CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Canadian institute for Historicai Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de coulaur

Covers damaged/

Couverture endommagé

Covers restored and/or laminated/
Couverture restaurbe et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Caı tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Reliè avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-fitre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages tamaged/
... :r, 'ommagées
[$n \cdot \cdots$. \quad ared and/or laminated/ d^{\prime} 'm"rastz.riés at/ou pelliculées

Pagt. discoloured, stained or foxed/
Pages décolorées, tache tées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison
Caption of issue/
Titre de depart de la livraisonMasthead/
Gènérique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

There are some creases in the middle of the pages.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here hae been reproduced thanks to the generosity of:

Metropolitan Toronto Reference Library Science and Technology Department

The images appearing here ere the best quaily posslbie considering the condition and legibillity of the original copy end in keeping with the filming contract specifications.

Originai copies in printed paper covere are filmed beginning with the front cover and ending on the last pege with a printed or liliustrated impression, or the beck cover when appropriate. Ali other orlginal copies are flimed beginning on the first page with e printed or iliustrated impres. sion, and ending on the last page with a printed or lliustrated impression.

The iast recorded frame on each microfiche shail contain the symbol \rightarrow (meening "CONTINUED"), or the symbol ∇ (meening "END"). whichever applles.

Mapa, piates, charts, atc., mey be flimed ot different reduction ratios. Those too iarge to be entiraly inciuded in one exposure ere flimed beginning in the upper ioft hand corner, isft to right and top to bottom, ae meny frames es requirad. The foliowing diagrama illustrate the method:

L'exempiaire filmd fut reproduit grAce ia genórosith de:

Metropolitan Toronto Reference Library Science and Technology Department

Les images suivantes ont dé reproduites evec lo pius grend soin. compte tenu de is condition os de le nettet' de l'exemplaire filmb. at en conformitb evec ies conditions du contrst de flimege.

Les exemplaires origineux dont is couverture en pepier est imprimite sont filmos en commencent par ie premier piat et en terminent solt per le dernidre page qui comporte une empreinte d'Impression ou d'lifustration, soit per is second piat. scion is cas. Tous les autres exemplaires originaux sont filmés en commençent per ie premlire pege qui comporte une emprainte d'impression ou d'iliustration of en torminent per ia dernidre pege qui comporte une telio emprointe.

Un des symboies suivents apperattra sur io dernidre image de cheque microflche, selon le cas: io symboie \rightarrow signifie "A SUIVRE". It symbole ∇ signific "FiN".

Les cartes, pienches, tabieeux, etc., peuvent itre filmbs des taux de reduction diffórents. Lorsque ie document est trop grend pour atre reproduit en un soui cliché, il est filmó a partir de l'angie supóriour gauche. de gauche à droite. et de haut en bes, on prenent ie nombre d'imeges núcessaira. Les diegrammes suivents lilustrent ia móthode.

Chippawa Power Development in all Phases is a Higher Efficicncy Enterprise

Canada's Largest Piece of Construction Reing Carried Through by a Unified Organization, Working with Equipment of Record Breaking Order

Chippawa Power Development in all Phases is a Higher Efficiency Enterprise

 Canada's Largest Piece of Construction Being Carried Through by a Uni-fied Organization, Working With Equipment of Record Breaking Order

THE development of industry is quite largely a matter of dependable and cheap power. Coal, except in the immediate vicinity of the mine, does not produce cheap power. Further, its supply is limited and uncertain and constantly increasing in price, due to increased cost in labor and transportation over which, except in a very gencral way, we have no control.

We fall back then, necessarily, oul cur water power, of wheh fortunately we have a iarge supply. Water power is never-failing, inexhaustible over any term of years, subject in only a minor way to increased costs of other commodities and, finally, ideally capahle of application to manufacturing and construction industries of every kind.

It follows, then, that if Canada is to become a nation of efficient workers, in any or all lincs of industrial life, our water powers must be utilized to their fullest extent.

That is the reason a deseription of the grea: Chippewa power development of the Hydro-electric P'ower Commission of Ontario finds its proper place in this "Ifigher Efficiency" number of the "Contract Record."
in begin with, this big development was undertaken so that two (and more) horsepower may be developed out of the same water which up to the present time has developed only one horsepower-h hat is higher efficiency at its best. Further, it is being put through at a time when many people entertain anticipations of a coal shortage and at the moment when young Canada (industrial) is upon the very threshold of an era of wonderful development. A third reason why a description of this work finds a place in our efficiency issue is found in the fact that this wholc gigantic enterprise is being earried through as a unit, the same engineers and ufficers controlling the whole work, all plans heing laid with a view to dovetailing in the various sections of the work-a condition that would be impossible if work on the different sections werc bcing carried forward hy different contractors. In a word, the work is onc big organized unit, allowing of no duplications. This again spells greatest cfficiency.

Thirteen-Mile Canal

The route of the big canal which will carry the water to the turbines at Queenston is shown in the map herewith. This route is about 12 imiles long, with the intake on the Niagara River a Hog Island, Chippawa, ahout two milcs above Niagat. Falls. The tailrace is on the Niagara River about one mile aloove Queenston. The intake will be in what is known as the Grass Island Pool of the Niagara River. The mean monthiy elevation of this pool varies alsout one foot.

