CIHM
Microfiche Series
(Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the Images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée elvou pelliculée
Cover titie missing / Le titre de coi'verture manque
Coloured maps / Cartes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches eVou illustrations en couleur
Bound with other material /
Relié avec d'autres documents

\square
Only edition available /
Seule édition disponib.
Tight binding may cau:^n shaduws or distortion along interior margin / La rellure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires: Various pagings.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurées elVou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /Qualité inégale de l'impression

\square
Includes supplementary material /
Comprend du matériel r nolémentaire
 tissues, etc., have telmmed to ensure the best possible image / Les oages totalement ou partiellement obscurcios un feuillet d'errata, une pelure, etc., ont été iilmées à nouveau de façon à obtenir la meilleure image possible.Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possible.

This item is filmed at the reduction ratio checked below $/$ Ce document est filmé au taux de réduction indiqué cl-dessous.

The copy filmad hera has baen reproduced ihanks 10 the generosity of:

National Library of Canada

The imegas appouring here ore the best quality possible considaring the condition and lagibility of the originel copy end in keaping with the filming contrect specificetions.

Onginal copies in printed peper covers ere fllmed beginning with the front cover and ending on the last pege with d prineed or illustreted impres. sion, or the beck cover when appropriete. All orner original coples are filmud beginning on the first pege with a printed or illustreted impresston. end ending on the last pege with eprinted or illustreted impression.

The leat racordud freme on eech microfiche shall contain the symool - (meaning "CONTINUED"), or the symbal ∇ (meuning "END"). whichover applies.

Maps, plates, chars, utc., may be filmed at diffarent reduction ratios. Those too large to be entiraly included in one exposura are filmed beginning in the upper lett hand cornar. loft so right and rop to bottom. as mony tromes as raquirad. The following diagrams illuatrate the method:

L'exemplaire filmd fut reproduit gràce a la gendrosite de:

Bibliothèque nationale du Canada

Les imagas suiventas ont ote raproduites suac le plus grand soin, compre tenu de te condition et de le nartate de l'exemplaira tilme. at en conformitt ovec les conditions du contrat de filmage.

Les examplairas origineux dont to couvartura an pepier ese imprimas sont filmds an commencant pur te promior plas of en rerminent sort par ta dernidre pege qui comporte una amprainte dimprasaion ou dillustration. soir per la second plat. selon lo cas. Tous les surres exemplairas origineux sone filmas en commençant par la premidre pege qui comporte une empreinte d'impression ou d'illustresion et an terminant par la dernitre pege qui comporta una relle emprointe.

Un des symboles suivents apparsitra sur te darnitre imsge de chaqua microficha. salon ia cas: le symbole \rightarrow signitia "A SUIVFE". Is symbole ∇ signifie "FIN".

Las cartes, planchas, tablasux. atc., pauvent atre filmds a des toux de reduction differents. Lorsque le documens est trop grand pour etre raproduir on un seul clicht. il est filmo a parir de l'angle suptrieur gaucha. de gauche a aroise. et de haur an bas. en pranant to nombra d'imeges necassaire. Les diagrammas suivants lllugtrent la mernode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 Eost Main Street
Rochester, New York 14609 USA
(716) 482 - 0300 - Phone
(716) 288 - 5989 ~ Fox

ADVANCED GEOMETRY
 FOI:

IIGBII SCHOOLS

SYNTt ETIC AND ANALYTICAI.

PAKT I.-SVATHETKC GBUMETKY
IART H.-ANAL.YTICAI, (シ:OMETKよ
in
A. H. McDOUGALL, B.A., L.L.I).

Princefai Ottiwa Culbuiate Instituth

SECOND EDITION
LEEVISED AND AMPLIEIED

TORONTO
THE COPP, CLARK COMPANY, LIMITED

$$
\begin{aligned}
& \text { QA44 } \\
& M 25 \\
& 191 \%
\end{aligned}
$$

Copyright, Canaita, 191!, by Tile Copf, Clark Company, Limitrd,

PREFACE TO THE SECOND EDITION

In this edition changes have been made in Part I. on the suggestion of teachers who have kindly pointed out difliculties experienced ly their pupils in using the original edition. The exercises have been rearranged and, in general, divided into two sections. Those marked (a) are intended for a first reading, and are sufficient for candidates for Entrance to the Faculties of Education, while the sections marked (b) are more suitable for candidates for honours and scholarships.

Demonstrations have been re-written, diagrans added, and notes given suggesting constrnctions or proofs. Some typical solutions ilhstrate methods to be used in maxima and minima.

In many cases, e.g., loci, the difficulties have heen diminished. Certain exercises in the First Edition were stated as problems. Uuder the given conditions the students were asked to find the required solution. These exercises are here changed to theorems. With the same data the conclusion is stated and the proof only is to be discovered.

In both parts considerable additions suitable for honour candidates have been made to the miscellanerous exercises.

Acknowledgments for valuable assistance received from him are due to Mr. I. T. Norris, Mathematical Master of the Ottawa Collegiate Institute, and to the teachers who have given an encouraging approval of the book as well as assistance in making it more nseful.
(Ottawa, Fohuary, 1919.

CONTENTS

Cilapter I
Theorems of Menelats and Ceya 1
The Nine-Point Circle 11
Simpson's Line 13
Areas of Rectangles 18
Radical Axis. 23
Chapter II
Medial Section 30
Miscellaneous Theorens 37
Similar and Similarly Situatei Polygons 39
Chapter III
Harmonic Ranges and Pencils 43
The Complfte Quadillateical 49
Poles and Polars. 50
Maxima and Minima 60
Miscellaneous Exericises
Loci. 68
Theorems 73
Problems 82
Pakt I.-Synthetic Geometry

SYNTHETIC GEOMETRY

CHAPTER I

Theorems of Me elaus and Ceva

1. Menelaus' Theorem:-If a transversal cut the sides, or the siles produced, of a triangle, the product of one set of alternate segments taken in circular order is equal to the product of the other set. (Note.-The transrersal must cut two sides and the third side produced, or cht all three produced.)

Fia. 1.

Fig. 2.

A transversal cuts the sides $B C, C A, A B$ of the \triangle $A B C$ in the points D, E, F respectively, then

$$
A F \cdot B D \cdot C E=F B \cdot D C \cdot E A \text {. }
$$

Draw $\mathbf{A X}, \mathrm{BY}, \mathbf{C Z} \perp$ to the transversal.
From similar $\triangle s:-$

$$
\begin{aligned}
& \frac{A F}{A X}=\frac{A X}{}, \\
& \overline{B B} Y^{\prime} \\
& B D=B Y \\
& \overline{D C}=\overline{C Z} \\
& C E=\frac{C Z}{A X} \\
& E A
\end{aligned}
$$

By multiplication,

$$
\begin{gathered}
\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}=1, \\
\text { and } \therefore A F \cdot B D . C E=F B . D C . E A . \\
\text { (Hssroricsi Nomt. }- \text { Menelaus, a Greek, lived in Alexandria, Egypt, about } 98 \text { A.D.) } \\
1
\end{gathered}
$$

2. Converse of Menelaus' Theorem:-If, in $\triangle A B C$ on two of the sides $B C, C A, A B$ and on the third produced, or if on all three produced, points D, E, F respectively be taken so that $A F$. $B D$. $C E=F B$. DC. EA, the points D, E, F are collinear.

Fia. 8.

Fia. 4.

Join EF, anl produce EF to cut BC at \mathbf{G}.
$\because F E G$ is al st. line,
$\therefore \mathrm{AF} . \mathrm{BG} . \mathrm{CE}=\mathrm{FB} . \mathrm{GO} . \mathrm{EA}$.
Put AF. BD. CE = FB. DC. EA, hy hypothemis:

$$
\therefore \text {, dividing, } \frac{\mathrm{BG}}{\mathrm{BD}}=\frac{\mathrm{GC}}{\mathrm{DC}} \text {; }
$$

or, by alternation, $\frac{B G}{G C}=\frac{B D}{D C}$.
\therefore G coincides with D. (O.H.S. Geometry, $\S 1 \geqslant 1$.)
$\therefore \mathrm{D}, \mathrm{E}, \mathrm{F}$ are collinear.
3. Ceva's Theorem:-If from the vertices of a triangle concurrent straight lines be drawn to cut the opposite sides, the product of one set of alternate segments taken in circular order is equal to the product of the other set.
(Note.-D, E and F mint be on the chree sides, in on one sile amb on thin othere tiro prombucet.)

Fio. 5.

Fig. 6.
$A O, B O, C O$ drawn from the vertices of $\therefore A B C$ cut $B C, C A, A B$, at D, E, F respectively, then

$$
A F \cdot B D \cdot C E=F B \cdot D C \cdot E A .
$$

$F O C$ is a transversal of $\triangle A B D$,
$\therefore A F . B C . D O=F B . C D . O A$.
$B O E$ is a transversal of $\triangle A D C$,
$\therefore A O . D B . C E=O D . B C . E A$,
By multiplication, and division by DO, OA aml EC,

$$
A F \cdot B D \cdot C E=F B \cdot D C \cdot E A
$$

(For another prof of this theorem see O.H.S. Geometry, § 122, Excreises 12 and 14.)
(IIstorical Note.-Gioranni Ceva, an Italian engineer, died in 1734 A.D.)
4. Converse of Ceva's Theorem:-If, in $\triangle A B C$, on the three sides $B C, C A, A B$, or if on one of these sides and on the other two produced, points D, E, F respectively be taken so that $A F$. $B D . C E=F B . D C, E A$, the lines $A D, B E, C F$ are concurrent.

EYG. 8.

Draw BE, CF and let them cut at O. Join AO and let it cut BC at G.
$\because A G, B E, C F$ are concurrent,
$\therefore A F$. $B G . C E=F B . G C . E A$,
But AF. BD.CE FB. DC. EA, hy hypothesis.
\therefore, dividing, $\quad \frac{B G}{B D}=\frac{G C}{\overline{D C}} ;$
or, ly alternation, $\frac{\mathrm{BG}}{\mathrm{GC}}=\frac{\mathrm{BD}}{\mathrm{DC}}$.
\therefore G coincides with D.
$\therefore A D, B E, C F$ are concurrent.
j. The perpendiculars from the vertices of a triangle to the opposite sides are concurrent.

Fio. 0.

Fiu. 10.

In $\triangle A B C$, draw $A X \perp B C, B Y \perp C A, C Z \perp A B$.
To prove that $A X, B Y, C Z$ are concurrent.

$$
\begin{aligned}
& \because \quad \therefore A \therefore C, I \triangle A Y B \text {, } \\
& \therefore \quad \frac{A Z}{Y A^{-}}=\frac{C A}{A B} . \\
& \text { Similally, } \quad \frac{B X}{Z B}=\frac{A B}{B C} ; \\
& \text { and } \quad \frac{C Y}{X C}=\frac{B C}{C A} \text {. } \\
& \therefore \quad \frac{A Z}{Y A} \cdot \frac{B X}{Z B} \cdot \frac{C Y}{X C}=\frac{C A}{A B} \cdot \frac{A B}{B C} \cdot \frac{B C}{C A}=: 1 . \\
& \therefore \quad A Z \cdot B X \cdot C Y=Z B \cdot X C \cdot Y A \text {. } \\
& \therefore \text { by } \$ 4, A X, B Y, C Z \text { are concurrent. }
\end{aligned}
$$

6. The point where the $\perp s$ from the vertices of a Δ to the opposite sides intersect is called the orthocentre of the Δ. The Δ formed by joining the feet of these $\perp \mathrm{s}, X, Y, Z$ in Figures 2 or 10, is called the orthocentric, or pedal, \triangle.

SYNTHETIC GEOMLTIGY

7．－Exercises

（i）
1．Show，from tho converse of Deva＇s Theorem，that the merlins of $n \triangle$ wo concurrent．

2．In $\therefore A B C$ ，the bisectors of the $\angle N A, B, C$ out BC， $C A, A B$ at D, E, F respectively，Show that $\mathbf{A F}=\frac{b c}{\ell+6^{\circ}}$

If $a=25, b=35, c=20$ ，show thant $A F$ ．BD．CE $=$ 2062 2゙が，

3 Show，from the converse of Cuts Theorem，Hint the bisector＇s of the $L s$ of a \triangle are concurrent．

4．In $\therefore A B C$ ，the，bisector of the interior \angle Hi A and of the extminy 4 at B，C cent BC，CA，AB at D，E，F respectively：st ow that $\mathbf{A F}=\frac{\operatorname{lo}}{1, a}$ ．

If $a=44, b=53, c=22$, show that $\mathbf{A F} \cdot \mathrm{BD} \cdot \mathrm{CE}=$
$665 \frac{3}{5}$ ．
5 Show，from the converse of Clevis＇s Theremin，that the bisector of the \leq at one vertex of $a \leq$ and the bisectors of the exterior $\angle s$ at the other two verite are concurrent．

6．In $\triangle A B C, A X, B Y, C Z$ the \perp s to $B C, C A, A B$ intersect at O ．Show that：－
（II）rect． $\mathrm{AO} . \mathrm{OX}=$ rect． $\mathrm{BO} . \mathrm{OY}=$ rect． $\mathbf{C O} \cdot \mathrm{OZ}$ ；
（b）rect．$A B . A Z=$ rect．$A O \cdot A X=$ rect．$A C . A Y$ ；
（•）if $A X$ meet the circumscribed circle of $\angle A B C$ at K ， $\mathbf{O X}=\mathbf{X K}$ ；
（l）$\angle A Y Z=\angle B=\angle A O Z$ ；
（r）$\therefore \mathrm{S} A \mathbf{A}, \mathbf{B Z X}, \mathbf{C X Y}, \mathbf{A B C}$ we simar ；
（f） $\mathbf{A X}, \mathbf{B Y}, \mathbf{C Z}$ bisect the $\leq \mathrm{s}$ of the pedal $\triangle X Y Z$ ；
(g) of the four points A, B, C, O ，each is the orthocentre of the \triangle of which the other three points are the vertices；
(ii) if a \triangle LMN he formed by drawing through A, B, C lines $M N, N L, L M \| B C, C A, A B$ respectively, O is the circumseriled centre of \triangle LMN;
(i) if S be the centre of the circmms ibed circle of \triangle $A B C, A S, B S, C S$ are respectively $\perp \mathbf{Y Z}, \mathbf{Z X}, \mathbf{X Y}$ the sides of the orthoccutric \triangle.
?. In $\triangle A B C$, the inseribed cirelo tourlies BC, CA AB at D, E, F sespectively, and $s=$ the semi-perimeter. Show that $A F=s-a$.

If $a=43, b=31, c=26$, show that $A F . B D . C E=3192$.
8. The st. lines joining the vertices of $n \triangle$ to the poinof contact of the opposite sides with the inseriber are concurrent.
9. In $\triangle A B C$, an escribed eircle touches $B C$ at D and $A B, A C$, produced at F, E respectively. Show that $F B=$ $s-c$.

If $a=40, b=30, c=50$, show that $\mathbf{A F}, \mathbf{B D} . \mathbf{C E}=18000$.
10. The st. lines joining the vertices of a \triangle to the points of contact of the opposive sides with any one of the eseribed circles aro concurrent.
11. O is a puint vithin the $\triangle A B C$ and $A O, B O, C O$ pronheed cut BC, CA, AB at D, E, F respectively. The circle through D, E, F cuts $B C, C A, A B$ again at P, Q, R. Show that AP, BQ, CR are coneurrent.

(l)

12. The biscetors of $\angle S B, C$ of $\triangle A B C$ cut $C A, A B$ at E, F respectively. $F E, B C$ produced meet at D. Prove that $A D$ bisects the ceterior \angle at A.
13. The points where the bisecturs of the exterior $\angle s$ at A, B, C of $\triangle A B C$ meet $B C, C A, A B$ respectively are collinear.
14. $A B, C D, E F$ are three $\|$ st. lines. $A C, B D$ meet ab $\mathrm{N} ; \mathrm{CE}, \mathrm{DF}$ at L; EA, FB at M. Prove that L, M, N are collinear.
15. (a) If two Δs are so situated that the st. lines joining their vertices in pairs are concurrent, the intersections of pairs of corresponding sides are collinear:Destryues' Theorem.
(Note.-ABC, abc the two $\triangle s ; A r, B b, C c$ meeting at O; $\mathbf{B C}, b c$ at $\mathrm{L} ; \mathbf{C A}, c a$ at $\mathrm{M} ; \mathbf{A B}, a b$ at \mathbf{N}. Using the $\triangle \mathrm{s}$ OBC, OCA, OAB and the respective transversals $b c \mathrm{~L}, a c \mathrm{M}$, $a b \mathrm{~N}$ prove that $\mathrm{AN} . \mathrm{BL} . \mathrm{CM}=\mathrm{NB} . \operatorname{LC} . \mathrm{MA}$.)
(b) State and prove the converse of (a).

(Note.-BC, bc meetatL; CA, ca at M ; AB, $u b$ at \mathbf{N} and L, M, N are collinear. Produce $\mathbf{A} a, \mathbf{B} b$ to meet at O. To show that $\mathbf{C} c$ pasisiss through \mathbf{O}. $\mathbf{A}(\mathbb{M}, B / \boldsymbol{L}$ are $\triangle s$ having $A B, a b, M L$ concurrent at N ; corresponding sides $a \mathbf{M}, b \mathrm{~L}$ meet at c; MA, LB at C; Ar , $\mathrm{B} b$ at O . \therefore, by (1), c, C, O are collinear, i.e., A A, $\mathrm{B} b, \mathbf{C} c$ are concurrent.)

Fig. 11.
(flimmifeal Nute:-Girard Hesargues (1593-1662) was an architect and engineer of Lyous, trabce.)
16. The inseribed circle of $\triangle A B C$ touches the sides $B C, C A, A B$ at D, E, F respectively; $E F, F D, D E$, produced meet $B C, C A, A B$ respectively at L, M, N. Show that L, M, N are collinear.
(Note.-Use Ex. 8 and Ex. 15 (i).)
17. Tangents to the circumcircle at A, B, C, meet $B C$, $C A, A B$ respectively in collinear points.
(Note.-Use Ex. 8 and Ex. 15 (a).)
18. Given the base and vertical \angle of a \angle, fiml the locus of its orthucentre.
19. If the base $B C$ and vertical $\angle A$ of a $\triangle A B C$ be given, and the base be trisected at D, E, the locus of the centroid is an are containing an L equal to $\angle A$, and having DE as its chord.
20. $A B C$ is a $\triangle, X Y Z$ its pedal \triangle. Show that the respective intersections of $B C, C A, A B$ with $Y Z, Z X, X Y$ are collinear.
21. Where is the orthocentre of a $\mathrm{rt} .-\angle \mathrm{d} \triangle$?
22. If one escribed circle of $\triangle A B C$ touch $A C$ at F and $B A$ produced at G, and another escribed circle touch $A B$ at H and CA produced at $K, F H, K G$ prolnced cut $B C$ produced in points equidistant from the middle point of BC.
(Note.-Use §1, taking tho two transversals FH, KG of $\triangle A B C$ and multiplying the results.)
23. If O is the orthocentre, S the eircumeentre and i the centre of the inscribed eircle of $\triangle A B C$, prove that IA bisects \angle OAS.
8. The distance from cach vertex of a triangle to the orthocentre is twice the perpendicular from the circumcentre to the side opposite that vertex.

O is the orthocentre, S the circuncentre of $\triangle A B C$; $S D$ is $\perp B C$.

To sliow that $A O=$ twice SD.

Draw the diameter CSE, join BE, EA.

Ls EBC, EAC being Ls in semicircles are rt. Ls.
$\therefore E B A O$ and EA BY.
$\therefore E A O B$ is a ligm, and $E B=A O$.
But $\because S$, D are mildle points of EC, BC,
$\therefore E B=$ twice $S D$,
and $\therefore A O=$ twice $S D$.
9. $A B C$ is a \triangle having $A X \perp$ $B C, A D$ a median, O the orthocentre, and S the circmuscribed centre. Show that $O S$ cuts $A D$ at the centroid G. (Use § 8.) Show also that \mathbf{G} is a point of trisection in SO.

A rencral enmeriation of these results may be given as follows:-

Fig. 13.

The Orthocentre, Centroid, and the centre of the Circumscribed Circle of a \triangle are in the same st. line, and the Centroid is a point of trisection in the st. line joining the other two.

The Nine-Pont Circle

10. The three middle points of the sides of a triangle, the three projections of the vertices on the opposite sides, and the three middle points of the straight lines joining the vertices to the orthocentre are all concyclic.

Fig. 11.
Let $A B C$ le a $L, A X, B Y, C Z$ the $-s$ from A, B, C to $B C, C A, A B$ res, the midhle points of $A O, B O, C O$ ropretively, D, E, F the middle points of $B C, C A, A B$ respectively:

It is repuired to show that the nime points, $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, $\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are coneyclic.

Find S, the circuncentre. Drיy SO, SD, SA. Thisect SO at K. J:aル KL.
$\because K$, L are the middle printe of $S O, O A$;
$\therefore K L=$ half of $S A$;
and \therefore the circle described with contre K and radius equal to half that of the circumeirele passes throngin L.

Similarly this circle passes through \mathbf{M} and \mathbf{N}.
J)raw DK.

In $\triangle S S K D, O K L\left\{\begin{array}{rr}S D= & L O, \\ S K & =R O, \\ \angle D S K & =\angle K O L,\end{array}\right.$
(SD || LO);
$\therefore \quad D K=K L$ anci $\angle S K D=\angle O K L$.
$\because \quad D K=K L$; the circle with centre K and mind KL passes through D.

Similarly this circle passes through E and F.
$\because \quad \angle S K D=\angle O K L$, and SKO is a st. line;
$\therefore \quad$ LKD is as st. line
$\therefore \quad K$ is the middle point of the hypotennse of the rt. $-\angle 1 \triangle$ LDK ;
\therefore the circle with centre \mathbf{K} and radins KL passes through X.

Similarly this circle passes through Y and Z.
\therefore the nine points $L, M, N, D, E, F, X, Y, Z$ are concyclic.

Cor. 1:-The centre of the N.-P. circle is the middle point of the line joining the circmacentre to the orthocentre.

Cor. S:-The diameter of the N.-P. circle is enpall 10 the ralius of the cirmurircle.

Simpson's Tine

11. If any point is taken on the circumference of the circumscribed circle of a triargle, the projections of this point on the three sides of the triangle are collinear.

Let P be any point on the circle $A B C, X, Y, Z$, this projections of P on $B C, C A, A B$ respectively.

It is reruired to show that $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ are in the same st. line.

Join ZY, YX, PC, PA.
$\angle \mathrm{PYC}=\angle \mathrm{PXC}, \therefore \mathrm{P}, \mathrm{Y}$, X, C, are concyclic, and \angle $\mathbf{X Y C}=\angle X P C$.

Fig. 16.
$\angle A Z P+\angle A Y P=2 \mathrm{rt} . \angle \mathrm{s}, \therefore \mathrm{A}, \therefore \therefore \mathrm{P}, \mathrm{Y}$ are concyclic, and $\angle A Y Z=\angle A P Z$.

APCB is a cyclic quadrilateral,

$$
\therefore \angle A D C+\angle B=2 \mathrm{rt} . \angle \mathrm{s} .
$$

In quall? ilateral BZPX,

$$
\angle \mathrm{s} \text { BZP, BXP are rt. } \angle,
$$

$$
\angle \mathrm{ZPX}+\angle \mathrm{B}=2 \mathrm{rt} . \angle \mathrm{A} .
$$

Hance $\angle Z P X=\angle A P C$, and as the prart $A P X$ is commun to these $\angle \mathrm{s}$,

$$
\begin{aligned}
& \angle A P Z=\angle X P C . \\
& \therefore \angle A Y Z=\angle X Y C, \text { and } \\
& \angle X Y C+\angle C Y Z=\angle A Y Z+C Y Z=2 \mathrm{rt.} \triangle \mathrm{~s} \\
& \therefore X Y \text { and } Y Z \text { are in the same st. line. }
\end{aligned}
$$

(IIIstorica Notr., - Robert Simpson (1087-1768) was Professor of Mathematics in the University of (ilasgow.)

12.-Exercises

 (a)1. P. the orthocentre of $\triangle D E F$, and the $\| \mathrm{gm}$ EPFG is completed. Show that DG is a diameter of the circle circumscribing DEF.
2. $A B C$ is a $\triangle ; L, M, N$ the centres of its escriberl circles. Show that the circle circumseribed about $A B C$ is the N.-P. circle of \triangle LMN.
3. In $\triangle A B C, 1$ is the centre of the inscribed circle, L, M, N the centres of the escribed circles. Prove that the circuncircle of $\triangle A B C$ biscets IL and LM.
4. O is the orthocentre of $\triangle A B C$. Prove that $\triangle S O B C$, ABC have the same N.-P. circle.
5. Given the base and vertical $<$ of a Δ, show that the locus of the centre of its N.-P. circle is a circle having its centre at the middle point of the base.
(Note.-Using Cor. 2 of $\S 10$ show that the distance of K from the fixed point D is constant.)
6. If the projections of a point on the sides of a \triangle are collinear, the point is on the circumeircle of the \angle.
7. The three circles which go through two vertices of a Δ and its orthocentre are each equal to the circle circumscribed about the \triangle.
8. The \perp from the middle point of a side of $a \quad \therefore$ on the opposite side of the pedal \triangle bisects that side.
9. Construct a A given a vertex, the circumcircle and the orthocentre.
(Note. - Describe the circumcircle and produce AO to cut it in K, where A is the given vertex and O is the orthocentre. Draw the rt. bisector of OK meeting the circle in B, C. See § 7, Ex. 6 (c).)
10. DEF is a \triangle and O is its orthocentre. Abont DOF a circle is described and EO is produced to meet the cirumference at P. Slow that DF bisects EP.
11. 1 is the centre of the inscribed circle of $\triangle A B C$, and $\mathrm{Al}, \mathrm{BI}, \mathrm{Cl}$ are prowhed to meet the circumeircle at $\mathrm{L}, \mathrm{M}, \mathbf{N}$. Prove that I is the orthocentre of $\triangle L M N$.
12. 1 is the centre of the inscribed circle of $\triangle A B C$, and the circmucircle of $\triangle I B C$ cuts $A B$ at D. Prove that $A D=A C$.
13. In $\triangle A B C$, the \perp^{s} from A, B to the opposites sides mect the circumcircle at D, E. Show that arc $C D=\operatorname{arc} C E$.
14. $X Y Z$ is the peilal \triangle of $\triangle A B C$. Prove that A, B, C are the centres of the escribed circles of $\triangle \mathrm{XYZ}$.
15. X, Y, Z are the projections of A, B, C on $B C, C A$, AB. Prove that
(i) $Y Z \cdot Z X=A Z \cdot Z B$;
(ii) $\mathbf{Y Z}, \mathbf{Z X}, \mathbf{X Y}=\mathbf{A Z}, \mathrm{BX}, \mathbf{C Y}$.
16. Given the base and vertical \angle of a \angle, w find the loci of the centres of the escribed circles. Let BC be the bise and BDC a segment of a circle containing $\angle B D C=$ the given vertical L. Draw the rt. bisector of $B C$ cutting the circle BDC at D, E. Prove the luci are ares on the chord $B C$ and having their centres at D, E.
17. Construct a \triangle having given the hase, the vertical $<$ and the radius of an escribed circle. (Two cases.)
(Note.-Construct the loci as in Ex. 16. In one case, on the are with centre E, find the point \mathbf{I}_{1} such that its distance from $B C$ equals the given ralius. Draw $I_{1} E$ and produce to cut the arc BDC at A. ABC is the required \triangle.

In the other case on the are with centre D find the point I_{2} such that its distance from RC equals the given radius. Draw $I_{2} D$ cutting the arc EDC at A^{\prime}. $A^{\prime} B C$ is the required \triangle.)
18. O is the orthocentre of $\triangle A B C$, and D, E, F are the circumeentres of $\triangle S B O C, C O A, A O B$. Show that
(a) $\triangle D E F \equiv \triangle A B C$;
(b) The orthocentre of each of the $\triangle S A B C$, DEF is the cireumeentre of the other ;
(c) The two $\triangle s$ have the same N.-P. circle.
(Note.-The rt. bisectors of AO, BO, CO form the sides of $\triangle D E F$. Let L be the middle point of AO. Ls from D, E on $B C, C A$ respectively meet at S the circumcentre of $\triangle A B C$. DS biseets BC at G. Prove $:$ LEO $=$ $\angle O C A=\angle$ GCS and comparing $\angle s$ OLE, GSC, using §8, show $L E=G C$. Similarly $L F=B G$, so that $F E=B C$, ete.)
19. Find a point such that its projections on the four sides of a given quandiateral are collinear.

Fı. 10.
(Noti.-ABCD the given qualrifateral; produce the opposite sides to mect at E, F. Dencrii, cincles about $\triangle S E B C, F C D$ meeting again at P. P is the required point.
20. In tho $\triangle A B C$, the \perp from A to $B C$ is proluced to cut the circumcircle at P. Prove that the Simpson's Line of P is $\|$ to the tangent to the circumcircle at A.
21. P is any point on the circumcircle of $\triangle A B C$. The Is from P to the sides of the \triangle meet the circle at D, E, F. Prove that $\triangle D E F \equiv \triangle A L C$.
22. P is any point on the circumcircle of a $\triangle A B C$ of which O is the orthocentre and X the projection of A on $B C$; $A X$ prosluced cuts the circumcircle at D and PD cuts $B C$ at E. Prove that the Simpson's Jine of \mathbf{P} hisects PE, is $\| O E$, and bisects $O P$.
(Note.-ML cuts PE at F. Draw PC.
$\angle \mathrm{FPL}=\angle \mathrm{FDA}=\angle \mathrm{PCA}=$ \angle PLF;
$\therefore F L=F P$. Then F is the midelle point of the hypotenuse of the $\mathrm{rt} .-\angle \mathrm{d} \triangle \mathrm{PLE}$.
\therefore Simpson's Line lisects PE.
$\because \angle F L P=\angle X D E ; \quad \angle F L E$ $=\angle X E D$. But $\angle O E X=\angle X E D$ (See § 7, Ex. 6 (c).

Fia. 17.
$\therefore \angle O E X=\angle F L E$, and LM $\| O E$.
In \triangle POE, LM $\|$ OE and bisects PE; \therefore LM bisects PO.)
Give a general statement of the last of the three results in Ex. 2?.

Areas of lier tavides

13. If from the vertex of a triangle a -raight line is drawn perpendicular to the base, the rectangle contained by the sides of the triangle is equal to the rectangle contained by the perpendicular and the diameter of the circumcircle of the triangle.
$A X \perp B C$ aml $A D$ is a diane-

Fig. 13. ter of the circumcircle of $\triangle A B C$.

To prove that
rect. $A B . A C=$ rect. $A X, A D$. Juin DC.

$$
\begin{array}{rl}
\because \angle A X B & =\angle A C D, \\
\because & \angle A B X \\
=\angle A D C . \\
\therefore \triangle A X B & \| A C D . \\
\therefore \quad A B & A X \\
A C
\end{array}
$$

\therefore rect. $A B . A C=$ rect. $A X . A D$.
14. If the vertical angle of a triangle is bisected by a straight line which also cuts the base, the rectangle contained by the sides of the triangle is equal to the rectangle contained by the segments of the base together with the square on the straight line which bisects the angle.
$A B C$ is a \triangle and $A D$ the bisector of $\angle A$.

It is required to show that the rect. $A B . A C=$ rect. $B D . D C+A D$.

Circunscribe a carcle about the $\triangle A B C$. Produce $A D$ to

Fio. 19. cut the circumference at E. Join EC.

In $\triangle S B A D, E A C \angle B A D=\angle E A C, \angle A B D \angle A E C$,
$\therefore \angle A D B=\angle A C E$ and the $\angle A$ ary similar;
hence

$$
\frac{B A}{A D}=\frac{E A}{A C^{\prime}}
$$

$$
\text { and } \therefore B A, A C=A D . E A .
$$

But $A D . E A=A D(A D+D E)$

$$
\begin{aligned}
& =A D^{2}+A D \cdot D E \\
& =A D^{2}+B D \cdot D C .
\end{aligned}
$$

\therefore rect. $B A . A C=$ rect. $B D . D C+A D$.
15. Ptolemy's Theorem:-The rectangle contained by the diagonals of a quadrilateral inscribed in a circle is equal to the sum of the rectangles contained by its opposite sides.

This throrem is a particular cuse of that of $\$ 1 \%$.

ABCD is a quadrilateral inseribed in a circle.

To prove that
$A C \cdot B D=A B \cdot C D+B C \cdot A D$.
Make $\angle B A E=\angle C A D$, and prorluce $A E$ to cut $B D$ at E.

Fia. 20.
$\because \triangle A B E \mid \therefore A C D$,
$\therefore \quad \frac{A B}{A C}=\frac{B E}{C D}$.
$\therefore \quad A B \cdot C D=A C . B E$.
$\because \triangle A D E \mid: \triangle A B C$,
$\therefore \quad \frac{A D}{A C}=\frac{D E}{B C}$.
$\therefore \quad \mathrm{AD} . \mathrm{BC}=\mathrm{AC} . \mathrm{DE}$.
$\therefore A B \cdot C D+A D \cdot B C=A C \cdot B E+A C \cdot D E$

$$
=A C(B E+E D)
$$

$$
=A C \cdot B D .
$$

[^0]16. The sum of the rectangles contamed by the opposite sides of a quadriateral is mot less than the rectangle contained by the diagonals.

Fia. 21.
$A B C D$ is aquadrilateral, $A C, B D$ its diatgomals.

Repuimen to show that $A B \cdot D C+A D \cdot B C$ is not less thith AC. BD.

Make $\angle B A E=\angle C A D$ and $\angle A D E=\angle A C B$. Juin Eb.
$\triangle \mathrm{SBAC}, \mathrm{EAD}$ aresimilar,

$$
\begin{array}{ll}
\therefore \quad & B A= \\
\therefore \quad & C A \\
\text { and } & \angle B A E \\
& \angle C A D,
\end{array}
$$

$\therefore \therefore B A E, C A D$ are also similar.
From the similar $\triangle S$ BAE, CAD
$\frac{A B}{B E}=\frac{A C}{C D}$ tund $\therefore A B \cdot C D=A C . B E$.
From the similar $\triangle s$ BAC, EAD,

$$
\frac{B C}{A C}=\frac{E D}{A D^{\prime}} \text { :unl } \therefore B C \cdot A D=A C \quad E D .
$$

Consequently $A B \cdot C D+B C \cdot A D=A C(B E+E D) ;$
but $B E+E D$ is not $<B D$;
$\therefore A B \cdot C D+B C \cdot A D$ is not. $A C . B D$.

17.-Exercises

(n)

1. If the exterior vertionl $\angle A$ of $\angle A B C$ be bisected by a line which cuts $B C$ pronluced at D, rect. $A B, A C$ rect. 8D. CD - AD .
(Note.-Draw the circle ACB. Produce DA to cut the circmuference at \mathbf{E}. Datw EC. Prove $\triangle B A D \| E A C$, and that $\therefore \frac{B A}{A D}=A C$. Then $B A \cdot A C=A D \cdot E A=A D$ $(E D-A D)=A D \cdot E D-A D^{2}$ $\left.=B D . C D-A D^{2}.\right)$

Fio. 2 2.
2. Draw $\triangle A B C$ having $a=81 \mathrm{~mm} ., b=60 \mathrm{~mm} ., c=30$ min. Bisect the interior and exterior $\angle s$ at A and produce the lisectors to mect BC and BC proluced at Dand E. Measure AD, AE; and check your results by calculation.
3. If the intermal and extermal bisectors of $\angle A$ of $\triangle A B C$ meet aC at L, M respectively, prove

$$
L M^{2}=B M \cdot M C-B L \cdot L C .
$$

4. If R is the ralius of the circumeirele and \triangle the area of $\triangle A B C$, prove that

$$
\mathrm{R}=\begin{aligned}
& a h c \\
& 4 \triangle
\end{aligned}
$$

If the sides of a Δ are $39,42,45$, show that $\mathbf{R}=24 \frac{3}{8}$.
5. P is any point on the circumcircle of an equilateral $\triangle A B C$. Slow that, of the three distances $P A, P B, P C$, one is the sum of the other two.
(b)
6. From any point P on a circle \perp s are drawn to the four sides and to the diagonals of an anseribed quadrilateral. Prove that the rect. contaned by the \perp s on either pair of
opposite sides is equal to the rect. contained hy the Ls on the diagonals.
7. With given base and vertical $<$ construct a $/$ having the rect. contained by its sides equal to the square on a given st. line.
8. A, B, C, D are given points on a eircle. Find a point P on the circle such that $P A . P C=P B . P D$.
9. $A B$ is the cliord of contact of tangents drawn from a point P to a circle. $P C D$ cuts the circle at C, D. Prove that $A B \cdot C D=2 A C \cdot B D$.
10. I is the centre of the inseribed circle of $\triangle A B C$. AI produced mects the circumcircle at K. Prove AI.IK $=2 R r$.

Fig. 23.
(Note.-Draw the diameter KE of circle $A B C$ and the radius $I N$ of the inscribed circle. Draw BE, BK, BI. Show that $\triangle B E K I I I \triangle N A I$, and that $\therefore \frac{A I}{I N}=\frac{K E}{K B}$;
or, $A I . K B=2 R r$.
Show that $K B=K I$, and that \therefore AI. $\mathrm{IK}=こ \mathrm{R} r$.)

Hence, using Ex. 6, Page 256, O.II.S. Genmetry, show that, if S be the circumcentre of $\triangle A B C, S^{2}=R^{2}-\underline{2} r$.
11. I_{1} is the centre of the eseribed circle opposite to A in $\triangle A B C$. $A I_{1}$ euts the circuncircle $A B C$ at K. Prove $A l_{1} \cdot I_{1} K=2 R r_{1}$.

Hence show that, if S he the circumentre of $\therefore A B C$, $S I_{1}{ }^{2}=\mathbf{R}^{3}+2 \mathbf{R} r_{1}$.

Radical Axis

18. The locus of the points from which tangents (1:awn i) two circles are equal to each other is called the raiscal axis of the two circles.
19. If two circles cut each other, their common chord produced is the radical axis.

Fig. 24.
20. The locus of a point P such that the difference of the symares of its distances from two fixed points A, B is combtant is a st. line perpendicular to AB.

Fig. 25.

