INDEX TO ADVERTISEMENTS.

ARCIItECTS. Directory 111	Creosote Stains. Cabot, Samuel.................................... x	
	Elfetric Beits.	Plate Glass.
architectural iron Work. Barnum Wirc \& Iron Works.	Galvanic Battery Works................ v	McCausland \& Son. \qquad ix Toronto Plate Glass Imporing Co. \qquad
Clendinneng \& Son, W................. IV	El.e	Plumbers.
architectural sculytoms.	Miller Bros. \& '「oms..................... . $^{\text {xi }}$	Bennett \& Wright. 24
Carnovsky, B. H...................... III	Engr	
Gullet. F. B. 111	Armstrong Photo-Eing. Co. ilii	Higman, 0
Hicks, W. Stivens...................... IlI	Canadien Ploto-Eng. Burcau.	Higuba, O.............................
Hollsrook \& Mollington............... . . If	Toronto Engraving Co.................. iii	Keith \& Fitzsimons.................... viil
	Furnaces.	Atitchell \& Co.. Robert.................. IV
Arcilitectural Stone Work.	Rurtow Stewat \& Milıe............... x	Rovertson \& Co., Thus..... IV
E. Stringer \& Co................... ii	Clare Bros. \& Co... Williants 8 Co	Roufers and Rooping materiais.
Funnture:.		Can. Galvauizing \& Steel Roofing Co... I
Wright \& Co........................... . II	Baird Bros \qquad iii	Merchant \& Co....................... ${ }_{\text {Metalic }}$ Roofing Co................. II
kiss Wo	Can. Galvanizing \& Sitecl Rooling Co... I	Rennic \& Son, R................... ${ }_{\text {at }}$
Mitchell \& Co. , Rubt. IV	Ormsby, A. B vi Tucker \& Dillun.	Sams.
brick Macitinery.	Granolirmic.	Kimkell, S............................ viii
Gurnny Co., E. \& C.................... xii	Forsyth. Robsert........................ . iv	Sanrrary Abritances.
Laidlnv Mrg. Co..................... iii		1300th \& Son . 11
Brichs (Prisstid).	Henting.	Higma Malcol
Hynes Term Coltn \& Brick Co.......... vi	Clendinneng \& Sion, W................ IV	
	Toromto Radinlor Mgg Co.............. xi	Buftato Sinw-r Pipe Co.
Toronto Pressed Brick \& Termi Colta Co. In	Williams. I. AI \& Co,....................... xii	Hamilon atrd Toronto Sewer Pipe Cib... iv
builders' Supilitas.	Waterous lingine Works.............. ii	MeNally \& Co., W....................
	Lazad liple.	McRac \& Co.
	Thos, Roberison \& Co. iv	l'erry, Edward
	s.mgal	Sulingies Stans.
Vokes, M. \& J. L....................... 24	Denion \& Dods......................... viii	Ciblor, Samuel.
Liloing Stone, 11		
	Mantels And Overatanters.	Paird Bros............................ ii
	Wright \& Co.......................... il $^{\text {a }}$	Ormisly, A. B. Tucker \& Dillon
Savage, R. D.	Metal Shingies ano Rooking.	Siolting Bionds.
Builders' Hardware.	Baird Bros.	Clatworthy, Geo.............. ix
Aikenhend \& Crumbic. Rice Lewis \& Son \qquad IV	Can. Galvanizing \& Steel Roofing Co....	Staule fitringes.
vokes, M. \& J. L. 24	Metallic Rooftry Co...................	Clendinneng \& Son, W............... IV
Carpenters and Builders.	Minehal W	Tisdale Co., 8.6
Davidson \& Kelly. xi	Gast \& Alcheson. ${ }_{\text {ii }}$	Staned and Decorative Gilass.
Humplarcy. T. R...........	Savage, R. D............ if	Bell Art Stainet Glass Works...... ix
Lyall, Pecer,.......................... ${ }^{\text {iii }}$	Ofrice and Scilool, Furnituhe,	Costle \& Son...................... if
Redmond, joseph.. xi	Canadinn Office \& Sishool lıurniture Co... ${ }^{\text {aii }}$	1opminion Slained Glass Co............ IV
Stevens, Chas, H. ${ }^{\text {a }}$	Onnimentar. Diasterlars.	Lyou, N.T........................... III
Cements.	Baker, J. D.......................... x	Mecausland \& Sin................ ix
McNally \& Co., Wmi. II	Balmer, Phillip.................... x	
McRac \& Co......................... iv	Hynes Terra Colta \& Brick Co. ${ }^{\text {a }}$	Terra cotta.
Rathbun Co.......................... . vi	Whetter, Henry R.......................	Rathbun Co...................... $\boldsymbol{v i}^{\text {a }}$
Savnge. R. D it	Wright, Jas.............................. . . x	Toronto Pressed Brick \& Serra Conta Co. il
Terry, Edward. Wright \& Sons, C. B.	Painters.	Wali. Paper and Ceiling Decorations.
Contractors and Plasterehs.	... 24	Staunton \& Co., M.
Dayton, William H.,.................... 111 Hynes, W. J	Paints, Vaknisiles, ac. Andrew Muirhend.	Wall. Pi,Astit. Adamant Mrg. Co.

TO PuUIMBERS

A Complete Assortment of Plumbers' Supplies always on hand.

STAINED GLASS

 Memorials —) AND (Church Decorations CASTLE \& SOH 40 Beury Sireet, Montreal, Can., and New York. CHARLES EVANS \& CO" (I.omam, t:utf.)
 mix and Veretion Gliess. Masaics, Ifaintel Ifiles

Hull Coment and Lime Works. ES FABLISIED 1837.
C. B. Wright \& Sons, ProiPrietols,
HULL, P. Q.
Munufactures, , imporcres ond Duaters in
Portland and Foreign Cenienis, Hall cement or Water Lime, Scotch Fire Brick and Clay, Conmon and Pressed Building Brick, Plaster of Paris, Drain Pipes, Tiles, Dimension and Rubble Limestone.

J. B. STRINGER \& CO., ARCHITECTURAL STONE WORKERS.

```
UR Patent Floor Stones are made of the best Portland Cement; Iron
topped and wired throughout, neat in appearance, easily fixed, and
being all stone and iron, are perfectly fire-proof.
Price, 8 inohes, 40 esnts; 10 inches, 60 oents.
Kerbing for Lawns, Boulevards, \&e, nspecialty. Window Sllts, Story Courses, Panels, \&c. A call from Arehteceth and Budtern sulfetent.
68 VICTORIA STREET,
TORONTO.
```


The DUNNING - BOILER,

Prtent Steam and Hot Hater Heater
Made entircly of Wronght Iron or Steel, with
Sclf-Fecding Coal Magasine or Surface
Heater; is the oldest and best for Low 'Pressure Stean and Hot Water Heating, and insures a warm home day and night.
MADE AS FOLLOWS: As a MagazimeBoiler, which refuires attention lunt once in twenty-four hours; as a Surface Boiler, to burn hard or soft conl, wood or coke: as a Hod Whater beiker, for greenhouse and bot water henting : as in Portable. Boiler, 10 be sea without lrickwork, Also in Two Jections to pass through any door where a larger one canher le usevi. Hade in six patlerns, fifty-ene sizes. Siend for lllustratexl Catalogue, with full description and price list.

STEA M KEPT UP CONSTANTLY
Manufactured and stepphied to the trate bv
WATEROUS ENCINE WORKS CO.,LTo.
BRANTFORD,
CANADA.
SEND FOR CATALOGUE.
mineral wool steam pipe and boiler govering

MINERAL WOOL

The Great Non-Convluctor.
Architects and Builders, Make vour baiking pertect by deadand roofs with MINERAL $14 O O L$. Kepps out the cold the foors and lining the sides and roots with MINERAL WOOL. Keeps out the cold in winter and the beat in krim-
——ore anto Jo arn totule GAST if ATCIITSON,
30 Adelaide Street West.
TORONTO.

R. D. Savage

 zms. . .us sana MIONTREH_A工Aepresenting the Leading Manufacturers of BUILDING MATERILL OF EFERY DESCRIPIION.
"CORSEHILL" RED SANDSTONE, (Dumfrieshire, Scotland.)
IRON GIRDERS, CORRUGATED WIRE LATHING.

PHILADELPHIA PRESSED BRICK, (Pcertess Co.)

 ENAMELLED BRICK, MORTAR COLOURS.
Robinson's Fire-Proof Cement

THREE QUALITIES, VIZ. -

1. For finishing coat on walls or ceilings, pure white, and capable of being polishod to a beautiful surface, whitewashing mouldings and castings, tile setting, \&cc.
II. For first cont of plastering, with varying proportions of sand, according to requirements.
III. For concreting, with three to four parts of sand to one of any suitable aggregate. Equal to Keene's, at a trifle over half the cost. No article ever introduced to the trade has given greater satisfaction.

Ne, Brick Preservative, Shingle Stains, Interior Wood Stain, Anti Pyre, Dre. $_{\text {Win }}$

MARBLE AND GERAMIO MOSAIC FLOOANAB
List is too long to entumernte every line.

- mineral W00l.

Brick Machinery

the labgest assortment in canada， －inct．uding－

Henry Martin Soft Mud Machines， Semi－Dry Press Machines， Briak Re－Press Machines，

Terra Gotta Presses， Crushers，Barrows，Moulds， Kiln Doors，etc．，etc．

SEND FOR CATALOGUE．

LAIDLAW MFG． $\mathbf{C 0}$ ．

 Framilton， － Ontario．Camadan Рнoto Emgraving Bureau 208 YONGE ST．，TORONTU．

ENGRA I＇NG IN ALLITS BRANCHES． FIELE PORNE
A Specialty，diest from Photugrouls，Etchngs s， Haintioss，etc．，equat to anyithing dope on this Centinem．Sitisfaction guarauxeed． SEND FOR PRICES： MOORE \＆ALEXANDER， Proprietors．
Trichiowe 2158.

Galvanized Iron Cornice Works．Valleys，Eave Troughs，Solderless Conductor Pipes，Skylights，Spec． intioes：AIetnlict siding，Shingles and Expansion Gai vanized Iron Roofing．Furmace work and jobling protnptly nttended to．Dueclings fitted up with Ho Air Furnaces．

Valleys，tive I＇roushs，Patent Expasion Con－ ductor Pipes，Improved Draught Proor Skylights to any Aichitectural Design．Furnace Work and jobbing attended to．

TORONTO
 PRESSED BRICK \＆TERRA COTTA CO．

MANUFACTLRERS OF

PLAIN AND ORNAMENTAL

＝——FOR BUILDING FLONTS．＝——
M．A NTPESE，ERTO．
Ornamental Designs in great variety．

OFFICE ：

No． 5 Quebec Banis Chambers，「OIRO工NTC

ALL KINDS of ROOF TILE．
bricks shipped to all parts of the world． Large stock always on hand．
WORKe AT MII工TOM，OINT． Send for Catalogue if interested．

12．C．DANCY，

STHTWASTMS Patent Granolithic

SWENALKS，FLODRS，STEPS，LANDINES，GORRIDOBS，AREAS AND STABLES．

No building perfect without Granolithic Footpaths．It has stood the test of years and climates．
IMPEHIAL STONEWAKE LAUNDRY TUBS
Are without parallel the finest and most complete Tubs in the market．Guaranteed perfect

Send for Estimates．FROBRIRT EORSTTI开，
MONTREAL： 130 Blenry St．TORONTO： 14 Toronto Arcade．

EDWARD TERRY

Portland and Queenston Cements．
PLASTLR PARIS，GILEY AND WIIITE LIMIE，
Fire Brick and Cluy，Sever Zhpe，Xrair， Americun anil Cuncaliats Lime， Plaster；Salt．
28 and 25 GEORGE ST．，
Telephone 164.
TORONTO．

Portland Cement，Fire Bricks， fire clay，sewer pipes，sewer inverts．
 工OWFEST PRICES．

McRAE \＆CO．， S日 Msplanade St．g
Ottawa Orpice： 16 Mrtcalap：St．

the only manufacturens in muffatio of Steam Pressed，Salt Glazed
Vitrified Drain\＆Sewer Pipe
Office and Factory： NEAR NIAGABA STREET， Black Ruck，
BUFFALO，N．Y．

Samples inay be seen at any time at the office of the City Engineer，Tor－ onto，Ont．

A．E．Carrenter，Pres．

J．H．Nsw，Vice．Pres

THE HAMILTON AND TORONTO SEWER PIPE CO．
（エエMエT円コ）
HAMILTON，
CANADA，
Sucocssors to The，Cambrein，Seivfer Pire Co，and the Hanhiton sider pire co． －MANUFACTURERS OF－
Steam Pressed，Salt－Glazed，Vitrified

Flue Pipes，Chimney Tops and Smoke Preventives．

Prices of Building Materials，

 LUMBEA．Call on carco jots．
$1 / 4$ and thicker clear picks，Am．ins．．$\$ 3000(33200$ t／4 and thicker，three uppers，Am ins． ∞ t／4 and thicker，pickings，Am ins．．．． $t \times 10$ and 12 dressing
$\mathrm{t} \times 10$ and 12 mill rum
 1×10 and 12 dressing．
1×10 and 12 spruce cuils．
$1 \times$ to and $i x$ muple culls．
trich clear and picks．．．
1 inch dressing and better．
t inch siding，mill run．
inch stiding，common
inch siding，ship culls
Cull seapliter
Coll send thicker catting up plank．
inch strips，i jn ．to $\frac{1}{\mathrm{i}} \mathrm{in}$ ，mill iun．
$1 / 4$ inch flooring．．
inch fooring．
$X X X$ shingles，sawn．
XX shingles，sawn．

180	$\infty 30$
130	0014
140	0016
120	$0 \cdot 13$
100	∞
28	$\infty \quad 30$
180	$\infty 30$
10	∞ Is
110	∞
100	∞ II
	$\infty 9$
	∞
220	00
140	0015
110	0012
140	∞ Is
14	co 16
23	30 ¢ 2
	30

（ 30 I 35
W，G．，per square．．．．．．ingles， 24
Enstlake galvanized steel shingles，io
Enstlake painied sueel shingles，per sq．
Kastake painted steel shingles，per sq．
Eastake painted steel siding，per sq．
jastake painted steel stida
Manitoba galvanized，steel soting，per
square．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Special salvanized steel siding，per sq．
Specinl painted steel siding；per sq．．．．
Imitation briek siding，per fquare．．．
VARD QWOTATIONS．
Mill cull boards and seantlipg．．．．．．．．．
Shipping cull boards，stocks．．．．．．．．．．．．．．．．
Shipping cull boards，stocks．．．．．．．．． 1300

Scanting	and joist，up to	16 f．．．．．．．．
	\cdots	18 ft ．．．．．．．．
	\cdots	30 f．．．．．．．
	$4{ }^{*}$	22 ft．．．．．．．
	＂＂	24 ft．．．．．．．
	11	26 ft．．．．．．．
	＂	$28 \mathrm{ft}$.
	＂	fofl．．．．．．．
	14	12 fo．．．．．．．
	＂ 11	34 ft．．．．．．．
	＂1＂	36 f．．．．．．．

Cutting up＂planks， $11 /$＂nnd thicker，dry
Dressing stockg．．．．．．．．．．．．．．．．．．．．．．．．． 2500
1800
1600

Pieks，Avterican inspection．．．
Thrie uppers，A merfican inspection．．
Cedar for bor Kerb paving，per cord．．．．
b．M．
${ }^{1}$ Y inch flooring，dressed，F．M．．．．．

teaded theeting undressed．
beaded sheeting，dressec
XXX sawn Ningles，per M， 16 in ．．．
Sawn lath．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 26

Red oak．
White．
Basswood No．I and；
Cherry，No．I and 2．．
White ash，No． 1 and 2
HHJCK—家 M
Coamon Walling．．．．．．．．．．．．．．．．．．． 7 ． 70. ． 50
Sewer ．． 900
Preuncil Jrick：
Plaln iriek，f．o．b．at Milton，per M．．．$\$ 18 \ldots$
Ornamenal brick，at Ajiton，per soo．．．，s3 to 1300 Stome：
Common Rubble，Per loise，delivered 1400
$\begin{array}{ll}\text { Large nat } \\ \text { Foundation Blocks．＂} \\ \text {＂Cubie Foot．．} & 1800 \\ 35\end{array}$
slate：Roofing（F zquarc），

Putly............
Vhiting,
Paris white
Paris wlite ten
Litharge, Am..
Siemura, burnt.
CEAIENT, LIMIS, ctc.
Lime, Per Darrel of 2 bushels, Grey.*
Plaster, Calcined, New Brunswick...
Gair, Plagserers' per bafe...
Hair, plagkerer, Per bakt,
it Thorold,
" Rapanes,

> HAMD WAACE.

Cut Nuila:
A merican Pattem, $11 / 1 /$ incl, per keg.... Cauadian Paterri, $1 / 1 /$ inch, per hes. "i. 21021 imeh,
". $21 / 2$ to 234 inch,
Steel nails zoc. per kea, extra. Finishing nails, 1 inch, per deg.

MONTREAL PRICES.

Lambrr, ELC.

Comenc, etr.
Portland Cement, per barrel........... $\$ 2$ 2 90 ata $: \infty$
 Ciue Natis:
Hot-cut Am. or Can. pattern, 3 inch Hot tut Ans. or Con. patterin, a 34 i.icli
Hot and alove................... 2 incll.... 3 and $i \neq \ldots . .$.
 Can. Pattern, cold-cut, $1 / 2 / 1 / 4$ indt......

 $10 \mathrm{t} / \mathrm{mch}$.
Finishing Naik, per sooli keg, 2 inch neta. etc.
Patulu. etc.
White Lead.
White Lead, wurc, 25 to 100 lle. kegs.
$265 \$ 275$ 290315
315410 340550 $\begin{array}{lll}415 & 5 \% 0 \\ 3 & 15 \\ 4 & 35\end{array}$ 315435
36545
35 cents advance ons
Hot Cut Nails.

650

Venetinn Red, Enclisiol.
Yellow Oclure, Disench.....
Whitinga London, washind.
orta:

Linseed, raw....
boited.

Olive, pure:....

ANNUNCIATORS HOUSE BELLS曰ImOTRIO.

Builders' Hardware.

