The institute has attempted to obtain the best original copy available for filming. Features of this sopy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur
Covers damaged/Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Car tes géographiques en couleurColoured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurèes et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages dėtachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of isscie/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraisonMasthead/
Gënérique (périodiques) de la livraison

Additional commenrs:/
Commentaires supplėmentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiquè ci-dessous.

New Series.]
TORONTO, APRIL, 1845.
[Vol. I.-No. 4.

WORK FOR THE MONTH.
The work to be done on the farm during this month, is of the greatest importance. Much of the success of the farmer will depend upon the manner in which the operations of this month are carried out. Unless the ground be properly prepared and the seed of a good quality, it is hopeless to expect a profitable crop. If information be more profitalle to the husbandman at one season of the year than anothecr, this is obviously the one in which it could be turned to the gratest account. The first thing to be confidered is, a,judicious system of rotation. Spring wheat may be sown after potatoes, rape, turnips, vetches, and peas. If a preference is to be given to either of these crops, it must be in favour of potatoes. . The
land for this crop should have been ploughed last autumn, and the seed cannot be sown too soon in the spring. The moment the ground is sufficiently dry for the harrows, spring wheat should be sowa. To prevent smut, the seed should be pickled in strong brine and dried in lime; by this proooss the oats and light
grains may be separated from the wheat, and the early growth will be considerably promoted. In selecting a variety, choose the one which comes the earliest to perfection, and has the greatest number of good qualities and the fewest bad ones. For yielding and flouring qualities the Siberian wheat cannot be surpassed; and by soring alternately upon heavy and light lands, and selecting the finest samples, the quality of this. wheat would be greatly improvied. Forty bush. els per acre after potatoes añd rape hare been repeatedly harvested, and it will command as high a pricesu the British market in wheat, as the finest samples of fall wheat. The flour from this wheat is of the finest quality, and if it be ground and packed in the summer months, it may be shipped across the Atlantic in as sound a condition as flour manufactured from winter wheat. If the land intended for this crop be very rich and likely to pro. mote rust, it would be advisable previous to sowing, to plough the ground lightly im rilss about twelve inches ásunder-the seed may then be sown and harrowed
once This ${ }^{2}$ methad diminishes the weight If stails hyings the crop to an early perfection, and lessens the chance of rust and mildew. The drouth last autumn, having materially blighted the prospect of the winter wheat crop in many sections of the province, it would be advisable to sow spring wheat upon much of the land now occupied with this crop. In all cases where the plants are thin upon the ground and appear backward or stinted, the ground should be ploughed or scarified and re-sown with spring wheat. It is foily to wait for the winter plants to thicken, if the prospect is bad; plough and saw with spring wheat, as soon as the ground will admit.

Peas require to be sown upon good ground, and if they be a short, haulmed variety, three and a half bushels of seed per acre will not be found too much.This may follow any of the white crops; and the land should be ploughed deep and well in the fall, and harrowed fine in the spring. The seed is difficult to coverthis may be remedied by ribbing or drilling in the seed; of the two methods pro. bably the former is the best, both for covering the seed and for the crop. In point of importance the pea crop ranks next to wheat. Instead of making a naked summer fallow, peas may be sown upon the land. An early variety should be selected for this purpose-cne that will come off the ground by the twentieth of July. As soon as the crop is harvested the land should be ploughed ten inchics deep if possible, which may be done previous to wheat harvest, if the early vari. ty be sown; and the only other prepa. rations that the fallow will require, will be ploughing the seed furrow. The secd should invariably he sown in rows abou ten inohes zound r , or even fifteeı inctres is better than less than ten, whicl.
distance will admit a free circulation ot air between the rows. If peas are cuta short period before they are ripe, the straw with care may be cured in such a state, that it will proverhighly nutritious food for sheep during winter months. An abundance of food for stock might thus be raised at a very trifling expense, upon land that would have produced nothing if summer fallowed, but a heavy expense to keep clean.

Barley land can scarcely be worked tos much; it should be rich, ploughed in the fall, and twice in the spring, and made by ploughing, harrowing and rolling, as fine as a garden. Ground thus prepared will scarcely fail in producing a heavy crop of barley. Ten pecks of seed per acre is none too much, and the seed should be sown by the first of May.

The Oat crop at the Lest scarcely remunerates for the expense of enltivation, and no good farmer will grow them with the expectation of realising a large profit. No crop is harder upon land than this, and it almost invariably leaves the ground in an unsuitable condition for the erop that succeeds it. Land for oats should be ploughed in the autumn and cross-ploughed in the spring. When all things are considered, the black oats are the most profitable variety cultivated. Three bushels per acre is the usual quantity of seed sown, and the average produce may be computed at sixty bushels per acre. Oats should be sown by the twenticth of this month.

Sow clover with barley, spring wheat, flax, and oats, either of these crops is adapted, to be sown with seeds. Clover cannot be sown too early, and rarely succeeds well if sown after the tenth of May. The quantity of seed that is cal. zulated to produce a thick growth of hay, is six pounds of clover and four pounds
of timothy per acre. Grass seeds should not be covered deep with the harrow, and the ground should be made perfectly clean and rolled. The success of clover culture depends greatly on the state of the land upon which it is sown.
Prepare ground for flax ; the deeper it is ploughed the longer and better the flax. Land for this crop requires to be made very mellow and tolerably rich; six pecks of seed per acre is a liberal seeding. Much less will answer if the seed be the principal object with the farmer. The flax crop will unquestionably remunerate the cullivator, if skill and proper machinery be employed in preparing it for market. The most feasible plan of engaging in this business is the factor system, which will take the trouble of preparing the fibre for market off the farmer's hands.

Twelve hundred acres were sown last spring in one township in N. Y. State upon this plan. The factors were bound to give the farmers one dollar per bushel for the seed, and eight dollars per ton for the flax or straw. No crop is on the ground a shorter period, and both seed and fibre will always find ready sale the moment that the business receives that attention that its importance warrants. Flax-seed is valuable food for stock, especially horned cattle and horses, and the fibre is well adapted for the manufacture of bagging and strong linen, which might be spun and wore by the farmer's family; or it would give em. ployment for the poor. Every farmer should sow at least one acre-the seed to be fed to the calves, horses, and cows, and the fibre to be manufactured into artieles for domestic use. If the land be rich and strong, the flax crop will prepare the ground as well for wheat as a naked sumner fallow.

Prepare for sowing vetches; this is an excellent soiling crop, and one which might take the place of a naked fallow with great advantage to the farmer.Tares require to be sown thick, about. two bushels per acre is not found too much seed. That quantity of tares or vetches mixed with one quart of rape seed, and sown upon an acre of well prepared ground, will yield an abundant crop, which might be fed off with sheep or lambs in time to plough once for wheat. Ten acres of land thus sown with vetches and rape, would abundantly fatten fifty wethers from the first of July to the first of September, and the stock would yield an ample supply of manure, and the treading would put the land in a sufficient state of firmness for the reception of the wheat. The average yie!d per acre is twenty-five bushels, and the present value of seed is 7s. 6 d . per bushel. Three bushels of tares are equal to two bushels of peas as food for stock. Rape, when sown alone upon fallows, should be cultivated in drills, about fifteen inches apart, which should be well hoed in the rows, but not thinned. The quantity of seed used shouid be four pounds per acre, which should be sown by the tenth of May ; and the sheep may be put upon it in ten weeks from the time it has been sown. The ground may be thoroughly: cultivated between the rows with horse hoes, which will as thoroughly clean the ground as if naked summer fallowed.After being fed off with sheep, it may be sown with wheat, which will produce a heavier crop than any other preparation of land for wheat.
Ploughing when the land is wet con. verts the soil into a mortar, and does it more injury, especially if clay, than cropping. Deep ploughing on most of the land in this country would be productive
of great advantares; 'it would not only lessen the chance of injury from drouth, but would increase the amount and quality of produce upon the land, to an extent that can scarcely be credited by those who have never practiced it. Every farmer should experiment upon deep ploughing, and in this way the merits of the system will be better understood. In proportion as the soil is deepened may fresh barn-yard manure be applied, without catailing the evil of premature growth of the plant.

Plaster may bo sown upon the young clover during the latter part of this month. From one to two buslels per acre upon sur,dy, and four bushels uponstrong clay land, is the quantity that is generally used by those who have had the most cxperience with this manure. By the application of the above quanity, the clover crop moy be doubled. It is also a valuable manure for turnips, potatoes, Indian corn, and all other broad-leaved plants.

Ashes for a top dressing is found highly beneficial on strong, cold, and wet soils, or low spongy meadow or pasture ground, and all other land that is rank with vegetation ; on strong loams it is an admirable manure. From ten to fifteen of unleached, and from fifty to sixty bushels of leached ashes, will be found sufficient to dress an acre. No manure is more efficient upon deep veretable soils than ashes, and every former should make it a point to collect them, to topdress the wheat, potatoc, and grass lands.

All the short manure unon the farm should be collected together in a compost heap for a top-dressing for the meadow. This matter is too much neglected by the Eanadian farmors. Meadow grounds shmuld not onlv he top-dressed with vegrtable matre: froul the compost heap and
gypsum, but strict regard should be paid in keeping every description of animals off the fields during the spring and summer months. Meadows are often destroyed in this way, without any sensible adrantage to the stock.

Look strictly to the ewes; they should be provided with warm, dry, sheltering places, and an obundance of hay and suc-. culent food. A farmer who has a flock of forty ewes, should sow in drills, not less than one acre of parsnips, which :hould remain in the ground during winter, to be fed through this month to the sheep. From 600 to 800 bushels of parsnips may le grown uron an acre of land, as readily as half that number of bushels of potatoes. This crop requires a good deep hazel loam, ard upon such soils no crop will pay hetter. Indeed it is somewhat singular that this root has not been more universally cultivated in Canada, as it not only withstands the frost, but its quality is thereby greatly improved ; and it contains a large portion of saccharine matter, which makes it palata. ble to animals, and greatly conduces its fattening properties. They should be sown in rows fifteen inches apart, and the plants should stand about the same distance asunder in the rows. Those who intend cultivating the parsnip should lose no time in preparing the ground, which should be done something after the style of garden grourd.

The Jerusalem artichoke certainly desorves more attention from farmers than it now gets in Canada. The artichoke will yield with similar culture 50 per cent. more than the potatoe, and upon poor land they will yield double the quantity per acre that can be raised with the potatoe, and the expense of culture is ne more. Hogs will get fat upon this root, whithout any urouble in barvesting $;$ and
the objections urged against its culture, owing to the difficulty in thoroughly eradicating it from the soil, may be wholly removed by carcful cultivation and good management. As soon as the ground is open the artichoke may be planted with cuttings similar to potatoes.

The garden and orchard will now require attention. No farmer should neglect either of these departments. Thic labour and skill expended in the garden and orchara remunerates very handsomely; and every farmer who values the interests and comforts of his family, will pride himself in having a well cultivated garden, and an orchard of well selected fruits adapted to the climate of the country.
mercantile and general agrt CULTURAL SOCIETY OF THE DISTRICT OF JOHNSTOWN.
The public dinner in connection with this society, took place on the 4 th February in the town of Brockville, and it ap.pears to have been the most spirited affair that we have had the pleasure of recording. The attendance was general, and the collections amounted in all to the sum of one hundred and thirty-one pounds five shillings. This we believe is as large apr amount as has yet been raised by any district society in one year. The speeches delivered gave evilence of the highest order of talents, and also, that those who addressed tlie mneting had the true interests of the country at heart.The merchants of Brockville have identified the interests of the agriculturist with theirs; and it appears to us, that if a general union of the farmers, mechan. lies, and merchants; could be brought about, that in less than two years the prosperity of Canada would be without a paraller in any other country. "United se stand-divided we fall, \%hould be
the motto of the friends of Canada. $\ddot{P}_{\text {Party }}$ spirit has hitherto been the order of the: day; and the result of this has been, that the best men in the country have beem arrayed against each other, and the productive interesss have not received that attention that they otherwiso would havedone, if the people had been more united. A new order of things appears to be dawning upon the people of Camada, and the signs of the times clearly indicate. that all classes and grades of socicty will cre long unite to promote the ayricultural, mechanical, and commercial interests of the province. These classes are so much dopendant upon cach other, that the whole sliould be bound together in ax spirit of brotherinod. This union equn alone be brought about by the powerfug. influence of associations, such as Bare been recommended to the notice of the public from time to time in the Cultioutor, and such as those classes have instituted in the Johnstown District. The speches delivered on the occasion referred to, together with other proceedings: of the society, occupied a large portionof three numbers of the Brocturite; Recoder. We copy the following extracts: of Mr. Matthie's speech.
The Mercantile intercats of our Disurictisand we nay truly say of our country, from Sandwioh to Quebec, are so intimately blended withthat of Agriculture, that to speak of the one, ve mustrioi only speak but think of the other; for without it, at this age of Canada, Merchandizing would be but a mere shadow. Agricuiture is, truly. th Merchandizing, in what Guano is represented to be ta a poor soil, if enfiches and makesing protuce many-fold.
The famly connesion that exists bet ween, ithe two, may be more fully illustrated by going back to the eariy, history of the Country; and topome neares home, of our pistrict..
Some half a century ago Gananogne Srochville and Prescout, were mere cleatings j_{2} afey Shanties their only huilding the conney inerear a dense forest, save where here nid there the handy setiler had found his way, by theysuyyeyor's blage to his tot, and commenced lasing the foundation of Agriculture in the District E Whicte

man cif a loghnow their thop; a chest of tea, a Exe of tebseco, and a fow picces of cotton their ercesalvo arivertmont. The producers and conaumenis buing hus fuw, the merchonts and their stace of goved wero in proportion. But watch the inereasa of tha one with the gradual advancemeas and progrees of the other. In 1820 the populstion of the district was aboot 15,000 , produersa and connumera; and about 20 merchants Ia 1843, the pmpulation had increased to about 90,900, and in the whole district there were about 80 meshomuth. Hers, it might be aekea, what way thon ita trate, and how and with what was山ast crade supported?

Ify a rourgh culeulation, it is supposed, that the Ecody sold in the district in 1843 were about Etic),000; sand of this sum were sold to and paid for by other districts, about the sum of $\mathbf{5 2 5 , 0 0 0}$, leaving a balance of $£ 95,000$ consumed in and to he paid for by the district. Now who were the conmumers, and where did they get the meana to puy thas large sum? This may be answered by tutung, that the at least of the consucurns ware those engnged in agricaltural pursums and the means of payment were the labour ef thoir hands, and the productions of the soil. It has beon culculated, that the district in 1843 hes a furplus, after reserving for the neecessary consemption, the following.
G10,000 Buahels of Wheat a ss. 9d. . $£ 48,750$
5,000 Kewa Butter, a 308.
7,500
40,000 Puethels of $\mathrm{Oats}, a \mathrm{ls}$.
2,000
Beef, Pork and other surplas preducts, 5,000
Total.
. $\mathbf{x} 63,250$
And to bo added to this $£ 63,250$, and which wes produced by the labour of the inhabitants in the district, viz:-
2,090 Rbls. Asies a $£ 5$ per bb., . $\boldsymbol{x 1 0 , 0 0 0}$
Sfrisad and sowed Lumber, say
15,000
Amesenting to in ell,
£ 88,250
To chio cum of $x 88,250$ should be added the profe made upion whatever was manafactured for frecige districts, as forvign Wheat ground for exporti Snatho, Hames, \&c. and nor named before.

By these calculations, Mr. Chairman, which aranot by any means given as perfect, it wrill be cera frio ara the consumers and greducers of the Dosakry: and to take away this trade, the greates part of which is created by the farmers, what vore! in the usa of the ilerchonts? There occuxaiinn lito "Othello'z" weruld be gone.