From P draw $\mathrm{PM} \perp \mathrm{AB}$. Let $\mathbf{A B}=a, \mathbf{A M}=x$ and $\mathrm{PA}^{2}-\mathrm{PB}^{2}=l$, where a and k are constints.

$$
\begin{aligned}
& \mathbf{A} \mathbf{M}^{2}+\mathbf{M} \mathbf{P}^{2}=\mathbf{P A}^{2} \\
& \mathbf{M} \mathbf{B}^{2}+\mathbf{M P}^{2}=\mathbf{P B}^{2} \\
& \therefore \quad \mathbf{A} \mathbf{M}^{2}-\mathbf{M B}^{2}=\mathbf{P A}^{2}-\mathbf{P B}^{2}=k . \\
& \text { or } x^{2}-(\iota-x)^{2}=l \\
& \text { and } x=\frac{\left(\ell^{2}+l\right.}{2} .
\end{aligned}
$$

Hence $\mathbf{A M}$ is constant and \mathbf{M} is a fixed point.
\therefore the locus of P is a st. line $\perp A B$ drawn through the fixed point M.
21. A, B are the centres of two circles of radii R, r respectively.

To prove that the radical axis of the circles is a st. line $\perp A B$ and cutting it at a point M such that $\mathbf{A M}^{2}-\mathbf{M B}^{2}=\mathbf{R}^{\mathbf{2}}-r^{2}$.

Fio. 26.
Let \mathbf{P} be any point on the radical axis, and dra:. $P M \perp A B$.

Draw the tangents PC, PD to the circles, and join PA, PB, AC, BD.

$$
\begin{aligned}
& \mathbf{P A}^{2}=\mathbf{P C}^{2}+\mathbf{R}^{2}, \\
& \mathbf{P B}^{2}=\mathbf{P D}^{2}+r^{2},
\end{aligned}
$$

and, simee \mathbf{P} is on the radical axis, $\mathbf{P C}=\mathbf{P D}$;
$\therefore \mathbf{P A}^{2}-\mathbf{P B} \mathbf{B}^{2}=\mathbf{R}^{2}-r^{2}$, a constant.
\therefore, by $\S 20$, the locus of P is a st. line $\perp A B$,
Also $\mathbf{P A}^{2}=\mathbf{A M}^{2}+\mathbf{P M}^{2}$;
$P^{2}=\mathbf{M B}^{2}+P M^{2} ;$
$\therefore \mathrm{PA}^{2}-\mathrm{PB}^{2}=\mathrm{AM}^{2}-\mathrm{MB}^{2}$;
and \therefore the radical axis cuts $A B$ at the fixed point M, such that $A M^{2}-\mathbf{M B} \mathbf{B}^{2}=\mathbf{R}^{2}-r^{2}$.
22. To draw the radical axis of two non-inter. secting circles.

First Methorl

F1a. 27.

Let \mathbf{A}, \mathbf{B} be the eentres of the circles.
Describe a circle with centre O cutting the given circles at C, D and E, F. Draw CD, EF and pronluce them to meet at P. Draw $P M \perp A B$. Draw tangents PG, PH to the circles.

Show that PM is the required radical axis.

Seconel Methorl

Let A, B be the cemtres of the two circles.
Join AB. Through B draw BC $\perp A B$ cutting the circles with centre \mathbf{B} at \mathbf{C}, and cut off $\mathbf{B D}$ equal to the radius of the other circle.

With centre A and ralius AD describe an are, and with centre B and adius $A C$ deseribe another arc cutting the first at E. Draw EM $\perp \mathbf{A B}$.

$$
\begin{aligned}
& B M^{2}=\mathbf{B E}^{2}-E M^{2}=A B^{2}+B C^{2}-E M^{2} . \\
& M A^{2}=A E^{2}-E M^{2}=A B^{2}+B D^{2}-E M^{2} . \\
& \therefore B^{2}-\mathbf{M A}^{2}=\mathbf{B C}^{2}-B D^{2} .
\end{aligned}
$$

\therefore, hy $\$ 21$, EM is the radical axis.

23.-Exercises

1. Draw two circles, raulii 1 inch and 2 inclucs, with their centres 4 inches apart. Find a point whose tangents to the two circles are each $1 \frac{1}{2}$ inches in length.
2. The radical axis of two circles bisects their common tangents.
3. Find the radical axis of wo circles which touch each other, intermally or extem: "ly.
4. Prove that the radical axes of any three circles taker two and two tegether meet in a puint.

Note. -This point is callerl the radisal centre of the three circles.
5. O is a fixed point outside a given circle. P is any mint such that the tangent from P to the given circle $=$ PO. Shw that the locus of P is a st. line \perp to the hine joining O to the centre of the circle.
6. C is a point on the circumference of a circle with centre A. Join AC and draw CB $\perp \mathbf{C A}$. With centre B and ralius BC describe a circle.
(a) The tangents to the circles at a common point are \perp to each other.
(i) The square on the line foining the centres of the circles equals the sum of the squares on their radii.
Definition.-Circles which cut each other so that the tangents at a coumon point are at right angles to each other arn said to be orthogonal.
7. If O be the orthocentre of $\triangle A B C$, the circies described on $A B$ and $C O$ as diameters are orthogomal.
8. If cireles are described on the three sides of a \triangle as diameters, their radical centre is the orthocentre of the \triangle.
9. Through two giver prints A ame B draw any mumbre of cirches. What is the londes of their contres? Show that, any two of this system of circles have the same st. line for rarlical axis.

Definition.-A system of circles that lave the ame radical axis are said to he coaxial.
10. To draw a system of circles coaxial with two given non-intersecting circles.

Let A, B he the centres of the given circles. Draw their radical axis $P O$ cutting $A B$ at O. From O draw a tangent $O E$ to either circle. W'ith centre O and radius $O E$ describe a circle cutting $A B$ at C, D. On the circle CDE take any point F and at F draw a tangent to the circle CED cutting $A B$ at G. With centre G and radius $G F$ describe a circle. Prove that this circle is coaxial with the given circles.

By taking different positions of F on the circle CED any number of circles may be drawn coasial with the given sircles.

Fig. :9.
Definition.-No circle of the conxial system las its centre between C and D, and consequenly the.e points are called the limiting points of the system.
11. In Fis 29, show that:-
(a) The circle CED cuts each circlo of the cuaxial syste:in orthuronailly;
(b) Any circlo with centre in PO and passing through C, D cuts any circle of the conaial system onthogonally.
12. If from any point P tangents be drawn to two circles, the difference between their squares equals twice the rectangle contaned hy the \perp from \mathbf{P} on the radical axis of the two circles and the distance between their centres.
13. The difference of the squares of the timgents drawn from a point to two fixed circles is constant. Slow that the locus of the point is a st. line \perp to the line of centres of the circles.
14. The tangent drawn from a limiting point to any circle of a coaxial system is bisected by the radical axis.

15 . Show that the locus of the centre of a circle, the tangents to which from two gh in points are respectively equal to two given st. lines, is the radical axis of the circles latwing the given points as centres and radii respectively equal to the two given st. lines.
16. With a given radius describe a circle to cut two given circles orthogonally.
17. $X Y Z$ is the pelal \triangle of $\triangle A B C ; Y Z, B C$ meet in L; $Z X, C A$ meet in M; $X Y, A B$ meet in N. Show that L, M, N, are on the radical axis of the circumscribed and N.-P. circles of $\triangle A B C$.
(Note.- $\triangle \mathrm{s}$ MAZ, MXC are easily shown to be similar.)
18. Describe a circle to cut three given circles orthogonally:
(Note.-Use Ex. 4 and Ex. 11 (b).)

CHAPTER II

Medial Section

24. When a straight lins is divided into two parts such that the square on one part is equal to the

Fic. 30. rectangle contained by the given straight line and the other part, the straight line is said to be divided in medial section.
25. To divide a given straight line internally in medial section.

Let $A B$ be the given st. line.

Draw $A C \perp A B$ and $=A B$. Bisect $A C$ at D. With centre D and radius DB describe an are cutting CA produced at E. With centre A and radius $A E$ describe an arc cutting $A B$ at F.

Then $A B$ is divided in medial section at F.

$$
\begin{aligned}
D A^{*}+A B^{2} & =D B^{2} \\
& =D E^{2} \\
& =D A^{2}+2 D A \cdot A E+A E^{2} \\
& =D A^{2}+A B \cdot A F+A F^{2} ; \\
\because & 2 D A=A C=A B \text { and } A E=A F . \\
\therefore A F^{2} & =A B^{2}-A B \cdot A F . \\
& =A B(A B-A F) \\
& =A B \cdot B F .
\end{aligned}
$$

26. To divide a given straight line externally in medial section.

Let $A B$ be the given st. line.

Fio. 31.
Draw $A C \perp A B$ and $=A B$. Bisect $A C$ at D. With centre D and radius $D B$ describe an are cutting $A C$ produced through C at E. With centre A and radius $A E$ describe an arc cutting BA proluced through A at F.

Then $A B$ is divided externally at F such that $A F^{2}-A B \cdot B F$.

$$
\begin{aligned}
D A^{2}+A B^{2} & =D B^{2} \\
& =D E^{2}=(A E-A D)^{2} \\
& =A E^{2}-2 A E \cdot A D+A D^{2} \\
& =A F^{2}-A F \cdot A B+A D^{2} \\
\therefore \quad A F^{2} & =A B^{2}+A F \cdot A B \\
& =A B(A B+A F) \\
& =A B \cdot B F .
\end{aligned}
$$

1. If a st. line $A B$ ice divided at F so that $A F=A B \cdot B F$, show that $\mathbf{A B}: \mathbf{A F}=\mathbf{A F}: B F$.

Give a general statement of this result.
2. $A B$ is divided internally at F such that $A F^{2}=\mathbf{A B} \cdot \mathbf{B F}$. Show that $A F>F B$.

Fig. 39.
3. $A B$ is divided in medial section at F. On $A B, A F$ squares $A B C D, A F E G$ are described as in Fig. 32. EF is produced to meet DC in H. Show that B the rectingle $D E=$ the square $D B$.
4. In Fig. 32 join GB, DF, produce DF to meet GB, and show that $D F \perp G B$.
5. A given st. line $A B$ is to be C divided in medial section. Let F be the point of section, a the length of $A B, x$ the length of $A F$.
Then, by the definition of medial section, $x^{2}=a(a-x)$

$$
\text { or, } x^{2}+a x-a^{2}=0 .
$$

Solving this quadratic equation, $x=-a \pm 11^{5} 5$.
Show that the construction in $\$_{25}$ is suggested by the root $\frac{-a+a_{1} \overline{5}}{2}$; and the coastruction in $\S 26$ by the root $\frac{-a-a \sqrt{5}}{2}$.
6. Divide a st. line 4 inches in length in medial sec ${ }^{+} \mathrm{F} .$. Measure the length of each part, and test the results by calculation.
7. The difference of the squares on the parts of a st. line divided in molial section cquals the rectangle eomtainel by the parts.
8. If $\mathbf{A B}$ he dividul at, \mathbf{C} w th.1. $\mathbf{A C} \mathbf{C}^{2} \mathbf{A B}, \mathbf{B C}$, show that $A B^{3}+B C^{3} \quad 3 A C^{2}$.
9. If the sides of a rt.- $\angle 1 \triangle$ aro in continued proportion. the \perp from the r. \angle divides the hypotemese in modial section.
10. Describe a re.- Cd is whose sides are in geometrical progression.

ك, . To describe an isosceles triangle having each of the angles at the base double the vertical angle.

Draw a st. lime $A B$ and divide it at H so that $A H^{2}=\mathbf{A B} . \mathbf{B H}$. \quad (\$25.)

Describe ares with centres A, \mathbf{B} and ralii $A B, A H$ respectively, and let them cut at \mathbf{C}.

Join AC, BC.
$A B C$ is the required A.
Jui: нс.
$\angle B$ is common to the $\triangle S A B C, C B H$, and since

$$
\begin{aligned}
& A B \\
& A H
\end{aligned}=\begin{aligned}
& A H \\
& B H^{\prime}
\end{aligned} \quad \therefore \frac{A B}{B C}=\begin{aligned}
& B C \\
& B H^{\prime}
\end{aligned}
$$

Fin. 33.
\therefore these $\angle S$ are similar and $\angle \mathbf{B C H}=\angle \mathbf{A}$.

$$
\text { Mrain } \frac{A C}{B C}=\frac{A B}{A H}=\frac{A H}{H B}
$$

$\therefore \mathrm{CH}$ bisects $\angle \mathrm{ACB}$.
$\therefore \angle A C B=$ twice $\angle B C H=$ twice $\angle A$; and also $\angle A B C=$ twice $\angle A$.

39. Exercises

(11)

1. Finpress the $\angle s$ of the $A A B C$ (Fig. :3:i) in degrees.
2. Constrinet $\angle S$ of $3 i^{\circ}, 18^{\circ}, 3^{\circ}, 6^{\circ}, 3^{\circ}$.
3. Show that AHC (Fig. 33) is an isosceles \triangle having the vertical $<$ three times each of the base $\angle \mathrm{s}$.
4. Show that cach \angle of a regular pentagon is 108°; send that, if a regular protitgon is inswibed in a circle, cad side sul:: יnmls at the contre an \angle of $7 \geq$.

Fin. 31.
5. In a given circle CAB draw any ralins $O A$. livide $A O$ at H sit that $O H^{2}$ AO. AH. Place the chord $A B=H O$.

Join BH and proluce BH to cut the circmuference at C. Juin $A C$.

Show that $A B$ is a side of a regnlar decagon inseribmel in the eircle; and that $A C$ is a side of a regular pentagon inscribed in the circle.
f. In a given circle inseribe a regular pentagon. At the angular points of the pentagon draw tansents meeting at A, B, C, D, E. Show that $A B C D E$ is a regular pentigon circumscribed about the circle.
7. Show that each dingonal of a regular pentagon is \|f to one of its sides.
8. Draw a regular pentagom on a given st. line.
9. ABCDE is a regular pentagnen. Show that AD, $B=$ trisect $\angle C D E$.
10. $A B C D E$ is a pogulap poutheon, Nhow that $\mathbf{A C}$, BD, divile eath othop in medial seretom.
11. Construct a regular buinted star. What is tho measure of the 6 at each vertex?
(b)
12. Show that the side of a regular decagon inseribed in a circle of radius r is $\underset{\underset{2}{r}}{\underset{y}{r}-1)}\binom{1}{\bar{b}}$.
13. Show that the sinle of a mesular pentagon iaseribed in a circle of radius r is $\frac{r}{2} \sqrt{10}-2 v$.
14. The square on a side of a rexular ferntaren inseribed in a circle equals the sum of the patres on a sithe of the regular inscribed decagron and on the ratius of the cirole.
15. In a circle of radius 2 inclaes invoribe a rusular decason by the methorl of Ex. 5. Measure a side of the decagon and check your result by calculation.
16. In a circle of radius 3 inches inscribe a segular pentagon ly the method of Ex. 5. Me:sinre a sinle of the pentagon and check your result by calculation.
17. In a given circle draw two radii $O A, O B$ at rt. $\angle s$ to eatel wther. Bisect $O B$ at C. Join $A C$, and ent off $C D=C O$.

Show that $A D$ is equal to a sitle of a regular decagon inscribed in the circle.

The regular inscribed pentagen may be drawn ly joining alle. nate prints obtaine? ly placing successive chords each equal to AD.

13. On a st. line $\underset{\sim}{2}$ inches in length describe a regular pentagon. Mcasure a diagonal of the pentagon and check your result by calculation.
19. If the circumference of a circle be divided into n equal ares,
(a) The points of division are the vertices of a regular polygon of n sides inseribed in the circle;
(b) If tangents be drawn to the cirele at these points, these tangents are the sides of a regular polygon of n sides cireumscribed about the circle.
20. Show that the difference between the squares on a diagonal and on a side of a regular pentagon is equal to the rectangle contained by them.

Miscellaneous Theorems

30. $A B C$ is a triangle and P is a point in $B C$ such that $\frac{\mathrm{BP}}{\mathrm{PC}}=\frac{n}{m}$. It is required to show that

$$
m \mathbf{A} \mathbf{B}^{2}+n \mathbf{A} \mathbf{C}^{2}=(m+n) \mathbf{A} \mathbf{P}^{2}+m \mathbf{E} \mathbf{P}^{2}+n \mathbf{C P}^{2}
$$

Draw $\mathbf{A X} \perp \mathbf{B C}$.
From $\triangle A B P$,
$A B^{2}=A P^{2}+B P^{2}-2 B P . P X$.
From $\triangle A P C$,
$A C^{2}=A P^{2}+C P^{2}+2 C P, P X$.
Multiplying both sides of

Fio. 36. the first of these equations by m, both sides of the second by n, alding the results and using the condition $m \mathbf{B P}=n \mathbf{P C}$, we obtain

$$
m \mathbf{A} \mathbf{B}^{2}+n \mathbf{A} \mathbf{C}^{2}=(m+n) \mathbf{A} \mathbf{P}^{2}+m \mathbf{B} \mathbf{P}^{2}+n \mathbf{C} \mathbf{P}^{2}
$$

What does the result in $\$ 30$ become when $m=n$?
In a $\triangle \mathbf{A B C}, \quad u=77 \mathrm{~mm}, \dot{i}=90 \mathrm{~mm}$ and $c=123$ mm. Find the distances from C to the points of trisection of $\mathbf{A B}$.
31. In a right-angled triangle a rectilineal figure described on the hypotenuse equals the sum of the similar and similarly described figures on the other two sides.
$A B C$ is a $\triangle \mathrm{rt} .-\angle \mathrm{d}$ at C and having the similar and similarly described figures $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ on the sides.

It is required to show that $\mathbf{X}+\mathbf{Y}=\mathbf{Z}$.

Similar figures are to each other as the squares on corresponding sides.

Fia. 37.

$$
\begin{aligned}
\therefore \begin{array}{rl}
Y & A C^{2} \\
\mathbf{Z} B^{2} \\
\text { and } \frac{X}{Z} & =\frac{B C^{2}}{A B^{2}} \\
\therefore \quad \frac{X+Y}{Z} & =\frac{A C^{2}+B C^{2}}{A B^{2}} .
\end{array} .=\frac{r^{2}}{} .
\end{aligned}
$$

But $A C^{2}+B C^{2}=A B^{2}$.

$$
\therefore \mathbf{X}+\mathbf{Y}=\mathbf{Z} \text {. }
$$

Prove this theorem by drawing a \perp from \mathbf{C} to $\mathbf{A B}$ and using the theorem:-If three st ines are in continued proportion, as the first is to the third so is my polygon on the first to the similar and similarly described polygon on the second.

Similar and Similariy Situated Polygons

32. Similar polygons are said to be similarly situated when their corresponding sides are parallel and drawn in the same direction from the corresponding vertices.
33. If two similar triangles hatve their corresponding sides parallel, the st. lines joining corresponding vertices are concurrent.

Let $A B C, D E F$ br two similar \triangle s having the sides $B C, C A, A B$ respectively $\|$ to the corresponding sides EF, FD, DE.

F19. 38.

$\mathbf{F}: 0.30$.

Prove AD, BE, CF soncurrent.
34. When two similar polygons are so situated that their corresponding sides are parallel but drawn in opposite directions from the corresponuing vertices, they are said to be oppositely situated.

In Fig. 39, the similar $\triangle s A B C$, DEF are oppositely situated.
35. If two similar polygons have the sides of one respectively parallel to the corresponding sides of the other, the straight lines joining corresponding vertices are concurrent.

Fig. 40.

Fia. 41.
Let ABCDE, abcle be two similar polygrons, similarly situated in Fig. 40, oppositely situated in Fig. 41.

Join $A a, B b$ and let the joining lines meet at \mathbf{O}. Join CO cutting bc at x.

From similar $\angle s$,

$$
\frac{(l)}{A B}=\frac{O}{O B}=\frac{b x}{B C} .
$$

But, hy hypothesis,

$$
\begin{aligned}
& \quad \frac{a b}{A B}=\frac{b c}{B C} . \\
& \therefore \quad b x=b c, \text { and } \\
& \therefore \quad \text { oc passes through } c .
\end{aligned}
$$

Similarly it may be shown that the st. lines joining the remaining pairs of corresponding vertices pass through 0 .

36. - Exercises

(a)

1. Inscribe a square in a given \triangle. Show that there are three solutions.
(Note.-In $\triangle A B C$ on $B C$ externally describe the square $B D E C$. Draw $A D, A E$ cutting $B C$ at F, G respectively. Draw FH, GK \perp BC meeting BA, CA at H, K respectively. Draw HK. Prove that HFGK is a square.)
2. In a given \triangle inscribe a rectangle similar to a given rectangle. Show that there are six solutions.
3. It a given semicircle inscribe a square.
4. In a given semicircle inscribe a rectangle having its sides in a given ratio.
5. In a given \triangle inscribe a Δ having its sides $\|$ to three given st. lines.
(Note.-From any point D in the side BC of the given $\triangle A B C$ draw $D E \|$ to one of the given st. lines and meeting $A C$ at E. Draw DF, EF respectively $\|$ to the other given limes. Draw CF cutting AB at G. Draw GH \| FD and $G K \| F E$, meeting $B C, A C$ respectively at H, K. Draw HK Show that GHK is the required \triangle.)

(b)

6. The base of a square lies on one given st. line and one of its upper vertices lies on another given st. line. Show that the luens of the other upper vertex is a fixed st. line passing through the point of intersection of the two given lines.
7. In Figures 40 or $41 P$ is any point in $A B, Q$ is any point in CD and p, q are the corresponding points in $a b$, cd respectively. Prove that $\mathrm{PQ} \| p q$.
8. $\triangle A B C$ III $\triangle a b c$, with their corresponding parts in the sme circular order, but their corresponding sides are not $\|$. $\mathbf{B C}$, be meet at \mathbf{P}. The circles $\mathbf{B P} b, \mathbf{C P} c$ meet again at \mathbf{O}. Prove that the $\triangle a b c$ may be rotated alout O to a position where it is similarly situated to $\triangle A B C$.
(Note.-Piove $\angle \mathrm{BO} b=\angle \mathbf{C O} c=\angle \mathrm{AO} a$.)

9. Show that $4 \mathbf{R}=r_{1}+r_{2}+r_{3}-r$, when \mathbf{R} is the radins of the circuncircle, r of the inscribed circle, and r_{1}, r_{2}, r_{3} the radii of the escribed circles.
(Note.-In $\triangle A B C$ let I be the centre of the inscribed circle, $\mathbf{I}_{\mathbf{1}}$ that of the escribed circle opposite \mathbf{A}. Draw the diameter GDH of the circuncircle bisecting BC at D, and meeting the circle above BC at \mathbf{G} below at \mathbf{H}. Draw IM, $\mathrm{I}_{1} \mathrm{~N} \perp \mathrm{BC}$ and prooluce $\mathbf{G H}$ to cut MI_{1} at K. Prove $2 \mathrm{GD}=r_{2}+r_{3}$ and $2 \mathrm{DH}=r_{1}-r_{\text {. }}$)

10 . If l, m, n are the \perp from the circumcentre on the sides of a Δ, show that

$$
l+m+n=\mathbf{R}+r .
$$

(Note-Use the diagram and resnlt of Fix. 9.)

CHAPTER III

Harmonic Ranges and Penchas

37. A set of collinear points is called a range.
38. A set of concurrent straight lines is called is pencil.

The lines are called the rays of the pencil; and their common point is called the vertex of the pencil.
39. When three magnitudes are such that the first has the same ratio to the third that the difference between the first and second has to the difference between the second and third, the differences being taken in the same order, the magnitudes are said to be in harmonic proportion. (H. P.)

Thus, if a, b and c represent three numbers such that a:c=b-a:c-b,a,b and c are in H. P.
40. If in a range of four points A, C, B, D the st. line $A B$ is divided internally at C and externally at D in the same ratio, the distances from either end of the range to the other three points are in H. P.

Fie. 43.
Hraw Ls AE, FBG to $A B$, making $F B=B G$. 1)riw $E F, E G$ cutting $A B$ at C, D.

$$
\text { Then } \frac{A C}{C B}=\frac{A E}{B F}=\frac{A E}{B G}=\frac{A D}{D B} \text {. }
$$

(11) Then since $A C: C B=A D: D B$.
b^{\prime} alternation, $A C: A D \quad C B: D B$.
$\therefore A C: A D=A B-A C: A D-A B$.
\therefore by the definition of $\S 39, A C, A B, A D: 1 \%$ in 11.1 .
(i) liy inversion, $D B: A D=B C: A C$.
$\therefore \mathrm{DB}: \mathbf{D A}=\mathbf{D C}-\mathbf{D B}: \mathbf{D A}-\mathbf{D C}$.
\therefore, by $\S 39$, DB, DC, DA are in il. P.
State and prove a converse to this theorem.
41. When a range of four points A, C, B, D is such that $A C: C B=A D: D B$, it is called a harmonic range.

If any point P be joined to the four points of Ω harmonic range, the joining lines form it harmonic pencil.
42. If, in the harmonic pencil P (A, C, B, D), a straight line through B parallel to $P A$ cut $P C, P D$ at E, F respectively, $B E=B F$.

Fia, 44.
$\because \therefore$ ACP $\quad \therefore$ BCE,
$\therefore \quad A P: E B=A C: C B$.
$\because \triangle A D P 1 \angle B D F$,
$\therefore \quad A P: B F=A D: D B$.
But, ly hypothesis, $A C: C B=A D: D B$.

$$
\therefore \quad A P: E B=A P: B F
$$

$$
\therefore \quad E B=B F
$$

4:3. By a prof similar to that of $\$ 42$, the following conserne to the theorem of that article may be shown to be true.

If, in the pencil $P(A, C, B, D)$, a straight line through B parallel to PA cut PC, PD at E, F respectively such that $B E=B F$, then $P(A, C, B, D)$ is a harmonic pencil.
44. Any transversal is cut harmonically by the rays of a harmonic pencil.

A transversal cuts the rays PA, PC, PB, PD of the harmonic pencil $P(A, C, B, D)$ at K, M, N, L respectively.

Fig. 45.
It is reguired to show that K, M, N, L is a harmonic rampe.

Through B, N respectively draw $\mathbf{E F}, \mathbf{G H}$ PA.
$\because P(A, C, B, D)$ is a harmonic pencil, and EBF $A P$
\therefore by $\S 42, \mathrm{~EB}=\mathrm{BF}$.
From similar $\triangle s, \frac{G N}{N P}=\frac{E B}{B P}$ and $\frac{N P}{N H}=\frac{B P}{B F}$,
\therefore, by multiplication, $\mathbf{G N}: \mathbf{N H}=\mathbf{E B}: B F$,
$\therefore \mathbf{G N}=\mathbf{N H}$; and \therefore, by $\S 43, \mathbf{K}, \mathbf{M}, \mathbf{N}, \mathrm{~L}$ is a harmonie range.
45. If A, C, B, D is a hamonic range and O is the midille peint of $A B$,

$$
O B^{2}=O C . O D
$$

Fia. 4i.

\because	$\begin{aligned} & A C=\frac{A D}{C B}=\frac{D B}{}{ }^{i} . \end{aligned}$	
	$A C+C B$	$A D+D B$
\therefore	$\overline{A C-C B}$	$A^{\prime}{ }^{-} \mathbf{D B}{ }^{\prime}$
or,	$20 \mathrm{~B}$	20 D
and \therefore	OB ${ }^{\text {2 }}$	OC. OD.

State and prove a converse to this theorem.
46. If A, C, B, D is a harmonic range, A and B are said to be harmonic conjugates with respect to \mathbf{C} and D; and C and D are said to be harmonic conjugates with respect to A ind B.

47.-Exercises

(a)

1. Show .ow to find the fourth ray of a harmonic pencil when three rays are given.
2. Prove the theorem of $\S 44$ when the transversal cuts the rays produced through the vertex.
3. In the $\triangle A B:$ the bisectors of the interior and exterior $\angle s$ at A cut $B C$ and $B C$ proluced at D, E respectively. Show that B, D, C, E is a harmonic range.
4. A, C, B, D is a harmonic range and P is any point on the circle described on $A B$ as diameter. Show that PA, PB respectively bisect the exterior and interior vertical $\angle s$ of \triangle CPD.
(Note-Draw EBF \|AP cutting PC, PD at E, F respectively.)
5. Using Ex. 4, give geometical pronis of the converse thenrems of $\$ 45$.
6. Two circles cut orthogomally. \mathbf{A} st. line through the centre of either cuts the circles at A, C, B, D. Show that A, C, B, D is a hamonic range.
7. A, C, B, D is a harmonic range. Show that the circles deseribed on $A B, C D$ as diameters cut ench oiher orthogonally.
8. A, C, B, D is n harmonic range; O is the middle point of $A B$ and R is the middle point of $C D$. Show that:-
(11) $A B^{3}+C D^{2}=4 O R^{2}$;
(b) $\mathrm{CA} \cdot \mathrm{CB}=\mathrm{CD} . \mathrm{CO}$;
(c) If P is any point on the range and lengths in opposite directions from P are different in sign, $P A . P B+P C . P D=2 P O . P R$.
9. The inscriled circle of $\triangle A B C$ tonches $B C, C A, A B$ at D, E, F respectively, and $D F$ meets $C A$ proflused at P. Show that C, E, A, P is a harmonic range.
(Note.-Use Menelaus' Therrem.)
10. The diameter $A B$ of a circle is \perp to a chord $C D$. P is any point on the circumference. $P C, P D$ cut $A B$, or $A B$ produced, at E, F. Show that A, E, B, F is a harmonic range.
11. Through E, the middle point of the side $A C$ of the $\triangle A B C$, a transversal is drawn to cut $A B$ at $F, B C$ produced at D, and a line through $B \| C A$ at G. Show that G, F, E, D is a harmonic range.
(Noten-Use § 43.)
12. A common tangent of two give u circles is divided harmonically by any cime which is comxial with the given circles.
(Note.-Use the converse of $\$ 45$.)
13. In a circle $A C, B D$ ne two diameters at rt. $\angle A$ to earh other, and P is any point on the qualmant $A D$. Show that PA, PB, PC, PC constitute a harmonic pencil.
14. In the hamonic pencil $O(A, C, B, D), \angle A O C=$ $\angle C O B=\angle B O D$. Show that each of these $\angle \mathrm{s}=45^{\circ}$.
15. A square is inscribed in a circle. Simw that the pencil formed by joining any point on the circumferen e: to the four vertices of the square is harmonic.
16. P is a fixed puint and $O X$, or two fixed st. lines. Show that the locus of the harmenic conjugate of P with respert to the points where any st. line dawn from \mathbf{P} cuts $O X, O Y$ is a st. line passing through O.

48. The figure formed hy fonestraight lines which murt in puirs insix peints is callerl a complete quadrilateral.

The figure $A B C D E F$ is : complete quadrilateral, of Which AC, BD al EF Ho: the thee diagonal.

Fig. 47.
19. In a complete quadrilateral each diagonal is divided harmonically by the two other d agonals, and the angular points through which it passes.

ABCDEF is a complete adrilateral having the Wiannal $A C$ cut by $D B$ at P and by $E F$ at Q.

Fto. 4s.
I i muphed to show that $\mathbf{A}, \mathbf{P}, \mathbf{C}, \mathbf{Q}$ is hamonic

I ACF, $A B, C D, F Q$ dra, Wh from the vertices and an ing lwomesite sides at B, D, Q are concurrent at E : ' Ceva's Theorem,

$$
F D \cdot A Q \cdot C B=D A \cdot Q C \cdot B F
$$

The transversal DPB cuts the sides of the $\triangle A C F$ at $\mathrm{D}, \mathrm{P}, \mathrm{B}$ and \therefore, ly Menclaus' 'Theorem,

$$
F D . A P \cdot C B \quad D A \cdot P C \cdot B F \text {. }
$$

Hence, by division,

$$
\begin{aligned}
\frac{A Q}{A P} & =Q C \\
\text { or, } \quad & \frac{A P}{P C}
\end{aligned}=\frac{A Q}{Q C}, ~ l
$$

and $\therefore A, P, C, Q$, is a harmonic range.
From the above result it is seen that $\mathbf{F}(\mathbf{A}, \mathbf{P}, \mathbf{C}, \mathbf{Q})$ is a harmonic pencil, and consequently, by \S it, D, P, B, R is a hamonic range.

Show, in the same manner that F, Q, E, R is a harmonic range.

Poles and Polars

50. If through a fixed point a line be drawn to cut a given circle and at the points of intersection tangents be drawn, the locus of the intersection of the tangents is called the polar of the fixed point; and the fixed point is called the pole of the locus.
51. If C is the centre of a given circle and D is a fixed point, the polar of D with respect to the circle is a straight line which is perpendicular to $C D$ and cuts it at a point E such that CE. CD equals the square on the radius.

Fia. ${ }^{51}$.

Through C draw any st. line cutting the circle at A and B. At A, B draw tangents to the circle intersecting at \mathbf{P}.
P is a point on the polar of D.
Join CD and from P draw PE \perp CD.
Join CP cutting $A B$ at F. Join CB.

$$
\because \angle \mathrm{s} \text { DEP, DFP are rt. } \angle \mathrm{s} \text {, }
$$

$\therefore D, E, F, P$ are concyclic.
$\therefore C E . C D=C F . C P$.
But CF. CP $=\mathrm{CB}^{2}$.
$\therefore \mathrm{CE} . \mathrm{CD}=\mathrm{CB}^{2}$.
Then, since $C D$ anl $C B$ are constants, $C E$ must also be const:unt.
\therefore the polar of D must be the st. line \perp CD through the fixed point E such that $C E . C D=C B^{2}$.
52. If a point P lies on the polar of a point Q with respect to a circle, then Q lies on the polar of P.

FIO. 51.
\mathbf{P} is any point on $\mathbf{P M}$ the polar of Q .

To show that Q lies on the polar of P.

Juin CP and draw $\mathrm{QN} \perp \mathbf{C P}$.
$\because \angle s$ at M and N are rt. $\angle \mathrm{s}$.
$\therefore \mathrm{Q}, \mathrm{N}, \mathrm{P}, \mathrm{M}$ are concyclic.
$\therefore C P \cdot C N=C M . C Q$ but, by $\S 51, C M . C Q=$ the square on the radius.
$\therefore C P . C N=$ the square on the radius, and $Q N$ is the polar of \mathbf{P}.
53. Two points, as \mathbf{P} and \mathbf{Q} in Fig. 51 , such that the polar of each passes through the other, are called conjugate points with respect to the circle, and their polars are called conjugate lines.

A \triangle such that each side is the polar of the opposite vertex is said to be self-conjugate.

i) 1 - Exercises

(ii)

1. P is a point at a distance of 4 em. from the centre of a circle of ramlius 6 cm . Construct the polar of P.
2. P is a point at a distance of 7 cm . from the centre of a circle of radius 5 cm. Construct the polar of P.
3. Diaw a st. line at a distance of 7 cm . from the centre of a circle of radius 4 cm . Construct the pole of the line.
4. When the point P is within the given circle, the polar of P falls without the cirele; and when P is without the circle, the polar of P cuts the circle.
5. The polar of a point on the circumference is the tangent at that point.
6. P is a point without in given circle and the polar of P cuts the circle at A. Show that PA is a tangent to the circle.

Give a general statement of this theorem.
i. If any number of points are collinear, their polars with respect to any circle are concurrent.
8. Any number of lines pass through a given point; find the locus of their poles with respect to a given circle.
9. If the pole of a st. line $A B$ with respect to a circle is on a st. line $C D$, the pole of $C D$ is on $A B$.
10. The st. line joining any two points is the polar with respect to a given circie of the intersection of the potars of the two points.
11. The intersection of any two st. lines is the pole with repect to a given circle of the line joining the poles of the two st. lines.
12. Slow how to draw any number of self-conjugate $\triangle s$ with resinect to a given cirele.
(b)
13. If a st. line PAB cut a circle at A, B and cont the polar of P at C, and if D be the middle point of $A B$,

$$
\mathrm{PA} . \mathrm{PB}=\mathrm{PC} . \mathrm{PD} .
$$

14. Two circles ABC, ABD cut orthogonaliy. Show that the polar of D, any point on the cirele $A B D$, with respeet to the circle ABC passes through E, the point diametrically opposite to D.
15. The polar of any point A with respect to a given circle with centre O cuts $O A$ at B. Show that any circle through \mathbf{A} and \mathbf{B} cuts the given circle orthogonally.
16. A is a given point and B any point on the polar of A with respect to a given circle. Show that the circle described on $A B$ as diameter cuts the given circle ortho gonally.
17. $A B C$ is a \triangle inscribed in a circle, and a || to $A C$ through the pole of $A B$ with respect to the circle mee's $B C$ at D. Show that $A D=C D$.
18. Any straight line which passes through a fixed point is cut harmonically by the point, any circle, and the polar of the point with respect to the circle.
P is the fixed point, O the centre of the circle, PACB any line through P eutting the circle at A, B and the polar EC of P with respect to the circle at C.

It is reguireal to show that B, C, A, P is a harmonic range.

File. 5:.
Join BO, OA, BE, EA and prorluce BE to F.
liy 5 . $1, \mathrm{OP} . \mathrm{OE}=\mathrm{OB}^{2}$, and $\therefore \mathrm{OP}: \mathrm{OB}-\mathrm{OB}: O E$; also the $\angle B O E$ is common to the $\angle P O B, B O E$;
\therefore these A ire similar,
and consequently $\angle O E B=\angle O B P=\angle O A B$.
\therefore the points B, O, E, A are concyclic.
\therefore the $\angle A E P=\angle O B A=, O E B=\angle F E P$, and EP bisucts the exterior vertical \angle of $\angle E B A$.

But $\angle P E C$ is a rt. \angle and $\therefore \angle E C=\angle C E A$.

$$
\therefore \quad \frac{B C}{C A}=\frac{B E}{E A}=\frac{B P}{P A} ;
$$

aml B, C, A, P is a harmonic riange.
If the point \mathbf{P} is within the circle, \mathbf{C} is without the circle, and by $\$ 52$, the polar of C passes through P.
$\therefore b y$ the above proof B, P, A, C is a harmonic range.

Prove this theorm when the line PAB passes through the centre of the circle.
56. $A B C D$ is a quadrilateral inscribed in a circle. $A B, D C$ are produced to meet at $E ; B C, A D$ to mect at F, forming the complete quadrilateral $A B C D E F$.

Fig. 53.
$A C$ cuts $B D$ at $G, F G$ cuts $A B$ at L.
From the complete quadrilateral FDGCAB, A, L, B, E and D, K, C, E are harmonic runges.
$\therefore L$ and K are points on the polar of E; (§55.) that is, GF is the polar of E.

Similarly, GE is the polar of F.
Hence $F E$ is the polar of G; and the $\triangle E F G$ is selfconjugrate with respect to the circle $A B C$.

Cor.:-If from any point E two st. lines EBA, ECD are drawn to cut a circle at the points B, A, C, D, then the intersection of $B D$ and $C A$ is on the polar of E, and so also is the intersection of $B C$ and $A D$.

