ + 4.1-3 ^ ,^4

It will be seen that whenever we multi})ly one of these

powers l)y 1 + x, the coellicients of x, x^, etc., which we add

to form the next higher i)ower are the same as those of the

given power, only those in the lower line go one place toAvard

the right. Thus, to form (1 + xf, we took the cocflicients of

(1 + xy, and wrote and added them thus

:

Cocf. of (1 +.^f, 1, 3, 3, 1.

1, 3, 3, 1. •

Coef. of (1 + x)\ lir'47~C~4,~T

It is not iKTcssarv to writo flic niinilirrs iin<lor onrli other to ndd
tliciii ill this way ; we liavi- only to ndd i-ach iiiiiiihcr to the one on tlic

left ill tlio .siuuo lino to form the rorrcspondin^ nuinbcrof tlic line Ixdow.

T1iu8 wo can form tlu? conincicnts of the succi-ssiv*' jKHvcrs of ,/• at t<i^'lit

as follows: The first fiiriiro in each lino is 1 ; tho uext iB the cocllicifut

of X ; tho third the coellicient of j*, etc.

J

; \

if !'

'.I
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First power, n = 1, coefficients, 1, 1.

{Second " n = 2, 1, 2, 1.

Tiiird " n = 13, 1, 3, 3, 1.

Fourth " 71 = 4, 1, 4, G, 4, 1.

Fifth " n =. 5, 1, 5, 10, 10, 5, 1.

Sixth " 71 z= G, 1, G, 15, 20, 15, G, 1.

etc. etc. etc.

It is evident that the first quantity is always 1, and that

the next coeflicient in eacii line, or the coefficient of x, is 7i.

The third is not e^ idcnt, but is really equal to

as will bo readily found by trial; because, beginning with

n = 3,

The fourth number on each line is

7i{)i — l){n — 2)

3-3

Thus, beginning as before with the third line, where w = 3,

3.2jJ. 4^3^^^

~ 2''3 ' 2-3 '
10 = -

0-4.3

2-3
etc. (c)

3. These several quantities are called Binomial Coeffi-

cients. In writing them, we may multii)ly all the denomi-

nators by the factor 1 witiiout changing them, so that there

will be as many factors in the denominator as in the numerator.

The fourth column of coefficients, or (c), will then be written,

3.2.1 4.3.2 5.4.3

1.2.3' i.2-3' 1.2-3'
etc.

4. Wo can lind all the binomial coefficients of any power

wlien we know the value of n.

Tiu' numerator and denominator of the second coefficient

will contain two factors, as in [b) ; of the third, three factors,

as in {() ; and of the s'*, s factors, whatever .s may be.

In any coefficient, Die first factor in the numerator is n,

the second n — 1, etc., each factor being less by unity than the

1
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nonii-

thcro

'i-ator.

•ittcn,

Ipower

iicicnt-,

lictors,

is n,

lin the

i'4

preceding one, until wc come to the 6-'* or last, which will he

w — 6- + !•

Such a product is written,

n (n — 1) {h — 2) . , . . {n — s + 1).

The dots stand for any luimhcr of omitted factors, because

s may be any number. We have written 4 of tlie s factors, so

that s — 4 are left to be represented by the dots.

The denominator of the fraction is the product of tlie s

factors,
1-2. .3.... 5,

each factor being greater l)y 1 than the preceding one, and tlie

dots standing for any number of omitted factors, according to

the value of i\ Thus, tlie *'* coefficient in the ;<"' line will be

n {n — 1 ) (m — 2) ... . (//. — .s' + 1
)~ 1-2-3.....S'

(d)

If s is gi'eater than |w, the last factors will cancel some of

the i)receding ones, so that as 5 increases from ^i to «, the

values of the preceding coefficients will be repeated in the

reverse order. Thus, suppose n = G. Then, by cancelling

common factors,

C'5»4'3 G'5 ^ ^

1 .2 • 3 .4

5- 4- 3. 2

1 •2 3 4 5

• 5 • 4 3 2 1

1.2-3-4.5-0
= 1.

If we should add one more factor to the numerator, it

would be 0, and the whole coefficient would be 0.

The conclusion we have reached is embodied in the follow-

ing equation, which should be iterfectly nu'nu)rized :

(1 + .^•)" = 1 + 7ix -\-

11 ()i — 1)

1-2
x^ +

11 (n — l){n—2)
1-2.3

+
11 (n — l)(n — 2)0i —3)

1.2-3.4
X* + • • • • + ^".

m
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I

EXERCISES.

1. Compute from tlic formula {d) Jill tlic biuomial cocffi-

cionLs for n = (5, und from tlieui express the development of

2. Do the same thing for n = 8, and for n = 10.

112, To find the development of {a - hY, we replace x

by -, and then multiply each term by a^.
it

[Sec c(piations (1) and (2).] We thus have

(a + hY — a» + niO'-^h + ---{^^a^'-W + etc. to i».

The terms of tlie development are subject to the following

rules

:

I. Tlic exponents of b, or the second term of the hlno-

i)ii((l, ((re {), 1, 2, etc., to ii,

IJccauso h" is simply t, d" is the same as a"6".

II. T/(c s((in. of the e,vf)otients of ti (did is ii in e((ch

term. Hence the e.vf)onciits of a ((re

n, n — 1, n — 2, etc., to 0.

III. 77/ r coefficient of the first term is njiitj/, and of
the .second if, the indc.v of the jmirer. J'J((eh foHo(rii('J

corfjieient nitaj 1)e foniid from the next prccedin<^ one tjy

mnltiplying by tlic successive fdctors,

n — 1 n — 2 71 — 3—
- — , etc.

2 3

IV. Tf h or a is negntire, the sign of its odd poirers

ii'ill l)e cli((i}ged, Jnit thnt of its even poivers will rcmuin
the s((uie.

(Compare § 170.) lleiico,

{a — hY = a"' — iKC^-^h + - -v
J-

~"-l ^/n-2^2 _ ,_.tc.,

tlic terms being alternately positive and negative.
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^

E X E R C I S E S-Continued.

3. Compute all the terms of {d + bY, ii^^ing the hliiomiul

eoellick'iils.

4. Wluit is the coeilicicnt of U^ in the development of

{(( -H f'Y''

5. Wliiit are the lirst I'our terms in the development of

{•lam + '.Inf.

6. What are the first three terms in the development of

(1 4- '1 ? Wiiat are the last two terms?

7. What are the lirst three and the last three terms of

{a-j-y?

8. What is the development ?(«+)•

9. "What are the first i'our terms in the development of the

folhjwing binomials:

10. What are the sum and difference of the two develop-

ments, (1 + .r)^ and (1 — .i)'r

Case IV. Square of a J*olf/no}niaI,

173. 1. Square of any Puhjuomial. Let

a-\-h-\-c-{-il + etc.,

he any polynomial. AVe may form its square thus:

a I- h -]- r ^ (I -\- ete.

41 -\- h + c 4- d + ot^c^^

iC- + ab 4- nc -f rr^/ -f etc.

ab + ^'- 4- />' 4- /''"' + etc.

ac 4- be 4- t'* 4- cd + etc.

rt-f/ + bd -^ cd 4- ^^^ + etc.

d^ + /r 4 r- 4- d^ + etc.

+ •^*(//' 4 -lac 4 -.V/^/ + elc.

4 'ibc 4- 2^^/ 4 ete. -I- ^cd 4- etc.

'II

il
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We thus reach the followin;^ conclusion :

Theorem. The square of a polynomial is I'qual to

tli(^ siun of tlie squares of all its terms i)lus twice the

pro(lu(;t of eveiy two terms.

2. Square of an Entire Function. Smietimcs we wish to

arrange tlie polynomial aTvl its Sf]uare as au entire function of

some quantity, for example, oi x.

Let us form the square of a + hx •\- cx^ -\- dji^ + etc.

a + lx -^ cx^ + d.i^ + etc.

a -{- hx -{ cx^ + (Ix^ -\- etc.

(fi + al)X + arx"^ -f aiLc^ + etc.

abx + V\r? + hcx^ + bilc^ + cic

acx^ 4- Icx^ 4- c^jH -f etc.

(tdx^ + J//r» + etc.

«2 + -Zahx + {:iac + <5'') ./" + {'i".d + 'i^c) .^-^ + etc.

We sec that

:

The coeflicient of .r2 is f/r J^ lb 4- ca.

u it a 2-3 is ad -\- be \- ih + da.
tt u

etc.

a
x-^ is ae -f Id + €€{ dh +

etc.

ea.

The law of the products ne, bd. re. etc., is that the first

factor of each jiroduct is eoniposeil successively of all the co-

ellitionts in regular order U]) to that of the i>ower of a: to which

the coenicient l)t'longs, while the second factor is compotJed

successively of the same coeilicients in reverse order.

EXERCISES.
Form the squares of

,

I. 1 + 2.'- + •'^•'•^. 2. 1 + '^.r + ;3rJ -f 4.6-1

3. 1 + 2x + ;if« + 4.r3 4- 5./-.

4. 1 + 2x 4- ;3:/'^ + Ax^ + o:c^ -f r.j^.

5. 1 — 2x + 3.i-'^ — 4.r\ 6. u —b -\-c — d.

7. 3rt + SZ* — c + </. o 1 7 1
8. a + — J'

a b

'
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CHAPTER II.

EVOLUTION AND FRACTIONAL EXPONENTS.

174. Def. The ii*^' Root of a quantity q is such a
noDiber as, being raised to the n^^ power, will produce q.

*

When n = 2, the root is called the Square Root.

When n = 3, the root is called the Cube Root.

Examples. 3 is the 4th root of 81, because

3-3.3.3 = 34 = 81.

Ai? the Btiident ah'ciidy knows, we use tlic notation,

9i''' root of q = ^'q.

There is another way of expressing roots which we shall

now descrilje.

175. Division of Exponents. Let ns extract the square

root of rr*. We must (iud such a quantity as, being niuhipliod

bv itself, will })rodtU'C rt". It is evident that the required quan-

tity is, a^, because, by the rule for mulLipUcation (§§ GO, IGG),

a^ X a^ = «".

n
The square root of rt" will be rt-, because

n n n n

a'^ X a^ = a^ ' ^ = a^.

n

In the same way, the cube root of r<" is a^, because

II. n )i

0^ X rt'^" X (i^ = a"'.

The fullowincf theorem will now be evident:

77/eorem. The square root of a power may be ex-

presR^d by dividing its exponent by 2, tlie cube root by
diriding it by 3, and tli<i n^''^ root by dividing it by 71.

170. Fractional Exponents. Considering only the origi-

nal definition of exponents, such an expression as rt=f would

^i'l
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have no mcaninfj, hccanso wo cannot write a \\ times. But

by what lui.s just been said, we seo that d^ may be iuteri)reted

to mean the s'^uare root of «^, beeauso
.1 n „

a- X rts = a\
Tlonco,

A fnictlonal oxpoiiont indicates tli(3 oxtraction of a

root. 11' the dciioniinator is 2, a ^square rout is indi-

cated ; if 3, a cube root ; if ii, an vi"* root.

A fractional exponent lias tliereforc the same meaning as

tlio radical sign Vj nud may be useil in place of it.

E ;" E RC I S E S.

Express the folio . iiig r.-^^ s by exponents only :

I. \^m. 2. V{)n + '0- 3- '^{^^ + W'
6. \^a\

9. v'(« + ^)"'.

177. Since the even ])owers of negative quantities

are positive, it follows that an even root of a positive

quantity may be either positive or negative.

This is expressed by the doul)le sign ±.

EXERCISES.
Express the square roots and also the cube roots and the

w'* roots of the following:

I. {a \- hf. 2. [a -f h)\ 3. a + h-

4. (•'• + //)^. 5. (-i'-f//)^'- 6. {x + !i)K

lis. If the quantity of which tlu^ root is to be ex-

tracted is a ])i'oduct of sjncral factors, we extract tiu^

root of each factor, and take the product of these roots.

Example. The n'^^ root of am'^p is n^m'^p^\ because

(ahN^'p'')" =: ((m% hy §§ 108 and 17G.

If the quantity is a fraction, we extract the root of

both members.
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Proof. ©"=:

"

§§107,108.)

n , ft

IVciiusc -7 takcMi )i, times as u factor makes , , therefore,

a
by (iL'liiiilion, it is the ii'^ root of .•

EXERCISES,

ExiHvss the f-quare roots of

I , l.t . tf.

49//i

Express the cube roots of

4. 27-04. 5- 27^3,

7. aPc\l\ 8.
8r/'«

Ex})ress the n^^ roots of

9- 7. lO. 4.7.

12. - •

bnijj"'
1 3-

0««^2ra.

,jm.il,.n^-2

IS- -. •

«'«« ^//l

6. G4.27<<^<^''.

II. 4.7.10.

14
Ga^^

m
c"Hln

16. 35« a-^« (f« 4- ^')^" (.^' — yY 4" (i — c -f-
</)-*«.

Reduce to exponential cxiiressions:

17. \a\b'^rf\ 18. ^a¥^.

19. ^/'iO^b^.
11 / ^<

20.

((< — by

Powers of Expressions with Fractional Expo-
nents.

171). TItOorem. Thc^ 7/'' power of the id'^ root is

equal to the n*''' root of the p^'^ power.

m
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Ill algebraic langua^'O,

or W'T = {u'^)K

Example. (^ysf = '^2 = 4,

\/H'i = ^/i'A = 4;

or, ill words, llio s(juarc of the cul)c root of 8 (tliat is, the

B(jtiaro of 2) is the cuhu root of the S(iiuire of S (tiuit is, of O-l).

Cicnerul J'roof. Lot us i)ut x = tiic n^^ root of ^/, so that

x'^ = a. (1)

The ;/* power of lliis root x will then bo xP. (:2)

liaising loth sides of the C([Uation (1) to tlie ^A power, we

have
x"P = aP = pff^ jwwcr of a.

The ;/'* root of the first member is found by dividing the

exponent by )i, which gives

?i'^* root of 7>''' power = xP,

the same expression (2) just found for the ;/* power of the

?i'* root.

This tlioorem leads to the following conclusion:

1. TIk; exi)resyion p

a"
1

may ni(\an indiffiM-oiitly the p^'^ i)owor of a", or the nih

root o{' (fP, those (Quantities bciii.ii; identinil.

2. Tiu' i)Owors of expressions liavinii; fractional ex-

ponents may be formed by multiidying the ex^HJuents

by the index of the power.

EXERCISES,

]'!xprcss the squares, the cubes, and the n^^ powers of tho

following expressions

:

I. uK

4. aK

I

;. abK

3. a\

6. ab^ c-'.
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ni tn

7. (I'/rK 8. (I'iO /'.

tn

9. {a 4- />)" (^/. — /y)-». 10. ^/ "Z*".

I . I

II. (('*//'. 12.
(.'• + If)"

{x-y) ^

lic'diic'o to simple iirodiictti and friictions:

.t;"y '7 . 14. (<i^b^c ")'.

15. (^r7/')
'''.

16. \a ") 'I.

17
^ e :)

• 18.

*»

/ith

t'llts

Uio

CHAPTER III.

REDUCTION OF IRRATIONAL EXPRESSIONS.

I)i'fiiiiti(>iis(.

ISO. Bif. A Rational Expression is rmo in wliicli

tbo t^ymbols urc only nddcd, snbtiafted, nuilti|>lit'd, or

divided.

All the opcriitions we have liithortn consldiTed, except the extraction

of rodts, have Km! to nitional exl)re^!siollH.

Dif, An expression wliiidi involves the extraction

of a root is called Irrational.

Example. Irnitional expressions arc

or, iii the lunguii^^e urex[)oiietits,

In order that expressions may be really irrational.

\i
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tlicy must 1)0 Irreducible, tliat is, iucjipablc of being

cxprrsscd without the nidiciil sign.

KxAMi'Li:. Tlio expressions

jirc not iiropcrly in;itinn:il, liccaiisi- tlu-y are equal to n y b

and (i respertivelv, wliicli are rational.

7V/'. A Surd is the root which enters into an
irralional e\])ression.

ExAMi'Li:. The expression a + h's/x is irrational, and the

surd is Vr.

Ih'f. IiTational terms are Similar wlien tliey con-

tain tJ!'* same surds.

Kx.\mi'1-j:s. The terms \/'M\ 7\/;J0, (.,• + //) \/;U), are

t^iniiiar, beeuusu Lhe (pumtit)' under the riulicul .<iyu is oO in

each.

The terms {^a + h) Vx -f ^, 3\/a; + y, mVx + y arc

similar.

AsrgTojfMtioii of S'Miilar Terms.

181. Trratioiud terms may he a'r;j:reguted by the rules of

§§ o4-r)0, the surds being treated as if they were single sym-

bols. Hence:

IJVirn, similar iiTdHonnl frrins nra cnnncctrd hy fliG

sij^tis -\- or —, tJic corfJiricittH of thr. sii)iil((r sitrds indij

l)C (tddi'il, (Hid lhe surd Hsrlf affixed to their sum.

ExA.Mi'Li;. The sum

« V(.'' -f //) - /V(.'' + //) + oV{.r + y)

may be transformed into {a — h -{ W) ^/{x -\- y).

EXERCISES.
Reduce the following expressions to the smallest number

of terms:
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an

are

2. {W{x ^ y) + ay/{x - ^) + -^ (« + h) \/{x -f //)

-.*i(« -\-b)^{x-}i).

4. (" + <''') V-^ + {(t — 1>) V^h
5. \U {a — b) + {/j — (•) V^ 4- (c — a) Vx,

6. «\/^- — \^x 4- '^rt \/.<; — (r« 4- ^) \/.«^.

7. ' Va; — a\/^ + GVu- — fV^ + ., V^'
4 J

„ a -{• / „ / n \- h / /
8. —

,
- \x — Gcv-f — -

..
- yx + \x.

9. V^ — V^ + ('« — b) V -i' + — -., V.^'.

/ , / / n(rr — /;) / 1 /

10. Vrt — h\a— yx -\—^~—.— ya — ., ya.

11. Wx^yx -^ -^—-' yx,

1 2. 4 V^ — \/ /' + (r/ — b) Vx.
o

Factoring: Surds.

J83. Irrationiil expressions niiiv sometimes he t ran ^^formed

so as to have diirereiit ex])ressions lUKk'r the radical sign, hy

the inelhod of g liS, aiti)lyiiig tlie foUowiiiL? theorem:

Theorem. A root of the product of several factors

is equal to the ])ro(luct of their roots.

In the langiu^cfe of Algehra,

y^dbcd, etc. = y^a Vb \/c y d, etc.

= fO'h" Ad'\ etc.

Proof. By raising tlie memhers of tliis equation to tlie

n^^ power, we shall get the same result, namely,

a X b X c X d, etc.

Example, a/30 = \/o Vs.
11
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EXiZRCISES

Prove tlie following c'f|Uutioii.s by conipnting both sides:

Vroof. V-i V49 := 2-7 = 14, and VlOG - 14.

Vi Vi) — V;)n.

a/4 V-'y == \/4-25.

a/-'5 V'jO = V^^o-aO.

Express with a single surd the products:

I. ^/{a-\-h)v\a — b).

bOLUTiox. V{a + I) V{a — h) = V{it + b) {a

= Via-' - b').

2. VT Va. 3

4. V^/ a/('^ + >j). 5

6: V(r + 1) \/(.'- - 1).

7. V(/' + 1) V(.r+ 1) V(.f

8. [{a + b)U" — b)y\\

9. Ui-2+i)^^_^.i)^.(.,_i)?,f.

"^)

v'7 Va.

Va Vb V{(t + b).

1).

1S;{. If wo can S('i)anito tl'o quantity nndcr the

radical si<2:u into two factors, one of which is a perfect

square, we may extract its root and affix the suid root

of the remaining factor to it.

EXAMPLES.

'vA/Vy = Vtr- Vb — nVb.

Vffb V'f' = Vc'br = aVbr.

V\-i V('> - V'rl = a/:3<; V'i = oV^.

V{-^((^ + Srt^Zi — HUt^) = V-iff^ifT+Jb^-lac)

:= '^nVi'f + 'ib — ^ar).

lik

ro(j

bii

'

re;
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Icsi

EXERCISES.
Reduce, svlieii i)ossil)le :

tlie

ri(!ct

root

I.

3-

5-

7-

9-

II.

13-

a/8.

\/l*-'8.

\/'/<^ V'^v( V^bc.

a/4 a/7^.

a/1T5.

2. a/3-2.

4. V :{ V-7.

6. a/;> A/:;i.

8. A/(r + 1) \^{x + 1).

10. Vl •"><>.

12. V^6-^((< + ^).V 108.

A/(»:-.f + Srt^'.r + b\c).

Hero the luantity luuler the radical sign is equal to

{(( + 'idb + l)^)x r= (a + fc)- .r.

In quostionsof this class, the iM-ginncr is apt todivido an expression

like y/n + 6 + c into y/a -\- '\/b + 'sjc, which is wrong. Tin- Hiiuuro

root of the sum of several (luantities cannot be reduced in this way.

14. a/«-'// 4- 4f?// 4- -1//. 15. 's/^mh -f '6mz -\- \z,

Ift'duco and add tliu following surds:

16. 'lA/-i-0A/H4-10\/3.'->. 17. \/l-2 4- \/'-2r + a/75.

18. ^fXa — 'Xy/u. 19. l-^.j^ — 4')'' — 80^.

20. -\/8l-vli)^. 21. (rt^Z^)» 4- (r(V')i.

3Iii1(ii>li('ati<>ii of Irrational Expressions.

18 1-. Irrational polynomials may Ik- mnltiplii'd by com-

biniiii^ tlio for' going j)riiK'ip1t\s with the rule of § 18.

The following are the forms :

To multii)ly a 4- h\/x by m 4- n\' if.

(I {»i 4- iiVj/) = <nii X (tw^
If.

hVx{m 4- ws/u) =z hmVx 4- hnV.11/.

The produeL i.s uin 4- an\^
ij 4- bniy/x -\- bu\' xij.

EXERCISES.
Perform (he f(dlowing mnltiidieation.s and reduce liio

results to the simplest lorm (compart' i^ S(i):

I. (3 4- 3A/r)) (.•> - 3V^>). 2. (;4-3\/3-.0 (0 - 'o's/'X).

!*;
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3. {a + ^/b) {a — Vl>). 4- (V^+ VA + V<- + Vdf.

7. 0« + «"-0'. 8. (^ri -«'•)*•

9. [« + ^'V(^- + 2/)][r?-i\/'(.c + y)].

10. [//t -I- ?i\/(rt -I- /;)] [/// — ny/{a — />)].

11. [x + a/(.':2 - 1)J [x - ^/{x^ - 1)].

12. [(^J4-])i4-/,J[(ia + l)i_Z,].

Expressions may often be transformed and factored by

coni!)ining tl»e foregoing processes.

Example. To factor nx^ + hx^ + cx^ 4- dx^, we notice

*^^'^^
a;5 = a:ii:3, 2-5 = x-^x% etc.

so tliat the expression may be written,

(U^x-=> + bx:'x^ -\- cxx^ 4- dx-^ = {((x^ + hx^ + ct -f </) x^,

EXERCISES.

lieduce tlio following expressions to prodncts:

13. 2 + a/2.

15. {a + f>)l

17. X — 1/ — Vx

14.

16.

:}- 4-2.;3i.

V// 4- <if — bif.

Ivedncc to the lowest terms

:

2 ^/a A-~b— . 10.

y2

a

1 8. 19.
a + b

21.

rA

a; 4- Vrt — «

.r — \^a — X'

20.

22.

ax^ 4- i^^

a -{- b '

1S.">. Riifionalizhifj Fracfio)h9. The quoti(>iit of

two surds iiiav be c'X])r<'ss('(l jisa fnictioii with ai'.'itioiial

imuK'nitor <»i' ji rational (Iciioniiiiator, hy imiltiplyiiig

both tonus by the X)i'op('r iiiulti])lit'r.

ExAMTLE. Consider the fraction

v?



\\

IRRA TIONA L EXPRESSTOKS. 165

^Multiplying l)oth terms by y/'H, the fraction becomes

—~, uml lias the rational denominator 7.

'A

^Fultiplving bv ^J'o, it becomes '
, and has the rational

numerator 5. ^ '^'^

The iiuniorator or denominator may also he made
rational when tliev both consist of two terms, one or

both of which are irrational.

Let us have a fraction of the form

A + D\/B

in which the letters A, D, /', (>, and I! stand for any algebraic

or numerical expressions whatever. If we multiply both nu-

merator and denominator by J* — QV-lh the denominator

will become

The numerator will become

AP + PDVB - A qVu - dqVbr.

so that the value of the fraction is

A r -f- /yV />' - A qVr - DQV/in
pi -QUI

EXERCISES.

Ikcilucc tiu' ."jllowing fractious to others having rat iotud

denominators:

I.

ft -\- VI

Vb

2. -:

5-

8.

<i

2\/l8^

n — \/x

a -f Vx

3-

6.

V-r + Vy
Vx — Vtj
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lo.

a -f \\x + y)

a-

II,

13.

15-

Vs — V3

\/x + a + Va' — a

"s/x '\- a — Vx' — If'

Perfect S(iiiJiros.

1S(». Dcf. A Perfect Square is an expression of

which tiic s(iiiar(» root can be fornuMl without any surds,

oxci'i)t such as are already found in the expression.

ExAMPLKS. 4wrS 4r<2 -f \a -\- 1 are peneci S((Uju'o.s, bo-

caiiso llu'ir sciuiire roots are 'im\ 'Za -\- 1, exprcsisious without

the ni(li(!ul sign.

Tho expivsision a + "l^/ub \- b, of wlilch tlic root is

V^' 4- V/^

may also ho r('<,'ar(U'(l as :i perfect .<(puire, Ix'causc tlio surds

^/a 4- \^b arc in the prothict 'l^/ab.

Cnterion of a Perfect Square. 'V\\v (|iiestion wlietl^'^r a

trinomial is a pt'i'fcct s(juare can ahvays be decidetl ])y ci'iiipar-

iiig it witii tiie forms ol' j? 80, namely

:

«a 4. ^Zab + U^ = {a + by,

Ot «2 _ >y,,i, 4- ^2 — (rt _ b)\

Wc see that to be a peii'ect squa;-r •• trinomial must fulfil

the following conditions:

^.) Two of its three U^rms nuist be ])erfect scpiares.

^ (2.) The reniaiuing- term must be (Hpuil to twice the

produ<*t of tlie sijnare roots of the other two terms.

WIk'II these conditicms are fulfilled, the scpiare root

of thr trinomial will 1k' the sum or dilFerence of the

S(piafe root^ of the terms, according- as the i)roduct is

])ositiv'c or negative.

T\w root may have either sign, because the scpuires of posi-

tive ai*»l "K'g.itive (puuitities have the same sign.

the
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npur-

fuini

•the

root

>r tlio

net is

f |insi-

If liie torma which are perfect squares arc hofh iKgative,

iiic trinomial will he the iK\i,'ativt' of a perfect S([!iure.

EXAMl^LCS.

^/Ti^+llub -f l'~ — a + b «)r — {<i -f b).

^/ifi — 'Zab -{ 0^ — a — b uv b — a.

_ ci^ + '^ab — Ui=^—{a-bf-— {b

EXERCISES.

ay.

Find "which of the follo\viii<jr exiircssions arc perfect squares,

and extract their s(piarc roots:

I. i) + 12 + 4.

3-

5-

7-

9-

1 1.

15.

Ax* -f- ^-^^ + ,

•

•t

4«2«
-I- V2a"b" 4- 0//^«.

•±

7)1 + 2tn^n^ -I- ??.

rt + 4r/i/>i + 4i.

2. a- 4- 4a: + 4.

4. r<2 -f f/^ — ^2^

6. a^ 4- ^^//y — /A

8. rt2^ — 2^/^»tv/ + c^(P.

10. rt'^ — 2r/.r -f ?/2.

12. rr — 2 + cr*.

14. ('>I:>n''" + //- 4- ^m^".

VXi-Y + 'J^^ — '^'Irijz. 16. 9m8'» — 2/y«^'V^(/ + — •

To Coiiiploto tlio Square.

187. If one tcnn of a hinoniial is a perfect sqnaro,

such a t<'i-iii can always Ix^ added to the hinoniial that

the trintunial thns formed -^liall ho a pcTfect square.

'J'his operation is caUed Completing the Square.

Proof. Call a the root of the term which Ik a perfect

.«(|iiare, which term we su])posr> the //rs7. and call in the other

term, .so that the given hinomial shall I>o

a' + )n.

)n-
Add to this hinomial the trrm . ,, and it will become

•la-

«2 4- "' +
7ir

4a^
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\i\

|i';

I It

Tlii.s is a perfect .S(iuare, luimcly, the square of

fi +
in

^

'4a

that is. a- + m -f = {' ^ £/
Hence tlie follow injj

Rule. ,'/(hI to the hinnmiul the Sffunre of the second

term divided by four times the first term.

Example. Wiiat term must be added to the expression

7^^\ax (1)

to mal<c it a perfect square ?

The rule gives for the term to be added,

Tlicrcfore the required i)erfect s-joare is

x^ — \ax + 4rt-' = {x — 2«)2

We may now transpose ^*fi, so that the left-hand member
of the equation shall be the original binomial (1). Thus,

x^ — \ax =. {x — 2rt)' — 4«2.

The ciii^inal ])in()iniiil is now exj .vssed as the difTercncc of

two scinares. Therefore, the aTK»ve process is a solution of the

problem • lltirim) a binomial of irhich one term is a perfect

square, to express it a« a difference of tteo squares.

EXERCISES.
Express the following binomials as differences of two

squ.ires:

I. x^ 4- '^'U'

3. X^ -t~ (iflf.f.

5. i.X^ + ±/-v.

7. li\xi ~\~ ^'iinx.

9. ^r.c^ + %ih:.

II. m^x^ -i~ L

<3. ^'^,+ 1.

2. .r* -i- ix}/.

4. 4x^ -f 4.ry.

6. Ojt* + ax.

8. JT* + 4.r.

10. Irx^ f 2.

I ::. iV/V -f bx.

•4. aJ:^-«'A
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(1)

IOC of

)i' the

nfcd

two

.

Irratioiiiil Factors.

18S. Wlien we introduce! surilri, many expressions ran ho

factored wliicli have no rational factors. The following

iheurem nia}' be ai>i)lied for this i)urpo.sc

:

Tli(' difFc of t\V( qnantitios is

equal to the piHjduct of sum and difleieuce of their

square roots.

In the language of algebra, if a and b be the quantities, wo

shall have

a-h = (rti_i?5)(ai + hV),

which can be proved b}^ multiplying and by § 80, (3).

Factor
EXERCISES.

I. m — n.

3-

5-

7-

9-

am — bn.

x^ — m.

(.r — aY — V {m — n).

2. m — 1.

4. ^ahn — 9.

6. x^ — (m + w).

8. a;2 — (ni — w).

(a + bf — (4/ — (j). I o. a;2+ ±cy -\-f— {711 -\-)t)K

Find the irrational square roots of the following expressions

by The principles of § 18G :

II. rt — 2 + a-K Alls, a^ — a~^.

12. X — 'i^xy + y. 13- 4 + i \/3 + 3.

14- 9 _l_ 5 _ oVd. 15. 4rt i- /> — 4«U2.

16. + ^^+ 2 (a + <5')-i ;c4-ic2. 17- 3 -f 2\/l5 4- 5.

18. 3 + 5 — 2VI0. 19. 4"^4
^

2 •

20. a — 2\/a -f 1. 21. rt — 2a« + at.

22.
, 1

a -f 2a5 H- nr- ^Z-
7 ai

rt» — rt -1- --.
4

24-
« + « + «.

4 ^ 3 ^ 9
»5-

KJ ^ 4 ^ 4

26. ^r^ -f 2 -f ^r=.
J

27. 4^ _ 8 + ^x-\

2S.
a

4

+ b
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TIONAL OPERATIONS,

CHAPTER I.

EQUATIONS WITH TWO TERMS ONLY.

180. In the present chapter wc consider ('(pialions wliieli

contain only a sinule j)o\ver or root of the unknown (pianlity.

Such an equation, wlien reilucucl to the normal form, will

be of the form
^.<» + /? = 0.

By transposing B, dividing by A, Jind putting

a = B
A'

the equation may be written,

a;» — a — 0.

or x^ =1 a, (1)

Here n maybe an intcpjer, or it may represent some fraction.

Such an c([uation is called a Binomial Equation, because

the exi)ression u." — a is a binomial.

Solution of a Binoiuiiil Equation.

190. 1. WJien tlic vxpouoif of x is a whole nnmhcr. If we

extract tiie ;/'' root of botli members of the ctiuation (I), ihcso

roots will, by Axiom V, still be eijual. The w'** root of .c" being

Xf and that of a being a", we have

and the equation is solved.

X = a^,

I
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1.

2. When the exponent is fractional. Let the cf|Uiitiou be

M
j^ = a.

\{X\A\\'^ Itolli nu'iiiliers to the w'* power, we luivo

Extracting the wi^'* root,

n

X = a»K

If tljo niimcriitor of the c.\])ouent is unity, we only have to

sui)pose ni = 1, which will give

X = rt».

II(>nro the hiiioniial O(|n;ition always admits of solution hy

forming powers, extracting routs, or hotli.

(1)

I

Special Forms oi' liiiioinial E<iiiati(>iis.

A/. AVIion tlio exponent n is an iiitonci-, Die equa-

tion is called a Pure Equation of the (1( uree Ji.

\Vlion vi = 2, the eciuation is a Pure Quadratic

Equation.

When n = 3, the equation is a Pure Cubic Equa-
tion.

EXERCISES.

rind the values of .r in the following equations:

P
I. ^ = q.

2.
(f_±_b
" r c.

X

9 x^
4. =: -.

6.
.r^ — n(f

V* — a

x^ 1f^

vrl- b

8. ^ = ..

3-

5-

7.

9-

Ana. X = -
.

.•

2^

a

-A - b

~
X^' — a

X — 'ia _ 2.r~ h— t

X — a ~ X — b

a i- b
V

X<i
\

in —

—

a — b

_ hV->' + ff'^ a

a + b \/x—7i
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In tho last examj»lo, clt'nring the ociuation of fractions, wo shall have

^¥^^ti* - b' - a\

iff (X' - a*}^ = i' - a\

Wo W|unro both HidcH of thin L-quation, which gives another in whieh

I* only appearH.

lo. (,(• — ^/)' =: />'. II. (.t'J — rt=)5 = mx.

12. (V^' — V^)-' = HU*.

Posiilvo and Xojjrttlve Roots.

101. Since tho sfpiiiro root of a <|Uiiiility uiiiy l>o oitlior

positive or nugulive, it follows that when we iiuvo an t'<iuation

BiK'h a.s

ar-' = a,

and extract the Sfjuarc root, we may have citlicr

rr = -f rts,

m X — — a^.

IToncp there are two roots to every such cruiation. flio one

positive and tiie other negative. We e.\pre;^s this pair of routs

by writing

X = ± «^,

tlio expression ± a^ meaning eitlier + a^ or — n^.

It niifi;lit sc'cni that since the square root of x- ia either + J* or —x, wo
should write

± a; = ± a*,

having the four equations, x — <t\

X = — a*,

— X = + «*,

— X = — a^.

But the first and fourth of these equations pive identical values of .r

by simply changing the sign, and so do the second and third.

PROBLEMS LEADING TO PURE EQUATIONS.

T, Find (liroo tiunilior?, sucli that tlie second sliall ho

double llie first, the tliird one-third the secuud, and the .sum

of their scjuares 11)0.

2. Tlie sum of the Sfpinrcs of two numbers is .'ino, and the

difference of their scpiares 81. What are tlie numbers?

8 11
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fe)

no

3. A ]ol of land rojitaiiis 1(14.") sfjuaro foct, and ifs Icn^rth

oxpimmI- its hreadlh by U IVct. W liaL aiv tlic Icii^'tli and
bivadlh?

'I'd hdIvc tliirt ('(iiintion ns a !»inoniinl, tnke tlio nx-nn nf the li-n^'tli

nnil lirt'iiiltli iistlic iinkiiown (|uaiitity, !<(i thut thu Icii^tii hIiuU b«* ii.s luucli

grt'iili T tlmn tin* iiicim uh tlic lirnultli irt Icsa.

4. Find :i mnnborsucli that ifO ho added to and subtracted

from it, the product of the .sum and tlilTcrencc .sluill be 1T'>.

5. Find a number such that if rj be addc*! to it afid sub-

tracted from it the product of tlic .sum and dilTerenie aliall bo

'^a + 1.

6. One numl)er i.s double anothrr, and the dilTerencc of

tlieir .s<|uares is Wri. What are the numbers ?

7. One number is 8 times an<)ther, and tlie sum of their

culie roots is J*^*. W bat are the nund^ers 'f

8. Find two numbers of ubieh «»ne is .T times the other,

and the s(|uure root of their bum, muinpbed by the lesser, is

e<iual to I'-iS.

9. Wbat two numbers arc to each other as 3 : 3, and the

sum of their s(juarcs = '^^2')?

NoTK. If we represent ona of the numbers by 2t, tlie othiT will be 3.r.

10. What two numlu'rs are to each other as 711 : ;/, anil

the .^i|iiare of \\\v\v dilTerencc equal to their sum ?

11. W hat two numliers are to each other as 1) to 7. and tho

cube root of their dilTerencc multiplied by the i;<piarc root of

their sum e<|ual to 1(5 ?

12. Find X and 1/ from the equations

af' -f- ////2 = r,

(I .i- -\- y- = c.

13. The hy])ot]ienuse of a rifj^ht-aiifrled trianirle is 20 feet

in len^'lh, and the .-um of the sides is :Jl feet. Find each side.

NoTK. It is shown in (Jconu'try thut the S4|unrv of the hypotheniiHO

of n liirlit-an^U'il trianj.rle is e(|UHl to the Huni of tlie wiuares of the other

two sides. In tlif ])rrsriit prublriii, take for thf unknown i|uaiitlty tho

aiuoiint l»y which eai-h unknown side ditl'tTS from half their sum.

14. Two ])(>iiits start out tou't'ther from the vertex of a
rlLdit allude alnnsi; its respective side-;, the one moving,' )n feet

per second and the olher// iril per second. lliiwIolii( will

they re(|uire to l)e c leel apart?

15. By the law of Jailing' bodies, the distance f.illen i'J pro-

])ortioiial to tbc S((U,iri' of the time, and a bndv falls Hi i'tct

the lirsL jsecund. llow long will it rcipiire to fall h feel*:'
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CHAPTER II.

QUADRATIC EQUATION S.

192. Def. A Quadratic Equation is one which,

when reduced to the normal form, contains the second

and no higher power of the unknown quantity.

A quadratic eciiiation is the same as an equation of tlie second degree.

Def. A Pure quadratic equation is one wliich con-

tains the second power only of the unknown quantity.

The treatment of a pure ([uadratic equation is given in the preceding

chapter.

Def. A Complete quadratic equation is one which

contains both the lirst and second powers of the un-

known quantity.

The normiil form of a complete quadratic equation is

ax^ -\- bx + c = Q. (1)

If we divide this equation by a, we obtaia

x^j^^-x-\-- = 0. (2)
a a ^

Putting, for brevity, - = p,

'•ii

the equation will be written in the form,

0^2 ^ px + q = 0. (3)

Def. The equation

a?' + px -{- q —
is called the General Equation of the Second Degree,

or the General Quadratic Equation, because it is the

form to which all such equations can be reduced.
f
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(3)
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Solution of Ji Complete Qujidratic Eqiuition.

1(),*5. A quadrdt'iG eqnatinii is solved hi/ adding' such

a (iitanUty to its tico menibers tJiat the inenihrr con tain

-

in(^ the unlcnowii qaantity shall he a perfect s(/uare.

(fl87.) *

We first transpose q in the general e»|uation, obtaining

x^ + px = — q.

rfi

We then add ^ to botli members, making

The first member of tlie c(iuation is now a perfect square.

Extracting the square roots of both sides, Ave have

x-\-\
P _ 'P'

2
-q.

From tliis equation we obtain a value of x wliich may be

put in either of the several forms.

X
a ^ V 4

p ,
Vp^ — ^q

X .A-p±Vp'-4:q)'

If instead of substituting 7) and q, we treat the equation in

the form (2) precisely as we have treated it in the form (o), wo

sliall obtain the several results.

, b 1 IP 1 Ir
x' + -' X + ,

= .,

(t -i (( 4 ^/ a

and 1 , //i: r\^--
^za ^ V Urt^ a)

— — ^ ± \/( /y^ — 4fl!c)
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J

?'

1

is

194. The equation in the normiil form, (1), may also be

solved by tlie following process, which is sometimes more con-

venient. Transposing c, tnd multiplying the equation by a,

we obtain the result

d^x^ 4- aT)x =: — ac.

To make the first member a perfect square, we add j- to

each member, giving

a^x^ + ahx + - = -— ac.
4 4

Extracting the square root of both sides, we have

ax-\-^ = ^ V{i>^ — 4:ac),

from which we obtain the same value of x as befo.e.

195, Since the square root in the expression for x may be

either positive or negative, there will be two roots to every

quadratic equation, the one formed from the positive and the

oilier from the negative surds. If we distinguish these roots

with u^ and x.^, their values will be

- — ^ + Vjh'* — 4^c)

'

!*
} (4)

x^ =

%Va

2a

We can always find the roots of a given quadratic equation by sub-

stituting the ooofRcients in the preceding expression for x. But the stu-

dent is advised to solve each sei)arate eijuation by the process just given,

which is embodied in the following rule

;

I. Reduce the equation to its normal or its general

form, as may he most convenient.

II. Transpose the terms which do not contain x to the

second member.
III. // the coefficient of x" is luiity, add one-fourth

the square of the coefficient of x to both members of the

equation and extract the square root,

IV. If the coefficient of x''^ is not unity, either divide

Jjy it so as to reduce it to unity, or multiply all the terms
%
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to

(4)

L

1)7/ such a factor that it shall hrrnme a perfect square,
and cuDiplete the square hy the ride of § 18T.

Solve the equation

EXAMPLE.

x — l = 2x.
x~-Z{)

Clearing of fractions and transposing, we find the equation to become

2xi — 4:lx +1 = 0,

„ _ 41^ ^ _ 1

2 ~ 2'

Adding \ the square of the coefficient of .v to each side, we have

41 1081 1081 1 1073

^'-T^ + T(r

and

10 2
'

Extracting the square root and reducing, wo find the values of x to bo

:r/=^(41 + ViGTS),

x^ = ^(41_^/lo:3).

Ufiing the other method, in order to avoid fractions, we multiply the
equation (5) by 2, making the equation,

4a;2 — 82:e = - 5.

41' IGSl
Adding — — —.- to each side of the equation, we have

4;c2 — 83:c +
41' !081 1073

Extracting the square root,

2x

whence we find

41 _ /ior3 _ ViCnS
li

-^ V 4:
~ ~~^r~''

41 + \/ior3
X =

the same result as before,

EXERCISES.
Reduce and solve the following equations

X -f 2 X — 2
I.

T)

x — 2 x-\-2 q'

13

.?/ + 4 .y -^4 _ 10
^'

y _ 4 + ^ -M ~ y

'
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3-
13 4

x — i'^x — -Z~'6

4-
yi _ '>ay + a^ — i' = 0.

5-

1 111
a -\- h -{- X ~ a b x

r.
(fi

,

h h

x^ — a* X -\- a X — a
- 0.

1 +
X jr a

X — a

X — a
= 3.

8.

9-

lO.

1 —
X + a

__3 ?/ _

?/ + a y — a

+ = 4.
'2 - y

1 L_+_i_.
//
— rt y ]r a y — a y^ — d^ y — a

X X

a -\- X a — X
+ 3 0.

PROBLEMS.
1. Find two numbers such that their difference shall bo

G and their product 507.

2. Tlie difference of two numbers is 6, and the difference

of their cubes is 93(5. What arc the numbers ?

3. Divide the number 34 into two such jiarts that the

sum of their squares shall be double their product?

4. The sum of two numbers is (!0, and the sum of their

squares 1872. What are the numbers ?

5. Find three numbers such that the second shall be 5

jjrcater tlian the lirst, the third double the second, and tiie

sum of their squares 12'25.

6. Find four nundiers such that each shall be 4 greater

than the one next smaller, and the product of the two lesser

ones added to the product 01 the two greater sludl be 312.
\

7. A shoe dealer bought a box of boots for 8210. If there

had been 5 jiair of l)oots less in tlie 1)0X, they would have cost

him 81 per ])air more, if he had still paid $210 for the whole.

How many pair of boots were in the 1)0x1:'

Ukm. If wf ciill £ the number of pairs, the price paid for each pair
210

must have been -— •

X

P

4



qUADRAriG EQUATIONS. 170

>

8. A linckstcr Imufrht a cortuin mimbor of chickens for

), and a number of turkeys for -^ 15.75. There were -i more
chickens than turkeys, l)ut they each cost him 35 cents a piece

less, llow many of each did he buy?

g. A farmer sold a certain number of sheep for f^-lO. If

he liad sold a number of slieep li greater for tlie same sum, he
would have received ^-i a piece less. How many sheep did he
sell ?

10. A party having dined together at a hotel, found the

bill to be 80.00. Two of the number having left before pay-
ing, each of the remainder iiad to j)iiy 'ZA^ cents more to make
lip the loss. Wiiat was the number of the party?

11. A pcdler bought $10 worth of apples. 30 of them
proved to be rotten, but he sold the renuiinder at an advance
of 2 cents each, and made a profit of 83.20. Ilow many did
he buy ?

12. In a certain number of hours a man traveled 48 miles
;

if he had traveled oir' mile more ])erhour, it would have taken
him 4: hours less to ])erform his journey ; how many miles did
he travel per hour ?

13. The jierimeter of a rectangular field is IGO metres, and
its ;irea is

breadth ?

1575 s(piare me ires. What are its length and

14. The length of a lot of land exceeds its breadth by
a feet, and it contains m^ square feet. What are its dimen-
sions?

15. A stage leaves town A for town B, driving 8 miles an
hour. Three hours afterward a stage leaves B for A at such a

sj)ced as to reach A in 18 hours. They meet when the second
has driven as many hours as it drives miles per hour. What
is the distance between A and B ?

Note. The solution is very i^^^imple when the proper quantity is taken

as unknown.

Equations which may ho Rotlueed to Quad-
ratics.

li>(>. Whenever an eqnation contains only two

powers of the unknown (jnantity, and the index of one

power is double that of the other, the equation can he

solved as a cxuadiatic.

- w
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Special Example. Let us take the equation

a^ -\- bjp + c = 0.

1

4"

(1)

Transposing c and adding ^i' to each side of the equation,

it becomes

The first member of this equation is a perfect square,

namely, the square of r' + - ^. Extracting the square roots

of bo til members, we have

a^

Hence,

Extracting the cube root, ^ye have

X = ^J-b±V{b'^-4c)]K

General Form. We now generalize this solution in the

following way. Suppose we can reduce an equation to tlie

ibrm
ax^^ + bx-^ + c = 0,

in which the exponent n may be any quantity whatever, entire

or fractional. By dividing by a, transposing, and adding

1 Z»2

-7 -, to both sides of the equation, we find
4a^ ^

1*2 1 ^3

a -ia^ 4fH a

The first side of this equation is the square of

lb
x"" + ^a

Hence, by extracting the square root, and reducing as in

the general equation, we find

x^

f

t

f

»

i
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(1)

ff

Extnacting the m'* root of both sides, wc liavo

'.—\ I

'{-

If the exponent ti is a fraction, tiie sumo course may bo

followed.

Suppose, for example,

ax^ 4- bx^^ + c = 0.

Dividing by a and transi)osing, wc have

4 b 2

x« 4- x^ =
a

c
— •

a

1?
Adding . „ to botn sides,

4 5 2 , Z/2 ^2 c

The left-hand member of this eqnation is the square of

Extracting the square root of both members,

whence.

M

liaising both sides of this equation to the J power, wc have

['-h± (/y2 - Aw)l'
X = L 'Za

EXERCISES.
1. Find a number whicb, added to twice its square root,

will make 99.

2. What number will leave a remainder cf 99 when twice

its square root is subtracted from it.

IJ

«!
-^

f I

a ,1

m
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3. Onc-nftli of !i certain nuinljcr oxcecils its sqnaro root

l)y ;}(>. What, is tlic niniilKT?

4. \\'\\\i\ number added to its square root nuikes 'MM\ ?

5. If I'roin 3 times a certain iinml)er wo subtract 10 times

its s(iuaro root and 00 more, and divide the remainder by the

number, tlie (|Uotient will be "Z. What is tlie number?

Solve the e([uations:

6. 3i/'-^//« = 15.

8. 5^-^ — ^'i = 13.

7. dif - 7^2 = ro.

m m

11)7. When the unknown (juantity appears in the form

^^ \-
J)

the S(piare may be completed by sim^dy adding Z to
^

. 1 .

this expression, because a;' + 3 H—^ ^^ '^ perfect sfpuire,

1
'*'

namely, the scjuare of x -\- -• The value of x may then bo

deduceil from it by solving another quadratic equation.

EXAMI'LE. 3a;2 + --, = 22.
x^

We first divide by 3 and add 2 to cacli side of the equation,

obtaining 1 03 ^8
^^ + ^ + :^^

= ir + ^ = y
Extracting the square root of both sides,

1 2V7 2\/21 3 .,,

By multiplying by x, this equation becomes a quadratic,

and can be solved in the usual way.

Let us now take this equation in the more general form.

1
X -{- - = r,

X
{«)

2
which reduces to the foregoing by putting c = \/21. Clear-

ing of fractions and transposing,

x^ — c.r 4- 1 = ;

)

ri

M

I
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which being solved in thc^ usuiii way, gives

__ c ± \/ {c^ — 4)

183

X

The two roots arc therefore

^1 -
jj

,

—
, ^ — ~ " —

•

If* in the first of these e(inalions we riitioiializc the niimor-

iitor by multiplying it by e — V{e^ — 4) (§ 185), we ahull lintl

.r, =

it to red nee to

e- V(t'=^-4)
that is, to - Therefore,

X

a:^ = - iilentiralhj.

Vice verm, x^ is identically the samo as --•

This must be the case whenever we solve an equation of the

form (a), that is, one in w^hieh the value of x + is given.

50
Let us suppose first that e = '

-, so that the equatiun is

1 50
X + - = - .

X 7

It is evident that x = 7 is a root of this equation, because

Avhen Ave put 7 for .r, the left-hand member becomes 7 + -,

50 1
wliic'h is equal to y If we put ^ for x, the left-hand mem-

ber will become

7 ^ 1 ~ 7 ^ ^*

Hence x and exchange values by i)utting ^ instead of 7,X /

so that their sum x + remahis unaltered by the change.

I

J,.
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The gcncrul result imiy bo expressed thus:

Ueettuso tlio vfiluo of the exiiressioii x -V- rormiins un-

1

^"

altered when we chaii^^e ./; into , therefore the reciproeul of

uiiy root of the equatiou

1

X + = (5

X

is also u root of the same equation.

,1

IN i'ji
1

w li

EXERCISES.
Find all the roots of the followin*; equations witliout elear-

in<,^ the given oijuations from den(>niinal(»rs:

1 _ 17
I. :i-3 + :. = 2. a'x" + -:, 7. = in^ — JJ.

a'x^

3. in/-f]^o = 28. .
^''

. 2
4-

-:f
+ f 2^2.

5. Show, without solving;, tliat if r he any root of the

equation
2-t. _ —x^ +

x^
a.

then — r, , and — will also be roots.
r r

Factoring a Quadratic Equation.

198. 1. Special Case. Let us consider the equation

x" 32: — 15 = 0,

or

or

a;2 _ 2.C + 1 — 10 = 0,

{x-iy-4:^ = 0.

Faetoriiig, it Ijccomes (§ 90),

{x -1 + 4) {x _ 1 _ 4) r= 0,

or {x + 3) {x — 5) = 0.

Therefore the original equation can be transformed into

{x + 3) {x - 5) ^ 0,

a result which can be proved by simply performing the multi-

plications.
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i

Thi!-". last, equation may bo HutisfU'tl by puiliiig citluT of iU

factors c(iual to zoro ; that is, by !^iii)i)()sin<^

m: -f- 3 = 0, whi'iico X = —'.)
',

or a; — 5 = 0, whuiico ^ = + 5.

These are the same roots which we should ol>taiii by solving

tlie original e^iuation.

2. Far/oritifj the Grnrrnl Qnddm/ic /Jqitaliun. Let us con-

sider the general (iuadratic eciuation,

a;2 ^ py ^ q = 0. (tl)

Now, instead of thinking of x as a root of this C((uation,

let us su})pose x to luive any value whatever, and let us con-

sider the expref<sioii

xi + px + q, (1)

wluch for shortness wo shall rail T. Let us also inf|uiro how
it can be transformed without changing its value.

First wo add and subtract .p% so as to make part of it u

perfect s(iuarc. It thus becomes,

X = x^ + px + ^1)^ — ^p"^ + q \

or, which is the same thing,

Factoring this expression as in § 188, it becomes

X=\x-\.\p + Q/>^ - (/)-]
[x + \p- (^/ - (if\.

Tlio stiulpnt sliould now prove tliat this expression is really equal to

a''^ + px + q, by perforniing the multiplication.

Let us next put, for brevity,

" = -.^1'

« ? = -
)it> + {if - 'i)

(2)
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The preceding value of X will then become,

X = {x - ic) {X - (3), . (3)

an exprepsion identically equal to (1), when we put for a and
(3 their values in (2).

Let us return to the suppositien that this expression is to

he equal to zero, and that ..; is a root of the equation.

The equation {a) will tlien be

{x - a) {X - ,3) -^ 0. (4)

But no product can be equal to zero unless one of the fac-

tors is zero. Hence we must have either

X — « =r 0, whence x = a
;

or X — (3 = 0, whence x = l^.

ITenco, a and ^i ai-e the two roots of the equation {/().

Th(^ above is another wav of solvinir the (Muuh'atio

equation.

To com})are the expressions (I) and (C), let us perform the

multiplication in the latter. It will become,

X = .i-'^ - (« + [3) X + cf3.

Since this expression is identically the same as x^-^px-^-q,

the coeliicients of the like j)owers of x must be the same.

That is,

a -{-[3= -p,)

which can be readily proved by adding and multiplying the

equations {2).

This result may be expressed as follows :

] Theorem. When a quadratic equation is reduced
' to the general form

the coefficient of.?.' will be eciual to the sum of the roots

with the sio-n chaii,2:('d.

The term independent of x will be equal to the

product of the roots.

The student may ask wliy can we nf»t determine the roots of the

quadratic ecjiiatiou from eijuationa (,5), regarding a uud \3 us the uuknuvvn

quantities V

(P

/

%)

iff V-
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is to

(5)

need

Wo can do sn, but let us see what tlio result will be. Wc eliminate

cither « or /j by substitution or by comi)ariBon.

From the second equation (5) we have,

(C

Substituting this in the first equation, we have

Clearing of fractions and transposing.

« + ? =

«' + ]h: + q 0.

Wo have now the same equation with which we started, only stakes

the place of .?'. If we had elinnnated <i, we should have had the sumo

equation in /3, namely,

/33 + pH + (/
= 0.

So the equations (5), when we try to solve them, only lead us to the

origiiud equation.

<4^ 199. To form a Quadratic Equation wtieii the Roots arc

given. The foregoing principles will enable ns to ibrni a quad-

ratic equation which shall have any given roots. We- have

only to substitute the roots for ce and [3 in equation (4), and

perform the multiplications.

EXERCISES.

Form equations of wliich the roots shall be

:

I. -t- 1 and — 1. 2. 3 and 2.

4. 3 + 3^10 and 3— 2a/10.3

5

7

9

II

13

17

;f 1 and + 2.

— 1 and — 2.

2 -j- Vii and 2 — Vo.

— 3 and — 2.

7+ 3a/3 and 7-21/3. 6.

— 1 and + 2. 8.

+ 1 and — 2. lo.

3 4
'- and -• 12.
4 .)

2+^/2 and 2— \/2. 14. 9 + 2a/2 and 9 — 2^2.

5-1-71/5 and 5— 71/5. 16. a -^ b and a — b.

a -f- Vcc^ — b^ and a — y/cfi — b\

7 , 9

2
""'^ 2'

l\
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Equations liaviiig Iniajyinary Roots.

200. When Ave complete tlio sciuare in order to solve a

quadratic c([uation, the quantity on the riglit-lumd side of tlie

cfjuation to wliich that square is equal must be positive, else

there can he no real root. For if we square either a positive

or negative quantity, the result will he positive. Hence, if

the square of the first member comes out equal to a negative

quantity, there is no answer, either positive or negative, Avhich

\i\\\ fulfil the conditions. Such a result shows that impossible

conditions have been introduced into the i)roblcm.

EXAMPLES.
1. To divide the number 10 into two such parts that their

product shall be 34.

If we proceed witli this equation in the usual way, we shall

have, on completing the S(iuare,

xi _ lOa; + 25 = — 9,

or {x — 5)2 = — 9.

The square being negative, there is no answer. On con-

sidering the question, we shall see that the greatest possible

product which the two i:)arts of 10 can have is when they are

each 5. It is therefore impossible to divide the number 10

into two parts of which the product shall be more than 25 ; and

because the question supposes the product to be 34, it is im-

possible in ordinary numbers.

2. Suppose a person to travel on the surface of the earth to

any distance ; how far must he go in order that the straight

line through the round earth from the point whence he started

to the point at which he arrives shall be 8000 miles?

It is evident that the greatest possible length of this line is

a diameter of the earth, namely, 7,912 miles. Hence he can

never get 8,000 miles away, and the answer is imjwssible.

In such eases the s(|uare root of the negative quantity is

considered to be part of a root of the equation, and because it

is not equal to any positive or negative algebraic quantity, it

is called an iinaginary root. The theory of such roots will be

explained in a subsequent book.

11

w
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CHAPTER 111.

REDUCTION OF IRRATIONAL EQUATIONS TO THE
NORMAL FORM.

201. An Irrational Equation is one in which the

unknown quantity appears under the radical sign.

An irrational equation may bo cleared of fractions

in tlie same way as if it were rational.

Example. Clear from fractions the equation

^/x -\- a -\- "s/x — a 2a

Va-' -\- a — V-X a ^0? cv"

Multiplying both members by V^'^ — <^^ = 'Vx-\-a \/x—a^

we have

{x 4- ii) 'Vx — rt -f {x — a) ^/x + a
=: 2«.

a.

^/x -\- a — ^/x — a

Next, multiplying by Vx + « — V^ — (t, we have

{x-\-a) '\/x — a -\- [x — a) V'J^ + « = 2rt\/^i;4-rt — 2aVx

Transposing and reducing, we have

(x + 3a) Vx — « + {x — da) \/x + « = 0,

and the equation is cleared of denominators.

Clearing of Surds.

- *203. In order that an irrational equation may be solved,

it must also bo cleared of surds which contain the unknown
quantity. In showing how this is done, we shall su})pose the

equation to be cleared of denominators, and to be composed of

terms some or all of which are multiplied by the square roots

of given functions of x.

Let us take, as a first example, the equation just fon nil.

Since a surd may be either positive or negative, the equation

in question may mean any one of the following four

:

t
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M i!

i(

w

{x + 3r/) ^/x~^i + {x — "da) ^x + a = 0, (1

)

(./: + ^(() a/.^-^ — {x — oa) ^/x + a = 0, (:i)

— (.r + ^(f) Vx — a + {x — 3r0 V^+~^ == 0, (:])

— {x + da) Vx~— a — {x — :}(() ^/.^• + a — 0. (I)

But the third eqiiution is merely tlie negutive of the second,

and the fonrth the negative of the lirst, so that only two have

dill'crent roots. Let us jjut, for brevity,

P = {x + '6a) Vx — a-{- {x — 3a) Vx + 7,|
a, )

(5)

(^')

Q = (x -i- da) Vx — a — {x — 3a) Vx +
and let us consider the equation,

PQ = 0,

Since this equation is satisfied when, and only wlien, we
have either P =iO or Q = 0, it follows that every value of x

which satislies either of the equations (1) or (2) will satisfy {(>).

Also, every root of (G) must be a root ither of (1) or {%).

If we substitute in (G) the values of P and Q in (5), we
shall then have

(x + 3^0^ {x — a) — {x — 3a)^ {x + a) = 0,

which reduces to 5x^ — Oa^ = 0,

and gives
,

3a
X = ± -----

V5
It will be remarked that the process by which we free the

equation from surds is similar to that for rationalizing the

terms of a fraction emj)loyed in § 185.

As a second example, let us take the equation,

Vx + 11 + Vx'^^i — 5 = 0. (a)

We write the three additional equations formed by combin-

ing the positive and negative values of the surds in every way

:

— Vx + 11 + Vx — 4: — 5 = 0,

Vx^ii — Vx — 4 — 5 = 0,

— Vx + 11 — Vx — 4 — 5 = 0.

The product of the hrst two equations is
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0)

('0

{^)

(0

second,

vo have

(5)

'hen, we

luc of X

tisfv (0).

(2):

L (5), we

free the

m\g the

(^0

eom])in-

jry way

:

i

i

(V.i--4-5)2-(.r+ll) = 0,

or 10 — lOV.r^l = 0. (1)

The product of tlic lust two is

10 + 10a/.a:-1 = 0. (3)

The product of these two products is

100 - 100 {x — 4) == 0,

Avhich gives x = 5.

It will be remarked that (:2) differs from (1) only in having

the sign of the surd different. This must be the case, because

the second pair of ecjuations formed from {(() differ from the

first pair only in having the sign of the surd \/x — 4 different.

Hence it is not necessary to write more than one pair of the

equations at each step. The general process is as follows

:

I. Change the fi7<^ii of one of the surds in the giveiv

cqitatioii, and multiply tlie equation thus fonned hy the

ori^'inal equa tion.

II. lleduce this ])roduet, in it change the si^n of an-

other of the surds, and, form a new product of the two

equations thus formed.
III. Continue the process until an equation without

surds is reached.

Example. Solve

\^^x + 9 + \/-lx + G + V-c + 1 = 0.

Changing the sign of ^/x -\- 4,

VS^ + *) + ^'Zx + G — \^x 4-4 = 0.

The product is

{\/^x + y + \/-Zx + (jf
— (.-6- + 4) = 0,

or, after reduction,

9.1; + 11 + 2 a/8.1- + 9 V'lx + G =r 0.

Changing the sign of 's/'ix -f- G, we have

9.1- + 11 — 2\/8T+l) V'^x + C = 0.

I
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il >i

iJ ^

Tlic product of the last two equations reduces to

17u;2 — (j(jx — 95 = 0,

33 ±52
\vliicli belli <? solved ffives X ='b ""•

' ^^^ C3 '
^" ~ — -| «/

Rkmark. Equations containing surds may often roduce to the form
treated in § 106. lu this case, the methods of that section may be fol-

lowed.

EXERCISES.
Solve the equations

:

I.

2.

' +
' 2Va — 2V^

V^ + Va Vx — Va

Vx^ +(1 X

X — a

3. y/x ^'6 — ViC — 4 = 1.

4. v^^ n + Vx- 14 = 14.

5. (3_2;)l_(3+2;2)] _ Q.

7 __L_ .

jv/^ L__

'
\/5.r + 3 2

= 0.

). V^i^ — 2-i'* -i

a;

10.

II.

X -\- Vx _ .T(a: — 1)

'x^^x ~ 4

-^ = b.

Vl-^a
'\/x ~ a 4- Vitx — 1 V^ — 1

H I
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le form

be fol-

= 1.

I

CHAPTER IV.

SIMULTANEOUS QUADRATIC EQUATIONS.

Between a pair of sinuilhmoous general qiiatlrulie erinatious

one of the unknown quantities can always be eliminated. The
resultiiif,' equation, when redueed, will l)e of the fourth degree

uith respect to the other unknown quantity, and cannot bo

solved like a (juadratic etpiation.

But there are several cases in which a solution of two equa-

tions, one of which is of the second or some higher degree,

may be effected, owing to some of the terms being wanting in

one or both equations.

20.3. Case I. IV/ten one of the equations is of
the Jii'st def/ree onlt/.

This case may be solved thus :

IiULE. Find the '.uluo of aim of the unlcnmiii quan-
tities ill terms of the other from the eqiintioii of the frst

decree, lliis value heinij siihstituted in the otlter eqaa-

tion, ice shall have a qa a dr(( tic equation from wldch the

other unknown quantity niaij he found.

