The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculcéeCover title missing/
Le titre de couverture manqueColoured maps/
Cat tes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas tié filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ttre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraisonAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

THE CANADIAN JOURNAL.

NEW SERIES.

No. V.-SEPTEMBER, 1856 .

NOTES OF TRAVEL AMONG THE WALLA-WALLA indians.

BY PAUL KANE, TORONTO.

Read before the Canadian Institute, 5th April, 1856.
In former selections from my notes, made during years of travel among the Indians of the North-West, I have communicated accounts of two Tribes presenting the most striking elements of contrast: the Chinooks, one of the numerous Tribes of the Flat Head Indians, inhabiting the tract of country at the mouth of the Columbia River; and the singular tribe of Half-breeds to be found in the Hudsor Bay Company's Territory, in the vicinity of the Red River. For the present communication, I have selected from my Journal notes relating to the Walls-Walla and Kye-use Indians, as possessing a peculiar interest, from the fact that I was present at some of the scenes in which the present war between these Tribes and the settlers in Oregon originated.

On the 12 th of July, 1847, on my return journey up the Columbia River, I arrived at Walla-Walla, about five hundred miles from its mouth. It is a small Fort, built of Dobies, or blocks of mud baked in the sun, which is here intensely hot. Fort WallaWalla is situsted at the mouth of the river of the same name, in the most sandy and barren desert that can well be conceived. Little or no rain ever falls bere, although a few miles lower down the river it is seen from bence to pour down in torrents. Owing to its
being built at the mouth of a gully, formed by the Columbia River through high mountainous land, leading to the Pacific Ocean, it is exposed to furious gales of wind, which rush through the opening in the hills with inconceivable violence, and raise the sand in clouds so dense and continuous as frequently to render travelling impossible. I was kindly received by Mr. McBain, a clerk in the Hudson Bay Company's service, who, with fire men, had charge of the Fort. The establishment is kept up solely for the purpose of trading with the Indians from the interior, as those about the Post have few or no peltries to deal in.

The Willa-Walla Indians live almost entirely upon salmon throughout the whole year. In the summer season they inhabit lodges made of mats of rushes spread on poles. Owing to the absence of trees in their vicinity, they have to depend for the small quantity of fuel which they require, upon the drift wood which they collect from the river in the spring. In the winter they dig a large circular excavation in the ground about ten or twelve feet deep, and from forty to fifty feet in circumference, and cover it over with split logs, over which they place a layer of mud collected from the river. A hole is left at one side of this roofing, only large euough for one person to enter at a time. A stick with notches reaches to the bottom of the excavation, and serves as a ladder by means of which they ascend and descend into the subterranean dwelling. Here twelve or fifteen persons burrow through the winter, having little or no occasion for fuel, their food of dried salmon being most frequently eaten uncooked, and the place being excessively warm from the numbers congregated together in so small and confined a space. They are frequently obliged, by the drifting billows of sand, to close the aperture, when the heat and stench become insupportable to all but those accustomed to it. The drifting of the sand is a frightful feature in this barren waste. Great numbers of the lndians lose their sight, and even those who have not suffered to so great an extent, have the appearance of labouring under intense inflammation of these organs. The salmon, while in the process of drying, also become filled with sand to such an extent as to wear away the teeth of the Indians, and an Indian is seldom met with over forty years of age whose teeth are not worn quite to the gums.

The day after my arrival at the Fort I procured three horses and a man, for the purpose of travelling into the interior of the country, and visited the Pavilion and Nezz-perces Indians. The weather was excessively hot, and we suffered much from the want
of water. About two o'clock P. M. on the evening of the eighteenth, in our circuitous route back to the Fort, we arrived at Dr. Whitman's Presbyterian Mission, situated about twenty-five miles up the Walla-Walla Kiver, where I was received very kindly by the Missionary and his wife. Dr. Whitman's duties included those of Superintendent of the American Presbyterian Missions on the West side of the Rocky Mountains. He had built himself a house of uaburnt clay, for want of timber, which, as stated above, is here extremely scarce. He had resided at this locality, on the banks of the Walla-Walla River, upwards of eight years, doing all in his power to benefit the Indians in his mission. He had brought forty or fifty acres of land, in the vicinity of the river, under cultivation, and had a great many head of domestic cattle, affording greater comfort to his family than one would expect in such an isolated spot. I remained with him four days, during which he kindly accompanied me amongst the Indians. These Indians, the Kye-use, resemble the Walla-Wallas very much. They are always allies in war, and their language and customs are almost identical, except that the Kye-use Indians are far more vicious and ungovernable. Dr. Whitman took me to the lodge of an Indian called To-ma-kus, that I might take his likeness. We found him in his lodge sitting perfectly naked. His appearance was the most savage I ever beheld, and his looks by no means belied his character. It was only a short time before my arrival at the mission that he killed an Indian out of mere wantonness. His victim was taking care of some horses for another Indian, when he rode up to him and enquired why he was hiding them. The Indian denied that he was doing so, when Tomakus, without further remark, sent an arrow through his heart. He was so cruel and merciless in his revenge, and so greatly dreaded, that no one dared resent the murder. At another time he attempted the life of one of the Doctor's servants for the most trifling cause, and was only prevented by the man's escaping, while the Dector, who was a powerful man, forcibly held him. He was not aware of what I was doing, until I had finished the sketch. He then asked to look at it, and enquired what I intended doing with it, and whether I ras not going to give it to the Americans, against whom he bore a strong antipathy, superstitiously fancying that their possessing it would put him in their power. I, in vain, told him I should not give it to them; but, not being satisfied with this assurance, he attempted to throw it in the fire, when I seized him hy the arm and snatched it from him. He glanced at me like a fiend, and appeared greatly enraged, but before he had time to recover from his surprise,

I left the lodge and mounted my horse, not without occasionally looking back to see if he might not send an arrow after me, a circumstance which would not have been at all pleasant, considering that the Kye-uee Indians are most unerring marksmen.

Usually, when I wished to take the likeness of an Indian, I walked into the lodge, sat down, and commenced without speaking, as an Indian under thess circumstances will generally pretend not to notice. If they did not like what I was doing they would get up and walk away; but if I asked them to sit they most frequently refused, supposing that it would have some injurious effect upon themselves. In this manner I went into the lodge of 'ril-aw-kite, the Chief, and took his likeness without a word passing between us.

Having eljoyed the kind hospitality of Dr. Whitman and his lady for four days, I returned to Fort Walla-Walla. On the day after my arrival at the Fort, a boy, one of the sons of Peo-Peo-mox-mox, the Chief of the Walla-Wallas, arrived at the camp close to the Fort. He was a few days in advance of a war party headed by his father, and composed of Walla-Walla and Kye-use Indians, which had been absent for eighteen months, and kad been almost given up by the tribes. This party, numbering two hundred men, had started for California, for the purpose of revenging the death of another son of the Chief, who had been killed by some California emigrants; and the messenger now arrived, bringing the most disastrous tidings not only of the total failure of the expedition, but also of their suffering and detention by sickness. Hearing that a messenger was. coming in across the plains, I went to the Indian camp and was there at his arrival. No sooner had he dismounted from his horse, than the whole camp, men, women and children, surrounded him, eagerly enquiring after their absent friends, as they had hitherto received no intelligence beyonc a report that the party had been cut off by hostile tribes. His downcast looks and silence confirmed the fears that some dire calamity must have happened, and they set up a tremendous howl, while he stood silent and dejected, with the tears streaming down his face. At length, after much coaxing and entreaty on their part, he commenced the recital of their misfortunes. After describing the progress of the journey up to the time of the disease (the measles) making its appearance, during which he was listened to in breathless silence, be began to name its victims one after another. On the first name being mentioned, a terrific howl ensued, the women loosening their hair and gesticulating in a most violent manner. When this had subsided, he, after much persuasion, named a second, and a third, until he had numbered upwards of
thirty. The same signs of intense grief followed the mention of each name, presenting a scene which, accustomed as I was to Indian life, I must confess affected me deeply. I stood close by them; on a log, with the interpreter of the Fort, who explained to me the Indian's statement, which occupied nearly three hours. After this the excitement increased, and apprehensions were entertained at the Fort that it might lead to some hostile movement against the establishment. This fear, however, was gioundless, as the Indians drew the distinction between the Mudson's Bay Company and the Americans. They immediately sent messengers in every direction, on horseback, to spread the news of the disaster among all the neighbouring tribes, and Mr. McBain and I both considered that Dr. Whitman and his family would be in great danger. I therefore determined to go and warn him of what had occurred. It was six o'clock in the evening when I started, but I had a good horse, and arrived at his house in three hours. I told him of the arrival of the messenger and the excitement of the Indians, and advised him strongly to come to the Fort, for a while at least, until the Indians had cooled down; but he said he had lived so long amongst them, and had done so much for them, that he did not apprehend they would injure him. I remained with him only an hour, nnd hastened back to the Fort, where I arrived at one o'clock, A. M. Not wishing to expose myself unnecessarily to any danger arising from the superstitious notions which the Indians might attach to my having taken some of their likenesses, I remained at Fort WallaWalla four or five days, during which the war party had returned, and I had an opportunity of taking the likeness of the great Chief Peo-peo-mox-mox, or the Yellow Serpent. Nothing of consequence occurred. whilst I remained at the Fort, and in a few days I resumed my journey to the mountains.

It was about two months afterwards that I first heard news from Fort Walla-Walla, by some men of the Hudson's Bay Company, who had overtaken me; and my grief and horror can be well imagined when they told me the sad fate of tuose with whom I had so lately been a cherished guest. It appeared that the war party had brought the measles back with them, and that it spread with fearful rapidity through the neighbouring tribes, but more particularly amongst the Kye-uses. Dr. Whitman, as a medical man, did all he could to stay its progress; but, owing to their injudicious mode of living, which he could not prevail on them to relinquish, great numbers of them died. At this time the Doctor's family consisted of himself, his wife, and a nephew, with two or three servants,
and sereral children whom ho had humanely adopted, left orphans by the death of their parents, who had died on their way to Oregon; besides a Spanish balf-breed boy, whom he had brought up for several years. 'I here were likewise several families of emigrants staying wis him at the time, to rest and refresh themselves and cattle. The Indians supposed that the Doctor could hare stayed the course of the malady had he wished it, and they were confirmed in this belief by the Spanish half breed boy, who told some of them that he had overheard the Doctor and his wife conversing after they retired for the night, and that he heard him say be would give them bad medicine, and kill all the Indians, that he might appropriate their land to himself. They accordingly concocted a plan to destroy the Doctor and his wife and all the males of the establishment. With this object in view, about sixty of them armed themselves and came to the house. The inmates, having no suspicion of any hostile intention, were totally unprepared for resistance or flight. Dr. and Mrs. Whitman, and their nephew, a youth about seventeen or eighteenyears of age, were sitting in their parlour in the afternoon when Til-aw-kite the Chief, and To-ma-kus entered the room, and addressing the Doctor, Til-arr-kite told him very coolly that they had come to kill him. The Doctor, not believing it possible that they could entertain any hostile intentions towards him, told them as much. But while in the act of speaking, To-ma-kus drew a tomahawk from under his robe and buried it deep in his brain. The unfortunate man fell dead from his chair. Mrs. Whitmian and the nephew fled up stairs, and fastened themselves into an apper room: In the meantime Til-aw-kite gave the war whoop as a signal to his party outside to proceed in the work of destruction, which they did with the ferocity and yells of so many fiends. Mrs. Whitman, heariag the shrieks and groans of the dying, looked out of the window, and a son of the Chief shot her through the breast, but did not kill her at the moment. A party then rushed up stairs, and despatching the nephew on the spot, they dragged her down by the hair of her head, and taking her to the front of the house they mutilated her in a shocking manner with their knives and tomabawks. There was one man who had a wife bedridden. On the commencem:ut of the affray he ran to her room, and, taking her up in his arms, carried her, unperceived by the Indians, to the thick bushes tbat: shirted the river, and hurried on with his burden in the direction of tort Walla-Walla. Having reached a distance of fifteen milus, h_{1}; became so exhausted, that, unable to carry her further, he conccaled her in a thick bummock of bushes on the margin of
the river and hastoned to the Fort for assistance. On his arrival, Mr: McBain immediately sent out men with him, and brought her in. She had fortunately suffered nothing more than the fright. The number killed, including Dr. and Mrs. Whitman and nephew, amounted to fourteen. The other females and children were carried off by the Indians, and two of them were forthwith taken as wives by Til-aw-kite's son and another. A man employed in a little mill, forming part of the establishment, was spared to work the mill for the Indians.

The day following this awful tragedy, a Catholic Priest, who had not henrd of the massacre, stopped on seeing the mangled corpses strewn round the house, and requested permission to bury them, which he did with the rites of his own Church. The permission was granted the more readily as these Indians are friendly towards the Catholic Missionaries. On the Priest leaving the place, he met, at'a distance of five or six miles, a brother Missionary of the deceased, a Mr. Spalding, the field of whose labours lay about a hundred miles off, at a place on the River Coldwater. He communicated to him the melancholy fate of his friend, and advised him to fly as fast as possible, or in all probability he would otherwise be another victim. He gave hin a share of his provisions, and Mr. Spalding hurried homeward full of appreheusions for the safety of his own family; but unfortunately his horse escaped from him in the night, and after a six days' toilsome march on foot, having lost his way, he at length reached the banks of the river, but on the opposite side to his own house. In the dead of the night, and in a state of starvation, having eaten nothing for three days, everything seeming to be quiet about his own place, he cautiously embarked in a small canoe and paddled across the river. He had no sooner lauded than an Indian seized him and dragged him to his house, where he fouind all his family prisoners, and the Indians in full possession: These Indians were not of the same tribe with those who hiad destroyed Dr: Whitman's family, nor had they at all participated in the outrage, but having heard of it, and fearing that the whites would include them in their vengeance, they had seized on the family of Mr . Spalding for the purpose of holding them as hostages for their own safety. The family were uninjured, and he was overjoyed to find that things were no worse. Mr: Ogden, the Chief Factor of the Hudson's Bay Company on the Columbia, immediately on hearing of the outrage, came to Walla-Walla, and alithough the occurrence took place in the Territory of the United Stales, and of course the parties could have no further claim to the protection of
the Company than such as humanity dictated, he at once purchased the release of all the prisoners, and from them the particulare of the massacre were afterwards obtained. The Indians, in their negotictions with Mr. Ogden, offered to give up the prisoners for nothing, if he would guarantee that the United States would not go to war with them, but this, of course, he could not do. Immediately on the receipt of the news in Oregon, four bundred volunteers started for the Walla-Walla River to punish the Indians, but they met with rery bad success, losing more men than they killed of the enemy. Since that time a sanguinary war has been kept up without a prospect of any other result but that of extermination to the Indians. From time to time the newspapers furnish some stirring or bloody incidents of the Oregon war, and this winter I read in an American paper an account of the death of my old acquaintance, Peo-peo-mox-mox, the Chief of the Walla-Wallas, who had been taken prisoner, and was shot while attenipting to escape.

THE SUPPOSED SELF-LUMINOSITY OF THE PLANET? NEPTUNE.

BY COLONEL BARON DE BOTTEKTBURG.
Read before the Canadian Inslitute, 29th March, 1856.
The following observations upon the Planet Neptune are offered for consideration, in compliance with the request of the Council of the Canadian Institute for communications from the general bndy of the members. They refer more especially to ideas advanced regarding the supposed luminous atmosphere of that recently discovered planet, on which so many circumstances have combined to confer a peculiar scientific interest. These views regarding the self-luminosity of Neptune may not have fallen under the notice of the members generally, as they appeared originally in the "ibritish Quarterly Review,"a periodical not re-printed, or generally circulated on this continent,and have not, even at home, attracted the attention they might seem to merit. They are to be found in that Review, for the month of August, 1847, in an article on "Recent Astronomy." After referring to the remarkable series of labours and deductions which finally
revealed the unseen, yet ki owin planet, to the eye of astronomers, the reviewer thus proceede:-
" There are two facts connected with the newly-discovered planet, -the one certain, and the other all but certain, which merit particular attention. The first of these is its deviation to a fur greater extent than any one of those bodies heretofore known, from what is known as Bode's law of the distances. According to this law-or rather rule, secing it simply expresses a fact of which no explanation whatever can be given,-the various planets are placed at distances bearing a certain and uniform relation to each other : this peoportion being that, the interval between Mercury and Venus being assumed as unity, the intervals between the successive orbs each double upon the one befure it. Had the newly-discovered orb conformed to this rule, it would have been found at a distance of $3,600,000,000$ miles from the sun. Its actual distance is about seven-ninths of this ampunt. Aud such a deviation, important and interesting in itself, as the first example of departure from a rule hitherto found universal, derives additional interest from the fact, that, chiefly on it, conjectures have ulready been fou: ded relative to the possible existence of a second unknown orb, situated as much beyond the distance indicated by the law, as the present one falls within it. This conjecture, however, must be left to time to verify. It is more than probable that, if such an orb exist, the meaus which have guided our telescopes with such unerring aim towards this one, musi ain be employed for its discovery : its disturbing action be wal...ed and waited for; and direct observation, almost powerless at such a distance, be guided and led out by theory towards a mind-seen result.
"The second of the two facts we have referred to is one of yet higher interest and importance, and certainly one more unexpected still. It is believed that the planet is self-luminous. This inference has been deduced from its high degree of visibility and great clearness of light, not only as compared, or rather contrasted with Uranus, but beyoud what is comprchensible in conformity with the known principles of optics. It is, indeed, conceivable, that the physical organisation of the orb may be such, as shall give to its surface a light-reflective poser very far beyond all we have experience of, at least among the other orbs of the system : but it is very questionable whether any amount of this, within the limits of probability, would account for a planet receiving little more than a third of ihe sunlight which Uranus receives, nearly equalling it in visibility, and far surpassing it in vividness of light. Here, too, at all events, we are called on to 'stand still and see' : to rid the mind of every bias, and
of all pre-judgment, and to esteem the treasure-house of physical variety still unexhausted, and the phases of physical appearance still not all seen. And should this most unexpected and important fact be hereafter established, we shall then be presented with a startling and striking converse to the fact arrived at by the masterly induction of the lamented Bessel, with regard to the stars Sirius and Procyon-the first, one of the most majestic orbs which our firmament can claim,-that each is associated in binary combination with masses yet mightier than themselves, like our planets opaque and non-luminous; suns of darkness, whose light, if ever they shone, has waned and gone out for ever. And, on the supposition of the planet in question being self-luminous, it becomes an interesting object of inquiry whether, from any adjacent system, our sun can appear with it to constitute a double star."

Such is the reviewer's statement. Now, opinions have lately been set forth with great skill and plausibility tending to the belief that this earth is che only planet fit for the habitation of intelligent beings, and that the other planets of the Solar System being either too near the sun, or too remote from it, receive either too great or too little an amount of light and heat to fit them for the abodes of creatures constituted like ourselves.

If, however, future observation should confirm this statement that Neptune is itself luminous, it must somewhat modify these views, for it will prove that a planet even at the great distance which Neptune is from the sun may after all not be such a dark world, and not quite so miserable as it has been represented. And this self-luminosity of Neptune may also account for its less complicated arrangements for compensation by means of moons for the small amount of light it receives from the sun. For it has only one satellite-at least Mr. Lassel, who has lately moved his celebrated Reflecting Telescope to Malta where the atmosphere is peculiarly well adapted for astronomical observations, states that he is satisfied there is only one satellite belonging to Neptune-or at least if there be others, ithere is no prospect of discovering them with our present telescopes. The suspicion entertained by Mr. Lassel and Mr. Bond that there is a ring round Neptune has since been abandoned. I may here mention that Mr. Lassel also states as the result of his late observations that he is satisfied there are only four sutellites belonging to Uranus.

Now, these facts give rise to some reflections-and it may not be out of place here to offer a few observations upon the varieties which exist amongst the planetary bodies as regards their physical conditions, and to take a cursory view of the Solar System generally; from which
examination we shall see that whilst certain general characteristics belong to the two great divisions of the primary planets, yet when these are examined in detail there is by no means an uniform agreement amongst ihem individually.

The eight primary planets composing the Solar System are divided into two groups of four each, separated by the space which comprises the orbits of the Asteroid planets. The four interior planets, viz: Mercury, Venus, the Earth, and Mars have greater densities than the exterior Planets, are of less size, and with one e. ?ption are unprovided with moons. They rotate on their axes in ather more than double the time of the exterior planets-they move round the sun with far greater velocity. Their year varies from about three months, the year of Mercury, to a year and eleven months, the year of Mars, (in round numbers), and their day is about twenty-four hours long.

The four exterior planets, viz., Jupiter, Saturn, Uranus, and Neptune have less densities than the interior ones; but their size is rastly greater. They move round the sun much slower-their year varies from nearly twelve years, which is the length of the year in Jupiter, to one hundred and sixty-four years, which is the length of the year in Neptune; their day, as far as has been ascertained, is about ten hours long. Thus we see that increased velocity of axisl rotation, and, consequently, increased centrifugal force, with its corresponding diminished force of gravity at the surface, is a characteristic of the four superior planets.

But these greater bodies have also increased means fur compensating the reduced amount of light they receive from the sun, for they are all provided with moons in greater or lesser numbers; Jupiter has four moons; Saturn has eight, and several rings; Uranus four, and Neptune but one. There are many other differences existing between these two groups which I have not time to dwell upon.

But with regard to the differences in density, size, \&c., amongst the particular bodies of these two great division of the Solar Sys-tem-although Mercury, the nearest to the sun, is the densest body of the Solar System, yet Mars, which is outside the Earth, is denser than Venus which stands next to Mercury in proximity to the Sun, and Neptune which is the "outsider" of the system is denser than either Uranus or Saturn-Saturn being the lightest body in the System.

Again, the Earth has a moon, but Mars, which is outside the Earth, has none. Venus was long supposed by Cassini, Short, and other astronomers to have a moon, but the fine telescopes of our time have failed to discover it, and, therefore, Venus must be deemed moonless.

The Earth and Venus, which are very noarly the same size, are both. Jarger than Mercury, but Mars, outside the Earth, is much smaller than the Earth, its diameter being only 4,100 miles: the Earth's equatorial diameter being 7025 miles. Jupiter is the largest body in the system, except the Sun ; Saturn, next in size, is next in distance ; but Uranus and Neptune are much smaller than either Jupiter or Saturn, their diameter in round numbers being severally about 35,000 miles.

