The Institute has attempted to obtain the best original copy avalable for filming. Features of this copy which may be bibliographically unıque, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cat tes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documenis

V
Tight binding may cause shadows or distortion along interior margin/
La reliure serrié peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-6tre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthrode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Généiique (périodiques) de la livraison

\squareAdditional comments:/
Commentarres supplëmentaires:
This item is filmed at the reduction ratio checked below/
Ce documen* est filmé au taux de réduction indiqué ci-dessous.

New Series.]
TORONTO, NOVEMBER, 1845.
[Vor. I.-No. 11.
Tee operations upon the land may now that this is the proper period to take steps be considered completed for the present to impart instruction to the rising geneseason, and any advice that we have to ratiun. The Common Schools may truly give in relation to agricultural operations be said to be the nurseries in which the will have a direct reference to the science, farmers' sons and daughters complete and not to the practice of agriculture. their education. There never was a peIn the future management of this journal riod in the history of this country when we purpose to devote a considerable space an cqual amount of encouragement was in the numbers we issue during the winter, given by government towards the sup. months, to topics that will be likely to nort of Common Schools, and twe hope have a tendency to stimulate our agricultural readers to improve their minds, by which means the character of their profession may be greatly enhanced in their own, as well as in the estimation of oth ers. Agriculturists, owing to the inportant position they occupy in sustaining civilzed society, ought at least to have a preponderating influence in the manarement of the affairs of the nation. It will be in vain to expect that the farmers of this colony will exert the influence that their noble calling would seem to warrant, upon the measures of Government, so long as they remain an uneducated portion of the community. We therefore would beg to remind our fricads that should be paid :o teachers, but we
do not hesitate to say, that the standard of Common School Education can only be measured by the efficiency of the teachers employed to impart instruction to our youths, and that it will be useless to ex. pect that well qualified persons will engage to take charge of our schools at a less salary than persons of similar attainments receive as clerks in the mercantile trade, and in the several public offices in the country. It is a most difficult task for a person who holds the office of instructor, to impart a branch of knowledge to others which he really does not understand himself. This idea holds strictly true with the school teacher; and in a country like this, where time and money are nearly synonymous terms in point of value, it is of the utmost importance that such only should be employed as have a thorough knowledge of the English language, and the branches of learning usually included in a sound and practical English education. A youth between the age of seven and fourteen years will receive more instruction from a well qualified teacher, such as we have attempted to describe, than an other youth of equal ability would acquire between the age of seven and twenty-one years, from such teachers as may be met with in almost every township in Canada. If this be true, which no one will venture to question, then the seven years that the latter youth would have to spend at school, to make him equally qualificd with the other, would have the very injurious inGuence of weakening his intellect, and worse than all, he would feel the inferiority of his capacity, when in the company of those who had the start of him in the rac: of acquiring knowledge, by being placed under the instruction of men of superior attainments in learning. We might multiply arguments in favor of the interesing theme of education, but to a discerning mind it must be obvious that the sucerss of agricultural improvement greatly depends upon the stand that is taken by the rural population in sustaining their educational institutions. Agriculture is the foundation, or rather mainspring of all our greatness as a colony; and by imparting a practical education
to the rural population, the varied and extensive resources of the country would shortly become developed, which would bring into being sources of wealth that the colonists at present have no idea of. Long evenings and stormy days can be profitably employed by farmers in acquiring useful instruction; but ferr classes are less disposed to obtain information from books, of a character which illustrates the principles of their business, than the agricultural-why this is the case it is most difficult to conjecture-because no branch of studies is more interesting and instructive than that of the science of agriculture; and but few, if any, can be turned to greater account when practically applied. Belore the agricultural community can be expected to have acquired a taste for reading an exposition of the principles which comprise the theory of agriculture, they must first accustom themselves to read the details of the best systems performed in valious countries, and upon different soils, and especially of those most successfully practiced in their own country. The cheapest method yet devised to widely diffusc agricultural information, is through the medium of agricultural newspapers. This simple, and at the same time effectual means of bringing about an agricultural reform, has been attempted during the past few years in this highly favored agricultural country. It is true that a fraction of the farmers have availed themselves of this cheap method of acquiring valuable knowledge; but it is not sufficient that only about one in a hundred of the agric ' ${ }^{1}$ tural population of Canada should reces, e benefit from the agricultural press. If knowledge be useful to a few, why not equally so to the many? The best farmers in Canada constantly receive an agricultural paper published in their own country; and from this journal they have no doubt received ten times the value of its subscription price. If such a journal is appreciated by the best practical farmers, why should not those who have much more need of instruction feel equally interested in its success? We leave others to answer these questions, and would merely add,
that here's a journal published in a language that' all can read and understand, which is afforded for the very low price of two pounds ten shillings for twenty copies-each copy containing three hun dred and eighty four pages-being only two pence halfpenny for a uumber containing sixteen pages of closely printed agricul. tural reading. Only two pence halfpenny! for an amount of agricultural reading that is worth to any farmer who would take the pains of reading, understanding, and practicing its details, more dollars than it would cost him in pence. Farmers who are opposed to book knowledge, listen to the following fact: Here is a source presented to your view, of profitable investment, whereby you will realise pounds for pence.
We have branched out in the foregoing remarks, with the intention of recom. mending our Agricultural friends to devote a portion of this month in giving a more extensive circulation to the British American Cultivator. It is now, when the wholesale price is considered, the cheapest Agricultural Journal published in the English lanğuage. We venture the opinion, that the same amount of agricultural reading cannot be had, in any country, for the moncy. Those of the friends of Canadian Agriculture who have aided us in establishing the Cultivator, are no doubt aware, that we have not yet received a farthing for the first four years' service ; that we have toled in the cause we have had so much at heart, and that we have sustained a direct loss of $£ 500$ in cash, in keeping the work before the public A less circulation than 10,000 copies at 2 s .6 d. each, for such a Journal as the Cultivazor, would not make it an object worth devoting a large share of a weil qualfified Editor's attention. This circulation will not be had until the expiration of other four years; unless it increases at a faster ratio than it has done heretofore. If each of the present subscribers would devote ene week in extendug the circulation of the Cultzvator it might be increased to more than 30,000 copies. It has now been a long period since any appeal has been made to the readers of this Journal ; nor do we mean this for one, because the present circulation covers the actual expense of publishing; but we feel anxious to devote a large share of our time in its management, and also desire to yisit the best farmers and report fully their several methods of cultivation, which would greally encreaise its value in point of usefulness ; we also desire to illustrate many of the subjects
upon which we trent, with valuable and costly engrayngs ; but to do all this, we want. tho 10,000 regular paying readers, at the small price of unly thirty pence annually, ench. How the above number of subscribers are to be had, is, after all, the question. The method by which they may be obtained, we shall now propose. We ask as a tavour, each of our present subscribers, to devote oniy a small portion of this month in canvassing the settlement in which they reside, for subscribess to the British American Cultivator ; or, which would still be better, both for the interest of the Journal and the canse of Agriculiural improvement, to solicit menibers to the District, County, Riding, or Township Agricultural Societies, as the case may be, who shall each be supplied with the current volume of the Cultivatur, upon the payment of One Dollar subscription to the Sociery. For this extraardinary general canvass in favour of Canadıan Agricullural improvement, we propose in paynent, the fullowing extra performance on our part: when we have good evidence that our pations have acted upon the above suggestion, we shall then, Providence permittung, bend our whole energies in the conduct of our Magazine, by which means it will be made, nearly, if not altogether an original work, being what its title page would indicate-a true transcript of the condtion of Britush American Agriculture; and in adduon to this we shall employ costily engravinge to illastrate the Improved Agricultural Machinery that are of moderi discovery, as well as of a variety of other branchas of Agriculture, which would altogether greatly enrich the value of our Jonrnal, so that at might at least favourably compare with any stuniar work published on this continent. To do our part of the task, would require the whole of our disposable time; and besides, we would be subjected to a vast amount of extra anxiety and care; the patrons, on their part, would only have to spend a few hours, or days at the most, in calling upon their neighbours, and pressing upon their attention the importance of Agricultural Journals and Societies, being patronized by every well wisher to the country, and swhen ten or fifteen, or twenty ssbscriptions are obtained, the small sum of 2 s . 6d. each will have to be transmitted to the Publisher, and then their part will be performed. The support which should be given to schools, and the part which the farmers and oihers should take in the advancement of the cause of Agriculture, have been here submitted as subjects worthy the attention of all classes, during this and the other winter months ; and we trust that the few hints that have been dropped, will be received by the public in 3 generous spirit, and that every true Canadian, will heartily co-operate in moving forward the Car of Knowlenge.
We have a few thousand full sets of the earrent volume of the Culivator on hand, and with a trifing effort on the part of each of its pres sent supporters, they might he disposed of to the great advantage of Gunadian Agricelture

REPORT

of Messrs. W. G. Edmundsox and Jostph Hartman, whowere appainted as a Committee by the, Fourth Riding of York Agricultural Society, to visit the New York State Agricultural Society's Exhibition held at Utica on the $16 \mathrm{~h}, 17 \mathrm{~h}$, and 18 th of September, 1845.

Your Committee in accordance with their instructions, attended the late Cattle Show and Fair of the N. Y. S. Agriculturai Society held at Utica, and took notes of snch parts of the proceedings as in their opinion were calculated to benefit the Canadian Agriculturists, which they submit, together with a few pertinent remarks, for your consideration, at as early a period as circumstancas would admit.

The weather throughout the three days of the exhibition was most propitious, with the exception of a smart shower about five o'clock of the last day, which obliged the several Committees to read their reports in one of the business rooms. by reason of which circumstanee the mass were, deprived of hearing this very interesting part of the performance. The number of visitors on the ground during the second and third days, was supposed to be from sixty to seventy thousand; and we take equal pleasure in stating, that notwithstanding the great crowd, not a single instance, of disorderly conduct came under our notice or within our knowledge.

The exhibition of stock was considered, by, distinguished judges, to be the best ever witnessed in New Yook; and according to the best of our information, the number of four-footed beasts may pe put down as follows:-48 Durham Cattle, 11 Herefords, 9 Devon, 4 Ayrshire,-72 in all of British breeds:-37 Grade, 21 Native, 124 Oxen, 12 Steeds, and 8 Fat Catte, making in all 274 Horned Cattle.

Of Horses $1^{11} 4$ in all, viz:-23 Stallions, 36 matched, 7 Geldings:- 32 Mares and Foals, and 10 Yearling Colts and Fillies,

Of Sheep there were 64 Long Woolled, 112 Middle Woolled, 58 Merinos, and 23 Saxonies. These numbers of the different varieties were entered for compctition, but not all exhibited on the ground;-as not more than one-fourth of the nambers of long and middle woolled sheep, entered were on the ground for exhibition. To the sbove kinds, adding 34 Swine, there was a grand tobove of G79 four-footed beasts at the Cattle Show: of the Britigh breed of Horned Cattle would at all

In addition to the Cattle Show, there was a Ploughing Match, an exhibition of Poultry, of Farming Implements, of Dairy Productions, of Maple Sugar,-of Damestic Manufacture Woollen, Linen, Cotton, and Silk Goods,-of Fruits and Flowers, of Vegetables, of Flour, and of Cooking and Parlour Stoves,-and besides these several departments, there were sixty-five discretionary premiums awarded for such articles of merit (not enumerated in the previously published list,) as were exhibited by the enterprising inhabitants of the Empire State.
The amount of Premiums awarded equalled $\$ 3000$, and the fees collected at the gates and in the business office of the Society, exceeded $\$ 4300$, so that the funds of the N. Y. S. Agricultural Society were increased rather than diminished by this exhibition.

In reporting the most interesting details of this unrivalled exhibition, your Committee purpose to treat each particular in a style most likely to be acceptable to the friends of agricultural improvement in Canada; and at the same time they shall endeavour to give a correct and impartial history of this unrivalled exhibition.
Durhams.-The pure blooded animals of this breed did not equal our expectations; indeed there was not a Durham animal on the ground that would equal a number of the best bred Durhams we have seen at our Agricultural Shows in Canada. The few Grade Durhams shown were decidedly superior animals, and furnished ample evidence, that, for grazing purposes at least, this justly esteemed breed of Horned Cattle are well adapted to improve our native stock.
North Devons.-Both thorough-bred and grade animals of this breed are deserving of high consideration; in fact it wou'd be difficult to say too much on their praise, especially of the anman in exhibited by H. N. Washbon, of Butternuts, Otsego Couniy N. Y., and those of E. P. Beck, of Sheldon, Wyoming County.

