The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual methud of filming, are checked below.Coioured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restauree et/ou pelliculie

\square
Cover title missing/
Le titre de couverture manque
\square
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleve ou noire)

\square
Colcured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutסes lors d'une restmuration apparaissent dans ie texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

\squareAdditional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de rëduction indiqués ci-dessous.

OANADIAN $_{N}$ MINING REVIEXT

Vol. 4. No. IO-II. 1887 -OTTAWA, JANUARY FEBRUARY 1887. Vol. 4. No. Io II.

ROCK DRILLS, AIR COMPRESSORS, Miller Bros. \& Mitchell,
 General Mining Machincry,

DIAMOND DRILL

Eclipse Mining Powder.
dominion agents fok
Safety Fusc: Electric Blastins. Ifporatus. E-

OFFICE:--103 St. Francu: N.nier Strect, Diontical.
 at all chicif distributing prints in Canada.

GEO. G. BLACKWELL, 26 Chapel St., Liverpool.
Handics by purchasc, or on salc. MANGANESE, PHOSIMATE
Asbestos: Antimony ore, Mica and all Ores, Minerals, Stc.

cunkusfosimanct: unaction:

Mica, Minerak. Pricious Stomes.

 land. Adrances made on Consermens-
$x=$ Rejerts ciratis on New Irodices.
Mankers: Agta lank, London.

P. O. Box inz, Pictou, Nova Scotia.

MIN/NG AREAS PROSPECTED.
The zenistence, Size, and Extent of Miseral. Vens Determanib.
"Core" cet frow the Sultal liock shywing the Nature and Dip of the Sirata.

NEW YORK

- Mctallurgical - -- Works-10 Wishmatos St., $\mathrm{N} . \mathrm{V}$.
 Oros Sanuphed. Wirking Tat by any I'ro cere hays. Analree of Orex, Min. cral Waiers and trowhets. Mines ELaminel and Ditils Stantel.

Wanted. fair average samples of about 1 lb cach, with prices, F.O.1?. Address: J.S. Merry, Assy, Ollice,

NEW MAP

-or tur: -
Ottawa Phosphate Region
Cojpios on plain jnper.

Obizice of the "1Fining Ricizoc",
OTT: 110.1 and the

PERKiMS' FOUNDRY,

OTY:いW.
Forgings © C Castings
Oi Every incecripaion, tate to latern.
HHEELS and ANLES
-ror--

Tram Cans, incrick-Fithings, Hoist ing (icar, Show, Dies, Hammerheads, Iron bijke and (icaring of all kinds. Also Hoilers and Stem-fiting s.
Esthatites fursishen, address:
E.L. PERKITS, 3Iq SPMKKく St, oITAllia.

MANUFACTLUNES OF

 Steam Rock Drills, NG ENGINES, HOISTING ENGINES, Mining and Contractors Plant, \&c., \&c. HOTO 120 KING ST,, MONTREAL QUE.THE CANADA COMPANY
Will issue licenses to Prospect or to work Minerals, on any of their Mining lands and Mineral Keservations,
covtrina sembly a.

Quarter of a Million Acres

> In Eavern (nntario, and principaily within the inclts containing,

Iron, Phosphate, Gold, Galena, Plumbago, Mica, Marbles, Building-stone, and other valuable minerals.
For list of lands and terms apply io the Companys Mining Inspecior,
H. T. STICKLAND,

> l'ғтениоко', ONт:

FOR SALE.

- is тuf.-

Township of Coleraine, P. Q., One Mile and a Half from liack Jahe Siation, poielvec Central kailway: Ahbrexs JAMES REED,

Jmemers, Megantic. I'. Q.

ottawa

Engine \& Boiler Works,

W. J. CAMPBELIL.\& CO, Mamufan:urers of Inginex, lioiles, Hoist ing Machinery, Wixal or Iron I)unp Cars, O:e finckels. Derrick Cavings asul Furgirgs,
Sicel Portable and Stationary Boilers:
. liways on hamd a fill stock of a!l kinds of steam fitinges; jatcking, Xc.

WANTED． A ROCK BREAKER．
 state lowest cash price and give hreadth of Jaws，dianmeter of prillsy， and all jarticulars．
 Aldress－
 CANADLAN MINING REVIEN： otralla，ow：

WANTED．

TWO EXDERIENCED

MICA CUTTERS

Steady emplov uent and good wages．
Apply at office of
CANADIAN MINING REVIEW Union Chamhern，it Metcalfe St．，Ottawa．

PHOSPHATE PROPERT

In the Township of portand West， FOE SA工耳．

Lats $25,26,27$ and 28 ，in the 3 rd range Some excellent surface shows hate been uncovered on these lots and only require capital for developing．Price and par－ ticulars given at the Office of the Misim： Krivithi．

＂THE BLAKE STYLE．＂

This st le of hook lireaker afier is yean practical test at HOME
and AliROAI）has prosed to le the ItESI ever deagned for the jurfoace of hreahine prosed to be the Inds of hard and lititie sulatancen，such as QUAKI＇̌，FADSKY，CORRUNLUM，
GOLD AND SILVER ORES，
ASHESTOS COAL．MLASTER，mRON ORES，MaNGANESE， OCHRE，COPPEK，TIN and IEAD ORES．Alo for nahias OCHRE，COPPER，TiN and IEAD OR

Mk．S．I．MARSIBEN，who for the par itenty year has been sugerintends the cunstruction of this tnachine．

Awardec G01．1）M1：1911 as the Mavachuners Mectanace duter， 282.

AIDPEESB＝

farrell foumdry \＆machine to，
SOLE：MANUFACTURERS，
AINBONIA，COININ．，U．S．A．

LIDGERWOOD＇S HOISTING ENGINES．
 －MSO－ IMPROVED BOILERS，
 SIKCLALI．AlAMTEI）fUK MINING PURPOSES． CONTRACTONS， Electric Eighang；life Driving，Doch Buiding，Ex Excavaing，犬ic．，ALI．SI\％ES．
 New caraldrgues now ready．

 Lidgerwood M＇fg．Co．， 96 Liberty St．，New．York

ELEVATORS ${ }^{\text {lof bex．}}$ ，wink cont
Ons，Exkth，Gkounio lilosinhat：－

Notice to Contractors．

 Sidncl ami emboned Fiender for lijitami 13ailor Worh，${ }^{7}$ will be reccived unsil Tueday， 2 he
2 sth
 Citurtiont of Works at Jhatami，simpue Cociniy，

 off she Grand Trunk Kailway：icterlwrourh，and
 jrinted forms of temier can be chazined．
 male pernomal empairy relative so she work to le cunc，and zo examine the hatisy themelice，asu

 artal wamatare

Fowh restler mund be zocompanavil by an arcofica

 ceforeted it the purg trine so enter into wil ern ehem athed utere io th or if he ril th
 what werpied ther cherghe aill to returned
the howet of any semler
lis：unict．
s．COMFIt．
Sестетаr；：
Npanment of Yuldic Work

WATEROUS ENGIME WORKS CO．，Brantrord \＆winnipeg．

The engraving represents the Hartsfeld Transportable Water Jacketed Smelting Furnace， Metal Dust Condenser and a Separator Crucible，manufac－ tured by the

HARTSFELD

Portable Smelting Furnace and mining C.
Newport，Kentucny，U．S．A．
In size from 5 to en tost capacity，and by the for． vowing licemod manufacturen oin kuyalts：
MMKA＇\＆CO．，London，ling．，and Mel． hourne，Australia．
F．A．HUNTINGTON A CO．，Chihauhas Mexico．
HKKE，LACI ※ CO．，Auhland and Ct：ili，S．A．
W．T．GARlEETT © CO．，San Francirco， Cal．，for the l＇acific Coant．
MCILDAIN 太 SPIEGKL，Cincinnati， Ohio．
－leties latent have been serured in all priskiyle oreion countrice，and are sold in hare ：rase． royalty or othernic．Hun your eye over ihioand return antwer，siletre means no：catalogue fice
this fumace tepuires no more case or atsenion than an ordinary sican toilit，Eund can ！xe sun as tong and with as linle low of ficee or exprense for repaic Full information will befurniched lig the
Hartsfold Purtable Smeltins Fitrnace． Er Mining Co．
1：O．Lhox 115, Newinort，Y．．＇V．，U．S．of A． Eecluctins Works Sio，go ami g2 Thamest si．

Notice to Contractors．

CEMIED TENDERS 3 bricenal to the umber－ S sigmol，and endorsen＂I ender for hon－mazer
 NESi）iv． 19 th Jan．for tin erection amil compte－ zion of a
Hot－water Heating Apparatus，
Post Office，\＆c，Building，Hull，P．Q．
Phand and frecifications can the seen at the bee．
 ATLRDNA，Sth inot．
lerions emitrine atre noutiot that sentere will nut le onsiderefi moles mate or the prinied forms
 ed tank chepue made payatio to the orler of the Hunorathe the Miniser of lublic Worls，Nuxad
 will te forfeited if the party dechine io enter into a
 complete the work conimaceed for．If the tetuler be Tot accepten itrecherfie vill lic returned．
the howets or ang setwler．
ils orlcr．
A．GOI：FII． Sciectars

Canadian Mining Review,

 OTIIAWAPUBIISHEI MONIHLY.
ANEUAL. sulssCRIPTION $\$ 1 . \infty 0$
 orvich:
UNION CHAMBERS, 34 Metcalfe Street.
The Cinablan Misisg Review is devoted to the openimer ut of the mineral aerealth of the Domminion, and its pullishers awill lie thankful for anl cmennasrement they mar reccia' at the hands of thase artio are interested in its specdy deachopmint.
lititurs from the miniug distrids as atell as others interested in Canadian Mineral Lauds are cirdially invited to call at ome afice.

Minins neats and reparts of mear discuteries of mincral deposits are solicited.

All matter for publication in the kwown should be rectiocal at the office not later than the Soth of the month.

Address all currespondence, Eve., to the Pubfishors of the Cisaman Mmasg Review, Ottatica.

TO SUBSCRIDERS.

Through an unfortunate and unforeseen accident the printing of the January issue of the Revifil uas so delayed as to entail the publication of a double number absolutely necessary. The present issue has therefore been increased to sixteen pages.

The Development of the Mines of the Ottawa Region.

> (lly James Stewan, Otanwa.)

Written for the Canadian Minius Reciterl.
The mineral district of which Ottawa is the centre is a large one, including the western part of Quelece lrovince and the eastem part of the Province of Ontario, and it is to this section especially that reference is made, although the following remarks apply to the whole of the prounces mentoned, the one under Grit, and the other under Tory rule, and as regards the best interests of the miner, prospector or explorer, the saying, "good and bad everywhere," may be put "bad and worse," applies equally to them both.

The developmeut of the mines has an important connection, with the most complete knowledge of the minerals of scientific interest only; and for this reason, and that of the injustice done to one section of the population, by those in jower, is the apology offered for these remarks, which may appear to some to have too much of a technical bearing.

About two years ago, when some of these notes were made, there appeared in the news-
|papers of almost all parts of Canada articles and correspondence under sundry headings, showing clearly that there is something materially wrong with the mining interest of these provinces as at present situated, that is, an individual ownership instead of Government holding the minerals for rental, or on lease.
Some writers attribute the lack of mineral development and stagnation of the whole industry (coal mining exce ted) to the absence of a Bureaur of Mining Statistics, or a neglect on the part of the (ieological Survey of Canada in not publishing reports of the extent of mining done each year. In making this discovery they at once saddle th: Geological Survey with the total neglect of the mining interests, and find relief in consudering it the "Scape Goat" in this case, and none tried to arrive at a clear understanding of the position in which the mining interests of the provinces stand at the present time. Had statistics been collected by the Survey thes would tend to make more gharing the error in our haws as regards mining lands; the number and acreage of our mining land monopolies, and show more clearly the error our l'rovincial legislators have fallen into in selling the minerals with the surface soil to the farmers; it is desired to point this out as the true cause of the lack of mineral development in this district and suggest a remedy.

Others gave the cause as depending on a foreign market for our ores, and extravgance and bad management, with an ill advised expenditure on the surface, of too much money before the mine was developed in depth, and some to untrue and glowing promises, of "millions of tons of ore in sight" on the part of promoters of a new enterprise. There is no doubt, in some cases, these causes have helped to close the enterprise and deter others from em larking in a similar mine or property:
In Nowa Scotia, Newfoundland and llritish Columbia, the Crown or Provincial Government owns the mincrals, and issue licences to parties desiring to open and work mines, and in these Provinces, is the business of mining largely and most successfully carried on. While in Quebec and Ontario the minerals are at present sold along with the soil, and in doing so, the birth right and portion of the explorer, prospectors, or miner, is siven to the farmer, or still worse to the speculator in mining lands, and these sons of toil, have to beg for terms from the miserly famer, or indeyendent and extomonate land owner or speculator. Mining lands have been sold in this way, during the last 40 or 50 years in Quebee and Ontario; some few it is truc are being worked, but the great majority of the most valuable mining lands and mines are in. the hands of speculators, or parties who will not work them, and ask for the mines and proper. ties an exhorbitant price should an intending purchaser approach them.
This state of affairs, or the act of the local Legislators selling the minerals, instead of giving a lease or licence, compelling the owner to work
the mine or quarry or it would revert to the Government, or by exacting a low rent or royalty under such a licease or lience, from the profits derived from working the mine, is the cause of so many valuable properties being locked up, as it were, and development retarded, and the mining industry does not receive the attention it would, if these mining lands remained in the hands of the Government. In proof of this may be mentioned the vast amount of mineral land held by compants and speculators in the Lake district, also in Eastern Ontario, and amounting in many cases to thousands of acres in a block, thereby binding the settement of the country. In Eastern Ontario, alone the amount thus held amounts to many milliens of acres of the best mineral lands. The same is true also as regards the Phosphate region in Quebec. It is this systemof unconditional sale of mining lands for speculation, withe: regard to yearly working, that has ruined the mining interests of this district. The error of anyone party owning a large extent of mining land in a block, arises from the fact, which is sell known to experienced miners and explorers, that mmemls do not occur by chance (but this subject is too large to be considered at present), that is, certain rocks hold certain minerals, and by selling, say to an Iron Mining Company; a few thousand acres in a block, they got other minemals, which they cannot treat or the use of which they mang not know, and the ores other iban jron remain unworked.

