BULLETINS

Aprial Exprriment Assariation

Bulletin No. XVIII
Issued MONDAY, NOV. 9, 1908

MR. MC CURDY'S COPY.

BULLETTEN STAFP.
Alexander Graham Bell..... Bditor. Gardiner H. Beil..... Assit. Baitor. Charles $R_{\text {. }}$ Cox........ Typewriter. Yabel B. YoCurdy.... Stenographer.

$$
\square
$$

zable or conczarig．

1．Mditorial Hotes and Corronta：－

> Swinging Bent Oct. 26. 2
> Drave Yo.4 Oot. 31... 3

2．Harzondaport Voricio
Telegranas frons Mumbers．．．
Holl to heCurdy Oet．24．．．．．．．．．．．．． 9 n9 MoCurdy te lell Oct．23．．．．．．．．．．．．．．9～9 Bell to Curtias Oct．30．．．．．．．．．．．．9．9 9 Gurtiss to Bell Oct．31．．．．．．．．．．．．．．9－9 Curtisa to Bell Oct．31．．．．．．．．．．．．9－9

Letters fros Menbers：．．
Curtias to Bell Oct．22．．．．．．．．．．10－11 HeCurdy to Hell Oct．24．．．．．．．．．．12－14 Curtiss to Mell 0ct．26．．．．．．．．．．．15－15

> Aquatic Ylicht: By G.E. Curtias.
> Re Propolierat Hy G.H. Curtiss.
> $.17-16$

3．Beinn Mareanh Wlarist－

> Baldwint'
> Oct. 2太, 27, 28, 29, 1908 脸 The Asat. Bditor...24-35 Trixprivents Oet 23.................... 24-28

> Beperinenta Oct. 23.................... 29 m 31
> Keperinsents Oct. 29...................... $\mathbf{I}-35$

The Bi2ver－Dart Finished：－Yro the Howriondapart Herald Oet．28， 1908

A Dog tries the silver－Darts－ire：the Kawsond－
aport Hervid，Oot．28，1908．．．．．．．．．．．．．．．．．．．．．． 38 ． 3 ．
（see over）

(Table of Contents Continuted)

5. The Outhook on Agiation: By The Aast. Baitor.......... S9-42

Running eorzients oonoerning Charles J. Gliddon, Columba University, A.V. Wilaon, Gon. Allon, Mr. Herring, Count zoppelin, Ingil oh Aerodronse, Aere club of Yrance, Daman, BLeriot, Germany, Clement-Baynard, Dr. J.2. Fielding, C. W. Vililama, and Jrank J. Heinfelt.

ILTUSTHAFTOMS.

1. Vanadius 3twol ahaft for nev Harmondaport Votor (upper picture)
2. Aorial propeliers used in Rheruondaport (laver pleture)18
3. June Hut engine in Bilver-Dart (upper)....................... 19
4. Drone No.4, MeCurdy" ${ }^{\text {B }}$ Silver-Dart corsheted roudy for new notor (1ower).
5. June Bug and silvermbart photographed together, aide
 viev (lower)......


```19
```


20
10. Drose 30.5 , on bourd the Got-Away, three quarter view (10wor)
11. Swinging seat, with aingle aupport, in body-atudy for dre:e Ho. 5 (upper)23
12. Position of man upon Swincing seat with single support (lewer)
13: Drome Jo. 6: Arrancoment of hydromurfaces on the inomas Beag used in experinuits Oct. 16 (cescribed in Bulletin $2 V I$ p. 25 exp. 3) upper picture.................. 24 14. Arrangarbint of hydromsurfaces used Oct. 16 (Bulle in24

(I2lugtrations continued)

15. Drose Fio.6:- Arrangoment of hydromarfiaces used on

16. The Dhonnat Beas towed by the Brideo, aupported out of the water on its hydro-aurtaces, While eure rying two mon Oct.23 (upper)27
17. The Thonnas Boagt toved by the sigidoe with three men on board Oct. 23 (10wer).27
18. Arrangement of hydromaurfaees used Oct. 28 (upper)...... 30
19. The Dhonmas Beag towed by the Skidoe mupported out of the water on hor hydromaurfacen, and carrying Mrs. 3. ㅂ. Baldwin Oct. 28 (Lower)
20. The Dhonnas Beag, fisted with the Curtian 10.2 engine and double propellera, ahouing the arrangemont of hydro-surfaces uaed in oxperineents Oct. 29 (upper)
21. The Dhonnas beag, alth man on board flouting in Beinn Bhreagh Harbor Oct. 29 (1omer)
22. The Dhonnas Beag, supported out of water on hor hydromaxfaces vhile propolled by her oven motive power carrying ltr. P. 啳 Bolduin Oet. 29 (usper)35
23. The dursage to tho mydromaurfaces of the Dhonnas Beag ahouring their buckeled-up condition after the oxperie menta Oet. 29 (lawer)35

SyIvcimo seri.