SPEOIA工TIIBE

Hophtus aud Dickinson's
Xale d Towne Mf! Co.'s
Chicago Sprinul Co.'s
B. G. Tistale's

BRONZE HARDWARE.
"BOWEK-BARFF" GOODS.
DOUBLE ACTION SPRING FIXNGES.
IKON STABLE FITYINGS.
Write for full particulars of above goods.
AIKENHEAD \& CROMBIE, TOROINTO Clape Bros. \& Co. preston, ontario. maxuracturers or COAL WOOD H^{OT} and remeristers. S 10 STYLES. 35 SIZES.
 Fwruarew manyfuctured tu cillull.

MENTION TH/S /PITEK.

Sanitas Water Closit

the santras patent watbr closet

Hos the simplicity of the Shont Hopper', all the sanitery sidvantages and conveniences of the best inforared modern closets, and others peculiar to itsclf, in being rnfi-siphonic, quich-actingr, self-scaling, trac from sput. tering or atoste of water; and, when property sct, almost noiscless in apcration.

The supply pitic betwesn the cistern ched the clasef stands permancolly full of water; and, discharging below the level of the standing renter in the bowt, the at-
tion is instantancous and the noise of flushing
is deadencd, so thrit when properly set and
with the cover down and toilet. room door
closed, no sound can be heard frome williont.
The suater is held in the sufply pifice by at.
mospheric pressure, and aill instantly restore
the tratp seal should it at any finc he lurecered
by cuntioration or siphemage.

THE HYNES TERRA COTTA \& BRICK CO., LTD.

Esplanalle, foot of Jurvis Stpeet,
TORONTO.

TO ARCEITTECTS \& BUIIDERS.

Having removed our entire stock to larger premises, we are now prepared with our increased facilities to furnish all designs entrusted to our care on the shortest possible notice.
detalls woaked out and submitte for approval. plaster work in areat yaniety.
TELEPHONE 1035.
M. J. HYNES, Manager and Director.

ADAMANT WALL PLASTER

 The Best is the Cheapest.We wish to inform our patrons that we are onec move ready for business. The fire which we announced last month will not delay fiuture orlers.

ADAMANT MFG. CO.

-100 Esplanade street East, - - TOFONTO. TELEPHONE 2180.

FOR FIREPROOFING AND BUILDING PURPOSES,
Flat cond Segment Arches, Iron Girders and Column Protection, Partitions, Roofing, Furring, \&e.
$=$ PERFECT NON-CONDUCTOR OF HEAT, COLD, NOISE. Used in the following buildings :

St. Laworcice Sugrer Lefuery, Montreal.
Canadian Pacific Station, " (iupurt). Napanee, Tamzworth at Quebec Station, Newbrveuh. Barrington's Trunk Fictory, Montreal. Hon. G. A. Drummonul's Dwelling, Montreal. Banlc of Commerce Builaing, Toronto.

New Post Office, Napunec.
Royal Insurance Co.'s Builhing, Montreal. Imperial Fire Insurrance Co.'s Buthinuf, Noutreul Canula Life Builling, Toronto.
Board of Trade Buillitug, Toronto.

LUMBER, LATH, SHIMGLES AND TIMBER, DOORS, SASH, BLINDS, STAIRS, COUNTERS, And all descriptions of Wooden House Building Materials.
THE NAPANEE CEMENT WORES, (Limited,)
Nrepance Mills,
\qquad

Canadian Architect and Builder, A Monthly Journal of Modern Construetive Methods,
 (Withan Intermediata Weekly Edition-The Canadtan Contiact Racord,

rumbisited on tile tilerd sat́unday in eacil month in thik interest of
ARCHITECTS, CIVIL AND SANITARY ENGINEERS, PLUMBERS, decorators, builders, contractors, and manu. FACTURERS OF AND DEALERS IN BUILDING MATERIALS AND APPLIANCES.

C. h. Mortimer, Publisher; 14 King Street West. - TORONTO, CANADA.

> NURSCIRIITTONS.

The Canagan Akchitect and Bubdex will be mailed to any address in Canada or the United States for $\$ 2.00$ per year. The price to subscribers in foreign countries, is $\$ 2.50$.. Subscriptions are payable in advance. The paper will be discorxinuel at expiration of term piid for, if so stipulated by the sabseriber; but where no such undersanding exisis, it will be combinned undil instructions to discon inue are received and all arrearages are paid.

> ADYEATYSEARENTS.

Pritss for advertising sent promplly on application. Orders for advertising should reach the ofice of publication not later than the iath day of the inomth, and clianges of advertisenients not laser than dis sth day of the month.

EDTTOK'S A NNOUNCEMENTS.
Contributions of teclinical value to the persons in whose interests this journal is published, ase cordially inviced, Subscribers are also repuested to forward news paper elippings or written fitents of interest from their respective localities.
The Ontario Awocintion of Arahlieets han njpototed the "Cumaatan drchitect and mulider" Ifw official jurper.

The publisher of the "The Ginadian Architeef and /Wuitler" toants to ensure the regular and prompt detivery of this fournat locvery subctiber. and regucys that any ranse of complaint in this particular be reportert at ontec to the office of publication. Subscrihers who maty chanse their address showld also giate prompt wotice of inme, and in doins so, thoult give borh the old and newo address.

INTERMEDIATE EDITION.

ON Saturday, the zend inst., we shall commence the regular publication of our weekly intermediate edition, the Canadian Contract Record. As the name implics, the purpose of this weekly edition will be to present as complete a record as possible of contracts open to tender. A list of important contracts awatded, and when obtainable, the prices at which they were obtained, will also be given. The members of the Ontario Association of Architects, comprising upwards of 95 per cent. of the architects of the Province, signified by resolution at their recent convention, approval of this new enterprise, and pledged themselves to place in the columns of the Contract Record all advertisements asking for tenders. This is alone sufficient to make this intermediate edition of great value to every contractor. Each subscriber in good standing to the Canailian Architect and builder is entited to receive the Contract Record without extm charge. The names of regular advertisers will be published in a properly classified directory on the same liberal terms. The Contract Record will be mailed or delivered to subscribers every Saturday. The date of publication of the regular edition of the Canabian Architect and Builder will in future be the third Saturday in eacll month.

THE pressure upon our space compels us to hold over several articles of interest for future publication. In our issue of March, we hope to present some thoughts for the consideration of Canadian Master Builders arising out of the proceedings of the recent meeting of the National Association of Buiklers of the United States, at St. Paul, Minn.

THE leakage of water from a street hydrant led to the sinking of one of the walls of the new Northem Pacific railway offices at Winnipeg. It has been found necessary to take the wall down and re-build it. The cost of so doing will amount to about $\$ 6,000$, and the owners of the building have entered an action against the city for the recovery of this sum.

MR. Sproat's resignation of his position as City Engincer of Toronto, and the appoisenent of Mr. Jennings, of the C. P. R. staff, as his successor, are the most important matters with which the new City Comeil bas been called upon to deal. It is understood that Mr. Sproate's valuable services will be retained for the city as Assistamt Engineer. In this eapacity he will be relieved of the worry incident to the management of the Works Department, which has been the means of seriously impairing his health. Mr. Jennings, while more faniliar perhaps with railway than civic engineering, is said to be an execllent manager, and this is whar the situation appears to demand.

THE adrisability of appointing a "city architect" is engaging the attention of the Tomnto City Council. There is something to be said for and against such an appointment. It is undesirable that all city buiddings should be designed by one architect. Variety and not uniformity of design should be the object sought. For this reason the method of employing the services of different architects is to be preferred. On the nther hand, it is evident that the services of at capalble superintendent of building construction for the city are much needed. The person appointed to this important position should be a thorough mathematician, and should be perfectly familiar with every detail of modern constructional methods.

ON a previous occasion we stated that the important work of plumbing inspection in a large and rapidly growing city like Toronto, could not be efficiently performed by two inspectors. Three or even four inspectors would be none too many. We are pleased to observe the following reference to the matter in the Mayor's inaugural message for the present year, indicating that an effort to secure greater efficiency in this department is likely to be made: "The inspectors of pilumbing should also be maintained in sufficient number to do the work thoroughly and expeditiously. Last summer frequent complaints were made about delay in plumbing inspection, and I believe these delays arose from want of a sufficient number of men to do the work. It is very important. For the health of the city that the Plumbing By-law should be efficiently carried out, aud this can only be done by a competent and sufficiently numerous staff of inspectors."

THEdgratifying information reaches us that steps are being taken to form Architectural Associations for the cities of Montreal and Queloce. The promoters of the movement have the best wishes of their professional brethren of the O.A.A. It is to be hoped that the architects of these two cities will not slop short of attempting to form an Architectural Association for the entire province of Quebec. We hope to be in a position to state in our next issue that the work of organization has been succesfully accomplished.

THE Montreal Subway Company is secking incorporation for the purpose of conducting electric wires underground. Further, it secks to be clothed with powers such as would enable it to work its own will and snap its fingers at any efforts on the part of the city to control its operations. It wants a 40 years' franclise for nothing, to be protected from the interference of any other company, and to have the right, after giving the city eight days' notice, to open the streets, roadways, alleys, and so forth, for the purpose of laying underground the conduits. In short, this enterprising company seems to "want the earth." We cannot for a moment believe that the Legislature of Quebec would saddle the city of Montreal with such a monopoly. It behooves the City Council, however, to be watelful of the city's interests in this matter.

THE Building By-laws of the city of Toronto provide that "no person shall commence the erection of any now building, or the repair or alteration of any old building, within the fire limits A, B, C, and D, unless and until they shall have first submitted the plans and specifications of the proposed building, alterations, or repairs to the lnspector of luuikdings for his inspection, and slall hatve obtained his written certificate that the proposed building, alterations or repairs, are in compliance with the provisions of this By-law, and will not involve a violation of any By-law or requlation of the City relating to prevention of fires or the erection, repair or alteration of buildings." So far as our observation has gone, the above clause is disregarded in a very large number of instances, and the asempts made to enforce compliance sherewith are of the feeblest cliseracter. We have already pointed out the fact that permits which should be olttiined before work is commenced, are in most cases not obtained until the building is well under way or nearing completion. It is not unreasonable to suppose that under such a slip-shod method, the provisions of the by-law are frecuently violated, set we seldom or never hear of work being ordered to be done a second time on that account. While the City Council are considering amendments to the by-laws desigued to govern the erection of buildings, they would do well to endeavor to secure the efficient administration of these laws.

THE report of the commituee appointed by the Toronto City Council to consider a method of regulating the erection of scaffolds within the city limits fully bears out what was said in the January number of this journal on the sulbject. The committec say they think it impossible to frame a by-daw which would be workable and which would state just how every scaffold should be erected, as the circumstances under which they are to be erected differ so materially. They have come to the couclusion that the better plan is to let the city commissioner, or inspector of buildings, be the judge, upon complaint, as to whether a scaffokl is safe or not, and would recommend that by-law No. 627 be clanged so as to read as follows: "When information comes to the inspector of buildings, or when by any means it comes to his knowledge that any building, or portion of a building in course of erection, alteration or repair; within the city limits, or the scaffolding or hoists connected therewith shall be deemed unsafe, he shall immediately examine the same; and should be decide the same to be unsafe, he shall immediately stop all work connected with the part of the building so condemned, and shall at once notify the owner, contractor or agent to make the said building, scaffolding, hoists or other work so condemned, perfectly safe, and any owner, contractor, agent or workmall who does work, or allows work to be done upon said condemned work (except for the purpose of
making the same safe) until he has received a certificate from the inspector that the said condemned structure has been made safe, shall be sulject to all penalties of this by-law." The committec cannot overlook the fact that after all, the workmen who erected or are employed upon a scaffold are the very best judges as to whether or not the scaffold is perfectly safe, and would strongly recominend workmen who suspect a senffold or building to be insecure, to refuse to work upon the same, and to instantly notify the commissioner's department that such scaffold or building is supposed to be unsife. The commituce had before them correspondence from the principal American cities, and find that in no case have they a specification defining just how a scaffold should be built. It is also recommended that placards shoukd be placed upon all buildings in course of erection or alteration, informing the workmen engaged thereon of the provisions contained in by-law 627 for their protection, and that all complaints made by workmen or others will be held in strict confidence.

$\mathrm{I}^{\tau}$$\tau$ seems very strange to the profession that, notwithstanding all that has been written concerning competitions and the manner in which they should be conducted to meet with a response from the best men, instructions such as those issued by the city of Quebee should still be prepared in all seriousness, believing that they are all that architects can wish for, and that they will result in the selection of a superior and unobjectionable design. These instructions have been prepared with great care and in the most claborate manner. Much instruction and advice has also been offered for the benefit of competing architects. Here and there pithy statements have been made as to this and that, which some might profit by if they would, but which will be disregarded by all. It is evident that the city of Quebee does not wish to discover a pood design together with its author, so much as they desire to secure a set of plans which can be placed in the hands of the City Engineer or some favored bocal architect to have a building erected therefrom. While they were about it, they should have asked for detail drawings, and thus have pliced themselves in possession of all the drawings necessary to the complete erection of the building. As there are three premiums and all the premiated drawings are to become the property of the city, they should have more than sufficient drawings aud information for the erection of this most important building. We comot imagine any sane man undertaking to prepare a desigy under these instructions, in the hope of receiving any one of the thece prizes. The work called for is .tremendous, and the first prize, if obtained, would not piy the actual cash outlay of preparing the drawings. If one attempts to compute the cost to the profession of entering such at competition, he would be astounded, more especially if he takes into consideration the rewarid. The profession should take some concerted action which will result in the complete failure of all such competitions. The instructions state that the cost of the proposed building "shall not exceed the sum of $\$ 200,000$." This is a very definite statement, and should be strictly adbered to. How it is to be clone we know not, for we are convinced that it would require between $\$ 400,000$ and $\$ 500,000$ to erect in Toronto a building of the size of this proposed structure, and if the suggestions made in the remarks at the end of the instructions are followed, the building could not be erected for $\$ 750,000$. Why problems impossible of solution are seriously placed before architects by men who are considered to be capable and of sound mind, we cannot comprehend. We have never known of an architect supplying the eleficiency, so the hope that he may do so cannot be put forward as a reason for appropriating ouly one half or one third of the necessary funds. Grinted that the building can be erected for $\$ 200,000$, the arclitect who may win the first premium will give value in the form of drawings and specifications tc the amount of $\$ 5,000$, as the plams and specifcations asked for are nearly all that would be recuired for the making up of tenders. If the building should cost $\$ 500,000$, which it will most certainly, the drawings to be supplied would be worth $\$ 12,500$. Would any member of the City Council of Quelvec agree to sell $\$ 12,500$ or even $\$ 5,000$ worth of goods, for $\$ 1,500$. Certainly not ! And yet that is what they think archi-
tects are prepared to do, with the additional risk thite they may not even reccive one cent for their trouble and outlay. If architects had notbeen too ready in the past to accept teritis very nearly as one-sided as the above, the city of Quebec would not lave issued such ridiculous and unfair conditions for this competition. The three experts who are to adjudicate on the designs submitted should be named in the instructions. Competitors shoukd know who the experts ine to be, as dey have often found that where they supposed competent professional men would be selected, incompetent professional men, or men of no professional knowledge whatever, were appointed. The only reason that can be urged why the names of the experts should not be given is, that it might le possible to "fix them." If they should be men that can be."fixed," they will be "fixed" in any case. We believe, however, that they should be men who cannot be "fixed," and such men should be appointed. However, if they are named in the conditions, the competitors can judge of even that side of the question.

No designs should be exhibited to the public before the comfetition is decieled, for two reasons. The experts should loe allowed to cho their work withont bringing pressure to bear tumon them. If the public see the designs there will be selections made, and the selected designs will lee pressed on the notice of the experts. There is no use having the designs sulbinitted under motio if they ate to be exhibited. The public would know at the end of the first day the athor of every desigh, with the possible exception of those from a distance. We believe we can speak for the profession in Ontario in stating that there will be no designs sulmitted from this province. The conditions of the competition are most unreasonable and unfair, and the amount of work required to prepare the $7 / 3$ scale dratwings, specifications, etc., is out of atlproportion to the rewards offered.

IΓ is to be hoped that the Biill respecting the priactice of architecture in the province of Ontario will pass the Legis lative Assembly: Those who understand the position of the profession of Architeciure at the present lime, atte in sjimpathy with the proposed Act. Where is nothing in it to which any reasomable objection gan be taken. The whole object of the Act is, that the qualified practitioner may be distinguished from the uncualified, and that before any man can be registered as a qualified archited he must pass such examinations as may from time to time be determined on as sufficient to ensure his having a fair knowledge of architecture in all its branches. The man Who passes this examimation will be entitled to use the word "arehitect" as defining his profession, and will be registered as a properdy qualified practitioner of architecture. There is no desire on the part of the profession to make atiy jerson about to build oblatin at set of platns for the building the proposes to erect if he does not wish to have plaths, nor in case lic desires plans, to go to a gualifed and registered arebitect. He will be allowed to build with or without plans, and he can go to any man he pleases for his plans; but if he goes to a man not registered as an atchited he will only have himself to blame it his buideling be defective in any particulatr. It is desired to compel public bolies, entrusted with the expenditure of public funds, to employ a properly qualified and registered arehitect.

It will be argued that the object of this Act is to make the profession of architecture a close profession, solely to the benefit of its members and not necessarily for the benefit of the public, and that the public does not desire that such a Bill should pass. There is mothing in the Bill constituting the profession of atrehitecture a close profession, but even if there were, we maintain that the public has shown in many ways that none but qualified men should be allowed to practice as architects. The newspapers, as representing the pulsic, are always complaining of defects in buiklings, resulting; as they mainatin, from the ignorance of architects. Well, if there is this ifnorance on the part of some architects, something siould be done to weed the ignorant out of the profession and leave only the intelligent, as it would appear that the public is not capable of selecting the competent from the incompetem, or such mistakes would not nccur,
since there are qualifed men, though not in such numbers as the unqualified. Unless there is a standard, the competent man catnot sing to the incompetent one that he is tot a properly qualified architect, and that he should not claim to be an archilect, as he injures the standing of the profession and calls down upon it the condemmation of the public. If he did, he would only be laughed at for his impertinence.

