The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.
\square Coloured covers/ Couverture de couleur

Covers damaged/
Couverture endommagée

\square
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couvertare manqueColoured maps/
Caıtes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéss

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison
\square Additional comments:/
Commentaires supplëmentaires:

This item is filmed at the reduction satio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

AGRICULTURAL JOURNAL,

AND

TRANSAETIONS

ON THR

Cower Camada Anxianltural sacietu.

The Legislature have granted $£ 2000$ for the Industial Fahibition which is to take place in Montreal in Octoser next, and the Government have named Commissioners to superintend and mangs the Exhibition. This is all as it should be, and we may expect to hare an Exhibition worthy of Canada. So far as regards the prollucts of Agriculture, We may be able to show some specimens equal, if not superior to those produced in any country. In a former numb.r, we stated that no country could produce so fine a sample of hay as Canada, and this is one of the mest valuable products of the farm. Our samples of grain may be very good, and we could compete, perhups, with the grain of many other countries, but we feel persuaded that the samples of English grain will be superior to any that will appear at the great English Exhibition. Canadian peas misht compete with those of any country. We can also raise good ront crops, but in the British Isles, they raise better root crors, we believe, than in any part of the world. The soil and climate are favourable, and the cultivation, manuring, and management are superior to that of any country. There is most excellent butter made here, and we have seen cheese of Canadian manufacture, as good as any we have ever seen of the produce of North America. Upon the whole there camnot be any doubt that the agricultural products of Canada may afford samples for the great English Exhibi-
tion equal to any that will be sent there from North Americi, and perhaps equal to any produced out of the British Isles. With these prospects we should be perfeetly content. It will show the people of the British Isles that Canada is farourable for the settement of Emigrants, and fur the empluyment of capital. It is to be regretted that amons our products we have not more of flas, hemp, and the seed of cach, which certainly might be raised here in considerable perfection. Eren to supply our own wants it would be very desirable. The more extensive use anongst us of articles made fron: flax grown here should be encounage.l. It would for many uses, be much preferable to cotton. In our warm Summers the entire wearing apparel of farmers and their labourers, might be made of linen and flannel produced, and manufactured in Canada. To a very large extent we might manufacture flax and wool grown by ourselves for domestic uses, and of better quality than what is in general use with farmers at present. The implements of agriculture of every description should also be of our own manufacture, from our own wood and iron, of which we have abundance. The Montreal Exhibition will be likely to do mach gool, by bringing samples of all the products of the country together, as well of agriculture as of manufacturcs. This good which may be anticipated, is apart altogether from the comnection it may hare with the great Indusirial Exhi-
bition in England. Any party well acquainted with this country and its capabilities, must be perfectly aware of its vast resources and that they have not yet been developed to any thing near the extent they are capable of. Indeed there are few countries which possess a greater variety of resources for supplying all the wants of a large population notwithstanding our short Summers and long Winters. Some may doubt the fact, but we feel almost convinced that Canada is capable of producing a greater variety of the necessaries of life than the British Isles, and in a degree of perfection proportional to the skill and capital employed for these productions, where the production is not indigenous or spontaneous. There are many articles produced naturally here, which they have not in the British Isles. • Maple sugar might be made here to a great extent, if care was taken of the trees, or a succession kept up by regular planting. The manufacture of this might be greatly improved by using suitable utensils and careful management. What an advantage it gives us to be able to produce Indian-corn, as well all as other grains grown in Britain? Indian corn may answer as a green crop and will be more suitable for our climate than root crops would be.

In the articles of butcher's meat, although the British Isles are famous all over the world, for having the fattest animals that can be seen in any country, yet we certainly have meat sold in our marisets, which we would prefer infinitely to a large portion of that sold in British markets, that is only fit for the manufarture of soap. We have most excellent mutton, lamb, and veal here, and when there is any that is not so, it is the farmers' fault. We have also excellent beef, and where can there be pork superior to Canadian? If any of these articles are not as good as they should be it is from the farmers' own neglect. Our beef, mutton, lamb, and veal, may be sufficiently fat for any purpose or for any table, and when they are so, \dagger
they are equal, if not superior, in sweetnest and good flavour to the highly fattened animals of the British Isles.

We have very many valuable advantages, if we employ them, and work them properly. It may be truly suid of Canada that it might be a land abounding in corn and cattle, in wool and flax, in milk and honey, in fruits and flowers, in wine and oil, and a thousand other articles that might be added to this list by the skill and industry of its inhabitants. It is indeed a land to be desired, and we may be prond of possessing it.
In the preparation of Agricultural products for the great Exlibition in England, they should be put up in the most careful manner, so as to keep good, and in the same state in which they are put up here, until they appear at the Exhibition. In reference to samples of grain of whatever lind, it should be in a perfectly matured and dry state, or it will not appear to much adrantage in England. In shipping, it should be secured from.vermin of every species: We had some samples of wheat, onts and barley, sent by a friend in England some years ago and on arrival here, it was found that rats had devoured and spoiled the whole. This may be prevented, as we had some sent out last year that was perfectly safe on arrival here. The most suitable method of putting up grain, would be in good bags, that would contain four Imperial bushels each, making half an English Quarter. Our minot contains, we believe, about half a gallon more than the English Imperial Bushel. The Imperial Bushel is $18 \frac{1}{2}$ inches in the inner diameter, and $8 \frac{1}{2}$ inches in depth, is to weigh 80 lbs . avoirdupois of water, and contains 2218-192 cubic inches. The height of the cone in heaped measure is to be 6 incher, and the contents of heaped measure is $2818 \frac{1}{2}$ inches. The Canadian Minot contains, we believe, 2381.184 inches, but we do not know what the heaped measure contains. The Winches-
ler Bushel contained 2150.4 cubic inches. All the inches are English measure. In putting up hame, or bacon, we have always found the best means of preservitug them to be, to pack them in casks with the dry hulls of the oats that are taken off the oats in making oatmeal. This substance will hep them safe and good for many months, if they are good when put up. In putting up butter, it should be in air-tight firkins, containing about 56 lbs . of butter. There is no better plan of packing cheese than in boses containing one in each. Bags containing 4 Imperial Bushels each will be convenient for every variety of grain if the grain put into them is in a proper state of dryness, which is a most essential reguisite. It might be proper to send grain in the straw and ear of every species. Roots may be put up in barrels with dry sand, or with the dry hulls of oats which we have recommended fur hams. In the October number we shall again refer to this subject, and submit our humble ideas for consideration. Samples of Timothy seed should by all means be sent to England.

A very considerable sale of eggs, takes place at our markets for the United States.Chickens and fowls, are also purchased to some extent, for the same place. We may expect that this trade will greatly increase, as our means of communication with the States is more easy and rapid. This trade may be encouraged by all means, as it is only a method of disposing of our agricultural produce, mamufactured into furvls, eggs, and chickens. We anticipate that our best trade will be with the United States, and this trade will, of course, be of reciprocal advantage to both countries, as the latter will not purchase unless what she requires, and it is advantageous to every couniry to be able to obtain, at the least expense of transport, what is necessary for her. Horses may be raised here for the United States to a great extent, and it is a trade not likely to fail soon. There are
many encouraging prospects to Camadian farmers, if they will only put themselves into a pusition to take adrantage of the opportunities that may present themselves. Abundant, and salcable produets, will place them in a position to supply the markets that may open to them, and abundant products will be sure to make markets. In a poor unproductive country, there will be neither markets money, trade, manufactures, or commerce. These are ficts that will not admit of contradiction.

It is an extraordinary fact, that in some parishes where a considerable number of this Journal is subseribed ior, the whole of the subscriptions are paid up, while in others, there are searcely any paid. Several Agricultural Societies take copies for distribution, and pay for them, while other Societies do not take any. There can be no question that this Journal is published solely with a view of advancing agricultural-improrement, and promoting the interests of agriculturists. It is ungenerous then in agriculturists to withhold their support, even, though it should not come up to their ideas of what an Agricultural Journal should be. It might be useful to know why some Agricultural Societies, and some parishes subscribe and pay for it, while others do neither. A large number of copies are forwarded to parishes where they are not paid for, but it is to be hoped they will be paid for yet. It is singular that the Journal should be estimated so differently by parties, when it is compiled for no particular party or iocality, but for the benefit of Agriculture generally.

To the' friends of Agriculture in every country, it must afford much gratification to see the "Reports" of the proccedings at the great Annual Meeting of the Royal English Agricultural Society, which took place in July lnst, at the city of Exeter. The pre-
paration for the Meeting and reception given to the great National Agricultural Society, was worthy of the people, and of the ancient eity of Exeter, the capital of the benutiful County of Deron. It is encouraging to farmers even in this distant Province of the British Erupire, to hear of the interest manifested for Agriculture at that great Meeting. All parties, and all classes, were unanimous in their exertions to prove their respect and regard for Agriculture, by doing all in their power to honour it. It is in England that Agriculture is cstimated in proportion to its vast importance to that country, and to the world. In Canada, although our population - are much more exclusively dependant upon our Agriculture, than the population of England are upon theirs-low is it estimated generally? What degree of interest would our principal cities and citizens manifest, and what sort of preparation would be made for, or reception given to a great Agricultural Exhibition? We are sorry to fear that it would be very different from what took place at Exeter. Agriculture with us, is undoubtedly of rast importance, but the fact is admitted in words, rather than by the adoption of measures calculated to encourage, and secure its prosperous condition. Is there any city or town in Lower Canada that would manifest such a deep interest, offer such a hearty welcome, and do so much honour to an Agricultural Exhibition, as it is our pleasure to report of the city of Exeter? We shall see, and it would afford us the greatest satisfaction to be able to report that there was. A prosperous condition of our Agriculture would prove the salvation of this country and it is impossible to secure its general prosperity by any other means. This is so manifest, that there camot be any mistake. Agriculture must form the basis of our prosperity, and to expect to build it upon any other foundation will only brini; disappointment. Manufactures and commerce,
growing out of, and supported by Agricelture are very desirable, but, both are undoubtedly secund in importance to Agriculture. Thu richest mines of copper, silver, gold and precious stones, were they discovered in Cinada to-morrow, and hovever successfully worked, conld never proluce the same or an equal degree of prosperity and happiness to our population, that the judicious cultivation of the soil, and management of our cattle, would afford them, and who is it that would not prefer the healthy, pleasing, and honowroble employment of the husbandman, to searchings after gold in the bowels of the earth, or the mud of the rivers. And what is the value of silver and gold after all, except to purchase the products of Agriculture and of the lands in their various forms, as necessaries of life? Had we ever any doubt of the cause, we humbly endearoured to advocate for so many years, these doubts would be remored, by hearing that the great and the good of other lands express their high estimation of Agriculture, and regard it as the most important and honourable occupation of mankind. Agriculture is not estimated by the wealthy and educated, in proportion to the profits it may return to them, but by the pleasures and healthfulness of the occupation, a residence in the country, surrounded by all the beauties of nature-an opportunity of seeing the progress of vegetation from the beginning of the Spring, untiltrees and plant, mature their products, and yield an abundant harvest. The domestic animals of Agriculture, that produce so many of the necessaries of existence to mankind, afford also, very great enjoyment to a resident in the country who can appreciate these things. All these enjoyments are of inestimable value to those who love the country, though they may be very little prized by those who prefer the town, and who perlaps, have seldom witnessed the rising or setting sun in Summer. Farmers who have to make a living by their
business must do so of course and spend according to their means, but the wealthy who reside in th: country, and enjoy all the ; leasures we have emumerated, with many others we might enamerate, should not be dissatisfied, although their balance shect at the end of the year, shouth not show lirge profits. We must not forego this opportunity of giving a part of the "Report" of the Meeting at Exeter, and we particularly recommend the speeches delivered on that occasion by the representatives of two great Nations, France and the United States. These gentlemen appreciate the meeting and the exertions made in England to promote agricultural improrement. This "Report" should stimulate us to exertion-we cannot follow a better example than England affords uis, so far as regards attention to Agriculture. It camot fail to be a pleasing reflection to parties in Canada who are conscious of having done all in their power to promote agricultural improvement, when they hear of what is duing in the British Isles. Parties who can do more, will no doubt, employ all the means in their power, in future, to adrance the interest of Agriculture, and promote its improvement, where it is most required. However we may fail in our argument to prove our proposition, Agliculture is of greater importance to the Canadian people than all other occupations put together, now, and at all future times.

DECORATIONS OF THE CITY OF EXETER

Are on a par with the magnificence of the other arrangements. From almost every window and house-top may be seen waving, flags of every description, from the magnificent silken standard of Southernhay, down to the cotton stocking hanging from the garret window of the westend shop. Windows and loors are completely hidden beneath plants of all kinds. The town is a vast greenery, and one acquainted with the preparations would imagine that Stoke Wood had, in imitation of Rirnam Wood's trip to Dunsinane (though with a better object in view), paid a visit to the old city. But we are doing the descriptive rather irregularly, and we'll first ask our readers to step up as far as Peter Lis-
son's the best starting point for a moro regular description. From the Acland Arms across the road to the higher corner of Summerliad street is a splendid green arch, decked out with pictures (inuminated at night) expressive of the loyalty which everybody knows is so superabundant in the bosom of the worthy Peter; on the right of the face of that side of the arch looking up the street is a motto painted for the occasion, "God Speed the Plough.; May Old England ever maintain her rights." In the middle is a loyal wish expressed that Her Majesty might live long and never forget the principle; which placed her forefathers on the throne. On the left is "Loyalty to our Quecn, Submission to Her Laws, and Happiness to Her People." O.1 the other side of the arch on the right is a painting of a soldier with his foot on a camnon, ard the following motto under, "Quo Fati Vocant." In the middle, beneath a picture of Her Majesty. is "Long live the Queen and Prince of Wales; may Her Majesty never forget the Principies of her Forefathers; and may her Illustrious Offspring long live to protect onr glorious Constitulion in Church and State." On the top of the arch is a crown, the gaicty of the whole scene being greatly enhanced by an elegant display of flays. The effect of the view up and down the strect from this spot is most enlivening, from the gay colours of the numervus flags playing in the breeze as if imbued with a spirit of the genera! rejoicing. Arches a e also erected in Paris-street under the direction of Mr. John Ware. Fore-street abounds with flags of the most superior order, and the decorations generally are most superb. At the entrance of Queenstreet is a magnificent green arch, 40 feet high, erected under the superintendance of Mr. Huxtable; on the top is a crown, of imitation gold and crimson, seven feet high, made by Mr . Vicary of this city, the ornamental work being done by Messrs. Dipstale \& Bradley. On the sido of the arch facing Fore-street, is lettered " Ag . riculture and Commerce," and on the side facing Queen-street, "Let Industry be praised," the latter having on one side a paintil:g of the Castle of Exeter, with the motto "Semper Fidelis," and on the other the "Cornucupia." On one side of the former is a wheat sheaf, on the other side a vessel in full sail. On each side of Queen-street, as far as the market, an avenue of young fir trees is placed, the idea of Mr. Sobey. and which has a beautiful effect. Mr. George Ferris, whose superior taste is always discernable on such occasions, has decorated the top of the house, on which is the figure of the Queen, with signal flags, giving it the appearance of a yacht, which we have no hesition in pronouncing the best show of flags in the city. The loyalty of the occupants of the fish market is most conspicuous, the place being decked out with flags, flowers and evergreens "whose silken aloquence, more rich than words"
(of occupants), testifics their right good feeling. The gaiety of the seene does not lack for is moment from one end of the city to the other, and Exe Bridge has one of the most beautiful arches in the town, On each sido is a splendid fir treo nearly 30 feet high. The height of the first arch is 21 feet, and over which is raised another arch, about 13 feet diameter, lettered "Victoria," on each side of which is a fine orange tree in full bearing. The arch is composed of green holly and fir, and each side being ornamented with wreaths of flowers (Lilium aurantiacum), the arrangement of the whole showing the most exquisite taste. The arch was erected by Mr. Stafford, builler, Bartholo-mew-street, under the superintendance of Mr. Nott, narsery and seedsman, Bridge-street ; Mr. Mogridge and Mr. Furse were also very active in carrying out the arrangement. From the top of South-street, to the bottom of Holloway-street there were several arches all erected by Mr. Mason.

