IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the test original copy available for filming. Features of this copy which may be biblographically unique, which may alter any of the images in the reproduction, or which may significantly shange the usual method of filming, are checked belcw.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Caıtes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bourd with other material/
Reliè avec d'autras documents

Tight binding may cause shadows or disfertion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possibie, these have been omitted from filming/
II se peut que certaines pages blanches ijoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvenr exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pulliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de depart de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Coınmentaires supplèmentaires:

- s item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced theriks to the generosity of:

National Library of Canada

The innages appearing here are the Lest quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning wiih the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow imeaning "CONTINUED"), or the sy.nbol $\boldsymbol{\nabla}$ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationule du Canada

Les image: suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impressio i uu d'ijustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il ast filmé à partir de l'angle supérieur gauche, de gauche á droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

© 2 utBorizeo By Ebe Minister of EXoucation.

7200000000000000000000000000000 Mame,
cliduest
Toropto: Grip Printinģ and Publishing Sompany.

fntered wosording to Atet of the Parliament of Canadh, In the year one thom,

INTRODUCTORY REMARKS.

All work in Linear Perspective requires to be done mechanically, except in the case of curves which cannot be drawn by means of compasses.

The following are the necessary instruments :-
Pencils-either H or HH, sharpened to a wedge-shaped point, the flat side of which should rest against the ruler in drawing lines. A piece of fine sand paper is about the best thing for keeping the point of the pencil sharp, and saves the blade of the pocket knife.

Ruler-made of hard wood, at least six inches long, with a straight edge, and divided into inches, and halves, quarters, eighths, and sixteenths of an inch.

Compasses-with steel, pencil, and pen points which fit into a socket in one of the legs. The stationary leg should have a needle point if possible, so that its length may be altered to correspond to whichever one of the mevable points is in use. Tho stationary leg should be a trifle longer than the other leg when the pencil or pen point is in use, and eractly the same length when the steel point is in use. The pencil uscd in the pencil point should be a little softer than that used with the ruler, as F or H , and should be sharpened in the same way. In drawing circles its edge should always be perpendicular to the radius. Properly constructed compasses have a hinge joint in each leg, so that when the pencil or pen point is in use, it can be kept perpendicular to the surface of the paper. If this is not attended to in the case of the pen point, the pen will not work properly. The joint of the compasses can be tightened or loosened by means of a little metal key which accompanies them. The joint should not be so loese that the legs will change their relative position when the compasses are being used, nor should it be so tight as to require any exertion to separate the legs. Practice will teach just how tight it should be. The compasses should be held loosely by the joint only, between the thumb and first finger, with the steel or needle point resting on the paper, without any pressure, and the other leg made to revolve around it. The student should practise until he can draw several concentric circles without puncturing the paper with the steel point. It is absolutely necessary that the steel point should be as sharp as it is possible to make it. India ink only should be used in the pens, as other inks corrode and spoil the points. The two steel points are used together when it is necessary to measure or to set off distances very accurately.

A Drawing Pen for "inking in" straight lines. Its points should be exactly the same length and ground to a sharp rounded edge. In use it should be held nearly vertical, with the handle
slightly inclined in the direction of the edge of the ruler, and drawn along the paper at a uniform rate of speed without any stoppages. It should be wiped out with a rag or piece of chamois skin every time it is filled, and before being put away.

Protractor, made of either metal, horn, ivery or wood; userl for measuring angles. It is not absolutely necessary, but most boxes of mathematical instruments contain a protractor. Its form and instructions for constructing one are given in an exercise on problem xiii. in book 2, High School Drawing Course. In using it the centre of the semicircle is placed over the point where the angle is to be constructed, with the diameter coinciding with one line of the angle, and a pencil mark made at the circumference opposite the proper number. A line is then drawn through this point from the centre.

A Set Square, being a triangle of thin wood, will be found useful, chough not necessary, for drawing parallel lines and erecting perpendiculars. The ruler is held in position and the set square slid along, with one edge firmiy pressed against it. A square about five inches high, having angles of $30^{\circ}, 60^{\circ}$ and 90° will be most convenient.

The importance of being able to change the proportion existing between the object and the drawing of it, will be evident when we consider the limited space our paper offers for a picture of a house, a tree, a street, or even of a room. The method adopted for reducing the size of a drawing is called working to a scale, and may be briefly stated as follows: The unit of measurement of the ohject being taken, it is divided into a convenient number of equal parts, and one of the divisions is used as the unit of measurement in the drawing. If an object is 12 feet long the unit of measurement is one foot, which is divided into any number of parts, say 12. Then one-twelfth of a foet, or one inch becomes the unit of measurement in the drawing, which will be one-twelfth of the natural size of the object, and therefore one foot loug. This scale may be expreseed either by the words "scale, 1 " to the foot," or by the fraction " $1 \frac{1}{2}$." In a similar way, if one foot is dividel into 16 equal parts and $\frac{1}{18}$ be used as the unit of measurement in the drawing, the scale will be one of "3 ${ }^{7}$ " to the foot," or " "1. :" It must be remembered that if the scale is expressed by a fraction, it indicates the proportion which every portion of the drawing will bear to the oorresponding portion of the object drawn.

The sign ' attached to a figure signifies foot or feet, and the sign " ${ }^{\prime \prime}$ inch or inches : ihus, $1^{\prime} 6^{\prime \prime}$ reads 1 foot 6 inches, and $\mathscr{L}^{\prime} 1^{\prime}$ reads, 2 feet 1 inch, and Scale 4^{\prime} to $1^{\prime \prime}$ reads, Scale 4 feet to 1 inch.

HIGH SCHOOL DRAWING COURSE.

LINEAR PERSPECTIVE.

The ter.n $\mathrm{Ferspective}$, indicates that $:$ is a representation of the apparent form of that object when viewed from one point.
It has no doubt been noticed, even by the most careless observer, that, except under certain circumstances, objects never appear as they are, and that thcir appearance changes with every change of the spectator's position with regard to them. This difference between appearauce and reality is chused partly by the convergenco of the rays of light, reflected or transinitted by the objects to the eye, * and partly by the manner in which theso rays cut an imaginary transpareut plane interposed between the objects and the spectator.
The eye, being opencd, admits a flood of light from space, part of which may procecd from obiects lying within the range of vision. This light passes through the circular opening in the iris, called the pupil, and tho crystallino lens, and excites the optic nerve spread over the inside of the back of the eye, thus producing the sensation which we call vision. The rays composing this volumo of light aro convergent and meet in the focal point of the crystalline lens, forming a cone, the base of which may be sup. posed to be at any distance from the cye. \dagger

Only one portion of an object can be seen distinctly at one time. In order to obtain a complete and correct idea of the whole, the gaze is directed at different parts of it until it has all been examined. Whicn tho eyo is tixed upon one point everything about that point in all directions is scen more and more indistinctly as its distance is increased, so that the angle limiting the field of distinct vision is nccessarily comparatively small. In perspective it is fixed, for the sake of convenience, at 60°, and
"In perspective the spectator is supposed to be looking with only one eje. +This prineiple of convergent rays is nicely illustrated by the light jesuing from a magic lantern. The diamcter of the circlo of illumination on the screen (the base of the cone) devends upon the distance of the sereen from the lantern. In this case the rays of light diverge, while in the case of the human eye they
converge. This shows, too, that tho openig then goverge. the sliape of the field of illumiaation on the shath which tho light passes, and of the field of vision in the other.
everything lying outsido is supposed to be invisible; therefore, in order to make a picture of the whole circle of landscape, the spectator would have to change his position six times, thus dividing his horizon into six difficent parts, each one of which would be contained by an angle of 60°. * This is called the visual angle or angle of vision.

The word perspective is derived from two Latin words, signify ing "to look through,", and naturally suggests the thought that there is a "something" through which the spectator is looking. This "something" is the Picture Plane (P.P.), or plane of delincation, and is an invisible vertical plane, supposed to be interposed at a given distance betwecn the spectator and the object to be drawn. It is represented by the surface upon which the drawing is made.
A good idea of the picture plane and its use might bo obtained by placing upright in front of the eye a pane of glass, and tracing upon it the outline of objects scen through it, taking care that the eye is kept in one position. The drawing thus made would be a truo perspective drawing, and could easily be transferred to a sheet of paper.

The position of the eye is called the Station Point (S.P.).
The point towards which the eye is directed, being in the centro of the ficld of vision, is called the Centre of Vision (C.V.). When looking straight ahead the eye of the spectator is naturally fixed upon the horizon; the Centre of Vision is therefore in the horizon. If a circle were drawn with a proper radius upon the pane of glass already referred to as representing the piecture planc, its circumference would be a picture of the limit of the field of vision, the circle would be the picturo plane, its centre would be a picture of the centre of vision, and its horizontal diameter would be a picture of the horizon. This last line repressnting the horizon is called the Horizontal Line (H.L.).

A line drawn from the Station Point to the Centre of Vision represents, not only the distance of the spectator from the picture

[^0]phane but also the direction in which he is looking, and is called the Line of Direction (L. I.).

Fig. 1 shows the relative position and size of the picture plane with regard to the spectator. It will be seen that the picture plane is the base of the cone of light ente ing the eyo; the apex

of the cone is the station point (S.P.); ita axis is the line of direction ($\mathrm{I}_{\mathrm{L}} \mathrm{D}$. .) ; the centre of the base is the centre of vision (C.V.); and the horizontal diameter of the base is the horizontal line (H.L.). Fig. 1 also shows the fact that the picture plane may be at such a distance from the eye of the apectator as to be wholly visible, but usually it is supposed to be at such a distance

that its radius is greater than the height of the eye above the ground and hence a portion of it is hidden by the ground lying between it and the apectator. The line where it cuta the ground is called the Ground Line (G.L.). The portion of the picture plane below tho ground line may be visible when the spectator is standing on an elevation, or looking down into
an excavation. In such a case the ground line is supposed to be in the same place as it would be in if the ground were perfectly level, i.e., it is the line of intersection of the picture plane with a horizontal plane upon which the spectator is standing.

It is supposed that the line of direction is parallel with the ground planc or horizontal plane,* hence the distance from the horizontal line to the ground line is always equal to the height of the eyo of the spectator above the ground.

The lines and points thus far explained are in two different planes-the horizontal line, centre of vision and ground line in a

vertical plane ; and the horizontal line, centre of vision, line of direction and station point, in a horizontal plane-and in order to make use of them in working problems in perspective, they
*This is not actually the case, for as the horizon is the line where earth and eiky appear to meet, s line from the eye to the horizon will fall the distanco of the eye from the ground in traversing the distance between the eye and the Therefore the sngle formed by the line of direction produced and the ground plane, is the vertical angle of a triangle having two of ita sidea three miles long and its base five feet long.
must be supposed to be all brought into one plane without alter ing the relative positions of the centre of vision, horizontal line and ground line, and of the centre of vision, line of direction and station point. The manner of doing this is shown in fig. 2. The picture plane is supposed to bo rotated upon the ground line, and the spectator to be rotated in the same direction upon the point where he stands until the horizontal lisection upon the point Where he stands until the horizontal line, centre of vision, line of irection and station point occupy positions in the horizontal or ground plane. The lines and points mentioned will then appear

In all prol stood betwen the to approach the rails of a railway and noticed how they appear horizon then another in the distance, and finally meet in the any room the same apparent convergence of lines can be seen in dows and doors, the tops of houses, etc., all appear to approach dows and doors, the tops of houses, etc., all appear to approach
one another. The different points where these lines would if one another. The different points where these lines would, if produced, ultimately meet are called Vanishing Points (V.P.),

Fig. 4.
and experiment will satisfy nny ono that all parallel retiring lines appear to meet in the same point, and that all parallel horizontal retiring lines appear to meet in the horizon.