Thas may bo more clearly shewn, by comparins the curilus yich of wheat in 1843, with that of texh. Thy former, as has been named, gave a curphas ef some 210,000 bashels, while 1844 , it sas boon caloulated, will not yied of good iskee crano than 40,000 buskela, showing a deficit if 170,0301 which at even 4s. per bushel roosid give 534,000 . Thiz 28 , indeed, an imnostos defindoney in the great staple export pro-

mercantile body 3 would ank any merchans bere preest, whether doing businees in the town or country, is, or has been mach over haif as good since the barvest was gathered up, to the lst of February, as it was during the came period the previous seacon 1 Mr. Chairman, do thess effects of a ehort crop not show to you, to me, and to cvery one here precent,more and more conclusively our dependence upon the Agricultarsist, and that his intercot is our intercest: when the hand of Providence blights his proapects, ours cannot fourish. This is so, and mast continne so to be, while agriculture is the root and foondation of our trade, and Canada remains an agricaltural country.
I would ask, Mr. Chairman how is this large amount of Export Produce to be marde good: what substitutes can be introduced, which will pay to zend to a Foreign market, while the danger from the insect to our Fall wheat is so justly to be apprehended? There are some gentlemer here present, who are no donbt prepared to give some asefal suggestions on tile subject of new kinds of Spring Wheat, which, will to a certain extent, be proof against the inzoads of the insect and impervious to the rust, and that can with great safety be zown on the land prepared for wheat last fall, but in consequence of the failure was left without seed. I will therefore not touch upon it. Bat, Mr. Chairnan, there are other articles of export, which are now produced to a considerable extent, bat which, unfortunately, do not turn out in quality suitable for the market.There is Beef, Pork, Butter and Cheese, might alt be improved very much. All these articles are now exported largely from the United State8, and by the news per the last Steamer from England. we may read" that the trade in Amerizan provisions had become one of great importance, and has been fally confirmed by the experience of the past twelve months.* It is trap, that the D . States have important advantages over us in the production of some of those articles, but in others the difference is very little. For instance, Buster and Cheese. Respecting Cheese, I will make no remarke, as there are some gentlemen present, who I doubt not anderatand and will throw some valuable light on the eubject.

The article of Butter, from Canada, until lest summer, was selling in the English market fort about 4d. to 6 d . per lb., about one-half the price of Ir ihs. What has been the reason of this? The inferior quality of the article, growing, in a great measure out of the want of care in sorting, packing, and curing it. To show that this is 30, a friend informed me, a few days ago, that lasa spring, he had packed about two handred kegz with great cic, it inding to test whether or not we could make and cure butter that would sell es well as that made in ott.er countrie? and ar H in the English market. He tooks full bound rong hooped firkias holding aboat 84 lhas each, end 30aked them in calt and water for about two daze As the butter was broaght in, in pails, te corted lacis eloce of caty by inself, wasked is orer uish
the hand, cut it into thin slices with a wooden knife, putting it down in layers of about five inches thick, and between each, sprinkled loaf or crushed sugar and tine salt, in proportion of about three of salt to one of sugar; headed up his kegs, bored a whole in cach and covered the top with brine made of salt and a little saltpetre permitting the butter to soak in all the brine it would. And this butter sold in the Engligh market for 9d. per lb . or equal in currency to about 117 per lb . Butter might be made a very importantarticle of export from this District, and in place of sending out of it 5000 kegs of an inferior quality, we i might make and send out 20,000 kegs that would command the first price in any market. And supposing, Mr. Chairman, it were only increased to $10,00 \mathrm{j}$ kegs of 84 lbs . each and the importers realizing only $7 \frac{1}{2} 1$. currency per lb . this would give the large gath of over $\mathbf{x} 26,000$. There are a number of goud reasons why this branch of our industry shoald be fostered and encouraged. The extent of grazing land in this District at this time is probably quite sufficient to feed two or three additional cows to every farm; the very low price of hay throughout the District, is annually all bat a drug in the market, and warrants me in eaying that there would be no lack of provender in winter. The butter being usaally made by the females of the household, would canse very little additional cost of labour. The inecessary increase of cows might be gradually added from their present stock. The freight and expense of handling a keg of butter between this and the Bnglish market does not exceed much over onehialf as much as that of a barrel of flour, and the value at even 6.1 . par lb . would exceed very much the average value of flour for the past namber of years. These reasons appear to me to be good that the making of butter should be fostered and encouraged; not in the shape of large dairies, for they usually have their profits confined to a few, which is all right as a special business is made of it; but every farmer ought to be enc-araged, not so much to have an extensive tiary, as to have a gool one-what butter they do make to make good. How can all this be done? By the merehants discriminatiog properly between good and bad butter, and paying a price accordingly. Malse it for the farmer's interest to produce gond butter and it will be done. Now; many, I fear, take no pains to make good batter, forgood and bad bring abons the same price.

Mr. Chairman, in thas epeaking of the importance of increasing the production of batter, the market to which we wrould pint for its sale is England. England! What wopuld wee and the rest of the world do without you? That market of which Mr. McCullough siys, referring to 1832 -12 yeas ag), respecting the consumption of batter in London, and that used for the ghipping of Qhat port, aloze, wis about $43,000,000 \mathrm{lbs}$. Now, sapposing that each district in Canada West ras to export 10,330 kogr, an 1 eac's kor containing. 84 lbe this would give aboat 220,030 keg4, or about 18, 500,003 bis, only abiat one-third of the
quantity consumed alone by London and its obiap-1 ping in 1832. Are we, Mr. Chairman, by aby menns likely to glat such a market as Englaod presents for our eurplus of this article? Surefy not.
I fear, Mr. Chairman, that I am taking up. 000 much of the valuable time of the company, but the subject and the importance of our trada'is almost inexhaustible. Before closing, however, I would remark, that there are many articles which we at present import from the United States, which, if raised in the District to the extent of our consumption, would be just equal to the same amount added to our export produce. Garden seeds, clover seed, dried apples, broonn corn, and cheese, I am sorry to say, are still somewhat extensively imported into the district. The money has to be paid for every pound's yalue of these articles which we import and consame.The United States take scarcely any thing but cash in return for what we buy of them of thia kind.

In conclusion, Mr Chairman, I would humbly and respectfully urge the necessity that exists ta foster and encourage the cultivution of export products. Of those necessary for our home consumption, uniess the population increase more rapidly than it has for the past ten years, we can always raise a sufficiency. But we want more than this; we were created for other purposes than sumply to eat and drink; we want education; we want implements and tools for our mechanics, which are not made among us; we want many necessaries of life which are not grown or produced on our soil ; and I may say that there are a few luxuries which have forced themselves upon us, and taken their place in the list offour wants, that we also require. Now, none of theme can be obtained unless we have the means ta obtain them with. They must be paid for incasis or in produce; the money is created by the produce; if we have no produce to sell there. is no money - no.trade. We, as merchants, mechanics, and millers, should put our shoulders to the wheel unitedly, stendily, and perseveringly, to pronote this importan! ibject. Whatever investment. of time and contributions are now being mado towards it, rest assured they are only out at intereat. and not thrown away. The intercost of the Ear. mer is our interest; the sun of his proyperity shines golden rays npon ours.

Tb make Salt Putter Frsoh.-Whenbaterthas too much salt in it, pus to each pound of it a quart of freeh milk, and charn it an hoar; then treat it lks. fresh butter, working in the nsual quantity of salt. A little white sagarworked in, impnopes it. This is said to be equal to fresh butrer. Salt may be taken ont of 2 sinall quantity of fresh britter. by wolking it oser in clear fresh water, ch jigitge.
 $w: f 0$.

OR EINNURING AND STEEPING OF SEEDS.

The foWowing very oble article appeared in a lato number of the Farmers' Catinet. But fow of the Canodian farmers are prepored to make many experiments, especially those of a doubtful nature; but the modes for preparing seeds, here deseribed, arc withm the reach of many, and may be precticed no doubt with great istventoge. The mixtures might be varied to euit the convenience of the experimenter, and others might be employed, nuol as the phosphate, and sulphate of lime, charcoal, guano, and many others thet might be mentioned, and if this plan was adopted by even a fow of our farmess, most important results would ultimately acerue to the cause of agricultural improvement. There can scarcely be a doubt but chat the system of steeping seed grain in some powerful stimulating manure will, cre long, be practiced pretty senerally, for it is obvious that many soils have been robbed of the true elements of production by injudicious cultiyation; and the cherpest way that those substances can be restored to the soil, for the use of the crop is, by preparing the seed with such solutions as may be deficient in the soil. Agriculturel chemistry most beautifiliy points out the necessity of supplying the lard with such food : as is found in the crop when in a state of perfect growth; this can only be known by anulyzation and practical experiment. The latter mothod of aseertaining the description of manure, and tho anount .required for the varions erops and for - different solls, is the ono which the pracii. cal farmer must employ in the prescr.t "infant state of agricultaral scionce. In experimenting in agricultare, it is the wisest course to do so upon a small scale, and by this acthoci most important dis-
coveries may be modo without coteiling loss. The discases and casualtics more or less subject to the crops cultivated in this country may almost wholly be prevented, if those who cultivate the soil would consult their own interests by studying into "the why and the wherefore" of the causes and clfects which influence their operations.

Another German pamphlet on this selyedt has Iately appeared from the pen of a Mr. Vietor, an apothecary at Neideholm, in Hesse Darmstadt under the tithe of "The Manuring of Seeds, or a simple and cheap cultivation of the soil by the artificial manuing of seed, by which, at the came time, the rust and other diseases of the corn-crops are prevented, practically tricd for Give ycare, and proved on a large scale." By C. L. Vietos. This author describes his methods, and js so far more worthy of the attention of the practical man. Befure de tailing these melhods, however, I shall ineert a few of his preliminary observations.
As the principle upon which the manuring of the seeds ought to be preferred to that of the coil, he remarts "that the manure can never be so equatly distributed throug' the eoil that the cene proportio: fuod shall be given to each seed or plant; and that, besides, before the plant coracs to require it, much of the organic matter of the manure has become decomposed and lost, and that eren the inorganic matter is liable to assume forms of combiration, in which it cen with diffcuity be made availatle to the neurishment of the growing plant."
These disadranagee, he eaps, may be avoided by manuring the seeds themeelves which we wish to grow, while, at the same time, the following advantages will attend the adoption of this methed:
" 1. The same crop may be repeated on the same coil, thongh already exhancted, or even in any usually unfruittul soil.
" 2 . We can manare the seeds with those special substances only which it is not likely to find in the soil, or of which it has beea exhausted by previons crops."

This is an advantage which is possessed by all saline and mineral manures, and is one of those benefits which will appear more clearly and strikingly to the practical man as be becomes more familiar with the natarel wams of the eraps he wiekes to raise, and with the kind of cabstances which are piteont in hipsoils and in the manures, such or ta-u jard manu:e, which he watly employs in preparing tinem for the seed.
"3. As tie rotution of crops is rendered necessary cliefly by the abstraction of saline substances from the eoil, it may be rendered unnecessary by odding again these substarices, in such a wey as to be within the reach of the seeds only. Tius. ho ste ping the seeds in ealammoniaco and drying
them with Hourt, the defficiency of salts may bo supplied.
"4. The rust and other dizeases of corn plants aro owing cither to an excess or to a.deficiency of fosd in the soll. These extremes can be best avoided by manuring the seed itself with the proper materials and in the proper degrees. Thus," Le says, "in a ficid of wheat atter oats, upon a poor soil, a portion of the seed, which had been prepared with sal ammoniac, gave only a light crop, while anoiher portion, prepared with oil also, gave a crop twice as heavy.

Influenced by the considerations above stated, some of which may, to a certain extent, be regarded as uaquerstivnabic, Victur has been injuced to try the manuring of the seeds before they are sown, and from the success which has attended his results, to recomanend it to others. The substances he employs, and his mode of using them a:e as follows:

Substances cmploycl.-1. Blood, in the liquid state, is mixed with one-eightieth of its weight of glauber salts, dissolved in a little water; when thus muxed, it may be hept for a long time in a cold place vithout congealing or undergoing decomposition ; or clotted blood may be dried etther alone or maxed with a litte eath or powdered clay, and then reduced to fine powder.
2. Wool, hair, parings of leather, horns, hoofs, and bones are charred in close vessels, until they are capable of being reduced to powder.
3. The dung of all animals is dried and reduoed to powder.
4. Fats and oils of all kinds are mixed with so much earth, clay, or rye meal, as will enable the whole to be reduced to powder. Oll-cakes are also powdered for use.

Mode of using them.-He makes up a s 2 mi fluid mixture whit whech he mixes the seeds, and then he dries up the while by the addition of the powedred manures already prepared. His semifluid mexture is thus prepared. For a bushel of wheat or other grain, take
20 to 30 pounds of clay in fine powder.
$1 \frac{1}{4}$ pounds of pounded sal aminoniac, or 3 pounds of common salt.

3 to 5 quarts of whale, rape, or other cheap oil.
15 to 24 quarts of fres'. blood, or blood leept in a fluid state by means of giauber salts, or in the absenee of blood as much water.
3 to 5 pounds of liuseed meal or pounded oiloake.

These are mixed together intimately, and water added, if necessary to make a half-fluid mass. The seed is then to be poured in and stirred about till every seed is completely envelopsd by the mixture. A layer of one of the following dry mixtures is then sipread on the floor, over it the manare seed, and then another layer of the dry powder. The whole is then stirred together and left to dry.

Dry Mixtures.-Of these drying mixtures he describes several, consisting chiefly of powdered clay, mixed with one or other of the dry powders already mentioned. Thus he recommends mistures of

1, 75 of powdered clay, 8 hori shaviogs, and. it of bone dust.
2. 85 of clay,with 15 of fluid, or 5 of dried blood.
3. 85 of clay, 5 of charred hair, and 10 of oidcake.
4. 60 of clay, and 40 of powdered dung.
5. 70 of clay, 25 of charred leather, aud 5 of bone dust.
6. 80 of clny, 1 of fat, tallow, or oil, and ? of powdered dung.
These are all to be finely powdered and 'ntimately mixed. The principal alleged we of the clay is to make the other st bstances colere together, and to attach them more strongly to the grain.

When the mixture of grain and manure is dry, it is broken up with the hand and thrown upon a fine sieve, which allows the loose powder to pass through and the uncovered grains, and then put upon a coarser sieve, through which the dressed seeds pass, leaving the lumps, in which two or three seeds may be present, and which are to be carefully broken up. He prescribes further, that much caution is to be used in completing the operation so quickly that the grain may not be jermitted to sproat, and thus become liable to injary during the succeeding operations.

When it is wished to grow corn after corn in fields manured in the usual way, Vietor recommends mixing, for each bushel of seed, two or three pounds of sal ammoniac, or four to six pounds of common salt with ten to fifteen ryeineal, adding a little water, stirring the seed well among it, and drying the whole in a stove.

Such is the substance of Yietor's pam $_{r}$.het and observations. I have stated them pretty fall, because I think he deserves this much at the hands of those who are interested in the progress of practical agriculturc ; because he has stated the reasons for his procedure, has described his processes fully, and claims neither great merit nor geat reward for alleged great discovery. Besides, there is a show of reason in what he states. For though he may vory fairly doubt, or perhaps eatirely disbelieve, that the quantity of mannre with which he envelopes his seeds, can be sufficient to supply the wams of the crop that is to spi:ing from them, yet there can scarcely be a more economical way of employing the eame quantity of manure-one in which there will be less waste of it, or in which it will be more useful to the growing plant. In every way of applying manure to the soil, which has hitherto been adopted, a large portion never reaches the roots of the plants. Even when drilled in along with or near the seeds, a notable quantity escapes from the neighbourlood of the roots, and is more or less completely lost to the crop it is intended to. feed. Such must obviously be the case to a very much smaller extent where it is in actual contact with the seed it is to nourish, and actually envelopes it.