Exa:mple. Solve

22-2 + 3.i-^ — 5?/2 — X — 5?/ = 2G,
I

22' — 3^ = 5. I

From the second equation we find

3?/ + 5

(«)

X =
2

(^>)

Whence, .2 _ //^ + 3 0// + 25
x^ =

Substituting this value in the first equation and reducing,

we find

4//2+ lOy + 10 - 20.

Solving this quadratic equation,

13
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,j = —2 ±V^ = —2± 2V2.

This value of ?/ being substituted in the c(iuiiiion (/y) gives,

— 1 ± 3V8 _ — 1 ± (\V2

2 ~ "
'Z

X •=.

The eaiTi(! problem may be solvi'd in the reverse order by eliminating

y iustead of x. The second (Miuation (11) gives

y
2x — 5

If we substitute this value of?/ in the first equation, we shall have a

quadratic equation in x, from which the value of the latter (juautity can

be found.

Solve

I.

2.

EXERCISES,

X't;2 _ 2X1/ + 4?/2 = 21.

2x + y = 13.

3^3 _ 0^2 _^ 5.^, _ 2,/ = 28.

a; + ?/ + -i = 0.

5.r^ + ;i/2
- X - ij = 72,

X + 2ij = 0.

3:c2 + 2jf = 813,

7a; - 4^ = 17.

X + y = I

X y 7

y X 12

304. Case II. When eacJi equation contains
only one term of the second dcfjt'eef and that tenn
has the same 2>t*odact or square of the unknoivn
quantities in the two equations.

Such equations are

ax'^ + (Ix + ry + / = 0, ]

a'x^-\-d'x + e'y -f/ = 0, f

where the only term of the second degree is that in x^.

If we eliminate x^ from these equations by multiplying the

first by a' and the second by a, and subtracting, we have

(^0

.1

4
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J))
gives,

liminatiug

lall liave a

[uuutity can

that term
unhnoivn

(^0

m 0"=

\v

ltq)lyiiig the

,e have

i

{(I'd — wl') X + {a'c — ac') y + a'f— nf — 0.

Solving this i'(|iuitioii with ivspcct Lo ./•, we liiul

{ac — a'c) 11 + (if — a'f

a'd — ad'
X (»)

(")

By siihstitutlnpj this vahiu of x in oilliorof tlic equations

{((), wu !?h;ill iiave a (lUiidratiu ui|Uation in //. Solvin;:: tiic

latter, we shall obtain two values of y. .Substituting these in

(/>), we sliall have tlie two corres})onding values of .r, and the

sohuion will be com})lete. Hence the rule,

Kruninate the term of thr second dc<Jvee hi/ addttioii

or siihtracHon,mLd use the resiilthi£ e(/u(itioii of the Jlrsb

degree with either of the original equations, as in Case I.

Example. Solve

Zcy — 4:X + 5// — 23,

3x?j + T.f + !/ = -i^L

Multiplying the first equation Ijy o and the second by 2,

and .nibtraeting, we have

— 2Gx + 13// = —13; (L)

1 1
whence, x = ,^i/ -\-

^^-
(r)

Substituting this value in the first equation, we find a

quadratic equation, which, being solved, gives

y = —2 ± V 29.

Substituting these values in (c), the result is

x=-l±lV-Z9.

The two sets of values of the unknown quantities are

therefore

^1 = -^+2^-^'

7/i
= - 2 + V2d,

'<-2 — — .)
— 9 Y'vJ.

1/2 /v V -vt/.

We might have obtainod tho same result hy solving the ofjuation (e)

with respoct to ?/, and substituting n\ {a). The student should practice

both methods.

; v:

mm

m
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w

I.

2.

EXERCISES.
C/i _ 'Ar _

.\,f
— ^)5,

a'^ 4- :i.r — :\// = is.

2//-' -f // = '2S.

y'i + :\c — 4// = 11

3. .ry 4- f;.f -f 7// = (ill,

905. Cask III. W/icn iteifJiPV rquaffon coii^

tdliiH a term of t/ie first dcf/rec hi x or //.

Hulk. Fliminate the constant, terms hij vinltijihjin'J

Cdcli ('(lUdtioii hi/ t/ie (U)nst((iit term, 0/ (iir oilier, iind

(nl(lin<J or srthtraetino' flie firo products. Tlie result will,

tjo a (juiulrat'ie efjUdtlon, J'roDi which, ci titer itnknon.'ih

qnnniitii cirn. 1)e deterniincd in terms of the other. Then
suhstitiite as in Case I.

ExAMi'LE. Solve

14 X 1st C(i.,

5 x2d cq.,

SuLtnicLiMg-,

x'+ .ry/- 7/2 5,1

0!

(1)

4.i:2 + ;20.r// — 2\u'^
=

This is a qiiadnitic equation, 1)y which one iniknowii (|iiiiii-

tity can he expressed in terms of the other without the latter

heing under the radical sign.

Transposing, 4.v^ + 29.r?/ = 24//-. (2)

Comideting square, ix^ -f 20.zij + -.tt^/^ = 'v-'^^'

Extracting root,

Whence,

29
,
35

2x-i--j7/ = ±j-!/'

— 20 ± 35 3

Suhstituting the fir.^t of these values of x in either of the

original equations, we shall hayo

y' IGj

l\
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whence, y = ± -^ ; x = ±,X

JSiibstiLiitiug Ihe second vahic of x, wo have

, 1

whence,
.1 -T- 8

'riicrcforc thi' four p().ssil)lo vtihics of the unknown qnanti-

ties urc,

Vu Vu
1 1

?/=+!, —4, — - --, + 7—

•

E:ich of (liL'so four [)airs of vahics saiislk'S the original

Cfjuadoii.

A slight change in tlio mode of proceeding is to (livi(U' llio

equation {'I) I)y eiflier /' or //, and to Ihid tlic vaUic of the

quotient. Dividing by ij'^ and putting

X

y
tlio equation will hecomo

42^2 4- 20?^ — U = 0.

This ([uadratic equation, being solved, gives

— 20 ± -i'") 3
11 = -^or -8,

X
Putting * for n, and multij)lying by y,

If

3

Solve

I.

2.

X = . >j or — 8?/, as before.
i'

EXERCISES,

.tS — ,T_y -1- f — 3 — 0,

a;2 — 2./// + •if — 4 — 0.

2x^ + :!.r// - f — z= 0,

.r2 + If + 1 = 0.

I' IJ

!"
'

r,

')
' il
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Pi

*^(>(>. Casi: IV. WIhii tlie vj'in'vssions contain-'

lnf/ t/ir itn/»'noirn <jiiantiticH in the two vquationM
/tdcc coimnoit J'ac/ors,

JiiM:. Dii'idr one of the r(/nft/ions irhich Cf(/h he Jar-

tovcd Ifij the otlicr, tnul canrrl the cnmmoii J'(t('ttirs.

Then clear of frnct'wns, if neeessavij, and we shall have
an equation of a lower decree,

EXAMPLES.
1. .r3 +lf = 01, X -\-

1J
z= 7.

Wc hiivc seen (5^ 04, Th. 1) tlitit x^-\-if is aivisil)lo by z+ t/.

So dividing tlio first tHiiuitioii by tlio second, we hiivo

a;3 _ ry + y' = 13.

This is nn equation of the second degree only, and wlien

combined witii tiie second of the original e(|Uiitions, the solu-

tion may be ell'ccted by Case I. The result is,

a* = 3 or 4, i/ = 4 or 3.

2. xy 1- ?/- = 133, r?;2 — if = 05.

Factoring the first member of each equation, the equations

Ijccomc

1/ (x + 1/) = 133, (X + y) {x -y) = 05.

Dividing one equal ion by the other, and clearing of fractions,

7
V2y = 7x, or y = ~x.

The problem is now reduced to Case I, this value of y
being combined with either of the original equations.

207. There are many other devices by Avhich simultaneous

equations may be solved or brought under one of tiie above

cases, for which no general rule can be given, and in wliicli

the solution must be left to the ingenuity of the student.

Sometimes, also, an equation which comes under one of the

cases can be solved much more expeditiously than by the rule.

Let us take, for instance, the e(piations,

.7;2 + y^ = G5, xy = 28.

These ec|uations can be solved by Case III, but the work

would be long and cumbrous. We see that by adding and

\

1
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nfd fli-

nt ions

\ he f(ic-

ill hare

h^x+ij.

lul vlicn

the sulii-

'qiuiUou3

fractions,

luc of y

lUancous

10 iil)ove

in wliich

-tiuloni.

10 (>r the

the rule.

tlic work

ling und

!

\

8ul)traf'tiiif]r twice tlio Rccond ciinntion to uiul from tlio first,

wt" Clin form two itcrlect ^(inarcs. Kxtructing the ntots ul

tlicsi' s(iuarcs, wo slnill have two simple conations, whicli shall

^ivc the solution at once. Kadi unknown (|uantil y will havo

four values, namely, ± 7 ± 4.

FHODLEMS AND EXEHCISES.

Tli(> following? t'(]uutionH can all bo solved by boiuc Hlu)rf, and cxpo-

ditious ('(iinbiiiatioM of tin- ('(nr.itioiis, or by factoiiiij;, witlioiit ^'oin^f

fliruii^li tlif complex i>|i>c('SH of ("awe III. 'I'lie .sfiKJeiil is n-coimiieiidcd

not to work upon the e(|iiatioii.s at random, but to study eaeb pair until

he sees bow it can bo reduced to n simpler e(]untlon l)y addition, miilii-

l)iication, or factoring, and then to go tlirougli thu operations thus sng-

gesteil.

1. if -\- ry = 14, tr' + r 7/ = ,'}5.

2. 4a;3 — ^Lry = 208, 2xi/ — f = 39.

3. x^ + ij = 4x, f + a; = 4^.

If wo subtract ono of theso (Hiuatious from the other, the dilTennico

will be divisible hy x — 1/.

4. .r3 + 2/3 + 3.r 4- 3// = 378, x^ + f — 3x — liy = ,}U.

5-

6.

8.

9-

10.

II.

xi + if = ^4, x + y = VZ.

x^ -\- xy = 03, a;3 — ?/3 = 77.

^/x + Vy _
y/x — Vy
x^ + xy = a, y"^ -f xy = b.

x^ -\- xxf = 10, y^ ^ x?y = 5.

4, a-2 — 7/2 — 544^

x — aVx -\- y, y = h\/x -\- y.

x\/x -{- y = 12. yVx + ?/ = 15.

12. 2x' -f 2y'^ = X \- y, x^ \- y^ = x — y.

13. 5.r'' — 5_?/2 =z x -{ y, ox^ — oy"^ =z x — y.

14. .r2+ ?/2-f-.^2
_ 30, xy-tyz+zx = 17, x — y — z = 2.

15.

•' \ x — y x — y
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ji

1 6. A principal of -^5000 amounts, 'wifli simple interest, <o

$7100 after ii certain nun/ocr of years. Had tliu rate of inter-

est been 1 percent, liiglierand the time 1 year longer, it would
have amounted to -^7800. What was the time and rate?

17. A courier left a station ridinpr at a uniform rate. Five
hours af'terwai'd, a second I'ollowL'd him, riding 3 miles an
hour faster. Two hours after tlie secoiul, a third started at

the rate of 10 miles an hour. They all reach their destinatio')

at the same time. Wiiat was its distance and the rate of liding 'i

18. In a right-angled triangle there is given the hypothe-
nuse = iif and the area = V^] Und the sides.

19. Find two nundicrs such that their i)r()duct, sum, and
difference of squares shall be eciual to each other.

20. Find two numbers whose product is 210; and if the

greater be diminished by 4, and the less increased by 3, the

l)roduct of this sum atid difference may be 240.

21. There are two numliers whose sum is 74, and the sum
of their S(puirc roots is 12. What are the numbers ?

22. Find two numbers whose sum is 72, and the sum of

their cube roots G.

23. "^riie sides of a given rectangle are m and n. Find the

sides of another which shall have twice the perimeter and twice

the area of the givi'U one.

24. A certain number of workmen recpiirc 3 days to com-
plete a work. A number 4 less, working 3 hours less per day,

will do it in days. A nundjcr G greater than the original

number, working (! hours less per day, will com})lete the work
in 4 days. What was the original number of workmen, and
how long did they work per day ?

25. Find two numlters whose sum is 18 and the sum of

their fourth powers 1409G.

Note. Since tlie sum of the two uunibers is 18, it is evident tliat

the one must bo as much loss tlian 9 as the otlier is greater. 'J'lic ('(jiia-

tions will assume the simplest form when we take, as the unknown quan-

tity, the common amount by whicli the numbers ditiVr from 9,

26. Find two numbers, .r and y, such that

a? -\- if : 1^ — if : : 35 : 19,

Qcij = 24.

27. Find two ininibers whose sum is 14 and the sum of

their lifth powers 1G12U4.

I i

ft!

ti 1
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BOOK VII.

PROGRJ': ss/oxs.

CHAPTER I.

ARITHMETICAL PROGRESSION.

2().S. D(f. AVhon wo liavo a Sinics of nuiubcrs oacli

of which is gr<'ator or less tliaii tlio procediiiij: l)v a coii'

8tant qnaiitity. the series is said to Ibriu an Arithmet-
ical Progression.

ExAMpj.i:, The series

7 1
•"» 17 3'^

1

tliG sum of

etc.
;

1 , — 3, etc.
;

a -f h, a, a — h, a — )lb, a — oh, etc.,

are oacli in arithnietieal ]»rogression, Ijecause, in the first, each

number is greater than the preceding by 5 ; in the second,

each is less than the [)receding l)y 2; in the tliird, each is le.-^s

than tlie preceding by b.

I)rf. The amount by wliich eacli term of an arith-

metical j)rogression is greater tliaii the preceding one is

called tlie Common Difference.

Def. The Arithmetical Mean of two quantities is

lialf their sum.

All i\\v tei'nis of an arithmc^tical progression (^xcept

the first and last are called so many arithmetical means
between the iirst and last as extrem(_^s.

Example. Tlie four munbers. 5, 8, 11,1-1, form the four

arithmetical means between % and 17.

\ v\

' ? !•
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%

EXERCISES.
1. Foi'm loiir terms of tlio aritliinctical progression of

which Ih.G lirst torin is 7 and common dill'erencc 3.

2. Write the (Irj-t seven terms of the progression of which

the first term is 11 and tlie common ditl'erence — 3.

3. AVrite five terms of the progression of wliicli the first

term is a — 4:/i and the common dilference 2?^^.

^

*

1',

^i
:

S

i '.!

'

11

»l

Problems in Proj^rcssioii.

209. Let us put

a, tlic first term of a progression.

cl, tlie common difference.

11, tlie numher of terms.

/, the last term.

X, the sum of all the terms.

The series is then

a, a + il, a-\-2(I, ,...!.

Any three of the above five quantities being given, the

other two may be found.

Proulhm I. Giveiv the first term, the cmmiinn dijfer-

cncc, and tlto nmnbev oftcnns, to find the last term.

The 1st term is here a,

2d " " a + d,

3d " " a + )ld.

The coefficient of d is, in each case, 1 less than the number

of tlie term. Since this coefhcient increases by unity for every

term we add, it must remain less by unity than the number of

the term. Hence,

The. P^ term is a + (/ — 1) d,

whaicver be L Hence, when i = 7i, i

I = a -{- {u-^)d. (1)

From this equation we can solve the further problems

:

PROHLHM 11. (liven the last term 1, the connnnn, dif-

ference (I, and ike naniber of terms it, to find tlie first

term.

f
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The solution is found by solving (1) wiLh respect to a,

l-(n-l)(l (2)

"which gives

a

Problem III. Gu'cii the first and last terms, a and I,

and the nainber of terms n, to find the common di/fer-

ence.

Solution Ivom (1), d being the unknown quantity,

d = n—i
Problem IY. Given the first and last teinns and the

common difference, to find tlie member of terms.

Solution, al.^o from (1),

I — a
. ^ I — a -\- d

71 r=
d

+ 1
d

(4)

Problem V. To find the sum of all the terms of an
arithmetical progression.

We have, by the definition of 2,

S = rt + (a + rZ) + {a + M) -\- {I — d) + ?,

the parentheses being used only to distinguish the terms.

Now let us Avrite the terms in reverse order. The term

before the last is I — d, the second one before it I — 2d, etc.

We therefore have,

I. = I ^ [l — d) + {I — 2d) -\- {a -\- d) -i- a.

Adding these two values of 2 together, term by term, we

find

21 = (a + l) + {a + l) + {n+ i) + + («+ /) + {a + I),

the quantity (n + l) being written as often as there are terms,

that is, n times. Hence,

21 = 7i{a -\- I),

a +J1 — n (5)

Remark. The expression — — , that is, half the sum of

the extreme terms, is the mean value of all the terms. The

ua it

ii!
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snni of the n terms is therefore the same as if cacli of tlicm

luid this vahie.

^lO, Til tlie C(iuati()n (5) we are supposed to know tlio

first and last terms and the numher of terms. If other (|iuui-

titics arc taken as the known ones, we have to snhstitute for

some one of the (piantities in (o) ils expression in one of the

(•(juations (1), {'i), (o), or (4). Sui)})ose, for e.\anii)le, tlmt we
iiavc given only the last term, the eommon dilferenee, and the

nninl)L'r of terms, (hat is, /, d, and n. We must then in (o)

substitute for a its vahie in (:i). This will give,

n
/j 11— 1 A n {n — \)

y - --z- V = "'
—I— ''• {')

EXERCISES,

In arithraetietil i)rogrcssion tliere arc

1. (liven, common diiference, + 3; tliird term = 10.

Find jirst term. Afis. First term := I,

2. (Jivcn -fth term = I), common ditference = — c.

Find iirst 7 terms, their sum and product.

3. Given 3d term = a -{- b, 4th term = a -{- :lh.

Find first 5 terms.

4. (iiven 1st term z= a — h, 9th term = i)(i + Ti.

Find Jid term and common ilitrerence.

5. Given, sum of 9 terms = 108.

Find middle term and sum of 1st and tUli terms.

6. Given nth term = i.'' — '"J//, ith term = 9.r — 9_y.

Find first 7 terms and common ditference.

7. Given 1st term = 1'^, HOth term = bo\.

V\\n\ sum of all ."iO terms.

8. To lind the sum of the first 100 numhcrs, namely,

1 + ;3 + 3 + 99 + 100.

Here tlio first tenn n is 1, the lust tonu I 100, and the number of

terms 100. Tlio solution is by Problem V.

(J.
Find the sum of the Iirst n entire numhcrs, namely,

1 + 24-3.... -\- n.
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(C)

i

I

10. Find tlie sum of tho first n odd .aimbers, uamcly,

1 + :] + 5 . . . . -f •,'/< — 1.

Here the; number of terms is «.

1 1. Find the sum of tho lir.st )i oven uumbors, namely,

^ + -i + <;.... + -in.

T2. In a scliool of vi scholars, th- hi:j:ho?t roocivod lot

luoi'it inari\S, and each .sucoeodinix one Iojjs than tho one next

ahovo him. How many did the lowest scholar receive? How
many did tliey all receive V

13. Tlie ilrst term of a series is m, the last term 'hu, and

tho common diU'erence d. \\ hat is tho iiumher of terms ':*

14. Tlie first term is Ic, tho last term l<'/i- — 1, and the

number of terms 9. What is the common diift.-renco ?

15. The middle term of a progression is s, the number of

terms 5, and the common ditforence — //. AVhat arc the lirst

and last terms and the sum of the 5 terms?

16. The sum of 5 numbers in arithmetical progression is

20 and the sum of their S([uares 120. What are the numl)ers?

NoTK. In (juestii)iis like this it is better to take the middle term for

one 01 the unknown (juantities. Tho oiLer uukuuwu tnuuitity will bo

tho conniioii ditrereiice.

17. Find a number consisting of three digits in arithmeti-

cal progression, of which tho sum is 15. If the number be

dinnnishod by 102, the digits will be reversed.

iS. The continued product of three niT'nbors in arithmet-

ical progression is 640, and the third is four times tlie lirst.

What are the numbers?

19. A travel' or has a journey (»f i;]2 miles to perf(.rm. Ho
goes 27 miles tho first day, 24 the second, and so on, travelling

3 miles les; each day than tho day before. In how many days

will he comi)lete Iho journey?

Here we luive liiveii the first term '27. the eomnmn difTerenoe —'•), iind

the sum of the terms V-Vl. To solve this, we t:dvi' e<|uati<in ^.'ii, tiiid sub-

slituto for 1 its value in (1). This makes (.li reduced to

a 4- n 4- in — I) d n in — \) d

2 2

2, (I, and (/ are niven by {\\v problem, and n is the unknown quan-

tity. Substituting the numerical value of the unknown (quantities, tho

equation becomes "
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132 = 27)1 — 3
n {n — 1)

i

'Z

Tliis rfdiirpd toa (lamlratic p(iuation in n, tlio solution of which {jivos

two vahics of It. The stiuiriit should cxphiin tliis doiihlo answer by

contiiminj^'- tlic progn.'ss-uon to 11 tcrais, and showing what the negative

ti-rms indicate.

20. Tiiking tliG sniiio question as the last, only suppose the

tlistance to be 140 miles ii-.stead of V.Vi. Show that the answer

"will he iniMi,Miiary, and ex})hiln this result.

21. A (lel)tor owin^- $100 arrauj^ed to pay 25 dollars the

first month, 23 the second, and so on, 2 dollars less each

montli, until his dcl)t should he discharged, llow many pay-

ments must he make, and what is the explanation of the two

answers ?

22. A hogshead holding 135 gallons has 3 gallons poured

into it the first day, G the second, and so on, 3 gallons more

every day. IIow long l)et'ore it will he filled ?

23. The continued jiroduct of 5 consecutive terms is 12320

and their sum 40. AV hat is the progression ?

24. Show that the condition that three numhcrs, jh (J,
and

r, are in arithmetical progression may be expressed in the form

q — r

25. In a progression consisting of 10 terms, the sum of the

1st, 3d, 5th, 7th, and 0th terms is 90, and the sum of the re-

maining terms is 110. What is the progression ?

26. In a progression of an odd numljcr of terms there is

given the sum of the odd terms (the first, third, fifth, etc.)

{iiid the sum of the even terms (the second, fourth, etc.).

Show that we can find the middle term tind the number of

terms, but not the common diil'erence.

27. In a jirogression of an even number of terms is given

the sum of the even terms — 105, the sum of the odd terms =
110. and the excess of the last term over the first = 2G. AVhat

is the progression ?

28. Ciiven a and /, the first and last terms, it is rerpiired to

insert i arithmetical means between them. Find the expres-

sion for the i terms required.

I
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CHAPTER II.

GEOMETRICAL PROGRESSION.

'ill. Dcf. A Geometrical Progression consists of

11 series of terms of wliich each is formed by miiltii)ly-

iiig the term preceding by n (jonstciiit factor.

An arithmetical progression is fo'/nied by continual a(kU-

tioii or subtraction; a geoniutrical progression by repeated

niuUij>licatioii or division.

Dcf. Tlio factor by which each tei-m is multiplied

to form the next one is called the Common Ratio.

The common ratio is analogous to the common (lill'erence

in an arithmetical })rogression.

In other respects the same definitions ajjply to both.

EXAMPLES.
9, G, LS iA, etc.,

is Ji progression in Avhich the first term is 2 and the comnion

ratio 3.

^' ^' 2' 4' 8'

is a progression in wliich the ratio is -•

etc.,

+ o
0, + 1:1, — 24, etc.,

is a progression in which the ratio is — 2.

Sort). A ])r()i:rcHsi{)n Vvhi^ thr scm-oikI one ii1)()Vf'. fornied by dividiiiii"

each term hy tlic Hiuiie divisor to obtiiiii the next tt'rni, is included in the

gcnural <lelinition, bpcauso dividing by any number \» tlio «unu' as inulti-

jjlying i\v the reriprocal. (icometrical progressions may therefore be ,

divided into two classes, inrrcusing and decreasing. In the increasing

progression the common ratio is greater than 1 and the teuns go on in-

creasing ; in a diminishing progression the ratio is less than unity and

the terms go on diminishing.

Rem. Ill a i^rogression in which the ratio is negative, the

terms will be alternately positive and negative.

\U
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Drf. A Geometrical Mean between two quantities

is the scxuare root of tlieir i)ruduct.

EXERCISES.
Form five terms of each of the i'olluwiiig gcomctriciil pro-

grurfsiuiis

:

1. First term, 1 ; common ratio, 5.

2. First term, 7; common ralio, —
').

3. i"'irst term, 1 ; common ratio, — 1.

4. First term, ^ ; common ratio, '
•

4 . 1
5. First term, . ; common ratio, ;-

I

i ]

Problems of* Geoiuelrical I*ro.i»r(vssioii.

2\2, In a <2:eometrical progression, as in an arithmetical

one, thei'c are live ((uaiitities, any thiee of wliieh (U'lermiiiu

the progression, and enable the other two to be funnd. 'I'hey

are

a, tlie first term.

r, the common I'atio.

11, the nnmljcr of terms.

/, tlio last term.

1, the sum of the n terms.

The general expression for the geometrical progression

will be

a, ar, ar% a)'\ etc.,

because each of these terms is formed by multiplying tlie pre-

ceding one by r.

The same [)roblems present themselves in the two progres-

sions. Those for the aeuinetrical one are as follows:
Si^

PuoiiLE.M I. Oirrii the J/'rsf fcrin, the commoii ratio,

and the iiuiiil)ei' oj' fcrn/s, to ]iiid the last tcrnb.

The progression will ha

a, ar, ar^, etc.

"Wo see that the exponent of /• is less by 1 than the numl)er

of the term, and since it increases by 1 for each term added, it

J
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pro-

must romiiin less by 1, liow many terms so over ^vc take.

Ik'iicc tliu u"'' term is

/ = ar"-i. (1

)

PiioBLEM IT. Civni tha last tern} , ihe cnvnnon ralio,

and Ihe nnnibcr of terms, to Jiiid the Jirst term.

The .solution is I'uuud by dividing both members of (1) by

r"~', wiiich gives
7

a =
y"-i

PuoriLF.M III. Ctiveii the /Irst term, the last term, and
the nuniher of terms, to Jind the eomnioii ratio.

From (1) we tlnd r^'^ = -

Extracting the {n — 1)"' root of each mcmljcr, we have

r = cr •

[The solution of Problem IV requires us to find n from

equation (1), and belongs to a higher department of Algebra.J

Proulf.m V. To find the sum of cdl n terms of a ^eo-

mctriecd j)roj^rcssioii.

AVc have E = a + ar + af- + etc. -f- ar^^~'^.

Multii)ly both sides of this equation by r. We then have

r'E = ar + ar'^ + ar^ + etc + ar^K

Now subtract the first of these equations from the second.

It is evident that, in the second e(juati<)n, each term of the

second memljcr is Cf(ual to the term of the second member of

the first equation which is one place farther to the rio-ht.

Hence, when we subtract, all the terms will cancel eiich other

except the first of the first equation and the last of the second.

Illustuatiox. The following is a case in which r< = 2, r = 3, w = G

:

2 := 2 + G + 18 + O4+1G2 + 480.

32 - G + 18 + 54 + 1G2 + 480 + 1458.

Subtracting, 32-2 = 1458 - 2 := 145G,

or 22 = 1450, and 2 = 738.

14
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lii'turniii;,' to the cfciioral pr()l)loni, wc have

(;• - 1) i = (()''' — a = (I (/•» — 1)

;

Avhcncc,
r'i _ 1 1 _ r»

/• — 1 1 — ;•
(1)

It will 1)C most convcnicMit to iiso the first form when r > 1,

and the second wlien r < 1.

liy this forinuhi we are enabled to rompute the sum of tlio

terms of a j^eometrica! i)r(>gression without actually foruiiii*^

all tlie terms and aihliiiir lliein.

t

EXERCISES
3

I it

1. r.iven 3d term = 9, common ratio =
^.

rind lirst 5 terms.

32 2
2. Cliven 5tl» term = '

'^, common ratio = — -•

Find iirst 5 terms.

3. fliven -"ith term = xhp, 1st term = ij^.

Find common ratio.

4. {jiiven 1st term = 1, 4th term = cA

Find common ratio and lirst 3 terms.

5. Given 2d term = vi, common ratio = — m.

Find first 4 te.ms.

6. A farrier havings told a coachman that he wonld charge

him 13 for slioeing liis horse, the latter objected to the price.

Tlie farrier then olTered to take 1 cent for the lirst nail, 2 for

the scecmfl, 4 for the third, and so on, doubling the amount
for each nail, which offer tlie coachman accepted. I'liere were

32 nails. Find how much the coaclunan had to pay for the

last nail, and hoAV mucli in all. (Compare § 1G8, IiEM.)

7. Find the sum of 11 terms of the series

2 + <3 + 18 -\- etc.,

ill Avhich the first term is 2 and the common ratio 3.

8. If the common ratio of a progression is r, what will be

the common ratio of the progression formed by taking

I. Every alternate term of the given progression?

II. Every ?i^^'' term ?

VI
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9. The snnio tliiniij l)('iii;j^ sujtprjscd, wlitit will l>c (ho com-

iiKni ratio of tho |)i'<»<riv.ssioii of wliich every iillcrimte term id

e<|iiiil to every third tiriii of the ^iveu pro^Mvssioii
'•'

10. Show that if, in u geometrieal i)r»»oT(.'ssioii, each term

be nclded to or .siil)trac'ted from that next following, the jsunid

or remainders will form a ^'eomotrieal proj^ressiou.

11. Show that if tho arithmetical and geometrical means

of two quantities be given, the (juantlties themselves nniy be

found, ami give tho expressions for them.

12. Tho sum of the first and fourth terms of a jn'ogression

is to the sum of the second and third as 'li : 5. What is tho

common ratio?

13. Express tho continued product of all tho terms of a

geometrical progression iu terms of «, r, and w?

IJiiiit <)f tlic Sum of a l*r<)j»rossi<)ii.

21.3. Theorem. If the coniinon ratio in a gooiiiotri-

cal i)r()g'rossion is less than unity (more exactly, if it is

contained between the limits —1 and +1), then there

will be a certain quantity which the sum of all tin;

terms can never exceed, no matter liuw many terms we
take.

For example, tho sum of the })rogrcssion

11,1
^4-;^ + y + etc.,

in Avliich the common ratio is -, can never amount to 1, no

matter how many terms we take. To show this, suppose that

one person owed another a dollar, and proceeded to pay him a

series of fractions of a dollar in cfoometrical proirression.

naniel̂ly

2'

1

10
' etc.

"When ho paid him tho - ho would still owe another .,

when ho paid tho ~. he would still owe another -
, and so on.

I!

11

;i
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That is, at cvory piiymcnt lio would disclmr^^o one-li;iIf llio ro-

inainiii'; (Iclit. Sow tlifiv aro two iJi'opoHitioiis lo Ik- iiiiilrr-

Htt»(»tl ill rctVri'tK'o to (liis suhjirt.

I. 'I'/tr cufirc dthb viiii lurcrhc (lisrjtfirjjcil by such
jnnjniciilx.

For, since the ildit is halved \\i every ptiynioiit, if there was

any |)ayineiit which (lischur^'ed the whole reiiiaiiiin<,' dehl, tho

half of Ji tiiiji^' wmild hi- equal to the whole of it, which is

irn])ossiI)le.

H. 77//! ilchi run hr rednerd hi hue (inij assi'^liable

limit hij rontinin'n^ to fuitj hutf of it.

For, liowever small the dcht may he made, arolher pay-

ment will make it smaller hy one-half; hence thcro is no

smallest amount helow which it cannot he reduced.

Thcso two propositions, whicli fiocm to op))i)sc cncli otlicr, hold tlin

truth l)otween tlicm, us It were. Tlioy cotixtniilly ciitcT into tlio lii/iht-r

iniithciuaticH, mid should bo wt-Il understood. Wt! therefore present

another illustration oi the same subject.

I

B

A 1
1
10

Suppose x\B to ho a line of given length. Lot us go one-

half the distance from A to B at one ste[), one-fourth at tho

second, one-eighth at the third, etc. It is evident that, at each

step, we go half the distance which remains, lli'nce the two

princiidos just cited ap})ly to this case. That is,

1. Wc can never reach B by a series of such steps, hecausc

Avc shall always have a distance equal to the last step left.

2. But we can come as near B as we ]dease, because every

sto]) carries us over half the remaining distance.

Tliis residt is often expri'ssed by siiyin'j; that we .should rearh B by

taking an inlinite number of steps. 'I'Ui.-i is a convenient form of expres-

Bion, and we may sometimes use it, but it is not lofi^ically exact, because

no conc'ivable nuinljer can be really iulinitc!. Tho assumption that in-

finity is an alifcl.niic (|uaiitity often leads to ambiguities and tlitliculties

iu the a])i)licallou of nuitheuiiUics.
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Drf. Tlio Limit of tlio sum i of si ^oomrtiicMl

progression is ji (juaiitity wiiicii l may {ipproncii so

tiial its (liirciciicc shall he less than any (jiiaiitily u<'

choose to assign, l)iit whieli 1 ran never reach.

E X A M r L E S

I. T^iiity is tlic liiiiil <•!' tjic -tim

1.1.1 1

etc.
5J
^ 4 ^ s ' k;

2. Tlio point B in llic iircc'diiit; lii^urc is (lie liinil of all

the sh'ps that can he tukon in the inauiici' (lr.st'rihc'<l.

Tlic followin;; ])rin('iple will cnahk' us to liiul the limit (»!'

the sum of !i progression :

'ill. Pri/ic//»7('. ir /' < 1, the ])o\ver /•" can he made
as small as we ]»lease \)y increasing the value oi'v^, but

can lun'er bo iiuuh^ ec^ual to 0.

Suppose, for instiince, that

Then evei-y lime we miiltijily hy r we iliminlsh r" l>y

- of its former value; that is.

,.3 ^ •; ,2

4
yi _ r'i/•*,

r* = - /'^ = r^ — r'\

etc. etc. etc.

Now let us again take the expression for the sum of a

series of n terms, namelyj

1 = a
1 —V
1 — r

which wc may put into the form

2 = a a

1 — /• 1 -

HA
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Hi

If r is loss tlmn unity, avc can, by tlie principle just cited,

make tlie ([uantily r'* as small as we ]»lease by incivasini:^ n
indelinitely. From tliis it iollows that we can alsu make the

term
a

r"' as small as Ave jikase.

Proof. Let us put, for brevity.

k = a

so that the term under consideration is

kr'K

If we cannot make Zv'^ as small as we please. sn])pose ,s to

be its smallest possible value. Let us divide a by /c, and put

/ = s

No matter how small s may be, and how large Jc may be,

V, or /, will always be greater than zero, llcnce, by the pre-

ceding jirineiiile, we can find a value of }i so great tluit r''

shall be less than /. That is,

<

>

11 I

J.

Multiplying both sides of this inequality ])y i;

That is, liowevov small we take s, we can take n so large

that I'r''^ shall be less than ^•, and therefore s cannot be the

smallest valu3.

Smce 2 =:
a, — Jcr\

and since we can make 7cV" as small as we please, it follows

that a
Limit of 2 = ^

Th IS IS o'Unetimes expressed by saying that when r < Ij

a + ar + ur- + (O'^ + etc., ad infinitum = a

1 —r
and this is a convenient form of expresaion, which will not lead

us into error in this ease.
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the

[lows

lead

EXERCISES.
Ilaviug given the progression1111

2+4 + 8 + 10 + ^^^"

of Avliich the limit is 1, find how nianv terms wo nnist talvo in

order that tlie sum may diil'er from 1 by less than the follow-

ing (juantities, namely:

Firstly, .001 ; secondly, .000 001 ; thirdly, .000 000 001.

To do this, we ninst find what power of ^^
will be less than .001,

what power lesrf than .000 UOl, etc.

AVhat are the limits of the snms of the following series:

II 1 , 7 . .^ ..

I. 3 + 33 + 33 + ^'^^•' ^'" injinitum.

2 4 S

^ + fj
+ -^^ + etc., ad iufinUum.

III , ; . . .,

o ~ f,3 + 03 ~ ^^^'> ^^^ infinitum.

4 42 43

fj
4-

jj2
+ (]3 + ^^^'^ ^''^ infinitum.

2.

3-

4-

5-

6.

7-

T-T-T + +1+ ^> ' (1 -H Z»)2
' (1 + t>f

a a a

+ etc., (lA i)ifuiitum.

— etc., ad luftnituni.
1 {h- 1)2 ' {b — 1)3

etc., ad infinitum.
2 12 1

ni iii^ iir i/r

8. What is that progression of which the first term is 12

and the limit of the snm 8.

B
I

9, On the line AB a man starts from A and goes to the

point c, half way to B ; *hen he re-

turns to d, half "Way back to A ; then , ,

,"

tiiT'is again and goes half way to c,

then back half way to d, and so on, going at each turn half

way to the point from which he last set out. To what point

on the line will he continually approach ?

I; ,

I ,!

I-!
•*'

f I



'u;

1/^

ri(
i i

210 COMPOUND interp:st.

21/5. As ail iiitcro.yfiiip: :ip])lir;if ion of t.lio preceding theory,

we may examine the problem of liiulinc^ the vakie of a circu-

]atiii;2^ (leeiinal. Such a (Kcimal i> always e<[nal to a vulgar

fraetioii, wliieli is ()l)taiiic(l as in the following fxamjjles:

1. What is the vahie of the deeinuil

,'i i') iO i . . . . .

W(> find tlio fig-urf's wliicli form tlic jioriod to bo 37. Dividing the

dociinal into periods of tln.'sc fi^-iircs, it.s viiluc in

O'V 07 oi»y

- 4- ~ -I-
-—

' 4- t

100 "^
100^ "^ 1003

^~

= ^^^(17^0 + 1^30^ + 1005
+ ''4

Tlio quantity in tlio parcntlicsis is a goonictrical pron^ropsinn, in which

a = , r = ^
• The liiuit of its sum is tlierefore -

^^
• Thercfcji-c thf

value of tlio decimal is
^^

•

Tliis result can bo proved by changing this vulgar fraction to a

decimal.

2. In the case of a decimal which has one or more figures

hcfore the period commences, wc cut these fignres olf, and

find the value of them and of the circulating part separately.

Thus,

503C3 etc. = ^ +
j^,,,^

+ J-— + etc.

_ 5 0:5 / 1_ 1 \

~ 10
"^

loiJo I "^ 100
"^

roo2
"^ 7

_ 5 03 100 _ 5 03^ _ 558 _ 31
~ 10

"^ loOO'W ~ 10
"*"

D'JO
~

'J'JO
"" 55"

EXERCISES.
To what vulgar fractious arc the following circulating deci-

mals eijual

:

I. .111111 ? 2. ,2'2-22 ?

3. .9!»0i) ? 4. .00!)'.); t ?

5. .454545 . . . . ? 6. .2454545 . . . . ?

7. .108108 ? 8. 72454545 ?

11

ai

f]'
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hcory,

circu-
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•)
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31

55

tmj,^ tlcci-

Coiiipouiid Interest.

21 G. When one loans or invests money, collects the inter-

est at stated intervals, and again loans or invests this interest,

and so on, he gains compound interest.

Compound interest can always be gained by one who con-

stantly invests all his income derived from interest, provided

that he always collects the interest when due, and is al)le to

loan or invest it at the same rate as he loaned his principa'.

Problem I. To fiul the mnonnt of 2P dollars for ii

years, at c per cent, conipouud interest.

Solution. At the end of one year the interest will be

-^-, which added to the principal will make ;m t + ^ >
)•

100' -^ ^ M 100/

c
If we put p = --- = the rate of annual gain,

the amount at the end of the year will be p{i -\- p).

Kow suppose this whole amount is put out for another

year at the same rate. The interest will be _^> (1 + p) p, which

added to the new principal p (1 + p) will make p (1 + py.

It is evident that, in general, sujiposing the whole sum
kept at interest, the total amount of the investment will be

multiplied by 1 + p each year. Hence the amount at the ends

of successive years will be

p{l + p), p{l + py, p{l+pf, etc.

At the end of ?i 3'ears the amount will be

P (1 + pY-

Problem II. t4 person puts out p dollars every year,

letting the whole sum constantly accumulate at com-

pound interest. IVhat will the amoufit he at the end of

11 years?

Solution. The first investment will have been out at

interest 71 years, the second w — 1 years, the third ?i — 2 years,

and so on to the w'*, which will have been out 1 vear. Hence,

from the last formula, the amounts will lie

:

J
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Amount of 1st payment, p{i + p)'^

i\

((

it

it

" 2d (( p{i + pY~\
" ad a j){lJ^p)n-\

" 4th a
p (1 + p)"-3

" oth a p{i + pY-\
etc. etc.

The sum of the amounts is

:

p{l+p) ^ p{\+pf j^ p{i+pY ^ . . . . pil^pY,

This is a geometrical progression, of which the first term is

p (1+p), tlie common ratio 1+p, and the number of terms )i.

So in the formuhi (4), § 21'^, we put p (1 -f p) for a, l-\-p for

r, and thus find,

^ ^ ' ' 1 -{- p — I
^

p

EXERCISES.

1. A man insures his hfe for $5000 at the age of 30, pays

for his insurance a premium of 80 dolhirs a year for 32 years,

and dies at the age of 02, immediately before the 33d payment

would have been due. If the com])any gains 4 per cent, inter-

est on all its money, how much does it gain or lose by the

insurance ?

Note. Computations of this class can be made with great facility by
the aid of a table of logarithms.

2. What is the present \alue of a dollarcdue u years hence,

interest being reckoned at c per cent. ?

Note. If p be the present value, Problem I gives the equation,

K^ + ioo)"='^-

3. What is the present value of 3 annual payments, of a

dollars each, to be made in one, two, and three years, interest

being reckoned at 5 per cent. ?

4. What is the present value of w annual payments, of a

dollars each, the first being due in one year, if the rate of in-

terest is c per cent. ? What would it be if the first payment

were due immediately ?

I

in-
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BOOK VIII.

RELATIONS BETWEEN ALGEBRAIC
QUANTITIES.

Of Algebraic Functions.

31T. Def. AVlion ono quantity depends npon an-

other in sucli a way that a change in the value of tlit;

one i)i'oduces a cliange in the value of the other, the

latter is called a Function of the former.

This is a more general definition of the word " function " than that

given in § 49.

Examples. The time required to perform a journey is a

function of the distance because, other things being equal, it

varies with the distance.

The cost of a package of tea is a function of its wciglit, be-

cause tlie greater the weight the greater the cost.

An algebraic expression containing any symbol is a func-

tion of that symbol, because by giving different values to the

symbol we shall obtain different values for the expression.

Dcf. An Algebraic Function is one in which the

relations of the quantities is expressed by means of an

algebraic equation.

ExAMPi E. If in a journey wo call t the time, s the average

speed, and d the distance to be travelled, the relation between

these quantities may be expressed by the equation,

d = si.

4.ny one of these quantities is a function of the other two,

defined by means of this equation.

An algebraic function generally contains more than one

'M

bi:'
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letter, and therefore depends upon several quantities. But we

may consider it a function of any one of these quantities, se-

lected at i)k'asure, by su})])ositifif all the other (luantities to

remain constant and only this one to vary. For example, the

time required for a train to run between two points is a func-

tion not only of their distance a])art, but of the s})eed of the

train. The si)eed being sui)i)osed constant, the time will bo

greater the greater the distance. The distance being Constant,

the time will be greater tlu^ less the speed.

Def. The quantities between whicli tlie relation ex-

pressed by a function exists are called Variables.

This term is used because sucli quantities may vary in value, as in

the preceding examples.

Def. An Independent Variable is one to which ^^ e

may assign values at pleasure.

The function is a dependent variable, the value of which is

determined by the value assigned to the inde})endent variables

Drf. A Constant is a quantity which we suppose

not to vary.

Rem. This division of quantities into constant and varia-

ble is merely a supposed, not a real one ; we can, in an algebraic

expression, suppose any quantities we please to remain constant

and any we please to vary. The former are then, for the time

being, constants, and the latter variables.

Illustratiox. If we put

d, the distance from New York to Chicago
;

s, the average speed of a train between the two cities

;

t, the time required for the train to perform the jour-

ney,

then, if a manager computes the different values of the time t

corresponding to all values of the speed .<?, he regards d as a.

constant, s as an independent variable, and t as a function ofs.

If he computes how fast the train must run to perform the

journey in different given times, he regards t as the independ-

ent variable, and s as a function of t.

4^

I
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cities

;

e jour-

time t

d as a

m of.s.

rm til6

lepend-

I

I

Wlicn we liave any cciiiation between two variiil>les, we
may re<jfard eitlier of them as an independent variable and the

other as a function.

Example. From the equation

ax -^lij = c,

we derive X

II

a ^ a'

(fX c

in one of whicli x is expressed as a function of?/, and in tlie

otiier y as a function of .v.

218. Names are ^nven to particular classes of functions,

among which the following are the most common.

1. Def. A Linear Function of several variables is

one in wliicli eacli term contains one of the variables,

and one only, as a sinij)le factor.

Example. The expression

Ax + By + Cz

is a linear function of .'r, //, and z, when A, B, and Care quan-

tities which do not contain these variables.

A linear function dill'ers from m function of the first degree

(§ iyl) in having no term not multiplied by one of the varia-

bles. For example, the expression

Ax + By^-C
is a function of x and y of the first degree, but not a linear

function.

The fundamental property of a linear function is this:

// all the variables he viuJtif)Jie(l hy a coimnoii fac-

tor, the function irill be Dinltiplied bij the same factor.

Proof. Let Ax -\- By -{- Cz be the linear function, and r

the factor. ]\rultii)lying each of the variables x, y, and z by

this factor, the function will become

Arx + Bry -\- Crz,

which is equal to r {Ax + By -j- Cz).

111-,
.( .tit

I'
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i

Moreover, ff linear fuuctloii is the only one which pos-

sesses this properii/.

2. D(f. A Homogeneous Function of several va-

rial)l('s is one in which each tenii is of the same degree

ill the variables. (Compare § 52.)

Example. Tlio ('X])rossion aa^-\-h''^// + r>/-z-\-(fz^ is homo-

geneous and of the (hh'd de^^rco in tlie variables x, i/, and z.

Rem. a Hnear fiiuetiun is a homogeneous function of the

first degree.

FU.VDAMENTAL PROPERTY OF IIOMOOENEGrS FUNCTIOXS.

If all tlie variables he itutltiplied hij a, coninioii faetor,

any honio^cueoiis function' of the n*'* (h'<^ree iib those I'd-

riahles icill he itiultipUed by the ii^'*^ power of that factor.

Froof. If wc take a homogeneous function and put rx for

X, ry for y, rz for z, etc., then, because each term contains .r,

y, or z, etc., n times in all as a factor, it will contain r n times

after the substitution is made, and so will he multiplied by r'K

3. Def. A Rational Fraction is the quotieiit of two
entire functions of tlie same variable.

A rational fraction is of the form,

a -\- hx -{- rx^ -f- etc.

m + nx + px^ -f etc.

Any rational function of a variable may be expressed as a

rational fraction. Compare § 180.

4

i,

Equations of the First Degree between Two
Vjiritibles.

219. Since we may assign to an independent variable any

values we please, we may suppose it to increase or decrease by

regular steps. The difference between two values is then

called an increment. That is,

Def. An Increment is a quantity added to one

value of a variable to obtain another value.

1

I
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to one

Y

IiEM. If WO (liininisli the variable, tlic increment is

negative.

Tlienrem. In a function of the first clogroo, oqiial in-

crements of the in(l<'])('udent variable cauae equal incre-

ments of the function.

Example. Lot x bo an independent variable, and call u

the function -^x -\- 11, so that wo have

If we give x the successive vahios —2, —1. 0, 1, 2, etc.,

and find the corresponding values of the function n, they

will bo

Values of r, —2, —1, 0, 1, 2, 3, 4, etc.

« u. 8, it
I, 1), 1;U, 11, l.V|, ir, etc.

We see that, the increments of x being all unity, those of

y a 3 all \\.

General Proof. Let an -\- hx = c be any eciualion of (lie

first degree between the variable x and the function ii. Solving

this equation we shall have

c Ix ^ _^
""

a ~ a a
'

Let US assign to .r the successive values,

r, r 4- //, r -\- 2/i, etc.,

the increment being // in each case. The corresponding values

of the function u will be

c h
^

c h
^

h , c h
^

a a ' a a " '

9J)

//, etc..

of which each is less than the preceding by the same amount,

]i. Hence the increment of u is always h, which proves
a -^ a

^

the theorem.

2*iO. Gtometric Construction of a Relation of tJie First

gree. The relation between a variable x and a function ii

of this variable may be shown to the eye in the foliowin

Deg)

eye 'ay:

15
J'4 ^i
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Take a base lino AX, mai'1< a zero point npon it and from

this zero point lay olT any valucH of./; wo please, 'riion at each

])oint of the line ('(irresjtonding to u value of ,r erect a vertical

line e(|ual to the cori'espoiulin;^ value of n. If ii. is positive, the

value is measured upward; if negative, downward. The lino

drawn tiirouudi the ends of these values of y. will show, hy the

distance of each of its points from the base line AX, the values

of 11 corrcspondinjT to all values of x.

Let us take, as an example, the e(iuatioii

5u + 3.r = 10,

3
the solution of which lmvcs w = 2 — -x.^

5

Computing the values of n corresponding to values of x

from —3 to -f-G, we find :

X — — «), ~— rV,

u= +3^ +3 J,

1,

3

0, +1, +2, +3, +4, +r., +0.

2, Ih h I -I -1, -il

Laying ((ff tliese values in the way just described, we ha/e

the above figure. AVberevcr we choose to erect a value of u,

it will end in the dotted line.

We note that by the projierty of functions of the first de-

gree just proved, each value of ti is less (shorter) than the pre-

ceding one by the same amount ; in the present case by ^ • It

is known from geometry that in this case the dotted line

through the ends of fi will be a straight line.

We call this line through the ends of y the equation line.
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-X

iTul from

n at each

II verticul

;itivc, thu

The lino

\v, by the

[he values

lues of z

2'il. When wc can onoo draw this slrai<^ht lino, wo can

find the value of y corresponding to every value of x without

using the ecimition. We have only to take the point in tho

base lino corresponding to any value of q-, and by measuring

the distance to the line, we shall Imve the corresponding vahio

of tt.

Now it is an axiom of geometry that one straight line, and

only one, can be diuwn between any two points. Therefore,

to form any relation of the first degree we ]>Ieaso between x

and )(, we may take any two values of ;/•, assign to them any

two values of u wc please, ])lot these two pair of values of v in

a diagram, draw the ecpiation line through them, and then

measure olf, by this line, as many more values of y as wo

l)leaso.

ExAMPLK. Let it bo required that for u- = + I we shall

liave u = -f-1, and for x = +•), u = + li. What will be the

values of?/ corresponding to »• — — ',], — ^, — 1, 0, etc.

Drawing the base line AX below, we lay off from 1 the ver-

tical line -f 1 in length, and from the point 5 the vertical line

4- 2. Then drawing the dotted line through the ends, wc

measure off different values of u, as follows:

a: = —3, -2, -1, 0, +1, -j-2, +3, +4, +5, +0, etc.

n = -1, -^, 0, +1, 1, -f H, +2, +n, +3, +U, etc.

,
4-0.

•1, -U.

we liave

ll'ie of if,

,^

first de-

thc
]
ire-

)V _ It

Itted line

ion line.

EXERCISES,
1. Plot the equation 2w -f dx = G.

2. Plot a line such that

for X =: — G we shall have u = -{- 4,

for X = \- 6 " " w = — 4,

and find the values of?, for a: = 1, 2, 3, 4, and 5.

II
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V
i,

233. The algebraic problem corresponding to the con-

struction of § 220 is the following:

Ilai'lng given two values of y corresponding to two

given values of X, it is required to construct an equation

of the first degree such tliat these two pairs of values

shall satisfy it.

Example of Solnfion. Let the requirement be that of the

equation jjlotted in tiie preceding example, namely,

for X = 1 we must have ?/ = 1,

for ^ = 5 a a U = 3.

The proljlcm then is to find such values of a, b, and c, that

in the equation
ax + '.' — c, (1)

we shall have u = 1 for r = 1, and u = 3 for x = 5. Sub-

stituting these two pairs of values, we lind that we must have

axl + bxl = Cy

axo + l/x3 = c;

or a + h - c,

ha -J- oh ~- :.

Ilere a, b, and c are the unknowb 'juantlties whose values

are to bo found, and as we have 0:iiy iwo equations, we cannot

find them all. Let us therefore find a and b in terms of c.

Multiplying the first equation by 3, and subtracting the

product from the second, we have

2a = — 2c or a = — e.

]\rultiplying tlic first equation by 5, and subtracting the

second from the product, we have

2b — 4c or b

Substituting these values of a and b in (1), we find the re-

quired equation to be

2cu — rx = c.

Wo may divide all the terms of this equation by c (§ 120,

Ax. Ill), giving
2u — X = 1,

1



tlic re-

(§ 1^0,

\

i

OF EQUATIONS OF THE FIRST DEGREE. 220

thus showing that there is no need of using c. The sohition

of this equation gives

1 + X
" = --r'

from which, for x = —3, —3, —1, etc., we shall find the same

values of u which we found from the diagram.

EXERCISES.

Write equations hetwecn x and y which shall be satisfied

by the following pairs of values of x and [/.

I. For X = 2, ij =. 1; and for .r = o, y = — 1.

2.

3-

4-

5-

For X =1 — y — 1 ; and for x = +2, ?/ = +1.

For X = —~), ij =. -\- 2 ; and for x = -\-6, y = -—2.

For X = 0, ?/ = — 7 ; and for x = IT), y — 0.

For X = 2^), 1/ z= 2 ; and for x = 30, ?/ = 3.

233. Gcomcfric Salution of Two £qtfatlo?is tcith Two Un-

Jcnown Quantities. The solution of two equations Avith two

unknown quantities consists in finding that one pair of values

which will satisfy both equations. If we lay olf on the base

line the required value of .r, the two values of// corresponding

to this value of ar in the two equations must be the same ; that

is, the two C(iit((tioii lines inust cross cacli other at the

point thus found. Ilcncc the following geometric solution:

I. Plot the two equations from the same base line and
zero point.

II. Continue the equation lines, if necessary, until

they intersect.

III. Tlie distance of the j)oint of intersection fronh the

base line is the v(due of y U'liieh sutisfes both equations.

IV. Tlie distance of the foot of the y line from tJie

zero point is the required, value of jc.

EX ERCISES.

Solve the following etfuations by geometric construction

:

1. X — 2?/ = 3, 2x + w = o.

2. 2u 4- 7a- = 4, 2>u + r — 1.

f
\"^
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!!;

1 *<

n

w <

234. Genmctric Explanation of Equitmhnt and Inconsist'

ent Efjuatinns. If wc have two cquivaloDt equations (§ 200),

each vahic of .r will give the same vahie of the other quantity

n or ?/. Hence tlie two lines representing the equation will

coincide and no definite point of intersection can be fixed.

If the two equations
au -\- bx = c,

a'u + h'x = c',

are inconsistent we shall have (§ l*i;3),

b b'

a a

If b be any increment of .r, the increments of ?* in the two

equations (§210) will be and ,• Therefore these
^ a a

increments will be ccpial, and the two equation lines will be

parallel. Hence,

2\) iiicoJisistent cqiintimis corrc.ywnd parallel lines,

which hare no pniiit of intersection.

If the two equations are equivalent (§ 141, 143), their lines

will coincide.

Notation of Functions.

225. In Algebra we use symbols to express any numbers

whatever. In the higher Algebra, this system is extended

thus :

TF b may use any symbol, having a letter attached to

it, to express a function of the quantity represented hy

that letter.

Example. If we have an algebraic expression containing

a quantity .r, Avhich we consider as a function of x, but do not

wish to write in full, we may call it

F{x), or 0{r), or [.?•], or Ax,

or, in fine, any expression we please which shall contain the

Bynibol X, and shall not be mistaken for any other expression.

In the fust two of the above expressions, the letter x is enclosed in

parentheses, in order that the expression may not be mistaken for 3' mul-

tiplied by F, or (p. The parentheses may be omitted when the reader

knows that multiplication is not meant.
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The fundamental principle of the functional notation ia

this:

]]licih (t synihul jcith a letter attached represents a
faiiet'ion, then, if we sjihstitute aiiij other quant itj/ for
the letter attacliecl, the eombi nation will represent the

function found by substituting that other quantity.

Example. Let us consider the expression ax^ + 5 as a

function of x, and let us call it ^ {x), so that

(.?•) = ax^ -{- h.

Then, to form <p (i/),
we write ?/ in place of x, obtaining

<A il/) = f(f + ^•

To form (.?; + //), avc write x-]-ij in place of x, obtaining

(^{x ^ y) = a {x + /y)2 + h.

To form (p{a), we write a instead of a-, obtaining

{a) = r/3 + I).

To form (nij^), we put aif in place of x, obtaining

(ny^) = a {ny'^Y + ^ = C-^V^ + ^«

The equation (2;) = will mean

az^ + b = 0.

EXERCISES.

Suppose {x) = CLX^ — (ih:, and thence form the values of

I. 0(//). 2. 0(,l). 3. {/>//).

4. (.r + v). 5. (,r 4- «)• 6. (,(r — «).

7. 0(.i' + rt//). 8. <p{x — ay). 9. 0(.r2).

Suppose i^(.r) = art-*^, and thence form the values of

10. F(y). II. F{2y). 12. F{:\i/).

13. /X-'^ + //). 14. F{~^-y)- 15' ^'Ml).

Suppose / (.(•) = .^•2, and thence form the values of

16. /(I). 17. /C''^). t8. /(•'•')•

19. /(.r"). 20. /(:r=). 21. f {x^).

(*

11snTTi
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n

V !

2 2. Prove that if we put (.r) = a^, wc shall have

(a: + ?/) = (.r) x (.y), (^7/) = [</> (^^Ol^ = [0 (Z/)]^'

Let lis put (;;?) = m {m — 1) (??i — 2) {m — 3) ; thence

form the vahics of

23. 0((]). 24. (,-.). 25. 0(4).

26. 0(3). 27. 0(2). 28. 0(1).

29. 0(0). 30- '^(-l)- 31- 0(-2).

Fuiictions of Several Variables.

220. An algebraic expression containing several

quantities may be represented by any symbol having

the letters which rejiresent the quantities attached.

Examples. We may put

(.r, y) z= ax — hj,

the comma hcing inserted between x and y, so that their

product shall not be understood. We shall then have,

(/;?, 0}) = (tni — hn.

{y, x) = ay — bx,

the letters being simply interchanged.

{^ + U, X — y) = a {x + //) —b{x — y)
- [a - h) X 4- (« + h) y.

{a, h) = «2 — 52.

(5, n?) = cb — ha — 0.

(r* + />, ^^) = n {a + i) — ^/i^.

(^, ft) = ft3 — ^f(^

etc. etc.

If we put (ft, /;, r) = 2a -\- 3Z* — Hr, we shall have

</> (;^ ^> y) = -•^' + 32 — 5^.

{z, y, x) = 2z + '3y — ox.

{ui. 7)1, ?».) = 2?w + oin + 5/» = IQm,

0(3,8, G) = 2-3 + 38 — 5-G = 0.

Let us put

EXERCISES.
(x, y) == dx — 4//,

f{^'> y) = ^^ + ^nh

f{x, y, z) = ax + Z>?/ - ahz.



i

USE OF INDICES. 2313

hence

^).

veral

IVlllg

Tlienco form tlic expressions

I. (p{y,x). 2. (I>{(t,h). 3- •i (3, 4).

4. 0(4,3). 5. 0(10,1). 6. f(a, b).

7. f{l>, a). 8. f{y, .r). 9- /(r, -3)
lo- /(y.« —p)' II- /(^' •*•.//)• 12. f{b, a, 2)

13. f{a, b, r). 14. /(^^^ l/^. >.^).

15. /{—((, —b, —ab).

T , , / s m (»i — 1) (//< --•^)

^ ^ '^ >< {ii — 1) (/i — •^)'

Find the vahies of

16. (3,3). 17. (1,3). iS. (0, 3).

19. ('i, 3). 20. (r, 3). 21. (8, 3).

22. {2, -1). 23. (3, --^i). 24. (4, -:>).

their

Use of Indices.

2'16a. Any iiuinber of clifT«nviir quantities may be
represented by a common symbol, tht' distinction being
made by attaching numbers or accents to the symbol.

EXAMPLES.
1. Any n different ({nantities nuiy be represented by the

symbols, Pi, 2^2^ Pi> - - - • Vn-

2. A prodnccr desires to have an algebraic symbol for tbe

amonnt of money which he earns on each day of the year. If

he calls q what he earns in a day he may put

:

<7i
for the amonnt earned on January 1,

.-, a a a .

.

>)

etc. '•'
" " '' etc.,

73 1
'^^y

q^o " " " February 1;

and so on to the end of the year, when

(73 5 will be the amount for Decemljer 31.

Def. The distinguishing numbers 1. 2. 3, etc., are

here called Indices.

A symbol with an index attach»'(l may represent a

function of the index, as in the functional notation.
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bcrs

EXERCISES.
Lot lis put at = f {I -\- 1). Tlicn find the value of

2. Prove the following e<iUiitioiis by computing Loth meni-

a^ + «3 = 3 f<-i'

5
a

I 4- ((2 +^'3=3 ^3-

G
ai + a. + a^ -{- a^ = 3^4-

If we put *Si = 1 + 2 + 3 . . . . + /, Ave shall liave

S\ =^ 1.

^S'g = 1 + 3 = 3.

A'g = 1 + 2 + 3 — 0, etc., etc.

Using the preceding notation, find the values of the ex-

pression.^ :

5. 2,s'5 — rtg. 6. 2,S'6 — a^.

2211. Sometimes tlie relations between quantities distin-

guished by indices are represented by equations of the first

degree. The following are exami)les:

Let us have a series of quantities,

vj Q, -^11 -^'2' -^3' -''^i'
etc.;

connected by the general relation,

Ai,i = Ai + ylj_i. (a)

It is required to express them in terms of A^ and A^.

, We put, in succession, 1 = 1, i = 2, i = 3, etc. Tlien,

when 1 = 1, we have from (a),

A^ = Ai + A„.

When I = 2, A.^ = A^ + A^ = 2J, + Jq-

i = 3, A^ = A^ + .lo = 3.1, + 2Jo.

i = 4, vis = yl^ 4- A., 7= 5.1, 4- 3Jo.

i =r 5, ylfi = vlg 4- ^'li = H^li 4- 5Jo,

and so on ind(.4initely.

ir
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li mem-

»f the cx-

es distin-

(.)

A,.

Ic. Then,

0*

0*

0'

0'

EXERCISES.
1. If Ai.-i = Ai — Ji^i,

what will he the values of A„ . . . . Am, and in what wa}' may
all siil)sequeiit values be deteniiiued?

2. If Ai,i = 2Ai-A„
find A 2 to J 5 in terms of J,, and .li.

3- If Ail = lAi 4- Ai_-[, find A^ to A^.

4- If Ai = Ai^i + h,

find the sum .f^ + A^ + A„ + . . . . + A,t, in terms of A q,

h and 7i. (Comp. § 209, Proh. V.)

5- If Ai I = rAi,

find Jj -f Jo + J3 + . . . . + ^I,,, in terms of A^^ and r.

6. If Ji^ 1 = ii'Ai + yli 1,

find A», A^ Aq, in terms of Aq and Jj.

Miscellaneous Fuiictions of Numbers.

238. We present, as interesting exercises, certain elemen-

tary forms of algebraic notation much used in Mathematics,

and which will be employed in the present work.

1. When we have a series of symbols the number
of which is either indeterminate or too great to be all

written out, we may write only the first two or three

and the last, the omitted ones being represented by a
row of dots.

Examples. a, b, c, . . . . t,

Xf lif O) .... ^Of

12 wAm /W^ • k • tt/y

n being in the last case any number greater than 2.

The number of omitted symbols is entirely arbitrary.

EXERCISES.
How many omitted expressions are represented by the dots

in the following series:

Hv

11:11

I • J.* /4> y Oy • • • • 71* 2* Xy'^yijytttttl — /C*
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n, li — 1, n — ^, . . . . n s.

n, it — 1, n — '^, . . . . n — .s — 1.

3-

4-

5-

6. )i, n — 1, n — '>l, . . . . n — s -\- \.

What will be the last term ill the series:

7. 2, 3, 4, etc., to n terms.

8. 11, n — 1, n — 2, etc., to s terms.