In the illustration of the railway track (fig. 4) where the spectator is supposed to be standing on ono of the rails, the rails
appear to meet in one point in the horizon, and this point is the point towards which the gaze is directed (C.V.). The rails in this case are parallel to tho line of direction, and their vanishing point is where they disappear on account of the rotundity of the earth. This can bo proved by standing upon each of the rails in succession, where there are sevcral parallel to each other.
If the spcctator turns either to tho right or left until he looks in a direction at an anglo of 45° with the tracks, their vanishing

point will not be changed, but will occupy a new position with regard to the spectator and his line of direction; that is, what was his centre of vision and the vanishing point of the rails, will still be their vanishing point when they form an angle of 45° or any other angle with the line of direction

From this it is evident that if any horizontal line be followed until it cuts the horizon, it will find there its own vanishing
point. point.

Suppose that tho circumferenco of the circle in fig. 5 represents the complete horizon visible to a spectator stationed at $S P$. When looking towards A his centre of vision will be the point A, but when looking towards B his centre of vision will be the point B. The direction of lis line of direction, and consequently of his picture plane, which is always perpendicular to the line of direcion, changes with every change of his position, and what was
his centre of vizion when looking towards A becomes, when he looks towarda B, the vanishing point for all lines ruuning in the direction $S P A$. In the anme way what was his centre of vision when looking towards C, becomea, when he looks towards A, the vanishing point for all lines running in the direction $S P C$. These vanishing points are in the horizon, but when the picture plane is interposed between them and tho spectator they are represented by the points A, B and \boldsymbol{c} on the respective picture planes (P. P.). From what has been said the following rules may be deduced :
I. All retiring lines appear to converge.
point. All parallel retiring lines appear to converge in the same point.
III. All parallel horizontal retiring lines appear to converge in the horizon, represented by $H L$.
IV. All lines perpendicular to the picture plane appear to converge in the centre of vision.
V. Tho vanishing point of any retiring horizontal line is found by drawing in the proper direction from the station point, a line to cut the lorizon, represented by If L.

If one edge or face of an object, such as a book or a pencil, bo placed ngainst a pane of glass, and its outline traced upon the glass, the drawing of the edge or face will be of the same size and shape as in the object itself; hence it may be inferred that measurements must be taken upon the picture plane (represented by the pane of glass), and that all the points in an object which are in the aame vertical plane, will, when occupying positions in the picture plane, be represented by points as far apart as they are in the object. In order to bring any particular point of any object into the picture plane it must be supposed to be moved forward in any direction until it touches the picture plano. The point where it touches the picture plane is called a Point of Contact (P.C.). If it be required to find the point of contact of a point gituated above the ground plane and away from the picture plane, the point is supposed first to be dropped vertically to the ground plane and then moved towarda the picture plane.
For the proper working of a problern in perspective it is neceasary that we be able to define with great exactness thh size,
the shape and the position of the object or objects to be drawn. the shape and the position of the object or objects to be drawn. The nosition of an object is usuanly determined by means of some one of its principal points, which is compared, as regards position, with the picture plane, the ground plane, and the line of direction. Thus any point may be required which is 2^{\prime} to the right of the tiue of direction, 3^{\prime} back from the picture plane and 10 above the ground plane ; or, a solid object, such ne a cube, may be required whose edges are 2^{\prime} long, two of whose faces are parallel to the picture plane, and having the near left hand corner of its base touching the picturo plnno 5^{\prime} to the left and 1^{\prime} above the ground plane. Broadly stated, the position of objects may be-on, above or below the ground plane; touching, or lying away from the
picture plane, and either directly in front of the spectator, or to
the right or left.
Besides knowing the size, shape and position of the objects to be drawn we must also know the leight of the cye of the spectator above the ground, his distance from the picture plane, and the scale on which the drawing is to be made, or, in other words, the proportion which the drawing will bear to the object.

Referring again to the illustration of the railway track (fig. 4) it will be seen that the ties appear to approach one another, as well ns to decrease in size, as their distance from the oye is incrensed. In tho case of a rapidly departing train the decrease in size is plainly seen, and gives to the mind the idea that some mysterious contracting forco is acting upon the sides of the rear carriage, causing them to become shorter and closer together until, at a distance of about three or three and a half miles, the whole is reduced to a point on the horizon.
This leada up to the next point which it is necossary to consider, viz: : how vanishing lines can be measured to any required length, or, in other words, how the position of any point lying away from the picture plane can be represented.

The mathematical fact or principlo hy means of which this is accomplished is, that a line drawn perpendicular to a line bisect. ing an angle will intersect both lines of the angle in points equi. distant from their point of contact. In fig. $6 A B$ is limited, $B C$ ia unlimited in length. The line $A E$, perpendicular to the line bisecting the angle $A B C$, makes $B D$ equal to $B A$. In the same way the line $F M$, perpendicular to the bisecting line, In tho same angle $F^{\prime} H K$, makes $H I N$ equal to $H F$ and $P T^{\prime}$ makes $H R$ equal to $H P$. Applying this principle to what has meen learned concerning the drawing of lines in perspective, let $a b$ in $G L$ (fig. 6) correspond to and represent $A B$. The indefinite line $B C$ ifig. 6) pendicular to $A B$ and thereforo n line to represent it in pespeptive, drawn from b, must vanish in $C V$ (Rule iv.) These two
lines aro now represented perspectively, and in crder to cut of lines aro now represented perspectively, and in crder to cut off from $b c$ a part which will represent $B D$ it is necessary to draw from a a line which will be the perspective representation of $A \mathrm{E}$. By means of Rule v. the vanishing point for $A E$ is found by drawing from $S P$ a line parallel to it, to cut $M L$ in $R M P$ (Right
Measuring Point). The line drawn from a to $R M P$ repre. Measuring Point). The line drawn from a to $R M P$ represents $A E$ in perspective, and, cutting $b \mathrm{c}$ in d, makes $b d$ the perapective representation of $B D$; that is, $b d$ is the foreshortened or perspective length of $a b$ when perpendicular to the picture plane.

In the case of the line $I I K^{\prime}$, which is not perpendicular to the picture plane, ita vanishing point and measuring point are found by applying Rule v ., that is, by drawing $S P P^{2} P_{1}$, parallel to $H K$, and $S P$ M P_{1}, parallel to $F M$. After finding these points the method of procecding is just the same as in the other oase. 'The original retiring line is $h V P_{1}$, and it is measured by mean ${ }_{3}$

of the line $f M P_{1}$, making $h n$ the perspective length of $h f$ which
From this illustration it msy bo seen t!at, civery vsnishing point has its corresponding measuring point, and duat the measurare with the vany vanishing point can be found by drawing an are with the vanishing point as a centre and a radius cqual to its the horizontal line is the point. Tho point where this arc cuts the horizontal line is the measuring point required. If the are, drawn with $C V$ as a centre and $C V S P$ as a radius, be con-
tinued to the left, it will find on the heri tinued to the left, it will find on the herizontal line a point masked
L. $M P$ (left measuring point) which L. MP P (left measuring point) which can be used as well as $h M P^{*}$ for measuring lines vanishing in $C Y$. These two points $L M P M$ and $R M P$ are as far ton the right and left of $C V$ as the distance of $S^{\prime} P$ from the picture plane and are therefore often called

[^1] 7 only onare occasiona that both measuring points will he required.

Distance Points. They are really measuring points, and are so called in this book, to avoid the confusion that might arise from calling the measuring points for $C V$, distance points, and calling the measuring points for other vanishing points by tbeir proper name.

There is one point in connection with the measuring of distances on retiring lines, about which the student will need to be very carcful. Suppose, instead of being required to measure a certain distance from a point on the picture plsne, as h, the point from which the mcasurement is to be taken, slready lies at some from it, in the dirction $h k$, a distance it is required to measure case as this the point of contactance equal to $P F$. In such a means of a line from of contact of the point r is first found by means of a line from $M P_{1}$, the proper measurement taken on $G L$ from p to f and a line drawn from f to measurement taken on $\mathcal{M} P_{1}$; then $r n$ will be the
distance required. distance required. The reason for this will ; be manifest on comparing the lines marked by italic letters with the corresponding

Pronlem 1.-Represent properly in perspective the position of a point on the ground plina 2 ' to the right of the line of direction and 4 ' away from tho picturo plano. The eye of spectator is 6^{\prime} above the ground and his distance from the picture plane is 14'. Scale o' ${ }^{\prime}$. (Fig. 7.)

The first step is to draw a horizontal line across the paper and mark a point somewhere near its centre to reprosent the $C \quad V$. From $C V$ draw a vertical line equal in length to tho distance of the spectator from the $P P, 14^{\prime}$, and mark it $L D$, and its lower extremity $S P$. The scalo in this problen is sf of the natural size, that is, the unit of measureunent in the drawing is to be
 long. With $C V$ as a centre and $C V S P$ as radius draw a semicircle to find tho measuring points and letter them $L M P$ and $R M P$. Next on $L D$ measure from $C V$ the height of the eye of the spectator above tho ground, 6^{\prime}, which will be $\frac{3}{3}^{\prime \prime}$, and through this point draw the $G L$ parallel to $H L$.

The point required in this problem is 2^{\prime} to the right. On $G C$ measure 2^{\prime}, or $\}^{\prime \prime}$, to the right of $L D$ to find a point a which will be the $P C$ of the point required, when it is moved forward in a direction parallel to $L D$ to touch tho $P P$. A line from a to $C V$ will be the represeniation of a line on the ground plane perpendicular to $P P$ and 2^{\prime} to the right throughout its entire length, and so we know that the point sought will be in it. From a measure the distance of the point from the $P P, 4^{\prime}$, either to the right or left, as $a b$, and from b draw a lino to one of the measuring points to cut a $C V$ inc. Then c will be the point required

Pronlem 2.-Show the position of a point in the ground plane 2^{\prime} to the left and 0^{\prime} beyond the picturo plane. The eye of the spectator is 7^{\prime} from the picture plane and $3^{\prime} 6^{\prime \prime}$ above the ground plane. Scale ${ }^{\circ} 8_{8}^{\prime}$. (Fig. 8.)

