|12.2

IMAGE EVALUATION

TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH
Collection de
microfiches.

Canadian Instituta for Historical Microreproductions / Institut canadien de microreproductions historiquas
(c)

1

 3

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

\square
Tight binding may cause shaciows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image ${ }_{6}^{\prime}$ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

The ima possible of the o filming

Original beginni the last sion, or other or first pa sion, an or illust

The last shali co TINUED whiche

Maps, p differen entirely beginni right an requirec method

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Harriet Irving Library
University of New Brunswick

Tine images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shail contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol $\boldsymbol{\nabla}$ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Harriet Irving Library University of New Brunswick

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, é: en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction differents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, at de haui , bas, en prenant le nombre d'images n...essaire. Les diagrammes suivants illustrent la méthode.

BY THE SAMH AUTHOR.
ALGEBRA FOR COLLEGES.
KEY TO ABOVE.
ELEMENTS OF GEOMETRY.
ELEMENTS OF PLANE AND SPHER-
ICAL TRIGONOMETRY.
ASTRONOMY. For Students and General
Readers. By Smon NEWComis and Eb-
WARD S. HoidEN.

ALGEBRA

FOR

SCHOOLS AND COLLEGES

BY

SIMON NEWCOMB

Professor of Mathematics, United States Navy
TIIIRD EDITION, REVISED.

NEW YORK
IIENRY IIOLT AND COMPANY
1882

CopyRIGHT, 1881,
By
Henry Holat \& Co.

PREFACE.

The course of algebra embodied in the present work is substantially that pursied by students in our best preparatory and scientific schools and colleges, with such extensions as seemed necessary to afford an improved basis for more advanced studies. For the convenience of teachers the work is divided into two parts, the first adapted to wellprepared beginners and comprising about what is commonly required for admission to college; and the second designed for the more advanced general student: As the wrek deviates in several points from the models most familiar to our teachers, a statement of the principles on which it is construeted may be deemed appropriate.

One well-known principle underlying the acquisition of knowledge is that an idea cannot be fully grasped by the gouthful mind unless it is presented under a concrete form. Whenever possible an abstract idea must be embodied in some visible representation, and all general theorems must be presented in a variety of special forms in which they may be seen inductively. In accordance with this principle, numerical examples of nearly all algebraic operations and theorems have been presented. For the purpose of illustraun, numbers have been preferred to literal symbols when they would serve the purpose equally well. The relations of positive and negative algebraic quantities have been represented by lines and directions from the beginning in order that the pupil might be able to give, not only a numerical, but a visible, meaning to all algebraic quantities. Should it appear to any one that we thus detract from the generality of algebraic quantities, it is sufficient to reply that the system is the same which mathematicians use to assist their conceptions of advanced algebra, and without which they would never have been able to grasp the complicated relations of imaginary quantities. Algebraic
operations with pure numbers are made to precede the use of symbols, and the latter are introduced only after the pupil has had a certain amount of familiarity with the distinction between algebraic and numerical operations.

Another, but, unfortunately, a less familim fact is, that all mathematical conceptions require time to become engrafted upon the mind, and the more time the greater their abstruseness. It is, the author conceives, from a failure to take account of this fact, rather than from any inherent defect in the minds of our youth, that we are to attribute the backward state of mathematical instruction in this comentry, as compared with the continent of Europe. Let us take for instance the case of the student commencing the calculus. On the system which was almost universal among us a few years ago, and which is still widely prevalent, he is confronted at the outset with a number of entirely new conceptions, such as those of variables, functions, increments, infinitesimals and limits. In his first lesson he finds these all combined with a notation so entirely different from that to which he has been accustomed, that before the new ideas and forms of thought can take permanent root in his mind, he is through with the subject, and all that he has learned is apt to vanish from his memory in a few months.

The author conceives that the true method of meeting this difficulty is to alopt the French and German plan of teaching algebra in a broader way, and of introducing the more advanced conceptions at the earliest practicable period in the course. Accordingly, the attempt is made in the present work to introduce each advanced conception, disguised perhaps under some simple form, in advance of its general enunciation and at as carly a period as the student can be expected to understand it. In doing this, logical order is frequently sacriticed to the exigencies of the case, because there are several subjects with which a certain amount of familiarity must be acquired before the pupil can even clearly comprehend general statements respecting them.

A chird feature of the work is that of subdividing each subject as minutcly as possible, and excrcising the pupil on the details preparatory to combining them into a whole. To cite one or two instances: a difficulty which not only the beginner but the expert mathematician frequently meets is that of stating his conceptions in algebraic language. Exercises in such statements have therefore been made to precede any solution of
bols, rtain meratical I the ives, ereut ward I the Ident ersal con-
sneh mits. tirely e the nincl, anish lty is oader rliest n the chaps at as loing case, amilhend culty ently cises of
problems. In genernl earh principle which is to be presented or used is stated singly, and the pupit is practiced upon it befere proceeding to anotler.

Subjects hase tor the most part been omitted which do not find appli. eation either in the " k itself or in subsequent parts of the usual course of mathematics, or whic: do not conduce to a mathematical training. Sturm's Theorem has been entirely omitted, und a more simple process substituted. The subject of the greatest common divisor of two polynomials has been postponed to what the anthor considers its proper place, in the general theory of equations. It lans, however, been presented in such a form that it can be tanght to papils preparing for colleges where it is stili required for armission.
Thoronghness at each step has been aimed at rather than multiplicity of subjects. It is, the author conceives, a great anl too common mistake to present a mathematieal subject to the mind of the stutent withont sufficient fintiness of explanation and variety of idustration to enable him to comprehend and anly it. If he has not time to master a complete course, it is bette" to omit entirely what is least necessary than to gain time by going rapidly over a great mumber of things. Some hints to those who may not have time to master the whole work may there ') es be acceptable.
Pait I is essential to every one desiring to make use of algebra. Book VIII, especially the concluting sections on notation, is to be thoroughly mastered, before going farther, as forming the foundation of alvanced alsebra; and affording a very easy and valuable diseiplire in the language \because mathematics. Aiterward, a selection may be made according to circumstances. The student who is pmisuing the sulbject for the sole purpose of liberal training, and withont intending to advance beyond it, will find the theories of numbers and the combinatory analysis most worthy of stut, The theory of probabilities and the method in which it is applied to such practical questions as those connected with insurance will be of especial value in training his jurlgment to the affairs of life.

The student who intends to take a full course of mathematics with a view of its application to physies, engineering, or other subjects, may, if necessary, omit the book on the theory of numbers, ant portions of the chapter on the summation of series. Functions and the functional notation, the doctrine of limits, and the general theory of equations will clain his
expecial atention, while the theory of imagnary gnantities will be studied mainly to secure thoronghess in subsequent parts of his course.

As it has frequently been a part of the author's duty to ascertain what is really left of a course of mathematical study in the minds of those who have been through college, some hints on the best methods of staly in connection with the present work may be excused. If asked to point out the greatest error in our usual system of mathematical instruction from the common sehool upward, he would reply that it consisted in expeming too much of the mental power of the student upon problens and exercises above his capacity. With the exception of the fundamental routine-operations, problems and exercises should be confined to insuring a proper understanding of the principles involved: this once ascertained, it is better that the student should go on rather than expend time in doing what it is certain he can do. Problems of some difficnity are found among the exercises of the present work; they are inserted rather to give the teacher a good choice from which to select than to require that any stulent should do them all.

It would, the author conceives, be fonnd an improvement on our usual system of teaching algebra and geometry successively if the analytic and the geometric courses of mathematics were pursued simultancously. The former would include algebra and the calcilus, the lattor elementary geonetry, trigonometry, and analytic geometry. The analytic course would then furnish methods for the geometric one, and the latter would furnish applications and illustrations for the amalytic one.

The Key to the work, which will be issued as soon as practicable, will contain not only the usual solutions, but the explimations and demonstrattions of the less faniliar theorems, and a munber of adiditional problems.

The author desires, in conclusion, to express lis obligation to the many friends who have given him suggestions respecting the work, and especially to Professor J. Howard Gore of the Columbian University who has furnished solutions to most of the problems, and given the benefit of his experience on many points of detail.

PAR'T I. - ELEMENTARY COURSE.

BOOK I.-THE ALGEBHAIC LANGUAGE.
fimapter I.-Algebraie Numbers and Operations, 3 . General Definitions, 3. Aigebraic Numbers, 4. Algebraic Addition, 6. Subtraction, 8. Multiplication, 9. Division, 11.

Chapter II.-Algebraic Symols, 12. Symbols of Quantity, 10. Signs of Operation, 13.

Chapter ill,-Formation of Compolnd Expressions, 17. Fundamental Priuciples, 17. Definitions, 19.

Chapter IV.-Construction of Algebraic Exphessions, 22. Exercises in Algebraic Language, 05 .

> BOOK II.-ALGEBRAIC OPERATIONS.

General Remarks, 28. Definitions, 28.
Chapter I.--Algebraic Addition and Subtraction, 30. Algebraic Addition, 30. Algebraic Subtraction, 33. Clearing of Parentheses, 35. Compound Parentheses, 37 .

Chapter II.-Multiplication, 38. General Laws of Multiplication, 38. Multiplication of Positive Monomials, 40. Rule of Sigus in Multiplication, 41. Products of Polynomials ly Monomials, 44. Multiplication of Polynomials by Polynomials, 4 .

Chapter III.-Division, 5?. Division of Monomials !y Monomials, 5?. Rule of Sigus in Division, 53. Division of Polynomials ly Mono-
 Lenst Common Multiple, 61. Division of one Dolynomint by mother, fis.
 Dissection of Fractions, 83. Aggregution of Fractions, 74. Finctor. ing Fractions, is. Multiplication and Divinion of Fractions, $\%$. Division of one liruction by another, 83. Reciprocal Relations of Multiplicution mud Division, 83.

BOOR III.-OF EQUATIONS.

Chapter t-The: ledection uf Equations, 85. Axioms, 8\%. Opera. tions of A delition nul subtraction-transposing Terms, 87. Operation of Maltiplication, 89. Reduction to the Nomal Form, (10). Degree of Equations, 0:3.

Chidien Il--Equations of phe Finst Deghee with One UnKNown Quantity, 94. Prohlems lending to Simple Equations, 99. Problem of the Conriers, 105. Problems of Circular Motion, 108.

Cilipter III-Equitigns of the First Deghee witht Several UnkNown Quantities, 109. Equations with Two Unknown Quantities, 109. Solution of a pair of Simulancous Equations containing 'Two Unknown Quantities, 109. Elimimation by Comparison, 110. Elimination by Substitution, 111. Elimination by Addition or Subtraction, 112. Problem of the Sum and Differences, 113. Efuations of the First Degree with Three or More Unknown Quantities, 116. Elimination, 116. Equivalent and Inconsistent Equations, 121.

Chapter IV.-OF Inequalities, 123.

BOOR IV.-RATIO AND PROPORTION.

Chapter I.--Natume of a Ratio, 128. Propertics of Ratios, 132.
Chapten II.--Pbopommon, 183. Theorems of Proportion, 134. The Mean Proportional, 108. Muliple Proportions, 139.
als, 58. nhal by

BOOK V.-OF POWERA AND BOOTS.

Chapter I-Dnvoldtion, 14. Luwolution of Products and Quotients, 144. Involution of Powers, 145. Cinse of Negutive Exponents, 147. Algebraic Sign of Powers, 148. Involution of Binominls-the Binomhal Theorem, 148. Siguare of a Polynomina, 153.
('hapter II.-Evolution and Fractional Engonents, 155. Powers of Expressions with Fractiomal Exponents, 15\%.

Chapter 1hi--Redection of Imbafionab, Expressions, L59. Definitions, 159. dgrgregation of Similar 'Terms, 160. Finctoring S'urds, 161. Perfect ${ }^{2} q$ quares, 166. To (omplete the Square, 16\%. Irrational Factors, 169.

BOOR VI.-EQUATIONS REQUIRING IRRATIONAL OPERATIONS

Chapter I.-Equations witi Two Terms only, 170. Solution of a Binomial Equation, 1\%0. Specinl Forms of Binomind Equations, 171. Positive and Negntive Roots, 172.

Chapter 1I--Quadratic Equations, 174. Solution of a Complete Quadratic Equation, 175. Equations which may he reduced to Quadratics, 179. Factoring a Quadratic Equation, 184. Equations having Imaginary Roots, 188.

Chapter Ill.-Redection of Imbational Equations to tie Nommal Fonm, 189. Clearing of Surds, 189.

Chapter IV.-Simultaneous Quadiatic Equitions, 193.

BOOK VII.-PROGIRESSIONS.

Chapter I.--Aritimetical. Progression, 200. Problems in Progression, 202.

Chapter LI--(feometrical Progression, 207. Problems of Geometrical Progression, 208. Limit of the Sum of a Progression, 211. Compound Interest, 21%.

PART II.-ADVANCED COURSE.

BOOK VIII.-RELATIONS BETWEEN ALGEBRAIC QUANTITIES.

Functions and their Notation, 2\%1. Equations of the First Degree between Two Variables, 224. Notation of Functions, 230. Functions of Several Variables, 233. Use of Indices, 233. Miscellaneous Functions of Numbers, 235.

BOOK IX-THE THEORY OF NUMBERS.

Chapter I.-The Divisibility of Numbers, 238. Division into Prime Factors, 239. Common Divisors of two nambers, 240. Relations of numbers to their Digits, 245. Divisibility of Numbers and their Digits, 245. Prime Facturs of Numbers, 248. Elementary Theorems, 251. Binomial Coefficients, 251. Divisors of a Number, 254.

Ciapter Il.-Of Continued Frictions, 258. Relations of Converging Fractions, 267. Periodic Continued Fractions, 2\%0.

BOOK X. -THE COMBINATORY ANALYSIS.

Chapters I.-Permotations, 273. Permutation of Sets, 275. Circular Permutations, 27\%. Permutations when Several of the Things are Identical, 279. The two classes of Permutations, 281. Symmetric Functions, 284.

Chapter II-Combinations, 285. Combinations with Repetition, 287. Special Cases of Combinations, 289. The Binomial Theorem when the Power is a Whole Number, 296.

Chapter III.-Tieory of Probabilities, 299. Probabilities depending upon Combinations, 300. Compound Events, 305. Cases of Unequal Probability, 810. Application to Life Insurance, 316. Table of Mortality, 319.

BOOK XI-OF SERIES AND TIIE DOCTRINE OF LIMITS.

Chapter I.-Natcre of a Series, 391. Notation of Sums, 324.

SE.

QUANTITIES.

de First Degree tions, 230. Func-
13. Miscellaneous

ERS.
ivision into Prime rs, 240. Relations Numbers and their mentary 'Theorems, Number, $2 \pi 4$.
tions of Con verging $2 \pi 0$.

ALYSIS.

Sets, 275. Circular eral of the Things atations, 281. Sym-
hs with ?epetition, e Binomial Theorem

Probabilities dependfents, 305. Cases of Life Insurance, 316.

INE OF LIMITS.

Chapter II.--Development in Powers of a Variable, $8: 6$. Method of Indeterminate Coefficients, 32?. Multiplicatiea of 'I'wo Infinite Scries, 333.

Chapter III.-Summation of Ser .s. Of Figurate Numbers, 836. Enumeration of Triangular Piles of Shot, 339. Sum of the Similar Powers of an Arithmetical Progression, 341. Other Series, 345. Of Differences, B50. Theorems of Differences, 355.

Chapter IV.-The Doctinine of Limits, 358. Notation of the Method of Limits, 361. Properties of Limits, 364.

Chayter V.-The Binomial and Exponential Tueorems. The Binomial Theorem for all values of the Exponent, 368. The Exponential Theorem, 378.

Cifapter VI.-Logarithms, 378. Properties of Logarithms, 378. Comparison of Two Systems of Logarithme, 384.

BOOK XII.-IMAGINARY QUANTITIES.

Cifapter I.-Operations witil the Imaginary Unit, 391. Addition of Imaginary Expressions, 393. Multiplication of Imaginary Quantities, 393. Reduction of Functions of i to the Normal Form, 396.

Chapter II.--The Geometrical Representation of Imaginary Quantities, 404.

BOOK XIII.-THE GENERAL THEORY OF EQUATIONS.
Every Equation has a Root, 416. Number of Roots of General Equation, 418. Relations between Coefficients and Roots, 425. Derived Functions, 427. Significance of the Derived Function, 430. Forms of the Roots of Equation, 431. Decomposition of Rational Fractions, 433. Greatest Common Divisor of Two Functions, 438. Transformation of Equations, 442. Resolution of Numerical Equations, 44%.

FIRST PART.

ELEMENTARY COURSE.

BOOK I.

THE ALGEBRAIC LANGUAGE.

CHAPTER 1.

OF ALGEBRAIC NUMBERS AND OPERATIONS.

General Definitions.

1. Definition. Mathematics is the science which treats of the relations of magnitudes.

The magnitudes of mathematics are time, space, force, value, or other things which can be thought of as entirely made up of parts.
2. Def. A Quantity is a definite portion of any magnitude.

Example. Any definite number of feet, miles, acres, bushels, years, pounds, or dollars, is a quantity.
3. Def. Algebra treats of those relations which are true of quantities of every kind of magnitude.
4. The relations treated of in Algebra are discovered by means of numbers.

To measure a quantity by number, we take a certain portion of the magnitude to be measured as a, unit, and express how many of the units the quantity contains.

Remark. It is obviously essential that the quantity and its unit shall be the same kind of magnitude.
5. Def. A Concrete Number is one in which the kind of quantity which it measures is expressed or understood; as 7 miles, 3 days, or 10 pounds.
6. Def. An Abstract Number is one in which no particular kind of unit is expressed ; as 7, 3, or 10.

Remark. An abstraet number may be considered as a concrete one expressing a eertain number of units, withont respect to the kind of units. Thus, 7 means 7 units.

Algebraic Numbers.

\%. In Arithmetic, the numbers begin at 0 , and increase without limit, as $0,1,2,3,4$, etc. But the quantities we usue?ly measure by numbers, as time and space, do not really begin at any point, but extend without end in opposite directions.

For example, time has no beginning and no end. An epoch of time 1000 years from Christ may be either 1000 years after Christ. or 1000 yoars before Christ.

A heavy body tends to fall to the ground. A body which did not tend to move at all when musupported would have no weight, or its weight would be 0 . If it tinded to rise upward, like a balloon, it would have the opposite of weight.

If we have to measure a distance from any point on a straight line, we mey measure out in either direction on the line. If the one direction is east, the other will be west.

One who measures his wealth is poorer by all that he owes. If he (wes more than he possesses, he is worth less than nothing, and there is no limit to the amount he may owe.
8. In order to measure such quantities on a uniform system, the numbers of Algebra are considered as increasing from 0 in two opposite directions. Those in one direction are called Positive; those in the other direction Negative.
9. Positive numbers are distinguished by the sign + , plus ; negative ones by the sign -, minus.

If a positive number measures years after Christ, a negative one will mean years before Christ.

If a positive number is used to measure toward the right, a negative one will measure toward the left.
which no or 10.
idered as a its, without nits.

0 , and in-
But the s, as time but extend

0 end. An r 1000 years
body which uld have no rise upward, it.
point on a ction on the e west.
that he owes. th less than 1ay owe.
on a uninsidered as

Those in n the other
by the sign nus.
st, a negative
d the right, a

If a positive number measures weight, the negative one will iuply levity, or tendency to rise from the earth.

If a positive number measures property, or eredit, the negative one wiil imply debt.
10. The scries of algebraic numbers will therefore be considered as arranged in the following way, the series going out to infinity in both directions.

Ta NEGATIVE DIRECTION. POSITIVE DIRECTION. R Before. . After. Downward, Upward. Debt.
etc. Credit. etc. etc. $-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5$, etc.

Rem. It matters not which direction we take as the positive one, so long as we take the opposite one as negative.

If we take me before as positive, time after will be negative; if we take west as the positive direction, east will be negative; if we take debt as positive, credit will be negative.
11. Positive and negative numbers may be conceived as measuring distances from a fixed point on a straight line, extending indefinitely in both directions, the distances one way being positive, and the other way negative, as in the following scheme:*
etc. $-7,-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6,+7$, etc.
In this scale, the distance between any two consecutive numbers is considered a unit or unit step.
12. Def. The signs + and - are called the Algebraic Signs, because they mark the direction in which the numbers following them are to be taken.

[^0]The sign + may be omitted before positive numbers, when no ambiguity is thas prodised. The numbers $2,5,12$, taken alone, siguify $+2,+5,+12$. But the negative sign must always be written when a negative number is intended.
13. Def. One number is said to be Algebraically Greater than another when on the preceding scale it lies to the positive (right hand) side. Thus,

Algebraic Addition.

14. Def. In Algebra, Addition means the combination of quantities according to their algebraic signs, the positive quantities being counted one way or added, and negative ones the opposite way or subtracted.
15. Def. The Algebraic Sum of several quantities is the surplus of the positive quantities over the negative ones, or of the negative quantities over the positive ones, according as the one or the other is the greater.

The sum has the same algebraic sign as the preponderating quantity.

Example. The sum of

$$
\begin{array}{rcccr}
+7 & \text { and } & -7 & \text { is } & 0 ; \\
+9 & 6 & -7 & 6 & +2 ; \\
+5 & 6 & -7 & 6 & -2 .
\end{array}
$$

The sum of several positive numbers may be represented on the line of numbers, $\S 11$, by the length of the line formed by placing the lengths represented by the several numbers end to end. The total length will be the sum of the partial lengths.

If any of the numbers are negative, the algebraic sum is represented by laying their lengths off in the opposite direction.

Example 1. The algebraie sum of the four numbers 9, $-7,1,-6$, would be represented thus:
mbers, when 5,12 , taken e sign must nded.
ebraically ng scale it
-7;

- 2 ;
-5.
the combiraic signs, or added, icted.
quantities - the negane positive greater. te prepon-
epresented ine formed 1 numbers the partial aic sum is direction. umbers 9 ,

Here, starting from 0, we measure 9 to the right, then 7 to the left, then 1 to the right, then 6 to the left. The result would be 3 steps to the left from 0 , that is, - 3 . Thus, - 3 is the algebraic sum of $+9,-7,+1$, and -6 .

Ex. 2. If we imagine a person to walk back and forth along the line of numars, his distance from the startingpoint will always be the algebraic sum of the separate distances he has walked.

Ex. 3. A man's wealth is the algebraic sum of his possessions and credits, the debts which he owes being negative credits. If he bas in money $\$ 1000$, due from $\mathrm{A} \$ 1200$, due to $\mathrm{X} \$ 500$, due to $\mathrm{Y} \$ 350$, his possessions would, in the languare of algebra, be summed up as follows:

Cash,	-	-	-	-
Due from A,	+	-	-	-
	+1000			
Due from X,	-	-	-	-
Due from Y,	-	-	-	-
Sum totai,	-	-	-	-

[In the language of Algebra, the fact that he owes $\mathrm{X} \$ 500$ may be expressed by saying that X owes him - \$500.]
16. Def. To distinguish between ordinary and a. .gebraic addition, the former is called Numerical or Arithmetical addition.

Hence, the numerical sum of several numbers means their sum as in arithmetic, without regard to their signs.

1\%. Rem. In Algebra, whenever the word sum is used without an adjective, the algebraic sum is understood.

Algebraic Subtraction.

18. Memorendum of arithmetical dafinitions andoperations. The Subtrahend is the quantity to be subtracted.
The Minuend is the quantity ${ }^{\text {fon }}$, which the subtrathend is taken.
'The Remainder or Difference is what is left.
If we subtract 4 from 7, the remainder 3 is the number of unit steps on the scale of numbers ((11) from +4 to $+\%$ This is true of any arithmetical differenee of numbers. In Algebra, the operation is gencralized as follows:
19. Def. The Algebraic Difference of two numbers is represented by the distance from one to the other on the scale of numbers.

The number from which we measure is the Subtrahend.

That to which we measure is the Minuend.
If the minuend is algebraically the greater (§ 13), the difference is positive.

If the minuend is less than the subtrahend, the difference is negative.

In Arithmetic we cannot subtract a greater number from a less one. But there is no such restriction in Algebra, becanse algebraic subtraction does not mean taking away, but finding a difference. However the minuend and subtrahend may be situated on the seale, a certain number of spaces toward the right or toward the left will always carry us from the subtrahend to the minuend, and these spaces make up the difference of the two numbers.
20. The general rule for algebraic subtraction may be deduced as follows: It is evident that if we pass from the subtrahend to 0 on the seale, and then from 0 to the minuend, the algebrace sum of these two motions will be the entire space between the subtrahend and minuend, and will therefore be the remainder required. But the first motion will be equal to the subtrahend, but positive if that quantity is negative, and rice rersa, and the second motion will be equal to the minuend.

Hence the remainder will be found by changing the algebraic sign of the subtrahend, and then adding it algebraically to the minuend.

> EXAMPLES.

Subtracting +5 from +8 , the difference is $8-5=3$.

21. By comparing algebraic addition and subtraction, it will be seen that to subtract a positive number is the same thing as to add its negative, and vice versa. Thus,

To subtract 5 from 8 gives the same result as to add -5 to 8 , namely 3 .

To subtract - 5 from 8 gives $8+5$, namely 13 .
Hence, algebraic subtraction is equivalent to the algebraic addition of a number with the opposite algebraic sign. Aigebraists, therefore, do not consider subtraction as an operation distinct from addition.

Algebraic Multiplication

2\%. Memorandum of arithmetical definitions.

The Multiplicand is the quantity to be multiplied.
The Multiplier is the number by which it is multiplied.
The result is called the Product.
Factors of a number are the multiplicand and multiplier which produce it.
23. To multiply any alrebraic quantity by a positive whole number means, as in Arithmetic, to take it a number of times equal to the multiplier.

Thus, $\quad 4 \times 3=4+4+4=+12$;

$$
-4<3=-4-4-4=-12
$$

The product of a negative multiplicand by a positive multiplier will therefore be negative.
24. If the multiplier is negative, the sign of the product will be the opposite of what it would be if the multiplier were positive.

Thus,

$$
\begin{aligned}
+4 \times-3 & =-12 \\
-4 \times-3 & =+12
\end{aligned}
$$

The product of two negative factors is therefore positive.
2.5. The most simple way of mastering the use of algebraic signs in multiplication is to think of the sign - as meming opposite in direction. Thus, in \& 11, -4 is opposite in direction to +4 , the direction being that from 0 . If we multiply this negative factor by a negative multiplier, the direction will be the opposite of negative, that is, it will be positice. A third negative factor will make the product negative again, a fourth one positive, and so on. For example,

$$
\begin{aligned}
&-3 \times-4=+12 ; \\
&-2 \times-3 \times-4=-2 \times+12=-24 ; \\
&-3 \times-2 \times-3 \times-4=-3 \times-24=+72 ; \\
& \text { etc. }
\end{aligned}
$$

Hence,
26. Theorem. The continued product of an even number of negative factors is positive; of an odd number, negative.

Rem. Multiplying a number by -1 simply changes its sign.

Thus,

$$
\begin{aligned}
& +4 \times-1=-4 \\
& -4 \times-1=+4
\end{aligned}
$$

EXERCISES.

Find the algebraic sums of the following quantities:
I. $4-6+12-1-18$.
2. $-6-3-8$.
3. $-6-10-9+34$.
4. Subtract the sum in Ex. 3 from the sum in Ex. 2.
5. Subtract the sum $5-6+3-1-16$, from the sum $-2-7-4+8$.
6. Subtract the sum $5-6+3-1-16$, from the sum $7-3-8+4$.
7. Form the product -7×8.
8. Form the product $-8 \times \%$.
9. Form the product $6 \times-5 \times 7 \times-4$.
10. Form the product $-6 \times-11 \times 8 \times-2$.
11. Form the product $-1 \times-1 \times-1 \times-1$.
12. Subtract the sum in Ex. 1 from the sum in Ex. 3, and multiply the remainder by the sum in Ex. 2.
13. Subtract 8 from $-3,-3$ from $-1,-1$ from 8 , and find the sum of the three remainders.
14. Sultract $\%$ from -9 and the remainder from 2 , and multiply the result by the product in Ex. \%

Algebraic Division.

2\%. Memorandum of arithmetical definitions.
The Dividend is the quantity to be divided.
The Divisor is the number by which it is divided.
The Quctient is the result.
28. Rule of Signs in Division. The requirement of division in Algebra is the same as in Arithmetic ; namely,

The product of the quotient by the divisor must be equal to the dividend.

In Algebra, two quantities are not equal unless they have the same algebraic sign. Therefore the product,
quotient \times divisor
must have the same algebraic sign as the dividend. From this wo can deduce the rule of signs in division.

Let us divide 6 by 2 , giving 6 and 2 both algebrac signs, and find the signs of the quotiont 3 :

$$
\begin{aligned}
& +3 \times+2=+6 \text {; therefore, }+6 \text { divided by }+2 \text { gives }+3 \text {. } \\
& +3 \times-2=-6 ; \quad \text { " } \quad-6 \text { " " }-2 \text { " }+3 \text {. } \\
& -3 \times+2=-6 ; \quad \text { " } \quad-6 \quad \text { " } "+2 \times-3 \text {. } \\
& -3 \times-2=+6 ; \quad \text {; }+6 \text { " " }-2 \times-3 .
\end{aligned}
$$

Hence, the rule of signs is the same in division as in multiplication, namely:

Like signs in dividend and divisor give + . Unlike signs give -.

EXERCISES.

Execute the following algebraic divisions, expressing each result as a whole number or vulgar fraction:
r. Dividend, $-\%+10-11+25$; divisor, $20-3$.
2. Dividend, $12-3+15-10$; divisor, $3-10$.
3. Dividend, $25-36+6-20$; divisor, $-3+8$.
4. Dividend, $-7 \times-8 ; \quad$ divisor, $-8+4$.
5. Dividend, $56+8 \times-3 ; \quad$ divisor, $-4-4$.
6. Dividend, $-24 \times-1 ; \quad$ divisor, -3×-3.
7. Dividend, $-13 \times-10 \times-8$; divisor, $-4 \times 5 \times-6$.
8. Dividund, -1×-1; divisor, -3×-3.

CHAPTER II. ALGEBRAIC SYMBOLS.

Symbols of Quantity.

29. Algebraic quantities may be represented by letters of the alphabet, or other characters.

The characters of Algebra are called Symbols.
30. Def. The Value of an algebraic symbol is the quantity which it represents or to which it is equal.

The value of a symbol may be any algebraic quantity whatever, positive or negative, which we choose to assign to the symbol.
31. The language of Algebra differs in one respect from ordinary language. In the latter, each special word or sign
has a definite and invariable meaning, which every one who uses the language must learn once for all. But in Algebrat a symbol may stand for any quantity which the writer or speaker chooses, and his results must be interpreted according to this meaning.
32. The same character may be used to represent several quantities by applying accents or attaching numbers to it to distinguish the different quantities. Thus, the four symbols, $a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$, may represent four different quantities. The symbols $a_{15}, a_{2}, a_{3}, a_{4}, a_{5}$, etc., may be nsed to designate any number of quantities which are distinguished by the small number written after the letter a.

Signs of Operation.

33. In Algebra, the signs,+- , and \times are used, as in Arithmetic, to represent addition, subtraction, and multiplication, these operations being algebraic, not numerical.
34. Signs of Addition and Subtraction. The combination $a+b$ means the algebraic sum of the quantities a and b, and $a-b$ means their algebraic difference.

EXAMPLES.

If $a=+4$ and $b=+3$, then $a+b=+7, a-b=+1$.
If $a=+5$ and $b=-7$, then $a+b=-2, a-b=+12$. If $a=-6$ and $b=+3$, then $a+b=-3, a-b=-9$. If $a=-6$ and $b=-3$, then $a+b=-9, a-b=-3$.

The signs of addition and subtraction are the same as those used to indicate positive and negative quantities, but the two applications may be made withont confusion, because the opposite positive and negative directions correspond to the opposite operatious of adding and subtracting.
35. Sign of Multiplication. The sign of multiplication, \times, is generally omitted in Algebra, and when different symbols are to be multiplied, the multiplier is
written before the multiplicand without any sign between them.

Thus,

$$
\begin{array}{rcl}
4 a & \text { means } & a \times 4 . \\
a x & " " & x \times a . \\
3 a b m y & " & y \times m \times b \times a \times 3 .
\end{array}
$$

If numbers are used instead of symbols, some sign of multiplication must be inserted between them to avoid confusion. Thus, 34 would be confounded with the number thirty-four. A simple dot is therefore inserted instead of the sign \times.

Thus,

$$
\begin{aligned}
3 \cdot 4 & =4 \times 3=12 . \\
3 \cdot 12 \cdot 2 & =72 . \\
1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 & =120 . \\
1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 & =720 .
\end{aligned}
$$

The only reason why the point is used instead of x, is that it is more easily written and takes up less space.
36. Division in Algebra is sometimes represented by the symbol \div, the dividend being placed to the left and the divisor to the right of this symbol.

Ex. $\quad a \div b$ means the quotient of a divided by b.
But division is more generally represented by writing the dividend as the numerator and the divisor as the denominator of a fraction.

Ex. The quotient of a divided by b is written $\frac{a}{b}$.
It is shown in Arithmetic that a fraction is equal to the quotient of its numerator divided by its denominator ; hence this expression for a quotient is a vulgar fraction.

3\%. Powers and Exponents. A Power of a quantity is the product obtained by taking that quantity a certain number of times as a factor.

Def. The Degree of the power means the number of times the quantity is taken as a factor.

If a quantity is to be raised to a power, the result may, in accordance with the rule for multiplication, be
ign be-
of mulnfusion. ty-four.
x, is
sented he left
expressed by writing the quantity the required number of times.

Examples. The fifth power of a may be written $a \times a \times a \times a \times a$ or aaaaa;
and the fourth power of $7, \quad 7 \cdot 7 \cdot \% \cdot 7=2401$.
To save repetition, the symbol of which the power is to be expressed is written but once, and the number of times it is taken as a factor is written in small figures after and above it.

Thus,

Def. A figure written to indicate a power is called an Exponent.

Def. The operation of forming a power is called Involution.
38. Roots. A Root is one of the equal factors into which a number can be divided.
$D e f$. The figure or letter showing the number of equal factors into which a quantity is to be divided is called the Index of the root.

The square root of a symbol is expressed by writing the sign $\sqrt{ }$ (called root) before it.

Ex. i. $\sqrt{49}$ means the square root of 49 , that is, $\%$.
Ex. 2. \sqrt{x} means the square root of x.
Ainy other root than the square is represented by writing its index before the sign of the root.

Ex. i. $\sqrt[3]{x}$ means the cube root of x.
Ex. 2. $\sqrt[4]{x}$ means the fourth root of x.
Deff. The operation of extracting a root is called Evolution.
39. The operations of Addition, Subtraction, Multiplication, Division, Involution, and Evolution, are the six fundamental operations of Algebra.
40. Def. An Algebraic Expression is any combination of algebraic symbols made in accordance with the foregoing principles.

EXERCISES.

In the following expressions, suppose $a=-7, b=-5$, $c=0, m=3, n=4, p=9$, and compute their numerical values.

$$
\begin{aligned}
& \text { 1. } a+b+m+p \text {. } \\
& \text { 2. } a+m+n \text {. } \\
& \text { 3. } m-n-a-b \text {. } \\
& \text { 4. } n+p-m-a \text {. } \\
& \text { 5. } 3 a-m+b-2 n \text {. } \\
& \text { 6. } 2 a-7 p+2 b-m \text {. } \\
& \text { 7. } 3 n n p \text {. } \\
& \text { 8. mncp. } \\
& \text { 9. bmn. } \\
& \text { 10. bnp. } \\
& \text { 1. abmp. } \\
& \text { 13. } a m+b n \text {. } \\
& \text { 12. } 2^{2} a b n p \text {. } \\
& \text { 15. } b p-a n \text {. } \\
& \text { 14. } a m-b n \text {. } \\
& \text { 17. } n^{2} p+m^{2} b \text {. } \\
& \text { 16. } 6 p+a n \text {. } \\
& \text { 19. } a^{2}+b^{2} \text {. } \\
& \text { 18. } \quad m^{3} n-a p^{2} \text {. } \\
& \text { 21. } a^{3}-b^{3} \text {. } \\
& \text { 20. } a^{3}+b^{3} \text {. } \\
& \text { 23. } a^{3} b^{2}-m^{3} n^{2} \text {. } \\
& \text { 22. } \quad a^{3} n-b^{3} n \text {. } \\
& \text { 25. } a b^{2}+a^{2} b \text {. } \\
& \text { 24. } a^{2} b^{3}-b^{2} m^{3} \text {. } \\
& \text { 27. } \frac{a b+m n}{a b-m n} \text {. } \\
& \text { 26. } a b^{3}-a^{3} b \text {. } \\
& \text { 29. } \frac{2 m^{2} n^{2}-10 m^{3}}{p-b c m} \text {. } \\
& \text { 28. } \frac{a c-b p}{b n-m p} \text {. } \\
& \text { 30. } \frac{a b-m p}{m-n} \text {. }
\end{aligned}
$$

In the following expressions, suppose $a=8, b=-3$, and x to have in succession the fifteen values $-7,-6,-5$, cte., to +7 , and compute the fifteen corresponding values of each expression:

$$
\text { 31. } x^{2}+b x+a . \quad \text { 32. } \frac{a+b x}{a-b x} .
$$

Arrange the results in a table, thus:

$$
\begin{array}{cccc}
x=-7 ; & \text { Expression } 3:=78 ; & \text { Exp. } 3^{2}=-29.9 \\
x=-6 ; & " & "=62 ; & \text { etc. } \\
x=-5 ; & " & "=48 . & \\
\text { etc. } & \text { etc. } & \text { etc. } &
\end{array}
$$

${ }^{T}$ combiace with
$=-5$ umerical of each
$-\frac{29}{15}$.

CHAPTER III. FORMATION OF COMPOUND EXPRESSIONS.

Fundamental Principles.

41. The following are two fundamental principles of the algebraic language:

First Principle. Every algebraic expression, however complex, represents a quantity, and may be operated upon as if it were a single symbol of that quantity.

Second Principle. A single symbol may be used to represent any algebraic expression whatever.
42. When an expression is to be operated upon as a single quantity, it is enclosed between parentheses, but the parentheses may be omitted, when no ambiguity or error will result from the omission.

Example. Let us have to subtract b from a, and multiply the remainder by the factor m. The remainder will be expressed by $a-b$, and if we write the product of this quantity by m, in the way of $\& 35$, the result ;ill be

$$
m a-b
$$

But this will mean b subtracted from $m a$, which is not what we want, because it is not a, but $a-b$ which is to be multiplied by m. To express the required operations, we encloso $a-b$ in brackets or parentheses, and write m outside, thas:

$$
m(a-b) .
$$

NUMERICALEXAMPLES.

$$
\begin{aligned}
& 7(8-2)=7 \cdot 6=42 ; \text { but } 7 \cdot 8-2=56-2=54 . \\
& 12(3+4)=12 \cdot 7=84 . \\
& (6+3)(2+6)=9 \cdot 8=72 . \\
& (7-4)(1-5)(2+7)=3 \times-4 \cdot 9=-108 . \\
& \quad 2
\end{aligned}
$$

Example 2. Suppose that the expression $a-b+c$ is to be added to m, subtracted from m, multiplied by m, divided by m, raised to the third power, or have the cube root extracted. The results will be written:

Added to m,	$m+(a-b+c)$.
Subtracted from m,	$m-(a-b+c)$.
Multiplied by m,	$m(a-b+c)$.
Divided by m,	$\frac{(a-b+c)}{m}$.
Cubed,	$(a-b+c)^{3}$.
Cube root extracted,	$\sqrt[3]{(a-b .+c) .}$

There are two of these six cases in which the parentheses are umecessary, although they do no harm, namely, addition and division, because in the case of addition,
is the same as

$$
\begin{gathered}
m+(a-b+c) \\
m+a-b+c .
\end{gathered}
$$

[For example, $\quad 10+(8-5+4)=10+7=17$, and $\quad 10+8-5+4=17$ also.]

Again, in the case of the fraction, it will be seen that it has exactly the same meaning with or without the parentheses.
43. An algebraic expression having parentheses as a part of it may be itself enclosed in parentheses with other expressions, and this may be repeated to any extent. Each order of parentheses must then be made larger or thicker, or different in shape to distinguish it.

Examples. I. Suppose that we have to subtract a from b, the remainder from c, that remainder from d, and so on. We shall have,

First remainder,

$$
\begin{gathered}
b-a . \\
c-(b-a) . \\
d-[c-(b-a)] . \\
e-\{d-[c-(b-a)]\} . \\
f-[e-\{d-[c-(b-a)]\} .
\end{gathered}
$$

Second,
Third,
Fourth,
Fifth,
$b+c$ is to m, divided t extracted.

arentheses

 , addition2. Suppose that we have to multiply the difference of the quantities a and b by p and subtract the product from m. The result or remainder will be

$$
m-p(a-b)
$$

Suppose now that we have to multiply this result by $p+q$. We must enclose both factors in parentheses, and the result will then be written :

$$
(p+q)[m-p(a-b)]
$$

EXERCISES.

In the following expressions, suppose
$\iota=-1, \quad b=3, \quad m=5 . \quad x=-3,-1,+1,+3$, and calculate the four values of each expression which result from giving x the above four values in succession.
I. $\quad x(x-a) \frac{(x-2 a)(x-3 a)}{1 \cdot 2 \cdot 3 \cdot 4}$.
2. $\frac{[a(b-x)-b(a-x)]^{2}}{m(b-x)+b(m-x)}$.
3. $\left[a x+b(x-a)^{2}+m(x-a)^{3}\right]^{3} \frac{x-m}{x+m}$.
4. $\left[\sqrt{ }\left(m x^{2}+b\right)-\sqrt{ }\left(m x^{2}-b\right)\right] \sqrt{ }(m b-a)$.

Note. When the square root is not an integer, it will be sufficient to express it without comprting it in full.

Thus, for $x=-3$, we shall have

$$
\sqrt{ }\left(m x^{2}+b\right)-\sqrt{ }\left(m x^{2}-b\right)=\sqrt{ } 48-\sqrt{ } 42
$$

This is a sufficient answer without extracting the roots.

Definitions.

44. Coefficient. Any number which multiplies a quantity is called a Coefficient of that quantity. A coefficient is therefore a multiplier.

Example. In the expression $4 a b x$, 4 is the coefficient of ajx,

$4 a$	"	"	" $b x$,
$4 a b$	"	"	" x.

Def. A Numerical Coefficient is a simple number, as 4 , in the above cxample.

Deft. A Literai Coefficient is one containing one or more letters used as algebraic symbols.

Rem. Any quantity may be considered as having the coefficient 1 , because $1 x$ is the sarie as x.

Reciprocal. The Reciprocal of a number is unity divided by that number. In the language of Algebra,

$$
\text { Reciprocal of } N=\frac{1}{N}
$$

Formula. A Formula is an expression used to show how a quantity is to be expressed or calculated.

Term. When an expression is made up of several parts connected by the signs + or - , each of these parts is called a Term.

Examile.-In the expression,

$$
a+b x+3 m x^{2}
$$

there are three terms, $a, b x$, and $3 m x^{2}$.
When several terms are enclosed between parentheses, so as to be operated on as a single symbol, they form a single term.

Thus, the expression

$$
\frac{\left(a+b x+3 m x^{2}\right)(a+b)}{(x+y)(x-y)}
$$

to s of si
pres etc.
read
twe
the
that
qua
div
forms but a single term, though both numerator and denominator are each a product of several terms. Such expressions may be called compound terms.

Agyregate. A sum of several terms enclosed between parentheses in order to be operated upon as a single quantity is called an Aggregate.

Algebraic expressions are divided into monomials and polynomials.

A Monomial consists of a single term.
number, ing one having
is unity lgebra,
sed to lated. several these
ses, so single

A Polynomial consists of more than one term.
A Binomial is a polynomial of two terms.
A Trinomial is a polynomial of three terms.
Note. The last three words are commonly applied only to sums of simple terms, formed of single symbols or products of single symbols.

Entire. An Entire Quantity is one which is expressed without any denominator or divisor, as 2, 3, 4, etc. ; a, b, x, etc. ; $2 a b, 2 m p, a b(x-y)$, etc.

A 'rheorem is the statement of any general truth.
45. Other Algebraic Signs. Besides the signs already defined, others are of occasional use in Algebra.
$>$, the Sign of Inequality, shows when placed between two quantities, that the one at the open end of the angle is the greater.

Ex. r. $\quad a>b$ means a is greater than b.
Ex. 2. $\quad m<x<n$ means x is greater than m, but less than n.
:, another Sign of Division, is placed between two quantities to express their ratio.

Thus, $a: b$ means the ratio of a to b, or the quotient of a divided by b.
\therefore means Hence, or Consequently; as,

$$
a+2=5 ; \quad \therefore a=3 .
$$

∞ means a quantity infinitely great, or Infinity.
-, the Vinculum, is sometimes placed over an aggregate to include it in one mass, in ieu of parentheses.

Ex. $\overline{a-b} \overline{c-l}$ is the same as $(a-b)(c-l)$.
It is mostly used with the radical sign. We often write

$$
\sqrt{a+b+c} \text { instead of } \sqrt{ }(a+b+c) .
$$

CHAPTER IV.

CONSTRUCTION OF ALGEBRAIC EXPRESSIONS.

46. All operations upon algebraic quantities, however complex, consist in combinations of the elementary operations already described. The result of each single operation will be an aggregate, a product, a quotient, or a root, and every such result may, in subsequent operations, be operated upon as a single symbol. There are only three cases in which an expression needs any modification in order to be operated upon, namely:

Case I. An aggregate must be enclosed in parentheses, if any other operations than addition or division are to be performed upon it. (§ 42.)

Case II. When a product is to be raised to a power, or to have a root extraeted, it may be enclosed in parentheses in order to show that the operation extends to all the factors.

If we take the product $a b c$, and write an exponent, 2 for instance, after it thus, $a b c^{2}$, it would apply only to c, and would mean $a \times b \times c^{2}$. So with the radical sign; $\sqrt{ }$ abc might mean only $\sqrt{ } a \times b \times c$. To indicate that the power or root is that of the product as a whole, we maty enclose it in parentheses, thus:

> Square root of $a b c=\sqrt{ }(a b c)$. Square of $a b c$ S $=(a b c)^{2}$.

But a root sign is commonly made to include the whole product by simply extending a vinculum over all the factors of the product, thas: Square root of $a b c=\sqrt{a b c}$.

Case III. If negative quantities are to be multiplied, merely writing them after each other would lead to mistakes. Thus, the product $a \times-b \times-c$, if written without the \times sign, would be $a-b-c$, and would not mean a product at all. But, by enclosing $-b$ and $-c$ in parentheses, we have

$$
a(-b)(-c)
$$

which would correctly express the product required.

TH ence 1 $p-r$ subtria N of: to a a differe tracte forme nomis T1

[^1]The fraction having N for its numerator and this quotient for its denominator is

$$
\frac{y(b-a)-m \frac{p-r}{q}}{\frac{(a+b)(a-b)}{(p+q)(p-q)}}
$$

48. By the second general principle, $\S 41$, a single symbol may be written in place of any algebraic expression whatever. When several symbols indicating such expressions are combined, the original expressions may le substituted for them, and be treated in accordance with the first principle.

EXAMPLES.

Suppose

$$
\begin{aligned}
P=a+b x ; & Q=\frac{a-b x}{m} ; \\
T=x-y ; & V=m p q .
\end{aligned}
$$

It is required to form the expression

$$
\frac{P Q-T V}{P T-Q V} .
$$

The answer is

$$
\frac{(a+b x) \frac{a-b x}{m}-(x-y) m p q}{(a+b x)(x-y)-\frac{a-b x}{m} m p q}
$$

EXERCISES.

Form the expressions:
I. $P-T$.
2. $T-P$.
3. $P-Q$.
4. $Q-V$.
5. \sqrt{P}.
6. $\sqrt{ }(P+T)$.
7. $\sqrt{ }(P-T)$.
8. $P^{2} T^{2}$.
9. $\quad V^{3}$.
10. $T^{3} V^{3}$.
II. $\frac{V P-Q T}{Q^{2}-T^{2}}$.
12. $\frac{P T^{\prime}}{Q V}$.
13. $\frac{\left(P+T^{T}\right)(P-T)}{(Q+V)(Q-V)}$.
14. $\frac{(3 P-2 T)^{2}}{(4 Q)^{2}}$.
15. $\frac{P^{n}-T}{\sqrt{ }(P-T)^{2}}$.
16. $\frac{2(T+T)^{2}}{(2 T-V)^{2}}$.

$$
\begin{aligned}
& \text { 17. } \frac{P\left(T^{2}-V\right)}{P^{2} T^{\prime 2}} \text {. } \\
& \text { 19. } \frac{\sqrt{2 P}+2 \sqrt{ } T}{(P+T)^{2}} \text {. } \\
& \text { 21. }\left[(V+Q)^{2}+P\right] T \text {. } \\
& \text { 23. } \frac{V-\left(Q^{2}-T\right)^{2}}{P-\left(Q+T^{\prime}\right)\left(Q-T^{\prime}\right)} \text {. } \\
& \text { 18. } \quad \frac{Q^{3}-T^{3}}{P T+T Q} . \\
& \text { 20. } \frac{l^{n}+Q^{2}}{\left(V-T^{\prime}\right)(V+T)} \text {. } \\
& \text { 22. } \frac{P \sqrt{Q^{2}-T}}{\left(\sqrt{ } P^{\prime}-()^{2}\right.} . \\
& \text { 24. } \frac{V-Q^{2}+T}{P-(Q+V) T} \text {. }
\end{aligned}
$$

EXERCISES IN ALGEBRAIC LANGUAGE.

The following questions are proposed to practice the student in ex. pressing the relations of quantities in uggebraic language. Should any of them offer difficulties, he is recommended to substitnte numbers for the algebraic letters, examine the process by which he proceeds, and then apply the same process to the letters that he applied to the numbers. No solutions of equations are required.

1. How many cents are there in m dollars?
2. How many dollars in m cents?
3. A man had a dollars in one pocket, and b cents in the other ; how many cents had he in all? How many dollats?
4. The sum of the quantities a and b is to be multiplied by m. Express the product, and its square.
5. A man having b dollars paid out m dollars to one person and n dollars to another. Express what he had left in two ways?
6. How many chickens at k cents a piece can be purchased for m dollars?
7. A man walked from home a distance of m miles at 4 miles an hour, and returned at the rate of 3 miles an hour. How long did it take him to go and come?
8. A man going to market bought tomatoes at h cents per peck and potatocs at h conts a peek, of each an equal number. They cost him m cents. How many peeks of each did he buy?
9. How many minutes will it require to go a miles, at the rate of b miles an hour?
10. A man bought from his grocer a pounds of tea at x cents a pound, b pounds of sugar at y cents a pound, and c pounds of coffee at z cents a pound. How many cents will the whole amount to? How many dollars? How many mills? ir. A man bought f pounds of flour at m cents a pound,
and handed the grocer an x-dollar bill to be changed? How many cents ought he to receive in change ?
11. From two cities a miles apart two men started out at the same time to meet each other, one going m miles an hicur and the other n miles an hour. How long before they will meet? How far will the first one have gone? How far will the second one have gone?
12. A man left his n children a bonds worth x dollars each, and b acres of land worth y doltars an acre; but he owed m dollars to each of q creditors. What was each child's share of the estate "
13. Two numbers, x and y, are to be added together, their sum multiplied by s, that product divided by $a+b$, and the quotient subtracted from k. Express the result.
14. The sum of the numbers p and q is to be divided by the sum of the numbers a and b, forming one quotient. The difference of the numbers p and q is to be divided by the difference of the numbers a and b, forming another quotient. The sum of the two quotients is to be multiplied by $r+s$. Express the product.
15. The quotient of x divided by a is to be subtracted from the quotient of y divided by b, and the remainder multiplied by the sum of x and y divided by the difference between x and y. Express the result.
16. The number x is to be increased by 6 , the sum is to be multiplied by $a+b, q$ is to be added to the product, and the sum is to be divided by $r-s$. Express the result.
17. A family of brothers a in number each had a house worth a thonsand dollurs each. What was the total value of all the houses in dollars? What was it in cents?
18. A grocer mixed a pounds of tea worth x cents a pound, and b pounds worth y cents a pound. How much a pound was the misture worth ?
19. $x+y$ houses each had $a+b$ rooms, and each room $m+n$ pieces of furniture. How many pieces of furniture were there in all ?
20. In a library were $p+q$ volumes, each volume lad $p+q$ pages, each page $p+q$ words, and each word on the average 8 letters. How many letters were there in all the books of the library?
21. A post-bov started out from a station, travelling k miles an hour. Three hours afterward, another one started after him, riding m miles an hour. How far was the first one

nged? How

 arted out at niles an henr ore they will How far willrth x dollars acre; but he s each child's
gether, their $t+b$, and the
oe divided by notient. The d by the difther quotient. olied by $r+s$
be subtracted rainder multience between
e sum is to be duct, and the lt.
1 had a house total value of
cents a pound, nuch a pound
hd cach room furniture were
ume had $p+q$ n the average he books of the
, travelling k er one started s the first one
ahcad of the second at the end of x hotrs after the second started?
23. Two men started to make the same journey of m miles, one going r miles an homr, and the other s miles an hour. How much sooner will the man going r miles an hour make his journey than the one going s miles an hom? How much sooner will the one going s miles an hour make his journcy than the one going r miles an hour?
24. One train rums from Boston to New York in h hours, at the rate of n miles an hour. How long will it take another train running 5 miles an hour faster to perform the journey?
25. If a man bought h horses for t dollars, and n yoke of oxen for m dollars, how much more did one horse cost than one yoke of oxen? How much more did one yoke of oxen cost than one horse?
26. 1 train making a journey of 2 m miles goes the first half of the way at the rate of r miles an hour, and the second lailf at the rate of s miles an hour. How long did it take it to go? What was the aterage speed for the journey?
27. Two men, A and B, started to walk from Hartforl to New Haven and back, the distance between the two oities being a miles. Λ goes p miles an hour and $13 q$ miles in hour. How far will A have got on his return journey when B reathes Hartford?
28. A man haring k dollars bought b books at $\$ 6$ each. IIow many books at $\$ 4$ each can he buy with the balance of his money?
29. A man going to his grocer with m dollars, bought s pounds of sugar at a cents a pound, and r pounds of coffee at b cents a poumd. How many barrels of flour at q dollars a barrel can lie buy with the balance of his money?
30. A man divided m dollars equally among a poor Chinese and n dollars equally among h orphims. 'Iwo of the Chinese and three of the orphans put their shares together and bought x Bibles for the heathen. How much did each Bible cost ?'
31. Λ pedestrian having agreed to walk the a miles from Boston to Natick in h hours, travels the first k hours at the rate of m miles an hour. At what rate must he travel the remainder of the time?
32. Λ train haring to make a journey of x miles in h hours, ran for k hours at the rate of r miles an hour, and then made a stop of m minutes. How fast must it go during the remainder of its journey to arrive on time?

$$
\begin{gathered}
\mathrm{BOOKII} . \\
A L G E B R A I C \quad O P E R A T I O N S .
\end{gathered}
$$

General Remarks.

The algebraic expressions formed in accordance with the rules of the preceding book admit of being transformed and simplified in a variety of ways. This transformation is effected by operations which have some resemblance to the arithmetical operations of addition, subtraction, multiplication, and division, and which are therefore called by the same names.

In performing these algebraic operations, the student is not, as in Arithmetic, seeking for a result which can be written in only one way, but is selecting out of a great variety of forms of expression some one form which is the simplest or the best for certain purposes. Sometimes one form and sometimes another is the best for a particular problem. Hence, it is essential that the algebraist, in studying an expression, should be able to see the different ways in which it may be written.

Definitions.

49. Function. An algebraic expression containing any symbol is called a Function of the quantity represented by that symbol.

Ex. 1. The expression $3 x^{2}$ is a function of x.
2. The expression $\frac{a+x}{a-x}$ is a function of x and also a function of a.

When an expression contains several symbols, we may select one of them for special consideration, and call the expression a function of that particular one. For instance, although the expressions,
cont of x

$$
\begin{gathered}
a+b x^{2}+c x^{3} \\
m+n \sqrt{x}
\end{gathered}
$$

contain other symbols besides x, they are both functions of x.
50. An Entire Function is one in which the quantity is used only in the operations of addition, subtraction and multiplication.

Example. The expressions

$$
\begin{gathered}
a x+y \\
\left(a^{2}-y^{2}\right) x^{3}-\left(b^{2}+y\right) x^{2}-x+d,
\end{gathered}
$$

are entire functions of x. But the expressions

$$
\frac{a x+y}{a x-y} \text { and } 3 \sqrt{x}
$$

are not entire functions of x, because in the one x appears as part of a divisor, and in the other its square root is extracted.

An entire function of x can always be expressed as a sum of terms, arranged according to the powers of x which they contain as factors. The form of the expression will then be

$$
A+B x+C x^{2}+D x^{3}+E x^{4}+\text { etc. },
$$

where A, B, C, etc., may represent any algebraic expressions which do not contain x.
51. Like Terms are those which are formed of the same algebraic symbols, combined in the same way, and differ only in their numerical coefficients.

Ex. The terms $a x, 2 a x,-5 a x$ are like terms.
52. The Degree of any term is the number of its literal factors.

Examples. The expression abxy is of the fourth degree, because it contains four literal factors.

The expression x^{3} is of the third degree, because the letter x is taken three times as a factor.

The expression $a b^{2} x^{3}$ is of the sixth degree, because it contains a once, b twice, and x three times as a factor.

When an expression consists of several terms, its degree is that of its highest term.

CHAPTER I.
 ALGEBRAIC ADDITION AND SUBTRACTION.

Algebraic Addition.

53. By the language of Algebra, the sum of any number of quantities, positive or negative, may be expressed by writing them in a row, with the sign + before all the positive quantities, and the sign - before the negative ones.

Ex. $A+B-D-X+Y$, etc., is the algebraic sum of the sereral quantities $A, B,-D,-X, Y$, etc.
54. To simplify an expression of the sum of several quantities.

1. When dissimilar terms are to be added, no simplification can be effected.

Ex. If we require the sum of the five expressions, $a,-x y$, $m p, n q$, and -bhs, we can only write,

$$
a-x y+m p+n q-b h s
$$

according to the language of Algebra, and cannot reduce the expression to a simpler form.
2. If mere numbers are among the quantities to be added, their algebraic sum may be formed.

Ex. The sum of the five quantities $-8, a b, 5, m n p,-15$, is found to be $-18+a b+m n p$.
3. When several terms are similar, add the coefficients and affix the common symbol to the sum.

When no numerical coefficient is written, the coefficient +1 or -1 is understood. (§44.)

$$
\begin{array}{r}
\text { EXAMPLES. } \\
a+a=2 a \text { [because } 1+1=2] . \\
2 a-a=a[\text { becausc } 2-1=1] .
\end{array}
$$

$3 a+4 a-7 a=0$ [because $3+4-7=0$].
$a+2 x-3 a-5 x=-2 u-3 x$ [adding the u 's and the x 's].
$-3 a x y+4 b m-2 a x y+b m=-5 a x y+5 b m$.
Add the expressions,

1. $\quad\left(x+5 b y^{2}, 2 x-3 b y^{2},-4 x-5 b y^{2}, 5 x-b y^{2}, x-b y^{2}\right.$.

For convenience, the several terms may be written under each other, as in the margin. The cocticients of x are 7, 2, -4, 5, and 1, of which the algeloraic sum is 11 . The coefficients of y^{2} are $5,-3,-5,-1,-1$; the sum is -5 . Hence the result.
шопк.

$$
\begin{array}{r}
7 x+56 y^{2} \\
2 x-3 l y y^{2} \\
-4 x-56 y y^{2} \\
5 x-6 y j^{2} \\
\\
\hline x-6!y^{2} \\
\text { Sum, } 11 x-5 b y y^{2}
\end{array}
$$

2. $8 a x-y-2 y+5$, 7ax-y-9+am, $2 a x-y-3+5 p$.

Here $2 x, a m$, and p, all being different symbols, the terms contair ing them do noi adn it, of simplification ($\$ 54$, 1). The numbers 5 ,
work.

$$
\begin{array}{r}
8 a x^{2}-y-2 x+5 \\
-r a x^{2}-y-9+a m+5 p \\
-a x^{2}-y-3+(a m+5 p
\end{array}
$$ -9 . -3 , are added by the rule ($\$ 54,2$). The coefficients of $a x^{2}$ cancel each other $(8-7-1=0)$.

3. Add $6(x+y), 5(x+y)+a, 2(x+y)-3 a$.

Here the aggregate, $x+y$, enclosed in parentheses, is treated as a simple symbol.

Note. When the student can add the coefficients mentally, it is not necessary to write the expressions under each other. Nor is it necessary to repeat the symbol after each coefficient.

EXERCISES.

1. $3 a+7 b-8 c+九, 3 a-2 b+c-e,-a-b-c-d$.
2. $7 a-(x+y), 8 a-(x+y), 3(x+y)-16 a$.
3. $\quad x^{2}-2 x-5,2 x^{2}-3 x+8,-9 x^{2}+5 x+3$.
4. $\quad x^{2}+2 x-y, 4 x^{2}+7 x-2 y,-2 x^{2}+x-9 y,-3 x^{2}$ $-x-y$.
5. $\quad 9(a+b)^{2}, 10(a+b)^{2},(a+b)^{2}, 2(a+b)^{2},-x--y-z$.
6. $\quad 2(m+n)+3(a+b), \quad(a+b)-(m+n), \quad(a+b)$ $-(m+n)$.
7. \quad ra $a^{3}-2 a^{2}+3 a x,-a^{3}-a^{2}-a x,-6 a^{3}+3 a^{2}-2 a x$.
8. $\quad(m+n)^{2}+x, \quad 2(n+n)^{2}-y, \quad 3(m+n)^{2}-2 x$, $(m+n)^{2}-y$.
9. $(p+q)^{3}-6,(p+q)^{2}+a,(p+q)^{2}+b,(p+q)^{\dot{2}}+c$.
10. $6 a(x-y), 5 a(x-y), 2 a(x-y), a(x-y)$.

ㅍ. $2(m-n) x+2, \quad 3(m+n) x-5, \quad 5(m+n) x-6$, $7(m+u) x-8$.
12. $3 \frac{x}{a}, 2 \frac{x}{a}+3 \frac{y}{b}, \frac{x}{a}-\frac{y}{b}, \frac{y}{b}-\frac{6}{7}, \frac{x}{a}-\frac{1}{7}$.
13. $\frac{x}{y}-\frac{m}{n}, 2 \frac{x}{y}-2 \frac{m}{n}, 3 \frac{x}{y}-3 \frac{m}{n}, 4 \frac{x}{y}-4 \frac{m}{n}$.
14. $\frac{x+y}{m+n}+3 \frac{x+y}{m+n}, \quad 5 \frac{x+y}{m+n}+7 \frac{x+y}{m+n}$.
15. Of two farmers, the first had $2 x-3 y$ acres, and the second had $x-y$ acres more than the first. How many acres had they both?
16. Λ had $2 x$ dollars, B had y dollars less than A, and C had $2 y$ dollars more than A and B together. How many had they all?
17. A father gave his eldest son x dollars, his second 5 dollars less than the first, his third 5 dollars less than his second, and his fourth 5 dollars less than his third. How much did he give them all?
55. Addition with Literal Coefficients. When different terms contain the same symbol, multiplied by different literal coefficients, these coefficients may be added and the common symbol be affixed to their aggregate.

EXAMPLES.

1. As we reduce the polynomial

$$
6 x+5 x-2 x
$$

to the single term $\quad(6+5-2) x=3 x$, so we may reduce the polynomial

$$
a x+b x-c x
$$

to the single term, $\quad(a+b-c) x$.
2. The expression

$$
m x+n y-b x+d y+a+b
$$

may be expressed in the form

$$
(m-b) x+(n+d) y+a+b
$$

$n)^{2}-2 x$, $1+q)^{2}+c$.
n) $x-6$ tany acres many had nd 5 dolis second, much did

EXERCISES.

Collect the coefficients of x and y in the following expressions:

1. $\quad a x+b y+m x+n y$.
2. $m n x+2 b y+p q x-4 b y$.
3. $\quad 3 x-2 y+6 b x-4 y+7 a x+m+n$.
4. $\quad 8 a x+8 b x+b y+7 x-5 y+x-5 y$.
5. $\quad a x+b y+c z-m x-n y-p z$.
6. $2 d x+3 c y+4 f z-2 f s-3 d y+4 c z$.
7. $\frac{2}{3} a y-2 x+\frac{3}{4} b y+6 a x$.
8. $2 a x-b y-3 b x-4 a y$.
9. $\frac{1}{2} a x+\frac{2}{3} b y-\frac{1}{6} m x+\frac{3}{4} n y$.
10. $4 m x+2 y-3 a x-6 c x+a y-\frac{2}{3} m x+\frac{1}{2} d x$.
11. $5 a b x-3 m n y-a b x+4 c d y-d x$.
12. $3 a y+2 b x-\frac{1}{4} d x+2 a y-3 b x$.
13. $\frac{1}{2} a y-3 x+2 y-\frac{3}{4} a y-5 x+y$.
14. $3 m x-a x-\frac{1}{2} a y+x+d x-y$.
15. $3 a b x-m y+2 c \sqrt{x}-d y+\sqrt{x}$.
16. $5 m \sqrt{y}-6 x+4 \sqrt{y}-3 \sqrt{x}-y+\sqrt{y}$.
17. $4 \sqrt{x}-6 y+a \sqrt{y}+c x-\sqrt{y}-4 a \sqrt{y}+\sqrt{x}$.

Algebraic Sulstraction.

56. Def. Algebraic Subtraction consists in expressing the difference of two algebraic quantities.

Rule of Subtraction. It has been shown (§ 21) that to subtract a positive quantity, b, is the same as to add, algebraically, the negative quantity, -3 . Also, that to subtract $-b$ is equivalent to adding $+b$. Hence the rule:

Change the algebraic sign of all the terms of the subtrahend, or conceive them to be changed, and then proceed as in addition.

NUMERICALEXAMPLES.
Min., $10+6=16 \quad 10+6=16 \quad 10+6=16 \quad 10+6=16$

ALGEBRAIC EXERTISES.
i. From
$3 x-4 a y+5 b+c$,
Subtract

$$
x-7 a y-8 b+d
$$

work.
Minuend,

$$
3 x-4 a y+5 b+c
$$

Subtrahend with signs changed,
Difference,

$$
\frac{-x+7 a y+8 b-a}{2 x+3 a y+13 b+c-a}
$$

Next we may simply imagine the signs changed.
2. From $\quad 7 x-4 b x y-12 c y+8 b+3 a c$

Take $\quad 2 x+7 b x y+8 c y-5 b-2 d$
Diff., $5 x-11 b x y-4 c y+13 b+3 a c+2 d$
3. From $\quad 8 a+9 b-12 c-18 a-4 x+3 c y$ Take $\quad 19 a-7 b-8 c-25 d+3 x-4 y$
4. From $\quad 25 \% z+201 z^{2}+92 y+35 a x-6$

Take $\quad 140 z-82 z^{2}+20 y+92 a x+14$
5. From $8 a+14 b$ subtract $6 a+20 b$.
6. From $a-b+c-d$ take $-a+b-c+d$.
7. From $8 a-2 b+3 c$ subtract $4 a-6 b-c-2 d$.
8. From $2 x^{2}-8 x-1$ sulbtract $5 x^{2}-6 x+3$.
9. From $4 x^{4}-3 x^{3}-2 x^{2}-\% x+9$ subtract $x^{4}-2 x^{3}-2 x^{2}$ $+7 x-9$.
10. From $2 x^{2}-2 a x+3 a^{2}$ subtract $x^{2}-a x+a^{2}$.
11. From $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$ subtract $-a^{3}+3 a^{2} b$.
12. From $7 x^{3}-2 x^{2}+2 x+2$ subtract $4 x^{3}-2 x^{2}-2 x-14$.
13. From $5(x-y)+7(x-z)+9(z-x)$ take $9(x-y)$ $+7(x-z)+5(z-x)$.
14. From 12 $(a-b)-3(a+b)+7 a-2 b$ take $7(a-b)$ $-5(a+b)$.
15. From $7 \frac{x}{y}-11 \frac{y}{z}-15 \frac{z}{x}$ take $-5 \frac{x}{y}+6 \frac{y}{z}-7 \frac{z}{x}+8 \frac{a}{b}$.

Clearing of Parentheses.

5%. In $\S 42,2$, it was shown that an aggregate of terms included between parentheses might be added or subtracted by simply writing $+\mathrm{o}^{\prime \prime}$ - before the parentheses.

When an aggregate not multiplied by a factor is to be added or subtracted, the parentheses may be removed by the rules for addition and subtraction, as follows:
58. Plus Sign before Parentheses. If the parentheses are preceded by the sign + , they may be removed, and all the terms added without change.

Example 1. $27+(8-5-4+7)=27+8-5-4+7=33$.
2. $m+(a-x-y+z)=m+a-x-y+z$.
3. $2 x+(-3 x-5 y)+(3 y-4 a)+(2 y-2 a)$

$$
=2 x-3 x-5 y+3 y-4 a+2 y-2 a
$$

$$
=-x-6 a
$$

The sign + which precedes the parentheses should also be considered as removed, but if the first term within the parenthesis has no sign, the sign + is understood, and must be written after removing the parentheses.

exercises.

Clear of parentheses and simplify

1. $x-y+(x+y)$.
2. $x+y+(y-x)$.
3. $3 a b-2 m p+(a b-3 x-2 m p)$.
4. $2 a x-3 b y+(m x-2 a x-p z+3 b y)$.
5. $3 \frac{a}{b}+\left(\frac{a}{b}-2 \frac{m}{n}\right)+\left(\frac{a}{b}+2 \frac{m}{n}\right)$.
6. Minus Sign before Parentheses. If the parentheses are preceded by the sign -, they may be removed and the algebraic sign of each of the included terms changed, according to the rule for subtraction in $\S 56$.

EXAMPLES.

1. $27-(8-5-4+7)=27-8+5+4-7=21$; that is, $27-6=21$.
2. $\quad m-(-a-p+y+x)=m+a+p-y-x$.
3. $3 a+x-(2 a-5 x)-(9 x-a)=3 a+x-2 a+5 x$ $-9 x+a$.

Sim lifying as in $\S 54$, this reduces to $2 a-3 x$.
EXERCISES.
Clear the following expressions of parentheses and reduce the results to the simplest form by the method of $\S 54$.

1. $a b-(m-3 a b+2 a x)-7 a b$.
2. $x-(a-x)+(x-a)$.
3. $2 b+(b-2 c)-(b+2 c)$.
4. $\quad 4 x-3 y+2 z-(-7 x+5 y-3 z)-(x-y)$.
5. $7 a x-2 b y-(8 a x+3 b y)-(8 a x-3 b y)$.
6. $(a-x)-(a+x)+2 x$.
7. $-(a-b)-(b-c)-(c-a)$.
8. $-(3 m+2 n)-(3 m-2 n)+9 m$.
9. We may reverse the process of clearing of parentheses by collecting several terms into a single aggregate, and changing their signs when we wish the parentheses to be preceded by the minus sign. The proof of the operation is to clear the parentheses introduced, and thus obtain the original expression.

EXERCISES.

Reduce the following expressions to the form
$x-$ (an aggregate).

1. $x-a-b$. Ans. $x-(a+b)$.
2. $x-m-n$.
3. $\quad a+x-3 x+2 y . \quad$ Ans. $x-(-a+3 x-2 y)$.
4. $-3 b+x+2 c+5 d$.
5. $2 x-2 a+2 b . \quad$ Ans. $x-(-x+2 a-2 b)$.
6. $2 x+a-b$.
7. $3 x-2 m+2 n$.
8. $3 x+a b-m-3 a b+2 m$.
9. $x-2 m-(3 a-2 b)$. Ans. $x-(2 m+3 a-2 b)$.
10. $x+3-(a+b)$.
ı. $\quad x+a-(b-c)+(m-n)$.
11. $x-(a m+b)-(p-q)-(a m-n)$.
12. $\quad x-(a+b)-(p-q)-(m-n)$.

Compound Parentheses.

61. When parentheses of addition or subtraction are enclosed between others, they may be separately removed by the preceding rules.

We may either begin with the outer ones and go inward, or begin with the inner ones and go outward.

It is common to begin with the inner oues.
EXAMPLES.

Clear of parentheses:

1. $f-[e-\{a-[c-(b-a)]\}]$.

Beginning with the inner parentheses, the expression takes, in suceession, the followiug forms:

$$
\begin{aligned}
& f-[e-\{d-[c-b+a]\}] \\
= & f-[e-\{d-c+b-a\}] \\
= & f-[e-a+c-b+a] \\
= & f-e+d-c+b-a .
\end{aligned}
$$

2. $x-[-(a+b)+(m+n)-(x-y)]$.

Removing the inner parentheses, one by one, we have,

$$
\begin{aligned}
& x-[-a-b+m+n-x+y] \\
= & x+a+b-m-n+x-y .
\end{aligned}
$$

EXERCISES.

Remove the parentheses in the following expressions, and combine term: containing x and y, as in $\S \S 54$ and 55 .

1. $m+[-(p-q)+(a-b)+(-c+d)]$.
2. $m-[-(a-b)-(p+q)+(n-k)]$.
3. $7 a x-[(2 a x+b y)-(3 a x-b y)+(-7 a x+2 b y)]$.
4. $\quad a-[a-\{a-[a-(a-a)]\}]$.
5. $p-[a-b-(s+t+a)+(-m-n)]$.
6. $2 a x-[3 a x-b y-(\% a x+2 b y)-(5 a x-3 b y)]$.
7. $a x+b y+c z+[2 a x-3 c z-(2 c z+5 a x)-(7 b y-3 c z)]$.
8. $x-\{2 x-y-[3 x-2 y-(4 x-3 y)]\}$.
9. $a x-b z-\{a x+b z-[a x-b z-(a x+b z)]\}$.
10. $m y-\{x+3 y+[2 m y-3(x-y)-4 a b]+5\}$.
11. $a x+4 c x-(m x+c x-y)+[m x-(c x+y)]$.
12. $3 a x-3 b x-(-3 a y-3 a z+3 b y)-3 b z$.
13. $13 s f x+2 x y-d-[? a d+(x y+d)]-4 x y$.
14. $m+4 x-[-4 y+2 x+(a y-x)+p]$.
15. $2 a \sqrt{y}-3 m-[6 \sqrt{\prime} x-6 n+(\sqrt{y}-2 \sqrt{y})]$.

CHAPTER II.

MULTIPLICATION.

62. The product of several factors can always be expressed by writing them after each other, and enclosing those which are aggregates within parentheses.

EXAMPLES.

The product of $a+b$ by $c=c(a+b)$.
The product of $\frac{x+y}{2}$ by $x-y=(x-y) \frac{x+y}{2}$.
The product of $a+b$ by $c+d=(c+d)(a+b)$.
Such products may be transformed and simplified by the operation of algebraic multiplication.

General Laws of Multiplication.

63. Lavo of Commutation. Multiplier and multiplicand may be interchanged without altering the product.

This law is prored for whole numbers in the following way. Form several rows of quantities, each represented by the letter a, with an equal number in each row, thus,

a	a	a	a	a	a
a	a	a	a	a	a
a	a	a	a	a	a
a	a	a	a	a	a
a	a	a	a	a	a

Let m be the number of rows, and n the number of a s in each row. Then, counting by rows there will be

$$
m \times n \text { quantities. }
$$

Counting by columns, there will be

$$
\begin{gathered}
n \times m \text { quantitics. } \\
m \times n=n \times m, \\
m m=m n .
\end{gathered}
$$

'Therefore, or
64. Law of Association. When there are three factors, m, n, and a,

$$
m(m t)=(m n) a
$$

Example. $\quad 3 \times(5 \times 8)=3 \times 40=120$.

$$
(3 \times 5) \times 8=15+8=120 .
$$

Proof for Whole Numbers. If a in the above scheme represents a number, the sum of each row will be wh. Beealuse there are m rows, the whole sum will be $m(n a)$.

But the whole number of a 's is $m n$. Therefore,

$$
m(n a)=(m n) a
$$

65. The Distributive Law. The product of an aggregate by a factor is equal to the sum of the products of each of the jarts which form the aggregate, by the same factor. That is,

$$
\begin{equation*}
m(p+q+r)=m p+m q+m r \tag{1}
\end{equation*}
$$

Proof for Whole Numbers. Let us write each of the quantities p, q, r, etc., m times in a horizontal line, thus,

$$
\begin{array}{cc}
p+p+p+\text { cte., } m \text { times }=m p . \\
q+q+q+\text { ete. }, m \text { times }=m q . \\
r+r+r+\text { ete. }, & m \text { times }=m r . \\
\text { etc. } . & \text { etc. } .
\end{array}
$$

If we add up eath vertical column on the left-hand side, the sum of each will be $p+q+r+$ ete., the columns being all alike.

Therefore the sum of the m columns, or of all the quantities, will be

$$
m\left(p+q+r_{i} \text { etc. }\right) .
$$

The first horizontal line of p 's being $m p$, the second $m q$, etc., the sum of the right-hand column will be

$$
m p+m q+m r, \text { etc. }
$$

Since these two expressions are the sums of the same quantities, they are equal, as asserted in the equation (1).

Multiplication of Positive Monomials.

66. Rule of Exponents. Let us form the product $x^{m} \times x^{n}$.
By $\S 37, x^{m}$ means $x x x$, etc., taken m times as factor. x^{n} means $x x x$, ete., taken n times as factor.
The product is $x x a x$, etc., taken ($m+n$) times as factor.
Therefore, $\quad x^{\infty} \times x^{n}=x^{m+n}$.
Hence,
Theorem. The exponent of the product of like symbols is the sum of the exponents of the factors.

6\%. As a result of the laws of commutation and association, the fecton of a product may be arranged and multiplied io such order as will give the product the simplest form.
68. Any product of mononials may be formed by combining these principles.

Example. Multiply $5 m n^{2} x^{3} y^{4}$ by $7 b n x^{2} y$.
By the rules of algebraic language, the product may be put into the form

$$
5 m n^{2} x^{3} y^{4} y b n x^{2} y
$$

By interchanging the factors so as to bring identical symbols together,

$$
\check{5} \% 孔 m n^{2} n x^{3} x^{2} y^{4} y
$$

Multiplying the numerical factors and adding the exponents. the product becomes

$$
356 m n^{3} x^{5} y^{5}
$$

nd $m q$, tequan-
69. We thus derive the following

Rule. Multiply the numerical coefficients of the factors, affix all the literal parts of the fuctors, and give to each the sum of its exponents in the separate factors.

EXERCISES.

1. Multiply $x y$ by $x^{2} y$.
2. Multiply $3 a x$ by $2 a b x^{2}$.
3. Multiply $21 m y$ by $2 a^{2} m$.
4. Multiply $5 x^{7} y^{3} z$ by $x^{2} y^{3} z$.
5. Multiply $2 a b m$ by $2 m b a$.
6. Multiply 2.6mpqr by 2.6pqrs.
7. Multiply $12 a x y$ by $12 x y z$.
8. Multiply $\frac{3}{2} m^{6} x^{5}$ by $\frac{2}{3} m^{5} y^{\prime}$. 13. Multiply $\frac{3}{4} n^{2} k$ by $4 m k$.
9. Multiply $\frac{7}{2} a b c d$ by $4 d c f g$.
\%o. When we have to find the product of three or more quantities, we multiply two of them, then that product by the third, that product again by the fourth, and so on.

Ex. $2 a b \times 2 a^{2} b \times 3 a b^{2} \times 3 b m x y=36 a^{4} b^{5} m x y$.
Exercises. Multiply
15. $m x \times m y \times m z$.
17. $3 a^{2} m \times 4 b^{2} n \times m n$.
19. $3 m n^{2} \times 5 n p^{2} \times 9 p m^{2}$.
20. $a b \times a c \times a d \times a m 3 \times y \times 2 y z \times z x$.
21. $\quad a m x \times a n x \times a m x y \times a n x y \times a m x y z$.
22. $a^{2} x \times a^{2} y \times a x^{2} \times a y^{2} \times a^{2} x^{2} \times a^{2} y^{2} \times x^{2} y^{2}$.
23. $2 a m \times 3 a n \times a^{2} \times m^{2} \times 4 m x \times 2 n x$.

Rule of Signs in Multiplication.

71. It was shown in $\S 25$ that a product of two factors is positive when the factors have like signs, and negative when they have uulike signs. Hence the rule of signs,

$$
\begin{array}{lcc}
+x+ & \text { makes } & + \\
+\times- & " & - \\
-\times+ & " & - \\
-\times- & " & +
\end{array}
$$

Examples. The quantity a

Multiplied		3	makes	$+3 a$.
"	"	2	"	+ $2 a$.
*	"	1	"	+ ${ }^{\text {. }}$
6	"	0	"	0.
"	"		"	- a.
"	6		"	$-2 a$.

The quantity - a

Multiplied	by	3	makes	$-3 a$.
$"$	$"$	2	$"$	$-2 a$
$"$	$"$	1	$"$	$-a$
$"$	$"$	0	$"$	0
$"$	$"$	-1	$"$	$+a$.
$"$	$"$	-2	$"$	$+2 a$.

\%2. Geometrical Illustration of the Rule of Signs. Suppose the quantity a to represent a length of one centimetre from the zero point toward the right on the scale of $\S 11$.

Then we shall have

$$
a=\text { this line } \stackrel{0}{\square}
$$

The product of the line by the factors from +3 to -3 will be

$$
\begin{aligned}
& a \times 3, \\
& a \times 2, \\
& a \times 1, \\
& a \times 0, \\
& a \times-1, \\
& a \times-2, \\
& a \times-3,
\end{aligned}
$$

We shall also have

$$
-a=\text { this line } \quad \mathbf{0}
$$

The products by the same factors will be

These results are embodied in the following two theorems :

1. Multiplying a magnitude by a negative factor, multiplies it by the factor and turns it in the opposite direction.
2. Multiplying by -1 turns it in the opposite direction without altering its length.

Note. When more than two factors enter a product, the sign may be determined by the theorem, $\S 20$.

EXERCISES.

1. $a m \times a b \times a c \times a d$. 2. $a x \times-b x \times c x \times d x$.
2. $x \times-a x \times-a b x \times-a b c x$.
3. $3 a x \times-2 a^{2} b^{3} \times-5 a^{3} m x$.
4. $-7 m^{2} y \times-3 a^{2} y^{2} \times 5 a x$.
5. $-2 n z n \times-5 n^{3} x^{m} \times-n^{3} y z-x^{n}$.
6. $2 m \times n \times-a \times-2 b$.
7. $-3 a x \times-2 k m \times-\% \times-4 b m x$.
8. $-n y \times g y \times-2 y \times 3 b m$.
9. $x y \times 2 y^{2} \times y^{2} x \times 2 a y x^{2}$.
10. $5 y^{2} \times-3 y y \times-2 z^{2} \times-a x^{2} z$.
11. $5 a x \times a m x \times 3 z \times b^{2} r y$.
12. $-4 b z \times-x z \times-y z \times a y z$.
13. $2 c^{2} n \times 2 v^{2} \% \times-z^{2} \times-b y z^{2}$.
14. $-c^{2} x \times 3 x \times c b^{2} \times a y$.

$$
\begin{array}{ll}
\text { 16. } & -2 e \times-2 y \times a \times b x . \\
\text { 17. } & -4 a x \times 3 a y \times-2 a^{2} y \times-x y . \\
\text { 18. } & a^{2} x \times-a y^{2} \times a x^{2} \times-x^{1} y . \\
\text { 19. } & a x^{2} \times-y^{2} \times-1 \times 3 a x \times-a^{2} y . \\
\text { 20. } & m^{2} x \times-n^{2} x \times-m n^{2} \times m x \times-m^{3} . \\
\text { 21. } & -a b x \times-a y^{2} \times a x \times a^{2} x^{2} . \\
\text { 22. } & p x^{2} \times q y^{2} \times x y \times-a x . \\
\text { 23. } & a b c \times-d^{2} \times a x^{2} \times-1 \times 3 a x . \\
\text { 24. } & \frac{1}{4} a x \times 3 c x \times-\frac{1}{2} m x \times-4 y^{2} \times 6 m . \\
\text { 25. } & -6 m x \times-2 n^{2} x \times \frac{1}{6} a c \times-\frac{1}{5} m^{2} . \\
\text { 26. } & -a \times b c \times-1 \times \frac{1}{4} \times 3 a^{2} \times 4 n y \times y . \\
\text { 27. } & -1 \times a x \times a^{2} x \times a^{5} x^{2} \times b x \times d . \\
\text { 28. } & -a n \times 2 a m^{2} \times-3 m n \times 5 n^{2} y \times-m . \\
\text { 29. } & -m x \times n x \times-m n \times-x y \times-1 . \\
\text { 30. } & -2 p x \times-3 q x \times \frac{1}{6} m^{2} x \times \frac{1}{5} y^{2} \times-1 .
\end{array}
$$

Products of Polynomials by Monomials.

73. The rule for multiplying a polynomial is given by the distributive law (§65).

Rule. Multiply each term of the polynomial by the monomial, and talie the algebraic sum of the products.

Exercises. Multiply

1. $3 x^{2}-4 x y-5 y^{2}$ by $-4 a x$.

$$
\text { Ans. }-12 a x^{3}+16 a x^{2} y+20 a x y^{2}
$$

2. $3 x^{2}-x y+y^{2}$ by $3 x$.
3. $x^{2}+x y+y^{2}$ by $3 x$. 4. $a x+b y+c z$ by $a x y z$.
4. $3 a x^{3}-5 a y^{2}-7$ by $9 a b x$. 6. $4 m p-6 n q$ by $-3 m q$.
5. $5 a^{2} y^{3}-7 a^{3} y^{2}-7 a^{4} y$ by $8 a b$.
'74. The products of aggregates by factors are formed in the same way, the parentheses being removed, and each term of the aggregate multiplied by the factor.

Example. Clear the following expression of parentheses:

$$
\operatorname{am}(a-b+c)-p[a-(h-k)-m(a-b)] .
$$

By the rule of $\S 73$, the first term will be reduced to

$$
\begin{equation*}
a^{2} m-a m b+a m c . \tag{1}
\end{equation*}
$$

The aggregate of the second term within the large parentheses will be

$$
\begin{align*}
& a-h+k-m(a-b) \\
= & a-h+k-m a+m b \tag{2}
\end{align*}
$$

because, by the rule of signs in multiplication,

$$
-m(a-b)=-m \times a-m \times-b=-m a+m b .
$$

Multiplying the sum (2) by $-p$ and adding it to (1), we have for the result required:

$$
a^{2} m-a m b+a m c-p a+p h-p k+p m a-p m b .
$$

EXERCISES.
Clear the following expressions of parentheses:
I. $p(a+m-p)+q(b-c)-r(b+c)$.
2. $(m-a n) x-(m+a n) y+(a n-m) z$.
3. $\quad a(x-y) c-b(x-y) d+f(x+y) c d$.

Here note that the coefficient of $x-y$ in the first term is $a c$.
4. $a m[x-a(b-c)]-b n[a x+b(c+d)]$.
5. $p[-a(m+n)+b(m-n)]-q[b(m-n)-a(m+n)]$.
6. $3 x(2 q-n c)+2 y(5 x-3 c)-z(2 m+7 n)$.
7. $a m[m(a-b) c-3 h(2 k-4 d)+4 n]$.
8. $2 p q[3 a-5 b-6 c-p q(2 m-3 n)]$.
9. $b n[-7 a-7 b(a-c)-(3-a-b)]$.
10. $p(q-r)+q(r-p)+r(p-q)$.
195. The reverse operation, of summing several terms into one or more aggregates, each multiplied by a factor, is of frequent application. Thus, in § 65, having given

$$
m p+m q+m r
$$

we express the sum in the form

$$
m(p+q+r)
$$

The rule for the operation is
If the sum of several terms having a common factor is to be formed, the eoffficients of this factor may be addel, and their aggragate be multiplied b! the factor.

Note. This operation is, in principle, identical with that of $S 55$.

$$
\begin{gathered}
\text { EXAMPLES. } \\
a b x-b c x-a d y+3 d y-3 b x+4 a t y+m y-a m y-3 c m x+b m x
\end{gathered}
$$

Collecting the coefficients of x and y as directed, we have $(a b-b c-3 b-3 c m+b m) x+(-a d+3 d+4 a d+m-a m) y$.

Applying the same rule to the terms within the parentheses, we find

$$
\begin{aligned}
a b-b c-3 b & =b(a-c-3) . \\
-3 c m+b m & =m(b-3 c) . \\
-a d+3 d+4 a d & =3 a d+3 d \\
& =(3 a+3) d \\
& =3(a+1) d . \\
m-a m & =m(1-a) .
\end{aligned}
$$

Substituting these expressions, the reduced expression becomes
$[b(a-c-3)+m(b-3 c)] x+[3(a+1) d+m(1-a)] y$.
The student should now be able to reverse the process, and reduce this last expression to its original form by the method of $\S 74$.

EXERCISES.

In the following exereises, the coefficients of y, z, and their products are to be aggregated, so that the results shall be expressed as entire functions of x, y, and z, as in $\$ 55$.

1. $a x+b x-3 a x+3 b x+6 x-7 x$.

$$
\text { Ans. }(-2 a+4 b-1) x .
$$

2. $m y+m y-m y-2 p y-3 y y$.
3. $m x-n y+n x-y y+r x-s y$.

$$
\text { Ans. }(m+p+r) x-(n+g+s) y .
$$

4. $3 a z-y-2 a z+z-a z+y$.
5. $\quad a b x y-b c x y+b d x y$.
6. 36ab.ry-9 $4 x-a x-7 x y$.
7. $\quad a y-b y-m a y-n b y+3 x$.
8. $\quad a m y-b m y+a m y-b n y$.
9. $p r z-2 q r^{z}-4 p p z+8 q h z$.

1о. $\quad a n x+b n x-a m y-2 b n y$.
\%6. An entire function of two quantities can be regarded as an entire function of either of them ($\S \S 49,50)$, and when expressed as a function of one may be transformed into a function of the other.

Example. The expression

$$
(2 a+3) x^{3}-\left(4 a^{2}-2 u\right) x^{2}+\left(a^{2}-2 a+1\right) x-a^{2}
$$

has the form of an entire function of x. It is required to express it as an entire function of a.

Clearing of parentheses, it becomes

$$
2 a x^{3}+3 x^{3}-4 a^{2} x^{2}+2 a x^{2}+a^{2} x-2 a x+x-a^{2}
$$

Now, collecting the coefficients of a^{3}, a^{2}, cte., separately, it becomes

$$
\left(-4 x^{2}+x-1\right) a^{2}+\left(2 x^{3}+2 x^{2}-2 x\right) a+3 x^{3}+x
$$

which is the required form.

EXERCISES.

Express the following as entire functions of y :
I. $\left(3 y^{2}-4 y\right) x^{3}+\left(y^{3}-2 y^{2}+1\right) x^{2}+\left(2 y^{3}+5 y^{2}-{ }^{7}\right) x-y^{2}-6$.
2. $\quad\left(y^{4}-y^{2}\right) x^{2}+\left(y^{3}-y\right) x+y^{2}-1$.
3. $\left(y^{5}-2 y^{3}\right) x^{3}+\left(y^{4}-2 y^{2}\right) x^{2}+\left(y^{3}-2!y\right) x+y^{2}-2$.
4. $\left(y^{5}+3 y^{2}\right) x^{4}+\left(y^{4}+3 y^{3}\right) x^{3}+\left(y^{3}+3 y\right) x^{2}+\left(y^{2}+3\right) x$.

Multiplication of Polynomials by Polynomials.

\%r. Let us consider the product

$$
(a+b)(p+q+r)
$$

This is of the same form as equation (1) of $\S 65,(a+b)$ taking the place of m. Therefore the product just written is equal to

$$
(a+b) p+(a+b) q+(a+b) r
$$

But

$$
\begin{aligned}
& (a+b) p=a p+b p \\
& (a+b) q=a q+b q \\
& (a+b) r=a r+b r
\end{aligned}
$$

Therefore the product is

$$
a p+b p+a q+b q+a r+b r
$$

It would have been still shorter to first clear the parentheses from $(a+b)$, putting the product into the form

$$
a(p+q+r)+b(p+q+r) .
$$

Claaring the parentheses again, we should get the same result as before.

We have therefore the following rule for multiplying aggregates:
'88. Rule. Multiply each term of the multiplicand by each term of the multiplier, and add the coefficients with their proper algebraie signs.

EXERCISES.

I. $\quad(a+b)\left(2 a-b n^{2}-2 b n^{3}\right)$.
2. $(a-b)(3 m+2 n-5 a b m n)$.
3. $\left(m^{2}-n^{2}\right)(2 m n+p m+q n)$.
4. $\left(p^{2}+q^{2}+r^{2}\right)(p q+q r+r p)$.
5. $(2 a-3 b)(2 a+2 b)$.
6. $(m x-n y)(m x+n y)$.
199. It is frequently necessary to multiply polynomials containing powers of the same letter. In this case the beginner may find it easier to arrange multiplicand, multiplier, and product under each other, as in arithmetical multiplication.

Ex. I. Multiply $7 x^{3}-6 x^{2}+5 x-4$ by $3 x^{2}-4 x-5$.

The first line under the multiplier contains the products of the several terms of the multiplicand by $3 x^{2}$. The second contains the products by $-4 x$, and the third by -5 . Like terms are placed under each other to facilitate the addition.
work.

$$
\begin{aligned}
& 7 x^{3}-6 x^{2}+5 x-4 \\
& 3 x^{2}-4 x-5 \\
& 21 x^{5}-18 x^{4}+15 x^{3}-12 x^{2} \\
& \quad-28 x^{4}+24 x^{3}-20 x^{2}+16 x \\
& \quad-35 x^{3}+30 x^{2}-25 x+20 \\
& \hline 21 x^{5}-46 x^{4}+4 x^{3}-2 x^{2}-9 x+20
\end{aligned}
$$

Ex. 2. Multiply $m+n x+p x^{2}$ by $a-b x$.

$$
\begin{aligned}
& m+n x+1 x^{2} \\
& \frac{a-b x}{a m+a n x+a p x^{2}} \\
& \quad-b m x=\frac{b n x^{2}-b p x^{3}}{a m+(a n-b m) x+(a p-b n) x^{2}-b p x^{3}}
\end{aligned}
$$

In the following excrises arrange the terms according to the powers and products of the leading letters, a, b, x, y, or z.

Multiply

1. $3 a^{2}+5 a+7$ by $\mathfrak{\sim} a^{2}-3 a+4$.
2. $a^{2}+a b+b^{2}$ by $a-b$.
3. $\quad a^{3}+a^{2}+a a^{2}+x^{3}$ by $a-x$.
4. $\quad a^{3}-a^{2}+a-1$ by $a^{2}-a+1$.
5. $\quad x^{4}+a x^{3}+a^{3} x^{2}+a^{3} x+a^{4}$ by $x-a$.
6. $a+b z+c z^{2}+d z^{3}$ by $m-n z+p z^{2}$.
7. $3 a^{2}+5 a+7$ by $2 a^{2}+3 a-4$.
8. $\quad a^{2}-a b+b^{2}$ by $a+b$.
9. $\quad a^{3}+a^{2} x+a x^{2}+x^{3}$ by $a-x$.
10. $a^{3}-a^{2}+a-1$ by $a^{2}+a-1$.

I 1. $x^{4}+a x^{3}+a^{2} x^{2}+a^{3} x+a^{4}$ by $x+a$.
12. $\quad \tau+b z+c z^{2}+c l z^{3}$ by $m+n z-p z^{2}$.
13. $\quad(a+b x)(m+n x)$.
14. $\left(a+b x+c x^{2}\right)\left(m+n x+p x^{2}\right)$.
15. $\left(y^{3}-3 y+2\right)\left(y^{2}-2\right)$.
16. $\left(y^{3}+y^{2}+y+1\right)\left(y^{2}+y+1\right)$
17. $\left(y^{3}-2 y^{2}+3 y-4\right)\left(y^{3}+2 y^{2}+3 y+4\right)$.
18. $3 a^{2 m} x-3 a^{2} y+2 a^{2 n}$ by $a^{m}-a^{n}$
19. $\quad a^{2}+6 a b+\frac{1}{3} b$ by $a-\frac{1}{3} b$.
20. $(a+b)+(a-b)$ by $(a+b)-(a-b)$.
25. $\quad a^{2}-b^{2}+(a-b)$ by $a^{2}+b^{2}+(a+b)$.
22. $a+b+c$ by $a-b+c$.
23. $a^{2}+b^{2}-\left(3 a^{2}+b^{2}\right)$ by $2 a+2 b-2(a-b)$.
24. $2(a-b)+x-y$ by $a+b-(x+y)$.
25. $a x^{m}+b x^{n}-a b x$ by $a x^{2}+b x^{3}$.
26. $a^{m}-b^{n}$ by $a^{m}+b^{n}$.
27. $-15 x^{2} y+3 x y^{2}-12 y^{3}$ by $-5 x y$.
28. $\frac{2}{3} x^{2}+3 a x-\frac{7}{5} \pi^{2}$ by $2 x^{3}-a x-\frac{1}{4} a^{2}$.

Note. Aggregates entering into either factor should be simplified before multiplying.

Special Forms of Multiplication.

80. 81. To find the square of a binomial, as $a+b$. We multiply $a+b$ by $a+b$.

$$
\begin{aligned}
a(a+b) & =a^{2}+a b \\
b(a+b) & =\frac{a b+b^{2}}{a b} \\
b)(a+b) & =\frac{a^{2}+2 a b+b^{2}}{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
(a+b)^{2}=a^{2}+2 a b+b^{2} \tag{1}
\end{equation*}
$$

2. We find, in the same way,

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

These forms may be expressed in words thus:
Theorem. The square of a binomial is equal to the sum of the squares of its two terms, plus or minus twice their product.
3. To find the product of $a+b$ by $a-b$.

$$
\begin{align*}
a(a+b) & =a^{2}+a b \\
-b(a+b) & =\frac{-a b-b^{2}}{a^{2}-b^{2} .}
\end{align*}
$$

That is:
Theorem. The product of the sum and difference of two numbers is equal to the difference of their squares.

The forms (1), (2), and (3) should be memerized by the student, owing to their constant occurrence.

When $b=1$, the form (3) becomes

$$
(a+1)(a-1)=a^{2}-1
$$

The student should test these formulæ by examples like the following:

$$
\begin{aligned}
& (9+4)^{2}=9^{2}+2 \cdot 9 \cdot 4+4^{2}=81+72+16=169 . \\
& (9-4)^{2}=9^{2}-2 \cdot 9 \cdot 4+4^{2}=81-72+16=25 .
\end{aligned}
$$

Prove these three equations by computing the left-hand member directly.

exercises.

Write on sight the values of
I. $(m+2 n)^{2}$.
2. $(m-2 n)^{2}$.
3. $(3 a-2 b)^{2}$.
4. $(4 x-5 y)^{2}$.
5. $(2 x+y)(2 x-y)$.
6. $(3 x+1)(3 x-1)$.
7. $\left(4 x^{2}+1\right)\left(4 x^{2}-1\right)$.
8. $\left(5 x^{3}-3\right)\left(5 x^{3}+3\right)$.
81. Because the product of two negative factors is positive, it follows that the square of a negative quantity is positive.

Eximples. $\quad(-a)^{2}=a^{2}=(+a)^{2}$.

$$
(b-a)^{2}=a^{2}-2 a b+b^{2}=(a-b)^{2} .
$$

Hence,
The e.rpression $a^{2}-2 a b+b^{2}$ is the square both of $a-b$ ancl of $b-a$.
82. We have $\quad-a \times a=-a^{2}$.

Hence,
The product of equal fuctors with opposite signs is a negative square.

Example. $\quad-(a-b)(a-b)=-a^{2}+2 a b-b^{2}$, which is the negative of (2). Becalise $-(a-b)=b-a$, this equation may be written in the form,

$$
(b-a)(a-b)=-a^{2}+2 a b-b^{2},
$$

which is readily obtained by direct multiplication.
EXERCISES.
Write on sight the values of
I. $-(a+b) \times-(a+b)$.
2. $(x-y)(y-x) . \quad 3 . \quad(x+y)(-x-y)$.
4. $\quad(2 a-3 b)(3 b-2 a) . \quad$ 5. $\quad(3 b-2 a)(-3 b+2 a)$.
6. $(a m-b n)(b n-a m)$ 7. $(x y-2)(2-x y)$.

CHAPTER $\|\|$.

DIVISION.

83. The problem of algebraic division is to find such an expression that, when multiplied by the divisor, the product. shatl be the dividend.

This expression is called the fuotient.
In Algebra, the quotient of two quantities may always be indicated by a fraction, of which the numerator is the dividend and the denominator the divisor.

Sometimes the numerator camot be exaetly divided by the denominator. The expression must then be treated as a fraction, by methods to be explained in the next ehapter.

Sometimes the divisor will exactly divide the dividend. Such cases form the subject of the present chapter.

Division of Monomials by Monomials.

84. In order that a dividend may be exactly divisible by a divisor, it is necessary that it shall contain the divisor as a factor.

Ex. i. 15 is exactly divisible by 3 , because $3 \cdot 5=15$.
2. The product $a \dot{u} c$ is exactly divisible by $a c$, because $a c$ is a factor of it.

To divide one expression by another which is an exact divisor of it:

Rule. Remove from the dividend those factors the product of uhich is equal to the divisor. The remuining factors will be the quotient.
85. Rute of Exponents. If both dividend and divisor contain the same symbol, with different exponents, say m and n, then, beeause the dividend contains this symbol m times as a factor, and the divisor n times, the quotient will contain it $m-n$ times. Hence,

In dividing, exponcuts of like symbols are to be subtracted.

EXERCISES.

1. Divide $26 x y$ by $2 y$.

Ans. 13x.
2. Divide $21 a^{2} b c$ by rbc.
3. Divide x^{a} by x^{2}.
4. Divide $13 a^{2}$ by $6 a$.
5. Divide $15 t^{2} m$ by $3 a$.

Ans. x. duct.
$+m x \div(+m)=+x$, because $+x \times(+m)=+m x$.
$+m x \div(-m)=-x, \quad$ " $\quad-x \times(-m)=+m x$.
$-m x \div(+m)=-x, \quad$ " $\quad-x \times(+m)=-m x$.
$-m x \div(-m)=+x, \quad$ $\quad+x \times(-m)=-m x$.
Thin condition to be fulfilled in all four of these cases is that the product, quotient \times dicisor, shall have the same algebraic sign as the dividend.

EXERCISES.
Divide

1. $+a \mathrm{by}+a$.	Ans. +1.
2. $+a \mathrm{by}-a$.	Ans. - 1.
3. $-a \mathrm{by}+a$.	Ans. - 1.
4. - a by -a.	Ans. +1.
5. - 33 cimx by $11 a x$.	Aus. - 3am.
6. - ${ }^{\text {d }} 4 x^{2} y z$ by $12 x y z$.	Aus. - sx.
7. $21 a m x^{2} \cdot x^{\prime \prime}$ by - $7\left(1 m x x^{n}\right.$.	Ans. - $3 m x^{m \cdots n}$.

8. $-18 a^{m} p^{n}$ by - $6 a^{n} p . \quad$ Ans. $3 a^{m-n} p^{n-1}$.
9. $-16 a^{2} x^{m} y^{n}$ by $4 a x^{2} y^{n}$.
10. $14 b^{8} p^{l}$ by - ibrpq.
11. $-12 b^{m} t^{n} k^{n}$ by $-4 b^{n} t^{n} k^{n}$.
12. $12(a-b)^{3} c^{4}$ by $3(a-b)^{2} c$. Ans. $4(a-b) c^{3}$.
13. $\quad 42(x-y)^{m}$ by $-7(x-y)^{n}$.
14. $\quad-44 a^{8}(x-y)^{t}$ by $11 a^{t}(x-y)^{t}$.
15. - $45 b^{m}(a-b)^{n}$ by $9 b^{n}(a-b)^{s}$.
16. $-48(m+u)^{p} b y-8(m+n)^{q}$.
17. $\quad 64(a+b)^{n}(x-y)^{m}$ by $4(a+b)(x-y)$.

Division of Polynomials by Monomials.

8\%. By the distributive law in multiplication, whatever quantities the symbols m, a, b, c, ete., may represent, we have:

$$
(a+b+c+\text { etc. }) \times m=m a+m b+m c+\text { etc. }
$$

Therefore, by the condition of division,

$$
(m a+m b+m c+\text { etc } \div m=a+b+c+\text { ctc. }
$$

We therefore conclude,

1. In order that a polynomial may be exactly divisible by a monomial, each of its terms must be so divisible.
2. The quotient will be the algebraic sum of the separate quotients found by dividing the different terms of the polynomial.

EXERCISES.
Divide

1. $2 a^{2}+6 a^{3} x-8 a^{5} x^{2}$ by $2 a^{2}$. Ans. $1+3 a x-4 a^{3} x^{2}$.
2. $6 m^{2} n-12 m^{3} n^{2}-18 m n^{5}$ by $6 m n$.
3. $8 a^{3} b^{5}-16 a^{4} b^{4}+8 a^{5} b^{3}$ by $4 a^{3} b^{3}$.
4. $4 x y^{5}-8 x^{3} y^{3}+4 x^{5} y$ by $-4 x y$.
5. 12abr - 24abx by - 12abx.
6. $21 a m^{2} x^{m}-14 a^{2} m^{4} x^{n}+28 a^{5} m^{2} x^{p}$ by $-7 a m x^{n}$.
7. $\quad 9 a^{3} x+24 a x+48 a x^{2}$ by 24ax.
8. $a(b-c)+b(c-a)+c(a-b)+a b c$ by $a b c$.
9. $\quad 27(a-b)^{5}-18(a-b)^{3}+9(a-b)^{2}$ by $9(a-b)$.
10. $a^{m}(a-b)^{n}-a^{n}(a-b)^{m}$ by $a^{n}(a-b)^{n}$.
11. $\quad(a+b)^{p}(a-b)^{a}+(a+b)^{q}(a-b)^{p}$ by $(a+b)(a-b)$.
12. $\quad 10(x+y)^{m}(x-y)^{n}-5(x+y)^{y}(x-y)^{q}$ by $5(x+y)(x-y)$.
13. $(a+b)(a-b)$ by $a^{2}-b^{2}$.

Factors and Multiples.

88. As in Arithmetic some numbers are composite and others prime, so in Algebra some expressions admit of being divided into algebraic factors, while others do not. The latter are by analogy called Prime and the former Composite.

A single symbol, as a or x, is necessarily prime.
A product of several symbols is of course composite, and ean be divided into factors at sight.

A binomial or polynomial is sometimes prime and sometimes composite, but no universal rule can be given for distinguishing the two cases.
89. When the same symbol or expression is a factor of all the terms of a polynomial, the latter is divisible by it.

EXAMPLES.

1. $a x+a b x^{2}+a^{2} c x^{3}=a\left(x+b x^{2}+a c x^{3}\right)$.
2. $a^{2} b^{3} x+a^{3} b^{2} x^{2}=a^{2} b^{2} x(b+a x)$.
3. $a^{2 n}+a^{n} x^{n}=a^{n}\left(a^{n}+x^{n}\right)$.

EXERCISES.
Factor
I. $a x^{2}+a^{2} x$.
2. $a^{3} b^{2} c y+a^{2} b c^{3} y+a b^{3} c^{2} y$.
3. $a^{2 n} b^{n}+a^{n} b^{2 n}$.
4. $a^{3 n} x^{n}-a^{2 n} x^{2 n}+a^{n} x^{3 n}$.
5. $a^{n} b^{2 n} t^{3 n}+a^{2 n} b^{3 n} c^{n}+a^{3 n} b^{n} c^{2 n}$.
90. There are certain forms of composite expressions which should be memorized, so as to be easily recognized. The following are the inverse of those derived in § 80 .
I. $\quad a^{2}+2 a b+b^{2}=(a+b)^{2}$.
2. $a^{2}-2 a b+b^{2}=(a-b)^{2}$.
3. $a^{2}-b^{2}=(a+b)(a-b)$.

The form (3) can be applied to any difference of even powers; thus,

$$
\begin{aligned}
& a^{4}-b^{4}=\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right) ; \\
& a^{6}-b^{6}=\left(a^{3}+b^{3}\right)\left(a^{3}-b^{3}\right) ;
\end{aligned}
$$

and, in general, $a^{2 n}-b^{2 n}=\left(a^{n}+b^{n}\right)\left(a^{n}-b^{n}\right)$.
If the exponent is a multiple of 4 , the second factor can be again divided.

EXAMPLES.