We might also naturally expect to see the number of monns belonging to the outside planets increased in proportion to their distances from the Sun-but this is not the case, for although Jupiter has four moons and Saturn eight, and several rings, yet Uranus, which is outside Saturn, is now known to have only four satellites, and Neptune, the most remote body in the system from the Sun, (as far as yet known) being 2,700 millions of miles more distant from the Sun than our Earth, has, like our globe, but one moon. Thus we see that although the denser bodies are nearest the Sun generally, yet they are not uniformly so; that whilst the larger bodies of the system are those most remute from the Sun, yet increase of size is not uniformly proportioned to increase of distance, and that although the planets most distant from the Sun as a general rule are those which have the greater number of moons, still the number of moons belonging to any planet is not necessarily contingent on its distance from the Sun. Variety in physical condition is therefore a characteristic of the planetary bodies, as it is indeed of every other work of the Creator, and in all probability not any two of the planets are in say way similarly constituted.

But if this self-luminosity of Neptune be confirmed by further observation, it will certainly be an unique feature in the Solar System. It has always occurred to me that one great difficulty, of which I have never met any explanation, attends what is' called the Nebular Theory. This is-if all the bodies of the system had a common origin, being formed from a rotating Nebula throwing off rings and planets, \&c., why in such a case should the luminous atmosphere be confined to one of these bodies only, viz., the central one? and why should the others have very different atmospheres or envelopes?

But if Neptune's atmosphere is self-luminous, it will at any rate shew that it is not incompatible with the conditions of the Solar System, for one body besides the central one to be provided with a Photosphere. I must observe here that I have not seen any confirmation of the self-luminosity of Neptune in astronomical works to which I have access; but the recentness of the discovery of this
planet; as well as the difficulties interposed in consequence of its remote distance from our earth, must necessarily render the absolute determination of all its peculiar phenomena a work of time. Meanwhile it may be permitted us to reason that, if Neptune is self-luminous, this condition may euable it, with its solitary sntellite, to possess a sufficiency of light for the existence and enjoyment of life by creatures of a higher orgnnization than some feel disposed to accord to it, should life indeed exist upon it at present.

With regard to the temperature of these remote bodies which must necessarily be dependent upon a variety of coneiderations, I cannot but think some allowance should be made for the greater amount of internal hent which may possibly be a condition of the superior planets; for if, as some are disposed to consider, the Solar System had a common origin, and the planets originally were in an incandescent state, then under such circumstances the larger bodies would take longer to cool down than the maller ones-and if any degree of probability is to be attached to such speculations, our friends on the confines of the system, (if such there be) may still be warmer than we give them credit for.

I am not, however, going to inflict on the members of the Institute any dissertation on the plurality or non-plurality of worlds, which subject has assuredly been sufficiently discussed of late yeary, leaving us all much of the same opinion still, although some of us may have been convinced against our will. But if any feel disposed to view this vexed question under a new aspect, and see much that is valuable, original and interesting, presented in a very condensed form, I strongly recommend them to peruse a little work called "The Chemistry of the Stars," written by Dr. George Wilson, the recently appointed Professor of Technology, at Edinburgh ; and I think they will come to the conclusion, that it contains as much as need be said upon the subject to convince us all, that it is not probable there is any planet in the Solar System adapted for the residence of beings constituted precisely as we are.

I may add that when Neptune was discovered by Dr. Galle, it appeared as a star of the 8th magnitude; its apparent diameter is about $2^{\prime \prime} .8$ when in opposition, that of Uranus in the same position is about 4". If we had a first class telescope attached to this Inscitute, or to one of the Universities, we might have opportunities of satisfying ourselves by personal inspection of the comparative light given forth by these tro planets. The acquisition of such an instrument is, I regret to say, still a consummation devoutly to be wished.

INFLUENCE OF RECENT GOLD DISCOVERIES ON PRICES.

By E. A. MEREDITH, LL. B., ABSISTANT PROVINOIAL BEORETARY.

Read before the Canadian Institute, 19th April, 1850.
The general rise in the prices of commodities in tho old ns well as the new world, within the last four or five years, is one of the most striking and important economic phenomena of the present century.

June, 1848-the date of the first discovery of gold on the Sacramento River in California-may be taken as the coinmencement of the ern of high prices. Calitoruia and Australia, when they became the centres of cheap gold for the world, became of necessity, at the same time, the centres of high prices. From these centres the tide of gold has flowed over the civilized world in all directions, and wherever it has flowed it has raised in a greater or less degree the level of prices.

Looking to the statistics of prices for the sixty years preceding 1848, we find that the former half of that period is marked by a high, and the latter half, say from 1819 to 1848, by a low level of prices. The causes, however, which kept up a high rauge of prices during the thirty years preceding 1819, will, I think, be found to differ in some essential features, from those which, since 1848 , have operated to produce a similar result.

In the former period, the high prices (as Tooke has conclusively proved in his elaborate work on the IIistory of Prices,) were due to the combined effects of the great war in which Europe was then involved and of a series of unfavourable seasons. Whereas the general advance of prices since 1848, although no doubt in some degree intensified by the recent war and by other causes, is, as I hape to shew, mainly due to the unparalieled influx of the precious metals from California and Australia into Europe and the rest of the civilized world, and to other causes more or less intimately connected with and growing out of the gold discoveries in those countries. That these discoveries are destined to bring about not only great economic and commercial chauges, but also materially to affect the social, political, and moral condition of the world, cannot, I think, be questioned. As to the general bearing of these various changes on the well-being and happiness of mankind, thinking men indeed entertain widely
different views : while many ere in tho consequencen of the gold discoverios nothing but unmixod good; afew, including nmong thair number tho ingenious und neute Je Quincey, hook more than doubtfully to tho fucture, and seem disposed to believe that it had been better for the word if the gold nuggets had remanined for ever buried in the bowols of the earth.

Into the large and templing flold of enguiry which tho dincussion of the probnble morn and social results of the modern gold diseoveries would carry us, it is not my design to enter. I shall contine myself exclusively to the economio bearings of the discoveries; and consider only the effect of thowe discoveries on the priees of commodities. 'Thin indeed is only one (doubtless the most important,) of the many interenting phases which the subject presents, considered in an economio point of viow.

Strange as it may appear, this nubject, although practienl mod important, has not hitherto received any considerable share of' public attention, or been discuseed on general principles and with reforenco to the admitted truthe of Political Beomomy.*

To comnect the gold discoverios und high pricus together as cause and effect, and to indicate the process by which the rise in prices has been brought about, as woll as the probable permanency of their present level, are the priacipal objects of the present paper.

It can hardly, 1 eoncoive, bo necesmary to adduce elaborate statistics to establish the fact assumed as the gromud work of my remarks-that the general level of prices on this continent and in Great Britain as well as in Califurnin and Australia has, within the last six or eight years, been considerably raised.

The extraordianry adyancement of the prices of the necesmaries of life, and of the wages of labour, in the two countrics last mentioned, immedintely after tho first discovery of their mineral treasures, is yet fresh in the recollection of us all. The influence of the golden tide, which then began to set in from those remote hands to Creat Britain and the States, soon also made itself apparent in the latter countries.

During the last four years the Congress of the United States, in consequence of the adinitted depreciation of the value of money throughout tho Union, was compelled to raise, from 25 to 40 per cent, the salaries of the officers and servants of the Government. In England in 1854, the rise of wages and prices aecording to Me-

[^0]Culloch was not less than from 12 to 35 per cent., whilo in Ireland it was much more.*

On the continent of Europe a similar rise in prices, though not perhaps to the same extent, could be shewn to have taken pluce ; \dagger while, as regards Canada, any statistics to prove the advance of prices within the last six years, would be considered, I am sure, as quite superfluous. Six years ago Canada was rightly considered as one of the cheapest countries of the world; now, assuredly, it is one of the most expensive. Here, as in the States, the Legislature has been compelled to interfere to rescue the civil servanta and officers of the Government from the ruinous effects of the enhanced prices of labour and of the necessaries of life. Within the last two years, accordingly, the salaries of almost all public officers in this country have been augmented, and the indemnity allowed members of Parliament, the salaries of the Executive Councillors, as well as as the salaries of most of the employés of the Government, have been raised. The scale of increase, however, varies somewhat strangely in the different cases. In the case of Members of Pryliament and Executive Councillors, 50 per cent. has been added, while the incomes of the great mass of Government officials, (where any addition whatever has been made to their salaries,) have been augmented at rates varying from 12 to 25 per cent. These several advances being all grounded on the increased cost of the necessaries of life, we might perhaps 'a priori' have anticipated that the augmentation would have been in the inverse ratio of the salaries, in other words, that the lowest salary should have had the largest per centage, inasmuch as the smaller the whole salary the greater the proportion of it spent in the purctase of mere necessaries. The Legislature however would appear to have judged differently, and from the graduated scale adopted by them, we are forced to conclude that the pressure of high prices is most acutely felt by Executive Councillors and Members of Parliament, and butslightly, if at all, by the subordinate officers and servants of the Government. Had the increase of salaries been made on the ground of the decline in the value or purchasing power of money, as compared with all other commodities, then all salaries large and small should have been raieed in the same ratio; assuming of course, that

[^1]before the declino in the valuo of moncy they had beon fairly ndjusted.

To return, however, from this digression, I think that sufficient las been said to establish the fact that a considerable advane in prices has within the last tive or six years taken place not only in Califor. nia and Australia, but in this country and throughout the Continent genernlly, as well as in Great Britain and the rest of Europe.

To what causes, then, is this phenomenon due? 1 answer-firstly, and chiefly, to the reecut gold discoveries; secondly, and in a lesser degree, to the war and other local and temporary causes.

It is with the former of these canses only that we have now to do. Before entering, however, on a discussion as to the degree of influence or mode of operation of the gohd discoveries in aflesting tho cesults which I assign to them, it may not bo out of plase to make some brief remarks in reference to tho general fumamental laws regulating prices.

The relative values of commodities are commonly estimated by referring them to the common measure or standard of valuc-money; in othor words, by their relative prices-the price of every commodity being its valuo in money. The rolative prices of different commodities at any given time are of course an accurate index of their relativo values at that time. And if our atandar! of valuo were (like our standards of weights and measures) invariable, the relative prices of the same commodity, at different times, would also indicate accurately its relative values at those times. The fall or rise in the price of any article would shew precisely the fall or rise in its value. But our stamdard of value is not thus invariable, nor indeed cau it be, inasmuch as the precious metals, which form the standard, are themselves liable (though not to the same extent as most other commodities) to fluctuate in value.

It is obvious then that a change of the price of any article may arise from two distiuct classes of causes, either those affecting the intrinsic value of the article itself, or those affecting the value of the money with which it is compared.

Now the values of all commodities (gold and silver inciuded) are determined ultimately and permanently by their cost of production, temporarily and proximately by the relation existing between their demand and supply. The value of any article, considered as determined by the relation existing between the demand and supply, is styled its " market value;" while its value, considered as regulated by its cost of production, is termed its "natural value." The market value of most commodities is constantly changing, now rising above
and now sinking below its natural value-which latter is happily described by Adam Smith as that "centre of repose and continumes" which the former is evor struggling to attain. The extent and frequency of these fluctuations of the market value of a commodity must depend on the degreo and manner in which the relation of its supply and demand is liable to disturbing influenees.

In this respect the precious metals difier from almost all other commoditics. Whilo most other commodities are exposed to sudden and very great variations in value, the changes in the value of the precious metals havo generally boen vory slow and gradual.* And it is this quality which eminently qualifies them to act as a general standard of value. So accustomed, indeed, are we to witness continued fluctuations in the maket values of most commodities, arising wholly from accidental causes affecting their demand and supply, and so scldom do we witness any change in the value of gold or silver, that when in reality tho value of gold and silver is changed and the price of all other commodities thereby affected, we are slow to admit the fact, and persuade ourselves that the change in prices is due to any cause save the real one. And yet a little reflection will serve to convince us that, when the rise or fall of prices is general and affects all commodities to the same extent or , nearly so, the natural inference is that such a change must be due to an alteration in the value of money and to nothing else.

To resume the argument. It is plain that the rise in the general level of prices of commodities must result eithor from a general increase of the cost of production of commodities or a reduction in the cost of production of the precious metals-or, again, from somo cause or causes increasing the demand for commodities generally, or diminishing the demand for the precious metals. Of chese four supposable causes by which (in theory at least) the phenomenon under consideration might possibly be occasioned, it will, I think, be shewn in the sequel that the efficient causes really are-

1st. A reduction in the cost of production of the precious metals consequent on the recent gold discoveries.

2nd. A diminution in the supply and simultaneous increase in the demand for many of the most important staples of commerce--the result partly and indirectly of the gold discoveries, and partly and more directly of the war and other causes.

[^2]Let us Lurn now to Califormin and Austraina, and briefly cxamine tho leading ceonomic phenomona which have dereloped themselver in thase comeries sineo the commencoment of the gold discoveries; a review of thes: factas will 1 think enable us to understand the mamer in which tho depreciation of tho metals has taken phaco thore, the measuro and oxtont of that deprecintion, and the steps by which similar elfects aro now being extended in ever widening circles over the whole of the commorcial world. The ovents which followod the first announcement of gold on the banks of the Sacrameuto aro too striking and too recent to bo forgotten. From overy quarter of tho globe, including tho Colestial Empire, flocked thither crowds of adventurers. Thousands of excited gold seekers perished miserably before reaching tho looked for El Dorado, but their places wero soon filled by others, nad wave after wavo of this living tide of motley pilgrims broke in succession upon the shores of Californin. In a few months the population ruso from a few hundreds to many thousunds In less than two yoars and a half it had reached 200,000; and now it is supposed to number nearly half a million. Meanwhilo the prices of all the necessamies of life and the money wages of labour had renched an almost fabulous height, and notwithstanding the efforts made by the States and othor countrios to meot tho sudden and ertraordinary demand for goods in this now market, prices maintained an unexampled level. What occurred in 1848 in California, was repeated in 1851 in Australin-the phenomena in both places being essentially the same. I havo selectod Australia for more particular examination in reference to the present enquiry, inasmuch as all the details regarding Australia are fully given in official documentswhich is not the case as respects Californin.

The Sydney papers of the summer of 1851 brought to England the first intelligence of a now gold region in tho Eastern world, and of the delirious excitement with which the discovery was received in the Colony.

The then Lieut. Governor of Victorin, Mr. Latrobe, in a despatch of December of that year, represents the whole structure of society as being disorganized by the effect of the discoveries, and concludes by remarking: "It really becomes a question how the more sober operations of society, and even the functions of Government, may be carried on."

The immediate effects of the discovery on the money wages of labour and on the prices of provisions, points which more immediately concerin us in the present enquiry, are also given by the Lieut.

Governor in a papor roferred to in a despateh of Jamary, 1552. Jn this paper it is stated "that the wages of shemers roso from 12s. in 1850 tis 20 s . in 1851 ; of reapers from 10 s. to 201 s . and 25 s . per acre; of common labourers, from 5 s. to 15 s. and $2(0)$. per day; of coopers, from 5s. to 10 s ; of shipwrights, from 6s. to $10_{\mathrm{N} . ;}$ " and of all others at the samo rates.

From December, 1s50), to December, 1851, it is nded that the prices of provisions had risen as follows: Brond, 41 lb . loaf, from Ed.
 meat doubled in price, and vegotables wero raised from bo to 100 por cent.

Mr. Sterling, from whone adminable worls on tho gold discoverios 1 have copied tho foregoing extrnets, in commenting on them, in 1852, observes:--" The phenomen, in as far as they have get doveloped themselves, have oceured exactly in tho order that might have been expected. First of all, wo hive had a riso in the money prices of colonial labour, next in tho prices of provisions and the other direct products of that labour, and lastly and after a greater interval, wo my expect to witness an elevation of the money value of commodities imported into the Colony, with a corresponding riso of prices in Bugland and the other countries whence those imported commodities are derived."

What Mr. Sterling confidently looked forward to in 1852 has now actually taken place in England, the States, and Camada.

From the figures furnished in Mr. Latrobe's despatches, it appenrs that the money wages of labour rose more than 100 per cent., mal that the rise in the price of provisions was equally great. In other words, the purchasing power, or the value of gold, as compared with the things enumerated in that list, suddenly fell on the average about 50 per cent. The cause and the measure of this fall in the value of gold was the reduction of its cost of production in the Colony. The average quantity of gold which a labourer could carn at the diggings became in an incredibly short time the measure of the value of a day's labour, and that quantity of gold would, therefore, only exchange for the produce of a day's labour applied in any other way-an allowance, of course, being made for the severity and uncertainty of the gold digger's toil.

The average sum gained at the gold fields was estimated, at the period referred to in Mr. Latrobe's despatches at $£ 1$ per day, and consequently this sum appears to have been but littlo above the average amount paid to a common day labourer. It is, indeed, worthy of remark that the wages of common labourers ranged, at least
for somo timo, highor than thoso of akilled labourorn. I!his proe bably aroso from the faed that ab tho digyings all habouross, whillod mad unakilled, woro put nomly upon mn expul footing. The moohnaio or tradesmin conld not aso tho piek, tho ernatlo, or minstog box, bottor, probably not as woll, as tho haridy labouror noonstonted to toil in tho flelds. Tho matural consequonco would bo that tho grold digghing would provo espocially altimative to tho makkillod labouror, and ioonsoquently thate vory little habour of that kind would bo lolto disposable
 riso in tha monoy wagos of common labourors as distinguishad from artismen or mechanice.
Wo have thas shown that the immediato oflecot of the gold discoverion in Australin, (and the samo is truo of Oulifomin,) was a fall in tho value of gold in tho Colony, at comparod with labour and provisions, a fill in valuo proportionad to and moanurod by tho roo duction of ita cost of proiluotion.

Whon wo pass from the gold ruising to tho gold importing eountrios and attompt to trace tho operation of those discoverios in the hattor, the rosulte are not, perhaps, quito so obvious.

The roduction in tho cont of production of gold in Australin and Onlifornia doos not immodiatoly and nocossarily affoct tho valuo of labour and its productis in othor countrios, becauso tho labour of those countrios cannot be at onco appliod to the prodnction of gold on the samo torms as the labour in the neighbourhood of the mines. Ultimately, indood, tho value of gold ovorywhore must be regulated by its cost of production in Australia und Oallifornia, assuming always, that tho lattor countries can continuo to supply an unlimited. quantity of the motal at a lower rate than tho mines proviously in use.
Thoso foreign countrics; whoso commercial rolations with tile now gold raising countrics are the most intimato nud oxtensivo, will be the first to foel the effects of the incroase of the precious metals.
The immedinte and diroct offects of the discovorics in thows countries, will, it seems to me, bo-
TI' diminish the supply, and consequently raiso the value of labour (and therefore of all its products), by withdrawing from those comitries to the gold fiolds a largo portion of its avalable stock of productive labour.

To increase the domand for and consequently "protanto" rinse the prices of all commodities exported thence to the gold regions.

To lower the value of the precioins metals by suddenly increas-
ing the quantity of the currency and consequently the proportion which it bears to the commodities in circulation.

All countries which have contributed a quota of cheir cilizons to swell the number of sottlers in the gold regions (and what country has not ?) or which supply them with any portion of their goods, must, in greater or less degree, feel the effects of each and all of these processes, all of which are silently but constanlly at work, and have already, I feel satisfied, extended muc: farther and operated much more powerfully than is generally imagined.
England and the United States were, as might have been anticipated, the countries most speedily and directly affected-Enghand from her connection with Australia, the States from their connecnection with Californin-and through England and the States the effects were necessarily propagated by a species of commercial conduction to this country and to others.

We have thus indicated some of the processes by which the influence of the gold discoveries extended itself to foreign countries.

As to the existence of these processes, or as to their tendencies there is no room for doubt. It is, however, absolutely impossible to measure their precise share either individually or collectively in the general result. The forces which come under consideration in the domain of practical political economy (unlike those with which the mechanical philosopher has to deal) refuse to submit to rigid measurement, and we must content ourselves with seeing the general result towards which they severally contribute without hoping to ascertain how much of the effect is due to each force separately.

Within a very few years California has withdrawn from the producing classes of the States probably more than 50,000 able bodied men. Australia in the same way has absorbed in a few years a large portion of the productive labor of Great Britain. The entire emigration from Great Brituin to Australia, since the discovery of gold there, is probably little short of a quarter of a million of souls.

In both cases the sudden subtraction from the labour market of the parent states of so considerable portion of the whole stock must have had a direct and obvious tendency to raise the value of labour, and consequently of all the products of labour, in those countries. But more than this, the labourers thus transplanted to the gold countries change their economic character-from being, for the most part, producers of commodities in and for the home market, they suddenly become consumers, aud generally extravagant consumers, of those very commodities. They enter the home markets, in fact, as formidable competitors with the consumers they have left behind.

The trulh of the last romark is forcibly illustrated by Austratian statistics; from ollicial statemonte of tho imports to Nydneg, wo find that the averuge monant of the i:nports for the ten years preceding the gold discoveries was littlo moro than E , $, 000,000$ storling, whito in 1853 and 1805 tho manal imports to that port averaged fully EG,000,000.

Tho priees of labonar and of commodities in Great Britain and the States must thereforo ha... been mised in sirno of both the causes which 1 havo pointed out ; for whilst thesupply of hahour and commoditices in these commtries was reduced, the demand for labour and commodilies was actually incroased.
Wo now como to consider the third, and, doubthens, tho mont influential as well as tho most obvious of the assigned canses of the fall of the value of grold in the gold importing comatries. 1 moan the sudden mad extroordinary :agmentation in the mass of the precions metal as cornpared with tho mans of comm: dities in those countries. No one can doubt that if the mass of the precions metal in the word became suddenly doubled or trebled, the prices of all commodities would at once bo doubled or trebled as the caso might b \%. Such sudden changes in the mass of the procions metals are of course impossible; changes in the amount of the metallic curreacy when they do oceur, aro generally, as has already beenobserved, the gradual result of yoars, and when this is the case the ultimate effect of the increase of tho precious metals on prices may be materially modified by the change which has taken place simultaneously in the value of the aggregate of commodities.

Prices (so far as they are affected by the causo under consideration) would riso or fall according to the relative increase in the mass of metal and commodities. If the mass of the precious metals had outstripped in its grow th the mass of commoditices, prices would be raised. If, on the other hand, commodities had increased moro rapidly than the metals the prices of commodities would be lowered.

There can be little doubt, I imagino, that since the gold discoveries in California and Australia, gold has been increasing much more rapidly than commodities, and consequently (in obedience to the law just stated), tho prices of commodities must, as a matter of course, have been ruised during that period.