57.-Exercises

(1)

1. Using a ruler only, find the polar of a given point with respect to a given circle.
2. Using a ruler only, draw the tangents from a given external point to a given circle.
3. Using a ruler only, find the pule of a given st. line with respect to a given circle.
4. A and B are two points such that the polar of either with respect to a circle, with centre O, passes throngh the other. Prove that the pole of $A B$ is the orthocentre of the \triangle AOB.
5. Tungents $\mathbf{A B}, \mathbf{A C}$ are drawn to a circle. The tangent at any point \mathbf{P} cuts $B C, C A, A B$ at X, Y, Z respectively. Show that X, Z, P, Y is a hambuic rame.
6. If, in figure $53, A B C$ is a fixed \triangle and D is a variable point on the circle, prove that each side of the $\triangle E F G$ passes through a fixed point.
(Note.-Use Ex. 9, § 54.)
7. C is the middle point of a chord $A B$ of a circle, and D, E are two points on the circumference such that $C A$ bisects the $\angle D C E$. Prove that the tangents at D and E intersect on $A B$.
(Nom:. - At C draw the \perp to $A B$ and proluce it to meet DE.)
8. D is the middle point of the hypotenuse $B C$ of the $\mathrm{rt} .-\mathrm{Ld} \therefore \mathbf{A B C}$. A circle is deseribed to tonch $A D$ at A. Prove that the polar of either of the points B, C with respect to the circle passes through the other point.
9. A, B, C, D are successive points on a st. line. Find points X, Y that are conjugate to each other woth with respect to A, B and with respect to C, D.
(Note.-Draw a circle through A, B and another through C, D, intersecting each other at P, Q. Pronduce $P Q$ to ent the given line at O and from O datw a tangent $O T$ to wither of the circles. With centre \mathbf{O} and mans $O T$ describe a circle cutting the given line at X, Y.)
10. $A D, B E, C F$ are concurrent st. lines drawn from the vertices of $\triangle A B C$ and entiner the opposite silles in D, E, F. EF monts BC at X. Show that, \mathbf{X} is the harmonic emjugate of \mathbf{D} with respect to \mathbf{B} and \mathbf{C}.
11. A trimserersal cuts the sides $B C, C A, A B$ of the $\triangle A B C$ in D, E, F. The st. line joining A to the intersection of BE and CF meets BC at H. Show that D and H are harmonic conjugates with respect to \mathbf{B} and \mathbf{C}.
12. P, Q, are two conjugate points with respect to a circle. Show that the circle on $P Q$ as dimmeter cuts the given circle orthogonally.
13. The $\angle C$ in $\triangle A B C$ is oltuse and O is the orthocentre. A circle described on $O A$ as diameter cuts $B C$ at D. Nhow that the $\triangle A B C$ is self-conjngate with respect to the circle with centre \mathbf{O} and radius $O D$.
(b)
14. If a quadrilateral be circumscribed aboat a circle, the st. lines joining the points of contact of opposite sides are concurrent with the two diagonals of the quadrilateral.
(Note.-Produen the opposite chords of contact to meet, and use § $50-\mathrm{Cu}$.
15. If $P M, Q N$ be respectively drawn \perp to the polars of Q, P with respect to a circle whose centre is $\mathrm{O}, \mathrm{PM}: \mathbf{Q N}=$ OP: OQ. Sahmon's Theorem.
(NOTL,-Draw OK $\perp P M, O L \perp Q N$; aid use similar $\triangle S$ OPK, OQL.)
16. D, E, F are points on the sides $B C, C A, A B$ of the $\triangle A B C$, such that $A D, B E, C F$ are commernt. Prove that the hamomic conjugates of D with respect to B and C, of E with respect to \mathbf{C} and A, and of F with respect to A and B are collinear.
17. In $\triangle A B C, X$ is the projection of A on $B C$, and $B C$ is produced to cut the radical axis of the ciremmeirele and the N.-P. circle at P. Show that B, X, C, P is harmonic.
18. The opposite sides of the quadrilateral $A B C D$ are produced to meet at E, F. The diagrmals of the complete quadrilateral form the \triangle LMN. Show that the circle described on any one of the diagomals as diameter ents the circumeirele of \triangle LMN orthegronally.

Maxima ant Minima

58. If a matmitude, such as the length of a st. line, an :ugle, or an aren, viries contimmonsly, subjuct to siven conditions, it is said to be a maximum when it has its greatest possible value; and a minimum when it has its least possible value.

Fia. 64.
59. Let the distance, PA from a fixed point P within a circle to the cirmmference be the magni wde in question.

Join A to the centre O and produce PO to meet the circminference at Band \mathbf{C}.
$\mathrm{PA}<\mathrm{PO}+\mathrm{OA}$ hut $>\mathrm{OA}-\mathrm{OP}$;
$\therefore \mathrm{PA}<\mathrm{PB}$ but $>\mathrm{PC}$.
As PA rotates about P its length varies continuously. When it comes to the position PB it is grater than in the positions close to PB on either side, and hats its maximum value.

Arain, at PC it is less than in the positions close to PC on either side, and has its minimum value.

Draw the diagram and ilhustrate in the same maner the maxinum and minimm distances from P to the circumference when P is without the circle.

What do the maximum and minimum values become when P is on the circumference?

Other simple examples are:-
(1) The \perp is the minimum distance from a given point to a given st. line;
(b) The minimum distance between points on two II st. lines is \perp to the \| lines;
(c) The \perp from a point on the circumference of a circle to a fixed chord is a maximmen when the 1 , or the \perp produced, passes through the centre.
60. (a) A and B are two fixed points on the same side of a fixed st. line CD. It is reguired to find the point P in $C D$ such that $P A+P B$ is Ω minimum.

Draw BM \perp CD and produce making ME $=B M$. J)raw $A E$ cutting $C D$ at P.

Then P is the required point.

Trake any other point Q, in CD. Join PB, QA, QB, QE.

Fia. 85.
$A Q+Q E>A E$. But $Q E=Q B$ and $P E=P B$.

$$
\therefore \mathrm{AQ}+\mathrm{QB}>\mathrm{AP}+\mathrm{PB} \text {; }
$$

and hence $A P+P B$ is the minimum value.
It is easily seen that $A P$ and $P B$ make equal $\angle s$ CPA and BPD with CD, and hence:-

The sum of the distances from A aud E to the st. line is a minimum when the distances make eqmal $\angle \mathrm{s}$ with the line.

Find the point P when A and B are on oposite sides of $A B$.
(b) Of all Δs on the satue hases athl hatving the ame area the isosceles A has the lenst, perimetur.

Fio. 36.

Since the area is comstant the locus of the vertiens is a st. line $X Y: A B$.

If $\triangle A C B$ is isnsceles, ami DAB is any oflici \triangle on $A B$ and lanving its vertex in
$X Y$,
$\angle \mathrm{XCA}=\angle \mathrm{CAB}=\angle \mathrm{CBA}=\angle \mathrm{YCB}$;
and \therefore, by (11), $\mathbf{A C}+C B \therefore A D+D B$;
that is, the perimeter of $\therefore A C B$ is luss than that of any other \triangle on the same hime $A B$ and having the same area.
(c) Of all Δs inscribed in a ghrmacute- $\angle 1 \wedge$ the pedal \triangle has the least perimeter:

If DEF be any \triangle inscribed in $A B C$ and $F E$ lee consilered fixed, by (1), the sum of $F D$ and DE will be least when $\angle F D B=\angle E D C$; thus for the mininum perimeter the sides $F D, D E$ must make equal $\angle A$ with BC. Similarly DF, EF must make equal $\angle s$ with $A B$

Fio. 67. and DE, EF must make equal $\angle \mathrm{N}$ wili CA .

The sides of the pedal $\triangle X Y Z$ maike equal $\angle \mathrm{S}$ with the corresponding sides of $\angle A B C$.
\therefore the perincter of $X Y Z$ is less than that of any other \triangle inscribed in $A B C$.
(1) The rectapges contained hy the two segmentes of ast. lime is a mavimm when thest. line is bisected.

Lat P be amy point in $A B$, mul o the millle puint.

Deseribe tho semicirete $A C B$ and drav $O C$ and $P D \perp A B$. Juin O, D

$$
A P \cdot P B=P D^{2} \text { :unl } A O \cdot O B \quad O C \text {; }
$$

$$
\begin{aligned}
& \text { lint } \because O C=O D: H 1 O D . P D \therefore O C P D ; \\
& \quad \text { :ll.1 } \therefore A O . O B ; A P . P B .
\end{aligned}
$$

(.) If the ans.a of a rectangle is comstant, its perimeter. a minimam whin the rectangle is a simare.
$\mathrm{I}_{11} \mathrm{Fig}$. 58 , rect. $\mathbf{A P} . \mathrm{PB}=\mathrm{PD}^{2}$.
The premetere of the: s guare $=4 \mathrm{PD}$ while the Der meter of the rectand $=2 A B=4 O D$, and $P D=O D$.
\therefore The premetore of the s^{2} :
leses thatu that of the rectimgle of the same areo.

61.-Exercises

(a)

1. Thromeh a given point within a given circle draw the chorel of min. ength.
2. A and B are two fixed point:s, and $C D$ is a fixed st. line. Find the point \mathbf{P} in $\mathbf{C D}$, such that the difference h. tween PA and PB is a masimum.
(ii) "When A and B are on the same side of CD;
(li) When A and B are on opposite sides of CD.
3. Two sides $A B, A C$ of a \triangle are given in length. Show that the area of the \triangle is a max. when $\angle A$ is a rt. \angle.
4. A, B are two fixed points and P is any point. Show that $P^{2}+P^{2}{ }^{2}$ is a min. when P is the middle point of AB.
5. A, B, C are fixed points and P is any point. Slow that $P A^{2}+P B^{2}+P C^{2}$ is a min. when P is the centroid of the $\triangle A B C$.
(Note.-See O.II.S. Geometry, Ex. 16, Page 133.)
6. Find the max. and min. distances between two foints one on each of two given non-intersecting circles.
7. Given two adjacent sides describe the $\|$ gm of max. arca.
8. A, B are two fixed points. Find a point P on a fixed circle such that $P A^{2}+P^{2}$ is a max, or min.
9. Of ail Δs of given base and given vertical \angle, the isosceles \triangle has the greatest area.
10. Prove that the greatest rectangle hat can be inscribed in a given cirele is a square.
11. Give examples showing that if a magnitude vary continuonsly, there must he between any two equal values of the magnitude at least one maximum or minimum valuc.
12. Of all chords dratw : through a given point within a circle, that which is biseeted at the point cuts ofl the win. area.
13. From a given point without a circle, of which O is the edntre, draw ast. line to ent the circminference in L and M, such that the \triangle OLM may bo a max.
(Note.-Use Lix. 3 in the amalysis of this prollem.)
14. Given two intersecting st. lines and a point within the \angle formed by them, of all st. lines drawn through tim point and terminated in the st. lines that which is hispeted by it cuts of the min. area.
15. Given the base and the perineter of a Δ show that the area is a max. when the \triangle is isosceles.
16. Of all Δs having a given area, the equilateral has min. perimeter.
(Note.- Tet $\angle B C$ be a \triangle laving the given arca and let t wo of the sides $A B, A C$ be unequal. Then, by $\S 60$, (b), if an isusceles \triangle be described on $\mathbf{B C}$ of the same area, it will have less perimeter. \therefore if any two of the sides be unequal the perimeter is not a min., and hence the equilateral \triangle has the min. perimeter.)
17. Of all rt.- $\angle 1 \angle \mathrm{~s}$ on the same hypotenuse the isosceles \triangle has the max. perimeter.
18. Find a point in a given st. line such that the sum of the squares of its distances from two given points is a min.
19. A and B are two given points on the same side of a given st. line; find the point in the line at which $A B$ subtends the $m_{n} \mathrm{y}$. \angle.
(Note.-Describe a circle to pass through the two given points and touch the given st. line.)
20. Two towns are on opposite sides of a canal, unequally distant from it, and not opposite to each other. Where must in loidge be built, \perp to the sides of the camal, that the distince between the towns, by way of the bridge, may be a min.?

(b)

21. A $\| g \mathrm{~m}$ is inseribed in a given \triangle by drawing from a print in the base st. lines $\|$ to the sides. Prove that the: area of the firm is a mas. when the hines are drawn from the middle point of the base.

2?. The max. rectangle inseribed in a given i equals hallf the \angle.
(Note.--Use Ex. 21.)
23. One circle is wholly within another circ'e, and contain: the centre of the other. Find the mix. and min. chomls oi the onter circle which tonch tho inmer.
24. A, B are fixed points within a given circle. Find a point P on the circumference such that when $P A, P B$ produced meet the circmuference at C, D respectively, $C D$ is a max.
(Note.-Describe a circle through A and B and touching the given circle.)
25. Find the point in a given st. line from which the tangent dawn to a given circle is a min.
26. Through a point of intersecuion A of two circles draw the max. st. line terminated in the two circumferences.
(Note- Draw CAD \|| the line of centres and any other st. line EAF. Join C, D, E, F to the other point of intersection and use similar \angle. .)
27. P, Q, R are points in the sides $M N, N L, L M$ of $\triangle L M N$ and RQ $\| M N$. Find the pesition of RQ for which the $\therefore P Q R$ is a max.
(Nore.-Use Ex. 21.)
2n. A is a fixd point within the $\angle X O Y$. $11 O X$ OY find peints C, D respoctively, such that the primeter of the $\& A C D$ is a 1 mu.
29. A, E are points without at given circle. On the circle find points P am! Q such that $\angle A P B$ is amax. and $\angle A Q B$ is a min.
30. The $\angle A$ of the $\therefore A B C$ is fixed and the shm of $A B, A C$ is constant. Prove that $B C$ is a min. when $A B=A C$.
31. A is a fixed point within the $\angle X O Y$. Tho st. line BAC cuts $O X$, OY at B, C. Prove that BA. AC is a min. whill $O B=O C$.
32. From any point D in the lypotenuse $B C$ of a rt. $-\angle d$ $\triangle A B C \perp s D E, D F$ are drawn to $A B, A C$ respectively. Find the position of D for which $E F$ is a min.
33. If the sun: of the squares on two lines is given, the sum of the lines is a max. when they are equal.
34. CAD is any st. line through a common print A of circles CAB, DAB. Prove that CA. AD is a max. when the tangents at C, D mert on BA promeluced.
(Nort.- -Let E, F be the centros of circles ABD, ABC respectively. Join EA, and draw the radius FC EA. Join CA and produce to D. Then tangents at C, D will intersert on BA. Through A draw GAH terminated in the circles. Prove GA. AH $<\mathbf{C A}$. AD.)
35. Describe the maximum $A D E F$ which is similar to a sivell is $A B C$ and has its sides $E F$, $F D$, $D E$ passing repretively through fixed points P, Q, R which are not collinear.
(Note:-On QR, RP describe segments containing $\angle \mathrm{s}=$ $\angle A, \angle B$ respectively. Through R drave ast. line || to the lime of centres of these semments and terminated in the ares at $D, E . D Q, E P$ meet at F, giving the mats. $A D E F$. In the prouf use the proposition that similar $\triangle s$ are as the squires on homologrous sides.)
36. A, B are fixed prints on the same side of a fixed st. line $X Y$. Place puints P, Q on $X Y$ such thate the distance $P Q$ equals a given st. line and $A P+B Q$ is a min.
 hasth for PQ. Wat $C M \perp X Y$ and pronlue, making $M D-C M$. Join $B D$ cutting $X Y$ at Q. Haw $A P C Q$, cutting $X Y$ at P.)

Miscellaneous Exercises

62.-Exercises on Loci

(a)

1. Construct the locus of a point such that the $L_{\text {s }}$ from it to two intersecting st. lines are in the ratio of two given st. lines.
2. A fixed point O is joined to any point A on a given st. line which does not pass through O. P is a point on OA such that the ratio of OP to OA is constant. Find the locus of \mathbf{P}.
3. Λ fixed point O is joinct to amy point A on the circumfercuce of a given circle, P is a point on OA such that the ratio of OP to $O A$ is constant. ' Prove that the locns of P is a circle having its centre in the st. line joining O to the centre of the given circle.

Find the locus when P is on $A O$ produced.
4. Λ fixed point O is joined to any point A on a given st. line which does not pass through O. P is a puint "u OA such that the rect. OP. OA is constant. Show that the lecas of \mathbf{P} is a circle.

Find the locns when P is un AO pronluced.
5. Through a fixed point \mathbf{O} within an $\angle Y X Z$ draw a st. line MON, terminated in the arms of the \angle, and such that the rect. OM. ON has a given area.
6. Find the locus of a point such that the smm of the squares on its distances from the arms of a given ri. \angle is equal to the square on a given st. line.
7. The locus of a point, such that the sum of its distances from two given intersecting st. lines equals a given st. line, consists of the sides of a rectangle; and the low of a point such that the difference of its distances from the intersecting st. lines equals the given st. linc, consists of the produced parts of the sides of the rectangle.
8. Given the base $Q R$ of a \triangle and the ratio of the other two sides, show that the locus of the vertex P is a circle with in diameter ST in the line QR such that S, T are harmonic conjugates with respect to \mathbf{Q} and \mathbf{R}.
(Nore.-The circle of Apollonius, see O.H.S. Geometry, page 235.)
(IIstorical Norr.-Apollonius of lerga died in Alexandria alout 200 B . C.)
9. $A B$ is a fixed chord in a circle and C is any point on the circumference. Slow that the loci of the middle points of $C A, C B$ are two equal circles.
10. Find the locus of the points from which tangents diawn to two concentric circles are \perp to each other.
11. Construct the locus of the centre of the circle of given radius which intercepts a chord of fixed length on a given st. line.
12. Show that the locus of the centre of a cirrle of ralins R which cuts a given circle at an $\angle A$ consists of two circles concentric with the given circle.
13. A circle rotates about a fixed point in its cirenmference. Show that the locus of the prints of contact of tanguts drawn || to a fixed st. line consists of the circumferences of two circles.
14. $A B, C D$ are $t w n$ churds of a cirele, $A B$ being fixed in l"nition and CD of given length. Find the luci of the intersections of $A D, B C$ and of $A C, B D$.
15. A and B are the centres of two circles which intersect at C; thromgh C it st. line is diawn terminated in the dirmuferences at D and E. DA, ES are produced to meet at P. Find the locus of P.
16. In a quadrilateral $A B C D, A B$ is tixed in position, $A C, B C$ and $A D$ are given in length:-
(a) Show that the loeus of P, the midhle peint of $B D$ is a circle having its contre at E, the midhle point of $A B$, and its radius equal to half of $A D$;
(b) If F is tho middle point of $A C$, slow that the lextus of the middle point of FP is a circle having its centre at the middle point of $F E$ and its ralius equal to one fourth of $A D$.

(b)

17. What is the locus of the point P when the st line MN which joins the fert of the Ls PM, PN drawn to two fixed lines $O X$, $O Y$ is of given lengtly.
(Note. - Fiall A in OY such that AR drawn $\perp \mathbf{O X}=\mathbf{M N}$. Draw the dianmor ME of the circle though O, M, N, P; and join NE. $\triangle M N E=\triangle O R A ; \therefore M E=O A$. But $O P$ ME, $\therefore O P=O A$ and \therefore the locus of P is a circle with centro O and raliu: $O A$.)
18. BAC is any chord passing through a fixed puint A within a irisen circle with centre E. Circles deseriberl wis BA, AC as chords touch the wiven ciocle internally at B, C rejpertively and cut exch wher at D. Show that the low of D is a circle descrithed on $A E$ as diameter.
(Norf.-F, G are centres of circles BAD, CAD respectively. Juin FG cutting EA at H. Prove that AFEG is a wh and that HD HA.)
19. Any secant $A B D$ is luawn from a given print A in cut a given circle at B and D. Thatough A, B and A, D respectively two cirrles are drawn to tombly the wivn circle; show that the locus of their secomd point of intur. section is a circle on the line juining A to the centre ui the given circle as diamotor.
20. In is $A B C$, two cirches fouch $A B$ at B :unl $A C$ at C respectively and touchs each other. Find the loens of their point of contact.
(Note.-Draw BD, CD \perp respectively to BA, CA. Describe any circlo with centre R in BD and passing through B. Produce DC to E making $C E=R B$. In $D C$ find a point S equilistant from R and $E . S$ is the centre of the circle which touches AC at C and the circle with centre \mathbf{R} at P. Prove $\angle B P C=180^{\circ}-\frac{A}{2}$ and that consequently the locers is a segment on BC.)
21. Any transwersal chts the sides $B C, C A, A B$ of a given $\triangle A B C$ at D, E, F respectively. The eiremmeribed circles of the \therefore s $A F E, C E D$ ent again at P. Nhow that the lowhs of P is the circumeirele of $\triangle A B C$.
22. From C, any point on the are ACB, CD is drawn $\perp A B$; with centre C and radius $C D$ a circle is deseribed. Thurents from A and B to this circle are produced to meet at P. Find the lucus of P.
23. Two similar D s $A B C, A B^{\prime} C^{\prime}$ have a common vertex A, and the $\triangle A B^{\prime}$ rotates in the common phane alout the print A. Show that the locns of the puint of intersectim of $C C^{\prime}$ and $B B^{\prime}$ is the circumscribed circle of $\triangle A B C$.
24. If a $A A B C$ remains similar to itself whice it turns in its finne about the fixed vertex A and the vertex B describe; the circumference of a circle, show that the locus of \mathbf{C} is is circle.
25. $A B$ is a fixed diameter of a given circle, E the centre and Cany point on the cirromference. Prontuce BC to D makine $C D=B C$. Show that the locus of the point of imewetim of $A C$ am $E D$ is a cirle on diameter $A F$ such thit A and F are h:mmonic conjugates with respect to E Mr B.

2r. A rectangle inseribed in at given ABC has one of its viles on BC. Shew that the lecte oi the point of interamtion of its diagnals is the lime ming the middle print af BC to the mithle paint of the fom A to $B C$.
(Note.-From the point where the metian from A cuts the upper side of one of the rectangles draw a \perp to $B C$.)
27. Any chord BAC is drawn through a fixed point A within a circle. On BC as hypotenuse a rt. $-41 \therefore$ BPC is deseribed such that A is the projection of P on $B C$. Find the locus of \mathbf{P}.
28. Any circle is drawn through the vertex of a given L. Show that the loci of the ends of that diameter which is $\|$ to the line joining the points where the circle cuts the arms of the $<$ are two fixed st. lines \perp to each other and through the vertex of the given \angle.
29. Through C, a point of intersection of $t w o$ given circles, a st. line $A C B$ is drawn terminated in the circumferences at A and B. Prove that the hons of the midille point of $A B$ is a circle passing through the points of intersection of the given circles, and having its centre at the middle point of the st. line joining their centres.
30. From a fixed point P, two st. lines PA, PB, at it. $\angle s$ to einh other, are drawn to cht the circumferniee of a fixed circle at \mathbf{A} and B. Show that the locus of the midhll point of $A B$ is a circle having its centre at the midnle point of the st. line joining P to the centre of the given circle.
31. A $\| \mathrm{gm}$ is inseribel in a given quadrilateral $A B C D$ with siles :AC and BD. The locus of the puint of intersection of the diagorals of the $\| \mathrm{mm}$ is the st. line joining the middle $f^{\text {wints }}$ of the diagot:als of the quadrilateral.

63.-Thronf:Ms

Deflnition.-If A, B be the contres of two circles, and points P, Q he fouml in $A B$ and $A B$ produced such that $\frac{A P}{P B}=\frac{A Q}{Q B}=\frac{R}{r,}$ the mint: P, Q ire callod the centres of similitude of the cirele

(11)

1. The enotres of similiture of two citcless are Larmonio conjugates with resperet the centres of the circhoss
2. Show that sach of the fonr common timnents of two circles pisses through one of the centres of similitule of the circles.
3. If $\|$ dianeters be deawn in two circles, cath of the fonr t. lines joining the comes wi the dimmeters will pase through a centre of similitude of the circles.
4. If a circle tumch two fived cirele:, the line joining the points of contatet passes through a centre of similitude of the two cireles.
(Notr.- Use Menelaus' Theorem.)
5. The six centres of similitude of three cireles lis there by throe on fom st. lines.
i. If two circlos cut orimennally, amy diameter of one Which cuts the oiher is cut harmonically hes that other.
6. In a syutem or maxial circles t! de two limitine minta and the poinic in whith any one cirche 1 the systeme ruts the lime of contres form at hamonie range.
\&. Comenrent st. linee drawn from the vertione ot lhe
$A B C$ cu the npposite sides $Z C, C A, A B$ reynectinely at D, E, F Show that sin $A C$. sin BAD . sin $C B E$ sin $F C B$. si, CAC. sin EBA.
7. Show that the aco of $\therefore A B C \quad b^{\prime} x(x-11)(x-1)(x-c)$ where 2s $=c++c$.
8. Find the area of the $\triangle A B C$ and also the radins of its circumeircle, given:-
(i) $a=6.5$ mм., $b=70$ mии., $c=75 \mathrm{~m}=$;
(ii) $\ell=7$ cmı, $b-i$ cmı., $c=3$ cıu.
9. If L, M, N, be the centres of the escribud eincles of $\triangle A B C$, the ciremmseribed circte of $\triangle A B C$ is the N.-I'. circle of 1 LMN.
10. In lix. 11 if 1 be the contre of the inserilned circle, P the print whre the circumseribed cirele cuts IL and PH be $\perp \mathrm{AC}, \mathrm{AH}$ equals half the sum and CH hate the ditlerence of b ant? c.
11. If O be the orthocentre of $\therefore A B C, A, B, C, O$ are the centres of the cireles which tonch the sides of the pertal \triangle.
12. $C A, C B$ are two tiagents to a circle; E is the font of the \perp fiom B on the diameter $A D$; prove that $C D$ biscels BE.
(Sote--Produce DB to meet AC producel. Join AB.)
13. The \perp from the vartex of the rit. L on the hypot. nuse of a 1 t. $-L / A$ is a harmonie mean between ther segments of the hypotenuse: made by the point of contar of the inseribed cinde.
(Note.-AB is the hypotmuse of the rt.- $\angle 1$ is $A B C$, p tho length of the \perp from C on $A B$. Then $s-u, s-b$ ar the seguents of $A B$ made hy the point of contact of the inscribed circle.
H.M. of seçments $=\frac{2(s-a)(s-b)}{s-a+s-b}=\frac{(b+c-a)(c+a-1}{2 c}=$

14. The side of a spuare inseribed in a \triangle is half the harmonic mean between the hase and the \perp from the vertex to the lnse.
15. 'The circumseribed centre of a \triangle is the orthocentre of the \triangle formed by juining the midfle pmints of its sides: and the t wo $\triangle s$ have a common centroid.
16. ABC is a \triangle. Describe a circlo to touch $A C$ at C and pass through B. Descriter another circlo to touch BC it \mathbf{B} and pass through \mathbf{A}. Let \mathbf{P} be the seeond point of intersection of thee circles. Show that $\angle A C P=\angle C B P$ $=\angle B A P$; and that the circumseribed circle of $\triangle A P C$ tomehes BA at A. Find another point Q such that \angle $\mathrm{QBA}=\angle \mathrm{QAC}=\angle \mathrm{QCB}$.
17. O is the orthrentre of $\triangle A B C, A X, B Y, C Z$ we the Is from A, B, C on the opposites sides, BD is is diametur of the circumscribed circle. Show thit:--
(1) $\mathbf{D C}=A O$;
(b) $\mathbf{A O ^ { 2 }}+\mathbf{B C} \mathbf{C}^{2}=\mathbf{B O}^{2}+\mathbf{C A} \mathbf{A}^{2}=\mathbf{C O}^{2}+\mathbf{A B}=$ the splutre on the diancter of the ciremuseribed circle.
18. If a \triangle be formed with its sides equal to $A D, B E$, $C F$, the medians of $\triangle A B C$, the medians of the now \therefore will be respectively threffourths of the correspondings sides we the original \triangle.
(Nore- Draw FG and = AD. Join CG. Jroblu• $F D_{1}$ GD we cut CG, CF at K, H.)
19. The upposite sidey of at quadriatmal inseribed in a rivele are prosluced to meet; slow that the bisectors of the two $\angle s$ so formed are \perp to each other:
20. $A G$ is a median of the $\therefore A B C$. BDEF cuts: $A G, A C$ and the line through $A \| B C$ at D, E, F respectivily: Nhow that B, D, E, F is a harmenic rauge.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

23. If $\mathbf{A}, \mathbf{C}, \mathbf{B}, \mathbf{D}$ be a harmonic range, show that:-

$$
\frac{2}{A B}=\frac{1}{A C}+\frac{1}{A D} .
$$

24. Prove that the radical axis of the inscribed circle of $\triangle A B C$ and the escribed circle which touches $B C$ and $A B, A C$ produced bisects $B C$.
25. If a st. line is divided in medial section and from the greater segment a part is cut off equal to the less, show that the greater segment is divided in medial section.
26. If a st. line is divided in medial section, the rectangle contained by the sum and difference of the segments is equal to the rectangle contained by the segments.
27. In Figure 33, show that the centre of the circumcircle of $\triangle H B C$ lies on the circumeircle of $\triangle A H C$.
28. Show that the radius of a circle inscribed in an equilateral \triangle is one-third of that of any one of the escribed circles.
29. $\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are harmonic ranges and $A P, B Q, C R$ are concurrent at a point O. Prove that DS passes through O.
30. A, B, C, D and A, E, F, G are harinonic ranges on two st. lines AD, AG. Prove that BE, CF, DG are concurrent.
(b)
31. Three circles pass through two given points \mathbf{P}, \mathbf{Q}. Two st. lines drawn from P cut the circumferences again at R, S, T and $R^{\prime}, S^{\prime}, T^{\prime}$. Show that $R S: S T=R^{\prime} S^{\prime}: S^{\prime} T^{\prime}$.
(Note.-Join the six points to Q.)
32. The middle points of the diagonals of a complete quahrilateral are collinear.

ABCDEF is a complete quadrilateral ; $\mathbf{L}, \mathbf{M}, \mathbf{N}$ the middle points of its diagonals.

Draw LHK \|AE, produce KM to cut $A B$ at G and join GH.

Prove L, M, N collinear.

33. $A B C D$ is a quadrilateral and U is a point within it such that $\triangle A O B+\triangle C O D=\triangle B O C+\triangle A O D$; show that the locus of O is the st. line joining the middle puints of the diagonals $A C$ and $B D$.
(Note.—Produce DA. CB to meet at E . Make $\mathrm{EF}=$ $A D$ and $E G=B C$. Join FO, EO, GO, FG.)
$\triangle O E F=\triangle O A D, \triangle O E G=$ \triangle OBC. \therefore OFEG $=$ half $A B C D$, and $\triangle E F G$ is constiult ; $\therefore \triangle$ OFG is constint and is on the constant base FG; \therefore the locus of O is a st. line.

It is easily seen that the middle points of the diagoma! are on the locus.
34. If a quadrilateral he circumscribed about a circle, the centre of the circle is in the st. line joining the middle points of the diagonals.
(Note.-Use Ex. 33.)
35. G is a fixed point in the base $B C$ of the $\triangle A B C$ and O is a point within the \triangle such that $\triangle A O B+\triangle C O G=$ $\triangle A O C+\triangle B O G ;$ show that the locus of O is the st. line joining the middle points of $B C$ and $A G$.
(Note.-From CB cut off $C D=B G$. Join $O D, A D$.)
30. G is the point of contact of the inscribed circle of $\triangle A B C$ with $B C$. It is required to show theit the centre of the circle is in the st. line joining the middle points of $B C$ and $A G$.
37. A is a fixed point on a given circle and P is a variable point on the circ.e. Q is taken on AP producel so that $A Q: A P$ is constint. Show that the locus of Q is a circle which touches the given circle at A.
38. \mathbf{S} is a centre of similituide of two circles PQT P'Q'T', and a variable line through S cuts the circies at the corresponding points $P, P^{\prime} ; Q, Q^{\prime}$. Prove that, if $S T T^{\prime}$ is a common tangent

$$
S P \cdot S Q^{\prime}=S P^{\prime} \cdot S Q=S T \cdot S T^{\prime} .
$$

39. $A D$ is a median of the $\triangle A B C$. A st. line CLM cuts $A D$ at L and $A B$ at M. Prove that $M L: L C=$ $A M: A B$.
40. The locus of the point at which two given circlos suburnd equal Ls is the circle deseribed on the join of their centres of similitude as diameter.
41. Having the N.-P. circle and one vertex of a \triangle given, prove that the locus of its orthocentre is a circle.
(Note.-Let A be the given vertex and K the centre of the N.-P. circle. Join AK and produce to M making $\mathbf{K M}=\mathbf{A K} . \quad \mathbf{M}$ is the centre of the locus.)
42. $A B$ is a chorl of a circle and the tangents at A, B meet at C. Fron any point P on the circle Ls PX, PY, $P Z$ are drawn to $B C, C A, A B$ respectively. Prove that $\mathbf{P X} . \mathbf{P Y}=\mathbf{P} \mathbf{Z}^{2}$.
43. OX, OY are two fixed st. lines and from then eyfual successive segments are cut off; AC, CE, etc., on $O X ; B D$ $D F$, etc., on $O Y$. Show that the middle points of $A B, C D$, $E F$, etc., lie cn a st. line \|f to the bisector of the $\angle X O Y$.
(Note.-Produce the line joining the middle points of $A B, C D$ to cut $O X$, OY and use Menclaus' Theorem.)
44. Show that the st. line joining the vertex of a A to the point of contact of the escribed circle with the lase passes through that point of the inscribed circle which is farthest from the base.
(Note.-Show that the vertex and the point where the binector of the vertical \angle cuts the base are harmonic conjugates win! respect to the inscribed and escribed centres; ance use the resulting harmonic pencil having its vertex at the point of contact of the escribed circle with the base.)

From Ex. 44 show that the \perp from the vertex to the base of a \triangle and the bisector of the vertical \angle are harmonic conjugates with respect to the lines joining the vertex to the points of contact of the inscribed and escribed circles with the base.
45. The five diagonals of a regular pentagon intersect at five points within it. Show that the ara of the pentagon with these points for vertices is $\frac{7}{\cdots} \frac{3}{2}$ 有 A, where A is the area of the given pentagon.
45. $A B C D$ is a rectangle. If A, P, C, Q and B, R, D, S are each hamonic ranges, show that P, Q, R, S are concyelic.
47. If one pair of opposite sides of a cyclic quadrilateral when produced intersect at a fixed point, prove that the other pair when produced intersect on a fixed st. line.

What is the connection hetween the fixed point and the fixed st. line?
48. Concurrent st. lines drawn from the vertices of the $\triangle A B C$ cut the opposite sides $B C, C A, A B$ respectively at D, E, F. Prove that the st. hines drawn through the middle points of $B C, \mathcal{S A}, A B$ respectively || to $A D, B E, C F$ are concurrent.
49. The sides $A B, B C, C D, D A$ of a quadrilateral touch a circle at $\mathbf{E}, \mathbf{F}, \mathbf{G}, \mathrm{H}$ respectively. Show that the opposite vertices of $A B C D$, the intersection of the diagonals of EFGH, and the intersections of the opposite sides of EFGH form two sets of collinear points.
50. The circle $A P Q$ touches the circle $A B C$ internally at A. The chord $B C$ of the circle $A B C$ is tirigent to the circle $A P Q$ at R, and the chords $A B, A C$ intersect the circle $A P Q$ in the points P, Q. Prove that $\mathbf{A P} \cdot \mathbf{R C}=$ $A Q$. BR.
51. Tangents to the circumcircle of $\triangle A B C$, at the vertices, meet at D, E, F. $A D, B E, C F$ are concurrent at O. Show that the \perp from O on the sides of $\triangle A B C$ are proportional to the sides.
(Note.-Draw GDH FE and meeting AB, AC produced at $G H$. Draw DR, DS $\perp A G, A H$. Prove $D G=D H$; and. if $O M, O N$ are $\perp A B, A C$, that $\frac{O M}{O N}=\frac{D R}{D S}=\frac{A H}{A G}=\frac{A B}{A C}$.)

If $A D$ cuts $B C$ at K, show that $B K: K C=A B^{2}: A C^{2}$.
5 . O O is the middle point of a chord $A B$ of a circle, $D E$, FG are any chords through O; $E F, G D$ eut $A B$ at H, K. To prove $\mathrm{OK}=\mathrm{OH}$.

Prowluce EF, GD tw meet at L; $E G, F D$ at M. Produce EU to meet LM at P. Join OL, OM.

Fia. 61.
OLM is a self-conjugate $\angle ; \therefore$ CO produced cuts LM at rt. \angle, iud $\therefore A B \| L M$. PDOE is a hitmonic range, and $\therefore L(P, D, O, E)$ is a harmonic pencil. Then $\because A B$ through O is || LM and cuts the other two rays at $H_{5} \mathrm{~K} ; \therefore \mathrm{OH}=$ OK.
53. Through any point P i:1 the median $A D$ of $\triangle A B C$ a st. line is chawn cutting $A B, A C$ at Q, R. Prove that $P Q: P R=A C \cdot A Q: A B \cdot A R$.
(Note.-Produce BP, CP to cut AC, AB at K, L, Join $B R, C Q . B D . C L \cdot P K=D C \cdot L P \cdot K B, \therefore \frac{L P}{C L}=\frac{P K}{K}$, $\therefore \hat{\triangle A P Q}=\widehat{\triangle A P R} ; \quad$ or $\widehat{\triangle A P Q}-\triangle A C Q$ and \therefore $P Q: P R-A C \cdot A Q: A B$. $A R$.)

(at. 1ヵ, Mava:

(11)

1. Draw a st. line, ferminated in the ciremmferences of two given circles, equal in longth to a given st. line, ant $\|$ to a given st. line.
2. 'Ilurongh a given point on the circmaference of a circle draw a chord which shall be hisweted by a given chord.
 sum of the $\perp s$ on the ams of the rt. L equals a given st. line. What are the limits to the lengh of the given st. line?
3. In the hypotemse of a rt. $-\angle d \triangle$ find a point such that the diference of the L ss on the ams of the ret. 6 equals a given st. line.