Architects, in submitting this liill to the Legislative Assembly of Ontario, are only doing the work that the public should perform for itself. In nearly every case where a buikling has been found to be defective in any particular, the press has laid the blame on the profession as a borly. If every case of failure were investigated, it would be found that the mistikes were owing to the engagement of an ignorant man, who had no right by training or matoral ability to assume the duties of in architect, as well as to the fact that the public is unable to distinguish between the competent and incomcompetent. It certainly is not fair to blame a profession as a body for the errors of individuals who have no standing with the profession. These men clain to be of the profession, the public accepts their statements, employs them, finds them incompetent, and forthwith condemns the profession as a body as if there were no competent men in it, but that all were like those men whose statements they are so ready to accept. The Bill of Registation, if passed, will remedy this state of afiairs, unsatisfactory alike to the profession and the public. The man who employs a registered architect will have some guarantec that be has a reasonable knowledge of his business, that is, after the bill hats been in force a few years-for as all men now professing to be architects will be entitled to be registered, it will require time for those among them who are incompetent to pass out of sight. If the profession asked the Legishature to priss an Act which would make it unlawful for any but a registered architect to practice architecture, and which woukd not allow anyone to erect a building except he employed a registered architect, there would be more than ample grounds for the throwing out of the I:it. The profession cannot gain any(hing from the passing of the bill except in an indirect way, The men who are now practising will in the course of at few years have to contend with young men who will have hat the advantage of a thorough and systematic daining. Our best men will feel the competition of these young men, and the inferior men must suffer materially. Yet in spite of such facts, neally all the atrchitects now practising in this province are tunited in asking for the passing of this Act.

The practice of law has been made a close profession, because in ignoriont or unscrupulous lawyer might ruin his client; medicine has been made accose profession, because the igoorant medice! man might kill his patient. These are both good and sufficient reasons for making these close professions. The ignorant architect may cause serious loss to his client through his wat of knowledge, or he migy even catuse his death through not knowing anything of sanitary science or the art of construction. We have therefore the two principal reasons which have cansed the practice of law and medicine to be made close professions to urge as grounds for the closing of the profession of arelitecture abatinst the ignorant and unqualificed. It should not be possible for a man kowing arohing of construction to be able to erect a building the fall of which might result in scrious loss of life. But such is the case, and that more lives are unt lost through bad construction, is difficult for one to understand who has any kiowledge of the meiloxis of construction adopted by ifnorant architects atud buikders. 'There is atoother class of ignorant architects and buiklers against whom the public shotid be protected, wiz,, the men who, unable to calculate strains, determine to err on the right siale, and build much too heavily in plates, at the sacrifice of much material and labour, which results in worse than mere waste of the clients money, as all such overplus of material necessitates the strengthening of the work in other parts to carry such mnecessary load.

Some way imagine that this movement for the incorporation of the profession of architecture is local and recent in its chatr-
acter. Such is not the casc. The question has been more or less before the profession for the last twenty-five years, since the Royal Institute of british Architects made a movement toward that end a quarter of a century ago. During the last three or four years the movement in Great Britain has assumed a definite form, and a bill was submitted to the House of Commons in 1888, which, however, was withdrawn at that time, owing to the opposition of the Royal Institute of British Architects and the Civil Engineers, but submitted again in 1889 in a revised form. There is no doubt but that it will eventually pass. In some of the Australian colonies the matter has been taken in hand, and a Bill to incorporate the irchitects of these colonies is now under discussion. In the United States, Bills have already been submitted to some of the State Legislatures, and advanced several stages; and in many of the other States Bills are under preparation for submission to the Legislature. It will thus be seen that this movement is not a new or sudden one. It is rather an old one which has slowly gathered force until Acts of Incorporation are now being asked for in all quarters of the world for the proper and equitable acknonledgement of the profession of architecture, in order that the public may be protected from loss of life and moncy through the ignorance of many supposed qualified practitioners. The membership of the Ontario. Association of Architects includes 92 per cent. of all men now practicing architecture in this province, and when those who have applied for admittance to the Association are received, the percentage will be 97 . The movement has received the full and hearty support of the medical profession in Great Britain. Medical men are brought into contact with the ill effects of bad building, drainage, ete., and knowing the results, are only too anxious to aid in securing such legislation as will remedy an evil which has caused many deaths, much sickness, and heavs pecuniary losses.

THE ABILITY OF ARCHITECTS TO ESTIMATE.

Editor Canadian architget and builuek.
N the last issue of your journal I notice an editorial comment on my letter published in your November edition on the above subject. Apology is made for the publication of the letter, and the reasons assigned are "that all duly qualified architects are capable of approximately estimating the cost of the erection of their designs; that the custom in England as stated is misleading," etc.
In reply 1 respecifully submit, that every properly qualified architect should be thoroughly' competent to estimate the cost of the erection of his designs, and if he is not, he should lave it done for him. But just here is where the trouble exists, for it is well known in the profession, both in Canada and elsewhere, that very few, if any, of the very best architects can prepare a systematic bill of quamtities. They never learned how to do it, and always consider it umecessary that they should learn. It is a duty requiring time, skill and practice of quite a different claracter from designing and preparing plans, and if they are qualified to give a fair estimate of the cost of proposed buildings and feel it their duty to do so, their results prove either inability or neglect of duty.

I am well posted in the routine of architects' offices in Great Britain and Canada, and take exception to the statement that the custom in England as laid down by me is misleading, for the custom 1 presume is the satue in Great Britain now as it was fifteen years ngo, at which time it was the general rule or practice for the architect having prepared his plans and specifications, to either retain the services of a professional quantity surveyor, and supply bill of quantities to parties tendering for the work (to be paid for by the successful competitor), or the contractors united in appointing the surveyor, paying him themselves as by agreement made. Some contractors having a preference for a certain surveyor, would possibly engage his services $t 0$ check the quantities, as at liberty to do but unless the job was a small one, the surveyor was always retained. I never knew that the client was consulted or concerned at all about the quantities, or paying for them. He placed his building in the arclitect's hands on whom he had reliance as to ability and integrity, and the architeet knowing his duty to all
parties concerned, supplied quantities to the contractors, the successful one baving to pay for them whether he used them or not. On' Govermment work, however, the Board of Ordnance always supplies printed bills of quantities (without chatrge) to the contractor to estimate on, at so much above, below, or at par on the sclicdule prices, and which also rules for extra work and advances made on the contract.

As regards the architect or his clients responsibility for the correctness of the quantitics, it was alwnys specially agreed upon that the contractor himself was solely responsible.
I have pleasure in replying to Mr. A. T. Tinewell's able letter in your last issue on the subject, and coincide with all he has set forth, with the exception of the statement that some architects for their own protection make a practice of taking out the quantities. J don't think they do anything of the kind, for if they are qualified to do so, barring the reputation for giving close preliminary estimates, it entails a deal of time and trouble without any direct recompense. At. least they are not obliged to do it, therefore they don't, and all the duly qualified architects know it. The rule of practice should be that a competent party should be engaged to take out the quantities for which he would be paid by the contractor to whom the contract was awarded.

The columns of your journal are certainly the proper medium to discuss this important sulject, and the profession should not be too conservative on matters calling for immediate reform.

Yours, \&c.,

T Square.

[Our correspondent in his letter of November wrote in the present tense, and now he states that it was of fifteen years ago that he was writing. We hardly know why he should "presume that the custom is the same now as it was fifteen years ago." The custom in regard to quantity surveying is not the same now as it was eight years ago, to say nothing of fifteen. We do know cases in which about eight years ago the architect took out his quantities, had them printed or lithographed, and the successful tenderer paid the printer's bill on the receipt of his first certificate on account of the work he had executed. But the custom now in the best offices is to employ the services of a member of a new profession, namely, a "quantity surveyor," for although quantity surveyors had existed for years previously as a convenience for architects and buiders, yet until about seven years ago the necessity for the regular employment of properly qualified surveyors of quantities was not recognized. Quantity surveying is now a separate profession. The employers are usually the architects, not the builders, and the archited includes in his chauges, "prepatation of quantities," and pays the surveyol's account, his client having alrendy paid him for them.-ED. C. A. \& B.]

OUR ILLUSTRATIONS.

COMIDETITIVE DIESIGN FOR CATHEDRAL OF ST. JOHN THE DIVINL, NEW YORK.-JAMIES R. RHIND, ARCHITECT, MONTREAL, QUE

THE dome is 555 feet from the floor of the chureh to the base of the cross, and 595 feet from the level of 110 h street in front of the building. It would take St. Peter's at Rome inside, as St. Peter's will take St. Paul's, London, and it would be the largest and loftiest dome in the world. The dimensions of the dome are 200 feet inside and 240 feet outside. The height of the front towers from 1 toth street is 360 feet. The dome is to be on a line with 132 th street. The length of the building inside is 400 fect, according to conditions of competition. The height of the nave to the top of the domed ceiling inside is 180 feet. The length of the building outside the portico is 512 fect.
INTERIOR OF ST. MARY'S CATHEDRAL, HAMILTON, ONT:-THOS. CONNOLLY, A. R. C. A., ARCHITIECT; TORONTO.
RESIDENCE FOR THOS MARKS, PORT ARTHUK, ONT: EDWARDSS S. WEISTER, ARCHITECTS, TORONTO.

The students, graduates and faculty of the Toronto Scliool of Practical Science, spent a most pleasant evening together recently on the occasion of their first amnual dinner.

VoL. III.]
The Canadian Architect and ßéuilder.
[No. . 2

QUERIES AND ANSWERS.

WILL you please if time and space will allow answer the following: 'Two years ago Ithad the supervision of a house which is built in an exposeel position. The chimney to the north has always shown signs of damipness from top to bottom. The flue is used in connection with a small, wood burning hot water furnnce, and is 9 in, by 9 in, inside. Flue was carcfully parged inside with lime mortar. From the outside, the chimncy seems to be always saturated from top to bottom, that is, of course, when the furnace is burning. An answer would olbige.

Enquitas.
ANs.-The discoloration on outside of fue is caused by the condensation of the wood smoke. The wall of fue being proizaily only $4 \frac{1}{2}$ inches thick, aisoriss the dampness from the exterior atmosphere or from a driving rain, is always cold and damp in weather cold enough to need artificial heat The smoke striking this cold brickwork, is condensed, forming the wellknown inky fluid, which is often sten dripping from stove pipes when of great length: The burning of green wood would probably aggravate the trouble. A flue on an outside wall should have at least 7 inch thiekness on exposed side. An absolute remedy would be to build into the llue 9 inel glazed drain pipes, if special flue pipes are not oltainable. The lrickwork could be cut out from the exterior, aml pipes inserted if the chimney-lrcast inside is of sufficient size to allow of it,

TORONTO ARCHITECTURAL SKETCH CLUB.

THE housewarming, held in the new club room on January 28th, passed off in a pleasant and satisfactory manner. The large room was filled with a congenial and enthusiastic gathering, who spent the greater part of the time in the cliscussion of the drawings and sketches submitted in the first club competition, the sulbject of which was "An Entrance to a Dwelling House." Mr. Frank Darling, the critic of the evening, filled his position in a highly satisfactory manner, his criticisms and suggestions for improvement amply repaying the competitors for their labour.

By the vote of those present, the orcler of merit was decided as follows: Senior section-Ist, Mr. Ernest Wilby ; 2nd, Mr. J. A. Radiorel ; 3rd, Mr. Gco. W. Couton and Mr. A. H. Gregg (equal). Junior section-ist, Mr. Alf. Broadhurst; 2nd, Mr. Cecil Tredger.

The meeting beld on Felruary ith, though having a smaller attendance, was most interesting. Mr. R, W. Gambicr-13ousfield's illustrated paper on the "Different Styles of Gothic Architecture" was thoughtfully and carefully prepared, and though by no means lengthy, explained the grodual cvolution of the styles in a very lucid manner. The remainder of the evening was devoted to " time sketching." The subject, "A Hall Staircase," was given out, and the members were allowed half an hour to express their ideas.

An announcement of interest to all will be that Mr. Frank Darling has very kindly consented to act as permanent "clubs critic." This is a position he is admirably qualified to fill, as abundant proot was given at the last club competition.

A number of excellent architectural easts have been loaned the club for sketching purposes by Messrs. Holbrook \& Mollington, and will prove an attractive feature.

Mr. J. W. L. Forster, the well known artist, who has taken a very lively interest in the club since its inception, is on the programme for the last mecting of this month, and his paper should be heard by all, its it will undoubtedly be a very interesting one. It is desimble that members should bear in mind that the meetings are held on the second and fourth Tuesday of each montl.

"CANADIAN AROHITECT AND BUILDER" SERIES OF PRIZE COMPETITIONS.

REIOKT ON DLUMBING ESSAY COMPETITIONS

THE essays received in the above competition, four in number, we beg to report as standing in the following order of merit :

Ist, "Lucidus in Ordo," placed first, is a clear, concise setting out of the reason and urgency for having such plumbing fixtures as may be necessary in one's home done in the simplest and most effectual way, and going on, shows an accurate knowledge of the practical working of the various plunbing and sanitary appliances, with a critical appreciation of the merits of the many claimants for public favor. Among the points made which are
calculated to improve local usage, we would reiterate the following : That concealing work is the cause of bad work; more extensive use of wrought iron ; screw pointed pipe; inspection and testing of cast iron pipe at founclries; keeping house drain above basement floors; and that the porcelain urinals are susceptible of much improvement, as by make that would give sufficiancy of standing water with peirode flush out.
"Aplomb and T Square" may perhaps be bracketed together as showing knowledge of the subject, but failing to treat it as completely as "Lucidus in Ordo."
"Octo" has evidently an exact technical knowledge of plumbing fixtures, but treats the subject almost entirely as an analysis of these in a harrassing manner that can hardly be called essay writing. Having first stated under twenty eight licads the characteristics of the ideal water closet, he gives under numerous heads the points of the four classes of closets now in use, and leaves the conclusion which is the best to our own intelligence and attention. This synopsis occupies two-thirds of the whole. There is very little consideration of the general subject. He concludes with forty one questions about hot water boilers"just to give an insight to the importance of a boiler." There are no answers given to the questions, which is rather tantalizing. It is to be hoped that "Octo" is open to persuasion to publish the answers to his questions; they would form a valuable paper upon the boiler.

> W. A. Langion.
> John Geamele
> R. J. EDwards.

SERVICF PANTRY.
Of three drawings submitted, it is difficult to decide as to the first place between "Spero Meliorn" and "Art." "Spero Meliora" has made the best drawing, and has the best plan by the extent of making a pass door between the kitelen and the pantry. His details also have a finish which makes the room more pleasing without giving it any unfitting pretentiousness. He has also considered the question of heating. If lie had placed his radiator in the corner opposite, and moved the pass door and flap-table by so much further to the left, he would have been :ble to utilize the lower part of the cupboard now omitted to allow room for the radiator. There would then be more certainty in his favour as agoinst "Art," whose merit is abundance of accommodation. On the other hand "Art" has by bis copiousness of closet, rather skimped the sink room, and so detracted from the real comfort of his plan.

On the whole, considering the superiority of his drawing, we feel inclined to give the first place to "Spero Meliona."
"Lilliput" has committed the cardinal fault of hating a pass door between the pantry and diningr-room. His details are also vather coarse, and his plan not very clear.

> W. A. LangTon.
> R. G. Edward.
> JOHN GEMaMELL.

ENTRANCE AND VESTHULIE DOOR.
The competitors rank in the following order: "Circle," " Dono," "Cimarvac," "Linked Squares," "Ont."

All are alike in indicating no shelter for the door wiyg. It may be supposed to be under a porch or other cover.

The two first are almost equally good. Preference has been given to "Circle" on account of the superiority of his detail The quantity of bracketing and projection of moulding in "Dono's" interior finish is a mistake in taste. "Circle" las not considered his plan in drawing his elevation, but this reflects more upon his aceuracy than apon the design. "Cimarvac" is also groot--beteer on the outside than on the inside, which lacks refinement.

W. A. Langton.
 R. J. Edwards.
 John Gemmell.

The mames of the successful competitors in the above competitions are as follows: "Lucidus Ordo," (C. H. Acton Bönd), "Toronto; "T. Square," (H. N. Wilkinson), 24 Chomodey St., Montreal; "Spero Meliora," (Ernest Wilby) Toronto; "Art," (James Walker), Toronto; "Circle," (Thos. R. Johnson), Toronto; "Dono," (Ernest Willsy), Toronto.

STUDENTS' COMPETITIONS.

Editor Canaiman akgiitegt and huileek.
Sir,-You publishat in your November number, conditions for a competition for a bath-rom not to exceed 75 syuare feet. 1 entered this competition, and was surprised to see that "Birdsege" had been awarded first place for the desige of a bath room greatly exceeding that limit in size.

I now see that in the December number of your paper, the clatse limiting the size of the room was omitted. As my bathroom was plamned before the December number was delivered, and I did not see the change, my design was placed at it comsiderable disaduantage.

It was surely unfaing to anmend the conditions within two weeks of the date at which the drawings had to be in, and then to judge a design prepared under the limitations of the first conditions, on the same basis as one that had profted by the change.

My French bath, which is eriticised is being " unworthy of : place in a good bath room" would certainly be preferred to a common bath by many, particularly where the space is limited, and had the writer of the report figured the matter up, he would not have said its water-saring faculty was fallacious. The fact is, that the bath I show woukd take 40 per cent. less water to fill it than one such as "Ibirdseye" shows, which, if permissible in a s go foot room, would leave room for little else in a 75 foot room. I assume that the reproduction of " Birdseye's" design is one batf the size of the original, because it is mentioned in the conditions that the drawings must be reduced one hatf, and allowing a stight margin, the reproduction measures one half the size specified in the conditions.

The fact that the pipes may be got at from a bed room closet is another point in my design that is severely criticised. As the pipes should surely be accessible, I conclude the writer of the report would have them boxed out into the bath room itself. I do not see that this would much lessen the evil efferts of a leak of scwer gas, and as "Birdseye". makes no such prowisions, 1 do not think his design should be given any preference in this matter, for it is certainly better to place the pipes in a box in the thickness of the partition where they would be accessible, than on place them in the partition without the box, and inaceessible, as "Birdseye" evidently intended them to be.
" Ifirdseyc's" fixtures are arranged without regard to cost in making the plumbing comections. The w. c. is placed in at separate comparment, which is destitute of light and ventilation. The shower-bath is closed round in a way that would make in difficult to turn on the water without getting in the bath-tubs. The basin is too suatl to be used with comfort, and one of "Hirdseje's" dramings is "cooked." The door is shown mine inches, and the basin five inelics natrower in eleration that on the plan, giving the rexim a false appearance of symmetry. In compections of this stut, surely any attempt at "cooking" ought to disqualify a competitor.

I can apprectate the gencrous motives that induced the committee of the Guild to undertake the difficult task of judging these competitions. Still I think that, hawing undertaken to make the awards, they should be willing to devote sufficient time to the work to fairly weigh all the merits and demerits of each design. That this was not done in the present case, seems to me evident.