$a^{4}-b^{4}=\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)=\left(a^{2}+b^{2}\right)(a+b)(a-b)$.
$a^{8}-b^{8}=\left(a^{4}+b^{4}\right)\left(a^{4}-b^{4}\right)=\left(a^{4}+b^{4}\right)\left(a^{2}+b^{2}\right)(a+b)(a-b)$.
When b is equal to 1 or 2 , the forms become

$$
\begin{aligned}
a^{2}-1 & =(a+1)(a-1) . \\
a^{2}-4 & =(a+2)(a-2) . \\
a^{2}+2 a+1 & =(a+1)^{2} . \\
a^{2}+4 a+4 & =(a+2)^{2} . \\
a^{2}-2 a+1 & =(a-1)^{2}=(1-a)^{2} . \\
a^{2}-4 a+4 & =(a-2)^{2}=(2-a)^{2} .
\end{aligned}
$$

By putting $2 b$ for b, they give

$$
\begin{aligned}
& a^{2}-4 b^{2}=(a+2 b)(a-2 b) . \\
& a^{2}+4 a b+4 b^{2}=(a+2 b)^{2} . \\
& \text { EXERCISES. }
\end{aligned}
$$

Divide the following expressions into as many factors as possible :
I. $x^{4}-16$.

Ans. $\left(x^{2}+4\right)(x+2)(x-2)$.
2. $y^{4}-16 x^{4}$.
3. $x^{2}+6 x+9 . \quad$ Ans. $(x+3)^{2}$.
4. $x^{2}-6 x+9$.
5. $\quad 4 a^{2} x^{2}-9 \partial^{2} y^{2}$.
6. $16 a^{4} x^{4}-1$.
7. $9 x^{2}-12 x y+4 y^{2}$.
8. $a^{2} \cdot v^{2}+2 a x y+y^{2}$.
9. $4 a^{2} x^{2}+4 a b x y+b^{2} y^{2}$.
10. $a^{4}+4 a^{2} b^{2}+4 b^{2}$.
II. $x^{4}-2 x^{2} y^{2}+y^{4}$.
12. $x^{4}-4 x^{2} y^{2}+4 y^{4}$.
13. $a^{4}-4 a^{2} b^{2}+4 b^{4}$.
14. $\quad a^{4}-a^{2} b^{2}$.
15. $\quad a^{2 n}-2 a^{n}+1$.
16. $x^{2 n}-4 a x^{n}+4 u^{2}$.
17. $1-? y^{4}$.
18. $\quad x^{6} z+2 \cdot x^{3} y^{3} z+y^{6} z$.

$$
\text { Aus. } z\left(. x^{6}+2 . x^{3} y^{3}+y^{6}\right)=z\left(x^{3}+y^{3}\right)^{2}
$$

19. $\quad a^{3}-4 a^{2} b+4 a b^{2}$.
20. $a^{3 m}-b^{4 n}$.
21. $25 x^{4}-40 x^{3} y+16 x^{2} y^{2}$.
22. $4 x^{4} y^{4}-9 x^{2} y^{2}$.
23. $4 x^{4} y^{4}-12 x^{3} y^{3}+9 x^{2}$.
24. $x^{3}-x^{2} y^{6}$.
25. $x^{1 m}-2 x^{2 m} y^{n}+y^{2 n}$.
26. $x^{1 m}-2 x^{2 m}+1$.
27. $x^{2}+x+\frac{1}{4}$.
28. $x^{2 m}+x^{m}+\frac{1}{4}$.
29. By combining the preceding forms, yet other forms may be found.

For example, the factors

$$
\begin{equation*}
\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right) \tag{1}
\end{equation*}
$$

are respectively the sum and difference of the quantities

$$
a^{2}+b^{2} \quad \text { and } \quad a b
$$

Hence the product (1) is ergail to the difference of the squares of these quantities, or to

$$
\left(a^{2}+b^{2}\right)^{2}-a^{2} b^{2}=a^{4}+a^{2} b^{2}+b^{4}
$$

Hence the latter quantity can be factored as follows:

$$
a^{4}+a^{2} b^{2}+b^{4}=\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)
$$

EXERCISES.

Factor

1. $\quad x^{4}+x^{2} y^{2}+y^{4}$.
2. $a^{4}+8 a^{2} b^{2}+16 b^{4}$.
3. $a^{4}+9 a^{2} x^{2}+81 x^{4}$.
4. $a^{4 n}+a^{2 n} b^{2 n}+b^{n n}$.
5. $\quad a^{4} x^{2}+4 a^{2} b^{2} x^{2}+16 b^{4} x^{2}$.
6. $a^{6}+8 a^{1} b^{2}+16 a^{2} b^{1}$.
7. $x^{5 n}+x^{3 n} y^{3 n}+x^{n} y^{1 n}$.
8. $m^{2}-a^{2}+2 a b-b^{2}$. Ans. $(m-a+b)(m+a-b)$.

Here the last three terms are a negative square. Compare © 80.
9. $a^{2}-4 b^{2}+4 b c-c^{2} . \quad$ 10. $\quad a^{3}-4 a b^{2}+4 a b c-a c^{2}$.
92. The following expression occurs in investigating the area of a triangle of which the sides are given :

$$
\begin{equation*}
(a+b+c)(a+b-c)(a-b+c)(a-b-c) \tag{1}
\end{equation*}
$$

By $\S 80,3$, the product of the first pair of factors is

$$
(a+b)^{2}-c^{2}=a^{2}+2 a b+b^{2}-c^{2} ;
$$

and that of the second pair,

$$
(a-b)^{3}-c^{2}=a^{2}-2 a b+b^{2}-c^{2}
$$

By the same principle, the product of these products is

$$
\left(a^{2}+b^{2}-c^{2}\right)^{2}-4 a^{2} v^{2},
$$

which we realily find to be

$$
\begin{equation*}
a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 b^{2} c^{2}-2 c^{2} a^{2} . \tag{2}
\end{equation*}
$$

Hence this expression (2) can be divided into the four factors (1).

Factors of Binomials.

93. Let us multiply

$$
\begin{aligned}
& x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\ldots+a^{n-2} x+a^{n-1} \text { by } x-a \text {. } \\
& \text { operation. } \\
& x^{n-1}+u^{n-2}+u^{2} x^{n-3}+u^{3} x^{n-4}+\ldots+u^{n-2} x+u^{n-1} \\
& x-a \\
& x^{n}+u x^{n-1}+u^{2} \cdot x^{n-2}+u^{3} x^{n-3}+\cdots+u^{n-1} x \\
& \text { Prod., } \frac{-u x^{n-1}-\mu^{2} x^{n-2}-\mu^{3} \cdot x^{n-3}-\ldots-u^{n-1} x-u^{n}}{\frac{0}{n}} \frac{0}{} 00-u^{n}
\end{aligned}
$$

The intermediate terms all cancel each other in the product, leaving only the two extreme terms.

The prodact of the multiplicand by $x-a$ is therefore $x^{n}-\mu^{n}$. Hence, if we divide $x^{n}-\mu^{n}$ by $x-\mu$, the quotient will be the above expression. Hence the binomial $a^{n}-a^{n}$ may be fictored as follows:

$$
x^{n}-\iota^{n}=(x-\mu)\left(x^{n-1}+u^{n-2}+a^{2} x^{n-3}+\cdots+u^{n-2} x+a^{n-1}\right) .
$$

Therefore we have,
Theorem. The difference of any power of two numbers is divisible by the difference of the numbers themselves.

Illustrition. The difference between any power of 7 ! and the same power of 2 is divisible by $7-2=5$. For instance,

$$
\begin{aligned}
& r^{2}-2^{2}=45=5.9 . \\
& r^{3}-2^{3}=335=5.67 . \\
& r^{4}-2^{4}=2: 385=5.47 \% \\
& \text { etc. } \quad \text { ete. } \quad \text { etc }
\end{aligned}
$$

by

94. Let us multiply

$$
\begin{aligned}
& x^{n-1}-a x^{n-2}+a^{2} x^{n-3}-\cdots+(-a)^{n-2} x+(-a)^{n-1} \\
& \text { by } \quad x+a=x-(-a) .
\end{aligned}
$$

Rem. This expression is exactly like the preceding, except that $-a$ is substituted for a. It will be noticed that the coefficients of the powers of x in the multiplicand are the powers of $-a$, because

$$
\begin{gathered}
(-a)^{1}=-a, \\
(-a)^{2}=+a^{2}, \\
(-a)^{3}=-a^{3}, \\
(-a)^{4}=+a^{4}, \\
\text { etc. } \quad \text { etc. }
\end{gathered}
$$

The sign of the last term will he positive or negative, according as $n-1$ is an even or odd number.

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { operation. } \\
\\
\\
\\
\frac{x+a=x-\left(-a x^{n-1}+a^{2} \cdot x^{n-3}-a^{3} x^{n-4}+\ldots+(-a)^{n-2} x+(-a)^{n-1}\right.}{x^{n}-a x^{n-1}+a^{2} \cdot x^{n-2}-a^{3} \cdot x^{n-3} \ldots+(-a)^{n-1}} \\
\\
\text { Prod., } \frac{+a x^{n-1}-a^{2} \cdot x^{n-2}+a^{3} \cdot x^{n-3} \ldots .-(-a)^{n-1} x-(-a)^{n}}{x^{n} \quad 0} 0 \quad 0 \quad 0 \quad 0 \quad-(-a)^{n}
\end{array}
\end{aligned}
$$

The multiplier $x+a$ is the same as $x-(-a)$ (§59). In multiplying the first terms, we use $+a$, and in the last ones $-(-a)$, because the latter shows the form better.

Hence, rasoning as in (1), the expression $x^{n}-(-a)^{n}$ admits of being factored thus:

$$
\begin{aligned}
& x^{n}-(-a)^{n}=(x+a)\left[x^{n-1}-a x^{n-2}+a^{2} x^{n-3}-\right. \\
&\left.\cdots+(-a)^{n-2} x+(-a)^{n-1}\right] .
\end{aligned}
$$

If n is au cven number, then $(-a)^{n}=a^{n}$, and

$$
x^{n}-(-a)^{n}=x^{n}-u^{n}
$$

If n is an odd number, then $\left(-a^{n}\right)=-a^{n}$, and

$$
x^{n}-(-a)^{n}=x^{n}+a^{n}
$$

Therefore,
Theorem 1. When n is odd, the binomial $x^{n}+a^{n}$ is divisible by $x+a$.

Theorem 2. When n is even, the binomial $x^{n}-a^{n}$ is divisible by $x+a$.

Note. These theorems could have been deduced immediately from that of $\$ 93$, by changing a into $-a$, becilluse $x-a$ would then have been changed to $x+a$, and $x^{n}-a^{n}$ to $x^{n}+a^{n}$ or $x^{n}-a^{n}$, according as n was odd or even.

The forms of the factors in the two cases are :
When n is odd,
$x^{n}+a^{n}=(x+a)\left(x^{n-1}-a x^{n-2}+a^{2} x^{n-3}-\cdots+a^{n-1}\right)$.
When n is even, $x^{n}-a^{n}=(x+u)\left(x^{n-1}-a x^{n-2}+a^{2} x^{n-3}-\cdots-a^{n-1}\right)$.

In the latter case, the last factor can still be divided, hecause $x^{n}-a^{n}$ is divisible by $x-a$ as well as by $x+a$. We find, by multiplication,

$$
\begin{aligned}
& (x-a)\left(x^{n-2}+a^{2} x^{n-4}+a^{4} x^{n-6}+\cdots+a^{n-2}\right) \\
& \quad=x^{n-1}-a x^{n-2}+a^{2} x^{n-3}-a^{3} x^{n-4}+\cdots+a^{n-2} x-a^{n-1}
\end{aligned}
$$

Therefore, from the last equation (a) we have:
When n is eren, $x^{n}-a^{n}=(x+a)(x-a)\left(x^{n-2}+a^{2} x^{n-4}+a^{4} x^{n-6}-\cdots+a^{n-2}\right)$.
exercises.
Factor the following expressions, and when they are purely numerical, prove the results.

Least Common Multiple.

95. Def. A Common Multiple of several quantities is any expression of which all the quantities are factors.

Example. The expression $a m^{2} n^{3}$ is a common multiple of the quantities $a, m, n, a m, a m n, a m n^{2}, m^{2} n^{3}$, ctc., and finally of the expression itself, $\alpha n^{2} \mu^{3}$. But it is not a multiple of μ^{2}, nor of x, nor of any other symbol which does not enter into it as a factor.

Def. The Least Common Multiple of several quantities is the common multiple which is of lowest degree. It is written for shortness L. C. M.

Rule for finding ties L. C. M. Factor the seceral quantities as far as possible.

If the quantities have uo common factor, the least common multiple is their product.

If several of the quantities have a comemon factor, the multiple required is the product of "ll the fictorss, each of them being raised to the highest power which it lues in any of the gicen quantities.

Ex. i. Let the given quantities be

$$
2 a b, \quad 3 b^{3} c, \quad 6 a c .
$$

The factors are $2,3, a, b$, and c. The highest power of b is ℓ^{3}, while a and c only enter to the first power. Hence,

$$
\text { L. C. M. }=6 a b^{3} c .
$$

Ex. 2. $a^{2}-b^{2}, a^{2}+2 a b+b^{2}, a^{2}-2 a b+b^{2}, a^{4}-b^{4}$.
Factoring, we find the expressions to be, $(a+b)(a-b), \quad(a+b)^{2}, \quad(a-b)^{2}, \quad\left(a^{2}+b^{2}(a+b)(a-b)\right.$.

By the rale, the L. C. M. required is

$$
(a+b)^{2}(a-b)^{2}\left(a^{2}+b^{2}\right) .
$$

EXERCISES.

Find the L. C.M. of

1. $x y, x z, y z$.
2. $a^{2} b, b^{2} c, c^{2} d, d^{2} a$.
3. a, ab, abc, abcd.
4. $\quad a^{2}, a b^{3}, b c^{4}$.
5. $x^{2}-y^{2}, x+y, x-y$.
6. $x^{4}-4, x^{2}-4 x+4, x^{2}+4 x+4$.
7. $16 a^{2} x^{2}-4 m^{2}, 2 a x+m, 2 a x-m$.
8. $x^{2}-1, x^{2}+1, x^{2}-2 x+1, x^{2}+2 x+1$.
9. $4 a(b+c), b(a-c), 2 a b$.
10. $2(a-b)^{2}, 2(a+i)^{2}, 2(a-b)(a+b)$.
11. $3(x+y), 3 \cdots \quad$!; $3\left(x^{3}+y^{3}\right)$.
12. $a-b, a^{2}-b ゙,{ }^{3}-\iota^{3}, a^{4}-b^{4}$.
13. $x+y, x-y, a+b, \quad a \cdots b$.
14. $\quad x^{4}-a^{4}, x^{3}+u^{3}, x^{2}-a^{2}, x+a$.
15. $x^{6}-64 a^{6}, x^{4}-16 a^{4}, x^{2}-4 a^{2}$.
16. $a+b, a^{2}+2 a b+b^{2}, a^{4}-b^{4}$.

Division of one Polynomial by another.

If the dividend and divisor are both polynomials, and entire functions of the same symbol, and if the degree of the numerator is not less than that of the denominator, a division may be performed and a remainder obtained. The method of dividing is similar to long division in Arithmetic.
96. Case I. When there is only one algebraic symbol in the dividend and divisor.

Let us perform the division,

$$
3 x^{4}-4 x^{3}+2 x^{2}+3 x-1 \div x^{2}-x+1
$$

We first find the quotient of the highest term of the divisor x^{2}, into the highest term of the dividend $3 x^{4}$, multiply the whole divisor by the quotient $3 x^{2}$, and subtract the prodnet from the dividend. We repeat the process on the remainder, and continme doing so motil the remainder has no power of x so high as the highest term of the diviser. The work is most conveniently arranged as follows:

The division eam be carried no farther without fractions, because x^{2} will not go into x. We now apply the same rule as in Arithmetie, by adding to the quotient a fraction of which the mumerator is the remainder and the denominator the divisor. The result is,

$$
\begin{equation*}
\frac{3 x^{1}-4 x^{3}+\frac{2 x^{2}+3 x-1}{x^{2}-x+1}=3 x^{2}-x-2+\frac{2 x+}{x^{2}-x,} \overline{1} .}{} \tag{a}
\end{equation*}
$$

This result may now be proved by multiplying the quotient by the divisor and adding the remainder.

There is an amalogy between the result (a) and the corresponding one of Arithmetic. An algehraic frac' on like (a), in which the degree of the numerator is greater than that of the denominator may be called an improper fraction. As in Arithmetic an improper fraction may be rednced to an entire number plas a proper fraction, so in Algebra an improper fraction may be reduced to an entire function of a symbol plus a proper fraction.

EXERCISES.

Execute the following divisions, and reduce the quotients to the form (a) when there is any remainder.

1. Divide $x^{3}-2 x-1$ by $x+1$.
2. Divide $x^{3}+2 x^{2}-2 x-1$ by $x-1$.
3. Divide $x^{3}-3 x^{2}+2 x-1$ by $x^{2}-x$.
4. Reduce $\frac{2 x^{4}-2 x^{3}+x^{2}-x-5}{x^{2}-x-1}$.
5. Divide $24 a^{3}-38 a^{2}-32 a+50$ by $2 a-3$.

$$
\text { Ans. Quot. }=12 a^{2}-a-\frac{35}{2} ; \text { Rem. }=-\frac{5}{2}
$$

6. Divide $x^{4}-1$ by $x-1$.

When terms are wanting in the dividend, they may be considered ns zero. In this last exerelse, the terms in x^{3}, x^{2}, and x are wanting. But the beginner may write the divilend mad perform the operation thus:

$$
\begin{array}{c|}
x^{4}+0 x^{3}+0 x^{2}+0 x-1 \\
\begin{array}{l}
x^{1}-\frac{x^{3}}{x^{3}}+0 x^{2} \\
\frac{x^{3}-1}{x^{3}+x^{2}+x}+1 \\
x^{2}+0 x \\
\frac{x^{2}-x}{x-1} \\
\frac{x-1}{0} 0
\end{array}
\end{array}
$$

The operation is thus assimilatel to that in which the expression is complete; but the nctunl writing of the zero terms in this way is unneressary, and should be dispensed with as soon as the student is able to do it.
7. Divide $a^{3}-9 a+1$ by $u-1$.
8. Divide $x^{2}+1$ by $x+1$.
9. Divide $8 a^{3}+125$ by $2 a+5$.
10. Divide $a^{5}+1$ by $a+1$.
II. Divide $a^{4}+2 a^{2}+9$ by $a^{2}+2 a+3$.
12. Divide $a^{6}-1$ by $a^{3}+2 a^{2}+2 a+1$.
13. Divide $x^{6}-10 x^{4}+36 x^{2}-32$ by $x^{2}-2$.
14. Divide $\left(x^{3}-2 x+1\right)\left(x^{3}-12 x-16\right)$ by $x^{2}-16$.

For some purposes, we may equally well perform the operation by beginning with the term containing the lowest power of the quantity, or not containing it at all. Take, for instance, Example 9 :

$$
\begin{array}{cc}
125+8 a^{3} & \frac{5+2 a}{125}+50 a \\
\hline-50 a & 25-10 a+4 a^{2} \\
-50 a-20 a^{2} \\
\hline & 20 a^{2}+8 a^{3} \\
& \simeq 0 a^{2}+8 a^{3}
\end{array}
$$

15. Divile $1+3 x+3 x^{2}+x^{3}$ by $1+x$.
16. Divide $1-4 x+4 x^{2}-x^{3}$ by $1-x$.
17. Divide $15+2 a-3 a^{2}+a^{3}+2 a^{4}-a^{5} \operatorname{lyy} 5+4 a-a^{3}$.
18. Divide $1-y^{6}$ by $1+2 y+2 y^{2}+y^{3}$.
19. Divide $6.4-64 x+16, x^{2}-8 x^{3}+4 x^{4}-x^{6}$ hy $-4+2 x+x^{2}$.
20. Divide $64-16 a^{2}+x^{6}$ by $4-4 x+x^{3}$.

9\%. Case II. When theve are several algebraic symbols in the divisor and dividenel.

Let us suppose the dividend and divisor arranged according to powers of some one of the symbols, which we may suppose to be x, as in $s i 6$.

Let us call I the coctlicient of the highest power of x in the dividend, and $I I$ the term independent of x, so that the dividend is of the form

$$
A x^{n}+(\text { terms with lower powers of } x)+I I .
$$

Let us call a the coeflicient of the highest power of x in the divisor, and $/ 7$ the term of the divisor independent of x, so that the divisor is of the form

$$
a x^{m}+(\text { terms with lower powers of } x)+h
$$

Then we have the following
Theorem. In order that the dividend may be exactly divisible by the divisor, it is necessary :

1. That the term containing the highest power of x in the dividend shall be exactly divisible by the corresponding term of the divisor.
2. That the term independent of x in the dividend shail be exactly divisible by the corresponding term of the divisor.

Reason. The reason of this theorem is that if we suppose the quotient also arranged according to the powers of x, then,

1. The highest term of the dividend, $A e^{n}$, will be given by multiplying the highest term of the divisor, $a x^{m}$, by the highest term of the quotient. Hence we must have,

$$
\text { Highest term of quotient }=\frac{A x^{n}}{a x^{m}}
$$

2. The lowest term of the dividend will he given by multiplying the lowest term of the dividend by the lowest term of the guotient. Hence, we must have,

$$
\text { Lowest term of 'quotient }=\frac{I I}{h} \text {. }
$$

Rem. 1. Since we may arrange the dividend and divisor according to the powers of any one of the symbols, the above 5
theorem must be true whatever symbol we take in the place of x.

Rem. 2. It does not follow that when the conditions of the theorem are fultilled, the division can always be performed. This question cam be decided only by trial.

We now reach the following rule:
I. Arrange both dividend and divisor acoording to the uscending or descending pouers of some common symbol.
II. Form the first term of the quotient bul divialing the first term of the dividend by the first term of the divisor.
III. Nultinl!, the whole divisor ly the term thus foemt, and subtract the product from the divident.
IV. Treat the remainder as a new dividend in the same way, ald repeat the process until a remainder is found which is not divisible by the quotient.

Ex. I . Divide $x^{3}+3 a x^{2}+3 a^{2} x+a^{3}$ by $x+a$.

$$
\begin{aligned}
& \text { oprration. } \\
& \begin{array}{ll}
x^{3}+3 a x^{2}+3 a^{2} x \\
\frac{x^{3}+a x^{2}}{2 a x^{2}+3 a^{2} x}
\end{array} \quad \frac{x+a}{x^{2}+2 a x+a^{2}} \\
& \frac{2 a x^{2}+2 a^{2} x}{a^{2} x+u^{3}} \\
& \frac{a^{2} x+a^{3}}{0 \quad 0}
\end{aligned}
$$

Ex. 2. Divide $x^{3}-a x^{2}+a(b+c) x-a b c-b x^{2}-c x^{2}+b c x$ by $x-u$.

Arranging according to 876 , we have the dividend as follows:

$$
\begin{aligned}
& \begin{array}{l}
x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c \\
x^{3}-\quad \frac{x x^{2}}{} \frac{x-a}{x^{2}-(b+c) x+b c}
\end{array} \\
& \text { - } \quad(b+c) x^{2}+(a b+b c+c a) x \\
& -\quad(b+c) x^{2}+\quad(a b+a c) x \\
& \begin{array}{c}
b c x-a b c \\
\frac{b c x-a b c}{0} 0
\end{array}
\end{aligned}
$$

1.

EXERCISES.

1. Divide the dividend of Ex. 2 above by $x-b$.
2. Divide the dividend of Ex. 2 above by $x-c$.
3. Divide $a^{3}+r^{3}-c^{3}+3 a b c$ by $a+b-c$.
4. Divide $a^{3}+b^{3}+3 a b-1$ by $a+b-1$.
5. Divide $a^{2} b^{2}+2 a b x^{2}-\left(a^{2}+b^{2}\right) x^{2}$ by $a b+(a-b) x$.
6. Divide $\left(a^{2}-b c\right)^{3}+8 b^{3} c^{3}$ by $a^{2}+b c$.
7. Divide $(a+b+c)(a b+b c+c a)-a b c$ by $a+b$.
8. Divide $(a+b-c)(b+c-a)(c+a-b)$

$$
\text { by } a^{2}-b^{2}-c^{2}+2 b c
$$

9. Divide $a^{3}+b^{3}+c^{3}-3 a b c$ by $a+b+c$.
10. Divide $x^{4}+4 a^{4}$ by $x^{2}-2 u x+2 a^{2}$.
11. Divide $\left.a^{2}(!)+x\right)-b^{2}(x-a)+(a-b) x^{2}+a b x$ by $x+a+b$.
12. Divide $x^{3}-a x^{2}-b^{2} x+a b^{2}$ ly $(x-a)(x+b)$.
13. Divide $1^{2} a^{4} x^{0}-14 a^{5} x^{6}+6 a^{6} x^{3}-a^{7}$ by $2 a^{2} x^{3}-a^{3}$.

CHAPTER IV.

OF ALGEBRAIC FRACTIONS.

98. Def. An Algebraic Fraction is the expression of an indicated quotient when the divisor will not exactly divide the dividend.

Example. The quotient of $p \div q$ is the fraction $\frac{p}{q}$.
Def. The numerator and denominator of a fraction are called its two Terms.

Transformation of Single Fractions.

99. Reduction to Lovoest Terms. If the two terms of a fraction are multiplied or divided by the same quantity, the value of the fraction will not be altered.

Example. Consider the fraction $\frac{a x}{a y}$. If we divide both termis by a, the fraction will become $\frac{x}{y}$.

$$
\frac{\prime \prime x}{a y}=\frac{x}{y}
$$

Corollary. If the numerator and denominator contain common factors, they may be cancelled.

Def. When all the factors common to the two terms of a fraction are cancelled, the fraction is said to be reduced to its Lowest Terms.

To realuce a frostion to its lowest terms. factor bothe terims, when wecessary, and cancel all the common fiectors.

Ex. I. $\frac{a b x y^{2}}{a c n y^{2}}=\frac{b x}{c n}$.
The factor $a^{\prime \prime} y^{2}$ common to both terms is cancelled.
Ex. 2. $\frac{a^{7} b^{2}}{a^{2} b^{2}}=\frac{a^{5}}{l^{5}}$.
The factor $a^{2} b^{2}$ common to Loth terms is cancelled.
Ex. 3. Reduce $\frac{\pi \pi^{5} s}{a^{2} x}$.
Here $a^{5}: y$ is a divisor of both terms of the fraction. Dividing by it, the result is $\frac{1}{a^{2}}$. Hence $\frac{a^{5} \cdot x}{a_{i}^{3} \cdot x}=\frac{1}{a^{2}}$.

Ex. 4. $\frac{a^{2}+2 a b+b^{2}}{a^{2}-a^{2}}=\frac{(a+b)^{2}}{(a+b)(a-b)}=\frac{a+b}{a-b}$.
Ex. 5. $\frac{m u-n u}{m x-n x}=\frac{(m-n) u}{(m-n) x}=\frac{u}{x}$.
EXERCISES.

Reduce the following fractions to their lowest terms:

1. $\frac{u^{5}\left(r^{2}\right)^{2}}{u^{2} b^{4} b^{\prime}}$ 。
2. $\frac{\quad l m}{a^{2} m x}$.
3. $\begin{aligned} & 10 p q p^{2} \\ & 12 p^{2} r^{-4}\end{aligned}$.
4. $\begin{gathered}1 \because(t \cdot r! \\ 15\left(c^{2}, r^{2}, y^{2}\right.\end{gathered}$.
5. $\frac{79(11-x)(1,-c)}{36\left(e^{3}-2\left(1 x+x^{2}\right)\right.}$.
6. $\frac{20(a+x)(m-n)}{2+\left(a^{2}-2\left(1 x+x^{2}\right)(m-n)\right.}$.
7. $\frac{a!!-b y}{a \cdot c-b x}$.
8. $\frac{u^{2} y^{2}-b^{2} y^{2}}{u y-b y}$.
9. $\frac{a^{2}-b^{2}}{a^{2}-2 a b+b^{2}}$.
10. $\frac{a^{2}+4 a x+4 x^{2}}{a^{2}-4 x^{2}}$.
II. $\frac{x^{3}+y^{3}}{\ell(x+y)}$.
11. $\frac{a^{3}+8 b^{3}}{a!y+i a b}$.
12. $\frac{a^{4}-b^{4}}{a^{3}-b^{2}}$.
13. $\frac{a^{2}+a b+b^{2}}{a^{4}+a^{2} b^{2}+b^{4}}$.
14. $\frac{x^{2}-y^{3}}{x^{3}-y^{3}}$.
15. $\frac{x^{n}-y^{2 n}}{x^{n}+y^{n}}$.
16. $\frac{a x m-a \cdot m n}{b y m-b y n}$.
17. $\frac{m x-n x}{(n+b)(m-n)}$.
18. Rule of Signs in Praclions. Since a fraction is an indicated quotient, the rule of signs corresponds to that for division. The following theorems follow from the laws of multiplication and division:
19. If the terms are of the same sign, the fraction is positive; if of opposite signs, it is negative.
20. Changing the sign of either term changes the Disign of the fraction.
21. Changing the signs of both terms leaves the fraction with its original sign.
22. The sign of the faction may be changed by changing the sign witten before it.
23. To these may be added the general principle that an even number of changes of sign restores the fraction to its original sign.

Ex. 1. $\quad \frac{a}{b}=\frac{-\imath}{-b}=-\frac{-\imath}{b}=-\frac{a}{-b}$.
Ex. 2. $-\frac{a}{b}=-\frac{-a}{-b}=\frac{-a}{b}=\frac{a}{-b}$.
Ex. 3. $\frac{a-b}{m-n}=\frac{b-\frac{a}{n-m}=-\frac{a-b}{n-m}=-\frac{b-a}{m-\cdots} .}{}$.

EXERCISES.

Express the following fractions in four different ways with respect to signs :
I. $\frac{x-!}{a}$.
2. $\frac{x-y}{a-b}=$
3. $\frac{m}{p-q}$.
4. $\frac{a}{a-b+c}$.
5. $-\frac{m-n}{p+q-r}$.
6. $\frac{a+m-x}{a-m+x}$.

Write the following fractions so that the symbols x and y shall be positive in both terms :
7. $+\frac{x-b}{c-y}$.
8. $+\frac{m-x}{n-y}$.
9. $+\frac{a+x-b}{a-x+b}$.
10. $\quad-\frac{a-x}{b-x}$.
п. $-\frac{x-a+b}{b-x}$.
12. $\frac{a+b-x}{a-b+y}$.
101. When the numerator is a product, any one or more of its factors can be removed from the numerator and made a multiplier.

Ex. $\frac{a b m x}{p+q}=a b \frac{m x}{p+q}=a b m \frac{x}{p+q}=a b m x \frac{1}{p+q}$.
EXERCISES.
Express the following fractions in as many forms as possible with respect to fitctors:

1. $\frac{p}{m} \frac{x}{n}$.
2. $\frac{a b}{c}$.
3. $\frac{a b c}{a+b}$.
4. $\frac{x^{2}-y^{2}}{a-b}$.
5. $\frac{a^{4}-\pi^{4}}{x}$.
6. $\frac{x^{4}-16 a^{4}}{x+2 c}$.
7. Reduction to Given Denominator. A quantity may be expressed as a fraction with any required denominator, D, by smpposing it to have the denominator 1 , and then multiplying both terms by D.

For, if we call a the quantity, we have $a=\frac{a}{1}=\frac{a D}{D}$.

Ex. If we wish to express the quantity ab as a fraction having $x y$ for its denominator, we write

$$
\frac{a b r y}{x y}
$$

If the quantity is fractional, both terms of the fraction must be multiplied by that factor which will produce the required denominator.

Ex. 'To express $\frac{a}{b}$ with the denominator $n b^{8}$, we multiply both members by $n b^{3} \div b=n b^{2}$. Thus,

$$
\frac{a}{b}=\frac{a n b^{2}}{n b^{3}}
$$

This process is the reverse of reduction to lowest terms.

> EXERCISES.

Express the quantity

1. a	with		denominator	b.
2. $a x$	"	"	"	$a x$.
3. $a b$	"	"	"	$a b^{n}$.
4. $\frac{m}{n}$	"	"	"	$u(x-y)$.
5. - 1	"	"	"	x.
6. $\frac{m(n-p)}{a+b}$	*	"	"	$a^{2}-l^{2}$.
7. $\frac{x+y}{x-y}$	"	"	"	$a^{2}-y^{2}$.
8. $\frac{x^{2}+1}{x+1}$	"	"	"	$x^{2}+2 x+1$.
9. $\frac{a+1}{a-1}$	"	"	"	$a^{4}-1$

Negative Exponents.
103. $13 y$ the principle of $\$ 85$, we have

$$
\frac{\iota^{n}}{a^{k}}=u^{n-k}
$$

If we have $k>n$, the exponent of the second member of the equation will be negative, and the first member, by can-
celling n factors from each term of the fraction, will berome 1
v^{k-n} . Hence $\quad u^{k-n}=u^{n-k}$.
if putting for shortness $k-n=s$, the equation will be

$$
\frac{1}{u^{8}}=u^{-8}
$$

Hence,
.I negintion p.rponcht imelentes the reciprocal of the correspording quuntity with a prositice exponent.

If in the formula $a^{n-k}=\frac{a^{n}}{a^{k}}$ we suppose $k=n$, it will become $a^{0}=\frac{a^{n}}{a^{n}}$, or $a^{0}=1$. Hence, because a may be any quantity whatever,

Alu! quantity with the e.rponent 0 is equal to unity.
This result may be mude more clear by suce cessive divisions of a power of ${ }^{\prime}$ by a. Every time we efleet this division, we diminish the exponent ly 1 , and wre my suppose this diminution to contimue algebrationlly wo nutive values of the exponent. On the left hame side of the eghations in the margin, the divisjon is eflected symbelically by diminishing the exponents: on Alue right the result is writen out in the usual wuy.

$$
\begin{aligned}
& a^{3}=a u \iota \\
& a^{2}=a u \\
& a^{1}=a \\
& u^{0}=1 \\
& a^{-1}=\frac{1}{a} \\
& a^{-2}=\frac{1}{a!} \\
& \text { ctc. }
\end{aligned}
$$

EXERCISES.
In the following exerefises, writo the guntients which are fractional both as fimetions reatuced th. the ir lowest ferms, ant as cutire quantities with negative exponents, on the principle,

$$
\frac{a}{b}=u b^{-1}, \quad \frac{a^{3}}{b^{2}}=a^{3} b^{-2}, \quad \text { ete. }
$$

Divide

$$
\begin{aligned}
& \text { 1. ay } r^{2} \\
& \text { 2. by } x^{2} \\
& \text { 3. }-2 b^{3} \text { by } b^{5} \\
& \text { 4. } 4 u t^{2} 1 y-2 t^{3} b .
\end{aligned}
$$

5. $\quad-a^{2} \%$ by $4 a b 2$.

6. - $36 t^{3} p^{2} x^{2} y$ by - $\because 4 c^{3} \cdot x y$.
7. $48 a^{2}(x-y)^{3}$ by $26(x-y)$.
8. $4 \approx b^{2}\binom{x+y}{x-y}^{3}$ by $20\binom{x+y}{x-y}^{2}$.
9. $2 \therefore(a-b)(m-u)$ by $15(a+b)(m+\cdots)$.
10. $25\left(u^{2}-b^{2}\right)\left(m^{2}-n^{2}\right)$ by $15(a-b)(m+n)$.
11. $\left(x^{4}-1\right)\left(a^{2}-4 l^{2}\right)$ by $\left(x^{2}-1\right)(a+2 b)$.
12. $x^{6}-1$ by $x^{3}+1$.
13. $a^{2} b^{3}, r^{-4} y^{3}$ by $a^{5} b^{4}, x^{3} y^{2}$.
14. $m^{6} n^{4} y^{2} z$ by $m n^{2} y^{1} z^{6}$.
15. $m(m+1)(m+0)(m+3)$ by $m(m-1)(m-2)(m-3)$.
16. $a^{m n}$ by u^{n}. 20. $a^{m m} c^{n}$ by $q l^{n} c^{m}$.

Dissection of Fractions.

104. If the numerator is a polynomial, each of its terms may be divided separately by the denominator, and the several fractions connected by the signs + or - .

The principle is that on which the division of polynomials is founded $\left(\underset{\sim}{s} S_{0}\right)$. The general form is

$$
\begin{equation*}
\frac{A+B+C+\text { ctc. }}{m}=\frac{A}{m}+\frac{B}{m}+\frac{C}{m}+\text { ctc. } \tag{1}
\end{equation*}
$$

The separate fractions may then be reduced to their lowest terms.

Example. Dissect the fraction

$$
\frac{3 \because a^{2} u^{2} x^{2}-18 u m y+15 m z-12 b^{2} n^{2} u}{16 u b x} .
$$

The general form (1) gives for the separate fractions,

Reducing each fraction to its lowest terms, the sum becomes

$$
2 u b-\frac{9 m y}{8 b \cdot x}+\frac{15 n z}{16 a \cdot x}-\frac{3 b n^{2} u}{4 u \cdot x}
$$

EXERCISES.

Separate into sums of fractions,
I. $\frac{a b c+b r a l+c r l a t+(l a b)}{a b c l}$.
2. $\frac{-x y z u+x^{2} y z u^{2}+x y^{2} z^{2} u-x^{2} y^{2} z^{2} u^{2}}{x^{2} y^{2} z^{2} u^{2}}$.
3. $\frac{a^{2}-b^{2}}{a b}$.
4. $\frac{a^{2} x-b^{2} y}{a x}$.
5. $\frac{(m-n)(n+q)-(m+n)(p-q)}{(m-n)(p-q)}$.
6. $\frac{(x-a)(y-l)+(x-y)(a-b)+(x-b)(y-a)}{x^{2}-y^{2}}$.
7. $\quad(a+b)(m-n)-(a-b)(m+n)$.

Aggregation of Fractions.

105. When several fractions have equal denominators, their sum may be expressed as a single fraction by aggregating their numerators and writing the common denominator under them.

Ex. 1. $\frac{A}{m}-\frac{B}{m}+\frac{C}{m}=\frac{A-B+C}{m}$.
Ex. 2. $\frac{a-b}{x-y}+\frac{b-c}{y-x}+\frac{c-u}{x-y}$

$$
=\frac{a-b}{x-y}+\frac{c-b}{x-y}+\frac{c-a}{x-y}=\frac{2 c-2 b}{x-y}=\frac{2(c-b)}{x-y} .
$$

Rem. This process is the reverso of that of dissecting a fraction.

EX:RCISES.

Aggregate

1. $\frac{a}{a t_{c}}-\frac{n \dot{b}}{a b c}+\frac{a b c}{a b c} . \quad$ 2. $\frac{a}{(\pi-b)^{2}}-\frac{b}{(a-b)^{2}}$.
2. $\frac{a--}{u^{2} \cdot x}+\frac{\ddot{y}-b}{a^{2} \cdot b}+\frac{a+b}{a^{3} x}+\frac{x-y}{a^{2} x}$.
3. $\frac{a}{a-b}+\frac{b}{b-\frac{a}{a}}-\frac{c}{a-b}-\frac{d}{b-a}$.
4. $\frac{a-b}{m-n}-\frac{a-c}{m-n}-\frac{c-b}{n-m}+\frac{c+n}{n-m}$.
5. When all the fractions have not the same denominatur, they must be reduced to a common denominator by the process of \& 102 .

Any common multiple of the denominators may be taken as the common denominator, but the least common multiple is the simplest.

To meluce to a Common Denominator. Choose a common multiple of the denominutors.

Multipl!, both terms of cach fruetion b! the multiphier necessary to change its alenominator to the chosen multiple.

Nore 1. The required multipliers will be the quotients of the chosen multiple by the denominator of each separate fraction.

Note 2. When the denominators have no common factors, the multiplier for cach fraction will be the product of the denominators of all the other fractions.

Note 3. An entire guantity must be regarded as having the denominator 1. (§ 102.)
EXAMPLES.

1. Aggregate the sum

$$
1-\frac{1}{a}+\frac{1}{a b}-\frac{1}{a b c}+\frac{1}{a b c c t}
$$

in a single fraction.
The least common multiple of the denominators is aloct.
The separate multipliers necessary to reduce to this common denominator are

$$
\text { abcll, becl, cl, } l, 1 .
$$

The fractions reduced to the common denominator abed are

$$
\frac{\text { abedl }}{\text { abcel }}, \frac{-b c d}{\text { abcel }}, \frac{+c d,}{\text { abcil }}, \frac{-d}{\text { abcd, }}, \frac{+1}{\text { abcel }}
$$

The sum is $\frac{a b c d-b c d+c d-d+1}{a b c d}$.
By dissecting this fraction as in § 104, it may be relueed to its original form.
2. Reduce the sum

$$
\frac{1}{c}-\frac{a}{b}+\frac{b}{c}-\frac{c}{c}
$$

to a single fraction.
The multiplier are, by Note 2, bcel, acd, abul, abc.
Using these matiphiers, the fractions become

$$
\frac{b c d}{a b c d,}, \frac{-u^{i} c d l}{u b c d}, \frac{\| b i d}{a b c d}, \frac{-a b c^{2}}{a b c d},
$$

from which the required sum is readily formed.
3. Reduce the sim

$$
1+\frac{1}{x-1}+\frac{x}{x+1}+\frac{x^{2}}{x^{2}-1} .
$$

The least eommon multiple of the denominators is $x^{2}-1$.
The multipliers are, by Note 1,

$$
x^{2}-1, \quad x+1, \quad x-1, \quad 1
$$

The sum of the fractions is found to be

$$
\begin{gathered}
\frac{x^{2}-1+x+1+x^{2}-x+x^{2}}{x^{2}-1}=\frac{3 x^{2}}{x^{2}-i} \\
\text { EXERCISES. }
\end{gathered}
$$

Reduce to a single fraction the sums,

1. $1+\frac{1}{a-1}$.
2. $1-\frac{1}{x+1}$.
3. $\frac{1}{1-x}-\frac{1}{1+x}$.
4. $\frac{1}{1-x}+\frac{1}{1+x}$.
5. $\quad x-\frac{u x}{a+x}-\frac{x^{2}}{u+x}$.
6. $\frac{a}{a-b}-\frac{b}{a+b}$.
7. $\frac{a}{x(a-x)}-\frac{x}{a(a-x)}$.
S. $\frac{2 x-5}{4 x^{2}-1}+\frac{5}{2 x-1}-\frac{3}{x}$.
8. $\frac{1}{x+y}+\frac{2 y}{x^{2}-y^{2}}-\frac{1}{x-y}$.
9. $\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}$.
T1. $\frac{a}{x+y}+\frac{a}{x-y}$.
10. $\frac{a+b}{a-b}-\frac{a-b}{a+b}$.
11. $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}-\frac{b}{a-b}+\frac{a}{a+b}$.
12. $\frac{1}{x(x-1)}-\frac{1}{x(x+1)}-\frac{1}{x^{2}}$
13. $\frac{a}{a-b}-\left(1-\frac{b}{a-b}\right)$.
14. $\frac{m+n}{m-n}-\frac{x-y}{x+y}$
15. $\frac{y}{m^{2}}-\frac{m+y}{m(m-y)}$.
16. $1-\frac{a}{u-x}-\frac{x^{2}}{a^{2}-x^{2}}$.
17. $\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{(a-b)(b-c)(c-a)}{(a+b)(b+c)(c+a)}$.
18. $\frac{a}{b}-\left(\frac{b}{a-b}+\frac{a}{b-a}\right)$.
19. $\frac{m-(x-a)}{x+y}-\frac{m-(x+a)}{x-y}$.
20. $\frac{c}{a b}+\frac{a}{b c}+\frac{b}{a c}$.
21. $\overline{(a-b)(a-c)}+\frac{a}{(b-a)(b-c)}+\frac{c}{(c-a)(c-b)}$.
22. $\frac{x+1}{x-1}-\frac{x-1}{x+1}+4 x$.
23. $\frac{a b}{a+b}-\frac{a^{2}}{a-b}+\frac{a\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}}$.
24. $\quad 1-\frac{a}{x+\pi}-\frac{x}{x-\iota}$.
25. $\quad 1-\frac{x^{2}-2 x y+y^{2}}{x^{2}+y^{2}}$.
26. $1-\frac{a^{2}+\eta y^{2}-x^{2}}{\ddot{a}!!}$.
27. $\frac{1}{(a+b)^{3}}+\frac{1}{(a-b)^{2}}+\frac{1}{u^{2}-b^{2}}$
28. $1+\frac{a^{2}-2 a b+b^{2}}{4 a b}$

Factoring Fractions.

10\%. If several terms of the numerator contain a common factor, the coefficients of this factor may be added, and their aggregate multiplied by the factor for a new form of the mumerator.

$$
\begin{aligned}
& \text { EXAMPLES. } \\
& \text { 1. } \frac{n x-l x+c x+d x}{m}=\frac{(n-l)+c+d) x}{m} \\
& =(a-b+c+d) \frac{x}{m} . \quad \text { (§ 101.) } \\
& \text { 2. } \frac{a b x+b c x+a c y-a b y}{a b n}=\frac{(a b+b c) x}{a b n}+\frac{(a c-a b) y}{a b n} \\
& =(a+c) \frac{x}{a n}+(c-b) \frac{n}{b n} .
\end{aligned}
$$

EXERCISES.
Reduce

$$
\begin{aligned}
& \text { 1. } \frac{a b y-b r y-a c y}{a b c} . \\
& \text { 2. } \frac{m m u+m m u+m m u}{m n} \text {. } \\
& \text { 3. } \frac{a b q+b r q+a b r+b c r}{a b c} \text {. } \\
& \text { 4. } \frac{a x-b y-3 b x-4 a y}{2 m a} \text {. } \\
& \text { 5. } \frac{4 m x+2 y-3 m x-6 \kappa x+a y}{3 y z} . \\
& \text { 6. } \frac{a^{3}+2 a^{2} b+a b^{2}}{x y} \text {. 7. } \frac{a^{2} x-4 a b c-(3 y-4 c) a t}{p+4} \text {. } \\
& \text { 8. } \frac{x^{2} y-\frac{[4 x+x(2 b-4 c)+3 a x]}{a+b} \text {. }}{6} \\
& \text { 9. } \frac{a x^{2}-4 c x-3[m x+m(a-x)-a m]}{a a-36} \text {. } \\
& \text { 10. } \frac{4(\sqrt{x}-2 c \sqrt{x}+2 b \sqrt{x}-2(m m \sqrt{x}-4 \sqrt{x})}{3 a-46} \text {. }
\end{aligned}
$$

Multiplication and Division of Fractions.

108. Finnctamental Theorems in the Multiplication and Division of Fraclions:

Theorem 1. A faction may be multiplied by ant quantity by either multiplying its mumerator or dividing its denominator by that quantity.

Cor. 1. A fraction may be multiplied by its denominator by simply cancelling it.

Cor. \therefore. If the denominator of the fraction is a factor in the multiplier, cancel the denominator to multiply hy this factor, and then multiply the mumerator by the other factors.

Ex. $\quad \frac{m}{u(x-b)} \times u^{2}\left(x^{2}-b^{2}\right)=a m(x+b)$, becamse the multiplier $a^{2}\left(x^{2}-b^{2}\right)=a(x-b) a(x+b)$.

Theorem II. A fratetion may be divided by either dividing its mmerator or multiplying its denominator.

Thenem III. 'To multiply by a fraction, the multiplicand must be multiplied by the numerator of the fraction, and this product must be divided by its denominator.

Let us multiply $\frac{a}{b}$ by $\frac{m}{n}$
We multiply by m by multiplying the numerator (Th. I), and we divide by n by multiplying the denominator ('Th. II).

Hence the prolluct is $\frac{\mathrm{am}}{\mathrm{br}}$.
That is, the product of the momerators is the numerator of the required fraction, and the product of the elenominulors is its acmominutor.

Multiply
EXERCISES.
I. $\frac{a b+y}{x-a}$ by $x-a$.
2. $\frac{a b}{x} \log \frac{x}{a}$.
3. $\frac{a b}{-x}$ by $x y$.
4. $\frac{a c}{x-a}$ by $x^{2}-a^{2}$.

$$
\rightarrow
$$

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

5. $\frac{a b m}{x^{2} y}$ by $x y^{2}$.
6. $\frac{m}{x^{2}}$ by $a x^{3}+\frac{m-a}{x-m}$.
7. $\frac{a-b}{m}$ by $\frac{a+b}{m}$.
8. $a+\frac{m}{n}$ by $n+\frac{n}{m}$.
9. $a b-\frac{x}{y}$ by $a y+\frac{y-a b}{x}$.
10. $\frac{m+n}{n-n}$ by $\frac{n-m}{m+n}$.
11. Multiply $a+\frac{b x}{m}$ by $\frac{a}{b}+\frac{b}{x}+\frac{x}{a}$.
12. Reduce $\left(m+\frac{m n}{m-n}\right)\left(m-\frac{m n}{m+n}\right)$.
13. Reduce $\left(a-\frac{b x}{a}\right)\left(b-\frac{a x}{b}\right)$.
14. Multiply $b-\frac{b x}{a}$ by $\frac{a}{x}$.
15. Divide $\frac{m}{n}$ by p. Ans. $\frac{m}{n p}$.
16. Divide $\frac{a}{a-b}$ by $a+b$.
17. Divide $\frac{x-a}{x+1}$ by $x-1$.
18. Divide $\frac{a+b}{x^{2}-1}$ by $1+x^{2}$.
19. Divide $\frac{-2 a-3 m}{a^{n}+b^{n}}$ by $b^{n}-a^{n}$.
109. Reciprocal of a Fraction. The reciprocal of a fraction is formed by simply inverting its terms.

For, let $\frac{a}{b}$ se the fraction. By definition, its reciprocal will be

$$
\frac{1}{\frac{a}{b}}
$$

Multiplying both terms by b, the numerator will be b and the denominator ${ }_{b}^{a} \times b$, that is, a.

Hence the reciprocal required will be $\frac{b}{a}$, or, in algebraic language,

> FR.ACTIONS.

$$
\frac{1}{\frac{a}{b}}=\frac{b}{a}
$$

110. Def. A Complex Fraction is one of which either of the terms is itself fractional.

Eximple.

$$
\frac{\frac{a}{b}}{m+\frac{x}{y}}
$$

is a complex fraction, of which $\frac{\pi}{b}$ is the numerator, and $m+\frac{x}{y}$
the denominator.
The terms of the lesser fractions which enter into the numerator and denominator of the main fratetion may be called Minor Terms.

Thus, b and y are minor denominators, and ε and x are minor numerators.

To rerluce a complev fraction to a simple one, muttiply bothe terms by a multiple of the minor denominators.

Example. Reduce $\frac{\frac{a m}{y^{2}}}{\frac{b}{y}+\frac{h}{x}}$.
Multiplying both terms by $x y^{2}$, the result will be

$$
\frac{a m x}{b x y+k y y^{2}},
$$

which is a simple fraction.

> EXERCISES.

Reduce to simple fractions:
I. $\frac{1+\frac{x}{y}}{1-\frac{x}{y}}$.
2. $\frac{a+\frac{b}{x}}{a-\frac{b}{x}}$.
3. $\frac{\frac{a-x}{a+x}}{\frac{a+x}{a-x}}$.
4. $\frac{\frac{a b}{m n}}{\frac{b l}{b m}}$.

$$
\begin{aligned}
& \text { 5. } \frac{1+\frac{n-1}{n+1}}{1-\frac{n-1}{n+1}} . \\
& \text { 7. } \frac{a m+\frac{b}{m}}{a m_{2}-\frac{b}{n}} . \\
& \text { 9. } \frac{1+\frac{(a-b)^{2}}{4 a b}}{1-\frac{b^{2}-a^{2}}{2 a b}} . \\
& \text { i. } \frac{a^{2}+\frac{1}{a^{2}}+2}{\frac{1}{a}+a} \text {. } \\
& \text { 13. } \frac{\frac{a+2 b}{a+b}+\frac{a}{b}}{\frac{a+2 b}{b}-\frac{a}{a+b}} \text {. } \\
& \text { 12. } \frac{\frac{a^{2}}{b^{3}}+\frac{1}{a}}{\frac{c}{b}-\frac{1}{b}+\frac{1}{a}} \text {. } \\
& \text { 10. } \frac{\frac{1}{1+a}+\frac{a}{1-a}}{\frac{1}{1-a}-\frac{a}{1+a}} \text {. } \\
& \text { 6. } \frac{\frac{1+x}{1-x}+\frac{1-x}{1+x}}{\frac{1+x}{1-x}-\frac{1-x}{1+x}} \text {. } \\
& \text { 7. } \frac{a m+\frac{b}{m}}{a n-\frac{b}{n}} . \\
& \text { 8. } \frac{2 x-\frac{3}{y}}{a+b-x} \text {. } \\
& \text { 9. } \frac{1+\frac{(a-b)^{2}}{4 a b}}{1-\frac{b^{2}-a^{2}}{2 a b}} . \\
& \text { 1o. } \frac{\frac{1}{1+a}+\frac{a}{1-a}}{\frac{1}{1-a}-\frac{a}{1+a}} . \\
& \text { 3. } \frac{\frac{a+2 b}{a+b}+\frac{a}{b}}{\frac{a+2 b}{b}-\frac{a}{a+b}} \\
& \text { 14. } \frac{\frac{x-y}{x+y}+\frac{y+x}{y^{2}-x^{2}}}{\frac{x+y}{x-y}-\frac{x^{2}-y^{2}}{x^{4}-y^{4}}} .
\end{aligned}
$$

Division of one Fraction by Another.

111. Let us divide $\frac{a}{b}$ by $\frac{m}{n}$. The result will be expressed by the complex fraction

$$
\frac{\frac{a}{b}}{\frac{m}{n}} .
$$

Reducing this fraction by the rule of $\S 110$, it becomes

$$
\frac{a m}{b m}
$$

which is equal to

$$
\frac{a}{b} \times \frac{n}{m} . \quad \text { That is, }
$$

To divite by a fraction, we have only to multiply by its reciprocal.

Divide

1. $\frac{a b}{a-b}$ by $\frac{a}{b}$.
2. $\frac{x+1}{8}$ by $\frac{2 x}{9}$.
3. $\frac{x}{x-1}$ by $\frac{x}{2}$.
4. $\frac{a^{4}-b^{4}}{a^{2}-2 a b+b^{2}}$ by $\frac{a^{2}+a b}{a-b}$.
5. $\frac{x+1}{x-1}$ by $\frac{x+1}{x^{2}-1}$.
6. $\frac{a}{b}+\frac{m}{n}$ by $\frac{b}{a}-\frac{n}{m}$.
7. $\frac{a}{x}+\frac{b}{z}+\frac{c}{z}$ by $\frac{m}{x}+\frac{n}{y}+\frac{p}{z}$.
8. $\frac{a}{a-b}-\frac{b}{a+b}$ by $\frac{b}{a-b}+\frac{a}{a+b}$.

Reciprocal Relations of Multiplication and Division.

112. The fundamental principles of the operations upon fractions are included in the following summary, the understanding of which will afford the student a test of his grasp of the subject.
113. The reciprocal of the reciprocal of a number is equal to the number itself. In the language of Algebra,

$$
\frac{1}{\frac{1}{a}}=a
$$

2. The reciprocal of a monomial may be expressed by changing; the alge oraic sign of its exponent.
3. To multiply by a number is equivalent to dividing by its reciprocal, and vice versa. That is,

$$
N \div a \text { or } \frac{N}{\frac{1}{a}}=a N
$$

and vice versa,

$$
N \times \frac{1}{a}=\frac{N}{a}
$$

4. When the numerator or denominator of a fraction is a product of several factors, any of these factors may be transferred from one term of the fraction to the other by changing it to its reciprocal. That is,

Or,

$$
\frac{a b c}{p q r}=\frac{b c}{\frac{1}{a} p q r}=\frac{\frac{1}{p} u b c}{q r}, \text { ctc. }
$$

$$
\frac{u b c}{p^{\prime q} q r}=\frac{b c}{u^{-1} p^{2} q r^{r}}=\frac{p^{-1}(l b c}{q r} \text {, etc. }
$$

5. Multiplication by a factor
greater than unity increases,
less than unity diminishes.
Division by a divisor
greater than unity dimimishes, less than unity increases.
6. (c) When a factor becomes zero, the product also becomes zero.
(β) When a denominator becomes zero, the product becomes infinite. That is,

$$
\begin{aligned}
0 \times a & =a \times 0=0 . \\
\frac{a}{0} & =\text { infinity. }
\end{aligned}
$$

Note. The following way of expresing what is meant by this last statement is less simple, but is logically more correct:

If a fraction has a fixed numerator, no matter how small, we can make the denominator so much smaller that the fraction shall be greater than any quantity we choose to assigh.

EXERCISE.

If the mmerator of a fraction is ?. how small must the denominator be in order that the fraction may exceed one thonsimd? 'That it may exceed one million!' That it may exceed one thousand millions?

BOOK III. OF EQUATIONS.

CHAPTER I.
 THE REDUCTION OF EQUATIONS.

Definitions.

113. Def. An Equation is a statement, in the language of Algebra, that two expressions are equal.
114. Def. The two equal expressions are called Members of the equation.
115. Def. An Identical Equation is one which is true for all values of the algebraic symbols which enter into it, or which has numbers only for its members.

Eximples. The equations

$$
\begin{aligned}
14+9 & =29-6, \\
5+13-3 \times 4-6 & =0,
\end{aligned}
$$

which contain no algelraic symbols, are identical equations.
So also are the equations

$$
\begin{aligned}
x & =x, \\
x-x & =0, \\
(x+a)(x-a) & =x^{2}-a^{2}, \\
(1+y)(1-y)-1+y^{2} & =0,
\end{aligned}
$$

becanse they are necessarily true, whatever values we assign to s.a. and \%

Rem. All the equations used in the preceding two hooks to express the relations of algelraie quantities are identical ones, because they are true for all ralues of thess quantities.
116. Def. An Equation of Condition is one which can be true only when the algebraic symbols are equal to certain quantities, or have certain relations among themselves.

Examples. The equation

$$
x+6=2 \lambda
$$

can be true only when x is equal to 16 , and is therefore an equation of condition.

The equation

$$
x+b=a
$$

ean be true only when x is equal to the difference of the two quantities a and b.

Rem. In an equation of condition, some of the ruantities may be supposed to be known and others to be unknown.

11\%. Def. To Solve an equation means to find some number or algebraic expression which, being substituted for the unknown quantity, will render the equation identically true.

This value of the unknown quantity is called a Root of the equation.
EXAMPLES.
r. The number 3 is a root of the equation

$$
\because x^{2}-18=0
$$

because when we put 3 in place of x, the equation is satisficd identically.
2. The expression $\frac{2 a-b}{c}$ is a root of the equation

$$
2 c x-4 a+2 b=0
$$

when x is the unknown quantity, because when we substitute this expression in place of x, we have

$$
\begin{array}{r}
2 c\left(\frac{2 a-b}{c}\right)-4 a+2 b=0 \\
4 a-2 b-4 a+2 b=0
\end{array}
$$

or
whioh is identically truc.

Rem. It is common in Elementary Algehra to represent unknown quantities by the last letters of the alphabet, and quantities smposed to be known by the first letters. But this is not at all necessary, and the student shonld aecustom himself to regard any rio symbol as an manown quantity.

Axioms.

118. Def. An Axiom is a proposition which is taken for granted, without proof.

Equations are solved by operations founded upon the following axioms, which are self-evident, and so need no proof.
$A x$. I. If equal quantities be added to the two members of an equation, the members will still be equal.

Ax. II. It equal quantities be subtracted from the two members of an equation, they will still be equal.

Ax. III. If the two members be multiplied by equal factors, they will still ie equal.

Ax. IV. If the two members be divided by equal divise"s ('the divisors being different from zero), they will still be equal.

Ax V. Similar roots of the two members are equal.
These axioms may be summed up in the single one,
ふjimilar operations upon equal gurantities give equal results.
119. An algebraic equation is solved by performing uch similar operations upon its two members that the unknown quantity shall finally stand alone as one member of an equation.

Operations of Addition and Subtraction-Transposing Terms.

120. Theorem. Any term may be transposed from one member of an ecuation to the other member, if its sign be changed.

Proof. Let us put, in accordance with $\$ 41$, 2d Prilu., t, any term of either member of the equation.
a, all the other terms of the same member.
b, the opposite member.
The equation is then

$$
a+t=b
$$

Now subtract t from both sides (Λ xiom II),

$$
a+t-t=b-t
$$

or by reduction, $a=b-t$.
This equation is the same as the one from which we started, except that t has been tramsposed to the second member, with its sign changed from + to - .

If the equation is

$$
b-t=a
$$

we may add t to both members, which wonld give

$$
b=a+t
$$

NUMERICAL EXAMPLE.
The learner will test each side of the following equations:
$\begin{array}{rr}\text { Transposing } & 4, \\ " & 9, \\ " 6 & 19, \\ " & 3,\end{array}$

$$
19+3-9+4=7+10
$$

121. Rem. $\Lambda l l$ the terms of either member of an equation may be transposed to the other member, leaving only 0 on one side.

Example. If in the equation

$$
b=a+t
$$

we transpose b, we have $0=a+t-b$.
By transposing a and t, we have

$$
b-a-t=0
$$

12:. Chemging signs of Members. If we change the signs of all the terms in both members of an equation, it will still be true. The result will be the same as multiplying both
members by -1 , se transposing all the terms of each member to the other side, and then exchanging the terms.

Example: 'The equation

$$
1 \%+8=11+1 \cdot 4
$$

may be trimsformed into $0=11+14-1 ;-8$,

$$
\begin{aligned}
\text { or, } & 0 \\
\text { or, } & =-11-14+1 \%+8 \\
\text { or } & =-11-14
\end{aligned}
$$

Operation of Multiplication.

12:. Clearing of Practions. The operation of multiplication is usually performed upon the two sides of atm equation, in order to ciear the equation of fractions.

To clear an eqnation of fractions:
First Methob. ATultipl!! its members by the least common multiple of all its alenominators.

Second Method. Multimly its members by cach of the denominutors in succession.

Rem. 1. Sometimes the one and sometimes the other of these methods is the more convenient.

Rem. i. The operation of clearing of fractions is similar to that of reducing fractions to a common denominator.

Example of Fhist Meriod. Clear from frations the equation

$$
\frac{x}{4}+\frac{x}{6}+\frac{x}{8}=26 .
$$

Tere 24 is the last common multiple of the denominators. Multiplying each term by it, we have,

$$
\begin{aligned}
6 x+4 x+3 x & =694 \\
13 x & =624 .
\end{aligned}
$$

Example of Second Metiod. Clear the equation

$$
\frac{a}{x-a}+\frac{a}{x+\vec{a}}+\frac{c}{x}=0
$$

Multiplying by $x-a$, we find

$$
u+\frac{a x-a^{2}}{x+\iota}+\frac{c x-c u}{x}=0 .
$$

Multiplying by $x+$,

$$
u x+a^{2}+u x-a^{2}+\frac{c x^{2}-c a^{2}}{x}=0
$$

Reducing and multiplying by x,

$$
2 a x^{2}+c x^{2}-c a^{2}=0
$$

EXERCISES.

Clear the following equations of fractions:

1. $\frac{2 x}{9}-6=0$.
2. $\frac{x}{5}-\frac{x}{y}=70$.
3. $\frac{x}{2}+\frac{x}{3}-\frac{x}{4}=5$.
4. $\frac{x}{a}+\frac{x^{2}}{a^{2}}=\frac{b}{a}$.
5. $\quad \frac{x}{a b}+\frac{y}{a}+\frac{7}{b}=\frac{c}{a^{2} b^{2}}$.
6. $\frac{a}{3}+\frac{b}{4}=\frac{x}{5}$.
7. $\frac{x}{x-a}-\frac{x}{x+a}=1$.
8. $\frac{x}{x-a}=\frac{2 x}{x+b}$.
9. $\frac{x+a}{x-a}=\frac{x^{2}+2 a x}{x-a}$.
10. $\frac{x-2}{x-5}=\frac{x+2}{x+5}$.
11. $\frac{x}{y}-\frac{y}{x}=\frac{a}{b}$.

12. $\frac{x}{a-b}+\frac{y}{b-a}=z$.

Here the second term is the same as $\frac{-y}{a-b}$.
14. $\frac{x+a}{a-x}=\frac{x-b}{x-a}$.

Reduction to the Normal Form.

124. Def. An equation is in its Normal Form when its terms are reduced and arranged according to the powers of the unknown quantity.

In the normal form one member of the equation is expressed as an entire function of the minkown quantity, and the other is zero. (Compare $\$ \S 50,8 \%$.)

To reduce an equation to the normal form:
I. Transpose all the terms to one member of the equation, so as to leave 0 as the other member.
II. Clear the cquation of fractions.
III. Clear the equation of' parentheses by performing all the opperations indieated.
IV. Colleat cuelu set of' terms containing like poners of the unkinowe quantity into ar single one.
V. Dicide b! cun! common factor which does not eontain, the wnknon' gutuntity.

Rem. This order of operations may be deviated from accorling to circumstances. Afteralittle practice, the student may take the shortest way of reaching the result, without respect to rules.
EXAMPLES.

1. Reduce to the normal form

$$
\frac{(x-2)(x-3)}{x-5}=\frac{(x+2)(x+4)}{x+5} .
$$

1. Clearing of fractions,

$$
(x+5)(x-2)(x-3)=(x-5)(x+2)(x+4) .
$$

2. Performing the indieated operations,

$$
x^{3}-19 x+30=x^{3}+x^{2}-22 x-40 .
$$

3. Transposiivg all the terms to the second member and reducing,

$$
0=x^{2}-3 x-30,
$$

which is the normal form of the equation.
Rem. Had we transposed the terms of the second member to the first one, the result would have been

$$
-x^{2}+3 x+\%=0 .
$$

Either form of the equation is correct, but, for the sake of uniformity, it is customary to tramspose the terms so that the coefficient of the highest power of x shall be positive. If it comes out negative, it is only necessury to change the signs of all the terms of the equation.

Ex. 2. Reduce to the normal form,

$$
\frac{5 m x^{2}}{x-\iota}-\frac{2 a x}{x+\iota}-\frac{3 m x^{3}}{x^{2}-u^{2}}=2 m x-\delta u .
$$

1. Transposing to the first member,

$$
\frac{5 m x^{2}}{x-a}-\frac{2 a x}{x+a}-\frac{3 m x^{3}}{x^{2}-a^{2}}-2 m x+5 a=0
$$

2. To ciear of factions, we notice that the least common multiple of the denominators is $x^{3}-u^{2}$. Multiplying each term by this factor, we have,
$5 m x^{2}(x+a)-2 a x(x-a)-3 m x^{3}-2 m x\left(x^{2}-u^{2}\right)+\tilde{5} a\left(x^{2}-a^{2}\right)=0$.
3. Performing the indicated operations, $5 m x^{3}+5 a m x^{2}-2 a x^{2}+2 a^{2} x-3 m x^{3}-2 m x^{3}+2 a^{2} m x+5 a x^{2}-5 a^{3}=0$.
4. Collecting like powers of a, as in $\S(\pi G$,

$$
\left(3 a+5(l m) x^{2}+\left(2 l^{2}+2 a^{2} m\right) x-\tilde{v} l^{3}=0\right.
$$

5. Erery term of the equation contains the factor a. By Axiom IV, $\S 118$, if both members of the equation be divided by a, the equation will still be true. The second member being zero, will remain zero when divided by a. Dividing both members, we have

$$
(3+5 m) x^{2}+2 a(1+m) x-5 u^{2}=0
$$

which is the normal form.

EXERCISES.

Reduce the following equations to the normal form, x, y, or z being the unknown quantity:

1. $\frac{3 y^{2}+2 y}{7}=\frac{y-7}{2} . \quad$ 2. $\frac{x-a}{x+a}=\frac{x+a}{x}$.
2. $\frac{x-7}{2 x+10}=\frac{2 x+6}{4 x-2}$.
3. $\frac{x^{3}-3 a^{2} x+2 a^{3}}{2 x+a}-x^{2}-5 a x=\frac{7 a^{3}-5 a x^{2}}{2 x-a}$.
4. $\quad \frac{y}{a-y}+\frac{2 y}{a+y}+\frac{3 y}{a^{2} y^{2}}=7$.
5. $\frac{z}{a+b}+\frac{a}{b+z}+\frac{b}{a+z}=0$.
6. $\frac{z^{2}}{u-z}+\frac{z^{3}}{a^{2}-x^{2}}=\frac{u^{2} z}{z^{2}-u^{2}}$.
7. $\quad 7+\frac{6}{y}+\frac{5}{y^{2}}+\frac{4}{y^{3}}=0$.
8. $\frac{a}{x-a}+\frac{a^{2}}{x^{2}-a^{2}}+\frac{a^{4}}{x^{1}-a^{4}}=1$.
9. $\frac{b}{c-z}+\frac{b^{2}}{c^{2}-z^{2}}+\frac{b^{4}}{c^{4}-z^{4}}=\frac{b^{6}}{c^{6}-z^{6}}$
10. $\frac{a}{b-\frac{1}{x}}=\frac{b}{x-a}$. $2 . \quad \frac{m}{n x-\frac{n}{x}}=\frac{m}{x+\frac{1}{x}}$.
11. $\frac{a}{a-\frac{1}{x}}+\frac{a^{2}}{a^{2}-\frac{1}{x^{2}}}=\frac{a^{3}}{x^{3}}$.
12. $\frac{3 z}{z+\frac{1}{2}}-\frac{5 z^{2}}{3 z-\frac{3}{z}}=\frac{1}{z}$.
13. $\frac{a x}{1-\frac{1}{x+a}}=\frac{d x}{1+\frac{1}{x-a}}$.
14. $\frac{\frac{a}{x}-\frac{b}{a-x}}{\frac{b}{x}}=\frac{a}{a-\frac{b}{x}}$.

Degree of Equations.

125. Def. An equation is said to be of the $n^{\text {th }}$ degree when n is the highest power of the unknown quantity which appears in the equation alter it is reduced to the normal form.
EXAMPLES.

The equation $A x+B=0$ is of the first degrec.

$$
\begin{array}{rllc}
A x^{2}+B=0 & \text { " } & \text { " } & \text { second " } \\
A x^{3}+B x+C=0 & \text { " } & \text { " } & \text { third } \\
\text { tte. } & & & \text { etc. }
\end{array}
$$

An equation of the second degree is also called a Quadratic Equation.

An equation of the third degree is also called a Cubic Equation．

Example．The equation

$$
a x^{2}+b x^{2} y^{2}+y^{3}+a^{2} z=0
$$

is a quadratic equation in x ，because x^{2} is of the highest power of x which enters into it．

It is a cubic equation in y ．
It is of the first degree in z ．

CHAPTER II．

EQUATIONS OF THE FIRST DEGREE WITH ONE UNKNOWN QUANTITY．

126．Remark．By the preceding definition of the degree of an equation，it will be seen that an equation of the first degree，with x as the quantity supposed to be unknown，is one which can be reduced to the form

$$
\begin{equation*}
A x+B=0 \tag{a}
\end{equation*}
$$

A and B being any mumbers or algebrace expressions which do not contain x ．

Such an equation is frequently called a Simple Equation．

Solution of Equations of the First Degree．

12\％．If，in the above equation，we transpose the term B to the second member，we have

$$
A x=-B .
$$

If we divide both members by A（§ 118，Ax．IV），we have，

$$
x=-\frac{B}{A} .
$$

Here we have attained our object of so transforming the equation that one member shall consist of x alone，and the other member shall not contain x ．

To prove that $-\frac{B}{A}$ is the reguired value of x, we substi. tute it for x in the equation ((1). The equation then becomes,

$$
-\frac{A B}{A}+B=0 ;
$$

$$
\text { or, by reducing, } \quad-B+B=0,
$$

an equation which is identically true. Therefore, $-\frac{B}{A}$ is the required root of the equation (a). ($(117$, Def.)
128. In an equation of the first degree, it will be unnecessary to reduce the equation entirely to the normal form by transposing all the terms to one member. It will generally be more convenient to place the terms which do not contain x in the opposite member from those which are multiplied by it.

Example. Leet théequation be

$$
\begin{equation*}
m x+a=n x+b \tag{1}
\end{equation*}
$$

We may begin by transposing a to the second member and $n x$ to the first, giving at once,
or

$$
\begin{aligned}
m x-n x & =b-a, \\
(m-n) x & =b-a,
\end{aligned}
$$

without redueing to the normal form. The final result is the same, whatever course we adopt, and the division of both members by $m-n$ gives

$$
x=\frac{b-a}{m-n} .
$$

129. The rule which may be followed in solving equations of the first degree with one unknown quantity is this:
I. Clear the equation of fractions.
II. Transpose the terms which are multiplied by the unkinown quantit! to one member; those which do not contain it to the other.
III. Divide by the total coefficient of the unkinown quantity.

96

 EQUATiONS OI THE FIRST DEGREL.Note. Rules in Algebra are given only to enable the beginner to go to work in a way which will always be sure, though it may not ulways be the shortest. In solving equations, he should emancipate himself from the rules as soon as possible, and be prepared to solve each equation presented by such process as appears most concise and elegmat. No operation upon the two members in accordance with the axioms (8 118) can lead to incorrect results (provided that no quantity which becomes zero is used as a multiplier or (livisor), and the student is therefore free to operate at his own pleasure on every equation presented.
EXAMPLES.
I. Given

$$
\frac{a x}{b y}=1
$$

It is required to find the value of each of the quantities a, b, x, and y, in terms of the others.

Clearing of fractions, we have

$$
a x=b y
$$

To find a, we divide by x, which gives

$$
a=\frac{b y}{x}
$$

To find b, we divide by y, which gives

$$
\frac{a x}{y}=b
$$

To find x, we divide by a, which gives

$$
x=\frac{b y}{a}
$$

To find y, we divide by b, which gives

$$
\frac{a x}{b}=y
$$

Thus, when any three of the four quantities a, b, x, and y, are given, the fourth can be found.
2. Let us take the equation,

$$
\frac{x-y}{2 x+10}=\frac{2 x+6}{4 x-2}
$$

Clearing of fractions, we have

$$
4 x^{2}-30 x+14=4 x^{2}+32 x+60
$$

Transposing and reducing,

$$
-62 x=46
$$

Dividing both members by -62 ,

$$
x=\frac{46}{-62}=-\frac{46}{62}=-\frac{23}{31} .
$$

This result should now be proved by computing the value of both members of the original equation when $-\frac{23}{31}$ is substituted for x.
3. $\frac{x}{m}+\frac{x}{n}=\frac{a x}{b}-\frac{1}{m}$.

Procceding in the regular way, we clear of fractions by multiplying by $m n b$. 'This gives

$$
n b x+m b x=a m n x-n b
$$

Transposing and reducing,

$$
(n b+m b-a m n) x=-n b .
$$

Dividing by the coefficient of x,

$$
x=-\frac{n b}{n b+m b-a m n}=\frac{n b}{a m n-} \frac{n b-n b}{m b} .
$$

These two values are equivalent forms (§ 100).
But we can obtain a solution without clearing of fractions. Transposing $\frac{a x}{b}$, we have

$$
\frac{x}{m}+\frac{x}{n}-\frac{a x}{b}=-\frac{1}{m},
$$

which may be expressed in the form

$$
\left(\frac{1}{m}+\frac{1}{n}-\frac{a}{b}\right) x=-\frac{1}{m}
$$

Dividing by the coefficient of x,

$$
x=-\frac{\frac{1}{m}}{\frac{1}{m}+\frac{1}{n}-\frac{a}{b}}
$$

This expression can be reduced to the other by $\S 110$. 7

EXERCISES.

Find the values of x, y, or u in the following equations:

1. $\frac{5-3 x}{2}=\frac{8 x-!}{3} \quad$ 2. $-x=\pi$.
2. $\frac{x}{1}+\frac{x}{2}+\frac{x}{3}=22$.
3. $\frac{x+23}{x-1}=9$.
4. $\frac{y}{a}+\frac{y}{b}-\frac{y}{c}=1$.
5. $\frac{36}{u-5}=\frac{45}{u}$.
6. $\frac{u}{3}-\frac{u}{4}+\frac{u}{5}=2-20$.
7. $\quad a-b x=b+a x$.
8. $\frac{u}{a}+\frac{u}{b}=\frac{1}{a}+\frac{1}{b}$.
9. $3 x+\frac{3-x}{3}=x$.
II. $\quad \frac{a}{c-x}=\frac{c}{a-x}$.
10. $\frac{x-1}{x-2}-\frac{x-2}{x-3}=\frac{x-5}{x-6}-\frac{x-6}{x-7}$.
11. $-y=a-b$.
12. $\frac{1}{x-2}-\frac{1}{x-4}=\frac{1}{x-6}-\frac{1}{x-5}$.
13. $\frac{1}{2}\left(x-\frac{a}{3}\right)-\frac{1}{3}\left(x-\frac{a}{4}\right)+\frac{1}{4}\left(x-\frac{a}{5}\right)=0$.
14. $\frac{u}{a}+\frac{u}{b-a}=\frac{a}{b+a}$.
15. $\quad a x+b=\frac{x}{a}+\frac{1}{b}$.
16. $\frac{u-a}{b}+\frac{u-b}{c}+\frac{u-c}{a}=\frac{u-(a+b+c)}{a b c}$.
17. $\quad \frac{m(x+a)}{x+b}+\frac{n(x+b)}{x+a}=m+n$.
18. $(x-a)^{3}+(x-b)^{3}+(x-c)^{3}=3(x-a)(x-b)(x-c)$.

Find the values of each of the four quantities, a, b, c, and d, in terms of the other three, from the equations
21. $\frac{a}{b-c}+\frac{a}{b-l}=0 . \quad$ 22. $\frac{a b}{c^{\prime} l}+1=0$.

Prollems lerding to Simple Equations.

130. The first difliculty which the begimner meets with in the solution of an algebrac problem is to state it in the form of an equation. This is a process in which the student must depend upon his own powers. The following is the general phan of proceeding :
131. Sudy the problem, to ascertain what quantities in it are unknown. There may be several such cuantities, but the problems of the present chapter are such that all these quantities can be expressed in terms of some one of them. Select that one by which this can be most casily done as the manown guantity.
?. Represent this unknown quanity by any algelraic symbol whatever.

It is common to select one of the last letters of the alphabet for the symbol, but the student should accustom himself to wrort equally well with any symbol.
3. Perfors on and with these symbols the operations required bey the problem. These operations are the same that would be necessary to verify the adopted value of the unknown cplantite.
4. Express the conditions stated or implied in the problem by means of an equation.
5. The solution of this equation by the methods already explained will give the value of the unknown quantity. It is alwars best to verify the value found for the manown (fuantity by operating upon it as described in the equation.

EXAMPLES.

1. A sum of 440 dollars is to be divided among three people so that the share of the second shall be 30 dollars more than that of the first, and the share of the third 80 dollars less than those of the first and second together. What is the share of each ?
solution. 1. Here there are really three unknown quantities, but it is cmly vecessary to represent the share of the first by an unknown ssmbul.

100

 EQU.TTMNS OF THE FIRST DEGREE.2 Therefore let us put

$$
x=\text { share of the first. }
$$

3. Then, by the terms of the statement, the share of the second will be

$$
x+30
$$

To find the shure of the third we add these two together, which makes

$$
2 x+30
$$

Subtracting 80, we have

$$
2 x-50
$$

as the share of the third.
We now add the three shares together, thas,

Share of first,	x	
"	" second,	$x+30$
$"$	" third,	$2 x-50$
Shares of all,	$\frac{4 x-20}{4 x-20}$	

4. By the conditions of the problem, these three shares must together make up 410 dollars. Expressing this in the form of an equation, we have

$$
4 x-20=440
$$

5. Solving, we And

$$
x=115=\text { share of first. }
$$

Whence, $\quad 115+30=145=$ share of second.

$$
\begin{aligned}
115+145-80 & =180=\text { share of third. } \\
\text { Sum } & =440 . \quad \text { Proof } .
\end{aligned}
$$

Ex. 2. Divide the number 90 into four parts, such that the first increased by 2 , the second diminished by 2 , the third multiplied by 2 , and the fourth divided by 2 , shall all be equal to the same quantity.

Here there are really five unknown quantities, namely, the four parts and the quantity to which they are all te be equel when the operation of adding to, subtracting, etc., is performed upon them. It will be most convenient to take this last as the unknown quantity. Let us therefure put it equal to u. Then,

Since the first part increased by 2 must be equal to u, its value will be $u-2$.

Since the second part diminished by 2 must be equal to u, its value w'll be $u+2$.

Since the third part multiplied by 2 must be u. its value will be $\frac{u}{2}$.
Since the fourth part divided by 2 must make c, its value will be $2 u$.

Adding these four parts up, their sum is found to be $\frac{9 n}{2}$.
13y the conditions of the problem, this sum must make up the number 90 . Therefore we have

$$
\frac{9 u}{2}=90 .
$$

Solving this equation, we find

$$
u=20
$$

Therefore

$$
\begin{aligned}
& \text { 1st part }=u-2=18 . \\
& 2 d \quad \because=u+2=22 . \\
& 3 d \quad \because=u \div 2=10 . \\
& 4 \mathrm{t}_{\mathrm{ii}} \because=2 u=40 .
\end{aligned}
$$

The sum of the four equals 90 as required, and the first part increased by 2 , the second diminished by 2 , eic., all make the number 20 , as required.

PROBLEMS FOR EXERCISE.

I. What number is that from which we obtain the same result whether we multiply it by 4 or subtract it from 100 ?
2. What number is that which gives the same result when we divide it by 8 as when we subtract it from 81 ?
3. Divide 284 dollars among two people so that the share of the first shall be three times that of the second and $\$ 16$ more.
4. Find a number such that $\frac{1}{8}$ of it shall execed $\frac{1}{3}$ of it by 12 .
5. A shepherd describes the number of his sheep by saying that if he had 10 sheep more, and sold them for 5 dollars each, he would have 6 times as many dollars as he now has sheep. How many sheep has he?
6. An applewoman bought a number of apples, of which 60 proved to be rotten. She sold the remainder at the rate of 2 for 3 cents, and found that they averaged her one cent each for the whole. How many had she at first?
7. If yon divide my age 10 years hence by my age 20 years ago, yon will get the same quotient as if you should divide my present age by my age 26 years ago. What is my present age?
8. Divide $\$ 500$ among Λ, B, and C , so that B shatl haye $\$ 20$ less than A, and $C \$ 20$ more than A and B torother.:-
9. A father left $\$ 10000$ to be divided among his five chitdren, directime that eath should receive siono more than the next younger one. What was the share of each?
ro. Λ man is 6 years older tham his wife. After they have been martied $1:$ years, 8 times her age wombl make $\%$ times his age. What was their age when m......ind?
11. Of three brothers, the youns, o 8 years younger than the second, and the cldest is as old as the other two together. In 10 years the sum of their ages will be $1 \geqslant 0$. What ate their present ages?
ta. The head of a fish is 9 inches long, the tail is as long as the head and halt the body, and the body is as long as the head and tat together. What is the whole length of the fish?
13. In dividing a years profits between three partners, Λ, B, and C, A got one-fourth and s150 more, B got one-third and subu more, and C got one-fifth and st60 more. What was the sum divided?
14. A traveller inguiring the distance to a city, was told that after he had gone one-third the distance and one-thide the remaining distance, he wond still have 36 miles more to go. What was the distance of the eity?
15. In making a journey, a traveller went on the first day one-fifth of the distance and 8 miles more ; on the second day he went one-fifth the distance that remained and 15 miles more; on the third day he went one-third the distance that remained and $1 \approx$ miles more ; on the fourth he went 35 miles and finished his journey. What was the whole distance travelled ?
16. When two partners divided their profits, A had twice as much as B. If he paid $B \times 300$, he would only have half as much again as B had. What was the share of eath?
17. At noon a ship of war sees an enemy's merehant vessel 15 miles away sailing at the rate of 5 miles an hom. How fast must the ship; of war sail in order to get within a mile of the ressel by 6 o'elock?
i8. A train moves away from a station at the rate of h miles an hour. Half an hom afterward another train follows it, rumning m miles an hour. How long will it take the batter to orertake it?
19. What two numbers are they of which the difference is 9 , and the difference of their sumares 351 ?
20. Λ man bought 25 horses for $\$ 2500$, giving $\$ 80$ a piece
for poor horses and $\$ 130$ each for good ones. How many of each kind did he buy?
21. A man is 5 years older than his wife. In 15 years the sums of their ages will be three times the present age of the wife. What is the age of each?
22. How far can a person who has 8 hours to spare ride in a coach at the rate of $(f$ miles an hour, so that he catn return at the rate of 4 miles an hour and arrive home in time?
23. A working alone can do a piece of work in 15 days, and 13 alone cam perform it in 12 days. In what time can they perform it if both work together?"

Metiod of Solution, In one day A can do 7^{12} of the whole work and 13 caus do $\frac{1}{15}$. Heuce, both together ean do ($\frac{1}{1} \frac{1}{2}+\frac{1}{1}$) of it.

If both together can do it in x days, then they can do $\frac{1}{x}$ of it in 1 day.
Hence,

$$
\frac{1}{x}=\frac{1}{12}+\frac{1}{15}
$$

is the equation to be solved.
24. Λ cistern can be filled in 12 minntes by two pipes whicl? run into it. One of them alone will lill it in 20 minntes. In what time would the other one alone fill it?
25. A cistern can be emptied by three pipes. The scend pipe roms twice as much as the first, and the third as much as the first and second together. All three together can empty the cistern in one hour. In what time would cach one sepatrately empty it?
26. A marketwoman bonght apples at the rate of 5 for two cents, and sold half of them at 2 for a cent and the other half at $: 3$ for a cent. Her profits were 50 cents. IIow many did she buy?
27. A grocer having 50 pounds of tea worth 90 cents a pound, mixed with it so much tea at 60 cents a pound that the combined mixture was worth 80 eents. How much did he add?
28. A laborer was hired for 40 days, on the condition that every day he worked he shonk. receive $\$ 1.50$, but should forfeit .50 cents for every day ha wats idle. At the end of the time $\$ 52$ were due him. Ilow many days was he idle?
29. A father left an estate to his three children, on the condition that the eldest should be paid $\$ 1200$ and the second $\$ 800$ for services they had rendered. The remainder was to be erfually divided among all three. Under this arrangement,
the youngest got one-fourth of the estate. What was the amomint divided?
30. A person having a sum of money to divide among three people gave the tirst onc-hird and $\$ 20$ more, the second one-thided of what was left and ≈ 20 more, and the thind onethind of what was then left and $\$ 00$ more, which exhansted the amomit. How much had they to divide?

3 r. One shepherd spent $\$ 7: 0$ in shecep, and another got the same number of sheep for st80, prying si a piece less. What price did each pay?
32. A crew which can pull at the rate of 9 miles an homr, finds that it takes twice as long to go up the river as to go down. Λ t what rate does the river flow?
33. Λ person who possesses $\$ 12000$ employs a portion of the money in building ithouse. Of the money which remains, he invests one-thind at fomr per cent. and the other two-thirds at tive per cent., and obtains from these two investments an amual income of $\$ 3!\%$. What was the cost of the house?
34. An ineome tax is levied on the condition that the first $\$ 600$ of every ineome shall be mataxed, the next $\$ 3000$ shall be taxed at two per eent., and all incomes in excess of $8: 3600$ shali be taxed three per cent. on the excess. A person fimds that by a miform tax of two per cent. on all incomes he would save \$200. What was his income?
35. At what tia, he heen 3 and 40 oclock is the minutehand 5 minntes ahead of the hom hand?
36. One vase, holding a gallons, is full of water ; a second, bolding b gallons, is full of bramly. Find the capacity of a dipper such that whether it is filled from the first vase and the water removed rephaeed by brandy, or tilled from the second vase and the latter then filled with water, the strength of the mixture will be the same.
37. Divide a number m into four such parts that the first part increased by a, the second diminished by a, the third multiplied by a, and the fourth divided by a shatl all be equal.
38. Divide a dollars among five brothers, so that each shall have n dollars more than the next younger.
39. A comrier starts out from his station riding 8 miles an homr. Four hours afterwards he is followed by another riding 10 miles an hour. How long will it require for the second to overtake the first, and what will be the distance travelled?

If x be the number of hours required, the second will have travelled x hours and the first $(x+4)$ hours when they meet. At this time they must have travelled equal distances.

Problem of the Conriers.

Let us generali\%e the preceding problem thus:
131. \& courior starts out from his staflon riding e
 rilling a miles an homer. Ilme lomg aill the lattor be in orertaking the first. whel what will be the distance firom the point of depurture.

Let us put t for the time required. Then the first courier will have travelled $(t+l)$ hours, mad the second l hours. Since the first travelled c miles an hour, his whole distance at the end of $t+h$ hours will be $(t+h) c$. In the same way, the distance travelled by the other will be ot. When the latter overtakes the former, the distances will be equal ; hence,

$$
\begin{equation*}
a t=c(t+l) \tag{1}
\end{equation*}
$$

Solving this equation with respect to t, we find

$$
\begin{equation*}
t=\frac{c h}{u-i} \tag{?}
\end{equation*}
$$

Maltiplying by a gives us the whole distance travelled, which is

$$
\text { Distance }=\frac{a r k}{\iota-c}
$$

This equation solves every problem of this kind by substituting for a, c, and l their values in numbers supposed in the problem. For example, in Problem 39, we suposed $a=10$, $c=8, h=4$. Substituting these values in efuation (\sim), we find

$$
t=16
$$

which is the number of hours required.
'Wo illustrate the generality of an algehraie problem, we shall now inquire what values t shall have when we make different suppositions respecting a, c, imd h.
(1.) Let us suppose $a=c$, or $a-c=0$. that is, the rates of travelling equal. Then equation (\mathfrak{D}) will become

$$
t=\frac{c \hbar}{0}
$$

an expression for infinity ($\$ 112,6$), showing that the one conrier would never overtake the other. This is plain enongh. But,
(\because.) Let us suppose that the second comier does not ride so fast as the first, that is, a less than c, and $a-c$ negative. Then the fraction $\frac{c h}{a-c}$ will not be infinite, but will be negative, because it has a positive numerator and a negative denominator. It is plain that the second comrier would never overtake the first in this case either, becamse the latter would gain on him all the time ; yet the fraction is not infinite.

What does this mean?
It meams that the problem solved by Λ lgelora is more gencral, that is, involves more particular problems tham were implied in the statement. If we count the hours afler the second courier set out as positive, then a negative time will mean so many hours before he set out, and this will hring out a time when, according to our idea of the problem, the horses were still in the stable.

The explanation of the difficulty is this. Suppose S to be the point from which the couriers started, and $A B$ the road along which they travelled from S toward B. Suppose also that the first comrier started out from S at 8 o'clock and the sccond at 12 o'elock. By the rule of positive and negative' framtities, distances towards Λ are negative. Now, because algebraic quantities do not commence at 0 , but extend in both the negative and positive directions, the algehraie problem does not suppose the comiers to have really commenced their journey at S, but to have come from the direction of λ, so that the first one passes S, withont stopping, at 8 oblock, and the second at 1%. It is plain that if the first comrier is travelling the faster, he must have passed the other before reaching S , that is, the time and distance are both negative, just as the problem gives them.

The general principle here involved may be expressed thus:
In Alyebra. roouls and journey.s, like time, have no beginning and no end.
(3.) Let us suppose that the couriers start out at the same time and ride with the same speed. Then h and $a-c$ are both zero, and the expression for t assumes the form,

$$
t=\frac{0}{0}
$$

This is an expression which may have one value as well as another, and is therefore indeterminate. The result is correct, because the comriers are always together, so that all values of t are equally correct.

The equation (1) ean be used to solve the problem in other forms. In this equation are fomr quantities, a, c, h, and t, and when any three of these are given, the fourth can be found. There are therefore four problems, all of which can be solved from this equation.

Finst Problen, that already given, in which the time required for one courier to overtake the other is the unknown quantity.

Second Problem. A couricr sets out from a station, riding e miles an hour. After \boldsymbol{h} hours another follows him from the same station, intending to overtake him in t houns. How fast must he ride?

The problem can be put into the form of an equation in the same way as before, and we shall have the equation (1), only a will now be the unknown quantity. If we use the numbers of Prob. 39 instead of the letters, we shall have, instead of equation (1), the following :

$$
\begin{aligned}
16 a & =8(16+4)=8 \cdot 20=160 \\
a & =10
\end{aligned}
$$

whence
If we use letters, we find from (1),

$$
a=\frac{c(t+l)}{t}
$$

and the problem is solved in either case.
Thimd Problem. The secomel eourier can ride just a miles an hour', und the first courier starts out he hours
before him. How fast must the latter ride in order that the other may take thours to overtake him?

Here c, the rate of the first courier, is the unknown quantity, and by solving equation (1), we find

$$
c=\frac{a t}{t+h} .
$$

Fourtin Problem. The swiftest of two couriers can ride a miles an hour, and the slower e miles an hour. How long a start must the latter have in order that the other may require t hour's to overtake him?

Here, in equation (1), h is the unknown quantity. By solving the equation with respect to h, we find,

$$
h=\frac{a t-c t}{c},
$$

which solves the problem.

PROBLEMS OF CIRCULAR MOTION.

40. Two men start from the same point to run repeatedly round a circle one mile in circumference. If Λ runs 7 miles an hour and B 5 , it is required to know:
41. At what intervals of time will A pass B ?
42. At how many different points on the circle will they be together?

We reason thus : since A runs 2 miles an hour faster than B, he cets away from him at the rate of 2 miles an hour. When he overrakes him, he will have gained up on him one circumference, that is, 1 mile. This will require 30 minutes, which is therefore the required interval. In this interval A will have gone round $3 \frac{1}{2}$ and $\operatorname{B} 2 \frac{1}{2}$ times, so that they will be together at the point opposite that where they were together 30 minutes previous. Hence, they are together at two opposite points of the circle.
41. What would be the answer to the preceding question if A should rim S miles an hour, and B 5 ?
42. Two race-horses run round and round a conrse, the one making the circuit in 30 , the other in 35 seconds. If they start ont together, how long before they will be together again?

Note. In x seconds one will make $\frac{x}{3 \overline{0}}$ circuit and the other $\frac{x}{3 \overline{5}}$.
43. If one planet revolves round the sun in T and the other in $T^{\prime \prime}$ years, what will be the interval between their conjunctions?

CHAPTER III.
 EQUATIONS OF THE FIRST DEGREE WITH SEVERAL UNKNOWN QUANTITIES.

Case I. Equations with Tuo Unlenown Quantities.
132. Def. An equation of the first degree with two unknown quantities is one which admits of being reduced to the form

$$
a x+b y=c,
$$

in which x and y are the unknown quantities and a, b, and c represent any numbers or algebraic equations which do not contain either of the unknown quantities.

Def. A set of several equations containing the same unknown quantities is called a System of Simultaneous Equations.

Solution of a Pair of Simultaneous Equations containing Two Unknown Quantities.

133. To solve two or more simultaneous equations, it is necessary to combine them in such a way as to form an equation containing only one unknown quantity.
134. Def. The process of combining equations so that one or more of the unknown quantities shall disappear is called Elimination.

The term"elimination" is used because the unknown quantities which disippear are climinated.

There are three methods of eliminating an unknown quantity from two simultancous equations.

Elimination by Comparison.

135. Rule. Solve cache of the equations with pespect to one of the unh:mown quantities cund put the two values of the unknown quantity thus obtaincel equal to cach other.

This will give an equation with only one whlinourn quantity, of whiche the value can be found frome the equation.

The ralue of the other unknoun quantity is then foume by substitution.

Example. Let the equations be

$$
\left.\begin{array}{r}
a x+b y=c \\
a^{\prime} x+b^{\prime} y=c^{\prime} . \tag{1}
\end{array}\right\}
$$

From the first equation we obtain,

$$
\begin{equation*}
x=\frac{c-b y}{a} \tag{2}
\end{equation*}
$$

From the second we obtain,

$$
\begin{equation*}
x=\frac{c^{\prime}-b^{\prime} y}{a^{\prime}} \tag{3}
\end{equation*}
$$

Putting these two values equal, we have

$$
\frac{c-b y}{a}=\frac{c^{\prime}-b^{\prime} y}{a^{\prime} y}
$$

Reducing and solving this equation as in Chapter II, we find,

$$
y=\frac{a c^{\prime}-a^{\prime} c}{a b^{\prime}-a^{\prime} b}
$$

which is the required value of y. Substituting this value of y in either of the equations (1), (2), or (3), and solving, we shall find

$$
x=\frac{b_{1}^{\prime} r-b r^{\prime}}{a b^{\prime}-a^{\prime} b}
$$

If the work is correct, the result will be the same in whichever of the equations we make the substitution.

Nemerical Exampie. Let the equations be

$$
\left.\begin{array}{r}
x+y=28 \\
3 x-2 y=29 \tag{4}
\end{array}\right\}
$$

From the first equation we find

$$
x=\stackrel{\sim}{x}-y
$$

and from the sccond $\quad x=\frac{29+2 y}{3}$,
from which we have $2 S-y=\frac{29+2 y}{3}$,

$$
y=11
$$

Substituting this value in the first equation in x, it becomes

$$
x=28-11=1 \%
$$

If we substitute it in the second, it beeomes

$$
x=\frac{29+22}{3}=\frac{51}{3}=17
$$

the same value, thus proving the correctuess of the work.

Elimination by Substitution.

136. Rule. Find the value of one of the unhanow quantities in terms of the other from cither equation, anul substitute it in the other erquation. The latter will have but one unkinou'n quantity.

Example. Taking the same srpations as before,

$$
\begin{aligned}
a x-b y & =c \\
a^{\prime} x+b^{\prime} y & =c^{\prime}
\end{aligned}
$$

the first equation gives $\quad x=\frac{c-b!!}{a}$.
Substituting this value instead of x in the second equation, it becomes

$$
\frac{a^{\prime} c-a^{\prime} b!}{a}+l^{\prime} y=c^{\prime}
$$

Solving this equation with respect to y, we get the same result as before.

Numerical Example. To solve in this way the last numerical example, we have from the first equation (4),

$$
x=28-y .
$$

Substituting this value in the second equation, it becomes

$$
84-3 y-2 y=20,
$$

from which we obtain as before,

$$
y=\frac{84-29}{5}=11
$$

This method may be applicd to any pair of equations in four ways :

1. Find x from the first equation and substitute its value in the second.
2. Find x from the second equation and substitute its value in the first.
3. Find y from the first equation and sulstitute its value in the second.
4. Find y from the second equation and substitute its value in the first.

Elimination by Addition or Subtraction.

13\%. Rele. Multiply erch equention by such a factor that the cocfficients of one of the unknown quantities shall become numerically equal in the tuo equations.

Then, by auluing or subtracting the equations, we shall have an equation with but one unknown quantity.

Rem. We may always take for the factor of each equation the cocfficient of the unknown quantity to be eliminated in the other equation.

Example. Let us take onee more the general equation

$$
\begin{aligned}
a x+b y & =c, \\
a^{\prime} x+b^{\prime} y & =c^{\prime} .
\end{aligned}
$$

Multiplying the first equation by a^{\prime}, it becomes

$$
u a^{\prime} x+a^{\prime} b y=a^{\prime} c .
$$

Multiplying the second by a, it becemes

$$
a a^{\prime} x+u b^{\prime} y=u c^{\prime} .
$$

The unknown ruantity x has the same cocfficient in the last two equations. Subtracting them. from each other, we obtain

$$
\begin{aligned}
\left(a^{\prime} b-a b^{\prime}\right) y & =a^{\prime} c-a c^{\prime} \\
y & =\frac{a^{\prime} c-a c^{\prime}}{a^{\prime} b-a b^{\prime}}
\end{aligned}
$$

Rem. We shall always obtain the same result, whichever of the above three methods we use. But as a general rule the last method is the most simple and elegant.

Problem of the Sum and Difference.

The following simple problem is of such wide application that it should be well understood.
138. Problem. The sum and differenec of two numbers being given, to fincl the numbers.

Let the numbers be x and y.
Let s be their sum and d their difference.
Then, by the conditions of the problem,

$$
\begin{aligned}
& x+y=s \\
& x-y=d
\end{aligned}
$$

Adding the two equations, we have

$$
2 x=s+d
$$

Subtracting the second from the first,

$$
2 y=s-i
$$

Dividing these equations by 2 ,

$$
\begin{aligned}
& x=\frac{s+d}{2}=\frac{s}{2}+\frac{d}{2} \\
& y=\frac{s-d}{2}=\frac{s}{2}-\frac{d}{2}
\end{aligned}
$$

We therefore conclude:
The greater number is fonnd by adding half the difference to half the sum.

The lesser number is found by subtracting half the dijference from half the sum.

This result can be illustrated geometrically. Let ΛB and BC be two lines phaced end to end, so that AC is their sum. 'To find their difference, we cut off from AB a length: $\Lambda U^{\prime}=1 B C$; then $\mathrm{C}^{\prime} \mathrm{B}$ is the
 difference of the two lines.

If P is half way between C^{\prime} and B , it is the middle point of the whole line, so that

$$
\begin{aligned}
& \mathrm{AP}=\mathrm{PC}=\frac{1}{2} \Lambda \mathrm{C}=\frac{1}{2} \text { sum of lines. } \\
& \mathrm{C}^{\prime} \mathrm{P}=\mathrm{P} B=\frac{1}{2} \mathrm{C}^{\prime} 3=\frac{1}{2} \text { difference of lines. }
\end{aligned}
$$

If to the half sum $\Lambda \mathrm{P}$ we add the half difference PB , we have $A B$, the greater line.

If from the half sum ΛP we take the half difference $C^{\prime} P$, we have left $\Lambda \mathrm{C}^{\prime}$, the lesser Jine.

EXERCISES.

Solve the following equations:
I. $\quad 3 x-2 y=33, \quad 2 x-3 y=18$.
2. $\quad 3 x-5 y=13, \quad 2 x+7 y=81$.
3. $\quad \therefore x+6 y=a, \quad 6 x+6 y=b$.
4. $\quad 2 x+3 y=m, \quad 2 x-3 y=n$.
5. $\quad a x+b y=p, \quad a x-b y=q$.
6. $\quad \frac{x}{6}+\frac{y}{7}=26, \quad \frac{x}{6}-\frac{y}{7}=2$.
7. $\frac{x}{4}+\frac{y}{5}=18, \quad \frac{x}{8}+\frac{y}{3}=29$.
8. $\quad \frac{x}{2}+\frac{y}{3}=a, \quad \frac{x}{2}-\frac{y}{3}=b$.
9. $\quad \gamma(x+y)+3(x-y)=102$,
$7(x+y)-3(x-y)=66$.
Note. Solve this equation first as if $x+y$ and $x-y$ were single symbois, of which the values are to be found. Then find x and y by $\delta 138$ preceding.

$$
\begin{aligned}
& \text { ェо. } x+y+(x-y)=14, \quad x+y-(x-y)=10 . \\
& \text { м. } \frac{1}{x}+\frac{1}{y}=\frac{5}{12}, \frac{1}{x}-\frac{1}{y}=\frac{1}{12}
\end{aligned}
$$

Note. Equations in this form can be best solved as if $\frac{1}{x}$ and $\frac{1}{y}$ were
the unknown quantities. See next exercise.
12. $\frac{3}{x}-\frac{2}{y}=\frac{11}{10}, \frac{4}{x}+\frac{5}{y}=3$.

Solution. If we multiply the first equation by 4 , and the second by 3 , we have

$$
\begin{aligned}
& \frac{12}{x}-\frac{8}{y}=\frac{44}{10}=\frac{22}{5} \\
& \frac{12}{x}+\frac{15}{y}=9=\frac{45}{5}
\end{aligned}
$$

Subtracting the first from the second, we have

$$
\frac{23}{y}=\frac{23}{5}
$$

whence,

$$
y=5
$$

Again, to eliminate $\frac{1}{y}$, we multiply the first equation by 5 and the second by 2 and add. Thus,

$$
\begin{aligned}
\frac{15}{x}-\frac{10}{y} & =\frac{11}{2} \\
\frac{8}{x}+\frac{10}{y} & =6=\frac{12}{2} \\
\frac{23}{x} & =\frac{23}{2}
\end{aligned}
$$

whence,

$$
x=2
$$

13. $\frac{2}{x}+\frac{3}{y}=\frac{7}{12}, \frac{2}{x}-\frac{3}{y}=-\frac{1}{12}$
14. $\frac{1}{x}+\frac{2}{y}=\frac{5}{12}, \frac{2}{x}-\frac{1}{y}=\frac{5}{24}$.
15. $\frac{5}{x}-\frac{3}{y}=-\frac{1}{6}, \frac{3}{x}-\frac{1}{y}=\frac{1}{30}$.
16. $\frac{5}{x+1}-\frac{3}{y-1}=-\frac{1}{6}, \frac{3}{x+1}-\frac{1}{y-1}=\frac{1}{30}$.
17. $\frac{2}{x+2}+\frac{3}{y-3}=\frac{y}{12}, \frac{2}{x+2}-\frac{3}{y-3}=-\frac{1}{12}$.
18. $\quad \frac{a}{x}+\frac{b}{y}=c, \quad \frac{a}{x}-\frac{b}{y}=d$.
19. $\frac{x+y}{x-y}=2, \frac{2 x+3 y}{x+a}=6$.
20. $\frac{x}{a+b}+\frac{y}{a-b}=2 a, \quad \frac{x-y}{4 a b}=1$.

Case II. Equations of the First Degree with Three or More Unkuown Qucutities.
139. When the values of several unknown quantities are to be found, it is necessary to have as many equations as unknown quantities.

If there are more unknown quantities than equations, it will be impossible to determine the values of all of them from the equations. All that can be done is to determine the value of some in terms of the others.

If the number of equations exceeds that of unknown quantities, the excess of equations will be superfluous. If there are n unknown quantities, their values can be found from any n of the equations. If any selcetion of n equations we choose to make gives the same values of the unknown quantities, the equations, though superfluous, will be consistent. If different values are obtained, it will be impossible to satisfy them all.

Elimination.

140. When the number of manown quantities exceeds two, the most convenient method of elimination is generally that by addition or subtraction. The unknown quantities are to be eliminated one at a time by the following method:
I. Select an unlinoun quantity to be first climinated. It is best to begin with the quantity which appears in the fewest equations or has the simplest coefficients.
II. Select one of the equations containing this unlinown quantity as an eliminating cquation.
III. Eliminate the quantity between this cquation ancl each of the others in succession.

We shall then have a second system of equations less by one in number than the original system and containing a number of unknown quantities one less.
IV. Repeat the mocess on the new system of equations, and continue the repetition until only one equation with one unkinoure quantity is left.
V. Having foum the value of this last unkmonn quantity, the values of the others ean be foume by sucecessive sulbstitution in one equation of each system.

Example. Solve the equations

$$
\left.\begin{array}{rl}
4 x-3 y-z+u-y & =0 \\
x-y+2 z+2 u-10 & =0 \\
2 x+2 y-z-2 u-2 & =0 \\
x+2 y+z+u-19 & =0 \tag{4}
\end{array}\right\}
$$

We shall select x as the first quantity to be climinated, and take the last equation as the eliminating one. We first multiply this equation by three such factors that the corfficient of x shall become equal to the eoelficient of x in each of the other equations. These factors are 4,1 , and 2 . We write the products under each of the other equations, thus:

Eq. (1),

$$
4 x-3 y-z+u-7=0
$$

(4) $\times 4$,

$$
4 x+8 y+4 z+4 u-i 6=0 .
$$

Eq. (2),
$x-y+2 z+2 u-10=0$, (4) $\times 1$,

$$
x+2 y+z+n-19=0 .
$$

Eq. (3), $\quad 2 x+2 y-z-2 u-2=0$, $(4) \times 2$,

$$
2 x+4 y+2 z+2 y-38=0 .
$$

By subtracting the one of each pair from the other, we obtain the equations,

$$
\left.\begin{array}{r}
11 y+5 z+3 u-69=0 \\
3 y-z-u-9=0 \tag{b}\\
2 y+3 z+4 u-36=0
\end{array}\right\}
$$

The unknown quantity x is here eliminated, and we have three equations with only three unknown quantities. Now eliminating y by means of the last equation, in the same way, and clearing of fractions, we find the two equations,

$$
\left.\begin{array}{l}
23 z+38 u-258=0 \tag{c}\\
11 z+14 u-90=0
\end{array}\right\}
$$

118

The problem is now reduced to two equations with two unknown quantitios, which we have already shown how to solve. We find by solving them,

$$
\begin{aligned}
& z=-\stackrel{\imath}{ }, \\
& u=8 .
\end{aligned}
$$

We next find the volue of y liy substituting these values of a and u in cither of the equations (b). Whe tirst of them thas becomes:

$$
11 y-10+24-69=0
$$

from which we find,

$$
y=5
$$

We now substitute the values of y, z, and u in either of equations (a). The second of the latter becomes

$$
x-5-4+16-10=0
$$

and the fourth becomes,

$$
x+10-2+8-19=0
$$

either of which gives

$$
x=3
$$

We ran now prove the results be substituting the values of $x, ? /, z$, and u in all four of equations (t), und seeing whether they are nll satistied.

EXERCISES.