Measure on $G L, 2^{\prime}$ to the left of $L D$ to find a the position which the point required would occupy if brought forward to the $P P$. From a draw a line to $C V$. This will represent the track
of the point a on being moved back along the ground plane to the horizon, in a direction perpendicular to $P P$. From a measure 6^{\prime} to the right, to b and draw $b L M P$ to cut $a C V$ in c. Then c will be the point required.

Problem 3.-Show the position of a point $1^{\prime} 3^{\prime \prime}$ to the right, $3^{\prime} 6^{\prime \prime}$ distant from the picture plane and 1^{\prime} above the ground plane. Height of eye $1^{\prime} 3^{\prime \prime}$, distance from the picture plane $3^{\prime} 6^{\prime \prime}$, and scale $\frac{17}{7}$. (Fig. 9.)

Find the position which the point would occupy when in the ground plane $1^{\prime} 3^{\prime \prime}$ to the right and $3^{\prime} 6^{\prime \prime}$ back from $P P$, by measuring $1^{\prime} 3^{\prime \prime}$ to the right of $L D$ to a, and $3^{\prime} 6^{\prime \prime}$ from a to b, and drawing $a C V$ and $b R M P$ to intersect in c. At a orect a

perpendicular $a d$ equal in height to the distance of the point required above the ground planc, l^{\prime}, and from d draw a line to $C V$ to cut a perpendicular from c in e. Then e will be the position of tho point required.

It is evident that c is the proper distanco to the right, and away from the $P P$, and that d is the proper distanee to the right and above the ground plane, so that if a line be drawn from d parallel to $a c$ it will pass over c at the proper distance. In order to represent it in this direction, it must vanish in $C V$. (Rule iii.)

Exrreise 1.-Find the perspective position of a point in the ground plane 6^{\prime} to the left of the line of direction and 8^{\prime} beyont the picture plane. The eye of the spectator is 6^{\prime} above the ground plane, and 15^{\prime} from the picture plane; scale of $^{\prime}$ or $\frac{1}{8}^{\prime \prime}$ to 1^{\prime}.

Exr.cise 3.-Show the perspective position of a point 3^{\prime} to the right, 6^{\prime} from the picture plane, and 2^{\prime} above the ground Height 3^{\prime}, distance 5^{\prime}; scale $\mathbf{3}^{\frac{1}{2}}$

Exarcise 2.-Represent in perspective the position of a point in the gr und plane, 2 ' to the right of the line of direction, and 3 away from the picture plane. Height of eye from the gronnd, 2^{\prime} distance from picturo plano, 7 '; scale fors.

Exerctse 4.-A ball is suspended in the air, 8^{\prime} from tho picture plane, 19^{\prime} from tho spectator, 7 ' above the ground and 4 to the left. The eyo of the spectator is 5^{\prime} from the ground. Represent the position of the ball by a point ; scale $\frac{{ }_{6}^{\prime}}{6}$.

Problem 4.-Represent in perspective tho position of a point 3^{\prime} to the left, 5 ' from the picture plane and 7^{\prime} from the ground. Spectator's eye is 4^{\prime} from the ground, and 14^{\prime} from the picture plane. Scale $\frac{1}{64}$ (Fig. 10.)
It will be noticed that the station point has been used thus far, only to show how the measuring points are obtained. They can be found by measuring on the horizontal line to the right and left of the centre of vision, the distanco of the spectator from the picture plane. In the ensuing illustrations the station point will not be shown.

Measure 3^{\prime} to the left of the line of direction to a and draw $a C V$. From a measure 5^{\prime} to b and draw $b L M P$. Froma draw a vertical line a $d, 7^{\prime}$ long end draw $d C V$. From c draw a vertical line to cut $d C V$ in e Then e will be the position of the point required.

Problem 5.- Show the perspective appearance of a line in the ground plane, parallel to the picture plane. Its lefi hand end is 1^{\prime} to the left and its right hand cnd is 4^{\prime} to tho right and 3^{\prime} back. Position of spectator's eye 3^{\prime} above the ground plane and $7^{\prime} 6^{\prime \prime}$ from the picture plane. Scale ${ }_{3} 12$. (Fig. 1i.)

Find a point, a, on $G L 1^{\prime}$ to the left of $L D$, and another pinint, $h, 4$ ' to tho right of $L D$ and draw a $C V$ and $b C V$. Then the left hand end of tho line required will bo in $a C V$, and its
right hand end will be in $b C V$. From b measure 3^{\prime} to the left, to c and draw $c R M P$ to cut $b C V$ in d. Lines parallel to the picture plane are represented as they are, without any change of direction, and as the line in this case is in the ground plane, and hence horizontal, therefore if from d a horizontal lino be drawn to cut $a C V$ in e, it will be the representation of the line required.

As a straight line is tho shortest distance between two points, if the perspective position of the extremities of any line can be found, tho line joining thern will be the perspective representation of the line requirel.

Pronlem 6.--Represent in perspective a line 6 ' long, in the ground plane, perpendicular to the picture plane, its nearer end being 4^{\prime} to the loft and 2^{\prime} beyond the picture plane. Height of eye 5^{\prime}; distance from picture plane 10^{\prime}; scale ${ }_{48}^{\text {h }}$. (Fig. 12.)

FIG. 12.
On $G L$ find $a 4^{\prime}$ to the left of $L D$ and jnin $a C V$. From a measure 2^{\prime} to b, and from b measure 6^{\prime} to d and join these points with $L M P$ by lines cutting $a C V$ in c and e. Then $c e$ will be tho line required.

Problem 7.-Draw the perspective view of a line in the ground plane having one end $6^{\prime \prime}$ to the left and 2^{\prime} from the picture plane, and the other end 4^{\prime} to the left and 1^{\prime} from the picture plane. Height 2^{\prime}; distance 5^{\prime}; scalo $\frac{1}{24}$. (Fig. 13.)

Find $a 6^{\prime \prime}$ to the leit and ${ }^{\text {FIE, }} 4^{\prime}$, to the left and draw $a C V$ and $d C V$. Mensure 2^{\prime} from a to b and $6^{\prime \prime}$ from d to e and join b $L M P$ and $c L M P$. Then c and f will be the extremities of the lino rerpuired.

者

Exrrcise 5.-Place in perspective a straight line 3^{\prime} long in the ground plane, parailel to the picture plane, its right hand extremity boing 2^{\prime} to the right and 1^{\prime} back. Height of eye, $1^{\prime} 6^{\prime \prime}$; distance from picture plane, $3^{\prime} 9^{\prime \prime}$; scale $\frac{\eta^{\prime}}{2}$.
 to the picturo plane plane with its right hand extremity 2^{\prime} to the right and 4^{\prime} back frome the piong lying on the ground plane. One is to the picture plane with its nearor extremity 4^{\prime} to the left and 1^{\prime} from the picture planc. the picture planc, and the other is perpendicular

Exercise 6.-A persen whose eye is 1^{\prime} from the ground and his line a pane of plate glass placed in a position perpendicular to his lime of direction and the ground plane, is looking at a polo 4° leng lying on the ground, perpendicular to the pane of glass, its near end tonching the glass in a point 2^{\prime} to tho leit. Represent the appearance of a tracing of it made upon the glass which is 2^{*} thick; scale 1 .

Problrm 8.--Place in perspective a vertical line 14^{\prime} long, when its lower extremity is in the ground plane 12 ' to the right and 30 ' from the picture plane. Height 8^{\prime}; distance 36^{\prime}; scale万. (Fig. 14.)

By means of the points a and b find the point c, which is the position of the lower extremity of the line required. If it be sup. posed to be moved forward towards the picture plane, in the direction $C V$, when in contact with the picture plane it would be represented by the line ad 14' long. From d draw a line to $C V$ to cut a vertical line from c in e. Then $c e$ will be the line required.

Problem 9.--Place in perspective a square of 3 side, in the ground plane, having two of its sides parallel to the picture plane, and its nearer left hand corner 2^{\prime} to the left and 2^{\prime} back. Height 2^{\prime}; distance 7^{\prime}; seale $\frac{1}{32}$. (Fig. 15.)

As a line may be said to be generated by a point in motion, so a plane may be said to be generated by a line in motion in a direction other than that of its length. With this faet in view it will be an easy matter to draw a line in a position similar to that in problem 5 , and move it back through a distance equal to, and in a direction perpendicular to, its length, and thus obtain a square.

In this problem the position of one of the left hand corners of the square is given. In parallel perspective square objects may 12
and left kand cons. is. This distinction is sufficient to enablo the student to determine accurately which corner is referred to. In the present case if tho near left hand corner is 2 ' to the left and tho side of the square is 3^{\prime} long, the near right hand corner will be 1 ' to the right of $L D$.

Find $a 2^{\prime}$ to the left and $d l^{\prime}$ to the right, respectively, and from then draw lines to $C V$. From a measure 2^{\prime} to the right to b and draw $b L M P$ to cut $a C V$ in c. Then c will be the nearer left hand corner of the square, and a horizontal line drawn from c to eut $d C V$ in e will be its front side.

Referring to what has been said regarding the measurement of retiring lines it will be seen that all lines vanishing in the measuring points for CV are at an anyle of 45° with the $P P$, hence the line from e to LMP will contain the diagonal of the square required, and, cutting a $C V$ in j; will find f the far left

hand corner. A horizontal line from ${ }^{\prime}$ to eut $d C V$ in g will complete the square.

Problem 10. -Show the appearance of a square of 4' side when its plane is parallel to the pieture plane, two of its sides being vertical, and its lower right hand corner on the ground plane, 21^{\prime} to the right and 3^{\prime} brek. Height 3^{\prime}; distance 9^{\prime}; scale ${ }^{\prime} \mathbf{4}_{8}^{\prime 2}$.
(Fig. 16.) (Fig. 16.)

Measure to the right of $L D 21_{2}^{\prime}$ to a and draw $a C V$. From a measure the distance of the square from the picture plane, 3 ', to b and draw $b R M P$ to cut a $C V$ ian . From a measure 4' to the left to d and draw $d C V$. From e draw e e parallel to $I I L$, to cut $d C V$ in e. This will bo the lower edge of the square. Suppose the square to be moved forward until it teuches the $l P$. It will be represented there ' \cdots the square a $\dot{a} f g$ and the track of its upper corners will be in the lines $f C V^{\prime}$ and $g C V$. Vertical lines from c and e to eut these lines in h and k will give the pesitions of the upper corners when at the proper distance from the $P P$. Join $h k$.

Exercise 10.-Place in perspective a square of 2^{\prime} aide lying on the ground plane touching the picture plane with its front side its nearer right hand corner being $6^{\prime \prime}$ to the right. Heitside, distance $5^{\prime} 6^{\prime \prime}$; scale 2^{\prime} to $1^{\prime \prime}$.

Exercise 8.-A har of iron lies on the greund, its left hand extremity being 3^{\prime} to the left and 8^{\prime} back from the pieture plane and its right hand extremity is 2^{\prime} to the right and 1^{\prime} back. Slieture, by a line its appearanee to a apeetator whose eye is stationed 4^{\prime} above the ground and 8^{\prime} frem the picture plane; seale $1^{\prime \prime}$ to 4^{\prime}.