Mr. Washbon's stock of pure Devons comsteal of 40 head, and Mr. Beck's of nearly a like number. No animals in our opinion, combine the working, the daiiry and the grazing qualities, to the same degree, as do the improved North Devons; and to judge from the superior race of animals that are to be found in New England, which owe their origin to this particular breed, we should be inclined to the opinion, that nons
compare witti the Devon's as a stock for improvmg the native catle of Canada--especially where oxen for the yoke are in good demand.
Herefords.-The few animals of this breed that were on the ground were of a superior kind, and in our judgment highly bred; and where cattle are wanted alnost exclucively for grazing they would doublless prove a valuable stock, but for working oxen mad milkers they are inferior to other improved British breeds.
Ayrshires.-Of these there were only four animals, all of which appeared to have the marks of pure breeds,-the cow especially attracted our attention, inasmuch as she gave tokens of a very extraordinary milker, a quality which the Ayrshire cow is in possession to a very high degree.
Horses.-The display of horses was very beautiful; brobaLiy surpassing any previous exhibition of the society. There wcre upwards of 30 stalltons on the ground, besides a large number of matched horses, and mares and celts.
Hóss.-Burkshire hogs appear to be no longer admired by the American breeder. We saw none at the fair that gave evidence of good breeding, except an aged boar. The improved Leicesters are generally preferred at the present time ; but unless more discretion be observed in crossing with this breed than was with the Berkshires, they will prove of equally short celebrity; they are, however, a larger race of animals, and so far as merit on this score goes, they will andoubtedly inprove the present degenerated race of Berkshires.
Sheep.-The long woolled sheep which chieffy consisted of grade Leicesters and Merinos, and grade South Downs and Leicesters, were not equal to the grade Leicesters that may be seen in almost any of the farm-yards of the Home and adjoining Districts. We saw only one pure bred Leicester, and two South Down Rams, all of which were good of their kind; but not equal to rams of the Leicester breed that are to be seen at the Agrioulural Shows in Canada. The Merinos, or Gine woolled breed, as much exceeded our expectation as did some of the other departments of the show fall short of equalling it. We went to the fair prejudiced against them, and returned entertaning most favorable impressions in relation to their proftableness for the farmers of Canada West,. With our present apinions, of improved Merino sheep, we think those of of choice fruits without forming the resolution to the farmers of this country whose tastes simprave in this particular; and we believe the ee
and circumstances' 'would warrant them to: engage in the business of wool-growing; would.da well to turn their attention to improving the wook of their sheep, by crossing with the hardy breeds of Merinos. The wonl of this breed is worth, in our market, from 2s.' is 2s. 6d. per 1b., and a three years' old wether will clip from five to six lbs. ; and a flock of ewes and weathers will ave-rage three and a half or four lbs. each, of a very superior article of fine wool. Three Merinos may be kept upon the same feed, in equally as good condition, that would be required to keep two Leices:ers; and in those districts where mutton bears only a small remunerating value, it would certainly be wise for such farmers to pay some little attention to improving the quality of the wool of their sheep. Merinos crossed upon: the Leicesters improve the wool to a much greater degres than they decrease the value of the carcass; and by judicious crossings we see no reasun why both objects cannot be obtained, and by ${ }^{2}$ the accomplishment of which, sheep-husbandry' would become an important b.anch of Canadian husbandry. It is supposed by the majority of the farmers of this country that the Merino breed of sheep shear a light fleece, and will not endure a severe winter as well as the long-woolled breeds; these views, however, we have confidence in believing, will be changed when they become better acquainted with this particular breed of sheep.
Poultry.-Of these we might mention the celeratedDorking Fowls, Phick Polands, Muscovy Ducks, Wild Turkeys, African Geese, and a lot of large fowls, owing to their extraordinary size ${ }_{n}$ designated the ostrich variety. This department of the show being novel to us, attracted some little attention and interest. There were seven competitors; and we noticed that one gentlemang exhibited eleven varieties of hens, t wo of turkeys, ${ }_{2}$ three of ducks, and three of geese ; and another nine varieties of hens, two of turkeys, two of geese, two of ducks, and twelve of pigeons, The improvemenṭ in the breeds of poultry, was highlys creditable to the gentemen who competed for the prizes.
Fruits.-Notwithistanding the unfavorable seà? son, the show of fruits nltogether surpassed any thing of the kind we have seen, - a full descrip'. tion of which would occupy more space than the timits of an ordinary miscellaneous report would admit. No one could have seen the great display
were no specimens exhibited but such as can be had in the principal nursery establishments in the union, at a very moderate rate.

Butter.-The specimens of butter, which were principally in large firkins, were of a very superior quality, being equal, of not superior to the best qualities of this article we have heretofore met with.

Checse-Of the many thousand visitors that were at the Fair, we venture to say that all were delighted with the display of cheeses. They were divided off into classes, according to their resplective weights, and to judge from appearances, we might safely put down the gross weight at six lons. The best lots were exhibited by a combination of farmers of Herkimer County, who manufacture some acores of tons annually, exclusively for the British Market. The Canudian farmers might here learn a lesson to their advantage, by fullowing this noble example set them by their neighbors. The farmers of this country should now reap the adva tages which accruc to the American farmers, by supplying the British Market with cheese. The Canada market must, however, be supplied with Canadian checse, before any thought need be taken to supply the markets of the mother country. All that is required to make this an important branch of Can. adian husbandry, is skill; of this there is an abundance both in Great Britain and in the Cnited State, and we venture the opinion that those who engage in this new business, will find it to their advantage to employ experienced dairy-men from Herkimer County, or if they can be had, from some of the best dairies in England.

Maple Sugar.-There were a number of lots of Maple Sugar exhibited, all of which were equal to the best crushed loaf. Persons unacquainted with the process of purifying brown sugar would ocarcely credit that the specimens such as we allude to, were manufactured from the juice of the maple. The methods of clarilying practiced by the successful competitors, were given in full in the early nuaber of the current volume of the British American Cultivator.
Domestic Mrunufactures.-The manufacturers and ladies of Utica and surrounding country exbelled in exhibiting articles of domestic manufacture. The articles exhibited consisted of woollen blankets, flannel, wooilen cloth, woollen carpets, Brussels carpets, rug carpets, kersey, double carpet coterlet, knit woollen stockings, linen cloth, linen diaper, hearth rugs, linen sewing thread, linen knit stockings, silk stockings, cotton stockjings, and a variety of other articles, which proved
as attractive to the citizens of the towns and cities, as did the Cattle Show to the rural population. It was estimated that the number of ladies on the ground equalled at least 12,000 .

Ploughing Matck.-The number of entrics at the ploughing match were twenty. The task for each was one quarter of an acre, and two hours the time allowed to perform it. Some of the work was tolerably well executed, but on the whole it would not have met the approbation of a British ploughman. The furrow slices were six inches deep, and from twelve to fifteen wide; and in the main, turned perfectly flat. The ploughs were short in the handles; and in their general construction did not appear calculated to turn a well-proportioned furrow. The ploughmen have rather an imperfect idea of the best method of forming ridges, and in taking up the two last furrows; they were so deficient in the latter particular, that among the twenty competitors, there was not a single individunl who attempted to finish his work. There was a space of unploughed land left between each allotment, which to us appeared rather a novel method of disposing of this the most intricate part of the work.
Before we left the ground we offered to plough a native-born Canadian youth of only 16 years of age, against any native-born American that could be produced. We made this challenge not through any desire of competing for a wager, but merely to convince our American friends that their whole system of ploughing, at least, so far as scientific principles are concerned, are radically deficient. The conclusion we have come to on the subject of American ploughing is, that they are as far behind the Canadian farmers of the Home and adjoining Districts as the Canadian farmers are behind them in the manufacturing of cheese.

Agricultural Implements.-The implements of husbandry exhibited were mostly of a superior quality, and to as the most interesting part of the show. There were quite a number of labor-saring machines on the ground,-a few particulars in relation to each would no doubt prove highly interesting:-

Itussey's Reaping Mrchine.-This, probably, is tue most efficient implement yet discovered for cutting wheat, rye, oats, and barley; and the principles upon which it is constructed is so simple, that it requires hut a small amount of mechanical skill to co. itruct it. The whole cost need
not be more than $£ 1210 \mathrm{~s}$; and when its re. markable power for cutting grain is taken into the account, this would be considered by compètent judges to be one of the cheapest agricultural implements in use. This machine is not only simple in is construction, and labor-saving to the extreme, but is as durable, with ordinary care, as the plough, axe, or spade. To give some iden of the great utility of the Reaper, we will here mention a few particularis. This machine, with the aid of a pair of horses, a man, and a boy, will cut in a most perfect maniner, in a day of ten hours, twenty acres of heavs wheat. Cunsiderably more than thas have been done per day, but the average may be safely put down at fifteen acres. The cost of cutting an acre of wheat at this rate, allowing 10s. per day fur the man and horses, and 3 s . 9 d . for the boy who rudes, and 5 s . for wear and tear of machine, would only be fifteen pence. Hussey's Reaper has been extensively enployed in the Suuthern States the past harvest; and it is the opmion of all who have employed it, that it will save at least one bushel per acre over any other method yet invented for harvesting grain.
The conclusion of this report, will appear in the December number of the Cultivator, which will embrace a brief description of the machinery exhibited at the Fair, an outline of the constutuuon of the New York State Agricultural Society ; \# brief history of the rise and progress of agricultural improvement in the Empire State; and a few leading features of a plan for advanc.ng agricultural improvement in Canada.

ENCYCLOPCEDIA OF DOMESTIC ECONOMY.

The Messrs. Harpers have issued the XIth number of this valuable work. It is one of much interest to farmers, being devoted to the construction of stables, management of horses, making buttcr and cheese, rearing poultry and bees.In this number commences the department on the Preservation of Health, and Domestic Economy: We cannot withhold from our readers the following :

Health in infancy and childhocd will always form a consideration of deep interest to parents. Their eariest solicitude must alivays lead them to seck the means of developing in fair proportion all the infantile powers, bodily and mental, of their offispring. These means are comprehended in the 'term" goodnursing," or, in medicallanguage,
"physical education." Maternal attention andi foresight should ever be directed to this subject; for 'bad nursing', the mismanagement and neglect of the bodily powers of children, is olten the fuundation of diseases in mfancy, which leave permanent effects in the collstation, or bring forward diseases which might otherwise have always remained latent, thus blighting all the enjoyments of life that result from good health: besides which, so connected are ail the physical, inteli'ectual and mural systems of human nature, that in no individual canone of them be impaired without danger to the others. The wisest system of education may never be sufficiently eflective to eradicate the evils of " bad nursing."
If any of the fulluwing details and ulservations. appen applicable chi-fly to the affuent conditions oflife, or comparatively useless to whom pecuniary considerations would restrict in their domestic arrangements, still there will be found suggestions. of a general dosciption applitable to the common namre of childhod-suggtestic ns which may serve for any sphere of life in which sensible, active mothers devote themselves sufficiently to their maternal dutues. such molhers may bring upas fue, heallhy, hapy children as the must expensive appointed nursely can disp'ay; and even more so, for luxury and mdulgence are not in themselves at all favorable in their influences over chuldhood.

Children, under all ordinary circumstances, may be brought up in the wholesome habits of cleanliness and activity; may be taught self-restraint in regard to food; may be encouraged in cheerful and enhvening pursuits; therr minds may be anakened to useful observatins, even by the simple exercises essential to the developement, of their bodily organs. These are the principat influences promotive of infant health and vigor: and by these a merciful Providence has rendered the welfare of childhood independent of the gra-: dations in wealth and rank that are caused by the varying circumstances of civilized life. Thus, mothers employing wisely the means of good nursing which nature entrusts to all alike, may. look with indifference, as mothers, on the useless appendages and fuxuties with which they may be anable to surround their children: may they not also rejoice, if, while their condition denies their children-privileges which afluence might yield them, it also screens them from snares and temptations most fatal to their best interests.

Corn Solvent.-Pearlash (dried), 1 part; water, 2 parts. Mix. Apply with a rag.

Indian-Meal Cakes.-To three pints of Indian-meal, a piece of butter as large as an egg, and a tea-spoonful of salt. Put two tea-cupsful of boiling water; stir it in, then add three eggs, and milk to make it to the consistency of batter. Half a tea-spoonsul of saleratus.

ROYAL AGRICULTURAL SOCIETY OF

 ENGLAND.-

ANNUAL MEETING AT SHREWSBURY.

The farmers of this country can scarcely coneive the favorable influence that the Irish, Scoluith and English National Agricultnral Societies have in improving the character of these three great divisions of the British Empire. Without sach institutions the mother country would becone dependent upon other countries for the principal share of her breadstuff, and with them she may ultimately hope to supply all the staple agricultural products required for home consumption. These institutions, together with their auxiliaries, are liberally patronised by the govermment, the landed aristocracy, and the intelligent portion of the tenant farmers, and not a few have become so wealthy, that the yearly interest accruing from invested stock is abundantly ample to meet the annual demands against the institutions. The great success which has attended the exertions of the British Agricultural Societies, has had the effect of influencing every other nation in christendom, to charter similar:- stitutions; and there now truly appears to be a laudable spirit of emulation manifested by the great corn-growing nations of the world, to ascertain which can prodice the comforts and luxuries of this life in the greatest abundance and at the cheapest rate.- i Facts like these presented to view, it is to be hoped will have the effect of stimulating the Ca nadian husbanlmen to improve in their agricultural operations, so that it may no longer be said that this country is behind the age in general improvement. Our presant object in calling attention to this subject is, to mention a few of the leading improvements effected in England within the past twelve months in the several descriptions of agricultural implements, as exhibited at Shrewsbury, at the late exhibition of the Royal Agricultural Society of England. We are indebted to the Editor of the English Agricultural Gazetle for a voluminous report of the above meeting, and for the information of our readers, we glean the following particulars.

Chaff Cutters.-One of hose implements was echibited by Mr. Joyner, of Aveley-hall, Romford, Essex. The knives of chaff-cutting machines consist commonly of short and slightly curved blades, attached to the arm of the flywheel near the axis; so that when they are
brought around by the revolution of the wheel upon the straw, or other substance supplied by the feeding rollers, they operate on it with a sort of chopping action, which not only prevents their cutting well, but causes a shaking of the machine, which puts it soon out of working order. But in this mplement the knives are made of a scy the like form, and much longer than usual, and are attached to the periphery, and at such a distance from the axis, as well n's in such positions in regard to the feeding-rollers, that they come down upon the straw or other substance to be cut, with a long sweep and continuous shearing netion, whereby the machine is said to perform nat only a greater quantity of work in a given time, but at much less cost in point of wear and tear.
Dibbling Mlachine.-The next implement to be mentioned is Mr. Newberry's Sced Dibbling Machine, which is now favorably well known in England. From the numerous reports that we have read in the English agricultural press, in relation to this implement, we are ready to conclude that is the most perfect machine for sowing grain in drills that has as yet been invented.We hope that some one in Canada will take steps to introduce one in this country, so that they may be constructed here, and brought into use in the most extensive wheat-growing districts. It consists of a series of wheels, each dibbling a separate rnw, and the construction of which may perhaps be understood from the following explanation: Imagine a wheel whose spokes project three or four inches beyond its rim-if such a wheel were rolled along the ground, it would dibble holes in a rov as it went. The box and spokes of this whetl are hollow, and each spoke is divided longitudinally into two halves, one of which is fixed, and the other is moveable, its surface, where the spoke is divided, sliding overthat of the other. Imagine that, by an arrangement acting in connection with the motion of the wheel itself, the moveable half of each spoke, as soon as the latter had dibbled its hole, should be dibbled an inch; the end of the tube down the middle of that spoke would thus be opened, and any seed in it would drop into the hole just formed. This is the mode in which the implement acts-a feeding arrangement for placing two or three seeds in each spoke before it acts as a dibble, being attached to the parts just described.The price of the five-rowed dibbler is $\mathbf{£ 6 0}$.
Mr. Robinson, Lisburn, County Antrim, exhi-
bited his Churn, which has been highly spoken of. The churn is of an oblong or oval form, divided into two unequal parts, lengthways, by a partition. In the largest division, the blades or flyers are placed, less than one half mmersed in the milk or cream, and covered over similar to the paddle and box of a steamboat. The other, or smaller division is open or uncovered, and in which is placed a sluice, as hereafter described. By turning the handle, or fly-wheel, the blades or flyèrs are put in motion, which, acting on the cream, sends it round and round the churn in a continuous and rapid stream, the partition before mentioned being so contrived that it admits the cream to pass round in a current, so that every particle is successively and repeatedly benten or churned by the flyers. In much less time than is required by other machines, the cream is broken and butter formed; and, by a very simple and effective contrivance, the butter is prevented from passing again under the flyers, by means of the sluice, which, being pushed half way or so into the fluid, the butter, as it flonts, is stopped, and easily collezted; by this arrangement the milk is gleaned of every particle of butter, and the produce is thereby increased at least at the rate
of half-a pround to 24 gallons of milk-a quantity sufficientin a short time to pay the expenseg of the machine, independent of the superior quality and saving of labour. On the latter point, this, olject is fully attained, by the construction of the blades, and their position with respect to the fluid being less than half immersed in it, so that when the cream is once in motion, it is easily kept up. Anothewadvantage arising from the arrangement is, that the spindle being above the level of the fluid, a light.joint is not necessary ; the friction is therefore, greatly lessened. Price $\mathrm{C3}$ 10s.
Mr. Crosslill, of Beverley, exhibited his valuable Clod Crusher, which the experience of the few years during which it has been at work, enables those who have employed it to describe as.a most effective and useful implement. The division of the cylinder is in this implement carried to an extreme; so that, in fact it consists of 23 wheels all working freely on the common axlethese wheels are toothed. This implement would prove of great benefil in the exrreme clayey die. tricts of this country; and in the hope that it may shortly be introduced, we have procured at considerable cost, the accompanied engraving. .