Beinn Bhrencho Oet. $26.1098:$ The abjeot of the double suppert for a awinging seat T3uLzetin yIV p. 14; Yulletin NI p. 45) was to aneure the paint that the seat show 14 remin horizantel however it inight be moved by the aviater. As seon sa a madel was constracted it beeque obvious that in ite matomatic action the seat woule not remain horizontal. For exumpla:- Should the machine mate a dive, though Tha seat would awing tormarda it rould bo tillad down in Crant thes tonding to aject the man. This action has beon ropedied Dy adopting a single sappors (aea photograph in this (alatain) 。

It would bo vary deairable to secure ano awbrmabie totion ovar the controls and this curtainly oun be accorpe Siwhed by utilizing the weight of the oparator upon a roveable seat wishout interfering nith voluntary control by Win eviator hizazelf. In the plan contenylated tho rain work of longitudinal controz woudd be acoorapliahed autormbicaily by the oparatort weignt laaving the finer adjugtaents to be cone voluntarily.

There is one grave disudvantinge, hevever, touching the very prinoiple of 5 winging aoat. It is obviously ime pracileabla to have tho arda of tho awing at the conter of gruvity of the zochine. The sotion of the ewing therefore Will acoasion a diaplscenont of the center of fravity and unfortunately in the urong airection for sufoty. If the zachine tipa down the nect awing forward, thus diaplacing the eenter of eravity farwards instaad of backwards so that
the aiapluponent tonds to heip the dive and make it gteeper. It is only through its matoesticic oontrel over the vertiend steoring surfaces that the awinging aent hea Ita divantage.

I wnolined to think that it rould be better to hold fant so the irgiortant principle erbodied in tho Heamonk aport machines and subatitute the instinnsive motions of the avintor for amtomatic metion by eravity.

If the machine should make a dive maturel invelnet tenta to mke th man lean back. Thin atoplaoes the oontar of Eravity in then right direction and in the faymonamport rache Inea the man naturally leane back in oporuting his front eontral to corract the dive. In carracting the eltwing tendency tha man launs forward. In correcting a tap downmade to the left the man leans to tho right, or hich sido; and Fice rexh where the tip 1 w on khe athar aide.

The comperation of ingtinctive movesonta with the Aporation of the varioue controls meoca to me too dmportant a point to be $2 i$ ghtily given up. Thore is far leas liability to nove the wrong lever me is sosetines tone even by the Wright Drothers thomselves. I hn thorepore locking with less favor upon automatic action through a aringing soat and with more favor upon Inatinctive novecionts cocabined with the operation of the steering covices. A.C.B.

phourg mo. 5.

 Mgiver-Dart", is now coupleted and the new engine inatallod. The rasohine has been trisen to the tent at the hace irsock and a telegrax is expected every oment announeing its Piret filfot. Photographa of the Silver-Dart appent in this imuletin. A.O.B.

 pleted with the exeoption of the body seetion and the atearm ing appendagea. Photographa in this Bulletin show its preaent condition.

The body aection is now being atarted and will be pubntantially aimilar to the center part of the Cygnet With a samhole of the sarse shape and airs, but made in a different manner wich will be doacribed in a subsequent BuLletin.

I have now decided that a front control w12l not be usod upon Drone Ho. 5 because it is to be atarted as a kite and the presence of is front oontrol would be likely to prom duce dangerous oscillations in the structure whle flying as a kite. If we had only to deal with the wind of sdvance the front control would, of couree, be as ntvantageous as In the oase of our other aerodranes. If we don't hive a horizontal rudder in front we have to consider placing it In the rear behind the propellars. It is axtremely doubtris how far it in udviable to place say rudders in the drart of the propelier and a difficulty presenta itaelf in austaining the rudder by aupports so far renoved fron the propeller blades as to obviate all chances of a Wright diam aster.