MEETING AT EXETER.

The twelfth Annual Meeting of the Royal Agricultural Society of England came off last week in the ancient city of Exeter, and in no other place the Society received so warm and flattering a reception.

Though the proceedings of the show did not commence formally until Wedneslay, the note of public rejoicing had already been sounded. Flars of all nations, parties, and colours, were hung out from the windows, triumphal arches spamed the principal strects, mottoes of a patriotic and agricultural character appeared on every side, with a due proportion of evergreens around them to set them off, and make them have a refreshing effect.

At the Pavilion Dinner, about 1200 noblemen and gentlemen were present. The following is the speech of the French Ambas. sador, Mr. Dronyn de Lhuys.-

The French Ambassadon rose to return thanks and was reccived with a roar of applause. He said-Mr. Chairman and Gentlemen, I beg leave, both in the name of my colleagues and in my own name, to return you our best thanks for your most cordial welcome. We respond with the feelings of gratitude so fully due to your kind reception (cheers). Though without any pretention to practical knowledge of the details of agriculture, I have the utmost esteem for its manly and useful pursuit (cheers). Even as a passing traveller through this delightful country, so aptly called the "garden of England,"I have lad leisure to admire the spirit and energy exhibited by your landlords and farmers, with the view of rendering the land increasingly productive in proportion to the increase of your population (checrs). I was struck with wonder at
the sight of those alterations brought abou through the labor of your experimematists and h, researches of your men of science. Whether consider your superior breeling of stock, you improved implements of husbandry, your varife systems of cropping, your bohd process of dratuiitg and subsoiling, or your happy application ot chemical discoveries for remedying the defectsur adding to the natural capabilities of your difleren soils-whether I behold around me your sturd! Saxon yeomen-(cheers)-yes, I say jour sturdy Saxon yeomen and their blooming daughtere -(renewed cheers) - well may I say never dd Divine Providence grant a more promising ladd to a more deserving race (continue 1 cheerins. Once nore I have the honor to retura our thans: for your cordial hospitality, and l berg your leave to couple with the expression of these thauks toast which, I am sure, will be received well hy all of you-it is the toast of "Snccess to the Royal Agricultural Society of England" (reiterated cheering).

The American Minister, the Hon. Mr. Lawrence, on proposing a toast said:-
The Ambrican Minister thell rose, and was received with an enthusiastic weleome. He said-My Lords and gentlemen, I have had placed in my hands a boast, which I shall oiler with very great pleasure, inasmuch as it relates to the great interests of this country and of all other countries, inasmuch as to me there tis to want of Harmony in those interests, if properif regulated (Hear, hear). Without touchis,g upon any point that could give or would give the slightest umbrage or the least ill-feeling to any human being, I will, without further comment, ammounce to you the :oast, at this moment. it is," Agriculture, Manufactures, and Commerce" (cheers). A friend as I am to all those interess, and believing that the power and glory and interests of this country have been promoted by the encouragement of them all, I rejoice that agriculture is first (loud cheers). I came here not as a foreigner, I came here to claim relationship with you (Hear). I came here, for the first time in my life, to see the farmers of England with my own eyes (A voice, "Look at cem", (laughter;) believing that when I saw them I saw the backbone of England (renewed and enthusiastic cheering). I know too well the history of my ancestors and of my kindred in England not to know that the farmers of England have always been loyal and true to the Crown; I know their history too well not to know that the batlles of England and the glory of Eugland are owing to the patriotism. the power, and the sacrifices of the farmers of England (vehement cheers). I came here because my ancestors were all farmers, and English farmers too (Hear), and I came here as the representative of a country whose great national interests are those which are founded in soil (loud cheers). I came here to pledge soou, and to ofler to you in that kind and frateral feeling which should exist between two mat nations connected with each other by such faluring ties, the sympathies and the kind feelHis of the srreat body of the farmers of the cited States (loud checrs). I came here as peir representative to tell yon and to make you falize that they feel under great obligation to for the experiments that you have tried, bich we beiner young and not rich (laughter) te not able to thy, while you have the ciapital, eskill, and what is more the science, which 25 been applied to the art in Great Britain meers). When I look to the state of your agridhure in 1850 , and compare it with its state in 930, I am perfectly amazed. I have been rerwhehned to-day--I have seen so much and fand so much that I hav'nt had time to digest (husghter, and cheers). I have seen to-day bat wheh I have nuver seen before. When I be back to this country only 30 years-and in ge ammals of time it is but a day-I look at a criod when the average product of whent was fi more than from 20 to 92 bushels to the acre, ad now all parties of all shades of political pinion argree that the average product is from It to 30 bushels to the acre (cheers). We of is United States have not the slightest jealousy the agricultural interest of England (a laugh). lie rejoice in every new arricultural improveent you briner out suited to your condition. Te rejoice when we hear that through the appliditon of agricultural chemistry you can produce wother spear of grass in this kingdom. It has een said very truly that he who produces two tades of grass where one grew before is a pubconefactor. I agree to that. If that be true, ou are all public benefactors, because you are creasing the productiveness of your country. If a matter for you and not for me to decide pon those great questions that agitate this counThow ; for I did not come here to enter into the blitical discussions of the British people. nay be allowed to have my own opinions, but bose opinions will never be expressed in Great Britain, so far as regards the internal policy of freat Britain. But I can tell you that the more bod you produce, and the nearer you come to foviding a supply for the whole of your populaion, the more rejoiced I shall be and the counn I represent. In regard to commerce there s not a man within the sound of my voice, I pprehend, who will not agree with me when I aj that commerce, or navigation, or trade, or shalever name you may choose to call it, is eszatial to the prosperity of the agricultural interst (cheers). Commerce has been the great pone so of civilization ; and what country has hone so much as this to civilize the world through the instrumentality of commerce? (cheers). I rish to do perfect justice to all interests, for I celieve they are all in harmony. In regard
to manufactures it :xould be idle, fatile, and foulish for me not to acknowledpe that the manuiactures of Eugland-the spiudles of England, if you please-have, in conjunction with this great, powerful, and patriotic body of men, the agricultural interest, fought the battles of Great Britain (cheers). To me there appears no discrepancy whatever in maintaining that all these interests are vital to the prosiperity of this nation. In all great nations 1 believe these three interests are identical. It is for you to decide, and not for me, how far you may be willing to be independent of fureign uations for fuod (llear, hear). That is a question that belongs to the Finglish political casuist, and not to a mau representing a great nation on the other side of the Atlantic, which is a great producer of food. That is a question I shall not touch upon. It would not become me. I did not rise for the purpose of expressing opinions in regard to the internal policy of this great nation; but Itell you that 1 should deem it a misfortune to my own country and to the world if, by anything. whillier by the act of our own legislature or from any viher cause, this mighty nation, Great Britain, should lose ally portion of its power in the family of our nations (loud and repeated cheering). There is room for us atl (Hear, hear). I desire to see competition among liberal-in fact, among all nations-but I desire most to see a competition existing between the old AngloSaxon and the young Anglo-Saxon (cheers). But let that competition be upon the principlewhich of us shall most advance and difuse civilization throughout the world? which of us will extend justice to feebler nations than ourselves -education, religion, the bible? (protracted cheering). Let that competition be this. Let us see which nations will do the most good (repeated cheering). I am happy to state that the United States is not represented alone by me on this occasion. I have on my right one of the most distinguished statesmen, and, what is better, one of the greatest and best farmers of the Union. That gentlernan is the American ambassador at Paris, who has come here to meet you this day-His Excellency William C. Reeves, of Virginia. Nor are Mr. Reeves and myself the only representatives of the United States. In this room certainly-but in the vast assembly I cannot point out the precise spotis a gentleman, one of the greatest farmers and stock growers of the Union, from the province of New York, Col. Morris, vice-president of the New York Agricultural Society, a gentleman who has been purchasing the stock of England yery largely, that we in the western world may improve nurown (cheers). Whatever you may think of your cousins on the other side of the Atlantic, I can only state to you, as their representative, that they are proud of their origin and rejoice that they are descended from the Englishmen (cheers). I hope at no distant day,
going on as we are at the rate of a million a year in our population, and we rejoice that we do increase, for we have room enough and food enough and labour enough for all-I hope at no distant day that we, your humble cousins, shall return to you, the farmers of England, to some considerable extent-(it must be done by instalments (a laugh)-the great debt we owe to you in the agricultural line for the improvements you have made, for the instruction we have received, and for the great benefits our whole country has derived from your experience. I beg to thank the president and council for the opportunity afforded me to-day of being in this old Roman city of Exeter (cheers) and in this renowned country of Devonshire, distinguished for its rich red soil, its beautiful red cattle, and, in olden time, for its fine red cloaks (cheers), celebrated in poetry as well as in prose. It is renowned as the birthplace of that great and mighty man, Sir Walter Raleigh, the man who first went to the country of my illustrious frend, Mr. Reeves, a man whose name renowned in history will live as long as England exists. But before I sit down I must offer my thanks, as an humble individual, to the inhabitants of this city of Exeter. Wherever these annual exhibitions may take place, I think you will be fortunate if you find a city presenting so much neatness, so much simplicity, so much taste, and so much cheerfulness that one feels at home the moment he enters it (cheers). It is the first time I have ever set my foot in the county of Devon. I can only say I am indebted to the kindness of-I do not know what to call him (laughter); he is a general philanthropist, engaged in every good and great work-Sir Thomas Acland (applause). I believe it is to Sir Thomas I am indebted for the privilege which I enjoy this day. I am certainly indebted to him for his hospitality in entertaining me and my friends yesterday, last night, and to-day. And on the part of myself, of my country, and my countrymen who are now present, I feel under the deepest obligation to the Royal Agricultural Society of England for the opportunity afforded us of being here. I have said it is the first time I have ever set my foot in Devonshire -I hope it will not be the last (loud and longcontinued cheering).
The Hon Mr. Reeves, American Minister to the French Republic, made the following observation in his speech. "It was his firm belief, that the pride and glory of England were to be found in that noble Agriculture, which, whilst it had improved the race of their useful animals had almost multiplied the fruits of the earth to an extent of which he could not form a conception,
until he saw with his own eyes that day, the prodigies which had been effected"Such is the testimony of able, honourable, and disinterested men of the Agriculture of Eng. land, and we fervently hope that these " Reports" may have the effect of stirring us up to do all in our power for our Agriculture. How creditable it would be to Canada, if strangers coming to visit the country were to compliment them on the state of their Agriculture in terms similar to those we have copied above? - Yes-indeed-it would be the greatest honor that they ever can become entitled to, and it is in their power to gain such honor.

Exeter, Saturday.-To all intents and purpurposes the Great Western Agricultural Festival was over with the conclusion of the Pavilion dinner. Exeter next morning was thinning rapidly, and one by one the flags and arches, which made so good a show all the week disappeared.

At one o'clock, the dinner given to the humbler classes in the Pavilion took place, and the affair went off with the greatest possible éclat, and the most gratifying expressions of good will. The guests amounted to about seven hundred. At the chairman's table the mayor and corporation of Exeter were placed, and the raised side benches furnished accomodation for a number of ladies on gentlemen anxious to be present and so interesting an occasion. The good things provided were done most ample justice to. Indeed, it was delightful to see the celerity witl, which the plates were cleared, and the hearty enjoyment visible upon every face engaged in the process. The baron of beef formed the great feature of the entertainment. It was cut into two huge piles of meat, at one of which M. Soyer presided, and at the other his able coadjutor in the pastry department, Mr. Read; and the rush of plate bearers-for to some extent every man was his own waitor-amply proved that the courage of the guests was not abated by preliminary trifling with fowls and lambs. And so the baron âla Magna Charta melted like a snow-ball in an oven,

After dinner the Mayor proposed the loyal toasts, and most loyally they were' drunk in beer and cyder. The "Prosperity to the Royal Agricultural Society-the Founders of the Feast,' was drunk; after which the Mayor passed a high eulogium upon the excellent and orderly conduct of the working men of Exeter during the Meeting. The speech was replied to by a
working man of the name of Upright, who spoke sensibly, with good taste and feeling, and very much to the purpose.
At the conclusion of the proceedings a wish was expressed on the part of the guests that they should shake hands with M. Soyer, with whom the notion of the entertainment first originated. The Regenerator accepted the proposal with enthusiasm, and stationing himself at the principal exit, had his hand shaken until it was all but shaken off by the enthusiastic guests. Altogether the occasion was an interesting one and a peculiar one, and it is to be hoped that the hint it affords will not be lost upon the Royal Agricultural Society at their future festivals.
In the evening a display of fencing and other entertainments attracted a large crowd to the Pavillion. M. Soyer was again the lion of the occasion, and, appearing in the insignia of his profession, cooked a profusion of cutlets with his magic stov,, amusing the audience at the same time with an admirable gastronomic prelection. The display was applauded to the echo; and it is gratitying to be able to add that the ladies present caused the cutlets to disappear in no time. In fact, the sociable and sans façon style of the whole proceeding was most amusingly characteristic. M. Soyer will leave a great name behind him in Devon.
Thus then the proceedings of the Royal Agricultural Society have this year been brought to a very satisfactory termination. The Exeter Festival was full of new points and characteristics, and has no doubt a very salutary impres--sion, and sown much good seed in the minds of the agricultursts of the Far West of England.

THE WORLD'S INDUSTRIAL EXHIBITION.

No. II.

To the Editor of the Agricoltural Journal, Montreal.