Exercise 9.-Meight 3^{\prime}; distence 5^{\prime}; acale $\frac{3^{\prime \prime}}{8}$ to 1^{\prime}. Kepre sent in perspeetive a rectangular vertieal plane 3 ' wide and 8 a the one its long edges in the ground plane perpendicular to the picture plane, its nearer end bing 3^{\prime} to plane

Exercise 11.-Show the square of last exercise when in the ground plane with two sides perpendieular to the picture plane its nearer left hand corner being 1^{\prime} to the left and 2^{\prime} back. Ulane, the same height, distance and acaie as in exercise 10 .

Problem 11.-Make a perspective drawing of as squaro of 6^{\prime} side with its plane vertical ; ono of its sides is in the ground plane, perpendicular to the picture plane; and its near lower corner is 6^{\prime} to the left and 3^{\prime} from the picture plane. Height 4^{\prime}; distance 15^{\prime}; scale $\frac{1}{68}$. (Fig. 17.)

Having feund the point $\subset 6^{\prime}$ to the left and 3^{\prime} from $P P$, suppose the square to be moved forward to $P P$ in the direction $C V r$. Its front sido will then be represented by the line a f, and the track of its upper corner will bo in tho line $f C V$. A vertical line from c to cut $f C V$ in g will be the near sido in its preper position. By means of tho measurement $b d$ equal to the side of the square, find in a $C V$ a point, $e, 6^{\prime}$ beyond c and from e erect a perpendicular to cut $f C V$.

Pronlem 12.-Place in perspective an equilateral triangle of 5^{\prime} side, in the ground plane. Its most distant side is parallel to and 5^{\prime} from the picture plane, and the left hand end of this side is 1 ' to the right. Height of eyo of spectator 4'; distance from picture plane $11^{\prime} 9^{\prime \prime}$; scale $\frac{1}{4}^{\frac{1}{8}}$. (Fig. 18.)

The triangle in question when in this position will have two sides at an angle of 60° with the picture plane and so they will not vanish in the centre of vision. But by means of a slight modification of the rules thus far learned the centre of vision and its measuring points may be used for the purpose of obtaining the position of the corners of the triangle. It is necessary therefore to ascertain their position with regard to tho picture plane and line of direction, by drawing the triangle and placing it in a position in regard to two perpendicular lines, similar to its position with regard to the picture plano and the line of direction. The ground line, and the line of direction below the ground line may be used for this purpose. Find a point, $a, 1^{\prime}$ to the right of $L D$
ancl ξ^{\prime} from $G L$. From a draw parallel to $G i$, a line, $a b, 5$ tong which will be the side of tho triangle most distant from $P P$. Upon this line construct an equilateral trimgle wheso vertex, c, will be in the proper position in regard to $P^{\prime} P^{\prime}$ and $L D$. If vertiral lines bo drawn from a and b to cut $G L$ in d and e these points will indicate the distance to the right of $L D$, of a and b; and similarly, a vertical ling from c will cut $G L$ in a point as far to the right of $L D$ as c is. If ines bo drawn from each of these points in $G L$, to $C V$, the corners of the triample will be somewhere in them. But b is the distance b e from $P P$, therefore if an are be drawn with c as a centro and $e b$ as radius it will find on $G L$ a point d that distance to the left of e. The line $d R, M P$ will cut $c C V$ in h which will be the perspective representation of b. A horizontal line from h to cut $d C V$ in k will be the perspective representation of the line $a b$ which is the

most distant side of the triangle. In a similar way the point n may be found as the perspective representation of the point c. Then the triangle $n k h$ will be the perspective representation of the triangle in question.

Problem 13.-Show the triangle of the last problem when its plane is vertical, the edge on which it rests is in the ground plane, perpendicular to the picture plane, and its near end $5^{\prime} 9^{\prime \prime}$ to the left, and $2^{\prime} 11^{\prime \prime}$ back. Height of eye $5^{\prime} 9^{\prime \prime}$; distance from picture plane $13^{\prime} 10^{\prime \prime}$; scale $\frac{1}{8} 4 . \quad$ (Fig. 19.) $d e$ these a and b; point as each of 3 will be P, thereradius it The line ve reprein k will h is the

Exerciss 12.-From the following diagram drawn on a scale of $\frac{1}{1 / f}$ find the position of spectator's ere with plane and the ground plane, letter tho lines and points used, and show the appearance of two spurator's eyo with regard to the picture
and perpendieular to one another to the left. The other square has its fer them hiss two sides perpendicular to the picture pquares of 8 side with their planes vertical the first square. plane and touching the ground plane and the most distant side of

Exeroisr 13. -Height 3^{\prime}; distance 8^{\prime}; scale 2^{\prime} to $1^{\prime \prime}$. Represent in perspective two squares of 4^{\prime} side, their planes being paralle

15

Find a point $a, 5^{\prime} 9^{*}$ to the left of $L D$, and draw $a C V$. In it, by means of $L M P$ find a point, $\mathrm{c}, 2^{\prime} 11^{\prime \prime}$ from $P P$. This will be the near end of the lowest side of the triangle. Anywhere in $G L$

angle $d f e$ and from its vertex draw a horizontal line to cut a vertical line from a in k. To the right of b measure the distance $d f$ to h and draw $h L M P$ to cut $a C V$ in i which will be the the far end of the lowest side of the triangle. A vertical line drawn from e will bisect the base, $d f$, of thie triangle. Bisect

13 16 and draw m IMP . Then u will he the perspective centro of the line o a and the vertcx of the triangle will be vertically above it at a distance a k. Draw $k C$, to cut a vertical line from r in r and join $r c, r i$.

Problem 14.-Show the appearance of a hexagon of 5 ' $9^{\prime \prime}$ side, which is in the ground nlane, two of its sides bein:g paralle! to the
picture plano and its centre being $6^{\prime} 10^{\prime \prime}$ to the right and $7^{\prime} 9^{\prime \prime}$ from the picturo plane. Height 10^{\prime}; distance $19^{\prime} 6^{\prime \prime}$; scale $\frac{1}{9^{6}}$. (Fig. 20. .)

Find the position of a point, $a, 7^{\prime} 9^{\prime \prime}$ below $G^{\prime} L$ and $6^{\prime} 6^{\prime} 10^{\prime \prime \prime}$ to the right of $L D$. Witl, this point as a centre and a radius equal to the side of the hexagon, $5^{\prime} 9^{\prime \prime}$, draw a circle, and in the circle construct a hexagon having two sides parallel to $G L$. Draw vertical lines from each of the corners to $G L$ and from these points $h k l m$ draw lines to $C V$. With m as a centre and $m e$ as radius draw an are to eut $G L$ in p, and from p draw a line towards $R M P$ to cut m $C V$ in r. Then r will be the perspective position of the point e. In the same way by means of ares with a radius $l d$ and l_{J} find the position of the point o corrcsponding to d, and the point t corresponding to f. Then as d and c are the same distance from $P P$, a horizontal line from o to cut $k C V$, will give the

perspective position of the point c, and similarly, horizontal lines from r to cut $h C V$, and from t to cut $k C V$, will find the perspective positions of b and g. The lines joining these six points will represent the sides of the hexagon required.

Probles 15.-Show tho appearanco of the hexagon of the last problem when its plane is vertical, two of its edges are parallel to the ground plane and perpendicular to the picture plane, and the near end of the side on which it rests is $9^{\prime} 10^{\prime \prime}$ to the left and 4^{\prime} beye'dd the picture plane. Height $9^{\prime} 9^{\prime \prime}$; distance $19^{\prime} 6^{\prime \prime}$; scale ${ }^{\frac{1}{56}}$ (Fig. 21.)

Draw a hexagon of $5^{\prime} 9^{\prime \prime}$ side, with one of its sides in the ground line. Draw horizontal lines through $h k$ and $g l$ to a perpendicular erected at a point ou $G L 6^{\prime} 10^{\prime \prime}$ to the loft. The perspectivo position of the near end of tho lowest side is found by a measurement 4^{\prime} to the right of a and a line towards $L M P$ to cut $a C V^{\prime}$ in the point c. The perspective length of the lowest side is next found, and vertical lines drawn from its ends to meet a lino fronn m $\mathrm{t}_{\mathrm{C}} \mathrm{CJ}$. The line marked $y \approx$ will be the top side. It will be scen by the illustration that the distance of p to the rightit of d. ana che rlistance of o to the left of p, is equal to one-lalf tha. $\mathrm{CF}^{\prime}, 2^{\prime} 101^{\prime \prime}$ newer than hexaron, therefore points must be frumb in" " $C J^{\prime}, 2^{\prime} 101^{\prime \prime}$ nenrer than r, and $2^{\prime} 10 \frac{1^{\prime \prime}}{}$ beyond w. Vertical lines fom τ and x to cut $n \in V^{-}$in i and j will find the two remaining comers.

7' $7^{\prime \prime}$ from (Fig. 20.) $10^{\prime \prime}$ to the ual to the construet ical lines $l m$ draw w an are P to cut the peint d and l_{J} d and $l J$
the point the point distance
give the give th

Exercise 14.-Mcight 5^{\prime}; distance 8^{\prime}; scale 1. Represent in perspective an isosceles triangle in the ground plane. Its base of the triangle is to the picture plane and 1^{\prime} from it. The vartex

Exercise 16.-Height 8'; distance 18 ; scale $\frac{1}{9} 6$. Place in perspective an equilateral triangle of $^{\prime}$ 'side in the ground plane, its base being perpendicular to the picture plane, touching it in of the eye.

Exercise 15.-Using the same height, distance and scale as in Exercise 14, show the appearance of the triangle mentioned picture plane, and its vertex plane, its bass is parallel to the 1^{\prime} to the right.

Exrrcise 17.-With the same height, distance and scale as in last problem show the same triangle when its pland scale as its baso is horizontal and perpendingle when its plane is vertical, its vertex is in the ground perpendicular to the picture plane, and the picture plane.

Pronlem 16.-Represent in perspective a circle 6^{\prime} in diameter, ying on the ground plane and tonehing the picture plane in a point opposite to the eye. Height of the eye 5 '; distance from picture plane 10^{\prime}; scalo zis. (Fig. 22.)

In order to draw the curve which will represent a circle when viewed ebliquely, it is necessary to obtain several points in its circumference, the perspective position of which can bo easily ascertained. For this purposo it is enclosed in a squaro and the diameter and diagonals of the square are drawn, making eight points in the circumference of the circle, viz. : one at each extremity of each diameter, and four others, where the diagonals cut it. The square enclosing the circle must be placed in its proper position below the ground line as in the case of the triangle and
hexagon.

In this problem the circle tonches the picture plane in a point opposite to the eye. It is evident that excepting when a circle is in a plane, its circumference can touch the plane in only one point, and that a line drawn in the plane of the circle from the point of contact, perpendicular to the line of intersection of the two planes, will pass through the centre of the circle. Applying this to the circle in question, as its point of contact with the picture plane is opposite to the eye, its centre is also opposite to the eye and therefore in the line of direction.

