The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Car tes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documentsTight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieureBlank leaves added during restoration may appear - yithin the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas ètė filmées.

Additional comments:/
Irregular pagination.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de rèdıction indiqué ci-dessous.

soltrtad まaputs.

On the Laws which Regulate the Division of a Body botween two Solvents.*

आצ MS. HERTHELOT AND JUSGFLYISCH.
It is frequently necessary to extract a body which has been dissolved in a liguid, by stirring into the litter another which does not combine with it, and whose action is, therefore, purely physical. Such means are frequently used for extraction, and ceen estimation, of bodies held in suspension in other liquids.
The action of the following bodics has been studied: Iodino and bromine, in the presence of water and of sulphide of carbon; succinic, malic, tartaric, oxalic, acetic, benzoic, sulphntic, and chlorhydric nexds, in the presence of water and of cther.
All bodies capable of exercising chemical reaction wero carefully excluded from our experiments; and the usual modo of operation was as follows: The body under treatment was dissolved in one liquid, a certain volume of another wrs then added, and the whole received a rizoroms and prolonged stirring, the vessels being kept at one temperature by means of at water bath. The body in solutius was estimated from thme to time, until fixed results were obt. ned, which sometimes required one or two houls, and the amount wiss then estimated in each of tho superincumbent liquids.

The Co-Eficient of Division.-A body simultancously brought in contact with two solvents, in each of which it could be separately dissulved, never dissolves wholly in one to the exclusion of the other. Whatever may be the solubility of the body in question in one of these solvents, and whatever may be the excess of that solvent, the body is always divided between the two solvents.

Quantities dissolved by the same volume of two liquids remain in one constant relation between them. We will call this relation the co-efticient of division; it is independent of the relative volunces of the two solvents, but dependent on concentrationand temperature. The following examples, cited from our numerous experiments, will be sufticient to establish this law:-

Succinic Acid, Water, and Ether ut $1 \overline{0}^{\circ}$.

$\begin{gathered} \text { Fianl volume } \\ \text { of } \\ \text { thu lliguin. } \end{gathered}$			Voluanc or harsta. water situmathis 10cco of thelituit.		Curnicirut of alivisions.
	${ }^{6}$	$30 \cdot 0$	$42 \cdot 41$		
Covernimater	1 49	40.0	$43 \cdot 8$	$7 \cdot 4$	$6 \cdot 0$
mids.	28	55:5	474	7.7	$6 \cdot$
Mone ditate	- 30	$70 \cdot 0$	$18 \cdot 8$	$3 \cdot 4$	5%
Hipulis	\{17	1\% 0	i6.2 ${ }^{+}$	$3 \cdot 0$: $\cdot 4$

The co-efficient of division of at buly between two solvents is analogous to, the co-efficient of division of a gas between a lifuid, which will dissolve it, and an empty spupen pusing syance; but, in the jatter case, it is the tension of gas in the unit of volume of the empty space, which determines the quantity dissolved in the entire volume of higuid. In the case of a body diviued between tro srivents, it is the final quantity dissolved in

[^0]the umit of volume of one of these liquidy, which determines the cunantity dissolved in the unit of the other.
Influence of T'emperdure.- The co-ellicient of division changes with the temperature, but very slowly.

At 15°.	0.060............6:2
	$0.0784 \cdot 9$
" 15°	0.019............5.5
	0.019............. 50

Iufluence of Concentration.- The co-eflicient of division varies with the fimal concentration of the solvents, but not in proportion to the weighta dissolved; its progress is slower.

Experinents with malic, tartaric, and acetic acids demonstrate that the co-eflicient varics more rapidly with the concentration when very soluble bodies are under treatment, than wilh those which are less so. This difference is explicable because concentrated solutions of tartaric or acetic acid dissolve ether in proportion, differing from those cifected by diluted solations.

Sulpharic acid and chlorhydric acols give rise to a remarhatile analugy, ethes wall cissolve then only when they are concenthated. The proportion of acid ubtaincd from thenaquecus sulutions which are slightly dhlutenl, is almust inappreciable.

On a Species of Ipomea, aftoriing Tampico Jalap.*
B' D.ANIEL HANIBLHY, ESQ., F.lt.s., F.I, s.

(TIZASEMETEED By NH: ALTHOR.

登 Two centuries amb a half have elapsed since Jalaj, the tuburcule of aconvolval.ecenus plant of Mexico, was introluced into the Miteria Medica of Europe. The botanical origin of the chug long remained unsettled, evidence of which exists in tire fact that t::o phats, neither of which gicids jalay, hare in succession received, and still retilin, the specitic mane Jotapu. The veritable sumpe of jalan, howerer, was brought to hight between the years 1527 and 15%, in which latter the plant was eleccribed by Wenderoth as Cuntulculus l'ugu. In 1833, it wis figured by Hayne under the name of I_{p} mase ${ }^{2}$ 'uryan; but in 1839, it was thansferred, on account of its tahalar corolla and easert stameas, to Choisy's gemas E.cojominm. As this senns has been recently mited to Ipromect by Dr. Mcisucr, it ippens liest to return to the name proposed by Hayne, and

The unsettled condition of Mexico, and the fluctuations of commeree, have alternately depreciated or embanced the value of jalap, and have led to the occasiomal impurtation of other roots prasessing more or less of the characters of the true drug. ()f such kinds of jalap, one of the most remarkable is a tubercule imported a fuw years ago fur the, first tme from Tanpico, and thence called Tampira Jalap. ${ }^{+}$This drig hias been cxtensively hrought intes the marrect (that $1 s$ to sny, by humdreds of bales); and though it is

It caniut, at least, trace this jalap to have by van wifered

less rich in resin and less pursativo than truo jalay, jet on account of its lower price, it has fomul a ren!y sale, chiefly in continental trude.
As the butanient origin of this so-called Tampice Jalap, and even its place of growth, were completely unknown, I addressed a letter, in November, 1stit, to my friond Hugo Finck, Esy., Prussian Vicc-Consul at Condowa (Mexico), berging that he would, if possible, procmro for me some information on the subject. Mr. Finek at first expressed strong doubts ts to Trampico Jalap being anything else thans the ront of Butafus Jalayn, Choss, linown in Mexico as Purga macho. Upon inquiry, howerer, he ascertained that such could not be the case, but that it is a production of the State of Gumajnate, where it grows alomg the Siemat Gorda, in the neishborhood of San Luis de la Paz. At thes town, and in the adjacent villages, it is purchased of the Indians and carried by the muletecrs to 'fampion, where it is known as Purga de Sicrra Giorde.
Ill atten pits to panare spumens of the Ilant ware $\hat{\text { foin }}$, stme time fruitless, chictly Fwing to the difficulty : f fualing ans wat in the district who cunld be induced to twhe the newlful trouble. The perses erance of Ma. Finch, and his friend MI. E. Deathe Comsul General for Prussia in the city of Mexicn, overame sit length this ubstacho, but only to meet with others hardly less embarrassing. The firsi lot of specimens despatched frim Gliathajuato was stulen frome the mail; the seco:ud shared the same fate; while a thind, which iacheded live tubercules, was, by successive detentions on the way, fully tive months in reaching Englani. The box, however, came to hand in June last (1869); and, amid a mass of damp earth and decaying matter, I had the satisfaction of discovering one solitary tubercule cxhiiniting signs of vitality: Tinis, placed in a greenhonse and carefully nu:sed, soon began to grow with mapidity, and, on remural to :m open border, pruduced at tall and vigorons plant, which towavds Eeptember showed signs of flowering. It was then taken up and replaced in the greenhonse, where it blossomed freely in ()ctuber last, bat dad not mature my sceds. Accompanjibes the tubercules, but of coursa in a separate boa, my correspondent sent sume piessed and dried specinens from Guanajuato, winch correspund perfectly with tie growner plant.
Having ascertained from the study of the eso materitus, that the phan belonged to the genus Ipemace, I endeavorud to identify it with some sipecies described in the "Prodromus" of Do Candolle, or in the suiseguently published "Ammahes" of Walpers, but without success. Neither was I ible to find any corresponding specimen in the herbaria of the Briish Ahuseum or of the Royal Gardens of Kew. In the parris Masemu there is :a phant, collected by Galeutti on the lofty Cordhlera, mear Casaca, which, so far as a scanty specimen cunbles me to judge, accords preciscly with that received from Mr. Finck, It buass a mumber which is not mentioned in tho caumeratoon, by Martens, of Galentti's Cimadrularen (contained in the "Mulletin de l'Acudémse Ruanlo de Bruxelles"); and, I therefore conclude that it is unnamed. Under these circumstances, I have drawn up the followms dingnosis and description of the rlant, which I propose to call fromer simelacs. The specific name is cho ens in allusion to tho re-
markable similarity which the plant bears in foliage and labit to the trie jaliyp (Ipomea Purga, Hayne), not to mention tho resomblance of its tubercules. Whe fumel-shaped corolla and pendent lower-luds of the Tanpico jalap-plant are quite unlike the corq̧esponding parts of I. P'men, and fumish a feady menns of distinguishing the two species:-
Iromosa smulans, sp. nov. Radico tuberosi, caule volubili herbacco glabro, foliss ovaths, acmminatis, cordatis v. sagittatis, indivisis, pedunculisuniforissolitariis, sepatisparvis.
Mab. in' Andibus Mexicanis siaral Guala dictis, mov. Guanajuato (fide cl. Fincli); in regione frigida ad ped. 8,000 prope Oaxaca (H. Galcotti, no. 1369!).
Ruclis: mapiformis v. subglobosa v. elongata, carnosa, 2-3 poll. longa, basi fibrillosa Caulesherbacei, graciles. Folia glaberrima 2-4 pollicaria, 1-2 poll. lata, lobis zaseos acutis v. rotundatis v. subtruncatis, petiolo tenui, 1+-2ł policari. Pelunculianillares, petiolumsubequantes, pendulimithoriv. in planta vegetiore novelli alabrastra duo fercutes, altere semper (ut videtur) ahortivo. Pedicelli incrassati, basi bracteis 2 minutis. Sepola orata, oltusi, exteriora maullulum breviora. Corolle infundibuliformis, $1 \underset{2}{ }-2$ poll. longa, glabra, rosea, pallidé striata. Stigmutbilobum. Clusula calycem superans, conica, 2 locularis, talvis 4 coriaceis. Seminu glabra.