This loude to to conaider the ndviabililty of uaing two horisontal rudders bohind the main structure, one at efther side of the wing piace arranged normally with their
surfaces parallel to the Line of advance.

In our Marrondsport aerodrocies ve have three difPeront kimds of abcering to perform at the sause tirae.
(2) Vertical ateering up or domn.
(2) Horisontl ateering right or lert.
(3) Balancing atearing by our oing bipa to rennety sipping action.

How the thexagh occura will not thene two horizontal rudders alone serve all the purpoaes of the throe kinds of ateering, required and with only two levers to operate them oner each rudier.
(1) Yer vartieal ateering both rudders could be moved sirult taneousiy up or cown.
(2) For horizontal stearing, one rudder alone noved, or both in difforent degrees so thast the introduced resiatance to rade vanes shall be Aifferent at tho two sides of the strueture.
(3) Bulancing atoering, the two rudderia moved equally in opposite diroetions me that the righting action all1 be produend whle the introduced resistunces to ade vanoe would be the wane at elthor aide so that no t rining noverient around a vortiond akis would be caused.

1Fy sind is gradualiy inelining to the ides of two horimontal rudders at the roar to take the place of all the different methods of eontrol ermployed on the Kamaondmport machinea. The great objection being that thay would be out of aight of the aviator.
Of courne we could consider placing tham in frontof the atructure to either aide thus piacing thom within aight of the aviater wivh the advantage of operating in freath air undiaturbed by the presence of vinged cells in front of them. In this arrangement thoy would constisute, in erfoct, two front controls instead of one. I a $115 t h$ doubtrul, however, of the practicability of this arrangenent in a atructare intonded to be 120 an as kite but will give it further considerstion. A.G.B.

phoys 10. 6.

Bed. n Haranghe Hove 5e 1008:- Nr. Buldwin has wado another step in thdvance towards the realization of aerodrone Ho. 6.

On Oct. 29 the Dhonnas Beag carrying Mr. Haldwin and the Curtisn to. 2 engine roae coxpletely out of the watm or on her hydroplanea then jropelied hy her own power instoad of boing towed by the "acidao".

This hia primary object has beon roulized but hem hae beon rapule as . et to teat the apeed that the rach ine Fill sttain under the new conditionsome the following reasonme
(1) then the boat riaes, tho ruddar being lifted out of water, no loncer serves to atear the boat and power has to be ahut off to nrevent raging the bank of the harbor. Inis dofect has been remediod by the coastruction of an aerint rudder superposed upon the wator ruider and working on the a arne sxis.

On hov.S an atcompt was sade to apeed up on the hyAroplanee. The rudders worked porfectly and hiere was no difm ficulty in afeering the boat, both in and out of the water.

When the boit rises the outrigeer flosts are lifted completely out of water and the wholo frangomont, though supported upon 1 ts hydroplanes la in a state of unateble equilibrium. The conter of gravity being considerably above the base of support, the zachine tipa over to one alde or the other and is only revonted froc turning cocipletely ovor by the bugyanoy of the outrifeger floats.

This dieficulty also prooentod itacle duting the previous towing experinents and was parisaliy net by the
omployment af flexible hydroplanos of the hayrake pattern plaeed close to the autrigger flate se that men the ploats wore lifted out of water a portion of the flesible hydroplanea Fenhined irmersed. The reault, however, was not ontirely BCtiafactory probnbly beoause the flexible roda wore no: ntipf snough for the purpose but in the towing experinents, by leaning over to the high ifde the belance could be roatored.

The weith t of the onginc oombined with the man, prom duees too sreat un upsefting tondoncy to be rorsedied by lousping ov x to the high zide. x. Baldwin proposea to try iluasible rode again (they have not so par boon used. with the ongina and propeller on board) but they will have to be rade ruch atiffor than formorly to rosiat the aekeina

He also proposes when he corses to build a new structer ure to place tho man and engine inside the boat instead of above it, but this eannet be cone with the presont arrangemant.

A nev arrangenent or hydromurfacea (hydro-curves, not hyaroplanes) is now baing rade, and we think that the atability of the bent, wen out of water, will be so much irm proved that it nay be possible to leat the aequired apeed, nesaription of theae hydro-aurfaces will be given in another Bulletin.

A model has been made of the tetrahodral structure of Oionos form which is to conatitute the nerial part of drone Ho. 6 which 18 now ready to be ceatod an a kite. This will be deacribed in a subsequent bullotin. A. G.B.