Still it is doubtful whether the gain or saving effected by this method, will be equal to the cout of time and labor which it involves. Shoald such
a mode of manoring be found easily practicable, more skiilful mixtures than thoze of Vieter, (such 33 would be more certan to succeed, and cuch as would he iitted especially to aid the growth of this or that kind of crop,) could casily be euggested.

In illustration of this opinion, I will here briefly state the facts from which I am led to befieve that considerable benefit may in reality hereafter accrue to practical agriculture, from a careful study of the effect of certain known steeps or prepared mixtures upon the after-growth of the seeds upon which they have been tried.

1. The quantity of inorganie matter contained in the grain of wheat, oats, barley, \&c., is comparatively small. In wheat and balley it varies from $1 \frac{1}{2}$ to 2 per cent. of the whole weight; in oats it is about $3 \frac{1}{3}$ per cent., but a considerable proportion of this is contained in the husk with which the oat is usually invested. But, though small in quantity, this izorganic matter is absolutely essential to the perfect condition of the seed, and to the healthy growth of the plant that ep ings from it.
2. When seeds are steeped in water, they swell and increase in bulk. They absorb a portion of the water and of any saline substances it may hold in solution. Now, if the small quantity of saline or inorganic matter which exists in seeds dozs really promote their growth, may not a larger quantity promote it more? May not the growth te more luxuriant if the seed be sterped in water containing sal ne substances in solution, and be thus made to absorb an additional proportion? It does not appear unreasonable to euppose that a bushel and a half of seed wheat may be made to obsorb a pound of saline matter. This appears, iadeed, to be only a very small quantity, and yet, if absorbed, it would add one-half more to that whech the seed naturally con ams. We cannot pronounce beforehand, with absolute certainty, that by this absorption the growth of the seed would be greatly promoted, though both theory and practice concur in rendering it probable. Thus the experiments of Bickles (whose mode of preparing seeds appears to be a simple steeping in saline solutions; appear decisive in favour of the opinion that such atificial additions to the saline matter of the seed do really, in some cases at least, greatly promote the growth of the seeds, and increase the luxuriance and produce of the after crops.

The fact that ealine manures are beneficial, in many cases to the growing crop, when merely upplied to the soil, is in favour of the same view. The salts, it is true, when applied to the soil, enter the plant by its roots; but, nevertheless, their action is simply to yield saline matter to the plant in larger quantity, than it could otherwise readily obtain it from the soil. This additional supply might be given it, to a cerian extemt, by stecping the seed nself.
3. Further, we know that some seeds germinate much more rapidly and certainly than others.

We know, also, that the propertion of inorganie matter, or of ash they leave when bumed, varies in different samples of seeds of the same kind. That contained by wheat, for example, is sometimes 12 $\frac{1}{2}$, sometimes 1 2 , and sometumes nearly 2 per cent. of its weight. Can this difference in the grow'th of seed and the difference in the proportion of saline matter, have any connection with each other? Do some germinate feebly, do others fail entirely because they contain top small a proportion of the usual saline constatuenis of the seed 3 Would they germinate better if more were by some means given to the seed 3 The same experiments of Bickles, upon the effect of steeping, seem almost to answer these questions in the affirmative; they at least, render it very probable that some such ielation dues exist between the two difierences to which I have alluded The eame may also be said of the observation made by Mr. Fleming, of Barochan, that seed wheat, which had been diessed the previous year, with $\mathrm{c} t$ tain saline substances, grew more luxuiantly, and gave a better crop than that which, though grown on the same field, had not been so top-dressed. It is not very unreasonable to suppose that this better growth of the dressed seed might be owing to its having obtained, from the substances applied to the soil, a larger proporion of saline matter than that to which no tep-dressing had been applied. Still these circumstances only render probable the opinion to which I have adverted. They point out, however, new series of researches, both in the field and in the laborntcry, by which the opinion will be tested, and i her refuted or confirmed. In the field, experiments must bo made with different seeds, dressed and undressed. In the latorato y these seeds must be examined, the proportion of inorganic matter they respectively contan determined, and if this inorganie matter he equal in quantity in seeds exhibiting different powers of germination and growth, the difference in the hind of quality, as well as in the quantity of the ash, must be more or less rizorously ascertained. By these united methods of investigation, we may hope, by and bye, to make out what are nisoly to be the real and constant effects of steeping uyon seeds- 10 what kind of seeds or roolsit may be applied most benefici-ally-under what circumstances this treatment ought to be especially adopted-what kind of saline sut-tances ought to be apphed to each species of seed, and in what preportion-and what is the nature of the influence they may be found to exercise in promoting or otherwase modifying the growth of the after-crop.

In the meantime, there are two principles by which our trial of steps ought to be regulated, by which the saline substances we may employ with advantage in our fist experments in the field and upon different crops are distinetly pointed out. In a future paper I shall explain theso punc,ples and state the practical euggestions which may be drawn from them in regard to cxperiments upon the stepping of roots and eceds.

TOWNSHIP OF WHITBY AGRICULTURAL SOCIETY.

This society now numbers 230 mem. bers, each of whom receive the British American Cultivalor. The list of members to this association in 1843 did not exceed 50. In the zarly part of 1844 the society was re-organized, and the plan of supplying each member with a copy of the Cultivator was adopted; by the new plan the list of members soon amounted to 150 , and it is confidently expected that before the close of the present year the list of members will exceed 300. In the village of Oshawa alone, upwards of 80 members have been added to the society, which speaks volumes for the merchants, millers, mechanics, and professional men of this country village. Well may the farmers engage in this great enterprise, when such a spirit is exhibited in the matter by persons who are not directly interested in the prosperity of agriculture. The officers of this society drew up a chart of their tcivnship, dividing it into sections, and appointed two collectors to each, whose dutics were to canvass their several divisions for members; by this means every individual was called upon and solicited to patronize the institution.

There are in Western Canada upwards of 300 townships, and if each of those townships were to adopt the system which has been so successfully practiced in Whitby, they might be made to avernge at least 50 members to either district, county, riding, or township agricultural societies, which would secure a circula. tion of 15,000 subscribers to the Cultivator, at the low price of 2 s .6 d . per copy. By being thus tolerably patronised, its editor could afford to occupy his whole attention in conducting the Journal, and its columns could be illustrated with
valuable engravings, and in fact it might be made the most useful agricultural magazine published on this continent.The Cultivator is already pretty liberally supported, but at the low price at which it is afforded, it is essential that its list equals 10,000 paying subscribers to remunerate the proprietors for the expenditure of time, trouble, and money that they are subjected to in managing it.That number of copies might be sold if the farmers generally were to evince the same lively interest in the matter as is done in Whitby and some other localities.

The monthly meeting of the Township of York Agricultural Society will take place on the 15 th inst. at James Nightingale's Inn, Yonge Street, at six o'cloek, p. m. precisely. The subject for the evening's discussion is, "The best variely of Spring Grain, and the best mode of Draining."

Government Agricultural Patron-AGE.-The friends of agricultural improvement will no doubt be rejoiced to learn that the Government Bounty for the encouragement of agriculture, has been encreased to the very handsome sum of $£ 250$ to each District Agricultural Society in Canada West, £150 to each County Society in Canada East, and $£ 500$ each to the Districts of Montreal, Three Rivers, and Quebec Agricultural Societies. We have not seea the Agricultural Societies Bill, but we hope to be able to give further particulars in the May number.

Worms and Grubs.-A mixture of salt and saltpetre (nitre) in the proportion of eight parts of the former to one of the latter, applied about the roots, will, it is said, destroy the worms, and greatly promote the health and thrift of the tree.

AGRICULTURAL CHEMISTRY TAUGHT IN SCHOOLS.

At a late convention of parish school teachers in Scotland, Professor Johnston delivered two able lectures upon arricultural chemistry, the purpori of which were to show the necessity of having agriculture taught in the common schools of that country. It is difficult to judge whetiser the tastes of the farmers of Canada would lead them to favour such a project or not, but one thing is evident, that other steps must bo taken than those at-present employed, or else much valusble talent will be lost to the country.The highest order of talent may be found among the yeomanity of this province, but unfortunately in too many instances, it is like the marble in the quarry. In a new country like this, no effort should be spared in giving the young a plain practical education, and for this reason we would advecate that those branches which will ulimately be practiced by the rising generation, should be tauglit. We are arvare that this is a dry subject to many of the farmers of this country, nevertheless we shall press it upon the attention of the readers of this journal, because the day will come when more interest will be felt in this and kindred subjects. The closer the subject of agricultural chemistry is investigatel, the more interesting it will become. Every young man who follows the plough should carefully read the following leoture, and if the truths unfolded shonid not have the effect of creating a thirst for a deeper draught from this almost inexhaustible fountain, it rould show most conclusively on the part of tine reader, that he scts a low valuation upon the noblest and most interesting sciences that was ever studied by the agriculturist. This lecture being in our estimation of such great importance, we copy it entire, and recommend it to the careful perusal of our readers.