When will there he two, we on wo solutions?
5. In the hypotenuse of a rt.- Cl ? \triangle find a joint such that the Ls on the arms of the ret. \angle are in a given ratio.
6. Thooryh a given point draw a st. line iemminated in the circmatieroness of two given cireles and divided at the given punt in a given ratio.
(Andmsis.-- Tet A ise the given point and suppose PAQ to br the required st. line terminated at P, Q in the cirole of which the centres are respectively C, D. Join $C P$, and daw $Q R$ CP meeting $C A$ in R. From similar L. $\begin{array}{ll}C A & C P \\ A R & Q F\end{array}=$ tho given ratio $P A$, wherein $C A, C P$ are Khown; aime \therefore the position of R aml the length of $Q R$ are known.)
7. Tu a given circle inseribs a botangle having its perimeter equal to a given st. line.
8. In a given circle inseribe a rectangle having the difference between mijacent sides equal to a given st. line.
9. In a given circle inscribe a rectungle having its sides in a given ratio.
10. In a circle of ralins 5 and inseribe a redangle having its area 22 sid. cm.
(Avalysis.-Let $2, y$ be the siles of the rectangle, then $x y=22$ and $x^{2}+y^{2}=100$. Show that $x+y=13$. .)
11. A and B are fixed pmints on the eircumfernce of a giveln circle. Fiml a peint C on the eiremmerence such that $\mathbf{C A}, \mathbf{C B}$ interept a given length on a fixed chord.
(A nalysis. - Draw BL || th the given chord and equal to tie given length. Join L to the print where $A C$ is suppesed to cut the given chord. Juin AL, ete.)
12. A and B are fixed puints on a circumference. Find a print C on the circminfernce such that $C A, C E$ cut a ficed diameter at points equally distant from the centre.
(Avalysis.-D):aw the diameter AOD. Join D to the print F where BC is supposed to chat the given diameter. Prove that the circuncircle of $\triangle D F B$ touches the given st. line $A D$ at D.
13. In a given circle inscribe a \triangle, such that two of its sides pass through given pointr, and the thind side is a maximum.
11. Two towns are on different sides of a straight canal, at hamparl - from it, and mut oplowite to each whir. Wh. $:$ brilge be binitt \perp to the direction of the cana the laidge?
1.). Divide a given st. line into two parts so that the aplares on the two parts are in the ratio of two giten st. lines.
16. Constront the locus of a proint the differemee of the squares of whose distances from t wo points 3 inches apart is. In inthes.
17. Two points \mathbf{A} and \mathbf{B} are four inches apart. Construct the locus of the point the sum of the syuares of whes distances from \mathbf{A} and \mathbf{B} is $\because 05$ square inches.
18. Divide a given st. line into two parts such that the sum of the squares on the whole st. line and on one part is twice the square on the other part.
(ANALYsis.- Let $A B(=11$

Fiu. 62. be the required lino and EB ($=$.a) a segment such that $u^{2}+r^{2}=2(a-a)^{2}$. Then
$r:=4 t-a v 3$, and $a-r=$ $a \sqrt{3}-a ; \therefore \underset{E B}{A E}=\begin{gathered}\sqrt[1]{3}-1 \\ 2-1 ; 3\end{gathered}=$
$\sqrt{3}+1 . \quad \therefore A E=E B_{\sqrt{3}} \cdot \overline{3}+E B$. Cut all $E D=E B$ and draw $A C \perp A B$ anl $=E B$. Then since $A D E B \vee 3=A C, 3$ $\angle A D C=30^{\circ}$ and $C \Gamma=\triangle A C=D B \quad \therefore \angle B=15^{\circ}$.

The following construction is then evident:-At B make $\angle A B C=15$, and draw $A C \perp A B$. Draw the re.-bisectur of $B C$ cutting $A B$ at D. Sisect DB at E.)
19. Two non-intersecting circles have their centres at A and B, and C is a point in AB. Inaw a circle through the point C and coaxial with the two given circles.
(Nore.-Fromil O, the point where the radical axis cut$A B$ draw a tangent, $O T$, to one of the given circles. Then if $C C^{\prime}$ is the diameter of the required circle, $O C . O C^{\prime}=$ $O T^{2}$ and $\therefore O C^{\prime}$ is the third proportional to $O C$ and $O T$.)
20. Construct a \triangle having one side and two medians equal to three given st. lines. (Two cases.)
21. Construct a Δ having the three medians equal to three given st. lines.
22. Given the vertieal \angle, the ratio of the sildes containing it, and the diameter of the circumscribing circle; construst the \triangle.
23. Given the feet of the $\perp \mathrm{s}$ drawn from the vertices of a \triangle to the opposite sides; construct the \triangle.
24. Draw a circle to tonch a given circle, and alsu to touch a given st. line at a girm point.
2.). Draw a circle to pass throush two given points and touch a given circle.
26. Draw a ciecle to pass though a given puint and tonch two given intersecting st. liners.
2․ $A B$ is the chord of a given segment of a circle. Find is peint P on the are suct that $A P+B P$ is a maximum.
28. Find a $I^{\text {mint }} \mathbf{O}$, within a $\therefore A B C$ such that:-
(1) \therefore AOB : $\therefore B O C: \therefore C O A-1: 2: 3$;
$(\because) \therefore$ AOB : is $B O C: \therefore C O A=l: m: n$.
(b)
29. Find a puint such that its distances from the three sides of a \triangle may be proportional to three given st. lines.
(Note.-Draw BD, CE \perp $B C$, and each $=l$. Join DE. Mraw $A F \perp A C$, and $=m$. Draw FG $\| A C$, ting $D E$ at G. Draw AH - AB, and $=4$. Draw HK $\| A B$, meeting DE at K. BK, CG meet at P the required point. Nhow that, if PL, PM, PN

Fio. 63.
be \perp to the sides, $\mathbf{P L}: \mathbf{P M}: \mathbf{P i V}=\ell: m: n$.)
30. Through a given point within a circle dra; a chord which shall be divided in a given ratio at the given point.
31. A, B, C, D are points n a st. line. Find a point at which $A B, B C, C D$ subtend equal $\angle \mathrm{s}$.
(Note.-The required point is the intersection of two circles of Apollonius. See O.H.S. Geometry, page 235.)
32. Given a vertex, the orthacentre and the emper of the $\mathrm{N} .-\mathrm{P}$. circle of a $-\therefore$, constract we \angle.
33. Having divided a st. line internally in medial section, find the point of external division in medind section by tati, and proportion.
34. Descrite an equilateral 1 with oun vertix at atsiven point. umb the other two vertices on two giren || st. line.

ilt. (it.
(Analusis.-Dencrihn a cirelo alowt the muilateral
$A B C$ cuting the if linw. asain at L, M. Then $\angle A L C=A B C=t 0$, ani $\angle A M B=\angle A C B=60$
35. Find the lucus it the midalle print of the clowed of contact of tan. gents drawn from at puint on a given st. line to a given circle.
36. The loens of the centre of a cirele which lisects the circumferences of two given cireles is a st. line \perp tu the line of centres and at the same distance from the center it one circle that the radical axis is from the centre of the ohne:
37. Describe a circle to bisect the circumferences of three given circles.
38. Find the low of the centre of a circle that paw. through a given point and ilso bisects the circumferenee : is given circle.
39. Describe a circle to pass through two given miniand bisect the circnmference of a given circle.
49. Given a point and a st. line, construct the cirde to which they are pole and polar, and which passes through a given poist.

Pakt II.-ANALYTICAI, GEOMETRY

FORMULE

The following important results from algebra and trigonometry are frequently used in analytical geometry:-

1. The roots of the quadratic equations $a x^{2}+2 b x+c=0$ are

$$
\frac{-b+\sqrt{b^{2}-a c}}{a} \text { and } \frac{-b-\sqrt{b^{2}-a c}}{a}
$$

These roots are
real,

$$
\text { if } b^{2}>\text {, or }=\text {, ac; }
$$

imaginary,
equal to each wher, if $b^{2}=u$;
equal in magnitude but
opposite in sign, if $b=0$;
rational,
One root $=0$,
if $b^{2}-a c$ is a perfect square.
both roots $=0$,
if $c=0$;
if $b=c=0$.
The sum of the roots $=\frac{-2 b}{a}$.
The product of the roots $=\frac{c}{a}$.
2. The fraction ${ }_{b}^{\prime \prime}=\infty$, if $b=0$ and u is not $=0$.
3. The equation $c x+b y+c=0$ is the same as $p x+y y+r=0$,

$$
\text { if } \frac{a}{p}=\frac{b}{q}=\frac{r}{r} \text {. }
$$

4. $11 r^{2}+2 b x+c$ is a perfect square, if $b^{2}=a c$.
b.

$$
\begin{aligned}
& \text { If } \quad \quad_{1} x+b_{1} y+c_{1} z=0 \\
& \text { and } \quad u_{2} x+b_{2} y+c_{2} z=0,
\end{aligned}
$$

then $\frac{x}{b_{1} c_{2}-h_{2} c_{1}}=\underset{\substack{c_{1} u_{2}-r_{2} t_{1} \\ \text { iii }}}{y}=\frac{z}{t_{1} b_{2}-u_{2} l_{1}}$.
6. For all values of a,

$$
\sin ^{2} a+\cos ^{2} a=1 .
$$

7. If tan $s=k, a=t^{-1} k$.
8. $\sin (\mathbf{A} \pm \mathbf{B})=\sin \mathbf{A} \cos \mathbf{B} \pm \cos \mathbf{A} \sin \mathbf{B}$. $\cos (\mathbf{A} \pm \mathbf{B})=\cos \mathbf{A} \cos \mathbf{B} \mp \sin \mathbf{A} \sin \mathbf{B}$.
9. $\sin \mathbf{A}+\sin \mathbf{B}=2 \sin \mathbf{A}+\mathbf{B}, \cos \frac{\mathbf{A}-\mathbf{B}}{2}$, etc.
10. $\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

CONTENTS

Cuapter I
Pafe
Cabtesian Coorbinates 1
Rectangelar Coordinatee 2
Tue Distance Between Two Points 6
Area of a Triangle 14
Loci 18
Cuaprer II
The Straigit Line 25
The Anile Betwfen 'I'wo Strahiut Linfes 40
Perpenidcleaks 45
Cundrea III
The Straigitt Line Continied 57
Thansformation of Comminates 62
Revifw Expheises 66
('mupter IV
Tue Cibcle: 72
Tangents 79
Poles and Polats 88
Thngents fiom an Outhine Pont 95
Radical Axis 97
Miscellanfous Exercises 99
Assmel:s 113

ELEMENTARY ANALYTICAL GEOMETRY

CHAPTER I

Cartesian Coordinates

1. Analytical, or algebraic, geometry was ir ented by Descartes in 1687, and this invention mariss the beginning of the history of the modern period of mathenatics. It differs from pure geometry in that it lays down a general method, in which, by a few simple rules, any property man be at once proved or disproved, while in the latter each problem reguires a special methoa of its own.
2. The Origin. In plane analytical geometry the positions of all points in the plane are determined by their distances and directions as measured from a fixed point.

If the points are all in .. st. line, the fixed point is most conveniently taken in that line.

Fig. 1.
Thus, if tire distance and direction of each of the points A, B, C, D, E from the point O are given, the positions of these points are known.

The poin ${ }^{+} O$ is called the origir, or pole.
3. Use of plus aid minus. In algebra the signs plus and minus are used to indicate opposite qualituess of the numbers to which they are prefixed; and in analytical geometry, as in trigonometry ohese signs are used to show difference of direction. In a horizontal st. line distances measured from the origin to the right are taken to be positive, while those to the left are negative; and in a vertical st. line distances measured upward are positive, while those measured downward are negative. Thus, in Fig. j, if $O A=2 \mathrm{~cm}$. $O B=3 \mathrm{~cm}$., $O C=5 \mathrm{~cm}$., $O D=1 \mathrm{~cm}$., and $O E=3 \mathrm{~cm}$., the positions of these pointis are respectively renresented by $2,3,5,-1$ and -3 , the understooi unit being one centimetre

Rectangular Coordinates

4. Coordinates. When points are not in the same st. hine, their positions are determined by their distances

Fig. 2.
from two st. lines $x^{\prime} O x$ and $y^{\prime} O y$ drawn through the origin, the distances being measured in directions || to the given st. lines.

These lines are called the axes of coordinates, or shortly, the axes.
$x^{\prime} \mathrm{O} x$ is called the axis of x, and $y^{\prime} \mathrm{O} y$ is called the axis of y.

From a point \mathbf{P} draw $\mathbf{P M} \| \mathbf{O}_{y}$ and $\mathbf{P N}: \mathbf{O} x$, terminated in the axes.
$P M$ is called the ordinate of P, and $P N(=O M)$, is called the abscissa of P. These two distances, the ahscissa and ordinate, are called the coordinates of the point.

Sometimes, from the name of the inventor, they are spoken of as cartesian coordinater.
5. Rectangular coordinates. When the axes are at rt. $\angle s$ to each other, the distances of a point from the axes are called its rectangular coordinates.

Fio. 3.
To locate the point of which the abscissa is 4 and the ordinate 3 when the coordinates are rectangular,
measure the distance $\mathrm{OM}=\perp$ units along O . m mad at \mathbf{M} erect the $\perp \mathbf{P M}=3$ units. \mathbf{P} is the required poim.

Fro. 4. (Unit $=\frac{1}{1}$ inch. $)$
In Fir. 4, the abscissa of $P=O M=2 \cdot 8$, the ordinate of $\mathbf{P}=\mathbf{P M}=2$. The position of this point is then indieated by the notation (28,2). For Q, the abseissil $=$ $\mathrm{ON}=-1 \cdot 6$, the ordinate $=\mathrm{QN}=2.6$ and the position of the point is indieated by ($-1 \cdot 6, \underline{9} \cdot 6$).

Similarly the position of R is $(-1,-1 \cdot 6)$, and that of s is $(1 \cdot 4,-1 \cdot 2)$.
$x \mathbf{O} y, y \mathbf{O} x^{\prime}, x^{\prime} \mathbf{O} y^{\prime}$ and $y^{\prime} \mathbf{O} x$ are respectively callend the first, seeond, third and fourth quadrants; and we see from the diagram, that:-
for a point in the first quadrant both coordinates are positive;
for a proint in the secomd quadrant the abseissat is negative and the orlinate is positive;
for a point in the third quadrant both are negative; and
for a point in the fourth the aloscissat is positive and the ordinate is negative.

Thus the signs of the coordinates show at once in which ifuadrant the point is located.

6.-Exercises

1. Write down the coordinates of the points A, B, C, D, E, F, G, H and O in Fig. 5.

Fig. 5. (Unit $=\frac{1}{\text { I }}$ inch.)
2. Draw a diagram on squared paper, and mark on it the following points:-A $(4,3), \mathbf{B}(4 \cdot 6,0), \mathbf{C}(-2,-3)$, $\mathrm{D}(-4,2), \mathrm{E}(0,2.8)$. Indicate the unit of measurement on the diagram.
3. Draw a diagram on squared paper and mark the following points:- $(4,3),(3,4),(-3,-4),(-4,3),(0,5)$, $(0,-5),(-5,0)$. Describe a circle with centre O and
radius is. Should the circle pass throug! the seven points: Why?
4. The side of an equilateral $\therefore=2 \boldsymbol{O}$. One vertex is at the origin, one side is on the axis of arnd the \triangle is in the first quadrunt. What are the coordinates of the three vertices?
5. One corner of a square is taken as origin and the axes coincide with two sides. The length of a side is b. What are the coordinates of the corners, the square being in the first quadrant?

The Distance Between Two Ponts

7. In greneral, the abscissa of a point is representerl by x, the ordinate by y.
8. To find the distance between a point $\mathrm{P}\left(r_{1}, \eta_{1}\right)$ and the origin.

From P draw PM \perp O x.

$$
\begin{aligned}
& \because \mathrm{PMO} \text { is a rt. }-\angle \mathrm{d} \triangle, \\
& \begin{aligned}
& \mathrm{PO}^{2}
\end{aligned}=\mathrm{OM}^{2}+\mathrm{PM}^{2} \\
& \\
& \\
& =x_{1}{ }^{2}+y_{1}{ }^{2} \\
& \therefore \mathrm{PO}
\end{aligned}=\frac{1 \mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}}{} .
$$

9. To find the distance between $P(, 1, y)$ and Q ($\left.\cdot r_{2}, y_{2}\right)$.

Fri. :
1)naw PM and QN \perp O.r ; QL \perp PM.
$\mathrm{QL}=\mathrm{NM}=\mathrm{OM}-\mathrm{ON}=x_{1}-r_{2}$.
$P L=P M-L M=P M-Q N=y_{1}-y_{2}$
\because PLQ is a rt. $-\angle 1 \therefore$.
$\therefore \mathrm{PQ}^{2}=\mathrm{QL}^{2}+\mathrm{PL}$.

$$
=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} .
$$

$$
\therefore P Q=v^{\prime}\left(\overline{\mathbf{x}_{1}}-\mathbf{x}_{2}\right)^{2}+\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)^{2} .
$$

10. If the ponts Q in $\$ 9$ coinciles with the origin $0, r_{2}=0$ and $y_{2}=0$. Substituting these values, in the expression for $P Q$ in that article we obtain

$$
\mathrm{PO}=1^{\prime} r_{1}^{2}+y_{1}^{2} .
$$

This shows that the result in $\$ 8$ is a particular case of that in $\S 9$.
11. The result in $\S 9$ holds grood, in the some form, for any two points whether the coordinates am nositive or negative.

For exmuple-it is rempired to fimi the distance between $\mathbf{P}(-3,2)$ and $\mathbf{Q}(5,-2)$.

Fw. 8. (Unit $={ }^{*}$ inch.)
Driw PM, QN $\perp \mathrm{O} r ; \mathbf{Q L} \perp \mathrm{PM}$.
The length of $M L=$ length of $N Q=2$.

$$
\therefore \quad P L=P M+M L=2+2=4
$$

The length of $\mathrm{QL}=\mathrm{NM}=5+3=8$.

$$
\begin{aligned}
\mathrm{PQ}^{2} & =\mathrm{QL}^{2}+\mathrm{PL} \\
& =64+16=80 . \\
\therefore \quad \mathrm{PQ} & =4 \sqrt{2} .
\end{aligned}
$$

If in the expression for $P Q$ fomm in $\$ 9$, we sub)stitute - 3 for x_{1}, 2 for y_{1}, , for x_{2} and - 2 for y_{2} we obtain

$$
\begin{aligned}
P Q & =\sqrt{(-3}-i)^{2}+(2+2)^{2} \\
& =4 \sqrt{5},
\end{aligned}
$$

the same result.
12. The: particular cases in $\$ \$ 10$ and 11 illustrate. What is known as the continuity of the formulae in analytical isometry. Here contimity means, that
 in the dian gun used are all positive hold the in the same form for all print.
13. To find the coordinates of the middle point of the distance between two given points $P\left(r_{1}, y_{1}\right)$ and $Q\left(x_{n}, y\right)$.

Fit. 9.
Let \mathbf{R} (r, y) be the middle point of $P Q$.
1)

From the erpuality of $\triangle S P R T, R Q S$,

$$
\begin{aligned}
& \mathrm{QS}=\mathrm{RT} \text { and } \mathrm{RS}=\mathbf{P T} . \\
& \therefore \mathrm{NL}=\mathrm{LM} \text {, } \\
& \therefore \quad r-r_{2}=r_{1}-\cdots \\
& \therefore \quad x=\frac{r_{1}+r_{2}}{2} \text {. } \\
& \because \text { RS }=\text { PT, } \\
& \therefore \quad y-y_{n}=y_{1}-y . \\
& \therefore \quad y=\stackrel{y_{1}+!}{2},
\end{aligned}
$$

Thus the coordinates of R are

$$
\mathbf{x}_{1}+\mathbf{x}_{2}, \frac{\mathbf{y}_{1}+\mathbf{y}_{2}}{2}
$$

14. To find the coordinates of the point dividing the distance between $\mathrm{P}\left(x_{1} y_{1}\right)$ and $\mathrm{Q}\left(r_{2}, y_{2}\right)$ in the ratio of m to n.

Fig. 16:
Let $R(x, y)$ be the point dividing $P Q$ such that $\begin{aligned} & \mathrm{PR} \\ & \mathrm{RQ}=\frac{m}{u} . \\ & \text {. }\end{aligned}$

Driw PM, QN, RL \perp O.r $; ~ Q S \perp R L ; R T \perp P M$.
From the simitir $\triangle S P R T, R Q S$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{RT} \\
\mathrm{QS}
\end{array}=\stackrel{\mathrm{PT}}{\mathrm{RS}}=\stackrel{\mathrm{PR}}{\mathrm{RQ}}=\frac{m}{m} . \\
& \mathrm{RT}={ }_{\mathrm{QS}}={ }_{n}, \\
& \therefore \frac{r_{1}-x}{r-r_{2}}=\frac{m}{\pi} . \\
& \therefore \quad m, r_{r}-m r_{2}=n, r_{1}-n x .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad x=\frac{m r_{1}+m r_{2}}{m+n} \text {. } \\
& \because \quad \text { PT }=\frac{m}{m}, \\
& \therefore \frac{\ddot{l}_{1}-y}{y-y_{2}}=\frac{m}{u} . \\
& \therefore \quad m y-m y_{2}=m y_{1}-n y . \\
& \therefore \quad \|=\frac{m y_{1}+m y_{2}}{m+n} .
\end{aligned}
$$

Thas the coorlinates of \mathbf{R} are

$$
\frac{n x_{1}+\mathbf{m x}}{m+\mathbf{n}}, \frac{n y_{1}+\mathbf{m y}}{m+\mathbf{n}}
$$

15. If the point R be taken in $P Q$ prodnced such that $P R: R Q=m: n$, and the coordinates of P, Q be $\left(. r_{1}, y_{1}\right),\left(r_{2}, y_{2}\right)$ it may be shown by a proof similar to that in the previons article that the coordinates of R are

$$
\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n} .
$$

These result.s and also those of $\$ \S 1.3$ amble 1.4 are the same for oblique and rectangulur axes

16.-Exercises

1. Find the distance between the points $(5,5)$ and $(1,-7)$ and test your result by measurement on squared paper.
2. Find the distance between the points $(2,-3)$ and $(-1,1)$ and test your result by measurement on squared paper.
3. Fiml the coominates of the middle points of the st. lines juining the pairs of points in exercises 1 and 2 respectively anl test the results by measurements on the diagrams.
4. Find, to two decimal places, the distance between $(-3,7)$ and (4, -4).
5. The vertices of a \triangle are $(-2,4),(-8,-4)$ and $(7,4)$. Find the lengths of its sides.
6. The vertices of a \triangle are $(-1,5),(-4,-2),(.5,-3)$. Find (a) the lengths of the sides; (b) the lengths of the medians.
7. The vertices of a çuadrilateral are $(4,3),(-5, \stackrel{2}{2})$. $(-3,-4),(6,-2)$. Fini the lengths of its sides, and ahoo of its diagonals.
8. Find the coordinates of the midlle point of the st. line joining ($3,-2$) and ($-3,2$).
9. Find the points of trisection of the st. line joinin! $(1,3)$ and $(6,1)$.
10. The st. hine joining $\mathbf{P}(-4,-3)$ and $Q(6,-1)$ is divided at $\mathbf{R}(x, y)$ so that $\mathbf{P R}: \mathbf{R Q}=\mathbf{5}: \mathbf{0}$. Show that $x=-2 y$.
11. Find the length of the st. hine joining the origin to ($a,-b$).
12. The st. line joining the origin to $P(-t, i)$ i. divided at R, Q so that $O R: R Q: Q P=3: 4: 2$. Fim the distance RQ.
13. The length of a st. line is 17 and the coordimates of one end are $(-5,-8)$. If the ordinate of the other end is 7 , find its abscissa.
14. Find in its simplest form the equation which expresses the fact that (x, y) is equidistant from $(5, \because)$ and $(3,7)$.
15. Find the centre and radius of the circle which passe. through ($5, \because),(3,7)$ and $(-\because, 4)$.
16. Find the points which are distant 15 from $(-2,-10)$ and 13 from (2,14).
17. Prove that the vertices of a rt. $\angle d \triangle$ are equidistant from the middle point of the hypotenuse.

Suggestion:- Tuke the vertex of the rt. $<$ jor origin and the sides which contain the rt . \angle jor axes.
18. In any $\triangle A B C$ prove that

$$
A B^{2}+A C^{2}=2\left(A D^{2}+D C^{2}\right),
$$

where
Suggestion:-Trikn D as origin, DC as axis of x and the \perp to BC at D as axis of y. Let $\mathrm{DC}=a$, and the coordinates of A be $\left(x_{1}, y_{1}\right)$.
19. If D is a point in the base $B C$ of $a \triangle A B C$ such that $\mathrm{BD}: \mathrm{DC}=m: n$, show that

$$
u \mathbf{A B}^{2}+m \mathbf{A C} \mathbf{C}^{2}=(m+n) \mathbf{A D ^ { 2 }}+n \mathbf{B D ^ { 2 }}+m \mathbf{D C}^{2} .
$$

Suggestion:-Take D as origin, DC as aris of x a! the \therefore to BC at D as axis of y. Let $\mathrm{BD}=-m u, \mathrm{DC}=n u$, aud the coordinutes of A be $\left(., y_{1}, y_{1}\right)$.
20 . The vertices of $\mathrm{a} \therefore$ are the points ($\left., r_{1}, y_{1}\right),\left(r_{2}, y_{2}\right)$, $\left(\cdot, \cdot, y_{3}\right)$. Find the coordinates of its centroid.
$\because 1$. The st. Hine joining $\mathbf{A}(2,1)$ to $\mathbf{B}(5,9)$ is producerd to C so that $A C: B C=7: 2$. Find the coordinates of C.
22. The st. line joining $A(3,-2)$ to $B(-4,-(6)$ is pronluced to C so that $A C: B C=3: \because$. Find the coordinates of C .

The Area of a Tringele

17. To find the area of the \therefore of which the vertices are $\mathbf{A}\left(x_{1}, y_{1}\right), \mathbf{B}\left(r_{2}, y_{2}\right)$ and $\mathbf{C}\left(r_{3}, y_{3}\right)$.

Fitu. 11.
Di:Lw the ordinates $\mathrm{AL}, \mathrm{BM}, \mathrm{CN}$.
From the diarriam,

$$
A B C=A L N C+C N M B-A L M B .
$$

The area of a yuadrilateral of which t wo sidew are $=$ half the sum of the sides x the distance lx. Neen the sides.
\therefore ALNC $\quad \frac{1}{-}(\mathbf{A L}+\mathrm{CN}) \times \mathrm{LN}=\frac{1}{2}\left(y_{1}+y_{3}\right)\left(r_{3}-r_{2}^{\prime}\right)$.
CNMB $\quad \stackrel{1}{2}(\mathbf{C N}+\mathbf{B M}) \times \mathbf{N M}=\frac{1}{2}\left(y_{3}+y_{2}\right)\left(r_{2}-r_{3}\right.$.
ALMB $\quad \frac{1}{2}(\mathbf{A L}+\mathbf{B M}) \times \mathbf{L M}=\frac{1}{2}\left(y_{1}+y_{2}\right)\left(r_{2}-r_{1}\right)$.
$\mathrm{ABC} \quad \frac{1}{2}\left(y_{1}+y_{3}\right)\left(r_{3}-r_{1}\right)+\left(y_{3}+y_{2}\right)\left(r^{2}-r^{2}\right)-$ $\left(n_{1}+y_{2}\right)\left(r_{2}-r_{1}\right)_{j}^{\prime}$.

Simplityins.
$\therefore \mathbf{A B C}=\frac{1}{2}\left(\mathbf{x}_{1}\left(\mathbf{y}_{2} \mathbf{y}_{3}\right)+\mathbf{x}_{2}\left(\mathbf{y}_{1} \quad \mathbf{y}_{1}\right)+\mathbf{x}_{3}\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)\right\}$.

Note - The promes hate leo "thite in cimenter order alomet the s in the oppesite divestion to that in which the hemds of a clock rotate: if then are tatron in the same direction as the humds rutate. the fommula will gire the same result ouly it will aypear to ber neqative: but. of course, the area of a \therefore must le positite.
18. To find the area of the λ of which the vertices are (3, 2) , (-4, 3), (-2. - +)

Fig. 19. (THit = Finmor
Draw ilhe diagram on syuared fuper. Jraw the orlimate $A L, B M, C N$ Through C draw RCS Or in mert $A L, B M$ froducer an S, R.

$$
\begin{aligned}
& A B C=B R S A \quad B R C-A C S \\
& B R S A=1(B R-A S) R S-17+1 ; \times 7 \quad 91 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { ASC } \quad \because A S \times S C-\frac{1}{2} \times 6 \times 5=\begin{array}{l}
31 \\
2
\end{array} \\
& A B C=-91-14-: 30=\begin{array}{l}
47 \\
\hdashline
\end{array}
\end{aligned}
$$

If we substitute the conmlinates of A, B inm C in the formula of 817 , we obtain

$$
\begin{gathered}
\text { ABC }-(: 3(: 3+4)+(-t)(-4-2)-(-2)(2-3), \\
\leq(21-2 t+2)=\frac{4 \pi}{2}
\end{gathered}
$$

tho sume result at lufare.
This illustrates the eontinnity of the symmetried result found in sill tor the areat of : -

13.-Exercises

1. Find, from thermu, the area of the - wi whith the vertices are $(0,11),(1,1),(10, i)$. Check your pechit liy usiner tile formula ut \vdots It.
\therefore Draw the followint is un struanol puper and tint their areas. vinecking your results by using the fommala of 17.

$$
\begin{aligned}
& \text { (i) } 1,+, \quad \because, \because,(i,-11: \\
& \text { (i) } 1, \quad \because,(-j,-1,(-3,-i): \\
& \text { (i) }, 11,(1),(3,+\pi,(-3,+1 .
\end{aligned}
$$

3. Fimi the wer of the quantaterat it wineh the

t. Finn the urat of the qumbilatemal wi when the

4. D, E, F are respecionly the middle points of the sides $B C, C A, A B$ of a \therefore Prove li the formula of $\leq 1 \%$, taking B as origin and $B C$ as axis of x that - $A B C=4$ DEF.
5. Find the area of the - of which the vertices are (x. U). (i. ii, $1-2.4 \cdot:$ and thence show that if these points are in a si. line in $-x=2$. .
 and thu lat inf - firm A : $B=B C$.

- A man saris from O and gees it A, from A to B, B it C in D, D in O. If O the inion as the origin and the comimaie of A, B, C, D are ($1,-31.1=3$). (-4. \because : $1-\frac{1}{4}$, find the dinduce be bus travelled. the unit beng ont mile
Q. Show from the formula for the area of a ... int
 line. Find int "itu u: $A C$ i. $C B$.

11. Is int - OAE, P i. Tank in OA, Q in AE uni R in $B O$: 1 Hi $O P: P A=A Q: Q E=B R: R O=\because 1$. Show in: - PQR: O AB = $: ~: ~ S 6$

Loci
20. The definition of a locus (see Ontario H. S. Geometry, page 77) is:-

When a figure consisting of a line or lines contains all the points that satisfy a given condition, and no others, this figure is called the locus of these points.

The condition which the points satisfy may be expressed in the form of an equation involving the coordinates of the points. For example, take the locus of the points of which the ordinate is equal to 3. This condition, which is expressed hy the equation $y=3$ [i.e. $-0 x+y=3]$, is satisfied by an infinite mumber of points, as $(0,3),(1,3),(2,3),(7,3),(-4,3)$. etc. All such points are on a st. line $\mathbf{A B} \|$ to $\mathbf{O} \cdot \boldsymbol{r}$ and 3

units above it ; and this st. line contains no points which do not satisfy the condition. Thas the equation $y=3$ represents the line AB.

Simiarly the equation $y=-3$ represents a st. line || O.r simi three mits below it ; $r=3$ represents in st. lime $\left|\mid O_{!}\right.$and three mits to the right of the origin, and $x=-5$ a st. line $|0:|$ ind 5 units to the left of the origin.

For another example let us take the condition to be that the abscissa and ordinate of each point are equal. The points $(0,0),(1,1),(2,2),(4,4),(-1,-1)$, $(-5,-5)$, etc., satisfy this condition. It is expressed by the equation $y=x$. If we draw a diagram on

F19. 14. (Unit $=1_{10}$ inch.)
squared paper, mark some of these points on it and juin them we get a st. line $A B$ bisecting the $\angle s$, , $O!$ and aroy' every point on which satisfies the griven condition. Between O and $(1,1)$ there are an infinite number of points, $\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{4}, \frac{1}{2}\right),\left(\frac{1}{10}, \frac{1}{10}\right),\left(\frac{10}{3}, \frac{3}{10}\right)$, ete., which satisfy the condition, and so on contimously thronghout the line. Thus the equation $y=x$ represents the line $A B$.

Again, we may consider the point which moves so that its distance from the origin is always 5 . Its locus is plainly the circumference of a circle. Particular

Fig. 15. (Unit $=1 \%$ inch. $)$
points on this locus are $(5,0),(4,3),(3,4),(0,5)$, $(-3,4)$, etc., and its equation is $\sqrt{x^{2}}+y^{2}=5$, or $x^{2}+y^{2}=25$.
21. In the equation of a locus the numbers that are the sime for all points on the locus are called constants; while those that change in valne continuously from point to point are called variables.

Thus, in the equation $x^{2}+y^{2}=25, x$ and y are variables and 25 is a constant.

22.-Exercises

1. Find four or five points on the rocus represented by each of the following equations; and draw the locus on squared paper in each case:-

$$
\begin{array}{lll}
\text { (a) } x=-4 ; & \text { (b) } x+y=0 ; & \text { (c) } x-2 y=0 \\
\text { (l) } 3 x+y=0 ; & \text { (f) } x=y+4 ; & \text { (f) } x^{2}+y^{2}=169
\end{array}
$$

2. A point moves so that its distance from the axis of x is is times its distance from the axis of y. Find the equation of its locus.
3. What locus : represented ly the equation (a) $y=0$; (l) $x=0$?
4. A point moves so that it is equidistant from the origin and from ($\delta, 0$). Find the equation of its locus.
5. A point moves so that it is equidistant from the origin and from $(3,-5)$. Find the equation of its locus, and draw the locus on squared paper.
6. A point is equidistant from $(1,-2)$ and $(-3,-4)$. Find the equation and draw the locus on squared paper.
7. A point moves so that its distance from $(t, 3)$ is always 5. Find the equation and show that the locus passes through the origin.
$*$. The coordinates of the ends of the base of a \angle are $(-\stackrel{2}{2},-3)$ and $(t,-1)$, and the length of the median drawn to the base is 6 . Find the equation of the locus of its vertex.
8. The coordinates of the ends of the base of a \triangle are (0), 0) and (5,0), and its area is 10 . Show that the equation of the locus of its vertex is $y=4$.
9. The coordinates of the ends of the base of a \triangle are $(-1,-2)$ and $(5,1)$ and its area is 0 . Find the cquation of the locus of its vertex.

2:3. An epmotion comnecting two varinhl:я of und! has an intinite ammber of sohtions. For example, in the equation $y=3 x+7$, if my valas is given to r, the corresponding value of y moy chan be determined. Thus, when

$$
\begin{aligned}
& \text { (11) } x=0, y=7 \text {, } \\
& \text { (b) } . x=1, y=10 \text {, } \\
& \text { (c) }, r^{r}=2, y=13 \text {, } \\
& \text { (} 1 \text {) }, r^{r}=-1, y=4 \text {, } \\
& \text { (r) } \cdot r=-3, y=-2 \text {, } \\
& (f) \cdot r=\frac{1}{3},!=8 \text {, } \\
& \text { etc. }
\end{aligned}
$$

The, in general, continuons line which passes throngh all the prints (a), (b), (c), etc., is the locus represented by this equation.

Another equation as $4 \cdot+3 y=8$ has also an infinite mumber of solntions, and if these two equations ate solved together, the common solution obtained, in this ease $x=-1, y=4$, gives the coordimates of the ${ }^{\text {mint }}$ intersection of the loci represented by the equations.
of solutions which satisfy the eqnation $4, r+\ldots=8$ are given in the following table:-

x	y
(1) -1	
(!)	
(11) 5	-

If wo plot these two sets of results on squared

Flo. 16. (Unit $=$ folnch.)
Paper, we see that the loci appear to be st. lines Which intersece at the point $(1)(-1,4)$.

24.-Exercises

1. Plot the following loci on squared paper amd find the coni 'inates of their points of intersection :-
(a) $4 x-y=1$ and $x-2 y=-12$;
(b) $x+2 y=7$ and $5 \cdot x-2 y=11$;
(c) $3 x+8 y=-18$ and $4 x+3 y=-1$;
(d) $3 x+4 y=0$ and $x^{2}+y^{2}=100$;
(ค) $3 x-5 y+45=0$ and $x^{2}+y^{2}=16 \Omega$.
2. Find the points where the locus $3 x-5 y+45=0$ cuts the axes.
\therefore. Find the points where the locus $x^{2}+y^{2}=i x$ cuts the axis of x.
3. Find the locus of a point such that the square of its distance from ($-a, o$) is greater than the square of its distance from (a, o) by $2 a^{2}$.
4. Find the equation of the locus of a point such that the square of its distance from $(-2,-1)$ is greater than the square of its distance from $(5,3)$ ly 11.
5. $\mathbf{A}(1,0)$ and $\mathbf{B}(9,0)$ are two fixed points and \mathbf{P} is a variable point such that $P B=3 P A$. Find the equation of the locus of P.
6. Plot the following loci and show that they are concurrent:-

$$
3 x+4 y=10,5 x-2 y=8,4 x+y=9
$$

CH i Plek II
The Simalghy Live
25. To find the equation of a st. line in terms of the intercepts that it makes on the axes.

Fig. 17.

Fig. 18.

Let the st. line cut the axes at A, B so that $O A=u$, $\mathrm{OB}=b$.

Take P (x, y) any point on the line, and draw PM $\| \mathbf{O} y$ and terminated in $O x$ at M.

From the similar $\triangle S A P M, A B O$,

$$
\begin{aligned}
& \begin{array}{l}
P M \\
B O
\end{array}=\frac{A M}{A O} . \\
& \therefore \quad y=\frac{u-a}{a} . \\
& b r \frac{x}{a}+\frac{\mathbf{y}}{b}=1 .
\end{aligned}
$$

Note.-It is seen from the dingrams that both the proof and the form of the rquation are the same for oblique and rertangular axes.
26. To find the equation of the st. line passing through $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$.

Fig. 10.

Fia. 20.

Take any point $\mathbf{P}(x, y)$ on the st. line.
1)raw $\mathbf{A K}, \mathrm{BL} \operatorname{PM} \| \mathrm{O} y$ and teminated in $\mathrm{O} . r$ at $\mathrm{K}, \mathrm{L}, \mathrm{M}$; and AN, BR O.e and respectively terminated in $P M$ at N and $A K$ at R.