FYTH0

Ben2 to MeCurdy.
To I.A.D. VeCurdy, Havondsport, H.Y.

Buddeck. \#nsor Oct. 24, 1908:-I an anding you paper on the caubes of the accicons 80 orvilie wight's zachine. Want you to read it before trying giver-Dart.

> (Signed) Gratian Boll.

3ecardy 50 Bo2\%
To A.G. BoL2, Baddeck; : \% 3.
 Ver-hart. Mill bil nce her iv tomorron and hold trial yriday ar Baturday wenther pormisting. Will notiry Bocretary of Tur.
(32zed) J.A.D. HeCurdy.

3013 © Cart2.

So a. il. curtias, Hacziozdaport, 2.Y.
Baddecik. Hag. Oct. SO, 2908:- Hydroplane boat $11 r$ ted out of water yesterday by hor owi jowar carrying Boldwin.
(signed) Graham Boll.

Curt2as 40 3ohd.

To A.C. Hell,
Baddeck,

 here yet. Vary sorry indeod.
(3ignod) G. 1. Curbsas

Gurtisa 60 3012.

Hewuendemart, HaYoo Octo 32, 2903:- a11ver-Dart ongine instiled ready zo riy. pili 500 万be. Concrasulstions, good work with hydroplaned.
(Signod) (.H. Curtias.

Curtigs to 3012．

20 A．G．Bell．
 Baddeck，H． 3.

Hannondaport．H．Ye．Ogk．22，290a：－We have your letter and in reaponse have mailed aeven each of several of the rocent picturea takon here，gotten up as best we could， for the Bulletin．Fe have mailed prints of these before but had left it to you as B⿰亻⿱丶⿻工二十⿴⿱冂一⿰丨丨丁口𧘇保 to aeloet whit you manted．

John has oent the＂gilver－Dart＂drawings to Yow Yors Cor reprotuction in zulletin sise，and pronizee copy in tino to print with thers．

We also have your measage in reference to the aecond trial for the Cup．We have vired Mr．Kanley that we would not enter until we had sade trymouts here．We assume that if ซe ean fly the 25 kilanetera here the firat of the week that
 ber 3 ，and that if we were reasonably sure of winning the second＂leg＂of this three－legged a Prir and if，as they promisod，they pay for the exponse of bringing the achine there to make the triala，that you would not object to ita being done．

I geing to Hew York to－night to sese Manley，look over Morris Park and the course so an to the sure of our ground there．

The new motor will be run under its own power for the firat tine this afternoon and thorouchiy tested out tow morrow．Thia will give as Baturday to get it inatalled in the silver－Dart＂，Dy which time I will have returnod from
-20
Wew York and make our firat trial not later than sonday, wather pormitting. Wo will wre you to thia brfect as woon as we are aure of everything on the motor.
(3sgnea) G. H . Curtias.

So A. G. HeL2, 3addeck, \%.
 a copy of the papor Mr. Chanute was kind enough to send me. I had made two copies, one for our records thleh i w112 keep In a portrolio, and the one I fom oonding you for your information and perhmpa for incorporation into one Mullesin If you aee fit. It is very interosting enpecially as it shows us how tr. Chanute corputed head resistance in his rultiple winged glider.

I have anployod this method and carefully moaburod all the struts, wires, tubing and bamboo used for structural purpoaes on the Silver-Dars and cocpused the head realstanoe. I Will ama a full raport of this in the artiele I na trying to arite on the differencea betweon the silvor-Dart and June Bug.

The whter-cooled motor has bean assecrblod and was run under ita ovin powor yesterday morning (Fridny Oes. 23). It was only run for about three minutes and thon imotiately taken down for inspection and adjustevent of ita parta. This 1s the usubl ouston. We hope to have it complete down at the shod tomsomrov (Bunday) sfternoon whon wo will try out oir different propellers to aacertain tho varioua ulla.

Wo have deaigned a propeller sorne what along the linea adop ted by the wright Brothers, copying in goneral 1 ines that Albstreas" wing represented in the Aeronautical Amnual to which i raferrad in my lath note to you. It is a is in
dianeter, 17° pitch at the tip and has 1 ta mutimum width of blade one third of the diatanee fron the tip to the axis.