Find on $L D$ a point b distant from a the length of the 18
radins, 3^{\prime}, of the circle and with b as a centre and $b a$ as radius draw a circlo, enclose it in a square and draw tho diameters and diagonals of the square. Noxt place the square, with its diameters and diagonals, in perspective. From the points, $g h, k$ and h whero the diagonals of the square cross the circumference of the circle, draw vertical lines to $G J$ and thence towards $C V$ to cut the diagonals of the perspective square in points s, t, u and v. Through these four points, and the extremities, a o and $p r$ of the diameters, draw an eliiptical curve which will be the perspec-
tive representation of the circle. tive representation of the circle.

Problem 17.-Show the circle of the last problem when its plane is vertical, perpendicular to the picture plane, and its circumference touches tho ground plane and the picture plane in | points 4^{\prime} to the left. Height 4^{\prime}; distance $11^{\prime} 9^{\prime \prime}$; scale $\boldsymbol{x}^{\frac{1}{3}}$. (Fig. |
| :--- | 3.)

When in this position the centre of the circle will be 3^{\prime} from the picture plane, 3^{\prime} above the ground plane and 4^{\prime} to the left. Find $a, 4^{\prime}$ to the left. From a measuro 3^{\prime} to b, at b erect a perpendicular 3^{\prime} long and with c as a centre and $c b$ as radius, draw a circle. Encloso the circle in a square a $g h k$ and draw its diameters and diagonals. Place the square with its diameters and dingonals in perspective. From the points marked l, m, n and o draw horizontal lines to the perpendicular $a k$ and thence towards $C V$ to cut the diagonals of tho sipuare in the points $t t t t$. Through the points $d, t, v, t, x ; t, w, t$ draw an ellipse.

Problem 18.-A circle 10 in diameter stands upright on the ground plane, parallel to the picture plane at a distance of 5^{\prime} beyond it. Its centre is 4^{\prime} to the left of tho eyo. Show its appearance. Height 6 '; distance 16^{\prime}; scale os 's. (Fig. 24.)

Exrncise 18.- Iteight 8 '; distanee 20 ' ; seale r'f. Represent properly in perspective a hoxagon of 6 ' side in the ground plane, contre being 8^{\prime} to the perpendieular to the pieture plane, and its contre being 8^{\prime} to the left and 10^{\prime} back from the picture plane.

Exancire 20.--Height $4^{\prime} 6^{\prime \prime}$; distanee 9^{\prime}; seale ${ }^{\frac{1}{2} 4}$. Place in perspective a circle 4^{\prime} in diameter, lying in the greund plane and touching the pieture plane in a point 3^{\prime} to the left.

Exprotse 19.- Height 5^{\prime}; distance 11'; seale $\frac{1}{4} . ~ A$ hex agon of 4 side stands en the ground plane with two sides vertieal and parallel te the picture plane, and its plane perpendicular to the pieture plane. The point on which it rests is 5^{\prime} to the right and 4' brek. Show its perspective appearance.

Exercise 21.-Height $4^{\prime} 6^{\prime \prime}$; distanee 9^{\prime}; scale $\frac{1^{\prime}}{2}$. Show the appearance of a cirele 5^{\prime} in diameter, its plane being perpen dicular to the picture plane and greund plane, and its cireumfer ence touching the ground plane in a point 8^{\prime} frem the pieture plane and 3^{\prime} to the right.

Find a point, c, on the ground 4 ' to the left and 5^{\prime} beyond the pieture plane. This will be the point of contact of the circle in question with the ground, and its centre will be directly over this point at a distance of 5^{\prime}. At a crrect a perpendicular 5 ' long and draw $d C V$ to cut a vertical line from c in e. Then $e c$ will be the prosipective length of one of the radii of the circle. Withe as a centre and ec as a radius draw a circle.

FIG. 24.
Problem 19.-Show the circle of the last preblem when it is remeved to a distance of 20^{\prime} from the picture plane, its centre being 4^{\prime} to the left of the eye. Height 6^{\prime}; distance 20^{\prime}; scale ${ }_{9}^{6}$. (Fig. 25.)

If the usual method of measuring vanishing lines were adopted, in order to find a point on a $C V, 20$ ' from the picture plane, it would be necessary to mensure from a to the right, a distance of $21^{\prime \prime}$, and the point on the ground line thus found, would be beyoud the limit of the paper. The most convenient method of measuring great distances is to use a IIalf Measuring I'oint found by bisecting the distanco between any vanishing point and its measuring point. When tho lalf measuring point is used, onehalf of the measurement required is taken on the ground line,

and if the mensurement is to be taken beyond a point which is itself lying away from the picture plane, a point of contact of this point must be found by a line frem the half measuring point, and the half measurement on the ground line must be taken frem the point of contact. That is, if the position of the circle in question were given as 15^{\prime} beyond the eircle of the last problem, instead of 20^{\prime} beyond the picture plane, a line weuld be drawn ${ }_{20} \frac{1}{2} M P$ through c to ebtain a peint of contact on $G L$, and
a measurement of one-half of 15 , or 15°, would be taken to the right of the point of contact, and a line drawn from that point to measuring one-linlf of 20 'The same result can be obtained by measuring one-lnif of 20^{\prime}, or $11^{\prime \prime}$, to the right of a, to the point murked b, nud drawing a line from there to of $A M P$, to eut $a C J^{r}$
in c. Then c will be tho lower in c. Then c will be the lower extremity of the vertical diameter of the circle when at tho required distance from the picture plane.
lind the perspective position of the centre, Find the perspective position of the centre, e, of the circle as in
problenu 19 , and draw the ciane problemu 19, and draw the circle with e as a centre and ecas as
radius.

Pronlem 20.-Place in perspective a circle 8^{\prime} in diameter,
plane being perpendicular to the picture plane and inclined its plane being perpendicular to the picture plane and inclined upwards to the right at an angle of 60° with the ground plane. The dianeter parallel to the picture plane touches the ground in a point 3^{\prime} to the right and 6^{\prime} from the picture plane. Height $6^{\prime \prime}$;
distance $9^{\prime} 9^{\prime \prime}$; scale $\frac{1}{6^{4} .}$ (Fig. 26.) distance 5^{5}; scale $\frac{1}{84}$. (Fig. 26.)

Measuro 3^{\prime} to the right of $L D$, to a and draw $a C V$. Referring to what has beensnid! in connection with problem 16, as to the position of the centre of a circle with regard to the point in wheh its circumference touches a plane, it will be seen that the line of intersection of the plane of the circlo with the ground plane is in a $C V$ and that a line perpendicular to this will contain the centre of the eircle. This perpendicular line will be parallel to the picture plane, hence the point of contact of the circle with the ground plane, and the centre of the circle, are the same distance from the picture plane. Measure from $a, 6^{\prime}$ to b and draw $b R M P$. Then t will be the point where the circle touches the ground. From a draw a line ferming an angle of 60° with $G A$, and on it draw a semicircle with a radius of of 4^{\prime}, making a one extremity of its diameter. Treat this samicirele in the same way as the circle in problem 17. On each side of b measure 4 to f and g, and from these points draw lines to $R M P$ to obtain h and k. From h and k draw lines parallel to $a e$ to cut $e C V$ in l and m. This will complete the square containing the eircle. No difliculty should be experiencerl in finding
the points through which to draw the

Exercisr 24.-Height $5^{\prime} \mathbf{6}^{\prime \prime}$; distance 9^{\prime}; acale ${ }^{1}$. Place in perspective a hexagon of $2^{\prime} 6^{\prime \prime}$ side, when perpendicular to the ground plane, two of its sides being perpendicular to the picture plane, and its centre is 2^{\prime} to the left, 3^{\prime} back from th:o picture plane, and $2^{\prime} 6^{\prime \prime}$ above the ground plane.

Exenciar 22.-Height 16^{\prime}; distance 40^{\prime}; scale 16^{\prime} to $1^{\prime \prime}$. allel to the picture plane, and its diameter, its plane being parallel to the picture plane, and its centre being 60^{\prime} beyond the picture plane, 10^{\prime} above the ground plane and 5^{\prime} to the right.

Exrrcisz 23.-Height $1^{\prime} 6^{\prime \prime}$; distance 4'; scale $\eta^{1} 1$. Place in perspective a hexagon of $18^{\prime \prime}$ side. All of its edges are parallol to the picture plane, and two of them are parallel to the ground plane. Its centre is 8^{\prime} back from the picture plane, 2^{\prime} to the left and l'above the ground.

Exencise 25.-Show the hexagon ef excrcise 24 when its plane is perpendicular to the picture plane and ground plane, two of its sides aro perpendicular to the picture plane, and its centre is 4^{\prime} to the right, 3^{\prime} from the picture plane and $2^{\prime} 6^{\prime \prime}$ above the ground plane. Draw lines joining the corresponding conners of the perspective views of the hexagon in question, and thus obtain the perspective appearance of a hexagonal prism.

Phomem 21.-Place in perspective n cube of $4^{\prime} 10^{\prime \prime}$ edge standing on the ground plane with two of its faces parallel to the picture phane and the near let hand corner of its hase touching the picture phane $6^{\prime} 9^{7}$ to the left. Height of eye of spectator 6^{\prime}; distance from picture plane 14 $9^{\prime \prime}$; sealo in $^{\prime}$. (Fig. 27.)

Measure $6^{\prime} 90^{\prime \prime}$ to the left of $L D^{\prime} D$ to a, which will be the position of the near left hand comer of the base of the cube. Tho near right $b C$ hand cormer will be at $b 4^{\prime} 10^{\prime \prime}$ to the right of a. Draw a $C V^{\prime}$, and $b C V$ also $b L M P$, which will contain a diagomal of the base and will therefore eut \boldsymbol{a} ' $C V$ in a point c representing the far left hand corner of the base. Draw $c a$ prallel to abs. On a $a b$ construct the square $a f y b$, nul from f and g draw lines to $C V$ to
cut vertical lines froun rad d in cut vertical lines from c rad d in h and k. Join $h k$.

Puobiem 2.- Placo in perspective a block 6 ' squaro and 3^{\prime}
to IA Af P will pass through wand z and e. From this it may be inferred tint cither thes $C V$ or the mensuring points may be used in mensuring vertical distnnees. In this case the measuring point is the better one to use, as by means of it only one vortical line is required for obtaining the hielight of the block mad the height of
the pole, while it $C V$ be the pole, while if CV be used, at lenst two vertical lines must be druwn, one from o or p to tind tho height of the block, and another from l to tind the lieight of the pole.

Phoblem 23.-Show the perspective appearance of a block of stone $8^{\prime} \times 8^{\prime} \times 16^{\prime}$ standing on the ground plane with its axis vertical and two of its large faces parnllel to the picture plane. 'The year right hand corner of tho base is 12^{\prime} to the right and 4^{\prime} beyend the pieture plane. The oye of spectator is $5^{\prime} 6^{\prime \prime}$ from the
 having two of its small faces parallel to the picture planes, The centre of the brise is 5^{\prime} to the right and b^{\prime} away from the picture plane. In the centre of the top face place a vertical pole 5^{\prime} high. Height 6^{\prime}; distance $14^{\prime} 9^{\prime \prime}$; scalo $4^{\prime} 5 \cdot$ (Fig. 27.)