Gentlemen, there was a time when this hill upon which we now stand was nothing bus a naked rock of lava. That old lava graedually fecayed, as modern lavas do, and crumbled down and formed loose matter on the surface, in which seeds of plants grew, died, and left their remains. Thus by degrees the soil accumulated to such as you now see on the surface of this rock on which plants now grow. Such is the history of nearly all the soils on the surface of the gtobe. Suppose you take a portion of any one soil, and put it upon the end of a piece of metal, such as I am doing just now, and in any way expose it to the action of the fire, you will see that part of the soil will grow blacker at the edges; by and by that blackness will disappear, and the soil will assume a color more or less dark, according to the nature of the substances of that which remains consists. If you take this portion of the soil before it is heated and weigh it, you will find that after it is exposed to the fire it is not so heavy as betione. That portion of the soil which has burned away consists oi the remains of those vegetables of which I have speken; of those amimals who have died and been deposited in the soil; and of the manares which have been appliad by the farmer. Thus vegetable matter forn:s what is called the organic, and the other portion of the soil the inorgame mater. The yuantity of organie matter varies vey mucl:-in some soils it exists to the extent of two per cemt., in others, 15 and 20 per cent, and in peaty soils, sometimes as high as 30 fer cent. If you take a perce of vegetable matter, and ham it, such as the wood you will find here, also, that a large prerion will not bun iway, hat retains, forming wood-ash. It is the samr, then, whin regard to to the plant as to the soii,--a part hurns away, and a part remans. If yea low at the tabies, Fou will see that differnt piams have different proyothons of inomanic mather,-whes, meadow hay leavesnine or ten per cent. of incombustibe matter. Again, as to the mimal subtames,take a piece of muste, dyy, and burin it, and you shall find that the greater port of it will burn avay, which is the orgone mater, the remainder beiny, as in theseil and in the phat, he inorgamic and incomonsible mather. Now, ne hundred pomds of fresh muste comans ihesphate of lime find other saline srbstanes to the catent of one per cont. of incombustibe matler. Thus, the three different sulstancos, soil, vegetable, and animal mater, consist of organic and inorganic matier; but there is in:s difenence, that in the soil there is a larger portion of inorganic matter than in plants and ammals,-in the latter, the greater portion burns away. I shall call your atention now to the inorganic portion of soil. Fy looking at the table, you will ohserve that the incrganic matter consisis of different substances, such as silien, which forms a very large proportim of flint; alumina, a sutstance which forms a large proportion of pipe-clay ; oxide of iron, which is the rust of iron; potash, of which tbe potash you get from the slops may serve to give you an
idea; chlorine, which is a kind of air ; and then there is manganese, phosphoric acid, and carbonic acid. These substances are found in all soils, but not in equal proportions. You will see in the table before you the details of the constitution of a soil which would yield good crops for perhaps a hundred years. Were you to possess such a rich soil as that,-and such soils are to be got in the virgin land at the Cape of Good Hope, on the banks of the Ganges, and the Mississippi,-you would always find that it would contain a notable quantity of all these different elements. In the second column of the table you have a list of the quantities of the different substances of a soil capable of yielding good ciops, bat which would require to be regularly manured. You will observe that opposite three of the substances the word "trace" is put, which means, that though the substance was not absent altogether, yet it existed in so small a qaamtity that it could not be weighed. In the rich virgin soil stated first, you observe that there is of lime fifty-nine per cent., while in the second column there is only nineteen. -Of phosphoric acid there is four in the one, and two in the other. In the third column of the table is the constitution of a soil so barren, that though manured, it could not produce a good crop. You see that there is a great many gaps in the list ; in short, there is only tive substances which exist in anything like qrantity. So much for the substances which exist in all good soils; and you may be sure that if any soil does not produce a good crop, some one or other of these substances are awanting. The question arises,-how do soils come to have such different compositoons as these? Istated to you how the crumbling down of rocks formed the soil along with the accumulation of organic matter in it; and if I had time, I would have directed you to a geological map, and shown that in every country the rock on which the soil rests is differeat; and if it be true that the crumbling down of rocks forms the soil, you learn at once how soils must differ wery much in their composition. In feldspar soils, of which rocks principaily consist, you will observe only silica, alumina, and a few ohers. A soil formed from this must therefore cointain a large quantity of these substances which are on all soils, while it would be deficicat in' many others. As soils differ in this way, we are led to this practical question, -how can we make this soil to be like that soil, or how can a bad soil be made equal to a good one? The answer is simply, that you must supply those substances which are wanting in the soil-you must supply as much potash or lime as are awanting in the third or poor soiland as much lime and phosphoric acid as is awantiug in the second, to make up all the constituent elements which exist in the first or rich virgin soil, and which are necessary to enable the soil to produce a good and profitable crop. This shows you the benefit of an analysis of the soil, by which a farmer is enabied to decide what the soil requires, and prooeed accordingly. I shall next speak of yegetable substances; and first, as
to the inorganic part of them. If you take the 1sh which remains behind, when a plunt has been -xposed to the fire, and analyze it in the same way as with the soil, you will come to this resulh that the inorganic part of the plant contains precisely the same substances as the inorganic portion of the soil. In the table on my right hand, you see the composition of a 1000 Jbs of hay.
The different kinds of hay have different quantities of the same substance, which substance is the same as in the soil. In reference to the ash of vegetables, 100 lbs . of wood would leave behind not more than a half a pound of ash. Perhaps you may be inclined to ask why, seeng that out of 100 lbs . one half pound only is ash, cap that half pound be necessary for the existence of the plant, or is it rather merely accidental, and in no respect making any difierence to the plant? No such thing, gentlemen. That half pound of ash is just as much an essential part of the plant, as the $99 \frac{1}{3} \mathrm{lbs}$. which burned away. The same is the case with wheat, which leaves 2 lbs. of ast. I state these 'acts, in order to bring you along with me in II y exposition of the prineiples of the science-that y fu may see how I come to the conclusion, and which must be true, that the plant could not live,-that it could not fulfil the purposes of nature, unless it contained this small quantity of inorganic matter. If you look to the table on the ash of hay, you will find there is an analogy between it and the soil. Red clover contains in one the cusand pounds thirty-one pounds of potash; rye grass as little as nine pounds. Orphosphoric acid, rye grass coniains cine-third of a pound, red clover less than 7 lbs., white contains five, and luceme 13 lls . We learn, then, thet these sutstances are present in different proportions in the ash of different kinds of hay, and from that we draw severalimportant practical deductions. Let us inquire whence do the plants derive the organic and inorganic paris of which they consist. They derive the organíc partly from the soil and partly from the air; theinorganic solely from the soil. In the air fioat certain proportions of all those substances which enter into the organic part, but none of those which enter into the organic part of the plant. Now, the different kinds of plants in the soil will materinlly affer its constitution, and have a remarkable influence upon that constitution. Suppose I growi lucerne upon the very fertile soil detailed in the table, as the lucerne takes out a large quantity of lime and of phosphoric acid, you will see that the crop would rob the soil of a large proportion of lime and of phosphoric acid, and that therefore it wonld 1.0) grow the same crop with that luxuriance that characterised it at first, because it could not sapply with the same case and abundance those peculiar substances upen which lucerne lives mose than upon any other. Take the ash of the difierent kinds of grain, and you will find that each in its own way affects the soil. Wheat, oats, and ryc, require a large quanti:y of phosphoric acid, and so if you grow wheat along time in the same soil, it will draw out this phesphoric acid anong
other things, and thereby reduce its quantity. This is what is meant by exhausting the soil. If rye grass is the plant used, it will exhaust the soll generally, because it does not take away a groat portion of any one of the substances. In the same way, different crops make the soil poor ; but if I take the same crop, say fifteen or twenty times,-a practice which, as is well known to the most of you, existed not many years ago, it would by that time produce no crop at all. The land then may be exhausted in two ways,-generally of all the substances, and specially, of particular subetances; and from this circumstance we are enabled again to make two or three practical deductions. In the first place, inasmuch as the soil contains a limited quantity of these subtances, and inasmuch as different crops carry off different portions, you at once see why it is judicious to have a rotation of crops,-that the longer the time is which elapses before you take a similar crop, the longer will the soil last and continue productive. A soil may produce one crep, when it cannot produce another. Let us enquire next why land is manured. The compssition of the soil would tell you in the first instance, for it is obvious that manure is applied to restore those things which are wholly or comparatively awanting. Chemistry .ells practical men how to renew their exhausted soil. Suppose that 15 crops of cats have be in taken off a piece of land, it will lose a large quantity of lime, phosphoric acid, and potash, and in order to restore it you must supply the soil with these ingredients of which it has been robbed. Manure being composed of the remains of vegetables taken oft the land, and containing all these things of which the plant consists, the farmer, generally speaking, is enabled by its application to retain the fertility of the soil. But then, observe you, he adds all these things which are required for a fertile soil, which may be a great deal to much, and may not supply an adequate abundance ce that partieular substance which the land actually requires, and thus a great expenss Pis entailed which he may not be' able to undertake, and thus the land fall short of that richness which he wishes, and which, at a less expense, he m ght be able by other means, under the gaidance of chemical knowledge, to prov de for his land. If the farmer knows chemistry, he will, at far less cost, and far more effectually, secare good crops. I come next to the organic part of the plaat. You observe, when I take this wheat djur dough, and wash it in water, it diminishes in bulk, and the water becomes milky. The porlion that remains, for it will not all wash sway, is a sticly substance, and this is callcd glaten. If the water is allowed to stand a shert time, the white will fall to the bottom and form starch. The flour is thus easily separated into two parts, the starch axd the gluten. If lint or hemp seed is put into a press and squeezed, a large quantity of oil will come out, but not the whole that the plant contains, and this is the case with all secds, more or less, though the fatty matter nay not be so abundant perhaps as to preduce oit by pressura merely. Wheat coatains gluten
to the extent of from ten to thirteen per cent.; meadow hay forty per cent. of starch. Of fat, wheat contains frcm two to four fer cent.; straw, scmetimes three per cent., cats, six per cent.; Indian cern, nine per cent., and meadow hay, frcm two to five per cent. Thus the crganic part of vegetable matter centains gluten, starch, and fat. I shall now make a few cbservations cn the ecmpesiticn of the animal. Of what dces the ash of animals ecnsist? The bedy ycu know is compesed of varicus parts,-cf muscles, fat, bone, and other elements which I need not detail. Let us examine the ecmpcsiticn of the muscle, and we shall find that it contains two and a-half per cent. of phesphate of lime, and a third per cent. of other saline matters. In benes ycu do not have all the substances which exist in wheat, but you have scme of them, such as lime, magnesia, \&c. In ten gallens of milk, there is three-ficurths of a pound of saline matier; so that if ycu taka the composition of the muscle of the bone, and ci the milk tegether, you will fird that animals contain the dificrent substances which are to be fcund in the scil. Thus it is we learn the intimate ccrinection between the compcsilicn of the incrganie matter of the piant, of the animal, and of the soil. But where dces the animal get this incrganic matter? They cbtain it from the plants. In bene, six-tenths of the whole consists of phosphate of lime and magnesia. Now an animal cculd not support itself cr walk about withcut scme bene or firm substance to uphcld it. It feeds upcn herbage, which it must have, in order to cbtain those differcnt substances of which it is made upBut if the plant had no scda cr magncsia, the bone could not be built up no more than the walls of this house could be erected withcut lime, stene, and cther substances. It is necessary, then, that the plant should have all these substances, in erder to supply them to the animal creaticn-a purpase which it cculd not fulfil unless it centained all that is secessary to build up their bedies. Ard where dees the plant get these substances? It gets them frcm the soil; ner can a plant live without them. And here we have a beautiful example of the provisicns of nature, for a plantcannet grow, it cannct appear at all, unless it can acquire these clements, and that, tco, just because, if it did live, it might indeed deck the surface of the earth, but it wculd not be EDle to feed animals, which is its great purpese in the creation. (Lrud applause.) Thus a beautiful thread of philoscphy pervades and connects all these different substances. Of what dees the crganic matter coinsst in animals? It censists cf two parts, the muscle and the fat, ar.d ycu will remember that we have three things in the plant, fat, gluten, and starch. If I tale a piece cf muscle and wash it, I shall wash cut the blced and make it like the cclcur of fat, and upen tearing it out it will be seen to be fibrcus. When the fibre is analysed, it is found to be the same thing as the gluten in wheat. If ycu take the fat cf animals, and ccmpare it with the fat in plants, ycu will find a remarkable analcgy to each cther, though they are net absolutely identical, and $\bar{\lambda}$
believe they tould very casily be converited ints each other. The organic matier of vegetables contains the same substances of the muscle of animals. Veratables contain a large proportion of that which will very readily form the fat of animals, the only diference being that animal matter contains n) starch. Let us now see what is the parpose for which the animal eats its food. Unquastionably for the support of the different parts of which it consists. Yua see again what a beautiful comexim exists batween the organic part of the plant and that of the animal. The animal eats gluten in order to form the fibre. When I eat rolls to bradefast, I eat a quantity of gluten and starch, and that gluten saves the digestive organs the trosble of manufacturing gluten for the frams. Out of these rude elemants which constitute the sill, and which fisat in the air, it is the duty of the plant to prapare thase substances, those bricks, as it wera, $t 3$ be carried away by the builder to fill up different gaps which are continually m ide in the body. There is a great difference batween starch and gluten. That substance called nitrogen exists in the latter, but not in the former; in the fibre, and not in the fat of animals. Thats nitrogen is obtained whylly from the sjil, tharefore it is necessary it should ba in tha siil. In bzan3 gluten exists to the extent of tiventy-sight per cent. If, therefore, you or I eat beans, we eat that which is capable of building up a much larger proportion of muscle in vhe bjay. Arain, if the spil contains a large proportion of gluten, baans will graw when no other plant wuald. Some animils lay on the fat very abundantly, and s3ma, like myself, lay it on very sparingly. (Laug'ater.) If ysu have an animal inclinedto lay on fat, feed him with Indian corn. There is an important difference between the compasition of the veretable and that of the animal; in the former there is gluten, starch, and £at: in the latter, mascle and liat only. The lungs are a sort of carbonic acid manufacturers. The starih we throw off to the air the plants suck in; and thus it is the leaves are continually in motion, bazting against the air, forming a thousand little muths which perpetually suck in the carbunic air which forms starch. A man throws of about sspen ounces per day of carbmic acid. Thus it Wuald not be enjugh to eat merely of fibre and fat, bat we require to eat the vegetable substances which contain starch, gluten, and fat, because the general parpise of nature is to save the sto mach the trouble of manufacturing these substances for itsolf. Tha lanzs might suck in the same as plants 3), bat sach is not ine order of nature, and it falls is the plant to supply the deficiency. Tia stamach can build more casily from carbunic acid then it conld from mascle. In feeding your stach, the fariner must give as much as will not only supply the daily deficiency, bat als? supply an increase of mascle and bone. You all sinow that every part of our body is continually underging a change, and that a certain quantity of glatea mast be eaten cyary day to supply it, and it is the sume with young animals; and therefore they require an extra supply of the clements of muscle and bone, in order that they may in-
crease in size. You may, by attending to the different qualities of the kind of food, make your animal cilber very fleshy, very bony, or very fah. Animals reject in dung and other exctements a great many substances, and as the plants conkain sulstances which are soluble with water, it is of great consequence to take care of the liquid excresences, and to mix it with the solid, so that the whole the animal ate may be preserved, which, being taken back to the sail, it is provided with the same substances almiost forcver. If you allorw the liquid to run into the rivere, you bare the land of what the plant gets from the sail, and which the animal gets from the plant. When the animal dies, all those things which it got is returaed to the sill, and thus the same revolution goes on from the soil to the plant, and from the plant to the animal. (Applause.) These are some of the prints, gentlemen, by relating which I wish to interest you, which demonstrate the overrulling presence of One mind, directing practical operations to the same end. If there was not the same spirit and intellect pervading in the nature of the siil, the plants, and the animals, there would be same condrsicn; but as they do exist, there is manifested the presence of one mind and of one principle, directing the whole cycle of animal and vegetable life, as there is to be seen in ill the cycles and motions of the planetary bolies. (Loud applanse.) In wishing to teack thse under you the elementary principle of agricultural chemistry, Iden't wish you to leave out of view the beartiful and powerful ceidence which it affirds of the existence of a Deity who is present at all times, and regulates in his infinite wisdom all our afairs and intercourse. I therefore concur entirely in the remarks cf Mr. Pyper, that mral training is above all things necessary for the young Mral training comes first, intellectual next, and practical last of all; but yet all are here combincd, for by this practical knowledge you can give the young mind a new view of natural theolegy. It is not merely chemistry cr physidlogy, but this science seems to be one of the most beautiful pictures of natural theclegy- (Applause.) I might tell you there is a great deal of peetry in the sketch I have presented to you. The whole planetary system in dead masses lijat in space, and the dead earih form the subject which grobogists contemplate; but on the surface of this dead carth you have a soil, a vegetable and an animal life, subject to changes which must interest and concern every inquirer. Suppse the sjil contained no seed,-that no vegetables grew, and no animals existed, still no doubt the other parts of the creation would go on; and this sulject of curs is just cne idea, an episcde, as it were. in connection with the planetary system. And this little episcule in the mighty poem of sature presents to us the Divine bounty, gocdness, wisdom, forethought, benevolence, and the exalted intelligence of divine mind.

For Chopped Frands and Lips.-Wash wo or three times in the day with tincture of lobelia, or steam-doctors' No. 6. Honey mixed with water is said to be good.

The following extracts from J. S. Stinner's address delivered before an agricultural society in Wilmington, on the 11th of September last, is well wority of atteutive reading. Mr. S. the founder of the American Fariner, is the oldest and best authority upon American farming in the United States, and we are happy to see him again in the foklas the cham. pion of improved agriculture. Fis description of the suceess of the Lowell manufactures beautifully portrays the adrantages of manafacuring towns to agriculture. After reading this address, who will dony but that by far too little capital and skill is employed by the Canadian farmers in tho management of their soil? In this country there appears to be a great defieiency in knowledge rospecting the necesssity of investing the proits made from the land, in valuable improvements, such as ere briefly hinted at by Mr. Skimner. The great mania for adding acre to acre, and farm to farm, so fur pervades the minds of the farmers of Canada, that they actually begrulga to lay out a single shilling for improvement upon the land that they can by any possibility avoid. A rreater crror than this cannot pasibly be conecived; but the facilities for buying land are so great, that any thing we may advance, will scarcely hare any effect in changing the views of the people, -one thing, however, is certain, that in proportion to the inorease of 3 momedge of the science of agriculture among the rural classes, will bo the desire of employing a greater amount of capital in agricultural operations. The best lands in Canada are comparatively unproductive for want of shilful management; a few acres well cultivated, will give a greater return in profits than many acres impoverished by injudieious oultivation. Large farms may
be cultivated well, as easily as small ones, but the whole secret lies in employing the same ratio of capital and skill.This important question will be botter understood when the farmers of this colony have had the benefit of reading a few volumes of this work. This, as well as oher subjots of interest to the farmes, will be fre dy discussed in future numbers of the Cultivalor.
"I should not futfin my duty were I not here to relate something of what I ouserved last week in oh Massachusetts, where, short as my sojourn was, to meet my en agernent here, so much occurred to fial me will admiation and personal gratitude. Not from any view to invidious comparison, but tostimnate you to inquiry and reflection, note was made of the progress of a single towa whose s.tation is amalogous in some strikiug respects to Whumyton, especially in local advantages, in vast wher power, and in vicinity to a large city of enomous wealth like Boston, whose capital.s.s, with an enterprise and sagacity all their owa, leave no resource neglected that art and opulence can make available. I was in that vencrable State when Lowell waslitte more than a farm. The old st of their manufactories was chartered in 1532, and on the lst of Jaauary last, there had been consumed within the past year, of cut:on, 22, e80,000 pounds. The mondly wages distrbuted in cash, were $\$ 150,000$; one estabhistument alone, he Mudlesex mills, manufactures the leects of 1900 sherp daily; and through the year, American wool of the finest quality, of the value of $\{500,003$. The same establishment consumes andually 35,000 galkss of American baid wil, besides 7000 gallons of sperm oil brought by Arerican vessels-four millions of teazles of American growth-eight hundred tons of Pemnsylvania con\}, besides other articles of Americam production, and of the value of more than a half a milion-giving steady employment to 805 hands, who ate paid momhly in cash. The machinery is all American in mannfacture and principle. The cap tal embarked in this one estrahishment is $\$ 550,000$, and what constitutes the salutary distinction between American and English establishments of this character, the practical operatises who daily woik in the Middlesex mills, own $\$ 60,000$ of the stock. Lowell, which, as I before said, was searcely more than a farm when I was last in Massachusetts, now boasts a population of 25,000 people, and to crown the whole they levy on themselves, and pay withont grumbling, a school tax amounting to $\$ 24,000$ a year. Note in all this, my friends, the mighty energies of an industrious, economical, educated people !
I was pleased to leam, from one of the accomplished and liberal proprietors of the works to which I have particularly referred, that the descendents of the finc-woded Soxany sheep trans-
planted to Ohio, were supplying his mill with wool of longer staple, and cqually fine as that of the original stock.

To tetarn to the causes of vour slow progress in population and the obstacles presented by it to a more gencral diflusion of the knowledge neceseary to a high curtivation of the art of hucbandry, to aay nothing of one great drawback which cannot now be reasonably applied, to Delaware or New Jersey, there are yet other causes of blight which soem to have stinted the growth of the old siates on the Atlanic slope south of New Engiand, eaficiently obvious and remediable to warrant me in referring to them. Anong the most prominem is the imherited habit or prejusice of mistaking and going for quantity rather thon quality of land, which pervades the region referred to, and which is said by some to be the monomania of the Sason mace. How many are there who own from 400 to 500 , and even more acres of land, of which one-third, or at least one-sixth part, hes totally unprohactive in ucoless brithwood, in uncleared swamps, or in land rendured worse than profitless, for want of proper draining? the owner not seeming to remember, that br every such acre not yielding something in grass, in pasturage, in tillage, or in growing timber, he should charge himseli, as with so madh lost or throwis into the fire or the sea. Of how mueh smore are men robjed by their own indolence and short-sightedness, than by thieves who break in and steal.
There is no mistake more common than that of supposing that the more land a man has, the greater musi be his profits-forgetting that th. profits arise not from the land itsulf, any more than fro:n an idle mill or an empty ship, bnt from the shill and manaer of using it.-and so in lis pensable is capital in tha biss.ness of farming, that in general it may be laid down as an axiom that money employed in agriculture, will yield an interest in an inverse ratio to the area to which it is applied. Thus, if $\$ 100$ be expenled, and preld ten per cent. on tea aures, tap probability is that it would yible much more if applied is half that area. In Engiand where this matter is so well understool, the land-stewath of the Morquis of Suffil, a pracical man, being nshed the emount actually required to stock an l carry on a farm, said that in Stafordshire, a furm of 250 acres median quality land, buariny a pooportionzble quantity of good, fair, and inferio gualities, and ousefifth in permanent meadow, would require a cash capital of $\$ 12,300$ in an ordinary state of entering and an allitional capinh in proportion to the estimited extent of land improvemenis to be effecte 3 in the way of road-making, fonces, and under-draining.
Numerous instances must be familiar to all who hear ma, of the wonderful cflects of timer and other manures, in enhancing the valun of Delaware lands, especially since the establistment of this Society, and the excitement and rivalry produced by it-raising it in many cases from $\$ 3$ to $\$ 30$, up to $\$ 50$, and even $\% 100$ anacre. I will
detain you to mention but one instance of the officacy of lime, and of the necessity of some chamical knowledge of the sature of manuros, Bsils and crops, related to me on undoubted authority since 1 left home to meet this engagement.