Bisulphite of Lime: its Manufacture and Uses. ${ }^{*}$
br W. A. Tethenbee, M.d.
This salt of lime has, within the past fer years, come into extensive use for various purposes in the arts, and is often called and written, though inuproperly, as its chemicul formula will show, "bisulphate of lime." Yery few chemical text books make any mention of this substance, or the mode of preparing it, and, although several hundred tons are now amually elmployed in this country, yet we know of only one or two practical chemists who mannfacture it in my considerable quantitics. When sulphurons acid gas is passed into a mixture of lime and warm nater, a combination is formed resulting in the sulphite of lime $\left(\mathrm{CaO}, \mathrm{SO}^{\circ},=6 \mathrm{G}\right.$, with the asual addition of swo equivalents of water), which is a white powder of shighty sulphurous taste, and soluble in abont 800 times its reight of vater at 60°. In an excess of sulphurous acid, it is acadhly soluble, forming the lisulphite of hue (Cho 22 SO ${ }^{\circ}$, $=$ (22), which erystalizes in regular hexamemal prisuins, dificult af solution, the gh more soluble in water thath the sulplate, ctioterescont, and by contimal exposure to the air. absonbing onygen and passliat into the sulphate. In the cmaplog ment of the sulphites, or bisulphites, it is thercfore necessuny that these salts shonla he kept fresh, and kept as much as possible from contact with the oxygen of the atmosphacre. iss silihhorous acib, upon which the propertics of these compounds depend in their principal uses, is a

[^1]very powerful deodorizing agent, the bisulphite is considered much moro valuable than the sulphite for arresting the acetous fermentation of various substances. It is therefore employed in some very important practical applications. In phamacy it is used for preventing sancidity in hair oils, lard, pomades, dic. One dram of the satunated solution added to a pound of any of the named articles will preservo them for many months from clanges incident to exposure to the atmosphere. For hospital purposes it is now much employed for preserving beef tea, mimal and vegetablo jellies, de., all of which are excedingly apt to tumi sonr when exposed to tho taints of a sick room or hospital. Infected clothing, when saturated with a solution of the salt and hung up in the x, becomes disinfected in a short time, leavmg no disagreenble odor, as is the caso when carbolic acids and many of the chlorides are employed. In the dissecting room, and in preserving specimens of anatomy and natural history, it is now extensively used in this :mh uthen comatries, either with or without the addition of carbolic acid.

Within the past few years it has been sold and used to a very considerable extent for preventing the acetous fermentation of cider, wine, and malt liquors ; and certain parties have endeavoned to control the exclusive sale of it for this purpose, by means of a patent, but as we are informed, without success, as its use involves no new principhe, and it had becn applied to such uses some time before any claim had been made for its discovery or syecial application.
It affrils a very convenient method for testing any liquid, such as washes for the hair, yarious cosmetics, \&ce., for the presence of lead, as the presence of any salt of the latter when added to the fommer, way be at once detected ly the black color produced, which is the characteristic of the sulphuret of leaid. One who is not a professional chemist, or has not the apparatus at hand for producins sulphuretted hydrosen, may use this without any other vessel or materials than those found in any houselold.
By beer and ale brewers a solution of the bisulphite of lime is now cmployed for rinsing out and cleasing beer or ale barrels which have been used amd have become masty or sour. It wis fommerly the practice to burn a quantity of sulphur in the barrels, or to convey the fumes of buming sulphar within the barrel ; but the use of this solution is attended with much less trouble and expense.
Zut its most extensive use has, for the last few years, heen in the manufictme of sugar, as an antiferment, for the purpose of arresting and preventing the acotons fermentation of saccharine juices or solutions from which sugar is made. We think it was first used in the mannfacture uf. beet sugar, but it is now used wery extensively in the Sonthern States and West India Islands, where sugar is made from the juice of the cauc. The langest mamufactory in this comatry, if not in the world, is in Louisiana, supplying all the sugar refineries and manfactornes of the South and West Indies, besides filling larte orders from other countries. We have recently learned that certain parties are desirous of contracting for 4,000 tons for exportation, to be delivered within one year trom date of contract.
We havo not visited any laboratory where it is prepared on a large scale, but no doubt Calvert's method is usually emplojed, as
being the best and most economical. A sulphur oven is constructed very similar to that used in the preparation of sulphuric acid. In this the sulphur is bumed, producing sulphurous acid gas, which is conducted through im earthenware tubo to a tall column constructed of wood or lased clay, and filled with hydrate of iime. The sulplimeous acid is civen off from tho buming sulphur, mixed with amosphoric air aud nitrogen gas, tho latter of which results from the abstraction of the oxysen from the air to support the combustion of the sulphur, Ieaving the nitrogen as a residuc. Of these combined gases, the lime absorbs only the sulphuious acid, nid the others pass out into the atmosphere. The first product is the sulphite, but by contimuins the process, another equivalent of acid is absorbed forming the bisulphite.
Free sulphurous acid is easily detected, even in small quantities, by its suffocating odor, like that experienced in burning lucifer matches. It gives no reaction with any of the salts of baryta, unless it is combined with a base. The reason of this is that the sulphate of baryta is insoluble, while the sulphite is soluble in free acid. Sulphuric acid in contact with any one of the salts of baryta combines with the base, and sets the other acid free, which cumot in turn exert any action on the sulphate. But, on the other hand, when sulphurous acid is added to a salt of baryta, the acid which combined to form this salt is set freo, in which the sulplito of baryta is soluble. But in adding a sulphite to a salt of baryta no such solution occurs, as no acid is set free by which to dissolve the salt.

After bisulphite of lime has been exposed for some time to the atmosphero it is oxidized ind a portion of it becomes sulphite of lime. The presence of sulphate may easily be determined by adding solution of the chloride of barium, which will produce a precipitate of sulphate of baryta, or the sulphite combined with the sulphate if the lime salt had been partially converted into its sulphate by oxidation. Then, by alding hydrochloric acid, the sulphite is entirely dissolved, while the sulphate remains a persistent precipitate. Of course the percentise of cich may be deternined by weight.

To test wines, malt liquors, $\mathbb{E c}$., for tho the presence of any sulphite or bisulphite, it is first to be acidulated with hydrochloric acid to a degree sufficient to act upon the metals in producing hydrogen gas. If then a few small pieces of inetallic zinc be added, the gre produced will be sulphuretted hydrogen, which may be detected by tho peculiar odor, like that of putrid eggs, or by exposing to it a piece of paper which has been dipped in a sulution of acetate, or any of the soluble salts of lead. If the gis be sulphuretted hydrogen the paper will become blackened, lut if pure hydrogen, no effect will be produced. If the substance to be tested be a oolid, it must first be dissolved in hydrochloric acid, and then proceeded with as in the first instance. The bisulphite of lime is now in general nso for beet sugar, and docs not injure the quality of the root as food for cattle.
Although the salt is extensively used for canc sugar, it luns been found in some instances to diminish the quantity of good, well-grained sugar. In such cases, however. the bisulphite was probably injudicionsly used by those who were not thoroughly informed of its properties.

The Elemeuts of Oryolite and their Applications:*

My lRof. CHARLES P. WILLIAMS.

Near the settlement of Ivigtut, in West Greenlanc, in the high northern latitude of G19, occurs the only workabledeposit of cryolite of which wo have at present any knowledge. Picturesque and somewhat lofty mountains whose bases are washed by tho waters of the little bay upon which the small village is situated, are composed of granitic and gneissoid rocks, in whose boson is entombed a rematrable yein, or rather deposit of the nearly pure mineral, which attains an average thickness of not less than eighty feet, and which appears to be coincident in direction with the general course or strike of the beds of gneissic rock. This occurronce of the mineral cryolite is wrought under the auspices of the Danish Government ly am inconporated company, and supplies manufacturing establishments in England, France, Denmark and the United States, with a raw material upon which is based several important and ripidly extonding industries.
The mineral occirs at this locality associated with sereral species, among which may bo enumerated spathic iron (ferrons carbonate), galena (sulphide of lead), and copper pyrites (sulphides of aron and copper), though none of these have been found in quantities sufficient to render them of importance. In addition to these are two or three minerals of interest only to the collector, and which are of quite recent discovery. They are related to cryolite, and are probably the result of a secondary :uction on the niain mineral.
On chemical analysis, cryolite is shown eo be composed of the three elements, fluorine, alumirimm and sodium, combined in the proportion of sixatoms of the first or two of the second and three of the third, so arranged among themselves as to prodnce one equivalent of fluoride of aluminium and three equivalents of the fluoride of godium, giving rise to the formula, $3 \mathrm{Na}+\mathrm{Fl}_{2} \mathrm{Fl}_{3}$. Its $p^{\text {ecreentage composition, as deduced from }}$ this expression, is as follows: Fluorine ($\mathrm{\Pi l}$), 54; Aluminium (Al), 13; Sodium (Na), 23 . Eich of these elements, as extracted from the cryolite, finds important applications in the arts.
And first of fluorine: In its elementary condition we know little, if any thing, of this substance. Its isolation has been attended with so many difficultics, that the labors of but few, if of any, of the many chemists who have undertaken it have been crowned with success. But two of its com-pounds-one with hydrogen and the other with silicium, called respectively fluo-lydric and fiuo-silicic acids-lawe recently had their teclnical employment considerably extended, thanks to the labors of M. Tessie de Mrotay and others, and their production on an industrial scale formed, according to the report of our Commissioncr, "a somewhat prominent feature of the derelonment of the chemical arts, as brought by, che Exposition of 18007 ." De Motay prepares them by mixing fluor spar (fuoride of calcinm), silica and alumnina in such proportions as to form a slag, similar to that produced in a blast furnace; forms this mixture into a stiff paste, which is moulded into the form of bricks,
and then dried in an oven. These are thrown, with the addition of a sufficient ynantity of coke, into a blast furnace of from thirty to forty feet in height, whire, as they deseend. they are decomposed into fluorido of silicon and silicates of lime amd alumina-the two Intter uniting in the production of a slag, the first passing off as a gass. Above the mouth of the furmace is arranged a series of five condensing chambers, constructed of wood, into which the gaseons fluoride of silicun is conducted, and where it is decomposed, by passage over Venetian glass plates monstened with water, into gelatmons silica and at solution of tho-vilicic acid.
This acid has, for some time, been usel fur liberatirg chloric acid from chlorate of potash, in order that it may be combined with other bases and be employed in pyrutechny. A recent application of it is for the production of the insoluble fluo-silicate of potissimm, which is largely consumed i.. France as a substitute for borax in the mimnfacture of fint glass, and which it is proposeal further to utilize by its conversion into caustic potassa. As the somewhat abunciant chloride of potassimm can be readily transformed into moro useful salts of the same metal by the intervention of this fluo-silicic acid, both of these componds assume a new importance in technieal operations, for the question of the best and most economical method of extracting potash from minerals is forcing itself upon chemists all the wond over.
The flomine of cryolite is used in this country for the production of semi-opaque white glasses, resembling in many respects, porcelain. They are formed by melting together, in the ordinary glass pots a mixtme of sand, oxide of zinc and cryolite, and consist essentially of silicates of alummia, soda, and oxide of zine with silico-fluoride of sotium to which latter the semi-opacity is most probably due.* The mineral, in this application, in addition to furnishngs a peculiar product to the glass maker, also serves him asa cheap cheap source of sodh, saviug expensive and tronblesome manipnlation. And this brings us to another of the elements of cryolitesodinm.
The history of the production of suda compounds is one of the most interesting accounts of the methods in which chemeal science has subserved and answered the demands of a thousand industries. The progrens of business from the timo when they were collected from the lakes of Erypt and elsowhere, up through the period of sea-weed burning for the production of kelp, varec or barilla, to the countless improvements on the original common salt proccess of Le Blane, is the progress, in a great measure, of the important industrial operations of the gits mal smap maker. The utilization of cryolite in the same direction, is still another innportant forward step which was first taken but a few years ago.
As practiced near Pitsbuygh, Pennsylvania, the method of manufacturing soda from cryolite, consist in calcinung the pulverized mineral with lime, which removes the fluorine fropl both the aluminium and the sodium, with the formation of fluonide of calcium, and alumina and soda. The lixiviation of this calcined mass dissolves the soda, and through it the aluminis, and lenves the flooride of calcium as an insoluble mass.
${ }^{\circ}$ C. P. Willam's Jour., Franklin Iustitnte, April, 1560.