From the similar As PNA, ARB,

$$
\begin{aligned}
& \begin{array}{l}
A N \\
B R
\end{array}=\frac{P N}{A R} . \\
& \mathbf{A N}=\mathbf{K M}=\mathbf{O M}-\mathbf{O K}=r-r_{1} \text {, } \\
& \mathrm{BR}=\mathrm{LK}=\mathbf{O K}-\mathrm{OL}=r_{1}-r_{2}, \\
& \mathbf{P N}=\mathbf{P M}-\mathbf{N M}=\mathbf{P M}-\mathbf{A K}=y-y_{1}, \\
& \mathbf{A R}=\mathbf{A K}-\mathbf{R K}-\mathbf{A K}-\mathbf{B L}=y_{1}-y_{2} \\
& \therefore \frac{\mathbf{x}-\mathbf{x}_{1}}{\mathbf{x}_{1}-\mathbf{x}_{2}}=\frac{\mathbf{y}-\mathbf{y}_{1}}{\mathbf{y}_{1}-\mathbf{y}_{2}} .
\end{aligned}
$$

Nows-It is seen from the diugrams that both the proof ane the firm of the equation are the same for oblique and rectangular axes.

1. The equation of the st. line passing through $(4,3)$ and $(-2,7)$ is by the formula of $\$ 26$

$$
\begin{gathered}
\frac{x-4}{4+2}=\frac{y-3}{3-7} \\
\text { or, } 2 x+3 y=17 .
\end{gathered}
$$

To find the intercepts which this line makes on the axes, let $y=0$ and $\therefore x=8 \frac{1}{2}$, let $x=0$ and $\therefore y=5 \frac{2}{3}$. By $\S 25$ the equation of the line may now be written

$$
\frac{x}{5_{2}^{2}}+\frac{y}{5_{3}^{2}}=1 .
$$

This is clearly the same as $2 x+3 y=17$.
2. Write down the equations of the st. lines which make the following intercept" in O.r, Oy respectively:-
(a) 5,2 ; (b) -4 ,
c) $3,-8$.
3. Find the equation, of the st. lines through the following pairs of points:-
(c) $(6, \stackrel{y}{2}),(3,1) ;(b)(-1,2),(-3,-7)$; (c) $(4,-6)$, $(-\bar{i}, 2)$. Find the intercepts these st. lines make on the axes.

1. Find the point where the st. line which makes intercepts -3 and 5 on $O x$ and $O y$ respectively is cut by the st. line $x=-5$.
j. Find the point where the st. line making intercepts 7 and 2 on $O x$ and O_{y} respectively meets the st. line through $(-2,7)$ and ($5,-3$).
2. Find the point where the st. line through $(3,5)$ and $(-7,-1)$ meets the st. line through $(-8,2)$ and $(6,5)$.
3. Prove that $(11,4)$ lies on the st. line joining $(3,-2)$ and $(19,10)$ and find the ratio of t 5 segments into which the first point divides the join of the other two.
4. Find the equations of the sides of the \triangle of which the vertices are $(4,-2),(-5,-1)$, and $(-2,-6)$. Find also the equations of the medians of the \triangle and the coordinates of its centroid.
5. The vertices of a quadrilateral are $(3,6),(-2,4)$, $(2,-2)$ and $(7,3)$. Find the equations of the four sides. Find also the equations of the three diagonals of the complete quadrilateral, and show that the middle points of the diagonals are collinear. Find the equation of the st. hine passing through the middle points of the diagonals.
6. Find the vertices of the \triangle the sides of which are 11: $-3 y=-45,5 x-11 y=47$ and $3 x+4 y=7$.
7. $\mathrm{P}\left(x_{1}, y_{1}\right)$ is any point and $\frac{x}{a}+\frac{y}{b}=1$ cuts $O x, O!y$ at A, B respectively. Show that the area of the $\triangle P A B=$

$$
\frac{1}{2}\left(b x_{1}+a y_{1}-a b\right) .
$$

$$
A \cdot x+B y+C=0 .
$$

An equation is said to be of the second deriece in x and y when it contains a term, or terms, of the second degree in x and y, but no term of a higher degree than the second.

The general equation of the second degree in x and y is

$$
\mathrm{A} x^{2}+\mathrm{B} x y+\mathrm{C} y^{2}+\mathrm{D} x+\mathrm{E} y+\mathrm{F}=0
$$

or, in a more convenient form,

$$
a x^{2}+2 h x y+b y^{2}+2 y x+2 f y+c=0
$$

30. To prove that an equation of the first degree always represents a st. line.

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ be cen!! three sets of simultaneous values of x and y which satisfy the equation $A \cdot x+B y+C=0$.

Then, (1) $A \ddot{i}_{1}+B y_{1}+C=0$.
(2) $\mathrm{A}_{r_{2}}+\mathrm{B} y_{2}+C=0$.
(3) $\mathrm{A} \cdot r_{3}+\mathrm{B} y_{3}+\mathrm{C}-0$.

Frolli (1) and (2),

$$
\frac{\mathrm{A}}{y_{1}-y_{2}}-\frac{\mathrm{B}}{r_{2}-r_{1}}=\frac{\mathrm{C}}{r_{1} y_{2}-r_{2} y_{1}} .
$$

Dividing the three terms of (3) respectively by these equal fractions and 0 by any one of them,

$$
x_{3}\left(y_{1}-y_{2}\right)+y_{3}\left(r_{2}-r_{1}\right)+x_{1} y_{2}-r_{2} y_{1}=0 .
$$

Rearranging the terms, we get
(4) $x_{1}\left(y_{2}-y_{3}\right)+r_{2}\left(y_{3}-y_{1}\right)+r_{3}\left(y_{1}-y_{2}\right)=0$.

From $\S 17$ the area of the A formed by joining $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ is
$\frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\}$ and \therefore, fron: (4), in this case, the area of the Δ is zero.

This can only be so when the three points are in a st. line, and \therefore as any three points the coordinates of which satisfy

$$
\mathrm{A} x+\mathrm{B} y+\mathbf{C}=0
$$

are in in st. line, this equation must always represent a st. line.
31. The equation $A \cdot r+B!y+C \quad 0$ maty be changed to the form

$$
\frac{r}{-C_{A}}+\frac{!!}{-C}=1,
$$

and by comparing this with the equation of $\$ 25$,

$$
\frac{x}{\ddot{\prime}}+\frac{\ddot{\prime}}{l_{1}}=1,
$$

we see that the intercepts which the st. line $\mathrm{A} r+\mathrm{B}_{4} /+\mathrm{C}=0$ makes on the axes of ar and y are respectively

$$
-\frac{C}{A} \text { and }-\frac{C}{B}
$$

The same results are obtained by alternately letting $y=0$ ind $a=0$ in $A \cdot r+B!+C=0$.
32. To obtain the result of $£ 20$ from the general equation of the first deriree.

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be fixed points on the st. line represented by the grencral equation, and we have
(1) $A_{!}+B_{!}!+C=0$.
(2) $\mathbf{A} r_{1}+\mathbf{B}_{y_{1}}+\mathbf{C}=\mathbf{0}$,
(3) $\mathrm{A}_{r_{2}}+\mathrm{B}_{12}+\mathbf{C}=0$.

From (2) and (3),

$$
\text { (4) } \frac{\mathrm{A}}{y_{1}-y_{2}}=\frac{\mathrm{B}}{r_{2}-x_{1}}=\frac{\mathrm{C}}{r_{1}!1!-r_{2!1}} \text {. }
$$

\therefore firom (1) and (4),

$$
\therefore\left(y_{1}-y_{2}\right)+y\left(x_{2}-x_{1}\right)+x_{1} y_{2}-x_{2} y_{1}=0
$$

This equation is seen to be the same as

$$
\frac{x-x_{1}}{x_{1}-r_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}
$$

when the latter is cleared of fractions amd simplified.
33. To find the equation of a st. line in terms of its inclination to the axis of x and its intercept on the axis of y.

Fig. 21.
Let the st. line cut $O x, O y$ at A, B respectively, $\angle B A X=a$, and $O B=b$.

Take any point $\mathbf{P}(x, y)$ in the line, and draw $\mathbf{P M} \perp$ $\mathrm{O} x, \mathrm{PN} \perp \mathrm{O} y$.

$$
\text { Tun } \mathbf{B P N}=\frac{\mathbf{B N}}{\mathbf{P N}}=\frac{\mathbf{B O}-\mathbf{P M}}{\mathbf{O M}}=\frac{b-y}{x} .
$$

But, $\tan \mathrm{BPN}=\tan \mathrm{PAM}=-\operatorname{tin}$ a.

$$
\begin{gathered}
\therefore-\tan \pi-\frac{b-y}{x}, \\
\text { and } \therefore y=x \tan a+b .
\end{gathered}
$$

If we let tun $a=m$, the equation becomes

$$
\mathbf{y}=\mathrm{m} x+b .
$$

In this equation m is called the slope of the line, and the $\angle a$, or ten $-1 m$, is always measured by a rotation in the positive direction from the positive direction of $0 . x$, i.e., the \angle is traced out by a radius vecto starting frons the position A.r and rotating about A in the positive direction to the position $A B$.

Note.-Fior obliqne axes the proof and result are different from those given above for rectanyular axes.
34. The equation $\mathbf{A} x+\mathbf{B} y+\mathbf{C}=0$ may be changed to

$$
y=-\frac{\mathbf{A}}{\mathbf{B}} x-\frac{\mathbf{C}}{\mathbf{B}}
$$

from which by comparison with

$$
y=m x+b
$$

It is seen that the slope of the st. line $\mathbf{A} x+\mathbf{B} y+\mathbf{C}=\mathbf{0}$ is $-\frac{A}{B}$, and its intercept on the axis of y is $-\frac{C}{B}$
35. To find the equation of a st. line in terms of the \perp on it from the origin and the $<$ made by a positive rotation frum $O x$ to this \perp.

Fio. 2:.
Let th \perp OM from O to the line $=p$, and , $x O M=$

Take any point $P(x, y)$ in the st. line.
1)raw $P N \perp O .1, N R \perp O M, M H$ " $O!/$ to muet $N R$ at H.

$$
\begin{aligned}
& \mathbf{O R}+\mathbf{R M}=p . \\
& \mathbf{O R}-\mathbf{O N} \cos \mathbf{R O N}=\pi \cos (t . \\
& \mathbf{R M}=\mathbf{M H} \cos \mathbf{R M H}-\mathbf{P N} \cos \mathbf{M O} y=y \sin a .
\end{aligned}
$$

$\therefore \mathbf{x} \cos \mathbf{a}+\mathbf{y} \sin \mathbf{a}=\mathbf{p}$.
Nots.-For oblique wres the proof and result are liffirent from those given above for rectunghlar axes.
36. To reduce the equation $\mathbf{A} x+B y+C=0$ to the form s cos $a+y \sin a=p$, where p is always a positive guantity.

The equations

$$
\begin{aligned}
x \cos a+y \sin a-p & =0 \\
\mathbf{A} x+\mathbf{B} y+\mathbf{C} & =0
\end{aligned}
$$

will be identical if

$$
\cos a_{\mathrm{A}}=\frac{\sin a}{\mathrm{~B}}=\frac{-p}{\mathrm{C}} .
$$

If C is a positiver fumatity

$$
{ }_{C}^{\prime \prime}=\frac{\cos ^{n}}{-A}=\frac{111}{-B^{\prime}}=\frac{1}{1 A^{2}+B^{2}}=\frac{1}{1} \mathbf{A}^{2}+B^{2}
$$

$\therefore \min _{11}-\frac{-\mathbf{A}}{1 \mathbf{A}^{2}+\mathbf{B}^{2}}, \sin 16=\frac{-\mathbf{B}}{V^{2}+\mathbf{B}^{2}}$, and $p=\frac{\mathbf{C}}{\mathbf{V}^{2}+\mathbf{B}^{2}}$.
If \mathbf{C} is a negative qumatity, these results shonld be written

$$
\cos u=\frac{\mathbf{A}}{1 \mathbf{A}^{2}+\mathbf{B}^{2}}, \sin u=\frac{\mathbf{B}}{\mathbf{1}^{4}+\mathbf{B}^{2}} \boldsymbol{p}=\frac{-\mathbf{C}}{1 \mathbf{A}^{2}+\mathbf{B}^{2}} .
$$

Thus the efuation is

$$
\frac{ \pm A^{\prime} r}{\sqrt{A^{2}}+B^{2}}+\frac{\mp B!!}{\sqrt{A^{2}+B^{2}}}=\frac{ \pm C}{\sqrt{A^{2}}+B^{2}}
$$

the upper signs being taken when C represents a prsitive quantity and the lower signs when \mathbf{C} represents a negative quantity.
37. Ex. 1. Rednce the ernation $3 x+4!1-12=0$ to the form .r cos a $+y$ sin $a=p$.

Here $\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$.
Dividing the given equation by 5

$$
3 \cdot \frac{4}{5}!=\frac{12}{5}
$$

$\operatorname{mos} n=\frac{3}{5}, \sin u=\begin{aligned} & 4 \\ & 5\end{aligned} \quad \therefore a=\tan ^{-1}\binom{4}{3}$ while the \perp from the origin on the line is $\frac{12}{5}$.
Ex. 2. Reduce the equation $x-y+7=0$ to the furm $r \cos a+y \sin a=p$.

Here $11^{2}+12$
Divirling the given equation hy $-\sqrt{2}$

$$
\begin{gathered}
-\frac{x}{\sqrt{2}}+\frac{y}{12}=\frac{7}{\sqrt{2}} \\
\text { or, } x \cos 135^{\circ}+2 \sin 135^{\circ}=\frac{7}{, 2} .
\end{gathered}
$$

i.e., $a=13 \bar{n}^{\prime}$, aml the \perp from the origin on the :t. line is $\frac{7}{\sqrt{2}}$.
38. To find the equation of a st. line in terms of the coordinates of a fixed point on the line and the \angle which the line makes with $O x$.

Fia. 23.
Let $Q\left(x_{1}, y_{1}\right)$ be the fixed point and θ the \angle.
Take any point $P(r, y)$ on the line and let $Q P=r$. Draw $\mathrm{PM}, \mathrm{QN} \perp \mathrm{O} x$ and $\mathrm{QR} \perp \mathrm{PM}$.

$$
\begin{aligned}
\mathrm{QR} & =\mathrm{PQ} \cos \mathrm{PQR} . \\
\mathrm{QR} & =\mathrm{NM}=x-x_{1}, \text { and } \angle \mathrm{PQR}=\angle \theta . \\
\therefore \quad & \frac{r-x_{1}}{\operatorname{con} \theta}=r .
\end{aligned}
$$

$$
\begin{aligned}
& P R=P Q \text { si" PQR. } \\
& P R=P M-R M=P M-Q N=y-y_{1} . \\
\therefore \quad & y-y_{1}=r . \\
& \sin \theta=x \quad \frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=\mathbf{r} .
\end{aligned}
$$

This form will fremmently he fonnd useful in probems that involve the i ce between two points on it st. line.

If $\cos \theta=l$ inn i.en $\theta=m$, the equation becumes:-

$$
\frac{\mathbf{x}-\mathbf{x}_{1}}{1}=\frac{\mathbf{y}-\mathbf{y}_{1}}{\mathbf{m}}=\mathbf{r}
$$

l and m are called the direction cosines of the st. line, and $l^{2}+m n^{2}=1$.
39. For comvemence of roference the different forms of the equation of the st. line are here collected: -
(1) $A \cdot r+B y+C=0$.
(2) $\frac{a}{u}+\frac{y}{b}=1$.
(3) $\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}$
(4) $y=m x+b$.
(5) $x \cos u+y \sin u=p$.
(6) $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=r$.

If the st. line passes through the origin (4) takes the comvenient form:-

$$
\text { (i) } y=m \cdot x \text {. }
$$

If the st. line joins the origin to a fixed point $\left(r_{1}, y_{1}\right)$, we get, by letting $r_{2}=y_{2}=0$ in (3):-

$$
\text { (8) } \frac{x}{x_{1}}=\frac{y}{y_{1}} \text {. }
$$

If the st. line passes through $\left(r_{1}, y_{1}\right)$ and its slope is m, the equation is easily seen from (4) to be

$$
\text { (9) } y-y_{1}=m\left(x-x_{1}\right) \text {. }
$$

40.-Exercises

1. Nanie the constants and variables in each of the nine equations of $\$ 39$. Explain the meaning of each constant. Which of these equations are of the same form for rectangular and oblique axes?
2. Draw the following st. lines on squared paper:-
(c) $x+2 y=8 ;(b) 3 x-7 y=-5 ;(c) \frac{x}{3}+\frac{y}{5}=-1$; (d) $2 x+3 y=13$; (e) $3 y=4 x$.
3. Find the equation of the st. line.
(c) through the origin and making an \angle of 30° with $\mathrm{O}_{a^{\prime}}$;
(l) through the origin and making an \angle of 120° with $0, r$;
(c) through $(0,5)$ and making the $\angle \tan ^{-1} \frac{5}{7}$ with O, r;
(d) through ($0,-3$) and making the $\angle c_{0} s^{-1} \frac{3}{5}$ with $\mathrm{O} . r$:
(e) through $(-3,-4)$ and making the $\angle 45^{\circ}$ with O.r.
4. In the \triangle of which the vertices are $(-2,5),(3,-7)$, (4,2)
(a) find the slope of cach side;
(b) show that the medians are concurrent and find the centroid.
5. $\mathbf{O}(0,0), \mathbf{A}(6,0), \mathbf{B}(4,6), \mathbf{C}(2,8)$ are the verticps of a quadrilateral. Show that the st. lines joining the
middle points of $O A, B C$, of $A B, C O$ and of $O B$, , C are concurrent, and find the coordinates of their common point.
6. Find the equation to the st. line through $(-4,3)$ that cuts off equal intercepts from the axes.
7. Find the length of the \perp from the origin to the line $3 x+7 y=10$; find the \angle which this \perp makes with $\mathrm{O} x$.
8. What is the condition that the st. Fine $A x+B y+C=0$ may
(11) pass through the origin;
(i) be $\| \mathbf{O} x$;
(c) be $\| \mathrm{O} y$;
(d) cut off equal intercepts from the axes;
(r) make $\angle 45^{\circ}$ with $\mathrm{O} x$;
9. What must be the value of m if the line $y=m x+7$ passes through $(-2,5)$?
10. Find the values of m and b, if the st. line $y=m x+b$ passes through $(-2,3)$ and (7,2).
11. Find the values of a and b, if the st. line $\frac{x}{a}+\frac{y}{b}=1$ passes through ($-2,-5$) and ($4,-2$).
12. Show that the points $(t a,-3 b),(2 a, 0),(0,3 b)$ are in a st. line.
13. Show that the intercept made on the line $r=k$ by the lines $\mathbf{A} x+\mathbf{B}_{y} y+\mathbf{C}=0$ and $\mathbf{A} x+\mathbf{B} y+\mathbf{C}^{\prime}=0$ is the same for all values of k.
14. $\mathbf{P}\left(x_{1}, y_{1}\right)$ is any point and the lines $\mathbf{A} x+\mathbf{B}_{!} \cdot \mathbf{C}=0$ cuts $\mathrm{O}_{x}, \mathrm{O}_{y}$ at N, R respectively. Show that $\triangle \mathrm{PNR}=$

$$
\frac{C}{2 A B}\left(A x_{1}+B y_{1}+C\right) .
$$

The Angle Between Two Straight Lines

41. To find the \angle between two st. lines whose equations are given.
(i) Let the given equations be $y=m_{1} x+b_{1}$ and $y=m_{2} x+b_{2}$.

Fig. 24.
Let $A B$ be the line $y=m_{1} x+b_{1}$ and $A C$ be the line $y=m_{x} x+b_{2}$ when B, C are on the axis of x. Let $\angle \mathbf{B A C}=\theta$.

Then $m_{1}=\tan A B x, m_{2}=$ tun $A C x$.

$$
\angle \theta=\angle A B x-\angle A C x .
$$

$\therefore \tan \theta=\frac{\tan \mathbf{A B} x-\tan \mathbf{A C} x}{1+\tan \mathbf{A B x \cdot \operatorname { t a n } \mathbf { A C } x}}=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$.
$\therefore \quad \theta=\tan -{ }^{-1} \frac{\mathrm{~m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}$.
(ii) Let the given equations be $\mathbf{A} x+B y+C=0$ and $A_{2} x+B_{1} y+C_{1}=0$.

These equations may be changed to

$$
y=-\frac{A}{B} x-\frac{C}{B} \text { and } y=-\frac{A_{1}}{B_{1}} x-\frac{C_{1}}{B_{1}}
$$

\therefore, writing $-\frac{A}{B}$ for m_{1} and $-\frac{A_{1}}{B_{1}}$ for m_{2} in the above result, the \angle between the lines

$$
=\tan ^{-1} \frac{-\frac{A}{B}+\frac{A_{1}}{B_{1}}}{1+\frac{A A_{1}}{B B_{1}}}=\tan ^{-1} \frac{A_{1} B-A B_{1}}{A A_{1}+B B_{1}}
$$

42. Condition of Parallelism. If two st. lines are $\|$, they make equal $\angle s$ with the axis of x, i.e., their slopes are the same.
\therefore, if their equations are $y=m_{1} x+b_{1}$ and $y=$ $m_{2} x+b_{2}$, the condition is

$$
\mathrm{m}_{1}=\mathrm{m}_{2} .
$$

If their equations are $A x+B y+C=0$ and $A_{1} x+B_{1} y+C_{1}=0$, the condition is

$$
\begin{gathered}
-\frac{A}{B}=-\frac{A_{1}}{B_{1}} \\
\text { or, } A B_{1}-A_{1} B=0 .
\end{gathered}
$$

This may also be written $\frac{A}{A_{1}}=\frac{R}{B_{1}}$; and we see that the ryation $a x+b y=k$ can be made to represent a. ininite number of $\|$ st. lines by giving different alat. to k; as: $-a x+b y=k_{1}, a x+b y=k_{2}$, etc.
43. Condition of Perpendicularity. If the st. lines $y=m_{1} x+b_{1}, y=m_{2} x+b_{2}$ are \perp,

$$
\begin{aligned}
\tan ^{-1} & \frac{m_{1}-m_{2}}{1+m_{1} m_{2}}
\end{aligned}=\frac{\pi}{2} .
$$

This will be true if $1+m_{1} m_{2}=0$, and \therefore the required condition is

$$
\mathrm{m}_{1} \mathrm{~m}_{2}=-1
$$

Similarly, if $\mathbf{A} x+\mathrm{B}_{\mathrm{B}} y+\mathbf{C}=0$ and $\mathrm{A}_{1} x+\mathrm{B}_{1} y+\mathrm{C}_{1}=0$ are 1 .

$$
A A_{1}+B B_{1}=0
$$

The st. lines

$$
\begin{aligned}
& \mathrm{A} x+\mathrm{B} y+\mathrm{C}=0 \\
& \mathrm{~L} x-\mathrm{A} y+\mathrm{C}_{1}=0
\end{aligned}
$$

satisfy the above rondition and \therefore are \perp to each other:

44.-Exercises

1. Find the - between the st. lines
(a) $2 x-3 y=9$ and $x+5 y=11$;
(b) $3 x+5 y=12$ and $(17 \sqrt{3}+30) x+33 y=19$;
(c) $5 y=3 x+12$ and $5 x+3 y=17$;
(d) $4 x+7 y=13$ and $3 x-y=6$.
2. Find the equation of the st. line \| to $6 . x-i y=13$ and passing through ($-2,-5$).

Solution:-The required equation is

$$
\begin{aligned}
& 6(x+2)-7(y+5)=0 ; \\
& \text { i.e., } \quad 6 x-7 y=23 .
\end{aligned}
$$

3. Find the equation of a st. line through $(-3,-5)$ and $\|$ to $9 x+4 y=18$.
4. Find the equation of the st. line drawn through (-2 , $-5)$ and \perp to $6 x-7 y=13$.
Solution:-The required equation is

$$
\begin{aligned}
& 7(x+2)+6(y+5)=0 ; \\
& \text { i.e., } 7 x+6!y+44=0 .
\end{aligned}
$$

5. Find the equation of the st. line drawn through (4, 2) and $\perp 3 x-2 y=3$.
6. Find the equation of the st. line passing through $(-3,5)$ and $\|$ to the st. line joining $(2,6)$ and $(7,-1)$.
7. Find the equation of the st. line passing througin $(2,6)$ and \perp the st. line joining $(-3,5)$ and $(7,-1)$.
8. Find the equations of st. lines drawn through (5, 7) which make $\angle \mathrm{s} 45^{\circ}$ and 135° with $O x$.
9. Find the equations of st. lines drawn through $(-5,-3)$ which make $\angle \mathrm{s} 30^{\circ}$ and 150° with $O x$.
10. Show timat the $\perp \mathrm{s}$ from the vertices of the $\triangle(1,-3)$, $(-5,-2),(i, 7)$ to the opposite sides are concurrent ; and find the coordinates of the orthocentre.
11. Show that the $\perp s$ from the vertices of the $\triangle(0,0)$, $(a, 0),(b, c)$ to the opposite sides are concurrent; and find the orthocentre.
12. Find the ratio into which the \perp from the origin on the st. line joining $(2,6)$ and $(5,1)$ divides the distance between these points.
13. Find the equations of the st. lines which pass through (h, k) and form with $y=m x+b$ an isosceles \triangle of which the vertex is at the given point and each base $\angle=a$.

Fif. 85
Solution:-Let $y-k=\mathbf{M}(x-h)$ represent one side of the Δ whuc the value of \boldsymbol{M} is to be found.

$$
\begin{aligned}
\operatorname{Tan} a & =\frac{M-m}{1+m \mathbf{M}} \\
\therefore \quad M & =\frac{m+\tan n}{1-m \tan a} .
\end{aligned}
$$

\therefore the equation of this side is

$$
y-k=\frac{m+\tan a}{1-m \tan a}(x-h) .
$$

If for a we substitute $108^{\circ}-a$, the equation of the other side is found to be

$$
y-k=\frac{m-\tan a}{1+m \tan a}(x-h)
$$

14. Find the equations of the st. lines passing through $(2,8)$ and making an \angle of 30° with $3 x-12 y=7$.
15. Find the equations of the st. lines passing through $(-1,-2)$ and making an \angle of 45° with $\frac{x}{7}+\frac{y}{5}=1$.
16. Show that the equation of the st. line through (a, b) and making an \angle of 60° with $x \cos a+y \sin a=p$ is $y-b=(x-a) \tan \left(\alpha \pm 30^{\circ}\right)$.
17. Show that the right bisectors of the sides of the \triangle $(0,0),(a, 0),(b, c)$ are concurrent ; and find their point of intersection.
18. Find the equation of a st. line \perp to $A x+B y+C$ $=0$, and at a distance p from the origin.

Perpendiculars

45. To find the length of the \perp from $P\left(x_{1}, y_{1}\right)$ to $A x+B y+C=0$.

Fig. 26.
Draw PM \perp the g. en st. line. Join P to N, R the points where the given st. line cuts $O x, O y$.

$$
\begin{gathered}
\triangle P R N=\frac{1}{2} P M \cdot R N . \\
O N=-\frac{C}{A} \text { and } O R=-\frac{C}{B^{\prime}} \\
\therefore R N=\sqrt{\frac{C^{2}}{B^{2}}+\frac{C^{2}}{A^{2}}}=\frac{C}{A B} \sqrt{A^{2}+B^{2}}
\end{gathered}
$$

By the formula of $\S 17$,

$$
\begin{aligned}
\triangle \mathbf{P R N} & =\frac{1}{2}\left\{x_{1}\left(-\frac{\mathbf{C}}{\mathbf{B}}\right)-\frac{\mathbf{C}}{\mathbf{A}}\left(y_{1}+\begin{array}{l}
\mathbf{C} \\
\mathbf{B}
\end{array}\right)\right\} \\
& =-\frac{\mathbf{C}}{2 \mathbf{A B}}\left(\mathbf{A} \cdot r_{1}+\mathbf{B} y_{2}+\mathbf{C}\right) .
\end{aligned}
$$

$\therefore \frac{1}{2} \mathbf{P M} \cdot \frac{\mathbf{C}}{A B} \sqrt{\mathbf{A}^{2}+B^{2}}=-\frac{\mathbf{C}}{2 \mathbf{A B}}\left(\mathbf{A} x_{1}+\mathbf{B} y_{1}+\mathbf{C}\right)$.

$$
\therefore P M=-\frac{\mathbf{A} x_{1}+\mathbf{B} y_{1}+\mathbf{C}}{\sqrt{\mathbf{A}^{2}+\mathbf{B}^{2}}}
$$

The length of the 1 is \therefore

$$
\frac{A X_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}}
$$

In the diagram $A B$ is the line represented by the erpuation $4 x+5 y-20=0$.

Fia. 27. (1'nit $=1 /$ inch.)
If in the expression $4 x+5 y-20$ we substitute the coordinates of points $\mathbf{O}, \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ which are not in the line, the following resul.. . : obtained.

$$
\begin{array}{rl}
\text { For } O(0,0), & 4 x+5 y-20=-20 . \\
" & P(5,-5), 4 x+5 y-20=-25 . \\
" & Q(-8,5), 4 x+5 y-20=-27 . \\
& \mathrm{R}(5,6), \quad 4 x+5 y-20=+30 . \\
& \mathrm{S}(10,3), \quad 4 r+5 y-20=+35 .
\end{array}
$$

In these resilts it will be olserved that:--
For the origin the sign of the value of the expression is the same as the sign of the absolute term.

For other points that lie on the same side of the given st. line as the origin the signs of the values of the expression are the same as the sign of the result for the oricrin; while, for points on the side remote from the origin the signs of the values of the expression are different from the sign of the result for the origin.

A formal proof of these properties is given in the next article.
46. To prove that the sign of the expression $A x$ $+B y+C$ is different for points on opposite sides of the line $A x+B y+C=0$.

Fig. 2$\}.$
$\mathbf{P}\left(x_{1}, y_{1}\right), \mathbf{Q}\left(r_{2}, y_{2}\right)$ are any points on opposite sides of $\mathbf{A} x+\mathbf{B} y+\mathbf{C}=0$.

Draw PM, QR \perp Ox amd let thein cut the given line at N, S.

$$
y_{1}=P M=P N+N M ; y_{1}=Q R=S R-S Q .
$$

$\therefore \mathrm{A} \mathrm{r}_{1}+\mathrm{B} y_{1}+\mathrm{C}=\mathrm{A} \mathrm{r}_{1}+\mathrm{B} \cdot \mathrm{PN}+\mathrm{B} \cdot \mathrm{NM}+\mathrm{C}$, and $A r_{2}+B y_{2}+C=A \cdot r_{2}+B \cdot S R-B . S Q+C$.

But, $\because N$ and S are both on the given line,

$$
\begin{aligned}
& \text { A. } r_{1}+B . N M+C=0, \\
& \text { and A. } r_{2}+B . S R+C=0 \text {. } \\
& \therefore \quad \mathrm{A} \cdot r_{1}+\mathrm{B} y_{1}+\mathbf{C}=\mathbf{B} . \mathrm{PN} \text {, } \\
& \text { and } \mathrm{A} \cdot r_{2}+\mathrm{B}!!_{2} \quad+\mathrm{C}=-\mathrm{B} . \mathrm{SQ} \text {. }
\end{aligned}
$$

\therefore, since $P N, S Q$ are both taken as positive quantities, $\mathbf{A} \cdot r_{1}+\mathbf{B} y_{1}+\mathbf{C}$ and $\mathbf{A} r_{2}+\mathbf{B} y_{2}+\mathbf{C}$ have opposite sierns.

When $x=0$ and $y=0$ the expression $\mathbf{A} x+\mathbf{B} y+\mathbf{C}$ becomes \mathbf{C}, \therefore a point whose coordinates when substituted in $A x+B y+C$ gives the same sign as C is on the same side of the st. line $A x+B y+C=0$ as the origin.
47. Sign of the Perpendicular. It follows from the preceding article that, if the positive sign is always taken for $\sqrt{A^{2}+B^{2}}$, when the sign of

$$
\frac{A r_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}}
$$

is the same as the sign of C, the point $\left(x_{1}, y_{1}\right)$ and the origin are on the same side of the line $A x+B y$ $+\mathbf{C}=0$; and when the sign of this fraction is different from that of c, the point $\left(x_{1}, y_{1}\right)$ and the origin are on opposite sides of $\mathbf{A} x+\mathbf{B} y+\mathbf{C}=\mathbf{0}$.

48 . To find the equations of the bisectors of the

Fig. 29.
$\angle s$ between the lines $A x+B y+C=0$ and $A_{1} x+$ $\mathrm{B}_{1} y+\mathrm{C}_{1}=0$.

The $\perp s$ to the st. lines from any point $P(x, y)$ on either bisector are equal to ench other,
\therefore the required equations are

$$
\frac{A x+B y+C}{\sqrt{A^{2}+B^{2}}}= \pm \frac{A_{1} x+B_{1} y+C_{1}}{\sqrt{A_{1}{ }^{2}+B_{1}{ }^{2}}} .
$$

If the equations are so written that C and C_{1} have the same sign and P is on the bisector of the L that contains the origin, the \mathcal{L} from P have the same sign as the $1 s$ from the origin on the lines, and the equation of the bisector is

$$
\frac{A^{2} x+B_{y}+C}{\sqrt{A^{2}+B^{2}}}=\begin{gathered}
A_{1} x+B_{1} y+C_{1} \\
\sqrt{A_{1}}+B_{1} y
\end{gathered}
$$

If P is on the bisector of the \angle which loes not contain the origin, the Ls from P have opposite signs and the equation of the bisector is

$$
\frac{A x+B y+C}{\sqrt{A^{2}}+B^{2}}=-\frac{A_{1} x+B_{1} y+C_{1}}{\sqrt{A_{1}}+B_{1^{2}}^{2}}
$$

49. To find the distance from (a, b) to $A x+B y+C=0$ in the direction whose direction cosines are l, m.

The equalic, of the st. line passing through !(1, in in the givan dimetm is, hy $\$ 38$,

$$
\begin{gathered}
\cdot \prime=: \prime-l=r \\
\cdot r=\cdot+h \cdot!=1,+m r .
\end{gathered}
$$

Substitutia f there wilues for r and ! in $\mathbf{A} . r+B!/+$ $\mathbf{C}=0$,

$$
\begin{gathered}
\mathbf{A} l l+\mathbf{A l} l^{\prime}+\mathbf{B} l+\mathbf{B} m l^{\prime}+\mathbf{C}=\mathbf{0} . \\
\therefore \mathbf{r}=-\begin{array}{c}
\mathbf{A} a+\mathbf{B b}+\mathbf{C} . \\
\mathbf{A l}+\mathbf{B m}
\end{array}
\end{gathered}
$$

50. The hength of the \perp from $(1$, , $)$ to $A \cdot r+B!/+$ $\mathbf{C}=0$ may be detuced from the result of $\$ 49$.

$$
F_{n} r, \text { if } \frac{r-n}{l}=\frac{\eta-l}{m} \text { anl } \mathbf{A} r+B_{!}+\mathbf{C}=0 \text { arr }
$$

\perp to each other,

$$
\frac{\mathbf{A}}{l}=\frac{\mathbf{B}}{m}=\frac{\mathbf{A} l+\mathbf{B} m}{l^{\prime}+m^{2}}=\mathbf{A} l+\mathbf{B} m .
$$

since $l^{2}+m^{2}=1$.
Also mach of these fractions

$$
\begin{aligned}
& =\frac{l^{\prime} \overline{\mathbf{A}^{2}+\mathbf{B}^{2}}}{I^{2}+m^{2}}=\sqrt{\mathbf{A}^{2}}+\mathbf{B} \\
& \therefore \mathbf{A l}+\mathbf{B} m=\mathbf{A}^{\prime}+\mathbf{B}^{2},
\end{aligned}
$$

and the length of the \perp is

$$
\begin{gathered}
\mathbf{A l}+\mathbf{B}^{\prime}+\mathbf{C} \\
\sqrt{\mathbf{A}^{2}+\mathbf{B}^{2}}
\end{gathered}
$$

51. Tc find the equation of a line passing through the intersection of two loci.

The equation

$$
\begin{equation*}
\text { 1. }\left(A_{1} r+B_{1} y+C\right)+1\left(A_{1} \cdot r+B_{1} y+C_{1}\right)=0 \tag{1}
\end{equation*}
$$

theine of the first degree in a sum! ! represents a st. _hle. If n_{1}, y_{1}) is the point of intersection of

$$
\begin{array}{r}
\mathbf{A}_{1} x+\mathbf{B}_{1} y+\mathbf{C}=0 \\
\text { nu! } \mathbf{A}_{1} x+\mathbf{B}_{1} y+\mathbf{C}_{1}=0
\end{array}
$$

the values n_{1}, y_{1} substitut id f_{1} r, y will plainls satisfy empation (1), aml \therefore the st. Lin (1) must pats throngh the point of intersection of the st. lines (2) and (3).

From the same reasoning the following more genema theorem is seen to be true:-

If two equations are multiplied by any numbe ; and the results either added or subtracted, the re sulting equation represents a locus that passes through the point (or points) of intersection of the loci represented by the first two.

ㅇ.. Examplt-Find the erpat of of ate st. line passurng rough te intersections of $17 x-\overline{3}!=3,3,3,19 y=3$, anl $-11 x$ $1 \quad 13$.

$$
17 x-7 y-9+l(3 x+19 y-34)
$$

is is st. lime passing thrugh the interese ction of the pat wot hate.
This efgation may in writen

$$
\begin{equation*}
(3 l+10+(19 l-7) y-34 l \tag{0.}
\end{equation*}
$$

If this line is 1 to $11 x$ fy $1: 3$,

$$
\begin{aligned}
& 11(3 l+1 i)+(19-7) 0 \\
& \quad l i
\end{aligned}
$$

and lise require i cyuaten is $t 0 \cdot 0$ nd to the

$$
32 x \quad 4=179
$$

53. Tow find the condition that the three st. lines

$$
\begin{align*}
& a_{1} x+b_{1} y+c_{1}=0 \ldots \ldots \ldots \tag{1}\\
& a_{2} x+b_{2} y+c_{2}=0 \ldots \ldots \ldots \ldots \tag{2}\\
& a_{3} x+b_{3} y+c_{3}=0 \ldots \ldots \ldots \ldots \tag{3}
\end{align*}
$$

may be concurrent.
If the three st. lines are concurrent; the coordinates of the common point satisfy the three equations.

For that point, from (1) and (2),

$$
\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-\pi_{2} b_{1}} .
$$

Dividing the terms of (3) respectively by these equal fractions, $u_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)+b_{3}\left(c_{1} a_{2}-c_{2} a_{1}\right)+c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0$.