Sir,-In a communication addressed to the Canadian Agriculturist, under date of 21st May last, I endeavoured to draw the attention of the Canadian public to the Grand National Exhibition, suggested by His Royal Highness Prince Albert, and to make some general remarks for the purpose of arousing the public mind to immediate and decided action in the matter. About the same time I addressed a letter to Mr. Logan, Provincial Geologist suggesting the immense the advantage that would accrue to the Province could he be induced to arrange and pack up his Geological specimens, revise his Geological reports and proceed with them to London and there exhibit them at the world's exhibition to take place in May next. In my note to Mr. Logan I made the inquiry if the government had made any overtures to him on the snbject, or if the city of Montreal had done so. At the same
time I gave it as my opinion that no man in Canada could render such signal service to his country as he could by carrying out the above suggestions, thereby bringing this great Colony under the favourable notice of the British people. In personal conversation with Mr. Logan, I have been induced to believe that he would be most happy to meet the wishes of the Government should they entertain the same views of the subject. The time of meeting for the whole world has no doubt been well chosen, alth ough in this country without a railroad to the ocean it is rather inconvenient, but still these minor obstacles must be overcome. Our A:I erican neighbours no doubt will tender to us the uve of their many channels of communication to the ocean, to enable us with the least possible inconvenience to attend in London at the time appointed and I would fain hope that in case the Biitish Government decline sending out vessels to her Colonies to carry home specimens of Colonial produce for the Exhibition, that those British Merchants in Britain connected with the Canada Trade will direct their consignees and agents in Canada and the other Colonies to give free passage and freight to the Deelgates and articles to be said to the Grand Fair. I feel much pleased that the Provincial Government have been liberal in granting $£ 2000$ to aid this great work, and that they are now awarding liberal premiums for that object. A permanent and enduring service would be rendered to the Colony if one fourth of this liberal grant were to be set aside as premiums to be awarded in sums of fifty pounds for the best written treatise on each of the following subjects.

1st. On the best system of Moral Religious and Scientific Education applicable to the whole people.

2nd. On the Agricultural productions of Canada.

3rd. On the review of the Laws of Canada West.

4th. On a review of the laws of Canada East and their practical bearing on the prosperity of the Colony.

5th. On the best Geological report of the United Provinces.

6th. Best treatise on the practice of Medicine.
7th. On the best system of internal improvement, apart from Canals.

8th. On the best system of emigration to Canada.

9th. On the best system of Manufactures applicable to Canada.

10th. On the best mode of conducting the Lumber Trade.

I have read with no ordinary degree of eatifaction, Mr. Thomas C. Keefer's work on RailRoads and also his prize essay on Canals. The
readiug of these works has sugrested to my mind the benefit that might arise to Canada were the Government to offer premiums for similar e:ssays on each of the foregoing subjects or on any other subject tending 10 improve and advance the interests of the Colony. This inducement would exert a powerful influence in bringing forth the latent talent of our country.
From a perusal of Mr. Keefer's last woot, 1 learn that Great Britain requires yearly on an average nearly $2,000,000$ barrels of flour over :mul doove her own production of bread stuffs. Let Can:eda West continue to increase her proHuce in :he same ratio that she has done for the hast theer years, and in two years she alone will be able to supply this deficiency and if so would it not give her some claim to protection, as we tiow pay off 20 per cent on bread stuff exported and consumed in the United States. The internal weaith and resources of Canada only require an increase of Capital and population to rank her the finest Colony of the crown. Let any person who travelled through Canada twenty years ago, pass through it at the present time and he cannot say that her people are destitute of that encrgy of character necessary for her steady and permanent advarcement. Let not, however, the present opportunity pass unimproved in bringing her under the favourable notice of the British Government. The highest amount of good that will arise from the World's great Industrial Exhibition will be the extension of friendly feelings among all the civilized nations of the Earth, and the softening down of national asperities, and by a frank and free interchange of opinions it will have a sure tendency to promote prosperity and peace.
Should you think the foregoing communication entitled to a place i:a your columns you are at liberty to insert it.

L'Orignal, 21st August 1850.
Chs. P. Treadwell.
President of the Agricultural Socicty of the United Countics of Prescott and Russcll.

Poubtry Management.-I have always considered the rearing and management of poultry a matter of much more importance to the farmer than he is generally willing to believe. My poultry are of the same sort as may be found in any of the neighbouring farm-yards; the esss of the largest and best hens have been selected for sitting, so that the stock consists of birds capable of covering 15 egrs, which is the largest number I ever placed under a len. The rocks are changed every two years, taking care to supply their place with fine liealthy birds of the previous year. Hens are useless after the third year; my plan is, in a stock of say 30 hens, to introduce 10 young pullets every year, and part with 10 of the oldest hens. One male. bird must be kept to every seven hens; but when more than 50 hens are kept, one to every six is
necessary. On the proportion of male birdst depends, I am confident, the number as we the successful fecundation of the ergg. A a month since, as an experiment, 1 place eargs, which I had procured from a farm-1 where the proporion of male to female bird about 1 to 15 , under a hen, and mark the res From 13 eggs were produced three chickic seven of the eygs, at the end of three we were almost asfresh as when just laid, and th wers addled. My chickens are fed twice ath in the morning about half past seven (hitel course in winter,) and at two in the afterno Their food consists, during the five sumu months, of dry barley, and from October till A_{i} of bonled barley given warm, and 20 oz. per ${ }^{2}$ each, of tallow cake or chandlers' greaves (a same as used by Mr. Hustable for his pizs the cost of this latter is a fraction under a pere per lb., and is, I think, the best and cheap: substitute for the animal food they are unabie procure in the form of flies and insectis, att stason. I have found by experiment that for will lay more regularly on bartey than on as other grain. Hens during the period of incebatie should be fed on dry barley, as the greater it heat maintained in the body of the hen the fire and more numerous will be the progeny. Nein turn the eags as some do ; the hen will dote herself. Leave the chicks till nestled, i.e., tii the down becomes dry; feed them on soaks bread for the first two days, returning them 2 soon as fed to the mother, after whichit they mas be kept on tail wheat (and curds, if you hat the miilk,) until they are seven or eight weet old, when, and not till when, they may be te on barley and barleymeal, mixed with bran pollard. I have this year only 18 hens andthic cocks, the foxes having stolen rather more tha one third of my stock during the winter; the: 21 fowls consume a sack of barley, which co: now 11s., in 31 days, and have haid on an area age 16 eggs per day since the 1st of March. find the expenditure for corn, tallow cake, ir for the old stock (not for the chickens produces by them) pretty nearly balanced by the receind from the egrgs one time with another. The fo? lowing is the account, Dr. and Cr., of a stock, eight hens and one cock kept by myself, in a enclosed yad, during the year 1 S 19 .

Deator.

f. s. d.

Eags sold-mumber unknown, but furmished all food consumed by the nine fowls mentioned..........................
Chickens reared. - 33 couple sold th 3s 3d.....................................

131 couple reserved for stack for present ycar at 3 s....

206
31 couple of ducks at
Is. 9d................. 00

EC, 0 s. $5 \frac{1}{2}$., divided by 8 , the number of hens, gires a net profit of rather more than 15s. for each hen.-The son of a country Recior in Agriculural Guzetle.