It stam Ininched to-day and will be tried out somerrow. Sonshow it looks geod to me and we oan cormare its pull Fith another proyelier of the guze goneral dimonsion but lneke ing the wedge ahaped cutting edge, it does aeen as shlthouph the cutting edge ought to be deaignod so as to ahed the air meeting it rather than have so plish this mass of air ritht alonic bafora it.

We wre getting so impationt to try out the SliverDart. Thursday afternoon while we were up at the tont, Kr. W. Chasyin canc along with his big dog welghing about 40 lbs. and while we stood round the machine talking the dog for aone raason or othor jwiped on to the hover right wing and of course Fent pluap through making an awful hole. Ingraham and I however ropaired it somday 30 it is as cood as now.

Juat received your telegras abous papera you are eending coneerning causes of accicont to $\begin{aligned} & \text { ritht eoroplane. }\end{aligned}$ Fe expeet if all goes well to have the pirat prelininary trials on Zonday. I do so wish that you and Ura. Bell could be here

Mr. Curtian went to yow Xaric yeaberday to attend the Vanderbilt race, but will be hose sunday norning. By the way did you receive a package of photographa I sent you by express about a nonth age. It tras a comploto sat of mounted prints representing our work hore up to the end of experimente Fith the June Bug.

Could you also plense toll ne if that fonmula for corputing the lift of an waroplane (rlat surface) is

$$
P^{*} \frac{\sin x \cos x}{1 p \cos \text { or minus } \sin ^{2} x}
$$

I don't ramember and cantt find it in ony of the referenea books I have hore. Casey may fonove.

Hay. Bquier will write his purt of Tomet blography, and will have officer hore for triala.
(3igned) J.A.D. MoCurdy.

Cut

To A.O. MeLI, Haddeck; 3is.
 clipplnge. the one refterring to the iriattig control is Jut to aldrificancze

Hieaasas WiLbur and Orvizle Wrigis dige courage ta - what chanoe have ve to fly in their aeroplono if thoy, its dasigmoris, unarom noutaz of yoara sthandint? paLL the wrong zover aco otsen ${ }^{3}$.

I have Just returnod from Iew Yorig. The tero soolety* grounds are sil that could be expectod or deasrod as to 61 mum
 Lonable in anse or foreed landine. sund if we ehould go thoro I balieve we mhould inatat that thoy be removed. Is noena doubtrul if we con get ready in tino. Towdry in Wonday and we still have the ongine in the ahopa. It has beon testod, how evor, tha Xoweded aur ooppsetations. This nftecnoon ve will bry the asfforent propelines.

Under soparate cover I am aending seven picturea for
 11*tie "annectete* on P2ight orer water.

John and I just had a Piaree arfonont ovor the prom peliara uaed by the Wrathta. You ramember the whetch I ment after Eirat aee ng the rachino. Lator thes changed to straitht propelieras, wilch John saw; thorepore he inaistod that thay
 od ones. Before nonsing to blows we ancided that boy had used both.

A Pying machine to start and 21 ghe on the water is needed as wuch an one for uac on land. Joperinente nione thin lino, therefore, are in order and present grenter poasibilitios in pioneering than land flichta with afieh so rweh has alresdy been accoaplished. The experimente at Heinn Bhreagh denonstrate the poasibilities of atorting aith a hydroplane.

The queation arisen if the hydroplano ia necesaary. Why not lift out of the water by the use of the aeroplanou? Fith a puah of 250 poxnds a mpeed of 10 millea an hour mhould easily be attained without any lift fron the plance. At this speed, however, considersble lift would suroly be acquired, which would deerease the roalstance in the water and increase the apeed so that with the speed increased and the resistance decressed the lift of the planen should soon equal the veight of the machine, and aerlal filght begin.

The bonta to aupport the aerodrone on the water could be built aith rlat bottons at a proper shape to prem aent the minimus reaiatance both in the water and in the alr. The whole outrit would not be heavier than the running gear for land, and coula be buile atrong onough so withatand the shook of landing.

Following up this laca, wich was auccested by irr. MeCurdy, we lave utilized the short thrm we have been obliged to wait for the now motor in rigeing up two light boats and plaeing them under the ald June Bug, ae that than the opportundty arises we can see if our theory is correet.

$$
-20
$$

The nev water-coolod ongine for the eilvor-Part ean be used and the experiment made ulth a very amall oxpenctture of time or monoy. Camplete photographic recorda of the atructor ure aro being rade. G.ll.c.

```
Rg PROPZ Trans:
व. H. Curtis. \(^{\text {. }}\)
```

The Pour large propellers ahowi in the illuatratm ion are for the silver-Dart. 2,4 and bare vary ainilar, while Io. 3 is the nev deaign by hr. Mecurdy. Propeller yo. 2 shows the cocparative aize of that used on the June bug and the ones for the "Dart".