1. One of the best exereises for the student will be that of resolving the previons eynations (a) by taking the last egnation ths the eliminating one, and performing the elimination in different orders; that is, begin by eliminating u, then repat the whole process begiming with z, ete. The timal results will always be the sume.
2. Find the values of x_{1}, x_{2}, x_{3}, and x_{4}, from the equations,

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=64 \\
& x_{1}+x_{2}-x_{3}-x_{4}=34 \\
& x_{1}-x_{2}+x_{3}-x_{4}=6 \\
& x_{1}-x_{2}-x_{3}+x_{4}=4
\end{aligned}
$$

This example requires no multiplication, but only addition and subtraction of the different equations.
3.

$$
\begin{aligned}
& 2 x+5 y+3 z=13 \\
& 2 x+2 y-z=12 \\
& 5 x+5 y-2 y=29
\end{aligned}
$$

sind if it is th
4.

$$
\begin{aligned}
& 3 z+9 u-5 y=18 \text {, } \\
& \because x+!-4=9 \text {, } \\
& x+i z-6!\eta=3: 3, \\
& 5 z-2 x-8 y+2 u=15 .
\end{aligned}
$$

5. $x+y+z=u$,
$y+z+u=u$,
6. $\frac{1}{x}-\frac{1}{y}=m$,
$z+u+x=c$,
$u+x+y=u$.

$$
\begin{aligned}
& \frac{1}{y}-\frac{1}{z}=n \\
& \frac{1}{z}+\frac{1}{x}=p
\end{aligned}
$$

PROBLEMS FOR SOLUTION.

i. A man had a saddle worth sit and two horses. If the sadille be put on horse A he will be donble the value of B , hat if it be put on B his value will be equal to that of A. What is the value of each horse?
2. What number of two digits is equal to $\%$ times the sum of its digits, and to 21 times the difference of its digits:

Let x be the first digit, or the number of tens, and y the units. Then the number itself will be $10 x+y$. Seven times the sum of the digits are $7 x+\pi y$, and 21 times the difference are $21 x-21 y$. Uniting nai solving the equations, we find $x=6, y=3$; the nmmer is therefore $\begin{aligned} & 6 \\ & \text { e. }\end{aligned}$
3. A mmber of two digits is equal to 6 times the sum of its digits, and if 9 be subtracted from the number the digits are reversed. What is the number?
4. Find a number of two digits sueh that it shall be equal to 6 times the sum of its digits inereased by 1 , while if 18 be subtracted from the number the digits will be reversed.
5. Find a momber which is greater by 2 than 5 times the sum of its digits, and if 9 be added to it the digits will be reversed.
6. What number is that which is equal to 9 times the sum of its digits and is 4 greater thim 11 times their difference ?
7. What fraction is that which becomes equal to $\frac{8}{3}$ when the numerator is increased by 2 , and equal to $\frac{4}{8}$ when the denominator is increased by 4 .
8. T'wo drovers Λ and 13 went to market with eattle. Λ sold 50 and then had left half as many as 1 , who had sold none. 'Then 3 sold $5 t$ and had remaning half as many as Λ. How many did each have?
9. A boy bought to aphles for a dollar. giving 3 cents cach for the eromil ones amd \ddot{a} cents cath for the poor ones. How mathy of cileh kime did he buy ?

1o. Fimal a fraction which heromes equal to $\frac{1}{2}$ when its demominator is imereased by 13, and to ${ }^{2}$ when 4 is subtracted from its mumerator.
11. Fiand a fradion which will berome equal to \tilde{o}_{3} hy adding $\ddot{\approx}$ to its mmerator, or by adding to its denominator 3 , will brecollic \downarrow.
12. A hurkster bought a certain mumber of whickens at
 the whole. He sold the chickens at is eents each, and the turkersat 81 earh, realizing sion for the whole. How many chickens and how many turkeys had he?
13. An applewoman bought a lot of apples at 1 cent cach, and a lot of perars at \because cents cach, paying $81 . \% 0$ for the whole. 11 of the apples and 7 of the peats were bad, but she sold the good apples at : e cents each and the good pears at 3 cents cach, realizing *?.do. How many of carh fruit did she buy?
r.q. When Mr. Smith was married he was $\frac{1}{3}$ ohder than his
 ages when married?
15. A and B together can do a picee of work in G days. bat A working atone can do it ? dass sooner than 13 working alone. In what time conld eath of them do it singly?
16. A husband being asked the age of himself and wife, replied: "lf you divide my age 6 years hence by her age 6 yenrs ano, the quotient will be s. But if yon divide her age $1 \because$ gears henee by mine 21 years aro, the quotient will be 5 .
17. The smm of two ages is ! times their difterence, but seren years ago it was only seven times their difference. What are the ages now?
is. 'Two trains set out at the same moment, the one to go from Boston to Springtich, the other from Springtield to Boston. The distance betwoen the two eities is !s mikes. They meet each other at the end of 1 hre ${ }^{2} t$ min., and the train from Boston travels as fir in 4 hers. as the other in 3 . What was the speed of cach train?
19. A wrocer bought 50 lbe of tea and 100 lbe of coffee for fioc. He sold the tea at an adrance of $\frac{1}{4}$ on his price, and the cotree at an adrance of $\frac{1}{3}$. ralizing sio from both. At what priee per pound did he liny and sell each artiele?

Nore. If r and y are the prices at which he bought, then ${ }_{4} x$ and $\frac{4}{3} y$ are the prices at which he sold.
20. For p dollars I can purchase cither a prombls of tea amd
 What is the price fer pound of canth:

2 .. Λ goldsmith had two ingots. The tirst is eomposed of apual parts of grold and silver, while the second containst pats of rold to 1 of silver. He wants to take from them a watehease having 4 omees of gold and 1 ounce of silver. How much mast he take from each ingot?
22. A hanker has two kinds of coin, such that a pieces of the tirst kind or b pieces of the secomd will make a dollar. If he wathts to select epieces which shall be worth a dollar, how many of each kind mast he take?
23. A has a sim of money invested at a certain rate of interest. B has 81000 more insested, at a rate 1 fer cent. higher, and thas gatins sso more interest than Λ. © has invested s.jo0 more tham 13 , at a rate still higher hy 1 fer eent., and thas sams sion more than B. What is the amome each person hats insested and the rate of interest?
24. A erocere had three easks of wine, containing in all $34 t$ gallons. He sells so gallons from the dirst eask; then ponts into the first me-third of what is in the second, and then into the second one-fifth of what is in the fhird, after which the first eontains 10 gallons more than the second, and the second 10 more than the third. How man wine did cach eask contain at tirst?

Equivalent and Inconsistent Equations.

141. It is not always the case that values of two minkown guantities can le fomb from two equations. If, for example, we have the equations

$$
\begin{array}{r}
x+2 y=3 \\
2 x+4 y=6,
\end{array}
$$

we see that the second can be derived from the first by multiplying both members by 2 . Hence every pair of values of a and y which satisly the one will satisfy the other also, so that the two are equivalent to a single one.

If the equations were

$$
\begin{array}{r}
x+2 y=5, \\
2 x+4 y=6,
\end{array}
$$

there would be no values of x and y which wonld satisfy hoth equations.

For, if we multiply the first by 2 and subtract the second from the product, we shall have,

$$
\begin{array}{ll}
\begin{array}{l}
\text { 1st eq. } \times 2, \\
2 d \text { eq., }
\end{array} & \begin{array}{l}
2 x+4 y=10 \\
\\
\text { Remainder, }
\end{array} \\
\frac{2 x+4 y=6}{0=4}
\end{array}
$$

an impossible result, which shows that the equations are inconsistent. This will be evident from the equations themselves, because every pair of values of x and y whieh gives
must also give

$$
2 x+4 y=6
$$

and therefore cannot give $x+2 y=5$.
142. Generalization of the preceding result. If we take any two equations of the first degree between x and y which we may represent in the form

$$
\left.\begin{array}{r}
a x+b y=c \tag{1}\\
a^{\prime} x+b^{\prime} y=c^{\prime},
\end{array}\right\}
$$

and eliminate x by addition or subtraction, as in $\S 137$, we have for the equation in y,

$$
\left(a^{\prime} b-a b^{\prime}\right) y=a^{\prime} c-a c^{\prime}
$$

Now it may happen that we have,

$$
\begin{equation*}
a^{\prime} b-a b^{\prime}=0 \text { identically. } \tag{2}
\end{equation*}
$$

In this case y will disappear as well as x, and the result will be

$$
a^{\prime} c-a c^{\prime}=0 .
$$

If this equation is identically true, the two equations (1) will be equivalent ; if not true, they will be inconsistent. In neither case can we derive any value of y or x.

If we divide the above equation, (2), by $a a^{\prime}$ we shall have

$$
\frac{b}{a}=\frac{b^{\prime}}{a^{\prime}} .
$$

Hence,
Theorem. If the quoti int of the coefficients of the unknown quantities is the same in the two equations, they will be either equivalent or inconsistent.

laı

This theorem can be expressed in the following form:
If the terms containing the unknown quantity in the one cquation can be multiplicd by such a factor that they shall both become equal to the corresponding terms of the other equation, the two equations will be either equivalent or inconsistent.

Proof. If there be such a factor m that multiplying the first equation (1) by it, we shall have

$$
\begin{aligned}
m a & =a^{\prime}, \\
m b & =b^{\prime} .
\end{aligned}
$$

Eliminating m, we find

$$
a^{\prime} b-a b^{\prime}=0,
$$

the criterion of inconsistency or equivalence.
143. When two equations are inconsistent, there are no values of the unknown quantities which will satisfy both equations.

When they are equivalent, it is the same as if we had a single equation ; that is, we may assign any value we please to one of the unknown quantities, and find a corresponding value of the other.

CHAPTER IV.

OF INEQUALITIES.

144. Def. An Inequality is a statement, in the language of Algebra, that one quantity is algebraically greater or less than another.

Def. The quantities declared unequal are called Members of the inequality.

The statement that A is greater than B, or that $A-B$ is positive, is expressed by

$$
A>B
$$

That A is less than B, or that $A-B$ is negative is expressed by

$$
A<B
$$

The form $\quad A>B>C$ indicates that the quantity B is less tham A but greater than C.

The form

$$
A \equiv B
$$

indicates that A may be cither equal to or greater than B, but camot be less than B.

Froperties of Inequalities.

14.5. Theorem I. An inequality will still snosist after the same quantity has been added to or subtracted fiom each member.

Proof. If the inequality be $A>B, A-B$ must be positive. If we add the same quantity $I I$ to A and B, or subtract it from them, we shall have $A \pm M-(B \pm M)$, which is equal to $A-B$, and therefore positive. IIence, if
then

$$
\begin{gathered}
A>B \\
A \pm I I>B \pm I
\end{gathered}
$$

Cor. If any term of an inequality be transposed and its sign changed, the inequality will remain true.

Theorem II. An inequality will still subsist after its members lave been multiplied or divided by the same positive number.

Proof. If $A-B$ is positive, then (m or n being positive) $m(A-B)$ or $m A-m B$ will be positive, and so will

$$
\frac{A-B}{n} \quad \text { or } \quad \frac{A}{n}-\frac{B}{n}
$$

Hence, if

$$
A>B
$$

then
and

$$
\begin{aligned}
m A & >m B \\
\frac{A}{n} & >\frac{B}{n}
\end{aligned}
$$

It may be shown in the same way that if m or n is negative, $m A-m B$ or $\frac{A}{n}-\frac{B}{n}$ will be negative. Hence,

Theorem III. If both members of an inequality be multiplied or divided by the same negative number, the direction of the inequality will be reversed.

That is, if

$$
\begin{aligned}
A & >B, \\
-m A & <-m B, \\
-\frac{A}{n} & <-\frac{B}{n} .
\end{aligned}
$$

then

Theorem $I V$. If the corresponding members of several inequalities be added, the sum of the greater members will exceed the sum of the lesser members.

Theore: : "r If the members of one inequality be subtracted from the non-corresponding members of another, the inequality will still subsist in the direction of the latter.

| That is, if | A |
| ---: | :--- |$>B, \quad$| x |
| :--- |
| |
| then |

The proof of the last three theorems is so simple that it may be supplied by the student.

Theorem VI. If two positive members of an inequality be raised to any power, the inequality will still subsist in the same direction.

Proof. Let the inequality be

$$
\begin{equation*}
A>B \tag{a}
\end{equation*}
$$

Because A is positive, we shall have, by multiplying by A (Th. II),

$$
\begin{equation*}
A^{2}>A B \tag{1}
\end{equation*}
$$

Also, because B is positive, we have, by multiplying (() by B,

$$
\begin{equation*}
A B^{\prime}>l^{2} . \tag{2}
\end{equation*}
$$

Therefore, from (1) and (2),

$$
\begin{equation*}
A^{2}>B^{2} \tag{3}
\end{equation*}
$$

Multiplying the last inequality by A,

$$
\begin{equation*}
A^{3}>A B^{2} \tag{4}
\end{equation*}
$$

Multiplying (2) by B,

$$
\begin{equation*}
A B^{2}>B^{3} \tag{5}
\end{equation*}
$$

Whence,

$$
A^{3}>B^{3}
$$

The process may be continued to any extent.

Examples of the Use of Inequalities.

146. Ex. I. If a and b be two positive quantities, such that

$$
a^{2}+b^{2}=1
$$

we must have $a+b>1$.
Proof. If

$$
a+b \overline{<} 1
$$

we should have, by squaring the members (Th. VI),

$$
a^{2}+2 a b+b^{2} \overline{<} 1
$$

and by transposing the product $2 a b$ (Th. I, Cor.),

$$
a^{2}+b^{2} \equiv 1-2 a b
$$

Because a and b are positive, $2 a b$ is positire, and •

$$
1-2 a b<1
$$

Thercfore we should have

$$
a^{2}+b^{2}<1
$$

and could not have $a^{2}+b^{2}=1$, as was originally supposed.
Ex. 2. If a, b, m, and n are positire quantities, such that

$$
\begin{equation*}
\frac{a}{b}>\frac{m}{n} \tag{a}
\end{equation*}
$$

then the value of the fraction $\frac{a+m}{a+n}$ will be contained between the values of $\frac{a}{b}$ and $\frac{m}{n}$; that is,

$$
\begin{equation*}
\frac{a}{b}>\frac{a+m}{b+n}>\frac{m}{n} \tag{1}
\end{equation*}
$$

To prove the first inequality, we must show that

$$
\begin{equation*}
\frac{a}{b}-\frac{a+m}{b+m} \tag{2}
\end{equation*}
$$

is positive. Reaucing this expression by $\S 106$, it becomes

$$
\begin{equation*}
\frac{a n-b m}{b(b+n)} \tag{3}
\end{equation*}
$$

From the original inequality (a) we have, by multiplying $b r$ the positive factor $b n$,

$$
a n>b m
$$

That is, an $-b m$ is positive ; therefore the fraction (3) with this positive numerator is also positive, and (2) is positive as asserted.

The second inequality (1) may be proved in the same way.

EXERCISES.

1. Prove that if a and b be any quantities different from zero, and $1>x>-1$, we must have

$$
a^{2}-2 a b x+b^{2}>0
$$

2. Prove that $\left(\frac{a+b}{2}\right)^{2}>a b$.
3. If $3 x-5>13$, then $x>6$.
4. If $6 x>\frac{3 x}{2}+18$, then $x>4$.
5. If $\frac{7 x}{5}-\frac{5 x}{3}>\frac{x}{3}-3$, then $x>5$.
6. If $m-n x>p-q x$, then $x>\frac{p-m}{q-\frac{m}{n}}$.
7. If $\frac{x-y}{m}<1-\frac{x}{y}$, and m is positive, then $x<y$.
8. If $a^{2}+b^{2}+c^{2}=1$, and a, \dot{b}, and c are not all equal, then $a b+b c+c a<1$.

Suggestion. The squares of $a-b, b-c$, and $c-a$ cannot be negative.

> BOOK IV. RATIO AND PROPORTION.

CHAPTER I.

NATURE OF A RATIO.

14\%. Def. The Ratio of a quantity A to another quantity B is a number expressing the value of A when compared with B as the standard or unit of measure.

Examples. Comparing the lengths A, B, C, D, it will be seen that
A is $2 \frac{1}{4}$ times D;
B is $\frac{1}{2}$ of D;
C is $\frac{3}{4}$ of D.

We express this relation by saying,

$$
\left.\begin{array}{ccc}
\text { The ratio of } A \text { to } D \text { is } 2 \frac{1}{4} \text { or } \frac{9}{4} ; \tag{1}\\
\text { " } & \text { " } & B \text { to } D \text { is } \frac{1}{2} ; \\
\text { " } & \text { " } & C \text { to } D \text { is } \frac{3}{4}
\end{array}\right\}
$$

14S. The ratio of one quantity to another is expressed by writing the unit of measure after the quantity measured, and inserting a colon between them.

The statements (1) will then be expressed thas:

$$
A: D=2 \frac{1}{4}=\frac{9}{4} ; \quad B: D=\frac{1}{2} ; \quad C: D=\frac{3}{4} .
$$

Def. The two quantities compared to form a ratio are called its Terms.

Def. The quantity measured, or the first term of the ratio, is called the Antecedent.

The unit of measure, or the second term of the ratio, is called the Consequent.

Rem. When the antecerlent is greater than the consequent, the ratio is greater than unity.

When the antecedent is less than the consequent, the ratio is less than mity.
149. To find the ratio of a quantity A to a standard U, we imagine ourselves as measuring off the quantity A with U as a carpenter measures a board with his foot-rule.

There are then three cases to be considered, according to the way the measures come out.

Case I. We may find that, at the end, A comes ont an exact number of times U. The ratio is then a whole number, and we say that U exactly measures A, or that A is a multiple of U.

Case II. We may find that, at the end, the measure does not come out exact, but a piece of A less than U is left over. Or, A may itself be less than U. We must then find what fraction of U the piece left over is equal to. 'This is done by dividing U up into such a number of equal parts that one of these parts shall exactly measure A or the piece of A which is left over. 'The ratio will then be a fraction of which the number of parts into which U is divided will be the denominator, and the number of these parts in A the numerator.

Example. If we find that by dividing U into 7 parts, 4 of then $A=\frac{4}{7}$ of U, and we have for the ratio of A to U,

$$
A: U=\frac{4}{7}
$$

If we find that A contains $U 3$ times, and that there is then a piece equal to $\frac{4}{7}$ of U left orer, we have

$$
A: U=3 \frac{4}{7}=\frac{25}{7}
$$

The $3 U$'s are equal to $2 r^{1}$ of U, so that we may also say

$$
A=\frac{25}{7} \text { of } U, \quad \text { or } \quad A: U=\frac{25}{7} .
$$

which is simply the result of reducing the ratio $3 \frac{4}{7}$ to an improper staction.

In general, if we find that by dividing U into n parts, A will be exactly m of these parts, then

$$
\Lambda: U=\frac{m}{n},
$$

whether m is greater or less than n.
When the magnitude of A measured by U can be exactly expressed by a vulgar fraction, A and U are said to be commensurable.

Case III. It may happen that there is no number or fraction which will exactly express the ratio of the two magnitudes. The latter are then said to be incommensurable.
150. Theorem. The ratio of two incommensurable magnitudes may always be expressed as near the true value as we please by means of a fraction, if we only make the denominator large enough.

Examples. Let us divide the unit of measure into 20 parts, and suppose that the antecedent contains more than 28 but less than 29 of these parts. Then, by supposing it to contain 28 parts, the limit of error will be one part, or $\frac{1}{20}$ of the standard unil.

In general, if we wish to express the ratio within $1 n^{\text {th }}$ of the unit, we can certainly do it by dividing the unit into n or more parts, or by taking as the denominator of the fraction a number not less than n.

Illustration by Decimal Fractions. The square root of 2 cannot be rigorously expressed as a vulgar or decimal fraction. But, if we suppose

$$
\begin{aligned}
& \sqrt{2}=1.4=\frac{14}{10} \text {, the error will be }<\frac{1}{10} \text {; } \\
& \sqrt{\overline{2}}=1.41=\frac{141}{100}, \quad " \quad \text { " }<\frac{1}{10} \text {; }
\end{aligned}
$$

Since the decimals may be continued without end, the square root of 2 can be expressed as a decimal fraction with an error less than any assignable quantity. This general fact is expressed by saying:

The limit of the error which we make by representing an incommensurable ratio as a fraction, is aero.
151. Ratio as a Quotient. From Case II and the explanations which precede it we see that when we say

$$
A: U=\frac{4}{7}
$$

we mean the same thing as if we had said,

$$
A \text { is } \frac{4}{3} \text { of } U, \text { or } A=\frac{4}{3} U
$$

If A and U are numbers, we may divide both sides of this equation by U, and obtain,

$$
\frac{A}{U}=\frac{4}{y}
$$

We therefore conclude that when A and U are numbers,
That is,

$$
A: U=\frac{A}{U}
$$

Theorem. The ratio of two numbers is equal to the quotient obtained by dividing the antecodent term by the consequent.

In the case of magnitudes, the relation of a ratio to a quotient may be shown thus:

Let u s have two magnitucies M and V, such that M is 4 times V. Then we may write the relation,

$$
M=4 V
$$

Dividing by 4 , we have

$$
\frac{M}{4}:=V
$$

Since V is not a number, we cannot, strictly speaking, multiply or divide by it. But we may take the ratio of M to V without regard to number, and thus find,

$$
M: V=4
$$

Rem. The theory of ratios the terms of which are magnitudes and not mumbers, is treated in (ieometry.

In Algebra we consider the ratios of numbers, or of magnitudes represented by numbers.

15\%. Def. If we interchange the terms of a ratio, the result is called the Inverse ratio.

That is, $U: A$ is the inverse of $A: U$.
If

$$
U: A=\frac{m}{n}
$$

then

$$
U=\frac{m}{n} A
$$

and we have, by dividing by $\frac{m}{n}$,

$$
A=\frac{n}{m} U
$$

or

$$
A: U=\frac{n}{m}
$$

Becanse $\frac{n}{m}$ is the reciprocal of $\frac{m}{n}$, we conclude:
Theorem. The inverse ratio is the reciprocal of the direct ratio.

Properties of Ratios.

153. Theorem I. If both terms of a ratio be multiplied by the same factor or divided by the same divisor, the ratio is not altered.

Proof. Ratio of B to $A=B: A=\frac{B}{A}$.
If m be the factor, then
Ratio of $m B$ to $m A=m B: m A=\frac{m B}{m A}=\frac{B}{A}$,
the same as the ratio of B to A.
154. Theorem $I I$. If both terms of a ratio be increased by the same quantity, the ratio will be increased
if it is less than 1, and diminished if it is greater than 1 ; that is, it will be brought nearer to mity.
 1 fo both numerntor and denominntor of the fraction, we slabll have the serion of fractions,

$$
\tilde{z}_{5}^{2} \frac{3}{3}
$$

each of which is grenter than the preceding. because

$$
\begin{aligned}
& \frac{1}{3}-\frac{3}{4}=\text { whence, } \quad 1>3 \text {. } \\
& 8-\frac{1}{8}={ }_{80}^{8} \text {; whence, }{ }_{8}^{5}>\frac{4}{8} \text {. } \\
& \text { etc. } \\
& \text { etc. }
\end{aligned}
$$

General Pronf. Let $a: b$ be the original ratio, and let both terms be increased by the quantity $\quad 1$, making the new ratio $a+u: b+u$. The new ratio mimes the old one will be

$$
\frac{(b-a) u}{b^{2}+b u} .
$$

If b is greater than a, this quantity will be positive, showing that the ratio is increased by adding u. If ℓ is icoss than a, the quantity will be negative, showing that the ratio is diminished by adding u.

CHAPTER 11.
 PROPORTION.

155. Def. Proportion is an equality of two or more ratios.

Since each ratio has two terms, a proportion must have at least four terms.

Def. The terms which enter into two equal ratios are called Terms of the proportion.

If $a: b$ be one of the ratios, and $p: q$ the other, the proportion will be,

$$
\begin{equation*}
a: b=p: q . \tag{1}
\end{equation*}
$$

A proportion is sometimes written,

$$
a: b:: p: q,
$$

which is read, " $A \mathrm{~s} a$ is to b so is p to q." The first form is to be preferred, because no other sign than that of equality is necessary, but the equation may be read, " $\Lambda s a$ is to b so is p to q," whenever that expression is the clearer.

Def. The first and fourth terms of a proportion are called the Extreme:, the second and third are called the Means.

Theorems of Proportion.

156. Theorem I. In a proportion the product of the extremes is equal to the product of the means.

Proof. Let us wite the ratios in the prcportion (1) in tho form of fractions. It will give the equation,

$$
\begin{equation*}
\frac{a}{b}=\frac{p}{q} . \tag{2}
\end{equation*}
$$

Multiplying both sides of this equation by $b q$, we shall have

$$
\begin{equation*}
a r=b p \tag{3}
\end{equation*}
$$

Cor. If there are two unknown terms in a proportion, they may ke expessed by a single unknown symbol.

Example. If it be required that one quantity shall be to another as p to q, we may call the first $p x$ and the second $q x$, because

$$
p x: q x=p: q \text { (identically) }
$$

15\%. Theorem II. If the means in a proportion be interchanged, the proportion will still be true.

Praof. Divide the equation (3) by $p q$. We shall then have, instead of the proportion (1),
or

$$
\begin{aligned}
\frac{a}{p} & =\frac{b}{q} \\
a: p & =b: q
\end{aligned}
$$

Def. The proportion in which the means are interchanged is called the Alternate of the original proportion.

The following examples of alternate proportions should be studied, and the truth of the equations proved by calculation :

$$
\begin{array}{lcl}
1: 2=4: 8 ; & \text { alternate, } & 1: 4=2: 8 \\
2: 3=6: 9 ; & " & 2: 6=3: 9 \\
5: 2=25: 10 ; & " & 5: 25=2: 10
\end{array}
$$

158. Theorem III. If, in a proportion, we increase or diminish each antecedent by its consequent, or each consequent by its own antecedent, the proportion will still be true.

Example. In the proportion,

$$
5: 2=25: 10
$$

the antecedents are 5 and 25 , the consequents 2 and 10 (§ 148). Increasing each antecedent by its own consequent, the proportion will be

$$
5+2: 2=25+10: 10, \quad \text { or } \quad 7: 2=35: 10 .
$$

Diminishing each antecedent by its consequent, the proportion will become,

$$
5-2: 2=25-10: 10, \quad \text { or } \quad 3: 2=15: 10 .
$$

Increasing each consequent by its antecedent, the proportion will be

$$
5: 2+5=25: 10+25, \quad \text { or } \quad 5: 7=25: 35
$$

These equations are all to be proved numerically.
General Proof. Let us put the proportion in the form

$$
\begin{equation*}
\frac{a}{b}=\frac{p}{q} \tag{4}
\end{equation*}
$$

If we add 1 to each side of this equation and reduce each side, it will give
that is,

$$
\begin{align*}
\frac{a+b}{b} & =\frac{p+q}{q} \\
a+b: b & =p+q: q \tag{5}
\end{align*}
$$

In the same way, by subtracting 1 from each side, it will be

$$
\begin{equation*}
a-b: b=p-q: q \tag{6}
\end{equation*}
$$

If we invert the fractions in equation (4), the latter will become

$$
\frac{b}{a}=\frac{q}{p}
$$

By adding or subtracting 1 from each side of this equation, and then again inverting the terms of the reduced fractions, we shall find,

$$
\begin{aligned}
& a: b+a=p: q+p \\
& a: b-a=p: q-p
\end{aligned}
$$

The form (5) was formerly designated as formed "by composition," and (6) as formed "by division." But these terms are now useless, because all the above forms are only special cases of a more general one to be now explained.

1:9. Theorem $I V$. If four quantities form the proportion

$$
\begin{equation*}
a: b=c: d \tag{a}
\end{equation*}
$$

and if m, n, p, and q be any multipliers whatever, we shall have

$$
m a+n b: p a+q b=m c+n d: p c+q d .
$$

Proof. The proportion (a) gives the equation,

$$
\frac{a}{b}=\frac{c}{a} .
$$

Multiplying this equation by $\frac{p}{q}$ and adding 1 to each nember,

$$
\frac{p d t}{q b}+1=\frac{p c}{q d}+1 .
$$

Reducing each member to a fraction and inverting the terms,

$$
\frac{q^{b}}{p^{a}+q^{b}}=\frac{q^{d}}{p c+q^{d}} .
$$

Dividing both members by q,

$$
\begin{equation*}
\frac{b}{p a+q b}=\frac{d}{p c+q d} \tag{7}
\end{equation*}
$$

The original proportion (a) also gives, by iuversion,
or

$$
\begin{aligned}
a: b & =p: q \\
\frac{a}{b} & =\frac{p}{q}
\end{aligned}
$$

then, by multiplying each member by itself repeatedly, we shall have

$$
\begin{aligned}
& \frac{a^{2}}{b^{2}}=\frac{p^{2}}{q^{2}} \\
& \frac{a^{3}}{b^{3}}=\frac{p^{3}}{q^{3}} \\
& \text { ctc. etc. }
\end{aligned}
$$

Hence, in gencral,

$$
a^{n}: b^{n}=p^{n}: q^{n}
$$

Cor. If $\quad a: b=p \cdot q$,
then and

$$
\iota^{n}: a^{n} \pm b^{n}=p^{n}: p^{n} \pm q^{n} ;
$$

$$
\iota^{n} \pm b^{n}: l^{n}=\eta^{n} \pm q^{n}: q^{n}
$$

Theorem VI. When three terms of a proportion are given, the fourth can always be found from the theorem that the product of the means is equal to that of the extremes.

We have shown that whenever
then

$$
\begin{aligned}
a: b & =p: q \\
a q & =b p
\end{aligned}
$$

Considering the different terms in suecession as unknown quantities, we find,

$$
\begin{aligned}
& a=\frac{b p}{q} \\
& b=\frac{a q}{p} \\
& p=\frac{a q}{b} \\
& q=\frac{b p}{a}
\end{aligned}
$$

Cor.1. If, in the general equation of the firs degree

$$
a x+b y=c
$$

the term e vanislies, the equation determines the ratio of the unknown quantities.

Proof. If $\quad a x+b y=0$,
then

$$
a x=-b y
$$

and

$$
\frac{x}{y}=-\frac{b}{a}
$$

or

$$
x: y=-b: a
$$

Cor. 2. Conversely, if the ratio of two unknown quantities is given, the relation between them may be expressed by an equation of the first degree.

The Mean Proportional.

161. Def. When the middle terms of a proportion are equal, either of them is called the Mean Proportional between the extremes.

The fact that b is the mean proportional between a and c is expressed in the form,

$$
a: b=b: c
$$

Theorem I then gives, $b^{2}=a c$.
Extracting the square root of both members, we have

$$
b=\sqrt{a c}
$$

Hence,
Theorem VII. The mean proportional of two quantities is equal to the square root of their product.

Multiple Proportions.

162. We may have any number of ratios equal to each other, as

$$
\begin{align*}
& a: b=c: d=e: f, \text { ctc. } \\
& 6: 4=9: 6=3: 2=21: 14 . \tag{a}
\end{align*}
$$

Such proportions are sometimes written in the form

$$
\begin{equation*}
6: 9: 3: 21=4: 6: 2: 14 \tag{b}
\end{equation*}
$$

In the form (b) the antecedents are all written on one side of the equation, and the consequents on the other. Any two numbers on one side then have the same ratio as the corresponding two on the other, and the proportions expressed by this equality of ratios are the alternates of the original proportions (a). For instance, in the proportion (b) we have,

$$
\begin{aligned}
& 6: 9=4: 6 \text {, which is the alternate of } 6: 4=9: 6 \text {. } \\
& 6: 3=4: 2 \text {, } " \quad \text { " } 6 \quad 6: 4=3: 2 \text {. } \\
& 6: 21=4: 14 \text {, } " \quad \text { " } \quad \text {, } 6: 4=21: 14 \text {. } \\
& 9: 21=6: 14 \text {, } 6 \quad \text { ، } \quad \text {, } 9: 6=21: 14 \text {. }
\end{aligned}
$$

163. A multiple proportion may also be expressed by a number of equations equal to that of the ratios. Since

$$
a: b=c: d=e: f \text {, etc., }
$$

let us call r the common value of these ratios, so that

$$
\frac{a}{b}=r, \quad \frac{c}{d}=r, \quad \text { etc. }
$$

Then

$$
\begin{align*}
& a=r b \\
& c=r l \tag{c}\\
& c=r f
\end{align*}
$$

will express the same relations between the quantities a, b, c, $c l, c, f$, cte., that is expressed by

$$
\begin{equation*}
a: b=c: d=e: f, \text { etc., } \tag{a}
\end{equation*}
$$

or

$$
\begin{equation*}
\ell: c: e: \text { etc. }=\measuredangle: d: f: \text { cte. } \tag{b}
\end{equation*}
$$

It will be seen that where r enters in the form (c) there is one more equation than in the first form (a). [In this form each $=$ represents an equation.] This is because the additional quantity r is introduced, by eliminating which we diminish the number of equations by one, as in eliminating an unknown quantity.
164. Theorem. In a multiple proportion, the sum of any number of the antecedents is to the sum of the corresponding consequents as any one antecedent is to its consequent.

Ex. We have $\frac{2}{5}=\frac{6}{15}=\frac{10}{25}=\frac{19}{39}$. Then

$$
\frac{2+6+10+12}{5+15+25+30}=\frac{30}{35},
$$

which has the same value as the other four functions.
General Proof. Let A, B, C, etc., be the antecedents, and a, b, c, etc., the corresponding consequents, so that

$$
\begin{equation*}
A: a=B: b=C^{\prime}: c, \text { ete. } \tag{1}
\end{equation*}
$$

Let us call r the common ratio $A: a, B: \ell$, ete., so that

$$
\begin{array}{r}
A=r a \\
B=r b \\
C=r c \\
\text { ctc. }
\end{array}
$$

Adding these equations, we have
or

$$
\begin{aligned}
& A+B+C+\text { etc. }=r(a+b+c+\text { etc. }) \\
& \frac{A+B+C+\text { etc. }}{u+b+c+\text { etc. }}=r
\end{aligned}
$$

that is, the ratio $A+B+C+c t c$: $a+b+c+$ ctc. is equal to r, the common value of the ratios $A: a, B: b$, ete.

PROBLEMS.

1. Λ map of a country is made on a scale of 5 miles to 3 inches.
(1.) What will be the length of $8,12,17,20,33$ miles on the man:
(\because) How many miles will be represented $1, y$ ($6,8,16,80$, zin inches on the mial!:

Rom. 1. If r, y, z, n, v be the required spaces on the map, we shall luave

$$
5: 3=8: x=12: y \text {, etc. }
$$

If a, b, c, etc., be the required number of miles, we shall have

$$
3: 5=6: a=8: b=16: c \text {, etc. }
$$

Pam. 2. When there are several ratios compared, as in this problem, it will be more convenient to take the inverse of the common ratio, and multighe the antecedent of each following ratio by it to obtain the consefruest. In the first of the above proportions the inverse ratio is $\frac{3}{3}$, and

$$
x=\frac{3}{5} \text { of } 8, \quad y=\frac{3}{3} \text { of } 12, \text { etc. }
$$

In the second, $a=\frac{5}{3}$ of $6, b=\frac{5}{3}$ of 8 , etc.
2 . To divide a given quantity A into three parts which sfaall be proportional to the given quantities a, b, c, that is, intow the parts x, y, and z, such that
or

$$
\begin{aligned}
& x: a=y: b=z: c \\
& x: y: z=a: b: c .
\end{aligned}
$$

Soletion. By Theorem IV,

$$
\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{A}{a+b+c} .
$$

Therefore,

$$
x=\frac{a A}{a+b+c}, \quad y=\frac{b A}{a+b+c}, \quad z=\frac{c A}{a+b+c}
$$

3. Divide 102 into three parts which shall be proportional to the numbers e, 4,11 .
4. Divide 1000 into five parts which shall be proportional to the numbers $1,2,3,4,5$.
5. Find two fractions whose ratio shall be that of $a: b$, and Whose sum shall be 1 .
6. What two numbers are those whose ratio is that of $7: 3$ and whose difference is 24 .
7. What two numbers are those whose ratio is $m: n$, and Whose difference is unity?
s. Find x and y from the conditions,

$$
\begin{aligned}
x: y & =a: b \\
a x-b y & =a+b .
\end{aligned}
$$

9. Show that if

$$
\begin{aligned}
& a: b=A: B, \\
& c: d=C: D,
\end{aligned}
$$

we must also have $a c: b l l=A C: B D$.
10. Itaving given $x=a y$, find the value of $\frac{x+2 y}{x-2 y}$.
11. Having given
find the value of

$$
\begin{aligned}
& \frac{x+2 y}{x-2 y}=5 \\
& \frac{x+y}{x-y}
\end{aligned}
$$

12. If

$$
a: b=p: q
$$

prove

$$
a^{2}+b^{2}: \frac{a^{3}}{a+b}=p^{2}+q^{2}: \frac{p^{3}}{p+q}
$$

and

$$
a^{n}+b^{n}: \frac{a^{n+1}}{a+b}=p^{n}+q^{n}: \frac{p^{n+1}}{p+q} .
$$

13. If
show that

$$
\begin{aligned}
\frac{a+b+c+d}{a+b-c-l} & =\frac{a-b+c-l}{a-b-c+l} \\
a: b & =c: d .
\end{aligned}
$$

14. A year's profits were divided among three partuers, A, B , and C , proportional to the numbers 2, 3, and \% If C should pay $3 \$ 1256$, their shares would be equal. What was the amount divided ?
15. In a first year's partnership between Λ and B, Λ had 2 shares and B had 5 . In the second year, A had 3 and 13 had 4. In the second year, Λ 's profits were $\$ 3200$ greater and B's were $\$ 1700$ greater than they were the first. What was each year's profits?
16. In a poultry yard there are 7 chickens to every 2 ducks, and 3 ducks to every 2 geese. How many geese were there to , every 42 chickens?
17. A drover started with a herd containing 4 horses to' every 9 cattle. He sold 148 horses and 108 cattle, and then had 1 horse to every 3 cattle. How many horses and cattle had he at first?
18. If a bowl of punch contains a parts of water and b parts of wine, what is the ratio of the wine to the whole punch? What is the ratio of the water? What are the sums of these ratios?
19. One ingot consists of equal parts of gold and silver, while another has two parts of gold to one of silver. If I combine equal weights from these ingots, what proportion of the compound will be gold and what proportion silver?
20. What will be the proportions if, in the preceding problem, I combine one ounce from the first ingot with three from the second?
21. One cask contains a gallons of water and b gallons of alcohol, while another contains m gallons of water and n of alcohol. If I draw one gallon from each cask and mix them, what will be the quantities of alcohol and water?
22. What will be the ratio of the lignors in the last case, if I mix two parts from the first cask with one from the second?
23. What will it be if I mix p parts from the first with q parts from the second?
24. A goldsmith has two mgots, cach consisting of an alloy of gold and silver. If he combmes two parts from the first ingot with one from the second, he will have equal parts of gold and silver. If he combines one part from the first with two from the second, he will have 3 parts of gold to 5 of silver. What is the composition of each ingot?

Suggestion. Call r the ratio of the weight of gold in the first ingot to the whole weight of the ingot; then $1-r$ will be the ratio of the siiver in the first to the whole weight of the ingot. See the following question.

Note. Problems i8-2.if form a graduated series, introductory to the processes of Prollem 24 .
25. Point out the mistake which wonld be made if the solution of the preceding problem were commenced in the following way :

If the first ingot contains p parts of gold to q parts of silver, and the second contains r parts of gold to s of silver, then

Two parts from the first ingot will have $2 p$ of gold and $2 q$ of silver.
One part from the second ingot will have r of gold and s of silver.
Therefore, the combination will contain $2 p+r$ parts of gold, and $2 q+s$ parts of silver.

Show also that if we subject p, q, r, and s to the condition

$$
p+q=r+s
$$ the process would be correct.

26. Show that if the second term of a proportion he a mean proportional between the third and fourth, the third will be a mean proportional between the first and second.

$$
\begin{gathered}
\text { BOOK V. } \\
\text { OF POWERS AND ROOTS. }
\end{gathered}
$$

CHAPTER I.

INVOLUTION.

Case I. Involution of Products and Quotients.

165. Def. The result of taking a quantity, A, n times as a factor is called the $u^{\text {th }}$ power of A, and as already known may be written either
$A A A$, etc., n times, or A^{n}.
Def. The number n is called the Index of the power.

Def. Involution is the operation of finding the powers of algebraic expressions.

The operation of involution may always be expressed by the application of the proper exponent, the expression to be involved being inclosed in parentheses.

Eximple. The $n^{\text {th }}$ power of $a+b$ is $(a+b)^{n}$.
The $n^{\text {th }}$ power of $a b c$ is $(a b c)^{n}$.
166. Involution of Prolucts. The $n^{\text {th }}$ power of the product of several factors a, b, c, may be expressed withont exponents as follows:
abc abc abc, ete.,
each factor being repeated n times.

Here there will be altogether $n a s, n b s$, and $n c$, so

Hence,

$$
(a b c)^{n}=u^{n} b^{n} c^{n}
$$

That is,
Theorem. The power of a product is equal to the product of the powers of the several factors.

16\%. Involution of Quotients. Applying the same methods to fractions, we find that the $n^{\text {th }}$ power of $\frac{x}{y}$ is $\frac{x^{n}}{y^{n}}$. For

$$
\begin{aligned}
\binom{x}{y}^{n}= & \frac{x}{y} \frac{x}{y} \frac{x}{y}, \text { ete., } n \text { times } ; \\
= & \frac{x: x x, \text { etc., } n \text { times }}{y y y, \text { etc., } n \text { times }}(\S 109) ; \\
= & \frac{x^{n}}{y^{n}} . \\
& \text { EXERCISES. }
\end{aligned}
$$

Express the cubes of

1. $a b c$.
2. $\frac{a b}{c}$.
3. $a b c^{-1}$.
4. $\frac{m n}{p q}$.
5. $\frac{a+b}{a-b}$.
6. $\frac{m n(a+b)}{p q(a-b)}$.

Express the $n^{\text {th }}$ powers of the same quantities, the quantities between parentheses being treated as single symbols.

Case II. Involution of Powers.

168. Problem. It is required to raise the quantity a^{m} to the $n^{t h}$ power.

Solution. The $n^{\text {th }}$ power of a^{m} is, by definition, $a^{m} \times a^{m} \times a^{m}$, etc., n times.
By $\S 66$, the exponents of a are all to be added, and as the exponent m is repeated u times, the sum

$$
m+m+m+\text { etc., } n \text { times }
$$

is $m m$. Hence the result is $a^{m n}$, or, in the language of $\Lambda \lg$. 1 ria,

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

Hence,

Theorem. If any power of a quantity is itself to be raised to a power, the indices of the powers must be multiplied together.

> EX \mathcal{E} MPLES.
> $\left(a^{2}\right)^{3}=a^{2} \cdot a^{2} l^{2}=a^{6}$.
> $\left(3 a b^{2} c^{3}\right)^{4}=81 a^{1} b^{8} c^{12}$.

Note. It will be seen that this theorem coincides with that of Case I when any of the factors have the exponent unity understood.

EXERCISES.

Write the cubes of the following quantities:
I. $3 x y^{2}$.
2. $\frac{4 \ell}{b}$.
3. u^{n}.
4. $b x^{4}$.
5. $\quad 2 l^{2} m^{n}$.
б. $\frac{\sigma a^{m}}{b}$.

Write the $n^{\text {th }}$ powers of
7. a.
8. $t^{2} b$.
9. $\quad a^{8} b^{2} c$.
10. $\|^{m} l^{n}$.
II. $\quad 2 p^{m} q^{2}$.
12. $(a+b)(c+d)$.
13. $(x+y)(x-y)$.
14. $\quad 7(a+b-c)(a-b)$. Ans. $r^{n}(a+b-c)^{n}(a-b)^{n} n_{0}$
15. $\frac{a}{b}$.
16. $\frac{a^{2}}{b^{2}}$
17. $\frac{x+y}{x-y}$
18. $\frac{m^{2} a b^{3}}{x y y^{2}}$.
Ans. $\frac{m^{2 n} l^{n} l^{3 n}}{x^{n} y^{2 n}}$.
19. $\frac{a b(c-d)^{2}}{(a-b) c^{3}}$.

Reduce:
20. $\left(2 a b^{2} n^{3}\right)^{3}$.
21. $\left(-3 m n x^{2}\right)^{2}$.
22. $2 a\left(-3 b^{2} m n^{3}\right)^{3}$.
23. $\left(7 p q^{2} r^{3}\right)^{4}$.
24. $\left(a b^{n}\right)^{i}$.
25. $\quad\left(2 a^{2} \cdot x^{3}\right)^{n} . \quad$ 26. $\quad\left(m^{n}\right)^{n}$.

Note 1. If the student find any of these exponential expressions difficult of expression, he may first express them by writing each quantity a number of times indicated by its exponent.

Note 2. The student is expected to treat the quantities in parentheses as single symbols.

Rem. The preceding theorem finds a practical application when it is necessary to raise a small mumber to a high power. If, for example, we have to raise a to the 30 th power, we shonld, without this theorem, have to multiply by i no less than ${ }^{2}$! times. But we maty alse proceed thas:

$$
\begin{aligned}
& \ddot{n}^{2}=4, \\
& {\underset{\sim}{4}}^{4}={ }_{2}^{2} \cdot \overbrace{}^{2}=4 \cdot 4=16, \\
& \stackrel{2}{2}^{5}=\stackrel{94}{24}=16 \cdot 16=956 \text {, } \\
& \overbrace{}^{16}=\stackrel{2}{9}^{9} \cdot \ddot{2}^{3}=259^{2}=65536, \\
& 2^{21}=2^{16} \cdot 2^{9}=2^{16} \cdot 250=16 \times \% \% 10 \text {, } \\
& 2^{30}=2_{24}^{26}=2^{24} \cdot G 4=10 \% 3418 \% 4 .
\end{aligned}
$$

Case of Negative Exponents.

169. The preceding theorem may he applied to negative exponents. By the definition of such exponents,

$$
\begin{equation*}
\frac{a^{p}}{b^{q}}=a^{p} b^{-q} \tag{1}
\end{equation*}
$$

Raising the first member to the $n^{t h}$ power, we have,

$$
\left(\frac{a p}{b^{q}}\right)^{n}=\frac{a^{n p}}{b^{n q}}=a^{n p} b^{-n q}
$$

This is the same result we should get by applying the theorem to the second member of (1), and proves the proposi. tion.

EXERCISES.

Express the 6th powers of
I. $a b^{-1}$.
2. $a^{2} b^{-2}$.
3. $(a m)^{-3}$.
4. $a^{-m} b^{-n}$.
5. $(a+b)^{3}(a-b)^{-3}$.
6. $(x+y)^{n}(x+z)^{-n}$.
7. $\frac{a^{-p}}{b^{-q}}$.
8. $\frac{(a+b)^{-m}}{(a-b)^{-n}}$.

Reduce:
9. $\quad\left[(a+b)^{-1}(a-b)\right]^{n} . \quad$ 10. $\quad\left(a b b^{-1} c^{-2}\right)^{5}$.
11. $\quad\left(a b^{-1} c^{-2}\right)^{-5}$.
12. $\left(m^{i} n^{-j}\right)^{-i}$.
13. $\left(x^{i} y^{-i}\right)^{-i}$.
14. $\left(c^{0} b^{n} c^{-n}\right)^{n}$.

After forming the expressions, write them all with positive exponents, in the form of fractions.

Algebraic Signs of Powers.

1\%0. Since the continued product of any number of positive factors is positive, all the powers of a positive quantity are positive.

By $\S 26$, the product of an odd number of negative factors is negative, and the product of an even number is positive. Hence,

Theorem. The even powers of negative quantities are positive, and the odd powers are negative.

$$
\begin{gathered}
\text { EXAMPLES. } \\
(-a)^{2}=a^{2} ; \quad(-a)^{3}=-\left(a^{3} ; \quad(-a)^{4}=a^{4}, \quad\right. \text { etc. }
\end{gathered}
$$

EXERCISES.
Find the value of

I. $(-\Omega)^{2}$.	2. $(-3)^{3}$.	3. 4^{4}.
4. $(-5)^{2}$.	5. $(-5)^{3}$.	6. $(-l)^{\text {i }}$.
7. $(-a-b)^{3}$.	8. $(-m m)^{7}$.	9. $\left(-p^{\prime \prime}\right)^{6}$.
10. $(-ル)^{2 n}$.	11. $(-3)^{2 n+1}$.	12. $(-a-b)^{2 n-1}$.
. $(-1)^{2 n}$.	14. $(-1)^{2 n+1}$.	15. $(-1)^{2 n-1}$.

Case III. Involution of Binomials-the Binomial Theorem.

1\%1. It is required to find the $n^{\text {th }}$ power of a binomial.

1. Let $a+b$ be the binomial; its $n^{\text {th }}$ power may be written

$$
(a+b)^{n}
$$

Let us now transform this expression by dividing it by a^{n}, and then multiplying it by ϵ^{n}, which will reduce it to its original value. We have (§ 167),

$$
\frac{(a+b)^{n}}{a^{n}}=\left(\frac{a+b}{a}\right)^{n}=\left(1+\frac{b}{a}\right)^{n} .
$$

Multiplying this last expression by a^{n}, by writing this power outside the parentheses, it becomes

$$
\begin{equation*}
\iota^{n}\left(1+\frac{l}{u}\right)^{n} \tag{1}
\end{equation*}
$$

Which is erfual to $(a+b)^{n}$. Next let us put for shortness x to represent $\frac{b}{a}$, when the expression will become

$$
\begin{equation*}
(a+b)^{n}=a^{n}(1+x)^{n} \tag{?}
\end{equation*}
$$

2. Now let us form the successive powers of $(1+x)^{n}$. We multiply according to the method of §8:

Multiplier,

$$
\begin{aligned}
(1+x)^{1}= & 1+x \\
& \frac{1+x}{1+x} \\
(1+x)^{2}= & \frac{+x+x^{2}}{1+2 x+x^{2}} \\
& \frac{1+x}{1+2 x+x^{2}} \\
(1+x)^{3}= & \frac{x+2 x^{2}+x^{3}}{1+3 x+3 x^{2}+x^{3}} \\
& \frac{1+x}{1+3 x+3 x}+\frac{x}{x^{3}} \\
(1+x)^{4}= & \frac{x+3 x^{2}+3 x^{3}+x^{4}}{1+4 x+6 x^{2}+4 x^{3}+x^{4}}
\end{aligned}
$$

It will be seen that whenerer we multiply one of these powers by $1+x$, the cocflicients of x, x^{2}, etc., which we add to form the next higher power are the same as those of the gisen power, only those in the lower line go one place toward the right. 'Ihns, to form $(1+x)^{1}$. we took the cocflicients of $(1+x)^{3}$, and wrote and added them thus:

$$
\begin{array}{lllll}
\text { Cocf. of }(1+x)^{3}, & 1, & 3, & 3, & 1 . \\
1, & 3, & 3, & 1 . \\
\text { Cuef. of }(1+x)^{4}, & \frac{1,}{4,} & 6, & 4, & 1 .
\end{array}
$$

It is not nefessary to write ther numbers under each other to add them in this way; we have ouly to add mach number to the one on the left in the same line to form the corresponding momber of the line below. Thus we can form the conellicients of the sucerssive powers of r nt sight as follows: 'The first figure in earh line is 1 ; the next is the coedicient of x; the third the coethicient of x^{2}, ete.

First power, Second "	$\begin{aligned} & n=1, \\ & n=2, \end{aligned}$	coefficients,	$\begin{aligned} & 1,1 \\ & 1,2, \end{aligned}$	
Third	$n=3$,	"	1, 3,	3, 1.
Fourth "	$n=4$,	"	1, 4,	6, 4,
Fifth	$n=5$,	"	1, 5,	10, 10,
Sixth ete.	$\begin{gathered} n=6 \\ \text { etc. } \end{gathered}$	"	1, 6 ,	$\begin{gathered} 15,20 \\ \text { etc. } \end{gathered}$

It is evident that the first quantity is always 1 , and that the next cocfficient in each line, or the coefficient of x, is n.

The third is not evident, but is really equal to

$$
\begin{equation*}
\frac{n(n-1)}{2}, \tag{b}
\end{equation*}
$$

as will be readily found by trial; becanse, beginning with $n=3$,

$$
3=\frac{3 \cdot 2}{2}, \quad 6=\frac{4 \cdot 3}{2}, \quad 10=\frac{5 \cdot 4}{2}, \quad \text { etc. }
$$

The fourth number on each line is

$$
\frac{n(n-1)(n-2)}{2 \cdot 3}
$$

Thus, begimning as before with the third line, where $n=3$,

$$
\begin{equation*}
1=\frac{3 \cdot 2 \cdot 1}{2 \cdot 3}, \quad 4=\frac{4 \cdot 3 \cdot 2}{2 \cdot 3}, \quad 10=\frac{5 \cdot 4 \cdot 3}{2 \cdot 3}, \text { etc. } \tag{c}
\end{equation*}
$$

3. These several quantities are called Binomial Coefficients. In writing them, we may multiply all the denominators by the faetor 1 withont changing them, so that there will be as many factors in the denominator as in the numerator. The fourth column of coefficients, or (c), will then be written,

$$
\frac{3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3}, \quad \frac{4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3}, \quad \frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3}, \quad \text { etc. }
$$

4. We can find all the binomial coeflicients of any power when we know the ralue of n.

The numerator and denominator of the second coefficient will contain wwo factors, as in (b) ; of the third, three factors, as in (c); and of the $s^{\text {th }}, s$ factors, whatever s may be.

In any coefficient, the first factor in the numerator is n, the second $n-1$, etc., each factor being less by unity than the
preceding one, until we come to the $s^{\text {th }}$ or last, which will be $n-s+1$.

Such a product is written,

$$
n(n-1)(n-2) \ldots(n-s+1)
$$

1.

each factor being greater by 1 than the preceding one, and the dots standing for any number of omitted factors, according to the value of s. Thas, the $s^{\text {th }}$ coefficient in the $n^{\text {th }}$ line will be

$$
\begin{equation*}
\frac{n(n-1)(n-2) \ldots(n-s+1)}{1 \cdot 2 \cdot 3 \ldots s} \tag{d}
\end{equation*}
$$

If s is greater than $\frac{1}{2} n$, the last factors will cancel some of the preceding ones, so that as s increases from $\frac{1}{2} n$ to n, the values of the preceding coefficients will be repeated in the reverse order. Thus, suppose $n=6$. Then, by cancelling common factors,

$$
\begin{aligned}
\frac{6 \cdot 5 \cdot 4 \cdot 3}{1 \cdot \cdot \cdot 3 \cdot 4} & =\frac{6 \cdot 5}{1 \cdot 2}=15 . \\
\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} & =\frac{6}{1}=6 . \\
\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot \cdot \cdot 3 \cdot 4 \cdot 5 \cdot 6} & =1
\end{aligned}
$$

If we should add one more factor to the numerator, it would be 0 , and the whole coefficient would be 0 .

The conchusion we have reached is embodied in the following equation, which should be perfectly memorized:

$$
\begin{aligned}
(1+x)^{n}=1+n x & +\frac{n(n-1)}{1 \cdot 2} x^{2}+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} x^{3} \\
& +\frac{n(n-1)}{1 \cdot 2 \cdot 3 \cdot 4} \frac{(n-2)(n-3)}{4}+\ldots+x^{n}
\end{aligned}
$$

EXERCISES.

r. Compute from the formula ($l($) all the binomial coefficients for $n=6$, and from them express the development of $(1+x)^{6}$.
2. Do the sume thing for $n=8$, and for $n=10$.

1\%9. To find the development of $(a \because b)^{n}$, we replace $i x$ by $\frac{b}{a}$, and then multiply each term by a^{n}.
[See equations (1) and (2).] We thins have

$$
(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(u-1)}{1 \cdot 2}-a^{n-2} b^{2}+\text { etc. to } b^{n}
$$

'ihe terms of the development are subject to the following rules:
I. The c.xponents of \boldsymbol{b}, or the second term of the binomial, are 0, 1, d, etc., to $\boldsymbol{\mu}$.

Because b^{0} is simply $1, a^{n}$ is the same as $a^{n} b^{0}$.
II. The sum of the exponents of 1 ant \mathbf{b} is \boldsymbol{n} in cuch term. Hence the evponents of a are

$$
n, \quad n-1, \quad n-2, \quad \text { etc., to } 0 .
$$

III. The corfficient of the first term is unit!!, and of the secomi u, the imale. of the power. Such, following cocfficient may be found from the next precerling one b! multiplying by the successive fuctors,

$$
\frac{n-1}{2}, \quad \frac{n-2}{3}, \quad \frac{n-3}{4}, \quad \text { etc. }
$$

IV. If b or \boldsymbol{n} is uegatire, the sign of its odd pouers will be changed, but that of its even poreves will remain the same.
(Compare S 1\%0.) Hence.

$$
(a-b)^{n}=a^{n}-n c^{n-1} b+\frac{n(n-1)}{1 \cdot 2} u^{n-2} b^{2}-\text { ctc. }
$$

the terms being altemately positive and negative.

EXERCISES-Continued.

3. Compute all the terms of $(a+b)^{9}$, using the binomial coefficients.
4. What is the coeflicient of b^{3} in the development of $(a+b)^{10}$.
5. What are the first four terms in the development of $\left(\because(1 m+3 n)^{3}\right.$.
6. What are the first three terms in the development of $\left(1+\frac{x}{y}\right)^{18}$? What are the last two terms?
7. What are the first three and the last three terms of $(a-x)^{13}$?
8. What is the development $\mathrm{f}\left(a+\frac{1}{a}\right)^{6}$.
9. What are the first four terms in the devclopment of the following binomials:

$$
\begin{array}{lll}
\left(1+x^{2}\right)^{n} ; & \left(1+2 \iota^{2}\right)^{n} ; & \left(1-2 x^{2}\right)^{n} ; \\
\left(\frac{1}{a x}+u\right)^{8} ; & \left(\gamma \frac{y^{2}}{x^{2}}-8 \frac{x^{2}}{!y^{2}}\right)^{5} ; & \left(3 a m^{\frac{1}{2}}-5 b n^{\frac{1}{2}}\right)^{10} ?
\end{array}
$$

ro. What are the sum and difference of the two developments, $(1+x)^{7}$ and $(1-x)^{7}$?

Case IV. Square of a Pol!momial.

173. 174. Square of any Polynomial. Let

$$
a+b+c+d+\text { etc. }
$$

be any polynomial. We may form its square thus:

$$
\begin{aligned}
& a+b+e+a+\text { ete } . \\
& a+l+e+d+\text { etc } . \\
& u^{2}+u{ }^{2}+u c+u l+\text { etc. } \\
& a b+b^{2}+b e+b u l+\text { ctc } . \\
& a c+b c+c^{2}+c d+\text { ctc. } \\
& a l l+b l+c l+d^{2}+c t c . \\
& a^{2}+k^{2}+c^{2}+d^{2}+\text { etc. } \\
& +\therefore a b+\therefore u c+\therefore u l+\text { cte } . \\
& +2 b c+2 b d+e t c+2 c d+\text { etc } .
\end{aligned}
$$

We thus reach the following conclusion:
Theorem. The square of a polynomial is equal to the sum of the squares of all its terms plus twice the product of every two terms.
2. S'quare of an E'utire F'unction. Sometimes we wish to arrange the polynomial and its square as an entire function of some (fuantity, for example, of x.

Let us form the square of $a+b x+c x^{2}+d x^{3}+$ etc.

$$
\begin{aligned}
& a+b x+c x^{2}+c l x^{3}+\text { etc } . \\
& a+b x+c x^{2}+d x^{3}+\text { ctc. } \\
& a^{2}+a b x+a c x^{2}+a d x^{3}+\text { etc. } \\
& a b x+b \cdot x^{2}+b c x^{3}+b d d . d+\text { etc } . \\
& a c x^{2}+b c x^{3}+e^{2} x^{4}+\text { etc. } \\
& \frac{a u l x^{3}+b l x^{2}+c \mathrm{ctc} .}{a^{2}+2 a b \cdot x+\left(2\left(c c+b^{2}\right) x^{2}+(3 u d+2 b c) x^{3}+\mathrm{etc} .\right.}
\end{aligned}
$$

We see that:
The coefficient of x^{2} is $a c+b b+c a$.

$$
\begin{aligned}
& \text { " " " } x^{3} \text { is } \quad a d+b c+c b+c l a \text {. } \\
& \text { " } \quad \text {. } \quad x^{4} \text { is } a c+b l+c e+a b+e a . \\
& \text { cte. } \\
& \text { etc. }
\end{aligned}
$$

The law of the products $a \ell, b_{i} 7$, ce, ete., is that the first factor of each product is composel successively of all the coefficients in regnlar order up to that of the power of x to which the coeflicient belongs, while the second factor is eomposed successively of the same codflicients in reverse order.

EXERCISES.

Form the stuares of

1. $1+2 x+3 x^{2} . \quad$ 2. $1+2 x+3 x^{2}+4 x^{3}$.
2. $1+2 x+3 x^{2}+4 x^{3}+5 x^{5}$.
3. $1+2 x+3 x^{2}+4 x^{3}+5 x^{5}+6 x^{6}$.
4. $1-2 x+3 x^{2}-4 x^{3}$.
5. $a-b+c-a$.
6. $3 a+2 b-c+l$.
7. $\quad a+\frac{1}{a}-b-\frac{1}{b}$.
8. Def. The $\boldsymbol{u}^{\text {th }}$ Root of a quantity q is such a number as, being raised to the $n^{\text {lh }}$ power, will produce q. ${ }^{\text {a }}$

When $n=2$, the root is called the Square Root.
When $n=3$, the root is called the Cube Root.
Examples. 3 is the 4 th root of 81 , because

$$
3 \cdot 3 \cdot 3 \cdot 3=3^{4}=81
$$

As the student alrealy knows, we use the notation,

$$
n^{\text {th }} \text { root of } q=\sqrt[n]{ } q \text {. }
$$

There is another way of expressing roots which we shall now describe.
175. Division of Exponents. Let us extract the square root of a^{6}. We must find such a quantity as, being multiplied by itself, will produce a^{6}. It is evident that the required quantity is a^{3}, because, by the rule for multiplication ($8(66,166$),

$$
u^{3} \times u^{3}=u^{6}
$$

The square root of ϵ^{n} will be $a^{\frac{n}{2}}$, because

$$
a^{\frac{n}{2}} \times u^{\frac{n}{2}}=a^{\frac{n}{2}+\frac{n}{2}}=u^{n} .
$$

In the sume way, the cube root of l^{n} is $a^{\frac{n}{3}}$, beeanse

$$
a^{\frac{n}{3}} \times a^{\frac{n}{3}} \times a^{\frac{n}{3}}=a^{n} .
$$

The following theorem will now be evident:
Therrem. The square root of a power may be expressed by dividing its exponent by 2 , the cube root by dividing it by 3 , and the $n^{\text {th }}$ root by dividing it by n.
136. Fractional Exponents. Considering only the original definition of exponents, such an expression as $a^{\frac{3}{2}}$ would
have no meaning, becanse we cannot write a $1 \frac{1}{2}$ times. But by what has just been said, we see that a^{3} may be interpreted to mean the square root of \boldsymbol{a}^{3}, becianse

$$
u^{\frac{3}{3}} \times a^{\frac{3}{3}}=a^{3}
$$

Hence,
A fractional exponent indicates the extraction of a root. If the denominator is 2, a square root is indicated ; if 3 , a cube root; if n, an $n^{\text {th }}$ root.

A fractional exponent has therefore the same meaning as the radical sign $\sqrt{ }$, and saty be used in place of it.
EAERCISES.

Express the follu ing rava by exponents only :
I. $\sqrt{\mathrm{m}}$.
2. $\sqrt{ }(m+n)$.
3. $\sqrt{ }(\pi+b)^{3}$.
4. $\quad \sqrt[3]{ }(\ell+b)^{2}$.
5. $\sqrt[4]{m^{3}}$.
6. $\sqrt[5]{a^{n}}$.
7. $\sqrt[n]{a^{5}}$.
8. $\quad \sqrt[m]{(}(a+b)^{n}$.
9. $\quad \sqrt[n]{(}(\iota+l)^{m}$.

1\%\%. Since the even powers of negative quantities are positive, it follows that an even root of a positive quantity may be either positive or negative.

This is expressed by the double sign \pm.

EXERCISES.

Express the sfuare roots and also the cube roots and the $n^{\text {th }}$ roots of the following:

1. $(a+l)^{3}$.
2. $(a+b)^{2}$.
3. $a+b$.
4. $(x+y)^{\frac{3}{3}}$.
5. $\quad(x+y)^{\frac{1}{2}}$.
6. $(x+y)^{h}$.

1\%8. If the quantity of which the root is to be extracted is a product of several factors, we extact the root of each factor, and take the product of these roots.

Eximple. The $n^{\text {th }}$ root of $a m^{2} p$ is $\left.a^{\frac{1}{h}} m^{\frac{2}{n}}\right)^{\frac{h}{n}}$, because

$$
\left(t^{h} m^{n} p^{n}\right)^{n}=\left(a m^{2} p, \text { by } \S \subseteq S^{n} 16 S \text { and } 176\right.
$$

If the quantity is a fraction, we extract the root of both members.

Proof. $\quad\left(\frac{u^{i}}{b^{n}}\right)^{n}=\frac{a}{b} \quad(\$ \S(67,168)$.
Because $\frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}}$ taken n times as a factor makes $\frac{a}{b}$, therefore, by definition, it is the $n^{\text {th }}$ root of ${ }^{\prime \prime}$.

EXERCISES.

Express the square roots of
I. $4 x^{2}$.
2. $\frac{9 t^{2}, r^{2}}{49 m}$.
3. $\frac{6+n\left(k^{2} r^{3}\right.}{81 m)^{2} y^{3}}$

Express the cube roots of
4. 2%. 64.
5. $2 \pi \mu^{3}$.
i. $\quad b^{2} c^{3} c^{3}$.
8. $\frac{8 y^{m}}{120 x y^{n}}$.

Express the $n^{\text {th }}$ roots of
9. \%
10. $4 . \%$
11. $4 \cdot \% \cdot 10$.
12. $\frac{5 a l^{n}}{6 m i^{n}}$.
13. $6 a^{n} b^{2 n}$.
$14 \frac{6 a^{2} b^{\frac{n}{2}}}{c^{m} l^{\frac{m}{n}}}$.
15. $\frac{a^{m+1} y^{n} z^{m-2}}{l^{m n} b^{n}}$.
16. $\quad 3^{5 n} a^{-2 n}(a+b)^{4 n}(x-y)^{n} 4^{n}(b-c+c)^{-4 n}$.

Reduce to exponential expressions:
17. $\sqrt[n]{a(b-c)^{m}}$.
18. $\sqrt[m]{16 b^{2} c^{3}}$.
19. $\sqrt[n]{41 l^{1} b^{4}}$.
20. $\sqrt[n]{ }{ }^{\prime}$.
21. $\sqrt[m /(a+b)^{n}]{(a-6)^{n}}$.

Powers of Expressions with Fractional Exponents.

1\%9. Theorem. The $p^{\text {th }}$ power of the $n^{\text {th }}$ root is equal to the $n^{1 / h}$ root of the $p^{1 h}$ power.

In algelraic language,
or

$$
(\sqrt[n]{a})^{n}=\sqrt[n]{a^{n}}
$$

$$
\left(a^{n}\right)^{n}=\left(a^{n}\right)^{h}
$$

Example. $\quad(\sqrt[3]{8})^{2}=2^{2}=4$,

$$
\sqrt[3]{s^{2}}=\sqrt[3]{64}=4 ;
$$

or, in words, the sfluite of the eube root of 8 (that is, the siquate of 2) is the cube rout of the square of 8 (that is, of 6.4).

General Prouf. Let us put $x=$ the $n^{\text {th }}$ root of a, so that

$$
\begin{equation*}
x^{n}=a \tag{1}
\end{equation*}
$$

The $p^{\text {th }}$ power of this root x will then be x.
Raising loth sides of the equation (1) to the $p^{\text {th }}$ power, we have

$$
x^{n p}=a^{p}=p^{t h} \text { power of } a
$$

The $n^{1 / 2}$ root of the first member is found by dividing the exponent by n, which gives

$$
n^{\text {th }} \text { root of } p^{\text {th }} \text { power }=x^{p}
$$

the same expression (2) just found for the $2^{\text {th }}$ power of the $i^{\text {th }}$ root.

This theorem leads to the following conclusion:

1. The expression

$$
a^{\frac{p}{n}}
$$

may mean indifferently the $p^{t h}$ power of ℓ^{1}, or the nth root of ' 1 ', these quantities being identical.
2. The powers of expressions having fractional exponents may be formed by multiplying the exponents by the index of the power.

EXERCISES.

Repress the squares, the cubes, and the $n^{\text {th }}$ powers of the following expressions:
I. $a^{\frac{1}{2}}$.
2. $a^{\frac{1}{11}}$
3. $a^{\frac{2}{1}}$.
4. a^{h}.
5. $a b^{n}$.
6. $a b^{\frac{1}{3}} c^{n}$.

$$
\begin{aligned}
& \text { 7. } \begin{array}{r}
m, n \\
a^{2} b^{3} \text {. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9. }(u+b)^{n}(u-b)^{-n} \text {. } \\
& \text { 10. } \pi^{-n} b^{n} \text {. } \\
& \text { II. } a^{-\frac{1}{n}} b^{n} \text {. } \\
& \text { 12. } \frac{(x+y)^{-\frac{1}{2}}}{(x-y)^{-1 " 0}} .
\end{aligned}
$$

Reduce to simple products and fractions:
13. $\left(x^{m}-\frac{m}{1} y^{n}\right)^{n}$.
14. $\left(a^{3} b^{3} c^{2}\right)^{\frac{m}{3}}$.
15. $\left(a^{\frac{1}{2}} b^{4}\right)^{-q}$.
16. $\binom{-n_{n}}{n} \begin{aligned} & m \\ & \%\end{aligned}$
17. $\left(\frac{x^{-\frac{1}{2}}}{y^{\frac{-3}{3}}}\right)^{\frac{3}{3}}$.
18. $\frac{a^{m-1}}{l^{m+1}}: \frac{a^{m+1}}{l^{m-i}}$.

> CHAPTER III. REDUCTION OF IRRATIONAL EXPRESSIONS.

Definitions.

180. Def. A Rational Expression is one in which the symbols are only added, subtracted, multiplied, or divided.

All the operntions we have hitherto considered, execept the extraction of roots, have led to rational expressions.

Def. An expression which involves the extraction of a root is called Irrational.

Example, Irrational expressions are

$$
\sqrt{ } a, \quad \sqrt[8]{(} a+b), \quad \sqrt{ } 27 ;
$$

or, in the language of exponents,

$$
a^{\frac{1}{2}}, \quad(u+b)^{\frac{1}{2}}, \quad 2 a^{\frac{1}{2}}
$$

In order that expressions may be really irrational,
they must be Irreducible, that is, incapable of being expressed without the radical sign.

Exambe. The expressions

$$
\sqrt{a^{2}+2 a b+b^{2}}, \quad \sqrt{3} k,
$$

are not properly irrational, becamse they are equal to $a+b$ and is respeetively, which are rational.
I)ef: A Surd is the root which enters into ant inrational expression.

Rxample. The expression $a+b \sqrt{ } x$ is irrational, and the surd is $\sqrt{ } x$.

Def. Irrational terms are Similar when they contain the same surds.

Examples. The terms $\sqrt{ } 30,7 \sqrt{30},(x+y) \sqrt{ } 30$, are similar, becanse the quantity mader the radical sign is 30 in cach.

The terms $(n+b) \sqrt{x+y}, 3 \sqrt{x+y}, m \sqrt{x+y}$ are similar.

Aggregation of Similar Terms.

181. Irrational terms may be aggregated by the rules of $\$ 554-56$, the surds being treated as if they were single symbols. Hence:

When similar inrational terms are connectert by the sigus + or -, the confjeicuts of the similar surds may be added, and the surd itself" afjisued to their sum.

Example. The sum

$$
a \sqrt{ }(x+y)-b \sqrt{ }(x+y)+3 \sqrt{ }(x+y)
$$

may be transformed into $(a-b+3) \sqrt{ }(x+y)$.

exercises.

Reduce the following expressions to the smallest number of terms:

1. $\quad 7 \sqrt{ } 3-5 \sqrt{ } 2+6 \sqrt{ } 3+i(1) \sqrt{ } 2$.
2. $\quad 6 \sqrt{ }(x+y)+a \sqrt{ }(x-y)+2(a+b) \sqrt{ }(x+y)$

$$
-3(\imath+\ell) \sqrt{ }(x-y)
$$

3. $\frac{a+b}{z} \sqrt{ } \tau+\frac{a-b}{z} \sqrt{ } \%$
4. $(a+b) \sqrt{x y}+(a-u) \sqrt{x y}$.
5. $\quad \sqrt{ } x(a-b)+(b-c) \sqrt{ } x+(c-1) \sqrt{ } x$.
6. $\quad a \sqrt{ } x-\sqrt{ } x+2 a \sqrt{ } x-(a+b) \sqrt{ } x$.
7. $\frac{3}{4} \sqrt{ } x-a \sqrt{ } x+6 \sqrt{ } x-c \sqrt{ } x+\frac{1}{3} \sqrt{ } x$.
8. $\frac{a+i}{2} \sqrt{ } x-6 c \sqrt{ } x-\frac{a+b}{3} \sqrt{ } x+\sqrt{ } x$.
9. $\frac{3}{4} \sqrt{ } x-\sqrt{ } x+(\pi-l) \sqrt{ } x+\frac{3(11-l)}{3} \sqrt{ } x$.
10. $\sqrt{ } a-b \sqrt{ } a-\sqrt{ } x+\frac{(j(a-b)}{t} \sqrt{ } a-\frac{1}{a} \sqrt{ }$ a.
11. ${ }_{4}^{3} \sqrt{ } x-\sqrt{ } x+\frac{2(a-b)}{3} \sqrt{ } x$.
12. $4 \sqrt{ } x-\frac{1}{3} \sqrt{ } x+(a-b) \sqrt{ } x$.

Factoring Surds.

189. Irrational expressions may sometimes be transformed so as to have different expressions under the radieal sign, by the method of $\S 1 i s$, uplying the following theorem:

Theorem. A root of the product of several factors is equal to the product of their roots.

In the language of Algebra,

$$
\begin{aligned}
\sqrt[n]{\text { abcel, etc. }} & =\sqrt[n]{a} a \sqrt[n]{b} \sqrt[n]{ } c \sqrt[n]{l} l \text {, etc. } \\
& =a^{\frac{1}{n}} b^{n} c^{n} d^{\frac{1}{n}}, \text { etc. }
\end{aligned}
$$

Proof. By raising the members of this equation to the $n^{\text {th }}$ power, we shatl get the same result, namely,

$$
a \times b \times c \times d, \text { ctc. }
$$

Examples. $\quad \sqrt{30}=\sqrt{ } 6 \sqrt{5}$.

EXERCISES

Prove the following equations by computing both sides:

$$
\sqrt{ } 4 \sqrt{ } 49=\sqrt{4 \cdot 49}=\sqrt{ } 196
$$

Proof. $\quad \sqrt{ } 4 \sqrt{ } 49=2.7=14$, and $\sqrt{ } 196=14$.

$$
\begin{aligned}
\sqrt{ }+\sqrt{ } 9 & =\sqrt{36} \\
\sqrt{ } 4 \sqrt{ } 25 & =\sqrt{4 \cdot 25} \\
\sqrt{ } 9 \sqrt{ } 16 & =\sqrt{9 \cdot 16} \\
\sqrt{ } 25 \sqrt{ } 36 & =\sqrt{25} \cdot 36
\end{aligned}
$$

Express with a single surd the products:
I. $\quad \sqrt{ }(a+b) \sqrt{\prime}^{\prime}(a-b)$.

SOLCTION. $\quad \sqrt{ }(a+b) \sqrt{ }(a-b)=\sqrt{(a+b)(a-\bar{b})}$
$=\sqrt{ }\left(a^{2}-l^{2}\right)$.
2. $\sqrt{ } \% \sqrt{ }$. .
3. $\sqrt{ } 7 \sqrt{ } a$.
4. $\sqrt{ } \neq \sqrt{ }(t+y)$.
5. $\sqrt{ } a \sqrt{ } b \sqrt{ }(a+b)$.
6. $\sqrt{ }(x+1) \sqrt{ }(x-1)$.
? $\quad \sqrt{ }\left(x^{2}+1\right) \sqrt{\prime}^{\prime}(x+1) \sqrt{ }(x-1)$.
S. $\left[(a+b)^{\frac{1}{2}}(11-b)^{1}\right]^{2}$.
9. $\left[\left(x^{2}+1\right)^{\frac{1}{3}}(x+1)^{\frac{1}{3}}(x-1)^{\frac{2}{3}}\right]^{2}$.

18:3. If we can separate the quantity under the radical sign into two factors, one of which is a perfect square, we may extract its root and affix the surd root of the remaining factor to it.

$$
\begin{aligned}
& \text { EXAMPLES. } \\
& \sqrt{ } a^{2} b=\sqrt{ } a^{2} \sqrt{ } b=a \sqrt{ } b . \\
& \sqrt{a b} \sqrt{\prime}+\cdots=\sqrt{n^{2} b c}=a \sqrt{b} \bar{c} . \\
& \sqrt{ } 1: \sqrt{6}=\sqrt{ }{ }^{2}:=\sqrt{ } 36 \sqrt{2}=6 \sqrt{ } 2 . \\
& \sqrt{ }\left(4 t^{3}+S u^{2} b-16 t^{3} c\right)=\sqrt{4 u^{2}(u+2 b-4 a c)} \\
& =9 a \sqrt{ }(u+2 b-4 u c) . \\
& \left(x^{3}-4 x^{2} y+4 \cdot y^{y}\right)^{\frac{3}{2}}=(x-2 y) \cdot x^{2} .
\end{aligned}
$$

EXERCISES.

Reduce, when possible:

1. $\sqrt{8}$.
2. $\sqrt{ } 3 \geqslant$.
3. $\sqrt{ } 1 \geqslant 8$.
4. $\sqrt{3} \sqrt{ } \geqslant \%$
5. $\sqrt{u b} \sqrt{c t i} \sqrt{b c}$.
6. $\sqrt{ } \because \sqrt{ }$ in.
7. $\sqrt{ }+\sqrt{ }$ 湤。
8. $\sqrt{ }(x+1) \sqrt{ }(x+1)$.
9. $\sqrt{ } 1 \%$.
10. $\sqrt{ } 150$.
if. $V^{\prime} 108$.
11. $\sqrt{x^{2}(u+b)}$.
12. $\quad \sqrt{ }\left(a^{2} x+2 a b x+b^{2} x\right)$.

Here the quantity under the radical sign is equal to

$$
\left(a^{2}+2 a b+b^{2}\right) x=(a+b)^{2} x
$$

In questions of this class, the begiuner is apt to divide an expression like $\sqrt{ } u+b+c$ into $\sqrt{ }$ $u+\sqrt{ } b+\sqrt{ } c$, which is wrong. The siquare ront of the sum of several quantities cammet be reduced in this way.

$$
\text { 14. } \sqrt{u^{2} y+4 u y+4 y} \quad \text { 15. } \quad \sqrt{4 m^{3} z}+\sin ^{2} m+4 z .
$$

Feduce and add the following surds:
16. $4 \sqrt{ } 2-6 \sqrt{ } 8+10 \sqrt{ } 32 . \quad$ 17. $\quad \sqrt{ } 12+\sqrt{ } 2 \%+\sqrt{ } \% 5$.
18. $\sqrt{4} \pi-\therefore \sqrt{ }$. \quad 19. $125^{\frac{1}{2}}-45^{\frac{1}{2}}-80^{\frac{1}{2}}$.
20. $\sqrt[3]{81}-\sqrt[3]{19}$. $\quad 21 . \quad\left(a^{2} l^{3}\right)^{\frac{1}{3}}+\left(a^{2} c^{c}\right)^{\frac{1}{3}}$.

Multiplication of Erational Expressions.

1S4. Irrational polynomials may he multiplied by combining the forgoing principles with the rule of o $\% 8$.

The following are the forms:
To multiply $a+b \sqrt{ } x$ by $m+n \sqrt{ }!$

$$
\begin{aligned}
a(m+n \sqrt{ } y) & =u m \times a n \sqrt{ } y \\
b \sqrt{ } x(m+n \sqrt{ } y) & =\frac{b m \sqrt{ } x+l m \sqrt{ } \cdot \%}{a m+u m \sqrt{ } y+6 m \sqrt{ } x+6 n \sqrt{x} y}
\end{aligned}
$$

exercises.

Perform the following multiplications and rednce the results to the simplest form (eompare sis so) :

1. $\quad(2+3 \sqrt{i})(j-3 \sqrt{ } \dot{n})$.
2. $(i+i \sqrt{ } 3 \%)(9-5 \sqrt{2})$.
```
3. \(\quad(a+\sqrt{ } b)(a-\sqrt{ } b) . \quad\) 4. \(\quad(\sqrt{ } a+\sqrt{ } b+\sqrt{ } c+\sqrt{ } d)^{2}\).
5. \(\quad\left(m+n^{\frac{1}{3}}\right)\left(m+2 n^{\frac{1}{3}}\right)\).
    6. \(\left(a^{\frac{1}{2}}-u^{\frac{1}{3}}\right)\left(a^{\frac{1}{2}}+u^{\frac{1}{3}}\right)\).
7. \(\quad\left(a+a^{-1}\right)^{2}\).
8. \(\left(a^{\frac{1}{3}}-a^{-\frac{1}{2}}\right)^{4}\).
9. \(\quad[a+b \sqrt{ }(x+y)][a-b \sqrt{ }(x+y)]\).
10. \([m+n \sqrt{ }(a+b)][m-n \sqrt{ }(a-b)]\).
If. \(\left[x+\sqrt{ }\left(x^{2}-1\right)\right]\left[x-\sqrt{ }\left(x^{2}-1\right)\right]\).
12. \(\left[\left(b^{2}+1\right)^{\frac{1}{3}}+b\right]\left[\left(b^{2}+1\right)^{\frac{1}{2}}-b\right]\).
```

Expressions may often be transformed and factored by combining the foregoing processes.

Example. To factor $a x^{\frac{7}{3}}+b x^{\frac{5}{3}}+c x^{3}+c x^{\frac{1}{2}}$, we notice that $\quad x^{\frac{2}{2}}=x^{\frac{1}{2}} \cdot x^{3}, \quad x^{\frac{5}{3}}=x^{\frac{1}{2}} x^{2}, \quad$ etc. so that the expression may be written,

$$
u x^{3} x^{\frac{1}{2}}+b x^{2} x^{\frac{1}{2}}+c x x^{\frac{1}{3}}+d x^{\frac{1}{3}}=\left(u x^{3}+b x^{3}+c x+d\right) x^{\frac{1}{2}}
$$

EXERCISES.

Reduce the following expressions to products:
13. $\quad 2+\sqrt{2}$.
14. $3^{3}+2 \cdot 3^{\frac{1}{2}}$.
15. $(a+b)^{\frac{3}{3}}$.
16. $\sqrt{y+a y^{3}-b y^{5}}$.
17. $\quad x-y-\sqrt{x-y}$

Reduce to the lowest terms:

$$
\begin{array}{ll}
\text { IS. } \frac{2}{\sqrt{2}} \cdot \frac{\sqrt{u+b}}{a+b} & \text { 20. } \frac{a x^{3}+l x^{\frac{1}{2}}}{a \cdot x^{3}-b x^{\frac{1}{3}}} \\
\text { 21. } & \frac{a-x+\sqrt{u-x}}{a-x-\sqrt{ } u-x}
\end{array}
$$

185. Rationalizing Fractions. The quotient of fuosurds may be expressed as a fiatetion with a rational numerator or a rational demominator, by multiplying both terms by the proper multiplier.

Examble. Consider the fraction $\frac{\sqrt{ } \pi}{\sqrt{7}}$.

Multiplying both terms by $\sqrt{ } \gamma$, the fraction becomes $\frac{\sqrt{3: \%}}{\gamma}$, and has the rational denominator \because.

Maltiplying by $\sqrt{ }$, it becomes $-\frac{5}{\sqrt{35}}$, and has the rational
The mumerator or denominator may also be made rational when they both consist of two terms, one or both of which are irrational.

Let us have a fration of the form

$$
\frac{A+D \sqrt{ } B}{P+Q \sqrt{ } l^{\prime}}
$$

in which the letters A, D, P, Q, and R stand for any algehraic or mumerical expressions whatever. If we multiply both numerator and denominator by $l^{\prime}-Q \sqrt{ } R$, the denominator will become

$$
I^{2}-Q^{2} l
$$

The numerator will become

$$
A P+I D \sqrt{ } B-A Q \sqrt{ } R-D Q \sqrt{B R} .
$$

so that the value of the fraction is

$$
\begin{aligned}
& \frac{A P^{2}+P D \sqrt{ } B-1 Q \sqrt{ }-D Q \sqrt{ } P R}{P^{2}-Q} . \\
& \text { EXERCISES. }
\end{aligned}
$$

Reduce the : Jllowing fractions to others having rational denominators:

1. $\quad\left(\binom{11+6}{16-6}\right.$.
2. $\frac{x^{\frac{2}{3}}}{y^{\frac{1}{3}}}$
3. $\binom{1+x}{1-x}^{\frac{1}{3}}$.
4. $\frac{\sqrt{2} \sqrt{3}}{9 \sqrt{5}}$.
5. $\frac{2 \sqrt{ } 18}{3 \sqrt{ }{ }^{6}}$.
6. $\begin{aligned} & 5 \sqrt{2}+ \\ & 2 \sqrt{2}\end{aligned}$ 。
7.

$$
\frac{a+\sqrt{ }}{a-\sqrt{ }}
$$

8. $\frac{\|-\sqrt{n}:}{n+\sqrt{n}}$.
9. $\frac{\sqrt{ } x+\sqrt{ }!}{\sqrt{ } x-\sqrt{!\prime}}$

$$
\begin{aligned}
& \text { 10. } \frac{a+2 \sqrt{ }(x+y)}{a+\sqrt{ }(x+y)} . \\
& \text { 1 } 2 \quad \frac{\sqrt{ } x-\sqrt{ }(x+y)}{\sqrt{ } \cdot x+\sqrt{ }(x+y)} . \\
& \text { I. } \frac{1}{u^{\frac{1}{2}}+(a+1)^{\frac{1}{3}}} \text {. } \\
& \text { II. } \frac{2 \sqrt{ } 3+7 \sqrt{ } 5}{\sqrt{ } 5-\sqrt{3}} \text {. } \\
& \text { 13. } \frac{1}{x-\sqrt{x^{2}-a^{2}}} \text {. } \\
& \text { 15. } \frac{\sqrt{x+} a+\sqrt{x-a}}{\sqrt{x+} a-\sqrt{x}-a} \text {. }
\end{aligned}
$$

Perfect Squares.

186. Def: A Perfect Square is an expression of which the square root can be formed without any surds, except such as are already found in the expression.

Exambles. $4 m^{4}, 4 \iota^{2}+4 a+1$ are periect squares. becanse their square roots are $\ddot{2 m}^{2}, \stackrel{2}{ }(6+1$, expressions without the radical sign.

The expression $\quad \ell+\curvearrowleft \sqrt{ }$ ub $+b$, of which the root is

$$
\sqrt{ } u+1^{\prime} u
$$

may also be regraded ass a perfect syuare, beeatuse the surds $\sqrt{a}+\sqrt{b}$ are in the product $\because \sqrt{u b}$.

Criterion of a Perfert siputere. The question whether a trinomial is a perfect square can always be deeded by emmproing it with the forms of ss so, namely:
or

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 u b+b^{2}=(a-b)^{2}
\end{aligned}
$$

We see that to he al perfect squair or trinomial must fulf the following comelitions:
(1.) Two of its three terms must be perfect squares.
(2.) 'I'ho mananing torm mast be equal to twice the prochuet of the square roots of the other two terms.

Whenthese conditions are fulfillod, the sinare root of the trimomial will be the sum on diflerence of the square roots of the terms, according is the product is pasitise ol hegative.

The root may have cither sign, becanse the squares of positive and mograte quantities have the same sign.

If the terms which are perfect squares are both hegative, the trinomial will be the negative of a perfect sumare.

$$
\begin{aligned}
& \text { EXAMPLES. } \\
& \sqrt{u^{2}+2} u b+b^{2}=a+b \text { or }-(a+b) . \\
& \sqrt{u^{2}-2 u b+b^{2}}=a-b \text { or } b-a . \\
& -u^{2}+2 u b-b^{2}=-(u-b)^{2}=\quad .(b-a)^{2} .
\end{aligned}
$$

EXERCISES.
Find which of the following expressions are perfect sfuares, and extract their square roots:
I. $9+12+4$.
2. $x^{2}+4 x+4$.
3. $4 x^{4}+2 x^{2}+\frac{1}{4}$.
4. $\quad l^{2}+a l-l^{2}$.
5. $4 a^{2 n}+12 a^{n} b^{n}+9 b^{2 n}$.
6. $a^{2}+3 a b-l^{2}$.
7. $\quad x^{6}-\left(t x^{3} y+1_{t}^{1}\left(u^{2} y^{2}\right.\right.$.
8. $a^{2} b^{2}-2 a b c d+c^{2} t^{2}$.
9. $m+2 m^{\frac{1}{2}} n^{\frac{1}{2}}+n$.
10. $\left.\quad a^{2}-\ddot{\partial}\right)\left(x+y^{2}\right.$.
11. $a+4 a^{\frac{1}{2}} a^{3}+4 b$.
12. $\quad u-2+u^{-1}$.
13. $25 p^{4}+9 q^{2}-30 p^{2} q$.
14. $96!m^{2 n}+k^{2}+9 m^{2 n}$.
15. $49 x^{2} y^{2}+9 z^{2}-42 x y z$.
16. $9 m^{8 n}-2 m^{n n} \eta+\frac{p^{2} q^{2}}{9}$.

To Complete the Square.

18\%. If one term of a hinomial is a perfect square, such a torm 'an always be added to the binomial that the trinomial thos formed shall be a perfect square.
'Ilhis operation is called Completing the Square.
Proof. Call "the root of the torm which is a perfect square, which term we suppose the fiest, and call m the other term, so that the given bimomial shall be

$$
u^{2}+m .
$$

Add to this limomial the iom $\frac{m^{2}}{4 e^{3}}$, and it will become

$$
u^{2}+m+\frac{m^{2}}{4 u^{2}} .
$$

This is a perfect square, namely, the square of

$$
\begin{gathered}
a+\frac{m}{2 a} ; \\
\text { that is, } \quad a^{2}+m+\frac{m^{2}}{4 a^{2}}=\left(a+\frac{m \prime}{2 a}\right)^{2} .
\end{gathered}
$$

Hence the following
Rule. Add to the binomial the square of the second term divided by four times the first term.

Example. What term must be added to the expression

$$
\begin{equation*}
x^{2}-4 a x \tag{1}
\end{equation*}
$$

to make it a perfect square ?
The rule gives for the term to be added,

$$
\frac{(-4 a x)^{2}}{4 x^{2}}=4 a^{2} .
$$

Therefore the required perfect square is

$$
x^{2}-4 a x+4 a^{2}=(x-2 a)^{2} .
$$

We may now transpose $4 a^{2}$, so that the left-hand member of the equation shall be the original binomial (1). Thas,

$$
x^{2}-4 a x=(x-2 a)^{2}-4 u^{2} .
$$

The original binomial is now exp .essed as the difference of two squares. Therefore. the above process is a solution of the problem: Haring a himomial of uhich one term is a perfect square, to express it as a difference of tro squares.

EXERCISES.

Express the following binomials as differences of two squares:
r. $x^{2}+2 x y$.
2. $x^{2}+4 x y$.
3. $x^{2}+6 a c$.
4. $4 x^{2}+4 x y$.
5. $4 x^{2}+4 \%$.
6. $9 x^{2}+a x$.
7. $100^{2}+8 \% \pi x$.
8. $x^{2}+4 x$
9. $u^{2} \cdot x^{2}+2 u^{2} x$.
10. $b^{2} x^{2}+2$
11. $m^{2} x^{2}+1$.
12. $4 y^{2} x^{2}+1 x$.
13. $\frac{1}{4 x^{2}}+1$.
14. $\frac{1}{\operatorname{Sin}^{2} x^{2}}-\operatorname{cin}^{2}$.

Irrational Factors.

18S. When we introduce surds, many expressions can the factored which have no rational factors. The following theorem may be applied for this purpose :

Theorem. The difference of any two quantities is equal to the product of sum and difference of their square roots.

In the language of algebra, if a and b be the quantities, we ehall have

$$
a-b=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)\left(a^{\frac{1}{2}}+b^{\frac{1}{2}}\right)
$$

Which can be proved by multiplying and by $\S 80$, (3).

exercises.

Factor

1. $m-n$.
2. $m-1$.
3. \quad ($m-b n$.
4. $4 a^{2} m-9$.
5. $x^{2}-m$.
6. $x^{2}-(m+n)$.
7. $(x-u)^{2}-\frac{1}{4}(m-n)$.
8. $x^{2}-(m-n)$.
9. $\left.(\imath+b)^{2}-(4)^{2}-q\right)$
10. $\quad x^{2}+2 x y+y^{2}-(m+n)^{\frac{2}{3}}$.

Find the irrational square roots of the following expressions by the principles of $\$ 186$:
11. $a-2+a^{-1}$.

Ans. $a^{\frac{1}{2}}-a^{-\frac{1}{2}}$.
12. $x-2 \sqrt{x y}+y$.
13. $4+i \sqrt{ } 3+3$.
14. $9+5-6 \sqrt{ } 5$.
16. $a+b+2(a+b)^{\frac{1}{2}} x+x^{2}$.
15. $4 a+b-4 a^{\frac{1}{2}} b^{\underline{1}}$.
17. $3+2 \sqrt{ } 15+5$.
8. $3+5-2 \sqrt{ } 15$.
19. $\frac{x}{4}+\frac{y}{4}-\frac{\sqrt{x y}}{2}$.
20. $a-2 \sqrt{ } a+1$.
21. $a-2 a^{\frac{5}{6}}+a^{\frac{9}{3}}$.
22. $a+2 a^{\frac{1}{3}}+\frac{1}{a^{\frac{1}{3}}}$.
23. $a^{\frac{7}{2}}-a+\frac{a^{\frac{1}{4}}}{4}$.
${ }_{2}+\frac{a}{4}+\frac{a}{3}+\frac{a}{9}$.
25. $\frac{a}{14}+\frac{1}{4}+\frac{a^{\frac{1}{2}}}{4}$.
26. $a^{5}+2+a^{-5}$.
28. $a+b-4+\frac{4}{a+b}$.

$$
\begin{gathered}
\text { BOOK VI. } \\
\text { EQUATIONS REQUIRINGIRRA } \\
\text { TIONAL OPERATIONS. }
\end{gathered}
$$

CHAPTER I. EQUATIONS WITH TWO TERMS ONLY.

189. In the present chapter we consider equations which contain only a single power or root of the minknown quantity.

Such an equation, when reduced to the normal form, will be of the form

$$
A c^{n}+B=0 .
$$

By tramsposing B, dividing by A, and purting

$$
a=-\frac{B}{A},
$$

the equation may be written,
or

$$
\begin{align*}
x^{n}-a & =0 . \\
x^{n} & =a, \tag{1}
\end{align*}
$$

Here n may be an integer, or it may represent some fraction.
Such an equation is called a Binomial Equation, because the expression $x^{n}-a$ is a binomial.

Solution of a Binomial Equation.

190. 191. When the exponent of x is a whole momber. If we extract the $n^{t h}$ root of both members of the equation (1), there roots will, by Axiom V, still be efual. The $n^{\text {th }}$ root of x^{n} leing x, and that of a being a^{h}, we have

$$
x=u^{n},
$$

and the equation is solved.
2. When the exponent is fractional. Let the equation be

$$
\frac{m}{x^{n}}=\mu
$$

Raising both members to the $n^{\text {th }}$ power, we have

$$
x^{n k}=\iota^{n}
$$

Extracting the $m^{\text {th }}$ root,

$$
x=\iota^{\frac{n}{m}}
$$

If the mumerator of the exponent is unity, we only hase to suppose $m=1$, which will give

$$
x=\iota^{n}
$$

Hence the binomial equation always admits of solntion by forming powers, extracting roots, or both.

Special Forms of Binomial Equations.

Dof. When the exponent n is an integer, the equation is called a Pure Equation of the degree n.

When $n=2$, the equation is a Pure Quadratic Equation.

When $n=3$, the equation is a Pure Cubic Equation.

ExERCises.

Find the values of x in the following erpations:
․ $\frac{p}{x^{\frac{1}{2}}}=\%$. Ans. $x=\frac{r^{2}}{r^{3}}$.
2. $\frac{a+b}{x^{\frac{1}{3}}}=c$.
3. $\frac{a}{e^{\frac{1}{3}}-b}=\frac{b}{x^{\frac{1}{3}}-\imath}$.
4. $\frac{9}{x}=\frac{x^{2}}{x i}$.
6. $\frac{x^{2}-m u}{x^{2}-\pi}=\frac{n r^{2}-6}{x^{2}-6}$.
5. $\quad \frac{x-\frac{2}{2}}{x-\iota}=\frac{2 x-b}{x-b}$.
8. $\frac{x^{\frac{1}{3}}}{y^{\frac{3}{3}}}=\frac{y^{\frac{1}{3}}}{x^{\frac{2}{3}}}$.
7. $\frac{a+b}{x^{n}}=\frac{x^{n}}{a-b}$.
σ
9. $\frac{\sqrt{r+u^{2}}}{u+b^{2}}=\frac{\overrightarrow{1}-a}{\sqrt{x-u^{2}}}$

In the last exmmple, clearing the equation of fractions, we shall have or

$$
\begin{aligned}
& \sqrt{x^{2}-a^{3}}=b^{2}-a^{2}, \\
& \left(x^{2}-a^{2}\right)^{2}=\iota^{2}-a^{2} .
\end{aligned}
$$

We syunre both sides of this equation, which gives another in which x^{2} only nиpears.
10. $(x-⿲)^{3}=l^{3}$,
I I. $\quad\left(x^{2}-a^{2}\right)^{\frac{1}{3}}=m x$.
12. $(\sqrt{ } x-\sqrt{ } 1)^{\frac{1}{3}}=n x^{1}$.

Positive and Negative Roots.

19). Since the square root of a quantity may be cither positive or negative, it follows that when we have an equation sulch its

$$
x^{9}=u,
$$

and extract the square root, we may have either
or

$$
\begin{aligned}
& x=+\iota^{\frac{1}{2}} \\
& x=-u^{\frac{1}{2}}
\end{aligned}
$$

Hence there are two roots to every such equation, the one positive and the other negative. We express this pair of roots by writing

$$
x= \pm \ell^{\frac{1}{3}}
$$

the expression $\pm a^{\frac{1}{2}}$ meaming either $+a^{\frac{1}{2}}$ or $-a^{\frac{1}{2}}$.
It might seem that since the square ront of x^{2} is either $+x$ or $-x$, we sloould write

$$
\begin{aligned}
\pm x & = \pm a^{\ddagger}, \\
x & =a^{\ddagger}, \\
x & =-a^{\ddagger}, \\
-x & =+a^{\ddagger}, \\
-x & =-a^{t} .
\end{aligned}
$$

But the first and fourth of these equations give identical values of x by simply changing the sign, mul so do the second and third.

PROBLEMS LEADING TO PURE EQUATIONS.

1. Find three numbers, such that the seeond shall be double the first, the third one-third the second, and the smm of their squares $1: 06$.
2. The sum of the squates of two nombers is 369, and the difference of their squares 81 . What are the mmbers?
3. A lot of land contains 1645 square feet, and its length exceeds its hreadth by $1:$ feet. What are the length and breadia?

To solve this equation as a binomial, take the mean of the longth and bremdth as the miknown quantity, so that the lengeth shall be as murla grenter than the mean as the bradth is less.
4. Find at momber such that it 9 be added to and subtracted from it, the product of the sum and difterence shall he 1%.
5. Find a momber such that if a be added to it and sulbtracted from it the product of the sum and difference shall bo $2 u+1$.
6. One number is double another, and the difference of their squares is $1: \%$. What are the numbers?
7. One number is 8 times another, and the sum of their cube roots is 1%. What are the mumbers:
8. Find two numbers of which one is 3 times the other, and the spmare root of their sum, maltiplied by the lesser, is equal to les.
9. What two mumbers are to each other as $2: 3$, and the sum of their squares $=3: 5$?

Note: If we represent one of the numbers be 2r, the other will be $3 x$.
10. What two numbers are to each other ats $m: n$, and the spmare of their difference equal to their sum:
11. What two mamhers are forach other as 9 to $\%$ amd the enhe root of their difference maltipled by the sequare root of their sum crual to 16 ?
12. Find x and y from the erpuations

$$
\begin{gathered}
a x^{2}+b!y^{2}=c \\
a^{\prime} x^{2}+b^{\prime} y^{2}=c
\end{gathered}
$$

13. The hypothemuse of a right-ingled triangle is 20 feet in length, and the sum of the side's is at feet. Feind each side.

Note. It is shewn in Geometry that the sigare of the hypothennse of a rightangled triangle is equal to the sum of the sepures of the oher two sides. In the prosent problem, take for the muknown quanty the monomt which cach maknown with dithers from half their sum.
1.4. 'lwo points stat out together from the vertex of a right angle along its reporetive sidos. the one moving m fine
 they require to be e deet apart:
15. By the law of falling bodies, the listance fallen is proportional to the square of the time and a horly falls lif leet the first second. Hiow long will it reguire to fiall / feet?

$$
\rightarrow
$$

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
23 WEST MAIN STREET Sciences WEBSTER, N.Y. 14580
$(716) 872.4503$ Corporation (716) 872-4503

CHAPTER 11.

QUADRATIC EQUATIONS.

192. Def. Λ Quadratic Equation is one which, when reduced to the normal form, contains the second and no higher power of the unknown quantity.

A quadratic equation is the same as an equation of the second degree.
Def. \quad A Pure quadratic equation is one which contains the second power only of the unknown quantity.

The treatment of a pure quadratic equation is given in the preceding chapter.

Def. A Complete quadratic equation is one which contains both the first and second powers of the unknown quantity.

The normal form of a complete quadratic equation is

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

If we divide this equation by a, we obtaia

$$
\begin{equation*}
x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \tag{2}
\end{equation*}
$$

Putting, for brevity, $\frac{b}{a}=p$,

$$
\because=q,
$$

the equation will be written in the form,

$$
\begin{equation*}
x^{2}+p x+q=0 \tag{3}
\end{equation*}
$$

Def. The equation

$$
x^{2}+p x+q=0
$$

is called the General Equation of the Second Degree, or the General Quadratic Equation, because it is the form to which all such equations can be reduced.

Solution of a Complete Qualratic Equation.

19:3. A quartratic equation is solved by adding surlu a quantity to its tuo members that the member contrining the unkuou'n quantity shall be a perfect squmre. (

We first transpose q in the general equation, obtaining

$$
x^{2}+p x=-q
$$

We then add $\frac{\eta^{2}}{4}$ to both members, making

$$
x^{2}+p x+\frac{p^{2}}{4}=\frac{p^{2}}{4}-q
$$

The first member of the equation is now a perfect square. Extracting the square roots of both sides, we have

$$
x+\frac{p}{2}= \pm \sqrt{\frac{p^{2}}{4}-q}
$$

From this equation we obtain a value of x which may be put in either of the several forms,

$$
\begin{aligned}
& x=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}-q} \\
& x=-\frac{p}{2} \pm \frac{\sqrt{p^{2}-4 q}}{2} \\
& x=\frac{1}{2}\left(-p \pm \sqrt{p^{2}-4 q}\right)
\end{aligned}
$$

If instead of substituting p and q, we treat the equation in the form (2) precisely as we have treated it in the form (3), we shall obtain the several results,
and

$$
\begin{aligned}
x^{2}+\frac{b}{u} x+\frac{1 b^{2}}{4 u^{2}} & =1 \not b^{2}-\frac{r}{a} \\
x & =-\frac{b}{2 a} \pm \sqrt{ }\left(\frac{b^{2}}{4 a^{2}}-\frac{r}{a}\right) \\
& =-\frac{-b \pm \sqrt{ }\left(b^{2}-4 a c\right)}{2 a}
\end{aligned}
$$

194. The equation in the normal form, (1), may also be solved by the following process, which is sometimes more convenient. Transposing c, and multiplying the equation by a, we obtain the result

$$
a^{2} x^{2}+a b x=-a c
$$

To make the first member a perfect square, we add $\frac{b^{2}}{4}$ to each member, giving

$$
a^{2} x^{2}+a b x+\frac{b^{2}}{4}=\frac{b^{2}}{4}-a c
$$

Extracting the square root of both sides, we have

$$
a x+\frac{b}{2}=\frac{1}{2} \sqrt{ }\left(b^{2}-4 a c\right)
$$

from which we obtain the same value of x as befo-e.
195. Since the square root in the expression for x may be either positive or negative, there will be two roots to every quadratic equation, the one formed from the positive and the other from the negative surds. If we distinguish these roots with x_{1} and x_{2}, their values will be

$$
\left.\begin{array}{l}
x_{1}=\frac{-b+\sqrt{ }\left(b^{2}-4 a c\right)}{2 a} \tag{4}\\
x_{2}=\frac{-b-\sqrt{ }\left(b^{2}-4 a c\right)}{2 a} \cdot
\end{array}\right\}
$$

We can always find the roots of a given quadratic equation by substituting the coefficients in the preceding expression for x. But the student is advised to solve each separate equation by the process just given, which is embodied in the following rule:
I. Reduce the equation to its normal or its general form, as may be most convenient.
II. Transpose the terms which do not contain x to the second member.
III. If the coefficient of x^{2} is unity, add one-fourth the square of the corfficient of x to both members of the equation and extract the square root.
IV. If the cocfficient of x^{2} is not unity, either divide by it so as to recluce it to unity, or multiply all the terms
by such a factor that it shatl become a perfect square, und complete the square by the rule of $\$ 18 \%$
EXAMPLE.

Solve the equation

$$
\frac{x-1}{x-20}=2 x
$$

Clearing of fractions and transposing, we find the equation to become

$$
\begin{aligned}
2 x^{2}-41 x+1 & =0 \\
x^{2}-\frac{41 x}{2} & =-\frac{1}{2}
\end{aligned}
$$

Adding $\frac{1}{4}$ the square of the coefficient of x to each side, we have

$$
x^{2}-\frac{41}{2} x+\frac{1681}{16}=\frac{i 681}{16}-\frac{1}{2}=\frac{1663}{16} .
$$

Extracting the square root and reducing, we find the values of x to be

$$
x_{1}=\frac{1}{4}(41+\sqrt{ } i(i 3),
$$

and

$$
x_{2}=\frac{1}{4}(\dot{4}-\sqrt{ } 16 ; 3) .
$$

Using the other method, in order to aroid fractions, we multiply the equation (5) by 2 , making the equation,

$$
4 x^{2}-82 x=-9
$$

Alding $\frac{41^{2}}{4}=\frac{1681}{4}$ to each side of the equation, we have

$$
4 x^{2}-82 x+\frac{41^{2}}{4}: \frac{1681}{4}-z=\frac{16 \pi 3}{4}
$$

Extracting the square root,

$$
2 x-\frac{41}{z}=\sqrt{\frac{16 \pi 3}{4}}=\frac{\sqrt{ } 16 \pi 3}{z} ;
$$

whence we find

$$
x=\frac{-41 \pm \sqrt{ } 16 \pi 3}{t}
$$

the same result as before.

EXERCISES.

Reduce and solve the following equations
I. $\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{5}{6}$.
2. $\frac{y+4}{y-4}+\frac{y-4}{y+4}=\frac{10}{3}$.

$$
\begin{aligned}
& \text { 3. } \frac{1}{x-1}+\frac{2}{x-2}=\frac{4}{3} \\
& \text { 4. } \\
& \text { 5. } \frac{y^{2}-2 a y+a^{2}-l^{2}=0 .}{a+l+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x} . \\
& \text { 6. } \\
& \frac{a^{2}}{x^{2}-a^{2}}+\frac{3}{x+a}-\frac{b}{x-a}=0 . \\
& \text { 7. } \frac{1+\frac{x+a}{x-a}}{1-\frac{x-a}{x+a}=3 .} \\
& \text { 8. } \frac{2}{2+u}-\frac{y}{y^{2}-4}+\frac{2}{2--y}=4 . \\
& \text { 9. } \frac{y+a}{y-a}-\frac{y-a}{y+a}=\frac{1}{y-a}-\frac{1}{y^{2}-a^{2}}+\frac{1}{y-u} . \\
& \text { 10. } \frac{x}{a+x}-\frac{x}{a-x}+3=0 .
\end{aligned}
$$

PROBLEMS.