9. 2, 4, G, etc., to k terms.

2. Product of the First n Numbers. The symbol

n\

is used to express the product of the first n numbers,

1-2-3. . . .n.

Thus, 1 ! = 1.

2! = 1.2 = 2.

3! = 1-2-3 = 6.

4! = 1.2.3.4 = 24.

etc. etc.

It will be seen that 2! = 2-1!

3! = 3-2!

And, in general, n\ =: n {n — \)\

whatever number /* may represent.

EXERCISES,
Compute the values of

I. 5! 2. 6

!

3! 4!
_8|_

^' 3! 5!

8!

2w = 2««!6. Prove the equation 2-4. 0-8 . .

7. Prove that, when ;ms even,

w, _ n {n — 2) (w — 4) .... 4.2

2 • ~ ~" ' M """" *

3. Binomial Coejjicients. The binomial coefficient

niji — V){n — 2 ) .... to 5 terms

J../&.o....i9

is expressed in the abbreviated form,
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c:
the parcntlicses being usod to show that what is meant

n
is not the fraction •

s

EXAMPLES.

Vol ~ l'2'3"k'5 ~ "

CO

C)

n= V = n.

_ v{n— 1) 2-1

m =

i-^-a n ~^'

(n + 4 ) {>i + 3) (;/, + 2 )

1.2-3

EXERCISES.

Compute the vahies of the expressions

:

Prove the formuke

5!
^' \2/ ~ 2! 3!

5- U + i/
-

s + lVs/'

^ (':)+(;;)=m

//A _ 71

1

\s) ~ s\ {)i — s)l

4

I'.H
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CHAPTER I.

THE DIVISIBILITY OF NUMBERS.

•i'i*.). Def. Tlie Theory of Numbers is a branch

of niatlieniatics which treats of tlie properties of integers.

Def. An Integer is any whole number, i)ositive or

negative.

In tlic theory of iuimbcr.s the word mimhcr is used to ex-

press an integer.

Def. A Prime Number is one which has no divi-

sor except itself and unity.

The series of ])rimc numbers arc

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, etc.

Def. A Composite Number is one which may be

expressed as a jn-oduct of two or more factors, all

greater than unity.

Rem. Every number greater than 1 must be either prime

or composite.

Def. Two numbers are prime to each other when
tliey have no common divisor greater than unity.

Example. The numl)ers 24 and 35 are prime to each

other, though neither of them is a prime number.

Rem. a vulgar fraction is reduced to its lowest terms when

numerator and denominator are prime to each other.

if

w
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Division into l*riino Factors.

230, Every composite nunibor may by (.Icl'mition be di-

vided into two or inoiv lUctors. If iiiiy of tiiese factors are

composite, tlicv mav be airuin divided into other factors.

When none of the factors can be further divided, tlicy will all

be ])rimc. Hence,

Tiii:oiii;m. Krcry composite niunhcr Diaij be divided

into fn'iinc factors.

KXAMI'LE.

"Whence,

180 rz: i).'Z{),

9 = ;m},

20 = 4-5 = 2.2-5.

180 = 2.2-;j.3.5 = 22.32.5.

Cor. 1. Because every numl)cr not prime is compositr,

and because every coin|)(>site number may be divided into

prime factors, we conclude: Every uuniher is either prime
or divisible by a pj'ime.

Cor. 2. Every nunil)er, prime or composite, may be ex-

pressed in the form
2)°-q^ry etc., {a)

where 2^, q, r, etc., are difTerent i)rime numbers;

«, /3, y, etc., the exponents, arc positive integers.

Rem. If the num1)er is prime chere will be but one factor,

namely, the number itself, and the exponent will be unity.

EXERCISES.
Divide the following numbers or products into their prime

factors, if any, and thus express the nund)ers in the form {a) :

I. 24. 2. 72. 3. 200. 4. ir.O. 5. 225.

6. 25G. 7. 91. 8. 143. 9. 300. 10. 217.

II. 30:2. 12. 1.2.3.4.5.0.7.8.9.

IiEM. In seeking for the prime factors of a number, it is

never necessary to try divisors greater than its square root, for

if a number is divisible into two factors, one of these factors

will necessarily not exceed such root.

ui

4ii
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'I

Coninioii Divisors of Two XiiiiiIkts.

*Z\\\, 'I'hkoukm I. // hvo funnhrrs have a common
factor, tln'w ftain will Ikwc tliat same factor.

Proof. Ll'I a lie the cojiiinon luctor
;

///, tlio product of all (he otlici lUctons in the

OIK* number;

Hi tljL' oorrc'spoiuUng product in tlie other

innu'ier.

Then the two numbers will l)o

am and an.

Their sum will be a {in + //).

liecau.so m and /i are whole numliers, />/-f-w will also l)c a

whole numl)cr. Therefore a will be a faclor of am -{-an.

TilFOUKM II. If tiro iinnilx'i's hare a common factor,

their (lijferencc will have the same ftctor.

Proof. Almost the same as in the lust Iheorem.

Cor. If a number is divi.<ible by a factor, all niulti[)les will

be divisible by that factor.

Hem. The i)receding theorems may be expressed as follows

:

// tiro imnitjers are (tivisil)Ie hi/ the same divisor,

their sioDi, it inference, and multiples are all divisiljle bij

that divisor.

Rem. If one number is not exactly divisible by another, a

remainder less than the divisor will be left over. If we put

/>, tne dividend;

d, the divisor;

we shall have,

or

q, the quotient;

r, the rcnuiinder

/) — d(j + r,

J) — dq = r.

Example. 7 goes into 00 times and 3 over. Hence

th IS means
00 = r-O + ,3, or 00 — 7-0 — 3.

M.
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rs in the

he otlu'V

1 also l)C a

- an.

on factor,

iltiplcs will

u.< TuUows

:

r (lir'isor,

risihlc hU

iiiiother, Ji

' we put

IvLi*. Hence

*ilVi, Pnom.KM. To pud /hr. ^rrnfrsl cninwnn tJirhor

of hiut nn nihfi'ti.

Lut III and n bu the mmibcrs, and let /// be llie <,'reaiter.

1. Divide in by n. If tlie reniainder is zero, n will no t!io

divirior r('(|uired, becai.sc every nund)er dividcri itscH'. If Ihero

IS a remainder, let q be the (|Uotieiit and ;• the remainder.

Then m — nq = r.

Tiet d bo the common divisor ref|uired.

lU'caiise m and ;/ are bolh divi.sibjc by ^/, m — nq must

also be divisible l)y d (Theorem II). Therefore,

r is divisible by d.

Ueiice every common divisor of m and n is also a common
divisor of yi and y. Con\ersely, ])ecauso

m = ?iq -\- r,

every common divisor of n and ;• is also a divisor of ?n. There-

fore, the greatest common divisor of m and n is the same as

the greatest common divisor of n and ;•, and we proceed with

thet;^ last two numbers as we did with vi and n.

2. Let r go into n q' times with the remainder /.

Then n = rn' + r',

or n — rq' = r'.

Then it can be shown as before that d is a divisor of r', and

therefore the greatest common divisor of r and r',

3. Dividing r by r\ and continuing the process, one of two

results must follow. Either,

u We at length reach a remainder 1, in whicli case the

two numbers are prime ; or,

ft. We have a remainder which exactly divides the pre-

ceding divisor, in which case this remainder is the divisor

required.

To clearly exhibit the ])rocoss, we express the numbers m,

n, and the successive remainders in the following form :

IG

«
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'
f;

I

(

m = n-q -\- r,

n = r-q' + r',

r = r'-f/ + r",
,,, ,,,

7 -f > J

etc.

(r < 7i)
;

(r' < r)
;

(/•'</•);

r =; .7 +y-, {r'" <r");
etc. etc. etc.,

until wc roach a remainder erjual to 1 or 0, when the series

term i nates.

EXERCISES.
I. Find the G. C. D.* of :?40 and 155.

Divirlend. Div. Quo. Rom.

^40 = 155-1 + 85.

155 = 85-1 + TO.

85 = 70.1 + 15.

70= 15.4+10.
15 = 10-1 + 5.

10 5.2.

Tlierefore 5 is the greatest co'^mon divisor.

Note. Let tlio stiulont arranjrt" all the followinrr oxorcisos in the

above t'orni, lir.si dividiiii^ in the usual way, if he liucls it uecessary.

Find the La'eatest common divisor of

2. 399 and 427.

4. 8 and 13.

6. 799 and l'.\32.

8. '250 and G25.

3. 91 and 131.

5. 1000 and 212.

7. 800 and 1729.

9. 1000 and 370.

10. If ;; he a nnmher less than 71 and prime to 7i, show that

91 — 2' i^ '^l^*' prime to 7i.

11. If p 1)0 any nnmher less than n, the greatest common
divisor between 71 and /; is the same ti5 that between 71 and

n —p.

12. If n is any odd nnmher, -
;^— and — ,

— are l)oth
2 2

prime to it.

CoroUaries. 1. When two nnmhers are divided by their

greatest common divisor, their ((notients will be prime to each

other.

1

* The letterH (J. C. D. are an abbreviution for (Jreatcst Conunon Divisor.
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GEARING OF WHEELS. 243

2. Conversely, if two numbers, h and //, j)rinie to each

otlur. are cacli multiplied by any number (/, tiien d will be the

G. CD. of (In and dn'.

*i.'>.*». flcariiifj of ]\']i((h. An interesting problem con-

nected with the greak'.st com-

mon divisor is aU'ordcd bv a

Common juiir of gear wheels.

Let there be two wheels, the

one having m teeth and the

other n teeth, gearing into each

other. If we start the wheels

witli a certain tnotii of the one

against a certain tooth of the

other, then we have the questions:

(1.) Uow many revolutions must each wheel make before

the same teeth will again conu' together ?

{'I.) AVith how Mumy teeth of the on-' will each tooth of the

other have geared ?

Let (( be {\\v rei|uired number of (urns of the iirst wheel,

having /// teeth.

Lety; be the required number (»f turns of the second, bav-

in 2: n teeth.

Then, because the Iirst wheel has m teeth, fpn teeth will

have geared into the other wheel during the y turns. In ih'.'

same way, pn teeth of the second wheel will have geared into

the first. But tliesc numbers must be e(iual. Therefore,

Avhen the two teeth again meet,

pn r= qm.

Conversely, for every pair of numbers of revolutions p and

f/, wliieii fullil tlie conditions,

pn = qm,

the same teeth will come together, because each wheel will

have made an entire number of revolutions. This ecjuation

givi's

p _ m
q
~ n

m

m
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1)1

\ «l

nonce, if we reduce Ihe fraction - to its lowest terms, wo

sliall liave the smallest number of revolutions of the respective

wheels which will bring the teeth together again.

To answer the second question :

After the lirst wheel has nuide q revolutions, qm of its teetli

have passed a fixed ])oiiit. Any one tooth of tlie other wheel

gears into every u^'^ passing tooth of the Hrsi wheel. 'JMierefoie

any such toolh has geared into teeth of the first wheel,

that is, into;; teeth, because, from the last equation,

qmJ— = p.
n

If (/ be the G. C. D. of ni and n, then

1)1 =. dp,

n = (Iq
;

or

Q =
ir

n

d

Therefore each tooth of the one wheel has geared into only

every d*'*- tooth of the other.

In the figure on the preceding page, ?; = 21 and n = 0.

Hence, d-=. 3, and each tooLli of the one will gear into every

third tooth of the other. The nuni])ers on the large wheel

show the order in which the <rearing occurs.

llow long soever the wheels run, the same contacts will

be repeated in regular order. Hence, // each tooth of the

one wheel must gear irith everij tooth of the other, tJiO

liiLinbers m and n Diust be prune to each other.

EXERCISES.

I. If one wheel has 40 teeth and the other 10, show how

they will run together.

Show the same thing for the following cases:

m — 72, n = 15.

}/i — 30, n = 25.

VI = 24, n = IS.

vi = 24, 71 — 7.
h
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Relations of Numbers to tlieir Dij»its.

234, III our ordinary mctliod of expressing nunihers, the

second digit toward the right expresses lU's, the third lUO's,

etc. IMiat is, each digit expresses a power of 10 correspond-

ing to its position.

Def. The number 10 is the Base of our scale of

nuiiienition.

Note. The base 10 is entirely arbitrary, and is supposed

to have originated from the number of the thumbs and lingers,

these being used by ])rimitivc peoi)Ic in counting.

Any other number might e([ually well have been chosen as

a base, but in any case wo should need a number of separate

characters (digits) ecpuil to the base, and no more.

Had 8 been the base, we should have needed only (he

digits 0, 1, 2, etc., to 7, and dilTerent combinations of the

digits would have rei)resenled numbers as follows:

1 = 1,

7 = 7,

10 = 1-8 + = eight.

17 = 1-8 + 7 = lifteen.

20 = ::i-8 + = sixteen.

50 = 5-8 + = forty-six.

234 = 2-82 4- ;J-8 + 4 = one hundred fifty-six,

etc.

Let us take the arbitrary num])er z as the base of the scale.

As in our scale of lO's we have

234 = 2.102 + 3.10 _|_ 4,

go in the scale of ^'s the digits 2:54 would mean
2^2 + 3,v + 4.

In general, the combination of digits ahcd Avould meano
a::^ + bz- + cz + d.

I)i\ isihilily of Nmiibers aii<l ihv'w Dibits.

*^I55. 'ri[H()iii:Nr. Tf the, sum of the (li<:>ifs of niiii luiin-

hcr he sul)lr(iclc<l j'roin the nuiuber itself, the rciiuiimlcr

will he dluislbic bij z — l.
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n',

)\\

Proof. Let the digits be (u h, c, iL Tiie number expressed

uz^ + hz^ + cz -\- (I

n + Zi -{- c -\- d

will be

Sum of diixits

Subtracting, rem. = a{z^—\) + b{z^—\) -\- c{z—i).

The factors z^' — I, r — 1, and z — \ arc all divisil)le by

2; — 1 (§ U;]). Hence tlie theorem is proved. (§ ;il31.')

Tii 1:011 KM. Ill (iiiy HCdlo. havui<2 z an its hast, tlie SJini

of the (limits of (Uiij nitnibcr, irJtcii dirided by z — 1, will

Icava the same remiilndcr as irill tlie niuubcr itself icheib

so divided.

If we put: n, the number; s, the sum of the digits
;

r, r', the remainders from dividing by z — 1;

fj, f/, the quotients ; we shall have,

Number, n = q {z — I) -{- r

Sum of digits, s = <f {z — 1) + r'

Ilemaindcr, (7 — q') {z — 1) -\- r — r

.

Because u — s and {q — q) {z — 1) are both divisible l)y

z — 1, their diiference r — r' must be so divisible. Since r

and r' arc both less liian z — 1, this remainder can be divided

by z — 1 only when r = r', which proves the tlieorem.

Zero is considered divisible by all numbers, because a re-

mainder is always left.

If a bo any factor oi z ~ I, the same reasoning will api)ly

to it, and therefore the theorem will be true of it.

In our system of notation, where z = 10, the above theo-

rems may be i)ut in the following well-known form:

7/ /lie sniii of the di<Jitsof any imiidtcr Ite divisible

by fj or 0, the iiuuiber itself will he so divisible.

These are the oidy numbers of which the theorem is true,

because 3 is tlie onlv divisor of U.

TilKoUKM. fj' from any nii inbrr ire subtrael tJir di'Ji/s

of the even ])owers of z. and add f/iose of the alternate

powers, tlie residb will be divisible by 2+1.

J'ru'jf. To
Add

az^ + bz"^ ^- ez -f d
a — I) -I- r — d

Kesult, a{z^-\-\) +b{z^—i) + c{z+ l).
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Tlic factors of a, h, and c arc all divi<ililc by 0+1 (^§ !):»,

94), whc'iico tho result itscli' is S'i divi-siblo.

Applying this result to tbo case of z = 10, we conclude:

//' oiv siihtrdctiiig the siini of the dhjits iti, the jihira

of units, hundreds^ tens of tlioufntuds. etc.. from the sti iih

of tJie (ilteriKite oiicx, the remaimler is dirisible Itij 11,

the nuinher itself is divisible Ijij 11.

ir )n be any factor of z, it will divide all the terms of Iho

number
(cc" + hz"- + cz 4- (h

except the last. Hence, if it divide this last also, it ^vill di-

viile the numl)er itself. Applying this result to the c;ise df

2; = 10, we conclude :

If the hist di1^1 1 of (in 11 iniDihev i^i dirisUtle Inj o fue-

tor of 10, the niunfjer itself is dirisible by that farttn\

The factors of 10 beinij 'i and 5. tliis rule is true of these

numbers <»nly.

It will be remarked that if the base of the system had \)Qv\\

an odd number, w^e could not have distiniruishcd even and odd

nunu)ers by their last (igure, Uo we habitually do.

For e.\ami)le, if the base had been 9, the figures T"-i would

liavc rei)resented what we call sixty-five, which is odd, and 73

"Would have represented what we call sixty-six, which is even.

The use of the base 10 makes it easy todt-tect when a num-
ber is divisil)le by either of the first three prime numbers. 2,3,

and 5. If the hist figure is divisilile bv 'i or .5. the whole num-

H'r so divisible To ascertain whether 3 is a factor, we find

whether the sum of the digits is divisible l»y 3.

Ill taking: the sum, it is not necossary to inchid«' all the dibits, hut in

nddinjr we may omit all ;5's and i)'s, and drop :», 0, or U from the (•uiu as

ol'ti'n as coDviMiicnt. Tims, if tlic iiumhiT were

5»21(i4-271-2,

wo slioiild pcrl'onn the o|)(M':it'ou mentally, thus:

Drop J) 1 w hicli dri>n ; (5. drop : 4 -»- 2 — 0, which drop;

il"

1 ^ 8 + 3 — 10, which leaves a remaindtT 1.

EXERCISES.
1. Prove th.at if ;in even number haves a remainder 1 when

divided by 3, its half will leave u remaiuder 'i when jjo divided.
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2. If from any number Ave subtract tbe sum of units' digit

])lns the j)r()(lu{'t of tlie tens' digit by /, i)Uis the product of

the iumdreds' digit by €-, etc., tlie reniaiinU'r will be divi.siblo

by 10 —i. {i may be any integer, jjositive or negative.)

NoTK. When i — 1, this gives tlie rule of O's and when t = — 1, tho

rule of ll's.

Prime Factors of Numbers.

^,*5(>. FiiisT FuxDAMENTAL Thkoukm. ,i jn'oduct CCUl-

nob bo divided hij (i prime iiinuhrv unless one uj' tJie fac-

tors is divif<ihle hij tluit jtriine niunhcr.

Note. Tliis theorem is not trne of composite divisors. For exam-
ple, neither 8 nor S) is (UviHil)k! l)y (», but the protUict 8.9 = 72 is bo

divisibh?. But if we take as many lUinilMTS as we jih'asi^ not divisihh.' by

7, we shall ahvay.s fintl their pnxluct to leave a remainder when we try

to divide it by 7.

To make the demonstration better understood, we shall first take a
special case

:

The product GGrt is not dlcisibh hy 7, unless a is divisible

Inj 7.

Proof. Su])posc .......... nOr/ div. l)y 7

7 goes into 00 '.) times and 'J over, liecausc 7'0= G.'J, O;)^^ div, by 7

Therefore, by Theorem II, § ;231, "aaTivTby?

I

•)

3 goes into 7 2 times and 1 over. ^lultiply by 2, iUi tliv. by 7

Subtracting, 7rt div. by 7

We have left, « div. by 7

Hence, if OOa is divisible by 7, then a is divisible by 7.

Gauss's Dcmniistraiinn. If it he possible, let am be Ihc

smallest multiple of m which is divisible byy>, when neither a

nor in is so divisible. If a is greater than j), then let p go

into a b times and r over, so that

or a

a

bp

= f'P + r,

= ;•,

Then,

Subtract

Ilemainderj

Or

a)n m\.

in?v^^_

{a — bp) ni

rni

by /).

it

«
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^' digit

hut of

ivi^iblo

-1, tho

ict can-

he fac-

tor pxani-

- 72 it* K<>

ivisil)h; l)y

(Ml we try

irst take a

(
dirisiblc

(liv. l)y 1

mv/by 7

TinTbyl
(livjjty 7

div. i)y 7

lu l>o tlic

lucitlu'V a

let /J go

That is, if a/« is divisible by p, so is r/it, where /• is less

th;iii jK

Tlierefore the siii;illest inultiple of m wliieh fiillils (he con-

ditions must be less than pni.

Therelbre, let a < p. Let a go iuto^; c times and .v over,

so that

p z= ca -{ s,

p — ca = s.or

Then

Siibtraeting,

pm div. by p.

cam

Or,

{p — ((() III.
"

" (by hypothesis).

Therefore, .s> being le?s th:in a. a is not the smallest muKiple;

Avhenee the hy[)othe.sis that a is the smallest is impossible.

General Dciiiun.sfrdiion. Suppose

p, a prime numlter
;

a, number not divisible hy p;
am, a product divisible by;;.

We have to prove that in must be divisible by p.

Tjet ;; go into r^ f/ times. Hecauso a is not divisil)le l»y7>,

a remainder r will be left. That is.

a = jiq 4- r, or a — pq = r.

Let ;• go into /> 7' times and leave am div. by p.

a remaimler / Then,

p — q'd -f r',

and because pm iind n'rm are hoth di-

visible by p, rm is so divisible.

\\\ the same wiiy, if ;•' goes into p
iiider7 times, and leave the remai

I' III will be divisible by/;. Siiu'i- each

pi
I III

nil

fj'rm

])lh

r'm

q r III

«

«

((

<(

;
im.

ot' the remanu Irrs /•. /
.

/• el( mil r III

be less tiian the |)recediii^. we shall at

length reach a remaimler 1, which will give

VI divisible by p. Q. E. D.
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'I

/y/('//si())/ 1(1 Srrcnil F((c//irs. If ;// is n in'odiict, b x a, anil

/> is M(»t ili\ isihk' hv />, tlicii wc iiinv show in tlii' ^uinc wav that

n iiuist be .so divisildi'. If ti =. rs, and r is not divif«iljU', tlit-n

A' must 1)0 divisildo, and so on to uny ninuljcr oi! factors.

lion CO, , •

TllliouiiM. fj' ff lii'odiicl iif (I iiij III! uiIk'I' of J'dchii's /.v

(lirisihlf liij ii. iiiiiiic nitiiihci', Uicii one oj' the j\(cl(/rs

must hi' il'n'i>>iblc by flic stintr prime.

This Ihi'oivm is the lo'doai ( .|iii'alont of the one just

cnunoiatod as the lirst finu 'A\ thooroni.

XoTK. 'I'lu' Student will rcis \\\\^' u> ])r('('ciliii,<j (IcnKiiistriitKtiiIcni

ni»i)l])])lii's ((Illy when tlif divisor /) is n ])riiiu' i. .mmm". I fit were coiiiposiU'

Avc iiii<;lit rciuli 11 rciniiiidir uliicli wuuld exactly divide it, and tluii tlio

conclusion would not t'((ll(>w.

2oT. Sf.COXI) FrXDAMKNTAL TimoKENr. ,/ iiiimhcv

C((ii he (/irif/ff/ iiiti) pri inc J'ticlors in, onl ij one i<'(i\i.

Fof, sii])[»oso wo could express the number ^ \\\ the two

ways (§ 'Xy>\, Cor. 'X),

N = )f- r/ ;-v,

N = (f^ h't' (';

where 7^ q, r, etc., r^ h, r, etc., are till prime numbers. Then

j,'^ qli )••/ (f^ Ij''

If common prime iaotitrs iiitpiarod on both sides of this

0([Uiition, wo could divide them out, loa\in^ ;m o<iuation in

which the prime factors p, /j, r, etc., are all dillViciit from

/;il, II. ('. CIC

Thii'ii, hccause II, 0, r, c

di\ i>il>lc by />. TI

'tc, tire all prime, none (d" them are

ttd theorem.lorefore, bv the lirst i'uiidamen

llicir products cannot be so divisilde. Hut the left-haml ntem-

bcr (d' the ('([uatioii is divisible by />, because ^ms one of its

factors. Therefore the e<piation is imi>ossilde.

Ki; ,1. This theorem forms the basis of the tlieory of the

divisibility of numbers.

'i'he precodiiii^ theorems en:d)le us to place tlie definition

of iiundjers prime to each other in a new shape.

V. f
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I, anil

y 1 1 lilt

'aclois

no ju.4

ustnition

thtii the

nmnhcr

II
•

the two

.. Then

() f thi?

Iiation in

nl l'i"«»i>i

them :nv

ti U'DlVIH,

liul luc'in-

)uc of it-

Two iiuiiibcis arc said to 1)C prime to each other

wliuii they liavc no coiniiioii ])rinie I'actois.

KxA.Mi'Li:. If one nunil)er is p'^ifv'*, iiiul the oflier is

(if^ l)'r" (/>, (/, r, etc., and a, h, r, etc., beini;; prime minilHTs),

then, it'/^ y, /', etc., arc all dillVrcnt from (/, b, c, etc., the two

numbers will be i)rime to each other.

l']UMii('iilar.v TliconMiis.

?ii»S, The I'tillowin^j^ fi^eneral tlieorems I'ollow IVom (he two

]>reee(lin_ij^ finnhimental theorems, and their demoiistrution i:i

ill part left as an exercise for the student.

I. A)) /xiirri' of an irrt'duciblc viilijar fi'dction cim be

a ii'liole nmiihrr.

Nun;. An irreducible vulgar fraction is one Avhich is re-

duced to its lowest terms.

II. CouoLLARV. Xo root of (t icliolo niLiiihcr ca. ^ he a
vitl^tir fractioti.

III. // a niiinhrr is dirisihJc Jnj srrcraJ dirhors, nil

prime to each other, it is also (d risible by their product.

Cor. To prove that a numl)er X is divisible by a number
B =1 p"-'!^ ry. it is sutliclent to prove that it is divisible sepa-

rately l)y })", l»y (f\
by /-v, etc.

Example. If a number is divisibk- separately by 5, 8, and

D, it is divisible by a- 8-1) = Ij(j(». lleiice, to jn-ove that a num-
ber is divisible by o<J0, it is suilicient to show that 5, 8, and '.»

are all factors of it.

IV. If llir iiu})}'''(ifi)rtiiid denoDiinfttor of ft I'ahjar

fraction hare no c.'iuinon prime factors, it is reduced to

its lowest terms.

f tlicrv o

llelinition

l>iiioiiiial Coc'lticioiits.

'i.*>l). Tlirorcin. The ])r()dii('t of any n consccntivi?

numbers is divisi])lo \^y tlio product of the numbers
l-2;3 . . . . n, or // !

liil'
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'I

Rem. The tlicorcm implies that all hinomiiil eocfricicnts

arc whole nuinhers, becuusie they are quotients formed by di-

viding the proihict of y* conseeiitive niwnbers by n\

Proof. 1. We have lirst to liud the prime iaetors of the

product
1-2-3-4.5.0 n = n\

bc^nniiing with the factor 5i.

1. The numbers divisible by 3 are the even numbers 2, 4,

0, etc., to H or )i — 1, tiie number of which is
n

2

Note. The expression
«

i
here means the (jrcalcd whole

nvmher in ,, which is ^ itself when n is even, and — ..
-

when u is odd.

The qiujtients of the division arc

1, tiy Of 4; • . • .

n

4
Of these (jiioticnts,

second set of ({uotients,

1, -v, o, .

The next set of quotients will be

are divisible by 3, leaving the

n

4

1 2
n

8

The process is to be continued until we have no even num-

bers left.

Thereloi'c, if wo put a f<»r the number of times that the

factor 3 enters into ;/ ! we liave,

- CI
-f

H

4
+

//

8
+ etc.

II. The numbers in the series )i ! containing 3 as a factor are

3, 0, y, 13, etc.,

I!
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in num-

luit tho

lictor arc

of wliich tlio nnmbor is • TIio (niotients ol)taiiicil by di-

vkliiig (hum by 3 uro •-.' J

1, 2, 3, ....P^

or these (luotieiits
n

J

are a'jjaiii divisible by '.], jiiid so

oil as bc'I'ore. llenee, if we put /i for the nuniber of times til

contains .'J as a factor, wc iiavo

P = +
n

+
n

'w 1

-f etc.

+
11

+

In tho same way, if h be any prime number, n\ will con-

tain k as a factor

+ etc. times.

Note. This elegant process enables us to find all (he prime

factors of n\ without actually computing it, and thus to ex-

hibit n\ as a product of prime factors. If we su])pose n = I'lj

we shall lind,

12! = 1.3.3 13 = 310.35.52.7.11.

3. Next let us find the prime factors of the i)roduct
I

{a + l)(a + •>) (« + n),

F""! rn
"I4-

J'_Ly'J

which contains 11 factors. Dividing successively by 3, 3, 5, 7,

etc., it is shown in the same .vay as before that the prime fac-

tor 7^ is contained in the product at least

+ etc. times,

whiitcver prime factor /> may be. 'IMierefore the numerator

{<(-{- \) ('/ + 'v) . . . . (a -\- ii) contains all the prime factors found

in ;/ ! to al least the same [lower with which they enter /i\

Hence (§ 338, III), the numerator is divisible by /t!

Cor. If the factor (( -{- n in the numerator is a prime

number, that prime cannot be contained iu nl because it is

m

n



254 niVlSOliS (iF .1 JSUMUKli.

»l

'I

|y III

prcadT timn n, IUiku the binuiniiil I'uutor will be UivisilWe

by it.
•

r. <t "*

KXA.MI'Li;.
, , ., IS (llVlSlblo l»v 7.

\Vc iiwiy show in the wuiic way tliat the biiinniial ((u'lUciciit,

is divisible liy till the itriine iiuiiiIkts in its uumcrutur which

exfcctl n.

Divisors of a Xiunlu'r.

*iM). I)<f. The cxiuvssioii

im)

is used to express how inany nuinbcTS nut greater tliiin

Qii iuv i)riiiie to m.

Example. Let us find tlic viduc of </>(r»).

1 is i)rinio to t), boiausc their G. CD. is 1.

2 « « '< « a ((

'.\ is not prime to 9, because their G. C. D. is 3.

4 is prime to 0.

o

is not, because U and I) have tiie G. C D. 3.

7 is.

8 is.

U is not.

Therefore, the numljers less than and prime to it are

J, /., 4, ij, <, o,

which are six in number, llt'iiec,

Till' numbers less than l'^ and j)rime to 1^ arc 1, 5, 7, 11,

Hence,
0(l->) = 4.

"We find in this way,

0(1) = 1, 0(:i) = 1, 0(3) =3,
0(t)=2, 0(5) =4, 0(0) =.-.>,

0(7) = 6, etc., etc.

o
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• Cor. I. TIic iiimiltcr 1 is |»rinK' to itsi-lf, hiiL no oilier

huiiiIkt i-i priiiu' to itself.

Cor. 'I, If in he 11 jiriiiK' inmilter, then

[in) — in — I,

heeaiisc the iiunihcrfi I, 'i, '.i, . . . . ni — I arc then ;ill priino

to ///.

'I'lie f'ollowiii;^ reniarkahle theorem is assoeiated with the

fund ions
<l> (///).

*ill. Theorem. If* iV" he any nuiiilx'i', ;iii(l ff^.d.^,

(/^, etc., all its divisors, unity and n inclndcd, thuu

(^j (//i) + <l^ ((/.,) 4- (}>{(l.^) + etc. — N.

Faamim.i:. Let the numhcr he 18.

- ?

".Till! lUvijjurs arc 1, :i, o, <;, (), 18. Wu lind, by couiilin'^

0(1) = 1

0(-2) = 1

0((;) = i

0(18) =0
Sum, IS.

To show how this comes altout, write down the numl)ors

1 to IS, iiiid uiidtTeaeh write the greatest common divisor of

thill numher anil IS, Thus,

Num.. 1 -i
'\

i :. <; : 8 i» 10 II \-i v.\ 11 i:. lo ir is.

(;.(J.l)., 1 ;i ;] ;i 1 G 1 ;i D ^ 1 G 1 I ',\ 'i 1 IS.

Necessarily lli mimhers in the second line are all divisors

of 18 as well as of the nundiers over them.

The divisor 1 is under all the lunnhers })rime to 18, so

that there are

(IS) — divis<U's 1.

n 18
If )i he anv numher over the divitjor )l, then ' and . , <u'

l>, must be prime to each other. (§ 'iWl, Cor. 1.) That is, the
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•I

Iffl

) \

iiiinilitTs ?' arc all those whicli, wlicn ilivuled by 2, arc primo

to 9. So there arc

0(t») divisors JJ.

The divisor ?) marks all minibers which, Avhcii divided by ;},

arc prime to -,.- = 0. Hence, there arc

(<)) divisors 3.

In the same way there are (•'}) divisors G, <p (•^) divisors 0,

and 0(1) divisor IS.

The total numl)er of these divisors is both 18 and f/>(lS)

+ (!)) + etc. Hence,

0(lS) + r>(9) +0(r,)+0(;i) + 0(-.>) +0(1) z:. IS.

General Proof. Let m be the f,nven number;

r/|, f/o, (1^, etc., its divisors;

'7i> Vs' '/a' t'"-' 'inotk'i.ts
^^ , ^^-, etc.

The f|nntients i^j, (^o, etc., v.ill be the same numbers as J,,

^7o. etc., only in reverse order. The smallest of each row will

be I and the great-'st di. We shall then have

m —
(/i //, = (l.^ 72 = </3 73, vie.

From the list of nujubers 1, 'i, 3, . . . . ?^/, select all those

Avhieh have </, (unity) as the <rre:itest common divisor with ///,

tlien those whicli have fi.j as such common divisor, tlien those

MJiich have ^/j, etc., till we reach the last divisor, which will

be 7n i'self, and which will correspond to ni.

The iiiinibcrs haviiiLT unity ;'.; G.V. \). will be those prime

to ///, by de!iiiilioii. 'I'heir numb( r is (///).

Those haviiifr '7- Ji-^ d-V. 1). with )/i will, when di\idi'd by

(U' 'A'^'^' <|Uohiiils prime to . or to '/.,. .Mori'ovcr, such <|no-

liftits will iiicliidi' all the uumbers h<if ^'rcaltT lliaii </., and

](rimi' lo il. because earh of tlM'>e iiuudK'rs, wIk'Ii mulli|ilicd

by (f.y, will ^nvc a numk-r not jLTn-ater I ban •/. and haviu.i; (/.,

as its CJ. C. D. with »n. Hence the numitcr <»f numbers not
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)nnic

.1 by '^,

isors 0,

18.

•i)\v will

ill thnso

with nl,

M\ those

I it'll will

|e ]irinic

I
ill I'd l)y

\r\\ '|lii)-

7., il'lil

Itiplicil

Iviiiii" '/.J

Lr.s i»<)t

frrvater than 7;?, and havinir (L as its (J. CD. witJi m will

be (}i {'/.,).

Continuiii*:^ the process, avc shall roach the divisor ///, which

will have m itself as (J. CD., and which will count as the

n II ni her correspond in<j; to (/>(1) — 1 in the list.

The tn niinihers ], 'rl, J), . . . . m are therefore e(jual in num-
ber to

<PM + <P{'/,) + '/'(73)+ •••• +0(1)
or. since the (|U()tients and divisors arc the stune, only in re-

verse order, we shall have

<^(1) + "X'^i) + 9{'^i) + + 0(w) = m.

*iVi. Fkumat's TirKoitKM. If p hr ((iiij f»rinir iiiiiti-

hrr, find <i he a luiiiibcr prlniG to jh then iiP~^ — 1 u-Hi bo

Wiviaible hij p.

Ex.VMi'LKS. (i^ — 1 is divisible bv 5 ; rt" — 1 is divisiblchv 7.

Proof. Develop ni^ in the l"(»ll<»wiii<,' way hy the hinoniial

tlK'oreni,

a' [l + (a-l)P

= 1 +/>(^<-J) + (!') («-.)= -f • • • • -\-iH- !>'

Jieciiuse p is i)rinie, all the binomial cocllicientr

etc., to

t^-.)'
arV (livisihle by p (g •I'.W), Cor). Transposing the terms of the

last niciuljer of the equation which arc not divisible by y>, we

lind

rt" — (fi — 1)'' — 1 — a miibiple of p.

or <i'' — (( — [{(( — I)'' — {<( — \)^^ = a multiiilc of />.

Supposiiiij; ./• = ",*, this equation shows that '.*'' —
'^ is a

multiple of /*; then, supposiiii; r = ',]. we show hy ij '^'M,

Th. I!, that :)'' — '.] is such, a multiple, and so on, indelinitely.

II ence (I- — It = a multiple (»!'/',

whatever he a. But (0' -- a = {iii' ^ — 1)^/, and hecause this

l)roduct is divisible by />, one of its factors must be so divisible

(>5 •,*;><!). Hence, if a is prime to^^, uJ' ' — 1 is diviisiblc hy p.
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C H A P T E R I I

.

OF CONTINUED FRACTIONS.

fil.*>. Any [irojici- fnic-tioii luiiy l)e ivjm'scnk'tl in tin.' form

- -, wlii'iv ./•, i.s i,nT;ik'r tiiuii iuiii\', but is not iicfessnriiy ii u lidjo

•'t .

luiiiilu'r. ir.Vj l)c till.' ^it'iifc'st \\\\i)\v lunnlu'i' in .i\, wo can put

ir,
^'x + ..

svlu'iT .'•„ will be <:'VuU'r tliiin unity. In Uie siune way \vu

may put

.r„ = r/.. +
1

1

^•;! = ^'3 + »
'' 4

fie itc.

Tf for oach ./ wo substilulc its expression, the IVaction

"vvill take i\\v l<-!-ni

J_ _ 1

1
,

1

" *
rr„ -j , ete., clc.

jr tlie substitutions are continued indelinitely, the foi'ni

Avill bo 1

r^, + p

'<. I r
<u \-

<'r.

Such an c\pressii>n is calli'd a continni'd fi-Mction,

A/'. \ Continued Fraction is one (d' \\hi(di tlii^

(IfMioiiiiiiator is ;i whole imiiilxr j>lus a tViictioit ; the

(Icnoiiiiiiator of tills last IVactioii a vvliuk* imnilx'r i)lus

11 liactioii, etc.

fut(

k-Mc

and
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form

vhole

n init

'ly wc

A coiitiiuicd fniclloii may cHIkm- icniiiiiatc with ono of its

dt'iiuiiiiiiators or it may extend iiulelinitely.

Jh'f. Wlicn tlic imnilxT of (|U()ti<'iits a is iinitt*, tl>o

IVactiijii is said to be Terminating.

*^41. PuoHLEM. To find tlic U((Iiic of a roiidiiitnl

fi'dcfiou.

Wc first find tiic value Aviieii wc stop at the first denomina-

tor, then at the second, then a' the third, ete.

Ucsing only two denominators, the I'ruetion will be

.r, 1 rrj./o 4- 1'
a. +

.'"o

/' heinp^ ])ut for the true vahie of the fraction.

To liiul the e\|)ression with three terms, we put, in tin;

preceding expression, r^_, -|- - in place of x.,. This gives

;<on (ti +
I

3
o.,.r + 1

lU

('x'<t 4- J + 1
{<U"-i + l)-'"3 -i- ^^

To find the result with the fourth denoniiiuitor, we snhsli-

.r fol'Ul

Ik

1)11

Icr

; tho

plus

tutc J-., r^il., +

r =.

Tl le II iciioii iieeomes;

{"-. a. \)>\ -^ <i

,

[{<t\((« + i)«3 + "l I
•'» 4- "l"3 + i

(")

To iuvesti;^ate the gen(M'al law accui-ding to uhic1\ tlu^

successive expressions proceed, we put

7', the encfVieient of .r in any iiuinei-ali»r ;

7*', tlie fiMthcieiii of ,/• in the denfuninaloi-;

^,>. the terms not multiplied hy ./ in the niinu'ratnr ;

Q y
the terms imt multiplied hy ./• in the den miinator

;

.'II id we distinguish the vai'ious cMpressions hy giving each /'

und Q the same index as the x to which it lielongs.
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(*)

Till n wc m;ij rcpr'.'seii' each value of Fm the form,

^' -
^';^, + <;>'/

>vlioro / may iako any value nooessary to (listitijruisli the frae-

lion. ("oiiii)ariiii;" with tlic IVacliutis as written, wo see that:

l\ =0, (2, = 1, l>\ = i, Q\ =0;
y'„ = 1, (>„ =r 0, P; =./,, (/„ =1; (r)

To show tliat tills form will contiiuio, how far soever v,q

carry the computation, we })ut in the e.\i»ressioii (//) the general

value of .^1,

which jjives, F =

xi = ni -\- -—
,

(rf)

To show the f^eneral law of .succession of the lerms, let us

cnnip!ir(> the general e([uation {b) with {d). Tutting i+1 for

/ in (//), it heeomes,

^_ Aj^ia*M + <?i 1

If 1 it 1 ' ^» ; 1

Comparing this with (^/), we find

whence, Qi = /*/-!•

Sul)stituting this value of Qi in the equation previous, it

lieeoines

Working in the same way witii the denominators, we (ind

/;,, = «,/>; + /•;.,. (y)

])_) suppobii'g / (o take in su. cession (he values 1, !^, 3, <'tc.,

lia

P
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fnic-

(d

neuer.'il

('0

:vioiis, it

(/)

we tiiul

CONTINUED FIL 1 CTIONiH. 2(*1

tho.«o foniiulu^ sliow that the successive values of F may ho

coinimtc'd thus:

1\ = 1, \

(from c)
;

Also,

1\ ^ a\l\ -V l\z.

1\ = <'rJ\ + /*4»

etc., to any ex tent.

/>; == 1,

etc. etc.

Siiioi' each value of Q is equal to the vahio of P haviup: (ho

next snuiller index, it is not necessary to conii>utc the Q'& sep-

arately.

If the fraction terminates at the ><'* value of a, wc shall

have
Xn — ((,1, exactly.

If it (loos not terminate, we have to ncijlcct all the «lenom-

inators after a certain point; and calling the last denominator

wo use the h^, we must suppose

^'n — On.

In cither ease, the expression (//) will pive the value of the

fraction witii which we sto}) hy putrinir '* = w ami Xn = (in.

Therefore, F ^
On I'n + Q

I >

or, suhstituting for Q and Q' their values in (y),

F^
ttnP'n -k- Pn-l

But the general expressions (/) and {1/) give

«-*•
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'riu'i-cruro,

f'n l\l 4- /'/i 1 = Pith

('u I'll 4 ^'/(-i = Z'/i-i.

/Vi
Tllrn fort', lit jiiid Ihr nthic nj' llw I'vurllou Id llw n"*-

Icrni.irr Inin' onlijln nmifin/f Ihc nilucs of l'n\ ninl

r„ 1, it'itliotil lakiiii> (fill/ ticnmiil nj'
(J.

KxAMi'Li;. Tiikc the IVacdon,

1

1 -f-

l

:{ +
I

1

a etc.

Hero, n^ — ], ^'i
= 2> f's — '•),.... fit = 1.

We iu)\v liMvc, Iiy conliiiiiin*; the r-.Timihi' {') iiiul (/), ainl

iisini^' (llu^e vjiliU'S of a^. a.,, . tc.

:

J\ = n,

J\ = 1,

I\ = fl.J\^ -f /'i
- II., :^ •>,

/'b = i,J\ I-
/'. = M + ;> - MK

J\ =r ./,/', -H /; = r>.;{M -f. 7 = lo7,

olc. cLc. (.tc.

y , — 1,

p; = rr, . - 1,

P\ - uj'\ 4 /'', - 4.10 -f :J = 4.*],

r\ — aj>', i. r\ ~ r»-4;j -f lo = "225.

Tlicicl'oiv. <i!])p()sin^^ in .sncci-ssioiK n =: \, w ~ 5, v = ',),

vie, we liavL' ior the .suoccssivo ai»|tri)\iinate values of llic

fuiL'tioji,



hr

(Iml

/), uikI

COSTL\ L i:i) Fit. \CTWN8. 2g:j

/'.,

T'or n = 1,
/,' — -
'

I
— />'

2

= 1.

Kor // =; ;!,

2

I'or tt =z 5, -* 6 — />'
- ^''1

TIr'So succcssivo apiJroxiniatc! values ol' (lie coiUimicd IVac-

tiou are calKd Converging Fractions, ov Convergents.

•^l.!. The forms {/) and (/y) may bo expressed in words as

follows:

T/ir iiunivvdtor af citch ronrrrtiPut ii^ fornird hi/ iniil-

ti/)h/in^' i/ir prcrctlin'J iiii inrrdtor hij tlw corrcs/joiH/ini;

a, (tnd (iddin'j the second numeral l»'

pi t)( liict.

The successive denominators are formed in \\u\ same way.

KxAMPLK. The ratio of the motions of the snn and t)io.»ii

relative to the moon's node is given by the euntiuued iVaclion:

r^-i-

1 i-

Ji4-

1 +
-1 +

l

:{ -f- I't-

TiCt ns find the successive converge!! Is. W-' [>iil (li df

nominators (f^ =^ i'i, '/.. = 1, etc.. in a linr, thn,-

a = 1 o

P = 1 ;{

p' = r i-y la' 'ss'

1 1!)

»i' )ii'Z

r,\

«

<

Under tf. we write llic frac iion , , wliidi i- al\\av> Ibo one

k of tlu*

with which to start, because P

Next to the ri'dil i?

<(,

lieeau.se 7'

and /'', := I (S -^4+- r).

„ = 1 and /''., =:^ 'I. After

this, wo multiply each term by flu' multii)lier </ above il, and
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adil flio torm to tlio left to obtain ilic torm on tlie riglit.

'riiiis, y-I -f 1 = ;j, y.i:5 + l;i = ;}«, cK;.

ICx. 2. 'I'»» comp'.itc! the coiivcrgeiits of

2 4 -^-.

4 +
1

a +
4 etf'.

a = 2, 4, 2, 4, 2, 4, etc.

NuincMMtors, 14 9 40 80
_ . .. _ ^ - etc

Di'iioiniuiitors, 1' 2' li' 20 ' 8'j' 1U8'

EXERCISES,
Kodnce the following coutinuctl fractions to vulgar frac-

tions;

I.

3 +
7 +

IG

2.

3 +
2 +

3 +

3 +
1+- -3

3 + -

4-

3 + a 4-

5 +
o;

h +

1 + ..

If

210. PnoitT.KM. To express a fractional quaniitij as

a co/i tinned fraction.

Ijct // 1)0 the given fraction, less than unity. Conipuie j\

from the formula,

1

Let rr, 1)0 the whole number and R' the fraction of .r,.

Then comjiute
1
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frac-

Tjot ^8 bo iho wlidlc nuinbcr iiiid //" llio frarlion of .Tg,

We continue this process to any extt-nt, iniK'ss some Viiliic

of a* comes out u whole lumihcr, wlion we stop.

ExAMi'Li:. Exiu'oss ,,
- as a coiitiuueil rniclinn.

- 1 _ ''^ _ 9 ,
21

""• - 7^ -
2(>
- ^^2U'

1 _ 20 _ 5^

.

II'
~ ^l

"~ "^^1'.r..

_ 1 _ 21 _ 1
.

^3 — f>" — r. — "^ +"
r 5R

1

^'* - 7r- 1
-^'

So the contiiuu'il fraction is

.'. a, — ')

.'. a., = 1 ;

••• <'3 = -i

;

.-. a, — 5

;

A" =

A"

21

2()'

21

1

^' -5'

A'"' =r: 0.

2 +
1 +

, 1

o

It will 1)0 scon that the process is the same as that of find-

ing the greatest common divisor of two numbers.

+

(> i Xy

EXERCISES.
Develop the following (juotients as continued fractions:

I.
113

355"
2.

1041)

332(i'

(528

i)25*

247. The most simple continued fraction is that arising

from the geometric problem of cutting a line in extreme and

mean ratio. The corresponding numerical problem is:

To tliridr itinhj into tiro snrJi fractions thai the h'fis

sJid/f he to the ^retttrv ns the greater is to uuitij.

T.i't r bo the greater fraction. Then 1 — r will be the

lesser one. W'v ni'ist then have

> i\

l-r 1,



^
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wliicli f]^iv('.s r» = 1 — r,

or r' -f »• = •

.

or r(r+ 1) -.-. 1,

I

or
I + /•

Now, IlL us put for /• in the last doiioiuinutor the o\])rc'Hsion

z -, and rei)out the procoss indeHnitely. Wf shall Iiuvo,

I + r
'

r =
1 +

1 +
1

1 +
1

1 etc., ad ififinifum.

Now we iniiy form the sueeessive converjreiUs wliich

iil>pro\iin:i(i' to the true vahie hy the rule. As all the (lcii(»ni-

inators d are 1. uf have mo n»ulliplyin<r, hut only add caeli

term to (he jireeeding one to ol)lain the follow iug one. Thus

we lind:

112 rj 5 8 v.] 21 :u

l'l'2'a'5'S' 1:5' 21' ;M' 55'
''^''•

The true value of r may he found hy solving the nuadratic,

7'2 4- 7- = 1

,

- 1 ± Vs
which jrives o

The positive root, with wliich alone we are concerned, is

r = —Li"-^ - o.(Ji8o;3;}i)0.
2

The values of the first nine convergents, with their errors,

are

:

1:1= 1.0,

1 : 0.5,

error = + 0.382.

« —0.118.

2:3= O.OOG....
,

« + 0.0480.

3:5= O.r.oo, <( — 0.0 ISO.

5:8= 0.G25, u 4- O.OUG'Jr.
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8 : 13 = O.r.irK'JS....

,

error = — o.oo-?r,r).

13 : 21 = O.ci'.M)!...., «< + O.dOKH.

j>i : 34 = o.ci ;»;»;....,
u — 0.(MMi:;'.»r.

31 : 'ui — U.Ol.SKS-^...., u 4- u.ooui IS.

t'Lc. etc. etc.

lirlatioiis of Siifcossivo ('<»iiv<»rjj:<Mits.

*2IS. T 111:011 KM I. T/te siicrrssii'o coiircvjcnls are

nlhriniti'l ij loo hd'j^c <in(l too snidll

.

Proitf. Tlio lir.-i coiivergciiL i.s • Tlio true (kiioin-
(ti

1

iiuitor Ik'Iii^ (I
^ f- , llu' (U'lioiuiiiiitor a^ is too snmll, iiiid

tlicrdurc tlie I'mution is t( o liu'',a'.

In formiiif' the sccoiul fnictinn, wo put instead of •

IJorauso (t., < .r^, lliis rractioii is too largo, which makes the

1

(1( iiumiiKitor (I. -\- too siiiall.

The third dcnoininator a.^ is too small, which will mako
till' |ii'o('odiiig Olio too largo, tho iioxt procoding too smalk ;iiid

Ko on altornati'lv.

r\^ Ml'"' I '" I i IJiiKoKKM 11. // (111(1 , he (tiiii tiro ctjiiscciilLre
^ n a

^

con rr/'<Jr Ills, Ihrii

mil — )n'n :^ ^ 1.

Proof. Wo show :

(k) That the theorem is trne of tho first pair of convorgonts.

(/i) That if truo of any pair, it will ho triio of the pair noxt

following.

(«) The first pair of convcrgonts are

1 a s

«,
,

1 a^(t. + 1'

which gives mu' — m a — I, tints proving («).

n





IMAGE EVALUATION
TEST TARGET (MT-3)

1.0

I.I

I4S —
til

M
|||M

IM

1.8

1.25 1.4 1.6

< 6"

Photographic

Sciences
Corporation

23 WEST MAIN STREET

WEBSTER, NY. 14S80

(716) 872-4503





208 CONTINUED FRACTIONS.

i)

»l

(/3) Let
m m m

(1)

n ' n ' n

be three consecutive convergents, in which

inn — iini := ± 1.

By (/) and {(J) wc shall have

}n' = am' -\- vi,

ii" = an' + n.

;Mnltii)lying tlie second equation by m' and subtracting tlie

product of the lir^t by ?/, we have

vi'u" 1)1 )i =z in n — mn

wliich is the negative of (1), showing that the result is T 1.

The theorem being true of the lirst and second fractions,

must therefore be true of the second and third ; therefore of

the third and fourth, and so on indefinitely.

Corollaries. Dividing (1) by nn\ we have

m. Ill ,1 ^,
; = + — ,• Hence,

11 n nn

I. Tlir difference hettreen the two sitccessive cojiverg-

ejits is equal to luiitij divided hij the product of tke

denoniintitoi's.

Becau:^e tlie denominator of each fraction is greater than

that of the preceding one, we conclude:

II. T/te difference heticccii tiro consecutive convergents

coiistautlij diminishes.

Combining these conclusions with Th. I, wc conclude :

III. Each rail r of a convergent always lies hetween

the values of the tiro preeedini^ convergents.

For if R^, 7?5, 7i*g be three such fractions, and if B^ is

greater than R^, then R^ will be less than R^. But it must

be greater tlian R^, else we should not have R^ — R^ numer-

ically less than R^ — R^. Hence, if we arrange the successive

convergents in a line in the order of magnitude, their order

will be as follows:

7?„ 7?„, R,. ..../?„ 7?„ R„
each convergent coming nearer a true central value. Hence,
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t (I

(1)

IV. 77ie trite value of the coiitiiuocil fraction al-

ways lies between the values of two consecutive con-

vevgents.

Compuring with (I), we coiicludo :

V. Tlie error which we make hy stopping at any con-

vergent can never he greater than unity divided hy the

product of the denominators of that convergent and the

one next following.

EXAMPLE.

Referring to the tabic of values of j^{V6 — 1) in § 2-17,

we see that

:

Error of 2 : 3 <;-,--

;

3-0

Error of 3 : 5 < ^ ,

;

0-8

etc.

(for .048G < jX

(for .018 < ly
etc.

Hence, in general, continued fractions give a very rapid

approximation to the trne value of a quantity. Thei" princi-

pal use arises from their giving approximate values of iiv, tional

numbers by vulgar fractions Avitli the smallest terms.

EXAMPLE.

Develop the fractional part of V2 as a continued fraction,

and lind the values of eight convergents.

Because 1 is the greatest whole number in \/2, we put

V2 = l + l; (1)

whence, X =
V2 — 1

Ealionalizing the denominator, § 185,

a- = V2 + 1.

Substituting for V^ its value in (1),

1
X = 2 -\-

m

H\
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Putting this value of a; in (1) and again in the dcnominatorj

and repeating the substitution iudellnitely, we find

"i
V^ = 1 +

2 +
2 +

^ "^
2 etc.

Forming tlie convcrgents, we find them to be

1 ? A 1^ ?? J'^ V'l i^i^
2' 5' VZ' 29' 70' IGU' 408' 'Jb5'

etc.

Adding unity to each of them, we find the approximate

vahies of v/'-i

:

3

D

17 41 99

70'

239 577 1393

T"G9' 408' 9b5
' etc.

liEM. Tlic square root of 2 may be employed in finding a

right angle, because a right angle (by Geometry) can be formed

by three pieces of lengths proportional to 1, 1, ^/^Z. If we

make the lengths 12, 12, 17, the error will, by Cor. V, bo less

than T^^, or less than -— of the whole length.

EXKRCISES.
Develop the following square roots as continued fractions,

and find six or more of the partial fractions approximating to

each :

I. \/3. 2. Vs. 3. Vo. 4. Vio.

5. Develop a root of the quadratic equation

n'2 — ax — 1=0,
commencing the operation by dividing the equation by x.

l*oriodic Coiitiiiuort Fractions.

249. Dff. A Periodic continued fraction is on.? in

wlilcli the dcnoniiniitoi's n^peat themselves in regular

order.
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Example. A continued fraction in wliich the successive
denominators are

2, 3, 5, '2, 3, 5, 2, 3, 5, etc., ad infinitum,

is periodic.

A poi'iodic continnod fmction can be expressed as
the root of a quadratic equation.

EXAMPLES.

I.

l-f

2 +
i + J-+ etc.

If we put X for the value of tliis fraction, we have

^
_ 1

^ '^ 2T^"
We find the value thus

:

1, 3 + a?.

1 2j\-x
1

'

3 + a;*

Because this expression is x itself we have

— ^ + a;

^~3T^'
which reduces to the quadratic equation

x^ + 2x = 2.

2. Let us take the fraction of which the successive denom-
inators are 2, 3, 5, 2 3, 5, etc., namely,

1
X =

2 +
3 +

5 +
2 + 7

1

3 + etc.,
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X =
3 +

3 + ^

Wc compute thus:

3, 3,

1

1' r

b -{• X

X -{- 5.

3

r
3x 4- 16

7x + 37

Ilcncc wc have, to determine x, the quadnitic equation,

3x + 10
X =

7.r + 3r'
or 72-2 + 3-la: =10.

250. Development of the Root of a Quadratic Eqvation.

A root of a qujidnitic equation may be developed in a continued

fraction by the following process. Let the equation in its

normal form be (§ 192),

mx^ 4- nx + ^) = 0, (1)

m, 11, and ^; being whole numbers. We shall then have

n ± V^'2 — ^mp
X =

2m.

Let a be the greatest wliole number in x, which we may
find either by trial in (1) or by this value of x. Then assume

X = a -\ ,

X,

and substitute this value of x in the original equation. Then,

regarding x^ as tbe unknown (juantity, we reduce to the nor-

mal form, which gives

(ma^ + na + p)x^^ + (2ma + n) x^ + m = 0. (3)

If rtj is the greatest whole number in a-j, Ave put

1
^1 = ^1 + !,-»

and by substituting this value of x^ in (2), Ave form an equa-

tiv)n in Xo. Continuing the transformations, we find the

greatest whole number in x„, which will be called rtg, and so on.

The root Avill then be- expressed as a Avhole number a plus

the continued fraction of which the denominators are a^, a.^, '
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BOOK X.

THE COMBINA TOR V ANAL J \SIS.

CHAPTER I.

PE R M U TATI N S.

251. Bef. The different orders in wliicli a niimhor
of tilings can be arrangc^d are called their Pormuta-
tions.

Examples. The pormntations of the letters a, I, are

(lb, ha.

The permutations of the numbers 1, 3, and 3 are

Vn, 13;>, 313, 231, 312, 321.

Problem. To find how many permutations of any
given niunher of tilings are possible.

Let us put

Pi, tlic number of permutations of / tilings.

It is evident from tlie (ir.st of the above examples that there
are two permutations of two things. Hence,

P — -1

To find the permutations of three letters, n, h, r, we form
three sets of permutations, the first beginning with a, the sec-
ond with b, and the third with c.

In each set the first letter is to be followed by all possible
permutations of tlie remaining letters, namely:

In 1st set, after a write he, ch, making ahr, ach.

-<1 '* " b " ar, ca,
"

bar, bra. '

3d "

IS

ab, ba, i<
cab, cba.

I !
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M

T\y

'IMie jHTinutiitions of ;/ thiii^^s fan 1)0 divided into sots.

The first sot bo^iiis with tho first tiling, followod by ail })ussi-

l)lo ponnututions of the remaining n — 1 things, of whicli the

iiunibcr is l\ \. Tho second set begins with tlio second tiling,

followod by all possible permutations of the remaining n — 1

things, of which the nnnii)er is also P„ \, and so with all ii

sets. Jlonco, whatever be ;/, there m ill bo n sots of P^-i per-

mutations in each set. Therefore,

Pn = nPn-i.

This equation enables us to find Pn Avlioncver we Icnow

P/i-h iiii*^^ thus to form all possible values of /'«, as follows:

It is evident that

We have found

Putting 71 = 4, Ave have

n = 5, " "

etc.

(<

P, = 1.

P„ = 2-1 = 2!

pI = ;3.2-l rr 3! - 0.

p\ = U\ = 4 ! = 24.

Pg = 5/% = 5! = 120.

etc. etc.

It is evident tliat the number of permutations of n things

is equal to the continued product

1 • 2 • 3 • 4 . . . . >?,

which we have represented bv the symbol n ! so that

P'n = u\

EXERCISES.*

1. Write all the permutations of tlie following letters :

bed, ard, ahil. ahcd.

2. What lU'oportion of the i)ossil)lo permutations of the

letters a, c, w, i, make well-known English words?

3. Write all the numbers of four digits each of which can

be formed by i)erniuting the four digits 1, 2, 3, 4.

4. llow many numljors is it possible to form by permuting

the six figures 1, 2, 3. 4, o, 0.

* If tlic Ktudcnt finds any difflculty in roasoiiincf out these exercises,

he is recommiMidcd to try Hiuiiiar caws in wliicli few symbols are involved

by actmdly I'onuin.i? tho permutations, uatil he clearly sees the geiicial

principles involved.

1
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PERMUTATIONS. 2i:y

I

i

5. At a dinner party a row of pliitcs is set for Uio liost

and 5 guosts. In how many ways may tlicy be seated, Kuhject

to the condition that the host must have Mr. Brown on Ills

right and Mr. 11l: ^'Iton on his left ?

6. Of all nuniboi that can be formed by permuting the

seven digits, 1, JJ .... 7:

{(() How many Avill be even and how many odd ?

{h) In how many will the seven digits be alternately even

and odd ?

(c) In how many will the three oven digits all be together ?

{(I) In how many will the four odd digits all be together?

7. In how many permutations of the 8 letters, a, h, c, d, e,

f,(),h, will the letters (/, c, /', stand together i;i alphabetical

order ?

8. In how many of the above permutations Vvill the word

deaf be found ?

9. In how many of the permutations of the first 9 letters

will the Avords affe and bid be both found ?

10. A party of 5 gentlemen and 5 ladies agree with a math-

ematician to dance a set for every way in which he can divide

them .'nto couples. How many sets can he make them dance?

II In how many of the iiermutations of the letters a, h, c,

d, c. will d and no other letter be found between a and e.

12. In how many of the permutations of the six symbols,

r, h, c, d, c,t\ will the letters (d)c be found togetlier in one

group, and the letters dcf in another?

13. How many permutations of the seven syml)ols, a, h, c,

T, c,f\ (J,
are possible, subject to the condition that some per-

mutation of th( letters abc must come first ?

14. The same seven symbols being taken, how many per-

mutations can be formed in which the letters abc shall remain

together ?

Perimitations of Sots.

252. Dcf. When permutations are formed of only

s things out of a whole number 71, they are called Per-

mutations o- n things taken 6^ at a time.

ii

l.-^.mmmrm'm^* m
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ExAMPLK. Tlic porniu tat ions of the three letters a, b, Cy

taken two at a time, are

(lb, bn, nc, en, be, ch.

The permutations of 1, 3, 3, 4, taken two at a time, arc

1;>, i;j, 14, -a, A ^4, ;31, Wl, U, 41, \i, 43.

Pi{01jli:m. To find the naniOcr of pcrniutations of
n t/tiii^s taken s at a time.

Sui)pose, tirst, that we take two things at a time, as in tho

above examples. We may choose any one of the n things as

the lirst in order. Which one soever we take, we shall have

n — 1 left, any one of which may be taken as the second iu

order. Hence, the permutations taken "I ut ti time Avill bo

n {ii — 1).

[Compare with the last e\'am])le, where 7i = 4.]

To form the i)ermutations .3 at a time, we add to each pcr-

mutati(m by 2*s any one of the n — 2 things which are left.

Hence, the number of permutations 3 things at a time is

n{7i — 1) {n — 2).

In general, the permutaticms of n things taken s at a time

will be e([ual to the continued product of the .v factors,

n {ii — 1) {n ~ 2) . . . . (n — s + 1),

which is equal to the quotient
si

It will be remarked that when .s = ??, we shall have the

case already considered of th(! permutations of all )i things.

EXERCISES.

1. Write all the numbers of two figures each which can be

formed from the four digits, 3, 5, 7, 9.

2. Write all the numbers of three figures, beginning with

1, which can be formed from the five digits, 1, 2, 3, 4, 5.

3. IIow many different numbers of four figures each can

be formed with the digits 1, 2, 3, 4, 5, G, no figure being re-

peated in any number ?

J
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arc
i

4. P^xplain liow all tlio lumibors in (lio ))ivr('(liii<,' oxorcLse

may ho wrillcii, showing how nuuiy miiuhuiti k-^^iii with 1,

how many with :?, etc.

5. Ill how many ways can 3 gentlemen select tlieir partners

from o lailles?

6. How many oven nunihcr.'^ of 15 (liiri.ront digits oaeh can

be formed from the seven digits, 1, ^, .... 7 i*

7. How many of these numbers will consist of an odd

digit between two even ones ?

Circular l*<'riiiiitatio!is.