At the begiming of the present century the annual value of the precious metals raised from all tho mines of the work, was, according to the calculation of IIumboldt, somewhat under $£ 10,000,000$ wherling. From 1800 to 1810 (owing to the increasing yicld during that period of the American mines), the total annual produce steadily
increased until in the latter year it was rather over than under $\mathscr{E} 1,000,000$. From 1810 to 1830 the total produce of the precious metals, would seam to have fallen off somewhat, but from the latter date up to the time of the discovery of the gold in California (owing mainly to the increased yield of the Russian mines and washings) it again adranced, and at the epoch of the gold discoveries on the Sacramento was about $£ 12,000,000$ sterling per aunum. In 1850 , the second year after the discovery of gold in Califormin, the total produce of the precious metals was, as computed by McCulloch, $£ 27,000,000$; in 1851, Australia began to add her treasures to the mass, and in 1853 the combined yield from the new and the old mines was estimated at the enormous sum of $£ 47,000,000$. I believe we would be safe in assuming the total produce of the year which has just closed at upwards of $£ 50,000,000$ sterling.*

In order to estumate even in a rude way the probable effects of this unprecedented and sudden influx of the precious metals, we should know the whole amount of bullion previously used as currency, and the portion of the annual yield required to supply the wear and tear of coin and bullion, due allowance being made under this latter head for the additional amount of bullion which the reduction of its value would cause to be used in various branches of manufactures and the arts. The surplus portion of the annual yield, which would be forced, as it were, upon the currency of the world, over and above its legitimate wants, would afford an exponent or measure of the depreciation of the whole mass, so far, at least, as that depreciation may not have been counterbalanced by the operation of other causcs.

The value of the metallic currency of the world at the epoch of the gold discoverics has been very variously estimated. McCulloch (after a careful comparison of the calculations of Jacob, Mumboldt and others,) puts it down at $£ 380,000,000$.

The same author estimates the wear and tear and loss of the precious metal at l_{2}^{1} per cent. of the whole mass, or about $£ 5,700,000$ per ammum.

The probable ammal addition to the currency, required by the rapidly increasing population in the gold countries and elsewhere, he

[^3]calculates at 3 per cent. of the whole, or upwards of $£ 11,400,000$ per annum.

Again, the annual consumption of the precious metals in the arts he estimates at $£ 11,200,000$.

$$
\begin{array}{r}
\text { Wear and tear and loss of coin............ } 55,700,000 \\
\text { Increase of currency....................... } 11,400,000 \\
\text { Used in the arts } 11,200,000 \\
\text { Total......................... } 28,300,000
\end{array}
$$

In reference to the last item, McCulloch remark', "this quantity, however great it may appear will be increased with the increase of population and the spread of refinement and the arts; and it will, also, be certainly increased by any thing like a considerable fall in the value of bullion." Indeed I believe there can be little doubt that already the decline in the value of gold bullion has caused it to be employed in various new branches of manufactures and the arts, and the tendency of this increased demand for gold will be of course, "pro tanto" to check the decline in its value.

From a careful examination of all the authorities to which I have had access on the matter, I have arrived at the conclusion that the whole amount of gold raised since 1848 to the begiming of the present year is not much under 300 millions, and that the whole amount coined during the same period may be estimated at upwards of 180 millions.

Had the whole of this enormous amount of coin been suddenly thrown upon the currency of the world, the effect would have been (assuming as before the whole mass of the currency of the world to be $€ 380,000,000$, an average decline in the value of gold througbout the world, of nearly 50 per cent.

But as in reality the rate of influx of the new gold is very different in different countries, and as the effect of this canse in any particular country is directly proportioned to its rate of influx into that country, as compared of course with the amount already in existence there, the decline in the value of gold in some countries would have been above and in others below this arcrage.

The addition to the coin has, however, not been instantancous, it has been spread over a period of 8 years, and during that time, (owing to the extroordinary impulse given to commere from the gold discoveries thenselves, from free trade and other causes) the production of commodities has been going forward with a constantly inereasing energ., so that the whole mass of commodities in the world in 1856 far exceeds in value the mass of commodities in 1818, and therefore the
depreciation of the metals or the rise in the prices of the commodities is not so great as, looking merely to the umparalleled augmentation of the metallic medium of exchange, one might have been led to auticipate. It is hardly necessary to state that it is nor in my power to verify from authentic returns the calculation I have made as to the probable amount of bullion coined since 1848. The following table, however, giving the gold comage of Great Britain, lrance, and the States, from the period in question, has been compiled carcfully from reliable sources, and will serve, I think, to shew that I have not over estimated the whole amount of the coinage of the world since 1848:

	Great Britain.	France.	United States.	Total.
1848	$\stackrel{ \pm}{ \pm}$	£	$\stackrel{\text { ¢ }}{786565}$	$\stackrel{\underset{4.473 .036}{ }}{ }$
1849.	$2,177.000$	1,084,382	1,875,108	5,136,540
1850.	1,491,600	3.407 .691	$6.662,554$	11,561,545
1851.	4.400 .411	10,077,252	12,919,695	27,397,3088
1852.	8,742.270		11,1541,000	$58,28: .521\}$
1853.	11,952.691	$\{13,029,160\}$	12,811.700	$58,23 \cdot .521\}$
1854.	4.152 .183	16,594,0)0	12,171.110	32,917,293
1855.	9,008.66\%	17,200,0:0	11,262,500	37,471,163
Total	£ $44,375,915$	62,620,957	70,190,582	177,187,456

The preceding table shews that the gold discoveries did not produce any very marked effect on the gold coinage of the countries enumerated until 1851, when a sudden and unprecedented augmentation took place in the coinage of each of those countries. The average annual coinage of the three countries taken together for the last four years, exceeds, as appears from the foregoing table, thirty-two millions sterling, an amount which appears almost incredible when compared with their arcrage annual coinage befure 1848.*

It seems, indeed, not unlikely that the mint recently opened at Sydney will coin this year as much as the total ammal coinage of England, France, and the States together, before 1848; for we find from recent Anstralia papers that the weekly coinage at the Sydney Mint in November last was 45,000 sovereigns, or at the rate of £2,310,000 per annum; and we learn further that the increasing

[^4]pressure of business was such as to render an increase in the engineering staff of the establishment necessary.

A late ingenious writer* on this subject has, it appears to me, needlessly complicated the question as to the effect of the recent increase of gold on prices, by a minute consideration of the processes by which the new gold gets into the currency of a country. That it docs so is tolerably plain, nor indeed does there seem to me to be any great mystery as to tho processes by which the result is brought about. A recent American writer on this matter truly says that "currency, like water, seeks a level, and the gold of California thus becomes mingled with the metallic currency of the world. If prices rise here, because our gold is falling below its value in Europe, some of it will be taken away to Europe till prices will cease to rise with us." It may, however, be argued that although the gold portion of the currency of a nation or of the world may be shewn to have been considerably increased, yet it by no means follows that the general mass of the currency (bank notes and every other kind of paper money being included in the term) of that nation or of the world at large has been augmented in the same ratio. It is found, however, in practice that the proportion that the metallic part of the currency bears to the paper is in a given country nearly constant; so that, in truth, any increase of the precious metals brings with it a corresponding increase in the whole mass of the currency of the country. \dagger

It is asserted, however, by some, that the influx of the precious metals from the recently opened gold fields, whatever effects on prices they may be destined ultimately to produce, could not possibly in so short a time have made any sensible alteration in the general level of prices. This impression, one very commonly received, seems to be the result of an erroneous view of the consequences which flowed from the discovery of the silver mines of Mexico towards the close of the fifteenth century. It is taken for granted that there is a strict analogy between that case and the present, and that the effects then produced may therefore be expected to be repeated now in precisely the same way and at the same time. A brief review, however, of the facts comected with the influx into Europe of the

[^5]silver of Mexico during the sixteenth and seventeenth centurics, will show that the supposed analogy fails in the only important point. The silver mines of Mexico had beeu at work for many years before the discovery of the rich mines of Potosi in 1545, and yet it was not until 1574 , that the general level of prices was sensibly raised in Europe. From $157 \pm$ prices steadily advanced until about 1650, when they reached their maximum, at least for a time, and remained stationary or nearly so for a century, at the end of which tine, or about 1750, another marked advance in prices took place. The argument deduced from these facts, by those who assert that the recent discoverics of gold caunot yet have produced a sensible alteration in prices, is this, that if the extraordinary increase of silver which followed the diseovery and working of the Mexican mines required a period of more than filty years to produce a sensible effect on European prices generally, we may from analogy expect that as long a time, or nearly as long a time, must elapse from the opening of the California and Australia mines before any material effect on prices from that cause can be expected.

Mr. Sterling has examined very fully and exposed, I think very ably, the fallacy of this reasoning. The analogy between the cases is only apparent. The value of silver was lowered in 1574 and 1750, and at those epochs only, at least to any considerable extent, because at those two epochs, and at those only, the cost of production of silver was sensibly diminished. In 157 t a reduction in the cost of production of silver was effected by the introduction of the principle of amalgamation in place of that of smelting the silver ore, and by the facilities afforded for the adoption of the new method (in which quicksilver is largely employed,) through the discovery of the quicksilver mines of IIuancavaleca. Again, in 1750, a still further reduction of the cost of production of silver was caused by the comparative cheapness and abundance of mercury from and after that date.

At both the epochs in question, therefore, the reduction of the cost of production of the metal was followed by an immediate and a permanent elevation of prices. And so it must be with gold. The law in both cases is the same; a reduction of the cost of production of either must necessarily occasion (provided of course an indefinite supply can be obtained at that cost) a permanent fall in its value as compared with other commodities. But from the different conditions under which the two metals are produced, the time required for the development of the phenomena is materially altered. Silver requires for its production the application of extensive capital and
skill, and the employment of complicated mechanical and chemical processes. Gold, on the contrary, requires neither capital nor skill, but is, as it were, the immediate and direct result of manual labour. In the case of silver, its cost of production will be reduced by any improvement in the mechanical or chemical processes employed, or by any cheapening of the materials made use of in its manufacture. In the case of goll, there is no room for the operation of these causes. The cost of production, if lowered at all, must be lowered simply because the unskilled labour employed in the gold diggings (the very term implies the rudeness of the operation) is comparatively more productive than the labour previously applied to the same object. The reduction must, therefore, be, at least in the country where it is produced, instantaneous, and so it has been in both California and Australia. "We must not, therefore," says Mr. Sterling, "rashly conclude that because the increase of silver from the Mexican mines did not materially affect general prices in Lurope for more than half a century, the same or anything like the same time must elapse before (the present increase of) gold will create a great permanent and universal elevation of prices in all the markets of the world."

As this paper has already extended considerably beyond the limits within which I had hoped to compress it, I shall now briefly recapitulate some of the conclusions which appear to me to bo piainly deducible from the foregoing facts and arguments.

That the immediate effect of the gold discoveries in California and Australia was a very great reductien of the cost of production of gold in those countries respectively.

That the value of gold, as compared with labour and the products of labour in those countries, immediately fell, and that the fall in its value was duc to and measured by the reduction in its cost of production.

That the surplus gold of California and Australia, being carried by the thousand channels of commerce to other countries, has already produced in the latter a decline in its value proportioned pretty nearly to the extent of their commercial dealings with the rew gold producing countries.

That in the gold importing countries the fall in the value of gold is still going on, and that it is not likely to reach its ultimate limit for some years to come.

That assuming, as I believe we may safely do,* that the new gold

[^6]regions are capable of supplying an indefinite quantity of gold, the value of gold will not sink universally to its permanent or natural value, until the whole of the annual yield is mercly sufficient to meet the demands of commerce.
That when that time shall arrive the value of gold in any country will be determined solely by the cost of obtaining it in that country, and nothing else.
In the preceding remarks I have not discussed the influence of the late war, (for we may happily now speak of it as past), or of many other circumstances which are admitted by all to have exercised a very considerable effect in raising the prices of many commodities both in Canada and elserfhere during the last two or three years.
As regards particular localities or particular classes of commodities the iufluence of these causes may no doubt have been considerable. Glanciug, however, at those co-operating causes, I may, observe that their influence on prices, whatever its amount may be, is essentially different in its character from that of the gold diseoveries, inasmuch as the effects of the former are merely temporary and local, whereas those of the latter are permanent and co-extensive with the commerce of the world.

REVIEWS.

Report on the exploration of Lales Superior and IIuron. By the Count De Rottermund.
(Printed by order of the Legislative Assembly, April, 1856.)
In the Report of this exploration, undertaken at the public expense by the Count de Rottermund, we look in vain for a single new fact of any practical or scientific value. This might indeed bave been predicted, a priori: the ground having been already traversed and reported upou by the Officers of the Geological Commission. When we affirm, however, that the Report of the Count de Rottermund contains nothing new, nothing previously unknown, in the way of facts, we do not mean to imply that it is altogether destitute of new announcements. Some of these, if we are to look upon the work as an exponent of Canadian Science, are not exactly calculated to add to our reputation in the geological world. It is now well known, from the researches of Sir William Logan and Mr. Murray, that the principal rock formations along the northern shores of Lakes Huron and

Superior, belong, apart from the intrusive and overlying traps, to two distinct groups: the Cambrian or Huroniau, underlying the Lower Silurians ; and the Gneissoid or Laurentian formation of still older date. So far as present researches go, neither of these groups* have yielded a single trace of fossils. The Count in his Report, however, in reference to this, tells us, that "a most important fact is the discovery of fossils about Lake Superior." An important fact it would be, truly, were the fossils discovered there, in silu; but when we state that the Count's fossils-and we have seen them-are simply Upper Silurian forms obtained from drifted limestone boulders, the pretended discorery, so ostentatiously announced, might be subjected to a somewhat undignified comparison.

Our mention of the Huronian rocks reminds us of another illustrative trait of a very similar kind, occurring almost at the commencement of the Report. It is there stated, that the rock formations will he divided "for the present into two distinct classes, namely into pherric and azoic rocks, following in this, Mr. Murchison. These terms are already in use among the learned of Europe. I shall arrange the palteozoic rocks according to the fossils which I discovered in the different localities, whether of Lake Superior or Lake Huron. This classilication demands great attention, and very minute discrimination to avoid the solecism of giving names according to individual fancy, not used in the scientific world. Such are the names applied to formations in Canada, of Huronian, Sillery, Laurentine, Richelieu, peculiar to the localities which they indicate, substituted for Jurassic, Carboniferous, Cambrian, Devonian, \&c., which are so well classified, defined and admitted throughout the scientific world." This iz, of course, an attempted hit at Sir William Logan. On reading it, a stranger to our Geology would naturally i.ffer that Sir William had substituted the term Huronian for that of Jurassic, Sillery for Carboniferous, and so on; and, perhaps, that is really what the Count means to imply; since by reference to another of his Reports, \dagger we find him quite ready to acknowledge the presence of Jurassic rocks in Canada. The facts were these : Sir Wm. Logan had mentioned the occurrence of an oolitic limestone near Quebec, and the Count-forgetful apparently of the elementary fact that oolitic limestones are not confined to the so-called Oolitic or Jurassic period, but are common to various epochs-jumped at once

[^7]to the conclusion that Sir William's statement respecting the silurian age of the Quebec rocks, must be altogether wrong. It is but fair that we should quite the Count's own words: here they are-"M. Logan avoue qu'il a vu le calcaire oolitique.* Le calcaire oolitique appartient au terrain jurassique, lequel est au-dessous de la formation supercrétacée, et immédiatement all-dessus du terrain carbonifère." We need scarcely say that the graptolites and other fossils in the rocks about Quebee would euable the merest tyro to determine their general Silurian character; aud that no Jurassic rocks are kuown within the province.

But to return to the Count's charge against Sir Williain, of applying local names to rock groups. Where a rock formation can be strictly paralleled with another well-recoguised group in Europe or elsewhere, the original name is, of course, always retained, provided this be not in itself a mere local designation; but, except so far as regards the broader subdivisions, and especially in the case of localities far distant f im one another, it is very rarely that these exact parallels can be determined in anything like a satisfactory manner. Hence, in place of the forced comparisons of former times, which so greatly retarded the progress of Geology, observers are now everywhere agreed as to the desirableness of temporary local names. If the Count de Rottermund had fully comprehenced this, and followed a plan so universally adopted, he might have been spared the committal of a very glaring and mischievous error: namely, the announcement in his Report of the occurrence at the north-east corner of Lake Superior, of both Old and New Red Sandstone-that is to say, of formations lying respectively below and above the great Carboniferous system. We search in vain for the data on which this startling announcement is founded. No structural details, no sections are given; and not a single fossil is cited. Little matters of this kind were no doubt unuecessary. The only wonder is, that the entire rock series was not discovered, when proceeding in so convenient a manuer. Indeed, now that we think of it, the Count must have come across the Cretaceous system also. He does not mention this, it is true; but then he provides us here with some fossil evidence which adinits of no other conclusion. At least if Cretaceous rocks were not met with, all we can say is, that these fossils are inconvenient things, and had better be let alone. In a list of rocks,

[^8]metals, minerals, and some half-a-dozen fossils, given at page 5 of the Report, the genus Hippurites (or Hyppurites according to the orthography of the report) is enumerated. Now, although the true zoological affinities of the extinct hippurite have yet, perhaps, to be determined, the geological age of these characteristic fossils-restricting them entirely to the Cretaceous epoch-is fixed beyond a doubt. Hence on the authority of this Report, issued as it were under the sanction of the Canadian Government, we may expect before long to find some foreign author quoting these rocks as occurring amongst the formations of Lake Huron.

With reference to the Old and New Red Sandstones mentioned above, our author states:-"The sulphurets are found north and north-east from the lake. I discovered in old Red Saudstone, copper in a native state. In coming down Lake Fiuron [Superior], between Batcheewauanong and Goulais Bay, we find a new red sandstone and variegated sandstone; I should not feel surprised, if' on minute search we should find coal in rear of Gros Cap, above Sault Ste. Marie. I discovered no evidence charocteristic of the current of polarization; that is to say, of that current, which, passing through the centre of the earth to the Zenith, ensures the existence of deep veins, and I should be therefore slow to affirm that the veins of copper extend to any great depth." We know not, for on that point the Report is dumb, how this last operation was effected; neither, in our scientific darkness, can we venture to guess at the nature of the process employed, unless the whole thing were done off-hand by the same kind of intuitive perception which seems to have been so successfully concerned in the determination of the sandstone ages. But seriously, we ask, in a scientific report of 1850 , can such things be? And yet, the curious current of polarization alluded to above, is quite a moderate idea compared with some of the peculiar views enunciated in the more purely theoretical portions of the Report. In one place, for example, we have the following original view of the origin of the copper and other ores of the district in question :-
"Copper ore and ores of all other descriptions are the results of the decomposition of primitive rocks, but on Lake Superior the copper, in its native state is due to the deposit of certain species of organic matters which have a tendency to increase the electro-chemical action, and which decompose the sulphurets, oxides, \&c., which the abundant deposit of matter containing traces of tale serpentine and chlorites, has brought together or concentrated in a certain limited space. For nearly all the rocks contain in the crystalline cleavage, and also in the veins, these matters which appear some-
times to be a sort of cementation, if, indeed, it be not the state of combination of detritus, of desintegration of primitive rocks which have arrived at the state of sandstone and greywacke."

In another part of the Report, we find some still more astonishing theories gravely set forth in elucidation of that vexed question, the production of metallic veins. In order to avoid the charge of garbled quotations, and as an example of our author's logic, and peculiar treatment of his subject, we give the extract entire. We quote, as before, from the authorized English version of the Report:-
"Caloric is known to be a species of fluid which in certain bodies generates electricity, and the smallest friction produces heat, and therefore generates electricity. Electricity produces magnetism. Metals are d stributed in the direction of the electric and magnetic currents as they assume a position in relation to each other depending on their specific gravity, their bulk and the force to which they are subjected being the same.
"As the terrestrial globe turns from west to east, and the sun's rays therefore travel from east to west, the friction of the atmospheric air, the production of electricity, and the generation of the magnetic fluid towards the north and south poles, cause minerals to assume a direction consentaneous to the influence of these sereral forces. Taking for granted the earliest epoch of the globe, when its nature must have been homogeneous, all mineral matters must necessarily, after certain periods of electro-magnetic action, assume a position which is the result of the perpetual action of these two forces; and in those periods the globe must have undergone a decomposition more or less homogeneous according to the intensity of these forces, when once the different kinds of matter have found their relative positions according to their power of attraction or repulsion under the influence of the electro-chemical, magnetic and other fluids.
"The body of the glove has therefore undergone a change in its mode of resistance in certain directions, and it is probable that mountains must have been formed either by the force of expansion in gases produced by internal heat, occasioned by the action of electricity and evolved during the combination and decomposition of bodies, or in other places by the action of depressing causes, sometimes even by their own weight, owing at one time to the disappearance of certain bodies, at another to a certain condition of atomic separation, previously incident to rocks; and the formation of mountains must therefore have their greatest dimensions of length in the same direction; nothing could turn them aside; for the matters
which offered the greatest power of resistance must have also been the most homogeneous possible, at the period when the revolution of the terrestrial globe on its axes was first established.
"The displacement of bodies, depending on their adaption to the action of fluids (la nature qu'ils possèdent pour l'action des fluides) must have produced some effect in changing the centre of gravitation in the globe. This being changed, the direction of the poles must also have been altered; but in its constant rotation the rays of the sun communicating to the terrestrial globe the generative action of the fluids, the metals must have undergone a new arrangement differing from that of the first era, but ever conformable to the combined result of the forces, viz: from cast to west, from north to south and occasionally from pole to pole (celle des polarisations.) But the fluids meeting in their transit bodies endowed with various degrees of fitness as conductors, the direction of the aggregate power of the active forces, to effect the combination and decomposition of bodies, must necessarily have undergone modification, and have effected combinations, greatly varying in their nature.
"As an effect of the various revolutions which the terrestrial globe bas undergone, whether by the alteration of the centre of gravitation and the formation of mountains, by earthquakes, the result of an accumulation of fluid arrested in their transit by an obstruction (digue) composed of bodies of various degrees of fitness as conductors, or finally, by the partial action of volcanoes, or by an inundation of greater or less duration contemporaneous with the primitive formation, the decomposition of terrestrial matter must have proceeded irregularly (a dî subir des lignes brisées) and the terrestrial globe must therefore in subsequent revolutions have become less and less homogeneous, in regard both to the nature of its component parts, to their power of resisting expansive forces and to the depression produced by the weight of masses. The mountainous formations must have been greatly shortened and of unequal height, and metals must, during subsequent changes have been subjuited to many various influences, and have performed an almost exceptional part among the more direct and general operations, acting on the great mass of the terrestrial globe.
"In the present day, after the lapse of many periods characterised by various formations, there is a great difficulty in anticipating the true position, direction and circumstances of combination in which we may expect ta find minerals. In order to form a just conclusion, sufficient leisure is necessary to enable the geologist to observe the locality with aocuracy, and to study the different action and effect of
bodies on each other, in the peculiar circumstances in which they exist. For at different periods, metals must have been arrested by the direct and intense action of certain fluids, and by the proximity of large masses of other substances; and the progress of combination on decomposition in the sereral stages of varying activity may have impelled them to take a direction more or less partial, or altogether exceptional."

