Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

minate in an omnium gatherum of undigested and unconnected scraps of information. The chapters on physical geography usually attached to the school-books are, in many cases, open to the charge, but their authors probably never intended to attempt to convey information of the kind which Prof. Huxley censures them for not giving. What the latter means is, perhaps, bert explained by the following quotation from his preface, which we give exactly as it appears: "I do not think that a description of the earth, ${ }^{\circ}$ which commences by telling a child that it is an oblate spheroid, moving round the sun in an elliptical orbit ; and ends without giving him the slightest hint towards understanding the Ordnance map of his own country; or any suggestion as to the meaning of the phenomena offered by the brook which runs through his village, or the gravel-pit whence the roads are mended, is calculated either to interest or to instruct." Prof. Huxley, then, considers that physical geography should treat of natural phenomena in general, and to assist in spreading his views he has provided teachers with an admirable textbock of the subject, based upon the lectures he delivered at the London Institution in 1869. In thove ldetures he pndeavored to $\begin{gathered}\text { give } \\ \text { his audience a view, in broad but }\end{gathered}$ accurate outlines, of the "place in nature" of a particular district in England-the basin of the Thamestreating his subject under such chapter-heading as springs, rain and dew, snow and ice, evaporation, the atmosphere, compsition of pure and natural water, the work of rain and ice, of rivers and seas, of earthquakes and volcenoes, and of the slow movements of the land; the formation of land by animal and vegetable agencies, the distribution of land and water, the figure of the earth its movements, and its ruler, the sun. The "geology" is necessarily limited to that of the Thames basin, but that of other districts is introduced in the course of the interpretation of this branch of the subject. There is one great advantage in text-books from the pen of Prof. Huxley-that, although he can never be said to write down to the level of his readers, he is ravely, if ever, above the comprehension of average intelligence. The schoolboy who has learnt to understand what he readseven if he has not learnt to spell correctly-can take up this volume, and follow its author step by step as he explains natural phenomena and their interdependence. Notes giving the etymology of words that may be new to the reader will afford all the assistance necessary, while the numerous diagrams and plates will instruct and interest. Among the charts are a map of the river basins of the British Isles, and a nyetographical map of England and Wales-a coloured map representing the amount of rainfall in different districts by the shading or depth of colour. This map is reduced from the one prepared for the report of the Rivers Pollution Commission by Mr. G. J. Symons. A tinted lithograph, showing the principal forms of clouds, gives a better idea of what is meant by the terms cirrus, stratus, cumulus, \&c., than is usually conveyed by the ordinary wood engravings. The geological map of the basin of the Thames, and the contoured map of the same district, will enable the reader to apprehend the teaching of the author. Plates representing the Grand Canon and the Beehive Geyser of Colorado serve to illustrate phenomena which are not well exemplified in the Thames basin. Several other excellint illustrations are introduced in appropriate places, and it is certain that teachers will find in
the book that ground-work to the introduction of a study of nature on which they mey be able to build a superstructure adapted to the wants of their classes and the neighbourhood in which the lectures are given. Such a book as this might be used instead of "School-Board Readers"-at all events in the highest classes of our public elementary schools-with great advantage to the scholars, though the punctuation would need some modification to suit the habits of those who are given to " reading by stops;" but that, after all, is a small matter, on a par with the change of name from physical geography to physiography.-English Mechanic.

the progress of telugrapiy.

In his address as President of the Society of Telegraph Engineers, Dr. C. W. Siemens managed to touch briefly upon nearly evary branch of the subject of electric telegraphy-a feat whicf is becoming amnually more difficult within reasonable limits. After alluding to the great increase in the number of members of the society-now nearly 1,000 -Dr. Siemens made some remarks upon the progress of duplex telegraphy, which may be taken to include quadraplex, and may before long develop into a method of using six or eight pairs of instruments independently and simultaneously upon one conducting line. The sncecss of the improved methods depends mainly, if not entrrely, upon the perfect insulation and undisturbed condition of the line wire--suljects which are just now receiving much attention from telegraph engin ers. Speaking of that grest novelty of the day, the telephone, Dr. Siemens said that it owes its origin to the labours of several instigators, for in 1859 Sir C . Wheatstone devised an arrangement by which the sounds of s reed or a tuning fork could he corveyed to a distance by means of an electric circuit, including at both stations a powerful. electro-magnet. In striking any one of the tuning-forks differential currents were set up which caused the vibrations of the corresponding tuning-fork at the distant station, and thus communicated the original sound. It will be remembered that Prof. Dollher has utilised this fact as a means of calling attention on a telephone circuit. In 1862 Reiss enlarged upon Wheatstone's invention, and was possibly the first to adopt the flexible diaphragn" with which we have become familiar. Reisg's in: strument, however, transmitted currents only of equal intensity, and was therefore incapable of reproducing the innumerable nodulations of the human voice. The defects in the in ${ }^{\circ}$ strument of Reiss were remedied by Mr. Edison, who by establishing contacts with powdered plumbago, has succeeded in transmittiag currents varying in intensity with amount of vibration of the diaphragm. Mr. W. H. Barlow also in vented a recorder of the human voice, or logograph, which was comnuunicated to the Royal Society in 1874, and, working on the same lines, Mr. Edison bas recently produced his phonograph, by means of which the sounds can be reproduced by mechanical means. The beantifally simple instrument of Prof. Bell must, however, in Dr. Siemens' opinion, be regarded as a vast step in advance of all previous attempts in the same direction. The currents transmitted are so minute as to escapte observation by the most delicate $\mathrm{g}^{\text {nl }}$ l vanometer, as the magnetic needle, however light, nust be too sluggish to be moved visibly by impulses so rapid, as electro-dynamumeter of extreme sensitiveness being required to render them appreciable. The rate of these reverts ing currents can, however, be accurately determined by means of a high-pitched tuning-fork, and Hér Röntgen, from experiments he has made, concludes that not fewer than 24,000 curt rents can be transmitied in oue second. There is thus disclosed a rapidity of electrical transmission which is far in excess of the most sanguine expectations of telegraph electricians, and which opens out a new field for the cultivation of the ingenuity of the telegraph engineer. Dr. Siemens thinks that the telephone is capable of great improvements, and efforts should be directed chiefly towards increasing the relative amount of vibration of the receiving diaphragm, the object, we presume, heing to obtain a great volume of sound. It is not impossible that the speediest way of attaining the desired result would be, no to seek to increase the amplitude of the vibrations of thed diaphragm, but to ntilise a series of diaphragms each adaptod to reproduce its own series of sounds in the best manner. it is Trouvé has already made a step in this dieeciion, and as it or known that diaphragms can be dispensed with altogether, or

may be made of wood, glass, and other substances, it would seem, that a few patiently-conducted experiments must inevitably result in the discovery of a means of reinforcing or doubling the volume of the sounds reproduced by the electric pulsations in the telephone. Considering the minnteness of the electrical impulses and their high electro-motive force, Dr. Siemens considers it probable that they will be found capable of transmission to very great distances through conductors of comparatively small dimensions, if such conductors can be protected from disturbing influences. That consideration leads naturally to the question of underground line wires. The ordinary suspended wires are open to many grave objections, even when employed with the simplest instruments, for they are seriously afferted by atmospheric electricity, by mutual induction and leakage where lines run parallel and are supported by the same posts, and the circuits are liable to be broken by the action of high winds and other agencies which not unfrequently cause the wires to snap, and sometimes throw down the posts. With the introduction of the duplex and quadruplex systems, as well as the telephone, it has become more than ever necessary to provide a better and more secure conductor, and from the experience gained by the Germans we know an underground wire can be worked over long circuits with ease by the most delicate instruments. Hence Dr. Siemens ventures to predict the gradual substitution of underground for suspended line wires. The construction of submarine cables occupied a considerable portion of the address, but the most important, perhaps, of the author's remarks were those in which ho spoke of the deadening influence of the Government control of the telegraphs. Steady progress had been made in this country, but it is notorious that the more startling and more important innovations have come from the United States-the ouly civilised country in which internal telegraph communication is still in the hands of private companies. Dr. Siemens does not call in question the wisdom of the policy which dictated the purchase on public grounds of the telegraphs by the Government; but remembering, possibly, how Mr. Herring and others have been treated, he is clearly of opinion that open competition would be best, so far as the progress of telegraphic invention is concerned. The Acts regulating the work of the department allow the purchase of letters patent, whereby an interest is created in favour of particular instruments, to the prejudice of others of, perhaps, equal (some say superior) merit, and such a course is not calculated to stimulate invention. Dr. Siemens considers that the erection of lines for local and private purposes should have remained entirely outside the scope of a public department, in order that competition might have an opportunity of developing new applications, as in the case of the United States, where private and circular telegraphy is in advance of other countries. The question is one of vast importance, for there is great danger that, if the whole telegraphic work of the country is to become a Government department like the Post Office, however beneficial it may be for the general business of the kingdom, it will stifle invention, or drive inventors to other countries. - English Mechanic.

A Portune in Toothpicks.

It seems that it was not the invention of the wooden toothpick, per se, that netted the inventor $\$ 50,000$, but the idea of making the toothpicks out of soft, brittle wood. It it is said that, when first brought out, the toothpicks were made of hard, fibrous wood; but the inventor soon found that this would not pay, as the picks lasted too long, and he went to pine. It now takes four sound picks to get the broken end of one out from between the teeth; and it is the latter discovery that is said to have realized the inventor his fortune.

Removing Substancer from the Ear.--Take a horsehair, about six inches long, and double it so as to make a loop at one end. Introduce this loop as deeply as possible into the auditory canal, and twist it gent'y around. After one or two turns, according to the originator of the plan, the foreign body is drawn out with the loop. The method is ingenious, and at all events causes little pain, and can do no harm.-Medical Record.

CHEMICAL MagIC.

A subscriber to La Nature communicates to that journal a simple trick, which is as deceptive as many of those per-

formed by professional "magicians." It is proposed to place the fumes of a cigarette, smoked by the operator at some distance, in a closed goblet, as shown in our engraving. The goblet is to all appearance empty, and the phenomenon of the white smoke wreaths inexplicable. But the vapors are formed by the admixture of muriatic acid and aqua ammonia, two or three drops of the former being put in the goblet, and the covering saucer being wet underneath with the latter. The quantity of the liquids is so small as to pass unperceived; but as soon as the saucer is placed on the goblet, white vapors of muriate of ammonia are formed, which closely resemble tobacco smoke.
Solid Sulphuric Acid.-The difficulty of safely transport ing sulphuric acid has induced a large manufactory in Bohemia, where the Nordhausen acid was formerly produced, to ship the article in the state of the solid anhydride. The product is put up in soldered boxes of tinned iron, the solid acid having at ordinary temperatures but little action upon this metal. Besides the ease of transportation thus afforded, the ligh degree of concentration of the acid in this condition renders its use much more valuable than the ordivary material in certain chemical operations.-Prof. Houston in American Manufacturer.

How to Stain Wood.--M. Leo gives the following recipes in the Pharm. Centralhalle:

Yellow.-Paint with a hot concentrated solution of picric acid ; dry and polish. Observe that picric acid is poisonous.

Imitation Ebony.-Paint several times with logwood extract : then treat with solution of ferric acetate $\left(14^{\circ} \mathrm{B}\right.$.) until a proper shade is obtained.

Walnut.-Apply several times a solution of 1 part of potassium permanganate in 30 parts water. Wash, dry, oll, and polish. Dark Walnut.-Same as the preceding, but after the final application of permanganate, treat with ferric acetate, which prings out black veins.

Mahogany.-Make a tincture of 15 grains alkanet root and 90 grains dragon's-blood with 500 grams alcohol (95 per cent) by maceration. Filter after three or four days. Paint the wood first with nitric acid, and after drying apply the tincture once or oftener, until the desired tint is obtained. To imitate the natr ural grain of the wood, ferric acetate may also be applied as may be found necessary.

The Amazon river drains $2,500,000$ square miles of land and is navigable for 2,200 miles from its mourh.

Cushman's Combination Lathe Chuck.*

The cuts show in detail a chuck described in the columns of Tife Poiftecinie Review, before being made known pub licly. In all shops where the work done varies constantly and greatly in size amd shape, it is desiriable to have a "combination" chuck that can, quickly and at will, be made either conCentric or ececntric (that is, with universal or independent jaws), without removal from the lathe-spindle. A good chuck should be light and strong. (asy to handle, having a positive jaw-motion and a firm grip, and with no uncovered slots or spaces to let in dirt or chips. It may, in some cases, be an advintage if, when the jaws are wif eceentrically, they can be mored together.

Fig. 1.
The Cushman chuck (which is made with three or with four jaws, as desired) his its jaws (which slide in radial slots on its face) long enough to completely close the slots against access of chips or dirt. Each jaw (which is three-stepped, as shown in in the cuts) is reversible, so that the highest steps may be placed inwards to hold drill or reamer shanks, etc.
The foot or inward projection of each jaw is cut into a halfnut, A (see Fig. 2), ind engages with a square-hcaded screw, B, projecting through the rim. The screw, B, bears below its Mimare head, and inside the rim, a bevel-pinion engaging in a circular rack, CC. Turning any one screw will swerre the

Fig. 3.
rack circle $C C$, and move every jaw concentrically. But the toothed ring, $C C$, rests upon a plain ring, $D D$, the periphery of which is threaded to correspond with the interior of the shell; herice, if this ring be swerved in one direction, it will be :ulvanced towards the chack-face, and rice versa. By this means the circular rack and its bevel-pinions may be meahed (as shown in Fig. 3), or unmeshed, (ns seen in Fig. 4); in either

Fig. 4.
case the ring being held by a spring-catch. By pressing the thumb upon this catc h the supporting ring may be turned by a kuoll at the back of the chuck (see Fig. 6), thus enabling the circular rack to be unmeshed and any jaw separately moved nearer to, or farther from, the center than the others, thus making an eccentric chuck. By again meshing the pinions

Fig. 6.
and rack, these eceentrically placed jaws may le moved simuitaneonsly. As built, the center holes are proportionably very large; the parts are few, and of steel. Polytechnic Review.

Permeabilty of Building Materials to Gases and Vapors.-Mm. Marcker \& Berthold, of Paris, have lately made some suggestive announcements as to the permeability to gases and vapors, of various materials used for building purposes. They claim as the result of their experimental researches, that when dry bricks, sundstone, tufa mortar and cements permit vapors to pass through them, while granite, porphyry, slate, alabaster and limestone are practically quite impermeable. It will be inferred from these statements, therefore, that the cementing of cellar floors, etc., or laying them with bricks or tiles, while it doubtless will considerably increase the whotsomeness of a dwelling exposed to dangerous gaseous exhalations from sewers and the like, does not afford a complete protection. Whitewash applied to a wall, though it exerts for a considerable time a purifying chemical influence, does not afford nearly so good a protection against the passage of gases and vapors as a couple of coats of oil paint, while thick glazed wall paper reduces the permeability of mortar nearly 40 per cent. These researches teach an important eanitary lesson.

CIRCULAR SAW FILING GUIDE.

It is important in fling and setting saws that all the teeth have the same size, bevel, rake and pitch, and that the points are onthe same line-which line is a circular and cylinder saws a true circlelar, and in bands, and most bladesaws, a straight line. In cross-cut saws this line may be a moderately eonvex curve. Each saw should have a size and style of teeth suitable to its size and the work its has to perform.
The cut illustrates an ingenious and practically valuable device* for enabling the filer to work correctly without possibility of error and without straining his eyes-there is one moditication for flat-blade saws, that shown in the cuts is for joining small circular ssws. It wiU be seen that on the guide there is an index circle divided and numbered from zero each way toindicate the bevel. The file is lield in a frame having a guide wire which passes through the index ring. An index piece passing from the guide wire to the flle shows at what vertical angle it is cutting, thus showing the " pitch" of the teeth.
As each tooth is filed, the frame follows. Another modification of frame is for the use of large flat fles and without removing large circular saws from the mandrel. Polytechnio Review.

IMPROVED FISH-JOINT:

A^{N} improred fish-joint has been patentod by Mr. S. Aldred, which hat weveral features reoommending it to engineerm. In the firat place it dippensen with the neceserity for punch. ing the railo- an operation to be aroided where pomible, an much on account of the attendent expenee an on the liability to damage the rail.

The new fish-plate oan be adapted to the donblo-headed or girder rail, as well as to the ant-bottomed rail shown in the engraving. The mode of applying the fish-plate is obvious: it is elipped over the end of a rail, and another rail boing placed in peaition the plate in made to aleap the two ende. Several methods of ecouring the fish-joint in place may be emplojed; but that preferred by the inventor is thown in the disgram. A couple of inclined holes, five-eighths of an inch in diameter are tapped in the plate, and fittod with steel studmerems, which being furced home, effectually hold the plate, and clamp the rail down to ita beariaga, making a frm and elastic joint, the winge or upper portion of the fish-plate being forsed againgt the under side of the head of ruil by the action of the screw-studs on the bottom. We pressme that some method of locking the studs in pasition wiil be adopted,
for if not they will be liable to work loose, and though any dangerous shifting of the plate is unlikely, any looseneas will ineritably tend to an exaggeration of the hammering action of the wheels on the ends of the rails.
 of snake bitea, a vory interesting communica tion has lately been received in India from an American gontloman, Mr. Korciaky, recommending the gall of rattlemates on an antidote for anake bite. Mr. Koecicky, who became acquainted with the antidote at Venezuela, states that it is not only cheap and infallible, but inatantaneops and wonderful in its effecta; crown and dogs in the last stages of the poieon recovering as soon as the remedy was administered to them. The preparation of the antidote is simple: Three rattlesnakes' galls p at into an ordinary wine bottle filled with 30° spirits, and allowed to stand for a week. In ordinary cases one or two tablespoonfuls are faken; in extreme cases, three to six. Mr. Kosoioky recommende experimentraing mande in this country with other snake galls. Dr. Fayrer agrees with this recommendation, and rofern Mr. Kogcicky's letter to the committee at Calonttia for invertigating snake poison. The idem, however, he saym, is not a new one, for in the "Thanatophidia of India" the reault of an experiment with the antidote is recorded; and he is of opinion that when brought to the test of acientiffic inveatigation, it will not prove more ancoessful than the many other "antidoton" which have hitherto been tried and have failed.

Amorican Wommer.-American women, says Harper': Bawar, take rastly bettor care of themealven than formerly. They have more acquaintance with hygienic lawn, and hold them in far higher eateem. The days when they exposed themeolves to dampness and wintry cold, in thin alippers and silk stockinga; when they abotained from fiannels noxt to the skin ; when they pinched their waist to semi-suffoontion; when they msarificed comfort and health to what they conceived their appearanco-thees fooliah and unhappy dayz have gone forever,
have barely been known to the riming generation. Our women have no mawkiah and morbid now tions as to themealves; thay no longer think that to be unhoalthy in to be attractive ; that invalidiam and interestingness are aynonymoun; that pale faces and comprosed lunge aro tokene of beanty. They drees measonably; they weof thick boots and warm alotheen in bad and colld weather; they allow themselven to breathe freely, and they find their lookn improved, not injured by the wholemone ohahge There aro exceptions-many of them donbtlese-bat the rale is an we have describod, and the exceptione are constantly diminimaing. It miay be minfly asid that all sensible women aro becoming ${ }^{\text {i }}$ they have not yet become, converts to natare and that they heed her beheote, recogniving the great prinoiple that what is not nataral samed be beantiful.

Oaloulations.-In a paper recently commadionted to the Acadtmie des Scierges, on the division of the circumference into equal parts, EN. Lacas introduces a process for mecompliabing a esiculation in 30 hours which would have required 3000 yeurs of conatant labour undor the old methods. It would, it is atated, take more than 200,000,000 centuries, at the rate of 10 fis ares per second, to simply write ont the numerioal value of a quantity for which the es. presion can be written, in his formula, in less then half a pecond.

Heffeots of Ses-Water on Land.-Mr. Reinderfil from one of the German agricaltural experiniental atations, sayl:-" Land that has been submerged by sea. Water generally proven aterile for some time, be come cases for ten te fiftern yeare. This can be traced to the co-operation of the three followins ohemical canren, in addition to the mechanical To jaries produced by the inundation:- () of chlorine salte ; (2) To the great a proportion of chlorine salte; (2) To the hygrosoopio proper ing commanicated io it, preventing it from dryiaen properiy; (3) From the formation of groen to vitriol or salphate of iron, which is knewn to exert a very prejudicial effect on plant growth. Lad s. Which has ihns been damaged should bo drained ad quickly as possible, sown with arass and olover, apre illowed to rest. Experience shews that it rocore it ita fertility gooncr if trewted in this way that cultivated all the year round as arable lans.,

DEFECTIVE DRAINAGE OF DWELLING HOUSES.

The following report upon defective plumbing and house drainage, published by the Board of Health, New York, in August, 1877, will be found instructive to the members of the Board of Health and to the Sanitary Inspector of this city.
The subject of defective house-drainage and sewer-gas pois oning, has recently, in cities especially, been regarded with peCOliar interest by sanitary offlcers, by medical men, and by the community at large. It cannot be denied that emanations from drains and sewers, if permitted to penetrate into dwellings, are detrimental to the health of the inmates, and liable at times to of troduce specific diseases. Our people are now generally aware of this danger, and yet there is remarkable ignorance, even temong the most intelligent clasees, including the medical profeseion itself, of the manner in which these poisonous gases gain their insidious entrance, and of the methodis available for their exclusion.
It 18 with a view of instructing the community in this regard
That the following brief and simple statement has been prepared.
bhe diagram does not pretend to represent an entire dwelling,
bat it exhibits all that is essential, and illustrates the vital prinaples of efficient house-drainage.
abaracie or nealect of traps in houge-drains, viz. wastre-
PIPRE, BOLI-PIPRS, $\triangle N D$ ERWRA-PIPES OR HOURE-GEWERS.

The house-sewer should be trapped at a point between the entrance thereinto of the waste or soil-pipe and its junction with the street-sewer (see H). This is a most important precaution. The best material for all drain-pipes is iron. Evory joint ahould be thoroughly secured and caulked woith molten lead.

The house sewer should be an iron pipe of 6 inches diameter. It should nover be constructed of brick and mortar, which cannot long resist the passage of gases. Vitrifed earthenware piping is less objectionable than brick, but is more liable to fracture and leakage than iron.
The house-sewer should be so laid as to either remain in sight or to be readily uncovered without digging. All the other drain-pipes should be exposed to vien as much as possible, as when concealed, their defects may escape observation.
Yards and areas should always be properly graded, well-paved and drained by pipes emptying into the house-secoer.
Cellars and foundation walls should be rendered impervious to dampress as far as circumstances will permit. A persistently wet cellar should be provided with a separate blind drain emptying into the trap of the house-sevoer.
Every dwelling should, if possible, be independently connected with the street-sewer. No sinks or basins should be placed in sleeping-rooms.
Privy vaulta should not be permitted in the yards of private houses.
The above rules refer more particularly to private residences.

Traps (see A A A and B B B),
are pipes so curved as to retain sufficient waste-water to seal them against the passage
of gases.