Mr. Clyburn, manter of Lord Ducie's works, discharged. The grọin as it is separated from exhibied his patent Threshing Miachine at work. This mächine consists of a revolving cone or beater enclosed in an outer fixed concave case; the outercase is open work; the corn is fed in at the smaller end of the concave case, and by the differencé in the velocity between the large and small end of the revolving con'e or bedter;) the ;staw tis carried rapidly to: the darger end; and
the ear, is thrown througli the trellis or open work, so that a complete separation tokes place The wind caused by the revolution of the beater is brought to operate upon the threshed grain, and blows out the greater portion of chaff; thus, at one operation, the threshing and first winnowing is performed. The machine is' driven with da improyed horse power, and, is portable; it con-
mists of an iron frame, which carries all the wheelwork, and the starts are fastened into recesses made for that purpose upon an internal iron tooth-wheel, which prevenita any unnatural stress upon the spindle or any part of the frame. As a proof of its correctness when at work, it makes so noise; the threshing part can be driven oy horse, steam, or any other power. This machine has had several improvennents made in it since last year, one of which is an improved shaker, which completely separates the corn from the :atraw. Price: Threshing-machine, $£ 80$; shaker, f 35.
This threshing-machine as it was at work in the yard had Mr. Clyburn's winnowing machine attachei to $1 t$, and the corn was delivered from it very clean. The fan or blower of this winnower is about 3 feet diameter at its greatest radius, and 2 ft .6 in . at the smallest, with the fans $4 \frac{1}{2}$ inches wide, and placed at an angle of forty-five degrees; so that when put in motion the wind enters at the smallest side and is driven out at the largest, filling a space or chamber 3 feet square with wind. The ridde is placed in the middle of the chamber with a vibrating motion, having a small hopper underneath it, which moves with t , the large hopper and feed roller being at the top of the wind chamber. As the grain with the chaff in it drops from the feedroller to the riddle, it meets with the wind from the upper side of the fan, which blows out the chaff before it gets on to the riddle. The grain after passing through the riddle is concentrated together in the small hopper that moves with the riddle: when it leaves the hopper, it meets with! the wind from the lower side of the fan, which drives the light grain farthest fromit into a spout provided for that purpose, leaving the heaviest and best to fall down upon a screen which separates from it any seed that may be left. One of the great improvements in this machine is making the fan of such a form that it will give a greater degree of wind for the grain to fall through than in any other machines: another great improvement is its kaving one of Hornsby's registered feeding apparatuses attached to it. Price: with Hornsby's freder, El 7 ; without ditto, Xl 5 .

Mr. Viago, of Penzance, exhibited his Seed Planter. It consists of six pressing-wheels and three carrying wheels; it will, with great dispatch, deposit any kind of grain or seed, at any distance, in any number of grnins, with the same aniformity as if done by dibbling. It alsc pos-
sesses the advantage of covering the seed at the same time. The price varies with the size: six rows, $£ 27$. The principle on which it acts differs, as far as we know, from that of any other machine of the kind. The seed is contained in a box, having a double bottom of sheet metal, one fixed, and the other moveable-sliding over the first. Both of these are pierced with holes, but it is only when the holes of both coincide, that the seed can escape; and it is upon the regular recurrence of these coincidences that the regularity of the sowing depends; and it is upon the length of interval occurring between these comcidences that the thickness of sowing depends.

We have given the address of the parties who exhibited the above implements, in the hope that some of the Canadian Agricultural Societies would be induced to introduce some or all of these improvements, in this Colony. This course we purpose to practice in future to a much greater degree than we have formerly done, in the hope that Agricultural societies will in future make it a point to import such articles as would tend to benefit the farming community, which importations should be sold by public sale to the highest bidder, so that the money would again revert to the society for the awarding of premiums, \&c.

Care of Fall Planted Trees Shbubs, sc.-In this cold climate fall planted trees should invariably have litter or rough manure thrown around thr.n on the surface of the ground, to the depth of three or four inches, to guard the roots from injury ; and in addition, all tender fruit trees, such as peach, apricot, and nectarine, should be sheathed with straw to protect them from the severe and often fatal effects of freezing and thawing,

All tender ornamented trees and shrubs, roses, \&c., should be protected in like manner. A little carc of this sort, timely given, will prevent much loss and disappointment. It should be done just as the severe weather sets in. StrawVerry Plantations made in the fall, should be covered with leaves or straw two or three inches deep. Raspberries should be pruned and laid down, and protected
with a covering of two or three inches of earth, or tied to a stake and sheathed in straw: they will bear a much larger crop and finer fruit than if left exposed to be enfeebled by the severity of the winter. Beds of tulips, hyacinths, and other bulbous roots, should also be covered with leaves or manure, which can be raked off early in the spring. No one who loves fine fruit and flowers, whll think it too much trouble to take such pains now, as will ensure their safety during winter. Their disappointment will be less, and their enjoyment more, next summer.

ICE HOUSES.

A short time before I left England, you published in the Gardeners' Chronicle a number of letters and plans for the construction of ice-houses, but, as far as I can remember, nothing at all rescmbling the Chinese one, which I shall now describe to you. On the left bank of the Ningpo river, proceeding upwards from the town and firts of Chinghai, and in ' various other parts in the north of China, I have met with these ice-houses. When I inspected them for the first time, last winter (1843), their constrnction and situation differed so much from what I had been accustomed to consider the essentials of an ice-houss at home, that I had great doubts of their efficiency; but at the present time, which is the end of August, 1844, many of these houses are yet full of ice, and seem to answer the end most admirably. You are probably aware, from my former descriptions of the country, that the town of Ningpo is built in the midst of a level plain, from 20 to 30 miles across. These ice-houses stand on the river sides, in the centres of this plain, completely exposed to the sun-a sun, too, very different in its ef. fect from what we experience in England -clear, fierce, and burning-which would try the efficiency of our best English ice-houses, as well as it does the constitution of an Englishman in China.

The bottom of the ice-house is nearly on a level with the surrounding fields,
and is geinerally about' 20 yards long by 14 broad. The walls, which are built with mud and stone, are very thick, 12 feet in height, and are, in fact, a kind of embankment rather than walls, having a door through them on one side, and a kind of sloping terrace on the other: by which the ice can be thrown into the house. On the top of the walls or embankment a tall span roof is raised, constructed of of Bamboos thickly thatched with straw, giving the whole an appearance exactly resembling an English haystack. And this is the simple structure which keeps ice so well during the summer months, under the burning sun of Clina! The Chinaman, with his characteristic ingenuity, manages also to fill his ice-house in a most simple way, and at a very trifling expense. Around the house he has a small flat level field, which he takes care to overflow in winter before the cold weather comes. It then freezes, and furnishes the necessary supply at the door. Again, in spring these same fields are ploughed up, and planted with rice; and any water which comes from the bottom of the ice-house is conveyed into them by a drain constructed for the purpose. Of course here, as in England, the ice is carefully covered up with a thick coating of straw when the house is filled. 'Thus the Chinaman, with little expense in building his ice house, and an economical mode of filling it, manages to secure an abundant supply for preserving his fish during the hot summer months. This, I believe, is the only, or at least the principal purpose to which it is applied in this country, and never for cooling winc, water, or making ices, as we do in Europe.

- It is now, I think, a question whether we could not build ice-houses at less expense and more efficient, upon the Chinese plan than upon the old underground system common in England.Gard. Chron.

Purple Copal Varnish.—Prussian blu* and vermilion, or any other blue and red; mix them with the varnish, according to the tint required.

ON LIME AND ITS COMPOUDS, AND THEIR INFLUENCE ON AGRICULTURE.

BY MR. TTOMAS ROWLANDSON. JIVERPOOL.
After the preservation and due application of farm-yard and other ordinary sources of putrescent manures, no matter connected with subjects of the like nature assume so great a pecuniary importance to the agriculturist of the United Kingdom as that which heads this paper, as the expenditure for lime alone greatly exceeds what is paid for bones, guano, and other extraneous tertilizers. I am thoroughly convinced, from my own personal observation, that the value of the labor and capital expended on this article alone by farmers throughout Great Britain and Ireland greatly exceeds one million of pounds sterlinga starting amount certainly; but those who are acquainted with its extensive use in the districts where it can be obtained with ordinary facility will, on reflection, be perfectly convinced of the assertion. In this amount, however, I do not in. clude the other sources of calcareons manures, (but whose action is precisely similar eventually, only more slow in their operation,) such as chalks, marls, \&c. From this statement it will, there$f_{\text {ore, }}$ be seen, that it is a matter of primary importance that the nature of the action of calcareous manure should be fully understood by the British agriculturist.

No matter has given rise to so many and so warm disputes as the action of lime on land, some giving to panegyrics, others have with squal vehemence condemned its appiaation in toto. At a future part of this paper I believe I shall be enabled to elucidate the causes from which arise these diserepancies in its action, and also to show that each party, under particular circumstances, w :s perfectly rigat in maintaining its respective opinions regarding its use or inutility ; I trust I can also point out an uncring method by which parties may judge when calcareous substances are required; and I can now state, with the utmost confidence, that after a most extensive practice and extremely extended sphere of observation, I have hitherto found his test a most unerring one, and " wail be found un pr rusal, simple and unexpensive, and of such a nature that the most unedacated ploughman may eas:ly be made to un lerstand." As it is not likely that eviry one will have equal facilities for making the eaperiments that I have had, it will probably be interesting to
many of my readers to have repeated to them an illustration made on a large scale.
I possessed a farm in Ireland, consisting almost wholly of unreclaimed land, and what few acres had been cultivated previous to my occupancy of the same had also been of a like description, there having been part of a deep peat-bog extending over 500 acres, and had at one period varied from two or three feet to twenty teet in thickness, most of which, at the time I commenced my operations, had been cut away for the purpose of fuel, down to only about two feet in thickness. At the corner of a field which had been separated (in order to cut a new road) from the main part of the previously cultivated portion of the land, but abutting on that part on which no attempts had ever been made at reclamation, I fixed my garden, divided from the barren heath merely by a drain which had been made to carry away the water from a spring rising in the centre of the bog, and which otherwise would have overflown the road. This garden, at the time this relates to, was only about two feet deep of surface soll, though in the memory of many living had been at least ten or fifteen feet deep, at which period it, previous to being cat away for fuel, formed a quaking bog, (through the influence of the spring just mentioned.) During the time I resided at this place, I raised through ordinary garden culture, on this spot, as splendid crops of caulflowers, carrots, potatoes, turnips, cabbage, (many in the last summer fourteen lbs. weight and upwards each,) and all descriptions of culinary vegetables (I merely recapitulate these to show the fertility of the soil) as could be desired. The process by which this garden soil had been reclamed was paring, burning, and liming.

Although I did not actually test the matter, I am quite convinced that the soll of the garden just alluded to possessed at least mnety per cent. of combustuble vegetable matter, and the unreclamed, at the opposite sule of the drain, possessed only a very tuffing per cont. more vegetable mntter, in consequence of not having had an appheation of lime. Let it he remembered by the reader that the whole had orignally formed a continuous piece of waste, and the separation between the two preces was merely the recent formation of a drain. On the one side we see utterbarrenness, on the otherhigh fertility. The barren side is now pared and burned ; and an
attempt., made to grow crops-an entire fuilure ensues: The one side, after :the heaviest rains; gives no further colour to water than the most fertile loams; the other side* gives, after the operation of burning, a deeper tinge to the rain water than it had done heretofore, and the land is found to be far inferior in fertiaity to that on the opposite side which had been limed. In fact the whole of the cruciform plants died almost as soon as they had vegetated. Having seen what has taken place in what may be termed the large scale, we will take a little of the soil from each and pursue our experiments in the kitchen. We lay our two parcels on the kitchen table, and procure from the dame two clean tall ale glasses, usually christened tall-boys. We have already procured from the druggist two or three pennyworth of ammonia, commonly called harishorn. Here we are set up with as complete a laboratory for the present investigation as though an expense amounting to $£ 20$ had been gone to for the purpose. After marking what description of soil is placed in each glass, we pour a little ammonia over each, rather more than will cover the same, say about a quarter of an inch. We sit down and mark the result-when the liquid in the glass containing a portion of the soil which has been only pared and burned will speedily appear of a deep brown colour, as before related. We await a little longer, to sec if any change takes place in the glass which contains the rich garden (but limed) soil, but wait in vain; not the sightest appearance of change is to be seen. If the liquid in the last mentioned glass is now analyzed, we shall only find, in addition to the ammonia, a litte potash, hme, \&c. as the results. Not the slightest portion of carbon is held in solution, not a trace to be found. Now here is a complete contradiction to Mr. M'Turk's theory of lime acting upon or disorganizing the animal and vegetable remains, rendering them soluble, אc. for which, see quolation. Mr. Anderson also says, iquicklime) enters into the union with these organic substances and furms compounds partiali.y suluble in water. Mr. Anderson does certainly afterwards state the modus operandi to be different when converted into a hydrate, but as he does not give the slightest proof of its doing so, the

[^0]agricalturist may take it for what it is worth, viz., mere assertion.