The normal mean elevation of Lake Eric is 573 feet: of Grass Island Tom, 56.3; of the proposed power house site, 247; and of Lake Ontario, 24.5. Probably no river has a more uniorm regimen than the Niagara. The minimum flow is about half the maximum,
and over a period of fifty years the maximum difference in mean monthly levels under normal conditinus, either at Queenston or Chippawa, amounts to unly ahout six feet.

The best intake and power house locations were first determined upon, with a view to the maximum utilization of the available head, and contours and burings were then studied to decide by what route a canal could comect those thu points to the best hy. draulic and economic advantagc. The intake was lit cated at Hog Island partly in accounc of that point being just above the water hegins to speed lalls. Location furt1 meant a larger canal a have nccessitatel a le equally important for -ina, at which the the in ree reato pawa was the use which could be mad of the naturchannel of the Welland River-often called Chippawa Creck-which comprises about $41 / 4$ miles of the route of the Canal, leaving only about $81 / 2$ miles to be excavated, although the Welland River will have to he somewhat deepened. The flow of the Welland River, which is a slyggish stream with a very Hat gratient, will be reversed for this $41 / 4$ miles.

81/2 Miles of Excavation

This $81 / 2$ miles of excavated section compared with $191 / 2$ miles for the old Jordan-Erie scheme, and the net head is 305 feet, compared with a possible 209 feet for the Jordan-Erie project. (see map)

The gradients adopted for the canal average abont one foot per milc, or a total of ahout eight feet in the $81 / 2$ miles of excavared canal. The loss of head in the penstocks, due to friction, may amount to upwarls of two and a half feet, and the loss in the Welland River from Hog Island to Montrose, where the excavated eanal begins, will be about 6 inches, under maximum load, so that the total loss of head will 'e about 11 feet, making the net effective head about three hundred and five feet under normal conditions,

Thus, of the 327 feet normal difference in level lotween the two lakes, only 22 feet head will be lost10 feet between Lake Erie and Hog Island, 11 feet between the intake and the tailrace, and two feet beween the point of discharge of the tail water and Lake Ontar:?

The power house will be located in : bottom nif the gorge, about three-quarters of a mile above the Lewiston Bridge, just below where the last rough water disappears. The cliffs are neariy vertical at this point, and as the gatehouse will be on the cliff immecliately ahove the power housc, the penstocks will be nearly vertical and only about 450 feet long, thu: reducing cost and head loss to a minimum.

With this sclieme of development about $30 \mathrm{~h} . \mathrm{p}$. will be obtained from each second-foot of water uscl. compared with about 14 h.p. per second-fout obtain ed by the existing plants at Niagara Falls. With

Buyrua in ocr of dumprine a wome of eoth

Bucyrus ahovel lifeing a cubic yards of certh and loadaag cars 78 feet above

7

。

(7)

正

-
3
\cdots
0 .

(b)
(3)
($)$

b \qquad t
(B)
bank above the propowel site of the poerer plamt at Quesmston-colid reck abowing abot is feet

,
\qquad

W,000, the whole treaty allotment of secomil feet available, over $1,000,000 \mathrm{~h} . \mathrm{p}$. ran be developerl.

All of the excavated section of the eanal will be in solid rock, with the exception of $11 / 4$ miles of earth vection sunning morth from the Welland Kiver and balf a mile of earth section acrose the whirgual ravine. These sections will he trapezoidal ill shape, lined with rip-rap. The section at the whirpoal will alwo he faced with eonerete.

Rock Sectlon

The rexk section is 48 feet wide at the buttom. with perpendicular sidew, the average wetted section being 35 feet deep and lined with concrete. The velocity in the rock saction will be about of feet per second when the glant is under maxinu:m Inasl. The earth overburden abow" the rock shrface will be Eencratly sloped $11 / 2$ to 1 , but a flatter slope is proviled for where local conditions reguire it.

The Commission has purchasel a tract of land as a right-of-way, 'h will he suf it "or all present and futture needs. This right-o 200 acres near St. Davif:" whic, - includes abmut ill be used as af dump for the disposal of excavath, earth and rock.

At a point $2,3 n$ " ivet diviant from *the gatchonce, the canal behins to witen into the forchay, ${ }^{i}$ forthay montal! increasing in width to four l, lool fect, w whe will be the approximate overall lc. \therefore of the gate umse. The initial development proviles for four weel penstocks cach about it feet in liameter, 450 fect long; and one exciter penstock, about 5 fect cliameter.

Provision is being made for the installation of four main generatiug units each of $50,000 \mathrm{~h} . \mathrm{p}$. capacity. Both the gate honse and the power honse are si) devigned that they may be -xtended whelever conditions warrant.

The survers for the work were begun in 1914 and contimed for noarly two years. During the year 1917 the construction plant was brought onto the iob and assembled, and during the first part of is18 the camps were completed.