25.*>. If we have the three letters a, A, c, arranged in u

circle, as in the adjoining (igure, then,

liowevcr we arrange them, avo shall find

them in alphabetical order 1./ beginning

with a and reading them in the suitable

direction, llonco, there are onlv two

different circular arrangements of three

letters instead of six, namely, the two

directions in which they may be in al-

phabetical order.

Next suppose any number of symbols, say a, b, c, d, e, f, fj,

//, and let there be an equal number of positions around the

circle in which they may be placed. These positions are num-
bered 1, '2, 3, 4, 5, 0, 7, 8.

For every arrangement of the sym-

bols w^e may turn them round in a body

Avithout changing the arning(>ment.

Each symbol Avill then pass through all

eight ]iositions in succession.

By performing this operation with

every arrangement, we shall have all

possible permutations of the eight things

among the eight positions, the number
of which is 8!, which are therefore eight times as many as

the circular arranjremcnts.
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•I

lloncu tlio lUinilKT of ililRrciit circular urrun<^c'nu'nU is

8!
--*, wliii'li is the siiiiit' as T! .

o

Jii ^jfciural, il' we rcpivsciit (iio nunj1)er of circular arrangc-

liu'iit.s uf li lliiM<;s l»y ('„, wo sslmll luivo

Tho sjimc result nuiybo reaclied by the followiugrciisonini;'.

'!!'() I'onn ;i circular urraiigeint'Ml, \vc uuiy take auy ouo .syiul)ol,

a for exaiujdc, put it iuto a llxed positiuu, .siy (1), aud leave it

there.

All possible arrangemenls of Ibo syuibols will llien be

foriued by ])eruuiliug tho reuuiiuiug syud)ols auu)Ug the re-

uiaiiiiug pitsitious. Ilciice,

C,^ = y',_i =: (y/-l)!
as before.

EXERCISES.
1. lu bow nuiny orders can a l>arty of 7 persous take their

places at a rouud table?

2. Ill bow many orders can a bost and 7 guests sit at a

round table in order that the host may have tlie guest of high-

est rank upou his right and the next in rank on bis left?

3. Five works of four volumes each are to be arranged on

a circular shelf. JIow many arrangements are possible which

will keep the volumes of each set together and in proper order,

it being indiU'erent in which direction the numbers of the

volumes read.

4. In how many circular arrangemcnls of the 5 letters a, b,

c, (I, (', will a stand between d and d'f

5. If the 10 digits arc to be arranged in a circle, in how
many Avays can it be done, subject to the condition that even

and odd digits must alternate? (Note that is even.)

6. The same thing being sup])osed, how many arrange-

ments are possible, subject to the condition that the even digits

must be all together ?

7. In bow many circular arrangements ot the first six let-

ters will the word deaf he found? What Avill be the differenco

of the results if you are allowed to spell it in either direction?

i

\
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VvvniiiiniUiUH \v1kmi S<»voral of tli«.» Tliiiij^fs ai*(^

Idciitu'al.

?ii>l. If tlu! same lliiii;; ai)i»i'tir.s sovcnil times jiinoiif^ flio

tliiii;i;s t(j bo luTiuiitc'd, i1j(j miiiil)rr ol' ilitTcrciit itcnnutiilions

will l)L' less than when the thill,^^s are all dinViviit.

KXAMi'Li;. The penniitatioiis of (Ki/j// are

(iit/jb, (dnth, ((hlid, bddh, b((ba, bbud, (1)

wliieli are only six in nimiher.

I'U()ULI:m. To jlud llic innnhri- of pci'iniiliiliuiin whcti

sri'irol of Ihe lhiiii>x ore ii/ci/h'ro/.

Lel< us lirst examine how all ^'1 i)enmitations of I Ihinfrs

may he lorincd i'loin I hi- uhove |ieriuutations of (fobb, Ia-1

ns (lislin,Lruish the two ^/'s and I Ik- two //s Ity aeeentint; one ol"

each. Then, from eaeh permutation as written, four may he

formed by i)ei'mutin^ the sinnlai' letters amon,i( tlieniselves.

For example, taking ((bb(f, nud writin.^ ii abb'a', we Iiave, 1)y

permuting the similar letters,

ab'ba', a'b'bn. abb'a\ a'bh'a. (-2)

Tn the same way four permutations, differing oidy in the

arrangvment of the aeeents, may he formed from eaeh of the

C permutations (1), making 'l\ in all. as there ouyht to be.

Cieueralixing the preceding operation, we reach the follow-

ing solution of our [)robleni. Let the symbols to be permuted

be a, b, c, ete.

Suppose that a is repeated r times,

it k.
/l " " V "

etc. etc. etc.

and let the whole number of symbols, counting repetitions, bo

')i, so that

w = r + •*•' + / + c'tc.

[In the preceding examjtlo (1), n ~ 4, r = 2. s = 2.]

Also put A'„, the required number of different permutations

of the n synd)ols.
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Suppose tliesG X,i different permutations all written out,

and siipi)ose the symbols which are repeated to be distinguished

by accents. Then

:

From each of the X,i permutations may be formed Fr = rl

permutations i)y permuting th.e (is among themselves, as iu

(2). We shall then have r I A\ permutations.

From each of the latter may be formed *•! permutations by

permuting the b's amovg themselves. AVe siiall then have

.si )'l X A\ ])ermutations.

From each of these may be found / ! iiermutations by in-

terolianging the c's among themselves.

Proceeding in the same way, we shall have

X'n X ?•! X 6-1 X /! X eic.

possible permntations of all )i things. But this number has

been shown to be ;; I Thcreibro,

Xn X rl X s\ X t\ X etc. = n\

By division, Xn = nl
{-)

rl 6-! tl etc'

which is the required expression.

"We remark that if any syml)ols are not repeated, the for-

mula (3) will still he true by supposing the number correspond-

ing to r, s, or / to be )

.

['.M tj

f'^^ll

III!

EXAMPLES.
The number of possil)le permutations oi aahb are

4! U
G, as already found.

2. Tiie possil)le permutations of aaahbcd are

5040T!

3! -v. G-2
420.

EXERCISES.
Write all the permutations of the letters:

I. aaah. 2. aabc. 3. aaabc.

4. IL)w many different numbers of seven digits each can

be formed by permuting the figures 11122;25 ?
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5. If every different permutation of letters made a word,

how many words of 13 letters caeh could be formed from the

word jiassachusctts.

i:^)

\

The Two Classos of x^'imitations.

255t The u\ possible permutations of n things a''o divisi-

ble into two classes, commonly distinguished as even i)ermu-

tations and odd permutations in the following way:

We suppose the n things first arranged in alphabetical or

numerical order,

a, h, c, d, . . . . or 1, 2, 3, 4, ... . n,

and we call this arrangement an even permiitatio)i.

Then, having any other permutation, we count for each

thing how many other things of lower order come after it, and

take the sum.

If this sum is even, the permutation is an even one ; if odd,

an odd one.

EXAMPLES.
I. Consider the permutation 2051-43.

Here 3 is followed by 1 number of lower order, namely, 1.

'' G *' '' " 4 '' " " " 0,1,4,3.

" 5 *' " 3 *' " " « 1,4,3.
i( -\ (( a A a <e <<

i( 4- " " 1 " " " ** 3

Then 1 + 4 + 3 + + 1 = 9. Hence the permutation is odd.

2. Consider cdbea.

Here c is followed by 2 letters before it in order, namely, la.

" d " " 2 " " " " ha.

" h " " 1 " " " " a.

ii
c '< *' 1 *' '' " ** a,

Tlien 2 + 2 + 1 + 1 =0. TlrMtce the permutation is even.

Dcf. Tho total number of times wliicli a thing loss

in order follows one greater in oi-der is called tlie

Number of Inversions in a permutation.

ii'i

m\
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Example. In the i)rcceiling permutation, 2G5143, the

number of inversions is 'J. In cdbed it is G.

Eem. It will be seen that the class of a permutation is

even or odd, according as the number of inversions is even or

odd.

Theorem I. //, in a pmnntdtion, tiro tJii/i^s (tra

intcrc]iaiii>cd, the class will be clLuii^ed fruni even to odd,

or from odd to even.

Froof. Consider first the case in which a pair of adjoining

things are interchanged. Let us call

:

ik, the two things interchanged.

yl, the collection of things Avhich precede i and h.

C, the collection of things which follow them.

The first jiermutation will then he

AihC* {a)

After interchanging / and k, it will be

AMC. {!>)

Because the order of things in A remains undisturbed, each

thing in A is followed by the same t hi.igs as before. In the

same way, each thing in C is preceded by the same things as

before.

Hence, the number of times that each thing in A or C is

followed by a thing less in order remains unchanged, and,

leaving out the pair of things, /, k, the number of inversions

is unchanged.

But. l)y interchanging z' and k, the new inversion ki is in-

troduced. Therefore the number of inversions is increased

by 1.

* This fomi of al^rbraic imtation differs from those already used in

that the symbols vl -,\\u\(' do not stand for (piantities, but mere collec-

ti(ms of letters. It is an applieation of the general principle that a single

symbol may be nsed to represent any set of symbols, but must represent

the same set throughout the same (lUfstimi. A and (J are here used to

show to the eye that in forming the jxrmutations of {h) from (/7), all the

letters on each side of ik, preserve their relative positions unchanged.

f

!

I

ih
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If the first arrangement is ki, tliis one iu version is removed.

Hence, in either case the number of inversions is changed by

1, and is therelbrc changed from odd to even, or vice versa.

lUudration. In the permutation

2G5143,

tlic inversions, as already found, are the follov.-ing nine :

21, Go, Gl, G-1, G3, 51, 54, 53, 43.

Let us now interchange 5 and 1, making the permutation

2G1543.

The inversions now are

21, Gl, G5, G4, G3, 54, 53, 43,

the same as before, except that 51 has been removed.

Kext consider the case in which the tl)ings interchanged

do not adjoin eacli other. Suppose tliat in the permutalion

h a (I e h c f
we interchange a and /^ "We may do this by successively in-

terchanging a witli d, with c, and Avith li, making three inter-

changes, producing
h (I e h a c f

.

*

Then we interchange h Avith e and Avith d, making two

interclianges, and producing

h h d c a c f

,

which eflfccts the required interchange of a Avith li.

The number of ihc neighboring interchanges is 3-f 2 =: 5,

an odd number. Because the number of inversions is changed

from odd to even this same odd number of times, it Avill end

in tlie opposite class Avith Avliich it commenced.

TiiEOUE.Ai IT. Tlir jms.vhJe pcvnnddtions of ii tldiigs

are one-half crcii and onc-haTf odd.

Proof. Write the v ! ])(issil)le permutations of the n tilings.

Then interchange some one pair of things [e.fj., the tirst

tAvo things) in each permutation. AVe shall have the same

permutations as before, only diil'ereiitly arrang'jd.

^ I

m
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By the change, every even permutation will be changed to

odd, and every odd one to even.

Because every odd one thus corresponds to an even one,

and vice versa, their numbers must be e<[ual.

lUustrafion. The permutations in tlie second column fol-

lowing are formed from those in the tirst by interchanging the

first two ligures :

even, 2 1 3

odd, 3 12
odd, 12 3

even, 3 2 1

even, 13 2

12 3

1 3 2

2 13
2 3 1

3 12
3 2 1 odd. ') Q 1

odd.

even.

even.

odd.

odd.

even.

EXERCISES.
Count the number of inversions in each of the following

permutations

:

T. hcilagcf. 2. hcarjdef. 3. 325941.

4. 5432. 5. 82917304. 6. 829:i3G4.

'ZoG, Symmetric Functions. An important ap]»lication of

the laws of permutation occurs in the problem, hoAv many
different values a function may acquire by permuting the

letters which enter into it. We readily find that the ex-

pression (fitjc takes only the three values (i^bc, l?ac. and c^db by

permutation. Other expressions do not change at all by per-

muting their symbols.

Def. A Symmetric Function is one wliicli is not

changed by permuting the symbols which enter into it.

EXERCISES.

Show that the following functions are symmetric :

\. a -\- h -\- c. 2. ahc.

4. a- {h - c) -f- Ij^ {c — a) + t'^ [a — b).

^
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CHAPTER II.

COMBINATIONS.

2.>7. Def. The number of ways in which it is pos-

sible to selfct a set of .v thinj^s out of a coHeetion of n
thiuirs is called tlie Number of Combinations of s

things in a.

Ex. I. From the three symboLs a, l, c, may be formed the

coui)lets,

ah, ac, be.

TIence there are three combinations of 2 things in .3.

Ex. 2. From a stud of four horses may be formed six dif-

feivnt span. If we call the horses A, B, C, D, tlie difll-rent

s})an will lie

AB, AC, AD, BO, BD, CD.

Rem. 1. A set is regarded as different wlien any one of its

separate things is different.

Rem. '2. Combinations differ fro.m permutations in that,

in forming a combination, no account is taken of the order of

arrangement of things in a set. For instance, ab and ba are

the same combination. Hence, we may always suppose the

letters or numbers of a combination to be written in alpha-

betical or numerical order.

Notation. The numljer of combinations of s things in n

is sometimes designated by the symbol,

Problem. To jind the iiuinhcr of coinhinatwns of s

thinos ill n.

If we form every possible set oT .v things out of n things,

and then |XTmiite the <? tilings of each set in every possililo

way, we sluill have all the permutations of n things talvcn s at

a time (§ 25-2). That is,

Ji'

•hi
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'I

I: !i

express the nnmbor of pcrmuhitioiis of n tilings taken s at a

time. But we liavo i'oiuid this number to be

n {u — l){)i — '2)....{n — s-\-\ ).

We have also found

I\ =.s\ = 1.2.3.4 s.

llenee, Cf xsl = n {n — 1) (w — 2) {n — s-\-l),

^n _ n{n — \) { 7i — 2) ....(» — .9 + f)

=
{'^) (§ 228, 3)

;

and

or
/-in

which is the required expression.

Hem. For every coiii])ination of .9 things wliicli we
can talvi^ from 7i things, a cooilbination <)f it,— s things

will be left.

ence, Cl. = C us-

This formula: mr v be readily derived from the expression

for the number of combinations. For, if we take the equation

pn _ w!
^' - s\ {u-s)l'

this formula remains unaltered when we substitute n — s for

s, and therefore also represents the combinations of u — s

things in n.

Def. T\vo combinations wdiicli together contain all

the things to be combined are called two Complement-
ary combinations.

EXERCISES.
1. Write all combinations of two symbols in the live sym-

bols, a, b, c, d, e.

2. AVrite all combinations of three symbols in the same

letters, and show why the number is the same as in Ex. i.

i

u;
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t

3. A. span of liorsos hoiiig (lilTeiTut Avlion cilhor linrso is

(•liaii;;e(i, how niaiiy (I'l'Vivnt span nuiy bo formed IVuui a stnd

ot';j:-' or 7? oro?
4. If fonr [loints aiv niiirkcd on a piofc of paper, liow many

distinct lines can bo formed by joining' them, two and two?

J Tow many in tlio case ^^^ n points?

From each ono of the points can 1)0 drawn n — 1 lines to

other ])oints; tlien why are there not n [n — 1) lines?

5. If five lines, no two of which are parallel, intersect each

other, how many points of intersection will there be? lIow

many in the case of n lines ?

6. If n straight lines all intersect each other, how many
diiferent triangles can be found in the figure?

7. In how many different ways may a set of four things be

divided into two pairs ?

8. In how many ways can a party of four form jmrtnors at

whist?

9. In how many ways can the following numbers be thrown

with three dice

{'<) 1,1,1; {h) 1,2,2; (.) 1,2,3.

10. A school of 15 young ladies have the privilege of send-

ing a party of 5 every day to a picture gallery, j)rovided they

do not send the same party twice. How many visits can they

make?

— s for

of n — s

itrJn all

lement-

tlve sym-

ihe same

^x. I.

Coiiibiiiatioiis with Repetition.

358. Sometimes combinations are formed Avith the liberty

to repeat the same symbol as often as we please in any set.

Example. From the three things a, l, c, are formed the

six combinations of two things with repetition,

aa, ab, ac, hh, he, cc.

Problem. To find i.ie iiiinihrr of coinhiuations of s

tilings in n, when repetition is (dloiued.

Solution. Let the n things be the first n numbers,

P
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Form all possililc sots of a of thcso iinnibors willi iv])rtiiioii,

till' iiiiml era of each sot being arraiigrd in iium"rieal onl'-r.

Let lis 1)0 the re'|tiiro(l lumiher of sets. 'IMien, in eaeli set,

Let llie iirsi nninl)er stand nnelianged.

Licreaye tlio 'M number \>y 1.

*' 3d *' " ^\

" 4tli '' '' 3.

it

tt

tt Jfi (( ((

"We shall then liavc Jia sets of s numbers, each "svithont rep-

etition.

Example. From the numbers 1, 2, 3 aro formed with repctitioii,

11, 13, 13, 22, 2'3, 33.

Tlu'ii, increasiiifr the second numbers by 1, we have

12, 13, 14, 23, 24, 34.

The greatest possible number in any set after the inerease

will be n -\-

s

— 1, because the greatest number from whieh

the selection is made is n, and the greatest quantity added is

s — 1. Hence all the new sols will consist of combinations of

s numbers each from the u -}- s — 1 numbers,

1, 2, 3, 4, . . . . w . . . . ;i + s — 1. (a)

No two of these combinations can be the same, because then

two of the original combinations would have to be the same.

Hence the new sets are all ditferent combinations of s numbers

from the n -{- s — 1 numbers {((). Therefore the number of

combinations cannot exceed the quantity Cf.

Conversely, if we talvo all possible combinations of s differ-

ent numbers in n -{- s — 1, arrange each in numerical order,

and subtract 1 from tiic second, 2 from the third, etc., we

shall have diiferent combinations from the iirst 7i numljers

with repetitions. Hence the number of combirUions in the

second class cannot exceed those of the first class.

Hence we conclude that the number of coml)inations oi s

things in 7i with repetition is the same as the combinations of

s things in n -\- s — 1 without repetition, or
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pciition,
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EXERCISES.
1. Write all possible combinations of 3 nnm])ers witli repe-

tition out of the three numbers 1, 2, 3 ; then inercaso tlie second

of each combination by 1 und the third by 2, and show that

we have all the combinations of three different numbers out of

1, 2, 3, 4, 5.

2. IIow many combi ations of 4 things in 4 with repeti-

tion? Of n things in « ?

In the last question and in the following, reduce the result to its

lowest terms.

3. IIow many combinations of n-\-l things in n — 1 with

repetition ?

Special Cases of Combinations.

259. It is plain that

because each of tliesc combinations consist simply of one of the

n things. Hence, also,

Ol^i = n,

because in every such combination one letter is omitted.

It is also plain that
rin _ -I

because the only combination of n letters is that comprising

ttie 71 letters themselves. Hence we write, by analogy,

although a combination of nothing does not fall within the

original definition of a combination.

3(50. The formula) of combinations sometimes enable ns

to discover curious relations of numbers,

1. Let us incpiire bow wc may form the combinations of
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'I

.9-1-1 things when wo have those of c tliiiicfs. Let tho n

things from which the combinations are to he formed be tho

letters

a, b, c, (I, (',/, (j, etc {n in numi)er).

Let all tho combinations of .9 4-^ " "»eso n letters bo writ-

ten in alphabetical onhT. Then:

1. In the combinations beginning with u, tho letter <( will

be followed by all possible combinations of .v letters ont of the

n — 1 letters b, c, d, etc., of which the nnmber is ^'?~\

2. In the coml)inations beginning with b, the letter b is

followed by all combinations of « letters out of tho n — 2 let-

ters c, d, e, f, etc. Therefore there are 6'" combinations

beginning with b.

3. In tho same way it may be shown that there are Cg

combinations beginning with c, CT beginning Avith d, etc.

The series will terminate Avith a single combination of the last

.s'-Hl letters.

Since we thus have all combinations of .*.•-{- 1 letters, wo
find, by summing up those beginning with the several letters

a, b, c, etc.,

Ca + Ck -\- Cs + . . . . -I- C,. = r ,.
1 1. (a)

Substituting for tho combinations their values, we find

By the notation (§ 228, .3), all the terms of the first member

have the common denominator s\, while the numerators are

each composed of the factors of s consecutive numbers. Mul-

tiplying both sides by s! and reversing the order of terms iu

the first member, we have

1.2-3 5 4- 2-3-4 s + 1 4- etc.

etc. etc.

-[- {n — s — V) . . . . {n — 'd) (n — 2)

-\- {n — s) . . . . {71 — 2) {n — 1)

_ (w — .s) ....(« — 2) (n — l)n
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Tlu> stiulrnt is now rrcomnicndcd to pn ovor tlio prorodinp process

will) H|)cciul siin|)U> nuincricul values of n and s which ht; may Hclect for

hiiuHiilf,

3.4^5

3
"'

EXAMPLES.
If n = 5 aiitl H =z 2, wo have

1.3 4. 0.3 4. 3.4 _

U n = 7 and .s- = 3.

4'')-C,.7
1-2.3 + 2.3.4 + 3.4.5 -H 4. 5-0 = _-—1.

4

If M = 7 and s = 4,

1.2-3.4 4- 2.3.4.5 + 3.4.5.0 = ^—f'-^.o

If w = 9 and s = 3,

1.2.3 + 2.3.4 + 3.4.5+ 4.5.0+ 5.0.74-0.7.8 = 0.7-8.9

Prove these equations by com|Hiting both members.

2G1. Another curious example is the following:

Let us haVe p + q things divided into two sets, the one

containing /> and the other q things. Tlicn, to form all possi-

ble combinations of s tbings out of the whole /> + q, we may
take :

Any s things in set /)

;

Or any combination of s — 1 things in sety; with any one

thing of set q ;

Or any combination of s — 2 things in set^j with any com-

bination of 2 things in //

;

Or any combination of s — 3 things in ]) with any 3 out

of q, etc.

We shall at length come to the combinations of all s things

out of q alone. Adding up these separate classes, we shall

have

:

c? + cl^ a + CI2 cli + .... + cl cl 1 + cl

This sum makes up all combinations of s things in the

whole p-\-q, and is therefore equal to 6'«'^. Putting the

numerical expressions for the combinations, we have the

theorem

:

m
m

Hi
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If, fts ail oxamplo, wo put s = 3, ^j = 4, «/ = 5, this tlieo-

rem will give

9.8.7

i.a-3

4-3.2 4.3 T) 4 r».4 r).4-3

1.2.3
•"

1 .2'l
"^ i'i.2

*
1-2.:r

tlio curroctuuss of which is cusily proved by computatioii.

EXERCISES.
1. Write all the coni])inations of tlirce lefters out of the

five, r/, h, c, d, e, and show that C^ of tiiein begin wilh n, ('^

with b, and C'j with c, according to the reasoning of § 2(jO.

2. Prove that C'» = C^ + Cj,

^4 — ''4 ^ ^3>

and in general,
6'"'^ = C" -\- C'l-i.

In the fv>llowir'T^ two ways:

(1.) Let all combinations of s letters in the w letters

a, b, c, .... 71

be formed, their number being C'^. Then suppose one letter

added, making the nundjer 11 + 1. The combinations of s

letters out of these n -\- 1 will include the C^ formed from

the 71 letters, ])lus each combination of the additional (w + l)*'

letter with the combinations of s — 1 out of the first 71 letters.

(2.) Prove the same general result from the formula,

C
' = (")•

3. If we form all combinations of 3 things out of 7, how
many of these combinations will contain a 7, and how many
will not?

4. If we form all the combinations of s letters out of the tz

letters

Wj Of Cy • • • • ttj

..

I
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t n letters.
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how many of these combinations will contain a, and how many

will not ?

5. In tho preredin;^ case, how many of the comhinations

will contain tho three letters a, b, c?

20'i. TirmuKM I. TJir total tninihcr of mnilfuintlonft

irhirli van Ite fovDicd from n tlUn^s, lududing 1 zero

coinhiiKitiotiy in 2".

In the language of Algchra,

t'o -\r C\ -{ C'i -{•..., \- Cn-\ -f Ct = 2 .

Prnnf. Let us ])e<rin with '] things, a, h, c, and let us call

the formal zero combination, 1 = C'o. Then we have

Numhcr = 1

** =3
« = 3

Sum = 8 = 2".

Now introduce a fourth letter d. Tho rombinationH out of

the four things, a, h, c, d, will consist of the above S, plus tho

8 atlditional ones formed bv writing d after each of the above

eight. Their nu!nber will therefore be 10.

In the same way, it may be shown that we double tho pos-

sible number of combinations for every thing Ave add. to the

set from which they are taken. We have found, for

n = 3, Sum of combinations = 8 = 2^;

71 = 4, « « = 2-8 = 24;

w = 5, « " = 2-2*= 2''';

etc. etc.

which shows the theorem to be general.

Theorem II. If the signs of the aJtrrnate combina-
tions of n things he changed, the algebraic sum will be

zero.

l)lank,

cl a, h, c.

cl ab, ac, br,

ci, abc,

In algebraic language,

Hn

Co - C'l + C'i -C^ + etc. ± Cl = 0. (a)

I
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Proof. If in the formula of § 201, Ex. 2, namely,

/-^«+l fin . p,n

wc put n — 1 for n, it becomes

Putting 8 successively equal to 0, 1, 2, ... . n, we have

rf« pi^
1 .

C^= 6'

n-l
1

-.n-1

.

+ cr'

»i

^ n-1 — t «-2 + ^ n-l — f- n-2 + J-.

Suhstitutiii,' these values in the expression (a), it becomes

1 _ (i + cV) + (cr' + c^r') - (cr' + cv) + . . .

.

= 1 _ 1 _ cr' + cr' + c 6'r' - CV + etc.

How far soever wc carry this process, all the terms cancel

each other except the last. Therefore, if we continue the addi-

tions and subtractions until we come to Cn-i , the sum will be

CIS -C'l^C'l- etc ± Cl-i = ± CT\ = ±1.

The last term will be T €„ = T 1, and will therefore

just cancel the sum of the preceding terms.

Note. Theorem I may be demonstrated by these same formulae,

pincc the sum of all the terms taken positively will be dui)licated every

time we increase 7i by 1.

263. Independent Combinnfions. There is a system of

combinations formed in the following way :

It is reqidrcd to form a comhinatioih of s tJiiji^s, hy

taking one out of each of s different collections. How
many combinations can he formed ?

Let the 1st collection contain a things,
i( 2d a a h (I

<( 3d

etc.

n (i C

etc.

<<

'i

\m
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we have

t becomes

-yll—l
^3

-|- . • • •

+ etc.

rms cancel

e the ad di-

llm will be

= ±1.

Il therefore

|no formula?,

licated every

system of

\fiis. lluw

i

Then wo may take any one of a things from the first col-

lection.

"With each of these we may combine any one of the ?^ tilings

in the second collection.

With each of these we may combine any one of the c things

of the third collection.

Continuing the reasoning, we see that the total number of

combinations is the continued product

(the .... to s factors.

If the number in each collection is equal, and we call it a,

the numl)cr (»f combinations will be «*.

This form of combinations is that which corresponds most

nearly to the events of life, and is applicable to many questions

concerning probabilities. For example, if any one of five dif-

ferent events might occur to a ])crson every day, the numl)cr

of different ways in which his history during n, year might turn

out is 5'"^, a number so enormous that 255 digits would be re-

quired to express it.

EXERCISES.

1. A man driving a span of horses can choose one from a

stud of 10 horses, and the other from a stud, of 12. llow

many different span can he form ?

2. It is said that in a general examination of the public

schools of a county, the pupils spelt the word scholar in 230

different ways. If in spelling they might replace

ch by c or ^*

;

by an, aic, or oo\

1 by //;

a by e, o, ii, or on ;

r by re
;

in how many different ways might the word be spelt?

3. If a coin is thrown n times in succession, in how many
different ways may the throws turn out ?

4. If there are three routes between each successive two of

the five cities, Boston, New York, Philadelphia, Baltimore,

Washington, by how many routes could we travel from. Boston

to Washington?

I,
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'I

;»'

The »5iiioiniiil Tliooroin whou the Power is a
AVliole Number.

204. The binomial theorem (§ 173), when tlie power is a

positive integer, cim be demonstrated by the doetrine of com-

binations, as follows:

Let it first he required to form the product of the n
hinuniial factors,

To understand the form of the product, let us first study the special

case when «- = o. Performing the multiplication of the first three fac-

tors, the product will consist of eight terms

:

rtl^2^3 + ^1^2-'''3 + ^<l«3-'^'3 + (^Z^Ti^t + " \^' 2^'

Z

This product is the expression («) developed when n — 3.

{a)

Wc conclude, by induction, that the entire product {a)

when develoi)cd in this s^anie way, will be composed of a sum
of terms, each term l)eing a product of several literal factors.

When (a) is thus multiplied out, we shall call the result

the developed express ion.

The developed expression has the following properties :

I. Each term contains n literal factoids, a's and x's,

and no more.

For, suppose aj^ = rrj, 3*3 =^3, to Xn = an' Then the

expression {a) will reduce to '

'"Z^a^a.^n^ . ... an, (b)

and the developed expression must assume the same value

;

that is, it must consist of terms each of which reduces to the

expression

(fi(Uf>:\ . (f »» (c)

when we change x into a. Now if it contained any term with

either more or less than it factors, it could not assume this

form.

>

/.
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II. TJie factoids of each tei'ni have all the n indices

Xf /ilf Of • • • • 71,

For, the index figure of no term is altered by changing x

into a, as in I. Hence, if in any term any index figure were

missing or repeated, that term would not reduce to the form

(('), whence tliere can be neitiier omission nor repetition of

any index.

III. Because each term has n factors^ it Tiiust either

have
n factors a;

n — 1 factors a and one factor x;

n — 3 factors a and two factors x;

In general, a term may hrive the factor a repeated

n — i times, and x rrj)eated i times.

IV. In a term which contains i factors x, these i Victors

must be affected with some combination of i indices out of the

whole number 1, 3, 3, .... w ; and the n — i n's must bo

alTected by the complementary combination of n — i indices.

We next inquire whether tliere is a term corresponding to

every such combination. Let

Aj Oj *xj 1 9 • • • •

be any combination of i indices, and

/w, O, Uj O, . . . .

the complementary combination of 7i — i indices.

Since the developed expression must be true for all values

of rt and X, let us put in {a),

«i 0,

«3 = ^^

«4 0,

0,

etc.

X.. = 0;

ajg = 0;

x^ = 0;

X, =0;
etc.

(^0

The product {a) will then reduce to the single term,

XiffoX^x^n^af^x^a^ (e)

By the same change tlui developed expression must reduce

to this same value, and it cannot do this unless the expression

(e) is one of its terms.

a\}

H
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Hence the fleveloped exprcssinn must contain a ternv

coTvcspoiidiu^ to every eonihitintion.

V. Since every combination of / figures out of 1, 2, 3, .... 7i

will, in this way, give ri^^e to a term like {p). containing the

symbol a i times, and the symbol x n — i times, there will be

6'? such terms.

Now suppose rTj = a^ = r/3 = . .

\

(In = a.

'\ = ^'2 = '>'3 =
The expression (a) will then reduce to {a -f- x)"^.

In the developed expression, all the C'i terms containing x

I times and a n — i times Avill now be equal and their sum
Avill reduce to C" a"' x

.

Hence, putting in succession i = 0, i =. 1, etc., to i = ??,

we shall have

{a 4- >•)" = (i"" 4- Ci r/'^-i x 4- Cl ««" 2 a:2 -f + C' Ji 1 a./"-i + x\

Substituting for C'f its value, we shall have

{a+xY = «"+ na^'-^x -\- l^i'^-'^x-+ .... + (^^ Xix"-'^ + yjx\

which is the Buio??iial 77/coirm, enunciated, but not demon-

strated, in Book V, Chapter I.

Note. If the stiulont has any diffioulty in nnrlprstandinp the steps

of the precedintr demonstration, he should suppose n = 3, and refer the

demonstration to the developed expression («').

r

•I
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CHAPTER III.

THEORY OF PROBABILITIES.

205. Def. The Theory of Probabilities treats of

the chanc*?s of the occurrence of events which cannoc be *

foreseen with certainty.

Nofation. Let a hix^ contciin 4 balls, of which 1 is white

and 3 black. If a ball be drawn at random from the bag, we

should, in ordinary language, say that the chances were 1 to 3

in favor of the ball being white, or 3 to 1 in favor of its being

black.

In the language of iDrobabilities we say that the probability

1 3
of a white ball is -r, and that of a black one -•

4 4

In general, if there are m chances in favor of an event, and

n chances against it, its probability is
m

Hence,
in + n

Def. The Probability of an event is the ratio of

the chances whi^h favor it to the whole number of

chances for and against it.

lUusfrations. If an event is certain, its probability is 1.

If the chances for and against an event are even, its prob-

1
ability is

2

If an event is impossible, its probability is 0.

Cor. 1. If the probability that an event will occur

is^, the probability that it will fail is 1 —p.

Car. 2. A probability is always a i)ositive fraction,

greater than and less than 1.

266. Method of Prohahiliiies. To find the probability of

an event, we must be able to do two things:



300 PROBABILITIES.

i I

M

1. Enumerate all possihle irnj/s in irhicli, the event

mnij oeciir or fail, it heiit£ snf)/)oscd that these ways
are all eqaally probable.

2. Deternilne hoiu viany of these ways irill lead to

the event.

If n be the total number of ways, and m the number whicli

7)1

lead to the event, the probability required is — •

EXERCISES.
1. A die has 2 white and 4 black sides. What is the prob-

ability of throwiuf^ a white side ?

2. A bag contains u balls numbered from 1 to w, the even

numbers beiug white and the odd ones black. What is the

probability of drawing a black ball when n is an odd number?

AVhat, when ?i is an even number ?

3. A bag contains 3«+2 balls, of which numbers 1,4, 7,

etc., are white ; 2, 5, 8, etc., arc red; 3, G, 9, etc., are black.

What are the respective probabilities of drawing a Avliite, red,

and black ball ?

Rem. In the last example the probabilities are all less than ; there-
in

fore, should one attempt to guess the color of the ball to be drawn, ho
would be more likely to be wrong than right, no matter what color ho

guessed. This exemplifies a lesson in i)ractical judgment to be drawn
from the theory of probabilities. If there are three or more possible re-

sults of any cause, it may happen that the best judgirient would be more
likely to be wrong than right in attempting to jiredict the result. Thus,

if there are three presidential candidates with nearly eijiial chances, the

chances would be against the election of any one that might be nanu^d.

Gamblers of the turf are nearly always found betting odds against

every hnrse that may be entered for a race, though it is certain that one

of them will win.

Hence, if a natural event may arise from a number of causes with

nearly equal facility, it is unphilosophical to have any theory whatever

of the cause, b(>cause the chances may be against the most probable

cause being the true one.

Probabilities tlepeiidiiig' upon Conibiiiatioiis.

307. Probirm i. Two coins arc thrown. What are the

respective probabilities that the result will be : Both heads?

head and tail ? both tails ?

t
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At Ib'st sight it might ajipcar Hiat tbo chanees in favor of

these three results were equal, and that therefore the probabil-

ity of each was ^' But this would be a mistake. To find the

probabilities, wo must combine the possible tbrows of the first

coin (\vlii(;h call A) with the possible throws of tbc second

(which call 13), thus :

A, head
;

B, head.

A, head
;

B, tail.

A, tail
;

B, head.

A, tail

;

B, tail.

These combinations arc all equally probable, and while

there are only one each for both heads and l)oth (ails, there are

two for head and tail. Hence the probabilities are -, -, ,•
i /v "i

The sum of these three probabilities is 1, as it ouglit always

to be when all possible results are considered.

rroh. 2. Five coins are thrown. What are the resiiectivo

probabilities: q heads, 5 tails?

1 head, 4 tails?

3 heads, 3 tails?

etc. etc.

Let the several coins be marked a, b, c, lU c. Coin a may
be either head or tai', making two cases. Each of these two

cases of coin a may he combined with either case of d (as in the

last exami)le), making 4 cases.

Each of these 4 cases may be combined with either case of

coin c, making 8 cases.

Continuing the process, the total number of cases for five

coins is 2' = 33.

Of these 32 cases, only one gives no head and 5 tails.

There are 5 cases of I head, namely: a alone head, b alone

head, etc., to r.

2 heads may be thrown by coins <?, b ; a, c, etc. ; b, c; b, d,

etc. ; c, d, etc. ; that is, by any combination of two letters out

of the five, a, b, c, d, e. llence the number of cases is

Cl = 10.

1 m

iii
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m

'\ v^%

In the same way tlio immbor of cases corresponding to 3,

4, and 5 heads are, respectively,

Cl = 10, C\ = 5, Ci = 1.

Dividinfi: by the whole nnmber of cases, we find the respec-

tive probabilities to be

1
.

5 10, 10 5 1

35' 32' 32' 32' 32' 32*

The followin,2^ general proposition is now to be proved by

the student

:

Theouem. // thrj'e are n coins, the probabilitjj of
throiv'ui^ s heads and n — s tails is

2«"

From this resnlt we may prove the theorem in combina-

tions of § 262. If we suppose, in succession, *• =r 0, s = 1,

s = 2, etc., to 5 = 71, the respective probabilities of head,

1 head, 2 heads, etc., will bo

Cl 0} Cl
g/i ' 2'^ ' 2" '

etc., to
CJ
2«*

Because the sum of all these probabilities must be unit}",

we find

C? + C? 4- C^ + .... + C;: = 2^

Proh. 3. Two dice are thrown at backgammon. What arc

the respective probabilities of throwing 5 and and two G's ?

If we call the dice a and h, any number from 1 to on rt

may be combined with any number from 1 to 6 on h. There-

fore, there are in all 36 possible combinations.

In order to throw two G's, a must come 6 and h also.

Therefore there is only one case for this result, so that its

probability is --•

To bring 5 and 6, a may be .5 and h 0, or l 5 and a 6. So

there are two cases leading to this result, and its probability is

36 ~ 18*

i

is (
•

i
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Note. That 5 and arc twico as probable ns a double G may bo

clearly seen by supposiiif? that the two dice are thrown in succe.sHion. If

the lirst throw is either 5 or (5, there is a chance for the combination 5, 6,

but there is no cliance for a double unless tlie lirst throw is G.

Proh. 4. If three dice are tlirown, what are tlie respective

probabilities that the numbers will be:

1, 1, 1? 1, 1, 3? 1, 2, 3?

The solution of this case is left as an exercise for the

student.

Prob. 5. From a hiv^ containing 3 white and 2 l)lark balls,

2 balls are drawn. What are the respective probabilities of

Botli balls white?

1 white and 1 black ?

Both black ?

Since any 2 balls out of 5 may be drawn, the total number

of eases is 6*2-

Only one of these combinations consists of two white balls.

C'a of the cases bring both ])alls black.

A white and black are formed by coml)ining any one of the

three white with any one of the two black.

The respective probal)ilities can now be deduced by the

student.

EXERCISES.

1. It takes two keys to unlock a safe. They are on a

bunch with two others. The clerk takes three keys at random
from the bunch. What is the probability that he has both the

safe keys?

2. A party of three persons, of whom two are brothers, seat

themselves at random on a bench. What are the probabilities

{a) that the brothers will sit together, {h) that they will have

the third man between them ?

3. If two dice are throw^n at ])ackgammon, Avhat are the

probabilities

{a) Of two aces ?

(5) Of one ace and no more ?

4. In order that a player at backgammon may strike a cer-

il

!
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%

\
*

'I

If lif

tain poini, the sum of tlio mnnbers thrown must bo 8. What
are his chances of siicccetling in one throw of his two dice ?

5. A party of 1:5 persons sit at a round table. AVhat is the

prohubiUly tluit .Mr. 'I'aylor and Mr. Williams will be next to

each other ? (See § •Zb'i.)

6. An illiterate servant puts two works of 3 volumos each

npon a shelf at random. What is the probability that both

pair of companion volumes are together?

7. A gentleman having three pair of boots in a closet, sent

a blind valet to bring him a pair. The valet took two boots at

random. What are the chances that one was right and the

other left ? What is the probability that they were one pair?

8. If tho volumes of a J3-volume book are jdaced at random
on a shelf, what is the })robability that they will be in regular

order in either direction ?

9. A man wants a particular span of horses from a stud

of 8. His groom brings him 5 horses taken at ran{U)m. AVhat

is the probability that both horses of the span are amongst

them ?

10. From a box containing 5 tickets, nuvdiercd 1 to 5,

3 are drawn at random. Wiiat is the probability that numbers

2 and b arc both amongst them ?

11. The same thing being supposed, Avhat is the probability

that the sum of the two numbers remaining in the box is G ?

12. Of two purses, one contains 5 eagles and another 10

dollar-pieces. If one of tho purses is selected at random, and

a coin taken from it, what is the probability that it is an

eagle ?

13. From a bag containing 3 white and 4 black balls

2 balls arc drawn. What is the probability that they are of

the same color ?

14. The better of two chess phiyers is twice as likely to win

as to be l.)eaten in any one game. What chance has his weaker

opponent of Avinning 2 games in a match of 3 ?

15. Fi'om a bag containing m white and u black balls, two

balls are drawn at random. What is the probability that one

is white and the other black ?
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i6. From a bag containing 1 white, 3 red, and .'J blaek

balls, 3 balls are drawn. What is the |)robubility that they uro

all of ditlerent colors ?

17. It* H coins are thrown, what s the chance that thero

will he one head and no more ':*

18. From a Congressional coniniitteo of Kepublicans and

5 Democrats, a sub-committee ol" '.I is chosen by lot. What is

the probal>ility that it will be composed of two Kepublicaud

and one Democrat 'i

Compound Events.

2(58. Theorem I. The ])rol)tihiH tij that tirn iiulcpcnd'

cub events will both h((])f)cii is C(/a((l to the pruducb of
their separate prohabillties.

Proof. For the first event let there bo m cases, of which

p are favorable; and for the second h cases, of which y are

favorable. Then, by definition, the respective probabilities

AvlU be — and -•

m n

When both events are tried, any one of the m cases may bo

combined with any one of the ii cases, making in all ni x n

combinations of equal probaI)ility.

The combinations favorable to both events Avill be those

only in which one of the 2^ cases favorable to the first is com-

bined with one of the q cases favorable to the second. Tho
num])er of these coml)inations is p x y-

Therefore the probability that both events will happen is

m X n m n*

which is the product of the individual probabilities.

If there are three events of which the probabilities are p, q,

and r, and we Avish to find the probability that all three will

happen, we may by what precedes regard the concurring of the

first two events as a single event, of which the probability is

pq. Then the probability that the third event will also con-

cur is the product of this probability into r, or

pqr.

20

iill

i ..,
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Proceeding in the same way with 4, 5, 0, ... . events, we
reach the general

Tiii;oui:m II. Tlia prohdhililn Ihat mnj iinuihrr of hi-

driwiulcut cAriits irill nil uccfir is i'(/ii(tl to the contimved
product of their iiidividiud prob((bUities.

Ukm. This theorem is of great practiciil use as a guide to

our expectations. It teaches that if success in an enterprise

re(|uires the concurrence of a great nuniher of I'avorahle cir-

cumstances, the ciiances may he greatly against it, although

each circumstance is more hkely than not to occur.

This is ilhistrated by tiie following

Examplp: I. A traveller on a journey by rail has 8 connec-

tions to make, in order that he may go through on time.

There are two chances to one in favor of each connection.

What is the probability of his keeping on time ?

2
The probability of each connection being , the probabil-

ity of successfully making the tirst two connections will, by the

preceding theorems, be ("I , the first three P) , and all eight

Therefore tliere arc 25 chances to 1 a^'ainst his going

through on time.

On the other hand, if, instead of any one accident being

fatal to success, success can be prevented only by the concur-

rence of a series of accidents, the probability of failure may
become very small.

Ex. 2. A ship starts on a voyage. It is an even chance

that she will encounter a heavy gale. The probability that

'

she will not spring a leak in the gale is -,-• If a leak occurs,

9
there is a probability of :j^ that the engine will be able to

pump her out. If they fail, the probability is '. iha-t the com-
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piirtnicnfs will keep (he ship afloat. If slio sinks, it is an even

cliaiur that any one piussengcr will l»e saved l»y the hoats

What is the })rol>ability tiiat uuy Individ uul pa.sbun<jei' will bo

loat at sea ?

The prol)ability that •

(he ship will meet a heavy galo is _

the ship Avill spring a leak in the galo is ^•

the engines cannot pi nip her out is —

tho compartments cannot keep her afloat is -

the boats cannot save the passenger is ....... ^

The continued product of these probabilities is , ,,-,
1000

which is the probability that the passenger will be lost.

2Gt). The preceding theorem as enunciated supposes that

ihc several events are indcpendoU, that is, that the prohaljility

of the occurrence of any one is not aflected by the occurrence

or non-occurrence of the others. To investigate what modifi-

cation is required when the occurrence of one of the events

alters the probability of another of the events, let us distinguish

the two events as i\\e first and second. We then reason thus:

Let the total number of equally possible cases bo m, and let

p of these cases favor the first event. Its probability will

then be — •

m
It is certain that the events cannot both happen unless the

first one happens. Hence the cases which favor both events

can be found only among the p cases wdiich favor the first.

Let q of these ^j cases favor the second event. Then the prob-

q
ability of both events will be —

•

*'

111

In case the first event happens, one of the ^; cases which

I
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favor it must occur, and the probability of the second event

'I

will then be
P

Then

Probability of both events = -- = — x -• Hence,
•' '))j •111 nUl m

TiiEOREM. TliG prohdhility that ttco events irUl both

occur is equal to the prohabUitij of the first event inultl-

plicd by tlie probabilitfj of the second, in case the Jirst

occurs.

By continuing the reasoning to more evenU, we reach the

general

THEOKE^r. Tlie probnhility that a number of events

tcill all occur is er/udl to the product

I X Prob. of second in case first occurs.

Prob. of first i x Prob. of third in case first two occur.

( X Prob. of fourth in case first three occur,

etc. etc. etc.

Example. From a bag containing 2 white and 3 black

lialls, 2 balls are drawn. What are the probabilities (1) that

both balls are white, {2) that both are black?

This problem has alreadv been solved, but we are now to

see how the answers may be reached by the last theorem. It

is evident that we may sui)])Ose the two balls drawn out one

after the other, and the probabilities of their being white or

black will be the same as if both were drawn together.

I. Both balls white. The probability that the first ball

2
drawn is white is ^' If it really proves to be white, there will

be left 1 white and 3 black balls. In this event, the probability

that the second also will be white is -
4

Hence the probability that both are white is

2 1 _ 1

5 ^ 4 ~ l6'

M
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II. Itnfh halls hlarlc. Applying the same reasoning, wo
find I'or the probability of tliis case,

- X - = - •

5 3 10

EXERCISES.

1. Two men embark in separate commercial enterprises.

The odds in favor of one are 3 to 2 ; in favor of tlie other, 'i

to 1. What are the probabilities (1) that both will succeed?

(2) that both will fail?

2. The probability that a man will die within ten years is

-, and that his wife will die is — • What are the respective

probabilities that at the end of ten years,

(«) Both are living?

(/3) Both are dead ^

(y) Husband living, but wife dead?

{6) Ilusband dead, but wife living?

2
3. The probability that a certain door is locked is -• The

o

key is on a bunch of 4. A man takes 2 of the four keys, and

goes to the door. What are the chances that he will be able or

unable to go through it ?

4. Two bags contain each 4 black and 3 white balls. A
person draws a ball at random from the first bag, and if it be

Avhite he puts it into the second bag, mixes the balls, and then

draws a ball at random. What is the probability of drawing

a white ball from each of the bags ?

5. If a Senate consists of m Democrats and n Republicans,

what is the probability that a committee of three will include

2 Democrats and 1 Republican?

6. A bag contains 2 white balls and 5 black ones. Six

people, A, B, C, D, E, F, are allowed to go to the bag in alpha-

betical order and each take one ball out and keej) it. The
first one who draws a white ball is to receive a prize. Wliat

are their respective chances of winning?

i

Note.

all 7 baUs.

A'a chance is eadilv calculated, because he has the draw from

I "I
1 i

I i
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•I

m n

In order that B may win, A must first fail. Therefore, to find B's

probability we find (1) the probability that A fails, (3) the probability that

if A faila then IJ will win. We then take the product of these probabili-

tiea.

In order that C may giiin the prize, (1) A must fail, i2) B must fail,

(3) C himself must gain. So we find the successive probabilities of the.se

occurrences.

Continuing to F, we find that he cannot win unlcps the 5 men before

him all miss. He is then certain to gain, because only the two white

balls would be left.

7. Two nicii hiive one throw each of a cohi. X olfei's a

prize if A throws head, and if he fails, but not otherwise, B
may try for tiie prize. If botii fail, X keeps the prize himself.

What are the respective chauccs of the three men having the

prize ?

8. A and B arc alternately to throw a coin until one of

them throws a head and becomes the winner. If A has the

first throw, what are their respective chances of winning ii*

9. A crowd of n men are allowed to throw in the same way

for a prize, in alpluibetical order, the game ceasing as soon a.s a

head is thrown. What are the respective chances of the con-

testants?

10. Three men take turns in throwing a die, and he who
fir.<t throws a G wins. What are their respective chances:'

11. If 4 cards are drawn from a pack of 52, show that the

probability that there will be one of each of the four suits is

39 20 13

5l'50'4ij*

12. One purse contains 5 dimes and 1 dollar, and another

contains G dinu'S. 5 i)ieces are taken from the iirst purse and

i)ut into the second, and after bein^f mixed 5 are taken from

the second and put into the first. Whicli purse is now most

likely to'contain the dollar ?

13. Of two purses, one contains 4 eagles and 2 dollars, the

other 4 eagles and G dollars. One being taken at random, and

a coin drawn from it, wl .it arc the respective probabilities

that it is an eagle or a dollar?

II
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Cases of*Uiieqiial Probability.

270. Def. If two or more possible events ai-e so

related that only one of them can happen, tliey are

called Mutually Exclusive Events.

Theouem. Tlie prohahUitii tJutt some one of several

exclusive events, we care not which, will occur, Is equal

to the sum of their separate probabilities.

Proof. Lot there be m possible and equally probable cases

in all; let p of these cases be favorable to one event, q to tlic

p (I r
second, r to the third, etc., so that —

,

—

,

— , are the ro-
,.

, ,.,.,. m m 7ti'
spective probabihties.

Since only one of the events is possible, the p cases which

favor one must be entirely different from tiie rj cases which

favor the second, and these cases p-\-q must be entirely differ-

ent from the ;• which favor the third, etc.

Hence there will be /;+ r/ + ;'+ etc. , cases which favor some

one or another of the events. Hence the probability that some

one of these events will occur is

m '

which is equal to the sum of the probabilities,

par— + ~ -{ 1- etc.m m m

IiE>[. If the concurrence of some two events, say the first

and second, had been possible, some one or more of the j) cases

which favor the first would have been found amonj^ the q cases

which favor the second. Then the whole numl)er of cases

Avhicli favored either event would have been less than ]) + q,

and the probability that one of the two events would happen

less than the sum of their respective probabilities.

271. General Problem. To find the j)robabilitj/ that

an event of whicli the probability on any one trial Is p,

will happen exactly s times in n trials.

4i
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'I

This prnhlem is at (lie basis of some of the widest ajiplica-

tioiis of the theory of prol)al)ility to pnictical questions, e.'^jjc-

cially tliose assoeiated with life and tire insurance. The con-

ditions which it imjilies are therefore to be fully comprehended.

We may conceive a trial to mean fjicimj the event an oppor-

tunitrj to happen. The simplest kind of trial is that of throw-

ing a coin or die. At each throw, any side has an opi)ortnnity

to come up. Then, if we throw 50 pieces, or which amounts

to the same thing, throw the same piece 50 times, there will

be 50 trials; and we may inquire into the probability that a

given side will be thrown exactly 9 times in these trials.

The same conception occurs in another form if we have 50

men, each of whom has an equal chance of dying within

5 years. Waiting to see if any one man will die in the course

of the 5 years is a trial., so that there are 50 trials in all, and

we may inquire into the probability that 9 of the men will die

during the trials, just as in the case of 50 throws of a die.

Let us distinguish the several trials by the letters

a, 1), c, d, €, .... w,

which must be n in number.

1. In order that the event may not hap[>en at all, it must

fail on every one of the n trials. The probaljility of this

(§ 2G8, Th. II) is (1 —py This is therefore the probability

that it will not happen at all.

Becaus' the probability of the event hapix-ning on any one

trial is p, the probability of its failing is 1 — p. AVe now
compare the possible results.

2. The event may happen once on any one of the n trials,

a, h, r, etc. In order that it may hapjien only once, it must

fail on the other n — 1 trials. The probability that it will

happen on any one trial, say e, and also fail on the remaining

71 — 1 trials is, by the same theorem,

Because there arc n trials on which it may equally happen,

the probability that it will happen once and only once is

np{\. —pY~^.
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3. The event may liappcn twice on any two trials ont of tlio

n trial-. In order tliat it may happen twice only, it must I'tiil

on the other ?i — 2 trials. Taking any one combination, say

Happen on b, d;

Fail on a, c, e, . . . . n,

the proljability is j!>^(l — pY~^.

Bnt it may happen twice on any combination of two fri:ils

ont of the n trials, a, h, c, . . . . n. Because these coinJmia-

tion."i are mutually exclusive (§ 270), the total ji'obability of

happening twice is

4. In general, in order that the event may happen just s

times, it must happen on some combination of s trials, and fail

on the complf'nentary combination of n — .v trials. The

probabiiiiv 01 one combination is ^Z (1 — /?)'*"* and there

are C'l .«uch combinations. Hence the general probability of

hapi^eniug s times is

C'',f {I - p)n-s, {a)

If there is on each trial an ecpial chance for and against

the event, then p = ^ and l—p = -- The probability of

the event happening s times then becomes

This ca.se corresponds to that already treated in

Problem 2, and the result is the same there found.

207,

EXERCISES.

I. A die having two sides wliite and four sides black is

thrown 5 times. AVhat are the respective probaljilities of a

white side Ijeing thrown 1, 2, 3, 4, and 5 times?
*

Note. Here p, the probability of a white side on one throw, is , and
o

o
1 — /) = 3 " Tl^*-' ttuinber n of trials is 5,

^h
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'I

2. Of o licalthy men figod 50, the probahilify tliat any ( .n

will live to 80 is • AVlnit is the probability that three or

more of them will live to that age?

3. A chess-})layer whose chances of winning any one game

from his opponent are as 2 to 1, undertakes to Avin 3 games

out of 4. What is the probability that he will be able to do it?

Note. It would be a fallacy to suppose that the probability required

is that of wiuning exactly 3 games, because he will equally wiu if he

wins all four games.

272. Events of Maxinmm Prohability. Returning to the

general expression («), let us inquire what number of times

the event is most likely to occur on n trial5. The rerpiireil

number is that value of s for which the probability

is the greatest.

If we call P^ the probability that the event will happen

exactly .s times, and if s is to be the number for which the

probability is greatest, we must have

Ps > Ps-X,

Ps > Psil.

Substituting for these quantities the corresponding forms

of the expression (a), which is equal to Ps, we have

C^ ;;* (1 - ;;)"-^ > Ctip^' (1 - J»)«-*+S

• C^p'il -pY-^ > C?+i^«+i (1 - pY-^\
The general formula for C'« in § 257 gives

s + 1

(*)

m =
8

C^-8~h

(c)

s + 1

Hence we have, by dividing both terms of the first in-

equality
C^*)

by C«-i;/-i (1 -i;)'^-*,

n — s + 1 . .

p > 1—p.

i

4

4
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Multiplying by s, this becomes

np — ajj {-
J) y s — sj).

Iiitercliauglng the members and reducing, we have

s<p{H + l). {(l)

Now divide the second inequality (/>) l)y C'";;* (1 — ^j)'*-^S

and reducing by the second equation (t), we have

. ^ n — s

i-?'>7+-i^-

Multiplying by s + 1 and reducing, we find

s >;;(w-f 1)-1. (e)

Comparing the inequalities (d) and (f), we sec that s Ywa

iK'tween the two quantities 2> ('- + 1) and ;; {ii -\- 1) — 1;

that is,

s is tJie £JTatest whole iiuniber in }) (w + 1).

If the number of trials n is a large number, and p is a small

fraction, -p {n + 1) and pu will dill'er only by the traction ^j.

We shall then have, very nearly,

s = pii.

. That is

:

Thi:orem I. J7ic most prohalilc niunher of times that

an event will happen on a great nuinher of trials is the

product of the number of trials by the probahilitij on
each trial.

Example. If a life insurance company has GOOO members,

and the probability that each member will live one year is on

the average ^, then the most probable number of deaths

during the year is 100.

Rem. It must not be supposed that in this case the num-
ber of deaths is likely to be exactly 100, but only that they

will fall somewhere near it.

There is a practical rule for determining what deviation

must be guarded against, the demonstration of which requires

more advanced mathematical methods than those employed in

this chapter. It is:

!l
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Tii noKEM IT. Drvirtflojis from the iiiost prohnhle mnn-
hrr of (IcatJiH, cqital to the s(/uarc root of that nuinhcr,

will he of frc(nu']it occurrence.

DevldtioiLs ninelb greater than tJiis squfire root will

he of iiifre(/iten.t occurrence, and deviatlojis more than
twice as great will be rare.

Examples. In a conipiiny of wliicli tlie proVai)le annual

number of deaths is 10, tlic actual number will C()niinonly I'all

between 10— VlO and 10 + VlO, or between 7 and 13. It

will very rarely h.'ippen that the number of deaths is as small

as 4 or as large as 10.

If the company is so large that the most probable number
of deaths is 100, the actual number will commonly fall betwceu

100 — VlOO and 100 4- VlOO, or between 90 and 110.

If the most jjrobable number of deaths is 1000, the actual

number Avill commonly range between i)G8 and 103^.

We noAV sec the foUowincf result of this theorem:

Tlie greater the iiinnher of deaths to he ex])eeted, the

greater will he the proludtle deviatioii, hat the less will he

tlie ratio of this deviatioii to the luhole nmnher of deaths.

Examples. The reductions of iha cases just cited are

shown as follows

:

Expcctod munbcr
of tleiiths.

Probable
deviation.

Rali
to exi

() of deviation
lectud iiumbor

10 3 0.33

100 10 0.10

1000 32 0.03

Application to Life Insurance.

2*73. ^At each age of human life there is a certain proba-

bility that a person will live one year. This probability di-

minishes as the person advances in age.

It is learned from observation, on the principle described in

the preceding section, that events in a vast number of trials

are likely to happen a number of times equal to the i)roduct of

their probability on each trial, multiplied by the number of

trials.
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Tlicrcforo, by dividing the wliole number of times tlic event

has hap[)ened by the whole number of trials, the (luotient is

the most probable value of the probal)ility on one trial.

Example. If we take 50,000 people at the age of 25, and

record how many of them are alive at the end of one year, this

is making 50,000 trials whether a person of that age will live

one year.

If 4'J,G50 of them are alive at the end of the year, and 350

arc dead, wc would conclude

:

Probability of living one year, .... 0.003

rrobability of dying within the year, . . 0.007

The probability for all ages may be determined by taking a

great nnmber of infant."^, say 100,000, and counting how many
die in each year until all arc dead. If n are living at tlic age

y, and n' at the age y -\- \, then the probability of dying

within one year after the age y will be , and that of

n'

11 — n

n

living will be
n

It is not, however, necessary to wait through a lifetime to

reach this conclusion. It is suflicient to find from o])servation

what proportion of the i)eople of each age die during any one

year. Suppose, for instance, that tiie census of a city is taken,

and it is found that there are ::250O persons aged 30, and 2000

aged 50. At the end of a year another in(|uiry is made to

ascertain how many are dead. It is found that 20 of the 30

year old people, and 30 of the 50 year old people have died.

This would show:

At age 30, probability of dying within 1 year = 0.008.

*' 50,
" " " '' = 0.015.

This same probability being obtained for every year of life,

the probal)ility of living 1 year at all ages would be known.

Then a table of mortality could bo formed.

A table of mortality starts out Avith any arbitrary number
of people, generally 100,000, at a certain age, fre((uently 10

years. It then shows how many of these people will be living

at the end of each subse(iuent year until all are dead. The

following is a specimen of such a table.

:il

:1

t
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Table of Mortiility.

•»

Prob, of
Prob. of
dying
Willi n

Prol). of
Prob of

Ages. Living. Dying. Hiirviving Ages. Living. Dying. Hiirviving
living
williiii

a year.
tlio year.

.00442 60 .677

a year.

.97127

.9689^

the year.

.02H72ir 100000 442 •99558 58373
II qq55S 407

385
.99591 .00408 61 56696 1760 .o3i()4

13 991 5i .996 1

1

.00388 62 54936 |8.',9 .966)4 .o3365

i3 98766 376 .99619 .oo38o 63 53087 1936 .96353 .03646

14 98390 379 .99614 .00385
1

64 5ii5i 2014 .96062 .03937

i5 9801

1

396 .99595 .00404
;

65 49137 2080 .95766 .04233

i6 97615 426 .99563 .00436 66 47057 21 38 .95456 .04543

>7 97189 469 .99517 .00482 67 44919
42733

2186 .95133 .04^66

l8 96720 523 .99457 .00542 ' 68 2224 .9479^ .o52o4

»9 96195 58

1

.99396 .oo6o3 69 4o5og 2268 ,94401 .05598

20 95614 621 .99350 .00649 70 38241 233

1

.93904 .06095
21 94993 645 .99321 .00679 7' 35910 2401 .93313 .066H6

22 94348 653 .99J07 .00692 72 33509 2469 .92631 .07368
2] 93695 65i .993o5 .00694 73 3 1040 253

1

.91846 .08154

24 95044 647 .99304 ,00695 74 285o9 2567 .90995 .09004

25 92397 647 .99299 .00700 75 25942 2542 .90201 .09798
26 9i7:)o 65i .99290 .00709 76 23400 247''' .89418 .io58i

27 91099 668 .99266 .00733

]l
20924 2369 .88078 .11321

28 90431 686 .99241 .00753 1 8555 2247 .87S90 ,12109

29 89745 703 .99216 .00783 79 i63o8 2110 .87061 .12938

3o 89042 718 .99193 .00806 80 14198 1969 .861 3

1

.13868
3i 88324 726 .99178 .00821 81 12229 1823 .85092 ,14907
32 87598 733 .99163 .00836 82 10406 1672 .83932 .16067
33 86865 743 .99144 .00855 83 8734 l522 .82373 .1742634 86122 754 .99124 .00875 84 7212 i36o .81142 .18857

35 85368 768 .99 TOO .00899 85 5852 1186 .79733 .20266
36 84600 789 .99067 .00932 86 4666 1014 .78268 .21731

37 838II 811 .99032 .00967 87 3652 849 .76752 .23247
38 83ooo 83o .99000 .01000 88 2803 689 .75419 .24580

39 82170 844 .98972 .01027 89 2114 548 .74077 .25922

40 8i326 854 .98949 .oio5o 90 1 566 435 .72222 •27777
41 80472 860 ,98931 ,01068 9« n3i 336 .70291 .29708
42 79612 869

888
.98908 .oiogi 92

It
247 .68930 .3 1 069

43 78743 .98872 .01127 93 181 .66970 .33029

44 77855 9i3 .98827 .01172 94 367 i3i .643o5 .35694

45 76942 948 .98767 .01232 95 236 86 .63559 .36440
46 7^994 989 .98698 .oi3oi 96 i5o 56 .62666 .37333

47 75oo5 1029 .98628 .01371 97 94 44 .53191 .46808
48 7397b 1067 .9S557 .01442 98 5o 33 .34000 .66000

49 72909 1102 .98488 .oi5i I 99 >7 II % ?1

5o 71807 ii33 .98422 .01577 100 6 4 H %
5i 70674 1 167 .98348 .01 65

1

101 2 2

52 69307 1204 .98267 .01732 102 ....
53

54

683o3
67052

125l

i3o4
.98168

.98055

.oi83i

.01944
Note. Tlie above table is that of

55 65748 1 358 .97934 .02065 the Enixlish Institnto of Act iiarics,

56 64390 1414 .97S()4 .02195 pre pared between IHfW and IStii), from
57
58

59

62976
6i5o5

59974

1471

i53i

1601

.97664

.97510

.97330

.02335

.02489

.02669

tlie

lea

continued experience of 1

ding life inBurance compau
.wenty

ics.
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,
' Prob of

I dvliit,'

'« within
the J car.