We submit the above, without comment, to the discrimination of the industrious reader. If his powers of endurance have carried him fairly through its perusal, he will be able to form for himself a just estimate of the character and value of this new Report on our mining districts of the West. Before closing, however, the present notice, we wish, in justice to ourselves, to state distinctly, that we have searched the Report again and again, with a view to obtain for quotation in faror of its author, the mention of even a single important fact previously unknown, or any piece of information whatever, of a really useful or scientific character. But we declare in all honesty, that we have been unable to meet with auything of the kind. Our judgment, nevertheless, and we truly hope so, may have been here at fault.

E. J. C.

Memoirs of the Life, Tritings and Discoveries of Sir Isaac Newton. By Sir David Brewster, K. II., \&c., \&c. Edinburgh: Thomas Constable \& Co., 1555.
In the year that saw the death of Galileo and the outburst into shot and steel of the quarrel between Charles Stuart and the Commons of Eagland, there was born a premature and weakly infant, little enough to go into a quart mug, and momently expected to die before the gossips could return with tonics; the child of a widow whose husband had died a few mouths before, having been a well-todo yeoman in the Lincolishire hamlet of Woodthorpe, which has lain in its quict valley from Saxon times till now, within sight of Grantham's tall steeple. Not death, however, but a long and glorinus life was this child's destiny, for this was he for whom the world had been waiting some thousands of years to open up the deeps of Philosophy: he of whom in after-time Pope sang,

> "Nature aud Nature's laws hay hid in night,
> " God said 'Let Newton be!' and all was light."

The steps of his public carcer from boyhood to the summit of human greatness may be briefly traced. A quict dreamy boy, not over-fond of school, but always working in his own way, with a turn
for painting, and active fingers to const. uct all sorts of little knicknacks and miniature machinery, water-clocks, mill-wheels, Merlin's carringes, kites of out-of-the-way shapes; making a mouse his miller, and driving pergs into the wall to mark out the hours (" Tsaac's diak" is quite a lion in that rustic neighborhood;) too sickly to mix much in the rough sporis of his playmates, yet not without plenty of spirit on occasion, as witucss the big boy whom he thrashes, then rubs the vanquished nose against the church-yard wall ; and, not content with this physical triumph, sets vigorously to work in sehnol till he can take down his enemy in the class. At the age of fifteen he is recalled to take charge of his mother's farm, and the next year, when " that wild wind made work" in which Oliver's great snul passed to its account, Isalac was jumping backwards and forwards to measure its velocity. The furm in such hands is not likely to pay ; he much prefers lying under a hedge with a mathematical problem while the servant goes on to Grantham market, and so, though the jroblem proceeds to solution, the farm affitirs verge towards dissolution, and it is finally settled that he shall try his fortune at Cambridge, then, as now, the gathering point for the mathematics of England. So in his nineteenth year he enters Trinity as a Sizar and speedily wilis golden opinions from his tutors; hardly a record is left of his life as an undergraduate; but it is impossib'e to doubt that he was a steady hard-worker, yet not without occasional fits of relaxation, if we may judge from such entries in his diary of expenses as the following, otiose et frustra expensa "Supersedeas, China ale, cherries, tart, bottled beere marmelot, custards, sherbet aud reaskes, beere, cake;" and again, "Chessemen and dial, 1s. 4d.; effigies amoris, ls . ; my bachelors' account, 17s. 6d.; at the tarern several other times, £1; lost at cards twice 15 s. ." and the like. Most provokingly the Tripos list for the year When he took his degree is missing, but who can doubt that he was Senior Wrangler? Scholar and then Fellow of his College, he succeeded the famous Barrow in the Lucasian Chair in the year 1669, being then twenty-seven years old, and having by that time achieved nearly all his grand discoveries, which, howeser, were not given to the world for nearly a score of years. The first thing which brought Newton into public notice was the exhibition before the Royal Society of the reflecting telescope invented by him and made with his own hand, which elicited from that bode warm approval, and led to his election as a Fellow thereof; this was followed by a short account of his splendid discovery of the composite character of sunlight, read before the Society, and the publication of his treatise on Optics, the substance of which had already been delivered in his lectures from
the Lucasian Chair, but do not seem to have previously made their way to the knowledge of the public. These discoveries, now universally accepted, met with attacks from various quarters to which Newton replied with much patience and good temper, but which seem to have aggravated his almost morbid sensitiveness and led him more than ever to shrink from publishing to the world under his own name, so that for many years we find him only writing anonymously, or under cover of correspondence with his friends; yet through this means it now began to be current amoug the London Philosophers that Mr. Newton of Cambridge, a fine geometer, and who had published an ingenious treatise on Optics, was in possession of some unknown and powerful method by which he had solved the problem of 'curvilinear motion' that had been baffling them all; which coming to the ears of Elmund IGalley, who had himself broken his teeth over this hard uut, and suspected that Wren and Hooke were in like case, off he goes to Cambridge to consult Mr. Newton, and asking him the question point-blank, receives an answer which takes away his breath, "Why," says Newton simply, "I have calculated it," and Hailey finds that he has done this and a great deal more, and urges his friend to lay these results beforc the Society, exacting after some trouble a promise to this effect. Accordingly Newton sets to work at this task, and on April 28 th, 1686, the first instalment of his treatise is read before the Society, and thanks being returned to the author, his work is referred to Halley to report on, touching the printing, and at a subsequent meeting it is ordered to be printed forthwith, and, of course, at the Society's expense; but whether from the want of funds, or informality causing delay, Halley is driven to undertake the editing and printing at his oun expense-all honor be to his name! At length about midsummer of 1687, the work comes out under the modest title of "Philosophire Naturalis Principia Mathematica." To attempt any analysis of this work, or eren to conver the faintest notion of the grandeur of the discoveries, both physical and analytical, contained in it, would be quite futile within the limits of a review; in the words of L:tplace, it is "pre-cminently above all the other productions of human genius;" the lapse of time bas ouly increased the reverence with which succeeding generations regard it, and it stands imperishably the greatest memorial of godlike intellect that has ever been reared on this earth. From the date of this publication Newton's fame rose rapidly ; in four years not a copy of the work was to be had; it took time before the age assimilated the new philosophy, but the progress was certain, and before his death Newton had the pleasure of seeing his doctrines trium-
phant in all schools. Meanwhile his life went on at Cambridge: as one of the Commission of the Senate when James wanted to intrude his monk for a degree, he took the lead in withstanding the browbeating of Jeflieys and the cajoleries of friend William; was returned as member for the University to the Convention Parliament, and ultimately received the appointment of Maste; of the Mint which he retained till his death, and in which office he carried out successfully that tremendous operation of reforming the coinage, so graphically described by Macaulay; a similar plan for Ireland was defeated by the factious malignity of Swift in the well-known Draper Letters. Thus, then, for the last half of his long life, Newton lived in London attending to the duties of his office, and devoting his leisure to philosophy and kindred subjects, living in ease and allluence, dispensing a golden mean of bospitality, kuighted by his Sovereign, President of the Royal Society, (annually re-elected for twenty-five years,) in familiar intercourse with the Princess of Wales (afterwards wife of George II.,) entertaining distinguished foreigners who came on pilgrimage to him, in correspondence with all that was good and great in that age, generously assisting struggling talent, and dying peacefully at the age of eighty-five with that remarkable utterance of his death-bed, "I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now aud then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me." His body lay in state in the Jerusalem Chamber, was buried in Westininster Abbey, Dukes and Earls bearing the pall, and the Bishop of Rochester ofliciating ; a splendid monument to him rises in the dbbey with an epitaph which is truthful because for him exaggeration is impossible; a medal to his honor is struck at the Tower; Roubillac carves the glorious statue (his masterpiece) which stands in the ante-chapel of Trinity, and the bust which side by side with that of Bacon, adorns their Library, contrasting with the plaster-cast from the face after death that lies beside it, (in which the phrenologist will note the lumps, like pigeons' eggs, that cluster on the lower brow, and which Roubillae has softened into beauty and vacancy;) the telescopes made by his own bands are cherished by Trinity and the Royal Society as their choicest treasures; his image is familiar in the Pantheons of all countries, and his name is borue alike by a Freuch war ressel and one of the floating palaces of the Hudson, and in connection with that philosophy of which he laid the foundations deep and wide, never to be shaken, has become a household word in all languages and among all peoples.

Of such a man we should be glad to learn cren the pettiest details of his every day life-how he looked and lived, and in what way he did all this work; but unfortunately our information is very scanty, for though a bulky correspondence survives, it is mostly on scientific matters, and Boswells as yet were not. We learn, however, that there was nothing remarkable in his person or appearance; his face of no very promising aspect, (though we suspect a phrenologist would have told a different tale,) speaking little in company, seeming full of thought, but languid in look and manner: in disposition, kindly and generous; careless of money though amassing considerable wealth: liberal almost to excess: excessively modest in the height of his greatness: not eager after fame, but on the contrary shrinking from publicity with a bashfulness alnost painful, yet jealous of his reputation, and, when roused, standing spiritedly on defence and using his weapon harshly enough. We must also confess that at times he was irritable, peevish and prone to suspicion; as Locke said, "Newton is a nice man to deal with." We may also notice the singular and total deficiency of anything like mirthfulness or humour about him: he is said nerer to have laughed but once, and in all his writings and familiar letters we cannot see the slightest approach to jocosity. The prime of his life was wholly devoted to science; and when engaged in a speculation, he would concentrate himself wholly on this, indifferent to the outer world, forgetting to eat and drink, sleeping little, and immersed for weeks in the "patient thought" to which alone he himself humbly ascribes all his successes: yet he could break off in the midst of his profoundest labours to go to the sick bed of his mother and tead her with assiduous care, and afterwards, when undertaking the drudgery of the Mint, he abandoned his unfinished investigations on the plea of their interfering with his duty to his sovereign. Labour so incessant in his early life produced its natural results in failing health and weariness of spirit, and we find him once complaining of mathematical studies as being "dry and barren," and thinking of betaking himself to larr! which can only remind us of the tailor who turned light-house-keeper because "he did not like confinement;" but this distrustful mood did not last long; " his own thought drove him like a goad," and he goes on in his career: wie das Gestirn, ohne Hast, aber olne Rast. His conscientiousness and love of truth were singularly strong, and he carried the same into his scientific researches, abmdoning a theory, whatever trouble its construction had cost him, if he found a fact against it. "It may be so," he said, "there is no arguing against facts and experiments," when Moly-
neux thought he had discovered a phenomenon which would upset the whole Newtonian syatem, and told Sir Isaac of it; and this only the year before his death. The sum of his moral characier may be given by Bishop Burnet's words-" He had the whitest soul I ever kner." Such is Newton as we see him through the mist of a century and a half, the Atlas of Philosophy, and as good as great.

Popular tradition (or rather that pseudo-poetry which sueers at the hard sciences and girds at Newton as the model mathematician) has preserved some aneedotes of him, curiously coutradicted by historic fact; thus every one has heard how Newton, having read through the Paradise Lost, only asked, "What does it all prove?" We find, however, that Newton confesses to having been "a capital hand at versifying," and to have had a fondn ss for poetry when young, which, however, he lost in after-age, this latter being an experience not confined to philosophers. So also we have read much of Newton's utter insensibility to female charms, and how the fair young lady, whom his friends wished him to marry, found her finger used as a tobacco-stopper : in fact, Nerton was in love with a Miss Storey, when quite young, and though circumstances prevented their marriage, he behaved very kindly to her in after-life : nay, eren we find him at sixty years of age writing a real love-letter and offer of marriage, though whether for himself or a friend has not boen ascertained: it is certainly a most curious production, but is not the first nor will it be the last example of "wit turned fool" in such a case. The story about the apple, whose fall on his head is said to have suggested gravitation, seems apocryphal; and so also, we fear, is that other touching story about dog Diamond and the burning of the papers; and indeed we rather suspect that if such an event had occurred, dog Diamond would have been sent flying through the window.

It appears the function of our time to be the iconoclast of brilliant reputations, the whitewasher of stained ones; it was not, therefore, to be expected that Newton should escape. Among his contemporaries and successors, in all the furious cuntroversies that raged about him, none ever disputed the grandeur and originality of his discoreries, the purity of his motives, the uprightness of his conduct; this enviable task has been reserved for some among us, and first stands S.T. Coleridge, who, as usual, plagiarising in the fulness of ignorance from German metaphysicians, thinks Newton much over-rated, that he has unfairly appropriated Kepler's due, and that it would take three Newtons to make one Kepler : and him indeed, dogmatising in this foolish fashion, we may whistle dorn the wind without more concern.

Not so can we dismiss Professor de Morgan, a profound mathematician and painful investigator, but withal afflicted so with an itch of impartiality as to make hin most partial against the side to which he might be expected to lean. Certain insinuations against Newton's fairness or truthfulness in the Leibuitzian controversy he has found it necessary to withdraw, and we think it probable that after he has written, more suo, half a dozen treatises on the matter, he will find that, after all, the English and foreign disputants on Newton's side are not so thoroughly and utterly disingenuous as he now believes. Touching this celebrated controversy we may observe, that Newton's claim to the original and first invention of the fluxional calculus, (or the Differential, which is the same,) is undoubted; while Leibnitz's claim to the invention at all, is, at the best, doubtful, since he may have had (indeed had many opportunities of getting) the idea from Newton, and the contrary statement rests only on his own assertion, which no one who has read his character would value a straw. The lately discovered exercises on which de Morgan lays so much stress, seem to us rather the attempts of one who is trying to make out a borrowed idea than the track of original thought. No blame, however, can attach to Professor de Morgan for his opinions on this score, but we take leave to think that his revival of Voltaire's forgotten and groundless scandal about Newton's niece and the Earl of Halifax is simply disgraceful. More serious are the charges brought against Newton by Mr. Baily, in his life of Flamstead: for a complete refutation of them we are indebted to Sir David Brewster, in the work which stands at the head of this article, and we presume nothing more will ever be heard of them. In that saddest period of English History, when only not all men were base, it is an inexpressible relief to turn to the lives of men like Locke, Wren, Halley and Newton, shining mirrors which not the breath of all the rattlesnakes in Virginia can dim.

The work above cited, by Sir David Brewster, is professedly an account of the life, writings and discoveries of Newton. In some respects Newton is happy in his Biographer, for Sir David is the "prince of experimenters," and moreover wields a caustic and vigorous pen, and has an enthusiastic love for the great master ; but in other respects, we are sorry to say, his performance has deeply disappointed us. In the perfect philosopher there are three distinct characters united: first, the experimenter who has to provide the raw material ; next, the natural philosopher, who classifies phenomena and deduces the laws or principles which govern them; and last, the analyst, who has to mork out results from such laws, and to invent the machinery for
doing this. Seldom, indeed, is it that we find in any one individual more than one of these distinct functions eminently developed, yet Newton takes foremost rank in all. There have been experimenters who have equalled, perhaps surpassed him in fertility ot device and acuteness of observation, but in both the other classes he stands unrivalled; and taken in conjunction, nut only is there no one like him, but hardly second to him, perhaps Laplace the nearest, but that only longo post intervallo. To write then a full account of the discoveries of such a man would require for the task one who is able to appreciate him in all these departments. Now, Sir David Brewster is undeniably a splendid experimental Philosopher, but we are not aware that he has ever laid claim to eminence in pure, (and, by consequence, in applied, mathematics; accordingly, while a great portion of his bulky volumes is devoted to matter we camot help considering irrelevant, such as the lives of Tycho Brahe, Galileo, and Kepler, Lord Rosse's Telescope, the discovery of Neptune, and a good deal of ambitious writing, which we could well have spared, there are but about ten pages devoted to an analysis of the Principia, and those disfigured by blunders, (slips we would willingly call them) which we can hardly credit our eyes on reading. Still worse do Newtou's inventions and researches in pure mathematies fare, numbers of them being passed over without comment, some not even mentioned. To make up for this omission we have nearly a third of the work taken up by the optical rescarches of Newton and of others, both before and after him. Now, Newton's discoveries in optics, though enough to make half-a-dozen reputations, are those on which his fame least rests, for, though he discovered the composition of colours in white light, by an accident of manipulation he missed its corollary, the irrationality of dispersion ; and though his experiments on the colours of plates and in diffraction and interferences, were beautiful and valuable, yet by an accidental mismeasurement be was confirmed in referring them to a theory which is now universally rejected. The relation between Newton and his Biographer is here somerrhat curious. Newton's analysis of the solar spectrum was met at first by much opposition and controversy, though it speedily triumphed over assault, and has been accepted by all down to the present time, (except, indeed, by Göethe, of whom we need not here speak) when it has found an assailant in Sir David himself. The substitute proposed by him he has been unable to persuade his contemporaries to accept, and thus in the present work we find a running parallel implied between Newton and his detractors ou the one hand, and Sir David and the present generation on the other. Newton condescended to reply with great tem-
per and patience to his inane objectors, but Sir David flinging his triple spectrum in the face of the world with sarcasms 'peu spirituelles,' as Moigno designates them, reminds us rather of Ajax defying the lightning. Nor is this all the situation. Newton's hypothesis of emission has been abandoned by every philosopher of eminence except Sir David Brewster, who remains its sole and sturdy defender, but there is this difference between them: Newton's objection to the opposite Huyghenian doctrine was a solid and plausible one, to which no answer, in his day, was or could be given; he asks and reiterates the question, why, if light were propagated by undulations like sound, it should not spread in all directions on passing through an aperture, as sound does, instead of only illuminating the space in front. It required higher analysis than Hooke or Luyghens possessed, to give the real answer to this, but the answer has since been given completely, and there is small doubt that if Newton had seen this, he would have discarded his own hypothesis, (as indeed he seems sometimes half inclined to do), in farour of the undulatory. We can willingly excuse Sir David for cutting very short all the circumstances that make in favour of the theory he rejeets, but one hardly knows whether most to admire the audacity or feel shame for the infatuation of a sentence like the following, in which, be it observed, the 'disciples of Hooke' are just the whole present generation of philosophers.
"In the present day, the disciples of Inooke, wno 'split pulses' with more success than he did, and whose theory of light has attained a lofty pre-eminence, have not scrupled to imitate their master in measuring optical truths by the undulatory standard, and in questioning and depreciating labours that it caunot explain, or that iun counter to its deductions. There is fortunately, however, a small remnant in the Temple of Science, who, while they give to theory its due honours and its proper place, are desirous, as experimental philosophers, to follow in the steps of their great master."

In estimating rightly the grandeur of Newton's discoveries, it is just to consider the circumstances under which they were made: the magnificent temple he erected, marvellous in itself, becomes immeasurably so when we cousider that he had not only to build, but to make the bricks, find the straw, and fashion the ladder and trowel. From a Mechanics, for which he had to supply the fundamental laws-through the planetary and cometary motions-up to the Lunar Perturbations and universal gravitation; from an Algebra, to which he gate the Binomial Theorem-through the differential and integral calculus which he invented-up to the calculus of Variations
-what gigantic strides are these! It was the fashion of the age to hide processes, and offer results without demonstration : the propositions in the Principia are all geometrical (indeed they would otherwise not havo been understood for a century, but there is little doubt most of them were obtained originally by analysis-singularly unfortumate both for Newton's fane and for the sake of us who should reap the bencfit of his labours. Ono proposition given without demonstration proves that he had mastered the calculus of variations, the invention of which afterwards beeame the centre-stone of Lagrange's chaplet: in his "rectification of curves" he must have passed through the integrals which now bear Euler's name: a single construction for conic sections would seem to shew that he had anticipated one of the most reeent and beautiful processes in analytical geometry invented by MI. Chasles. Nothing can be more startling than thus, in the apparently unpenetrated forest, to come across a mighty tree felled, with "Newton-his mark" plain upon it: some of his propositions remain undemonstrated to this day ; for instance, the geveral properties he asserts of curves of the third order, (the classification of which is not the least remarkable of his labours,) and also some strange properties of the roots of algebraic equations. In other cases no one has even guessed at the methods by which he obtained his results; as in the case of that ratio of the oval axes of the moon's orbit, and of the axes of the carth's figure, where he boldly contradicted the then universal opinion that the equatorial was shorter than the polar; or again, censider this sentence from the 23 rd proposition of the third book, when speaking of the progression of the moon's perigee: "Diminui tamen debet motus augis sic inventus in ratione 5 ad 9 vel. 1 ad 2 circiter, ob causam quam hic exponere non vacat"-" for a cause which here I have not leisure to explain;"-this very inequality nearly drove subsequent calculators to reject altogether the Newtonian theory of gravitation, aud it was not till the third trial that Clairaut in despair carried his process to a closer approximation and found the next term give him the required result. Equally wonderful is the way in which Newton sets about doing things that would seem to require a century of preparation to solve : nothing seems to stop him-his tread is that of a lion :-" Ex ungue leonem," as Leibnitz said: if he wants an equation solved, he invents a method of approximation for it; if he wants an algorithm for annuities, he makes one; if he wants to explain the precession of the equinoxes, and suspects it to arise from solar and lunar action on the earti's equatorial protuberance, he considers this latter a belt of satellites, and docs it; if he wants
to find an expression for the velocity of sound, he applies a theory "wholly inapplicable in all its parts," (the words are Sir John ITerschel's, but we doubt the assertion,) and obtains the right expression, confirmed in after-time. Wheu we reflect also that his analysis and the germs, at least, of his great physical discorenies were all obtained by the time he reached the age of twenty-three, we can only bow in awe and reverence before this intellect, which is more divine than human.

Of Newton's labours in other fields we can only speak very briefly: strange to say, he was an alchemist, and devoted much time to the practical pursuit of this studr, keeping his furnace going night and day for six weeks at a time: of the precise nature of his pursuits no trace is left. He also deroted much attention to theology, and concerning his opinions hereen, his biographer treats very tenderly ; perhaps it wou'd have been as well to say at once, that, in common with most of the great men of that age, he approximated to Arianism : several theses of his are here published for the first time, but we suspect the most important are still suppressed. He also published on the interpretation of the Prophecies: Coleridge calls his speculations " ravings:" they do not seem to differ much in character from those of other writers on that subject. Many other minor works we bave not space to notice, but may refer to his examination of the famous text in the First Epistle of St. Jolu, as a masterpiece of classical criticism.