ı. Find two numbers such that their difference shall be 6 and their product 56%.
2. The difference of two numbers is 6 , and the difference of their cubes is 936 . What are the numbers?
3. Divide the number 34 into two such parts that the sum of their squares shall be double their product?
4. The sum of two numbers is 60 , and the sum of their squares 18%. What are the mumbers?
5. Find three numbers such that the second shall be 5 greater than the first, the third donble the second, and the sum of their squares 1205.
6. Find four numbers such that each shall be 4 greater than the one next smaller, and the product of the two lesser ones added to the product of the two greater shall be 312 .
7. A shoe dealer bought a box of hoots for $\$ 210$. If there had been 5 pair of boots less in the hox, they would have cost him sl per pair more, if he had still paid $\$ 210$ for the whole. How many pair of boots were in the box?
hem. If we call x the number of pairs, the price paid for cach pair must have been $\frac{\ddot{210}}{x}$.
8. A huckster bought a certain number of chickens for \$10, and a mumber of turkeys for 815.75 . There were 4 more chickens than turkeys, but they each cost him 35 cents a piece less. How many of each did he buy?
9. A farmer sold a certain momber of sheep for $\$ 240$. If he had sold a momber of sheep 3 greater for the same sum, he would have received $\$ 4$ a piece less. How many sheep did he sell?

1o. A party having dined together at a hotel, fom the bill to be 89.60 . 'Iwo of the mmber having left before paying, each of the remainder had to pay it cents more to make up the loss. What was the number of the party?
ir. A pedler bought $\$ 10$ worth of apples. 30 of them prosed to be rotten, but he sold the remainder at an advance of \otimes cents each, and made a profit of $\$ 3.20$. How many did he buy?
12. In a certain number of hours a man traveled 48 miles ; if he had traveled one mile more per hour, it would have taken him t hours less to perform his jommey; how many miles did he travel per hour?
13. The perimeter of a rectangular field is 160 metres, and its area is $15 \% 5$ square metres. What are its length and breadth?
14. The length of a lot of land exceceds its breadth by a feet, and it contains m^{2} square feet. What are its dimensions?
15. A stage leaves town A for town B, driving 8 miles an hour. 'Three hours afterward a stage leares B for A at such a speed as to reach A in 18 hours. They meet when the second hats driven as many hours as it drives miles per hour. What is the distance betiveen A and B :

Note. The solution is very simple when the proper quantity is taken as unknown.

Equations which may be Reduced to Quadratics.

196. Whenever an equation contains only two powers of the unknown quantity, and the index of one power is double that of the other, the equation can be solved as a quadratic.

Special Example. Let us take the equation

$$
\begin{equation*}
x^{6}+b x^{3}+c=0 \tag{1}
\end{equation*}
$$

Transposing c and adding $\frac{1}{4} b^{2}$ to each side of the equation, it becomes

$$
x^{6}+b x^{3}+\frac{1}{4} b^{2}=\frac{1}{4} l^{2}-c
$$

The first member of this equation is a perfect square, namely, the square of $x^{3}+\frac{1}{2} b$. Extracting the square roots of both members, we have

$$
x^{3}+\frac{1}{2} b=\sqrt{ }\left(\frac{1}{4} b^{2}-c\right)= \pm \frac{1}{2} \sqrt{ }\left(l^{2}-4 c\right)
$$

Hence, $\quad x^{3}=\frac{1}{2}\left[-b \pm \downarrow^{\prime}\left(b^{2}-4 c\right)\right]$.
Extracting the cube root, we have

$$
x=\frac{1}{2^{\frac{1}{3}}}\left[-b \pm \sqrt{ }\left(b^{2}-4 c\right)\right]^{\frac{1}{3}}
$$

General Form. We now generalize this solution in the following way. Suppose we can reduce an equation to the torm

$$
a x^{2 n}+b x^{n}+c=0
$$

in which the exponent n may be any quantity whatever, entire or fractional. By dividing by a, transposing, and adding $\frac{1}{4} \frac{b^{2}}{a^{2}}$ to both sides of the equation, we find

$$
x^{2 n}+\frac{b}{a} x^{n}+\frac{1}{4} \frac{b^{2}}{a^{2}}=\frac{1}{4} \frac{b^{2}}{a^{2}}-\frac{c}{a}
$$

The first side of this equation is the square of

$$
x^{n}+\frac{1}{2} \frac{b}{a} .
$$

Hence, by cxtracting the square root, and reducing as in the general equation, we find

$$
x^{n}=\frac{1}{2 a l}\left[-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right] .
$$

Extracting the $n^{\text {th }}$ root of both sides, we have

$$
\begin{aligned}
x & =\frac{1}{2^{\frac{1}{n}} a^{\frac{1}{2}}}\left[-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right]^{\lambda /} \\
& =\left(二^{3} \pm \frac{\sqrt{b^{2}-4} \bar{a}}{\sim a}\right)^{\frac{1}{n}} .
\end{aligned}
$$

If the exponent n is a fraction, the same course may bo followed.

Suppose, for example,

$$
a x^{4}+b x^{\frac{2}{3}}+c=0 .
$$

Dividing by a and transposing, we have

$$
x^{\frac{3}{3}}+\frac{b}{a} x^{\frac{2}{3}}=-\frac{c}{a}
$$

Alding $\frac{弓^{2}}{4 t^{2}}$ io botin sides,

$$
x^{4}+\frac{b}{a} x^{\frac{2}{3}}+\frac{b^{2}}{4 a^{2}}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}
$$

The left-hand member of this equation is the square of

$$
x^{\frac{9}{3}}+\frac{b}{2 a}
$$

Extracting the square root of both members,
whence,

$$
\begin{aligned}
x^{\frac{2}{3}}+\frac{b}{2 a} & =\left(\frac{b^{2}}{4\left(i^{2}\right.}-\frac{v^{\frac{1}{2}}}{a}\right)^{\frac{1}{2}}=\frac{\left(l^{2}-4 a c\right)^{\frac{1}{2}}}{2 a} ; \\
x^{\frac{3}{3}} & =\frac{-b \pm\left(l^{2}-4 a c\right)^{\frac{1}{2}}}{2 a} .
\end{aligned}
$$

Raising both sides of this equation to the ${ }_{2}^{3}$ power, we have

$$
x=\left[\frac{-b \pm\left(b^{2}-4 a(t)^{\frac{1}{2}}\right.}{2 a}\right]^{\frac{3}{2}}
$$

EXERCISES.

1. Find a number which, added to twice its square root, will make 99.
2. What number will leave a remainder of 99 when twice its square root is subtracted from it.
3. One-fifth of a certain number exceeds its square root by 30 . What is the number?
4. What number added to its square root makes 306 ?
5. If from 3 times a certain mmber we subtract 10 times its sifure root and 96 more, and divide the remainder by the nmmber, the quotient will be 2. What is the number?

Solve the equations:
6. $\frac{1}{3} y^{1}-2 y^{2}=15 . \quad$ 7. $3 y^{4}-8 y^{2}=25$.
8. $5 y^{\frac{1}{2}}-8 y^{\frac{1}{2}}=13$.
9. $\quad\left(x^{2}+a^{2}\right)^{\frac{m}{n}}-4\left(x^{2}+a^{2}\right)^{\frac{m}{2 n}}=a^{2}-2+\frac{1}{a^{2}}$.

19\%. When the unknown ruantity appears in the form $x^{2}+\frac{1}{x^{2}}$, the square may be completed by simply adding a to this expression, because $x^{2}+2+\frac{1}{x^{2}}$ is a perfect sfuare, namely, the square of $x+\frac{1}{x}$. The value of x maty then be deduced from it by solving another quadratic equation.

Example. $\quad 3 x^{2}+\frac{3}{x^{2}}=22$.
We first divide by 3 and aldi 2 to each side of the equation, obtaining

$$
x^{2}+2+\frac{1}{x^{2}}=\frac{22}{3}+2=\frac{28}{3}
$$

Extracting the square root of both sides,

$$
x+\frac{1}{x}=\frac{2 \sqrt{ } 7}{\sqrt{ } 3}=\frac{2 \sqrt{ } 21}{3}=\frac{2}{3} \sqrt{ } 21
$$

By multiplying by x, this equation becomes a quadratic, and can be solved in the ustal way.

Let us now take this equation in the more general form,

$$
\begin{equation*}
x+\frac{1}{x}=e \tag{a}
\end{equation*}
$$

Which rednces to the foregoing by putting $c=\frac{2}{3} \sqrt{ } 21$. Clearing of fractions and transposing,

$$
x^{2}-c x+1=0
$$

ce root
which being solved in the nsual way, gives

$$
x=\frac{e \pm \sqrt{ }\left(e^{2}-4\right)}{i}
$$

The two roots are therefore

$$
\begin{aligned}
& x_{1}=\frac{\left.e+\sqrt{(} e^{2}-4\right)}{2} \\
& x_{2}=\frac{e-\sqrt{ }\left(e^{2}-4\right)}{2}
\end{aligned}
$$

If in the first of these equations we rationalize the numerator loy multiplying it by $e-\sqrt{ }\left(e^{2}-4\right)(\S 185)$, we shall find it to reduce to $\frac{\partial}{e-\sqrt{\left(e^{2}-4\right)}}$, that is, to $\frac{1}{x_{2}}$. Wherefore,

$$
x_{1}=\frac{1}{x_{2}} \text { identicelly. }
$$

Vice verse, x_{2} is identically the same as $\frac{1}{x_{1}}$.
This must be the ease whenever we solve an equation of the form (a), that is, one in which the value of $x+\frac{1}{x}$ is given. Let us suppose first that $e=\frac{50}{7}$, so that the equation is

$$
x+\frac{1}{x}=\frac{50}{7}
$$

It is evident that $x=7$ is a root of this equation, becanse when we put y for x, the left-hand member becomes $y+\frac{1}{7}$, which is equal to $\frac{\% 0}{\%}$. If we put $\frac{1}{\%}$ for x, the left-hand member will become

$$
\frac{1}{\gamma}+\frac{1}{\frac{1}{7}}=\frac{1}{\gamma}+\%
$$

Hence x and $\frac{1}{x}$ exchange values by putting $\frac{1}{y}$ instead of $r y$, so that their sum $x+\frac{1}{x}$ remains maltered by the change.

The gencral result may be expressed thus:
Because the value of the expression $x+\frac{1}{x}$ remains unaltered when we change x into $\frac{1}{x}$, therefore the reciprocal of any root of the equation

$$
x+\frac{1}{x}=e
$$

is also it root of the same equation.

EXERCISES.

Find all the roots of the following equations withont clearing the given equations from denominators:
I. $x^{2}+\frac{1}{x^{2}}=\frac{17}{4}$.
2. $\quad a^{2} x^{2}+\frac{1}{a^{2} \cdot c^{2}}=m^{2}-2$.
3. $16 y^{2}+\frac{1}{y^{2}}=28$.
4. $\frac{m^{4}}{y^{2}}+y^{2}=2 m^{2}$.
5. Show, without solving, that if r be any root of the equation

$$
x^{2}+\frac{1}{x^{2}}=a
$$

then $-r, \frac{1}{r}$, and $-\frac{1}{r}$ will also be roots.

Factoring a Quadratic Equation.

198. 199. Special Case. Let us consider the equation
or

$$
\begin{array}{r}
x^{2}-2 x-15=0, \\
x^{2}-2 x+1-16=0, \\
(x-1)^{2}-4^{2}=0 .
\end{array}
$$

Factoring, it loccomes (§90),
or

$$
(x-1+4)(x-1-4)=0
$$

$$
(x+3)(x-5)=0
$$

Therefore the original equation can be transformed into

$$
(x+3)(x-5)=0,
$$

a result which can be proved by simply performing the multiplications.

This last equation may be satisfied by putting either of its factors equal to zero ; that is, by supposing
or

$$
\begin{aligned}
& x+3=0, \quad \text { whence } \quad x=-3 \\
& x-5=0, \\
& \text { whence } \\
& x=+5
\end{aligned}
$$

These are the same roots which we should obtain by solving the original equation.
2. Factoring the General Qualralic Equation. Let us consider the general quadratic equation,

$$
\begin{equation*}
x^{2}+p x+q=0 \tag{a}
\end{equation*}
$$

Now, instead of thinking of x as a root of this equation, let us suppose x to have any value whatever, and let us consider the expression

$$
\begin{equation*}
x^{2}+p x+q \tag{1}
\end{equation*}
$$

which for shortness we shall call X. Let us also inquire how it can be transformed without changing its value.

First we add and subtract $\frac{1}{4} p^{2}$, so as to make part of it a perfect square. It thus becomes,

$$
X=x^{2}+p x+\frac{1}{4} p^{2}-\frac{1}{4} p^{2}+q ;
$$

or, which is the same thing,

$$
X=\left(x+\frac{1}{2} p\right)^{2}-\left(\frac{1}{4} p^{2}-q\right) .
$$

Factoring this expression as in $\S 188$, it becomes

$$
X=\left[x+\frac{1}{2} p+\left(\frac{1}{4} p^{2}-q\right)^{\frac{1}{2}}\right]\left[x+\frac{1}{2} p-\left(\frac{1}{4} p^{2}-q\right)^{\frac{1}{3}}\right]
$$

The student should now prove that this expression is really equal to $x^{2}+p x+q$, by performing the multiplication.

Let us next put, for brevity,

$$
\left.\begin{array}{l}
\varepsilon=-\frac{1}{2} p-\left(\frac{1}{4} p^{2}-q\right)^{\frac{1}{2}} \tag{2}\\
\beta=-\frac{1}{2} p+\left(\frac{1}{4} p^{2}-q\right)^{\frac{1}{3}}
\end{array}\right\}
$$

'The preceding value of X will then become,

$$
\begin{equation*}
X=(x-\varkappa)(x-\beta) \tag{3}
\end{equation*}
$$

an expression identically equal to (1), when we put for a and β their values in (2).

Let us return to the suppositien that this expression is to be equal to zero, and that x is a root of the equation.

The erguation (a) will then be

$$
\begin{equation*}
(x-\kappa)(x-\beta)=0 \tag{4}
\end{equation*}
$$

But no product can be equal to zero unless one of the factors is zero. Hence we must have either
or

$$
\begin{aligned}
& x-\iota=0, \quad \text { whence } \quad x=\imath \\
& x-\beta=0, \quad \text { whence } \quad x=\beta
\end{aligned}
$$

Trence, α and β are the two roots of the equation (α).
The above is another way of solving the quadratic equation.

To compare the expressions (1) and (3), let us perform the multiplication in the latter. It will become,

$$
X=x^{2}-(\varkappa+\beta) x+\varkappa \beta
$$

Since this expression is identicaliy the same as $x^{2}+p x+q$, the coefficients of the like powers of x must be the same. That is,

$$
\left.\begin{array}{rl}
\star+\beta & =-p \tag{5}\\
\epsilon \beta & =q
\end{array}\right\}
$$

which ciñ be readily proved by adding and multiplying the equations (2).

This result may be expressed as follows :
1 Theorem. When a quadratic equation is reduced to the general form

$$
x^{2}+p x+q=0
$$

the coefficient of x will be equal to the sum of the roots with the sign elanged.

The term independent of x will be equal to the product of the roots.

The student may ask why can we not determine the roots of the quadratic equation from equations (5), regrarding es and β as the unknown quantities?

We can do so, but let us see what the result will be. We eliminate either a or β by substitution or by comparison.

From the second equation (5) we have,

$$
\begin{equation*}
\beta=\frac{q}{6} . \tag{3}
\end{equation*}
$$

Substituting this in the first equation, we have

$$
c+\frac{q}{c}=-p
$$

Clearing of fractions and transposing,

$$
a^{2}+p s+q=0
$$

We have now the same equation with which we started, only a takes the place of x. If we had eliminated a, we should have had the same equation in β, namely,

$$
\beta^{2}+p \beta+q=0
$$

So the equations (5), when we try to solve them, ouly lead us to the original equation.
199. To form a Quadratic Equation when the Roots are given. The foregoing principles will enable us to form a quadratic equation which shall have any given roots. We have only to substitute the roots for ce and β in equation (4), and perform the multiplications.

EXERCISES.

Form equations of which the roots shall be:
I. +1 and -1 .
2. 3 and 2.
3. -3 and -2 .
4. $3+2 \sqrt{ } 10$ and $3-2 \sqrt{ } 10$.
5. $7+2 \sqrt{ } 3$ and $7-2 \sqrt{ } 3$.
6. +1 and +2 .
7. -1 and +2 .
8. -1 and - 2 .
9. $\quad+1$ and -2.
10. $\quad 2+\sqrt{ } 5$ and $2-\sqrt{ } 5$.
m. $\frac{3}{4}$ and $\frac{4}{5}$.
12. $\frac{7}{2}$ and $\frac{9}{9}$.
13. $2+\sqrt{2}$ and $2-\sqrt{2} . \quad$ 14. $9+2 \sqrt{ } 2$ and $9-2 \sqrt{2}$
15. $5+7 \sqrt{5}$ and $5-7 \sqrt{5}$. $16 . \quad a+b$ and $a-b$.
17. $a+\sqrt{a^{2}-} \iota^{2}$ and $a-\sqrt{a^{2}-b^{2}}$.

Equations having Imaginary Roots.

200. When we complete the square in order to solve a quadratic equation, the quantity on the right-hand side of the equation to which that square is equal must be positive, else there can be no real root. For if we square either a positive or negative quantity, the result will be positive. Hence, if the square of the first member comes out equal to a negative quantity, there is no answer, either positive or negative, which will fulfil the conditions. Such a result shows that impossible conditions have been introduced into the problem.

EXAMPLES.

I. To divide the number 10 into two such parts that their product shall be 34 .

If we proceed with this equation in the usual way, we shall have, on completing the sfuare,
or

$$
\begin{array}{r}
x^{2}-10 x+25=-9, \\
(x-5)^{2}=-9
\end{array}
$$

The scuare being negative, there is no auswer. On considering the question, we shall see that the greatest possible product which the two parts of 10 can have is when they are each 5. It is therefore impossible to divide the number 10 into two parts of which the product shall be more than 25 ; and because the question supposes the product to be 34 , it is impossible in ordinary numbers.
2. Suppose a person to travel on the surface of the earth to any distance; how far must he go in order that the straight line through the round earth from the point whence he started to the point at which he arrives shall be 8000 miles?

It is evident that the greatest possible length of this line is a diameter of the earth, namely, 7,912 miles. Hence he can never get 8,000 miles away, and the answer is impossible.

In such cases the square root of the negative quantity is considered to be part of a root of the equation, and because it is not equal to any positive or negative algebraic quantity, it is called an imayinary root. The theory of such roots will be explained in a subsequent book.
solve a e of the tive, else positive Ience, if negative e, which possible nat their we shall

On conpossible they are mber 10 25 ; and t is $\mathrm{im}-$
earth to straight started
s line is he can le. intity is canse it atity, it will be

CHAPTER III.

REDUCTION OF IRRATIONAL EQUATIONS TO THE NORMAL FORM.

201. An Irrational Equation is one in which the unknown quantity appears under the radical sign.

An inrational equation may be cleared of fractions in the same way as if it were rational.

Example. Clear from fractions the equation

$$
\frac{\sqrt{x+a}+\sqrt{x-a}}{\sqrt{x+a}-\sqrt{x-a}}=\frac{2 a}{\sqrt{x^{2}-a^{2}}} .
$$

Multiplying both members by $\sqrt{x^{2}-a^{2}}=\sqrt{x+a} \sqrt{x-a}$, we have

$$
\frac{(x+a) \sqrt{x-a}+(x-a) \sqrt{x+a}}{\sqrt{x+a}-\sqrt{x-a}}=2 a .
$$

Next, multiplying by $\sqrt{x+a}-\sqrt{x-a}$, we have $(x+a) \sqrt{x-a}+(x-a) \sqrt{x+a}=2 a \sqrt{x+a}-2 a \sqrt{x-a}$.

Trunsposing and reducing, we have

$$
(x+3 a) \sqrt{x-a}+(x-3 a) \sqrt{x+a}=0
$$

and the equation is cleared of denominators.

Clearing of Surds.

202. In order that an irrational equation may be solved, it must also be cleared of surds which contain the unknown quantity. In showing how this is done, we shall suppose the equation to be cleared of denominators, and to be composed of terms some or all of which are multiplied by the square roots of given functions of x.

Let us take, as a first example, the equation just found. Since a surd may be cither positive or negative, the equation in question may mean any one of the following four:

$$
\begin{array}{r}
\quad(x+3 a) \sqrt{x-a}+(x-3 a) \sqrt{x+a}=0, \\
(x+3 a) \sqrt{x-a}-(x-3 a) \sqrt{x+a}=0 \\
-(x+3 a) \sqrt{x-a}+(x-3 a) \sqrt{x+a}=0 \\
-(x+3 a) \sqrt{x-a}-(x-3 a) \sqrt{x+a}=0 \tag{4}
\end{array}
$$

But the third equation is merely the negative of the second, and the fourth the negative of the first, so that only two have different roots. Let us put, for brevity,

$$
\left.\begin{array}{l}
P=(x+3 a) \sqrt{x-a}+(x-3 a) \sqrt{x+a} \tag{5}\\
Q=(x+3 a) \sqrt{x-a}-(x-3 a) \sqrt{x+a}
\end{array}\right\}
$$

and let us consider the equation,

$$
\begin{equation*}
P Q=0 \tag{6}
\end{equation*}
$$

Since this equation is satisfied when, and only when, we have either $P=0$ or $Q=0$, it follows that every value of x which satisfies either of the equations (1) or (2) will satisfy (6). Also, every root of (6) must be a root cither of (1) or (2).

If we substitute in (6) the values of P and Q in (5), we shall then have

$$
(x+3 a)^{2}(x-a)-(x-3 a)^{2}(x+a)=0
$$

which reduces to

$$
\begin{aligned}
5 x^{2}-9 a^{2} & =0 \\
x & = \pm \frac{3 a}{\sqrt{ } 5}
\end{aligned}
$$

It will be remarked that the process by which we free the erquation from surds is similar to that for rationalizing the terms of a fraction employed in § 185.

As a second example, let us take the equation,

$$
\begin{equation*}
\sqrt{x+11}+\sqrt{x-4}-5=0 \tag{a}
\end{equation*}
$$

We write the three additional equations formed by combining the positive and negative values of the surds in every way:

$$
\begin{array}{r}
-\sqrt{x+11}+\sqrt{x-4}-5=0 \\
\sqrt{x+11}-\sqrt{x-4}-5=0 \\
-\sqrt{x+11}-\sqrt{x-4}-5=0
\end{array}
$$

The product of the first two equations is

$$
\begin{align*}
(\sqrt{x-4}-5)^{2}-(x+11) & =0 \\
10-10 \sqrt{x-4} & =0 \tag{1}
\end{align*}
$$

The product of the last two is

$$
10+10 \sqrt{x-4}=0
$$

The product of these two products is
which gives

$$
\begin{aligned}
100-100(x-4) & =0 \\
x & =5
\end{aligned}
$$

It will be remarked that (2) differs from (1) only in having the sign of the surd different. This must be the case, becanse the second pair of effuations formed from (a) differ from the first pair only in having the sign of the surd $\sqrt{x-t}$ different. Hence it is not necessary to write more than one pair of the equations at each step. The general process is as follows:
I. Change the sign of one of the surts in the given equation, and multiply the equation thus formed by the original equation.
II. Reduce this product, in it elunge the sign of another of the surds, and form a new product of the two equations thus formed.
III. Contimue the process until an equation without surds is reached.

Eximple. Solve

$$
\sqrt{8 x+9}+\sqrt{2 x+6}+\sqrt{x+4}=0
$$

Changing the sign of $\sqrt{x+4}$,

$$
\sqrt{8 x+9}+\sqrt{2 x+6}-\sqrt{x+4}=0
$$

The produet is

$$
(\sqrt{8 x+9}+\sqrt{2 x+6})^{2}-(x+4)=0
$$

or, after reduction,

$$
9 x+11+2 \sqrt{8 x}+9 \sqrt{2 x+6}=0
$$

Changing the sign of $\sqrt{2 x+6}$, we have

$$
9 x+11-2 \sqrt{8 \cdot c+9} \sqrt{2 x+6}=0
$$

The product of the last two equations reduces to

$$
\begin{aligned}
17 x^{2}-66 x-95 & =0 \\
\text { which being solved gives } & x
\end{aligned}=\frac{33 \pm 52}{17} .
$$

Remaris. Equations containing surds may often reduce to the form treated in § 106. In this case, the methods of that section may be followed.

EXERCISES.

Solve the equations:

1. $\frac{1}{\sqrt{ } x+\sqrt{ } a}+\frac{1}{\sqrt{ } x-\sqrt{ } a}=\frac{2 \sqrt{ } a-2 \sqrt{ } x}{x-a}$.
2. $\frac{\sqrt{x^{2}+a}}{\sqrt{a^{2}-x}}=\frac{x}{a} . \quad$ 3. $\quad \sqrt{x+3}-\sqrt{x-4}=1$.
3. $\sqrt{x+14}+\sqrt{x-14}=14$.
4. $\quad(3-x)^{\frac{1}{2}}-\left(3+x^{2}\right)^{\frac{1}{4}}=0$.
5. $\sqrt{a+\sqrt{ } x}+\sqrt{a-\sqrt{x}}=2 \sqrt{x+\frac{a}{2}}$.
6. $\frac{1}{\sqrt{ } x+2}+\frac{\sqrt{ } x}{x-4}-\frac{1}{\sqrt{ } x-2}=0$.
7. $\frac{5 x-9}{\sqrt{5 x}+3}-1=\frac{\sqrt{\overline{5} x}-3}{2}$.
8. $\sqrt{a^{2}-2 x}+\frac{x}{\sqrt{a^{2}-2 x}}=0$.

เ. $\frac{x+\sqrt{ } x}{x-\sqrt{ } x}=\frac{x(x-1)}{4}$.
11. $\frac{\sqrt{1+a}}{\sqrt{x-a}+\sqrt{a x-1}}=\frac{1}{\sqrt{x-1}}$.

CHAPTER IV. SIMULTȦNEOUS QUADRATIC EQUATIONS.

Between a pair of simultancons general fuadratic equations one of the maknown quantities can always be eliminated. The resulting equation, when reduced, will be of the fourth degree with respect to the other unknown quantity, and cannot be solved like a cinadratic equation.

But there are several eases in which a solution of two equations, one of which is of the second or some higher degree, may be effected, owing to some of the terms being wanting in one or both equations.
203. Case I. When one of the equations is of the first degree omly.

This case may be solved thus:
Rele. Find the :alue of one of the unknourle quantities in trrmes of the other from the equention of the first alegrec. This value being substituted in the other equertion, we shall have a quadratic equation from whieh the other unknou'n quantity may be founcl.

Eximple. Solve

$$
\left.\begin{array}{r}
2 x^{2}+3 x y-5 y^{2}-x-5 y=26 \tag{a}\\
2 x-3 y=5
\end{array}\right\}
$$

From the second equation we find

$$
\begin{equation*}
x=\frac{3 y+5}{2} \tag{b}
\end{equation*}
$$

Whence,

$$
x^{2}=\frac{9 y^{2}+30 y+25}{4}
$$

Substituting this value in the first equation and reducing, we find

$$
4 y^{2}+16 y+10=20
$$

Solving this quadratic equation, 13

$$
y=-2 \pm \sqrt{ } 8=-2 \pm 2 \sqrt{ } 2
$$

This value of y being substituted in the equation (3) gives,

$$
x=\frac{-1 \pm 3 \sqrt{ } 8}{2}=\frac{-1 \pm 6 \sqrt{ } 2}{2}
$$

The same problem may be solved in the reverse order by climinating y instead of x. The second equation (6) gives

$$
y=\frac{2 x-5}{3}
$$

If we substitute this value of y in the first equation, we shall have a quadratic equation in x, from which the value of the latter quantity can be found.

Solve
I.

EXERCISES.

$$
\begin{array}{r}
x^{2}-2 x y+4 y^{2}=21 \\
2 x+y=12
\end{array}
$$

2.

$$
\begin{aligned}
3 x^{2}-2 y^{2}+5 x-2 y & =\lesssim 8 . \\
x+y+4 & =0 .
\end{aligned}
$$

3.

$$
\begin{aligned}
5 x y+7 y^{2}-x-y & =r 2, \\
x+2 y & =0 . \\
3 x^{2}+2 y^{2} & =813, \\
7 x-4 y & =1 \%
\end{aligned}
$$

4.
5.

$$
\begin{aligned}
& x+y=7 \\
& \frac{x}{y}-\frac{y}{x}=\frac{7}{1 \cdot}
\end{aligned}
$$

204. Case II. When each equation contains only one term of the secomal alegree, aud that term has the same prooluct or square of the unknown quantities in the tuc equations.

Such equations are

$$
\left.\begin{array}{l}
a x^{2}+d x+e y+f=0 \\
a^{\prime} x^{2}+d^{\prime} x+e^{\prime} y+f^{\prime}=0
\end{array}\right\}
$$

where the only term of the second degree is that in x^{2}.
If we eliminate x^{2} from these equations by multiplying the first by a^{\prime} and the second by a, and subtracting, we have

$$
\left(u^{\prime} d-a l^{\prime}\right) x+\left(\iota^{\prime} c-u c^{\prime}\right) y+u^{\prime} f-u f^{\prime}=0
$$

Solving this equation with reinect to x, we find

$$
\begin{equation*}
x=\frac{\left(u e^{\prime}-u^{\prime} c^{\prime}\right)!+u f^{\prime \prime}-u^{\prime} f}{u^{\prime} d-u d l^{\circ}} . \tag{b}
\end{equation*}
$$

By sul)stituting this value of a in either of the equations (1), we shatl have a quadratic erpation in y. Solving the latter, we shall obtain two values of y. Substituting these in (b), we shall have the two corresponding values of x, and the solution will be eomplete. Hence the rule,

E:liminate the term of ther sceond aegree by athation or sulbtraction, and use the resulting cquation of the first alegee withe cither of the original equations, us in C'use I.

Example. Sulve

$$
\left.\begin{array}{l}
2 x y-4 x+5 y=23 \\
3 x y+7 x+y=41 \tag{}
\end{array}\right\}
$$

Multiplying the first equation by 3 and the second by 2 , and subtracting, we have
whenee,

$$
\begin{align*}
-20 x+13 y & =-1: \tag{b}\\
x & =\frac{1}{2} y+\frac{1}{2} \tag{c}
\end{align*}
$$

Substituting this value in the first equation, we find a quadratie equation, whieh, being solved, gives

$$
y=-2 \pm \sqrt{ } 20
$$

Substitutiing these values in (c), the result is

$$
x=-\frac{1}{2} \pm \frac{1}{2} \sqrt{2} 9
$$

The two sets of ralues of the unknown quantities are therefore

$$
\begin{array}{ll}
x_{1}=-\frac{1}{2}+\frac{1}{2} \sqrt{ } 29, & x_{2}=-\frac{1}{2}-\frac{1}{2} \sqrt{ } 29 \\
y_{1}=-2+\sqrt{ } 29, & y_{2}=-2-\sqrt{ } 29 .
\end{array}
$$

We might have obtained the same result ly solving the efuation (r) with respect to y, and substituting in (a). The student should practice both methods.

	ExErcises.
1.	$\begin{aligned} 6 r^{2}-3 x-4 y & =95 \\ x^{2}+3 x-3 y & =18 \end{aligned}$
2.	$\begin{array}{r} 9 y^{2}+y=9 \\ y^{2}+3 x-4 y=1 t \end{array}$
3.	$\begin{aligned} x y+(i x+r y & =66, \\ 3 x y+x x+i y & =30 . \end{aligned}$

20.5. Case III. When meither equation comtains a term of the first alegree in x or !.

Rexe. Wlimiluate the constant terms b!! multinl!!ing eache cyuation by the coustant term of the other, aurl arlaling or subtrecting the two promlucts. The result will, be a autulrative aquation, from which either wnkumen quanlit! ran beatromincel in teims of the other. Then substitute us in C'ase I.

Example. Solve

$$
\left.\begin{array}{r}
x^{2}+x y-y^{3}=5 \\
2 x^{2}-3 x^{2} y+2 y^{2}=14 \tag{1}
\end{array}\right\}
$$

14×1 st eq. , $14 x^{2}+14 x y-14 y^{2}=80$.
$5 \times$ dl eq.,
$\begin{aligned} 10 x^{2}-15 x y+10 y^{2} & =80 \\ 4 x^{2}+20 x y-2 y^{2} & =0 .\end{aligned}$
Subtracting,
This is a quadratic equation, by which one manown quantity ean be expressed in terms of the other withont the latter being under the radical sign.

Trimsposing,

$$
\begin{equation*}
4 x^{2}+29 x y=24 y^{2} \tag{2}
\end{equation*}
$$

Completing square, $4 x^{2}+29 x y+\frac{841}{16} y^{2}=\frac{1225}{16} y^{2}$.
Extracting root,

$$
2 x+\frac{29}{4} y= \pm \frac{35}{4} y
$$

Whence,

$$
x=\frac{-29 \pm 35}{8} y=\frac{3}{4} y \text { or }-8 y
$$

Substituting the first of these values of x in either of the originul equations, we shall have

$$
y^{2}=16
$$

whence,

$$
y= \pm 4 ; \quad x= \pm 3
$$

Substituting the second ralue of x, we have

$$
y^{2}=\frac{1}{11}
$$

whence,

$$
y= \pm \frac{1}{\sqrt{ } 11} ; \quad x=\mp \frac{8}{\sqrt{ } 11}
$$

Therefore the four possible values of the unknown quantities are,

$$
\begin{aligned}
& x=+3,-3, \quad+\frac{8}{\sqrt{ } 11},-\frac{8}{\sqrt{ } 11} \\
& y=+4,-4,-\frac{1}{\sqrt{ } 11},+\frac{1}{\sqrt{ } 11}
\end{aligned}
$$

Each of these fom pairs of values satisfies the original equation.
Λ slight change in the mode of proceeding is to divide the erpation (:) by either $x^{\prime 2}$ or $?^{?}$, and to find the value of the quotient. Dividing $\begin{aligned} & \mathrm{y} \\ & g^{2} \text { and putting }\end{aligned}$

$$
u=\frac{x}{y},
$$

the equation will become

$$
4 u^{2}+29 u-2 t=0
$$

This quadratic equation, leing solved, gives

$$
u=\frac{-29 \pm 35}{\mathrm{~S}}=\frac{3}{4} \text { or }-8
$$

Putting $\frac{x}{y}$ for u, and multiplying by y,

$$
x=\frac{3}{4} y \text { or }-s y, \text { as before. }
$$

EXERCISES.

Solve
I.
2. $\quad 2 x^{2}+3 x y-y^{2}-2=0$; $x^{2}+3 x^{x} y-4 y^{2}+1=0$.
206. Case IV. When the expressions contailin!! thewnlinown quantitics in the two equetions heeve commeone foctors.

Ruse. Divide one of the equations whiche can be foretored b!y the other, and eateed the common finctors.
 an cquation of a louer degive.
EXAMPLES.

1. $x^{3}+y^{3}=01, \quad x+y=\%$.

We have seen ($£ 9.4$, Th. 1) that $x^{3}+y^{3}$ is divisible by $x+y$. So dividing the first equation by the second, we have

$$
x^{2}-x y+y^{2}=13
$$

This is an equation of the second degree only, and when combined with the second of the original equations, the solution maly be effected by Case I. The result is,

$$
x=3 \text { or } 4, \quad y=4 \text { or } 3
$$

2. $x y+y^{2}=133, \quad x^{2}-y^{2}=95$.

Factoring the first member of each equation, the equations become

$$
y(x+y)=133, \quad(x+y)(x-y)=95
$$

Dividing one equation by the other, and clearing of fractions,

$$
12 y=7 x, \quad \text { or } \quad y=\frac{7}{12} x
$$

The problem is now reduced to Case I, this value of y being combined with either of the original equations.

20\%. There are many other devices by which simultancous equations may be solved or brought under one of the above cases, for which no general rule ean be given, and in which the solution must be left to the ingennity of the sturlent. Sometimes, also, an equation which comes under one of the cases can be solved much more expeditiously than by the rule.

Let us take, for instance, the equations,

$$
x^{2}+y^{2}=65, \quad x y=28
$$

These equations can be solved by Case III, but the work would be long and combrous. We see that by adding and

ntaillations

be fitsfinctors. all hate
subtracting twice the second equation to and from the first, we can form two perfect squares. Extracting the roots of these squares, wo shall hate two simple equations, which shatl give the solation at onee. Each mknown quantity will have fom values, namely, $\pm ? \pm 4$.

PROBLEMS AND EXERCISES.

The following equations can all be solved beg some short mad expeditions combination of the equations, or by factoring, wiblout gring thengh the complex process of Case III. The student is recommemed not to work upon the equntions at random, but to study each pmir until ho sees how it can be reduced to a simpler equaton by miditom, mulit phication, or factoring, and then to go through the operations thins suggested.

1. $y^{2}+x y=14, \quad x^{2}+x y=35$.
2. $\quad 4 x^{2}-2 x y=208, \quad 2 x y-y^{2}=30$.
3. $\quad x^{3}+y=4 x, \quad y^{2}+x=4 y$.

If we subtract one of these equations from the other, the difference will te divisible by $x-y$.
4. $x^{3}+y^{3}+3 x+3 y=378, \quad x^{3}+y^{3}-3 x-3 y=3$. 4 .
5. $\quad x^{2}+y^{2}=44, \quad x+y=12$.
6. $x^{2}+x y=63, \quad x^{2}-y^{2}=7 \%$
7. $\quad \frac{\sqrt{ } x+\sqrt{ } y}{\sqrt{ } x-\sqrt{ } y}=4, \quad x^{2}-y^{2}=544$.
8. $x^{2}+x y=a, \quad y^{2}+x y=b$.
9. $\quad x^{3}+x y^{2}=10, \quad y^{3}+x^{2} y=5$.
10. $\quad x=a \sqrt{x+y}, \quad y=b \sqrt{x+y}$.

1. $\quad x \sqrt{x+y}=12 . \quad y \sqrt{x+y}=15$.
i2. $\quad 2 x^{2}+2 y^{2}=x+y, \quad x^{2}+y^{2}=x-y$.
2. $\quad 5 x^{2}-5 y^{2}=x+y, \quad 3 x^{2}-3 y^{2}=x-y$.
3. $\quad x^{2}+y^{2}+z^{2}=30, \quad x y+y z+z x=17, \quad x-y-z=2$.
4. $\sqrt{\frac{6 y}{x-y}}-3 \sqrt{\frac{x-y}{6 y}}=2$,
$x+y-2 \sqrt{\frac{x+y}{x-y}}=\frac{8}{x-y}$.
5. A principal of $\$ 5000$ amoments, with simple interest, to sid 100 after a certain number of rears. Hat the rate of interest been 1 per cent. higher and the time 1 year longer, it would have amounted to s s 800 . What was the time and rate?
6. A courier left a station riding at a uniform rate. Five hours afterward, a second followed him, riding 3 miles an hour faster. Two hours after the second, a thind started at the rate of 10 miles an hour. They all reach their destinatio: at the same time. What was its distance and the rate of iding?
7. In a right-angled triangle there is given the hypothemuse $=u$, and the area $=l^{2}$; find the sides.
8. Find two numbers such that their product, sum, and difference of squares shall be equal to each other.
9. Find two numbers whose product is 216 ; and if the greater be diminished by 4 , and the less increased by 3 , the product of this sum and difference may be 240 .
10. There are two nmbores whose sum is $\%$, and the sum of their square roots is 12 . What are the numbers ?
11. Find two numbers whose sum is ro, and the sum of their cube roots 6 .
12. The sides of a given rectangle are m and n. Find the sides of another which shall have twice the perimeter and twice the area of the given one.
13. A certain number of workmen require 3 days to complete a work. A nmmber 4 less, working 3 hours less per day, will do it in 6 days. A number 6 greater than the original number, working 6 hours less per day, will complete the work in 4 days. What was the original number of workmen, and how long did they work per day?
14. Find two numbers whose sum is 18 and the sum of their fourth powers 14096.

Note. Since the sum of the two numbers is 18 , it is evident that the one must be as much less than 9 as the other is greater. The equations will assume the simplest form when we take, as the unknown quantity, the common amount by which the numbers differ from 9 .
26. Find two numbers, x and y, such that

$$
\begin{gathered}
x^{3}+y^{3}: x^{3}=y^{3}:: \quad 35: 19 \\
x y=24
\end{gathered}
$$

27. Find two numbers whose sum is 14 and the sum of their fifth powris 161:24.
mate. Five 3 miles 11 stirted at destinatio: of 1 iding? e hypothe; sum, and and if the d by 3 , the id the sum ?
the sum of

Find the and twice
hys to comess per day, he origimal te the work rkmen, and
the sum of
crident that . The equaknown quan9.

$$
\begin{gathered}
\text { BOOK VII. } \\
\text { PROGRESSIONS. }
\end{gathered}
$$

CHAPTER 1.

ARITHMETICAL PROGRESSION.

20s. Dof. When we lave a series of numbers each of which is greater or less than the preceding loy a constant quantity, the series is said to form an Arithmetical Progression.

Example. The series

$$
\begin{aligned}
& \% 12,1 \%, 2 \Omega, 2 \pi, 32, \text { ete. ; } \\
& \pi, 5,3,1, \quad-1,-3, \text { etc. ; } \\
& a+b, a, a-b, a-2 b, a-3 b, \text { ete., }
\end{aligned}
$$

are each in arithmetical progression, becamse, in the first, each momber is greater than the preceding by 5 ; in the second, eath is less than the preceding by 2 ; in the third, each is less than the preceding by b.

Def. The amount by which each term of an arithmetical progression is greater than the preceding one is callod the Common Difference.

Def'. 'The Arithmetical IMean of two quantities is hall their smm.

All the terms of an arithmetical progression except the first and last are called so many arithmetical means between the first and last as extremes.

Example. The form numbers. $5,8,11,1$, form the four arithmetical means between $\underset{\sim}{ }$ and 1%.

EXERCISES.

1. Form iour terms of the arithmetical progression of which the first term is 7 and common difference 3 .
2. Write the first seven tems of the progression of which the first term is 11 and the common differenee -3 .
3. Write five ferms of the progression of which the first term is $a-4 n$ and the common difference $2 n$.

Problems in Progression.

209. Let us put
a, the first term of a progression.
d, the common difference.
n, the number of terms.
1, the last term.
Σ, the sum of all the terms.
The series is then

$$
a, \quad a+d, \quad a+2 d, \ldots \ldots
$$

Any three of the above fire quantities being given, the other two may be found.

Promem I. Given the first term, the common differenee, and the number of terms, to find the last term.

The 1st term is here a,

$2 d$	$"$	$"$	$a+d$,
$3 d$	$"$	$"$	$a+2 d$.

The coefficient of d is, in each case, 1 less than the number of the term. Since this cocfficient increases by mity for cerery term we add, it must remain less by unity than the number of the term. Hence,

The $i^{\text {th }}$ term is $a+(i-1) d$,
whatever be i. Hence, when $i=n$,

$$
\begin{equation*}
l=a+(n-1) d \tag{1}
\end{equation*}
$$

From this equation we can solve the further problems:
Prombear II. Given the last term 1, the common difference d, cond the number of terms u, to fincl the first term.

The solution is found by solving (1) with respect to a, which gives

$$
\begin{equation*}
a=l-(n-1) d \tag{2}
\end{equation*}
$$

Problem III. Given the first and last terms, a and \boldsymbol{l}, and the number of termes n, to fincl the common differcuce.

Solution from (1), d being the unknown quantity,

$$
\begin{equation*}
d=\frac{l-a}{n-1} \tag{3}
\end{equation*}
$$

Problem IV. Given the first and last terms and the common difference, to find the number of terms.

Solution, also from (1),

$$
\begin{equation*}
n=\frac{l-a}{a}+1=\frac{l-a+d}{d} \tag{4}
\end{equation*}
$$

Problem V. To find the sum of all the terms of an arithmetical progression.

We have, by the definition of $\boldsymbol{\Sigma}$,

$$
\Sigma=a+(a+l)+(a+2 l)+\ldots(l-d)+l
$$

the parentheses being used only to distinguish the terms.
Now let us write the terms in reverse order. The term before the last is $l-l$, the second one before it $l-2 d$, ete.

We therefore have,

$$
\Sigma=l+(l-l)+(l-2 d) \ldots+(a+d)+a
$$

Adding these two values of Σ together, term by term, we find

$$
2 \Sigma=(a+l)+(a+l)+(a+l)+\ldots+(a+l)+(a+l)
$$

the quantity $(a+l)$ being written as often as there are terms, that is, n times. Hence,

$$
\begin{align*}
2 \Sigma & =n(a+l), \\
\Sigma & =n \frac{a+l}{2} \tag{5}
\end{align*}
$$

Remark. The expression $\frac{a+l}{2}$, that is, half the sum of the extreme terms, is the mean value of all the terms. The
sum of the n terms is therefore the same as if each of them hat this value.
©10. In the ecfuation (5) we are supposed to know the first and last terms and the number of terms. If other qumtifies are taken as the known ones, we have to substitute for some one of the gramtities in (5) its expression in one of the erpations (1), (2), (3), or (4). Suppose, for example, that we hate given only the last term, the common difference, and the number of terms, that is, l, l, and n. We mast then in (5) substitute for a its value in (\sim). 'This will give,

$$
\begin{equation*}
\mathbf{\Sigma}=n\left(l-\frac{n-1}{2} d\right)=n l-\frac{n(n-1)}{2} d . \tag{6}
\end{equation*}
$$

EXERCISES:

In arithmetical progression there are
I. Civen, common difference, +3 ; third term $=10$.

Find !irst term.
Ans. First term $=4$.
2. (iiven 4th term $=b$, common difference $=-c$.

Find first 8 terms, their sum and product.
3. Given 3d term $=a+b$, 4th term $=a+2 b$. Find first 5 terms.
4. Given 1st term $=a-b$, 9th term $=9 a+3 b$. Find $2 d$ term and common difference.
5. Given, sum of 9 terms $=108$.

Find middle term and sim of 1 st and !th terms.
6. Giren 5 th term $=\gamma x-5 y$, rth term $=9 x-!y$. Find tirst 7 terms and common difference.
7. Given 1 st term $=12,50$ th term $=551$.

Find smo of all 50 terms.
S. To tind the smo of the first 100 unmbers, namely,

$$
1+2+3 \ldots+99+100
$$

Here the first term a is 1 , the last term $l 100$, and the nmber of terms 100. The solution is by Problem V.
9. Find the sum of the first n entire numbers, amely,

$$
1+2+3 \ldots+n
$$

$$
1+3+5 \ldots+2 n-1
$$

Here the mumber of terms is n.
in. Find the sum of the first n even numbers, namely,

$$
\stackrel{2}{2}+t+6 \ldots+2 n .
$$

12. In a school of m scholars, the highest received 13. merit marks, and each succeding one if les than the one next above him. How many did the lowest scholar receive! How mamy did they all receive?
13. The first term of a series is m, the last term ${ }^{2} m$, and the common difference d. What is the number of terms?
I.4. The first term is k, the last term $10 k-1$, and the number of terms 9 . What is the common difference?
is $_{5}$. The middle term of a progression is s. the mumber of terms $\overline{5}$, and the common difference $-k$. What are the first and last terms and the sum of the 5 terms?
14. The sum of 5 numbers in arthmetical progression is 20 and the sum of their squares 120 . What are the mombers?

Nore. In questions like this it is better to take the midule term for one of the unknown quatities. The other manown quatity will be the common difterence.
17. Find a momber consisting of three digits in arithmetical progression, of which the sum is 1.\%. If the mmber be diminished by 792 , the digits will be reversed.
iS. The continued probuct of three nu mbers in arithmetical progression is 640 , and the thirl is four times the first. What are the numbers?
19. A traveller has a joumey of 180 miles to perform. He goes 0^{2} miles the first day, oft the sceond, and so on, tratelling 3 miles less each day than the daty betore. In how many days will he eomplete the journey?

Here we have given the first term $2:$, the emmon difference - $:$, and the sum of the terms $1: 3$. Ton solve this. we takn equation (5 , and substitute for 1 its value in (1). This makes (i) reduced to

$$
\mathrm{s}=n \frac{a+a+(n-1) d}{\sim}=m+\frac{n(n-1) d}{\ddot{\sim}} .
$$

[^2]$$
132=2 \because n-3 \frac{n(n-1)}{2}
$$

This reduced to a quadratic equation in n, the solution of which gives two values of n. The stuchent should explain this donhle answer by commuing the progression to 11 tems, and showing what the negative terms iudicate.
20. Taking the same question as the last, only suppose the distance to be 140 miles instead of 132. Show that the answer will be imaginary, and explain this result.
21. Λ debtor owing $\$ 160$ arranged to pay 20. dollars the first month, 23 the sceond, and so on, 2 dollars less each month, until his deht should be discharged. How many payments must he make, and what is the explanation of the two answers?
22. A hogshead holding 135 gallons has 3 gallons poured into it the first day, 6 the second, and so on, 3 gatlons more every day. How long before it will be filled?
23. The continned product of 5 consecutive terms is $123: 0$ and their sum 40. What is the progression?
24. Show that the condition that three numbers, p, q, and r, are in athmetical progression may be expressed in the form

$$
\frac{q-p}{q-r}=-1
$$

25. In a progression consisting of 10 terms, the sum of the 1st, 8 orl, 5 th, 7th, and 9 th terms is 90 , and the snm of the remaining terms is 110 . What is the progression?
26. In a progression of an odd number of terms there is given the sum of the edd terms (the first, third, fifth, ete.), and the sum of the even terms (the second, fourth, ete.). Show that we can find the middle term and the number of terms, but not the common difference.
27. In a progression of an even number of terms is given the sum of the even terms $=10.5$, the sum of the odd terms $=$ 119. and the excess of the last term over the first $=26$. What is the progression?

2S. Given a and l, the first and last terms, it is required to insert i inthmetical means between them. Find the expression for the i terms required.
ich gives aswer by negative pose the answer lars the :ss each my paythe two ; poured us more is $123: 0$, q, and he form
n of the the re-
there is h, ete.), 1, cte.). mber of

is given

 rms $=$What
iired to expres-

CHAPTER II.
 GEOMETRICAL PROGRESSION.

211. Def. A Geometrical Progression consists of a series of terms of which each is formed by multiplying the term preceding by a constant factor.

An arithmetical progression is formed by continnal addition or subtraction; a geometrical progression by repeated multiplication or division.

Def'. The factor by which each term is multiphed to form the next one is called the Common Ratio.

The common ratio is analogons to the common difference in an arithmetical progression.

In other respects the same definitions apply to both.

$$
\begin{aligned}
& \text { E X A M PLES. } \\
& 2, \quad 6, \quad 18,54, \quad \text { ete. }
\end{aligned}
$$

is a progression in which the first term is 2 and the common ratio 3.

$$
2, \quad 1, \frac{1}{9}, \frac{1}{4}, \frac{1}{8}, \text { etc. }
$$

is a progression in which the ratio is $\frac{1}{9}$.

$$
+3,-6,+1 \therefore,-24, \text { etc. }
$$

is a progression in which the ratio is -2.
Nome. A progression lite the second one above, formed by dividing earla term by the same divisor to obtain the next term, is included in the general definition, because dividing by any number is the same as multiplying by the reciprocal. (icometrical progressions may therefore be divided into two classes, incroasing and decreasing. In the increasing progression the common ratio is greater than 1 and the tems go on increasing ; in a diminishing progression the ratio is less than unity and the terms go on diminishing.

Rem. In a progression in which the ratio is negative, the terms will be alternately positive and negative.

Def. A Geometrical IVean between two quantities

 is the square root of their product.EXERCISES.
Form five terms of each of the following geometrical progressions:

1. First term, 1 ; common ratio, on. 2.
2. Winst term, 8 ; common ratio, -3.
3. First term, 1 ; common ratio, -1 .
4. First term, $\frac{2}{3}$; common ratio, $\frac{3}{4}$.
5. First term, $\frac{4}{5}$; common ratio, $\frac{1}{2}$.

Problems of Geometrical Progression.

21%. In a geometrical progression, as in an arithmetiral one, there are five quantities, any three of which determine the pregression, and enable the other two to be fumd. They are
a, the first term.
r, the common ratio.
n, the mumber of terms.
l, the last term.
Σ, the sum of the n terms.
The general expression for the geometrical progression will be

$$
a, ~ a r, \quad a r^{2}, \quad a r^{3}, \text { ete., }
$$

because each of these terms is formed by multiplying the preceding one by r.
'Whe same problems present themselves in the two progressions. Those for the geometrical one are as follews:

Probiem I. Gieren the first term. the common ratio, amel the mumber of terins, to find the last term.

The progression will be

$$
u, \quad u r, a r^{2}, \text { etc. }
$$

We see that the exponent of r is less by 1 than the number of the term, and since it inereases by 1 for cach term added, it
must remain less by 1 , how many terms so ever we take. Hence the $u^{\text {lh }}$ term is

$$
\begin{equation*}
l=a r^{n-1} \tag{1}
\end{equation*}
$$

Probiem II. Given the last term, the common ratio, and the unmber of terms, to find the first term.

The solution is found by dividing both members of (1) by r^{n-1}, which gives

$$
\begin{equation*}
a=\frac{l}{r^{n-1}} \tag{2}
\end{equation*}
$$

Proplem III. Given the first term, the last term, ancl the number of terms, to find the common ratio.

From (1) we find $\quad r^{n-1}=\frac{l}{a}$.
Extracting the $(n-1)^{\text {th }}$ root of each member, we have

$$
r=\binom{l}{l}^{\frac{1}{n-1}} .
$$

[The solution of Problem IV requires us to find n from equation (1), and belongs to a higher department of Algebra.a.]

Prohlem V. To find the sum of all n terms of a gieometrical progression.

We have $\leq=a+a r+a r^{2}+$ etc. $+a r^{n-1}$.
Multiply both sides of this equation by r. We then have

$$
r \mathbf{\Sigma}=a r+a r^{2}+a r^{3}+\text { etc. } \cdots+a r^{n}
$$

Now subtract the first of these equations from the sceond. It is evident that, in the second equation, each term of the second member is eflual to the term of the second member of the first equation which is one phace farther to the right. Hence, when we subtract, all the terms will cancel cach other except the first of the first equation and the last of the second.
hladsthation. 'The following is a case in which $a=2, r=3, n=6$:

$$
\begin{aligned}
& \leq=2+6+18+54+162+486 . \\
& 3 \Sigma=6+18+54+162+486+1458 . \\
& \text { Subtracting, } 3 \leq-\Sigma=1458-2=1456 \\
& \text { or } \quad 2 \leq=1456, \text { and } \leq=728 . \\
& 14
\end{aligned}
$$

Returning to the gencral problem, we have
whence,

$$
\begin{align*}
(r-1) \mathbf{\Sigma} & =a r^{n}-\imath=a\left(r^{n}-1\right) \\
\mathbf{\Sigma} & =a \frac{r^{n}-1}{r-1}=a \frac{1-r^{n}}{1-r} \tag{4}
\end{align*}
$$

It will be most convenient to use the first form when $r>1$, and the second when $r<1$.

By this formula we are enabled to compute the sum of the terms of a geometrical progression withont actually forming all the terms and adiling them.

EXERCISES

1. Given 3d term $=9$, common ratio $=\frac{3}{2}$. lind first 5 terms.
2. Given 5 th term $=\frac{30}{2 i}$, common ratio $=-\frac{9}{3}$. Find first 5 terms.
3. Given 5 th term $=x^{4} y^{7}, 1$ st term $=y^{4}$. Find common ratio.
4. Given 1 st term $=1,4$ th term $=a^{2}$.

Find common ratio and first 3 terms.
5. Given $2 d$ term $=m$, common ratio $=-m$. Find first 4 te.ms.
6. A farrier having told a coachman that he would charge him $\$ 3$ for shocing his horse, the latter objected to the price. The farrier then offered to take 1 cent for the first nail, 2 for the seconcl, 4 for the third, and so on, donbling the amount for each nail, which offer the coachman aceepted. There were 32 nails. Find how moch the coachman had to pay for the last mail, and how much in all. (Compare \& 168, Rem.)
7. Find the smm of 11 terms of the series

$$
2+6+18+\text { etc. }
$$

in which the first term is 2 and the common ratio 3 .
8. If the common ratio of a progression is r, what will be the common ratio of the progression formed by taking
I. Every altermate term of the given progression?
II. Every $n^{\text {th }}$ term?
9. The same thing being supposed, what will he the common ratio of the progression of which every ulternate term is equal to every thind term of the given progression?
10. Show that if, in a geometrical progression, ead term be added to or subtracted from that next following, the sums or remainders will form a geometrical progression.
m. Show that if the arithmetical and geometrical means of two quantities be given, the quantities themselves may be found, and give the expressions for them.
12. The sum of the first and fomrth terms of a progression is to the sum of the secomb and third as $\because 1: 5$. What is the common ratio?
13. Express the continued product of all the terms of a geometrical progression in terms of a, r, and n ?

Limit of the Sum of a Progression.

213. Theorem. If the common ratio in a geometrical progression is less than mity (more exactly, if it is contained between the limits -1 and +1), then there will be a certain quantity which the sum of all the terms can never exceed, no matter how many terms we take.

For example, the sum of the progression

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\text { etc. }
$$

in which the common ratio is $\frac{1}{2}$, can never amount to 1 , no matter how many terms we take. To show this, suppose that one person owed another a dollar, and proceded to pay him a series of fractions of a dollar in geometrical progression, namely,

$$
\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \text { etc. }
$$

When he paid him the $\frac{1}{2}$ he would still owe another $\frac{1}{2}$, when he paid the $\frac{1}{4}$ he would still owe another $\frac{1}{4}$, and so on.

That is, at every payment he would discharge one-lalf the remaining delt. Now there ure two propositions to be maderstowd in reference to this suliject.
I. The entire dab can nerer be discharged by such priyments.

For, since the dhat is hatred at every pament, if there was any payment which diseharged the whole remaining deht, the half of athing wombla bee erual to the whole of it, which is impossible.
II. The aldot can be reduced below any assignable limit by continuing to prey half of it.

For, however small the dedt may be made, another payment will make it smaller by one-half; hence there is no smatlest amome below which it camot be reduced.

These two propsitions, which seem to oppose each other, hold the trulh between them, ats it were. They constanty onter into the higher mathematies, and should be well maderstoon. Wo therefore present mother illustration of the same sulject.

Suppose AB to be a line of given length. Let us go onehalf the distance from A to B at one step, one-fonrth at the second, one-eighth at the third, ete. It is evident that, at each step, we go half the distance which rematins. Hence the two principles just cited apply to this casc. That is,

1. We cam never reach B by a series of such steps, because we shall always have a distance equal to the last step left.
2. But we can come as near B as we plase, because every step carties us orer half the remaining distance.

This result is oftem expressed ly saying that we should reach B by taking an intinite momber of stops. Thatis a convenient form of expres. sion, and we may sometimes nse it, but it is mot logienlly exaet, beranse no conerivable number ran be really intinite. The nssumption that infinity is an algolnaie quantity often leads to ambignities and dillicultics in the application of mathematics.
te re mersuch , tho ch is lable

Def'. 'The Limit of the sum \mathbf{s} of a geometrical progression is a quantity which $\mathbf{\Sigma}$ maty approach so that its diflionence shath be less than any guantity we choose to assig'm, but which sean never rateh.

EXAMPLES.

1. Unity is the limit of the sum

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{11 i}+\text { cte } .
$$

2. The print B in the preading figure is the limit of all the stepes that can be taken in the manner deseribed.

The following principle will emable us to find the limit of the sum of a progression:
214. Principle. If $r<1$, the power $r^{2 h}$ can be made as small as we please by increasing the value of n, but can never be made equal to 0 .

Suppose, for instance, that

$$
r=\frac{: 3}{4}=1-\frac{1}{4}
$$

Then every time we multiply by r we diminish r^{n} by $\frac{1}{4}$ of its former value; that is,

$$
\begin{aligned}
& r^{2}=\frac{3}{4} r=\left(1-\frac{1}{4}\right) r=r-\frac{1}{4} r, \\
& r^{3}=\frac{3}{4} r^{2}=r^{2}-\frac{1}{4} r^{2}, \\
& r^{4}=\frac{3}{4} r^{3}=r^{3}-\frac{1}{4} r^{3},
\end{aligned}
$$

etc. etc. etc.

Now let us agatin take the expression for the sum of ab serics of n terms, namely,

$$
\mathbf{\Sigma}=a \frac{1-r^{m}}{1-r}
$$

which we may put into the form

$$
\mathbf{\Sigma}=\frac{a}{1-r}-\frac{a}{1-i} r^{n}
$$

If r is less than unity, we can, by the prineiple just cited, make the quantify r^{m} as small as we plase by increasing n indefinitely. From this it follows that we can also make the term $\frac{a}{1-r} r^{n}$ as small as we please.

Proof. Let us put, for brevity,

$$
k=\frac{a}{1-r}
$$

so that the term under consideration is

$$
k \cdot r^{n}
$$

If we cannot make $k r^{n}$ as small as we please, suppose s to be its smallest possible value. Let us divide s by k, and put

$$
t=\frac{s}{k}
$$

No matter how small s may be, and how large k may be, $\frac{s}{k}$, or t, will always be greater than zero. Hence, by the preceding principle, we can find a value of n so great that r^{n} shall be less tham t. That is,

$$
r^{n}<\frac{s}{k}
$$

Multiplying both sides of this inequality by k,

$$
k \cdot v^{n}<s
$$

That is, howerer small we take s, we can take n so large that $k r^{n}$ shall be less than s, and therefore s cannot be the smallest valu .

Since

$$
\mathbf{\Sigma}=\frac{a}{1-r}-k \cdot r^{n}
$$

, and since we can make lin n as small as we please, it follows that

$$
\text { Limit of } \Sigma=\frac{\ell}{1-r}
$$

This is srmetimes expresed by saying that when $r<1$,

$$
a+a r+a r^{2}+a r^{3}+\text { cte., } a d \text { infinitum }=\frac{a}{1-r}
$$

and this is a convenient form of expression, which will not lead us into error in this case.
ited, 19 the

EXERCISES.

Having given the progression

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\text { cte. }
$$

of which the limit is 1 , find how many terms we must take in order that the sum may differ from 1 by less than the following quantities, namely:

Firstly, 001 ; secondly, 000001 ; thirdly, 000000001.
To do this, we must find what power of $\underset{\sim}{1}$ will be less than .001 , what power less than 000001 , ete.

What are the limits of the sums of the following series:
I. $\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+$ ete., ul infinitum.
2. $\frac{2}{3}+\frac{4}{9}+\frac{8}{2 y}+$ ete., ad infinitum.
3. $\frac{1}{9}-\frac{1}{9^{2}}+\frac{1}{9^{3}}-$ etc., ad infinitum.
4. $\frac{4}{9}+\frac{4^{2}}{9^{2}}+\frac{4^{3}}{9^{3}}+$ cte., all infinitum.
5. $\frac{1}{1+b}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+b)^{3}}+$ etc., ad infinitum.
6. $\frac{a}{b-1}-\frac{a}{(b-1)^{2}}+\frac{a}{(b-1)^{3}}-$ cte., ad infinitum.
7. $\quad 1-\frac{\grave{g}}{m}+\frac{1}{m^{2}}-\frac{2}{m^{3}}+\frac{1}{m^{2}}-$ etc., ad infinilum.
8. What is that progression of which the first term is 12 and the limit of the sum 8 .
9. On the line ΛB a man starts from A and goes to the point c, half way to B; then he returns to d, half way back to A; then tuens again and goes half way to c,
 thei back half way to d, and so on, going at each turn half way to the point from which he last set out. To what point on the line will he continnally approach ?
215. As an interesting application of the preceding theory, we maty examine the problem of finding the value of a cirenlating decimal. Such a derimal is always equal to a wolgat fraction, which is ohtained as in the following examples:

1. What is the value of the decimal
.

We find the figures which form the period to be 37 . Dividing the decimal into periods of these figures, its value is

$$
\begin{aligned}
& \frac{3 \%}{100}+\frac{3 y}{100^{2}}+\frac{3 \%}{100^{3}}+\text { cte. } \\
= & 3 \%\left(\frac{1}{100}+\frac{1}{100^{2}}+\frac{1}{100^{3}}+\text { ctc. }\right) .
\end{aligned}
$$

The quantity in the parenthesis is a geometrical progression, in which $a=\frac{1}{100}, r=\frac{1}{100}$. The limit of its sum is therefore $\frac{1}{99}$. Therefore the value of the decimal is ${ }^{37}$.

This result can be proved by changing this vulgar fraction to a decimal.
2. In the ease of a decimal which has one or more figures before the period commences, we cut these figmes off, and find the value of them and of the cireulating part separately. 'Thus.

$$
\begin{aligned}
50363 \text { ctc. } & =\frac{5}{10}+\frac{6.3}{1000}+\frac{63}{100000}+\text { ctc. } \\
& =\frac{5}{10}+\frac{63}{1000}\left(1+\frac{1}{100}+\frac{1}{100^{2}}+\text { ctc. }\right) \\
& =\frac{5}{10}+\frac{63}{1000} \cdot \frac{100}{99}=\frac{5}{10}+\frac{63}{990}=\frac{558}{950}=\frac{31}{55}
\end{aligned}
$$

EXERCISES.

To what vulgar fractions are the following circulating decimals equal:

1.	. $1111111 . .$. .	2.	. $2282 . .$. ?
3.	. 9999 . . . ?	4.	. $09999 . .$. ?
5.	. 454545 ?	6.	. $2454545 . \ldots$
7.	. $108108 . . .$. ?	8.	\%9454545 . . . ?

Compound Interest.

216. When one loans or invests money, collects the interest at stated intervals, and again loms or invests this interest, and so on, he gains compound interest.

Compound interest can always be gained by one who constantly invests all his income derived from interest, provided that he always collects the interest when due, and is able to loan or invest it at the same rate as he loaned his principal.

Problem I. To find the amount of \boldsymbol{p} dollars for $\boldsymbol{\mu}$ years, at eper ecnt. compound interest.

Solltion. At the end of one year the interest will be $\frac{p c}{100}$, which added to the principal will make $p\left(1+\frac{c}{100}\right)$.

If we put $\quad \rho=\frac{c}{100}=$ the rate of ammal gain, the amount at the end of the year will be $p(1+p)$.

Now suppose this whole amount is put out for another year at the sume rate. The interest will be $p(1+\rho) \rho$, which added to the new principal $p(1+\rho)$ will make $p(1+\rho)^{2}$.

It is evident that, in general, supposing the whole sum kept at interest, the total amount of the investment will be multiplied by $1+\rho$ cach year. Hence the amount at the onds of successive years will be

$$
p(1+\rho), \quad p(1+\rho)^{2}, \quad p(1+\rho)^{3}, \quad \text { etc. }
$$

At the end of n years the amoment will be

$$
p(1+\rho)^{n}
$$

Problem II. A person muts out patlars every year, letting the whole sum constantly accumulate at compound interest. What will the amount be at the end of \boldsymbol{u} year's?

Solution. The first investment will have been out at interest n years, the second $n-1$ years, the third $n-2$ years, and so on to the $n^{\text {th }}$, which will have been out 1 year. Hence, from the last formula, the amounts will be:

$$
\begin{aligned}
& \text { Amount of 1st payment, } p(1+\rho)^{n} \text {. } \\
& \text { " " } 2 d \text { " } p(1+\rho)^{n-1} \text {. } \\
& \text { " } \quad 3 \mathrm{~d} \quad \text { " } p(1+\rho)^{n-2} \text {. } \\
& \text { " " 4th " } p(1+\rho)^{n-3} \text {. } \\
& \text { " " 5th " } p(1+\rho)^{n-4} \text {. } \\
& \text { etc. ete. }
\end{aligned}
$$

The sum of the amounts is:

$$
p(1+\rho)+p(1+\rho)^{2}+p(1+\rho)^{3}+\ldots p(1+\rho)^{n}
$$

This is a geometrical progression, of which the first term is $p(1+\rho)$, the common ratio $1+\rho$, and the number of terms n. So in the formula (4), $\S 212$, we put $p(1+\rho)$ for $a, 1+\rho$ for r, and thus find,

$$
\Sigma=p(1+\rho) \frac{(1+\rho)^{n}-1}{1+\rho-1}=p \frac{(1+\rho)^{n+1}-(1+\rho)}{\rho} .
$$

```
EXERCISES.
```

I. Λ man insures his life for $\$ 5000$ at the age of 30 , pays for his insurance a preminm of 80 dollars a year for 32 years, and dies at the age of 62 , immediately before the 33d payment would have been due. If the company gains 4 per cent. interest on all its money, how much does it gain or lose by the insurance?

Note. Computations of this class can be made with great facility by the aid of a table of logarithms.
2. What is the present value of a dollars due n years hence, interest being reckoned at c per cent.?

Note. If p be the present value, Problem 1 gives the equation,

$$
p^{2}\left(1+\frac{c}{100}\right)^{n}=a .
$$

3. What is the present value of 3 annual payments, of a dollars each, to be made in one, two, and three years, interest being reekoned at 5 per cent.?
4. What is the present value of n anmal payments, of a dollars each, the first being due in one year, if the rate of interest is c per cent.? What would it be if the first payment were due immediately?
$\rho)^{n}$.
st term is
terms n. $1+\rho$ for
$+\rho)$

SECUND PART.

i 30, pays 32 years, payment ent. interse by the
t facility by
ars hence, uation,
ents, of a s, interest
ents, of a rate of int payment

ADVANCED COURSE.

BOOK VIII.

RELATIONS BETWEEN ALGEBRAIC QUANTITIES.

Of Algebraic Functions.

21\%. Def. When one quantity depends upon antother in such a way that a change in the value of the one produces a change in the value of the other, the latter is called a Function of the former.

This is a more general definition of the word "function" than that given in $\$ 49$.

Examples. The time required to perform a jommey is a function of the distance because, other things being equal, it varies with the distance.

The cost of a package of tea is a function of its weight, beeause the greater the weight the greater the cost.

An algebraic expression containing any symbol is a function of that symbol, becanse by giving different values to the symbol we shall obtain different values for the expression.

Def. An Algebraic Function is one in which the relations of the quantities is expressed by means of an algebraic equation.

Exampie. If in a journey we call t the time, s the average speed, and d the distance to be travelled, the relation between these quantities may be expressed by the equation,

$$
d=s t
$$

Any one of these quantities is a function of the other two, defined by means of this equation.

An algebraic function generally contains more than one
letter, and therefore depends upon several quantities. But we may consider it a function of any one of these quantities, seleeted at pleasure, by supposing all the other quantities to remain constant and only this one to vary. For example, the time required for a train to run between two points is a function not only of their distance apart, but of the speed of the train. The speed being supposed constant, the time will be greater the greater the distance. The distance being constant, the time will be greater the less the speed.

Def. The quantities between which the relation expressed by a function exists are called Variables.

This term is nsed because such quantities may vary iu value, as in the preceding examples.

Def. An Independent Variable is one to which we may assign values at pleasure.

The function is a dependent variable, the value of which is determined by the value assigned to the independent variable.

Def. A Constant is a quantity which we suppose not to vary.

Rem. This division of quantities into constant and variable is merely a supposed, not a real one; we can, in an algebraic expression, suppose any quantities we please to remain constant and any we please to vary. The former are then, for the time being, constants, and the latter variables.

Illustration. If we put
d, the distance from New York to Chicago ;
s, the average speed of a train between the two cities; t, the time required for the train to perform the journey,
then, if a manager computes the different values of the time t corresponding to all values of the speed s, he regards d as a constant, s as an independent variable, and t as a function of s.

If he computes how fast the train must run to perform the journey in different given times, he regards t as the independent variable, and s as a function of t.

When we have any equation between two variables, we may regard either of them as an independent variable and the other as a function.

Example. From the equation

$$
\begin{aligned}
a \cdot x+b y & =c \\
x & =-\frac{b y}{a}+\frac{c}{a} \\
y & =-\frac{a x}{b}+\frac{c}{b}
\end{aligned}
$$

in one of which x is expressed as a function of y, and in the other y as a limetion of x.

21S. Names are giren to particular classes of functions, among which the following are the most common.

1. Def. A Linear Function of several variables is one in which each term contains one of the variables, and one only, as a simple factor.

Example. The expression

$$
A x+B y+C z
$$

is a linear function of x, y, and z, when A, B, and C are quantities which do not contain these variables.

A linear function differs from a function of the first degree (§52) in having no term not multiplied by one of the variables. For example, the expression

$$
A x+B y+C
$$

is a function of x and y of the first degree, but not a linear function.

The fundamental property of a linear function is this:
If all the variables be muttiplied by a common factor, the function will be multiplicd by the same factor.

Proof. Let $A x+B y+C z$ be the linear function, and r the factor. Multiplying each of the variables x, y, and z by this factor, the function will become

$$
A r x+B r y+C r z
$$

which is equal to $\quad r(A x+B y+C z)$.

Moreover, a linear function is the only one whiele possesses this property.
2. Def. A Homogeneous Function of several variables is one in which each term is of the same degree in the variables. (Compare § 52.)

Example. The expression $a x^{3}+b x^{2} y+c y^{2} y+d z^{3}$ is homogeneous and of the third degree in the variables x, y, and z.

Rem. A lincar function is a homogencons function of the first degree.

Fundmental Properity of Homogeneous Functions. If all the variables be multiplied b! a common factor, amy homogeneous function of the $w^{\text {th }}$ tegree in those verriables will be multiplical by the $\boldsymbol{u}^{\text {th }}$ pourer of that fuctor.

Proof. If we take a homogencous function and put rex for $x, r y$ for $y, r z$ for z, etc., then, because each term contains x, y, or z, ete., n times in all as a factor, it will contain $r n$ times after the substitution is made, and so will be multiplied by r^{n}.
3. Def. A Rational Fraction is the quotient of two entire functions of the same variable.

A rational fraction is of the form,

$$
\frac{a+b x+c x^{2}+\text { etc. }}{m+u x+p x^{2}+\text { cte. }}
$$

Any rational function of a variable may be expressed as a rational fraction. Compare \& 180.

Equations of the First Degree between Two Variables.

219. Since we may assign to an independent variable any values we please, we may suppose it to increase or decrease by regular steps. The difference between two values is then called an increment. That is,

Def. An Increment is a quantity added to one value of a variable to obtain another value.

Rem. If we diminish the variable, the increment is negative.

I'ucorem. In a function of the first degree, equal increments of the independent variable cause equal increments of the function.

Example. Let x be an independent variable, and call u the function $\frac{3}{3} x+11$, so that we have

$$
u=\frac{3}{2} x+11
$$

If we give x the successive values $-2,-1,0,1,2$, etc., and find the corresponding values of the function $"$, they will be

$$
\begin{aligned}
& \text { Values of } x,-2, \quad-1, \quad 0, \quad 1, \quad 2, \quad 3, \quad 4 \text {, ete. } \\
& \text { " " } u, \quad 8, \quad 9,11,1 \% \frac{1}{2}, 1+, 15 \frac{1}{2}, 1 \% \text {, etc. }
\end{aligned}
$$

We see that, the increments of x being all unity, those of $y: 3$ all $1 \frac{1}{2}$.

Gieneral Proof. Let $a n+b x=c$ be any equation of the first degree between the variable x and the function μ. Solving this equation we shall have

$$
u=\frac{c-3 x}{a}=\frac{c}{a}-\frac{b}{a} x .
$$

Let us assign to r^{r} the successive values,

$$
r, \quad r+h, \quad r+2 h, \text { etc., }
$$

the increment being h in each casc. The corresponding values of the function u will be

$$
\frac{c}{a}-\frac{b}{a} r, \quad \frac{c}{a}-\frac{b}{a} r-\frac{b}{a} h, \quad \frac{c}{a}-\frac{b}{a} r-\frac{2 b}{a} h, \quad \text { ete., }
$$

of which each is less than the preceding by the same amount, $\frac{b}{a} h$. Hence the inerement of u is always $-\frac{b}{a} h$, which proves the theorem.

2?O. Geometric Construction of a Relation of the First Degree. The relation between a varialle x and a function u of this variable may be shown to the eye in the following way:

Take a base line $A X$, mark a zero point upon it, and from this zero point lay off any values of a we please. 'Then at cath point of the line correponding to a value of x erect a vertical line equal to the corresponding valne of u. If u is positive, the value is measured upward; it negative, downward. The line drawn through the ends of these values of u will show, by the distance of each of its points from the base line $\mathbf{N} X$, the values of u corresponding to all values of x.

Let us take, as an example, the equation

$$
5 u+3 x=10
$$

the solution of which gives $u=2-\frac{3}{5} x$.
Computing the values of u corresponding to values of x from -3 to +6 , we find:
$x=-3, \quad-2, \quad-1, \quad 0,+1, \quad+2,+3,+4,+5,+6$.
$u=+3 \frac{4}{5},+3 \frac{1}{5}, \quad 2 \frac{3}{5}, \quad 2, \quad 1 \frac{2}{5}, \quad \frac{4}{5}, \quad \frac{1}{5},-\frac{2}{5},-1,-1 \frac{3}{5}$.
Laying off these valnes in the way just described, we have the above figure. Wherever we choose to erect a value of u, it will end in the dotted line.

We note that by the property of functions of the first degree just proved, each value of u is less (shorter) than the preceding one by the same amount; in the present case by $\frac{3}{5}$. It is known from geometry that in this case the dotted line throngh the ends of u will be a straight line.

We call this line through the ends of y the equation line.
291. When we can once draw this straight line, we can find the value of y corresponding to every value of x without using the equation. We have only to take the point in the base line corresponding to any value of x, and by measmring the distance to the line, we shall have the corresponding value of u.

Now it is an axiom of geometry that one straight line, and only one, can be drawn between any two points. Therefore, to form any relation of the first degree we please between x and u, we may take any two values of x, assign to them any two values of u we please, plot these two pair of values of u in a diagram, draw the erpation line through them, and then measure off, by this line, as many more values of y as we please.

Example. Let it be required that for $x=+1$ we shall have $u=+1$, and for $x=+5, u=+3$. What will be the valnes of y corresponding to $x=-3,-9,-1,0$, etc.

Drawing the base line AX below, we lay off from 1 the vertical line +1 in length, and from the point 5 the vertical line +2 . Then drawing the dotted line through the ends, we measure off different values of u, as follows:
$x=-3,-2,-1, \quad 0,+1,+2,+3,+4,+5,+6$, ctc. $u=-1,-\frac{1}{2}, \quad 0,+\frac{1}{2}, \quad 1,+1 \frac{1}{2},+2,+2 \frac{1}{2},+3,+3 \frac{1}{2}$, etc.

EXERCISES.

1. Plot the equation $2 u+3 x=6$.
2. Plot a line such that

$$
\begin{array}{lcl}
\text { for } x=-6 & \text { we shall have } & u=+4 \\
\text { for } x=+6 & " & u=-4
\end{array}
$$

and find the values of 1 ; for $x=1,2,3,4$, and 5 .
292. The algebraic problem corresponding to the construction of $\S 220$ is the following:

Having given two values of \boldsymbol{y} corresponding to two given values of x, it is required to construct an equation of the first degive such that these two pairs of values shall satisfy it.

Example of Solution. Let the requirement be that of the equation plotted in the preceding example, namely,

$$
\begin{array}{ccc}
\text { for } x=1 & \text { we must have } & u=1, \\
\text { for } x=5 & 6 \quad " \quad & u=3
\end{array}
$$

The problem then is to find such values of a, b, and c, that in the equation

$$
\begin{equation*}
a x+z=c \tag{1}
\end{equation*}
$$

we shall have $u=1$ for $x=1$, and $u=3$ for $x=5$. Substituting these two pairs of ralues, we find that we must have
or

$$
\begin{aligned}
& a \times 1+b \times 1=c \\
& a \times 5+b \times 3=c
\end{aligned}
$$

$$
\begin{array}{r}
a+b=c \\
5 a+i b=\therefore
\end{array}
$$

Here a, b, and c are the unknown grantities whose values are to be found, and as we have oaiy two equations, we cannot find them all. Let us therefore find a and b in terms of c.

Multiplying the first equation by 3 , and subtracting the product from the second, we have

$$
2 a=-2 c \quad \text { or } \quad a=-c
$$

Multiplying the first equation by 5 , and subtracting the second from the product, we have

$$
2 b=4 c \text { or } \quad b=2 c .
$$

Substituting these ralues of a and b in (1), we find the required equation to be

$$
\Omega c u-c x=c .
$$

We may divide all the terms of this equation by $c(\S 120$, Ax. III), giving

$$
2 u-x=1,
$$

thus showing that there is no need of using c. The solution of this equation gives

$$
u=\frac{1+x}{z},
$$

from which, for $x=-3,-2,-1$, ete., we shall find the same values of u which we found from the diagram.

EXERCISES.

Write equations between x and y which shall be satisfied by the following pairs of values of x and y.

1. For $x=2, y=1$; and for $x=5, y=-1$.
2. For $x=-2, y=-1$; and for $x=+2, y=+1$.
3. For $x=-5, y=+2$; and for $x=+5, y=-2$.
4. For $x=0, y=-r$; ind for $x=15, y=0$.
5. For $x=25, y=2$; and for $x=30, y=3$.
6. Geometric Solution of Two Equations with Two Unknown Quantities. The solution of two equations with two unknown quantities consists in finding that one pair of values which will satisfy both equations. If we lay off on the base line the required value of x, the two values of y corresponding to this ralue of x in the two equations must be the same ; that is, the two equation lines must cross cach other at the point thus foumd. Hence the following geometric solution:
I. Plot the two cquations from the same base line and zero point.
II. Continue the equation lines, if necessary, until they intersect.
III. The distance of the point of intersection from the base line is the value of ! which sutisfies both equations.
IV. The distance of the foot of the !l line from the zero point is the required ralue of x.

EXERCISES.
Solve the following equations by geometric construction :

1. $x-2 u=3, \quad 2 x+u=5$.
2. $2 u+7 x=4, \quad 3 u+x=1$.
3. Geometric Explanation of Equivalent and Inconsistent Equations. If we have two equivalent equations (§ 200), each value of x will give the same value of the other quantity u or y. Hence the two lines representing the equation will coincide and no definite point of intersection can be fixed.

If the two equations

$$
\begin{gathered}
a u+b x=c, \\
a^{\prime} u+b^{\prime} x=c^{\prime}
\end{gathered}
$$

are inconsistent we shall have ($\S 142$),

$$
\frac{b}{a}=\frac{b^{\prime}}{a^{\prime}}
$$

If b be any increment of x, the increments of u in the two equations ($\S 219$) will be $-\frac{b}{a}$ and $-\frac{b^{\prime}}{a^{\prime}}$, Therefore these increments will be equal, and the two equation lines will be parallel. Hence,

To inconsistent equations corresponad parallel lines, which have mo point of intersection.

If the two equations are equivalent ($(141,143$), their lines will coincide.

Notation of Functions.

225. In Algebra we use symbols to express any numbers whatever. In the higher Algebra, this system is extended thus:

W'e may use any symbol, having a letter attached to it, to copress a function of the quantity represcnted by that letter.

Example. If we have an algebraie expression containing a quantity x, which we consider as a function of x, but do not wish to write in full, we may call it

$$
F(x), \text { or } \phi(x), \text { or }[x], \text { or } A_{x}
$$

or, in fine, any expression we please which shall contain the symbol x, and shall not be mistaken for any other expression.

In the first two of the above expressions, the letter x is enclosed in - parentheses, in order that the expression may not be mistaken for x multiplied by F, or ϕ. The parentheses may be omitted when the reader knows that multiplication is not meant.
onsist§ 200), rantity on will d.
he two these will be lines, ir lines tended
lead to ted by
aining do not
in the sion. osed in x mulreader

The fundamental principle of the functional notation is this:

When a symbol with a letter attached represents a function, then, if we substitute any other quantity for the letter attached, the combinution will represent the function found by substituting that other quantity.

Exayple. Let us consider the expression $a x^{2}+b$ as a function of x, and let us call it $\phi(x)$, so that

$$
\phi(x)=u x^{2}+b .
$$

Then, to form $\phi(y)$, we write y in place of x, obtaining

$$
\phi(y)=a y^{2}+b
$$

To form $\phi(x+y)$, we write $x+y$ in place of x, obtaining

$$
\phi(x+y)=a(x+y)^{2}+b .
$$

To form $\phi(a)$, we write a instead of x, obtaining

$$
\phi(a)=a^{3}+b .
$$

To form $\phi\left(a y^{3}\right)$, we put $a y^{3}$ in place of x, obtaining

$$
\phi\left(a y^{3}\right)=a\left(a y^{3}\right)^{2}+b=a^{3} y^{6}+b
$$

The equation $\phi(z)=0$ will mean

$$
a z^{2}+b=0 .
$$

EXERCISES.

Suppose $\phi(x)=a x^{2}-a^{2} \cdot x$, and thence form the values of

1. $\phi(y)$.
2. $\phi(i)$.
3. $\phi(b y)$.
4. $\phi(x+y)$.
5. $\phi(x+a)$.
6. $\phi(x-u)$.
7. $\phi(x+a y)$.
8. $\phi(x-a y)$.
9. $\phi\left(x^{2}\right)$.

Suppose $F(x)=x a^{x}$, and thence form the values of
10. $F(y)$.
ii. $F(2 y)$.
12. $F(3 y)$.
I3. $\quad F^{\prime}(x+y)$.
14. $F(x-y)$.
15. $F^{\prime}(1)$.

Suppose $f(x)=x^{2}$, and thence form the values of
16. $f(1)$.
17. $f\left(x^{2}\right)$.
18. $f\left(r^{3}\right)$.
1). $f\left(x^{1}\right)$.
20. $f\left(x^{5}\right)$.
21. $f\left(x^{n}\right)$.

232

22. Prove that if we put $\phi(x)=e^{x}$, we shall have $\phi(x+y)=\phi(x) \times \phi(y), \quad \phi(x y)=[\phi(x)]^{y}=[\phi(y)]_{x}$.

Let us put $\phi(m)=m(m-1)(m-2)(m-3)$; thence form the values of
23. $\phi(0)$.
24. $\phi(5)$.
25. $\phi(4)$.
26. ϕ (3).
27. $\phi(\mathfrak{Z})$.
28. $\phi(1)$.
29. $\phi(0)$.
30. $\phi(-1)$.
31. $\phi(-2)$.

Functions of Several Variables.
226. An algebraic expression containing several quantities may be represented by any symbol having the letters which represent the quantities attached.

Examples. We may put

$$
\phi(x, y)=a x-b y
$$

the comma being inserted between x and y, so that their prodnet shall not be understood. We shall then have,

$$
\begin{aligned}
\phi(m, n) & =a m-b n \\
\phi(y, x) & =a y-b x
\end{aligned}
$$

the letters being simply interchanged.

$$
\begin{aligned}
\phi(x+y, x-y) & =a(x+y)-b(x-y) \\
& =(a-b) x+(a+b) y . \\
\phi(a, b) & =a^{2}-b^{2} . \\
\phi(b, a) & =a b-b a=0 . \\
\phi(a+b, a b) & =a(a+b)-a b^{2} . \\
\phi(a, a) & =a^{2}-b a . \\
\text { etc. } & \text { ete. }
\end{aligned}
$$

If we put $\phi(a, b, c)=2 a+3 b-s c$, we shall have

$$
\begin{aligned}
\phi(x, z, y) & =2 x+3 z-5 y \\
\phi(z, y, x) & =2 z+3 y-5 x \\
\phi(m, m, m) & =2 m+3 m+5 m=10 m \\
\phi(3,8,6) & =2 \cdot 3+3 \cdot 8-5 \cdot 6=0
\end{aligned}
$$

EXERCISES.

Let us put

$$
\begin{aligned}
\phi(x, y) & =3 x-4 y \\
f(x, y) & =a x+b y \\
f(x, y, z) & =a x+b y-a b z
\end{aligned}
$$

Thence form the expressions:

$$
\begin{array}{rlllll}
\text { 1. } & \phi(y, x) . & \text { 2. } & \phi(a, b) . & \text { 3. } & \phi(3,4) . \\
4 . & \phi(4,3) . & \text { 5. } & \phi(10,1) . & 6 . & f(a, b) . \\
\text { 7. } & f(b, a) . & \text { 8. } & f(y, x) . & \text { 9. } & f(\because,-3) . \\
\text { 10. } & f(q,-p) . & \text { 1 1. } & f(z, x, y) . & \text { 12. } & f(b, a, \because) . \\
\text { 13. } & f(a, b, c) . & \text { 14. } & f\left(a^{2}, l^{2} . c^{2}\right) . & & \\
\text { 15. } & f(-a,-b, & -a b) . \\
\text { Let ns put }(m, n) & =\frac{m(m-1)(m-?) .}{n(n-1)(n-\because)} .
\end{array}
$$

Find the valnes of

16.	$(3,3)$.	17.	$(+, 3)$.	1 S.	$(5,3)$.
19.	$(6,3)$.	20.	$(i, 3)$.	21.	$(8,3)$.
22.	$(2,-1)$.	23.	$(3,-2)$.	24.	$(4,-2)$.

Use of Indices.

226a. Any number of different quantities may be represented by a common symbol, the distinetion being made by attaching numbers or accents to the symbol.

```
EXAMPLES.
```

I. Any n different quantities may be represented by the symbols, $p_{1}, p_{2}, p_{3}, \ldots p_{n}$
2. A prodncer desires to have an algebraic sembol for the amount of money which he carns on each day of the year. If he calls q what he earns in a day he may put:

and so on to the end of the year, when
q_{305} will be the amount for December 31.
Def. The distinguishing numbers 1, 2, 3, ete., are here called Indices.

A symbol with an index attached may represent a function of the index, as in the functional notation.

EXERCISES.

Let us put $\alpha_{t}=t(t+1)$. Then find the value of

1. $a_{0}+a_{1}+a_{2}+\ldots+a_{10}$.
2. Prove the following equations by computing both members:

$$
\begin{aligned}
a_{1}+a_{2} & =\frac{4}{3} a_{2} \\
a_{1}+a_{2}+a_{3} & =\frac{5}{3} a_{3} \\
a_{1}+a_{2}+a_{3}+a_{4} & =\frac{6}{3} a_{4} .
\end{aligned}
$$

If we put $S_{i}=1+2+3 \ldots+i$, we shall have

$$
\begin{aligned}
& S_{1}=1 \\
& S_{2}=1+2=3 \\
& S_{3}=1+2+3=6, \text { etc., cte. }
\end{aligned}
$$

Using the preceding notation, find the values of the expressions:

$$
\begin{array}{lll}
\text { 3. } & S_{4}+S_{5}+S_{6}+S_{7} . & \text { 4. } a_{4}+a_{5}+a_{6}+a_{7} . \\
\text { 5. } & 2 S_{5}-a_{5} . & \text { 6. } 2 S_{6}-a_{6} .
\end{array}
$$

29\%. Sometimes the relations between quantities distinguished by indices are represented by equations of the first degree. The following are examples:

Let us have a series of quantities,

$$
A_{0}, \quad A_{1}, \quad A_{2}, \quad A_{3}, A_{4}, \text { etc., }
$$

connceted by the general relation,

$$
\begin{equation*}
A_{i+1}=A_{i}+A_{i-1} \tag{a}
\end{equation*}
$$

It is required to express them in terms of A_{0} and A_{1}.
We put, in succession, $i=1, i=2, i=3$, etc. Then, when $i=1$, we have from (a),

$$
\text { Wbow: } 0,1
$$

When $i=2$,

$$
A_{2}=A_{1}+A_{0}
$$

$i=3, \quad A_{4}=A_{3}+A_{2}=3 A_{1}+2 A_{0}$.
$i=4, \quad A_{5}=A_{4}+A_{3}=5 A_{1}+3 A_{0}$.
$i=5, \quad A_{0}=A_{5}+A_{4}=8 A_{1}+5 A_{0}$,
and so on indefinitely.

EXERCISES.

I. If $\quad A_{i+1}=A_{i}-A_{i-1}$,
what will be the values of $A_{2} \ldots A_{10}$, and in what way may all subsequent values be determined?
2. If $\quad A_{i+1}=2 A_{i}-A_{0}$,
find A_{2} to A_{5} in terms of A_{0} and A_{1}.
3. If $\quad A_{i+1}=i A_{i}+A_{i-1}$, find A_{2} to A_{5}.
4. If
$A_{i}=A_{i-1}+h$,
find the sum $A_{0}+A_{1}+A_{2}+\ldots+A_{n}$, in terms of A_{0}, h and n. (Comp. $\S 209$, Prob. V.)
5. If $\quad A_{i+1}=r A_{i}$,
find $A_{1}+A_{2}+A_{3}+\ldots+A_{n}$, in terms of A_{0} and r.
6. If $\quad A_{i+1}=i k A_{i}+A_{i \cdot 1}$,
find $A_{2}, A_{3}, \ldots A_{6}$, in terms of A_{0} and A_{1}.

Miscellaneous Functions of Numbers.

298. We present, as interesting exercises, certain clementary forms of algebraic notation mueh used in Mathematics, and which will be employed in the present work.
299. When we have a series of symbols the number of which is either indeterminate or too great to be all written out, we may write only the first two or three and the last, the omitted ones being represented by a row of dots.

Examples. $\quad a, b, c, \ldots t$, 1, 2, 3, 25, $1,2, \ldots n$, n being in the last case any number greater than 2.

The number of omitted symbols is entirely arbitrary.

```
EXERCISES.
```

How many omitted expressions are represented by the dots in the following series:
เ. $1,2,3, \ldots n$.
2. $1,9,3, \ldots n-2$.
3. $1,2,3, \ldots n+2$.
4. $n, n-1, n-2, \ldots n-s$.
5. $n, n-1, n-2, \ldots n-s-1$.
6. $n, n-1, n-2, \ldots n-s+1$.

What will be the hast term in the series:
7. $2,3,4$, etc., to n terms.
8. $n, n-1, n-2$, etc., to s terms.
9. 2, 4, 6, etc., to k terms.
2. Product of the First n Numbers. The symbol n !
is used to express the product of the first n numbers,

$$
1 \cdot 2 \cdot 3 \ldots .
$$

Thus,

$$
1!=1
$$

$$
2!=1 \cdot 2=2
$$

$$
3!=1 \cdot 2 \cdot 3=6
$$

$$
4!=1 \cdot 2 \cdot 3 \cdot 4=24
$$

etc. etc.
It will be seen that $2!=2 \cdot 1!$

$$
3!=3 \cdot 2!
$$

And, in general, $\quad n!=n(n-1)$! whatever number 16 may represent.

> EXERCISES.

Compute the values of
I. 5 !
2. 6!
3. 8 !
4. $\frac{7!}{3!4!}$
5. $\frac{8!}{3!5!}$
6. Prove the equation $2 \cdot 4 \cdot 6 \cdot 8 \ldots 2 n=2^{n} n$!
7. Prove that, when n is even,

$$
\frac{n}{2}!=\frac{n(n-2)}{} \frac{(n-4) \ldots 4 \cdot 2}{2^{\frac{n}{2}}}
$$

3. Binomial Coefficients. The binomial coefficient

$$
\frac{n(n-1)(n-2) \ldots \text { to } s \text { terms }}{1 \cdot 2 \cdot 3 \ldots s}
$$

is expressed in the abbreviated form,

$$
\binom{n}{s}
$$

the parentheses being used to show that what is meant is not the fraction $\frac{n}{s}$.

> EXAMPLES.
$\binom{3}{1}=\frac{3}{1}=3$.
mbol

Ibers,
fficient
Compute the values of the expressions:
I. $\left(\frac{8}{1}\right)+\left(\frac{8}{2}\right)+\left(\frac{8}{3}\right)+\left(\frac{8}{4}\right)+\left(\frac{8}{5}\right)+\binom{8}{6}+\binom{\frac{8}{6}}{\frac{8}{6}}+\left(\frac{8}{8}\right)$.
2. $\left(\frac{3}{3}\right)+\left(\frac{4}{3}\right)+\left(\frac{5}{3}\right)+\binom{\frac{6}{3}}{3}+\binom{\frac{7}{3}}{\frac{5}{3}}$.

Prove the formula:
3. $\left(\begin{array}{c}5 \\ 2 \\ 2\end{array}\right)=\frac{5!}{2!3!}$
4. $\left(\frac{n}{s}\right)=\frac{n!}{s!(n-s)!}$
5. $\quad\binom{n+1}{s+1}=\frac{n+1}{s+1}\binom{n}{s}$.
6. $\binom{n}{1}+\left(\frac{n}{2}\right)=\left(\frac{n+1}{2}\right)$.
7. $\left(\frac{n}{2}\right)+\binom{n}{a}=\left(\frac{n+1}{3}\right)$.
8. $\binom{n}{3}+\binom{n}{4}=\left(\frac{n+1}{4}\right)$.

BOOKIX.
 the tileory of numbers.

CHAPTER I.

THE DIVISIBILITY OF NUMBERS.

2:39. Def. The Theory of Numbers is a branch of mathematics which treats of the properties of integers.

Def. An Integer is any whole number, positive or negative.

In the theory of numbers the word number is used to express an integer.

Def. A Prime Number is one which has no divisor except itself and unity.

The series of prime numbers are

$$
2,3,5,7,11,13,17,19,23,29 \text {, etc. }
$$

Def. A Composite Number is one which may be expressed as a product of two or more factors, all greater than unity.

Rem. Every number greater than 1 must be cither prime or composite.

Def. Two numbers are prime to each other when they have no common divisor greater than unity.

Example. The numbers 24 and 35 are prime to each other, though neither of them is a prime number.

Rem. A vulgar fraction is reduced to its lowest terms when numerator and denominator are prime to each other.

Division into Prime Factors.

230. Every composite number may by definition be divided into two or more factors. If any of these factors are composite, they may be again divided into other fitetors. When none of the faters can be further divided, they will all be prime. Hence,

Theonem. Every composite number may be divided into prime factors.

Examile.

$$
\begin{aligned}
180 & =9 \cdot 20 \\
9 & =3 \cdot 3 \\
20 & =4 \cdot 5=2 \cdot 2 \cdot 5 \\
180 & =2 \cdot 2 \cdot 3 \cdot 3 \cdot 5=2 \cdot 3^{2} \cdot 5 .
\end{aligned}
$$

Whence,
Cor. 1. Becanse every mumber not prime is composite, and becanse every composite number may be divited into prime factors, we conchude: Every number is cither mime or clivisible by a prime.

Cor. 2. Every number, prime or composite, may be expressed in the form

$$
\begin{equation*}
p^{a} q^{3} r^{r} \text { ctc. } \tag{a}
\end{equation*}
$$

where $\quad p, q, r$, etc., are different prime numbers;

$$
\varkappa, \beta, \gamma, \text { ete., the exponents, are positive integers. }
$$

Rear. If the number is prime there will be but one factor, namely, the number itself, and the exponent will be unity.

EXERCISES.

Divide the following numbers or products into their prime factors, if any, and thins express the numbers in the form (a) :

$$
\begin{array}{rlllllllrl}
\text { 1. } & \text { 24. } & 2 . & 92 . & 3 . & 260 . & 4 . & 169 . & 5 . & 225 . \\
6 . & 256 . & 7 . & 91 . & 8 . & 143 . & 9 . & 360 . & \text { Io. } & 21 \% . \\
\text { I 1. } & 30 \% \% . & & & \text { 12. } & 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 . &
\end{array}
$$

Rem. In seeking for the prime factors of a number, it is never necessary to try divisors greater than its square root, for if a number is divisible into two factors, one of these factors will necessarily not exceed such root.

Common Divisors of Two Numbers.

2:3. Theorem I. If turo numbers huce a common factor, theirs sum will hate that same finctor.

Proof: Let a lie the common factor ;
m, the product of all the other faetors in the one number;
n, the corresponding product in the other mumber.
Then the two numbers will he t 1 m and cm .
Their sum will be $n(m+n)$.
Becanse m and n are whole numbers, $m+n$ will also be a whole mumber. 'Therefore a will be a factor of $a m+a n$.

Theorem II. If tuon umbers lure a emumon factor, their difference will hare the steme factor.

Proof. Almost the same as in the last theorem.
Cor. If a mmber is divisible by a factor, all multiples will be divisible hy that faetor.

Rem. The preceding theorems may be expressed as follows:
If two mumbers are divisible by the same dirisor, their sum, difference, and multiples are all divisible b!! thuet rivisor.

Rem. If one number is not exactly divisible by another, a remainder less than the divisor will be left over. If we put
D, the dividend;
d, the divisor;
q, the quotient;
r, the remainder;
we shall have,

$$
\begin{aligned}
D & =d l+r \\
D-d q & =r
\end{aligned}
$$

Example. 7 goes into 669 times and 3 orer. Hence this means

$$
66=7 \cdot 9+3, \text { or } 66-7 \cdot 9=3
$$

$1 m m \ldots n$

in in the
939. Phondem. To fime the greatest common divisur of luo numbers.

Let m and n be the numbers, and let m be the erreater.

1. Divide m by n. If the remminter is z (ero, n will be the divisor required, beenise every number divides itself. If there is a remainder, let q be the quotiont and r the remainder.

Then

$$
m-n q=r
$$

Let l be the common divisor required.
Becanse m and n are both divisible by $d, m-n q$ must also be divisible by al ('Wheorem II). Therefore, r is divisible by \boldsymbol{l}.
Hence every common divisor of m and n is also a common divisor of n and r. Conversely, because

$$
m=n q+r
$$

every common divisor of n and r is also a divisor of m. Therefore, the greatest common divisor of m and n is the same as the greatest common divisor of n and r, and we proceed with these last two numbers as we did with m and n.
\therefore. Let r go into $n q^{\prime}$ times with the remainder r^{\prime}.
Then

$$
\begin{aligned}
n & =r!^{\prime}+r^{\prime} \\
n-r q^{\prime} & =r^{\prime}
\end{aligned}
$$

Then it can be shown as before that d is a divisor of r^{\prime}, and therefore the greatest common divisor of r and r^{\prime}.
3. Dividing r by r^{\prime}, and continuing the process, one of two results must follow. Either,

* We at length reach a remainder 1 , in which case the two numbers are prime; or,
β. We have a remainder which exactly divides the preceding divisor, in which case this remainder is the divisor repuired.

To clearly exhibit the process, we express the numbers m, n, and the successive remainders in the following form :

$$
\begin{aligned}
m & =n \cdot q+r, & (r<n) ; \\
n & =r \cdot q^{\prime}+r^{\prime}, & \left(r^{\prime}<r\right) ; \\
r & =r^{\prime} \cdot q^{\prime}+r^{\prime \prime}, & \left(r^{\prime \prime}<r^{\prime}\right) ; \\
r^{\prime} & =r^{\prime \prime} \cdot q^{\prime \prime \prime}+r^{\prime \prime \prime}, & \left(r^{\prime \prime \prime}<r^{\prime \prime}\right) ; \\
\text { etc. } & \text { ete. } & \text { cte., }
\end{aligned}
$$

until we reach a remainder equal to 1 or 0 , when the series terminates.

EXERCISES.

1. Find the G. C. D.* of 240 and 155.

$$
\begin{aligned}
\text { Dividend. } & \text { Div. Quo. Rem. } \\
240 & =155 \cdot 1+85 . \\
155 & =85 \cdot 1+i 0 \\
85 & =50 \cdot 1+15 \\
70 & =15 \cdot 4+10 . \\
15 & =10 \cdot 1+5 . \\
10 & =5 \cdot 2 .
\end{aligned}
$$

Therefore 5 is the greatest conimon divisor.
Note. Let the student arrange all the following excreises in the above form, first dividing in the usual way, if he finds it necessary.

Find the greatest common divisor of
2. 399 and 42%.
3. 91 and 131.
4. S and 13.
5. 1000 and 212.
6. 799 and 1232 .
7. 800 and $1 \%: 9$.
8. 250 and 625.
ro. If p be a mmber less than n and prime to n, show that $n-p$ is also prime to n.
in. If p he any number less than n, the greatest emmon divisor between n and p is the same as that between n and $n-p$.
12. If n is any ould number, $\frac{n+1}{\tilde{\sim}}$ and $\frac{n-1}{\tilde{\sim}}$ are both prime to it.

Corollaries. 1. When two mmbers are divided by their greatest common divisor, their quotients will be prime to eath other.

[^3]2. Conversely, if two mumbers, n and n^{\prime}, prime to each other. are each multiplied by any number d, then d will be the (i. C. D), of $\left(l n\right.$ and $d x^{\prime}$.

3:33. (ienring of Ilhere. An interesting problem connecoded with the greatest eommon divisor is atforded ly a common pair of gear wheels. Let there be two wheels, the one hatring m teeth and the other n teeth, gearing into eath other. If we start the wheels with a certain tooth of the one
 against a certain tooth of the other, then we hate the questions:
(1.) How many revolutions must each wheel make before the same teeth will arain eome torether?
(\because) With how many teeth of the one will each tooth of the other have geated?

Let gloe the requited mumber of turns of the urst wheed, having mteeth.

Let p be the required momber of turns of the second, hasing n teeth.

Then, becanse the first wheel has m teeth, q m teeth will have geared into the other whee during the yturns. In the same way, pm teeth of the second whee will hate geared into the first. But these numbers must be equal. Therefore, when the two teeth again meet,

$$
q^{\prime \prime}=q m .
$$

('onversely, for every pair of numbers of revolutions p and 1, which fultil the conditions,

$$
m=q m
$$

the same teeth will eome together, becanse eak whed will hate made an entire number of aerolations. This equation gives

$$
\frac{p}{q}=\frac{m}{n}
$$

IIcnee, if we reduce the fraction $\frac{m}{n}$ to its lowest terms, we shall have the smatlest number of revolutions of the respective wheels which will bring the teeth together again.
'To answer the sceond ruestion :
After the first whee has made q revolntions, $q m$ of its teeth have passed a fixed point. Any one tooth of the other wheel gears into every $n^{\text {th }}$ passing tooth of the firsi wheel. Therefore any such tooth has geared into $\frac{9 m}{n}$ teeth of the first wheel, that is, into p teeth, because, from the last equation,

$$
\frac{q m}{n}=p
$$

If d be the G. C. D. of m and n, then
or

$$
\begin{aligned}
m & =d p \\
n & =d q \\
p & =\frac{m}{c} \\
q & =\frac{n}{d}
\end{aligned}
$$

Therefore each tooth of the one wheel has geared into only every $d^{1 / h}$ tooth of the other.

In the figure on the preceding page, $n=21$ and $n=6$. Hence, $d=3$, and each tooth of the one will gear into every third tooth of the other: 'The numbers on the large wheel show the order in which the gearing oceurs.

How long soever the wheels rmn, the same contacts will be repeated in regular order. Hence, if eache toothe of the one whecl must gear with every tooth of the other, the numbers m and n must be prime to euch other.

EXERCISES.

r. If one wheel has 40 teeth and the other 10 , show how they will rum together.

Show the same thing for the following cases:
2. $m=i \cdot, n=15$.
3. $\quad m=24, n=18$.
4. $m=36, n=25$.
5. $m=24, n=7$ 。
ms, we spective
its tecth cr whed herefore st wheel,

Relations of Numbers to their Digits.

2:34. In our ordinary method of expressing numbers, the second digit toward the right expresses 10°, the third 100° s, ete. That is, each digit expresses a power of 10 corresponding to its position.

Def. The number 10 is the Base of our scale of numeration.

Note. The base 10 is ontirely arbitrary, and is supposed to have originated from the number of the thumbs and fingers, these being used loy primitive people in counting.

Any other number might equally well have been chosen as a base, but in any case we should need a mumber of sparate characters (digits) equal to the base, and no more.

Hadd 8 been the base, we should have needed only the digits $0,1,2$, etc., to $\%$, and different combinations of the digits would have represented numbers as follows:

$$
\begin{aligned}
1 & =1, \\
y & =7, \\
10 & =1 \cdot 8+0=\text { cight. } \\
1 \% & =1 \cdot 8+7=\text { tifteen. } \\
20 & =2 \cdot 8+0=\text { sixteen. } \\
56 & =5 \cdot 8+6=\text { forty-six. } \\
234 & =2 \cdot 8^{2}+3 \cdot 8+4=\text { one hundred fifty-six, } \\
& \text { etc. }
\end{aligned}
$$

Let us take the arbitrary number z as the base of the seale. Λ s in our seale of 10 's we have

$$
234=2 \cdot 10^{2}+3 \cdot 10+4,
$$

so in the seale of z 's the digits 0.34 would mean

$$
2 z^{2}+3 z+4
$$

In general, the combination of digits abed would mean

$$
u z^{3}+b z^{2}+c z+d
$$

Divisibility of Numbers and their Digits.

£:35. Theonem. If the sum of the digits of "m! mumber be subtrueted frome the number itself', the remainder will be divisible by $z-1$.

Pronf. Let the digits be a, b, c, d. The number expressed will be

$$
a z^{3}+b z^{2}+c z+\iota
$$

Sum of digits $=\quad a+b+c+a$
Subtracting, rem. $=\frac{a}{\pi\left(z^{3}-1\right)+b}\left(z^{2}-1\right)+c(z-1)$.
The ficctors $z^{3}-1, z^{3}-1$, and $z-1$ are all divisible by $z-1$ (§93). Hence the theorem is proved. (§ 231.)

Thinonem. In any seate laving z as its base, the sumu of the digits of any uumber, when divinerl by $z-1$, will leate the same remainder as will the mumber itself when so dicided.