This is the relationship that mast hold among the constants in order that the lines may be concurrent.

54. Exercises

1. Find the length of the \perp
(a) from $(-4,7)$ to $5 x-2 y=4$;
(b) from $(-4,-3)$ to $\frac{x}{2}+\frac{y}{3}=1$;
(c) from $(3,-2)$ to $y=7 x+1$;
(d) from ($-2,-7$) to the st. line joining (5,3) and $(-3,-7)$;
(e) from the origin to the st. line joining (7,0) and $(0,-5)$.
2. Find the distance between the $\|$ lines $4 x-3 y=9$, $4 x-3 y=2$.
3. Find the distance between the $\|$ lines $a x+b y+c_{1}$ $=0, a x+b y+c_{2}=0$.
4. Find the point in the line $\frac{x}{2}+\frac{y}{5}=-1$ sucl: that its \perp distance from the st. line joining $(2,7),(5,3)$ is 8 .
5. Find the equation of the st. line through the intersection of $3 x-2 y=12,5 x+4 y=9$ and $\|$ to $\frac{x}{3}+\frac{y}{4}=1$. (See §§51 and 52).
6. Find the equation of the st. line joining the origin to the intersection of $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$.
7. Find the distance from the point of intersection of $7 x-5 y=: 3,4 x+9 y=43$ to the line $12 x=5 y$.
8. Find the equation of the st. line passing through the intersection of $y=m x+c, y=m_{1} x+c_{1}$ and \perp to $\frac{x}{a}+\frac{y}{b}=1$.
9. Show that the st. lines $x+0!y=5$, $2 x+3 y=8$, $3 x+y=5, x+y=3$ and $2 x-y=0$ are concurrent.
10. Find the condition that the liaes $a x+h y+g=0$, $h x+b y+f=0, y x+f y+c=0$ are eoncurrent.
11. Find the equation of the st. line passing through the interssetion of $y=m x+c, y=m_{1} x+c_{1}$ and also through (n, b).
12. Find the equation of the st. line joining the origin to the point of intersection of $\mathbf{A} x+\mathbf{B} y+\mathbf{C}=0$ and $\mathbf{A}_{1} x+\mathbf{B}_{1} y+\mathbf{C}_{1}=0$.
13. Find the distance from the orthocentre of the \triangle $\mathbf{O}(0,0), \mathbf{A}(8,0), \mathbf{B}(3,5)$ to the st. line $\mathbf{A B}$.
14. Plot the lines $2 x-3 y=1,3 x+y=7$ on squared paper and find the intercepts that the bisectors of the $\angle s$ between them make on the axis of y.
15. Find the equations of the biseetors of the $\angle \mathrm{s}$ between $5 x-12 y=17$ and $8 x+15 y=31$.
16. Show that the bisectors of the supplementary $\angle s$ between $y=m x+a$ and $y=m_{1} x+a_{1}$ are \perp to cach other.
17. Find the equations of the bisectors of the $\angle s$ betwern the st. lines joining (4,5) and ($-5,2$) respectively to $(3,-7)$.
18. Show that the st. lines $x+6 y=15,2 x-5 y+4=0$ and $9 x+y=29$ are concurrent.
19. The sides of a Δ are $3 x+4 y=15,12 x-5 y-17$, $24 x+7 y=30$. Plot the lines on siquared paper and find the point where the bisectors of the interior $\angle \mathrm{s}$ of the \triangle intersect.
20. Find the equation of the st. line passing through the intersection of the lines $2 x-3 y=6$ and $3 x+4 y=1 k$, and also through the middle point of the st. line joining ($-1,2$) and (3,4).
21. Find the distance from ($\overline{0}, 3$) in the direction in which the slope is $\frac{1}{\sqrt{3}}$ to tine line $7 x-11 y=13$.
22. Find the distance from $(-4,6)$ in the direction of which the slope is 1 to the line $\frac{x}{2}+\frac{y}{3}=1$.

Draw the diagram on squared paper.
23. The sum of the distances from a point to the lines $x+2 y=7,5 x-2 y=11$ is 7 . Show that the locus of the puint is a st. line which makes equal $\angle \mathrm{s}$ with the given st. lines.
24. Find the distance between the || lines $\frac{x}{a}+\frac{y}{b}=c$, $\frac{x}{a}+\frac{y}{b}=d$.
25. Find the equation of the st. line passing through P (2, i) and cutting $O x$ at A, O_{y} at B so that $A P: P B=7: 3$.
26. Find the equations of the st. lines passing through $(4,7)$ and making an \angle of 45° with $3 x-10 y=8$.

27 . Find the equations of the st lines passing through $(-4,-7)$ and forming an equilateral Δ with $3 x-2 y=7$.
≥ 8. Find the equations of the st. lines drawn || to $5 . x-19 y=9$ and at a distance 5 from it.

29 Find the equations of the two st. lines which pass through (4,7) and are equally distant from $A(7,3)$, $B(3,-1)$. Find also the distances from A and B to these lines.
30. Find the point in $4 x-3 y=12$ which is equally distant from $(2,7)$ and $(4,-1)$.
31. Having given the length of the base and the difference of the squares of the other two sides of a \triangle, prove that the locus of its vertex is a st. line \perp the base.
32. Find the equations of the st. lines which are at a distance 2 from the origin and which pass through the intersection of $x-7 y+11=0$ and $3 x+4 y-17=0$.
33. Find the equation of the st. line $\|$ to $A x+B y+$ $\mathbf{C}=0$ and at a distance p from the origin.
34. Find the equation of the st. line passing through (h, k) and \perp to $A x+B y+C=0$.
35. The equations of the sides of a Δ are $5 x+3 y-$ $15=0,2 x-y+4=0,3 x-7 y-21=0$. (a) Show that the $\perp s$ from the vertices to the opposite sides are concurrent and find the coordinates of the orthocentre. (b) Show that the right bisectors of the sides are concurrent and find the coordinates of the circumcentre. (c) Show that the centroid is at a point of trisection of the st. line joining the orthocentre to the circumcentre.

CHAPTER III

The Straigilt Line Continued. Transformation of Coordinates
55. An equation of the second degree may represent two st. lines.

For exanple, $2 x^{2}-5 x y+3 y^{2}=0$ is the same as $(x-y)(2 x-3 y)=0$, and will be true for all values of x and y which make either of the factors $x-y$ or $2 x-3 y$ equal to zero, and \therefore all points on the st. lines $x-y=0,2 x-3 y=0$ are on the locus represented by $2 x^{2}-5 x y+3 y^{2}=0$.
Similarly, an equation of the third degree may represent three st. lines, one of the fourth degree may represent four st. lines, etc.
56. The general equation $a x^{2}+2 h x y+b y^{2}=0$ represents two st. lines passing through the origin.
Solving as a quadratic in x

$$
x=\frac{-h \pm \sqrt{h^{2}-a \bar{b}}}{a} y
$$

from which it is seen that the given equation is equivalent to
$\left\{a x+h y+y \sqrt{h^{2}-a b}\right\}\left\{a x+h y-y \sqrt{h^{2}-a b}\right\}=0$, and \therefore represents the two st. lines

$$
\begin{aligned}
& a x+h y+y \sqrt{h^{2}-a b}=0 \\
& a x+h y-y \sqrt{h^{2}-a b}=0
\end{aligned}
$$

both of which pass through the origin.

If $h^{2}>$ all, the lines are both real.
If $h^{2}=a b$, the lines are coincident.
If $\Lambda^{2}<a b$, the lines are imaginary, and we have two imaginary st. lines passing through the real point (0,0).
57. To find the $<$ between the two st. lines represented by $a x^{2}+2 h x y+b y^{2}=0$.

The given equation may be written

$$
y^{2}+2 \frac{h}{b} x y+\frac{a}{b} x^{2}=0
$$

If $y-m_{1} x$ and $y-m_{2} x$ are the factors of the expression on the left hand side of this equation,

$$
\begin{array}{r}
m_{1}+m_{2}=-\frac{2 h}{b}, \quad m_{1} m_{2}=\frac{a}{b} \\
\therefore m_{1}^{2}+2 m_{1} m_{2}+m_{2}^{2}=\frac{4 l^{2}}{b^{2}} \\
4 m_{1} m_{2} \quad=\frac{4!}{b} \\
\therefore\left(m_{1}-m_{2}\right)^{2}=\frac{4\left(h^{2}-(l l)\right.}{b^{2}} \\
\text { and } m_{1}-m_{2}=\frac{2 \sqrt{l^{2}-a b}}{b}
\end{array}
$$

If then θ is the \angle between the st. lines, by $\S 41$,

$$
\begin{aligned}
& \tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}=\frac{2 \sqrt{h^{2}-a b}}{b} \times \frac{b}{a+b} \\
&=2 \sqrt{h^{2}-a b} \\
& a+b
\end{aligned}
$$

$\therefore \theta=\tan ^{-1} \frac{2 \sqrt{\mathbf{h}^{2}-\mathbf{a b}}}{\mathrm{a}+\mathrm{b}}$.
Condition of perpendicularity. If $\theta=90$, $\tan \theta=\infty$. This will be the case if

$$
a+b=0
$$

58. To find the equation of the st. lines which bisect the $\angle s$ between the st. lines represented by $a x^{2}+2 h x y+b y^{2}=0$.

Let the given equation represent the st. lines

$$
\begin{gathered}
y-m_{1} x=0, y-m_{2 x} x=0, \text { so that } \\
m_{1}+m_{2}=-\frac{2 /}{b^{\prime}}, \quad m_{1} m_{2}={ }_{l}^{\prime \prime},
\end{gathered}
$$

The equations of the hisectors of the $\angle \mathrm{s}$ betwerer these lines are
$\frac{y-m_{1} x}{v_{1}+m_{1}^{2}}+\frac{y-m_{2} x}{v_{1}+m_{2} 2^{2}}=0$ and $\frac{y-m_{1} x}{v_{1}+m_{1}^{2}}-\frac{y-m_{2} r}{v_{1}+m_{2^{2}}}=0$.
These equations may be combined into

$$
\frac{\left(y-m_{1} x\right)^{2}}{1+m_{1}^{2}}-\frac{\left(y-m_{\ldots}, r\right)^{2}}{1+m_{2}^{2}}=0 .
$$

Simplifying and dividing by $m_{2}-m_{1}$,

$$
\left(m_{1}+m_{2}\right) y^{2}-2\left(m_{1} m_{2}-1\right) x y-\left(m_{1}+m_{2}\right) r^{2}=0
$$

Substituting and multiplying by l.

$$
h\left(x^{2}-y^{2}\right)-(a-b) x y=0
$$

59. To find the relationship that must connect the constants in the equation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

in order that this equation may represent two st. lines.

If the given equation represents two st. lines, it must be equivalent to two equations of the form $y-m_{1} x-b_{1}=0, y-m_{2} x-b_{2}=9$, from either of which y can be expressed in terms of the first degree of x.

Solving the given equation for y, we obtain

$$
y=-\frac{\left.-(h x+f) \pm \sqrt{(h x+f)^{2}-b\left(1 x^{2}+2 g x+c\right.}\right)}{b}
$$

In order that these values of y may be in terms of the first degree of x, the expression under the radical sign must be a perfect square; i.e.,

$$
\left(h^{2}-(l l) x^{2}+2(h f-b g) x+f^{2}-b c\right.
$$

is a perfect square for all values of x.

$$
\therefore(h f-b g)^{2}=\left(h^{2}-a b\right)\left(f^{2}-b c\right)
$$

Simplifying, we get the condition in the form

$$
2 f g h-a f^{2}-b g^{2}-d h^{2}+a b c=0
$$

60.-Exercises

1. Show that the following equations represent t, \ldots st. lines and fir? the separate equations of the lines:-

$$
\begin{aligned}
& \text { (a) } x^{2}-(a+b) x=-a b ;(b) x^{2}-y^{2}=0 ; \\
& \text { (c) } x^{2}-3 x y=0 ;(d) 8 x^{2}+3 y^{2}=10 x y ; \\
& \text { (e) } x y+b x=a y+a b ; \text { (f) } 3 x^{2}-10 x y+3 y^{2}-11 x \\
& \quad-7 y-20=0 .
\end{aligned}
$$

2. Show that $2 x^{2}-7 x y+6 y^{2}+2 x-5 y-4=0$ represents two st. lines and find the slope of each.
3. Interpret the locus represented by $x y=0$.
4. Find the $\angle s$ between the st. lines in l. ($l()$, (e) and (f).
5. Find the condition that $a x y+b x+c y+d=0$ may represent two st. lines.
6. Find the value of B for which the equation $3 x^{2}-$ $10 x y+B y^{2}-2 x-2 y=21$ will represent two st. lines.
7. Find the single equation which represents the two st. lines passing through (5,3) and making an equilateral \triangle with the axis of x.
8. Prove that $y^{2}-2 x y \sec a+x^{2}=0$ represents two st. lines through the origin and inclined to each other at an $L=a$. Show also that one of these lines makes the same \angle with the axis of x that the other makes with the axis of y

Transfolmation of Coomdinates

61. It is often necessary to change the coordinates involved in a problem into a different set which are referred to axes drawn
(a) from a new origin, or
(b) in directions different from the origimal axes.
62. To change from a pair of axes to another pair which are $\|$ to the former, but have a different origin.

Fia. 30.
$Q(h, k)$ is the new origin.
Let $\mathbf{P}(x, y)$ be any point referred to $O x$ and $O_{!}$ and X, Y the coordinates of the same point referred to the new axes $Q X$ and $Q Y$.
J) raw PNM \perp to $O x$ and $Q X$ and let $Y Q$ cut $O x$ at R.

$$
\begin{aligned}
& x=\mathrm{OM}=\mathrm{OR}+\mathrm{QN}=h+\mathrm{X} \\
& y=\mathrm{PM}=\mathrm{QR}+\mathrm{PN}=h+\mathrm{Y} .
\end{aligned}
$$

'Thus, if for x, y respectively we substitute $11+x$, $k+Y$ in may equation the origin is changed to the point (h, h).

To return to the original origin the substitutions would be $\mathrm{X}=x-h, \mathrm{Y}=y-h$.
63. To change the direction of the axes, without changing the origin, the axes being rectangular.

Fio. 31.
Let $\mathrm{P}(x, y)$ be any point referrel to $0 . r, 0 y$; and X, Y the coordinates of the same point referred to axes $O X$, $O Y$ such that $\angle X O X=a$.

Draw PM $\perp \mathrm{O} x, \mathrm{PN} \perp \mathrm{OX}, \mathrm{NR} \perp \mathrm{O} x, \mathrm{NS} \perp \mathrm{PM}$.
\angle NPS $=90^{\circ}-\angle$ NAP $=90^{\circ}-\angle M A O=u$.

$$
\begin{aligned}
& x=\mathbf{O M}=\mathbf{O R}-\mathbf{N S}=\mathrm{X} \cos \alpha-\mathrm{Y} \sin \alpha . \\
& y=\mathbf{P M}=\mathbf{N R}+\mathbf{P S}=\mathrm{X} \sin a+\mathrm{Y} \cos \alpha .
\end{aligned}
$$

Thns, if for x, y we substitute respectively $\mathbf{X} \cos a$ $-Y \sin a, X \sin a+Y \cos a$, the axes are rotated in the positive direction through an $<\alpha$.
64. liy §35\%, in an equation of the form x cos $a+y$ sin $u=\rho$, the lenerth of the \perp from the origin on 1 !: st. line is the absolute term p.

If, without changing the direction of the axes, the origin be transferred to $\left({ }^{\prime}, y_{1}\right)$ the equation becomes

$$
\left(x+x_{1}\right) \cos u+\left(y+y_{1}\right) \sin a=p
$$

$$
\text { i.e., } x \cos a+y \sin u=p-r_{1} \cos a-y_{1} \sin a \text {. }
$$

The new equation is of the same form as the old one except that the absolute term is now $p-x_{1} \cos u$ $-y_{1} \sin u$.

This absolute term is then the length of the \perp from the new origin to the st. line; or, reverting to the original origin, the length of the \perp from $\left(x_{1}, y_{1}\right)$ to the line $x \cos u+y \operatorname{sen} a=p$ is $p-x_{1} \cos a-y_{1}$ $\sin u$.

This is the sane as the result that would be obtained by using the formula of $\S 45$.

65.-Fxercises

1. What does the equation $2 x^{2}-11 x y+12 y^{2}+7 x-$ $13 y+3=0$ become when the origin is changed to the point (1,1) the directions of the axes being unchanged?
2. Transform the equation $x^{2}+x y-7 x-4 y+12=0$ to || axes through $(t,-1)$.
3. Find the point that inust be taken as origin, the directions of the axes being unchanged, in order that the terms of the first degree in x and y may vanish from the equation $x^{2}+y^{2}+5 x-9 y+17=0$. Find also what the equation becomes.
4. Shaw that the turms of the first degree in x mati y will vanish from the rxpression $a x^{3}+2 / a, y+b y^{2}+2 y w+$ $2 f y+c$, if the origin be changed $t=\left(\begin{array}{l}h f 0 \\ a b-h y \\ h b^{\prime \prime} a b-a f \\ a b\end{array}\right)$, the directions of the axes being unchan foll.
5. Transform the equation $A x+B y+C=11$ \} fotating: the axes through all L of 30°.
6. Find what the equation $x^{:}-y^{2}-a^{2}$ becones when the axes are turned through an L of 45°, the origin remaising the samie.
 when the axes are turned through ny L a. the origin remaining the sume.
7. Find what the equation $33 x^{2}-31 \sqrt{3 x y}-y^{2}=0$ bromes when the axes are turned through an L of 60°, the rigin rematining the same.
8. Find the smallest positive \angle lhrough which the axes must be turned in order that the coellicient of $x y$ in the equation $59 x^{2}+2+x y+66 y^{2}=250$ may vanish; and also find what the equation becomes.
9. Show that the terin involving $x y$ in the expression $a x^{2}+2 h x y+b y^{2}$ will vanish, if the axes are turned through the \angle.

$$
\frac{1}{2} \tan ^{-1} \frac{2 h}{a-b}
$$

66.-Review Exercises

1. Find the distances hetween the following pairs of points:-
(a) $(-2,7),(6,-2)$;
(b) $(2 a+b, a-2 b),(a-b, \quad i n+b)$;
(r) $(a \cos a, a \sin a),(-b \cos a,-b \sin a)$.

Verify the result in (b), on squared piper, when $a=1$, $b=-\underline{\text {. }}$
2. $A(-5,-1), B(t, 6)$ are two given points, P is taken in $A B$ and Q in $A B$ proluced such that $A P: P B=$ $A Q: Q B=5: 3$. Find the -oordinates of P and Q.
3. Find the anca of the Δ of which the vertices are (3a, こb), (2a, Sh) anl (a, b).
4. Find the anea of the is contained by the lines $2 x+11 y+43=0.9 x+\dot{y} y-14=0$ and $7 . \cdot-3 y+$ $2 i j=0$.
5. Find the \perp distance from $(-2,3)$ to the line $\frac{\ddot{a} \cdot}{3}-\frac{y}{y}=6$.

Should the result be considered positive or megrative and why?
fi. Find the condition that the three points (r_{1}, y_{1}). $\left(x \cdot y, y_{2}\right),\left(x_{3}, y_{3}\right)$ may lie in a st. line.
7. Find the locus of a point such that the stiatore of it distance from $(-3,-7)$ exceeds the siguare of its distance from ($(5,0)$ by 43.
\&. Prove that the equation $\mathbf{A} \cdot \boldsymbol{r}+\mathbf{B}!+\mathbf{C}=0$ represents a st. line.
9. Find the equation of the st. line which is equidistant from the $\|$ lines $a \cdot x+b!y=c, a x+b y=d$.
10. Find the equation of a st. liae which makes an $<a$ with $O y$ and cuts off an intercept b from $\mathbf{O} . x$.
11. Show that the st. lines $\mathbf{A} x+\mathbf{B} y+\mathbf{C}=0, A_{1} x+B_{1} y$ $+C_{1}=0$ are $\|$, if $A B_{1}=A_{1} B$.
12. Exphain the meaning of the eonstants in the equations

$$
\frac{x-h}{c \sin \theta}=\frac{y-k}{\sin \theta}=r .
$$

13. Show that the line $y=x$ ten a passes through the point ($a \cos a$, a $\sin a$), and find the equation of the \perp to the line at that point.
14. Find the $<$ between the st. line joining $(-4,5)$, $(5,1)$ and the st. line joining $(3,7),(-6,-3)$.
15. Find the values of m and b such that the line $y=m x+b$ will pass through $(3,-2)$ and $(-1,--i)$.
16. Find the equation of the st. line which passess through $(a,-2)$, and makes an L of 150° with $u x$.
17. Find the length of the st. line drawn from (h, k), in the direction inclined at $L a$ to $O x$, and terminated in the line $y=m x+z$.
18. Find the equation of the st. line through (h, li), and || $10 \frac{x}{a}+\frac{y}{b}=1$.
19. Show that the st. lines $\mathbf{A} x+B_{y}+\mathbf{C}=0, A_{1} x+$ $B_{1!}+C_{1}=0$ are \perp to each other, if $A A_{1}+B B_{1}=0$.
20. Write the equation of the st. line which is $\perp a x-$ $h y=c$, and cuts off in intercept $=d$ from $O y$.
2i. Find which of the following points are on the origin side of $\frac{x}{3}-\frac{y}{5}=1:-(5,3),(-2,-8),(2,-2),(-6,-14)$, $(-7,-17)$. Illustrate by a diagram on squared paper.
21. Show that the points $(2,6),(1,11),(-4,7),(-3,3)$ are in the four different angular spaces made by the lines

$$
\frac{x}{3}+\frac{y}{5}=1 \text { and } \frac{x}{\overline{5}}-\frac{y}{9}=-1
$$

Illustrate by a diagram on squared paper.
〔3. Find the values of a for which the lines $2 x-a y+1$ $=0, a x-6 y-1=0,18 x-a y-7=0$ are concurrent; and find also the coordinates of the respective points of intersection.
24. Show that the condition that the fines $a x+b y=1$, $c x+d y=1, h x+k y=1$ are concurrent is the same as the condition that the the points $(a, b),(c, d),(h, k)$ are collinear.
25. Find the L contained by the lines $4 x-7 y+a=0$, $3 x+11 y+b=0$.
26. Find the equation of the st. line passing through the intersection of $4 x-7 y+a=0$ and $3 x+11 y+b=0$ and making an L of $45^{\text {J }}$ with the axis of x.
27. Find the equation of the st. line passing through the intersection of $\frac{x}{a}+\frac{y}{b}=1, y=m x+c$ and also through (d, 0).
28. Show that the equation of the st. line joining the intersection of $x \cos a+y \sin a=p, x \cos \beta+y \sin \beta=\rho$ to the origin is $y=x \tan \frac{a+\beta}{2}$.
29. Find the length of the \perp from (a, b) to $\frac{x}{a}+\frac{y}{b}=1$.
30. Find the equation of the st. Fine through $(-5,1)$ and $\|$ to $3 x+12 y=17$.
31. Find the equation of the st. line through $(8,-9)$ and \perp to $7 x=y+4$.

3!. Find the coordinates of the four points each of which is equally distant from the three lines $\frac{x}{4}-\frac{y}{3}=1$, $\frac{x}{12}+\frac{y}{5}=1, \frac{x}{24}-\frac{y}{7}=-1$.
33. Find the conrdinates of the foot of the \perp from $(3,5)$ to the st. line joining $(-1,-2)$ and $(8,1)$.
34. Find the separate equations of the st. lines represented by $3 x^{2}+14 x y-2 y^{2}=0$.
35. Find the product of the \perp s drawn from $(3,-2)$ to the su. lines represented by $5 x^{2}+12 x y+2 y^{2}=0$.
36. Show that the L between the lines $y=m x+a$, $y=n x+\ell$ is $\tan ^{-1} \frac{m-n}{1+m n}$.
37. Find the tangent of the L between the st. lines represented by $5 x^{2}-8 x y-y^{2}=0$.
38. Find the equations of the st. lines which pass through $(3,6)$, and are inclined at $u \Perp<$ of 45° to $\frac{x}{5}+\frac{y}{i}=1$.
39. Show that the st. line joining the point $(1,1)$ to the intersection of $\frac{x}{a}+\frac{y}{b}=1$ with $\frac{x}{b}+\frac{y}{a}=1$ passes through the migin.
10. Show that the equation of the st. line passing through the intersection of $x \cos a+y \sin u=p, x \cos \beta+y \operatorname{sia} \beta=q$, and \|to $x+y=k$ is
$(x+y) \sin (\alpha-\sqrt{3})+p(\sin \beta-\cos \beta)+q(\cos a-\sin a)=0$.
41. Find the equation of the st. line passing through the intersection of $5 x-7 y=16,2 x-3 y=7$ and \perp to $6 x-4 y=19$.
42. Find the equations of the st. lines drawn through the vertices and $\|$ to the opposite sirles of the Δ of which the equations of the sides are $3 x+11 y=23,4 x-9 y=11$, $7 x-2 y=-31$.
43. Show that the lines $5 x+y=4,2 x+y=2,3 x+3 y$ $=4$ are concurrent; and find the coordinates of their common point.
44. Find the equation of the st. line passing through the intersection of $a x+b y+c=0, f x+g y+h=0$, and (a) also through the origin; (b) \perp to $x+y=k$.
45. Find the equations of the st. lines which bisect the $\angle \mathrm{s}$ between the lines $12 x-5 y=17,8 x+15 y=13$.
46. Find the equation of the st. line which passes through the point of intersection of the lines $5 x+y=4,4 x-9 y$ $=11$, and is \perp to the furmer.
47. Show that the points $(4,2),(6,2),\left(5,2+\downarrow^{\prime} 3\right)$ are the vertices of an equilateral \therefore.
48. Find the locus of a point which moves so that the sum of its distances from the axes is 10 . Trace the locus on squared paper.
49. Find the locus of a point which moves so that the difference of its distances from the axes is 10 . Trace the locus on squared paper.
50. Find the equations of the st. lines each of whith passes through $(-\overline{5},-3)$ and is such that the part of it hetween the axes is divided at the given point in the ratio 7:3.
©1. Find the equation of the st. line which passes throngh $(3,-2)$, and is \perp to $4 x+y+12=0$.
5.. Find the equation of the right hisector of the st. line joining (a, b) and (h, k).
53. Two st. lines are drawn through $(0,-3)$ such that the $\perp \mathrm{s}$ on them from $(-6,-6)$ are each of length 3 . Find the equation of the st. line joining the feet of the $\perp \mathrm{s}$.
54. Find the $<$ of inclination of the lines $a x+b y=c$, $(a+b) x-(a-b) y=d$.
55. A st. line is drawn through ($2,-4$) and \perp to $7 x$ $-3 y=11$. Find the equations of the bisectors of the $\angle \mathrm{s}$ between the \perp and the given st. line.
56. Find the equation of the st. lines which bisect the $\angle \mathrm{s}$ between the lines represented by $x^{2}+2 x y \sec \theta+y^{2}=0$.
57. Find the value of h for which the equation $3 x^{2}+h x y$ $-10 y^{2}+x+29 y-10=0$ will represent two st. lines.
58. Show that, if the axes are rotated through an $<$ of fin , the term containing $x y$ vanishes from the equation $x^{2}+2 x y \sec \theta+y^{2}=0$; and the separate equations of the two st. lines become $x= \pm y \tan \frac{\theta}{2}$.
59. Three vertices of $n \| g m$ are $(3,4),(-3,1),(5,-2)$. Find the coordinates of the fourth vertex.
60. Prove that the two st. lines which join the middle points of the opposite sides of any quadrilateral mutually bisect each other.
61. What must be the value of m, if the line $y=m x$ - 5 passes through the intersection of $7 . x-11 y=14$ and $5 x+2 y=-11$.
62. Find the area of the Δ contained by the lines $x+y$ $=12,2 x-y=12, x-2 y=-12$.

CHAPTER IV

The Circle

67. A circle is the locus of the points that lie at a fixed distance from a fixed point.

The fixed point is the centre and the fixed distance is the radius of the circle.
68. To find the equation of a circle having its centre at the origin.

Fig. 32.
Let $\mathbf{P}(x, y)$ be any point on the circle of which the centre is O. Let the radius $=\pi$.

Draw PM \perp Ox. Join PO.

$$
\begin{array}{lc}
\because & \text { OPM is a rt. }-\angle d \triangle \\
\therefore & \text { OM }^{2}+P^{2}=O P^{2} \\
\therefore & \mathbf{x}^{2}+y^{2}=a^{2} .
\end{array}
$$

This being the relation which holds between the coordinates of ary point on the circle and the given radius is the required equation.
69. To find the equation of a circle, the centre being at any fixed point (h, k) and the radius equal to a.

Fio. 33.
C (h, k) is the centre; and $P(x, y)$ is any point on the circle.

Draw PM, CN $\perp \mathrm{O} x, \mathrm{CL} \perp \mathrm{PM}$. Join CP.

$$
\begin{aligned}
& \mathrm{CL}=\mathrm{N} M=\mathrm{OM}-\mathrm{ON}=x-k \\
& \mathrm{PL}=\mathrm{PM}-\mathrm{LM}=\mathrm{PM}-\mathrm{CN}=y-k
\end{aligned}
$$

\because CPL is a rt. $-\angle d \therefore$,

$$
C L^{2}+P L^{2}=C P^{2} .
$$

$$
\therefore(\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathbf{a}^{2}
$$

This is the reouired equation.
70. If we expand the equation found in $\$ 69$, we olitain :-

$$
x^{2}+y^{2}-2 h x-2 k y+k^{2}+k^{2}-u^{2}=0 .
$$

Comparing this result with the general equation of the second degree:-

$$
a x^{2}+2 h x y+b y^{2}+2 y x+2 \dot{f} y+c=0,
$$

we see that the conditions that the hatere shouhd represent a circle are that the coefficients of x^{2} and ! ! $]^{2}$ should be equal and that the coefficient of $x y$ should be sero.

Thus the equation

$$
u x^{2}+u y^{2}+2 y r+2 f!y+c=0
$$

may be changed to

$$
\left(n+\frac{!}{u}\right)^{2}+\left(!+\frac{f}{u}\right)^{2}=\frac{!^{2}+f^{2}-u!}{u^{2}}
$$

from which, by comparison with the formula of $\$ 69$. we see that it represents it circle having its centre at the point $\left(-\frac{!}{u},-\frac{f}{u}\right)$ and its radius $=\sqrt{y^{2}+t^{2}-u l^{\prime}}$.
71. The general equation of the circle to rectangular axes is commonly written:-

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

When the circle passes thongh the origin and it= centre is on the axis of x, the equation of $\$$ ti9 becomes

$$
\begin{aligned}
& \left(r-(1)^{2}+y^{3}=u^{2}\right. \\
& 0 r, \quad x^{2}+y^{2}=2 a x
\end{aligned}
$$

72.-Exercises

1. Write the cruation of the circle with centre $(0,0)$ and rallus $=v^{\prime}{ }^{j}$.
2. Write the equation of the circle with centre (6,2) and ralius $=3$.
3. Write the equation of the circle with centre $(-5,-1)$ and radius $=\sqrt{206}$. Show that this circle passes thronch the origin.
4. Write tho equation of the circle with rentre $(-n,-b)$ and radius $=c$. Find the comdition that this cirele passes through the origin.
5. Find the coordinates of the centre and the ralii of the following circles:-

$$
(a), x^{2}+y^{2}-6 x-2 y=15 ;(b), 4 x^{2}+4 y^{2}+7 x+5 y
$$

$$
=16:(r), x^{2}+y^{2}=14 x^{\prime} ;(d), x^{2}+y^{2}+2 b y:=c^{2}
$$

6. Draw, on squared paper, the circles of which the equations are:-
(6) , $x^{2}+y^{2}=9 ;(b), x^{2}+y^{2}=8, x ;(c), x^{2}+y^{2}+6 y=7$.
7. Find the centre and radius of the eidele whimh piscoss throngh tho migin and cuts off intercepts $=\|$ ant b from O.e and $O y$ respectively.
solution.-Since the circle passes through the orign its "plation must be satistied by $x=0, y=0$, and \therefore the absolute term must le zero. Thas the equation hay be written

$$
x^{2}+y^{2}+2 y x+9 f y=0
$$

Substituting in this equation the coordinates of the points (n, i),

$$
\begin{aligned}
& r^{2}+2 y^{\prime \prime}=0 \\
& b^{2}+2 j^{\prime}=0
\end{aligned}
$$

are ohtained from which $a=-\frac{a}{2}, f=-\frac{b}{2}$.
\therefore the eqnation of the circle is

$$
\begin{gathered}
x^{2}+y^{2}-a \cdot c-b y=0 \\
\text { or, }\left(x-\frac{n}{2}\right)^{2}+\left(y-\frac{b}{2}\right)^{2}=\frac{a^{2}+b^{2}}{4}
\end{gathered}
$$

the centre is $\left(\begin{array}{cc}t & \frac{b}{3}, \\ \vdots & 2\end{array}\right)$ atml the radius $=\frac{V^{\prime} n^{2}+l^{2}}{2}$.
8. Find the equation of the circle which passes throush the origin and also through $(4,3)$ and $(-2,6)$.
9. Find the equation of the circle which has its centre on the axis of x and which passes through the points $(5,3)$ and $(-3,1)$.
10. Show from the general equation of $\$ 71$ that three conditions are necessary and sulficient to determine n circle.
11. Find the condition that the circle $x^{2}+y^{2}+2 g x+$ $2 f y+c=0$ may lave its centre (a) on the axis of x; (b) on the axis of y.
12. Find the equa's in of the circle which passes through $(3,1)$ and $(5,-3)$: ul has its centre on the line $x-y=4$.
13. Find the equation of the circle having the st. line joining ($7,-5$) and $(-3,-1)$ as a diameter.
14. $A(a, D)$ is a fixed point and $P(x, y)$ is a variable point such that $P O: P A=p: q$. Show that the locus of \mathbf{P} is a circle having its centre on O, r, and dividing $O A$ internally and externally in the vatio $p: q$.
15. Find the equation of the circumeirele of the \triangle whose vertices are $(3,4),(-2,3),(-5,-7)$.
16. Find the length of the chord of the circle $x^{2}+y^{2}=$ 25 cut off by the line $3 x+y=15$.
17. Find the length of the chord of the circle $x^{2}+y^{2}-$ $6 x+14 y=42$ cut off hy the line $x-y=8$.
18. Show that th:e locus of the centres of all circles which pass through two given points $(p, q),(r, 8)$ is the right bisector of the st. line joining the given noints.
19. Through the given point $P(h, k)$ a st. ling is drawa cutting the circle $x^{2}+y^{2}+2 g x+2 f y+c=1$) at \mathbf{A} aul B. Prove that PA. PB is constant for all directrons of the st. line.

Solution:-Take $\frac{r-h}{\cos \theta}=\frac{v-k}{\sin H}=r$ as the equation of the st. line. Then

$$
x=h+r \cos \theta, y=k+r \sin \theta \text {. }
$$

Subatituting these values in the equation of the circle, and simplifying

$$
\begin{aligned}
& r^{2}+2\{(h+g) \cos \theta+(k+f) \sin \theta\} r \\
& \\
& \quad+h^{2}+k^{2}+2 y h+2 f k+c=0 .
\end{aligned}
$$

The value of PA. PB = the product of the two valuce of r in this equation

$$
=h^{2}+k^{2}+2 g h+2 f k+c,
$$

an expression which does not contain θ and which is \therefore indcpentent of the direction of the line.
20. Find the equation of that chord of the circle $x^{2}+$ $y^{2}+2 y x+2 f y+c=0$ which is bisected at the point (h, k).

Solution:-(First Method). As in Ex. 19, if we take for the equation of the chord $\frac{x-h}{\cos H}=\frac{y-k}{\sin \|}=r$, we get

$$
\begin{aligned}
r^{2}+2\{(h+y) \cos A & +(k+f) \sin \theta\} r \\
& +l^{2}+k^{2}+2 y h+2 f k+c=0 .
\end{aligned}
$$

If the chord is bisected at (h, k) the two valucs of r got from this equation are equal in valuc but opposite in sign, and

$$
\therefore(h+g) \cos \theta+(k+f) \sin \theta=0 .
$$

Multiplying the terms of this equation by the equal fractions $\frac{x-h}{\cos \theta}, \frac{y-k}{\sin \theta}$, the required equation is found to be

$$
(h+g)(x-h)+(k+f)(y-k)=0 .
$$

(Second Method). Let the equation of the chord be

$$
y-k=m(x-h) .
$$

The centre of the eircle is $(-y,-f)$, and the equation of the \perp from the centre to the chorl is

$$
m(y+f)+x+y=0
$$

The \perp from the centre bisects the chord, and, \therefore passes through (h, k).
$\therefore m(k+f)+h+y=0$.
$\therefore m=-\frac{h+g}{k+j}$
\therefore the required equation is

$$
(h+y)(x-h)+(k+f)(y-k)=0 .
$$

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
9653 East Main Street
Rochester, New York 14609 USA
(716) 482 - 0300 - Phone
(716) 288 - 5989 - Fax
21. Find the equation of the chora of the circle $x^{2}+y^{2}-$ $6 x-8 y=24$ which passes through $(5,-1)$ and is bisected at that point.
22. From the point $P(-3,-7)$ a st. line is drawn to cut the circle $x^{2}+y^{2}-4 x-10 y=17$ at A and B. Find the area of the rectangle PA. PB.
23. Find the equation of the common chord of the circles

$$
\begin{aligned}
& x^{2}+y^{2}-8 x-6 y=39 \\
& x^{2}+y^{2}+6 x+8 y=56
\end{aligned}
$$

24. Find the condition that the common chord of the circles

$$
\begin{aligned}
& x^{2}+y^{2}+2 y x+2 f y+c=0 \\
& x^{2}+y^{2}+2 y^{\prime} x+2 f^{\prime} y+c^{\prime}=0
\end{aligned}
$$

passes through the origin.
25. Find the equation of the circle which passes through the origin and also through (h, k) and (k, h).

Tangents

73. Let $A P Q$ be a secant cutting a curve at P and Q.

Fia. 3.
If the secant rotate about the point P until the second point Q approaches indefinitely near to P, the limiting position $P R$ of the chord is called a tangent to the curve at the point P.

The point P is called the point of contact of the tangent PR.
74. To find the equation of the tangent to the circle $x^{2}+y^{2}=a^{2}$ at the point $P\left(x_{1}, y_{1}\right)$ on the circle.