Waste-pipes) see C CCCC and C D,) receive and conduct to the sewer-pipes waste water from bath-tubs, wash-basins,
alopsinks, etc. Sinks, etc.
the Soil-pipes (see C D_{j}) drain the water-closets (see a a a) the sewer-pipes.
In some houses the main tiacte-pipe and soil-pipe are disWinct and separate, but in ordinary dwellings they are identical, as inthe cut (CD).
(see Berer-pipes or houst-secuers (soe E , receive and discharge into street-sewers the entire drainage of houses.
Traps, unless supplemented by other contrivances, afford letth protection, becoming uselut. By permeation of gases has gigh their water when it $2 d$ stood for a long time.
2d. By evaporation of said -ader under similar conditions. itree By air-pressure from illed to tsewers obstructed or 4th to repletion.
4th. By their contents being aphonod or sucked up, When a raccum is produced in their dinnecting drains by heary $\mathrm{thr}^{\mathrm{B} C h a r g}$ es either of rain (Which gh the roof-leaders which empty into the housesewers) or of other water down from waste and soil-pipes (as be apoided bathes, etc.) The first two dangers are obviously to two is the by frequent water-supplies. A remedy for the last Except in the better class of such houses water-closets are imcould be extende oencultion of waste and practicable, as they will constantly be choked up with matters above be extended, full bore, to a height of about two feet thrown into them by ignorant and careless tenants.
move the roof, their upper extremities being left open, sur- Here, therefore, the privy-vault is generally preferable. It coptanted by a cap, or curved downward (see F). Pioery re must be well constructed, and when situated in a contracted t importan qoasteroator should be guarded by a trap (B B B). It yard bounded by tall houses it should be ventilated by a pipe throportant, however, that a free passage of air stowuld take pläce of 8 inches calibre extending from a point at least 6 inches beChough the roaste, soil, and seoper-pipes; consequiently no traps low the top of the vault to several feet above the roof of the He latd be put at the junction of either of the first theo (i. e. K) with highest adjacent building. The privy-vault should, if practicaLador empthe requisite ventilation should be secured by a rear roof- ble, be connected with the street-sewer by a separate drain-pipe emptying into the aecoer-pipe (sec G G).

These directions apply to ordinary privy-vaults. The best improved privy-vault known to this departnent is constructed by connecting a water-tight vault with the street-sewer by a discharge-pipe, which is provided with a movable plug so arranged that the vault can at all times be properly flushed when the plug is set in the discharge-pipe. The vault can be kept free from sewer-gases by means of a cap set over this plug dipping into the water in the vault. An iron grating should be provided in the vault to intercept large substances thrown therein.

By order of the Bosrd.
CHARLES F. CHANDLER, President.
Emmons Clark, secretary.
Japanes Paper.-Paper is ,extensively used in Japanese houses as a substitute for glass in the windows and sliding doors, and possesses not only the advantage of an immunity from breakage by the frequent earthquakes, but also occasions only a small loss when the house burns down, which happens often enough. Whatever may be its drawbacks, the use of paper for the above purpose is intimately connected with the system of house-building in Japan ; and it will be long before it is entirely abandoned.

Wall papers are used in all the houses, and are manufactured, not in rolls, but in small sheets ornamented with all kinds of designs printed from wooden blocks, on which the pattern has been cut in relief. The colors having been mixed with some thickening paste, are applied to the block, either by means of a brush or by tamping, after which the paper sheet is laid on the block and rubbed with a flat rubber lined with the smooth bud-scales of bamboo, and used like a printer's ball. Very fine white mica powder is applied to the wall paper, and produces a metallic lustre resembling silver.

The crape-paper, which is a most perfect imitation of the real crape, is made by a very ingenious and most simple procass. In the first place; that which may be called the matrixpaper is prepared by laying a moistened sheet of strong paper on a wooden board cut with fine grooves, running either parallel or crossing one another at very small angles, and by beating it with hard brushes, so as to force it into these grooves. It is then painted over with "shibu," in consequence of which operation the paper becomes so elastic that, when let go, aftor having been stretched out, it refolds by itself. For the production of crape several sheets of thin moistened paper are laid, alternately with sheets of the abovementioned matrix-paper, one upon the other. The package is then wound on to a round piece of wood, and pressed several times with a strong lever, as if it were to be stripped off from this piece of wood. By means of this operation, the soft and moistened paper is forced into the folds of the matrix, and consequently folded in a similar manner. By repeating this manipnlation ten or twelve times, each time unrolling it in order to change the position of the paper between the sheets of matrix-paper and by winding. it again on the piece of wood, the paper becomes gradually folded in all directions, the intersecting points of all these folds producing the craped surface. Naturally, this process causes' the paper to shrink consider: bly. This kind of craping is done with printed pictures, and also with colored papers, which are used for coiffures.

The paper imitations of leather are made in the same manner, but of stronger paper. After it has been craped, it is! beaten with hard brushes into the moulds which produce the relief patterns; and these designs are afterwards painted as required with the help of "shibu," or the "Ye-no-abura," and lacquer.

Paper is also often used as a substitute for cloth, for umbrellas, rain coats, etc., and even for dress cloth, "Shibu" and the "Ye-no-aburs" are the means employed for rendering
the paper waterproof. This cloth is generally made of paper alone, by beating it to make it soft, and impregnating it with gummy substances, to make it more resistant to the action of water. Another kind of cloth, called "shibu," consists of silk warp and paper wcof. The paper is cut into fine strips twisted together into threads, and spooled for weaving. Paper strings, of great regularity, great strength and prettily colored, are made in a similar manner, and were formerly used in large quantities for tying up the hair. They are now only used for tying presents and other small parcels. [Papor Trado Jour., vi, 21.]

Carlier Appliances in the Production of Iron.-At Greenock there is a large piece of cast-iron ordnance which is said to have been recovered from one of the wrecks of the Spanish Armada; and if this is an authentic account of its origin, and supposing it to have been manufactured in Spain, it proves the existence of appliances in that country which must have subsequently disappeared. Nearly fifty years previous to the time of the Spanish Armada, about 1543, a certain Ralph Hoge, or Hogge, of Bucksteed, in Sussex, had acquired great reputation for the manufacture of cast-iron ordnance; and "this founder," it is stated, " employed as his assistant Peter Baude, a Frenchman, whom he had probably brought over to teach bim the improved method," whatever that may have been. Not long after a covenanted servant of the Frenchman, John Johnson, excelled his master in the art of casting ordnance; and his son Thomas, in 1595, succeeded in casting 42 pieces for the Earl of Cumberland weighing 6000 lbs , or about three tons apiece. There is no record either of the exact period when the earlier "blast bloomary developed into the blast furnace, and it is quite possible that the one had no material influence upon the development of the other, as the earlier apparatus produced little, if any thing, but malleable iron, and the blast furnace was exclusively employed for the production of castinm. It is certain, however, that the fuel employed up to the r iddle of the eighteenth century was charcoal only, and that it was the rapid falling off in the supplies of timber that led to the almost total extinction of the industry, which, in the reign of Queen Elizabeth, had risen to the importance of a great export trade. Special enactments had to be enforced for the preservation of the forests; and the production of iron, which had risen toward the end of the seventeenth century to 180,000 tons, was reduced in 1740 to 17,000 tons. It was this pressure, arising from the scarcity of fuel, that became the mother of the recent discoveries and inventions in connection with the iron industries of this country. There is something inexpressibly sad in the biographies of many of the men who were the pioneers of these improvements. They frequently fell victims to the prejudice and ignorance of commercial Philistines, who looked upon their genius as madness and their improvements as impracticabla.From "Great Industries of Great Britain."

Biteminoms sumatances in Granite-M. A. Julien communt, cates to the French Academy the fact of the occurrence of bituminous veins in granite in the neighborhood of ClermontFerrand. They were observed in a railroad cutting between Royat les. Bains and Votria. The bituminous substance is occasionally black and soft, but oftener a species of dark-brown asphaltum with conchoidal fracture, which gives oft in burning the charac eristic odor of that substance. The veins vary in thickness from a few millimeters to 3 centimeters in diameter. So far as we are apprised, this occurrence is unique.

Another New Explosive has been devised by Prof. Emerson Reynolds, of Dublin, who lately presented a description thereof to the Royal Dublin Society. It is composed of a mixture of 75 per cent of chlorate of potassium, and 25 per cent of a substance named by the inventor "Sulphurea." When mixed as above described, the compound is a white powder, igniting at somewhat lower temperature than gunpowder, but possessing considerably greater explusive effects, and producing less of solid residuum. The new explosive, it is affirmed, has been successfully used in small cannons, but the inventor deems that its chief utility will be found in its applications to blasting, and for shells, torpedoes. and the like.
The new explosive is claimed to have, besides, the additional advantages that it can readily be made as it is wanted, requiring no skill whatever, aside from observing the proper proportions of the ingredients, while these last are quite harmless 90 long as they are kept apart.
"Sulphurea," we are further told, was discovered by Prof. Reynolds some ten years ago. and can be produced in any desired quantity from one of the waste products of the coal-gas works.

the GatLing gun in a man-op-war's top.

TEFE GATLING GUN ATOFT.

In the old days of yard arm to yard arm naval conflicts, it Thas always customary to station good marksmen in the tops, thetr duty being to pick off the enemy's officers and disable T_{0} crews of the spar deck guns. Other men stationed aloft Tere provided with hand grenades, small explosive shells, Which they threw upon the deck of the hostile vessel. The tormidatrailleuse now used on men-of-war is a far more aden, ande means of offense than either single rifies or gren Posed, and, in fact, it renders impossible the working of exlets guns on any craft within the range of the hail of bul ets which it projects.

Our engraving, from the London Illustrated News, represents an American flatling gun as arranged for use in the main top of a British man-of-war, a significant example of the avidity with which foreign nations adopt the inventions which originate on this side of the Atlantic, especially when the same are of superior value for war purposes. The gun, as here depicted, consists of a number of gun barrels, which may be as many as ten, fixed around a main shaft, which is also combined with a grooved " carrier," to hold the cartridges, dropped into it one by one; and with a cylinder, in which are cut slots for as many gun locks as there are bar-
rels to be fired. The whole of the above apparatus is raised or lowered, or moved to the right or left, by working a handle at the side. There is a drum fixed on the top, contain ing 850 cartridges, set in rows; this is so arrenged as to b . the feeder, by dropping the cartridges in succession into th carrier, from which they are shifted by lock action into th gun barrels, successively brought round with each revolu tion of the cylinder. The caliber of the gun barrels is 0.4 inch; they can be charged and fired with great rapidity, dis charging five or six shots in a second. Scientific American.

FILTH DIsEases.

(See page 169.)
An ancient theory, which in our times has been revived and, we may add, established with almost the force of demonstration, associates the ultimate cause of many insidious and infec tious diseases that afflict mankind, with the processes of putrefaction and decay, which dead animal and vegetable matter undergoes in passing from the complex constitution of the organized tissue to the simpler products that result from its decomposition. For some time, it was the opinion that contagious diseases were propagated by a species of malaria, which was deflined to consist of organic matter in a state of motordecay; and which when taken into the body through the lungs or other avenues, had the power of communicating the same condition of destructive ectivity to the body with which it was brought in contact. This view which originated with the great chemist Liebig, was received with very general acceptance among savans until within a comparatively recent period, when the brilliant researches of Pasteur have left no room to doubt that the substance that is endowed with infecting qualities is an organized body. He found that organized substances were contained in great abundance in the atmosphere. He proved that these organized germs really caused the phenomena of putrefaction and decomposition, by showing that vessels containing organic matter, left open to the air anywhere near the ordinary surface of the earth, were soon swarming with these organisms, and these matter itself speedily manifested the well known offensive evidences of decompo(rition; while the same organic matter with which nothing but carefully filtered air is allowed to come in contact, showed no traces of these organiwed bodics, and might be indefinitely preserved without decomposition. By these and numerous experiments of a similar nature he succeeded in deynonstrating the connection of fermentation with organic growth, and that putrefaction and decay were processes depending upon the activity of living organized germs derived from the atmosphere; and in re-establishing the ancieut theory that epidemic and other infectious diseases are originated and propagated by living germs, which being diffused in countless myriads from the body that has nourished them, enter the bodies of men and animals, and produce those disturbances designated by the various names of cholera, small pox, scarlet, typhoid and other fevers, diphtheria, etc., etc., by the development, within the body, of parasitic life.
The emanations from large masses of decaying vegetable matter, as from swamps and marshes, and which are generally designated as malaria, for want of a better acquaintance with their constitution, can be affirmed with certainty to be the cansative agents of fevers. Animal and vegetable filth, and especially the excremental matters of men and animals, which. for want of adequate means for their speedy removal in the cities, are constantly present in greater or less quantity in proximity to dwellimg places, contaminating the air and water, are the causes of frequent and fatal outbreaks of virulent dis Thesese facts will be abundantly verified by the mor tuary statistics of every large city. As an indication of the
state of medical opinion upon this subject, the followeng extract from a report on the sanitary condition of Boston, made by a committee of its leeading physicians, will suffice. The report after affirming that 25 per cent. of all the deaths of the city were traceable to causes preventable by the adoption of public sanitary precautions, declare that "filth diseases" occssion each year the greater part of the preventable mortality. "The diseases whose origin or transmission, are manifestly dependent upon infection by filth are typhoid fever, and certaia forms of diarrhocal discase, the chief of these being cholera infantum. Certain other classes of diseases appear to owe in some measure their fatal type, their wide spread prevalence, if not occasionally their origin, to filth. We allude to scarlet fever, diphtheria, and perhaps cerebro-spinal meningitis, as well as certain exceptional forms of pneumonia. In the case of all these diseases, a partial dependence upon filth infection has been suspected, if not actually demonstrated. Moreover, it appears to be not unlikely that many other forms of fatal disease, whose origin and whose processes show absolutely no causal dependence upon filth, may nevertheless find easier victims in those sufferers whose general health has been previously undernined by filth poisoning, recent or chronic, and may owe their destructiveness in part to this powerful morbific agency. These considerations indicate that the sum total of deaths attributable directly or indirectly to filth is much greater than the yearly mortality occasioned by the manifest filth diseases would make us suppose."
Wherever the soil water, impurified by contact with anctean organic matters, siaks into the earth, it leaves behind it a moist and unwholesome residuum, and the warmer the air, the water and the soil the more energetic are its unwholesome influences. Whether the infectious matters are transferred from the soid into the well waters, or whether they enter the air directly with their gaseous products of decomposition or by evaporstion, are merely incidental accidents which do not at all affect the result, since in every case, it is those who dwell upon or near such unwholesome soils who are the greatest sufferers. If the air of our dwelling houses is not frequently renewed by ventilation, or if water charged with organic impurities is permitted to saturate the soil about them, or if decomposing organic matter, (or what is the same thing, filth) is stored up in the neighborhood, or so disposed of that it is permitted to impreguate and saturate the soil about and beneath the bouse, or if the channels by which these offensive matters are ${ }^{0}-$ moved from the house, as in the sewerage systems of cities and towns, are not properly constructed or guarded, the anit that enters a dwelling thus environed, will be charge rith disease-breeding emanations arising from the soil, or from tho sewer pipes. The drinking wator may become impregnated, and the unwholesome products thus introduced into the bodies of its inhabitants will, beyond all question, exert the most pati nicious effects upon health, producing, according to the quantity of the exposure and individual peculiarties, consequencot more or less fatal.
From the foregoing exposition of the influences of filth upod the causation of the most virulent diseases, we are prepared, when we couple the facts with the terribly filthy condition of the cities and towns of the middle ages, the utter absence of any attempt at private or public sanitation, and the alnoost universal poverty and wretchedness of the people, to comprohend the causes of the frequent recurrence of these frightlul epidemics, which under the various names of the black desth, the pest, the plague etc., on more than one occasion swept away a third of the inhabitants of Eurrope. In those benighted times, these terrible calamities were universally held to erbe manifestations of the displeasure of the Almighty at the
sins of mankind, but the world has happily progressed some-
What since those days, and now we know them to have been
the natural results of the ignorance of man; for in the centu-
ries that have elapsed since the times when these calamities
were common, the progress and diffusion of knowledge has
manifested itself in a rast and universal improvement in the
mol modes of living, and, as a natural result of the improved sanitary condition of cities and towns, these terrible scourges of the human race have happily been entirely banished from the civilized world, though they still rage with unabated virulence arnongst the stagnated populations of Asia. But though much has been done to improve the sanitary condition of towns and cities by the gradual improvement of the social condition of the masses of the people, the establishment of elaborate public Works, the maintenance of a more or less rigorous and intelliBently conducted system of sanitary police, the introduction of of excous mechanical contrivances to provide for the removal of excreta and refuse of all kinds from the interior of private dwellings, and their rapid removal and translation through the public sewers, by means of intermediate channels, variously kown as water closets, privies, sinks, soil-pipes, etc., etc., and thore than all by the general diffusion of information amongst the people concerning the terrible dangers of filth infection, toehnical prevalence of zymotic diseases (which is the nated) indicates that much still remains to be accomplished,
ned and not until their names shall have disappeared from the daath lists of our cities and towns will the goal of sanitary science be attained.
We cannot close this brief paper without noticing the apParent contradiction that the fatality of fitth diseases is not contmed, as might at first be supposed, to the crowded courts and alleys of cities, amongst the classes that are badly housed,
poorly fed, and by force of circumstances, or otherwise, not
over over-eleanly in their habits; but on the contrary, frequently oxtends to the very classes that it would naturally be supposed ccionce taken care to exercise every precaution that sanitary The reasould suggest to guard against the invasion of disease. The reason is to be sought for in the frequent imperfection of the
connections between the private household drainage and the prablic sewerage, and by which the very means that have
bean devi bean devised and constructed at times, at great cost and labor, ${ }^{10}$ protect the family against the serious influences of sewer rapors ins serve the purpose of carrying the disease-bearing rapors into the very living apartments. What is actually refuse is a continuous and rapid translation of our house throug from its starting points, the water closet or the sink, discharg the whole series of connecting channels, until it is limits of the city and beyond the possibility, far beyond the Theoretically, this is what every system of sewerage should ac-
complend complish, but if this were actually realized in practice adl dan-
ser trom ser from the if this were actually realized in practice ad dan-
vreets or noxious gases from sewers intc the ticealls or from their entry into our dwellings would be prac-
nullified. But the proper functions of the sewer are never realized in practice, from a variety of causes, of which We may select as most prominent, the construction of sewers
of brick or of brick or other as most prominent, the construction of sewers \#ise imperfect joints that shortly permit the sewer to act as a and or sieve, and allow its liquid contents to percolate into produce saturate the soil; the frequent insufficiency of grades to drainge a proper current, the improper insertion of house
of right angles to the sides or top of the sewers instead of being inght angles to the sides or top of the sewers instead
any aly systematic effort to secure ventilation. The several im-
of the sewage, by the diminution of its rapidity of flow and the packing of its solid constituents by which its putrefaction and the generation of poisonous gases are assisted.* The last named defect (want of ventilation) permits these confined gases to be pent up within the sewer walls, until by accumulation, the entry of wind, or of the tide watar, at the opening of the sewer, they acquire sufflicient tension to force the barriers which the imperfections of sewer construction have made it necessary for us to provide, to prevent their entrance into our houses.
Could a proper system of construction be practically realized, the dangers of filth infection from our sewers would be practically obviated, for its removal and passage through the sewer would be effected before it had time to putrefy, the generation of noxious gases within the same would be reduced to a harmless minimum; a proper system of ventilation of the sewers would so largely dilute the sewer air as to permit of its being passed out into the air either directly or through properly estab lished conduits or filters, with the result that being no longer confined but finding easy access to the outer air, the sewer in would be no longer liable to be forced back through the traps and seals of our household sewer pipes.
The subject of sanitary engineering has occupied the earnest attention of the authorities of many of the more important towns and cities of Europe; and in France, Eugland and Germany especially the sewerage systems of many cities have been brought to a high state of perfection, with the correspondingly gratifying result of largely diminishing their respective death rates. In this country, however, the rapid growth of our cities, the rapid change of officials charged with the conduct and supervision of public works, the very inferior quality of the work generally done by public contractors, and the peculiar disposition of many of our people to do as they please, and to resent interference (thus rendering the establishment and maintenance of a uniform system, devised with the view of a harmonious cooperation of the various branches of the system, public and private, under one intelligent management, next to impossible), have combined in most cases to keep the sewage systems of many of our cities in a very imperfect condition, although every year shows a material and gratifying improvement. We may have more to add in future articles on the subject of sewage management and related topies of sanitary engineering. Polytcchnic Revieu.
*Sewer gas is found to contain, carbonic acid, nitrogen, oxygen, carbaretted, phosphoretted and sulphuretted hydrogen, ammoniacal compounds, and certain foetid organlc acide.

Some Uses of Glycerine.-Glycerine is said to be one of the hest lubricants for machinery, eapecially when exposed to the air and to changes of temperature. It neither thickens nor turns rancid, neither congeals in winter nor dries up in summer. If preferred, it may be mixed with half its weight of olive oil. It does not attack metals, as many oils do.
Glycerine is a ready solvent of the aniline dyes, alizarine, and other coal-tar preparations. It tends also to preserve for a long time in a soft state the preparations of albumen, caseine, and gum used for mordanting and tinishing, as its antiseptic properties keep these from becoming putrid. It is also very useful for printing colors on woolen, becrase it keeps the colors moist before steaming.
It is also useful in tanning, as it tends to preserve the natural weight of the skins, and keeps them from moulding or becoming brittle. The hides, lightly tanned, are plunged for twenty four hours into glycerine diluted with an equal weight of water (or to about 15° Beaumé), and are then dried.
In weaving, it is also valuable as an addition to the sizing, which never gets a bad smell, nor moulds, nor ferments. The warp never becomes brittle, even in dry weather and with open windows.

The chief adulteration of glycerine is with solution of sugar. Boston Jour. C'hem. from Le Teinturier Pratique.

STEAD'S CIRCULATING GENERATOR FOR STEAM BOILERS.

ITPROVED CIRCULATING GECNERATOR FOR STEAM BOIKERS.

The principal advantages claimed for the invention herewith illustrated are a large saving of fuel, the rapid generation of steam, and increased durability of the boiler. The engraving shows the brick wall on one side of the setting broken away so as to give a elear view of the circulating apparatus and other parts underneath, and attached to an ordinary horizontal boiler. D is a riveted steel drum placed on a brick bridge wall, which is lowered so as to allow the top of the drum to b of proper height in relation to the grate and opening for the products of combustion. Through $\mathrm{I} i \mathrm{pe}, \mathrm{N}$, the water passes from the bottom of the boiler into this drum, where it is converted into steam and superheated water to a temperature higher than that in the boiler, to which it returns with great velocity throuch lipe H. A constant circulation is maintained and the formation of scale over the furnace thus prevented. Besides the gain in evaporation, which is a very important feature, there is also another advantage in having lime and other impurities in the water pass into the drum.