GREAT MLETING OF THE HIGHLAND AND AGRICULTURAL SOCIETY OF SCOTLAND, AT GLASGOW.
On Wednesday evening, a lecture on manures ras delivered in the Trades' Mall by Dr. Ancorson, the chemist of the Society. The assemblage on the oscasion, which was numerous, was almost entirely composed of auriculturists, both from our home counties and from a disfance. The learned gentleman was accompagied to the platform by the Lord Provost and the Duke of Roxburghe. On the motion of his Grace, his Lordship took the chair, and introdufed Dr Anderson to the meeting; he was received with considerable applause.
Dr Anderson proceeded as follows:-It will be edmitted, I think, on all hands, that there is Farcely any subject more deserving theattention of the farmerthan the careful management of his manures. Under any circumstances this is a matter of vital importance; but the progress of agriculture, which now more than at any former time, compels every man to obtain from his land the greatest possible amount of produce, has gren it even creater prominence than it before possessed, and necossitates a far more careful atemion to the subject in all its bearings than it before required: and the introduction of what we commonly called antificial manures, has thal the effect of still further complicating the rhole matter and opening up questions, which 2 very short time since would have been consiiered altogether beyond the range of such inguiries. The consequence of this is that our fnowledge is at the present monent in a purcly musition state, and is deficient in much of bat definite information which is requisite for enabling us to arrive at legitimate conclusions fegnaing the comparative values of differeat manures, and many other points which it would be nost desirable to have established in a satisEctory manner. In fact, any one who has occaSon to inquire into those matters has questions anstantly presenting themselves to him, in reard to which wa possess no information at all
or other cases in which they render probable certain conclusions which might be establishatd by the results of experiments made in the field, which have either never been made or have been done without those precautions required to raise them above the chance of fallacy: It has appeared to me that the present affords an :dvaltageous opportunity of calling your attention to questirms which must indubitably depend for solution on the mutual exertions of science and practice. For 1 hold it to be certain that the two must go together, and that though som \cdot of the facts we require may be determined in the laboratory, there are many questions whieh, though suggested by scieince, can be established only as facts by experiments in the field, performed with every attention to care and accuracy. I hold also that neither of these methods of experiment will in themselves suffice; ther mus: go hand in hatd if our results are to be of value. Separately the chances are that they lead to mere speculations, of which science will supply one set and practice the other, for you must allow me to say that practice occasionally ventures on speculations of its own. In discussing the greneral question of the cconomy of manures on the present occasion, I must be conterted to do so only in a very general mamer, as your time will not permit me to go into my details. My intention is rather to bring out some facts little attended to, and, if possible, to draw from the practical farmer such information as he may possess, or to induce some of those who now hear me, to add themselves to the number of those who endeavour experimentally to add ts the common stock of information. And I shall advert, in the first place, shortly to the gereral properties of manures, and in doing th: 11 may possibly have to touch upon some matters with which you may be already partially acquainted, yet which camot, nevertheless, be too frequently brought underyour notice. If we examine, then, any of our common plants, we find it to be composed of a considerable number of chemical substances. These substances may be divided into two great classes,separable from oneanother by a very simple experiment, which is neither more nor less than burning the plant. When this is done we obtain its ash, containing the whole of one of these classes; the other has, in the process of burning, passed into the state of gases, and so escaped the obscrvation of our unassisted senses. The former of these are called the mineral or inorganic constituents of the plant, the latter the organic constituents, because they are peculiarly present in all organized beings. The later of these classes is a limited one, and contains only four substances, carbon, hydrogen, oxygen, and and nitrogen. The former is much more extensive, and comprehends a considerable number, of which the most inportant are sulphuric acial, phosphoric acid, lime, magnesia, potash, zind
soda. Now the soda. Now the existence of the plam depends
upon its notaining all these, as well as on" or twoless important substancer, in suficicent quantity ; without these it camnol flourish, and just in proportimn to the amount in which they are supplied will be the luxuriance of its growth. I xay the srowth of the plant will be proportional to the supply of these constituemts. This statenemt, however, is not to be taken in its widest enne, herause nature has fixed a certain limit, beyoul which no supply of these substances, however iberal, will raise its growith but up to that limit the statement is substantially correct. From whene then is the plant to derive these suistancos? And in mswering this question it is ner saly to distinguish bitween the two clasess of substances to which I have alreaty referied :nd inquire separatly into the sources of cuath. Of the inorganic cmatituents there can be bit are source, the soil, namely, which to be fertile nust contain the whole of these substances in greater or less quantity. It is diffrrent, however with the organic con tiin onts which have a two-fold source, and of which part, or even the whole, maybe derived from the suriounding atmosphere. The atmosphere is, in fate a great reservoir of the organic constiturnts of plants of which it contains :ill four; two of these nitrogen and oxygen forming :alnost the whole of it ; the oulher two, carbon an!l hydrogen, existing in smallerproportion in the forms lespectively, of carbonic acid and the vapour of water. It must be understood, however, that all soils contain a certain quantity of the same substances, in form of what is called organic matter, in a state in which all these forir substances may be supplied to the plant. Now, every fertile soil contains all the constituents of the plauts which , grow upon it, and that too in sufficient quantity to supply many successive crops, a position which I have hat recently an opportunity of illustrating in a very complete manner in a series of amalyse of the wheat soils in Scothand, published in the la t number of the Highlani Soriely's Transactions. I have there shown that even nitroyen, of all others, the element which we should least expect to find in them in abundance, nevertholess exists in what must be considered a comparatively large proportion. But it is importan to observe that it is not enough that theses stibstances shall ryist in the soil ; it is further uecessary that thry can berome arailable to the srowth of the phant. Now, to provide for 1 iis, nature has introduced an extremely beasaiful and impontant provision In order that these subetamees shall be absorked by the plaut, they must exist in a soluble condition. It is, however, yery manifest that if the whole rahaable constituents were soluble, the good effeets of sneh an arrausement would be altegether defeated; for the rians would snon washaway from our soils ath that they emtain of valuable matter. To obviate this, however, uature has sn arranged it, that hese constituents exist in the soil in the
state of insuluble compuinds, which, under the: influence of air can! muisture, sradually under, 0 a cuide of very cumplex de cunposilime, when slowly liberate the comsituents, as they are reguired to support the life of the platit. But hatture has fixd a limit to this change, and has cancel these constituemts to beeone suluble with entreme slowness, only, and in no greater quanity, than is requisite for supporiuls tuat amoun of vegetation w!ide the setheal econumy of the globe requires. Now the whole phat ciple of cultivation is to obtain, by proper trealment, from a given surface of hand, a greater amman of regetatiom than it is capable of producing in a siate of nature. And this is effected partly by tillage, which breaks up the laut, and by ile admision of air and novisture faciuttates the decompovitions, by which these raluable constituents of the soil are liberated from thrir insoluble state. The other and equally important means is by the addition to the suil oi these substanaces which the plant requires, in other words by the use of mamures. 1 manure. then, ought to contain all the substances which a plant requires for its growth. And this is unquestionably what a manure of theoretical composition should do. Nay, more, it ought to contain theses substances exactly in the propurtion which the plant requires, so that no waste may occur. It must, however, be manifest io every one acquainted with agriculture, and still more manifest to every one acyuainted with chemistry; that it is imposibibe to carry ont praciically what is true in theory: nevertheless, the aim of skilful and scientific practice ought to be to approach as near to theoretical perfection as it is possible to do, though in the very nature of things, we cannet even hope absolucly to arrive at it, or ceven neas it. Alithough however, we cannot hope to arrive at perfection, we may adrantagenusly aimat a somewhat lower and less dificult siandard, fur experimence and science concur in showing that all the constituents of a manure are not equally importamt, but that those are more essential which the plant has greater difficulty in obtaining from other sources. Now, in this primt of vient, nitrogen is the most important of all the conslituents of a manure, lecause it is that witich namre supplies least abuudataly. You ma; pnssibly ce press some surprise at this statemeni. consilering that I, not many minutess since, inentioned hat it is at tresent in enormons quantity in the atmosplere. Bun it so happens ahat mitrogen is exact! of a!l whers the sabstance which most pecuiarly requires to bo presented to the plamt in a spipecial c.undition. It has been established on mast mequivecal evidence tiat the plamt camant absorb nitrugen as such, anal that all this inmmense mass of nilrogen existuig it the air is not direct's useful to the phant, while it is only a very minate quamtity existing in it, in tho state of ammonia, which is of im-
mediate walue. Of the innmense disproportion Eetween the amount of nitrugen in what I may call an inert aud active condition, some idea may be formed when I mention that 1001b. of atmospheric air contains about Talbs. of nitrogen, and, according to a recent determination nut more tha: $\frac{1}{4}$ of a grain of ammonia. I shall not atempt to enter hure upon the question of how the sitrogen of the air passes from its juert into its cefuls state-a question of much int ticacy, which alas occupied the attention of many distingeuished chemists, without having as yet obtiined a perfectly satisfactory answer. It is certain that, under peculiar ciccumslances, the nitogen of :he air may pass in small quantity into the state of ammonia, but the supply so obiained is small and uncertain. The great source of ammonia is the decomposition of autimal and veretable substances, conlaining mitrogen, which sooner or later, give off the whole of that element they contain in the furm of ammonia. Next to ammonia in inportance mat be placed phosphoric acid, which is likewise a comparatively rare na:aral product, and of which also the great source is in animal and vegetable substances, all of which, but especial!y :animal substances, contain a in quantity. It is true that it is found also in the mineral kingdon ; but it exists so sparingly that as yet seareely any adrantageons use has been made of that which is obtainel from this source. You will observe then, and it is a matrer of great practical importance, that the principal source of the two most important conslituemts of plants is from plants themselves ; for even :hat portion obtained from aniunals comes originally from the plamts upon which these aniunals have fed. And the same may be said of potash, of which the great sonrce is still from plants. This is a point which I wish to impress particularly ypon you, that plants form the great source of these substances. and that this is true, cot merely of these substances as manures, but eren when you go into a druggist's shop and bay pure ammonia, phosphoric actid or potash, ereery atom which you get has at some time or other existed in a planit or an animal. These observations lead me directly to the consideration of that ma:ure which consists of the demompocing portions of plants, and that of course is farm-yard manure, the most important of all, :hat on which the farmer must always be mainly dipendant, and, T think I may also say, that, remading the economical manarement of which we hate the least momat of definite information. Iberr it to he understool as my deciled opinion, that farm-yard maure must :ilways be the farmor's mainslay. I am aware, indecd, that sme have thoughla oilherwise, and we have all hrard of ain ececntric senlleman who expresered his opinion, that the time would come when the farmer would carry his manure to the ficld in his waistcoat pocket; and though no ons is now-a-days so absurl, some people will
seem to expect that sone complete substitute will be found for farm-y, ard manure. I can assure jou, however, that any sucl supposition is entirely extravazant, and is certainly uncountenanced by chemistry. I do not mean to say that chemistry could not produce a substitute; but what I mean is, that the farm-yard manure must always be much cheaper than any substitute which could be manuffactured, and the reason is to be lound in the fact that the constituents of such a manure must be exiracted from plants, which must necessarily be expensive. While even supposing that to be done, farm-yard manure must, in the very nature of things, still always te produced. No question can then be conceived of more importance than of obtaining this mamure in its most perfect of stale, but how that is to be done is exactly one of those questions still unsettled, and which I believe to require very complete and carefulfield experiments. The exact chemical estimation of the comparative values of different specimens of this manure is a very difficult matter; partly from its extremely complex nature; and, partly, from the many questions it involves. of course, good farm-yard manure will contain more or less of all the constituents of our crops' but in estimating its value, we must be contented to take into consideration only its most important constituents, and, in this way, I conceive we may obtain a sufficiently near estimate, by knowing the amount of nirogen and phosphoric acid which it contains; but of these, for many reasons, the first is by far the most important, as it is in respect to it that the value of farmyard mamure appears to vary most. In the management, then, of farm-y ard manure, two differe,.t questions require to be considered. First, the production of a manure containing the the greatest possible amount of nitrogen and, secondly, the successful convertion of that nitrogen into ammonia. It is not unimportant, of course that the other constituents of the manure should be preseal in abundance, but it may be assumed, as generally true, that the treatment likely to produce the greatest anount of nitrogen, will be that which produces the most raluable manure in other respectis. In regard to the first of these questivis, there is a want of definite information. It is a conamon statement, however, that the value of the manure is dependent upon the nalure of food with which the centle, which produce it, are supplied. That, for instance, cattle fed upon oil-cake produce superior manure to those fed on turnip. I am aware that this opinion is not emiversal, as I have heard it disputed by farmers of skill and experience. I am inclined, hoverer, 10 believe that it is to a certain extent corrcct. Supposing, then, that two samples of such manure differ, it must be obvious that it is the dung and urine of cattle which differ; the litter mixed with such dang will be the same in both cases. Now, some experiments
made in the laboratory, on the pure dung and urine of cattle fed on turnips and oil-cake, appeared to me to confirm the opinion of the greater abundance of nitrogen in the produce of animals fed with the latter food. It will not do, however, to draw conclusions in such cases from a single analysis, so that I was anxious to have repeated and extended the experiments, but circumstances not within my own control have hitherto prevented my doing so. I would beg you however, to observe, that supposing it
to be made out distinctly that farm-yard manure to be made out distinctly that farm-yard manure produced by oil-cake contains more nitromen, than that from turnips, that still this would not embrace the whole question. It would if you were to buy the manure, when, of course, all that you want is to get as much nitrogen as possible in the 100 tons or any other quantity which you may wish to buy. But it is quite another
thing when you come to produce the manure on thing when you come to prodnce the manure on your own farm. The question then is, not whether. 100 tons of the onf zontain more nitrogen than 100 tons of the other; but whether the whole quantity of nitrogen produced by the one method of feeding is greaterthan the whole quantity of it produced by the other. Now, we lave no experimental information on this point; but I think it may be doubted whether in this point of view there is any such difference, because, you will observe that though oilcake contains more nitrogen-in fact about 3 times as much as turnjps-still there is a much greater disproportion in the quantities of these substances with which you supply the cattle. If you take away from an ox a certain quantity of turnips and replace them with oilcake, you do not allow an equal weight, but perhaps not more than one-fifth of the latter substance; sothat in fact, the ox fed on oilcake actually on the whole receives less nitrogen than when fed on turnips. All these are matters which I do not give as facts, but as questions, which it would be most desirable to have determined by careful and repeated experiment; it would be a great boon to agriculture to have it set at rest, and I may be permitted to hope that the observations I have now made may be the means of inducing some one to engage in the inquiry. To passthen to another question-supposing cattle to be fed in exactly the same way, so as in fact to produce manure which at the moment of formation is of uniform quality, what are the circumstances under which that manure can be preserved with the least loss of its valuable matter? This question is one of the utmost importance, and calls for the discussion of so many points that it will be impossible for me to do more than refer to it very shortly. On some of those it would be difficult to enter without complicating the matter by opening up the discussion of othersubjects;-I allude here to what is called box fecding, and feeding on boarded stalls, and sundry other modifications which,
independently of the feeding question, have been lauded by their supporters as producing greately superior manure. I am too little acquainted with the practical results of any of these systems, which so far as I know have been only recently introduced into Scolland, to renture an opinion on their comparative merits. I have little doubt, however, that the manure produced must be superior in quality to the old farm-yard dung prepared in a most imperfect way. But what degree of superiority they possess has not been determined by any satisfactury experiments which have come under iny notice. The matter must, in fact, be decided in the same way as other manure questions by ascertaining not merely the amount of valuable constituents present in the manure, but also the whole quantity produced in a siven time. As regards the general question of the preservation of manure, I apprehend that the most important matter is its protection from air and moisture. In the way a common dung heap is made, we have, in fact, exactl; the conditions to occasiun loss of its valuable constituents. It is exposed to a more or less free current of air, which facilitates the volatilization of the ammonia as it is formed; and it is exposed to the falling ram. which washes out the soluble salts, and what ammonia the winds have spared, into the subjacent soil. It is true that the former of these sources of loss can be got the better of by the use of acids or of gypsum and mixing with dry earth; but when the ammonia is thus fixed, as it is said it is fixed only as regards volatility, fur is still soluble, aud liable to be washed away by rain. In order to have farm-yard dung in the best state, it must be preserved under cover: and, my impression is, that the introduction of covered duns-pits is likely to prove of great importance. There seems to be no doubt that m this way mamure, in whatever way produced, must be best preseryed, there appears, indeed. to be but one objection, which is the expense of erecting a roof of sufficient extent to cover the whole manure of a farm. But, surely, in these days of cheap building, some sort of inexpensive cover may be contrived. In order to ascertain this, we should have to ascertain, by actual experiment, what is the amount of gain by having the manure kept under cover, so as to know whether it is sufficient to leave a profit on the expense of covering it. We have another matter to attend 10, also, in the management of farm-yard manure-its fermentation, namely by which is meant the production of such a decomposition as coverts the nitrogen present into ammonia. The importance of this decomposition depends upon the fact that by this means, we obtain a manure which acts with greater rapidity than one in which this decomposition has not been effected. The fact is, that the formation of ammonia takes place much more slowly, when it has been incorporated with the
soil, than when it is heaped up in the dungheap; and, as the nitrogen must pass into the state of ammonia before it is absorbed by the plant, we require to effect as much of that change as possible if we are to have a manure of rapid action. Having said thus much of farm-yard, he would next speak briefly of liquid manures. The question was a very wide one, upon which he could not enter at length, and was to some extent an economic one; for to aseertain either the real or comparative value of liguid manures, they must be guided by economic results. As they would be aware, there existed a great variety of opinions as to how these were to be obtained. He was of opinion that liquid manure would be most economically employed, if it could be cheaply converted into the solid form. There was, however, only one process by which it conld be done, and this was evaporation, and to effect that would be more expensive than its application in the liquid form. This was more properiy a purely economic than a scientific question, and therefore lie would not dwell on it. He had referred hitherto solely to the class of natural manures, and he had laid before them his view, that no artificial manure would ever prove a substitute for that of the farm-yard; but though that was the case, they might be, and he believed were, most important auxiliaries. Let them take the commonest kind of artificial manure-lie meant of course, guano-the finest quality of which waa the cheapest and best of the class. He said the chea pest and the best, and it must necessarily be so, because the constituents which were of greatest value to the agriculturist were given it in a larger quantity than they could be got in any other compound for the same money. His advice then would be to buy the best guano-never purchase inferior. The inferior was greatly more expensive. The decrease in the money value for which it might be obtained was nothing to the decrease in its valuable constituents, as compared with the better sorts. The Peruvian was the best kind of guano, and it was by far the cheapest. Farmers were exposed to much risk of imposition. In this matier, adulteration was carried on to an extent which it is dilficult to credit. He had recently gone over the number of samples of guano which had been forwarded to the laboratory of the Society for analysis, to the number of 30 cases, and he found that our of that 30 there had been 9 samples of such a quality as he himself, if purchasmmg , would have been disposed to accept. And this gave no accurate idea of the proportion of good or bad guamo that was in use. Numerous samples of good guano came to the office, but few of those that were thoroughly adulterated, because the venders of such took care to keep as far as possible out of the reach of the chemist. Set them take guano of rhe best quality, and they would find that two substances entered largely
into its composition, viz; arnmonia and phosphoric acid, the two substances, as he had previously stated, the presence of which was most valuable in farm-yard manure. Now, in Peruvian guano they would find about 17 per cent. of ammonia and of phosphate of lime, a compound of lime and phosphoric acid, 23,24 , or 25 per cent., according to circumstances. In inferior guanos, there might be found 23 or 24 per cent. of phosphate of lime, and one or two of ammonia; and this, instead of being sold at onethird of the price of the other, as it should be, was sold generally at two-thirds. Guano might be considered as the type of a class of manures, and bones might be taken as belonging to it alsc. The value of that kind of manure was dependent upon two conditions. Some used burned bones. Now in certain circumstances, that might be advantageous. The addition of phosphate of lime might alone he needed to certain soils. Such a case occurred in the pasture land of Cheshire. The application of bones to that exhausted soil operated almost as a charm upon it. The peculiar nature of the tillage under which it had beenkept-all the butter and cheese raised upon it being conveyed elsewhere- reduced it to such a state that the addition of phosphate of lime acted perfectly, and was indeed beneficial. But in general such could not be the case, and therefore they should give the preference to bones that were unburned. There was another instance of a similar kind to which he might refer. In many cases he believed that bones were sold from which the glue had been extracted by boiling. This glue was a valuable commercial product. It was used in weaving, for stiffening yarn and other manufacturing purposes; and several manufacturers had large boilers in which ths glue was extracted. The bones were sold afterwards at no diminution of price from that of unboiled bones. In conclusion, the learned Doctor presented a summary of the views he had advanced, reiterating that farm-yard manure could never be altogether set aside by artificial; but though such was the case, they were indebted to the Jatter for the great extension of cultivation that had taken place of late years. The reason why farm-yard manure was thus important, he hoped he had made plain, as also the necessity for further experiment to confirm or confute many views now broached and to a certain extent entertained. In fact, the observations he had made might be taken not so much as the results of experiment as the suggestions of those experiments that were requisite to test many of the theories to which he had alluded. The learned gentleman resumed his seat amidst much applause.

The Lord Provost then proposed a vote of thanks to Dr. Anderson for the very interesting lecture he had delivered.

The Duke of Roxbungire cordially seconded the motion, which was carried by acclamation.

Agritaliural Ionural
 AND
 TRANSAFTIONS OF THE lower camada agricultural society.