Compare the system adopted in the Western Lnited States, where a mining claim is given to the discoverer on condition that it is worked, or labor spent on it to the extent of $\$ 100$ each yeir, or it will revert to the Government. Under that system the right of discovery of the explorer, prospector, or miner, is respected; and a reward granted him: (he can locate two claims), but in Ontario and: Quebec, he has no rights, and he is, therefore, drawn to the more inviting fields of the Uinited States. The location of the claim in the States is made by:the discoverer on the ground, and placed on record in the Iand office, but in this district it is made by a clerk in.the land Office, and not by the discoverer, a practice which has proved fruitful of the worst abuses and frauds on Canadian discovery. In the United States, in granting mining claims in that way, ore accumulated through the compulsoryclause to work it, at least so müch each and every: year, and from itsaccumulation arose the necessity for milling or smelting works to work it up, anci had the same inducements and compulsion been in force in Canada, our mines would have. been counted by the thousand, instead ot the few now in operation.
The chief ores of this region are: iron, (hematites and magnetic), phosphate, or apatite, and a large variety of pyrites, or sulphuret ores of the miners, holding in places copper, gold and silver in workäble quantities, lead or galena, plumbago (black-lead), mica, and others of less importance. The ores of iron are found in such variety and
abundance that the only reason they are not now worked is the question of cheap fuel for reduction. Next spring certain tests: of machinery fre to be made, and shoukd they prove as "... cessiful as former trials, this question wil! iee settled on a commercial scale, and the smelting of iron established in the district.

The apatite, in the maw state, is largely shipped to Europe, but home demand, or the super-phosphate of lime for fertilizing puiposes, can be supplied from the works of the Brock ville Chemicall and Superphosphate Co. (Limited). The protes used by this company for the last few years, for the manufacture of sulphuric acid, has been mported from New York State, but ores from the County of Hastings have been introduced to them, and the supply in future will be procured from local ores. The extended mining of the pyrites ore of the district is a question of much importance to the city of Ottawa with the cheap water power for dressing ores, and grinding apatite, as the sulphur is used for treating the apatite in the form of sulphuric acid, and would form an important industry; if all we exported was shipped as superphosphate of lime, and the residue of the prrites ore can be most successfully treated after roasting, along with the lead ores, which we also have, and the copper, gold and silver extracted. Our lead ores are too poor in silver (about 50 of. or $\$ 5$ per ton sitver) to pay to work for silver and lead alone, but when smelted along with the residue of the sulphur ores, holding copper, sold and silver, the question of working both is settled.

The more extended production of gold also repuires attention. No man has ever possessed too much of it, and no country produced too much. Its value increases with the cost of getling it, and the want of it. It is our highest standard of money and exchange, and is therefore the best investment for surplus labor and capital, when found in workable quantilies. The discovery of gold in California and Australia produced periods of great world wide prosperity. All classes and conditions of men were drawn to a new occupation and country by the high wages carned in the mines. A laborer who lad been working for a farmer or tradesman, for $\$ 1.00$ or $\$ 1.50$ a day, could wash out gold to the value of $\$ 10$ or $\$ 20$ a day: Can a wise adjustment of our mining haws le miat?, to have this effect, if only on a much smaller scalc, by granting free great-mining claims in districts where gold is known to exist?
In iron alone, had such measures been adopted, there would to-day have been enough mined and worked to supply our own wants and for exportation, as is done in Sweden and Norway with similar ores, climate and fuel (wood charcoal), as the laws of that couniry are such that no mining proporty may remain ide so long as any one desires to work it. In Sxeden and Norway a party owning a mine and not working it, another party can do so by paying the owner half the profit of the working of the mine, and if he gives it up the owner or any other person can under-
take to work it on the same conditions, hence no. mining properties remain unworked.
In most European countries, and in some parts of the British Islands, the minerals are owned by the Crown, and at one time, even in Ontario, centain reserves of minerals were made in old decds, but of recent years this is not the case.
Some may say, in adrocating the State owning. the land, you are advocating communistic doctrincs, but that is another question altogether; what is desired is the State to own the minerals, and is British law and custom, and that is adrocated "by George."
There are at the present time thousands of British and Canadian subjects' in the United States mining regions who would take up claims in Camada were the laws such as would induce them to do so, but at the present time there is no free gramt mining claims given, or comuplsion to work on owners, and no inducement offered to explorers, prospectors or miners, to locate and develop a chim, unless stealing one's discovery is considered such by,those in power, and that act is best described in the words of Shakespeare:
"Mu take my life,
"When you to take the means whereb) I live."
Under the present system zoo acres realizes to the government, say at $\$ 1.00$ per acre, $\$ 100$; and in 10 years the country gets the benefit of the amount expended on that mine, in labor, sc., if it is developed and worked, but if not, nothing. While under the system where the government holds the minerals, and gives free gronts to Mincrs, or on lease, or royalty, the country receives at least $\$ 100$ per year, for the 10 years say $\$ 1,000$, less the value of the 100 acres- $\$ 100$, leaving a balance of $\$ 900$ in favor of the free grant or lease systems.
The country receives from sale at a two yearsi purchase: ${ }^{1}{ }^{1} \mathrm{r}$ r
To 100 acres (3) By Cash....... $\$ 10000$
10100 acres (31)
$\$ 1 . \ldots . . .$.
$\$ 10000$

No wark.......	
yonrs........	8000000

\$10000
$\$ 10000$
The country receives from fre grant, at a ten years' icrm: 1)

100 acres @ \$1. $\$ 10000$ ly 10 years
Actuallonefitre-
ccived ly the
country in fa-
vor of frec
grant........ 90000
$\$ 1,000 \infty$
$\$ 1,00000$
. Ind under the lease or royalty system, in io years the country receives the same as under free grant, together with the additional royalty receited when the mine is paying, which may be several thousands of dollars jearly, and increased value of public lands.

But it may be asked, from what source will the government reccive revenue, for inspection and office expenses, if they do not sell the lands as at present?

The free grants which proved paying mines, on arriving at that stage, a low royalty is charged on profit, after working expenses are paid, would yield annually a large revenue to the govern: ment, than the present system of selling lots.

In proof of this, the British Crown paid the Earl of Derby $\mathcal{L} 50,000$ stg. for the Isle of Man, and. has been refunded from royalty on mines and duarries, more than the sum paid for the island.
This compulsory working to hold a claim may be considered a small thing in an individual case, as regards the amount of habor employed, but take the returns for a province, or the whole Dominion, and it would amount to a large sum, on all the now known valuable mineral lots throughout Canada.
In thus yearly doing a little on a mining property to hold it, new discoveries would be made, and new life given to what was possibly considered a doubtful prospect. It was in that mamer that John W. McKay and other United States millionaires gained their first start: through being compelled to work their claims they made a discovery, which enabled them to sell or work it with profit. The mining interests in Canada will never prosper till similar measures are adopted.

The custom of granting land to farmers under the free grant system, and not giving an explorer, prospector, or miner a free grant, under conditions simular to that of the farmer, or compulsory development of the minerals contained in the property, is an injustice to the mining section of the population, and for that reason settlement has made progress and mining has not.

Some parties argue "but why give away a valuable mine as a free grant? Ans.-A mining property in this section has no more value than the same amount of land, say $\$ 1.00$ an acre, which you now give to the farmer. The miner would reurn $\$ 100$ in habor each jear, and develope the mine and prove its value, and if it proved such the Government would receive a. revenue from royalty as lons as it paid expenses. And some say: "What use would a free grant be to a miner who had not money enough to purchase it at $\$ 1.00$ per acre? Under the free grant plan both the farmer and the mi.ter have energy and skill to develop the value of their claims, with proper provisions imposing on them a certain amount of work yearly, and that is worth more to the country than so many dollars paid into the land office, and the property lic in a state of nature and undeveloped:
There is a wrong system practised in Ontario and Quebec, in selling mining lands by auction. When a valuable ore has been discovered in a section of country the excitement sets-strong, and the land office is flooded with applications for lots, and to satisty, not the discoverer, but contending parties, the properties are advertised and soid byauction, and the competition raises the price beyond that which a miner can afford to pay (the discoverer is not rewarded), and the property falls into the liands of a more wealthy man; but a speculator, who will not work it himself, but purchases it on a speculation of a rise in value, which fails to come, and the properties so sold remain undeveloped. The district ought to be opened as a free grant mining camp, and the properies would be developed under proper
mining laws and inspection; and the country receive many times more benefit than by selling it unconditionally.

A certain Ontario newspaper for the last few yrats has sent round a reporter to the various muning setlements, whose principal business is to write a description of the mines visited, but more after the style of an election dodge, or blind, to show the splendid development under the present system of management of the Ontario land Offiçe, but failed to see; eien through "spectacles," the much needed "reform" of the mining laws and "reformation of the land office and the number of Grit mining land monopolies in Ontario. If the location of a claim was made by the discoverer on the yround (as is done in the Western States), he would not be at the mercy of interested parties, who manipulate the land office for their own purpose.

The vast importance to a country of the proper developnetit of its mineral wealth, renders this subject one requiring the attention and carcful consideration of our legishators and citizens.

Precise Geological Position of Siphonotreta Scotica.

Noms on ann ghte betelse crotogicat hortzon of siphonotreta scotica. (Dav.)

At the Montreal meetung of the A. A A.Sc. in $18 \mathrm{~S}_{3}$, Mr. J. F. Whiteares, of the Geological Survey office, read a communication or paper in which there was then recorded for the first time the occurrence of a beautifully fringed or spinose shell which Dr. Thomas Davidson had recognised as the Scottish sjecies, to which he had given the designation Siphonotreta Sotica. The specimens referred to in that paper had been collected by Mr. Watts, of our clui), who handed them over to Mr. Whiteaves for determination, and through the generosity of Mr. Watts, the specimens in question have been presented to the National Muscum, and may now be seen in the cases of the Geological Museum at any time.
These specimens had been obtained from blocks of impure liniestone about Mr. Watts' residence near Cummings' bridge, and were said to have cone from a well which was sunk on the same property. There was bur litite doubt from the lithological aspect of the rock, as well as from the few associated species then obtained likewise, that the species was referable to the Utica formation. That suich was the case will be learly seen from recent investigations made with that object in vieiv. As has alreidy been noted on previous occasions, the upper members of the Trenton formation consist in impure argillaceous or clayey limestones, inter-stratified with more or less thin bands of shales, whilst the lowest beds of the overlying Utica formation are themselves not only chamicterized by shales, as most of the formation is in general, but contain also bands of impure limestone. These bands of impure limestone of the Utica-the lower measures of thet formation-are well exposed on either side of the Rideau River, in the vicinity of the Rife Range, and it is in one of these bands that the becutiful little brichiopod in question is to be found. The precise one in which it occurs in tolerable abundance is in that band which, crossing the river from side to side of the rapids, in line with the tangets of the
ranges, gives the peculiar orographic asject to that portion of the river, and form the head ot the rapids or little fall, above which, and as far as Hurdman's Bridge, the river flows yuite smoothly. From this casily recognised and accessible band, a number of other member:; of the club have, hesides the writer, had the pleasure of finding several specimens or indieiduals of this species. As far as we are aware this is the first time that this species has beein recorded to have been found in sith in this country, and it may be round at any time by any member of the club. There are numerous peints as yet to be investigated with regard to the affinities of this species; even its generic relations are not all exactly defined; and there is wanting evidence wherewith to describe its internal structure.
Dr. Davidson and Dr. Schmidt agree that the genus is allied to a Lingzla and belongs to Prof. King's sub division Tritenterata. The mode of preservation of the Canadian specimens, its phosphatic (?) character show its affinities to be as above. In ceanuining the \%one of this species, the following notes weie obtained on the stratigraphy of the rocks at that place.

The following is a section obtained on the spot and given in ascending order:-
I. Lower bed of section, which is, no doubt, close to the line of contact between the Trenton and Utica formations, is an irregular, uneven bed of impure nodular limestone somewhat bituminous and holds fragments of. Orthociratites. This is followed by another similar band of impure limestone which, in its turn, is overlaid by dark brownish black bituminous and very brittle, shaly beds.

Two bands of limestone interstratified with friable shales then occur, upon which rest bituminous and impiare shales, holdung Asaphus Cainadensis and other fossils over which the Sifhonotreta band occurs.

This band marks a special zone in this formation, and from it no less than sixteen species of fossils have already been obtained, and more will no doubt be obtained after further detailed examination is carried on. The following is the list of species :-

İingula r rta-Hall

Lingula elongata-Hall.
lingula quadinta-Eichwala.
Siphonotreta Scotici-1)avidson:
Orthio testudinaria--Dalman.
Strophomena alternata-Conrad.
Leptrena sericea-Sowerby.
Zygospira Headi-Billings (typical)
Zygospira modesta-Say:
Zygospira (probably neze varicty.)
Conularia Trentonensis-Hall.
Asäphus Cinadensis-Chapman.
Asaphus megistos (Locke); or platycephalas (Stokes.)
Calymene senària-Conrad.
Beyrichia oculifera-Hall.
I cjeerditia cylindrica-Hall.
From these it would then follow that the age of the rocks in question is as near as it can be laid down at the base of the Utica formation not far from the top of the Trenton formation.
On a single sppecimen of shale there occur the the following species :-
Siphonotreta Scotica-Davidson.
1epterina sericea-Sowerby:
Zjospira Hcadi-Billings.
Asaphus Canadensis-Chapman.
This association is a very interesting one and worthy to be put on record: Numerous crinoidal fragments also occur with the above syecies; andin the debris of the shales the typical Triaiturus Becki was. found to ocur there, and it is not
inscrted in the list as it was not found:in siou.

Every species mentioned in the above list was carefully collected in the same band in which the Siphonotreta occurs, so that its exact stratigraphical and palieontological relations are now pretty well known. There remains, howeser, mach to be done in ascertainiag the internal character of this species, which, in Scotland, characterises the Llandeilo formation of rocks of Ayr shire, where it was discovered by Mrs. R. (iray at Craighead.
Should any member of the club find any specimens showing cither muscular of vascular impressions in the interior of the shell, or other internal characters, it would be conferring a benefit to science to contribute the same in the club's transactions or some similar medium of publication.

Some Economies in Iron Manufacture.

> H; Alex. E. Tucker, F.C.S.