If we put: n, the number; s, the sum of the digits ; r, r^{\prime}, the remainders from dividing by $z-1$; q, q ', the quotients ; we shall have, Number,

$$
\imath=q(z-1)+r
$$

$$
\text { Sum of digits, } s=q^{\prime}(z-1)+r^{\prime}
$$

Remainder,

$$
\left(\eta-q^{\prime}\right)(z-1)+r-r
$$

Because $n-s$ and $\left(q-q^{\prime}\right)(z-1)$ are both divisible by $z-1$, their difference $r-r^{\prime}$ must be so divisible. Since r and r^{\prime} are both less than $z-1$, this remainder can be divided by $z-1$ only when $r=r^{\prime}$, which proves the theorem.

Zero is considered divisible by all numbers, because a remainder 0 is always left.

If a be any factor of $z-1$, the same reasoning will apply to it, and therefore the theorem will be true of it.

In our system of notation, where $z=10$, the above theorems may be put in the following well-known form:

If the sum. of the digits of anty mumber be aivisible b! ! ${ }^{3}$ or 9 , the mumber itself will be so tlivisilie.

These are the only numbers of which the theorem is trine, becanse 3 is the only divisor of !.
 of the seren poteress of \% rellat adt those of the altermate poucrs. the result will be divisible byg $z+1$.

Proof. 'To
$a z^{3}+b z^{2}+c z+d$
Add $\quad a-b+a-d$
licsult, $\bar{a}\left(z^{3}+1\right)+b\left(z^{2}-1\right)+c(z+1)$.

The factors of a, b, and c are all divisille by $z+1$ ($\$ 8.6$, 94), whence the result itself is so divisible.

Applying this result to the calse of $z=10$. we conclude:
If on subtracting the sum of the digits in the muere of units, humbeds, tens of thousimels. etc.. Irom. the steme of the alternate ones, the remaimer is ditisible by $1 /$. the number itself is elieisible by 11.

If m be any factor of z, it will divide all the terms of the number

$$
u z^{3}+b z^{2}+c z+l,
$$

exeept the last. Hence, if it divide this last also, it will divide the mumber itself. Applying this result to the case of $z=10$, we conclude:

If the lust rigit of any number is ricisilhe l!! " fuestor of 10 , the number itself is dibisible by thent fiertor.

The factors of 10 being 2 and 5 , this rule is true of these numbers only.

It will be remarked that if the base of the system had heen an odd number, we could not have distinguished even and old numiers by their last figure, tho we habitually do.

For example, if the base had been 9, the figures io would have represented what we call sixty-five, which is odd, and 73 would have represented what we call sixty-six, which is even.

The use of the base 10 makes it easy to detect when a momber is divisible ly either of the first three prime numbers, 2,3 , and 5 . If the last figure is divisilde he 2 or 5 . the whole number is so divisible. To ascertain whether 3 is a factor, we find whether the sum of the digits is divisible by 3 .

In taking the smm, it is not necessary to inelude all the digits, but in adding we may omit all :3's and 9 's, and drop :3, 6 , or 9 from the sum ns often as convenient. Thas, if the number were 021642712,
we should perform the operation mentally, thes:
 r $+1=8+2=10$, which leaves a remainder 1 .

EXERCISES.

1. Prove that if an eren number laives a remainder 1 when divided by 3 , its half will leate a remainder $?$ when so divided.
2. If from any number we subtract the sum of units' digit plas the product of the tens' digit by i, plas the product of the hundreds' digit by i^{2}, ete., the remainder will be divisible by $10-i$. (i may be any integer, positive or negative.)

Note. When $i=1$, this gives the rule of 9 's and when $i=-1$, the rule of 11 's.

Prime Factors of Numbers.

2:36. Fiest Fendamentil Theorem. a proluct cannot be divided by a mime mumber unless one of the factors is alivisible ly that prime number.

Note. This theorem is not true of composite divisors. For cxample, neither 8 nor 9 is divisible by (6 , but the product $8.9=72$ is so divisible. But if we take as many mumbers as we please not divisible by 7, we shall always find their proluct to leave a remainder when we try to divide it by 7.

To make the demonstration better understood, we shall first take a special case:

The proaluct 66a is not divisille by 7, unless a is clivisible by 7.

Proof. Suppose 66a div. by 7 7 goes into 669 times and 3 over, hecatse $\% \cdot 9=63$, 6:3 dis. by 7 Therefore, by Theorem II, § ≈ 31, $3 a$ div. by 7 3 goes into 72 times and 1 over. Multiply by $2, \frac{2}{6 \mu \text { dir. by } 7}$ Subtracting,

$$
\text { We have left, } a \text { dir. liy } 7
$$

Hence, if 66a is divisille by 7, then a is divisible by $\%$.
Gauss's Demonstration. If it be possible, let am be the smallest multiple of m which is divisible by p, when neither a nor m is so divisible. If a is greater than p, then let p go into a b times and r over, so that

$$
\begin{aligned}
a & =b p+r, \\
a-b p & =r .
\end{aligned}
$$

or
'Then,
Subtract
Remainder,
Or^{-}

$$
\text { am div. by } p
$$

	dis. by p.
bpmm	* "
$(a-b p) m$	" "
rm	"

That is, if $a m$ is divisible by p, so is $r m$, where r is less thain p.

Therefore the smallest multiple of m which fultils the conditions must be less than pm .

Therefore, let $a<p$. Let a go into p, tinues and s over, so that

$$
\begin{aligned}
p & =c a+s \\
p-c \iota & =s
\end{aligned}
$$

Then

| | $c a m$ | " | " (by hypothesis). |
| :--- | ---: | :--- | :--- | :--- |
| Subtracting, $(p-c \not t) m$ $"$
 Or, $s m$ $"$
 " | | | |

Therefore, s being less thin a, a is not the smallest multiple; whence the hypothesis that a is the smallest is imposible.

Gencral Demonstrution. Suppose

$$
\begin{aligned}
& \text { p, a prime number ; } \\
& \text { a, mumber not divisible by } n \text {; } \\
& \text { am, a product divisible by } p \text {. }
\end{aligned}
$$

We have to prove that m must be divisible by p.
Let p gointo a q times. Becanse a is not divisible by p, a remander r will be left. That is,

$$
a=\mu m+r, \quad \text { or } \quad a-m=r
$$

Let r go into $p q^{\prime}$ times and leave a remainder r '. Then,

$$
p=q^{\prime} l+r^{\prime}
$$

and because $m m$ and $q^{\prime} r m$ are hoth dirisible by $p, r m$ is so divisible.

In the same wity, if r^{\prime} goes into p $q^{\prime \prime}$ timess and latwe the remainder $r^{\prime \prime}$, $r " m$ will be divisible by ρ. Since cach of the remaindus $r, r^{\prime}, r^{\prime \prime}$, elfe, mat

(ame div. by p.		
mmm	*	*
rm	،	"
$q q^{\prime} r$ m	6	"
$j m$	،	"
r'm	"	*
$q^{\prime \prime} r^{\prime} m$	"	"
$p^{\prime \prime \prime}$	-	*
r ' m	*	،

Fixtension 1o Several Fuetors. If m is a product $b \times n$, and b is not divisible hy p, then we may show in the same way that u must be so divisible. If $n=c$, and c is not divisible, then s most be divisible, and so on to any number of factors.

Hence,
 dirisible b! a prime mombret, then one of the fiaclurs mast be divisible by the salme prime.
'ihis theorem is the loricail cipuiralent of the one just emmeliated as the first fims: ur: theorem.

Note. The student will rebs , why "w preceling demonstration applies only when the divisor p is a prime wher. if it were componime. we might reach a remoinder which would exactly divide it, and then the conclusion would not follow.

9:3\%. Second Fundamental 'Timonem. .l mumber can be divided into prime forclors in onl! ane arely.

For, suppose we could express the mumber V in the two Ways ($\$ 20 t$, Cor: : 2),

$$
\begin{aligned}
& N=\nu^{\alpha} i_{i}^{\beta} r^{\gamma} \\
& N=t^{\mu} b^{\prime \prime} c^{\pi}
\end{aligned}
$$

where p, q, r, ete., a, b, c, ete., are all prime numbers. Then

$$
r^{a} l^{\beta} r^{\gamma}=\mu^{\mu} b^{\prime \prime} c^{\pi} .
$$

If common prime factors appeared on both sides of this equation, we ronld divide then ont, leasing an equation in Which the prime fators $\mu, \quad \ell, r$, ete., are all difterent from II, l, c. we.
'I'hen, becamse \quad, b, e', etc., are all prime, none of them are divisible by p. Therefore, by the tirst fundamental theorem, their products camot beso divisible. Bat the left-hand member of the "puation is divisible liy p, becomse p is one of its factors. Therefore the eguation is impersible.

Res. 'This theorem forms the basis of the theory of the divisibility of mumbers.

The preceding theorems enable as: to phee the definition of numbers prime to each other in a new shape.

Two numbers are said to be prime to each other when they have no common prime factors.

Examples. If one number is $p^{a} q^{\beta} r^{r}$, and the other is $\pi^{\mu} b^{\prime \prime} c^{\pi}(\rho, q, r$, etc., and a, b, c, ete., being prime numbers $)$, them, if $/ 1, \not, r$, ete., are all different from n, b, c, ete., the wo numbers will be prime to each other.

Elementary Theorems.

2:38. The following genemal theorems follow from the two peeceding fundamental theorems, and their demonstration is in part left as an exereise for the student.

1. No poucer of an inealucible rulgar firaction can be a whole number.

Nore: An irreducible vulgar fraction is one which is reduced to its lowest terms.
II. Corollary. No root of a whole number ca, be a vulgar firaction.
III. If a number is dirisible b!! several divisors, all prime to erech other, it is also divisible by thecir product.

Cor. To prove that a number N is divisible by a momber $B=r^{n} \eta^{\beta} r^{\gamma}$, it is sufficiont to prove that it is divisible separately by μ^{a}, by q^{β}, by \boldsymbol{r}^{2}, etce.

Fxampat. If a momber is divisible separately by 5,8 , and 9 , it is clivisible by i.s.9 $=360$. Hence, to prove that a mumber is divisible by $: 60$, it is sutheient to show that 5 , 8 , and ! are all factors of it.
IV. If the mume erator remt acnominator of ar vigar froction hare no common prime fiectors, it is reduced to its louest terms.

Binomial Coeflicients.

¿:39. Theorem. The produrt of any n consecutive numbers is divisible by the product of the numbers 1.2.3.... n, or 11 !

Rem. The theorem implies that all binomial coeflicients are whole numbers, because they are quotients formed by dividing the product of n consecutive numbers by n !

Proef: 1. We have first to find the prime factors of the product

$$
1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \ldots n=n!
$$

berimning with the factor 2.
I. The numbers divisible by 2 are the even numbers 2,4 , 6 , ete., to n or $n-1$, the number of which is $\left[\begin{array}{l}n \\ 2\end{array}\right]$.

Note. The expression $\left[\begin{array}{c}n \\ \frac{2}{2}\end{array}\right]$ here means the greatest whole number in $\frac{n}{2}$, which is $\frac{n}{2}$ itself when n is even, and $\frac{n-1}{z}$ when n is odd.

The quotients of the division are

$$
1,2,3,4, \ldots\left[\begin{array}{l}
n \\
2
\end{array}\right]
$$

Of these quotients, $\left[\begin{array}{c}n \\ \frac{4}{4}\end{array}\right]$ are divisible by 2 , leaving the second set of quotients,

$$
1,2,3, \ldots\left[\begin{array}{l}
n \\
4
\end{array}\right]
$$

'The next set of quotients will be

$$
1,2, \ldots\left[\begin{array}{l}
n \\
\bar{s}
\end{array}\right] .
$$

The process is to be continued until we have no even numbers left.
'Therefore, if we pint " fir the number of times that the factor 2 enters into n ! we have,

$$
u=\left[\begin{array}{l}
n \\
2 \\
\cdots
\end{array}\right]+\left[\begin{array}{l}
n \\
4
\end{array}\right]+\left[\begin{array}{l}
n \\
8
\end{array}\right]+\text { etc. }
$$

II. The numbers in the series n ! containing 3 as a factor are $3,6,9,1 \approx$, etc.,
ients y dif the
$; \therefore 4$,
whole
$\frac{n-1}{z}$
of whieh the number is $\left[\begin{array}{l}n \\ 0 \\ \text { viding them by } 3 \text { nre }\end{array}\right]$. The quotients obtained by di-

$$
1,2,3, \ldots\left[\begin{array}{l}
n \\
3
\end{array}\right]
$$

Of these quotients, $\left[\begin{array}{l}n \\ 9\end{array}\right]$ are again divisible ly 8 , and so on as before. Hence, if we put β for the mmber of times n ! contains 3 as a factor, we have

$$
\beta=\left[\begin{array}{l}
n \\
3
\end{array}\right]+\left[\begin{array}{l}
n \\
3
\end{array}\right]+\left[\begin{array}{c}
n \\
\frac{3}{6}
\end{array}\right]+\text { etc. }
$$

In the same way, if k be any prime number, n ! will contain k ats a factor

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]+\left[\begin{array}{l}
n \\
k^{3}
\end{array}\right]+\left[\begin{array}{c}
n \\
k^{3}
\end{array}\right]+\text { etc. times. }
$$

Note. This elegant process enables us to find all the prime factors of n ! without actually computing it, and thas to exhibit n ! as a product of prime factors. If we suppose $n=1 ٌ$, we shall find,

$$
12!=1 \cdot 2 \cdot 3 \ldots 12=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11
$$

2. Next let us find the prime factors of the product

$$
(a+1)(a+\ddot{2}) \ldots(a+n)
$$

which contains u factors. Dividing successively by $2,3,5,7$, ete., it is shown in the same way as before that the prime factor p is contained in the product al least

$$
\left[\frac{n}{p}\right]+\left[\frac{n}{r^{2}}\right]+\text { ete. times, }
$$

Whatever prime factor f may be. Therefore the numerator $(a+1)(1+2) \ldots(11+n)$ contains all the prime lactors fomed in n ! to at least the same power with which they enter n ! Hence ($\$ 238, ~ I I I$), the numerator is divisible by n !

Cor. If the factor $a+n$ in the mmmerator is a prime number, that prime cannot be contained in n ! becanse it is
greater than n. Inence the binomial factor will be divisible byit.

Example. $\quad \begin{aligned} & 5 \cdot f \cdot \% \\ & 1 . \% . \%\end{aligned}$ is divisible by \%
We maty show in the sanme way that the hinomial eoeflicient is livisible by all the prime numbers in its numerator which exceed n.

Divisors of a Number.

:210. Dif. The expression

$$
\phi(m)
$$

is used to express how many mumbers not greater than m are prime to m.

Examilef. Let in find the value of $\phi(9)$.
1 is prime to !, because their G. C. D. is 1 .

4 is prime to 9.
5) " "

6 is not, because 6 and 9 have the G. C. D. 3.
7 is.
8 is.
! is not.
Therefore, the numbers less than 9 and prime to it are

$$
1, \therefore 4,5,7,8
$$

which are six in number. Hence,

$$
\phi(0)=0 .
$$

The numbers less than $1:$ and prime to 12 are $1,5,7,11$. Hence,

$$
\phi(1 \because)=4 .
$$

We find in this way,

$$
\begin{array}{ccc}
\phi(1)=1, & \phi(\cdot)=1, & \phi(3)=2 \\
\phi(t)=\imath, & \phi(5)=4, & \phi(6)=\because \\
\phi(i)=6, & \text { etc. }, & \text { etc. }
\end{array}
$$

theient which

- Cor.1. The mmber 1 is prime to itself, hut no other number is prime to itsilf.

Cor. ${ }^{2}$. If m be a prime mumber, then

$$
\phi(m)=m-1
$$

heramse the numbers $1,2,3, \ldots m-1$ are then all prime t1) 17.

The following remarkible theorem is associated with the functions $\phi(111)$.
:31. Theorem. If N be any momber, and $\boldsymbol{1}_{1}$, d. , d_{3}, ete., all its divisors, mity and m included, then

$$
\phi\left(l_{1}\right)+\phi\left(l_{2}\right)+\phi\left(\| l_{3}\right)+\text { etc. }=N .
$$

Eximple. Let the number be 18 .
The divisors are $1,9,3,6,9,18$. We find, by counting,

$$
\begin{gathered}
\phi(1)=1 \\
\phi(?)=1 \\
\phi(3)=\ddot{\sim} \\
\phi(6)=2 \\
\phi(9)=0 \\
\phi(18)=\frac{;}{18} \\
\text { Simm, }
\end{gathered}
$$

To show how this coms abont, write down the umbers 1 to 18 amd maler eath write the greatest common divisor of that number and 18. 'Thans,

Necessandy the mmbers in the second line are all divisors of 18 as well as wf the numbers over them.

The divisor 1 is under all the mumbers prime to 18 , so that there ate

$$
\phi(15)=\operatorname{divisurs} 1 .
$$

If u be any number over the divisor $:$, then $\frac{n}{\sim}$ and $\frac{18}{\underset{\sim}{z}}$, or 9 , must be prime to each other. ($8: 3 \%$, Cor, 1.) That is, the
numbers r are all those which, when divided by 2 , are prime to 9 . So there are

$$
\phi(9) \text { divisors } 2 .
$$

The divisor 3 matiks all numbers which, when divided by 3 , are prime to $\frac{18}{3}=6$. Hence, there are ϕ (6) divisors 3.

In the same way there are $\phi(3)$ divisors 6 , $\phi(2)$ divisors 9 , and $\phi(1)$ divisor 18 .

The total number of these divisors is both 18 and $\psi(18)$ $+\phi(9)+$ etc. Hence,

$$
\phi(18)+((9)+\phi(6)+\phi(3)+\phi(\%)+\phi(1)=18
$$

Gencral Proof'. Let m be the given number;

$$
\begin{aligned}
& d_{1}, d_{2}, d_{3} \text {, ete., its divisors; } \\
& q_{1}, l_{2}, q_{3}, \text { the quotiel } \frac{m}{l_{1}}, \frac{m}{l_{2}} \text {, ete. }
\end{aligned}
$$

The rpotients q_{1}, q_{2}, ete., will be the same mombers as d_{1}, d_{2}. ete., only in reverse order. The smallest of each row will be 1 and the greatest m. We shall then have

$$
m=d_{1} q_{1}=d_{2} q_{2}=d_{3} q_{3}, \quad \text { etc. }
$$

From the list of mumbers $1, \because, 3, \ldots m$, select all those which have d_{1} (unity) ats the greatest common divisor with n, then thase which have f_{2} as such common divisor, then those Which have d_{3}, ete, till we reatel the last divisor, which will be m itaell, and which will correspond to m.

The nombers having mity G. (. . .) will be those prime to m, by definition. Their mimber is $\phi(m)$.

Those having dip as (. C. D. with m will. when divided by
 tionts will indmbe all the mimbers mot wratur that y, : mall prime fo it, hecallse eatels of these mombers, when multiphed
 as its (i.C. D. with m . Henee the number of mumbers not
greater than m ，and having d_{2} as its G．C．D．with m will be $\phi(\%)$ ．

Contimung the process，we shall reach the divisor m ，which will have m iteelf as（i．U．D．，ana which will cotnot as the number corresponding to $\phi(1)=1$ in the list．

The m numbers $1, \therefore,: 3, \ldots$ are therefore erpath in mum－ ber to

$$
\phi(m)+\phi(/ / 2)+\phi\left(/ /_{3}\right)+\ldots+\phi(1) ;
$$

or，since the quotients and divisurs are the same，only in re－ verse bider，we shall have

$$
\phi(1)+\phi\left(l_{2}\right)+p\left(l_{3}\right)+\cdots+\phi(m)=m
$$

Q4⿻日．Febmats＇Theonem．If ple ath！mime mum－
 ＂lirisible b！！p ．

Examples．$\quad a^{4}-1$ is divisible ly $5 ; a^{6}-1$ is divisiblebyy 7.
Irouf．Develop＂p in the following way by the limomial theorem，

$$
\begin{aligned}
\iota^{p} & =[1+(a-1)]^{p} \\
& =1+p(a-1)+\binom{p}{\cdot}(a-1)^{2}+\cdots+(a-1)^{\prime} .
\end{aligned}
$$

Becanse p is prime，all the binomial eocflicients，

$$
1,\binom{p}{\vdots}, \text { etc., to }\left(\frac{n}{n-1}\right),
$$

are divisible by p（S．83），（ore）．Transposing the terms of the latis member of the eymation which are not divisible by p ，we timl

$$
u^{\prime}-(n-1)^{\prime}-1=a \text { mulaple of } \eta \text {. }
$$

or $\quad u^{\prime \prime}-\pi-\left[(\pi-1)^{\prime \prime}-(\pi-1)\right]=$ a multiple of p ．
simposing $x=8$ ，this equation shows that $v^{p}-2$ is a multiple of μ ；then，smposing $a=3$ ，we show ly 冬 $2: 31$ ， Th．I！，that ：3＂－ 3 is sucl：a multiple，and so om，indetinitely．

whatever be a ．But，$e^{p}-a=\left(t^{p-1}-1\right)$ t ，and heeause this product is divisible by pre of its facturs mast he so divisible
 17

CHAPTER II.

OF CONTINUED FRACTIONS.

:8:3. Any proper fration may be represtated in the form $\frac{1}{r}$, where x_{1} is greater than mity, hat is not necessanty a whole number. If ℓ_{1} be the greatest whole number in x_{1}, we cill pht

$$
x_{1}=u_{1}+\frac{1}{x_{2}}
$$

where r_{g} will be greater than mity. In the same way we may put

$$
\begin{aligned}
& x_{2}=u_{2}+\frac{1}{x_{3}}, \\
& x_{3}=\pi_{3}+\frac{1}{r_{4}}, \\
& \text { etc. } \quad \text { etc. }
\end{aligned}
$$

If for each x we substitute its expression, the fraction $\frac{1}{r_{1}}$ will take the form

$$
\frac{1}{r_{1}}=\frac{1}{u_{1}+\frac{1}{r_{2}}}=\frac{1}{u_{1}+\frac{1}{u_{2}+\frac{1}{x_{3}}} \text {, ete., etc. }}
$$

If the sulistitutions are continned indefinitely, the form will be

$$
\frac{1}{u_{1}+\frac{1}{u_{2}+\frac{1}{n_{3}+\frac{1}{n_{1}+"_{5}} \cdots \cdots}}+\frac{1}{}}
$$

Such an expression is callem a contimmen fracerime
I) \%\%. A Continued Fraction is one of which the demominator is athole mombor plas a fiatetion: the damominator of this last fration a whole mmber phas a fiatetion, ete.
Λ continned fraction may either terminate with one of its denominators or it may extend indefinitely.

Def: When the number of quotients e is finite, the fiaction is said to be Terminating.
:4. Phomber. To fimel the velue of a comtimmer frection.

We first find the value when we stop at the first denominatore, then at the seemed, then at the thime efe.

Using only two denominators, the fratetion will be

$$
F=\frac{1}{x_{1}}=\frac{1}{u_{1}+\frac{1}{r_{2}}}=\frac{r_{2}}{u_{1} r_{2}+1}
$$

F being put for the true valne of the fration.
'Io fint the expresion with thee terms, we put, in the preceding espression, $a_{2}+\frac{1}{x_{3}}$ in plate of x_{2}. This orivers

$$
l^{\prime}=\frac{u_{2}+\frac{1}{x_{3}}}{u_{1} \prime_{2}+{ }_{x}^{u_{3}}+1}=\frac{"_{2} \cdot r_{3}+1}{\left(u_{1} "_{2}+1\right) r_{3}+"_{1}}
$$

To find the result with the fometh denominator, we substitute $x_{3}=\mu_{3}+\frac{1}{r_{4}}$. The fiction becomes:

$$
\begin{equation*}
I^{\prime}=\frac{\left(n_{2} \|_{3}-1\right) r_{1}+\mu_{2}}{\left[\left(n_{1} \|_{2}+1\right) u_{3}+\left\|_{1} \mid r_{1}+\mu_{1}\right\|_{2}+1\right.} \tag{11}
\end{equation*}
$$

'To investigath the gromeral law aneorling to whim the surcessive expressims proverl, we pat

> (). He terms wot mattipliad ber in the momerator:
> ($?^{\prime}$, the terms mot maltipliad by x in the denminator:
 and $(g$ the same index as the or to which it belongs.

Then we my represent cach value of F in the form,

$$
F^{\prime}=\begin{align*}
& P_{i} x_{i}+Q_{i} \tag{b}\\
& P_{i}^{\prime} x_{i}+l_{i}^{\prime},
\end{align*}
$$

Where i may take any value neeessury to distinguish the fraction. Comparing with the fractions as writen, we see that:

'Io show that this form will continue, how far socrer we carry the computation, we put in the expression (b) the general value of x_{i},
which gives, $\quad F^{\prime}=\frac{\left(\mu_{i} I_{i}+Q_{i}\right) x_{i 11}+P_{i}}{\left(\mu_{i}^{\prime} I_{i}^{\prime \prime}+\left(l_{i}^{\prime}\right) r_{i .1}+I_{i}^{\prime \prime}\right.}$
I'o show the general law of succession of the terms, let us compare the general equation (b) with (el). I'utting $i+1$ for i in (b), it becomes,

$$
\begin{equation*}
F=\frac{r_{i+1} x_{i+1}+Q_{i+1}}{P_{i+1}^{\prime} x_{i+1}+y_{i+1}^{\prime}} \tag{e}
\end{equation*}
$$

Comparing this with ((1), we find

$$
\begin{aligned}
I_{i+1} & =\varkappa_{i} P_{i}+\Omega_{i} \\
Q_{i \perp 1} & =I_{i}^{\prime} \\
Q_{i} & =P_{i-1}
\end{aligned}
$$

whence,
substituting this value of Q_{i} in the equation previous, it becomines

$$
\begin{equation*}
P_{i 1}=n_{i} I_{i}+P_{i-1} \tag{f}
\end{equation*}
$$

Whrking in the same way with the denominators, we find

$$
\begin{aligned}
& I_{i+1}^{\prime}=a_{i} I_{i}^{\prime}+I_{i-1}^{\prime} \\
& l_{i+1}^{\prime}=I_{i^{0}}^{\prime \prime}
\end{aligned}
$$

i3y supposiny ito take in sursion the values $1,2,3$, cte.,

arat hat

inill
We 1
(b)
frac-
lat:
(r)
$n_{2}+1$.
rer we general
these formula show that the successive ralues of P may he computed thus:

$$
\begin{aligned}
& \left.P_{1}=0,\right\} \quad(\text { from } c) \\
& \left.P_{2}=1,\right\} \\
& I_{3}^{\prime}=\pi_{2} P_{2}^{\prime}+P_{1}=\pi_{2}, \\
& I_{4}^{\prime}=\pi_{3} P_{3}+I_{2}^{\prime}, \\
& I_{5}=a_{4} P_{4}+I_{3}, \\
& I_{6}^{\prime}=\pi_{5} P_{5}+I_{4}, \\
& \text { etc., to any extent. }
\end{aligned}
$$

Al:o,

$$
\begin{aligned}
& I_{1}^{\prime}=1, \\
& I_{2}^{\prime}=\pi_{1}, \\
& I_{3}^{\prime}=\pi_{2} I_{2}^{\prime}+I_{1}^{\prime} \\
& I_{4}^{\prime}=\|_{3} I_{3}^{\prime}+I_{2}^{\prime} \\
& P_{5}^{\prime}=\|_{4} P_{4}^{\prime}+I_{3}^{\prime} \\
& \text { etc. }
\end{aligned}
$$

Since each value of Q is equal to the value of P having the next smaller index, it is not necessary to compute the eis separately.

If the fratetion terminates at the $n^{\text {th }}$ value of a, we shall have

$$
x_{n}=\epsilon_{n}, \text { exactly. }
$$

If it does not terminate, we have to neglert all the denommators after a certatn point; and calling the last denominator we nee the $e^{\text {th }}$, we must suppose

$$
x_{n}=a_{n}
$$

In cithor case the expression (b) will give the ralue of the fraction with which we stop by putting $i=n$ and $i_{n}=A_{n}$.

Therefore, $\quad P^{\prime}=\frac{a_{n} \rho_{n}+Q_{n}}{a_{n} \rho_{n}^{\prime}+!_{!}^{\prime}}$, or, sulstituting for Q_{n} and Q_{n}^{\prime} their values in ((J),

$$
\Gamma^{\prime}=\frac{\mu_{n} P_{n}+P_{n-1}^{\prime}}{\mu_{n} P_{n}^{\prime}+P_{n-1}^{\prime}}
$$

lant the general expressions (f) aml (f) give

$$
\begin{aligned}
& \mu_{n} P_{n}+I_{n-1}=I_{n+1}, \\
& u_{n} I_{n}^{\prime}+I_{n-1}^{\prime}=I_{n+1}^{\prime} \\
& l^{\prime}=I_{n+1}^{\prime} . \\
& l_{n+1}^{\prime}
\end{aligned}
$$

'Iherefore,

 I_{n}^{\prime}, willomet lwhing all! |lecomell if" ().

Example: Take the fraction,

We now have lex contiming the formulae (c) and (f) amb usiag those values of $\|_{1}$, $\|_{2}$, ve. :

$$
\begin{aligned}
& r_{1}=0, \\
& I_{2}=1 \text {, } \\
& I_{3}=\|_{2} I_{2}+I_{1}-n_{2}=\Omega_{0} \\
& I_{4}=I_{3} I_{3}+I_{2}=\therefore \cdot \dot{\partial}+1=\gamma, \\
& I_{B}=I_{4} I_{4}+I_{0}=1 . i+8=3 H_{0} \\
& I_{B}=I_{5} I_{5}+I_{1}^{\prime}=5 \cdot 3+i=15 \%, \\
& \text { ctc. etce cte. } \\
& I_{1}^{\prime}=1 \text {, } \\
& r_{a}^{\prime}=n_{1}=1 \text {, } \\
& P_{3}^{\prime}={ }^{\prime \prime} r_{2}^{\prime}+r_{1}^{\prime}=\because \cdot 1+1=3, \\
& r_{4}^{\prime}=I_{3} I_{3}^{\prime}+r^{\prime}=3 \cdot 3+1=10 . \\
& r_{3}^{\prime}=n_{4} r_{1}+r_{3}^{\prime}=4.10+3=43, \\
& r_{6}^{\prime}=I_{5} I_{5}^{\prime}+i_{4}^{\prime}=5 \cdot 13+10=8.25 .
\end{aligned}
$$

'l'herefore, emposing in suceession. $n=1, n=2 \cdot n=8$, ete., we hater, for the stacessive apmonimate values of the fiaction,

$$
\begin{aligned}
& \text { For } n=1, \quad P_{1}=\frac{P_{2}^{\prime}}{P_{2}^{\prime}}=1 \text {. } \\
& \text { For } n=2, \quad F_{2}=\frac{I_{3}^{\prime}}{I_{3}^{\prime \prime}}=\stackrel{9}{3} \text {. }
\end{aligned}
$$

These sucessive apmoximate values of the continned fraction are called Converging Fractions, or Convergents.
245. The forms (f) ind (g) may be expressed in words as follows:
 tipl!ging the procerling mameretor lu! the corrorspondiag a, amd rulding the secomal numberator preeceding to the promluct.

The suceessive denominators we formed in the same way.
Examples. The ratio of the motions of the sun and mon relative to the moon's node is given by the eontimed fraction:

$$
\frac{\frac{1}{12+\frac{1}{1+\frac{1}{2}}}}{}
$$

Wet us find the sumesesive eonvergents. We put the innominators $"_{1}=1:, n_{2}=1$, ete., in in line, thas:

$$
\begin{aligned}
& \because=10, \quad 1, \quad \therefore, \quad 1, \quad 1, \quad 3 .
\end{aligned}
$$

Under $"_{1}$ we write the fraction ${ }_{1}^{0}$, which is always the one with which to start, becanse $P_{1}=0$ and $P_{1}^{\prime}=1$ (sedt r). Next to the right is $\frac{1}{\pi_{1}}$, becantio $I_{0}^{\prime}=1$ and $I_{0}^{\prime}=\mu_{0}$. Alter this, we multiply each lerm ly the multiplier a : above il, and

264

add the term to the left to obtain the term on the right. I'lums, $\quad \mathfrak{i} \cdot 1+1=3, \quad \mathfrak{a} \cdot 13+1 \%=38$, etc.

Ex. 2. 'Io compate the convergents of

$$
\frac{\frac{1}{2+\frac{1}{4+\frac{1}{2}}}}{2+\frac{1}{4 \text { etr}^{2}}}
$$

$$
a=2, \quad 4, \quad 2, \quad 4, \quad 2, \quad 4, \quad \text { etc. }
$$

$\begin{array}{lllll}\text { Numerators, } \\ \text { Denominators, } & \frac{0}{1} & \frac{1}{2}, & \frac{4}{9}, & \frac{9}{20}, \\ \frac{40}{89} & \frac{89}{198}, & \text { etc. }\end{array}$

EXERCISES.
Reduce the following continned fractions to vulgar fractions:

1. $\frac{1}{3+\frac{1}{7+\frac{1}{16}}}$.
2. $\frac{1}{3+\frac{1}{2+\frac{1}{2+\frac{1}{3}}}}$.
3. $\frac{1}{3+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{3}}}}}$.
4. $\frac{1}{3+\frac{1}{5+\frac{1}{x}}}$ 5. $\frac{1}{a+\frac{1}{b+\frac{1}{c}}}$.
5. Promem. To eapress a fractional quantit! as a continued firaction.

Let R be the given fraction, less than unity. Compute x_{1} from the formula,

$$
x_{1}=\frac{1}{1 i}
$$

Let a_{1} be the whole mamber and R^{\prime} the fraction of x_{1}. Then compute

$$
x_{a}=\frac{1}{l_{i}} .
$$

ight.
frac-

Let a_{2} be the whote number and $R^{\prime \prime}$ the fraction of r_{2}.
We continue this process to any extent, mess some value of x comes out a whole number, whon we stop.

Example. Express $\frac{\partial 6}{33}$ as a contimed fiation.

$$
\begin{array}{lll}
x_{1}=\frac{1}{R}=\frac{23}{26}=2+\frac{21}{26} ; & \therefore u_{1}=2 ; & R^{\prime}=\frac{21}{26} \\
x_{2}=\frac{1}{R^{\prime}}=\frac{26}{21}=1+\frac{5}{21} ; & \therefore u_{2}=1 ; & R^{\prime \prime}=\frac{5}{21} \\
x_{3}=\frac{1}{R^{\prime \prime}}=\frac{21}{5}=4+\frac{1}{5} ; & \therefore u_{3}=4 ; & R^{\prime \prime \prime}=\frac{1}{5} \\
x_{4}=\frac{1}{R^{\prime \prime \prime}}=\frac{5}{1}=5 ; & \therefore u_{4}=5 ; & R^{\text {iv }}=0 .
\end{array}
$$

So the continned fraction is

$$
\frac{1}{2+\frac{1}{1+\frac{1}{4+\frac{1}{5}}}}
$$

It will be seen that the process is the same as that of finding the greatest common divisor of two nmmbers.
EXERCISES.

Develop the following gnotients as continned fractions:
I. $\frac{113}{355}$.
2. $\frac{104!}{33 \%} 6^{\circ}$
3. $\frac{628}{925}$.

24\%. The most simple continued fraction is that arising from the geometric problem of cutting a line in extreme and mean ratio. The eorresponding umerical prohlem is:

T'o dibide unit!! into tuo suche fractious that the less shall be to the givertor as the greater is to menty.

Iat r be the greater fraction. Then $1-r$ will be the lesser one. We mast then have

$$
1-r: r:: r: 1
$$

Which gives
$01{ }^{\circ}$

$$
\begin{aligned}
r^{2} & =1-r, \\
r^{2}+r & =1 \\
r(r+1) & =1, \\
r & =\frac{1}{1+r}
\end{aligned}
$$

Now, let us put for r in the last denominator the expression $\frac{1}{1+r}$, and repeat the process indefinitely. We shall-have,

$$
r=\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1 \text { etc., al infinitum. }}}} \text { } \quad \text {. }}
$$

Now we may form the successise convergents whidh approximate to the trae valle by the rule. As all the denominators "are 1 , we have no multiplying, bat only add and term to the preceding one to obtain the following one. 'Ihns we lind:

$$
\frac{0}{1}, \frac{1}{1}, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}, \frac{13}{31}, \frac{21}{34}, \frac{34}{54} \text {, ate. }
$$

The the value of r may be found hy solving the quadratic,
which gives

$$
\begin{aligned}
r^{2}+r & =1 \\
r & =\frac{-1 \pm \sqrt{5}}{2}
\end{aligned}
$$

The positive root, with which alone we are concerned, is

$$
r=\frac{-1+\sqrt{5}}{z}=0.61803399
$$

The valnes of the first nine convergents, with their errors, are:

$$
\begin{array}{lll}
1: 1=1.0, & \text { error }=+0.382 \\
1: 2=0.5, & " & -0.118 \\
2: 3=0.666 \ldots, & " & +0.0486 . \\
3: 5=0.600, & " & -0.0180 \\
5: 8=0.6: 5, & " & +0.0069 \%
\end{array}
$$

$8: 13=0.615: 88 . .$.	error =	$-0.00: 06 \%$.
$13: 81=0.6190 .1 \ldots$,	*	+ 0.00101.
21 : $3.1=0.61 \% 6.1 \%$.	${ }^{6}$	- 0.000:3:\%\%
$\begin{array}{r} 34: 50=0.61818^{\circ}: \ldots, \\ \text { ete. } \end{array}$	6	$\begin{aligned} & +0.0001 .48 . \\ & \text { etc. } \end{aligned}$

 \(8: 13=0.615: 38 \ldots\),
 $13: 21=0.6100 \cdot 1 \ldots$,
$. \quad+0.00101$.
21 : $3.1=0.61 \% 61 \% \ldots$,
" - 0.000:3:1\%
$: 3: 505=0.61818 \% \ldots$,
ete. ele.

Relations of Successive Convergents.
DIS. Theonsm I. The sucessice comerogents we "tlarmately too lirige amel too small.

Pronf: The livat convergent is $\frac{1}{\pi_{1}}$. The trae demominator being $\mu_{1}+\frac{1}{r_{2}}$, the denominator μ_{1} is ton smatl, and therefore the fraction is tao large.

In forming the second fraction, we put $\frac{1}{\pi_{2}}$ instead of $\frac{1}{x_{2}}$. Becanse $\pi_{2}<x_{2}$, this fraction is too harge, which makes the denominator $\pi_{1}+\frac{1}{\mu_{2}}$ too small.

The thind denominator " ${ }_{3}$ is too small, which will make the preceding one too large, the next preeceding too small, and so on atternately.
'Ineonem II. If $\frac{\mathrm{m}}{\mathrm{n}}$ and $\frac{\mathrm{min}^{\prime}}{n^{\prime}}$ be any tuo consecutive comergents, then

$$
m n^{\prime}-m^{\prime} n= \pm 1
$$

Proof. We show:
(8) That the theorem is true of the first pair of convergents.
(β) 'That if true of any pair, it will be true of the pair next following.
(a) The first pair of convergents are

$$
\frac{1}{\pi_{1}}, \quad \frac{1}{u_{1}+\frac{1}{u_{2}}}=\frac{u_{2}}{\pi_{1} \|_{2}+1}
$$

which gives $m n^{\prime}-m^{\prime} n=1$, thas proving (c).

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences
Corporation

23 West main street WEBSTER, N.Y. 14580 (716)872-4503

(β) Let

$$
\frac{m}{n}, \frac{m^{\prime}}{n^{\prime}}, \frac{m^{\prime \prime}}{n^{\prime \prime}},
$$

be three conscentive convergents, in which

$$
\begin{equation*}
m n^{\prime}-m \prime^{\prime} n= \pm 1 \tag{1}
\end{equation*}
$$

By (f) and ((j) we shall have

$$
\begin{aligned}
m^{\prime \prime} & =a m^{\prime}+m \\
n^{\prime \prime} & =a n^{\prime}+n
\end{aligned}
$$

Multiplying the second equation by m^{\prime} and subtracting the product of the first by u^{\prime}, we have

$$
m^{\prime} n^{\prime \prime}-m^{\prime \prime} n^{\prime}=m^{\prime} n-m n^{\prime}
$$

which is the negative of (1), showing that the result is ∓ 1.
The theorem being true of the first and seeond fractions, must therefore be true of the second and third ; therefore of the third and fourth, and so on indefinitely.

Corollaries. Dividing (1) by $n n$, we have

$$
\frac{m}{n}-\frac{m^{\prime}}{n^{\prime}}= \pm \frac{1}{m u^{\prime}} \cdot \quad \text { Hence, }
$$

I. The difference between the two successive comvergents is equal to unity divided by the product of the alenominutors.

Becanse the denominator of each fraction is greater than that of the preceding one, we conclude:
II. The aifference betuecu tuo consecutice convergents constuntly dimiuishes.

Combining these conclusions with Th. I, we concinde :
III. Each vatre of a convergent atwrays lies between the values of the two preceding convergents.

For if R_{4}, R_{5}, R_{6} be three such fractions, and if R_{5} is greater tham R_{4}, then R_{6} will be less than R_{5}. But it must be greater than R_{4}, else we should not have $R_{5}-R_{6}$ numerically less than $R_{4}-R_{5}$. Hence, if we arrange the snecessive convergents in a line in the order of magnitude, their order will be as follows:

$$
R_{4}, R_{6}, R_{8}, \ldots . . R_{9}, R_{7}, R_{5}
$$

each convergent coming nearer a true central value. Hence,
IV. The true value of the continued fraction alwrays lies between the values of two consecutive convergents.

Comparing with (I), we conclude:
V. The error which we make by stopping at any coriurorgent can never be greater than unity divided by the - product of the denominators of that convergent and the one next following.

$$
E X A M P L E
$$

Referring to the table of values of $\frac{1}{2}(\sqrt{ } 5-1)$ in $\S 247$, we see that:

$$
\begin{array}{ll}
\text { Error of } 2: 3<\frac{1}{3 \cdot 5} ; & \left(\text { for } .0486<\frac{1}{15}\right) \\
\text { Error of } 3: 5<\frac{1}{5 \cdot 8} ; & \left(\text { for } .018<\frac{1}{40}\right)
\end{array}
$$

ete.
etc.
Hence, in general, continued fractions give a very rapid approximation to the true value of a çuantity. Theiv mincipal use arises from their giving approximate values of ir. . tional numbers by vulgar fractions with the smallest terms.
EXAMPLE.

Develop the fractional part of $\sqrt{ } 2$ as a continued fraction, and find the values of eight convergents.

Because 1 is the greatest whole number in $\sqrt{2}$, we put

$$
\begin{align*}
\sqrt{ } 2 & =1+\frac{1}{x} \tag{1}\\
x & =\frac{1}{\sqrt{ } 2-1}
\end{align*}
$$

whence,
$\mathrm{f} R_{5}$ is it must numerccessive ir order

Hence,

Rationalizing the denominator, § 185,

$$
x=\sqrt{ } 2+1
$$

Substituting for $\sqrt{ } 2$ its value in (1),

$$
x=2+\frac{1}{x}
$$

Putting this value of x in (1) and again in the denominator, and repeating the substitution indefinitely, we find

$$
\sqrt{ } 2=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}} \text { etc. }}}
$$

Forming the convergents, we find them to be

$$
\frac{1}{2}, \frac{2}{5}, \frac{5}{12}, \frac{12}{29}, \frac{29}{80}, \frac{70}{169}, \frac{169}{408}, \frac{408}{985}, \quad \text { etc. }
$$

Adding unity to each of them, we find the approximate values of $\sqrt{ } \approx$:

$$
\frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \frac{577}{405}, \frac{1393}{905}, \text { etc. }
$$

Rey. The square root of 2 may be employed in finding a right angle, because a right angle (by Geometry) can be formed by three pieces of lengths proportional to $1,1, \sqrt{2}$. If we make the lengths $12,12,17$, the error will, by Cor. V, be less than $\frac{1}{12.29}$, or less than $\frac{1}{348}$ of the whole length.

EXERCISES.

Develop the following square roots as continued fructions, and find six or more of the partial fractions approximating to each :

1. $\sqrt{ } 3$.
2. $\sqrt{ } 5$.
3. $\sqrt{ } 6$.
4. $\sqrt{ } 10$.
5. Develop a root of the quadratic equation

$$
x^{2}-a x-1=0
$$

commencing the operation by dividing the equation by x.

Periodic Continued Fractions.

249. Def. A Periodic continued fraction is one in which the denominators repeat themselves in regular order.

Eximple. A continued fraction in which the successive denominators are
$2,3,5,2,3,5,2,3,5$, etc., ad infinitum, is periodic.

A periodic continned fraction can be expressed as the root of a quadratic equation.
EXAMPLES.
1.

$$
1
$$

$$
\overline{1+\frac{1}{2+\frac{1}{1+\frac{1}{2+c t c}}}}
$$

If we put x for the value of this fraction, we have

$$
x=\frac{1}{1+\frac{1}{2+x}}
$$

We find the value thus:

$$
\begin{array}{lcc}
1, & 2+x . & \\
\frac{0}{1}, & \frac{1}{1}, & \frac{2+x}{3+x} .
\end{array}
$$

Because this expression is x itself we have

$$
x=\frac{2+x}{3+x}
$$

which reduces to the quadratic equation

$$
x^{2}+2 x=2
$$

2. Let us take the fraction of which the successive denominators are $2,3,5,2,3,5$, etc., namely,

$$
x=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{1}{2+\frac{1}{3+\text { etc. }}}}}}
$$

or,

$$
x=\frac{1}{2+\frac{1}{3+\frac{1}{5+x}}} .
$$

We compute thus:

$$
\begin{array}{llcl}
2, & 3, & x+5 . & \\
\frac{0}{1}, & \frac{1}{2}, & \frac{3}{7}, & \frac{3 x+16}{7 x+3 y} .
\end{array}
$$

Hence we have, to determine x, the quadratic equation,

$$
x=\frac{3 x+16}{7 x+37}, \quad \text { or } \quad \quad 7 x^{2}+34 x=16 .
$$

250. Development of the Root of a Quadratic Equation. A root of a quadratic equation may be developed in a contimued fraction by the following process. Let the equation in its normal form be (§ 192),

$$
\begin{equation*}
m x^{2}+n x+p=0, \tag{1}
\end{equation*}
$$

m, n, and p being whole numbers. We shall then have

$$
x=\frac{-n \pm \sqrt{n^{2}-4 m p}}{2 m}
$$

Let a be the greatest whole number in x, which we may find either by trial in (1) or by this value of x. Then assume

$$
x=a+\frac{1}{x_{1}},
$$

and substitute this value of x in the original equation. Then, regarding x_{1} as the unknown quantity, we reduce to the normal form, which gives

$$
\begin{equation*}
\left(m a^{2}+n a+p\right) x_{1}{ }^{2}+(2 m a a+n) x_{1}+m=0 \tag{ㄹ}
\end{equation*}
$$

If a_{1} is the greatest whole number in x_{1}, we put

$$
x_{1}=\epsilon_{1}+\frac{1}{x_{2}},
$$

and by substituting this value of x_{1} in (2), we form an equation in x_{2}. Continuing the transformations, we find the greatest whole number in x_{2}, which will be called a_{2}, and so on.

The root will then be expressed as a whole number a plus the continued fraction of which the denominators are a_{1}, a_{2}, a_{3}, etc.

BOOK X.

TIIE COMBINATORY ANALYSIS.

CHAPTERI. PERMUTATIONS.

251. Def. The different orders in which a number of things can be arranged are called their Permutations.

Examples. The permutations of the letters a, b, are $a b, \quad b a$.
The permutations of the numbers 1,2 , and 3 are

$$
123, \quad 132,213,231,312,321 .
$$

Problem. To find how mamy permutations of any given number of things are possible.

Let us put
P_{i}, the number of permutations of i things.
It is evident from the first of the above examples that there are two permutations of two things. Hence,

$$
P_{z}=2
$$

To find the permutations of three letters, a, b, c, we form three sets of permutations, the first beginning with a, the second with b, and the third with c.

In each set the first letter is to be followed by all possible permutations of the remaining letters, namely:

In 1st set, after a write $b c$, $c b$, making abc, $a c b$.
" 贮 " " b " ac, ca, " bar, bca.
" 3d " " c " $a b, b a$, " cab, cba.

IIence,

$$
P_{3}=3 \cdot 2=6
$$

The fermutations of n things can be divided into sets. The first set begins with the first thing, followed by all pursibe permutations of the remaining $n-1$ things, of which the number is l_{n-1}. The second set begins with the seeond thing, followed by all possible permutations of the remaining $n-1$ things, of which the number is also P_{n-1}, and so with all n sets. Hence, whatever be n, there will be n sets of $I_{n-1}{ }^{\prime}{ }^{\prime \prime}$ ermutations in cach set. Therefore,

$$
P_{n}=n P_{n-1}
$$

This equation enables ns to fimd P_{n} whenever we know P_{n-1}, and thas to form all possible valnes of P_{n}, ats foliows:

It is cvident that
We have found
Putting $n=4$, we have " $n=5$, " "
etc.
$P_{1}=1$.
$i_{2}=2 \cdot 1=2$!
$p_{3}=3 \cdot 2 \cdot 1=3!=6$.
$P_{4}=4 P_{3}=4!=24$.
$l_{5}=5 l_{4}=5!=120$.
ete.
etc.

It is evilent that the number of permutations of n things is equal to the continued product

$$
1 \cdot 2 \cdot 3 \cdot 4 \ldots n \text {, }
$$

which we have represented by the symbol n ! so that

$$
I_{n}=n!
$$

EXERCISES.*

1. Write all the permutations of the following letters:
bocl, acd, ably, ubcd.
2. What propurtion of the possible permutations of the letters a, ρ, m, t, make well-known English words?
3. Write all the numbers of feur digits each of which can be formed lyy permuting the four digits $1,2,3,4$.
4. How many mumbers is it possible to form by permuting the six figures $1, \therefore, 3,4,5,6$.

[^4]5. At a dinner party a row of 6 plates is set for the host ich the l thing, $n-1$ 1 "ll $-11^{4 r-}$
know luws: and 5 grests. In how many ways may they be seated, subjeet to the condition that the host must have Mr. Brown on his right and Mr. Hi....ilton on his left?
6. Of all numbers that can be formed by permuting the seven digits, 1, 己.... 7:
(a) How many will be even and how many odd?
(b) In how many will the seven digits be alternately even and old?
(c) In how many will the three even digits all be together?
(d) In how many will the four odd digits all be together?
7. In how many permutations of the 8 letters, a, b, c, c, c, f, g, h, will the letters d, e, f, stand together ia alphabetical order?
8. In how many of the above permutations will the word detef be foumel?
9. In how many of the permatations of the first 9 letters will the words aye and bid be both fond?
ro. A party of 5 gentlemen and 5 ladies agree with a mathematifian to dance a set for every way in which he can divide them into couples. How many sets can he make them dance?
11. In how many of the permutations of the letters a, b, c, d, c will d and no other lecter be found between a and e.
12. In how many of the permutations of the six symbols, r, b, c, d, e, f, will the letters abe be found together in one group, and the letters def in another?
13. How many permntations of the seven symbols, a, b, c, ${ }^{7}, c, f, g$, are possible, subject to the condition that some permutation of the letters abe must come first?
14. The same seven symbols being taken, how many permutations can be formed in which the letters $a b c$ shall remain together?

Permutations of Sets.

252. Def. When permutations are formed of only s things out of a whole number n, they are called Permutations of n things taken s at a time.

Exaypie. The permutations of the three letters a, b, c, taken two at a time, are
$a b, b u, a c, c a, b c, c b$.
The permutations of $1,2,3,4$, taken two at a time, are

$$
12,13,14,21,23,24,31,32,34,41,42,43 .
$$

Problem. To find the mumber of permutations of n things taken s at a time.

Suppose, first, that we take two things at a time, as in the above examples. We may choose any one of the u things as the first in order. Which one soever we take, we shatl have $u-1$ left, any one of which may be taken as the second in order. Hence, the permutations taken 2 at a time will be

$$
n(n-1)
$$

[Compare with the last example, where $n=4$.]
To form the permutations 3 at a time, we add to cach permutation by 2 's any one of the $n-2$ things which are left. Hence, the number of permatations 3 things at a time is

$$
n(n-1)(n-2)
$$

In general, the permutations of n things taken s at a time will be equal to the continued product of the s factors,

$$
n(n-1)(n-2) \ldots(n-s+1)
$$

which is equal to the quotient $\frac{n!}{s!}$
It will be remarked that when $s=n$, we shall have the case alrealy considered of the permutations of all n things.

```
EXERCISES.
```

r. Write all the numbers of two fignres each which can be formed from the four digits, $3,5,7,9$.
2. Write all the numbers of three figures, begimning with 1 , whieh can be formed from the five digits, $1,2,3,4,5$.
3. How many different numbers of four figures caeh can be formed with the digits $1,2,3,4,5,6$, no figure being repeated in any number?
4. Explain how all the numbers in the preceding exercise may be written, showing how many numbers begin with 1 , how many with $\stackrel{y}{c}$, ete.
5. In how many ways can 3 gentlemen select their partners from s latics:
6. How many even mmbers of 3 different digits each cam le formed from the seven digits, $1, \therefore, \ldots .7$?
7. IIow many of these numbers will consist of an odd digit between two even ones?

Circular 1ermutations.

953. If we have the three letters a, b, c, armanged in a circle, as in the adjoining figure, then, however we arrange them, we shall find them in alphabetical order 1 , beginning with a and reading them in the suitable direction. Hence, there are only two different circular arrangements of three letters insteal of six, nimely, the two directions in which they may be in al-
 phabetical order.

Next suppose any number of symbols, say a, b, c, d, e, f, g, h, and let there be an erfual number of positions around the circle in which they may be placed. These positions are numbered $1,2,3,4,5,6,7,8$.

For every arrangement of the symbols we may turn them romal in a body without changing the arrangement. Each symbol will then pass through all eight positions in succession.

By performing this operation with every arrangement, we shall have all possible permatations of the eight things
 among the eight positions, the number of which is 8 !, which are therefore eight times as many as the circular arrangements.

Hence the momber of different circulat armagements is $\frac{8!}{8}$, whish is the same as $\%$!

In general, if we represent the number of circular armgements of u things by C_{n}, we shall have

$$
C_{n}^{\prime}=(n-1)!
$$

Tho same result may be reached by the following reasoning. Tor form a cirenlar armagement, we may take any one symbol, "for example, put it into a fixed position, saly (1), and kawe it there.

All possible arragements of the symbols will then be formed by permating the remaining symbols among the remaining pusitions. Hence,

$$
C_{n}^{\prime}=I_{n-1}^{\prime}=(n-1)!
$$

as before.

EXERClSES.

1. In how many orders ean a party of $\%$ persons take their places at a round table?
2. In how many orders can a host and 7 guests sit at a romed table in order that the host may have the guest of highest rank upon his right and the next in rank on his left?
3. Five works of four volumes each are to be arranged on a cireblar shelf. How many arrangements are pessible which will keep the volmmes of each set together and in proper order, it being indifferent in which direction the numbers of the volumes read.
4. In how many cirenlar arrangements of the 5 letters a, b, c, d, c, will a stind between b and d ?
5. If the 10 digits are to be arranged in a cirele, in how many ways can it be done, subject to the condition that even and odd digits must alternate? (Note that 0 is even.)
6. The same thing being supposed, how many arrangements are possible, subject to the condition that the even digits must be all together?
7. In how many circular arrangements of the first six letters will the word deuf be found? What will be the difference of the results if you are allowed to spell it in either direction?

Permutations when Several of the Things are Identical.

25. If the same thing appears several times among the thangs to be permated, the number of different permutations will be less than when the things are all different.

Exampes. The permatations of cubl are atebb, abab, abba, betelb, butbet, bbate, which are only six in number.

Problem. To find the mumber of permuthtions when severed of the thinges are illenticat.

Let us tirst examine how all it permutations of 4 things
 us distinguish the two a's and the two l bes lacenting one of each. Then, from cach permutation as written, four may be formed by permuting the similar letters among themselves. For example, taking ablu, and writing it cub'u', we have, by permuting the similar letters,

$$
\begin{equation*}
a b^{\prime} b a^{\prime}, \quad \text { a'blata. abb'a', a'bb'a. } \tag{?}
\end{equation*}
$$

In the sane way four permutations, differing only in the arrangement of the aceents, may be formed from cach of the 6 fermutations (1), making ad in atl, as there onght to be. (8251.)

Gencralizing the preceding operation, we reach the following solution of our problem. Let the symbols to be permuted be a, l, c, ete.

Suppose that a is repeated r times,

$$
\begin{array}{ccccccc}
\because & \because & b & \cdots & \because & s & " \\
" & \because & c & \boxed{ } & & \cdots & t \\
\text { ctc. } & & \text { etc. } & & \text { etc. } &
\end{array}
$$

and let the whole number of symbols, connting repetitions, be n, so that

$$
n=r+s+t+\text { etc. }
$$

[In the preceding example (1), $n=4, r=2, s=2$.]
Also puit X_{n}, the required number of diflerent permutations of the u symbols.

Suppose these X_{n} different permatations all written out, and suppose the symbols which are repeated to be distinguished by accents. Then:

From each of the Y_{n} permutations may be formed $F_{r}=r$! permatations by permuling the a's among themselves, as in (: 2). We shall then have $r!X_{n}$ permutations.

From each of the latter maty be formed s ! permatations by permuting the b 's among themselves. We shall then have $s!r!\times \Gamma_{n}$ permutations.

From cach of these may be fomnd t ! permutations by interchanging the c 's among themselves.

Proceeding in the same way, we shall have

$$
X_{n} \times r!\times s!\times t!\times \text { ete } .
$$

possible permotations of all n things. But this number has been shown to be x : Therefore,

$$
\begin{align*}
& \quad \Gamma_{n} \times r!\times s!\times t!\times \text { etc. }=n! \\
& \text { By division, } \quad X_{n}=\frac{n!}{r!s!t!\text { etc. }} \tag{3}
\end{align*}
$$

which is the required expression.
We remark that if any symbols are not repeated, the formula (3) will still be true by supposing the number corresponding to r, s, or t to be 1 .

EXAMPLES.

1. The number of possible permutations of calb are

$$
\frac{4!}{2!2!}=\frac{24}{2 \cdot 2}=6, \text { as already found. }
$$

2. The possible permutations of cumbed are

$$
\begin{gathered}
\frac{7!}{3!: 3!}=\frac{5040}{6 \cdot \pi}=420 \\
\text { EXERCISES }
\end{gathered}
$$

Write all the permutations of the letters:
I. atub.
2. atble.
3. aatabe.
4. How many different numbers of seven digits each can be formed by permuting the figures $11102: \%$?
5. If every different permutation of letters made a word, how many words of 13 letters each could be formed from the word ilassachusetts.

The Two Classes of ermatations.

255. The n ! possible permutations of n things are divisible into two classes, commonly distinguished as even permutations and odd permatations in the following way:

We suppose the n things first arranged in alphabetical or numerical order,

$$
a, b, c, d, \ldots \quad \text { or } \quad 1,2,3,4, \ldots n
$$

and we call this arrangement an even pormutation.
Then, having any other permutation, we count for each thing how many other things of lower order come after it, and take the sum.

If this smon is eren, the permutation is an eren one ; if old, an odd one.

EXAMPLES.

1. Consider the permutation 265143 .

Here 2 is followed by 1 number of lower order, namely, 1 .

Then $1+4+3+0+1=9$. I n nee the permutation is odd.
2. Consider calbec.

Here c is followed by 2 letters before it in order, namely, ba

Then $2+2+1+1=6$. Hence the permutation is even.
Def. The total number of times which a thing less in order follows one greater in order is called the Number of Inversions in a permutation.

Eximple. In the preceding permutation, 265143, the number of inversions is 9. In celleed it is 6 .

Rem. It will be seen that the class of a permutation is eren or odd, according as the number of inversions is eren or odd.

Theorem I. If, in a permutation, two things are interchunged, the class will be chunged firom ceven to odd, or from oded to even.

Proof. Consiler first the case in which a pair of adjoining things are interchanged. Let us call:
$i \%$, the two things interehanged.
A, the collection of things which precede i and k.
C, the collection of things which follow them.
The first permutation will then be

$$
\begin{equation*}
\operatorname{AikC} \cdot * \tag{a}
\end{equation*}
$$

After interehanging i and k, it will be

$$
\begin{equation*}
A k i C . \tag{b}
\end{equation*}
$$

Because the order of things in A remains undisturbed, each thing in A is followed by the same thiags as before. In the same way, each thing in C is preceded by the same things as before.

Hence, the number of times that each thing in A or C is followed by a thing less in order remains mehanged, and, learing ont the pair of things, i, k, the number of inversions is monhanged.

But, by interchanging i and k, the new inversion $k i$ is introduced. Therefore the number of inversions is increased by 1.

[^5]43 , the
tation is even or
igs race to ocld, djoining
(a)
ped, cach In the hings as or C is cd, and, versions
ei is innereased
y used in re collect a single represent bused to b, all the aged.

If the first arrangement is $k i$, this one inversion is removed. Hence, in cither case the momber of inversions is changed by 1 , and is therefore changed from odd to even, or vice versa.

Illustration. In the permutation

$$
265143
$$

the inversions, as already found, are the following nine:

$$
21, \quad 65, \quad 61, \quad 64, \quad 63, \quad 51, \quad 54, \quad 53, \quad 43 .
$$

Let us now interchange 5 and 1 , making the permutation 261543.

The inversions now are

$$
21, \quad 61, \quad 65,64, \quad 63, \quad 54, \quad 53, \quad 43,
$$ the same as before, except that 51 has been removed.

Next consider the case in which the things interchanged do not adjoin each other: Suppose that in the permutation

$$
b a d e l l c f
$$

we interchange a and h. We may do this by successively interchanging a with $c l$, with c, and with h, making three interchanges, producing

$$
b d e h a c f
$$

Then we interchange h with e and with d, making two interchinges, and producing

$$
b h a e a c f
$$

which effects the reguired interchange of ℓ with h.
The mmber of the neighboring interehanges is $3+2=5$, an odd number. Becanse the number of inversions is changed from odd to even this same odd number of times, it will end in the opposite class with which it commenced.

Theorem II. The possible permutations of ne things are one-half even and one-half oda.

Proof. Write the n ! possible permutations of the n things.
Then interchange some one pair of things (e.g., the first two things) in each permutation. We shatl have the same permutations as before, only differently arragrod.

By the change, every even permutation will be changed to odd, and every odd one to eren.

Becamse every odd one thus corresponds to an even one, and rice cerse, their numbers must be equal.

Illustrution. The permutations in the second column following are formed from those in the first by interchanging the first two figures:

1	2	3	eren,		1	3	odd.
1	3	2	odd,	3	1	2	eren.
2	1	3	edd,	1	2	3	eren.
2	3	1	eren,	3	2	1	odd.
3	1	2	eren,	1	3	2	odd.
3	2	1	odd,	2	3	1	eren.

EXERCISES.

Count the number of incersions in each of the following permutations:
т. bedagef.
2. bcaydef.
3. 325941.
4. 543 .
5. 8291\%364.
6. S ?9ㄷ1364.
256. Symmetric Funclions. An important application of the laws of permutation oceurs in the problem, how many different values a function may aequire by permuting the letters which enter into it. We readily find that the expression $a^{2} b c$ takes only the three values $a^{2} b c, b^{2} a c$, and $c^{2} a b$ by permutation. Other expressions do not change at all by permuting their symbols.

Def. A Symmetric Function is one which is not changed by permuting the symbols which enter into it.

```
EXERCISES.
```

Show that the following functions are symmetric:

1. $\quad a+b+c$.
2. abc.
3. $\quad a(b+c)+b(c+a)+c(a+b)$.
4. $\quad a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)$.
2.3\%. Def. The number of ways in which it is possible to select a set of s things out of a collection of n things is called the Number of Combinations of s things in n.

Ex. i. From the three symbols u, l, c, may be formed the couplets,

$$
a b, \quad a c, \quad b c .
$$

Hence there are three combinations of 2 things in 3.
Ex. z. From a stud of four horses may be formed six different span. If we call the horses $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, the different span will be
$\mathrm{AP}, \mathrm{AC}, \mathrm{AD}, \mathrm{BC}, \mathrm{BD}, \mathrm{CD}$.
Rem. 1. A set is regarded as diffurent when any one of its separate things is different.

Rem. 3. Combinations differ from permutations in that, in forming a combination, no account is taken of the order of arrangement of things in a set. For instimee, $a b$ and $b a$ are the same combination. Hence, we may always suppose the letters or numbers of a combination to be written in alphabetical or numerical order.

Notation. The number of combinations of s things in n is sometimes designated by the symbol,

$$
C_{s}^{n} .
$$

Probley. To fint the mumber of combinations of s things in n.

If we form every possible set of s things out of n things, and then permute the s things of each set in every possible way, we shall have all the permutations of n things taken s at a time (s 25?). That is,

$$
C_{s}^{n} \times P_{s}
$$

express the number of permutations of n things taken s at a time. But we hatre fomed this number to be

$$
n(n-1)(n-2) \ldots(n-s+1)
$$

We have also fomed

$$
I_{s}=s!=1 \cdot 2 \cdot 3 \cdot 4 \ldots s
$$

Hence, $\quad C_{s}^{n} \times s!=n(n-1)(n-2) \ldots(n-s+1)$,
and

$$
\begin{aligned}
C_{s}^{n} & =\frac{n(n-1)(n-2) \ldots(n-s+1)}{1 \cdot 2 \cdot 3 \cdot 4 \ldots s} \\
& \left.=\left(\frac{n}{s}\right)!\Omega 2 s, 3\right) \\
C_{s}^{n} & =\frac{n!}{s!(n-s)!}
\end{aligned}
$$

whieh is the required expression.
Rem. For every combination of s things which we can take from n things, a combination of $n-s$ things will be left.

Hence,

$$
C_{s}^{1 n}=C_{n-s .}^{n}
$$

This formula may be readily derived from the expression for the number of combinations. For, if we take the equation

$$
C_{s}^{n}=\frac{n!}{s!(n-s)!}
$$

this formula remains unaltered when we substitute $n-s$ for s, and therefore also represents the combinations of $n-s$ things in n.

Def. Two combinations which together contain all the things to be combined are called two Complementary combinations.

EXERCISES.

r. Write all combinations of two symbols in the tive symbols, a, b, c, d, e.
2. Write all combinations of three symbols in the same letiers, and show why the number is the same as in Ex. i.

Combinations with Repetition.

258. Sometimes combinations are formed with the liberty to repeat the same symbol as often as we please in any set.

Example. From the three things a, b, c, are formed the six combinations of two things with repetition,

$$
a a, \quad a b, \quad a c, \quad b b, \quad b c, \quad c c .
$$

Problem. To find i.ue number of combinations of s things in n, when repetition is allowen.

Solution. Let the n things be the first n numbers,

$$
1,2,3,4, \ldots n
$$

Form all possible sets of of these mmbers with repetition, the numbers of each set being arranged in mumerical order.

Let l_{s} be the rerpuired number of sets. Then, in each set,
Let the inst mmber stand machanged.
Increase the od momber by 1 .

$$
\begin{array}{ccccc}
& 6 & \text { " } & \text { " } & \text { " } \\
\text { " } & \text { " } & 4 \text { th } & \text { " } & \text { " } \\
3 & \\
& & \vdots & & \vdots \\
& & \text { " } & \text { sth } & \text { " } \\
\text { " } & s-1
\end{array}
$$

We shall then have R_{s} sets of s numbers, each withont repetition.

Example. From the numbers $1,2,3$ are formed with repetition, $1 \mathrm{i}, 12,13,22,23,33$.
Then, increasing the second numbers by 1 , we have

$$
12,13,14,23,24,34 .
$$

The greatest possible number in any set after the inerease will be $n+s-1$, beanse the greatest number from which the selection is made is n, and the greatest quantity added is $s-1$. Hence all the new sets will consist of combinations of s numbers each from the $n+s-1$ numbers,

$$
\begin{equation*}
1, \mathfrak{2}, 3,4, \ldots n \ldots n+s-1 \tag{a}
\end{equation*}
$$

No two of these combinations can be the same, becanse then two of the original combinations wond have to be the same. Hence the new sets are all different combinations of s numbers from the $n+s-1$ numbers (11). Therefore the number of combinations camot execed the quantity C_{s}^{n}.

Conversely, if we take all possible combinations of s different numbers in $n+s-1$, arrange each in numerical order, and subtract 1 from the second, 2 from the third, etc., we shall have different combinations from the first n numbers with repetitions. Hence the number of combis ations in the second class cannot exceed those of the first class.

Hence we conclude that the number of combinations of s things in n with repetition is the same as the combinations of s things in $n+s-1$ without repetition, or

$$
\begin{aligned}
R_{s}^{n}=C_{s}^{n+s-1}= & \left(\frac{n+s-1}{s}\right) \\
= & \frac{n(n+1)(n+2) \ldots(n+s-1)}{1 \cdot 2 \cdot 3 \cdot 4 \ldots s} . \\
& \text { EXERCISES. }
\end{aligned}
$$

r. Write all possible combinations of 3 numbers with repetition out of the three numbers $1,2,3$; then increase the second of each combination by 1 and the third by 2 , and show that we have all the combinations of three different numbers out of $1,2,3,4,5$.
2. How many combinations of 4 things in 4 with repetition? Of n things in n ?

In the last question and in the following, reduce the result to its lowest terms.
3. How many combinations of $n+1$ things in $n-1$ with repetition?

Special Cases of Combinations.

259. It is plain that

$$
C_{1}^{n}=n,
$$

because each of these combinations consist simply of one of the n things. Hence, also,

$$
c_{n-1}^{n}=n,
$$

because in every such combination one letter is omitted.
It is also plain that

$$
C_{n}^{n}=1,
$$

because the only combination of u letters is that comprising the n letters themselves. Hence we write, by analogy,

$$
C_{0}^{n}=1,
$$

although a combination of nothing does not fall within the original definition of a combination.
260. The formule of combinations sometimes enable us to discover curions relations of numbers.

1. Let us inquire how we may form the combinations of
$s+1$ things when we have those of a things. Let the n things from which the combinations are to be formed be the letters

$$
a, b, c, d, c, f, g, \text { etc. } \ldots(n \text { in number })
$$

Let all the combinations of $s+1$ " rese n letters be written in alphabetical order. 'Then:

1. In the combinations beginning with a, the letter a will be followed by all possible combinations of s letters ont of the $n-1$ letters b, c, d, etc., of which the number is i_{s}^{n-1}.
2. In the combinations begiming with b, the letter b is followed by all combimations of s letters out of the $n-2$ letters c, a, e, f, etc. 'Therefore there are C_{8}^{n-2} combinations beginning with l.
3. In the same way it may be shown that there are C_{s}^{n-3} combinations beginning with c, C_{s}^{n-4} begimning with d, etc. The series will terminate with a single combination of the last $s+1$ letters.

Since we thus have all combinations of $s+1$ letters, we find, by summing up those leginning with the several letters a, b, c, ete.,

$$
\begin{equation*}
C_{s}^{n-1}+C_{s}^{n-2}+C_{s}^{n-3}+\cdots+C_{s}^{s}=C_{s+1}^{n} \tag{a}
\end{equation*}
$$

Substituting for the combinations their values, we find

$$
\left(\frac{n-1}{s}\right)+\left(\frac{n-2}{s}\right)+\left(\frac{n-3}{s}\right)+\ldots+\left(\frac{s}{s}\right)=\left(\frac{n}{s+1}\right) .
$$

By the notation (§228, 3), all the terms of the first member have the common denominator s !, while the numerators are each composed of the factors of s consecutive numbers. Multiplying both sides by $s!$ and reversing the order of terms in the first member, we have

$$
\left.\begin{array}{l}
1 \cdot 2 \cdot 3 \ldots s+2 \cdot 3 \cdot 4 \ldots s+1+\text { etc. } \\
\left.\begin{array}{c}
\text { etc. } \\
\quad+(n-s-1) \ldots(n-3)(n-2)
\end{array}\right\} \\
\quad+(n-s) \ldots(n-2)(n-1)
\end{array}\right\}
$$

the n be the

The student is now recommended to go over the preceding process with special simple numerical values of n and s which he may select for himself.

EXAMPLES.

If $n=5$ and $s=2$, we have

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4=\frac{3 \cdot 4 \cdot 5}{3}
$$

If $n=7$ and $s=3$.

$$
1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5+4 \cdot 5 \cdot 6=\frac{4 \cdot 5 \cdot 6 \cdot 7}{4}
$$

If $n=7 \operatorname{andl} s=4$,

$$
1 \cdot 2 \cdot 3 \cdot 4+2 \cdot 3 \cdot 4 \cdot 5+3 \cdot 4 \cdot 5 \cdot 6=\frac{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{5} .
$$

If $n=9$ and $s=3$,
$1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5+4 \cdot 5 \cdot 6+5 \cdot 6 \cdot 7+6 \cdot 7 \cdot 8=\frac{6 \cdot 7 \cdot 8 \cdot 9}{4}$.
Prove these equations by computing both members.
261. Another cmious example is the following:

Let us have $p+q$ things divided into two sets, the one containing p and the other q things. Then, to form all pussible combinations of s things out of the whole $p+q$, we may take :

Any s things in set p;
Or any combination of $s-1$ things in set ρ with any one thing of set q;

Or any eombination of $s-2$ things in set p with any combination of 2 things in q;

Or any combination of $s-3$ things in p with any 3 out of q, ctc.

We shall at length come to the combinations of all s things out of q alone. Adding u_{p} these separate classes, we shall have:

$$
C_{8}^{p}+C_{8-1}^{p} C_{1}^{q}+C_{8-2}^{p} C_{\mathrm{z}}^{\prime \prime}+\ldots+C_{1}^{p} C_{s 1}^{q}+C_{8}^{q}
$$

This sum makes up all combinations of s things in the whole $p+q$, and is thercfore equal to C_{s}^{p+q}. Putting the numerical expressions for the combinations, we have the theorem :

$$
\begin{array}{r}
\binom{p+q}{s}=\binom{p}{s}+\left(\frac{p}{s-1}\right)\binom{\eta}{1}+\left(\frac{p}{s-z}\right)\binom{q}{z}+\ldots \\
\\
+p\left(\frac{q}{s-1}\right)+\binom{\eta}{s} .
\end{array}
$$

If, as an example, we put $s=3, p=4, q=5$, this theo. rem will give

$$
\frac{9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3}=\frac{4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3}+\frac{4 \cdot 3 \cdot 5}{1 \cdot 2 \cdot \frac{5}{1}}+\frac{4}{1} \cdot \frac{5 \cdot 4}{1 \cdot 3}+\frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3}
$$

the correctness of which is casily proved by computation.
EXERCISES.
r. Write all the combinations of three letters ont of the five, l, b, c, d, c, and show that C_{2}^{4} of them begin with $\|, O_{2}^{3}$ with b, and C_{2}^{2} with c, according to the reasoning of $\S 260$.
2. Prove that $\quad C_{3}^{k}=C_{3}^{4}+C_{2}^{4}$,

$$
C_{4}^{6}=C_{4}^{\prime k}+C_{3}^{\prime 5}
$$

and in general,

$$
C_{s}^{n+1}=C_{s}^{n}+C_{s-1}^{n}
$$

In the fellowine two ways:
(1.) Let all combinations of s letters in the n letters

$$
a, b, c, \ldots, n
$$

be formed, their number being C_{s}^{n}. Then suppose one letter added, making the number $n+1$. The combinations of s letters out of these $n+1$ will include the C_{g}^{n} formed from the n letters, plus each combination of the additional $(n+1)^{s t}$ letter with the combinations of $s-1$ out of the first n letters.
(?.) Prove the same general result from the formula,

$$
C_{s}^{n}=\left(\frac{n}{s}\right) .
$$

3. If we form all combinations of 3 things out of 7 , how many of these combinations will contain a 7, and how many will not?
4. If we form all the combinations of s letters out of the n letters

$$
a, b, c, \ldots n
$$

how many of these combinations will contain a, and how many will not?
5. In the preceding case, how many of the combinations will contain the three letters a, b, c ?
\$69. Theones I. The total number of combinations which can be formed fiom n things, including 1 zero combination, is $\mathfrak{2}^{n}$.

In the language of Algebra,

$$
C_{0}^{n}+C_{1}^{n}+C_{2}^{n}+\ldots+C_{n-1}^{n}+C_{n}^{n}=2^{n}
$$

Proof. Let us begin with 3 things, a, b, c, and let us call the furmal zero combination, $1=C_{0}^{\prime \prime}$. Then we have

C_{0}^{3},	blank,	Number $=1$
C_{1}^{3},	a, b, c.	$"=3$
C_{3}^{3},	$a b, a c, b c$,	$"=3$
C_{3}^{3},	$a b c$,	$"$
		Sum $=1$
		$=\Omega^{3}$.

Now introduce a fourth letter cl. The combinations out of the four things, a, b, c, d, will consist of the above 8 , plus the 8 additional ones formed by writing after each of the above eight. Their number will therefore be 16.

In the same way, it may be shown that we double the possible number of combinations for every thing we add to the set from which they are taken. We have found, for

$$
\begin{array}{ccc}
n=3, & \text { Sum of combinations }=8=2=2^{3} ; \\
n=4, & " & \boxed{ }=2 \cdot 8=2^{4} ; \\
n=5, & " & " \\
\text { etc. } & & =2 \cdot 2^{4}=2^{5} ;
\end{array}
$$

which shows the theorem to be general.
Theonem II. If the signs of the alternate combinatinns of n things be changed, the algebraic sum will be zero.

In algebraic langnage,

$$
\begin{equation*}
C_{0}^{n}-C_{1}^{n}+C_{2}^{n}-C_{3}^{n}+\text { ctc. } \pm C_{n}^{n}=0 \tag{1}
\end{equation*}
$$

Proof. If in the formula of § 201, Ex. 2, namely,

$$
C_{s}^{n+1}=C_{s}^{n}+C_{s-1}^{n}
$$

we put $n-1$ for n, it becomes

$$
C_{s}^{n}=C_{s}^{n-1}+C_{\delta-1}^{n-1}
$$

Putting s successively equal to $0,1,2, \ldots n$, we have

$$
\begin{aligned}
& C_{0}^{n}=C_{n}^{n}=1 \\
& C_{1}^{n}=C_{0}^{n-1}+C_{1}^{n-1}=1+C_{1}^{n-1} \\
& C_{2}^{n}=C_{1}^{n-1}+C_{2}^{n-1} \\
& C_{3}^{n}= C_{2}^{n-1}+C_{3}^{n-1} \\
& \vdots \vdots \\
& \vdots \vdots \\
& C_{n-1}^{n}= C_{n-2}^{n-1}+C_{n-1}^{n-1}=C_{n-2}^{n-1}+1
\end{aligned}
$$

Substituting these values in the expression (a), it becomes

$$
\begin{aligned}
& 1-\left(1+C_{2}^{n-1}\right)+\left(C_{1}^{n-1}+C_{2}^{n-1}\right)-\left(C_{2}^{n-1}+C_{3}^{n-1}\right)+\ldots \\
& \quad=1-1-C_{1}^{n-1}+C_{1}^{n-1}+C_{2}^{n-1}-C_{2}^{n-1}-C_{3}^{n-1}+\text { etc. }
\end{aligned}
$$

How far soever we carry this process, all the terms cancel each other except the last. Therefore, if we continue the additions and subtractions until we come to C_{n-1}^{n}, the sum will be

$$
C_{0}^{n}-C_{1}^{n}+C_{1}^{n}-\text { ctc. } \cdots \pm C_{n-1}^{n}= \pm C_{n-1}^{n-1}= \pm 1
$$

The last term will be $\mp C_{n}^{n}=\mp 1$, and will therefore just cancel the sum of the preceding terms.

Note. Theorem I may be demonstrated by these same formule, since the sum of all the terms taken positively will be duplicated every time we increase n by 1 .
263. Independent Combinations. There is a system of combinations formed in the following way :

It is required to form a combination of s things. by taking one out of each of s difjerent collections. How manly combinations can be formed?

Let the 1st collection contain a things,

"	2 d	6	6	b	6
	"	3 d	6	$"$	c
	6				

etc. etc.

Then we may take any one of a things from the first collection.

With each of these we may combine any one of the b things in the second collection.

With each of these we may combine any one of the c things of the third collection.

Continuing the reasoning. we see that the total number of combinations is the continued product

$$
a b c . . . \text { to } s \text { factors. }
$$

If the number in each collection is equal, and we call it a, the number of combinations will be a^{8}.

This form of combinations is that which corresponds most nearly to the events of life, and is applicable to many questions concerning probabilities. For example, if any one of five different events might occur to a person every day, the number of different ways in which his history during e year might turn out is 5^{265}, a number so enormous that 255 digits would be required to express it.

EXERCISES.

I. A man driving a span of horses can choose one from a stud of 10 horses, and the other from a stud of 12 . How many different span can he form?
2. It is said that in a general examination of the public schools of a county, the pupils spelt the word scholar in 230 different ways. If in spelling they might replace

```
ch by c or k;
    o by au, auc, or oo;
    l by ll;
    a by e, o, u, or ou;
    r by re;
```

in how many different ways might the word be spelt?
3. If a coin is thrown n times in succession, in how many different ways may the throws turn ont?
4. If there are three routes between each successive two of the five eities, Boston, New York, Philadelphia, Baltimore, Washington, hy how many routes could we travel from Boston to Washington?

The Binomial Theorem when the Power is a Whole Number.

264. The binomial theorem ($\S 1 / 2$), when the power is a positive integer, cim be demonstrated by the doctrine of combinations, as follows:

Let it first be required to form the product of the n binomial factors,

$$
\begin{equation*}
\left(a_{1}+x_{1}\right)\left(a_{2}+x_{2}\right)\left(a_{3}+x_{3}\right) \ldots\left(a_{n}+x_{n}\right) \tag{a}
\end{equation*}
$$

To understand the form of the product, let us first study the special case when $n=3$. Performing the multiplication of the first three factors, the product will consist of eight terms:

$$
\left.\begin{array}{rl}
a_{1} a_{2} a_{3}+a_{1} a_{2} x_{3} & +a_{1} a_{3} x_{2}+a_{2} a_{3} x_{1}+a_{1} x_{2} x_{3} \\
& +a_{2} x_{1} x_{3}+a_{3} x_{1} x_{2}+x_{1} x_{2} x_{3} .
\end{array}\right\}
$$

This product is the expression (a) developed when $n=3$.
We conclude, by induction, that the entire product (a) when dereloped in this same way, will be composed of a sum of terms, each term being a product of several hteral factors.

When (a) is thus multiplied out, we shatl call the result the developed expression.

The developed expression has the following properties :
I. Each term contains n litcral factors, ås and $x \cdot s$, and no more.

For, suppose $x_{1}=a_{1}, x_{2}=a_{2}$, to $x_{n}=a_{n}$. Then the expression (a) will reduce to

$$
\begin{equation*}
2^{n} a_{1} a_{2} a_{3} \ldots a_{n} \tag{b}
\end{equation*}
$$

and the developed expression must assume the same value; that is, it must consist of terms each of which reduces to the expression

$$
\begin{equation*}
{ }^{1} d_{1} a_{2} a_{3} \ldots \|_{n} \tag{c}
\end{equation*}
$$

when we change x into a. Now if it contained any term with either more or less than n factors, it could not assume this form.
II. The factors of each term have all the n indices

$$
1,2,3, \ldots n .
$$

For, the index figure of no term is altered by changing x into a, as in I. Hence, if in any term any index figure were missing or repeated, that term would not reduce to the form (c), whence there can be neither omission nor repetition of any index.
III. Because each term has n factors, it must either have
n fuctors a;
$n-1$ factors a and one factor x;
$n-2$ factors a and two factors x;
In general, a term may have the factor a repeated $n-i$ times, and x repeated i times.
IV. In a term which contains i factors x, these i factors must be affected with some combination of i indices out of the whole number $1,2,3, \ldots n$; and the $n-i a$ s must be affected by the complementary combination of $n-i$ indices. We next inquire whether there is a term corresponding to every such combination. Let

$$
1,3,4,7, \ldots
$$

be any combination of i indices, and

$$
2,5,6,8, \ldots
$$

the complementary combination of $n-i$ indices.
Since the developed expression must be true for all values of a and x, let us put in (a),

$$
\begin{array}{ll}
a_{1}=0, & x_{2}=0 ; \\
a_{3}=0, & x_{5}=0 ; \\
a_{4}=0, & x_{6}=0 ; \tag{d}\\
a_{7}=0, & x_{8}=0 ;
\end{array}
$$

etc. ete.

The product (a) will then reduce to the single term,

$$
x_{1} a_{2} x_{3} x_{4} a_{5} a_{6} x_{7} a_{8} \cdots
$$

By the same change the developed expression must reduce to this same value, and it cannot do this unless the expression (e) is one of its terms.

Hence the developed e.vpression must contain a term corvespouding to cevery combination.
V. Since every combination of i figures ont of $1,2,3, \ldots n$ will, in this way, give rise to a term like (ρ), containing the symbol a times, and the symbol $x n-i$ times, there will be C_{i}^{n} such terms.

Now suppose $a_{1}=a_{2}=a_{3}=\ldots a_{n}=a$.

$$
x_{1}=x_{2}=x_{3}=\ldots x_{n}=x
$$

The expression (a) will then reduce to $(a+x)^{n}$.
In the developed expression, all the C_{i}^{n} terms containing x i times and a $n-i$ times will now be equal and their sum will reduce to $C_{i}^{n} a^{n-i} x^{i}$.

Hence, putting in succession $i=0, i=1$, etc., to $i=n$, we shall have
$(a+x)^{n}=a^{n}+C_{1}^{n} a^{n-1} x+C_{2}^{n} a^{n-2} x^{2}+\ldots+C_{n}^{n} a_{1} a x^{n-1}+x^{n}$.
Substituting for C_{i}^{n} its value, we shall have $(a+x)^{n}=a^{n}+n a^{n-1} x+\left(\frac{n}{2}\right) a^{n-2} x^{2}+\ldots+\left(\frac{n}{n-1}\right) a x^{n-1}+\left(\frac{n}{n}\right) x^{n}$,
which is the Binomial Theorem, enunciated, but not demonstrated, in Book V, Chapter I.

Note. If the student has any difficulty in understanding the steps of the preceding demonstration, he should suppose $n=3$, and refer the demonstration to the developed expression (a^{\prime}).

CHAPTER III.

THEORY OF PROBABILITIES.

265. Def. The Theory of Probabilities treats of the chances of the occurrence of events which cannot be ${ }^{\text {s }}$ foreseen with certainty.

Notation. Let a bag contain 4 balls, of which 1 is white and 3 black. If a ball be drawn at random from the bag, we should, in ordinary language, say that the chances were 1 to 3 in favor of the ball being white, or 3 to 1 in faror of its being black.

In the language of probabilities we say that the probability of a white ball is $\frac{1}{4}$, and that of a black one $\frac{3}{4}$.

In general, if there are m chances in favor of an event, and n chances against it, its probability is $\frac{m}{m+n}$. Hence,

Def. The Probability of an event is the ratio of the chances which favor it to the whole number of chances for and against it.

Illustrations. If an event is certain, its probability is 1.
If the chances for and against an event are even, its probability is $\frac{1}{2}$.

If an erent is impossible, its probability is 0.
Cor. 1. If the probability that an event will occur is p, the probability that it will fail is $1-p$.

Cor. 2. A probability is always a positive fraction, greater than 0 and less than 1.
266. Method of Probabilities. To find the probability of an event, we must be able to do two things:

1. Enumerate all possible ways in which the event may occur or fail, it being supposed that these ways are all equally probable.
2. Determine how many of these ways will lead to the event.

If n be the total number of ways, and m the number which lead to the event, the probability required is $\frac{m}{n}$.

EXERCISES.

I. A die has 2 white and 4 black sides. What is the probability of throwing a white side?
2. A bag contains n balls aumbered from 1 to n, the even numbers being white and the odd ones black. What is the probability of drawing a black ball when n is an odd number? What, when n is an eren number?
3. A bag contains $3 n+2$ balls, of which numbers 1, 4, 7, etc., are white $; 2,5,8$, etc., are red $; 3,6,9$, etc., are black. What are the respective probabilities of drawing a white, red, and black ball?

Rem. In the last example the probabilitics are all less than $\frac{1}{2}$; therefore, should one attempt to guess the color of the ball to be drawn, he would be more likely to be wrong thin right, no matter what color he guessed. This exemplifies a lesson in practical judgment to be drawn from the theory of probabilities. If there are three or more possible results of any cause, it may happen that the best julgment would be more likely to be wrong than right in attempting to predict the resalt. Thus, if there are three presidential candidates with nearly equal chances, the chances would be against the election of any one that might be named.

Gamblers of the turf are nearly always found betting odds against every horse that may be entered for a race, though it is certain that one of them will win.

Hence, if a natural event may arise from a number of causes with nearly equal facility, it is unphilosophical to have any theory whatever of the cause, because the chances may be against the most probable cause being the true one.

Probabilities depending upon Combinations.

26\%. Problem i. Two coins are thrown. What are the respective probabilities that the result will be: Both heads? head and tail? both tails?
, cuent c ways lead to or which he probthe even at is the number?
s $1,4,7$, re black. hite, red, drawn, he at color he , be drawn onssible red be more ilt. J'hus, rances, the named.
Ids against a that one
auses with whatever t probable

tions.

t are the h heads?

At first sight it might appear that the ehances in favor of these three results were equal, and that therefore the probability of each was $\frac{1}{3}$. But this would be a mistake. To find the probabilities, we must combine the possible throws of the first coin (which call A) with the possible throws of the second (which call B), thus:

A, head ;	B, head.
A, head;	B, tail.
A, tail ;	B, head.
A, tail ;	B, tail.

These combinations are all equally probable, and while there are only one each for both heads and both tails, there are two for head and tail. Hence the probabilities are $\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$.

The sum of these three probabilities is 1 , as it ought always to be when all possible results are considered.

Prob. 2. Five coins are thrown. What are the respective probabilities:

0 heads,	5 tails?
1 head,	4 tails?
2 heads,	3 tails?
etc.	etc.

Let the several coins be marked a, b, c, d, e. Coin a may he either head or tail, making two cases. Each of these two cases of coin a may be combined with either case of b (as in the last example), making 4 cases.

Each of these 4 cases may be combined with either case of coin c, making 8 cases.

Continuing the process, the total number of cases for five coins is $2^{5}=32$.

Of these $3 \approx$ cases, only one gives no head and 5 tails.
There are 5 cases of 1 head, namely: a alone head, b alone head, cte., to e.

2 heads may be thrown by coins $a, b ; a, c$, etc. $; b, c ; b, a$, etc.; c, d, etc. ; that is, by any combination of two letters out of the five, a, b, c, d, c. Hence the number of eases is

$$
C_{2}^{5}=10
$$

In the same way the number of cases corresponding to 3 , 4 , and 5 heads are, respectively,

$$
C_{3}^{5}=10, \quad C_{4}^{5}=5, \quad C_{5}^{5}=1
$$

Dividing hy the whole number of cases, we find the respective probabilities to be

$$
\frac{1}{32} ; \quad \frac{5}{32}, \quad \frac{10}{32} ; \quad \frac{10}{32}, \quad \frac{5}{32}, \quad \frac{1}{32} .
$$

'The following general proposition is now to be proved by the student:
'Ineorem. If there are n coins, the probability of throwing s heacls and $n-s$ tails is

$$
\frac{C_{s}^{n}}{z^{n}}
$$

From this result we may prove the theorem in combinations of $\S 262$. If we suppose, in succession, $s=0, s=1$, $s=2$, etc., to $s=n$, the respective probabilities of 0 head, 1 head, 2 heads, etc., will be

$$
\frac{C_{0}^{n}}{2^{n}}, \frac{C_{1}^{n}}{2^{n}}, \frac{C_{2}^{n}}{2^{n}}, \text { etc., to } \frac{C_{5}^{n}}{2^{n}} .
$$

Becanse the sum of all these probabilities must be unity, we find

$$
C_{0}^{n}+C_{1}^{n}+C_{2}^{n}+\ldots+C_{n}^{n}=2^{n}
$$

Prob. 3. Two dice are thrown at backgammon. What are the respective probabilities of throwing 5 and 6 and two 6 's?

If we call the dice a and b, any number from 1 to 6 on a may be combined with any number from 1 to 6 on b. Therefore, there are in all 36 possible combinations.

In order to throw two 6 's, a must come 6 and b also. Therefore there is only one case for this result, so that its probability is $\frac{1}{36}$.

To bring 5 and $6, a$ may be 5 and $b 6$, or $b 5$ and $a 6$. So there are two cases leading to this result, and its probability is

$$
\frac{2}{36}=\frac{1}{18}
$$

Note. That 5 and 6 are twice as probable as a double 6 may be clearly seen by supposing that the two dice are thrown in succession. If the first throw is either 5 or 6 , there is a chance for the combination 5,6 , but there is no chance for a double 6 unless the first throw is 6 .

Prob. 4. If three dice are thrown, what are the respective probabilities that the numbers will be:

$$
1,1,1 ? \quad 1,1,2 ? \quad 1,2,3 ?
$$

The solution of this case is left as an exereise for the student.

Prob. 5. From a bag containing 3 white and 2 black balls, 2 balls are drawn. What are the respective probabilities of

Both balls white?
1 white and 1 black?
Both black?
Since any 2 balls out of 5 may be drawn, the total number of cases is C_{2}^{5}.

Only one of these combinations consists of two white balls.
C_{2}^{3} of the cases bring both balls black.
A white and black are formed by combining any one of the three white with any one of the two black.

The respective probabilities can now be deduced by the student.

EXERCISES.

r. It takes two keys to unlock a safe. They are on a bunch with two others. The clerk takes three keys at random from the bunch. What is the probability that he has both the sufe keys?
2. A party of three persons, of whom two are brothers, seat themselves at random on a bench. What are the probabilities (a) that the brothers will sit together, (b) that they will have the third man hetween them?
3. If two dice are thrown at backgammon, what are the probabilities
(a) Of two aces?
(b) Of one ace and no more?
4. In order that a player at backgammon may strike a cer-
tain point, the sum of the numbers thrown must be 8 . What are his chances of succeeding in one throw of his two dice?
5. A party of 13 persons sit at a round table. What is the probability that Mr. Taylor and Mr. Williams will be next to each other? (Sce §8 253.)
6. An illiterate servant puts two works of 2 volumes each upon a shelf at random. What is the probability that both pair of companion volumes are together?
7. A gentleman having three pair of boots in a closet, sent a blind valet to bring him a pair. The valet took two boots at random. What are the ehanees that one was right and the other left? What is the probability that they were one pair?
8. If the volumes of a 3 -volume book are placed at rundom on a shelf, what is the probability that they will be in regular order in either direction?
9. A man wants a particular span of horses from a stud of 8 . His groom brings him 5 horses taken at random. What is the probalbility that both horses of the span are amongst them?
ro. From a box containing 5 tickets, numbered 1 to 5 , 3 are drawn at random. What is the probability that numbers 2 and 5 are both amongst them?
in. "'he stme thing being supposed, what is the probability that the sum of the two numbers remaining in the box is 6 :
12. Of two purses, one contains 5 eagles and another 10 dollar-pieces. If one of the purses is selected at random, and a coin taken from it, what is the probability that it is an eagle?
13. From a bag containing 3 white and 4 black balls 2 balls are drawn. What is the probability that they are of the same color?
14. The better of two chess players is twice as likely to win as to be beaten in any one game. What chance has his weaker opponent of winning 2 games in a match of 3 ?
15. From a bag containing m white and n black balls, two balls are drawn at random. What is the probability that one is white and the other black?

What ice? it is the next to aes each at both set, sent boots at and the ne pair? random u regular m a stud n. What amongst a 1 to 5 , t numbers
robability ox is 6 ?
nother 10 idom, and it is an
ack balls hey are of
cely to win his weaker
balls, two y that one
16. From a bag containing 1 white, 2 red, and 3 black balls, 3 balls are drawn. What is the probability that they are all of different colors?
17. If n coins are thrown, what is the chance that there will be one head and no more ?
18. From a Congressional committee of 6 Republicans and 5 Democrats, a sub-committee of 3 is chosen by lot. What is the probability that it will be composed of two Republicans and one Democrat?

Compound Events.

268. Theorem I. The probubility thent tur indepenctent cevents will both huppen is cqual to the product of their separate probabilities.

Proof. For the first event let there be m cases, of which p are favorable; and for the scoond n cases, of which q are fiavorable. Then, ly definition, the respective probabilities will be $\frac{p}{m}$ and $\frac{q}{n}$.

When both events are tried, any one of the m cases may be combined with any one of the n calses, making in all $m \times n$ combinations of equal probability.

The combinations favorable to both events will be those only in which one of the p cases farorable to the first is combined with one of the q cases favorable to the secoud. The number of these combinations is $p \times q$.

Therefore the probability that both events will happen is

$$
\frac{p \times q}{m \times n}=\frac{p}{m} \times \frac{q}{n},
$$

which is the product of the individual probabilities.
If there are three erents of which the probabilities are p, q, and r, and we wish to find the probability that all three will happen, we may by what precedes regard the concurring of the first two events as a single event, of which the probability is $p q$. Then the probability that the third event will also concur is the product of this probability into r, or

Procecding in the same way with $4,5,6, \ldots$ erents, we reach the general

Trusonem II. The probrability that any number of independent events will all ocenr is cqual to the continuerl product of their individual probubilities.

Rem. This theorem is of great practical use as a guide to our expectations. It teaches that if suceess in an enterprise requires the concurrence of a great number of favorable circumstances, the chances may be greatly against it, although each circmastance is more likely than not to oceur.

This is illustrated by the following
Example i. A traveller on a journey by rail has 8 connections to make, in order that he may go through on time. There are two chances to one in favor of each comection. What is the probability of his keeping on time?

The probability of each connection being $\frac{2}{3}$, the probahility of successfully making the first two connections will, by the preceding theorems, be $\left(\frac{2}{3}\right)^{2}$, the first three $\left(\frac{2}{3}\right)^{3}$, and all eight

$$
\left(\frac{2}{3}\right)^{8}=\frac{2^{8}}{3^{8}}=\frac{256}{6561}=\frac{1}{26}, \text { nearly. }
$$

Therefore there are 25 chances to 1 against his going through on time.

On the other hand, if, instead of any one accident being fatal to success, success can be prevented only by the concurrence of a series of accidents, the probability of failure may become very small.

Ex. 2. A ship starts on a royage. It is an even chance that she will encomer a heavy gale. The probability thatshe will not spring a leak in the gale is $\frac{9}{10}$. If a leak occurs, there is a probability of $\frac{9}{10}$ that the engine will be able to pump her out. If they fail, the probability is $\frac{3}{4}$ inat the com-
partments will keep the ship afloat. If she sinks, it is an even chance that any one passenger will be saved by the boats What is the probability that any individual passenger will be lost it sea?

The probability that
the ship will meet a heavy gale is $\frac{1}{2}$
the ship will spring a leak in the gale is $\frac{1}{10}$
the engines cannot pump her out is $\frac{1}{10}$
the compartments camot keep her alloat is $\frac{1}{4}$
the boats cannot sare the passenger is $\frac{1}{2}$
The continned product of these probabilities is $\frac{1}{1600}$, which is the probability that the passenger will be lost.
269. The preceding theorem as enunciated supposes that the several events are imlependent, that is, that the probability of the ocemrence of any one is not affected by the oceurrence or non-ocenrence of the others. To investigate what modification is required when the occurrence of one of the events alters the probability of another of the events, let us distinguish the two events as the first and second. We then reason thms:

Let the total number of equally possible cases le m, and let p of these cases faror the first event. Its probability will then be $\frac{p}{m}$.

It is certain that the events cannot both happen unless the first one happens. Hence the cases which favor both events can be found only among the p cases which favor the first. Let q of these p cases favor the second event. Then the probability of both events will be $\frac{q}{m}$.

In case the first event happens, one of the p cases which
favor it must oceur, and the probability of the second event will then be $\frac{q}{p}$. Then

Probability of both events $=\frac{q}{m}=\frac{p}{m} \times \frac{q}{p} . \quad$ Hence,
Theorem. The probability that two events will both occur is equal to the probability of the first event multiplied by the probability of the sccond, in case the first oecurs.

By continuing the reasoning to more erenti, we reach the general

Trimorens. The probability that a number of events uill all occur is equal to the product

Prob. of first $\left\{\begin{array}{c}\times \text { Prob. of second in ease first occurs. } \\ \times \text { Prob. of third in case first two oceur. } \\ \times \text { Prob. of fourth in case first three oceur. } \\ \text { etc. }\end{array}\right.$
Example. From a bag containing 2 white and 3 black balls, 2 balls are drawn. What are the probabilities (1) that both balls are white, (2) that both are black?

This problem has already been solved, but we are now to see how the answers may be reached by the last theorem. It is cvident that we may suppose the two balls drawn out one after the other, and the probabilities of their being white or black will be the same as if both were drawn together.
I. Both balls uchite. The probability that the first ball drawn is white is $\frac{2}{5}$. If it really proves to be white, there will be left 1 white and 3 black balls. In this event, the probability that the second also will be white is $\frac{1}{4}$

Hence the probability that both are white is

$$
\frac{2}{5} \times \frac{1}{4}=\frac{1}{10}
$$

Ience,
will both
cut multise the first
ie reach the
r of events
occurs.
wo occur.
three occur.
etc.
and 3 black lities (1) that
ve are now to theorem. It rawn out one ing white or ther.
the first ball ite, there will he probability
II. Both balls black. Applying the same reasoning, we find for the probability of this case,

$$
\frac{3}{5} \times \frac{1}{2}=\frac{3}{10} .
$$

EXERCISES.

1. Two men embark in separate commereial enterprises. The odds in favor of one are 3 to z; in favor of the other, 2 to 1 . What are the probabilities (1) that both will succeed? (2) that both will fail:
2. The probability that a man will die within ten years is $\frac{1}{8}$, and that his wife will die is $\frac{1}{10}$. What are the respective probabilities that at the end of ten years,
(c) Both are living?
(β) Both are dead?
(γ) Husband living, but wife dead?
($\delta)$ Husband dead, but wife living?
3. The probability that a certain door is locked is $\frac{2}{3}$. The key is on a bunch of 4 . A man takes 2 of the four keys, and goes to che door. What are the chances that he will be able or mable to go through it?
4. Two bags contain each 4 black and 3 white balls. A person draws a ball at random from the first bag, and if it be white he puts it into the second bag, mixes the balls, and then draws a ball at raudom. What is the probability of drawing a white ball from each of the bags?
5. If a Senate consists of m Democrats and n Republicans, what is the probability that a committee of three will inchude 2 Democrats and 1 Republican?
6. A bag contains 2 white balls and 5 black ones. Six people, A, B, C, D, E, F, are allowed to go to the bag in alphiabetical order and each take one ball out and keep it. The first one who draws a white ball is to receive a prize. What are their respective chances of wimning?

Note. A's chance is easily calculated, because he has the draw from all 7 balls.

In order that B may win, A must first fail. Therefore, to find B's probability wo find (1) the probability that A fails, (\sim) the probability that if A fails then 13 will win. We then take the product of these probabilities.

In order that ('may gain the prize, (1) A must fail, (2) B must fail, (3) C himself must gain. So we find the successive probabilities of these occurrences.

Continuing to F, we find that he cannot win unless the $\overline{3}$ men before him all miss. He is then certain to gain, because only the two white balls would be left.
7. Two men have one throw each of a coin. X offers a prize if A throws head, and if he fails, but not otherwise, B may try for the prize. If both fail, X keeps the prize himself. What are the respective chances of the three men having the prize?
8. A and B are alternately to throw a coin until one of them throws a head and becomes the winner. If A has the first throw, what are their respective chances of winning?
9. A crowd of n men are allowed to throw in the same way for a prize, in alphabetical order, the game ceasing as soon as a head is thrown. What are the respective chances of the contestants:
ro. Three men take turns in throwing a die, and he who first throws a 6 wins. What are their respective chances?
rr. If 4 cards are drawn from a pack of 52 , show that the probability that there will be one of each of the four suits is

$$
\frac{39}{51} \cdot \frac{26}{50} \cdot \frac{13}{49}
$$

12. One purse contains 5 dimes and 1 dollar, and another contains 6 dimes. 5 pieces are taken from the first purse and put into the second, and after being mixed 5 are taken from the second and put into the first. Which purse is now most likely to contain the dollar?
13. Of two purses, one contains 4 eagles and 2 dollars, the other 4 eagles and 6 dollars. One being taken at random, and a coin drawn from it, whit are the respective probabilities that it is an eagle or a dollar?
to find B's ability that e probabili-

B must fail, ties of these men before re two white

X offers a therwise, 1 ize himself. having the until one of If A has the iming? the same way y as som ats a s of the con, and he who chances? show that the our suits is
, and another irst purse and re taken from is now most

2 dollars, the it rundom, and e prohabiities

Cases of ${ }^{\circ}$ Unequal Probability.

2\%O. Def. If two or more possible events are so related that only one of them can happen, they are called Mutually Exclusive Events.

Theonem. The probalility that some one of several caclusive ceonts, we care not which. will occur, is cqual to the sum of their separate probebilities.

Proof. Let there be m possible and equally probable cases in all; let p of these cases be favorable to one event, q to the second, r to the third, etc., so that $\frac{p}{m}, \frac{q}{m}, \frac{r}{m}$, are the respective probabilitics.

Since ouly one of the events is possible, the p cases which favor one must be entirely different from the q cases which favor the second, and these cases $p+q$ must be entirely different from the r which favor the third, etc.

Hence there will be $p+q+r+$ ete., cases which favor some one or another of the events. Hence the probalility that some one of these events will occur is

$$
\frac{p+q+r+\mathrm{etc} .}{m},
$$

which is equal to the sum of the probabilities,

$$
\frac{p}{m}+\frac{q}{m}+\frac{r}{m}+\text { etc. }
$$

Rem. If the concurrence of some two events, say the first and second, had been possible, some one or more of the p cases which favor the first would have been found among the $\%$ cases which faror the second. Then the whole number of calses which favored either event would have been less than $p+q$, and the probability that one of the two events would happen less than the sum of their respective probabilities.

2\%1. General Problem. To find the probability that an event of which the probability on any one trial is p, will happen exactly s times in n trials.

This problem is at the basis of some of the widest applications of the theory of probability to practical questions, especially those associated with life and tire insurance. The conditions which it implies are therefore to be fully comprehended.

We may conceive a trial to mean giving the event an opportumity to happen. The simplest kind of trial is that of throwing a coin or die. At each throw, any side has an opportmity to come up. Then, if we throw 50 pieces, or which amounts to the same thing, throw the same piece 50 times, there will be 50 trials; and we may inquire into the probability that a given side will be thrown exactly 9 times in these trials.

The same conception oceurs in another form if we have 50 men, each of whom has an equal chance of dying within 5 years. Waiting to see if any one man will die in the course of the 5 years is a trial, so that there are 50 trials in all, and we may inquire into the probability that 9 of the men will die during the trials, just as in the case of 50 throws of a die.

Let us distinguish the several trials by the letters

$$
a, b, c, a, e, \ldots n
$$

which must be n in number.

1. In order that the erent may not happen at all, it must fail on every one of the n trials. The probability of this ($\S 268$, Th. II) is $(1-p)^{n}$ This is therefore the probability that it will not happen at all.

Because the probability of the erent happening on any one trial is p, the probability of its failing is $1-p$. We now compare the possible results.
2. The event may happen once on any one of the n trials, a, b, c, etc. In order that it may happen only once, it must fail on the other $n-1$ trials. The probability that it will happen on any one trial, say e, and also fail on the remaining $n-1$ trials is, by the same theorem,

$$
p(1-p)^{n-1}
$$

Because there are n trials on which it may equally happen, the probability that it will happen once and only once is

$$
n p(1-p)^{n-1}
$$

3. The erent may happen twice on any two trials out of the n trial:. In order that it may happen twice only, it mast fail on the other $n-2$ trials. Taking any one combination, saly

$$
\begin{aligned}
& \text { Inippen on } \quad b, d ; \\
& \text { Fail on } \quad a, c, c, \ldots, n,
\end{aligned}
$$

the probability is

$$
p^{2}(1-p)^{n-2}
$$

But it may happen twice on any combination of two trials out of the n trials, $a, b, c, \ldots n$. Becanse these combinations are mutually exclusive ($\$ 2 \% 0$), the total frobability of happening twice is

$$
C_{2}^{n} p^{2}(1-p)^{n-2}
$$

4. In general, in order that the event may happen just s times, it must happen on some combination of s trials, and fail on the complementary combination of $n-s$ trials. The probsbility 01 - one combination is $p^{s}(1-p)^{n-8}$ and there are $C_{s}^{\prime n}$ such combinations. Hence the gencral probability of happening s times is

$$
\begin{equation*}
C_{s}^{n} p^{s}(1-p)^{n-\varepsilon} \tag{a}
\end{equation*}
$$

If there is on each trial an equal chance for and against the event, then $p=\frac{1}{2}$ and $1-p=\frac{1}{2}$. The probability of the erent happening s times then becomes

$$
\frac{C_{s}^{n}}{2^{n}}
$$

This case corresponds to that already treated in §207, Problem 2, and the result is the same there found.

EXERCISES.