MONTREAL, SEPTEMBER, 1850.
We have seen several visitors from the United States to Canada this summer, and a few Canadians who have made, tours in the United States, and all concur in opinion, as to the capabilities of Lower Canada for agriculture, that they are generally supericr to any of the Eastern States of the Union, with the exception that our winters may be longer, and more severe than in some of these States. Of the correctness of this favourable estimation of Canada, there cannot be any doubt. The only draw-back that we have been liable to, is in the production of fall wheat, that we have not grown it to any extent. We have this year seen a most beautiful field of fall wheat grown by James Logan, Esq., in the immediate vicinity of Montreal. It was in every way a superior crop. It may be replied that last winter was very favourable for fall wheat, and that success in growing under such circumstances, can be no general rule. We believe that if land was well drained and properly prepared, the wheat sown in time (at latest, previous to the middle of September) sufficiently corered either in drills, or tightly ploughed in, that fall wheat might be grown in Lower Canada. The great danger is in the Spring by freezing and thawing alternately, that the plants are thrown out of the soil, if not well drained. They are, however, liable to the same injuries in the United States, but they sow early, on summer fallowed land, and the wheat has a firm root in the soil before the winter sets in. We cannot admit that our country is inferior to any in North

America, but on the contrary, there is mo doubt, that the cultivated portions of it, are capable of yielding a larger produce of corn, and cattle, acre for acre, than any part of North America, notwithstanding the length and severity of our winters. If we are behind or difficient in our products, it is our own falult, and the remedy is in our own power. The country or its products, are not to be estimated as they appear at present, but as they might be. Cibjections are made to our cattle, and our pastures, as being very inferior, but that is certainly not through defect in the natural quality of the soil or climate, or the race of cattle. We might have most superior pastures here, equal, we believe, to those of any country, as the lands are generally productive of natural clover the first year they are left unploughed. If we had excellent pastures what would prevent us from having good meadows, and with both these, why not have good cattle and sheep? We have heard objections urged to our cattle because they are not very large frame and bone, standing vely high with great horns, but this sort of stock, we humbly conceive, would not be the most suitable or profitable for this country, under any circumstances. Short legged, small boned cattle of moderate size, will ever be most suitable and profitable for this country, and probably for any country. We do not wish to be understood as advocating the expediency of keeping very small sized animals. We only propose that our animals should be of moderate size, well shaped, small bone, but of large carcase in proportion to bone, and not to be chiffly legs, bones and horns. We admit that there may be small sized animals very unsuitable for meat or dainy purposes, but these are not the sort of animals to choose for usefulness or profit. It is only by careful selection and attention in breeding, that useful animals can be obtained. It could not be expected that neat catle or
sheep, would be in superior excellence, where no selections are made for breeding, but all the fumales are allowed to breed, and ut any age that they may do so. There may not be any objection that heifers of good size, and well kept, should breed, or have their first calf at two years old, but to allow those of small size to breed at that age is very objectionable, and completely cheeks their growth. With sheep it is the same case, they should not be allowed to breed until their second year, unless of gooil size, and well kept. Sheep at one ycar old, are not able to feed their lambs, if they are not of good size, and well fed. Farmers in the old countries, who are desirous of having good sheep, seldom allow the ewes to breed until after their first shearing. When this plan is found necessary in the British Isles, where sheep are much better fed, in winter and Spring, than in Canada, it may be imagined how much more necessary it is here, if we desire to have fine stock. It may be answered that it would not be profitaible to allow sheep to remain the first year without breeding-but we would observe, that when lambs are allowed to breed the first year, they will not produce so large a fleece of wool, their growth may be checked, and they may not raise a lamb after all. The lambs or calves of young cattle, or sheep of one year old, are seldom of good quality, or fit for raising. Some farmers may so keep their stock. at all seasons, that it might be quite proper to deviate from the plan we submit. For the generality of farmers, however, we conceive it would be their interest to adopt the plan we suggest, in breeding cattle and shecp. There is nothing to prevent us having a useful and profitable stock of cattle and sheep here, without incurring any great expense, except the observance of rules that are manifestly required in every country in the management of
cattle and sheep, to have them of good quality and profitable.

We have frequently been told that it would be better that we should copy more for this Journal from American Agricultural periodicals, thar from Agricultural periodicals published in the British Isles. We, however, are fully persuaded that we cannot find in any Agricultural publications, better, and more practical information on every branch of improved husbandry, than is to be found in those published in the British Isles. We make this statement advisedly, and as a practical farmer of long experience. We say now and we have always said, that the more closely we follow and adopt the best and most approved practice of British husbandry, the better, and more profitable will be our farming. We do not say that we should follow them in every thing, but we certainly may do so in most things with advantage and profit. There is not an Agricultural publication of North America thit can teach us better systems of husbandry than we can find in British publications, and than what we have learned by practical experience all our life. We should hope that this Journal would be one to copy from on Agricultural subjects, rather than be a copy from other publications. We possess the very best means of information on the subject of improved Agriculture, we have had a long practical experience, and therefore, if we are capable of employing these adrantages properly, this Journal should not be second to any published on the same subject in North America, and we trust it is not, and shall not. The farmers of Canada will find as good farming in their own country, as they can find in North America, we can assure them of that. The general state of our Agriculture is defective, and very much behind the improved system of the British Isles, but we certainly can receive as
good practical instruction in the art of Agriculture within the Province of Canada, as we can find on this continent. We may very well take upon ourselves to lead instead of following, and there cannot be any mistake that Canada is capable of doing so. Our soil and climate are excellent, and we possess sufficient of practical skill in the country to show an example, and instruct the ignorant in good husbandry. All that is required is to put our many adrantages into practical operation. We need not go to seek instruction beyond what we possess within ourselves, if we make a good use of what is in our own power. All our Agricultural implements may not be of the best description, but we have some of the most essential, that cannot be surpassed, and there is nothing to prevent us having them all so, made upon the spot, from English models, that are the best in the world. There are not better Agricultural implements :on this continent, than some that are made in Montreal, such as ploughs, harrows of various kinds, grubbers, carts of every description, churns, cheese-presses, and many other articles of excellent form and workmanship, not so much for making exhibitions at shows, as for practical use in the farmers' fields. We have seen a churn made in Mon'treal, worth all the churns we have seer. in America. It combized clegance of form, size, strength, and excellent workmanship, and capacity to make over 100 lbs . of sutter at one time. This is something like a churn for a dairy, and a correct picture of it would be worth giving in an Agricultural Journal. There is a commencement made in Montreal of manufacturing Agricul. tural implements, and we hope that in a short period we shall be able to show all the implements required in Agriculture, of the most suitable form and adaptation to their several uses, and of the best materials and workmanship. We forgot to mention our Fanning machines, and wood and wire riddles and
screens, of every size required for cleaning grain or small seed. All we have enumerated are the best of their kind, and capable of executing well, the several works for which they were made and adipted. We have no reason to be ashamed of ourselves. If we cannot show a very large number of imple. ments, we can show the most material to the farmer of the very best description. We confidently hope and trust that ere long Ca nada will: be able to lead in a good system of husbandry in North America, instead of following the example of any other country this side of the great Atlantic.

We have not been able to give any illustrations in this Journal, and we suppose this wialt has been complained of by some parties. The expense of procuring illustrations that would be worth having, would be considerable, and unless they were perfect, or gave a perfect idea of what they were intended to represent, we conceive they would be more calculated to do harm than advance Agricultural improvement. In the case of animals, we have seen lately, some illustrations pretending to represent certain animals and we look upon them as ridiculous caricatures, giving no correct idea of the shape of the animals that would enable one to form any just estimation of their merit. In the Farmera Magazine, published in London, that certainly possesses merit equal if not superior to any other Agricultural publication, they seldom give any illustrations, except two beautiful copperplate engravings of superior animals executed in the very best manner in each Monthly number. If there are any others given, it is very rarely, and only of some new invention, and they are executed in the best style. We receive some of the best Agricultural periodicals published in the British Isles, and they seldom have any illustrations, except those in advertisements appearing in them It would be very de-
sirable certainly that correct drawings should be given of any rew and useful inventions not known to farmers, or new and approved plans of farm houses and buildings, but we do not think that the Agricultural Journal should be made the medium of advertising for parties, unless such advertisements were paid for, and then there csuld be no ubjection to any number of illustrations appearing on brhalf of the parties advertising, and on extra sheets that would not diminish the present size of the Journal of Agricultural information. Picture books are very anusing to children, who do not require that the pictures be very exact representations if they give a mere outline, and are well coloured. Illustrations for an Agricultural periodical, however, must be well and correctly executed, to make them useful, and should only be given of the most approved implements, the best constructed farm buildings, and new and useful inventions. Any Imities who desire
have their implements or other articles tiney have to dispose of, made known to the public, let them give co rect illustrations and descriptions of them in an advertisement fur which they will pay, anc! subscribers to the Journal will be able to form their own estimate of them. This Journal s'aould only recommend by illustrations or ctiterwise, such implements, plans of farm buildings, or other things as have received the stamp of general approval formed from practical experience. We have seen frequently, iliustrations of implements appearing in Agricultural periodicals, that would be useless to a farmer, for any purpose but to look at, and serve no good purpose by insertion, except as advertisements for the manufacturer or vendor of the articles. We wish to be distinctly understood, not to object to illustrations being published, provided they are such as we have endeavoured to describe-calculated to increase the usefulness of this Journal, and to promote the objects for which it is published
-the advancement of Agricultural improvement in Lower Canada.

AGRICULTURAL REPORT FOR AUGUST.

The munth of August was very favourable for completing the hay harvest, and for securing any grain ready for cutting. With the exception of one week in the commencement of hay harvest in July, we have suldom seen a more farourable season for harvesting hay in good condition. In the week we mention, some hay was injured, certainly; but for the remainder of the hay harvest, there was no difficulty in securing the crop in the best condition. Inay is a material crop of the farm, and it is a great advantage to have it uninjured and well saved, which it may be, generally, this ycar. Ileary rain or showers upon hay in the process of saving, destrojwall the best qualities, and render it of little value, except for manure. The weather was beautiful for cuting and securing wheat and barley, and we believe all the latter, and much of the furmer, is safely housed. Barley was not sown this year to the usuai extent, in consequence of the luw price paid for it last year, and the quantity raised is certainly short of furmer years, but it may be equal to the demand. Farmers, however, should not give up the sowing of barley, as it can be employed in feeding cattle and pigs, if brewers will not p,y a rasonable price for it. It is much the best crop to suw grassseed with, in laying down land, particularly. when wheat is sown so late as the latter end of May and beginning of June. To sow grass-seed at that advanced season of the year, is very uncertain if the month of June is dry, and it is a great disappointment to a farmer, when he proposes, or has his land in a fit state to seed down for grass, to have the grass-seed fail. If he has to plough it again, and take another crop of grain, the land may not be
in good condition ; and where a regular rotation is attempted, it is quite deranged. When land is prepared to be seeded down, we should prefer incurring the risk of sowing wheat carly, if that is the crop to be rais. ed, to deferring it to the latter end of May. It would be less inconvenience and loss to lose some of the wheat by the insect, than lose the grass seeds, and have the disappointment consequent thercon. Indeed, it is very questionable whether it is a good plan to sow grass-seeds and clover with wheat, if a good crop of wheat is desired. The young grass and clover growing up about the wheat, is a shelter for the whent fly, and in wet seasons retains more moisture about the straw than is beneficial to the crop, and is apt to induce rust. When wheat is sown in drills, and hoed, as in England, they can seldom sow grass or clover seed with it, and hence land is not often seeded down for grass with wheat in a good system of liusbandry, when a regular rotation is observed. There is certainly a difficulty here in regard to this matter, and we fear that wheat must continue to be the chief crop to sow grass seeds with, but in that case it may be advisable to sow early, so as to give a fair chance for the grass and clover seed. This year, from all reports we have heard, the early and very late sown wheat has been less injured by the fly, thar that sown from the 25th of April to the 15th May. From our own past experience, we should have expected this to be the case. The wheat crop generally, so far as we have been able to ascertain, has not suffered much injury this year by the wheat fly, and will be a better crop than we have had for some years. A dry warm season, we have ever found, hoth in the old country and in this, to be most favorable for wheat. It is said that summers of the highest general temperature, always produce abundant crops of wheat in England, as this high temperature is usually accompanied with dry weather. On the con-
trary, a low temperature is generally accompanied by a wet season, and is invariably productive of inferior crops of wheat, both in the British Isles and an Canada. A dry season saves much labor, and prevents waste and injuiy to crops. In this latitude, we are not often liable to extraordinary or injurious droughts, and the dryest seasons we have seen in this country, have been the best fur. the furmers. There are some complaints of their crops of wheat, occasioned by various causes, but this may be always expected nutil draining and better cultivation is more generally introduced. In many places last Spring, the lands were not in the best condition for sowing or producing a good crop. They continued wet to a late period, and before they were fit to sow, the soil became so eveessively hard, that it was impossible to harrow them sufficiently to form a good seed bed for the grain to vegetate in, and much of the seed failed from this cause. The same causes exist every Spring in a greater or less degree, and have been productive of similar results to those we have stated. We hope, however, we are correct in reporting very favourably of the crops generally, and an early harvest, as this undoubtedly is, is a most certain proof that the crops are better than they would be of a late harrest-at least we have ever found it ṣo. In Lower C'anada we have not had any sprouting of grain in harvesting up to this time, and this is a great advantage.

To barvest beans so that they will keep in in good condition, is very difficult, In England tirey put a funnel in the centre of the stack to give a free circulation of air, and this prevents any injury to the beans, and admits of their being harvested much sooner than they could otherwise be. The funnel is sometimes made of cast iron, but generally of three poles of wood joined together with small spars, nailed on at about a foot apart. Where there is a s'and, the funnel is placed upon the frame in
the centre of the stack, and the stack is built round them. Where there is no stand, there may be a channel formed of stone, or of wood under the bottom of the stack and the funnel placed upon. The air would go through this opening and through the funnel in the stack, and keep the beans from heating or injury.

Upon the whole, we can safely state, that we have not seen a crop of grain this year that was not fully as good as could be expected in proportion to the state of fertility, cultivation and management of the soil for the crop, and what more could reasonably be expected, unless crops were to be produced without any cultivation for them. We have scen and heard of symptoms of the potato disease appearing in the stalks or vines of the potatoes; but we believe that the tubers are not yet affected, and should dry weather continue, we may hope that the potato crop will escape the disease. We do not expect that in this dry weather the crop will be very large, but a moderate return of sound potatoes is much more desirable than a larger crop of potatces that would be unsound. Farmers who are anxious to grow large crops of potatoes would be likely to incur loss instead of profit. Early planting will be the best security against disease, and making use of special manures, rather than farm-yard manure. We have no doubt that potatoes may be grown but not by the same cultivation and manuring that was practised successfully before they become diseased, and ly the cultivation and manuring that has produced the disease. We have never seen the vines of the potato crop look more luxuriant than they did this year. 'The vines may wither and dry without disease affecting the tubers, but after this takes place the tubers will not increase much in size. There is a general complaint this year of the failure of the turnip crop by the fly, or at least seed that has been sown two or three times has been as often eaten by the fly the moment
the plants have appeared. This is a great annoyance and disappointment to a farmer, and one that we are very liable to in this country. It is most essential that suil for turnips should be well pulverized, and finely broken down-that it should be moist when sown-that it should be limed with about 40 bushels to the acre, previous to drilling, or sowing broad cast-that special manures, such as guano, bone-dust or ashes, should be applied instead of farm-yard manure, or applied with the latter-that a rapid vegetation of the seed should be obtained if possibleso that the plants may soon come into the rough leaf. Moist or peat soil is less liable to the fly here than upland or sandy soil. When the weather is dry at the time of sowing and for some time subsequently, the young turnip plants are very liable to be injured. In England it is found that by mixing the Swedish and White turnip scerl, the fly will destroy the White, and the Swedish will escape with little damage. The experiments are worth trying. Turnip seed is not expensive, and by sowing some extra seed of a different kind from the variety sought to be raised, and of the kind the fly prefers, it would not be difficult to hoe out any that remained after the danger of the fly was passed. There is no better variety of turnip for food for animals or for keeping during the winter, than the Swedish, and we believe they might be grown by careful cultivation, and adopting the precautions we suggest. Steeping the seed of the variety of turnip desired to be grown in train oil, and drying it with sulphur, would also be a good plan, and only stecping the seed sown to feed the fly in soft water. The latter should be done in order that the plants would appear as soon as the plants from the seed steeped in oil. It might also be proper in case of steeping in this way that the seed should be sown separately, that for the food of the fly on the sides of the drills. This method would
give additional trouble certainly, but perhaps would not cost much over a dollar the acre, and this wonld be amply compensated by having the first sowing safe and in time.