In the firat triala these propeliora will bo gourod 15 to 11 , that is, $\mathbf{2} 5$ revelations of the engine to 11 of the propeller.

No. 1-as foot dianeter, 16° at the tip; ereatast width 90^{3}; welght with elwaga a $1 / 4$ lbu.

Ho. 2 -June Bug propelier with wich lat flights wore maile.
Yo.smes foot dimater, 10° at the sip; greatoat width $91 / 4 \mathrm{~m}_{\text {; }}$ width at tip 6°; weicht a $1 / 4$ Lbs.

Yo.4-Sane se Ho. 1 excopt $1 / 2$ lba heavier.
Wo.5-muplicate of \%o.2.
a.H.c.

mastartos.

 002．23，2903．

 ased with tha addition of a set of angutar nytropimes mande ahlp show in phozograyh in thie ioulietin．In those experi－ zonts the honnak Beag whe bowed by whe＂就idoo＂．

気处。2．
Erricionoy B．0．Beduin 2.35
Pual 40 lba．Baldain 105 100 日 in 29 aec.

Eona．

Renarkste soat wowld hardyy olear horsols．

志思。
arrieimnay 6． 25 FuL2 60 1b． 200 min in 30 aec．
raad

230． 3.
Ladad

zhanryas－Bomt listod out of mater．

4os．

```
    Mxficienoy 6.75
    %u\\lambda 65 iba.
    200 m in 29 aec.
```


Menaricis：－Leat 2ifted ous of water

-8)

2ne 5

zerleleney 6.36
pall 125 2bs. 100 m in 36 aec.

Leng.

Bedwin 255
Balawin 265 3 CK 1220 p 235 $\frac{30 n 5}{8000}-\frac{285}{370}$

Renaricate Bout cid not mtay out of water long enough to ascortain ptal ist the time Galla.
(approwed by 7, WeB.) -

Boimn 3hroadi Oqte 27, 1903te_ Bir experimonts wore triad to-day with the Dhonnme Beag but the reaulta under whe anese. conditions varied ao greatiy that it is to be boliovod that socesthing mast be arong with the afying balenee. In the luat experinent the pull varied sroen 30 low going down the courae to 60 1be enaling back. Ab near as ean be jadgod the conditm Iono in both eagea wore fuat the anne. The ooncluation ia that the apring bainnee is aronge Wance theoe arporinonta are not noted. $\mathrm{Callal}_{\mathbf{c}}$
 008. 28, 1903.
 a now apring balnnoe was tried out. Fwo new ecta of iron hydroplshes were used (aee illuatration in thin Bullesin).

Remarkaz= Bont oncwe olonr of matent.

Tho artermeon experimenta ware sariced by the onarye Ing of two diatinguinhed passengora. In oxperiment 2 Dr. Beil, and in exparinont 3 Itra. Baldurin. A norxis ohair was constructed on Bhonrous Beag to enouro oonfort for the pasm sengera. Bo for as wo know Hra. Baldwin has the honor of boing the firat woran to be earried out of the mator on hydroplanes.

litr. Balduin is inesined to be onoouragod with the reaulta of the above axperimente. Ho believen that it will bo poasible to get the Dhoman Deag clour of the mator undor hex own ongine power, and Cor this ond his enorgios will be spent during the nazt fen duyw. G.t.B.
 with lar. Maldrin on bonsa, rowe entirely out of tho witer, aupportod upon her hydroplanea and propelled by her ovm motive power instend of boinc towod.

The rellowing note gives an nocount of the experimpnts in the words of Mr. Baldainte

3oinn Hhronth, Oot. 29, 2903:- Wo Gried the shonnas उoag with hor oth motor power and the new hydroplannes. Tie thrtant of the proe pellora was 95 lba and the ancie of incidonea of the 82 anes wan 5°. The boat weighed $1542 b s$, power pirnt 220 lbs and man $170 \mathrm{jbs}^{2}$ total 534.