I. A die having two sides white and four sides black is thrown 5 times. What are the respective probabilities of a white side being thrown $1,2,3,4$, and 5 times?

Note. Here p, the probability of a white side on one throw, is $\frac{i}{3}$, and $1-p=\stackrel{2}{3}$. Tlie number n of trials is 5 .
2. Of 0 healthy men aged 50 , the probability that any (.o will live to 80 is $\frac{1}{4}$. What is the probability that three or more of them will live to that age?
3. A chess-player whose chances of winning any one game from his opponent are as 2 to 1 , undertakes to win 3 games out of 4 . What is the probability that he will be able to do it?

Note. It would be a fallacy to suppose that the probability required is that of winning exactly 3 games, because he will equally win if he wins all four games.

2\%2. Events of Maximum Probability. Returning to the general expression (a), let us inquire what number of times the event is most likely to oceur on n trials. The required number is that value of s for which the probability
is the greatest.

$$
C_{\varepsilon}^{n} p^{\beta}(1-p)^{n-s}
$$

If we call P_{s} tho probability that the event will happen exactly s times, and if s is to be the number for which the probability is greatest, we must have

$$
\begin{aligned}
& P_{s}>P_{s-1} \\
& P_{s}>P_{s+1}
\end{aligned}
$$

Substituting for these quantities the corresponding forms of the expression (a), which is equal to P_{8}, we have

$$
\left.\begin{array}{l}
C_{8}^{n} p^{s}(1-p)^{n-s}>C_{8-1}^{n} p^{p^{g-1}}(1-p)^{n-s+1} \tag{b}\\
C_{s}^{n} p^{s}(1-p)^{n-s}>C_{s+1}^{n} p^{s+1}(1-p)^{n-s-1}
\end{array}\right\}
$$

The general formula for C_{8}^{n} in $\S 257$ gives

$$
\left.\begin{array}{rl}
C_{s}^{n} & =\frac{n-s+1}{s} C_{s-1}^{n} \tag{c}\\
C_{s+1}^{n} & =\frac{n-s}{s+1} C_{s}^{n}
\end{array}\right\}
$$

Hence we have, by dividing both terms of the first inequality (b) by $C_{s-1}^{n} p^{8-1}(1-p)^{n-s}$,

$$
\frac{n-s+1}{s} p>1-p
$$

any (.e three or one game in 3 games le to do it?
ility required lly win if he
ning to the er of times Che required
will happen or which the

Multiplying by s, this becomes

$$
n p-s p+p>s-s p
$$

Interchanging the members and relucing, we have

$$
\begin{equation*}
s<p(n+1) \tag{d}
\end{equation*}
$$

Now divide the second inequality (b) by $C_{8}^{n} p^{8}(1-p)^{n-8-1}$, and reducing by the second equation (c), we have

$$
1-p>\frac{n-s}{s+1} p
$$

Multiplying by $s+1$ and reducing, we find

$$
\begin{equation*}
s>p(n+1)-1 \tag{e}
\end{equation*}
$$

Comparing the inequalities (d) and (e), we see that s lies between the two quantities $p(n+1)$ and $p(n+1)-1$; that is,
s is the greatest whole number in $p(n+1)$.
If the number of trials n is a large number, and p is a small fraction, $p(n+1)$ and $p n$ will differ only by the fraction p. We shall then have, very nearly,

That is:

$$
s=p n
$$

Theorem I. The most probable number of times that an event will happen on a great number of trials is the product of the number of trials by the probability on cach trial.

Example. If a life insurance company has 6000 members, and the probability that each member will live one year is on the average $\frac{1}{60}$, then the most probable number of deaths during the year is 100 .

Rem. It must not be supposed that in this case the number of cleaths is likely to be exactly 100 , but only that they will fall somewhere near it.

There is a practical rule for determining what deviation must be guarded against, the demonstration of whieh requires more advanced mathematical methods than those employed in this chapter. It is:

Tueonem II. Deviations firom the most probable number of cleaths, equal to the squatre root of that number, will be of firequent oceurrence.

Deviations much greater than this square root will be of inj'requent oceurrence, and deviations more then twice as great will be rare.

Examples. In a company of which the probable ammal. mumber of deaths is 10 , the actual number will commonly fall between $10-\sqrt{ } 10$ and $10+\sqrt{ } 10$, or between 7 and 13 . It will very rarely happen that the number of deaths is as smatl as 4 or as large as 16 .

If the company is so large that the most probable number of deaths is 100 , the aetual number will eommonly fall between $100-\sqrt{ } 100$ and $100+\sqrt{ } 100$, or between 90 and 110 .

If the most probable number of deaths is 1000 , the actual number will commonly range between 968 and 1032 .

We now see the following result of this theorem:
The greater the number of deathes to be capected, the greater will be the probatle aleviation, but the less will be the ratio of theis aleviation to the whole number of deathes.

Examples. The reductions of the cases just cited are shown as follows:

Expected number of denths.	Probable deviation.	Ratio of deviation to expected nimber.
10	3	0.33
100	10	0.10
1000	32	0.03

Application to Life Insurance.

2\%3. At each age of hmman life there is a certain probability that a person will live one year. This probability diminishes as the person advances in age.

It is learned from observation, on the principle described in the preceding section, that events in a vast number of trials are likely to happen a number of times equal to the prodnet of their probability on each trial, multiplied by the number of trials.

Therefore, ly dividing the whole number of times the event has happened by the whole umber of trials, the quotient is the most probable value of the probability on one trial.

Example. If we take 50,000 people at the age of 25 , and record how many of them are alive at the end of one year, this is making 50,000 trials whether a person of that age will live one year.

If 49,650 of them are alive at the end of the year, and 350 are dead, we would conclude:

> Probability of living one year, - -
> Probability of dying within the year,

The probability for all ages may be determined by taking a great number of infimts, say 100,000 , and counting how many die in each year until all are dead. If n are living at the age y, and n^{\prime} at the age $y+1$, then the probability of dying within one year after the age y will be $\frac{n-n^{\prime}}{n}$, and that of living will be $\frac{n^{\prime}}{n}$.

It is not, however, necessary to wait through a lifetime to reach this conclusion. It is sufficient to find from observation what proportion of the people of each age die during any one year. Suppose, for instance, that the census of a city is taken, and it is found that there are 2500 persons aged 30 , and 2000 aged 50. At the end of a year another inquiry is made to ascertain how many are dead. It is fomed that 20 of the 30 year old people, and 30 of the 50 year old people have died. This would show:

At age 30, probalility of dying within 1 year $=0.008$.

$$
\because \quad 50, \quad ، \quad ، \quad ، \quad ، \quad=0.015 .
$$

This same probability being obtained for every year of life, the probability of living 1 year at all ages wonld be known. Then is table of mortality could be formed.

A table of mortality starts ont with any arbitrary number of people, generally 100,000 , at a certain age, frepuently 10 years. It then shows how many of these people will be living at the end of each subserpent yoar until all are dead. The following is a specimen of such a table.

Table of Mortality.

Ages.	Living.	Dying.	Prob, of surviving a year.	Prob. of dying within the year.	Ages.	Living.	Dying.	Prob, of shrviving a year.	Prob of dying within the jear.
1 c	100000	442	. 99558	.00.142	60	58373	1677	. 97127	.02872
11	99558	407	. 99591	.00408	61	56696	1760	.96885	.03104
12	99151	385	.906ı	. 003888	62	5.1936	18.19	. 9663.1	.03365
13	$9^{4} 766$	376	.99019	. 00380	63	53087	1936	.,9633	.03646
14	98390	379	. 99614	. 00385	64	51151	2014	.96062	.03937
15	9^{8011}	306	.99595	. 00.404	65	49137	2080	. 95766	.0.4233
16	97615	426	.99563	.00.436	66	47057	2138	. 95.46	.045.43
17	97189	469	.99517	.00482	67	44919	2186	.95133	.04866
18	9,6720	525	. 99457	.005.42	68	42733	222.4	.9479 ${ }^{5}$. 05204
19	96195	581	.99396	.00603	69	40509	2268	.94401	. 055598
20	95614	621	.99350	. 00649	70	38241	2331	.9390.4	.06095
21	94993	645	$.99^{321}$. 00679	71	35910	2401	.93313	. 06686
22	943.8	653	.99307	. 00692	72	33509	2.469	. 92631	. 07368
23	93695	651	.99305	. 00694	73	31040	2531	.91846	.08154
24	93044	6.7	. 99304	. 00695	74	28509	2567	. 90995	.09004
25	92327	647	-99299	. 20700	75	259.12	25.42	.90201	. 09798
26	91750	651	. 99290	. 00709	76	23.100	2476	. 89.18	.10581
27	91099	668	.99266	. 00733	77	20924	2369	. 88678	.11321
28	90.431	686	. 902.41	. 00753	78	18555	2247	. 87880	. 12109
29	89745	703	.99216	. 00783	79	16308	2110	. 87061	. 12938
30	890.42	718	-99193	. 00806	80	14198	1969	.86131	. 13868
31	8832.4	726	. 99178	. 00821	81	12229	1823	. 85092	. 1.4907
32	87508	733	. 99163	. 00836	82	10406	1672	.830.32	.16067
33	86865	743	. 99144	. 00855	83	8734	1522	. 82573	. 17126
34	86122	75.4	. 99124	. 00875	84	7212	1360	. 81142	.18857
35	85368	768	. 99100	. 00889	85	5852	1186	. 79733	. 20266
36	84600	789	.99067	.00932	86	4666	1014	. 78268	.21731
37	83811	811	. 99032	.00967	87	3652	8.49	-76752	. 232.47
38	83000	830	. 99000	. 01000	88	2803	689	.75419	. 24580
39	82170	844	.98972	. 01027	89	2114	548	. 74077	.250222
40	81326	854	. 989.49	. 01050	90	1566	435	-72222	. 27777
41	80472	860	. 98831	. 01068	91	1131	336	. 70291	. 29708
42	79612	869	. 98908	. 01091	92	795	247	. 68930	.31069
43	78743	888	.98872	. 01127	93	548	181	. 66970	. 33029
44	77855	913	. 98827	.01172	94	367	131	. 64305	.35694
45	76942	948	.98767	. 01232	95	236	86	. 63559	. 36.440
46	75994	989	. 98698	. 01301	96	150	56	. 62666	. 37333
47	75005	1029	. 98628	.01371	97	94	44	. 53191	. 46808
48	73976	1067	.98557	.01442	98	50	33	. 34000	. 66000
49	72909	1102	.98488	.01511	99	17	11	1/3	\%'
50	71807	1133	. 98422	.01577	100	6	4	1/3	23
51	70674	1167	. 98348	. 01651	101	2	2		
52 53	69507	1204	-98267	.01732 .01831	102	0			
53	68303	1251	. 98168	.01831					
54	67052	130.1	.98055	. 01944	Note. The above table is that of the English Institute of Actuaries, prepared bet ween 1860 and 1869 , from the continued experience of twenty leading life insurance compauies.				
55	657.48	1358	. 97934	. 02065					
56	6.3390	1.414	. 97804	. 02195					
57 58	62976 61505	1471 1531	.97664	. 02335					
58 59	61505 50974	1531	.97510 .97330	.02489 .02669					
59	59974	1601	.97330	. 02669					

Problem. To find the probability that a person of age a will live to agre y.

Solution. We take from the table the number living at age y, and divide it by the number living at are a. The quotient is the probablity.

2\%4. The principle on which the ralue of a contingent payment is determined is the following:

Theonem. The value of a mobable payment is squal to the sum to be paid, multiplied by the probability that it will be paial.

Proof. Let there be n men, for each of whom there is a probability p that he will receive the sum s. Then le $\S 202$, Th. I, $p n$ of the men will probably receive the payment, so that the total sum which all will receive will probably be m. Now, before they know who is to get the money, the value of each one's share is equal. Therefore, to find this value, we divide the whole amount to be received, namely, pus, by the number of men, n. This gives $p s$ as the value of each one's chance, which proves the theorem.

Note. In this proof it is tacitly supposed that the pms dollars are as valuable divided among the $p m$ men as divided among all n men. But this, though supposed in mathematical theory, is not motally true. Morally, the money will do more good when divided among all the men than when divided among a portion selected by chance. All gambling, whether by lotterics or games of chance, is in its total effects upon the pecuniary interests of all parties a source of positive disadrantage. This disadrantage is treated mathematically by more advanced methods in special treatises.

EXEHCISES.

1. Find from the table the probabilities that a person

c.	Aged	$\% 0$	will	lise to	80.
f.	$"$	80	$"$	$"$	90
$\%$	$"$	90	$"$	$"$	95
h.	$"$	95	$"$	$"$	100.

2. What age is that at which it is an even chance whether a person aged 40 will be living or dead?
3. Show that the probability that a person aged 30 will live to 60 is equal to the product of the probability that he will live to 60 multiplied by the probability that a man aged 60 will live to $\% 0$. (Apply the theorem of $\frac{8}{8} 269$.)
4. What premium ought a man of 65 to pay for insuring his life for siono for 1 year?
5. 'Ten young men of 95 form a clath. What is the probability that it will be mbroken by death for ten years?
6. The probability that a planing mill will burn down within any one year is $\frac{1}{3}$. What ought an insurance company to charge to insure it to the amount of $\$ 3000$ for 1 year, for 2 years, for 3 years, and for 4 years, respectively?
7. If the probability that a honse will burn down in any one year is p, what onght to be the premimm for insuring it for s years to the amomint of a dollars?

Note. In cases like the last two, it is assumed that only one loss will be paid for.
8. What is the probability that if a man aged 25 marry a wife of 20 , they will live to celebrate their gollen wedding?
9. Λ company insares the joint lives of a hashand aged $\% 0$ and a wife arged 50 for $\$ 5000$ for 5 years, the stipulation being that if either of them die within that time the other shall be paid the money. What onght to be the premium, no allowance being made for interest?

1o. A man aged 50 insures the life of his wife, aged 35 , for $\$ 10,000$ for 20 years, with the promise that the money is not to be paid unless he himself lives to the age of 70 . What ought to be the preminm?

Note. In computations relating to the management of life insurance, it is always necessary to allow compomid interest on all payments. But the above excreisos are intended only to illustrnte the applicntion of the theory of probabilities to the subject, and therefore no allowance for interest is expected to be made in the answers.
whether will live a will live d 60 will - insuring he probal? 1rll down : company 1 year, for wn in any insuring it
mly one loss
25 marry a edding? nd aged ;0 ation being ace shall be a, no allow-
aged 35 , for oney is not ro. What
life insurance, yments. But lication of the wance for in-

BOOK XI.

OF SERMES AND THE DOCTRMNE OIF LIMIITS:

CHAPTER I.

NATURE OF A SERIES.

2\%5. Def. A Series is a succession of terms following each other according to some gencral law.

Examples. An arithmetical progression is a series determined by the law that each term shall be greater than the preceding one by the same amount.

A geometrical progression is a series subject to the law that the ratio of every two consecutive terms is the same.

These two progressions are the simplest form of series.
A series may terminate at some term, or it may continate indefinitely.

Def. A series which continnes indefinitely is called an Infinite Series.

Def. The Sum of a series is the aigebraic sum of all its terms. Hence the sum of an infinite series will consist of the sum of an intinite number of terms.
\boldsymbol{Z} G. The law of a series is generally such that the $n^{\text {th }}$ term may be expressed as a function of n.

For example, in the series
the $n^{\text {th }}$ term is

$$
\begin{gathered}
\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\text { etc. } \\
\frac{1}{n+1}
\end{gathered}
$$

In the series $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+$ etc., the $n^{\text {th }}$ term is

$$
\frac{1}{n(n+1)}
$$

Def. The expression for the $n^{\text {th }}$ term of a series as a function of n is called the General Term of the series.

EXERCISES.

Express the $n^{\text {th }}$ term of each of the following series:

1. $\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\frac{1}{5 \cdot 6}+$ etc.
2. $1 \cdot 2+3 \cdot 4+5 \cdot 6+$ etc.
3. $1+\frac{x}{1 \cdot 2}+\frac{n^{2}}{1 \cdot 2 \cdot 3}+$ ctc.
4. $\frac{c}{2 \cdot 2}+\frac{\epsilon^{2}}{3 \cdot 2^{2}}+\frac{\boldsymbol{c}^{4}}{4 \cdot z^{3}}+\frac{\varepsilon^{8}}{5 \cdot z^{4}}+$ ctc.

Write four terms of cach of the scries having the following general terms:
5. The $n^{\text {th }}$ term 0 la $\frac{4 n^{2}-1}{4 n^{2}+1}$.
6. The $i^{\text {th }}$ term to $i(i+1)(i+2) x^{\text {d }}$.
7. The $(n+1)^{s t}$ term to be $\frac{(n+3)(n+4) x^{n+1}}{(n+5)(n+6)}$.
8. The $(n-1)^{s t}$ term to be $\frac{n^{2}-1}{1 \cdot 2 \ldots \ldots n}$.

2\%\%. The most common use of a series is to enable us to compute, by approximation, the values of expressions which it is difticult or impossible to compute directly. Suppose, for example, that we have to compute the value of $\frac{1+x}{1-x}$ when x is a small fraction, say $\frac{1}{50}$, and to lave the result accurate to eight decimals, We shall see hereafter that when x is less than 1 , we have

$$
\frac{1+x}{1-x}=1+2 x+2 x^{2}+2 x^{3}+\text { etc., ad infinitum. }
$$

Suppose $x=\frac{1}{\tilde{j} 0}=.02$. We compute this series thus:

	1
$2 \times .02=$. 04
Multiplying by .02,	. 0008
* ،	. 000016
، 6	. 00000032
Sum $=\frac{1.02}{.098}=$	1.04081632

which is much more expeditious than dividing 102 by .98 .
It will be seen that every term we add makes the quotient accuate to one or two more decimals, so that there is no limit to the preeision which may be attained by the use of the series.

If, however, x had been greater than unity, the series would give no result, beeause the terms $2 x, 2 x^{2}, 2 x^{3}$, would have gone on increasing indefinitely, whereas the true value of the fraction $\frac{1+x}{1-x}$ would have been negative.

This example illustrates the following two cases of series:
I. There may be a certain limit to which the sum of the series shall approach, as we increase the uumber of terms, but which it can never reach, how great socver the number of terms added.

For example, the series we have just tried,

$$
1+\frac{2}{50}+\frac{2}{50^{2}}+\frac{2}{50^{3}}+\frac{2}{50^{4}}+\text { etc. }
$$

approaches the limit $\frac{1.02}{0.98}$, but never absolutely reaches it.
II. As we increase the mumber of terms, the sum, ma!! inercase without limit, or ma! vibrate bure and forth in conscquence of some terms being positice almal others negative.

These two classes of series are distinguished as convergent and dicergent.

Def. A Convergent Series is one of which the sum approaches a limit as the number of terms is increased.

Refer to $\$ 213$ for an example of infinite series in geonetrical progressions which have limits.
$D e f$. A Divergent Series is one of which the sum does not approach a limit.

Eximples. The series $1+2+3+4+$ ete., ad mfimtum, is livergent, because there is no limit to the sum of its terms.

The series $1-1+1-1+1$-ete., is divergent, because its sum continually fluctuates between +1 and 0 .

Rem. When we consuder only a limited number of terms, the question of convergence or divergence is not important. But when the sum of the whole series to infinity is to be consulered, only couvergent series can be used.

Notation of Sums.

2\%4. The sum of a series of terms represented by common symbols may be expressed by the symbol Σ, followed by one of the terms.

Example. The expression Σa
means " the sum of several terms, each represented by a."
When it is necessary to distinguish the different terms, different accents or indices are affixed to them, and represented by some common symbol.

Example. The expression

$$
\Sigma a_{i}
$$

means the sum of several terms represented by the symbol a with indices attached; that is, the sum of several of the quantities $u_{1}, a_{2}, a_{3}, a_{4}$, ete.

When the particular indices included in the summation are to be expressed, the greatest and least of them are written above and below the symbol Σ.

Examples. The expression

$$
\sum_{i=5}^{i=15} a_{i}
$$

means: "Sum of all the symbols a_{i} formed by giving i all integral values from $i=5$ to $i=15$." That is,

$$
\begin{aligned}
& \underset{i=5}{i=15} a_{i}=a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}+a_{11}+a_{12}+a_{13}+a_{14}+a_{15} . \\
& i=5 \\
& \sum_{i=0}^{i=5} m \text { means } 0+m+2 m+3 m+4 m+5 m \text {. } \\
& \underset{i=1}{i=4}(i, j) \text { means }(1, j)+(?, j)+(3, j)+(4, j) \text {. } \\
& \underset{j=2}{j=6}(\imath, j)=(i, 2)+(i, 3)+(i, 4)+(i, 5)+(i, 6) \text {. } \\
& \underset{n=1}{n=4} n!=1!+2!+3!+4!=1+2+6+24=33 \text {. } \\
& \underset{i=7}{i=11}=7+8+9+10+11=45 . \\
& \underset{i=2}{i=5} i^{2}=2^{2}+3^{2}+4^{2}+5^{2}=54 \text {. }
\end{aligned}
$$

EXERCISES.

Write out the following summations, and compute their valnes when they are purely numerical:
I. $\sum_{j=1}^{j=7} j^{2}$.
2. $\underset{n=1}{n=6} n(n-1)$.

4. $\underset{i=4}{i=8} \sum_{i}$.
5. $\underset{n=4}{\substack{n=7 \\ \sum n}} 1$.
6. $\sum_{n=0}^{n=6}(n+1)(j-1)$.
7. $\underset{i=2}{i=4} \mathrm{\sum im}_{i}$.
8. $\underset{n=2}{\substack{n=5 \\ \sum \\ n \\ 2 \\ m^{2} \\ 2}}$
9. ${\underset{n=0}{n=5}}_{\sum_{n=0}^{n}}^{n-1}$.

Express the following sums by the sign Σ :
io. $h_{0}+h_{1}+h_{2}+h_{3}+h_{4}$.
I . $1^{3}+2^{3}+3^{3}+4^{3}$.
12. $1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5$.
13. $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}$.

CHAPTER 11.
 DEVELOPMENT IN POWERS OF A VARIABLE.

279. Among the most common scries employed in mathematics are those of which the terms are multiplied by the successive powers of some one quantity.

An example of such a scries is

$$
1+2 z+3 z^{2}+4 z^{3}+5 z^{4}+\text { etc. }
$$

in which each coefficient is greater by unity than the power of z which it multiplies.

A geometrical progression, it will be remarked, is a seric of this kind, in which the terms contain the successive powers of the common ratio.

The general form of such a series is

$$
a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\text { etc. }
$$

in which the successive coefficients a_{0}, a_{1}, a_{2}, ete., are formed according to some law, but do not contain z.

Such a scries as this is said to proceed according to the ascending powers of the variable z.

Rem. The sum of a series is often equal to some algebraic expression containing the variable. Conversely, we may find a serics the sum of all the terms of which shall le equal to a given expression.

Def. A series equal to a given expression is called the Development of that expression.

To Develop an expression means to find a series the sum of all the terms of which are equal to the expression.

The most extensively used method of development is that of indeterminate coefficients.

Method of Indeterminate Coefficients.

2SO. The method of indeterminate coefficients is based unon the following principles:

Let us have two equal expressions, each containing a variatble z, and one or both containing also certain indeterminate quantities, that is, quantitics introduced hypothetically, and not given by the original problem, the values of which are to be subsequently assigued so as to fulfil a certain condition.

The condition to be fulfilled by the values of the indeterminate quantities is that the two expressions containing z and these quantities shall be made identically equal.

Then, because the equations are to be identically equal, we can assig any values we please to z, and thus form as many equations as we please between the indeterminate quantities.

If these equations can be all satisfied by one set of values of these quantities, then by assigning these values to them in the original equation, the latter will be an identical one, as rerguired.

The student should trace the above general method in the following examples of its application.
281. Theorem I. If a scrics proccenting according to the ascending powers of a quantity is cqual to a ero for all values of that quantity, the coefficient of each separate term must be zero.

Proof. Let the several coefficients be a_{0}, a_{1}, a_{2}, etc., and z the quantity, so that the series, put equal to zero, is

$$
a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\text { etc. }=0
$$

Becanse the equation is true for all values of z, it must be true when $z=0$. Putting $z=0$, it becomes

$$
a_{0}=0 .
$$

Dropping a_{0}, the equation becomes

$$
u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\text { etc. }=0 .
$$

Dividing by $z, \quad a_{1}+a_{2} z+u_{3} z^{2}+$ ctc. $=0$.
From this we derive, by a repetition of the same reasoning,

$$
a_{1}=0 .
$$

Continuing the process, we find

$$
a_{2}=0, \quad a_{3}=0, \quad \text { etc., intlefinitely. }
$$

Theorem II. If tuo series procecaling by ascencling powers of a quantity are equal for all values of thert quantity, the cocfjicients of the equal powers must be cqual.

Proof. Let the two equal series be

$$
\begin{equation*}
a_{0}+a_{1} z+a_{2} z^{2}+\text { etc. }=b_{0}+b_{1} z+b_{2} z^{2}+\text { etc. } \tag{a}
\end{equation*}
$$

Transposing the second member to the left-hand side and collecting the equal powers of z, the equation becomes

$$
a_{0}-b_{0}+\left(a_{1}-b_{1}\right) z+\left(a_{2}-b_{2}\right) z^{2}+\text { ctc. }=0
$$

Since this equation is to be satisfied for all values of z, the coefficients of the separate powers of z must all be zero.

Hence,

$$
\begin{array}{rlrlrl}
a_{0}-b_{0} & =0, & a_{1}-b_{1} & =0, & a_{2}-b_{2} & =0, \\
\text { or } & a_{0} & =b_{0}, & a_{1} & =b_{1}, & \\
a_{2} & =b_{2}, & & \text { etc. }
\end{array}
$$

Exercise. Let the student demonstrate these last equations independently from (a), by supposing $z=0$, then sub)tracting from both sides of (a) the quantities found to be equal; then dividing by z; then supposing $z=0$, etc.

Rem. The hypothesis that (a) is satisfied for all values of z is equivalent to the smpposition that it is an identical equation. In general, when we find different expressions for the same functions of a variable quantity, these expressions ought to be identically equal, because they are expected to be true for all values of the variable.

Theonem III. . A function of a variable can onl! be dewhoned in a single w'ay in ascouding pouers of the variable.

For if we should have

$$
\begin{aligned}
& F z=A_{0}+A_{1} z+A_{2} z^{2}+A_{3} z^{3}+\text { etc. } \\
& F z=B_{0}+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\text { etc. }
\end{aligned}
$$

and also
these two series, being each identically equal to $F z$, must be identically equal to each other. But, by Th. II, this camnot be the case unless we have

$$
A_{0}=B_{0}, \quad A_{1}=B_{1}, \quad A_{2}=B_{2}, \quad \text { etc. }
$$

The coefficients being equal, the two series are really one and the same.

25\%. Expansion by Indeterminate Coefficients. The above prineiple is applied to the development of functions in powers of the variable. The method of doing this will be best seen by an example.

1. Develop $\frac{1}{1+x}$ in powers of x.

Let us call the coefficients of the powers of $x a_{0}, a_{1}$, etc. The series will be known as soon as these coefficients are known. Let us then suppose

$$
\frac{1}{1+x}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\text { ctc. }
$$

Here we remark that, so far as we have shown, this equation is purely hypothetical. We have not proved that any such equation is possible, and the question whether it is possible must remain open for the present. We must find whether we can assign such values to the indeterminate coefficients, π_{0}, a_{1}, a_{2}, ete., that the equation shall be identically true.

Assuming the equation to be true, we multiply both sides by $1+x$. It then becomes

$$
1=a_{0}+\left(a_{0}+a_{1}\right) x+\left(a_{1}+a_{2}\right) x^{2}+\text { etc. } ;
$$

or transposing 1 ,

$$
0=a_{0}-1+\left(a_{0}+a_{1}\right) x+\left(a_{1}+a_{2}\right) x^{2}+\left(a_{2}+a_{3}\right) x^{3}+\text { ctc. }
$$

By Theorem I, the coefficients must be identically zero. Hence,

$$
\begin{array}{cccl}
a_{0}-1=0, & \text { which gives } & a_{0}=1 ; \\
a_{1}+a_{0}=0, & " & " & a_{1}=-a_{0}=-1 ; \\
a_{2}+a_{1}=0, & " & " & a_{2}=-a_{1}=1 ; \\
a_{3}+a_{2}=0, & " & " & a_{3}=-a_{2}=-1 ; \\
\text { etc. } & & & \text { etc. }
\end{array}
$$

Substituting these values of the coefficients in the original equation, it becomes

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-\text { etc. }
$$

This same method can be applied to the development of any rational fraction of which the terms are entire functions of some one quantity. Let us, for instance, suppose

$$
\frac{a+b x}{m+n x+p x^{2}}=A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{n} x^{n}
$$

Multiplying by the denominator of the fraction, this equation gives

$$
\begin{aligned}
& a+b x=m A_{0}+\left(n A_{0}+m A_{1}\right) x+\left(p A_{0}+n A_{1}+m A_{2}\right) x^{2} \\
&+\left(p A_{1}+n A_{2}+m A_{3}\right) x^{3}+\text { etc. }
\end{aligned}
$$

We now see that when $i>1$, the coefficient of x^{i} in this equation is $m A_{i}+n A_{i-1}+p A_{i-2}$.

Equating the cocfficients of like powers of x,

$$
\begin{aligned}
& m A_{0}=a \text {, whence } A_{0}=\frac{a}{m} ; \\
& m A_{1}+n A_{0}=b, \quad \text { " } \quad A_{1}=\frac{b}{m}-\frac{n}{n} A_{0} ;
\end{aligned}
$$

We have from the general coefficient above written, when $i>1$,

$$
A_{i}=-\frac{n}{m} A_{i-1}-\frac{p}{m} A_{i-2} .
$$

That is, each cocfficient after the secont is the same linear function of the turo coefficients next preceding.

Such a series is called a Recurring Series.

EXERCISES.

Develop by indeterminate coefficients:
I. $\frac{1}{1-x}$.
2. $\frac{1}{1-2 x}$.
3. $\frac{1-x}{1+x}$.
4. $\frac{1+x}{1-x}$.
5. $\frac{1+x}{1+2 x+3 x^{2}}$.
6. $\frac{1-x}{1-2 x+x^{2}}$.
7. $\frac{1-2 x+3 x^{2}}{1+2 x+3 x^{2}}$.
8. $\frac{1-x}{1+x-x^{3}}$.
283. The development of a rational fraction may also be effected by division, after the mamer of $\S \S 96,97$, the operation being carried forward to any extent.

Example. Develop $\frac{1+x}{1-x}$.

$$
\begin{array}{ll}
\begin{array}{l}
1+x \\
\frac{1-x}{2 x}
\end{array} & \frac{11-x}{1+2 x+2 x^{2}+2 x^{3}+\text { etc. }} \\
\frac{2 x-2 x^{2}}{2 x^{2}+0} \\
& \frac{2 x^{2}-2 x^{3}}{2 x^{3}, \text { etc. }}
\end{array}
$$

EXERCISES.

Develop by division the expressions:
I. $\frac{1-2 x}{1+x}$.
2. $\frac{1+x}{1-x+x^{2}}$.
284. Elimination by Undetermined Multipliers. There is an application of the method of undetermined coefficients to the problem of eliminating unknown quantities, which merits special attention on account of its instrnctiveness. Let any system of simultaneous equations between three unknown quantities be

$$
\begin{align*}
a x+b y+c z & =h \tag{1}\\
a^{\prime} x+b^{\prime} y+c^{\prime} z & =h^{\prime} \tag{2}\\
a^{\prime \prime} x+b^{\prime \prime} y+c^{\prime \prime} z & =h^{\prime \prime} \tag{3}
\end{align*}
$$

Can we find two such factors that, if we multiply two of the equations by them, and add the results to the third, two of the three unknown quantities shall be eliminated?

This question is answered in the following way:
If there be such factors, let us call them m and n. If we multiply the first equation by m, the second by n, and add the product to the third equation, we shall have

$$
\left.\begin{array}{rl}
& \left(a m+a^{\prime} n+u^{\prime \prime}\right) x \\
+ & \left(b m+b^{\prime} n+b^{\prime \prime}\right) y \tag{l}\\
+ & \left(c m+c^{\prime} n+c^{\prime \prime}\right) z
\end{array}\right\}=\lambda m+l^{\prime} n+l^{\prime \prime} .
$$

In order that the quantities y and z may disappear from this equation, we must have

$$
\begin{aligned}
& b m+b^{\prime} n+b^{\prime \prime}=0 \\
& c m+c^{\prime} n+c^{\prime \prime}=0
\end{aligned}
$$

Since we have these two equations between the quantities m and n, we can determine their values.

Solving the equations, we find:

$$
\begin{aligned}
m & =\frac{b^{\prime} c^{\prime \prime}-b^{\prime \prime} c^{\prime}}{b c^{\prime}-b^{\prime} c} \\
n & =\frac{b^{\prime \prime} c-b c^{\prime \prime}}{b c^{\prime}-b^{\prime} c}
\end{aligned}
$$

These are the required values of the multipliers. Substituting them in the equation (l), we find that the coedficients of y and z vanish, and that the equation becomes

$$
\begin{aligned}
& {\left[\frac{a\left(b^{\prime} c^{\prime \prime}-b^{\prime \prime} c^{\prime}\right)+a^{\prime}\left(b^{\prime \prime} c-b c^{\prime \prime}\right)}{b c^{\prime}-b^{\prime} c}+a^{\prime \prime}\right] x} \\
& =\frac{h\left(b^{\prime} c^{\prime \prime}-b^{\prime \prime} c^{\prime}\right)+h^{\prime}\left(b^{\prime \prime} c-b c^{\prime \prime}\right)}{b c^{\prime}-b^{\prime} c}+l^{\prime \prime}
\end{aligned}
$$

Clearing of denominators and dividing by the coefficient of x, we find

$$
x=\frac{\hbar\left(b^{\prime} c^{\prime \prime}-b^{\prime \prime} c^{\prime}\right)+l^{\prime}\left(b^{\prime \prime} c-b c^{\prime \prime}\right)+l^{\prime \prime}\left(b c^{\prime}-l^{\prime} r\right)}{a\left(b^{\prime} c^{\prime \prime}-b^{\prime \prime} c^{\prime}\right)+a^{\prime}\left(b^{\prime \prime} c-b c^{\prime \prime}\right)+a^{\prime \prime}\left(b c^{\prime}-b^{\prime} c\right)} .
$$

EXERCISES.

r. Find the values of y and z by the above process for finding x.
d n. If'wo and add the
(l)
ppear from he quantities
liers. Substihe coeflicients
$\left.-2 c^{\prime \prime}\right)+h^{\prime \prime}$. e coefficient of
$\frac{\left.b c^{\prime}-l^{\prime} c\right)}{\left(b c^{\prime}-b^{\prime} c\right)}$.

For this purpose we may begin with the equation (h) and find valnes of m and n such that the coeffleients of x mul z in (b) shatl vanish. 'These vulues will be different from those given in (c). By suhstituting them in (b), x and z will be eliminated, and we shall obtuin the value of y.

We then find a third set of values of m and n, such that the coefflcients of x and y shall vanish, and thus obtnin the vilue of z.
2. Solve by the method ce indeterminate multipliers the exercise 3 of § 140 .

Multiplication of Two Infinite Series.

284it. Probrem. 'To express the product of the two series
and

$$
\begin{aligned}
& a_{0}+u_{1} x+u_{2} x^{2}+u_{3} x^{3}+\text { ete. } \\
& b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\text { etc. }
\end{aligned}
$$

The method is similar to that by which the square of an entire function is formed ($\$ 1 \% 3,2$).

We readily find the first two terms of the product to be

$$
a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x
$$

The combinations which produce terms in x^{2} are

$$
a_{0} b_{2} x^{2}+a_{1} b_{1} x^{2}+a_{2} b_{0} x^{2}
$$

Those which produce terms in x^{3} are

$$
a_{0} b_{3} x^{3}+a_{1} b_{2} x^{3}+a_{2} b_{1} x^{3}+a_{3} b_{0} x^{3}
$$

In general, to find the terms in x^{n} we begin by multiplying a_{0} into the term $b_{n} 2^{n}$ of the lower series, and then multiplying each succeeding of the first series by each preceding term of the second, until we end with $a_{n} b_{0} x^{n}$. Hence, if we suppose

$$
\text { Product }=A_{0}+A_{1} x+A_{2} x^{2}+\ldots+A_{n} x^{n}+\text { etc. }
$$

we shall have, for all values of n,

$$
A_{n}=a_{0} b_{n}+a_{1} b_{n-1}+a_{2} b_{n-2}+\ldots+a_{n} b_{0}
$$

By giving n all integral values, we shall form as many values as we choose of A_{n}, and so as many terms as we choose of the series.

EXERCISES.

I. Form the product of the two series:

$$
\begin{aligned}
& 1-\frac{x^{2}}{x!}+\frac{x^{4}}{4!}-\frac{x^{3}}{6!}+\text { etc. } \\
& x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\text { etc. }
\end{aligned}
$$

2. Form the square of each of these series.
3. Can yon, by adding the squares together, show that their sum is equal to unity, whatever be the value of x ?

To effect this, multiply each coefficient of x^{n} in the sum of the squares by n !, substitute for each term its value $C^{\prime \prime}$, given in 825%, and ap! § 202, Th. 11 .
285. Series proceeding according to the Pouers of Two Variables. Such a series is of the form

$$
a_{0}+b_{0} x+a_{1} y+c_{0} x^{2}+b_{1} x y+a_{2} y^{2}+\text { ete. }
$$

in which the products of all powers of x and y are combined. By collecting the coefficients of each power of x, the series will become

$$
\begin{aligned}
& \quad a_{0}+a_{1} y+a_{2} y^{2}+a_{3} y^{3}+\ldots \\
& +\left(b_{0}+b_{1} y+b_{2} y^{2}+b_{3} y^{3}+\ldots\right) x \\
& +\left(c_{0}+c_{1} y+c_{2} y^{2}+c_{3} y^{3}+\ldots\right) x^{2} \\
& + \text { cte., etc., etc., etc. }
\end{aligned}
$$

Hence, the series is one proceeding according to the powers of one variable, in which the coefficients are themselves series, proceeding according to the ascending powers of another variable.

Let us hav: the identically equal series proceeding accord${ }^{1}$ ing to the ascending powers of the same variables,

$$
\begin{aligned}
& \quad A_{0}+A_{1} y+A_{2} y^{2}+\ldots \\
& +\left(B_{0}+B_{1} y+B_{2} y^{2}+\ldots\right) x \\
& +\left(C_{0}+C_{1} y+C_{2} y^{2}+\ldots\right) x^{2} \\
& + \text { cte., etc., etc. }
\end{aligned}
$$

Since these scries are to be equal for all values of x, the coefficients of like powers of x must be equal. Hence,

$$
\begin{array}{cc}
a_{0}+a_{1} y+a_{2} y^{2}+\text { etc. }=A_{0}+A_{1} y+A_{2} y{ }^{2}+\text { cte. } \\
b_{0}+b_{1} y+b_{2} y^{2}+\text { etc. }=B_{0}+B_{1} y+B_{2} y^{3}+\text { cte. } \\
\text { etc. } & \text { etc. }
\end{array}
$$

Again, since these serics are to be equal for all values of y, we must have

$$
\begin{array}{ccc}
a_{0}=A_{0}, & a_{1}=A_{1}, & a_{2}=A_{2}, \\
b_{0}=B_{0}, & b_{1}=B_{1}, & b_{2}=B_{2}, \\
\text { etc. } \\
\text { etc. } & \text { etc. } & \text { etc. }
\end{array}
$$

Hence, in order that two series proceching according to the usecuding pouers of turo rariables ma! be idrutically equal, the coefficients of every like protuct of the porect's must be equal.

CHAPTER III.
 SUMMATION OF SERIES.

Of Figmate Numbers.

2S6. The numbers in the following colums are formed according to these rules:

1. The first column is composed of the natural numbers, $1,2,3$, etc.
2. In every succeeding column each number is the sum of all the numbers above it in the column next preeeding.

Thus, in the second column, the suceessive numbers are:
$1,1+2=3,1+2+3=6,1+2+3+4=10$, etc.
In the third colurn we have

$$
1, \quad 1+3=4, \quad 1+3+6=10, \quad \text { ctc. }
$$

$$
1
$$

	1				
2	3	1	1		
3	3	4	5	1	
4	0	10	5	6	1
5	10	20	15	21	7
6	15	35	35		
$\%$	21				
$\%$	etc.		cte.		cte.

It is evident from the mole of formation that each number is the difference of the two mumbers next above and below it in the columm next following.

The numbers 1, 3, 6, 10, ete., in the second column are called triangular numbers, becimse they repre-

sent numbers of points which can be regularly arranged owe triangular surfaces.
'The numbers $1,4,10$, ete., in the third columns are called pyramidal numbers, bectuse each one is composed of a smm of triangular numbers, which being arranged in layers over each other, will form a triangular pramid.

All the numbers of the scheme are called figurate numbers.

The numbers in the $i^{\text {th }}$ column are called figurate numbers of the $i^{\text {th }}$ order.

2S\%. If we suppose a column of 1's to the left of the first colmm, and take cath line of numbers from left to right inelined npward, we shatl have the successive lines 1,$1 ; 1,2,1$; $1,3,3,1$, etc. These number: are formed by addition in the same way as the hinomial coefficients in $\$ 1 \% 1,0$. We may therefore conelnde that all the mumbers obtained by the preceding process are binomial cocflicients, or combinatory expressions. 'This we shall now prove.

Theonem. The $x^{\text {th }}$ mumber in the $i^{\text {th }}$ column is equal to C_{i}^{n+i-1} or to

$$
\begin{equation*}
\frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3 \cdot(n+i-1)} \tag{1}
\end{equation*}
$$

Proof. Becanse the combinations of 1 in any number are equal to that momber, we have, when $i=1$,

$$
n^{\text {th }} \text { number in } 1 \text { st column }=n=C_{1}^{n}
$$

which agrees with the theorem.
When $i=2$, we have, by the law of formation of the numbers,

$$
n^{\text {th }} \text { number in } 2 d \text { column }=C_{1}^{1}+C_{1}^{2}+C_{1}^{3}+\ldots+C_{1}^{n}
$$ which, by equation (a) ($(200,3)$, is equal to C_{2}^{n+1}.

'Iherefore the suceessive nmmbers in the second columm, found by supposing $n=1, n=3$, ete., are

$$
\underset{\sim}{2} \quad C_{2}^{2}, C_{2}^{3}, C_{2}^{1}, \ldots C_{2}^{n+1} .
$$

Since the $n^{t h}$ number in the third column is equal to the sum of all above it in the second, we have

$$
n^{t h} \text { number in } 3 \mathrm{~d} \text { column }=C_{2}^{2}+C_{2}^{3}+C_{2}^{4}+C_{2}^{n+1}=C_{3}^{n+2}
$$

which still corresponds to the theorem, because, when $i=3$, $n+i-1=n+2$.

To prove that the theorem is true as far as we choos to carry it, we must show that if it is true for any value of i, it is also true for a value 1 greater. Let us then suppose that, in the $r^{\text {th }}$ column the first n numbors are

$$
C_{r}^{r}, C_{r}^{r+1}, C_{r}^{r+2}, \ldots C_{r}^{r+n-1}
$$

Since the $n^{\text {th }}$ number in the next column is the sum of these numbers, it will be equal to

$$
C_{r+1}^{r+n}
$$

which is the expression given by the theorem when we suppose $i=r+1$.

Now we have proved the theorem true when $i=3$; therefore (supposing $r=3$) it is true for $i=4$. Therefore (supposing $r=4$) it is true for $i=5$, and so on indefinitely.

If in the general expression (1) we put $i=9$, we shall lave the values of the triangular numbers ; by putting $i=3$, we shall have the pyramidal numbers, ete. Therefore,

The $n^{\text {th }}$ triangular number $=\frac{n(n+1)}{1 \cdot 2}$.
The $n^{\text {th }}$ pyramidal number $=\frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3}$.
By supposing $n=1,2,3,4$, etc., in succession, we find the succession of triangular numbers to be

$$
\frac{1 \cdot 2}{1 \cdot 2}, \frac{2 \cdot 3}{1 \cdot 2}, \frac{4 \cdot 5}{1 \cdot 2}, \quad \text { etc. } ;
$$

and the pyramidal numbers,

$$
\frac{1 \cdot 2 \cdot 3}{1 \cdot 2 \cdot 3}, \frac{2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3}, \frac{3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3}, \quad \text { etc. }
$$

which we realily see correspond to the values in the seheme (Λ).
al to the
$=C_{3}^{n+2}$,
en $i=3$,
choos to cof i, it is se that, in
the sum of
we suppose
$=3$; there-
erefore (supfinitely.
$=9$, we shill ntting $i=3$, efore,
$(n+2)$.
. 3
sion, we find
the scheme (Λ).

Ennmeration of Triangular Piles of Shot.

2SS. An interesting application of the preceding theory is that of tinding the number of camon-shot in a pile. There are two cases in wheh a pile will contain a figurate number:
I. Elongated projectiles, in which eath rests on two projectiles below it.
II. Spherical projectiles, each resting on three below it, and the whole forming a pyramid.

Case I. Elonyated Projectiles. Here the vertex of a pile of one vertical layer will be formed of one shot, the next layer below of two, the third of three, ete. Hence the sum of n layers from the vertex down will be the $n^{\text {th }}$ tritugular number.

It is evident that the number of shot in the bottom row is equal to the mumber of rows. Hence, if n be this number, and \boldsymbol{N} the entire number of shot in the pile, we shall have,

$$
N=\frac{n(n+1)}{2}
$$

If the pile is ineomplete, in consequence of all the layers above a certain one being absent, we first compute how many there would be if the pile were complete, and subtract the number in that part of the pile which is absent.

Example. The botom layer has 25 shot, but there are only 11 layers in all. How many shot are there?

If the pile were complete, the number would be $\frac{25 \cdot 26}{2}$. There being 14 layers wanting from the top, the total number of shot wanting is $\frac{14 \cdot 15}{2}$. Hence the number in the pile is

$$
\begin{aligned}
N & =\frac{25 \cdot 2(-14 \cdot 15}{z}=\frac{(14+11)(15+11)-14 \cdot 15}{\ddot{z}} \\
& =\frac{11(14+15+11)}{\ddot{z}}=220 .
\end{aligned}
$$

Note. This particular problem conld have been solved more bricfly by considering the number of shot in the several lavers as an arithmetical proyression, but we have preferred to apply a generai method.

EXERCISES.

I. A pile of cylindrical shot has n in its bottom row, and r rows. How many shot are there?
2. From a eomplete pile having h layers, s layers are removed. How many shot are left?
3. A pile has n shot in its bottom row, and m in its top rew. How many rows and how many shot are there?
4. A pile has p rows and k shot in its top row. How many shot are there?
5. Explain the law of succession of even and odd numbers in the series of triangular numbers.
6. How many balls are necessary to fill a hexagon, having n balls in each side?

Note. In the adjoining figure, $n=3$.

2SS. Case II. Pyramil of Palls. If a course of balls be laid upon the ground so as to fill an equilateral triangle, having n balls on each side, a second course can be laid upon these having $n-1$ balls on each side, and so on until we come to a single ball at the vertex.

Commencing at the top, the first course will consist of 1 ball, the next of 3 , the thirl of 6 , and so on through the triangular numbers. Because each prramidal number is the sum of all the preceding triangular numbers, the whole number of balls in the n courses will be the $n^{\text {th }}$ lyramidal number, or

$$
N=\frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3}
$$

EXERCISES.

r. How many balls in a triangular pyramid having 9 balls on each side?
2. If from a triangular pyramid of n courses k courses be remored from the top, how many balls will be left?
3. How many balls in the frustum of a triangular pyramid haring n balls on each side of the base and m on cach side of the upper course?

Sum of the Similar Powers of an Arithmetical Progression.

290. Put a_{1}, the first term of the progression;
d, the common difference;
n, the number of terms;
m, the index of the power.
It is required to find an expression for the sum,
$a_{1}^{m}+\left(a_{1}+d\right)^{m}+\left(l_{1}+2 l^{n}+\ldots+\left[a_{1}+(n-1) d\right]^{m}\right.$, which sum we call s_{m}.

Let us put, for brevity, $a_{1}, \pi_{2}, a_{3}, a_{4}, \ldots a_{n}$ for the sereral terms of the progression. Then

$$
\begin{aligned}
a_{2} & =a_{1}+l, \\
a_{3} & =a_{1}+2 d \\
\vdots & =a_{2}+l l \\
\vdots & \vdots \\
a_{n} & =a_{1}+(n-1) d=a_{n-1}+l .
\end{aligned}
$$

Raising these equations to the $(m+1)^{\text {th }}$ power, and adding the erpuation $a_{n+1}=a_{n}+(l$, we have

$$
\begin{aligned}
& a_{2}^{m-1}= a_{1}^{m+1}+(m+1) a_{1}^{m} d+\frac{(m+1) m}{1 \cdot 2} a_{1}^{m-1} d^{2}+\text { ctc } . \\
& a_{3}^{m-1}= a_{2}^{m+1}+(m+1) a_{2}^{m} d+\frac{(m+1) m}{1 \cdot 2} a_{2}^{m-1} d^{2}+\text { ctc. } \\
& a_{4}^{m-1}= a_{3}^{m+1}+(m+1) a_{3}^{m} d+\frac{(m+1) m}{1 \cdot:} a_{3}^{m-1} d^{2}+\text { ctc. } \\
& \vdots \vdots \\
& \vdots \\
& a_{n-1}^{m+1}= a_{n}^{m+1}+(m+1) a_{n}^{m} l+\frac{(m+1) m}{1 \cdot 2} a_{n}^{m-1} l^{2}+\text { ctc. }
\end{aligned}
$$

If we add these erpations together, and cancel the common terms, $u_{2}^{m n+1}+u_{3}^{m+1}+\ldots+u_{n}^{m+1}$, which appear in both membere, we shall have

$$
\begin{aligned}
\iota_{n+1}^{m+1}=a_{1}^{m+1}+(m+1) d S_{m} & +\frac{(m+1) m}{1 \cdot 2} d^{2} S_{m-1} \\
& \left.+\frac{(m+1) m(m}{1 \cdot 2 \cdot 3}-1\right) \\
& d^{3} S_{m-2}, \text { etc. }
\end{aligned}
$$

From this we obtain, by solving with respect to S_{m},
$S_{m}=\frac{a_{n+1}^{m+1}-a_{1}^{m+1}}{(m+1) d}-\frac{m}{2} d S_{m-1}-\frac{m(m-1)}{1 \cdot 2 \cdot 3} d^{2} S_{m-2}-$ etc.,
which will enable us to find S_{m} when we know $S_{1}, S_{\mathbf{2}}, \ldots$ S_{m-1}, that is, to find the sum of the $n^{\text {th }}$ powers when we know the sum of all the lower powers. It will be noted that S_{1} means the sum of the arithmetical series itself, as found in Book VII, Chap. I ; and that $S_{0}=n$, because there are n terms and the zero power of each is 1 .

By § 209, Prob. V,

$$
S_{1}=n \frac{\pi_{n}+a_{1}}{2}
$$

To find the sum of the squares, we put $m=2$, which gives

$$
\begin{equation*}
S_{2}=\frac{d_{n+1}^{3}-u_{1}^{3}}{3 l}-d S_{1}-\frac{d^{2}}{3} S_{0} \tag{3}
\end{equation*}
$$

291. The simplest application of this expression is given by the problem:

To find the sum of the squares of the first n natural numbers, namely,

$$
1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}
$$

Here $d=1, a_{n}=n$, cte., $S_{1}=1+2 \ldots+n=\frac{n(n+1)}{2}$, so that (3) gives

$$
S_{2}=\frac{(n+1)^{3}-1}{3}-\frac{n(n+1)}{2}-\frac{n}{3}
$$

Noting that $n+1$ is a factor of the scoond member, we may reduce this equation to

$$
\begin{equation*}
S_{2}=\frac{n(n+1)(2 n+1)}{6} \tag{4}
\end{equation*}
$$

which is the required expression for the sum of the squares of the first n numbers.
292. To find the sum of the cubes of any progression, we put $m=3$ in the equation (i), which then gives

$$
\begin{equation*}
S_{3}=\frac{a_{n+1}^{4}-a_{1}^{4}}{4 d}-\frac{3}{2} d S_{2}-d^{2} S_{1}-\frac{1}{4} d^{3} S_{0} \tag{6}
\end{equation*}
$$

Applying this as before to the ease in which a_{1}, a_{2}, a_{3}, etc., are the natural numbers, $1,2,3$, ete., we find

$$
\begin{aligned}
S_{3} & =\frac{(n+1)^{4}-1}{4}-\frac{3}{2} S_{2}-S_{1}-\frac{1}{4} S_{0} \\
& =\frac{(n+1)^{4}-1}{4}-\frac{n(n+1)(2 n+1)}{4}-\frac{n(n+1)}{2}-\frac{n}{4} .
\end{aligned}
$$

Separating the factor $n+1$ and then reducing, this efuattion becomes

$$
\begin{equation*}
S_{3}=\left[\frac{n(n+1)}{2}\right]^{2} \tag{5}
\end{equation*}
$$

But $\frac{n(n+1)}{2}$ is the sum of the natural numbers

$$
1+2+3+\text { ctc. }
$$

and S_{3} being the sum of the cubes, we have the remarkable relation,

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}
$$

That is, the sum of the cubes of the first n numbers is equal to the square of their sum.

We may verify this relation to any extent, thus:
When $u=2,1^{3}+2^{3}=1+8=9=(1+2)^{2}$.
When $n=3,1^{3}+2^{3}+3^{3}=1+8+27=36=(1+2+3)^{2}$.
When $n=4,1^{3}+2^{3}+3^{3}+4^{3}=1+8+27+64=100=(1+2+3+4)^{2}$.

$$
\begin{array}{lll}
\text { etc. } & \text { etc. } & \text { etc. }
\end{array}
$$

293. Enumeration of a Rectangular Pile of Batls. The preceding theory may be applied to the enumeration of a pile of balls of which the base is rectangular and each ball rests on four balls below it. Let us put p, q, the number of balls in two adjacent sides of the base.

Then the sceond course will have $p-1$ and $q-1$ balls on its sides; the third $p-2$ and $q-2$, and so on to the top, which will consist of a single row of $p-q+1$ balls (supposing $p \geq q)$. The bottom course will contain $p q$ balls, the next course $(p-1)(q-1)$, etc. The total number of balls in the pile will be
$N=p q+(p-1)(q-1)+(p-2)(q-2)+\ldots+(p-q+1)$.
To find the sum of this series, let us first suppose $p=q$, and the base therefore a square. We shall then have

$$
N^{\prime}=q^{2}+(q-1)^{2}+(q-\Omega)^{2}+\ldots+1
$$

which is the sum of the squares of the first q numbers.
Therefore, : \because : (4),

$$
\begin{equation*}
N^{\prime}=\frac{(q+1)(2 q+1)}{6} \tag{7}
\end{equation*}
$$

Next let us put r for the number by which p exceeds q in the general expression (6). This expression will then becone

$$
\begin{aligned}
N= & q(q+r)+(q-1)(q-1+r)+(q-2)(q-2+r)+\ldots \\
= & \left.q^{2}+(q-1)^{2}+(q-9)^{2}+\ldots\right) \\
& \quad+\left[q+(q-1)+\left(q-2^{2}+1\right)+\ldots+1\right] r \\
= & \frac{q(q+1)}{6} \frac{(2 q+1)}{6}+\frac{q(q+1)}{2} r \quad(\S 201,4 .) \\
= & \frac{q(q+1)(3 r+2 q+1)}{6} .
\end{aligned}
$$

EXERCISES.

I. Find the sum of the first 20 numbers, $1+2+3+\ldots$. +20 , then the sum of their squares, and the sum of their cubes, by successive substitutions in the general equation (2).
2. Express the sum and the sum of the squares of the first r odd numbers, namely,

$$
\begin{aligned}
& 1+3+5+\cdots+(2 r-1) \\
& 1^{2}+3^{2}+5^{2}+\cdots+(2 r-1)^{2}
\end{aligned}
$$

and
3. Express the sum of the first r even numbers and the sum of their squares, namely,
and

$$
\begin{aligned}
& 2+4+6+\ldots+2 r \\
& 2^{2}+4^{2}+6^{2}+\ldots+(2 r)^{2}
\end{aligned}
$$

. 1 balls the top, supposthe next Is in the
1). (6)
$p=q$,
cds q in become +.... $(1+\cdots)$ $\cdot+1] r$
4. A rectangular pile of balls is started with a base of p, balls on one side and η on the other. How many balls will there be in the pile after 3 courses have been laid? How many after s courses?
5. Find the value of the expression

$$
\underset{x=1}{x=5}\left(a+b x+c x^{2}\right) .
$$

6. Find the value of

$$
\underset{x=1}{x=b}\left(a+b x+c x^{2}\right) .
$$

294. To finct the sum of n terms of the series

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}
$$

Each term of this series may be divide in two parts, thus:

$$
\begin{gathered}
\frac{1}{1 \cdot 2}=\frac{1}{1}-\frac{1}{2}, \quad \frac{1}{2 \cdot 3}=\frac{1}{2}-\frac{1}{3} \\
\\
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+2}
\end{gathered}
$$

Therefore the sum of the series is

$$
\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right),
$$

in which the second part of every term except the last is cancelled by the first part of the term next following. Therefore the sum of the n terms is

$$
1-\frac{1}{n+1}=\frac{n}{n+1}
$$

If we suppose the number of terms n to increase without limit, the fraction $\frac{1}{n+1}$ will reduce to zero, and we shall have

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\text { etc., cul infinitum }=1 .
$$

This is the same as the sum of the geometrical progression, $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$
+ete., al infinitum. It will be interesting to compare the first few terms of the two series. They are

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{0}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42} \\
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64} .
\end{aligned}
$$

We see that the first term is the same in both, while the next three are latger in the geometrical progression. After the fourth term, the terms of the progression become the smailer, and continue so.
©95. (ieneralizulion of the Irecediny liesult. Let us take the series of which the $n^{\text {th }}$ term is

$$
\frac{p}{(i+n-1)(j+n-1)} .
$$

The series to n terms will then be

$$
\begin{aligned}
& \frac{p}{i j}+\frac{\sigma^{(i+1)}}{p} \overline{(j+1)}+\frac{p}{(i+2)} \frac{p}{(j+2)}+\ldots \\
&+\frac{p}{(i+n-1)(j+n-1)}
\end{aligned}
$$

If we suppose $j>i$, and put, for brevity,

$$
k=j-i
$$

the terms may be put into the form

$$
\begin{aligned}
& \frac{p}{i j}=\frac{p}{k}\left(\frac{1}{i}-\frac{1}{j}\right), \\
& \frac{p}{(i+1)(j+1)}=\frac{p}{k}\left(\frac{1}{i+1}-\frac{1}{j+1}\right), \\
& \text { etc. } \\
& \frac{p^{\prime}}{(i+n-1)(j+n+1)}=\frac{p}{k}\left(\frac{1}{i+n-1}-\frac{1}{j+n-1}\right) .
\end{aligned}
$$

When we add these quantities, the second part of each term, will be cancelled by the first part of the $h^{\text {th }}$ term next following, leaving only the first part of the first k terms and the second part of the last k terms. Hence the sum will be
$\underset{k}{p}\left(\frac{1}{i}+\frac{1}{i+1}+\cdots+\frac{1}{j+1}-\frac{1}{i+n}-\frac{1}{i+n-1} \cdots-\frac{1}{j+n-1}\right)$.

Example. To find the sum of n terms of the series

$$
\frac{1}{2 \cdot 5}+\frac{1}{3 \cdot 6}+\frac{1}{4 \cdot 7}+\frac{1}{5 \cdot 8}+\ldots+\frac{1}{(n+1)(n+4)}
$$

Each term may be expressed in the form

$$
\begin{aligned}
\frac{1}{2 \cdot 5} & =\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}\right) \\
\frac{1}{3 \cdot 6} & =\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}\right), \\
\frac{1}{4 \cdot 7} & =\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}\right), \\
\frac{1}{n(n+3)} & =\frac{1}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right), \\
\frac{1}{(n+1)(n+4)} & =\frac{1}{3}\left(\frac{1}{n+1}-\frac{1}{n+4}\right) .
\end{aligned}
$$

Therefore, separating the positive and negative terms, we find the sum of the series to be

$$
\begin{aligned}
& \frac{1}{3}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{n}+\frac{1}{n+1}\right. \\
& \left.\quad-\frac{1}{5}-\frac{1}{6}-\ldots-\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}-\frac{1}{n+3}-\frac{1}{n+4}\right)
\end{aligned}
$$

or, omitting the terms which cancel each other,

$$
\frac{1}{3}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{n+2}-\frac{1}{n+3}-\frac{1}{n+4}\right)
$$

When n is infinite, the sum becomes

$$
\frac{1}{3}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)=\frac{1}{3} \cdot \frac{13}{1:}=\frac{13}{36}
$$

EXERCISES.

What is the sum of n terms of the series:
I. $\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\frac{1}{5 \cdot 6}+$ etc.
2. $\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\frac{1}{7 \cdot 9}+\ldots+\frac{1}{(2 n+1)(9 n+3)}$.
3. $\frac{2}{2 \cdot 5}+\frac{2}{3 \cdot 6}+\frac{2}{4 \cdot 7}+\cdots+\frac{2}{(n+1)(n+4)}$.
4. $\frac{3}{1 \cdot 3}+\frac{3}{2 \cdot 4}+\frac{3}{3 \cdot 5}+\ldots+\frac{3}{n(n+2)}$.
5. Sum the series

$$
\frac{1}{a(a+1)}+\frac{1}{(n+1)(a+?)}+\frac{1}{(a+2)(a+3)}+\text { ete., al } i n f .
$$

:396. 'To sum the series

$$
s=1+2 r+3 r^{2}+4 r^{3}+\text { ctc }
$$

Let us first lind the sum of n terms, which we shall call S_{n}. Then

$$
S_{n}=1+2 r+3 r^{2}+4 r^{3}+\ldots n r^{n-1}
$$

Multiplying by r, we have

$$
\therefore S_{n}=r+2 r^{2}+3 r^{3}+4 r^{4}+\ldots+u r^{n}
$$

By subtraction,

$$
\begin{aligned}
(1-r) S_{n} & =1+r+r^{2}+r^{3} \ldots+r^{n-1}-u r^{n} \\
& =\frac{1-r^{n}}{1-r}-u r^{n}(\S 21 \approx, \text { Prob. V }) .
\end{aligned}
$$

Therefore, $\quad S_{n}=\frac{1-r^{n}}{(1-r)^{2}}-\frac{n r^{n}}{1-r}$.
Now suppose n to increase withont limit. If $r \equiv 1$, the sum of the series will evidently increase without limit.

If $r<1$, both r^{n} and $n r^{n}$ will converge toward zero as n increases (as we shall show hereafter), and we shatl have

$$
S=\frac{1}{(1-r)^{0}}
$$

EXERCISES.

Find in the above way the sum of the following series to n terms and to inftnity, suposing $r<1$:

1. $a+3 a r+5\left(r^{2}+\sigma\left(r^{3} \ldots+(2 n-1) a r^{n-1}\right.\right.$.
2. $\quad 2 a+4 a r+6 a r^{2}+8\left(\not r^{3} \ldots+9 n a r^{n-1}\right.$.
3. $\quad(a+b) r+(a+2 b) r^{2}+\ldots+(a+n b) r^{n}$.

29\%. Sum the scries

$$
\begin{equation*}
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\text { etc. } \tag{a}
\end{equation*}
$$

of which the general term is $\frac{1}{n(n+1)(n+2)}$.
Let us find whether we can express this series as the sum of two series. Assume

$$
\frac{1}{n(n+1)(n+2)}=\frac{A}{n(n+1)}+\frac{B}{(n+1)(n+2)},
$$

where, if possible, the values of the indeterminate cocflicients A and B are to be so chosen that this equation shall be true identic: lly.

Reducing the second member to a common denominator, we have

$$
\frac{1}{n(n+1)(n+2)}=\frac{(A+B) n+2.1}{n(n+1)(n+2)} .
$$

In order that these fractions may be identieally equal, we must have

$$
(A+B) n+2 A=1, \text { identically, }
$$

which requires that we have ($\$ 281$),

$$
A+B=0, \quad 2 A=1
$$

This gives

$$
A=\frac{1}{2}, \quad B=-\frac{1}{2} .
$$

Therefore,

- $\frac{1}{n(n+1)(n+2)}=\frac{1}{2} \frac{1}{n(n+1)}-\frac{1}{2} \frac{1}{(n+1)(n+2)}$,
so that each term of the series (a) may be divided into two terms. The whole series will then be
$\frac{1}{2}\left(\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\right.$ etc. $)-\frac{1}{2}\left(\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\right.$ etc. $)$.
We see on sight, that by cancelling equal terms, the sum of n terms is

$$
S_{n}=\frac{1}{4}-\frac{1}{2(n+1)(n+2)},
$$

and the sum to infinity is $\frac{1}{4}$.

350

 SERIESS.998. Consider the hamonic series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\text { etc. }
$$

of whieh the $n^{\text {th }}$ term is $\frac{1}{n}$. This series is divergent, because we may divide it into an mlimited number of parts, eath equal to or greater tham $\frac{1}{\sim}$. as follows:

$$
\begin{aligned}
1 \text { st term }=1, & >\underset{i}{1} ; \\
2 d \text { term } & =\frac{1}{2} ; \\
3 \text { at and fth terms } & >\frac{1}{2} ; \\
\text { etc. } & \text { ete. }
\end{aligned}
$$

In general, if we consider the n consecntive terms,

$$
\begin{equation*}
\frac{1}{n+1}+\frac{1}{n+i}+\cdots+\frac{1}{i n}, \tag{a}
\end{equation*}
$$

the smallest, will be $\frac{1}{2 n}$, and therefore their sum will be greater than $\frac{1}{? / 1} \times n$, that is, greater than $\frac{1}{9}$.

Nuw if in (a) we suppose n to take the suceessive valnes, $1, \therefore, 4, s, 16$, ete., we shall divide the series into an mbimited momber of parts of the form (a) , each greater than $\frac{1}{2}$. Therefore, the sum has no limit and so is diverenent.

Of Difierences.

899). When we have a series of quantities proceeting ancording to any law, we maty take the diflerence of every two consecutive quantidics, and thas form a series of differences. 'The terms of this seris are called First Differences.
'laking the difference of every two consecutive differences, we shall have amother series, the terms of which are called Second Differences.
'lhe process may be continued so long as there are any differences to write.

Example. In the second colmm of the following table are given the seven valnes of the expression

$$
4-10 x^{3}+30 x^{2}-40 x+25=\phi x
$$

for $r=0,1,:, 3,4,5,6$.
In the third cole \quad in Δ^{\prime} are given the differences, $6-5=-19, \quad 1-6=-5, \quad-14-1=-15, \quad$ ete.

In colmma Δ "are given the differences of these differences, namely.

```
\(-5-(-10)=+14, \quad-15-(-5)=-10\), ctc.
```


The proeess is continued to the fourth order of differences, Which ate all egnal, whence those of the fifth and lollowing orders are all zaro。

It will :e noted that the sign of each difference is baken so that it shall express ach quantity miness the quantity next preceding. We have therefore the following detinitions:
:300. Def". The First Difference of a fumction of any variable is the increment of the function cansed by an increment of unity in the variable.

The Second Difference is the difference between two eonsecutive first difforences.

In gembial, the $\pi^{\prime \prime \prime}$ Difference is thw difference between two consecutive $(n-1)^{x}$ differences.

To investigate the relation among the differences, let us represent the suceessive numbers in each column by the indices $1, \therefore, 3$, ete., and let us put $\Delta_{1}, \Delta_{2}, \Delta_{3}$, ete., for the values of ϕx. We shall then have the following scheme of differences, in which

$$
\begin{array}{cc}
\Delta_{0}^{\prime}=\Delta_{1}-\Delta_{0}, \quad \Delta_{1}^{\prime}=\Delta_{2}-\Delta_{1}, \quad \Delta_{2}^{\prime}=\Delta_{3}-\Delta_{2} \\
\Delta_{0}^{\prime \prime}=\Delta_{1}^{\prime}-\Delta_{0}^{\prime}, \quad \Delta_{1}^{\prime \prime}=\Delta_{2}^{\prime}-\Delta_{1}^{\prime}, \quad \Delta_{2}^{\prime \prime}=\Delta_{3}^{\prime}-\Delta_{2}^{\prime} \\
\Delta_{0}^{\prime \prime \prime}=\Delta_{1}^{\prime}-\Delta_{0}^{\prime \prime}, \quad \Delta_{1}^{\prime \prime \prime}=\Delta_{2}^{\prime \prime}-\Delta_{1}^{\prime \prime}, \quad \Delta_{2}^{\prime \prime \prime}=\Delta_{3}^{\prime \prime}-\Delta_{2}^{\prime \prime} \\
\text { cte. } & \text { ctc. }
\end{array}
$$

the $n^{\text {th }}$ order of differences being represented by the symbol Δ with n accents.

Δ_{0}	Δ_{0}^{\prime}			
Δ_{1}	$\Delta_{1}^{\prime \prime}$			
Δ_{2}	Δ_{0}^{\prime}	$\Delta_{0}^{\prime \prime \prime}$		
Δ_{3}	\vdots	$\Delta_{1}^{\prime \prime}$	$\Delta_{2}^{\prime \prime \prime}$	$\Delta_{0}^{\prime \prime \prime}$
\vdots	\vdots			
\vdots	Δ_{n-1}^{\prime}			
Δ_{n}				

Let us now consider the following problem:
To express Δ_{i} in terms of $\Delta_{0}, \Delta_{0}^{\prime}, \Delta_{0}^{\prime \prime}$, ete.
We have, by the mode of forming the differences,
$\Delta_{1}=\Delta_{0}+\Delta_{0}^{\prime}, \quad \Delta_{1}^{\prime}=\Delta_{0}^{\prime}+\Delta_{0}^{\prime \prime}, \quad \Delta_{1}^{\prime \prime}=\Delta_{0}^{\prime \prime}+\Delta_{0}^{\prime \prime \prime}$, ete.
$\Delta_{2}=\Delta_{1}+\Delta_{1}^{\prime}, \quad \Delta_{2}^{\prime}=\Delta_{1}^{\prime}+\Delta_{1}^{\prime \prime}, \quad \Delta_{2}^{\prime \prime}=\Delta_{1}^{\prime \prime}+\Delta^{\prime \prime \prime}$ ett.
If in this last system of equations. We substitute the values of $د_{1}, د_{1}^{\prime}$, ete., from the system (et), we have

$$
\begin{equation*}
د_{2}=\Delta_{0}+\therefore د_{0}^{\prime}+د_{0}^{\prime \prime} \quad \Delta_{2}^{\prime}=د_{0}^{\prime}+!د_{0}^{\prime \prime}+\Delta_{0}^{\prime \prime \prime} \text {, ele. } \tag{1}
\end{equation*}
$$

Agaill.

$$
\Delta_{3}=\Delta_{2}+\Delta_{2}^{\prime}, \quad \Delta_{3}^{\prime}=\Delta_{2}^{\prime}+\Delta_{2}^{\prime \prime}, \quad \Delta_{3}^{\prime \prime}=\Delta_{2}^{\prime \prime}+\Delta_{2}^{\prime \prime \prime}, \text { etc. }
$$

es, let us e indices alues of furences,

$\Delta_{2} ;$

$\Delta_{\mathrm{a}}^{\prime}$;
$\Delta_{2}^{\prime \prime} ;$
ymbol Δ
tc. (11)

```
tc.
```

te values
cte. (b) $د_{2}^{\prime \prime \prime}$, ete.

Substituting the values of $\Delta_{2}, \Delta_{2}^{\prime}$, etc., from (b), we have
or

$$
\begin{align*}
& \Delta_{3}=\Delta_{0}+2 \Delta_{0}^{\prime}+\Delta_{0}^{\prime \prime} \\
&+\Delta_{0}^{\prime}+2 \Delta_{0}^{\prime \prime}+\Delta_{0}^{\prime \prime \prime} \tag{c}\\
& \hline \Delta_{3}=\Delta_{0}+3 \Delta_{0}^{\prime}+3 \Delta_{0}^{\prime \prime}+\Delta_{0}^{\prime \prime \prime} \\
& \Delta_{3}^{\prime}=\Delta_{0}^{\prime}+2 \Delta_{0}^{\prime \prime}+\Delta_{0}^{\prime \prime \prime} \\
&+\Delta_{0}^{\prime \prime}+2 د_{0}^{\prime \prime \prime}+\Delta_{0}^{\prime v} \\
& \hline \Delta_{3}^{\prime}=\Delta_{0}^{\prime}+3 \Delta_{0}^{\prime \prime}+3 \Delta_{0}^{\prime \prime \prime}+\Delta_{0}^{\prime v}
\end{align*}
$$

Forming $\Delta_{4}=\Delta_{3}+\Delta_{3}^{\prime}$, ete., we see that the cocfficients of $\Delta_{0}, \Delta_{0}^{\prime}$, etc., which we add, are the same as the coefficients of the successive powers of x in rasing $1+x$ to the $n^{\text {th }}$ power by successive multiplication, as in $\$ 1 \% 1$. That is, to form Δ_{4}, Δ_{4}^{\prime}, ete., the coefficients to be added are

$$
\begin{array}{ccccc}
1 & 3 & 3 & 1 & \\
& 1 & 3 & 3 & 1 \\
\hline 1 & 4 & 6 & 4 & 1
\end{array}
$$

and these are to be added in the same way to form Δ_{5}, and so on indetinitely. Hence we conclude that if i be any index, the law will be the same as in the binomial theorem, namely,

$$
\left.\begin{array}{l}
\Delta_{i}=\Delta_{0}+i \Delta_{0}^{\prime}+\binom{i}{\vdots} \Delta_{0}^{\prime \prime}+\binom{i}{i} \Delta_{0}^{\prime \prime \prime}+\text { etc. } \\
\Delta_{i}^{\prime}=\Delta_{0}^{\prime}+i \Delta_{0}^{\prime \prime}+\binom{i}{i} \Delta_{0}^{\prime \prime \prime}+\binom{i}{3} \Delta_{0}^{l v}+\text { etc. } \tag{ll}
\end{array}\right\}
$$

'Lo shor rigoronsly that this result is true for all valnes of i, we have to prove that if true for any one value, it must be true for a relne one greater. Now we have, by detinition, whatever he i,

$$
\Delta_{i+1}=\Delta_{i}+\Delta_{i}^{\prime} \quad \quad \Delta_{i+1}^{\prime}=\Delta_{i}^{\prime}+\Delta_{i}^{\prime \prime}, \quad \text { etc. }
$$

IHenen, sabstituting the above value of $د_{i}$ and Δ_{i}^{\prime},

$$
\begin{align*}
\Delta_{i+1}=\Delta_{0}+(i+1) \Delta_{0}^{\prime}+ & {\left[\left(\begin{array}{c}
i \\
2 \\
2
\end{array}\right)+i\right] \Delta_{0}^{\prime \prime} } \\
& +\left[\binom{i}{\vdots}+\left(\begin{array}{l}
i \\
2 \\
2
\end{array}\right)\right] \Delta_{0}^{\prime \prime \prime}+\text { etc. } \tag{c}
\end{align*}
$$

We readily prove that

$$
\begin{aligned}
\binom{i}{i}+i & =\left(\frac{i+1}{2}\right), \\
\binom{i}{3}+\binom{i}{2} & =\left(\frac{i+1}{3}\right), \\
\text { etc. } & \text { etc. }
\end{aligned}
$$

Suhstituting these values in (ρ), the result is the same given be the e"pnation (d) when we put $i+1$ for i.

The firm (c) shows the formulat to be true for $i=3$.
Therefore it is true for $i=4$.
Therefure it is true for $i=\bar{j}$, ete., indefinitio.

EXAMPLES AND EXERCISES.

1. Having given $د_{0}=\%, J_{0}^{\prime}=5 . د_{0}^{\prime \prime}=:-$. and $\Delta^{\prime \prime \prime}, \Delta^{\prime v}$, ctc. $=0$, it is rempure! to find the values of $\Delta_{1}, \Delta_{2}, \Delta_{3}$. ete., indefinitely, both lyg direct computation and by the foranula (d).

We start the work thas:
The numbers in column $\Delta^{\prime \prime}$ are a! equal to - -2 , berause $\Delta^{\prime \prime \prime}=0$.

Farh number in colnun S^{\prime} after the firet is foumd by udding $\Delta^{\prime \prime}$ or -2 to tho one next abowe it.

Fach value or Δ_{l} is then obtained from the one next above it by udding the appropriate value of Δ_{i}^{\prime}.

This process of addition can be carriug to ang extront. Continning it to $i=10$, we shall find $\Delta_{10}=-i \operatorname{io}$

i	Δ_{i}	$د_{i}^{\prime}$	$L_{i}^{\prime \prime}$
0	γ		
1	+12	$+j$	-2
2	$+1 j$	+3	-2
3	etc.	+1	-2
4		-1	-2
		etc.	-2

Next, the general fommula (1) es. by putting $\Delta_{0}=\%$, $\Delta_{0}^{\prime}=5, \Delta_{0}^{\prime \prime}=-2$, and all followiner values $=0$,

$$
\Delta_{i}=r+5 i-: \frac{i(i-1)}{i}
$$

and the stndent is now to show that by putting $i=1, i=2$, enc... in this expuession, we whatu the same values of $د_{1}, \Delta_{2}$, $د_{3}, \ldots د_{10}$, that we gret by aldition in the above scheme.

It is moreover to he remarken that we can reduce the last equation to an entire function of i, thens:

$$
\Delta_{i}=7+6 i-i^{2} .
$$

\therefore Iitring given $\Delta_{0}=5, \Delta_{0}^{\prime}=-20, \quad \Delta_{0}^{\prime \prime}=-30$, $\dot{土}_{0}^{\prime \prime \prime}=+9$, it is required to find in the sume wy the values of Δ_{1} to Δ_{5}, and to 2 express Δ_{6} as an enture function of $i b y$ formula (11).
3. On March 1, 18si, at Greenwich noon, the Emis longitude was $341^{\circ} 5^{\prime} 10^{\prime \prime} .9$; on March o it was greater by $1^{\circ} 0^{\prime} 9^{\prime \prime} .6$, but this daily increase was diminishing by $\ddot{z}^{\prime \prime}$ eath day. It is remuired to compute the longitude for the first seven hays of the month, and to find an expression for its value on the $n^{\text {th }}$ day of March.
f. A fimily had a reservoir contaning, on the morning of May 5.495 gallons of water, to which the city andel recrularly ड) grallons per day. 'Ihe family used 3.5 gallons on May $\overline{\text { J }}$, anal is calluns more each subsegnent daty than it did on the day proveriner. Find a gencmal expression for the quantity of water on the "th day of May ; and by equating this expression to zero. find at what time the water will all be golle. Also explaian the two answers given ly the equation.

Theorems of Differences.

$: 301$. To investigate the genemal properties of differenees, We use a notation slightly different from that just employed.

If u be any function of x, which we maty call d.er, so that we put
then

$$
\begin{equation*}
\Delta u=\phi(x+1)-\phi \cdot x \tag{t}
\end{equation*}
$$

Here the symbol Δ does not represent a multiplier, hat merefly the words differenere of.

The exend difference of ot being the differ nee of the diffor woe may be represented hy $\Delta \Delta \mu$.

For hevevity. we put

$$
\Delta^{2} / \text { for } 1 J^{2}
$$

when the inder: is not an exponent, but a symbol indiating a ecerond differencer.
(onstaning the same notation, the $x^{\text {th }}$ difference will bo reprecuicl by $د^{\prime \prime}$.

EXAMPLE.

To find the successive differences of the function

$$
u=u x^{3}+u x^{2} .
$$

By the formula (a), we have

$$
\Delta u=u(x+1)^{3}+b(x+1)^{2}-u x^{3}-b x^{2} ;
$$

and, by developing,

$$
\Delta u=3 a x^{2}+(3 a+2 b) x+a+b .
$$

Taking the difference of this last eqnation,

$$
\begin{aligned}
\Delta^{2} u & =3 u(x+1)^{2}+(3 a+2 b)(x+1)+a+b \\
& =6 a x+6 a+2 b .
\end{aligned}
$$

Again taking the differenec, we have

$$
\Delta^{3} u=6 a(x+1)-6 a x=6 a .
$$

This expression not containing $x, \Delta^{4} u, \Delta^{5} u$, ctc., all vanish.

EXERCISES.

Compute the differenees of the functions:
I. $x^{3}+m x^{2}+n x+p$.
2. $2 x^{1}+3 x^{2}+5$.
3. $5 r^{3}+10 x^{2}+15$.
4. In the case of the last expression, prove the agreement of result by compuring the values if $\Delta u, \Delta^{2} u$, cte., for $x=0$, $x=1$, and $x=3$, and comparing them with those obtained by the method of 8 299. The latter are shown in the following table:

5. Do the same thing for exercise 2, and for the function tabulated in $\$ 299$.

30\%. It will be seen hy the preeding examples and exercises, that for each difference of an entire function of x which we form, the degree of the function is diminished by mity. This result is generalized in the following theorem:

The $n^{\text {th }}$ differences of the function x^{n} are constant ante equal to n !

Proof. If $u=x^{n}$, we have, by the definition of the symbol Δ,

$$
\begin{aligned}
\Delta u & =(x+1)^{n}-x^{n} \\
\text { or } \quad \Delta u & =n x^{n-1}+\binom{n}{2} \cdot x^{n-2}+\text { ete. }
\end{aligned}
$$

That is, in taking the difference, the highest porere of x is multiplicel by its esponent and the latter is diminished by unity.

Continuing the process, we shatl find the $n^{\text {(h }}$ difference to be

$$
n(n-1)(n-2) \ldots 1=n!
$$

Cor. If we have an entire fanction of x of the dearee n,

$$
a x^{n}+b x^{n-1}+c \cdot x^{n-2}+\text { etc. }
$$

the $(n-1)^{\text {at }}$ difference of $l x^{n-1}$, the $(n-2)^{2}$ difference of $c_{c^{n-3}}$, ete., will all be constant, and therefore the $u^{\text {th }}$, lifference of these terms will all vanish. Therefore, the $u^{\text {th }}$ difference of the entire function will be the same as the $n^{\text {th }}$ difference of a. x^{n}; that i , we have

$$
\Delta^{n}\left(a x^{n}+b x^{n-1}+\text { ctc. }\right)=a n!
$$

Hence, the $n^{\text {th }}$ Jifferenee of "e frustion of the $n^{\text {th }}$ are gice is constunt, and cipual to n ! mulliplical by the coetji-" cient of the highest power of the curiable.

CHAPTER IV.

the doctrine of limits.

:303. The doetrine of limits embraces a set of pinciples applicable to cases in which the nsual methods of calculation fail, in eonsequence of some of the ghantitics to be used vanishing our increasing withont limit.

We have already made extensive use of some of the principles of this doctrine, and thas lamiliarized the student with their application, but our farther adsance requires that they should be rigorously developed.

Axiom I. Any quantity, however small, may be multiplied so often as to exeed any other fised quantity, however great.

Ax. II. Conrersel!, any quantity, however great, may be divided into so many parts that cach part shall be less than any other fixed quantity, however small.
7) ff. An Independent Variable is a quantity to which we may assign any value we please, however small or great.
'Ineonem I. If a fraction herre all! finiti vumprator, amel an inclependent variable for its demomiuntor, we ma!! assign to theis acmominator a ralue so gireet that the idection shall be less than any ruantity, houceve smull, which we ma!! rassign.

Proof. Let a be the namerator of the fraction, x its denominator, and a any quantity, however small, which we may choose to atssign.

Let n be the number of times we must multiply a to make it greater tham a. (Axiom I.) We shall then have

$$
\begin{aligned}
& n<n c . \\
& a<\pi \\
& n
\end{aligned}
$$

Consequently,

Hence, by taking x greater than n, we shall have

$$
\frac{t}{x}<\pi .
$$

Examples. Let $a=10$. Then if we take for a in sucers$\operatorname{sion}, \frac{1}{100}, \frac{1}{10,000}, \frac{1}{1,000,000}$, ete., we have only to take $x>1,000, x>100,000, x>10,000,000$, cte., to make $\frac{10}{x}$ less than ce.

In the language of limits, the above theorem is expressed thus :

The limit of $\frac{\pi}{x}$. When x is indefinitely incrensel, is ~ero.
'Tasonem II. If a firaction harean! fillita mamarator.
 ma!! assigin to llis demomimalom ar value son small that
 which we ma!y nssign.

Pronf: Put as before $\frac{\pi}{x}$ for the fraction, and let at be any number however great, which we choose to assign.

Lat n be a mmber greater than A. Divide a into 1 parts, amblet a be one of these parts; them

$$
u=u c
$$

Conserfuently, $\quad \frac{\pi}{c}=n$.
Therefore, if we take for x a ghantity less than ee, we shall have
or

$$
\begin{aligned}
& { }_{x}^{\prime}>n>A \\
& { }_{x}^{\prime}>A
\end{aligned}
$$

Rem. If wo have two independent variables, x and y : We may make of any momber of times erreater than y.

Then we may make y any momber of times greater than this value of x.
'Then we may make x any number of times greater than this value of ! !

And we can thas continne, making cach variable ontstrip the other to any extent in a race toward intinity, withont either ever reaching the gral.
'Theonem III. If he be all!g fiverl quantity, Bomever gleat. amel. "e quantit!| whiele we ma!! mulie as smull "s we please, "re may muke the product kio less then an!" assigiuable quantity.
l'roof. If there is any smallest valate of kire, let it be s. Becense we may make a as small as we please, let us put

$$
a<\frac{s}{\dot{i}}
$$

Multiplying by k, we find
kive < s.

So that kice may be made less than s, and s camnot be the smallest value.

Def. The Limit of a variable quantity is a value which it can never reach, but to which it may approach so nearly that the difference shall be less than any assignable quantity.

Rem. In order that a variable I may have a limit, it must be a function of some other variable. and there mast be certain values of this other variable for which the value of I cammot be direetly computed.
EXAMPLES.

1. The value of the expression

$$
T=\frac{x^{3}-u^{3}}{x-\imath}
$$

can be computed directly for any pair of numerical values of x and a, exeept those values which are equal. If we suppose $x=n$, the expression becomes

Tenerever

 us smull 'hun clu" et it be s. put not be the aproach than anyit, it must he certain X^{\prime} cannot

$$
\frac{a^{3}-u^{3}}{a-a}=\frac{0}{0},
$$

which, considered by itself, has no meaning.
2. The sum of any finite number of terms of a geometrical progression may be computed by adding them. But if the mumber of terms is infinite, an infinite time would be required for the direct calculation, which is therefore impossible.
3. The area of a polygon of any number of sides, and having a given apothegm, may be computed. But if the mumber of sides becomes intinite, and the polygon is thus changed into a cirele, the direct computation is not practicable.

EXERCISE.

If we have the fraction, $X=\frac{7 x-8}{3 x-1}$, show that we may make x so great that X shall differ from $\frac{7}{3}$ by less than $\frac{1}{100}$, less than $\frac{1}{100,000}$, lesss than $\frac{1}{1,000,000}$, and so on indetinitely.

Notation of the Method of Limits.

304. Put X, the quantity of which the value is to be found;
x, the independent variable on which X depends, so that X is a function of x;
a, the particular value of x for which we cannot compute X;
L, the limit of X, or the value to which it approaches as x approaches to a.
Then the limit L must be a fuantity fulfilling these two conditions:

1st. Supposing x to approach as near as we please to a, we must always be able to find a value of x so near to a that the difference $L-I^{\prime}$ shall become less than any assignable quantity.

2d. X must not become absolutely equal to L, however near x may be to a.

$$
\rightarrow
$$

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

Rem. The quantity a, toward which x approaches, may be either zero, infinity. or some finite quantity.

Example 1. Suppose

$$
X=\frac{x^{3}-u^{3}}{x-\iota}
$$

By $\S 93$, this expression is equal to

$$
\begin{equation*}
x^{2}+a x+a^{2} \tag{a}
\end{equation*}
$$

except when $x=a$. But suppose δ to be the difference between x and a, so that

$$
x=a+\delta
$$

Substituting this value in the expression (a), the equation becomes

$$
\frac{x^{3}-a^{3}}{x-a}=3 a^{2}+3 a \delta+\delta^{2}
$$

Now we may suppose δ so small that $3 a \delta+\delta^{2}$ shall be less than any quantity we choose to assign. Hence we may choose a value of x so near to a that the value of $\frac{x^{3}-a^{3}}{x-a}$ shall differ from $3 a^{2}$ by less than any assignable quantity. Hence, if
then

$$
\begin{aligned}
X & =\frac{x^{3}-a^{3}}{x-a} \\
L & =3 a^{2}
\end{aligned}
$$

or $3 a^{2}$ is the limit of the expression $\frac{a^{3}-a^{3}}{x-\iota}$ as x approaches a.
Ex. 2. The limit of $\frac{x}{x+1}$, when x becomes indafinitely great, is unity.

For, subtracting this expression from unity, we find the difference to be

$$
\frac{1}{x+1}
$$

By taking x sufficiently great, we may make this expression less than any assignable quantity. (§ 303, Th. I.) Therefore, $\frac{x}{x+1}$ approaches to unity as x increases, whence unity is its limit.

Notation. The statement that L is the limit of X as x approaches a is expressed in the form

$$
\operatorname{Lim} . X_{(x=a)}=L
$$

The conclusions of the last two examples may be expressed thas:

$$
\text { Lim. } \frac{x^{3}-\iota^{3}}{x-\iota^{\prime}}(x=a)=3 a^{2} . \quad \text { Lim. } \frac{x}{x+1}(x=x)=1 .
$$

Rem. This form of notation is often used for the following purpose. Having a function of x which we may call X, the form $Y_{(x=a)}$ means, " the value of Y when $x=u$."

EXAMPLES.

$$
\begin{gathered}
\left(x^{2}+a\right)_{(x=a)}=u^{2}+a . \quad\left(x^{2}-a^{2}\right)_{(x=a)}=0 . \\
\left(u^{2}+2 u b\right)_{(u=-b)}=-b^{2}
\end{gathered}
$$

If we require the limit of a fraction when both terms become zero or infinite, divide both terms by some common factor which becomes zero or infinity.

Rem. If the beginner has any difficulty in understanding the preceding exposition, it will be sufficient for him to think of the limit as simply the value of the expression when the quartity on which it 4 pends becomes zero or infinity.

For instance, $\quad \operatorname{Lim} \cdot \frac{x}{x+1} \quad(x=\infty)$,
the value of which we have found to be unity, may be regarded as simply the value of the expression,

$$
\frac{\infty}{\infty+1} .
$$

Although this way of thinking is convenient, and generally leads to correct results, it is not mathematically rigorons, becanse neither zero nor infinity are, properly speaking, mathematical quantities, and people are often led into paradoses by treating them as such.

Find the limit of

EXERCises.

r. $\frac{x-a}{x}$ when x approaches infinity. Divide both terms by x.
2. $\frac{a x+b}{b x+a}$ when x approaches infinity.
3. $\frac{m x^{2}}{p x^{2}-a x}$ when x approaches infinity.
4. $\frac{1-x}{1-a x}$ when x approaches infinity.
5. $\frac{x^{2}-a^{2}}{x-a}$ when x approaches a.
6. $\frac{a+x}{a-x}$ when x approaches infinity.

Properties of Limits.

305. Theonem I. If two functions are equal, they must have the same limit.

Proof. If possible, let L and L^{\prime} be two different limits for the respective functions. Put

$$
z=\frac{1}{2}\left(L-L^{\prime}\right)
$$

so that L and L^{\prime} differ by $2 z$.
Becanse L is the limit of the one function, the latter may approach this limit so nearly as to differ from it by less than z.

In the same way, the other function may differ from L^{\prime} by less than z. Then, becanse L and L^{\prime} differ by $2 z$, the functions would differ, which is contrary to the hypothesis.

Theorem II. The limit of the sum of several functions is equal to the sum of their separate limits.
$P ; o o f$. Let the functions be $X, X^{\prime}, X^{\prime \prime}$, etc.
Let their limits be $L, L^{\prime}, L^{\prime \prime}$, etc.
Let their differences from their limits be $c c, c^{\prime}$, $c^{\prime \prime}$, etc.
Then

$$
\begin{aligned}
X & =L-c \\
X^{\prime} & =L^{\prime}-\boldsymbol{a}^{\prime} \\
X^{\prime \prime} & =L^{\prime \prime}-\boldsymbol{c}^{\prime \prime} \\
\text { etc. } & \text { etc. }
\end{aligned}
$$

Adding, we have
$X+X^{\prime}+X^{\prime \prime}+$ etc. $=L+L^{\prime}+L^{\prime \prime}+$ etc. $-\left(a+\iota^{\prime}+\iota^{\prime \prime}+\right.$ etc. $)$
The theorem asserts that we may take the functions so near their limits that the sums of the differences $a+a^{\prime}+\epsilon^{\prime \prime}+$ ete. shall be less than any quantity we can assign.

Let k be this quantity, which may be ever so small ; n, the number of the quantities $c, c^{\prime}, c^{\prime \prime}$, ete. ; $«$, the largest of them.
Because we can bring the functions as near their limits as we please, we may bring them so near as to make

$$
a<\frac{k}{n}, \quad \text { or } \quad n a<k
$$

Thinn $a+a^{\prime}+a^{\prime \prime}+$ ctc. $<u a$ (berause \boldsymbol{a} is the largest) ; whence,

$$
\cdots+\iota^{\prime}+\varepsilon^{\prime \prime}+\text { ctc. }<k .
$$

Thercfore the sum $X+X^{\prime}+X^{\prime \prime \prime}+$ ctc. will approach to the sum $L+L^{\prime}+L^{\prime \prime}+$ etc., so as to differ from it by less than k. Because this quantity k may be as small as we please, $L+L^{\prime}+L^{\prime \prime}+$ etc. is the limit of $X+X^{\prime}+X^{\prime \prime}+$ etc.

Theorem III. The 7imit of the product of tuo functions is equal to the product of their limits.

Proof. Adopting the same notation as in Th. II, we shall have

$$
X X^{\prime}=L L^{\prime}-\kappa L^{\prime}-\epsilon^{\prime} L^{\prime}+\cdots \epsilon^{\prime} .
$$

Because L and L^{\prime} are finite quantities, we may take ce and ι^{\prime} so small that $\boldsymbol{\iota} L^{\prime}+\iota^{\prime} L$ - $u c^{\prime}$ shall be less thay any quantity we can assign. Hence $X X^{\prime}$ may approach as near as we please to $L L$ ', whence th 'ntter is its limit.

Cor. 1. The limit of the product of any mumber of functions is equal to the product of their limits.

Cor. 2. The limit of any power of a function is equal to the power of its limit.

Theorem IV. The limit of the quotient of tuo funetions is equal to the quotient of their limits.

Proof. Using the same notation as before, we have for the quotient of the functions,

$$
\frac{X^{\prime}}{X^{-}}=\frac{L^{\prime}-\varkappa}{L-\varkappa}
$$

while the quotient of their limits is $\frac{L^{\prime}}{L}$.

The difference between the two quotients is

$$
\frac{L^{\prime}}{L}-\frac{L^{\prime}-\iota^{\prime}}{L-\varkappa}=\frac{L \varkappa^{\prime}-L^{\prime} \varkappa}{L(L-\varkappa)}
$$

If L is different from zero, we may make the quantities a and e' so small that this expression shall be less than any quantity we choose to assign. Therefore, $\frac{L^{\prime}}{L}$ is the limit of $\frac{L^{\prime}-\epsilon^{\prime}}{L-\varkappa}$, that is, of $\frac{X^{\prime}}{X}$.
306. Problem. To find the limit of $\frac{x^{n}-a^{n}}{x-a}$ as x approaches a.

Case I. When n is a positive whole number.
We have from $\S 93$, when x is different from a,

$$
\frac{x^{n}-a^{n}}{x-a}=x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\ldots+a^{n-1}
$$

Now suppose x to approach the limit a. Then x^{n-1} will approach the limit a^{n-1}, x^{n-2} the limit a^{n-2}, etc. Multiplying by a, a^{2}, etc., we see that each term of the second member approaches the limit a^{n-1}. Because there are n such terms, we have

$$
\operatorname{Lim} . \frac{x^{n}-a^{n}}{x-a}(x=a)=n a^{n-1}
$$

Case II. When n is a positive fraction.
Suppose $n=\frac{p}{q}, p$ and q being whole numbers. Then

$$
\frac{x^{n}-a^{n}}{x-a}=\frac{\frac{p}{x^{q}}-a^{\frac{p}{q}}}{x-a}
$$

Let us put, for convenience in writing,
then

$$
\begin{aligned}
x^{\frac{1}{q}} & =y, \quad-\quad a^{\frac{1}{q}} \\
x & =b \\
x & =y^{q},
\end{aligned} \quad a=b^{q} ;
$$

and

$$
\frac{x^{n}-a^{n}}{x-a}=\frac{y^{p}-b^{p}}{y^{q}-b^{q}}=\frac{\frac{y^{p}-b^{p}}{y-b}}{\frac{y^{q}-b^{q}}{y-b}}
$$

As x approaches indefinitely near to a, and consequently y to b, the numerator of this fraction (Case I) approaches to $p b p^{-1}$ as its limit and the denominator to $q b q^{-1}$. Hence, the fraction itself approaches to

$$
\frac{p b^{p-1}}{q b^{q-1}}=\frac{p}{q} b^{p-q}
$$

Substituting for b its value $a^{\frac{1}{4}}$, we have

$$
\operatorname{Lim.} \begin{aligned}
\frac{x^{n}-a^{n}}{x-a}(x=a) & =\frac{p}{q} b^{p-q}=\frac{p}{q} a^{p-q}=\frac{p}{q} a^{p} a^{p-1} \\
& =n a^{n-1} .
\end{aligned}
$$

Hence the same formnlæ holds when n is a positive fraction.
Case III. Whien n is negative.
Suppese $n=-p, p$ itself (without the minus sigu) being supposed positive. Then

$$
\begin{aligned}
\frac{x^{n}-a^{n}}{x-a}=\frac{x^{-p}-a^{-p}}{x-a} & =x^{-p} a^{-p}\left(\frac{a^{p}-x^{p}}{x-a}\right) \\
\cdot & =-x^{-p} a^{-p} \frac{x^{p}-a^{p}}{x-a}
\end{aligned}
$$

When x approaches a, then x^{-p} approaches a^{-p}, and $\frac{x^{p}-a^{p}}{x-a}$ approaches papap ${ }^{p-1}$. Substituting these limiting values, we have

$$
\operatorname{Lim} . \frac{x^{n}-a^{n}}{x-a}(x=n)=-a^{-2 p} p a^{p-1}=-p a^{-p-1}
$$

Substituting for $-p$ its value n, we have

$$
\operatorname{Lim} . \frac{x^{n}-a^{n}}{x-a}(x=a)=n a^{n-1}
$$

Hence,
Theorem. The formula

$$
\operatorname{Lim} . \frac{x^{n}-a^{n}}{x-\frac{1}{i}}(x=a)=n a^{n-1}
$$

is true for all values of n, whether entire or fractional, positive or negative.

CHAPTER V.
 THE BINOMIAL AND EXPONENTIAL THEOREMS.

The Binomial Theorem for all Values of the Exponent.

30\%. We have shown in $\$ \S 1 \% 1,264$, how to develop $(1+x)^{n}$ when n is a positive whole number. We have now to find the development when n is negative or fractional. Assume

$$
\begin{equation*}
(1+x)^{n}=B_{0}+B_{1} x+B_{2} x^{2}+B_{3} x^{3}+\text { etc. } \tag{a}
\end{equation*}
$$

B_{0}, B_{1}, etc., being indeterminate coefficients. Because this equation is by hypothesis truc for all values of x, it will remain true when we put another quantity a in place of x. Heace,

$$
\begin{equation*}
(1+a)^{n}=B_{0}+B_{1} a+B_{2} a^{2}+B_{3} a^{3}+\text { ctc. } \tag{b}
\end{equation*}
$$

Subtracting (b) from (1), and putting for convenience

$$
X=1+x, \quad A=1+a
$$

the difference of the two equations (a) and (b) will be
$X^{n}-A^{n}=B_{1}(x-a)+B_{2}\left(x^{2}-a^{2}\right)+B_{3}\left(x^{3}-a^{3}\right)+$ etc.
The ralues we have assumed for X and A give

$$
X-A=x-a
$$

Dividing the left-hand member by $X-A$, and the righthand member by the equal quantity $x-a$, we have

$$
\frac{X^{n}-A^{n}}{X-A}=B_{1}+B_{2} \frac{x^{2}-a^{2}}{x-a}+B_{3} \frac{x^{3}-a^{3}}{x-a}+\text { etc. }
$$

Now suppose x to approach a. The limit of the left-hand member will be $n A^{n-1}$. Taking the sum of the corresponding limits of the right-hand member, we shall have

$$
n A^{n-1}=B_{1}+2 B_{2} a+3 B_{3} a^{2}+4 B_{4} a^{3}+\text { etc. }
$$

Replace A by its value, $1+a$, and multiply by $1+a$. We then have

$$
\begin{aligned}
n(1+a)^{n}= & B_{1}(1+a)+2 B_{2} a(1+ \\
& +4)+3 B_{3} a^{2}(1+a) \\
= & B_{1}+\left(B_{1}+2 B_{2}\right) a+(1+a)+\text { etc. } \\
& +\left(3 B_{2}+3 B_{3}\right) u^{2} \\
& \left.+4 B_{4}\right) a^{3}+\text { etc. }
\end{aligned}
$$

Multiplying the equation (b) by n, we have

$$
n(1+a)^{n}=n B_{0}+n B_{1} a+n B_{2} a^{2}+n B_{3} l^{3}
$$

Equating the coefficients of the like powers of a in these equations (§ 281), we have, first,

$$
B_{1}=n B_{0} .
$$

By putting $a=0$ in equation (b), we find $B_{0}=1$, whence

$$
B_{1}=n=\binom{n}{1}
$$

Then we find successively, $2 B_{2}=\left(n-1 ; B_{1}\right.$, whence $B_{2}=\frac{n-1}{2} B_{1}=\frac{n(n-1)}{1 \cdot \approx}$. $3 B_{3}=(n-2) B_{\mathbf{2}}, \quad \therefore \quad B_{3}=\frac{n-2}{3} D_{\mathbf{2}}=\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}$.

Substituting these values of B_{0}, B_{1}, B_{2}, ete., in the equiltion (a) and using the abbreviated notation, we obtain the equation

$$
\begin{equation*}
(1+x)^{n}=1+n x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\text { etc. }, \tag{c}
\end{equation*}
$$

which equation is true for ail values of n.
308. There is an important relation between the form of this development when n is a positive integer, as in $\$ S 171$ and 26:5 and when it is negative or fractional. In the former case, when we form the successive factors $n-1, n-2$, $n-3$, etc., the $n^{t h}$ factor will vamish, and therefore all the cocflicients after that of x^{n} will ranish.

But if n is negative or fractional, none of the factors $n-1, n-2$, ete., can become zero, and, in consequence, the series will go on to infinity. It therefore becomes necessary, in this case, to investigate the convergence of the development.

If $x>1$, the successive powers of x will go on increasing indefinitely, while the coefficients $\binom{n}{1},\binom{n}{2}$, etc., will not go
on diminishing indelnitely in the same ratio. For, let us consider two snceessive terms of the development, the in and the $(i+1)^{s t}$, namely,

$$
\binom{n}{i} x^{i} \quad \text { and } \quad\left(\frac{n}{i+1}\right) x^{i+1} .
$$

The quotient of the second by the first is

$$
\binom{n}{i+1} x \div\binom{ n}{i}=\frac{n-i}{i+1} x
$$

As i increases indefinitely, this coeflicient of x will approach the limit -1 ($\$ 304$), while x is by hypothesis as great as 1. Therefore, by contimuing the series, a point will be reached from which the terms will no longer diminish. Therefore,

The acrelopment of $(1+x)^{n}$ in poucrs of x is not convergent unless $x<1$.

In consequence, if we develop $(a+b)^{n}$ when n is negative or fractional, we must do so in ascending powers of the lesser of the two quantities, a or b.

> EXAMPLES.

1. Develop $(1+x)^{\frac{2}{3}}$, or the square root of $1+x$.

Putting $n=\frac{1}{2}$, we have

$$
\begin{aligned}
& \binom{n}{1}=\frac{1}{2} \\
& \binom{n}{2}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{1 \cdot 2}=-\frac{1 \cdot 1}{2 \cdot 4} \\
& \binom{n}{3}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{1 \cdot 2 \cdot 3}=\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} \\
& \binom{n}{\frac{n}{2}}=\frac{\frac{1}{2}-3}{4}-\binom{n}{3}=-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot \frac{8}{2}} \\
& \text { ctc. } \quad \text { ctc. }
\end{aligned}
$$

; let ns ith and
when

$$
3^{2}+1=3^{2}\left(1+\frac{1}{9}\right)
$$ much smaller than $\frac{1}{2} x$ itself, and the first two terms of the series will give a result very near the truth. We therefore conclude:

The square root of 1 plus a small fraction is approvimately equal to 1 plus half that froction.
2. To develop $\sqrt{\prime} 10$.

We see at once that $\sqrt{ } 10$ is between 3 and 4 . We put 10 in the form

$$
\sqrt{ } 10=3\left(1+\frac{1}{9}\right)^{\frac{1}{3}}
$$

Then, by the development just performed,

$$
\left(1+\frac{1}{9}\right)^{\frac{\pi}{2}}=1+\frac{1}{2 \cdot 9}-\frac{1}{8 \cdot 9^{2}}+\frac{1}{16 \cdot 9^{3}}-\frac{5}{128 \cdot 9^{4}}+\text { etc. }
$$

We now sum the terms:

$$
\text { 1st term, } 1.0000000
$$

$$
2 d \quad "=1 \text { st } \div 18, \ldots \ldots+.0559559
$$

$$
3 d \quad=\quad 2 d \div-36, \ldots-.0015432
$$

$$
4 \text { th } "=3 \mathrm{~d} \div-18, \ldots+.000085 \%
$$

$$
5 \text { th } "=4 \text { th } \times-5 \div \%,-.0000060
$$

$$
6 \text { th } \because=\text { डth } \times-7 \div 90, \quad+.0000005
$$

$$
\operatorname{Sum}=\left(1+\frac{1}{9}\right)^{\frac{1}{2}}=\overline{1.0540926}
$$

Whence,

$$
\sqrt{ } 10=3 \times \mathrm{sum}=3.16227 \% 8
$$

which may be in error by a few units in the last place, owing to the omission of the decimals past the seventh.
3. To develop $\sqrt{ } 8$.

We see that 3 is the nearest whole number of the root. So we put

$$
\sqrt{ } 8=\sqrt{ }\left(3^{2}-1\right)=\sqrt{3^{3}\left(1-\frac{1}{9}\right)}=3\left(1-\frac{1}{9}\right)^{\frac{1}{2}}
$$

from which the development may be effected as before.
EXERC1SES.

1. Compute the square root of S to 6 decimals, and from it find the square root of $: 2$ by $\S 183$.
2. Develop $(1-x)^{\frac{1}{2}}$.
3. Develop $(1--x)^{-\frac{1}{2}}$, and express the term in x^{d}.

$$
\begin{array}{ll}
\text { Ans. } & 1+\frac{1}{2} x+\frac{1 \cdot 3}{2 \cdot 4} x^{2}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{3}+\text { etc. } \\
& \text { Torm in } x^{i}=\frac{1 \cdot 3 \cdot 5 \ldots 2 i-1}{2 \cdot 4 \cdot 6 \ldots 2 i} x^{i} .
\end{array}
$$

4. Develop $\frac{1}{(1+x)^{\frac{1}{2}}}$ and express the general term.
5. Develop $\left(1+\frac{1}{x}\right)^{m}$ and express the general term.
6. Develop $(1-x)^{\frac{1}{m}}$, and express the general term.
7. Develop the $m^{\text {th }}$ root of $1+m$.
8. Develop $(a-b)^{-3}$, when $a<b$.
9. Develop $(1-x)^{-m}$, when $x>1$.

Because the development will not be convergent in ascending powers of x when $x>1$, we transform thus:

$$
1-x=-x\left(1-\frac{1}{x}\right)
$$

and so put $\quad(1-x)^{-m}=(-x)^{-m}\left(1-\frac{1}{x}\right)^{-m}$.
10. Develop the $m^{\text {th }}$ power of $1+\frac{1}{m}$.

Ir. Compute the cube root of 1610 to six decimals.
12. Develop $(\sqrt{ } a+\sqrt{ } b)^{n}$.
12. Using the functional notation,

$$
\phi(m)=1+\left(\frac{m}{1}\right) x+\left(\frac{m}{2}\right) x^{2}+\binom{m}{3} x^{3}+\text { etc. }
$$

multiply the two series, $\phi(m)$ and $\phi(n)$, and show by the formuluo of $\$ 201$ that the product is equal to $\phi(m+n)$.

The Exponential Theorem.