Fig. 35.
Let $\mathbf{Q}\left(x_{2}, y_{2}\right)$ be another point on the circle.
Then the equation of $P Q$ is

$$
\begin{equation*}
\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}} \tag{1}
\end{equation*}
$$

$\because \mathbf{P}$ and \mathbf{Q} are both on the circle,

$$
\begin{aligned}
x_{1}^{2}+y_{1}^{2} & =a^{2} \\
\text { and, } x_{2}^{2}+y_{2}^{2} & =a^{2} .
\end{aligned}
$$

\therefore, subtracting, $x_{1}{ }^{2}-x_{2}{ }^{2}+y_{1}{ }^{2}-y_{2}{ }^{2}=0$.
$\therefore\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)+\left(y_{1}-y_{2}\right)\left(y_{1}+y_{2}\right)=0$
Multiplying the terms of (2) by the equal fractions in (1)

$$
\begin{equation*}
\left(x-x_{1}\right)\left(x_{1}+x_{2}\right)+\left(y-y_{1}\right)\left(y_{1}+y_{2}\right)=0 . \tag{3}
\end{equation*}
$$

If, now, PQ rotates about \mathbf{P} until \mathbf{Q} coincides with $\mathrm{P}, x_{2}=x_{1}$ and $y_{2}=y_{1}$.

Thus equation (3) becomes

$$
\begin{aligned}
& 2\left(x-x_{1}\right) x_{1}+2\left(y-y_{1}\right) y_{1}=0 . \\
& \text { or, } \quad x x_{1}+y y_{1}=x_{1}^{2}+y_{1}^{2} .
\end{aligned}
$$

But

$$
\begin{gathered}
x_{1}^{2}+y_{1}^{2}=u^{2} \\
\therefore \mathbf{x} \mathbf{x}_{1}+\mathbf{y} \mathbf{y}_{1}=\mathbf{a}^{2} .
\end{gathered}
$$

This is the required equation.
75. Alternative Method of finding the equation of the tangent at the point $\mathbf{P}\left(x_{1}, y_{1}\right)$ on the circle $x^{2}+$ $y^{2}=a^{2}$.

Using the figure of $\S 74$ let the equation of $P Q$ be

$$
\begin{equation*}
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r \tag{1}
\end{equation*}
$$

and $\therefore x=x_{1}+r \cos \theta, y=y_{1}+r \sin \theta$.
Substituting these values of x, y in the equation of the circle, and expanding

$$
\begin{equation*}
r^{2}+2\left(x_{1} \cos \theta+y_{1} \sin \theta\right) r+x_{1}^{2}+y_{1}^{2}=a^{2} \tag{2}
\end{equation*}
$$

Since P is on the circle, $x_{1}{ }^{2}+y_{i}=a^{2}$.
\therefore one value of r is zero, and equation (2) becomes

$$
\begin{equation*}
r+2\left(x_{1} \cos \theta+y_{1} \sin \theta\right)=0 \tag{3}
\end{equation*}
$$

If, now, PQ rotates about P until Q soincides with P, the other value of r also becomes zero, and,

$$
\begin{equation*}
\therefore x_{1} \cos \theta+y_{1} \sin \theta=0 \tag{4}
\end{equation*}
$$

Multiplying the terms in (4) by the equal quantities in (1),

$$
\begin{aligned}
& \quad x_{1}\left(x-x_{1}\right)+y_{1}\left(y-y_{1}\right)=0 . \\
& \therefore \quad x_{1}+y y_{1}=x_{1}^{2}+y_{1}^{2}=a^{2} . \\
& \therefore \text { the required equation is } \\
& \quad x x_{1}+y y_{1}=a^{2} .
\end{aligned}
$$

76. The equation of OP (Fig. 35) is ${ }^{\prime \prime}=\frac{\eta}{r_{1}}=\frac{y}{y_{1}}$, and by the condition of perpendiculanity, the line represented by this equation is \perp to the line represented by $x x_{1}+y y_{1}=u^{2}$.
\therefore the radius of a circle drawn to the point of contact of a tangent is \perp to the tangent.
77. In any curve, the st. hine drawn through the point of contact of a tangent and \perp to the tangent is called a normal to the curve at that point.
78. To find the equation of the tangent to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ at a point P $\left(x_{1}, y_{1}\right)$ on the circle.

Let the equation of a chord PQ be

$$
\begin{aligned}
& \frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=\vartheta \\
& \text { and } \therefore x=x_{1}+r \cos \theta, y=y_{1}+r \sin \theta .
\end{aligned}
$$

Substituting these values of x, y in the equation of the circle and simplifying,

$$
\begin{aligned}
r^{2}+ & 2\left\{\left(x_{1}+g\right) \cos \theta+\left(y_{1}+f\right) \sin \theta\right\} r \\
& +x_{1}^{2}+y_{1}^{2}+2 y x_{1}+2 f y_{1}+r=0
\end{aligned}
$$

Since $\mathbf{P}\left(x_{1}, y_{1}\right)$ is a point on the circle, this equation reduces to

$$
r+2\left\{\left(x_{1}+g\right) \cos \theta+\left(y_{1}+f\right) \sin \theta\right\}=0
$$

If now the secant $P Q$ rotates about P until Q coincides with P, the second value of r becomes zero, and \therefore

$$
\begin{equation*}
\left(x_{1}+g\right) \cos \theta+\left(y_{1}+f\right) \sin \theta=0 \tag{2}
\end{equation*}
$$

Multiplying the terms in (2) by the equal quantities in (1),

$$
\begin{gathered}
\left(x-x_{1}\right)\left(x_{1}+y\right)+\left(y-y_{1}\right)\left(y_{1}+f\right)=0 . \\
\therefore \quad x\left(x_{1}+g\right)+y\left(y_{1}+f^{\prime}\right)-x_{1}^{2}-y_{1}^{\prime \prime}-g x_{1}-f y_{1}=0 .
\end{gathered}
$$

But, $\quad x_{1}{ }^{2}+y_{1}{ }^{2}+2 y \cdot x_{1}+2 f y_{1}+c=0$.
\therefore, adding,

$$
\begin{aligned}
& x\left(x_{1}+g\right)+y\left(y_{1}+f\right)+g x_{1}+f y_{1}+c=0 . \\
\therefore & \mathbf{x} \mathbf{x}_{1}+\mathbf{y} \mathbf{y}_{1}+\mathbf{g}\left(\mathbf{x}+\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{y}+\mathbf{y}_{1}\right)+\mathbf{c}=\mathbf{0} .
\end{aligned}
$$

79. By comparing the equation of the tangent

$$
x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0
$$

with that of the circle

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

the following rule is obtained for writing the equation of the tangent at a point $\left(x_{1}, y_{1}\right)$ on the circle:-

In the equation of the circle change

$$
\begin{aligned}
& x^{2} \text { into } x x_{1}, \quad y^{2} \text { into } y y_{1} \\
& 2 x " x+r:, 2 y " y+y_{1} .
\end{aligned}
$$

80. To find the equation of the tangent to the circle $x^{2}+y^{2}=a^{2}$ in terms of m, the slope of the tangent.

Fig. 30.
To find the abscissae of the points where the line $y=m x+k$ cuts the circle, eliminate y by substitution, and

$$
\begin{gathered}
x^{2}+(m x+k)^{2}=a^{2} \\
i . e .,\left(1+m^{2}\right) x^{2}+2 m k x+k^{2}-u^{2}=0
\end{gathered}
$$

If the line is a tangent, the values of r from this equation are equal to each other, and

$$
\begin{aligned}
& \therefore m^{2} k^{2}=\left(1+m^{2}\right)\left(k^{2}-u^{2}\right), \\
& \therefore \quad k^{2}=a^{2}\left(1+m^{2}\right) \\
& \therefore \text { and } k= \pm u \sqrt{1+m^{2}}
\end{aligned}
$$

Thus the equation of the tangent is

$$
y=m x \pm a \sqrt{1+m^{2}}
$$

The double sign corresponds to the two tangents that have the same slope, as indicated in the diagram.

81.-Exercises

1. Find the equation of the tangent to the circle
(a) $x^{2}+y^{2}=34$, at the point $(3,5)$;
(b) $x^{2}+y^{2}-10 x+12 y=39$ at $(-1,2)$;
(c) $x^{2}+y^{2}+18 x-14 y=39$ at $(3,12)$;
(d) $x^{2}+y^{2}+2 g x+2 f y=0$ at the origin.
2. Find the equations of the st. lines touching the circle $x^{2}+y^{2}=35$ and making an L of 45° with the axis of x.
3. Find the equations of the st. lines which touch $x^{2}+$ $y^{2}=r^{2}$ and are $(a) \|$ to, $(b) \perp$ to the line $\mathbf{A} x+\mathrm{B} y+$ $0=0$
4. Prove that $x+2 y=10$ is a tangent to the circle $x^{2}+y^{2}=20$; and find the point of contacl
5. Prove that $x-2 y=4$ is a tangent to the circle $x^{2}+y^{2}-8 x-10 y+21 .-0$; and find the point r ? cont.ct
6. Find the condition that $\mathbf{A} x+\mathbf{B} y+\mathbf{C}=0$ may touch

$$
x^{2}+y^{2}=r^{2} ;(b) x^{2}+y^{2}+2 y x+2 f y+c=0 .
$$

7. Find the condition that $\frac{x}{a}+\frac{y}{b}=1$ may touch $x^{2}+j^{2}=r^{2}$.
8. Find the condition that the axis of x may touch $x^{2}+y^{2}+2 y x+2 f y+c=0$.
9. Find the equations of the circles passing through $(5,2)$ and touching the axes of x and y.
10. Find the equations of the tangents to the circle $x^{2}+y^{2}-2 x+2 y=10$ which make an $L=30^{\circ}$ with the axis of x.
11. Fiml the lengtly of the part of the line $2 x-5 y+$ $10=0$ intercepted by the circle $x^{2}+y^{2}+5 . r-6 y=24$.
12. Show that the tangent to the circle $(x-\pi)^{2}+$ $(y-b)^{2}=r^{2}$ at the point $\left(r_{1}, y_{1}\right)$ on this circle is $(x-n)$ $\left(x_{1}-a\right)+(y-b)\left(y_{1}-b\right)=r^{2}$.

Solation. - Tranaform the origin to the point (11, 1) wit!rout changins, the direction of the axes. The transforming relations are $x=X+a$, $y=Y+1, x_{1}=X_{1}+n, y_{1}=Y_{1}+b$.

The equation of the circle becomes

$$
X^{2}+Y^{2}=r^{2}
$$

and, by § 7 t, the tangent at $\left(X_{k}, Y_{1}\right)$ is

$$
X X_{1}+r Y_{1}=r^{2} .
$$

Transforming back to the original origin, the equation of the tangent becomes

$$
\left.(x-a)\left(x_{1}-a\right)+(y-l) y_{1}-l\right)=r^{2}
$$

13 Show that the point $(y+r \cos u, f+r \sin a)$ is on the circle $(x-y)^{2}+(y-f)^{2}=r^{2}$; and find the equation of the tangent at that point.
14. Show that the circles

$$
\begin{aligned}
& x^{2}+y^{2}+6 x+16 y+2 t=0 \\
& x^{2}+y^{2}-10 x+4 y+20=0
\end{aligned}
$$

touch each other extermally. Find the coordinates of the point of contact; and the equation of the common tangent at that point.
15. Show that, if the circles

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-m)^{2}+(y-u)^{2}=s^{2}
\end{aligned}
$$

touch each other,

$$
(k-m)^{2}+(k-n)^{2}=(r \pm s)^{2}
$$

16. Finit the equation of the common chord; and the coordinates of the prints of intersection of the circles

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-6 y=14 \\
& x^{2}+y^{2}-i x+3 y=5
\end{aligned}
$$

17. Find tho efpation of the ciryb whoro centre is at the origin and which touches the hine $A x+B y+C=0$.
18. Find tho equation of the circle, whose centre is at $(\overline{1}, \because)$ and which touches $3 . r-5 y=4$.
19. Find the centres of similitude and the equations of the transverse and direct common tangents of the circles

$$
\begin{aligned}
& x^{2}+y^{2}-6 x+2 y+6=0 \\
& x^{2}+y^{2}+8 x-10 y+32=0
\end{aligned}
$$

20. Find the equations of the common tangents of the circles

$$
\begin{aligned}
& x^{2}+y^{2}-4 x-8 y-5=0 \\
& x^{2}+y^{2}-10 x-6 y-2=0
\end{aligned}
$$

Find also the coorlinates of the points of contact of the tille 3 .
21. Find the equations of the tangents to the circle $x^{2}+y^{2}+2 y x+\because f y+c=0$ which are $\|$ to $x+3 y=9$.
29. Find the equations of the two tangents to the circle $x^{2}+y^{2}=2.5$ which make an - of 30° with the atis of x.

foles and Polars

8.2. To find the equation of the chord of contact of tangents drawn from an outside point to the circle $x^{2}+y^{2}=a^{2}$.

Fic. 37.
Let $p\left(x_{1}, y_{1}\right)$ be the given point; PA and PB the tangents.

It is required to find the equation of $A B$.
Take (x^{\prime}, y^{\prime}), $\left(x^{\prime \prime}, y^{\prime \prime}\right)$ to represent the coordinates of A, B respectively.

The equation of $A P$ is, by $\S 74$,

$$
x x^{\prime}+y y^{\prime}=u^{2} ;
$$

and since the coordinates of P must satisfy this equation,

$$
\begin{equation*}
x_{1} x^{\prime}+y_{1} y^{\prime}=u^{2} \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
x_{1} x^{\prime \prime}+y_{1} y^{\prime \prime}=a^{2} \tag{2}
\end{equation*}
$$

From these remilts it is seen that
is the equation of $A B$; for:-
since it is of the first degree it iepresents a st. line;
by (1), A is a point on el line;
by (2), B is a point on we line;
\therefore the required cquation is

$$
x x_{1}+y y_{1}=\mathbf{a}^{2}
$$

83. The equation of the chord of contact of tangents drawn from an outside point to a circle is of the same for:a as the equation of the tangent at o point on the circle.

This is in agreement with the fact that, if the point P approach the circle and ultimately fall on it, the chord of contact becomes the tangent at P, or the tangent at P is the final position of the chord of contact when P approaches tis circle.
84. To find the equation of the polar of $P\left(x_{1}, y_{1}\right)$ with respect to the circle $x^{2}+y^{2}=a^{2}$.

Fig. 38.

Through P draw any st. line cutting the circle at A, B. Draw tangents $A Q, B Q$ intersecting at $Q(X, Y)$.

It is required to find the locus of \mathbf{Q}.
By §82, the equation of $A B$ is

$$
x \mathbf{X}+y \mathbf{Y}=\iota^{2} ;
$$

and as the coordinates of P must satisfy this equation

$$
\mathbf{X} x_{1}+\mathbf{Y} y_{1}=u^{2} .
$$

\therefore, as X, Y are the coordinates of any point on the polar of P, the required equation is

$$
x_{x_{1}}+y y_{1}=\mathbf{a}^{2} .
$$

85. The equation of $O P$ is $x y_{1}-y x_{1}=0$, and, by the coudition for perpendicularity, this line is \perp to that represented by $x x_{1}+y y_{1}=a^{2}$.
\therefore the polar of P is a st. line which cuts $O P$ at rt. $\angle s$
86. If the polar $x x_{1}+y y_{1}=u^{2}$ cuts $O P$ at m, the length of $O M=\frac{a^{2}}{\sqrt{x_{1}{ }^{2}+y_{1}^{2}}}=\frac{\iota^{2}}{O P}$.

$$
\therefore \text { OM. OP }=\varepsilon^{2} .
$$

87. The equation of the polar of the point $\mathbf{P}\left(x_{1}, y_{1}\right)$ without the circle $x^{2}+y^{2}=1^{2}$ is the smme as that of the chord of contact of tangents drawn from P to the circle. This shows that, when the point is without the circle, its polar is the chord of contuct produced, or, that tangents drawn from P touch the circle at the points where it is cut by the polar of P.

S8. The equation of the polar of my point $P\left(x_{1}, y_{1}\right)$ is of the same form as the equation of the tangent at a point on the circle.

This is in agreement with the fact that, if the point \mathbf{P} approaches and ultimately conincides with the circle, OP becomes equal to a, and \therefore, by $\S 86$, OM becomes equal to a, and the polar becomes the tangent at the point p
89. If the polar of P passes through Q, the polar of Q passes through P.

Let $\left(r_{1}, y_{1}\right),\left(r_{2}, y_{2}\right)$ be the coorlinates of P, Q respectively.

The polar of \mathbf{P} with respect to,$u^{2}+y^{2}=u^{2}$ is

$$
r x_{1}+y y_{1}=c^{2}
$$

Since this line passes through Q,

$$
r_{2} r_{1}+y_{2} \cdot y_{1}=u^{2} .
$$

This proves that $\left(x_{1}, y_{1}\right)$ is on the line

$$
x x_{2}+y y_{2}=u^{2} ;
$$

and $\therefore P$ is on the polar of \mathbf{Q}.
Cor. If the point Q moves along the polar of P, the polar of Q changes its position, but always passes through P.
\therefore, if the pole moves along a st. line, its polar turns about the pole of that line.
90. To find the pole of the st. line $A x+B y+C=0$ with respect to the circle $x^{2}+y^{2}=a^{2}$.

Let $\left(r_{1}, y_{1}\right)$ be the coordinates of the pole.
The equation of the polar of $\left(c_{1}, y_{1}\right)$ is

$$
x r_{1}+y y_{1}-a^{2}=0 .
$$

This eguation must be the same as

$$
\begin{array}{cc}
& \mathbf{A} x+\mathbf{B} y+\mathbf{C}=U . \\
\therefore & x_{1}=\frac{y_{1}}{\mathbf{B}}=\frac{-u^{2}}{\mathbf{C}} \\
\therefore & r_{1}=-\frac{a^{2} \mathbf{A}}{\mathbf{C}}, y_{1}=-\frac{a^{2} \mathrm{~B}}{\mathbf{C}} .
\end{array}
$$

91. To find the polar of $\mathrm{P}\left(x_{1}, y_{1}\right)$ with respect to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$.

The equation of the circle may be written

$$
(x+y)^{2}+(y+f)^{2}=y^{2}+f^{2}-c .
$$

Trmsforming the origin to the point $(-g,-f)$, the transforming relations are $x=\mathbf{X}-g, y=\mathrm{Y}-f$, $x_{1}=\mathrm{X}_{1}-y, y_{1}=\mathrm{Y}_{1}-f$, and the equation of the circle becomes

$$
\mathrm{X}^{2}+\mathrm{Y}^{2}=g^{2}+f^{2}-c
$$

The equation of the polar of $P\left(X_{1}, Y_{1}\right)$ with respect to this circle is, by $\$ 8 t$,

$$
X X_{1}+Y Y_{1}=y^{2}+f^{2}-c .
$$

Translorming back to the original origin, the equation becomes

$$
\begin{aligned}
& (c+g)\left(l_{1}+y\right)+(y+f)\left(y_{1}+f^{\prime}\right)=y^{2}+f^{2}-c . \\
& \therefore \mathbf{x x}_{1}+\mathbf{y} \mathbf{y}_{1}+\mathbf{g}\left(\mathbf{x}+\mathbf{x}_{1}\right)+\mathbf{f}\left(\mathbf{y}+\mathbf{y}_{1}\right)+\mathbf{c}=\mathbf{0}
\end{aligned}
$$

Note.-Sts ane exercise, the student should obtain the rebrove resmelt directly frome the definition of poles ane polars, by the metlood used in $\leqq S_{y}$.

9:.-Exercises

1. Find the polar of the point
(e) $(3,5)$ with respect to $x^{2}+y^{2}=30$;
(1) $(1,0) \quad$ " \quad " $\quad " x^{2}+y^{2}=r^{2}$;
(c) $(-2,4) \quad " \quad$ " $\quad " r^{2}+y^{2}-4 x-8 n=5$;
(l) $(-5,-1) " \quad " \quad 1 x^{2}+y^{2}-10 x+6 y=15$;
$(r)(0,0) \quad " \quad " \quad "(x-h)^{2}+(y-k)^{2}=r^{2}$.
2. Find the pole of the st. line
(a) $2 x-7 y=17$ with respect to $x^{2}+y^{2}=17$;
(b) $x-2 y+12=0 \quad$ " \quad " $x^{2}+y^{2}=23$;
(c) $4 x-y=1$ with respect to $x^{2}+y^{2}-2 x-4 y=4$;
(l) $4 x+5 y=5 \quad$ " \quad " $\quad x^{2}+y^{2}-8 x-10 y$ $=-5$.
3. (a) Show that,$r^{2}+y^{2}=25$ is the equation of a circle.
(b) Show that $(-3,4)$ is on the circle.
(c) Write the equation of the tangent to the circle at this point.
(l) Show that the point $(9,13)$ is on this tangent.
(e) Write the equation of the polar of $(9,13)$.
(J) Find the equation of the st. line through (?), 13)
\perp to the polar, emmenting on the form of the result.
(9) Find the equation of the other tangent from (9,13).

Draw the diagram on squared piper.
4. Find the pole of $\frac{a}{a}+\frac{y}{b}=1$ with respect $t a, x^{2}+y^{\prime 2}=c^{2}$.
5. Find the pole of $l . x+m y=1$ with respect to the tircle $x^{2}+y^{2}+2 y \cdot r+2 f y+c=0$.
6. Prove that the polar of $(-2,5)$ with respect to $x^{2}+$ $y^{2}=18$ touches $x^{2}+y^{2}-6 x+2 y=19$; and find the coordinates of the point of contact.

9:3. To find the length of the tangent PA from the point $\mathrm{P}\left(x_{1}, y_{1}\right)$ to a given circle.

Fico. 40.
(i) Lat the "unction of the circle be

Join OA OP.

$$
r^{2}+1 y^{2}=12 .
$$

$$
\because \quad \text { AOP is is it. }-\leq d \text {. }
$$

$$
\begin{aligned}
\mathbf{A P} \mathbf{P}^{\prime \prime} & =\mathbf{O P} \mathbf{P}^{\prime \prime}-\mathbf{A O ^ { \prime }} \\
& =r_{1}^{\prime 2}+y_{1}^{\prime 2}-u^{\prime \prime} . \\
\therefore \quad \mathbf{A P} & =1^{\prime} \mathbf{x}_{1}^{\prime 2}+\mathbf{y}_{1}^{\prime \prime}-\mathbf{a}^{\prime \prime} .
\end{aligned}
$$

(2) Let the equation of the circh b_{n}

$$
r^{2}+y^{2}+2(y+2 f+r=0
$$

This equation may be written

$$
\left(r+!r^{2}+\left(a^{\prime}+j\right)^{3}=y^{3}+j^{2}-r,\right.
$$

frons which it is sem, that the centre is $\left(-!, l^{-}, f\right)$ and the radius $=1!g^{2}+f^{2}-c$.

With the diagram and construction of Fig. 40,

$$
\begin{aligned}
& A P^{\prime \prime}=O P^{\prime \prime}-A O^{*} \\
& =\left(r_{1}+g\right)^{2}+\left(y_{1}+f^{\prime}\right)^{2}-\left(y^{2}+f^{2}-n\right) \\
& =x_{1}^{2}+y_{1}^{2}+2\left(y_{1}+2 f_{1}+c\right. \\
& \therefore A P=v^{2}+y_{1}^{2}+2 g x_{1}+2 \mathrm{fy}_{1}+c .
\end{aligned}
$$

94. To find the equation of the tanguts from $\left(x_{1}, y_{1}\right)$ to the circle $x^{2}+y^{2}=a^{2}$.

Fio. 41.
Let a secant drawn from $\mathbf{P}\left(r_{1}, y_{1}\right)$ ent the cirche at A; and let $\mathbf{Q}(x, y)$ be any point on the secant.

If $\mathbf{P A}: \mathbf{Q A}=k: 1$, the coordinates of \mathbf{A} are $\left(\frac{k_{1}-r_{1}}{l_{i}-1}, \frac{l_{1} y-y_{1}}{k_{i}-1}\right)$, and \therefore, since A is on the circle

$$
\left(k_{1} x-x_{1}\right)^{2}+\left(k_{1} y-y_{1}\right)^{2}=\left(k_{1}-1\right)^{2} \prime^{2},
$$

$$
\text { or, } \quad\left(r^{2}+y^{2}-r^{2}\right) l^{2}-2\left(x r_{1}+y y_{1}-a^{2}\right) k
$$

$$
+x_{1}^{2}+y_{1}^{2}-a^{2}=0
$$

If, now, the secant turn about P until it coincides with either of the tangents from P, the two values of l : found from this equation, and which correspond to the two points where the secint cuts the circle, arc equal to each other.

$$
\therefore\left(\mathbf{x} \mathbf{x}_{1}+\mathbf{y} \mathbf{y}_{1}-\mathbf{a}^{2}\right)^{2}=\left(\mathbf{x}^{2}+\mathbf{y}^{2}-\mathbf{a}^{2}\right)\left(\mathbf{x}_{1}^{2}+\mathbf{y}_{1}^{2}-\mathbf{a}^{2}\right) .
$$

This is the required equation.

95.-Exercises

1. Find the length of the tangent from
(a), (7.3) to $x^{2}+y^{2}=22$;
(1), $(3,-5)$ to $x^{2}+y^{2}-3 x+i!y+35=0$;
(r), $(-2,-6)$ to $a^{2}+y^{2}=12 r$;
(d), $(0,0)$ to $x^{2}+y^{2}+2 y x+\ddot{y} y+c=0$;
(e), $(4,2)$ to $x^{2}+y^{2}-6 x+2 y-39=0$.

Explain the inaginary result in (ρ).
2. The length of the tangent drawn from a point to $x^{2}+y^{2}-10 x-4 y+9=0$ is always 4. Find the locus of the point. Plot the diagr 1.1 . on squared paper.
3. The length of the tangent from P to $x^{2}+y^{2}=9$ is t wice the distance from \mathbf{P} to $(6,0)$. Find the locus of \mathbf{P}.
4. Find the eqrations of the tangent from $(\overline{7},-1)$ to $x^{2}+y^{2}=25$.
5. Show, by the method of ? 94 , that the equation of the tangents from $\left(x_{1}, y_{1}\right)$ to $x^{2}+y^{2}+2 y x+9 f_{1} y+c=0$ is

$$
\left\{x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c\right\}
$$

$$
=\left(x^{2}+y^{2}+2 g x+2 f y+c\right)\left(x_{1}^{2}+y_{1}^{2}+2 g \cdot x_{1}+2 f y_{1}+c\right) .
$$

Ridical Axis

96. To find the radical axis of the circles

$$
\begin{aligned}
& x^{2}+y^{2}+2 g x+2 f y+c=0 \\
& x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0
\end{aligned}
$$

Since the tangents to the circles from any pint on their radical axis are equal to each other, if $(, c, y)$ is any IF int on the locus, by $\S 93$, $x^{2}+y^{2}+2 y x+2 f y+c=x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}$
\therefore the required equation is

$$
2\left(g-g^{\prime}\right) x+2(f-f) y+c-c^{\prime}=0 .
$$

97. The centres of the circles in the last artiche arr $(-y,-j)$ and $\left(-i f,-j^{\prime}\right)$.
\therefore the st. line joining the centres is

$$
\begin{gathered}
\frac{x+g}{!-y^{\prime}}=\frac{y+f}{f^{\prime}-f^{\prime}} \\
\text { or, }\left(f-f^{\prime}\right)(x+g)-\left(y-y^{\prime}\right)(y+f)=0 .
\end{gathered}
$$

By the condition of perpendicularity this line is \perp to $2\left(y-y^{\prime}\right) x+2\left(f-f^{\prime}\right) y+c-r^{\prime}=0$.
\therefore the radical axis is \perp to the line of centres.

98.-Exercises

1. Find the ratical axis of the circless

$$
\begin{aligned}
& x^{2}+y^{2}-4 x-6 y=0 \\
& x^{2}+y^{2}-16 x-14 y+10 t=0
\end{aligned}
$$

Draw the diagram on squared paper.
2. Find the radical axis of the circles

$$
\begin{aligned}
& 2 x^{2}+2 y+9 r-8 y-3=0 \\
& x^{2}+y^{2}=9
\end{aligned}
$$

3. Show that the radical axes of the circless

$$
\begin{aligned}
& x^{2}+y^{2}+2 y^{2}+2 f_{y}+c=0 \\
& x^{2}+y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0 \\
& x^{2}+y^{2}+2 y_{2} x+9 f_{2} y+c_{2}=0
\end{aligned}
$$

taken two and two are concurrent. (The point of concurrence is the radical centre.)
4. Find the radical centre of the circles

$$
\begin{aligned}
& x^{2}+y^{2}-3 x+7 y+35=0 \\
& x^{2}+y^{2}-7 x+5 y-31=0, \\
& x^{2}+y^{2}-6 x+2 y-39=0 .
\end{aligned}
$$

5. Nhow that the eireles

$$
\begin{aligned}
& x^{2}+y^{2}-3 x+5 y-!=0 \\
& x^{2}+y^{2}+7 x+y-11=0 \\
& x^{2}+y^{2}+2 x+3 y-10=0
\end{aligned}
$$

have a common ralieal axis. Show abon that their centres are in it st. line which is \perp th the common radical axis.

Miscellaneous Exercises

(a)

1. Find the equation of tho st. liv : assing throunh the intersection of $x-2 y=5, x+3 y=10$ and || to $3 x+$ $4 y=11$.
2. Find the equation of the st. line passing through the intersection of $8 . x+y=7,11 x+2 y=2 K$ and \perp to the latter line.
3. Plut the quadrilateral $(4,2),(-5,6),(-9,-6)$, (7, -4); and find its area.
4. Plot the lines 2. $x+5 y=29,12 \cdot+y=29,5 x-2 y$ $=29$; and ind the area contained by them.
5. Find the equation of the st. line passing through (h, k) and such that the portion of it between the axes is bisected at the given point.
6. Find the equation of the st. line passing through (h, k) ind $(a) \|$ to, $(b) \perp$ to the st. line joining $\left(\cdot r_{1}, r_{1}\right)$, $\left(\because, 2, y_{2}\right)$.
7. Show that, if the lines $a x+b y+c=0, b x+c y+r$ $=0, c x+a y+b=0$ are concmrent but not coincilent, then $a+b+c=0$.
8. Find the ratio in which the st. line foninity $(-5,3)$, $(6,-1)$ is divided by $x-11 y+3=0$.
9. Find the centre of the inscribed circle of the \triangle fumed by the lines $4 x-3 y=18,5 x+1: y=9$, $24 x+i y=30$.
10. Find the area of the \triangle contained by $y=3 x, y=5 x$ null $x+2 y=77$.
11. Show that the nrea of the \therefore contaned by $y=m_{1} x$, $y=m_{x} x$ and $A x+B_{y} y+\mathbf{C}=0$

$$
=\frac{\left(m_{1}-m_{2}\right) \mathbf{C}^{2}}{2\left(\mathbf{A}+m_{1} \mathbf{B}\right)\left(\mathbf{A}+m_{2} \mathbf{B}\right)}
$$

12. Find the locus of a point such that the square of its distance from $(6,0)$ is three times the square of its distance from (2,0).
13. One vertex of $n \| g m$ is at the origin and the two adjacent vertices are at ($(1, b),(c, d)$. Find the fonth vertex.
14. Show that, if the two circles

$$
\begin{aligned}
& x^{2}+y^{2}+2 y x+2 f y+c=0 \\
& x^{2}+y^{2}-2 f x-2 y y+c=0
\end{aligned}
$$

touch each other, then $(!-f)^{?}=2 c$.
15. Give the geometrical interpretation of the equation $x^{2}+y^{2}+2 a x \cos a+2 a y \sin a+a^{2}=0$.
16. Find the locus of the interse tion of the st. line which pass through $(6,0)$ an' $(0,3)$ respectively and cut ench other at rt. $\angle \mathrm{s}$.
17. Find the equations of the tangents to the circle $x^{2}+y^{2}=2 k x$ which are $\|$ to $3 x-y=0$.
18. Find the orthocentre of the \triangle whose sides are $8 x-$ $5 y=16, \check{\varepsilon} x-3 y=10$ and $x+2 y=6$.
19. Prove that the radicid axis of the circles

$$
\begin{aligned}
& x^{2}+y^{2}=u^{2} \\
& x^{2}+y^{2}-2 a(x \cos a+y \sin a)=0
\end{aligned}
$$

bisects the st. line joining their centres.
20. Chords of the rirclo $+y^{2}-2$ re 2 pass through tho fixed jonint $(h, 1)$. find the locus of their middle points.
21. Find the equation of the circle which passes through the origin and makes intereepts a and b on O.r, Oy respectively.
22. Find the equation of the rircle described on the st. line joining the origin to $(!, f)$ ts diancter.
23. Find the coordinates of a point such that the st. line joining it to $(4,-3)$ is bisected nt ret. Ls by $2 . r-3 y=7$.
2.4. Find the locus of the points from which tangents drawn to $x^{2}+y^{2}=13$ and $x^{2}+y^{2}-\ddot{0}+6 y+1=0$ are as $\overline{5}$ is to 3.
25. Find the distances from the point $(2,4)$ in the direction having the diroction cosines $-\frac{3}{5},-\frac{4}{5}$ to the
curve whose equation is

$$
3 x^{2}-6 x y+5 y^{2}-32=0 .
$$

26. Find the eqnation of the locus of a point P such that PA:PB $=k: 1$ where $\mathbf{A}\left(\cdot, 1, y_{1}\right), \mathbf{B}\left(., 0, y_{2}\right)$ whe fixed points.

Show that the locus is a cirche and find the relation of its centre to A and B.
27. (a) Find the coordinates of the point C which divides the st. line joining $A(3,-2), B(1!, 10)$ in the ratio $A C: C B=1: 3$.
(b) Prove that $D(11,4)$ lies on the st. line $A B$ given above; and by commuting the longths of $A D$ and $B D$, find the ratio in which D divides $A E$.
28. (a) Find the area of a A the condinates of whose augular points are $\left(x_{1}, y_{1}\right),\left(. \quad, x_{2}, y_{3}\right)$.
 lime in torons of the conolimber of two given points throngh which it passes.
99. Slow that $y=m x+a \sqrt{+m^{2}}$ is Always u tangent the circle $a^{2}+y^{\prime \prime}=\pi^{2}$.
30. The equation $3 x^{2}+3 y^{2}-12 x-6!+4=0$ can be reduced to one containing terms in x mind y of the secomd deagree only, by transformines to || axes through is aroperly chosen point. What are the coordinates of the point?
31. Find the distance of the point of intersection of the lines $3 . r+\ddot{!}+4=0$ mal $2, r+5!y+5-0$ from the line $5.5-1 \because y+6=0$.
32. Fime the equation of the circle whose centre is (h, k) and which passes through ($1, b$).
33. Find the locus of tho points from which tatnerents drawn to the circle

$$
x^{2}+y^{2}+2 y x+2 f y+c=0
$$

are at rit. $\angle s$ to each other.
:\%. If the tangents at the points $\left(\cdots, y_{1}\right),\left(x, y, y_{2}\right)$ on the cirche $x^{2}+y^{2}+\ddot{-g} x+9 f y+c=0$ are at rt. Ls tu rath othor, show that

$$
a_{1} x_{2}+I_{1} y_{2}+g\left(r_{1}+x_{2}\right)+f\left(!_{1}+y_{2}\right)+y^{2}+f^{2}=0 .
$$

35. Find the equation of the st. line joining ($1 b_{0}$, In b_{b}) and (ra:ㄹ, 2uri).
36. Show that the equation of the \perp t.0 $\frac{\text { ans a }}{a}$ a $\frac{\text { sin }}{b} y$ $=1$ at the point $\left(\because \cos a, b\right.$ sin a) is $\frac{a}{\cos a} \cdot r-\frac{b}{\operatorname{sim}} a^{\prime}$
$=a^{2}-b^{2}$.
37. Wind the profluct of the \perp from $(-7,-4)$ to thr lines $3 . r^{-2}-1 \ddot{x} y+11 y^{2}=0$.
38. Show that the proninct of the $\perp \times$ from $(i, i l)$ to the lines oure +2 hoy + by $=0$ is

$$
\frac{a c^{2}+\cdots h c l d+1 n c^{2}}{1(a-b)^{2}-+h^{2}}
$$

(b)
39. Find the equation of the st. lines which join the origin to the points of intersection of

$$
\begin{gather*}
a x+b y=k \tag{l}\\
\text { and } x^{2}+y^{2}+2 y x+2 f y+c=0 \tag{2}
\end{gather*}
$$

Solution:-

Fin. 42.
Let the linc (1) cut the circle ((2) at A, B.
It is reguired to timl the equation representing $O A$ and $O B$.
From (1) $k^{2}=k(11 x+b y)=(11 x+1, y)^{2}$.
$\therefore \quad k^{2}\left(\cdot n^{2}+y^{2}\right)+2 k(1, x+h y)\left(y, x+f(y)+r(1, x+h y)^{2}=11\right.$.
Equation (3) has all its terma of the secmd degree in x and !, and \therefore, by $\$ 5$, , it represents two st. lines passing throngh the origin.

Again, equation (3) is satistied by the val:!eg of x and y which satisfy both (1) and (2) ;
\therefore the lines represented by (3) pass throngh \mathbf{A} and \mathbf{B}.
\therefore equation (3) represents OA and OB .
40. Find the equation of the st. hines joining the origin to the points of intersection of $2 x-3 y=1$ and $x^{2}+y^{2}=5$.
41. Find the equation of the st. lines joining the origin to the points of intersection of $x+2 y=9 a$ and $5\left(x^{2}+y^{2}\right)$ $+5 \pi x+1^{n} a y=18 a^{2}$, and show that they are \perp to each other.
42. Find the \angle between the st. lines which join the origin to the points of intersection of $\frac{x}{2}-\frac{y}{3}=1$ and $x^{2}+$ $y^{2}-2 x+6 y+1=0$.
43. Find the equations of the st. lines passing through the intersection of $3 x+2 y=7$ and $x+5 y=11$ and such that the \perp on each of them from $(4,7)$ is equal to 5 .
44. A, B are points on O.x, O. e^{\prime} respectively and on $O A, O B$ sifuares $O A C D, O B E F$ are described. EF produced cuts $A C$ at G. Prove thait $O G, B C, E D$ are concurrent.
45. If $\frac{1}{a}+\frac{1}{b}$ is constant, show that the variable line $\frac{x}{a}+\frac{y}{b}=1$ passes through a fixed point.
46. A st. hire moves so that the sum of the \mathcal{L} s to it from (n, b), (c, d) is equal to the \perp to it from $(\%, h)$. Show that the st. line passes through a fixed point and find the enordinates of the point.
47. Prove that the difference of the squares of the tangents from $\left(r_{1}, y_{1}\right)$ to the circles

$$
\begin{aligned}
& x^{2}+y^{2}+2 y_{1} x+2 f_{1} y+c_{1}=0 \\
& x^{2}+y^{2}+2 y_{2} x+2 f_{2} y+c_{2}=0
\end{aligned}
$$

is equal to twice the rectangle contained by the distance between the centres of the circles and the length of the \perp from ($\cdot c_{1}, y_{1}$) to their radical axis.
48. Three circles touch each other at a common point. Prove that the polars of a fixed point $\left(. x_{1}, y_{1}\right)$ with respect to these circles are concurrent.
49. Find the equations of the st. lines which divide the $\angle s$ between the lines $4 x^{-}-3 y+7=0,5 x+12 y-19=0$ into parts whose sines are as 5 to 7 .
50. Show that the equation of the st. line joining $\{a \cos (\alpha+\beta), b \sin (\alpha+\beta\}$ and $\{a \cos (\alpha-\beta), b \sin (\alpha-\beta)\}$ is $\frac{x}{a} \cos a+\frac{y}{b} \sin a=\cos \beta$.
51. Show that the bisectors of the interior $\angle \mathrm{s}$ of a \triangle are concurrent.