The passage of carbonic acid through the solution of sodia and aluminat results in tho formation of carbonate of sola and the precipitation of alumina, and these two compounds are sepamated by filtration, tho liquid being evaponatel for obtaining the carbonate, which maty subsequently bo converted mito canstic suda or into hicarbunate. Or the product of the tirst lixiviation may bo evaporated to dryness, with the production of aluminate of sodia, which finds emplos:ment as a mordant in dyeing, boing reported to heishten greatly the color on certain woolen gooms. Aluminate of sod:t is also premad from tho minemal bansite, by boiling it with a concentrated sulution of c:unstic soda, or loy ealcining it in a reverberatory fumace with solat ash.
The precipitated almaina from the operation of producing carbonate of sollis fi in cryolite, is placed in a suitable leaden vessel, and agitated with sulphuric acid and water fur the production of sulphate of alumina, a componud much used m dyeing, and to some extent in paper making, and which, as formed above, is free from in, mad from any encess of acid. On accume of these features and the trifling cust at which it can be produced, it is rupitly siperseding alum in many operations.
When acetic acid is used as a solvent for precipitated alumina, the production is an aceetate of that base, which was formeriy, before the utilization of cryolite and hauxite. prepareal by a process of doublo decomposition between sugar of lead and alum, and being deeidedly more expensire, was much less used than it now is.
Very nearly five thousand tons of cryolite are ammally consumed in this country for the production of soda and almminous compounds, the only establishacent using it being at Natrom, Pemsylvania. Its products are remahable for their purity, and are in request ly the manafacturers of the finer qualities of glass, as well as by dyers, paper makers and sugar refiners. In Europe, the cyrolite is sonetines decomposed ly long contimed boiling with milk of lime, the chango being essentially the same as when the process of calcination a:d subsequent lixiviation is employed. It has been proposed to fuse the mineral with twice ats weight of wolfram, for the production of tungstate of soda, from which caustic soda can be recovered hy the eddition of line, tungstate of liue being at the same time produced. A patent has been graitel in thas comentry for a method consisting in calcinims cryolite "ith the mineml numite or other mative phosphates of lime, ly which phosphate of soda is formed, which can be subsequently decomposed by lime, and the resulting phosphate of lime be employed as a fertilizer. It is. however, donbtful if any of the processes will take the place of the one frst described, miess, indeed, some of their new secondary products become of greater importance, so that the canstic sod. may come to be regarded as an inciliental product.
The metal aluminium has also been extracted from cryolite by simple fusion with motallic sodiun. Thero are, however, dificultics in the way of employing one mineral for this purpose, so that its use las been almost entirely replaced by the artificial double chloride of aluminium and sodium, readily and cheaply prepared from common salt and clay. The crecssire cost of sodium
and other cxpensive attendmuts of the preparation of aluminium, linve dwarfed the developunent of this, which promised to be no mimportime brimch of metallurey, the uniune properties of the metal fitting' it for mamerons :md widespread applications in the arts. Io mow fimis it chicf employment not in its demental combition, but :illoyei, with other metals, many of such :illoys heing clleaply 'pupured without the preliminary isolation of the ulhoying metals.

ongario coleseat of pharmacy

Pabsment, - - Wal elliot, Ese.
The regular mectings of the College tale phace (n the Finss Funay crenimy of cetcl munth, "t the Melianies' $r_{\text {testitute, when, wfter the }}$ truastection of hnsiness, there is a paiper rectl, or disisension enguyed iia, zupur sthjects of interest cuil rulue to the nembers.
The Cullige calmits us memincres, Chemistsand \mid prugyistsof ghomen standiuy, wuil heir asssuttents
 the folloriny fres:
Priacipals, • - - - $\$ 400$ per Aunum
Assistants \& Apprentices, 200
The Joursan. is furnished yren: to all members.
Partirs arishiny to join the Colleye may s.rud their nemer for proptosel to any of the members uf the Cilleye. A culy uf tice ionstitution anal Burlews of the complege weill le furpiovicel om application.

HENRY J. ROSE, S'reretury.

THE CANADIAN

E. B. SUUTTLEWOHTH, EDITUR.

TORONTO, ONT., AGUCST, $18 \% 0$.

Corresponilesace and gemem communica. tione, of a chasacter suited to che oljucts of this Jotexa, we invited, and will always he wel-
 coimmuncation, Int not necerssurily for publication.
Subscrinfionesi wiil not he arknoubeded ly loter, as mat senting the paper many be taken as sallicient ewiel ace of the wecipt of the maney:
 to he aldresent, post-paid.
 Tos:oszo:"

THE MANUFACTURE OF SALT IIN CAHIADA.

We need offer no remarks on the alvantayes to be derived froa the pussession of salt dejesits of such a valunble description as have been recently shown to exist in the Whorth-western section of this $P_{\text {rovince. Al- }}$ though but four yens hate elapsed since the fisst experiment was made, at Goderich, the work his been pushed furward with energy, and, at the present time, not oilly is the sumply of aalt fully cqual to hane demand, bata considerable smplts is amailable for
exportation. The attention of manufacturers should now be directed to improvements in the mumer of working, by which tho cost can be reduced, so as to allow a wider margin for profit in competing with the salt producens of the Thited States.
The Report of Dr. T. S. Hunt, on tho Goderich Salt Region, recently issued by the Geological Survey, is replete with information of the grentest vilue to manuficturcers, and contains much which is interesting to the general reader. The extent and locality of the deposits; analyses of the brimes, and courprison of their strength with those of the United States, as well as full details of the methods of concentration employed here, as well as in other places, are fully entered into, and described in detain.
Wo larn that the first boring was made near Goderich, in 1866, when, after a depth of one thousand feet had been reached, a bed of rock salt, estimated as laving a thickness of :bout forty fect, was reached. From this well a constant supply of brine has been obtained, up to the present time. Several other wells were opened, successfully, near the same locality ; and, a year later, the salt bearing stratum was reached, at Clinton, thirtcen miles to the south-east of the former locality. We may mention, in passing, that to-day-Aug. lst-we noticed a telegram in the daily papers, announcing that the Clinton Salt Company had just been rewarded by finding a deposit, at the depth of 1,130 feet from the surfico. In 1868 a boring was made at Kincardine, thirty miles north-enst of Goderich, showing the existence of the saltbearing stratum at a deptla of 900 fect. Dr. Hunt thimls it probable that the whole region betwecn Clinton and Kincardino will be found underlaid by salt, and mas belong to a single basin, whose extent yet remains to be ascertained.
Wells have leen sunk in various other lecalities, as at Tilsonburg, London, Southampton, Port Elgin, and Waterloo; most of theso have been abandoned, as unsuccesstul, althongh the proprietors of the well at Tilsonburg report the finding of brine marking from 35° to 50° of the salometer, which would seem to indicate the prosimity of a saliferous statum.

The great purity of the brines met with at Goderich has beenimade the sulject of remaxk by Prof. Goossman,-former chemist to the Onominga Salt Comyny -who, in 1808, drav up a repart on the subject. Ho says "the present brine of Goderich is zoot only one of the most concentisted known. but also one of the purest, if not the purest, at present turned to practical wse for the manufacture of salt." Allusion is made to the very small proportion of the obnoxious deliquegcent chlorids of calcium mad magnesium,
which nre ouly presont in one fourth to ono fifth of the quantity existing in tho brines of Syracuse, N. Y. Tho brines of Snginaw, Hichignan, are still more impure, containing, as shown by varions amalyges, from sixty tol ninety times the amount of earthy chlorides found in the Goderich brines.
'The Guderich Compmy's well has been worked continuously since October, 1866, and has yielded, for the greater part of tho time, one hundred bushols of salt, daily. It appears, however, that this hrge conssumption of brint has not been followed by a very marlied diminution in its strength; for from four malyses, mado at intervals of about a a year, we find tho specific gravity had only decreased from 1.205 to 1187 ; corresponding, respectively, to 25.70 to $23 \cdot 64$, per cent. of salt. The last analysis made by Prof. Hunt gave the following as the composition of the solid constituents :

Chloride of sodin	0
of calcimm.	0
of magnesium......	410
Sulphate of lime	$4 \cdot 856$
	241.868
eci	

A brino of this streugth yields about n bushel of salt for every 24 gallons; while 40 gallons of Symanse brine, which contains about 15 per cent. of salt, are required to make a like quantity.
The evaporation of the brincs, at Goderich, is carried on in large cast iron kettles, of a capacity of from 120 tu 140 gallons. Theso pans are arranged in two parallel rows of from twenty-six to thirty oach, over a furnace, the larger ones being placed in front. so that they inay receive the greater heat. The cost of a block of sixty kettles is about $\$ 1,500$, to which may be added a similar amount for the construction of tho furnaces.
The fuel hitherto employed has been chiefly wood, which is cut in the vicinity, and costs about $\$ 2.50$ per cord. From data fumished to Prof. Hunt, by several manufacturers, the nmount of salt obtained by the consumption of one cord of hard wood, is about 35 bushels, of 56 pounds each. It has been found that a cord of wood gives nearly the same results as a ton of ordinary cualono pound of coal producing a pound of salt; so that, in Goderich, the choice of fuel is easily settled, as the cost of coal is considerably higher than that of wood.
Although the Goderich brines are fifty per cont. richer than those of Syracnse, and consequently should require less evaporation, yet it has been found that while adopting.the same system, the yield of salt for a given quantity of fuel, is, in tho latter place, niuch larger. It appears that the eraporation is too rapid for the strength of tho brine, and on this joint Dr. Goessmann remarks that
the only difficulty with which the salt makors have to contend "is tho rapill inerustation of the kettles, a trouble due to the strong concentration of their brine, in comection with their jeenline system of manufncture." Under these circumstances, the salt separates in considerablo amoint in very fine grains, and a hard incrustation forms on the bottom and sides of the kettles, which soon becomes several inches in thickness. This not only canses a considerable waste of salt, since these crusts are not fit for market, but, what is of much greater importanct, prevents tho cconomical application of the fuel ; besides, which, the necessity of n frequent removal of the crust of salt generally keeps one of each row of kettles out of service. The crust miay be retnoved cither by mechanical means, or by dissolving it out with fresh water, a process which involves the loss of time, fuel and salt. With weaker brines, on tho contrary, like those of Sj racuse, the fresh supplies of brine added to the emptied kettles suffice t, dissolve my existing crust, and the difficulties which cause such a serious loss at Godcrich are not felt."