Mr. Collins, residing ons Scuppernong Lake, in North Carohma, a gendeman of large fortune, and, to h.s hossur be it mentioned, as it does not aleays follow, of liberal temper, had a large feid of rich black alluviah, soil, which yielded heavy crops of Indan com, but, as often happens, was ill suited to wheat, producug not over 13 bushela to the acre. He purchased and applicd to this land 250 bushols of hame to the aure, and then reaped 47 bushels of wheat! For this lime, the refuso of kilas on the Eudab: river, brought into Ocracock as return frenght, by lumber vessels trading to New York, he gave 10 cents a bushel. This made, you will percesve, an cutlay of $\$ 25$ capisal to the acre, at a smy fe dash; but marle the regnt? Deducting 13 bush:ls, the most that land of the same quasty alongside of it produced, and there remained 34 of wheat oyainst $\% 25$; the land beng left permanemiy impreganted with an elcmental and akmental mgredsent and food for that noble grate, of whech, with all its capacity for producing othar crgps, it was until then nearly ideaitute. Most of you are doubtess familiar with instances of the efticacy of capital appliad in like maner.
When it s considered that labour becomes cheaj, or what is the same thing, more productwe, exactly in propution to good tillage and the yochuess of the land coubined, either naturally or by ioree of the manare appiied, is it not self-evident that if the owaur of unproductive land cannot otherwse commas the requisite capital, he had better sell of one half for the means of improveng the remander. rather than retain the whote in a state of paalys:s, klat he may vainly boast, "I am monarch of all \lceil survey," even though it be but a barren waste? No spider in the mudst of his web, is more circumspect of whatever appronches, than is the capitalist in the midst of his strong boxes; and if the farmer, whose alt is in land, cannot by force of his character for economy and inteligrat mangement. commanl the requaste crapital, and will not alienate, had he not better divide at once among his sons, giwng to each if it be but 50 or 25 acres, with a set of centre-draught ploughs, together with a subsoner, a pair of males, or a span of New. England-like osen, an.t a drag-log; and husinstead of rumung riot fur want of employment, or gousg to seek through a hfe of exposure and hardship a precarious livelihood on the frontiess, his children would cluster around him, constituting. as well in the vgor of manhod as in his decliaing years, his safest friends and most delightful companions. Not a week since, having the pleasure to pass a delightful day, in company whit the enlightened, liberal, and zealo us editor of the New Englamd Farmer, and other gentlemen distinguished for intelligence and $c h$ aracter, at Indian Hill Farm, the residence of Col. Den. jamia Poore-Poore in name, bus rich in all tho
qualities that " give assurance of a man"-I heard kim remark that, as a young man, beginning life, to make his way by industry, and without capital, te would sooner commence on one acre than on one hundred. You may estimate the weight of his authorty when I add, that he took the premiam for not only the best managed farm in the State, but for the best specimen of under drain. ing on a large scale, and for the best system of keeping farm accounts! There were among other proofs of uncommon energy and skill, about forty acres of originally worthless waste land, which he had so reclaimed as to produce two and a half tons of the finest hay 10 the acre, while his own flourishing plantation of forect trees, concealed and ornamented rocky precipices inaccessible to the plough.

It will be seen by the following communication, that the farmers of the Gore District are determined to sustain the character of their agricultural institution. By proper excrtion the number of members may be increased to 1200 . Nothing short of a systomatic canvass could secure that number of members. From what we know of the intelligence and wealth of the farmers of Gore, we would be disposed to calculate upon a much greater acquisition of members under the new arrangement than the number mentioned. Our friends in this district will pardon us we trust, for offering the following suggestions, which may upon trial be found to be the most successful method that could be adopted for a large list of members to their association. We would recommend that the officers and board of directors should meet at an early period and appoint a collector for each school district in the entire district; and that such eollectors should be instructed to call upon all within their several limits, and solicit them to become members of the association. As a guarantee that each member would get value received for his subscription, each collector should be supplied with a few full sets of the back numbers of the current volume of the Cultivator, which should be handed to the members upon payment of the sub-
scription. For the towns and villages two collectors might be appointed to each, and by these means every inhabitant of the district would be made acquainted with the objects and benefits of the institution, and would be courteously solicited to patronize it. Hamilton, Dundas, and Brantford, would collectively number 500 members, if the respcctable portion of the inhabitants of these towns were called ujon by parties whohave the confidence of the citizens.

The fifteen townships in the Gore District might be made to average each 80 members, and even more, if the plan we mention were adopted. By this calculation we may startle the officers of theGore District Agricultural Society, but we assure them that our prediction might be realised, if only a systematic canvass were adopted:-
gore district agricultural society.
Mr. Editor,-
Having rather a rambling disposition, I bethought myself of attending the Grain Show of the Gore District Agriculural Society, which took place on the 4th inst. in the beautiful village of Dundas. Notwithstanding the heavy snow storm which was then raging with all its fury, the attendance of farmers was greater than usual, and the samples of wheat much superior to those of former years. More than a dozen varieties of winter wheat, and some fine specimens of spring wheat were exhibited ; the roots were also of a superior quality, and gave evidence of a high state of cultivation. A few years back, grain and roots of a similar quality could not have been procured in this District.
An important change was introduced on that day into the constitution of the Society; a change which will do more in my humble upinion to elevate farmers to that position in society to which they ought to aspire, than the expenditure of thousands of dollars in premiums for fat sheep and unwieldy cattle. I allude to the new rule, that each memlcr shall be furnished, at the eispense of the Society, with a copy of the British American Cultizator. There is no doubt that the Society will now flourish more than ever,
and that its usefuluess will be multiplied a hundred fold; and let proper exertion be used, and the number of subscribers will be easily increased from 300 to 800.

As some encouragement to the supporters of our District Society, I shall finish this short commumcation with a quotation from an American author, describing the condition of the Royal Agricultural Society in England, and shall pray that this description may ere many years be applicable to the "Canadıan Agricultural Socicty." "The Royal Agricultural Society of England is in a high state of prosperity; it numbers now (1841) about six thousand members, (two thousand of which have been adued the past year,) the annual subscription is one sovereign ench,-this, with the receipts from the show yard, and donations from weallhy mem-bers,-makes a large income to expend annually in premiums. We look upon it as one of the noblest and most exalted institutions. Its aim is to cheapen, and perfect, and multiply the prime necessities of life; and to attain this object, the talents, the learning, and the wealth of Great Britain are lavishly bestowed; and the return for all these, we venture to say, will be a thousand fold. We hope soon to see this liberality imitated in all its best features by an American National (Canadian!) Agricultaral SocictyWhat comforts, what intelligence, what happiness might it not be the means of introducing among us; let every lover of his country then, and of his species, arouse to the establishment of this, together with State (District) and County (Township) auxiliaries throughout the land."
B. A.

Hamilton, February, 1845.
Coal Dust for Strawberries.-Dr. C. Dean, of South Plympton, writes to the editor of the Ploughman, that last November he set out twen-ty-four of Hovey's seedling strawberries; that several of them produced fruit last summer; that he put coal dust about some of them, and that these were the ones that bore fruit; the others bore none.-West. Gard.

To extract Rancidity from Butter.-Take a small quantity, that is wanted for immediate use. For a mound of the butter, dissolve a couple of teespoonsful of saleratus in a quart of boiling water, pat in the butter, mix it well with the saleratus water, and let it remain till cold, then take it off caretully, and work a teaspoonful of salt into it Butter treated in this manner answers very well to uso in cooking.-American Housewife.

Preservative Composilion.-Fora composition for coloring and preserving gates, roofs, and timber generally, from the weather, melt twelve ounces of rosin in an iron pot or kettle; add thiee gallons of train oil and three or four rolls of brimstone; when they are melted and become thin, add as much Spanish brown, (or red or yellow ochre, or any other color you lilie, ground as usual with oil,) as will give the whole the shade wanted, Then lay it on with a brush as hot and as thin as you can. Some days after the first coat is dried, lay on a second. It is well attested that this will preserve plank for years, and prevent the weather from driving through brick work.-Monthly Visitor.

How to make Arrow Root.-The Cleveland Herald gives the following method of making potatoe starch, which it says is veritable arrow root, so highly valued for invalids: "Take. a dozen of large and smooth mealy potaoes, wash them, and then carefully pare off all the rind. Next, grate them fine with a suitable tin grater. The pulp must be mixed with a pailful of cold water, and thoroughly agitated and squeezed by the hand or any suitable instrument, at the same time throwing away fibrous matter, and permating the starch to sink to the bottom of the vessel. This must have a fresh washing in cold water, till the pure farina is obtained free from all the other matter. This should be spread on earthen dishes, and dried in a warm airysituation. "The good housewife will exclaim, "Why this is nothing but potatoe starch!" True, it is not-nor have you used any other article under the same name of ar-row-root, for the sick members of your family, though you may have purchased it at the rate of several shillings per pound.
By proper modes of cooking, known to every nurse and house-keper, this article becomes a delightful beverage for invalids weak in their digestive powers, while as a pleasant diet, even to persons in grod health, it possesses a very strong attraction."

FOICING FRUIT TREES TO BEAR.
Dear Sir,-LInving addressed you an epistle a formight apo, I did not at that time intend to write you nguin until I saw your comments upon the projent proposed in that letter; but being undor the cor"ietion that I could not write too much for the good tomest yeomanry of the land, provided I kept in the limits of valuable information, I have, by the idea of favilitating the labour of tho pruducing man in some measure, been prompted to whleses you at this time, the main objeat of which is to apprise the agricultural community of n novel mole of raising apples. I do not wish to be understood that it is novel with all, for it has been praticed in Europe for many years, by the thrmers in Germany in particular, who protably are the inventors; but Imean that it is novel to me, and if not so to all, in my lnowledgo is at lenst not practiced by them. The ateps am to be taken by the farmer to force his fruit trea to hear, is it is termed, are of a very simplo moture, and can consequenty be executed by any person who turns his hand to it without the nid of a partical eperator, father than a desaription of the process. I hope, therefore, that my ne in uitural friends will nut dern the deseription whinh Inm ahout to give of the process to foree thens to bear, ummecoarily mimue. With a sharp knie (the bade of a peaknife is the best) nake a cutin the bark of the banch which is meant to be fireed to bear, and not more than eight or mine indhes from the phace where it is wanneted with thest m , or if it :s a sath branch or nhoot, now where it is joined to the large bourn, (thee inches or less.) the cut is to go
 to the wout. Cae mas be taken wot to cut the wood, whinh weth irersar iy sause detmment to the hrears on choot oprat dine.n. A quirter of an inthon nealy, forn the firct ent, make a seruad in thu ame way mind the branch or shoot, so that both env:reding the branch or shont, a ring is immod therem a quater of in inch broad betwen the cats. The burs between these two outs is now takenc!eanaway with the small blade of a prulant , down to the wod, ramoving even
 the wom, si, that no conexion whatever rem:ans betwow the two parts of the bath, but the bare and matod wod appoars white and smooth; but this burk ting, to compel the tee to bear, must bo mado at the tim: when the buds are ctiongly merelling, just before breaking oat into biosson. fa the whe year of the opration, a callose is formal at the eela a of the ring on be,th sides, ard the comnיxion of the bark that had been interupted is cestme lagain without any detriment to the tree or branch operated upon, in which the artining wound soon grows over. By this simple (though artificial means of forcing every fruit tree with a certaimty to bear, the most important advantuge will be obtained by those who watch the time nature is ripe for it. Three years ago, (the tune when I was first informed of this singular way of forcing trees to bear,) I made an experi-
ment on an apple tree. Being sompwhst matious of humbuggery, I confined the everiment to one branch of the tree, which was about a fourth part of the whole top of it. I did not notice it until May. I had partially forgotten it, as I had but little fuith in us having, ny effect towards making the tree bear, and called by, rather to see if the limb which I had cut was not dead, than to observe any thing else; but to my astonishment I found the limb which I had expected to find dead sa a vigorous state of liti-, with as much young fruit on it, apparenty, as all the rest of the tree. On examining the young fruit, I found that on the branch vilich I had cut to be sound and firm, while that on the other parts of the tree were dwindted and very much decreased. I expeced at first that it was owng to the cut which I lad made on the braneh, but I satisfied myself by examin.ng other trees which I found to be in the same way, and which I found ehorily afterwards to be filling off. In September, when I gathered the apples, I found that the branch of the tree which I had made the experiment on, had five bushels on it, and the rest of the tree had not above one bushel on it, and that was inferior fruit. I would therefore recommend that farmers who have orchards would try the eaperiment. Ic would be well for them to be particular in the operation at first, for feat of damaging the trees.

Whelam R. Thompson.
Grcenup Cty, Ky., March 3, 1842.-Am. Far.

ON THE DRAUGET OF CHMMNEXS.

Suphose a chimmey with the back to the North, with a fre-place opening to the South, in a tight room; the chimney to be pefectly straight, but leaning to the South one fout in ten; the fire to be kindled close to the back of the chimney. The lot air from the fire being lighter than cooler air, will ascend in as near a perpendicular liae as possible, and will occupy only the North part of it: in the meantime, cold air will descend on the South or lower side of the chimney, (the two currents not interfering with each other,) to supply the vacancy or partial exhaustation made in the air of the room by the warm aur from the fire passing out of it.

This fact of two currents of air-one ascending, the other descending-has often been observed in good chimneys in close rooms ; and it would be unreasonable to suppose that a strong current of air, occupying the whole size of the chimney, could be supplied by the crevices of an ordinary room. This chimney, ac. cording to the theory, would draw woll.

Again: Suppose that the same chimney, when arrived at some point near the middle of its height, slould, without any inclination to the East or West, be curved so as to incline to the North : the hot air, when it arrives at the curve, would pass to the opposite or South side of the chimney, (being inclined to ascond in a perpendicular line, and leave no space for a descending current, unless it should pass through the ascending current, which would be impossible. Both currents would be nearly destroyed, and the chimney certainly be a smoky one.

From the forgoing, two causes of chimneys smoking may be reduced, viz:

1st. The partial exhaustation of the air of the room to supply the draught of the chimney. That this would impede the draught, is evident ; and that it exists, is proved by the air forcing itself through the crevices into the room-a part more observable in smoky rooms than others.

2nd. The interference of a downward current with the upward current, made by the hot and lighter air from the fire.

These two causes may be removed by so constructing the chimey that the hot air from the fire should occupy but one side or part of the chimney, leaving room for a descending current of cooler air, which is inclined to descend in a perpen. dicular line. The two currents will always be found choosing opposite sides of the chimney.

This can be accompli:hed without additional expense or inconvenience, by slightly inclining the chimey as far as may be convenient; then, instead of a direct curve, to make one to the right or left, so that the ascending current will pass to the corner, and to an adjoining side, but never to pass tirrough the middle of the chimncy to an orposite side. A straight leaning chimney, or a spirally curved one, or parts of both combined, will draw well.-South. Planter.

"NEVER LOSE ANY THING-NEVER FORGET ANY THING."