The preuliar arrangement of pipes, G and H, is such that impurities cannot return to the boiler, but can be blown out through pipe F, or if necessary, a togrether romoved by means of the hand hole, E, which is jhared at end or back of drum as may be necessary. In the rear of the drum, and extending to the back connection wall, is placed a coil of heavy lapwelded pipes, A A, which rests on bearers let into side walls; this coil is connected with the briler at back end by pipe, P, and at the top by pipe, J; it is also connected with the feed pump by pipes, $M O$, and their branches. A deflecting wall resting on a heavy iron bearer is also built under and close to the boiler at the back end, as shown in the engraving. The combustion of gases ignited in the furnare is maintained the entire length of the boiler in the coil chamber. When the flame strikes the deflecting wall it passes through the openings between the coil pipes and returns backwards through the tubes in the boiler. The feed water for the boiler enters this coil from the heater in use or in a cold state by pipe M, and in its passage to the boiler, which is very rapid, it becomes heated to a temperature ranging from 250° to 300°.

To preserve the coil from any liability to burn, as well as to secure circulation from the back of boiler, a connection is made by pipe, P, with a pipe leading to coil, and an ingeniously constructed swing check valve, invented by the patentee of this circulating generator, is attached to this pipe. This valve is partially open when the feed pump is operating, and the water from
the boiler unites with the feed water, raising the temperature of the latter to nearly boiling point before it enters the coil. When the feed water is stopped the check valve opens wide, giving unobstructed passage of the water from boiler to coil, through which, by its increasing temperature, a rapid circulation to the boiler is maintained. By opening valve K, the coil can be cleaned. (We are informed, however, that there is no liability to clog evra where this precaution is neglected, so rapid and continucras is the circulation.)

The manufacturers state that the device causes a greatly increased power of boiler, "a gain of over fifty per cent being shown in some cases, due to the perfect consumption of fuel and utilization of heat, by which an evaporation of twelve pounds of water to one pound of coal is frequently attained." The circulation is claimed to be continuous, giving equalized tempersture, even expransion, and contraction and freedom from scale d-posit; also rapid loosening of scale if formed in a boiler previous to the generator leing attached. It is further claimed that there is additional security against explosion, inasmuch as the feed water can never enter the boiler when fired, except at ${ }^{\text {a }}$ temperature almost equal to that of the water already in the boiler.

Rerults of the Challenger Expedition.-The following observations are reported by Professor Agassiz: Where the depth is 1,800 to 2,000 fathoms inside the Windward Islands, the fauns corresponds to that of the Atlantic outside; the animals having doubtless penetrated through the openings between the islands All classes of the animal kingdom found in the ocean are well represented. Inside the Caribbean Sea the fauna is more specialized and characteristic. On the Challenger expedition it had been uscertained that the red clay oose of the ocean bettom was largely a result of the decomposition of the shells of surface animals-, disintegrated portion of the limestone contained in those shells. Everywhere in the Gulf a similar deposit was fonnd. Pelagic animals, chiefly mollusks, may be said to fill this sea from the surface to 8.10 , or 25 fathoms in depth. The dredge al. ways brings up a quantity of these half decomposed shells, and in instances where the test of proportion was carefully tried, it was found that more than half the mud consisted of shell frag. ments. There is no doubt that a stratum is forming at the bottom of the sea, due entirely to the coverings and hard parts of pelagic animals, which exist in swarm near the surface. On the question as to the existence of many animals in deep water, liesr neither the surface nor the bottom, Professor Agassiz is inclined
to distrust the Challenger observations. The apparatus there used could not furnish proof as to the point whether the animals Were really caught at the depth of 1000 fathoms or near the surface. The fruits of the towing net may have been gathered:anyWhere in its course.

In the course of this expedition the temperatures of the Gulf Siream were ascertained throughout, from top to bottom, and through the whole area. The fact had been first noticed by Dr. Carpenter that an inclosed sea, such as the Mediterranean, may have a higher temperature for its depths than corresponding depths of the ocean. The difference in that instance is 35°. It is caused by the fact that the ocean water flowing into the Mediterranean has to cross a barrier at Gihraltar; the depth there is about 500 fathoms, and the tomperature at that depth is that of the sea to the east of it, the cold water at the bottom of the Atlantic either never rising so as to float over that barrier, or, if it does, being warmed to the higher temperature while in transit. The Caribbean Sea is similarly inclosed by barriers, and its waters at their greatest depth are only as cold as that of the lowest soundings on the barrier. Similar observations are on record about the Soloo Sea and other hodies of water thus marked off by submarine or surface elevations surrounding them.

EXAMITATION OF PLUMBERS AND THELR WORK.
 (See page 169.)

Considering the growing conviction that in large cities possessing systems of sewerage, the cause of zymotic diseases, such as typhus and typhoid fevers, cholera, diphtheria, scarlet fever, etc., is mostly to be looked for in sewer gas penctrating into the only , and that this can be effectively prevented if plumbers only possessed the proper knowleilge and common sense, it would be desirable to institute a Board for the axamination and licensing of plambers, the same as we have fer steam engineers; next to this we ought to have a Board of Inspection into the sewerage arrangement of every newly built house, and of every other house in which large plumbers' repairs have been made, the same as we have inspections of steam-boilers.
We maintain that by the ignorance and carclessness of plumbers far more people lose their lives than by the ignorance and carelessness of steam-engineers, even if we count all stationary, steamboat, and locomotive engines together. And this is a na. tural consequence of the status of the class of people who belong to the two professions. Steam engineers (notwithstanding there are some stupid ones, and that the profession is not as yet by no means up to the desirable standard of intelligence and refinement)
are as a clater are as a class intelligent and careful, while on the other hand plumbers (notwithstanding there are some intelligent men among a class who have clear heads and understand their business) are as a class stupid and careless. We say this frankly, without fear of While the with them, as only the better class of plumbers do read, While the stupid and careless class do not read our journal.

Mr. Stanley, says the Echo, insists on calling the Congo the Whingstone, and will use that name in his forthcoming book. dictum, Lord Houghton hinted that, notwithstanding the Stanley by the it would be still called Congo, he was rudely interrupted goograp parent of the new name shouting, "The Continental gographers are willing to call it st ; why shouldn't you ?" Simdey for this reason. The countrymun of David Livingstone be hon to spare him no distinetion, hut they also wish him to stolen plumes. It is a law of all scientific nomenclature that a name plumes. It is a law of all scientific nomenclature that a land or geogiven must remain, unless some other similar point of obtained geographical feature in the same country had previously to avoid confame designation. In that case it mast be altered know this, it is time they made themselves acquainted with such
an element an elementary fact in the science which they are supposed to
ealtipate ealtipate. Wery fact in the science which they are supposed to
gratify the geographical names allowed to be altered to gratify the whim or the vanity of every new explorer, the map of
the world wonld ANOTHER new soon become an inextricable mass of confusion. fisheries. The fishing season takes place the Norwegian herring into the shoals to deposit their eggs; but it often happens that
the fish accom before all acomplish their purpose and go back into deep water mare all the fishermen can be warned. Some 120 miles of subso that all the fishe been laid and telephones connected with it, THR rubies fishermen on the coast can be immediately woth itied. described rubies recently made in Paris by MM. Fell and Fremy are
distinguished from so like the natural gems that they cannot be distinguished from the latter by any tegt. They are hard enough
to scratch topaz ; they have precisely the same density as natural rubies; they crystallize in the same six-sided system; and their color is similarly lessened by heating them and restored upon cooling. .The chemical and physical properties of the artificia] gem appear to be exactly the same as those of the gem as it occurs in nature. This success of the French chemists is the more interesting from the immense comparative value of rubies. A true Oriental ruby of medium size is stated by a writer in the Nineteenth Century magazine to be worth ten times as much as a diamond of equal weight. One of thirty-seven carats, brought from Burmah in 1875 , was sold on the Continent of Europe for fifty thousand dollars.

A recent discovery in telegraphy is likely, according to the Student's Journal, to canse a revolution in medical practice. Hitherto it has been necessary for country patients who wish to consult a London physician either to come to town or to send for their physician to visit their country homes. But it is not improbable that before long physicians will be able to remain in their consulting rooms and be kept advised by telegraph as to the exact state of their patients without regard to distance. It is reported that a physician, Dr. Upham, of Salem, Mass., recently demonstrated to an audience to which he was lecturing the variations of the pulse in certain diseases by causitig the lecture-room to he placed in telegraphic communication with the City Hospital at Boston, fifteen miles distant; and then, by means of a special apparatus and a vibrating ray of magnesium light, the pulse-beats were exhibited upon the wall. By a judicious combination of Dr. Upham's apparatus and the telephone, a patient may possibly be subjected to a physical examination sufficient to diagnose heart and lung distase without going near the physician.

It was long supposed that the brackishness of Salt river, Arizona, was caused by the stream running over a bed of salt somewhere along its course. Its water are pure and fresh from where it heads in the White mountains to within 50 miles where it empties into the Gila. Fifty miles from its junction with the Gila there comes into it a stream of water that is intensely salt. This stream pours ont of the side of a large mountain, and is from 20 to 30 feet deep. It is very rapid, and pours into the Salt river a great volume of water. Here could be easily manufactured sufficient salt to supply the markets of the world. All that would be necessary would be to dig ditches and lead the brine to basins in the nearest deserts. The heat of the sun would make the salt. Were there a railroad near the stream its waters would doubtless soon be turned and led to immense evaporeting ponds. It is supposed that the interior of the mountain, out of which the stream flows, is largely coniposed of rock salt.

IT is well known that errors are apt to be caused in astronomieal instruments by the movements of contraction or expansion to which the foundations on which they rest or the buildings which contain them are subject. The observatory at Armagh, i): Ireland, stands on a hill. In wet weather the instruments undergo a certain displacement which Mr. Nelson has lately endeavcred to explain. At the base of the hill is a layer of clay, which expands when moist, and thereby lifts up all the mass of soil above it. Thus the true relation between che instrumental errors.and the wet weather has been ascertained; but it is not always so easy to trace any connection between such observed errors and external changes. At Cape Town, in South Africa, Mr. Stone, the well-known astronomer, has noticed that certain errors in his transit instrument correspond closely with the variations in the volume of a stream near by; while similar errors are of such regular occurrence at the Greenwich Observatory, in England, that Mr. Dunkin, one of the assistants, suggests the possibility of a periodical shifting of Greenwich Hill.

The process for using the clippings and refuse leather from saddlers and shoemakers' shops is as follows: The leather shavings are washed clean, cut up fine and soaked in water and sulphuric acid, one per cent. of the acid being sufficient. The insmersion must continue until the shavings become plastic, and the leather can then be pressed into moulds with only moderate amount of pressure. It can be rolled into thin sheets, and, though useful for many purposes, will not resist moisture. A little glycerine rubbed in will prevent its cracking.

Ordinaky brick-dust made from hard-burned, finely-pulverized bricks and mixed with common lime and sand, is a good substitude for hydraulic cement. The proportions used in general practice are one part brick-dust, with one lime to two of sand, mixed together dry, and tenupered with water in the usual way.

THE "VICTOR" DRIL CEOCK.
 (See page 176.)

The cuts show a drill-chuck which possesses the nerit of being adjustable, self-tightening and having a strong graspiog power. The clutches are flush with the face of the chuck, thus aiding in the adjustment of drills, and insuring that they will not be strained or broken by twisting or falling. The levers are enlarged and rounded at their fulcrums, forming spherical bearings which rest against adjustable set-screws, producing a sure and easy adjustment. The parts throughout are of steel.

To take the chuck apart, remove the screw C, then the chuck head G. When putting together, see that the levers stand in the same position as the follower H leaves them when removed. Then place the groove F in the follower on line with the serew C and by inserting something through the hole of the serew. C, guide the follower until the levers enter it. The screw B can be removed, and a hole drilled through the head for holding long drills or wire if desired; but when used with a short or ordinary drill, the screw should be in its place to prevent the drill from pushing back, and also, to keep the inside of the chuck free from dirt. Should the chuck become worn so that it does not hold true, it can be readily adjusted by the set screws A. Polytechnic Review.

\triangle TWO-STORY STREET.

A new solution of the rapid transit problem is offered by Mons. E. Regard, a French citizen of New York. It is, in brief, to afford greater facilities for passage on a street of a given width (or narrowness) by digging out part of it to a depth of six or eight feet, and over this sunken portion, at à height of three to four feet from the ground, throwing a strong roof which would serve as a foot way, a car track, or a carriage route, while the trench would alsoaccommodate either a car-line or long-route traffic. The expense of such a system would not be great. The lower line of travel would have a'head-room of 9 to 12 feet, and the advantage of being well lighted and aired, while the upper deck would be no more inaccessible than the familiar "summer roads" which, in many parts of our country lie alongside of the main road. frequently more than four feet above or below it, and having frequent turn-out slopes. The question of drainage could very readily be settled. In the narrowest streets, of course, the plan would not serve, and in streets occupied by sewers and well-threaded with gas and water pipes
there would have to be a great change made in these latter. would have the advantage of being readily accessible, both above or below, and of not decreasing the value of property in front of which it ran. If the cars were narrow gauge (as all cars, whether for local or general traffic, should be. and will eventually be), the lateral room taken up would be inconsiderable.

LABOR.

Mr, T. Brassey. M. P., lately delivered an interesting lecture in Lundon on :" The Comparative Efficiency of British and Foreign Labor," which is condensed as follows in an English exchange :
It is asserted that English workmen have become reiatively more idle and less skilled, and that the cost of production has become so great that British goods are being displaced by the exportations of rival manufacturers abroad. These complaints, however, were beard in every great seat of manufacture abroad. There had been a decline in the markets for the chief commodities of exports, which was steady, continuous and serious. The price of pig iron had fallen from $80 /$ a ton in 1874 to $51 / 6$ at the close of December, 187\%. In coal, tin and copper there lad likewise been a great fall. But we are not alone in our misfortunes. The iron trade was also in a state of depression in France and Belgium, and in Germany it was stated to be one of the most prostrate industries of the empire. It was said that the falling off in the iron trade in England had been caused by the inflation of prices, and that that intlation was chiefly due to the rise in wages. But if we had suffered from this, the same difftculty had presented itself on the Continent. Mr. Brassey then referred to the manufacture of textile fabrics. In Englayd, he said, the number of spindles at the end of 1874 was 30,000 , (000, whereas in Germany there were only $5,000,000$, in A ustria, $1,500,000$, in Swizzerland $2,900,800$ and in France $5,000,000$. Then the wages in England, he showed, were higher than in Saxony. Taking a factory of 64.000 spindles in England, of against one of a similar size in Saxony, the average carnings of the Saxon operatives are not more than $11 / 10$ per week, while their English fellows, including men, women and children, carned $16 / 10$ cach, and this though the English factory hand works many hours less in the week than the German. But the Gerowan emplover labors under this great disadvantage thet while the English establishment is worked with 3.1 employees to every 1000 spindles, the German requires 5.69 to every 1000 spindles, or nearly twice as many. But while he had codeatored to remove neetless apprehensions for our industrin future, be was far from saying that no errors had been committod by masters and men. 'there were many delusions which the sharp lessons of adversily might tend to dissipate. In tivis point of view nothing conld be more instructive than mexamination f the state of the lator market in the Cnited Slates. The increase of personal extravagauce which prevailed in America

CHEMISTRY, PHYSICS AND TECHNOLOGY.

The Latest Fire Escape illustrated in one of our contemporaries, is an elastic air cushion, supported upon standards which rest upon springs. The springs being contained in vertical tubular posts. The rest of the device is a wagon body mounted on wheels so as to be capable of being drawninto any position where it may be required. The person alighting upon the elastic cushion is supposed to slide gently through the central opening in the same and take his (or her) place on a geat conveniently provided, to await (apparently) the arrival of the next victim. From the description of the apparatus, however, and the size of the vent through which the rescued is supposed to disappear, we opine that he (or she) would get as bad s bouncing as did the redoubtable Sancho Panza in Cervantes bappy story, before taking the stool "for the purpose hereinbefore described." Polytechnic Review.

Wocid Pulp from spricce.-A correspondent has sent us a simple of wood pulp made from spruce. This sample is ree from chemicals and is of a very long, tough fibre. The color is of a slightly creamy tint, but is quite good for this class of pulp. We observe in the sample small shives of wood, which, after being reduced to pulp and passed through a fine screen, may disuppear. This is the best specimen of pulp made from spruce that we have seen, and it denotes progress in the
treatment of one of our best vegetable fibres.- Paper Trade Jourreatment of 0
al, vii,-84.

Improvement in Processes of Obtaining Fibre from Wood for Paper Mulp.-A patent has been granted to William K. Patrick, of Marnette, Wis., for an jmprove ment in paper pulps. This invention relates to the manufac ture of wood pulp for paper, and it consists in boiling the pulp) purt it has been ground, either with or without alkali, for thi purpose of removing all resinous or foreign matter from the pulp. In this process for reducing wood to pulp the wood is tirst cut out in lengths suitable for the grinders, and these pieces are placed sidewise to the stones or grinders, to have the fibres Grinding lengthwise of the wood. The wood being thus, by grinding, reduced, is called " half stuff." It is then passed Well-knom the grinders to a wet machine, thence into the Well-known rotary boiler used in paper mills. Here is added One pound of soda ash to every oue hundred pounds of wood pulp. After charging the boiler, hati of which is water, the man holes are closed, and contents are boiled. not steamed, for thelve hours or more. Some stock needs no alkali, ind is for the purpose bolly in clear water. This boiling of the pulp i for the purpose of removing all resinous or foreign matter it nay
contain, also softenng and removing the incruscating substance of the wood softening and removing the incrustating substance of the wood. Hy thus boiling the wood pulp more of it can l,
used in connection with other stock, and it gives a much better
finish finish to the paper. The entire process of preparing the wood for paper puip is as follows: 'Ihe wood being cut and ground, a pulp passes from the grinding machine and is conveyed to the machine, similar to those used ma puper mill: This presees apparatus out of it. From this it is conveyed to the boiling boiling it, where it is boiled for the purposes mentioned. After liquid it is conducted to drainers, to relieve it of the water or to the it accumalates while bolling. From here it is conveyed and reheated engine, and after oting thoroughly washfd and chest it is pumped to another wet machine, and immediately run into is pumped to another wet machine, and immediately The clained form of board, ready to be sold as paper stock. is taken from the grinders and treated the same half stuff is makers from the grinders and treated the same as all paper
the con It requires no extra outlay for boilers, and the common open tus, without pressure, can be used. The
inventor Which consists ine process of preparing wood for paper pulp, conveying it to in removing the flbres lengthwise of the wood, With or wing it to a wet machine, and boiling the half stuff, either or forergu mout alkali, for the purpose of removing all resinous The Strength of steel Castings.-M. Gautier, in a paper lately read before the British Iron and Steel Institute,
gave an gave an account of some remarkable experiments with artiliery Words, from steel fabricated without blows, or, in other heated. metal which had been simply cast, tempered and reinches. A tube 8 inches in diameter was made with a hole \boldsymbol{j} outside diameter so as to leave but 17 inch of metal on the after which Nothing was done besides tempering and reheating, carry the breach tube was grooved, and a screw bead adapted to of pow breach. Twenty shots were tirst fired with 9 pounds weighing and a 40 -pound shell, then 10 shots with a shell successivg 47 lbs ., and thereafter the charges of powder were the shell rem increased by one-fourth of a pound every 10 shots, fobally fired as the identical until the one hundredth shot was fissure of as the conclusion of the trials. On examination no mation of aly kind in the metal was discovered, and the deforthe average of chamber was found to be not so much as half several pieces that in forgerl steel tules. Previous to this test axis of pieces of the metril were cut perpendicularly from the trials made tube. The average results, as recorded, of four follows: Limit of clasticity, in tons, per square inch, 22.35)
charge Charge of rupt of clasticity, in tons, per square inch, 22.35;
Age, Mforch 14

Trial of
in a rial of Armor Plates..-The Sheffield Independent, tests recent issuc, gives some interesting facts in regard to \& Conade of a compound iron and steel piate by John Brown been tested by system patented by Mr. Eilis. This plate has cellent result by the War Department at Shoeburyness with exand was 0 in. The plate measured 8 feet by 6 feet 6 inches, equalin thickes thick, the steel face and iron back being ditions thickness. The plate was fired at under the ordinary conWith the test adopted by the war office, without any backing, der. The tinch gun and a full charge of 30 pounds of pow: equidistant from shot was fired at near the top edge, about
down wide, and two subsequent ones lower down, within about 2 feet of the first. The average indents-
tion was about 6 inches, the effect by the three shots on the back of the plate being only a slight crack made by the first shot, which was caused probably by its proximity to the edge of the plate. There were several fine cracks on the face, but none deeper than the thickness of the steel, and there was not even a sign of separation between the iron and the steel. To give an idea of the advantage of these compound plates, it must be understond that a similar shot against an iron plate would have produced double this penetration, that is to say, the shot would have penetrated the full thickness of the plate, and nearly to the extent of the bulge ruised at the back, with considerable damage to the back of the plate. In a stcel plate the same shots would have produced cracks the entire thickness, thus breaking up the plate. As only abont one-fourth of the plate was experimented upon, it is intended to use it for further tests with a 9 -inch gun.

The Annealing Temppouture of Metals.-It is an interesting fact that this has never been exacily determined. All that is known about it is that thore is a fixed and rather narrow range of elevated temperature pecaliar to each metal, without the limits of which amealing does not take place, and that the absolute mean temperature for each metal seems to be greater in some proportion as the fusing temperature of the metal itself is higher. Platina, when hard from wire-dtawing or lamination, is not annealed under an intense white heat; wrought iron, at about a bright red, in some sorts not before a yellow heat; copper, at a low chery red, and in case of metals of a very ready fusibility. such as tin and lead, their annealing temperature sppears to be so low that the heat involved in them by conversion of mechanical foree in laminating or wiredrawing, is sutficient to keep them annealed, that is, they canbot be hardened hy such processes. It is this curious fact that explains the well-known peculiarity in* rolling shect lead or "drawingr" lead pipes by the older methots, namely, that the rolling or hawing can te accomplished by less total expenditure of power if performed fast than much more slowly. Iron Age.

The Oivanic Origin of Limestones.-Prof. W. C. Williamson has iately given definiteness to the long cherished belief of geologists, that the great rock masses of limestone that enter into the composition of the carth's shell had their origin in the gradual aceumulation of the remains of mieroscopic organisms. His observations were directed to the task of studying limestones in which no trace of these organic remains were visible, and has been fortunate enough to have for a specimen a slab of rock containing a large chambered shell. Outside of this fossil the limestone slab, the evidences of the organic constitution of the rock was barely distinguishable, the relics of the microscopic shells being only faintly recognizable here and there; but within the large shell they were found in excellent preservation, the body of the latter having resisted the disintegration action of the percolating water, containing carbonic acid and other solvents, sutficient to protect the delicate remains of these microscopic organisms from the solution and disappearance which they suffered outside of it. The dense texture of most of the limestones, which frequently exhibit no trace of their organic origin, can readily be explained to result from the metamorphism which the rock masses un dergo by the solvent action of meteoric water containing car bonic acid, which, in time, more or less completely disinteg. rates the delicate shelly relics of which they are composed, und gradually renders the whole texture of the rock homeo geneous and uniform even to the microscope.