Dr. Goessmann proseeds in describing the manufacture at Goderich:-"The salt is, after separation from the pickle, (notherliquor) as might have been expected from a bring like that of Goderich, of a superior color, of a hard fine grain, resembling tho best brands of home and foreign manufacture, and this success is attained without any but the ordinary care required for the manufacture of common fine salt. It will be noticed that the sole objection which suny be raised against the Goderich brine, is merely incidental, for tho brine is too strong to be worked to its full alluantage by the system of manufacture at present pursued. Evaporation by more moderato leat, for instance, on the European plan of large pans, or evaporation by solar heat in wooden vats, on the Onondaga plan, would, no doubt, prove more successful. Each of these methods would produce, with-less trouble, not only a very good marketable article of its kind, but secure what is most important, the full percentage of salt, which might be expected, comparing its concentration with the brines of Onondaga, to be a difference of 50 per cent."

Other plans of evaporation hare been tried, as at the Stapleton Works, Clinton, where two pans similar to those in use at Cheshire, Eugland, havo been erected. Theso are forty foet by, trenty-one, with a depth of fifteen inches. The contents of the first pan are kept in ìstate of rapid ebullition, producing fine salt, while the waste heat passes under the second pan, producing a slower evaporation, and consequently, a larger grained salt. The daily product of these pans is fifty barrels of fine, and.twenty barrels of coarse
salt, requiring seven conds of wood. This is at the rate of fifty bushels of sult to the cord, and is a decided improvement on the process adopted at Goderich.
We recently moticed an aticle in the Toronto Gilole, in which allusion was made to the defective nppliances for the production of salt in this commtry; , and tho attention of manufacturors was directed to a new process of evaporation, which was said to have been tested, experimentally, with considerable success. The apharatus is described, with considerable dotail, but may briefly be said to consist of a hollow iron cylinder, which is made to revolve, partly immersed in a tamk of concentrated brine. A current of steam is made to pass continuonsly through the cylinder, which instantly evaporates the brine allhering to its outer and exposed surface. A thim layer of salt is formed, which is further augmented by the evaporation of fresh brine supplied by "drippers" placed above the cylinder. Before the dry part of the cylinder again enters the brime, it is made to pass in proximity to a stationary knife; which scrapes off the layer of salt, supposed to be in a marketable condition. The Glube does not pretend to say that some sanguine calculations it has seen regarding the results of the plari could be fully verified, on a manufacturing sale, but it is said that a dozon such engines, " of proper size" (!) would turn out seventy-two tons in twenty-four hours.
It is somewhat unfortunate that the size of these salt-producing engines is not specified, and the quantity of fuel stated, for therein lies the question of economy; and this is the main point. It will be obvious to any one acquainted with the subject, that the plam, howuver economical, could not be successfully carried into execution for the manufacture of anything but the most inupure salt, and we fear that such an article would not meet with a realy sale, even for the most common puposes. The presence of impurities-as the earthy chlorids-in even the purest brines, and their non-removal by the above process, woald, we fear, be insurmountable difficulties. In other methods, theso bitter impurities are left, principally, in the mother liquors, which, from time to time, should be thrown away, as the value of salt mainly depends on the :absence of these contaminations. Let us take the amalyses made by. Dr. Goessman of the brine of the Goderich Company's well, and also of a sample of manufactured salt produced by the commny, and then by comparison we can casily determine tho purity of the two articles, as the composition of the brine would of course represent the salt is mannfactured by the cylinder process :

Malysis of Briac.

241-433	$\begin{array}{r}\text { Analysris of Salt } \\ 97 \\ \hline\end{array}$
	97.
. 216	-007
-336	-031
$5 \cdot 433$	1.430
$241 \cdot 418$	03.498

Befuro concluding this inticlo, wo woukt da:u tho attention of manufacturers to the details of the manufacture of solar salt, as described by Prof. Frmen, and to the very useful table, giving a comparison of different expressions for the strongth of brine, from zero to saturation, wath which the Report concludes.

OITRINE OINTMENT.

The proparation of this ointment usually falls to the lot of the druggist; very seliom is it purchased of the wholesale dealer, for everyone pussesses, or thinks he possesses, some valuable secret in itz manufncture, which ensures a product of better consistence, colour, and permanonce, than myone else, It may be presumed that success, in this line, is ouly attained after repeated failures, hence the varicty of ointments termed citrine which one often meets with-ointments of every shade and character, from the cadaveroas product, of ephemeral permanence, and unyiclding obduracy, to the mak and oily, of pitell-like blackness, whose only claim to permanence lies in the fact that it camnot pussibly become any worse.

With what timidity docs the apprentice make his first attempt at this umcomprehensible unguent! He has got up the subject well by preparatory reading. The pharmacopural directions are at his finger ends. Ho has read, perhaps, some dozen of the treatises " on tho preparation of Ung. Hydrarg. Nit." with which our journals abound-from one he leams that if duo attention is paid to a cert:in temperature for the reaction, suceess is certain; another says that the purity of the inaterials is the main thing; while a third arserts that he never fails under any circumstances to make an ointment that pleases his customers-a statement which may bo far from complimentary to the intelligence of that class of persons. Then comes in the host of heterodor: writess, who, having no fear of pharmacopoias before their eyes, boldly aver that it is perfectly impussible to succeed if officinal directions are followed, and that the best course is to double tho quantity of nitric acid, divide tho amount of mercury, substitute lard, neatsfoot oil, or butter, for the olive oil, or drop the lard and use the oil, or in fact, do anything but follow the book. Somewhat perplexed, our apprentice turns for commel to an older head, and asks the advice of the chief assistant, who probably dispols the little confidence left by telling him that he will most likely make a mess of it, but that ice has a form that never. fails, ©c. The attempt is made, however, and the ointment looks well-a littlo frotly perhaps. But will it kesp? The next morning settles the question-the lid of the pot requires no raising, it has been lifted off by the incontrolable foaming mass within, which
hangs in yensty droppings ovel tho edge. Our apprentice has made a mess of it, and is rated accordiugly. Whis is tho common termination of lirst experiences, and wo also know that f:ilures often ocenr in older hands. A reliable preparation, of clefinite appearance, cannot always be insured, although the othcinal cirections, as well as the teachings of experience, bo rigidly observen. We do not regatel citrine ointment as worthy of a place in any phamacopoia-at all ovents, as wrepared at present; it is decidedly unssientific ; tho reactions which occur in its formation are not perfectly maderstool, nor are they perfectly under control.

We have linted that literature on the sub. ject, is, by no means wanting ; indeed, wo ! do not think any theme has been more movlific. But tha greater number of writers have only suggested slight alterations in the pro-1 portions of the ingredients, or tritling modi- ! tications of the original process. We notice, howerer, in the Phamacist, for July, a japer by Mr. IR. Rother, in which is material change is suggested. We havo not had time to give Mr. Rother's piocess a trial, but shall do so on the next opportunity. In tho neantime, we give the following extract from the paper, in which the practical detals of the methed are alluded to, so that our readers may experiment for themselves:-

The now juvess resis unon a scientific basis whose chinacteristic feature pervades it in every detail, and which must therefore invariably yieh i uniform and definite result. Tro parallel operations, separate and clistinct, umite their perfect results to one complete and unchangeable whole. The formation of mercuric nitrate is ellected with the requisite quantity of nitric acid, and the remainder iscompletely consumedin the oxidation of the fats. This insures the ultimate existence of but one compound of mercury in the finislicd product, and that is, as the title implies, the mercuric nitmate. It likevise admits of the axidation of the fatty matier to the utmost capacity of all the available nitric acid, so that when the last vestige of this has disappeared the mercuanal solution can be mised with the nearly-cooled preduct vithont causing any iurther reaction. A very decided adrantige of this process in that the enormously largo voisels can be dispensed with. The nitricacid is added to the melted, fat, and the heat contimued until brisk chullition sets in. This occurs mainly inthe centre of the mixiture, and wathont frothing. It is, howerer, of the atmost necessity not to disturb the liquils by stirrines. If the reaction becomes too violent, the mixture must be remored a short time from the fire; and if the action slackens too much, it must be replaced. Finally, when all the nitric acid hits been decomposel, the temperature can beconsiderably raised without cansing any further effervescence. Tho boiling then is analagous to the boiling of fatty unatters in areneral.

From the foregoing reanlts the following formula is deduced:
Take of Mexary..................... 18 troy onnces.

Dissolve the mercury in 900 grains of the nitric acid, with the aid of heat, and keop the solution gently wiwm to provent crystallization before it is used. Melt the lard in at suitable vessel with a moderato hent; then nid the remainder of the nitric acid, und continue the hent, without stirring the mixturo, as long as moderato offervescence continues; but if this becomes too violent, romove the mixture from the fire, and only replaces it when tho action slackens too much. Finally, when effervescence censes and tho licatid only boils oven under s.n increased heat, remove the mixture from the tire altugether, and whon it begins to stiflen, add the mercurial solution, and mix thoroughly.

Canadian Phosphate of Lime.

At a recent mecting of the Glasgow Philosophical Society, Mr. W. IR. Futton read a yaper on the above subject. After alluting to the fact that the value of a mineral phosphate depends upon the percentage of phosphoric acid contained in it, ho said that if a marked quantity of the carbonate of lime be present the value of tho phosphoric acid is much reduced; owing, chiefly, to the large amount of sulphuic acid required to decompose the carbonate before the phosphate can be acted upoin. The same remarli held good in regarl to iron, which takes up a portion of acid, and is peroxidised, forming a compound absolutely injurious to plant life. Mr. Hutton mentioned that he was supplied some months since with specimens of phosphate of lime from Canada, whtained from a face of the material nearly fifteen feet in width, and presenting, so far as yet examined, an excellent supply of the raw material. The samples differ very much from those phosphatic minerals which nre now in use, nud seem to indicate that if a sufticiency cau be obtained the Camadian minemal will bo welcomed by manure manufacturers. Some of the specimons sent were distinct six-sided prismatic crystals, while the otherpieces were inmasses; but both crystals and masses had a vitreous lustre, the coluar on some parts being green and bluish-green, and in other places red. The following anaysis was given :-

In a physical point of viow this Canadian phosphate differs from all others in being crystalline and not granular ; while it differs chemically in containing more phosplate of line and less carbonate of lime and sand.