A distinguished financier and citizen of this State, lately related an aneedote which occurred in aarly life, which he said afterwards proved of the greatest utility to him, and which may teach a valuable lesson to others. When just com-
nencing in life, he was deputed by an eminent man of busmese on an errand of considerable importance, and after receiving instructions at length, the business man handed him a paper or mstrument, which he wae to use in case of a certain contingency not likely to occur. "Here," said le to the young man, "take this paper and hand it to min you should see him but you must not lose it."
" Very well, I will try not to lose it."
"But you musu't lose it."
"Well, I'll try, but is I may not need the paper, perhaps I had better not take it, for fear I might lose it."
"No !-take the paper, but you must som hosse IT!"

He took the paper-and set out on his journey -but the idea that a fixed determination to accomplish the object, would eertainly accomplish it, was new to him; the last emphatic words, "you mUST Nut lose it," continually re-echoed in his ears, and made such in indelible impression on his mind, that throughout a long subeequent hfe, he proved mest efiectually the practacablity and emment uthity of the injunction, as well as of its counterpart and amost its necessary consequence, "never forget any thing"--that is in the transaction of active business.

These two maxins, if thoroughly adopted and carried out by all cur famers, wuld woik a revoIlution iadeed m the apuarance of many premises. Inste:d of icols lost in one place, and forgotten, neglected and spoiled from a yea's exposure in another, with the consequent loss of timo in hmining, and loss of temper by delay and dis-appeintment,-instead of these disasiers, there would be "a place fur evely thing and every thing in its place;" and confusion no longer usurp the throne of order, neatness and regularity. Whenever an implement is taken from its place for use, the words must be vividly impreseed on the mind, you must not lose it-you must nat forget it!"

And who doubts the possibility of attaining this? Some persons forget. habitaally, and lose, habitually; but if habit has brought these evils upon them, then it may atso remove them; or at leasi it might have prevented them, if an carly.determination to the contary had been adopled.Habit "begins in cobwels and ends in chaine,"let it then have a right direction at the ouser. Be determined to do a thing, and you need not fear of success,-ultmately, if not now. Tine most perfect pemman I ever.knew, had a distorted and crippled hand-and the most accomplished Grecian orator, when young, was hump-backed, lop-shouldered, and had to talle with pebbles in his mouth to correct his mumbling voice. Sir Isaac Newton said that whatever he had attained was by perseverance and close application, and not by any eminent powers of mind which he possessed. Who then need despair ?-Alb. Cult.

Idleness.- There are but fev who know how to be jdle and innocent. By doing nothingo ko learn to do.ill.

THE NATURE OF SOILS.
"The study of the soils and of the rocks that lie beneath them has led geologists to conclude that the loose materials of which the soil is composed are derived from the solid rocks that lie beneath them-that there was a time when these rocks were everywhere on the surfave; but that gradually, by the operation of the rains and other natural causes, these rocks have been worn down art disintegrated, till what had been solic rock became the loosc materials which form the soil. These cocks are essentially of three kinds-limestone, sandstone, and clay or slate, the latter in various degrees of hardness; so that if you want to know the kind of soil in any given district, you have only to inquire into the nature of the rocks which form the substratum of that district. But, besides this, the physical examination of the soil tells a good deal of its nature. For instance, if you were to take a quantity of soil of a given weight, and pour water over it in a vessel, then allow a minute or two for the heavy particles to subside, and pour off the water with the lighter particles floating in it into another vessel, and repeat this till all the lighter particles were carried away, then again dry the heavy materials and weigh them a second time -the difference between the first and second weight of the soil would give the amount of the fertilizing matter contained in the soil; for all the vegetable or fertilizing substances would be carried off in the water, lea ving the inorganic and unfertilizing substances behind. Exactly the same result would be arrived at by heating a quantity of soil of given weight in an oven or other place-the vegetable matter would be burnt out, and the difference between the first weight and that of the residum would be the amount of fertilizing substances in the soil. These are rude chemical texts, but when you examine the soil by more refined analysis, you discover that there are eleven substances, every one of which are necessary for the growth of vegetation." This the Professor said he would dwell upon more particularly in his next lecture. He then referred to the subsoil
und that part of the soil to which the vegetables did not usually penetrate."Every farmer knows that a few years after he has limed the surface of his fields, the presence of the lime becomes gradually less and less, till it altogether disappears. Now, it happens that this lime is to be found sunk into the subsoil. So it often happens that the very substances of which the upper soil is most deficient are to be found in the subsoil. The cause of this might be easily explained, for when you consider the action of the rains, \&c., you see that their tendency is to carry fertilizing substances from the surface down to the subsoil. It becomes, therefore, a matter of importance to know whether it would be advisable to bring up the subsoil to the surface and mix the two together. This is not in every case ad. visable. For instance, here is a section of a soil 18 inches deep, which I have received from a place in Renfrewshire, the surface of which contains a certain quantity of fertilizing substances, while the subsoil contains only half the quantity. It is clearly unadvisable, therefore, in this case, to do more than, by draining, to open up the soil, and let the roots of the plant draw from the subsoil that nourishinent which it is capable of affording." Lecthure at Edinburgh on the 10th Jcnuary by Proffessor Johnson.
greatest discovery of the age
The Electro Magnelic Light.-Messrs. J. Milton, Sanders, and John Starr, have at last succeeded with their Light; and a brilliant affair it is. We have had the pleasure of frequently witnessing their experiments with differently formed ma. chines, having for their objects the production of this wonderful light. Yesterday we were invited to attend the last one to be made in the West. It proved successful. The apparatus with which their light is made is small, to allow of easy transportation. But it may be increased to an indefinite extent, and with its enlargement is the increase of the size of the light. From our own observation we should suppose the power of the light could not be increased. We never could conceive a light more brilliant. Though
but the size of a pea, it is sufficient to illuminate quite a large room, and forbids the steady glance of the eye. The blaze of a candle twenty feet distant from the apparatus, and three feet from the wall, oasts upon the wall a thick shadow-so much more brilliant is "the light," though not one-twentieth of the size of the candle's flame. What will be the power of this light when increased to the size of a gas-light? We caunot conceive.

At a distance the light looks unlike other illuminations-llirowing out most beautiful rays, which, finely colored, spread magnificently from the bright centre. The inventors say they can make the light of different colors, and even alternately change from one color to another. The apparatus for producing this illumination displays great ingenuity, and a thorough knowledge of that pori'n of science which relates to the principles they have so successfully applied.

While mitnessing that portion of its operation visible to the eye, we perceived a bar of iron revolving rapidly. The bar was tolerably heavy, and nearly a foot long, and can be made to revolve with a swiftness sufficient to fling itself, in spite of all worlmanship to the contrary, from its pivots. It will go weeks with undiminished velocity, and without assistance, once started, from man. This, we fancy, is an approach to perpetual motion. Cannot it be applied to locomotives, \&c.? The inventors say, without doubt it can. Truly this is the age of inventions. Th. y say also, that this latter will in many things supersede steam; the light will supersede many other artificial lights-what next? Once started, the light may be said thereafter to be of no expense.

The apparatus will not cost a very great amount. It may be bept in one part of the city and the light produced by connecting wires in any other part. Or it may be stowed away in the cellar or garret, as it is not affected by dampness, and wires be carried to different rooms, to the street, or to the neighbouring streets. What it cannot do in the way of illuminations, remains yet to be discovered; what it can do we may par-
tially conceive. The inventors start immediately to Great Britain, to secure their patent.-Cincinnati Mechanic.

Cure for Fistula in Horses.-Put a sciún in the fistula, at the lower part of it. This will discharge the pus or matter. Then inject soap suds, made from fine soap, (Castile is the best,) frequently for one doy. Next inject a weak solution of oil of vitriol, two or perhaps three times a day, for one or two days. After this wash clean with soap suds. In a short time the fistula will be well. Poㅁ.-evil may be cured in the same way.-Am Ag-

The GTanders.-Messrs. Editors,While writing, I will mention a fact for your Veterinary department. More than 30 years since the glanders of the most virulent kind was amongst the horses of the neighbourhood in which my father lived. Great numbers died off. His horse was taken, and under the belief that he also would die, my father commenced an experiment on him with a strong dedoction of tobacco juice, given internally. In a short time the horse broke out all over his body in sores. These cured up in a month or so, and the horse was sound, soon fatted, and was, as long as I knew him afterwards, a sound and healthy animal. This was the only horse in all the neighbourhood that recovered. Some farmers in this vicinity, noted for fine sleek horses, give occasionally Scotch snuff to their horses. J. B. COOK. -All. Cull.

To improve the Wicks of Candkes.

First steep the wicks in a solution of limewater, in which saltpetre has been dissolved. To 1 gallon of water add 2 ounces saltpetre and pound of lime. Dry well the wicks before using. It improves the light, and prevents the tallow from running.

Liquid Japan, for Boots and Shoes, Harness, \&c.

Take treacle, 8 parts; lampblack, 1 part; sweet oil, 1 part ; gum rabic, 1 part ; isinglass, 1 part. Mix well in 32 parts of water. Apply hoat. when cool, add one ounce of spirit wine. You may add an ox's gall. Place the bottle by the side of the fire before use, and apply the liguid wiht tip of the finger or a sponge.

WASHINGTON'S OPINION OF AGRICULTURAL LIFE.

It is refreshing to us, and we hope it is to every lover of ficedom, to read anything from the pen of Washington-and still the more refreshing, when it may happon to be upon the subject of Agricul. ture. In the belief then that the following opinion of the farmer's life from the father of his country, may serve to reconcile every tiller of the soil to his loi, wo give it insertion. But why need we say, that it may serve to reconcile the tillers of the soil to their lot? Surely there is no man owning a farm, who is discontented with his position; for, of a aruth, if thare be one cadition more than another, which any man might desire without incurring the sin of covetousness, it is to be the owner of a gool fann, well stocked, to be ont of debt, to have a good wife, and a fumily of chlldren around him. There are otior situations where a man may possibly make more money. The merchant, for instance, may realise more profit in a month, than a furmer would in half a life time. But then, where one merchant dies rich. there are ninety-nine who become bankrup:-and then, their gains, if gains they mako, are realized amidst the cares, amxictics and tortures of the mind ; for their's is a life of Lazard and uacertanty, dependent upon so many cuntingencies for success, as, in numerous instances, to make eren the most brilliant suce ss, a dicar price for the wear and toar of mind and the laceration of fechars. White the owner of a fertile farm, undes avarice be his besetting sin, has everyhing a round him to gratify all the aspieations of his heart. sweeten the pathay of life, and make him happy. Come what may-drought or rain-humiant crope, or short ones -high prices, or low ones, if be be prudent and frugal, the bosom of the carth, in its generous rieldings, will alwars afford to him and his both fond and raiment, and a little to spare, either to be laid by for a rainy dav, or disp:ased to his fellow man, in "biading up the wounded heart, or pillowing the aching head," -and what more, pray let us ask, dons man want while he may be permitted to
remain on earth? He that wants more, is not imbued with that becoming sense of gratitude, which is due to the author of his being. Riches, we are aware, have their attractions, and often weave around the brow of the undeserving chaplets which but ill become it.-We are aware aiso, that although an eminent philosopher hath said that "knowledgo is power,"-it would have been much nearer the truth, had he said, that wealthe is power-but with this belief firmly impressed upon our mind, by the daily evidences of tame sulbmission to the power of money by which we are surroundedstill, we would not exchange that glorious state of independence which belongs to the thrifty owner of a homestead of two or three hundred acres of good land, for any other condition. Although such an one may amass wealth slowly and mode-rately-though he may realise but a competency, is earned by the most pleasurable, healthful and victuous of all humen pursuits.

But as we find ourself running riot under the influence of enthusiasm, we must cry halt, and introduce the opinion which Washington entertained of the calling of an Agriculturist.

In one of his letters to Arthur Young, Gen. Washington used the following language:
"The more I am aquainted with agricultural affiirs, the beiter I am pleased with them; insomuch that I can no where find so great satisfaction as in their innocont and useful pursuits. In indulging these feclings I am led to reflect how much more delightful to an undebauched mind, is the task of making improvements on the earth, than all the vain glory which can be acquired from ravaging it by the most uninterrupted career of conquest." -Am. Far.

He who thinks no man above him but for his virtue, and none below him but for his vice, can never be obsequious or assuming in the wrong place; but will frequently emulate men in stations below him, and pity those nominally orer his head.

MANAGEMENT OF BEDS.

Having tried, during a period of 27 years, all the different systems of bee-keeping possesing any merit, and having found in each defecta prejudieial to the welfare of the bees, I have directed my attention towards establishing, if possible, a sound and advantageous system. All wooden hives or boses are objectionable They are too hot in sammer, and are too cold in winter; besides they retain moisture, which is injurious to the comb and health of the bees. I consider ventlation to be not only unnecessary but injurious; for the higher the temperature inside the hive is, the greater is the draught. Bees are very uncomfortable and irascible in windy weather, or if blown upon. At all times they may be seen anxiously stopping up every hole which they emn And, particularly those, if any, in the upper part of the hives. This, therefore, speaks a eainst ventilation. The natural heat of the hive is conductive to the health and activity of the bees, no iastance to the contrary being known. It is only when the warmth of the external air somewhat assimilntes to that of the hive, that they come out ebeerfully. I have known a very high degree of summer heat drive bees apparently from their Tives, and upon examination the honey and wax was more or less liquefied on account of the hive being exposed to the direct rays of the sun. This is a very serious evil, but one which is remedied by colonics of my construction. The following oljects carried out are essential to the profitable keeping of bees; viz., large well made straw hives to contain strong stocks, having no other opening than that at the bottom, and havirg no metal in any part of them, that being a conductor of heat. The best possible protection against mice and every kind of insect. Easy acerss by the bees to the glasses, \&c., for working in, and facility for removing the latter: the whole to be impervious to the weather, heat, cold, and wet. For effecting these ends, I wonld reconmend a straw case, worked with split cane, 3 feet 9 inchcs in length, 61 inches in height, and 14 in widtin, inside measurement. At 3 inches from the bottom, a floor of $\frac{1}{2}$ inch deal should be fixed on supports at each end, and two bidge-shapel pieces should be placed at 1.4 inches from the ends. This case should stand on a wouden bottom 2 ins. in thickness, 18 ins. in width, and 50 in length, a litite centent or mortar being put all iound. For the purpose of preserving the case, I sev canposs on the outside, and size and paint it green, every spring giving it a fiesh coat. A cigcular bole shonid te made in the midule of the floo: 30 inches in diameter; on this should bu placed early in April a lage last wear's swam in a naw hell-shaped hive. Two or tiree comveriphtholes, 3 inches in diameter, must be aiso made in the floor on each side of the stack-hive, nad fitted with thick bungs. A door-wny eloula be cur in the botom at twelve inches from cach end, 2 inches in width, and 3-Eths of an inch in depilh ; and a small appropriate piece of something should be nailed andes each doorway for resting boards
on. The doorways should be nearly closed in August with slips of vood, and opened again in Aprul. The stand should have four legis, and cach leg should rest in an iron or flower-dibh containing water, with a little oil on the tup of the water; over the top I tie canvass to keep out moths, spiders, \&c.; a neat span-shaped painted wooden roof should cover the whole well over, In the first summer the bees will probably only fill the space under the floon, but if they appear, by collecting about the entrances, to want room. a small glass may be placed over one of the holes. first removing a bung by turning it round. Early in Apral is the proper tume to commence putting on glasses, and when they are quite filled with honey fresh glasses should be pat on, and in a day or two the fu!l ones may be removed by drawing a fine wire under them, and replacing the bungs. These hives will last for many yeara, and will yield in good summers one cwt. of honey, with bat hute troable. Eivery three or four years the inside stocks should be examined by fumigating with fungus, and any old comb used for breeding should be removed. When additionat stocks are required the glasses should not be put on untal the bees nave swarmed; at night the young swarm may be pui inte a straw case. I do not find that the queen quits this hive to breed in the glasses, nor do I ever find bee-bread in them. Early in November I closs the doorwaye with mortar, leaving a quill, as a passage for air ; and it is advisable, at the same time, to hang a piece of sacking in front until early in Febraary. in order to prevent any warmthfrom the san from affecting the stock. By bee-keepers pursuing this system, they will establieh really valuable colonies. The cask-hives made by Mr. Sholl, are defective, and must cause desappointment at the royal Apiary at Windsor, where some have been placed. The awk ward metal entrance, when the bees can nlight apon it, will in summer bum them. and in winter cramp thom; and the botomleas cases, whea filled, cannot be removed on account of their being fined down with comb.-G. E Smartt, Enfiehd.-Gar. Chron.