Geological Evidences of Evolution.-We see that the geological record, so far as it gocs, is more authentic and credible than any uninspired history, since it contains no per sonul equation, is the product of no prejudice, passion, or partial view, which color all human histories, but is autonatic and nceessarily true; that the earlier chapters of this history, those which contain the records of the beginning of life, are for the most part obliterated and ineligible: that there are many gaps in the narrative which doubtless will be, but up to the present tinue have not been filled; and thus that the record consists of a series of chapters, more or less disconnected. The evidence is conclusive that the earliest fauna and Hora of which we have uny knowledge consisted of fewer clements, and those of simpler structure than in any succeeding age. Also that there has been a constant and progressive increase in the variety of animals and plants, and in the complexity of their structure. This progress of life is so evident and generalothat we cannot resist the conclusion that it is the expression of law; in other words, that it is the operation of forces as distinctively
determinative as those which proluce and guide the motions of the heavenly bodies. The parallelism of the progress of life through the geological ages with that of the growth of an individual from a germ, is so close that most students of palæontology are inspired with the conviction that the life forms of the different ages are links in a connected chain; in other words, that the latter forms are derivations from those which preceded them. This is evolution, and therefore most geologists are evolutionists, and they believe that evolution is not only exemplified in the progress of life, but that it is a law of nature.-Prof. J. S. Newberry.

Foj the detection of resin in shellat take s grains of shellas: finely powdered and boil with 15 grains of petroleum benzine. The dissolved portion is evaporated and weighed. If the residue be greater than 10 per cent. of the shellac, such excess is due to the presence of resin. Another method is to take 25 grains shellac and boil the same with 2.5 grains of catstic potash and $50 \mathrm{c} . \mathrm{c}$. of water until all is dissolved. If the shellac be pure, the solution is of a red color and transparent when held to the lamplight, and contains muddy portions in the upper strata, which are casily separated on agitation. The shellac adulterated by means of resin forms a thick deposit, not easily broken up by shaking. This precipitate can be washed with water, and boiled in 2.5 per cent. hydrochloric acid: this. when dried, melted and weighed gives. when multiplied by 1.25, approximately the quantity of resin contained.- Onstrir Ungui Tischler ü. Drechsler Zotg.

Fienna Bent Hoodn:cre.-The prowing popularity of this style of furniture first brourht to the notice of tite Anerican publie at the comemial, will doabthes sive interes ti a brief description of the methods of making it. "The in'lus. try is conducted chicy in Moravia and Hungry but promi ses to becone very genemal. Articles of this descriptionare re markable for their neatness. clean finish. lieht fines, great strength. and the fewness of their joints; this latter point being usually accomplished by bening the wood used so as to necessitate as few pieces as possible; thens, an ordinary chair contains, according to this method, only six picces hesides the cane seat, and is said to be an article which has no superior in its way. For this kind of furniture, beech is the only sort of wood used, it being found excellently adapted for the purpose. The trees being felled, the tops are removed and made into charcoal, for use in the glass works: the truks are sawed into planks of suitable thickness by gang saws. and the planks are in turn ripped up with circular stws into squate pieces for turning. If intended for the back and hind leqs of a common chair, which are composed of only one piece, the square piece of proper length is put into a kind of gauge-lathe, which dors its work very rapidly, and varies the size where needed. The ordinary dowel lathe is used for pleces of uniform size. such is the hoops, which are placed inside of the leir to stay them. instead of straight pieces or rungs. and the hoops are so placed so that the fect camot rest upon them. After leeing rounded as required, the wood is sleamed in the green state for $\mathbf{2 4}$ hours, in boincts adapted to the purpose, when it is taken out and bent to the shape desired. on a cast iron frame, he hand. If intended for the se:1t, the piece is first strapped with iron on its outside. so that the bending shall he a process of compression, lengthwise rather than an expansion. It is then attached by one end to a pattern fastened to a turn-table, the other end being held by a chain wound upon a drum, to which is applied a brake, so as to regulate the tension with which the piece is delivered to the pattern: the turn-table is then set in motion, and winds the wood on its own form. If designed for a scroll, the pattern may be complicated and in several pieces. which are put in place at the proper time in the prosrese of the rotation; for a double scroll, two of the tension bunds are cm-ployed.-Iron Agr, Mfrch 14.
Practical tises off Sawdust.-The Chsterr.-Uugar. Tischler u. Drechaler. 2 tg. refers to the increasing utilization of suw-dust for the production of a variety of articles of utility and ornament. The general method consists in producing a plastic mass, composed of two-thirds sawdust of common lard woods, and one-third glue or resin as a binding material (occasionally with some gypsum). This mass composed, say, of fine sawitust, asphalt powder, and ox blood, after thorough mingling is tilled into suitable brass moulds, where it remains for 24 to 36 hours ex; osed to a considerable pressure, and gradually heated until the water moisture has evaporated and the mass is made homogeneous throughout by the fusion of the asphalt. In this way are produced beautiful and perma-
nent basreliefs and a variety of articles for wood ornamentation, initation of ebony, piano keys, doorknobs, brush handles, knife handles, etc.

Sawdust is also used in the manufacture of oxalic acid, and of artiticial vanillin, and more recently mixed with the mortar for house plastering, to prevent the fine hair-like cracking of the plaster.

Cnpleasant Peculiarity of Toughened Glas:We have already recorded in the Review instance, of the peculiar disposition of vessels made of the so-called tempered glass to disintegrate with a violence, and without apparent external cause. Prof. Ricard, in the Polytcchnische Notizblatt, records in substantiation of this statement, the case of a chifd'sdrinking glass, of "indistructible" glass, which, while standing empty upon the dining table, and without visible cause, or contact of any person, or approach of a light, suddenly exploded with a loud report, and scattered its fragments disintegrated to the size of a lentil about the entire room.
Prof. Ricard notices that instances of this kind in the laborittory and the houschold are numerous, and believes that the property may manifest itself with such violence as to become a source of personal danger to those using such vessels.

He qualifies this remark, however, by the statement that the so-called Hart-glex of Siemens which is made under pressure, is free from this dangerous peculiarity.

Utilizing a Desert.-Gur Commissioner of Agriculture proposes to make the date r staple American product in the now useless desert regions of Arizona and Southern California. Seed from Egypt has been planted, and more is crming.
Callfornia will show at the Paris Exhibition, a gilded pyramid, iwenty feet square at the base, and nearly seventy feet high, to represent the $7,000,000$ cubic inches of gold that have bepa produced on the Pacific Coast. The State will likewise show her mineral wealth by a display of 500 tons of minerals.
The Pictet ice-machine which has for some time been running successiflly at No. 530 West street, New York, has been sold to a Virginia company. The cost of manufacture on ${ }^{2}$ small scale was about $\$ 1.80$ per ton. On a large scale the patentees of this system (employ ng anhydrous sulphurous oxide gas) claim that it can be made at $\$ 1$ a ton.
Metallic Freight Cars.-There are now in use on the Chicago, Burlington and Quincy Railrofd some 20 box cars of the La Mothe pattern. At a distance they bear much resemblance to the ordinary wooden railroad car; but on approaching nearer the difference is at once discernible. The same trucks are used as on other cars, the manufacturers furnishing at present the car bodies alone, or mounted on such trucks as a railway company may desire. The bodies are made of boiler tubing and steel rods. The sills are of 2 -inch tubing the top framing of soft steel rods, united without joints or bolts, and forming a combination of strength and lightness. The box cars are covered with sheet iron, united by lap and groove (no rivets), and lined inside with a light felting of paper. The interior is lined with very thin lightwood; the purpose of the paper and wood lining is to preserve an even temperature with the car, and it is claimed that these cars are thus rendered cooler in summer and warmer in winter than the ordinary box car. Externally the metallic box is neat in appearance-much more 80 than the wooden car. It is susceptible of any amount of ornamen tation, and passenger cars built in this way can be made very handsome. The weight of the bodies of these cars is from 8200 to 8800 lbs. With the truck they weigh from 17,000 to 18,000 lbs. nearer the former figure than the latter. The average weight of the wooden cars of the Chicago, Burlington and Quincy Roailroad is $20,050 \mathrm{lbs}$. It should be noted that the newer cars, such as are now built entirely of wood, average over $21,000 \mathrm{lbs}$. As between them and the La Mothe cars there is therefore a difference of nearly 4000 lbs. in favor of the latter. In addition to the saving in dead weight, the metallic carshave a greater carrying capacity. The ordinary car load is 10 tons; the La Mothe cars will carry 15 tons easily without danger. Iron Age, March 14.

A parr of Siberian hares has arrived at the Jardin d'Acclimatation in Paris. The peculiarity of these animals is that they are gray in summer and white in winter. The Freach naturalists wart to ascertain what effect the temperate climate of France will have on this change of color.

ROWLAND'S IMPROVED LIPTING JACK.

HMPROVED LIFILIG JACK.

We illustrate here a new and simple lifting jack, applicable to all kinds of vehicles. The base, A, supports an inclined bar, B, and standard, D. The lever, F, has its fulerum at G, in bar B, and extending forward is pivoted to the notched bar, I, which is connected by the bar B , by the short bars J . It will be -rident that when the lever, F , is operated the notched bar will be raised or lowered. The axle of the vehicle rests upon one of these notches according to the height of the axle. K is a bar Which is pivoted to the base, and which extends upward sbove the lever, F. It carries a pin, L , which, when the jack is loaded, falls into one or carries a pin, ther of the recesses, M, in the top side of the lever, and thereby holds the load. When the load is to be lowered the rear end of the lever, F, is depressed to release the Pin, when the bar, K, is thrown forward with the foot. The lever is then allowed to rise and release the jack. The device is arongly and inexpensively constructed.-Scientific American.

OTh Render Corks Air and Water Tight.-The Memiker Zeitung suggests the use of paraffin as the best method of making porous corks gas and water tight. The ${ }^{\text {mothod of impregnation suggested is simply to allow the corks }}$ Perafain for about five minutes beneath the surface of melted b_{y} a perfo a suitable vessel, the corks being held down either by a perforated lid, wire screen or similar device. Corks thus
prepared exepared can be easily cut and bored, have a perfectly smooth flabk may me introduced and removed from the neck of a derfect seat.
Irow is a dapgerous ingredient in fire brick. When a brick containing iron is exposed, even at a low temperatare,
to ${ }^{2} 0$ gases containing carbon, part of the carbon is deposited near the iron. This has often not only caused the brick to lope its cokesion, but may even burst it so as to throw down tho iron walls of furnaces and the linings of fues.
$\mathrm{T}_{\text {Thy }}$ relations between M . Pasteur's discoveries concorning the divalopment of germa, and the piogress of modern surgery were the cosed by the Paris Academy of Sciences a few weoka ago. In Whith coure of the discuasion, M. d ' Δ bbadie, the explorer of Δ bysthen remarkod dhat there was a seying among the natives along thanin in of the Rod sea that a woonid to be healed should Homain in of the Rentact with the eir ; and in that region he found

Thr late experiment in the introduction of Salmon into Australia, made by Sir Samuel Wilook, has so fa: proved nuccesefrut. Tully one-half of the ova which were received from Californis hatched successfully.
Cabs iron pipes fifteen inches in diameter and three-quarters of an inch thick will sustain a head of water of 600 feet. One of oak two inches thick and of the same diameter will sastain a head of 180 feet.
To detect fraudulent balances, after an equilibrium has bean established between the weight and the articles weighed, transpose them, and the weight will preponderate if the article is lighter than the weight, and contrawise.
Within the last few months the French physicits have succeeded in liquefying acetylene, ethyl, hydride, marsh gas, nitrogen dioxide, oxygen, nitrogen, hydrogen and atmospheric air. These were the last of the miscalled "permanent guees."
We might save at least one-fifth of our bread and one-third of our meat. So long as we insist on our bakers eupplying our table with snow-white bread, so long tnust the miller eliminate from the flour its most nourishing part. This part approachon, in chemical constitution, that of flesh.
Forms of living matter are numerous beyond all computation, the diameter of which is not more than $1-40,000$ of an inch 1 Allow sorne dry hay to remain two days in water, then filtor and leave it two more days, and it will swarm with living creatures, each one having a separate organization.
When wood is employed as a fuel it ought to be as dry as possible. To produce the greatest quantity of heat it should be dried by the direct application of heat. As usnally employed it has abont twenty-five per cent. of water mechanically combined, the heat necessary for evaporating which is lost.
Mr. John Watson, F.R.A.S., read a paper at the meeting of the Newcastle Chemical Society, on the utilisstion of sem ago and the parification of rivers, in which he stated that a smali quantity of diluto hydrochloric acid was sufficient to precipitato the most noxious sewage, and leave the supernatant water pure.
A good cement is formed when shellac is diseolved in a concantrated solution of borax. Albumen of egg mixed with quicklime makes a very strong cement, but does not resist water effeetually ; it is employed to unite pieces of apar and marblo ornaments to which moisture has little access. Coppersmiths nee a similar comppound for securing, the edges apd riveta of boilers, but in thise case blood is sabetituted for the white of an egs.

CONSTRUCTIVE CARPENTRY.

conNections between beams when THEY CROSSONE ANOTHER.

Fig. 23.

THIRD PART.

Conntctine crobs tinbere.
If both the timbers project beyond the point of crossing, the simple connection represented by Fig. 98 is customary. If the timbers have equal thicknesses, each is cut into half its thickness. If the thickness differs, the weaker beam is cut less, or not at all, according to the strain it has to bear, and the heavier beam, is only cut far enough to let in the other. Of course this is only done when the surfaces of the beams must be flush; If this is not the case, and the surfaces do not need to be flush, it is of course better not to weaken them by cuts, but to connect them with bolts or bands.
If one of the pieces does not extend beyond the other, the best joint is the socalled dove-tail, represented in Fig. 24 in perepective, and in Fig. 25 in section; in this way the end of the beam most mubject to decay when exposed, is entirely hidden and protected, espocially when the joint is made to fit snugly.
If the beams are only joined at the ende, and do not project beyond, it is well not to make the cat surfices parallel to the sides, as then they easily slide off one another by the least longitudinal atrain, but to make them slanting, as in Fig. 26, or with a noteh, as in Fig. 27; the latter can not be pulled apart by a longitudinal strain, except by breaking the wood, while Fig. 28 is only safe against such a atrain when the joint is

heavily loaded, or inserted in a wall preventing its expansion by elidiug.

Profitable Industries the Best.

8x m. J. nuxuland.

Ayone imported articles which can be manufactured much cheaper in the United States than in Europe, is corn ayrup, or so-called glucose. Ten years ago this syruy was unknown in this country. In 1867 the importation commenced, and has increased every year at an enormous rate, Corn syrup is (under different names) largely consumed by confectioners, frait preservers, wine and liquor dealers, and for table une. It is manufactured from potatoes, corn, wheat, and other cereals.
The profite connected with the manufacture of corn syrup are simply enormous. Foreign glucose is charged with 20 per cent duty and about 20 per cent freight. This great advantage to the home manafacturer is enhanced by the fact that the raw material in the United States is far cheaper than in Europe ; a bushel of corn in Mlinols costa from 80 to 60 cente, in New Yort 85 centh, while the European manufacturer of glucose and grape sugar has to pay $\$ 1.25$ for the same quantity.
The French capitalista who invested money in lace. making, divided in one year 50 per cent profit, which divid ad in following years increased. Fifty per cent
dividend is the lowest profit which can be expected from the manufacture of corn syrap, as proved by statistics? The only trouble is to find a man able to manufacture the article, and, as far as known to me, there is only one man in the United States who possenses this capacity. "Without the encouragement of a Colbert," that man and his friends invested a fow thousand dollars in the erection of miniature machinery, with which he proved, in the presence of leading New York merchants and others, the feasibility of making firatclass corn syrup in the United States. Since 1869 he has tried to come into connection with parties willing to establish such a company, but although money was abundantly offered for rallroads, silver and coal mines, and wildcat enterprises, no capital could be found for manufacturing this article

Our capitalists are undoubtedly willing to make safe and profitable investments; nevertheless it is very difficult to reach them, as it seerns that our bankers and brokers are giving their coöperation exclusively to wall street securities and insecurities. It is under these circumstances that I call upon them with the suggestion that one of the main causes of the increasing pauperism, is the insufficient encouragement given by capital to home industry, and that the best way to diminish this now Increasing evii is to invest capital in such enterprises as can give labor to the greateat possible numbers.

Forests and Rain-Falls.

The old question of the influence of forests on the amount of rain received by the soil is revived in a communication to the Fresch Academy of Sciencea, by MM. Fantiot and A. Sartiaux who have been experfmenting in the forest of Halatte, measnring the amount of rain-fall during six months of 1874 at two places abont 1,000 feet apart, ove being covered with trees and the other open. The figures they obtain show that the forest received a larger quantity of rain in the proportion of about twelve to eleven. The only valid argoment of a theoretical character bearing in the same direction is, so far es we know, that of M. Dausse, quoted in this communication as follows: "Rain is formed when a warm and humid wind comes in contact with a strata of cold air ; and since the air of forests is colder and more humid than that of the open, rain must fall there in greater abundance. The difference shown by the experiments confirms, indeed, to some extent, the atgument referred to; but it by no means supporls the popular impression that the removal of foresteexercises a direct effect in diminishing the amount of rain-fali over large districts. A result far more important is the change produced in the flow of streams. Forents oheck, ovaporation and retain for a longer period both tho snow and the rain, furnishing a steady supply to the streams and preventing, to a large extent, sudden freshets. When forests have been mostly removed, the smaller streams, which have furnished available waterpower for milla and factories, are likely to become 50 irregular in their flow as to be apt to produce great inconvnience. It is, however, the distribution rather than the total amount of rals-fall which is thus affected.

Artipicial Stonz.-A Mr. Carr has patented a pro cess for the manufacture of a cheap and indestructible artificial stone. He finds that a mixture of fat lime slacked to powder with clay reduced to an impalpable powder by calcination at a chorry-red heat, whea sabjected to a h^{\prime} : 3 preseure, has the property of herdeve ing rapidly under water, and exhibits a degree of durability proportionate to the prosaure it has under gone.
Nonth American Tradre - Already Mr. Frailick, who went to South America as the sjeccial Postal Conmissioner, has accomplished important results by his trip. He has secured the removal of the frelght discrimination of $\$ 1$ a ton from Panama to Callao against Americall in favor of English goods, and he has also coneluded an agreement with the Peruvian government for the establishment of postal commanication with the United States under the Berre Postal Union.

Patternimaking.-X.

By Mr. Joshua Rose.*

IT has been' already remarked that the operations of the moulder are, to a large extent, predetermined by the pattern-maker; hence it becomes nocessary that the latter shall have a knowledge of paundry work, otherwise he is likely to make the patterns very expensive and awkward to mould. In Work and the trade, an apprentice is usually put to form of his distinotly instructed as to the required reasons his work without knowing anything of the poasona therefor. In this way heattains a practical showld be of how different olasses of patterns shoars be, or are, usually made; but it takes him Years to become an expert mechanic, for the reason meoting having learned by rote, he is incapable of noesting new conditions to the best advantage, antil his experience has included both observations the foundry and, in some cases, consultations Thith foundrymen. Before entering, therefore, into the nethod of putting together different kinds of pattern work, it will be well to take a glance at the foundry, and examine the contrivances and the in pations of the workmen, so that our operations meginning work may be intelligently made from the Theginning.
attention, floor of the foundry first demands our sand of It is composed of a layer of monlding sand of sufficient depth to imbed patterns of the lize usually oast in that foundry. For exceptionally natge work, there is usually a place where the natural earth has been excavated to a greater place is naually commands ally within easy reach of the orane (which threshold almost every part of the floor) and the next obse of the melting furnace or cupola. We and observe the capacious oven for baking cores requirying. moulds for such special work as may tripare these operations; but the particular conconcern with which the pattern-maker has now to called himself is represented in Fig. 64. It is (two a flask, and is composed of two or more parts part is called shown in the ongraving.) The lower Fech part is the nowel, and the upper the cope. wood or iron simply a strong rectangular frame of Notangles, . The sides, being continued past the The cope is are ronghly shaped for use as handles. embrace the provided with several crossbars, which bire it in contour thern as it were, being roughly shaped about in contour and approaching it in size, being thear adhesion inch larger all round. These bars, by cope, and in this support the body of the sand in the driven in in this they are frequently asaisted by nails intermedin nearly half way into them. When an in Pig. 64 part is used with the two parts shown fask, ; with the contrivance is called a three-part lask; with two intermediates it is called a four-part bars, so so so on. As the cope is provided with cressof sand, also the intermediates, having to lift a ripg much are provided with wings; that is to say, as Within abosbar as will extend from the sides to are guided, half an inch of the pattern. The parts taper pided, in their position one to the other, by other pins on one part fitting into eyes fized to the in shorn part, as shown in Fig 67, in which the cope To riew, whith the side having the two pins exposed One eye, while the opposite side of the nowel, having Fork, the nowele. In many ceases and for large foor is used nowel is dispensed with, and the foundry Fided to used in its stead, in which case the cope is into the, and retained in, its place by stakes driven When lifteor sand, as shown in Fig. 65., so that, the moudd to admit of the pattern being drawn from anot proper the cope may be returned again to its representa the and former position. In Fig. $66, \mathrm{~A}$ (F_{ig}, at M (Fig. 65) whose impression in the floor (Pig. 65) represents , forms part of the mould. B anall represeats the cope; for the word cope a Woll asp to that to the upper part of the monld thinel ite. The that portion of the flask which conformed. The top print, C, of the pattern, has th round taper impon the cope at P. R (Ihig. 66) it pope at r, through which hole the molten metal fopuared. It also leaves an indentation at r, and compania latter a gufter is made by the moulder to shamanieate with the mould, M, na shown. The shown referred to above are marked S. The dots, Print, C , in the impression of the top pattern find (After the cope, are small holes made in the $\mathrm{in}^{2} \mathrm{~F}$ (wire, and thenaldiag is finished) by a piece of the aire, and are for the purpose of giving vent to in porared ing gases which must escape when the metal It raill be se
gat will be seen that, when a mould is made in the
daty we hare describe duty until the described, it can perform no further piluld, thenefore casting has been made; for every por of these applise require a flask, and hence the For lif these appliances we always see in a foundry and light worl, however, a comparativeiy moder Breatiy improved devioe has come into general It is termed a snap flast, each part having a
linge at one corner and a latch at the diagonall opposite one; so that, after the mould is mede, it can be detached from the perfeoted mould sisd can be used to make another. Sometimes, though rarely, it happens that a casting is required of such form that the petterns cannot be constructed so as to be moulded with a flask of the ordinary kind. The flask requires to come to pieces and the mould to be parted sideways; this adds greatly to the labour of the moulder, and the pattern-maker should so construct the pattern as to aroid this whenever he can devise any means of so doing. Even Whenever he can devise any means of so doing. Even
when the pattern is mouided in the floor, the mould is sometimes of necessity made to part on one or more of its sides, and these partinga are termed drawbacks. An example of this class of work will be given hereafter.