In conclusion, we may notice the very singular fact that the mantle of Newton's genius did not descend on any of his countrymen ; for nearly a century after his death, there is no English name enrolled on the annals of scientific farne, while in France a splendid constellation of illustrious savans shone in his wake. This is sometimes attempted to be accounted for by the fact of the English adhering to the geometrical methods of Newton, (which, however, he had used only for dressing up his results for publication, while the French, discarding these, had betaken themselves to perfecting the analysis he had invented. Sir David Brerster inclines to attribute it rather to the want of encouragement from Government to Science. Neither one nor the other cause seems to us a satisfactory explanation: as to the latter, English science now flourishes without the fostering care of paternal Goverument; and, besides, the splendid endowments of the English Universities have surely offered material help enongh : for the former, we may remark that the tools were not so much in fault as the want of workmen to handle them: what can be done with Newton's geometry has been clearly enough shewn
latterly by Whewell in his Dissortntions on Lib. IIT.; by ITersehel in the Perturbations, and by W. Thomson in Potentials. The fact seens to be that in every mation thero aro epochs whether of scie:ice, literature, statesmanhip, oven morality. Why have wo had no dramatist since Shakspore? Why that long dearth of poetry between Pope and Wordsworth? Tho fact seems indisputable though the cause may be obscure: In 1830 Sir John Herschel wrote: "In mathematics wo have long since drawn tho rein and given over a hopeless race." Even then, that assertion was more modest than exact, considering the names of Airy, Peacock, Babbage, Labbock, and Hersehel himself. At the present day, however, a great revival has begun: England supports by voluntary subseriptimn two jourmals devoted oxclusively to mathematics, a feat unparalleled in any country: the British Association and tho various Societics are displaying great vigour; and a long list of English names could be cited to compare with any continental celebrities: when we say English, we of course include Scoteh, for Secthand has contributed far more than her sharo to this list, though, owing to the poorness of her University prizes, her sons all repair to Cambridge, still, as in the days of Newton, the citadel of s ience. Our littlo sister of Dublin, so long silent, now discourses eloquent inusic, and even Oxford has discovered that great men have lived since Aristotle, and that the voyage of scientifie diseovery did not end when the ark stranded on Mount Ararat. Many signs combine to lead us to believe that we are on the verge of grand discoveries: the new methols of analysis lately inverted (notably by Geerge Boole and Sir W. Jamilton) seem converging to a machinery which will surpass that of Newton as Newton's surpassed that before him; and the experimental discoverics of Faraday and others remiud us of those of Kepler, which only wanted the Newton to give them the breath of life. May we live to hail the advent of one on whoso tomb shall be inscribed an epitaph more glorious even than that which we here translate :*

> Here lies
> Isan Nrwros, Kut.,
> Who, by an almost divine power of mind,
> Was the first to demonstrate
> The motions and figures of the Planets, The paths of Comets, amd the tides of Ocean, Mathematies of his own invention lighting him the way. The different refragibilities of the rays of light

[^9]And the properties of the colours theuce arising, Which uone before had even suspected, he investigated thoroughly. An assiduous, sagacions, fathful Interpreter Of Nature, Antiquity, Holy Scripture, By his Philosophy he vindicated the Most High God in his majesty, By his life he exhnbited the Gospel in its simplicity.

Let mortals congratulate themselves That there has existed such and so great An honome of the human race. Born, 25th Dec., 1642 , Died 20 Mar., 1727.

Modern Geography, for the use of Schools. By Robert Anderson, IIead Master, and Lecturer on Geography, Normal Institution, Edinburgh. London, and New York: 'I. Nelson d Sons. 1 Sj̄6.
This constitutes one of Ω set of works prepared with great care, as an educational series, designed - as the title expressly states-fur the use of Schools. The purpose of the volume in question is further defined as furnishing a work calculated to "prove serviccable to the intelligent teacher, in making Geography a more intellectual, and at the same time a more interesting study than it has hitherto generally been in our schools." Such an object is one well deserving of commendation even as an attempt; but, in this compact and carefully condensed volume, the success is unquestionable.

Many features in this work are novel and ingenious; and when we consider the very questionable character of such American works as that of Morse, at present in almost universal use throughout Canada, we do not regard it as the least of the various attractions of this work that it is, more than almost any other we know of, a British school book. These will be apparent from an enumeration of some of its most characteristic peculiarities. For example: what may be designated as a geographical base line is adopted for comparing the latitudes of countries in the Old and New Worlds. This consists of the countries which, lying most nearly in a line north and south of Britain, occupy the western shores of the Old World ; and these elements of comparison are rendered still more practically available by an ingenious diagram, appealing to the eye, and greatly assisting the memory of the joung student. Using this method of geographical comparison, here are a few of the results :

Newfoundland is shown to be in the same latitude as the South of England and the North of France. New Brunswick is in the same latitude as the middle of France; Nova Scotia, in the same as
the South of France; and Canada as from the middle of England to the middle of Spain.

In like manner the sizes of all countries are measured by the British Isles, either in whole or in part: a very definite idea of the sizes of Eagland, Seotland, Wales and Ireland, having been previously given. The direct distances from London of all the capitals in the world add another concise and practical feature : e.g. St. John's, Newfoundland, 2,300 miles S. W. of London; Mintreal, 3,250 miles S . W., $\mathcal{E c}$. The priacipal seas of Europe are measured by the like standard; and the relative size of British Colonies and Foreign possessions are brought out by similar comparisons. Thus New Kenland is described as about the size of Britain; Ceylon is stated to correspond very nearly to that of Scotland; and British America, embracing the lludson Bay Territory, as having an area equal to a square of 1,600 miles: more than three-fifths the size of Europe; Canada, with an area of 400,000 square miles, equal to a square of 632 miles, or four and a half times larger than Great Britain, \&c. So also minuter subdivisions find a similar treatment. Thus all the counties of England are measured by the size of Middlesex, and practically the same comparison suffices for the whole British Isles: the counties of Edinburgh and Dublin being so nearly of the same size with the Metropolitan County of England, as to arert all risk of arousing Scottish or Irish jealousies by any undue preeminence being giveu to the ancient area of the Middle Saxons of England.

These are only a few of the peculiar and novel features of the work. In others, countrics, and their districts and counties, are classed according to their river basins. The rivers, again, are grouped under the oceans and seas of which they are tributaries; the towns according to certain proximate ratios of population; and in many other ways intelligent aids to memory are substituted for the old unreasoning and laborious method of learning by rote.

When we consider the fashion in which such American School Book manufacturers as Morse or Mitchell convert a geographical manual into a Yankee penny trumpet for the glorification of that one great nation of the universe, and the strong anti-British feeling which so frequently accompanies such fanfaronade, the practical and altogether unboastful British character of this useful school book, ought to commend it for general adoption in Canada, as in other parts of the British Empire.

In Morse's Geography a largor space is devoted to some singlo States of the Union than to tho whole British Isles; and while the glories of " Bunker Mill," and the feats of arms of the "Green Mountain Boys" of Vermont, in the Revolutionary War, find a prominent place, the most charncteristic feature that this American trainer of the young idea can discover in relation to the geography (!) of Iroland is "distraining for rent," which is accordingly illustrated by means of a wood-cut representation of a policeman driving off a poor peasant's cow ; his wife on her knees, his son, nearly naked, and all vainly imploring mercy from the stony-hearted embodiment of British law! Yet this book is to be found in use, we belicev, throughout the majority of our Canadian schools. Or, taking into consideration the less objectionable feature of the predominance naturally given by the geographers of the Union to their own Republic, we find in Mitchell's "Manual of Geography"another American school book, which has displaced that of Morse in some of our Provincial schools-nearly forty pages devoted to the United States, while one page and a half suffices for all British North America. In the same work more than one State of the Union monopolises a larger space than England, and tho whole Geography of Europe actully occupies less than two-thirds of the amount of room devoted to the Great Republic! The object held in riow in such teaching is abundantly apparent, so far as Americans are concerned; and its influence on the character and idiosyncracies of the people of the States has already developed itself in a very unmistakable manner. Its true wisdom, as an element of uational mental culture, even for them, may well be questioned; but for us, there can be no doubt that such a system of Americanising our youth is the very last thing which any wise or patriotic Canadian would advocate as the training calculated to make them either well instructed geographers, or useful citizens.

We are informed that it is in contemplation to prepare a special edition of Anderson's "Modern Geography" for the use of Canadian and other Colonial Schools: we shall hail such as a contribution of no slight value to the educatioual materials required to complete the Provincial system of education which already reflects so much credit on Upper Canada.
D. W.

Report on Fictoria Dridge. By Robert Stephensm, Disq., M. J. December, 1855.

Canadians have been so necustomed to look with profound resplect upon the achievements of their Ameriean neighbours in tho art of bridge building, and havo been so habituated to comsider their railway structures as models of the most successful ndaptation of means to the accomplishment of desired ends, that they may be pardoned when they point with exultation to the immense structure now in progress at Montreal, or in a similar apirit claim their full share of credit in the completed one that spans the chasm between the Niagara Frontior and the State of New York; for both surpass in magnitude and in boldness of conception any similar works in America, wo may say in tho world.

Notwithstanding, however, the natural pride in the material advancement of the country indicated by these works, the expenditure involved in the completion of one of them is not contemplated without misgiving, nor are we justly chargeablo with captionsness if we regard with enquiring doubt the soundness of the policy which designed a work of such magnitude as the Victoria Bridge to serve a traffic so little developed as that of the Grand Irunk Railwey; and at the same time substituting in its construction, as well as in the construction of lesser bridges and viaducts, a material so expensive as iron, for timber, which is found in such abundance in the vicinity of nearly all the works. 'To have advanced so far at one bound as to erect in Canada bridges and viaducts equal in cost,-as they doubtless are in durability,- to the best structures in Britain, argues a confidence in the ability of this country to supply a traffic sufficient to justify such expenditures, which many believe will not be borne out by the result; and there are not wanting those who, while admitting that the durable fabrics now drawing to completion on the Orand Trunk Railway are well calculated to endure for ages, and to reduce working expenses; yet point to the structures of the United States as models of works that would be infinitely better suited to the immediate wants and resources of a country so young as Canada.

On the other hand those who have initiated, and support the policy of so building as to require no re-building, argue that a more careful estimate of the cost of maintenance of permanent way as affected by the system of construction adopted, will dissipate these doubts, and teach us that true economy is best subserved by securing a permanent way that shall be, in as far as structures are concerned, that which its name indicates. Tney argue moreover that as between structures of indestructable material and those of a material obnoxious
to all the causes of destruction to which timber is liable, the question is entirely one of finance in the supply of capital and not of dividends in the future.

By way of illustrating this question we will assume that the foundations and masonry for abutments, piers \&c., are to be the same whether the superstructure is to be of wood or iron, and base our calculations on a length of 5,000 lineal feet of bridge superstructure, varying in spans of from 50 to 250 feet which may be taken to represent the bridges on a line of 300 miles.

Basing our estimate for wooden superstructures on the known cost of such works built on McCallun's patent, and which, for such spans as we contemplate in this estimate, would average $£ 810 \mathrm{~s} .0 \mathrm{~d} . \mathrm{Cy}$. per lineal foot, and estimating the cost of the iron superstructure of similar spans at an average of $£ 40$ per foot, (that of the Victoria Bridge is set down in Mr. Ross' report at £57 Stg. $=£ 7 \mathrm{~L} 5 \mathrm{~s} .0 \mathrm{~d} . \mathrm{Cy}$.) the following amounts will represent the first cost of each :

5,000 feet of Timber superstructure at $£ 810 \mathrm{~s}$. Cy. $£ 42,500$.
5,000 lineal feet of Iron superstructure at $£ 40$. Cy. $£ 200.000$.
The former at 6 per cent. would absorb an annual revenue of $£ 2,550$, and the latter a revenue of $£ 12,000$. But to the first must be added an amount annually sufficient to cover depreciation, repairs, risk from fire, and the cost of constant vigilant supervision, which would perhaps be not less than 15 per cent. per annum, and under some circumstances might amount to 20 per cent. these contingencies not being applicable to the iron superstructure would bring the annual charge for the wooden bridge up to $£ 8,925 \mathrm{C}_{y}$. being within $£ 3,075$ of the like charge for the more desirable one; a difference, however, which being capitalized, will represent an item of upwards of $£ 50,000$ in the capital account. It is difficult therefore to resist the conclusion that the introduction of Iron Railway Bridges into this country is premature.

The enhanced cost above indicated is still more apparent if we apply the comparison to the Victoria Bridge. Spans of the dimensions adopted in that work have frequently been executed in wood in the most reliable manner at a cost of S35 per foot; and with cevery provision against fire, for protection against the weather, for ventilation, \&c., the cost would not exceed \$45 or $£ 115 \mathrm{~s}$. Cy. the whole cost of the 7,000 feet which Mr. Ross estimates in iron at $£ 400,000$ would not therefore exceed $£ 78,750 \mathrm{Cy}$. it would consequently be cheaper to build in wood even if it demanded an entire reneval every five years. Mr. Stephenson, however, has dismissed all thought of a wooden superstructure in a very summary
manner, and as it appears to us for no very sufficient reason,--he says in his Report:
"In all that has been said respecting the comparativo merits of the difierent systen:- vi roadway, you will perceive that a complete roooden structure has not been alluded to, because, in the first place, when the design for the Victoria bridge was at first being considered, wood was deemed not sufficiently permanent; in the second place, the structures alluded to in the report, as being inferior to that row in progress, are proposed to be constructed of stone and iron work; and as a third reason, the construction of the tubular roadway is already so fur advanced that any alteration, to the extent of abandoning iron and adopting wood, must involve monetary questions of so serious a nature as to render the subject beyond discussion, or even being thought of in this report.

From this it would appear that the construction of the tubes has been so far advanced as to preclude all thought of any other description of superstructure now; while wood was discarded in the previous consideration of the subject as not being "sufficiently permanent" an assumption perfectly true where it desirable to emulate the builders of the Pyramids, but not entitled to implicit faith when measured by a commercial standard suited to these provinces. Mr. Stephenson lias probably omitted to draw the needful distinction between England, where iron and capital are abundant and wood scarce, and Canada, where precisely the reverse of these conditions exists; in fact he appears to have adopted the same reas uing in relation to the Victoria bridge as he did with reference to the Britannia, forgetful of the innumerable opportunities afforded in this country for the employment of capital in a much more productive manner, and more beneficially not only for the railway but for the country at large.

In dealing with questions of stone and iron, however, Mr. Stephenson has shewn himself quite at home; and in comparing the various methods of construction with those materials both he and Mr. Ross leave nothing to be desired. We entirely adhere to the riews expressed by them. "The approaches" says, Mr. Stephenson:
"Extending in length to 700 fees on the $30 u t h$, or St. Lambert side, and 1300 feet on the Point St. Charles side, - consist of solid emoankments, formed of large masses of stone, heaped up and faced on the sloping sides with rubble masoury. The up-stream side of these em'rank nents is formed into a hollow shelring slope, the upper portion of which is a circular curse of 60 feet radius, and the lower portion, or foot of the slope, has a straight incline of three to onc, while the downstream side, which is not expoied w the direct action of the floating ice, has a slope of one to one. These embankments are being constructed in a very solid and durable maner, and from their extending along that portion of the river only, where the depth at summer level is not more than two feet, six inches; the narigation is not interrupted, and a great protection is, by their means afforded to the city from the effect of the "shoves" of ice which are known to be so detrimental to its frontage.

For further details on this subject, I beg to refer you to the Report made by Mr. Ross and myself or the 6 th of June, 1853, to the Honorable the Board of Railway Comm:ssioners, Quebec."
We have not at hand the report referred to, but in his report of 3rd November Mr. Ross goes over the reasons which influenced him in deciding on the dimensions of the abutments, aud justities the manner of their construction. He says of them :
"These it appears, are considered unnecessarily large, and more costly than the tubes, and it is suggested that they may be reduced by making openings in, or by shortening them. These abutments are not in reality what, upon paper, they appear to be, a solid mass of masonry: they are hollow-each having eight openings or cells, 48 feet in length, and 24 feet in width, separated by cross walls five feet in thickness. The fiank wall on the down stream side rising nearly perpendicular, is seven feet in thickness, and that on the upper stream side is sloping from its foundation upirards to an angle of 45° : its thickness is twelve feet, and presents a smooth surface to facilitate the operations of the ice, on which account its form had thus been determined; and to ensure greater resistance to the pressure of the ice, the cells are filled up with earth, stone and gravel, so that one solid mass is thus obtained at a moderate cost. The subjoined plan and section of this work will better explain its form and proportions.

The idea of introducing any other description into the abutments than those described, is altogether inaimissuble; passages through it where ice could accumulate, would ensure its inevitable destruction upon the first hydraulic pressure it had to encounter.

I have observed in this inmediate neighborhood the effects of swift currents created by obstructions in the river on a recently formed causeway constructed of timber connecting a small island below the bridge with the shore, haring openings about 12 feet in width at intervals of about 30 feet.

In the autumn of last year, these openings were partly covered by heavy tim. ber and planking strongly secured by iron work, and the consequence has been, that during last winter, the first crush of the ice, in forcing its passage through, destrosed every timber, plank, and bolt, that opposed it-having got under, it was immedi.' 3ly blocked up, and the pressure of water still forcing its way, the jam became at length so tight, that it burst with an explosion.

It is stated that the length of the abutments is unnecessary and greatly in excess. Upon paper this may seem so, and a recollection of the idea conveyed to my own mind subsequent to the earlier considerations of this subject which led me to the conclusion of adopting their dimensions, prevents my attaching so much importance to such a view as I otherwise might do. You will recollect that the bridge is approached from the north shore by an embankment 1200 feet, and from the south shore 800 feet in length, the river being thereby narrowed to this extent; the waters thus far embaged, have now to find their way through the bridge, and the current, overcharged with ice, sweeping its way along the front of the embankment into the nearest passage, attains, ere reaching it, a velocity which nothing but the most substantial masonry could resist. This, it will be seen, bears on the question of the length to which such masonry should extend, and I am more than ever convinced that I have not exceeded the limits which prudence dictates-thus confirming my original view in reference to this particular and very important point. I
think you will readily admit that I have given ample reasors in justification of the extent of the abutments, bearing in mind that the form of construction contributes more to their apparent magnitude than a cursory glance at their appearance upon paper would justify one in supposing."

Proceeding with a description of the masonry of the Piers and of the details of their foundations, Mr. Scephensou continues:
"Advantage has also been taken of the shallow depth of water, in constructing the abutuments, which are each 242 feet in length, and consist of masonry of the same description as that on the piers, which I am about to describe, and, from their being erected in such a small depth of water, their foundations do not require any eatraordinary means for their construction.

The Foundutions as you are aware are fortunately on solid rock, in no place at a great deptin below the summer level of the water in the river.

Various methods of constructing the foundations suggested themselves and were carefully considered, but without deciding upon any particular method of procecdiug, it was assumed that the diving bell, or such modifications of it on a larger scale, as have been recently employed with great success in situations not very dissimilar, would be the most expedient. The contractors, however, or rather the Superintendent, Mr. Hodges, in conjunction with Mr. Hoss, after much consideration on the spot, devised another system of laying the foundations, which was by means of floating "Coffer-dams," so contrived that the usual difficulty in applying coffer-dams for rock foundations would be, it was hoped, in a great measure obviated. When in Montreal, I examined a model of this contrivance and quite approved of its applization without feeling certain that it would materislly reduce the expense of construction belors that of the system assumed to be adopted by Mr. Ross and myself in making the estimate. In approving of the method proposed by Mr. Hodges, I was actuated by the feeling that the Engineers would not be justified in controlling the contrcetors in the adoption of such means as they might consider most economical to themselves, so long as the soundness and stability of the work were in no way affected.

This new method has been hitherto acted upon with such modifications, as experience has suggested from time to time, during the prorress of the work, and although successfully, I learn from the contractors that experience has proved the bed of the river to be far more irregular than was at first supposed,-presenting. instead of tolerably uniform ledges of rock, large loose fragments which are strewed about, and cause much inconvenience and delay.

They are therefore necessitated to vary their mode of proceeding to meet thesenew circumstances; and it may be stated, that allobservations up to this time shew the propriety, notwithstanding the difficulty with dams, of carrying the ashlar masonry of the piers, down to the solid rock-ard that any attempt at obtaining a permanent foundation by means of concrete, confined in "caissons" would be utterly futile; -howerer, if it were assumed to be practicable, there would b, extreme danger in trusting such a superstructure of masoury upon conerete, conined in cast iron "caissons" abeve the bed of the river: indeed, considering the peculiarities of the situation and the facts which have been ascertained, this mode of forming foundations is the most inappropriate that can be suggested, as it involves so many contingencies, that to calculate the extreme expense would be utterly impossible.

These considerations lead me therefore to the conclusion that the present design for the foundation is as economical as is compatible with complete security."

A legitimate conclusion, which we apprehend will not be gainsayed.

Mr. Ross gives a graphic description of the difficulty of putting in these foundations:
"Any diminution in these piers (referring to a proposal to reduce the dimensions of the centre piers) which I might according to my own views of the case be induced to adopt, I should treat as some compensation, as far as it went, for the increased depth of the foundations generally, which are found greatly to exceed our anticipations: although every pains had been taken to ascertain what these would be, we find in the progress of the works that the bed of the river in most parts is formed of large boulders heaped together in large masses, the interstices being filled up with gravel, sund and mud, in many instances forming a hard concreted mass, and in others the reverse; beds of quick sand and mud being as frequent as any other. Three thousand tons of such material we had to clear out of the foundation of No. 5 pier, as you will see indicated on the diagram already refurred to, below the level at which our previous examination would lead us to expect the foundation we sought. One of the boulders taken out, by admeasurement would weirh about eleven tons; masses of three and four tons are strewed as thickly as pebbles on the sea shore. The shatlows in the river are evidently formed by these deposits, and I have no doubt in every instance where these shallows appear we shall have to encounter similar difficultics. In pier No 3 we found a depth of four feet at one end, and nine feet at the other, to clear out ere w. ched the rock. These unlooked for contingents have materially retarded our season's operations, otherwisa we should by this time have Nos. 3, 5 and 6 nearly completed, as it turns out we require another season to accomplish this. And here I think it well to observe that up to No. 6 inclusive, the expensive ontlays have already been incurred; the dams have been completed, and in all except No. 4 the water has been pumped out and the machinery erected for setting the stone, but N o. 5 is the only one where we have been able to complete any masonry, owing to the unlooked for causes I have already described. These contingents render it impossible to complete one pier in less than two seasons, though, as in the case of No. 1 pier, where no such unlooked for difficulty arose, the whole was begun and completely finished in one season, thus saving the removal and re-erection of all the machinery and appliances necessary, besides the reparation of such damages as the winter operations may produce."