Note.-Trke the origin within the A, and let the equations of the sides be

$$
\begin{aligned}
& x \cos u_{1}+y \sin u_{1}=\mu_{1} \\
& x \cos u_{2}+y \sin u_{2}=p_{2} \\
& x \cos u_{3}+y \sin u_{3}=p_{3}
\end{aligned}
$$

52. If the chord of the circle $x^{2}+y^{2}=a^{2}$ whose equation is $p x+q y=1$ sulntents :n $<$ of 45° at the origin, then $a^{2}\left(\boldsymbol{p}^{2}+\eta^{2}\right)=4-21^{2}$.
53. A st. line moves so that the sum, or the diference, of the intercepts cut off from the axes varies as the area of the \triangle contained lyy the st. line and the axps. Prove that the st. line passes, in either case, through a fixed point.
54. Show that the area of the \triangle contained by the lines $a x^{2}+3 h x y+b y^{2}=0$ and $A \cdot x+\mathbf{B} y+\mathbf{C}=0$ is

$$
\frac{\mathbf{C}^{2} v^{\prime} h^{2}-a b}{\mathbf{A}^{2} h-2 \mathbf{A B} h+\mathbf{B}^{2} a c}
$$

55. $O A C B$ is a $\| y m, P$ is a point in $O A, Q$ is a point in $O B ; P S$ drawn $|\mid O B$ meets $B C$ at S; $Q R$ drawn || $O A$ meets $A C$ at R. Show that $P R, O S, O C$ are concurrent.
56. P is a point such that the sum of the \mathcal{L} from P on $\mathbf{O} x$ and on $x-3 y=0$ is constant. Prove that the locus of \mathbf{P} is the base of an isoserles Δ of which O is the vertex and $y=0, x-b y=0$ are the sides.
57. Given the base of a Δ in magniturle and position and the magnitude of its vertical \angle; prove that the locus of its vertex is a circle.
58. Prove that, if $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are the extremities of the diameter of a circle, the equation of the circle may be written

$$
\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0 .
$$

59. If (h, k) is a point in the first quadrant, show that the equation of the st. line which passes through (h, k) and makes with the axes in that quadrant the Δ of minimum area is $\frac{x}{h}+\frac{y}{k}=2$.
60. Show that, if the chord of contact of tangents drawn from the point (h, k) to the circle $x^{2}+y^{2}=r^{2}$ subtends a rt. L at the centre, then $l^{2}+k^{2}=2 r^{2}$.
61. P, Q are two points and O is the centre of a circle. $P M$ is \perp to the polar of Q with respect to the circle, and $Q N$ is \perp to the polar of P. Show that $P M: Q N=$ OP: OQ.
62. Tangents PA, PB are drawn from the point $\mathbf{P}(h, k)$ to the circle $x^{2}+y^{2}=r^{2}$. Prove that

$$
\mathrm{PAB}=\frac{r\left(h^{2}+k^{2}-r^{2}\right)^{\frac{3}{2}}}{h^{2}+k^{2}}
$$

63. Prove that the polar of ($1, b$) with respect to $x^{2}+y^{2}=r^{2}$ is a tangent to $\left(r^{-}-h\right)^{2}+(y-k)^{2}=r^{2}$, if $\left(a h+b k-c^{2}\right)^{2}=\left(a^{2}+b^{2}\right) r^{2}$.
64. $A B C$ is a \triangle in which a variable line $D E$ drawn || to $B C$ cuts $A B$ at D and $A C$ at E. Show that the locus of the intersection of $B E, C D$ is the st. line joining A to the middle point of BC.
65. Slow that the equation of the system of circles which pass through (h, k) and touch $\mathbf{A} x+\mathbf{B} y+\mathbf{C}=-0$ may be written

$$
\begin{aligned}
& (\mathbf{A} h+\mathbf{B} k+\mathbf{C})\left\{(\mathbf{A} \cdot \boldsymbol{l}+\mathbf{B} y+\mathbf{C})^{2}+(\mathbf{B} \cdot x-\mathbf{A} y+l)^{2}\right\} \\
= & (\mathbf{A} \boldsymbol{x}+\mathbf{B} y+\mathbf{C})\left\{(\mathbf{A} h+\mathbf{B} k+\mathbf{C})^{2}+(\mathbf{B} h-\mathbf{A} k+l)^{2}\right\}
\end{aligned}
$$

where l is an arbitrary constant.
66. The circle $x^{2}+y^{2}+2 y x+2 f y+c=0$ cuts off from $\mathbf{O} x, \mathrm{O}_{y}$ chords of which the lengths are respectively a and b. Show that $4 y^{2}-a^{2}=4 f^{2}-b^{2}=4 c$.
67. Find the locus of the middle points of the chords of the circle $x^{2}+y^{2}=a^{2}$ which pass through the fixed point (h, k).
68. O is the centre of i fixed circle, A is: fixed point, Q is any point on the circle. The bisector of $\angle A O Q$ miments $A Q$ at P. Show that the locus of P is a circle having its centre in AO.
69. Find the equation of the circle with its centre en O x and which cuts $x^{2}+y^{2}=9$ and $5\left(x^{2}+y^{2}\right)=9 x$ orthogonally.
70. Show that the circles $x^{2}+y^{2}+2 x-2 y=23$ and $7\left(x^{2}+y^{2}\right)-192 x+111 y=175$ cut orthogonally at the point (3, 4).
71. If the chord of the circle $x^{2}+y^{2}=r^{2}$ on the line $p x+2 y=1$ subtends an - of 45° at the origin, then

$$
\left\{r^{2}\left(y^{2}+q^{2}\right)-4\right\}^{2}=8
$$

72. A rt. - is subtended at the origin by the chord of the circle $(x-h)^{2}+(y-k)^{2}=r^{2}$ on the line $x \cos \alpha+$ $y \sin a=p$. Show that $2 p^{2}-2 p(h \cos a+k \sin a)+$ $h^{2}+k^{2}=r^{2}$.
73. Show that the condition that the circles $x^{2}+y^{2}=r^{2}$, $x^{2}+y^{2}+2 g x+2 f y+c=0$ touch each other is

$$
\left(r^{2}+c\right)^{2}=4 r^{2}\left(g^{2}+f^{2}\right)
$$

74. Find the $<$ between the tangents at a point of intersection of the circles $x^{2}+y^{2}-4 x-8 y=5$ and $x^{2}+y^{2}-10 x-6 y=2$.
75. The equal sides $O A, O B$ of $a n$ isosceles rt.- $d \triangle$ are produced to P, Q such that $A P \cdot B Q=O A^{2}$. Show that $P Q$ passes through a fixed point.
76. Find the locus of a point sur? that a tangent drawn from it to the circle $x^{2}+y^{2}-8 x-10 y=8$ is twice a tangent drawn from it to $x^{2}+y^{2}=25$.
77. Find the equation of the circle which passes throu h the points of intersection of $x^{2}+y^{2}=a^{2}, x^{2}+y^{2}=$ $2 a(x+y)$, and touches the line $x+y=2 a$.
78. Show that, if the line $\frac{x-h}{\cos \theta}=\frac{y-k}{\sin \theta}=r$ cuts the circle $x^{2}+y^{2}=a^{2}$ at D, E and the polar of the point $\mathbf{P}(h, k)$ with respect to the circle at \mathbf{F}, then $\mathbf{P}, \mathbf{D}, \mathbf{F}, \mathbf{E}$ is a harmonic range.

What is the general statement of this proposition?
79. If $a \cdot x y+b x+c y+d=0$ represents two st. lines, show that the lines intersect at the point $\left(-\frac{c}{a},-\frac{b}{a}\right)$.
80. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two st. lincs, show that the squares of the coordinates of the intersection of the lines are $\frac{f^{2}-b c}{h^{2}-a b}$ and $\frac{a^{2}-a c}{h^{2}-a b}$.
81. The st. lines $y+m x=b, y+m x=c$ chti; the axcs at A, B and A^{\prime}, B^{\prime} respectively. Find the area of $A^{\prime} A^{\prime} B$.
82. Show that the polar of (k, h) with respect to the circle which has its centre at ($h k$) and touches tho line $l x+m_{\jmath}+1=0$ is $\left(l^{2}+m^{2}\right)(l-k)(y-n+h-k)=(l h+m k+1)^{2}$.
83. Frove that the locus of the midelle point of the ehord of contact of tangents drawn from points on a given st. line to a given circle is a circle passing through the centre of the given circle and having its centre on the \perp from the centre of the given circle to the given st. linc.
84. Three concentric circles, A, B, C, have their radii in G. P. Show that, if the pole with respect to B of a st. line is on A, the polar will touch C; and if the polc is on C, the polar will touch A.
85. Find the equation of the biscciors of the ingles contained by the lines $x^{2}+y^{2}+k x y=0$.
86. Find the loeus of a point such that the \perp from it to the line $x+y=a$ is the geometrical mean between the coordinates of the point.
87. Show that the circles $x^{2}+y^{2}+2 g x+2 f y=0$, $x^{2}+y^{2}+2 f x-2 g y=0$ ortlogonally.
88. Find the equation eircle which cuts orthogonally each of the circles:$x^{2}+y^{2}+x+2 y=3, \quad x^{2}+y^{2}+3 x+4 y=7, \quad x^{2}+y^{2}+4 x+4 y=8$.
89. Points A, B are given in O, C, D in \because such that $O A, O B, O C, O D$ are in H.P. Show that the locus of the intersection of $A D$ and $B C$ is $x=y$.
90. Show that the lines $x+13 y=0,3 x=5!, 5 x=7 y$, and $7 x=8 y$ form a harmonic pencil.
91. The circle $x^{2}+y^{2}=r^{2}$ cuts $O x^{\prime}, O x$ at C, D 'spectively. $E 5$ is a clind such that $-E O F=2 u$, and \because DF interent at P. Shuw that the lucus of P is the rcle

$$
x^{2}+y^{2}-2 r y \tan \alpha=r^{2}
$$

92. Find the equation of a c. da passing through the intersections of the circles:-

$$
\text { (1) } x^{2}+y^{2}-4 x-8 y=25,(2) x^{2}+y^{2}=9 \text {; }
$$

and through the centre of (1).
93. Show that the points $(1,7),(-2,8),(3,3)$ and $(2,6)$ are concyclic.
94. From any point A in the line $x=y$ st. lines are drawn making $\angle s$ of 60° and 120° with O and cutting $y^{\prime} O y$ at B and C respectively. From $O C$ a part $O D$ is cut off $=O B$. Show that $C D=$ the diagonal of a square on OA.
95. D, E are respeetively points in two given st. lines $O X$, $O Y$ such that $O D+O E=c$; and P is a point in $D E$ such that $D P=m, E P$. If $O X$, $O Y$ are taken ass axes of coorlinates, show that the locus of \mathbf{P} is $(m+1)$ $(m x+y)=\mathrm{cm}$.
96. A point \mathbf{P} moves such that the distance of P from a fixed point equals the tangent from P to a fixed circle. Show that the locus of P is a st. line \perp to the st. line joining the fixed point to the centre of the eirele.
97. Show that the st. lines represented by but $t^{2}-2 h x y+$ $a y^{2}=0$ are respertively \perp to the st. lines represented by $a x^{2}+2 h x y+b y^{2}=0$.
98. A series of circles touch the axis of x at the origin. Show that the tingents at the puints where the line $y=b$ cuts the cireles all touch the fixed circle $x^{2}+j^{2}=j^{2}$.
99. Λ circle of given radius moves so that its radieal axis with reference to a fixed circle always passes through a fixed point. Show that the locons of its centre is a circle having its centre at the fixed point.
100. Show that the quadrikateral enclosed by the lines $3 x+9 y=0,2 x-3 y+1=0,2 x-3 y=0,3 x+2 y=1$ is a square.
101. Show that the centre of the circle
$x^{2}+y^{2}-2 y x-2 f y+c+l\left(x^{2}+y^{2}-2 h x-2 k y+d\right)=0$ divides the st. line juining the centres of the circles $x^{2}+y^{2}-2 y x-2 f y+c=0$ and $x^{2}+y^{2}-2 h x-2 k y+d=0$ in the ratio of $l: 1$.
102. The sum of the L_{s} fiom two fixed points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{j}\right)$ to a variable line $l x+m y+n=0$ is cqual to the constant a. Prove that the line is always tangent to a fixed circle, and find the equation of the circle. (Problems1907.)
103. Show that the circles $x^{2}+y^{2}+2 x-8 y+8=0$, $x^{2}+y^{2}+10 x-2 y+22=0$ tonch eath other. (Prol) lems-1911.)
104. Through one augular point A of a sfuare $A B C D$ a st. line is drawn mecting the sides BC and DC pronluced at E and F respectively. If $E D$ and $F B$ intersect in G, show that CG is \perp EF. (Problems-1913.)
105. Prove that the lines

$$
\begin{aligned}
& a x+(b+c) y=b^{2}+b c+c^{\prime 2} \\
& b \cdot c+(c+a) y=c^{2}+c a+a^{2} \\
& c x+(c+b) y=a^{2}+a b+l^{2},
\end{aligned}
$$

are concurrent, and find the coordinates of their common point. (Problems-1913.)
106. Two circles whose centres are $\mathbf{C}, \mathrm{C}^{\prime}$, touch each other, internally at \mathbf{O}. A st. hine OPP' is drawn cutting the circles at P and P^{\prime}. Show that the locus of the intersection of $C P^{\prime}$ and $\mathbf{C}^{\prime} \mathbf{P}$ is a circle whose diameter is a harmonic mean between the radii of the given circles; and whose centre is at $C^{\prime \prime}$ on the line $O C C^{\prime}$ such that $O C^{\prime \prime}$ is the harmonic mean between OC and OC'. (Problems-1913.)
107. Prowe that the chords of intersection with a fixed circle of all circles through two fixed points are concurrent. (Problems-1912.)

10x. Find the equation of two st. lines through the origin mull such that the $L s$ to them from the point (h, k) are $+d$ and $-d$.
109. If axes of reference are drawn on a sheet of paper and if this is folded about the line joining $(1,3)$ to $(2,0)$, find the coordinates of the point which falls on (x, y).

Find also the equation of the circle which coincides with $x^{2}+y^{2}-2 y=4$. (Problems-1917.)
110. $A S$ and $A T, B P$ and $B Q$ are tangents from any two points A and B to a fixed circle. C, D, E, F are tho middle points of AS, AT, BP, BQ respectively. Prove that CD and $E F$, proluced if necessary, meet on the line that bisects AB at rt. - s. (Problems-1007.)

ANSWERS

Si. (linge i.)
4. $(0,0),(24,0),\left(1, \iota_{1}, \overline{3}\right)$.

ธ. $(0,0),(b, 0),(1, b),(0, b)$.
§ 16. (Page 11.)
4. 13.04 .
-. $10,17,9$.
6. (11) $\sqrt{\overline{0}} x, \sqrt{82}, 10$;
12. $4 \sqrt{4} \overline{\mathrm{~F}}$.
13. 3 or -13 .
14. $4 x-10 y+29=0$.

$$
\text { (b) } \frac{1}{2} \sqrt{23+}, 3 \sqrt{5}, 21 / 31+4
$$

15. (10.3, 22-1) ; 3.7 nearly.
16. $\sqrt{85}, 2_{6} \overline{10,}, \overline{45}, \sqrt{29}$;
17. $(7,2),\left(-248,3_{37} 58\right)$.

$$
7 v^{2} 2,1 \overline{137}
$$

8. $(0,0)$-the origin.
9. $\left(\frac{9}{3}, 7\right)$ and $\left(\frac{3}{3}, \frac{5}{3}\right)$.
10. $\left(\frac{x_{1}+x_{1}+x_{3}}{3}, \quad \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.
11. ($3_{3}^{2}, 0_{5}^{2}$).
12. $\boldsymbol{v}^{a^{2}+b^{2}}$.
13. $(-18,-14)$.
\$19. (Pagre 16.)
14. $36 \cdot \mathrm{t}$.
15. 36 miles.
16. $2 \overline{5}$ \%
17. 1: 3.
§22. (Page 21.)
18. $y=5 x$.
19. $2 x+y+\overline{5}=0$.
20. (il) The axis of x; (b) The axis of y.
21. $x^{2}+y^{2}-8 x-6 y=0$.
22. $x=4$.
23. $x^{2}+!^{2}-2 x+4!=31$.
24. $3 x-5 y=17$.
25. $x-2 y+3=0$.
§ 24. (Page 23.)
26. (14$)(2,7)$;
(b) $(3,2)$; (c)
27. $(0,0)$ and $(6,0)$.
$(2,-3) ;(l)(8,-6)$ and
28. $2 x=1$.

$$
(-8,6) ;(e)(5,12) \text { :and }
$$

5. $7 x+4!!=20$. (-22ㅇ, $2 \frac{1}{1}$).
6. $(0,9)$ and $(-15,0)$.

ANswE.Rs

\$27. (I'ago 27.)

2. (1) $\frac{x}{5}+\frac{y}{2}=1$; (b) $\frac{x}{4}+\frac{!}{6}$ $-1 ;(\cdot) \frac{x}{3}-\frac{!}{8}=1$.
3. (11) $x-3 y=0$; (1) $9 x-2!+$ $1: ;=0 ;(c) 8 x+1!!+34$ $=0$.
Intercepts :-(11) 0, 0; (1.) -133^{3}; (c) $-34,-34$.
4. $(-5,-3\})$.
5. $(12,113$).
6. $(1], 4)$.
7. Ratio of equality.
8. Sides, $x+!!+14=0: \pi, r+$ $3!+2 x=0,2 x-3!!-14$ $=0$;
Medians, $x-5 y=14, x+2!$, $=-7,: 3, r-!=0 ;$
Controid ($-1,-3$).
9. Sides, $2 \cdot x-3!=-24,3 x+$ $2!=2, \quad x-y=4, \quad 3 x+4 y$ $=33$;
Diagomals, $8 x-y=18, x+$ $9!=34,9^{*} x^{\prime}+438!=5948 ;$
Line tl: ough midalo puints of diagonals, $2 . x^{\prime}=\overline{0}$.
10. $(-6,-7),(5,-2),(-3,4)$.
S. 40. (I'age 38.)
11. (1) $x=\sqrt{3}!!$; (l) $!+r \sqrt{\overline{3}}=0$;
(c) $\bar{x} x-7!+35=0 ;(1) 3!$ $\pm 4 x+9=0 ;(P) x-y=1$.
12. (a) $\mathbf{C}=1$; (li) $\mathbf{A}=1$; (r) \mathbf{B}

$$
=\mathbf{0} ;(1) \mathbf{A}=\mathbf{b} ;(1) \mathbf{A}+\mathbf{B}
$$

$$
=0 .
$$

4. $\left.(11)!,-\frac{1}{2},-\frac{1}{5}\right) ;(b)\left(\begin{array}{l}3 \\ 3\end{array}, 0\right)$.
5. $m=1$.
6. $\left(3,3 \frac{1}{2}\right)$.
7. $m=-1, b=27$.
8. $x+y+1=0$.
9. $u=8, b=-4$.
10. $2^{5} \sqrt{58} ;$ then $^{-17} \frac{7}{3}$.
11. Intercept $=\frac{\mathbf{C}^{\prime}-\mathbf{C}}{B}$.

S44. (Page 42.)

1. (11) 45°; (l) 30°; (c) 90°; (d) $\tan ^{-1} 5$.
2. $9 x+4 y+47=0$.

万. $2 x+3 y=14$.
6. $7 x+5!=4$.
7. $5 x-3 y+8=0$.
8. $x-y+2=0$ and $x+y-$ $12=0$.
9. $x-\sqrt{3} y=3 \sqrt{3}-\overline{3}$ and $x+$ $\sqrt{3 y}=-3 \sqrt{3}-5$
10. $\left(2 \frac{1}{7},-4 \frac{1}{4}\right)$.
11. ($\left.1, \frac{u l b-l \mid}{c}\right)$.
12. 12 - 5
14. $(17 v 3-16) x+47 y=344$
$+34_{1}: \operatorname{and}\left(16 b^{\prime}: 3+16\right)$
$x-47!=34,3-: 34$.
15. $6 x+y+8=6$: and $x^{-6}(6!$ $=11$.
17. $\left(\frac{11}{2}, \frac{1^{2}+r^{2}-n b}{2}\right)$.
18. $B x-A y+1 / v A^{2}+B^{2}=0$.

Š54. (brge iis.)

1. (1) $\frac{34}{129} ;$ (1) $\frac{24}{1 / 1: 3}$; (c) $\frac{12,2}{6}$:

2. $333 x+61!=216$.
(11) $\frac{5}{1+11}$; (י) $\frac{3 \pi}{174}$.
3. $11\left(\begin{array}{l}(313+11)\end{array}\right.$

4. 1%.
B. $r=r$.
5. $\frac{a b(r-1)}{\sqrt{a^{2}+b^{2}}}$.
6. $(-24,55)$.

2i. $15 x+14 y=100$.
i. $8 x+(i y=15$.
(6. $x-y=0$).
26. $13 x-7 y=3$ and $7 x+13!=$ 119.
7. $2,{ }_{13}^{7}$.
8. $\left(m m_{1}-m\right)\left(1, r^{r}-b y\right)+b\left(m_{1} r-\right.$ $\left.m r_{1}\right)+n\left(r_{1}-r\right)=\mathbf{0}$.

$$
+23 y-52 \sqrt{2}+2 i 5=0
$$

10. $u h c-u f^{2}-6 y^{2}-c h^{2}+2 f g h=0$.
11. $\left(b-m_{1} t-c_{1}\right)(!-m \cdot c t-c)=$ $(b-m \prime c-c)\left(!1-m_{1} c-r_{1}\right)$.
12. $\left(A C_{1}-A_{1} C\right) \cdot+\left(B C_{1}-B_{1} C\right)!$ $=0$.
13. $(24+13 \sqrt{3}) x+23!+52 \sqrt{3}$

$$
+25 \%=0 \operatorname{and}(24-13 / 3, \ldots
$$

$$
12!-74=0
$$

2!. (6. $x+y=31, x-y+3=0$;

$$
\frac{14}{1 \cdot 37}, \frac{7}{12}
$$

13. $\sqrt{2}$.
14. $\frac{ \pm 2, ~ \overline{130}-11}{7}$
15. $x+21 y=6$ and $18!x-!!y=$ 692.
16. $3 x+y=2$ and $x-3 y=24$.
17. ($5\left\{\begin{array}{l}0, ~ \\ 3 \\ 13\end{array}\right)$.
18. $12 x-5 y=26, y=2$.
19. $\mathbf{A} x+\mathbf{B}_{y}+\boldsymbol{p} \sqrt{ } \mathbf{A}^{2}+\overline{B^{2}}=0$.
20. $B \cdot r-A!1+A l:-B /=0$.
21. (11) $\left(\begin{array}{c}3 n 1 \\ 1212\end{array},-\frac{87}{121}\right)$; (b) $(-175$, $-1_{1}^{1} 1$).

SW0. (Pise 60.)

1. (a) $x=a, x=1$;
(i) $\cdot x-y=0, x+y=0$;
(c) $x=1, x=3!$;
(d) $2 \cdot x-y=0,4 x-3 y=0$;
(l) $. r=11, y=-b$;
(f) $3 x-y=-4, x-3 y=5$.
2. $\frac{2}{3}$ and $\frac{1}{2}$.
3. The axes of coordinates.
4. (d) ten 1 it ; (o) $9 \mathrm{O}^{\prime}$; (f) trin ${ }^{1} \frac{4}{3}$.
5. $b_{r}=$ acd.
6. 8.
1. $3 x^{2}-y^{2}-30 x+6 y+66=0$.

Siij. (lingu iv.)

1. $2 \cdot r^{\prime}-11 x y+12 y^{2}=0$.
2. $r^{r}+r!=0$.
3. $\left(-\frac{1}{3}, \frac{1}{3}\right) ; 2\left(x^{2}+y^{2}\right)=19$.
b. $\left(A_{1} / 3+B\right) x+\left(B_{1} \cdot 3-A\right) y$

$$
2 \mathrm{C}=0
$$

S. ini. (I'ige (if6.)

1. (11) $\sqrt{145}$:
(b) $\sqrt{ } \mathrm{m} \mathrm{m}^{2}+16 \mathrm{~b}+\mathrm{b}+13 b^{2}$:
(c) $1+b$
2. $\mathbf{P}\left(\frac{3}{3}, 33\right) ; \mathbf{Q}(17!16 \Omega)$.
3. 3_{2}^{2} (t).
4. $41 \frac{\mathrm{t}}{\mathrm{t}}$.
5. $10 \frac{3}{5}$.
fi. $x_{1}\left(y_{2}-y_{1}\right)+x_{2}\left(y_{1}-y_{1}\right)+$ $x_{3}\left(!/ 1-y_{2}\right)=0$.
6. $8, r+7!!=5$.
7. 2 ax $+2 b y=c+d$.
8. $x=y$ l $11 n a+b$.
9. $\sec \cos a+!\sin a=a$.
10. tent ${ }^{-1} \frac{12 \pi}{4} 1^{3}$.
11. $m=3,6=-4$.
12. $x+y \sqrt{ } 3+2(\sqrt{3}-1)=0$.
13. $\frac{m h-l i+a}{\sin a-m i o s a}$.
14. $\frac{x}{u}+\frac{y}{b}=\frac{h}{a}+\frac{k}{b}$.
15. $b, r+u y=u d$.
16. ($2,-8$) and ($-6,-14$).
17. $u=6$ or $-4 ;\left(\underline{1}, \frac{1}{3}\right),\left(\underline{1},-\frac{1}{2}\right)$.
18. 45 .
19. (6i) $e-6 i y+14 a+3 b=0$.
20. $b(u m+c) x+(b u l-u b)+c u l m$ $+(c)!y-b u l(a m+c)=0$.
21.

$$
\frac{a b}{\sqrt{\prime c^{2}+b^{2}}}
$$

30. $x+4!y+1=0$.
31. $x+7 y+6=0$.

1i. $2 \cdot r!+12^{2}=11$.
8. $9 x^{2}-20 y^{2}=0$.
(1. ten $1 \frac{1}{3} ; 3 x^{2}+2 y^{2}=10$.
33. $\left(4_{10}^{7},-11\right)$.

(35. $-\frac{19}{\sqrt{153}}$.
37. $\frac{12 i}{2}$.
38. $x+6 y=39$ and $6 x-y=12$.
41. $2 \cdot x+3!+11=0$.
42. $165 x+105 y+3114=0$; 332 x

$$
-747 y+34460 ; 497 x
$$

$$
-142 y-2178=0
$$

4?. (2, ?).
44. ((11) $(c h-c f) x+(b h-r!(!)!-0$;
(l) $(a t l-\operatorname{lif})(x-y)+c(f+l()$
$-l(n+b)=0$.
45. $5 . x-14 y=6$ and $154 x+65 y$

$$
=209 .
$$

46. $49 x-245 y=242$.
47. $x+y=10$.
48. $x-!=10$, or $y-x=10$.
49. $7 \cdot x+5!+50=0$, and $!x+35 y$
$+150=0$.
50. $x-4 y=11$.
i2. $2(u-h) \cdot x+2(b-l i) y=a^{2}+b^{2}$
$-h^{2}-l^{2}$.
5i.) $\because x+y+15=0$.
51. 45°.
52. $10 x+4!+11=0$, and $4 x-$ $10!-33=11$.
j6. $x^{2}-y^{2}=0$.
53. -13 or 10 :
54. $(11,1),(-1,-5)$, or $(-5,7)$.
55. $-\frac{3 n}{31}$.
lis. 24.

1．$x^{2}+y^{2}=0$ ．
2．$(x-6)^{2}+(!-2)^{2}=9$ ．
3．$(x+5)^{2}+(y+1)^{2}=26$ ．
4．$a^{2}+b^{2}=r^{2}$ ．
万．（ 1 ）$(3,1)$, ㄱ ；（b）$(-7,-5)$ ，
$\frac{1 / 3: 4)}{8} ;($（ $\left.) ~ i 7,0\right), 7$ ；（（l）
$(0,-1), \quad+\cdots$ ．
8．$x^{2}+y^{2}-x-7!=0$ ．
8．$x^{2}+y^{2}-3, x=19$ ．
11．（1）$f=0$ ；（ 1 ）$y=0$ ．
12．$x^{2}+y^{2}-4 x+4 y=\mathbf{2}$ ．

13．$x^{2}+y^{2}-4 x+6!y=16$ ．
15． $47\left(x^{2}+!^{2}\right)-181 x+34!!$ 113 洲 $=0$ ．
16．$v^{\prime 10}$ ．
17． $14 \sqrt{2}$.
21． $2 x-5 y=15$ ．
29．1：33．
23． $14(x+y)=17$ ．
$24 . c=r$ ．
2i．$(h+k)\left(x^{2}+y^{2}\right)-\left(h^{2}+k^{2}\right)(x+$ $y)=0$ ．
§ 81．（Pigg 85．）

1．（11） $3 x+5 y=34$ ；（b） $3, x-4!$ $+11=0$ ；（r） $12 x+i y=$ $!6 ;(d) y x+j!=0$.
2．$!=x \pm 1$ ソ！
i．（11） $\mathbf{A}_{x}+\mathbf{E}_{!}- \pm r 1^{\prime} \boldsymbol{a}+\mathbf{E}$ ；

$$
\text { (1) } \mathbf{B} \cdot \boldsymbol{e}-\mathbf{A} y=
$$

$\pm r \sqrt{\mathbf{A}^{2}+\mathbf{B}^{2}}$.
4．$(2,4)$ ．
i．（ 6,1 ）．
6．（11）$C^{2}=r^{2}\left(A^{2}+B^{2}\right) ;(11)\left(A_{y}\right.$

$$
+B f-C)^{2}=\left(A^{2}+B^{2}\right)
$$

$$
\left(y^{2}+f^{2}-r\right)
$$

7．$a^{2} b^{2}=r^{2}\left(a^{2}+b^{2}\right)$ ．
8．$r=!^{2}$ ．
9．$x^{2}+y^{2}-2(7 \pm 2 \sqrt{\overline{0}})(x+!)+$

$$
(5) \pm 28 \sqrt{\overline{5}}=0 .
$$

10．$x-\overline{3} y+3 y \overline{3}-1=0$ ，and

$$
x-\sqrt{3} y-5 \sqrt{3}-1=0 .
$$

11． $4 \sqrt{\frac{313}{3,3}}$
13．$(x-y) \cos a+(y-f) \sin a=r$ ．
14．$\left(1_{3}^{3},-15\right) ; 4 x+3 y+1=0$ ．

16．$x-3 y=3 ;\left(\begin{array}{c}21 \pm 3 \sqrt{11!} \\ 10\end{array}\right.$,

$$
\left.\frac{-3 \pm \sqrt{11!}}{10}\right)
$$

17．$\left(A^{2}+B^{2}\right)\left(x^{2}+y^{2}\right)=C^{2}$ ．
18． $34\left(0 . r^{2}+y^{2}\right)-476 x-136 y+$

$$
1753=0
$$

19．$\left(\frac{1}{2}, 7\right) ;(17,-13)$ ．
transwerse， $12(5 y-7)=(-21$ $\pm 5 \sqrt{15})(5 x-1) ;$
lirect， $24(!+13)=(-21 \pm$ $\sqrt{21})(x-17)$ ．
20．direct，$y=9$ and $3 x+4 y+3$ $=0$ ；
transverse are imaginary．
$(2,9)$ and $(-1,0)$ on $x^{2}+y^{2}$ $-4 x-8 y-5=0$ ；
$(5,9)$ and $\left(2,-\frac{8}{5}\right)$ on $x^{2}+y^{2}$ $-10 x-6 y-2=0$ ．
21．$x+3 y+y+3 f \pm$

$$
\sqrt{10\left(y^{2}+f^{2}-c\right)}=0
$$

22．$x-V: 3 y \pm 10=0$ ．

S．92．（Pige 94．）

1．（ 1 ） $3 . x+5!!=30$ ；（ 1 ） $1, x^{2}=r^{2}$ ；

$$
\begin{aligned}
& \text { (c) } 4 \cdot r^{\prime}+17=0 ;(1 l) 10 \cdot r- \\
& 2!\prime=7 ;(r) h \cdot x+l: y=h^{2}+ \\
& i^{2}-r^{2} .
\end{aligned}
$$

4．$\left(\begin{array}{ll}c^{2} & r^{2} \\ 6 & h\end{array}\right)$ ．
5．$\left(\frac{f^{\prime} l-g-l c-f q m}{1+f m+g l}\right.$ ，

$$
\left.\begin{array}{c}
!^{2} m-f-m!c \cdot f_{l} l \\
1+f m+!l
\end{array}\right)
$$

$$
\text { 3. (.) } i, x-4 u+25=0 \text {. (o) } 0
$$

ii．（1，4）．

$$
\begin{aligned}
& +1:!!=25 ;(f) 18 \cdot-9! \\
& =0 ;(g) 24 x-7 y=125
\end{aligned}
$$

（1）．（Tige 97．）
1．（11） $6 ;(b) \pi ;(10) R ;(11) 1^{\prime \prime} \cdot$

2．$x^{2}+y^{2}-10 . x-4 y=7$ ．
$\therefore x^{2}+1^{2}-16 x+51=0$ ．
4． $4 . r+: 3!!=25$ aud $3 . x-4!=25$.

1． $12 x+8 y=55$ ．
4．$(-13,-7)$ ．
2．$!x-8!!+15=0$ ．
Minceldaneots Eikercisks．（Page 99．）

1． $3 x+4 y=25$ ．
$\because 2 . x-11!+: 32!=0$ ．
： 1.113.
4． 29.
5．$\frac{x}{h}+\frac{y}{k}=2$ ．
6．（（1）$\frac{x-h}{x_{1}-x_{2}}=\frac{!-l_{1}}{!_{1}-H_{2}}$ ；（I）（ $r_{1}-$ $\left.\cdot r_{2}\right)(\cdot x-h)+\left(!/ 1-!!_{2}\right)\left(!-l_{1}\right)$ $=0$ ．
8． $7: 4$.
！）（ $\left(\begin{array}{cc}415 \\ 115 & 11 \\ 1\end{array}\right)$ ．
10． 77.
12．$a^{2}+!^{2}-12$ ．
1：3．$(1+1, b+d)$ ．
15．The point（－re cos u，－ィ $\sin n$ ）．

16．$x^{2}+y^{2}-6, x-3!!-0$ ．
17． $3, ~!-!=: 1 / \pm 1: \overline{10}$ ．
18．（ $\left.\begin{array}{l}i 42 \\ 1+5, \\ 140 \\ 140\end{array}\right)$ ．
20．$r^{2}+y^{2}=h, r$ ．
21．$x^{2}+y^{2}-11 x^{2}-b y=0$ ．
2！．$x^{2}+y^{2}-g x^{x}-f!y=0$ ．

24． $8\left(x^{2}+!I^{2}\right)-20.4+75!+71$

$$
=0
$$

2\％． 10 or
26．Centre divides AB exter－ nally in litio $l^{2}: 1$.
27．（11）（7，1）；（1） $\mathbf{A D}=\mathrm{DB}$ ．
30．$(2,1)$ ．
31．${ }^{3} 3 \mathrm{~B}$
32．$x^{2}+y^{2}-2 h(x-11)-2 k(y-b)$ $=a^{2}+b^{2}$ ．

33. $x^{2}+y+4 y+2 f+\because-y^{2}-$

$$
f^{2}=i
$$

35. $2 x-(b+c) y+2\left({ }^{\prime}\right) x=0$.
36. $-\frac{113}{4}$
37. $19 x^{2}-60 x!1+44 y^{2}-1$.
38. $3 x^{2}-8 x y-3 y^{2}=0$.
39. $\tan ^{-1} \frac{8 \sqrt{243}}{23}$.
40. $y=2$ and $15 x+8 y-31$.
41. $(a+c-g, b+d-h)$.
42. $163 \cdot r+9 y+64=0$ and $2: \% x$

$$
-573 y+1112=0
$$

G7. $x^{2}+y^{2}-(h x+k y)=0$.
69. $x^{2}+y^{2}-10 x+9=0$.
74. $\cos ^{-1} \frac{17}{20}$.
76. The circle $3\left(. x^{2}+y^{2}\right)+8, \cdot+$
$10 y=92$.
77. $3\left(x^{2}+y^{2}\right)-2 x(x+y)=2 x^{2}$.

S1. $\frac{r^{2}-b^{2}}{2 m}$
85. $y^{2}-x^{2}=0$.

8(i. $x^{2}+y^{2}-2 r(x+!)+u^{2}-11$.
88. $x^{2}+y^{2}-2(x+y)$.
92. $59\left(x^{2}+y^{2}\right)-44(x+2 y)=$ 740 .
102. $\left(x-\frac{x_{1}+x_{2}}{2}\right)^{2}+$

$$
\left(y-\frac{!_{1}+y_{2}}{2}\right)^{2}=1_{4}^{2}
$$

105. $-\frac{b+\cdots+c+b}{a+b+c}$,

$$
\frac{a^{2}+b^{2}+a^{2}+b n^{2}+c^{2}+a b}{a+b+c}
$$

108. $\left(h^{2}-d^{2}\right) x^{2}-2 h k x y+\left(h^{2}-\right.$ $\left.d^{2}\right) y^{2}-0$.
10!1. $\frac{18-4,4-3!, 6}{5} \frac{6 \cdot x+4!,}{5}$ $.^{2}+!^{2}-6 x-4!+8=0$.

[^0]: Illsfurkat Nuth-I'tolemy; a native of Egypt, Honrished in Alexandria in 133 .1.1.)