The object of these competitions is to raise the standiad of draughtsmen and pupils, and if the criticism of the designs is carcfully and justly: made, it will be of far more benefit to the competitor than the study necessary to the preparation of the design.

> Yours, ecte.,
"Jano."
[We were unaware until our attention was called to the fact, that any clange had been made in the printed conditions governing this competition. It was found necessary to alter the wording of some of the conditions in order that their meaning might not be ambigruous. It now appears that in making these alterations, the omission of which our correspondent complains accidentally occurred. We can only say that we exceedingly
regret the circumstances, and the fact that it is now out of our: power to make any reparation for the mistake, unless the judges of the competition should decide that, apart from the objection to the size of the bath, "Dado's" design would have been entilled to first position.-Ed. C. A. \& B.]

CANADIAN SOCIETY CIVIL ENGINEERS.

THIE fourth amual meeting of the above society was held in the city of Montreal on Jan. 22nd. Acided interest was siven to the occasion by the inauguration of atu annual dimer, and the attendance thereat of His Excellency the GovernorGenemal and a number of ladies. The I'resident, Col. Gzowski, presided.

tile presidentrs admalss.

The president's address, was, as usunt, the ehice feature of the meeting. Jis most inportant kalures are reproduced below:

The progress of the socicty since its recent organization has been very gratifying. The roll of memters, as you will have observed from the report of the council, is as follows:-Honorary members, 7; members, 266; asscciate members. 100 : associates, 66 ; students, 154 ; total, 953 . The society las every reason to be congratulated upon and take pride in the representatives of engineering talent on her roll of honorary members.
Herc followed a reference to a number of engineering works that have attracted attemion the past year. First of these was

THES ST. CLAIR TUNNEL,
under the Detreit river, to conneet the Grand Trunk system in Canadn with its connections in tive Uniked States at Sarnia. The total lengit of the tunnel with approaches wilh be two miles and $\mathrm{f}, 145$ feet. The lengith from face to face of the portals is 6,000 feet. The deppis of open cutting at the east. Canadian side of the tumnel, is 62 feet; it the west, United States end 52 feet. 'I'he length of that part which is minder water will be 2,310 feet with in gradient to the west, rising one foot in one thousand. The grentest depth of the River St. Clair on the line of the tunnel is forty and grentest depth of the pinimum thickness of the roof is is feet. The botiom of the tunnel is about ten feet above the rock underlying the clay. This las been ascertained by very accurate soundings and borings taken near the line of the tuuncl at cach 20 feet. It may be well to say that the flow of gas was found immediately above the rock. indicating that its source was it or below that strata, thic gas iscaping through fissures in the ruck. Lecating the bottom of the tunacl above the rock and yet securing sufficient thickness of material to support the roof was in order to aroid meeting with gas. The nancerial through which the tunned is drivell is clay, with pockes of wet sind and grawel. The tumuel in aross section is circulth with ath inside diameter of 19 feet 10 inches. It is a circular tube lined throughout with flanged plates of east iron, two inches thick, five foet long. bolied logether. The ends of these plates are planed to make a clos: joint, and before beillg used they are heated and soaked in tar. The louer hinf of the lining is cuensed outside in three incloes of grout formed of the lest Portland eement and coarse sharp sand. Holes are made in the upper part or each plate, through which the grout is poured in. Under the river the whole of the outside of the enst iron lining will be covered this waty. In the prosecution of the work, an iron shield is used, under the protection of which the excavation is carried on, and the cast irom lining is put togetleer. The shield is just large enough to emelose the cast iron lining, and ns the excavation in front of it is advanced, it is moved forward just far enough to put together one scetion of the tunnel lining. As the width of these sections or rings is only eigbleen inches, and as the rear portion of the shiedd which encloses the lining overlajs it thirty-nine inches, the forward end of the lining is always within the shicld. To ensure safety as far as possible in the event of a sudden strong foow of quicksnnd or water, all iron diaphrag"n or bulkhad is built across the shield forty eight inches from the rear of it. with two sliding doors which can nt once be elosed. The totai length on boll, sides of the river of the completed conncl to a2nd January. is 2,006 feet: in Cinada, 844 feet; in the United States, 1,162 feet. The: time named for the completion of the tumen is July. 189r.

TIIE BRIDGE across tile frith of roitil.
The Frith is five wiles wide, and blocks the direce line of the enst coast milways. Its construction was iong delayed owing to the great width and deptht of the Forth. It is not ceasy to realize loow vast is the difference between a bridge with a 1.700 feet span and the largest span of a mailway hitherto constructed The height of the steel work is also exeeptionally great, being equal to that of the golden cross of St. Paul's, 360 feet, while the total height of the bridge is juse equal to that of the Great Pyramid, 460 feet. As regards the principle of design, "Cantilever" is a 200 year old term for a "brackel." and the Forth bridge spans are made up of two brackets and a connecting girder. On these brackets there is a horizontal pull of 10,000 ions, and on thicir bases rests a weight of 100,000 tons. The principle of brackel and girder construction is as old as the hills, as it prindsitself particularsy to inmler construction, which prececked masonry. A wooden bridge buill 230 years ago in Thilivet, with a spanin of 182 feet. A wooven brige buit 230 years ago in Thibet, with a span of 182 fec,
was the true protoype of he forth bridge, which only lecime possilde when Bessemer steel was invented. One of the advantages of the eantilever sysiem is facility and safely of erection, as such bridges can be built by commpencing at the piers, sud ualding successive bays of the eantilever right and left mitil the whole is completed. There is thus no moment when the safety of the whole structure is dependent on the iniegrity of some temporary slaging. The cantilevers or brackets of the Fortb bridge are enoriunusly strong. Mr. Baker says that hall a dozen ironcinds might be lung upan them. The works of the bridge were commenced in 1883. Mr . Arrol. of Gilasgow, was the contmetor. A slart wns made with the pier work simultaneously with the erection of shops and miachinely for the mianufacture of the superstructurc. Each main pier consists of a group of four cylindrical minsonry piers about 70 feet dinmeter. These are founded on rock or hard boulder clay tit depths ranging up to go feet below high
water. Six of the cylindrical piers were put in place by the use of comen water. Six of the cylindrical piers were put in place by the use of compressed air. The picrs were floated into position by building them hollow in the first iustance and filling them with solid masonry subsequently. The whole was enclosed in a bottom placed about seven feet nbove the external cylindrical skin, so that a buge diving bell, 70 feet in diameter and 7 feet high, constitules the bottom of each pier. Whea in position, the water was driven out of the clanmbers by forcing in compressed air. Workmen then entered through nitlooks, and carried on the excavation 90 feet below the waters of the Forth. The superstructure of this gigamic briage

Vol. III.]
The Ganadian

INTERIOR OF ST, MARY'S CATHEDRAL, HAMILTON, ONT. Jos. Connolly, Architect, Toronto.

PLAN FOR CATHEDRAL OF ST. JOHN THE DIVINE, NEW YORK.

required the manufacture on the spot of 50,000 tons of sted girders and other work. As a rule, the conupression nembers consist of tubes, and the other work. As a rule, the conupession members consist of tubes, and the
lension members of lattice girders ; this arrangememt from an architectural tension members of lattice girders; this arrangenem fromi an architecturat
point of view proved most effective. The central connecting girder was erected in two halves temporarity connected with the projecting ginds of the cantilevers. The bottom members of the two halves at the centre of the 4,700 feet span liad large botes bored in thems for the insertion of pins to conneet the two projecting halves of the lridge, each, of course. 850 feet long. These holes bad 10 be watcleed so as to seize the right noment when the varying tempernture and consequent expansion of the stecl brought them opposite encls other, so that the pin rould be dropped in. The next thing was to release the itniporary ties holding the top members of the central girder to the cantilever. These were steel bars, three leet wide and two finches thick; to cul through such stection of steel would have taken a long time. Mr. Arrol, contmetor, nrranged portable oil furnaces taken a long time Mir. Arrol, contractor, nrranged portable oi furnaces
by which the ties could be made white hot in a sloort time, and so ine strain on the ties was relizved as effectunlly as by cutting them. Mr. Baker on the ties was relizved as difectunily ys by cuting then. Mr. Baker
admits that the cost of the bridge exceded the estimattes. He claius that admits that the cost of the bridge exceeded the estimites. He clatins that
ihis wis not an exceptionabie thing, and says that if such a bridge had to be buik again, time and money mpht both be saved. It is expected that mains will begin to sun over the bridge in March next.
Before concluding a reference to this great bridge, 1 may add that last year a clatter was granted kor a 2,800 fuet span bridge at New York. This year, Messrs. Setmeider \& Company, of Creusot, in conference with Sir John Fovier and Mr. Baker as consulting engineers, liave designed the steel work of a bridze over the Englizh chammel, and Mecsis. Hersent \& Co., of Suez and Pamama camal fame, have designed the piers. The total length of the projected bridge is 24 miles, the number of piers 120 , the width of the openings from $\mathbf{3}^{28}$ to 1,640 feet, the clear hendwny for ships width of the openings from 328 to 1,640 feet, the ctear headway for ships 180 foel, the greatest deplit of water 180 eect, and the height fromt the
foundations to the top of the steel work 600 feet.' It is calculated that it toundations to the top of the stee work con bere. if is caiculated a million tons of stect would be reguired for this stupendous structure. The estimated cost of the bridge is $\langle 34,000,000$ sterling. The forth bridge is not only a lasting monument to the designers and constructors, but verifies and noost forcibly illustrites the fitmess of the nooto adopted for the profession of civil engiteer :-" Whereby the great strvices of power in mature are converted, adopted and applied for the use and convenience of man.

ELACTRICAI, ENGINEERINC.
Eilectricity as a science and elecirical enginecring are making very rapid progress to control that wonderful power in nature for the use and convenience of man, which was so graphically described by Mr. Thomas Keefer in his address to the society as : That force like steant, and like it chiefy in his address to the socicty as "That force like steant, and
known by its effets; fits range is universal, in the leavens above and the known by its cifects; fis range is universal, in the leavens above and the earth beneath, and apparently in all things living, in all aniunal and vege-
table Jife." As chairman of the commissioners of the Victoria Niagara inble lace." As chairman of the commissioners of the Victorin Ningara Park, 1 am in negotiation for the use of Niagara Falls to generate elvelricity in sufficient guanity and power to be transmitutd to Buflalo, Lockport.
Koclueser, Hamilton and Toronto, there to be used as a motive power for kochester, Hamilton and Toronto, there to be used as a motive power Tor working shationary engimes at a geently reduced cost per borse power. The he upper level of tic river, and at its termination exchwate a large channber for placing water wheels and dynamos, the supply of water to be from pipes leading into the tunnel, with a fall of about ifa feet. Thut an almosi piplinuited electric power ean be generated by the use of Niagarat lialls is not doubted. The transmission of that power to contemplated distances in effective form is maintained by some clectrical experts as quite pracin effective form is maintained by some clectrical experts as guite practicable ; there are others, agnin, who phace a much shorter himit to the power
of transmission. However that may result, there can be no doube that the science of electrisity and its uses are still in a very euriy stage of development. RAIIWAY BEVELOMMENT.
Canada has now in operntion within her borders no less dhan $\mathbf{3} .410$ miles of railways representing a capital of $\$ 727,180,44^{8}$. In this vital weeessity of rapid loconotion the Dominion, with jits five milliuns of people, is as full and lavorably equipped as the States with sixty-five millions. Buat vist as has been the development of Canadn's capacities for meeting the needs of agriculcurat, minerat and industrial enterpriscs, and for providing the conveniences of ever cminrging commeree, and of domestice life, the future will see even greater stides made in the material progress of outr country. The works that have signalized the past only foreshadoor those unlarged opyortunities for usefulness and distinction which the future will open up to the civil engineer.
l'ernit 1 ln . in conclusion, to say a few words about our socicty. The report of tie conncil shows a considerable increase in our mumbers. This no doubt is highly satisfactory from my own point of view, not only 1 teatuse of this increase, but as a proof that the socicty is doing work that is apprecianed by engineers, nad that the work is goud, for were it otherwise hiprey would not have joimed us. During the year of my office as your presithey would not have joimed us. During the year of my ofmee as your president 1 have to regree that owing to ny residing al so great Ω distance from the headguarters of the society, and for other reasons beyond my control. 1 have done but litte towards promoting the intercsts of the socie:y. This failure to do more has becn trom imability and not froms earrest good will towards or interest in the society. Nlow me, however. to say that any effort of your president alone will nol suffice to ensure success. He is powerless unkess aided by niembers. Pardon me if 1 say that fi is the duty of ereh one of you to belp. Each meniber should bring befare the society. every subject of interest conneeted with our profession of which te has experience in the course of his practice. He ought to attend the meetings for reading and discussion of papers as frespuensly as possible. You will forgive me for these worts of persomal adviee to every member. Although they conce from one who was your nominal lieat but for the short term of twelve months, be is not wanting in age in other ways, and let me assure you that they are inspired sotely by a desire that the transnctions and papers selected by the colucil for discussion should te worthy of the sociely They are the proper medium by which the socien's usefulness is to be They are the propser mediume by which the socielys asefutness ins work maintained. By the printing and distribution or those papers our work
 the assumnce that I will do all in my power to further the interests of the society, and I shall watch its progress with ansious desire to see it prosper.
I cammot sit down withont making an allusion to the denth of my predecessor in the presidency of the society, Mr. Simmel Keefar, who was my wamm persomal friend, and the earliest professional collcagne 1 lad in Canada. Duting the period of my scrvice in the Department of Pulbic Works,
 his aiviee sound and most valuable. He was devotedly fond of his profession, to which he did honor. He left important enginecring works with which his mame will always ramoin associated. His irreproachable"dfe reached almost four score years, the limit allotted to mant, leaving a good exnminte to be followed by all members of nur profession."

THE ANNUAL HEIORT
shows that during the past year the membership of the Society has been incteased ly seventy. The honorary members dected were His Execllency the GovernorGenerol, Sir Johm Willian Dawson, Sir Charles Augustus Hartley, Sir Frederick Joseplh Brampivell, Bart, Sir William Thomson, Sir John Fowler and Sir John Hawkshaw.
Council agrin feels it an imperative duty to direct tic attention of neembers to the pualifications required for admission into the several cinsses. As regards the student class, it is considered that a candidate should be capable of undergoing an examina. tion equivalent to that required for the matriculation into the arts or science departthent of a univessity. The gualifications for admissiun into the classes of unembers and associate memilers should be rigilly exacted. Corposate members should make it a rule to verify the accuracy of the statement of the candidate's prolesisional carect and should satisly themelves that he would prove a fit and proper meniber of the society. This is especially necessary, as, in many eases, the applicamt is personally unknown to the unembers of ccuncil.
During the year 1869 , sixteen ordinary meet ngs were held, and four students ineetings, at all of whith appropriate papers were read.
During the past year, the metings of the suciety have heen lield it roms a McGill Collese. The council, however, has long concidered that the growing ire quirements of the society, and the need of a library, rendered it desirable that the society should poseses rooms of its own. This has now been unde possulle thrursh the liberality of the president, Colonel Gzowzki, and the conncil has, therefore secured the lease of the first foor of the new Bank of Montreal builditug, at the corner of St. Catherine and Mansfield streets, for a term of five years. It is ex pected that the rooins will be ready by the sts of May.
I'he building committec reposts the receipt of subscriptions to the amownt of \$3,323. It is very satis'actory to find that so ligh an average is $\$ \mathbf{\$ 6 . 1 0}$ per sult. scriling teember has lieen reached. Had all the members contriboued in like proportion, the building fund would now amoumt to $\$ 25,000$. The president, Culonel Gxowsky, has geseromsty given $\$ 300 \mathrm{n}$ year, for five years, tulfarts the remal of rooms for die society. (Hear, hear.) But the buidding committec feels that no time should be lost and to efforts spared la raising the sum required for the purchase of a site and the erection of a building, so as to geve a more permanent basis to the sozely, Messrs. James Ross nud R. G. Reed liave also given $\$ 500$ cach towards the building fund.
-The income for the year, ended on $3^{\text {tst }}$ December, $\mathbf{t 8 8 9}$, antounted to $\$ 3,039.9$: and the gentral expenditure reoched $\$ 3.07$-95, Jeavmg a lalince of $\$; 53.97$. which, together with the balance it $\$ 1,948.92$ lirought forward from the jear 18e8, givws a tonal balance of $\$ 2,502$ ko 10 be carried forwatd.

The report was adopted.
A resolution of condolence with the widow of the late Mr. Samuel Keefer was adopted on motion of the l'residem.

OFHICERS ELACTED.

The following are the officers and combil for the ensuing term: Presiclent, Colonel (izowski; Viec-presidents, Messrs Kennedy, Perley and Hannaford; Ireasurer, Mr. Werbert Wallis; Secretary, Professor Botey ; Librarian, Mr. Chadwick; Council, Messrs. St. George, Rittum, Batnett, F. R. F. Jrown, Dasse, Wragge, Sir Jos. Trutch, Blackwell, Peterson, Munroc, Anderson, Dodwell, G. A. Kecfer, Jennings and Ketclmm.

A vote of thataks to the President for his valuable efforts on behalf of the society wats moved by His bexcellency, whe Gever nor-General, and adopted. The business of the meeting closed with the passing of votes of thanks to His Jixcellency, Mr. Wallis, the Treasurer, Mr. Chadwick, Librarian, and Professor Bovey, die Sectetary.

THE ANNUAL, DINNER
The first ammat dimner of the society was held at the Windsor hotel. The memt was a choice one, and the table decorations of a chatming character, while the presemee or ato ladies gave brilliancy to the scene. Col. Czowski presided ; the vice-chatirs being occupied by Mr. E.-I'. Hamaford, and Mr. I. A. Patterson. The former and Prof. Bovey replied to the toist of of "The Engincering Profession."

"CANADIAN ARCHITECT AND BUILDER" SERIES OF PRIZE COMPETITIONS.

THE following is a list of comperitions in Architectural subjects which we have decided to hokl thiring the wimer.
Ist.-Details of the interior of a stanall house to inelade those for stair case, doors, architrave, I ase ald windows jesigns to be semt in on or
 io C. A. \& R.
and.-Design wi h details for four mantels, two of wood, one of lwick and one of stone. Designs to be sent in on or bef. re ist גpril. 1800 . First prize. \$5: secont. one year's subbription $1:$ A. \& B.
3rd.-'Ibree designs with details, for front fence. Designs to be sent in on or before tst May, 1890. Jïrs prize, $\$ 5$; seconsl, one year's stlbibription C. A. \& B.