Of the spans, and the considerations which led to their adoption, Mr. Stephenson says:
"These considerations lead me therefore to the conclusion, that the present desirn for the foundation is as economical as is compatible with complete security.

We are now brought to the question, as to whether the upper masonry is of a more expensire description than necessary, or whether it can be reduced in quality. This question is exceedingly important, since the cost of the masonry constitutes upwards of 50 per cent. of the total estimated cost of the bridge and approaches. The amount of the item of expenditure for the masonry is clearly
dependent upon the number of pierz, which is again regulated by the spans between them.
The width of the openings in bridges is frequently influenced, and sometimes absolutely governed, by peculiarities of site. In the present casc, however, the spans, with the exception of the middle one, are decided by a comparison with the cost of the piers; for it is evident that so soon as the increased expense in the roadway, hy enlarging the spans, balances the economy produced by lessening the number of piers, any further increase of span would be wasteful.

Caleulations, based upon thi. ..inciple of reasoning, coupled to some extent with considerations based upon the advantages to be derived from having all the tubes as nearly alike as posible, have proved that the spans which have been adopted in the present design for all the side openings, viz: 242 feet, have produced the greatest economy. The centre span has been made 330 feet, not only for the purpose of giving every possible facility for the navigation, but because that span is very nearly the width of the centre and priscipal deep channel of the stream.

The correctness of the result of these calculations obviously depends upon the assumption that the roadway is not more costly than absolutely necessary; for if the comparison be made with a roadivay estimated to cost less than the tubular one in the design, then the most economical span for the side openings would have come larger than 242 feet, and the amount of masonry might have been reduced below what is now interded. In considering the quantity of masonry in the design, you must, therefore, take it for granted for the moment that the tubular roadray is the cheapest and best that could be adopted, and leave the proof of this fact to the sequel of these remarks."

The Ice Brealers are next considered, and the value of the plans adopted as compared with the unwieldy "islands" of timber and stone at first proposed, as well as the comparative economy of the masoury, is made sufficiently apparent:

[^10]The comparison which Mr. Stephenson draws (relative to economy) betreen the "Boiler Plate Girder" as adopted for the Victoria

Bridge, and other methods of constructing iron superstructures, is exceedingly interesting:
"At present there may be regarded as existing three methods of constructing wrought-Iron girders or beams for railway purposes.

First,-The Tubular Girder, or what is sometimes called the Box Girder, when employed for small spans, with which may also be named the Single-ribbed Girder, -the whole belonging to the class known as 'Boiler Plate Girders.'

Sxcond,-The Trellis Girder, which is simply a substitution of iron bars for the wood in the trellis-bridges, waich have been so successfully employed in the United States, where wood is cheap and iron is dear.

Thirv,--The Siugle Triangle Girder, recently called * Warren,' from a patent having been obtained for it by a gentleman of that name.

Now in calculating the strength of these different classes of girders, one ruling principle appertains, and is common to all of them. Primarily and essentially the ultimate strength is considered to exist in the top and bottom,-the former being exposed to a compressive force by the action of the load, and the latter to a force of tension ; therefore, whatever be the class or denomination of girders, they must all be alike in amount of effective material in these members, if their spans and depths are the same, and they have to sustain the same amount of load.

On this point I believe there is no difference of opinion amongst those who have had to deal with the subject. Hence, then, the question of comparative merits, amongst the different classes of construction of beams or girders, is realiy narrowed to the method of connecting the top and bottom wobs, so called. In the tubular system, this is effected by means of continuous plates riveted together; in the trellis girders, it is accomplished by the application of a trelliswork, composed of bars of iron forming struts and ties, more or less numerous, intersecting each other, and riveted at the intersections; and in the girders of the simple triangular, or 'Warren' system, the conuection between the top and bottom is made with bars,-not intersecting each other, but forming a series of equilateral triangles,-these bars are alternately struts and ties.

Now, in the consideration of these different plans for connecting the top and bottom webs of a beam, there are two questions to be disposed of; oue is-which is the most economical? and the other-which is the most effective mode of so doing? But while thus reducing the subject to simplicity, it is of the utmost importance to keep constantly in mind that any saving that the one system may present over the other is actually limited to a portion, or per centage, of a subordinate part of the total amount of the material employed.

In the case now under consideration, namely, that of the Victoria tubes, the total weight of the material between the bearings is 242 tons, which weight is disposed of in the following manner:

> Tons.

Top of Tube . .. 76
Bottom of Tube. 92
-168
Sides of Tube . 84
Total tons . 252
Assuming that the strain per square inch, in the top and bottom, is the same for every kind of beam,-say four tons of compression in the top, and five tons of
teusion in the bottom, 一the only saving that can by any possibility be made to take place being confined to the sides, must be a saving in that portion of the weight which is only about 34 per cent. of the whole. How, therefore, can 70 per cont. of saving be realized, as has been stated, out of the total weight, when the question resolves itself into a difference of opinion on a portion which is only 34 per cent. of such weight?

I am tempted to reiterate here much that was said by several experienced Engineers on the subject, during the discussions already alluded to, at the Institution of Civil Engineers; but the argument adduced on that occasion could only be rendered thoroughly intelligible by the assistance of diagrams of some complexity, and I think sufficient has been said to demonstrate that no saving of importance can be made in the construction of the roadway of the Victoria Bridge, as it is now designed by the substitution of any other description of girder. Yet, leat this should be considered mere assertion, permit me to adduce one or two examples, where the close-sided tubular system, and the open-sided system, may be fairly brought into comparison with each other in actual practice.

The most remarkable parallel case which occurs to me is the comparison of the Victoria tubes under consideration, with a triangular or 'Warren' bridge, which has been erected by Mr. Joseph Cubitt over a branch of the river Trent, near Newark, on the Great Northern Railway.

The spans are very similar and so ere the depths. In calling your attention to the comparison, you must bear in miuu that all possible skill and science were brought to bear upon every portion of the details of the Newark Dyke Bridge, in order to reduce the total weight and cost to a minimum.

The comparison stands thus:
victuria bridge as being erected.
Span, 242 feet; weight, including bearinge, 275 tons, for a length of 257 feet.

NEWARK DYKE BRIDGE AS ERECTED.

Span, 240 feet 6 inches; weight, including bearings, 292 tons, for a length of 254 feet,
which shews a balance of 17 tons in favor of the Victoria tubes.
The Newark Dyke Bridge is only 13 fect wide, while the Victoria tube is 16 feet, having a wider guage railway passing through it.

This is a very important case, as the spans and depths are all but identical, and it will therefore enable you to form a judgment upon that point which has caused so much controversy at the discussion alluded to. It is true that in the Newark Dyke Bridge a large proportion of the weight is of cast iron, a material I have frequently adopted in the parts of tubular bridges subjected to compression only, but from its brittle character I should never recommend it for exportation, nor for the parts of a structure that are liable to a lateral blow.

It has been suggested that there is much convenience in the arrangement of the trellis, or 'Warren' bridge, as it may be taken to pieces, and more conveniently and economically transported overland than 'boiler plates;' this may be correct under some circumstances, but it cannot hold good for a work like the Victoria Bridge over the St. Lawrence.

Another example may be mentioned of a tubular beam, somewhat similar in dimensions to the last described, and one which is actually erected on a continuation of the same line of railway, as that on which the Newark-Dyke Bridge is situa-
ted, namely, over the river Aire at Ferry Bridge. Although the similarity is not. so great with this as with the Victoria tube, yet I believeit is sufficiently so to form another proof that the advantage is in favor of the solid side.

As before:

NEWARK-DYKE BRIDGE.

Span, 240 feet, 6 inches; weight, 902 tons.

FEREY BRIDGE.

Span, 225 feet; weight 235 tons.
The difference between these weights is more than sufficient to compensate for the difference of :pan; besides which, in the Ferry bridge, made according to my designs and instructions, I was lavish in the thickness of the side-plates, and the bearings which are included in the above weight were stiffened ly massive pillars of cast iron.

For a further example, let me compare the B syne Trellis bridge (held by some to be the most economical) with the present Victoria tubes.

The Boyne Bridge has three spans, the centre one being 264 feet, and the height is $22 \frac{1}{2}$ feet. It is constructed for a double line of way, and is 24 feet wide. The total load, including the beam itself, the rolling load at two tons per foot, and platform rails, \&e., amount to 980 tons, uniformly distributed.

The bridge is constructed upon the principle of "continuous beams," a term which signifies that it is not allowed to take a natural defection due to its span; but being tied over the piers to the other girders, the effective central span is shortened to 174 feet; in fact, this principle changes the three spans into five spans. Now the effective area given for compression in this centre span is $113 \frac{1}{2}$ inches, which gives a strain for the 174 feet span of neariy 6 tons to the inch in comparison.

The Victoria lubes are so dissimilar in form and circumstances, to the Boyne bridge, that it is a troublesome matter to reduce the tro to a comparative state. However, the Victoria tubesare known to be 275 tonsin weight- 242 feet in span, and of 19 feet average depth, the strain not being more than 4 tons per inch for compression, with a uniform load of 514 tons, which includes its own weight, sleepers and rails and a rolling load of one ton per foot.

The Victoria Bridge has not been designed upon the principle of continuous beams for practical reasons, includiag the circuinstance of the steep gradient, on each side of the centre span, and the great disturbance which would be cansed by the accumulated expansion and contraction, of such a continuous system of ironwork, in a climate where the extremes of temperature are so widely apart; otherwise the principle alluded to, was first developed in tubular beams, namely in the Britannia bridge.

But since we are only now discussing the merits of the sides, let the Boyne bridge be supposed to have sufficient area in its top to resist 4 tons per inch, (the proper practical strain) and let the spans be not continuous; it will be found by calculation that the area required at top will be 364 inches, instead of $113 \pm$ inches, and the weight of the span would be found by calculation to come out little short of 600 tons; whereas it is now 386 tons; and if we suppose the Victoria tube to carry a double line of woay and 24 feet wide with a depth of $22 \ddagger$ feet, eren if we double the size in quantity, the whole amount of weight will be certainly very little more than 500 tons for 242 feet span.

It will be necessary to conclude my remarks, with some further observations relative to the comparisons under our notice, which are of vital importance in consid-
ering the design of such a bridge as that to be erected for the Grand Trank Railway of Canada

Independently of the comparative weights and cost, which I believe have been fairly placed before you, the comparative merits as regards efficiency have yet to be alluded to.

You may be aware that at the present time, theorists are quite at variance with each other, as to the action of a load in straining a beam in the various puitts of its depth, and the fact is not known, that all the received formula for calculating the strength of a beam suhjected to a transverse lond require remodelling; therefore, at present it is far beyond the power of the designers of trellis or triangular bridges, to say with precision what the laws are which govern the strairs and resistances, in the sides of beams, or even of simple solid beams, yet one thing is certain, which is, that the sides of all these trellis or "Warren" bridges are useless, except tor the purpose of connecting the top and bottom and keeping them in their proper position; they depend upon their connection with the top and bottom webs, for their own support, and since they could not sustain their shape, but collapsed immediately they were dist onnected from these top at.d bottom members, it is evident that they add to the strain upon them; and consequently to that extent reduce the ultimate strength of the beams.

In the case of the Newark Dyke Bridge, when tested to a strain of $6 \frac{8}{4}$ tons to the inch, its deflection was 7 inches in the middle, and when lested with its calculated load of one tou per foot run, the deflection was $4 \frac{g}{8}$ inches. The deflection of the Victoria tubes by calculation will not be more with the load of one ton per ioot, than 1.6 inch; and we have sufficient proof of the correctness of this calculation in existiug examples. That of the Boyne bridge with a uniform load of 530 tons, was 1-9 inch with the spans shortened in effect as described.

Much misapprehension has existed in reference to Mr. Stephenson's estimate of the fitness of bridges built on the suspension principles for railway traffic, and opinions have been attributed to him quite adverse to their safety or practicability for railway purposes. The present success of the bridge over the Niagara River is pointed to as a refutation of his supposed opinions, and as evidence that a cheaper structure on similar principles might have been adopted for the Victoria Bridge.

We doubt whether Mr. Stephenson ever entertained opinions such as we have alluded to. He certainly did not express any donbt of their practicability, either in his evidence before the Committee of the House of Commons in relation to the Britannia Bridge, nor in his published history of the design for that work. On the contrary, he at one time contemplated using the Menai Bridge for the Railway, and was deterred from so doing by considerations apart from those of safety, ${ }^{*}$ and we do not believe that any of the reasons

[^11]which influenced his decision on that occasion have been in any degree weakened by the successful use of the Niagara Bridge.

Whatever opinions may be entertained on that point, there can be only one in relation to the superior fitness of the "tubular" plan for the Victoria Bridge, as compared with the suspension principle, after reading the subjoined portion of Mr. Stephenson's report :
" Having civen you my views with respect to the comparalive merits of the different kinds of roadway, consisting of " beams"that may be adopted in the Victoria bridge, I now proceed to draw your attention to the adaptation of the " suspension" principle, similar to that of the bridge which has been completed within the last $f \in w$ months by Mr. Roebling, over the Niagara River, near the great "Falls."

You are aware that during my last visit to Canada I examined this remarkable work, and made myself acquainted with its general details, since then Mr. Roebling has kindly forwarded to me a copy of his last report, dated May 1855, in which all the important facts connected with the structurs, as well as the results which have been produced since its opening for the passage of railway trains, are carefully and clearly set forth.

No one can study the statements contained in that report without admiring the great skill which has been displayed throughout in the design; neither can any one

[^12]who has seen the locality fail to appreciate the fitness of the structure for the singular combination of cifficulties which are presented.

Your Engineer, Mr. Alexander Ross, has personally examiued the Niagara Bridge siuce its opening, with the view of instituting, as far as is practicable, a comparison between that kind of structure and the one proposed for the Victoria Bridge; and as he has since communicated to me by letter the general conclusions at which he has arrived, I think I cannot do better than convey them to you in his own words, which are subjoined below:
"' I find from various sources that considerable pains have been taken to produce an impression in Eugland in favour of a Sus,ension Bridge in place of that we are engaged in constructing across the St. Lawrence at this place. This idea, no doubt, has arisen from the success of the Niagara Suspension Bridge, lately finished by Mr. Roebling, and now in use by the Great Western Railway Company, as the connecting links between their lines on each side the St. Lawrence, about two miles below the great ' Falls,' of the situation and particulars of which you will no doubt have some recollection. I visited the spot fately, and found Mr. Roebling there, who gave me every facility I could desire for my objects. Of his last report on the completion of the work he also gave me a copy, which you will reccive with this: I have marked the points which contain the substance of his statem ent. I also enclose an engraved sketch of the structure. Mr. Roebling hos succeeded in accomplishing all he had undertaken, viz.: safely to pass over railway trains at a speed not exceeding five miles an hour; this speed, however, is not practiced, -the time occupied in passing over 800 feet is three minutes, which is equal to three miles an hour. The deflection is found to vary from 5 to 9 inches, depending on the extent of the load, and the largest load yet passed over is $3 \Omega 6$ tons of 2000 lbs . each, which caused a depression of ten inches. A precaution has been taken to diminish the span from 800 to 700 feet, by building up, underneath the platform at each end, about forty feet in length intervening between the towers and the face of the precipice upon which they stand; and struts have also been added, extending ten feet further. The points involved in the consideration of this subject are, first, sufficiency, and second, cost. These are, in this particular case, soon disposed of. First, we have a structure which we dare not use at a higher speed than three miles an ! 3our; in crossing the St. Lawrence at Montreal we should thus occupy three-quarters of an hour; and allowing reasonable time for trains clearing and getting well out of each other's way, I consider that twenty trains in the twenty-four hours is the utaiost we could accomplish. When our communication is completed across the St. Lawrence, there will be lines (now existing, having their termini on the south shore) which, with our own line, will require four or five times this accommodation. This is no exaggeration. Over the bridge in question, although opened only a few weeks, and the roads get incomplete on either side, there are between thirty and forty trains pass daily. The mixed application of timber and iron in connection with wire, renders it impossible to put up so large a work to answer the purposes required at Montreal; we must, therefore, construct it entirely of iron, omitting all perishable materials; and we ar, thus brought to consider the question of cost. In doing which, as regards the Victoria Bridge, I find that, dividing it under three heads, it stands as follows:
First,-the approaches and abutments, which together extend to 3000
feet in length, amount in the estimate to.

Second, -the masonry, forming the piers which occuny the intervening
space of 7000 feet between the abutments, including all dans and ap-
pliances for their erection .. 800,000
Third,-the wrought iron tubular superstructure, 7000 fect in length, which
amounts to... 400,000
(About £57 per lineal fuot.)
Muking a total of . $1,4^{1: 0,000 ~}$
" By substituting a Suspension Brilge the case would stand this:-The approaches and abutments extending to 3,000 feet in length being common to both, more especially as these are now in an advanced state, may be sated as above at £200,000.
"The masonry of the Vietoria bridge piers ranges from 40 to 72 feet in height averaging 56 feet and these are 24 in number, the number required fir a suspension bridge admitting of spans of about 700 feet, would be 10 , anl these would extend to an arerage height of $12 ;$ feet.-These 10 piers, with the proportions dne to theis ight and stability, wond contain ns much (probably more) m.tsonry as is contained in the 21 piers dewisned for tha. Vietoria bridice, and the only iten of saving, which would arise between these, would be the lesser inumber of dams thit would be required for the suspension piers; bu: this I beg to say, is mote than doubly balanced by the excess in musomy, and the admional cont entaiked in the construction, at so greatly increaseda height. Next as to the superstacture, which in the Victoria briege costs $£ 57$ per lineal foot. - Ifr. Roebling in his report states the cost of his bridge to have been $\leqslant 100,00$, which is equal to $£ \mathrm{ES}_{0}, 0100$ sterling. Estimating his towers and anchor masoury nt $£ 20,000$ which I believe is more than their due:-We have 60,000 left for the superstructure, whic! for a length of 800 feet is equal to $£$ fis per liteal foot, giving an excess of $£ 13$ per fuot over the tubes of which we have 7,000 feet in length.- By this dati, we show an excess of nearly 10 per cent. in the saspension as compared with the tubular principle, for the particular locality with which we have to deal, besides having a structure perishable in itself, in account of the nature of the material; ; and to construct them entirely of iron, would involve an increase in the cost which no circumstance comnected with our local or a'y wher consideration at Montreal, would justify. We attain our ends oy a much mo:e economical structure, and what is of still greater consequence a more permancat one; and as Mr. Roebling says, no suspension bridge is safe without the appliances of stays from below, no stags of the kind ruferred to could be used in the Victori: Bridge, - both on account of the navigation and the ice, either of which, coming in contact with them, would instantly destroy them. No security would be lefi against the storms and harricanes so frequently occurring in this part of the world.
"'No oue, however, capable of forming a judgment upon the suliject, will doult for one moment the propiety of adopting the suspended mode of structure for the particular place and olject it is designed to serve at Niagara. A gorge 800 feet in widh and 240 in depth, with a foaming cataract racing at a speed from 20 to 30 miles an hour, underneath, points out at once that the design is most eligible; and Mr. Roebling has succeeded in perfecting a work capable of passing over ten or twelve trains an hour, if it should be required to do so. The end is attained by means the most applicable to the circumstances; these means, however, are only applicable where they can be used with economy, as in this instance.'
"My own sentiments are so fully conveyed in the above extract from Mr. Ross'
letter, that I can add no further remark upon the subject, except perhaps that there appears to be a discrepancy in that part which relates to cost.

In dividing the $£ 80,000$ into items, $\mathbf{M r}$. Ross has deducted $£ 20,000$ for masonry, and left the rebidue, $£ 60,000$, for the 800 feet of roadway. Now it appears evident that this amount should include the cost of the "land chains;" and assuming their value at about $£ 15,000$, there would be only $£ 45,000$ left for the 800 feet of roadway, thus reducing the cost per lineal foot to about that of the tube. But in the application of a suspension bridge for the St. Lawrence the item $£ 15,000$ for "land shains" would of course have to be added to the cost of the 7,000 feet of roadway, which would swell the amount per foot to a little over that of the tubes."
"I entirely concur in what Mr. Ross says respecting the pinpruety of applying the suspension principle to the passage across the Niagara gorge; no system of bridge building yet devised could cope with the large span of 800 feet which was then absolutely called for, irrespective of the other difficulties attended to.
"Where such spans aro demanded, no design of beam witi which I am acquainted would be at all feasible. The tube, trellis, and triangular systems are impracticable in a commercial sense and even as a practical enginecring question the difficulties involved are all but insurmountable.
"Over the St. Lawrence we are fortunately not compelled to ndopt very large spans, none so large in fact as have been already accomplished by the simple 'Girder' system It is under these circumstances that the suspension principle fails, in my opinion, to possess any decided advantage in point of expense, whilst it is certainly much inferior as regards stability for railivay purposes. The flexure of the Niagara Bridge, though really small, is sufficiently indicative of such a movement amongst the parts of the platform as cannot fail to augment where wood is employed, before a long time elapses.
"I beg that this observation may not be considered as being made in the tone of disparagement; on the contrary, no one appreciates more than I do the skill and science displayed by Mr. Roebling in overcoming the striking enginnering difficulties by which he was surrounded; I only refer to the question of flexure in the platform as an unavoidable defect in the suspension priaciple, which from the comparatively small spañs that are available in the Victoria Bridge may be entirels removed out of consideration."

It may be questioned whether the circumstances of the railway traffic demanded the immediate construction of a railway bridge at Montreal of any description, but it is not our purpose to discuss that question here. We feel confident, however, that the exceedingly expensive structure now being erected cannot be justified while a much less costly one was within reach. While fully admitting the force of all Mr. Stephenson's arguments in favour of the tubular principle, as in comparison with other principles of cons ruction in iron, and as compared with the suspension principle for the particular case in question, we regret that he did not more fully consider the fitness of a wooden superstructure, which we feel con-
vinced would have met every exigency of the case; and under careful supervision and due watchfulness against fre, if properly constructed, would have 'een free from all the objections as to flexure, and consequent decay, which Mr. Stephenson urges against wood as applied to suspension bridges, and would have endured until a more complete development of the rainway traffic might warrant ihe enormous expenditure now being incurred;--thus saving a present outlay of upwards of $£(300,000$.
A. B.

SCIENTIFIC AND LITERARY NOTES.