)

l

J

2

5

f)

3

5

I

i4

3

>i

i6

)5

31

iH

78
90
61

3i

)2

73
42

|;33

8

132

•9

f)77

22

2Q1

c;3o

97"
3o3

191

000

K

,02872
.o3io4

.o33()5

.o36.U)

.03937

.04233

.o4:).',3

.0/,^^()()

.o!)2().i

.o5d9H

.06095

.o6fiKf>

.0736H

.08 if).',

.09004 I

.09798

.iofi8i
I

.Il32I

.12109

.12938

.i3%8

.i/.9(>7

.i()o()7

.17.126

.18837

.20266

.21731

.23247

.24580

.2:)922

.27777

.2970B

.3 1 069

.33029

.35694

.36440

.37333

.46808

.66noo
».;

ble if that of

Actnaricn,

lul 1809, from

;e of twenty

»mpauieB.

Phoijlkm. To find tlie i)robubility that ti person of ago a
will live to uge ?/.

Sulution. Wo take from the tahle the mniiher living,' at

age ?/, and divide it hy the number living at age a. The (^uo-

tient is the probability.

274. The principle on which the value of a contingent

payment is determined is the following

:

Theorem. Tlic value of ct pvohahlc pdiimrnt ift equal
to the siuii to he paid, viidtiplied by the proffafji/ifi/ that

it will be paid.

Proof. Let there bo w men, for each of whom there is a

])robability /) that he will receive the sum s. Then l)y § 2'i'Z,

Th. I, pn of the men will probably receive tiie i)aymont, so that

the total sum which all will receive will i)robably bo pus. Now,
before they know who is to get the money, the value of each

one's share is ecpial. Therefore, to find this value, we divide

the whole amount to be received, namely, /jwn, by the number

of men, n. This gives ps as the value of each one's chance,

which proves the theorem.

Note. In this proof it is tacitly supposed that the pus

dollars arc as valuable divided among the p)i men as divided

among all 7i men. But this, though supposed in mathematical

theory, is not morally true. Morally, the money will do more

good when divided among all the men than when divided

among a portion selected by chance. All gambling, whether

by lotteries or games of chance, is in its total effects upon the

pecuniary interests of all parties a source of positive disadvan-

tage. This disadvantage is treated mathematically by more

advanced methods in special treatises.

EXEFICISES.

I. Find from the table the probabilities that a person

a. Aged 30 will live to 70.

b. " 30 " " 80.

c. " 50 " " 60.

d. " 60 " " 70.

V\

h

•liH

|r
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'I

c.

/.

h.

A^ccl ro will live to HO.

tt

80 »

t

1

1

00.

00 <( <( 05.

95 (( (( 100.

2. \VI)jil n^e is tlitit at wliich it is an even chance wiictlier

u ])t'rs()ii n^'ctl 40 will he liviii;,^ <»r tlcad ?

3. Show that the i)rohal)ility that a person nj^ed 'M) will live

to TO is C(|ual to the ])ro(lut't of tlie i)rohMl)ility that lie will live

to 00 imiltii>lic'il by the })rol)abili(y that a man aged GO will

live to To. (Apply the thooreni of § ;.'(;0.)

4. What pi'cininni onu^ht a man of <i5 to pay for insnring

his life for Ji^^OOO for I year?

5. Ten younf]^ men of -.'5 form a elnb. What is the proba-

bility that it will \w. nnbroken by death for ten years ?

6. The probability that a planing mill will bnrn down

within any one year is ;.• What onght an insnranee company
»)

to charge to insnrc it to the amonnt of ^3000 for 1 year, for

2 years, for 3 yeai'S, and for 4 years, res])eetivt.'ly ?

7. If the probability that a honse w ill burn down in any

one year is ;^, what onght to be the premium for insuring it

for 6' years to the amount of a dollars?

NoTio. In cnst'.s like the last two, it Ih assumcil that only one loss

will bo paid for.

8. What is the probability that if a man aged 25 marry a

"wife of 20, they will live to celebrate their golden AVedding?

9. A comi)anv insures the joint lives of a husltand aged 70

and a wife aged 50 for 85000 for 5 years, the stipulation being

that if either of them die within that time the other shall be

paid the money. What ought to be the premium, no allow-

ance being made for interest ?

10. A man aged 50 insures the life of his Avife, aged 35, for

$10,000 for 20 years, with the promise that the money is not

to be paid unless he himself lives to the age of 70. What
onght to bo the ])reniium?

Note. In computations rclatinjx to the inana<]fonicnt of life insurance,

it is always necessary to allow compound interest on all jjayments. But
the above exercises are intended only to illustrate the application of the
theory of jirobaliilities to tlie suliject, and therefore uo allowance for in-

terest ia expected to be made in the answers.

Mi
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BOOK XI.

OF SERIFS ANP TlfF DOCTRINE OF
LIMITS.

CHAPTER I.

NATUREOFA SERIES.

fi7i>. I>(f. A Series is a succession of tci-nis follow-

ing L'licli other accoidiug- to some goucral law.

ExAMi'LKs. An arithmetical jirogression is a series dot er-

mined by the law tiiat each term shall be greater than the

preceding one bv the same amount.

A geometrical ])rogro^•sion is a series subject to the law

that the ratio of evory two consecutive terms is the same.

These two progressions are the sim[)lest form of series.

A series may terminate ut some term, or it may continue

indefinitely.

Def. A scries which continues indeliuitely is called

an Infinite Series.

Dcf. The Sum of a series is the algebraic sum of

all its terms. Hence the sum or an inlinit(^ series will

consist of the sum of an inlinite number of terms.

3T0. The law of a series is generally such that the n^^

term may be expressed as a function of n.

For example, in the series1111
^ + 3 + 4 + 5 + '^'•'

the n^^ term is

21

w + 1

,rf
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, I

T .1 • 111.
In tlie senes -- + -— + -~ + etc.,

the n^^ term is
n {u + 1)

D(f. The expression for the ;?'* term of a series as

a function of /i is called the General Term of the

'

series. »

EXERCISES.

Express the n^^ teiii of each of tiie foliowhig series :111.
'• T~r + T~ + FT + ^^^•

O'-i -i-o O'b

2. 1-2 + 3.4 + r-G + etc.

3- ^ + r2 + 1:2^ 3 + ^^'-

« fr^ ^j4 ,j8

4- 2.-2 + 3:22 + 4^23 + 5T24 + etc.

Write four tenns of each of the series having the following

general terms:

5. The 71^^ teriii l-o , .,
-•

6. The i'^ term to ^ ?. i {i + 1) {i + 2) 2^.

7. The {)i + 1)*' term to be
^

^
^ '

{n + 5) (« + G)

8. The (/? — 1)*' term to he —

-

^/»-l
1-2 .... w

277. The most common nse of a series is to enahle ns to

compute, l)y ai)proxiniation, the values of expressions wliieh it

is ditlieult or impossible to compute directly. Sui)pose, for

exami)k', that Ave have to compute the value of '- when x

is a small fraction, say ^^, and to have the result accurate to

eight decimals. We shall see hereafter that when x is less than

1, we have

f
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1 -\-x

1—x = 1 + 22: + 2^:2 4- 22-3 + etc., ad infinitum.

Suppose X =z ~- z= .02.

2 X .02 =
Multii)lying by .02,

We comjmte this series thus

:

1

.04

.0008

.00001

G

.00000032

1.02
^^^"^ = ms = 1.04081(.i32

which IS much more expeditious than dividing 1 02 hy .98.

It will be seen that every term we add makes the (luotient

accurate to one or two more decimals, so that there is no limit

to the precision which may be attained by the use of the series.

If, however, .r had been greater than unity, the series would

give no result, because the terms 2.r, 'Zx^, 'Zx^, would have gone

on increasing indefinitely, whereas the true value of the frac-

\ -\- X
tion — would have been negative.

1 — X °

This example illustrates the following two cases of series

:

I. There mcnj be a certain limit to irhieli the sinnof
the series sJialt aj)])roaeh, as ire increase the inimher of
terms, but which it can never reach, how great soever the

number of terms added.

For example, the series wo have just tried,

1.02
approaches the limit

;;-f,",
but never absolutely reaches it.

0. J8

II. As we increase the nuniher of terms, the sunv

maij increase without limit, or majf vil)rate l/ac/c and
forth in consequence of some terms being positive and
others negative.

These two classes of series are distinguished as conceryent

and divenjcnt.

h
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\ i

M

Dpf. A Convergent Series is one of whicli tho sura

approaches a limit as the nuiuber of terms is increased.

liefer to § 213 for an example of infinite series in geometrical pro-

grcsr^ions which have limits.

Drf. A Divergent Series is one of wliich the sum
does not approach a limit.

Examples. The series l + ^-f 3 + 4+ ctc., ad lufnutum,

is divergent, because there is no Hniit to the sum of its terms.

The series 1 — 1-f 1 — 1 + 1 — etc., is divergent, because

its sum continually fluctuates between +1 and 0.

Rem. When we consider only a limited nnmlier of terms,

the (|nestion of convergence or divergence is not important.

]5ut when the sum of tlie whole series to infinity is to be con-

sidered, only convergent series can be used.

Notation of Sums.

274. The sum of a series of tenns represented by
common symbols may be expressed by the symbol 2,

followed by one of the terms.

Example. The expression

moans " the sum of several terms, each represented by «."

When it is necessary to dlstinguisli the different

tenus, dilFerent acc(Mits or indices are affixed to thein,

and represented by some common symbol.

Example. The expression

means the snm of several terms represented by the symbol a

with indices attached ; that is, the sum of several of the '|uan-

tities a^, (1^, a.^, a^, etc.

When the particular indices included in the summa-
tion are to be expressed, the irieatt'st and least of them
are written above and below the symbol i.

1

i

fti
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;lio sum
:reasf(l.

trical pro-

lie sum

finitum,

s terms,

because

f terms,

portiiiit.

) be cou-

ntod by
iibol 2,

a.
»

liff(U'cnt

tliem,

symbol a

lie '|uan-

summa-
ot' tliem

Examples. The expression

i=5

means
:
" Sum of all the syml)ols ai formed by giving i all in-

tegi-al values from « = 5 to i = 15." That is,

:15

lai = ai + «6 + a, + a, + r^ + rt,o + ff„ + f/,.; + r/„+^,4 + r^5.

i^5
lim means + m + 2m + 3w -f 4?« + 5m.

i=0

^1 (/,./) means (1,.;) + {'^,J) + (3,;) + (4,^).

yihj) = {i, 2) + {i, 3) + {i, 4) + (/, 5) + (/, G).

i;;i! = l! + 2! + 3! + 4! = 1 + 2 + G + 24 = 33.
n=l

i=li

1/ = 7 + 8 + 9 + 10 + 11 = 45.
«-=7

j—

5

"^^i-a = 2^2 + 32 + 42 + 52 = 54.

EXERCISES.
Write out the following summations, and compute their

values wlien they are purely numerical

:

I. ^/K

4. llmi.
i=4

i=4

7. It mi.

n=6 n=6
2. 5;/^(m_1). 3. 2?i(;2 + l).

n=7

n=4

?i=S

n-2

n = l

6. ""2 0^ + 1)0-1).
n-0

i^'-J «^a n=o ^i + 1

Express tlie following sums by the sign 1:

10. //o+^'i+Z's+Z^a+Z/^. II. 13 + 23 + 33 + 43.

12. 1-2 + 2-3 + 3-4 + 4 5.
12 3 4 5

13. o + Q + A + n + ,r

Hi

2 ' 3 ' 4 5 ' G
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CHAPTER li.

DEVELOPMENT IN POWERS OF A VARIABLE.

270. Among the most common series employetl in nititli-

ematics are those of which tlie terms are multiitlied by tlie

successive powers of some one quantity.

An examine of such a series is

1 + 2z + 3^2 + 4^3 + or* 4- etc.,

in wliich each coefficient is greater by unity than the power of

z which it multiplies.

A geometrical progression, it will be remarked, is a scric

of this kind, in which the terms contain the successive powers

of the common 7'atio.

The general form of such a scries is

Oq + a^z + a^z^ + «32^ + etc.,

in which the successive coefficients a^, a^, a^, etc., are formed

according to some law, but do not contain z.

Such a series as this is said to proceed according to the

ascending powers of the variable z.

Rem. The sum of a series is often equal to some algebraic

expression containing the variable. Conversely, we may find a

series the sum of all the terms of which sliall Ije equal to a

given expression.

Def. A series equal to a given expression is called

the Development of that expression.

To Develop an expression means to find a series

the sum of all the terms of wliicli are equal to the ex-

pression.

The most extensively used method of development is tliat

of indeterminate coefficients.

i
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3Ietliod of Iiideterniinate Coefficients,

2SO. The method of indeterminate coefficients is based

npon the following pnnciples :

Let lis have two equal expressions, each containing a varia-

ble z, and one or both containing also certain indeterminalc

quantitieSj that is, quantities introduced hy])othetically, and not

given by the original problem, the values of which are to be

subsequently assigned so as to fulfil a certain condition.

The condition to be fulfilled by the values of the inde-

terminate quantities is that the two expressions containing z

and these quantities shall be made identically equal.

Thei>, Vxicause the equations arc to be identically equal, we

can asai^ any values we please to z, and thus form as many
equations as we please between the indeterminate quantities.

If these equations can be all satisfied by one set of values of

these quantities, then by assigning these values to them in the

original equation, the latter will be an identical one, as required.

The stndfnt pbould trace the above general method in the following

examples of its application.

281. Theorem I. If a scries proceeding according

to the ascending powers of a quantity is equal to zero for

all values of that qnantitij, the coeflicicnt of each sepa-

rate term must he zero.

Proof. Let the several coefficients be a^, f/,, a^, etc., and

2 the quantity, so that the series, put equal to zero, is

«r„ + fl'jZ + ac,7?' 4- a^z^ + etc. = 0.

Becanse t'lC equation is true for all values of z, it must be

true when z = 0. Putting z =: 0, it becomes

it^ — 0.

Dropping a^, the equation becomes

ff,2 -f a.^z^ + a^z-^ + etc. = 0.

Dividing by z, a^ + n„z + a./^ + etc. = 0.

From thii* we derive, by a repetition of the same reasoning,

«i = 0.

II

f I

\\

ill

!»
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Continuing the process, avc find

fto ~ 0, fl'a = 0, etc., indefinitely.

TnEOREM II. // two series jn'occedhig by ascending
poircrs of a quantity are eqitrd fo/' all values of tJiat

quantity, the coejjiclents of tlio Cfjual powers must he

equal.

Proof. Let the two equal series be

aQ-\-aiZ-\-a,^z^-\-Qt(i. ~ h(^-{-h^z-\-h2Z^-\-Qtc. (a)

Transposing the second member to the left-hand side and
collecting the equal powers of z, the equation becomes

^'o ~ ''''o + (^'i — ^i) ^ + i'^'z
— ^s) ^^ + etc. = 0.

Since this e([uation is to be satisfied for all values of z, the

coefficients of the separate powers of 2 must all be zero.

Hence,

^^0 ~ ^''o
= 0, rtj — ^1 = f*j ^8 ~ ^3 — 0, etc.

or Hq = h^, a^ = b^, a^ = b^, etc.

Exercise. Let the student demonstrate these last equa-

tions independently from (a), by sujjposing z ^=0, then sub-

tracting from botli sides of (a) the (juantities found to be equal;

then dividing by z ; then supposing z =: 0^ etc.

Rem. The hypothesis that (a) is satisfied for all values of

z is equivalent to the supposition that it is an idenlical equa-

tion. In general, wlicn we lind different expressions for the

same functions of a variable (piantity, these expressions ought

to be identically e([ual, because they are expected to be true

for all values of the variable. ,

Tiieoijem III. ,1 function of avariahle can oidyhc.

drirl()])ed in a single way in ascending powers of the

varitd)1e.

For if we should have

Fz z=z A^-^ A ^z -\- A^z^ + A^z? + etc.,

and uUo Fz — i/„ + B^z -\- B^z^ + B.^z^ + etc.,
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those two series, being each identically equal to Fz, must 1)0

identically equal to each other. But, by Th. II, this canuot bo

the case unless we have

yl(, = />'(,, ylj = 7?
J, ylo = B„y etc.

The coefficients being equal, the two series are really one

and the same.

28^. Expansion hy Indeterminate Cocjjiricnts. The above

principle is ap[)lied to the devcl(i])ment of functions in powers

of the variable. The method of doing this will be best seen

by an example.

1. Develop in powers oi x.

Let us call the coefficients of tlie powers of x a^, a^, etc.

Tlie series will be known as soon as these coefficients uro

known. Let us then suppose

^0 + 0\^ + ^2^^ + ^3^^ + etc.
1 + x

Here we remark that, so far as we have shown, tliis equa-

tion is purely hypothetical. We have not proved that any

such equation is possible, and tlic ([uestion wliether it is possi-

ble must remain open for the present. We must find whether

we can assign such values to the indeterminate coefficients, a^,

«!, «3, etc., that the equation shall be identically true.

Assuming the equation to be true, we multiply both sides

by 1 4- X. It then becomes

1 = ^^0 + («o + «i) ^ + (^^1 + ^s) ^^ + etc.

;

or transposing 1,

= «o — 1 + {aQ-\-a^)x 4- {a^ -]-ac,)x^ -f- {a„-\-a^)x? -[- etc.

By Theorem I, the coefficients must be identically zero.

Hence,

«o — 1 =0, which gives «„ = 1

«i + ^'o = 0,

«2 + f?i == 0,

«3 + «s = 0,

etc.

u

n

a

«

0 — " )

«i = -^^ = — 1;

«2 = — «i = 1;

«3 = «2 = -1;

11

. f

(lii

I i

etc.
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Substituting these ^ alues of the coefficients ill the original

oquatiun, it becomes

l+x~^ — X \- x^ — 7? + ^ — etc.

This same metliod can be applied to the development of

any rational fraction of A\hich the terms are entire functions

of some one quantity. Let us, for instance, suppose

m + nX + px^
-T- 1 -r 2 -r -r n

Multii)lying by the denominator of the fraction, this equa-

tion gives

a -\- bx = iuAq + (n^o + mJi)a; -f {pAQ~{-7iA^-{-)nA„)x'^

+ (pA 1 + uA g + viA 3) x^ -f- etc.

We now see that when t > 1, the coetricient of x* in this

equation is inAi + JiAi^.i }- pAi^z.

E(iuating the coefficients of Hke powers oi x,

a
thAq = a, whence A^ =z

m

mA ^ { iiAq =. h,

mA^ + nA^ -V pA^ = 0,

mA^ + iiAz -\-pA^ = 0,

C(

((

((

A. = Aq
;

I - -Ia --a '

— R 71

^
7)1

*
7)1 ^

We have from the general coefficient above written, when

A,= ^^' A V i— Ai-t Ai-z.
7)1 7)1

That is, each coefficient after the second is the same
linear function of tlie two coefficients next preceding.

Such a series is called a Recurring Series.

EXERCISES.

Develop by indeterminate coefficients:

1 1
I. 1—x 2.

1 — 22;
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ni
^0;

--A^'y
m

kttcn, when

the same
^ceding.

3-

5-

7.

1-x
1 + x

1 + a;

1 -{-•ix+ 'Sx^

1 + 'ZuT^dl^'

4.

6.

8.

1 + 2:

1- r

1 _ ;i^' _|_ x^'

1-X
1 + ^' — .-^

283. The development of a rational fraction may also bo

cITccted by division, after the manner of §§ OG, 07, the oi)era-

tion being carried forward to any extent.

1 4- aj

Example. Develop «

J. ^"~ U/

1 -\- X
\
1 — X

1-X 1 + 2x + 2x^ + 2xr^ -\- etc.

2x

2x — 2^

2x'^ +
2x^ — 2x^

2x^, etc.

EXERCISES.
Develop by division the expressions

:

1—2:?: 1 + X
I.

1+a; 1 — X -{- x^

284. Elimination hj Undcterinined 3hiltipJiers. There is

an api)lication of the method of undetermined coefficients to

the problem of eliminating unknown quantities, which merits

special attention on account of its instructiveness. Let any

system of simultaneous equations between three unknown

quantities be
ax -\- hy -\- cz =^ hy (1)

a'x + h'lj + c'z = h'y (2)

a"x + b"y + c"z =z h". (3)

Can we find two such factors that, if we multiply two of

the equations by them, and add the results to the third, two of

the three unknown quantities shall be eliminated?

III!
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This question is answered in Iho followiiif^ way:

ir there be siieii factors, let us call Ihcni in and n. If wo

niuUii)Iy the first e(|uation hy in, tlie second by w, and add the

product tu the tliird e<juation, we shall have

{am -f- an + a") x

+ {bin + h')i + b") // \ = //;» + Ini + 7/'.

4- (6'?« 4- c'n + c') 2;

{!')

In order that tlio quantities y and 2; may disappear from

this ccpiation, avc must have

hn + Z/'w + h" = 0,

cm + c'n -f- c'' = 0.

Since wo have these two e([uations between the quantities

9U and n, we can determine their values.

Solving the equations, we find:

b'c" - h"c'm =

n =

be' - b'c
'

b"c - be"

Id — b'c

'

These are the required values of the multipliers. Sul)sti-

tutinjT them in the equation {b), we find that the coellicients

of // and z vanish, and that the e({uation becomes

D
,, (//,." - b"e') + a: {b"c - be")

,

X

• _ hjb'c" -b"c ) + 1,'{b"c-bc")- y - b'c + •

Clearing of denominators and dividing by the coefficient of

X, we find

li {lie" - b"c) + /// {b"c - be") + h" {be' - b'e)
X =

a {b'c" - b'c') + a {b"c - be") + a" {be - b'c)

EXERCISES.

1. Find the values of 1/ and z by the above process for

finding x.
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For this purpnso wo mny bopin with tlio r(iuntion {//) and find vnliics

of m and n such tlint tins cocincionts of x iiiid 2 in (/O shall vuni.sli. Tli«>so

viiliU'H will l)c (liHt-rt'iit from those </\\i-n in (c'. l?y Hul)htitutiiii,' ihi'iu iu

{b), .r und 2 will be fliiiiiuati'd, and we filial! «)i)tuiii the value ol' 1/.

We then find a third set of values of m and n, hucIi that the coefli-

cienta of x and y shall vanish, and thus obtain the value of z.

2. Solve by the method cf iiidetenniiuite miiltiplierd the

exercise 3 of § 140.

MiiltlplicaHon of Two Infinite Series.

284rt, Proiji.km. To express the product of the two
series

and

The method is simihir to that by wliicli the square of an

entire function is formed (>5 17'-^, 2).

We readily find the first two terms of the product to be

The combinations which produce terms in x^ arc

Those which produce terms in x^ arc

In general, to find the terms in a-" we befrin by multiplying

ffo into the term Z'„.r" of the lower series, and tlien multiplying

each succeeding of the first series by each preceding term of

the second, until we end with anb^x^. Hence, if we suppose

Product = ^0 -f A^x 4- A^x^ + . . . . + AnX^ + etc.,

we shall have, for all values of n,

An = a^bn + (tjbn-l + ^2^«-2 + . . . • + f/n^>o'

Bv giving n all intei^ral values, we shall form as manv values

as we clioose of An, and so as many terms as we choose of the

series.
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EXERCISES.
1. Form llio lu'odiict of the two scries:

;/:' ^ J^

Cfi 3fi X^
,

2. Form tlie square of each of these series.

3. Can yon, by adding the sfjuares tojTetlicr, show that their

sum is C(|ual to unity, whatever he the vahie of x't

To cfft'ct tills, multiply onch coeHicrieiit of X" in tlio HUtn of tin; wiuurcs

by 11 1 , substitute for each tenn its vulue C'j' giveu in g 257, and apply

g'lJOa, Th. 11.

285. Seriefi procecdinr/ nccordinf/ to tlic Poicers of Two
Variables. Such a series is of tiie form

do + ^o-''' + (f\y + CqX^ 4- h^:ty -}- a.y'^ + etc.,

in whicli tiie products of all powers of x and // are comhitud.

]$y ci)llectin<5 the coefficients of each power of x, the scries will

become

+ etc., etc., etc., etc.

ITence, the series is one proceeding according' to the powers

of one variable, in "whicli the coellicients are themselves series,

proceeding according to the ascending powers of another

variable.

Let us navo the identically equal scries proceeding accord-

' ing to the ijsceuding powers of the same variables,

+ {B^ ^B,y-^B^y^ + )x

i-{Co + C,y+C,f + ....)x^

+ etc., etc., etc.

Since these series are to be equal for all values of x, the

coefficients of like powers of x must be equal. Hence,
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CHAPTER I I I.

SUMMATION OF SERIES.

Of Fijyurato Xiimbcrs.

280. Tho imiiihcrs in tliu Ibllowing ctjlunins are formed

acconliiifi^ to tliese rules :

1. The (irst column is composed of the natural luiiubcrs,

1, 2, 3, etc.

2. In every succeeding column each number is the sum of

all tho numbers above it in the column next precedinf^.

Thus, in the second column, the successive numbers are:

1, 14-2 = 3, 1 + 2 + 3 := G, 1+2 + 3 + 4 = lU, etc.

In the third cohum we have

1, 1 + 3 = A, 1 + 3 + G = 10, etc.

1

1

3

1

1

3 4 1

(J 5 1

4 10 c

10 15 7

5

15
20

35
21

G

21

35

7 etc. die. etc.

(i)

It is evident from the mode of fornuition that each number

is the dilTerence of the two numbers «
next above and below it in the col-

umn next foUowinjT.

The numbers 1, 3, (I, 10, elc. i?i

the second column iire called trian-

gular numbers, because they repre-

nl

T\-

fo

N - na+af4f5.



SERIES. 337

re formed

uuiubei'S'*

t\ie sum of

in<r.

- 10, etc.

(-0

, ,u.h
number

sont miniliers of points whieli can Lc rogularly arranged u\i v

triangular surfaces.

Tlie nunibor.s 1, 4, 10, etc., in the third columns arc callid

pyramidal numbers, U'causc each one is composed of a sum
of triangular numl)er.s, which being arranged in layers over

each other, will form a triangular jtyramid.

All the numbers of the scheme are called figurate num-
bers.

The numbers in the i'^* column arc called figurate uumbers
of the i'* order.

I^ST. If we suj^pose a column of I's to the left of the first

column, and take each line of numbers from left to right in-

clined upward, we .shall have the successive lines 1,1; 1, 2, 1

;

1, ;},:>, 1, etc. These numbers are formed by addition in tho

same way as the binomial coefficients in 5$ 171, 2. We may
therefore conclude that all the numbers obtained V)y the pre-

ceding process are binomial coelllcients, or combinat(^ry expres-

sions. This we shall now prove.

Theorem. TIlc h'^ number in the i''* culuinii is C(/ual

toCT'~^ovto

n{n-V \){n + '2 ) [n + /- !)_ ^x

Proof. Because the conil)inations of 1 in any number are

eipial to that numl)er, we have, when i = 1,

n^ number in 1st column = ii = ('",

which ajrrees with the theorem.

When / = 2, wo have, by the law of formation of the

numbers,

7?'^ number in ^d column = C'l -f C'l + T'l + . . . . + Tj,

which, by equaticm {a) (g 2(50, 3), is equal to C2' •

Therefore the successive numbers in the second column,

found by sup{)osing h = 1, )> = 2, etc., are

^i fA fA f,n'1

1 1 'J t 3t-4^:
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*i

:h

Since t!io n^^ number in the third column is equal to the

sum of all above it in the second, "\ve have

nff' number in 3d column = ci-^(i-}-Ci-\-Cl'^ = Cl'\

Avhicli still corresj)onds to the theorem, because, jvhen i =. 3,

n -\- i — I = n -\- 2.

To prove that the theorem is true as far as we choos to

carry it, we must show that if it is true for any value of /, it is

also true for a value 1 greater. Let us then sui)pose that, iu

the r^ column the first n numbers are

,ra ,r-3
r >

Since the w'^ number in the next column is the sum of

these numbers, it will be equal to

( r . 1 >

which is the expression given by the theorem when wo suppose

* = r + 1.

Now we have ju-oved the theorem true when / = 3 ; there-

fore (supposing r = 3) it is true for / = -4. Tiierelbre (sup-

l)osing r =. 4) it is true for / = 5, and so on indetinitdy.

If in the general expression (1) we put i=.'i, we shall

have the values of the triangular numbers ; by putting / = 3,

we shall iuive the [)yraniidal numbers, etc. Therefore,

mi /A i • 1 1 ?' ('^ + ^)
ihe w"' trianguhir number = —

-r ,—^•° 1-2

The n*^ pyramidal number = !il^i) (^^ + ^)

1.2.3

By supposing n = 1, 2, 3, 4, etc., in succession, we find

the succession of triangular numbers to be

1.3 2-3 4-5

1.2' 1.2' 1.2'
""^''^

and the pyramidal numbers,

1^2-3 2.3.4 3.45
i.2.3' 1.2-3' 1.2.3'

^^'*

which we readily see correspond to the values in the scheme (A).
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Enunieratioii of Tritiiigular Piles of Shot.

288, All interostinn: a])plic;iti(iii of tho precodiuir Hioory is

tlial. ul" Ihiding tlu' nuinbor of cannon-shot in a pile. Tiicrc

jiiv two cases in which a pile will con-

tain ii ligurate minibcr:

I. Elongated projectile.^, in which

each rests on two projectiles below it.

II. 8i)herical projectiles, each rest-

ing oil three below it, and the whole

I'urming m pyramid.

Casi: I. Ehufjatcd Project ilesi. Here

the vertex of a ])ile of one vertical layer will he formed of one

shot, the next layer below of two, the third of three, etc.

Hence the sum of w layers from the vertex down will he tho

w'* triangular number.

It is evident that the number of shot in the l)ottom row is

Cfpial to the number of rows. Hence, if n be this number,

and X the entire number of shot in the pile, we shall have,

n {n + 1)

a
N =

If the pile is incomplete, in consequence of all the layers

above a certain one being absent, we first i'om[)tite how many
there would be if tlie ])ile were complete, and subtract the

number in that part of the pile which is absent.

Example. The bottom layer has 25 shot, but there arc

only 11 layers in all. IIow many shot are there?

05.20
If the i)ile were complete, the number would be — ^ -•

There being 14 layers wanting from the top, the total number

of shot wanting is — ;,— • Hence the number in the i)ile is

N = 25. -^C — 14.15 (14 -I- 11) (IT) -f- 11) — 14.15

a

11(14 4- 15 + 11) _ 2̂20. r,
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Note. TIiIh piirtimlnr prnMom rnuM Jiave Tx^en s<"»lve<l more briefly

l)y CDiisidprinfT tlif number ol' .shot in tlie several larers a^^an aritbnioticul

progression, but wo have preferred to apply a ijeueral method.

f>

'I

EXERCISES.

1. A jtilc of cylindrical shot 1ms n iu its bottom row, and r

row.s. How many shot arc there ?

2. From a complete i)ilc having h layers, « layers are re-

'

moved. How many shot are left?

3. A pile has n shot in its bottom row, and m in its top

row. How many rows and how many shot arc there?

4. A pile has ;j rows and h shot iu its top row. How many
fihot are there ?

5. Explain the law of succession

of even and odd numbers in the se-

ries of triangular numbers.

6. How numy balls are necessary

to fill a hexagon, having n balls iu

each side ?

Note. In the adjoining figure,

n = 'i.

2S9. Ca.se II. I'limmid of Balls. If a course of balls

Ik? laid upon the ground so as to fill an equilateral triangle,

having n balls on each side, a second course can be laid u})()n

tlH'.<e having n — 1 balls on each side, aud so on until we

come to a single ball at the vertex.

Commencing at the top, the first courso will coui?ist of 1

ball, the next of 3, the third of G, aud so on through the tri-

angular numtjcrs. Because each ]>yramidal number is the

.sum of all the preceding triangular numU'rs. the whole num-
ber of balls in the ?i courses will be the /<** pyramidal number,

or
71 (n 4- 1) Oi 4- 2)

I

W =
1.2-3

EXERCISES.
I. How many balls in a triangular jwramid having 9 balls

on each side ?
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2. If from a triangular pyramid of n courses k courses bo

removed from the toj), how many balls will l)c left?

3. How many balls in the frustum of a triangular pyramid

having n balls on each side of the base and m on each t-idc of

the upixr course ?

Siiiii of the Similar Powers of an Aritlmietical
Proj^ressioii.

290. Put «i, the first term of the progression;

d, the common dilference;

n, the number of terms;

m, the index of the power.

It is required to find an expression for the sum,

«T + (^'1 + ^0"* + (^'1 + -<''"' + + [f'l + ('i - 1) d^"",

which gum we call Sm.

Let us put, for brevity, a^, n„, n^, a^, .... ff„ for the sev-

eral terms of the progression. Then

«2 = (^ + d,

«3 = «i + '^d = ffo + d, •

«R == fit + {'i — l)d= fln-l + d.

Kaiiring these equations to the {in-\-iy^ power, and adding

the c*iuation (in^i = (hi + d, wo have

(fm I - am^t + {m + 1) a^d + i^^p-^ af-^P + etc.

al
m-l — rtfn^l= ^.?^^ + {>n + 1) (ifd 4-

(i^ ^ = <7^i + (w + l)a"'d +

a
m .1

= aw+l + (m-f 1)W +

1-2

{m -f-l)w

1-2

im 4-l)/»

1.^
«

(m 4-"l)m

1-2

^m- 1^/2 ^ etc.

f(!^-hP + etc.

^m-V/3 ^ (,tC.

If we add those equations together, and cancel the common
tcnii«, fi^^ + o^'^ -\-

-{-('lyK which appear in both

niemlxTS, we shall have
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c;i --= ^r' + 0'^ + 1)^'^« + ^-^:p^'cPSm-i

(w + l)m(m-l)
H 1")') " om-2, etc.

From tliis wo obtain, by solving Avitb respect to /Sm,

«7/1 f 1
wi (yy« — 1)c '* ti ^ ""7 '" V"* — ^/ 79 ^4^^ /n

,Sm = -^—-r-^ — dSjn-\ '

^^ (/2,s^_3_etc., ( >)

which will enable us to find S'm when we know ^S'j, <S'„, . . . .

xSm-i) that is, to find the sum of the w'^ powers when we know
the sum of all the lower powers. It Avill be noted that *S'j

means the sum of the arithmetical series itself, as found in

IJook VII, Chap. I ; and that *S'^ = }i, because there are n
terms and the zero power of each is 1.

By § 209, Prob. V,

To find the sum of the squares, wc put m = 2, which gives

(3)

291. The simplest application of this expression is given

by the problem;

To find the sjiw of the sqjim'cs of the first 7i natural

numbers, uanielij,

I'M- 22 + 32 + 42 + + ;?2.

ITore ^ = 1, n„ = n, etc., S^ = 1 + 2 -\-}i = -^~—-,

so that (3) gives

_ (« + 1)3-1 n(?i-^l) 71
— «

3

Noting that w + 1 is a factor of the second member, we

may reduce this e(juation to

_ ^;(>A + l)(2/?+l) .

which is the required expression for the sum of the squares of

the first n numbers.
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293. To find the sum of the cubes of any progression,

we put m = 3 in the equation (•^), which then gives

Ad 2''' ' ^ 4:

S, = -^.-j^ - I dS, - (PS, - ] d\S,. (0)

Applying this as before to the case in whicli a,, a^, a^,

etc., are the natural numbers, 1, 2, 3, etc., we tind

{n-\-\ Y - 1 3 1

'^3 = -^ 2 -
"~ ^ ~ 4 "

— (?? + 1) ^ — 1 _ n {n + 1) {:ln + 1) _ H^ ±V) _ n_ _ .

^
_ ^ ^.

Separating the factor w + 1 and then reducing, this equa-

tion becomes

(5)

But —^^-

—

- is the sum of the natural numbers

1 + 2 -f 3 + etc.,

and S^ being the sum of the cubes, wo have the remarkable

relation,

13 + 23 + 33 4- + w3 — (1 ^ 2 + 3 + 4- n)\

That is, tha smii of the cubes of the first n numbers is

equal to the square of their sudv.

We may verify this relation to any extent, tliiis ;

When /i = 3, P + 23=: 1 + 8:^9 r=(l+2)^

When ?i =r 3, 13 4- 23 + 33 = 1 -!- 8 + 27 .-^ 3G rr (1 + 2 + 3)'.

When «=4, P + 23 + 33 + 43^ 1+8 + 27 + 04 = 100 = (l + 2 + 8 + 4)«.

etc. etc. etc. etc.

29J5. Eni(merafio)i of a Rcctnmiular Pile of JUiUs. The
prcc(^ding theory may be applied to the enumeration of a pile

of balls of which the base is rectangular and each ball rests on

four balls below it. Let ns put p, q, the number of balls in

two adjacent sides of the base.
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Tlien the second course will liiivc p — \ and «7 — 1 halls

on its sides; the third p — 'I and 7 — 'I, and so on to the top,

\vhieii will consist of a single row of p — f/ -\- I balls (sii})[)os-

ihj,' ]) ^ q). The bottom course will contain pr/ halls, the next

course (/> — 1) (7 — 1), etc. The total number of balls in the

pile will bo

To find the sum of this scries, let us lirst suppose ]> = (/>

and the base therefore a S([uare. We shall then have

JV' = q^ + (-V
- ly + {q - 2)3 + .... + 1,

which is the svm of the squares of the first q numbers.

Therefore, : v , 2. (4),

Hq -h I) {2q -\- 1)K'
G

(7)

Next let us pnt r for the number by which p exceeds q in

the general ex})ressi(m (0). This expression will then hecome

^= 7(7 + + (v-l) (7-l + r) + (7-2) {q-2 + r) + . . . .

+ (1 + •)

= fp + {q - 1)'' + il - 2)2 + ....+ 2M- 1

+ [7 + (V - 1) + (V - -'J + • • . • + 1] r

- y('7 + 1)(2^ + 1)
,
q{q+ 1) ^

7 (7 + 1) jih' + ^y + 1)

G

(§ ^'91, 4.)

EXERCISES.
1. Find the sum of the first 20 numbers, 1 + 2 + 3+ ... .

+ 20, then the sum of their squares, and the sum of their

cubes, by successive substitutions in the general cfpiation (2).

2. Express the sum and the sum of the S(piares of the first

r odd numbers, namely,

1 +3 +5 +.... + (2r-l),
and 13 4. 33 ^ 5'j ^ _,_ (o,. _

1 y^

3. Express the sum of the first r even numbers and the

sum of their squares, namely,

2 +4 + () + + 2;-,

and 2=^ + 42 + G^ + + (2/-)2.

i
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4. A rcctanj^nlar pile of hulls is started with a ha«o of p
halls on one side aiul 7 on tlie other. How many halls will

IhtTe he iu the pile after 3 courses have been laid ? How
many after .s courses ?

5. Find the value of the expression

3.-5

1 {a + Ox + cx'i).

X-l

6. Find the value of

X=:f>

1 {a + Ijx -f cx^).
x=l

29-1. To find the sum of n terms of the scries

1.2^2.3^3.4^ ^n{HA-\)

Each term of this series may be divide, ii; j two parts,

thus

:

J__l_] jL_i_l
1-2

~"
1 2' 2-3 ~" 2 3'

1__ _ 1 1

n {n + 1)
~ n 71 -\- s.

Therefore the sum of the scries is

in which the second part of every term except the last is can-

celled by the first jiart of the term next following. Therefore

the sum of the n terms is

_ 1 _ w

If we suppose the number of terms n to increase without

lin)it, the fraction r Avill reduce to zero, and we shall have
n -{- I

T~o + T'-i + •! (
+ ^^^-y ^'^ litjudtum — 1.

This is the same us the sum of the geometrical progression, „ + ^ + q« 4 9
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+ rtc., «'/ infinitum. It will l»o iiitcrrstiiip to com pure the firnt few tiTina

ol the two Bcrius. 'J'lu'y art!

1 1 1 1

2 ^ "^
lii

*
20

*
yo ' 4^

1 1

1 1

4

1

H

1

1(5

4-
-f- -J. 4- J. .

1 I

U4

Wo 8P0 that the first tcriii is the sanie in l)oth, wliih* tho next throo

lire laiT^cr in the ^n-diiiftiical pro^^n'ssion. At'ttT tin- ftnirtli tcriu, tliu

tt'mi.s of tlu' i»rot^ixvsaiua l)ecomc the HinalliT, and coutinuu ho.

tiJ)5. (Ivticridizdlion of the Preccdim) UcsuU. Let us take

the scries of whicli the w'^ term is

P

V

{i + n-\){j + n-\)

The scries to n terms will then bo

P . P
{i + 1) 0' + 1) + {i + 2) (7 + ^>)

+

"J" • • • •

P
{i + w - 1) {j + H-1)

If WG supi^osc j > i, and put, for brevity,

^ = j — h

the terms may be put into the form

p^pn_n

P -Pi ^ _ M
(/+ 1)

~ lAi + I /+ 1/'

ete.

+ I 7 +
etc.

(/ + n
_v ^pi i i__.y

1) (./ + 'i 4- 1) ^" V'" \- n — V j + n— 1/

When we add these quantities, tlie second part of each term

Avill be cancelled by the tirst part of the y^ term next follow-

ing, leaving only tho first part of the first k terms and the

second part of the last k terms. Hence I he sum will be

k\i ^ •i+i

'

+
1 1

J+ l i-\-n i+n—1 ; + n-l)
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Example. To find the sum of n torms of tlie scries

±,±^±,±. . JL__
2-5 ^.•J.(} "^4.7 "^5.8"^ "^(n4.i)(;i + 4)*

Kuch term may be expressed in tlie form

3-0 a\;i (;/'

4. 7 ~ 3 \4 7/'

-__L-_ = 1(1 L)
n {h + 3) 3 \;i n + 3/'

J_____^VJ 1 \
{n + 1) {n + 4) 3 \n + 1 w -f 4/

Tlioroforc, scparatin<}f the positive and negative terms, wo
lind the sum of the series to be

1/1111 1 1

3^ "^
3 + 4

"^
5
^••" + w + ^TTl

_1_1_ _1 1 1 1^

5 G "" 71 71 + 1 n-i-'i n-\-'3 w+
or, omitting the terms whicli cancel each other,

3 \2
"^

3
"^

4 n 4-2 7i + :i nA-\l'

u
+ a n +

"When n is infinite, tiie sum becomes

3\-^ ^3 ^ 4/ 3 i'i 30

EXERCISES.

What is the sum of n terms of the series

1 11_

1

0'4 4'5 5-0

2. _L J_
• c ry "T ^Tk T" • • • • "T3-5 5-7 ' 7-9 (3w + 1) {In -f 3)

l!>.
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-•J •{•<> 4-7 ^
(// 4- 1) (,i 4- 4)

:i 3 3

5- Slim (lie scries

1 . 1
+ -.n + -rrr 4- etc., ff^/ inf.a(a + 1) ^ (a + l){a 4- ^1

"^
(« + ^) (^< + 3)

Jil>(>. To sum tlie scries

,S' = 1 + 2r + 3ra + 4/'3 + etc.

Let lis first fiiul the sum of n ivnm, which wo shall cull

/S'n. Then

Sn = l-\-2r + 3r2 + 4y3 + nr'^-K

;Miiltiplyiii<r by r, wc have

rS\ = 7-4- 2/-2 + 3/-3 4- 4/"' 4- 4- m"^.

By sul)tractioii,

(1 — r) Sn = 1 + r 4- 7-2 4- 7-« 4- r«-i — 7ir>'

1 — r'»

Therefore, iS>i =

1-r
1 — ?•»

«r« (§ 2V^, Prob. V).

(1 _ ry 1-r
Now Pupposo n to increase without limit. If r^ 1, (ho

sum of the series will evidently increase without limit.

If }' < 1, ])oth /•« anil ;?/•" will converge toward zero as n
increases (as we shall show lu>reaffer), and we shall have

1S =
{\-ry

EXERCISES.
Find in the above way the sum of the following series to n

terms and (o inlinity, supposin^j /• < I :

1. rt 4- '3((r 4- 5((r^ 4- r<//-a 4- (O;^ _ 1) ar»~K

2. 2a 4- 4ar 4- 6a/^ 4- Sai'^. ... 4- ',l)/ar''-\

3- (« + b) r + {a 4- 2b) i^ + -\- {n + 7ib) r«.

1
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v-^ to n

4

!il)7. »Surn the series

+ irrn + rrr-K + etc.,
1.2.3 ' 2-3.4 3.4.5

1

(")

of ubicli tlie L'eiKTal term is —-.

, , , - ,^-
/< (w -|- 1) (/^ + «)

Let us find whether we euii cx[>iv>s this series jis the sum
of two scries. Assume

1 A__ B^

n (n + 1) (w + 2) n {n -}- 1)
"^

{n + I) [n -f 2)
*

Avhero, if possihle, the vuhies of the indeterminate cocnicicnts

A and //are to be so chosen that this e<[nution shall be true

ident icily.

liedueing the second member to u common denominator,

we have

1 _ (.4 -f /?) n + 2 J
^

71 {n -\- I) {)i 4- 2)
~ n {11 -f- 1) (n + 2)'

In order that these fractions may be identically equal, we

must have
{A + B)n -{- 2/1 = 1, idcitlicalhj,

which rcHjuires that we have (§ 281),

^ + ^ = 0, 2.1 = 1.

This gives

Therefore,

1

o» ^ = -i"

n {n + 1) {n 4- 2) 2 n {n + 1) 2 {n + I) {n + 2)
*

so that each term of the series (a) may be divided ixito two

terms. The whole series will then be

I / 1 1 1 . \ 1 / 1 J I
, \

2(lT2 + 2:3 + 3^ + '^''1 - 2I2.3 + 3:4 + 4:5 + '''V'

Wo see on sight, that by cancelling equal terms, the sum of

n terms is
>S'n = 1 1

4 2(/iH- l)(/i + 2)'

and the sum to infinity is .•
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2J)8. CoiLsidor tlio liiinnoiiic scries111.
1 + , + , f , + etc.,

of which tho «'* term is • This series is iliverfjoiit, hecuusc

we iiKiy divide il into au uiiHiiiitcd munber oi" j>urts, each

eciiial to or greater than j. as Ibiluws:

1st term = 1, > ^ ;

r

2d term = r
3d luid 4th terms > ;

etc. etc.

Ill general, if we consider the n consecutive terms,

_1_ 1 1

„ + 1 + ,r+ ;j
+ • • • • ^-

^lui

1

{a)

the smallest will be .-- , uad therefore their sum will he greater

than / X n. that is, greater than -•
v/l /v

N«tw if in {(t) we suppose n to take the successive values,

1, •.', I, s, Ift, etc., wc shall divitle the series into an unlimiti'd

numher of parts of the form (n), each greater than -• There-

fore, the sum has no limit and so is divergent.

'I

\

Ol" DinV'rciK'cs.

*'1M). Wlh-n we have a series of (|iuintities proceeding ac-

cording to any law. wc m;iy lake the liilj'crence of c\ery two

consecutive (pumt'lics, and thus form a series of dillereiiees.

The terms of this seriv's are called First Differences.

'i'aking the dilTcrence of every two cmisecutive dilTcrences,

we shall have another series, the terms of which are called

Second Differences.

The proce.-..> may be continued so long as there are any dif-

ferences to write.
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ExAMPi.i:. In the secoml column of the f(^llowiug tal)ie

are given the seven values of the expression

for ./• = 0, 1 , iy 3, 4, .J, 'I.

\n the third col" 'in a' are given the diirereiices,

C — ib = — 11), ]_(;-—.>, — 14 — 1 = — l'>, etc.

In column a" are given the diireivnees of these dillerenees,

nanielv.

_5-(-l:.) = + 14, 15 -(-o) =

X

1

8

4

5

6

+ :^a

+ C

+ 1

— 14

— 39

— 50

+ 1

— 10

— 5

— 15

— 25

— 11

+ 51

+ U
— 10

- 10

+ 14

+ (J2

A'"

— 'M

-f 48

A'*

10, etc.

+ v>4

4-24

-f ri4

The process is continued to the fotirth order of di (Terences,

which are all eijiiah whiiiee those of tiie lil'th and lolloNsing

unk-rs are all zero.

It will \>^. noted that the sign of each dilTi'rence is taken so

(hat it shal' expivss each <|uantity //////^^^• the (|uaii(ity next

preceding. We have tlu-rel'orc the following delinitions :

:{0(). Drf. The First J^ifference <d' a riuictioii of

any variable is the iiicn'iiiciit of the I'mictioii catiscd by

an incnMucnt of unity in the variable.

The Second Difference is the ditferenco between
two cunseciiti\ e jlrst d ill* 'fences.

In pMieral. tin' >*"' Difference is the diflereiice be-

tween two consecutive [^n — 1 r' dillerenees.
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To invostifj^atc the relation amoiif]^ the dilTeronces, let us

represent tlie successive nnmher.s in each column l)y the indices

1, -Z, o, etc., and let us jiut Aj, Ao, A3, etc., for tlie values of

0r. We shall then iiave the following scheme of ditlerences,

in which

a;=a, — Ao, a;=:Ao-a,, a; = a3-a2;

a^ = a;-a;, a'; -a; -a;, a; = a;-a;;

a; = a;-a;, a';=a:-a';, a::=a;;-a;;

etc. etc. etc.

tlie w'* order of differences being represented by the symbol A

with n accents.

"1

As

A,

a:

A',

^:

I

An-l

•I

A„

Let ns now consider the following problem

:

To express At in terms of Aq, Aqj Aq, etc.

We have, by the mode of forming the dillerences,

A, = A„ -f a'u, a', = a'o -(- a'^, a',' = A'o -}- a';, etc. («)

Aj = A, H- A,, As = Ai + A,, As = A, + A etc.

If ill this last system of e(|Uations, we substitute the values

of A,. A,, etc., from the system {a), we have

Ao = A„ + -^a; -f a'u, Ag = a'u I -iAu -b a';, etc. {!>)

Again,

Aj = A^ + A,., A3 = a', -b ^'i, A3 = Ag + A3, etc.
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?s, let us

c indices

allies of

Icrences,

ymbol A

Ic. {a)

tc.

le values

etc. (/>)

^g, etc.

Substituting the values of Ao, Ao, etc., from {h), wc have

A3 = Ao + --iAo +
4- a'o 4- JiA; + a';

or A3 := A„ + ;?a; + ;ja; + a;

A'3 = a; + 2^',
-t- A';

f ^0 + 2a;'+a'j

(#

a; = a'o + 3a; + :u;' + a-;

Forming A^ = A3 + A3, etc., we sec that the coefficients

of Aq, a'o, etc., which wc add, are the same as the coellicients

of t!ic successive ])i)wers of x in raising 1 4- x to the n*'^ jxjwer

by successive multijilication, as in jj i;i. That is, to form A^,

A'^, etc., the coellicieiits to Ijc added are

1 3 .3 1

1_ 3_ 3_1
14 4 1

and these arc to be added in the same way to form A5, and so

on indrlinitelv. Hence we conclude that if i be any index, the

law will be the same as in the binomial theorem, namely,

Ai = Ao + /a'o + (^)
a'; + (I.) a'o' + etc.

Ai = A'o 4 iK + (I)
^0' +

(;j)
^0 + ^'tc

('0

To sho'/ rigorously that tliis result is true for all values of

/, we have to prove thut if true for any one value, it must be

true for a v !ue one greater. Now we have, by delinition,

whatever be e,

Ai,i = Ai 4 Ai', aI-i = aI + a!', etc.

Jlenee, substituting tlu' abovi" value of A* and M,

Ai.i = Ao I (/ 4 !) a'o +
I^Q

4 /Ja';

(«)

23
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M

Wc readily prove that

Q + (;) en
etc. etc.

Suhf^tituting these values in (f), the re>nlt is the same given
bv the r(|iiation {(f) when we put / -f 1 for i.

The forni (c) hIiows the lorniula to l>e true for / = 3.

Therefure it is true for i — 4.

Th.-refure it is true fur i = 5, etc., intlefiniiclv.

EXAMPLES AND EXERCISES.

1. Having given 1^ = 7, a; = 5, YJ =.- - 2, and A", A'',

etc. =0, it is required to find the values of A,. A.. A,, etc.,

indefinitely, both bydireetcuniputatiouaud by the fonnula (</).'

We start the work thus:

TIk- numbors in coluiiin A" arcnfl
equn! to - 2, ht'causo A'" - 0.

Each iiuinl)er in column A' nftor
tlip first is found by adding A" or — )i

to tlu- one next above it.

Each value ot Ai is tlien obtained
from the one next above it by uddin"
thi- appropriate value of A^.

This proctps of addition ran be
carried to any extent. Continuin-^- it

to I = 10, we shall linil A^ = —ou

1

3

4

i-te.

+ 12

+ 15

etc

+ 5

+ 3

+ 1

— 1

etc.

2

2

etc.

Xext, tlie general frniiih. (rh ;,- ,cj^, hy putting A^ := 7,

^'o = ^» ^'i = — 2, and all following values = 0,

A, = 7 + 5/-2ii^^:^

and the .<tudent is now lo siiow that by putting i = 1, ! = 2,
etc., in this expression, we ol>tain thc'same values of a,. Ag!
As, . . .

. Aio, that we get In addition in tlie alxive scheme.
It is moreover to he remarked that wt con reduce the last

equation to an entire function of /, thus

:

Ai = 7 + Gi - i\
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7. Having given Aq = 5, A'^ r= —20,
^;;

=

nc given

3.

A'", A",

A;,, ete.,

lUlil {il).

^i

:5'»,

j.'^' =r + !, it is required to find in the same w ly flic values

of A, to ^5, and t'^ express Ai iio uu Milire I'unciion *ii' i by

fumiiila (//).

3. On Mareli 1, IS.Sl, at (ireenwieii noon, the sun's lon^'-i-

tnde was 34r 5 lO'.lJ ; on March 'i, it was greater l»y 1 U '.C,

but this dailv increase was diminishin*' !)>• 'Z" each dav. It is

re<|uired to comitute the longitude lor the first seven nays ot*

the month, and to tind an expression for its value on the n^'^

day of March.

4. A family had a reservoir eontaining, on the morning of

3fay .5, V3') gallons of water, to which the city a.i'k'd regularly

5f) gallons per day. IMie family used 3.") gallons on May 5,

ami 5 gallons more eaeli sulisecjuent day than it did on the day

juvcT-ding. Find a general expression for the (plant ity of

uater ou the //'' day of May; and hy tMnititinir this expression

to Zen*, find at what time the water will all be gone. AUu ex-

plain the two answers given by the e(puition.

A.

etc.

k IV

I = '4,

Aj . Ag*

ne.

be last

Tliooi'CMiis of niffcroiicoH,

.*501. To investigate the general properties of differences,

we ujsC a notation slightly diHerent from that just employed.

If u )Mi any function of x, which we may call <pj; so that

we put
u = (px,

then AW =: (.r -f- 1 ) — (px. {(()

Hero the pymbol A does not re])resejit a multiplier, but

merely the words (fijft'roirc of.

The second difference of u being the difference of the dil-

fen-nee. may l>e represented l)y AA/^

For brevity, we i)ut

A'',*^ for llii,

wherf* the index ti is not an exponent, but a symbol indicating

a ^eeond difft-n-nce.

Continuing the same notation, the vt''* difference will be

rc'pre«>enied by A''.
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K X A M P L E

.

To find the sncccssivo dilFercnces of the function

n = (tx^ + bx^.

By the formula (a), we have

Ml = a {.c + 1)3 + ./ {x -f- 1)3 _ rta:3 _ j^^.2

.

ami, by developing,

AH = Sax'i + (3rt + 2b) x -\- a + b.

Taking the difference of this last ecpuition,

A'';« = 'da {x + 1)2 + (3rt + 2b) {x + \) + a + b

— 3rt.6« — (;3rt + 2b) x—a — b= Grt.c + r.a + ^6.

Again taking the dilferencc, we have

A''/< = ()(/ {x + 1 ) — O^f.T: = Grt.

This expression not containing x, A%, A''//, etc., idl vanish.

EXERCISES.
Compute the differences of the functions :

I. 7^ ^- mx^ + nx + p. 2. 2x^ + 3.1-2 ^ 5,

3. r)./3 _^ io,i'.' ^- 15.

4. In the case of the last expression, prove the agreement
of results by computing the values tsf Au, A^ii, etc., for x = 0,

r=: 1, and e = 3, and comparing them wiih (hose obtained

by the method of § r>'.)i). The latter arc shown in the follow-

ing table:

a

u =z 5.r3 -f- lo.t2 4. 15.

A^H

id
t

30
15

50
3

m
«S

SO
30

3

uo
U5

110
30

4
4'»5

255

5
ii
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a-h

vanish.

jrccmont

r a: = 0,

ohiaiiKMl

c foUuw-

5. Do tlio saTno thing for exercise 2, and lor the runeiioii

tuhiilatecl in § :3U'J.

IMVl* It will 1)c seen by the preceding examples and exer-

cises, that for I'aeh ditTerence of an entire function of ./• wliicli

vvo form, the degree of tliu function is diniinisjied by unity.

This result is generalized in the following the-oreni:

Tlie n^ di/fercnccs of tlie J'luictloii a" are constant

and i'f/ioal to n\

Proof. If u = a'S we have, by the dctinition of the sym-

bol A,

A?« = (.r + 1)" — .T»,

or Au = ;u" 1 4- (j.<"~^ 4- etc.

That ii^:, iti taK'lng the (lij)'evcnce, the hi'Jhest poii'rr of
X is uialtiplied by its eA'punent amt the tatter is dimin-
ished Ijij unitij.

Continuing the process, we shall lind the n^''- dill'erenco

to be
n (n — 1) {n. — 2) I z= nl

Cor. If we have an entire function of x of the degree w,

az"' + tjx>'-^ + ('./•"-' + etc.

.

the {h — 1)"' diirerencc of />.r«-->, the {11 — iiy^ dift'tTenco of

(;j;n-i^ etc., will all be constant, and therefore the n^^'- ditlVrenco

of these terms will all vanish. 'J" herelore, the n"' dilference of

the entire function will lie the same as the ;i''' dilference of

ax"' ; that is, we have

A" (ra-" + ix"-! 4- etc.) = an !

Hence, tJie n^'*- differenee of a fanetion of the n^i*' de-

gree is eonstaut, and (upud to n\ wutlifilied btj the coeffi-

cient of the higlicsb power of the uariable.

i
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CHAPTER IV.

THE DOCTRINE OF LIMITS.

JJO.'J. Tlu' doc'triiic of limits ciiiltraros ji set of i)rin('ii)los

upplicablo to cases in which the usual nicthocls of calculaiiou

fail, in ('onse(iucucc of some of the (quantities to be useil van-

ishing or increasing without limit.

Wc luive already made extensive use of some of the ])rinei-

ples of this doctrine, and thus familiarized the student with

their a])j)lication, hut our fni'ther advance retiuires that they

should be rigorously developed.

A\ro:\r I. Any qtitiiitity, liowcvcr smnll, iiiiiy l)o

multiplied so ol'tcn as to cxcwd any otlicr lixcd cjiian-

tity, li()\v(n(T ,<i:n'at.

A\. 11. iJonrcrsi'Ji/, any ([iiaiitity, Itowcvor or(.;it,

may be dividt'd into so many ]).»rts that cacli part shall

l)L' less than any other fixed (piai:tity, however small.

]>('/. An Independent Variable is a (piaiility to

wliicli we may assign any value wo j)lease, however

small or great.

'rni':oiii:M \. If (i fraction Inti-c (iiifi finite vuino'u tor,

and an independent rariable for its (tenoniinatttr, ire

ma'i (tssi'Jn, to flu's denoiiiinator a T<due so ijreitt tlnit

^he traction shall he less than any (/aantiti/, howerer

small, a'hicli ive inaij assign.

Proof. Let a he tlie numerator of ihe IVacI ion. .r its de-

nominator, and a cany ([uantity however small, which we may
choose to assign.

Let li he the num])er of times Ave must innlti])ly a to make
it greater than a. (Axiom I.) We shall then have

(t < Uh,

Conscfpiently, - < «.

I,

I
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LIMITS.

Ilcncc, by taking x greater than w, wc shall have

a

350

X
< «.

Example. Lcl a = 10. Thtii il" wo take Tor « in f'ucees-

Bion,
I I I

loo' ii>,()UU' 1,(H)(),()(I()
, etc., we havi' onlv to lake

X > 1,000, X > 100,000, X > 10,000,000, etc.,

to make - less than tc.

X

Tn the lan^^nage of limits, t he above theorem is expressed

thus :

21)c limit of , when x is indrfnitclij inrrcftscd, is

zero.

Tin'oUFM II. //'ti frnclion hdi'c ((inj pnitr niinirrfffov,

and (in inili'/x'ndmf rrtriah/f for its drnnnii nahir, wn
mnii iissi'Jii Id lliis dcninniiiftfur ft mini' sd snndl Unit,

iiw I'nirtinn sliiill c.vci'cd any (/aantiti/, /loircrcr ^jrcat,

which awniay assii^n.

Proof. \\\{ as Ixforu for llu,' IVaftion, and k't A bo any

liumbor however great, which we <'1ioose to a-sign.

Let n be a number greater tlian A. Divide a into ti parts,

and let « bo one of these parts ; then

a = im.

Couseqm'ntly,
a = n.

Therefore, if we take for:« a (piantity less than a, we shall

have
a

X

a

x
or

> n > J,

> A.

"Ri'M. Tf we have two independent variables, .r and y:

\\\ may make ./• any numbir of times greater than >/.
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'I

TlxM wo ni;iy niiikc // any minilnr of (lines greater than

tliis valiii' ol' j:

Tlun we may make ./• any niimhcr of limes grcakr (lian

tills valnu of//.

And we can IIhh rotiUmio, making oaoli variable oufstrip

the other to any extent in a. race toward intinily, williont

either ever reaeiiing the goal.
•

TiiDoitKM III. If h he any fi.vrd qnmttitii, Jioirrirr

great, (Ind tc a, (/aantUi/ a'hir/t ire maij make as small
as we jilcase, we may make the fJivduct kii less than ana
ass'njnahle qu a ntltij.

J'roof. If there is any smallest value of /•«, let it be s.

Because we may make « as small as we please, let us put

Multiplying by k, we find

k(c < .«?.

So that k(c may be made less than s, and .v cannot be the

smallest value.

Def. Tho Limit of a varialdo quantity is a valuo
wliicdi it can novor rcacli, but to which it may approach
so jicarly that tho diil'ercnco shall bo loss thau any
assignablo quantity\

1\i:m. In order that a variable .\' may have a limit, it must
be a funetion of some other variable, and there must be certain

values of this other variable for which the value of X cannot

be directly computed.

EXAMPLES.
I. Tho value of the expression

x^ — a^X =
X — a

can be computed directly for any pair of numerical values of x
ami a, exce})t those values Avhlch are equal. If we supiioso

a* =: a, the expression becomes
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LIMITS. :wi

not be the

S Jl V.'llllO

iH)])i()a('h

mil Miiy

lit. it must

li(j certiiin

X cannot

viihics of X

\c .suppose

««-«3
0'a — a

wliii'h, considtTi'd by itsi'lf, liiis no meaning.

2. The t^um of any tiiiite nnmlxr of terms of a pfoomotrloal

progression njay l)i' compnted by adding tlicni. lint if tiiu

niimlier of terms is inliniti', an intinile time wonid l)e nipiircd

for the ibrect ealeulation, which id tiu-rcfore iinpt)ssible.

3. The prca of a polygon of any number of sidc^i, and hav-

ing a given apoincgm. may he eomjtuted. But if the nnmhcr

of sides hccomt's infinite, and the polygon is thus changed into

a circle, the direct computation is not practicable.

EXERCISE.

If we have the fraction, A" = — ; > show that we may
fix — L

make x so great that X shall differ from
.^

by less than y ,

^''' ^^'''''

Toblouo '

'^'^^'-^ ^^'''''

i;uuJ,UU(
)

'

'"^^ '^ °" indclinitely.

Notation of tlio 3Iotlio(l of Limits.

304:. Put X, the quantity of which the value is to he

fouml
;

ar, the independent variable on which X de-

pends, so that X is a function of .r;

flf, the particular value of x for which we can-

not comi>ute X\
Z, the limit of X, or the value to which it

ai)proaches as x ai)i)roaches to a.

Then the limit L must be a quantity ful filling these two

conditions

:

1st. Supposing .r to a])proa('h as near as we ])lcase to a, wo
must always be ahle to find a value of x so near to a that the

difference L — X shall become less than any assignable quan-

tity.

2d. X must not become absolutely equal to L, however

near x nuiy be to a.
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302 LIMITS.