4th. - Essay on Heating nud Ventilation. Eseags to be semt in on or beffere ist May, 1890. First prize sto: second ont year's sulbecription in C. A. \& B .

The Arehitectural Guild of Toronto have very kindly nppointed a com mitese from their number to julke the above competitions. We shat publish each report as semt to us by the commitue. Draughtsmanship, neztuess and chearness of armagemem of limwings will be taken ino con sidemtion in awarding positions.

if $x 20$ inches in size, and must be drawn to allow of their being reduced to onc-half the above size. Drawings nust be made in firm, strous lines. with pen and Black ink. No color or brush work will be allowed.
Each drawing must be marked with the nom de plume of its author, and the author's nauc, non de plume and full address, enclosed in sealed envelope, must accompany cach drawing sent in.
We reserve the right to publish any design sent in.
Drawings will be returned to their authors within a reasomable time after the conmittee has given its decision.

FOUNDATIONS. ${ }^{*}$

1 NN alt purely constructive work, the principal object is to obtain perfect of a building should this object be more diligently sought in in tho part of a building should this object le more diligently sought than in the
foundations. Genemlly covered up uat of sight, and in no way entering into the apparent construational outline of the building, utility is the one great test to be applied. Avoiding on the one hand anl inefficient founda.
tion which will imperil the stability of the buikling, and on the other a tion which will imperid the stability of the buikding, and on the other a prodigal expenditure, where nuch is wasted that might be fruitully eniployed on the supersinucture.
To olbtain this most desirable meill, it is evidetit that a careful and scientific investigation into, and adjustment of the relations of three things must be carried out, viz., 1st, the weight and character of the structure; and, the solidity of the foumbation bed; 3rd, the width, form and minereinls of the footings. These dires factors are seldom the same in two cases, and of the footings. These tire factors are seldome the same in two cases, and
it is evident iliat no mere rule of thumb method or so-enlled practical experience is a saife guide.

We owe it to our professional standing, as well as to our clients' chaims, o give this innporant branch of construction nuch careful attention and study. While in this brief paper I may not present anything that is new to many present, I trust it may be the means of direeting more of vur nuention to this imporiant matter.
Before conypleting tive foundation plans of any lesikding, these two questions shouks always be considered: ist. What is the weight of each part of the building upon each sq. foot of the founclation? and and. What is thest are at least approximately answered, can the size, form and material of fooxings be necurately determined. The weiglt of a building may vary of doxings be nceurately dectrmined.
in different places, and one part require much greater bearing area than in different

The foundation bed may not be homogeneous, and may require special treatment 10 makn a solid benring. Before plans are completed, pits sloould be dug, or holes bored on the site of proposed buikling, in order to reveal the nature of the foundation. These should be extemed some depth below the proposed bottom level of footings. In ordinary soils. and for ordinary houses, 3 or 4 feet might sulfice, while for heavier buildings, or in shifting or light soils, much deeper tests must be made.
looundationt beds may be classified under four heads: 13t, those incompressible under the load; and, those more or less compressible under the load, but not requiring an artificinl treatment; zrd, those requiting arificial trearion to make them cnpabte of sustinining the load; 4 hl . Those partly of the nature of two or more of the forcgoing.
Strictly speaking. rock of good quality and sufficient thickness forms the only incompressible foundation bed. Solt sandstone and shale should be submitted to a test before any very heavy weight is imposed upon them. The best audiorities consider that \$th of the crushing weight on average samptes is the outsick limit of the safe load for a rock bed. Sometimes there is a very thin surata of sound rock, with an ineffigent foundation below it. If the buikling be heavy, and there is any cause to suspect such a contingency, iest holes should lie bored. J the roek be uneven, and the levelling of it likely to incur nucls expense. a level bed may be formed by tilling up the deprissicius nith cement concrete; or if the inequalities be large, br^{2} bmidding coursed rulble with full, strong ecment joinis. Where the lxed uf rock is on a considerable incline, steps slould always lee cut to the led uf rock is on a considerable incline, stepes shonld alyays ixe emt to water, it may le advisable to insert anchor pins of iron to pervent the water, it may lee advisable to insert anchor pins of iron to petvent the
slipping of footing stones. Whicre, owing in the dip of the strata, part of sipping of footing stones. Whare, owing to the dip of the strana, par of up to the kevet al botiom of rest of work with cement, so as to prevent settlenicnt.
Secondly-next to rock, strong gravel mixy be considered is an excellent foundation, it becing almot incoinpressillse under ordinary loads, and not grently affected by the netion of water. The safe load that may be phacel on a gravel toed has been variously estimated at from one to two tons per sej. foot. The later weight should not be approximated tuless the beed of gravel is very thick, or there is a good substritumi under it. And here it is well to remember that the coliesive power of gravel being so slight, a good deal deppends upon the nature of the sulssoil. A strain of sind or clay underneah. sibibject to the action of water. Might yery materially destroy he sustaining strength of even a deeps bed of gravel. More especially houk this mater receive consideration if hes proposed foumdation is so elevated as to lee drained by any depression in the neighlourtood.
Sund, when not exprosed to the action of water. forms one of the best soil foundations. It is almost incompressible, and its jroperty of diffisung lue weight haterally as well as vertically, is a great point in its frvor. For ons to the sff. foot. But owing to is lluid nature. formedativis lavill upon it are exposed to minny dangers. The action of water will at once destroy its stabilitity, and all sand formulation beds should be protected from its avages. Sonnetines in this very ntempt at protection, a new element of danger is imrochued. Drains that were intenterit to protect the foumdations from saturation. beconcensy channels for the escipeo of lie siund by the action of water. The depeh of a sand bed ant the character of the underjying strata largely determines tive safety of such a foundation. Frequently in wiwleriying led of rock or stiff blue elay forms a table over which Dows the surfice sinkings of a targe nrea, reachering the botiom portion of the sand lied a moring yuick sand. If this is not confined by altifickal neans, it many at some time move out in the dirretion of some new ountet, perhaps far removed from the site of the: building. Then, of course, a sinkage must follow. On the other hand, if sand is retinimed in its position, cither by natural or artificinal surroundings, its senii-fuld property of (ransmiession of pressure, is a great elentent in its favor.
Stin clay and mart, or as it is sometimes called, " hard-pan," forms an PPaper read by Mr. H. P. Gordon befire the Arm Annual Conveinion of the
Ontino Astociation of Arclitects.
excellemt foundation if kept dry and away from atmospherie influence. It is, of course, slighty compressible, but if the weights be unifornly propor tioned, a safe load of from two to four tons per sq. foot can be imposed. The essential element in all clay founchtions is thorough drainage, for unger the action of water it is soon reduced to plastic mud, witb little or no stability. This dminage should be dowe before or at the time the foand a tion watls ate buill, and the trenctess always kept dry. Of course in this as in all soil foundations, - it is essential that the foolings be below the disintegrating effects of frost, and that they be fully protecied from its influence while the building is in progress. Owing io its retention of moisture, elay is very subject to the netion of frost, and for this reason footings phaced upon titrequire to be deeper below finished ground line than those on sand or gravel. All elays, especially hard blue chay, are very sensitive to the condition of the atmosphere, albsorbing moisture in damp weather, and cracking and splitung in dry. For this reason, clay founditions stould be exposed as sloot a time as possible to the action of the air The expansive force of clay under the action of damp is very great, so that the necessity of protecting is from alternations of wet and dry is very apparent. Founda:ions en wet chay should not exceed ith tons to the sq. ft. unkess the uniform weight and isolated position of the walis will admit consudembluc sinkage
Thirdly -on soft, homogeneous soils, or made ground of uniform compressibi ity, foundation beds may be rendered sufficiently solid for buildings of ce:tain ciasses by the cheap and simple method of planking. Thick plank or squared logs. proportioned in width and thickness to the weight to be carried, are ladd down in at least two thicknesses. The lower layer is placed longitudinally with the wall and the upper one transversely across wall. Three conditions, however, must be present in order to make such a foundation bed a suceess: ist, the planking must not be subjected to alternations of wet or dry or to ordinary ntmospheric influence, otherwise the wood will soon rol, and a setlement occur; and, the weight of al walls, and the widths of footing's under them must be so well proportioned that there will be the same pressure per sq. foot under the wholeof planking 3rd, the butilding nulust tee so isolated, and of such a character that it may sette uniformly wihout dislodgement of any part. All timber used in suth foundations should be creosotert, or aherwise presetved by some application before being used.
In places where there is a nooderately soft foundation, nut subject to the aetion of water, a good foundation bed may be formed by the use of sand pits or sand piling. This method of formaing a foundation is to be recomnended. There is no clance of decay such as in wood piling or planking: thite the distributing property of sand is valuatble. In formine the holes to receive sind piles, it is preferable to make then by driving and then removing the wood piles, rather than by bering. The ground around them is much more compacted by such a process, and the fateral transmission of much more compacted by such a process, and the materal iransmission ramnied with damp sind, it is necessary to put a bed of concrete or ptanking over them, so that the sand uny not be forced up by the pressure of the surtonnding earth. If sand be used in trenches, it is usual to spread it in layers, fully ramming it as the work proceeds, until there is suffieiemt depits to distribute the weight to be imposed over the whote bottom surface of rench.
In order to secure a good foundation bed that will uniformly distribue lie lond over a wide area, the nost common method is by using concrete beds or footings. Tive grent points in good concrete making are, clean and pure materials, coricet proportoons, thorough mixing, and quick using, Any concrete which contains less than one-sixth of eement must be considered a poor substratum for any heavy weight. And here it is well to emember, that concrete is really an artifical rock, and that the projection of a course of it beyond the face of the footing stones above it, should not ordinatily be more than half the thickness of the conerete bed. If this importunt fact be overbooked, it may happen that the projecting edge of the losivily londed conerele bed will break of, and the arta of footing be so reduced as to cause a sinkage.
In silty, peaty or very soft ground, the usual recourse is to timber piling to secure a proper fowndation. If there be solid ground underneath thint can be ranched ly a 20 or 24 feet pile, it is generally best to drive then bome, so that in renlity they become posis resting on the firm grcund. Usually it is not well to have a pile exceed zo tinces its dianieter; for if the soil be somewhat hard it is difficult to properly drive a longer one, while if the ground be very soft, it affords but little tateral support to the pile, and the ground be very soft, it affords but litte hateral support to the pile, and
it becomes a stilted pilar. The outsise linut of a sale load on a pike restit becomes a stilted pillar. The outsinke limit of a sale load on a pike rest-
ing on solide ground at bothons, is about sooo liss. per squire inch of area of ing on sold ground at bollont, is about 1000 libs. per squire inch of arca of
newan cruss section. Where there is no solid substratuni to support the pies, they simply deperind upoo the friction or colosiveness of the soit to hold them. Usually a pile of this description is considered fully driven when it dows not sink more than one-balf hach under $n 1200 \mathrm{lb}$. weight falling zo feet. The maximum sife bearing load of such a pive showhe not ordinarily ise taken as more than 200 Jbs. per square iach of aree of head. In all cases, piles should the cut of below damp line to prevent decay. It is also vary desirable to cresote or otherwise apply a preservative to all piles bufore they are driven. Where the piles are tov far apmit to receive directly and centrally the stone footings, liewy timbers should be laid longitudinally on top of licin, and the spaces filled in with concrete. Should the semiofluid nature of the ground be such that ordinary piling will not sulfice fora formlaion red, ecomse musin fild sontles of where die wall is to le lebeilt of the foldowiag ways: Along both depth (usually nat more than from six to (en feet) to reiain the semi-fluid) soil. If the grotind lee not too linit, the soil between the piles may be to simue extent compancted by driving in compressing pikes. Considerable judguent wilt have to be exereised as to whetfor stach conipacting is possible or mot, or the result mag tes an aggravation of the mucky state of the soil letween the sheet piling. In any cose, some compact footing musi be formed cver the soil leetwen the sheet piling, usually lyy a bed of eoncrele, sometimes by partial exenvation and refiling with layers of sand. Still another method, when the soil is very fluid, is by planking and then filling in with concrele. Sometimes when solid ground may be rencled at considerable depth, hollow jron cylinders are sunk, the soil inside removed consderable dephs, hothow ron cylimers are sumk, the soil inside remhoved. piers to suphort the supserstrikiturc.
In the ense of foundations under water, the ustal method is to sink enissons or construct coffer dams, and then renove the water from inside of same until the piers or walls are buill. But the further consideration of subaquecous foulcotions is mither a bmanch of evivil engineering than : simple problemt in nrelitectural construction.
Fourthly-the mest difficult problen! of all is, when the different pertions of the same foundation bed are of considemble difference of densily. When the soft places are narrow, they may be overcome by arcling or lintels.
When the sof strata is of limited depth, a series of piers niay be suink to the
solid bearing underncath. When the reaching of a solid substratum is not feasible, the only method is, to so proportion the width of footings in the reasible, the only method is. to so proportion the width of footings in the
various phaces in relation to the compressibility of the rarious soils, that various phaces in relation to the compressibility of the thatious sois, that
selutement may be uniform. When. howeyer, part of the foundation is on seitlemenk may be uniform. When, howeyer, part of the forndation is on
solid rock and the oxher part on compressible soil, the dificulty is very hard to be overcome. Under such circumstances, if the chameter of the building will adnit of it, the superstructure shoukd be buile with a straight independent joint over the point of junction between the rock and soft soil, so that any settlement of the latter may occur without disturting the rest of tle building. In the cese of cominurous cornices, base courses, ele, nllowance can be made in building for the probable settlement. Frequently, however, the style of the building will nor admit of this division shorowing above ground; then recourse will have to be made to two or three expedients: By building the foumdation walls up to ground line with ordinary mortar, where over rock, and with cement, where over soft soil, the sinkage of the mortar joints may in some aleasure counterbalanec the sinking of the other part of foundation when the superstructure is imposed. Advantage to a limited extent only can be taken of the fiexibility of the walls, by adopsing something like the following methods: Form a continuous and solid concrete bed over the soft portion and allow the end of it to rest on the rock. This bed way be stiffened lyy the use of iron beams beddind in the concre-". The end furthest from the rock mist extencl considerably beyond the end of wall above. and the foundation be built with n good barter or wide offses. so as 10 give an extended bearing at that end. In buidung on such a bed, great care and judgment muse be used in raising the work slightly bigher at the free end than at the solid rock end, also giving the vertical corner a slight batter inwards, so that when all has setted to its place, the horizontal courses may be found level, and the end perfectly plumi). It is, however, courses may be found level, and the end perfectly plumi). It is, however, over the point of junction of the rock and concrele foundaion, that a crack may be apprehended, and to avoid this, sirong
built in at short intervals all the way up wais.
Having brielly enumeraicd the principal kinds and chameters of foundhion beds, the mext point that claims attention is to property determine their size and relition to the weights to be carried. Here one point noeds pecial emphasis, viz, the e:ntre of the bearing of the foundation ted or outing should be as nearly ns possible perpendicular to the eenure of the veight cartned. If to any extent this be disregarded, and there te any compressibility of the foundation bed, the footings will sink most at the inde heaviest loadet, and the suparstructure be thrown wit of plumb. With buidings in which the walls are of uniform height, and more especially whhout large openings wear the botton, a uniform continuous wall is evidenly the best form of foundation. It distributes the load uniformly ver a large area. Where there are piers or large openings near the lower portion of building, it is manifest that a continuous poundation wall would e very unscientific: for where the piers rest, there would be a heavy load. and where the openings are there would be a light one. In such eases, it is thest to iddopt the principte comunonly known as the in-olated pier method of foundations, each part of the buikding being consikered separntoly and the weight of each s"ction or pier estimated in relation to the footings to support it, so that there may be a uniform pressure over tise whole of the foundation beds.
In the nejority of buildings there are also the imporiant questions of the diferent heights of walls, the fret that some carry floors and others do not, and that mathy walls have a much greater weight resting on sonie portions thinn on others. And bere it is with to advert to the use and abuse of inverted arcles as a meins of distributing uniformly the weight of foundations. In scientific finnds, andi afier fall and aecumic ealeulation of the thrusts, they are a r ry servicenble device, but with unskilltul treaturentand withoul consideration of all the Gees, they become a source of unexpected trouble and great loss.
An important part, sometimes overlonked, is the cansiderntion of the lirust upon the end piers or abutments and the making of thems sufficiently strong to resist all hateral movement. 2nd tis also important to deter. mine that the thrust is uniformly distributed from the piers in direct ratio to the weight which each pier is to carry. Otherwise one pier with great weight with outh and a settlentent inevitably occur. 3 rd. See that the form of lise inverted areh is such that the least fateral thrust is entailed. Usunily whrn the piers are about the stime weight, n half elliptic curve with diameters of two to three is best. quth. See that the arch is solidly built, with every joint fully hushed up and each voussoir receiving as proper share of pressure. A good method is to form a centent eentering on the foundation bed, and build the arch upon it.
Whike my purpose is not to treat of foundation stones or walls. I might conclude by referring briefly to the subject of footings. ist. As to form, certainly they should always liave llat beds and tops, and the stones laid on beir natural beds. It is desirable that they extend elear across th: wall but wh re this is not possible, the jointing should approximate, being in the centre. Under no eircumstances should the fatemb joint of a footing course be near the edge o: the wall. The proportion of projection to the leight of a footing will vary ace.rding to the transverse streagth of the matertial used. With conercte and all artificint slones, the projection should not excered half the height. With good quality dimetuston stores. the projection may equal the beight. and. As to malerial, footingsshou d be composed of some material diat can stand great pressure and is not adversely aflected by alecrnations of wet asd dry. Granite, gliciss anm slate stand in the fromt mink; limestones aibd marbles are also very good; but some limestones do not stand a great pressure, and their transverse strength is sometimes not very great. Sindstonus are of such varying strength, that enech sample must be considered on its own merits. Friable sandstones are of hate vilue for such conktructional work, Extra hard burned brick may be used where there is not much exposture to alternations of wet and dry. Brick footings should atwnys be had in cement and the rojeclion of Elch course shouk not be more than one inch, exeept under light walls.
Finally, to sum up the whole matter, in erder that saitable foundations may be provided to our buildings, it is necessary that we carefully consider the weitht and form of the superstructure; the chancter and bearing power of the foundation bed; the form, size and position of the footings, and the chameter of the nenterinis used.
If in any way this maper shall lave directed your nttention to a further aid deeper stwdy or these himporiant matiers, the purpose of its juesentation will linve been accomplistied.
biscussion.
Mr. Bousficld, in moving a vole of thanks, referred to some interesting discoveries which had boen made in excavations in Nottingham.
Mr. Grege seconded the motion, and asked if it was not better when using small stone, not to make the joint run through the eentre of the wall, but to tay them alternately so that the joint would surry, so to speak. He
thought the best plan wns to have the stowe go two-thirds through the wall and repeat in the opposite dircetion. This would nake a better wall than one with a regular joint down the centre

Mr. Gordon said it was an important thing to make allowance for the. weigbts on the piers. When the building was oceupied, frequenty there would be a great difference.