30)9. Let it be required, if possible, to develop ax in powers of x, a being any quantity whatever. Assume

$$
\begin{equation*}
\epsilon^{x}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\text { etc. } \tag{1}
\end{equation*}
$$

to be true for all values of x. Putting any other quantity y in pace of x, we shall have

$$
a^{y}=C_{0}+C_{1} y+C_{2} y^{2}+C_{3} y^{3}+\text { etc. }
$$

By the law of exponents we must always have

$$
u^{x} \times a^{y}=a^{c+y}
$$

Now the value of a^{x+y} is found by writing $x+y$ for x in (1), which gives

$$
\begin{equation*}
a^{x+y}=C_{0}+C_{1}(x+y)+C_{2}(x+y)^{2}+C_{3}(x+y)^{3}+\text { ctc. } \tag{3}
\end{equation*}
$$

On the other hand, by multiplying equations (1) and (2), we find

$$
\begin{align*}
& \iota^{x} \iota^{y}=C_{0}^{2}+C_{0} C_{1} y+C_{0} C_{2} y^{2}+C_{0} C_{3} y^{3}+\text { etc. } \\
& +C_{0} C_{1} x+C_{1}^{2} x y+C_{1} C_{2} x y^{2}+\text { etc. } \tag{4}\\
& +C_{0} C_{2} x^{2}+C_{1} C_{2} x^{2} y+\text { etc. } \\
& +C_{0} C_{3} x^{3}+\text { etc. }
\end{align*}
$$

By $\S 285$, the coefficients of ail the products of like powers of x and y must be equal. By equating them, we shall have more equations than there are quantities to be determined, and, muless these equations are all consistent, the development is impossible. To facilitate the process of comparison, we have in equation (4) arranged all terms which are homogencous in x and y under each other.

By putting $x=0$ in (1), we find

$$
a^{0}=C_{0}, \quad \text { whence } \quad C_{0}=1 . \quad(\S 103 .)
$$

Comparing the terms of the first degree in x and y in (3) and (4), we find

$$
\begin{array}{rlrl}
\text { Coefficient of } x, & & C_{1}=C_{0} C_{1} ; \\
" \quad & " y, & & C_{1}=C_{0} C_{1} .
\end{array}
$$

These two equations are the same, and agree with $C_{0}=1$; but neither of them gives a value for C_{1}, which must therefore remain undetermined.

Comparing the terms of the second degree, we find, by developing $(x+y)^{2}$,

$$
C_{2}\left(x^{2}+2 x y+y^{2}\right)=C_{2} x^{2}+C_{1}^{2} x y+C_{2} y^{2},
$$

which gives

$$
2 C_{2}^{\prime}=C_{1}^{2}
$$

whence

$$
C_{2}=\frac{1}{1 \cdot 2} C_{1}^{2} .
$$

Comparing the terms of the third order in the same way, we have

$$
\begin{aligned}
& C_{3}\left(x^{3}+3 x^{2} y+3 x y^{2}+y^{3}\right)=C_{3} x^{3}+C_{1} C_{2} x^{2} y+C_{1} C_{2} x y^{2}+C_{3} y^{3}, \\
& \text { which gives } \\
& 3 C_{3}=C_{1} C_{2}=\frac{1}{2} C_{1}{ }^{3} ; \\
& C_{3}=\frac{1}{1 \cdot 2 \cdot 3} C_{1}{ }^{3} .
\end{aligned}
$$

If the successive ralues of C follow the same law, we shall have
and in general,

$$
\begin{align*}
& C_{4}=\frac{1}{4!} C_{1}{ }^{4} ; \\
& C_{n}=\frac{1}{n!} C_{1}{ }^{n} . \tag{5}
\end{align*}
$$

Let us now investigate whether these values of C render the equations (3) and (4) ideutieally equal.

Let us consider the corresponding terms of the $n^{\text {th }}$ degree, n being any positive integer. In (3) this term will be

$$
C_{n}(x+y)^{n} .
$$

Expanding, it will be

$$
\begin{equation*}
C_{n}\left[x^{n}+n x^{n-1} y+\left(\frac{n}{2}\right) x^{n-2} y^{2}+\binom{n}{3} x^{n-3} y^{3}+\text { ctc. }\right] \tag{f}
\end{equation*}
$$

In (4) the sum of the corresponding terms will be, putting $C_{0}=1$,
$C_{n} x^{n}+C_{1} C_{n-1} x^{n-1} y+C_{2} C_{n-2} x^{n-2} y^{2}+C_{3} C_{n-3}^{\prime} x^{n-3} y^{3}+$ ete
The first terms in the two expressions are ideutical.
The comparison of the second terms gives

$$
n C_{n}=C_{1} C_{n-1}, \quad \text { whence } \quad C_{n}=\frac{C_{1}}{n} C_{n-1}
$$

This corresponds with (5), because (5) gives

$$
C_{n-1}=\frac{1}{(n-1)!} C_{1}^{n-1}
$$

and if we substitute this value of C_{n-1} in the preceding expression for C_{n}, it will become

$$
C_{n}=\frac{C_{1}^{n}}{n(n-1)!}=\frac{C_{1}^{n}}{n!}
$$

which agrees with (5).
The third terms of (6) and (8) being equated give

$$
\binom{n}{\frac{2}{2}} C_{n}=C_{2} C_{n-2}
$$

Substituting the valnes of C_{n}, C_{2}, and C_{n-2} assumed in the general form (5), we have

$$
\binom{n}{2} \frac{1}{n!} c_{1}^{n}=\frac{1}{2!} \cdot \frac{1}{(n-n)!} C_{1}^{n}
$$

and we wish to know if this erpuation is true.
Multiplying both sides by n ! and dropping the common factor C_{1}^{n}, it becomes

$$
\binom{n}{2}=\frac{n!}{2!(n-2)!}
$$

which is an identical equation.
In the same way, the comparison of the following terms in (6) and (7) give

$$
\left(\frac{n}{3}\right)=\frac{n!}{3!(n-3)!}, \quad\left(\frac{n}{4}\right)=\frac{n!}{4!(n-4)!}, \quad \text { etc. }
$$

all of which are identical equations. Hence the conditions of the development, namely, that (6) and (\%), and therefore (3) and (4), shall be identically equal, are all satisfied by the values of the coefficients C^{\prime} in (5). Substituting those values in (1), the development becomes

$$
\begin{equation*}
u^{x}=1+C_{1} x+\frac{1}{1 \cdot 2} C_{1}^{2} x^{2}+\frac{1}{1 \cdot 2 \cdot 3} C_{1}^{3 \cdot x^{3}}+\text { cte. } \tag{8}
\end{equation*}
$$

This development is called the Exponential Theorem, as the development of $(a+l)^{n}$ is called the binomial theorem.
310. The value of $C_{\mathbf{1}}$ is still to be determined. To do this, assign to x the particular value $\frac{1}{C_{1}}$. Then the equation (8) becomes

$$
\begin{equation*}
a^{\frac{1}{C_{1}}}=1+1+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\text { ctc., ad inf. } \tag{9}
\end{equation*}
$$

The second member of this equation is a pure number, without any algebraic symbol. We can readily compute its approximate value, since dividing the third term by 3 gives the fourth term, dividing this by 4 gives the fifth, ete. Then

$1+1=$	2.000000
$1 \div 1 \cdot 2=$.500000
$1 \div 1 \cdot 2 \cdot 3=$.166667
$1 \div 1 \cdot 2 \cdot 3 \cdot 4=$	$.04166 \%$
$1 \div 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=$.008333
$1 \div 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=$.001389
$1 \div 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \%=$.000198
$1 \div 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \% \cdot 8=$.000025
$1 \div 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \% \cdot 8 \cdot 9=$.000003
Sum of the series to 6 decimals,	2.718282

This constant number is extensively used in the higher mathematics and is called the Naperian base.* It is represented for shortness by the symbol e, so that $e=2.71828 \% . .$.

The last equation is 'lherefore written in the form

$$
a^{\frac{1}{c_{1}}}=e
$$

[^6]ditions of efore (3) he values es in (1),
heorem, theorem.

1. To do equation
$i n f$.
a number, mpute its y 3 gives . Then

Raising to the $C_{1}{ }^{\text {th }}$ power, we have $a=e^{C_{1}}$. Hence:
The quantity C_{1} is the exponent of the power to which we must raise the constant e to produce the number a.

We may assign one value to a, namely, e itself, which will lead to an interesting result. Putting $a=e$, we have $C_{1}=1$, and the exponential series gives

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{1 \cdot 2}+\frac{x^{3}}{1 \cdot x \cdot 3}+\frac{x^{4}}{1 \cdot 2 \cdot 3 \cdot 4}+\text { etc. } \tag{10}
\end{equation*}
$$

If we put $x=1$, we have the series for e itself, and if we put $x=-1$, we have

$$
e^{-1}=\frac{1}{e}=1-1+\frac{1}{1 \cdot 2}-\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}-\text { etc. }
$$

We thus have the curions result that this series and (9) are the reciprocals of each other.

EXERCISES.

I. Substitute in the first four or five terms of the expressions (6) and (7) the values of C_{2}, C_{3}, C_{n-2}, etc., given by (5), and show that (6) and (8) are thus rendered identically equal.

Note. This is merely a slight modification of the process we have actually followed in comparing the coefficients of like powers of x and y in (6) and (7).
2. Compute arithmetically the values of $2.4183^{2}, 2.7183^{-1}$, and 2.7183^{-2}, and show that they are the same numbers, to three places of decimals, that we obtain by putting $x=2$, $x=-1$, and $x=-2$ in (10), and computing the first cight or ten terms of the series.
3. Since $e^{1+x}=e e^{x}$, the equation (10) gives, by substituting the developments of e^{1+x} and e^{x},

$$
\begin{aligned}
1+1+x+\frac{(1+x)^{2}}{2!}+ & \frac{(1+x)^{3}}{3!}+\frac{(1+x)^{4}}{4!}+\text { etc. } \\
& =e\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\text { etc. }\right)
\end{aligned}
$$

It is required to prove the identity of these developments, by showing that the coefficients of like powers of x are equal.

CHAPTER VI.

LOGARITHMS.

311. To form the logarithm of a number, a constant number is assumed at pleasure and called the base.

Def. The Logarithm of a number is the exponent of the power to which the base must be raised to produce the number.

The logarithm of x is written $\log x$.
Let us put a, the base ;
x, the number;
l, the logarithm of x.
Then

$$
a^{l}=x
$$

Rem. For every positive value we assign to x there will be one and only one value of l, so long as the base a remains unchanged.

Def. A System of Logarithms means the logarithms of all positive numbers to a given base. The base is then called the base of the system.

Properties of Logarithms.

312. Consider the equations,

$$
\left.\begin{array}{l}
a^{0}=1 ; \\
a^{1}=a ; \\
a^{2}=a^{2} ;
\end{array}\right\} \text { whence by definition, }\left\{\begin{array}{l}
\log 1=0 ; \\
\log a=1 ; \\
\log a^{2}=2
\end{array}\right.
$$

Hence,
I. The Togarithm of 1 is zero, whatever be the base.
II. Thee logarithm of the base is 1 .
III. The logarithem of any number between 1 and the base is a positive fraction.
IV. The logarithms of powers of the base are integers, but no other logarithms are.

Again we have

$$
\left.\begin{array}{l}
a^{-1}=\frac{1}{a} ; \\
a^{-2}=\frac{1}{a^{2}} ; \\
a^{-n}=\frac{1}{a^{n}} ;
\end{array}\right\} \text { whence by definition, }\left\{\begin{array}{l}
\log \frac{1}{a}=-1 ; \\
\log \frac{1}{a^{2}}=-2 ; \\
\log \frac{1}{a^{n}}=-n .
\end{array}\right.
$$

Hence,
V. The logarithm of a number between 0 and 1 is negative.
Λ gain, as we increase n, the value of ι^{n} increases without limit, and that of $\frac{1}{a^{n}}$ approaches zero as its limit. Hence,
VI. The logarithm of 0 is neģative infinity.
VII. Theonem. The logarithm of a product is equal to the sum of the logarithms of its factors.
l'roof. Let p and q be two factors, and suppose

$$
k=\log p, \quad k=\log q
$$

Then $\quad a^{h}=p, \quad a^{k}=q$.
Multiplying, $\quad a^{h} a^{k}=a^{h+k}=p q$.
Whence, by definition, or

$$
\hbar+k=\log (p q)
$$

$$
\log p+\log q=\log (p q)
$$

The proof may be extended to any number of factors.
VIII. Theorem. The logarithm of a quotient is found by subtracting the logarithon of the divisor from that of the dividend.

Proof. Dividing instead of multiplying the equations in the last theorem, we have

$$
\frac{a^{h}}{a^{k}}=a^{h-k}=\frac{p}{q}
$$

Hence, by definit.on, $\quad k-k=\log \frac{p}{q}$,
or

$$
\log p-\log q=\log \frac{p}{q}
$$

IX. Theorem. The logarithm of amy power of a number is equal to the logarithm of the number multiplied by the exponent of the poucer.

Proof. Let $h=\log p$, and let n be the exponent.
Then

$$
a^{*}=p
$$

Raising both sides to the $n^{i n}$ power,

$$
\begin{aligned}
a^{n h} & =p^{n} \\
n \hbar & =\log p^{n} \\
n \log p & =\log p^{n}
\end{aligned}
$$

Whence
or
X. Theorem. The logarithm of a root of a number is equal to the logarithm of the number divided by the index of the root.

Proof. Let s be the number, and let p be its $r^{\text {th }}$ root, so that

$$
p=\sqrt[n]{s} \quad \text { and } \quad s=p^{n}
$$

Hence,

$$
\log s=\log p^{n}=n \log p
$$

Therefore,

$$
\log p=\frac{\log s}{n}
$$

or

$$
\log \sqrt[n]{s}=\frac{\log s}{u}
$$

Note. We may also apply Th. IX, since $p=s^{\hat{n}}$. Considering $\frac{1}{n}$ as a power, the theorem gives

$$
\log p=\frac{1}{n} \log s
$$

EXERCISES.
Express the following logarithms in terms of $\log p, \log q$, $\log x$, and $\log y, a$ being the base of the system:
a numeltiplical
number. lay the ${ }^{17}$ root, so [X.)
n. Con-
$p, \log q$
I. $\mathrm{L} \mathrm{g} p^{2} q$.

Ans. $2 \log p+\log q$.
2. $\log p l^{3}$.
3. $\log p^{2} q^{5}$.
4. $\log p q^{2} x^{3} y^{4}$.
5. $\log \frac{x}{p}=\log x p^{-1}$, and explain the identity.
6. $\log \frac{x y}{p q}=\log x y p^{-1} q^{-1}$.

Ans. $\log x+\log y-\log p-\log q$.
7. $\log \frac{x y^{2}}{p q^{2}}$.
8. $\log \frac{x^{n} y^{3}}{p^{m} q^{3}}$.
9. Log $\sqrt{ } x$ (Note, § 123).
10. $\log \sqrt[3]{ } x \sqrt{ } y$
I. $\log \sqrt{\frac{p}{q}}$.
12. $\log \sqrt{ } a$.
13. $\log a x$.
14. $\log \frac{x}{a}$.
15. $\log \frac{x}{a^{n}}$.
16. $\log \frac{\alpha^{n} p^{m}}{x^{2} y^{3}}$.
17. $\log \sqrt{a^{2} \cdots x^{2} .} \quad$ Ans. $\frac{\log (a+x)+\log (a-x)}{2}$.
18. $\log \sqrt{1-x^{2}}$. 19. $\log \left(a^{2}-x^{2}\right)$.

Logarithmic Series.

313. Rem. The logarithm of a number cannot be dereloped in powers of the number. For, if possible, suppose

$$
\log x=C_{0}+C_{1} x+C_{2} x^{2}+\text { etc. }
$$

Supposing $x=0$, we have

$$
C_{0}=\log 0,
$$

which we have found to be negative infinity ($\S 312, \mathrm{VI}$). Hence the development is impossible.

But we can develop $\log (1+y)$ in powers of y. For this purpose, we develop $\left(1+y^{x} r\right.$ by both the binomial and exponential theorems, and compare the coefficients of the first power of x. First, the binomial theorem gives
$(1+y)^{x}=1+x y+\frac{x(x-1)}{1 \cdot 2} y^{2}+\frac{x(x-1)(x-2)}{1 \cdot 2 \cdot 3} y^{3}+$ etc.

If we derelop the coefficients of y^{2}, y^{3}, etc., by performing the multiplications, we have

$$
\begin{aligned}
& \text { Coct. of } y^{2}=\frac{x^{2}-x}{1 \cdot 2} ; \\
& \text { " " } y^{3}=\frac{x\left(x^{2}-3 x+2\right)}{2 \cdot 3} ; \quad \text { part in } x=-\frac{x}{2} \\
& \text { " } \\
& \text { " } x=+\frac{x}{3}
\end{aligned}
$$

In gencral, in the coefficient of y^{n}, or

$$
x(x-1)(x-2) \ldots(x-n+1)
$$

the term containing the first power of x will be

$$
\frac{ \pm 1 \cdot 2 \cdot 3 \ldots(n-1) x}{1 \cdot 2 \cdot 3 \ldots \cdot n}= \pm \frac{x}{n}
$$

Hence,
$(1+y)^{x}=1+x\left(y-\frac{y^{2}}{3}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\right.$ ctc. $)+$ terms in x^{2}, x^{3}, etc.
On the other hand, the exponential development, § 309, (8), gives, by putting $1+y$ for a.

$$
(1+y)^{x}=1+C_{1} x+\text { terms in } x^{2}, x^{3}, \text { cte. }
$$

Equating the coefficients of x in these two identical series we have

$$
\begin{equation*}
C_{1}=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\text { ctc. } \tag{1}
\end{equation*}
$$

The ralue of C_{1} is given by the theorem of $\S 310$, putting $1+y$ for a; that is, C_{1} is here defined by the equation

$$
e^{C_{1}}=1+y
$$

Hence, if we take the number $e(\S 310)$ as the base of a system of logarithms, we shall have

$$
C_{1}=\log (1+y) .
$$

Comparing with (1), we reach the conclusion :
Theorem. Assuming the \mathcal{N} aperian base e as a base, we hate

$$
\begin{equation*}
\log (1+y)=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\text { ctc., al inf. } \tag{2}
\end{equation*}
$$

Def. Logarithms to the base e are called Naperian Logarithms, or Natural Logarithms.

The appellation " natural" is used, becmuse this is the simplest systrm of lognrithms.

Rem. The series (2) is not convergent when $y>1$, and therefore mast be transtormed for use.

Putting $-y$ for y in (x), we have

$$
\log (1-y)=-y-\frac{y^{2}}{2}-\frac{y^{3}}{3}-\text { ctc. }
$$

Subtracting this from (2), and noticing that

$$
\begin{equation*}
\log (1+y)-\log (1-y)=\log \frac{1+y}{1-y}(\text { Th. VIII }), \tag{3}
\end{equation*}
$$

we have $\quad \log \frac{1+y}{1-y}=2 y+\frac{2 y^{3}}{3}+\frac{2 y^{5}}{5}+$ cte.
Now n being any number of which we wish to investigate the logarithm, let us suppose $y=\frac{1}{2 n+1}$. This will give

$$
\frac{1+y}{1-y}=\frac{n+1}{n}
$$

whence $\log \frac{1+y}{1-y}=\log \frac{n+1}{n}=\log (n+1)-\log n$.
Substituting these values in (3), we have

$$
\begin{align*}
\log (n+1)-\log n=\frac{2}{2 n+1} & +\frac{2}{3(2 n+1)^{3}}+\frac{2}{5(2 n+1)^{5}} \\
& + \text { etc. } \tag{4}
\end{align*}
$$

This series enables us to find $\log (n+1)$ when we know $\log n$. To find $\log 2$, we put $n=1$, which, because $\log 1$ $=0$, gives

$$
\log 2=2\left(\frac{1}{3}+\frac{1}{3 \cdot 3^{3}}+\frac{1}{5 \cdot 3^{5}}+\frac{1}{7 \cdot 3^{7}}+\text { etc. }\right)
$$

Summing five terms of this series, we find

$$
\log 2=0.693147 \ldots
$$

Putting $n=2$ in (4), we have

$$
\log 3=\log 2+2\left(\frac{1}{5}+\frac{1}{3 \cdot 5^{3}}+\frac{1}{5 \cdot 5^{5}}+\frac{1}{7 \cdot 5^{7}}+\text { etc. }\right),
$$

which gives
$\log 3=1.098612$.
Bec.uuse $9=3^{2}, \quad \log 9=2 \operatorname{loz}_{\varepsilon} \quad$ 2. 197224 .
Putting $n=9$ in (4), we have

$$
\log 10=\log 9+2\left(\frac{1}{19}+\frac{1}{3 \cdot 19^{3}}+\frac{1}{5 \cdot 19^{5}}+\text { etc. }\right),
$$

whence

$$
\log 10=2.302585
$$

In this way the Naperian logarithms of all numbers may be computed. It is only necessary to compute the logarithms of the prime numbers from the series, because those of the composite numbers can be formed by adding the logarithms of their prime factors. ($\$ 312$, VII.)
314. Definitive Form of the Exponential Series. We are now prepared to give the exponential series ($\$ 309,8$) its definite form. Since the coefficient C_{1} is defined by the equation

$$
e^{c_{1}}=a,
$$

the quantity C is the Naperian logarithm of a. Hence, the exponential series is

$$
a^{x}=1+\frac{x \log a}{1}-\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{3}}{3!}+\text { etc. }
$$

which is a fundamental development in Algebra.
By putting $a=e$, we have $\log a=1$, and the series becomes that for e^{x} already found.

By putting $x=1$, we have an expression for any number in terms of its natural logarithm, namely,

$$
a=1+\frac{\log a}{1}+\frac{(\log a)^{2}}{2!}+\frac{(\log a)^{3}}{3!}+\frac{(\log a)^{4}}{4!}+\text { ete. }
$$

Comparison of Two Systems of Logarithms.

315. Put e, the base of one system ;
a, the base of another;
n, a number of which we take the logarithm in both systems.

Putting l and l^{\prime} for the logarithms in the two systems. Wh have

$$
d^{d}=1, \quad \quad a^{\prime \prime}=n
$$

and therefore

$$
\begin{equation*}
a^{l}=a^{l^{\prime}} \tag{1}
\end{equation*}
$$

Now put k for the logarithm of a to the base ε. Then

$$
e^{k}=a
$$

and raising both members to the $l^{\prime t h}$ power,

$$
c^{k l^{\prime}}=a^{\prime}
$$

Comparing with (1), $\quad l=k \cdot l^{\prime}$,
or

$$
\begin{equation*}
l^{\prime}=l \times \frac{1}{k} \tag{?}
\end{equation*}
$$

This equation is entirely independent of n, and is therefore the same for all values of n. Hence,

Theorem. If we multiply the logarithem of any number to the base a b! the logarithm of a to the base e. we shall hate the logarithm of the mumber to the base e.
316. Although there may be any number of systems of logarithms, only two are used in practice, namely:

1. The natural or Naperian system, base $=e=$ 2.718282
2. The common system, base $=10$.

The natural system is used for purely algebraic purposes.

The common system is used to facilitate numerical calculations.

Assigning these values to e and a in the preceding section, the constant k is the natural logarithm of 10 , which we have found to be 2.302585 .

Therefore, by (2), for any number, nat. $\log =$ common $\log \times 2.302585$,
and

$$
\text { common } \mathrm{cc} \gamma=\frac{\text { nat. log. }}{2.302585 \ldots}
$$

Hence,

$$
=\text { nat. } \log \times 0.4342044 \ldots
$$

Theorem. The common logarithm of any mumber maty be found b! multiplying its natural logarithm l!! $0.43499+4 . .$. or by the reciprocal of the Nitacrian legaritheme of 10 .

Def. The number 0.4342944 is called the Modulus of the common system of logarithms.

EXERCISES.

1. Show that if a and b be any two bases, the logarithm of a to the base b and the logarithm of b to the base are the reciprocals of each other.
2. What does this theorem express in the ease of the natural and common systems of logarithms?

Common Logarithms.

31\%. Recause

$$
\begin{aligned}
& 10^{2}=100 \\
& 10^{1}=10 \\
& 10^{0}=1, \\
& 10^{-1}=\frac{1}{10}, \\
& 10^{-2}=\frac{1}{100}, \\
& \text { ete. }
\end{aligned} \text { we have to base } 10, \quad\left\{\begin{array}{l}
\log 100=2 \\
\log 10=1 \\
\log 1=0 \\
\log \frac{1}{10}=-1 \\
\log \frac{1}{100}=-2 \\
\text { etc. }
\end{array}\right.
$$

The following conclusions respecting common logarithms will be evident from an inspection of the above examples:
I. The logarithm of any number between 1 anel 10 is a firaction betuecn 0 anel 1.
II. The logarithm of a number with two aligits is 1 plues some froction.
III. In gencral, the logarithem of a number of i digits is $i-1$, plus some fraction.
IV. The logarithem of a fraction less than unity is neğatize.
V. The logarithus of two numbers, the reciprocal of each other, are equal and of opposite signs.
number rithm. b!! ian logia-
$=2$,
$=1$,
$=0$,
$=-1$,
$=-9$,
cte.
logarithms mples:
ancl 10 is
digits is 1
of i digits
n unity is iprocal of
VI. If one mumber is 10 times another, its logiarithm will be greater by unity.

Proof: If

$$
10^{l}=n
$$ then

$$
\begin{aligned}
10^{1+l} & =10 \times 10^{l}=10 n \\
l & =\log n \\
l+1 & =\log 10 n
\end{aligned}
$$

318. 'To give an idea of the progression of logarithms, the following table of logarithms of the tirst 11 numbers should be studied.

The logarithms are not exact, because all logarithms, exeept those of powers of 10 , are irrational numbers, and therefore when expressed as decimals extend out indefinitely. We give only the first two decimals.

$$
\begin{array}{ll}
\log 1=0.00, & \log 7=0.85 \\
\log 9=0.30, & \log 8=0.90 \\
\log 3=0.48, & \log 9=0.95 \\
\log 4=0.60, & \log 10=1.00 \\
\log 5=0.70, & \log 11=1.04 \\
\log 6=0.78, &
\end{array}
$$

It will be noticed that the difference between two consecntive logarithms continnally diminishes as the numbers increase. For instance, the difference between $\log 20$ and $\log 10$ must by $\S 312$, VIII, be the same as between $\log 1$ and $\log 2$.
319. Computation of Logarithms. Since the logarithms of all composite numbers may be found by adding the logitrithms of their fictors, it is only necessary to show how the logarithms of prime numbers are eomputed. We have alrealy shown ($\S 313$) how the natural logarithms may be computed, and (\$316) how the common ones may be derived from them by multiplying by the modulus $0.4342944 . .$. . It is not however necessary to multiply the whole logarithm by this factor, but we may proceed thas:

We have, putting M for the modulus, com. $\log n=M$ nat. $\log n$, com. $\log (n+1)=M$ nat. $\log (n+1) ;$
whence, by subtraction,
com. $\log (n+1)-$ com. $\log n=M[$ nat. $\log (n+1)-$ nat. $\log n]$; and, by substituting for nat. $\log (n+1)-$ nat. $\log n$ its value, § 313,

$$
\text { com. } \begin{aligned}
& \log (n+1)=\text { com. } \log n+2 \mu\left[\frac{1}{2 n+1}+\frac{1}{3(2 n+1)^{3}}\right. \\
&\left.+\frac{1}{5(2 n+1)^{5}}+\text { ctc. }\right]
\end{aligned}
$$

By means of this series, the computations of the successive logurithms may be carried to any extent.

Tables of the logarithins of numbers up 100,000 , to seven places of decimals, are in common use for astronomical and mathematical calculations. One table to ten decimals was published about the beginning of the present century. The most extended tables ever undertaken were constructed under the auspices of the French government about 1795, and have been known under the name of Les Grandes Tables du Calastre. Many of the logarithms were carried to nineteen places of decimals. They were never published, but are preserved in manuscript.
320. It may interest the stndent who is fond of computation to show how the common logarithms of small numbers may be computed by a method based immediately on first principles.

Let n be a number, and let $\frac{p}{q}$ be an approximate value of its logarithm. We shall then have,

$$
\begin{aligned}
& n=10^{p} \\
& \text { or, raising to the } q^{\text {th }} \text { power, } \\
& n^{q}=10^{p}
\end{aligned}
$$

Hence, could we find a power of the number which is also a power of 10 , the ratio of the exponents would at once give the logarithm. This can never be exactly done with whole numbers, but, if the condition be approximately fulfilled, we shall have an approximate value of the logarithm.

Let us seek $\log 2$ in this way. Forming the successive powers of 2 , we find

$$
\begin{equation*}
2^{10}=1024=10^{3}(1.024) \tag{1}
\end{equation*}
$$

Hence, $3: 10=0.3$ is an approximation to $\log 2$. To find a second approximation, we form the powers of 1.024 until we reach a number nearly equal to 2 or 10 , or the quotient of any power of 2 by a power of 10 . Suppose, for instance, that we find

$$
1.024^{x}=2
$$

Because $1.094=2^{10} \div 10^{3}$, this equation will give

$$
\left(\frac{2^{10}}{10^{3}}\right)^{x}=2, \quad \text { or } \quad 2^{10 x}=2.10^{3 x}, \quad \text { or } \quad 2^{10 x-1}=10^{3 x}
$$

which will give $\quad \log 2=\frac{3 x}{10 x-1}$.
If we form the powers of 1.024 by the binomial theorem, or in any other way, we shall find that x is between 29 and 30 , from which we conclude that $\log 2=0.301$ nearly.

To obtain a yet more exact value, we form the 30 th power of $1.0 刃 4$ to six or seven decimals, and put it in the form

$$
1.024^{30}=2(1+c)
$$

where $c e$ will be a small fraction.
Then we find what power of $1+\boldsymbol{e}$ will make 2. Let y be this power. Raising the last equation to the y th power, we have

$$
1.024^{30 y}=2^{y}(1+c)^{y}=2^{y+1}
$$

Putting for 1.024 its value, $2^{10} \div 10^{3}$, this equation becomes

$$
\frac{2^{300 y}}{10^{00 y}}=2^{y+1}, \quad \text { or } \quad 2^{209 y-1}=10^{90 y}
$$

whence,

$$
\log 2=\frac{90 y}{299 y-1}
$$

By a little care, the value of y can be obtained so accurately that the value of $\log 2$ shall be correct to 8,9 , or 10 places of decimals.

The power to which we must raise $1+$ e to produce 2 will be approximately $\frac{\text { Naj. } \log 2}{\iota}$, when ε is very small.

EXERCISES.

I. In the common system $(a=10)$ we have

$$
\log 2=0.30103, \quad \log 3=0.47712
$$

Hence find the logarithms of $4,5,6,8,9,12,12 \frac{1}{2}, 15,16$, $16 \frac{2}{3}, 18,20,250,6250$.

Note that $5=\frac{10}{2}, 12 \frac{1}{3}=\frac{100}{8}, 16 \frac{2}{3}=\frac{100}{6}$, and apply Th. VIII.
2. How many digits are there in the liundredth power of 2 ?
3. Given $\log 49=1.690196$; find $\log \%$.
4. Given $\log 1331=3.124178$; find $\log 11$.
5. Find the logarithm of 105 and 1.05 from the above data?
6. Find the logarithm of 1.05^{10}.
7. If $\$ 1$ is put out at 5 per cent. per aunum compound interest for 1000 years, how many digits will be required to express the amount? (Compare $\S 216$.)
8. Prove the equation
$\log x=\frac{1}{2} \log (x+1)+\frac{1}{2} \log (x-1)$

$$
+M\left[\frac{1}{2 x^{2}-1}+\frac{1}{3\left(2 x^{2}-1\right)^{3}}+\frac{1}{5\left(2 x^{2}-1\right)^{5}}+\text { etc. }\right]
$$

9. If $y=\log n$, of what numbers will $y+1, y+2, y-1$, and $y-2$ be the logarithms?
10. Find x from the equation $c^{x}=h$.

Solution. Taking the logarithms of both members, we have

$$
\begin{aligned}
x \log c & =\log h ; \\
x & =\frac{\log h}{\log c} .
\end{aligned}
$$

11. $\quad c^{a x}=n$.
12. $\quad c^{b x}=\frac{1}{m}$.
13. $\quad b^{x}=\frac{1}{p}$.
14. $\quad b^{-x}=p$.

Show that the answers to (I3) and (I4) are and ought to be identical.
15. $\quad a^{c x}=m$.
16. $\quad b c^{x}=k$.
17. Find x and y from the equations

$$
a^{x} b^{y}=p, \quad a^{y} b^{x}=q
$$

15,16
ver of $2 ?$
ve data?
mpound uired to

$2, y-1$,

BOOK XII. IMAGINARY QUANTITIES.

CHAPTER 1. OPERATIONS WITH THE IMAGINARY UNIT.*

3ఖ1. Since the square of either a negative or a positive quantity is always positive, it follows that if we have to extract the square root of a negative quantity, no answer is possible, in ordinary positive or negative numbers ($\S \S 1 \% 0,200$).

In order to deal with such cases, mathematicians have been led to suppose or imagine a kind of numbers of which the squares shall be negative. These numbers are called Imaginary Quantities, and their units are called Imaginary Units, to distinguish them from the ordinary positive and negative quantities, which are called real.
322. The Imaginary Unit. Let us have to extract the square root of -9 . It cannot be equal to +3 nor to -3 , because the square of each of these quantities is +9 . We may therefore call the root $\sqrt{-9}$, just as we put the sign $\sqrt{ }$ before any other quantity of which the root cannot be extracted. But the root may be transformed in this way:

Since

$$
-9=+9 \times-1
$$

it follows from $\S 183$ that

$$
\sqrt{-9}=\sqrt{9} \sqrt{-1}=8 \sqrt{-1}
$$

[^7]Def. The surd $\sqrt{-1}$ is the Imaginary Unit. The imaginary unit is commonly expressed by the symbol i.

This symbol is used because it is easier to write i than $\sqrt{-1}$.

The unit i is a supposed quantity such that, when squared, the result is -1 .

That is, i is defined by the equation

$$
i^{2}=-1
$$

Theorem. The square root of any negrative quantity may be exppressed as a number of imaginary units.

For let $-n$ be the number of which the root is required.
Then $\quad \sqrt{-n}=\sqrt{+n} \sqrt{-1}=\sqrt{ } n i$.
Hence,
To extract the square root of a negiative muantity, extract the root as if the quantity uere positive, and affice the symbol i to it.
323. Complex Quantities. In ordinary algebra, any number may be supposed to mean so many units. 7 or a, for example, is made up of 7 units or a units, and might be written $7 \cdot 1$ or $a \mathbf{1}$.

When we introduce imaginary quantities, we consuder them as made up of a certain number of imaginary units, each reprosented by the sign i, just as the real unit is represented by the sign 1. A number b of imaginary units is there.ore written hi.
A sum of a real units and b imaginary units is written

$$
a+b i,
$$

and is called a complex quantity. Hence,
Def. A Complex Quantity consists of the sum of a certain number of real units plus a certain number of imaginary units.

Def. When any expression containing the symbol of the imaginary unit is reduced to the form of a complex quantity, it is said to be expressed in its Normal Form.
nit. The symbol i. rite i than en squared,
qucentity nits. ; required.
ruantity, itice, cunch
, any num7 or a, for hat be writ-
suder them each reproted by the written bi. ritten

Adrition of Comp:ex Expressions.

324. The algebraic operations of addition and subtraction are performed on imaginary quantities according to nearly the same rules which govern the case of surds ($\$ 181$), the surd being replaced by i. Thus,

$$
a \sqrt{-1}+b \sqrt{-1}=a i+b i=(a+b) i
$$

Hence the following rule for the addition and subtraction of imaginary quantities:

Add or subtract all the real terms, as in ordinary algebra. Then add the cocfficients of the imaginary unit, and affix the symbol i to their sum.

Eximple. Add $a+b i, 6+7 i, 5-10 i$, and subtract $3 a-2 b i+z$ from the sum.

We may arrange the work as iollows:

$$
\begin{gathered}
a+b i \\
6+7 i \\
5-10 i \\
\text { Sum, } \frac{-z-3 a+2 b i \quad(\text { sign changed }) .}{-z-2 a+11+(3 b-3) i .} \\
\text { EXERCISES. }
\end{gathered}
$$

I. Add $3 x+4 y i+m, 2 m+5 . i, 6 m-6 y i$.
2. Add $4 a i, 1 \% i, 3 a+6 b i, x+y i$.
3. From the sum $a+b i+m-n i-p+q i$ subtract the sum $+y i-z-u i$.

Reduce to the normal form:
4. $\quad a+b i-(m-u i)-(x+y i)$.
5. $m(a-b i)-n(x-3 i)$.

Multiplication of Complex Quantities.

325. Theorem. All the even powers of the imaginarly anit are real units, and all its odd powers are imaginary units, positive or negative.

Proof. The imaginary unit is by definition such a symbol as when squared will make -1 . Hence,

$$
i^{2}=-1 .
$$

Now multiply both sides of this equation by i a number of times in succession, and substitute for each power of i its value given by the preceding equation. We then have

$$
\begin{aligned}
& i^{3}=-i, \\
& \left.i^{4}=-i^{2}=+1 \text { (because } i^{3}=-1\right), \\
& i^{5}=-i^{3}=+i, \\
& i^{6}=-i^{4}=+i^{2}=-1, \\
& i^{i}=-i^{5}=+i^{3}=-i, \\
& \text { ctc. ctc. }
\end{aligned}
$$

It is evident that the successive powers of i will always have one of the four values, $i,-1,-i$, or +1 .

We may express this result thus:
If n is any integer, then:

$$
i^{4 n}=1, \quad i^{4 n+1}=i, \quad i^{4 n+2}=-1, \quad i^{4 n+3}=-i .
$$

To multiply or divide imaginary quantities, we proceed as if they were real and substitute for each power of i its value as a real or imaginary, positive or negative unit.

Ex. r. Multiply ai by $x i$.
By the ordinary method, we should have the product, $a x i^{3}$. But $i^{2}=-1$. The product is therefore -ax.

That is, $\quad a i \times x i=-a x$.
Ex. 2. Multiply $a+b i$ by $m+n i$.

$$
\begin{aligned}
& n i(a+b i)=a n i-b n(\text { because } n i \times b i=-b n) \\
& m(a+b i)=\underline{b m i}+a m \\
& (m+n i)(a+b i)=\overline{a m-b n+(a n+b m) i},
\end{aligned}
$$

which is the product required.
a symbol
umber of its value
ll ahways

EXERCISES.

Multiply

1. $x+y i$ by $a-b$.
2. $m+n i$ by $a i$.
3. $m-n i$ by $b i$.
4. $1+i$ by $1-i$.
5. $x-y i$ by $a+b i$.
6. $x-y i$ by $x+y i$.
7. $a-a i-b i$ by $a+a i+b i$.
Develop
S. $\quad(a+b i)^{2}$.
8. $(m+n i)^{3}$.
9. $(1+i)^{2}$.
II. $\quad(1-i)^{2}$.
10. Imaginary Factors. The introduction of imaginary units euables us to factor expressions which are prime when only real factors are admitted. The following are the principal forms:

$$
\begin{aligned}
a^{2}+b^{2} & =(a+b i)(a-b i), \\
a^{2}-b^{2} \pm 2 a b i & =(a \pm b i)^{2}
\end{aligned}
$$

The first form shows that the sum of two squares can almays be expressed as a product of two complex factors.

For example, $17=4^{2}+1^{2}=(4+i)(4-i)$.

EXERCISES.

Factor the expressions:

1. $x^{2}+4$.
2. $x^{2}+2$.
3. $x^{2}-2 x+5=(x-1)^{2}+4$.
4. $x^{2}-4 x+13$
5. $a+b$.
6. $a^{2}+2 a n+5 n^{2}$.
7. $x^{2}+2 x y+2 y^{2}$.

32\%. Fundamental Principle. A complex quantity $A+B i$ cannot be equal to zero uniess we have both

$$
A=0 \quad \text { and } \quad B=0
$$

Proof. If A and B were not zero, the equation $A+B i=0$ would gire

$$
i=-\frac{A}{B}
$$

that is, the imaginary mit equal to a real fraction, which is impossible.

Cor. If both members of an equation containing imagi-
nary units are reduced to the normal form, so that the equation shatl be in the form

$$
A+B i=M+N i
$$

we must have the two equations,

$$
A=M, \quad B=N
$$

For, by trimsposition, we obtain

$$
A-M+(B-N) i=0
$$

whence the theorem gives $A-M=0, B-N=0$. Hence,
Eecry cquation betueen comples quantities involves two equations between real quantities, formeal by equating the numbers of real and imaginary units.

Reduction of Functions of i to the Normal Forin.

328. 329. If we have an entire function of i,

$$
a+b i+c i^{2}+d i^{3}+e i^{4}+f i^{5}+\text { etc. }
$$

we reduce it by putting

$$
i^{2}=-1, \quad i^{3}=-i, \quad i^{4}=1, \quad \text { etc., } \quad \text { etc. }
$$

and the expression will become

$$
(a-c+e-\text { etc. })+(b-d+f-\text { ctc. }) i
$$

which, when we put

$$
x=a-c+e-\text { etc. }, \quad y=b-a+f-\text { etc. },
$$

becomes $x+y i$, as required.
2. To reduce a rational fraction of i to the normal form, we reduce both numerator and denominator. The fraction will then take the form

$$
\frac{a-b i}{m+m i}
$$

Since this is to be reduced to the form $x+y i$, let us put

$$
\frac{a+b i}{m+n i}=x+y i
$$

x and y being indeterminate coefficients.
Clearing of fractions,

$$
a+b i=m x-n y+(m y+n x) i
$$

te equation
). Hence, s involues cquating

Normal

Comparing the number of real and imaginary units on each side of the equation, we have the two equations

$$
m x-n y=a, \quad n x+m y=b
$$

Solving them, we find

$$
x=\frac{m a+n b}{m^{2}+n^{2}}, \quad y=\frac{m b-n a}{m^{2}+n^{2}} .
$$

Therefore, $\quad \frac{a+b i}{m+n i}=\frac{m a+n b}{m^{2}+n^{2}}+\frac{m b-n a}{m^{2}+n^{2}} i$,
which is the normal form.

EXERCISES.

Reduce to the normal form :
I. $\quad 7-3 i-6 i^{2}+2 i^{3}+i^{4}-i^{5}$.
2. $1+i-i^{2}+i^{3}-i^{4}-i^{5}+i^{6}$.
3. $\frac{2}{i-1}$.
4. $\frac{6+5 i}{6-5 i} . \quad 5 \cdot \frac{1+i}{1-i}$.
6. $\frac{m i(x-a i)}{x+a i}$.
7. $\frac{1-i}{2+4 i}$.
8. $\frac{a+b i}{a-b i}$.
9. $\frac{(a+b i)(a-b i)}{(x+b i)^{2}}$.
10. What is the value of the exponential series which gives the development of e^{i} ? We put $x=i$ in $\S 310, \mathrm{Eq} .10$.
ri. Develop $(1+x i)^{n}$ by the binomial theorem.
12. What are the developed values of
and

$$
(1+b i)^{n}+(1-b i)^{n}
$$

($1+b i)^{n}-(1-b i)^{n}$?
13. Write eight terms of the geometrical progression of which the first term is a and the common ratio i.
14. Fiud the limit of the sum of the geometrical progression of which the first term is a and the common ratio $\frac{i}{2}$.

3:39. To reduce the square root of an imaginary expression to the normal form.

Let the square root be $\sqrt{a+b i}$.
We put

$$
x+y i=\sqrt{a+b i}
$$

Squaring, $\quad x^{2}-y^{2}+2 x y i=a+b i$.

Comparing units, $x^{2}-y^{2}=a$,

$$
2 x y=b .
$$

Solving this pair of quadratic equations, we find

$$
\begin{aligned}
& x=\frac{\sqrt{ }\left(\sqrt{a^{2}+b^{2}}+a\right)}{\sqrt{2}}, \\
& y=\frac{\sqrt{ }\left(\sqrt{a^{2}+b^{2}}-a\right)}{\sqrt{2}} .
\end{aligned}
$$

Therefore,

$$
\sqrt{a+b i}=\sqrt{ }\left(\frac{\sqrt{a^{2}+b^{2}}+a}{2}\right)+\sqrt{2}\left(\frac{\sqrt{a^{2}+b^{2}}-a}{z}\right) i .
$$

EXERCISES.
\cdot Reduce the square roots of the following expressions to the normal form:
I. $3+4 i$.
2. $4+3 i$.
3. $12+5 i$.
4. Find the square roots of the imaginary unit i, and of $-i$, and prove the results by squaring them.

Note that this comes under the preceding form when $a=0$ and $b= \pm 1$.
5. Find the fourth roots of the same quantitics by extracting the square roots of these roots.
330. Quadratic Equations with Imaginary Roots. The combinatio.. of the preceding operations will enable us to solve any quadratic equation, whether it does or does not contain imaginary quantities.

Example i. Find x from the equation

$$
x^{2}+4 x+13=0
$$

Completing the square and proceeding as ustual, we find
whence

$$
\begin{gathered}
x^{2}+4 x+4=-9 \\
x+2=\sqrt{-9}= \pm 3 i, \\
x=-2 \pm 3 i .
\end{gathered}
$$

Ex. 2.

$$
x^{2}+b x i-c=0
$$

Completing the square,

$$
x^{2}+b x i-\frac{b^{2}}{4}=c-\frac{b^{2}}{4}
$$

Extracting the root,
whence

$$
\begin{gathered}
x+\frac{b i}{2}=\frac{\sqrt{4 c-b^{2}}}{2}, \\
x= \pm \frac{1}{2} \sqrt{ }\left(4 c-b^{2}\right)-\frac{b i}{\partial} \\
\text { EXERCISES. }
\end{gathered}
$$

Solve the quadratic equations:

$$
\begin{array}{ll}
\text { 1. } & x^{3}+x+1=0 .
\end{array} \quad \text { 2. } x^{2}-x+1=0.0 . ~ \begin{array}{ll}
\text { 3. } & x^{2}+10 x+34=0 \\
\text { 3. } x^{3}+3 x+10=0 . & \text { 4. }
\end{array}
$$

Form quadratic equations ($\$ 199$) of which the roots shall be

$$
\text { 5. } \quad a+b i \text { and } a-b i . \quad \text { 6. } \quad a i+b \text { and } a i-b .
$$

331. Exponential Funchons. When in the exponential function a^{z} we suppose z to represent an imaginary expression $x+y i$, it becomes

$$
a^{x+y!}
$$

This expression could have no meaning in any of our previous definitions of an exponent, because we have not shown what an imaginary exponent could mean. But if we suppose the effect of the exponent to be defined by the exponeatial theorem ($\$ \S 30 ؟, 314$), we can develop the above expression. First we have, by the fundamental law of exponents,

$$
a^{x+y i}=a^{x} l^{y i}
$$

Next, if we put $c=$ Nap. $\log a$, we have
whence,

$$
\begin{aligned}
a & =e^{c} \\
a^{\prime y} & =e^{c y}
\end{aligned}
$$

If we put, for brevity, $c y=u$, we shall now have

$$
a^{x+y i}=a^{x} e^{u i}
$$

The ralue of a^{x} being already perfectly understood, we may leare it out of eonsideration for the present, and inrestigate the development of $e^{u i}$. By the exponential theorem (\$ 310, 10),

$$
c^{u i}=1+u i+\frac{u^{2} i^{2}}{2!}+\frac{u^{3} i^{3}}{3!}+\frac{u^{4} i^{4}}{4!}+\frac{u^{5} i^{5}}{5!}+\text { ctc. }
$$

Substituting for the powers of i their values (\$325),

$$
c^{u l}=1-\frac{u^{2}}{2!}+\frac{u^{4}}{4!}-\frac{u^{6}}{6!}+\text { etc. }+\left(u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\text { etc. }\right) i .
$$

These two series are each functions of u, to which special manes have been given, namely:

Def. The series $1-\frac{u^{2}}{2!}+\frac{u^{4}}{4!}-\frac{u^{6}}{6!}+\frac{u^{8}}{8!}-$ ete., is called the cosine of u, and is written cos u.

Def. The series $u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\frac{u^{7}}{7!}+\frac{u^{9}}{9!}-$ ete., is called the sine of u, anci is written sin u.

Using this notation, the above development becomes,

$$
\begin{equation*}
e^{u i}=\cos u+i \sin u \tag{a}
\end{equation*}
$$

which is a fumdamental equation of Algebra, and should be memorized.

Remares. These functions, $\cos u$ and $\sin u$, have an extensive use in both Trigonometry and Algebra. To familiarize himself with them, it will be well for the student to compute their values from the above series for $i=0.25, i=0.50$, $i=1, i=2$, to three or four places of decimals. This can be done by a process similar to that employed in computing e in $\S 310$. If the work is done correctly, he will find:

$$
\begin{aligned}
& \text { For } \quad u=\frac{1}{4}, \quad \cos \frac{1}{4}=\quad 0.969, \quad \sin \frac{1}{4}=0.24 \% \text {. } \\
& \text { " } u=\frac{1}{\underset{\sim}{2}}, \quad \cos \frac{1}{2}=0.878, \quad \sin \frac{1}{2}=0.479 \text {. } \\
& \text { * } \quad u=1, \quad \cos 1=0.540, \quad \sin 1=0.841 \text {. } \\
& \text { " } \quad u=2, \quad \cos 2=-0.416, \quad \sin 2=0.909 \text {. }
\end{aligned}
$$

332. Let us now investigate the properties of the functions $\cos u$ and sin u, which are detined by the erpuations,

$$
\left.\begin{array}{l}
\cos u=1-\frac{u^{2}}{2!}+\frac{u^{4}}{4!}-\frac{u^{6}}{6!}+\text { etc. } \\
\sin u=u-\frac{u^{3}}{3!}+\frac{u^{5}}{5!}-\frac{u^{7}}{7!}+\text { etc. } \tag{b}
\end{array}\right\}
$$

(25), - ete.) i.
ich sperial
, is called
is called
mes,
(a)
should be
are an exfamiliarize o compute $i=0.50$, This can mputing e
1.24\%.
$4 \% 9$.
841.
. 909.
functions
(b)

Since eos u includes only eren powers of u, its value will remain unchanged when we change the sign of u from + to -, or vice versu. Hence,

$$
\begin{equation*}
\cos (-u)=\cos u \tag{1}
\end{equation*}
$$

Since $\sin u$ contains only odd powers of u, its sign will change with that of u. Hence,

$$
\sin (-u)=-\sin u
$$

If in the equation (a) we change the sign of u, we lave, by (1) und (2),

$$
\begin{aligned}
& e^{-u t}=\cos (-u)+i \sin (-u), \\
& \text { or } \quad e^{-u i}=\cos u-i \sin u \text {. }
\end{aligned}
$$

Now multiply this equation by (a). Since
we have
or

$$
e^{u i} \times e^{-u i}=e^{u i} \times \frac{1}{e^{u i}}=1,
$$

$$
\begin{aligned}
& 1=(\cos u)^{2}-i^{2}(\sin u)^{2}, \\
& 1=(\cos u)^{2}+(\sin u)^{2} .
\end{aligned}
$$

It is customary to write $\cos ^{2} u$ and $\sin ^{2} u$ instead of $(\cos u)^{2}$ and $(\sin u)^{2}$, to express the square of the cosine and of the sine of u. The last equation will then be written

$$
\begin{equation*}
\cos ^{2} u+\sin ^{2} u=1 \tag{c}
\end{equation*}
$$

Although we have deduced this equation with entire rigor, it will be interesting to test it by squaring the equations (b). First squaring cos u, we find (§ 284),

$$
\cos ^{2} u=1-u^{2}+u^{4}\left(\frac{1}{4!}+\frac{1}{2!2!}+\frac{1}{4!}\right)-\text { etc. }
$$

The coefficient of u^{n} is found to be

$$
\frac{1}{n!}+\frac{1}{2!(n-2)!}+\frac{1}{4!(n-4)!}+\ldots+\frac{1}{n!}
$$

when n is double an even number, and to the negative of this expression when n is double an odd number.

Again, taking the square of sin u, we find

$$
\sin ^{2} u=u^{2}+u^{4}\left(-\frac{1}{1!3!}-\frac{1}{1!3!}\right)+\text { etc. }
$$

the coefficient of u^{n} being

$$
-\frac{1}{1!(n-1)!}-\frac{1}{3!(n-3)!}-\frac{1}{5!(n-5)!}
$$

$$
-\ldots-\frac{1}{(n-1)!1!}
$$

or the negative of this expression, according as $\frac{1}{2} n$ is even or odd.

Adding $\sin ^{2} u$ and $\cos ^{2} u$, we see that the terms u^{2} cancel each other, and that the sum of the coefficients of u^{4} can be arranged in the form

$$
\frac{1}{4!}-\frac{1}{1!3!}+\frac{1}{2!2!}-\frac{1}{3!} 1!+\frac{1}{4!}
$$

Let us call this $\operatorname{sum} A$. If we multiply all the terms by $4!$, and note that by the general form of the binomial coeflicients,
we find

$$
\frac{n!}{s!(n-s)!}=\binom{n}{s}
$$

which sum is zero, by $\S 262$, Th. II. Therefore the coefficients of u^{n} cancel each other.

Taking the sum of the coefficients of u^{n}, we arrange them in the form

$$
\frac{1}{n!!}-\frac{1}{1!(n-1)!}+\frac{1}{2!(n-2)!}-\frac{1}{3!(n-3)!}+\text { ctc. }
$$

which call A. Then multiplying by n !, we have

$$
n!A=1-\left(\frac{n}{1}\right)+\binom{n}{\frac{j}{2}}-\binom{n}{\frac{n}{3}}+\ldots+\left(\frac{n}{n}\right),
$$

which sum is zero. Therefore all the coefficients of u^{n} cancel each other in the sum $\sin ^{2} u+\cos ^{2} u$, leaving only the first term 1 in $\cos ^{2} u$, this proving the equation (c) independently.

This example illustrates the consistency which pervades all branches of mathematics when the reasoning is correct. The conclusion (c) was reached by a very long process, resting on many of the fundamental principles of Algebra; and on reach-
ing a simple conclusion of this kind in such a way, the mathematician always likes to test its correctness by a direct process, when possible.

Let us now resume the fundamental equation (a). Since u may here be any quantity whatever, let us put $u u$ for u. The equation then becomes,

$$
e^{n u i}=\cos n u+i \sin n u
$$

But by raising the equation (a) to the $n^{\text {th }}$ power, we have

$$
e^{n u i}=(\cos u+i \sin u)^{n}
$$

Hence we have the remarkable relation,

$$
(\cos u+i \sin u)^{n}=\cos u u+i \sin n u
$$

Supposing $n=2$, and developing the first member, we have
$\cos ^{2} u-\sin ^{2} u+2 i \sin u \cos u=\cos 2 u+i \sin 2 u$.
Equating the real and imaginary parts (§327, Cor.), we have

$$
\begin{aligned}
\cos ^{2} u-\sin ^{2} u & =\cos 2 u \\
2 \sin u \cos u & =\sin 2 u,
\end{aligned}
$$

relations which can be verified from the series representing $\cos u$ and $\sin u$, in a way similar to that by which we verified $\sin ^{2} u+\cos ^{2} u=1$.

EXERCISES.

1. Find the values of $\cos ^{3} u, \sin ^{3} u, \cos ^{4} u$, and $\sin ^{4} u$ by the preceding process.
2. Write the three equations which we obtain by putting $u=a, u=b$, and $u=a+b$ in equation (a). Then equate the product of the first two to the third, and show that

$$
\begin{aligned}
& \cos (a+b)=\cos a \cos b-\sin a \sin b \\
& \sin (a+b)=\sin a \cos b+\cos a \sin b
\end{aligned}
$$

3. Reduce to the normal form,

$$
(x-i)(x-2 i)(x-3 i)(x-4 i) .
$$

4. Develop $(a+b i)^{\frac{1}{2}}$ by the binomial theorem, and reduce the result to the normal form.

CHAPTER 11.

THE GEOMETRIC REPRESENTATION OF IMAGINARY QUANTITIES.

333. In Algebra and allied branches of the higher mathematics, the fundamental operations of Arithmetic are extended and generalized. In Elementary Algebra we have already had several instances of this extension, and as we are now to have a much wider extension of the operations of addition and multiplication, attention should be directed to the principles involved.

In the beginning of Algebra, we have seen the operation of addition, which in Arithmetic necessarily implies increase, so used as to produce diminution.

The reason of this is that Arithmetic does not recognize negative quantities as Algebra does, and therefore in employing the latter we have to extend the meaning of addition, so as to apply it to negative quantities. When thus applied, we have scen that it should mean to subtract the quantity which is negative.

In its primitive sense, as used in the third operation of Arithmetie, the word multiply means to add a quantity to itself a certain number of times. In this sense, there would be no meaning to the words " multiply by a fraction." But we extend the meaning of the word multiply to this case by defining it to mean taking a fraction of the quantity to be multiplied. We then find that the rules of multiplication will all apply to this extended operation.

This extension of multiplication to fractions does not take account of negative multipliers. In the latter case we can extend the meaning of the operation by providing that the algebraic sign of the quantity shall be changed when the multiplier is negative. We thus have a result for multiplication by every positive or negative algehraic number.

Now that we have to use imaginary quantities as multi-
e operation of es increase, so re in employuddition, so as s applied, we uantity which
operation of mitity to itself would be no
But we exse by defining de multiplied. 1 all apply to
does not take case we can ling that the hen the mulpultiplication
pliers, a still further extension is necessary. Ilitherto our operations with imaginary units have been purely symbolic; that is, we have need our symbols and performed our operations without assigning any definite meaning to them. We shall now assign a geometric signification to operations with imaginary units, subject to these three necessary conditions:

1. The operations must be sulbject to the same rules as those of real quantities.
2. The result of operating with an imaginary quantity must be totally different from that of operating with a real one, and the imaginary fantity must signify something which a real cuantity does not take account of.
3. If the imaginary fuantity changes into a real one, the operation must change into the corresponding one with real quantities.
4. Geometric Representation of Imayinary Units. Certain propositions respecting the geometric representation of multiplication have been fully clucidated in Part I, and are now repeated, to introduce the corresponding representations of complex quantities.
I. All real mumbers, positive and negative, may be arranged along a line, the positive numbers increasing in one direction, the negative ones in the opposite direction from a fixed zero point. Any number may then be represented in magnitude by a line extending from 0 to the place it occupies.

We call this line a Vector.
II. If a number a be multiplied by a positive multiplier (for simplicity, suppose +1), the direction of its rector will remain unaltered. If it be multiplied by a negative multiplier (suppose -1), its vector will be turned in the opposite direction (from $0-a$ to $0+a$, or vice versa). Compare $\S 72$, where the coarse lines are the vectors of the several quantities.

III. If the number be multiplied twiee by -1 , that is, by $(-1)^{2}$, its vector will be restored to its first position, being twice turned, and if it be multiplied twice by +1 , that is, by $(+1)^{2}$, its rector will not be changed at all. Its vector will
therefore be found in its first position, whether we multiply it by the square of a positive or of a negative unit; in other words, both squares are positive.
IV. To multiply the line $+a$ twice by the iminginary mit i, is the same as multiplying it by i^{2} or -1 . Hence,

Multiplying b! the imasinary unit i must give the wector such a motion as, if repeated, will change it from + a to - a.

Such a motion is given by turning the vector through a right angle, into the position $+i a$. A second motion brings it to the position - a, the opposite of + a. A third motion brings it to -ia, a position the opposite of $+i a . ~ A ~ f o u r t h$ motion restores it to the original
 position $+a$.

If we call each of these motions multiplying iy i, we have, from the diagram, $a=a$, $i a=i a, i^{2} a=-a, i^{3} a=-i a$, $i^{4} a=a$, which corresponds exactly to the law governing the powers of $i(\$ 325)$. Hence:

If a quantity is represented by a vector extending from a zero point, the multiplication of this quantit! by the imaginary unit may be represented by turning the vector throughl 90°.
V. In order that multiplier and multiplicand may in this operation be interchanged without affecting the product, we must suppose that the vertical line which we have called $i a$ is the same as $a i$, that is, that this line represents a imaginary units.

We have therefore to count
 the imaginaly wnits along a vertical line on the same system that we count the real units on a luorizontal line.
we multiply it unit; in other
ima.ginary unit Hence, must give the lunge it from
 y iy i, we have, $a, i^{3} a=-i a$, : governing the
tor extending is quantity by y turniug the
 count the recul
335. Geometric Representation of a Complex Quantity. We have shown (§ 15) that algebraic addition may be represented by putting lines end to end, the zero point of each line added being at the end of the line next preceding. The distance of the end of the last line from the zero point is the algebraic sum.

On the same system, to represent the algebraic sum of the real and imaginary quantities a $+b i$,
 we lay off a units on the real (horizontal) line, and then b units from the end of this line in a vertical direction. The end of the vertical line will then be the position corresponding to $a+b i$.

It is erident that we should reach the same point if we first laid off f paits from 0 on the imaginary line, and then a units horizon a': Hence this system gives

$$
b i+a=a+b i
$$

as it ought to, to represent addition.
If a or b is negative, it is to be laid off in the opposite direction from the positive one. We then have the points corresponding to $-a+b i$, $-a-b i$, and $a-b i$, shown in the diagram, which should be earefully studied by the pupil.

The result we have reached is the following:
Every complex quantity $a+b i$ is consinleved as belonging to a certain point on the plane, mamely, that point uhich is reached b! laying off from the zero point a units in the horizontal direction and b units in the vertical direction.
336. Addition of Complex Quantities. If we have several complex terms to add, as $a+b i, \quad m-n i$, $p+q i$, we may lay them off separately in their appropriate magnitude and di-

rection, as in the figure, the last line terminating i a print R.

If we first add the quantities $a+b i$, ete., algebraically ($(324$), the result will be

$$
a+m+p+(b-n+q) i
$$

We may lay off this sum in one operation. The sum $a+m$ $+p$ will carry us from 0 to M, and the sum $(b-n+q) i$ from M to R , because $\mathrm{MR}=\ell-n+q$. Therefore we shall reach the same point R whether we lay the quantities off separately, or take their sum and lay off its real and imaginary parts separately.

33\%. Vectors of Complex Quantities. The question now arises by what straight line or vector shall we represent a sum of complex quantities? The answer is:

The wector of \because sum of several vectors is the straight line from the beginming of the first to the end of the last vector. added.

For example, the sum of the quantities $\mathrm{OX}=a$ and $\mathrm{XP}=b i$ is the vector OP .

It might seem to the student that the length of the vector representing the sum should be equal to the combined lengths of all the separate vectors. This difficulty is of the same kind as that encountered by the begimer in finding the sum of a positive and negative quantity less than either of them. The solution of the difficulty is simply that by addition we now mean something different from both arithmetical and algebraic addition. But the operation reduces to arithmetical addition when the quantities are all real and positive, because the vectors are then all placed end to end in the same straight line. Therefore there is no inconsistency between the two operations.

Two imaginary quantities are not equal, unless both their real and imaginary parts are equal, so that their sum shall terminate at the same point P. Their vectors will then coincide with each other. Hence:

Tuo vectors are not considered equal unless they agree in direction as well as length.
nating i: a
algebraically
he sum $a+m$ $(b-n+q) i$ efore we shall tities off sepaand imaginary
question now epresent a sum

OP.
e vector representof all the separate acountered by the quantity less than y that by addition tical and algebraic addition when the are then all placed is no inconsistency
mless both their ir sum shall terIl then coineide
less they agree

In other words, in order to determine a rector eomphetely, we must linow its direction as well as its lenglh.

This result embodies the theorem of the preceding chapter (s: Sa_{2}) that two complex quantities are not equal unless both their real and imaginary parts are equal. It is only in case of this double equality that the two complex quantities will belong to the same point on the phane.

Because OXP is a right angle, we have by the Pythagorean theorem of Geometry,
or

$$
\begin{aligned}
(\text { length of vector })^{2} & =a^{2}+b^{2} \\
\text { length of vector } & =\sqrt{a^{2}+l^{2}}
\end{aligned}
$$

We are careful to say length of vector, and not m rely vector, because the vector has direction as well as length, and the direction is as important an element as length.

To avoid repeating the words "length of," we shall put a dash orer the letters representing a vector when we consider only its length. Then $\overline{O X}$ will mean length of the line OX.

Def. The length of the yector, or the expression $\sqrt{a^{2}+b^{2}}$, is called the Modulus of the complex expression $a+b i$.

The modulus is the absolnte value of the expression, considered without respect to its being positive or negative, real or imaginary. Thus the different expressions,

$$
-5, \quad+5, \quad 3+4 i, \quad 4-3 i, \quad 5 i
$$

all hare the modulus 5 (because $\sqrt{3^{2}+4^{2}}=5$). The points which represent them are all 5 units distant from the zero point, and so lie on a circle, and their vectors are all 5 units in length.

The German mathematicians therefore call the modulus the absolute value of the complex quantity, and this is really a better term than the English expression modulus.

Def. The Angle of the vector is the angle which it makes with the line along which the real units are measured.

If $O A$ is this line, and $O B$ the rector, the augle is $A O B$.

EXERCISES.

Lay off the following complex quantities, draw the vectors corresponding to them, and find the modulus both by measurement and calculation :

1.	$4+3 i$.	2.	$4-3 i$.	3.	$-4+3 i$.
4.	$-4-3 i$.	5.	$3+4 i$.	6.	$3-4 i$.
7.	$-3+4 i$.	8.	$-3-4 i$.	9.	$5+7 i$.
10.	$5+6 i$.	11.	$5+5 i$.	12.	$5+4 i$.
13.	$3+2 i$.	14.	$3+i$.	15.	$3-i$.

16. $3-2 i$.
17. Draw a horizontal and vertical line; mark several points on the plane of these lines, and find by measurement the complex expressions for each point. Also, draw the several vectors and measure their length. Continue this exercise until the relation between the complex expressions and their points is well apprehended.

Note. The student may adopt any seale he pleases, but a scale of millimeters will be found convenient.
338. Geometric Multiplication. The question next arises whether the resnlts we obtain for multiplication of complex quantities follow, in all respects, the usual laws of multiplication, especially the commutative and distributive laws.

I. To multiply a vector by a real factor.

Let the vector be $a+b i$ and the factor m. The product will be

$$
m a+m b i
$$

In the geometric construction, let $\mathrm{OA}=a$ and $\mathrm{AB}=b i$. We shall
 then have, by the rule of addition,

$$
\text { Vector } \mathrm{OB}=a+b i
$$

When we multiply a by m, let $0 A^{\prime}$ be the product $m a$, and $\Lambda^{\prime} 3^{\prime}$ the product $m b i$. Because the lines $O A$ and AB are both multiplied by the same real factor m to form $O A^{\prime}$ and $A^{\prime} B^{\prime}$, we shall have

$$
\mathrm{OA}: \mathrm{AB}: \mathrm{OB}=0 \mathrm{~A}^{\prime}: \mathrm{A}^{\prime} \mathrm{B}^{\prime}: \mathrm{OB}^{\prime}
$$

Therefore the triangles $O A B$ and $O \Lambda^{\prime} B^{\prime}$ are similar and equiangular, so that

$$
\text { angle } \mathrm{A}^{\prime} \mathrm{OB}^{\prime}=\text { angle } \mathrm{AOB}
$$

This shows that the lines OB and OB^{\prime} coincide, so that BB^{\prime} is the continuation of OB in the same straight line. Moreover, the above proportion gives

$$
\mathrm{OB}^{\prime}=m \mathrm{OB}
$$

or, from (1), vector $\mathrm{OB}^{\prime}=m$ vector OB .
Therefore, multiplying a vector by a real factor changes its lengith without altering its direction.
II. To multiply a vector by the imasinary unit.

Multiplying $a+b i$ by i, the result is

$$
-b+a i
$$

The construction of the two vectors being made as in the figure, we have

$$
\begin{aligned}
& \mathrm{OB}=a+b i \\
& \mathrm{OQ}=-b+a i
\end{aligned}
$$

Becanse the triangles $O P Q$ and $O A B$ are right-angled at P and B, and have the sides containing the right angle equal in length, they are identically equal, and
angle $\mathrm{POQ}=$ angle $\mathrm{OBA}=90^{\circ}-$ angle BOA .
Hence the sum of the angles POQ and BOA is a right angle, and because POA is a straight line, therefore,

$$
\text { angle } \mathrm{BOQ}=90^{\circ} .
$$

Therefore, the result of multiplying the vector OB big the imaginary unit is to turn it 90° without changing its length.

We have assumed this to be the case when the vector represents a real quantity, or lies along the line $O B$; we now see that the same thing holds true when the vector represents a complex quantity.

If instead of the multiplier being simply the imaginary unit, it is of the form $m i$, then, by (I), in addition to turning the vector through 90°, we multiply it by n.
III. To multiply a vector by a complex quantity,

$$
m+n i
$$

This will consist in multiplying separately by m and $m i$, and idding the two products. Put $\mathrm{OB}=a+b i$, the vector to 'se multiplied; $0 N=$ $i n+n i$, the multiplier.

To multiply OB by m, we take a length OC, determined by the proportion,

$$
\mathrm{OC}: \mathrm{OB}=m: 1, \quad \text { (I) }
$$

whence by (I),

$$
\begin{aligned}
\mathrm{OC} & =m \cdot \mathrm{OB} \\
& =m(a+b i) .
\end{aligned}
$$

To multiply OB by $n i$, we take a length CD determined by the condition,
or

$$
\text { length } \mathrm{CD}=n \text { length } \mathrm{OB}
$$

$$
\begin{equation*}
\overline{\mathrm{CD}}: \overline{\mathrm{OB}}=n: 1 ; \tag{II}
\end{equation*}
$$

and to multiply by i, we place it perpendicular to OB. We then have,

$$
\mathrm{CD}=\mathrm{OB} \times n i
$$

In order to add it to $O C$, the other product, we place it as in the diagram, and thus find a point D which corresponds to the sum

$$
\mathrm{OC}+\mathrm{CD}=\mathrm{OB} \times m+\mathrm{OB} \times n i
$$

that is, to the product

$$
(m+n i)(a+b i)
$$

Now because $\overline{\mathrm{OC}}=\overline{\mathrm{OB}} \times m$ and $\overline{\mathrm{CD}}=\overline{\mathrm{OB}} \times n$, we have

$$
\overline{\mathrm{OC}}: \overline{\mathrm{CD}}=m: n=\overline{\mathrm{OM}}: \overline{\mathrm{MN}}
$$

and because the angles at M and C are right angles, the triangles OCD and OMN are similar. Therefore, angle COD $=$ angle MON.
Hence the angle AOD of the product-vector is equal to the sum of the angles of the multiplier and multiplicand.

For the lengtl $O D$ of the product-vector we have,
antity,
lyy m and $m i$, $b i$, the vector

D determined
to OB.
we place it as corresponds to
$\overline{3} \times n$, we have angles, the tri-
is equal to the icand.
have,

$$
\text { length } \begin{aligned}
\overline{\mathrm{OD}}^{2} & =\overline{\mathrm{OC}}^{2}+\overline{\mathrm{CD}}^{2} \\
& =m^{2}{ }^{2} \overline{\mathrm{OB}}^{2}+n^{2} \overline{\mathrm{OB}^{2}} \\
& =\left(m^{2}+n^{2}\right) \overline{\mathrm{OB}}^{2} .
\end{aligned}
$$

Extracting the square root,

$$
\text { length } \begin{aligned}
O \overline{\mathrm{D}} & =\sqrt{m^{2}+n^{2}} \cdot \overline{\mathrm{OB}} \\
& =\sqrt{m^{2}+u^{2}} \cdot \sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Therefore the length of the product-vector is equal to the products of the lengths of the vectors of the factors.

Combining these two results, we reach the conclusion:
The morlulus of the moduct of two comple.v factors is cqueal to the product of their moduli.

The angle of the product is equal to the sum of the angles of the fuctors.
339. The Roots of Unity. We have the following eurious problem:

Given, a vector $0 A$, which call a; it is required to find a complex factor x, such that when we multiply $a n$ times by x, the last product shall be a itself. That is, we must have

$$
x^{n} a==a .
$$

The required factor must be one which will turn the vector round without changing its length. Let us begin with the case of $n=3$.

Since three equal motions must restore $O A$ to its original position, the condition will be satisfied by letting x indicate a motion through 120°, so that OA shall take the position $O B$ when angle $\mathrm{AOB}=120^{\circ}$. Then, P being the foot of the p erpendicular from B upon $\Lambda 0$ produced, we shall have augle $\mathrm{POB}=60^{\circ}$, and angle $\mathrm{PBO}=30^{\circ}$. Therefore,
and

$$
\overline{\mathrm{PO}}=\frac{1}{2} a, \quad \overline{\mathrm{~PB}}=\frac{\sqrt{ } 3}{2} a,
$$

$$
\text { vector } \mathrm{OB}=x a=-\frac{1}{2} a+\frac{\sqrt{ } 3}{2} a i \text {. }
$$

Becanse the factor x has not changed the length of the line, the modnlus of x is mity, and becanse it has turned the line through 120°, its angle is 120°. Therefore its value is

$$
-\mathrm{OP}+\mathrm{PB} i
$$

on a scale of numbers in which $O B=1$; that is,

$$
x=-\frac{1}{2}+\frac{\sqrt{ } 3}{i} i .
$$

Reasoning in the same way with respect to the product $x^{2} a$, which produces the vector OC, we find

$$
x^{2}=-\frac{1}{2}-\frac{\sqrt{ } 3}{2} i
$$

an equation which we readily prove by squaring the preceding value of x and reducing.

Multiplying these values of x and x^{2}, we find

$$
x^{3}=1
$$

which onght to be the case, because $x^{3} a=a$. Hence,
The complex quantity $-\frac{1}{2}+\frac{\sqrt{ } 3}{2} i$ is a cube root of unity.

But the vector $0 C$, of which the angle is 240°, also represents a cube root of unity, if we suppose $O C=1$, because three motions of 940° each turn a vector through 720°, or two revolutions, and thus restore it to its original position. This also agrees with the algebraic process, because, by squaring the above value of x^{2}, we have

$$
\left(-\frac{1}{2}-\frac{\sqrt{ } 3}{2} i\right)^{2}=\frac{1}{4}-\frac{3}{4}+\frac{\sqrt{ } 3}{2} i=-\frac{1}{2}+\frac{\sqrt{ } 3}{2} i=x
$$

and by repeating the process we find

$$
\left(-\frac{1}{2}-\frac{\sqrt{ } 3}{2} i\right)\left(-\frac{1}{2}+\frac{\sqrt{ } 3}{2} i\right)=1
$$

Since 1 itself is a cube root of unity, because $1^{3}=1$, we conclude :

There are theree cube roots of unity.
the of the line, uned the line alue is
e product $x^{2} a$,
the preceding

Hence,
cube root of
10°, also repre$y=1$, becaluse h 720°, or two rosition. This y squaring the
$\frac{\sqrt{ } 3}{2} i=x$,

We readily find, by the process of $\$ 334$, IV, that

$$
i,-1,-i, \text { and } 1 \text {, }
$$

are all fourth roots of mity.
By a course of reasoning similar to the above for any value of n, we conclude:

The $n^{\text {th }}$ roots of unity are n in number.

EXERCISES.

1. Form the first eight powers of the expression

$$
\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i
$$

show that the eighth power is 1 , and lay off the vector corresponding to each power.
2. Form the first twelve powers of

$$
\frac{\sqrt{ } 3}{2}+\frac{1}{2} i
$$

and show that the twelfth power is +1 .
3. Find the fifth and sixth roots of unity loy dividing the circle into five and six parts, and either computing or measuring the lengths of the lines which determine the expression.

Note. The student will remark the similarity of the gencral problem of the $u^{\text {th }}$ roots of mity to that of dividing the circle into n equal parts (Geom., Book VI).

BOOK XIII.

the general theory of equa. TIONS.

Every Equation has a Root.

340. In Booi. III, equations containing one unknown quantity were reduced to the normal form

$$
A x^{n}+B x^{n-1}+C x^{n-2}+\ldots+F=0 .
$$

If we divide all the terms of this equation by the coefficient A, and put, for brerity,

$$
\begin{aligned}
& p_{1}=\frac{B}{A} \\
& p_{2}=\frac{C}{A} \\
& \text { ctc. } \\
& p_{n}=\frac{F}{A},
\end{aligned}
$$

the equation wiil

$$
x^{n}+p_{1} x^{n-1}+x_{2} x^{x^{n-2}}+\ldots+p_{n-1} x+p_{n}=0 . \quad(a)
$$

This equation is catled the General Equation of the $\boldsymbol{n}^{\text {th }}$ Degree, because it is the form to which every algebraic equation can be reduced by assigning the proper values to n, and to p_{1}, p_{2}, p_{3}, etc.

The n quantities $p_{1}, p_{2}, \ldots p_{n}$ are ealled the Coefficients of the equation.

We may consider p_{n} as the coefficient of $x^{0}=1$.
341. Theorem I. Everyalgebraic equation has a root, real or imaginary.

That is, whatever numbers we may put in place of p_{1}, p_{2}, $p_{3}, \ldots p_{n}$, there is always some expression, real or imaginary, which, being substituted for x in the equation, will satisfy it.

Rem. The theorem that every equation has a root is demonstrated in special treatises on the theory of equations, but the demonstration is too long to be inserted here.

If we suppose the values of the coefficients p_{1}, p_{2}, etc., to vary, the roots will vary also. Hence,
'Theorem II. The roots of an algebraic equation at?. functions of its cocfficients.

Example. In Chapter VI we have shown that the roots of a quadnatic equation are functions of the cocfficients, because if the equation is

$$
\text { the root is } \quad x=\frac{-p \pm \sqrt{p^{2}-q}}{2},
$$

$$
\begin{gathered}
x^{2}+p x+q=0 \\
x=\frac{-p \pm \sqrt{p^{2}-q}}{2}
\end{gathered}
$$

which is a function of p and q.
342. Equations which can be solved. If the degree of the equation is not higher than the fourth, it is always possible to express the root algebraically as a function of the coelficients.

But if the equation is of the fifth or any higher degree, it is not possible to express the value of the root of the general equation by any algebraic formule whatever.

Ihis important theorem was first demonstrated by A bel in 1825. Previous to that time, mathematicians frequently attempted to solve the general equation of the fifth degree, but, of course never sneceeded.

This restriction applics only to the general equation. in which the coefficients p_{1}, p_{2}, p_{3}, ete., are all represented by separate algebraic symbols. Such special values may he assigned to these coefficients that equations of any degree shall be soluble.
343. The problem of finding a root of an equation of the higher degrees is generally a very complex oue. If, however, the equation has the roots $-1,0$, or +1 , they can easily be discovered by the following rules:
I. If the algebraic sum of the cocfficients in the equcution vanisies, then +1 is a root.

1I. If the sum of the cocfficients of the even pouers of x is equal to that of the cocfficients of the odd powers, then - 1 is a root.
III. If the absolute term p_{n} is wanting, then 0 is a root.

These rules are readily proved by putting $x=+1$, then $x=-1$, then $x=0$ in the general equation (a) and noticing what it then reduces to. The demonstration of Il will be a grood exercise for the student.

Number of Roots of General Equation.

344. In the equation (1), the left-hand number is an entire function of x, which is equal to zero when the equation is satisfied. Instead of supposing an equation, let us suppose x to be a variable quantity, which may have any value whatever, and let us study the function of x,

$$
x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{n}
$$

which for brevity we may call $F x$.
Whatever value we assign to x, there will be a corresponding value of $F x$.

Example. Consider the expression

$$
F x=x^{3}-7 x^{2}+30
$$

Let us suppose x to have in succession the values - 4, $-3,-2,-1,0,1,2$, etc., and let us compute the corresponding values of Fx. We thus find,

$$
\begin{array}{rrrr}
x & =-4, & -3, & -2, \\
F x & =-140, & -54, & 0, \\
\hline
\end{array}
$$

x	$=1$,	2,	3,	4,	5,	6,	$\%$,
$F x$	$=+30$,	+16,	0,	-12,	-14,	0,	+36,

We see that while x varies from -4 to +8 , the value of, Fx fluctuates, being first negative, then changing to positive, then back to negative again, and finally becoming positive once more.

We also see that there are three special values of x, namely, $-2,+3$, and +6 , which satisfy the equation $F x=0$, and which are therefore roots of this equation.
en poucres of odd poucrs, then 0 is a

1 , then $x=-1$, tit then reduces the student.

nation.

nber is an enthe equation is t us suppose x alue whatever,
$+p_{n}$,
a correspond-
he values -4 , pute the corre-

> 0, +36,
> 7,
> $+36, \quad+100$.
> , the value of ig to positive, g positive once
> s of x, namely, i $F x=0$, and
345. Representation of Fx by a Curve. In Book VIII it was shown how a function of a variable of the first degree might be represented to the eye by a straight line. The relation between a variable and any function of it may be represented to the eye in the same way by a curve, as shown in Geometry, Book VII. We take a base line, mark a zero point upon it, and lay off any number of equidistant values of x. At each point we erect a perpendicular proportional to the corresponding value of $F x$ at that point, and draw a curve throngh the ends.
 of the curve now show to the eye the corresponding fluctuations of $F x$.

When $F x$ is negative, the curve is below the hase line. When $F x$ is positive, the curve is above the base line.
The roots of the equation $F x=0$ are shown by the points at which the curve crosses the base line. In the present calse these points are $-2,+3,+6$.

In order to distinguish the roots from the variable quantity x, we may call them $\kappa, \beta, \gamma, \delta$, etc., or x_{1}, x_{2}, x_{3}, etc., or a_{1}, a_{2}, a_{3}, etc., the symbol x being reserved for the variable.

The distinction between x and the roots will then he this:
x is an independent variable, which may have any value whatever.
$F \cdot x$ is a function of x of which the value is fixed by that of x.
$\boldsymbol{c}, \beta, \gamma$, ete., or x_{1}, x_{2}, x_{3}, ete., are special values of x which, being substituted for x, satisfy the equation

$$
F x=0 .
$$

Theonem. An equation with real coefficients, of which the degree is an odd number, must huve at least one real root.

Proof. 1. When n is odd, x^{n} will have the same sign (+ or -) as x.
2. So large a value, positive or negative, may be assigned to x that the term x^{n} shall be greater in absolute magnitude than all the other terms of the expression Fr. For, let us put the expression $F . c$ in the form

$$
F x=x^{n}\left(1+\frac{p_{1}}{x}+\frac{p_{2}}{x^{2}}+\cdots+\frac{p_{n}}{x^{n}}\right)
$$

If we suppose x to increase indefinitely cithe in the positive or negative direction, the terms $\frac{p_{1}}{x}, \frac{p_{2}}{x^{2}}$, etc., will all approach 0 as their limit ($\$ 303, \mathrm{Th} . \mathrm{I}$). Therefore the expression $1+\frac{p_{1}}{x}+\frac{p_{2}}{x^{2}}+$ etc. will approach unity as its limit, and w^{\cdots}. therefore be positive for large values of r, both positive and negative. The whole expression will then have the same sign as the factor x^{n}, and, n being odd, will have the same sign as x.
3. Therefore, between the value of x for which $F x$ is negative and that for which it is positive there must be some value of x for which $F x=0$, that is, some root of the equation $F x=0$.

For illustration, take the preceding cubic equation.
Cor. An equation of odd degree has an odd number of real roots.

For, as Fx changes from negative to positive infinity, it must cross zero an odd number of times.
346. Theorem I. If we divide the expression Fix by $x-a$, the remainder will be Fa, or

$$
\text { Remainder }=a^{n}+p_{1} \iota^{n-1}+p_{2} a^{n-2}+\ldots+p_{n}
$$

Special Illustration. Let the student divide

$$
x^{3}+5 x^{2}+3 x+1
$$

by $x-a$, according to the method of $\S 96$. He will find the remainder to come out

$$
a^{3}+5 a^{2}+3 a+1
$$

General Proof. When we divide $F x$ by $x-a$, let us put Q, the quotient ; R, the remainder.
Then, because the dividend is equal to the product, Divisor \times Quotient + Remainder,

$$
(x-a) Q+R=F x .
$$

Two things are here supposed:

1. That this equation is an identical one, true for all values of x. This must be true, because we have made no supposition respecting the value of x.
2. That we have carried the division so far that the remainder R dues not contain x.

Because it is true for all values of x, it will remain true when we put $x=a$ on both sides. It thus reduces to

$$
R=F(u),
$$

which is the theorem enunciated.
The ralue of x being still unrestricted, let us in dividing take for a a root a of the general equation $F x=0$. Then, by supposing $x=a$, the equation (a) will be satisticd, or

$$
F u=0 .
$$

Therefore if we divide the general expression $F x$ by $x-«$, the remainder $F a$ will be zero. Hence.

Theonem II. If we denote by a a root of the equation $F x=0$, the capression $F \cdot x$ will be cacactiy divisible by $x-c$.

Illustration. One root of the equation

$$
x^{3}-x^{2}-11 x+15=0
$$

is 3 . If we divide the expression

$$
x^{3}-x^{2}-11 x+15
$$

by $x-3$, we shall find the remainder to be zero.
34\%. When we divide $F x$ by $x-\boldsymbol{c}$, the highest pover of x in the quotient will be x^{n-1}. Therefore the quotient will be an entire function of x of the degree $n-1$.

Illustration. The quotient from the last division was

$$
x^{2}+2 x-5,
$$

which is of the second degree, while the original expression was of the third degree.

If we call this quotient $F_{1} x$, we shall have, by multiplying divisor and quotient,

$$
F . c=(x-c) F_{1} x
$$

Now suppose β a root of the equation

$$
F_{1} x=0 ;
$$

then $F_{1} x$ will, by the preceding theorem, be exactly divisible by $x-\beta$.

The quotient from this division will be an entire function of x of the degree $n-2$. This function may again be divided by $x-\gamma$, representing by γ the root of the equation obtained by putting the function equal to zero, and so on.

The results of these successive divisions may therefore be expressed in the form

$$
\left.\begin{array}{rl}
F_{x} & =(x-«) F_{1} x \ldots(\text { Degree } n-1), \\
F_{1} x & \left.=(x-\beta) F_{2} x \ldots \text { (Degree } n-2\right), \tag{1}\\
F_{2} x & \left.=(x-\gamma) F_{3}^{\prime} x \ldots \text { (Degree } n-3\right) \\
\text { etc. } & \text { etc. etc. }
\end{array}\right\}
$$

Since the degree is diminished by unity with every division, we shall at length have a quotient of the first degree in x, of the form

$$
x--\varepsilon,
$$

ε being a constant.
Then, by substituting in the equations (1) for each function of x its value in the equation next below, we shall have

$$
F x=(x-\kappa)(x-\beta)(x-\gamma) \ldots(x-\varepsilon)
$$

the number of factors being equal to the degree of the original equation. Hence,

Tineonem I. Ever?f entire function of x of the nth degree may be divided into n fuctors, each of the first alegree in x.

Since a product of several factors becomes zero whenever any of the factors is zero, it follows that the equation

$$
F x=0
$$

will be satisfied by putting x equal to any one of the quantities c. $\beta, \gamma, \ldots, \ldots$, because in cither case the product

$$
(x-\kappa)(x-\beta)(x-\gamma) \ldots(x-\varepsilon)
$$

will vanish. Therefore the quantities

$$
\varkappa, \beta, \gamma, \ldots \varepsilon
$$

are all roots of the original equation $F x=0$. Hence,
Theorem II. An algebraic equation of the $n^{\text {th }}$ alegrec luas n roots.

We have seen ($\$ 195$) that a quadratic equation has two roots. In the same way, a cubic equation has three roots, one of the fourth degree four roots, etc.

Moreover, a product camnot vanish unless one of the factors vanishes. Hence the product

$$
F x \text { or }(x-\varepsilon)(x-\beta)(x-\gamma) \ldots(x-\varepsilon)
$$

camnot vanish unless x is equal to some one of the quantities, $\varepsilon, \beta, \gamma, \ldots \varepsilon$. Hence,

An equation of the $n^{\text {th }}$ agegree can have no more then n roote.

34S. We may form an equation of which the roots shall be any given quantities, a, b, c, etc., by forming the product,

$$
(x-a)(x-b)(x-c), \text { ctc. }
$$

Example. Form an equation of whieh the roots shall be

$$
-1, \quad+1, \quad 1+2 i, \quad 1-2 i .
$$

Solution. We form the product

$$
(x+1)(x-1)(x-1-2 i)(x-1+2 i)
$$

which we find to be

$$
x^{4}-2 x^{3}+4 x^{2}+2 x-5 .
$$

Therefore the required equation is

$$
x^{4}-2 x^{3}+4 x^{2}+2 x-5=0
$$

EXERCISES.

Form equations with the roots:

1. $\quad 2+\sqrt{ } 3, \quad 2-\sqrt{ } 3,-2, \quad+1$.
2. $3+\sqrt{ } 5, \quad 3-\sqrt{ } 5,-3$.
3. $\quad 2,-2,4+\sqrt{ } 7,4-\sqrt{ } \%$.
4. $1+\sqrt{ } 3, \quad 1-\sqrt{ } 3, \quad 1+\sqrt{ } 5, \quad 1-\sqrt{ } 5$.
5. When we can find one root of an equation, then, by dividing the equation by x minus that root, we shall have an equation of lower degree, the roots of which will be the remaining roots of the given equation.

Example. One root of the equation

$$
x^{3}-x^{2}-11 x+15=0
$$

is 3. Find the other two roots.
Dividing the given equation by $x-3$, the quotient is

$$
x^{2}+2 x-5
$$

Equating this to zero, we have a quadratic equation of which the roots are

$$
-1+\sqrt{ } 6 \quad \text { and } \quad-1-\sqrt{ } 6
$$

Hence the three roots of the original equation are

$$
\begin{gathered}
3,-1+\sqrt{ } 6,-1-\sqrt{ } 6 \\
\text { EXERCISES. }
\end{gathered}
$$

1. One root of the equation

$$
x^{3}-3 x^{2}-14 x+12=0
$$

is -3 . Find the other two roots.
2. Find the five roots of the equation

$$
x^{5}-4 x^{4}+12 x^{3}+4 x^{2}-13 x=0
$$

(Compare § 343.)
350. Equal Roots. Sometimes, in solving an equation, several of the roots may be identical.

For example, the equation

$$
x^{3}-6 x^{2}+12 x-8=0
$$

has no root except 2. If we divide it by $x-2$, and solve the resulting quadratic, its roots will also be 2 . Hence, when we factor it the result is

$$
(x-2)(x-2)(x-2)=0
$$

In this case the equation is said to have three equal roots. Hence, in general,

The n roots of an equation of the $n^{\text {th }}$ ategree are not all necessarily different from cach other, but two or more of them may be equal.

Relations between Coefficients and Roots.

351. Let us suppose the roots of the general equation of the $n^{\text {th }}$ degree

$$
x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots .+p_{n-1} x+p_{n}=0
$$

to be $\kappa, \beta, \gamma, \ldots \varepsilon$.
We have shown ($\$ 341$) that these roots are functions of the coefficients $p_{1}, p_{2}, \ldots p_{n}$. To find these functions is to solve the equation, which is generally a very difficult problem.

But the coefficients can also be expressed as functions of the roots, and this is a very simple process which we have already performed in some special cases by forming equations having given roots (§ 348).

If we form an equation with the two roots, a and β, the result will be

$$
0=(x-c)(x-\beta)=x^{2}-(c+\beta) x+c \beta
$$

Comparing this with the general form,

$$
\begin{aligned}
& x^{2}+p_{1} x+p_{2}=0 \\
& p_{1}=-(\iota+\beta) \\
& p_{2}=c \beta
\end{aligned}
$$

we sec that
a result already reached ($\S S 198,199$).
Next form an equation with the three roots, κ, β, γ.
Multiplying $(x-c)(x-\beta)$ by $x-\gamma$, we find the equation to be

$$
x^{3}-(\iota+\beta+\gamma) x^{2}+(\varkappa \beta+\beta \gamma+\gamma c) x-\iota \beta \gamma=0
$$

So in this case, $n_{1}=-(\cdots+\beta+\gamma)$,

$$
p_{\mathbf{2}}=\kappa \beta+\beta \gamma+\gamma \kappa
$$

$$
\gamma_{3_{2}}=-\varepsilon \beta \gamma
$$

Adding another root δ, we find the result to be

Generalizing this process, we reach the following conclusions:

The coefficient p_{1} of the second term of the general equation is equal to the sum of the roots taken negatively.

The coefficient p_{2} of the third term is equal to the sum of the products of every combination of two roots.

The coefficient p_{3} of the fourth term is equal to the sum of the products of every combination of three roots taken negatively.

The last term is equal to the continued product of the negatives of the roots.

35². Symmetric Functions. It will be remarked that the preceding expressions for the coefficients p_{1}, p_{2}, etc., are all syimmetric functions of the roots c, β, γ, ete. (§ 256.)

The following more extended theorem is true:
Theorem. Evely rational symmetric function of the roots of an equation may be expressed as a rational function of the coefficients.

Example. From the equations (\sim) we find

$$
\begin{aligned}
p_{1}^{2}-2 p_{2} & =\kappa^{2}+\beta^{2}+\gamma^{2}+\delta^{2} \\
3 p_{1} p_{2}-p_{1}{ }^{3}-3 p_{3} & =\kappa^{3}+\beta^{3}+\gamma^{3}+\delta^{3}
\end{aligned}
$$

We thus reach the curious conclusion that although wemay not be able to find any individual root of an equation, yet there is no diffienty in finding the continned product of the roots, their sum, the sum of their squares, of their cubes, ete.

The general demonstration of this theorem, and the methods by which any rational symmetrical function of the roots may be determined, are found in more advanced treatises.

$$
\begin{align*}
& p_{1}=-(\Omega+\beta+\gamma+\delta), \\
& p_{2}=« \beta+« \gamma+« \kappa+\beta \gamma+\beta \delta+\gamma \delta, \tag{2}\\
& \nu_{3}=-\boldsymbol{\iota} \beta \gamma-\boldsymbol{\iota} \beta \delta-« \gamma \delta-\beta \gamma \delta, \\
& \nu_{4}=\kappa \beta \gamma \delta \text {. }
\end{align*}
$$

Derived Functions.

353. Def. If in the expression

$$
F: c=x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{n}
$$

we substitute $x+h$ for x, and then develop in powers of h, the coefficient of the first power of l is called the First Derived Function of \boldsymbol{x}.

To find the First Derived Function. Putting $x+h$ for x, the result is
$F(x+h)=(x+h)^{n}+p_{1}(x+h)^{n-1}+\ldots+p_{n-1}(x+k)+p_{n}$.
Developing the several terms of the second member by the binomial theorem, we have

$$
\begin{aligned}
(x+h)^{n} & =x^{n}+n x^{n-1} h+\frac{n(n-1)}{2} x^{n-2} h^{2}+\text { etc. }, \\
(x+h)^{n-1} & =x^{n-1}+(n-1) x^{n-2} h+\text { etc. } \\
(x+h)^{n-2} & \left.=x^{n-2}+(n-2)\right) x^{n-3} h+\text { etc. } \\
\text { etc. } & \text { etc. } \quad \text { etc. }
\end{aligned}
$$

Substituting these expressions in the equation (a) and leaving out the terms in l^{2}, l^{3}, etc. (because we do not want them), we have

$$
\begin{align*}
F(x+ & h)=x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{m} \\
& +\left[n x^{n-1}+(n-1) p_{1} x^{n-2}+(n-2) p_{2} x^{n-3}+\cdots+p_{n-1}\right] h \\
& + \text { omittel terms multiplied by } h^{2}, h^{3}, \text { etc. } \tag{b}
\end{align*}
$$

We see that the first line is here the original $F x$, while the coefficient of l in the second line is by definition the derived function. So, if we put $F^{\prime} x$, the derived function of $F x$,
we have $F(x+h)=F x+h F^{\prime} x+$ terms $\times l^{2}, l^{3}$, etc.
Let the student, as an excrecise, now find the derived function of

$$
x^{4}+3 x^{3}-5 x^{2}+7 x-9
$$

by the process just followed, commencing with equation (a).
Examining the coefficient of l in (b), we see that the derived function is formed by the following rule :

Mrultiply each term by the exponent of the variable in that term, and diminish the exponent by unity.

The last or constant term disappears entirely from the expression.

EXERCISES.

Form the derived function of the following expressions:

1. $x^{5}+5 x^{4}+8 x^{3}-9 x^{2}-x+1$.

Ans. $5 x^{4}+20 x^{3}+24 x^{2}-4 x-1$.
2. $x^{7}-2 x^{5}-2 x^{3}-2 x$.
3. $x^{6}+12 x^{3}-24 x^{3}+x^{2}+\%$
4. $x^{4}-2 u x^{3}+3 b^{2} x^{2}+a^{2} b x$.
5. $x^{5}-5 m x^{4}+10 m x^{3}-15 m x^{2}$.

Rem. The student should obtain the result by substituting $x+h$ for h in each equation and developing, until he is master of the process.
354. Seconl Form of the Derived Function. If, as before, we put $\kappa, \beta, \gamma, \delta$, etc., for the roots of the equation $I \cdot x=0$, we shall have

$$
\begin{equation*}
F \cdot x=(x-\varkappa)(x-\beta)(x-\gamma) \ldots(x-\varepsilon) \tag{c}
\end{equation*}
$$

Let us form the derived function from this expression.
Putting $x+h$ for x, it will become
$(h+x-«)(h+x-\beta)(h+x-\gamma) \ldots(h+x-\varepsilon)$.
Studying this expression, and forming the products which contain h when threc or four factors only are included, we see that the coefficient of the h in the first factor is $(x-\beta)(x-\gamma)$ \ldots... in the second factor $(x-a)(x-\gamma) \ldots$, etc. That is, the total coefficient of h will be

$$
\begin{aligned}
& (x-\beta)(x-\gamma) \ldots(x-\varepsilon), \text { omitting first term } ; \\
+ & (x-\kappa)(x-\gamma) \ldots(x-\varepsilon) \text {, omitting sceond term; } \\
\text { etc. etc. } & \text { etc. } \\
+ & \left(x-_\right)(x-\beta)(x-\gamma) \ldots \text { omitting last term. }
\end{aligned}
$$

But comparing with (c), we see that the first of these products is $\frac{F x}{x-a}$, the sccond is $\frac{F \cdot c}{x-\beta}$, ctc., to the last, which is $\frac{F \varepsilon}{x-\varepsilon}$. Hence,
evariable in uity. y from the ex-
xpressions:
$2-4 x-1$
tituting $x+l$ for the process.
m. If, as bef the equation
$-\varepsilon)$
spression.
$\hbar+x-\varepsilon)$.
roducts which cluded, we see $(x-\beta)(x-\gamma)$ etc. That is,
first term ; second term;
last term.
first of these to the last,

DERIVED FUNCTIONS.
429

$$
\begin{equation*}
F^{\prime \prime} x=\frac{F x}{x-6}+\frac{F x}{x-\beta}+\frac{F x}{x-\gamma}+\ldots+\frac{F x}{x-\varepsilon} . \tag{ll}
\end{equation*}
$$

Illustration. Let us take once more the expression of § 344,

$$
F x=x^{3}-7 x^{2}+36,
$$

of which the three roots are $-2,3$, and 6 . Its derived function, by method (1), is

$$
3 x^{2}-14 x
$$

Expressing $F x$ as a product of factors, it is

$$
F x=(x+2)(x-3)(x-6) .
$$

By (d) the derived function is

$$
(x-3)(x-6)+(x+2)(x-6)+(x+2)(x-3)
$$

which reduces to $3 x^{2}-14 x$, the same value as by the first method.
355. Theonem I. When the derived function is positive, the original function increases with x; when it is negative, the function decreases as x increases.

Proof. When we increase x by the quantity $h, F x$ is changed to $F(x+h)$, and is increased by the difference

$$
F^{\prime}(x+h)-F x .
$$

But, by (b) and (b^{\prime}), we have

$$
\begin{align*}
F(x+h)-F x & =h F^{\prime} x+h^{2} \times \text { other terms } \\
& =h\left(F^{\prime} x+h \times \text { other terms }\right) . \tag{e}
\end{align*}
$$

Now we may take the increment h so small that $h \times$ other terms shall be less than $F^{\prime} x$, and then $F^{\prime} x+h \times$ other terms will have the same sign $\left(+\right.$ or -) as $F^{\prime} x$.

Then, supposing h positive, the increment

$$
F(x+h)-F x
$$

will be positive when $F^{\prime} x$ is positive, and negative when it is negative.

Theorem II. If an equation has cqual roots, such root will cllso be a root of the derived function.

Proof. Let β be the root which $F x=0$ has in duplicate. Then when $i a$ is factored, it will be of the form

$$
F \dot{x}=(x-\varkappa)(x-\beta)(x-\beta)(x-\gamma) \ldots(x-\varepsilon) .
$$

Now when we form $l^{\prime} x$ by method (z), the fictor $(x-\beta)$ will be left in all the terms. Therefore $x-\beta$ will be a factor of $F^{\prime} x$. 'Therefore, when $x=\beta$, then $F^{\prime} x=0$, so that β is a root of the equation $r^{\prime} x=0$.
356. If the equation $F \cdot x=0$ contains no equal roots, and if we suppose $x=\imath$ in equation ((l), all the terms exeept the first will vamish, because the common numerators $f x$ contain $x-$ a as a factor.

In the case of the first term, both numerator and denominator vanish when $x=\pi$; therefore we must find the limit of $\frac{F x}{x-a}$ when x approaches r. This is easy, because

$$
\frac{F x}{x-\epsilon}=(x-\beta)(x-\gamma) \ldots(x-\varepsilon)
$$

Therefore, by supposing x to approach c, we shall have

$$
\operatorname{Lim} . \frac{F x}{x-\varkappa}(x=a)=(\varkappa-\beta)(\varkappa-\gamma) \ldots(\varepsilon-\varepsilon) .
$$

Therefore, by changing x into ${ }^{\circ}$ in (d), we find

$$
F^{\prime} \iota=(c-\beta)(c-\gamma) \ldots(\notin-\varepsilon) .
$$

IIence
The Aerived function of a root which has no other root equal to it is the continued product of its clifference from all the other roots.

Significance of the Derived Function.

35\%. Theorem. The devired function evgrosses the rate of increase of the function as compared with that of the retriathe.

Pronf. The eqmation (e) may be expressed in the form

$$
F^{\prime}(x+!!)=F^{\prime} x+h\left(F^{\prime} x+B h\right)
$$

where $B l^{2}$ is the sum of the remaining terms of the development in powers of h.

We then have

$$
\text { Inerement of } x=h
$$

Corresponding increment of $F x=F(x+h)-F x$

$$
=h\left(l^{\prime \prime} x+b h\right)
$$

Ratio of these increments, $\frac{h\left(F^{\prime} x+B h\right)}{h}=F^{\prime} x+1 h h$.
If we suppose the increment h to approach zero as its limit, the product $B h$ will also approach zero, and the ratio will approach $\mu^{\prime \prime} x$ as its limit.

But this ratio of the inerements may be considered as the ratio of the arerage rate of increase of the function F to that of the variable x.

Hence, when we plot the valnes of $F x$ by a curre, as in §345, the derived function shows the slope of the curve at each point.

When the derived function is positive, the eurve is running upward in the positive direction, as fron: $:=-3$ to $x=0$, and from $x=+5$ to $x=+\infty$.

When the derived function is negative, the curve slopes downard, as from $x=0$ to $x=+4$.

When the derived finction is zero, the curve at the corresponding point runs parallel to the base line, as at 0 and $+4 \frac{2}{3}$. If this point corresponds to a root of the equation, the curve will coincide with the base line at this point, and will therefore be tangent to it. Hence, from $\$ 356$, Th. II,

A pair of equal roots of an equation are indicated b!g the curve touching the base line without intersecting it.

Forms of the Roots of Equation.

358. Theorem I. Tmaginary roots enter an equation with real cocfjicients in pairs.

That is, if $a+b i$ be a root of such an equation, then $a-b i$ will also be a root.

Proof. Let

$$
\begin{equation*}
x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{n}=0 \tag{1}
\end{equation*}
$$

be the equation with real cocflicients, and let us suppose that $a+b i$ is a root of this equation. If we substitute $a+b i$ for x, we shall have

$$
\begin{gathered}
x^{n}=a^{n}+n a^{n-1} b i-\frac{n(n-1)}{2} a^{n-2} b^{2}-\left(\frac{n}{3}\right) a^{n-3} b^{3} i+\text { ctc. } \\
p_{1} x^{n-1}=p_{1} a^{n-1}+p_{1} a^{n-2} b i-\text { etc. }
\end{gathered}
$$

If we substitute all the terms thus formed in equation (1), and collect the real and imaginary terms separately, we shall have a result

$$
A+B i=0
$$

(§ 324), A signifying the sum of all the real terms,

$$
a^{n}, \quad-\frac{n(n-1)}{2} a^{n-2} b^{2}, \quad p_{1} a^{n-1}, \quad \text { ctc. }
$$

and $B i$ the sum of all the imaginary ones.
In order that this equation may be satisfied, we must have identically

$$
A=0, \quad B=0 \quad\left(\S 32^{7}\right)
$$

Next let us substitute $a-b i$ for x. Since the even powers of $b i$ are all real, and the odd powers all imaginary, this change of sign will leave all the real terms in (1) unchanged, but will change the signs of all the imaginary terms. Hence the result of the substitution will be

$$
A-B i
$$

But if $a+b i$ is a root, then, as already shown, $A=0$ and $B=0$; whence

$$
A-B i=0
$$

also, and therefore $a-b i$ is also a root.
Def. A pair of imaginary roots which differ only in the sign of the coefficients of the imarinary unit are called a pair of Conjugate Imaginary Roots.

Theorem II. In the expression Fx every pair of conjugate imasinary factors form a real product of the second degree in x.

Proof. If in the expression

$$
F x=(x-c)(x-\beta)(x-\gamma) \ldots(x-\varepsilon)
$$

we suppose c and β to be a pair of conjugate imaginary roots, which we may represent in the form

$$
a=a+b i, \quad \beta=a-b i
$$

then the product of the terms $(x-a)(x-b)$ or of

$$
(x-a-b i)(x-a+b i)
$$

will be

$$
(x-a)^{2}+z^{2}
$$

or $\quad x^{2}-2 a x+a^{2}+l^{2}$,
a real expression of the second degree in x.
Cor. Since Fx can always be selarated into factors of the first degree, cither real or imaginary ($\$ 347$, Th. I), and since all the imaginary factors enter in pairs of which the prodnct is real, we conclude:

Erevy entire function of x with real cocfficients maty be divialed into real fuctors of the first or second degiree.

Decomposition of Rational Fractions.

359. Def. A Rational Fraction is one which may be reduced to the form

$$
\begin{equation*}
\frac{a x^{m}+b x^{n-1}+c x^{m-2}+\ldots+1}{x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\cdots+p_{n}} \tag{11}
\end{equation*}
$$

If the exponent m of the numerator is equal to or greater than the exponent n of the denominator, we may divide the numerator by the denominator, obtaining a quotient, and a remainder of which the highest exponent will not execed $n-1$. If we put
$f x$, the umerator of the above fraction ;
$F x$, its denominator ;
Q, the quotient;
ϕx, the remainder:
we shall have, Rational fraction $=\frac{f x}{f x}=Q+\frac{\phi x}{F_{x}} . \quad\binom{0}{9}$
Q will be an entire function of x, with whech we need not now further concern ourselves.

The problem now is, if possible, to reduce the fraction $\frac{\phi x}{F \cdot x}$ to the sum of a series of fractions of the form

$$
\frac{A}{x-«}+\frac{B}{x-\beta}+\frac{C}{x-\gamma}+\cdots+\frac{E}{x-\varepsilon},
$$

A, B, C, ete., being constants to be determined, and a, β, γ, etc., being the roots of the equation $F s=0$. Let us then suppose

$$
\begin{equation*}
\frac{\phi x}{F^{\prime} \cdot}=\frac{A}{x-\varepsilon}+\frac{B}{x-\beta}+\frac{C}{x-\gamma}+\cdots+\frac{E}{x-\varepsilon} . \tag{b}
\end{equation*}
$$

Multiplying both sides by $F x$, we have

$$
\phi x=\frac{A F x}{x-\varepsilon}+\frac{B F x}{x-\bar{\beta}}+\frac{C F x}{x-\gamma}+\cdots+\frac{E F x}{x-\varepsilon} .
$$

We require that this equation shall be an identical one, true for all values of x. Let us then suppose $x=\kappa$. Then because hy hypothesis a is a root of the equation $F x=0$, we have fics $^{=}=0$, and the terms in the second member will all ramish except the first. If there is only one root c, we have (§ 35\%),

$$
\text { Lim. } \frac{F x}{x-ध}(x=a)=F_{c e}^{\prime}
$$

Therefore, changing x to c, we have
which gives

$$
\begin{aligned}
\phi & =A F^{\prime} c, \\
A & =\frac{\phi!}{F^{\prime \prime} c}
\end{aligned}
$$

In the same way we may find

$$
\begin{align*}
& B=\frac{\phi \beta}{F^{\prime} \beta}, \tag{c}\\
& C^{\prime}=\frac{\phi \gamma}{F^{\prime} \gamma}, \\
& \text { etc. ctc. }
\end{align*}
$$

Snbstituting these values of A, B, etc., in the equation (b), it becomes
we need not e the fraction

$\frac{E}{-\varepsilon}$,

1 , and κ, β, γ, Let us then
$+\frac{E}{x-\varepsilon}$.
$+\frac{E F x}{x-\varepsilon}$.
identical one, $x=\boldsymbol{\varepsilon}$. Then ion $F x=0$, we nember will all root κ, we have
(c)
he equation (b),

$$
\frac{\phi x}{I \cdot c}=\frac{\phi u}{(x-u) F^{\prime} u}+\frac{\phi \beta}{(x-\beta) r^{\prime} \beta}+\frac{\phi y}{(x-\gamma) F \gamma}+\mathrm{etc} .
$$

Note. The critical student should remark that in the preceding analysis we have not proved that the expression of the rational fraction in the form (b) is always possible, but have only proved that if it be possible, then the coeflicients A, B, C mast have the values (c). 'lo prove that the form is possible, the second member of (b) may be redneed to a common denominator, which common denominator will be $F \cdot x$, and the sum of the numerators equated to ϕx. By equating the cocflicients of the separate powers of x, we slatl have n equations to determine the n unknown quantities A, B, C, ete. Since n quantities can, in general, be made to satisfy n equations, values of A, B, C, ete., will in general he possible.