The first wrrangement of hydroplntnos wes net aucceastul. The high line uf thrisst rem quiring the utter plane to be noved to a poaition juast about under the center of cravity onile the forvard plane had to be moved te within two reet of the bov. With this the machine tritmed woll and both bos and stern lifted clear of the water. The after hydroplane, howavar, gave way under the atrain and was vexy bodly buokled. parthy due to a GWy wire around her nose outting chrough a copper sheeting andsinking about on inch into the uood. The uriter set of planea was mo bediy swisted that wile it was being repaired ote cocided to try one of the old reta with a wooden plane below. An the surface was madier we put it a lisele farther ast but engan pound the boat to 1ift by the atern leaving the bow In the mater so wirtod the arter plane aheod agnin to a point about a poot behind the conter of gravity, and on trina the bous curse clour of the water fut onoe more menabed the arter hydrom plane. In ench eass the atcery is to fot sane Idea of apeed was apoilod by the breajecteten before the boat had ncquired her true upoed. P. wo. B.

In sive above nota ix. Haldwin atura litbie goout Bhe point thre irsorospect the ornooiceris suat, Thesely shat that

 propeliod onedrely by ne tovish propellar urdor yor oum motiv powns.

 sotive puver. Jin experyisont tha whe boedey sith aucooses.

Inta morts a sociciod and vigorous sbop corward. Wr.
 I na livitit as is tarlonbtodiy ruat, wha oundstion for rudie
 as amrarsaibican.

```
    Mu2duin's poraibtont ofrores will oulrinote in grivo
    ing to the worle ma invention of sumronse value chrough
ondoavora as oarnoat in the future as thay havo boon in the
past. G.il.H.
```


CUTTIMO EDONS: Ey Gardiner H . Bell.

Foch and every part of an aeradrome has its own pecullar function. The fires and etruts hold the constructe ion rigid, the austaining aurpaces suatein.

The vital irportance of minimising head resiatance is well known. Syeed 10 eaaential. Ini ghonesa is esantial. Since speed and liehtness are both asaential, the construction must necessarily be bulky, for in order to give li ht meterial strength it must havo bulis. It therefore is of grest necessity so to shape ench part that it nay be nade to offer 1 east resiatunce. Pace two objects of thc seme thickness and 3rea,

and let their ahapea be repreaenced as above. Drive each of then edgevise through the air parallel to the line of acvance so that they have no tendency to lift or depresa. The resiatance of No. 1 will be greater than that of No. 2. Now in the firat caae then forma 1 and 2 are being driven throun the air parallel to the line of advance they may be conaidered aing $2 y$ as parts of the construction fich are to be costen through the air with ablittle resiatance as possible. Hence W0. 2 has the beat shape because it offers the least resiatanee But take the second case and consider objects 1 and 2 as sustaining surfaces. how incline them at is alight angle to the Iine of advance. Phe increase of lift of Ho. 1 over the iff

No. 1 has greater liriing power. Is nos the theory of oute ti. E odges as mplied to tho santaining surfacea urong, for the wole function of the buataining aurfrees is to sustatn? Voalatance in connection with any ower part of bie macho ina is to be avoided for as reaiatunce it oniy retaria the apeed of the machine. But resistance in connection 181 ch suatnining aurfmoes mouns lift. Head resiatance can cauly be turned into lift by conatructing a projer curve in the sustaining aurfaces and offer it at a proper ungle to the line of advance.. Slope back your cuteing odges of your austaining aurfaces and you roduce realatanco. Display it perpendicular so the line of udvonoe and jour resiatance

(Fron Hamanondsport Herald, Oet. 28, 1908).

SILVRR-DART TIIISHERD.

To Go in tho Air this week - Many Aeronautical men expected The fourth flying machine of the Aorial Experiment Association is Pinished and in the tent on Stony Brook farm. The ongine is also completed and is being thoroughly tested at the shops. It is expected that a elight will be made tomay or tomorrow. The Association is receiving messages from all parts of the country for the date of the try-out, as a large number of aeronautical men will witness it.

A DOG TRIMS THT SILVIAR-DART.
(The following is from the Hamondmport Herald, Oct. 28,1908):
H. M. Chayplin'a pointer tried out the flying machine, Sil-ver-Dart, the other nieht in the tent on Stony Brook Parz. It failed to axpport him, even on the ground. He did not cone fine himself to the aviator's geat, but climbed out on the wings, the silken surfaces of which were not sufficiently strong at one point to aupport his weight. He fell through and abandoned further experimenta. The darnage was aoon rem paired.