Well, we are,not quite satisfied that thisstriking difference is occașioned solely by the use of lime. We shall continue our experiments a little further, pour out the contents of the, glass containing the soil which gives the colour to the ammonia, and wash the same clean. We put a little of the unlimed part again into it-we have a bottle of clean lime water ready for the occacion -we fill the glass to the brim with lime water; we let the same stand, and by this time (always suppose the evening is used for these experimenta) it will be time for bed. After a sound sleep, which the fatigues of the previous day have fully prepared us to enjoy, we rise with the lark in the morning, go to the glass left the night before, with the lime-water and peat, and give the same a shake u_{p}, then proceed to our ordinary business. After the breakfast is over we snatoh a couple of moments from our usual duties, we pay another visit to our glass, dip our finger in in order to taste the contents, and find that the strong alhaline taste so well known as lime-water has nearly, if not wholly, disappeared. If there is no perceptible taste of lime-water, we begin to think that it is time to see whether it is our senses have deceived us or that the lime-water really has disappeared. We go to the cupboard, (always safely locked, as the substance we are about to bring out is a deadly poison; and fatal results have ensued in consequence of having been mistaken for Epsom salts), we procure a hette oxalic acid, and dissolve a very small portion in cold water; we pour a little fluid from , he glass in which the lime water was placed over night into the vessel containing the oxalic acidin solution. Not the slightest change of color takps place-a certain sign that the whole of the hire contained in the water has been absoribed in some mamer or other ly the peat. Wiell, we continue repeating our eaperiment, daily pouring frecia hone-water over the peat, until at last (whirh will take some time, as lime is only held in solation in 780 times its own weght of water) we find that, on decanting the flaid into the solution of oxalic acid, it assumes a mithy appearance, and a heavy white powder (the oxalate of iime) is eventually precipitated. We know now that the peat will absorb no more lime.t After this,
\dagger This experiment can be performed by merely
we pour out the whole of the liquid from the peat and pour caustic ammonia over the same, and let it stand a few days to see if the brown color will make its appearance, but no such thing occurs. Well, we have now arrived at this much-the application of lime prevents barren peat soils discoloring rain water, and all fertule soils have a similar property. We will try what lirning will do.* We, therefore, lime the barren side, and procure most splendid crops of mangel, babbage, cauliflower, mustard, and rape.t Should any reader be sceptical about this being the true mode in which lime operates in fertilizing soils, we will puc him in the way of pursuing the experiments still further, and making the process visible. Let a little barren peat be macerated in a short time in ammonia liquor, in order to procure some of the so-often mentioned brown-colored solution which must afterwards be decanted into a clean glass ready for the purpose; then pour into the decanted solution some lime-water, when the whole, instead ot the former transparent brown appearance, will become immediately turbid. and gradually a light flocculent precipitate of a dirty brown color will separate, leaving (provided sufficient lime water is used for the purpose) a perfectly clear liquor, and the humate of lime will be precipitated to the bottom of the glass, and can be obtained in a separate state by filtering the same through paper.
putting a little lime to barren peat soils; but in doing so the experiment is neither so elega it; nor the modus cperandi so apparent. So strony, however, is the affinity between the humic acid and the peat hme, that if we mix 103 grains of peat and ten grains of quicklime, and pour sulficient water on the same to render it quite moist, it will be found within ten minutes the mixture will cease to have the power of colouring the strongest liquor ammonia that can be procured, and will have all the properties of a rich garden soil.

* This portion of the paper is written in a familiar style merely to illustrate to those who may have a desire for information, but consider the nature or rather deficiency of their education incapacitates them for such experiments, that many experiments can be made of the most important description with the most perfect ease, and apparatus as simple as those above mentioned. In fact, I believe, and will atiempt, in a future part of this paper, to prove, from the above experimen:; the fallaciousaess or truth of Liebig's theories as to the assimiliation of nitrogen and carbon.
\dagger These crops were absolutely obtained in the manner stated.

The humate of lime thus obtained for all practical purposes may be deemed insoluble. I think I have now fairly proved that, instead of lime rendering inert matters in soils abounding in carbonaceous matter soluble, its lertilizing effects are caused from quite an opposite operation, viz., the rendering a substance previously existing in such soils, which had a deleterious influence on regetation insoluble and inert, but which, before the application of lime, was soluble in the presence of some of the alkalies and their carbonates. -Blackwood's Quarterly Journal of Agriculture.

We copy the following highly interesting and valuable exiract, from D. Thaer's Principles of Agricullare, for which we are indebted to our able contemporary The Farmer's Calinet. The true principle of applying manure to the soil, is to give the different classes of plants the particular kinds of food best adapted to their general habits and organization. Soils differ materially in their compounds and proportions, and even those of the same quality, by different degrees of cultivation, are made so different in their comporent parts, that manure of an uniform quality, would be found to have different and possibly opposite influences. Hence, the importance of watching the operations of nature, in bringing forward vegetation, and by carefully investigating the influences of the various qualities of manure used in this country for forcing crops, the farmer may materially assist in increasing his crops without hazurding much risk in injuring them. Maize, potatoes, and turnips, devour, if we may be allowed the expression, a great quanlity of vegetable manure, and those plants thrive so luxuriantly on barn yard manure, that it would be a most difficult matter to surfeit them. Wheat, however, being a more tender plant, requires different treatment. It is worthy of remark that in a majorty of cases, where the soil is unproductive in wheat, that the best possible food that conld be given to the crop, may be found in the subseil, lying so near the upper soil, that it may be brought to the surface with a common plough. A manure that could force a neavy yield of straw, might be so barren
in the ingredients for forming grain, that a total failure might be traced alone to this cause; but in our opinion the evil does not lie so much in a deficiency of of the requisite food for the plants, as it does in giving that food in proper preportions to suit the habits of the different classes of piants. A soil that would produce a large yield of spring wheat, unquestionably, would be productive in winter wheat, if the lower and upper soil were incorporated to suit the habits of the latter grain. The one requires a loose permeable soil, and one rather rich in decomposed vegetable substance; and the other a firm, deep, and dry soil, and on the whole rather barren in vegetable matter.

On manuring the Soil.-Manures are of two sorts, those which nourish the plant by becoming, as it were, its food, and those which stimulate its growth by chemical decompusitoons and combinations. It is not easy to define the way in which such manures produces its effect; but it is very important that we should make the endeavour to discover it, as it is only by attaining or approximating towards the real effect, that we-can appreciate its value or feel authorised to discard any particular manure, or to continue its use. But in making this attempt, we strike upon one of the greatest difficulties in the man gement of landthe power of deciding as to the soils and manures that are fitted for each other. In a pracical point of view there is no subject more difficul?, and no knowledge more difficult to attain; for a long time, and time of great value to to the farmer, may be wasted before he is enabled to say whether he $1 s$ treating his soil in the right manner. It is true that all soils may contain the aliments necessary for every kind of plant, but they are not in equal proportions; for this reason one kind of land favors the vegetation of one kind of plant, and another some other kind of totally a different nature. And in this way it is a nice point in the management of land, to know what our land is fitted to produce, and what kind of manure is calculated for this particular product. Our author makes in important distinction between vegetable and animal manure. The first, he says, appears to act on plants solely as an aliment, while the last acts on the soil as well as on the plants which vegetate there. Mineral manures, lime, plaster, \&c., which contzin no organic bodies, and, of course, nothing to be decomposed, act almost entirely by reydering those parts of the soll soluble, which were before insoluble, and by favoring and accelerating decomposition. The manures in common use, are composed partly of animal substances; the vegetable matter, from not being so easily soluble as the animal, prevents or restrains the too rapid decompasition of these
last, and makes their effect more lasting. The vegetable matter would indeed have but little effect, unless animalized, by first passing through the bodies of animals; while on the other liand, the vegetable are made-to decompose more rapidly by the addition of animal substances. The value of these manures does not depend on the quantuty so much as the quality. This is a point very little attended th. They should be from the best animals. fed in the best manner, for that which comes from an animal will be of little value unless that which goes into him is of the best sort. Let an animal be fed on bad hay, or bad grain or straw, or any coarse material, with little or no nutrment in it, how can it be expected that the manure it makes can enrich the earth, when the creature itself is ill-fed and half-starved. To produce the best manure the food must be of the best sort; or to say the same thing in othet woids, the anımal should be in the best health.

Our author goes with some minateness into the nature of stable manure, but it is not necessary to alarm our sensitive agricultural readers with nny scientific details, however correct or interesting; it is enough to say that in his opinion from his experience, this is admirably suited from its rapid decomposition, and the heat it throws out during this process, to cold, sterile, moist, and clayey soils, while to the chalky, dry, sandy, and calcereous, it is extremely injurious; it forces forward vegetation rapidly at first, but when itsinfluence has somewhat diminished and vegetation is le't to the natural strength of the soil, it drosps and becomes languid. It may be inferred from these ideas, that this kind of manure is considered only transient in its effect, and is of very litite use, except on moist and tenacious soils; though it is extremely beneficial on soils containing a large amount of humus or vegetable mould, from its promoting, by the passing off of its ammonia, the decomposition of this substance. When used by itself, the author directs that it should he carried to moist and clayey soils as soon as its first stage of fermentation has commenced, and then buried; fermentation and the heat it produces render the soil looser and lighter, and the repeated ploughings incorporate it with the soil and tend to fertilize it. When used on warm, light soils, he recommends the mixing it with vegetable substances which still re:ain their succulency, or with earth, and especially with turf. These should be mixed together, heaped up in successive layers, protected from too free an access of air, and moistened when the weather is dry. The manure from horned cattle does not frrment so rapidly or develope so much heat as that from horses. Its effect is not therefore so rapid, but in proportion more lasting, and it may be used on a greater numier of ciops, and crops more various in their nature. From there being very little apparent increase of temperature during decomposition, it is peculiarly adapted for warm eoils; when buried beneath tenacious, clayey soils, it will produce little or no effecz until brought into contact with air.

LETTERS

ON AGRICULTURAL IMPROVEMENT.

BTI.J. MECHI.

LETTERV.

BEPLANATION OF THE BUILDINGS AT TIP TREE-HALL FARM.

The yards are so placed as to be entirely sheltered from the east, north, and northwest winds, whilst they are quite open to the south and west for sunny warmth; it is presumed heat absorbed by the brick-walls and buildmgs during the day will be retamed for a portion of the night, so as to produce a warmer atmosphere in the yards.
The farm and other yards are on a perfect leoel; they are underdrained every four yards with stones and a pipe-same as the land. All the drains (except the roof-drains) terminate in the manure-tank; so that not a pent of water that falls directly on the yards ever eseapes, except into the tank. All the water that falls on the roofs is conveyed through pipes to the brook.The sheep-yards, the bullock and horse stables, are all paved perfectly smooth with hard yellow bricks, set in cement; so that no liquid manure is wasted. This arrangement admits of cleanliness, without waste, by occasional washings.

The straw for litter being cut into chaff, is applied where required without waste.

The manure-tank is bricked, and set in cement. We put into it the solid manure as made, turning the moist bottom upon the top, as occasion requires, to prevent too violent a degree of fermentation, and adding occastonally sulphuric aced in water, especially in the summer months, or an occasional layer of earth. In winter we have always suffictent moisture in the tank. As we pump out the liquid manure from the well, which is three feet deeper than the tank, no sold manure can enter, there being proper gratings to prevent it. We choose a wet day, when nothing can be done on the land, to turn over the manare in the tank-ilimere benag a slated roof over it! which ke ps tie men dry. It faces the north : so that the suacanot shme on to cevaporate the ammona and stengeth of the mantre. In the wint "-, when we have a superabuntaner of n os ture, we pump the hound mantre mio Crostan's inquid manare cart, wheh holds 2 tlO gallons, ani; apply it to the pastures, young sheats, or fallows: fist finng the ammona wiere regured what sauphur.e achl, being governed as to diluting ats strengil by the dryness or wetness of the weather. We find the tank-manure of extraordmary strength, as well as densty, from subsidence by fermentation and perssure. When filled to four feet above the ground, it contains about 200 loads of soiill manure.
Manure, that is dropped in the day. is removed the following morning in barrows to the tank, so as to preserve its efficacy.

The contents of the water-closets are received
into a brick tank, set in cement. The ammonia is fixed and smell prevented by sulphuric acid: mixed with earth it will form a valuable manure. Nothing on our farm, in the shape of manure, is ever wasted! Why should it?

The piggeries paved with flagetones, discharge their moisture into the manure-well.

The stone water-tanks in the yards and honse are all filled simultaneously by one pump over a tank, 14 feet deep, bricked, and set in cement ; into which is brought a never-failing stream of pure spring water from the valley below. This water furmerly spoiled some acres, and caused the bog; but now it answers a much better purpose. I do not like the usual custom of giving manare water to horses and catte, instead of to the land. I presume they are, like ourselves, all the better for drinking.pure water instead of filthy. -The pump also supples our copper, on which fits a perforated ion vessel, capable of steaming six bushels of potatoes or other matter. This ves sel travels bachwards and forwards with wheels on a small iron rail; and by a lever, is capable of being filled, emptied, or placed over the copperby a strong lad. The mexit of this is due to the ingenious Mr. Crosskill, of Beverley, who manufactured and contrived it.

The cart-lodge is so placed as to avoid sun, and we consider a weather-tight implement house essentially necessary.

The barn is 130 feet long, 30 feet wide, and rises 18 feet before it springs the roof. The horse-power that drives the threshing machine occupies 30 feet square on the ground-floor, and 30 feet more is occupied by the gromary and chaff-house, over which is the threshing apparatus.

The unthreshed corn being on both sides of, and utar to the threshing-machine, economizes time in removal.

On this account, and the facility of doing work under cover in bad weather, I like plenty of barnroom. I do not see the necessity of a steam-engine, as we do our threshing, chaff-cutting, \&c., when we can do nothing else.

The threshing-machine is of six horse-power; but we throw it out of gear, and work the chaffcutter or corn-mill with two horees. We cat thinty-two trusses per hour into chaff.*
A crane (cost 50 s .) fixed upon the top of the granary in the barn, enables one man and a lad to load the sacks of corn with ease, dropping them into the cart or waggon.
The iron cutters and pipes to our roofs may be from fault with on account of the expense, but I really caanot see the utility or piofit of the present custom, that is, putting good and costly manure on straw, and then washing it all out agrin with tens of thousands of gallons of pure water of the roof, taking especial care that it

[^1]Wall poison the horse-pond, and then run down to enrich some stranger's meadow at the firsi Good. I hope in fifty years time, the farmer who does this will be considered insane. The idea of a man's throwing away his manure with his lefi hand, and with right puying money to bring it back again, all the way from Peru or África, seems too ludicrous for the nineteenth centuey.