It will be instructive to solve the following exercises, both directly and by the common denominater.

EXAMPLES.

I. Decompose $\frac{2 x^{2}-3 x+5}{x^{3}-7 x^{2}+36}$.

We have already found the roots of the denominator to be $-2,3$, and 6. Using the formula (r), we find

$$
\begin{aligned}
& \phi x=2 x^{2}-3 x+5, \\
& F r=x^{3}-x^{2}+36=(x+2)(x-3)(x-6), \\
& F^{\prime} x=3 . x^{2}-14 x ; \\
& \because=-2, \quad \beta=3, \quad \gamma=6 ; \\
& \phi \iota=19, \quad \phi \beta=14, \quad \phi \gamma=59 ; \\
& F^{\prime} c=40, \quad F^{\prime} \beta=-15, \quad F^{\prime} \gamma=24 . \\
& \frac{2 x^{2}-3 x+5}{x^{3}-7 x^{2}+36}=\frac{19}{40(x+2)}-\frac{14}{15(x-3)}+\frac{59}{24(x-6)} \text {. } \\
& \text { 2. Decompose } \frac{2 x^{2}-7 x+3}{x^{3}-2 x^{2}-x+2}=\frac{2 x^{2}-7 x+3}{(x+1)(x-1)(x-2)} \text {. }
\end{aligned}
$$

Here the roots of the denominator are $-1,1$, and 2 . Let us effect the decomposition by the following methor. Assmme

$$
\begin{equation*}
\frac{2 x^{2}-7 x+3}{(x+1)(x-1)(x-2)}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{C}{x-2} \tag{l}
\end{equation*}
$$

Reducing the seeond member to a common denominator, it becomes

$$
\frac{A\left(x^{2}-3 x+2\right)+B\left(x^{2}-x-2\right)+C\left(x^{2}-1\right)}{(x+1)(x-1)(x-2)}
$$

Since both members now have the same denominator, their numerators must also be equal. Equating them, after arranging the last one according to powers of x, we have $(A+B+C) x^{2}-(3 A+B) x+2 A-2 B-C=2 x^{2}-7 x+3$.

Since this must be true for all ralues of x, we equate the coefficients of x in each member, giving

$$
\begin{array}{r}
A+B+C=2, \\
3 A+B=7, \\
2 A-2 B-C=3 .
\end{array}
$$

These equations being solved give

$$
A=2, \quad B=1, \quad C=-1
$$

Substituting in ((l),

$$
\frac{2 x^{2}-7 x+3}{(x+1)(x-1)(x-2)}=\frac{2}{x+1}+\frac{1}{x-1}-\frac{1}{x-2} .
$$

EXERCISES.

Decompose:
I. $\frac{x+10}{x^{2}-4}$.
2. $\frac{x^{2}+8 x+4}{x^{3}+x^{3}-4 x-4}$.
3. $\frac{2 x^{3}-12 x^{2}-8 x+12}{x^{4}-5 x^{2}+4}$.
4. $\frac{x}{x^{3}-a^{2}}$.
5. $\frac{2 a}{x^{2}-a^{2}}$.
6. $\frac{a^{2} b^{2}}{\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right)}$.
360. When the equation $F x=0$ has two or more equal roots, the preceding form fails, because all the terms of the sceond member of (b^{\prime}) will then vimish when we suppose x equal to one of the multiple roots. In this case we must proceed as follows : denominator, $\left(x^{2}-1\right)$. ominator, their , after arrangwe
$2 x^{2}-{ }^{7} x+3$. we equate the
$-\frac{1}{x-2}$

If $\quad F x=(x-\mu)^{m}(x-\beta)^{n}(x-\gamma)^{n}$,
we suppose

$$
\begin{aligned}
\frac{\phi . x}{\bar{P} x}= & \frac{A}{(x-\mu)^{m}}+\frac{A_{1}}{(x-c)^{m-1}}+\frac{A_{2}}{(x-c)^{m-2}}+\cdots+\frac{A_{m-1}}{x-\varkappa} \\
& +\frac{1}{(x-\beta)^{n}}+\frac{B_{1}}{(x-\beta)^{n-1}}+\cdots+\frac{B_{n-1}}{x-\beta} \\
& +\frac{C}{(x-\gamma)^{m}}+\frac{C_{1}}{(x-\gamma)^{m-1}}+\ldots+\frac{C_{m}}{x-\gamma} .
\end{aligned}
$$

etc. etc. etc.

In the case of m, n, or $p=1$, this form will be the same as (b), as it should.

By reducing the second member to a common denominator, and equating the sum of the numerators to ϕx, we shall have, as before, a number of equations the same as the degree of : in Fx.
EXAMPLE.

Decompose $\frac{8 x^{3}-9 x^{2}-2 x-1}{x^{5}-2 x^{4}-2 x^{3}+4 x^{2}+x-2}$, of which the roots of the denominator are $-1,-1,1,1, \stackrel{\circ}{2}$.

Sulution. Because of the roots just given, the expression to which the fraction is to be equal is

$$
\frac{A}{(x-1)^{2}}+\frac{A_{1}}{x-1}+\frac{B}{(x+1)^{2}}+\frac{B_{1}}{x+1}+\frac{C}{x-2} .
$$

Reducing to a common denominator, and equating the coefficients of the powers of x to the coefficients of the corresponding powers in the numerator $8 x^{3}-4 x^{2}-2 x-1$, we have

$$
\begin{aligned}
& A_{1}+B_{1}+C= 0, \\
&-A_{1}+A-3 B_{1}+B= 8, \\
&-3 A_{1}+B_{1}-4 B-2 C=-9, \\
& A_{1}-3 A+7 B B_{1}+5 B=-2, \\
& 2 A_{1}-2 A+2 B_{1}+2 B+C=-1 .
\end{aligned}
$$

Solving these equations, we find,

$$
\begin{array}{lll}
A=1, & B=2, & C=3 \\
A_{1}=-i, & B_{1}=-1, &
\end{array}
$$

Thise fiven fraction is therefure equal to

$$
\frac{1}{(x-1)^{2}}-\frac{2}{x-1}+\frac{\ddot{2}}{(x+1)^{2}}-\frac{1}{x+1}+\frac{3}{x-2} .
$$

EXERCISES.

1. Decompose $\frac{x+1}{x^{2}-2 x+1}$.

$$
\operatorname{Ans} \cdot \frac{1}{x-1}+\frac{0}{(x-1)^{2}}
$$

2. $\frac{x-1}{(x+1)^{2}}$.
3. $\frac{x^{2}-2}{x^{3}-x^{2}+x+1}$.
4. $\overline{x^{3}}+x^{3} \cdot \frac{9}{x}-1$.

Greatest Common Divisor of Two Functions.

3(81. When we have two equations, some values of the unknown quantity may satisfy them both. They are then said to have one or more common roots. Such equations, when factored as in $\$ 34 \%$, will have a common factor or divisor for each common root. Hence,

Theores. The common roots of two equations may be found firom their giveatest common divisor.

Promben. To fint the greatest common divisor of two equations.

This problem is solved by dividing the two polynomials by the methods of $s S_{3} 96,97$, and 232.

Example i. To find the greatest common divisor of the two polynomials,

$$
\begin{aligned}
& x^{5}-4 x^{4}+12 x^{3}+4 x^{2}-13 x \\
& x^{4}-2 x^{3}+4 x^{2}+2 x-5 .
\end{aligned}
$$

finst division.

$$
\begin{aligned}
& x^{5}-4 x^{4}+12 x^{3}+4 x^{2}-13 x \mid x^{4}-2 x^{3}+4 x^{2}+2 x-5 \\
& x^{5}-2 x^{4}+4 x^{3}+2 x^{2}-5 x \quad x-2 \\
& -2 x^{1}+8 x^{3}+2 x^{2}-8 x \\
& -2 x^{4}+4 x^{3}-8 x^{2}-4 x+10 \\
& 4 x^{3}+10 x^{2}-4 x-10=\text { first remainder. }
\end{aligned}
$$

second division.

$$
\begin{aligned}
& \frac{3}{x-2} \\
& +\frac{3}{(x-1)^{2}} \\
& \frac{2}{x+1}
\end{aligned}
$$

Functions.

values of the y are then said puations, when 1 or divisor for
puations may or.
divisor of two polynomials by divisor of the
$x^{2}+2 x-5$

$$
\begin{aligned}
& x^{4}-2 x^{3}+4 x^{2}+2 x-54 x^{3}+10 x^{2}-4 x-10 \\
& x^{4}+5 x^{3}-x^{2}-\frac{5}{2} x \quad \frac{1}{4} x-\frac{2}{8} \\
& -3 x^{3}+5 x^{2}+2 x-5 \\
& \frac{-\frac{3}{2} x^{3}-\frac{45}{4} \cdot x^{2}+9 \cdot 8+45}{65} \frac{45}{4} \\
& \text { or, } \quad \frac{85}{4}\left(x^{2}-1\right)=\text { second remainder. }
\end{aligned}
$$

In the next division, we may omit the fractional factor $\frac{6 \pi}{4}$, becalse every value of x which satisfies the equation $x^{2}-1=0$ will also make $\frac{65}{4}\left(x^{2}-1\right)=0$, so that these t. equations have the same roots. In this process we may alw ys sultiply or divide the terms of each remainder by any fac or wiach will make their coeflicients entire.

THIRD DIVISION.

$$
\begin{gathered}
4 x^{3}+10 x^{2}-4 x-10 \\
\frac{4 x^{3}}{}-\frac{4 x}{10 x^{2}}-\frac{x^{2}-1}{4 x+10} \\
\frac{10 x^{2}}{0}-10 \\
\hline
\end{gathered}
$$

Hence, the G.C.D. of the two functions is $x^{2}-1$, and their common roots are +1 and -1 .

This result may also be reached by factoring the given equations, and multiplying the common factors, thus:

$$
\begin{aligned}
& x^{5}-4 x^{4}+12 x^{3}+4 x^{2}-13 x \\
&=x(x-1)(x+1)(x-2-3 i)(x-2+3 i) \\
& \begin{aligned}
x^{4}-2 x^{3}+4 x^{2} & +2 x-5 \\
& =(x-1)(x+1)(x-1-2 i)(x-1+2 i)
\end{aligned}
\end{aligned}
$$

We see that the common factors are

$$
(x-1)(x+1)=x^{2}-1
$$

'The rules for throwing out factors from divisor or dividend are as follows:
I. If both given pol!momials contain the same factor ill all, their lerms. remore this factor, and after the (i. C. D). of the remaining fachors of the tue polynomials is found, multiply it by this factor.

Iroof. If a be such a factor, and I and Y the quotients after this factor is removed from the two polynomials, the latter, as given, will be

$$
a V^{\prime} \text { aud } \quad a Y
$$

Since a is now a common divisor of both given polynomials, if we call D the G.C.I). of X^{-}and V^{r}, it is evident that $a D$ will be the G.C.D. of $a \mathrm{~F}$ and $a \mathrm{Y}$.
II. Iny factor common to all the terms of any divisor', and not contained in the dividend, may be thrown out.

Progf. If this factor were any part of the G.C.D. sought, it would, by § 232 , be a factor of each dividend. Simee the only factors we require are those of the G.C.D, factors in a divisor only may be rejected.

EXERCISES.

Find the G.C.D. of the following polynomials:
I. $x^{4}-1$ and $x^{6}-1$.
2. $x^{3}-1$ and $x^{4}-1$.
3. $\quad a^{5}-9 a^{4}-a^{3}+3 a^{2}-2 a-15$ and $a^{4}-a^{3}-4 a^{2}-a+5$.
4. $25 x^{4}+5 x^{3}-x-1$ and $20 x^{4}+x^{2}-1$.
5. $\quad a^{4}+2 a^{2}+9$ and $a^{4}+2 a^{3}-6 a-9$.
6. $m^{3}+3 m^{2}+3 m+1$ and $m^{2}-1$.
7. $\quad x^{4}-8 x^{3}+21 x^{2}-20 x+4$ and $9 x^{3}-12 x^{2}+21 x-10$.
8. $\quad a^{5}+a^{4}-a-1$ and $a^{\hat{4}}+\ell^{6}-a-1$.

36:. The given polynomials may be functions of two or more symbols, as in 89% We then armage them according to the powers of one of the symbols, and perform the divisions by the precepts of $\S 97$.

Ex. Find the greatest common divisor of
seme factor d after the polyuomials
the quotients nials, the lat-

1 polynomials, that $a D$ will
of rany tliviay be throun
C. D. sought, l. Since the factors in a
$3-4 a^{2}-a+5$.
$x^{2}+21 x-10$
fions of two them accordorm the divi-

$$
x^{3}-u x^{2}+a(b+c) x-a b c-b x^{2}-c s^{2}+b c x
$$

and $\quad x^{3}-a x^{2}-a(b+c) x-a b c+b x^{2}+c x^{2}+b c x$.
The quotient of the first division will be unity, so we write the two functions under each other, thus:

$$
\begin{aligned}
& x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c \\
& \frac{x^{3}+(-a+b+c) x^{2}-(a b-b c+c a) x-a b c}{-2(b+c) x^{2}+\quad 2(a b+a c) x=1 \mathrm{st} \mathrm{rem} .}
\end{aligned}
$$

Dividing this remainder by $-2(b+c)$, we have the next divisor. We then perform the next division as follows:

$$
\begin{aligned}
& \frac{x^{3}+(-a+b+c) x^{2}-(a b-b c+c a) x-a b c}{x^{3}-a x^{2}} \begin{array}{l}
(b+c) x^{2}-(a b-b c+c a) x-a b c \\
\frac{(b+c) x^{2}-(a b+c a)+c a}{x+(b+c)} \\
b c x-a b c
\end{array}=2 \mathrm{drem} .
\end{aligned}
$$

Dividing this by the factor $b c$, which is contained in all its terms, we have $x-a$ for the next divisor, which we find to divide the last divisor, and therefore to be the G.C.D. required.

EXERCISES.

Find the G.C.D. of
I. $x^{3}+3 b c x+b^{3}-c^{3}$ and $x^{3}+(c-b) x^{2}+\left(b^{2}+b c+c^{2}\right) x$
2. $x^{3}+3 u x+\iota^{3}-1$ and $x^{3}-\left(a^{2}-2 a\right) x+a-1$.
3. $(a+b+c)(a b+b c+c a)-a b c$ and $a a^{2}+a b-a c-b c$.
4. $x^{4}+4 a^{4}$ and $x^{3}-2 a^{2} x+4 t^{3}$.
5. $\quad x^{3}-a x^{2}-l^{2} x+a b^{2}$ and $x^{2}-u^{2}$.
6. $x^{3}+a^{3}+b^{3}-3 a b x$ and $x^{2}+2 a x+a^{2}-b^{2}$.
7. $x^{4}-2 x^{2}+2-\frac{2}{x^{2}}+\frac{1}{x^{4}}$ and $x^{4}-2 x^{2}+\frac{2}{x^{2}}-\frac{1}{x^{1}}$.
8. $x^{4}-x^{3}!+x^{3}-y^{4}$ and $x^{4}+x^{2} y^{2}+y^{4}$.

Transformation of Equations.

:36:3. Def. An equation is said to be Transformed when a second equation is found whose roots bear a known relation to those of the given equation.

Rem. Sometimes we may be able to find a root of the transformed equation, and thence the corresponding eont of the orginal equation, more easily than by a direct solution.

Promem I. To change the signs of all the roots of an equation.

Solution. By changing x into $-x$ in a given equation, the signs of the terms containing odd powers of x will be changed, white those of the even powers will be unchanged. Hence, if a be any root of the originul equation, - a will be a root of the equation ifter the signs of the nlternate tems are changed. Hence the rule:

Chunge the signs of the alternate terms, of old and cecn ilegree, in the equation.

Problem II. To diminish all the roots of an equation b! the same quantity h.

Solution. If the given equation is

$$
x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\cdots+p_{n}=0
$$

and if y is the manown quantity of the required equation, we must haive

$$
\begin{aligned}
& y=x-h . \\
& x=!+h .
\end{aligned}
$$

Therefore,
Sulstituting this value of x in the equation, it will become $y^{n}+\left(p_{1}+n l_{1}\right) y^{n-1}+\left[p_{2}+(n-1) p_{1} h+\left(\begin{array}{l}n \\ 2 \\ 2\end{array}\right) h^{2}\right] y^{n-2}+$ etc. (($)$

When h, n, and the p 's are all given quantities, the coeflicients of y lecome known quantities.

EXERCISES.

1. Transform the equation $a^{3}-3 x-1=0$ into one in which, dio roots shall be less hy 1.
2. 'Transform $x^{3}-3 x^{2}+50 x-7=0$ into one in which the roots shall be greater by 5 .
3. Remoring Terms from Equations. 'Ithe quantity may be so chosen that any required term atter the first in the transformed equation shall ramish. For, if we wish the seeond term of the equation (a) to vanish, we have to suphose

$$
n_{i}+n h_{l}=0
$$

which gives

$$
h=-\frac{v_{1}}{n}
$$

We then substitute this value of k in the equatoon (a), which gives an equation in which the second term is wanting.

If we wish the third term to vanish, we must determine h by the condition

$$
\binom{n}{\stackrel{n}{2}} h^{2}+(n-1) p_{1} h+p_{2}=0
$$

which requires the solution of a quadratie equation. Each consecntive term is one degree higher in the unknown quantity h, and the last term is of the same degree as the original equation.

This method is principally applied to make the seeond term ilisappear, which repuires that we put

$$
h=-\frac{p_{1}}{\prime \prime}
$$

Example. Make the second term disappear from the following "quation,

$$
x^{2}+p x+q=0
$$

solution. Hence, $n=2$ and $\mu_{1}=p$, so that

$$
\begin{aligned}
& h=-\frac{p}{3} \\
& x=y-\frac{p}{3}
\end{aligned}
$$

Making this se!,stitution, the equation becomes

$$
y^{2}-\frac{y^{2}}{4}+y=0,
$$

which is the required equation.
Rem. This process affords an additional elegant method of solving the qualratic equation.

The last cipuation gives

$$
y=\sqrt{\frac{p^{2}}{4}-q}=\frac{1}{2} \sqrt{\eta^{2}-4 q}
$$

The value of x, being equal to $y+h$, then becomes

$$
x=-\frac{p}{2}+\frac{1}{2} \sqrt{i^{2}-4} q^{2}
$$

which is the correct solution.

EXERCISES.

Remove the second cerm from the following equations:
I. $.^{3}-1 . x^{2}+16 . r^{2}-1=0$.
2. $x^{4}-4 x^{3}+3 x^{2}-8=0$.
3. $x^{5}-5 x^{1}+2 x^{3}+2 x^{2}-3 x=0$.
4. $x^{6}-12 x^{5}+2 x^{3}-x=0$.

Rem. The theory of the above process will be readily compretiented hy recalling that the coeflicients of the second term is erpual to the sum of the roots taken negatively, or if e, β, γ, ete., lee the roots,

$$
{ } 1+\beta+\gamma+\ldots+\varepsilon=-p_{1} .
$$

It is evident that if we subtract the arithmetical mean of all the roots, Hat is, $-\frac{P_{1}}{\prime \prime}$, from cuch of them, their sum will ramish, becemse

$$
n+{ }_{n}^{p_{1}}+\beta+{ }_{n}^{n}+2+{ }_{n}^{\prime \prime}+n c=-p_{1}+n \frac{p_{1}}{n}=0 .
$$

Hence: when we $\mathrm{p}^{\text {min }}$! $-\frac{p_{1}}{11}$ for x :n the equation, the sum of the rents: and therefine the second term. vamish.
365. Phoblem. To transform ane equation so thet the roots shall be maltiplied li! " givern factor m.

Solution. Since the roots are to be multiplied by m, the new unknown quantity must be equal to $m x$. So if we call this quantity y, we have

$$
\begin{aligned}
& y=m x \\
& x=\frac{y}{m}
\end{aligned}
$$

which gives
Substituting this in the general equation, it hecomes

$$
\frac{2 y^{n}}{m^{n}}+p_{1} \frac{y^{n-1}}{m^{n-1}}+p_{2} \frac{y^{n-2}}{m^{n-2}}+\ldots+p_{n}=0
$$

Multiplying all the terms by m^{n}, the equation becomes

$$
l^{n}+m y_{1} y^{n-1}+m^{2} l_{2} y^{n-2}+\ldots+m^{n} p_{n}=0
$$

Hence the rule,
. Whettipl! the corfjicient of llae seromel trom. ly! m. theat of the thirel h! m^{2}, and so ont to the last term. whir:h will be multiplicel b! m^{n}.

If the roots ate to be divided, we divide the terms in the same order.

EXERCISES.

r. Make the roots of $x^{2}-2 x+3=0$ fom times as great.
2. Divide the same roots by 2.
366. Problem. To trousform an equation so that its roots shall be squatred.
solulion. Let the given equation be

$$
x^{4}+p_{1} x^{3}+\rho_{2} x^{3}+\mu_{3} x^{x}+p_{4}=0
$$

If !/ be the maknown quantity of the new equation, we must have

$$
\begin{aligned}
& y=x^{2} \\
& x= \pm y^{\frac{1}{3}}
\end{aligned}
$$

which gives
If we substitute $x=y^{\frac{1}{2}}$ in the given enuation, it may be reduced to the form

$$
y^{2}+\mu_{0}!y+\mu_{4}+\left(\mu_{1}!y+\mu_{3}\right) y^{3}=0
$$

If we substitute $x=-y^{\frac{1}{2}}$, the result will be

$$
y^{2}+p_{2} y+\mu_{4}-\left(p_{1} y+p_{3}\right) y^{4}=0
$$

Since the value of y mast satisfy one or the other of these eqnations, it mast reduce their product to zero ; we therefore multiply them together. Considering them as the sum and ditference of a pair of expressions, the product will be
or

$$
\begin{gathered}
y^{1}+\left(2 p_{2}-p_{1}^{2}\right) y^{3}+\left(p_{2}^{2}+2 p_{4}-2 p_{1} p_{3}\right) y^{2}+\left(2 p_{2} p_{4}-\mu_{3}^{2}\right) y+\mu_{4}^{2} \\
=0 . \\
\text { EXERCISES. }
\end{gathered}
$$

1. 'Transform the quadratic,

$$
x^{2}-5 x+6
$$

of which the roots are 2 and 3 , into an equation in which the roots shall be the sfuares of 2 and 3 , using the above process.
2. Transform in the same way

$$
x^{3}+12 x^{2}+44 x+48=0
$$

3. Trunsform

$$
x^{5}-4 x^{4}-10 x^{3}+40 x^{2}+9 x-36=0
$$

Generalization of the Preceding Problems.

367. Prohlem. Given, ane equation of atif degree . in. "ル. unli"noul" quantit! x :

Required, to transform this equation into another of whirh the root shall be "Giern junetion of at.

Solution. Let y be a ront of the required equation, and fir the given function. We must them have

$$
f \cdot r=!
$$

'ibe prodict of the ee erpmations witl be the repuired enpat lion in! !

be

$=0$.

a other of these 0 ; we therefore ts the stum and will be
$=0$,
$\left(\mu_{4}-\mu_{3}^{2}\right) y+\mu_{4}^{2}$ $=0$.
on in which the above process.
$=0$.

Problems.

 (of atn! degree "
"hation, and ir

Wfuction of $\%$ ion. allif form ats
rempired argi:-
EXERCISES.

เ. 'Iransform

$$
x^{2}-x+10=0
$$

so that the roots of the new equation shall be $3 x^{2}$.
2. Trans: form

$$
x^{3}-3 x^{2}+2 x=0
$$

so that the roots shall be uex $+b$.
3. 'Trusform $x^{2}-9 x+18=0$
so that the roots shall be $\frac{1}{3} x^{2}-3$.

Resolntion of Numerical Equations.

388. Comrenient methon of romplating the mumerical ratue

If we have the entire function of x.

$$
F \cdot x=u \cdot c^{1}+l \cdot c^{3}+c x^{2}+d x+e,
$$

we may jut, it in the form

$$
r x=\{\mid(n x+b) x+c] x+d\} x+e .
$$

Therefore, if we put

$$
\begin{array}{ll}
u x+b=b^{\prime}, & b^{\prime} x+c=c^{\prime}, \\
c^{\prime} x+l=l^{\prime}, & l^{\prime} x+c=c^{\prime},
\end{array}
$$

we shall hate

$$
r, u=t^{\prime} .
$$

Sumerice! Eictmpir. Complote the values of

$$
A x=2 \cdot c^{5}-3 \cdot x^{4}-6, c^{3}+8 . c-9
$$

for $x=3$ ani $r=-\therefore$.
We arrange the work thas:

(imblicients,	$\stackrel{\sim}{2}$	-.3	-6	0	$+8$	
		+ 6	+!	+9	+:3	+115
		:	+ 3	+!	- : $\%$	+ ! ! 1

Honor。

	-:	- 10	11	+ S	$!$
Forr $r=-\therefore$	-t	+17	-16	$+3:$	-810
	- "	+ s	-11;	+10	--n!

Henter $\quad f(-\because)=-8 \%$

448

 GENERAL THEORY OF FRLVTIOME.'This, it will be: moticed, is a more monvenient process than thak of "rmine the ;wwers of x^{\prime} and mulliplying amd alding.
:3039. Inving un rutire function of sound pultiny $x=i+h$, it in required to develop, the ftunction in pouers of h.

It will be remarked that this problem is sulberantially identienl with
 But in the former cuse h was suppesed be bee a givern quantity, wherens it is now the mbinwn quatity corresponding to y in slie former problem.

Eximile of the Problem, If we have the expression

$$
r^{\prime} u=3 r^{3}+3 x^{2}+4
$$

and put $x=x+h$, it will become, by dercloping the sepatrate terms,

$$
h^{\prime}(2+h)=2 h^{3}+15 h^{2}+30 h+32
$$

Then reperat the process, usinge the sucressitere suma ob-

 result will he the corfjicirat of h.
 oure term sumber. The mesult will he the renctjicicat of h?
 onel!! to "purvete "pron, which will itself be the corfjicient of the highest penter of h.

Ex. i. The example abose givesperformed as follows:

C'orflicionts,	$+2$	$+3$	$1)$	$+4$
Product by P .		4	14	$2 \times$
Firat suma		\%	14	:30
Second inuluctr,		4	20\%	
Second sumes,		11	\%	
'Third probluet,		4		
		ij)		
Result, $r^{\prime}(3+1$	$2 h^{3}$	+ 3		

Ex. 2. In the function.

$$
r x=2 x^{5}-i r^{4}+i x^{3}-3 r^{2}+i s-8,
$$

ocess than that of
ulfing $x=r+h$, $f h$.
ally idential wih on of the former? tantity, wherrus it former problem.
te expression
ping the sepri32.
compuete the sive strms (,)orrospoulling Ver last. The
stoppinin! !fet jicient uj h?
he finst tom. he cocfficient
al as follows:

$$
\begin{aligned}
& 4 \\
& 3 x \\
& 32
\end{aligned}
$$

Condiciouts. Products by 3,	2	- in	+ -3	-6 +6	$\begin{array}{r} +6 \\ +12 \end{array}$	$\begin{array}{r} -8 \\ +.74 \end{array}$
First smats,		-1	$+\because$	$+4$	$+18$	∓ 46
Second products.		$+6$	$+15$	+ 51	+ 165	
Sicond sums,		$+5$	$+17$	+53	183	
'Third products,		6	:33	150		
'Third stmes,		11	50	205		
		6	51			
		17	101			
		33				

Result, $\quad F(3+h)=2 h^{5}+23 h^{1}+101 h^{3}+205 h^{2}+183 h+49$.

EXERCISES.

1. Compute $2 h^{5}+23 h^{3}+101 h^{3}+203 h^{2}+183 h+46$, when $h=x-3$.
2. Compute $x^{3}-i c+i$ for $c=-4+h,-3+h$, ete., to $+3+h$.

Proof of the Preceding Procoss. If we develop the expression

$$
a(h+r)^{n}+b(h+r)^{n-1}+c(h+r)^{n-2}+l(h+r)^{n-3}+\text { cte. }
$$

and collect the coellicients of like powers of h, we shall tind
Cuci. of $l^{n}=\pi$,

$$
\begin{align*}
& h^{n-1}=n e r^{\circ}+b, \\
& m^{n-2}=\binom{n}{i}\left(t r^{n}+(n-1) m+n^{2}\right. \tag{A}
\end{align*}
$$

$$
\begin{aligned}
& l^{n-8}=\binom{n}{x}\left(1 r^{8}+\binom{n-1}{n-1} 4 r^{n-1}+\binom{n-2}{x-3} r_{r}^{n-2}+\cdots c_{0} .\right.
\end{aligned}
$$

Now examining Ex, a prededing, it will be seen that we ean makn the compulation ly enllmms. tirst compming the whole

 aient of l^{n} : and so on. (ommencing in this way, and neing the literal eneftiejents, a, b, c, eteo and the literal fitctur r, we shatil have the results:
π

$$
n a r+b
$$

$$
\begin{gathered}
e \\
\frac{a r^{2}+b r}{a r^{2}+b r+c} \\
\frac{2 a r^{2}+b r}{3 a r^{2}+2 b r+c} \\
\frac{3 a r^{2}+b r}{6 a r r^{2}+3 b r+c} \\
\vdots \\
\binom{\prime \prime}{\vdots}\left(t r^{2}+(n-1) b r+c .\right.
\end{gathered}
$$

If n is the degree of the equation, then, by the preceding process, we shall add the product "r to $b a$ times, the a separate sums being

$$
a r+b, \quad 2 a r+b, \quad 3 a r+b, \ldots m a r+b .
$$

Tos form the second colnmm, we multiply ench of these sums excent the last her, and add them to the coetticient \therefore. The terms in an added being $1 r^{2}$, 2 or ${ }^{2}$, Bar ${ }^{2}$, ete., the smm will be $(1+3+3+\ldots+n-1) \pi^{2}$. The coefficient is a figurate mumber equal to $\frac{n(n-1)}{2}$ (SS: 2sta, as\%). The sum of the cordiciemts of $b r$ is $n-1$. Wealuse there are $n-1$ of them used, eachequal to unity: Therefore the tinal result is

$$
\binom{n}{?} \quad 1 n^{2}+(n-1) n^{2}+c .
$$

Which we have fount to the the reveliacient of $l^{n-\cdots}$.
In this second column the partial sums or conflicients of $11 r^{2}$ ar
1, $1+i=3,1+2+3=6$, ete., to $1+2+3+\ldots+(11-i)$.
P' arefors, be mmbers sucersively added to form the eoefliannts of a: in the thind enlumm are $1,1+3=4,1+3+6$ $=10$, etce. "Bine coetliciente of lar will lx, the same as these of er in the coltam next preceling.

Confmuing the process. we se that the coeflicionts are finned hy suecessive addition, as in the following table, where rach nomber is the sum of the one athere it plus the one on its

	r^{0}	r	r^{2}	r^{3}	r^{4}	r^{3}	r^{6}	etc.
h^{0}	1	1	1	1	1	1	1	ete.
h	1	2	3	4	5	6	ete.	
h^{2}	1	3	6	10	15	etc.		
h^{3}	1	4	10	20	etc.			
h^{4}	1	5	15	etc.				
h^{5}	1	6	ete.					
h^{6}	1	etc.						
etc.	etc.							

left. We have camied the table as iou as $n=6$, and the expressions at the bottom of cach colnmm will, when $n=6$, be formen from the numbers in this table, taken in reverse order, thus:

Column under b, \quad fier $+b ;$

$$
\begin{aligned}
& \because \quad . \quad \quad, \quad 15\left(r^{2}+5 b r+c\right. \text {; } \\
& \because \quad \therefore \quad d, \therefore 0 \pi r^{3}+10 d r^{2}+4 c r+l l \text {; } \\
& \text { ". } \quad \therefore \quad \rho, 15\left(2 r^{4}+10 / r^{3}+6 r r^{2}+3 \pi r+e:\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { :. } \quad \text {. } \quad \% \quad \quad\left(r^{-6}+\quad l r^{5}+c r^{4}+e r^{3}+e r^{2}+f r+!\right.
\end{aligned}
$$

Now the nambers of the above scheme are the liturate numbere treated in $\S 2 s^{\circ}$, where it is shown that the $n^{\text {th }}$ mumber in the th $^{\text {th }}$ column after the eolumm of mits is

$$
\frac{n(n+1)(n+\because) \cdots(n+i-1)}{1 \cdot \because \cdot \ldots \cdot}=\left(\frac{n+i-1}{i}\right) .
$$

Comparing with the coethicients in the equations (.1). We see that the two are identical, which proves the correcthes: of the method.

3\%3. Application of the Precedina Opmation to the Eirfrection of the Bonts uf Nomatricul Eiqualions. Let the erpmafion whose root is to be formed the

$$
u x^{n}+h, r^{n-1}+c x^{n-2}+\ldots+y=0 .
$$

We find. ly trial or otherwise. the ereatest whole mamber in the rout x. Let r be this number. We substinte $r+h$ for

If the above expression, ant, hy the preceding process, get an erfation in h, which we may put in the form

$$
\cdots l^{n}+l l^{n-1}+r^{\prime} l^{n-3}+l^{\prime} l^{n}{ }^{3}+\ldots+g^{\prime}=0 .
$$

Let r^{\prime} be the first decimal of h. We put $r^{\prime}+h^{\prime}$ for h in this equation, and, by repeating the process, get an equation to delemmine h^{\prime}, which will be less thatn 0.1. If $r^{\prime \prime}$ be the greatest number of hundredths in h^{\prime}, we put $h^{\prime}=r^{\prime \prime}+h^{\prime \prime}$, and thas get ann equation for the thonsadths, ete.
azi. The first operation is to tind the number and appor:imate values of the real roots. There are several ways of doing this, among which Sturmis Theorem is the most celebrated, but all are so laborions in application that in ordinary cases it will be fom casiest to proceed by trial, suhstituting all entire numbers for x in the equation, matil we thed two consecutive mumbers between which one or more roots mast lie, and in difticult eases plotting the results hys : 3.4.

It is, howerer, necessary to be able to set some limits betwen which the roots most be fomd, and this may the done ly the following mos:
I. In cquation in which all the eorfficionts, inclueling the absolute term, are pesitioe, can lave mo positice real. root.
for no sum of positive pumatitics can he zero.
II. If in computing the ralue af lix for an! assamord. positior tolut of x, but the meoces of s 36ti, we find all the sumbs pasitioe, there dan be uon ront so groent as that assumbet.

For the substitution of amy reater number will make all the sums still greater, and so will cary the hast sum, or $F \mathscr{C}$, still firther from zero.
III. If the sumes are altornutel! positive amel theger-

IV. If tuo trelues of er give different sious to Fex, there must lue ome or somid atd number of roots betwect these culues (compares sifio).
(1)NS.
ding process, get rm
$+\eta^{\prime}=0$.
$t r^{\prime}+k^{\prime}$ for h in get an equation 1. If $r^{\prime \prime}$ be the $\iota^{\prime}=r^{\prime \prime}+h^{\prime \prime}$, and
nber and appow:ral ways of doing most celebrated, ordinary cases it ituting all entire two consentive must lie, and in
t some limits bethis may be done
cints, includins (r) positice real
ro.
|r un! rassumerd. we find all the gerant us that
er will make all :ist sum, or $P r$,
ice amt negu("11!! ronet.
Ins to lir, there betuecen these
V. Theo rallues of x which Iectl to the sume sign of F re iachulle cither mon roots or an even number of roots betirers therti.

Let us take ats a first example the equation

$$
x^{3}-i x+y=0
$$

Let us first assume $x=4$. We compute als follows:

Comflicients,	1	0	-\%	7
Products,		t	16	36
Sums,		4	+	+ 13

So $F^{\prime}(4)=+43$, and as all the coetlicients are positive, there can be no root as great as 4 .

Putting $x=-4$, the sums, including the first eneflicient 1 , are $1,-4,+9,-29$. These being allemately positive and megative, there is mor root so small as - 4 .

Substituting all integers between -4 and +4 , we find

$$
\begin{array}{ll}
F(-4)=-20, & F^{\prime}(0)=+i, \\
F(-3)=+1, & F^{\prime}(1)=+1, \\
F(-2)=+1: 3, & F^{\prime}(2)=+1, \\
F^{\prime}(-1)=+13, & F^{\prime}(3)=+13 .
\end{array}
$$

If we draw the curve corresponding to these values (8345), we shall find one root between - 3 :and -4, and very nemb -3.0 .5 , and the curve will dip bolow the base line between +1 and $+\stackrel{y}{ }$, showing that there are two roots between these numbers: that is, there are two roots of the form $1+h$, h heing : positive fraction. Transforming the cumation to one in h. by putting $1+h$ for r, we tind the equation in h to he

$$
\begin{equation*}
h^{3}+3 h^{2}-4 h+1=0 \tag{1}
\end{equation*}
$$

Subsituting $h=0.2,0.4,0.6,0.8$, we find that there is one root between 0.3 and 0.4 , and one between 0.6 and 0.6 Let us begin with the latter.

If in the last equation we put $h=0.6+h$, we find the transformed equation in h^{\prime} to be

$$
\begin{equation*}
F h^{\prime}=h^{3}+4 . k^{\prime 2}+0.63 k-0.10 t=0 . \tag{2}
\end{equation*}
$$

If we sulstitute diflerent values of h^{\prime} ins this cynation, we ?!
shall fird that it must exceed .09, and as it must be less than 0.1 , we conchade that ! is the figure songht, and put

$$
h^{\prime}=.00+h^{\prime \prime} .
$$

 to le

$$
\begin{equation*}
h^{\prime 3}+5.08 h^{\prime 2}+1.56853 h^{\prime \prime}-0.003191=0 . \tag{:3}
\end{equation*}
$$

Nince $h^{\prime \prime}$ is neeessarily less than 0.01, its tirst digit, whicn is all we went, is ensily fomm, becallese the two first terms of the erpation are very small compared with the third. So we simply divide o03191 hy 1.0583 , and fand that 002 is the refuired digit of $h^{\prime \prime}$. We now put

$$
h^{\prime \prime}=.002+h^{\prime \prime \prime},
$$

and transform again. The resulting equation for $h^{\prime \prime \prime}$ is

$$
\begin{equation*}
h^{\prime 3}+5.0513 h^{\prime \prime 2}+1.585593 h^{\prime \prime}-0.00003+112=0 . \tag{1}
\end{equation*}
$$

The digits of x, h, h^{\prime}, and $h^{\prime \prime}$ which we have found show the true value of ex to te

$$
x=1.69{ }^{\circ}+h^{\prime \prime \prime} .
$$

By eontinning this process, as many figures as we please may the fomm. But, after a certain point, the operation may he abbreviated by cutting off the last figures in the condicionts of the powers of $/ 4$.
'The work, so far as we have performed it, may be arranged in the following form (see next page).

The numbers under the double lines are the coeflieients of the phowers of h, h^{\prime}, $h^{\prime \prime}$, ete. It will be seen that for each digit we add to the root, we add one digit to the coeflicient of i^{2}, two th that of h, and thee to the abolate term. Wa have thas extended the latter to mine phaces of derimals. which, in most cases, will give nine ligures of the root eorrectly. If this is all we ned, we add no more decimak, hat ent off one from the coetliefent of h, two from that of h^{2}, and so on for each decimal we add to the root.

We shall find the mext figure after 1.690° to be zero ; so we cont ofl the figures withont making any change in the corllicients. The next following is e, so we cut off agian for it. and multiply as shown in the follaring contimation of the process:

IONS.
ust be less than nd put
e equation in $h^{\prime \prime}$ $1=0$.
irst ligit, whicu wo tirst terms oi He hird. So we t.00: is the re-
for $h^{\prime \prime \prime}$ is
$3+112=0$.
neve found show
es as we please operation may the contlicionts may be artaged c coedlicionts of it for cath digit octliciont of 1^{2}, (rmo Wo have mals, which, in recolly. If this ut off one from so on for cach
he zero ; so we re in the cocdigriin for it, and of the process:

GENERAL THEORY OF EQUCITHAN:
46

It will be seen that from this point we make no tree ot the coetlicient 1 of h^{3} and only with the seeond decimal do we are
 are ohtained by pure division.

Thore is one thing. however, which a enmputer -homblat alwas attend to in multiplying a momber from which fre bas cut off tigures in this way, mamely:

"
$\%$

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

increase it by 1 if the figure following the one carvied would huve been 5 or greater.

For instance, we had to multiply by 7 the number 15 '888. If we entirely omit the figures cut off, the result would be 105 . But the correct result is 111|216; we therefore take 111 instead of 105 .

Again, in the operation preceding, we had to multiply $158 ; 88$ by 4 . The true product is 6355 j 2 . But, instead of using the figures 635, we use 636, because the former is too small by $\mid 52$, and the latter too great by $\mid 48$, and therefore the nearer the truth. For the same reason, in multiplying $1.588 / 8$ by 1 , we called the result 1589.

Joining all the figures computed, we find the root sought to be 1.692021471 .

Let us now find the negative root, which we have found to lie between -3 and -4 . Owing to the incouvenience of using negative digits, and thus having to change the sign of every number we multiply, we transform the equation into one harving an equal positive root by changing the signs of the alternate terms. The equation then is $x^{3}-7 x-7=0$.

The work, so far as it is necessary to carry it, is now arranged is follows:

1 $\begin{array}{c}0 \\ \\ \\ \end{array}$	-7 9	$-\underset{6}{7}\lfloor 3.0489173395$	
3	2	$\overline{-1.000000}$	
3	18	814464	
$\overline{6}$	20.0100	-0.185. 38000	
3	. 3616	.166382592	
9.00	$\overline{20.3616}$	-. 19153408	
4	. 3632	15791228	
$\overline{9.04}$	20.204800	-362180	
4	\% 20024	2088in	
9.08	20.7978 .4	-153305	
4	\%. 38088	146213	
$\overline{9.120}$	$20.87091{ }^{2}$	-7092 -6266	
8	8230	-826	
9.128	$\overline{20.87914 \%}$	627	
8	833	-199	
9.136	20.85.37	188	
	20.85.89	-11	
\|9.1	44	20.8890	

the one carried 1e number 15'888. sult would be 105 . cfore take 111 inhad to multiply But, instead of ${ }^{\circ}$ the former is too and therefore the nultiplying $1.588 \mid 8$
ad the root sought I we have found to inconvenience of change the sign of e equation into one g the signs of the $7 x-7=0$. arry it, is now ar-

3.0489173395

$$
\begin{array}{r}
-896 \\
-\quad 627 \\
-199 \\
\hline 188 \\
\hline-11
\end{array}
$$

The negative root of the equation is therefore
-3.0489173395.
EXERCISES.
Find the roots of the following equations:

1. $x^{3}-3 x^{2}+1=0$ (3 real roots).
2. $x^{3}-3 x+1=0$ (3 real roots).
3. $x^{4}-4 x^{2}+2=0$ (2 positive roots).
4. $x^{2}+x-1=0$.
5. Prove that when we change the algebraic signs of the alternate cocfficients of an equation, the sign of the root will be changed.

3\%2. The preceding method may be applied withont change to the solution of numerical quadratic equations, and to the extraction of square and cube roots. In fact, the square root of a number n is a root of the equation $x^{2}-n=0$, or $x^{2}+0 x-n=0$, and the cube root is a root of the equation $x^{3}+0 x^{2}+0 x-n=0$.

Ex. 1. To compute $\sqrt{ } 2$.
1

Ex. 2. To compute the cube root of 9842036
1

$-98+2036 \mid 214.30303242$
-1842
1261
-581036
$5 \% 934$
41692900
41274207
-41:993
413326
4167
$41: 33$
334
276
58
55
${ }^{5}$

ANSWERS.

IN the following list, answers to questions which do not require calculation or written work, or which it is supposed teachers would prefer to have in a separate Key, are omitted. The Key, published for the use of teachers, contains the complete solutions.
26. 1. $-9 . \quad$ 2. -1% 3. +9 4. $-26 . \quad 5 \cdot+10$.
6. $-15 . \quad$ 7. $-56 . \quad$ 9. +840 10. -1056 . 11. +1 .
12. -306. 13. 0 . 14. -1008 .
28.

1. 2. $2 .-2.3 .-5 . \quad 4 .-14 . \quad 5 .+24 . \quad$ 6. $\frac{24}{9}=\frac{8}{3}$. 7. $-\frac{26}{3}$. 8. $\frac{1}{9}$.
1. 2. 0. 2. 0. 3. 11. 4. 1\%. 5. -3 \%. 6. -90 .
1. 324. 8. 0. 9. -60 . 1о. -180 . 11. 945.
1. 5040. 13. $-41.14 .-1$. 15. -1% 16. 26.
1. 99. 18. 675. 19. 74. 20. -468 . 21. -218.
1. -529 . 23. -900% 24. -6800 . 25. -420 .
2. -840 . $27 . \frac{47}{23}:$ 28. $\frac{45}{-47}$. 29. 2. 30. 8 .
3. When $x=2$, Exp. $=6 ; x=5$, Exp. $=18 ; x=7$, Exp. $=36$. 32. When $x=-5$, Exp. $=-\frac{23}{7} ; x=2$, Exp. $=\frac{2}{14} ; x=5$, Exp. $=-\frac{7}{23}$.
4. 5. When $x=-3$, Exp. $=0 ; x=-1$, Exp. $=0$;
$x=1, \operatorname{Exp} .=1 ; x=3, \operatorname{Exp} .=15$. 2. When $x=-3$, Exp. $=\frac{144}{54} ; x=-1$, Exp. $=\frac{16}{38} ; x=1$, Exp. $=\frac{16}{22}$; $x=3$, Exp. $=24.3$. When $x=-3$, Exp. $=46875$;
$x=-1$, Exp. $=-\frac{3}{2} ; x=1$, Exp. $=-88434$;
$x=3, \operatorname{Exp} .=-\frac{1}{4}(365)^{3} . \quad 4$. When $x=-1$, Exp. $=$ $(\sqrt{14}-\sqrt{2}) 4 ; \quad x=1$, Exp. $=(\sqrt{8}-\sqrt{2}) 4$;
$x=3$, Exp. $=(\sqrt{48}-\sqrt{42})_{4}$.
1. 2. $a+b x-(x-y)$. 2. $x-y-(a+b x)$.
1. $a+b x-\frac{a-b x}{m}$. 4. $\frac{a-b x}{m}-m p q$. 5. $\sqrt{a+b x}$.
2. $\sqrt{(a+b x)+(x-y)}$. 7. $\sqrt{(a+b x)-(x-y)}$.
3. $(a+b x)^{2}(x-y)^{2}$. 9. $(m p q)^{3}$. 10. $(x-y)^{3}(m p q)^{3}$.

1 1. $\frac{m p q(a+b x)-\frac{(a-b x)(x-y)}{m}}{\left(\frac{a-b x}{m}\right)^{2}-(x-y)^{2}}$.
etc., etc., etc.
54. I. $5 a+4 b-8 c-e$. 2. $-a+(x+y)$. 3. 6 .
4. $9 x-13 y$. 5. $22(a+b)^{2}-x-y-z$. 6. $5(a b)$.
7. 0. 8. 7($m+n)^{2}-x-2 y$. 9. $4(p+q)^{2}+a+b+c-6$.

1о. $14 a(x-y)$. ІІ. $15(m+n) x+2(m-n) x-1 \%$.
12. $7 \frac{x}{a}+3 \frac{y}{b}-1 . \quad$ 13. $10 \frac{x}{y}-10 \frac{m}{n}$. 14. $16 \frac{x+y}{m+n}$.
15. $5 x-7 y . \quad$ 16. $8 x$. 17. $4 x-30$.
55. \quad I. $(a+m) x+(b+n) y . \quad$ 2. $(m n+p q) x+(2 b-4 b) y$.
3. $(3+6 b+7(a) x+(-2-4) y+m+n$.
4. $(8 a+8 b+7+1) x+(b-5-5) y$.
5. $(a-m) x+(b-n) y+(c-p) z$.
6. $(2 d-2 f) x+(3 e-3 d) y+(4 f+4 e) z$.
7. $\left(\frac{3}{3} a+\frac{3}{4} b\right) y+(6 a-2) x$.
8. $(2 a-3 b) x+(-b-4 d) y$.
9. $\left(\frac{1}{2} a-\frac{1}{6} m\right) x+\left(\frac{2}{2} b+\frac{3}{4} n^{\prime} y\right.$.
10. $\left(\frac{10}{3} m-3 a-6 c+\frac{1}{2} d\right) x+(2+a) y$.

1. $(5 a b-a b-d) x+(4 c d-3 m n) y$.
2. $\left(-b-\frac{1}{4} d\right) x+5 a y . \quad$ 13. $-8 x+\left(3-\frac{1}{4} a\right) y$.
3. $(3 m+1+a-a) x+\left(-1-\frac{1}{2} a\right) y$.
4. $3 a b x+(2 c+1) \sqrt{x}+(-m-a) y$.
5. $-6 x+(5 m+5) \sqrt{y}-y-3 \sqrt{x}$.
6. $c x+5 \sqrt{x}-6 y+(-3 a-1) \sqrt{y}$.
7. 3. $-11 a+16 b-4 c+7 d-7 x+(4+3 c) y$.
$+b x)$.
pq. 5. $\sqrt{a+b x}$.
$\overline{b x}-(x-y)$.
$(x-y)^{3}(m p q)^{3}$.
$+y) .3 .6$.
$y-z . \quad 6.5(a b)$.
$q)^{2}+a+b+c-6$. $(m-n) x-1 \%$.
1. $16 \frac{x+y}{m+n}$.
$x+(2 b-4 b) y$. $m+n$.
5) y.
z.
4e) z.
a) y.
$4+3 c) y$.
4. $11 \% z+283 z^{2}+72 y-5 \% u x-20$. 5. $2 a-63$.
5. $2 a-2 b+2 c-2 d . \quad 7 \cdot 4 a+4 b+4 c+2 d$.
6. $-3 x^{2}-2 x-4$. 9. $3 x^{4}-x^{3}+14 x+18$.

1о. $x^{2}-a x+2 a^{2}$. II. $2 a^{3}-6 a^{2} b+3 a t^{2}-b^{3}$.
12. $3 x^{3}+4 x+16$. 13. $-4(x-y)+4(z-x)$.
14. $5(a-b)+2(a+b)+7 a-2 b$.
15. $12 \frac{x}{y}-17 \frac{y}{z}-8 \frac{z}{x}-8 \frac{a}{b}$.
58. 1. $2 x . \quad$ 2. $2 y . \quad$ 3. $4 a b-4 m p-3 x$. 4. $m x-p z . \quad 5.5 \frac{a}{b}$.
59. 1. $-3 a b-m-2 a x$. 2. $3 x-2 a$. 3. $2 b-4 c$.
4. $10 x-7 y+5 z . \quad 5 .-9 a x-2 b y . \quad 6.0 . \quad$ 7. 0. 8. 3 m .
61. 1. $m-p+q+a-b+c+d$. 2. $m+a-b+p+q-n+k$.
3. $15 a x-4 b y . \quad$ 4. $0 . \quad 5 \cdot p+b+s+t+m+n$.
6. 11ax. 7. $-2 a x-6 b y-c z . \quad 8 .-2 x+2 y . \quad$ 9. $-4 b z$.

1о. $2 x-6 y-m y+4 a b-5$. 1г. $a x+2 c x$.
12. $3 a x-3 b x+3 a y+3 a z-3 b y-3 b z$.
13. $13 a x-3 x y-2 d-$ Yad. $\times 4 . m+3 x+4 y-a y-p$.
15. $2 a \sqrt{y}+\sqrt{y}-3 m+6 n-b \sqrt{x}$.
69. 2. $6 a^{2} b x^{3}$. 3. $15 m^{4} r y$. 4. $42 a^{2} m^{2} y$. 5. $4 a^{2} m^{2}$.
6. $5 x^{9} y^{6} z^{2}$. 7. $9 x^{2} y^{2} z^{2}$. 8. $4 a^{2} b^{3} m^{2}$. 9. $9 a^{4} b^{4} x^{4}$.

13. $3 m n^{2} l^{2}$. 14. $144 \mathrm{llc} l^{2} e f g$.
70. 15. $m^{3} x y z$. 16. $a b c d x^{4}$. 17. $12 a^{2} b^{2} m^{2} n^{2}$. 18. $14 a^{2} b^{2} c^{2}$.
19. $135 m^{3} n^{3} p^{3}$. 20. $6 a^{4} b c d m y^{2} z^{2}$. 21. $a^{5} m^{3} n^{2} x^{5} y^{2} z$.
22. $a^{10} x^{7} y^{7}$. 23. $48 a^{4} m^{1} n^{2} x^{2}$.
\%2. 1. $a^{4} b c d m$. 2. $-a b c d x^{4}$. 3. $-a^{3} b^{2} c x^{4}$. 4. $30 a^{6} b^{3} m x^{2}$.
5. $105 a^{3} m^{2} x y^{3}$. 6. $10 n^{3} x^{m+n} y z^{2}$. 7. 4abmn.
8. $168 a b m^{2} k x^{2}$. 9. $6 b m n g y^{3}$. io. $4\left(x^{1} y^{6}\right.$.
II. $-30 a y x^{2} y^{3} z^{3}$. 12. $15 a^{2} b^{2} m x^{3} y$. 13. $-4 a b y y y z^{4}$.
14. $4 b c^{2} g n x^{2} z^{5}$. 15. $-3 a b^{2} e^{3} x^{2} y$. 16. 4abcxy.
17. $-24 a^{4} x^{2} y^{3}$. 8. $a^{1} x^{3} y^{3} y^{3}$. 19. $-3 a^{4} x^{3} y^{3}$.
20. $-m^{7} n^{4} x^{3}$. 21. $u^{5}\left(x x^{4} y^{2}\right.$. 22. $-\pi p q x^{1} y^{3}$.
23. $3 u^{3} b c c^{2} x^{3}$. 24. $9 a c m^{2} y^{2} x^{3} . \quad$ 25. $-\frac{2}{5} a c m^{3} m^{2} x^{2}$.
26. $3 a^{3} b c x y^{2}$. 27. $-a^{8} b d x^{5}$. 28. $-30 a^{2} m^{4} n^{4} y$.
29. $m^{2} n^{2} x^{3} y$. 30. $-\frac{1}{5} m^{2} p q x^{3} y^{2}$.
63. 2. $9 x^{3}-3 x^{2} y+3 x y^{2}$. 3. $3 x^{3}+3 x^{2} y+3 x y^{2}$.
4. $a^{2} x^{2} y z+u b x y^{2} z+u c x y z^{2}$.
5. $27 a^{2} 4 x^{4}-45 a^{2} b x y^{2}-63 a b x$. 6. $-12 m^{2} p q+18 m n q^{2}$.
7. $40 a^{3} b y^{3}-56 a^{4} b y^{2}-56 a^{5} b y$.
\%4. \quad. $a q+m p-p^{2}+b q-c q-b r-c r$.
2. $m x-a n x-m y-a n y+a n z-m z$.
3. $a c x-a c y-b d x+b d y+f c d x+f c d y$.
4. $a m x-a^{2} b m+a^{2} c m-a b n x-b^{2} n c-b^{3} n d$.
5. $-a p m-a q n+b p m-b p n-b q: n+b q n+a q m+a q n$.
6. $6 q x-3 n c x+10 x y-6 c y-2 z m-7 z n$.
7. $a^{2} m^{2} c-a n^{2} b c-6 a m h k+12 a m h d+4 a m n$.
8. $6 a p / /-10 b p q-12 c p q-4 m \eta^{2} q+6 a p^{2} q^{2}$.
9. $-7 a b n-7 a b^{2} n+7 b^{2} c n-3 b n+a b n+b^{2} n$. \quad о. 0 .
\%6. \quad. $\left(x^{2}+2 x\right) y^{3}+\left(3 x^{3}-2 x^{2}-1+5 x\right) y^{2}-4 x^{3} y+x^{2}-7 x-6$.
2. $x^{2} y^{4}+x y^{3}+\left(1-x^{2}\right) y^{2}-x y-1$.
3. $x^{3} y^{5}+x^{2} y^{4}+\left(x-2 x^{3}\right) y^{3}+\left(1-2 x^{2}\right) y^{2}-2 x y-2$.
4. $x^{4} y^{5}+x^{3} y^{4}+\left(3 x^{3}+x^{2}\right) y^{3}+\left(3 x^{4}+3\right) y^{2}+2 x^{2} y+3 x$.
\%8. 1. $2 a^{2}-a b n^{2}-2 a b n^{3}+2 a b-b^{2} n^{2}-2 b^{2} n^{3}$.
2. $3 a m+2 a n-5 a^{2} b m m-3 b m-2 b n+5 a b^{2} m n$.
3. $2 m^{3} n+p m^{3}+q m^{2} n-2 m n^{2}-p m n^{3}+q n^{3}$.
4. $\eta^{3} q+p^{2} q r+p^{3} r+p q^{3}+q^{3} r+p q^{2} r+p q r^{2}+q r^{2}+p r^{3}$.
5. $4 a^{2}-2 a^{3}-6 b^{2}$. 6. $m^{2} x^{2}-n^{2} y^{2}$.
\%9. 1. $6 a^{4}+a^{3}+11 a^{2}-a+28$. 2. $a^{3}-b^{3}$.
3. $a^{4}+a^{3}+u^{2} x^{2}-u^{3} x-u^{2} x-x^{4}$.
4. $a^{5}-2 a^{4}+3 u^{3}-3 a^{2}+2 a-1$. 5. $a^{5}-a^{5}$.
6. $a m+b n z+c m z^{2}+a m z^{3}$. 7. $6 a^{4}+19 a^{3}+17 a^{2}+a-28$.
8. $a^{3}+b^{3}$. 9. $a^{4}-x^{4}$. 10. $a^{5}-a^{3}+a^{2}-2 a+1$.

п I. $x^{5}+2 a x^{4}+2 a^{2} x^{3}+2 a^{3} x^{2}+2 a^{4} x+a^{5}$.
12. $a m+(a n+b m) z+(b n+c m-a p) z^{2}$
$+(d m+c n-b p) z^{3}+\left(d n-c_{p}\right) z^{4}-d p z^{5}$.
13. $a m+(a n+b m) x+b n x^{2}$.
14. $a m+(a n+b m) x+(a p+b n+c m) x^{2}+(b p+c n) x^{3}+c p x^{4}$.
15. $y^{5}-5 y^{3}+2 y^{2}+6 y-4$. \quad 6. $y^{5}+9 y^{4}+3 y^{3}+y^{2}+1$.
17. $y^{6}+2 y^{4}-y^{2}-16$.
18. $\left(3 a^{3 m}-3 a^{2 m+n}\right) x+\left(-3 a^{m+2}+3 a^{n+2}\right) y+2 a^{m+2 n}-22 a^{3 n}$.
19. $a^{3}+\frac{17}{3} a^{2} b+\frac{1}{3} a b-2 a \dot{b}^{2}-\frac{1}{9} b^{2}$. 20. $4 a b$.
21. $a^{4}+2 a^{3}+a^{2}-b^{4}-2 b^{3}-b^{2}$. 22. $a^{2}+2 a c+c^{2}-b^{2}$.
$y+3 x y^{2}$.
$-12 m^{2} p q+18 m n q^{2}$.
$c r$.
$m z$.

- fcily.
$c-b^{3} n d$.
$b q n+a q m+a q n$.
- $7 z n$.
$l+4$ amn.
$-6 m p^{2} q^{3}$.
$a l n+b^{2} n . \quad$ го. 0
$-4 x^{3} y+x^{2}-7 x-6$.

1.

2xa) $y^{2}-2 x y-2$
+3) $y^{2}+2 x^{2} y+3 x$.
$-2 l^{2} n^{3}$.
$b n+5 a b^{2} m n$.
$m m^{3}+q n^{3}$.
$+p q r^{2}+q r^{2}+p r^{3}$.
$-b^{3}$.
5. $x^{5}-a^{5}$.
$2 a^{3}+14 a^{2}+a-28$.
$+a^{2}-2 a+1$.
$+a^{5}$.
ap) z^{2}
$\left.-c^{\prime}\right) z^{4}-\left(p z^{5}\right.$.
$(b p+c n) \cdot x^{3}+c p x^{4}$. $2 y^{4}+3 y^{3}+y^{2}+1$.
$y+2 a^{m+2 n}-2 a^{3 n}$.
ро. $4 a b$.
$+2 a c+c^{2}-b^{2}$.
22. $a^{2}+2 a c+c^{2}-3$. $23 .-8 a^{2} b$.
24. $-a^{2}+(3 b-a) x+y^{2}+(b-3 a) y+2 a^{2}-\dot{\therefore} b$.
25. $a^{2} \cdot y^{m+3}+a b x^{n+2}-a^{2} b x^{3}+a b x^{m+3}+b^{2} x^{m+3}-a b^{2} x^{4}$.
26. $a^{3 n}-\mathfrak{b}^{n}$.
96. 1. Q., $x-3+\frac{2}{x+1}$ 2. $x^{2}+3 x+1$.
3. Q., $x-2+\frac{-1}{x^{2}-x}$ 4. Q., $2 x^{2}+3+\frac{2 x-2}{x^{2}-x-1}$.
7. $a^{2}+a-1$. 8. Q., $x-1+\frac{2}{x+1}$.
9. $4 a^{2}-10 a+25 . \quad$ 10. $a^{4}-a^{3}+a^{2}-a+1$.

14. Q., $x^{4}+2 x^{2}-15 x+56-\frac{220}{x+4}$.
15. $1+2 x+x^{2}$. 16. $1-3 x+x^{2}$. 17. $3-2 a+a^{2}$.
18. $1-2 y+2 y^{2}-y^{3}$. 19. $-16+8 x-4 x^{2}+2 x^{3}-x^{4}$.
20. Q., $16+16 x+8 x^{2}+4 x^{3}+2 x^{4}+\frac{4 x^{5}-x^{6}}{4-4 x+x^{2}}$.

9\%. I. $x^{2}-(a+c) x+a c$. 2. $x^{2}-(a+b) x+a b$.
3. $a^{2}+a c+c^{2}-a b+b^{2}+b c . \quad$ 4. $a^{2}+a-a b+b^{2}+b+1$.
5. $a b+b x-a x$. 6. $a^{4}-4 a^{2} b c+7 b^{2} c^{2}$.
7. $a b+a c+c^{2}+b c . \quad 8 . c+b-a$.
9. $a^{2}-a b+b^{2}-a c-b c+c^{2}$. 10. $x^{2}+2 a x+2 a^{2}$.

1т. $a b+a x-3 x$. 12. $x-b$. 13. $6 a^{2} x^{6}-4 a^{3} x^{3}+a^{4}$.
104. 7. $\frac{m-n}{a-b}-\frac{m+n}{a+b}$.
105. 1. $\frac{1-b+b c}{b c}$. 2. $\frac{1}{a-b}$. 3. $\frac{2}{a^{2}}$. 4. $\frac{a-b-c+d}{a-b}$.
106. $1 . \frac{x}{x-1}$. 2. $\frac{x}{x+1}$. 3. $\frac{9 x}{1-x^{2}}$. 4. $\frac{2}{1-x^{2}}$ 5.0.
6. $\frac{a^{2}+b^{2}}{a^{2}-b^{2}} . \quad$ 7. $\frac{a+x}{a x}$. 8. $\frac{3}{x\left(4 x^{2}-1\right)}$ 9. 0.
10. $\frac{a b+b c+c a-\left(a^{2}+b^{2}+c^{2}\right)}{(a-b)(b-c)(c-a)}$ 1 г. $\frac{2 a x}{x^{2}-y^{2}}$.
12. $\frac{4 a b}{a^{2}-b^{2}} \quad$ 13. $\frac{2 a}{a+b} \cdot 14 \cdot \frac{1}{x^{2}\left(x^{2}-1\right)}$.
15. $\frac{2 b}{a-b}$. $16 \cdot \frac{\ddot{(n x}+m y)}{(m-n)(x+y)}$. 17. $\frac{-y^{2}-m^{2}}{m^{2}(m-y)}$.
15. $\frac{r(a+2 x)}{x^{2}-i^{2}}$ 19. O. 20. $\frac{a+b}{b}$.
21. $\frac{2(a x-m y+x y)}{x^{2}-y^{2}}$. 22. $\frac{a^{2}+b^{2}+c^{2}}{a b c}$.
23. 0. 24. $\frac{4 x^{3}}{x^{2}-1}$ 25. 0. 26. $\frac{-2 a x}{x^{2}-a^{2}}$.
27. $\frac{2 x y}{x^{2}+y^{2}} \cdot \quad$ 28. $\frac{-(a-y)^{2}+x^{2}}{2 a y}$ 29. $\frac{3 a^{2}+b^{2}}{\left(a^{2}-b^{2}\right)^{2}}$.
30. $\frac{(a+b)^{2}}{4 a b}$.

10\%. 1. $y\left(\frac{1}{c}-\frac{1}{a}-\frac{1}{b}\right)$. 2. $u+\frac{m u}{n}+\frac{m u}{m}$.
3. $(q+r)\left(\frac{1}{c}+\frac{1}{c}\right) \cdot 4 \cdot \frac{x-4 y}{2 m}-\frac{b(y+3 x)}{2 c m}$.
108. 1. $a b+y \cdot$ 12. $\frac{m^{4}}{m^{2}-n^{2}}$. 13. $a b+x^{2}-x\left(\frac{b^{2}}{a}+\frac{a^{2}}{b}\right)$.
14. $b\left(\frac{a}{x}-1\right)$. 16. $\frac{a}{a^{2}-b^{2}}$ 19. $\frac{2 a+3 m}{a^{2 n}-b^{2 n}}$.
110.

1. $\frac{y+x}{y-x}$. 2. $\frac{a x+b}{a x-b}$. 3. $\frac{(a-x)^{2}}{(a+x)^{2}}$ 4. $\frac{a k}{\ln } . \quad$ 5. n.
2. $\frac{1+x^{2}}{2 x}$. 7. $\frac{n\left(a m^{2}+b\right)}{m\left(a n^{2}-b\right)}$. 8. $\frac{2 x y-3}{y(a+b-x)}$.
3. $\frac{(a+b)^{2}}{2\left(a^{2}+2 a b-b^{2}\right)} \cdot$ 1о. 1. 11. $\frac{a^{2}\left(a^{2}+2\right)+1}{a\left(1+a^{2}\right)}$.
4. $\frac{a^{3}+b^{3}}{b^{2}\left(a^{2}-a+b\right)}$ I 3. 1.
5. $\frac{\left(x^{2}+y^{2}\right)(x-y)^{2}+(x+y)}{(x+y)^{2}\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}\right)}$.
6. 7. $\frac{b^{2}}{a-b}$ 4. $\frac{a^{2}+b^{2}}{a}$ 5. $x+1$. 6. $\frac{a m(a n+b m)}{b n(b m-a n)}$.

1:3. 1. $x-27=0$. 2. $7 x-5 x=2450$. 3. $6 x+4 x-3 x=60$.
4. $x^{2}+a x=a b . \quad$ 5. $a b x+a b^{2} y+{ }^{7} a^{2} b=c$.
6. $5(4 a+3 b)=12 x$. 7. $x^{2}-a^{2}=2 a x$.
8. $x+b=2 x-2 a$. 9. $x+a=x^{2}+2 a x$.
10. $x^{2}+3 x-10=x^{2}-3 x-10$. 1 . $b x^{2}-b y^{2}=a x y$.
12. $x^{3}-5 a^{2} x=0$. 13. $x-y=a z-b z$.
14. $2 x^{2}-a x-b x=a^{2}-a b$.
124. 1. $6 y^{2}-3 y+49=0$. 2. $3 a x+u^{2}=0$. 3. $31 x+23=0$.

$\frac{1+3 x}{a m}$
$-x\left(\frac{b^{2}}{a}+\frac{a^{2}}{b}\right)$
$\frac{-3 m}{-b^{2 n}}$.
4. $\frac{\omega k}{\sqrt{n} n} \cdot 5 \cdot n$.
$\frac{(-3}{b-x)}$
$\frac{\left.a^{2}+2\right)+1}{a\left(1+\imath^{2}\right)}$.
$\frac{a m(a n+b m)}{b n(b m-a n)}$
$x+4 x-3 x=60$.
${ }^{2} b=c$.
ax.
$+2 a x$.
$x^{2}-b y^{2}=a x y$
bz.
4. $8 x^{4}+9 \pi x^{3}-6 a^{2} x^{2}+a^{4}=0$.
5. $6 a^{2}!^{3}+3\left(a^{3}-1\right) y^{2}-7 a^{2} y+3 a^{2}=0$.
6. $z^{3}+(a+b) z^{2}+\left(a^{2}+3 u b+b^{2}\right) z+a^{3}+b^{3}+a b^{2}+a^{3} b=0$.
7. $\quad \grave{z} z^{3}+a z^{2}+a^{2} z=0$. 8. $\quad 7 y^{3}+6 y^{2}+5 y+4=0$.
9. $x^{4}-a x^{3}-2 a^{2} x^{3}-a^{3} \cdot c^{2}-4 a^{4}=0$.
10. $z^{3}+(b+c) z^{2}+c^{2} z+b^{3}+b c^{2}+c^{3}=0$.
11. $a x^{2}-u^{2} ., b-b^{2} \cdot x+b=0$. 12. $(1-n) \cdot x^{2}+n+1=0$.
13. $2 a^{2} x^{5}+a x^{4}-a^{5} x^{2}+a^{3}=0$.
14. $10 z^{5}-13 z^{4}+6 z^{3}+21 z^{2}-6 z-3=0$.
15. $(a-b) x^{3}+(a+b) x^{2}+\left(a^{2}-a^{3}+a^{2} b-a b\right) x=0$.
16. $a^{2} \cdot x^{2}+\left(-a^{3}+a^{2} b-a b-b^{2}\right) x+a^{2} b=0$.

1\%9. 1. $\frac{33}{25} .2_{2} .-a .3 .12 .4 .4 . \quad 5 \cdot \frac{a b c}{b c+a c-a b}$.
6. 25. 7. $364 \frac{19}{3}$.
8. $\frac{a-b}{a+b}$.
9. 1. 10. $-\frac{3}{5}$.
11. $c+$ + 12.42.
13. $b-a . \quad 14 . \quad 5 . \quad 15 \cdot \frac{8 a t}{25} \cdot \quad$ 16. $\frac{a^{2}(b-a)}{b(a+b)}$.
17. $\frac{a\left(1-b^{2}\right)}{b\left(a^{2}-1\right)} \cdot \quad$ 18. $\frac{a\left(a c+b^{2}-1\right)+b c^{2}-b-c}{a(b+c)+b c-1}$.
19. $\frac{b n-a m}{m-n}$. 20. $\frac{a^{3}+c^{3}+b^{3}-3 a b c}{3\left(a^{2}+b^{2}+c^{2}-a b-a c-b c\right)}$.
21. $a=\frac{d(c-b)}{b-l}, \quad b=\frac{d(c+a)}{a+d}$,
22. $\quad t=-\frac{c l}{b}, \quad b=-\frac{c l}{a}, \quad c=-\frac{a b}{c l}, \quad d=-\frac{a b}{c}$.
1830. 1. 20. 2. 72. 3. I, $\$ 67$; II, $\$ 21 \%$ 4. 210. 5. 50 .
6. 180 . 7. 65. 8. A, $\$ 130 ; \mathrm{B}, \$ 110 ; \mathrm{C}, \$ 260$.
9. $\$ 1000, \$ 1500, \$ 2000, \$ 2500, \$ 3000$.

1о. Man, 36 ; wife, 30 . ıı. I, $18 \frac{1}{2}$; Ii, $26 \frac{1}{2}$; III, 45.
12. 6 ft . I3. $\$ 353 \frac{1}{1}$. 14.81 m . $15.143 \frac{1}{3} \mathrm{~m}$.
16. $\mathrm{A}, 8600 ; \mathrm{B}, \$ 1200 . \quad$ 17. $8 \frac{1}{3} \mathrm{~m}$. per h.
18. $\frac{h}{2(m-h)}$ h. 19.15 and $24 . \quad$ 20. $15,10$.
21. Man, 40 : wife, $35.22 .19 \frac{1}{6}$ 23. $1 \frac{3}{3}$ days.
24. $30 \mathrm{~m} .25 . \mathrm{I}, \mathrm{G} ; \mathrm{II}, 3$; III, Д. 26. 3000. 27. 100.
28. 4. 29. 85000 . 30.8142 .50 . 31. I, *if ; II, *4.
32. 3 m . : 11 h . 33. $\$ 3600$. 34. 824800 .
35. 3 h. $211_{1}^{9} \mathrm{~m}$.
36. $1, \frac{m}{1+i a+a^{2}}-a ; \mathrm{II}, \frac{m}{1+i a+a^{2}}+a$

$$
\text { III, } \frac{m}{a\left(1+2 u+u^{2}\right)} ; \text { IV, } \frac{m u}{1+2 u+u^{2}}
$$

38. I, $\frac{\delta(l-10 n}{5} ; ~ I I, \frac{\$(l-5 n}{5} ;$ III, $\frac{* \ell}{5}$; IV, $\frac{\approx u+5 n}{5}$; $\mathrm{V}, \frac{\delta(t+10 n}{5} \cdot 39.16 \mathrm{~h} . ; 160 \mathrm{~m}$.
39. 40. $30 \mathrm{~m} . ; 2$ points.
$4 \mathrm{I} .20 \mathrm{~m} . ; 3$ points. 42.31 m .
1. $\frac{T^{\prime} T}{T-T^{\prime \prime}}$.
2. 3. $y=2 \frac{2}{6}, x=12 \frac{3}{8} . \quad$ 2. $y=7, x=16$.
1. $x=a-l, y=\frac{7 b}{6}-a . \quad$ 4. $y=\frac{m-n}{6}, x=\frac{m+n}{4}$.
2. $y=\frac{p-q}{2 b}, x=\frac{q+p}{2 a} . \quad$ 6. $x=84, y=84$.
3. $x=32, y=50$. 8. $x=a+b, y=\frac{3}{2}(a-b)$.
4. $x=9, y=3 . \quad$ iо. $x=7, y=5$.
ıг. $y=6, x=4$. ı. $y=9, x=8$.
5. $y=8, x=6 . \quad$ ı5. $y=6, x=15$.
i6. $y=7, x=14$. 17. $y=12, x=6$.
6. $y=\frac{2 b}{c-l}, x=\frac{2 a}{c+d}$. \quad 1. $y=2, x=6$.
7. $y=a^{2}-2 a b+b^{2}, x=a^{2}+2 a b+b^{2}$.
8. 2. $x_{1}=2 \%, x_{2}=22, x_{3}=8, x_{4}=\%$ 。
1. $x=\stackrel{2}{2}, y=3, z=-2$.
2. $x=6, y=-1, z=3, w=2$.
3. $x=\frac{a-\frac{2}{2}+c+a}{3}, y=\frac{a+b-2 c+d}{3}$,

$$
z=\frac{a+b+c-2 d}{3}, u=\frac{-2 a+b+c+d}{3}
$$

С. $x=\frac{2}{p+m+n}, y=\frac{2}{p+n-m}, z=\frac{2}{p-n-m}$.
3000. 27. 100. I, *t ; II, wt.

IV, $\frac{\$ u+5 n}{5}$;
$=16$.
$\frac{n-n}{6}, x=\frac{m+n}{4}$.
$84, y=84$.
$y=\frac{3}{i}(a-b)$.
6.
$2, x=6$.
$-b^{2}$.
$\frac{-2 c+d}{3}$,
$\frac{-b+c+d}{3}$.
$=\frac{2}{p-n-m}$.

1. Λ, 8205; B, 8150 . 3. 54. 4. 42. 5. 6\%. 6. 81.
2. $\frac{28}{45}$. S. 1,$86 ;$ B. \%2. 9. 16 good, 36 poor.

1о. $\frac{14}{15}$, 11. $\frac{8}{15}$. 12. 25, 8. 13. $96,3 \%$ 14. $24,18$.
15. Λ in 9 , and 13 in 18 d . 16. 28, 23.17 .35 , 28.
18. 1,$40 ; \mathrm{II}, 30$.
19. Bought, Fix and 24ϕ; sold, 904 and 32ϕ,
20. Cuflee, $\frac{m p-a p}{m b-a m}$; tea, $\frac{m p-b \bar{\prime}}{a n-b m}$.
21. I, $\frac{1}{2}$; II, $4 \frac{1}{2}$. 22. $\frac{a(b-c)}{b-a}$.

24. I, 120 ; II, 114 ; III, 110 .
164. 3. $12,24,66 . \quad$ 4. $66 \frac{2}{3}, 183 \frac{1}{3} .200,2669 \frac{2}{3}, 333 \frac{1}{3}$.
5. $\frac{a}{a+b}$ and $\frac{b}{a+b}$. 6. 42. 18. 7. $\frac{m}{m-n}$ and $\frac{n}{m-n}$.
8. $x=\frac{a}{a-b}, \quad, \quad=\frac{b}{a+b}, \quad$ о. $\frac{a+2}{a-2}, \quad$ м. 2.
14. $\$ 7536 . \quad 15 . \mathrm{I}, \$ 7700 ; \mathrm{II}, \$ 12600$. 16.8 .

ェ 7. 448 and 1008 . $18 . \frac{b}{a+b}, \frac{a}{a+b}$.
19. 7 p. gold, 5 p. silver. $\quad 20.5$ p. gold, 3 p . silver.

2 I. $\frac{2 a m+(1 n+b m}{(m+n)(a+b)}$, water; $\frac{b m+2 b n+(c n}{(a+b)(m+n)}$, alcohol.
22. $3 a m+2 a n+b m: 3 b n+2 b m+a n$.
23. $(p+q) a m+p a n+q b m:(p+q) b u+p b m+q a n$.
24. I, $5: 3 ;$ II, $1: 3$.

1\%3. ь. $1+4 x+10 x^{2}+12 x^{3}+9 x^{4}$.
2. $1+4 x+10 x^{3}+20 x^{3}+25 x^{4}+24 x^{5}+16 x^{6}$
3. $1+4 x+10 x^{2}+20 x^{3}+25 x^{4}+34 x^{5}+36 x^{6}+30 x^{2}+40 x^{8}$

$$
\begin{aligned}
& 1+4 x+10 x^{10} . \quad 4 \cdot 1+4 x+10 x^{2}+20 x^{3}+25 x^{4}+34 x^{5}+48 x^{6} \\
& +250 x^{12}
\end{aligned}
$$

$$
\begin{aligned}
& +25 x^{10} \\
& +54 x^{5}+76 x^{8}+48 x^{9}+25 x^{10}+60 x^{11}+36 x^{12}
\end{aligned}
$$

5. $1-4 x+10 x^{2}-20 x^{3}+25 x^{4}-24 x^{5}+16 x^{6}$.

1\%\%. 1. $(a+b)^{\frac{3}{2}},(a+b),(a+b)^{\frac{3}{n}}$.
4. $(x+y)^{\frac{3}{4}},(x+y)^{\frac{1}{2}},(x+y)^{\frac{-3}{23}}$.

1\%8. 17. $a^{h}(b-c)^{n}$.
184. 1. $10+3(5 \sqrt{5}-2 \sqrt{2}-3 \sqrt{10})$. 2. $37 \sqrt{2}-17$.
4. $a+b+c+d+2(\sqrt{\overline{a b}}+\sqrt{\overline{a c}}+\sqrt{a d}+\sqrt{\overline{b c}}$ $+\sqrt{b r l}+\sqrt{c} \bar{l})$.
8. $u^{2}-4 a+\left(4-\frac{4}{a}+\frac{1}{a^{2}}\right.$. 9. $a^{2}-b^{2}(x+y)$. 1 . 1 .
12. 1. 13. $\sqrt{2}(\sqrt{2}+1)$. 17. $(x-y)^{\frac{1}{2}}\left[(x-y)^{\frac{1}{2}}-1\right]$.
19. $\frac{1}{\sqrt{ } a+b}$ 20. $\frac{a x+b}{a x-b}$. 21. $\frac{(a-x)^{\frac{1}{2}}+1}{(a+x)^{\frac{1}{2}}-1}$.
185. 1. $\frac{\left(a^{2}-36\right)^{\frac{1}{2}}}{a-6}$. 2. $\frac{\sqrt{x y}}{y}$. 3. $\frac{\sqrt{1-x^{2}}}{1-x}$. 4. $\frac{7 \sqrt{15}}{45}$.

g. $\frac{(\sqrt{x}+\sqrt{y})^{2}}{x-y}$. 10. $\frac{a^{2}+a(x+y)^{\frac{1}{2}}-2(x+y)}{a-x-y}$.
11. $\frac{9 \sqrt{1 \overline{5}}+41}{2}$. 12. $\frac{(\sqrt{x}-\sqrt{x}+y)^{2}}{-y}$.
13. $\frac{x+\left(x^{2}-a^{2}\right)^{\frac{1}{2}}}{a^{2}} \cdot$ 14. $(a+1)^{\frac{1}{2}}-a^{\frac{1}{2}}$.
15. $\frac{x+\sqrt{x^{2}-u^{2}}}{a}$.

18\%. 1. $x^{2}+2 x y=(x-y)^{2}-y^{2}$.
2. $x^{2}+4 x y=(x+2 y)^{2}-4 y^{2}$.
3. $x^{2}+6 a x=(x+3 a)^{2}-9 a^{2}$.
4. $4 x^{2}+4 x y=(2 x+y)^{2}-y^{2}$.
190. 1. $\frac{p^{2}}{7^{2}}$ 2. $\frac{(a+b)^{3}}{l^{3}} \cdot$ 3. $(a+b)^{3}$. 4. 6. 5. $\sqrt{a b}$.
6. $a^{\frac{1}{b^{\frac{1}{4}}}}$ 7. $\left(a^{2}-b^{2}\right)^{\frac{n q}{m+n}+\bar{n}} . \quad$ 9. $\left(b^{4}-2 a^{3} b^{2}+2 a^{4}\right)^{\frac{1}{2}}$.
10. $b^{2}+4 . \quad$ 1. $\frac{a}{\left(1-m^{2}\right)^{\frac{1}{2}}}$. 12. $\frac{b}{\left(1-n^{2}\right)^{2}}$.
191. 1. $6,12,4.2 .15,12 . \quad 3.47,35.4 .16 . \quad 5 \cdot a+1$.
6. $8,16 . \quad 7.64,512 . \quad$ 8. $16,48$.
9. 10.15. 10. $\frac{m^{2}+m n}{(m+n)^{2}}, \frac{m n+n^{2}}{(m-n)^{2}}$ 11. 28, 36 .
$3 \% \sqrt{2}-17$
$\sqrt{a d}+\sqrt{b c}$
$(x+y) . \quad$ 1. 1.
$\frac{1}{2}\left[(x-y)^{\frac{1}{2}}-1\right]$.
$\frac{)^{\frac{1}{2}}+1}{)^{\frac{1}{2}}-1}$.
4. $\frac{7 \sqrt{15}}{45}$.
$\frac{(a-\sqrt{x})^{2}}{a^{2}-x}$.
$\frac{-2}{-y}(x+y)$
5. $\sqrt{a b}$.
$\left.z^{2}+2 a^{4}\right)^{\frac{1}{2}}$.
6. 5. $a+1$.

28, 36.
12. $y=\sqrt{\frac{a c^{\prime}-a}{a b^{\prime}-a b}}, x=\sqrt{\frac{b^{\prime} c-b c}{a b^{\prime}-a b}}$. \quad i3. 10, 24.
14. $\overline{\left(m^{2}+n^{2}\right)^{\frac{2}{2}}} \cdot$ 15. $\frac{1}{4} \sqrt{h}$.
195. 1. $x=10,-\frac{2}{5}$. 2. $y= \pm 8$. 4. $y=a \pm b$.
5. $x=-a$ or $-b . \quad$ 7. $x=a(1 \pm \sqrt{2})$.
8. $y=\frac{1}{8}(-1 \pm \sqrt{129}) . \quad$ 9. $y=\frac{1}{2}$.
ro. $x= \pm a \sqrt{\frac{3}{j}} \begin{array}{ll}\text {. } & \text { r. } \pm 21, \pm 2 \% \\ \text { 2. } & 4 \text { and } 10 .\end{array}$
3. $\pm 17.4 .36,24.5$ 5. $10,15,30$.
6. $6,10,14,18$, or $-18,-14,-10,-6$.
7. 35. 8. 21 turkeys, 25 chickens. 9. 12. 10. 10.
11. 250. 12. 3. I3. Length, 45 ; breadth, 35.
14. $\frac{1}{2}\left(\sqrt{4 m^{2}+a^{2}}+a\right)$ and $\frac{1}{2}\left(\sqrt{4 m^{2}+a^{2}}-a\right)$.
15. 72 or 108.
196. 1. 81. 2. 121. 3. 225. 4. 289. 5. 256. 6. $\sqrt{3 \pm 3 \sqrt{6}}$. 7. $\sqrt{\frac{1}{6}(7 \pm \sqrt{349})}$. 8. $\binom{13}{5^{-}}^{4}, 1$. 9. $\sqrt{ }\left(a^{\frac{1}{2}}+\frac{1}{a^{\frac{1}{2}}}\right)^{\frac{4 n}{n}}-a^{\frac{4 .}{2}}$. 202. 1. $x=\frac{a}{4} . \quad$ 2. $x=-a . \quad$ 3. $x=13 . \quad$ 4. $x=50$.
5. $x=1 . \quad$ 6. $x=\frac{-1 \pm \sqrt{16 a^{2}+1}}{8}$. 7. $x=16$.
8. $x=5$ or $\frac{9}{5} . \quad$ 9. $x=a^{2}-b^{2} \pm b \sqrt{b^{2}-a^{2}}$.
10. $x=4$. іп. $x=a$ or $\frac{1}{a}$.
203. I. $x=\frac{37}{7}$ or 5, $y=\frac{10}{7}$ or 2 .
2. $x=-4$ or $+13, y=0$ or -17 .
3. $x=-\frac{1}{3} \pm \frac{1}{3} \sqrt{-863} ; y=\frac{1}{6}(1 \mp \sqrt{-863})$.
4. $x=11$ or $-7 \frac{75}{73}, y=15$ or $-17 \frac{5}{7} \frac{8}{3}$.
5. $x=-21$ or $4 ; y=28$ or 3 .
204. І. $x=1.3 \% \ldots$ or $-0.156 \ldots ; y=-4.46 \ldots$ or $-6.096 \ldots$
2. $y=\frac{7}{2}$ or $-4 ; x=\frac{79}{12}$ or $-\frac{14}{3}$.
3. $x=2$ or $5 ; y=6$ or 3 .
205. г. $y= \pm 1$ or $\pm \sqrt{\frac{1}{7}}: x=2 y$ or $-4 y$.

$$
\text { 2. } y= \pm \frac{1}{2} \text { or } \pm \frac{4}{\sqrt{ } 19} ; x=\mp \frac{3}{2} \text { or } \pm \frac{3}{\sqrt{ } 19} \text {. }
$$

$$
\text { 20\%. 1. } x= \pm 5 ; y= \pm 2 . \quad \text { 2. } x= \pm 8 ; y= \pm 3
$$

3. $x=\frac{1}{2}(5 \pm \sqrt{5}) ; y=\frac{1}{2}(\tilde{5} \mp \sqrt{5})$.
4. $y=7$ or $2 ; x=2$ or $7 . \quad 5 . x=5$ or $7 ; y=7$ or $\tilde{5}$.
5. $x= \pm 9 ; y=\mp 2 . \quad 7 . x= \pm 25 ; y= \pm 9$.
6. $x= \pm \frac{b}{\sqrt{a+b}} ; y= \pm \frac{a}{\sqrt{a+b}} \cdot \quad$ 9. $x=2 ; y=1$.

1о. $x=a(a \pm b) ; y=b(a \pm b)$. п. $x=4 ; y=5$.
12. $x=\frac{3}{5} ; y=\frac{1}{5}$. 13. $x=\frac{4}{15} ; y=\frac{1}{15}$.
14. $x=$ ŏ ; $y=1$ or $2 ; z=2$ or 1. 15. $x=5 ; y=3$.
16. Time, 6 or 7 ; rate, $\boldsymbol{7}$ or 6 . 17. Dist., 30 or $46 \frac{2}{3}$.
18. $x=\frac{1}{2}\left(\sqrt{a^{2}+4 b^{2}}+\sqrt{a^{2}-4 b^{2}}\right)$;

$$
y=\frac{3}{2}\left(\sqrt{a^{2}+4 b^{2}}-\sqrt{a^{2}-4 b^{2}}\right) .
$$

19. $\frac{1}{2}(1 \pm \sqrt{5})$ and $\frac{1}{2}(3 \pm \sqrt{5})$.
20. 24 and 9 , or -12 and -18 . 2 1. 49 and 25 .
21. 64 and 8 .
22. $m+n \mp \sqrt{m^{2}+n^{2}}$ and $m+n \pm \sqrt{m^{2}+n^{2}}$.
23. 12 men working $12 \mathrm{~h} . \quad 25.8 ; 10$.
24. $x= \pm 6 ; y= \pm 4 . \quad 27.11 ; 3$.
25. 7. 14075 . 8. 5050 . $10 . n^{2}$. пा. $n^{2}+n$.
1. Lowest, $140-6 m$; all, $137 m-3 m^{2}$,
2. $0,2,4,6,8$. 17. 951. i8. 4, 10, 16. 19. 11 or 8 .
3. 10 or 16 d. 22. 9 days. 23. 2, 5, $8,11,14$.
4. 2, 6, 10, 14, 18, 29, 26, 30, 34, 38. 27. 3, 5,
5. $a, a+\frac{l-a}{i+1}, a+\frac{2(l-a)}{i+1}$, etc.

21\%. 6. Last nail, ©21474836.48; all, $\$ 42949672.95$.
7. 246.
12. 5 or $\frac{1}{5}$.
$214 . \frac{1}{2}$.
2. 2. $3 \cdot \frac{1}{10}$.
4. $\frac{4}{5} \cdot 5 \cdot \frac{1}{6}$.
6. $\frac{a}{b} \cdot \frac{m^{2}-2 m}{m^{2}-1}$.
$-4 y$.
$\pm \frac{3}{\sqrt{19}}$.
; $y= \pm 3$.
or ${ }^{7} ; y=7$ or 5 .
; $y= \pm 9$.
9. $x=2 ; y=1$.
$x=4 ; y=5$.
$\frac{1}{15}$.
$x=5 ; y=3$.
., 30 or $46 \frac{2}{3}$.
and 25.
$\overline{m^{2}+n^{2}}$
19. 11 or 8 . 1, 14.
$3,5, \ldots .29$.
2.95. 7. 246.
7. $\frac{m^{2}-2 m}{m^{2}-1}$.
8. $12-6+3-\frac{3}{2}+$ etc., ad inf. \quad 9. $\frac{1}{3}$ from A to B . 215. г. $\frac{1}{9}$ 2. $\frac{2}{9} \cdot 3.1 .4 \cdot \frac{1}{10} \cdot$ 5. $\frac{5}{11}$. 6. $\frac{27}{110} \cdot$ 7. $\frac{108}{999}$. 8. $\frac{797}{1100}$.
216. $1 . \$ 216.74$ 3. 2.72325a.
$a \frac{\left(1+\frac{c}{100}\right)^{n}-1}{\left(1+\frac{c}{100}\right)^{n+1}}-\left(1+\frac{c}{100}\right)^{n}$ and $\quad \begin{aligned} & a-\frac{\left(1+\frac{c}{100}\right)^{n}-1}{\left(1+\frac{c}{100}\right)^{n}-\left(1+\frac{c}{100}\right)^{n-1}} .\end{aligned}$
226 (a). 1. 440. 3. 74. 4. 148. 5. 0. 6. 0.
16. 1. 17. 4. 18. 10.19 .20 .20 .35 .21 .56 . 22. 0 .
23. $-\frac{1}{4}$. $24 .-1 . \quad$ 3. $74 . \quad 4.148$. 5. 0. 6. 0 .

22\%. 1. $A_{2}=A_{1}-A_{0} ; A_{3}=-A_{0} ; A_{4}=-A_{1} ;$ cte. ; $A_{10}=-A_{1}$.
2. $A_{5}=16 A_{1}-15 A_{0} . \quad 3 . A_{5}=43 A_{1}+3 C A_{0}$.
4. $\frac{n+1}{2}\left(2 A_{0}+n l\right) . \quad 5 \cdot \frac{r\left(r^{n}-1\right)}{r-1} A_{0}$.
6. $A_{2}=k A_{1}+A_{0} ; \ldots A_{6}=\left(120 k^{5}+96 k^{3}+9 k\right) A_{1}$
$+\left(120 k^{4}+36 k^{2}+1\right) A_{0}$.
228. 1. $n-4$ terms are omitted. 5. $s-2$.
I. 120 .
2. 720.3 .40320 .
4. 35.5 .56.
I. 247 .
2. 70 .
230.
$\begin{array}{lllllll}\text { I. } & 2^{3} \cdot 3 . & \text { 2. } 2^{3} \cdot 3^{2} \cdot & 3 \cdot & 2^{2} \cdot 5 \cdot 13 . & \text { 4. 13 } & \text { 5. } 3^{2} \cdot 5^{2}\end{array}$
6. 2^{8}.
232. 2. 7. 3. 1. 4. 1. 5. 4.
233. 6. First wheel $=7$, second $=5$, third $=3$ turns.
245. 1. $\frac{113}{355}$. 2. $\frac{17}{58}$ 3. $\frac{19}{72}$ 4. $\frac{5 x+1}{3(5 x+1)+x}$.
5. $\frac{b c+1}{a(b c+1)+c}$.
251. 2. $\frac{1}{6}$. 4.720 .54.

6．（a） 2160 even， 8880 odd ；（b） $144 ;(c) 720$ ；（d） 576.
7．\％ 2 ．8． $1 \approx 0$ ．g． 120 ．10． 120 ．11． $12 . \quad$ 12． 72.
13． 144.14 .720.
ジア．3．360．5．60．6． 90 7． 24.
253．1．720．2． $120.3 .48 .4 .4 . \quad 5.2880 .6 .14400$.
：54．4．140．5． 6480480 ．
『5た．1．5．2．5．3．8．4．6．5．16．6． 17.
5\％．3．3，21，36．5．10．7．3．8．3．
9．（a） 1 ；（b） 3 ；（c） 6 ways．ro． 3003.
258．2． $35,\left(\frac{2 n-1}{n}\right)$ 3．$\left(\frac{2 n-1}{n+1}\right)$ ．
261．3． 15 and 20．5．$\left(\frac{n-3}{s-3}\right)$ ．
263．1．120．2．240．3． $\mathfrak{2}^{n}$ ．4． 81 routes．
26\％．1．$\frac{1}{2}$ ．\quad 2．$\frac{2}{3}, \frac{1}{3}$ ．\quad 3．$\frac{1}{36}, \frac{5}{18}$ ．\quad 4．$\frac{5}{36}$ ．\quad 5．$\frac{1}{6}$ ．\quad 6．$\frac{1}{3}$ ．
7．$\frac{3}{5}$ ．8．$\frac{1}{3}$ ．9．$\frac{5}{14}$ ．\quad 10．$\frac{3}{10}$ ．\quad I1．$\frac{1}{5}$ ．13．$\frac{3}{7}$ ． $14 \cdot \frac{7}{27}$ ．
15．$\frac{2 m n}{(m+n)(m+n-1)}$ 16．$\frac{3}{10}$ ．17．$\frac{n}{2^{n}}$ ．
269．1．$\frac{2}{5}$ and $\frac{2}{15}$ ．2．$\kappa, \frac{63}{80} ; \beta, \frac{1}{80} ; \gamma, \frac{7}{80} ; \delta, \frac{9}{80}$ ．
3． 2 to 1 in favor．4．$\frac{3}{14}$ ．
$3 m n(m-1)$
5．$\overline{(m+n)(m+n-1)(m+n-i)}$.
6． $\mathrm{A}=\frac{2}{7}, \mathrm{~B}=\frac{5}{21}, \mathrm{C}=\frac{4}{21}, \mathrm{v}=\frac{1}{\gamma}, \mathrm{E}=\frac{2}{21}, \mathrm{~F}=\frac{1}{21}$ ．
7． $\mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{1}{4}, \mathrm{X}=\frac{1}{4}$ ．\quad 8． $\mathrm{A}, \frac{2}{3} ; \mathrm{B}, \frac{1}{3}$ ．
9．$\frac{1}{2} \cdot \frac{2^{n}}{2^{n}-1} ; \frac{1}{2^{2}} \cdot \frac{2^{n}}{2^{n}-1} ; \ldots \cdot \frac{1}{2^{n}} \cdot \frac{2^{n}}{2^{n}-1}=\frac{1}{2^{n}-1}$.
1．$\frac{36}{91}, \frac{30}{91}, \frac{25}{91}$ ．
12．The chances are 41 to 25 in favor of the first purse．
2\％1．$. \frac{80}{243}, \frac{80}{243}, \frac{40}{243}, \frac{10}{243}, \frac{1}{243}$ ．2．$\frac{347}{2048}$ ．3．$\frac{16}{27}$ ．
2\％4．1．（a） 0.429 ；（b） 0.159 ；（c） 0.813 ；（d） 0.655 ；
（e） 0.371 ；（ f ） 0.110 ；（ g ） 0.151 ；（l） 0.025.
(c) 720 ; (d) $5 \% 6$ 11. 12. 12. 72.
80. 6. 14400 .
$\frac{1}{6} . \quad 6 . \frac{1}{3}$.
13. $\frac{3}{7}$. $14 \cdot \frac{7}{2 y}$.
$\frac{n}{2^{n}}$
$\frac{9}{80}$
$=\frac{2}{21}, \mathrm{~F}=\frac{1}{21}$.
$\frac{1}{3}$
$=\frac{1}{2^{n}-1}$.
ne first purse,
3. $\frac{16}{27}$.
.655 ;
025.
2. 69 . 4. $\$ 296.30$. 5. 0.4533 .
6. $\$ 1000 ; \$ 1666.67 ; \$ 2111.11$. 7. $a\left[1-(1-p)^{\kappa}\right]$.
8. 0.1123 . 9. $\$ 1894$. $10 . \$ 1224$.

2\%8. ェ. 140.2 2. 70. 3. 112. 5. 22π. 6. $28(j-1)$.
8. $54 \mathrm{~m}^{2}$. 9. $\frac{11}{10}$.
289. 1. $1+x+x^{2}+x^{3}+$ etc. 2. $1+2 x+2^{2} x^{2}+2^{3} x^{3}+$ etc.
3. $1-2 x+2 x^{2}-2 x^{3}+$ etc. 4. $1+2 x+2 x^{2}+2 x^{3}+$ etc.
5. $1-x-x^{2}+5 x^{3}-7 x^{4}$-etc. $6.1+x+x^{2}+x^{3}+x^{4}+$ etc.
7. $1-4 x+8 x^{2}-4 x^{3}-16 x^{4}+$ etc.
8. $1-2 x+2 x^{2}-x^{3}-x^{4}+$ etc.
283. 1. $1-3 x+3 x^{2}-3 x^{3}+$ ctc. 2. $1+2 x+x^{2}-x^{3}-2 x^{4}$-ctc.
288. 1. $\frac{r(2 n-r+1)}{2}$ 2. $\frac{h(h+1)-s(s+1)}{2}$.
3. $\frac{n(n+1) \cdot-m(m-1)}{2}$. 4. $\frac{p(p+2 k-1)}{2}$.
6. $3 n^{2}-3 n+1$.
289. 1. 165. 2. $\frac{n(n+1)(n+2)-k(k+1)(k+2)}{1 \cdot 2 \cdot 3}$.
3. $\frac{n(n+1)(n+2)-(m-1) m(m+1)}{1 \cdot 2 \cdot 3}$.
293. 1. $S_{1}=210 ; S_{2}=2870 ; S_{3}=42665$.
2. $S_{1}=r^{2} ; S_{2}=\frac{r\left(4 r^{2}-1\right)}{3}$.
3. $S_{1}=r(r+1) ; S_{2}=\frac{2 r(r+1)(2 r+1)}{3}$.
4. $N_{3}=3 p q-3(p+q)+5$;
$N p=s p q-\frac{s(s-1)}{6}(3 p+3 q-2 s+1)$.
5. $5 a+15 b+55 c . \quad$ 6. $b\left[a+\frac{b+1}{2}\left(b+\frac{2 b+1}{3} c\right)\right]$
295. 1. $\frac{1}{3}-\frac{1}{n+3}$. 2. $\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2 n+3}\right)$.
3. $\frac{2}{3}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{n+2}-\frac{1}{n+3}-\frac{1}{n+4}\right)$.
4. $\frac{3}{2}\left(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right)$. 5. $\frac{1}{a}$.
296. $. \frac{2 a r\left(1-r^{n-1}\right)}{(1-r)^{2}}+\frac{a\left[1-(2, r-1) r^{n}\right]}{1-r}$ and $\frac{a(1+r)}{(1-r)^{2}}$.
2. $\frac{2 u\left(1-r^{\prime n}\right)}{(1-r)^{2}}-\frac{2\left(\epsilon!r^{\cdot n}\right.}{1-r}$ and $\frac{2 a}{(1-r)^{2}}$.
3. $\frac{b r\left(1-r^{n}\right)}{(1-r)^{2}}+\frac{a r-(a+n b) r^{n+1}}{1-r}$ and $\frac{(b+a) r-a r^{2}}{(1-r)^{2}}$.
300. 2. $\Delta_{5}=-305 ; \Delta_{i}=\frac{3}{2} i^{3}-\frac{39}{2} i^{2}-2 \dot{2}+5$.
3. $341^{\circ} 5^{\prime} 10^{\prime \prime} .9+(n-1)\left(1^{c} 0^{\prime} 9^{\prime \prime} .6\right)-(n-1)(n-2)^{\prime \prime}$.
4. $495+15(n-5)-5 \frac{(n-5)(n-6)}{2}$;

Morning of May 23 or Apr. 24.
304. 1. 1. 2. $\frac{a}{b}$. 3. $\frac{m}{p}$. 4. $\frac{1}{a}$. 5. 2a. 6. -1 .
308. เ. $\sqrt{8}=2.828427 ; \sqrt{2}=1.414214$.
2. $1-\frac{1}{2} x-\frac{1 \cdot 1}{2 \cdot 4} x^{2}-\frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3}-\frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}-$ etc.
3. General term $=-\frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7 \ldots 2 i-3}{2 \cdot 4 \cdot 6 \cdot 8 \ldots .2 i} x^{i}$.
4. $(-1)^{i} \frac{1 \cdot 3 \cdot 5 \ldots(2 i-1)}{2 \cdot 4 \cdot 6 \ldots .2 i} x^{i} . \quad 5 \cdot\left(\frac{m}{i}\right) \frac{1}{x^{i}}$.
6. $\frac{(-1)(m-1)(2 m-1) \ldots[(i-1) m-1]}{i!m^{2}}$.
7. $1+1+\frac{1-m}{2!}+\frac{(1-m)(1-2 m)}{3!}$

$$
+\frac{(1-m)(1-2 m)(1-3 m)}{4!}+\text { etc. }
$$

8. $-\left(\frac{1}{b^{3}}+\frac{3}{1} \frac{a}{b^{4}}+\frac{\left.3 \cdot+\frac{a^{2}}{1 \cdot} \frac{a^{2}}{b^{5}}+\ldots+\frac{3 \cdot 4 \cdot 5 \ldots . .}{1 \cdot 2 \cdot 3 \ldots 2} \frac{a^{i}}{b^{i+3}}\right)}{(m)}\right.$
9. $(-1)^{n}\left(\frac{1}{x^{m}}+\frac{m}{x^{m+1}}+\frac{m(m+1)}{1 \cdot 2 x^{m+2}}\right.$

$$
\left.+\frac{m(m+1)(m+2)}{1 \cdot 2 \cdot 3 x^{m+3}}+\ldots .\right)
$$

HINTS ON a COURSE IN ADV ANCED AlgiEbRA.

$\frac{1}{}$ and $\frac{a(1+r)}{(1-r)^{2}}$.

$$
\frac{(b+a) r-a r^{2}}{(1-r)^{2}}
$$

$$
i+5
$$

$$
-(n-1)(n-2)^{\prime \prime} .
$$

$$
\text { (6) } ;
$$

-1.
$\frac{3.5}{3.8} x^{4}-$ etc.
$\frac{i-}{2 i}$
$m-1]$. + etc.
$\left(\ldots \frac{i+2}{3 \ldots i} \frac{a^{i}}{b^{i+3}}\right)$
$-2)+\ldots$.$) .$

For the lenefit of students who may contemplate a course of reading in the varions branches of Advancel Algelora, the following list of sub. jocts and booke has been prepared. As a gemeral rule, the most extembed and thorongh treatises are in the German Langunge, while the French works are noted for elegnoce and simplicity in treatment.

To pursue any of these subjects to advantage, the student should bee familiar with the Ditlerential Calculus.
I. TIIE GENERAL TIIEORY OF EQUATIONS.-In English, Todhunter's is the work most rend.
Senhet, Alyibre Superieure, 2 vols., 8 vo, is the standard French work, covering all the collateral subjects.
Jordan, Thêorie des Substitutions et des Équateoms Algébriques, 1 vol., 4to. is the largest and most exhaustive treatise, but is too abstruse for any but experts.
II. DETERMINANTS-Batzer, Theorie der Determinanten, is the standard treatise. There is a French but no English transhation. A recent English work is Robert F. Scott, The Theory of Determinants and their Applieations in Andysis and Geometry.
III. TIIE MODERN IIIGIIER ALGEBRA, resting on the theories of Invariants and Covariants.
Samon, Lexsons introductury to the Modern higher Algebra, is the standard Eigrlish work, and is especially adapted for instruction.
Clebsen, Theorie der binüren Aligebraisthen Formen, is more exhantive in its special branch and requires more familiarity with advataced systems of notation.
IV. TIIE TILEORY OF NUMBERS. There is no recent treatise in English. Gauss, Disquivitioncs Arithmetice, and Legendre, Therrie des Nombres, are the old standards, bat the latter is rare and costly. Ledeune Dimichiet, Vorlesunger uber Zahlentheoric, is a good German Work. There is also a chapter on the sulject in Serret, Algibre Supériente.
V. SERIES.-This subject belongs for the most part to the Calculus, but Catalan, Traité elémentaire des Séris, is a very convenient little French work on those Series which can be treated by Elen entary Algelra.
Vi. Quaternions.--Tait, Elementary Treatise on Quatermions, is prepared especially for students, and contains many exercises. Tho original works of ilaminton, Lectures on Quaterinions and Elements of Quaternims, are more extended, and the latter will be found vaituble for both reading and icference.

[^0]: * The student should copy this scale of numbers, and have it before him in studying the present chapter.

[^1]: * In mathematical language, when a substantive is followed by a symbol in this manner, the latter is used as a sort of proper name to designate the substantive, so that the latter can be afterward referred to by the letter without ambiguity.

 In the present case, the capital letters are used in accordance with the second general principle, S 41.

[^2]: Σ, n, and d are given by the problem, and n is the unknown quantity. Substituting the numerical value of the unk inown quantities, the equation becomes

[^3]: * The letters G. C. D. are an abbreviation for (ireatest Common Divisor.

[^4]: * If the student finds any difficulty in reasoning out these excreises, he is recommended to try similar cases in which few symbols are involved by acturl!y forming the permutations, uatil he clearly sees the general principles involved.

[^5]: * This form of algebraic notation differs from those already used in that the symbols A and θ do not stimd for quantities, but mere collections of letters. It is an aplication of the general principle that a single symbol may be used to represent any set of symbols, but must represent the same set throughout the same question. A and θ are here used to show to the eye that in forming the permutations of (b) from (a), all the letters on each side of ik preserve their relative positions unchanged.

[^6]: * After Baron Napier, the inventor of logarithms.

[^7]: * It is not to be expected that a beginner will fully understand this subject at once. But he should be drilled in the mechanical process of operating with imaginaries, even though he does not at first understand their significance, until the subject becomes clear through familiarity.