GEOLOGY AND MINEFALOGY.

NEW CRUSTACEANS FRON THE SILURIAN ROCES OF SCOTLAND.

The Feiruary Number of the Quarterly Journal of the Geological Society of London, contains a series of papers of much interest on several new forms of Crustacea from the Parish of Lesmahago in Lanarkshire. These were discovered by Mr. Robert Slimin. The beds in which they occur have been examined o. Sir Roderick Murchison and Professor Ramsay, who consider them to belong to the top band of the Upper Silurians-the equivalents of t!e "Tilestones" or Upper Ludlow series, previously unrecognised in that part of the country. The fossils discovered by Mr. Slimon have many apparent affinities with Eurypterus or Pterygotus. As shewn by Mr. Salter, however, they constitute no less than fire distinct species of a new genus, named by him, Himantoptcrus, from the peculiar thong-like aspect of the swimming feet. The eres are apparently situated on the extreme lateral margin of the anterin portion of the head-shield : a character selving to distinguish thes' new forms very readily from Eurypteri, which, otherwise, in general appearance they much resemble. Of the chelate antenne, however, there appears to have been only a single pair. The largest of the discovered species is considered to have been at least three feet in length. Professor Huxley has appended some very able remarks to Mr. Salter's descriptions, in which he points out many striking relations between this new genus Himantopterus, and a particular section of the Stomapods on the one hand, and certain larval forms of Macroura (the "zoma" of a few years' back) on the other. Amongst the Lanarkshire specimens also, discovered by Mr. Slimon, were some rery complete forms of the genus Ccratiocaris of M'Coy. previously veryimperfectly known.

asapius canadensis.

Specimens of Asaphus platycephalus-the Isotelus gigas of many authors, are well known to abound amongst the trilobites from the Utica Schist of Whitby, Port Hope, sc., in Canada West. After 'Triarthrus Berkii, the species in question is perhar 3 the most abundant fossil of theselocalities. The principal feature in Asaphus platy-
rejhalus, at least in adult individuals, is the comparatively undivided character of the caudal shield. In the Whitby schists, however, trilobites occur, over seven or eight inches in length (if not longer,) with the caudal extremity not only distinctly trilobed, but also marked with numerons and distinct pleure extending almost to the edge of the striated limb; whilst at the same time, they agree in all other respects with A. platycephalus. In the union of the facial suture above the glabella, for example, the two are alike; and in the peculiar character of the body-segments and pleurm, not the slightest difference is perceptible. As no figure of this trilobite is given in Yall's l'alæontology, and as the form appeara to differ from the figured European species, we propose to confer upon it provisionally the name of dsaphus Canadensis. If it be really new, it may be placed as the type of a particular subdivision of the Asaphide, in accordance with the following scheme:-

Asaphide will facial sutures united:
.81. Pygidium, undivided:-Type, A. platycephalus.
S2. Pygidium with grooved axis:-Type, A. expan us.
§3. Pygidium with grooved axis and pleurse:-T'spe, A. Canadrnsis. A drawing of this latter species will be given in the second part of our Paper on the Trilobites

mineralmgical nomices.

Dufrenoysite :-Cb. Heusser has communicated to Poggendorff's Annalen (1856, No. 1.) some additional information on the crystallization of Dufrenoysite $\left[2(\mathrm{PbS})+\Delta s^{2} \mathrm{~S}^{3}\right]$ from the dolomite of the Binnenthal. Ife confirms the Monometric character of the mineral ; but, in addition to the forms hitherto discovered, viz :-the rhombic dodecahedron, and the lcucitoid $\Omega-n$, he anuounces the cube, the octahedron, a second leucitoid 6-6, and a trisoctahedron $\frac{3}{2}$. Hardness, $4 \cdot 5$

Binnite:-Heusser has also subjected to a detailed examination, the steel-grey metallic sulphide which often accompanies the Dufrenoysite at the above locality. This mineral has beer known in Switzerland for some time under the name of Binr.te. It occurs in very sinall and longitudinally striated prisms of extreme brittleness. Streak, dark-red, much darker than that of Dufrenoysite; specific gravity (according to an carlier determination of Von Waltershausen on epecimens taken by him for Dufrenoysite) $=4.47$ h . These latter specimens, according to Uhrlaub, contained sulphur, arsenic and enpper, with a mere trace of lead. The system of crystallization of Meusser's specimens, was apparently Trimetric, but the prism-angle could not be obtained, owing to the strix on the faces. The measured anglea, those of a series of domes, but whetlier macrodomes or brachydomes not determinable, did not accord with the measurements obtained by Von Waltershausen. An examingtion of further specimens is consequently desirable

Hyalophane :-The dolomite of this same locality furnished to Von Waltershausen another mineral, which he described as new, under the name of Hyalophane. It was thought to contain: $\mathrm{SiO}^{3}, \mathrm{Al}^{2} \mathrm{O}^{3}, \mathrm{CaO}, \mathrm{MgO}, \mathrm{NaO}, \mathrm{BaO}, \mathrm{SO}^{3}$, and HO . Heusser bas shewn, however, that it is simply an adularia variety of Orthoclase, containing aecidental particles of Iron pyrites, and interpenetraied by Dolomite and Meavy Spar. Seven distinct crystals carefully freed from these impurities, and tested respectively by the blowpipe, did not yield the slightest trace of sulphur.

Rhodonite:-Crystals of the Silicate of Manganese, or Rhodonite, are, it is wellknown, of rare nccurrence. From those hitherto met with, and from the cleavage planes of massive specimens, the crystallization of the mineral has been long considered identical with that of Augite or Pyroxene: a supposition apparently con-
firmed by the similarity of atomic constitution exhibited by these bodies. An examination of some very perfect specimens, however, obtained from Phillipstadt in Sweden, has shewn Mr. R. P. Grey (Phil. Mag. March, 1856) that the crystallization is triclinic. The inclinations of the three assumed pinacoids (or terminal pairs) gave, respectively :- $87^{\circ} 20^{\circ}, 86^{\circ} 10^{\prime}, 110^{\circ} 40^{\prime}$.

Voigtite:-Under this name (in honor of Voight, a writer who obtained some notice at the close of the last century, as an opponent of the Wernerian doctrines, Schmid has described a micaceous mineral from a granitic mass, forming part of the Ehrenberg, in the Duchy of Saxe-Weimar. It occurs in small scales, of a brown colour, and opaque; but is usually much weathered. H. a little over $2.0 ; \mathrm{Sp} . \mathrm{gr}$. $=2.91$. Readily fusible. The analysis yielded: $-\mathrm{SiO}^{3} 33.83, \mathrm{Al}^{2} \mathrm{O}^{3} 18.40, \mathrm{Fe}^{2} \mathrm{O}^{3}$ 8.42, $\mathrm{PeO} 23.01, \mathrm{MgO} 7.54, \mathrm{CaO} 2.04, \mathrm{NaO} 0.96, \mathrm{HO} \mathrm{9.87}=$,99.07 . It may be regarded, perhaps, as simply a ferruginous variety of Chlorite.

Volknerite:-Rammelsberg bas examined the substance originally named Hydrotalcite by Hochstetter- the Volkuerite from Suarum in Norway. He confirms Hermann's statement as to the accidental nature of the carbonate of magnesia present in the mineral; but his analysis leads to the formula $\mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{HO}+5(\mathrm{MgO}$, 2 HO ,) or nearer still, to $\mathrm{MgO}, \mathrm{Al}^{2} \mathrm{O}^{3}+4\left(\mathrm{MgO}, 3 \mathrm{HO}\right.$,) in place of $\mathrm{Al}^{2} \mathrm{O}^{3}, 3 \mathrm{HO}+6$ ($\mathrm{MgO}, 2 \mathrm{HO}$) given by Hermann.

Boronatrocalcile or Ulexite:--Rammelsberg has also analysed the supposed Borocalcite from the plains of Iquique in Southern Peru. He finds that soda is really one of its constituents; and that when freed from impurities, its composition may. be expressed by the following formula: $\left[\mathrm{XaO}, 2 \mathrm{BO}^{3}+2\left(\mathrm{CaO}, 2 \mathrm{BO}^{3}\right)\right]+18 \mathrm{HO}$. This corresponds to $\mathrm{BO}^{3} 45 \cdot 63, \mathrm{CaO} 12 \cdot 26, \mathrm{NaO} 6.79, \mathrm{HO} 3532$. As the present mineral is thus distinct from Hayesine, Dana's original name of Dlexite should be re-conferred upon it.

Schaumkalk:-This substance has been hitherto regarded as a pseudomorphous variety of calc spar after fibrous gypsuin. G. Rose has lately shewn, that it belongs properly to Arragonite; and he calls attention to the fact that it constitutes the first recognized example of an arragonite pseudomorph. Fossil shells converted into arragonite, are, however not unknown.

Torbanc-IIill Mineral:-The substance, thus named, still continues to attract, from time to time, the attention of the scientific world. Geuther in his Inaugural Dissertation (Ueber die Natur und Distillationsproducte des Torbanehill-minerals: Gottiagen, 1855 ,) declares, as the result of an elaborate scries of experiments, that the matter in question is simply a bituminous shale. This, is the view almost universally adopted in Germany: a view, which in the end we are convinced, will prevail everywhere. It is unly by denying altogether the existence of bituminous shale, that the present substance can with any cousistency be entitle) to the name of coal. Specimens may be seen in the collection of the Canadian Institute.
E. J. C.

ETHNOLOGYANDARCH AOLOGY O

CRASIA OF THE ANCIENT BRITONS.
Mr. Joseph Barnard Davis submitted to the British Association at the Glargow meeting, a series of remarks and deductions relative to the forms of the Crania of the Ancient Britons chiefly founded upon his observations of a skull derived from tho

Green-Gate-Hill Barrow, near Pickering. The following abstract of this communication is made from a copy transmitted by Mr. Davis to the Editor, and some portions of it will not be without value in relation to our own Cnnadian ethnological investigations and deductions. An observant eye, he remarks, is able to discriminaie between natives of the different provinces of the same country, therefore a more comprehensive investigation of the bones of the face and head will lead to reliable conclusions respecting their specific forms. By extended observafion, by keeping close to the teachings of the physical phenomena, and by regarding the information to be derived from history, philology and antiquities, more as illustrative and accessory, we may hope to obtain more definite and conclusive knowledge. In explanation of the uncertainty in which the suhject is at present involved, he remarks:-1. Data have been inadequate, and from this scarcity of authentic data, observations have deen disconnected and immature. 2. Study hat been too much separated from that of human skulls in general. Taken up more as an antiquarian than anatomical or ethnological inquiry. 3. Little attention has been paid to discrimination of sexes and ages. Some archæologists of great learning have entirely passed these over, fet the cranium undergoes important modifications in the course of development and growth, not ceasing even in old age. These changes render it necessary to select examples from the middle and mature season of life. Attention to sex is even of greater moment, as, if disregarded, errors may be induced extending to an entire class. The skulls of women seldom exhibit the normal and characteristic ethnic features markedly, and should be employed sparingly. 4. A prolific source of errorconsists in overlooking the great diversities of form which present themselves regularly in every family of the European races, and assuming that we shall find the cranial character more stereotyped as we ascend to primitive times. This assumption has probably ied men of great distinc-tion, upon slender evidence for the difference of antiquity of certisin skulls, to refer them to a succession of races. 5. More definite views that prevail on primaval antiquities have dissipated certain preconceptions concerning cromlechs and kistraens, and the rites to which they were destined; bave proved that cremation and inhumation were practised contemporaneousiy from the earliest periods; and that the doctrine of the ages of Stone, Bronze and Iron, if not rec-ired too exactly and emploged too readily in solving difficult problems, is in the main true. Probably until these advances had lieen made in archæologr, the study of ancient crania could not have been profitably undertaken.

Frofn these impediments it must not be inferred there are no fixed principles in the investigation. For,-1. Although it must be admitted there is considerable diversity of form amongst the crania of even one people, extensive observation enables us to perceive the general characteristic marks which appertain to them. 2. Whether the origin of the human race is regarded as one of the arcana of nature enshrouded in primæval obscurity, wholly impenetrable, or not, we are constrained to admit that marked dissimiliaritics have cxisted from the nost remote periods. 3. Another, equally essential, is the lavo of permanence of cthnic forms; that the characters impresed upon races are not transmutable, dut constart. This law has been the subject of much controversy, but the facts adduced against it appear too dubious, unimportant, and few, to shake its stability; a stability uniform with that observed in all the other divisions of nature, and not to be successfully assailed by the hypothesis of development.

The best course to be pursued in the study of the ancient British skull is to do-
termine the normal form, and then to ascertain the usual devintions from it. This simple method, which has been employed in the elucidation of other natural ob. jects, will reduce the subject to as great order as it admits of, and render description and delineation easy to be understood. A knowledge of the general character of the British skull is not to be obtained from the examination of those blonging to one tribe only, but from a comparative investigation of crania derived from many. It is believed by Mr. Davis that a skull derlved from the Green Gate-Hill. Barrow, exhibits the true typical form of the ancient British cranium. Its most marked distinctive features are, the shoitness of the face, which is, at the same time, rugged with elevations and depressionv, the indications of wild passions operating on the muscles of expression; zygomatic arches not unusually expanded; the nose short, projecting at an angle too great to be graceful; inmediately above its root rises an abrupt prominence occasioned by the large frontal sin ises, which passes on the sides into the elevated superciliary ridges, and produces a deep depression ${ }^{\text {Letween the nose and forehead, giving to the profile a savage }}$ character; the osseous case for the brain upon the whole not large, rather than small; the occipito-frontal diameter somewhat contracted, and parictal diameter good. It ranges with the orlhognathic crania, or those having upright jaws, and inclines to the brachy-cephalic division. It presents the uncivilized character, but from the mass of the brain it has evidently belonged to a savage possessed of power, and fitted to profit by contact with men of other races.

Having thus enumerated the chief peculiarities of the typical British cranium, Dr. Davis remarks; we may advert to its leading abcrrant forms, which admit of being arranged in a simple intelligible method. They will be easily understood as the abbreviated, or strictly brachy-cephalic ; the elongatcd, or dolicho-ccphalic; the elevated, or, to continue the terms, the acro-cephalic ; and the expanded or platycephalic.

It must be added, however, such a system as that adopted by Mr. Davis here, of classing under the convenient title of "aberrant forms" cranial peculiarities of the widest possible diversity, seems irreconcileable with the law of permanence of ethnic form: Un!ess indeed guarded to an extent not at all apparent in the above remarks, it would put an end to all cthnical deductions from cranial or osteological evidence. The grounds, however, on which so comprehensive a statement is based may be looked for in the furthcoming "Grania Britannica" of the author. veanwhile he thus partially alludes to some of them:-

Notwithstanding these aberrant forms, the whole series bears the impress of so many similar features, as to shew that it constitutes one natural group. The dolicho-cephalic has been supposed to indicate an "Allophylian" or "pre-Celtic" race, but it may probably be regarded as more properly a family peculiarity in some cases, and accidental in others, in which it has been met with in the same Barrow, and in a position proving the interment to be equally ancient, with a calvarium of the normal form. Stress has been laid upon the circumstance that it has occurred in Chambered Barroos, resembling the famous one of New Grange. The best informed antiquaries accord to these Barrows an extremely early date, but, that they have altogether preceded simpler and ruder sepulchral cairns, and were erected by a distinct antecedent race, appear to stand in need of much confirmatory evidence before shey can be admitted with tolerable confidence.
D. W.

CHEMIS'IRY.

Soft Sulphur.-Baudrimont has found that fresh soft sulphur left for five or six days in contact with oil of turpentine in a closed tule, becomes upaque and covered with small trausparent brillinat crystals, which are alsu depusited an the sides of the tube They are modifications of the symmettical octuhedron. This arises probably from the greater solubility of soft sulphur in oil of turpeutine Comptes Rendus, Ap. 28.

Carbonic Oxide.-Grimm and Randohr, have found that the Carbonic Oxide gas, prepared by Fownes' process (heating 1 part ferrocyanide of futassium with 9 parts concentrated sulphuric acid,) is not quite pure, containing a small quantity of carbonic as well as of sulphurous acid. It may be perfectly parified by solution of potassa.-Ann. d. Ch. z. Ph, Ap., 1856

Bone Earth.-Wobler has found that bone-dust if left some time in contact with water gives up a certain proportion of the phosphates of lime and magacsia. The same result is obtained if the water be perfectly freed from canoonic acid by long boiling. The quantity dissolved seems to inerease, as the organic matter putrifies This fact is of considerable importance in reference to agriculture.-Ann. d. Ch u. Ph. Ap. 1856.

Pure Silver.-Wicke dissolres the alloy of copper and silver in vitric acid, precipitates with hot solution of carbonate of soda, boils the precipitate with a solution of grape sugar by which the copper is obtainca in the form of suboxide and the silver as metal. The precipitate is trented with a hot solution of carbonate of ammonia, which dissulves the oxide of copper but none of the silver.Ann. d. Ch. u. Ph. Ap., 1856.

Test for lodine.-Liebig recommends the addition of a small quantity of an alkalic iodate. followed by sulphuric or murintic acid to a solution containing so small a quantity of iodide that no coloration is produced by starch and nitric acid; in this case a much deeper colour is produced. Neither iodic acid nor indide of potassium produces any colour with mariatic acid and starch paste, The muther liquors of some mineral springs produce the colour without the addition of the iodate; they must contain some substance which acts in a similar manner, possibly nitrates.-Ann. d. Ch. u. Ph. $A p$., 1856.

Determination of Chlorine.-Levcl has described a method of deternining chlorine by means of a normal solution of nitrate of silver, in which he readers the completion of the precipitation perceptible by an addition of phosphate of soda, the presence of an excess of silver being indicated by the yellow tint of the precipitate. This colour being very faint, Mohr recommends the use of chromate of potash, the red colour of the chromale of silver becomes ferceptible when a very minute excess of the silver solution has been employed. The chromate and not the bichromate should be used aud the solution must not be acid. Mohr has employed the process in the examination of urine, well water, mineral waters, saltpetre, potashes, soda, and chlorate of potash, and always with concordant results.-Ann. L. Ch. u. Ph. Ap.. 97.

Silvering.-Licbig has given valuable directions for silvering glass mirrors in the cold, the silvering is, effected by a solution of ammoniacal nitrate of silver. excess of caustic putassa nad milksugar.-Ann.d.Ch. u. Ph., ^ ril, 1856, Ch. Gaz. 327.

Furfurine.-Svanberg and Bergstrand have examined the sulphate, phosphates
and tartrate. The formula they give to the alkaloid is $\mathrm{C}^{30} \mathrm{H}^{22} \mathrm{O}^{6} \mathrm{~N}^{3}$. - Ch. Gaz. 324.

New Alcohols.- Cahours and Hoffmann have discovered a new nloohol belonging to a new series which they term the Acrylic series. By distilling glycerino Redtenbacher obtained acroleine which with oxide of silver gields acrylic acid, standing therefore in the relation of aldehyde to acetic acid, the formula being $\mathrm{C}^{6} \mathrm{H}^{4} \mathrm{O}^{2}$ and $\mathrm{C}^{6} \mathrm{H}^{4} \mathrm{O}^{4}$. Berthelot and DeLuca by acting on glycerine with iodide of phosphorus obtained iodide of propylene (acryle) $\mathrm{C}^{6} \mathrm{H}^{5} \mathrm{~J}$, an analogue of the chloride and bromide already known. The researches of Will and Wertheim shewed a connection between acroleine compounds and the oils of mustard and garlic, the latter being $\mathrm{C}^{6} \mathrm{H}^{8} \mathrm{~S}$, and the former $\mathrm{C}^{6} \mathrm{H}^{5} \mathrm{~S}, \mathrm{NS}^{2}$, this same compound has keen obtained by Berthelot and De Luca, by the action of iodide of propylene on sulphocyanide of potassium. Cahours and Hoffmann have now succeededin obtaining the alcohol of this series, $\mathrm{C}^{6} \mathrm{H}^{6} \mathrm{O}^{2}$.

By acting on oxalate of silver with iodide of acryl the oxalate of acryl is obtained, this with ammonia gives oxamide and the alcohol, the latter with potassium gives hydrogen and the potassium-acrylic-alcohol, this with the iodide gives the ether, or with ethylic iodide the double ether; if the alcohol be distilled with chloride, bromide or iodide of phosphorus, the chloride, bromide or ioaide is obtained. A coupled sulphuric acid is also easily formed, also a compound corresponding to xanthic acid. The following ethers have been prepared: oxamate, carbonate, beuzoate, acetate and cyanate. This latter with ammonia gives acrylic urea, corresponding to the long known sulphur-urea term of this series, viz: thiosinnamine. With aniline a similar compound is generated. With water or with solution of potassa, the cyanate gives diacrylic urea or sinapoline, in the latter case various volatile bases are also formed, viz: methylamine, propylamine and acrylamine.

This new alcohol will therefore be the third term in a series represented by the formula $\mathrm{C}^{\mathrm{n}} \mathrm{H}^{\mathrm{n}} \mathrm{O}^{2}$, while the ordinary alcohols are $\mathrm{C}^{\mathrm{n}} \mathrm{H}^{\mathrm{n}+2} \mathrm{O}^{2}$. - Ch. Gaz 324.

Berthelot and De Luca in pursuing their investigations above referred to, have arrived at similar results, but do not appear to have obtained the alcohol. By the action of sodium on the iodide they obtained acryl or allyl as they term it, employing the old name originally proposed by Will and Wertheim.-Ch. Gaz 325.

Chlorides and Bromides of Organic Raaicals.-Bechamp has obtained the chlorides of cinvamyle, benzoyle, valeryle. butyryle, propionyle, and acetyle, and the bromides of valeryle, butyryle and acetyle, almost in the quantity indicated by theory, by distilling the monoloydrated acids with the protochloride or protobromide of phosphorus, in the proportions corresponding to the following equation $2 \mathrm{RO}, \mathrm{HO}+\mathrm{PCl}^{3}=\mathrm{ClH}+\mathrm{PO}^{3}, \mathrm{HO}+2 \mathrm{R} \mathrm{Cl}$.

The mixture is geatly heated as long as hydrochloric acid is evolred, the volatile chloride distilled off from the mixture, or if it separates as a distinct layer, it is decanted and rectified by itself. This plan is better as the phosphorous acid is apt to evolve phosphuretted hydrogen towards the end of the distillation. The compounds whose boiling points differ most from that of the chloride or bromide of phosphorus, are most readily obtained.-Ch. Gaz. 325.