Revival of an Old Procuss for the Manufacture of Caustic Soda.
Sume soventy or eighty years ago a series of experiments wero mado by Lord Dunclomald in making caustic soda by the decomposition of common salt by litharge. Subsequently, the process was conlucted on a manufacturing scalo, and, it may be inferred, with some profit, as the ciustic soda realizen, at that time, some $£ 85$ to $£ 90$ stg. por ton. The method was, however, beset with practical inconveniences, and soon fell into disuse. These difficulties have been sumounted by M. Bachet, of Paris, who has patented his improved process, and Mr. Clapham, F.C.S., recentiy read a paper before the Newcastlo Chemical Suciety, giving a brief outline of the patent, and the cletails of worling, 100 parts of litharge, 70 of salt, and 50 of lime, are ground together, with a little water, in a mill. The reactions which take phace result in the formation of caustic soda, chloride of lead, and hydrate of oxyd of lead The pulpy mass is subjected to the action of a press, and the clear liquor-consisting of solution of caustic soda, chloride of sodium, and a variable quantity of lead-is filtered through hydrate of lime, with the effect of removing nearly all the lead; the liquor is then evaporated until crystals of sodium chloxide form, which are fished out; the clear solution is finally finished in an ordinary caustic pot. In this way from 47 to 50 per cont. of the salt is converted into caustic sode of 70 per cent. The regeneration of the dry white lead cakes forms a special feature in the patent, but by the present way of working, nearly all the lead is recovered for further use. Mr. Claphan appears to think that when the prent is fully worked out, caustic sola will bo made at a considerable reduction in cost on the present plan. The importance of the alkali trade in England may be estimated, when we consider that the yearly production of caustic amounts to 20,000tons, valued at $\$ 1,750,000$.

Relation of the Sun's Altitude to Actinic

 Power.It may be interesting to those interested , in photography to learn that the experiments - made at Kew, to determine the chemical in'tensity of total daylight in relation to the ' hours equidistant from noon, and the conclusion arrived at-that the mean chemical power is constant in this relation-liave been verified by Profs. Roscoe and Thorpe, who in the autumn of 1807, on tho fint platean of the river Tagns, instituted a series of experiments on the subject. The chief result arrived at was that, although the chemical intensity, for the same altitude, at different places, and at different times of the yoar, varies according to the varying transparency of the atmosphere, yet tho relation, at the same place, is always represented by a straight line.

Canadian Inventors in the United States.
We notice that under the recently umended Patent Law of the U. S., Canndian inventors, in common with other foreigners, are allowed to apply for patents on the samo terms ns citizens of the United States. The Scientific American thinks the example worthy to be followed by the government of the Dominion. Wo heartily ngree witi our contemperary, and hope that un law-givers will fall in with reciprocity-at least as far as genius is concerned.

Detection of Fusel Oil in Alcohol.

The RevueHeblomudaive gives a simple test for the detection of amylic alcohol in spirits, which, if effective, is calculated to be of considerable value. The spirit to be examined is mixed with an equal bulk of rectified ether, and a like guantity of water ; the mixture is shaken in a burette, or glass tube, when, after a short rest, the ether rises to the surface, and is removed by a pipette. This nust bo left to spontaneous evaporation; if the alcohol contained fusel oil, it will be left behind, and may be easily recognized by its pungent smell.

Eydrocyanic Acid in Tobacco Smoke.

After a series of carefully conducted experiments, Drs. Pogyiale and Marty (Jommal de Pharmacie) deny the statement mado by Dr. Vogel, that hydrocyanic acid can be readily detected in tobacco smoke. According to these investigators, tobacco smoke does not contain hydrocyanic acid, nor does it exist in any of the condensed prolucts of such combusbtion.

Dichloracetic acid is said to be the best caustic for the removal of warts; one application is commonly effectual. The acid should be earefully put on with the sharp point of a glass rod.

ghtes mul Qucries.

R. D. E. Toronto.-Test for the Prf. sevce: of Water in Eturb.--We recently noticed a test which is said to detect the presence of 2.5 parts of water in 1,000 of ether. It is lased on the fact that perfectly dry phenylate of potasle is quite insoluble in anhydrous ether. Should even the above quantity of water be present, the phenylate partly dissolves, communicating more or less of a reddish brown color. This test will suit your purpose better than any with which we are acquainted.

Pazsive State of Metales.-Assistent snys that in making liq. ferri peruitratis he employed the ordinary double acid, sp.gr. 1.370, without dilution; on adding the iron, which
was in tho form of clean turnings, no action ensued. The iron and acid were stiffered to remain in contact during the course of a night, and next morning, on being oxamined, the metal showed no traces of solution, appearing as bright, when viewed through the neid, as when first immersed. The glass vessel containing tho mixture was shaken, when a vigorous action at once set in, during which the greater part of the solution was lust through boiling over. Assistaut wants us to explain the apparently strango circumstance, and asks us if we over heard of a parallel instance. Wo will miswer the last part of the enquiry by saying, that we have frequently noticed the same phenomena, both in regard to iron, and other metals. Not very long ago we had a lat of silver-simo twelve pounds of American cuin-which obstinately refused to dissolve, although in contact with the reguisite quantity of acid-diluted as usual-for twenty-four hours; on moving the coin with the end of a glass rod, solution commenced, and continued rithout interraption until the specified quantity of metal was all consumed. This pessirc state of metals, as it has been termed, may be induced in a varicty of ways, one of which is that to which you refer-the dipping of iron wire into strong nitric acid. By holding it for a few seconds, in tho flame of a spirit lamp, the same end is attained. It has been suggested that this pissive iron might be turned to good account as a substituto for platimum, in galvanic experiments; but the passive state is liable to be disturbed by such very slight causes, that the method is of no practical use. The phenomena may be explained by supposing the metal to be instantly covered with a thin film of oxide, which serves as a protection against further action. Hence, when shaking the vessel which contained your iron, the coiting of oxide was broken, and the acid at once attacked the surface of metalthe stirring of the silver with the glass rod was attended with the same result.
C. Anderson.-Chlomide of Gold.-This salt is a terchloride, having the formula Au Cl_{3}. The crystals which fall from a concentrated acid solution are not those of the above chloride, lut another salt, tie chloride of gold and hydrogen. The salts, used in photography, mior the names of chloride of gold and calcium, or sodium, are mixtures of chloride of gold, with a variable amount of the chlorides of calcium, orsodium. The true double salt, chloro-aurate of sodium contains equivalent quantities of each of the chlorides, ard has the composition indicated by the formula Na Cl., An. $\mathrm{Cl}_{3},+2 \mathrm{H}_{4} \mathrm{O}$.
T. H. S.-To Preseave Lemon Juice.Select good, sound lemons, free from decay; after pressing out the juice, strain through a mûslin, or hair seive, and put into clean, dry bottles, leaving only sufficient room to insert the corks. Put the bottles in a water bath, and heat to 212°. If the bottling is done in winter, a temperature of 180° will be sufficient. While the juice is still hot, cork the bottles, and seal with bees wax. If the operation is carefully performed, the juice may be preserved, at least, a year.

Coriander Seed, may be protected from the ravages of the little insect that is so liable to nfest it, by sprinkling a few cardar mons on the top of the sced.

Subscriber wants to know if Japas Wax is a production of the animalor vegetable kingdom. It is derived from a native tree of Japan, tho Rhus succedkneum ; matural order, Anaccerdiuccu-and is, conseyuently, of vegetablo origin. It is generally of a dirty white, or yollowish color, and though resomblang beeswax, in some of its propertics, it las a different composition, containing it is said, twico as much oxygen, and consisting of palmitic acid mited with oxy' 0 of glycoryle. Its fusing point is also lower, being about 120° to 130° Falrenheit, while that of beeswitx is $14 \overline{0}^{\circ}$.

chatiges.

The partnership existing between Messrs. Lane \& Perry, Fergus, has been dissolved by mutual consent. The business will bo continued by Mr. P. H. Perry.

MONTHLY MEETING.

The regular monthly meeting in comection with the Ontario College of Pharmacy, was held in the usual place, on Friday ovening, August $\overline{0}$ th. The chair was taken by Hugh Miller, Esq., Vice-President.
Minutes of former meeting were read and approved; and after the transaction of ordinary routine business, tho followinggentlemen were elected members of the Collego:-

Duncan Ferguson.........Douglas.
W. A. PrestonDingle.
Williant G. Stark..............Himilton.
Robert C. Holbrook........

George H. Harkness................Mono Mills
R. Wood.........................Erin. R. Wood...........Erin. associate.
Price JuckesToronto.
In pursuance of a suggestion made by the late Council, in their ammanl report, it was proposed by Mr. Roso "that a committee be appointed to secure papers to be read before tho College, or to otherwise increase the interest of the monthly meetings." The committeo named consisted of Messrs. Dunspaugh, Shuttieworth, and Margach. The Secretary expressed his regret that more meribers did not take an active part in the mectings of the Society, and, moro especially, in the reading of papers. He noticed that in the reports of the proceedings of kindred associations there was, generally, no lack of communications of this charncter; lut if the intelligence and activity of our Society was to be judged by the number of papers brought before it, the estimate formed would not be of the most flattering claracter.
A number of genithemen expressed themselves in favor of the motion, which was carried, and the appointment of the Committee confirmed.
Mr. Brydon said that he would suggest, as a subject for discussion, at tho September meeting, "the best formula for the preparation of the so-called Syrup of the Hypophosphites." He had, so far, failed in purchasing a syrup of a reliable character; and in those syrups said to contain iron, ho had only found the nerest trice. He thought it was the duty of pharmacists to prepare this class of medicines themselves. The discussion was agreed to, and, thero being no further business of imporrance, the meeting adjourned.
H. J. Rose, Sccretary.

Fildtioms.

On Artifoial Alizarine.