So far as we have had experience, pigs, poultry,:and horses, thrive uncommonly well in our yards and stables, and no doubt our cattle and sheep will-do the same. All our horse feed is cut for the manger. Even our tares and green food are cut up with straw.

We contemplate clipping our bullocks when stalled in the warm stables, taking it for granted that nature provided their long winter coats for open fields, as a non-conductor of caloric, and that they never were intended for arificial confinement. The thermometer will regulate our ventilation. They will be groomed every morning, the same as horses. There is quite as much reason for removing from their skins the insensible perspiration, as for grooming a horse. Health depends on cleanliness, as much in an aninal as in a human being. In a state of nafure they would rub against a tree or fence. Having no such opportunity in confinement, we must do it for thesn. We shall shear some of our sheep before Christmas. I mean those kept warm and dry .under cover: this of course is quite an experiment. It seems on the same principle as the bullocks, confinement with their warm clothing does not ansiver, so we shall try them without.
Some butehers agree with me that farmers often spoil the mutton as well as the fleeces, by keeping them on too long. Besides a long coat requires support all the winter, as well as any oflier part of the body.
Th dairy, beer, wine, and coal cellars are all ander the house, light, cool, and airy.

As to a good house, why, if our farmers are to be men of education and capital (which I hope they will be when they get Agricultural Colleges), I do not see why for a few pounds extra per annum, they should be deprived of the comforts of a proper residence. As my substiantial brick and s'ate buildings are thoughit to be in advance of the age, I hope those who find fault with them will consider they are indebted for the next generation.
If board and thatch are so very durable and advantageous in Farmeries, why not apply them in towns and cities? My own opinion is, those temporary erections indicate either poverty or miscalculation. If theie is "philozuphy in fiying a pancake," why should there not be "an adaption of means to the end" in planning and erecting faïm buildings?
In conclusion, as some of my farming operations are on so very different a plan from the common roputine of proceeding, I wish my farming friends to laugh at, but not to condemn them, till they haye had an opportunity of seeing whether they. ansper or not. Should they by chance succead, I shall expect those who now enjoy the joke will
have the good sense to follow the example set them. If they do not, i shall certainly take care to remind them that they ought so to do.
I. J. Mec̈er.

4, Leadenhall Street, London, July, 11th, 1844.

> LETTERVI.

THE DRAINAGE OF SURFACE VATER FROM HEAVY LANDS.
Sir,-
The very various and conflicting opinions as to what is perfect drainage, convince me that practice without theory, is like a ship without a compass, dangerous, uncertain, and expensive.Having cut, during the past year, with good effcct, sisty niles of drains, I annex a sectional representation, will describe its action, and state what I consider to be the true theories of perfect drainage.
My operation being different to the usual custom, I beg to submit my theories and practice for discussion, approval, or disproof. The question of drainage is far too important to remain longer in obeyanice. The Royal Agricultural Society will do an essential public good by deciding the point.

Theory 1. That in perfect drainage, twelve hours rain should percolate and leave the land, in less than twelve hours from the time the drains begin to act, tie difference in time being equivalent to the proportion of the water the earth chooses to retain for its use by capillary attraction.
2. That to effect this, the subterranean area of porosity should nearly equal the suiface to be drained, so that if the space to be drained were one square yard, the sides and top of the drain should present an area for percolation equal to nine superficial fect, minus the allowance for pressure.
3. That the continuance of water in the soil longer than it would remain by capillary retention, is injurous, chemically and hare hanically, causing inequality, density, and sediuentation.
4. That the earth and roots will alstract from the passing water those gases for which they have an affinity, and in which they may be deficient.
5. That the form of drain should be deep and narrow, as affurding the greatest area of yorosity at the smallest cost, increasing the quantity of porous earth, avalable to rooto-nuthing animal or vegetable can exist in dense undiained subsoils.
6. That the material for filling the drains should comprise the greatest durability with tie least power of capillary attraction.
7h. That where pipes are used, their material should be durable but porous; their form not round or square, but a very narrow and deep oblong, the object being to get a lurge area of porosity.
Bilh. That small, round, hard pebble.stonos,
with a pipe over them (as shown in the annexed drawing, and as used on my farm), seem to pre-sent all the advantages desired, viz., the impossibility of choking by superincumbent earth, resistance of pressure from the sides, absence of capillary attraction; the round hard stones having but little mechanical affinity for the water, and offering but small resistance to its passage.

9 th . That the passage of waterin a pipe or drain is always quicker than its percolation through the earth or material of the pipe.

10th. That no drain should much exceed 100 yards in length (fifty or sixty would be better), wihhout opening into a leading drain of great dimensions. If the drain were in any part full, it would delay percolation.
11th. That neither bushes, straw, or other perishable material, should ever be used in a drain.

12th. That the deeper the drainage, the better the crops; but in no case should any portion of the drain be nearer to the surface th n 18 inches.

13 th. There should be a leader to every 300 Jards of drains, giving it ample capacity.

14th. There should be an open ditch (but no fence) for every seven or cight acres drained. The absence of an occasional open ditch is what renders so much drainage useless. Long continuous narrow streets without frequent outlets get frequently obstructed; the same may be said of drains -a full drain wih a slow egress sadly retards the filtration of water. Drains should be never more than half full of water-the other half air. In this way the superior weight of water causes proper filtration by displacement of air and replacement of water by quick passage.
15th. That the rapidity of percolation depends on the subterranean area of porosity and the depth of drain combined. Shallow drains want a greater area of porcsity than deeper ones; because (as water presses equally on all sides toward the vacant space in the drain) the deeper the drain the greater the weight and column of water. Consequently, the greater the pressure the more rapid the filtration: filtration at two feet will be double that at one--at four feet four times as great, and so on in proportion to the superincumbent weight of water pressing equally on all sides towards the drain. It is on this principle that deeppipe drains act quicker and lay dry a greater extent of ground than shallow ones--consequently, the deeper your drainage the smaller may be your area of subterranean porosity. Pipes at the depth of five feet would hardly need stones; the pressure being about two-and-a-half pounds on every square inch at first, and as the water escapos and diminishes, so will the drain run slower and slower, in a ratio proporticned to the diminished pressure.
Still stones with pipes, in my opinion, are the qnickest conductors of water generally in heavy land.

Now, although my drainage is considered the most perfect in the county of Essex, I only consider it one-sfith as perfect as it should be. My drains have one fortof subterranean prosity for cvery five feet of surface, instead of having five feet : still as it is expensive even so, I must be content with it;
and I will assume it to be the minimum of perfect drainage.
During the recent nincteen hours' rain, after a very dry time, the pipes and stenes poured out an immense volume of water, which, on the second, third, and fourth day, gradually decreased; proving my calculation correct, that if my drains had been perfect, it would have all run away in seventeca hours, instead of eighty.

On comparing notes with a farming friend of mine, who has lush drains frcm 2 to 300 yards long, in the same quality land, he said ' I know not what has beccme of the water, fer nene has appeared in the ditches;" and he seemed quite surprised at my drains running so much. What is the inference ?that bush and straw drains of great length are perfectly worthless as compared with pipes and stone drains of mederate length.

In fact, in one field I drained about three acres the same time, distance, depth, and soil, with scuds or bands of straw tightly fitted over the vacant space, and find it as compared with the tile and stone drained part, almcst useless, so much so, that we shall re-drain it.

The consequence of my friend seeing no water is, that it stagnates and remains in the soil, keeping the roots cold, wet, and sour, resulting in late crops and densely working land. I hope, after this, we shall hear ho more of scud cr bush draining.
From the moment our land was ploughed after draining, no water has ever ran off the surface, whether in winter or spring, although our fields hare a pleasant slcpe.
So far my drainage has answered, although 1 still maintain it is only perfect in degree. It would have been real cconcmy to have spent another 55 per acre, and carried out my theory completely.
I am not able to say which answers lest, a pipe only, the full size of the drain, or a pipe and stones. The latter I give the preference to, the stones having less capillary attraction.
I consider drainage almest as important in a very dry seascn as in a very wet one. This spring we had a practical illustration of it at Tiptree. The crops never looked yellow as they used to do, but always a healthy green, and the very first rain caused an amazing quick growih.
It is very easy to perceive that porous drained land on a cool bottom keeps moist in dry weather, by capillary attracticn (like lump sugar resting on meisture).
At night the insiduous dews fill its surface. No such effects can take place in sodden land, with gaping cracks, and a baked impervious surface.
For further details of my spring and other draining, I beg to refer you to my letter of the 28th of March last.
If I am wrong in my thecries or practice, I shall feel obliged to any gentleman who will correct me, my object being to arrive as near perfection as possible.

Permanent grass on very still clays must be ploughed up before the drains can act. The impervious pan requires to be broken up. This may be a sulject oi regret, hut it ought not to be; for I quite agree with Mr Morton, that no permanent grass can keep so much stccl per acre as the tur-
nip culture and green crops, fed, folded, or stall-fed, nor is it so proftable. Grass land is, therefore, a national loss, employing less labor, capital, and affording less profit thaii it would do if cultivated with roots, green crops, and e-rn.
as to spring draining.
It must always be effected by drain-pipes (without stones) fitting it iuto each other so as to frrm one continuous unbroken channel; half-circular pipes, fitting on each other, are sometimes used, if properly londed they answer, but are not so secure as the whole pipies.

I think we may lay down as a safe theory:-
1st. That as the pressure of iwater is from below, and frequently as much as fourteen pounds on every square inch, that spring drainage should be deep, so that the superincumbent carth be equal to resisting the pressure on the pipes.
2d. That the pipes should be always large enough to contain air as well as water.

3d. That no stones, bushes, or straw should be used in spring drains; it being evident the immense pressure I have mentioned, would quickly choke them with earth. Pipes, for sprin γ-draining, should alone be used. Usefulinformation on this point is contained in "London's Encyciopedia of Agriculture;" "Stephens' Book of the Farm," and "Hutchinson on Spring Drainage."
I. J. Mecir.

4, Leadenhall Street,
London, July 16, 1844.
Pickling Eggs.-The farmers' dames in some parts of Hampshire, England, in their notable endeavours to turn every thing to good account, have acquired much fame for pickling eggs, which, whilst they constitute a somewhat novel feature in the catalogue of condiments, are at the same time particularly relishing. When eggs are plenty, they take from four to six dozen of such as are newly laid, and boil them hard; then, divesting them of the shells, they place them in large-monthed earthen jars, and pour upon them scalded vinegar, well seasoned with wliole pepper, alspice, ginger, and a few cloves of garlic. When the pickle is cold, the jars are. closed, and the eggs will be fit for use in a month afterwards. The eggs thus treated, are held in high esteem by all the farm house epicures in that part of England.

Simplicity.-The more I see of the world, the more I am satisfied that sim: plicity is inseparately the companion of true greatuess. I never yet knew a truly great man-a man who overtopped his
fellow man, who did not posses's a certain play fu!, almost infantile simplicity. True greatness never struts on the stilts or plays the king upon the stage. Conscious of its elevation, and knowing in what that elevation consists, it is happy to act its part as other men, in the common amusements and busiuess of mankind. It is not afraid of being undervalued.

An honest man is believed without an oath, for his reputation swears for him. Xenocrates was a man of so much truth and fidelity, that the Athenians gave him alone the privilege that his evidence should be lawful without swearing. It is said of Fabricus, that a man might as well attempt to turn the sun out of course, as to bring him to do a base or dishonest thing.

To cure a Burn.-A lady, a preacher of the society of Friends, in New York, was so successful in curing burns, that many of the lower class supposed her possessed of the power of working miracles. The following is the recipe for the medicine: Take one oz. beeswax, with 4 oz . burgundy pitch, simmered in an earthen vessel together, with as: much sweet oil as will soften them into the consistency of salve when cool-stir the liquid after taken from the fire till quite cool. Keep it from the air in a tight box or jar. When used, spread it thinly on a cloth and apply it to the part injured. Open the burn with a needla to let out the water till it heals.

A farmer lately turned his sheep into a lot occupied by some cherry trees, which had sent up shoots from the roots; the consequence was, that the sheep partook of the leaves of these shoots, and were soon scen staggering about the lot and tumbling upon their heads. Many of them died, when their stomachs were found to contain large quantities of these leaves which, all know, abound with prussic acid, fatal alike to man and animals. It should be known, too, that the stones and twigs, as well as the leaves of the peach, also contain prussic acid, and are poisonous.

ROTATION OP CROPS.

I propose to give you a series of short papers on the agriculture of the Lothians, in the hope that they may prove interesting to your numerous readers.
I am unwilling to suppose that there is nothing in the experience of a district, so long famous for its agriculture, that may not be studied with profir, even by individuals possessed of great skill and knowledge in the most useful of arts; but at the same time 1 am aware that the most valuable parts of our system, may have already been transplanted, and may even now be flourishing in the United States, with all the luxuriance which a virgin soil imparts.
Trusting to your indulgence, I shall therefore devote this letter to some introductory remarks on the rotation of crops. I am fully aware that the sanguine expectations of some, as to the application of chemistry to agriculture, lead them to believe, that at no distant day, rotation of crops will be numbered with the things that were--that the finger of science will point out to us, not on'y the substances removed with each crop, but also how we may replace them in an economical manner. I am too ardent an admirer of chemical science to doubt its power to do this, bui I cannot believe that it will very materially affect the axiom that a sound and philosophical system of rotation is the basis of all judicious and profitable agriculture ; for even were we so far advanced in chemical knowledge, as to be able to grow luxuriant crops of wheat year after year, on the same land, without deteriorating it, it is evident that the supply of this sort of grain would soon exceed the demand. From thus belng the most remuneting of crops, owing to the limited extent of land on which it can be grown, it would gradually become less so, while the supply of the oher corns which are less remunerating, owing to the facility with which they can be grown on most land, would be shortened, and the price of course enhanced; and when that point was reached, at which the profits were equally balanced, the further application of the principle would be arrested. I apprehend therefore, that the legitimate occupation of chemistry is to point out to as how we may avail ourselves of the large amount of inorganic substances laid up for as in our ou n soils by sapplying these of which they may be in wantto show us how to draw upon nature, so that our drafts may be honored-how to pay the interest, that we may have the use of the principal, rather than that we are to look upon our fields, as a mere extention of space-the floor of a manufactory, into which we are to bring from without, all the raw materials required, for the production of the substance we propose to obtain.