FIE. 65

By matching the operations of a moulder, we shall observe that, in the case of a solid pattermthat is to say, a pattern not made in halres-he always endeavours to have as little of the pattern in the cope as possible, and in this reapect the patternmaker should supplement his efforts. The remson is obrious : the cope has to be lifted while as yet there has been no opportanity to loosen the pattern in the monld. It is true that, in some cases, a ber is passed through the cope sind driven into the pattern, and by rapping it the loosening is accomplished; but it is not weil to have recourse to such an expedient, because, wherever the bar passes, the cope is damaged, and must be mended; and when a mould has to be mended, it is doubtful if the correct form, such as the pattern would bave given it, will be left. Furthermore, it is all work in the dark; for the effect or extent of the rapping cannot be scrutinised, and it may therefore produce an nndue distortion in one direction, while in anothewit may not have been effectual. Perbaps the bar may have descended at a place in the pattern where it is comparatively weak, from crossgrain of the wood or from some other canse. This measure is, therefore, on scoonnt of these difficulties, seldom resorted to; and it may be generally diaregarded in the caloulations of the pattern-maker. The cope, then being, as we may say, a dead lift, and with nothing to guide the operator in moving it, either horisontally or vertically, any part of the monld contained in it is much more liable to break down than is the other part of the monld. In extracting the pattern from the lower part of the mould, the eye lends to the monilder great assistance. The pattern can be loosened in the sand before extraction, and in furthermore leas cumbersome to handle than is the cope: all of which circumstances tend to precerve the lower part of the mould from damage daring the extraction of the pattern. Rapping a paittern tends to alter the form of the mould from that calculated upon.. 4 cirole becomes slightly oval, a square becomen an oblong, and so on: and this cannot in most cases be avoided, becanse it in necessary to rap the palbern so as to enable the moulder to extract the pattern without drawing out the end wish als that can bo as posaible, and equally in all directions.
When a fleak nowel is used, the labour involved in mating a parting of the mould is facilitated. Fis. 64 shows a board cope and nowel for an ordinary atraight parting ; bat it is evident that the parte af the flask may be mede to show a crooked, a curred, or irregalar line at the joint, if it requre in which case the bed board must be made of aimular conformation. The process of moulding with a flack independently of nsing the floor, instond of simp
nowel, is illustrated in Figs. 67 and 68 . It be nowel, is illustrated in Figs. 67 and 68 . If
required to mould the pattern illumtrated in Fig. 66 , which his made in halres, the joint being denoted by the line, $A \cdot A$, one of the halves is taken and laid with its flat face apon the moulding board, \mathbf{B}, uhown in Fig. 67. The nowel, N, is then pleoed apon the the midd that the haff of the pattarn will be in aboad tightly in the nowel; and when the latter in filled with the sand it is turned npside down, showing the flat face of the half pattern, the reat of the half pattern being imbedded in the sand. The other halt of the pettern is then placed upon the one in the sand, its proper position being detarmined and regulated by pegs fitting into holes, provided in the first part, to receive them. The next operation is to put on the cope, meshown in Fig. 68, the taper pins being fast to the cope lags shown on the sides, fitting into holes provided in the nowel lugs, similarly shown, serving to hold the cope in position and prevent it from moving. The cope is then filled with sand, lightly rammed, the taper pin, R, Fig. 65, being inserted to laave in the mould the hole, R, Fig. 68 , through which to pour the melted metal. The cope is now lifted vertically; and as the pattern is made in balres, the top half lifte with the sand in the cope. In some cases a screw is fixed into the top half of the pattern, the head of the sorew projecting into the cope: the objeot being to insure that the top half of the pattern shall lift with the cope. The next procedure is to extract the two halves of the patterns from the moulds, and perform any trimming or repairing that the monld mag require after which the cope is again placed upon the nowel and the mould is completo, ready to have the motal poured in.

Delicats Tegt for Vapors of Mercury. Comptes. Rendus uays that paper impregnated with mixed chloriden of platinum and palladium give a brown coloration when exposed to vapor of mercury. It is found by this test that mercury volatilizes even when frozen. Salts of gold and ailver are mensitive aleo, but not to the same extent. The scientific and induatrial appliontions ave evident.

REVOLUTION IT ARGH-BULLDING.

The mesoury arch is a comparntively late invention. We find no trace of it among the structures of the ancient Egyptians, while in the five classic orders of Gre cian architecture-the Tuscan, Doric, Ionican, Corinthian, and Compositam-the structure over the colnume is not supported by arches resting on the columns, but by straight tablatures. Even in post of the original Roman temples, of which the ruins are found in Italy, the arch is avoided; they appear first to have used it in their viaducts, while it reached - greater development in the middle ages, when in the Byzantine style the semicircular arch was as prominent a foature as the pointed arch in the Gothic style, which reached its highest develop. ment in the Middle Ages.
But with all that, it must be confessed that the application of the theory of arches has made less progress than ady other branch of practical engineering, as well in regard to the most favorable form under given circumatances as in regard to the maximum of stability corubined with the minimun of material employed.
Among the mysteries of the ancient masons the construction of arches was une, and the methods used to give them stability, although they consisted of separate and comparatively small stones, and even bricks, was a wonder to the ignorant masa, and was kept an inviolate secret by pase-words and grips. These have later obtained a symbolic meaning, and being infused with the spirit of the mysteries of the ancient Egyptian priests, and other secrrt orders, have been the source from which modern Fretmasoary has been evolved; while that which was the greatest necret lias become public property.

But notwithastanding the latter fact, our practical methods have not been im. proved, and we have confined oarselves to taking the old arches as models, increasing only their thickness and weight, until they became very expensive, and sometimes oven weak by reason of their excessive weight, or inversely, they have been made so light that weakness resulted from an insufficiency in the quantity of material, so that they came down under the load they ahould have been able to carry. These features have in many cases been kept secret instead of the details and causes being published for the benpfit of all yuiring less in quantity and only just where it is interested, hence the world has derived little benefit from the disastrous experiences of which the parties cauaing them were justly ashamed, and hence held their peace whoh they should have confessed for the beaeft of makkind.
The great difficulty in improvement in congtruction consista in the fact that our theoretical engineers stick to the old books, with no attempt at improvement, having no opportunity for experiment, while our builders and contractors follow their blind leaders. But few engineers are willing to step out of the beaten paths. Timidity end the want of a full precedent prevent advancement or the adoption of ne'v ideas. What improvement have we made since the times of Vitrnvius, whose works on mortar are a standard to this day 9 How many centuries did it take before the brick was made without straw.

Froan ore-third to one-half of the material in our present structures is wasted, and is only used to cover faulty construction or poor workmanship. Much of the material used in our arches simply tends to overthrow them. We can only hope for finprovement in construction when the exigencies of a new material call for experitaent. Such experiments have been made by the II. Y. Btone Contracting Company, of Third avenue and Sixth etreet, Brooklyn, N. Y., who have devoted much time to thh purpose. We give on this and the opporite page some of thoir arches as illuntrating certain modele of engineering conatruction.

There is perhaps no material so well adapted for engineering porposes and to show skill in construc. tion ambeton or the best quality of concrete. This is owing to the fact that we can in this material have a homogenious structure without the elements of weakness, caused by different materials, uneven settlement, or dependence for its stability on friction.
The aceompanying cuts, Figs. 1, 2, 8, and 4, show arches constracted by this cornpant: Figs. 5 and 6 are plane proposed for an undergrgand double-track railway. Fig. 1 is particularly remarkable for its
 lightness, it probably being the lightest arch in this country. Its spsn is 81 feet, the versed sine 5 feet; the thickness of its brick walls 8 feet at the base and 24 feet at the top. This arch was constructed in 1872. The dimensions of thees arches are given on the cuts. Fig. 3 is a large hollow arch, adapted as a substitute for floor beams; it was ezecuted for the Art Muserm in Central Park, New York, to a length of 9 feet.
Beton is cheaper than brick or stone, from its re-
 needed-there is no waste. It is stronger than our brick or sandstones, supporting a strain of from 8,000 to 10,000 pounds ; white brick carries but 9,000 pounds, and one-quarter of a briok structure ts common mortar. Beton monoliths have no weak joints ; there is no unequal settlement. They can be erected with great rapidity. The material is water and fire prool. Its appliention bids fair to be of great enginearing importance.

Ma. B.-Dootion of Boten moor Aroh.
Nothing prevente ite exclusive use in certain classes of construction but the natural hesitation to adopt anything new. The greater the improvement in machinery, art, and science, and the longer the etride of advancement, the slower bas been its acceptance. The history of steam, the telegraph, the planing-mill, and the printing press are but instances of the battle and etruggle required to atart anything that accomplishes a sweeping change, whether it be labor-saving or otherwise, much in advance of former habits and appliances. We congratulate a company that in so fow years have been able to show so many monuments of the endurance of a new material.
Papzr Láce is now being made in Germany, which rivals the genuine thread lace in beauty of texture and , finish. Some of it is elegant and very deoeptivo.
-

Technical Education.-The (roldsmiths' Com pany,-with a riew to the encouragement of technical education in, the design and exceution of works of art in the precions metals, have realived to give an $\mathrm{E}_{2} 50$ e prize of $£ 50$ for the best design, and also tilyer the best model of some article in gold and ounver, which, when mauufactured, shall exceed 30 ounces in weight; an annual prize of £i5 for the best execution and workroanship of some such article ; three prizes of $£ 25$ each for the best design, model, and execution of some articie of lees weight than 30 onnces ; and prizes of $£ 255$ each for the beet apecimens of chasing or repousse work and ongraving. Objects of jewellery and personal ornaments are not to be the subjects of design. All the specimens sent in will probnbly afterwards bu pablicly exhibited. The conpetitors must be British Rnbjects, and the object, must be delivered before November next. The company have also refolved
the met mat that a travelling scholarship of $£ 100$ per annnm
many may be avarded to a student who has shown exceptional talent, and who shall have obtained a prize for design for three successive years, in order on the Continent study art in the precioos metals

Txplosion Temperature of Nitro-glycerine, nitro-glycerine bas not as yet been determined with accoracy; but as the combustion in the case of ganPowder is, under ordinary inflammation, nearly perfect, and the elevation of temperatura approximatgly known, the temperature of the gases from exploded nitro-glycerine may be roughly eatimated. Rnopowder produces, 190 volumes of groses, at the ordinary tymperaiurs, this gas mentioned occupies about four times the above. produced volume, or about 760 volumes of gas are of vitrog immordiately after the explosion. A volume
the ordine produces 1,300 volumes of gas at the ordingry temperatures, and, admitting that the timen thated by the explosion is two and onebalf Woald that produced by gunpowder, this rolume Iron increaced to 13,000 volumes.
Iron and Steel Castings.-A somewhat noved tuethod of ploducing iron and steel castings hes been patented in the United Statee by Mr. A.J. "Inllis, of the Pittshurgh Agricaltural Works:"In the ordidary method of making stiel castings," fars the American Manufacturer, "it is necestary be 'fluid enough when melted to run into a fine casting, and the exeess of carbon is removed after requires from teme by a process of annealing which requirs from ten to twenty days. By Mr. Nellis' ordinary of making castings, low oarbon steel, may be employed if desired. The toonld in which the mas be employed if desired. The with in which the casting is formed is impregrated inatant thastible materials, which take fire the the mould. An melted ateel comes in contact with Thich reuld. An intense heat appears to be generated, Till it reatains the steel in a perfectly flaid condition and in reaches the smallest corners of the mould, fried angitation is canaed by which all air and conthereby mases arc allowed to efcape from the metal, We have been ming the casting free from blow-holes. Tregular-shan shown plongbebares and other small perfectly shaped castings made by it, which appeared
fract fractursd sonnd, and on breaking them the
Pieces andaces showed no signs of blow-boles. Piecea were broken off from one plonghoware, and
without *ere boated previous annealing or other treatment, the weld conkd welded together so perfeetly that trawn dould not be distingaished: One piece was into a down and made into a chisel, and another RYound, and the ed ere was latter was tempered and process fo hair. The plonghsbares made by this ordinas can be forred into any stape required by an out hary tlackgmith, or after it is entire!y worked thg ne may draw it dowa into tools or entlerg. If do, We process succeeds as well as it promises to ingtead oosy soon see steel castings largely used
difficalt wrought iron or stcel forging for all 4 Mille of 0 pat of coal in oal.-During the last year the outpart of the tons. A pritigh ralands notion is that a great been mining operation the earth is becoming used up make dug out of our mines were piled up it wonld to fifurea also mountain range. Let us reduce this moillione of also. A cubic mile is equal to 147,198 of conl of cubic fret, and, allowing 291
5,000 cubic feet this in 000,000 tons of cosel in one oubic mile, and rais is a nreater weight than all that has yet been juout reliable British Islands. According to the just complote statistics, the end of 1878 will about mounte in mining first cubic mile of coal, exclusive bariod hemps on the surfuce instoad of beisg mountain the bowels of the earth, a very small to all the range indeed would have been equivalent of our earth cond felds arailable to man in the whole

A Great AridDesirt.- Recent explorationa in Australia show that, in addition to an extraordinary lake of salt water in the center of the country which blights thousands of square miles of territory in its vicinage, there is beyond an arid desert of greater extent than any other in the world, on which there is neither animal or vegetable life to be found, and even on the borders nothing but the driest sage brush can be seen. An attempt was made to survey this sand sea at its supposed narrow part, and after traveling 300 miles the camell showed signs of exhaustion, and a return became absolutely necessary; but habitable ground was not reached before several of these supposed monarchs of the Sahara dropped dead. It is thus shown that only the western part of Australia can be ntilized as a refuge for thonsands of Europeans who are seeking homes in the new country, that more than half of the island continent will not support men or animals, and hence that the limit of population can already be approximately estimated.

Creoiogtonl Bignifionnce of the Ohallenger pincoperies.-At the layt meeting of the Liverpool Geologrical Society, Mr. T. Mollard, Reade, C.E., A.G B., read a paper, in whioh be pointed out thy roological bearings of the information gathered be and dredgiags. As is well known from these physical observations. the basins of the great oceans are occupied in their lower depths with ice-cold water extending over the whole northern and southern extending over the whole northern and southern
latitudes, and consequently ander the equasor. This Mr. Reade considered to be a remarkable physical fact, sad proved that the secular cooling of the earth must be exocedingly mow, as the heat of the earth must be oxocediagh inflieno the tomper earth, apparently, did not influenoe the temperatare ood -heser fromit oosan theles. It which aloo pointed oat that Thiter from the poles. It was aloo pointed ont that the tomperature of the ocean, decreaniog with the depth, was the opponite to that of the solid earth, in which obeervationt in mines and walls proves general but varying incriase of tomperature downwards, so that at a zone 3,000 fathoms from the inrpoint whil is 1° per 60 oft., on the same zone the temperatare wonld be considerably above that of boiling coveries announced is that of the ocean botionsbelow 2,000 fathous being ocenpied geverallynay, almost univernally-with a deponit of red clay containing pieces of pumice and nodules of peroxide of manganeeo, together with charke teeth and ear and other bones of whalea, while the deptha not eroeeding 2,000 fathoms are largely oecupied with coraminiteral cozo. Thene racta, it was conaidered, rnily inferged a very great ege for the promen ocones, Mr. Reade considert it will tate a minimam of 20,000 yeare for a deposit of formminiferal cose of an arana ge depth of 1 ft . to socruinulate over the whole of the aren occupied by it ; whilo the red clay, the reenlt of the decomponition of voleanic produoe, muat be an arceedingly slow accumnlation, probably not at the rate of one-tenth that of the oome, bat thia rate sing, at procent, dificait to caloulato. Notwithatandinf Pacific oceanes, it is, on the other hand, imponcible so getint the concluaion, from other evidences, that the bottoms of theme oceass have more than once beon probable age of the earth are therefore obrious.
Wire Tacks and Clout Nails.-We have receired from Mr. Gorse, of Lielfield.street, Bir-
mingham, some apecimens of his wire tacks and mingham. some specimens of bis wire tacks and clout nails, which are among the most satisfactory
wo have ever seen or used We have ever sepen or used. Fven in the smallest sises they are finished with a care and accuracy seldom met with in hand made vails of the ordinary fachion; and they enter wood with such ease and precision that it is a pleasure to use them. Their cheapners is ari additional recommendation, and many people will be suryrised how they can be produced for the money.
Forging and Tempering Tron snd Steel The forging and temperiug of iron or ateel can be greatly enhanced, according to Herr Edward Blass,
of Cleve, Prusaia. by dipping the metal in what of Cleve, Pruseia. by dipping the metal, in whit.
aver form. in fused salt. This dipping in salt is also aver form. in fused salt. This lipping in salt is also
well adapted for annealing steel without the oxidawell adapted for annealing steel without the oxida-
tion of the surface. If the metal be rusted, it muat be allowed to remain eome time in the bath. Borax can with good effect be mixed with the salt. Metal purified by such an inamersion is very suscepti.
bin to galvanfe depopitions, and can easily be coated ble to galvanfe depopitions, and can easily be coated
vith copper, zinc, tin, nickel, silver, \&o. For iron with copper, zinc, tin, nickel. silver, to. For iron lu the apongy or powdered gtate, as obtained from adapted, for it angments the combination of the particles by making their sarfaces free from im. purities. To prapare the bath for an application as bere proposed, the seft must be funed in a pudding
flux, be added in small quantities, so at not to vitrify the salt. Thh iron is left in the farnace till the flut has combined with all the imparitios, and formed a slap, Whareupon the iron is taten ont and forged together. While the iron is in the furoace it should be constantly covered with the salt so that oxidation be prevented. For the hardeving of iron. the salt in fued in a convenient vessel and the object immersed and from time to time a mall quantity of ferro cyanide of potasas added, 1lb. or 21b. per 100lb. of iron. The artioles, ecording to their thickness are permitten to romair frome 5 min . to 30 min . in thic bath, and are thea pianged in water containing, in 100 parta, 1 part of hydrochloric acid, 5 of wine rinegar, and 1 of allt. If the objects are to have 2 silver luntro, thes thould be immersed for a few minutes in a mixture of three parts of wine viucgar and one of hydrochloric acid.
Tuthmus Canal Project.-Lientemant Wyo, 0 the Freneh Navy, reports favourrbly on his oflloial explorations of the Isthmus of Darien, with a view that it conld be mat casily oxecated direotiv 00 m the rallays of the Tupise and Tiati to the Golf of Urabe, and would not require any locks. Another Hine curreyed contacota the valley of the Truyra (e Tupies is an affluent) with the Oaquirri, flo ing into the Galf of Uraba; but this would need fre locta each with a rise or fall of more than soft," and also ahort tannol. Lidatriant Wyne edtimation the coot of the proposid noik as not ercentive.

Plain and Galvanized Iron Wrre. -The Telegraphic Journal anys that in reply to a communication addressed to them by Mr. G. B Prescott, the well-known American electrician a number of the European telegraph administratiom have, without exception, given the result of their experience at in favor of galvanized wire on the score of ultimate economy. It appears from theee reporta that the duration of non-galvanised wire for telegraphic parposes in Enrope in from 16 to 20 years. Galvanized wite that has been in nse come 26 years gives littie ign of deterioration.

Motis in Carpris -The carpet moth makes bin favorite home about the bindinge and corners of the carpet. If this is an jngrain or threeply fabrio, syocemful war may be waged on him by wringing a doth out of hot water, laying it over the bindings and edges, and ironing with as hot an iron as can be noed without scorching. This will destroy bothr the moths and their egge, and after a few such visitations they disappear. But this ataaming and irpning process is not offectual with Wiltons, Moquettes, or any heavy carpetinga. The heat dannot thoroughly pene; trate them, and ironing injures the pile of the velvet. Still, it is best to draw the tacks occe sionally, and lay the edge of the carpet overone side only, or a part of a side, at a timesad steam and iron it on the wrong sido. Then, beside this, the floor ahould be wiped as far onder as the arm will reach with a aloth wrung out of atrong and hot Cayenne teas; and before re-nailing, the binding and edge of the carpet thould also be wiped with it, rubbing them hard. Some have recommended aprinkling salt round the mides of the room bofore nailing down the oarpot, but we should think thin obfectionsble, as the salt absorbs moisture from the air and may thus cause too much dampnens.

Britain's Importation of Food. - A late issue of the London Times contains an intereating compilation of statistics, showing the aggre gate sum expended by England for food from abroad, from which we glean that the amount paid in the year 1877 to foreign nations for corn, with $\$ 435,646,930$ in $\$ 484,308,685$, to contrast with $\$ 435,646,930$ in 1876 . For live stock the
sum disbursed was in 1877 sum disbursed was, in $1877, \$ 30,078,450$ as against $\$ 36,301,515$ in the preceding year-the prices paid being somewhat lower last year than the year before. The sums for fresh meats were much larger, consequent upon the shipment from
the United Statem and Caneda of quantities of the United States and Canada of quantitios of beef and carcases of mutton. The total sum paid for foreign stock alive and dressed was, in 1877, $\$ 86,568,370$; in 1876, it amounted $\$ 96$,. 152,275 . For corn, the sum paid last year wa butter cost in in 1876, \$257,673.240. Foreign butter cost in $1877, \$ 47,691,625$; cheese, $\$ 23$,
840,266 ; and egos, $812,362,406$, to be compared 840,266 ; and eggs, $\$ 12,362,406$, to be compared, respectively, with $\$ 48,513,120, \$ 21,257,140$, and American butter and cheese is constantly in. American

THE PYRENEAN PINE.

The foliage of this tree is very distinct, quiet unlike that of any other conifer. The leaves are in twos, of a beautiful grassgreen color, and from 6 inclies to 7 inches in length. It can easily be distinguished from other pines on account of the deep yellow coloured bark on its young shoots; the cones are about $2 \frac{1}{3}$ inches long, rather egg.shaped, on short footstalks, sometimes in twos, bur mostly solitary. It is found on the Pyrenean meuntains, where it forms extensive forests. This tree is highly ornamental, especially when young, its fine, upright-growing, light Rreen leaves, and the orange coloured hark on the terminal shoots but when most striking and beautiful features during that stage; but when older, it assumes a coarser habit of growth; its lranches become stout, widespreading, and straghling, and altogether its general appearance is far from attractive. This pine has never been very extensively planted, on account of its scarce use in the trades, and the difficulty in procuring seed true to name. The Warden. inferior quality. We copy the illustration from the

Tue superintendent of the manufacture of febrifuges from cinchona, in India, is called the Government Quinologist. He reports that out of some three millions of cinchona trees of Various species now growing in India, five-sixths belong to the species succirub;a. This yields a medicine which has brecome known as the cinchons febrifuge, and is efficient in the treatThent of the common fevers and ague, but is less generally Valuable than quinine. It has proved impracticable, however, fully the best quinine-producing tree (C. officinalis) successfebrifur. Wood, the quinologist, states that the succirubra pounds a is now being produced to the amount of four thousand pounds a year ; but in the Mlue Book submitted to Parliament sapt year, it was estimated that the existing plantations could sapply ten thousand pounds annually. Even this would not taingy the demand in lndia. The bark of the succirulra contions quinine, but with so many other alkaloids that its separa. the would be too expensive. The white powder which forms It is frifuge extracted from it turns brown in a little while. The frequently administered in lemon-juice which dissolves it. deavor tornment of India has shown much wisdom in its enthe fevers make the country yield the most potent remedy for The fevers in which it is so prolific.
ammoniae a purple color to ivory soak it in a solution of salt Maiac put into four times its weight of nitrous acid.
trapersed has discovered that a wire placed east and west and in ireight by an electric current, suffers an apparent alteration in weight, due to the effect of the earth's magnetism upon it.

the victoria regia.