The Three Le gest Shovels Ever Built
The main equipment for the earth and rock exeavation ennsists of the three largest electrically driven shovels ever lomitt. They are of the revolving type, built by the Bucvruc Company, and are fitted with all K-cubic-yard bucket for excavation in earth, and a 5 -cubic-yard for rock work. The boom on these showels is about 90 fect long, and the di ner stick 58 feet. Either whovel can Ioad dump-ears which stand on a track the leyel of which is 62 feet ahove the level of tracks on which the shovel stands. The shovel rests on two tracks (four rails) 30 feet centre to centre and is mounted on 16 whels. The nominal horsewower of eadh of the two shovels is $715 \mathrm{~h} . \mathrm{p}$., upon a half-hnur intermittent rating. Eack shosel weighs peer 300 tons. contains 75 tons of ballast, and has a camacity of 3,000 to 5,000 cubic yards per 10 hour day when handling cartl.

There are also five other electrically-driven shorels at work, having dipper capacities ranging from fó cubic yards to $41 / 2$ cubic yards.

On thes Welland River section of the canal, a Lidgerwond cable excavator is at work, fitted with a 3 -cubic-yard Anderson-Evans clam. The cableway has an 80 -foot head tower and 60 -foot tail tower, and a

N

1 i \quad of feet. The excavated materinl is hemg u.. I The Wellanl Kiver at the water line averagew shout . 60 fect.

The Comminsien has pmrehased one landred and Fifty 20-yard Western airdump cara, each of N0,100
 and twelse soton clectric hermotises. The steant Incomotive are witehera purdaved from the l'em-- glvania Railroad. The electric fundotives were built by the Natiomal Sted Car (ompany. Limited, of Hamilton, Witaring ix of them being comstracted with Cieneral lilecticic 'puipment allul ois with W'ent. inghonse eqnipment. "wo pile-drivere are at work an the river ecetion. There are three totoll thel two 15. ton Hay City licometise enane forp general utility nurk.

15,000,000 Cubic Yards of Excavation

It is estimated that $9,000,000$ cubic yarile of earth and $\$, 000,000$ cubic yaris of rock mist ise remosed frons the excavated sectir : alll from the river sec. tion, $2,000,000$ cubic yarlo of material, um-tly earth.
it the present time the material which is leing

Centering log one of the concrete bridgee over the Chippawa powst cunal
excavated from the Whirl|woll sections in heing laed (1) fill the old Whirlumi kulley, but the main dump. as already moted, will be at St. David'- A donhletrack railway line runs the full length of the canal from Montrine to th. forebay, athl : 212 mile -pall comects the main libe with the St. David's dumb.

Thene will be varions wher bramelies of the railway constructed from time to time a-needed. I railway will prohably be built from the power lumse to connect with the Dichigan Central at Quecnston to bring in the machitery and to take out the materials excavated from the power house abbitructure.

The railroad lines are all electrified, the trolley wires being offet om one side of the track, and carried in clanps desinad by the Commisoion's line conatruction department. These clamps and the hangers which suspend them from the poles are all made up of standard material, and are so arranged that the temporary use of the material does not injure it.

Framed timber trestles ate sot aiongside the dump and other temporary tracks to carry the trollev wire. These trestles are nounted oll wheels or skids id can

One of the electrlc locomotives. Note the double trolley arrangement, two poles on each side
be removed readily by a locomotive crane when it is necessary to shift the track.

In the Whirlpool yards is located a large repair shop cöntaining drills, shapers, planers, lathes, forges, steam-hammers and wood-working machines. The Commission has built about eighty buildings, including bunk houses, freight houses, offices, machine shop, storehouses, substation, etc.; also a number of buildings are used which were on various parcels of purchased property.

Gunite Buildings

Most of the buildings are of frame construction, but are being "gunited" on the outside over tar paper and wire mesh, using 1 to 3 mix of cement and sand. Sharp concrete sand is being used and the "gunite" applied with cement-guns. The substation, machine shop and all of the more important buildings have already been fireproofed in this manner, and it is the intention to "gunite" most of the other buildings. The bunkhouses are comfortably arranged on the cottage plan.

The crushing plant is located on the forebay. It is equipped with three secondary crushers of the gyratory type and one 84 in . $\mathbf{x} 60 \mathrm{in}$. Taylor jaw
crusher which will have a minimum capacity of 2,000 cubic yards of crushed stone per day.

The rock excayation at the forebay is loaded into skips which are picked up by a locomotive crane and which dump into a bin. A belt conveyor carries the stone from the bin to the crushers and from thence by another conveyor to the cars.

There are four railway bridges to be constructed over the canal, one for the Niagara, St. Catharines and Toronto Railway (electric), one for the Wabash Railroad, one for the Michigan Central Railroad, and one for the Grand Trunk and Michigan Central Railroads. These will be reinforced concrete arch bridges. There will also have to be constructed a number of highways and foot bridges to carry the various roads across the canal. In the concrete work to date, both Canada and St. Mary's cement have been used.

Several hydraulic models are being prepared at Dufferin Islands, near the Ontario Power Company's intake in the Niagara River. These models are based on designs prepared by the Commission and are for the purpose of studying the design of tbe intake at Hog Island. The design of the intake works will be based upon the results of these studies.