There is a greatly increased quantity of Mangel-wurtzel, Carrots and Parsnips sown now in Lower Canada, over what was sown herotofore, and this is a certain indication of improvement in our husbandry. We do not expect that root crops will ever be cultivated here in the same proportion to grain crops that they are in England, but it would be very desirable that every farmer should cultivate some. If it was possible the land should be manured the previous fall and well drained. This would keep the soil open, and it could receive all the working it would require in Spring as soon as the snow and frost was gone, and the seed could then be carly sown, which is most essential to good root crops. If our lands are not well prepared in the Fall, so as to keep them as dry as possible, and drained, so that the water shall pass off of them in the Spring without obstruction, we cannot sow in time or expect good crops. The growing seasons are very short the most favourable years, and we should certainly strive to be prepared to give our crops the whole benefit of the growing season. How can we expect good crops if we do not sow until mid-summer? With the exception of turnips, and buck-wheat, there is not a crop cultivated by the farmer that should not be sown in April and May, and as carly as possible in these months. As to the wheat, we would not take upon us to recommend early sowing for all, least the fly should damage it, but we would have no hesitation to sow early if the land was in a fit state. As we before observed the most dangerous time is-sowing between the 25 th of April and the 15 th of May, and we should, prefer in our own case to sow previous to the first, or subsequent to the last of these periods. Oats, peas, and potatoes, cannot be sown too early after the
land is fit. Barley should not be sown before the weather becomes fine. We have mever seen a good crop of barley when the sowing has been immediately succeeded by a very havey fall of rain, unless the land was veiy dry indeed, or thorough drained. In England they endeavour as much as possible, to check weeds in the Fall, by destroying their roots, so that they shall not be in the soil to sprout and grow in Spring before or with the cultivated crops. Iere, on the contrary, we make no effort to cheek the growth of weeds in the Fall, and consequently in the greater. part of our lands, they must be continually on the increase. 13y summer fallowing, well, and properly executed, weeds might be effectually destroyed. Any larmer might summer fallow eight or ten acres in the year, if he would resolve to do so, and the whole farm might soon be got over in this way, and be put into good condition. We do not see how anything like a regular rotation of crops can be established here, without introducing summer fallow. T'en acres treated in this way, might be seeded down with clover and grass, for meadow, and it would then be in a clean and productive state, until it would be required for ploughing again, when it would be clean fo any crop to be sown in it. There is an objection made to summer fallow by parties who pretend it is an unnecessary waste of land for a year, and contrary to the principles of good husbandry. However this objection might have weight in the British Isles, we do not consider that it applies here, where so large a portion of the lands is left in nearly a state of waste every alternate year. There is another objection urged, that in our hot summers, the fertility of the soil is evaporated by exposures to the sun in a plcughed state. . This we conceive is a great mistake. Any farmer may see, that in the dryest periods of the summer, by stirring the soil about the plants of green crops, an immediate improvement will be observable in
the plants. Ploughing and working the soil in summer, instead of exhausting it, causes it to attract furtility from the atmosphere, from whatever cause it may be, greatly adds to its fertility, and its fitness and capability for producing a grood crop.

The very dry weather we have had in August, although favourable for harvesting has had a considerable effect upon the late sown crops, in hastening them to maturity, we fear, in many cases, rather prematurely. The grass and pastures have been rery much dried up, and will not recover, uniil there is a considerable fall of rain. The markets are well supplied with meat-butter, and cheese, the latter of better quality than usual, and much of it of Canadian manufacture. This is as it should be. We might make butter and cheese here for exportation to a large extent, and it would pay well. Suitable dairies, good dairy-maids, skill, attention and cleanliness, are the grand requisites to insure good butter and cheese. It will not do to make good butter and cheese one time, and not another, as this will destroy the character of all. The most careful attention is to be observed constantly to secure a regular good quality at all times. In conclusion, we have abundant cause of thankfulness to a Bountiful Creator, "Whose goodness does the circling year" "With fresh returns of plenty crown!" and for giving us a healthy season. These, the greatest of all carthly blessings, are enjoyed by the firmers of Canada in as great a degree as those of any country on earth, in every instance, where they perform their own duty properly.

August, 27 th. 1850
We are glad to perceive that the County of Terrebonne tigricultural Society have adopted the plan of paying all Premiums awarded for well managed farms, at their cattle show, ploughing matches, \&c., "in uscful and improved Implements of Agri-
culture,-superior breeds of young male ani-males-different species of grain, and any other useful article for the advancement of agriculture." If this mode of paying Pre. miums was generally adopted, it would have a good effect, provided always, that the Implements are of a good description and suitable for the use of the parties who obtain them. There is also, great caution to be observed in the selection of animals, that they may be good, and suitable for the use of parties to whom they might be awarded, or it will not be satisfactory to the parties obtaining them. As regards samples of seed there is no difficulty, except that they be clean, and of unmixed varicties. Awarding choice male animals will be the most difficult' matter to managn, first, in obtaining suitable ones, at a fair price, and then in giving satisfaction to the competitor to whom the animal is awarded. This may all be provided for by Regulations of the Society which we have not seen. There is a numerous list of Premiums, and no less than 12 for well managed farms all of them open to Canadian farmers, and only 6 of them open to other than Canadians. There are no Premiums offered calculated to do more good than those for well managed farms, under judicious regulations and restrictions. We humbly conceive that it is very objectionable to allow parties to compete for different crops, and for well managed farms at the same time, and to be awarded Premiums for both. This is not allowing competitors a fair chance, and appears very like the "prize catching" system, that should be prevented if possible. If a good crop of any kind happens to be growing upon a farm that obtains a prize for being well managud, this good crop is a part a part of the result of good management and is not we conceive entitled to a separate premium. We do not see what is to prevent the best managed farms to obtain all the prizes for crops also, and cut out all other
competitors. If a farm be generally well managed it is probable that carh crop upon it will be good, or at least better than any crop growing upon an ill-managed farm. These matters require consideration to maintain the character of Agricultural Societies, and their gencral usefulness and popularity. Any firmer obtaining an award for having the best managed farm should be perfectly satisfied with that i:onsur, and leave uther Premiums to encourage parties that are less fortunate and probably less skilful. We should be sorry to propose anything umreasonable but we feel persuaded the more general the competition that is allowed by the regulations of Agricultural Socicties and the more widely the Premiums are distributed to farmers, the more useful their action will be, in encouraging improrement. The County of Terrebonne Cattle Show is to take place at the Village of Ste. Therese de Blainville, on Wednesday the 25 th September instant.

An attempt has been made in July last by the County of Montreal Agricultural Society to establish a Fair, and a considerable number of animals were upon the zround, (the Old Race Course, Mile End,) for sale and for show. We did not hear whether many sales were effected, but we hope the Socicty will persevere in thecir intention of holding another Fair in the Fall. The month of May would be the most suitable period for the Spring Fair, and, perlaps, early in October, for the Autumn Fair. It would be a great convenience to farmers and others who require either to sell or to purchase amimalas, to have regular Fairs, as in the Old Countrics. A viricty of animals would be brought together for selection from to suit all parties, and much time would be saved. The Montreal Market is a very uncertain one to sell or purchase store animals in, and a larger portion of the animals exhibited are the greatest trash ever offered for sale.

We willingly give insertion to the communcation of Charles Treadwell Esq, which will be found in another column, and we recommend its perusal to subseribers When a provision has been made by the Legislature fur representing Canada at the great exhibition in Eaghand next year, every thing should be done to make this representation creditable to Camada, as it certainly might be. We have always thought it would be well to encourage the writing of Fissays on different subjects refering to the Capabilities, Agricalture, Mranufictures, Commerce, Sce., of C.mada, and we should rejoice to see encouratement heh out to write Essays on all these suljectis. The Rojal English Agricultural Society app!y a considerable amount amnally to this purpose (£300). There are 4 Essays annually for the best on the Agriculture of four several counties, and by this means they lave now published Essays, we believe, on more than half of the Engrish counties, and hese Essays contain the most valuable information and instruction. They offer £jo sterling for each Essay that is considered the best. Were pizes offered here on the same plan, they would be productive of much good. It would not be necessary that we should have one for each county. One would be sufficient for each section of the Province. The application of public funds to these purposes, would not be mis-applied, but on the contrary, would give the true state of all matters to which they would have reference, and this information would be of the greatest advantage in developing the resources of the Province.

We have received from B.D. voimson Esq., Secretary of the New York Slate Agricultural Suciety, the transactions of that Society for the year 1850. It is neally bound in cloth, coutains nearly 1000 pages of in:eresting and inseful infromation, and several well execouted Illuasrations. It is altngatier exceedingly well
got up, and highiy cred:able to the Society, and to their Secretary, Mr. Juthnon who has prepared the sork as Editor of it. The lectures of Piofessor Johnson, delivecel last gear when in the State of New Yook are all given, at: ald greally to the value of the work. We shall avail ourselves occasionally of the "Transactions" to eopy what we conceive may be i:teresting to Canadian farmers. We beg to return the thanks of the Lower Canada Agricultural Socicty to the New York State A grieultural Society, and to their worthy Secretary, Mr. Johnson for their "Transactions."

The District of abmacal Catte Show we believe is to take place at St. John's on the 9th October nest.

We did not receive any notice of it, but accidentally saw the advertisement in the St. Joln's \mathcal{N} ews.

The following we copy from the Albany Cultivator, for May last, under the heading : -Improvement in Connecticut-Farmers in Canada, may, if they can, produce such returns as it is reported they do in the United States. We confess we have never seen any equal to them in Canada yet:
"Our grass lands, lying in the vicinity of our main strect, produce on the average, four tons to the acre, both crops (we always cut two crops per year); one field that was actually weighed, produced over five tons to the acre; and there are others which will equal that. There were 3 acres of oats averaged $\$ 6$ bushels per acre, one acre of which being limed produced $9 \supsetneq$ bushels. Of corn one single aere produced 136 bushels, a picce of 3 acres produced 116\% bushels to the acre, weighing 60 lbs the bushel ; another piece of 6 acres; produced on an average 102 bushels per acre. * "We can show cows from whose milk at grass alone, 2 lbs. butter per day are made." A cow is said to have produced 52512 s . 6 . in the year by her butter, and a calf sold for 6 d llars, the quantity of b:ater produced was 368 Its. "Large Farming in the West," James Davis of Waverly, Ross cointy, Ohin, cultivat $\cdot \mathrm{s}$

1500 acres exchasively in Indian-corn, and had last winter, a corn-crib filled, which was threc miles long, ten feet high, a.d six feet wide. It is stated futher, that on the Great Miami Bottom, about $2 \overline{5}$ miles below Cincimati, there is one field, (belonging to several owners,) seven miles long by three miles broad, which has been regulariy planted to corn for nearly half a century. In the Wabush Valley, here is a corn field ten miles long.

These are surely surprising statements, and it would be worth a journey of even 1000 miles to go and see how a farmer in the West, where libour is scaice and dear, can manage to cultivate and harvest properly, one two or three thumand acres of Indian-corn. We have noticed othcr products, of potatoes for instance, and we believe that the quantity reported would more than cover the whole surface of the land, they were grown in. We have certainly better land in Canada than we have ever seen in the United States; but our products are awfully behind.

on saxony sheer.

Perfraction should be the ain of all; and as the Savouy shetp have been brought to the highest state of perfection, as producers of exura fine wool, it is my desire to make the description so plain that a young wool grower, who observes these rules, in buying or selecting for breeding, will soon have a good flock.
First comes the description of a pure blood Saxon buck. He should be of a medium size; (and I consider a medium sieed buck to be 3 feet 9 inchrs from the nose to the root of the tail,) arouind the body 3 feet 2 ; around the flank 3 feet 6 ; from the breast to the hip 2 feet 6 ; in height 2 feet 3 ; he should be a intle longer than a Merino, and not quite so heavily built. The back almost straight; broad over the kidneys; body round; the neck stirting almost level with the tops of the shoulders; tapering and becoming round towards the head. The head small and neatly set on; 10 loose skin on the upper part of the neek, or very little; the hoofs short and pointed; well quartered, strong, active and spirited; his cye bright; pleasamt counteuance and tame ; the skin smooth and heathy looking. When waiking with his side to you, he should look finished sind say. He should look and feel woolly n not stiff nor hard, but soft. The same rules should be observed in selecting.ewes, only
they are a size less. they are a size less.

The next comes the description of his wool. Fine wool on his forehead; wool on his crown, fine, short; downy looking wool on his cheeks; the under part of the neck as fine as possible, and crimped. The wool on the body to be as even as possible all over, and should be crimped 24 to $\because S$ crimps to the inch; tho crimps should run plain and evenly acruss the sample, and up to the top, resembling crape. It shonld be fine, soft, thick set or compact on the sheep; should be so that it will stand straight out, showing small strands or divisions on the surface of the fleece; the belly well covered with fine wool; the hip wool soft and crimped. The wool should be a clear white or cream color; moderately yolky, and the surface of the fleece a litte dark. There is a very grood hind of wool, that is very fine and close, in which you camot trace the crimps-you must decide by the smallness of fibre. The fleece when shorn, its felting properties should keep it united; when sprepid, resembling a spider's web; it shonld be soft and easy rolled: the length of wool after it is washed and shorn, is from 1.12 to $\stackrel{2}{2}$ inches.

When a young wool grower goes to select he should keep the above described sheep or some other model sheep before his mind : it would help him to have precisely one-fourth of an inch marked on his thumb nail, to lay the sample on and come, and if they count sis or seven crimps in that space they are very good. You should cut the sample with scissors, for palling them injures the wool and the sheep both.

When the wool is well crimped, it is superb. Sheep that are soaked and washed under a waterfall until the wool is pure and clean, will average $21-2$ lbs. per head-if washed in the old way, they will average 3 lbs. You can have your sheep exquisitely fine, or fine and heavier fleeced, just as you select them to breed from.

Remember, 'like begets like.' Be careful to guard against the following faults: Coarse, hairy faces; coarse hairs or uncrimped wool on the under part of the neck; stringy on the top of the shoulders; bareness of the belly ; coarse hip wool; and coarse hairs on the inside of the thirchs; the skin pale or covered with spots; slab-sided, poor on reasonable keeping ; sunk; in the neck; a litte coarse; low on the side.