Find the point $n 5^{\prime}$ to the right and σ^{\prime} beyond $P^{\prime} P^{\prime}$. As this is the centro of the base measure on each side of $l 3^{\prime}$ to A and p, and draw o $C V$ and ${ }_{p} C V$ to cut $m R M P$ in r and s. Draw r, and s i parallel to G^{\prime} / L. From o and p draw vertical lines ot and p ut 3^{\prime} long and join their extremities with $G V$. Draw vertical lines from the corners of the baso to cut $t C V$ and $u C V^{r}$ in $w, y z$ and x, Whiel points will be the comers of the top of the block. From l draw a vertical line 8 long, and from its upper extretaity draw a line to $C V$ to eut a vertical line from n in e. Then o $e-\cdots$ be the pole required. If a vertieal line be drawn at m and me surements of 3^{\prime} and 5^{\prime} taken on it, lines drawn from these po'ets
may be be used ig point cal line eight of must be nust be
ck, and lock of ts axis ts axis
3 plane. and 4 orn the 28.)

Asuctare 20.-In the illustration below, $A B C D E F$ is a hexngon drawn on a scale of $7 \frac{1}{9}$. (iive in your own words its orition and size, and the position of the spectator. Place the hexagon in perspective with its plane in the ground plane, and make it the base of a pyramid whose altitude will be 7 ':
 when its plane is inclined upwaris to the left at nut angle of with the ground plane, and is perpendicular to tho 1 it roplare Ono of its dinmeters touches the ground plano in a nt 3^{3} re the left and 5^{\prime} back from the picture plano.

Exercise 28.- Meight 4'; distance 8^{\prime}; seale T' $^{\prime}$. Represent properly in perspective a cube of 3^{\prime} erlge resting on the ground plane with four of its edges parallel to beth pieture plane and ground plane, and its near right corners 1^{\prime} to the left and 2^{\prime} back from the picture plane. Represent also a trinngular prism 4^{\prime} long, resting on the ground plane upon one of its oblong faces, the long edges of which are parallel to the picture plane with their left hand ends 3^{\prime} to the right of the right hand face of the cube. The edges of the ends of this prism are all $2^{\prime} 6^{\prime \prime}$ long.

Moblem 24.-Show the block mentioned in the last problem, when it is lying on the ground upon one of its oblong faces, its two ends being parallet to the picture plane, and its near right hand corners being 5^{\prime} to the left and 4^{\prime} beyond the picture plane. Height $5^{\prime} 6^{\prime \prime}$; distance 30^{\prime}; scale $\frac{1}{\text { D }}$. . (Fig. 28.)

Find a point $r, 5$ ' to the left and ' t^{\prime} beyond the picture plane. Measure 8^{\prime} from o to s, draw s C'F and a horizontal live frow r to
at :mangle of 45° with ac and therefore contains one diagomal of the base, and will cut d $C V$ in the near right hand corner, of of the base. Complete the base ly drawing horizontal lines from c and e cut to $a C^{\prime} V$ and $d C V$.

Before proceeding to measuro the height or thickness of the block, it will be well to consider that the centres of the three objects under consideration are in the same vertical line, and that

ut it. At s erect a perpendicular, $s x, \mathcal{E}^{\prime}$ long and draw x Fig. 28.
Draw a vertical hine from the left hand end of the horizontal line from r, to cut $x C V^{\prime}$ in y. Complete the near cud of the bloek by a horizontal line from y and a vertical line from r, to intersect in z. Find the lower rishthand corner of the fal end of the block by a measurement of 16^{\prime} to the right of p to t, and a line $t L J P P$ cut ting o $C V$ in v. Draw a line $v w$ parallel to $G L$. This will be the lower edge of the far end of the block. On vw construct a square, and join its upper cumers with the upper corners of the square representing the acar end of the block.

Problem 25.-Represent in perspective a block of stone $3^{\prime} \times 33^{\prime} \times 1^{\prime}$ lying on the ground plane upon one of its square faces, two edges of which are parallel to the pieture plane, its far left hand corner being 2^{\prime} to the right and 4^{\prime} from the picture
plane. Cen
Centrally upon this place a cube of $\underline{2}^{\prime}$ edge whose sides are parallel to the corresponding sides of the block on which it rests. Make the top face of the cube the base of a pyramid 2^{\prime} high. Height of the ayo 3^{\prime}; distance from the picture plane $7^{\prime} 6^{\prime \prime}$ scale ${ }^{17}$ (Fig. 99)

Find $a, 2^{\prime}$ to the right of $L D$, to the right of a measure 4^{\prime} to b, and draw a $C V$ and $b L M P$ intersecting in c which will be the far left hand corner of the base of the block. Measure 3^{\prime} froma a to d and draw $d C V$. The line through c vanishing in $L M P$ is 24
their sides are parallel. Therefore a diagonal of the base of the block will pass vertically beneath two corners of the base and two comers of the top of the enbe, also two corners of the base and the vertex of the pyramid. From this it is manifest that if lines be drawn parallel to this diagonal and at proper distances vertically above it, one will pass through two corners of the top of the block and two corners of the base of the cube, another will pass through two corners of the top of the cube which are also corners of the base of the pyramid, and another will pass through the vertex of the pyramid.

One of the diagonals, $c e$, of the base of the block is already produced to cut the ground line in b. At b erect a perpendicular, on it measuro 1 ' to g and draw $g ~ L M P$. Vertical lines from r and e to cut this will find the near right hand and the far left hand corners of the top of the block. A vertical line from the near left hand corner of the base will cut a horizontal line from h in the near left hand corner of the top, and a line from it to $C V$ to cut a vertical line from c will be the left hand edge of the top. Having obtained these points and lines, the block can easily be completod. As tho edges of the cube are 1' shorter than the edges of the top and bottom of the bloek, its right and left hand faces will be $6^{\prime \prime}$ to the left and right of the corresponding faces of the block, therefore measure $6^{\prime \prime}$ to the right of a, to k, and $6^{\prime \prime}$ to the left of d, to l, and draw $k C V$ and $l C V$ cutting the diagonal

Exprcisr 29.- Height 6'; distance 16'; scale ${ }^{\prime}{ }^{\prime}$. ${ }^{\prime}$. Place in perspective a cube of 4^{\prime} edge when its two horizontal faces and two of its vertical faces are perpendicular to the picture plane and the near right hand corner of its base is 2^{\prime} to the left and 3^{\prime} back. In the centre of the top face place an upright pole 4

Exerclse 30.—Height 6'; distance 16'; scale ${ }^{\prime}$'s. Show the perspective appearance of a block $5^{\prime} \times 5^{\prime} \times 10^{\prime}$ standing on end with its axis vertical, and two of its oblong faces parallel to the picturo plane. The centre of the baso is 6^{\prime} to tho right and 5^{\prime}

Exeacisr 31.-Height 8'; distance 15^{\prime}; seale
edgcs in the ground plane parallel to the picture plane and onesent the block mentioned in exercist, 30 when resting with one of its long it resta is 2^{\prime} to the left and 4^{\prime} back. Show the appearanco of a vertical pole 10^{\prime} cath end vertical. The centro of the edge on which edgo of the block.
$e c$ in p and n. These points will be the far left hand and the nidr right hand corners of a square representing the base of the cube when resting on the ground. Find the other two corners of this square, and from the points m, p, o and n, draw vertical lines to cut the dingonats of the top of the block in r, v, t and s. Join theso points and thus obtain the base of the cule. The top of the cube when it is in the position mentioned will be on a level with the eye, and therefore its top face will be represented by a straight line in $1 /$ L. From the points r, v, t and s, draw vertical lines to cut $/ /$ / . These lines will complete the cube. Next, froul w, measure on the perpendicular crected at b, y^{\prime} to x, and draw x

First find a point, D, on the ground plane 1^{\prime} to the right and 3 ' from the picture plane. Measure 5 ' to the left of A to B, and draw $B C V$. From D draw a horizontal lino to cut $B C V$ in E. Then $D E$ will be the top edgo of the near wall of the excavation.

From what has been said in conncetion with the explanation of the picture pline and its use, and from the statement of the fact that the prortion of the picture plane below the ground line can bo rendered visible, it may bo inferred that measurenients on the picture plane can be taken below the ground line as well as on it or above it, and consequently, that if vertical lines $1 \frac{1}{2}$ or $\frac{3}{4}^{\prime \prime}$ long be drawn from A and B, and their lower extrenities F and G

L. MP P to cut a vertical lino from the centre of the base of the block, in \approx. This will le the vertex of the pyramid. Join it with the points representing the corners of the top of the cube.

Pronlem 26.-The spectator is looking into an excavation 5^{\prime} wide, 12^{\prime} long, and $y^{\prime} 6^{\prime \prime}$ deep. Its long sides are perpendieular to the picture plane, the near top corner of the right lamil face being '3' from the picture plano and 1^{\prime} to the right. (Fig. 29.)

Show the appearance of the excavation, and represent by a lino the position and size of a man $\bar{\sigma}{ }^{\prime} 6^{\prime \prime}$ high, standing in the excavation midway between the side walls and 4' from the far cod. Height 3^{\prime}; distance $7^{\prime \prime} 6^{\prime \prime}$; scale $\frac{1}{4}^{1}$. (Fig. 29.)
20 $C V$ in E xcavation. planation ant of the ound line ments ol woll as on $1 \frac{1}{2}$ or $3^{\prime \prime}$ s F and G

Exsrcisk 32.-In the illustration below $A B C D$ is the perspective view of a square of 7' side. By means of it find the horizontal line, centre of vision, und measuring points, and the height, distance and scale. Maise it the baso of a block 3^{\prime} thick. Centrally on this block place a cube of 5^{\prime} edge whose edges will be paralle to the corresponding edges of the block.

Exrrcise 33.-The line $E F$ is the lowest edge of the left hand square face of a bleek 2^{\prime} thick. Ascertain and stato in vnur own words its size and position and show the appearance of : hole 6^{\prime} square passing horizontally through it from face to face. The hole passes through the centre of the square faces, its top and bottom edges being horizontal
the position of the far wall of the excavation, and thus a line is saved. Through L draw a horizontal line to cut $F C V$ in A and $G C V$ in N. This will be the fave end of the bottom of the excavation. From M and N draw the vertical lines $M P$ and $N O$ and join $O P$. These, with vertical lines from E and D to cut ${ }_{F} C V V$ and $G C V$, will complete the drawing of the exeavation. From K, measure $K R$, the distance of the man from the far end of the excavation, 4^{\prime}, and draw $R \frac{1}{2} J I P$. Then S will be the point where he is standing. At $I I$ erect a perpendieular $H T, 5^{\prime} 6^{\prime \prime}$ long, and draw $T C V^{\prime}$ to cut a vertical line from S in - Then $S V$ will be the representation of the man.