The Chairman said that in his judgoent it was undesimble that tlere should be in centre joint in the walls.

OUMBFC.

(Correspondence of the Canadian Architect and Buituer.)

$\Gamma \mathrm{HE}$ municipality of St . Sauveur, the seene of the great fire in May last, has now become patt and pareel of the city. It has been divided into two wards, cach returning one aldernann and two counciliors to the city council. Flectric light potes have been planted through the new warsis, and in a short time our new fellow-citizens will be nible to congratulate themselves, with the rest of the Quebecers, on livitg it the lest lighted city in America. A police station and a very fine fire station have been cstablished, aid in the carly spring, water mains and drainage will be hid through the principal streets of the nety wards, a boon alike to them and to the eity proper, which has ever been threzteded by the fearfully unsanitary sinte of St. Sauveur under its late government.
Two additional buildings to those mamed in my November correspondence have been put up on the newly-widened Si. John Strect, one betonging to the heirs De Blois, and the other to Mr. P. Cote. The former is built of fine cut stonc, with trimmings of cast iron : Arst storey contains two stores with plate glass fronts, with dwellings above. Messrs. Lortie are the contractors; Mr. Peachey, architect. It will cost nbout $\$ 10,000$. Mr. Cote's is a very plain strueture of red and white brick, and will probably cost about $\$ 4,000$

Some new contracts have been let, while most of our architects are at work on plans for buildings to be constructed in spring. Work will be abundant next summer, and high wages swill in all likelihood have to be paid.
Our cily council, with the wisdom peculiar to all city councils, has resolved upon a very large scheme-no less than the construction of a $\$ 200,000$ eity hall! Architects are invited to send plans in competition, the prizus offered being respectively $\$ 1,500, \$ 1,000$ and $\$ 500$ for the three best designs. Very voluminous insiructions have been issued for the guidance of combeting archilects, the whole showing that Mr. Baillairge, our worthy City Engineer, has given a grent deal of atlention to the study of the details of the proposed new building. 'The requirements are very distinelly set forth. and forcslandow ass inmense nubl cosily edifies-one which in is feared will exceed the limit of cost named in the instructions, viz., $\$ 200,000$. The approprintion is not immoderate were it not hat citizens, even with the thernometer it 10° or 15° butow zero, and benutiful stiow roads, remember Her usually filthy state of our strects, and the fact that the corporation is altrays pleading " no fimds," either for street cleaning, or (so far at lenst ns last summer is concerned) for new sidewalks, our wooden ones blossoming forth in green grass, and our stone ones so out of shape and level as to sut people wondering how far back in the past eentury they may date. It is to be noted that the adverisement distinetly snys that the arelitect securing first prize will not necessarily lee allowed to secure the targer glunt-cont. nission for superintendence. Why, each one many guess for himself.

HONTREAS

(Correspondence of the Canadian Ancimtect and Bulldem.)

THE season is yet early to foreenst the prospuets of buitaing during the coming yenr. although the late mitd weather hass had the efleet of ressinding one that spring is near at hand, and bribding opetations will soon le in full swing. No doubt the coming season will by force of circumstances be a mather busy one if not interfered with by strikes.
Notre Dame strect, from MeGill to Claboillez Sipuare, is to be widened to 60 feet, which will cause all the buildings on the south sike, with the exception of tise Batnoral totel, to be taken down and retmilt, tersides several on the north side. Sonce few conmets have alrcady been let for private residences, and others are now being tenderet for.
rlastereks on stikik.
The dispule between the matier plasteress of the city and the journeymen plasterers, which hits leen pendifg for about two yearg, reached a climiax yesterdays morning when all the journcymen plasteress went on strike. The ctief noim of dispute is that of wages. Two years ago it was patched up by nal agreement between the Master Plasterers' Association and the Mlastetcra' Union, that $\$ \mathbf{2 . 5 0}$ should be the rate of day's wages, which wast continned un to May of this year The plasterers are now demanding incrensed waget to tabir efiect nfter the ist of May, and they alsocomplain that some losses violated the agreement by recelving more than two opprestices. On Thnrshay lase the master ,Nasterers were noififed Hat unless they agreed to pay their men $\$ 3.00$ after the ist of May' next, the jowncymen plasteress would go out on strike on Mowlay morning. A meeting was beld on Saturday, and the men were asked to appoint a deputation to meet tlern. The men worked as ussaal on Monday, belt on 'Tuewhyy morning struck.
I learn that the master plasterers loave taken legat adrice, and although they announce themetver willing to meet the men, are consilusting the guestion of pro ceeding against them if they hoold out. Of course the atrike has come at a vers busy senson, and will inconvenience every body engaged in the buildiame businoss who have contracts on hand to be finslied in a specified tinac. Not only will it affect plaseerers, but every other branch of the buikling trade.
It is now high time that the Government took this matter of the Tmder Unions in
hand and declared t‘ean illegni, but unfortunately it is dificult to find a Governuent who have the coumge of their own convictions suinciently to legislate for the good of the country-they prefer to cater to the popular vote. if the plasterers keep on d-manding higher wages, die effect will reace upon themselves and saptealists will prefer not to build, or the arelitects will have to consider soue substitute for plaster. dnother important question which arises is, who is respousible? The contractor says he is free from respossibility of fulfilling his contract in a specified time, owing to an unforeseen strike. Jr hiece is no recourse agninst the strikers, and the builders are not responsible oving to the strike, then the only person who suffers is the proprietcr. This seems to me wrong, that a privale individual who contracts with a buikder for the erection of a house which be in either to occupy himself or has leased to another, is to be at a loss, or inconvenienced, becouse certain trades want to force the master buildens into paying wages for work which th not yet contracted for. Certainly it seems to me that the person buikding leass of all should be the one to suffer loss, and have no doult in my own mind if a test comes before the courts, the responsibility would fill on proper shoulders.

PERSONALS.

Mr. G. W. King has retired from the firm of King \& Gouinlock, architects, l'oronto, and lass formed a partnership with Mr. A. R. Denison, of the same city.
Much regret loas been accastoned by the doath since our last isave of Mr. W. J. Loon, one of the most widely known and respected master builders in the city of Toronto.
Hy the death of Mr. Joln G. Howard, of Toronto, the archutectural profession of Cnnada has lost another of iss pioneers. Mr. Howard was born near London, Eng., ill 185_{3}, and in ib3z cane to Canada, where for many years lie practised his protession with inuclı suceess. He planned the present St. Lawrenee Hall and marked build. ings, Toronto. In 1834 he gained the preinium of \mathcal{L}_{30} for laying out the market block ; in 1836 the premium of Las for the 'Toronto Gaol and Court Housc ; in ${ }^{2} 837$ the premium of Las for the Gaol and Court House, London, Ontr; in 1841 the premium of \mathcal{L}_{25} for the new market at Kingsion ; in 1842 the premium of $\mathcal{L} 50$ for Que:n's Coltege, Kingston; in 8844 the preminm of \mathcal{C}_{30} for the Lunatic Asylum, Tosonto. A few years ago Mr. Howard presented the City of Toronto with the beautiful properity known as High Park, reserving for his own use umil bis death Colbourne Lonke, where he resided, and about 45 scres of land, which property now revers to die city, togelter with his magnificent collectiot of oil and water cotor pmiatings.

PUBLICATIONS.

We have received a copy of the second volume of Mr. M. T'. Richardson's " Praclical Blacksnuilhing." This volume opens with a brief treatise on the eatly history or inon and steil. Artistic iron work is next considered, and the test , employed to show the strength of iron are given. The book contains numerons illustrations. Mr. J. Kichardson, pullisher, New York.

Our liuglish contenuporary, the Builfers Reporter and Engineering Timas, conkes to us redneed to a more conremient form, improted typographi ally, and bearing other marks of increasing prosperiny, which we trest it maty long enjoy.
The prosp:ctus of the American Architect for tive present year includes a series of mpers on "Ancient Arebitecture for the Use o" Students," by R. W. Gambier-Bousfietd, architect, 'Joronto, Ont. Mr. Bousficld is well fitteal to write on this sulbject, and will no douln sueceed in presenting in condensed form, detals of ancient architecture uhich students uond other. wise have to searel many volunves through to gain fostession of. Such binesidulge as is proposeal to tre given is indispunsable to emalble sfudents to make intelligent use of the numerous detath chameteriatic of the various styks a al priods of arciniluctue.

Woox fiber bath tubs aressid to be coming into use, and it is clained they lave the advantage of 1 eing movable and readily clennet, the pipes are cary of access, and iney do not, like stone or metal, chil the water and the bather. These tubs are groined on the outside to imitate any desired wood, and inside to look like enamel.

A most enjoyable cuening was spent by the Toronto Master l'humbers' Association on the occasion of their annual meeting and supper. The proceedings were presided over by Messrs. W. J. Guy and Jobn Ritehic. The latter in an interesting speech reviewed the city's progress since he first came to reside in it, in 1857 . Mr. Jolin Keyser, Secretary of the New York Master Plumbers' Association, was among the invited guests. He remarked in the course of his address that the plembing done in Canada was superior to that of the United States. The officers elected are : President, W, J. Guy ; First Vice-President, D. W. Kinghorn ; Second Vice-l'resident, Thos. Cook; Secretary, H. Hogarth; Treasurer, John Ritchic ; Sergeant-at-Arms, Calcls Weeks.
A correspondent writes to the American Eugineer as follows: "We are heating four greenhouses, cach 75×21 feet, and one potting shed 50×20 feet, also one propagating house 50 feet long; using the "over-head and return under-bed" system of piping. We use two $21 / 2$-inch steam flow pipes in each house overhead and seven binch return pipes. The boiler is a No. 7 Furman brick-set, and it beats all our houses on from $1 / 10$ to pound of steam. The entire beating arrangement works to at charm. The boiler, especially, extracts about all the heat from the coal whether rut on a small or a brisk fire. It makes steam on a run, and the effect is instantly felt in the houses. We consider it a complete success and far superior to hot water, by which we warm some of our other houses.

"CANADIAN ARCHITECT AND BUILDER" COMPETITION ESSAY ON "PLUMBING."

is) " Juaus Orime."

ONE of the most important suljects to be denit with in comnection with moolern honse planning, is that which comes under the lead of phambing. that maxing probalily mort to to with the bealth and comfort of the inmbtes after tle bouse is completed than nuything else. The improduetion of phumbing-work into a louse is, lrondly spenting. for cwo reasons: to lring in n goorl nud sufficicut supply of purte and wrolesome water, and to afford adecpuate mecans for its disposal after use. together with human excreta and other waste !!atters, this refuse leeing generally comprebended in the term "semage.

There can be no doult that the simplest and most dipect means possible are the best for necomplishing these objects. antl in designing the plumbing system, simplicity and first prineiples shoukd be continually kept in mind. in order to olstain a full inspection of the work at all times, and to prevens in order to obuantion of filth in dark corners and conserquent pollution of the atmosascumulation of filth int chark corners and conserguent pollution of the atmosphere, all pipes, ette, should be fthly exposed to view, and this, in fact, is who. knowing their work will le covered up immediately on completion, eare very little about the results if only they ean get their jobs conspleted. Not so very long ago. a practical illustration of this came to notice, and that too in a bouse where all fixtures were exjoused. In the main part of the building, the work was so well done as to attract particular attention: the joints of both lead and iron pipes ware everything that could be desired, and the bends of full bore diroughout were so well done and symmetrically arranged, as to be an ornament rather than an eyesore to the rooms in which they were placesl; but in peering about die cellar, a lead waste pipe was discorered, juarty hidden by the ground lloor joists, in which the bore at the two bends in it was decrensed fully owe third, thus forming a serious menns of odstruction. This only shows that where there is the slightest chance of the work lecing hidelen, it is apt to be negligently currieci out. The main pipes should be arrangel so as to pass down in inferior rooms or closets. or else in chases sjecially preparul for them. the last mentioned way being tenst commentalike, as in some enses it gives a pretext for careless joinsing. If oijecetion is made to the pijes theing exposed, they could be covered with wood panelling, but this should only lee serewed together to allow of casy access to the pipes. All fittings should be as little encased from view as possible: in faet, only the larest repuirements in the way of ensing should be conceled to. There is no earthly reason why every fiting shoulid lxishut out from sight as the custom has been for so long. If the work is well done, it is far from leing an eyesore, nnd in the leether rooms and more public places, the fittings could either be made entircly of brass. and more pubic places, the fittings coukd either be made entircly of brass.
or else nickel-plated: and if sifes are deemed necessary, they can be of or else nickel-phated; and if sines are deemed inecessary, they can be of
marble, aldough the neessity for safes when all the fixtures are exposed is marble, aldhough the necessity for sates whem an the fixtures are exposel is
not duite appareme, for n leakage couk not remain umotieed long enough to do any damage, and in this ease a superftuns appendage of the phumb. ing system might le dome avay with. This primeiple will le founcl to work best all through, for the simpler and less complitated the whole thing is, not only will it be less binde to get out of order ond reguire freppent attention, bus the cheaper it will be in the tirst place. Of course it is not to be understood that cheapmess is to twe of primary inyportance. By no menus. Let enough money be spent to seeure a thorough job. There must be no stimt in that, but superfluities oughe to be avoided. The amount of cold metal whith goes into a house now, bears an alarming proportion to the cost of the whole lmihling, and certainly ecomomy in this respect ought to cost of the whole mikhing, and e
be regarded as much as possinde.
There can le no guestion that metal pipes only should be used inside a buikling. The uurelingility of cement joints in carthenware piping, and the danger arising from the pipes themstives leing so en sily broken, ought to. preclucke their cenpioyneent in that conteretion alleggether. The defects of other syscems of house drains thit have leech macke use of are so glaringly apparent, it is not neesesary to mention theu. On the whole, iron is more stitable for soil pipes lian lead, at any mate in this comntry. In Einglamel where the wastes from latis anci basims are not emptied into the soil pipe. and where the pipe ilself is always outside the house, no doultt lead pipe may be suitable; from the universal use of it in that country one wonkl gather that it is, lut in this climate it is mecessary to linve the soil pipe not
 possible against an inside wall, and the superiority of iron in a case like
 this enth at once be appreciated. It is no ondry thether and stime as hy nails being driven through it, elc. These are important points inside a house, and then. with all wastes running into it. a leat pipe would soon lee deterioratel by the action of hot water from haths, etc. Traking all this into consideration, with the fact that iron repures the beast means of suppport, there is no besitancy in claiming that it is the brest suitable material. It cons be cast into almost amy shape, and ill fact, the patterns usually kept in stock will meed any ordinary reguircments. For the smaller branclo wastes, ete., lead pipe, which is more casily manipulated. is generally used; and for these purposes is doubtess. the lest.
As a rule, cast iron is usend both for soil pipes and house drains, and no thoubt is very elficient ; but for the hpright pijpes, wrought iron with serew jxints, which is now laing extensively used, is probalaby better, for where there is ape to ke any pulling stmin, oxensiontel by settiencent or otherwist, the lead joints of cast iron pipes sion give way, and allow sewer gas to permeate the honss. Then again, the heary bells lase mather an bgly Appearance when expsed to vien, and take up a great deal of roont. Wrouglat iron pipe is also made ion much longer lengths that enst iron. thus geecssitating ferrer joints:
When cast iron is used. it sluoutd be of extm licary quality, and the lubls should le strong enough to allow a good caulked joint to be made, as these are the only joints or linmily used which can te retied upon at all. It shouthl be straight and perfecily smovoth insile, and to insure against all flaws and tefects, shombla be thoroughly tested by hydratic pressiare before being coaterl by eonltar, which is ilone to prevent corrosions. As the efficiency of the pipe system dejemets largely on the joints, great eare shouled loe taken to see that these are all well executed.
The pipes should be placed within oine amother in as straighe a line as possible, and a gasket of oakum well ranmed into the hub between the two pipes to prevent the lead from entering the joint and forming an olstruction.

portions to allow of leetter caulking，it sems preferable that it shouk be poured in one continuous fow，as the joint will thew be more homogencous． When the metal is cold and has contmeted，it should．be well ceulked． This is a very intportant operation，and shoukd be insisted ofl to secure a horough tight joint．
is leffre staterl，the superiority of wrought irom pipe is shiefly the to the better method of jointing，which this inaterial allows of．The serew theread is usually stightly tajering，nosl to males up for any faws which may be in the thrend，a mixture of white lend，linseed oil and real leat is used in making the joints．Which hartlens in a short time，and makes a perfectly tight comection．Wroupht iron pipe needs to be protected agatinst rust and corrosion，and for this purpost is usually dipped into hot asplait after laving first been heated．
The lest way of connecting the lead pipes，is ly means of wipert joints， and cure shoukd les taken in making these that there is no lutr left in the pipe nfter locing showed，which might form tur olatruction－also to see that the inner pipe is not contracted at ald ly the outer pipe being insufficiently opened．These joints，when wall linisbed，sliould pressut a rotund symnetrimal appxenrance．