At n mecting of tho Glasgow Philusuphical Society, Mr. J. Wallace Young charactorized madder and its preparations as being among the most useful dye-stutis used in calicoprinting and dyeing. The importance of madder is duo to the fact that with diffurent mordants it gives a variety of colors-iron mordants giving all shades from black to delicate purple; those of alumina giving colors from a darle red to a fine pink; and a mixture of them giving variuts shades of r hoculate. Madder root has probably undergone more chemical investigation than any other colouring mat'er-the investigators being Robiquet and Colin, Claubry, Persoz, Runge, Schunch, Higgin, (Sc. The most important colouring mitter is Alizarine ; from it may be obtained all the durable and brilliant colours yielded by madder itself. Mr. Yome described the method by which alizarine may be ubtained readily from matder root, and mentioned that the substance appears ultimately as a sublimate of fine orange red needles, which are slightly soluble in hot water, and readily solublo in boiling alcohol. Uwing to the higls price of madder and madder preparations, much interest attaches to overy substance which purports to be a substitute for madder. A good substitute wuuld be gladly welcomed. M. Roussin ammoneed a fev years ago that he had succeeded in ohtrining artificial alizarine frommapthaline, but further investigation proved that he hat been mistaken. More recently, it had becn announced in the Chemical Neur and elsewhere that artificinl alizarime had been successfully obtained from anthracen.
Mr. Young then stated the results of has experiments upon two madder substitutes, one of cuntinental manufacture, a thin darkcolored paste, containing 5.7 per cent. of dry residue, the uther of English manufacture, supplieal in th. e furm of an upayue browmsh liquid. The furmercontaineda large amount of culured mather, but further parification was necessary befure it could lue used as a madder substitute. When mordanted cloth dyed with it was bulced with solution of soda, the columrs were fund to be rather fugitive. Cluth preparel for Turkey-red absorbed the dye-stuff readily, but the same want of fastness was observed. When maxed with ron and aluminous mordants, and printed on in the way in which madder cxtract is used, the colours were fuind to be dull and not sulficiently fast. A sublimate obtained from the dried pasto closely resembled natural ahzirine, but was rather lighter in colvur. It dyed morlanited cloth welt and withstond treatment with soap. The English made madder substitute yielded a red rather yellower than that yielded by natural alizarine, a black of equal, if not superior quality to madder-black, but the chicf difference was in the purple, which was rather slate-coloured than anything clse, contrasting most unfavorably with the fine shade of color given by madder: The yellowness of the red seemed to depend pretty much on the proportion of tin salt used in the clearing. As with madder and its preparations, the development of the colonrints matter of the artificial alizarine is increased by taming materials, as sumac, and deteriorated by chalk. The dried no seed of the brown artificial alizarine
liquid yiolded by sublimation a crystalline body of a yellower shade tham that of the crystals of the matural alizarine. In order to comparo the artificial alizarino with the natural substance and with purpurine, which is nother madder oxtract, tho author dissolved each of then in weak summonin, and added barinm chloride; thoy all yieded purplish precipitates. The matural alizarine precipitato was of it fine bluish-purple color, and the supernatant liquor was almost quite clear ; that from the artificinl proluct was much redder, and the supernatant liquid was highly colored; the purpurine precipitate was of a purylish-red culor. The matural alizarine and purpurine precipitates did not seen to bo much affiected by being washed soveral times with cold water, but the artificinl alizaxine precipitate gradually dissolved in the washing water and finally disappenred. Mr. Young thoroughly tested tho dyoing powers of the new alizarme by \mathbf{c} mparing the results produced upon mordanted cloth cither with equal weights of sublimed alizarme obtained from tise two artificial preparations aud from madder, and of purparmo; he showed the specimens of cluth so treated. Instead of the dark full red given by the natural substanee, the artificial alizarine yielusd only a yellowish-red, much like that of the purpurine. Its purple was of a slaty tint, but tho chocolate and black differed very slightly frem those of the natural alizarine. The purpurine scarcely gave any purple, and the same is true of the Continental and English madiler substitutes. Alcoholic sulntion of natural alizarme gives a fine purple color with copper acetate, and with the same reagent the artuficial preparation gives a very red purple. No characteristic bands aypear in the spectrum whon artificial alizarine is used, and, therefore, purburme is shuwn to be tutally alsent. The author was nut avare if anything had been done towards establishing af formula for the new alizarine, but his opinion arrived at after perfurming many prictical experinents, wis that there was sume essential difference between the artificial and the natural substance. He had fuund no superiority in the new substance. In a supplement to the paper of which the foregong is an abstract Mr. Young sad that the manufacture of artificial alizarino is carried uut in two or thee ways by continental chenusts, and from the examination whelh has been nade of the products, it would appear that some of them cunsist of a maxture of alizarme and purpurine, in different proportions, and some of alizarine, or of a substance mitermedute between the tuc. It had been sad that it was mure advantageuns to use the artitical alizarine as a dry paste, rather than m the dry state, but he cuuld find no difference $1 n$ the dyeing power. He had treated the artificial alizarine with boiling dilute sulphuric acid, as in garancine making, afterwards wrashing thoroughly and drying; he had. aso dissolved it in sudium carbonate, precipitating with acetic acid, washing and drying; but the colors given on drying did not seem to be modified in any way.
A discussion followod, in which several gentlemen took part. There seenied to be much doubt as to the mode of preparing the artificial alizarinc, and if it could be produced in large quantity, consudering the small amoment of anthracen which exists in coal-tar. On that point, however, it was stated by Mr. Mogg that it could be supplied.
in considerable quautities and at such a prico as would make it cheaper than madder:Chem. Nexs.

On the Estimation of the Alkaloids in Oinchona Barks.

Mr. H. Hager detormines tho total amount of quinine, (lininidine, and cinchonino in cinclinna bark, by precipitation with picric acid; the mothod mafurtunately, does not surmomet the great dificulty, viz., that of determinating tho amount of quinine in presence of the nther alkaloids. The nuthor proceeds as follows :-Take 10 grammes of the bark coarsely powdered, add 130 grammes of water, and subsequently 20 drops of a solution of caustic peotash, sp. gr. 1.3. Boil this mixture gontly for fifteen minutos, occasionally stirring, and then ụ̄̆ lō grammes of diluto sulpharic acid, 1.115 sp . gr., boil for fifteen or twenty minutes ; allow it to cool a littlo, pour it into a measure, and make up with water 100 c.c. A portion of the liquor is then filtered into a cylindrical glass vessel, graduated say for 60 c.g., and to this is added 50 c.g. of a solution of picric acid, saturated at the ordinary temperature; this quantity will generally befound sufticient to eflect the complete precipitation of the alkaloids. The mixture is allowed to stand for half-an-hour, the precipitate collécted on a weighed fflter, carefnlly washed and dried at a temperature of $100^{\circ} \mathrm{F}$. The proportion which would have been derived from the +ntal quantity of liquor may bo calculated from the weight of this precipitate, and hence the nmount derived from 10 grammes of bark. According to the usual composition of the Calisaya bark, 10 grammes of this varicty should yield at least 0.824 grammes of picrato, corresponding to $0.3 \overline{0}$ grammes of the mixed bases, quinine, quinidine, and cinchorine.- Themist and Dru!gist.

Of what Sponges Oonsist.

The common washing sponge is still considered by many maturalists as a vegetable species, and in fact nost people look upon it as of vegetable growth Still, it seems now to be definitely established that it belongs to those low forms of animalculo that are comprised under the term zoophytes. "Will you make us believe," here you exclaim, "that this fibrous net-work, in which one is unab.e to detect the least indication of anything that reminds us of animal life, is not a moss or something like it ?" Exactly so. Hovever, the sponge which you use daily in your ablutions, and which forms one of the most indispensable articles of the toilet, is not the animal as it lires and thrives, but only its horny substance, its skeleton, if you like to call it so. When cut loose from the submarine rocks on which it is found at considerable depth, the sponge presents itself to you as a black, jelly-like mass, which, when left in the air for only a few days, will give off a most disagrecable smell, originating from the gelatinous part in question. In the natural sponge, you have not one single individual before yon, but a regular colony of animalcule. The elastic, hom-like net-work of your toilet-table is then impregnated to its inncrmost parts with a slimy substance that is penctrated throughout ly fine capillary tubes, not visible to the naked eye. Upon examming this curious being further, exceed-
ingly fino cilia (cye-lnahes) will be discovered. These project around the entrances of the pores, and by their motion produce a current which, in passing through the numberless tubes, leaves behind whatever they may need as food. The horny net-work is probably only their secretion, like the house of the sunil. But that the sponge is of animal origin is now proven by the discovery of spermatozoa and embryos in the interior, ins well as by the consumption of the fibrous elastic part itself, which contrins one of the constituents of silk and the spider's web.

In order to prepare it for use, it is first left in the air for a short time, until the gelatinous part is decomposed, then the mass is washed in hot water, andafterwards in a bath of dilute muriatic acid. The toilet sponges are heached by means of chlorine and hyposulphate of sodia. The so-called wax sponges, that are used by doctors for dressing ulcers, aro purified sponges dipped into fluid wax, and then pressed between hot plates.

The French and Austrian governments havo lately commenced to rear sponges arti-ficially-the former on the shores of the Mediterranean, the latter on the coast of Delmatia. The cultivation is said to be perfectly successful, and to yiold large protfis.--Drug-gists'-Circular:

Estimation of the Value of the Varions Einds of Oinchona Bark.

Dr. A. E. Yogl.-Forty grms. of previous-ly-pulverised bark are intimately mixed with 10 grins. of quick-lime, and made intu a thin paste with water; and this mixture is dijed (the temperature is nut stated). The dried mans is pulverised, and repeatedly exhausted with boiling alcohol at 90 per cent. (600 c.c. are a sufficient quantity for this purpose; the alcoholic .olntion is filtered, and to the filtrate are added about 5 c.c. of dilute sulphuric acid. The ennsing precipitate of gypsum having been removed by filtration, the alcoholic fund is subnnitted to distillation, and, after having been greatly reduced in bulk, is further evaporated to a very small bulk on a water-bath, whereby, a flocculont, resinous, vanilla-like smelling aromatic sulstwnce is precipitated. After this, material is agnin removed by filtration, to the filtrate is added a sufficient quantity of a sulution of caustic soda as is required for the precipitation of all the alkaloids contained in the bark. These bodies are, by this mude of treatment, obtained in a high degree of purity in the shape of a white caseous, or crystallino-flocculent precipitate, this should be collected on a previously-tared filter, washed with the smallest possible quantity of water, and thoroughly dried, and next weighed. In order to separats the different lonses from each other, the aforesaid precipitate is digested for twenty-four hours in a small flask with about 5 c.c. of cther. The etherenl solution is filtered of from the insoluble residue, which is first wasled with ether, and next dissolved alcolnol. Each of the solutions.8o obtained is evaporated, yielding, in some instances, an amorphous, in others, a crystalline residue. These residues are dissolved in dilute sulphuric acic; and, after these solutions have been filtered, the alkaloids are precipitated from these solutions by means of a caustic soda solution, which has been titrated so as to correspond with the dilute sulphuric acid supplici: as just
stated. This mothod of the estimation of the value of the cinchona barksisrecommended by tho anthor for the reason-(1) that it is easily and rapidly executed; (2) because it affords completo exhaustion of the valuable constituents of the bark, with very little, if any, loss; (3) because the bises are obtained directly in a high degreo of purity. There are appended to this papur a series of results of nmalyses of various hinds of barks, made partly by this nul partly by other well-known nethods, as devised by scientific men who, liko Dr. D. Vrij, Dr. Rabourdin, aud Prof. Schneiner, are ligit authorities on this subject. From the results here published, this method deserves every praise.-Neus. Juhr. fïr Phur. in Chen. Neics.