(See page 186.)
The two engravings given herewith represent the grandest of all water lilies, the immense Victoria Regia. In cultivation the plant is an annual, with a fleshy root stock, from which are produced leaves from six to twelve feet in diameter. These are fixed to the prtiole by the centre, and have a margin turned up as a border, as showz in fig. 1, from two to three inches high, giving the leaf the appearance of a huge tray. Their upper surface is of a rich green colour and studded with small prominences. The lower surface, purple or violet, is traversed by ridge-like veins, which divide the whole into compartments, while both veins and stalks are covered with spines or prickles. These enormous leaves are capable of sustaining a large water fowl, and by placing a board upon them to distribute the weight they will hold up a child of ten years of age. The flower is of two days' duration and is exceedingly frayrant. It is cup-shaped, and measures from twelve to sixtren inches across. In cultivation the plant requires a tank 20 or 30 feet across and from 3 to 4 feet deep, with special arrangerients for heating the wa er to 80° or 85°. It is indigenous to the river Amazon and tributaries.

Scientific Americam.

THE PEARLY ALOE.

(See page 186.)
One of the most ornamental of the large tribe of aloes, numbering some 200 distinct species, is the Haworthia Subulato, generally called aloe margaritiferc, or pearly aloe, of which the annexed engraving is a representation. It has a very short stem, and leaves which are flat above and convex below; in short, triangular in shape and rounded towards the tip. The leaves are covered with a number of white, horny tubercles, which resemble pearls, and give the name to the species. The flowers are greenish, with whitish lobes marked with a green line, and are grouped together in a terminal spike. The beauty of the aloe, however, resides in the leaves, he flowers being, comparatively speaking, insignificant. It is by no means difficult to grow, nor any of the genus to which it belongs; the best soil for it, says J . C. in the English Garden, is a mixture of three parts loam and equal parts of leaf mold and sand, and it likes good drainage and partial shade in a cool greenhouse.

A hard cement is formed of iron borings and salt water and a small quantity of salt ammoniac with fresh water.
The presence of a very small porportion of carbonic oxide is sufficient to render the atmosphere poisonous, although its efiect way not be indicated by any action of flame.

Fig. 2.-THE VICTORIA REGIA.

THE LARGEST FLOWER IN THE WORLD.

(See page 186.)
The wonderful flower represented in our engraving is that of the Rafflesia Arnoldi, a plant discovered by Dr. Arnold in the Istand of Sumatra some sixty years ago. The various species 1106 known are all parasitic, not, however, to the branches of ot ${ }^{5,0^{2}}$ plants, but to the roots. Entirely destitute of leaves and gren in color, these singular vegetables are provided with scuts or bracts which conceal and envelope the fower previous to jopening. A swelling beneath the bark of some huge surfaceaforing root of a large tree announces the coming of a flower. Se. the bark splits, and the bud, resembling the head of a ya. 2 g cabbage, bursts, showing five great lobes which open andioll back slightly on the edges. Then a circular ring appes surrounding a deep cup, in the center of which is the overy. Below the edges is a kind of gallory wherein are numerous stamens in which is located the pollen, the fecundating action of which it is impossible to comprehend unless it be assumed that insects intervene for its transportation.

The remarkable feature of the flower is its colossal sice, the largest species, here represented, being 39 inches in diameter. The central cup holds six quarts of liquid, and the total weight of the flower is over 15 lbs.

The Raffesia patina of Java is somewhat smaller in size. The brick red color of the pertanthus, as well as the lighter spots which it is sprinkled, give to the flower a curious flesh like appearance. The cup and the central plateau carrying the stamens are of a dark red, while the odor of the plant is almost meatlike. In Java, the natives regard the flower as sacred, and the priests prepare from the tannin which it contains an astringent mixture useful in cases of hæmorrhage.

TES KOLS CRICKET.
This insect is one of the most curious of all the orthopte$r a$, to which order carwigs, crickets, grasshoppers, cockroaches, locusts, and the strange looking leaf and stick insects also belong; it is widely distributed over the world, from the torrid zone to the arctic circle; allied species inhabiting Java, China, Australia, Van Diemen's Land, North

and South America, and even Melville Island. It has been variously called eve-churr, churr worm, jarr worm, and crocker, namesderived from its peculiarly jarring song; also fen cricket, earth crab, and mole cricket, the last being by far the most appropriate, and that by which it is generally known. With its powerful fore limbs it burrows underground, raising ridges in its progress. Its shape is long and cylindrical (a full-grown specimen measures $2 \frac{1}{4}$ inches in length by barely half an inch across the thorax), just that best fitted for locomotion through long narrow galleries; its color is a rich, dark, velvety brown of various shades, its thorax is very hard, and so formed that the head can be withdrawn into it , much after the manner of some tortoises: its whole body is covered with fine down. .It has a long sensitive pair of antennm or horns projecting in front of its head, and another pair on its tail, projecting backwards, also very sensitive; and as it moves with equal facility either forWards or backwards, should danger threaten from front or rear, it is ready to escape without turning round, an operation which would be diffloult or almost impossible in its narrow tunnels. Like all the crickets and grasshoppers, its Dearest allies, its hind legs are formed for jumping; though perhaps not often employed for this purpose, they form the ordinary locomotive organs of the animal, both below and on the surface of the ground; the middle pair being comparatively weak, while the fore pair are carried raised up.
The fore limbs are rarely used in walking, but are the tools With which the insect burrows. They bear a very close outward resemblance to the fore pairs of a mole.

LATHE TOOLS AND TOOL POST SLOTS.

For the performance of a large quantity of work by the lathe, no greater necessity exists than for heavy turning tools. The numerous attempts of thirty and of ten years since to use cutting points for turning have all ended in practical failure. No nicety of shape or fitness to meet the exact requirement for easy cutting of metals will recompense for want of materisl, both in continuity and in mass, to conduct away the heat of the cut and of friction on the cutting surfaces. The smallest working tool for turning iron should be $1 \ddagger^{\prime \prime} \times{ }^{*}{ }^{\prime \prime}$ steel in the shank, the slot of the tool post of the lathe, which swings 10 " only over the ways, should take this dimension easily; $14^{\prime \prime} \times 1 \mathrm{t}^{\prime \prime}$ steel it not excessive for tools for the thirty inch lathe. Where profitable return for use of the lathe is expected. The posts themselves, with their griping screws and bearing rings, can hardly be too heavy, while they can easily be too weak. For a 48 inch lathe it does not harm to have the slot in the post $22^{\prime \prime}$, or $3^{\prime \prime} \times 2 \frac{3}{2}^{\prime \prime}$, or $2 \frac{1}{n}^{\prime \prime}$, with a two inch screw. The refinement of spring tools tor heavy cuts or for long cuts without re-sharpening, are well enough for tool rests with \mathbf{V} slides, or lathes where the ways have V's; but neither excellence of workmanship, nor speed of running, nor heary cuts, will result from makeshifts of lathes, or of turning tools, however well the makeshifts may be conurived.

Discomforts of the Sick.

Those only who have passed weary days and wakeful nights in weakness and pain on a bed of sickness, with powers of endurance enfeebled, and every form of physical and mental sensibility acutely active, can_comprehend the multitude and misery of the discomforts which beset the sick. Noise in its hidcously infinite variety; creaking boards, which no deftly-made screw has been devised to secure; rattling china and ware, not yet replaced by ingeniously-devised substitutes-perhaps the old wooden bowl and platter on dumb waiter for food, and articles partially protected with rabber for general use; falling coals and cinders, surely preventable by the employment of wooden tongs and silent ash-pans; harsh door fastenings, possibly avoidable by special apparatus constructed for use with lockśs temporarily fastened back; glaring lights, that irritate the wakeful, and make the dozing dream and start; puzzling shadows, or lugubrious darkness, evils instantly remediable if only it were possible to secure a soft and shaded light. These are a few of the surface grievances of the first stage of illness, when the head aches, the faculties of hearing and sight are preternaturally intensified, and a morbid fancy extracts suffering and bewilderment from every disturbing circumstance, however small.

Then comes the stage of helplessness, when the sick person lies in the paralyzing grip of his malady, perhaps unconscious or delirious, and those about want all the aids which skill and thought can bring to their assistance to minister to,his necessities safely, promptly, and with the least distress or disturbance to the patient and his surroundings. It is seldom possible to say precisely how little or how much the sarroundings of a seemingly unconscious person affect him. In this period of an illness, apparatus, contrivances, and arrangements of every.class, for the ministration of comforts to the sick, play a not unimportant part in the treatment, and should be so regarded. It is discouraging to observe the meager results of the enterprise bestowed by designers and producers of appliances useful in this phase of sickness. For example, a thoroughly efficient feeder suitable for use in the case of an adult does not exist, and expert nurses revive the old-fashioned butter boat. A shaded hand
lamp, of no greater weight than may be borne on a finger, and so contrived that the light will fall at the point required, without assailing the eyes of the patient, is not yet devised. Complicated and costly beds, quite out of the reach of any middle class family, and therefore availabie only for the wealthy, or the fortunate inmates of hospitals, alone meet the requirement of cleanliness without discomfort. The like is true of nearly all the apparatus for the relief of pain by change of posture, and for securing immunty from pressure, or steadiness in a particular position. The rich and the poor are provided, but not the multitude in narrow circumstances with small and inelastic financial resources.

The stage of convalescence is in many respects the most trying of all. It is then that petty annoyances, such as arise from noises, draughts, smoke, foul vapors, bad or ill managed light, improperly cooked food, nauseous remedies administered in uncleanly and uncomfortable cups or glasses, knives, forks, and spoons that turn over with a clatter, things that fall or are readily knocked down, irritating wall papers, hard, lumpy, or too soft beds, burdensome or cold bedclothes, beds that can only be put in order'with labor and. confusion. There is scarcely an article or piece of apparatus for the sick chamber which is not obviously susceptible of improvement, and would not repay the thought expended upon it, if placed within reach of families with small incomes, who feel the cost of comfort in sickness. None of these matters are beneath the consideration of the medical practitioner. In no small proportion of cases they are relatively of high moment. It is neither wise nor safe to leave the care of such details to nurses, whether trained or domestic. The physician should be able to direct those in charge of the sick what to provide, where to obtain all necessary appliances, and how to use them when at hand. This is a matter of more than common importance, and it is with the view of reminding the profession and the producers of special apparatus-efficient and inexpensive-of the conspicuous part their enterprise should play in minimizing the discomforts of the sick, we bring the subject under notice. Lancet.

Poisonous India-Rubber Toys.-A. F. Taylor, Ph. D., of Andover, Mass., sends us the following note :-

Prof. B. Tollens, in the Journal of the Berlin Chemical Society, of November 13, 1876, calls attention to the injuriousness of many of the articles manufactured from caoutchouc, which, among other impurities, contains a very large per cent. of zinc oxide. In the rubber nipples of milk bottles for children, this has often been found to be the case, and so much attention has been called to this fact that the manufacture of these nipples containing zinc oxide has to a great extent ceased.

But more recently suspicions have been aroused concerning the quality of children's toys, dolls, animals, etc., made from rubber. One case, in which a child, having one of these dolls, had had it for some time in its mouth, grew sick, and the doll, laid in vinegar, became covered with an incrustation (without doubt zinc acetate), led to direct investigation. In 0.7325 gramme of such a doll 0.4446 gramme zinc oxide was found, or 60.58 per cent. Another portion gave, after being subjected to a red heat, 62.64 gramme of ash, yellow while hot, white on cooling. In the ash besides the zinc were traces of lime, iron, and phosphoric acid. From another doll which had been warranted "harmless," 57.68 per cent. of ash were obtained, consisting almost wholly of zinc oxide.

It is not at all improbable that the sickness of the child,
particularly the severe vomiting, was caused by the zinc oxide, and it is to be wished that the manufacture and sale of such articles containing zinc oxide should be prohibited. Boston Jour. of Chem. xi, 87.]
IRapid Transit in Paris.-Paris is traversed by nine great highways of travel in the direction of east to west, while three only serve as means of communication in the direction of north ind south. To relieve the latter, Mr. Louis Heuzé proposed the construction of an elevated railway, which at the same time is to serve as a connecting link between the different depots of the great railways which centre in Paris. The designs, as published in the Recue 1 ndustiville, are decidedly more orna. mental than those of the Gilbert Elevated Railway, which they approach most in character.-Iron $A \%$.

A New Grute Bur is attracting attention in England. The bar is of an angle section, the top portion, which forms the grate on which the fire rests, being provided with it number of diagonal slots, griving a uniformly distributed admission of air throughout the whole grute surface. 'Ihis arrangement facilitates the complete combustion of the fuel, smoke being entirely prevented and the whole of the heat-producing portion of the coal consumed in the furnace. The bars are so light in section that they cost no more per square foot of fire grate surface than ordinary tire-bars, while at the same time they are much more durable. The bar seems designed on sound common-sense principles.-Irom. Age, March 14.

The Proper Speed for Circular Saws.-The Lumberman's Gazette says: "Nine thousand feet per minute-that is nearly two miles per minute-for the rim of a circular saw to travel may be laid down as a rule. For example: A saw, 12 inches in diameter, 3 feet around the rim, 3000 revolutions; $\mathbf{2 4}$ inches in diameter, or 6 feet around the rim, $1500 ; 3$ feet in diameter, or 9 feet around the rim, 1000 revolutions; 4 feet in diameter, or 12 feet around the rim, 750 revolutions; 5 feet in diameter, or 15 feet around the rim, 600 revolutions. The rim of the sa- will run a little faster than this reckoning on account of the circumference being more than three times as large as the diameter. Shingle or some other saws, either riveted to a cast-iron collar or very thick at the centre and thin at the rint may be run with safety at a greater speed. -The Millstone.

Improved Propagation by Cuttinges.

Peter Henderson described last winter, in the Agriculturist, an improved mode hewas they using for the propagation of geraniums. His object was, in the first place, to avoid the exhaustion of the parent plants by the removal of cuttings abruptly; and, secondly, to make sure work. He takes the young shoot which is to be used as a cutting, and snaps it short, leaving it hanging by a small portion of the bark.

This shred is sufficient to sustain the cutting, without any material injury from wilting, until it forms a callus, which precedes the formation of roots. In from cight to twelve days it is detached and potted in two and three inch pots. It is rather less shaded and watered than ordinary cuttings, and forms roots in about eight to twelve days more. Last fall Mr. Henderson propagated about 10,000 plants of the tricolor class without losing one per cent. With the common method he thinks he would have lost fifty per cent. This mode is applicable to the abutilon, begonia, carnation, cactus, lantana, oleander, etc., by using young unripened shoots. If the shoot does not break, but simply bends to a knee, a knife may be used for cutting about two thirds through.

Cleopertirl's Neealle is likely to decay in the British climate. The Luxor red syenite oblelisk has suffered more in 36 years in Paris than in as many centaries in Egypt. It has 36 years in Paris than in as many centaries in
become covered with a thin white film of kaolin.

The Hereford Broed of Cattle.

The white-faced, brownish-red cattle, known as Herefords, are one of the old established breeds. They have an excellent reputation as beef cattle and as milkers. For both of these usoful purposes they are well adapted, by reason of their remarisably quiet disposition, Which is evinced by their mild eye and placid deportment. A contented, docile animal is a profita ble feeder, as little of its food is spent in nervous excltement, or accompanying restless action. For this contentment the Hereford is conspicuous amongst the best classes of cattle, if indeed it does not surpass every other competitor for the favor of the feeder, the dairy man, or the butcber. This breed is second only to the Shorthorll as a beef animal, when kept under equally favorable circumstances, but when placed in somewhat in ferior keepiug, it is pre fersble to it. For second rate pastures, and in the bands of farmers who do not wish to feed up to very great weights, the Hereford will oxcel the Shorthorn. When used for the purpose of grading up inferior native stock, bulls of this breed are sometinaes preferred to the Bhorthorns, and they are becoming very popular in Colorado for this purpose. Sluce the extreme popularity of the Shorthorn during the past few Years, the Hereford has fallen into the background, along with every other sort of beef-stock; but now that this Shorthorn excetement has passed away, each race of cattle has a fuir chance to take whatever position in the public favor it may deserve, or can attain and keep. The Herefurds are, therefore, now being brought into notice, and will, without doubt, acquire many friends among those breedera who are engaged in improving the coarse native cattle. There are Dow many good herds in different parts of the United States. Oue town in Mlinois, viz., Beecher, Will County, has the distiaction of possessing three herds, owned by T. L. Miller, who exbibited come fine antmals at the Centenniah Wm. Powell, and Thomas Clark. Another good herd is owned by G. B. Burleigh, of MeChanicsville, Iowa. There are one or two herds in Ohio. At the New Eng. land Fair, these berds, Opned in the state of Maine by C.A. McKenney, Munroe: G. E. Shores, Waterville ; J. S. Hawee, South Vabsalboro; G. and Q. Underwood, of Fayette, received premfums.
The Hereford Bull, of which we give a portrait taken from the "Agricultural Gazette," is owned by an Euglish breeder, Mr. E. J. Lewis, of Breinton This bull, named "Little Bili," took the second prize at the Herefordshire Agricultural Society's heeting. The portrait is copted from a photoItruph, and therefore is a talthful representation of

OXPORD-DOWN RAM, " ROYAL LIVERPOOL."
blatory that is interesting to American readers. The ram is the "Royal Liverpool," and the first-prize animal in his elass at the Royal Agricultural Soclety's show al Bath. This ram, with three others, all the property of Mr. Treadwell, of Winchendon, England, are the progeny of the ram "Freeland." also owned by Mr. Treddwell. "Freeland" is now

What the animal really is. The breed is noted for the excellence of its fleah, in which the fat and lean are intermingled, and not placed so much in layers, as in the fat Shorthorn. There is a smoothness and roundness about the carcass, which is well shown by this portrait, and which indicates profitable cutting up, with little waste or offal. The

HEREFORD BULL, "LITTLE BILL"

cows are generally good milkers, and yield good butter, and the calves are hardy and grow rapldly, when properly cared fof. The regularity of color and form is very close in this breed, and a wellbred herd will differ very little in their markinga. The white face is the most distingaishable feature

Oxford-Down Sheep.

The Oxford-Down ram, whose portrait, copied from a photograph, is given on this page, has a
in the possension (although not the property) of Mr. T. S. Cooper, of Coopersburg, Pa., Mr. Cooper baving rented the ram for the coming season from Mr. Treadwell, for the sum of 85 guineas, or nearly 8450. This ram has received many first prizes, and his offspring have also been successful prize-winners. For the four rams above referred to, Mr. Cooper offered 82,000 , which their owner declined. This fact indicates the value placed upen these animals in England, where the Oxford-Down has become very popular. In this country it is rapidly becoming a farorite sheep, occupying a place. midway between the short and long wools, as regards fleece, and an equal one at least as regards mutton, with the Cotswold. In some respects the mutton is preferable to that of the Cotswold. Mr. Cooper, who has the ram "Freeland" now in his possession, is one of our most enterprising brceders, and has imported some of the best stock now in this country. In procuring the best possible Oxford-Downs, he is doing this excellent breed only fair justice, for although it has already made a good start here, and several good flocks are now owned in the country, yet there is room for some of the best blood to keep up the standard of quality, if not to advance it.

The Production and Dispogal of Eggs.-An egg contains more nutriment than any other substance of the same weight. At the same time, the market price of egrs is comparatively lower than that of flesh. A pound of eggs is also produced at a less cost than a pound of flesh. Considering the importance of the poultry products of the country, there is by no means suffleient regard paid to them. The stock of proftably productive poultry, as compared with the whole quantity kept, is small. As compared with the whole, the number of hens that produce 100 eggs in a season, is small in proportion. Yet 150 eggs are frequently laid \ln a year by hens of the im proved breeds, and by common hens that are well fed and kept. The preparation of egga by 4 recent invention for drying or, as it is called, "crystalizing" them, process in which the work is done by machinary, has very largely increased tho market for them. The dry product is imperishable, and, when packed in tin bores, may be shipped to the most distan: countries, or carried on ships through the longest voyages. Na doubt this new use for eggs will increase the demand for them when the manufacture has become thorouchly established, and that it will be a profitable busloess for farmers to keep better poultry and torprove, so far as possible, their present methods of keeping their fowls. Suggestions to this ond will be found every month in the American Aprienderict

New Process of Steel Casting.

Weread in the American Manufacturer an account of a new process of making irregular shaped steel castings such as plow-ahares, out of fine tool ateel, any desired percentage of carbon, without annealing, as in the ordinary steel casting" processes. It is the invention of Mr. A. J. Netis, of the Pittsburg agricuita-
ral works. In the ordinay method of making steel oastings, it is necessary for the steal to be very high in carbon, in order to be fluid enough when melted to run into a fine casting, aind the excess of ca-bon is removed affer the casting is made by a process of annealing which requirea from 10 to 20 days. By Mr. Nellis's method of making castings, low oarbon stoel, or ordinary mold in which the casting is formed is impregnated with combustible materials, which takes fire the instant that the melted steel comes in contact with the mold. An intense hea: appeara to be generated, which retains the steel in a perfect fluid condition till it reaches the smallest corners of the mold, and an agitation is caused by which all air and oonfined gases are are sllowed to escape from the metal, thereby making the casting free from - blowholes. One theory of the action of this process is that the combustion of the materials with which the mand is impregnated consumes all the oxygen of the air within the mold, and the ramaining gases have no "affinity" for the steel. The plow-shares made by this process can be forged into any shape required by an ordinary blacksmith, or after it is entirely worn out he may draw it down into tools and cutlery. If the new process succeedn as well as it promises to do, we may soon set steel castings largely used instead of wrought iron or steel forgings for all difficult shapes. Mr. Nellis also had a patent on the mold used for his ateel castings, which obviates the trouble experienced with iron molds, of the melted steel adhering to them on all sides, and causing shrinkage cracke, and has all the advantage which iron molds possess of durability and permanence of form. The molds are made chiefly of iron, but with inserted sections of aand. These sections do not adheie to the casting, and shrinkage can take place without hindranoe, avoiding crack: or interncl straing.

Candy and Teeth.- Hall's Journal comes to the rescue of our candy-loving little ones, and says it is not true that sugar and candies are of themselves injurious to the teeth or the health of those who use them; so far from it, they are less injurious than any of the ordinary forms of food when employed in moderation. It would be a strange contradiction in the nature of things, if sugar and candy in moderation should be hurtful to the human body in any way, for sugai is a constituent of every article of food we can name. There is not a vegetable out of which it cannot be made, not a ripe fruit in our orchards which does not yield it in large proportions, and it is the main constituent of that "milk" which is provided for the young of animals and mon all over the world. But to use this information intelligently and profitably, it must be remembered that sugar is an artificial product, is a concentration, and that if used in much larger proportions than would be found in our ordinary food, as provided by the beneficent Father of us all, we will suffer injury. We should never forget that the immoderate use of anything is destructive to human health and life, if persevered in. The best general rules to be observed are two: First, use concentrated sweets at meal times only; secondly, use them occadionally and in moderation.