The wishat way of joiming lead pipes to cast iron，is by using a larass frrule connected to the kead pipe by a wiped joint，and cautked into the ron pipe with onkmm nud lead．When wroughi iron pipet is used，con－ atection is made by means of a serew joint
It has been a very common mistake in the past to use soil pipess of too large a dianteter．This is almost as land as haviatithent too small．It is mpossible for $3^{\prime \prime}$ and $6^{\prime \prime}$ pipes to lxe properly fiushed ly the usual amount of water semt down them．As it matter of fact，a 4 diameter is gute sufficient to prevent any olsistruction，and this stec allows a good liushing of the pipe $\mathrm{A}_{3^{\prime \prime}}$ pipe coutd even lee uset where there is only owe water closet．
It is preferable that the house drain，instead of lecing buried from sight， should run fully exporsed along a cellar wall，or ctes suspended from the ceiling．Ihis method，besides allowing the drain to be fully inspected at all times，admits of a proper fall being given it，which is sometimes hard to to when huricel．If shere are fixtures in the cellar，bowever，this is inturac－ jealle，nud the drain must run below the floor．When this is the ease， and it is not placed in a trenth to be aceessitble throughout，it shoukd at least have eloaning hatd holes at nill junctions，near bents，etc．No Jumelion should bee made at right angles，Y branches only leving used，and thus facilitating the flow as much as possible．
The system of pipes shoukl le thoroughly ventilated．Even if gas from the sewer is prevented from conning into them，the air is always foul front use of the fixtures and fithy matler which to a certain exten coats their insides．For this reason the soil pipu．which sloould always le carricd up in as straight a line as jossible，stould tee extended at least full size up through the roof，and there luf perfectly open．Ventilating boods are no use on a soil pipe，and only implede the How of air．This extension should be kept well out of the way of dormer windows，skylights，chimneys，etc． ＇lo sceure a constant circulation of fresh ais through the pipess，an inlet shoukd le provided at the lowest phint of the system，wherever there is no shoukd be provided at the lowest point of the system，wher of freaing the water in the traps．In some locities the fresh air danger of freaing the water in the traps．In somte locitities the fresh air
 it is practicable it is better．＇lhe tpward thow of air in soil
is greatly hetped if they ean be arraged neir at heated flue．
Whil any amoms of ventilatioth，howerer，the system，woukd still be
 the fixtures．＇lo effect this，some barrier is necessary whith will not inmpede the llow of waste matter．and at the same time will prevent the return of any foul air．The most eflicient way of obtaintug this is with a seal of water，whieh is gained in the simplest manmer by at lemal or dip in the pipe．
lhe pipe shoukt le a tmp unker every tixture．and blat is metr as practi． enble to the outlet，to provem gases rising from the sewer to the son nud waste pipes．A trap should also be placed on the house drain between the fresth air pipee and the sewer．This trap）slould Ire providetl with at cheaning hand hole－as indend shonld all the trajs－and when ontside the bouse， should be aceessible by means of a man－bole．Some sanitarimens condemn the use of a trap in this position altogether，elaiming that the soil pipe might twe unde use of to halp ventilate the public sewer，but it hardly sectom： right to accouplish this by using the pipes in private lmildings．I＇o le secure against the danger of disenses being carried from house to house dirough the drain，perfeet isolation from the sewer ought to lee insisted on， num this can only be nceomptisherd by trapping the bouse drain．

Traps in thenselves are exils，as tending to imperle the llow of water atud sewage．lut being absolutely mecssary，the only thing which cath leo dome is to use the best form which has luen devised．＇The fombmentad primeiple of all traps is，that they shall atlow of the whote watter in them leeing entirely changed every tinne they are llushel．Round pipe traps have been found by experience to tee the lest for this rensou，and the forms host comminonly used are the S ．J．running trajs．There is，however，n great denger of these trapss under certain condlitions losing their senil by siphonage，and also with lesing forcesl out by air pressure．To overconte these difficulties
 made use of，but it has been found that those which are most efficient in this way are not sulfeleansing．It was chielly on account of its mon－ siphoning qualities that the fishy D trap was tised for so longe but the objections against such a form of trap are so numerous as to prectuple ins use altogether in any place where the work is earrieal out on sanitnry priseiples．

It is harilly necessary to describe the great number of traps now in use． for although many of them nre very efticient for some purposes，there is none which can be so safely used for general rectuirements as the $\$$ trap，if properly protected against siphomage and back pressure．Siphonage takes phace when atmospherie pressure is greater on ont side of the tmp）than the other，and this is caused by a partial vacuum being created by the clisturb－ ince of air which takes place when a discharge is teing sent drough the soil pipe．＇lo prevent this vacumm，and to reurler the trap safe agains back pressure，a vent pipe is carried from the crown of the trap，connecting with the outside air．＇Ihis also heljus to perfect the system in another way by complating the thorough ventibation of it，and thus greventisg an accumulation of foul air in any of the pipes．Objections have been matid against this neethorl that it grcatly connjicates the plumbing apparatus，and at the same fime inerenses the evaporation of water in the traps．but from recent experiments made by Mr．Glemn Brown at the Museuni of Hygiene， U．S．Navy Dejartuent，it has been shown that evaporation is hardly increased at all by using the air pipe．Against the other objection ino stand
 evolverl．that is，one which with a sutheicont seal will be selfecteamsing atti mon－sijphoning，this is the only system which cin be safely employed．
The vent pipes should in all cases be large cnongh to provent frictional
resistance to iir passing through them，and in very high latikings the diameter will have to te increased in proportion to the length of pipes．It is not neeessary to carry a separate veint pipe through the roof from each fixture；a main piove can be taken from the lowest fixture atd Lranched inso the soil pipe above the bighest，all obluer vents 1 eing eonnected with this one．

The fixtures themoselves should be of the simphest possible character，and as far as practicable should be arranged ingroups vertically alfote one another．Alt rooms containing these fixtures should tewell bighted and ventiated，and not，as is often the case，lse ralegated to the most remote and unventilated corcter of the luikding．

There are two classes of unter closets made use of：those with movalile parts，such as the pan closet，the valve closet，and the plunger eloset；and those without movalde parts，such as hopper and wash－out closets，Those
 class lexing liable to quickly get out of oriler and soon foulet．

Hopper and winsh－out closets are liushed through means of ：Ilushing rim，which is supplied by water froma llushing tank fixeriata suitable beight aibove the lowa．The eflicieney of these eloseds deperxis on the water llishs to a＂ery great extent．The lest material for all fixtures of this hime is thant witich presents a striooth and non－almsorlecet surfice，and for this reison， glazed enrthenware is elnichy used．

Where urimals are emploged，which shonk nerer be in private houses， they shouki be automaticaliy flushed，and the lasin should he shaped sor as to hohf a certain maount of water．＇His insures less prollution of the atnosphere，as the wrine is diluted at once．

Kitelen siaks are proferable if made of earthenware，wheh has many adrantages over the materials ordinarily employed for this purpose．Their outlet sibould always lee protected ty a straimer io prevent olstruction of the pipes，and a kented Strap should be used in preterence to most ofher traps． The bell trap should not be emplajed under any consideration．the Shanitas fiess fot seems io be an excelkem arrangement，and if employed would save the expense of lack venting．
lo get rid of the likklen overflew pipe in Inths，linsins，ete．，which is ngt to Deconte fow ami cause an ammonanes，many difierem arrangements thive feen tried．but the most satisfactory of all is that in which a standing orere dow is inserted into the socket of the waste pipe，thus doing awny with the use of the dirtre plug and chain at the sane time．Fo prevent this ontlet leaing in the way when the fisture is losing lused，a recess for it to stimed in should is formed．

The laths most gememally int tse are of timed and planishoal copprer．Dut as these requite to In cased in，they are not as sitisfactory as they ought to the．Enametled iron or porcelain seem to tee preferable materinals，as these wouk allow thent to be fully exposed．

It is hardly necessary to s：enk in actail of all the other fittings which are now used，bat let it bre sublicient to say that in choosing them，cheanliness and simplicity slonald be the first consideration．Wiren sates are used，the atrip pifee should on tho account be contecteil to any waste or soil pipe，Imt shouth be mate to eliseharge over the celtar or kitchen simk
＇I＇loe water is usually lrought into and circulated through a lutiking ing lead pipes．This has been condenmed by sonte aththorities，as kad

 locate these supply pipes in such a way that they will wot be liable to frecze．

All pipus should le graded to at peint in the eellar，and protided with a stop and waste coek to allow of them leeng entirely dratined when mevessim：

 toucherl u_{f} on．＇I＇his is jreimally quite sunficient．for if the priseijples atre unkerstood，there onglt wo be no troulle in upplying then do details．

PCUFACTVRESNDMITRLAS

BURSTING PRESSURE OF LEAD PIPE．

THE following tables are taken from Rivington＇s＂Notes on Ifaikding Constristiven

Lenal lipe
Suad Encaset Sin Sipe．

2
.2
22
．
． 21
． 24
． 21

$\begin{aligned} & \text { 总宫 } \\ & \text { 总 } \end{aligned}$	
2.3	1579
2.6	1349
2.8	1191
4.1	911
53	$6{ }^{8} 3$
7.1	734
9.2	49^{8}

$\begin{aligned} & \dot{8} \\ & \text { 咅 } \\ & \text { 를 } \end{aligned}$		
14	1.3	1859
． 13	1.4	1451
． 15	1.9	1.16
． 14	2.4	1265
13	2.7	835
1.15	3.8	8.49
$\cdot 17$	$5 \cdot 4$	6.42

Deputations have waited on the govermment for and aganst a change in the taritt on wall patper．
＇The window glass manulaturers＇associntion of the United Sitates has ndvanced prices five per cemt．
 their centent for the new Bairt of Trithe latildings in＇loronto．

The report cones from Wimnipeg that the brick dealers have corneted the market，and that when the building season opens there will be a great shortage．

Messrs．MeArthar Bros，of Bellevilhe：Ont．commentors for the Grand Trunk double track，have opened a linestone guarry at Crookston，where they will employ 75 men and ship）ten cars of stome per daty．

CONTRACTS OPEN.

Yakmourti, N. S.- $\$ 50,000$ will be spent in street improvements. Cilatitas, ONt.-A new Presbyterian Chureh is to be huilt here. Elcind, Ontr.-A mowentent is on foot to erect a Mehodist Chureh. Avoninisk, ONT, -It has been decided to erect a new church this year. Burlington Beach, Ont.-John MeNeil will ereet a summer hotel at once.
GuElpil, ONT,-A morement is on foot for the erection of a new drill shed.
Wingilam, Ont.-It is the intention to erect a new Episcopal Church frere.

Rock Istand, Qub-Messrs. Butterfikld \& Co., will butld a machine shop.
SEafortit, Onr.-Mr. James Livingstone, of Baden, Ont., will erect a flax mill.
Moriden, Man.-A site has been secured for a new Methodist church to cost \$4,000.
Lactiute, Qut:-The Government is asked to creet a newv post office tuitding here.
Allisi Craic, Ont.-The Presbyterians are contemplating the erection of a manse to cost about $\$ 2,500$.
FOHEST, ONT,-The Presbyterians are looking for a suitable site on which to erset a new church next summer.
Beavioorr. Que. - inew Roman Catholic church to replace the one reeencly destroyed by fire, will be erected here.
Winuson MILIs, Que. $-\boldsymbol{\lambda}$ large Roman Cntholic Church and school are to be urected bere during the present year.
New Westminstier, B. C.-It is proposed to ereet a large three storey block on the corner of Columbia and Mary streets.
Despilitid, Ont.-The plans prepared by Mr. Jolnn M. Moore of Lonelon, for the new Baptist Church here, have been accepted.
Kinasvirite, Onr.-Messrs. Hiram Wriker \& Sons have purethased a jiece of property near here, and will erect nnother large hotel.
Pakis, Owt.-A deputation will wait on the Ottawa Government to show the need of a new post office and customs bouse. A free site will be oftered by the town.
Leamington, Oxis.-The Oddfllows are talking about purelasing property and buidding dkercon a three storey building, to comprise stores, toxlgeroom and opera house.
Bownanvil,Le, ONr.-Mr. W. Dunney, architect, is preparing phans for the rebuilding antl emlargement of the United Atethodist Churcht in this. town. The estinhated cost of the proposed change is $\$ 12,000$.
Pittirboro', ONT.-The Council has agreed to grant $\$ 2,000$ towards the erection of an araory for the 57 th battalion, on the condition that the county gronts $\$ 1,000$ atnd the Domition Government $\$ 3.000$ towards the project.
Winnirbed, Max-The Mayor urges the necessity for the ndoption of some sche ne for the textemsion of the water-works system. - It has been decifled to erect a suitable monument to the meniory of the late Hon. Jobn Norquy.-The Government will be asked to enlarge the Court House.

West Toronto Junction.-The Mayor suggests the propricty at an early date of extending the present conduit 2,000 feet further into the lake. thus securing purer and better water. He also suggests the advisability of employing experts to report on the best systent of sewerage to accomnodate 50,000 inhmbitants.
Brantrokd, Ont.-Two new Methodist Mission Churches will be built this year, one in Eagle place, and one on Terrace Hill.-Mr. Chipman C. E., has presented his report on the subject of sewage disposal. He recommends the immedinte construction of a main sewer which will empty into the Grand river mear the Mohawk church, at alt estimated cost of $\$ 33.000$.
Kingston, Ont.-The erection of a building for lie Wonen's Medical College has been decided upon.-The Y. M. C. A. has purchased a site for a new building whieh will be erected as soon as funds shall have been sub seribed. -Plans are being prepared for a summer botel and club house to be erected next summer'on Horse Shoe Island, by a joint stock company.
Brockville, Ont.-Applieation has been made to Parliament to incorporate the Thousand Islands Bridge Co., to build a bridge across the St. Lawrenee River near this place.-Tenders are nsked for by Geo. A. Allan, architect, for a brick and frame residence for Mr. A. S. Ault, probable coss, $\$ 6,000$.-The School Board are considering plans for a four room sehool building for the west ward.-The Separate School Board propose erecting a school building on Pine St .
Quebec.-Several prominent gentemen are said to be pushirg forward the project of ereeting a palaec hotel on the stic of the old Partianient House grand battery, overbooking the St . Lawrence.-The estimates of the local government for public works and buildings amount to $\$ 949,876$. Of this sum it is proposed to expend $\$ 50.000$ on colonization ronds, and $\$ 10,000$ in macadamizing country roads, $-\Lambda$ new R. C. Churcli to cost half a million dollars, is to be built in St. Roch's ward; also a convent for young ladies.
LONLON. ONT,-A resolution has been adopted in favor of building a irunk sever.-A number of new cothages are to be erected on the hospial grounds for the acoommodation of persons afllited with contagious diseases.-The Piympton Methodists are arranging for the erection of a new church.-At the meeting of representatives of Middlesex, Kent and Elpin Counties held here on the gih inst., it was decided to call for tenders for an iron and stone bridge at Bothwell, with 220 feet span and 16 feet raadway. The bridge will cost, it is estimated, about $\$ 25,000$.
Hamiliton, Ont.-Mr. P. B. Griffith has purchased a site at the corner of James and Herkimer Streets upon which be will ereet a residenee.-A committee of the Scparate School Board reconmends the erection at once of a new school, Ironting on Sheiffe and Mulberry streets, and that Mr. R. Clohecy be appointed architeet for the same. -The plans for the Bell Telephome Company's new oflices on Hughson street have been approved by the hend oftrev, and the work will be commenced as scon as possible. -3 . E. Chariton, J. Bruce, J. J. Stuart, M. Young and A. Bruce, all of Hamilton, are petitioning the Dominion Parliament for incorporation as the Hamilton Junction Railway Company, for the purpose of constructing a railway and erecting a central passenger station in Hamilton.
Montreal. Que.-Plans have been prepared and a considerable amount of money subscribed towards the erection of n Masonic Temple, to cost front $\$ 100,000$ to $\$ 150,000$ - Ste. Cunegonde has decided to erect a new town hall in the spring.-Sented terders will be received until Feb. is for furnishing $\mathrm{a}, 000$ tors of castinon water pipe, to be delivered in quantities and at dates stated in specifications. Address B. D. MeConnell, Superintendent.-The Government of the Province of Quebee propose to

I. IRENNTE A SON, terra cotta tile, slate roofers, etc. Co GERRARD STREET EAST, COR. GOULD \& DALHOUSIESTS., Toronto

CRAIG
blevator
WORKS.
hyodaulle
to lift from 100 and upwards.

Steam Power, Hand Power, Dumb Waiters. 128 Bay St., TORONTO.

Miscellaneous.

$B^{\text {ENNETT }}$ \& WRIGHT,
Steam and Hot Water Heating, Sanitary Plumbing, Gas Fixtures. 72 Qucen St. East - TORONTO. Tclephone No. 42.
Courman P. O. ${ }_{\text {Litle }}$ York.
91 Jarvis Stxeter,
W. J. TAYLOR,

Hotese aud Sigu Paintius/,
Kalsomining and Papertanging, Grainiog and Glazing. 91 Jarvis Stheet, - Toronto.

WILliam h. Dayton,

Contractor and Plasterer.

100 Macdonald Ave.,
TORONTO.
$G^{\text {RaNT \& GODDARD, }}$
Carpenters and Buisders,
21 Somuren Ave.
TORONTO.
Estimates furnished. Joubing promptly attended to.
John marshall,
Carpenter and Builder,
47 Mutek Street, - TORONTO. Estimates fruished. Jobbing prompely atuended to.

Pecora Mortar Stains

are the best.-We are sole agents.
SEMKDR PIPES, CEMLENTS,

exp.nd $\$ 300,000$ in the erection of a new jail in this city and $\$ 150,000$ in Cours Ifows: ex:emtion. - The Warer Committce invite tenders unth tike 18 th inst., for 6000 lbs. of solid drawn bmss tubing of $\mathbf{3} \cdot \mathbf{1 6}$ inch external diameter, to be capable of standing a pressure of 15 atmospleeres, one-dird of the tubing to be in cight feet lengths, the remainder seven feet tenglhs. Tobedelivercd at die Water Works yard, Lagauchetiere strect, half the ginmtities of each of the respective lenghs, by the igth April next, and be balance by the 15 th May next.- 'lhe sum of $\$ 25,000$ has been appropriated by the Provincial Government for repairs to the Montreal Exhibition bu ldings, and $\$ 10,000$ towards the construction of the Edifice National.-The city will apply to the Legislature for authority to make a loan of $\$ 200,000$ for the construction of a tunnel froun St. Paul to Craig Street through Jacrues Cartier Stuare and Champ de Mars. - The Water Works department has fonwarded an application for an appropriation of $\$ 0,000$ to be expended in laying mains.- λ local syndicate lave purchased part of the Logan esiate on Mt. Royal Ave. and Papincau Road, and purpose ereeting in the spring several first-ctiss buildings and a number of tenements for workmen.
Tononto. Ont.-It is proposed to crect a handsome new building for Wycliffe College. Two gentemen are said to have oftered \$ro,000 ench to the oljleet, on the condition that $\$ 20,000$ additional is obtained. - 'lo Council is asked to place $\$ 4,000$ in the estimates to build docks and shelters at Istand Park. Should the Council do so, tenders for the work will be called for at once.-It is proposed to expend $\$ \mathbf{1 , 6} \mathbf{4 9}$ on the completion of Cowan Ave. fire hall. - The Property Comunitee of the City Council has approved plans for the erection of a new police station at the corner of Bloor St , and Ossington Are, to cost $\$ 13,000$.-The Ontario Government will grant $\$ 4,000$ to every county undertaking to erect a housc of refuge for indigents.-The Chairman of the Works Committee invites tenders untij the $\mathbf{2 s t h}^{\text {th }}$ inst. for the construction of a granite sel pavement on Jarvis street. -The Council will ask the Polise Commissioners to ereet a police station east of the Don. - The following building permits have been issued from the office of the Ctty Commisioner during the past week: J. F. Slonn. alterntions to 192 King street west, cost $\$ 2,300$; Alex. Morrison, pr. 5. d. 2 storey ble. dwells. Chicora Ave.. cost $\$ 4,000$; W'm. White, pr. s. d. 2 storey and attic bk. divells. Huntley street and Kensington Crescent, cost $\$ 6,000$; Rodt. Armistrong, right att. 2 storey and attic bth. dwells., Church and Wellesley st., cost $\$ 25,000$; John Douglas, pr. s. d. 2 storey and attic luk. dwells., Huntley and Isnbella sts., cost $\$ 10,000$; Thos. McConnell, 2 storcy and atlic ble. dwell., Mailland street, near Yonge, cost $\$ 1,500$; Thos. Murray, bk. add. Canneron and Queen sts., cost \$1,250.