Slatider. - No decent man can get along without it ; at least, one who is actively engarred in the strugcle of business life. Discharge a bad fellow who has bren in your imployment, and he goes round and slanders you. Let your conduct be such as to create the envy of another, and he vilifies your name. In fine, we would not give a centrfor a man that is not slanderel-it shows that he is nither a milksop or a ninny. No, noearn a bad name from a bad fellow, (and you can easily do so by correct conductis and it is the only way to prove that you aro ontitled to a good one.

FLAX CULTURE.

Our last extracts shall be on the cultivation of flax-a crop which is becoming every year more extensively cultivated in this and the sister country:-" Mr. Crosthwaite, whose intimate acquaintance with all branches of this industry renders his authority highly valuable, considers that there are about 100,000 acres under Flax in Ireland, and that the produce is about 30,000 tons, of an average value of $50 l$. per ton. This is 6 s .3 d . per stone, and should give about 121.10 s . for the usual produce of the statute acre.""The Flax, when it has grown to suitable maturity, according as the design is to allow it to ripen its seed or not, is pulled, and either immediately, or in the next spare season, according to the circumstances of the locality, it is subjected to the process termed rotting or watcring. In the stem of the flax there may be recognised three structures- the outer skin or epidermis, covering a close network of fibres which ineloses the plant as in a sheath, and in the centre a stem of dense pithy material. The fibrous network is connected together by a glutinous matter which must be decomposed before the fibres can be scparated from the stem, and it is to soften and rot this substance that the plant is steeped. If the steeping be continued too long, the fibre itself may rot, and be wealrened and injured in quality ; if the steeping be not continued long enough, the fibres are not thoroughly separated from each other, and the quality of the flax is cnarser than it might be.""When the Flax is steeped, the water acquires a darker colour, a disagrecable odour, and it is well known, becomes poisenous to fish. This arises from the solution of the glutinous material which had cemented together the pure fibres." -" The author of the Survey of Somersetshire (Mr. Billingsby) says: "Having myself cultivated Flax on a large scale, and observing the alinost instantancous effect produced by the rater in which the Flax was immersed, I was induced, some years ago, to apply it to some pas. ture land, by means of watering carts cimilar to those used near London for watering the roads. Theeffect was aston-
ishing, and advanced the land in value 10s. per acre.' "-From the Industrial Resourees of Irelund by Prof. Kane.

RECIPES.

For Burng.-Burns or scalds may be relieved, and speedsly cured, by an application of int and raw cotton, to take out the fire, and a zalve of lard and Jamestown weed, to heal the wonnd. The salve is made by stewing the leaves or seede of the weed in lard, and strainng through any thin cloth. This is an excellent article for sores of any kind. Fresh cuts are soon benled by its use, and if you have a horse with galls or sore back this is a superior remedy. Every family would act wisely to have the salve in readinese.
Another.-Another good remedy for buins is a preparation one part of lard, one part of sosin, and a balf part of turpentine, simmered together till all are completely melted. The burns, with an application, should be washed daily and dressed with fresh ointmeat.

For Croup.--Roast a n onion, slice it, and prese cut the juice; Mix this with honey or brown sngar, forming a syrup, and a teaspoon-full every fifteen minutes tull your child is reliesed. This is convenient and a good remedy.
For Cross Words and Bloody Deeds.-If you find yourself angry, pause long enough to count ten before you speak, and if you think there is danger of doing violence, think of the "judgment," and offer up a short prayer before you strike the first blow, and you - ifeel a brave and delightful relief.

For Head Ache.-Examine the cause. If it is cold feet, put on woollen stockin $-s$ and thick shoes. If the cause is a foul stomach, take a vomit, and do not gormandise when you eat.

To Select a Good Wife.-Choose a woman who has been inured to industry, and is not ashamed of it. Be sure she has a good constitution, good temper, and has ant been accustomed to"dashing" without knowing the value of the means, is not fond of nevels, and has no giddy and faehionable relations, and you need erguire no farther-she is a fortune.

Fo Select a Good Husband.-Let the man of yours choice be one who is punctual in his promises, and is industrious, sober and frugal. He should not smoke cigars, read "fashionable" books, or visit halls and theatres. Let him bodignified and have comman sense, sma all will bs well.-Tenessec Ag.

Young Trecs.-An excellent mode for preventing young frait trees from becoming hide bound and mosey, and for promoting their health and growth, is to 'ale a bucket of soft soap, and applo it with a brush or cld cloth to the trunke from tor to botiom; thes cleanscs the bark and destroys the worms or the eggs of ingects, nind the soap becoming diesolved by rains, descends to the roo and causer the tree to grow vigurouly.

Dircctions for Washing Calicoes.-Calico clothes, before they are put in water, should have she grease spots rubbed out, as they cannot be seen when the whole of the garment is wet. They ghould never be washed in very hot soap eads; that which is nildly warm will cleanse them quite as well, and will not extract the colours so mouel. Soft soap should never be used for calicoes, excepting for the various shades of yellow, which look the best washed withs soft soap, and not rinsed in fair water. Other colours should be riased in fair water, and dried in the shade. When calicoes incline to fade, the colours can be set by washing them in luke-warm water, with beefs gall, in the proportion of a teacup full to four or five gallons of water. Rinse them in fair water-no soap is necessary, without the clothes are very dirty. If so, wash them in luke-warm suds, after they have been first rubbed out in beef's gall water. The beefs gall can be kept several months by squeezing it out of the skin in which it is enilosed, adding salt to it, and bottled and corked tight. The water that potatoes have been boiled in is an excellent thing to wash black calicoes in. When there are many black garments to wash in a family, it is a good plan to save, doring the week, all the water in which potatoes are boiled. The following method is said to set the colours of calicoes so that they will not fail by subsequent washing: Infuse three gill's of salt in four quarts of boiling water; put in the calicoes, (which should be perfectly clean, if not so, the dirt will be set.) Let the calicoes remain in till the water is cold. I have never seen this sried, but I think it not improbable that it may bi an excellent way to set the colours, as rinsing callicoes in cold salt and water serves to set the colours, particularly of black, blue, and green colours. A little vinegar in the rinsing water of, pink, red, and green calicoes, is gnod to brighten the colours, and keep them from mixing. All kinds of calicoes but black, look better for starching, but black calicoes will not look clean if starched. On this account, potato water is an excellent thang to wash them, if boiled down to a,thick consistence, as it atiffens them without showing.--Ib.

Ezere for the Distemper in Cattle.-I cannot pasist giving a receipt for the treatment of beasts that may take the prevalent distemper. It showed jtself last winter in one of my yard stock, by discharging abundant saliva from the mouth, with sore and inflamed tongue and gums; no appetite, confined bowels, and very hot horns. I desired the bailiff to give hin one-half pint of the spirit of tarpentine, with one pint of lingeed oil, repeating the onl in tweaty four hours, and again repeating it according to the staie of the cvacuations At the end of twenty-foar hours more, the bewels not having been well moved, I repeated both turpentine and oil. In two days the beast showed gymptoms of amendment, and in three or forr rook to his food rgain, and did perfectly well. All the gard beacta and two of the fattening bescts
have had it, and all have been treated in the same manner, with perfect success. Little beside oatmeal gruel was given.-Quarterly Jowrnal of Agriculture

Cautions relative to the use of Copper and Brass Cooking Utensils.-Cleanliness has been aptly styled the cardinal virtue of cooks. Food is more healthy as well as palatable, cooked in a cleanly namner. Many lives have been lost in consequence of carelessness in using brass, copper, and glazed earthen coosing utensils. The two first.should be thoroughly cleansed with salt and hot vinegar before cooking in them, and no oils or acid substances, after being cooked, should be allowed to cool or remain in any of them. -American Housewife.

To Rot Cheese-Cheese that has began to mould, can be kept from becoming any more so, by being treated in the following manner: Cat off the mouldy part, and if the cheese is dry, grats it-if not, pound it fine in a mortar, together with the crust. To each pound of it, when fine, pat a table-spoonfui of brandy; mix it well with the checse, then press it dovn tight, in a clean stone pot, and lay a paper wet in brandy on the top of it. Cover the pot ap tight, and keep it in a cool dry place. This is also a good way to treat dry pieces of cheese. Potted cheese is best when a year old. It will keep several ye r; without any danger offis breeding insects.-Americon House wife.

Buckwheat Cakes.-As:this is the eeason for buckwheat cakes, the following recipe will at this tume be valuable to those who are fond of them; a friend who has tried the experiment says, that it makes decidedly better cakes, with half the trouble necessary in the usual mode of raising them with yenst: To three pints of buckwheat flowi, mixed with batter, add one tea-spoonful of carbonate of soda, dissoived in water ; add or e ditto of tartaria acid dissolved in like manner; first apply the carbonate, stir the batter well and then putin the acid, -thus the use of yeast is entirely superseded, and cakes "as light as a feather" are insured. Ono great advantage is, that the batter is ready forbaling as soon as it is made.-West. Far. \& Gadd.

Cure for Headaches.

Liquor of ammonia (Qy. the strength ?, 103 parts ; distilled water, 900 parts ; purified marins salt, 20 parts; camphor, 2 parts; cessence of roso or some other seent, in the necessary proportion. The whole dissolved cold. A piece of linen is to be steeped in this solution and applied over tho part of the head that the patipnt points oat as the seat of pain, taking care, if it is on the forehead 80 apply a thick bandage over the eycerorrs, to prevent any dreps of the fuid passing inso oges

ON THE MANAGEMENT OF HORSE:S.
The principle of horse breeding consists in matching the horse and mare, in respect to size. sabstance, boood, and a certain conventional symmetry, so as to obtain a form in the foal in which may subsist a union of strength and ability for \}abor, with the powers of actuity and speedy progression.

The procreative faculty in the horse remains to a very late age, sometimes upwards of thirty years. Four years is quatally the earliest period in England; three yeats is common in Amertea.

The head of the hoose should be lean, nether long nor short, and set on with somewhat of a oarve; the thropple loose and open, the neck not reversed, (ewe-neek, but ratherarehed ; the loins wide and subsaathat, mere especally the back should n it be lons; the thil not droopings, but nenty on a level wath the s_{1} the ; the hande: quarters well siread, as a support t, the loin:, and as a socurity artinst the appoacia to exch oher of the paterns in progrezion, whence results cuting them with the hoofs. The hinder lons should deseme stragiat hat raty from the houf, as a preventive to the defet s.g.edstiche howhed, or hanmed; at the sture tome, tia curre from the hock should be to the degree that the teet may be placed sufficiently forward to $\mathrm{m}^{\text {mp }}$ the lo.ns, and that the horse may not be sud to loave his legs behind him. The musiles of the thigh and fore arm sionld be solid an' fuil, though sume horses are heavy and overdone by nature in tiose parts. The ho:se, of whatever drseription, should not be leggy, and of the extrenes, short legs are preterable. The canun, or leg lone below the buee, should not be tone, hat of guod sabstance, and the pasterns and feet of a size to accord with the size of the harse; the hoof dark, fect an. frog tough, deel wide and open; the fore feet should stand periectly level, the twe pontung forward in a rught hne, else the hoise will knoch or 'cut on the speed," however wide his chest; in phin terms, he will either strike and wound his pasterns or his legs, immediately betow the knees, or both. A full, clear azule eye.

The feed of the horse through the wintershould be plenty of hay, (clover, tmothy or millet,) findder occasionally, with a plenty of cut oats, and a moderate feed of corn twice a day; and when they suckle, meal, instead of corn, with their oats, till grass is plenty; their corn and oats nigit and morning, withomt hay.
The best fond while the mare is with the boree, in meal and oxts. A coit. betore weaninar, shou!d be puahed by feeding its dan h'gh, anla a so fut in tine pastarage. and especialiy if intended for oarly training and rumning.
A mare should not be ridden any distance, after beine with the hors?, and a mare not aecnstomed © use, should be rested a few days.
Colts that come before the lat of May, may too weaned between the 1st of September and 33:h of Ostober. These foalel late, suck sis months; and fall foals through the winter. The operation is nat gradual, but sudden, atul thus
periormed; they are enclosed in the large stable for about a week: watered, and fed with meal and cut oats, and their mother's milk, ant crop grass. They are then turned imto a corn feld, and salted once or twice a week.

Both stallion and brood mare may be pat to accustomed labor, that of the mare particularly being moderute. The term of gestation with the mare is variable; from eleven months and odd days, to three hurdred and sixty-three days, which latter miny be dermed the utmost. She is supposed to carry her first foal longer than the enoceeding. The aypruach of parturition is indicated a few days previous, by the swelling of the udder, the appearance of milk, the swoollen state of the matris, and the thrusting out of the tail. She shotid then be watched night and day. In cold, wet, und bad weather, best uader cover. At the eleventh month the mare should be watched, or taken to a phace of safety. She shouldafterwards iave the best and most sucenten pasturage, without which the growth of the fonl will be sipped in the bod.
rithe coantry clasen should be dry, hilly, and irre guiar; the soil calexteous, wilh sweet herbage, and grom water in abundance. Should the mare have fualed sucessfully abroad, in a well sheltered pasture, her milk appearing copions and fluens, and the weather favorabie, she may be suffered to remain, requiring nothing mote than daily inspeation and her a!lowance of com, if such should be bestowed. If her milk should be obstructed or should fail, she should be taken to the stable, and enticed to hie down on strew. Warm ale should be allowed, with mehes of corn and pollard. In cases of chill and great weakness, the cordinl ball may be given. But should th> case be inflammation, from previous highis condition and fullness of biood, cordial balls and all stimulants should be stictly avoided, and the regimen confined to warm water asd gruel in copious quantities ; and a moderate quantity of blood may be drawn. Daily walking exercise abroad ghonid succeed.

During the inability of the mare to suck, the foal must be sustained on cow's milk. Fonls should not be weaned till as late in the fall as posibic. Castration is best performed at two years old.

Colts are generally brole at two years old; but it is wetl to accustom them to the halter as carly as possibie. The only remedy in the case of shying, is to hold hard and sit quiet. To whip a shying horec is utterly uceless. and indeed makes him worse-unless he is an aficted shyer.

The long hairs around the eyes are pulled, and those unon the nose and lips cut with scissons, as woll as those of the cars exactly within their ratgins. The mane is pulled with the fingern. The heels are aimmed close with comb and ocisors.

The ename and curb bride-the curb not being severe-is a good bridle; but a single snafBe $\&$ best.

As a tribute to the hotse, to bring him into condition and fine bair in the sprizg-Rctipen

Take half a pound of saltpetre, half a pound of alum, and half a pound of alum salt; pulverize and mix them well together, and every eight days give hum a table spounful in his food. His co:at, flesh and spirits will soon reward his master for his sare.-Western Far. and Gar.

DIRECTIONS FOR TRANSPLANTING AND REARING FRUIT TREES.

Transplanting. - The tree should generally be set about four inches deeper than it stood before it was removed for the purpose of being transplanted. In a dry, rich soil, it will only be necessary to make a liole to receive the tree to the depth required, and replace the soil. In a cold or clay soil they should be set about two inches shallower, and soil placed around them to the hegrgt of two inches above the sarface of the ground. If the soil be wet the tree should be set on the surface, and soil placed around it to adistance sufficient to make a good bed for the roots, and also raised high enough to be equal to the depth for planting in dry soils. A preparation of well roted manure and soil, (one-thard manure) made into the consistency of a thin mortar, should be provided, and the roots of the tree dipped into it before they are planted. The hoie to receive the tree must be wide enough to allow the ruots to be placed in their natural position.