I hove been led to choose this subject for the paper which I have the pleasure of reading. to-night for more than one reason, for it seemed to me there are continuing defects in ordinary puddling which may be lessened if they counot be altogether prevented. I am aware that several excellent papers have been read before this institute on matters more or less connected with puddling, and I therefore hesitated in bringing the subject again before you. Since, however, those papers were read the development of the process known as the basic-liessemer and Basic-Siemens processes for the manufacture of steel, with which for some time I have been associated, has thrown considerable ligit on the practical chemistry of puddling, and although it would be entirely out of place for me to enter into any one of the questions mised as to the exact chemistry of any of these manufactures, yet an attempt at a seneml application to the subject of puddling of what we now know respecting soft steel making, seemed to me eminently suited to the circumstances in which puddling is at present placed.
1 propose to borrow some facts which chemistry has brought out in the development of steel making, and to try to apply them to iron making.

If my judgments in the matter are not in agrement with the more extended practical experience of those gentlemen immediately concerned, 1 trust our evening will not have been unprofitably spent in discussing the points which 1 shall raisc.
I. shall in the foregoing renarks, speak at some length of the relations which clemistry has developed in respect to iron and steel making, and I may premise that it seems to me somewhat remarkable that scientific treatment has só seldom been observed in the art of pudding, because the reactions of pudeding are entirely chemical, and although we must confess to ignorance on many of its problems, yet we have a general grasp of the whole subject, and the chemistry which has. ensured economies and successes in the spring time; as it were, of stecl making has been available in the autumn of fron manufacture.
In treating the subject from this point of vieu, I am most ansious to avoid any unnecessary chemistry. I feel it would be entifely out of place, and I hope that the wish of your secretary, who enjoined nie to treat the matter as practicilly as I could, may be fulfilled:

I do not wish to suggest that analyses of the materials used and of the products obtained would ever liave done for puddled iron what it las done for steel: that is impossible. We must bow to the magnificence of those developments
which have culminated in the possibility of producing 500 tons of steel from: two Bessemer, converters in 12 hours, but 1 do not hesitate to say that economies may be effected by knowing, more exactly the composition of materals operatted on, and the physical and chemical conditions under which the impurities of the pig may best be removed, and it is with such economies that 1 propose to deal.

The practical process of puddling from a chemical point of view is extremely simple, and constst, as is well-known, in the absorpten of sticon, sulphur, phosphorous and manganese contaned in the pig iron by the oxtde of bron used in the fetting, and in the removal of the carlon by its reduction of the fetting to matallic iron. We have, therefore: a debit and credit account there is a loss in weight due to the removal of the bollies 1 have named, and there is a gain in weight due to the production of metallic iron from the fetting. The same removals take place in the basie process, but there is no gain in weight from reduction of oxide of iron, as instead of ovide of iron bemg used for the lining or fetting of steel making apparatus it is found better principally on account of the great heat developed, to substitute a variety of lime. This: point of departure leads to an mportam matter in cconomy, of which 1 shall presently speak at more length. In addition to these differences in the t vo apparatus, there is the mporant one that while in the puddling process the whole of silicon, phosphoras, salphur, carbon and manganese are burnt by the ovide of iron, in the case of steel they are mostly burnt be the air blown through the liquid metal.

Now, leaving these well-known facts it will, on a moment's consideration, be obvious that there must be a certain percertage of these bodies silicon, phosphorus, sulphur and manganese which is best adapted for the particular process concerned. In the case of steel this percentage is that which is just enough to produce the re(quisite amount of heat to keep) the bath of metal sumiciently fluid-you will recollect that there is no fuel used beyond that in the metal itselfany excess of this percentage of course means waste, .and any deficiency means waste on account of cold and, therefore, skulls, cte-

It will, therefore, be profitable to consider in what way any excess or deficiency of the elements named affect the quantus and ounlity of t..e resulting iron, 1 will just glance at all of them, but it will be well to bear in mind that it is the percentage of silicon and phosphorus which practically decide the merits of torge pig. Take a single cise, and let us suppose that the best possible result in puddling in a given furnare is obtained with an iron or mixture of irons suing a percentage composition of:

Per cent.

	cent.
Silicon	$1 \cdot 50$
Phosphorus	. 00
Sulphur	$0 \cdot 09$
Carbon	3.50
Mangances.	0.50

and we substitute a mixture containing 2.50 per cent. of slicon, the other elements remaining the same, what do we know will be the result? In the first place we know obviously that one per cent. of l.e material which cost pig price will be wasted; we know, also, that one part of silicon requires about four parts of iron to slag it cff; we therefore have a total loss of five per cent. of iron. This means a waste of about a ton of iron per week per furnace, which must be valued at puddled bar price. The matter does not towever, end here, we now know enough of the chemistry of deyhosphorizing to say that the complete removal of the silicon is effected, henc
if the puddler does not work at his heat and get thes silicon into the conditoon of slag, before balling-up, it follows that the bar will be crystalline and break short-it will contain too much phosphorous.
This prior removal of silicon before that of phosphorous is well shown in the diagrams before you, they have been worked out from very numerous analyses of samples taken at various stages of tine two processes named. I am indebted to my friend Mr. F. Harbora for the loan of that one showing the Basic-Siemens actions. I hope they show in as clear a manner as is possible the point 1 wish to indicate. I am avare how difficult it is for one unaccustomed to chemical langunge and flgures to fully appreciate the significance of facts stated in chemical language alone, and so 1 have brought before you some petuzes which show the actual progress of the removal of the various constituents.

You will see from them that the waste of iron stated above becomes a necessity :nless an inferior bar can be tolernted. Thas in the diagram of the pudding process, you will see that at the expiration of half the time required for the process os per cent. of silicon is removed, while only 60 per cent. of phosphorous has gone. So It follows that if we started with the standard charge named, we should at this particular point, $150 \times 9 \mathrm{~S}$
have a metal contaming $-=1.47$ and 150
100×60
$1.50-1.47=0.03$ silicon, but $\frac{1.00 \times 60}{100}$
0.60 , and $13.0-0.60=0.40$ per cent. of phosphorus. I may here state that such a result would guve a splendid bar when the operation was finished, inasmuch as much tinished iron contains this percentage of phosphorus, and indicating, therefore, that a much more impure charge has been used than that which is under our notice.
If we now take the case of our inferior charge containing $2 \cdot 50$ of silicon it will be clear that, under the same conditions as regards heat, fettling, etce, the metal at the same stage of the process will contain a very considerable percentage of cilicon, probabiy, I should say, half a per cent., so that we mat be sure it will also contain a very considerable percentage of phosphorus. We therefore are conscious of both waste and bad quality of product.

From these considerations you will see how the matter works out in actual practice, and how great the tendency is to stecr a middle course, avoiding on the one hand a-waste of metal, and on the other a highly phosphoric or hard iron. With a pig ill fitted for thic best economy it is not to be expected that any assistance can come from the puddler hinself, it being against his own interest. He is bound to make a compromise, and by increasing his gield he must keep the ball impure.
Leaving now the subject of silicon, we come more immediately to the element phosphorus. What do we learn about this in addition to what has preceded. Supposing in our nornal charge we have $2^{\circ 0 c}$ per cent. of phosphorus instead of our $1 \cdot 00$ per cent., what is the result? We gather from the examination of practical results in puddling and the basic process, that at least five parts of iron are required to alosorb one part of phosphorus, so that we had a loss of some six per cent. of metal, which must be also valued at
at least pudaled bar, inasmuch as the same, in fact more, work and material is required for its removal, as if it had been absent, so that this element of eliminated is still more wasteful than

Sulphur i as not call for extended remarks, because, although puddlers handle the name pretty glibly, they almost invariably: have the wrong bull by the horns, inasmuch as sulphur is not often present in injurious quantity when the pig is a fairly grey forge, and although a high percentage of course occasionș waste, I am afraid I have already dwelt too long on other matters to allow of our discussing a much less important element.

The relations of copper and sulphur, however, are of interest in cenjunction with the use of purple ore in the manulacture of iron. I am aware that there is a considerable prejudice against the use of this material. I have, however, been associated with its extensive use, both as an ore and as a fettling, and my cexperience is that the copper and sulphur which it contans in considerable quantity, are injurious only when they appear together in the pig or finished iron. I have seen large quantities of excellent finished iron made from a pig containing a quarter per cent. of copper, as soon, however, as any attempt was made to use commoner or sulphury pig in admixture with the copplery pig, the results were disastrous. I have found also that if there is a tendency to red-shortness in the bar, it may be removed by mixing the purple ore with some five per cent. of very fine lime, no injurious effect | need be anticipated from the lime if fine enough, and it will absorb the sulphur. This latter may certainly be set free by the silicon of the pig, but it does not enter the iron, and probably passes up the stack.
Carbon, inasmuch as it does not waste metal, but, as I have said, increases the yield, calls for no special remark. I may, however, repear that the more the pig contains the less sulphur and generally the less manganese is present.
Mavianvese.-I must claim much partially for this clement. I bel: ve it is the key to much coonomy in puddling. I think there is primu facia evidence that it is as important in the puddling furnace as it is in a bessemer converter, notwithstanding the fact that the finest finishicd iron will sometime contain only traces of it. It will, however, be found that all the best irons, without exception, are made from pirs containing considerable guantities of manganuesc, and, indeed, in the old days, when all-mine pys - which meant manganiferous pig - was the rule, bad iron was the exception. "Iron was iron" in those cherished days; but with respect to the pig used, it would have been difficult for an ordinary puddler to make a bad bar from it. There are several reasons for this: In consequence of a manganiferous pig containing iess sulphur, less work would be thrown on the feitling. The phosphorus therefore, from this cause alone, would be more completely removed. Manganese, again, makes a thin fluid slag, the ball is therefore more thoroughly washed. Again, the oxidation of the impurities of the charge may be pushed muich farther than when a pig is free from manganese. This point is well scen in the basic process. In the absence manganese in the pig the bath of metal is unduly burnt or oxidized, and the resulting steel is redshot. Such redshortness is always avoided by taking care to have plenty of this element in the pig, indeed I have myself made several blows of excellent steel by using such a pis without any of the usual additions of ferro-manganese, and I have made many hundred tons of steel of equally high quality in which the additions of ferro was so small that the putting of it in at all might be regarded more as a matter of form than one of actual ütility.

This matter also works out practically in puddling, and in addition to what I have said about
all-mine pig, the beneficial effect of manganese has long been recognized in Germany, and there is no doubt that its presence admits of a much more perfect removal of phosphorus. An explamation in addition to that respecting the increased fluidity of the slag may be found in the fact of the strong affinity of manganese and silicon for one another, and we have seen that it is just this silicon which is so desirable to remove.

One more instance of the probable effect of manganese may be noticed. It has been found possible to puddle hematite iron with fettinu obstained from ordinary pudding, but when the fettling was itself obtained from hematite pig, the iron produced was redshort. I am inclined to think that the reason of this is that the manganese in the fettling from the phosphoric pig is possibly reduced along with some iron, by the carbon of the hematite pig The metallic manganese then entered the puddled ball and reduced the liability of it being subsequently burnt. I give this explanation without having any evidence to support it from the facts themselves, but there is no guestion of the results.

Although alloys of manganese and iron are known, their formation in the puddling furnace is impossible, and there being only the silicon to alloy with the manganese, it follows that beyond the actual loss in weight due to the percentage of manganese, there is no loss in the iron due to its presence.

In this beneficial action of manganese we have the explanation of that observation that the highest class of pigs frequently yield poorer than a medium class-we get a purer iron; it will therefore weigh less. The amount of slag, again, would frequently be small; the heat would, therefore be dry, and some iron would be carried array mechanically.

The economical way of dealing with this dry condition of the heat, which, however, is not I think a frequently occurring difficulty, will be obvious from what has been said about silicon, and it is found advantageous to scatter a few handfuls of sand on the iron just before balling up. The effect of course being to make a more fusible cinder, which will clear the iton without any appreciably bad effect. Again, the use of cinder pig in the subsequent charge will economically bring down any gathering bottom. It will nake a more natural cin fer. These matters are, however, well known, and I fear appearing presumptuous in alluding to them. The reverse action, i.e., of remedying a scouring cinder and so increasing the life of the furnace, is not so often practised. Scrap is generally used for the purpose, but the desirid result may much more economically be obtained by the use of a sufficient quanity of finely-powdered lime, if it be inconvenient to change the mixtures. It is well to drop the damper when this is piut in, to prevent the lime being carried on to the neck and roof of the furnace, and so slagging the brickwork. No had influence will follow if the lime be fine enough. It will absorb the silicon of the iron, and therefore prevent the combination of the two better. It will hence be more economical to use lime than increase the fetting or scrap.

The time remaining at my disposal will not allow me to more than briefly allude to a few remaining points in economical puddling.

From what I have said about the mutual actoon of shicon and phosphorus in the puddling furnace, you-will see the very grat advantage of having such a peculiarly constituted metal as refined iron, and it niay be useful to show in a tabulated form what the process of removal of the impurities in the refinery is. I give the results taken from my note-book of successive stages in this. refinery process, so that, you may
sec the very considerable changes which have been effected.
The phosphorus in the puddled bar would be extremely low when such a metal was judiciously used with ordinary pig, hence the high excellence of the bars so obtained.
The following are the figures:-

1	Per Cent.			
	Carbon.	Silicon.	Sulphur.	l'hos.
Rhymney Forge lig. .	$\because 52$	1.86	$0 \cdot 5$	172
After melting.	342	0.62	$0 \cdot 05$	1.65
8 minutes after melling.	$3 \cdot 36$	0.52	0.05	150
12 * *	$3 \cdot 32$	$0 \cdot 38$	$0 \cdot 04$	146
16 "	$3 \cdot 30$	0.32	0.04	0.85
22 " *	$3 \cdot 20$	$0 \cdot 23$	$0 \cdot 0.4$	0.85
lefinell metal. .	3.15	$0 \cdot 20$	$0 \cdot 04$	$0 \cdot 80$

Unfortunately the cost of producing these results is very great, and it seems to be found cheaperito use a more impure pig and do the refining in the puddiing furnace itself where, as we have seen, it is done at the expense of the fettling. Now, we know that silicon at least can be removed without any such expense of oxide of iron. The first stage of the acid Bessemer process consists in the removal of silicon, so that by Bessemerising molten pig iron we obtain the desired result.
I have had the pleasure of seeing this done with forge pig in belgium, where a refinery vas attached to the blast furnace and the molten metal run into it. The effect being that some 50 per cent. of silicon and 25 per cent. of phosphorus was removed. I am unacquainted with the reasons which have jrevented the more general adoption of this practice. It seems to me to possess very great advantages, and there are works at which it is extremely difficult to obtain silicious pig when using a cinder pig burden.