Pronlen 27.-Place in perspective a flight of five steps, each one of which is $5^{\prime} 6^{\prime \prime}$ long, $11^{\prime \prime}$ aigh and $22^{\prime \prime}$ wide. The front face of $\angle M P$
when the ends are parallel to the picture plane. The steps ascend towards the left from a line $1^{\prime} 10^{\prime \prime}$ to the left, the near end of which is $3^{\prime} 8^{\prime \prime}$ from the picture plane. Height $6^{\prime} 6^{\prime \prime}$; distance 13^{\prime}; scale ${ }^{1}{ }^{1}$. (Fig. 30.)

First, obtain the position of the corners of the oblong space $5^{\prime} 6^{\prime \prime} \times 9^{\prime} 2^{\prime \prime}$ covered by the steps. Divide the space $o h$ into five equal parts, and draw lines from ' $2^{\prime}, 4^{\prime}, 6^{\prime}$ and 8^{\prime} towards $C V$ as far as $n i$. At o erect a perpendicular $4^{\prime} 7^{\prime \prime}$ high, divide it into five equal parts, and from the points of division draw lines towards $C V$ as far as $p r$. From the points of division in $p r$ draw horizontal lines to intersect vertical lines from the points of division in $p l$. The points of intersection, s, t, v, w and x, of these lines connected by vertical and horizontal lines will give the profile of the near

eaeh step is parallel to and facing the picture plane, and the ne right hand corners of the lowest stcp are $9^{\prime} 3^{\prime \prime}$ to the right, and $2^{\prime} 9^{\prime \prime}$ beyond the picture plane. Height of eye $6^{\prime} 6^{\prime \prime}$; distance from picture plane $13^{\prime \prime}$; scale $\frac{1^{\prime \prime}}{4}$ to the foot. (Fig. 30.)

Find d the near right hand corner of the bottom of the fronic step. On $G L$, from b measure five distances of $22^{\prime \prime}$ each, and draw lines from the points $2,4,6,8$ and 10 towards $R M P$ to cut $C V$. In this way the perspective width of each step is obtained on a $C V$. At a erect a perpendicular $55^{\prime \prime}$ long, divide it into five equal parts, and from these points of division draw lines towards C 'J' to cut the vertical lines shown, drawn from a $C V$. These lines will give the perspective appearance of the right hand end of the tight of steps. From a measure $5^{\prime} 6^{\prime \prime}$ to the left to c, draw $c C V$, and from d and f and the intervening points of division in $d f$, draw horizontal lines to obtain corresponding points in an $C O F$, The remainder of the work is clearly shown. The long edges of cach step are horizontal, the ends of the top face of each step
vanish in $C V$, and tho ends of the front face of vanish in $C V$, and tho ends of the front face of each step are
vertical. vertical.
l'robles 28.-Show the steps mentioned in the last problem, 23
end of the steps. The manner of obtaining the corresponding lines of the far ends of the steps is evident.

Pronlem 20.- A cross stands npright on the ground plane, the axis of its shaft being $5^{\prime} 6^{\prime \prime}$ to the right and $3^{\prime} 9^{\prime \prime}$ from the picture plane. Its shaft is $2^{\prime} 10^{\prime \prime}$ square and $9^{\prime} 3^{\prime \prime}$ high. Its twe arms are each $2^{\prime} 10^{\prime \prime}$ square, projecting $2^{\prime} 3^{\prime \prime}$ on each side of the shaft, and the top of the arms is $1^{\prime} 10^{\prime \prime}$ from the top of the shaft. The face of the cross is parallel to the picture plane. Height $5^{\prime} 6^{\prime \prime}$; distance $13^{\prime} 9^{\prime \prime}$; scale $\frac{1}{\frac{1}{8}}$. Fig. (30.)

Find the perspective position, c, of the axis of the shaft of the cross. On eaeh side of a measure $1^{\prime} 5^{\prime \prime}$ to d and e, and from these peints draw lines to $C V$, to cut $b R J P P$ in g and h two corners of the base of the shaft. The extremity of each arm of the cross is $9^{\prime} 3^{\prime \prime}$ beyond the slait, therefore measure that distance to the left of d itad to the right of e, and draw lines from these points towards $C V$, to cut a horizontal line through g and f in x and y, and a horizontal line through k and h in v and w. At e erect k perpendicular $9^{\prime} 3^{\prime \prime}$ long. On it measnre $1^{\prime} 10^{\prime \prime}$ from l to m, and $y^{\prime} 10^{\prime \prime}$ from m to n. Lines from l, m and n towards $C V$ will transfer these incasurements to f o. At g erect a perpendicular,

Exerciar 35.--Height 5^{\prime}; distance 18^{\prime}; scalo $1^{\prime \prime}$ to the
containing 4 steps, the long edges of which are perpendicular to the picture perspective appearance of two flights of stairs, the first one which are parallel to the picture plane. The first flight ascouds teward thre plane, and the second containing 8 steps, the long edges of The steps are $18^{\prime \prime}$ wide landing. The near corners of the front face of the lowest to a landing $6^{\prime \prime}$ square, and the second flight ascends The steps are $18^{\prime \prime}$ wide, $9^{\prime \prime}$ high, and 6^{\prime} long.

Exercise 36.
faces, the near left hand corner of whe 36^{\prime}; scale $\frac{1}{56}$. A block of stone $4^{\prime} \times 10^{\prime} \times 15^{\prime}$, stands on the ground plane upon one of its $4^{\prime} \times 15$ the edges in the ground plane perpendicular to the picturo plane 8^{\prime} to the left. Thep superts another one $6^{\prime} \times 10^{\prime} \times 20^{\prime}$, having one of its the picture plane. Show them in perspective.

If s equal to $f o$ and join s o．Through p and t ，and r and u draw horizoutal lines to be cut by vertical lines from x and y ．Theso lines will complete the front face of the eross．The back face can bo obtained by lincs towards $C V$ from each of the angles． of the front of the cross，cut by vertical lines from v, k, h and w ．

Problem 30 ．－Show the cross referred to in the last problem， When the axis of the shaft is vertical，the ends of the arms are parallel to the picture plane，and the near right hand corner of the lasc of the shaft is $3^{\prime} 6^{\prime \prime}$ from the picturo plano and $4^{\prime} 6^{\prime \prime}$ to the left．Height $5^{\prime} 6^{\prime \prime}$ ；distance $13^{\prime} 9^{\prime \prime}$ ；scale ${ }^{\frac{1}{1} 5}$ ．（Fig．31．）

Find the perspective shape and position of the base of the shaft $F^{\prime} E G^{\prime} C$ ．Find on $A^{\prime} C V$ the point $K, 2^{\prime} 3^{\prime \prime}$ nearer than C ，and on $D C V$ the point $H, 2^{\prime} 3^{\prime \prime}$ beyond E ．Draw $M I$ and
1^{\prime} from $G L$ and 1^{\prime} to the left of $L D$ ，and with A as a centre，and a radius of $10 \frac{1}{2}$＂draw a senicircle and find in its circumference the points F and G ．Measure to the left of B ，by means of an are， the distance of the centre of the semicircle from the picture plane， and draw $I I R M P$ ．After placing the square in perspective find in it the points h, f, l, g, k ，etc．，as explained before，and draw the ellipse．

Measure on a perpendicular from $H, 9^{\prime}$ to K ，and draw $K K M P$ ．This will find two corners of the square which will contain the upper face of the cylinder．Draw its diameters and diagonals，and from the points h, f, l, g, k ，etc．，draw vertical lines to find in the upper square the points $h^{\prime}, f^{\prime}, l^{\prime}, g^{\prime}, k^{\prime}$ ，etc． Through these draw an ellipse．

$K N$ ．At D erect a perpendicular $9^{\prime} 3^{\prime \prime}$ long，on it take the measurements required，and from tho points R, P and O ，draw lians towards $C V$ to cut vertical lines from N, F, E and $I I$ ． Then $U F$ will be the height of the shaft at its near left hand edge，and T＇S will be the length of the edges of the near end of the near arm．From C draw a vertical line $C V$ equal and parallel to $F U$ ．Horizontal lines from the corners of the left hand face of the cross，to cut vertical lines from K, C, G and I will complete the figure．

Problem 31．－Represent in perspective a cylinder $9^{\prime \prime}$ high， $1^{\prime} 9^{\prime \prime}$ in diamcter，lying on the ground on one of its circular faces， the centro of which is 1^{\prime} from the picture plane，and 1^{\prime} to the left． Make its top face the baso of a cone 2^{\prime} high．Height $1^{\prime} 6^{\prime \prime}$ ； distance $3^{\prime} 6^{\prime \prime}$ ；scale $\frac{1}{12}$ ．Fig．32．）

Find the position of the centre，A ，of the base of the cylinder

From K measure the height of the cone， 2^{\prime} ，to L ，and draw $I, R M P$ fo cut the vertical line from a^{\prime} or a in m ．Join the right and left hand extremitics of the ellipses representing the top and bottom faces of the cylinder，and the extremities of the ellipse representing the top of the cylinder with the vertex，m ， of the cone．

Probley 32．－Show the appearance of a hemisphere 2^{\prime} in diameter resting upon its flat face on the ground plane．Its centre is $1^{\prime} 6^{\prime \prime}$ from the picture plane，and $1^{\prime} 3^{\prime \prime}$ to the right． Ileight $1^{\prime} 6^{\prime \prime}$ ；distance $3^{\prime} 6^{\prime \prime}$ ；scale ${ }_{-1}^{-1}{ }^{-2}$ ．（Fig．33．）

Find the point $O 1^{\prime} 6^{\prime \prime}$ back and $1^{\prime} 3^{\prime \prime}$ to the right of $L D$ ，and draw the semicircle with a radius of 1^{\prime} ．By means of this draw the perspective form of the circular side of the hemisphere．

It is clear to all that a sphere will be represented by a circle， but the position of the centre of this circle will not represent the

Exerciss 37.-Place in perspective a cross formed by a cube of $12^{\prime \prime}$ edge upon each face of which is attached a similar cube, the corresponding edges of all thic cubes being parallel to one another and four edges of each cube parallel to both picture plane and ground plane. The centre of the lowest face of the cross is $6^{\prime \prime}$ above the ground plane, 2^{\prime} from the picture plane, and 1^{\prime} to the is $6^{\prime \prime}$ Height $1^{\prime} 6^{\prime \prime}$; distance 4^{\prime}; scale J^{\prime}.

Exerctse 38.-Place in perspective a square pyramid standing with its vertex in the ground plane and its axis vertical, the edges of the base are $18^{\prime \prime}$ long and its altitude is $2^{\prime} 6^{\prime \prime}$ long. The centre of the baso is $15^{\prime \prime}$ to the left and 4^{\prime} back, two edge The centre are parallel to the picture plane.