'Rksi. Tlic quantity a, toward wliioli x approaches, jaiay be

cither zero, infinity, or some finite quanHty.

Example i. Suppose

„ 01? — a^
2l = •

X — a

By § 93, this* expression is equal to

7? + ax + c?, («)

except when x = a. But suppose (J to be the difference be-

tween X and a, so that

X = a ^ cJ.

Substituting this vahie in tlic expression {ci), the equation

becomes
'V3 fl'i

3a2 + 3«(5 + ^52.

X — a

Now we may suppose 6 so small tliat 3^(5 + S^ shall be less

than any quantity we choose to assign. Hence Ave may choose

a value of x so near to a that the value of
x-^ — Cl"^

X — a
sliall differ

from Sa''^ by less than any assignable quantity. Hence, if

x-^ a^

then

X =
X — a

L — M\
'.S

or 3a^ is the limit of the expression - a''

X — a
as X approaches a.

X
Ex. 2. The limit of —^—-, wiien x becomes incl 'finitely

great, is unity.

For, subtracting ilns expression from unity, we find tlie

difference to be

'P

iC + 1

By taking x sufficiently great, we may make this expression

less than any assignable quantity. (§ 303, Th. I.) Therefore,

X

X -\-l

limit.

approaches to unity as x increases, whence unity is its

m
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I, may be

{a)

ircnce bc-

3 equation

lull be less

nay choose

;hull differ

ICC, if

iroacbes a.

nc! 'finitely

'c find tlic

expression

Therefore,

unity is its

Notation. The statement that L is the limit of X as x

approacbes a is expressed in the form

Lim. X(x=a) = L.

Tlie conclusions of the last two examples may be ex-

pressed tlius

:

Lim.
x^ — (fi

(x=a) = otfi.
X

Lim. —-—- ix^r.) = 1.
X -{- 1X — a

IiEM. This form of notation is often used for the follow-

ing purpose. Having a function of x Avhich we may call X^

the form X^^^a) means, " the value of X when x = a."

EXAMPLES,
{X^ + (iyx=a) = (i^ + a. {x^ — a^)(x^a) = 0.

{u^ + 2ub)(u=^-d) = — t)\

If we require the limit of a fraction when both terms be-

come zero or infinite, divide hoth terms hy some coinmoiv

factor wTiicli hccomes zero or injlnitij.

Kem. If the boginnor has any diifioulty in understanding the pre-

ceding exposition, it will bo sufRoiont for hiin to think of the limit as

simply the value of the expression when the quaiuity oi? which it t

pends ])ecomes zero or iutinity.

X
For instance, Lim. :r (j = CO ),

a' + 1

the value of which v>c have found to be unity, may be regarded as simply

the value of the expression, oo

CO + 1*

Althongh this way of thinking is convenient, and gonorally loads to

correct results, it is not mathematically rigorous, because neither zero

nor infinity are, properly speaking, mathematical quantities, and people

are often led into paradoxes by treating them as such.

Find tbc hmit of
EXERCISES.

I.

2.

X — CI—-— when X approaches infinity.

Divide both terms by x.

ax 4- b

bx + a

mx"

px^ ax

when X approaches infinity.

- when X approaches infinity.

W
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'»

\ — x

1 — ax

x^ — r/2

when X approaclies infinity.

:>'
X — a

6.
a -{- X

a — x

- when x approaches a.

when x approaches infinity.

Properties of Limits.

305. Theorem I. If two functions are ecfLcal, they

must Jiave the same limit.

Proof. If possible, let L and L be two different limits for

the respective functions. Put

so that L and L' differ by %z.

Because L is the limit of the one function, the latter may
approach this limit so nearly as to differ from it by less than z.

In the same Avay, the other function may differ from L'

by less than z. Then, because L and L' differ by '2z, the func-

tions would differ, which is contrary to the hypothesis.

Theorem II. The limit of the sum of several func-
tions is equal to the sum of their separate limits.

Proof. Let the functions be X, X', X", etc.

Let their limits be X, Z', L", etc.

Let their differences from their limits be «, a', a", etc.

Then X = L — «,

X' = L' - a',

Ji. =. 1j — « ,

etc. etc.

Adding, we have

X+X'+ ..r" + etc. = Z+ X'+ X"+ etc. — (« 4- «'+ «"+ etc.)

The theorem asserts that we may take the functions so near

their limits that the sums of the differences «+ a' -|-
«"

-f etc.

shall be less than any quantity we can assign.

Hi
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ual, thcij

limits for

latter may
less than z.

r from L'

, tlie func-

;is.

ral func-

', etc.

€<'-fetc.)

ns so near

h«" + etc.

Let k be this quantity, wliicli may be ever so small

;

n, the number of the (|uuntities «, «', a", etc.

;

ti, the largest of them. •

Because we can bring the functions as near their limits as

we please, we may bring them so near as to make

or na < h

Then «-f-a' + «"-f-etc. < nu (be<^ause « is the largest);

whence, « + «' + «" + etc. < k.

Therefore the sum X+X'+ X" + etc. will approach to

the sum L { L' -^ L" -j- etc., so as to differ from it by less

than k. Because this quantity k may be as small as we please,

Z+ Z' + Z"+ etc. is the limit of X+ X' + X" + etc.

Theorem III. TJie limit of the product of two func-
tions is equal to the product of their limits.

Proof. Adopting the same notation as in Th. II, we shall

have
XX' = LL' -iiV - a'L + ««'.

Because L and L' are finite quantities, we may take a and

«' so small that aL'-\-a'L— ««' shall be less than any quan-

tity we can assign. Hence XX' may approach as near as we
please to LL', whence th ' "tter is its limit.

Cor. 1. Tlie limit of the product of any ninnher of
functions is cqical to the product of their limits.

Cor. 2. Tlie Umit of any power of a function is equal

to the power of its limit.

Theorem IV. Tlie limit of the quotient of two func-

tions is equal to the quotient of their limits.

Proof. Using the same notation as before, we have for the

quotient of the functions,

X' L' — «

X' - ~L^^'
jj

while the quotient of their limits is -j-
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M

»^t

\0

The diilcrence between tlie two quotients is

L U — a La — La
L L — « Li^L — «)

IfL is different from zero, we may make the quantities «
and «' so snuill that this expression shall be less than any

JJ
quantity we choose to assign. Therefore, y is the limit of

L-a' ,, ^. „X'
^

—f , that IS, 01 -;^-
L ~ a X
30G. Problem. To fuul the limit of '^^.— as x

approach "s a.

Case I. When n is a positive ivlwlc numler.

We iiave from § 93, when x is different from a,

Q-n qu
= x"^-^ + o'jif^-^ + a^y^-^ + + «»-!.

X — (t

Now suppose X to approach the limit a. Then a;'*"^ will

approach the limit a^'^, x"'-^ the limit a^-% etc. j\lultiplying

by a, (fi, etc., we see that each term of the second member
ai)proaches tlie limit a^-^. Because there are n such terms,

we have
^W __ qTI

Lim. —

^

{x=a) = 7ia^~\
X — a

Case II. Wlien n is a ijositive fraction.

7)

Suppose n =^-, p and q being wdiole numbers. Then

xn — flfW xQ — a^

then

and

X — a X -- a

for convonience in "writing.

^4 =y.
,

1

a''
•

= h',

X =y% a = b';

xf^--aP' v"^ - h^

y"-

y ~ b

X -- a ~~ f- h"~ f- z>«

y- b

J. y
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ig

As .r approaches indefinitely near to n, and consequently y
to b, the numerator of this ihiction (Case I) ai)pn»ac'lu'S to

php~^ as its limit and the denominator to qbi~'^. lleiice, the

traction itself approaches to

Substituting for h its value a'^, we have

re" — «" p-q

Lim. ^^1-—^^ (j=a) = "^hP-^ —^a'l ' 111

X — a

•— 7ia^~K

Hence the same formulEe holds when n is a positive fraction.

Case III. When n is negative.

Suppose n =z — j), j) itself (without the minus sign) being

supposed positive. Then

xn _ f,n x-P — a-P _ r.(n^ — x^'\= = x-P a-P I 1

X — a X — a \ X — a I

x^ — a"= — x-P a~P
X — a

"When X approaches a, then x-P approaches arP, and

x^ — a^
approaches /)rti^~^ Substituting these limiting values,

X — a

we have
/J.JI ^_ /7J1

Lim. ix=n) = —a-^PpaP-^ = —jM-p-K

Substituting for —p its value 71, we have

Lim.
xn — a^

X — a
(x=a) = naP'-K

Hence,

Theorem. Tlie fomnulm

Lim.
a:^ a'

ix=a) ncS^-'^
X — i

is true for all values of n, whether entire or fractional,

positive or negative.

I

iiiiii

i
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CHAPTER V.

THE BINOMIAL AND EXPONENTIAL THEOREMS.

The Binomial Thooreni for all Values of the
Exponent,

307. We have shown in §§ 171, 2G4, liow to develop

(l+a)"' when n is a positive whole number. We have now to

find the development when n is negative or fractional. Assume

(1 + xy^ = i?o + ^1^ + J^i^^ + ^^'a-'-"^ + etc., {a)

B^, i?j, etc., being indeterminate coefficients. Because this

Cf{uation is by hypothesis true for all values of x, it will remain

true when we put another quantity a in jilace of x. Hence,

(1 + a)n — B^-\- B^a-\- B^a^ + B^a^ + etc. {b)

Subtracting {h) from {a), and jiutting for convenience

X =1 + x, A = \ + a,

the difference of the two equations {a) and {h) will be

The values we have assumed for X and A give

X-A =x a.

Dividing the left-hand member by X~ A, and the right-

hand member by the equal quantity x — a, we have

X^'-A'' x^ a~+B, a^

^ ^ x — a ^ X — a
+ etc.X-A

Now suppose X to approach a. The limit of the left-hand

member Avill be 7iA"'~^, Taking the sum of the corresponding

limits of the right-hand member, Ave shall have

nAy-^ = By H- ^B^a + ^B^a^ f ^B^a^ + etc.

Replace A. by its value, 1 + a, and. multiply by 1 -f- a.

We then have

,

s

'm
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1 + a.

n (1 + (lY = /?! (I 4- ^0 + 2i?o« (1 + ^0 + "5 ^'3^'^ (1 + «)

+ ^B^ie (1 -f rt) 4- etc.

Multiplying tLc cquatijii (/v) by n, wc have

w (1 4- a)" = wi?o + ^*-^>*i^' + «/>2^''^ + nli^n^.

Ef|uatinf]j tiie coefficients of the liiic powers oi' a in these

Cfjuationti (§ ;i81), wc have, first,

By putting a = in equation (//), wc find /?„ = 1, whence

Then we find successively,

2B, = {n-l) B,, whence B^ = --^ B, = ^^-^^^•

6b^-={n—Z) h„y ^3 — —3~^s— 17^3

Subst"*"n.ting these values of It^, B^, B„, etc., in the equa-

tion («) und using the abbreviated notation, we obtain the

e(iuation

(1 + xY = l + vx-\- ('^)
.^2 + {^^

y^z ^ etc., {c)

which equation is true for ail values of n.

308. There is an important relation between the form of

this development when n is a positive integer, as in ^§ 171 and

2G-* and when it is negative or fractional. In the former

case, when we form the successive factors n — 1, n — 'Z,

n — 3, etc., the n^'^ factor will vanish, and therefore all the

coefficients after that of x^ Avill vanish.

But if n is negative or fractional, none of the factors

n — 1, n — 2, etc., can become zero, and, in consequence, the

series will go on to infinitv. It tlierefore becomes necessarv,

in this case, to investigate the convergence of the development.

If X > 1, the successive powers of x will go on increasing

indefinitely, while the coefiicients (.), (A, etc., will not go

24
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on (Uminisliiiif? iiuk'finid'ly in tlic same ralio. For, let u.s

conjsick'i- two succos.sivu tcnud of the duveloi)mc'ut, the ith uud
the (/ + 1)-', naniL'!}',

The quotient of the .second by the liivst is

As i increases indefinitely, this coeflieient of .r will ajiproach
the limit —1 (§ ;i04), while ;c is by hypothesis as «,n-eat as 1.

Therefore, by coutinnin.ir tlic series, jx point Avill be reached
from wliich the terms will no lon<,an- diminisii. Therefore,

Tlia anrlopmcnt of (1 + .r)« in powers of x is not con-
vergent unless X -C 1.

In consequence, if wo develop {a + h)n when 7i is negative
or fractional, Ave must do so ii) ascending i)owers of the lesser
of the two quantities, a or b.

EXAMPLES.
I. Develop (1 + .r)^, or the square root of 1 + a;.

Putting u =1 -, we have

(I) = I'

;a-)
1-2

1-1

2-4'

w 1.2.3 ~ 2.4.6*

i-3
/'A _ 2 //A _ 1 .1.3- 5

\J 4 I3/
~

2. 4. 0-8'

etc. etc. etc.
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Wlieuce,

^^^•"^ -^ + ie-""^r4^ + a^T:o^--^:j:^y^ + etc.

If a; is a small fraction, tlio terms in x^, a^», etc., will bo

much smaller than ^.r itself, and the first two terms of the

series will give a result very near the truth. We therefore '

cunclude:

Tlic square mot nf 1 phis a snifdl fraction is approA'i-
niatcly equal to 1 plus half that fractluii.

2. To develop v'lO.

We see at once that VlO is between 3 and 4. We put 10
in the form

32 + 1 = 32(1 +
-J),

when VlO = 3(1 + ]\'

-

Then, by the development just performed,

V "'"9/ "^2.9 8.92"^ lfi.932-9 8-92 10.9=^

_5
128.94T-;r, 4- etc.

We now sum the terms :

1st term, ....
2d "

3d "

4th "

5th "

6th «

Whence,

rtn

= 1st 4- 18,

= 2d -^

= 3d -i 18, . .

= 4th X —5-^72,
= 5th X — 7-^90,

1.0000000

+ .055555*3

— .0015432

4- .0000857

— .0000000

+ .0000005

A.

Sum = (1 + ^)
= 1.0540926

VlO = 3 X sum = 3.1622778

which may be in error by a few units in the last place, owing
to the omission of the decimals past the seventh.

PI

H|,
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'I

3. To (U-vclop Vs.

Wc aue that 3 is the nearest whole number of (lie root. So

Ave put

V8 = V(3'-i) = 'y/.T-'(i-J) = .'i(i-,y,

from which the development may hu cllected as before.

EXERCISES.

1. Compute the scjuare root of 8 to G decimals, and from it

llnd Die stjuare root of 'Z by § 183.

2. Develop (I — u)K

3. Develop (1 — xY^ and exi)rcs,s the term in xK

Torm in x^ = —1-3.5 2t —

1

2-1-G . . . .'Zi
xK

4. Develop and express the general term.

(1 + ^y

/ 1\"*

5. Develop (1 + I and express the general term.

6. Develop (1 — xy'\ and express the general term.

7. Develop the m^^ root of 1 + wj.

8. Develop {a — b)~% when a <.h,

9. Develop (1 — a:)""*, when ic > 1.

Because the development will not be convergent in ascend-

ing powers of x when a: > 1, we transform thus

:

and so put
/ 1\~^

10. Develop the m^ power of 1 H
m.

II. Compute the cube root of 1610 to six decimals.

t
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Dot. So

)'

12. Develop (\/« + V/'')".

i.^ Usiiij,' the functional notation,

^(„,) = i+(^;')^ + (':>^+(';;).^'+otc.,

miiltiply till' two scm-Iom,
<I>

(ni) and <l>(n), and siiow by t lie for-

niuliu of § "iOl that tiiu product is tMpiul to (p{in -f ii).

from it

-f etc.

— 1
xK

ascend-

Tlio Exponential Thooivin.

JiOO. Let it be retjuircd, if ])ossible, to develop a^ in

powers oH X, a being any (puuility whatever. Assume

aa' = Co + Cjo; + C^x* + C^aP + etc. (1)

to be true for all values of .r. Putting any other quantity y in

place of X, we shall have

«2/ =
(7o + C,ij + C,if + C,f + etc. (3)

By the law of exponents wc must always have

Now the value of «*+y is found by writing x -{- y for a; in

(1), which gives

a^^y= C^ + C,{x-^y)-{.C^{x+ijy-\-C, {x+yY+ ctc. (3)

On the other hand, by multiplying equations (1) and (2),

we find

(^)

a-ay = C,^ + C,C,y + C,C„j/ + C^Cgf/a + etc.

+ CqC\x + CVa^y + C\ C^xf + etc.

+ C'oCg:c2 -f Ci Cg^ca^ + etc.

+ C'oC'ga:^ + etc.

By § 285, the cocflRcients of ail the products of like powers

of ^' and y must be equal. By equating them, we shall have

more e([uations tlian there are ([uantities to bo determined,

and, unless these equations arc all consistent, the development

is impossible. To facilitate the process of comparison, we
have in equation (4) arranged all terras which are homogeneous

in x and y under each other.
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'

B}' putting a- = in (1), wc find

a^ = Co, whence C^ = 1. (§ 103.)

Comparing the terms of the first degree in x and ij in (3)
and (-4), we find

Coefficient of x, C^ = C\C^
;

These two equations are the same, and agree witli C^ — Y-,

but neither of them gives a value for C'^, which must tJierelbre

remain undetermined.

Comparing the terms of the second degree, we find, by de-
veloping {x + yf,

C, {x^ + 2X2/ + y') = C,x'^ + C^xy + C,y%

which gives 20^ — C\%

whence ^'' - 1.-2 ^i'*

Comparing the terms of the third order in the same way,
we liave

C,{x^+3:if^y-\-dxy^^y^ = C,a^+C,C^x^y+C^C^x7f-{-C,y%

which gives

whence

3C, = C,C, = '^C,^;

^3 -1.2.3^^-

If the successive values of C follow the same law, we shall

have

ff — Jl. n 4.

and in general. C« -- — C n
'-•71 I '-^i • (5)

Let us now investigate whether these values of C render
the equations (3) and (4) identically equal.

Let us consider the corresponding terms of the w'^ degree,
n being any positive integer. In (3) this term will be

Cn{x-\-y)''.

f
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Expanding, it will be

Cn x^ + nx^'-^ij + ('I)
x^-^y^ + i^^ .r^-^tf + etc. (C)

In (4) the sum of the corresponding- terms Avill bo, putting

CnX'^^G^ Cn-1 x^-'y-\- C. Cn-%x^-^yiJr C'a 0^-3 a;"-3/+ etc (T)

The first terms in tlie two expressions are identical.

Tlic comparison of the second terms gives

C
nCn = C\Cn-h whence d — -^ Cu-\.

n

This corresponds Avith (5), because (5) gives

Ct-i = 1 ^iTl-lfill-1

and if we substitute this value of Cn-i in the preceding ex-

pression for Cn, it will become

C-ji — 6f rf
n (u — 1) ! n\

which ngrees with (5).

The third terms of (G) and (7) being equated give

y .) j
Cn — u 2 C,j-2-

Substituting the values of Cn, C„, and Cn-2 assumed in the

general form (5), we have

I") JL r'' — 1 L__ r'«

and we wish to know if this equation is (rue.

Multiplying both sides by u\ and dropping the common
factor 6i", it becomes

/n\ _ nl
I

\Z/ ~ 2! (w-2)l'

which is an identical equation.

In the same way, the comparison of the following terms in

(G) and (7) give

/«\ _ w! hi\ _ nl
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i
'^

\\\ >

all of which are identical eqniitions. Hence the conditions of

the development, namely, that (G) and (7), and therefore (3)

and (4), shall be identically equal, arc all satisfied l^y the valued

of the coefficients C in (5). Substituting those values in (1),

the development becomes

«^ = 1 + C,x + J- C,^x^ + ~]~ C,h^ + etc. (8)

This development is called the Exponential Theorem,
as the development of {a + />)" is called the binomial theorem.

310. The value of C^ is still to be determined. To do

this, assign to x the particular value ^r- Then the equation

(8) becomes *

'- 111
a^. = 1 + 1 + -- + -— + j-^-^- + etc., ad inf. (9)

The second memlier of this equation is a pure numl r,

without any algebraic symbol. We can readily compute its

approximate value, since dividing the third term by 3 gives

the fourth term, dividing this by 4 gives the fifth, etc. Then

1 + 1 = 2.000000

1 -f- 1-3 = .500000

1 4- 1-2-3 = .1GCGG7

1 -r- 1-3-3-4 = .0416G7

1 -~ 1.2-3.4.5 = .008333

1 -^ 1.2.3.4.5.6 = .001389

1 -^ 1.2.3.4.5.6.", = .000198

1 -^ 1.2.3.4.5.6.7.8 = .000025

1-^1.2.3.4.5.6.7.8.9=: _^000003

Sum of the series to 6 decimal, 2.718282

This constant number is extensively used in the higher

mathematics and is called the Napenan base.* It is re})re-

sented for shortness by the sym])ol e, so that e = 2.718282....

The last equation is 'herefore written in the form

a^« = e.

* After Baron Napier, the inventor of logarithms.

i

i
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Raising to the C\^^ power, we have a = e^K Hence :

Tlie quantity C^ is the exponent of the power to which
we must raise the constant e to produce the number a.

We may assign one vahie to a, namely, e itself, which will

lead to an interesting result. Putting a = c, we have C\ =1,
and the exponential series gives

e«
X a? a.-^

If we put x=:l, we have the series for e itself, and if we
put X =z — 1, we have

e-i = - = 1
e

1 1_ 1
etc.

We thus have the curious result that this series and (0) are

the reciprocals of each other.

EXERCISES.
1. Substitute in the first four or five terms of the expres-

sions (0) and (7) the values of Cg, C^, Cn-2, etc., given by (5),

and show that (6) and (7) are thus rendered identicjdly equal.

Note. This is moroly a slight modification of the process we have

actually followed in comparing the coefficients of like powers of ;c and i/

in (G) and (7).

2. Compute arithmetically the values of 2.71832, 2.7183~^,

and 2.7183~2, and show that they are the same numbers, to

three places of decimals, that we obtain by putting x = 2,

x= — 1, and X = —2 in (10), and computing the first eight

or ten terms of the series.

3. Since c^+* = eef^, the equation (10) gives, by substituting

the developments of e^^^^ and e*,

(1 _|_ xY (1 + .r)3 (1 + xY
1 + 1 + a; +

2!
+

3!
+

= .(=

4!

X*

4- etc.

«« X*
.l + ^ + 2-!^-3-!+4-! + ^^^-;-

It is required to prove the identity of these developments,

by showing that the coefl&cients of like powers of x are equal.

; "W

. i
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CHAPTER VI.

LOGARITHMS.

311. To form the logarithm of a number, a constant num-
ber is assumed at i)leasurc and called the hase.

Drf. The Logarithm of a number is the exponent
of the i)ower to which the base must be raised to \)Y0-

duce the number.

The loirarithm of x is written \o^ x.

Let us put

Then

a, the base

;

X, the number

;

I, the logarithm of x.

a^ = T.

Rem. For every positive value we assign to x there "will be

one and only one value of /, so long as the base a remains un-

changed.

Drf, A System of Logarithms means the loga-

rithms of all positive numbers to a given base. The
base is then called the base of the system.

Properties of Logiirithins.

312. Consider the equations,

^^ = 1
;

I
(0- =z a] \ whence by definition,

«2 rr: «2 . )

Hence,

I. Tlie lo^nritlnn of 1 7,9 zero, irhatever he the base.

II. TJic lo'Jaritlnih of the hasc is 1.

III. Tlie logarithm; of any ninnher between 1 and the
base is a positive fraction.

rV. The logaritlnns of powers of the base are integers,

hut no other logarithms are.

Mogl =0;
1, -j log « = 1

;

( log «2 = 2.
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Again we have

a-i =

2 — ±a-' =

^^S- = -1;

a:i>

«-" =
aIt,

IIciicc,

a

whence by definition, l Io<?
^ = ~ 2 •

log — = — ;i.

V. r^c logarithm of a munher hetivecn azi^Z 1 is
negative.

Again, as we increase n, the value of a^ increases without

limit, and that of - approaches zero as its limit. Hence,

yi. Tlie logarithm of is negative ijifijUfj/.

VIL TnEORE^r. Tlte logarithm of a product is equal
to the sum of the logaritlims of its factors.

Proof, Let p and q be two factors, and sujipose

h = log 2h h = log q.

Then a^ = p, «& = ^.

Multiplying, a^a^ = a^+f^ = jjq.

Whence, by definition,

h-hk = log (pq),
or log ;? + log q z= log (pq).

The proof may be extended to any number of factors.

VIII. Theorem. TJiclogarithm, of aquotientis found
hysuhtracting the logarithm of the divisor from that of
the dividend.

Proof. Dividing instead of multiplying the equations in
the last theorem, we have

^
h v P
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1 <

ii

mi

or

Hence, by dcfiniton, h — k = log -

,

log;;— log<7 = log^.

IX. Theorem. Tlic Ingaritlun of any power of a jnini-

hcT' is equal to the logarWiDi of the nuw.hcr DiultipUcd

hij the exponent of the poiver.

Proof. Let h = log p, and let 7i be the exponent.

Then ft' = p.

Raising both sides to the w/'"' power,

Whence nh — log;;",

or 71 log ;; = log p^.

X. Theorem. Hie logarithm of a root of a number
is equal to tlie logaritliiiv of the number divided by the

index of the root.

Proof. Let s be the number, and let p be its n^^ root, so

that

p =z \^s and s = ;;".

Hence, log s = log jj'' = n log jJ- (IX.)

Therefore,

or

logs
log p = —— ,

, y log S
log ys = — -—

_ ANote. We may also apply Th. IX,. since p = sK Con

sidering - as a power, the theorem gives

log p = - log s.

EXERCISES.

Express the following logarithms in terms of log;?, log q^

log X, and log.?/, a being the base of the system

:

i

)
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1. L<g p% Ans. 2 \ogp 4- log q.

2. Log pn^.

3- Logyr<jr5. ^, Logpfj^i/^.

5. Log - = log ^^;-^, and explain the identity.

6. Log — = log xyjr^ Q~^-

Ans. Log X + log y — log ]) — log g*.

7. Log -^'-.
^' Log

„«„3
p"'f

9. Log a/.^ (Xotc, § 123). 10. Log Vx y/y.

II. Los:
VI-

13. Log ax.

12. Log Vfl!.

X
14. Log

«

a:

15. Log —
a"

16. Log -^
(,npm

« :.^y3

17. Log ^/~(^- x\

18. Log Vl — a^.

Ans
Lo^ (^^ + •^') + ^og (« — ^')

19. Log (rt^ _ 2-2).

EX.)

:*. Con-

i'j
log

(Z,

1

1

Logarithmic Series.

313. Rem. The logarithm of a number cannot bo devel-

oped in powers of the number. For, if possible, suppose

log 2; = (7o + Cja: + C^x^ + etc.

Supposing a: = 0, we have

C\ = log 0,

which we have found to be negative infinity (§ 312, YI).

Hence the development is impossible.

But we can develop log (1 + y) in powers of y. For this

purpose, we develop (1 + y^'^ by both the binomial and expo-

nential theorems, and compare the coefficients of the first

power of X. First, the binomial theorem gives

(1 + y)- -^l + xy + 5^i^D y^ + :ii:!jZ.li(|ZL?) ,^3+etc.

i!
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If wo develop the cocfTicients of if, if, etc., by performing

the multiplicatioiiij, we have

part in x = X

2

(C i( y^

In general, in the coefficient of //", or

x{x—l){x — '-Z).,.. {x — n + 1),

the term containing the first power of ^ will be

Hence,

±1-2-3 {)i — 1) .r _ X

l'"Z-'i . . . . n ~ n

(1 + yY =z 1 + X \p
— •^- + '!- — |-+ etc.j + terms in x\ ofi, etc.

On the othci hand, the exponential development, § 309, (8),

gives, by putting 1 + ?/ lor «.

(1 + yY = 1 4- C\x -\- terms in x\ x?, etc.

Equating the coefficients of x in these two identical series

we have
/4

c.=y-t^i r + etc. 0)

Tlie value of C^ is given by the theorem of § 310, putting

1 -\- y for a; that is, (7^ is here defined by the equation

eO. = I ^ y.

Hence, if we take the number e (§ 310) as the base of a

system of logarithms, we shall have

C, = log (1 + y).

Comparing with (1), we reach the conclusion:

TiiEOiiEM. Assuming the Xapcrian base e as a hase,

ive have

log (1 + 2/) = 2/ - I + I
- |- + etc., ad inf. (2)
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rforming

X

2

X
— •

3

X^, 7^, etc.

^ 309, (8),

ical series

(1)

), putting

ion

base of a

s a hase,

»)o.

)

erian
I><f. Lonraritlims to tlie l:.as<^ e aro called Nape

Logarithms, or Natural Logarithms.

Hem. The series (2) is not convergent when v > l, ;uul
therefore must be tran.sfurnied I'ur use.

Putting _ >/ for y in (;>), we have

Subtracting this from (2;, an] noticing that

log (1 + y) - log (1 - 2/) = log Lt?/ (Th. VIII),

1 + .y.e have log ^5| = 2^ + f +^ + etc. (.)

Now w being any number of which we wish to investigate

the logarithm, let us suppose ?/ = --i-T- This will give

1 +y _ n + 1

it

Whence log \±-l = k. ''±1 = kg (;, + i) _ kg ,,.

Substituring these values in (3), we have

log {n + 1) - log 71 = 2
"^

'i {•>

2

2)1 + 1^3 {2)1 + 1)3 + 5 {2n + 1)'

+ etc. (4)

This series enables us to find log (w + 1) when we know
log 71. To find log 2, we put n = 1, which, because log 1= 0, gives

log 3 = 2 (~ + -i - + J:_ + J_ _L ptp \°
\3 ^3-33 ^5.35^7.37 + ^'^ 7

Summing five terms of this series, we find

log2 = 0.G93U7
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1 f s-

11;

log 3 = l.()98(Jl:e.

log 9 = 2 \i)i :.197224.

'uiliiig 71 = 2 in (4), wc have

loR I! = l„g 3 + 2 (y + .^^ + ji-, +~ + etc.).

wliich gives

Because 9 = 3^,

Putting n = 9 in (4), wc liiive

log 10 = log 9 + 2
(j^ + ^^ + gJ-js + etc.),

whence log 10 = 2.'3025So.

In this way tlie Naporian logaritlimsof all numbers maybe
comi)utcd. It is only necessary to compute the logarithms of

the ju'ime nnmbers from the series, because those of the com-

posite numbers can be formed by adding the logarithms of

their prime factors. (§ 312, VII.)

314. Definitive Form of the Exponential Series. "We are

now prepared to give the exponential series (§ 309, 8) its defi-

nite form. Since the coefficient C\ is defined by the equation

e^'' = a,

the quantity C is the Naperian logarithm of a. Ilence, tho

exponential series is

ax = 1 + 6Ll2g^ + (^|S.52 + <PJ^^J^ + etc.,

which is a fundamental development in Algebra.

By putting a = e, we have log a = 1, and the series be-

comes that for e^ already found.

By putting x = l, we have an expression for any number
in terms of its natural logarithm, namely,

« - 1 + -3-- + —̂ r- + —3j— + —jr- + etc.

M

Comparison of Two Systems of Logarithms.

315. Put e, the base of one system
;

a, the base of another;

w, a number of which we take the logarithm

in both systems.
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}tc.j,
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Itlims.

logarithm

Pnftin;:; 1 and /' for the lo;:fiirillnns In llio two system-, no

liUVU

(* = n, «* n.

aud therefore i^ = a^'. (1)

Now put k for the logarithm of a to the base c. Tlicn

c* = a.

and raising both members to the l'^^ power,

Comparing with (1), I = kl\

or I' ^lyc
1

(•2)

This equation is entirely independent of w, and is therefore

the same for all values of n. Hence,

Theorem. // wc DiuUiphj the Jo^aj'it7n)i of any
iiUDibrr to the h'ise a htj the logdritliin of a to the base e,

we shall have the lo'JariUun of the mcDiher to the base e.

31G. Althouo;h there may be any number of systems

of logaritlinis, only two are used in practice, namely :

1. The natural or Naperian system, base = e =
2.718282 ....

2. The common system, base = 10.

The natural system is used for purely algebraic

purposes.

The common system is used to facilitate numerical

calculations.

Assigning these values to e and a in tho preceding section,

the constant k is the natural lognrithm of 10, which we have

found to be 2.302585.

Therefore, by (2), for any numV)er,

nat. log =: common log x 2.302585,

and
nat. loff.

common Icj = -^~-^ r:^

llencc,

= nat. log X 0.4342914....

25
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TilEOUMM. Ilir rnmwoti logarithm of nvy nunihrr

7)}/nf he found bij niuitipi (liiuj ifs nafuraf lo'^ai'lth in Inj

().i;{4'^!»44 .... oi' by the rcviprocal of the Aa/trrinn In^n-

ritlini of U).

Jhf. Tlio ninnl)(M"(M:Mi>!)44 is called the Modulus
of tliu coimnou ayistom ot'loguritliiua.

EXERCISES.
1. Show (hilt if a and b ho any two l)asos, the lo^rarithm of

a to the hjLso b ami tho io<,'arithni of /; to tlio hasu a arc tiie re-

ciprocals of each other.

2. What (loos this tlioorom express in the case of the natu-

ral and common systems of lo<;ariLhnis ?

Coiiiinoii Lo^iiriihins.

wc have to hase 10,

loor 100 — 2,

log 10 =r 1,

log 1 = 0,

log
1

10
= -1,

log
1

nr

(lij ilf

'

etc.

The following conclusions respecting common logarithms

will he evident from an inspection of the ahovo examples:

I. Tlie lo^dvitlnU' of (tny nuniher betiuecii 1 (tnd 10 is

a fraction between and 1.

II. Tlie lo'^aritlun of a number with two dibits is 1

plus some fruction.

III. In gcjieral , the logaritlim of a nmnber of i digits

is i — 1, plus some fraction.

IV. The logarithm of a fraction less than unity is

negative.

V. 77/ r logarithms of two numbers, the reciprocal of

each other, are equal and of opposite signs.

in ?
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' nnvthrr

ritlun hif

Hill h><J(i-

Modulus

p:arithm of

lire the ro-

£ the luiLu-

= 2,

= 1,

= 0,

= -1,

k'tc.

lo^iU'itlims

(tiul 10 is

di'^its is 1

iofi dibits

hi iiiiiiy is

fprocal of

VT. // one innuhcr is 10 times another, its ht^m-itJini

it'ill In' greater Inj unity.

Vrmf. If lO/ = w,

lluM 10'*' = 10 X lev = 10/<.

llenco, if I = log w,

tlK'ii ^ 4- 1 = log lO/i.

IU8. To give mi itloii of llio pmgrossion of logarithms, the

following ttibie of logurithiiLS of tho lirst II nuiuhors mIiomIiI bo

stiiiticd.

Tliu logarilhins arc not exact, bocjiusc all logarithms, ex-

cept those of powers of 10, are irrational mmilK'rs, and there-

fore when expressed as decimals extend out indelinitely. We
give only the lirst two decimals.

log 1 = 0.00, log 7 = 0.8r),

log^ =: 0.30, logs — 0,00,

log;3 = 0.48, logo = 0.05,

log 4 = O.GO, lug 10 = 1.00,

log 5 = 0.;0, log 11 = 1.04.

log = 0.78,

It will be noticed that tho difference between two consecn-

tive logarithms continually diminishes as the numbers increase.

For instance, the dilFerence between log 20 and log 10 must

by § 312, VIII, be the same as between log 1 and log 2.

819. Compntcdion of Lofjnrithms. Since the logarithms

of all composite numl)ers may be found by adding the loga-

rithms of their factors, it is only necessary to show how the

logarithms of prime numbers are computed. V»e have already

shown (§ 313) how the natural logarithms may be com})utetl,

and (§ 31 G) how the common ones maybe derived from them

by multiplying by the modulus 0.4342!)44.... It is not how-

ever necessary to multiply the whole logarithm by this fuelor,

but we may proceed thus:

We have, putting J/ for the modulus,

com. log n = M nat. log n,

com. log {n -\- \) = M nat. log {n + l)-,

V.
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M

whence, by subtraction,

com. log {n + ^ ) — com. log n = 3f [nat. log {n + 1)— nat. log ;/]

;

aiul, by substituting for nut. log {n +1) — nat. log u its

value, § 313,

com. log (n -f- 1) = com. log 7i -f 2Jf

+

jZu + 1

1

+
d{2H + 1)3

^ + etc.
5 {2ti + 1)

By means of this series, the computations of the successive

logarithms may be carried to any extent.

Tables of the logarithms of numbers up 100,000, to seven places of

decimals, are in common use for astronomical and mathematical calcula-

tions. One table to ten decimals was published about the beginning' of

the present centur\ . The most extended tables ever undertaken were

constructed under the auspices of the French government about 1795, and
have been known under the name of Lcs Grandcs Tables du C/uhidre.

Many of the logarithms were carried to nineteen places of decimals.

They were never published, but are preserved in manuscript.

320. It may interest the student Avho is fond of computa-

tion to show how the common logarithms of small numbers

may be computed by a method based immediately on first

principles.

P
Let n be a number, and let - be an approximate value of

its logarithm. "We shall then have.

p

n = 10?,

or, raising to the q^^ power,

n^ = IQP.

Hence, could we find a power of the number which is also

a power of 10, the ratio of the exponents would at once give

the logarithm. This can never be exactly done with whole

numbers, but, if the condition be approximately fulfilled, we
shall have an approximate value of the logarithm.

Let us seek log 2 in this way. Forming the successive

powers of 2, we find

2^0 = 1024 = 103(1.024). (1)
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Hence, 3 : 10 = 0.3 is an approximation to log 2. To
find a second approximation, we form the powers^'of l.OU
until we reach a number nearly equal to 2 or 10, or the quo-
tient of any power of 2 by a power of 10. Suppose, for instance,
that we find

1.024* = 2.

Because 1.024 = 2^ -~ 10^, this equation will give

' 2**^\^

(,\mf ~^' or 2i<^ r=2.10*", or 2io-«-i = 103«,

which will erive log 2 = —^—
"^

10.« —

1

If we form the powers of 1.024 by the binomial theorem,
or in any other way, avc sIuiU find that x is between 29 and 30^
from which we conclude that log 2 =: 0.301 nearly.

To obtain a yet more exact value, we form the 30th power
of 1.024 to six or seven decimals, and put it in the- form

1.02430 = 2 (1 + «),

where « will be a small fraction.

Then avc find what power of 1 + « will make 3. Let y be
this power. Eaising the last equation to the yth power, we
have

1.024% = 2y(l 4- «)y =r 2^+1.

Putting for 1.024 its value, 2io
-v- 103, this equation becomes

= 2y+», or 22%-i = lO^oy,10%

whence, log 2 =
"^

299^

2299y-l

00;/

By a little care, the value of y can be o])tained so accurately
that the value of log 2 shall be correct to 8, 9, or 10 places of
decimals.

The power to which we must raise 1 + « to produce 2 will

be approximately '^^'' "'^"
, when « is very small.
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EXERCISES.

1. 11. the common system {a = 10) we have

log 2 = 0.30103, log 3 = 0.47712.

ITciice find the logarithms of 4, 5, 6, 8, 9, VZ, 12|, 15, 16,

IGf, 18, 20, 250, 0250.

Note that 5 = V, 12| = J-g". 16| = J-O", and apply Tb. VIIL

2. How many digits are there in the hundredth power of 2?

3. Given log 49 = l.G9010'5 ; find log 7.

4. Given log 1331 = 3.124178; find log 11.

5. Find the logarithm of 105 and 1.05 from the above data ?

6. Find the logarithm of 1.0510.

7. If $1 is put out at 5 per cent, per annum compound

interest for 1000 years, how many digits will be required to

exi)ross the amount? (Compare § 21G.)

8. Prove the equation

log a; = ^ log {x + 1) + ^ log {x — 1)

+ i/ + o + + etc.
_2x2 - 1 ' 3 (2a.-2 — 1)3 ^ 5 {2xi — If

9. If «/ = log n, of what numbers will y + '!i, y -\- '^, y — 1,

and y — 2 be the logarithms ?

10. Find X from the equation cf^ = li.

Solution. Taking the logarithms of both members, we have

a; log c = log h\

log h

log c

1

whence, X

II. cfl^ — n. 12. c*a; = m

14. b-^ = p.13. If^ = -.

P
Show that the answers to (13) and (14) are and ought to be identical.

15. aca; — ^^. 16, bd^ — k.

17. Find X and y from the equations

a^hv = py (Oilf^ = q.

m
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CHAPTER I.

OPERATIONS WITH THE IMAGINARY UNIT.*

331. Since the square of cither a negative or a positive

quantity is always positive, it follows that if we have to extract

the sfjiiare root of a negative quantity, no answer is possible,

in ordinary positive or negative numbers (§§ ITO, 200).

In order to deal with such cases, mathematicians have ])een

led to suppose or imagine a kind of numbers of which the

squares shall be negative. These numbers are called Imagi-

nary Quantities, and their units ;M-e called Imaginary
Units, to distinguish them from the ordinary positive and

negative quantities, which are called real.

323. TJie Imaginary Unit. Let us have to extract the

square root of — 9. It cannot be equal to + 3 nor to — 3,

because the square of each of these quantities is + 9. We
may therefore call the root V— 0, just as we put the sign \/

before any other (piantity of which the root cannot be extracted.

But the root may be transformed in this way :

Since — 9 =: -|-9 x —1,

it follows from § 183 that

V-^ = Vo V~i = n\/~r.

* It is not to be expected that a bejiinncr will fully understand this

Bubject at once. But he should be drilled in the mechanical process of

operating with imagiuarics, even though lie does not at first understand

their significance, until the subject becomes clear through familiarity.

till
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Def. The surd V— 1 is tlio Imaginaxy Unit. Tlie

imaginary unit is commonly expressed by the symbol i.

This symbol is used because it is easier to write i than

Tlie unit i is a supposed quantity such that, when squared,

the result is — 1.

That is, i is defined by the equation

fi = - 1.

Theorem. TJic square mot of any negative quantity
may he expressed as a number of imaginary units.

For let — 01 be the number of which the root \& required.

Then V— n = V+ n V— 1 = Vni,

Hence,

To extract the square root of a negative quantity,

extract the root as if the quantity were positive, and
affix the symbol i to it.

323. Complex Quantities. In ordinary al;.'ebra, any num-
lx.'r may be supposed to mean so many units. 7 or a, for

example, is made up of 7 units or a units, and might be writ-

ten 7-1 or al.

When we introduce imaginary quantities, we consider them
as made up of a certain number of imaginary unite, each rcpro-

sented by the sign i, just as the real unit is represented by the

sign 1. A number b of imaginary units is therefore writttjn hi.

X sum of a real units and b imaginaiy units is written

a 4- bi,

and is called a complex quantity. Hence,

Dp/, a Complex Quantity consists of the sum of

a certain number of real units plus a certain number of

imajjcinary units.

Def. When any expression containing the symbol
of the imaginary unit is reduced to tlie form of a com-

plex quantity, it is said to be expressed in its Normal
Form.
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Addition of Complex Expressions.

334. The algebraic operations of addition and subtraciion

are performed on imaginary (quantities according to nearly Ihe

same rules which govern the case of surds (§ 181), the surd

being replaced by i. Thus,

aV— 1 + bV— 1 = (ti + hi = {a -\- h) i.

Hence the following rule for the addition and subtraction

of imaginary quantities

:

t'ldd or suhtract all the real terms, as in ordinary

al^cJjra. Tlicii add the cocfjlcicnts of tJie imaginary
unit, and affix the symbol i to tlieir sum.

Example. Add a + bi, G -j- 7/, 5 — 10/, and subtract

da — 2bi 4- z from the sum.

We may arrange the work as lollows:

a + bi

6 4- 71

5 - lOi

— z — da 4- 2bi (sign changed).

Sum, — z — 2a + 11 + (3^* — 3) i.

EXERCISES.

1. Add 3.T + iyi + m, 2m + 5. a, Cnn — Ctiji.

2. Add 4ai, 17/, da + Gbi, x \- yi.

3. From the sum a + bi -\- m — ui — p -f qi subtract the

sum -{- yi — z — ui.

Reduce to the normal form

:

4. a 4- bi — {ni — ni) — {x 4- yi).

5. Ill {a — bi) — n {x — /;/).

3Iultipliciition of Complex Quantities.

335. Theorem. All the even powers of the imagi-

nary unit are real units, and all its odd powers are

imaginary units, positive or nec>ative.
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Proof. The imaginary unit is by delinition such a symbol

as when squared will make — 1. Hence,

t"2 = — 1.

Now multiply both sides of tl.is equation by i a number of

times in succession, and substitute for each power of i its value

given by the preci'ding e(|uation. We th(!n liiivo

i^ z=. — /,

«'•* =—/'-= +1 (because i^ = — 1),

i^ = — i^ = -f /,

^•0 = — i« ^ 4- /2 = _ 1,

r' = — i^ = -}- v^ = —i,
etc. etc. etc.

It is evident that the successive powers of i will always

have one of the four values, i, — 1, — /, or + 1.

h i\ i', etc.. will be equal to *;

l\ i% «io. etc.,
(( a -1;

l\ i\ i'\ etc..
(t (t — i;

i\ i\ i'\ etc..
(( ft + 1.

-

We may express this result thus

:

// 71 is any integer, then:

To multiply or divide imaginary quantities, we proceed as

if they were real and substitute for each power of i its value as

a real or imaginary, positive or negative unit.

Ex. I. Multiply ai by xi.

By the ordinary method, we should have the product,

axi^. But i*^ = — 1. The product is therefore — ax.

That is, ai x xi = — ax.

Ex. 2. JNIultiply a + bi by m + 7ii.

ni{a + hi) = ani — hi (because nixbi = —hi)

m {a H- bi) = bmi + am
_

{in + Hi) {a + bi) = am — bn -\- {an + bin) i,

which is the product required.
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Multiply

I. X -\- yi uy a — b. 2. m + ni by ai,

3. m — ni by bi. 4. 1 -|- ?' by 1 — i.

5. X — yi by a + hi. 6. x — yi by x -}- yt.

7. rt — ai — bi by a + ai + bi.

Develop

8. {a + bif. 9. (//i + nif.

10. (1 + 0^- "• (1 — 0^-

32G. Imaginary Factors. Tbe introduction of imaginary

units enables us to faetor expressions wbicli are prime wben
only real factors are admitted. Tbe following arc tbe princi-

pal forms

:

«2 + J2 — (^ ^ hi) (^a — bi),

oi — yi± 2abi = {a ± bi)\

Tbe first form sbows tbat the sum of two squares can

always be expressed as a product of two complex factors.

For example, 17 = 4^ + l^ = (4 + i) (4 — i).

EXERCISES.
Factor the expressions

:

I. ara + 4. 2. x^ -\- 2.

3. :^ _ o.^ + 5 = {x — 1)2-1-4.

4. x^ — 4:X 4-13 5. « + 5.

6. a- 4- 2an + o>A 7. x"^ + 2xy + 2y^.

327. Fundamental Principle. A complex quantity

A -\- Bi cannot bz equal to zero unless we have both

A = and B = 0.

Proof. If A and B were not zero, the equation A + Bi =
would give

I = A
B'

that is, the imaginary unit equal to a real fraction, which is

impossible.

Cor. If both members of an equation containing imagi-
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iiiiry units nro reduced to the normal form, so that the equation

sJKiil be ill the form
A^ ni = il/+iV7,

we must have tiie two equations,

A = M, B = N.

For, l)y transposition, we obtain

A -M->r{B-N)i = 0,

whence the theorem gives A — M= 0, B — N= 0. Hence,

I'A'crij cqiuitloii between eomjjlex qiuintitlcs uivolrcs

tiro efjiuttiouH hctiueeii red! fjua/UUies, fi)rnhed by cqaatiii^

the nicinbcrs of real and Iniaginarij units.

Ilediictioii of Functions of i to the Normal
Form,

338. 1. If wo have an entire function of /,

a + ^i + ci^ 4- f7i3 + e/^ -f//5 + etc.,

we reduce it l)y putting

i^ — —1, i^ = — i, i* = 1, etc., etc.,

and the expression will become

(rt — c + e — etc.) 4- (5 — fZ +/— etc.) /

;

which, when we put

X = a — c -\- e — Qtc, y = h — d -\-f— Qic.j

becomes x + yi, as required.

2. To reduce a rational fraction of i to the normal form,

wc reduce both numerator and denominator. The fraction

will then take the form
a -I- hi

•

m + ni

Since this is to be reduced to the form x + yi, let us put

a + hi—7—. = X + yi,m -\- HI -' '

X and y being indeterminate coefficients.

Clearing of fractions,

a + hi = mx — 1UJ + {my + nx) i.

)
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Comparing the number of real and imaginary units on

each side of the C(|uation, we have tiie two equations

mx — ny = a, nx + my = b.

Solving them, we find

X = ma + nb

m^'ii^

'

y =
mb — na

Therefore,
a A- bi _ ma + nb

,
mb — na

111^ + n*m + )ii ?n'^ 4- n^

which is the normal form.

'i
"'

JVorinal

'tc,

nial form,

Q fraction

3t us put

1^

EXERCISES,
Reduce to the normal form :

I.

2. 1 + i — v> + i^— i» — i^+ i\

6 + 5i 1 + i

1-i
1 — *

3-

6.

8.
a + bi

2

i — 1

mi{x — ai)

X -\- ai

{a+ bi){a— hi)

{x + biY2 + U "'
a — hi

10. What is the value of the exponential series which gives

the development of c»? We put x — i in § 310, Eq. 10.

11. Develop (1 + xiy by the binomial theorem.

12. What are the developed values of

(1 + hiY + (1 - ^'0''

and (I + hiy^ — (1 — Z*/)«?

13. Write eight terms of the geometrical progression of

which the first term is a and the common ratio /.

14. Find the limit of the sum of the geometrical progres-

sion of which the first term is a and the common ratio ^^•

3*^9. To reduce the square root of an imaginary expres-

sion to the normal form.

Let the square root be ^/a + bi.

W^e put X -{-yi = ^a + Vu

Squaring, 7? — y^-\- ^xyi = « + bi.

It

Hi
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Comparing iniits, 7? — y^ = a,

2.1!/ = b.

Solving this pair of quadratic! C(|uations, wc find

X

y

Therefore,

Vrt + l^i -V(

VCVr5^ + ^ + ^)

V2
V{V'(?2 4- />^ _ ^0

^/'Z

v< 1^ + /y2 .f rA
, 4 /

V</^ + Z<2 _
'Z

')

EXERCISES.
•Ecducc the square roots of the following expressions to tlie

normal fonn:

I. 3 + U. 2. 4 + 3/. 3. 12 + 5t.

4. Find the square roots of the imaginary unit i, and

of — i, and prove the results by squaring them.

Note that this comes under the preceding fomi when a = and

6 = ±1.

5. Find the fourth roots of the same quantities by extract-

ing the square roots of these roots.

J?30. Quadratic Eqnations loUh Imaginary Roots. The
combination of the preceding operations will enable us to solve

any quadratic equation, whether it does or docs not contain

imaginary quantities.

Example i. Find x from the equation

x^ 4- 4a- + 13 = 0.

Completing the square and proceeding as usual, we find

a;'-' + 4a: + 4 = — 9,

whence a; + 2 = ^/— 9 = ± 3/,

and X = — 2 ± 3i.

Ex. 2. 7? -\- bxi — c = 0.

Completing the square,

JT- 4- o.n — — =1 e — —'
4 4
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Extracting the root,

309

hi Vic — /;3

whence

EXERCISES.

Solve the fjiiatlratic cfiualioiis:

I. sfi -j- z -\- I = 0. 2. a^^ — a:+l— 0.

3. .r* + 3.<: -f 10 = 0. 4. x^ -f- lOar + 34 = 0.

Form quadratic cqnations (§ 10!)) of which the roots shall Ijc

5. a + bi and a — bi. 6. ai -f b and ai — b.

331. Ejrpnnential Fundionf^. Wlien in the exponential

fiinotiun a' we suppose z to represent an imaginary expre»iou

X -\- iji, it hecomes

Tins expression could have no meaning in any of onr pre-

vious definitions of an exponent, because we have not shown

what an imaginary exponent could mean. But if we sup]xi£c

the etlect of the exponent to be defined by the ex|)onfntial

theorem (§§ 301^ 314), we can develop the above expre&aiuQ.

First we have, by the fundamental law of exponents,

Next, if we put c =. Nap. log a, we have

whence, av^ = e<^'.

If we put, for brevity, cy = u, we shall now have

fix+yi — QCfQUi^

The value of a^ being already perfectly understo«xl, we
may leave it out of consideration for the present, and investi-

gate the development of e«*. By the exponential theorem

(§ 310, 10),

e"* = 1 + id -\-
u^i^

+ -3-r
+ IT

2/5/5

+ -5 r + <^tc.

1!

M!
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Substituting for tlie powers of i their values (^ 335),

c«* = 1 - ^,
-{-

^j
-

,-j + etc. 4- (. -
3

J + 5j
- etc.) ^

These two series are each functions of it, to which special

names iiave been given, namely

:

n' W" ?/• ?r
Ih'f. Tiio series 1 — .r? + Tt ~ m + ui ~ ^^c., is called

the cosine of //, and in written cos ?^

?/" ?<' ?/' ?<^
/><;/'. The tieries n — .n + r i

~~
r^i + rr»

"" ^^^'^ ^"^ called

the sine of Uy and is written sin u.

Using this notation, the above development becomes,

c«' = cos ti + / sin Uf (a)

which is a fundamental ecjuation of Algebra, and should bo

memorized.

Kkmarks. These functions, cos u and sin n, have an ox-

tensive use in both Trigonometry and Algebra. To familiarizo

himself with them, it will be well for the student to compute

their values from the above series for i = 0.25, i = 0.50,

i z= 1, i =z 2, to three or four places of decimals. This can

be done by a process simil^K* to that employed in computing e

in § 310. If the w'ork is done correctly, he will tind:

For u =
4'

((

a

(<

n =

u = 1,

n = 2,

cos 7 =: 0.9G9,
4

cos ,
— 0.878,

2

cos 1 = 0.540,

cos 2 = — 0.4in,

sin -r ^ 0.2-47.
4

sin - = 0.470.

sin 1 = 0.841.

sin 2 = 0.909.

Iili2, Let us now investigate the properties of the functions

cos u and sin it, which are detined by the e([uatiuns,

cos u 1 — u IC fr

i!'^4! 0! + ^*^'

11 n^ w (»)

sin « = «_- + -!_
^-, + etc
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Since cos u includos only even powers of v, its value will

remain iiiu-han^^ed when we change the sign of u I'runi -f to

— , or vice I'tma. Hence,

cos {— n) = cos u. (1)

Since sin it contains only odd powers of u, its sign will

ciiauge with that of u. Hence,

sin (— v) = — sin u. (8)

If in the equation («) we change the sign of //, we have,

by (1) and {'i),

f>-iii — ^jos (— v) + i sin (— //),

or c~"* = cos u — / sin n.

Now multiply this e(|nati()n by (a). Since

1
pUi X e)-Ui — fUi= e«» X

nUi
= 1,

we have 1 = (cos uY — i^ (sin vY,

or 1 z=: (cos uf + (sin iiy.

It is customary to write cos' u and sin- u instead of (cos v)'

and (sin w)^, to ex})res8 the S(|nare of the cosine ami of the

sine of u. The last equation will then be written

cos'^ u -}- sin^ u = 1. {(•)

Although we have deduced this etiuaticm with entire rigor,

it will be interesting to tost it by S([uaring the equations {b).

First squaring cos u, we lind (§ 2S-i),

cos» « = !-«» + n< (i +^ J

+ i) - etc.

The coefficient of ?i« is found to be

+ +
n\

"^ 2\{?i- 2)\
"^

4! (M - 4)!
"^ "^ w!

when n is doul)le an even number, and to the negative of this

exi)rest;ion when u is doulde an odd number.

Again, taking the square of sin k, wc find

siu' u = «» + «' (- ^j, - j-ji
j)
+ etc.

30
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the coefficient of m" bein":

1! {n — l)\ 3! {)i — 'd)\ 5! {n — b)\

• • • t

{n-\)\ 1!'

or the negative of this expression, according as - n is even or

odd.

Adding sin'^ u and cos^ u, we sec that tlic terms u^ cancel

each other, and that tlie sum of the coefficients of u^ can be

arranged in the form

4! 1! 3! "^2! 2! 3! l!
"^4!*

Let ns call this sum A. If we multijjly all the terms by

4
!

, and note that by tlie general form of the binomial coeffi-

cients,

n\ _ hi\

s\ {n-s)\ ~ \J'

which sum is zero, by § 20:^, Th. 11. Therefore the coefficients

of «" cancel each other.

Taking the sum of the coefficients of u'", we arrange them

in the form

+ + etc.,

^1

4

?i\ l\{n — l)\^ 2l{H — 2)l 3l{n-l])\

which call A. Tlien multiplying by n\, we liave

'"^=^-(;va-(a)+----+(;:)'
which sum is zero. Therefore all the coefficients of u'^ cancel

each other in the sum sin^ n -\- cos^ n, leaving only the first

term 1 in cos^ v, thus ])roving the equation (r) indejiendeutly.

This exam})le illustrates the consistency which pervades all

branches of mathematics when the reasoning is correct. The
conclusion (r;) was reached by a very long process, resting on

many of the fundamental i)rinciples of Algebra ; and on reach-
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ing a simple conclusion of this kind in such a way, the mathe-

matician always likes to test its correctness by a direct i)rocess,

when possible.

Let us now resume the fundamental equation {a). Since

u may here be any quantity whatever, let us put mi for u.

The equation then becomes.

But by raising the equation {a) to the n*^ power, we have

nnui (cos 11 -I- i sin iiY.

Hence we have the remarkable relation,

(cos u 4- i sin ?<)" = cos nu -f i sin nu.

Supposing ?^ = 2, and developing the first member, we
have

cos^ u — %\v? u -{-2i sin u cos u = cos 2u -\- i sin 2rt.

Equating the real and imaginary parts (§ 327, Cor.), we have

cos^ u — sin^ u = cos 2i(,

2 sin u cos ti = sin 22(,

relations which can be verified from the series representing

cos u and sin u, in a way similar to that by Avhich we verified

sin^ it -f cos^ ic = 1.

EXERCISES.
1. Find the values of cos^ u, sin^ w, cos* u, and sin'* u by

the preceding process.

2. AVrite the three equations which we obtain by putting

11 = a, u =z b, and u =z a + b in equation {a). Tlien equate

the product of the first two to the third, and show that

cos {n \- b) =. cos a cos b — sin a sin b,

sin {a + b) =. sin a cos J -f- cosw sin b.

3. Reduce to the normal form,

{x — i) {x — 2i) {x — 30 {x -- U).

4. Develop {a + bi)^ by the binomial theorem, and reduce

the result to the normal form.

,

)

1 (

!
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CHAPTER II.

'I

THE GEOMETRIC REPRESENTATION
QUANTITIES.

OF IMAGINARY

333. In Algebra and allied branches of the higher mathe-

matics, the fundamental operations of Arithmetic are extended

and generalized. In Elementary Algebra we have already had

several instances of this extension, and as we are noAv to have

a much wider extension of the operations of addition and mul-

tiplication, attention should be directed to the principles

involved.

In the beginning of Algebra, we have seen the operation of

addition, which in Arithmetic necessarily implies increase^ so

used as to produce diminution.

The reason of this is that Arithmetic does not recognize

negative quantities as Algebra does, and therefore in employ-

ing the latter we have to extend the meaning of addition, so as

to apply it to negative quantities. Wlien thus applied, we
have seen that it should mean to subtract the quantity which

is negative.

In its primitive sense, as used in the third operation of

Aritlimetic, the word multiphj means to add a quantity to itself

a certain number of times. In this sense, there would be no

moaning to the words "multiply by a fraction." But we ex-

tend the meaning of the word multiply to this case by defining

it to mean taking a fraction of tlie quantity to be multiplied.

We then find that the rules of multiplication will all apply to

this extended operation.

This extension of multiplication to fractions docs not take

account of negative multipliers. In the latter case Ave can

extend the meaning of the operation by providing that the

algebraic sign of the quantity shall be changed when the mul-

tiplier is negative. We thus have a result for multiplication

by every positive or negative algebraic number.

Now that wc have to use imaginary quantities as multi-

i(? "

if



IMAGINARY

higher mathe-

c are extended

v^e already had
'e now to have

ition and mul-

the princii^les

e operation of

2S increase, so

not recognize

)re in emploj-

iddition, so as

s applied, wo
Liantity which

operation of

mtity to itself

would be no

But we ex-

3e by defining

)e multiplied.

1 all apply to

does not take

case Ave can

ing that the

len tlie mul-

lultiplication

es as multi-

GEOMETRIC REPliESENTA TION. 405

pliers, a still further extension is necessary. ITifherto our

operations with imaginary units have been purely symbolic;

that is, we have used our symbols and i)erl'ormed our o])erati(>us

without assigning any detinite meaning to them. We shall

now assign a geometric signification to operations with inuigi-

nary units, subject to these three necessary conditions :

1. The operations must be subject to the same rules as

those of real quantities.

2. The result of operating with an imaginary quantity

must be totally different from that of operating with a real one,

and llic imaginary quantity must signify something which a

real quantity does not take account of.

3. If the imaginary quantity changes into a real one, tlio

operation must change into the corresi)onding one with real

quantities.

334. Geometric Iicpresentation of Tinauinary Units. Cer-

tain propositions respecting the geometric re})resentation of

multiplication have been fully elucidated in Part I, and arc

now repeated, to introduce the corresponding representations

of complex quantities.

I. All real numbers, positive and negative, may be arranged

along a line, the positive numbers increasing in one direction,

the negative ones in the opposite direction from a fixed zero

point. Any number may then be represented in magnitude

by a line extending from to the place it occupies.

We call this line a Vector.
II. If a number a be multiplied by a positive multiplier

(for simplicity, suppose +1), the direction of its vector will

remain unaltered. If it be multiplied by a negative multiplier

(suppose — 1), its vector will be turned in the opposite dircc-

tit)n (from — « to + «, or vice versa). Compare § 73,

where the coarse lines are the vectors of the several quantities.

— a + a

III. If the number be multiplied twice by — 1, that is, by

(—1)2, its vector will be restored to its first position, being

twice turned, and if it be multiplied twice by + 1, that is, by

(+ \y, its vector will not be changed at all. Its vector will
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'I

+ia

— a +a

— ta

therefore be found in its first position, whether we multiply it

by the square of a j^.-^itive or of a negative unit; in other

words, both s(iuures are positive.

IV. To multiply the line + a twice by the imaginary unit

i, is the same as multii)lying it by ir or — 1. Hence,

MiiUi])lijing by the inia>Ji tiarij unit i rmcst ^ire the

vector siicli' a niution as, if repeated, will cJiange it froDv

-\- a to — a.

Such a motion is given by turn-

ing the vector through a righ t angle,

into the position -f- ia. A second

motion brings it to the position

— a, the opposite of -f- «• A third

motion brings it to — iV/, a position

the oi)posite of + ia. A fourth

motion restores it to the original

po.'^ition -}- ii'

If we call each of these motions mvUiplyimj oij i, we have,

from the diagram, a = a, ia = ia, i\i = — a, i^a =: — ia,

i^a = a, which corresponds exactly to the law governing the

powers of i (§ 325). Hence :

// a quantity is represented hy a vector extending

from a zero point, the inuJtipliention of this qunntity hy

the imaginary unit may he represented hy turning the

vector through 90°.

V. In order that multiplier

and multiplicand may in this op-

eration be interchanged without

affecting the product, we must

suppose that the vertical line

which we have called ia is the

same as ai, that is, that this line

represents a imaginary units.

We have therefore to count

the imaginary units along a.

vertical line on the same system that we count the real

units on a horizontal line.

—4 -3 -2 —1

+ 4t

+ 3i

+ 2i

—I

—3i

-4i
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+a

—m

f) bij i, we have,

a, ihi = — m,
' governing the

for extending

is qunntitij by

y turning the

— + 4i

+ 3i

- + 2i

I
+M 2 3 4

-t

- -2i

- -3i
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-a+bi

bi

-bi

a+bi

U

~a 'a

-a~bi
N

bi

bi

335. Geometric Eeprcsentation of a Comjilex Qnanlity.

We have shown (§ 15) that a]gel)raic addition may be represented

byjnitting lines end to end, the

zero i)oint ot* eaeh line added be-

ing at the end of the line next

preceding. The distance of the

end of the last line from tlie zero

point is the algebraic sum.