THE DEVELOPMENT OF MINES.

by C. M. Donsor, M.E.

For some years the mining resources of Canada have been worked and partially developed by a few enterprising capitalists who have, either from a practical knowlcdge of the mineral wealth of the country, or from theorics of geologists, who in pursuit of their calling have made such discoverics, entered into such speculations that in any other country than Canada would have brought the whole of the capitalists, or their agents, from London to examine and interest themselves in such properties. However, owing to an uncxplained laxity on the part of the owners of these propertics, the mining interests, and almost incxhaustable mineral wealth, has not been developed in a way calculated to inspire the confidence of capitalists who are comparatively unacquainted with the country and the mincral formations. It is the opinioin of several mining authorities that would the promoters of public companics and mines in Canada take more of their speculations into the English market, where Camadian mining stock would acquire a ready sale, sufficient capital could be raised to efficiently de selop a property. Whereas. at present these great interests are almost confucd to Canadian cities and Canadian capital, the result is that a mine is foated with an inadequate capital, development commences, and before any tangible result is obtained the small capital is exhausted aind at the vital moment when a result is within, the grasp of the speculators they "shut down" and the work that has cost so
much is left to fill up with water and the plant to indicate where another "bubble had burst." The writer could name scores of properties that have gone the same way owing to the improvident and thoughtless way of commencing operations.

Take these valuable concessions to the place where the money is, and where, if it can be proved, as it can be, that there is a chance of realizing a return, they will give all the moncy that is necessary for the efficient development of a legitimate speculation,

CORRECTION.

In our last issue, through misadvertence, it was stated that the Hartford and Capel mines, together with all moveables, had been sold by the Eastern Townships Bank to Messrs. E. H. Nicholson \& Co., of New York. The purchasers were Messirs. E. H. Nicholls \& Co., and the property belonged not to the Eastern Townships Bank but to Wm. Farwell, Esq., late manager of the bank. The price realised was $\$ 50.000$. In another place will be found a list and description of other properties now for sale owned by this gentleman.

Personal.

Mr. C. M. Willmott, of the Geological and Natural History Survey of Canada, has returned from England. He was in charge of the Mineral Court at the recent. Indian and Colonial Exhibition.
Mr. C. M. Dobson, C.E., M.E., one of the enginecrs on the River Niger (West Africa) Survey, 1885 , and more recently connected with the Brantford Telegraph, is now resident in Ottawa.

Our Gold Mines.

(From B. C. Colonist.)

quartz mining.

Now that milway construction within the province has been completed for the presentthough it is hoped that many of the numerous projected lines will shorily be commencedthere is time to look after some of the important industries, and to a certain extent this has been done during the past summer. Among what will in the near future prove to be the most. important factor in the prosperity of the province is quarta mining, and to this branch during the past year has been paid particular attention. The richness of the ore and the extensive character of the deposits have long been kno:wn, but the fiasco upon the first introduction of quartz machinery and the ureat work later of building the Canadian Pacific through the province served to keep the quart\% interests in a dormant condition. However, they are on the eve of a revival and the coming year will see large developments.

Probably the greatest effort being made in the province to work a mine is the work now proceeding on the loster Milling Mining Co.s property; with works at what is known as the Big Slide; some fifteen miles below Clinton: This company have quartz inill and chlorination works in positior, have unlimited water power, and, so far as known, a continuous body of rich paying sulphuretic ore. Assays and mill tests go to prove that it will pay richly for its treatnient, ind a result will soon be known.

The famones ledges of Cariboo in the immediate wemity of harkerville are agan being developed. The British Columbia Milling is Mining Co., with works at Lowhee creek, have hegun to dexelop their extensive property. This compon have already complete buldings, marnitio ent 'parte man hime and engmes 'Therr
 bexty of ore sightech to thents fise teet in width.
 pay fir its being treated. Considerable work is now leing done in inking a working shaft. drifting and crose-cutting.

The Whand Mountam Mine, owned principalb) Bh Mr. IP. Dunlory, of Suela creck, is aloo beine 1 codoped. During the preseat winter tramar, to the mane, tunnelling and drittuge and the removal of the mill and other machonery to the wte selected, fronting on J.ak of Clubi lahe. , bo ing carried on. and it in evpected that durng the coming summer matters bill be in a suftion intly advaned shape to begm the work of cru-hing and redueng the ore.

On the ohl teadm on Ledge, erosing William", rech it Ru hficid, a wall sum will te spent in phacing the tumel in groed wape and evtending it.

Buide, these works, arious other ledges of promining character will be more or less developed.

It Hown creek the already largely prospected mue will be further worked, the mill removed to a more favorable location on the opposite nede of the creck ind everything got in positom for extracting gold.
. long the line of the Canadian Pacific, from Kamloop, lake to the boundary line, a great deal of work has heen accomplished durng the past sear in proppecting ledges and phacing in machinery to crush or smelt the same. In the Selhirk, and Kocky Mountains are wonderfal deposits of galena and large deposite of gold bearing rock. North and south of the line of railway, in the big Bend, along the shores of the Columbia and Koutenay revers and lakes the ca?ntalint and prospector have visited, and there is every promise that soon the rocky canyons and shores and hills will be compelled to yield up they precions treasures to man.
Comine nearer home, several discoveries have recently been made on Vancouver Island, within easy distance of Victora, of ledges of gold bearing rock, but none of these have been thoroughly tested, though assays and mill tests have proved that there is gold in quantity gufficrent to entitle their being milled if the ledges prove to be continuous in extent.
There has been considerable enquiry from many portions of the Dominion, United States and England as to the minerals of this Province, and many assurances have been given by men of capital that they will invest money in the development of the quartz mining industry. Taken altogether the work aceomplished toward creating an activity in quart mining in the past year must be regarded as satisfactory, and it is not too much to hope that 1887 will witness a progrew and prosperity in this individual industry that will be of the greatest benefit.

PI.NER MINING.

The past year has not been productive of results as good as in the carly part there wan reason to believe it would bring. In Caribou district, owing to the very dry season, work had to be shut down on various of the hydraula claims, there not being suffic ient water to work them. The output for the year is somewhere less than that of any other during its history as a mining field, solely on account of a lack of
water. However, a few new discoveries were made, and it is thought that the coming year will agan place the gravel mining industry in a prosjerous condition.
Granite creek, in the Similkameen district from whith atch good results were anticipated humer comery to expectations. Though a few , limu- on tice orech have poid well, a great number at mucis whowent in have returned without seruring any pay, and the several other creeks in the neighborhood have also failed to produce gold in paying quantitics.
In the big bend country a considerable number of men have been at work during the entire year. On Carne's creek moderately good re:ann were ex ured. On M, Cullowh and French creck, where deep mang and hydraulic mining are being carried on, some rich gold has been ecoured, but work has not advanced sufficiently to permit of a correct ctamate being formed as to the contmuous richness of the district. However, thome who are engaged in mining work on the buther cree's hate every faith that big bend nowe year will thow geod revults. The cost of parking in upplico hat , useonsly operated againt the nacecon of the camp.

Casiar has somewhat improwed in the past vear, better returns having teen secured from the old ground and a new fictl having deen discovered which gave large returns for the limited amount of work done. There will likely be an inc reanc in the number of miners who will go moto that district this coming searon.

Lonne creek has proved a failure, little return being secured, for the large amount of work done. For the greatest part of the year high water interfered with mining and those engaged have either lont money or scarcely made wages.
One of the best field, during the past year has been that of the Stewart river, a large tributary of the Yuxon. This is in the northernmost part of the British possessions, and all those who mined there during the past season have made money some $\$ 600$, others $\$ 6,000$. There will unduubtedly be a large rush for this field and preparations are now being made to take in adventurerome pipits in the early spring before snow and ice disappear from the rivers and lakes.
Kootemay distrift will return about the same ic id as the previous year. Considerable prospesiang has been carried on but no new gold bearing creeks have been discovered. Extensise preparations are being made for hydraulicing next season on a large scale, notably on Findlay creck. The near presence of the railway and the probable construction of a feeder south from the C. P. R., will likely induce a large development of the latent resources of the district during the coming year.

In many other portions of the Province, enpecially in Yale and Lillooet districts, gold bearing crechs have been discovered and worked with moderate result, being achieved. On Vancouver lsand a large number of Chinese are engayed in mining. This is especially the case on Bear river in Alberni district, where it would appear that they have made a rich strike from the number who have prorceded to that point.
Taken altagether the past season's work has been moderately satisfactory, and there is every reawn to beleve that the year 1887 will be preluminc of hargely increased results from plarer mining. Supplies are cheapening, shorter, casier, quicker and less expensive routes to the mining fields are being provided, and many fields that previously would not pay to work on iscount of the high price of provisions and other necessaries, will be called upon to furnish their quota to the general prosperity of the gold mining industry.

DUST IN COAL MINES.

VALUABL PAPER KEAD HY MR. M. MERCER, Wigan; before the manchegter Gholodical. society.

It may be thinen for granted that all or nearly All collacry manastrs and maning authorities are now agreed that coal dust does, and has in the past played an improttant part in augmenting the intensity and disastrous effects of many of the explusions in mines; whilst a great many authorities are of the olpinion that coal dust can by itself under certain favorable conditions cause an explosion similar or even more severe in character and ffert, th that caused by fire damp alone a proof of which may ber cited in the late sad calamity at the Altofts collicry. Evidence at the former is amply furrished by the explosion at seaham, Dinas Trimden (irange, se. To go into the proof of the theories is unnecessary, as it is dealt with extensively in the report of the Rosal Commimion on la lidents in Mines, and aho wery full and cumely in the valuable work on "Explosions in cual Mines," lately added to the literature of the mining world by Mesrrs. W. N. and J. B. . Thimon, Her Majesty's Inspectors of Mines, and which should be read by all who are interested in oo important a subject. Now, in the first place must be considered the causes respomsible for the large amount of this dangerous matter in most dry mines, which will probably be accounted for severally or collectively by the following: 1 . The working and getting of the coal at the face. 3. Decrepitation of the pillars and coal scattered in the roadways. 3 . Leakage from tube and boxes. The remedies for these evils may be found in the following:1st. Mode of working, in which there is not much room for improvement: the long wall system being considered much superior to pillar and stall, as it does not leave any pillars to crush and decrepitate, which when being removed produce a large amount of fine dust. and. In the mode of haulage and form of tubs there is probably the most roola for improvement, as the systems in use in many collieries are very prolific in the gencration of fine dust. The worst of which seems (a) the use of hoxes made of green timber which, after a few weeks use in a dry mine, shrink and leave a wide space between the boards, through which the dust is conimually falling; (b) the form of boxes in use in some of the South Wales collieries, which have the sides constructed of a lattice work of iron. The remedy for these are - (a). The use of dried and well seasoned timber in the construction of wooden boxes, which should in all cases have grooved or covered joints. (b) The use of sheet iron boxes, fitted with wooden or indiarubber huffers to reduce the shock caused by the boxes jamming against ench other. (c) The systems of haulage at high speed are probably the greatest producers of dust, and wherever possible should be superseded by some form of haulage that can be carried out at speeds of two to three miles an hour, such as endless rope or chain with a double line of rails. Ifter having as far as possible remedied the causes of dust generation (which remedies can be only partially successful), there must next he considered the means available for dealing with dust in mines. The hrst consideration must be its removal from the workings; and the next how to render its properties of danger harmless. With reference to the former: The removal of the dust entirely is not practicable, for to be done properly would require an army of scavengers being kept constantly at work, and even then the finest and most dangerous particles would still remain; again, unless water is copious-