Otrawa. Ont. - The Dominion Government estimiates for the presemt year contain the following amounts to be expended on public works: Almonte post.office, custom house, etc., $\$ 15.000$; Brampton public buikding. $\$ 6.500$; Brantford battalion drill shed, $\$ 10,000$; Carleton Pluce postoffice, etc., $\$$ ro,ooo ; Cobourg post-office, custom house, etc. (to complete), $\$ 1,625$; Gananoque past-office, custom house, utc. (10 complete), $\$ 750$; Goderich posi-office, custom hotse, etc., 57.500 ; Government printing burcau, including electric light phant, $\$ 32,000$; Guclph post-ofice (improvements, etc.), $\$ 800$; Hamilton Dominion buildings (improvements), $\$ 1,000$; Lindsay post-office, custom house, ete. (to complete), 5600 ; London custom house, (improveneats) $\$ 1,800$; London military buildings, $\$ 8,800$; Orillin public buildings. (the town contributing the Whecler lot free of cost).
$\$ 6.000$: Penbroke post-office, custom house, ete. (to complete). \$10,0co: ''eterboro' custom house, etc., $\$ 10,000$; Port Arihur post-oflice, custom house, ele. (on proper site being given). $\$ 7,000$; Public building. Ottawn, (nddition to Supreme Court building), \$5.000; Preseoth post-office and custom house buildings (to complete), $\$ 17,000$; Strathroy post-ofice, cus. ton houss, etc. (6 complete), $\$ 12,000$; Toronto Dominion buildings (ituprovenents), $\$ 1,500$; Toromto drill hall (for the construction of, on condition that the city provide a plot of land as agreed upon). $\$ 30,000$: Walkerton post-office, custom housc, etc., $\$ 8,000$; Cobourg harthor, $\$ 4,000$; Kincardine repaírs, $\$ 1,500$; Kingaton, $\$ 6,000$: Owen Sound, $\$ 20,000$; Port Elgin. $\$ 1,000$; Port Hope repars, $\$ 2,500$; Portsmouth repairs to pier (to coniplete), 52,000 ; River Otswa. intprovement of steanboat channel through natrows of Petarnawa abowe l'embroke, $\$ 1,500$; Belleville, to complete harbor works, (the local authorities protecting the island with crib work to the extent of $\$ 6,000$), $\$ 4,000$; Toronto harbor, works at castern entrance (the city having contributed $\$ 100,00 \%$. $\$ 50,000$: Jittle Current, $\$ 5,000$: Southampton (to comptese), $\$ 8,500$; Midland hartior (the lowal authoritics having provided $\$ 10,000$, to complete), $\$ 6,000$; Menford harbor works (the town having contributed $\$ 3,000$), $\$ 3.500$; General repairs and improvements barhors and rivers, $\$ 10,000$; Sault Ste. Marie, $\$ 1,6+1,000$; Lachine, $\$ 71.000$; Cornwall, $\$ 1,000,000$; Farran's Point, $\$ 100,000$: Rapide Plat. $\$ 350,000$; Galops, $\$ 240,000$; St Lawrence river and canas, between Jake S. Louis and Lake St. Franeis, $\$ 1,000,000$; St. Lawrence river and canals, $\$ 20,000$; Murray canal, $\$ 150,000$; Welland canal, $\$ 18.4 .000$; Trent river navigation, $\$ 76,000$.

CONTRACTS AWARDED.

Mr. Alonzo Ellison, of St. Thomas, Ont., has been myarded the contract for the erection of a six-stall round-house for the C. P. R. at London, Ont. The contract price is said to be about $\$ 7,000$.
Bellevilles, Ont,-In conseguence of the illness of Mr. Walers, the firm of MeNeely and Walters, Lindiny, contractors for the lhay of Quiate bridge substructure, have transferred their contract to Messrs. W.alter Alford and Walter W. Lee, of this city.

NOTICE TO CONTRACTORS.

TENDERS will be received by registered post, addressed to the Chairman of the OF FEmmRUARY, 18 ork, for the construction of the following works, wiz OF FEBRUARY, 1890 , for the construction of the following works, viz.:

BLOGI PAVIMENT,

Rushotrne Road, College Street to Bloor Strees. Plans can be seen, yanaudiex and forms of tender obtained, on and aiter TUESDAY, THE 18T11 OF PJBR UARY, i8o9, at the City Figineer's office. A deposit, in the form of a marked cheque, payy: abte to the order of the City ${ }^{1}$ 'reasurer, for the sum of s per celit. On the value of the work tendered for under $\$ 1,000$, and 2%. per cent. over dbat amount. umist accompany each and every tender, ollerwise it will not be entertained. All enders musst bear the bona fide sigmatures of the contractor and his sureties (sec specificntions), or they will be ruted out as informal. The Commitues do not bind themselves to accept the lowest or any tender.
Committee Room, Toronto, Feb. nth, 2890 .
JOHN SHAW,
Clamirman Committes on Works.

THE CANADIAN OFFICE \& SCHOOL FURNITURE CO. Itt.

SPECK EL LINES:

FINE Office Desks, Chairs and other Furnishings, Amberg's Cabinet Letter Files, Church and Opera Seating, Safes, Vault Work, \&ce.

Send for Circulahs and Price: Ielsts.

Legul.

Anusew Dous, Residence: 194 Uovercouri Rd. Firank Jenton, B. C. I., Residence: 59 Borden St.

DENTON \& DODS, Barristers, Solicitors, Notaries, etc.
TOK Adelaide St. Enst, - TORONTO.
Moner to loan on luildings in course of erection.

Importer and Denier in
Paints, Dry Colors, Varnishes, Chamois Skins, Glues, Bronze Powders and General Manufacturers' Supplies.
Agent for Samuel Caloo, Boston, U. S., Interion and Exterior Creosole Sianiss and Morar Colors; and and House Painters' Varnishes, London, Eng.

ANDAEM MUSRHEAD,
82 Bay Statet
Iomonto, Ont.

Competition Plans

— FOR A ——

CITY HALL.

THE Cily of Quebec baving decided on erecting a Coity llall on Jesuit Baracks Syuare, oppoxite the traiking, now inviten compecition designs for such a plan, $\$ 1000$ for the second best, and $\$ 500$ for the third in value.
The City does not bind isself to the exccution of any of the designs sulmitied, nor does it biged itself to confide fire direction of the work to
The plass to be for a building capalite of accomunodating all the municipal departmecuts, not only ns they now exist, but with the development het enfter required by hec increase in the size of the City. The building oflices, the oflices of the Police and Five Depurt and those of the Ifise Alarm Teleeraph, a Cepital Police Station and Central Fire Station, with lodesings for zuardians and others ; the competitors to supply ground slans, sections and elevations or facides, anu thic details of the priucipal apartments, such as the Council Chamber and Recorder's Court. They shall moreover supply specifications, bilks of puanaties athd estumates of cost of the several works and materials. The total coss of the building, inclusive of leaning npparatur, woter and
gas servies, stail not exceed $\$ 200,000$.
The plan!s and specifications endorsed "Plans for City Hall.' shan! be addressed to the undersigned loc. fore the FIRST DAY OF MAY NEXT. Each icsign shall hear a distimetive mollo and contain nothing capable of designating the nuthor, buat slonil be aceobpapaied by a sealed letter lxearing the same molto
siving his mame and nduress. civige his bame and auuress.
The joblges of the plans shall be chosen Ly the Mayor, the Clinitman of the Road Comunitice. and the City Engineer, and their decision shall be without appeal.
Firom the undersigned may be oblanined all necessary imformation as to the configuration of the ground. the number and kize of the principal apartments, and the area required uy each department.

CIIAS. BAIIILARGE,
City Lugineer, Quebse.

CLAYTON, LAMBERT \& CO.'S NO. 1 PIRE POT

For Tinners and Plumbers.

YPSILANTI, MICH., Sept. 27th, 1889.

TO THE PUBLIC:-

This is to certify that Messrs. KEITH \& FITZSIMONS, of Toronto, are general agents for our goods in the Dominion of Canada. All Canadian orders should be sent directly to their address.

CLAYTON, LAMBERT \& CO.

Champion Safe Works.

SEND FOR EATALOGUE AND PRIGES. EVERYTHING FIRST-CLASS. SAFES from $\$ 30$ to $\$ 3,000$.
VAULT 100RS, stee/-Iined, with Combinaition or Key Locks; VAULT DOORS, FireProof only; DIVISION DOORS for buildings.
EXPRESS CHESTS, MONEY BOXES, COMBINATION LOCKS for all purposes: S. S. KIMBALL, Onfce and Salesroom :
577 CRAIG ST.,
J. C. SPENCE \& SONS,

ARTISTS IN STAINED GLASS,
Eeclesiastical, ano Donestic.
Mural Decorations, Art Tiles, Brasses, Chureh Furniture, etc.
BLEUAY STREET, - MONTREAL.
The Bell Art Staheo Glass Works manumactureiks of Ecclesiastic and Domestic
ART CLASS
Of Every Description.
lead clazing and sand cut A SBECIALTY.
110 RICHMOND ST. WEST, TORONTO, ONT.
D. BELL, - Manager.

WILLER'S SLIDING BLINDS

the stamoand
Sliding = Blinds
Of the Cowaty.

Leading Archilectas tue only
Sliding Blinde oxvino UNIVERSAL SATISFACTIOM, morculy partio.
 than. \qquad
NH. WILLEB.
Selo Yearic., Purthamil Cehr Sie. Mrwante, Wis.
Akentu Wansed nverywhare. Stato your gakiness whon writing for catnlogne or agoney.

CEO. CLATWORTHY 60 Abelatie st. WEST, TOROMTO.
Teleshone $1780 . \quad$ Send for Catalogue.
R. D. Savagei. Agens Enstern Ontario nid Queber. 200 St. Jituen st., MONTHLCAD.

The Mechanical Superiority

- Of THE -

MASON \& RISCH PIANOS

Of a necessity deals with technical terms, with which few, except experts, are familiar. What the public mainly base their verdict upon is results. The question is--In what does the complete instrument excel? Briefly then in
TONE, TOUCH AND DURABILITY.
These instruments possess a pure, rich, sonorous quality of tone throughout. The treble and tenor is liquid, brilliant and melodious; the base is deep, clear and rich; while the touch is delicate, prompt and elastic.

Being constructed of the very best materials, upon prinolples and methods incompatible with destructibility; with the crucial test of use for a decade in evidence, there are ample grounds for our claim of extraordinary durability.

Are you interested in Pianos -either as a connoisseur, or as a prospective buyer?

Do us the favor to test our instruments thoroughly before selecting.
LET MERIT TELL THE STORY.

32 King St. West, T0RONTO.

Ornamental Plasterers.

- f. D. BAKER..

Plaster anal cement.

Architectural Ornaments,

Centre Flowers, etc.
RESIDBNCE:
sllol':

JAMES WRIGHT, Mamulactarer of
ORNAMENTAL PLASTER WORM,
In Queen Aane, Romanesque and other Desigas.
Flowers, Bosses, Enrishmente, Capitals, Ec.
Show Rooms and Residonce:
o7 Fititoria Street TORONTIO.
FFTIIIP BAT,MERE, Manufachurer of
Plastor Ceatre Plomers, Bracsots, alc. Residence and Works:
799 EUCLIL AVENUE, TOHONTO.
Offe and Shuw Room: 768 YONRE STREET.
N. 1.-I am constantly adding new deaigns to my slock which is the cheapest and latent in the Dominion.

HENRY R. WHETTTER, Manufactures of
ORNAMENTAL PLASTER WORK In all Architectural Siyles.
FLOWERS, DOSSES, ENRICHMENTS, etc. Sbow Rooms and Keridence:
9! Queen Street liest, - TORONTO.
Plense mention the Canadian Arcititect ANIB BUIL.DER when corresponding with advertisers.

CABOT'S GREOSOTE SHINGLE STAINS ONLY SHINGLE STAINS THA
STOOD THE THST OF THE,
the only ones tifat do not grow chalky. TIE ONLY ONES TIAT GIVE THE SOFT VELVETY EFFECT ANY LENGTII OH TIME TIEY DO NOT TURN ILACK OR WASH OFF.
tie oniy ones tuit do not contain kerosene. containing a lakge, probeentage of cheosote, THEV bRESERVE TIIE WOOD.
 of ercosoled houses, sent on application.
SAMUEL CABOT,
Agome for Ontarto, A. MoInEERAD.
70 Kilby St, BOSTON. $8 z$ buy Stroct, Toronco.
"SUPERIOR JEWEL" HOT AIR FURNACE
 FURNACE EVER MADE.

Has given satistaction in every case;
 recommendation. Write for Circutars with Liat of Reforomecs.
BURROWS, STEWART \& MILNE, nuanyracurerer,
HAMILTON.

TISDALE'S BRANTFORD IRON STABLE FITTINGS
Cheaper than Wood Fittings.
No one lives to see them wear out.
We lose no job we can figure on . Catalogue sent free. THE B. G. TISDATE CO.

Please mention the Canadian Arcirticer and Builder when cortesponding with advertisers

Stone Deulers.
H. \& T, HIBUARD, Dealer in

OTT STONE, os Adelaide St. W'st

TORONTO.
GEORGE OAKLEV, Deajer m
OTT STONTE,
136 Nichmond St. West - TORONTO.
(Opposite Church of the Ascension.)
Carpenters and Builulers.
DIVIDSON K KLILLS,
Carpenters atod Brifderm
so Sherbourne Sircet,
7orvilo.
store and office fitting a sideciaisy.
WILLIAM SIMPSON, Manufacturer of SASHES, DOORS, BLINDS', Etc.

Planuge Mill and Factory : 3 un and 3u4 Quen Strat Hest - TOKONTO. JOSEPH REDMOND,

Carpenter and Inuiluter, of Jarvis Stueet, \qquad - JORONTO

Estimates furnisbed, and all descriptions of Jol, Work punctually attended to and executed au reasonable rates.
T. R. HUMPHREY,

Carpenter and Builder,
Office, Store and Shop Fittings, Store Fronts, etc.
At Jobbing promply attended to.
Shof, 31 Qutcu Sl. Enst, Extitates furnished.
TORONTO.

Charles h. stevens.
Builder and Contraotor,
97 Macdonald Ave.,
TORONTO.
Estimates given for all kinds of brick and Stone work.

SAFFORD'S PATENT RADIATOR

HOT WATER AND STEAM HEATING

Patented April 16th, 188%.

The OMLY Radiator in the Market Bullt WITHOUT Bolts and Washers.
The MOST EFFECTIVE ever invented.
The FIRST ORNAMENTAL Radiator manufactured in Canada.
No Cumbersome Base, No Bolts, No Packed Joints.
Free, Unobstiructed Circulation, Even Castings, Nipple Connections, Absolutely Tight and Permanent Joints.

OVER 10,000 NOW IN USE.
Beware of weak imitations ly unprincipled comperitors; as "SAFFORD" RADIATOR, Also manufaterurens of Tilv "Gold Pin" and "Bolipse" Radiators.

THE TORONT O RADIATOR MPG. CO.

(LINITED)

14 to 2* Dufforin St., - Torouto. Ukanch Warerooms: 30 St. Francois Xavier St.,

Montreal.
 SHEET STEEL PRESSED BRICK, ELEVATOR SIDING. Prices on application.
METALIIC ROOFIIMC CO., LTo.
 Tetephane 1457. - TORONTO.

NOTICE TO CONTRACTORS. Jarvis Streol Granitit Sett Parement.
The time for receiving tepders "for the above work hau been extended to 12 o'clock noon on TUESDAY, FEBRUAKY zxTh, 1800 .
Plans can be seen and forms of reader ohtained on and after TUESDAY, FFBRUARV 18TH, 1 ifog. the order of the City Treasurer, for the sumen of a 2 p per cest. on the value of the work, moti accompany each and svery tender, mhlerwise is will not be entertalined. All tenders nulust bear the bona fide signatures of the contrhetor and his suraties (see spotifications), of they will le ruled out as informal.

THE ANTHONY STEEL PLATE FURNACE

J. M. williams de co.,
HAMILTON, June 29th, 1889.
messis. J. M. WILLIAMS \& C0.
Gentlemen,--We have used one of your No.
49 Anthony Steel Plate Furnaces the past two
winters in the Collegiate Institute here, and
found in it all that could be desired. Have
always had from it an abundance of pure warm
air, free from gas and dust. It is economical in
fuel, and easily managed.
ALEX. TURNER,
Chairman Bldg. Com. School Board.

MANUFACTURERS,
HAMTLTON. Toronto Agent: A. Fairgrieve, 142 College Street.

В卫エOK
 "MAOHINHS

 STEAM OR HORSE POWER.
IF you contemplate purchasing a Brick Machine,

we would urge you to examine ours before coming to a decision. Those we are now making for 1890 are in advance of anything heretofore produced, and contain all the latest improvements. In the construction of our machines we use only seasoned white oak and the best brands of iron. All machine work is made to templet, and pieces are therefore interchangeable. No machinist is needed to fit the parts.