A simple contrivance has been adopted ip some Russian and German rail-rolling mills with a view to cutting the rails always of exactly the same length. The glowing rails are looked at through a dark glass; when they have cooled to a certain temperature they can no longer be perceived. Using a dark blue or orange-yellow glass, e.g., the rails may still be at a red glow, when the light radiated from them disappears in the dark glass. It may be considered that the Jight from two rails observed through the same dark glass disappears at the same temperature, and thus one is
guided to cutting the rails while in this similar
state, each rail after rolling being allowed to cool till it can no longer be seen at a given distance through the dark glass; thus they can all be cut of the same length. Of course the certainty of the observation is a little affected by var: tions in the general illumination (dark and bright weather, \&c.), but glasses of various shades of colour can be used according to the occadion. The principle has other applicationsintor alia, a simple and convenient pyrometer may be constructed on it.

Among the vegetable wonders to be exhibited at the Paris Exposition this jear will be Ω section of a trunk of a tree which was 90 merres high, from the forests of the Missiesippi. This section has a circumference of about $\mathbf{2 0}$ metres. It may give some idea of the difficulties of navigation which are often encountered in the great American rivers through the falling of such trees into the stream. A number of myrtle and citron trees are to be sent from the small principality of Monaco, and in the park of the Champs de Mars will also figure Italian poplars and chestnuts.
M. Forster, of Munich, has recently determined, with a Pettenkofer apparatus, the excretion of carbonic acid by a large number of children, from the sucking stage up to ten years, and he finds that for 10 kilogrammes body weight they always excrete about 10 to 12 grammes CO_{2}, or nearly three times the quantity given by adults in similar circumstances. Hence a comparatively larger supply of food is required for maintenance of the body in children than in adults.

To Prevent Honeycomb in Castingos.-Mr. John Bourne, C. E., of Mark Lane, London, has patented a device to prevent honeycombing in castings, by which he extracts from the metal, while in the molten state, the gea or gases by which the honeycombing is produced. The removal of the gases may be offected by the aid of any mechanical means capable of producing rarefaction, wuch an a common pump, an exhausting jet of steam or other fluid, the hydrostatic gravitation of a column of the molten metal itself, or any other exhausting expedient, by which a vacuain more or lemp perfect is produced. The molten metal must be exposed to the action of the vacuum in unch a manner as to insure the disengagement of the gas from the metal, and for this porpoes he sabmits the metal to the racuum preferably in a state of minute mubdivision. This may be accomplished by allowing the molton metal to ran through perforations in a fire-clay block into a tall cylinder, within which a vacuum is maintained. By thus subdividing the metal, and discharging it in the form of a metallic rain into an exhaust chamber, the gases are separated from the metal, and are sucked saway by the pump or other extractor in communication with the exhaust chamber. He remarks that it is not intended to subdivide the molten metal (without the aid of a vacuum), for the removal of the gases, nor to attempt to suck away the games from a vessel filled with molten metal by producing a vacuum above the metal, as the hydrostatic pressure of the metal itself would, under such circumstances, retain the gases within the metal, notwithstanding the existence of the vacuum above it; but he extracts the gaseas by the conjoint action of the vaquum and of the aubdivision, as above explained, or by anslagous or equivalent means embodying the same conditions.

Hints for the Wakeful.

If you connot get sleep when you first go to bed, says Hall's Journal of Health, give ordere to be waked up at daylight, get up promptly, do not sleep a wink during the day, go to bed at your regular time, with directions to be waked as before; in a week you will find that you can go to aleep promptly, but then be careful to get up as soon as you wake in the mornings, thas you will soon find out how much sleep your system requires, and act accordingly. Always avoiding sleeping in the daytime; for if you require seven hours sleep, and spend that much in sleep at night, what ever time you spend in sleep during the day must be deducted from that seven hours, or you will soon become
wakeful again. If you wake up in the night, either go to bed two or three hours later or when you wake, get up, even if it be but one o'clock in the morning, and do not sleep a moment until your regular hour for going to bed; and if you go to bed regularly, get up as soon as you wake, and do not sleep in the daytime, you will find out in less then a week how much sleep you require, then act accordingly. Nature loves regularity, and the four hours sleep from ten to two, is worth six hours after twelve o'clock. The great rule is, retire at a regular early hour and get up always as soon as you wake, if it is daylight. If persons have force of will enough to keep from going to sleep a second time, it is greatly better to remain in bed ten or fifteen minutes after waking up, to think about it, and enjoy the resting of that kind of feeling of pleasurable tiredness which cemes over us on waking, especially if we have taken more exercise than usual the previous day, or have been kept up later.

The Law of Rest.

William Walter Phelps recently made an address on the American habit of hard work before a meeting of physicians and surgeons. Among other things, he said: We are a nation without contentment, without rest, without happiness. In a feverish race, we pass from the cradle to the grave-successful men, to whom life is a failure. Our boys leave the university, when English boys leave their school. Our merchants leave their trade, retiring to some more dignified or honorable work, as they believe it, at an age when the German merchant first feels the master of his trade. We are always anticipating the future, forcing the task of a whole life into part. Worse, we are not coutent with doing a year's work in a month in our own calling, but we must do enough in all other callings to win distinction there. In other lands it is enough to be a lawyer, physician, clergyman, merchant. Here we are nobodies unless we fill the sphere of all human occupstions. He must be a statesman, and know political science as if already in office. He must be an orator, and ready to persuade and instruct -a wit, to shine at the dinner-table-a literateur, a critic. There is too much human nature in man for this to mean anything except a discontented life and a premature death. And the remedy?
Correct public opinion. We must honor the man who faithfully does his task, whatever it be. Not the task, but the faithfulness with which it is done, must be the measure of the honor. Then men will be content with their father's house or their father's trade. This will give uls that family association which is a sure pledge of good conduct and patriotic love. This will give us too that traditional aptitude which alone gives great mechanical excellence. It will not be a bad time for American manufacturers whan we find stamped on them, what Mr. Griffis finds on Japanese bronzes-" "Done by the ninth bronser in this family." Then men will keep the ocoupation of their youth for their age, and having leisure, will build the foundations broad enough to wiihstand bankruptcy. Then men will seek excellence in other callings, and not compete with the excellent in other callings. Then men will alternate labor with rest, and obey the law which God has written on creation-God, who Himself rested after toil-God, who shrouds the earth with the night, that it may take it daily sleep-God, who speaks to the torrent to stop at once amid its maddest plunge.

How Poisons Are Spread.-Mr. G. Owen Rees, Consulting Physician to Guy's Hospital, London, has called public attention to some unexpected sources of arsenical poisoning. The green calico lining of bed-curtains has been found to have produced, for months, severe symptoms, which were treated as those of na. ural disease, without benefit to the patient at once recovered their health.

Rat-Proof Paint.-Mix finely powdered glass with pitch or coal tar and rosin, and paint your grain bin with two coats, and it will be too much for rats' teeth. They don't like the tar, and the sharp glass is still more disagreesble.

Wearing the Beard.

Hair is hature's protector against cold. Our beneficent Creator does nothing in vain. Rowland says on this subject: "It may be safely argued as a general physiological principle that whatever evinces a free and natural development of any part of the body, is, by necessity, beautiful. Deprive the lion of his mane, the cock of its comb, the peacock of the emerald plumage of its tail, the ram and deer of their horns, and they not only become displeasing to the eye, but lose much of their power and vigor. And it is easy to apply this reasoning to the hairy ornaments of a man's face. The caprice of fashion alone forces the Englishman to shave off those appendages which give to the male countenance that true masculine character, indicative of energy, bold daring and decision. The presence or absence of the beard, as an addition to the face, is the most marked and distinctive peculiarity between the countenances of the two sexes. Who can hesitate to admire the noble countenance of the Oamanli Turk of Constantinople, with his un-Mongolian length of beard? Ask any of the fair sex Whether they will not approve and admire the noble countenance of Mehemet Ali, Major Herbert Edwards, the hero of the Punjaub, Sir Charles Napier, and others, as set off by their beard? We may ask with 'Beatrice,' 'What manner of man is he? Is his head worth a hat, or his chin worth a beard? I have noticed the Whiskers and beards of many of our most prominent physicians and merchants encroaching upon their former narrow boundaries, while it is well known that not a few of our divines have been long convinced of the folly of disobeying one of aature's fixed laws; but hitherto their unwillingness to shack the prejudice of their congregations, has prevented them from giving effect to their convictions. The beard is not merely for ornament, it is for use. Nature never does anything in vain; she is economical, and wastes nothing. She would never erect a bulwark were her domain unworthy of protection, or were there no enemy to invade it."

The History of Diphtheria.

We recently quoted some pertinent sugges tions concerning this disease from an address delivered by Dr. Maxon, of Syracuse, New York, and putlished in the Journal of Chem istry. There are also matters connected with the history of the disease which teach lessons. The history of the disease which teach lessons. ing, with the moisture thus produced, a generation and mingling of marsh and animal miasms, with the various imprudences of the Egyptian people, may readily have originated this disease. Asia Minor, probably the next most prediposed country and people, was next invaded, as might have been expected. Then, in its turn, the of th of Europe, burdened with the imprudences of the third and fourth centuries, with its intlux of the northern hordes upon the Roman empire. Later atill, central and northern Europe, distracted with the turmoils and degraded by the poliutions of the dark ages, became ripe for it. Finally, other parts of the world, including America, had become sufficiently predisposed; and the United States, having either produced it or received it from the Old World, has hence soffered a due thare of its ravages down to the present time.
Every step of the progress of this diseaze has thus been invited, and every epidemic or endemic has had its cause; no case ever having occurred anywhere, unless contracted by the contagion from another patient, without some general or local cause-usually local and discov-erable-from which may have emanated animal of well as marsh miasms or poisons. The fact of its increased prevalence in our own country may very likely be due, in part at least, to the more artificial mode of treating children, its fact common victims. For it is a shameful fact that, as a result of modern fashion, few children now, among all classes, have proper clothing or covering for their limbs; and a still lariller number take their food with strict reguantrom, abstaining from it between meals, as well iblem candies and other injurious and indigestthe trash, as they should. A radical reform in
avoidance of the pollutions in and about dwellings, barns and out-houses, with proper sewerage, would greatly diminish the number of cases as well as the malignancy of this and all other putrid diseases. Such a ratiónal and proper course, persevered in for a reasonable time, would doubtless render them extinct, or some of them at least.
If all intereated in this matter would, instead of regarding it as a visitation of God, set about inquiring into and removing the causes, very mach might and would thus be speedily done to eradicate this disease. For, though God has established laws that control results, He has not directed nor ordained that nuisances and pollutions should be left where they will tend to produce disease.
Treatment for Corns.--The Druggists' Advertiser handles this painful subject as follows: Keep the feet clean by frequent ablutions with warm water, and wear easy, soft boots or shoes. Without the latter precaution, corns will generally return, even after they appear to have been perfectly removed. After soaking the feet in warm water for a few minutes, pare the corns as close as possible with a sharp knife, taking care not to make them bleed. Place upon the part affected a small. circular piece of leather or buckskin, spread with some emollient plaster and having a hole in the center corresponding to the size of the corns. They may now be touched with nitric acid by means of a small glass rod or wood tooth-pick, due care being taken not to allow the liquid to come in contact with the neighboring parts. Repeat this process daily, until the offender be sufficiently softened to admit of removal.

Scarlat Fever by Mail-A medical correspondent of the London Telegraph, ifew week: ago, gave the following account of such a case: 'A lady residing in the country wrote to inform a friend in this neighborhood (East Sheen) that she was occupied in nursing her daughter suffering from scarlatina. The friend, after reading and burning the letter, gave the envelope in which it was contained to one of her children to play with. Ten days later I was requested to see the same chilh, when the diffused red rash over the skin, elevated temperature, and ulcerated tonsils clearly pointed to the nature of the malady with which I was called upon to deal. From inguiries that I have since made, I am satisfied that unless the disease originated de nowo it could be traced to no other source of infection than the unfortunate envelope previously mentioned. Preventive medicine is always better than curative. I would therefore suggest that all communications not abso. lutely necessary written from an infected house be interdicted, and then when received, both letters and envelopes be immediately consigned to the nearest fire.

Drain and Ventilate.

We refer to these subjects very often in this column, and fitly, because they are the corner stones in the preservation of health. The Polytechnic Revieu thus presente the subject: Wherever the soil water, impurified by contact with unclean organic matters, sinks into the earth, it leaves behind it a moist and unwholesome reeiduum, and the warmer the air, the water and the soil, the more energetic are its unwholesome influences. Whether the infectious matters are transferred from the soi! into the well waters, or whether they enter the air directly with their gaseous products of decomposition or by evaporstion, are merely incidental accidents which do not at all affect the result, since, in every case, it is those who dwell upon or near such unwholesome soils who are the greatest sufferers. If the air of our dwelling houses is not frequently renewed by ventilation, or if water charged with organic impurities is permitted to saturate the soil about them, or if decomposing organic matter for what is the same thing, filth) is stored up in the neighborhood, or so disposed of that it is permitted to impregnate and saturate thic soil about and beneath the house, or if the channels by which these offensive matters are removed from the house, as in the sewerage systems of cities and towns, are not properly constructed or guarded,
the air that enters a dwelling thus environed, will be charged with disease-breeding emanations arising from the soil or from the sewer pipes. The drinking water may becume impregnated, and the unwholesome products thas introduced into the bodies of its inhabitants will, beyond all question, exert the most per nicious effects upon health, producing, according to the quantity of exposure and individual peculiarities, consequences more or less fatal.

The Oldest Human Relic in the World.
In the Etruscan Vase Room of the British Museum is to be scen the skeleton of one Pharaoh Mykerinus, decently incased in its original burial clothes, and surrounded by fragments of the coffin; whereon the name of its occupant can be casily read by Egyptologists,' affording conclusive evidence that it once contained the mummy of a king who was reigning in Egypt more than a century before the time of Abraham. The proof is thus explained in the Gentleman's Magazine, April, 1806: "About two years ago Herr Duemichen, a German explorer of the monuments of Egypt, following up the indications pointed out by M. Mariette, a distinguished archsologist, discovered on the buried walls of the temple of Osiris, Abydos, a large tablet containing the names of the ancient Pharaohs from the time of Mizraim, the grandson of Noah and founder of the Egyptian monarchy, to that of Pharaoh Seti I, the father of the wellknown Rameser the Great, including therehy the chronology of nine centuries, viz., from n . c. 2300 to B. C. 1400 . This tablet, by far the most important ret discovered, has been compared to the sculptured figures of the kings of England, at the Crystal Palace, from William the Conqueror to Her Majesty Quern Victoria. Astronomical evidence, morcover, phahles us to determine the time of two important eporis in the history of Egypt, one of which is connected with our present subject. Sir fohn Herschel has fixed the age of the Groat Pyramid of Ghizeh to the middle of the twenty-second century B. c. The tablet of Abydos shows that the Pharaoh whose bones we now possess succeeder the builder of the Great Pyramid with only two intervening kings. We are therefore warranted in assuming that the remains of Pharaoh Mykerinus belong to the age to which we have assigned them.'

Harness Polish. - Take of matton auet, two ounces; beeswax, six ounces; powdered sugar, six ounces; lampblack, one ounce; green or yellow soap, two nunces; and water, one-half pint. Dissolve the soap in the water, add the other solid ingredients, mix well, and add turpentine. Lay on with a sponge, and polish of with a bruch.

Aids in Fence Building.

One man, alone, finds it a diffcult job to build a board fence, faasmuch as one pair of hands can not readlly hold both ends of a twelve-foot board, and
 nail ove end at the same time. By using the hooks shown in the accompanying engraving, this work may be easily done by one person. In the flgure is shown a hook and guard for holding the end of the board that comes next to the finished pavel. It is so made that, when hung upon the top of the fence post, the board rests upon the hook, and can not slip off. Then the other end of the board is nalled, the middle is nailed, and then the end heldupon the hook. The hook is then moved for the naxt place. To hang the rest of the boards, hooke, mach as shown at the left, ruay bo used, of varions leagthe to suit the different spaces between the boardo.
The uses of these are too obvions to need descrtption.

An Important Discovery.

One of the most important discoveries of recent date is that of a method of protecting iron surfaces from injury by oxidation. If the discovery is as stated by Prof. Barff in a lecture delivered before the Society of Arts, London, its value caa bardly be estimated in any hasty view of the mister. If the means are afforded us of rendering all kinds of iron work, however much exposed to the weather or to corrosive rapors and liquids, prac tically indestructible and permanent at trifing expense, it is one of the greatest triumphs of modern chemical research. It is well known that iron, when exposed to the action of water or moist air, begins to rust, a film of ferrous oxide being in the first place found upon its surface; this rapidly takes up more oxide from the air, and sesquioxide is formed; the latter compound gives up some of the oxygen to the unchanged metal beneath it, and the fresh ferrous oxide thus produced slowly unites with more oxygen, which traverses the layer of sesquioxide overlying it, and thus in time the whole mass of iron crumbles to a reddishbrown powder, the sesquioxide of the metal. In this way the iron utensils and implements found in ancient buried cities have been destroyed. In most instances not a particle of unchanged iron remains when these implements are discovered, but the mass of adherent oxide retains the form, and with careful handing may be preserved for years, as has been done with those taken from the buildings of Pompeii.

The great disadvantage in the use of iron has been its appetite, so to speak, for oxygen; and now if this disadvantage is removed, if its open mouth is closed, the economic and sanitary benefits resulting will be very great. Professor Barft's method is not of the nature so often resorted to, namely, the use of paints, varnishes, etc., but is based on the principle of producing such chemical changes on the surface of the metal as will prevent the ingress of free oxygen to the mass. He covers the surface with a layer of ferroso-ferric or magnetic oxide of iron, which is intermediate in composition between the two oxides mentioned above. This he accomplishes by exposing the metai to the action of intensely superheated steam. By this action it becomes covered with a black film of magnetic oxide which adheres to it even more firmly than the metallic particles adhere to each other, and is sufticiently hard to resist a file. Iron thus protected has been long exposed to the action of moisture and corrosive acids without change, and is practically unoxidizable by any agent. The process is cheap and can be conducted to any desired extent.

By this invention the use of iron for many applications must be greatly increased. It does away with the enameled iron culinary utensils, so liable to be poisonous, and also "tin ware," so called. Iron plates protected by the magnetic oxide will be used for a large number of purposes where the more costly copper is now used. Perhaps more important than all, the discovery will break up the use of "galvanized iron" water pipes, by which so many individusis and families have been poisoned. It gives us a cheap, safe, water conduit pipe, which has long been needed and sought for. If no practical difficulties arise in the manufacture-and none are anticipated-it cannot be long before the great benefits of this discovery will be realuzed by every community in the civilized world.-Journal of Chemistry.

Rapidity of a Pigeon's Flight.

According to the London newspapers, there was lately an amusing experiment to test the flight of carrier-pigeons against the speed of a railway train. The following is the account given of this curious race, which took place on the 13th of July: "The

dESIGN FOR WINDOW GARDENING.
race was from Dover to London, between the continental mail express train and a carrier-pigeon conveying a document of an ureent nature from the French police. The pigeon was of the best breed of homing pigeons, known as "Belgian voyageurs." The bird was tossed through a-railway carriage window, by a French offlicial, as the train moved from the Admiralty Pier, the wind being west, and the atmosphere hazy, but with the sun shining. For upwards of a minute the carrier-pigeon circled round to an altitude of about half a mile, and then sailed away towards London. By this time the train, which carried the European mails, and was timed not to stop between Dover and Cannon Street, had got up to full speed, and was proceeding at the rate of sixty miles an hour towards London. The odds at starting seemed against the bird; and the railway officials predicted that the little messenger would be beaten in the race. The pigeon, however, as soon as it ascertained its bearings, took the nearest homeward route, in a direction midway between Maidstone and Sittingbourne, the distance, "ns the crow flies" between Dover and London, being seventy miles, and by rail seventy-six and a half miles. When the continental mail express came into Cannon Street station, the bird had been home twenty minutes, having beaten Her Majesty's royal mail by a time allowance representing eighteen miles.

Autcmatic Clock. - An automatic clock is described by Herr Helling, in which the winding machinery is operated by the alternate expansion and contraction of glycerine, or other suitable liquid. A piston, on the surface of the glyeerine, is 80 connected with ratehet wheels and tootbed racks, that motion in either direction will wind up the will be especially valuable for self.registeriag meteorological instruments. for self.registering meteorologioal instruments.

The fact that Anterican manufactures are admitted free iuto the kingdom of Hawaii, while heavy duties are imposed upon those of Great Britain. would seem to leave no reason why the latter should enjoy an almost undisturbed monopoly, especially in the items of machinery and agricultural implements. The increasing exports of sugar and molasses from Hawaii, a very large proportion of which is received at San Francisco. and the statement by the American minister to Hawaii that America has allowed the great advan tages for the introduction of its manufactures to remain unimproved, have directed attention to the subject which may result in the opening up of a flourishing trade there, and the driving of British manufacturers from the field.

English Japanners and the Japanese Goods.

Those English japauncrs who have always taken an interest in their industry, regarding it much as an art rather than as a trade, have long desired to emulate the Japanese product. They have dissected the article with the keenness of an analytical chemist, and they believe they know pretty much how it has been got up. Their chief difticulty, however, has been the materials with which the Japanese have had to work. The grain, the lightness and the solidity of the wood used, together with the varnishing, the bronze, and the coloring are not known in Europe. The wonderfully polished surface of the Japan groods has evidently been obtained without the costly aid of the delicate hand of the woman-worker, by which alone the best polish upon English goods is secured. The Japanese has only had to apply his beautiful japan and put his blank into the sunlight, and all the resplendent polish, as well on the back as on the front of the tray, would seem to be the result The raised surface of what looks like solid bronze adornment is believed by the best artists in this country to have a white metalliferous base, secured by a material not available here -the bronze and the coloring, as they appear to the eye, having been subsequently applied, but only lightly. We all know that it was "Foley the Fiddler" who rifled the Swedes of the secret of making slit rods, and that it was another Englishman, now an American ironmaster, and at the present moment in this country, who by a personal visit to iron-mills in Siberia succeeded in obtaining for Transatlantic makers the secret of making Russian sheets. There are japanners now in England who, were they a little younger, would not hesitate to run the risk-for risk it still is-of finding their way into the Japanese manitfactories in which these marvels of execution sre turned out. The problem, however, still remains unsolved. Even should he succeed in getting all the information which he might desire, could he obtain the materials, and, having obtained them, could he in his ovens make up for the absence of the Eastern sun? However, we are not inclined to despair, for we do not think it improbable that the entire secret will be by-and-by revealed. The Japanese could, perhaps, be prevailed upon to send us shipments of the finest of their timber, got from the maple and the evergreen oak, together with a plentiful supply of their varnish or lac tree; and, seeing that it is now the ambition of almost every Japanese artist to get to Europe, little difficulty would be experienced in enticing Japanese artists over to this country.-EInglish Exchange.