1. applied during its removal large clouds of fine dust will be constantly passing with the currents of air to the danger of the mine, and will be again deposited on the roof, sides, and floor of the roadwass. With reference to the latter consideration, viz., how to render the dust harmless, there have been several methods proposed. 1 . It has been proposed to raise the temperature of the intake air to the natural heat of the mine; it being clamed that all air entering the mine at a low temperature is gradually raised, in doing which most of the moisture is evaporated from the dust. This anti'ote (wheh would only prove partially effective) is most impracticable, as it would be very costly to artificially Heat the air some 20 to +0 deprese, and as deep munes are at present much too hot for comfortable wurking, if the temperature of the mine be thus increased, as it would by the suggested method it would probably necensitate the paying of evtrit wages in the getting of the coal. The heated air would probaibl affect the rouf and sides of the mine, and also decrease the quantity and efficienc! of the ventilation, so making the "cure wurse than the disease." 2. Strewing the work with commons salt or brine has been proposed, and is used to some extent to keep the dust in a moist condition. It gives good results if used on the following basis:-One pound of salt per myuare yard of area, applied once a week for the first month, and once a month afterwards. Its use has the following disadvantages:--Salt is expensive, costing about ys. per ton (though if nised extensively it could probably be obtained at a cheaper mete). The cost of labour in spreading the salt will be heavy, and additional matter will have to be removed, this again adding to the already heavy cost of working mines. 3. The turning of exhaust sfeam into the air cuurses bas been proposed, but anyone who has had to do with steam engines in a mine, knows the havoc it works with a roof composed of shale, therefore there is little probability of this method being used to any extent. 4. The best and most practical method is the watering of the roads by (a) water carts or (b) the laying of pipes in the haulage roads and main air conases; both of these methods have their advantages and disadvantages. These require very careful consideration, as it will be in these directions that the solution of the problem must be cupected. (f. The watering of man intakes and returns by water carts, of which there were several varieties, viz., ordinary water carts with holes in the bottom. c.ers constructed on simila. lines to those used in street watering, with a pipe at the back to diffuse the water by its flowing tirough small apertures in the pipe. A very inpeniouscart was constructed by Messrs. Smethurst ior use in their mines at the Gatswood Hall Colliary. It consisted of an ordinary water barrel mounted on tram wheels; at one end was fixed a hollow circular rose perforated with small holes around its circumference, and connected by gearing to a toothed wheel on the asle of the tram wheels. The water was delivered into the centre of the rose or disc, which revolving very rapidly when the tub was in motion, scattered the water by centrifugal force against the roof, sides and floor of the roadways. The disadvantages of this system are-1st. The cost of conveying the cast about the mine, which will also interfere with the ordinary coal traffic. 2 nd. The cost of keeping a road constantly laid in the return air courses. $3^{\text {rd }}$. The water falling in one place only when the carts are stationary, will have an injurious effect on the floor in that particular spot. This, however, can be remedied by so arranging the cart that it shall automatically close he outlet when the cart is not in motion: The
second system consists of the laying of water pipes along the sides of the main road and air courses; this appears the most feasible, if properly arranged to conduct water from the surface, or any convenient level in the st:a't. The pipes beine provided at suitable intervals with collections of small holes or apertures to diffuse: the water in the form of fiv.s sprays into the road. The distance apart of these sprays would have to be determined by practicr, and should hardly need to be less than to to 20 yards. This system if properly carried out with a good head of water, possesses the following advantages:-1. Is a very sufficient method; as the water can be turned on when the n. ne is not working so as to cause no inconvenience to the men employed. 2. Does not require the keeping of a permanent road in the return airways. - 3. After the first cost of pipes and fixing would not require any heavy expense to keep in working order. 4. Would prove of great service in cilse of fire in the mune. 5. Can be connected with the working face and drawing roads by flexible tulbing. 6. Will not injure the health of the men as the atmosphere will not be saturated with moisture in suspersion during the time the men are at work. 7. Can be so regulatea that only the proper amount of water shall fall on the roadways to daunp the dust, as with a soft flood the water in excess will cause the warrant to heave. Its disadvantages are:-1. First cost of pipes and fixing, which will be heavy. 2. Manger of the small apertures becoming clogged by dust and dirt. 3. Danger of the pipes being broken by falls of roof and sides, and the lifting of the floor. These can be somewhat guarded against br baving the pipes slung from the timbers, and ph. .ding expansion joints and stop-cocks, so that the water can be turned off at any particular point or branch during repairs. 4. The necessity of having clean water free from all matter in suspension and accompanied by a good pressure, this again being of itself a counter disadvantage as it necessitates the use of stronger pipes. 5 . The necessity of having suitable settling tanks and grids, to prevent ary solid matter entering the pipes. In conclusion there are several points to be consideced. 1st. Is there any necessity to damp the dust in any other than the main haulage roads and the return airways near to the botom of the upcast shaft. Messrs. Atkinson have clearly demonstrated that in the explosions of which they treat in the book alluded to, "that the blast did not in any of the instances quoted travel to any extent in the returns." They further draw attention to the established fact "that in all explosions the ulast travels against the air towards the downcast shaft," as a confirmation of their theory that "the dust in the return being chiefly composed of shale and metal does not transmit the blast." At the late explosion at the Altofts colliery the same phenomena was observed, and this was also the case at Mardy, Ec: 2nd. What will be the the effect of damping the floor in mines that are subject to creep? Will the frequent slight waterings of the dust be sufficient to keep it moist without allowing the water to affect the warrant? 3rd. Will the spray at specified distances be effectual in rendering the dust on the sides and timbers harmless? 4 th. The advisability of dissolving salt in the water so utilised, and will it be likely to crystallise and stop up the apertures? 5. The advisability of hanging a shect of brattice cloth, saturated with water, over and in front of all shots fired in the coal or metal, as a preventive to the flame during the dust. 9 th. The advisability of reducing the velocity of the air in haulage rjads by enlarging their areas, or provided additional roads for the intake air. 7 th.

The advisaliility of adopting the remedy, suygested by Messrs. Atkinson, of sejparating each district by means of lengths of arching, to be kept quite free from dust by orushing and watering, and to confine an explosion to the one district.

Beauce Gold Mines.

an inthesting mscovery many on thy: ST. ONGE PROTERTY-FNCOURAGINGINDICArions.
The St. Onge (Gold Mining Co. have established the fact that there is an ancient river channel running through the company's property at a. depth of 16.5 feet from the surface, from which channel a considerable quantity of fine and coarse gold has been washed., News has just been received by the president of the company that the ground is getting richer as the head of the rapid (on which the shaft was sunk) is reached. In January ten feet of drifting produced nine ounces of gold. One nugget was yorth $\$ 23.27$, another $\$ 13$, and so on. The owners deserve every success for the plucky way in which they: have stuck to the development of their property. We hope to be able to give a full report of the workings in our. next issue. Already a good deal of excitement has been created by the recent find.

WASTE MICA.

SOME USES TO WHICH IT CAN BE APPLIED.
The best employment of the ammense quantities of scraps and fragments of waste mira which suggests itself as worthy of a wider field than it now possesses is the substitution of mica for glass in spectacles worn by workmen, especially stone and metal workers, to protect their eyes from chips and splinters. As already made in Germany, these mica glasses are concaved in the shape of watch glasses, and are about one twenty-fifth of an inch in thickness. The advantages gained by this utilization are greater than would at first be imagined. Mica spectacles canuot be broken. Pounding with a sledge hammer merely'flattens them, nor does molten metal poured on the nica affect it. The shower of pointed iron particles which issues from lathes merely rebounds from the elastic mica glasses. Another use for mica is 'its application, when previously colored or metalized, to to ormamental purposes. From its unalterahle nature, the material preserves gilding, silvering or coloring from deterioration; and from its diaphancity, the articles so treater will preserve all therr brilliancy. Finely ground mica, or colored gelatin, also shows hi.ndsome effects, and when mixed with a solution of gum arabic, it makes a good silver ink. The gelatin combination is used for inlaying buttons. Another beautiful application of mica is in the production of bronze-like colors, which bear the names brocades, crystal colors and mica bronzes. Among the advantaprec of these are that they are indifferent to sulphurous exhalations, are very light in weight, and in some colors are even more brilliant than the metal bronzes. When small particles of mica silver are spread over articles coated with asphalt varnish, the result is a good imitation of granite. The crystal colors are also suitable for calico printing; and fabrics to which they are applied surpass in brilliancy
the heavy bronze and glass dust fancy fabrics of the heeavy bronze and glass dust fancy fabrics of Lyoins. Such colors have been used to decorate
pōicelain and glassware, the articles undergoing porcelain and glassware, the articles undergoing
a second heating " p to the fusins point of their
fluans. Ihy suitable dyes, the material is casily colored to a varrety of hues.

Mina has been used on board war vesuels, in lekalites: where glass would be broken by the concussion due to the firmg of heavy guns. It is also employed for rooting purposes, and in ocleral patented processes forms a water and tireproot covermg for strata of rubber, tar, c.anvas, felt, and similar materals.

Mechanical Ventilation of Mines.

At the present tume uore than ordinary attenthon is being directed to the bent means of ventslating mines, more particularly those where a large quantity of gas is constantly produced. The atmospheric air sent through a colliery undergoes in its passage certan modifications whech renders it unable to keep the workings clear of gas. The cespiration of men and animals gives birth to extremely deleterous gases. sulphides become sulphates, carbonates turn into peroxldes, whilst wegutable and other matter undergoes fermentation in whith the oxygen disappears and gives way to carbonic aced, carbureitd hydrogen, nitrogen and ammonia. For the wite working of our mines it is, therefore, essential that there should be a large and constant supply of fresh aur sent from the surface so as to permeate every part of the workings. To effect this, warious systems have been in operation, including the furnace, fans, steam jets, screws, etc. The furnace has long been the means of ventilating most of the collenes in every part of the kingdom. The amount of air produced by a well constructed furnace varies from 4,000 to \$,000 or 9,000 cubir feet jer minute for each foot in breadth of the bars. Still the temperature of furnaces is very variable, and to some extent also the ventilation, while there is considcrable danger in the return air containing the gas being carried over the furnare instead of through a dumb drift into the shaft. The furnace is also a source of danyer from other causes. for a few years ago the stack for feeding the fur naces gnited at a large collery in Eingland, then set fire to the coal, and led so a loss to the proprieturs of more than $\$ 300,000$, and to the puiinge down of a powerful fan.

Thut mechanikal venthhatuon, it may lex sadd, is by no means a new system, although of late it has made very great jrogress, for we find the Husk machine was in use at the s ommene oment of the present century in Cornuall, Fing. Mr. Strauve, of Swansea, made sonse mportant imfrovements with respert to acrometeos. By covering them so as to mal. c them duuble acting, and placong the valves at the side, he suceceded in produs ing a mer hince far superior to any that had prev cded it. (flate years however the sugernority of the fan hav leen tearly demonstrated by Mr. Morrison. of Newastle, the agent of the fiuilal, which deservedly takes the highest rank The Schiele fan, an cconomical one, taking up comparatuely litle room, and not requiring either expenswe marhinery or masonry, has made marked proseress of recent years.

Vendation by means of the steam-jet was: revived some years ago, but thes wistem failed.

A new company, under the name of the "Templeton and Blanche Kover Minng Commang." has been formexl nuth a vew w carrying
on the jhosplate mdustry. The caputal stock is $\$ 3.3 .000$, divuded into siares of $\$ 100$ each. Messts. H. Heaugrand, 16. Massils, 1.. Sutherland. S. C. Stevenson, P. S. Koss, H. Graham, 11. S. Keddy, 1). Anderson, J. iseatic, A. Kudolyh and A. M. Perkins, of Montreal, are prominent leaders in the enterprise.

PHOSPHATE.

hatest quorations.

There is already some enquiry, chefly from the Continent, for Canadian Phosphates for delivery during 1887 , but as buyers are indisprosed to advance upon last season's prices no husiness has resulted (iround Canadian testing 60 to 68 per cent. is now likely to become an article of annual importation, and Sellers are disposed to contract for further supples during the coming season. South Carolina Yhosphates. -The possible infliction by the State legislature of a second dollar export duty upon River Phosphates has caused a slight stiffening in prices. and Kaisers are more than ever unwilling to sell at late rates, indeed, contracts have already passed at more money, Some of the manufacturers of (iround Belgian have been obliged to succumb) to the unremumerative prices obtainable, and sellers are demanding an advance for their Whosphate, which has become almost a necessity to the trade. The new French Phosphate is now being delivered, and realizing the promises of its sellers. The chemist's report upon two actual shipments made last week show $73.74,73.85$ ler rent. l'hosphate of Lime, Alumini o $21,0.23$ per cent, and Oxide of Iron $0.94,109$ yer cent., respectively. Cambridge and Bedford Coprolites are unchanged, and yuoted at 4 is. f.o.r., or ground at 48 s . in buyer's bags, or 505 . in lent bags, f.o.r, the latter at 26 s ., f.o.r., or 3 is . 6 d ., f.o.b., Thames.

EXPORTS, 1886.

The report of the Montreal Buard of Trade shows that there was exported from that port in $1886,18,968$ tons of phosiphate, against 23,849
in 1885, and 20,747 in in 1885 , and 20,747 in 1884 .

The deposit of phosphate of lime discovered ahout three months ago near theauval, in the department of the Somme, has proved to be remarkably rich. I his deprosit had really been lexated rome twenty years atio, but so litte attention was then given to its value that, until very lately, the whos ${ }^{\text {hates }}$ vere sold in the neighborhood as common building and. Kecent complaints having leen made alrout the quality of the sand, one of the owners of the bed texisk it into his head to have the matemal analyzed, and then dis-
covered that he uwned a ferfect bonanza. The amalysis of these phosphates shows them to contain 6t. +3 jer cent. phusphate of lime, 560 per cent. carbonate of lime, 3.26 pet cent. floride of lime, and $i \cdot 43$ jeer cent. sulphate of lime. The depusit of sand seems to coyer the whole of the clay beds of the theatival district, and varies in thickness from a few inches to 30 and 36 feet. It also fills all the cavities on the surface of the clay. Linder the microscope, it shows atself full of shells and infusorial remains. It weighs about 66 pounds to the cubic foot.

A Monster Nugget.

There is at present in Wells. Fargo © Co.'s lank a but of auriferous rock that any individual
maght be glad to possess. The nuget is one of maght be glad to prossess. The nugget is one of the finest unearthed in (altornia, both in size and richness. It is irregular in shape and ahous the sare of an ordinary Deriby hat. That there is very little rock and a great deal of gold in it may be determined by its weight, which is thimyfive pounds troy, Yuarta of this sort is usually valued at $\$ 200$ per pound, and, allowing the large margin of \$1,000 for rock, the nugget wauld lee worth $\$ 6,000$. The exprosed rock and great gohs of woid that hang out of its sides so as to
nearly hide all other composition and make it appear almost as melted metal, are not jagged or rough, but on the contrary, are smooth and polished in a manner that only water is capable off. The propreters of the nugget are Messrs. Hayen and Stedman, of sterra City, and they have left it on exhbintion for a few days. At the bank it atracts murh attention, but the emplosees could furnish no information concerning it beyond that it came from Sierra county, near Sierra.

The Continental Iron Tracie.

The entreme depression which characteriees the Westphalian coal trade can hardly tre said to extend to the iron trade in the same district. It is possible that there may lse a good deal of exaggeration and undue hopefulness in the eatimate formed by those concerned in this industry of their immediate future. But it is quite certan that there is increased actinity in the trade, and a growing demand for home ores. Prices also have risen, although not to a verv material extent. The advance, however, has been sufficient to induce a number of mining proprietors to reojen mines which had long been standirg idle. Blast furnaces, too, are very busy, and the demand is quite equal to the production. In these circumstances, it is not surprising to hear that makers are but little inclined to enter into any contracts extending further than the end of March. While on the subject of the iron trade we may say that prices in Helgium also continue firm. Hut in France the improvement is exceedingly slow. It is remarkable, findeed. how completely the manufacturers and producers of the French Repubhe seem to be losing their hold on the world's markels.

The Colonist reports that two mines have been discovered right along the C. P. R. Ine throush the Selkirks, but the want of machinery and capital has yet prevented their richners being fully tested. Ihey are both along the Hlecille river. One mine, situated at Nlleret Canun, is only 400 vards from the track. It is sand to have a vein of gold learing quarta 20 feet wide. For the gast year a few men have been employed in taking out ore, which has to lec shyped to outside pronts to fre assaycd, as the necessary mathonery has not yet leeen placed in the mine. There. is another mane about ten niles beyond the summet of the Sellkirks. it is situated alout a mile from the track and fourteen ponies are constantly employed in bnnagng the ore down the stecy slopes of the mountan for transmission. Machincry is to te plared in this mine also next summer.