The theury upon which the rotation of crops is based is, that different plants require different geries of the inorganic substances contained in the soil, for their growth and development; but as these substances require the action of tillage and the scasons to reduce their particles to that minute state of division, in which they can be absor-
bed by the spongiclem of plants, therefore the low frequently those plants which require the same series of inorganicy subatances are reared on the same soil, the more copiou:ly will they be supplied with properly prepared food when they are reared

The following table from the transactions of the Agricultural Chemistry Association of Scotland, shows the amount of inorganic substancen contained in three different soils, and that a fertile soil contains at least 9 or 10 of these substances.

Now it must be evident to every one, that if we go on for a length of time raising any particular crop which carries off a larger quantity of any of those elements than the relative proportion of it in the soil, we must by and by reduce the fertile soil, to the state of the barren one. As an example, we may take potatoes, which contain a large quantity of lime, magnesia, potash, soda, and phosphoric acid. Now it will be seen that these very substances are almost all wanting in the barren soil; we may therefore conclude that if we go on raising potatoes year after year without adding the whole substances removed, we will reduce the fertile to the state of the bcrren soil.
From what has been stated, it must be obvious that a proper course of rotation is that which removes equal relative quantities of the different substances composing the soil, and which places thnse plants, which feed on the same substances, at as great distances from each other in the rotation as possible. This holds good even in the vicinity of large towns, where, from the facility of obtaining manure, a large portion of, if not all the substances carried off, are returned to the soil; as by adhering to a judicious rotation even in this case you present such a proiusion of aliment to the different classes of plants, as to convert good crops into luxuriant ones. In forming a correct judgment of any course of rotation, we must also take into consideration the facilities it affords for eradicating weeds, and keeping the land in that state of absolute freedom from them, which, while it adds profit, so it ought to be the pride of every agriculturist.

In my next following up this subject, I shall give some account of the rotation of crops as practiced in the different districts.

Joink Gridwood.

Featherhall, Mid-Lothian.
$-A l b$: Cult.
Sir Humphrey Davy supposed that lime rendered inert and insoluble vegetable matter soluble, and almost all writers since have repeated the same opinion, till Leibeg brought forward facts which rendered it doubful. Mr. Rowlandson has brought forward addutional facts to support Leibeg's ideas on this subject, but we are obliged to omit the greater part of his reasoning, because it could not be undersiood by those who have no knowledge of chemistry. He has however made his own theory appear very probable, and it would be prudent before incurring much expense in applying lime or marl to land, to apply his simple test to the soil, viz: to put a small quantity into a wine glass and cover it with water of ammonia (spirits of Hartshorn), and if in a day or two it became brown like bog water it would prove that lime would be useful; but otherwise if the water remained clear and transparent.

THE FORCE OF HABIT.

My experience teaches me that I fail much oftener from inattention to litule matters, thin for want of general knowledge in the practice of farming. And this inattention in nine cases out of ten is the legitimate offspring of habit; and the reason why habit talkes such an erroneous dir,ction arises fiom the fact that our minds are naturally attracted by the magnitude of objects, without considering that this magnitude is only attained by the accumulation of single atoms.

To illustrate the importance of this idea, we will suppose two farmers, A, and B, stint at once in the business of farming with $\$ 1$ n0n mppital each. A, saves six per cent. a year ly exact econony, whilst B, sinks property at the came rate. For a time, prophass, we shall hrolly he able to, notice any difference in their thrift ; but in the course of a lew years we find A, a wolithy farmer, and B, fast sinking to priery. A fiartion short of twelve years would sulfice, at compound interest, to plaee A, in possession of $\$ 2 r 00$, and $\mathrm{B}, \$ 500$ Twrlve years more would give A, $\$ 4000$, and $\mathrm{B}, \$ 250$ Another fwelve years would give $A, \$ 30 \$ 0$, and $B, 125$. Thus we see the result of habit in these two men in the important results produced, supposing pinvidence favored both alike. But this is not all habite generally require strength with the lapse of time. The man who sinks in the ratio of six per cent at firgt, would soon reach twelve, and so on, until
his accelerated speed dashed his fortunes in thie irretrievable gulf of ruin.
Suppose now we look at the practice of treese men a little in detail. They neither of them are dissipated men in their general habits, and as to imtegrity and common sagacity are good at work. But A, has learned to calculate a litlle closer. He knowsit requires no more to keep a good cow than a bad one. Hence, then, we find him in possession of a little better stock. His cows give at least a quart of milk more a day than B's; his sheep yield a little more wool, and a little finer. Here then he saves a few dollars. A, also seizes with avidity a few leisure hours to haul his muck, etc., for manure; whilst B , feeling a little tired, or the oxen being in the pasture at-some distance, thinks it best to omit it until he can hire a hand a day and get a good lot of it. Thus A, has a little more manure, and of course a little better crop. So we see A, not only producing more, but the foundation of his prosperity widen in every direction.
But perhaps some one will say we can't felp habit-it's second nature. Asking your'pardon, sirs, I demur to this statement. You have the powers of reason, and lie faculty of judging given you by your Creator, and no earthly power can hinder your exercising it. Accustom yourselves then, in every branch of your business, to ask this one question: is the method I propose the best, all things considered? Make a calculation of the protit or loss of every ciop, and increase or diminish each lind as more or less profitable; having a reference to the permanent inprovement of the soil. I have frequently been surprised at the resulis I have obtained in such calculations, and fiequently altered my course very much so my advantage.
But you may not only improve your own habits by the discreet use of your judgement, but you. have to do with creatures of habit. Even your domestuc ammals have habus which may gradually be moulded to your adivantage. Serze every opportunty, then, to make them subservient to the great busmess of life. I will illustrate this by one very sumple inculent. I have a considerable range of woodland pasture, and I find b : givang my catte thenr salt at night near the outlet ot the pasture, they soon ltain to resort to that spot at that tume of day. Another incident may be woith relaung. I had come to the concluzion that a small liot of hens wouid more than pay for their keeping in destroying worms, \&c., without any reterence to therr eggs or chackens, provided I could leam them to keep out of the grain. Now for two years past Ihave not had a mite of tronble with them, though runming at lange all the tume, and gram withan ten rods of the house and barn. The simple and effectual remedy is to turn down a lot of corn or grain for them to go to as they please. And the way they turned out the eggs in consequence was a caution to those wion neglect to seed therr biddies.

Peru, Me., June, 1845.
J. H. Jenne.

HORTICULTURE.

EY F. BAREY, OF THE TORONTO NORSERY.

From the remarks we presented through the Cultivator for August last, and more particularly from the announcement of the editor in the following (Sept.) num. ber, our readers were no doubt induced to cxpect thenceforward something in relation to fruit culture and horticulture in general. We intended to give some sug. gestions on transplanting, selection of orchard soils, cultivation, \&c., in the October numbe, just before the fall planting would be commenced. This we were prevented duing by sickness; and now, as the planting season is nearly over, we will defer the portion on transplanting and selection of sorts, till the nearer ap. proach of spring, when the directions we may give can be immediately carried into practice, and at present take up the subject of
solls and situations for orchards.
This is the first, and one of the most important considerations connected with fruit culture, and one to which we solicit the careful attention of every individual who wishes to ensure success to his labors in this department of husbandry.

It is important, as every farmer will admit, to have the soil and the situation adapted to any crop, even that which is to yield its full return in a single season, much more it must be so with regard to an orchard that is to remain for one, or perhaps two generations, on the same spot. If a mistake be made in planting wheat, corn, oats, or any other annual crop, it will but effect the operations of one year, and can be remedied the next; but if an orchard is planted in an unsuitable place, it is a loss to be fell for fifty or perhaps a hundred years, and cannot be remedied
without great loss. Thus it is clear that this point demands the most attentive consideration; hundreds of those who have already planted throughout this province, have been convinced of this by experience, which is always a good but sometimes a very expensive teacher.Those who have yet to begin may benefit by our remarks.
One of the greatest difficulties experienced throughout many sections of the country is the destruction of fruit buds, blossoms, and young fruit, by late spring frosts. This difficulty will be met with occasionally, and more or less, in all places, and under any circumstances, but may be guarded against, in a great measure, by a proper selection of location. It is well known to farmers and others who have observed the operations of frosis, that they are always more destructive on low than on elevated grounds. In the spring and fall of the year, infurious frosts are often felt in low purtions of a field, when the higher portions have escaped entirely. The severe late frosts last spring, about 1st May, which destroyed the greater part of the fruit crop in Canada, and a large portion of the United States, was much more severely felt in low places than on high. On the latter the destruction was only partial in many places, while in the former it was complete. Within a few rods of where we write, we have a striking instance of this on a piece of low ground in our own gar. den; the dahlias and potatoe tops there are blackened with last night's frost, while on a high spot, within a short distance, they seem quite unilujured. This is readily accounted for, from the well known fact, that heat always ascends. The density of the cold air causes it to descend and displace the warm air, which quickly ascends and heats the tempera.
ture of the elevated places. We might quote many exact philosophical experiments to prove this, in addition to our own personal observations. The following from the pen of Professor Kirkland, of Cleveland, Ohio, which we find in the Western Reserve Maguzine, is very satisfactory. It was made on the apprinach of one of those late spring frosts, by himself and brother, to test the accuracy of the view which we have expressed.
ascend, and would occasionally vary two or three degrees. It was evident the succeeding day that the fruit was entirely destroyed on the low grounds where my observations were madn, while not a bloom was injured on the ridge occupied by my brother."

From this and many other correct experiments which we have known to be made, with the same view, as well as from our own experience and observations, we are satisfied that elevated grounds are much preferabla to low ones for fruit orchards in all sections subject to late spring and early fall frosts. We also find that these frosts are much less destructive to veretation, and that fruit scarcely ever suffers from thrm in the vicinity of bodies of waters, lakes, rivers, \&c. The past season has afforded an ample proof of this. The severe frost which was so general about the last day of May, seemed hardly to be felt along the south shore of Lake Ontario in the State of New York.

The crop of peaches, apples, pears, \&c. has never been known to be finer, for ten to fifteen miles back from the lake, where the crop begins to diminish, and finally becomes a complete failure. This is accounted for in the same way as the escape of the fruit on high places. The lake possessing a higher temperature than the land, tempers the atmos pherc all along its borders, and thus the fruit escapes. During the present, season we have been intormed that the apple crop has been quite abundant in the vicinity of Isake Simcoe, while in other places it was entiroly cut off. These facts show the propriety of selecting elevated locations, or, if possible, contigu. ous to some body of water.
(To.be continued.)

SELF-ACTING PUMP.

Luther Tucrer, Esq.,-It is with much pleasure that I comply with the request of a gendeman connected with your journal, Mr. Howard, in furnishing a few statements with regard to a new self-acting pump which I have Iately set in aperation, and which, I think, promises to be of some value to the public: and to no portion of it more so than to agriculturists. Notwithstanding the mult tade of ingenious contrivances which have hitherto been devised for obtaining water for economical and ornamental purposes, the most valuable is the old and simple plan of bringing it from some neighboring spring or water-course which flows upon a higher level ibas? that on which the supply is needed. This method, although frequentiy attended with considerable expense, is almost universally adopted where it is practicable, in preference to the best constructed pumps for raising water from a lower level to a higher. The situations, however, where this plan can be adopted are not numerous, except in mountainous regiens. Buildings occupied as dwellings, or otherwise, except in such places, are generally located on high ground, where water cannot be procured by an aqueduct or conduit pipe. In such places it is universally obtained from wells situated on such high ground, and in innumerable instances in the immediate vicinity of ravines and small valleys deeper than those wells. In such cases it is obvious that a ayphon might be led from the bottom of a well oser intc the low ground, the current through which syphon would affurd a mechanical power, which, if it could be eco:omically applied, would be sufficient to raise a steady and perpetual supply of water upon the elevated level where it was wanted.

These considerations induced me some months since to consider whether a syphon might not be so constructed as to discharge water at the summit of its curve, that is, the hughest point in the pipe of which at stould be constucted. The idea at first appared someerhat absurd, as those who are acquams ${ }^{\text {w }}$ dia the operation of the common sphon thay suppsee, inasuuch as in mo point of a syphon is there so suong a resistance to any force tending to divert a portion of the enclosed fluid fiom the pipe than at the summit of the curse. The proble:n, however, is solved, and the contrivance which has accomplished the solution has been iesied, and proved periectiy successul. The premen leraner of the coiomm of water in the longer leg of a syphon, which I have recently laid from a well fourteen feet deep, over into a nejghbormg rave twenty-iwo feet deep, furnishes a sufficient mechanical power to deliver about one-thind of all the water which enters the pipe at the botion of the well, at the summit of the curve, two feet above the mouth of the well. 'The length of the pipe which goes down into the ravine is about ten rods, more than half of which distance it is land in the ground nearly level. The thorter leg of the syphon.descends perpendiculariy into the well, and is constructed of lead pipe of an
inch calibre. At the summit of this pipe, and connected also with the pipe which passes down the hill side, is the apparatus for discharging the water, of such dimensions that it might be enelosed in a cubical box ten inches square. I have omitted to mention that the pipe which passes into the ravine is about three-fourlhs the calibre of that which descends into the well.
The amount of water discharged by the apparatus two feet above the level of the ground at the mouth of the well, through a half-inch pipe with a free aperture, is little more than a gallon per minute. If the pipe is laid upon the ground and its adjutage contracted hy a jet tube with an apartue of one-eighth of an inch m dameter, the jet rises seven feet and a half above the mouth of the well; with another jet tube of one-sixteenth of an inch in diameter, it rises thirteen feet; and wih another of one-twemtieth of an inch diameter of adjutage, between eighteen and nineteen feet. Intecd there is no definite limit to the altitude to whech water might be raised by this method, if the size of the syphon be incrensed, and a sufficient suppiy of water obtaned for working it.
It may appear incredible that a syphon can be so constructed that no definite amount of pressure shall be sufficient to restrain the escape of a porticn of water from an opening in the summit of the curve, while in the ordinary syphon, a very small aperture of that point, communicating with the open air, destroys its action instantly; yet this apparatus demonstrates that it can be accomplished, by an extremely simple and compact contrivance, and on any scale that may be required, from a miniature model that will discharge its gill per minute, to an engine that will elevate a hogshead of water in the same space of time.
The apparatus is, moreover, so exiremely durahe, and so constant and certain in its operation, that it furnishes all the advantages of an aqeduct whirh bings water from an elevated level. The menenton is capable of application to any good we:l or water course, which admits of the operation of a syrhon, even though such well or water course should be a huadred iods, or more, distant fom the luwer level whith should fumish the wobine power.

Whan applied to wells, I think it cannot fail to infrove the guality of the water, as it is constanty changed and kept in motion.