Explosions in Coal Mines.-Three papera on the relations of atmospheric pressure and coal dus to explosions of fire damp, and on the best means ol. preventing them, are giren in a recent number (vol, xi.) of the Annales des Mines. The Freuch Acareng. has appointed a committoe covisting of with committee of engineers in studying remedial measures.

VARNISH, AND THE MATERIALS USED IN ITS MANUFACTURE.

By Z. T. Anstett, PhG.

Agreat many varieties of varnish are produced now in order to satisfy the demand for its use in the varions special branches of industry, and are in almost all cases made by the solution of various resias in some solvent which will evaporate after the arlicle is applied, thus learing the resin deposited on the surface as a thin and even ooating. The characteristics of a good varnish are that it should remain brilliant aft:- the evaporation of the liquid medinm, and preseńt a dry, hard surface, instead of a greasy and tarnished one. It should also adbere closely to the surface to which it is applied, and not be liable to scale off when it becomes dry, even after the expiration of a long time : beside these qualities, it should become as hard as possible, withont becoming brittle.
The principal solvanis used in the manufactare of varnish are lingeed oil, oil of turpentine, and alcohol, and the chief resins used are copal, amber, mastic, sandarac, lac, elemi, dammar, anime, and caoutchonc. Beeides these, gamboge, alees, dragon's-bjcod, and saffron are used as colouring matter.
Varnishes are classified as ethar spirit varnishes, volatile oil varnishes, and fixed oil varnishes. Ether varnisbes are very lit!le nsed. Spirit varnishes are nsually made with alcohol, and are produced in great rariety. The beat spirit rarnish is made by simply digesting the rerin in the alcobol, allowing it to
dit evaporate in the sun or shade to the proper conevaporate in the sun or shade to the proper con-
aistency; but this plan is too slow to satisfy thn exigeney of our modern industry, though it produces a raraish having the least amount of colour. more rapid process is heating the varnish over a Water bath or the fire, and this ohanges the coloar very materially, but being the moot rapid prosess it is generally employed. Oil of turpentine is the volatile oil generaily used in the masnufacture of 8pirit varnishes are chiefly uared by being kept varniah. Whirit varnishes are injured by being kept too long, While turpentine varnishes, on the contrary, are improved by keeping, a more intimate union taking place between the resin and the oil. Linseed oil and poppy oil are sometimes used with copal or amber to make fixed oil varuishes, and this olsss, although Cower indrying than the others, leave more residae, and are therefore more durable and better adapted for resisting the action of the elements. For intorior work they are alvo considered the best, where coloar is no objection, since they can be washed over timent injury. Oxide of lead (litharge) is sometimes used to facilitate drying.

Copal being harder to dissolve than most resins a, ppecial process is employed in manipulating it. tretly liquid, when linseed oil, heated to shout perF., in added, when linseed oil, heated to about 400° Far, in added, and then oil of turpentine, to bring the Tarnish to the proper consistency. I'be linseed oil does not combine with the resin, bat rimply mixes mechanically with it, having the particles separated to as to combine with the oil of turpentine, which thoald be added slowly so the mixture oan take plece by degrees. The state of the weather must be taken into consideration when making varnish, since when it is damp they absorb sufficient moisture to greatly it is damp they absorb sufficient moisture brilliancy. The consumption
of rame of varnish is now very grest, and constantly increaslog, which is due to the greater nomber of parposes to which it is applied, while the increase of wealth naturally develops the tagte for articles of luxury. The taste, too, for the ase of natural woods in our honses asd furniture, and the consequent discarding the the use of paint, bave much to do with incresaing rome idemption of varnish. To give the reader tome idea of this business, I will pimply give the This funt of one manufacturer as furnisher to me. of copetory consumes annually orer 600,000 pounds alcohol and shellac, and over 300000 gallons of dacinol, linseed oil, and oil of turpentine, probearing, with other ingredients of less consequence, Advert 400,000 gallons of varnish.-Druggists' 4dvertiser.

Home Topics

by faith nociebstrb.
The Preparation of Coffee.
I have just now read the reclpes for making cotthee, given In "Common Sense in the Household." booke written some good wordis about this receipt tollo, but I can not advise young housekcepers to fee Marion Harland's directions for making coffee. I think that aoy one who cares for the finest capes of coffee-that "delicious aroma" which es-
coffec-pot on the table, containing the Infusion jus as it had reached the point of perfection over the firc, rather than have the hot coffee poured into another coffee-pot, however rich or handsome, before serying. I do not know how the beverage can be turned into a silver, china, or britannia coffee-pot without considerable waste of aroma. By many coffee drinkers the aroma. is valued more than the "body." Such persons do not like to have the coffee boiled at all. Care should be taken to preserve the "aroma" while endeavoring to secure good "body." As the latter is secured by boiling, while the former escapcs with the steam during the bothing process, it is a good idea to reserve a portion (say one-third or one-fourth) of the coffee prepared for the pot. (with egg or otherwise), while boiling the rest of its putting it into the coffee-pot as that is drawn away from the hottest part of the stove or range, to some position where it will keep hot without bciling. There are varinus patent coffee-pots or coffee-fiters, made with a special view to the preparation of clear and excellent coffee, without any especial art on the part of the cook.

How to make the coffee turn off from the grounds clear, is a puzzle to some inexperfenced or stupid cooks. I suppose that the most common course is to clear the coffee with egg. Some crash the whole egg, and mix the ground coffee with it, shell, yolk, and white together. Others use the white and shell, leaving out the yolk. This is Marion Harland's direction, and she advises us to beat the white of egg first. I don't see the need of it, and I never could imagine what good the shell does. Many of the eggs which come from ntarket, and as many which come from our owh hen's nests, are decidedly solled upon the surface, and should be washed before going into any food or drink. That is one reason why I should leave out the shell.
The principle involved seems simple. The more finely the coffee is ground. the more thoroughly can its properties be extracted by a brief bolling. But the flaer the ground coffee is, the lew does it inciline to settle to the bcttom of the coffeepot, and the "muddler" is the beverage, unless some art be used to "settle" the coffee. Break an egg at one end so as to pour out the white, retaining the yolk in the shell. Mix the white well with the groand coffee, and if it is uot sufficient to wet it all, add just enough water to dampen the whole, atirring it thoroughly together. Put this into the coffee-pot, and pour boilling water over it, (one pint to each two tablespoonfuls of coffee, M iss Beecher says; Marion Harland says one quart of water to half a pint of ground coffee, afterwards adding a cup of cold water) ; and the egg is immediately cooked, so as to retain all of the fine coffee grounds in its mesbes. If this is properly done, no addition of cold water or anything else after bolliug, is necessary to produce clear sparkling coffee. I bave often admired the work of the egg in clearing coffee, as I have removed the spongy ball of egg and coffee when cleaning the coffee-pot. It is erident that many housekeepers do not sce the philosophy involved in this use of egg, or they would never for a moment suppooe that the egg would clear the coffee satisfactorty if put into it at any time after the coffee and bolling water are put together. You want to bind the coffee grounds together with egg, not to add bolled egg to the beverage. Put in the yolk of egg if you life, but it is of no more use than so much water. I prefer to stir it well into the thickening for my cream or milk gravy, where it adds richness and nourishment, and beauty.

We can not slways get an egg to settle coffee with, and few of us possess a French filter, or even an "Old Domluion" coffec-pot. This thing you can do-and I have done it many a time-tie the coffee grounds loosely in a thin bag. If the ground coffee is tied up in'a tight bag, the water is slow in penetrating and extracting the properties of the coffee. When I use a thin, loose bag for the coffee, I stop up the nose of the coffee-pot, to retain the aroma as mach as possible. If the coffee is ground coarsely it will settle itself. If allowed to stand without boiling a few minutes before serving, and then turned out without shaking. The addition of a half tea-cup of cold water when it is removed from boiling, will settle the grounds, but nothing is quite so good and sure as white of egg, if one
can not use a good patent coffee-pot.
Professor Blot, in his cook-book, directed the use of water which had not been previously boiled, as soon as it reached the boiling point. For breakfast coffee he advised four tablespoosfuls for a quart of water, for strong coffee eight spuonfuls to a quart, and for "black coffee" one pound to a quart. It is. this " black coffee" which is used, I suppose, in making the celebrated

Cate-am-late

This is black coftee added to boiled milk-a tablespoonful to a cup of boiled milk, making a strong cap of unusually delicious coffee, famous all over the world as French coffee. The milk must be riew and nice, and slowly slmmered to a thick creamy Mchness. In France it is sweeteped with beet sugar. Mrs. Btowe says that this coffee is so black and strong as to be "almost the very essential oil of coffee." There is aignificance in the name of this drink, suggesting that the coffee should be added to the milk, not the millk poured fato the coffee. I wonder if any one cver tried both methods with ous learning the great superiority of the former.

Browning the Corfec.

To make good coffee, it is essential to have the coffee beans evenly and sufficiently browned or roasted, without buraing. They are spoiled if roasted until black, but a yellowish-brown is not right. A rich, dark, chestnut-brown is the right color. There are patent coutrivances for roasting coffee, but 1 have not proved their merits. The beans should first be looked over, then put into a spider or dripping pan, and placed in a moderately hot oven, or apon the top of the stove. They brown evenly with less stirring if placed th tha oven, than when over the stove, but this adrantage is offset by the danger of forgetting the coffec entirely when out of sight in the oven. It must be stirred often. Coffoe and fiemith.
I seem to see the Editor shaking bis head as he comes to this, but I will give you a fow of my own thoughts on this subject, it I may be allowed. He shall have his coffee to the end of his days if he wishes it; and I, when he breakfasts here, will prepare for him most choerfully, the best cup of coffee I can make from such materials as I can obtaln. But I shall be careful how I ald any young person to acquire the habit of coffee drinking. It certainly is perfectly cafe, so far as health is concerned, to live without tea or coffee, efther, or both. For many persons it is not safe to use elther. Both tea and coffee possess medicinal properties. I sce that Dr. Smith, in "Foois," speaks of them as "in some respects antidotes to each other," though he docs not class either among "polsons." He relates, however, that drinking an infusion made frow two ounces of coffee, cansed hin to fall to the floor and remain unconscious for several minutes. Bat I did not wish to treat the matter scientifically. I fro quently hear persons who have no knowledge of the properties of coffee, assign as a reason for giving up coffee, that they found it injarious to them. Only the other day a lady was teling me her now way of making coffee, from a mixture of scorched wheat-bran and molasees, and half the usual quan tity of coffee. She told me why she made this instead of the strong coffee formerly used. First, the hired man complained of dizziness, and satd he must give up coifee. He had learned by previous experience, that the dizziness came from the use of coffec. Soon after, the lady's husband complained of a frequent steady pressure upon the brain, which made it almost impossible for him to read at times. To the suggestion that it might be his coffee, he replicd that "it was impossible, as he had always used coffee."-"But you will not get any more," his wife answered, "until I have found out whether coffee causes the trouble."-When the coffecowas withdrawn from the duily bill of fare, the trouble in the head ceased. When the needs of a large family seemed to require that coffee be supplied, she found that cofree made of wheatbran mixed thick in molasses and scorched, with a little real coffee added for flavoring, made a drink quite as acceptable to the family as the old coffee of full strength. But none of her children drink even this, and wo were agreed in belleving that they will never regret not having accustomed themeelven to coffee in their early years. I feel sorry for the
children who become attsched to tea and coffee before they reach years of discretion. I haye known gir's and boys in their teens, who could not relish a breakfast, however good, unless they had coffee.
I see how the coffee drinkers (tea drinkers two, but now I happen to be writing about ceffee) dote upon their beverage, and sometimes seem to pity me because 1 eat my food without feeling the need of any fluid to wash it down. But I secretly pity every one of them. I can make a good, satisfactory meal wherever I happet to be, and at any time of day, from bread and milk, or crackers and applea.

Geramitums and Snakes, We lataly read an account of a mining lorality in Calaveras county being infested with nnakes. In this connection we may observe that the report is that every species of snake may be permanently driven away from an infented place by planting geraniums. In South Africa the Caffir people thus rid their premises of suakes. A missionary of South Africa had his parsonage surrounded by a narrow belt of geraniums, which effectually protected the residence from any kind of anake. A few yards away from this geranium belt a snake would occasionally be found. It is well known that the whole geranium genius is highly redolent of volatile oils-lemon scented, musk scented, and peppermint socnted. What, musk scented, and peppermint socnted. What,
therefore, is a very pleasanf nose-gay for man is repungent to the serpent tribe.

Lathe Tools and Tool Post Slots-Robort Priggs writes for the Polytechnic some hints on lathe work which are of general interest. For the performance of a large quantity of work by the lathe, no greater neoessity exists than for heavy turning tools. The numerous attempts of 30 and of 10 years since. to use cutting points for turning have all ended in practical failure. No nicety of shape or fitness to meet the exact requirement for easy cutting of metals will recompense for want of material, both in continuity and in mass, to conduct away the heat of the cut and of friction on the chtting suriaces. The smallest worlsing tool for turning iron should be $1 \frac{1}{1}^{\prime \prime} \times \frac{y}{\mid " ~}^{\prime \prime}$ steel in the shank, the alot of the tool post of the lathe, which swings $10^{\prime \prime}$ nnly over the ways, should take this dimension easily; $13^{\prime \prime} \times 1 \frac{1}{\prime \prime}^{\prime \prime}$ steel is not excessive for tools for the 30 ivch lathe, where profitable return for use of the lathe is expected. The pasts themselves, with their griping screws and bearing rings, can hardly be too heavy, while they can eashy be too weak. For a 48 inch lathe it does no harm to have the slot in the post $2 \frac{9}{4}^{\prime \prime}$, or $3^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$, or $2 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, with a two inch screw. The refinement of spring tools for heavy cuts or for long cuts without a re-sharpening, are well enough for tool rests With V slides, or lathes where the ways have V 's; but neither excellence of workmanship, nor apeed of ranning, nor heavy cuts, will reault from makeehifts of lathes, or of turning tools, howevar well the makeahifte may be contrived.
How Potsons are Spriad.-Mr. G. Owen Rees, Conanlting Physicien to Guy's Hospital, London, has called pablic attention to some unexpected sources of arsenical poisoning. The green calico lining of bedcurtains has been found to have produced. for months, severe symptoms, which were treated as those of natural disease, without benefit to the patient. When the curtains were removed the patients at once recovered their health. The beautifol palagreen maslin, largely used for ladies' dresses, has been found to .oontain not less than 60 grains of the areenical compound known as Scheele's green, in every square yard. He suggests that, in order to prevent much of the nausee, vomiting, headache, inflimmation of the eyoe, etc., from which, so many suffor, there be a prehibition of the manufacture of such deleterions fabrics. Red acarlet, and mauve-colored fabrics are not always free from arsenic. He adds that the agitation of akirts in danc-

Hleotrical Resistance of Trees.-M. Moncel recently reported to the Academie des Sciences op a ceriss of experiments npon the conductability of trees. He finds a resiatanoe, when the leaves are the points of contact, equivalent to from 200,000 to 400,000 kilometres of teleg raph wire. In moderately lirge trees, at a beight of soven or eight metres of the trunk, it is about $3,0 c 0$ kilometres.

Some Facta about Norway. - Acoording to recent official statistics, the average duration of
life in Norway is 5.8 years. longer than in Sweden, and 10 years longer than in Belgiam. Pablic and gratuitous education is compulsory in Norway from gratuitonas education is compulsory in Norway from
the eighth to the fifteenth year. The wort of children in factories has to be regulated so that they children in factories has to be regulated so that they
can perform the exercises of communal scbools. Norcan perform the exercises of communal scbools. Nor-
way has one complete university, in which are 48 way has one complete aniversity, in which are 46 profesmors, 10 assiatant professors. and 831 studenta. The exportation of wood, chiefly pine and fir, a mounts to nearly $2,500,000$ cabic metres anunally, with a vilue of 6 dols. per cubic metre. The silver nive of Königsberg producer annually \& bout 5,000 kilogs. of pure silver. Norway is the principal counliry for prodaction of nickel ; it furnishes more than one-third of the total production. The last census gave the figure of 78,703 persons families incladed) who lived by fishing, or 48 per cent. of the entire population. Norway has 493 kilametres of railway, and 11,581 kilometrea of talegraph wires.

Kitchen Drowes.

Neat, plain callco wrappers are quite popular for kitchen use. They are easily made with a sefing machine, and can be Ironed with less trouble than other dresses. They are becoming to most women, and can be worn as loose and comfortable as you please. But they have disadrantages which make themeelres apparent to working women, espectally to those who wash and iron their own clothes. They annoy me by bursting off the skirt buttons, of breaking out the buttin hules, as I take some of thedivers shapes required in waiting upon the vari-

To Cver a Frion. -The London Lenow angerete the following simple treatment for felons: Ao roon an the disease is felt, put directly over the apot a ty-blistor about the aise of the thumb-anil, and lot it rumain for six houra, at the expiration of whioh time, direotly under the surface of the blister, may be ween the felon, which can instantly be taken out with the point of a noedie or a lancet. A pieco or adheaive plater will keep the blister in place.
Polson in Artificlal Flowres - Danger from picric acid lurks not only in colored stock ings. The material is used for coloring in the manufacture of artificial flowers, and a welldefined case of poisoning therefrom is reported from New York. Mary Dougherty, aged 13, who had been employed a few months in a flower manufactory, has just died. Her death is attributed to poison which is supposed to have been communicated to the girl's system by the material with which she worked. The case needs to be carefully investigated to the end, that the exact character and effectes of picric acid may be made known. Men who dye the cloth, which Mary Dougherty and other girls have made into flowers, receive no harm from working bare handed in the liquid. It is alleged sickness among the workers in the colored goode is the exception. Some organizations must be more susceptible to the influences of picric than others, or Mary Dougherty's death must be traceable to other causes. It is to be hoped the case will be carefully examined.
Remarkable Surgery.-Robert F. Hurlbut, private secretary of Governor Bishop, of Ohio, has just had his tongue amputated near the root. spread apart in order to take out the diseased tongue. The work was done in a comparatively short space of time, and the patient was comfortable and conscious in lees than an hour Next day Mr. Hurlbut walked acrose the room, and wrote his wants upon paper. He is not permitted to attempt to speak, and, of course, could not do so if he desired. The phyaicians think he will be able to articulate andibly in the course of time. Thus far the difficulty has been to give nourishment, which has been done by injection. Glass tubea have been secured, and hereafter nouriahment will be given by that means until the soreness in the mouth is somewhat aubdued. Mr. Hurlbut had a cancer at the root of his tongue. A like operation for the same cause was recently performed at one of the hospitals in Albany, but the patient died a few daya subeequently.
In Broslau, a successful attempt hat boen mado to er oot a paper chimney. The one ereoted was about 50 foet high. By a chemical proparation the paper io rendered impervious to the action of fire or water.

Makner Tomit Sonf.-The cheaper Engligh moda cannot produce a Ane soap of thile rind; it is beat to take the purest German soda. It conte about twice as much, but then it is 95°, whitle the commercial sngithe sode is only from 80° to 880, and impare, which is fatal for the prodaction of a good articie. In order to make canatic lye, quicklime to added in equal parts to ordisary German soda, and only half the quanlity (always by woight) to the erystallised German code. The Proparation of the Lye.-Dimolve the soda in water, or in a weak lye of about 90° Beanm., the remnant of a former operation; then mix the quicklime with water to a broth and add it to the eoda solation, boil for two hoara, and let is atand over night to cool and depoelt. The clear iye, which may be 10° or 12° Beanm., is then drawn off and coecentrated by evaporation over a fire entil it ahown 84°; les it again ccol and settle, and put it in bottles or corvered tron revelie so as to keep ont the air, becanee otherwise it will rapldiy abeorb carbonic acid and lowe Ita cansticity. The lye being reedy you have the chotos between varions trinds of tate, tach as cocos-nut oft, almond oil, palm oil. olive ofl, beef tallow, matton enet, iard, otc. The onl, palm oil. oive ofl, beef tallow, matton enet, lard, etc. The cheapest kinde of fate make the worst ceape, and vios versa; 10 poands of lye of 88° are suflelent to mponify doable that weight of fat. The latter is molted, and then half the amonnt of lye (5 poands) introduced and well agitated for about an horr, while the temperatare is not ralsed above 150° Fah.; after one hour the other 5 pounds of lye are added. A pasty maes is thris formed by the znion of the two ingrediente, and this maws ehould be perfectly homogeneors, and increase in concletency overy hour, untll at lest it is ready to be poured into the fremes If perfumed moap is wanted, the ecent if introduced before If perfum. The next day it is to to be cnit preaeed and beioro If this is postponed it may. becoute too hard sud brittis for this
 operation. Many manaflectureve irefier to use mixed fate, macin alive oil and tallow. Bat these in no doabt that the cocos pist ofl makes the beat moap; neart to thin almond, palm, and elive olla; while mation moot and lard mike ordinary conp, of pecially when ased with ringteh wodia. The kinds of perfume to be added, and the amoant of the same, is ontirely a matter of taste and opinion, therefore It in nanecemary to give a recipe for the same, an they difer in varioun preacriptions. The natas porfumes are, for bitter almond fiavor, nitro bentole, called of of Myrbane; this is a very cheap and common perfame. The or Mert are oile of mactafres of meat of roees of berpenot of cloves, of cinnamon, of neroll, of roses, etc. The quantitien needed are very manll.

Cheese and the Microscope.

At the last meeting of the San Francisco Micromeopical Society, Mr. E. J. Wickson, editor of the Pacific Rural Press, asked the attention of the members to a slide containing sections of ordinary full cream cheese and cheese made by introducing oleomargarine into skimmed milk. He described the process of making oleomargarine cheese, namely, by removing the cream from the milk, and then stipring in liquid oleomargarine to supply the fat removed in the cream. The mass is agitated and rennet enough added to form a curd quickly before the oil con separate from the akim milk. The aim of the process is to form an emulsion of oil and a menstruum of soluble casein, like that which existe in natural milk. This process has succeeded wo well that chemical analysis has shown the artificial cheese richer than the genuine, and wo great an improvement on akimmed cheese that large quantities are sold in New York and shipped to Enrope. Mr. Wickson stated that he had studied this artificial cheese with the microscope, and found that the emalsion made by the cheese-maker was not nearly so perfeot as that made by nature in the cow, and therefore it was ensy for a microscopist to distinguigh between the two producte. In the alide which was ahown the two sections of cheese were in juxtaposition. The cheeme made from full cieam milk was seen to be of close texture, and the natural fat was incorporated in the substance. The oleomargarine cheese showed cavi ities of irregular shape in which the artificially introduced fat was imprisoned when the cura formed. The difference simply consists in the results of an imperfect emulsion in which the fat exiats in masses rather than in globnles, all in milk. Mr. Wickson remarked the differenco between the cavities unally formed by gas in full milk cheese and those which held the oil in oleomargarine cheese. He stated that he first pointed out the characteristics of the two makes of cheese, and regarded the microscope as an infallible detective of the true qualitien cheese.

Tyin gross aggregate value of lend produced in Misworri in 1876, is atated at about $\$ 2,500,000$.