On the same system, to repre-

sent the algebraic sum of the real

and imaginary qnantities a -{ bi,

we lay otf a units on the real (horizontal) lino, and then b

units from the end of this line in a vertical direction. 'J'he

end of the vertical line will then be the position corresponding

to « + bi.

It is evident that we should reach the same point if wo
first laid off /• '^aits from on the imaginary line, and then a

unita horizon v \ Ilence this system gives

bi -\- a = a -{ bij

as it ought to, to represent addition.

If a or b is negative, it is to be laid off in the opposite di-

rection from the positive one. We then have the points cor-

responding to — a -\- bi, — a — bi, and a — bi, shown in the

diagram, which should be carefully studied by the pupil.

The result we have reached is the following:

Every complex quantity a + bi is considered as be-

lovging to a certain point on the plane, namely, that

point which is reached by laying off from the zero jwiiit

a units in the horizontal direction and b units in the

vertical direction.

330. Addifion of Com-

plex Qfuintities. If we have

several complex terms to

add, as a -\- bi, m — ni,

p + qi, we may lay them

off separately in their ap-

propriate magnitude and di-

m

qi

\'\

n
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'\

reef ion, as in the figure, the last lino terminating i' a

jioint R.

If we first add tlie quantities a + hi, etc., algebraically

(§ 32-1), the result will be

a + m + ;; + {h — n -^ q) i.

We may lay of!f this sum in one operation. The sum a-\-m

-\-]) Avill carry us fi'oni to M, and the sum {b — n -\- q) i

from M to IX, because MR = b — n -\- q. Therefore we shall

reach the same jioint R whether we lay the quantities off sepa-

rately, or take their sum and lay off its real and imaginary

parts separately.

33*7. Vectors of Complex Quantities. The question now
arises by what straight line or vector shall we represent a sum
of complex quantities ? The answer is

:

Hie vector of c; suvi of sev-

eral vectors is the straight Una
from the hcoinning of the first

to the end of the last vector

added.

For example, the sum of the

quantities OX = a and XP = hi is the vector OP.

It might seem to the student that the length of the vector represent-

ing the sum should be equal to the combined lengths of all the separate

vectors. This diificulty is of the same kind as that encountered by the

beginner in finding the sum of a positive at\d negative quantity less than

either of them. The solution of the diificulty is simply that by addition

we now mean something different from both arithmetical and algebraic

addition. But the operation reduces to arithmetical addition when the

quantities are all real and positive, because the vectors are then all placed

end to end in the same straight line. Therefore there is no inconsistency

between the two operations.

Two imaginary quantities are not equal, unless both their

real and imaginary parts arc equal, so that their sum shall ter-

minate at the same i)oint P. Their vectors will then coincide

with each other. Hence

:

Tn'o vectors are not considered equal unless they agree

in direction as well as leni^th.

i
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dess they a^ree

In other worrls, in orilrr in drfrnnlnr- a vrrfnv mn]-
pJctt'hj, we must know i/s direction as well as its len^lli.

This result embodies the theorem of the i)recediiig chapter (j; o^i t,

that two complex (|uantities are not e<jiial unless both their reiil ai:d

imafrinarj' i)arts are e()ual. It is only in ciise of this double ecjuality that

the two complex quantities will belong to the same point on the i)lane.

Because OXP is a right angle, we have by the Pythagorean

theorem of Geometry,

(length of vector)^ =. a^ -{ h\

or

I

length of vector = V«^ + h\

We are careful to say length of vector, and not rr.rely vec-

tor, because the vector has dircctio7i as well as length, and the

direction is as important an element as length.

To avoid repeating the words '' length of," we shall put ai»

dash over the letters representing a vector when we consider

only its length. Then OX will mean length of the line OX.

Def. The length of the vector, or the expression

Vrt^ + t)\ is called the Modulus of the comi)lex ex-

pression a + bi.

The modulus is the absolute value of the expression, con-

sidered without respect to its being positive or negative, real

or imaginary. Thus the different expressions,

— 5, +5, 3 + 4/, 4 — 3i, 5/,

all have the modulus 5 (because V^^ _|_ 42 — 5). The points

which represent them are all 5 units distant from the zero

point, and so lie on a circle, and their vectors' are all 5 units iu

length.

The German mathematicians therefore call the modulus

the absolute vcdue of the complex quantity, and this is really

a 'setter term than the English expression modulus.

Def. Tlie Angle of the vector is the angle which it

makes with the line along which the real units are

measured.

If OA is this line, and OB the vector, the angle is AOB.
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EXERCISES,

M

Liiy off the following complex qnantiHc?, draw Hio vectors

correspoiuling to thciu, imd iind the modulus both by measure-

ment and calculation :

I.

4-

7.

10.

13.

16.

2. 4 - 'M. 3. — 4 + 3/.

5^ 3 + 4/. 6. 3 — 4t.

8. — 3 - 4/. 9. 5 + 7/.

II. 5 + 5/. 12. 5 + 4t.

14. 3 + i. 15. 3 — L

4 + 3/.

- 4 - 3/.

— 3 + 4i.

5 + 0/.

3 + 2*.

3 - 2i.

17. Draw a horizontal and vertical line; mark several

points on the plane of thei<e lines, and find by measurement

the complex expressions for each point. Also, draw the sev-

eral vectors and measure their length. Continnc this exercise

until the relation between the complex expressions and their

points is well apprehended.

Note. The student may adopt any scale he pleases, but a

scale of millimeters will be found convenient.

338. Geometric MuUiph'cafion. The question next arises

whether the results we obtain for multiplication of complex

quantities follow, in all respects, the usual laws of multiplica-

tion, especially the commutative and distributive laws.

I. To imdtiply a vector hy a real factor.

Let the vector be « -}- hi and the

factor m. The product will be ^
ma 4- mli.

In the geometric construction, let

OA r= « and AB = Z>i. We shall

then have, by the rule of addition,

Vector OB — a -\- hi.

"When we multiply a hjm, let OA' be the product ma, and

A'B' the product mhi. Because the lines OA and AB are both

multiplied by the same real factor in to form OA' and A'B', wo

shall have
OA : AB : OB = OA' : A'B' : OB'.

^•1
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Therefore the triangles OAB and OA'B' are similar and

Of|uiaugular, so that

angle AOB' = angle AOB.

This shows that the lines OB and OB' coincide, so tJiat

BB' is the continuation of OB in the same straight line. More-

over, the above proportion gives

OB' = wOB,

or, from (1), vector OB' = m vector OB.

Therefore, DiuUiplijing a vector hy a rrrd factor

changes its lcu!:!th without altering its direction.

II. To multiply a vector hij the iimiglnanj unit.

Multiplying a + hi by /, the
_^q

result is

— b-{- ai.

The construction of the two

vectors being made as in the fig-

ure, we have

OB = « + hi,

Oq = -h + ai.

Because the triangles OPQ and OAB are right-angled at P
and B, and have the sides containing the right angle e(pud in

length, they are identically ecpial, and

angle POQ = angle OBA = 90° - angle BOA.

Hence the sum of the angles POQ and BOA is a right

angle, and because POxV is a straight line, therefore,

angle BOQ = 90°.

Therefore, the result of multiplying the vector OB hij

the iinaginary unit is to turn it 90° without cJuuiginjJ

its length.

We have assumed this to be the case when the vector represents a

real quantity, or lies along the line OB ; we now see that the same tiling

holds true when the vector represents a complex quantity.

If instead of the multiplier being simply the imaginary

unit, it is of the form ni, then, by (I), in addition to turning

the vector through 90°, we multiply it by n.
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III. To multiply a vector hij a complex quantity,

m -f ni,

Tliis will consist in niiiltii)Iying sopanitely l»y m and i/i,

and 'ulding the two products. Put OB = a -\- Oi, the vector

to be multiplied ; ON =
i/i + ni, the multiplier.

To multiply OIJ by m,

wo take a length OC, deter-

mined by the proportion,

0C:0B = 7n: 1, (I)

whence by (I),

00 = w-OB
= m {a + bi).

To multiply OB by ni, wo take a length CD determined

by the condition,

length CT) = n length OB,

or CD : OB = w : 1

;

and to multiply by i, wc place it peiTJendicnlar to OB. (II)

AVe then have,

CD =: OB X ni.

In order to add it to OC, the other product, we place it as

in the diagram, and thus find a point D which corresponds to

the sum
OC + CD = 0Bxm-\-0Bx7ii;

that is, to the product

(m -f 7ii) {a + bi).

Now because OC = OB x m and CD = OB x n, we haye

(jG : CD =m:7i = 0M : MN,

and because the angles at M and C are right angles, the tri-

angles OCD and OMN are similar. Therefore,

angle COD = angle MON.

Ilence the angle AOD of the product-vector is equal to the

sum of the angles of the multiplier and multiplicand.

For the length OD of the product-vector we have,

I
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length Ob^ = OU^ + CD*

= m^OB^ + )iH)]?

Extracting the square root,

length OD = Vin'^ + n^ • OB

413

Therefore the length of the product-vector is equal to the

products of the lengths of the vectors of tlie factors.

Combining these t\vo results, we reach the conclusion:

77ic modulus of tJie product of two complex factors is

cqu(d to the product of tlieir moduli.

Tlie angle of tJie product is equal to the suni of the

angles of tJic factors.

SSO. Tlie Roofs of Unify. Wo
have the following curious pr()l)lem:

Given, a vector OA, which call a;

it is required to find a complex factor

X, such that when we multi})ly a n
times by x, the last product shall be a
itself. That is, we must have

x^a -- a.

The required factor must be one

which will turn the vector round without changing its length.

Let us begin with the case of n — : 3.

Since three equal motions must restore OA to ics original

position, the condition will be satisfied by letting x indicate a

motion tlirougli 120'', so that OA shall take the position OB
wiien angle AOB = 120°. Then, P being the foot of the jier-

pondicular from B upon AO oroduced, we shall have angle

FOB = 60°, and angle PBO = 30^ Therefore,

PO = j«, m = f .

and vector OB =. xa =. — ,,a -I -ai.

•
'
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*l

lU'canso llio factor ir Iwis not cliimffcd tlio lon^'tli of tlic line,

the inodulus of x in unitv, and lu'caiiso it lias turned the lino

tlirougli l'iO°, its angle is 120°. Therefore its vuluu is

- OP + PIU"

on a scale of numbers in which OB =:; 1 ; that is,

1
,
\/3.

Reaponing in the same way with respect to the i)r()duct ;?%,

"which produces the vector OC, "we llnd

x^ =
•>

V3.

an equation which wc readily prove by squaring the preceding

value of X and reducing.

Multiplying these values of ;r and x^, we find

x^ == 1,

which ought to bo the case, because x^a = a. Ilencc,

1 a/'J
TJie complex quantity —

,j + ~j-i is a cube root of
unity.

But the vector OC, of which the angle is 240°, also repre-

sents a cube root of unity, if we suppose OC := 1, becaune

three motions of 240° each turn a vector through 720°, or two

revolutions, and thus restore it to its original position. This

also agrees with tlie algebraic process, because, by squaring the

above value of x% we have

/ 1 V3Y_1 3 V'3._ 1
, V3._

\ 2~ 2 7-4~4+2*-~2+2*-^'
and by repeating the process we find

/ 1 a/3.\/ 1 VaA /
Since 1 itself is a cube root of unity, because 1^ = 1, we

conclude :

TJicre arc three cube roots of unity.
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(1) of tlic liiu',
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We rcudily Und, l)y the process of >> 'S.W, IV, that

/', — 1, — /, and 1,

arc all fourth roots of unify.

By a course of reasoning similar to the above for any value

of n, we conclude :

Tlia «"• roots of unity arc n in numhcr.

EXERCISES.

1. Form the first eight })owers of the expression

1 ,_!_..

sliow that the eighth power is 1, and lay off the vector corre-

sponding to each power.

2. Form the first twelve powers of

V3 1 .

and show that, the twelfth power is +1.

3. Find the fifth and sixth roots of unity by dividing the cir-

cle into five and six parts, and either computing or measuring

the lengths of the lines which determine the expression.

Note. The student will remark the similarity of the gen-

eral problem of the n^^^ roots of unity to that of dividing the

circle into n equal parts (Geom., Book VI).

r )

\/3.

ise 18 = 1, we



BOOK XIII.

THE GENERAL THEORY OF EQUA-
TIONS,

'I

Vi =

etc.

Every Equatioi* has a Root.

3-40. In Booi. Ill, equations containing one unknown
quantity were reduced to the normal form

Aaf' + Bx^-^ + Cx^-^ + + J^ = 0.

If wc divide al] the terms of this equation by the coefficient

A, and put, for br/vity,

B

a '

A'
etc.

F

the equation win ' cPomo

a;» + p^x'^--^ 4- ;
5,:^'^""'' + . . . . + pn-i^ + pn = 0. (a)

This equation is cailod the General Equation of the
^j,''* Degree, because it is the form to wliicli every algebraic

cfiuation can be reduced by assigning the proper values to w,

and to ^1, p^, ;>3, etc.

Tlie 71 quantities Pi, P2, . . . - Pn ^yc called the Coeffi-

cients of the equation.

We may consider pn .is the coefficient of .^*^ = 1.

3H . Thkorf.m I. Every (fjjjcbt'aic cqiuitioii has a root,

real or iinaghiary.

That is, whatever numbers we may put in place of .7?,, p^,

p^, . . . . pn, there is always some oxpres>^ion, real or imaginary,

which, being substituted for x in the equation, will satisfy it.
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F EOUA-
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Rem. The theorem that every equation has a root is demonstrated in

special treatises on the theory of equations, but the demonstration is too

long to be inserted ht;re.

If we suppose the values of the coefficients PdPq, etc., to

vary, the roots will vary also. Hence,

TiiEOKEM II, TJbG roots of ail algebraic equation ai 'j •

fiiiictlojis of its eoefficiciits.

Example. In Chapter VI we have shown that the roots

of a (piacL'atic equation are functi(jns of the coefficients, because

if the equation is

x^ -\- px -i- q = 0,

the root is X
— P± Vf—q

'Z

which is a function of^ and q.

342. Equations ivliich caji he solved. If the degree of the

equation is not higher than the fourtli, it is always possil)Ie to

express the root algebraically as a function of the coefficients.

But if the equation is of the fifth or any higher degree, if;

is not possible to express the value of the root of the general

equation by any algebraic formula} whatever.

This important theorem Avas first demonstrated by A])cl in

18::i5. Previous to that time, mathematicians frc(|uetitly at-

tempted to solve the general equation of the fifth degree, bu^,

of course never succeeded.

This restriction apjtlies only to the f/rnrrnl equation, in

which the coefficients p^^ p„, p^, etc., are all represented by

soiiarate algebraic symbols. Sucii special values nuiy bo

assigned to these coefficients that equations of any degree shall

be soluble.

343. The problem of finding a root of an equation of (ho

higher degrees is generally a very complex one. If, however,

the equation has the roots — 1, 0, or -\- 1, they can easily bo

discovered by the following rules

:

I. If the nl^chraic stun of the coefficients in the equa-

tion vanishes, then +1 is a root.

»7
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II. If tlic smiv of the coefficients of the even poicers of
X is cqiKd to that of the coefficients of the odd poivers,

then — 1 is a root.

III. // the absolute term 21,1 is wanting, then is a
root.

These rules are readily proved l)y putting x= +\, then a? = — 1,

then J' — in the general ('(luntiun {(i) and noticing what it then reduces

to. The demonstration of 11 will be a good exercise for the student.

Number of Hoots of Goiiertil Eqiiatlou.

J?44. In the cqiuilion {a), tlic left-hand number is an en-

tire t'nnction of x, which is c<[ual to zero when tlie equation is

satislied. Instead of supposing an e(iuation, let us su])i)osc x

to he a variable quantity, which may have any value whatever,

and let us study the function of x,

.7" -{-p^x^-^ + p^x^-^ 4- ^-2)n-ix -\-J)n.,

wiiich for brevity avc may call Fx.

AVhatever value we assign to x, there will be a correspond-

ing value of Fx.

Example. Consider the expression

Fx=z a^ — 7.^2 + 36.

Let us suppose x to have in succession the values — 4,

— 3,-3, — 1, 0, 1, 2, etc., and let us compute the corre-

sponding values of Fx. We thus find,

X = 4, - 3, - - 1, 0,

0, + 28, + 30,

G, 7,

Fx = — 140, — o4,

Fx = + 30, + 10, 0, — 12, - 14, 0, 4- 30, + 100.

We see that while x varies from — 4 to +8, the value of,

Fx iluctuates, being iirst negative, then changing to positive,

then back to negative again, and linally becoming positive once

more.

We also sec that there are tliree special values of .r, namely,

— 2, 4- 3, and + 0, which satisfy tiie cquatioli Fx = 0, and

which are therefore roots of this equation.
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then is a

345. Representation of Fx hy a Curve. In Book VIII it

was sliown how a function of a variable of the first degree might

be represented to the eye by a straight Une. Tiie relation

between a variable and any functiou of it may be represented

to the eye in the same way by a curve, as shown in Geometry,

Book VII. We take a base line, mark a zero point ui)on it,

and lay off any numl)er of equidistant values of x. At eaeii

point we erect a per[)endicular j)roportional to the corres])onding

value of Fx at that point, and draw a curve througli the ends.

The fluctuations of the vertical ordinatcs

of the curve now show to the eye the corre-

sponding fluctuations of Fx.

AVhen Fx is negative, the curve is below

the ba^e line. When Fx is positive, the curve

is above the base line.

The roots of the equation Fx = Q are show^n by the points

at which the curve crosses the base line. In the present case

these points are — 2, +3, + G.

In order to distinguish the roots from the variable quantity

a?, we may call them «, (3, y, 6, etc., or .r^, x„, .r.,, etc., or «,,

flg, ^3, etc., the symbol x being reserved for the variable.

The distinction between x and the roots will then be this:

X is an independent variable, which may have any value

whatever.

Fx is a function of x of which the value is fixed by that of x.

f(, ft, r, etc., or Xy, X... .r,, etc., are special values of x which,

being substituted for x, satisfy the cfiuation

Fx = 0.

Theorem. An equation with real coefficients, of irhieh

the degree is an odd number, must have at least one real

root.
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U

liji

Proof. 1. When w is odd, X^ will have the same sign (-|-

or — ) as a;.

2. So large a value, positive or negative, may be assigned to

X that the term x''^ shall be greater in absolute magnitude tliau

all the other terms of the expression Fx. For, let us put the

expression Fx in the form

If we suppose x to increase indefinitely cithe in the posi-

tive or negative direction, the terms ~ , -^ , etc., will all

approach as their limit (§ 303, Th. I). Therefore the expression

1 + — + Sv + etc. will approach unicv as its limit, and w'"
X x^

^
therefore be positive for large values of x. both positive and

negative. The wliole expression will then have the same sign

as the factor x"'. and, 7i being odd, will have the same sign as x.

3. Therefore, between the value of x for which Fx is negative

and that for which it is positive there must be some value of x

for which Fx = 0, that is, some root of the equation Fx = 0.

For illustration, take the preceding cubic equation.

Cor. Aji equation of odd degree has an odd nuniher

of real roots.

For, as Fx changes from negative to positive infinity, it

must cross zero an odd number of times.

340. Theorem I. // ice diride the cxprcasion Fx hy

X — a, the remainder will be Fa, or

Remainder = n" -{- p^a'^~^ 4- ])»fi^~^ + . . . . + pn-

Special Illustration. Let the student divide

3^ -|_ 5x^ _|_ 'Sx + 1

by r — a, according to the method of § 00. lie will find the

remainder to come out

«3 + 5^2 + 3rt 4- 1.

'

m
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Gencrcd Proof. When Ave divide Fxhy z— a, let us put

Q, the quotient

;

E, the remainder.

Then, because the dividend is equal to the product, Divi-

sor X Quotient -f Remainder,

{x — a)Q + E = Fx.

Two tilings are here supposed:

1. That tliis equation is an identical one, true for all values

of a:. This must be true, because we liavc made no supposition

respecting the value of x.

2. '''hat we have carried the division so far that the remain-

der li does not contain x.

Because it is true for all values of .r, it will remain true

when wc put x = a on both sides. It thus reduces to

E = F{a),

which is the theorem enunciated.

The value of x being still unrestricted, let us in dividing

take for a a root a of the general equation Fx = 0. Then,

by supposing x = a, the equation (a) will be satisfied, or

Fa = 0.

Therefore if we divide the general expression Fx by x — a,

the remainder Fic will be zero. Hence.

Theorem II. // wc denote hy « a mot nf the equntiori

Fx = 0, the expression Fx will he exactly d I visible by

X— (I.

Illustration. One root of the equation

.r3 — .r2 — II.t; + 15 =
is 3. If we divide the expression

a^ — .t" — 11a: -f 15

by re — 3, wc shall find the remainder to be zero.

347. When we divide /!r by x — «, the highest pov/er of

X in the quotient Avill be x^~^. Therefore the quotient will be

an entire function of a; of the degree n — 1.

I
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Illustration. The quotient from the last division was

X- + 2J' — 5,

•which is of the second degree, while the original expression was of tlio

third dejjree.

If we call this quotient Fj^:r, we shall have, by multiplying

divitior and quotient,

Fx = {x — «) FiX.

Now suppose fi a root of the equation

F^x =z ;

then F^x will, by the preceding theorem, be exactly divisible

by X — (3.

The qiu)tient from this division will be an entire function

of X of the degree n — 2. This function may again be divided

by X — y, rcj)reseiitiiig by y the root of the equation obtained

by putting the function ccjual to zero, and so on.

The results of these successive divisions may therefore be

expressed in the form

Fx = (x — «) F^x .... (Degree w — 1),

Fyr = {x — (3) I^\x (Degree n - 2),

F^x = {x — y) F^x .... (Degree 7i — 3),

etc. etc. etc.

0)

Since the degree is diminished by unity with every division,

we shall at length have a quotient of the first degree in x, of

the form
X — e,

e being a constant.

Then, by sul)stituting in the equations (1) for each func-

tion of.*' its value in the C(|uation next below, we shall have

Fx = {x- «) {x - (3) {x - r) {x - «•),

the number of factors being equal to the degree of the original

equation. Hence,

Theorem I. Firi*i/ entire fun cfinn of x of the nth

decree may be divided into n factors, each of the first

dc'Jrec in x.

Ml
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Since a product of several factors becomes zero whenever

any of the factors is zero, it follows that the equation

Fx =
will be satisfied by putting x efjual to any one of the quantities

€t, /3, y, . . . . e, because in either case the product

(^_«)(,._^)(.,_y).. ..(.,_.)

will vanish. Therefore the quantities

«, (3,y, e,

are all roots of the origintd e([uati()n Fx = 0. Hence,

Theorem II. ^l/i algebraic eqicatiuii of the yi''* dej^ree

has n roots.

"We have seen (§ 105) that a ciuadratic equation has two

roots. In the same way, a cubic equation has three roots, one

of the fourth degree four roots, etc.

Moreover, a product cannot vanish unless one of the factors

vanishes. Hence the product

Fx or {x — (c) {x — (3) {x — y) {x — e)

cannot vanish unless x is equal to some one of the quantities,

€c, p, y, . . . . e. Hence,

,ln equation of the n*^ decree can have no more than
n roots.

348. We may form an equation of which the roots shall

be any given quantities, a, b, c, etc., by forming the product,

{x — a) {x — h) {x — c), etc.

Example. Form an equation of which the roots shall be

- 1, 4-1, 1 + 2/, 1 - 2i.

Solution. W'c form the product

{x + 1) (x _ 1) (.r - 1 - 20 (.c - 1 + 20,

which we find to be

X* — 3.r3 + 4a:2 -f- 2x — 5.

Therefore the reciuired equation is

J!|
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• EXERCISES.
Form equations with tlic roots:

1. 2 + a/3, 2 — \/3, — 2, + 1.

2. 3 + a/5, 3 — a/5, — 3.

3. 2, - 2, 4 + a/7, 4 - a/7.

4. 1 + a/3, 1 - a/3, 1 + a/5, 1 — a/5.

341). When we can find one root of an equation, then, by

dividing the e(iuation by x minus tluit root, we «liall have an

equation of lower degree, the roots of which will be the remain-

ing roots of the given equation.

Example. One root of the equation

a:3 — a^5 — 11a; + 15 =0
is 3. Find the other two roots.

Dividing the given equation by a; — 3, the quotient is

a-2 + 2a: — 5.

Equating this to zero, we have a quadratic equation of

which the roots are

— 1 + a/G and — 1 — a/C.

Hence the three roots of the original equation are

3, — 1 + a/C, — 1 — a/6.

exercises.
1. One root of the efjuation

a;3 _ 3,^3 _ i4.y ^ 12 =
is— 3. Find the other two roots.

2. Find the five roots of the equation

a:5 _ 4^4 ^ l^^ ^ 4^.2 _ 13,^ _ q.

(Compare § 343.)

350. Equal Roots. Sometimes, in solving an equation,

several of the roots rnay be identical.

For example, the equation

.t3 _ (5a;2 + 12a; — 8 =
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ition, tlion, by

shall have an

je the remaiii-

Lioticnt is

D equation of

I are

an equation,

lias no root except 2. If we divide it by a: — 2, and solve the

resulting (juadratic, its roots will also be 2. Hence, when we

factor it the result is

{x — 2) (x — 2) {x — 2) = 0.

In this case the equation is said to have three equal roots.

Hence, in general.

Hie n roots of an cqnafion of the n*^ dr^rre arc not all

ncccssctrll If di/fevent from each other, but two onnore of
them may he equal.

Relations between Coefficients and Roots.

351. Let us suppose the roots of the general equation of

the m'^ degree

a;" + PxX^-^ + ;>oa;n-2 ^ _|_ ^ —̂ ^ ^_ ^^ _ q

to bo «, (i,y,....E.

We have shown (§ 3-il) that these roots arc functions of

the coefficients ^jj, p.2, .... Pn- To find these functions is to

solve the equation, which is generally a very difficult i)r()blein.

But the coefficients can also be expressed as functions of

the roots, and this is a very sim})le process which we have

already performed in some special cases by forming eciuations

having given roots (§ 348).

If we form an equation with the two roots, a and P, the

result will be

= {x — «) {x — /3) = a;2 — (« + i3) a; + «i3.

Comparing this with the general form,

a;2 + PxX 4-^2 = 0,

we see that Px = - (« + /3).

Pz = «3,

a result already reached (§§ U)8, 100).

Next form an equation with the three roots, a, (3, y.

Multiplying {x — «) {x — (i) by x — y, we find the equa-

tion to be

a^-{a+fi -{-y)x^+ {(cl3 +Py + ya) x - afiy = 0.
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M

So in tills case, ;?, = ~ (r< -f /? + y),

/jg = «/3 + /3y -i- y«,

Adding another root 6, we find the result to bo

;)i
= - (« + /3 + y + (5),

;>3 = «,3 + «y -f- («^ + /iy + (^'^ 4- r^J, (2)

jWg = — «/3y — «^(5 — «yJ — /jyd,

Generalizing this process, wo reach the following conclu-

sions:

The coefRcient ji-^ of the second term of the general equa-

tion is c(iual to the sum of the roots taken negatively.

The coefficient p^ of the third term is ecjual to the sum of

the products of every combination of two roots.

The coefficient jh of the fourth term is equal to the sum
of the products of every combination of three roots taken

negatively.

Tiie last term is equal to the continued product of the neg-

atives of the roots.

3/5'-^, Sj/mniefn'c FiDw/ionft. It Avill be remarked that the

preceding expressions for the coeflicients p^, jk, etc., arc all

si/N) metricfund ions of the roots «, (3, y, etc. (§ 250.)

The following more extended theorem is true :

Theouem. Fa'cvij vatioiinl syimnctvic function of the

roots of an equation may he expressed as a rational

function of the coefficients.

Example. From the equations (2) we find

;7,2 - 2;?3 = «2 4- /3a + y2 + d2,

^PiVz - ih^ - ^Jh = «' -\-P' + y' + ^^'

We thus reach the curious conclusion that although we-

may not be able to find any individual root of an equation, yet

there is no difficulty in finding the continued product of the

roots, their sum, the sum of their squares, of their cubes, etc.

Tlip p:t'n(?ral demonstration of this th(>orc'm, and the niothod.s by which

any rational synunetrical functiou of the roots muy be determined, are

found in more advanced treatises.

I

I

m
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Derived Fiiiictious.

353. Dff. If in the expivssion

we substitute x-\-7i for x, and then cL'vclop in jHiwfrs

of //, the coefficient of the first power of h is called the

First Derived Function of x.

To find the First Derived Function. Putting z -if h for jr,

the result is

F{x+ h) = {x-{-h)^-hPi{x+ h)»-^+ ....+pn-i{x+h)-^p^ (a)

Developing the several terms of tiie second member by the

binomial theorem, we have

{x 4- 70" = .'i" + nz""-^ h + ^^ ^'\~ ^'
x^-^h'^ + etc.,

(x + //)"-! = a-i-i + {u — 1) x^-^h + etc.,

(x + h)''-^ = .T"-2 + (;i _ 2) x"-^h + etc.,

etc. etc. etc.

Substituting these expressions in the equation {n) and

leaving out the terms in li^, h'\ etc. (because we do not want

them), we have

F{x + h) = .r" + ;^,.T«-i + p.^xn-^ + + p^-i x + p„

+ [;2.r«-i + (;i-l)/)ia"-2+ («-2);?2a"-H. • • • +/>»-i] A

4- omitted terms imdtiplicd by h% Ji% etc. {b)

We see that the first line is here the original Fx, while the

coefficient of h in the second line is by definition the derived

function. So, if we put

F'x, the derived function of Fx,

we have F{x -\- h) = Fx + h F'x -\- terms x h% h\ etc.

Let the student, a.s an exorcise, now find the derived function of

a^ + 8j3 - 5.1-2 + 7j. _ 9

hy the process just followed, commencing with equation {n).

Examining the coefficient of h in (J), we see that the de-

rived function is formed by the following rule :
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|:

n
t I

•»

Miilti/)?!/ Cftch term hij the e,yj)nnent nf the vdrifiWe hi

that term, and dluilnisli the e.v/nmcnt l)ij icnifij.

'''he lust or coustiint term disappears entirely from tlic ex-

pression.

EXERCISES.

Form the derived function of the following expressions :

1. a^ h 5r» -{• 8x^ — 2^ — x + 1.

Ans. 5x^ + ^Ox-3 + 21^2 — 4^ — 1.

2. a;' - 2.r» — S.t" — 2x.

3. a* -h 12.1-3 _ 24^ + if2 -f- 7.

4. X* — 2r/a:3 ^ s^a.^' + a^x.

5. ofi — ^inz* + lOniic^ — lo7nx\

Rkm, Tho student should obtain tlio result by aubstltutinpf x + Ii for

h in each equation and developing, until ho is master of the process.

854. Second Form of the Derived Funclion. If, as bo-

fore, we put «, i3, y, d, etc., for the roots of the equutiun

Fx = 0, we shall have

Fx = {x — fc) (x — P) (x — y) . . . . {x — e). ('•)

Let us form the derived function from this expression.

Putting X -]- h for x, it will become

{h + x^ (c) {7i -\- X — f3) {h -^ x — y) {h }- x — e).

Studying this expression, and forming the products which

contain h when three or four factors only are included, we sec

that the cocflicient of the h in the first factor is (x—fi) {x—y)
. . . .

, in the second factor {x— «) {x— y). . .
.

, etc. That is,

the total coefficient of h will bo

{x — (3) {x — y) . . . . {x — e), omitting first term
;

{ {x — a) {x — y) . . , . {x — e), omitting second term

;

etc. etc. etc.

+ {x — a) {x — (3) (x — y) . . . . omitting last term.

But comparing with (r), we see that the first of these

. , . Fx ., , . Fx
products IS* X — a

Fx

, the second is
x — (3

, etc., to the last.

which is
X — e

llcnce.

1
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m. If, Jis 1)0-

t' the equation
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fpression.

/i 4- .T — e).

roducts which

lutled, we sec

(x-ii) {x-y)
etc. That is,

first term
;

second term

;

last term,

first of these

to the last,

JUnslralioit. Let us take once more the expre.s.sion of

§344,
Fx = 3if^ — 7a-3 + 3G,

of which the tiiree roots are — 2, 3, and C. Its derived fuuc-

tiou, hy method (1), is

Expressing Fx as a product of factors, it is

Fx=z {x-\- 2) {x — 3) (x — G).

By {d) the derived function is

{x - 3) (.6- _ G) + (a; + 2) {x _ C) + (x + 2) (a: - 3),

which reduces to Zx^ — 14a?,

the same value as by the iirbt method.

355. Theorem I. IVhcii the derived function ir, pofii-

tive, the oi'igiual function increases with x ; when it is

negative, the function decreases as x increases.

Proof. When we increase x by the quantity h, Fx is

changed to i^(a; -f h), and is increased by the dilference

F{x + h) — Fx.

But, by {h) and {h'), we have

F{x + h) — Fx =. h Fx -f h"^ x other terms

= h {F'x + h X other terms). (r)

Now we may take the increment h so small that h x other

terms shall be less than Fx, and then F'x 4- k xother terms

will have the same sign (+ or — ) as F'x.

Then, supposing h positive, the increment

F{x + h) — Fx

will be positive when F'x is positive, and negative when it is

negative.

Theorem II. If an equation has cqiud roots, such root

ivill also he a root of the derived function.
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Proof. Let /3 l)e tlie root wliicli /!» = lias iu duplicate.

Then when Fx is factored, it will be of the form

Fx = {x — «) (.f — \V) {x — (3) {z — y) . . . . {x — t).

Kow when we form F'x by method (2), the factor {x — (3)

will be left in all liie terms. Theretore x — (i will be a factor

of F'x. Therefore, whi'u ./ = (3, then F'x = 0, so that (3 is

a root of the Cfiuation F x = 0.

350. If the equation Fx = contains no equal roots, and

if we sui)})ose x = u in e(|uation {d), all the terms except the

first will vani.sh, because the common numerators /'.r contain

X — « as a factor.

In the case of the first term, hoth numerator and denomi-

nator vanish wheu a: = «; therefore we must find the limit of

Fx
when x approaches «. This is easy, because

X a

X — a
— (•*" — ^) (-^ — y) • • • • {^ — «)•

Therefore, by supposing x to approach «, Ave shall have

Fx
Lim. (j-=a) = (« — /3) (« — -}')....(« — £•).

Therefore, by changing x into « in ((/), we find

F'lc — {a — d) (rt — y) (rt — e).

Ilencc

Tlic (Irvii'cd ftuictinu of a. rnnt which' has iw other

root ('(/iial to it /.> tJie rontiiiucd prodiicb of its dijfcrcuce

from all the other roots.

Significance of the Derived Function.

3;">7. Tiir.()Rr:>r. Tltr dcrirrd function cv/nrsscs the

r((ti' of increase of the function as c,o})}j)arcd willi that

of the varialAc.

Proof. The equation {o) may he expressed in the form

F{,r -f //) = Fx + h {F'x + Bh),

ill;

. .1 I mn.
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whore 7>P is the sum of the remaining terms of the develop-

ment in powers of h.

\\q then have
Increment of x = h.

Corresponding increment of Fx =: F{x + //) — Fx
= h{F'x+ Bit).

Katio 01 these nicrements, —^^^——

,

= F x 4- JJ/t.
h

If we supjmse the increment // to approach zero as its

limit, the product Jilt will also approach zero, and the ratio will

ap}>roach F'x as its limit.

liut this ratio of the increments may he considered as the

ratio of the average rate of increase of the function /' to that

of the variable x.

Hence, when we plot the values of Fx by a curve, as in

§ 345, the derived function shows the slope of the curve at

each point.

When the derived function is positive, the curve is running

np\\ard in the positive direction, as fron. ;= — 3 to .^• — 0,

and from x =. 4-5 to x z= -f-co.

When the derived function is negative, the curve slo})e3

downward, as from :c = to a; = +4.

When the derived function is zero, the curve at the corre-

sponding point runs parallel to the base line, as at and -f-4j.

If this point corresponds to a root of the e(|uation, the curve

will coincide with the base line at this point, and will there-

fore be tangent to it. Hence, from § 350, 'V\\. II,

v'l pair of cqudl roota of an cquafion arc ludicatctl hij

iJic cicrue toucJtuij^ the base line wltJiout intcrscctlmj lb.

Forms of the Roots of Equation.

;?i>S. TnKOUEM T. Tnia^'inary roots enter an equation

wltli rcat cocffieicnls in fxdrs.

That is, \i a + hi he a root of such an equation, then

a — 1)1 will also be a root.
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Proof. Let

a-n ^ p^^.n-t + ^2.^«-2 + 4. jr,^_^ r + ;)„ = (
1

)

he tlie oquation wllli real cociVicients, and lot us suppose tluiL

a + bi is a rout of this equation. It' we substitute a 4- bi i'ur

a*, we shall have

»;» = «« + ?;«»-! bi— ^^ 7 - oP'-^ y^ —
(!!)

«""^ ^3/4- etc.

jOjiK""* = p^a^~^ + p^a^'^bi — etc.

If we substitute all the terms thus formed in equation (1),

and collect the real and imaginary terms separately, we shall

have a result

A + Bi =
(§ 32-4), A signifying the sum of all the real terms,

n (n — 1)
a**, —

2
an-ib% Pia'^-^ etc.,

»•

and Bi the sum of all the imaginary ones.

In order that this equation may be satisfied, we must have

identically

A = 0, B = (§ 327).

Next let us substitute a — bi for x. Since the even povers

of bi are all real, and the odd powers all imaginary, this

change of sign will leave all the real terms in (1) unchanged,

but will change the signs of all the imaginary terms. Ilence

the result of the substitution will be

A — Bi.

But if rt + hi is a root, then, as already shown, A =
and B = ; whence

A - Bi =
also, and therefore a — bi is also a root.

Def. A pair of imaginary roots which differ only

in the sign of the coefficients of the imaginary unit are

called a pair of Conjugate Imaginajry Roots.

Theorem II. In the expression Fx every pair of eniiju-

gate iviaginary factors form a real product of the second

decree in x.

I
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Proof. If in the expression

Ft — {.i: — a) {.c — /3) {x — y) {.c — e),

we suppose u and /3 to l)e a pair of conjugate imaginary" roots,

which we may represent in the form

« = rt -|- hi, fi =: a — bi,

then the product of tlie terms (x — a) {.v — b) or of

{x — a — bi) (./• — a -\- bi),

will be {x — rt)^ + b\

or x^ — 2az + d^ -f b'^,

a real expression of the second degree in ^.

Cor. Since Fx can always be sci)arated into factors of the

first degree, either real or imaginary (§ :3-i7, Th. 1), and since

all the imaginary factors enter in pairs of Avhich the pi'odiict

is real, wc conclude

:

Ercrii piiUve function of x irifh vcftl roeffcirnis inrrj/

he divided into real factors of the first or second decree.

Decomposition of National Fractions.

359. Dif. A Rational Fraction is one wliicli may
be reduced to the form

. +/

If the ex}H)nent nt of the numerator is equal to or greater

(ban the ex})onent n of tlie denominator, we may divide the

numerator by the denominator, obtaining a (pioticnt, ;ind m

remainder of wiiich the liighest exponent Mill not exceed

n — ]. If we ]nit

fx, the numerator of the above fraction ;

Fx, its denominator

;

Q, the (luoticnt;

0r, the reniaiiidcM'

:

fx
we shall have, Rational fi-action = •,,

28

<? + >y (§'-'<5-)
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')

(J will be i\\\ entire function of x, witli which we need not

now further concern our.selves.

The i)rol)leni now is, if possible, to reduce the fraction

^x

Fx
to the sum of ii series of fractions of the form

A B C
_j

1
[_

X — a X — ii X — y ^ x-e'
A, By C, etc., being constants to Ih; determined, and «, /?, y,

etc., being the roots of the equation Fx =. 0. Let us then

suppose

Fx
_4_ _?_ r
X — a X — /J X — y

+ +
E

X (^)

Multiplying both sides by Fx, we have

AFx BFx CFx EFx
X — (( X — X — y X — E

{^')

We require that this equation shall Ik? an identical one,

true for all values of x. Let us then supjiose x = «. TIkii

because by hypothesis « is a root of ihe expiation Fx = 0, we

have /'«« = 0, and the terms in the second member will all

vanish except the first. If there is only one root «, we have

(§ 35r),

T • ^'^ I"
i^im. — (jr=o) z= F a.

X — a

Therefore, changing x to «, we have

0fc = AF fc,

which gives A = ,,, •^ F (c

In the same way we may find

F^'

F'y*

etc. etc.

A

V

B =

C

{<-)

Substituting these values of A, B, etc., in the equation {!>),

it becomes



ys.

1 we need not

e the fraction

a

E

\, and «, /?, y,

Let us tlieii

f
B

X — e

EFx^

X — t

{J>)

{y)

\
identical one,

' a; = «. Then

ion F.C — «>, we

ncmber Avill all

root a, Ave have

(0

he c<^iuation (/>),
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0a: _ ^ <t>(t 0,'3
_^

:i^/> - -•

Note, 'J'lie critical student should remark tliat in the

preceding analysis we liave not proved that the expression of

the ratioiud fraction in the form {h) is always pussiblu, hut

have oidy proved that (/'it be possible, Uicn the coillicients J,

J{, (J must have tlie values ('). To prove that the form is

possible, the second member of {h) may be reduced to a com-

mon denominator, whicli conimnn denominator will Ijc Fx,

and the sum of the numerators e([uated to 0.r. liy equating

the coellicients of tiie separate ])owers of .r, we sliall have n

e([uations to determine the n unknown (pumtities A, B, O,

etc. Since ?i (pumtities can, in general, be made to satisfy n

e<puitions, values of J, //, C, etc., Avill in general be jiossible.

It will be instructive to solve the following exercises, lioth

directly and by the common denominator.

EXAMPL.ES.

I. Decompose -,_-^^, -^-3^..

We have alrea<ly found the roots of the denominator to bo

— 2, l}, and 'I. Using the formuUe {r), we find

(l>x = -i.c^ — :ir 4- 5,

F.r = j^ — r.',-2 H- :]<; = {.r + 'i) (.<• - ;]) {x - u),

Fx = 3./'^ - 14./-

;

,c = -2, fi = 3, y = 0;

(/)« = 11), 0/3 = 14, 0y = 59;

F'i3 = - 15, F'y - 24.i^'« — 40,

2.r2j- 3^ +_^ i:i izi _ "^19 14

2. Decompose
%xi _ 7.r + 3 2a:2 _ 7.,. ^ 3

^ _ -^i-a — x-\r'l {X 4- 1) (a:— 1) {x—l)

Here the roots of the denominator are — 1, 1, an<l 2. Let

US effect the decomposition bv tlie following method. Assume
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(.r -4- 1) (.r — 1) (a- — y) a- + i
"^

a; — 1
"^

a: — "i'
^' '

Keduciiig the secuiid member to a commuu denominator,

it becomes

A (.y2 - 3.r + 2) + ^ (-t-- - ^ -- -0 + C{x^-\)
(.r + 1) (x- - 1) (a; - 2)

Since botli members now Inivc tlie same denominator, their

numerators must also be e([ual. E(iuating them, after arrang-

ing the hist one according to powers of x, we liave

{A + B^- C) x^ - (3.1 +.5) X + tA-'lB-C ^ 2x^ - Hx + 3.

Since this must be true for all values of x, we equate the

coefficients of .f in each member, giving

A + /y + C =2,
3A + B = 7,

2A — 2B — C = 3.

These equations being solved give

A = 2, B = 1, C= -1,

Substituting in (d),

2.ig — 7x + 3 _ ^ _1 1_
(x- 4_ i) (.,• _ 1) (.i- _ 2)

~
;r + 1

"^
ar — 1 .7 -- 2*

EXERCISES.
Decompose

:

X + 10
I.

3-

5-

a:2 —

4

^^•5 _ U>a:2 — S.r + lt>

X* — ox^ + 4

2a

3? a'

2.

4-

6.

a^J 4- 8.r + 4

.T^ -I- ir^ — 4a: — 4

a;-^ — a2

aW
[x^ - d^) {x^ - y^)

JiOO. When the e(|uation Fx = has two or more equal

roots, the ju'eeeding form fails, because all the terms of the

second member of {li) will then vanish when we sui)pose x

e(|ual to one of the multi])]e roots. In this case we must pro-

ceed as follows

:

I



NS.

c

I denominator,

—

—

ill •

ominator, tlieir

I, after arrang-

ive

we e(|uatc the

X 2

Ix — 4'

C2— Z»2)

or more equal

terms of the

wu su]»pose X

we must ])ro-
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If

wc suppose

0.r .1

Fx = (.>• — «)"* {x — fi)" {x — y)P,

A, A
\m "•"

(., _ «)'«-!
"*"

(^ — rc)'«-2/> - (.,• _ «)

(x - } );>
"^

(:r - y)P-^
"^ "^

;r - y

ete. etc. etc.

_9 "T • • • • ~r
Jim 1

+

In the ease of m, n, or p = 1, this form will be the same

as {b), as it sliould.

By reducing tiie second memlx^r to a common denominator,

and equating the sum of tiie numerators to (px, we shall have,

as Ix'fore. a number of equations the same as the degree of x

in Fx.

EXAMPLE.

Decompose
8a^ — 0.r3 — 2x -r- 1

of which the roots of the denominator arc — 1, — 1, 1, 1, 3.

Sn/i(fioii. Because of the roots just given, the expression

to which the fraction is to be equal is

A A. B B. a
, .iL,+ ' . + J^. +

(.r — 1)2 x — \ ' (a; + 1)^ ' a- + 1 ' x — 'Z

Reducing to a common denominator, and equating the co-

eilicients of the powers of x to the coefficients of the corre-

sponding powers in the numerator 8./^ — 4;c2 — 2x — 1, we

have
J, +/?, + C= 0,

^ A, + A -3Z?i + B = 8,

— 3^1 + B^ —\B — HC = — 9,

A^ — 3J + 77;, + 5/y = — 2,

2.1, — iA + 2/>'i
4. 2Z^ + 6' = — 1.

Solving these e<iuations, we fuid,

A =1, B = 2, C = 3.

A, =-2, Il,=-h
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I,

Tlio i;ivcii Inictioii is tluMvfuiv C'(»iiiil to

1 'Z 'i

.-'-.- +
I ;]

(.,; _ 1)2 a; — 1 ' (.r + 1 )2 a; -f 1 ' r - '^

EXERCISES.

I. Decompose ^^/:^^'
1 2

A71S. T +

2.
X—1

X — I {x — \
)

x^ — 2

\i

>•
a"^ _ .<a + a- + 1

' 9.

4- :;^-T ,
•

x^ + ^. - a; - 1

'I

Greatest Coniiiioii Divisor of Two Functions.

lUil, WluMi we luive I wo e(|U;itions, some values of the

unknown (jUiintity may .sitisi'y them both. They are then said

to have one or more common roots. Such CMinations, when
factored as in s^ o47, will have a common factor or divisor for

each common not. Hence,

TiiKoitKM. T/ic coinnioii rants of two equations rnmj

he foiuid from their greatest coinvwn divisor.

Pu()1Uj:m. To find the greatest eonnnon dirisor of two

('<lii<(ti()iis.

This problem is solved by dividing the two polynomials by

the methods of §§ 90, JiT, aild 23:^.

Example i. To find the greatest common divisor of the

two polynomials,

a:5 _ 4^1 _(_ i2_^ _}_ J^.^a _ i^^

and x^ — 2.1-=^
-f

46-^ + 2.r — 5.

FIUST DIVISION.

ips __ 4,y4 _|_ 10.^;3 ^ 4a;2 _ I'i^rj.
I

x^ — 2.T« + 4.r^ + 2.r — 5

''->'
\
X —2

2.?;' + H.?'3 + ))xi — 8x
') ,4 4- 4.r— 8.1 4r + 10

4:X^ -\- lOr* — 4a; — 10 = first remainder.



'iV-{?.

+
{X - 1)^

a- + 1

Functions.

1 values of tho

?y tire then said

juations, when
r or divisor for

indtions may
or.

lii'isor of two

)olynoniials by

divisor of the

.r2 + 2.7- — 5

GREATEST COMMON DIVISOR.

BECOND DIVISION.

a:4 _ 2,^ _^ .1^.3 ^ o
J.
_ 5

j

4.r3 -f- lOa^^ — 4./ — 10

439

\x.-
— «J-3 + 5.1-2 .f §.r — 5

^.c^ — *^ = second remainder;

or. ^^(.r^— 1) = second remainder.

In the next division, we may omit the fractional factor ^,
because every value of x wiiich satislles the e<iuati(m ;r^— 1 =
will also make -Y (•<-'' — 1) = 0, so that these t' niualions

have the .^aifie roots. In this process we may alvv. ys mltiply

or divide the terms of each remainder by any fac >r wh;ch will

make their coetlicients entire.

1

TIIIUD DIVISION.

4.t3 + 10X2 _ Ax -10
4./:3 — ix

lOarJ — 10

10a:2 — 10

Ax + 10

emainder.

Tlencc, the O.C.I). of the two functions is 7? — \, and

their common roots are H-1 and —1.

This result may also be reached by factoring; the given

e([uations, and multii)lying the common factors, thus:

a5 _ 4.^4 ^ i2.,.3 ^ 4^,2 _ i^x

=zx{x — \) {x + 1) {x — 2 — 3t) (.T — 2 4- 3/),

a:* _ 2a^5 + 4^:- + 2.^; — 5

= {x — 1) (.r -f 1) {x — 1 — 2i) (a: — 1 + 20-

We see that the common factors are

[x-\){x-\- 1) = a;2-l.
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u

'I'hi' rules for tlirowiuy; out factors from divisor or ilividciid

;uv ;h follows:

I. Jj' hotli 'jUuiL polijiKuniaU cuntaiti the same factor

in. (lit their terms, remove this factor, and after the

(1. ('. I), of the remainin'J factors of the two polynomials

is found, midtiplij it hi/ this factor.

Prnitf. If (I Ikj such a factor, and X and V the (juoticnts

after this factor is removed from the two polynomials, the lat-

ter, as given, will be

aX and aV.

Since a is now a common divisor of both given polynomials,

if we call D the (J.C.I), of A' and Y, it is evident that aD will

1)0 the (J. CD. of aX and aY.

II. Ally factor cominoii to all the terms of any divi-

sor, and not contained in the dividend, may he thrown
out.

Pro'if. If this factor were any part of the G.C. D. sought,

it would, by § 'i'-Vl, be a factor of each dividend. Since the

oidy factors we recjuire are those of the G.C.D, factors in a

divisor only may be rejected.

li

EXERCISES,

'I

I

Find the G.C.D. of the following polynomials:

1. .r< — 1 and ./• — 1.

2. .r^ — 1 and .H — 1.

a^ "la^ a^ -f- 3«2 — 2n—ir) and a*—a^—^a^^a+ 5.

4. 25.7^ + 5.v=* — X — i and 20.^^ + .r^ — 1.

5. a* -\- 2(1^ + 9 and r«» + ^ri^ — Ort — 9.

6. w3 + 3/yi2 + ;im + 1 and in'- — L

7. .r» — ai-3 + 2l.c^ — 2Qx + 4: and 2x^ — Ux^-}-21x—10.

8. a^ + ft* — a — 1 and rt' -f a''' — a — 1.

iMVi, The given polynomials may be functions of two

or more symbols, as in § 9T. AW- then arrange them accoril-

ing to the powers of one of the symbols, and perform the divi-

sions by the precepts of § 97.

iUi ii

i 1
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and

The (juotient of the first division will Iw unity, so we write

the two functions under eacii other, thus:

a*— {a + b + r) x^ -\- (nb + be -\- cn)x — abc

^ \- {— a -\- b + c) x^ —• {ab — be -f ca) x — abc

— 'i {b -\- c) x'^ -\- 2 {ab + ac) x = Ist rem.

Dividin;^ this remainder hy — 'i {b }- c), we have the next

divisor. Wc then perform the next division as follows:

x^ + {—a + b-\-c)x^ — {ab—hc-\-ca)x — abc
\
x^ — ux

^ - 'f^
I

X -h {b-k-c)

{b -\- c) .H — [ab— be -f- ra) x — abc

\h^ c) .(^ — [ab -{-ca) x

bcx — abc = 2d rem.

Dividing this by the factor be, Avhicli is contained in all its

terms, we have x — a for the next divisor, which we find to

divide the last divisor, and therefore to be the G.C.D. required.

EXERCISES.

Find the G.C.D. of

T' + 3brx + l^ — c^ and .r** i-{e—b)x^-\- {f? ^bc^c^x
a-3 + ,3^/.r + a^ — 1 and x^ — [a- — 2«) x -{- n — I.

{a-\-b-\-c) (ab-\-bc + ca) — abc and a!^ -f- ab — ac — be.

.r» 4- 4«* and x^ — 2a^x -f- -kfi.

x^ — ax^ — b^x + ab^ inid x^ — a\

g^ j^ffi j^j^ — ^abx and x^ + Hax + a^ — i^.

a4 _ 2x'i + 2 - ^, + ^. and .r» - 2x^ 4- r - 1

.

x^ .-r' x* 7^

.<r* — j^u -f ./•//•' — if and .r* + .'•''//- + //'.
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Traiisloriiialioii of K(iiiali<>iiH.

: I

'I

li 1

1

1: ' '

ii I:

IMMi. Dff. An ('(Illation is said to be Transformed
wlini ji sct'oiid ('(imilioii is IoiiikI \vlios(.' roots l)(.'ai' a
known ivkition to those of tin? givon ('(^luation.

1ii;m. SoniL'liines wo may kt jihlc to llnd a root of the

(raii,-«ronmHl uijuulioM, and tiiciK'c tlic corrt'sjtomliiii,' i-.M)t ol'

the original ('(|uuti()n, more ca.sily iiiuii by a direct solution,

PfjonLFM I. To chdii^c the signs of nU the roots of an
cqtKtfiun.

Sohitwn. By changing x \\\U> —x in a given c(iuation,

the signs of the terms containing odd powers of x will be

cliangetl, while those of the even lowers will be imehangod.

Ilenee, if u be any root of the original e(j nation, — « will be

a root of tlu' e((Uation after the signs of the ulLernute terms are

changed, llenee the rule:

Change the signs nf thn alternate terms, of odd and
even degree, in the equation.

Prohli:m ir. To diminish all the roots of an equa-

tion hij the same quantitij It.

Solution. If the given C(iuatioii is

X'l + ;;,
<;«-! + p^,,n-^ + . ... + ;,„- (),

and if// is the unknown (|iiantity of the re(|uired e(iuation, we

must have

}j = X — h.

Therefore, x = ?/ -f //.

Sul)stituting this value of.?; in the equation, it will become

>/" + {Pi+>d>)!/"-'-\- /'2-\-0'-^)pJ' + Qf'' !//"-^-hc'te. {a)

When Ji, «, and the ;/s arc all given (|uantities, the c(jefii-

cieuts of y become known quantities.

I

»
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1. 'Pninsfunn (ho o<|iialion /^ — \\x — 4 = into one in

wlii(.'li liu! roots jsliiill be loss by 1.

2. 'rranslurm .r' — .*i.c- 4- b'ix — 7 = into one in wliiob

the roots shall be greater by 0.

'MW, Ikcmoriuii Tirins from Ef/Ufttionx. 'IMio <jnantity //

may be so (.hosrii that any roi|iiiro(l term after the lirst in the

traiisfornied o(|ii!itioii shall vanish. For, if wo wi.sh the second

term of the eciuution {u) to vanish, we have to supjiose

p^ + nh = 0,

wliieh gives

Wc then substitnto this value of h in the o<|nation (r/),

which gives an o(iualif»n in which the second term is wanting.

If we wish the third form to vanish, we must determine h

by the condition

which ro(|uires the sohition of a quadnitic er|uation. Each
eonsccutivo term is one degree higher in the unknown (|uan-

tity h, and the last term is of the same degree as the original

eijiiafion.

This nu'thod is i)rincipally ajjplicd to nuiko the second

term disa])pear, which re(juiros that we put

KxAMi'Li:. Make t lie second (orm disa]»|tear from the fol-

lowing I'liuation,

.,.2 4- p.c + 7 = 0.

Sohitio)!. Hence, n ='i and //, = />, so that

// =

X - ij

I'

P
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Makiiiu this s'ilAstitution, tlic t'(jiiatioii becomes

//'^ - f + 7 = 0,

wliieh IS thf idiuiivd e(|Uutioii.

liE.M. 'J'liis ]>n»r'ess airurcls tui uclditiouul elegant ihethod of

solving'' the (jiuuh'atie eciuatioii.

The huit equation givc-s

= v/?
I

Thu vtilue of X, beiniT e(iiial to // -f fi, then becomes

whieli is the correct sohitinii.

EXERCISES.

Iteinovf the secontl »erm (Voni tlie lollowing e((uations :

1. .r' — (;.f- + «;./• — I r= 0.

2. .H — -l./-'' H- '.\/^ — t^ — 0.

J.
.'•= — .5./-' 4- '^i^ + '"i.^- — ;i.'' = 0.

4. x^ — 12.^5 -I- ;ix3 — J- = 0.

IiKM. The theory of the above process will be readily com-

l>rehended by recalling that the cocnicients oi the second term

is e(iual to the sum of the roots taken negatively, or if «, /3, y,

ttc, be tlio roots,

« + /^ -f ) 4- . . • .
-]-*— — />,.

ft is evident that if sw siilttract the arithmetical mean of

all the roots, that is, — ' , from each of them, their sum will

vanisii, l)ecause

u f
^^

4 >i h
^^

f- ) 4-
n

f .-Ic
1

~V'« + '^
.. = ^
?i

llenct'. uheii \\c pul // — - ' for x \ \ the equation, tile sum

of thf roof-, and (Ikk loiv the second tciin. vanish.
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3G5. PiiOBLEM. To fr/tns/'orm (tit ('(/Ufifion ,s() (lull tlie

roots slmll hi' iiiiiUift/'cd hij a gireii factor m.

tSdliifimi. Siiicc the roots art- to be miiltijtlicd by /^/, llie

new unknown ([uantity must be equal to mx. So if we call

this quantity y, we have

y = mx,

which "fives ' — 1L~ m
Sul)stituting this in the general equation, it becomes

Multi[>lying all the terms by m", llu- c(|nation becomes

.'/" + '";'iy"~* + >fi'^p.>!J^'~'^ -f .... 4- m"pn = 0.

Ileneo the rule,

MuUiphi the coefficient of the second term hij m, thot

of the third Inj in\ (tud so on lo the lost term, ir/iieh irill

J)e mulfiplied Inj ,ii".

If the roots are to be divided, we divide the terms in the

same order.

EXERCISES.

1. Make the roots of x^ — '^.r -f ;3 — four times as great.

2. Divide the same nH)ts by 2.

8G(>. riJoin.i'.M. To trotisforni (in eqiifdion so Ihut its

roots siudl he sipiiired.

t)olulion. Let the given e(|uation be

If // be the unknown (juantity of the new equation, we

must have

V — A
whicli gives ^ = ± //-•

If wo substitute :f =: /y-' in the given e(|Uation, it may be

reduced to the form

//• f /'.// I /'4 I (/'l// I P.\) U' -" <••
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}{' we sul)stitute .i" =r — y--, the result will be

f -f- /'a// + JU — {Pi'l + Ps) !/' = "•

Since the viiliic c»l' t/ imist .sitisry one or the other of (Iiesc

0(|ii;iti()ns, it nin.-t reduce their pniduet to zero; we therel'ni'c

imihiply tluMM to<^efher. Con.^iderin^' them as the simi iiiid

dillereiice of a pair of e.\j)ressi()n.s, the product will he

(//' + P^y + JUf - iPi!/ 4- PsYl/ = 0,

or

y'+{'^P2-Px')f+iP'z'+''^PA-''iplP3)!/'+(^P,Pi-Pi')!/+P4'
= 0.

EXERCISES.
1. Transform the ((uadratic,

xi — 5.r + 0.

of which the roots are 2 and .'{, into an o(|uation in which the

roots shall he the stjuares of 2 and 3. using the ahove pnn-ess.

2. Transform in the sanu^ way

;i-^ + I'^jf^ + U.c + 48 = 0.

3. Transforn

./;5 _ 4^.4 _ i();j:3 _|_ 4o_j.2 _f_ O.J- _ ;}0 z= 0,

U

Gonornlizatioii of* the Pre<*e<liiij»: Problems,

J5G7. TuoiiLKM. (^fiven, an C(/it(ttioii oj' (un/ drgrce

in tin. u iikinncii (/Hanfifi/ :r ;

Ke(|ii;re(l, to /rtiiisJhrDi f/u's cqiuiHon, into (inotlnr of
It'll i ell the root sluill fjc ii ijircii' Junction of u.

Solution. Let y he a root of the re(|uired C(iuation, and j'.r

the r(iv(>n function. Wc must then have

./' = //•

Solve this c(|uation s(t as lo ohiajn ./as a function »»f //.

Siihstitiiti' this value of .r in Ihc nHjiinal e<|uation. and Inrni as

niai\v f(|iialions as ihri'c are vahies of//.

The pi'oduct of the^e ciiUHlions will be the required eiju;i-

li'iii in //.

I

I

I



'ONS.

he

= 0.

ic oilier of llu'SC

u ; wo tlitTcroiv

lis the sum iiiid

will lie

= 0,

= 0.

oil ill which tlie

.' ahovc process.

= 0.

I'robleiiis.

oj' (III If (Icjjrre

\,ii) (inothrr of
<' J.

'([luitiou, and //

I iuiu'tioii of I/.

ion, and t'orni as

r('(juired ('<ju;i-
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EXERCISES.
1. Traiit;fonn

,c^ — :./•
-f- 10 =

feo Ihat the roots of the luw ('(jiuitioii .shall be 'dx\

2. 'i'nuisforin t^ ~ :U-' + ix =
so tiiat lilt' n^ots ^liall be ax -f b.

,5. '1'ijiii.sfonu .'•^' — !>r + IS r=

so thai the roots shall be .r- — 3.
o

liosohitioii of Xunicricjil Kquatioiis.

J5(>«S. ('(nircitient invthoil nf com/n(/ii>(/ llic nunivrivdl rahic

of (III (III ire function (fxftr ait (issutiicii value (f x.

If we liave the entire function of ,/,

F.r = ax^ -f Ox^ + cx^ -f dc + C,

\\c may jmi it in the ronu

FX — \\{((.r + f>)x + (] X 4- (/\ X -f c.

Therefore, if we put

ax f /.' =. //, f)'x -f '' = ('',

c'x -r >l = 'f, (I'x -\- c = c,

we shall have Fx — c'.

NiiiucrictfJ Fxawplc. Compute the vahu's of

Fx — •*./-"' — ;].' * — (ir* -f- S.i- — 1)

for X = '.) and .'• =:: — 'i.

We arrange the work thus;

Coetlicient: 'Z -; t f H - \)

Prnd. by (./= :$), +<> -I-'.' +0 +^7 -fKT)

IIencc

'or X

lleucc

-f-:{ ^:{ +0 +:{.'> +

Z':} — !m;.

— :{ - (I + s

_4 4-14 — k; ^'.Vi

— ; -+- 8 —10 -I--W

• SO

SI)
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Tliis, if will be noticed, is a more ronrenir'nt prcx^ss t'lan thui of

fiiriuiii^- till' -lovvurs «>> x ami iiiultijilyitig and a<Iduig.

iiOlK Ifdi'iwj an f'H/irc/u/tcfion of x^and jmlliufj x~i'-\-h,

it is required lu dcrel'/j) Ihc function in jt'twer^ of It,

It will be rcinaikcil iluit tliis problem is 8iih>iaiitia]ly identical with
iha* of ^ .U>2. niid the fiulution of this will l*e the iudution of tlie former.

lint in the I'ornier ca.se // was su|>i>o**ed to l*e a givn (juantity, whenas it

ifi now the unknown tjuautity C(>rre»[)oniliQ^ to ^ iu the former problem.

Example OF Til K I'iioblkm. If wc Uuvc the expression

and put x = 2 i- h, it will become, by developing the sepa-

rate terms,

F<^i-\-h) = U^ + 15/<* 4- 3G// + 32.

GEXERAb HiLi: FOR THK pROfE^s, First rom/mtr the
value of Fr Inj the process rnt/tfnffet! in $ .'JOO.