The introdurtion of ambulan e lectures by protessional medical men, by which workmen and others are taught how to act in cases of emergency, has already iveen the means of sasing many lives and it is not too much to viy that the foreman and leading workmen of all -ngineering establishments ,hould be encouraged so attend surh lertures free of rost to themselves, even, if neressary, in the time of their employers, as their sertives, should oraston arise, would be frcely grven, to the great advantage of the unfortunte sufferer. Fiven keeping a suphy of line, linen rag and sticking plaster ujon the premises is not to be lughty prized, as many a poor fellews who has heen struck by a hammer or cut by a flying clip or iron can textify, and surh alight mishajs are common enough.

At the last meeting of the directors of the Rabbit Mountain mine the sum of $\$ 20,000$ mas set apart for the development of the property.

()ITALIA I.OC.II. (BEOLGOIC.AI. WOKK.

The series of "Monday afternoon lectures" under the auppices of the Otana Fheld Naturalints" (lub) was maugurated in january last in the Museum Koom of the Oltawa literary and Si sentrix Soclety be Mr. Henry M. . Imi, of the - ieological Survey staff. Whilst these lectures are meant hiefly to give these members who devire it an maght into the elementary principles of the varous branches of natural science which comes witho the pale of the clubs, there is often added information which bears upon the resoures that these several studtes seek to investugate and develop, whether in maneralogy. geology, andogy, ornitholong, lrotany or cintomology. Mr. Im had been reques:ed to address the members. and in the course of his remark, whub were all of an emmently prattial nature to thure who derored an msight into that suloject as well as to thore who sought further informathon, he bristly aetched the attractions and pants of interent which peolosy affords. presented it, amss, and in a luc d manner explained the few leading teras with which it in neressary to become fambar in purswing whith a sotence, wa: s.ults. dislocations. Al- vures, anticinal, synclinal, monorlinal. horizontal, melmed. conformity, uncontormity and such like in reference to strata and thear strus ture. Having described the various eprehs wheh have leen charanterized by the introduction or presence of certain types of abmmal life in the phyncal history and evolution wit the earth up to the present time, the economme mmerals to man which were stored up in these se veral epochs, such as cual, tetruleum, lead, cap ". stierr, sold, Ni.. dic., the lecturer then dylled the princyies and clementi of the science w, the particular district which it is the protince of the dubs to comme- ()ttawa and its veinaty. Taking a lome of nection from King', Mountain, (helsea, and running it through Parlament Hill at Ortawa a dayram shewing the varous geologic iormations anct in thir see tum wa, then discussed. The laurentian system was here represented by zwo formations, which Sir Wim. I ogan referred to o the lower and muldle Jaurentian formations, - haracterwed by yness and znelssomel, as well : 5 nemblendic rou h, and ir stalline limestones. requertively onerlymg the former. Ithe next in monationv met belonged so the l'aladgon permod, of scrics, and these rested unconformably upon the upturnex ederes of the Jaurentan rocks. There had lween a lapee of time between the stopestaion of the faurentian and the deposition - ff the l'otsham formatwon, which latter was - haracterized at its hase by a serves of coarse conglomerates containing huge rounded pebbles if quarts and other rocks of laurentian age imlecided in a sindy or arenaccous mixture, as one might find along a modern sea shore or ieach. The next formations met were the calciferous, the chagy, the Hack river. the Newton, and lastly the Utica formation- - all Fabedgoic rocks -and in a regular unbroken sequence jerfectly conformable one on the cther and forming a series of sedmentary strata of considerable thickness (to be asceriained yet) and containing parts of petrified oryanic remains or fossils, which enable the precise horizon or age of the srata to be ascertained. The newer or Post Tertiary deposits were then casually neferred to, as the lecturer purposes presenting this subject lefore the clubat one of its soirees next month,
the subject being, "The great Ice age and subsequent formations at Ottawa."

The work done up to date in geology about Ottawa was then referred to and the workers late and present noticed. There had been considerable work accomplished both in mineralogy and palantology. there was a great deal yet to be dune in all branches of geologic investigation, and a small army of workers would not exhaust the field for a long time.

Ottawa was a particularly favorable spot for researches in geology and mineralogy. It was drestined :o hold a very conspicuous position, as the neighloring rocks teemed with valuable munerals. The iron, apatite, epaphyite and bargites of the veinity were only touched upon by the lecturer as they alone would suffice for lecture upon lecture.

An agrecable discussion took place at the conclusion of the causerici, in which, besides the lectures, Mr. Mrleod (engineer), Ir. Small, Messrs. Harrington, Whyte and others took part.

The sreat adsances made in recent years in the industries of the Cnited States has rased the question in England of American competition in the iron and steel trade. It has been asked if the Amerkans are in a proitoon to dispense, from time to time, in great measure with English assistance in supplying them with iron, and if the day mas come when American producers will not only meet them in all the neutral markets of the world but even extinguish the furnaces of Cleveland and Cumberland, of Scotand and of Wakes. About tuelve years ago Mr. Isame Iowthan Bell (now Sir lowthian) represented the English Government at the lhiladelpha Exhibum, and during that visit took the opportunty to investigate into the position and prosjects of the American iron industry, and since then he has been a careful observer of 1 ts progress.

In a rocent issue of the Fortnijhth Reciers he ontributes an able papxr on the "Iron and Steel Trade," in which he deals exhaustively with this
question and claims that as long as (ireat Britain question and claims that as long as (ireat Britain
© 10 command raw materals at their present cost there does not appear much chance of the Cinuted States offermg successful competation to 1t. Some idea of the value of his paper may be ghaned from the following extracts:
"Ciron a recent occasion I constructed a table wheli was brought down to the ycars of the largest iron production the world has ever known, vir., 1882 and 1883 . In it an estimate was made of the actual yuantity of the metal consumed in the Enited Kingdom and in the Cnited States. It commenced with 8888 , when our own country used more iron than any other nation. At that time the United States worked up to $; 0$ per cent. of the weight consumed in this counery. In 1883 the figures were aimost exactly reversed, i.e., the consumption in the Cnited Kingdom was just about 70 ber cent. of that of the United States. The estimate was based on the quantity of pig iron used as such, and the equivalent of pig requined in the produc. tion of the metal in its more advanced states of manufacture, such as stect, malkeable iron, "rc."

He states that in 1870 Enghand contributed 516% towards the workd's output of crude iron, and that our shave has steadily falken to 38.4%. Meanwhile, the United States had advanced from $14^{\circ} 4$ per cent. to 30°. These figures are
up to 1884 , but when the returns for 1886 are available it will be found that the United States percentage of the total is much nearer 40 per cent. than 20 jur cent.

He mention; that whereas the area of English coal deposits is but 7,000 or 8,000 , the United States measures underlie 200,000 square miles. On the other hand he thinks that the mon ore deposits of the linited states are very little. if at all, more eatensive than English beds of monstone.

In 1870 twenty-nine million tons of coal were raised in the United States; but, in 3885 , one hundred and two million tons were extracted, an increage of 248 per cent. Iluring the same period British conl output rose from one hundred and ten million tons to one hundred and fiftynune million tons, an increase of 44 per cent. Sir Lowthian Bell hays stress on the advantage the home manufacturers possess by reason of the proximity of the ores to the fued in (ireat Brtain and he refers to the royalties payable there, which greatly add to their cost of production. He estumates that the royalties work out thus:
"Made from the lias ironstone, amount to 3 s.: made from ordinary clay ironstonte in Scotland. $35 . ;$ made from llackhand clay ironstone in sicotland, 4s. $10 d$; made from hematite in Cumberland and lancashire, 6s. 3d. In (iermany they only come on the ton of pig iron to about od. In France they only come on the ton of pig iron to about 8 d ."

The returns from the Oldham gold mining property for the past three months are as follow:
October, $-\cdots \quad 11519 \mathrm{oz}$
November,
Wecember,

We are informed that the propretor cleared $\$ 2,165$, the value of a gold brick from the mine. It weighed 11302.18 dwts., and was the result of one month's work by 20 men.

The output of the Springhill mines for Decem ber, reached the unprecedented figures of 43 . 026 tons, which closes the sear with 2 total of 468,000 tons, an increase oi 118,000 tons over 1885 . The collicties are kegt busy at their ut most capacity, and give employment to leetween cleven and twelve hundred men and troys. The South Slope is heing opened out and 200 tons of coal hoisted and shipped daily. Other preparations are being made for a further merease of business this year. Shipments of coal by water from Parsboro, in 1886 , were 40,508 tons. against 26,215 in 1885.

It may not le generally known says the Critic, that an American company from Prennsylvania has been boring for oil in the Memrameouk Valley, Westmoreland County. They have acquired large areas of territory and within the past three or four years have sunk quite a number of wells. but without surcess as yet. At present they are boring in what is known as the old Ayers Mill property, about 3 miles northwest of the Memramcook Station. As they have spent large sums of moncy it is to be hoped that their efforts will he crowned with success. Hon. A. 1). Richard, barrister of 1 lorchester, is solicitor of the company.

Some five or sic carloads of matte from the Min- ${ }^{\prime}$ list of gold producers. , Gold has been discoeered eral liale property, New Ireland, Albert County, in Amapolis County, and prospectors in all parts have been forwarded for export to Swansea. The, of the Province are preparing for a vigorous cainvalue of the mate is placed at $\$ 100$ per ton. fonign as soon as the snow leaves in the spring, An endeavor is being made to enghge Nova, almost certainly be made durms the present Scotian miners for work at the how River coal fyear. mines, N.IT:I:

The West mine, Rawdon property, has been sold to Minnciota capitahsts, and neil machmery includin! a new a-horse power engine and boiker is to be added, while steam hoistuse and pumping gear will supersede the work now done by horse power. Mr. Dissoway, lately of Moose-1 land, langier district, is mentioned as the new, manager.

The main sinft at the east mme, McNaughton property; is now down some 500 feet. A fire from taken at the lalisade mine realised $\$: 00$ recently broke out mone of the buldugs, and iper ton.
might have proved a serivus conflasamation but for the speedy action of the miners, who quickly i extinguished it. Some damage. however, was done to the roof of the minl building.
Keferring to the very large increase in the out- Work is suspended until the spring at the put and shipment of coal from the mones ot Now I Sulver Hill property: Major Isell is now in EngScotia during the past year, the Montreal Gazetfe|that endeavoring to sell the property or to secure in an editorial very clearly joints out that this is in were large measure due to the policy of protection adophed be the province. It states the case thus: "lith the product of their mines shat out of the linited States, and the markel of the Upper provinces taken awny from them be: the competition of Enited States collieries, the home consumption of the province itself would have afforded employment to but a fraction of the number of miners now actively at work, and an immense amount oí capital miested in coal properties would hate been deprived of its earning power. Is it is, under the protection prolict, means of livelihood are afiorded within the country to thousmuls of miners, Canadian teselis und Caradian salaray imsiend of Unated, States milnays are ocrupici in the transporta- , tion of the preduc: and lariec sums of muncy that wend othenwice te sem io inteign lands in pay:aent for coal and ireights are kepla within the Diminion. And the tenelit is not alone the the prosince for the supplying of the familiss of the miners atiouds a market for ihe factorics and work people of other parss oi Canada, to the murual adinatage of each.

The talue of she yold exports from this procince: for the menth of December, mmounsed of \$1S:000.

Gold inas been discotered in Hants County, near Ardoise Hall, and at a poina abous inur milles from Moumt Ninark. Indications stid to le geod.
-ince iencron boid Mining Company mill: a mapial of Sy0,000, ate preparing to open ap the fiteen Mile Strenon (indd mise while it is re porterl that an American syndicate have jurchased entensive copprer and iron dejpesits in Gape liresen. and dhat the prembuct of the Spring Hill mines ins Jecember was lareser than ever Brione All ihe diliferent gold districes are being : rorked in zrear adsuntage Salmon Kiver, L_ake (ateln. Caribor, Monse kiver. Kawdon, Ken. fien, Oldam, lirmoktieki, and Caledonia disiricts are gieldiang repular revams and Mooselamie Could Kizer, Mahiza lakec Milipsigate jake Mill Village Carleton and Kemptrille are leing ropidly developerd, and when the mills in cource of construction are simished, will swell the

During the month of December 30 tons of quart: were crushed at the Meliven munes, which yielded $5_{5} 3 \%$ ounces.

Ontario.

FOKT AKTHUK MSTKICT.
The ore at the silver Ealls mine is said to be averaging $\$ 2 S .00$ to the ton, with good indica|tions.
1

The shaft at Silver lalls mine is now down about 55 feet. Two recent assays give $1 \$ 1 / 2$

a company to develop it.
Two hundred and cight feet have been sunk at the Kabbit Mountaim mine-
Few matters so naternally affect the well being and wealth of hoth Fastern and , hestern ilgoma, as the present mining regulations of Ontario. Under them, if a man has money, he has only to employ a aurweyor, make an affidavit that there are mdications of mineral or metals on the land he wishes to grab, and by juying two dollars an acte, parchase as large a tract of land as has
purse will allow, and cxcejp upon the small portion reverned ior public ronds, no person can trespuns. This system exists throughous the disinat, is inst lecomang a very senous check 10 i
its proper development and should be promply yut astop to. Ihe Silcer Islet maning company, who olprate a spot oi a hule over an acre in! there is probably about sis timest that amount held by speculators in gronts oi trom awo hundicd acres and upwards.
Kecent specimens trom the Iaris propent are snid to be expected 10 ascay from $\$ 15.00$ to,
sij0.00 the von. These samples have inen

A bimited liahility compnans, says the Encincerint ard . Mining fournal has been orgmized in london, with a capital stock of $2,100,000$, shares for each, to acyuire 240 actex in extent.
irevehold, consisting of two nining locations on irecthold consisting of wo mining locations on
Silver ilounsain (Shuniah Weachu), in the Thunder lay District, on Iake Supkrior. The weriders receive $=5: 000$ stares and f.30,000: 9.000 tully jaidup shares mill be allotued to dircetors in licu of reamuneration for iwo yeans. ind to oiher parties fior services renderell. "The mine is alous twenty miles from the Canadun lacitic Knitruad, and ten miles west of jon Arhur. Messn. Frank Tolin and Janecs Nancarmor, M. F. visited the mines in October: and ujon their report, which is very unsaisfactor: and indefinite one, and which affords no basis whatever for the price asked for the property, is purchase uras completed. Nessrs. R. I. Thaule and Eic. (antlick, mining engineers, of Clere land, also made colmily unsatisfactory reports

British Columbia.