The Trees stould not be set so deep that the roots will go into the cold earth, nor so shallow as to be dried up by the sun. In a thin or cold soil a hole may be dug about 18 inches deep, and a mixture of well rotted manure and soil put in until the hole is left deep enough to receive the tree according to general directions. The manure and soil must he trod down hard, and the trees set on it.

Management. - The trees shouid be hoed about once a week (excent in wet weather,) during the first season. After the first season place straw around them to the distance of three or four feet; but not so as to touch the tree; or, they may be cultivated every season. In iffarch all the sprouts should be cut away from about the root, and if the tree be small it should be trimmed not more than a foot up the stook the first time it is pruned. If it be of good size it may be prumed higher. Each succeeding year the tree must be trimmed highor, always leaving a good top. Be careful to kecp the sprouts off as they come out below the top of the tree. The advantage gained by leavng a good top is, that the stock and roots boch crow better than when the top is trimmed too close. The grow th of the tree must deterumine how high it should be pruned. If the growth be rapid, about two feet, if not rapid, about one foot may be the herght of pruning each succeeding geason until the trunk of the tree is ligh enough.-Rtcirie Barmer.

The Rose.-We take up this favorite again; it has long been, and will long continue to be the most popular of plants, either for house or out-door culture. Great additions have been made to it within the last few years, most of which are mentioned in "Buist on the culture of the Rose," a small work which should be in the hands of every rose fancier. We propose to condense from it, and present some of its descriptions in that way to our readers.There is hardly a dour-yard, or small or large garden in the country, whero roses do not grow, but in many, most instancs, without case, and of an indifferent quality. At a very small expense this may be remedied. Almost any soil will answer for them, but tho flowers will be infmitely better, and the plants stronger, if the beds ara made rich with a good proportion of yell roticd manure and leaf mould from the words, with a mixture of sand, when it can be had; dug decp and well mixed. Buels for flowers are now often cat of some fanciful furm in the sod; when so, or if mounds are made, they should not be made small, unless when it is neccssary; cight to twelve feet diametor is little enough, and is not so large but that they can be seen to advantage, and be kept clean with ease. I may say here, that for a small bed, the ruses that bloom during the whole season are now consiatred the most desir-able.-West. Far. \& Gard.

Hemp.-The following statement of hemp reecired at Naw Orleans may help to shuw the rapid increase of the cultivation of this important article. In 1841. and 1842, the entire rectipts at New On leans were only twelve hundred and cleven biles; in 1842 and 1843, they rose to fifteen thousand bales; and in 1843 and 1844, they reached thirty thousand bales, or about five thousand tons, the increase bcing almost exclusively Grom Minois and Missouri.-Westorn Gar. and Far.

For Corns. - Keep them closcly trimmeth, weor :arge shoes, and you will never suffer muoh; by perseverance you will, pexjajp, oat liye your comsk

FROM THE PRACTICAL RECEIPT BOOK

Blacking, to maks.
Put one gallon of vinegar into a stone jug; add one pound of ivory-black, well pulverised; half a pound of loat-sugar; half an ounce of oil of vitriol, and one ounce of sweet-oil ; incorporate the whole by stirring. This is a blacking of very great repute.

Horse-radish to have in keeping.
Grate a sufficient quantity during the season, while it is green, put it in bottles, fill up with strong vinegar, cork them tight, and set them in a cool place.

Powder for Hiccough.

Put as much dill-seed, finely powdered, as will lie on a shilling into two spoons-full of syrup of black cherries, and take it presently.

> To Perfume Clothes.

Take dried red roses, and, to increase their mell, pour on them fresh rose-water, and still drying between in the shade; then take cloves, einnamon, spikenard seed, storax, calamita, benjamin, violet roots, nulmegs aa 3iiij. to a pound of roses ; beat them all into small pieces, and mix them with the roses, and put them intoperfuming bags.

FARMERS BEWARE!!!

black sea wheat.

A^{7}T a Meeting of the Board of Directors of the Couuty of Northumberland Agricultural Scciety, beld at Grafton on the 5th day of March 1845, the following Resolution was moved, seconded, and unanimous'y carried:-
${ }^{4}$ That the following Advertisement be printed in the Cobourg Star and Toronto Cultivator, and in 200 Handbills or Posters, to be distributed thrrugh hout the Country."

Notice is hereby given that some of the Seed Wheat imported by Mr. L Card, said by him to be
"BLACK SEA OR ODESSA WHEAT,"
gas been examined by us and ascertained to be infected by the Hessian Fly or Wcavel. We therefore do hereby caution every Farmer from purchasing such Wheat for seed, as the intrcduction of the disease above-mentioncd would cause the ultimate ruin of the wheat trade in this Prowince, in the same manner that it has ruined the wheat trade in Lower Canada and many Districts in the United States.
(Signed by) Messrs. R. Hare, J. G. Rogers, A. Moore, J. Beattie, R. Wade, C. Vernon, A. A. Burnham, J. Montgomery Campbell, W. King, T. Page, J. Steele. J. Phillips, W. C. Irish.

Extracted from the Minutes of the Meeting by

D. McTAVISH,

Secretary.
Orafion, March 5, 1845.
M. B. All Newspaper cditors are respectfully sogmented to copy the shore notice Gratis.

CATTLE SHOW.

HOME DISTRICT

 AGRICULTURAL SOCIETY.Under the Patronage of His Excellency the Goernor General of British North America.

THE SPRING FAIR and CATTLE SHOW will be held upon Wednesday the 14th day of May, 1845, at the CITY of TORONTO, on the enclosed Space in frcnt cf the New Gaol and CourtHouse, and the Exhibition of Implements, Dairy Preduce, and Domestic Manufactures, on Thursday, 15th of May, 1845, at the Ccurt-House, when the Scciety will award the undermentioned Premiums for the following Stcek, viz:-

On Wednesday, 14th May, 1845,

cattle.	1 st.	2d.
Bulls, 3 years old and upwards,	${ }_{3}{ }_{0}$	\pm
Bulls, under 3 years	2	
Bulls, yearlings		015
Cows, 3 years old and upwards	2	
Heifers, under 3 years	10	
Heifers, yearlings	10	015
HORSES.		
Blood Stallion	110	2
Draught Stallions	210	2
Draught Mares	2	1
Saddle Mares	2	
Yearling Colts	110	015
Yearling Fillies	110	
SHEEP.		
Fat Spring Lambs, not less than		
3 in number		

On Thursday, 15th May, 1845,
farming mplenents manufactored im THE HOME DISTRICT.

	$\underbrace{18 t .}_{2}$	\% ${ }^{2 d .}$
Iron or Wooden Scotch Plough		
Subsoil Plough	,	110
Fanning Mill	2	
Cultivator, or Horse Hoo	1	
Drill Barrow	1	
Ribbing Plough	10	
Straw Cutter	2	
Clover Machine	2	
Horse Rake	10	
DAIRY. Butter, not less than 25 lbs . DOMESTIC Manufact	210	
Pair of Woollen Blankets :	10	010
Twenty yards of Fulled Cloth	20	1
Fifty yards of Woollen Cloth	210	
Twenty yards of Flannel		
Six pairs of Woollen Socks	015	05
Maple Sugar, not less than half a cw .	10	$0 \leqslant$
Beet Root Sugas, not less than 10 lbe .		

The amount of Premiums to be avoarded for Stock, Farming Implements, Dairy, and Domestic Manufactures, is
$£ 72$ 15s.

ROLES AND REGULATIONS.

Members who have paid their arnual subscripyions, are entitled to show Stock without any extra charge.

Persons who are desirous of competing for any of the above Premiums, who are not members of the Society, must pay the sum of Twenty shillings on entering their Stock.
N. B. Members of the Township Socleties, may compete for any of the above Premiums, upon producing their certificate of membership, signed by the Secretary or President of their respectiveSocieties.

The Ceruficates of Stock, \&c., entered:for compotition, with the name and residence of the owner, must be handed to Mr. Georae D. Wells, the Secretary, at the Court House, before eleven o'clock on the morning of the Extribition-at which hour the lists will be closect--and'no Stock, not included in the Secretary's list will be allowed so enter into competition.

No Mare shall be entitled toreceive a premium, unless she either have a Foal or a Filly by her side, or the owner prove that she be with Fual.

No Stallion shall be entitled to receive a premium, until after he shall fiave regularly stood to cover Mares within the Home District during the Season.

All Bulls, except yearlings, must be secured by a ring in the nose, wilt a chain or rope attached to prevent accident.

As an encuragement to those enterprising Farmers who have already imported Stock into this Province, and as an inducement to others to follow their example, if any animal entered for competition be deemed by the Judges worthy of the first prize, and if the owner of the same, prove to the satisfaction of the Judges, that such specimen of Stock has been imported from Great Britain since the last May Fair, he shall upon producing Certificates of the Age and Breed of the animial, be entitie. to the thanks of the Society, and receive double the amount of the Premium which would otherwise be awarded.

No person or persons must interfere with the Judges. when in discharge of their duties, by convereation or otherwise.

GEORGE DUPONT WELLS.
Secratary, HI. D: A. S.

Davenport, March 7, 1845.

N. B. A large mamber of superior Stock, will be offered for sale at public Auction, upon the Girst day of the Fiir. An Auctioneer has been engaged for the day, and Members of the Society may, without charge, have their stock exposed to public Sile.

A member of the Society will pay the highest markèt price forany quantity of Botrer, properly packed in Firkins and half Firkins, and the Society will give a premium to the largest and' best
sample produced upon the day of the next October Fair:

The- Society: Hereby give notice, that they will. award at the October Fair and Fat Cattle Show, the following preminns in addition to their usual Autumnal Prizes, viz -
Five Pounds for the best portable ThreshingMachine, manufactured in the Yrome-District, not requiring more than two horse power, and capable of threshing one hundred bushels of Wheat, in a day of twelve hours.

Three Pounds for the best portable Flax and Hemp Dressing Nachines-manufactured in the District.

For the best Essay upon the profession of Agriculture as a science, a Gold Medal, to bo worth at least three pounds.
For the Second Best a Silver Medal.
The Essays to be sent under Seal, to GeorgeDupont Wells, Esq. the Secretary, on or before the F.rst Wednesday in August next, and their respect:ve merits to be decided on by a Committee to be appointed on the naxt regular day of the Meeting of the Society, to be held on tho second Wednesday of the same month.

For the best cultivated and well managed Farm in the Home District, taking in, view the Land, Stock and produce, with the appendages, a Gold Medal will be given by the President of this Society.

Fon the second best, the Society will award a Silver Medal.

The sum of Ten Poundshas been appropriated by the-Sociely, to be awarded in premiums at tho Spring Ploughing Match, and the President, with Mess:s. Forrance, Alexander Gibb, and Georgo Harrason, have been appomted a Committee, with. power to make all the necessary ariangements for the same.
[IF A good dinner will be prepared by Mir. Thomas Smith, Farmer's Arms, upon Thursday, the 15th May, at Three o'clock, and Farmers generally, as well as those who are friends of Agricultural pursuits, are requested to attend. Tickets can be obtained from Mir. William Atkinson, the Socicty's Treasurer, and from Mr. Smith, Farmer's Arms.

US N. B.-No politics!! ! $\mathbb{C l}$
By order.
GEORGE DUPONT WELLS.
Secretary, H. D. A. S:
Davenport. March 7, 1845.
god save the queen.

FRESH SEEDS.

100. bushels FLAX SEED,

100 do. CLOVER and TIMOTHY, masranted fresh, with all. the Shakers' GARDER: SEEDS, for Sale by

ROBERT LOVE, Druggist, 137, King Slicest
Toronto ${ }^{\text {Feb. }} 1845$

THE Subscriber begsleave to inform the public that he has been engaged with Mr. Christopher Elliot at the Phonix Foundry, Toronto, for the last t:vo years past, in building Woollen Ma-- hinery, but in consequence of having suffered a sarious loss by the late fire, he has been obliged to givo up the busines3 with Mr Einot, and thereforo does not hold himself accountable for the working of any oi the mackinery built at the Phonix Fozasdry :ffer the fi:st January last.
The Subscriber has now made arrangements with Mr. J. R. Armstrong, Propictor of the ner: Gity Found:y, to make and furnish all hinds of

WOOLLLN MACEINERY

that may be requred in mantion wig Wocen Cosha in this Province, such as follows, viz:-

 Jiolling Luill Canks, Napping and Tazling Fíchines, Gigs, Shecring Muchines, Jimys, Stores for IIeating Fress P'ates, Cast Irun ifya Rettles, together with every otise kind of Machinery required to ..anafacture Cloth.
 saperinte:aderice on ti.e in t approved fian=, ind the material and wortmanship will be of the best description.
DTEAl orders andess 1 to Arche?as Tufyer, City Pounary, limge Sye:t, Tuinta, will te promptiy and neatiy execuich chtivinate :tans. ARCELLATB TURE:
Toronto, hiatcl, 1845.

- EASTWOOD \& Co.

Samer RIantfacturets, Sutime: S: Sino? Sook Publishers, \&c.

HGAVE constantly on hand an assortment of SCHOOL BOOKS, sach an are in general use theoughout the Province.

1x. B. Fublication Oree of "Tien Eritinhimerica?2 Cultiontor:"
$\underset{\text { Yoronto } 1845 .}{\text { Yonge Strect }}\}$

'rOWNSHIP OF WHITBY AGRICULTURAE SOCIETX.

THE, Cummittee of the Township of Whitby ACPillellumal sucitty, give Notice

 Th of May next.

| Best Druught Stallion | | | |
| :--- | :--- | :--- | :--- | :--- |
| Serond best | - | - | $f 210$ |
| do | - | 10 | |

Second best do -- - 110
Best Broud Mare with Foal or a foal
by her side $\quad-\quad-\quad 10$
Sccond best do do - - 010
Dest 2 years vid Nare Colt - - 015
Second best do - - - 010
Besi yearling Colt - - - 015
Second best do - - - 010
Best Bull - - - - 10
Second best do - - - 010
Best Breeting Cow - - - 0,15
Second best, do - - - 010

Best 2 years old Heifor - - - 010
Second best do - - - 0 -
Bect sample of Mraple Sugar, not less
than 25 lhs . $\quad 010$
Second test do do - - 0 b
JOHN RITSON,
Sccretary.
Áarch, 1845.
The Eritish Americian Cultivator, (Ne: Sizaso,
Is pubished on tue First Day of every Month.
ai "Yuratu, by Eas'TWUUi) a Co., wo whom
all orders nust be addressed.
$\left.\begin{array}{l}\text { W. G. SinHUNLDON, } \\ \text { EASTMOD \& Co. }\end{array}\right\}$ Proprietars.
W. G. EDELUEDSUN, ECitor.

Lach namber ui the cali, cator coniains 32
pages, and sis subject to whe hafpenny postage, when diccied to ang Fust lifice an Britigh Americe.
Alvertisements will be inserted for One Dollar if net c.xce llag Teutce lunes, and in the same arvepurizan, if cacceiing that rumber.
Tcimb-One Luiar per year; Four copies for Three: Etght for Five; Twelve for Seven; and "wenty ter feal joulara.
 and free nf postage.

EF Edito:s of Provincial nowspapers will
 ment a fow insertons.

Toronto, Jan, 1s:5.

[^0]
[^0]: 3. CLE 4 ATM,

 BOOKANDUOB PRNTER,
 KIVG STREET, TORONTO,
 Adjoining Mr. Dreuer's Bzol: Store, lacotring to the Post Dyice.
 TT Every description of Phin and Ormamensia: Printing neatly execuied ansinderase tomas.
 Toromo, Oetoier, 184.