Then repeat the process, usi/tfi the HUfresaire snw< oh-

tdiiieii in the /ir.-it process inste/nJ of' thr mrrrspout! !}!<i

coejjieieuts, and st(tppiii<J one trnn In fori th< last. The
result trill he the eocjjirimt of h.

liepeat the process with the new taims. stojifiinij j/rt

one term sooner. The result will he the lUH-Jficicnt oj h"^.

Continue the repetition until irr hare the first term,

onlif to operate upon, uhick will iltfclf be the coefficient

of the hii>liest })ou:er of h.

'»

Ex. Tilu' example ;','>« »vi' ;,'i\r?i ;.^ performed a.-- follow!-

('oetlicients,

PnKhict l)y )\

FirHt Hum'

,

Sen»ul j>i.idut'tH,

Second sums,
Third proiluet,

f3

11

15

14

14

f4

38

Result, /'('iH-A) -'- 2^5+ Vth • a6/r - 32.

Ex. 2. Ill llie riiiictii'ii,

let I'.- pHl

Fx =z t(^ - :.r« 4- r>:r» - ix* + e,x— 8,

//7. 111(1 cvpres-' (III- n »iiil iU jKfUiT* of//.



ucesB t'mn thai, of

Silly identical witlj

i*n of tin- foiiucr.

lantity, whereas it

iormer proUIeiu.

lie cx})rL'isi!jiim

I'ing the scpa-

coin pate the

».

^nivc s^ntK iih-

fw last. The

yfoppin;^^ ijct,

firicnf oj li'^.

he p'j'st term
he coefficient

.•<1 as follows:

• 4

s.
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vvi.'rs oi'//.

('ofincients, 2
ft— i +n 46 -P

i'roiliicts Ity 3, -;j + 6 + 12 + .>4

First sums. -1 +'i + 4 + 1« + Kj
SctoikI productH, + 6 + 15 + 51 + u;5

Sfcoiid Hiiiii.s, Ts + 17 + 55 ~1»3
Tiiird products, 6 y;i 150

Third riuitiu, 11

17
6

£'3

no
51

101

205

Rosult, F(3 + /0 = 3/t' + 23A^+I01A^ + 205A'+183// + 40.

EXERCISES.
1. Compute U^ -\--ZU* + l(il//3+ •^or)//2+ 18;3/<-f-4r), when

2. Compute /'— *..f -f ^ for .c = — } -f- //, _ 3 -j. //, etc.,

to + :j -4- //.

Proof of the Preceding Procrss. if we develop tlie ex-

pression

iiiul rollect the roi'iricients of like powers of //, we shall lind

Coef. of //" — n,

//«-' = nar + b,

lin-i^i^'^nr^^^-i^n-Whr^c, (J,

[•i)'"''
^("

l
')^'^-' + (" -'i)rr-^il,A"

/<»-" = y\ar' + r _ Ahr'-^ -f
(^J __ J<^/^^ +- vw.

Now ex{iniinin<; Kx. 2 precediufj, it will be seen that wc can

make I lie ('oniputati«;n by eolunins, lirst eomputin;^ the wliole

left-band (•i>luiiiii and tliiis olMainiiij]f the eoetlieient of A'* '.

ilien ('()ni|)ntin;/ the next cobinm, tbus obtainiiii; the eoclli-

eient of /<" '^, and so on. ('oinnu'n('in<r in this way. and usin^

the literal eoetrieiejits, a, i, r, ele., and the literal iaetor /•, we

«haii iiavc the rej?ult.s:
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Ii<

h

ar

6

br

(ir -t-
h

ar

ar^ +
2ar^ +

br + c

br

2(ir + b

ar Sar^ +
Ur +
br

liar + b Car'' + '.ibr + c

liar -(- b (!!)"'"' -\- {>i — \) br i- c.

If M is the (1('<j:iv(' of the (.'(|U;itioii, tlioii, by tlio ])roc(.'ding

pnttrss, wo shall ailtl tlic product i(r to b a tinu'S, tlic n sepa-

rate .sums \m\\\f

((r\-b, "Zar + b, ',]ar-\-b, .... nar-{-b.

To form the second cdhimn, wo inultii)ly each of those

sums oxcopt llio hist hy /*, and a<Ul thom to the coollioiouL <•.

Tho tonus in ar ad(h'd i)oin<,' ar-y 'iar^, {\ar-, oto. , the sum
will 1)0 ( 1 -f-,' f ;{ + + '' — !) <ir^. Tlie coollioiont is a figu-

rato i>uml)or o(|ual to -A^-i-^ (§^ 'Zi^i], '^ST). Tho sum of

tlu' oDi'llicionts of Ir is ;/ — 1, hcoause thoro aro ;/ — 1 of

Ihi'UJ usod. caih o<pi:d to unity. Thorrfore tho linal result is

(!;)'"^+ i»- \)br + c.

wiii.'h wi' have found to he the eot'llieient of A" '.

Fn this second column the partial sums or cooillcienis of

(tr'^ are

1, 1+2 — y, 1 -fJ + ;} = <•», otc, to l-(-2 + n + .. ..+(;/— 2).

Tlvjrofor: "he numbers succosively adrled to form tho co-

ollieirtUi . L (//' in tho third column aro 1, 1+3 r= 4, 1+3 + (J

— 10, etc. The '.'oetlieieiits of Itr^ will Ix; the s;imo as these of

ar^ '\\\ \\\v itUtiiU; next pncodiuir.

CoutiniiiiijT the ju-oec^s, v/e see that the cooflicionis aro

formed l)y tsU'^cossive addition, as in tho following table, where

each nnnd>or is the sum of the one al)ovo it plus the one on its

I



'IONS.

+ c

+ c

4- c

n — 1) br + c.

nic's, tlie /< sepa-

/;•+ h.

ly t'iieh of these

lilt' coeHicient c.

•', etc., tlio sum
llic'ient itj a ll^^u-

). The sum of

•e are >/ — 1 of

linal result is
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>r (oeflieieuts of

+ ....+0'-2).

to form the eo-

)• - 4, I +:] + (;

.line as these of

roenicieuls are

ng table, where

- the one ou its

,fl r r= r* jA /-'• ;•*' etc

/<o
1 1 1 1 1 1 etc

h •>
V >> 4 5 r. etc.

/<2 ;{ <; ]( 15 etc.

A3 4 10 •^0 etc.

A< 5 15 etc.

A» ete.

¥ etc.

etc. etc.

u

u

u

a

<•

left. We have carried the tahle as fur as n = C, jukI the ex-

pressions at the h(»ttom of each column will, when it = (I, he

formed from the numhers in this table, taken in reverse order,

thus

:

Column under i/, i'xtr -f /»;

•' r, 15r//''-l- bbr 4- r;

(I, 2( V/r^ f id///'- 4- irr -\- >i :

e, 15r?H4-H>/»/'3-f-(;/v-4-:)r/r + p\

/, VHir'-\- 5/vrH 4r;-^+:i</?-^-f :i/r4-/;

/7, ^^/*4- ///•=^+ rH-i- ^/r^4- i'r~-{-fr-\-(/.

\ow the i.uml)ers of the above scheme are the tiiiurate

numlRTs treat<-tl in § 2^1!, where it is shown that the y/"' num-
ber in the <'* eolumu after the column ornnit> is

njti + \) { n + 'i) (w 4- / — 1

)

l-i.3 /
"

\ t

Conijiarin^- with the coellicients in the ef|uatM)ns (.(), wr

see that the two are identical, which proves the correetnes; rf

the method.

370, Ajiplirntion of tJic Prccrdinn Ojirrafion ta ihf K.r-

tracti'jit iff the linots of Numrrical K(jtta(io/tf<. Let the equa-

tion whose root is to ])e found be

-• = CL±^).

a.c" 4- //.r"-' -f f.f* - 4- ^- f/ r= 0.

We llnd. by trial or otherwise, the frreatest whole nnntber

in the root x. Lei r be this number. \Vc sul)st?tute r-^/t for



4r^'2 ({!:m:um. riii:(n:y or i:\>r.\ri(>ss.

til

M

./ ill iIk' iihovc expression, an:!, I»y the prccrd in*,' process, get

an I'lpiution in //, wliicli wc may pul in tlic form

ah'' -f ////« > + r7/'» ••* + (lit'' ^
-f- + //' = ^>-

Let ;•' l)u the lirst deeinial of h. We put r' + /i' lor// in

this e(|uation, luul, hy repeat in;; the proeess, get an etpiatiou

to (Icti inline h\ whieli will he less than 0.1. If r" he the

greatest nuniher (»f hundredths in // , we put h' = r" -\-h'i and

thus get an e(iuation for the thousandths, ete.

J571. The tlrst operation is to liiul the numheraml approx-

imate \alues of the real roots. There are several ways of doing

tiiis, among whieii Shirin's Theiircin is the most eelehrated,

Itui all are so lahorious in appliealion that in ordinary eases it

will he found easiest to proeeed hy trial, snhstituting all entires

numhcrs for a* in the ecpiation. until we tind two eonsi'cutive

nnmhrrs hetween which one or ni<)re roots must lie, and in

dilHeult eases plotting the results hy i; :Vtr>.

It is, however, necessary to he ahle to set some limits he-

twcen which the roots must he founil, .uul this mav be done

hy the following rules:

I. . /// ('(Illation ill u'hiclh all thr rocf/lcii !>fs, iiiclndinij

tJir (ihst)Iiif(' Icrni, nrr fxtsifirr, cdii have no po^iitirc real

root.

t\)r no sum of positive (|uantities can he zero.

II. //' /// coui patiii'J the r/itnr of Fx for an if (issmncft

positirc riilKr of x, Inj t/ir prormfi of j5 ;j(i(J, ice find (ill tlie

Slims j)osilirt\ there, eaii tte no root so ^rent as that

nssuined.

For the snl)stitutioii of any greater nuniher will make all

the sums still greater, and so will carry the last sum, (ir l\r,

still further from zero.

III. If the Slims are alternatelii jmsitive and nvja-

tive, the rat lie of x ice einf)lo!/ is Jess titan ((itij root,

IV. If two rallies ofx^ire (lijferent si'Jns to Fx, three

must he one or some odd nuinher of rtKjts hetireen these

values (compare § M-fo).

I

I



1(L\\\ ai'jyEiLiL ruE<niy of i:qr.\Ti(>ss. 453

(lin<,' process, gi't

nil

4- U' = 0.

t r' -\-h' ibr // in

•jjct an i(|nati»)ii

.1. ir /•" lie 11)0

'*' = /•"+ /*', jiiul

nher and ajipro::-

'I'al ways of (loin-;

most ft'k'hratoti,

ordinary cases it

ilutinf; all entire

[ two consecutive

must lie, and in

t some limits hc-

tliis mav be done

,"/.«?, ill ('111 dill 'J

\ii(> f)usiiii'(' rcdl

ro.

;• (in 11 (tssNiiK (f

[ire find (ill flic

ijl'l'tlt (fS that

•r 'wili make ui

ast sum, or /'.r.

rr- and nc^ii-

hnii/ mot.

I//.S' fo F.i\ llirrc

betireeii tJieso

V. Tim ludara nf x irjiirh lend tn the same si'Jii of Fx

iiichidr riflirr no roofs or (in even number of roofs be-

fii'ien til (III.

Let us take as a first e-xaniple the e(|uatioii

a:3 _ ;j. _^ 7 _ 0.

Let us Hrst assume x = 1. We compute as follows :

(VK-nieic'iits, 1 — r +7
Products, _4 Hi 'M

Sums, +4 +r> +43

So F(4)r= +4:}, and as all tlu' ('oi'Ulcii'nts are positive,

there can he no root as <j:ivat as 4.

I'uttinj]^ x= —1, the sum>, iiuludinir the tirst coellicient

1^ jii-e 1, —4, -f-!»,
—

'-iO. Thtse l)ein<^ alternately i)ositivv and

ncirative, there is no root so small as —4.

Siihstilutin<,' all inteprers hetwcen —t and +1, we llnd

F{-\) = --.'O. /'(O) := + r,

F(_;j) = + 1, /'(I) = + 1,

/'(_->) = -^1:5, /'(•-') = + V.

F{-\) = +1: F{:i) = +13.

we

If we draw tlu* curve corresponding!^ to these values (J^ 34')),

shall lind one ro(»t hetwi'in —3 and —4, ami very near

— 3.0."», and the curve will di[)l)('low the base line hetween + I

and +'!, showing that there are two roots hetween these num-

that is, there are two roots of the form 1+//, // hein.u^ aiK'rs

positive fraction. Transforming; the e(|uation to one in //,

l)V ])utting I + A for ./, we tind the eijuation in // to he

7^3 _|. 15/^2 _ 4// f 1 = 0. (!)

one

Suhstitutini' /^ — 0.v\ <».4, 0.0, O.S, we find that there i^

root between 0.3 and 0.4, and om- between 0.(5 and 0.1.

Let us begin with the latter.

If in the last equation we jmt // = 0.r, + //', we find the

transformed equation in // to be

Fit' = Jr^ + 4.S//'' + O.OS//' — 0.104 — 0. (^^

If we sulistitute dilferent values nf //' in this e(juation, we
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ii

'»

shall liiid that it iiiiist exceed .00. and as it nuisl he less than

0.1, we eoiiclude that 1) is the li«fiire sou^Mit, and put

//• = .Oi) 4- //.

Tninsi forming.,' the efjuatiun {'i), we lind llu' equation in h'

to bo
// "3 4- 5.07h'^ -\- 1.5(18:}// ' — o.oo.'U'jl = u. (:j)

Since//' is iicei'ssarily less tha:i D.ol, its lirst di<;it, whitu

is all Wf want, is easily found, heeause the two th'st terms oi

the ei|uatit>n are very snudi compared with the third. So we

siinidy divide .('0:n01 hy l.oOS;}, and lind that Am is the re-

quired diL'it of //". We now put

h' = .()()•» + /'
",

and transf»)rm again. The resuUin«,M'i|uation for//"' is

//"« 4- .').<):(;/<
"••2 + i.r)Ssr)W.7/" — o.(;()(K);mii-^> ~ o. (i)

The diijits ol' r, //. //', and //" which we have found show

the true value ol'x' to he

By continuiiiir this j^roccss, as many liiruros as wc please

may he loiiiul. i5ut, after a certain point, the opcralion may
he althrcviated hy cuttin<j; oil' the la-t ligures in the coeHieicnts

of tlie powers of //.

The work, so far as wc have performed it, may be arran-eil

in thi' foiiowini; form (see next pa<i:c).

Till' numbers under the double lines arc the coenicicnts of

tlie powers of //, //', h'\ etc. It will be seen that for each di-,Mt

W(,' add to the root, we add one di<(it to the coellicient of //',

two to that of //, and three to the a])solute ti-rm. We have

thus extended the latter to niiu' places (d* decinuds. which, in

most case's, will give nine lii:ures of the root correctly, if this

is all we lU'ed, we add no more decimals, but cut off oiu^ from

the coi'tliejeiit of //, two from that of //'.and soon for cacli

decimal we add to the root.

We shall lind the next figure after X.Cd'i to 1)C zero ; so wo

cut olV the llirures without making anv change in the coclli-

cients. The next following is 'i, so we cut ofl' again foi- it. and

multiply as shown in Hie fnll'.v.-ingcoiitinuatifui of t hi' process:



loys.

list Itf less tliuii

iiiJ put

L' L'(|ii;itioii In h"

1 == 0. (a)

iitit ili^it, wliicu

v<> tinst k'nns oi

K' third. So we

t .OOv* is the re-

or // IS

{4ll;>=:(>. (I)

luve fouml show

'08 SIS we pleiiso

? operation niny

1 the eoetlicicnts

nay he arran-vil

eoellicicnts of

ii lor eaeh tliuMt

ni'lheienl oi' /r,

t'vm. We liave

inals, wliieli. in

•rcctly. If til is

It oft' one from

.-^'o on for eacli

i)C zero ; so wo
:c in tlie eoelli-

p:ain for it. and

of tlic pr(»eess:

VLWJJIiAL TIIKORY OF EqCATInXd.

+ 1

+ 1

+ 1

+3
+ 1_

+8:0

± -^

_J
4.9
6

+ 4.M0

9^

4.M1»

y
4.JW

9

•i.'w

-7 + 7 ' XXAfU

+t -«
^ + 1 IMHI

+2_ -1.11)4

-4.00
—

".I04t»>o

+ .HM)H09

-184

+ o.«;h()0

- .no;!l!»Hi»i»)

KUIOl
+ 1.1L'()|

+ .4 ISO

+ l.r)(iH:!()n

l(tl44

Vl.r»TM4t4
10! 18

4 i.r)8>ir)i»->

+ .').070

o

~r»7of3

3
6.074

+ 5.076

+ 15.070

CONTINU.VTION or PTIOCESS.

4l.r)SS'>S)2

1

i.r.ss?

1

1.5|yi8i8

:{IT;4

- 74'.»

—11:5
111

If will !x? scon that, from this judiit we make no ii5*> of ilio

coelliciiiit 1 of //3. and only witli tlie seeond dceimal do we i\st.*

the coelHeient of //-. After that, the nmaining four tlir-ires

are olitaim-d hy pure division.

There 13 one thinir. howevor, wliicli a eonipnter .*ho:!«Kl

always ;!ttond to in nmhipiyin^ a niimher fr.)Ui whieh lin.' \ias

cut olTtiirures in this way, namely:

.Ihi'rnfsi rnrnifo Ihr jinxlucl Uic iinnihrr irJiirh iif,iihj

have been currictl if (he jl'JiiretihtKi not ht en rut njj'. antl
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4,56 GENERAL THEORY OF EQUATIONS.

Il

M

m i

I

increase it hy 1 /'/ tlic figure following the one carried
u'oidd ha.ve been o or greater.

For instuncc, we had to multiply by 7 the inim])cr lo'888.

If we entirely omit the figures cut off, the result would be 105.

But tlie correct result is llli^lG; we therefore take 111 in-

stead of 105.

Again, in the operation preceding, we had to multiply

158i88 by 4. The true product is G35,52. But, instead of

using the figures G35, we use G3G, because the former is too

small by |52, and the latter too great by |48, and therefore the

nearer the truth. For the same reason, in multiplying 1.58818

by 1, we called the result 1589.

Joining all the figures computed, we find the root sought

to be 1.G92021471.

Let us now find the negative root, which we have found to

lie between —3 and —4. Owing to the inconvenience of

using negative digits, and thus having to change the sign of

every number we multii>ly, we transform the equation into one

having an e([ual positive root by changing the signs of the

alternate terms. The equation then is a.*^ — Ix — 7 z= 0.

The work, so far as it is necessary to carry it, is now ar-

ranged as follows

:

8

8
8

6

3_
9.00

4

9X)4

_4
9.08

A_

9.120

8
9.128

H

-7

2
18

2070000

20.3(JIG

.3632

'20.724800

J'3024
20.707824

73088

-7 13.0489173395
6

-1.000000
814404

-0.18003(5000
.1()G:582592

20.8709112

^823^

2a879l'4;3
823

0.136

^
|9.1|44

20. 8^73 1

7

9

201.8 8i7|5

.19153408
1S791228

-362180
_208875
-153305
146213

-7092
_6266
-826
627

-199
188

-11



TIONS.

< the one carried

10 number 15'888.

suit would be 105.

•efore take 111 iu-

had to multiply

But, instead of

! the foi'mer is too

and therefore the

iiultiplying 1.58818

lid the root sought

I we have found to

inconvenience of

3hange the sign of

e equation into one

Of the si^ns of the

. 7a: — 7 = 0.

arry it, is now ar-

!
3.0489173395

1000000

I8144G4

ls:iT8()000

|UiG:382r)93

19158408
1S791228

-8(i2t80
208875

-158305
14(3313

-7093

J)266
-836
637

-199
188

-11

GENERAL THEORY OF EQUATIOXS.

The negaiflvc root of the equation is thei-efore

— 3.04891:3395.

EXERCISES.

Find the roots of the following equations:

1. x^ — 3x^ + 1 = (3 real roots).

2. a-3 — 3a; + 1 = (3 real roots).

3. X* — 4x^ + 2 = {'Z positive roots).

457

4.

5-

.r2 + X 0.

Prove that when we cliange the algebraic signs of the

alternate coefficients of an equation, the sign of the root will

be changed.

37!3. The preceding method may be applied without

change 10 the solution of numerical quadratic equations, and

to the extraction of square and cube roots. In fact, the square

root of a ntimber n \s a root of the equation x^ — n = 0, or

x^ -f- Ox — n = 0, and the cube root is a root of the equation

xi
-f. 0.^2 + Ox — n = 0.

Ex. I. To compute V2.

9.0

04
2.4

2.80

2.81

-2 I 1.4142ia56

-1.00
.96

-.(MOO
381

-11900
11290

3.836
4

2.834
4

278380
3

3.8383
2

-60400
56.564

2828

-1008
_849
-1.59

J^41
-18
J7

2i.8:2 8 4
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Ex. 2. To compute the cube root of 08-t20;3(v

2 4

a 4
2 8

3 1200
d 61

60 1261
1 62

61 132300
1 2r)3G

62 18'4836
1 2552

030 137388,00
4 192.09

634 137580.69
4 192.78

638
4 13777377

1.93

642;0

.3
1317|7|75i4

(543.3

3

643.(;

3

642.9

-9842036 1
214.30300243

_^
' '

-1842
1261

-581036
539344

410!»2000

412742(J7

-417793
413326
' 4167
4i;i3

"334

276

68
55

8

I

'I

M^



^42036
I
214.30303243

ANSWERS.

58

TN the following list, answers to questions which do not require cal-X culat.on or written work, or which It is supposed teachers would
pre er to have in a separate Key, are omitted. The Key, published
lor the use of teachers, contains the complete solutions.

26. I. -9. 2. -17. 3. +9. 4. -26. 5. -f 10.
6. -15. 7. _5G. 9. +840 10. -105G. 11. +1.

12. —306. 13. 0. 14. —1008.

38. I. 1. 2.-2. 3.-5. 4.-14. 5. +24. 6.?^ = ?.

2G „ 1 9 3

40. I. 0. 2. 0. 3. 11. 4. 17. 5. _37. 6. -90.
7. 324. 8. 0. 9. —CO. 10. —180. 11. 945.

12. 5040. 13. -41. 14. -1. 15. _i7. 16. 2G.
17. 99. 18. G75. 19. 74. 20. -4G8. 21. -218.
22. -529. 23. —9007. 24. —6800. 25. —420.

26. -840. .7. ~. 28. -iL. 29. 2. 30. 8.,

31. When X = 2, Exp. = 6; x = 5, Exp. = 18 ; .-c = 7,

Exp. :.. 36. 32. When x = -5, Exp. = - ^ ; ^r = 2,

Exp. =A;.^:=5, Exp. = -1.
43. I. When x = -3, Exp. = 0; n- = - 1, Exp. =0;

^ = 1' E^^P' =1
;

a: = 3, Exp. = 15. 2. When x = -3,
Exp. = --; . ^ _1, Exp. = |; . = 1, Exp. = 1|;
a- = 3, Exp. = 24. 3. When x= - 3, Exp. = 46875

;

a; = -1, Exp. = — -
;

cc = 1, Exp. = —88434

;

cr = 3, Exp. = -
^ (365)3. 4. When x = -T, Exp. =

(^14-^/2)4; .'r = l, Exp. = (^8 _ V^) 4
;

« = 3, Exp. = (^48 - V42)4.



4no

48.

54.

55.

56.

ANSWERS.

I. a 4- ia: — (.t; — y). 2. .'?; — 2/ — (« + ia:).

a — bx a — hx , r-
4. —

;;7^
w/;?*/. 5. va+ bx.3. rt -I- bx —

wz «i

6. A/(rt 4- bx) \- {x — y). 7. \/(rt + bx) — {x — y).

8. {a-\-bxY{x — yy, 9. {mpq^. 10. {x — yY {mpq)'^.

{a — bx ) {x — y)

mmpq {a + bx) —
II.

r-^r-(^-^)'
etc., etc., etc.

I. ha + 4J — 8c — <?. 2. — « + (a; 4- y). 3. G.

4. Six — 13y. 5. 23 (« + J)2 — a; — 2/
— z. 6. 5 (aJ).

7. 0. 8. 't!{m-\-nY—x—2y. 9. 4(;j+ ^)2+ «+ ^»4-c— 6.

10. 14a {x — y). II. 15 {}n-\-n) x -{- 2 (in — n) x — 17.

12. 7-4-31-1. 13. 10- -10-. 14. IG(lb y w

a; 4-?/

m 4- vi

15. 5a: — '7y. 16. 8;r. 17. 4a; — 30.

I. {a-^7n)x+ {b-^n)y. 2. {mn -\- pq)x -\- {2b — ^h)y.

3. (3 4- G^> -f 7«) a: 4- (— 3 — 4) ?/ 4- w 4- n.

4. (Srt 4- 8J 4- 7 4- 1) a; + (^ — 5 — 5) y,

5. (rt — w?) X -\- {b — 7i) y -j- {c — p) z.

6. (2(1 — 2f) X 4- (3e - 3fZ) ?/ 4- (4/ + 4e) 0.

a:.

8. {2a — 3b) X + { — b — 4d) y.

a 1 \ /3 , 3
9. (^a_-.,)a:+(,i + -3 \

10.

'^K If-

y-m — 3« — Gc + hi) X + {2 ^-ci)y.

II. {bab — ab — d)x -\- {iccl — 3mn) y.

12. (-.-1.) a; 4- 5ay. 13. -8a;+ (3-^«)y.

14. (3w + 1 4- rt — rt) a: 4- (— 1 — 2 «) 2/-

15. 3abx + (2c 4- 1) ^/x 4- (— ?r. — a)y.

16. — Ga; + (5772 4- 5) '\/y — y — %^x.

17. ex 4- h^/x — Gy 4- (— 3rt — 1) Vy.

3. - llrt 4- lO^* - 4c 4- 7^/ — 7a: 4- (4 4- 3c) y.

\



ANSWERS. 4 til

I 4- hx).

pq. 5- Vd+ t'-f-

~bx) -{x- y).

{x - yf {inpqy\

-f y)' 3- c.

y — z. 6. 5 (ab).

qY+ a + b + c—e.

I {771 — n)x — 17.

14. 10 -—;•

)x+ {2b-'ib)y.

m -\- n.

5)7-

2:.

4:6)0.

a)2^-

y-

4 4- 3^) y.

%

69.

4.

6.

8.

10.

12.

14.

15-

11 7^ + 283^2 + ^'iy — 57rfa; - 20. 5. 2rt - (;/>.

2« — Hb -\- 2c — 2(1. 7. 4a + U -[• ic -\- 2d.

— ;U-^ — 2a; — 4. 9. 32-4 — ar^ + 14a; -\- 18.

a;a — ^a; + 2«l n. 2a^ — 6a^ + 3rt/!;5 _ ^,3,

3^ 4 4a; + lO. 13. — 4 (a; — //) + '4 {z — x).

o {a — b) -}- 2 {a -\- b) + 7a — 26.

12-_17-^-8^_8?.
y z x b

58. I. 2a-. 2. 2^. 3. 4rtZ>

- 3rti — ?/i — 2rta;.59. I.

4-

61. I.

3-

6.

10.

12.

13-

15-

2,

6.

10.

imp—Sx. 4.

2. 3a- — 2flr.

mx—pz.

3-

5. .'i

a

13-

70. 15

19.

22.

73. I.

5-

8.

II.

14.

17.

20.

23.

26.

29.

2* -4c.
lOx—7y-\-i)Z. 5. —dax—2by. 6. 0. 7. 0. 8. 3//j.

7n—2)-\-q-}-a—b+ c+ (l 2. m 4.^— i4-/>4-<7— ;^4-^'.

ISrt.t — 4:by. 4. 0. 5. y; 4- 6 4- 5 4- ^ 4- m 4- n.

llax. 7. —2ax—(Jby—cz. 8. —2a;+ 2?/. 9. — 4iz.

2a; — Gy my + 4rt?> — 5. 11. «a; 4- 2cx.

'iax — 35.7; 4- ^ay 4- 3«0 — Zby — 3bz.

13ax — '3xy — 2d — 7ftr/. 14. in + dx-\-4y—ay — p.

2aA/y 4- Vy — 3y^j 4- G;? — b's/x.

G(f%r^. 3. 15miry. 4. 42ah)i^y. 5. 4fl!2/w2^

5a;y«2. 7. O.cY^l 8. 4«2Z>2;;,2. 9. Qa^bix*.

14:4 ))ip\fr''^s. II. 144«a;2^2z. 12. 7)i^\v^y^.

3mn^k^. 14. \4((bcd\ffj.

m^xyz. 16. abcdx^. 17. 12aW-m^n\ 18. 14a^b^c^.

21. a''nrn\iyy^zl^iitn^n^p^. 20. GaHmlmifz^.

a^^x~y\ 23. 48«4/;?^;<2a-2.

a'^bcdm. 2. —abcdxK 3. —a^b'^cx^. 4. 30rt''J'';/«a-l

lOoa^m^xy^. 6. lOwV^^'^y/^l 7. 4abmn.

IGSnhn^kx^ 9. Obnuu/y^. 10. 4((x^y'''.

—30af/x^yh^. 12. Ibayfhix'^yz. 13. —4abyxyz\

4bc^gn.rh\ 15. —3al^e^x^y. 16. 4abcxy.

—24(thhf. 18. «'.r?;/3, i(j. _3a^.?;3v3.

— nf^hh^. 21. a^bx^i/^. 22. —apqxhf.
2

24. dacm'\iih'\ 25. — ^acmhi^x\

da^cxy\

vn^ii^x^y.

5

27. —a%dx\ 28. — 30rt2wj4^^4^,

30. — - m^pqx^y^
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1^**'**
i*i.

'»

74.

7G.

78.

71).

2.

4.

5-

7.

I.

2.

3-

4.

S-

6.

7-

8.

9-

I.

2.

3-

4-

I.

2.

3-

4-

5-

I.

3-

4.

6.

8.

II.

12.

13-

14.

15-

17.

18.

19.

21.

a^x^i/z 4- (i/jxi/h -\- (trxt/z^.

^7rrV/r* — ii^><(V)Xif — Wonbj'. 6. —i'iin^j^q -f i8>/( ^^^i^^

(tp -\- Dtp — p^ + b(i — tY/ — hr — cr.

mx — anx — nnj — any {• anz — viz.

acx — act/ — bdx + bdy + fcdx + fcdy.

avix — d^bm 4- dkm ~ abnx — i^^^^ — bhid.

—apni—apn+ Z»;?^>i —bpu— bip-n -\- bqn -\- aqni + aqn.

(jqx — 'Siicx 4- l().?'y — Oci/ — 2;:r;>/ — 72^2.

fi^mh' — mi^bc ~ iutmhk 4- Vlainhd 4- Uimn.

imp I
— IQbpq — V2rpq — im/i^q 4- (Jnp'^q^,

— 7f//>^/ — 7<fbh> + 7/A'M — U)i + (dm+ Uhi. 10. 0,

(a-2 4- 'Zx))f 4- (;}.r=J
—

'>./:2— 1 4- 5.?-)/y2

—

Ax^y + a'2— 7,r— 6,

.7;'<i^4 _j_ ^^;y3 _j_ (i _ ,;Jj yi _ j-y 1.

xhf 4- .'T^'//' 4- (.-^ — 'ix^) v/3 -f (1 — 2a-2) _?/2 — 2xy — 2.

^V 4- xY 4- (3.i;3 4--a.-2) 7/3 4- (3.^44.3)/ 4- 2x^y+ dx.

2a:i — abii^ — 2((bii^ + 2ub — b'^h^ — W^ifl.

3(0)1 4- 2aii — 5d^bmu — 3^^;/ — 2b)i 4- babhnn.

2m^}i + pin^ 4- qm'^n — 2mn^ — pmu^ 4- </>/''.

p'^q 4- ^>2^r+ ;;'';• 4- pq^ -\- qh' 4- pqh -\- pq)'"^+ (//'^ 4- 2)r\

4rt'^ — Jif/5 — W. 6. y??2:c2

U^ + «3 _L 11^,2 — a^ 28. 2. rt^ — J3.

r/^ 4- rt^ 4- <-(^'^^ — i'^^x — (i^x — X*.

ft5 _ 2a* + da^ — 3rt2 + 2ft — 1. 5. x'^ — rr'.

am + im-^cmz^+ dmz\ 7. C«*+ 19rt3+17«2+ r<— 28.

r«3 4- &l 9. rt" — a-i. 10. «5 _. ^3 _|_ ^2 _ 2« 4- 1.

Q^ 4- 2«a;4 4- 2«2^^ + 2a^}? -\- 2aiv + a\

am 4- («;i 4- bm) z 4- (iw 4- e?)i — ap) z^

4- {dm 4- c?i — bj)) z^ 4- (<^Zm — cp) z* — f//;^^

«;» + {an 4- Jm) .r 4- hu^.

am 4 ('^^^^ + bm)x + (^7; + bn + cm )x^ + {bp 4- cn)x^+ r;):^*,

if — by^ -\- 2f 4-0^ — 4. 1 6. ?/5 4- 2^ 4- 3_y3 .y if 4- 1.

y6 + 2?/* — 7/ — 10.

(3r<3m_ 3«?ffi+« ).j.^ (_ 3f,m+3^ 3f^;i4
2) y ^ 2«"*+2" - 2ft3«.

117 1
2«i2 Z'l 20. 4«Z».

a^ 4- 2^3 4- a2 _ j4 _ o^,3_^3_ 22. ^2 _|. o^^^, ^ ^.2 _ ja.

1 f



cr.

VIZ.

-Ml/'
'ic — d^nd.

bqu+iujin+aqn.
- 7zn.

I + iamn.

\- i\nphf.

altn-\-b^n. to. 0,

-l-c-^TZ+ a^— 7?^— 0,

1.

2a;2) ?/2 — 2xij — 2.

— -Zbhi^

p)i + bahhnn.

nn^ + qti^.

-{- pqr^ + qr'^+ p?'^.

5- ^^ — a^

)^/3+17«H^« —28.

4- rt2_ 2a + 1.

f «'\

ft/;) ^2

' - n>) z^- f/?^^^

{bp + oAx^-^cpx^.

y }-2a"'^-'' -2a^^.

JO. iftZ*.

\
i

.4i^STVA'i?.S. j»;;j

22.

24.

25-

26.

90. I.

3-

7-

9-

II.

14.

15-

18.

20.

I.

3-

5-

7-

9-

II.

104. 7.

105. I.

lOG. I.

6.

10.

^2 4- 2ac + ^-2 — J^. 23. - 8^2*.

_ x2 4. (;j^ _ ft) ,c j^if+{b — 3ft) y + 2ft2 — ':bK

r»//i

97.

2
Q., a; — 3 H • 2. ;r2 4- 3.^ + 1.

a; + 1

^2 + ft — 1. 8. Q., x—l-\ --'
;c + 1

4ft- — 10ft + 25. 10. ft* — ft'^ + ft2 _ rt -f- 1.

ft2_:^«-j-3. 12. fl3— 2ft2-|-2«_l. £3. a:4_io^_|.iG.

900
Q., .r' + 2.c2 _ 15a; + 50 - — --

•

a: -}- 4

1 4- 2a; f a;2. 16. 1 — .3a; 4- x^. 17. 3 — 2a 4- ft2.

1 _ 2y 4. 2?/2 — ?/3. 19. — IG 4 8.^— 4a:2 4-2.63— a:*.

Q., 10 4- 10.^ 4- 8^ + 4.r« + 2^-* + 7-^—r-2-
4 4:X -{- x^

a;2 — (ft 4- c) X 4- ftc. 2. a;2 — (ft 4- Z») a: 4- nb.

ft2 4- (W 4- 6'2— fti» 4- Z»2 4- be. 4. ft2 _j_ rt_ rt^, 4- ^^ 4- J 4- 1.

ftj 4- bx — ax. 6. ft* — 4ft2^c 4- 7Z»26'2.

ab i- ac + c^ -\- be. S. c -^ b — a.

ft2 _ ab 4- J2 _ ^<c — ic 4- c2. 10. a:2 4- 2ft-a; 4- 2ft2,

ab 4- ax — bx. 12. x — b. 13. Qah-^ — \:a\i? -\- a*.

m — 71 m + n

a — b a + b

l-b + bc

be

X

«2 - U^'

2.

2.

X

a-b

4- r *'* i~a;2"«4-

ft 4-^
, • 5.

fta;

2a:
, -,- 4-

ft — h — r -\- d
4. _„

o
O

a;(4;c2 — 1)'

a

a;^

0.

5. 0.

ab + be 4- m — (ft2 4- ^2 4. c2)

(rt — Jj){J,
— c) {c — ft)

II.
2fta;

x^ — y^

12. -
ft2

4ft5 2ft

Z/2

13- —
ft +'^'

14.

15-
2b

X? (a;2 — 1)

a — b
16.

2 (wa: 4- my)

{m — 7i) {x 4- y)
7-

?/
2 — m^

vi^ {m — y)
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I.S. -^,.-

21.

27.

30-

107. I.

3-

108. I.

14.

110. I.

6.

9-

12.

14.

111. I.

r^3. I.

4.

6.

8.

10.

12.

14.

.«^ — ^r'
'

'i {(IX — my + xj/) a'i 4. J3 ^ c»

ro. 0. 20. -,— •

x^ .r abc

0. 24. o-— TT- 25. U. 26. -» -.

x'^ — 1 ^ x^ — a^

2X1,

x^ + y'^'

\ab

28.
— (« — .yJl+if

^9-
(rt3_62)?'

/I 1 1\
.
pu

,
pit

V6' a hi n m
I , x/1 , 1\ .^• — 4?/ J(w 4- 3a-)

2m 2am

(lb + y. 12. —V- .• 13. rt6 -I-
2"' — a: I—I- r I'

a

d' b'

2a + 3m

I/ +
2.

axy-x

2x ' ' III {an^ — b)

u (am^ + b)
7. ^

:r ,s • o.

ak

2.ry - 3

5- n.

{<( + by

2 {a^ -\- 2ab — d^)

a^ + b^

10. 1. II.

13. 1.

«2(rt2+2) + 1

a (1 4- «2)

(•^•' + /
/•') (^1- //)^ + (g-- + y) (--^^ + y^)

{X 4- y)2 (.^3 + ^3) _ (^.2 + ^2)

y. 4. 5. X + \. 6. 'Y—/i. V
a — b a bn {bm — an)

.r— 27— 0. 2. 7x—5x=2AhO. 3. fia:4-42:—3a;=60.

a;2 4- ax = w^. 5. aia; 4- ab'y 4- 7^^^ = c.

5 (4« + 3J) = 13.r. 7. a;2 — a^ = 2ff2r.

X -{- b = 2x -~ 2a. 9. X -\^ a =z '.r? -{- 2ax.

a-2 4-3.r— 10 = a;2 — 3x' — 10. 1 1. bx^ — by^ = ary.

x^ — 5a\v = 0. i;^. X — y =: az — bz.

2x^ ~ ax — bx = ft2 — ctb.



9- (rt3_^)»'

——— -— 1

lb"- n\

- 3m
_^^n

ale
n

^-3
b-x)
n' + 2) + 1

2 (1 + «2)

am (an -f- ^)
i« (hm — an)

^+ 4a:— 3a:= 60.

2* = c.

ax.

\- 2ax.

bz.

hf = a.nj.

.\XS]Vi:us, •!•;.-

134. I. <;;/^-3//-f 4!J =0. 2. :}rM-+ /(8_o. 3. 31^-|-^3= U.

4. Ha:» + 'nr/a;3 — (lrt''./5 4- a^ — 0.

5. <i^/-7/:J -f 3 (r?3 — 1) //« — ;««// + 3a» = 0.

6. ^3 .4. (,, ^ /,) ^3 4. (^,2 ^ ;j^^i .|. ^a) ^ + ^,a _|. ^« ^ aiji^ ^,;!/,_ ,),

7. 2r'J + rt«« + ««;? = 0. 8. :.//=' + (i//« -f :.^ + 4 = 0.

9. .7^ — r/j3 — 'ZdKc^ — r/'O; — i<« = 0.

10. ;^3 4- (,b + ^O
2^ + c^;2 + ^=^ + *C« + c3 = 0.

11. ax^ — ah- — b\c+ b = 0. 12. (I— ^yc'+ w+l = 0.

13. 'Za:h* + r/x* — a^t^ + ^<3 = 0.

14. 10-25 ._ 13^4 _,_ O^S
.J.

-ll^i _ (J^ _ 3 _ 0.

15. {a~b) ,1^ -\-{n-\-b) x- + {d^ — a^ + a'^Z' — ah) x = 0.

16. a^T? 4- (— «a + «'.'^. _ ab — U^) x + a^ — 0.

33 ^ -k i (ihc
3. 13. 4. 4. 5.

a ~ b
n. I . In. —

5

II. c'-f-rt. 12. 4 J.

8r« , ^2 (/; _ a)

2. —a.ItiQ T

3.) t'r; + rt6' — «o

6. ^.K 7. 3G1|. 8.
'-^—

\. 9. 1. 10. — '^

13.

17-

19.

/> — a. 14. 5.

« (1 - /y2)

15- 16.

^i(rt'^-l)

bn — r/>;i

m — n

18.

20.

A (.^ + /;)

a {((c -\- 1/ —\) + hc^ — /y

« (/^ + <) + ^c — 1

^^3 ^ ^.T _^ ^3 _ ',l^f^l^

d [c - b)
b =

cd
22. a = 7-

,

3 (rt2 +^2 4- c2

"rt + r/"'

d) + db . _ rtJ

</
' ^ a — b -\- c

cd ab

ab — ao — be)

h = -
a i'r

d = ab

130. I. 20. 2. 72. 3. I, $07; II, $217. 4- 210. 5. 50.

6. 180. 7. 05. 8. A, i^l30; B, *110 ; C, $2G0.

9. 81000, $1500, $2000, $2500, $3000.

10. Man, 36; Avifu, 30. 11. I, 18 J ; 11, 261 ; III, 45.

12. 6 ft. 13. •*2353}4. 14. 81m. 15. 143^8 m.

16. A, $600; B, $1200. 17. 8^ m. per h.

19. 15 uiul 24. 20. 15, 10.18.
2 {m - h)

h.

21. Man, 40 ; witV. 35. lOi. 23. CI days.



40'^. ANSWERS

2.\. 00 m. 25. J, (1; II, ;{; JII, o. 26. .3000. 27. 100.
-•.s. 1. 29. mnni 30. *l4y.r)0. 31. I, *(; ; 11,14.

jj. ;{ ni. un h. i^. $;](;()(). 34. *21800.

35. Ji l>. ^Vflll.

w«
; IV,

*'*"
III,

rt(l -f 2^^ + r?2) ' '' 1 +2,( + a^

38. 1, ; JI,

—

Un

5
• III ^"' TV *'' + ^^*.

,^ $a 4- 10m
V, ^ 39- 1^^ li-; IGO 111.

131. 40- 30 m.; 3 points.

41. JiOm. ; 3 points. 42. 3J- m.

43- f^T'T''

i;{8. I. ^ == 2|, X- = i'2^. 2. // = 7, 0* == in.

, 7b m~n m \-

n

3. y = a—h, y = -.- — a. 4. ij = -^— , a^' = —̂

—

5. /y = ^"^--, •^- = '^ .^-^'- 6. X = 84, y = 84.

7. 3* = 33, ?/ = 50. 8. X — a -\- h, y = ^^[a — h).

9. X = 1), ?/ = 3. 10. X = 7, // = 5.

It. y z=z (I, .c ^ 4. 13. y = 9, 2; = 8.

14. y = 8, .r = 0. 15. y = 0, x = 15.

16. ij = 7, X = 14. i-j. y = 13, ;/; = 0.

18. w = -, ;i; =z — -—,. 19. y =z 2, X = 6.

20. y — r/2 — Ub + U^, X = «2 _|_ ^(^}y ^ ^^.

140. 2. .rj = 37, x.^ — 33, n-g = 8, x^ = V.

3. .c = 3, y = 3, s = — 3.

4. re r= (], y = — 1, ;2 = 3, w = 3.

5- ^' =

a -^ b + c — 2d

y =

?^ =

a + Z> — 3c + r/

3

— 3rt + i + f + (/

i

(;. .r =:
2^ -\- m + «

.y-
j/> + «— m z =

}) — u — m



i. 3000. 27. 100.

1, *tl ; II, II.

)0.

-3 +

a

tr

h a^

; IV, ^--^a + 5w

5 '

= IG.

/<—w rn + n

84, 2/ = 84.

2. X

2c + ^/

b + c -\- d

— n — m

AMSWKIiS. 467

I. A, «i-.>-^r>; l^*ir)0. 3. M. 4. •!•.>. 5. r,7. o. 81.

7.
"^1

8. A, 80; 13, ;2. <;. KJ fe'u<) 1, '^f
5
poor.

45

10.'^. II. T^,-
12. •^•), 8. 13. or,, a;. 14. 5>i, 18.

15. A in !», !iM(l B ill is d. lO. 28, 2X 17- '35, 28.

18. 1, 40 ; 11, ;J0.

19. B(»n<(lit, :2'/ and 24if ; sokl, iH)^ aud 32^,

a{h — c)

21. I, i; II, IJ. 22. -^J7^—

23. A, .^;]000 (L'^ 4,^/; 13, *4000 (<i) h% ;
C, $4500 d? 0;.'.

24. 1,120; 11,111; III, 110.

KM. 3. 12, 24, oc. 4. 005, lo:^. •'i«f^' •'^^^4' :^:^:H-

i a + 2

(I 4- />'a-b8. a- = , , // = .• lo- • II. 2.
rt. -2

14. *7o;3G. 15. I, %57700; 11, $12000. 16. 8.

,7. 448 and 1008. 18.
^ f ^, ,7^-y

19. : p. gold, 5 p. silver. 20. 5 p. gold, 3 p. silver.

21. T-
2nm +(ni-\-bin

water

;

bm+2bn-\-(Ui

{o-\-b){m-\-n)
-7 . alcohol.

22. 'Mm^-2an-\-bm : ':Sbn-\-2bin -{-an.

23. ( ;> + q) am + pan + qbiii : {p + q) bn+ ;j6/» + qan,

24. I, 5 : 3 ; II, 1 : 3.

17:5. T. 1 + 4,c + 10./:2 ^ i:)^ -I- 9.r».

2 1 + 4;r + lOx- + 20x^ 4- 25.7.^ + 24^^ + 10^,-«

3 i + 4./:+10.'kH20./'3+ 25x^ + 34.'c5+ 30.^;6+ 30./-t + lO-^"'

+ 25aio. 4. 1+ 4:/-+ 10.7:2-1- 20^5+ 2r)r»+ 34a;5+ 48x«

+ 54r< + 70.?;8 ^ 48.^0 + 25a;io+ 00.?:" + 30^12.

5. 1
_ 4*. -(- lOa;^ o(X^.3 ^ 25.r» — 24rr'' + lGa:«.

177. I. {<i + *)S (« + ^)' (^' + ^) •

4. ^<- 4- 2/)S (^ + i/)-' C-^' + ^)
h

178.17. '< (^ - oy



468 AKSWA'BS.

:\ III-.

M

184. I. 10 + 3(5\/5 - 2v;J — 3^10). 2. 37a/^ — 17.

4. a + b -\- c + d + 2 {'s/ab + Vac + V«f/ + 's/bc

-\ y/bd + '\/al).

4 1

12.1. 13.^/2(^/^ + 1). 17. (2;-2/)^[(a:-y)^-l],

19.

Vrt + b
20.

«a; + ^ ^^ (rt — ;?;)^ + 1

(a + x)^ — 1«:c
21. -

« c^K («' - 30)^- V^'-y a/1 - .-^2 7\/i5
185. I. ^^—

^

TT-' 2. —^- 3. — 4
y " 1 — a; 45

5. -:^. 6. 5V3. 7. -^.ly- ^- —r^T^-
« —

G

•2\/3

3

(V^- + Vy)^ .
rt'^ + rt {x. + ?y)^ - 2 (.7: + y)

g. ' 10. •

X — y a — X — y

9^15 4-41 {y/x— ViT^iY
II.

•y

13. —^-^-^ '-• 14- (^« + 1)' — ai.
a*

15-
;« + V^ — d^

a

187. I. .r^ + 2.c^ = (:*;- //)-2 - y\

2. x^ + 4.17/ = {x + 2//)3 — hf.

3. .?;2 + Grti; = {x -r ^af — 9«2.

4. 4:t;2 + 4.Ty = {^Ix + ?/)2 — y".

190.1.4 2.
^-i^^-. 3. (« + ^)'. 4-6. 5. v^.

7'^

"5'_«v

6. ^<^U^^ 7. (ft2 _ J)2)mq>np^ 9. (^4 _ 2«aZ,2 ^ 2«<)^.

10. 0^ -\- n. II. r- 12. -

(1 _w2)i "'" (1-922)2

191. I. 6, 12, 4. 2. 15, 12. 3. 47, 35. 4. IG. 5- « + 1.

6. 8, 16. 7. 64, 512. 8. 16, 48.

O. 10. lO. 10. 7— TT,, ; rr,' H. ^O, 3d.

ii



. y/V'Z - 17.

- Vad + Vdc

i^ + y). II. 1.

7\/l5
'' -T5—

(rt — VxY
„ •

fr — X

- ^ {^ + y)

-y

5- V«*.

G. 5. a + L

. 28, 36.

ANSWERS. 460

12. w =:y
rtc — ac

\/ itb' - ah
X =v.

h'c — /yc'

ah' — «^* 13. 10, U.

14.

(W + ?i2y^

J 5- tVA

195. I. r>; -10, - 2
y = ± S. 4. y = a±b.2. V =

5. a: = — fl or — 5, 7. a: = «(l ± V^).

8. y .(- 1 ± Vi2'.)). 9- y

10. a; ±V!
2

I. ± 21, ± 27. 2. 4 and 10.

3" ±1:. 4. 'JG, 34. 5. 10, 15,30.
6. 0, 10, 14, 18, or -18, -14, -10. -
7. 35. 8. 21 turkeys, 25 chicken

G.

9. 12. 10. 10.

19G,

203.

I. 250. 12. 3. 13. Length, 45; hreadth, 3

14. ^^(V-im^ + «2 + rt) and ^(Vi^^^T"^"^ - «).

15. 72 or 108.

1.81. 2.121. 3.225. 4.289. 5. 25G. 6. V3±3V6.

v. ;(:±ViH>..©'.i. ,y(„.+i)-.
a^

I. a; = «
2. ri'

5. a; ~ 1. 6. a; =:

8. a: = 5 or
9

— a. 3. a; = 13.

— 1 ± VlG(<Tq~f

8

4. 2: 50.

7- .^ = 16.

9. X = cfi — b'^± bVb^ - a\

10. .-c — 4. n. a; = « or
rt

303. I. X or 5.
10

// = -- or 2.

2. a; = — 4 or + 13, «/ = or — 17.

3- ^ = -3- ±^ V^863; y = ^(l ip V^63).
4. a: = 11 or - 7f|, ^ = 15 or - 17M.
e 'Y 01 ^« ,< . ,. r.lD „.. .» ^ **

5. a: = — 21 or 4 28 or 3.

304. I. a:=1.37... or — 0.15G...; .y=:— 4.46... or -6.09G.

y or — 4 : X =
12

14
or .

S. X = 2 or 6; y = 6 or 3.



A^ r\

AysWEIiS.

»>05. I. ^ = ± 1 or i: X 'Zy or -4f/.

'»

^ - ± .,
<'!• ±2. 7/ —

307.
Viij'

:i; = T .,
or ±

'Z

a; = ±5; ?/ = ±:>.
Vio

2. .r = ±8; y ^- ±3.

3- ^ ('") ± Vo)
; y = , (5 T Vo).

4. ?/ = 7 or 2 ; ;r = 3 or 7. 5. a: = 5 or 7
; y = 7 or

G. x=z ± 1); ;?/ = :f 2. 1- x = ±% -, y - ± 9.

8. ;r = ± -7=r^; y =
Vc

--=• 9- x=2\ y=l.
a + b " Va + b

10. X = a{a±b)yy = h {a ± h). 11. x = 4; y
13. X

3
12, .T = ^ ; ?/

^

1
5.

1

- l5' ^ - 15*

14. x = i); y = lor2',z=2orl. 15, x = 5; y = 3.

16. Time, 6 or 7; rate, 7 or 6. 17. Dist., 30 or 4G|.

18. X =
^ (V«2 + 4^2 + V^z^T^^i^);

-« _

y == vtVrt*' + 4^ - V«' - 4(^i

19- o (1 ± Vs) and
I (3 ± Vo).

20. 24 and 0, or —1.2 and -18. 21. 49 and 25.
22. G4 and 8.

23- >n + n qp Vni^ -^7^2 .^nd m + ?i ± V/^^ i- ?il

24. 12 men working 12 li. 25. 8 ; 10.

;:6. .T = j-G; y = ±4. 27. 11; 3.

210. 7. 14075. 8. 5050. 10. n\ 11. 71^ + n.

\2. Lowest, 140 — (jm ; all, 137//J — 3^2^
i5. 0, 2, 4, G, 8. 17.951. iS. 4, 10, IG. 19. 11 or 8.

21. 10 or IG d. 22. days. 23. 2, 5, 8, 11, 14.

25. 2, G, 10, 14, 18, 22, 26, 30, 34, 38. 27. 3, 5, ... . 29.
/

28. a^ « -f-
- -, a + .-V- -', etc.M- 1

'

/ + 1

212, 6. Last nail, *2147483G.48 ; all, '<!42049G72.95. 7. 246.

12. 5 or ^.
5

'-514. I ^' 2 '2 -2 ^ i*r^r^. m^—2?nI.
- 2. 2. 3. --^. 4. ^. 5. ^. G. ^^. 7.

--s:^-^-io

i'i=



ANSWERS. 471

-4?/.

a/10
i; ^^- ±3.

3r7; y = 7ora.
o; ^= ±9.

9- ^"=2; y=:l.

j^' = 4
; y = 5.

15'

', 30 or 46f.

and 25.

19- 11 or 8.

1,14.

3, 5, ... . ^<j.

2.95. 7. 246.

7-
Wi3_l"

8.

8.

316. I.

1'2 — C) -\- 3 — -
-f- etc., ad inf. from A to li.

3- 1- 4- rr.' 5

707

iioo"

$210.74. 3. 2.7232oa.

10 11 110
7- ^,

108

000

4. a
(^+4r->

(^-iior-r+Bj
and

(
1 +

100/

326 (rt). 1. 440.

16. 1. 17. •

23.
1

-4- 2^

237. I. .43 = A
jIjO = —

2. ylg = IG

4-

(^+n;or'
3. 74. 4. 148. 5. 0. 6. 0.

4. 18. 10. 19. 20. 20. .35. 21.56. 22.0.

. — 1. 3. 74. 4. 148. 5. 0. 6. 0.

I
— Aq-, A3 = —Aq ; A^ = —A^ ; etc.

;

A,.

Jj -15^0- 3- -I5 =-i.3J. +3C.1„.

4o + «/-')• 5-

r(r'^-l)
.1

6. Jg = kA. + yl
'

228. I. 71 — 4: terms are omitted. 5. 5 _ 2

.^le = (120^-5+ 061-3+ 9;^-)^

+ (120X-* + 30P4- l)^4o

I. 120. 2. 720. 3. 40320. 4. 35. 5. 56.

I.

230. I.

6.

232. 2.

233. 6.

245. I.

247. ro.

2^.3. 2. 23.32. 3. 22.5.13. 4. 1.32. 5. 32.51

28.

7. 3. 1. 4. 1. 5- 4.

First wheel = 7, second = 5, third = 3 turns.

113

355

17
58'

10 ox 4- 1

bc + 1

3 {ox + 1) 4- ic

a {be + 1) + c

251. 2. ;. 4. 720. 5. 24.



•»

472

6.

7-

*^5:j. I.

254. 4.

!^55. I.

251, 3.

9-

258. 2.

361. 3

363. I.

367. I.

7-

15-

360. I.

3-

5-

6.

7.

.43^6rTFA'i?^.

(a) 21G0 even, 2880 ocUl
;

(b) 144; (c) 720
;

(d) 576.

720. 8. 120. 9. 120. 10. 120. 11. 12. 12. 72.

144. 14. 720.

3(J0. 5. GO. 6. 00 7. 24.

720. 2. 120. 3. 48. 4. 4. 5. 2880. 6. 14400.

140. 5. 048G480.

5. 2. 5. 3. 8. 4. C. 5. IG. 6. 17.

3, 21, 36. 5. 10. 7. 3. 8. 3.

(a) 1 ; (5) 3 ; (r) 6 ways. 10. 3003.

35
/27i — 1\ I'Zu — \\

15 and 20. 5. (^^)-
120. 2. 240. 3. 2». 4. 81 routes.

% ^' 3' 3' ^' 36' 18* "^ 36"

^ 8
5* ^'3

2 1

3' 3

1 5

'Zmn

1
5-6'

9-I4-

3 1
10. —

•

II. -'
10 o

16.

13-

2"'

6.

3
— •

7
14

• 27'

n
^7- 9-„-

(/« + w)(m + M— 1) '"'10

2,2 63 „ 1 7.9
5
"^^^15-

-^-"'SO' ^'80' ^'80' ^'80

3
2 to 1 ill favor. A- -r-,'

14
dmn {m — 1)

(in + n) {m -\- u — 1) (m + u — 2)

^ = 7' ^ = 2l' ^==2l' ^"=7' ^^2l* *'="2i"

1

2^

2n1

-, X = -'. 8. A,;,; B i.

4

1 2»

3
on

2«

10.

12.

371. I.

374. I.

2 2« — 1
' 22 2« — 1 ' " ' 2« 2" — 1

36 3^ 25

91' '91' 91'

The chances are 41 to 25 in favor of the first purse,

^JL ^ ^ i?_ J: -, .?il ^^

243' 243' 243' 243' 243* '' 2048*

(a) 0.429
;

(b) 0.159; (c) 0.813; (^Z) 0.655

(e) 0.371; (/) 0.110; (^) 0.151; {/i) 0.025.

3- o27
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ic) r20
; {(l) 576.

". 12. 12. n.

>80. 6. 14400.

17.

1 . 1
•6* ^-r

3
7"^^- 7- ^4- W

n

'80

1
'3'

_ l__
~ 2" —T*

le first purse.

16
^' 27'

.655;

025.

2. 69. 4. $296.30. 5. 0.4533.

6. *1000; $1666.67; $2111.11. 7. « [1 _ (I - ;M.
8. 0.1123. 9. $1894. 10. $1224.

378. I. 140. 2. 70. 3. 112. 5. 22^. 6. 28(y-l).

8. 54^2. p,

383. I. l + a;4-ar2H-ar3 + etc. 2. 1 + 2a;+ 22.i-8+ 232^5+ etc.

3. 1— 2a:4-2.T2_3;e3+ etc. 4. l + 2:<;+ 2.t;2+ 2.1-3+ etc.

5- 1—a:— .^•'+ 5a:3— 7:^4— etc. 6. l+a;+a:H2^+ari+ etc.

7- 1 — 4.2; + 8.1-2 — 4.1-3 _ iQ^i ^ ^^(3^

8. 1 — 2a; + 2a;2 -- x^ — o^ -\- etc.

383. 1. 1— 3a:+ 3.?;2— 3.T3+ etc. 2. l + 2a;+ a;2_a^_2a:4_etc.

388. 1. ^ll?^I±i). 2
^^ (^^ + 1) - .9 (.. + 1)

2 2

y?(M 4-l)--w(^/;- l) ;7(io-f 2^«-l)
3. 3 — 4.

6. 3?i2 _ 3;^ 4. 1.

389. I. 165. 2. ?il!y:iitLt^-i:A(^JM+ 2)

1.2-3
~~*

7^(/? + l)(7^ + 2)-0/?- 1) wi (m + 1)
^'

I.2T3

393. I. S^ = 210; ^Vg = 2870; .S'3 = 42665.

r(4/-2 — 1)

3
2. S^ = r2; ,S'

3. ^, = r(;.+ 1); ^, = ?^iL±Jil!rJli).
o

4. iV^a =3;9<7-3(/> + ^) + 5;

JVp z= spq — IAIzlI)
(3^^ + 3r^ - 25 + 1).

5. 5fl+ 156+ 55c. 6. ^L + ^L+i(a^^^ + lj'

2 lA L_\
w + 3 • 2\3 2;« + 3/

. 2/111 1_ 1 1 \

^' 312"^
3
"^4 « + 2~;r+T"';rfi/*

395. I. ^ - ^

^' 20+2~^Tl~^TT2)" 5.
1

a



474 AA\SWERS.

2im. I.
2^(1-/«-')

,
rt [1 - {'in - 1) r"l

T
rt (1 4- r)

+ l-r and
(1 - yf

Umr
and -,

'4a

{i-rf
hr (I — ?'") (tr--{a + ^^J) r»+i (J 4. «);•—«?•'

(1 - yf
+

1 —

r

and
(1 _. r'ka

39
300. 2. A5 = - 305 ; A j = „

/'^ - "^ i2 .._ 2: ..y 5
:e

341° 5' 10".9+(;;. - 1) (T 0' 0".0) - (7i_l)(7e_2)'

4. 495 + 15 (m — 5)
(m — 0) {n — G)

2

Morning of May 23 or Apr. 24.

304. I. 1. 2.
a in 1
,• 3. — • 4. -• 5. '2a. G. — 1.

308. I. VS = 2.828437 ; V2 = 1.414214.

1
. _ 1-J. 3 _ ia-J3 3 _ 1.1.3-5

JJ"^' ^
4'^'"

"2.4-0''^ 2-4. G.8'
2. 1 — ^.r — --4.^'" — ~^T—.x^ — --^^-^Zx^ — etc.

3. Goncial term ~ — 1-1. 3. 5-7.... 2/- 3 .

2-4-G.8 2i

, ,,,1.3.5....(2/— 1) . /m\l
4-(-^)^-2:4:g:^-:T27-'^-*- 5. {j)~,
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For tlio iM'ncfit of students who may contemplate a course of rcadinjj:

in tliL- vtu'ious hranches of Advaiired Al^fl)ra, tlu^ followiuir list of niilt-

j( cfs and Ijookf has been iJrc'iiarL'd. As a {general ruK-, tlic most extended

and tliiiroufi:li treatises are in the (lernian Laii^nui^e, wlulo the French

works are noted for elegance and simplicity in treatment.

To pursue any of tlie^e 'uibjects to advantage, the student ehouhl be

familiar with the Ditlerential Calculus.

I. THE GENERAL THEORY OF EQUATIONS.—In English. ToD-

liUXTEU's is the work most read.

Berukv, A/;/rbre Snp'rienir, 2 vols., 8vo, is the standard French wcjrk,

covering all the collateral subjects.

JoiiD.VN, IVu'orie dcs SubntUntiDiu et des EquationH Ahjrhriqucs, 1 vol.,4to.

is the largest and most exhaustive treatise, but is too abstruse for

any but experts.

II. DETERMINANTS—Bat.tzei^, Theorio. drr Detrrmivrivtcn, is the

standard treatise. Tliere is a French but no English translation.

A recent I'higlish work is Koiu-:ht F. Scott. T/ic Tluonj of Bitci'-

minants and their AppUattions in Aiudynis (ind Geometry.

III. THE MODERN IlKJHER ALCJEHRA, resting on the theories of

Invariants and Covariants.

Salmon, Lessons introductory to the Modern Higher Atgehra, is the

standard English work, and is especially atlapted for instruction.

Clebscii, Theorir. der binaren Algibniischtii Formm, is more exhaustive.

in its sp(!cial branch and reijuires more lamiliarity with advanced

systems of notation.

IV. THE THEORY OF NUMBERS. There is no recent treatise in

English. Gauss, Disquidtioneti Arithmetiem, and I.kgknduk,

Theorie dcs Nombres, are the old standards, but the latter is rare

and costly. Lejeumc Diuiciii.rvr, Vorlemnigen iiber Zahlciitheorie,

is a good (lerman Work. There is also a chapter on the subject in

Se«ket, Algebre Superienre. .

V. SERIES.—This subject belongs for the most part to the Calculus, but

Catalan, Trnite elemeiitaire des SHrPs, is a very convenient little

French work on those Series which can be treated by Elen eutary

Algebra.

VI. QUATERNIONS.—Tait, Elementary Trexdisc on Qnnternions, is

pr(>i)ared especially tor students, and contains many exercises. The

original works of Hamilton, Lectures on Qjtedcrnions and Elements

of Qnnternims, are more extended, and the latter will be found

valuable for both reading and refereuce.