The latest discovery of coal is reported froins Pumbo lstand, in the Straits of Haro. Ilie deposits are reported large, and the cquality of the coal excellent. 1 company has been formed to develop the depposit.

Since the year is5 8 , when the first great rush to the sold fields of the Friser occurred, until the present date, filly $\$ 50,000,000$ in gold dust has been yielded from the mines, and competent authorities state as yet that ther have colly been scratcied over-onle the ensier secured and rich baying deposits have been worked. Cerain it is. that as yet the country remains only prospected around the famous fields, and that in many sections of the sold belt nothing has been done: There are in Cariboo and other districts to day known minins grounds that will richly repay ia moderate expenditure of capital in hydraulicins on improved principles. But this is not tive class of mining that is now looked forward to as likely to prove one of the greatest-if not the principhl -industries in the province. Recent canminations ley mining experts, prospectors, and others who were in a position to judge, have all been productive of highly favorable reports as to the richness and extensive character of the minema deposits in Cariboo, Yale, Kootenay and other districts. In many phaces work bas commenced and machinery las been placed in position. Capitalists have signified their intention of inverting, and everything is now tending towards an extensive treatment of the mineral bearing rocks of the province, and especially of gold. Should results prove, as there is joox reason to anticipate, the gold mining industry will bmanh into a permanemt and lucrative onc, and one that will hasten the grogressof the province- - Cohonist.

During the past season four strong companies have leven engaged on McCullough creek. The Ophir Bedrock Flume Co. commenced work at the mouth of MicCullough creek last summer. and have about threc liundred ieet oi ground isluice constructed. Mr. Gray is delaying the clean up as long as pessible in these worts sor that the preparations jor putting in hydraulic iforer may not be interrapled. In the mentime thay are stanting at tunnei which will enable them to continue work throughous the winter. There as undoubtedy a considerable sum oi noney now in the Ophir Co's tlume, as nugets of sood size have been picked out of the face frequenti. during the past fer months. Indications chow that bedrock is not far ahead, and Mir. Bray intends to have a "gian"" with the other necessary mach:acry on the ground in gord time to zalic adiantage of the spring tlow of water in the creck.
The thaldhew Co. are drifting in their cham a mile and a hali athove Giay: $:$
Nlote the baidhead chaim is the Erickson; shair :unne! has been si:m down daring the ciose scason, or until such time as the Selkirk coarmany s unnel (immedintely ahove) has been mashed ionrard to Iredrock, thee two coapranics having armanged to co-p:crnte in prosescting dle selkirk ciaim.

While andeninins some coal. which a previous shot had baited to brong down. at Sol : Explanade shaft of the liancouter coal comamy, a miner mas haty crashed to death by the mass filling upor ham.

Wic are mformed by the Critit that notice ans been guen that leiters patent for the incorporation of a joint stock compnay, to lece called the - Montreal Manganese Mining Company; for the
mining of manganese and other minerals in the (ounty of Hants or elsewhere in the province, has been applied for pursuant to statute.

The chicf place of business in Nowa Scotia will be Mathand, and the intended capital stock is $\$ 100,000$, to be disided into ten thousand shares of tea dollars each.
H. 'I. Harding is solicitor for the applicants. The provisional directors of the compment are to be H. I. Harding, David.Andrews, and Thomas Ralph. The Hon. David Mcl.elan, Provisional Secretary of New Brunswick, J. T. Mel3ride of Montreal, and WI. R. Stockbridge, broker of Boston, are prominent amongst the applicants.

Hants County is celelrated for iss large deposits of manyanese, and we are glad to note that a company with plenty of cupital to work them will soon be in active operation. We are informed that the new company will purchase ctensive manganese properties near the Shubenicadic River.

EASTERN TOWNSHIPS.

COPPER AND OTHER MINING PROPERTIES BELOAGING TO MK. WM. FAKWEI. SHERIRKOOKE.

DESCRIITIVE ROTES IM C.IITAIN FRINCIS MENSETT MuNJNG FMGINEER.

TOMSEHIP OF .iscot.

The Pyrites region of the Township of Ascot, in the l'rovince of Quebec, has proved to lee one of the most inuportant in Canacu. The ore consists of Pyrites, containing froms 3 to 4 per cent. Copper, and from 35 to +5 per cent. Sulp: hur. It occurs in ocins in micaccous and chlorite shates, associnted with silicious and calcareous mater. The discovery of sold and silve acrompanying these ores gives additional importance to the resgion.

The properies in this Torrnship, now offered for sale, consist of the following Mines and Mining Lands:
1st. Crikk Mine, 1 ot $1 t$, in the jah Kange, s3 acrest in feesimple.
This mine is situated turards the centre of the mining jecion alowe described. It has bren somewhat extensively worked, and a considemble quantity oi ore extracted. The principal mimng wotik fas been dane by means of soik' cutaing on a vein about is fect thick: and containing about $3 \geqslant / 2$ per cent. copper. Other veins are known to traverse the projerty:
The mine is alout a mile and a hali from the lennoxville siation of the Grand Trunk Railway; and 2 ? to 3 niles from the City of Sherbrooke:
exi. Suen mookr Mase-liant of l.ots is and i_{3} in the ;ith Kinge: $3=9$ acres in fee simple.
This mine immedintely adjoins and is travers. ed by some of the same lyrites teins as the Chark Mine, besides some others not embraced in that propery: The Sherbronke Mine property has leena extensively explored at surfice biat mith the exception of at trial shati (said to le Go iect deepl it has not been opened up by underground workings. The vilte of the projerty is extablished by the known existence in it oi wide veins of tyrites of which one of the explomtore pits shows a wein of from S to to fect in widh, of which a pant yields over 5 per cent. metallic copper. Specimens from this vein are shid to bave also yielded, according to competent
authorities, from fou: to five dollars per ton of
cold, eleren dollars per ton of stlver, with from 35 to 40 per cent. sulphar.
This mine is a little over a mile from the I emnoxville station of the (Grand Trunk Ralwar, and $z 1 /=$ miles from the City of Sherbrooke.
3 rd. Beavimek: ALnt--19art of l.ots 9 and 10 in the gth range; IV 1.0 to in Sth range; 29) acres in fecesimple.

The general condition of the rocks and ores; on this property are similar to those of the Clark and Sherbrooke Miass. The workings consist of a shaft, sunk ro, feer on a vein of between six and seven feet wide, rich in Sulphur, and yielding Copper Ores of from 3 to + per cent. of that metal.

The following is Sir William 1.ogan's description of this Mine, as given in his general report for $1 \mathrm{SG}_{3}$, viz:-
"Here there is a considerable breadth of fine white micaceous slates, with which interstratified a bed of yreenish quattz, or mica schist; this is in parts chloritic, or talcose, and contains large quantitics of a mixture of iron pyrites, with yellow copper ore. Select prortions of this zave, when dressed, one-half the weight of ore, which contained one-third of silicious matter, and 7.3 per cent. of copper, the remainder heing uron and sulphur. The breadth of this bed is about six feet. and it is estimated that it will yield two tons of dressed ore similar to the above to the fathom:"

Other Ply rites beds are known to exist on this property, which is situated from 2 長 to 3 miler from a miluay:

At the time operations were suspended at the ioregoing mines, the value of the sulphur in the ores was not recognized, and it was chiefly on arcount of its presence in large quantites that the mines were closed.
ath. Ascot Propremties - Part lots 12 in the ith Range; is in tive Sth Kange, and it in the Sth Range: 171 acres, mining rights.
The bands of Copper-lxaring rocks are known to traverse these properties, which howeter have not vet been developed by mining operations.
 list, t,300 acres in fee simple.
Originally iaken up for (iold minina purfores, discoveries of shat metal whirh were deemed important having been made on adjoining pro-peries-apart from their value in this rejpect. they are heatily simbered, and would be found usefal for the supply of firctrood, and timber for use at the Mines.
The Wiaterloo and Masos Kailmay (in connection with the licmont Central K.k.) passes throush a pan oi this property.

Tow:

Sth. Cumituclis: Hal. Minf, as per accompaning Jist, comprises jisacres of hand, in fice sinupl
This mining property is situated in the hean of a mineral reyion, which conbines many of the most esiential characteristics, both for the citenswe deposition and protitable workins of copper and other ores. The rocks consist of chloritic shate, sequentine and diorite, and the meanlic veins occur towards she line of contact of these distinct varictios of rock. On the proberty referred to, serema distinct and well defined vicins or beds of yellow sulphuret of copper occur, and have been traced by explomiory works alons the brow of a hill, elerated about Soo teet alrove the level of trompton lake, situated about half a mile to the cast. A small oipning on one of the veins, which ctops out on the face of the clift, shows a thickness of five feet, yieldins a considerable yuantity of yellor
feet, yielding a comsiderable yanntity of yellor
sulphuret of copper of about 12 per cent. of that metal. No regular mining operations have been made on the property, but the copper-bearins veins are proved by stirface explomtions and by natural exposures to extend over a large proportion of it. The property is now alvout a miles from the nearest railway, but a miluay-now projected, and most probably very soon to be fonstructed-will pass shrough it, or within a very short distance.

townshir of chevelandi.

9th. St. Finsets Mane - S. 1. $1 / 4$ L.ot $=5$, in the 12th Kange: 50 acres in fec-simple.
On this very promising mine, which is situated about three miles froin the Richmond station of the (imnd Trunk Railway, a very considerable amount of mining work has been done, and with most encouraging results. A well defined vein, richly charged with vitreous purple and yellow sulphurets of copper, traverse the entire length of the property; or about half a mile, cuting chloritic slates, the gangue being a mixture of quartz and calespar. The vein is from three to five fet thick, and for a considerable length in the parts worked yielded an estimated averase of wo tons of 8 per cent. copper ore per fathom, (some portion beins estimated to have yielded as much as one ton and a half of +o per cent. copper ore per fathom). The plant on the mine consists of dwelling houses, smith's shop, ore sheds, office, etc., I large winding and pumping stean: engine with boiler, winding and pumping gear, about to fathoms Comish lifting pumps complete, railuay tmeks, ladders, etc.

towssuar of c.akthes.

10th. Ginethay Mine- A large block of lands, for the most jart unexplored, comprising (as per accompanying list) an aspregate of $=293^{5}$ acres, in feesimple
On one of the lots comprised in this property, there appears to be a large hed or vein of Perrese, the entire thickness in which the lyyrites are mingled with the rock beiny about twenty feet; on another lot and noar the main road leading to the mine there is the outcrop of a vein of from 3 to + lect wide of solid lyrites.
Sanules of copper ore have liken broken on this property that have yielded by assay as much as twenterwo ger cent. of copper, while other sumples were found to le frec from copper. :la analysis of the pyrites apparently free from copper, save: sulphur \ddagger S jer cent., coples 1.1 jerr cent., iron f^{2} per cent., silica, cte, S.a per cent. As the ore contains such a lare percentage of sulphur, it is peculiarly adapted for the manuiacture of sulphuric acid.
The distance of the mine from the Garthing station of the Quebec Central Railma); (so which a tramrond could be cheaply made), is from four to five miles, and a miluyy is now chantered which it is expected will run throush these lands.

.ıсто:

 Kange: 200 actes in feesimplc.
This mine has proved to le one of the most prodective and prontable in the Erovince of Quebrec Within thice years after the mine was opened it had produced ores to the value of nearly 5500,000 . The ore, which cunsists chictly of the purple and yeilow sulphuret-of cojpler, is distributed throughouz a shickness of from $=00$ to 300 fert of dolomitic limestone, and is necasionally found in masses of exceding riciness. Froma threc of thesc masses 16 .jco tons of $3=$
ting. This mine gave employment in 3501 to herwee: 500 and goo hands, and although its character as a tood mine for permanent and profitable working has been very much impaired hey the limited resiard given to exploratory works, it is highly probable that the ore is still very far from being exhamsted. Sir William loogan is rejorted to have siad of this mine:
\cdots Ittle has been done for discotery, and it samot be said how near to the present floor of the mine may tee found other masses similar to those that hate been excatated."

This mine is situated about half a mile from the Actonsale station of the (irand Trualk and South bastern kailways, about finty miles from Montreal.

TOWXSHIf OF H:ROME.

12th. Hent: Mani-l'ant of l.ots Nos. = zand 5 in the the kanace, 50 acres in fee simple.

This properat is situated in a region that has deservedly atracted much attention from minins invenors. It is chamaterized by the oce:arence af wery thick and persistent embedded veins of rich sulphuret of Copper. the mine in ques zion lies on the strike of some of the most im. jortam of these, and is in the immediate vicinity aif a saluay.

TOW:Sil1f OF mot.70\%.
1, ith. Hotton Mast: As per accompanying Inst foo acres in fee simple.

This properiy ss sumated betueen that of the Hunimgion Mining Company on the somth, and the Ires Minias Conpmay on the north, orcusp mathe space beinen these tho properties, ard :riversed by the veins that have been so evten. sively worked m the Huntington Mn:c. . Ibout ziac middle of this property two shafts have been sunk on the vein, to a depth of between go and: jofect. Thase shafts are comected at thas alequit by a drift, in which the vein is abom six: feed wide, compred jrincipnily of Iron l'yrite contaming large patches of tery ned yellow colyphe oisc:

This Mine is alout $=$ miles from the Fastman Siation of the liaterloo and Mases Kaikay.

tow:shil of cheter west.

tith Sunw Mixt. No jer accompanamg has.

Copare tharing lechs, apprenty of much mpa:anace have brean discovered and parially
 treds a sranl siant has lecen sunk to a depth of +0 fiet, shewin: a thickness oi ibetween iwo and dhece fect, clangerl with purnte and yellow copr per ore to the evernt oi + jer cent. metalliferous buard of rucks a: this phice is said to tre from 40 to so fect. and it las leen inaced for abruat 500 feci. Uther promising veins crop out in the property. hati no regular Nining operations have ye: lreen done on is.