Exercise 39 -Using the same height and distance as in Exercise 37, and a scale of ${ }^{1}{ }^{\prime} 6$, show the cross of Exercise 37 when resting with two of its edges in the ground plane perpendicular to the picture plane, the right hand edge in the ground plane being opposite to the eye. One face of the cross is in the picture plane.

Exercise 40.-Height $1^{\prime} 6^{\prime \prime}$; distance 4'; scale $\boldsymbol{T}^{\frac{1}{6}}$. A cros lies on the ground with the axis of its shaft horizontal and pess pendicular to the picture plane. Its shaft is $1^{\prime} 4^{\prime \prime} \times 1^{\prime} 4^{\prime \prime} \times 4^{\prime}$, per arms are cubes of $1^{\prime} 4^{\prime \prime}$ sido attached to the shat $4^{x} \times 4$. The faces $1^{\prime} 4^{\prime \prime}$ from the top of the shaft. The centre of the top of the shaft is $3^{\prime} 6^{\prime \prime}$ to the right and 5^{\prime} from the picture plane.
centre of the sphere. This is illustrated in the sinall drawing th the right, showing the relative position of the sphere and the spectator, drawn to a scale of ${ }_{z} \frac{1}{5}$. The line $y z$ shows the diameter of the circle which will represent the splere, and the point x^{\prime}, its centre, is the distance $x^{\prime} x$ nearer than the centre of the sphere. Mcasure twico $x^{\prime} x$ from O on $O P$, and represent the point S in perspective at 8 . With s as a centre, and a radius equal to its distince from either of the extremities of the ellipse represcnt

Fig. 32.
ing the flat face of the homisphere, draw a semicircle. Tha parspective centre of the hemisphere is shown at o.

Problem 33.--Place in perspective a square of 5^{\prime} side in the ground plane. Its sides are at ananglo of 45° with the picture Hanc, and its nearest corner touches tho picturo plane $3^{\prime \prime}$ to the

It will be noticed that this square is in a different position with regard to the picture plano than the objects treated of by previous problems; that its sides aro neither parallel nor perpendicular to the picturo plane. However, it can be treated in the samo way as tho triangle or hoxagon, althougin in this case this is not the most convenient method.
First draw the square $A B C D$ with one corner touching $G L$ at $A, 3^{\prime}$ to the right. From the corners draw vertical lines to cut tho ground line in d, A and b, and from these points draw lines to C 'V. From d measure, by means of an arc, the distance of D from the $G L$, and draw $A V P_{1}$ to cut $d C V$ in d^{\prime}. In a similar way, ly means of the arc $C e$, find the position of the point c. From d^{\prime} draw a horizontal line to cut $b C V$ in b^{\prime}, and join $d^{\prime} c$ and $A b^{\prime}$. It will be scen that the sides of the square
vanish in $V P_{1}$ and $V P_{2}$, which points are also the measuring points for $C V$. But from fig. 6 , and the remarks made thercon we lave learned that every vanishing point has its corresponding measuring point, and we have also learned how the position of any measuring point can be found. With $V P_{1}$ as a centre and its distance from $S P$ as a radius drawn an arc to cut $I L L$ in the

Exercisa 41.-Below is given tho perspective view of the k.ft hand face of a wall in which is a semicircular arch drawn on a seale of x^{1}. . Determine and state the height and distance and the measurements of the wall and arch, and show the appearance of the right hand face of the arch, if the wall were 3^{\prime} thick.

Whricess 42.-Using the samo height, distance and seato as in Exarcise d], represcnt in perspective a eylinter 8^{\prime} long, 6^{\prime} in diameter, resting on the ground phano with its axis horizontal and parallel to the picture plane. The contre of tho left hand end is 3^{\prime} to the right and 4^{\prime} back.

Exercise 43.-Height 3^{\prime}; distanco 7^{\prime}; scale $\eta^{\prime} 1$: Show in perspective a hemisphere 4^{\prime} in diameter resting with h_{1}^{1} its rounded surface touching the ground plame in a point 3^{\prime} to tho left and 3^{\prime} back. Its flat surface is horizontal.

Exercise 44.-Height 3^{\prime}; distance 7^{\prime}; scale n^{\prime}. Place in perspectivo a rectangular block $2^{\prime} \times 4^{\prime} \times 6^{\prime}$ resting on one of its largest faces, the long edges of which retire towards the left at an
angle of 45° with the picture plane. The nearest corner is $9^{\prime} 6^{\prime \prime}$ t angle of 45° with the picture plane. The nearest corner is $2^{\prime} 6^{\prime \prime}$ to
the left and J^{\prime} back.
pinit marked $M P_{1}$. In a similar way find the position of M l^{\prime} : llawingobtained theso two measuring points it is reasonable to suphose that they will give the same result as has bern ohtained by means of tho square $A B C D$ and $C V$ as a vanish. ing point, nud whish result we know to be correct. To the right and left of A masure the length of the side of tho square, 5 , to f and $!$. From j draw a line to $M P^{\prime} 1$ to cut $A V P_{1}$ in d, and from g draw a line to $M I P_{2}$ to cut $A V P_{2}$ in b. But these are the points already obtained as the left and right hand corners of the square, and we can therefore assume that the method of measuring lines vanishing in $V P_{1}$ by means of $M P_{1}$, and those

Fig. 33.
anishing in $V P_{2}$ by means of $M P_{2}$ is correct. From d^{\prime} and b draw lines towards $V P^{\prime}$: and $V P_{1}$ to intersect in e. It will be seen that this point is in A C V perpendicular to the picture plane, which is the position of ore of the diagonals, $A C$, of the square.

Problem 34.-Show the arpearance of tho same square when it is in the ground plane, its sillos form angles of 45° with tho picture plane, and its nearest corner is 4^{\prime} to the left nad 2^{\prime} back from the picture plane. Height 5^{\prime}; distance 14^{\prime}; scale $\frac{1}{6}^{\frac{1}{6}}$. (Fig. 33.)

Find the position $/ 4$ of the nearest corner of the square, ann from h draw lines to $V P_{1}$ and $V P_{2}$. Through h draw lines from $A P_{1}$ and $M P_{2}$, to eut the picture plane in k and l. From the point of contact k measure 5^{\prime} to the right to m, and draw $m M P_{2}$ to cuth $V P_{2}$ in n. From the point of contact l measuro to the left 5^{\prime} to o and draw o $M I P_{1}^{\prime}$ to cut $h V P_{\mathrm{I}}$ in p. Thon p and n will bo the left and right hand corners of the square. From these points draw lines towards $V P_{2}$ and $V P_{1}$ to intersent in r.

Problem 35.-Place in perspective a cubo of 9^{n} edgo resting on the ground plane upon one of its faces, all the cdges of which
a"e at an angle of 45° with the picture plane, and the nemerst corner of which is $8^{\prime \prime}$ to tho right and $6^{\prime \prime}$ beyond tho picture plane.

Make the top of this cube the baso of a pyramid 8 " high. Height $1^{\prime} 3^{\prime \prime}$; distance $2^{\prime} 3^{\prime \prime}$; seale $\frac{1}{8}$. (Fig. 34.)

First find the vanishing points and measuring points required. Find the position of the point a, nud from a draw lines towards $V P_{1}$ and $V P_{2}$. Draw lines from $M P_{1}$ and $M P_{2}$ through a to obtain points of contact e and b. From e measuro $9^{\prime \prime}$ to f, and draw $f^{\prime} M P_{1}$ cutting $a V P_{1}$ in g. From b measure $9^{\prime \prime}$ to c and
draw o $M P_{2}$ cutting a $V P_{2}$ in d. Draw $\dot{g} V P_{2}$ ara.. $d V P_{1}$ to intersect in h.

Next notice that the vertex of the pyramid will be vertically above the centre of the base of the cube, and that a diagonal of the baid of the cube will pass through the centre as well as two corners. At k ereco a perperdicular, and on it measure $9^{\prime \prime}$ to l and $8^{\prime \prime}$ from l to a. Draw $l C V$ to cut vertical lines from a and h in m and p. Draw $m V P_{1}$ and $m \quad V P_{2}$ to cut vertical lines from g and d in o and n. Join $o p$ and $n p$. Find the c ntre r of the base of the cube by means of the diagonals, from r draw a vertical line to intersect s $C V$ in ℓ. Join $t 0, t m, t n$ and $t p$.

Pronlem 36.-A model of an obelisk $8^{\prime \prime}$ square at the base, $6^{\prime \prime}$ square at the top, stands on the ground plane with its axis
problems 33 and 34 , and draw its diagonala. Centrally between D and N, and C and E, toke the measurement of the edges of the top of the shaft and transfer these measurensents to the front edges of the base of the shaft, in L, M, N and O. From these points draw lines towards $V P_{1}$ and $V P_{2}$ to cut the diagonals of the large square, and thus obtain a smaller square representing the top of the shaft when in the ground plane. At P erect a

vertical and the nearest corner of the base $12^{\prime \prime}$ to the right and
$4^{\prime \prime}$ from the picture plane. The edges of the base are at an angle $4^{\prime \prime}$ from the picture plane. The edges of the base are at an angle
of 45° with the picture plane. The top of the shaft of the obelisk is finished with a pyramid $6^{\prime \prime}$ square and $6^{\prime \prime}$ high. The total height is 2^{\prime}. Show its perspective appearance. Height $1^{\prime} 3^{\prime \prime}$; distance $2^{\prime} 3^{\prime \prime}$; scale $\frac{1}{8}$. (Fig. 34.)
${ }_{35}$ Find the perspective position of tho corners of the base, as in
perpendicular, and on it measure 2^{\prime} to W, and from W measure $6^{\prime \prime}$ to R. Draw $W C V$ and $R C V$. Draw vertical lines from the corners of the smaller square, two of them to cut $R C V$ and the other two to eut $S V P_{1}$ and $S V P a$. In this way the appearance of the top of the shaft is obtained. Join its corners wich A, F, H and G, and also with the point X where a vertical line fron K cuts $W \boldsymbol{F} \boldsymbol{F}$.

THE HIGH SCHOOL DRAWING COURSE.

THE FOLLOWING ARE THE BOOKS IN THIS COURSE:
1.-Freehand.
2.-Practical Geometry.
3.-Linear Perspective.
4.-Object Drawing.
5.-Industrial Design.

These Books are fully illustrated, and printed on heavy drawing paper. They are sold at 20 cents each, at all bookstores.

The Mechamical Drawing Course.

1.-Projection and Descriptive Geometry. 3.-Building Construction.
2.-Machine Drawing.
4.-Industrial Design.
5.-Advanced Perspective.

In both of the above Courses, the trade will be supplied by Toronto Wholesale Dealers in School Books.
THE GRIP PRINTING AND PUBLISHING COMPANY, Publishers, $26 \& 28$ FRONT STREET WEST, TORONTO.

[^0]: *This is illustrated in Fig. 5.

[^1]: Every vanishing point has, in reality, two measuring points at an equal them is usurdly so far of to the right or left that it cannot conve of vision, one of is only on rare occasions ther to the centre of vision answers every purpose. it