In conclusion, iry to have your sheep with as many of the good marks as possible, and very few of the bad ones. Annually selec:, iatten and sell fanlty sheep to the butcher. By so doing, you will have the profit and pleasure of having a fine and beautiful flock.

Mecmanics.-Of all the branches into which Natural Philosophy is divided, mechanics have proved the mostuseful to agriculture. No doubt any labourer may work any machine that answers the purpase it is constructed for ; but
without a knowledge of this scionce he camnot understand the pinciples upon which any machine is constructed, nor can any machine be properly constructed but in accordance with those principles. As implements may be characterised as the right hand of agriculture, mechanical science, in improving their form and construction, may be said to have given cunaing to that right hand; for, testing the strengh of materials, both relatively and absolutely, it employs no more material in implements that is sufficient to overcome the force of resistance, and it induces to the discovery of that form which overcomes resistance with the least powcr. Simplicity of construction, beanty of form of the constituent parts, mathematical adjustment, and symmetrical proportion of the whole machine, are now the characteristics of our implements; and it is the fault of the hand that gruides them, if field-work is not now dexterunsly, neatly, and quickly performed. In saying thus much for the science that has improved our implements to the state they now are, when compared with their state some jears arro, l do not aver that they are yet perfect ; but they are so perfect as to be correct in mechanical principle, and light in operation, thongh some are not jet simple enough in construction. Many indeed may yet be simplified in construction; and I consider the mechanist who simplifies the action of any useful implement, thereby rendering it less liable to derangement, does as good service io agriculture as the inventor of a new one. Such a result may at all times be expected; for mathematical demonstration is strictly applicable to mechanies, whether to the principles on which every machine operates, or the form which it is constructed.

Were mechanists to pay more attention to principles, and less to empirical art than they commonly do in several districts, implements would soon assume the form most consonant with the demonstrations of science. As it is, modifications of construction and unusual combinations of parts are frequently attempted by mechanists; and though many such attempts issue in failure, they nevertheless tend to divulae new combinations of mechanical action. It is desirable that every mechanist of implements should understand practical agriculture, and every farmer study the principles of mechanics and the construction of machines, so to their conjoined judgment and skill might be exercised in testing the practical utility of implements. When umacquaimed with firaning, mechamists are apt in construct implements obviously unsuited to the work they are intended to execute; so that having been put together after repeated alterations, and probably at considerable expense, the makers endeavour to induce those farmers who are no adepts at mechamics to purchase them, and after some unsatisfactory altempts
they are put aside. Were famers acquainted with the principles of mechanics, the if diserimination would form a barrier agrainst the spread ot implements of questionable utitity, and only those find circulation which were obviously simple, strong, and eflicient. It is not easy to invent implements possersing all those desirable qualitics; but, is they are always exposed to the weather, and the soil is peaderas and uncouth, it is necessary they should be of simple construction. Simplicity of construction, however, has its useful fimits: Moat ferm operations being of themselves simple, they should be performed by simple implements ; and all the primary operations, which are simple, requiring considerable power, the simple implements slould also be strong; but complicated operations, though stationary, require to be performed with comparatively compticated machinery. Operations liat are beth complicated and locomonve slould be pe:formed with implements producmg complicated action by simple means, in order to awoid deraugement of their constituent parts. The solution of this last is a dificulult, if not impossible problem, in parctical mechanics. The cummen plough approaches more nearly to its practical solution than any other implement; yet that wonderful inplement, executing diflicuit work by simple means, should yet be so modified in construction, as 10 give the plonghman a greater command over its motions. These considerations tend to show, that the form and construction of implements, and the circumstances in which they may he used, are still subjects affording scope for mechanical contuivance.

In riewing the construction of all machines, an important circumstance to be considered by the puph is, the resistance among movilus parts Whieh arises from frirtion; and in solid struclures, generally, the forms and positions of parts have to be adjusted to the strength of ma criaks, and the strain which the pants have to bear. This consideration shoukd leat the papil to become aequainted with the strength of materials; and, as it farmer, he will have much need to pun sueh knowledge in practire when he comes to receive the work executed by the carpenter and smilh.

On considering machines, he should also avoid the common error of supposing that any combination of machinery ever can inerease the quantity of power applied. "What in infinity of vain schemes-yel smme of them displaying sreat ingenuity--for perpetual motion, and new mechanical enginus of yower, \&c.," exchams Dr. Arnotl with reason, in his Flements of Physics, "would have been checked at once, had the great truhh beeaz senerally understood, that no form or combination of machinery ever did, or ever caninerease, in the slightest degrec, the quantity of power applied. Ignorance of this is the hinge on which most of the dreams of
mechanical projectors have turned. No year passes, even now, in which mamy patems are mut tahen out for such supposed discoveries, and the deluded indivilualls, after sellints, perhaps, their louselold necessaties to obtain the means of securing the expected advantages, often sink into despair, when their attempts, instead of bring:ins riches and happiness to their families, end in disappointment and ruin. The frequency, cagerness, and olotinaty, with which eren talented individut:s, owing to their imperfuct knowledge of the fumdanental truths of mechanices, have engaged in such undertakings, is a remarkable phenomenon in human nature."

TO TAKE HONEY FROM BEES.

Sin-As I read in one of your late papers a guery respecting the way to take honey from bees, without smothering them, and as I think that a sucecesful way of duing so is very easy for every bee funcier to underiake, 1 wish to let you hnow the plan which I always adopt, and which if you think woth a place in your paper, yon are very welcome to.
The simplest way, aud the one by which I invariably tahe the looney away, is, I provide, in the proper season, a kiad of fungus, which grows in old grass lands (we call then puff-balls,) and having carefully dried them in an oven, I put them in a paper bas over a fireplace, to keep them dry until wanted. I also have a tin box, five inchessquare, witha very close-fitting cover; and soldered to cach end of this box, I lave a small tube about six inches long; when I wish to take the honey away, I place my hive on a board or flas, and havings lit four or five of the puffiballs, I put them in my tin box, and cover it close. I then inser: the end of one of the tubes that are fixed to the box, uuder the rim of the hive, about two inches in. I place them in a damp cloth round the bottom of the hive, to keep in all the smoke, I then blow gently through the other tabe. The smoke of the puffballs will, by this means, be driven from the tin box, through the other tube, into the hive: in a short thime the bees will become quite intoricated, and fall from all parts of the hive on the board or faty on which the hive is resting: I have ready at hand another hive properly dressed wilh sweet cream, which I place over them after 1 remove the full hive; they will, in a short time, recover, and ascend to the top of the hive. I thea remove them to their permanent stand. I have tried cther, but it is so very dificult to ascertain the quantity of ether to admiaister, or the time to withiraw the vapour, before a number of the bees are destroycd, that I have invariably used the puffi-ball in all my experiments.
By the use of the puff ball I can join two weak stocks, and make one strong one, which is of more value than a dozen weak ones; the way I do so, 1 will at a future time be very happy to communicate to you, but at present I fear I havo
trespatsod too much on juor valuable time.Yours, \&c., Jambis lingision, Loucrtuen Ludge, Skull, June 3, 1850.

Wages, and Wurk in the thane of Miltos. The wife of Milton hired a litle boy that was glad to receive three pence a week. llis employment was to feich the milh, pust the letters, get flour from the mill, and barm from the brewhouse, carry pies to the oven, clean boots and shoes, bing in wood, sweep up the garden, roll the grass, turn the spit, draw the water, lift boxes and heavy weights, chase away beggars and infectious persons, and any little odd matters of the kind.- Selected.

DISEASE OF FEET IN CALVES.

*We lost a great number of calves for some years past by a disease they took about the feet; their hoof's grew so fast and so suft, that they could not walk with them, although I pared them now and then-and I have one this yuar, that has the same disease. I was advised to rub vitiol to the diseased part, which I did. I camot say yet whether I can cure it or not, but I see that the disease is not making such rapid progress since I began to apply the vitriul to it. Perhaps when you are going your rounds, you will call at J. \& R. Raines, who sell medicine for sheep, and ask them if they sell what is applied to the disease called the 'rotfoot in sheep.' Ithink that the disease in the feet of the calves is something of the nature of the roffoot in sheep."-S.
"I am much indelted to you for the trouble you took in inguining about the calf. There is nothing putrified or broken about the feet or hoofs, but the hoofs grow uncommonly fast, and are soft where they becone attached to the skin, but quite hard towards the point, and if not pared would turn upwards; if any thing they are harder than usual, so that the calf does not lay his w ight upon the point of the hoofs as other calves do that are not troubled wi1.. this disease. When he is going he stretches his feet forward, and lays his weightupon the back part of the hoofs as if a person were walking upon his heels. So far as l can judge from the experience I have gotten about the disease, it arises, or is caused, by the over-growth of the worm that lies between the hoofs, for I suppose that you, and particularly Professor Dick, are aware, that in every beasts foot, with divided hoofs, thacre lies a worm in the fore or upper part where the hoofs divide from the leas, which is alwass taken out by those who prepare the feet for human food. Although the said worm is naturally but the size of a small bean in a calf, yet it grows to such an enormous size that it goes back through the feet until the end of it lies close to the slin in the hollow part between the small hoofs at the back of the feet. In some of the calves that
had the discase, I saw the end of the wom, which moved to the touch, and appeared to come from the direction in, or through the foo! where the above mentioned worm Ties, and I took an awl, put it through the end of the worm, and drew it ont as far ats it would come, then burnt it of with a red hot iron, as cluse to the. feet as I could, withont coming in contact with the sinews, \&c., and that without coning the disease. One of my neighbours told me that he cured two calses by an advice which he got, viz., first rubbing vitriol to the houfs, then whala oil to keep the vitriol from burning the feet. I did that to one I had last year: it stopped the disease, but the vitriol destruyed the juints cluse to the houfs, so that the calf died, but I am more cautious in using the vitriol to this one. It checks the disorder, so that it is not making such progress, but it does nut appear to remove it. 1 am using the vitriol as advised by thee Professor, and will do so till I hear from wou again. There are various reasons given as the cause of bringing furward the disease; some say that it it caused by the calves lying on hot lung, but that cannut be, for no dung will heat whike beasts are trampling upon it. Others sal that it is cansed by their ly ing on wet dung, but we generally ketp them diy-at least is dry as we were wont to do befone the disease was known in this quarter. A third party says that tun much running will causethe disurder, ; now the calves all run a rood deal when they get out first and the one I have diseased took the lead among the calves when they first got uat, and certainly ran a good deal; and I never saw two calves that ran so much as the fist two that took the disease with us about 20 years ago. They would run almost the whole day through the arable land, and it is shortly afler they get out first that the disease makes its appeatance. I may say in conclusion, that the disciased une this year is of the same cow as the one previously affected."-S.
[Remarks.-It appears to me that the disease in the feet of your brother's calf is very like what we call founder which is an inflammation of the sensitive lamine of the foot around the sides and toe. The softening may eithet be an effect of it, by causing a throwing out of a soft porous horn in great abundance, or the back parls of the feet are softened by the calf resting on the soft wet dung. I think the best thing that can be done is to have the toes or fore parts of the hoofs, pared down almost to the quick ; indeed, even if the quick were exposed and bled a little when the disease first appeared it would do good, poultices of bran may be of much use; but, in the case you now mertion, which thas been going on for a length of time, they are not likely to be of much service; and after paring down the hoofs sufficiently, a solution of any mild caustic, to act as an astringent will be the most likely remedy. If the sulphuric
acid he is using is diluted with five or six times its weight of water it will do ; or he may dissolve an ounce of sulphate of copper in a quatt of water, and try it ; if necessary, the feet may be wrapped, inclosing a little tow and tur; but the main thing is to pare the hoofs properly and in that case it will perhaps be found that the calf can walk quite well, and may be turned out into grod dry pasture.-W. D.]

Wa'er for callle. -The Professor commenced this third head of his lecture by remarking that he believed it was a generally observed fact, that cattle liked the water of ponds, while they disliked that of limectone springs; that they preferred to quench their thirst in a green offensive collection of stagnant water, rather than in a ruuning spring. In Bedfordshire he had seen catle much relish a bad water filled with conferve and animalcule, which, however, was the only water to which thes happened to have access. Farmers generally supposed that the cattle were fond of such waiter on account of the green, vegetable matter it contained; and a distinguished professor had explained the fact by supposing such water to be "meat and drink" for the cattle. It was certain they did not like hard water; and it gave a staring coat for horses when they were obliged to drink it; and when it was considered that water, in chalk districts, contained from 60 to 70 grains of carbonate of lime in the gallon, while London water (which was hard compared to others,) contained only from fifteen to sixteen grains, it would be obvious how much difference would be found to exist in different waters. He regarded a good supply of water essential to health; and thought it a point of great importance to ascertain the kinds of water most suitable to the animal economy, under different local circumstances. Piofessor Way concluded his lecture by expressing a hope that the members present would communicate to the meeting such cases of the practical eflects of hard water, on the health of cattle, as it had been his object in the remarks he had then made, to elicit from them.