Coniam.

Dr. J. C. Reove, in the American Iructitioner for June, calls attention to the prepazations of conium. As a rule they are almost worthess, as he and his professionni friends have found by experience, and as has iseen demonstrated by D_{1}. Harley, of London. This drug is nevertheless one of decided power, anl Dr. Harley has shown that the stecus conii prepared from the fresh herb, by a process peculiar to the British Pharmacopecin, is a relinble preparation. Asthis is not within reach of the Amprican practitioner, attention is called to the fact announced by Wm. Manlius Smith to the N. Y. Medical Society in 1867, that a flucd cxtract of the wayipe fruit is also active at reliable, producing all of the characteristic effects of the drug. Attention is called to two farts announced ly Dr. Harley, memely; that a high temperature, in preparing, in jures the value of conium extracts, and that the monsy odor, develuped by triturating them with liquor potasss, is a fallacious test of their ralue.
The action of conium is especially directed $t)$ the nervous centers of motion, producing sn effect opposite to that of strychnia.
As a therapeutic agent it is applicable to affections marked by inritation of the motur centres, whether direct ur reflex. It has proved of great service in the irritalility of dentition, in laryngismus stridulus, sume forms of chorea and epilerisy, irritability of the reflex function in spinal disease, and as a sedative to irritated sexual organs. Dr. R. has fomd it especially valuable in cunvolsice amel irrituble courlis, l.ke whouping congh. and the distressing congh of phthisis and bronchitis. In the latter it proves an excellent substitute fur morphia, yuicting the cough without disturbing the functiens of the stomach and boncls.-DLich. C'nicersity Jomrianal.

Profeasor Seely on Ammoninm Amalgan.

The Mechanics' Maguine contans the folluving criticism on Professor Suely's vecent papers upon this subject: "We referred si many times to Mr. Graham's exprriments on the absorption of hydrogen by palladium, and his views on the metallic nature of hydrogen, that we may give a passing nutice of the latest objections to Mr. Graham's theory. Professor Seely, of New York, has made some experiments with the so-cilleal ammonium amalgam, and has cone to the conclusion that it is no amalgam at all in the ordinary acceptation of that term, but merely a
froth produced by the entanglement with tho mercury of the mixture of nmmunia and hydrugen set freo on the decomposition of chloride of ammoniun. Tho strongest evidence in faver of the correctness of this viow is to be found in tho fact, that when the socalled nmalgam is subjected to pressure, its volumr anges apparently inaccordance with Marriotte's law of gaseous volume. Thus, at all events, it aust bo considered as yroved, that admitting the existence of ammoniun in amalgam, it is yeithe a solid nor a liquid, but a gas. Professior Seoly contenids that the expmasien of palladitua on the absorbtion of hydrogen is analogous to the swelling of the mercury on the absorption of the two gassos named ; and that if the particles of palladium were as freo to move as those of $\mathrm{m}^{\wedge} \mathrm{r}$ cury, a palladia froth would be produced. There may be something in this objection, which does not, however, touch Mr. Graham's strongest point. In mother sentenco the American Professor goes decidedly wrong when he asserts that oxygen is mote rendily absorbed by metals than hydrogen, and yet no ono has a theory of oxygenium. Mr. Graham found that o:ygen was less readily absorbed; and he distinetly announced his belicf in the existence of the metal oxy-genium.-Scientific American.

On Benroic Acid and Gum Penzoin.

Julius Lüwe.-The contents of this paper are the answers given to furr queries, viz:(1) Dues benzuic acid pre-exist in gum-benzuin ready-furmed and in a free state! (2) Is the benzuic acid present in the resin combined with a base ? (3) Is benzoic acid a product of the oxidation of a part of the resin formed by the takiug up of oxygen during the melting of the resin? (4) Is benzoic acid a product of a purtion of tho resin formed by the fusion of that substanice? The author's experiments, detailed at great length, commenced with the finding of a reply to No. 8, and the result is a negrativeviz., that when the prucess of sublimation (as usually empluyed for ubtaining benzonc acid from gum benzuin) is carried on in atmuspheres of hridrugen or carbunic acid gas, the quantity and curality of the acid obtained are the same as when the prucess is carried on in contact with air. As regards the replies to Nos 1, 2, and 4, a series of experiments male in varions ways proved, undonbtedly, the pre-existence of ready-furmed benzuic acid in the resin. The last portion of this paper is devoted to the very minutelydetailed description of the best practical methon of the preparation of benzuic acid from the resin. Juar. fur Prahtischic (licmie, Chent. Neles.

Ooloring Syrups with Aniline Colors.

Prompted by sarions cases of illness caused by the use of syrups sold under the name of "raspberries," "currants," etc., Vandevyvere, in Brussels, according to tho Journal de Plarmacie d'Aupers, has snalyzed some of theso syrups, and found that none of them contained a trace of the fruits after which thoy were named. Many consisted of a solution of glucose, colored with aniline red, Rubin, imperiale or fuchsine, and mixed with tartaric or citric acha and n few drops of fruit essences. Viandevyvere discor ed in 200 grammes of syrup, $0.0 \overline{\text { grammes of fuchsine, }}$
which, in view of tho fact that it is often mixed with arsonic acd, is to be taken into consideration. 'lo distinguish genuiue syrups from artificial ones, the following reactions are indicated: Both aro disenolored by chlorine, but in tho latter it pecipitate is produced similar to the oxide of iton fommed by the addition of ammonia to one of its solutions. Sulphurous acid discolors both kimels of syrup. Sulphuric, nitric, and muriatic acids tium genuiue syrups brighter, while artificial cones assume a yollow ornnge color. Caustic potash discolors syrup colored with aniline, and turns genuine syrups a dinty green. The color of artificial symus is not altered by an addition of carbonate of potash, but genuine ones are turned green. dcetate of lead colors gennine syrups greenish, fuchsine syrups red. Adehyde colors fuchsine syrups red.-Journal of Applical Cheinistry.

Preparation of Bromide of Sodium on the Large Scale.

DT. Castelhaz. - The antlor, a manufacturing chemist, states, in the first place, that, according to the communications received by him from several physicians who have applied bromide of sodium in their practice instead of potissium, the eflicacy of the furmer is far greater than that of the latter. As regards the preparation of this salt, the author says: The best plan is to prepare, first, bro mide of ammonium, by causing bromine to fall drop hy drop in²n dilute, but pure, lipuid ammonia containcd in as series of lioulf's bottles, in order thus to prevent the loss otherwise inevitably resulting from the rolatilization of the products formed by the gr ant leat disengaged on the bromine nad ammunia miting. The liguids. after saturation. are craporated in a cist-iron retort, to which an carthenware receiver is fastened, wherein are collected the vapors of water, any excess of ammonia, and some bromide of ammoaium, which is accidentally carried over. The bromide of ammonium thas olbtaned is converted into bromide of sodim, by being mixed with pure carbonate of scala, and the application of sufticient heat to volatilize and sublime the carbonnte of ammonia formed by the reation. This mode of preparation yields, after re-solution of the bromide in water, aml craporation similar to that uscd for chloride of sodium, perfectly pure and anhlydrous bromide of sodium. - Compies Renelus.

Detection of Logmood Colour in Wines by means of hicutral Acctate of Copper.

J. Lapeyrère-The author states that white studying some of the properties of the coloring priaciple of logwnod (bois de C(tmpeche), he found that the lrematine it contains yiclils a sky-blue color with salts of copper. In arder to apply this test to vines for detecting if they are doctored nith logrood, it is only necessiry to place stijps of good filtering paper \rightarrow Snedish being preferred, into an agueons! solution of neutril acetate of copper, and, after drying, use onc of rlicse slips to test the 1 rino suspected to be adulterated with logmood colur, by dipming the paper into the winc; on removing it from that fluid, care should be taken to cause the adhering dimp
of wine to flow backward and forwaixl over the paper, which is next rapidly lut carofully dried. If tho wino bo is it piaturally ought to be, the colvire exhibited atter drying will be grey, or rose-red grayish; but if logwood is prescnt, the tingo will he distinctly sky-blue.-I Inmal de Pharmacic èt sic Climic.

On the Presonco of Manganese in Milk and in Blood.

Professor E. Follacei, after analysing soveral varities of human blood, differing in respect to the sex, age, and temperament of the persons from whom they were derived, arrives at the conchasion that manganese 15 one of the essential constituents of tho blood. The amilysis of the milk of woman, the cow, the goat, and the ass, indicated that milk contains manganese even in greater proportion than the blood. The amount of manganese in these cwo fluils is not, therefore, in relation to the amomet of iron which is fomme in greater proportion in the blool. 'The anthor describes in detail the process ly which lae detec:s the presence of mangimese in the milk, of which the following is a brief account: - $\mathbf{3 0 0}$ grammes of milk me craporated to a pasty consistence, and then completoly carbonized, and subseruiontly calcined in a platinum crucible. The ash is then exlanasted with successive quantities of distilled water, the extriction of all the soluble parts being ascertained by the fact that nitrate of silver ceases to give aprecipitate with the decanted flud. The resthue is then introduced into a test-tube, treated with a s:nall quantity of nitric acd, and craporated to drymess. The residua, after cooling, is treated with a suall quantity of dilute nitric acid, and loented to 212°; linoxide oi lexi is then inded, and the mixture axain briled for about a munte. After subsilence, the purpie colom of the fluid may be readily seen, due to the presence of permanganic acid derived from the manganese contained in the milk. A similar nethod may be employed to determine the presence of minganeso in the blowd-Chemist ac Drugisist.

Pgrophosphate of Iron and Soda-

The Jumbud d'Anters gives the following method for preparing this duuble salt :-
A solution of 6 parts of pyruphosphate of genda in 120 parts of water is mized with another solution enataining 13 jaris of liquid I perchloride of iron of 1.44 spe er. and \% 8 parts of rater. The precipitate is rashed, and then dissolvet in a warm solution of 4 parts of anliydrous pyrophosphiate of seda in 36 purts of water. I'he liguid is cvaporated till a pellicle forms, and allowed to crystallize. The crystals are dried at the ordinary temperature. Or the concentrated solution may be precipitaiserl by the addition of four times its rolume of strong alcoliol. A translucid white precipitate is obtained.

The ferric pyrophusplate of seda occurs in the form of ycliowish trmanarent plates. Its composition is stated to be ($\mathrm{Nim}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$) s $\left(\mathrm{Fc}_{2} 2 \mathrm{PO}_{3}\right)_{2} 2 \mathrm{OH}_{3} \mathrm{O}$.

aftisclumedus, ir.

Vorel spplitation of Aufine colours.