Suich an invention, if succesful, places at the dayseal of thousands of famers, manuficturers, and g admem who appreciate matiers of taste and laxury as highly as those of mere utility, a supply of water for use or for orrament, which it would be impersible for them to obtain in a more simple, cheap, or economical manner.

When my arrangements are completed for offering my invention to the public, I shall be happy, by your permission, to avail myself of your valuable joumal, for the publication of a more minute description of this syphon, accompanied, perhaps, with a drawing. In the meantime Ishall take pleasure in showing the practical operation of the one which I have already constructed, to
zay of yur numerous subscribers who may be sufficiently interested in the foregoing statements to call and see it.

I am, sir, most respectülly yours, Erastus W. Ellsworta.
East Windsor Hill, Ct., July, 1845. -adlany Cultivator.

FATTENING AMIMALS.

There are some rules which may be advantageansly adopted in feeding animals, which however obvious they may be, are too often passed over or neglected. Some of these will be specified; and,

1st. The preparation of food.-The should be so prepared that its nutritive properties may be all made available to the use of the animal, and not only so, but appropriated with the least possible expenditure of muscular energy. The ox that is obliged to wander over an acre to get the food he should find on two or three square rods; the horse that is two or three hours eating the coarse food he would swallow in fifieen minutes if the grain was ground, or the hay cut as it should be-the sheep that spends hours making. its way into a turnip, when if it was sliced it would eat in as many minutes; the pig that eats raw potatoes or whole corn, when either cooked, could be eaten in one quarter of the time now used, may indeed fatten, but much less rapidly than if their tood was given them in - a proper manner. All food should be given to a fattening animal in such a state that as little time and labour as possible, on the part of the animal, shall be required in eating.
2nd. The food should be in abundance.-From the time the fattening process commences, until the animal is slaughtered, he should never be without food. Healh and appetite are bect promoted by change of food rather than by limiting the quantity. The animal that is stuffed and starved by turns may have streaked meat, but it will be made too slowly for the pleasure or profit of the good farmer.
3rd. The fooi shoull be giren regalariy.This is one of the most essential points in feeding animals: If given irregularly, the animal indeed consumes his food, but he soon acquires a restess disposition, is disturbed at every appearance of his feeder, and is never in that quiet state so necessary to the taking on of fat. It is surprising how readly any animal acquires hatiis of regularity in feeding, and how soon the influence of this is felt in the improvement of his constitution. When at the regular hour the pis has had his pudding, or the sheep its turnips, they compose themselves to rest, with the consciousness that their digestion is not to be unseasonably disturbed, or their quiet broken by unwonted invitation to eat.
4th. The animal should not be needlessiy intraded upon. between the hours of feeding.-All creatures fatten much faster in the dark than in the light, a fact only to be accounted for by their greater quict. Some of those creatures that are
the mostrinitable and impatient of restraint white feeding, such as turkeys and geese, are found to take.on. fat...rapidly when.confined indark rooms, and ronly fed at-stated hours by hand. Theré in nọ surer proof that-a pig is doing well, than to see ;him eat his meal quickly and then retirét to lis bed, to sleep or cogitate until the hour of feeding returns. Animals while fattening should nẹver be alarmed, never rapidly driven, never be feil at unseasonable hours, and above all things, never be allowed to want for food.-Alb. Cult.

Cruelty to Animals;-In Henry Colman's ifrse Report on European Agriculture, there occurs a passage which does honor to the heart of the writer, and is worth the subscription money of the whole work. After speaking of the aquattc brds kept on the artificial lakes in the Parks of London, the protection there afforded to their lives and the consequent tameness of the birds, he continues, "Man, in general, is a great savage, and a ferocious beast of prey. He makes continual war upon many of the animals below htm, not for subsistence merely, but for pleasurz. His condurt towards the brute creation shows, too often, how certainhte is to abuse unlimited power, and conveys a strong argument against despotim authority. Indeed, his war upon the birds mérely as a matter of sport, always makes me look upon him with a degree of shuddering, and feel that a man who can find his pleasure in the wanton destruction oflittle birds, the most humble of all animals in their claims, the most delicate, innocent and pure in all their tastes and habits, and comparatively useless for food, puts himself beyond the pale of humanity, and could scarcely, with safety, be trusted with a child. It were worth considering always how many of our pleasures are purchased at a most biter expense of happiness and life 10 others! 'Two or three days' coursing, manly and healthtul as the exercise on horseback undoubtedly 15 , did not quite reconcile me to it; and the wailings and striekings of the affrighted and dying hares in the jaws of the hounds, sounded in my ears for several days afterwards like the cries of expiring children.-Bost. Colt.

Increase of the English Agricultural Society.-At the termination of its ftrst year, in 1838, the members of this society were 600 in number, its income $£ 1128$. Its present list of members is nearly 9000 , and its funded property above £9000.

To Destroy Weeds on GravelWalks.—

 Put about an ounce of arsenic in a gallon of hot water, and pour it through the nose of a pot on the walk.CANAL BOTTOM BOARD FOR A BEEHIVE.

Messrs. Edthors,-I send you a cut of a Canal Bottom Beard, which I have used five seasons with perfect success, and have no fears in recommending it to the public as the greatest improvement in the management of the bee-hive, that I bave ever seen. It has, with me hitherto proved a perfect preventive against the Moths, Robbers from other hives, the Mouse, and it answers other inportant uses, which will ve specified in their proper places, in the specification of its uses.

The principles and uses of this Botiom Board were patented to me in 1841. It is made of two inch plank, two feet long, and fifteen inches wide, (21 mehes in length is sufficient for this width,) in this proportion it may be adapted to any hive in use, of any size or shape, admitting the hive is open at the bottom, and is cven, so as to let it set to the hive. It may stand on scantings, or it may be suspended at the hive's bottom, on staples and links. In cither cases the edge of the bive rests on the board at AAAA. The plank is worked out in a Quadruple inclined plane, down to some less than an inch at X, like the hopper to 2 mill. In the centre at X, a hole is bored with a three inch centre bit, and a tin tube mide to fill two inches long which is inserted werein. This tin tube has six half inch holes at .equal distances near its lower edge; it ie co..- freely in, at that place, until the agitation am.ugy
the bees, caused by swarming, has subsided; in the evening the bees will become tranquil, and the cap should be turned so as to exclude all the air at that place, unless the bees manifest a desire for more air by clustering out at the mouth of the canal. The bees will always dictate their master in regard to ventilation, in warm weather, by showing themselves outside the luve. As the cap is a perfect detector of what is going on in the hive, it should be examined occasionally, and perhaps emptied of filh wheh always finds its way to that place.
2nd-As soon as winter sets in, the adjustable cap must be taken off, and remain off until the bees are ready to clean the hive in the spring. This must never be forgotten by any who would be sure to save the life of the hive; the vapor of the bees in cold weather is so dense that water forms in the live, and runs down and freezes in the cap. and soon excludes all the air at that place; the tunnel to the canal also is very liable at this season to become obstructed, and the bees may be smothered. It would not be objectionable, but would even be desirable, that the adjustable enp should be returned to its place on the tube, at every warm turn of weather in the winter, if it is surely taken off, as soon as the weather changes cold, inasmuch as it generally keeps them quiet in the hive, and prevents the loss of a vast many of their companions which from ordinary hives sally ont at this time, and are lost by being chilled.

3d.-In the spring, as soon as the bees commence cleaning their tenement, the adjustable cap must be used with care to prevent robbers, this should be examined two or three times.a week until the hive is cleaned. It is proper likewise to clean tho bottom board, and whitewash where the edge of the hive rests. Whitewash made of good caustic lime will certainly exclude all.bee moths from joints or cracks that are well coated with it, and it is not objectionable to the bees. When the hive is full of bees, moths connot enter, and the cap may be taken off until-wwarming takes place.

4th-When bees swarm, their departure often reduces the population of the old stock so much, that there are scarcely enough left to guard the tunnel of the canal, and attend to all the other necessary labors of the hive, until it is repleniaded by young bees which are constantly hatching at this season, hence it will be seen that the
cay must not be forgoiten a single night after swarming. I have known several hives after two or three swarms had departed, to let the miller enter the tunnel, but in every case sho dropped herself down into the cap where sho always lays her eggs among the little flakes of comb, billets of bee bread, and other filth, precisely the substance she desires to lay her eggy in, then probably makes her escape the same way she entered, or is found dead with all her eggs in the cap. Ihave known moths to hatch and grow nearly three fourths of an inch in length in three or four days. During the season of swarming, and until the old stock is well replenished with bees after swarming, is the most critical time, and requires the most diligent care to preserve the old stock from an attack by their enemies. The cap must be examined two or three time a week, until the hive is reinforced, so that the bees can guard the tunnel to the canal, and keep out those nightly intruders, then the hive issafe so far as the moths are concerned. As the moths may enter some feeble hives in the spring before swarming, and through the whole summer season, it is best to examine occasionally, and empty the cap. This is scarcely a minutes' work, but "no pains no gains." No one should use this bottom board who will negiect the care of the adjustable cap, and if the cap is not used, I know of no hive that will admit the moths and robbers so freely an this. When this bottom board and adjustabie cap is used with care, the healthy condition of the young broods are secured from chills in the spring and fall, which is absolutely necessary to secure profits from the Apiary. Thousands of swarms perish yeariy, and are rendered weak and unprofitable by a chill among the young in the early and latter months of the breeding season; bees that hatch early perform the principle duties and labours of the summer campangn, and die before winter sets in, and those that are born late, say in August and September, are almost the only tenants of the hive in the spring following. This is a fact which may be doubted by some, nevertheless it is true, but may require a dissertation at come future time, to convince the sceptical and superficial observer. This Bottom Board is admirably fitted for southern and western Apiraies, as well as northern. I also have a large number of classes of bee hives which were patented in 1841, swarmers and non-swarmers, so constructed that they may be changed from one to the other by entering slides only, or they may be divided or subdivided into several swarms, when the season is favourable, with no trouble except entering slides, of which I may send you some cuts and specifications at a future time.

JOHN M. WEEKS
Near Middlebury, Vermont, 1845.--Bos. Culth

LIQUID MANURE,

The Wealth of Towns-and, we may add, of Ftarme also.-This trac: was referred to by the Duke of Richmond, at the meeting of the Society at Shrewsbury, on Thursday las:. He said-"I think that on this sulject we might with advantage take a leaf from the Chinese. I thum we do allow to run to waste a great quantity of nanare in this country. I believe that instead of allowing the water to flow into and out of our yards, by which we spoil a great quantity of our manure, we ought to have tanks for the reception of this liquid manure, and I would recommend sorthe landlords to build these tanks."

We called the particular attention of our readers to this subject last year. It was then shown what loss was sustained on every farm where the liquid and soluble portions of the manure made on it were allowed to waste. But there is a great difficulty in the way of applying this liquid mamare. It is easy to fix it mechanically and chemi-cally-to accumulate it in tanks, and deprive it of volatility; but it is by no means easy to find an economical mode of applying it. The use of the water-cart on extensive farms is impracticable. If the liquid be applied in its natural condition, the plants which receive it will be injured -perhaps burnt up by its strength; if it be diluted to the proper degree, its bulk and its weight become such that the expense of its carriage destroys its value to the farmer. If we exclude jts use in irrigation, perhaps the only economical mode of applying home-made liquid manures is by soaking the ordinary farm-manure with it. Care mast then be taken to hinder its dilution by water. All the rans of urine in a larm ateading should be directed to one point, around which stores of dry absorbent vegetable rubbish, capable of fermentation and decomposition have been accumulated during comparatively idle periods, and around which also it is castomary to place the dung-heaps. Let the liquid be received into a veesel capable of holding two or three days' prodace of it ; and at such intervals during the winver, let this vessel be regularly emptied on the meterials here gathered together. Of course it will be well to place in this vessel every time it is emptied such'a quantity of sulphate of iron or Oher fixer of ammonia as shall be able to neuvralize all the ammonia which such a quantity of urine is capable of generating during termentation. The liquid manure thus preserved will be applied to the land in a properly diluted condition; diluted not by a nseless material such as water, but by valuable decomposing vegetable matter.

The pamphlet before $\mathbf{u 3}$, however, refers to liquid manare as the wealth of towns; unquescicmably a great source of wealth to those who woold dispose of il, and a vastly greater source of wealth to those who would purchase it, is now altogether neglected in the present management of the sewerage of our towns. "It has been calculated that the human refuse of London is worth .annually Give bundred thousand pounds:": The
great waste under the present system of neglecting th'se sources of wealth must altimately force itself on public attention, and we doubt not that when in the opinion of our capitalists this country shall have been sufficiently intersected by railroads, the next great engineering operation of the day will be the execution of plans for collecting, storing, and transmitting, the sewerage manures of towns. Whether the method adopted be that of dilution by water, and conveyance by pipe or channel to water-meadows, or that of all possible condensation and desiccation, and conveyance by barges, \&c., to the place of its application on arable land, we may be assured with the author of this pamphae that "ere long measures will be adopted in all large towns for the collection and sale of this most important substance."-Lon. Eng. Ag. Gaz.

PROPORTION OF BUTTER IN MILK.

Every farmer's wife knows that there is a vast difference in the milk of cows, in regard to the quantity of butter that they will afford. We once owned a cow which gave a great flow of milk, but from which very little butter could be cbtained.
Boussingault, in his 'Rural Economy,' relates the following experiment. From 100 lbs of milk he obtained Cream, 15.60
White curd cheese, . . 8.93
Whey, 75.47
100.00

The 15 pounds and 60 hundredths of cream yielded by churning -
Butter, - 3.83 or 21.2 per cent. Buttermilk, 12.27.

The reckoning with reference to 100 lbs. of milk, consequently stands as follows-

He goes on to state that, taking the whole of the milk obtained, and treated at different seasons of the year, he finds that $26,000 \mathrm{lbs}$. of milk yielded 1080 lbs. of fresh butter, which is. at the rate of 3 per cent,-Alb. Cult.

GOOD BREEDING.

The striking difference observable between a well and ill bred person need not be the subject of any extended observations, because it is universally seen and admitted. How to acquire good manners is a far more interesting inquiry, and we wish there was some royal road to the acquisition. It would indeed be delightful if the world around us could be well mannered at once, and that we ourselves should henceforth remember carefuly what is due, to others.