15th. Vhat: Mat:--As jer list comprises Miniing rishts, toial s. 255 actes:

This prepkety is iraversedi by several copper branas yunros weins in chloritic and micaceons; schisi, which. apori irom the equatz evins gields!
 sio feer. The pincipal vein has been exposed. at suriac. vacr a lonath of neariy half a malk by shailow pits, from which a considerahle puantit! of rich coppler ore has lecen incidensally ohiain. en. Two hdit levels, for which the ground is highly Gaverable have also been driven to prove the veins in depth, with restaks that are represemeed as leing highty satistactory.

This mining property is about 15 miles from the Arthaknska station of the (irand Trunk Kailway.

FCR SATE.

LOT NO. 17, RANGE 7,
TOWNSHIP OF PORTLAND EAST,
zol:str of orraw.

Fiop gurticalan apody to
Dr. Valade, Ottawa.
Or to the Ofice of the
cus.mins musing kforew:

Late Items.

nova scoma.
Since the collapse of the Albion mine affairs have been quict in the Montague District, but now comes aews of a promising strike on the Montreal areas. A small lead has been proved and the equartz which was criphed at the baker or Annand Mill proved good for 20% to the ton.

The Oxford mine is looking well, and prospecting with most encouraging results is going on on the Anderson, Coyswell, and Mchay arens. The richest leads seem to run into or through a swamp, which could bedmined at small expense: These areas are held by parties who will not work them, and what the miners consider the Lest gart of the district, good they say for millions, is now leing idle. The swamp could be draned for a few hundred dollars, and then all difficulty in working the propertic: would be overcome.

The following are the official returns for the month of lanuary, so far as recered at the Mincs Oitice:

TO MINE OWNERS AND CAPITALISTS.

CHAS. M. DOBSON, A.R.S.M., LON., semorts es

Mines and Mining Properties.
Ceniticd Mining Engincer, londom, Enpg. prosiceans for the licas African (iold Nines (Nkankion), Hase
 frojectell, askyed, and taken intu ate Fmptikh matke:

189 Queen Street, Ottawa.

Val.びan!.l: FARM LANDS FOR SALE in manitoba.

2560 Acres of Splendid Prairic Farm Lands Class 1.
The Manitu!a and Nushwevern liaituay suas ihroxih the ribisict in which ifocec lande are situatel.

Sation	3	: 7	23	6;0	cras
-	15	14	\pm	690	
-	17	14	23	G40	-
"	19	14	25	40	

Tiske difcet from the Croms. Well setsica districes

Tetms of layment reawizalile.
NHINE TUIS OFFICE
MCLNTYRE. LEWIS \& CODE,
Barristers, Solicitors \& Notaries Public.
Com:rymines of longerfics amai .1fincral Ripäps.

(idgmanima Canadiar Mining Ketiew Ofice)

WOLFF \& COTION,
Procincial Land Sureyours, o:Tramio anb gerimec.
OFFICE, - 52 Elgin street, Ottawa.
(Ophoxite Fussell IIousce)

J. OBALSKI,
 MINTVG ENGTVEER.

"ill evamine and repurt on mines, and mahe analyse.
Office, 63 St. Gabriel street, Montreal.
CONSULTATION FREF:
WM. HAMILTON MERRITT, F. G. S.,
Asociate Royal schom of Mines, se.,
Mining Ënginecr and Metailurgist, Will report on Mines and Mineral Properties. andrkas:
15 Toronto St., Toronio, Ont.

FOR SALE.

A No. 1

Prospecting Drill,
With new steel boiler and ranplete outfit. Apply to

ROBERT GEE,
270 St. lames St., - Montreal.

Notice to Contractors.

SEALED TENDERS addreaed to the under. Sing Wried, and endorsed "Tender for New Examining warchoute, Nc., Ottawa, will be received at warks requirad in the erection and completion of the

NEW Examming wanehouse, ETG. AT
 OTTAWA.

Plans and xpecifications can be een at the Dewartment of Public Works, Ottawa, on and after MONDAY, 14 th Feliruaiy, ite and mitke themelver fully cognitant of the work to be dose, accordung to the and plans ath Ipecification, lefure putang in their teuderk. Ferwins tendering are further notifed that tenders will not be cimsidered unkes made on the printed
form, upphet, and wined with ther wetual trature
E-ach terver muet be accumpanied by an acropted bank cheque made payable to the order of the Hotorable the Mmiver of Putulic Work, equal io Fir precrat, of the amonnt of tive tender, which will le forfeited if the party decline to enter into a contract when called upwh to do so, of if he fatl to not accepted the cheque will be returned. The inepartment does not bund ibelf to accept the lowest or eny tender.

> By order, GOnEIL

Hepartment of Publac Works,
Otawa, 27th January, 6857.

Notice to Contractors.

CEALED TENDERS addresed so the underHuidsigned and enwored "Tender for Ice, Publs Muikdings, will be eceved at thry office untl Monday, the ${ }^{\text {tith }}$ Gebruars inctant, for filling the Ortawa.
tienked tenden entorned "Tender for lce, Rhieat Hall. fc.," will also be received at the "ance time for filing the ice houme at the Govemor General', Requdence, Rкјези Hall.
Temper to sate price per hock of the following dumenswis, viz.:-3 f. by 1 ff . oy if forn price mens incinde cont of packing and of the nawThe wee to for that purpoue.
ceice we 20 th menasred before being packed in N.t.- The ice payment to te mivic sicondingly. N. H.-- The ice must be saken froan the Ottawa

> Hy onder,
A. GOBEII, Secretary.

 MINING REGULATIONS

To Govern the Disposal of
Mineral Lands other than Coal Lands, 1886.

THFSF REGUI.ATIONS shall be applicable to all Dominion Iands contaning gold, silver, cinnahar, lead, tin, copper, petroleum, iron, or other minerr' deposits of economic value; with the exception of coal.

Any person may explore vacant Dominion Lands not appropriated or reserved by Government for other purposes, and may search therein, either by surface or subterranean prospecting, for mineral deposits, with a view to obtaining under the Regulations a mining location for the same, but no mining location or mining claim shall be granted until the discovery of the vein, lode, or deposit of mineral or metal within the limits of the location or claim.

QUARTZ MINING.

A location for mining, except for iron, on veins, loxles, or ledges of quartz or other rock in place, shall not exceed forty acres in area. Its length shall not be more than three times its breadth, and its surface lwundry shall be four straght lines, the opposite sides of which shall be paralle, except where prior locations would prevent, in which case it may be of such a shape as may be approved of by the Superintendent of Mines.

Any person having fiscovered a mineral deposit may obtain a mining location therefor, in the manner set forth in the Regulations which provide for the character of the survey and the narks necessary to designate the lucation on the ground.

When the location has been marked conformably to the requirements of the Kegulation, the clamant shall within sixty days thereafter, file with the local agent in the Dominion Lands Office for the district in which the localion is situated, a deciaration or oath setting forth the circumstances of his discovery, and describing, as nearly as may le, the locality and dimensions of the claim marked out by him as aforesaid; and shall, along with such declaration, pay to the said agent an entry fee of FIVE molibars. The agent's receipt for such fee will be the claimant's authority w enter into possession of the location appied for.

At any time before the expiration of fivk years from the date of his obtaining the agent's receipt, it shall be open to the claimant to purchase the location on filing with the local agent proof that he has expended not less than FIVE HUVBxED doliars in actual mining opration on the same: but the claimant is required before the expimtion of each of the five years, to prove that he has performed not less than ove. nevioren inhifars' worth of lalor duriny the year in the actual development of his claim, and at the same time obtain a renewal of his location receipt, for which he is required to pay a fee of five tomitiars.

The price tole paid for a mining loration thall be at the rate of five implars pek arre, cath, and the sum of firty imolitiks extra for the survey of same.

Not more than one mining location shall he granted to any individual claimant upon the same lode or vein.
Inon. - The Ninister of the Interior may grant a location for the mining af iron, not exceeding 160 acres in area, which shall le lwunded by north and south and east and west lines astronomically, and its brealth shall equal it length. l'rovided, that should any person making an application purporting to be for the purpose of mining iron thus obvain, whether in goosl faith or fraudulently, possesion of a valuable mineral depent other than won, his right in such deposit shall be restricted to the aren prescriled by the kegulations for other minerals, and the rest of the location shall revert to the Crown for such disposition as the linister may direct.

The kegulations also provide for the manner in which land may be acyuired for milling purpone, reduction works, or other morks incidental to mining operations.

Lacations taken up prior to this date may, until the ist of August, 1886, be re-marked and re-entered in conformity with the Kegulations without payment of new fees, in cases where no existing interests would therely be prejulicially affected.

HLACER MINING.

The Kegulations laid down in respect guartz mining shall be applicable of placer mining as far as they relate o entries, entry fee, awisnments, marking of localties, agents, receipts, and generally where they can be applied.

The nature and size of placer mining clams are provided for in the Regulations, including bar, try, bench creek or hill diggings, and the rights avd weries of viseks are fully set forth.

The Regulations apply alwo to
Ked-Rock Flumes, Drainage, of Mines and Ditches.
The (ifantas. Provistons of the Kegulations include the interpretation of expresions usel therein; how disputes shall le heard and adjulicated upon; under what circumatances miners shall le entitled to alvent themselies from their locations or diggings, etc., etc.

Ther Schemete of Mining Regulatiovs
Cimain the forms to be observel in the drawing up of all documents, such av:-.."Apphication and aftidavit of discoverer of quartz minc." "Keceipt for fee paid ly applicant for mining lication." "Keccipt for fee on extenvion of time for purchase of a mining location." "Patent of a mining location." "Certiticate of the awignment of a mining lecation." "Apphication for grant for placer mining and affidavit of applicant." "Srant for placer mining." "Certificate of the assignment of a placer mining claim." "(irant to a hed-rook tume Cumpany." "tirant for "Iramage." "Cirant of ribit t" divert water and constract ditches."

Since the publication, in 1884, of the Mining Kegulation to govern the disposal of Dominion Mineral Lamis, the same have been carefully and thuroughly'recised nith a siew to emoure ample protection to the public interes. and at the same time to encourage the prospector and miner in oukr that the mineral recources may lie made valuable ing development.

The Intercolonial Rail－

 way of Canada，The Roval Mam lassenger and Freagh loats betwen Casa－

—aN！THRE

lirec：Koule trancen the Wieq and all points on the taner St Itiureace and liate dec Charicur alwo New Brunswick，Noval Scusia，Prince Faluand jamaica．
Jatnaica．
New abd Ilc；camt lieñet：Slerjing and day car run en thruasth b．gurov zatis
livarngen fo：Greas lititatin of the Continen：．Ly
 jom datwanl Mail steinmer al halifax dith，Satur
$-$

 merthusdic．
learour engerictive lasiogroved the Irtercolonal
 the guichest frocinta rosite lectucer Caradia and人ircal liritain．
 can tac had ocn ajidikation ：

5．К1が。
1ahet A．tacis，

KOITT．If，MOODJF，
Wenem F゙rcinh and l＇axectiger larnt
9；Kinoia Herace likel：
1）．HOTITNGFK，

Nov．zand．iEss．

Notice Respecting Passports．
 －befurtment for the＊ante，such apolication to

C．SOW：I．I．
Under Secreiary of State

DEPARTMENT of INLAND REVENUE．

An Act respecting Agricultural Fertilizers．

T

 111：pullic is herely notified that the provisions of the Act respecting Acortctit． 1t＇Rat Fr．killithoss came thtu force on the ist of Jantary， $1 S S 6$ ，and that all fertilizeri whld thereaiter reyuire to le suld sulyect to the conditions and restrictions thercin conatiod．the main feature of which are av follows：－
 cach jar conizima fair aserase cample of the fertilizer marmufactared or int！orted loy dim，amas such
 ample of fertilizer which，isoluained iat the counce of the twelve monthe then nent canuing from such anufacturer or imimoter，and which is transmitsed to the chice amaly，int for analysis
If she fertilizer is put up in pickase，crery uch gucikage intespled fos site or divaribution within

 tuced and ：a cory given to cach pur has：r．

 forgsuint sislmestion lisure lxen complied wish．

 thered．

A copy of the Act may he ohtained upon aphlication to the Departnent of Inland levenuc．

E．MIALI．
Commassioner．

Tenders for a．Liconse to Cut Tim－ ber on Dominion Lands：in the Province of British Columbia．

SFAR．ED IENDERS Zuldresed to the puder S．Nigned and matkea itendert for ：a Tiubler londay，the ast day or Novemter until noond on cinaler trerths of sen wquate miles eich，noore or en，mumiked rejpectively $4.5,3$ and 9, situated an Kickime Home River and Otternail Creat ； rihatary of ilue Kiching Hore River，Hear field and Otterait Statious，on the line of the Canadian Pacific Kailway，in the l＇ronince of Britivi Colum．
St
She：che vowing the povition approxiinately of hirey with le，tiogether with the condations an ulich parment or is the Croun itimber ofice at this be－
 Columbia．＂＂A．míngess．

Depuis of the
Minister of ane Jnterior．
epanment，wo the Interne：
O\％．awa，sith Alugusti isso．

Tenders for a License to Cut Tim－ ber on Dominion lands in the Province of British Columbia．

 Nextr，will le received at ahis Office up to thuan ons imbisc lxations of fifty of thevember mext for three imicr ixerth of fifty cyuare milice cach，mure or he wet side of the Columbia Kiver，near（rohen Cits Station，on the line of the Cavadian placife ailway in the trovince of Hratiab Columbia
Shetche Niowing the joxitiws approxamately，of hee lerthe together with the conditions upoti hirh ilies will te ficenwed，and the form of iender herefor，may be obtained ai this Department or a the Cnun Jimbert Oifices at Wianpar，Calgary，

A．M．HLRRCESE，
Minixer of the literior．．
Tejartment of slice interior．
O：tawh，g：h September．iess．

MINES AND MINERALS．

Developed and Undeveloped Mines and Minerals of Commercial Value BOEGETT XND SOLD．

Properties examined and analyses made of ore of every description．A competent Expert is permanéntly engage for the purpose of making Cuprejudiced Reports on all Mines placed in our hands for Sale，such reportslbeing at a itmes，open to intending purchasers for examination．

> Phosphate，Iron，Iron Pyrrites，Copper，Asbestos，Mica，Plumbago，Gold and Silver Mines，and Marble and Sandstone Quarries，for Sale．

Mineral Lands examined and reported on by our expert；also，analyses of Minerals of every description made by a Combetent Assanist．

Correspondence with Owners of Mines and Capitalists desirous of investing is most respectfully solicited：
Address all Communications to