Anisoic Acid.-By the action of weak nitric acid upon oil of anise, Limpricht has obtained a compound to which he gives the above name, and which seems to be
the first product of oxidation, preceding anisaldehyde. Anisoine $\mathrm{Cl}^{20} \mathrm{H}^{12} \mathrm{O}^{2+}$ $6 \mathrm{HO}+4 \mathrm{O}=\mathrm{C}^{20} \mathrm{H}^{14^{4}} \mathrm{O}^{12}$. He has examined several of the salts, the silver compound is $\mathrm{C}^{20} \mathrm{H}^{17} \mathrm{O}^{11}, \mathrm{Ag} \mathrm{O} .-$ Ch. Gaz. 325.

Anilocic Acil.- Major has examined the acid obtained by Piria by the action of nitric acid upon salicine, to which he gave the above name, and states it to be identical with nitrosalicylic. Piria denies this, and recommends for its furmation the following process : Into a stoppered bottle, 1 part of powdered salicine and σ to 8 parts of nitric acid of $20^{\circ} \mathrm{B}$ are put, ibe bottle is closed and placed in a oool place, hyponitrous acid is formed, the fluid becomes green, and after nome time crystals of auilotic acid separate. If the process be conductud in an open vessel, the liquid becomes yellow, and helicine is formed. The properties of the acid are described.-Ch. Gaz., 325.

Arachic Acid.-Scheven and Gössmann have described the salts, ether, amide and glyceride of the above acid. Its formula is $\mathrm{C}^{4} \mathrm{H}^{40} \mathrm{O}^{4}$; the acid is obtained from ground nut oil.-Ch. Gaz, 326.

Ethylamine.-Emil Meser has described various salts and double salts of this base, with phosphoric, sulphuric and molybdic acids, dc., \&c.-Ch. Gaz. 327.

Acids in the Animal Organism.-Bertagnini finds that camphotic acid passes unchanged into the urine, the anhydrous acid becomes hydrated, anisic acid passes unchanged, salicylic acid rapidly passes into the urine as indicated by the iron test, but a portion becomes converted into a new compound which he calls salicyluric acid, having taken up the elements of glycociue and lost two equivalents of water. The acid can be separated by evaporating the urine, separating from the salts, acidulating with hydrochloric acid, shakiog with ether. evaporating, and recrystallizing. The salicylic acid is removed by heating to $284-3 \% \mathrm{~F}$ in a current of air,-the residue is decolorized and crystallized. The formula is $\mathrm{C}^{18} \mathrm{H}^{\circ} \mathrm{NO}^{8}$.-Ch. Gaz., 825.

Saponification.-Pelouze finds that fats can be readily saponified by the anhydrous oxides or their bydrates in a solid form, if the mixture be heated to 482° F. With suet the soap formed sields from 95 to 96 per cent. of the suet operated on. During the reaction a white emoke is evolved with an odour of burnt sugar, that of acetone is also perceptible. 10 parts of anhydrous lime are sufficient for 100 parts of suet, with 12 or 14 the reaction takes place with much greater facility; but on operating with large quantities it is difficult to keep within bounds so as to prevent decomposition.
Slaked lime in the proportion of 10 to 12 per cent. rapidly saponifies fats at a temperature between $410^{\circ} 447^{\circ} \mathrm{F}$. Two pounds of suct with $120 \mathrm{gramm} \cdot \mathrm{s}$ of slaked lime were saponified in one hour; if the temperature be raised rapidly to 482°, the process may be completed in a few minutes.

This fact promises to be of very great importance to the manufacturers of the so-called stearine candles.

490

Barom．at temp．of 32° ．

内 18客
 9
 3

REMARKS ON TORONTO METEOROLOGICAL REGISTER FOR MAY．
10th－Large Meteor in N．W．at 9.18 p．m．，time of flight about 15 seconds． 15th－Wild Strawberries in bloom．
＂Thinderstorm from 6.30 to $8.30 \mathrm{p} . \mathrm{m}$ ． ＂－Very perfect Rainbow at $7.10 \mathrm{p} . \mathrm{m}$ ．
loth－Large Halo round the Moon from $10 \mathrm{p} . \mathrm{m}$ ． 10th－Very dense Fog 5 to $8 \mathrm{a} . \mathrm{m}$ ．
23rd－Thunderstorm 6.30 to $10.10 \mathrm{p} . \mathrm{m}$ ．
31st－Hoar frost on boards，and thin Ice on water 6 to 8 a．m．
COMPARATIVE TABLE FOR MAY．

1	\％\square_{1}		
	${\mathrm{x}, 40 \mathrm{u}_{1}}^{1}$		
	－384081		
	筧皆	couct	
	道家皆	边	
	免		
	䀂		

29.969 at $10 \mathrm{p} . \mathrm{m}$. ，on 5 th $~$ M Monthly range $=$
29.125 at $6 \mathrm{a} . \mathrm{m}$ ．，on $28 t \mathrm{~h}$ ． 0.844 inches．
 $\left.\begin{array}{c}59^{\circ} 56 \\ 10^{\circ} 63\end{array}\right\}$ Mean daily range $:=18^{\circ} 03$ Highest registered temperature Highest Barometor Loivest Barometer Highest registered temperature Mean maximum Thermometer． Mean minimum Thermometer Greatest daily range Warmest day range．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $7^{\circ} 0$ from $\mathrm{p} . \mathrm{m}$ ．of 8 th to a．m．of \sin ． Coldest day．．．．．．．．．．30th ．．．Mean temperature．．．．．．．．．．． $44^{\circ}(12)\left\{\right.$ Difference $=22^{\circ} 70$ ．
 No Auroral Light observed this month；possible to see aurors in 18
impossible to see aur ton 15 nikhts；possible to see aurora on 16 nights；
depth 4.570 inches－raining 89.5 hours
Nean of cloudinoss $=0.59$ ；most cloudy hour observed，\＆p．un．mean $=0.61$ ；
least cloudy hour observed， 8 a．m．，mean，$=0.55$ ．
Sum of the Atmospheric Current，in miles，resolecd into the four Cardinal
directions．
North．
3815.24
Mean direction of
Mean velocity of the wind， $\mathrm{N} 4^{\circ} \mathrm{E}$
Maximum velocity wind．．．．．．．．． 9.81 miles per hour．
Iost windy day．．．．．．．．．．．．．．．．．．．． 83.7 miles per hour，from 11 a．m．to noon on 2oth． Least windy day ．．．．．．．．．．．．．．．．．．．1st．．．．Mean velocity 20.59 miles per hour． ditto．
dilto． ditto．

492

Velocity of Wind. 120
40
0
0
0
0

 $=$

493

REMARKS ON TORONTO METEOROLOGICAI REGISTER FOR JUNE．

The columns Resultant Dircction and Resultant Felocity shews that the total displacement of sir produced in the monsh is cquivalent to that which wiould Velocity cf 0.9 miles per hour． The tutal displacement in the montlis of June since 1848 ，inclusive，is equal to
that of a constant wind blowine from $\$ 84^{\circ} \mathrm{W}$ ，with a velocity of 0.48 miles． On June 1st，at 30 min ．past noon，a violent Squall occurred，accompanied by violent thunder，lightinng and hail．The stones were of an oblate spheroidal form and unusually larke，the greater axis amounting．in many cases，to of an inch．
From their hardness，they appeared to have been formed at an extremely low tem－ jerature．COMPARAMVE TAILR FOR JUNE

$\underset{\underset{\sim}{x}}{\underset{\sim}{x}}$	－sวpur	
	SiS．Pjo On	
	＊08ury	
	$\|$penasga unuautur	
	pasajacqo 	
	皆	
$\begin{aligned} & \text { ब̈ } \\ & \text { 俞 } \end{aligned}$		

$\begin{aligned} & \dot{A} \\ & \underset{y y}{*} \\ & \stackrel{y}{\mid c} \end{aligned}$	发䓌苞	
$\underset{\ddot{M}}{\underset{\sim}{\pi}}$	－soypur	
	x．C．pjo．0N	
	＊08uxy	
	$\left\lvert\, \begin{gathered}\text { pasiosgo } \\ \text { unnuauter }\end{gathered}\right.$	
	pandasqo 	
	言	

$\begin{aligned} & \dot{A} \\ & \underset{y y}{*} \\ & \stackrel{y}{\mid c} \end{aligned}$	发䓌苞	
$\underset{\ddot{M}}{\underset{\sim}{\pi}}$	－soypur	
	x．C．pjo．0N	
	＊08uxy	
	$\left\lvert\, \begin{gathered}\text { pasiosgo } \\ \text { unnuauter }\end{gathered}\right.$	
	pandasqo 	
	言	

 Highest recistered temperature ．．．．．．．．．．．． $88^{\circ} 2$ at $\mathrm{p} . \mathrm{m}$ ，on 29th \} Monthly range $=$ Lowest registered temperature．．．．．．．．．．． $42^{\circ} 0$ at a．m，ofl lst $\} 47^{\circ} 2$
Mean maximum Thermometer．．．．．． $71^{\circ} 59$ ？ Mean maximum Thermometer．．．．．．．．． $7^{71^{\circ} 59}$ Minimun Thermometer．．．．．． $32^{\circ} 39$ Mean daily range $=19^{\circ} 20$
Greatest daily range．．．．．．．．．．．．．．．．．．．．．．． $28^{n} 8$ from p, m ．of 30 th to a．m．Ist July
Least daily range ．．．．．．．．．．．．．．．．．．．．．． $10^{\circ} 4$ from p, m ，of 8 th to $\mathrm{a} . \mathrm{m}$ ．of 0 th．

 Aurora observed on 1 night，viz．．on the 10th；possible to see Aurors ou 18 nights； Raining on 13 days；denth， 3.200 inches；duration of fall， 27.0 hours，
Mean of cloudiness $=0.47 ;$ most cloudy hour observed， $2 \mathrm{p} . \mathrm{m}$ ．，mean $=0.53$ ；least
cloudy hour observed， 10 p．m．，mean $=0.35$ ． \underline{L}
Sums of the components of the Atmospheric Current，expressed in Miles．
$\begin{array}{cccc}\text { North．} & \text { South．} & \text { Fast．} & \text { West，} \\ 732.70 & 1340.80 & 1250.01 & 1477.80 \\ \text { Resultant direction of the wind，} \mathrm{S} 211^{\circ} \mathrm{W} \text { ；Resultant Velocity，} 0.00 \text { miles per hour．}\end{array}$
Rean velocity of the wind．．．．．．．．．．． 5.30 miles per hour， Mean velocity of the wind．．．．．．．．．．．． 5.30 miles per hour，
Maximum velocity ．．．．．．．．．．．．．．．．．．．． 26.0 miles per hour，
Most windy dry．．．．．．．．．．．．．．．．．．．．．．．．．．80th．．．Mean velocity 16.03 miles per hour．
Most windy dry．．
Afost windy hour．．．．．．．．．．．．．．． 1 to 2 p．m．．．．Mean velocity $8.52 \quad$ ditto ${ }^{2}$ Difference
Least windy hour．．．．．．．．．．．．．．． 1 to $2 \mathrm{a} . \mathrm{m} .$. ．IIcan velocity 2.74 ditto） 5.78 miles．

——

 of the Barometer or of Temperature． In the Comparative Talle，the only deviations to be noticed of the Monthly
Means from the Means derived from the aggregate of past years，are shown by the Range，which is more than 9° less than the Average；and the Mean Velocity of the Wind．

494

- duced by a wind blowing constantly from $\overline{\mathrm{N}} 75^{\circ} \mathrm{W}$ ，with a uniform velocity of 1.57 miles per hour．
The total displacement in the months of July sincu 1815 inclusive，was equal to that of a resterly wind，having a uniform velocity of 0.31 miles．
COMPARITIVE TABLE FOR JULX

	， 49		$\stackrel{\text { ¢ }}{\substack{3 \\+\\+}}$
关		cくi＝joccoi －｜｜｜｜｜｜｜ 	1
	1 ＇simpul	 	产
	＊．SpJoos		$\stackrel{\infty}{\infty}$
	－э8uri	 	¢
	$\left\{\begin{array}{l} \text { рлияняяя } \\ \text { али!и! } \end{array}\right.$		
	－pamaşo		$\stackrel{8}{\square}$
	$\left\|\begin{array}{c} \text { oztenony } \\ \text { unay } \\ \text { oouosoy!cI } \end{array}\right\|$	¢ ०｜i 1 i｜1＋＋1＋＋1 1 1＋＋＋	：
	宅		发
	岂	 	鸰

49
MONTHLY METEOROLOGICAL REGISTER, KINGSTON, CANADA WEST, FEBRUARY, 1856.

MONTHLY METEOKOLOGIOAL HEGISPER, KINGSTON, CANADA WESTP, APPIJ, 1850.

MONTHLY METEOROLOGICAL REGISTER，KINGSTON，CANADA WEST，MAY， 1856.

$\begin{gathered} \begin{array}{c} \text { suypur u! } \\ \text { sious } \end{array} \\ \hline \end{gathered}$		
$\begin{gathered} \begin{array}{c} \text { suypu u! } \\ \text { ự } \end{array} \\ \hline \end{gathered}$		
	－	
	㐫	
$\begin{array}{c\|c} \dot{0} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ & 0 \\ \hline \end{array}$		
	$\underset{\sim}{\text { ¢ }}$	
	$=$ 8 8 0	
		 会曰气
	¢	
	$\stackrel{3}{3}$	
	I	

500
 *
 REMARKS ON THE KINGSTON METEOROLOGICAL REGLSTER FOR APRIL.

Highest Barometer 30.180 at $9 \mathrm{~A} . \mathrm{M}$. on 1st.Lowest Barometer29.109 at 9 A. B. on 7th.
Monthly Range 1.071 inches.
Highest registered temperature $68^{\circ} 5$ on 28 th
Lowest registered temperature 10° on 1st.
Mean maximum thermometer $49^{\circ} 781$
Mean minimum thermometcr $32^{\circ} 576$
Mean daily range $17^{\circ} 205$
Warmest day, 26th, mean temperature $58^{\circ} 5$
Coldest day, 1st, mean temperature $21^{\circ} 2$: difference $37^{\circ} 3$
Raining on 4 days : depth, . 49 inches. Most windy day, 20 th.

REMARKS ON THE KINGSTON METEOROLOGICAL REGISTER FOR MAY.
Highest Barometer 30.383 or 1st.
Lowesi Barometer 29.103 on 6th.
Mouthly Range 1.280 inches.
Highest registered temperature. $74^{\circ} 5$ on 251 h .
Lowest registered temperature $33^{\circ} 5$ on 30th.
Monthly Kange 41°.
Mean maximum thermometer. $62^{\circ} 58$
Mean minimum thermometer. 42091
Mean daily range $21^{9} 67$
Warmest day, 18 th , mean temperature 61°
Coldest day, 30th, mean temperature 42°; difference 19°
Raining on 9 days: depth, 4.04 inches. Wind maximum velocity, 27.03 miles per hour.Most windy day, 25th.
501

REMARKS ON THE ST. MARTIN, ISLE JESUS, METEOROLOGi. LL REGISTER FOR JUNE.

 FOR JULY.
IIchest. the e2nd dav 29.986
Barometer L Lowrst, the lsth day $2: 3.351$
(Monthly Mran 635
(IILHest. the 29th day $y^{\circ} \cdot 1$
Thermoneter
Montily hianse $4: 1^{\circ} .1$ 720.15
Greatest Intensity of the Sun's Rays $1 \div 1^{\circ} .4$
Lowest Point of Terresirial Ratiation $.16^{\circ} .7$
Amount of Evaporation 4.39
Mean of Humidity 784
Rain feli on 12 days, amonutins to 0.373 inches-il was raining 21 hours 25 minutes, atcom-panied by thunder on 3 days.
Five dars cloudless during the month.
Most prevalent Wind, s. W. by W.
Less prevalent W'ind. S. E•
Most windy day, the 1st ; mean mines per hour, 19.96.
Least windy day, the ith ; calm.Most winday hou:, from 8 to 9, a-m., wh the 1 st, 20 miles per hour.
There were 17 t hours and 20 minutes calm durins the month.
Total amount of miles tmuersed by the Wind, $\because 88 \$.20$; which being resolved into the FourCardinal Points, xives, N. 776 miles; S. 3 s mines; W. $1,652.20$ miles; E. 111 miles.
Eright Meteor, at 9.30 pm .m, on the 31st; passing trom the Souttm Sol, isshito Xi SagitariaThe Electrical state of tae Atmosphere has been manked by woderate latelisity-maxiwum

Ozone was in noderate quantity.

504

[^0]: - Sterling's Work on "Gola Discoverics," to which frequent refarente is made in subsequent parts of thim japer, is certatnly an exception to this rounark-i may add that I hai not soen thin work until a large jortion of this articke had been written.

[^1]: - McCulloch's Commercial Dictionary, p. 1055, Edition of 1854, sce also "Statistical Journal," for 1854, p. 1058.
 $\dagger \mathrm{In}$ the "Annusire de L'Economio Politique"-for 185s, published at Paris, we read at the commencement of the article entitled 'Coup d'oil sur l'annee 1854'-
 "L'année 1854, a vu soevir a la fois trois flomux; la guerre, le Cholera et la cherté des sub. sistances." In another part of the same article it is stated that the price of meat in France in 1854 was is per c:nt. above the average price of preceding yeara

[^2]: - The comparative uniformity and steadiness in the value of the precious metals arises from this, that the existing supply of the metals is so great and the demand for them so universal, that the relation ketween the demand and supply is not liable to be materially affected by any accidental disturbances of cither.

[^3]: -The prohuce of Califormia has been estimated officialy at sum, 0if. 009 or upwards of s12,00n, ion stmliar. The quantity exported from Melbonene alone duriug the year must have been at keest dig.000,000 sterling. From Sydney up to the 10th becember it was close on $\operatorname{si0}$, mono, 0 g. Takins into consideration the quantity retained in the country and the quantity sent home br private persoms and of which no account was taken, we think the total
 tralian newnamers rereived since the atove note was penaed confirm my conjecture as to the last year's jicld of sold in that Colony.

[^4]: - According to Mr. Birkmyre, (during at least the first 30 years of the present centary, the averaye anmal mited coinage of the three countries was only $£ 3,050,000$, or about one-eleventh of their present annual coinage.

[^5]: - John Lalor.
 + In Ireland we find that the circulation of Bank notes in 1819 was only $23,511,455$, while
 zine.' which came into my hands while these sheets were in press, If find that in 1899 the entire eurroncy of the Union was $\$ 325,922,038$, and in $1856 \$ 805,122,303$, an increase of more thay 100 per cent. See pase 167.

[^6]: * The most recent accounts from Australia and Californis ayres in stating that the supplies of gold in those countrics are perfectly inexhaustible. There appears to be, moreover, a great probability that new auriferous regions will ere long be added to the list.

[^7]: - Wo refer, of course, to the localities now under consideration. It yet remains to be seen if our Huronian rocks be really the equivalents of the European Cambrians.
 \dagger Rapport Geologique de M. De Rottermund, addresse ason Honneur le Maire de Quée bec, Mars, 1855.

[^8]: *This is not exactiy the case.' Mr. Logan's words, as quoted by the Count himself, were:"Il s'y rencontre beancoup de dislocations sur une puissante assise de calcaire gris oolitique, etc. The article makes all the difference.--E. J. C.

[^9]: *In his "literal translation" of this epitaph, Sir David Browstor has omitted two sentences. for what reason we cannot conjecture.

[^10]: "It may perhaps appear to some in examining the design, that a saving might be eff.cted in the masonry, by abandoning the inclined planes which are added to the up-side of each pier, for the purpose of arresting the ice, and termed 'Ice breakers.'
 In European rivers, and I believe in those of America als o, these 'Ice-breaker's are usually placed a little way in advance of, or rather above, the piers of the bridges, with a view of saving them from injury by the ice shelving up above the level of (frequently on to) the roadway.

 In the case of the Victoria Bridge, the level of the roadway is far above that to which the ice ever reaches; and as the ordinary plan of "Ice-breakers" composed of timber and stone would be much larger in bulk, though of a rougher character, than those which are now added to the piers, I have reason to believe that they would be equally costly, besides requiring constant ammal reparation; it was therefore decided to make them a part of the structure itself; as is now being done."

[^11]: * "I thought also that that span (300 feet) could only be exiceded by the adontion of the Chain Bridge, which I do not approve of for tho passage of locomotive engines"
 "I have thought of adonting another plan in comnection with suspension which would render the platform quite rigid; and if the platform be quite rigid, then I think the sus-

[^12]: pension principle may be applied; but until it is made rigid, I have my doubts about it." In answer to the question, "Do you think the present Menai Bridge could be so altered and improved and strengthened as to be made able to support a lailroad?" Mr. Steplenson replied, "I think it might; but it would leave it merely a Suspension Bridge, which I do not like."-Minutes of Evidence before the Select Committes on Railway Bills, 1845.
 In his history of the design of the Britannia Bridge, alluding to the difficult position in which he was placed by the requirements of the Admiralty, he says: "In this position of affairs I felt the necessity of reconsidering the question whether it was not possible to stifien the platform of a suspension bridge so effectully as to make it available for the passage of railway trains at high velocities." * * * * "Amongst a variety of devices for the accomplishment of this object, the most feasible appeared to be the combinution of the suspension chain with deep trellis turning, forming vertical sides traversed by the suspension rods from the chains, with cross bearing frames top and bottom to retain the sides in the proper position, thus forming a roadway surmounted on all sides by strongly trussed framework."
 " A structure of this kind would no doubt be exceedingly stiff vertically, and has indeed been applied and suceessfully employed in America on a large canal aqueduct, and is clearly described in the 'Mechanics' Maxazine' for 1846."
 "The application, however, of this principle to an aqueduct is perhaps one of the most favourable possible, for there the weight is constant and uniformly distributed, and all the strains consequently fixed both in amount and direction: two important conditions in wooden trussing constructed of numerous parts. In a large railway bridge it is evident so far from these conditions obtaining under any circumstances, they are ever varying to a very large extent; but when connected with a chain which tends to alter its curvature by every variation in the position of any superincumbent weight, the direction and amount of the complicated strains throughout the framing become incalculable, so far as all practicable purposes are concerned." * * * "It was reverting to this bridge" (a small wrought iron box girder) "that led me to apply wrought iron with a view to obtaining a stiff platform to a suspension bridge, and the first form of its application was simply to carry out the principle described in the wooden suspended structure last spoken of, substituting for the vertical wooden trellis turning and the top and bottom cross beams, wrought iron plates riveted together with angle iron. The !orm which the iron now assumed was consequently a high wrought iron rectangular tube, so large that railway trains might pass through it, with suspension chains on esch side."