We imagine that to arrive at perfection in gosd manuers requires some circumstances in co-opera tion and coincidence that do not happen to all. Early traning,-we mean by that, precept and example-is quite indispensible to the acquisition of gocd manners in after life. Indeed it is only a long and assiduous clservance of the principles on which true politeness is based, and the application of them to the cases constantly occurring, which produce that refinement, self possession, regard for the feelings of others, and that sagacious and considerate foresight of kiudness which so eminently contribute to furm good manners and so deciledly indicate good breeding.

The ability to address well, to talk well, to cbserve the obstrvances of the word, to do the honors of one's house, is very proper for those who are so placed in life as to be under the necessity of assuming a certain appearance and character. But there may be connected with this very exterior, real rulgarity and meanness, and gocd breeding may be an entire stranger to the ornamental shell that covers an unrefined heart.

Many people get on very well in the world, and mingle in society without any doubt of their own success in it, who are not well bred. But they never suspect it, and yet, not a day passes without some violation on their part of even the lesser obligation of bienscance.-Almost every transaction of business and every occurrence in society might very properly be regulated by the standard of gocd manners. We sce 10 occasion whatever, in which civility, kindness and courtesy, may not be employed, to some extent, briefly or not, as circumstances permit. For every thing there is a time and place ; a proper or impreper modeof expressing ourselves is always at our option; kindness or unkindness of manner is within our choice.

To be thoroughly well bred, however, requires ectacation, early training, and real goodness of heart.

To those who have not had and have not now these advantages, some hints may be ofsered so far as personal behaviour is concerned, and when we enumerate some of the transgressions against good manners, we will perceive they are more common than he might have supposed. Among them says a good critic, is "loud and harsh speaking, making noises in eating or drinking, leaning awkwardly while sitting, rattling knives and forks when at table, starting up suddenly and rushing unceremoniously out of a room, tossing anything away with iadifference or contempt; receiving anything without thanking the giver, standing in the way of any one when there is lithe room
to pass, (a grievous practice in this city,) arepping before any one who is looking at any ob ject particularly, pushing or jostling any one without apologising, taking possession of a seat that belongs to another, intruding opinions whese they are not sought or where they give offence, leaving acquaintances in the street or in a private circle without bidding them good bye or courteously saluting them, slapping any one familiarly on the shoulder, interrupting a person who is in conversation, telling long, tedious, or humdrum stories, whispering in company, maling remarks on the dress of those about you, or upon things in a room where you are, flatly contradicting a person-using slang phrases, a (very common habit,) interlarding our speech with foreign phrases (well hit off in the new comedy of fashion,) repeating the words, says he, and says she, you know, and you understand, helping yourself first at the table, using a fork as a toothpick, scratching the head, pultiny the fingers in the ears, cleaning or paring the nails before company, mentioning the price of anything, when it is offered to a guest, asking questions which give pain, and neglecting to answer leiters."

Many other violations of gocd breeding, as coarse and obvicus as these, might be mentioncd if we had time We only noticed thase which are most constantly cccurring, and which may be reformed. Our readers will, we trust, attribute to us the right motives for having brought up this array of bad habits.-If it should lead a single persco to undertake the reformation of a single fault, we shall be satisfied.

To cure a stifted Horse in two hours time.Take one gallon of urine and put therein a handfuil of junk tobacco, boil down to one quart ; then add two ounces of oil of spike, one ounce of oil of amber, two spoonsful of spirits of turpentine, and two spoonsful of honey. Put it into a jug, and cork it tight for use.

Process of Application.-Rub the stifle bone hard with the misture fifteen or twenty minutes; then dry it in thoroughly with a red hot fire shovel, then ride the horse forth and back one hundred rods. Repeat the above two or three times, and the cure will be effected. J. F. Goddarp. Norwich, Ct. Sept. 15th, 1845.-Aib. Cult.
Effect of Nitrate of Soda. on Grass Ľands.
-Mr. Ebenezer Bishop, of Seekong, says he has been making use of nitrate of soda on his grass lands, he thinks it has greatly benefitted his crops. He has sown 100 lbs. broadcast, to the acre, he thinks he has four-fold tho grass that he would have had without it. He states that there is danger of killing vegetation if too much is sown.
Mr . Bishops's lands, consisting of a sandy loam, are the right lind of soil fur the application of such substances. Ashes, potash water, peariash, soda, \&c., cannot fail to aid such a soil, and we should not marvel to see a quadruple harvest on sowing 100 weight of nitrate of soda upon an acre of it. We haye never made trial of this article on our own grounds. bnt otherz have tried it with success.-Me. Cultiv..

BARN YARDS.

Vegetables, like animals, cannot thrive or subsist without food; and upon the quantity and quality of this depends the health and vigor of the vegetable as well as of the animal. Both subsist upon animal and vegetable matter, both may be surfeited with excess-both may be injured by food not adapted to their habits, appetites, or their digestive powers. A hog will receive no injury, but great benefit from free access to a heap of corn or wheat, where a horse or cow will be apt to destroy themselves by excess. The goat will thrive upon the boughs and bark of trees, while the hog would starve. The powerful, robust maize will repay, in the increase of its grain, for a heavy dressing of strong dung, for which the more delicate wheat will requite you with very little but straw. The potato feeds ravenously, and grows luxuriantly upon the coarsest litter, while many of the more tender exotics will thrive only on food upon which fermentation has exhausted its powers. But here the analogy stops: for while the food of the one is consumed in a sound, healthy, and generally solid state, the food of the other before it becomes aliment, must undergo the process of putrefaction or decomposition, and be reduced to a liquid or æriform state.
The urine of the stock, which constitutes a moiety of the manure of animals, is all lost. The slovenly and wasteful practice of feeding at stacks in the fields where the sole of the grass is broker, the fodder wasted, and the dung of little effect, is still pursued. And finally the little manure which does accumulate in the yards, is suffered to lie till it has lost full balf of its fertilizing properties, or rotted the sills of the barn; when it is injudiciously applied, or the barn moved to get clear of the nuisance. Again: none but a slothful farmer will permit the flocks of his neighbors to rob his own of their food; yet he often sees, but with feeble efforts to prevent it, his plants smothered by pestiferous weeds and plundered of the food which is essential to their health and vigor. A weed consumes as much food as a uscful plant. This to
be sure, is the dark side of the picture, yet the original may be found in every town, and in almost every neighborhood.

It is surprising that under such management our arable grounds should grow poor, and refuse to labor its accustomed reward? Can it be considered strange that those who thus neglect to feed their plants should feel ths evil of light purses as well as of light crops? Constant draining or evaporation, without returning anything would in time exhaust the ocean of its waters. A constant cropping of the soil without returning anything to it, will in like manner exhaust it of its vegetable food and gradually induce sterility. Neither sand, clay, lime or magnesia, which are the elements of all soils, nor any combination of part or all of them, is alone capable of producing healthy plants. It is the animal and vegetable matter accumlated upon its bosom or which art deposits there, with the auxiliary aid of these materials diffused in the atmosphere, that enables the earth to teem with vegetable life and yield its tribute to man and beast.

I will now suggest a cheap and practicable mode of providing fond for vegetables, commensurate to the means of every farmer of ordinary enterprise; and that my suggestions may not be demed theoretical, I will add, that I " practice what I preach."

The cattle yard should be located on the south side of, and adjoining the barn. Sheds, substantial stone walls, or close board fences should be erected at least on the east and west sides, to shelter the cattle from the cold winds and storms; the size proportioned to the stock to be kept in it. Excavate the centre in a concave form, placing the earth removed upon the edges or lowest sides, leaving the borders ten or twelve feet broad, of a horizontal level, to feed the stock upon, and from two to five feet higher than the centre. This may be done with a plow and scraper, or shovel and hand-barrow, after the ground is broken up with the plow. I used the former and was em. ployed a day and a half, with two hands and a team, in fitting two to my mind, When the soil is not sufficiently compact
to hold water the bottom should be bedded with six or eight inches of clay well beat down and covered with gravel or sand. This last labor is seldom required except where the ground is very porus. My yards are constructed on a small loam, resting on a clay subsoil. Here should be aunually deposited as they can be conveniently collected, the weeds, coarse grass and brakes of the farm; and also the pumpkin vines and potatoe tops. The quantity of these upon a farm is very great, and are collected and brought to the yard with little trouble by teams returning from the fields. And here also should be fed out or strewed as litter, the hay, stalks and husks of Indian corn, pea and bean haulm, and the straw of grain not wanted in stables. "To still farther augment the mass, leached ashes and swamp earth may be added to advantage. These materịals will absorb the liquid of the yard, and, becoming incorporated with the excrementi-
tious matter, double or trẹble the ordinary quantity of manure. During the continuance of frost the excavation gives no inconvenience, and when the weather is soft the borders afford ample room for the cattle. In this way the urine is saved and the waste incident to rains, \&c., prevented. The cattle should be kept constantly yarded in winter, except when let out to water, and the yard frequently replenished with dry litter. Upon this plan from ten to twelve loads of unfermented manure may be obtained every spring for each animal; and if the stable manure is spread over the yard, the quality of the dung will be improved and the quantity proportionably increased. Any excess of liquid that may remain after the dung is removed in the spring can be profitably applied to grass, grain or garden crops. It is used extensively in Flanders and in other parts of Europe.-Buel.

RICH'S PATENT STRAW CUTTTER.
T HE Subscribcrs wish to inform their friends and the public, especially Farmers who have a large stock of Cattle to feed, that they are the sole Agents, and are manufacturing the above

EXCELLENT AND EFIICIENT STRAW CUTTER,
which received the Premium ind the highest recommendations of the State Agricultural Fair, held September last, at Utica, FiewYork. It was considered to be the best Machine cf the Kind in use for cutting. Hay, Straw;, or Corn Stalks,
J. JAGO \& SEARIGHT, Millwrights.
N. B. - The Machines may be purchased at the mankfactory, ncarly cprosi, e Macdcnald's Hcte!, King Strect, West. Price $£ 310 \mathrm{~s}$., each. Torento, November 7, 1845.

TORONTO

NURSERY AND SEED GARDEN,
ON THE KINGSTON ROAD,
One and a half Miles from the Market-place.

GEORGE LESLIE \& Co., Proprictors.

THIS Establishment is situated as above, and was formerly carried on by GEO. LESLIE. The tract of land, twenty acres in extent, is admirably adlapted to the purpose. Upwards of ten acres are.already planted with Trees, Shrubs, \&c. and arrangements are being made with a view to render this the most extensive and useful establishment of the lind yet attempted in the province. They have on hand, and offer for sale, a superior collection of Fruit and Ornamental Tices, Flowering Shrubs and Plants, Green-house Plants, Bulbous Flower Roots, Dalhias, §c.

The collection of Fruit Trecs comprises the most valuable and estcemed varieties adapted to our latitude, either grovn here or in the well known Mount Hope Nurseries of Rochester, N. Y., with which this establishment is connected.

The collection of Ornamental Trees, Shrubs, Rose3, Herbaceous, Plants, \&c. is quite extensive, and is offered at muderate prices. Public Grounds and other places requiring large quantitics of Trees and Shrubs, will be laid out and planted by contract at low prices.

To persons at a distance we would recommend to procure their Fruit Trees in the Fall, more particularly where the soil is dry and warm: October and November, immediately after the cold weather has arrested vegetation, is esteemed the best season of all for transplanting Trees. When Trees are transplanted in Autumn, the earth becomes consclidated at their roots, and they are ready to vegetate with the first advancement of spring.

All articles sent from the Nursery are carefully paoked, for which a small charge, covering expenses, will be made. Packages will be addressed and forwarded agreeably to the advice of persons ordering them, and in all cases at their risk.

A large supply of Fresh and Genuine Garden Fied and Flower Sceds constantly on hand at their Seed Store and Nursery Depot on Yonge Street, between King Strcet and the Wharf. Such Seeds as can be grown to greater perfecticn here than in Europe, are raised in the Nursery Grounds, and sold wholesale, at low prices.

Orders by mail (post-paid) from any part of the country, if accompanied by a remittance or a satissactory refercnce in the City of Toronto, will receive prompt attention.

Priced Catalogues will be furnished gratis to all postriaid applications.

GEORGE LESLIE \& Co.
Tororto, Sept. 1845.
FOR SALE the thorough Bred Durham Bull BRITAIN, also three TUPS, Leicester Breed, the property of the Hon. J. H. Dunn.

Apply to Mr. Miller on the Farm, Lake Road, near Toronto,

September 19th, 1845.

EASṪWOOD \& Co.
Paper Manufactùrers, Stationers, School
Book Publishers, \&.c.

YONGE STREET, TORONTO, and
 KING STREET, HAMILTON,

HAVE constantly on hand an assortment of all the Popular and Standard SCHOOL BOOKS in use throughout the Province, together with BLANK BOOKS of every description, WRITING PAPER of all kinds, PRINTING PAPER of any size required, WRAPPING PAPER, various sizes and qualities, STATIONERY, \&c.

In addition to the above they keep at their Establishment in Hamiton, a full and varicd assortment of FANCY STATIONERY.

Every description of RULING and BINDING done to order.
RAGS bought and taken in exchange.
IS Country Merchants taking in RAGS, as well as others, wi.l find it to their intercst to give us a call, as we can and will sell or exchange upon as likeral terms as any Establishment in Canada.

Sept. 1845.

The British American Cultivator

(New Series,)

Is published on the First Day of every Month, at Toronto, by EASTWOOD \& Co., to whom all orders must be addressed.
$\left.\begin{array}{l}\text { W. G. LDMUNDSON, } \\ \text { EASTWOOD \& Co. }\end{array}\right\}$ Proprietors.
W. G. EDMUNDSON, Editor.

Each number of the Cultivator contains 32 pages, and is subject to one halfpenny postage, when directed to any Post Ofice in British America.
ddvertisements willbe inserted for One Dollor if not exceeding Twelve lines, and in the sawe proportion, if exceeding that number.

Terms-One Dollar per year; Four copies for Three; Eight for Five; Twelve for Seven ; and Twenty for Ten Dollars.

All payments to be made invariably in advance, and free of postage.

If Editors of Provincial newspapers will oblige the Proprietors, by giving this advertisement a few insertions.

Toronto, Jan, 1845.
J. CLELAND, .

BOOK AND JOB PRINTER,
KING STREET, TORONTO,
Adjoining Mr. Brewer's Book Store, leading to the Post Office.
The Every description of Plain and Ornamental Printing neatly executed on moderate terms.

[^0]: * This was, no doubt, caused by the great quantity of carbonate of potash set free by the burning,' as. potash combines with humic acid, forming humate of potash.

[^1]: * The threshing-machine takes in the straw lengthways, and having twelve parallel beaters, each three feet sus inches long, no wheat kernal can escape its action. It does not break the. straw.