CIRCUMSTANCES WHICH MODIFY THE QUANTITY OF LIME THAT OUG IT TO BE ADDED TO THE LAND.
There are many circumstances, as I have said which will modify the quantity of lime that may most profitably be added to the land. Thus-
1°. The nature of the soil must be considered. a. A light, anandy soil must not be so heavily limed as a stiff clay. This is a familiar fact to every farmer. Besidesthose purposes which the lime serves in the lighter soil, it is applied to stiff clays with the view of opening and rendering them more friable and mellow. This of course
requires the persence of an alditional quantity. In a clay suil, also, the minute paticles of lime are apt to become coated over with a dhin layer of impervious clay which prevents many of them for a long time fiom esertiug their full effect in promuting the grow thof plats. For this reason aloo, a larger puphition is usuiful. Last! 5 , lime camot be diffiused through a clay soil so easily 5 or so completely as through a lieght or sandy soil, and there fore it musit be added in larger quautity, in order that it may be mado equally accessible to the routs of plants.
Hence in the same neighluunthuod, as in parts of Renfrewshire, whate 2 ol 21 tums ate consideredenough for the hill-side (sliarp or gravelly) land, 6 to 8 tons are cons:dered indispensable on the heavy land of the bottoms.
b. Such again, as are poor in vegetalle matter will bear less lime than sach as are sich in decaying animals and piants. One of the uses of the lime is to combine witis substances which are naturally produced duing the dec:iy of vegetable matier in the suii- the lager the quantity, therefore, of the deald routs and other parts of plats, the greater will be the detarand for lime to perform this fanction. Besides, as dead plants afflurd the food on which new races of plants live, and as lime promules tine decay of ihe furmer and the preparation of the foud they contain, it must be advantageons to the immediate fertility of the soil to add lime mure abundautly when much vegetable or aniaual matter exists in the soil.
Still all soils, in which vegetable matter abounds will not bear in an equal degree the application of large doses of lime. Our dry, moorish heaths, covered with a black vegetable mould of a few inches thick, resting on a gravelly subscil, often give excellent crups of oats, and even turuips and barley, when first broken up and limed, but afterwards become too light and open to grow oats and clover successfally. To such soils lime should not be added too lavishly; and means should be taken, by deep ploughing or utherwise, to mix up and solidify the surface soil, that it may contain on the whole a smaller per centage of urganic matter than the few inches at the top usually do in their natural state.
2°. The state of the soil is also of great consequence. If the land be wet and undrained, a larger dose of lime must be laid on. The moisture, like the coating of clay above referred to, shuts out the air, and prevents the lime from having its full effect. The coldness of such suils also checks the decomposing action of the lime upon the suil, and causes the pruluction of a larger proportion of acid matter-for both of which reasons more lime is required. Further, in wet land a portion of the lime nut unifeyuently forns insuluble compounds-murtiar, siiicates, $\& c$.- which do nut act in the usual way in bene-
fiting the crops, and thus also larger applications are rendered necessary:

If the soil be a stiff clay as well as fall of water, then larger doses still be required; and if it be also marshy, and therefore abound in vegetable matter, very large applications of lime must be laid on, in order to obtain the full benetits it is capable of producing.
3°. The kind of cropping is also of consequence. Green crops ate benctited by larger doses of lime than crops of corn. In rectaininge bugery land it has been observed, that while the addition of above a certain quantity of lime lessened the after-crop of oats, at tumip or potato crop, if taken first was excellent in proportion to the cquanity of lime applied. A similiae remark applies to the ploughing up of lea. If corn is be to taken, the liming may be postpone.l, but, for a green crop, lime will generally be advattageous. By land which is lying in grass, less lime will usually be required in the same number of years, than by an equal extent in aable culture. Much, however, will depend upon the way in which the grass land is treated ; and if it is cut for hay: more of coures of everything, and of lime among the rest, will be required than when it is kept in permanent pasture.
4°. The kind of husbundry followed.--An improving husbandry, for example, will call for larger applications of lime. If, as means of improvement, the land be ploughed deeper, the lime will be diffused through a greater body of soil, and should therefore be present in greater quantity. Or if the land be drained and sub-soilploughed, with the view of removing noxions matters from the deeper soil, and of allowing the roots to descend, a more abundant limintr may in the first instance be required-since it is desirable that some of it should find its way into the under soil, to aid in preparing it for the safe descent of the roots of the growing crops.
5°. The form in oohich the lime already jresent, exists in the soil is also a matter of much importauce. The soil may contain 6 or even 10 per cent of lime in the state of silicate, and yet pay for the addition of a considerable first dose of quick-lime, because this silicate must itself undergo decomposition, through the joint action of air and moisture, before it can produce the good effects which follow from the use of lime. A reasonable per centage of sypsum may alsn be present, and yet the land may pay for liming; because the gypsum is not fitted to perform all the functions of quicklime, or of carbonate of quicklime, or of carbonate of lime in the soil. In this latter case, however, much willdepend on the nature of the soil itself, on the kind of manure applicd to it, and on the circumstances in which it is placed-points to which I may hereafter have an opportumity of arlverting.
6°. If the land has been previously limed, a larger quantity is believed to be necessary to produce an equal sensible effect conpared with that
produced by the first addition. This may arise from severai causes.
a. If the land be nearly destitute of lime when the first application is made, a very remarkable effeet will necessarily be produced, since a certain proportion is necessary to the ordinary fertility of the land.

On a second and third application, the land already contains more lime than at first ; and therefure a larger quantity must be added if it is to come in contact with as many particles of soil on which it can act, as the first lime readily reached.
b. For instance, the whole quantity of that hind upon which it can readily act, may be less than it was on the first application; and hence the lime must be diffused through it in larger proportion, if it is to be brought in contact with as much of this vegetable matter, and produce as great a sensible effect as at first.
c. But the good farmer will not often expect to see upon his old-cultivated land a sensible effect produced by lime equal to that which is seen when it is newly brought into arable cultivation; the adlition of lime from time to time, in good husbandry, being made rather to keep $u p$ the existing condition of a productive sonl, than to add matenially to its actual fertility. lhis point will be more fully discussed in a succeeding article.
7. The geological character and structure of a country have ilso much influence upon the quantity of lime which its soils require; but this point is of so much interest and importance that it will be better to consider it in a separate section.-Johnson's Treatise o:2 Lime.

TIIE HONEY BEE.

The Collateral hive differs in appearance from the bar huve; still the principle, thourh less simple, and not so certain, is in reality the same - that is, the honey is obtained from the ends or sides of the hive. It consists of three-wrooden boves, made of good one-inch deal, about ten or eleven inches inside measure, nicely fitted together, placed on a level floor three feet from the ground, and sheltered from the weather and hot sunshine. At the back of each square box is inserted a small pane of glass, covered by a door. The entrance is at the bottom of the centre one. On some there is a bell-glass on the top of the centre box, with a movable cover. A swarm is put into the centre box, and when more room is required, the bees are allored to enter one of the side bozes, by drawing up the slide which separates it from the central box. This additional space is supposed to prevent swarming, but it seldom does. If they do not swarm, and the season and pasturage are good, the bees may fill the other box and also the glass at the top. The amount of proluce will thus be cqual to that of three.

NOTICE.

The WASIINGTON COUNTY MUTUAT, INSURANCE COMPANY. The undersigned $A G E N T$ of this Company fior the district of MONTREAL, hegs to state, that he is now prepared to make survers, effect insurance, and attend to all intructions left for him, at his Father's Residence, Cote St. Puul, or at the Residence of his Brother, Lirer St. Pierre, and at the l'ost Office Montreal.

WILLIAM EVANS, Jun, Côte St. Paul, 9th August 1850.
MATHEWMHODY, manufacturferof THRASHING MACHINES, REAPING MACIIINES, STUMP, AND STONE EXTRACTORS, ROOT CUTTERS, REVOLVING ANI CaST-STEEL HORSE RAKES, PATENT CHURNS, IV A GGONS, \&e. \&c. \&e.
The Subscriber has been employel since 1846 in manufacturing his improved TIIRASHING MACHINES, with IIorse powers. He was awarded the highest lrize at the Terrebonne County Exhibition after competition with many others. They have thrashed and cleaned, with 2 horses, from 100 to 124 minots of Wheat per day, and from 200 to 250 of Oats, and have given universal satisfactoon. He guarantees all purchasers for any recourse by Paige \& Co., of Montreal, who allege having a patent for these machines, dated December, 1848! and carrants them equal to any made here or clsewhere, for efficiency and durability.
One of his Reaping Machines may be seen at Kerr's Iotel, St. Lawrence Street, price £25. Having lately erected new and enlarged Works for the abovearticles, he will execute promptlj' all orders in his line.
Thrashing Mills constantly on hand. Two secondtand Mills, in warranted order, cheap for cash.
Thrashing Mills repaired, and finishing work done. Agency in Montreal, at Ladd's Foundry, Griffintown; in St. Andrews, L. C. at Mr. Henry Kempley's.
Terbebonne, August 1850.
GREAT AGRICULTURAL WORK !
THE FARMER'S GUIDE. то
Scientific and Practical Agricul-
ture.
by henry stephens, f. r. s. e,
Author of the "Book of the Farm," Editor of the "Quarterly Journal of Agriculture." \&c. \&ci, ASSISTED BY JOHN P. NORTON, A. M., Professor of Scientific Agriculture in Yale College, Wew Iraven, Author of Agricultural Prize Essays \&c., \&c.
THIS highly valuable work will comprise two large royal octavo volumes, containing over 1400 pafer with 18 or 20 splendid steel engravings and more than 600 engravings on wood, in the highest style of the art, illustrating almost every implement of husondry now in use by the best farmers, the best Eethods of ploughing, planting, haying, harvesing, \&c. \&c., the various domestic animals in their
highest perfection; in short, the pictorial feature of the book is unigue, and will render it of incalculable value to the student of agriculture.

This great work is the joint production of two of the most talented agricultural scholars of the day; the one eminent as an author and editor in Great Britain, and the other as a l'rofessor in Yale College. Both are eminently practical as well as scientitic men, and all they say may be relied on as the result of profound researeh, tested and sustained by practical experiment. The cuntributions of Professor Norton are chiefly designed to adiapt the British portion of the bouk to this country, and thus to make it an AngloAmericart work, giving to its readers all the really uspful agricultural know ledge at present attainable in either country.
The work is divided into four departments, distinguished be the four seasons of the year, commenceing with Winter, and l'rof. Norton's notes will be published as an appendix to each part. The first chapter treats of the following subjects, under the head of

INITIATION.

On the best of the existing Methorls for acquiring a thorough knowledge of Practical Husbandry. On the Difficulties to be encuuntered in learning Practical Husbandry, and on the Means of overcoming them.
On the Different kinds of Farining.
On the persons required to Conduct and Execute the Labor of the Farm.
On the Branches of Science most applicable to Λ griculture.
On the Institutions of Education best suited to Agricultural Science.
On the Evils attending the neglect of Landowners and others to learn practical Agriculture.
On observing the details and recording the facts of Farming by the Agricultural Student.
Terms of the Work.-The American edition, the first number of which is already issued, will be published in semimonthly numbers of 64 pages, with an Englisty steel engraving in each number, of which there will be about 22 in all. Price 25 Cents per Number, of 85 in advance for the 22 Numbers.

CLUBBING.

Three Copies will be sent to one address for \$12: Four Copies for $\$ 15$: Five Copies for $\$ 18$. Cash in all such cases to be remitted direct to the Publishers, and not through Agents.

The work can be sent in Numbers at periodical rates of postage, and mail remittances may be made at the risk of the Publishers.

AGENTS WANTED.

Liberal commissions will be allowed to good canvassing Agents.-Booksellers and Pemodical Dear.ers will be supplied on libcral terms.

All orders and communicatiuns should be addressed, post paid, to

LEONARD SCOTT \& CO., Publishers. 79 Fulton Street, Entrance 54 Gold Strect, New York

CANADIAN GLASS MANUFACTORY,

near scinneider`s junding, vaudreull, Erccted and carried on by Messrs. Boden \& Le i'ci:.

TTIII Proprietors of this entablishment are prepared to Manufature loo(olNG Ghass PLATE and WLNDOW GLiss, of every size, coloured and fancy, aceerding to patterns or orders. Shades for Oil and Gas Lamps, plain, tintel, or coloured, in the richest hurs--Coloured Glass of any pattern fir Churche o imi'ar to thase of Darupean Churches; alen, fur C. thes, Gardens, Houses, and Stemers-13 thes and Vi.is for Diuggists mak in order.
-.al.so,-

SODA, GINGER, anl loon beer bottles, with or without the maker's name.
-ANI,-

MIIK C.ANS, of suitable sizes.
All these articles slad be of the a ery best guaitity and disposed of on reasonable terns; and the propaietors sulicit a shave of public patamage, and the examination of thar Manafactares.

For orlers or further particulars enquire of the proprietior, at the People's Hutel, No. 205 and 207, Notre Dame Strect, Montreal.

Vaudreuil, January. 1850.

FARMING IMPLEMENTS.

W
E, the undersigned, certify that we have care fully inspected a variety of Farming Implementsmanufactured by Mr. A. Fleck of St. Peter Strect and we feel great pleasure in recording our snqualified opinion that they are very much superior to any article of the kind which we have seen manufactured in the country, and equal to any imported.

And we would particularly recommend to the notice of Agriculturists throughout the Province his Subsoil Grubber, which he has improved upon from one which took a premium of $£ 10$ from the Highland Society of Scotland. This implement seemsevell adapted to improve and facilitate the labours of the Farmer, and we cannot doubt that it will soon be extensircly used in improved cultivativa. IIis Scotch and Drill Ploughs are also very superior, and well worthy of the inspection of every one desirous of possessing a valuable article.
M. J. Haxs, Côte St. Antoine, President M. C. Agricultural Society.
P. P. Lachapelle, Sault an Recollet.

Wm. Evans, Sec. L. C. Ag. Society.
James Somervinie, Lachinc.
Edward Quine, Long Point.
T. E. Campbebi, Major, Civil Secretary.

Hugim Brodie, Côte St. Pierre.
P. F. Masson, Vaudreuil.
P. E. Lechere, St. Hyacinthe.

James Davidson, Quebec.

REAPING MACHINES.

'PIIE Subseriber has on hand three IVEAPING MACIINESS of the latest and most improved consturetion, capable of cutting luenty- two acres per day. Being manufactured by him: elf, he is prepared to werrant loth material and workmanship as of the best order. Dife mulerate.

MATHEW MUODY, Mamufucturer.

NEW SEED STORE.

r ${ }^{\top}$ IIE Subseriber bers to acquaint his Frienls and Custumers that he has, under the patronage of the Luwer Canada Agricultural Suciety,

OPENED IIS SEED STORE,

1t. Mo.2.j, Futre Dame Strcet, Opposite the City ILail Where he will keep an extensive assortment of AGRICULITURAL and GARDEN SEEDS and PLAN'IS of the best quality, which he will dispose of on as favourable terms as any persom in the Trade. From his obtaining a large portion of his Seeds from Lawsin \& Sons, of Eilinburgh, who are Suelsmen to the Ilighland and Agricultural Socicty of Scotland, he expects to be able to give general satisfaction to his latrons and Customers. He has also made arrangements for the exhibition of samples of Grain, \&.c.; for Members of the Society, on much the same principle as the Corn Exchanges in the British Isles He has a large variety of Cabbage Plants, raised from French seed, which he will dispose of to Members of the Society, at one fourth less than to other customers.

> GEORGE SHEPHERD.

Montreal, April, 1849.

Agents for the Agricultural Journal.

II. Aylmer, Esq.Mrelbourne and Ship.

Capt. Stevart................... ...Clarenceville.
1R. J. Robins, Eiq..................Polnte à Cavignol.
Rev. F. Pilote........................College of St. Anme.
Dr. Grosbois, M. D..........Chambly.
IJ. J. II. IV. Desjardins..........Green Island.
Dr. Conoquy........................St. Cesaire.
Dr. De la Bruetre........................St. Hyacinthe.
Mr. T, Dwyer...........................St. lauls, Abbotsford.
Paul Bertrand, Esq., N.P.......St. Matthias.
Thos. Cary, Esq., (Nercary)...Quebec.
Dr. Smallwood......................St.Martin, Isle Jesus,
Robt. Ritchie, Esq................Bytown.
Major Barron.Lachute.
I. Guillet, Esq.:...........................Three Rivers.

IIon. F. A. Malhiot................Verchères.
J. B. E. Durocher, Esq...............St. Charles, Chambly,
A. C. Cartier, N. P.................St. Antoine.

John M•Larren, Esq.,.............Murray Bay, Sag.
All communications comnected with this Journal,
to be addressed, post paid, to the Secretary of the
Socicty-Winmim Evass, Montreal.
Annuul Subscription for the Journal, five shillings.

Montheal:-Printed by Lovely, \& Gibson, Saint Nicholas Street.