THR OUTLOOK ON AVIATION: By Gardiner H. Bell.

It is interesting to note that Columbia University has organized a class in Aviation. At present there is but one student, but it is believed that others will soon take up the subject.

Charles J. Glidden seems to be the leading spirit of an airship line whose headquarters is to be in Boston. If reports are true Capt. Baldwin has received the contract for building the Company's machines.
A.V. Wilson a reaident of the State of Maine has an aeroplane which is built to sustain itself in the air without the use of a motor.

Gen. Allen is very anxious that Congress should appropriate $\$ 1,000,000.00$ to be used in carrying on experiments in the Arry.

The motor which Mr. Herring uses an his aerodrone is no less wonderful than the rest of his machine. It has pive cylinders, weighs 19 lbs., and develops 25 horse-power. The cylindera are arranged about a central shaft having a bore of about three inches. If these figures are correct it is the lightest engine for its horse-power in the world.

Count Zeppelin's dirigible has been re-conatructed and is again flying in Germany. Hot long after the accident to his dirigible in August a sum of $\mathbf{8 7 5 0 , 0 0 0 . 0 0}$ was raised by the people of Germany to help Zeppelin to continue his work. This gives us sone idea of the attitude dermany has taken towards navigation of the air.

In of trian a fevelnys sgo the Fagliah werodrone met with sn aceidert. It in betiovsd that the muchime muooveded In rising from the ground, but no ridight of consequenee tras nate.

It may bo interesting to note a coexntandasion from Paria, 配ich appeared in the Few Yort Tribune, Octeber 28s 1908.
 deoided 6 organize a big seroplane znoeting In the axtum of 2309, men tho Grand Priz 4'Avistion will be coemeted por. The value of this prize ia \$2000.00 and there will be 0 ther swerdia. Tits oouree vill be inid out ower the flat country in the Champaene or Beavice regian. The risght vili be jadged for both apeed and duration.

The month of SIovarther bringa forth ta rev aeronsube

One of the most important flights in the history of aerial navigation was made by Henri Farman in France on October 30, 1908. Paramn covered a distance of 20 miles in as many minutes. It is the first cross country filght on record, being made from Mourmelon to Rheims a distance of 20 miles.
M. Bleriot narrowly escaped a bad smash in endeavoring to climb for the French Altitude prize. The wires leading to the control had been crossed by mistake so that any manipulation on the operators part reversed the desired effect.

The interest of Germany seems to be centered chiefly in dirigible balloons at the present time. Prince Henry of Prussia amd the Fmperor himself are largely the cause of this interest, although Germany has always been inclined towards the lighter-than-air machines.

The Germans seem very anxious that Wright should make the talked of flight across the English Channel now that Farman has made the first cross country trip on record. But even from an unprejudiced point of view one cannot help feeling that to make such a trip would be a definite feat in the progress on aerial navigation.

Prance is in possession of a new dirigible balloon owned by Mr. Element of the French Clement-Bayard Pirm. The dirgible made its maiden voyage on October 30 carrying seven passengers. Throughout the trial the dirgible answered its helm perfectly. It is built after the model of the "Ville de Paris". Driven by a 120 H.P. bayard motor, its five meter wooden propeller makes about 350 revolutions per minute.

120. 302733_{3}

Thore aearss to be th good dond of vigor in the auroe
 zon the eirat prize in tho Chiongo Jhatoon racas, it the lawim

 peculiar qqaesicitos hich ould hovo adventage ovor that uapd 0lbernere.

At Lorris Park the nonoplane o! C.V. Willisns aeors to have crostod sorse interast mideh may bo worthy of notice. The follozing is quat ed from the Pos. Dismetch, 36. Lo. is, No. Oot. 21, 1908:-

While tho eprond of the planes in the Willians trabhine is 50 feet, the fremowork on mich the oanvas ia etretched is conatructe ad to Fuld buck on itsolf whon the machine is not in use, racking the monoplane much leas eu nborsorse than one flxed with planes and raore easily huncled on the ground.

The those wasteining aurfaco of tho tour plates is about 600 square foet and the velcht of the rochino, musing tho untaining proportion sbout one pound to the isquare toot. Thia is considerubly lewer than any other acroplinnos in practiess upe".

It 1 a roporeed tive Hrank J. Heinfelt of Dayton, Ohic, made h aucceauful flitho of 1300 feet with n monoplane a Oet. 27, 2908. 0. 1. . 8.