Tho Chemical Neits relates the following incident : Somo few weeks agu, Madame A. IV. Hofmamu gave a grand entertainument and ball to a large number of her eniment husband's pupils. In the grand bal'room were placed, on the table, a large number of bunquets of llowers (artificial, of course,) all snow-white, and closo by, on the same table, a large number of pieces of besutifully-white silk ribbon; at the other end of tho room a fountain was arrenged, throwing, from nur row openings, jets of exquisitely-perfuned ean de Cologae. The bouquets were taken by the ladies, and the ribbons by the gentlemen; and while waltzing together, aud thus arriving at the end of the room where the fountain played, the ladies holding their bouquets to be sprinkled over with the perfume, beheld the white fluwers beconse suddeniy beantifully red, violet, blue, ycllow, and green coloured, while the ribbons carried by the geutlemen assumed, malerthe same induence, similar colouss. Tino secret of this trick is simply that the objects alluded to had been very gently dusted over with the dry powders of variously-prepared aniline colous, and, on becoming moistened by the ean de jolugne (alcohol), these powders became dissolved, and imparted colours to the ohjects.

The lianse of Lete-IInandeduris.

We find the following item in the Inlepen-dent:-It would be worth while for our anatomists to recuard their observations on this puint. "The cause of right and lefthnudelness is genemally anatomicil. Prof. Hyrtl says that in two cases out of 100 the left subclavian artery has its origin before the right, and in these cases complete lefthandedness exists. The blood is ordinarily sent with more force, according to Hyrtl, through the light than through the left subclavian artery, thus nourishing the muscles of the right arm more fully. In the rare cases where the internal organs are transposed, the heart being on the right side, there is also left-handedness."-Mal. de shuyg. Iepporter.

Polsoning ly Copalva - Examinalion of 1he. Elood.
In the Australian Mralical Jummal for January, at case of sudden death is described, which was supposed to be caused by the free use of copaiva. The patient lad been slecping, uttered a scream, was found siting up in bel, and died immediately. The hidneys wers found red and consested, the bladder empty, and the braia congesten. The blood being examined, three grains of copaiva reere exthacted from four onnces-giving an ounce of balsam in the entire circulation. It was suppused by some that the death was occisioned by a spasm of the heart, and not directly by the copaiva.-Pacifur Bledical and Singical Jourual.

Firsi Impartion of Cinchoma Iark fram Jitia.
It appears that, tomand the end of lasz year, a quantity of some 930 lbs of this bark has been exported from Java to the Netherlands. According to analysis made by Dr. Mocns, in Jara, this bark contains from $2 \cdot 4$ to $7 \cdot 5$ per cent. alkaloids, of which quantity 0.59 to 3.67 is quinine. The loss of meight occasioned by the drying of the bark has been
found to amount to 66 per cent. There is every prospect that within some six or seven years hence Jarat will largely export this drug; and the cultivation of the cinchona trees is also to be extended to Sumatria, Celebes, and the Moluccis.-Rev. Mebilom:. chem. Neus.

Value of the almatids or cinchouat

By order of the Guvemment, the several alknloids of P'eruvian bark have been put io the test in India, in 2;472 cases of fever. Thie result, as reported in the Aredical T'imes, is, that the sulphate of quinidia possesses an anti-febrile power equal to the sulphate of quinia; that the sulphate of cinchonidia is slightly less efliciciuus, and that the sulphate of cinchonit, though very inferior to the others, is a rery usefnl agent in the treatment of fevers.-Pacific Med. und Sury. Jomrnal.

A New Test for Allumen.

A writer in the British Mcdecal Tomeral states that Dr. C. Mr. Tidy has foumd that cqual volumes of acetic and carbolic acids is a far more delicate test for the presence of Albumen than my other agent that has been proposed. In using thers with urine, it is necessary to shake the test tube, as some opacity is produced by the mere admixture of fluid, which, however, disappears on agi-tation.-Mich. Unirersity Journal.

A new tise for potatocs.

A foreign exchange describes a new mode of preparing wood pulp for paper making, which consists in using potatous in lieu of alkaline solutions usually employed to effect from poplar and otizer white wood fibers the remoral of summy matter. The fibres are to be boiled in water in which there is placed anong then, in the boiler, on being filled, 2 crit . of floury potatoes to cacle ton of $\mathrm{m} \pi$, fibers, such potatoes having been proviously steamed in at separate vessel filled for the purpose, and passed through a strainer, sieve or colander, to remove the peel, which is injurious in some cases, but the protatoes: cass also be used raw with the fibres, after being well washed, The gumny matters are thoroughly extracted from the fibers, and by boiling for two, four, or six hours, according to circumstances, the process will be found quite sufficient to prepare this class of fibre for bleaching to at pulp in ceery way fit for the manufacture : good white guality of printing, or similar descriptions of paper.Jour. if $A_{1 p}$?. Miem.

Aulline Phelographer.

The process consists of preparing paper with the hichromate of potishl, to wheh some phosphoric acid has been added; when dry, - the paper is exposed under io jositire for a sufficient times, and when removed from the printing frame the picture is held over adish containing a solution of aniline in bensole. The benzole in volatalizing, carries with it the vapor of aniline, and when the latier comes in contict rith the unaltered bichromate on whicl light has not acted, a rich black body is prodinced, which is believed to be a rery stable compound. Washing in water and dilute sulphuric icid, now clears liac lights of the prints, and leaves a paper positive, thich is the eyuiralent of acarbon print.—Scic:lific - 1 merrican.

athutcratlons or sore whic.

Professor Silliman, of Yale Cuillege, recently had occasion to examine some port wine, and testitied in referenco to it in a court of justice as follows: "It is an imitation of port wine, very turbid, and heavi. j laden with sugar or molasses and with coloring matter. It also contains oxide of lead, sulphuric acid, over 21 per cent. of alcohol, and over 19 per cent. of sugar or molasses. The specific gravity is 1,015 , witer beiag 1,000 . Analy tically, I determined the quantity of the ingredients. It contains sulphuric acid, 10 grains to the gallon, prartly free ats oil of vitroil ami martly combined in alum; oxide of lead or litharge in poisonous quantitics, and turbidity, or in clear liquor by filtering, about $4 \overline{5}$ grs. to the gallout. The alcohol obtained from this liquor by distillation had an acid taste. It had also an offensive odor from coloring matter. The liquor contained delcterious and posionous substances. I have a small vial of oxide of lead. $* * *$ The quantity found by me is ample to affect any liguor. This liguor is strunger in its contents of lead than most waters that are poisoned by it. It is in sufficient quantities to be delcterions to the human system.-Jour. of App. Chem.

Tinutug Iron whont Facl.

A cold process of tinning has been imvented by Mr. Dauble, of Bellefontaine, France. The iron is treated by successive inmersion in baths containing cold solutions of salts of tin, with the addition of a certain amount of orginic matter, such as iecula or starch, which has always been found valuable, both in timning and galvanization.
The solution patented is thas made: To each 20 gallons of water add 6 lbs . of rye flour, and let it beil for about half an hour ; filter it, and afterwards add 212 ibs. of pyrophosphate of soda, 3 libs. of crystalized sali of tin, 134 ll s . of neutral photochlorade of tha, mid from 3 ozs. to 4075 . of sulphuric acid. When the salts are dissolved the solntion is distributed in eight or ten wooden rats, a little additional water being added to the first two or thiree of the vats. The wire is passed successively through the whole of the yats, and if great brilliancy of suriace is required, also through dran plates at intervals, and the wire, while retrining all its rigidity, becomes covered with a brillinntly polished coat of tin.-Scicntific American.

Evade Beymort.

Our invorable report, in last mumber, as to the state of trade, wall equally well amply to the past month, orders laving come in freely from all quarters.

There is a decided tendency to advance, in mearly all classes of goods; especially thoso of German manufacture, which, consequent on the total stoppage of importation, are from twenty to fifty per cent. dearer.

Qucinations fer the latter class are not to be relied upon, as they aro changing daily-

We note, in favor of metail buyers, Acid Bensoic, Bismuth aud Leptiundrin, Which are all materially lower.

Agribist the buyer atre Tartaric Acil, which is rising stendily, Vanillit almost oat of market, Ext. Hyoseyamus, owing to a failute of crop of the herb, Glycerine, from stuphage of German supply. Oil Wintergreen is worth rather more than our quotation.

In dyestuffs, Magenta will be noticedmuch dearer, with a probalility of a further rise, Indige is a little lower, and there is a good deal of a made-up article in the market, purporting to be Madn:as, against which we would advise our realers to be un their guard.
In Spices, Mack Peppur still maintains a very high figure.

In Paints, White Lead has commenced to advance, and there will likely be an advance made by the maufacturers, on that ground in Oil.

Naval stores ara quiet, with the exception of Turpentine, which is very firm at advanced prices.

THE EUROPEAN MATH:

A Weekly Summary of News for North America

JTSUAS. COATENTS: Accilents: Art and Scieace; libths: Martiages amd Deaths; Commercial Sumanary; Corresponitener; Comrt; Cruminal, bimigration; Foreign and Colonial, Gazette, Gencmi Summary, lmperial Parliament, Ireland, Iatest Ship inaro; Incml; Iiterary; Market Jepports; Medical; Meremtile ; Military: Misecllancons; Music and the Drma; Natural History; Naval; Obitury ; l'olitical; l'rices Current ; Scothand; Shiping amb Frcightes; Specinal American Notes; Sporting; Stocks and Shares; Wills aml liequests; $\therefore \mathrm{c}, \mathrm{de}$.
 ตmanm, zachasire of jastuyr.

PEREEMMERエ.

HANDKERCHIEF Extracts, Jnckey Club, Frangipanmi, Patchonly, West End, Musk, Spring Flowers, Mignonctte, New Mown Ifay, Sweet Pea, and all the pophular scents.
Eistia Quthiy.-G oz. Octagon Cut; 3oz. Octayon Cut; liz oz. IMain, stopricred. Best Quality.- if oz. Plain, stoppereal.
No. 1 Quclity--1 $\frac{1}{3}$ oz. Squat Cork'd; 1 o7. Stone Jug; luz Glass Jugs; \ddagger oz. Pancl; ? 0 . Squat; $\underset{1}{1}$ oz. Squat; 1 oz 0 val; ${ }^{1}$ oz Squat. Hair Oils, Pomades, Touth Washes, Tooth Powders, Colognes, Lavanders, Sachets. Camphor Ice and lioll, Toilet Vinegnr, Alilk of looses, cte. in all the popuhar styles.

Price Lists on application to .
LYMAN BROS. \& Co.,
1-15.
$2 \overline{3} \overline{7}$ King Strect Eust, Turonto.

[^0]: From Comytes Fembus lo Cheralizal Nena

[^1]: - lrom lice olourial uf injlicl chemistr:

