

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences
Corporation

23 WEST MAIN STREET
WEBSTER, N.Y. 14380

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute fo; Historical Microrepioductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may ta bibliugraphically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or láminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColnured maps/
Cartes geographiques en couleur

Coloured ink (i.e. other than blue or bleck)/
Fincre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches at/ou illustrations on couleur

Bound with other material/
Relif avec d'autres documents

Tight binding may cause shadows or distortion along interior ma:gin/
Lareliure serrks peut causer de l’ombre ou do la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenevar possible, theso have been omitted from filming/
Il se peut que certaines pages blanches ajoutes lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas eftef filmes.

L'instisut a microfilme le meillsur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloursd pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachéesShowthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcles par un feuiller d'errata, une pelure. etc., ont été filmées à nouveau de facon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires.

This item is filmed at the reduction ratlo checked below/
Ce document est filmb au taux de reduction indique ci-dessous.

The 0 the
he in possib of the filınin

Origin begins the las sinn, other first 0 sion, or illu:

The la shall TINUE which

Maps, differe entiral beginr right a require metho

The copy fiimed here has been reproduced thanks to the generosity of:

The Nova Scotia
Legislative Library

The images appearing here are the best quality possible considering the conditlon and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impressinn, or the back cover when appropriate. Ali other original copies are filmed beginning on the first page with a printed or iliustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shali contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (mernling "END"), whichever appiles.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entiraly inciuded In one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The fullowing diagrams illustrate the method:

L'exemplaire tilmé fut reproduit grâce à la générosité de:

The Nova Scotia
Legislative Library
Les limages suivantes ont áté reproduites avec ie pius grand soin, compte tenu de la condition et de la netteté de l'exempiaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couvertire en papler est imprimée sont flimés en commençant par ie premier piat et en terminant sole par la dernière page qua comporte une empreinte d'Impression ou d'iliustration, soit par ie second piat, seion le cas. Tous les autres exempiaires origlnaux sont filmés en commençant par la première page qui comporte une empreinte d'Impression ou d'iliustration et en terminant par la dernière page qui comporte une telle emprelnte.

Un des symboies sulvants apparaitra sur la dernlère Image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE". Ie symbole ∇ signifie "FIN".
L.es cartes, planches, tableaux, stc., peuvent être flimés à des taux de réduction dlfférents. Lorsque ie document esz trop grand pour être reproduit en un seul clishé, i! est filmé à partir de l'angle supérieur gauche, de gauche à drolte, et de haut en has, en prenant le nombre d'lmages nécessalre. Les diagrammes suivanis iliustrent la méthode.

A

TREATISE

ON

GHOLOGY;

IN WHICH

THE DIsCOVERIES OF THAT SCIENCEARE RECONCII.FD WIT \hat{H}
THESCRIPTURES,
$A N \mathrm{D}$
THE ANCIENT REVOLUTIONS OF THF EARTII ARF SHGWN TO
BE SOUICES OF BENEFIT TO MAN.

BY
THOMAS TROTTER, Minister of the Presbyterian Church, Antigonish, Nova-Scotia.

PRINTED HY
GELDERT \& PA'TTERSON, Finstern Chronicle Office, PICTOU゙, N.S.
$\operatorname{MDCCCXL} F$.

$$
\begin{aligned}
& N S \\
& 550 \\
& T
\end{aligned}
$$

989

PREFACE.

 Waw orichaty designed to form a part of a more varied and extrnden wert; and it is to this ciremmstance that jowes buth its existenes and its form. I have long thought that the feading civents recorded and foretold in the Sacred Serip©ures hy lagg all exhibited as parts of a whole, and having their relation to a common object pointed our, would bo phecel in a fir more interesting and instructive light, than that in which it is possible for them to appear as isolated wecurences; and for many years I have felt an increasing desire to attempt it. A comprehensive, comented, and scimatio view of these events, if properly executed, would render an important service to Religion, by silencing many of the cavils of the Infitel, and solving some of the greatest. difficulties which perplex the mind of the inquisitive Christian. 'To execute such a work properly, would require a greater command of time than I have at my disposal, and the possession of talents beyoud what I can pretend to; and under these circumstances it may be the wiser conree to call the attention of others to it , who wre hetter qualified th do it justice. At the same time, as the following 'I'reatisn eontains my views in regurd to the physical history of the "arth, a highly important deparment of the work-as mans of these views are new-as I believe them to be just, and as the 'Ireatise is a specimen of' what the Wurk wonld be were
it rompleted, I hare determined to publish it, such ats it is; in this separate form.

A short aceonnt of the physical changes which the earth has undergone, and by which it has berone a proper theatre fir the developensent of the erreat aramenents of Proviforee, would form at suitable introduction to ageneral atal comoced view of these arrangements; and in the latter part of the dillowing 'lreatise, I have traed the hearing of the revolutions of the earth on the aceomplishnent of the ereat rad of its ceation, lnat with what suceese, mast be detorariued by len partial judges.

A finller aceount than is here given, of the diflereat rares of plants and animali which onee existed on the face of the earth, but have long been extinct, would have rendered the work more interesting to many; lut my objeet was not, to write the Natural History of a former work, but to seleet such facts as were calculated to throw light upon its physical condition; and I have not onitted a single fact, known to myself, that would have griven additional light to what is here given. 'The philosophieal historian, a designation which I would be most happy to merit, whose objeet is to analyse the different elements of improvement-to ascertain the combinations of whill they are susceptible, and to trace the progress of these combinations to their ultmate censequences, selects such fitets is are suited to his phrpose, and suticient for its attaimment, and passes over the rest as redundancies, and calculated only to encumber his march.

My materials have been collected fiom differat sources, bud at diflerent times; and it would now ise isupossible for me to refer every statement I have made to its proper origin; but so fiar as I can now revollect, I have acknowledged the extent of my obligations to other writers, with the exception of Dr. Leyell, and the Fidinbargh Review. 'I'o the one I am largely indebted for farts, and I lave alopted a number of important views and suggestions firon the other; and have prefered making a general acknowledgement to both, to having guoted so often as would have been necessary. I hare understood that the friends of the former still eall him
ch as it ins h the earth ner theatie of Provieneral and latter part ing of the t° the great the deter-
erent rases ince of the mered the vas. $110 t$, to at to select its physi, known to to what is lesignation object is to 0 ascertain al to trace ate conserpose, and Cest is remarch.
at sources, ossible for per origin; ledged the exception c one I tam number of and have both, to escary. I 11 call him

Mr. Livell, which minst therefore be considered as most agrecable to himself; and as I wish to treat hi:n with the highest respect, I should have corformed to the practior had 1 linown it in time.

I ann aware that the opinion respecting the ape of the earth which I have adopted, does not stam high with seologists in general; and I scarecly expert the argmuents liere ithluced in support of it to be treated with the respret to which I and fully satisfled they are entitled; but that floes not. - lake my confidence in their truth. It camot be deniod that the Pre-idamite theory has been too often assailed by ignorance, and its supporters branded with a leaniug to Infilelity; hut they have not always shown that contesy towards their opponents with which men of seience shomhl treat one another. I refee ass an instance to the personalitios heaped upon the Dean of York, for allocating the Ablanite 'Theory at the British Association. His views of Geolozy may be crude and erroneons, and he may he a Pluralist and hold different livings, hat what eomection has a man's habits with a scientific truth: and for what purpose are ilhese habits drageged into light in a seientifie disenssion, unless it be to silence opposition hy means of intimidation? Such pratiees cannot be too severely reprobated, on whichsocers. side they are resorted to.

All the revolutions which the earth has umbergone labe contributed more or less directly to the conrenience of man, and to his advanrment in intellectual and moral improvem ment; and we may therefore regard the inerease and imfrovenen, of the human race as the ultuate object of theo changes; but the adaptation to this end into which the ew in has evidently been brought by its repeated rovolutions, mast. he limited in respect of duration, -fore some of its most imsportant mineral resamees are so very fin frombeng ins xhatusthbe, that they are comparatively limited, and bon that the carth is intembed to eontinue in that - fate, for whath its repeated rewolutions have prepared it. asb: Sur a proportionally limited time. Now it would berontan: to all allalogy, and a complete anomaty in thi: an an an of noture
if many millions of yous were spent in preparation for a sate that was to continue but for so many thonsund-; ant this consideration, indepembent of arey thing else, should induce us to pase, and cxamine with the greatest rigilame and detiberation, the fommbations of a theory which is so far from accorling with the Garred Seriptures, that shose of its -Hppoters who mantain its reconeileabilit; with the Seriptures, difter so widely fom one another in regard to the manner in which the reconciliation is to be effectod, that others of them, and thocse by momeans of an inferif crade, recrati
 writien not in cont -ity with the fict, but with the tratitionary accoants and prejudices of the are to which they wre to be referred.

I am satisfied that whatever opposition may appear between the Seriptures aud ang seiener in its infancy, it will tradmally disappear in proportion as that sebence aframeos: abd when a reconciliation is effecten, rley will he Immathy. sorvicuable to one another, amb fromote the groat u! ject of both. Geology and the Soriptures illsstate each othor, and give a chear, consistent, and interesting view of the eaty pondition of the earth-of the revolutions it has undergone. and the great end for which they have been brourht alont.

Antigonish, 12th Anghet, 1840.
＇ation for ic 1sind！－；：111t elser，should st riscilau：e ich i－sol la thosa ul its the sherij－ fo the man－ that others cule，recratel thes lo the it the trati－ ich they we
uppear le－ hey，it will ：wfranows： ce mutuall！ at u！jeet of 1 other，and of the can！ undergone． urht iblout．
＇1＇．＇i＇。

そ0NTENT思。

30）

Of THE FOLM OF THE EALTH，ITS COMDOEIT：OX，\＆SN stnlCTURE．

Wher are three great classes of rock－the stratitind， the Comalline，and the Crystalline．＇The Sta－ tified ane diviled into Serioses and Fornations， which lie in a certain order，and are wemerally Fossiliferous，

BOOK 11.

OF THE MUYSYCAI REVOLUTIONB VHICH TH： LABTH HAB UNDERGONE．

Chap． 1.
Pronts that it has mulorgone a momber，
Cinap． 11.
Ot the brincipal agents in the Revolutions of the Earth－Water，lyind，Iamdkips，Hoat，amb 6nnınossion，

Page。
f
，

BOOK 1 l .

【IUTU WITUTHE, INTEDIIUVIIN IGFOF TIE

$$
\text { Cirif. } 1 .
$$

Pamliminary Observations,

Cilip. Il.

(): the dmperient hetwern Geology and the Sitroed *opipunces, rownecting the state ol the earth the riater the oria of the Primatig Pormations, and ihn manner in which that erat tominated,

CIIAP. Ill.
Of than derocmení betweron Cucotory and the Sacred Suripitures, respecting the stite of the oanth during the rea of tho 'Iramsition Series, and the manner in which that era terminticel,

Curp. IV.
Of the Agrement between Geolny and the Sured Scriptures, respecting the state of the earth during the crin of the Siscondary Series, and the manner in which that era termimente,

Cusp. $\mathrm{V}^{\text {. }}$

Of the Agrement hetwen ficology and the sucred Seriptures, weyerting the state of the carth haring the era of the 'Toentary sories,

Cinse VI.

 Catth. It was aceornpanied hy゙n great innmeln-

Ereaty reduced at the thate－the wate is rane hy tul ibromittent amvement－ihey were tosed ly at thmpert towards the elose of the immalation－ they fell as they rose，by an iuternattent mowr－
 almating，

> Cusp. Vll.

1）＂the Igremest betwera Geology and the s－arred s，riphures，respering some inportant chators ＂hich followed the hast revolution of the canth． ＇I＇bre lertility of the ground wats increaserl－me gularige in the course of tha smason was whe－ hii－hed－the size of a mimals wats reduced，and havir terth of life abbreviated，

Cnar．VIll．

OBJECTIONS CON゙リUERI：D．
Proiminary Otservations，
＂hicrion 1st．－The Sacred Cinromelogy dons Hen at－ low a whlicicacy of time lio the great changes which the earth has mulergone，
 the：stath shows that man wha mot it axistence at the time ot thair furmation，
 rates of plante mul manals we gencrieally tho sillum with fosil races，they are sperifiently dif－ fierent，and may therelone bo regurded as at dis－ tinct aml later erention，

 sion from 11 comman centre．

BOOK バ。

IMgre
（1912． 1.
Prelmimary Observations， $11 ; 7$

> ('U:Ir il.

Wf the I－sefal Mineral．；which the revolutions of the rarth have been the means of preparing or ren－ leving accessible．Limmstone－Conl－Iron－ their proximity－Sult－＇ilhe Precious Metal：${ }^{2}$ ，心r。

Cuap．LII．
（）＂He Benc：its which result to the inhabitants of thes cirth fiom its external condition．＇The divi－ siou of its surfice into land anid sea－into nnoun－ thins and valleys，तuld districts adap）：（l）tontion－ al wistence，

Chap．IV．
（）f tho Bencfits whicle result fiont the course of tho seasons；and tho diflerenee of elimato in dither－ ent latitudes，

Cusr．V．
Ol the benelita which result from the size of imimals； and the estulblished teion ol lomman lific，－－502
（un－lulingro Observitions，－－－． 000

GEOLOGY.

INTRODUC'TION.

THE uniform regularity of the course of nature, and general stability and tranquillity of tho earth, warrant tho supposition, that the latter has continued in a state of repose since the date of its creation, when all things rose into existeneo at the fiat of Ommipotence. 'I at it has howerer undergone a series of violent and extensive antations, before attaining io its present state of rost, nppoars very plainly, from tho ruptured and dislocated condition of the strata; and as many of these revolutions havo evidently exercised a bencficial influen c, aud contributed to the convenience of its present inhahitants, it is proper to enquire into their number and extent, the causes in which they have originated, the effeets they have produced, and other interesting circumstances commecter with them.

Tho Seience of Geology, which treats of these matters, is yet in its infuncy; and ns may be reasonably supposed, it hatagiven rise to a varicty of conficting theorices, by which it: progress has been purtly promoted and partly retirded. It is tho opinion of many, that tho revolutions of the earth have oceurred at very distant periods from one another, - that thoy havo been reapectively attended by new creations of organized forms, both . imal and vegretable, -and that, bogimning with tho simplest, the types of overy new treation have approached moro nearly than those of its imenedinte predeceseor in the series, to the races which still contimate
in existence. Had not this theory been entitled to the support of very plausible arguments, it could never have gained so many truly emiaent friends in this enlightened and scientific age. Yet as great minds have often been misled, and as arguments equally if not more conclusive, may be produced against $i t$, both sides should be fairly examined before we come to a decision respecting it. But before the reasoning
on either side can be properly understood, end the force of the arguments duly appreciated, it is necessary that we possess a general acquaintance with the form, composition, and structure of the earth, the revolutions it has undergone in the structure of its crust, und the known or probable causes of these revolutions.

年
I
the supve gained and sciened, and as produced cfore we rcasoning eforce of t we position, and crgone in le causes

B00K I.

OF THE FORM, COMPOSITION, AND STRUCTURE OF THE EARTH.

§ 1. Or the Fonm of the Earth.-Little requires to be said on this point. The earth is called an Oblate Spheroid. It is a ball slightly flattened at the ends. A line drawn through its centre, from pole to pole, would net be so long as another drawn through its centre in any ether direction, and more especially under the epuator. Whether this form Was immediately given to it at the creation, or resulted from the laws of matter in motion, is a problem which we have not the means of solving; but it is of no consequence in the present investigation, as neither of the suppositions, though fully established, would serve to shed my certain light on the darker periods of the history of the earth. It may be olserved, howewer, that the form of the earth serves different important purposes in the ceonomy of natere, and may therefore be regarded as a wise and benevolent provision of nature. It increases the fength of the day, for instance, in the higher latitudes during the summer, and in some measure compenates for the diminished power of the sun's rays in those bleak regions.
§ a. Of the Composition of the Earthe, -This is a point of far more importance in Geology, More than two thirds of the surfice of the earth are covered with water, and tho remainder only is dry land.
'The menn depth of' the sea was estimated by La Place nt twelve miles, which he considered necossiry to ateount for the ordinary phenonena of the tides, !ut when is generaity thought to bo too high. Mr. Whewell reduces it to nine minies; and as his cotimate is said to to generally correct,
wherever it can be tested by means of sounding, it seems to bnouly fair to receive it, till its incorrectness has been proved.

I am not aware, that any estimato has ever been made of the mean height of the dry land, above the level of the sea, but it will not bear a comparison with the mean depth of the latter. Oae mile is in all probability beyond the trith; and this for no more than one third of the surface of the Globe. If then there were no inequalitics oat the surface ot the carthwere the waters spread overit rit an equal depth, they would form a covering to it of six or seven miles of thickness.

The greater part of the dry land is covered with soil, chiefly composed of siliccous, argillaccous, and calcareous earths; generally mixed, but differing in their proportions in different places; and possessing more or less adhesiveness, according as one or another predominates. 'These mixtures are in general loose and ineompact near the surface, but they have all 'been consolidated and hardened into rock, at a greater or less depth below it; and, in their friable state, their mean density, as compared with their volume, is considerably less than that of their indurated and petrified condition. They consist chicfly of metallic oxides, and have in general been reduced to metallic bases. 'Though Oxygen in a rarified or fluid state, as it exists in the atmosplaere, id much expanded, and consequently very light, it may bo groatly condensed by means of combimation with different motals, and in this state of combination it forms a large proportion of the ponderable materims of which the erust of the earth is composed.

The interior of the earth is beyond our research, and wo camot attain to certainty respecting it; but there are difforent well established fints, which warrant the conclusion that it :s a vast muss of solid substances, specifically heavior in a high degree t!an tho materials of its crust. 'Taking water, as usual, for tho standard of comparison, and counting it 1 , the mean density of the great majority of the known rocks is nbout ed? but Dr. Muskelyno and others huvo shown, iby titeit oinservations on the attraction of mountains, that tho meun density of the earth is 5 , or twice that of the
matorials of its crust, cron in their most compacted form. The influence of tho carth on the inotions of the moon has directed astronomeris to the same conclusion; and it may therefore be reccived as nearly if not perfectly correct.

Considering then that the volume of water contained in the ocean, which is incluted in the estimate, is equal to six or seven miles at the circumference of the circle, and counts but 1 , and that the erust of the arth, which is severial miles more in thickness, colants but $2 \frac{1}{4}$, it is evident that the remainder, after these deductions are made, must be considerably upwards of $5,-$ that it must approximate the density of a great proportion of the kown metals; and considering, morcover, that the greater part of the known earths are metallic oxides, and also that ell metnllic veins, ass will be shown hereafter, have been filled from the interior, it appears exceedingly probable that the interior of the easth cunsists of a vast collection of metals, or of substances possessing metallic properties.
§ 3. OftheStructune oftife Earth.-This is a subject of still more importance in Geological enquirios than even its Composition, and throws mose light upon its past history. We camot penctrate into the interior of the earth, or obtain information respecting the dispesition of the materials contained in it; but its crust has beeme more aceessible to our rescareles, through the revolutions it has undergone; and many important particulars have been ascertained yespecting its structure. In the crust of the earth there are fliree great classes of rocks, having each a difierent origin, and a diferent texture; and being distinguishable from one anothe: by their respective peculiarities.

Geological Science is still in an infant and uilsettled state, being constantly receiving new accessions, and undergoing new modifientions and changes, both in regntel to classitiention and arrangement; nud as no particular nomenelature has heen agreed upon, or generally adopted by those who have discovered or expoumded its facts, it is exceedingly, difficult, or rather impossible, to puestat a ferman riew bithorn facts, without appearing to give a preionenee on fome fary
ticular theory, which is not intended in this dissertation. But some nomenclature must be used, and some arrangement must be adopted; and without intending to prefer ono theory to another, the course shall be followed which in regard to these matters appears to be on the whole most generally approved.

It is allowed on all hands that the crust of the earth is compused of three great classes of rocks; namely, the Stratified, the Coralline, and the Crystalline.

Of the Stinatified Rocks.- Whis is the most numerons, and by far the most important class of rocks, and consists of a long succession of beds, differing from une another in regard to composition, texture, thickncss, and position; but appearing everywhere to have been formed agrecably to a certain order, which is rarely departed from, thoumh the series is in many situations incomplete. 'Ilacy are by some divided into three, and by others into fonr distinct serieses; and each series is sabdivided into a number of gronps, systers, or formations; all oceupying different positions, and distinguished from one another by difterent names.

Of the first, or lowest series of Stratifict Rocks.-Observing the order of superposition, the lowest series is generally if not miversally called the primary; and comprelands five or six different beds: Gneiss heing the first or lowest in the order, Miea Slate the secomd, Hornblende Slate the third, Clay Slate the fourth, to which Quartz Rock and Primary Limestone are to !e added, the last of which, instead of a!why rotaininer the same position, sometimes alternates with other beds. Mrany of these beds ner very thick, and the greater part of them lave a shaty texture, aad aro partially erystallized, is if they had been subjected to an intense and pownoful pressure, subsequent to their formation.
()f the 'tiansition Scries.-Those who arlmit of a fourth sive io the nevt the name of the 'Transition Scries, from an idea that, during the tinte of its formation, the carth wat piassind from an minhabitable into a habitninle stute; and weruluse that the rocks holonging to it, partly partuke of the combact and staty texture of the foresoing, and at the same
sertation. arrangerefer ono which in sole mcst
earth is the Stra-
u:nerous, 1sists of a in regard t appeara certain ries is in rided into each seor formanguished

-Ohserv-

 generally conds five st in the he third, Primary ad of alates with and the partiatly cuse anda fourth from an arth was ; and nee of tho the same
time contain fossil organic remains, like all those of a later date, or which lie between thens and the surface. The Grey wacke system, otherwise called the Silurian, is the first or lowest in this series, and it is immediately followed by the Old Red Sandstone, which is succeeded in its turn by the Carboniferous syste:n, containing the great Coal Formation, in many respects the inost important of the three.

Of the Sccondary Series.-This is the third in the order of succession, and begins with the New Red Sandstone, and ends with the Cretaceous, or Chalk Formation. Between these are the Lias, and Shelly Limestone, the low r and upper Oolites, and difierent other limestones and sanc:- ones, which Geologists have little difficulty in distinguishing. Though the first in the series is generally cal!ed the New Red Sandstone, it contains other bede of rocl, besides sandstone, and the sandstone is not always red, but often grey, and in many localities they alternate with Corglomerate, Rock Salt, Gypsum, and some other useful minerals.

Of the Tortiary Series.--'This consists of Limestone, Sandstone, Gypsum, Marl Clay, Gravel, and in some localities an inferior kind of coal; hut as difierent heds may have been formed simultancously, though in different places, it would not be easy to arrange them according to a particular orler, or io ascertain what are their respective ages, as comparod with one another.

General Osservations on the Stratified Rocks.-Thongh they succeed one another in a certain order, they are neither all of the same thickness nor superficial extent. Begiming with the lower or Primary Series, and ascending to the upper or 'Tertiary, they gradually diminish in both respects, and in any extensive valley, bounded by great mountain chains, the strata may not be unfitly compared to a seriess of cups placed within one another, aud all regularly diminishing in size, so that the brim of the largest rises higher than that of the next, and so on of all the rest to the last, which has not only a lessis area, hut also a less elevation than nny of the ohers. Though the strata of the pumary series are the lowest in proint of order, and actually underlie all the rest,
their edges run up on the flanks of the mountains to a much greater height than those of any of the rest, and it is there chiefly that they are exposed to view. The Transition Series rests on the Primary, and the edges of the Greywacke, or Silurian System, are also scen nost frequently in the higher grounds, though much below those of the Gneiss and Mica Slate. The ellges of the Secondary Strata are still lower than those of the Jransition, and the 'Tertiary are lower than any of the rest. 'Ihe Primary Series commencing on the shoulders of the higher mountains, where the' Crystalline masses, have broken through them, and sloping downwards till they meet with the first of the 'Iransition Series, they enter the latter, and of course disappear, and runniug along at a great depth below the surface, thoy again emerge, and come into view on the shoulder of tie next mountain ridge, which bounds the opposite site of the valley. 'The 'ramsition, and all the rest in succession, follow in their turns, so that near their ellges, they rise to the surface, and are exposed to view, while the intervening space is generaily covered. The consequence is, that the superficial extent of every succeding series is proportionally less than that of its more immediato preaccessor; and for the most part their thickaess is reduced as much as their area.

It is chiefly to this contraction of the area of the strata, that we owe our acquaintance with the structure of the Earth. Had it not been for this, the older beds would have been inaccessible to our researches, on account of their depth, and we must have either been wholly ignorant of; or but very imperfectly acquainted with thein. It is not, however, on the shoulders of the great mountains only, that tho primary rocks come into view. Portions of them have been occasionally forced upwards into view, in the low grounds, and there are different locaities in whichatient mountains of the primary order have subsided to the level of the lower grounds, and left nothing but their original summits and shoulcers uncovered, to tell where they have been; and there we may meet with the primary stratal restiag against tho crystallino masses, which hare penetrated through them.

The order of the strata is seldom inverted, but sometimes a particular group, and at other times a whole system, may be wanting; and it frequently happens that strata which are wanting in one place, are present in another, and vice versa; in consequence of which arrangement we may meet with beds of an older date, where we expected to find inore recent formations, while in other situations the recent formations are wantirg, and the intermediate or even the ancient rise to the surface.

Though the different formations follow the order of superposition, they do not all lie in the same planes. They are not parallel to one another. The beds of ene series, or group, have in many instances changed from a horizontal to an inclined, or even a vertical position, before the succeeding group was deposited; and the conserquence is, that the edges of the one come in contact with the inclined face of the other, and form angles of greater or less acutenes. with them.

Again, from the greywacke fermation, which is the first of the transition, to the last of the tertiary, all the strata are fossiliferous, or contain fossil organic remains; and these remains, whether animal or vegetable, though they have a general resemblance, are not precisely alike, or the same in all, but appear to differ specifically in different formations. 'The organic remains which oc er in the transition series, which contains the oldest fossiliferous strata, are not the same with those of the secondary scries; and those of the secondary differ as much, if not more, from those of the tertiary; and even the remains of the earlier periods of the tertiary series, are not the same with those of the later periods, when they begin to approximate more nearly to existing races, and may in many instances be identified with them. There thus appears to have been a constant change in organic life, whether vereiable oi animal, from the earliest times in which the earth was inhabited, till that in which existing races made their first appearance; and though the two extrencs in the chain of being are specifcally dissimilar, they have not only a generic resemblance, but are connecte *
by a ehain of intermediate links, in which there is neither any want of continuity, nor any violent or abrupt tansition from one to another; but an casy gradation from type to type, till we almost insensibly arrive at the termination. 'Whese faets are of the uthost importane in the study of Geology, from the light which they throw on the carly eondition and revolutions of the carth.

Of the Coralline Roces.-'This class of rocks has been formed by the labours of marine insects, denominated Zoophites, beeause they unite some of the peceliar properties of plants with those of animals. Like plants they are attached to the rock, but not for the same purpose; for they do not extract from it the means of their subsistence, but inerease its dimensions; and like plants they may be propagated by a divisio: of their parts, as well as by reproduction.
'I'hey belong to the order or radiated animals; and are divided into a number of genera, or raees, which difier from one another in rogard to their form, size, and habits. They consist of a kind of gelatinous substance, which is eonstrueted on the simplest form of organization, and possess the power of secreting the carbonate of line, of which they form habiitations for themselves on the surface of the rook; leaving them as an addition to the mass, at their decease. In this way does every generation, after spending an ephemeral cxistence, contribute something to the common property, which aecordingly continues to advance in its progress upwards, til! it rises to the surface of the water, when it stops,

A coral rect is - massy wall, raised frolli the bottom of the sen on beilt on the top of some submarine mountain, und wan. .fty encloses more or less perfectly a certain area, when theneater or sualler, according to the taste or abilities of the colony cuployed in its construction. Some are only a few miles in length, while others extend to as many hundreds. Some are ereeted in the form of a circle, others in that of an oval, and others again in that of a erescent, with its convex sido facing the current. But whether this diversity is the effect of accident, or results frota the sararity of insthet, in movidinf amainst the influence of currents, has ant boci. ascortained.

The outer or exposed face of the wall generally rises more abruptly, while the oilher slopes toward the centre, which not only gives a stronger support to the mass, against the force of the eurrent, but assists in filling up the interior, and bringing it somer to the form of an island. As the polypifer does not live out of water, the upward progress of the building ecases when it reaches the surface; but is continued laterally towards the interior, till, with the addition of sand and other materials washed in hy the tides, the space is filled up, and the completion of the worl, is left to the elements. Sand, mud, and other substances, ilre deposited on the reef, till it rises above water, and becomes dry ground. Seeds are floated te it by the waves, or dropt upon it hy birds, and it becomes in time clothed with vegetation.
In this mama, have many islands been already formed, and others are sow in the ceurse of being formed, in the eque.t.orial seas; but it does not follow, as some Geologists allege, that these are additions to the solid globe. They are only a restoration of what hoe previously been taker from it, and moved from one place to another. The carbonate of lime secreted by the polypifer, is carried down from the land, and beld in solution by the waters of the sea; and all that the coral insect accomplishes, is its separation from the waters, and restoration to solidity, a change that would have been accomplished by precipitation or otherwise, when the sea became overcharged with it.
If the statement of Mr. Darwin be correct, that the polypifer does not live at a greater depth than 200 feet below the surface, there must either be many submarine mountains in the tropical seas, whose pointed summits serve as foundations for coral reefs, or the bed of these scas must have repeatedly subsided, as many of the recfs are now known to be upwards of 1000 feet in height, below the waters; but it is not improbable that the love of thener, as oflul happens, has had some influence in modifying the fucts on which that opinion is founded. There can be little loubt that numbers of the ancient limestone rocks are coralline st:uctures, but it would be difficult to determine what proportion of them
are to be referred to this origin. Many of them are stratified, and therefore sedimentary; but others of them are massive, and may belong to this class, although they have been altered; and there are others again, about which there cannot he the slightest doubt.

Of the Crystalline Rocis. - Next to the Stratifiel, the Crystalline Rocks are the most numerous and important; and their formation has exercised the greatest influence in modifyiug the condition of the crust of the earth. They are distinguishod by their compact and crystalline structure, and the total absence of organic remains.

There can be little donbt that they have had an igneons origin; and that they have been thrown up from the interion of the earth in a molted state, which has oceasionally given to them an appearance of stratification. When a stream of liquid minerals issues from the same nperture at different times, and ovarllows a space aromat the nperturo at every new eruption, a succession of beds will be formed, as it they had been deposited in water. The eurrents of lava, .which issue from the craters of active volcanoes, are often laid in heds over one another.

The erystalline rocks have been divided into two classes by Geologists, and distimguished by the names of Plutnnic and Volcanic. Thoze which belong to the first chass are supposed to have been thrown up from a greater depth in the interior of the earth, and this is iatended to be expressed by their name.
Granite is the principal of the plutonic rocks, and thero are several varieties of it, which difter chiefly it the sizo of their cerstals and the how of their feldepar. 'lhis rock has been supposed by some to form the mulens of the earth, berause it appears to underlie all other rocks, madevidently earth, if it have a nuclens, must bo composed of materinla of far greater density than those of granite. It is probable, howerer, that it furms the inher cont of the crust of the earth, mad encloses within it the metullie bases of all the rocks. So firr tis is known, it underlies all the stratified
rocks; but in most of tho grent mountain chains it has risen upwards, ruptured and dislocated all the strata, forced its wey through them, and pushed its jagged and pinnacled summits to a great height above the highest elevation to which their uplifeed and broken edges attain.
Syonite is another of the plutenic rocks. It bears a striking rosemblance to granite, for which it may be very easily mistaken; but its inineral composition is considerably different, as it coutains horublende, which is wanting in granite, and has no mica which granite has.

The principal of the volcanic rocks are, Porphyry, Trap, Grecustone, Basalt, Amygdaloid. Sie, which are intimately connected, and frequently graduate into one another. They differ from the plutonic rocks in being less perfectiy crystallized, and more porous in their texture, which is supposed to have been occasioned by the expansion of gases confined in them, at the time of their refirigeration. 'They are bolieved to have cooled more rapidly, and under an inferio: degree of compression, which admitted of a greater exparision of the gases; fund from this, in connection with other circumstances, it has been inferred that they did not ascend from the same depth, and that the disturbing forces which pushed them upwards were seated proportionally nearer to the surfice.

This reasoantrg is cortainly ingenious, ond it may be just; hut there wre some fucts which seem at loast to militato against it. In the Audes, for instance, tho porplyyry has been thrown up subsequently to tho granite, dud it rises to an immense height above it; and ns it has evidently passed through the granite, it mast have either ascended from tho interior of the mass, or it must have como fiom heneath it. It may bo taken for granite nitored by voleanic agency, bus it contains minerals that aronot in the granite. Again, thero are voins of trap) in the Islo of Arran, which siphing from tho very base of tho mountuin, and penetrato upwaseds through the gitatite nass, tiai they ctuergo in tho fofly sum. mits of tho Goatfell. Their formation mast therefurg have been pusterior to that of the granito mass; mad fhey appear
at least to have come from below it. Were we allowed oc speculate about their different origins, we might pe:haps suppose that the plutonic masses have been thrown up in a more general, and the volcanic in a local or more limited disturbance; and that the depth in the interior, from which they have ascended, depended on circumstances. The plutonic: masses usually rise in extended and lofty mouritain chains; while the volcanic rocks have a variety of forms. They are common in all parts of the world, and form the majority of the secondary and inferior elevations, which serve to diversify the surface of the earth. Sometimes they intersect a district in low sykes, which do little more than give a swelling and undulating appearance to the ground. Sometimes they stand up in majeatic columns; and at other times rise in bold relief from the middle of a plain, in lofty cones, with pointed, trime.ated, or crater-shaped summits, and having bothing in their neighbourhood that bears an affinity to them, either in composition, structure, or form.

Whatever may be the age of the crystalline rocks at an inaccessible depth below the surfince, all those parts of them which appoar above the sedimentary strata have been elevated subsequently to the formation of the latter; and their intrusion anon; them has, in most instances, been forcible. Besides, they havo not all risen contemporanecusly from the interior, hut at different times. Masses of granite are occasionally intersected hy walls of porphyry, nud dykes of trap; and very often by granite veins, which difier from the masa in hue and texture; and thore are instances in which older veins are cut by others of the samo materials, but of a more recent date. "Nem. Hedelherg," mays a well informel writer, in the Fidin. Rev. vol. 1xix. p. 4es, "the granite convists of three varieties: ono consisting oi the general masil; a second occurring in veins which cut throngh the mass thone; and a third in other veins entting through both the original mass and the first set of veins, Wo recollect
 ne:u Dublin, where also, the granite mass is cut througia by two nets of veins differest in hue and texture. 'There is
allowed to t pe:haps n upin'a re limited om which The plumourtain of forms. form the ns, which imes they nore than g ground. at other , in lofty summits, ars all afform.
ks at an s of them en elevaI their inforcible. from the are ocdykes of from the in which , but of a 11 inform10 grauite general ough the ugh both recollect Koming, rougia by There is
another instance at Mount Battock, in the Eastern Grampians. That the matter of these veins was ejected from the interior in a melted state, appears from the compactness with which they are joined to the original mass, and the manner in which they have penetrated every fissure and interstice, along their course; and as they are sometimes of great thickness, their injection into the mass must have increased its volume, and the dimensions of the mountain of which it forms the major part.

B00K II.

OF THE PHYSICAL REVOLUTIONS WHICH THE EARTH HAS UNDERGONE.

It would be impossible to form anyting like a probable theory of the earth, or one that is cither consistent with well cstablished fucts, of calculated to account for the:n, without admitting that it has umlergone sin number of extensive revolutions; and a general acquaintance with these would bo useful to $u s$, in giving a more full and detailed account of the discoverios of Geulogy.

CHAP. I.

PROOFS THAT THE EARTH HAS UNDERGONE A NOMBEA OF EXTENSIVE REVOLUTIONS BLFORE COMING TOITS FRESENT STATE OF REST.
§ 1. It is generally if not universally admitted that the Stratified Rocks are aqueous dep sits, and must have been origiunlly formed in a hoizontai position, or one that was very slighty inclined; for it is in this form that all sediments aro deposited in water. But instead of remaiining in a horizontal position, a great proportion of the strata have been fractured, dishocated, and thrown into courfusion, in ahmost every variety of way; which cannot be accounted for on any other supposition than that of having been necomplished by some very powerfin and extensive disturbance.
§ 2. Some have indect alleged, that, as the apparently dislocated condit of the strata serves diflerent important purposes in the cconomy of unture, they may havo been origimaily formed in that state, as the state that was on the vithole best adapted to the end of their existence. But besides
that they exhibit many unequivocal tokens of their dismemberment, they contain, as was formerly stated, a vast number and endless variety of organic remains, both animal and vegetable; and these in such a state of preservation that the skilful and experieneed Naturalist seldon experienees any great difficulty in referring the specimens to the different orders, and even genera and species, of the plants and animals to which they belong. This is a well established fact, and cannot be denied; but some have supposeci these remains to be a kind of suliterranean lusus naturo. This, ridiculous as it may appear, is infmitely less so than that which the flippant ighorance of Voltaire aitempted to palm upon the age in which he lived, as a satisfactory solution of a dificulty which had puzzled some of the greatest inen of his time. namely, that the fossil shells of Mount Cenis, which were then beginning to attract attention, were either musele shells from the neighbouring Lakes, though known to have been oyster shells, or that they had fallen from the hats of weary pilgrims, in theip passage to and from the Holy Land, Had these remains been found only near the surface of the earth, they could not have been almisted as legitimate evidence of its ancient revolutions; but they occur at a great depth below the surface, and are often enclosed in the heart of its most solid and compact rocks; and as it does not appear that they have any particular function to porform in the oconomy of mature, we must either infor that she has formed tiom where they are in some manceountable freak, as a sort of purodien on her living productions, or that they were oneo actual plants und animals, and have been entombed in some mighty revolution of the carth; and ano man of intelligence will hessitate for a momont which alternative to alopt.
'Thoush ontiro specinons, both of plants sum animnals of ditherent orders, no oceasionally diseovered in a fossil stute, mutilated and partially deroyed frighnents are monch morat common. 'I'hoy aresometimes fomml anerlisted with marine, Incustrine, or fluvintile productions, as if they had been lying in whter before being enclosed in the heart of the strata; while instances oceur in which animals nppear to have been
entombed alive, as they are not only unchanged in appearance, but even retain the most vivid indications of those muscular contortions which usually accompany a violent death. Trees and plants of smaller dinensions oceur in' a Ligh state of preservation, having their purest and most delicate parts entire; while others have been fractured end torn io pieces, and their dissevered parts huddled and jammed together into a mass, as if they had been subjeeted to tho action of a powerful current. Sucli facts show clearly that the crust of the carih has undergone one of more revolutions. Without some great ehange the lower strata could neither have been brought to the surface, nor could the plants that onee grew, and the animals that moved on the face of the earth, havo found their way to a depth of hundreds of feet below it, and into the heart of the most solid and compact rocks.
§ 3. The same kind of evidence that will prove the oceurrence of one revolution, will prove that of a mumber. After the derangement of one series of strata, another series has in diflerent instances been deposited over it; and in all such cases the lower heds of the more recent serins havo taken their shmpe from the unequal flom formed by the dislocated fragments of the more aucient series. Every series can thecefore be distinguished, both fiom the one that preceded and the one that follows it, by this circumstance, and also by the state and direction of its heds. Had the strata resnuined in their origimal positions, this comld not have been the case, for they would have all rom in parallel lines, being regulaty phaced over one another like the lenves of a book when laiel on its side; mul it would have been impossible to have detomined wheroone series ended and another began. Desides, as has been repuntedly stated ahready, the organad remains of one series of stratu are selfom the same with those of nother. 'This slows that tho earth hus passed rhough a mambor of mutations, hefore coming to its present stato; and that in the course of these nutations, it was better
 olte. It is partly by means of these phenomena that wo aro
in appearof those a violent occur in a most deured and and juneded to the carly that polutions. d neither lants that ce of the sof feet compact
he oscur-- After es has in all such vo takeir slocated ries can recedes and also ratia reve been s, being a books sible to - liegan. e organe with passed present sibetter iflurent wo aro
ablo to determine the relative ages of the different formations.
Some contend for the Diluvian origin of the greater part if not the whole of the Stratified Rocks; but there are unanswerable objections to this theory. Nothing can be more evident than this, that the Crystalline masses have burst through the superincumbent strata, at different periocls. There have been different sets of extensive eruptions, which after having reached what was really the surfuce of the earth, at their respective dates, and overflowed it to a greater or less distunce from their different centres, have been allowed to cool and harden into solid and compact rocks, before other strati, in many cases of groat thickness, wero deposited over them.
In every series, and in many of their subdivisions, there are occasionally beds of breceie, and frequently vast formations of conglomerate, both of which are composed of frugments of other rocks, cemented and cempacted into a soiid mass. Had these ieen'all formed by the deluge, they inust in general have contaned fragments of all the rocks that were in existence at the hegiming of that event, and of no other. 'They could not have been composed of fragments of rocks that were made on the same oceasion with themselves. The polbbles of the conglomerates have been first broken up, and then rolled in water till they became round and polished, before being again denosited in their existing form; mud all the rocks, of which they contan pieces, must have been in existence befure this process commenced. 'They appear to lave been formed at difiereut times, as those which belong to one series contuin only fragments of rocks of an older date then themselves; and their respective ages can bo determined by this criterion.
Another clear and decisive proof that the strata could not all have becn formed hy the delige, i.s the feet, that the footmarks of varions muimals havo heen discowered on rocks, in diflerent parts of the world, over which other strata of great thickness have been subsequently deposited. 'These impregsions must have been made when the rocks were in a
soft and pasty condition, or in a state to admit of them; but they could not have been made during the time of the deluge, when the whole face of the earth was inundated; and it is equally certain that they and the strata which rest upon them could not have been deposited at the same time. When birds and beasts were walking over them, they must either have been uncovered, or at the most but lightly covered sy water; and they must have been deeply covered iyy water afterwards, or the nore recent strata could not have been laid down upon them. It is inferred from these and other facts which inight be produced, that the earth has undergone a number of revolutions.
§ 4. According to Dr. Lyell, who is high authority in Geological questions, the mutations of the earth have been effected in a gradual and imperceptible manner, rather than by paroxysms. He belicered that the agents are still in operation which have in the lapse of time produced these mighty changes, and consequently that the changes are still in progress, and must continue so while the world remains in its present state. He does not indeed avowedly assail the theory of violent and periodical revolutisns, but artfully endeavours to sap its foundation, by collecting a vast number of iuportant facts, and exhibiting them in a light that is favourable to his views; while everything that militates against these views is passed in silence. He has shown a disposition rather to blink the question, than to encounter its difficulties. His industry in collecting ficts descrves the highest praise, and he has certainly made a very dexterous use of them in support of the unceasing mutation of the earth,

Thot a number at least of the elements of change have existed, and been in operation from the earliest times to the present day, is undeniable; but besides these there have been other and still more powerful agents, ateting intermittently. Ever sinee the bed of the ocean was formed, and its waters collected into it, they have boen acting on its shores, and producing partial changes along the const, and innmmerable rivers have beeurolling down masses of mud and snnd, and deprositing them within its limits; and the obvious ten-
dency of these operations is to diminish its depth, to increaso its area, and at the same time to contract the boundaries of the dry land. Place any solid body in water, and the latter will be raised in proportion to the volume of that body; and if the trough have slopiag sides, like the greater part of tho sea shore, the surface of the water will also be enlarged. The sea ought therefore to be constantly rising to a higher level from the masses of sediment anno :hly deposited in it, and increasing on the limits of the dry land. But instead of this, there is no fuct better established in Geological science, than that the sea has fallen from time to time, and that the height and extent of the dry land have increased in proportion. It is equally certain that the land and sea have repeatedly changed places, and this could only have been occasioned by some violent and extensive convulsion.
'That the disturbing forees should have acted intermittently, is in eccordance with the phenomena of voleanic eruptions: they have their paroxysins and their times of repose, though the circuntstances by which these are determined, are in all probability beyond our researeh.

Besides, though some of the agents which have assisted in changing the crust of the earth are still in operation, they have for ages past lost inuch of their ancient intensity. The greatest masses known to have been thrown up in modern times from the interior of the earth, siak into insignificance when compared with the lofty mountain chains, which rose up in a single paroxysm of the disturbing forces of ancient times. These chains hate no doubt, in many instances, been subsequently increased by the injection of additional matter into their interior, in the form of veins; but the original or parent mass, which always constitutes by far the greater part of the whole, has invariably risen in one convilsion. The primary mountain chains are numerous, and they evidently r. 3 in one general convulsion of the earth. 'I'hero have also been extensive upliftings at later periods, as apnears from the fitetures and !lislocations of: the strata; and certiary deposits are often found in wery clevated situations, which shows clearly, either that the waters, after having
fallen to a much lower leve!, had again risen to these heights, or that the land had subsided beiow the level of the waters, and subsequently regained its present position. These facts are universally admitted; and they show that the earth has undergone revolutions, in ancient times. fiom which it now appears to be exempted; and therefore that the elements of these revolutions have either crased to operate oi lost a great portion of their intensity.

Allowing the slow and gradual rise which is said to be taking place in the Scandinavian Peninsula to be fally proved, it is but a local and isolated fact, and cannot support a general theory of the earth. But has it been fairly established? May it not be found on a more careful enquiry to be a false assumption? 'That the relative position of the land and water in the Gulf of Bothmia is subject to change may be a fact, and yet result from the depression of the water in that particular loculity, rather than from the rising of the land. The Baltic is an inland sea, connectod with the Ocean by a narrow channol, which is in a great measure blocked up by islands. Many large rivers fall into it, and it loses comparatively little by evaporation. Now, should the channel be too narrow to allow the fiee exit of its superabundant waters, they will necessarily stand at a higher level than those of the Ocean; and should either the breadth or the depth of the channel be inereasing, the level of the water will become proportionably lower, as a matter of course. But Dr. Lyell alleges, that while the land is rising at the Northern extremity of the Gulf, it is subsiding it the Southern; and if so, this solution is inac' nissible. 'The fiet however does not appear to be filly established.
'I'here is mother way of solving the difficulty, which is not liable to the same objection: "The waters of the Baltic being ahnost fresh, must stand about one-fortieth part higher, above the level of the Ocean, in order to preerve the hydrostatic equilibrium. Were the Baltic, therefore, esti' 'ied to have only a depth of forty fathoms, it would subs. te one fathon! upon becoming cqually salt as the Ocean. May we not therefore suppose that it is becoming salter gra-
dually, and consequently sinking in the same proportion?" (Edin. Lev. vol. xxiv., p. 17 ()

The waters of the German Ocean contain about three per cent. of saline matter, while those ot the Baltic contain little more than one, and are consequently of an inferior specifie gravity; and the waters of the Gulfs of Bothnia and Finland are still fresher than those of the Baltie, and may be consequently liable to greater fluctuations. The saltness of both depends partly on the dircetion of the wind, and must therefore be variable. With a high Westerly wind, it increases, and the level of the water is also raised, beeause the waters of the German Ocean are driven in; and the opposite efieets ara produced by a high Easterly wind, because it drives out the waters. Whether the general salmess of the Baltic be increasing or remaining stationary is not known, but there is reason to believe that it is increasing. Professor Wilke found that it varied from 1.0047 to 1.0060 , with an Easterly wind, and rose to 1.0189 when Westerly winds had for some time prevailed. And when M. Von Buch afterwards examined it, he found it to be 1.00937 . The former drew the water which he examined from the Sound, in the neighbourhood of Landscrona; and the other from the Baltic, of the island of Laaland. 'The latter should of course be the freshest of the two, and as it happens to be a little salter than the former, it favours the supposition that the grneral saltness of the Baltic may be incrensing 1 its level falling a the same proportion.
'That the level of the Norwegian eoast has been stationary for the last 800 yearg is evident from this, that Monkholm in the harbour of Drontheim, on which Canute the Great erected a monastery in 1028 , has still the same area and the same height above the level of the sea as at that time. If therefore the land $\mathrm{E} \sim$ rising, as Dr. Lyell supposes along the Gulf of Bothnia, the declivity of that side of the peninsula must be dimi, ishing, and that of the other side increasing. Sut the Dr. atheges that the rising is continued along the whole length of the peninsula from its souvern to its northern extremities. "The upheaving movement may be con-
tinued," says he, "from Gotenburg tn Torneo, and from thence to North Cape, the rate of elevation increasing always as we proceed farther Northwards." If it be rising at all at the rats which he supposes in the Gulf of Bothnia, the rate of elevation must either be increasing as we proceed Northwards, and have already attained to many hundreds of' fect on the Northern coast, or there must be some point in the intervening space where it comes to its maximum, and begins to decrease; and in this phace there must be a chasm of coistinually incressing dimensions; for tho agh the sedimentary strata possess a certain deofrec of clasticity, and may be bent upwards into the form of an areh, that elastivity has its limits, which cannot be passed without producing a fracture, and in this case we may reasonably believe the limits to have been exceeded. The terraces of Altonfiord on the Northern coast, show that the land has risen in that quarter, but neither to the height nor yet in the manner that Dr. Lyell supposes. The rise has not been continuou* but intermittent; it has been occasioned by two seprarate paroxysms of the disturbing forws, and they have operated in both with more intensity :- se one direction than in the other, for the terraces are not quite horizontal, and the one is nore inclined than the other. 'They are much more ancient than the supposed upheavals on the' If of Bothnia, and their elevation is much below what it should have been on Dr. Lyell's supposition.
§ 5. While there are many facts which tend to prove that the earth has undergone a series of great revolutions, separated from one another by intervening periods of comparative tranquillity, there is no decisive evidence to the contrary; and we may therefore believe that such revolutions have occurred in ancient times, till the contrary be proved, or till the effects attributed to these revolutions be otherwise accounted for. It also appears that a number at least, if not each of theso revolutiois, have been respec "vely accompanied by extensive inmmentions or submersions of the land, in which whole
 quently intervene between one division of the strata and
another, and from the lines by which they are separated; and Conglomerates are only inasses of gravel, which, after being deposited in the localities they ocenpy, have been cemented and compacted into a species of rock. They have in all instances been deposited by currents of sufficient strength and rupidity to roll the pebbles till more or less polished, and to hold , ae finer particles in suspensio t till the rougher settled and became consolidated. Beds of conglomerate miglit have heen formed withont any inundation, had pebble:s catited in sufficient numbers, aud been so disposed as to admit of eonsolidation without the action of a powerful current. But the pebbles of all Conglomerates have been rounded and polished by rubbing upon ore another, and we know of no other agents, but rapid currents, which could have aceomplished this; aud the great extent and thickness of such rocks, and their oceurrence in every quarter of the carth, exclude the idea of their being formed by the action of flnviatile eurrents. And though we should impute them to the operation of occanie currents, it would be impossible to aceount for their occurmenco only at particular times, and that in all parts of the world, without assuming the existence of eurrents at these particular times, which did not exist at any otler time.
§ 6. While the earth was underyoing a series of revolutions, it was gradually approaching a more tranquil and setted condition; and its organised productions, both animal and vegetable, were making a similns progress, and becoming more and more adapted to the peaceful and inproved condition to which it ultimately attamed. At the commencement of animal and vegetable life, the simplest forms of organization predominated; and they gradually receded before the approach of more complicated and finished types. When the earlier races became extinct, and their remains cease it occur in the strata, later races come in the 1 place; and a continual and unbroken succession of races, gradually approaching to a nearer resemblance to those which still exist in the carth, was coming in and gring ont, from the begin. ning to the end of the revolutionary ages.

In the fossil remains of the Tertiary era, we hare the clearest ovidence of the existence of various races of animals, which seen to have disappenred in the great catastrowhe in which it closed, as their remains do not ocen in any deposits of a later date. 'There is no proof' whatever of their existenco subsequent to that ratastrophe, and it is therefore concluded that they derished in it. 'That eatnstrophe was accompranied by an estensive if" nut a universal inumbation, and this fact is sufficient to acconent for the destruction of so many races of animals. Other causesmay have contributed, along with it, to their destruction; bat it is not necessary to seareh for them. There have been other and more ancient iaunlations, but probably not upon the sume seale, and also extensive destructions of amimal life; and though it would be difienult at this distance of time to estabish a positive commection between these earlier submersions and destructions, yet as striking changes took phace in organic existence, cither simultaneonsly with the formation of extensive heds of comglomerate, of at no great listance from it, it is at least probable, if not cortain, that they had a commorr arigin.

"HAP. II

There have been two distinct classes of agents engrged in the revolutions which the earth has mudergone-an external, and internal; or one that has acted on the sumfece only, sumb another which lime nfleeted the surfice by acting in the interior. 'There appene to have henn three of the former, namely: Wiater. Wind, und dandslips: and two of the latPer, manely: I Cat atad Compression.
§ 1. Wrater has exertent a powerfí inflenere on the surfike of the earth. It has transported vast masses of mater
 them in dibiorent proportions, mad doposited them in anew tiom. 'Thbre are times when every raming stremu cuts
hare the es of ani-catastrooccilr in latever of and it is at entasmiver;al dhe demy have it is not ther and he sume ifc; and to estanersio:1s organic 1 of exce from a com-

OF TIIE ternal, y, and the inormer, he lat-

Array parts of its beaks of deepens its channel, and removes the materials detached from their bed to a diferent locality, and the more majestic and raphd the current, afl other things being equal, the erventer is its exeavating and transporting power. Dr. Lyell hats shown, in his Principles of Geology, that the Ganges alone carries ammally to the sea mamount of sediment sutheient to cover ©CO acress of land, to the depth of' 500 feet. This may be rogaried as an extrene caso, but it shows what a cmrent of water can do.
'That a great part of the dry land has been repeatedly submerged, since it first rose above the level of the sea, has been alrearly stated; and it is clear from the composition of a vast proportion of the stiata which constitute the crust of tho carth. Marine prodnctions, both animal and vegetable, are breserved in great numbers and variety in localities which are now thousands of feet nbove the levol of the sea; and the sea must either have risen to them, or they must have desemmed to it; for it could not have deposited its contents upon thom muless its waters had overllowed them nt the time. In many places tho ohler strata are intersected by deop and astensive valleys, which have heen scooped ont since the time wf their deposition; and parts only of this formation remain, to attest tho fuet of its past cxistenee. If, in passing over an madnlating comary, wo uxamine the composition of its rising graunds, we will often met not only with atencral simblaty in their structme, but such a perfere comespondruco hetween one and another, in regated to the n'mber, thekbes., orkr, mul inclination, afthen respective strata, its to place theire incntity in the clearest light, as remaininer purtanf an ancient and romtimous series of strutu, in whio intersmeting lines have heen excarated by the netion of somb powerfill chront.

It is casy to nermant lim the excavation of valleys through crensive beris of homizontal wratia. When tho grount, after hating hoon drenched with whtor, drios nud hardens, it is
 Alowed white in this state every reant hecomes a chatumel, which is frogresmitely entarged by the forme of the cur-
rent, till masses of gravel and ponderous fragments riloosened rocks, rolling through it, give a greatly increased and accelerating rapidity to the process of demolition, and render the destruction fur more extensive than it otherwise would have been.

In this way have whole formations been broken up and removed from particular places; but there are places in which they have partially escaped, and in which their romains continue as undoubted memorials of their past existence, and of the mighty changes which the localities have undergone. Intersecting channels have been first opened, and in consequence of their enlargement the intervening spaces have been gradually redacel, till they have cither disappeared or been left in smali rounded hills, by the retreating waters, at the close of the catastroplic. In some inst unces, valleys and troughs thus excavated have been partially filled by mere recent deposits, but in others they are still empty; and it is easy to ascertain the characters of tho strata, and the series or group to which they belong.

In all enses of denudation a change must oceur in more localities than one, for the materials removecifrom one plaen must be deposited in nnother, and the sarface of the later may be as much changed ns thint of the former. All such mutations consist chiefly in the shifting of materials from place to place, and the arranging of them in a different order. Nothing is taken from the general mass or ndeded to it, for the lass at one place is always compensated, and no more than compensated, by the gain at another; and in proportion tos the magnitude of the demolition in the one, is the reconstruction in the other.
But, besides acting in this more violent and obvious way, water produces considerable changes in a more gentle and impereeptible mamer. It hohls a proportion of lime, silex, and other arthes, in a state of solution; and in that state all the stremms that run into the sea aro continnally carrying anore or less of these carthes itto that great reservoir. In
 colleeted into brooks and river's, they become impregrated
s rit loosensed and acand render vise would places in h their repast exis:ities have it opened, itervening ve either by the reIn some been parthey are is of tho g. in moro me place he latter All such als from it order. 0 it, for no more portion o recou-
us way, tle and , silex, tate all irrying ir. In cey ary grated
wath these subatances; and when the sea becomes overcharged with them, the execss is necessarily deposited in its bed. It is from the lime thas carricd down to the sea, and held in a state of solution by its waters, that the coral insects and all the difierent races of sltell-fish construct their habitations. I shall have occasion hereafter to show that ine early condition of the earth was much more favourable, then its present state, to these interesting processes; and that they were conducted on a much large: scale, and with fur more rapidity than at presoat.
§ु 2. Considerable changes on the suafuce of the carth have been effected ly the agoucy of the wind. But this has been roo much overlooked by Geologists. There are at present, and there have always heen some where or other, extensive nceans of drifting sand, which are coutirually in motion, and forever breaking up and reconstructing their strata. We have instances of these in the boundless deserts of Northern Africa, in the interion of Arabin, ill Central Λ sin, and in the East Indies. In all these sterile regions, the sand is loc a and continually in motion. 'Those of the Lybian deserts have, from time immemorial, been encroaching on Egypt, till they have at last redneed it to a helt of 600 miles in Jength, and not nare than 10 in lreadth, at an average. In former times it was mach more extensive, and yielded sulsistence tu a dense population, of whose skill and industry many mefuivocal vestiges remain, ats proofs of the chauge which the country has mulergone." "Nathing," kinys De Non, "con he more melancholy thon to walk over villages that have been swallowed up ly tho sands of tho desert, to trample under foot their roofs, to atrike agninst the smanits of their Minurets, to reflect that yonder were cultivated fields. that here were the dwellings of men, and that all have vanishel." Hh his'Travelsto Bokhara, the ill fited fimmes givew the following accome of the valley of the (Oxns:--. For a ereat part of tho night, our route led as themph bast helde of soft

 chese sand hills, which lie between Bokhat: 1 ant the (an. -
varies in beadtly from twalve to fifteen miles. They wero utterly destitute of vegetation. There was a remarkable noiformity in their shape; the whole of them had that of a horse-shoe, the onter rim presenting itself to the North, the direction from which the winds of the comntry hlow. On this side the mounds slopel, while the interior of the figure was invariably precipitous; but loose sand will ever take its position fiom the prevailing wimts. None of the hills exceeded the height of fifieen or twenty feet, in.ll they all rested on a hard base. The wind was high, and the partictes of sand moved from one momad to another, wheeling in the eddy, or interior of the semicircle, and having now and then, particularly mader the rays of the sum, much the look of water." After having advanced farther into the desert, he sayn, "Some of the sand hills now attained to the height of sixty feet; but at that elevation they were invariubly batre of all vegetation." Vol. iii. 1p. 1, 9, 14.

Insuch comutries, sumd hills take their commencenent from different circumstances. Sometimes a whirlvind ratised a moving columm to the clonds, whide rims to and fro with great rippidity, till it suddenly falls in a shapeless pile, which interecpts the conrse of the winds, and detains the rolling simd in its shelter, till it acemmulates into a monnd of considerablo dimensions. At other times n eommenement is made by the body of a cianel, or of all mifortumate traveller, Who has sumk under the fatignes and privations of the desert, or by any other solid object which chame has doposited; and the procers being commened, goes oit with more or less rapiblity, aceording to circmastances, till cutire beds, of great thicliness, are completely removed from their older positions, and re-ronstructed in diflerent situations.

If such chamges bo going on at present, we may suppose the case to have been the same in the more metient periods of the earth. Eixtonsive regions mast have then been subfoet to degrees of he:t which prowed dentructive of every lisiny thing, and converted the gronnd into sand and dust; and there aro extensive beds of these muterials in some locallices, which could hardly havo been dopentitet by any other

Chey wero cmarkable I that of a North, the low. On the figure rake its hills exall rested urticles of Ig in the and then, k of waesert, he leight of bare of ent from raised a fro with , which rolling f consitent is aveller, desert, al; and less ra' great sitions,
ppose criods n subevery dust; ne lootiler
ngent than the wind. The remains of ancient forests, for instance, are sometimes found standing in immense beds of sandstone, in the very position in which they grew; and any current of water, sufficiently deep and powerful to have deposited such masses of sand about them, would have leveled the forest itself, and swept it before it. The sand has evidently been deposited among the trees by such an agent as a moderate wind, which, after burying them to a certain depth, has ceased to operate. They have died in consequence of having lad their roots too decply covered; and in this situation their wood has wasted away and disappeared, leaviug their hark, which appears to have been more durabe, standing like so many hollow eylinders, as high as their trunks lappened to be covered; and these have heen filled up in their turn, at some subsequent period, ly the passing of a more recent wave of sand over the district.
There are often extensive beds of sand on the sea shore, near to the mouths of considerable rivers, and from theso the wind sometimes forms mounds at no great distance, which are covered with a thin and coarse vegetation, that merely serves to arrest the progress of the rolling sand, and pronote its accumulation in such localitics. An ancient forest, standing in the line of a current of sand, must have had a similar eflect.
The layers of sume sandstone formations bear a striking resemblance to drified snow, and could hardly have been deposited liy any other agent, known to us, than the wind. Some of them lie in one direction, and others in a different one, though no rupture or dislocntion has occurred to produce such in clange, nor any thing else, to which it may be attributed with an uppearance of probability, but a change in the direction and strength of the wind.
There are muny phaces in which there aro extensive beds of rock, which appear to have had this origin.
§ 3. The extermal appearance of the earth seems to have been paranlly affected by handsips. Excepting on a very small scale, these occurrences are at the present time chiefly confined to Alpine regions. They depend much on tho pro-
sition of the strata, and are in some instanees fivourod by their composition. When strata recline on the flank of a monntain, at a very high angle with the horizon, and it some of them be composed of soft anterials, the water enters more easily fom abow, penctrates between them, destroys their adhesion, and ly reducing a softer one to a slippery mod, facilitates the launcls of the superiucumbent mass, into the plan below. After a hoavy fall of man longitudinal rents are openced along the brow of the mountain, which, by affording a reatier admission to tho water, both inereases the weight of the mass and its tembency to move, and habricates the wayson which it is to slide fiom its present position. 'The rents in the surface beenme wider and deepcr, fastening atter fastening gives way, the moving becomes perceptible, is slow at the first, bot inereases with an accelerating rapidity, till the whole breaks up into shatered fragments, and lights in a confused and shapeless mass at the base of the declivity. Such oceurrences are not uneommon among prodipitous mountains, and they are sometimes attended with the most disustrous consequences. M. Simond has given us a most interesting aceonnt of one that happened in Switaerland, in 1805 , when a part of the Rossberes slipt into the Leke of Lawertz, and oceasioned an immense loss both of life and property in the neighbourhood; and of and other which fell into Lake Lucerne, in 1801, and ereated a surge on the opposite shore that drowned ele:en persons, and destroyed a great amount of property.
It is highly propable that landslips were moro frequent in carly times, mud that they have contributed materinlly to the romading of the momatains, aud more especially of the inferior elevations which serve to diversify the face of the eath. 'There is a small romm hill in my beighbomohood which is separated from another of larger dimensions by a narrow villey that rims between them. Both ine eomposed of gypseons elay, und belong to the new red sandstonos formation. 'They appear to he remmants of an extensive deposit which has been in a gront measure swept away, and the valley between thena jo partaily diijud with a diluvian
deposit. ' Γ wo wells were formed in this valley about the sane time, and at no great dista.ace from one another, the first was near the midule of it, and the second close to the base of the lesser hill. Water was obtained a little below the surface in the former, and hefore the diluvian deposit was perforated. The other was commenced on a gente rise that fringes the skirt of the hill on that side, and at a very small depth the workmen fell in with the gypseous elay, and continued to dig without finding water till they descended to the depth of thirty-two fect. Here they found a tree in good preservation, embedded on the surfice of the diluvim deposit, on which the carlier formation was discosered to rest. It thus appears that the side of the hil facing the valley las been precipitous, and that after the valley had begun to be filled with the diluvian formation, a part of the brow of the hill had slipped down. 'This must have happened before the final retreat of the oceun to its present bed, as the rest of the valley hats been subsequently filled by diluwian deposits, to the depth of nearly thirty feet.
This is not likely to be a singulur instance. It is highly probable that the gentle swell that frimges the skirts of so many of onr lower hills had a similar origin. 'Though the mass of a large proportion of these hills hadd a volemic origin, not a few of them are remants of sedimentary beds, which have escaped the catastrophe that swept the greater part away. When these hills rose as islands in the bottom of the water, and the valleys by which they are separated from one another were chamets in which impetuons currents flowed, their sides were precipitons, and sometimes overhanging, and when the waterss subsided and Ifft them without support, the higher parts slipt from their positions, and now lie around their base. 'This has given to many of these hills a more rounded and graceful appearance; but when the adhesion of the upper strata was efreater, they remained in the state in which the water loft them, presenting a bold and ruged face, und frowning oyer the plaman bolow is sullen grandenr.
§ 4. Besides the agents whose influence bas been timited
to the surfice of the earth, there is a class which has powerd fully affected its surface, by acting in its interior; and so far as is yet known, this class consists of heat and compression. They depend mpon cach other, and geucrally act in concert, and cannot therefore bo separately considered.

The Crystalline Rocks have all cone from the interior of the earth, and they have been ejeeted from it in a melted siate, or in a liquid form. 'ihey have not only in many instances overflowed the surface to a greater or less distance from the vent through which they have issued, but have penetrated into all the fissures along the live of their passage upwards, and filled them as other liquids would have done. The matter ejected in volcanic comptions is known to be frenerally in a melted state, and the larger the mass thrown up at a time, the slower is the process of cooling and hardening. It was filty years before the temperature of Jorullo fell to an equilibrium with the surrounding atmosphere.
Whe greatest bifficnly is, to account for the existence of such a heat in the interior of the earth as would suffice to have melted the vast masses that have risen to the surface. But the power of heat to fuse minerals may be greatly increased by means compression, or the resistance presented to the expransion of the heated bodica, and the escape of the gases evolved in the process. It is well known to the burners of lime, that when a large mass of stone is deposited in a elose kiln, where the heat and other elements disengaged are more confined, eare must be taken to keep the heat moderate, lest the whole should be melted and converted into marble, and the kiln made useleas. Sir James ILall liaw shown that the nost refractory substances may be reduced by meats of heat and compression; and that the sane degren of heat, combined with dificerent degrees of conuression, will produce very diflerent rficets on the same substanee. With a heat of 95° of Welfowoud, under a compressive foree equal to the weisht of the athansphere, he converated chalk into limestone. With the same legree of hent, matere
 173 atmosplace, caleareoths spar.

From this it appears that the influence of heat is increased or diminished by the amount of compression to which it is subjected; and consequently, that a less degree of heat, if placed moder an increased pressure, will in some cases produce the very same effect as a greater heat under an inferior pressinc. Allowing the degree of heat to have been less, the resistauce precented to its expansive influence by the immense thickness and tension of the strata, combined with the confinement of the gases evolved, might have increased it to an amount sufficient to have rent the solid globe.
Earthquakes are often felt at a very great distance from the axis of the movement, which shows that they begin at an immense depth in the interior of the earth, and that the heaving is resisted lyy a degree of pressure, of the amount of which we cen bardly forma distinctidea. The Earthquake which destre the city of Caraceas m, 1812, was felt at Honda, on the banks of the Magdalena, a distance of 600 miles, and along the whole c.arse of the movement the agitation was increased ly the tension of the strata, and moderated whenever they are more elastic. In the Cordilleras, where the formations chicfly belong to the primary series, and are in general more compact, the agitation was proportionally more violent; and in the Savamahs, where they are more recent, sud jlossess a greater degree of elasticity, it was more gentle. Another occurred on the coast of Cliili, in November 182, which was felt simultaneously along a line of 1200 miles from North to South.
The hardest and most campact rock, that we know, is intersected by joints, which are easily plerecived when it is broken iuto fraguents, as their sides have invariably a different colour from the more solid parts. 'This change has been produced by the passage of some gaseous substances through these joints, on their way to the surface; and nothing hut an exceedingly powerful pressure could have foreed them through them. Before the strata were relased to the degree to admit of their escape, the expansive power must have aequired an inconceivalle intensity, and met with a resistance which nothing but the crust of the earth could have presented to it.

These terrible convulsions are often productive of great changes on the surface of the earth. In one which oceurred in South Anerica, in 1822, a tract on the coast of Chili, supposed to extend to 100,000 square miles, was permamently raised to the height of several fect above its former level, as eompared in both eases with that of the sea; and part of the same traet was again raised several feet more on the 90 th of February, 1835; and a third time, on the 7 th November, 1837. In consequence of these upraisings, the depth of the sea aloug the whole coast has been diminished, and several rocks that were formerly covered with water have becone exposed. A rematkable instance of the rising of the lind in consequence of an Earthquake occurred in the
of great occurred of Chili, permas former sea; and more on the $7 \mathrm{th}_{1}$ ngs, the inished, Is water 1e rising ed in the a ridge, , which 12 feet or some
vel, the or less st take e firom be rea have e been be so urn to dleave sfilled s lakes ntities to the Ullah tbournd an ed up counAt the
ratiption of 'I'mengrasua, in 1797 , the gromud at the base of the monntain was wont in ditterent places, and floods of muddy athd fethe water burst through the openings, and filled somm *alleys in the neishbourhood to the depth of (i00 leet. But at other times eleations have been aceompanied with comesponding depressions in their immediate vicinty. When the EHah bund rose to the height of 10 fect above its formon level, the meighboming comutry, as far as the cye cean reanh in every direction from the fort ot Sindree, sulsided so low as to be orerllowed by the Indu.s to the average depth of three feet.

One of the most frightiul eruptions on record occurred in the islamd of Sumbawa, in the summer of 1815. When the volcano of 'Pombore was ill a state of the most intense activity. Its roarings were heard from Sumatrit on the ont hand, to 'Iernate on the other, a listanec of 1690 mites. It was not aceompanied by a rising of the land, but such int mense, quanties of scoriae, dust, and ashes, were emitted by it, as to oceasion the most profound darkness in dava, at the distance of from two to three humded miles; and the face of the ocean was so thickly covered with then, at the distance of more than 1000 miles, that it was with dithenti! that vessels could foree their way through them. It thi same time, a great extent of country was overom by a strean of lava; and ont of a population of 12,000 inhabitants. onty 26 escaped with their lives: and the town of 'romboro. with the land i:s the neighbourhood, subsided, and becint: subnerged to the depth of 18 feet.

These, it anst be admitted, are but local changos, or revolutions in miniature; but the distowbing foree that prodnced them d d not differ in kind, from that which raised the Himmaleh irtomanams; and it might have been inereased to a degreesumiciont to have revolutionized the trole eath, to have raised the ocean bed into A pine chains; and to have sunk :he Andes or the Indian Cancasus, far below the
 to rise to their present height, a new lshand rose fiom tha sea, in the neighbourhod of Lmatasehkn, in 1814, to the
height of 3000 fect above the water; and Jorullo rose from the table land of Mexico in 1759, and in the course of four months from the commencement of the eruption, it covered an area of 'from threc to four square aniles, and attained an clevation of 1640 fect.
It was the site of an Indigo and Sugar Plantation till September 1759. In the months of June and July of the sane year, it had been for the first time disturbed by earthquakes and subterrancous sounds, which alarmed the inhabitants. 'These, however, had died avvay, and the tranquillity of the district secmed to be restored; but on the 98 th of September the subterranean sounds were again heard, and becane so frightfui as to imduce the inhabitants to fly for safety; and scarcely had they escaped to the mountains, when the face of the plain began to tadulate, like the waves of the sea, and a space in the centre, about four mil ss square, to rise up in the shape of a dome, to the height of 500 fect. This was divided by a frightful chasm, out of which six cones or peaks arose, the hargest of which attained to the height of 1640 feet above the level of the plain. The whole mass was thrown up in an incandescent state, and it was fifty years before its temperature fell to an equilibrium with the surrounding atmosphere. This shows that the phenomena are occasioned by heat.
§5. Here a question arises to which we camot give a positive answer. How is such a heat produced? In what does it originate? Probability in regard to this point is all that is attainable.

The permanent existence of a great cemtral heat in the interior of the carth, which is assumed by many distinguished Ceologiste, would, if fully absertained, solve a considerable mumber of the difliculties by which the subject is besri; but besides beimg purely hyprothetical, it is liable to very formidable objertions. Had surch a degree of heat been in existence as would have been sumicone to produce such effects, it must, from the difiusive nature of that element, have been approabhing nearer and nower io the surfuce: wherens the temperature of the surfice is evidently lower than it has
rose from se of four it covered ttained an
till Septhe same thquakes habitants. ity of tio eptenuber ceame so fety; and the face sea, and ise up in l'his was cones or reight of ole mass vas fifty with the nomena
tgive a In what int is all guished derable sri; but formiin exiseffects, ve becn ens the it has
frmerly been. The plants and animals, whose remains have been preserved in the older strata, belong to orders which prefer a warner climate, and camot subsist in a temperate, and much less endure the rigours of a cold one; and aceording as we descend to more recent times, we find them supplanted by others that possess a greater power of atcommodating themselves to the present state of chings.

It is alleged that rocks are bad conductors of heat; but unless they cas be shown to be non-conductors, this will not acc uat for the progressive refrigeration of the crust of the earth, wiyl antense heat existing in its interior. Wherever the crystalline masses have intruded among the sedimentary strata, they have altered them to an extent corresponding wan their own dimensions. A dyke of porphyry, trap, or greenstone, passing through coal, converts it into coke, on both sides of its course; through a bed of limestone, it changes it iuto marble; and through greywacke, or claystone, it renfers them schistose. Now, if the heat of an injected vein of incandescent minerals of moderate thickness will penetrate the aljoining rocks along its course, if it diffuse itself to a distance on both sides among these rocks, and give them somewhat of a crystalline appearance, what could prevent it from passing from the nuclcus of the earth iato its crust? Some days before the great eruption of Cotopaxi, in 1803, the snow which had rested upon it for ages, and accumulated to a great depth, disappeared from its sides in one night; which shows that before the heat got vent, or while it was under a high pressure, it diffused itself through the mass of the peak, and raised its temperature to a great degree. A vast anount of heat must have been absorbed in the melting of the snov, as there are few chenges in which more is expended; yet the temperature of the mountain was kept up till tho snew disappeared, and much of the water was converted into steam. It would be difficult to reconcile this fact with the confinement of a powerful heat in the interior of the earth. Allowing rocks to be bad colductors, no one can deny that they will transmit and retain heat; and if the mass of a large volcmic mountain may be heated, a
()rmanemt heat in the interion of the earth mast in the course w" time make its way to the surfiace, and reduce the whote (1) all cquiliprimı.

Besides, admitting the existence of a central heat, it wonld ta inmossible to account for its intense activity at one time, and total or almost total ine ivity at another. In whatever the disturhing forces origin: c , they are subject to effervescence. 'They slumber at are time, and act with intense energy at mother. Nothing can be more certain than this, that voleanic agency is intermittent; that it has its times of atctivity, and its times of repose. If plutonic and voleanio agency bo mot essentially the same, they are evidently atteaded with similar phenomena; and we believe that they are subject to the same laws. The dislocated strata liave not risen in int easy and imperceptible mamer to their present positions. One series has been tilted up, innd placed on thein deges, or at agreater or less allele with the horizon, hefore another was doposited over it. A more recent series have been subsequentiy formed, in a state of prace; and after hatving uttained to a certain thickness, they have been ruptured and displaced by a new convalsion.

Now, the theory of a permanent rentrat heat does not accomet for oreasionnl comvolsions. 'Tho idea that paroxysms result tron pressure is matisfirtory for whatever changes take place in the crast of the carfl, they do not originate in any additional pressure. The force of compression is invarimbly the same. Nothing is either udded to or taken from the mean density of the enth. Whatever is ileposited in one locality has leen transported from another; new combbinntions result from equivalent deempositions; and the geural mans remanins tho smme. For these rensens, the theory III question apreats to be imadmissable.

But we may sureed in overturning one system withons being uhle to replace it by in hetter; fere even this bergative achiovement is tur importunt servie to the couse of fouth.
 mite of error, make the truth lie within a marower circto. ath mako its discovery both easier and more certain. 'J'hero
ean be no doubt that the earth contains within its own bowels all the clements of the great revolutions it appears to have undergone, and also the means of rousing these elements into the most intense activity. Unslacked lime, at the temperature of the atmosphere, neither emits licat nor undergoes any change whice it is kept perfectly dry, and the air is exclurled from it; but no soonc: does it absorb water than it spontanconsly heats, cracks, expands, and dissolves into powder. Now, if such phenomena be produced by such it simple experiment, what might be the consequence of the admission of a due proportion of water into a vast subterrancan magazine of lime? 'There are many other minerals hesides lime which possess the power of decomposing whter, hy combining with its oxygen, and forming oxides; and in every such process heat is evolved, nud may be increased to a degree perfectly suffecient to produce combustion, ebullition, expansion, and fusion, and any other phenomenon that heat will protuce. Farthquakes, muless when they are very slight, selfom terminate in a single shock; and , volcanic eruptions are for the most part fitful and intermittent. Now, smposing them to orifrinate in the admission of water into a magazino of sulstances capahle of decomposing it, the first movement, by oprning a freer entrance to the water, will occasion a secomb, the second it thind, and every succeeding one another, till either the clenents of expansion fre exhansted-the entrance of the whter stopped, or a passige opened throngh the ruptured stratn, for the free escape of the liberated gases.

This urcount of tho origin of carthpuakes and voleanis eruptions was first proposed by Sir Hamphrey Davy; and thongh subsequenty abambond hy that distimgnished chemist, on the stipposition of its not being proprerly supportod by the mature of voleanic: producions, it has bees revived and surcessfally dofembed by Dr". Dambery, and mophoyed

canse of voleanc action; and that the contact of water with the moxidated metals of the earths and alkalies may give rise to the heat required. The hydrogen evolved during the process of saturation may, on coming aftorwards in conthe with the heated metallic oxides, reduce then agrain to metals; and this circle of action may be one of the principal memes by which internal heat and the stability of volcanio action "mepromerne"

B00K III.

OF THE IDENTITY OF THE REVOLUTIONARY beriods of The rarth with the antediluvan age of the sacred scriprure.

CIADP. I.

HHELIMINALY OBSERVATIONS.

§ 1. It has heen alrealy stated, that many distinguished geologists believe that the revolutions of the carth have in general orenrred at very distant periods respectively from one another, that each has been followed by a new ereation of organizel forms, and that the types of every succeeding ceration bear a nearer resemilance to existing forms than those of any of its predecessors. Among those who entertain these opinions, there are some who discard or owertook the Saered Narmave altergether, as heing either irmeroncilabe with geological facts, or unworthy of attention in my attompt to classify and acomut for them; mat others who alluge that it admits an interpretation by which the principal ditionolties may be olviated.
§2. Those who pursun the latter conrse diflere monong themselves with regard to the exphanation hy which this recomeiliation is to he ceflected. Some maintuin that the six days on the Mosnice ereation are to lee underateod anson many mertents of indefinite lengeth; wod others that Moses, after guing in coneise and very general necome of the primary reathon if all things, in the initinl sentener of the Book of domesor, "In the begiming (iom ereated the heavens and the earth," panses aver all the intermedinte periods of the
 of whirh we are not concorned, mat gives us a paricular
account of the last reorganization, which forms the come mencement of the present system.
§ 3. Either of these explanations, if properly established, would go fir to answer the end proposed; but both of them are liable to such formidable objections as cannot fail to leave the impression on the inquisitive mind that the objeet is not yet attained, and that there are some difficult problems to be solved before the matter be finally set at rest. 'Io the first it may be objected, that though the Hebrew term rendered "day," may have sometimes been used to denote a period of indefinite duration, as in 1 Sann. ix. 27, where it means "a while," it is clearly shown by the fonrth commandment of the Decalogne to have its more common and precise acceptation in the account of the ercation. The command to labour on six successive days of the week, and rest on the seventh, can olbiously refer to no other divisions of time than those which are measured by the rotations of the carth; and nothing could be more at variance with the canons of a sound and rational eriticism and exegesis, than the supposition that the same word may be understood in very different ways, in a concise, plain, and practical direetion, in which there is neither trope nor metaphor, nor any thing to intimate that a diversity of meaning may be intended.
§ 4. 'The other supposition, namely, that Moses, after giving a concise aceount of the primary creation, passes over all that happened between that event and the commence. ment of the existing state of the earth, is free from this ob)jection, but open to one of a diflerent kind, and which would appear mueh stronger to Geologists. 'The Mosnic account of the creation opens with a view of the state of the earth, that is perfectly irreconciluble with tho existence of onr present terrestrial animals at the time. Tho carth was miversully covered with water, and otherwise in a completely unimhabitable state; and if it had been previonsly inhabited, there were no means in existence at the time by which any number of its inhabitants could have heen soved, and survived tho eatastronte. Fow, though Geology may appear
(o) fingour the idea that there lias been a series of freations, with longer or shorter intervening periods-that new races lave from time to bine been called into existence, ats the rath became gradually prepared for their reception, it shows deridedly: that there hats been no epoch from the fombdation of the globe to the present day, at which amimal life became extinct; and that terrestrial quadruped have never wholly quit the stage, since the first moment of their entrance upon it. There has repeatedly been a coming in and a going ont-one rater has followed another, mat the bath appears agan and again to have changed its inhahitints; but we camot condescend on it single period, when fle surecssion cane to a pamse, as it must have dome at the Mosatic: ereation, and agatin commenced amew. No one race appears wholly to have left the stage bofore another hat entered upon it; and the in-eomines generally anakes it appearance before the out-going has suftered any irreparable reduction; and if this be true al the extinet races, it is still more so of those whichare in existence. 'I'heir remnins are fomad in ossiferonis raves and other situations, being copionsly intermised with those of numbers of the extine mees. Some have indeed nlleged, that thongh the genera are the sumb, the species are ditherent; but Cuvier, who was pualified for the exammation of this point beyond most other men, and who, having no finomrite theory to warp his mind, contented himself with the collertion, urrangement, and expusition of farts, has em his veroict in fivour of their identity; and from his derison there is nor appeal. But I shall have ocrasion to retarn to this shlyect hereatter.
'The suered Nurmate not ouly opens with n view of the condition of the enth, that would have hean quite inmombatible with the existeme nt the time of my of those races of terrestrial mimals by which it is now inhahited, bat it (xpressty reprosents the creation of these animals as a porsterion event. As existiug races were then in being , uterior
 combl mot hy ayy mens have courespmoded with the Musind rreation.
§ 5. Every person who regards the Scriptures as erevelation from heaven, and rests his faith and hopes on their truth, must devoutly wish to see them reconciled with the real and incontestible discoveries of Science; for it is not every one who can adopt or be satisfied with the loose opinion of Professor Sedgewick, as amounced in his answer to the Dean of York, namely: that the Scriptures were written rather in aceordance with the state to which human knowledige had inttained, and the sentinents that were prevalent in the world at the time, than agrecably to the real facts of the case. It is mudeniable that they are written in popnlar language, and that they speak in a popular way of many of the common phenomena of nature; and the philosopher speaks in the same way, but not when sciontific precision is required. 'The aecoment of the creation is not to be understood in the some light as when the rising and setting of the sun are spoken of, but as a literal and veritable relation of facts; and if we regard it in the light of a popular tradition, we surrender its inspiration, and abandon its anthority, as a highly interesting and inportant part of a Divine Revelation.

But for this very reason, the endeavours of those who believe in the Seriptures and venerate their authority, to reconcile them with science, are necessarily exposed to the snspicion of boing less or more directed by feeling, and shonld therefore be conducted in the most dispassionate, vigilant, ant impartial nammer; carefully sifting every argunent for and against the point at issue, and allowing to each its due weight. 'The inspiration of the Serijetures has ton uftell been advocated with a degree of temper which they do not authorise, instead of hecoming eahmess and candont; aind on all such occasions their canse has been injimed rather than advabeed. "The woath of man worketh not the righteonsiness of God." 'Ihere is a spurions liberality which is aho to be avoided on the other hand, a disposition to smrender some of the outwome of Divine trith, and expose even the citadel itself to danger, under the pretence of removing difticultios mad making all things plain.

天. reve on their vith the t is not e loose answer s were human re prehe real tten in way of hiloso-preeit to be setting ble reopular its ana Di
c who ity, to to the f, and onate, argucach is hins which s and in inrketh libe-isporith, pron.
§ 6. The discoveries of science have been repeatedly supposed, in the first instance, to be at variance with the Scriptures, and after being more fully clearly and developed, and understood in all their points and bearings, all appearance of diserepancy has vanished, and they have heen found not only to be in perfect aceordanee, but even to confirm and explain one another. It is to be hoped that this will yet be the case with Geology; and, with the view of affecting a consummation so desirable, I shall endeavour first to ascertain as far as possible whit the diseoveries of the Seience amount to; what is the sum of the information they affiord respecting the ancient condition of the earth, the revolutions it has undergone, the manner in which they have been brought about, and the general and permanent effect; which have resulted from them; and then compare this information with such notices as are interspersed through the Seriptures, respecting these different points. By pursuing this comrse in a ralm, deliberate, and cautious mamer, we will come direetly to the point at issue, and perceive at once the agreement or diserepancy.
§ 7. It should however be kept in mind, that important as the seicnce of Geology is, and faseinating as its discoveries may appear, the Sacred Seriptures have an infinitely higher object to serve, than to record its facts or explain its mysteries; and that when they advert to such matters, they do it incidentally, and therefore in a slight and passing mamer. They give us a detailed necount of the delnge, because that catastrophe was introductory to a new order of things, and intended to exercise a powerful influenee over the destinies of man. 'There wha only one other cutastrophe, namely: the cursing of the ground for the first offence, that will bear the slightest compurison with the deluge; and it is therefore rather by indirect inference from an induction of particuhars, that we can come to my information respecting them, than otherwise. More than slight and indireet referenees are not therefore to he expected; but it will be found on examina $=$ tion, that such references are both more numerous and striking than is commonly supposed.

OF TIIE STATE OF THE LARTH DURING THE ERA OF THE PKVMARY FORMATIONS, AND OF THE MANNER IN WHICH THAT ERA TERMINATED.
§ 1. 'The primary strata, like the crystalline masses, are completely destitate of organic remains; and wo do not possess the slightest evidence of the existener of either phant or animal at the time of their deposition. 'This is unirersally admited by Geologists. Now, as all the superinemubent strata are fossiliferons, it is fair to conclude from this fact, that the deposition of the primary strata was anterio: to the ereation of organic forms. In no other way call we acconnt for the difference. "The state of the Globe," say: Professor Phillips, "during the period of the prodnction of the primary strata, may never be fully disclosed by Geologieal enquiry, aided by hiother departments of knowledge; yet, as a riew of the suceessive conditions of the Globe, however imperfect, constitutes the very essence of Philosophical Geology, it is necessary to asecrtain what progress has been made in this dark research, into some of the earliest aetnal reconds of the creation. It is remarkable that the lowest of all known systems of stratified deposits shomld be at once the most extensive, the most nearly miversal, the most miform in mineral charater, the only one from which organic lite seens to have leen totally expluded, and in which
 P1. 9.1, 95. Dr. Buckland aloo says, " A : in the consideration of other strata, we find abmulant evistonee in the presence of organic remains in proof of the exerecise of ereative power, wistom, and goodness, attonding the progress of life, theonsh the starges of its atranement on the surfice of the Globe; so fiom tho absemer of oremaie remains in the minnuy strata, we may draw am importantarement, showing that there was a puint of tinc in the history of onf panet (which no ather researches bat those of Ceology can possi-
 verotable life, " pus. 5i, 5\%

tions another fact of great importance respecting the primary strata, namely: that they are " the most extensive, and most nearly universal" of all the sedimentary deposits of which the crust of the earth is chiefly composed. They cover a far greater extent of the nueleus of the globe then is covered by any posterior formation. In most of the great mountain chains, the cuystalline masses have broken through them, but in such a maner as to show that they were originally continuous, and extended round the shole globe. Now if they were deposited in this state, the water must have overflowed and encompassed the whole glube at the time, otherwise their deposition to such an extent must have been imposible.
§ 3. Again, if the primary strata were deposited by water, as geologists maintain, the different earths of which they are composed must have been suspencied in the water at the time of their deposition, in the state of inud, or fine sand. 'Ihey are composed of the same substamees with the platowic, masses on which they chiefly rest, and difer from them only in beinf loss crystallized; and in being mechanically rather then chernically constructed. Whe inaterials of some of them, such asthe elay slate for instance, having heen reduced to finer particles, and pussessing less specific gravity, havo floated lonser than those of others, and consequently been deposited over thern. We may therefore conclude that they were all origimally dorived from the nucleus of the earth, to which they bow sach a strong afinity, and that they had been converied into mul and sand by the action of current.s. Unloss the water had been violently agitated, to leep the lighter particles loager afloat, they conli hardly have been deposited in the regular order which they every where exhihit.
§ 4. Moreover, if thoy were all shapended in tho water, it must have bean in a very turhid condition at the time. They must have nearly comesponded with the view presented to us in the tratitionary acconat transmited by Ovid:

[^0]"The land, the sea, and the air, were brended in ore confused mass; so that the land had no solidity, and the waters were unnavigable; the air was in a state of perfect darkness, and nothing possessed its proper funm." Allowing the mean depth of the sea to be nime miloz, or evens less, and a large proportion of the primeval waters to have been decomposed, in the oxydising of those metals which are now tho bases of the earths and allalies, and consequently that they were more abundant than uipresent, the yast masses of materials that were suspended in them nust have renderod them turbid in a very high degree; for the primary Etrata, hesides extenuling over the whole of the dry land, have a mean thickness of many thousands of feet; and, in consequence of having becn repoatotly heated and compressed they have been readered more cumpaet than the strata of any later serics.
§ 5. We have no means whatever of forming any thing like a probahle cstimate of the length of thas period; for nothing could be more preposterous than to reason from the ordinary phenomens of nature, to a state of things so completely isolated. Evea though we admit that the materials of cwery subsefuent formation were carried down from the land into the sea, and that time was required for such a proces, it mast havo been diferent when the whole earth was sebmergen, and tho materinls that were doposited by the sea had their origin in it. The period may therefore have beon longer or shorter than we conld suppose.
§6. Lut whatever was it:s duration, it terminated in a gemeral and vioknt revolution. Whe nev formed strata, in which the meleus of the grabe was enveloped, were burst asunde: in many thees, asi thrown into disosder, by the expansion of tha masecs on which they rested. In somo localities they were iatad up iato an inchaced, or even a vertical position; and in uhters, they were bent and thrown over on their back, white their raptured ellges were exposed to view. The surfare of the eath that becone diver-sifud,-hueng fore efevated into foity momatis, and thero
 and the perfect Allowor cue: to have hich are equently t masses ave renprimary nd, have in conpressed, strata of iod; for rom the so co:natcrials tom the such a le carth sited by herefore re buise , by the ln some even a thrown cre ex-ediverad thero ienee to
tho late to which all liquids aro subject, left the uplifted portions uncovered, and sought their level in the lower grounds.
§ 7. Having thus stated the prineipal facts deducible from Geology, respecting the prinieval condition of the carth, let us compare them with such as may be collected from tho Scriptures, resre nting the carliest periods of which they give us an accont, and see how far they correspond with one another. The Sacred Narrative commences thus:es In the begiming God created the hearens and the earth; and the earth was without form, and void," or rather, unorganized and uninhabitable, "and darkniess rested on the surface of the mass." That it was enreloped in an unbroken sheet of water is clear from the whole account; and its being '6 without form, and void," means the: its elements had not heen separated, or reduced to owder,-ibe waters being mixed with other sulstances, which had not assumed their proper forms, or taken their places in the systern of nature. It is stated, morcover, that the waters were agitated by a mighty wind, which, in the fervid style of the sacred writer, is called "Thespirit." or rather", the breath "of God," which means a harricanc, or violent tompest. (Compare 2 Kings ii. 11,16 .

The Seriptures give us as little information respecting the duration of this state of the earth as we can collect from Geology. If light was then in existence, the atmosphere did not transmit, and the surface of the globe did not refiect it; and days had not begun to be numbered, nor years to rum. We can therefore ran no risk in allowing ita duration to lave been sufficiently long for the deposition of all the primary strata, whatevor time may have been necessary for it.
§ 8. Mosez gives us only a very conciso and gencral account of the manner in which this primeval condition of the earth terminated; but he states a fact which makes it clear that an extensive revolution took place: "Thle waters were Gathered together into one place, nnd the dry fund appearcd." Without a chango in the crust of the earth this could not have happenet. Unless it had been raised above it
former level in soine piaces, and depressed below it in others, the waicrs must have continued still to overflow it. In Ps. 104, seversl important particulars are supplied, which Moses las omitted. The Psalmist refers to the primeval condition of the earth, and the change by which it heeame habitable, and represents it as leins divided into sea and land-into mountain and valley, hy a convulsion which affected its whole surface. He writes as one who had heen present at ihe time, to have heard the rolling of the subterraneotis thunders, which gave the first intimation of the impending shockto have fole the mighty convulsion that followed-to have seen the waters rushing away in all directions from particular centres, aid to have hehel! in cach of these centres vast masses of incandescent minerals, in a liquid state, bursting from the decp, and rising up into continents and ishands, with their conical hills and lofy momatains, fiom the pimacled summits of some of which one half of the globe may be surveyed. "He hath settled the carth on its foundation; it shall not be moved for ever. 'Ihon eoveredst it with tho deep as with a garment; the waters stood above the mountains. At thy rehuke they fled; at the voice of thy thumber they hasted away. The mountains rose aip, and the valleys sunk down, to the places which thou hadst appointed for them." **

This is just such an account as a modern geologist would have given of such an event, and such an account as a geologist of high stunding has given, without suspecting that he was writing a jus* and elofuent comment on a passuge of the Dible. The only differenec between the text nud tho comment is, that in the former the ideas are concentrated and condensed, and embolied in a few energetic expressions; wherens in the latter they are dilated and amplified, and stretched to the nmost, and arransed with an cvident vien to cffect. "In the state of tranquil equilibrium," says Dr.

[^1]others, In Ps. Moses ndition jitable, i-into swhole at ilo sthnn-hocko havo articucs vast ursting slants, pimuase may lation; iiil tho mounhunder valleys ed for

Tuckland, "which our planet has attained in tho region we inhabit, we are apt to regad the foundation of the sold earth as an emblem of duxation und stability. Vory different are the feelings of those whose lot is cest near the face of voleanic eruptions, -io them the carth aiomen no stable resting plare, but, during the paboxyman of volenic activ ity,
 ing citicz-yawnine vith dreadfal chasms-col ..rting seas itito dry land, and dry lam! into son... To the inhabitants of such disiricts we surak a latyruge who ; hey fully comm preland, when wo describe the crust of the carth ats floatiog on an intermal atachen of moltea clements. They haveseen hese eloments bursting forth in ligtide stromens of hava, thoy have folt the carth beneath them fuinering and rolling as if topon the hillows of a inlmermaneots nea, they have seen
 of time, and they can duly sumpeciate, from sensible experience, the furee of the terms in whimh renlogists describe the
 ring the passitege of its simath from the bothon of the seas, in whwh they reecived their oriegn, to the plans and monnEains, in whehthey fand heopresentphe - est." Chap. 5.

Supposing, hern, he Sacred Narrative to hegin with tho original formation of the rath, and to give us an aceount of its primosal comditons, it agres with Geology in every point. 'lhey both represent the surface of the ground as being universally overfiowed-the waters as being in a very turbid state, and violemly agitated; and the period as closing with a tremembons rovolution, which gave a new appear* ance to the face of the earla.

CHAP. If.

OF TME: STATEOシ THE EARTHDURINGTHEERA OF THETRAN GTION SERIES, AND OF MHE MANNER IN WHICAT THAT שRA TERMINATED.
§ 1. 'The waters having hen drained from the dry 'an' into the bed of the occan, both received such orgasized anto
living forms as were respectively adapted to them. Thar the waters had deposited their sediment and becono clear, is evident fom this, that some ariments, whose remains have been preserved in the trensition rocks, and in the: only, have their oyes constructed on the same principles with those of other anmals, of the same fanily, whel are still in existente. As they erem not to have survived the transition period, we may suppos then to have been peculiany intemed fur end adef ton it for it is an established law of nature that the orgath of overy matimat are suited to its peculiar fuztions and whor of activity; and we way therefore betere that dose raver, whose existeace was limited to that age, wont hawe hena prepared for any peculiarity in the state of its elements, hat there been any; and as we meet with mo indiation of tho kind, we may cemeluto that. the water hat hemone famparant. It was femerly sated that theer rombl haw heon mon torenemal ammats in existence during the sa of the prinaty firmations, hemuse tho carth was not the! in a state samedive ther, being univergally subnererged: and what haw just hern atated will provo

 they were uninhabitahb-hure hastag leen wo races of animats adopted to surla a comdition.
§ 2. In lie ereywatke frmation, on sihu: imsystem, which is the first of the tran-itimi series. and comanemes the owder of fossiliferoms stma, lhe orpatic womins are few bat hutber, ath rousist whe fiy merine phan, -a dear pronf hat argraized existeme was yet in ins infury, and that anibat life hat cither mot commenod at all, or had made very litto
 Lad begun to matiply, and reectation hat atained a depreo of exuhrramo which has not becn equatlot in any subso'fuen: ase

 time as not th ibe identifod with any existing specins, fus

Much as prefer a salutary, humid, and dusky atmosplicre; and from this it is inferred that a hiogla temperature was then prevalent, and that the land consisted more of ishands, with lofy poaks, that of extensive continents, as at the present time. Islands have heen thrown uif fom the bottom of tho (lee!) 1 on times, and again subnerged; and it may be thken for granted that sone tracts of primeval land have been swept away, oi suhsialed below the level of the sea, in the course of the mutations which the carth has undergone; but there is reason to believe that the higher :erions of some of our great monntains chans were raised nip in the first convulsion, and that they hawenot only peserved their position, but bave from time to time been receiving additions to their height and magnitude, till they have attained to the state in which thoy reanam. Many of the strata which lean agnanst their flake, and rive to a considerable height on thair declivities, are fossiliferons, and lawe been fomed afice tho water. became inhabiter.
§ 4. 'Tho vast masses of vegotahle matter nceumalated iax the great coal formation, are evidences of a virom malluxu-
 sulseeguent ago of the carth. Such of tho fossil pianits 1 se
 ratr, far eaceed, in respert or dimmesions, those of theil ie perencutaven in tho prown ibres. Abtoresent ferns do bot nt present, in tho mosi davomralne sitnations, excoed 55 Seci in height, while those of tho c:athmiferond ristem wttained to 50. Lyropmies, or chah-niosshes, frew to twico thear present siz", mad many otheas in tho same proportion.

Soch was the superio: fortite of the eath during the poriail inquast m, than M. Ad. Brongniant has invented atheory oll pupsie to account for it, with which grologists aro generally pleased. Ile s!pporas 1 : mono-phere to have been
 importhat clemant of wometion. According to M. Fiommnet, fise curbonic aciol gas is constanty sising fiom tho
 ncighbouahood of Clemont; and it is excocdingly probablo
that the same may have happened in the carboniferous age, which was evidently a time of very intense voleanic action. Professor Phillips makes the following oherervations on this Interesting speculation:-" What thens were the circumstances of the dry hand, favomathe to tha erowth of ata enormous mass of veretablesubstance huried in the coal formation? 'That the atanosphere was warmer, and by consequence moister, may be easily admittect, and in fact what is known of the structure of plants goes to coufirn this nimion, for the most ahmutant foms are at least analagous to tropical vegetation. Let in adilitios, it is conjectured that the atmosphere might, in those catly periods, have inad an unusual doze of carbonic acid gras, and thas be more fit to supply the carhon requisite for the growth of such vast forests as must then lave cucmbered the limited sarface of tho land. This speculation of mompiart appears worthy orattention; nothing known to the chemist, or batural philosopher, is opposed to the notion that the glamaty of carhonic arid gas contained in tie atmosphore may not he extremely
 mals, but what proof have wo of the glube being then inhabited by terrestrial animals? Noroover, spenentation apart, let my wan calculate the quamsity of carbon contained in a siugle Einglish conl-fichl, one a part of the ntier living structure of phate, anal the equivatent of carboaic acid gas to that small quantity which it holds, the consequence will bo an atmozphere charged with the pabulum " vegetable life, to a degree porhaps very farourable to vogetable life, but certanly detrimental to the life of ammats breathing with lungs. Now surely it is worthy of utteution, finat, after tho coal was deposited, reptile life hogen to bo mamifisted ond fimally to predomiante; while on the oiler hamb, vegetablo life, thongh the land was mueh more extensise, and apparently not mach fowered in temperature, never again yielded such thick and extensive curbonacenus deposits."

Ihut, allowing the afmospleere to have been in the state gupposed, tho non-existence af terrestritul mimals would non have been a necessary consequence. Coal does not occur action. n this reu!nof ! ! e al for-consehat is inion, o troat the In $111-$ osuporests of tho w: ant-alosoihonic remely of iniCll inпрart, d in a strucgas to vill bo olifo, ie, hut rilh or tho d and ctublo ирриielded
every: where-it is fonnd only in particular localities, and the enpposed state of the atmosphere may have been peculiar to them. In the volemic alistrict of Clemmont, and probably in other volcanic districts, the supply of carbonic acid gas is much more abundant than in most other places; and in the caboniferous age there may hate been localities similaty mituated, and where the abmodance of the supply and rapidity of the cossumption kent pace with one another, while other places wero in a diferent state. Mr. Lagen diseovered the footsteps of a (juatruped in a carboniferous deposit in this Province; and if this be an isolated fact, it shonld bo re:nembered that snimat lifo was in its infancy-ilut tho enperature of the earth was very high—lat the complete decomposition of orsanic substances, when near the surface, was more rapid and frequent, mad consequenty that the prefervation of epecimens must have hoon ratr, and are therefore sehbon to be expected. 'This ronchasion is strewthened by the circunt: tance, that the only proot yet discovered of the exisience of quadrupeds at the time in question, consists in the footmarks of an individual, usd not in a part of the animal itself.
§ 5. Speaking of the animats of the triansition period, Dr. Bucklandsuys, "We fund the fon' groat existint divisions of Vertebrata, Monfusca, Aeticuiata, mid Radiata, to have heen coneval with the commencement of anmal life upon our ghobe." Ilis moming is not that existing genera and speries howe been preserved in the more ancient strata of the carth, but that they contain the remams of animals belonging to ench of these grent divisons. 'Thero wero then nnimals in the transition are that were formed on the samo feneral principles whth those on which existing reses havo been formed, nad which mast therafore hare been intendiod for modes of life not materially difierent fiom the present; and this shows that if the vorld, for which they were creafed, whe difierent from the present, it musi have difiered not in kind hut in degree.
56. We are here also without any certain or pusitive data for decermining the length of t!is period; lut if wo could
suppose it possible, wher any cirommetances, for such vast masses of vegrable motter, asf hare boes acoumblated in emme coal formations, to hwo henu pro?heed within a short time, we would havereasont, bolieve lhat it was not of very long duration. 'ildo animals; whose reanims have been preserved in the strata of that ape, con not mpear to have mado much protress duribe any of its stioges, ent wore neanly as nuncrous at the berimines ass at the cad; and ther could not haye bocn both fuw a:od stationary without a catse. But thoy hat not yet attaned to their maximean nusnbers, who: the waste or destuction mat haw comegponded with tho sumply, fire such of then as were eontinted to the bext cra breame fur mane atamerob then they were in this. Nother
 sistence, which nhw.je chectis tho nthitipheation of animaly athd limits their mumbers, fins tho means of subsitnicnce for the herbivonus reaces were then tatere ahmathent than they lave over been samee. As little conk it be imputed to any excess of the prodzeonta racos, for then bambers were froportions:ly limited. "In the viaters of the twansition per:on," says Dr. Inclitand, "the samiohts and shathe constituted the chief roracious finats destined fo fublil the important ontace of chembing the exessave inerease nt the inferior fumilios." Arain, those racos whicla wore common to that and tho latre prinds, thatg! fower in their numbers, wero as lully derchoped in their fombis ond dimensions in the ono periond as in any of the whers; wat the ib inemearo themefore
 natures to the ome period möne than to tho rest. If these ho facts, to what where ex de con wo attrihuto thot want of pro-
 or tho shormess of that perion?
§ 7. But, whether it was luatr er shoit, it appeas to l:ave terminated ian anean! . Volution. 'Where aro particular

 of thas periot. 'blany were postabor to tho demastion of the carbonife:ous system, becauso it is often disturbed by
them, and anierior to the new red sandstone which inmediately follows, and which they have not disturbecl. Abont the swmo time, also, many dykes of twap wero thrown up, and by the protrusion of these and other erystalline masses the carhonilerous system is everywhere ruptured, and less of more disnlacet. Whstever vises to the surtite must come from the interio: amd in every great enlargement of the monatains, there must have been a corresponding depression in tho lower rewions; and this double movenent has increased the agitation, and made its eftects more striking. "After the doposition of tho carboniferous system," says Professor Phillips, "and before at least any consi!!erable propertion of the superjacent rock:3 was formed, very extensive displacemonts happened, in most quarters of the globe, where cirboniferous rocks had lieen deposited. Not that such displucements were linnted in geograbhical extent to the aren of this system: oat the contrazy, from there hardly being a known coal tract cxemut from this influence, it would appear that convulsive movements tonk place, of it very genemal deseription, so as to affect very large tracta of the surface of the glohe." Page $11 \sim$.

Geology, then, leads us to the following conclusisons respecting this period:-1st, That it was the epoch of the commencenent both of animal and vegetable lite upon tho carth; git, 'That it was alapted to simila' modes of existence with the preseat; 3d, 'That the atmosphere was warmer, and proportionally more humid and dusky than it is now; 4th, That tho fortility of the gromed was incomparably Hreater; 5th, Tlat the period was not of very lone duration; anl Gth, That it tominated in a great revolution.
60. There i.s, arain, n very striking ayreement between Geology and tho scriptures, i:s regund to the secom periods of their :espective accounts. 'Whe Seriptures state that no sooner had tho carth becone tivided into sea mad hand than the latter was clothed with a luxnriant vegetation, in full mnturity, and the diferent suces of minnalt were formet; and if the mimals which no now in existence were then creatud, the carth must havo been adapted to cesistineg modes
of life. If it differed from the present state of things, it must have differed rather in degree than in kind.
§ 9. It appears again from the Sacted Narrative, that tho atmosphere must have been exceedingly humid and sultry, and otherwise favourable to such plants as abound in the carboniferous system. Gen. ii. 5,6 , "The Lord God had not caused it to rain on the earth, but there went up a mist from the earth and watered the whole face of the ground." This notice is short, but important. It shows that there was an active and most abmadant evaporation in process during the periont referred to, and if the temperature of the atmosphere was such as to raise from the earth such clouls of vapour, it must have boen exceetingly close, humid, and dusky, or such as the carboniferous vegetation required. The inhabitants of the temperate regions have no experience of any thing like an approuch to such a climate, but those of the equatorial districts can comprehend it. The following account of a morning at San Blas, on the coast of Mexico, after a heavy fall of rain, is given hy Captain Hall. "Thero was a dead cath, with the air so sultey that it was impossible to breath in it. Though the sky remained overcast, the sun had power to raise up from the drencled ground clonds of lense stean, which covered the whole plain as far as the base of the mountains." Such is the view which Moses gives us in the above quotation, of the primevalatmosphere; and it is precisely such as may be inferen from the plants of the earboniferous system. I whall hereafter have oecasion to show, that there were in all probability heavy periodical rains in that age; but as some thme may have chaped before the commencment of the first raining season, thero will be no disagrecmen: between the supposition and the text.
§ 10. That the fertility of the enth was greater during the perion in question, than in any subsequent age of tho wortd, may he inferred from the denunciation pronounced on the gronul ou account of the first offonce of man. Gien. ini. 17, 19, "Cursed is the ground fior thy sake; in sorrow shalt hrou cat of it all the days of thy life. In the sweat of
things, it , that tho ad sultry, ad in the God had up a inist ground.' here was ss during e atinosclunds of nid, and equired. perience those of ollowing Mexico, "Thero impossicast, the 1 clonds Ir as the Moses sphere; e plants e oecavy periclapsed 1, there nod the
during of the ounced Gem. sorrow veat of
thy face thou shalt eat bread, \&c." 'This certainly means that the earth should become less productive than formerly, and that a much grenter amount of labour would be thenceforth necessary, in orler to extract from it the means of subsistunce. The saune thing is clear from chap. v. 29, of which the meaning may be thus expressed: "This same shall "omfort $u s$, in regard to the work and toil of onr hands, to "hich we have lieen subjected by the cursing of the ground." While it expresses a hope that the ground was about to be ameliorated, it refers to the drudgery which had been rendered indispensable by the cursilig of the ground.
§ 11. 'The deterioration of the ground, on the occasion of the fall, must have been produced ly a revolution in the crust of the earth. 'The Parents of our race were expelled from Paradise ly a volcanic eruption. "So he drove out the man; and placed at the east end of the Garden of Eden a cherubin (that is, lightnings, compare Ps. xviii. 10, 13,) and u devonting flame, rolling about, to bar the way of the ree of life," Gen. iii. 24. Consistency requires that the change in the ground be attributed to causes of this kind. Had the soil been altered by some chemical agent, so as to be injurious to one kind of vegetation, we may believe that it wouht have been ingurious to all, which was not the case. "Thorns also and thistles shall it bring forth unto thee; and thou shalt eat the herbof the field." "Thorns and thistles" is a common Helraism for plants that are noxious, or comparatively useless; and the "herb of the fietd" means vegetables of an inferior value. (Is. v. 6, \& vii. 43-25, Hos. x. 8, Mutt, vii. 16, Helb. vi. 8.) The curse appears to have operated by remdering the gromud mufit for cultivation. While extensive regions were werwhelucd with oceans of Wrift sand, others were comverted into swampas and morasses; fund in not a few the angular edges of ruptured and distorated rocks were laid completely bare.
§ 12. It may be supposel that the time which appears to late slapsent hotwem the cteation of roan and his expulsion from Paradise was eridently tor short fin the transition era; but in the first phace, us has hecm invendy shown, the
transition era may have been much shorter than man believe; and inthe second place, the expulsion of man from Paradise may have been later than what is commonty appreheaded. There are two points on which the settemens of the later depends, and they are both to a certain extent doubful. The first is the starting point of the Saced Chronology. Whether is time reckoned from the creation of man, ar his expation from Paradise? The Sacred History is properly tho history of our fallen state, and of the developenent of the great plan of redemption; and as it merely glances at our primary condition, by way of introduction to the main design, it may be supposed to reckory from the epoch of the fall, without including the antecedent period; and were this admited, the diticulty wold he removed. The second paint is, allowing the Sacred Chrondogy to recka foom the reration, at what time did the carse take effect? Wios it immediately executed in all its extent, or did it happea ly degrews ? Or was the some the atlowed, an in the ca-w of the tomere when theatemed visitations? (tragan, haw har thil the Parent: of our me preserve their intonenco? It would mot ho rasy to setile all these points; but thll that ha the the dinienty is more apparent than reai.

The s. mpines and Goology, then, appent to coincide as fully :mal minnte in mared to the second perion of the

CHAM. IN.

 forat revolatom with which the transition periorle elowed; for

 enlioved. ology to urse take ytent, ou :Howed, itations? reetheir epoints; han real. ncide as l of the.

10 OTME C11 1114
decomposed; whereas they are in many instaness in a very high state of preservation. 'They must have been very soon rovered and protected from the elements of decay, after being deposited in the places where they still respectively continue.
§ ${ }^{2}$. The atiferous, or new red sandstome formation, is the first of the secondary series; and it is chiefly remarkable, for the vast quantities of rock salt and gypsum which it contains. 'fhere are at least two ways in whinh common salt masy be formed. It is formed by sublimation, in the raters oi voleanoes, and also by evaporation from the heat of the sun; and its presence in such quantities among the secondary strata, is a proof of the great heat which prevailed over the carth at the time; and also that it wass a time of very intense voleanic action. Gypsum is a sulphate of lime, or lime in combination with sulphuric acid; and as the hatter is a volcanic produrtion, with which the athosphere benomes more or loss charged in the tine of an eruption, and of which it is again deprived by its rombination with lime, when they becone gypsinm, the thick and extensive beds of that rock which oceur in the new red sandstune is another evidence of the gratat voleanie activity of that time. Nany of the sandstone beds of that periou boar sach a resemblane to hrifted snow, as to make it appeat that they were doposited by means of tho wial; and they give us reason to believe that the atmosphere was as ansettlet as the carth.
§ S. Alt the stratt of the secondary series are fossiliterous; zad wome of then, but espectally the shell limestone, are ahmost wholly composed of fossits, belonging to different tribes of mollesea, with which the waters of the period aboundel. 'Ilse sories coutains a bery great proportion of timestone, thourta variously formed, --a clear proo f ihat the condition of the waters was peenliarly faromable to ita formation.

As the remains of terestrial cuabupeds ocenr bit rarely in the selomingy strata, the br numbers mat have wither heen limited at the time, or they mast have kept at a distance fios:n the disturbed distucte, whene their ramains were more
likely to have been preserved; hut any deficioncy in this form of anmal lite was nore than compensated by the number, variety and dimensions, of the reptiles. 'They appear' to have been adapted to every clement and mode of life, and every department of nature was overmm by them. Some had paddles instead of feet, and were inhabitants of the sea; others had feer, and oceupied the marshes, pouds, and lakes, occasionally repairing to the land for a change; and others agrin were provided with wings, and could take the air, the land, and the water, by turns.

Many of these reptiles were not larger than numbers of the same order at present, but others were of a gigantic size, extending to 40,50 , or even 60 feet in length, and being otherwise proportioned. Such were the dimensions of the Megalosaurus and the Jguanodon, reptiles of the lizard and crocodile tribes. 'The hinder foot of the Cheirotherium, a species of frog, measured from 10 to 19 inches in length, and from 5 io 6 in breadth. Dr. Lyell has given it the name of the Labyrinthodon, from the extremely complicated structure of its teeth; but others call it the Cheirotherium, from the resemblance of its foot the human hand.
'The footmarks of different species of birds, but all belonging to the wader tribe, have been discovered in some secondary strata; and the feet of some of them were so formed as to enable then to walk on the softest mud without sinking, although they were birds of a gigantic size. As thry measured five or six feet at every step, we may form an idea of the length both of their legs and neeks, for the neeks of waders are always proportioned to the length of their legs, that they may we able to fish wherever they can wade; and from this data, we may reasonably suppose that, when standing erect, they could not have been munch les. than twenty feet in height. All these tribes, whether larger or smaller, derived their sulbsistence from tho marshes and ponds, and probably fed upon the reptiles by which they were so plentifully stocked.

When these different facts are compared, they throw much light on the physicul condition of the greater part of tho
in this the numy аррен life, and Some the sea; ud lake, d others air, the
inbers of gigantie nd being is of the zard and therium, 4 length, he name ed strucmi, fiom in some were so without izc. A_{s} lay form for the ength of they can ose that, neh les. er larger shes and ich they it of the

Sumbe of the earth in that early age. Voleane repations had cither very reenaly been, or still were frequent and wiolent. Kxtenficeregions were larid mater deep beds of sand, interepersed with salt lakes and ponds; and other had hern converted ints nowome marshes and stagnant pools, whoo putid waters wero neree agitated bat by gigatio surians, or monstrons froge, This shate of the carth will arobut, in a very satisfactory mamaer, for fle reduction of it fortility after the close of the tamsition era; and it that conll be ilentified with the date of man's c:apulsion from Paradise, it womk atro shom u; the mames in wheh the cure operated so as to produe its physicul effect.
§ 4 . Though tho carth was ill admpted, at this time, for the support of a denes and flowishing popalation, the chements of futher comiont and prosierity were actively preparing on a larye seme. The soil is generaly ni an inderon quality, whercer the primary or trmanion strata rie to the surfine; amb it is only he the inflence of adontitious cir--umstancon that any hare asemblage of area are congrogried near them. It is otherviso whit secondary and tortiary formations. This is no doulta atte:batable in part to tho beight to wheh these fomations rise atowe the level of the fea, but it is mistly winty to the rimumanme that they are
 mand that, when wederen, the differnt wath; of wheh they are compoed are found to be in fine froportions that aro
 tilized.

 than that of aty of the other opmed in tio phesteal himary

trital deposils." The chief indications of the terminatio. of an old, and commencement af a nes cra, consequent i. $;$ m the deposition of the cretacere "Fstem, are the unequi. end appearances of an anelioration of the phesical conditio at the earth, in the improvement of animal asd vegotabie like The temperature of the atmosibner, which had hithert: been high, was considerably reduced; propably from. ith greater degree of tranguillity to whirh the earth had attained, through a decline in the intensity of the disturbing forees.
§ 6. We have no certain means of detmmining the length of the semondary cra. Some of its formations are still rery thick, though much inferior in that resperet to those of the primary and transition periods; and geologists, reasoning from the time requirer for the accuranlation of vast masses of sediment near the mouthes of river's at the present time, have concluded tha the time must have been protracted to many thousands of y ears; but there are farts connected with some of the formations of the series which seem to warrant a different conchusion.

It has been alrealy stated, that the footmathen of differem races of animals have heen diseovered in some of the stmata of this series, and these must hre 保en imprinted when the strata were in a condition to receise and retain theas; and their transition from a soft to a solid condition must have been very rapid, for they do not only appear on the surfuce, hut on a consitemble nmmber of hens helow it. 'I he track of an animal passing throngh show will contime to he more or less distinct, throngh a consibrahbe numbere of superifacont layers, provided the latter haw been deposited in a time when the air was still; but they gradually become lasis and Ioss distinct, till they are no more discemible. This is often witnesed in the demse forests of this Province, where the wind has no influence near the ground; and the footmarks in guestion may he smposed th have heen continued in the shane way, through a series of hayers of sand and butd, suecossinely doposited in still water; but how couk the water, if perfonly still, huw rececived the necessury suphlios of these matheriats, which it mast have maimd? 'They have been
momatio
 requi. real ulitio . talile lite a hithert: from. $\%$ dattained, forces. the length still very ose of the reasoning st masses sent time, stracted to ected with o warrant
f' lificient the stiatia when the thea:; and minst have esmrfare, Ihe track to be more superjasited in a come hoss 'This is: ce, where footmarks ned in the mud, sucthe water: os of these liave been
deposited, not in still water, but by a powerful current, loaded with the materials, and this must have instantly obliterated the footmarks in the superjacent layers, as footmarks very soon disappear in drifting snow. Besides, footmarks made in suew become less and less distinct in every succeding layer, however much sheltered the locality may be, till they completely disappear. But the footmarks in question, instead of being continned upwards, are continued downwards throngh the inferior layers, becoming less and less distinct, till they are no longer diseemible. From this it is elear that they were made on the upper part of the formation, and that the layers beneath were affected hom above; and if so, the whole mass mmst have been deposited and consolidated in a very short time. Uuless the whole mass had been soft and yielding, from top to bottom, the impressions eould not have been made to such a depth; and unless it had heen very speedily consolidated it would not have retained them. Had the series of layers been slowly deposited, the lower ones would have been rendered so compact by the superincumbent pressure as not to have been susceptible of inpressions from the feet of tortoises and eranes, waiking on beds at some distances above them.

Neither can the Oolites have been slowly formed. They are limestones, and consist of a congeries of balls, sometimes larger, and at other times smaller, but strongly ecmented; and they derive their name fiom this eircumstance. 'They bear a striking resemblance, in point of structure, to the roes of some fisties. In some instances the halls are as large as buck-shot, ind in others as shatl as the eggs contained in the roe of the herring. 'They have been concreted in water, aromd some very minute sbjects, nlso present in it, which served as nucleuses, till they became too heavy to float, and then sumk to the bottom. The inerease of the larger balls must have been very rapirl, as they must have began to sink long before they attained to their full size, and as their dimensions increased their descent towards the bottom must have been accelerated. If the sinaller ones were precipitated by their weight, the larger ones must have
heon mhing what at some am, ank so mpin was their incmase, that before reachang ti.c hotom they became many times: higerer than when they keron w deseme?
 such :un abutanco of lime in the water, us such a procest ovidently roquired. With regarl to this, remaing is matfinable; but there have ben dowem other necanims, in whehthe waters in partiond hoe:litionave been rapilly and

 mey heramand ramembal.

 Had a finll acemat of die eronts of that perment heen given,

 Raid er pretine the condition of: he earth ciurine: the secomelay era.

The cursing of the gromad impaisal it fertility, and mato it moxe dillienti th procturo the meats of sulaiature than
would otherwise have !een the case; and this would not have fuiled to onerate as a check upou the progress of the population. Accordingly, it appears from dell. vi. 1, that men only began to mulliply after the lapse of some centuric. The great age to which they lived mut have ceatibuted much to the increase of the mumbers at one time upon the earth, and yet they seem to have marle little properes. Theis is a highly important fiet, and musi have had an aderguate cimse. It is listle more than two centmies and a half since Britain began to colonize America, and, with the term of life reduced to ite present standard, the pophlation abrealys amounts to many millions; and if the present rate of inerease be contimed for an equal time to come, the numbers will be immense. Till the time of Enos, in 9.35 aterordine to the Hehrew computation, or 625 arcording to the Seputugint, the homan race appear to have been rather improving in mamers, Gen. ir. ab; but from the time that they hegan to mantriply they began to deyencrate in this respect, and as the degeneracy had made some progress in the days of Enoch, Jonde 14, 15, who wats bem, aceording to the first computation, in A. M. 6is7, mul in 1387. nerording to the second, we muy pluce the change in manners somewhere between the times of these two Patrintehs. Now the fare that thes: contimed for a perion of five or six humbed yems, before they begran to multiply, and that without suftering ns at the besent time by the law of mortality, shows that the memes of sulwistence were seanty, aul that the rath must hase been in a state somewhat similar the that of the secomdary era, as atrendy described.

Besides, tho Serpptures give us rasm to believe that it
 were Gambins of" a gigantio siz". Cen, i. 90-92: "And Gol mid, Lat the waters bring furth abundantly, tho creeping things that huth life.-And God armated great sinnrions, and all the liv ing erentures that ereep, which the waters brought forth aluadmently afiee their hind; mud God

Whaters in the seas." 'There em be no doult that this paskige refors to reptiles, and the torms wod in it represent them as multiplying with a raphlity which was altogether Hosamplad mang othor racos, and consequently in coming to their masimmm manhers in batiln leas thme than any of

 tor this retson wh 1att :-1pposio the passade io refer to a state of than, that has long sinte passed. 'ihe reterenec to

 tonhu!

$$
\text { C:Al. } \mathrm{r}
$$

 TH: THAR土 1゚OSM. M1ONS.

 rosk :

 tainser.

in their ages, fand of the auges of the forssits found in them respectively, for when one led rests nipon anther, tho lower one must have been dist de. ited; but in the tertiary formations we meet with one deposit in one place, ant with at different ane in mother; and as thficent races of animat- hat itu all probability their diflerent hatunts and resuctiveranses, vo have no elong pron! that they were doposited at dibloent
 Atamees may lead us to enppose this to lave hern the ceas.
§ a. But, hike the precodinereres, the tertion! hits been dis

 ata! a newor.

 they hat perevously bem; and from the ?e"?
 of that poritul, it waty he tortam! i fared that thar mation

 con sive mo (ther vicw ot their ... tha exs mud hathiss than

 Hastication of which thene th ": ware ataptat. Ior in-

bones, and in the place of the stomach. 'The mastodon was larger than the common elephant, to which it appears to have been related, and its bones are fomd along with those of the clephant, both in Sonth and North America, but at elevations which must have been subject to the same temperature.
'I'he megatherimu was is species of the shoth, but of gigantie dimensions. He measured 12 feet in length, 8 in height, and 5 acroses the bams; he wat elothed in a coat of mail, ahont an inch in thickness, and formed of hom, and his toes were pointed with tremendons chaws, which he probably used in grubling up roots, or as Mr^{3}. Owen supposes, in romoving the earth from the roots of trees, which, when seated on his broad hans, and clasping their trunks in his fore paws, he, by the sombined action of his hinder legs and powerful tail, shook to and fro till he levelled them with the gromed, and taen laxumiated on their leaves and branches.

Large and umwioldy as this animal must have aren, he was fill surpasied by the Dinothrian, which, though its organization und form have not been so fally ascertained, conlal not have heon muder 18 or 20 feet in lowgh, and probrably Hore. 'Ithe strong resemblance of his shoulde blate to bitat of the mole, shows him to have been mate for digging in the gromad, and consequently much addieted to it; hut whether in the way of extracting from it the means of subsistence, or of excavating a habitation maler its surfore, with its proper compliment of covered whys and subtrrimeous gatleries, may be tegurded us anomant He was assisted in his laboms, whatever wor thedr ohjoct, by a jail of tremembons grobbing looks, whatisprung downwneds trum the lower edges of his under jates, and bent inwards towards his
 in nddition to bis overpowering musenfarstrength, wheneren In strong tug was repuited. Dr, Bucktand supposes him tor have been a lacustrine minal, and to hape nsed the hooks
 und ulso in mooring himsolf to the magrin, hat the timo of his siesta, white his vast nud sluggish form donted ht cuse in the repid waters; but this, hongh ingenoms, hardly necords
don wat to bave se of the t clevaerature. f' gigalıheighr, of mail, his toes robably , in re11 seated c paws, owerful sround, , he was organid, cunll robably c to tiat rging is IIt whe-sulsistce, with rancous issisted - of treirom llo. ards his weigla, he:never him 10 hooks: phants. te of his se in the nerorila
either with his organization or the strength of the implements with which he was provided. Ii the lacustrine roots required such a degree of force to extract them firom the earth as the strength of the hooks in question wonld indi-e- \cdot, the boyaney of the aninat would not have been a sutfiecient eoanterpoise to the resistance, and he would of conrse have been securely anchored on the spot, unless he had confined himself to shatlow water. 'The form of his shoulder blade and strength of his neck are favourable th the supposition that he burowed in the earth; and his hooks and great stiengeth may have been omployed in removing the fomidable obstacles to his progress, which he must have fiequently had to encounter.

When the organization of the Megalonyx, another extinet animal of this perionl, has been more fully ascertnined, it is probable that he will likewise be found to have subsisted on roots, and to hase used his claws in extracting them from the earth. 'The lakeotherimm and Anoplotheriam, both of which were allical to the H ogg, or belonged to 11 race befween that animat and the 'Papir, havo also become extinct. Cusier completed skeletons of both, they were of grent size, -the Λ noplotherimu measmring 19 feet fiom the extremity of the shout to thit: wit the tat.
§ 3 . 'The number and varicty of herbivorous races, whose pomans are presers ed in tho strata of this period, is a clear proof that, thomgh the condition of the carth was still less firvommale to the smpport of a aseful vegetation than it has subsequently become, it hat been much mmetionated. 'lhe laties and masilies of the secondary era had lecen partially if not wholly drained, und the beds of amd deposited in them had berome filled with :oots, or eovered with it coase and rank regetation, adapted to the nse of the peendiar races which shen predontinated, but lave since become extinct; thongh bot so sutable for the rmminting amimals and other races, which have been preserved to ome thes.
§ 4. 'Jhat the ameliomation thas begnn was progressive, may be inferred form the appearnme, atofirst in smatler but aformands in ithereased und increasing hmmbers, of the ox,
the sheep, the deer, and the horse, and many other existirg races, anong those who had then possession of the earth, but afterwards became extinct. Though the remains of existing races of quadrupeds are frequently found buried in the strata, they are chiefly to be net with in dilnvian deposits. and ossiferous eaves; and being in general so much nearer te the surface, where they have been exposed to the action of the elements, they are seldom in the sane state of preservation with fossils of a more ancient date,-a decisive evidence that the rate of deposition has been much greater in ancient tran in more recent times; for if it had always proceeded at the same rate, why should the organic remains of one period have been better preserved than those of another? The appearane of existing among extinet raees, shows that the condition of the earth was improving, while the continuance of the latter * thourh in diminished and gradually decreasing numbers, makes it equally clear that the improvement was but partial.

In all the formations posterior to the chall, fossil plants beconte mare namerons than in any formation of the secondary series, and rogetation had again become so abundant as to provile materials for the formation of coal of an inferior quality, aud in bods of comparatively limited extent. They ocenr in diflerent parts of Liurope, as at Lrora in Scotand, and fomm in ficmany, and have been lately discovered in the Detan of tre Ganges, and probably also on the higher Indu*, nen the base of the lofty mombtain chain of Central Asia. 'The plants fowever of the heown coal are more allied to existing races than to those of the coal of the carbonificouspriond. Poplass, willows, and maples, are common; and the linden, the elm, and wahnt are found, bat they all bear a nearer resemblance tor Inmerion trees of the fime lind than to those of Eimrope. 'The grasses, howaber, with other vegetahos nome neerssany to man, though not anknown, appar to have been few and imperfectly developed.

S 5. Wr hare nu certain information respeeting the length of the: tertiary ea , for thonsh a tree has been discovered in
the brown coal of Boinn, with nearly 800 concentric rings, rach of which is probably the growth of one year, it cumot be ascertained to what time of the era it belonged. M. Brongniart refers it to the first, or cocene; Dr. Lyell to tho middle, or pliceene; and Dr. Buckland either to the middle or last; and with such a diversity of opinion upon the sulyeet, nothing conclusive can be inferred from it. 'The trec however itself belouging as it does to the tertiary era, wilt prove that era to have lasted upwards of 800 years. It was nearly that time in growing; and, from its position ir the formation where it has becn preserved, it appears cortain that it must have been deposited there a considerable time before the close of the era. The whole of the tertiary era could not therefore have been less than 1000 years, and was probably more. 'Whe Pachydermata, or the thick-skinned quadruperls, having incisive teeth both in the upper and lower jaw, which ar fiequently met in the gypsum quarries in the neighbourloood of Paris, are supposed to have lived in a diflerent age from that of the hears, whose remains are se common in some of the caves of Germany; but that print requires proos, and cannot be allo ed to llocide any other douhtiful matter.
§ G. But whatever nnecrtainty may vest upon other points, there is none unon this, that tho era terminated in the last great revolution of the carth. The Boulder formation, which Dr:. LyeH calls the Drift, is very extensive, and covers many regrons of the earth which had heen dry land immediately hefore; and it eonld not have been deposited in places where it rests, miles they lind been subnmerged into deep water, after having given support both to vegetable and animal life for many centuries. 'This formation contains the xemains of many extmet races, mixed with those of rees that are rtill in existence. 'Tho firmer coutinued up to the date of the great catastrophe, and the latter survived it; but bow so many races escaped when others perished, is a problem that Geology camot solve. 'I'o the mere geologist it must remain involved in impenctrable mystery. With this great catustrophe, tho amcient state of the farth terminated
and the present began. Since that tine there have been local disturbances, but their effects have been as temporary as their extent was limited, and no general change has happened.
§ T. 'The few particulars which may be gleaned by way of interence form the Scriptures, respecting the physical condition of the earth daring the period that immediately preceded the Boluge, are mimportant in themselves, but are ia strict merdance with the view just given of the tertiary rea. 'l'ill the commencement of the period, the progress of population appears to have been slow, as formerly stated, which cin lardly be attributed to any other canse than the difliculty of procurine the means of subsistence. Few of the arts, whether useful or ornamental, had till then been cultisated, and the greatest simplicity of mamers had provailed; but if the posterity of Cain enjoyed the same term of life with the descendants of Seth, a great improvement in this respect commenced ahont the time of the translation of Enoch, when the family of Lamech distinguished themselves by their useful inventions. They first introduced the use of the tent as covering, -the firsthabitation which man ercetr; abd evell carried their improvements so far as to add some of the finer arts to other inventions of a more advantageous kind, Gen. iv. 20--29.

One step in the way of improvement leads to another. both by awakening a toste for it, and creating the means of indulying surh in taste; and it is probable that it wats after the invention of tents that Cain, heing desirous in the evening of his day's of a more settled life, mad seecing himself smrrombled by a mumerons and still inereasing oflspring, built a city and ealled it Enoch, after his oldest som. 'The natural tendeney of tho human mind is to aspire to higher degrees of cmjogment, mud to make nse of such means as are adapted to that end, when they me casily ohtained; and wherever men live like the beasts of the field, and seek no other eovering when thes lie down to rest than the eanopy of heaven, we may infer hat the memus of subsistenee are searee, and that there is litto time for any thing more than to procure a suprblo for the most urgent necessities. y as their pened.
by way ical contely prebut are tertiary ,gress of stated, than the Few of en been had proterm of h° ment in lation of mselves e use of 1 erects; It some tageous mother. leans of ats after ac evenelf sintgr, built Hatimeal grees of ipted to cer men overing ren, we tull that ea sup-

When we see then that after a lapse of several centuxies, during which population had made but little progress, it began to manifest new activity, and to assume an energy which it had not previously possessed, we may suppose that it greater abundance is onjoyed, and that there is not the sauc necessity for anremitting toil. There camrot be a surer sign of increasing comfort than an increase of population, atiended ly a corresponding improvement in the arts.

The enjoyment of plenty will in general ultimately lead to improvement in civilization, but it not unfrequently has tho contrary effect in the first instance, especially when it comes suddenly, and before the recipients are prepared for the change; and such appears to have been its cfiect on the autcdiluvians. When they began to multiply they also begran to dearenerate; and while many became addicted to rapacious habits, all indulged in sensual gratifications. "They did eat, they drank, they married wives, and were given in marriage, till the day that Noah entered into the ark, and the flood came and destroyed them all," Luke xvii, 27. This change of maneres indicates en improrement in the condition of the earth, hefore men were duly prepared for it, and to a degree which exereised animjurious iufluence over their minds. The degeneracy had begun some time before, and had consequently originated in other causes; hut its progress was accelerated by the greater plenty which resulted from tho improrement in the condition of the earth.

CHAP. I.

The last great revolution of the carth merits particnlar uttention frota the geologist,-intsmuch atsmany of the eiremustances by which it was aceompanied can be more fully ascertained than those which attended any of the prevines. catastrophes of the kind. Many of the vestipes of ingmes

subsequent rhanges that we can only draw very genemi conchasins fiom them, and even these but very limited in mmaLere; whereas manty of the effects of this remain mathered tor
 with it may he collected tront thens. F'or these veasons, I hase mate it the shbgert of a separate disenssiom; and, instmad of giviner tiret the whole of the intornation which we may derise foom deoldey resperting it, and alferwards what may be whatmed fom the serpoteres, I shall, as I procerd, combpare the pationdars entlered form the ons: sumee with thase rollectrid from the othere
§ 1. It is very oremolly if mot miversally admitud by gendoriste, that the last wreat rewotution of the earth was aftemded by a wreat and extensive Dolngo. Do. Buckland says, in a foot note, wol. 1, pige 9.1: "1hhe evidence whicir I have collected in my Reliquia Diluviante 182?, show what ore of the hast great physical exents whish have allerted the suldice of our ghobe wats a vast immulation, which orerWhelmed a great patt of the Nothern Ilemisphere and than this event was lollowed by the sudden disappearmore of latre mumber al the speries of terestrial amimals, which had indabited these regions in the probed immediately proweding." 'The qualified mamore in which he -peaks of the extent of the immatation : Sows that his opiaions on that partiondar hase umferente a change, for in the work retermed

 :an: at mo listant protiod, the entire surface of ont planet." Pase I 16.
'The ratent of the immatation, and the hoveht to which it
 Bac fammonts of all the procoding formatoms, fiom the
 い Pore numy and listant countrios; and not only beat the

rral conin 111111 thered to onlueded casons, I 1, instead we may hat may rld. come ith thas:
itted by wth was Surkiand er whirlt ows that atherten chore and that uno ot a hich had procedf the rexthat pmor rofined renco al cancousl! plam"."
which it contaill"om the laposited nc:ar thr al : iborr od by ita trom the. I, 'There.
are many phecs in whill the emrent munt hate dut so rat pilly orer high mombtains that stood in its way as to meet with no ohstraction from them. A small ohsermetton will divicie mad ratle a shallow stream, whike a magestis, river rolls its waters over largemasses, withont hat ing eren heir surfare disturbed. 'The detriths of ome mombtain has in many instances been tramsported in a stratyht collse over the tops of other mommans, as if they hatd preselted mo impediment to the emment. 'She Jmat chain is sppatated fomm the Alpe by one af the deepest and largest valleys in the world; and thongh it rises to thr height of 5onot feet, im-
 have beren earried ower it illon the plaths of lranee; dud similar tramsportations hate owerred ower a great part of the Northern Hemisphere, both in the new and ot? wodds. Again, dihwian deposits wre fomm by Homboldt at a speal height in the Codilleras of the Andes, and they are fommd at a smilar howht on the lofty monntans of Cennal Asia.

Ihat the immdation prevaled to the smae degree in the Southern Hemisphere may however be questomed. 'Ilarow are dithorent races of ammals in Australia that are now fecular to it, and which are very mblaly to hawe beon camied w it by hmantagenc: and their presene there com be arcombed for only on the supposition of their having been rematod since the Delage, or of its not having extended to them, or of their having reached it mirwendmsly. 'Iher veromt in on many aceombts the mast probahko. Not mone: than six qeasera of quadrupeds, comprehending ahout forts dimbent species, have yet heon discovered in Now Holland: amd ont of these forty upwards at thity befong to one order, manmels, the Massmpial; and thore is mothing matogons to ;hem tumberg the existing finma of other regions, execpting the Opussmm of South America. 'Ilas has mot been blwas the case, for the Marsupial order existed in Farope, dhemes the crat of the secondary sitrata, and their fossil remains have been preserved in these arata. Thoy were not therefore limited to Amstralia at dirst; and we camot hisign any other reason for their disappearance in other countrics, and their

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

continuance there, than that the catastrophes in which they were involved in other countries did not reach then there.

This is corroborated by the fact that the gigantic races of birds, that were contemporary with the reptiles in other countries, have been continued in Australia to a very recent period, and are probably not yet wholly extinet. 'Ilhough they Have not been seen alive, their bones have been found in very reeent fluviatile deposits, and even an empty nest has been seen. Add to all this that the remains of the reptiles which predominated so generally during the secondary era, appear to hare been preserved in phees adapted to them near. the Equator. Mr. Drrwin gives the following account of the Gallapages:-"It soldom rains, and though the climate is mild the soil is generally dry and harsh, and the vegetation seanty and of little value. The animals and plants are for the most part peculine to the Arehipelago, although they all partake in their general form of mn Anerican character. They abound in reptiles, among which the saurians appear to predominate, -many of them being three and some of them extending to four feet in length. Some of them live chiefly in the sea, and others on the land, which is everywhere overrun with then, -so that the Archipelago may be called the Land of Reptiles. It is a voleanic comntry, and the coast is formed ly rough and broken masses of lava." This accords, in every particular, with the state of the earth during the age of the secondary rocks. The soil was equally dry and harsh, and the vegetation equally coarse and scanty. There is the same prevalence of disgusting reptiles, and tho same symptoms of volcmic action. The flying reptiles alono are wanting to make the pieture perfect ir every respect.

Ihere is, moreover, a much closer eomection between the existing vegetation of the Southern nud that of the Northern Hemisphere in ancient times, than between the latter and what now exists in the same regrions. "Professor Lindley justly renarks," says Dr. Packland, "that it is nn important fuct, that at tho perions of the deposit of the Lias, the vegetation was similar to that of the Southern Hemisphere, not nlone in the single fact of tho presence of Cyen- cound in nest has reptiles ary ern, cm near ount of climate vegetailits are gh they aracter. pear to f them chiefly coverlled the coast his acduring illy dry scanty. and tho s alono pect.
etween of the en the ofessor it is nu Lias, Hemis-Cyer-
dex, but the pines were also of the nature of species now fonnd only to the south of the Eiquator. Of the four iecent species of Araucar:? at present known, one is found on the east coast of New Holland, another in Norfolk Istand, a third in Brazil, and the fourth in Chili." Vol. i., p. 488.
D'Ihese fucts scem to show that there are at least part:; of the Southern Hemisphere to which the Delnge either did not extend at all, or which were not completely overwhelmed by its waters. The probability is that some of these places were at the time higher than the waters rose in that quarter. Humbokit met with vestiges of that catastrophe near the sourees of the Orinoco, and Captain Hall discovered them in the valley of Coquimbo, nearly 30 degrens to the south of the Gallapagos, but littlo above the level of the sea.

This may be thought irreconcilalle with the Sacred Narrative, where the Delnge is represented as universal. Gen. vii., 19, 20: "And the waters prevailed exceedingly upon the earth, and all the high hills that were under the whole heaven were covercl. Fifteen cubits upwards did the waters prevail, and the mountains wern covered." 'There is no douit that this may be understood in an untimited sense; and it ought to be so melerstond, provided it could be shown to be so used in the passage; but it is equally certain that the expressions will admit of a restricted sense, and may he muderstood to refer only to that part of the earth that was then imbabited, or which was known to man in the days of Moses. The whole world, and the whole earth, are repeatedly spoken of when a part of the earth only is referred to. One great object of the Dehnge was the reduction of the hmman race a second time to one fanily, that they might commence nnew, and mader more propitions circumstnences than they had ever been since the expulsion from I'madise; fand thongh there were certainly other important ends to bo uccomplished by it, besides this, there was not one of them thet required the universal submersion of the hand; and the Sacred Nurative dues not, therefore, require the expression to be so mulerstood. At the same time it is clear from it, thas the eateat of the Deluge must have heen very great.
§ 2. The rising of the wateris to such a height cannot be accounted for on any other supposition than that of such an upheaval of the ocean bell, or snch a depression of the dry land, as to bring them nearer to the same level. The area of the occan being more than twice that of the dry lande and the mean depth of its waters twice that of the highest mountains, a proportionately small nprising of the ocean bed would submerge the whole of the dry land; and as we know not any other natural case, hy which a universal inundation could have been occasioned, we must suppose it to have originated in this way, till the contrary be shown. This we may do the more readily, that we have undoubted proofs of the occan having partially shifted its bed, again and again.

The dopression of the land appears to have been greater in the Northern than in the Southern Hemisphere. It has been ahrealy shown that the latter most have been only partixdly submerged, but the submersion of the former appears to have been complete; and when it afterwards regained its former position, or rose again to its present state, it occasioned a mighty rush of vaters towards the South, which has left indelible effects near the surface. The current which deposited the boulder formation has evidently rushed, with an overwhelming force, from the Arctic regions towards the Equator, and rolled along with it an immense mass of mud and gravel, internixed with blocks of all dimensions, ns far as the forty-third or forty-second parallel, where the bhocks in a grent measure disappear. As the direction of the current has been nenly the same, and its effects the same, round the whole of the Northern Hemisphere, and as it could not have taken that direction, unless that the water had either necumblated to such a degree around the Pole as to foree it towards the Sonth in quest of a level, or had been suddenly and violently thrown of hy the upheaval of its. bed in that guarter, we may rendily adopt the latter supposition, as being on many aceounts the most probable. 'Tho waters conld not have accumulated in the Polnr regions, unless they had been previonsly repelted from the Sonth; and
innot be such an the dry lie area ry lando highest cean bed we know undation to havo This wo d proofs griin and

1 greater
It has only parappears aiued its it occa1, which current rushed, towards mass of nensions, hero the cetion of fects tho e, and us he whter o Pole as had been al of it.s. r suppole. 'I'lo tons, unnith; and
they would not have oscillated again toward the South, unless that the ecquilibrium had been by some means disturbed. Either the Southern Hemisphere must have subsided, or the Vorthern must have risen se as to repel the waters from it. As the current rolled towards the South it would gradually find its level, and become less impetnous, and the larger bodies borne along with it would sooner come to a state of rest; while those that were more easily suspended in the waters would continue to float, and be deposited in a more advanced position. This is the actual state of the Drift, and it confirms the supposition with which it accords.

The Sacred Scriptures attribute the Deluge to the combined influence of three causes, the breaking up of the fountains of the great deep, the opening of the windows of heaven, and the incessant fulling of currents of rain, till it attaiued its height, Gen. \%r1. 11, \& viii. ©. In giving an account of natural phenomena, they generally speak according to the common appearance of things, without considering whether this be philosophically correct, or only sufieient to give a popular view of the occurrenees referred to; asd in this way they impute the rise of the waters of the ocean, to a degree beyond what the influx of rivers and the fatling of rain would satisftectorily account for, to the openings of copious submarine springs. The great deep means the ocean, and its fountains mest have meant springs by which it was at times supposed to have been fed. All that can be inferred from this part of the account is, that the waters rese with such rapidity as to make it evident that they had some other origin than either the winds or rains. 'To all appearance a heavy rain, continued unremittingly for six weeks, must have had a considerable effect in raising the waters; but a very slight acquaintance with the composition of the atmosphere, and the proportion of water which it is eapable of containiug, would satisfy us of the contrary. It never contains above a small proportion of water at a time, and no sooner is that separated from it than it is again restored by means of evaporntion. It only returns to the earth what it has previously taken from it, and tho copiousness of the
evaporation during the whole time must have kept pace with the abundance of the fall.

It may not be so easy to deternine what is meant by the windows of heaven. 'The term in the passage answoring to windows, is not the one that is commoniy used for such conveniences. It means an aperture of any kind, and paticularly a chimmey, or opening made for the escape of smoke, Hos. xiii. 3. 'The only other passages of Seripture in which the windows of heaven are mentioned, we 2 Kings vii. 19, \& Mal. iii, 10; and in both the expression means a signal, if not mir reulous display of the divine bounty. In Is. xxiv. 18 "The wisdows from on high" are mentioned, which the Greek 'Jranslator', with no little appearance of reason, understoor to be the same with "the windows of heaven," and they can hardly refer to anything else than a volcanic eruption, or some other usual concomitant of carthquakes. "The windows from on high are opened, and the fundations of ${ }^{+}$ the earth do shake. 'The earth is utterly broken down, the earth is clean developerl, the earth is moved execedingly, the carth shall reel to and fro like a drumard, and shat be removed like a cottage." If fire and smoke be for the most part emitted in volcanic eruptions, there are instances in which water is copiously thrown out, and it is probably to something of this kind that the passage under consideration refers.

The Deluge is repentedly refered to in the Scriptures, and it is represented as origimating in the lursting of the larriers of the sea. Job xxxviii. 8, "Who shut up the sen within doors when it burst forth firom the womb?" And the prophet Amos says, in reference to the same catasirophe, chai, ix. 6 , "He calleth for the waters of the sea, mud ponreth them over the face of the earth, the Lord of Hosts is his name." 'Theso passages show clearly that the sacred writers understood the Deluge to have originated in the rising of the waters ot the sea to such a height as to overflow the land.
§ 3. 'The tempreature of the carth uppears to have undergone in great reduction nt an early stage of this catastrophe,
and it is proper to bring it into view at present, for the sake of other important faets which it serves to explain. The bodies of some animals that perished at the time have been preserved in the aretic ice, without any material ehange since the moment of their death. Among these there is a specimen of the Siberian eleplant, and another of the rhinoceros. Vast numbers of the bones of these animals are found embedded in a fluviatile deposit, on the banks of the Lena, and in an island at its mouth; and in 1.79, Professor Pallas obtained from the banks of one of its tributary streans the body of a rhinoeeros, which has ovidently been preserved in the frozen mud since the time of its death; and again in 1804, an entire mammoth was discovered in a high bank of iee in the same region. The eareases of both retained the thick covering of hair, by whieh the aretic races appear to have been distinguished from their tropical congeners stiii mexistence. Now, though vast numbers of these and other races inhabited Siberia immediately before the cutastrophe in question, they evidently perished in it; and these two specimens cannot be referred to a later period. Again, the elimate of the eountry must have been milder up to the time of their death than it soon after became, or it would rot have produced the means of subsistence for them. Allowing them to have been capable of enduring the rigour of an aretic climate at the present day, which is not probable. they must have found in the country the means of subsistenee, and that in abmedance, or they would not have prospered in it as they appear to have done. But in any climate in which this was possible, their dead bodies coubl not have been preserved fom begiming to putrify more that a very few days. Even in water, though it be very cold, dad animals very soon lose their hair, fun beenme otherwise altered; and the fact that these retain their hair, is a proof that they became immediately enclosed in ice ator being drownad. It is probable that the elephant may have floated in an iceberer, hat the rhinocens was found in a bed of frozen tumt, a little below the surfice, and thongh frozen hodies will remain uathmed in cold water at a low temperature,

110 boly will never frecze in that situation. The rininoceross minst therefore have been deposited in the mud, and the nass must have been congealed at the conmencement of the :nondation, or before the waters had risen above the level of the bed.

The formation of vast masses of ice at such an carly stage of the catastrophe, solves a difficulty which has occasioned much perplexity to geologists. As far south as the fortysecond parallel, there are blocks of stone of different dimensions, which in numberless instances have been transported to a great distance from their original beds, by an agent which has ieft their sharpest angles as perfect and cntire as when they were split and detached from their parent masses. Iee will do this, and it is the only agent that is known to do it. Blocks of finmense sizo and weight, being loosened by the frost, and fulling from their native cliffs, are frequently carried to a great distance on rafts of ice, without being subjected to any rommding or polishing process. Every inhabitant of this Province has had repeated opportunities of ${ }^{\circ}$ seeing this excmplified either on a smaller or larger scale. The hocks sometimes fall from the banks of our rivers when the ground begins to thaw in the spring, and at other times they are lifted up from their beds by becoming firmly attwhed to the masses of ice that are formed around them, which raise then to the surface when the waters are swollen.
It is a remarkable circumstance that the freczing of the ocean is mentioned in the Book of Job, in a passage where the Deluge is also referred to. Chap. xxxviii. 30: "Out of whose womb came the ice, and the hoary frost of heaven, who gendered it; when the waters became compact as a stone, and the face of the deep was frozen? ?"* The country of Job, called the land of Uz, was a district of Arabia, (Lam. iv. 91,) where frost is little known, and the freczing of the sea would be regarded as incredible; and the great age to whieh ho lived, which conld not have been less than 200 years,

* The Hebrew worl Heja means te hide, conceal, close up, matic impenctrable, or compact.
twould make him contemporary with Serug, when Noah and lis sons were still alive, and the circumstances of the Deluge could not have been forgotten. There are repeated references to that catastrophe in the llook, Chap. xxii. 15-17, and xxxviii. $\mathfrak{\varepsilon}-11$, and the freezing of the ocean is mentioned as a singular fact that was known to those to whom the sublime address was prisented, and as a fact which could have resulted only from the interposition of the divine power. The friends of the patriarcla could not have been acquainted with the arctic climate, or indeed with any region in which the sea ficeer : and the passage must refer to some merorable and \cdots, akthenticated occasion, when such a singular phene :ersen securred.

It would nav: The impossible to assign with any degree of certainty, sor ? an ershi to its proper cruse; but as heat is very rax. Iv absornea hy the convei sion of water into steam, We may fipuse diis to Pave been eficeted on a great scale Thy the action of innumerable subinarine volcanoes, which would also account for the torrente of rain that fell from the heavens, without any intermission for a period of six weeks in succession.
§ 4. 'The waters rose by an intermittent motion, and neither all at once nor by or e gradual and comhined movement. Not only have many blocks been transported from one place to another, on the same or nearly the same level, but there an many instances in which they have been raised from lower to much higher situations, and that without being either rolled by an impetuous current, or tossed up by a powerfulsurge. Fragments of greenstone, from Salishury Crags, in the neighbourhood of Edinburgh, have been lifted orer a deep ravine, and up the face of a rugged precipice, to the top of Arthur's Seat, which is some hundreds of feet ligher; and in the parish of Benholm, between Montrose and Bervic, there is a hill of cousiderable height, called the Clonch Hill, which rises alruptly from the water's edge, and on the very top of which there aro a mumer of stones, of equally diflerent kinds and dimensions, lying without any order: and all within a very limited space, every one of
which must have come from a distance,-being not only different from one another, but also from the hill, which is a mass of greenstone, very lightly covered with soil. The largest stone is a slab of grit, about a foot thick, 10 or 12 feet wide, and apparently much longer. It stands on its edige, in an inclined position, with 10 or 12 icet above the gromed, and as much below it as is sufficient to preserve it from falling over on its side. It is supposed by antiquarians to lave been a Druidical altar, and to afford one proof, among many otheris, that the aborigines of the country had a knowledge of sone mechanical power, which has long been lost. But the principal stone is not in contact with any of the rest, and neither derives nor appears to have derived any support from them. Had it ever been intended for an altar, or used as such, it would lave been placed in sone other position; and if ever it had been in a more suitable position, it would be difificult to assign a reason for its present. Had it slipped by accident from the stones on which it rested, one elge might hav? gone to the ground, but the other would have continued to rest upon its supports; or if it had launched from them all, it would have come flat upon the ground.

Again, if it had been thrown off designedly, those who did it nust have subjected themselves to immeuse labour, without any conceivable object, in raising it up to an inelined position, and settling it so firmly and deeply ia the earth as to preserve it in that position for ever; when it might have casily been made vertical, and consequently to stand, with much less cost. If we suppose it to have been dropped, with the other stones laying around it, from a mass of ice, every dificulty will be removed. It has evidently come from a bed of grit, of the same appearance, which reclines against the base of the hill, and where all the other stones in its neighbourhood could have been taken up at the same time. Some of these are large rounded blecks of granite and gneiss, which the tides bring Sonth, from the butt of the Grampinns; lont others are small and shapeless, and altogether unlikely to have been carried there by artificial means.

An inhabitant of Nora Scotia can have no difficulty in understanding how stones, gravel, and mud, may be raised from a lower to a higher situation, hy means of ice. In severe winters the frost does not only penetrate to the bottoms of our rivers, but often to a considerable depth into their beds, converting the water, gravel and mud, as far as it goes, into a solid mass; and when the melting of the snow produces a flood, the bunyancy of the ice lifts the whole mass to the surface, which sometimes drifts, from the course of the river, into shallow water, where, stranding on some rising ground, it leaves all the insoluble materials, like a heap of rubbish, when the water falls and the ice dissolves. Collections of stones are frequently met in this new country, in localities where it is difficult to account for their presence, an! where they are calculated to tempt the curious to supposes that they must have been brought together by artificial menns, and intentionally deposited where they still remain; but the existence of icebergs on the occasion referred to solves the difficulty.
In order to have effected such transportations, the icebergs must have settled some time in the lower situations, in order to become attached to the stones which they afterwards lifted np to the higher; and when the water rose to a greater height, they carried the stones along with them in their ascent. This frequently happens in the bay which lies between Nowa Scotia and Cape Breton. Icebergs from the coast of Labrador often drift in and strand near the shore, where they soon become immovable; but when a strong gals frons the same quarter beats in a heavy sea into the bay, they are driven from their moorings and dashed to pieces; and their seattered fragments are thrown up upon the brach, with large stomes sometimes adhering to them. An iceberg, resting for some time on Salishury Crags, or on the coast of Kincardineshire, might raise up blocks to Arthur's Seat, or the Cloach Hill, and drop them in passing over these eminences; but the mighty imurdation winich affected this, must have attained its height by an intermittent movement.

Such is the view presented to us, in the Sacred History, of
the progress of the Deluge. Gen, vii. $17-20:$ "And the waters inereased and bare up the ark, and it was lifted up above the earth. And the waters prevailed and increased greatly upon the earth; and the ark went uyon the face of the waters. And the waters prevailed exceedingly upon the rarth; and all the ligh hills that were under the whole heavens were covered. Fifteen cubits upwad did the waters prevail, and the mountains were coerered." 'I he expressions here are repeatedly varied; and they are varied for the puipose of markilig more distinctly the difierenc stages of the rise of the waters, before they attained to iheir greatest height; and when we consider the genius of the "* "rew language, we may inter from the account that there were biauses in the novement,--that having suddenly risen to one height, they remained there either for a longer or shorter time, and again suddenly rose to another. . 'The eatastrophe was effected by a series of paroxysme, which gave deceitful hopes to those who occupied the higher gromed, till the last faint expeetation was destroyed.
§ 5 . 'I'owards the close of the inundation, the waters appear to have been tossed by a tempest. In many places the surface of the recks has been marked by the passing over them, in a forcible manmer, of some rough and ponderous body. They are not only polished by the rolling of gravel, but grooves have been cut ia them, apparently by the rubbing of some rough and immensely heavy body over them. Similar effeets are produced by the extension of the glaciers in Switzerland; and M. Agassiz, who is fumiliar with these, has fupposed that in some former age the greater part of the Northern Hemisphere has been under ice, which, commencing like Alpine glaciers at ecrtain points, gradually extended on the side that was open, and in the course of its progress produced these impressions. 'This is ingenious, and to a certain extent plausible; but the seratehes in question are found in situations where they must have had a different origin, and it is probable that their origin has been ewerywhere the same.

Icebergs, driven by a mighty wind, and having a mass of ifted up creased face of apon the ole heawaters ressions the puis of the greatest zr bew re were n to one shorter astrophe deceitful the last laces the ing over mderous £ gravel, the rubor thell. glaciers th these, art of the rommen-extend-- its proous, and question different n cuery-
gravel tirmly adhering to their lower sides, are much hetter adapted to the parpose. They sometimes rise to the ho bt of $\mathfrak{a j 0}$ or 300 feet above the water, and must deseend $1, \ldots$ many thousands below it, and be otherwise proporioned, in order to keep the same position. On floating masses of such magnitude the wind must act with an ineonceivable power;and when onee put in instion, and brought to their speed, they aequire an impetus that would carry them into shallow wa. ter, where the ground was favourable, and where they would consequently press with inconesivabiy greater effect $2 x$ in it. Scarecly a winter passes in which this is not exempit \quad in the bay already mentioned. Ieebergs are often throwiz into situations where more than one half of them are above the waters. This must have happened to the grooving agent, when it passed over the Hill or Corstorphine, in tie neighbourhood of Edinburgh, for the grooves commence or its western declivity, and, rumning up over the top of the hill, appear again on Ravelstonc Hill, on the opposite $:$ de, but 200 fent lower. By whatever agen the effect was produced, it must have struck with such force against the western slope of Corstorphine Hill as to carry it up over its summit, and launch it again into decpe: water on the opposite side, where it came in contact with the Hill of Ravelstonc. Ieebergs, hallasted with stones and gravel, and driyen before a furious tempest, would aet in this way, and produce such effects as those we are considering; and with the undoulted evidenee wo have of the existence of such agents at the time, we are justified in imputing these events to them.

We have here another remarkable coineidence with the Saered Narrative: Gen. viii. 1, "And God matle a wind to pass orer the carth, and the waters asswaged." Had the grooves been cut at an early stage of the inundation, they could not have been so very distinct and entire as they gencrally are; and we may therefore suppose them to have been made near its elose.
§6. The waters of the inundation fell as they rose-by an intermittent movement. 'This is clear from the beaches which still remain in different parts of the world, and which
were evidently formed at the different levels at which the waters stood, before retiribs, within their permanent boumdaries. In the valley of the Orinoco, near its confluence with the Meta, Humboldt discovered what he considered as undoubted proofs of the vast magnitude of that mighty river in ancient times, as compared with its modern state. He first found black bands and crosions, at a level of 45 foet above its greatest rise at the present time, again at thit of 106, and lastly at that of 138 ; and he says, "Is the present Orinoco then, which appears so imposing and majestic, no more than the scanty remains of those mighty currents of fiesh water which, swelled by the melting of Alpine snows or more ubundant rains, deeply shaded along its coursc by dense forests, and without those beaches which promote evaporation, formerly traversed the extensive regions to the East of the Andes, like urms of an inland sea? If so, what must have been, the state of the low countries of Guiana, which are now sulject to anmal inundations? What a prodigious number of crocodiles, lamantines, and hoas, must have infested those vast regions, alternately in the condition of extensive lakes and plains? 'The peaceful world in which we live has succeeded to one of tumultuous agitation. 'The remains of the mastodon and American elephant are found embedded in the platforms of the Andes, and the negatherium inhabited the plains of Urtesuay. Beneath the surfice of the elevated valleys, which at the prosent day are not adapted to tho palm und mborescent fern, we discover seturs of coal, containing the remains of gigantic monocotyledons. 'I'here was therefore a remote periud, when the vegetable tribes were distributed otherwiso than they aro at present; when the animals were lnge, and the rivers proportionally more hroad and deep." Had that distinguished traveller been then acruanted with the more recent discoveries and advanced state of geological science, he would in all probahility have referred the change which the Orinoco has nudergone to a different origin. It has evidently fallen, not by a gradual and continued decrease, but by fits, ronewed after intermittent puuses. It appears to have stood for sume time
hich the nt bounmfluener idered as hty river atc. He f 45 feet that of present jestic, no rrents of c snows ourse by promote ns to the so, what Guiana, at a proust have lition of which we The refound negatheo surfine are not er scums yledons. egetable present; rtionally traveller ries and II prohahas mun, not by ed after me time
at the height of 138 feet above the level of its greatest rise in modern times, then to have fallen 32 feet at once, and after another pause 61 feet, and ultimately to its present standard.

Were this the only instance of the kind, it would be rash and unphilosophical to draw any general conclusion frem it, for a single fact should be very decisive before being made the basis of a general principle, but there are similar instances in every pat of the world, and some of them far more decisive than this. Humboldt believes that the Lake Valeutia, in the same region, must have once been large, and that the level of its waters was proportionally higher than either the one or the other is now. It is surrounded by beaches at different distances from its present shores, which appear to have been descrted? one after another, as the area of its surface became less and less; yet there are no remains of any ancient barrier that has been broken down, or partially swept nway; and the contraction of its aren, end reduction of its level, can only be accounted for on the supposition that it once formed an estury, when the waters it discharged were dammed up by the height of the ocean.

But the parallel roado of Gien Roy in Scothand, afiord an instance still more clear than either of these. The Glen is 10 miles long, and bounded on the opposite sides by lofty and precipitons mountains, which meet and close it in at the upper end, leaving the lower end open for the escape of the river, which tumbles over the rocky hed that stretches along the hottom. On the opipasite sides of the valley; and facing one another, there are different sets of terraces, which, commencing at the lower end of the Glen, rin horizontally, it carresponding levels, till each pair meets at the upper eud, and thus preserves its contimity, excepting nt the lowe end where they hegin. Ench set ur pair is thens shown to bo but one line, contimied romed the greater part of the Glen at the same leid. The upicer one is found to be 1250 teet abopo the leved of the sea; the second is ano feet lower; and the third is 50 helow the second, and 1000 above the level of the sea. The upper and second ter-
races terminate abruptly on both sides of the Glen, at the lower end; bat the third is continued round the face of the hill, and along Glen Spean, whici. communicates with Glen Roy at that point. 'There are also corresponding terraces in Glen Gloy, in the imnediate neighbourhood, but not so perfect and discerrible along their whole line.

These terraces are formed of depositions of gravel and mud, and are evidently beaches of an ancient lake, estuary, or firth; and are formed of sulstances washed down from the higher grounds to the edge of the waters, when they stood at their respective levels; and the reason why they terminate at the lower end of the Glen is, that the tides in sweeping past them in that place, removed the materials as fast as they were deposited, while they were permitted to rest along the shores of the firth, where the current did not enter.

There are two sets of terraces extending to the length of f;0 miles, at Altonfiord, on the N.W. Coast of the Scaudinavian Peninsula, but they differ from those of Glen Roy in this respect, that instead of being horizontol they both form inclined planes, and the upper one dips int a higher augle than that of the other.

I shall return ngain to South America, nud give another instance from that quarter. 'The nccount of it is taken from Captain Hall's "Journal on the Coast of Chili, \&ce." Vol. 1, page 308: "On the 18th Sept'r," says he, "our friendly host accompanied one of the officers of the Conway and me in a ride of about 25 miles, up the valley of the Coquimbo; during which the most remurkable thing we sate was a distinct series of what are nsuatly called parallel roads, or shelves, lying in horizontal planes nlong the sides of the valiey. 'They are so disposed as to present exact counterparts of one another, at the same level on the opposite sides of the valley, being formed entirely of loose materials, prineipally water-worn rounded stones, from the size of a aut th that of a man's head. Each of these roads or sliclves resembies a shingio breach, and here isevery hatiention of the stones having been deposited it the margin of a lake, which has filled the valley up to these levels. 'These gignotice
en, at the ce of the vith Glen terraces ut not so
avel and , estuary, a from the hey stood cy termiin sweepas fast as rest along inter. length of Scandinaen Roy in both form her angle
ye another aken from ce." Vol. ur friendly ay und ine Coquimb; whes a disroads, or des of the it counteroosite sides rinls, prinof a but tu helves reation of the ake, which se gignotic
roals are at some places half a mile wide, but their general breadth is from twenty to fifty yards. There are three distinctly characterised sets, and a lower one which is intistinet when approached, but when viewed from it distance it is $e^{*:}$ dently of the same character with the others."
"In the centre of the valley, which is seven miles wide, there stood an extensive plain, narrow at the upper end and widening out towards the sea, thus dividing the valley into two parts. 'The surface of this insulated place was to all appearance quite flat and horizontal, and as far as the eye could determine, exactly on a level with the above mentioned roads; so that, if a lako ever stood in the valley at the level of the upper road, the present surface must have been barely rovered, or as seamen termit, just lipping with the water's edge. It is several miles wide, and shaped like a delta; its sides are in many places deeply indented with ravines, which crable us to see that it is composed exclusively of the sane waterworn materials as the ronds, which, on both sides, are exactly traced at the same levels, and in perfect conformity with those on the opposite bouks of the valley."
"Since the above deseription of the Coquimbo roads was written, I have had an opportunity of examining the amalogrous phenomena in Glen Roy, in the Highiands of Scotland. 'The resemblance between the two eases is not so great as I hat been led to suppose from description. In principle, however, there is not the slightest difference; mad the identity of origin seems unquestionable." 'There are several points, of great importance, which have either esenped the antice of this very respectable and intelligent oflicer, or which he has forgoten io mention: such as the height of the highest roud above the level of the sea, the distance of the three sets from one another, and whether the deposits ure stratified or not. It is remarkable that there are three disfinct sens, and mindistinet one below, which is nl the case int Gilen Roy. If the Dcluge was occasioned hy the depresaton of the Northem Ifemisphere, from which it suisequenty recovered, the fill of the sen, ins nompared with the level of the land, when the latter had regained its fomer position.
would appear greater than ite fall in the Southern Hemisphere.

The terraces just deseribed must have been all formed during the retreat of the waters, for, consisting as they do of loose and light materials, they could not have resisted the action of the current and survived the eatastrophe, had they been deposited at any carlier period. They are supposed by many to have been beaches of aneient lakes which have hurst their barriers and discharged their water, but they are much more likely to have been beaches of the sea when its waters stood at their respective levels.
Most of the great monntain cbains appear to have been enlarged when the waters were retreating. Their higher regions are generally intersected by deep rents, and frightful chasms, which have neither been filled up ly dilnvim deposits nor polished and enlarged by diluvian currents, as those that have been opened in the lower grounds. Were any considerable mass of new matter to be injected into the interior of a mountanin, so as to inerease its dimension, its exterior parts must either expand, or be ruptared; and in the latte: cuse, deep and rugged chasms would be opened across it; and when we see that deep ravincs have been opened, we may refer them at once to such an origin. In many instances chasms opened in this way have been filled up by the rushing in of melted minerals thrown up from the interior, and which have hecome veins in the masses in which they are enclosed, but in many instanees they remain open.

Chasms of a date anterior to the last revolntion of the earth, have in general heen more or less widened by the ation of powerful currente, of which they have heen !he chamely in the time of some more recent catustrophes, but those that were opened at the close of the last great catnstrophe have either heen litte affieted by such enrents, of not uffeeted by them at all, 'rlocir opposite sides are rongh and precepitous, and comerspond so exatly with mo another ats to show thent they have undergone litte niteration simes the time they were ruptured and fored aprart. Wherever there is a projection on the one wild, there is a correspomding
rece
egai
chas
Indi
thes
lines
and
are
'The is is and the
thro
Burl
vallo
time
rims
beds
feet
the:
hird
the
'I'
but
is fir
wide liand
lowe
'I'
end
any
sive
strea
Bola
arms
firet,
a do
wall:
ave been ir higher d frightdilnvian rents, as

Were 1 into the asion, its 1; and in e oprened ave licen igin. In een filled from the ia which ain open. on of the d by the been the whes, but rat catasrrellts. or are roush o another ion sine Wherever pordinge
recess on the opposite, and were it possible to bring then again together they would completely fit. There are many chasms of this kind in the Cordilleras of the Andes, in the Indian Caucasus, in the $\mathrm{Alps}_{\mathrm{p}}$, and in the Pyrences. In all these countrins they have been occasionally converted into lines of communication between one district and another; and though in some places they are quite practicable, there are others in which they are passed with great difficulty. The pass of Quindiu, between Santa Fe and Popayan, is bounded ly lofty walls of porphyry on either hand, and in some places so near to one another, that a single ox, the only beast of burden used in it, can squeeze himself through with some difficulty. According to Sir Alexander Burnes, the main roan from India to Bokhara, or from the valley of the Indus to that of the Oxus, which was at one time the great route of commeree between India and Furope. runs along a number of deep and narrow defiles, generally the beds of monntain torrent:, one of which he believes to be 3000 feet in depth, and so dark and dismal as never to lie visited by
 hirds responds to the roar of raging torrents, invis:ble to the eye, l ut appalling to the ear.
There are many such defiles in the $\Lambda \frac{p s}{}$ of Switzerland. but the valley of Chamouni is one of the most splendid. It is from seven to eight mites in length, and about halt a mile wide, and is bounded on either side by wnils reared by the hand of nature, and sa very lofty, that little more than the lower stories ean be seen liy a persen passing along it.
Thongh the sides of many of these chasms are unpolished. and have consequently never been subjected to the action of any powerful enrent, some of them retain the most decisive marks of having been the heds of inferior rmming streams for a limited period. Of this the celebrated pass inf Bolnun, become better known by the late disusters of ons arms in Affghanistan, may be given as an example. "At
 a dozen of horsemen between the rocks, which rose likp walls on cither side to a great height. Afterwards the rosul
lay broadly between the mountains, occasionally opening out. It was like the beach of the sea, formed of loose pebbly stones and sand, and turning at sharp angles, from one to a hundred yards apart from one another. This was the style of the pass for ten miles so Ser-e-Kimjour. At Ser-e-Khujour, the hill broke off from the road, but they still commanded it for other nine miles, and the same beach-like road lay between steep banks, as if it were the bed of a deep but dried river." Journey to India, vol. ii., p. 219.

Chasms, which like the Bolaun Pass lie at such a height above the level of the sea, and were at some time the beds of ancient currents, hut for too limited a period to have the projecting angles of their banks rounded, must have been opened about the time when the waters had already begun to retreat, but were still standing at their respective levels. Had they been opened sooner, when the waters rose to a much greater height their sides sould have been waterwom, and their sharp and projecting angles broken off, by the force of the enrrent, assisted by the masses of rock and gravel which it rolled along with it. On the other hand, had they not been opened till the waters had sulsided below their level, they could not have become the beds of currents, nor conld gravel and sand have been deposited along their courses, "like the beach of the sea." 'The opening of such chasms, when the waters had just begun to retreat, shows that the mountains by which they are intersected were then enlarged-that additional matter had been injected into their interior, and their crust expanded to a greater extent than the elastieity of the strata could admit; and that, as a matter of course, these had been rent in different directions, tud either to a greater or less depth, according to circmmstances.

It was formerly observed that every addition to the height and other dimensions of the momntains must be attended with loss to the same extent in some other quarter, beeause it is only a transference of matter from plate o place; and there are two whys in which such tenaferences may contribute to the depression of the level of the sea. They may either open subterraneous caverns into which the waters of
the bed in. to th had
opening ont. toose pebbly rom one to a was the style t Ser-c-Khuey still com-ach-like road of a deep but 19.
ch a height ahe beds of ane the projectbeen opened sun to retreat, s. Had they much greater m, and their force of the nvel which it hey not been ir level, they - could gravel ses, "like the ms, when the the mountains red-that indior, and their sticity of the se, these hal a greater or to the height be attended iter, because to place; and ces may con-

They may the waters of
the sea have access, or they may deprive some part of the lied of the ocean of its wonted support, anc permit it to fall in. In either case the surface of the waters would subside to the same extent, to which new accommodation for them had been provided.
The parallel roads atready mentioned, show that the watere stood for a longer or shoter time at their respective levels; and consequently that they retreated step by step, till they fell to their prescribed and permanent level. In rome instances, the relative position of the land and sea appears to have been altered by a depression of the latter; and in otherd, by an uprising of the former; and in others again, hy both conibined. As the terraces of Glen Roy have completely preserved their parallelism and horizontality, they must have been left one after another by the sen, whilo the land remained in the same position; but the face that they are neither horizontal nor parallel, at Altonfiord, shows that the sea was left by them-that they rose above it, and that, at the rising of both, the upheaval was greater at the one ead than at the other.

But, whether it was by a depression of the one or an uplifting of the other, it must have happened occasionally, and not hy one continued movement. The waters must have stood at the level of one of the terraces, for a time, to allow the materials of which it is composed to be collected; and then lave fulten suddenly to the level of the next. Those of Altonfiord, after being discontinued for some distance, again become visible, and very distinet, in Vaerdel, and Helgodal, in the vicinity of Drontheim. "It is inpossible," says Mr. Lning, " to see these valleys, withont being struck with the conviction, that they have been chains of fresh-water lakes which, have hurst their barriers and been suddenly laid dry. On ascending the steeps which bound the flat altuvial bottoms of the valleys on each side, and which conv sist generally of banks of gravelly soil, one is surprised to find in upper terrace of excellent land, cultivated and inhabited like the bettom, and consisting of the same soil of friable loam. The terrace rests against the primary rocks of
the Fjelde, and has evidently been the bottom of an ancient lake, which was bounded by these Fjelde ridges. Tho lake has probably been drained by some sudden convulsion, for the slopes to the level below are steep and sharp, whieh they would not have been if exposed to the long-continued aetion of waves and currents." Journal of a residence in Norway, p. 807.
Mr. Laing's opinion, that these terraces are the remains of ancient fiesh-water lakes, would have been more probable, had the barriers remained, excepting where they have been broken down and swept away; but while they are bovaded in the rear by the base of tho Fjelde, they are open in front towards the sea, and appear rather to have been ancient fiords, or firths, sucle as those by which the coast is still indented, when the waters of the sea rose to their level.

But terraces are not the only phenomena which indicate the sudden upheaval of the land in various places. It may be inferred also from the forcible dispersion of erratic blocks, in opposite directions, from a common centre, and at the same time. Wherever a submarine volcanoe breaks out for the first time, or a new and violent eruption takes place, it will produce a simultaneous rush of waters in all directions from the centre of movement; and whenever we see that impetuous currents lave rushed away in different directions, from a common centre, about the same time, we may conclude that it originated in a suäden convulsion, or rising of the land, at or near that centre. Now, if this be correct, there must have been violent agitations and risinga of the land in different quarters, towards the elose of the last inundation. 'There can be no doubt that in the Northern Hemisphere the general course of the current was southerly, but there are many localities in which it has for a time taken other directions. It has been already stated that large blocks from the central Alps have been carried westward across the valley oî Neufchatel, and even over the Jura chain into the plains of France; others have been rolled dowis in a northerly direction, from the mourtains of Cumberland and Westmorland, into the valley of the Solway; and theugh fragments of all
the rocks lying between Antigonish and the gulf of St. Law-
f an ancient idges. The convulsion, harp, which ig-continued residence in
the remains nore probae they have le they are rey are open have been the coast is their level. indicate the It may be inlocks, in ope same time. he first time, 1 produce a m the centre ous currents a common hat it origiland, at or must have in different on. 'There re the genee are many directions. the contral ey oí Neufe plains of herly direcestmorland, ents of all
rence, including a mass of anygdalnidal trap which just appears at Arisaig Point, are scattered about the fields in this neighbourkood, immense boulders of granite have come from the mouth of St. Mary's River, a distance of forty or fifty miles in the opposite direction. In their passage northward, they have followed the long chain of lakes, which connect St. Mary's with Antigonish, and are more numerous and less water-worn as we approach their original locality, behind the village of Sherbrook, where the ground is almost wholly covered with them.

On the subject of such dispersions, Professor Phillips makes the following noservations:-" If following the indisations of the phenomena, we refer, in every case, the dispersion of the blocks to the uplifting of particular mountain groups, and this is almost a certain inference, we may porhaps admit, in the neighbourhood of such groups, temporary variations, or undulations of the land, like those which accompany earthpuakes, sufficiently extensive when combined with the agitation of the sea, to permit the water to take, tor a short period, directions previously and subsequently impossible. That the whole was the effiect of a very short period, is the universal impression of all observers." Page 210.
If the land thus rose in different places, and at different times; and if, in addition to this, the bed of the ocean became decper and larger, by a series of convulsions, the waters must have retired by an internittent fall within their established and permanent limits. Such is the conclusion to which Geology conducts us, and it may be also inferred from the peculiar phraseology in which the close of the Deluge is recorded in the Scriptures. Gen. viii. 3, 5: "The waters returned from oft the earth, goung and returning ;" and again, "The waters decrensed, going and decreasin?.." This form of expression is used in regard to motion that is renewed after repeated interruptions, and it shows that the Deluge ferminated thus.* It is perhaps in reference to this fact.

[^2]that the Apostle represents the earth as alternately rising above the water, and being again submerged, at the time of the Deluge, 2 Pet. iii. $5,6$.
§ 7. It appears, both from Geology and the Scriptures; that torrents of rain fell from the heavens while the waters were abating. Though some of the terraces already described may have beer formed by the impetuous rushing of the waters from a higher tc a lower level, in consequence of a change in the relative position between the dry land and the ocean bel, some of them have been formed by other means. 'The parallel roads of Glen Roy are stratified. They consist of a regular series of beds, distinctly marked, and deposited over one another; and Dr. Lyell supposes the materials to have been rolled down by mountain streams, occasioned by the melting of snow above them, and distributed by the tides along the shore. This might have been thr origin of the roads which run along the sides of the mountains which bound the Glen, but there are isolated hills that rise between them, and there are roads round them at the same levels with those on the mountains. This is also the case in the valiey of Coquimbo. Now the materials of the roads on these ancient islands, could not have bee: washed down by mountain streams, because no mountain streams had access to them, hut they might have been rolled down as far as the waters fell by heavy rains. In heavy rains, though the water ultimately collects into channels, it flows at first over the whole ground, and will continue to do so on an even surface. Had the terraces in Glen Roy been formed by the agency of mountain torrents, the materials brought down loy them would have accumulated about the
his journey from time to time, after repented panses. Chap. xxvi. 13: "And the man wuxed great, going and waxing, till ho bocame very great." He rose step by slep, to wealth and influence. Lather jx. 4: "For this man Mordecai went and increased,"一he obtained promotion after promotion, till he altained the highest rank to which a subject could aspire. In Gen. viii. 7. a similar construction intimates that the raven hovered about the ark, taking longer and longer excursions from it, till the earth became dry, Compare also Exod, xix 19, P1ov, iv. 18; Jonoh i. 11, 13 .
ately rising t the time of

Scriptures; the waters already des rushing of sequence of ry land and ed by other e stratified. etly marked, supposes the ain streams, and distrithave been ides of the are isolated round them
This is alhe materials t have been: o mountain been rolled

In heavy channels, it ntinue to do n Roy been e materials d about the

Chap.xxvi. r, till he bend influence. eased," 'he the highest 7. a similar the ark, tadarth becaino nh i. 11, 12.
entrance of these torrents into the lake; and if distributer along the shores at all, they would have been deposited far more sparingly in the intervening spaces, which does not appear to have been the case; but heavy rains forming a broad sheet of water over the whole surface of the earth, when it had been loosened by the waters and more easily denuded, would wash down materials for the construction of these terraces, both on the mountains and isolated hills, just appearing above water; and would deposit these materials in regular beds, where their farther descent was siopped by the sea.

It appears from the Scriptures that the rains were continued till very near the termination of the Deluge. Gen. viii. 1: "And God made a wind to pass over the earth, and the waters asswaged." This was anterior to the stopping of the rain, which is mentioned as coming next in order, along with the shutting of the windows of heaven, and closing of the fountains of the great deep. "The fountains also of the great deep, and the windows of heaven were stopped, and the rain from heaven was restrained." It failed, or fell off till it entirely ceased.
The Scriptures and Geology agree then in regaid to the leading particulars of the Deluge:-that it was generalthat it originated either in the depression of the land or the rising of the ocean bed, or both combined-that the temperature of the earth was so much reduced at the time as to occasion the freezing of the ocean-that the waters rose by an intermittent motion-that they were driven by a tempest; towards the close-that they fell as they had risen, by an intermittent motion, and that the catastrophe was accompanied by heavy rains; and while Geology and the Scriptures agree in respect to these points, there is no point on which they differ.

CHAP. VII.

OF THE AGREEMENT BETWEEN GEOLOGY AND THE SACRED SCRIPTURES, RESPECTING SOME IMPORTANT EFEECTS WHICII HAVE FOLLOWED THE LAST REVOLUTION OF THE EARTH.

Every revolution which the earth has undergone has prored bencficial, either in its immediate or remote consequences; but some of them have been rather injurions at first, and have ultimately produced rood, by immediately doing harm. 'There are particular arrangements in the economy of nature, as well as in the moral gevernment of the world, in which transient evil leade to the introduction of permanent good; and on some occasions good and eviil are so equally balance ' thit it would be hard to determine which of them predominates. During the formation of the carboniferous strata, the means of supportiniz animal life were most abundani; but the peculiar state of the atmosphere, on which this deper led, was unfavourable to the existance of terestrial animals, and they could not have prospered while it continued. The vist masses of vegetable matter that were then produced, were however not uselcas. The peculiar state of the earth that produced them; also brought agents into operation by which they wore collected in particular localities, and there converteci into an invaluable mineral, which is now contributing in various ways to the individual and social benefit of man. During the time which immediateiy succeeded the carbonifevous period, animal life was in less danger from azotic enses, hut ke: in check from want of sustenance; but this state of todnes had also its use, and we are now deriving impowat be efits from it. In the tertiary era, a number of important changes were introduced, and the earth was approaching its present state, but had not attained to it; and the revolution in which that era terminated was still necessary to complete its transition, and it appears to have contributea to it in different ways.
§ 1. 'The last great revolution of the earth appears, both from Geology and from the Scripturea, to have increased ita

THE SACRED T EFFECTS ION OF THE
lergone has mote conseinjurious at rediately doin the economent of the oduction ef and evil are mine which of the coral life were osplicre, on existance of spered while matter that . The pelso brought icd in parsaluable mis to the intime which , animal life cheek from also its use, 11 it . In the introduced, but had not ra termina, and it ap-
pears, both acreased itw
fertility. The crust of the globe is chiefly composed of siliceous, argillaceous, and caleareous earths,-sometimes in a putrified, and sometimes in a friable state; ard none of these earths, if taken by themselves, are well adapted to the support of vegetation. 'They require to be blended with one another in certain proportions; and, when so blended, they form the most valuable and improvable soits, or soils that are susceptible of the highest inprovement, and at the least expense. Now the fact is certain, in whatever way we may attempt to account for it, that, in the great majority of the older formations, these different earths have been kept in a great measure by themselves; and though beds of limestone, shale, and saudstone, often alternate, they are seldom compounded in a way to be useful for agricultural purposes. The agency of a vast and active inundation was necessary to th's. The previous revolutions which the earth had unders?ne, by rupturing the strata, and disposing them in an inclined or vertical position, had exposed them all, more or less, to the action of such an agent; and the great inundation, in which the revolutionary times oi the earth terminated, actung upon their fractured, dislocated, and exposed edges, with the greatest intensity, has reduced vast masses to a friable state, blended these masses in all proportions, and deposited them in places where they are the inost available for the use of man.
Lofty mountain chains serve inany important purposes in the economy of nature, but above a certain height, which depends upon their latitude, they are unfit for cultivation. Their climate is top low in bring the more useful plants to maturity. They are too much exposed to the influence of the weather to be chosen by agriculturists, and too remote and difficult of access for the manufacturer or the merchant. Had they, therefore, been covered with a wich soil, it would have been in a great measure useless; but they have in general been swept by the Deluge; and while their bare summits pieree the clouds, and attract their watery trensures to the earti, periaps witi: an influeace beyond what they wonld otherwise have possessed, their soil has been removed to
places where it foums an important element of improvement in the world.
These obscrvations are equally npplieable to the Folar regions. They are either within or bordering on the line of perpetual congellation; and their vegetation bears an Alpine charaeter, and graduates into the mosses which fringe the glaciers of the lofty mountains. They have also in general been stripped of their soil. The Aretic regions of North America, aceording to Dr. Riehardson, present a bare and rugged surfaee, from which every partiele of soil has been removed, and where only a few scattered patches of moss form the whole vegetation of the eountry. The corresponding parallels of Europo and Asia are in a similar condition. The occurrence of eoal in Melvilie Island, and the masses of hones accumulated on the Northern eoast of Siberia, whow that these bieak and sterile regions were formerly under a milder elimate, and that when the elimate was congenial they had also at soil adapted to the support of a plentiful vegetation; hut when the elimate lecame unfavourable the soil was transported to more geniai elimes.

It was formerly stated, that, towards the elose of the inundation, the waters must have rushed from North to South, with an irresistible inupetuosity, as appears from the immense masses of rock which they rolled before them, aeross deep and extensive valleys, and over hills and mountains beyond them; and that this was probably oceasioned by the eireumstaner, that the dry land having been more depressed in the Northern Hemisphere, hal been suddenly raised to its former level, and had, in the course of this movement. thrown the waters violently off towards the South; or the rush might have originated in some other ehange, which "ad suddenly disturbed the equilibrium of the waters, and left them io find a new level. That they were loaded with sediment of different kinds, when they fell to the level of the alluvial hands, on the banks of our rivers, appears from the order in which these deposits are frequently foumd. In many places, what we enil intervale lands, are regularly stratified. They consist of a distinct series of beds, in which
nprovement o the Folar the line of s an Alpine fringe the o in general is of North a bare and il has been hes of inoss correspondr condition. the masses of Siberia, ormerly unwas congef a plentiful ourable the
e of the inth to Sonth, om the imhem, across d mountains oned by the e depressed ly raised to movement, outh; or the , which 'rad ers, nud left d with aedilevel of the irs from the nif. In malarly strati, in which
gravel, mud, and sand, alternate; but there are many situations in which we meet with one thick bed of gravei, in which the size of the pebbles increases downward, till they become boulders, or waterworn stones of considerable dimensions; while the superjacent mass is one bed of pure mud, which has evidently been deposited at one time, and not by a series of river floods, in which the alterneting beds have originated. When the gravel was deposited in one led, and the mud in another, the materials of both inust have been in motion at the sane time; and they have been put in motion by the sudflen and impetuous fall of the waters from a higher to a lower level; lut when the latter was attained, the heavier materials would come first to rest, and the gravel and mud would be separately deposited. In the lower fart of the bed of gravel, there are many trees, chiefly maple, but not exactly the maple of our present forests, Which shows that the cun:"ent must have brought the gravel and muth along with it at the same time, for the trees must tave been deposited before, is they never move in running water with the same rupidity as the other materints.

Whether the extent of the dry land has been increased or otherwise, ly such changes, there can be no doubt that it has been rendered more productive. A deeper and better compounded soil has been deposited over those parts of its surface, which are in other respects lietter adapted to the support of the more valuaile kinds of phants, and the menns of subsistence for man mad beast can be obtained from it in greater nbundance, and at less expense.

In this we have another point of agrecment hetween Gealogy and the Scriptures. 'The later show us, that the cursing of the ground had diminished its fertility, and that at the birth of Noals, his father, moved by the spirit of propheey, forctold ton amelioration in his days. 'The stuman race was again rednced to a single family, that the whole might be comprehemed under a seew arrangement, by which they were to to teinstated in the enjognont of a number of their forfeited privileges, and, smong others, in the possession of greater plenty; and it was intimated in the pro.
inulgation of that arrangement, that they would soon be enabled to recruit their numbers, and repair all the losses they had sustained. Accordingly, we find that before a single century had elapsed, they were in a condition to embark in a great enterprise, apparently with little other view than that of having an object in which they had a common interest, which might serve as a centre point of attraction, and counteract the tendency to brauch off into separate divisions; and such an idea cond only have originated in the necessity they were already begiming to feel ot dispersing themselves over the face of the earth, Gen. xi. 4.* Be this as it may, they had evidently increased with great rapidity; and in the couse of a century or two more, they had spread over a great part of Asia-made settlements both in Eurone and Africa, and haid the foundations of many great and populouskingloms. No more deeisive evidence can be required, of the rast improvement which the carth had uidergone. 'The term of human life was reduced to one-fourth of what thad been anterior to the Deluge, and, with the drain oceasioned by the quadrupled astivity ol' the law of mortality, the 'humm race increased with a rapidity apparently unexampled before the Flood.
§ 2. Again, the last revolution of the carth appears, both from Geo'ogy and the Seriptures, to have been immediately followed ly great: : regularity in the course of the seasons than had been provionsly introduced. Gen. viii. 21, a2: "And the Lord said in his heart, I will not curse the ground any more for man's sake, thongh the imagination of man's heart should he evil fiom his yonth; neither will I again smite any more every living thing ats I have done. White the curth remaineth, seod time and harvest, nud cold and heat, ond summer mul winter, mid day and night shall not cease." From this it nppears, that the curso formerly pronounced on the gromm, had been either wholly or partially

[^3]rem it la the लHe
pre inte timo thei sucl Iseen
The late forfe with intin was dise
soon be ene losses they ore a single , cinbark in ew than that un interest, raction, and te divisions; he necessity g themselves it may, they in the cou:se great part of rica, nnd laid grloms. No the rast ime terim of huad been anioned by the hummn race ed before the
ppears, both immediately - the scasons viii. 21, 22 : ot the ground ion of mun's will I again one. While and cold nud rht shall not ormerly proor partially
ion of the huú time uf the par 101, after
removed, and was never again to be repeated; and that while it lasted, it had, among its other consequences, interrupted the reguline course of the seasons, or counteracte? their influence, destroyed the distinetion between day and night, and prevented the beuefits which these natural vir issitudes are intended to secme to us. Had summer and vinter, secttime and harrest, and day and night, fullowed each other in their proper order, there would lave ben no oceasion for such a promise; and Nouh and his family culd not lave been sensible of any privileges it conferred upon then?. The promises griven to them and their desendants to the latest generations, have respeet to blessinges wheh had heen forfeited by their ancestors, and cither wholy or partinlly withheld; and in this view the promise unde: consideration intimates, that the existing order of the times and seanoms was either then introduced :now, or restored after a long discontinuance.

Geology leads, and perhans mare directly, to the same conelusion. Many races, both of pionts and animals, wheh onec flourished on the faec af the enth, hi ve leen long exthet; and but for thecir remains still preseried in the etratis we shond not have known that they cere existed. Uuler these eircumstunces, we may be suplos.ot to be maternainted with their instinets and hibits, nuld consequently umalle tw reason from their instincts and habits, resp eeting the combition in which thoy mast have lived. But his is to a certan extent a mistake. Tho oreranzation of :"ny phant, or mimal, may be regarded as a sure, thengh gencral inlic:ation, of what its instmets and habits have been, and for wi hat per culine cirensmstances it wats formel. Neatme ondows here different \&roductions with all that is nece-isury, nat with no. thing tmore; rud an mamal or plant with a tisclese org'm, on
 The cat in formad upon the very best constrmetion to cmable it to stend silently on its prey, to mal.e n sullemeprime with-
 meous and firm hold of its victan; and ite modes of life resto be infered from its mechanism. Kerping this in iow, mil
reasoning from analogy, we come to the conclasion, the the greater part of the plauts and mimals of a former world, were tropical saces, and that a tropicel, if not more than a tropical heat, prevailed in the parallels that are now called temperate, and extended evon into the polar circles. Where can bo no donht that the clephant and rhinoceros, as well as the bufian, abounded in Siberia, to the very shores of the Arctic seas, for there is not a river in that country; on whose hanks their remains are not common; and there are some ishands near the mouth of the Lena, in which vast masses of them are embedted. From this again we may certainly infer, that the vegetation of these regions has been abundant; for animal life could not have pruspered in them as it appears to have done, and that in some of its beidest types, unless they had provided the means of subsistence.

Again there are indications of an opposite character, from which we may infer, that the temperature of these regions was much lower than the above-mentioned fact would lead us to suppose. They e entain the remains of the Orihos Pallantis, a specios or vari ty of the Muks-Ox, a puroly Aretio animal; and which is an tinown to be able to submit even to a temperate climate; and Aretic shells have heon fiund in different partas of the more recent strata. 'To this we may add that the Siberian elephant and Siherian rhinoceros, were hoth thickly coverel with hair, which is not the cas with their existing congeners, which seem to be formed for a wamer climate. It has been inferred from this that they were of a different species; but there are many animals which change their external appearmuce in this respeet, when they remove from a warm to a cold climate, nud vice versa. In this Province tho horg acquires a corering of soarse wool among his bristles; mill in warm countries the wheep asinmes the corering of the goat, and the dog very wie" heromes maked; mul the fiut th "owephant sud rhinoecros beeane warmly clohed, when comieiled in Siberia, wh jome tecitedly that its temperthe whe towor than crem its vegention would have waranted us to suppose.

We have thas conflicting evidence respecting the tempo
ratu of $t]$ collc the mals may reas whic selve suld to c anin eitho and Ver 'The my stori and tial ti shru whic 'This equa In appo cinit ©OIII those sudd of Si races it has conse How ure ti to be (frou
ion, thet the rmer world, more than a now called les. There s, as well as tores of the y, on whose of are some vast masses ay certainly been abunn them as it idest typles, ce.
racter, from rese regions would lead Ovilos Palurely Aretio bnit even to found in difwe may add ceros, wert cens with ormed for a is that they any mimals his respeet, te, and vice covering of ounties the he dog very rant nud rhi1 in Sibreria, lower thnen suppose. the tempe-
rature of the higher latitudes in early times, and as neither of the proofs can be set aside, there must be a way of reconciling them. Ve ese probably not acquainted with all the conditions to , uicu - is possible either for plants or animuls to submit, and how much they may be affected by what may seem to us a most unimportant difference. We have reason to believe that different races of plauts and animals, which rather prefer a warm climate, can accommodate themselves to a cold one, provided they were exempted from all sudden and great variations. Sudden transitions from heat to cold, and from cold to theat, are more inimical both to animal and vegetable life, than a regular contimuance of either extreme. In the 'Tiema del Frego, Captains King and Fitzroy observed a variety of tender plants, such as Veronicas and Fuchsias, blooming in a climate where the Thermometer sedim rises much alove 36°, or experiences any great fall helow it; and in that region, of unceasing storms, the woois are inhabited by parrots and parroquets; and the duaming bird, whieh seddom appeurs in Nova Scotia till the warm weather sets in, flutters there among the shrubs und flowers curing the transient fits of sunshine which interpose between the squalls of sleet and snow. This has been attributed, and apparently with renson, to the equability of the elisnate of that dreary region.
In no other way can we account for the presence of such opposite races as the elephant and musk-ox in the same vicinity, than by supposing them to have been eapable of acconmodating themselves to different temperatures from those which they prefer, provided they were free from all suddeu and great variations; and that such was the climate of Siberia at the time. Its equability fitted it for diflerent racens of plants and animals, which could not have endured is had it bein changeable. 'The musk-us did not altugether consort with the elephant nud rhinoceros. White the rivers How through mountainons districto, no remains of the later are twund along thone banks, but they setfon of never fail to be met with, when their conrse is through law and level grounds. While the elephant rose to the height of 10,000 foet
ahove the level of the sea in South Americn, it appears to lave been confined to the lowest grounds in the Aretic regions. Yet their presence within the same area, along with purely Aretic races, shows that nature had adopted some arrangement by which all the insurmsuntable olstacles to their communion had been removed; and a uniform, or nearly uniform temperature, was the most likely for this purpose. li may have been variable, but its range must hive been limited, for had it risen much above the medium, it wonld have been insupportalik to one race, or hal it fallen much helow it, it would have proved equally insupportable to another. We may therefore conclude, that there was something in the state of the earti at the time, which counteracted the regular course of the seasons, and prevented the vieissitudes of cold and heat by which they are distinguished.

Again, if the larger animals frequented the higher latithdes in numbers, they must have found there the means of subsistence; ond as all animals require a more liberal supply of food in a cold, than they refuire in a warm country, the vegetation of these latitudes must have been far more abundant than it is now, and mast also liave comprehended a much greater varicty of plnuts. This suggesis mother very serieus difficulty; for a due proportion of light is just as indispensable to the phants which the elephant and rhinoceros required, as a snitable climate; and though the Polar regions have more than the neeessary compliment of light at one time, they lave just as muci less at another; and there must have been some means by which this deficiency was supplied. In times more remote than those which immediately preceded the hast great revolution of the earth, vegenation was so abundant in still higher Intitules thm Siberia, as to furnish materials for the formation of coal, which is known to exist in Melville Island, and the requisite degree of light must have been supplied by some other meme than the hmminaries of heaven. 'Ihe laws to which they are sub)jeet have hen the same from the carliest time to the present day. There are many plants which can accommodnte themselves to an artificial existence, and return again to a natural Aretic realong with ed some arcles to their , or nearly is purpose. ve been li1, it woull allen much portable to was some-counteractted the vistinguished. higher latie means of liberal suplm country, il fir more nprehended sis mother iofht is just nt and rhiugh the Ponent of light r ; and there ficieney was ich imsuedicarth, vergenan Siberia, I, which is isite derree means than hey are sultthe rresent odnte themto a natural

Wate, with little inconvenicnce. 'They ean dispense with the natural light of the day, and accejt of an artificial light as a substitute; but they mist have enough either of the one or the other; and that the plants of the warmer and brighter regions could have submitted to darkness, for three or faur months in suceession, without being injured by it, is altogether improbable.
'The light and heat, which jromoted vegetation in the ligher latitudes, had most probably a common origin. Incandeseent lava, when it issues firom the crater, frequently emits a wery brifliant and intense light, as well as a scoreliing theat; and vast columns of the brightest flame often ascend from volcanoes to the ciouds, and illuminate the horizon to a great distance. Now if during the earlier periods of the earth, active volcanoes were as numerous, and their eruptions as frequent and violent as the erust of the earth very clearly indicates, they must have preserved a grenter "yuability of temperature over the face of the earth in general, than would otherwise have existed; and often eonverted the night into day. 'Ine flmues of Mount Erebus, lately diseovered in the Antaretic regions, are represented by Captain Ross as uscending to the height of 9000 feet; and they cannot fail to shed aglare of light to a great extent over its neighbourthood.
§ 3. Besides, we have reason to conclude, hoth from Scripture and Geology, that the last great revolution of the earth was speedily followed by a sensible reduction in the size of many terrestrinl ammals. During the earlier ages of the earth, organzed bodies appear ingeneral to have been formed on a larger scale than at present. 'The arborescent ferna of the carbaniferous systen were twice the size of their existing representatives. 'Jhere were also a rariety of gigantic races, both of land and water mimals. But it would not be fair to compare races, which have left no representatives behind them, with existing races, because we know rot what they, inight have been, had they been continued till this time. Lut among the fossil remains of a former wortd, mary exinting mese huve been biscovered; and when the racoo can
be identified, the fossil specimens greatly surpass the living in size. The ancient hyenas, whose remains are fomat in se many ossiferous caves in Europe, e:hilhit the very rame organization as the living species-ihe same prodigions; stiength of jaw-the same instiucts, fund the same hahits. 'Etey were in all other respects the same kind of anmals, but nearly twice the size. 'i'he horns of the fossil dik of freland are twice the sizo of those of the motern elk, or moose; and the dee: of Scania, and buffalo of Siberia, have heen judged to ielomg to species that are extinct, chiefly on account of their great superiority in this respect. The sane hhing has been said, and oa the same accomet, of other fossil races. Large and unvieldy as the elephant is, he was fire smpassed by the ancient mammoth; and neither the African lion nor Bengal tiger will bear a comparison with their ancestors of the tertiary era.
'ille resources of man are much superior to those of any inferior race; and he can, in consequence of this, accommolate himself with less inconvenience, and more facility, to a greater variety of physical changes thain any other race can submit to, and is much less affected by their influcnec. If we ean then show the: he has been affeeted by the influence of the last revolution of the earth-ihat his stature has been reduced since the antediluvian age, we may the more readily admit that other mees have sufferel a rednction. The Saered Scriptures are chicfly ocempied with the moral chameter and condition of man-with his history ans an intelligent, immortal and accountable heing; and when his physieal condition is mberted to at all, it is ouly when it happens to be comected directly or indirestly with his higher interests. It is, however, vory concisels stated, in Gen. vi. 4, that the antediluvians were oi' a rigantic stature. Onr Common Version represents the massage ns stating that there were then giants in the worh; but the passage may as well be mederstood to me:m, that the men of those times were giants. or that they were in genema men of great stature. The eaered historian could not have interuled to have represented the existence of gimes in the former world either as a sin-
gular were 20, 2 fortul first verm kims fore Num a cen isteno tice, the n dwin
T'l çusti mode have to be yet st to the may they gil, il man
whic the r quen had latter perio
the living e fonad in very cane prodigions me habits. of animals, ssil elk of ern clk, or berin, have chicfly on 'The same other fosis, he was ier the Afwith their lose of any accommoacility, to a er race can fnence. If ic influence re has been ore readily

The Sitral characintelligent, ysical conpens to lie r interests. 4, that the r. Common there were well be minvere giants. ?. The enreprescuted or as a sin-
gular or uncommon fuct; for he exprecisly tolls us that there were mations of giants in his own time, Dent. ii. 10, 11, 20, 21, and their existence had a very unhappy effect on the fortuncs of the Israclites. Although Egy pt was one of the first of the mations, and had assumed a settled form of goovernment in the days of Abrahan, the father of the Anakims hat founde! Kirgath-arha, or Hebron in Palestine, hefore Zoan, the anciont capital oí that comntry, Josh. xxi. 11, Num. xiii. 22 ; so that the race caulne traced hack till within a century or two after the Flood, and they continued in existence till the times of David; and it is not unworthy of notice, that the Hebrew term Repham, ly which they are for the most part designated, represents them as a wasting or dwinding relic of former times.
The statements of Pliny among the ancients, of St. Augustine in the middle ages, and of Kircher, \&ce, among the moderns, of the discovery of human bones, which must have helonged to men of 20,40 , and even 400 foct high, are to be regarded only as amusing instances of human credulity; yet still they are not io be altoget hei despised, and may point to the recovery of an ancient and long-forgotten fact. Pocts may be regarded as the b corians of opinion, in as much as they record the opinions of their respective ages; and Virgil, in predicting the astonishnent which the future ploughman should experience at the size of the human boness which he might turn out of their graves, shows a belief that the race was gradually diminishing in stature, and consequeutly that those who flourished in still more ancient timen had surpassed his cotemporaries, as much as he expected the later to surpass those who might suceced them in a remote period of futurity.

> Aut gravibus matris galeas pulsabit inanes, Grandiaque ellissis mirabitur ossa sepulehris.
> (i. i. v. 436.
> "Then after length of time, the labe -"-ing swains,
> "Who turn the turfs ot those unhappy plains,
> "Shall rusty piles fiom the plow'd furrows take,
> "And over empt" helmets rass the rake,
> "Amazed at antion tithes un the stopes
> "And aighty relics of gignatic bones." Dryden.

Fivery country in which ancient traditions have been pre-
served, has a legendary history, and every legendary history goes buck to an age in which the country was possessed by giants, who are invariably represented as voracious and uthess camibals. A belief so generally diffused as this, must have had some foundation or a more solid and tangible nature than is commonly supposed. Accordingly we find that the antediluvian age was one of giants, and also that "the earth was corrupted before God, and filled with riorence," Gen. vi. 11.
(Qua terra puint Fera regnat Irinnys. Orid.
"So far as the earth extends the fell Erinnys reigns."
§ 4. It is clear from the Seriptures, that the term of ani-
pose, contai mould or the positic of bea a bea grown
must
whole one fo

Thi mal life has been greatly shortened since the cra of the Deluge, and this is at least rendered probable from geolegical facts. On this subject, the testimony of the Scriptures is fall and ducisive. Passing Enoch, who was translated when comparatively a young man, the mean term of human life, before the Flood, was nearly 916 years, while that of an Gqual number of Postdiluvians, begiming with Shem, did not execed 957 , which is not equal to one third; and from the days of Abraham, the last on the list, the term rapidly fell to the standard at which it still remains. 'The account of the period of human life in the 90 th Psalm, which is ascribed to Moses, is as applicable at the present day as at the time when it was written. "'The days of our years are three score years and ten; and if by reason of strength they be forescore years, yet is the overphes but labour ank ${ }^{\circ}$ sorrow, and it is soon terminated, and we fly away."

The attention of geologists has scarcely been directed to this point, and it appears rather a hopeless subject of enquiry. So far as I know, Dr. Buckland is the only writer who seems to have bestowed on it a passing thought, and if ho has come to any eonclusion respecting it, it is directly opposed to the following.
'Where are in difterent untries ossiferous caves, containing the remains of antedis ivian animals, and he lats selected that of Kuloch, in Germany, as the besi adapted to his pur-
not su means chiefly proof that tl as the caves, peculi as we the m mal 1 propo will a strikir

Gyl and e water eren aboye seasol sulbter is so ment been of dil been
e been pro-
pose, and most likely to throw light upon the subject. It contains, aceording to his calculation, 5000 solid feet of black mould, which he supposes to be composed of animal dust, or the residual earth of animal matter, in a state of decomposition. In this mass are embedded considerable numbers of beare' teeth, from which he infers that the cave has been a benr's dea; and supposing the residual earth of a full grown bear to be equal to 2 solid feet, and that the cave must bave been occupied for 1000 years, he reekons the whole number of bears that died in it to have been 9500 , or one for two years and a half.
This reasoning is ingenious but hypotheticai, and could not supporia solid conclusion. In the first place, it is by no means certain that the black mould is cither wholly or even chiefly composed of nuimal earth. Its colour is at least no proof of it. The cave appears to be singular in this respect, that the teeth contained in it are as black as the mould, and as they have retained their natural colour in other ossiferous eaves, the change here must be owing to something that is peculiar to it, and which would of course tinge the mould as well as the tecth. Neither ean the other properties of the mould decidedly prove it to be wholly composed of animal dust, especially as the decomposition of a eonsiderable proportion of animal matter in a mass of fine friable earth will altar the appearance of the latter greatly, and give it a striking resemblanee to animal dust.
Gypscous and limestone districts are very often eavernous, and contain basons of greater or less dimensions, in which water is seldom retained for any considerable length of time, even while bounded on all sides, so as to prevent its esespe above ground. Water, however, will flow into them in rainy sonsons, and when it has no visible outlet, it must have some subter"ancous passage near the bottom, the entrane te which is so superficially closed as to allow the passage of fine sediment into the interior. Some of these passags, have onee been open, and formed the entrances to caves and grottues of different deseriptions, and many of them appear to have been anciently the retreats of such predacious mimals as the
buar, in the dry seasons. In other instances dead animalas have been drawn into them, by the force of the currents which eseaped in that direction in the rainy sensons. 'There are many such caverns still in Grecce, and the basons in which they oceur nre occasionally filled with water, and become lakes in rainy seasons, but are quite c'ry at other times, when the caverns are inhabited by foxes and jackalls, and other wild beasts of the countre. When the water flows into them, it necessarily carrics in a quantity of sediment, and sometime; the carcases of dead animals, and other putresecnt matter; and in this way may the contents of the cave of Kaloch have been accumulated. As some sets of teeth have been preserved in it, we camot assign any good reason for the disappearance of others placed exactly in the same cirrumstances; but a very great number must have disappeared, if 2500 sets, have been left in it, as Dr. Buckland supposes. Besides, for any thing that appears to the eontrary, the cave may have been occupied be a number of bears at one time, and a considerable proportion of the black mould may consist of the residue on cserementitious mater.
'The cave of Kirkdale, in the North of Englaad, is in many respects hetter fitted to assist us in this dificult enquiry. It is generally supposed to have been a hyena's r'... for some time before the last gencral revolution of the earth, and was only discovered in 1821, when the scientific world had hecome fully alive to the great importance of its eurions contents, ma : when they were carefully examined before being dispersed. It contains the remains of the elephant aud rhinoceros, anong the larger animals, and of those of the monse and rat among the smaller, and presents a variety of undonbtad proofs of having for a long time been occupied by hy

The floor of the rave is envered with stalagmite, over which there is a stratum of fine mud, about a foot in bieknese, and then a secoud encrustation of stalagmite, of a latre date than the deposition of the mud. Stalagmite consist. of the carbonate of lime, with which water in filtering through the earth becomes ienpregnated, and which it car-
ries al posite and it chron ded in which was found not be of the the sta polish cave; years of tim
No ring tl tents teeth able p sequer morco specie have ! devon i. reas which beend to be the m the c:a or 120
to eve exchins But the w their
comm
cad animals the currents ons. 'I'here e basons in ter, and beother times, ackalls, and water flows of sediment, d other pus of the cave ets of teeth good reason in the same have disapr. Buckland to the eonber of bears f the black ious matter. ad, is in mault enquiry. '... for some rth, and was rld had becmrious conefore being rant and rhiof the mouse riety of unoccupied hy
gmite, over oot in hickite, of a lamite consist. in filtering hich it car-
ries along with it till it is exposed in the air, when it is deposited as an encristation. Its formation is generally slow, and it may not unfrequently he regarded as a kind of natural chronometer. The bones preserved in the cave are embedded in the mud. and partly encased in the lower stalagmite, which shows that part of them at least were there whils it was in the course of formation; and as mone of them are foum above the mul, we may conclude that the care has not bea inhnbited since the time of its deposition. Some of the hones embedded in the lawer encrustation, as well as the stalagm'te itself, appear to have been partially worn and polished, by the passing to and fro of the inhabitants of the cave; and tikiug all these eiremmstances together, e thonsand years docs not appear to be an over-estimate of the length of time that the cave was oceopied.
Now the whole rumber of the tenants of the cave, during this period, cannot be rated at move than 200 . its contents have been very carefully examined, and the set.s oi teeth found among them amount to nearly 800 . A considerable proportion of these, however, are milk tecth, and consequently not to be ineluded in the number. It is known, morcover, that the hyena, like the wolf, devours his own apecies; and as many of the botes of that anmal, which have been preserved in the cave, are fractured and partially devomred, in the same manner as these of other animals, it i. reasonaile to suppose that they belonged to individuals which had become a prey to the inhabitante, and that having been dragged into the cave by the latter, their tecth are also to be deducted from the 500 sets. After these reductions, the number of sets belonging to the regular inhabitants of the cave eamot be reckoned above 200, and if we divide 1000 or 1200 by this mumber, it will allow at an average six years to every individual, supposing the cave to have been in the exclusive possession of one at a time.

But hyenas, though savage, are not solitary animals. Like the wolf, they often hunt in packs-live in soeety where their domicile effords sufficient accommodation, and make common cause wheia a camel or other large animal is to be
attacked. In the cave of Kirkdale, the bones of the elephant, rhinoceros, and hippopotamus, occur in such numbers as to show that these giçantic amimals have either becone the prey of its tenants, or that their dead carcases were dragged into it, to be there devoured. Now this must have required the united efforts of a considerable number, especially as the cove is in the face of a bank, and at a consideralde height above its base.

But besides the hones of the larger animals already mentioned, there are also bones of the partridge, the hark, the rat, and the monse; and sone have alleged that the lyena is not likely to have preyed upon such dimimative unimals, and that threfore we may suppese the whole of the bones to have been deposited there by sone other means. But this supposition belrays either ignormee of, or inattention to, the hathits of predacions anmals. 'They have been sometimes thought to be wohle, gromerous, and highminded; but they ure strangers to every feeling of this kimul: the gratification of their appetites is their main olyject, and their only consideration is to do it most eflectunlly, and at the least tromble and the least dinger. Our bear does not hesitate, when eitcomstances are favourable, to atack the ox, ar 'he rejoieces in the capture of at sheep or a hog; but in \therefore zault of sueh game, does not disthin to hant for miec, and rather than !e relluced altorgether to a regotuble diet, will pit up for a time with locusts and grass-hoppers.

The smaller animals, whose bones have hoen preserved in the cave of Kirktale, were not meant for its ndult inhahitants, but for the use of the junior members of the community. Jhel the case been otherwise, few of them would have remined to aftord seope for the spoculations of the geologist. 'The animal that devolirs the homes of the or, will not waste much of his time in pieking those of the lark und the mouse, althongh they may be very well for the first experitments of those who wero but just entering on the shige. Bensts of Prey aro not iess ntentive tham others to their poung, und not lesis considerate in providing sustemuce ndanted to their jears; and when it happens to be aboudent,
they and t of in efiluv had c ronsu

T'l in th halhit cd, al inltab task ceros and o whole ceed inust 100 y the hy

Thi solid; alssum in reg ble, a whetl?
$\ln r$ gy, ml murly voure, ilin sti in gen ing an a diftis
s of the eleuch numbers ther leecome arcases were is must have unber, espet a consider-
already menlark, the rat, hyena is not tals, ant that ones to have 3ut his sul)ntion to, the 11 sometimes cd; but they gratifiention r only consile:st trouble te, when ci-- he rejoices cault of such ther than! e up for at time
preserved in ndult inh:hi-- the cominnua would have of the geolo0 ox, will not lark and the : first experiin the stuge. hers to their shstemmee be aboudant,
they provide more plentifully than their necessities require, and the surplus is allowed to rot in their den. A neighbour of mine lately discovered the den of a fox, by the offensive eflluvia emitted by the putrid carcases of mice, which she had collected for her cubs, beyond what they were able to ronsume.
The fact that some of the bones in the cave are embedidel in the under layer of stalagmite, shows that it had been inhabited from the time that the encrustation began to be formed, aurd consequently at an early period; and the number of inlabitants must at different times have been equal to the task of dragging into it, the carcase of an elenhant, a rhino'eros, or a hippopotamos, and that at no small disadvantuge', and can hardly be reckoned below 16 or 20 . Now, it the whole number of inhabitants, from first to last, did not exreed 900 , and if there were 20 of them contemporary, ther must have been no more than ten generations, which gives 100 years to each, which is a much longer term of life than the hyena enjoys at the present time.
This reasoning may be regarded as more specions than solid; and it is no doubt partly hypothetical. 'Too much is assumed, anel too little proved; but it is one of thoso points in regard ts which nothing more than probability is attainabe, and I leave it to the candid nuld discerning to deterninn whether this has not been attained.

CHAP. Viaf.

OBJJECTIONS CONSIDERED.

PRELIMINALY OBSERVATIONS.

In ruming the parallel between the discoveries of Geology, mul the brief notices contained in the Scriptures, of the carly comdition and revolutions of the enrth, I have enderavoured to do justice to the Pre-adminte theory, by selecting the statements of its leading ndvocates, and presenting them in general in their own words, without knowingly suppres.. ing any finct of importunce in that thoory, or exhihiting it in a difterent light from what is msual. As litte can it be justly
alleged, that I have put a forced construction on those passages of the Sacred Scriptures, which have been compared with the statemeats of Geology; and, without any straining on cither side, I have pointed out a very striking agreement between them,-an agreement which is not limited to one or two points, but which has been traced through a cousiderable number and variety. Geology and the Seriptures give ns respectively the very sume accounts of the momber and estent of the revolutions of the earth-of the order in which they have occurred-of the principal agents by which they have been effected-of their influence on vegetable and animal life, and of a number of inportant consequences which have followed them.

If this will not identify the period when the sedimentary roeks were formed, with the antelilnvian age of the Sucred scriptures, it would be difficult to determine what kind or amount of proof would be suflicient for that purpose. It is morally impossible that such a number of striking coincidences as have been pointed out could have been accidental; and if not, they will identify the one period with the other, as fully, and olearly, as it is possible for any thing of the kind to be done.

Were we to examine two separate and independent accounts of the same country, the one giving dates and the other none, if thoy not only guve a similar outline of events, nrranging them in precisely the same order, and referving then to the same cmises, but corresponded exactly in regard to such Itctails as were given in each, while neither of then contuined any statement that was at varimee with the othor. although the one gave particulars which the other omitted. or the ono was more full on this particular, and the other on that, would we hesitne to pronounce them separate accomuts: of the sano period, and series of events?

Geology and tho Seriptures uro so fin from disagreeting, that they reciprocally confirm mul illustrate each other. 'The diseoveries of Geology explan mat give imporance to statements of tho Scriptures, which are otherwiso misumderstood. or regarded as minteresting; and the light thus shed ly the
me and seur the sica but
cau of e
those pasn compared ny straining g agreement nited to one a consideriptures give number and der in which which they able and aniences which
sedimentary I' the Sucred hat kind or rpose. It is ikng coincin accidental: th the other, gof the kind
ependent acates and the ne of events, and referring ctly in regnrd ther of them ith the oth". ther omitted. I the other on rate accomits

1 disagreeing, h other. 'The ance to stateistunderstood. shed liy the
one upon the other, is reflected back upon its own source, and illuminates points in it that would have been otherwise obscure. Geology makes known the difierent revolntions which the earth has undergone, and speculatesin regard to their physical causes, or the agents by which they have been effected; but from the consideration of their primary and final causes it cautiously abstains, as if these ha l been illegitimate subjects of enquiry, or at least leyond the limits of its province. The Scriptures, on the contrary, point out to us at once, the first cause, and unfold the reasons of the divine procedure; and in this way some of the most difficult prohlems are solved, and some of the most perplexing questions are answered. Geology, for instance, shows us that in the last great revolution of the earth different races of animals perished, while others, with which they appear to have been intermixed, survised, and have been continued till the present time; but how to reconcile the preservation of one race, with the destruction of another, placel in the same circumstances, nnit apparently exposed to the same catastrophe, i.s beyond its ;rovince; and those who rely upon it as their only guide, have no other altermative than the unphilosophical hypothe:sis, that the whole were destroyed and a part restored by a new crention.

But can we discover in nature any actnal analogy to this, to which we may refer in support of its probability? Every iype of organization, that we know, perpetuates its existence by means of reproduction; and in every instance or reprodluction, that we know, the offispring derives its existence from the parent, withont any inmedinte or direct interposition of the creative energy. Could the opposite be shown to have onee occurred-could it he undoubtedly proved that the creative power has, in a singlo instance, been interposed for the restoration of a lost genus, or species, we might refer to the fact, for the sriution of a difficulty that does not seem to admit of any other solution, but not otherwise. The Scriptures extricate us from this dilemma, by making known to us the mems by which existing taces escaped tha catastropher, have rejnired their losses, nad continued down to our times.

1 mean not, however, to allege that every diffieulty is completely removed, and that no room for objection remuins. 'I'he many, and sometimes contradictory ways, which have been taken for the reconciliation of the Scriptures with Geulogy, show, in the clearest and :nost convincing light, that the subject is beset with difficuities, and that there are oljecetions to be answered of a very formidable kind. 'Fo affirm the opposite, would be to treat in number of our most eminent Geologists with a want of respect which they do not merit; and from which their distinguished talents-their great industry, and the important services they have rendered to seienec, should for ever proteet them

OBJECTION I.

The Sacred Chronology does not allow a sufficiency of lime for the great changes which the carth las undergone.
§ 1. The great majority of stratified roeks are universully allowed to be aqueous de, osits; and the different materials of which they are composed must have been cither rolled or suspended in water for some time before being deposited where they now rest. Again, coal consists of vegetable matter: and as immense quantities have been accumulated in coal fields, a much longer time must hive been required for its production, than conld have heen appropriated to it from the antediluvian rge. Moreover, there are vast masses of coralline rocks which have been formed by the labours of matrinc insects, and they can hudly be supposed to have been all constructed during the time which elapsed betwee' the Nosnic creation and the Deluge. Finally, whatever classification of rocks we atopt, there mast have been repeated dislocations, denudations, and rendjustments, and all these could not lave happened in the limited time admitted in the Scriptures.
§ ․ Such aite the arguments of those who athopthe proadanite theory. 'The question to be answered is not purely
alty is comn remains. which have with Gelight, that e are objecTo affirm most cmihey do not -their great endered to
ficiency of has underuniversully t materials er rolled or deposited ctable inatmulated in equired for d to it from masses of Inbours of ed to have ed betweer , whatever vo been rents, and all co admitted s not purely rith has un-
hergone could have been either accelerated or retarded by circumstances. 'The objection is evidently founded on the assumption, that, during the early ages of the earth, there were 110 other elements of change in operation than sueh as are in operation still-that they acted with no greater intensity, and that they consequently required the same time, int order to produce the same effects. Were these postulates granted, the objection would be unanswerable, but otherwise it is not.

When the agents, the suljects, and all the conditions, are precisely the same, in two cases, the same results may be expected in both, and that in the very same time; but a change even in some of the conditions may either retard or accelerate the process, or even derange it altogether; and should there be a difference in something more than the conditions, at corresponding difference in the effect may be anticipated. 'I'wo currents of water, of the same volume, and the same rapidity, possess the eame amount of power, but if citler the volume or velocity of the one be greater than that of the other, its power will be greater in the same proportion. Again, should they be precisely the same, both in regara to wolume and velocity-if the one act upon substances less or more refractory than those on which the other acts, the effects produced by them will differ accordingly. Should the one flow over a bed of mud, and the other over a mass of ${ }^{\circ}$ granite, the amount of excavation performed by the one would be very different from that of the other. We camot, therefore, reason from the present to the past state of things, till we first show that they have been in nll respects precisely simitar.
§ 3. Dr. Lyell, who is entitled to stand at the head of geologists, labours with consummato industry and ability, not wholly ummixed with art, to prove the uniformity with which the elements of change have operated from the enrliest time 10 the present day. But we have both ecologienl mud historient evidence of the oecurrence of eatnstrophers in ancient times, to which there has been nothing similar for thonsumbs of years. There have been, and there are still, local disa
valbaton-partial upliftings and depressions of the land, in pärticular regions, and petty cones are occasionally thrown up in volcanic eruptions; but no change in the crust of the sarth can be compared either in extent or in grandeur with that in which the primary era terminated, when the granites -and syenites ruptured and dislocated the new-formed strata, and rose into lofty mountain chains, dividing the earh into seca and land-into mountain and valley; or to what more rerent change can we point, of equal magnitude with that which closed the transition period? 'That the tertiary era ouded with an inundation, which rose to the heiglit of the highest mountains in the Northern Hemisphere-rolled over them with irresistible violence--widened out dark and rugged defiles into beautiful and winding valleys-rounded the jrecip: pus brows of mountains, and gave a more polished and agrecable aspect to the face of nature, is universally admitted; hut this was the last catastrople of the kind. Since that time no mountain chains have risen, and no capacious valley has been opened. In some localities, the sea may be encroaching slowly on the land, and in others the land may be gaining on the ser; but not only is the superficial extent of both stationary, but their tendency to exchange places is so small that the general confidence of mankind, resting on the uniform experience of ages, is fully established in their jermanent retention of their respective positions, in regard to each other.
§ 4. The condition of the earth during the carboniferons period was certainly difierent in various respects fion what it has ever since been. Not only was the vegetation anore ahundant during that than it has been duriag any later pesiod, but the geographical distrihution of plants has been different; and though we may not be able to ascertain fully the reason of this, it will prove in general that the condition of the earth must have been different from what it in now. Nothing is more certnin, than that its temperature was higher than it is at present; and heat, although it may have operated indirectly, has in all probability had n powerful influence
the land, in ally thrown crust of the indeur with the granites rined strata, e carli into hat more ree with that tertiary era eight of the -rolled over rk and rugrounded the re polished iversally adincl. Since o capacious sca may be c land may ficial cxtent ge places is , resting on hed in their s , in regard

arboniferous

 s from what tation nore ny later pehas been difain filly the, condition of now. Nowas higher have operaful influence es are gene-rally subject to heavy and long-continued rains; and in carly times, when the strata may have been less compact, and more easily broken up than at present, the rains may have produced far greater changes on the surface of the earth than would appear probable from the present state of things. "One tropical shower," says Captain Grey, (Discoveries in Australia,) " of only a few hours continuance, deposited over a field of barley a bed of saud nearly five inches deep, which the succeeding showers again swept off, carrying it farther on its way to the ocean." And Dr. Lyell has shown, as was formerly stated, in his Principles of Geology, that in the course of one rainy scason the Ganges carries down an amount of sediment sufficient to form a bed of earth of 621 acres in extent, and 500 fect in depth. If then, in ancient times, the temperate, and even the Polar regions, enjoyed a mild, if not a tropical climate, we may reasonably suppose that heavy end long-continued rains extendeci much farther than at present, and that their excavating, transporting, and reconstructing influence, was not less than at the present time.
Besides, in all countries subject to such phenomena, there are extensive deserts, the sands of which are as liable to be moved by the action of the wind, in the dry scasons, as by currents of water, when they are overflowed; and by these means a high temperature is indircetly filvourable to extensive changes.
§ 5 . It appears also, from varions facts, that the gencrality of the strata were at first softer, and consequently more casily abraded than they subsequently became. Their induration may have been promoted by exposure and desiccauon, but it has been chicfly owing to heat ana compression. Wherever the crystalline masses have penctrated, the strata have become harder and more compact, and the more frequently and violently they have been disturbed, the more have they been altered, and the nearer have they approached a crystalline form. A high and long-continued pressure will, independent of every thing else, jam the purticles so closely together, and lock them so tightly into one another,
us to give them a considerable degree of adhesion; but when a powerful heat hos been superadded, the effect has been very much increased. Many of the strata have leen partially fused, and converted into a solid mass; and in all such rases their disintegration has been rendered much more difficult.
'I'hat many of them were at first in a pasty condition, and contimued so for some time, is cvident from this, that they have been bent, and twisted, and even turned over, without being broken, which would be inpossible in their present state. 'They have, besides, received the impression of fuotsteps, and when any solid body has heen embedded in them, it has imparted its form more or less distinctly to a number of the lamine, both above and below. Now, when the strata were either wholly or partially in this state, there camot be the slightest doulst that they were far more liable to be affected and broken up by currents than after they had been converted into solid rock. 'Tho materials for the formation of new deposits were therefore proportionally more easily obtained, and that in much greater abundance than at the presment time; and on this account we cannot with propriety rea on from the present to the former changes of the crust of the earth. Λ giecably to this view of the matter, we find, by commencing with the oldest strate, and continuing our examination down to the latest, there is a regular decrease in the thickness of the formations, till the one bears no proprortion to the other.
§ 6. At the same time that the strata were becoming less and less sulject to the action of the denuding agents, the latter were both losing a portion of their intensity and becoming more limited in their sphere of operation. As the area of the dry land increased, that of the ocean became eiremmscribed; and as both became stationary, and the latter reased to change its bed, it acted no more upon the land as it had previously done, on difterent occasions.
§ 7. Dr. Buckhand believes that a high temperature pro. motes the consolidation of the strata, and that the kind of rock in the island of Gaudaloupe, which contains fossil hu-
man r sandb tropic these This of pre of the by E ind 1 to oce discor less 11 died 0 "ocks
ill wa tempe may less ti cal er very casion
n; but when et has been reen partialin all such h more difndition, and s, that they ver, without heir present sion of footded in them, to a number en the strata re cannot be le to be afcy had been fe formation more easily than at the th propricty of the erust ter, we find, atinuing our lar decrease ears no procoming less agents, the ity and beon. As the ean became nd the latter the land as the kind of us fussil hu-
man remains, "is frequently formed in a few years, from sandbanks composed of similar materials on the shores of tropical seas," vol. i. p. 105, and he supposes it probable that these remains are those of men who fell in a battle in 1710. This shows how liable we are to be swayed by the influence. of preconceived opinions, or the great tendency of the love of theory to warp the judgment. The battle was fought by Europeans, who bury the slain in collective bodies, and not in an isolated manner, as the remains referred to occur in the rock. Besides, the prineipal of the remains discovered was a mutilated skeleton of a female, who doultless may have fallen in battle, hut is more likely to have died otherwise. But be this as it may, I have no doubt that "ocks of different kinds may be formed in a very short time in warm countries,-having repeatedly witnessed it in the temperate climate of the South of Scotland;* and if so, why may we not suppose the strata to have been formed in much less time than would now be possible? We have Geological evidence of the most decisive kind, that rocks have been very rapidly formed in different places, and on different occasions. Of the fossil fishes of Monte Bolco, Dr. Buckland

[^4]very justly observes: "They must have all died on the fatal spot, and been speedily huried in the calcarcous sediment, then in the course of deposition. From the fact that certain individuals have even preserved traces of colonr on their wiin, we are certain that they were entombed before the deromposition of their softer parts took place." Again: "Evidence of the fact of vast numbers of fishes and saurians having met with sudden death and immediate burial, is afforded by the state of entire preservation in which the bodics of lundreds of them are found in the Lias. It sometimes happeus that searcely a boue or a seale has been removed from the place it occupied during life. This condition covid not possibly have been retained, had the uneovered bodies been left for a few hours, exposed to putrefaction and the attacks of fishes and other small animals at the bottom of the sea." And again he says, of the fossil fishes at Matsfieldt and Eiseleben, "As they maintain the attitude of the rigid state inmediately after death, it follows, that they were buried before putrefaction had commenced, and apparently in some hituminous mud, the influx of which had caused their destruction." Vol. i. pp. 123-125. To ine same purpose he observes, that the fossil Loligo at Lyme Regis has heen suddenly eaught by sone sudden eatastrophe, which overtook then by surprise, and prevented them from discharging the contents of their ink-bags, which they instinctively do on the least alarm, as a means of preservation. "I might register the proof of instantaneous death," says he, "detected in these ink-bags, for they contain the fluid which the living Sepia emits in the moment of alarm; and might detail further evidence of their immediate burial, in the retention of the forms of their distended membranes: since they would speedily have deeayed, and have spilt their ink, had they heen exposed but a few hours in decomposition in the waters. The animals have died sudden?! , and been quickly buried in the sediment that formed the strata, in which their petrified ink and ink-hags are preserved." Page 307. Fosisil animals have leen discovered in different places and different formations, which appear to have died so very sud.
denly tric sl the si death sione prit heart
'I'h

> It mis It has show of C fore t instan sedim groun gelati is loo other and
tion, land

Bu
origir fell d interi squar carric from filled The whic prop whic A gr float, the 1
d on the fatal us sediment, that certain onr on their efore the deAgain: "Evisaurians ha$i a l$, is affordthe bodies of netimes hapmoved from on covid not 1 bodics been d the attacks of the sea." fieldt and Eic rigid state were buried ently in some sed their dee purpose he has been sudich overtook charging the ctively do on 'I might re1e, "detected ich the living ht detail fure retention of e they would ink, had they in in the waen quickly buwhich their ge 307. Fostaces and difso very sud-
denly that their death might have been imputed to an electric shock, had they not retaised unequivocal symptoms of the spasmodic action whic!s usually aceompany a violent death by other means. 'Their death nust have been oceasioned by a sudden and overwhelming rush of mud into that part of the sea which they were in at the time, and in the heart of wat mud they were all entombed.

There are different ways of accounting for such an event. It might have originated, for instance, in an intense thaw. It has been already stated, that the vast masses of iee and show which had been accumulating for years on the volcano of Cotopaxi, were suddenly dissolved, a very short time before the great eruption of 1803 ; and the valleys below were instantaneously inundated with water heavily charged with sediment. When the frost has penetrated deeply into the ground, as it always does within the limits of perpetual congelation, and happens to be suddenly expelled, the ground is loosened to a great degree, and far more exposed than at other tinnes to the excavating power of impetuous currents; and we know, to our cost in this Province, that an inundation, under such eireumstanees, is far more destructive to the land than an inundation oceasioned by heavy rains.
But there are other causes in which such phenomena may originate. When the voleano of Carguairago burst and foll down, in 1698 , the water which had been pent up in its interior, and was then liberated, covered an nieen of 1 s square miles, to a great depth, with the sediment which it carried along with it; and the tide of mud v bieh descended from 'Tungaragua, during the earthquake in Fobruary 1797, filled some of the valieys at its base, to the dep th of eno feet. The waters which fall into lakes and ponds, as well as those which make their way to the sea, for the most part, hold a proportion of the carbonate of lime in a state of solution, which they deposit in beds of marl when they cone to rest. A great part of this may be easily raised ngain, and made to float, by the volent agitation ereatel by an earthquake, ant the breaking down of the barriers of such lakes and ponls.

Again, an overwhelning deluge of mud may originate in
the attendants on a voleanic eruption. In 1835, Cosequina threw out such a quantity of ashes as to cover the ground to the depth of 10 feet, to the distance of 20 miles in a southerly direction, when great numbers of land animals, both wild and tame, were buried under them. Now, if such a fiall of ashes should be immediately followed by heavy rains, they would be swept into some pari of the sea, and every animal contained in it would be suffocated. It was by such a fall of ashes and scorire, that Herculaneum and Pompeii were buried so deeply that their very sites remained uncertain for seventeen centuries.
§ 8 . Faets like the forecroing show very clearly that some strata have benn formed in a very short time; and if some have been so formed, why not others? Why not all? Beds that have heen suddenly deposited are not limited to one or two classes only, but extend to many: such as limestone, saudstone, lias, marlstone, \&c.; or all the kinds of rock eontained either in the secendary or tertiary series, -so that there is nothing in the composition or structure of any of them, opposed to the idea of their rapid formation.
§ 9 . 'There are, however, certain arrangements which geologists regard as naturul chronometers, and which, if rightly interpreted, assign a much higher antiquity to the existence of the earth than the Scriptures allow. In the bason of Paris, for instance, salt and fresh water deposits alternate with one another for a considerable number of times; and it is inferred from this fact, that the district had been as often raised above the level of the sen, and again depressed below it, and that the completion of these alteruate risings and fallings hust have required many thausands of years. But it has been already mentioned, that the Run of Cutch, whicin is 2000 square miles in extent, suddenly subsided in 1819 , and was overflowed by the Indus; while the ljllah Bund, in its immediate neighbourhood, rose to the beight of 10 feet above its former level. 'The same district is ce:lfidently believed to have heen under water at no distunt period before; and in 1838 it again enserged and becane diy. Leween 1819, when the disturbance ocemmed, and 1826, the
coms ing, l Ullah filled tresh
yoon it not salter tion, Here in th and n times ages. was 1 and t nel, a cover her of woul the ot of the passa bed o posito ternat posite And draws by wl which Lyell there sent h the se a com shells neigh

Cosequina the ground iles in a sounimals, both w, if such a heavy rains, 1, and every was by such and Pompeii ained uncer-
ly that some and if some ot all? Bcils ed to one or as limestone, of rock con-ies,-so that ure of any of tion.
nents which xl which, if iquity to the low. In the ater deposits number of district had a, and again these alterny thousands that the Run uddenly subwhile the lito the beight istrict is cento distunt pebecane dry. and 1826, the
comrse of the Indus in that place had been contimally shifting, but in the latter year it forced a passage through the Ullah Bund, into the depressed distriet, which hat then beenn filled with salt water from the sea, and converted it into a fresh water lake for a time; but during the southerly monsoon in 1827, when the wind drove in the waters of the sea, it not only recovered its former saltness, but in: time becanes salter than the sea itself,-no doult ly means of evaporation, which, while it carried off the water, lef , he salt behind. Here then is an instance of salt and frest water alternating in the sane bason, and that in the space of a single your, and not only so, but of forming deposits of aicient impurtance to preserve undoubted evidence of the fact to future ages. The passage cut through the Ullah Bun!, in 18:3. was 18 feet in depth, 120 in breadth, and 16 miles in lengeth; and the mass of rubbish which was removed from this channel, and of course deposited in the bed f the lake, would cover an area of considerable extent to the depth of a num:loer of fect. In 1827 the salt water again predominated, and would of course deposit a salt water bed on the surfuer ot the other; but in 18:8 an unusual rise in the Phurraun bratech of the river, cut away the banks of the above-mentioned passage to a great extent; and consequently formed another: bed of freshwater sediment, where the others had been doposited. In the same, or in some similar way, may the alternating beds in the bason of Paris have been aucient) doposited, and that in a comparatively short time.
Another argument for the very great age of the earih, is drawn from the form and extent of many of those valleys by which the surface of the earth is diversified, and down whichrivers flow on their way to the sea. On this point D) Lyell reasons thas:-On the coast of Calabria, for instance, there are many loeds of marinc depoisits, which are sit present huadreds and even thousauds of feet above the leve! ot the sea, and which must have been raised to that height ont a comparatively recent period, as they contain many fossil shells belonging to races which are still in existeren in the neighbouring seas; and yet these beds aro intersecteil! $\%$ wal-
leys varying in deph from 50 to 600 feet, and are sometimes a mumber of miles wide; and as these valleys must have been excarated by the streans which flow through them, and that, at their present rate of progress, the whole operation, from the begiming till now, must have eccupied an incompar: uly louger period than the Seripturesallow. "Some speculators, indeed," he says, "who disregard the analogy of existing nature, and who are always ready to assume that her forces wero more energetic in by-gone days, may dispense with it loner serics of movements, and suppose th't Calabria'rose like an exhalation' from the deep, after the mamer of Milton's Pandenonium. But such an hypothesis would deprive them of that peculiar removing fore required to form at regular system of deep and wide valleys; for time, which they are so muwilling to assume, is essential to the operation. Theme must be allowed i:n the intervals between distinct convulsions, for ruming water to elear away the ruins caused hy landislips, otherwise t' fallen masees will serve as butfresses, aud prevent the succeeding earthquake from exerting its full foree. Whe sides of the valley must be again cut nwiy by the stream, and made to form precipices and overhauging clifts, hofore the next shock can take offeet in the same mamer.' Princ. of Geol., vol. ii. p. 353. In this reasoung two things are assmed, which require to be proved. 1st. That all strata contaning fossils belonging to existing races are therefore of recent date; and $2 d l y$, That all valloys have been not only originally opened but subsequently enlarged by internal convulsions. That many existing races of' animals were in being for some time at least before the hast general revolution, will not be denied, and though that may be accomited a recent event, it may have beon the origin of many of the valleys referved to, and the moans of enlarging and modifying others. Tho current which deposited the drift, and which rolled licfore it, in a straight course over nountain and valley for hundreds of miles, musses of stono of many tons weight, must have actor with inculestablo enexgy, in cutting away the stratil and seooping out enpacions valleys and basons, wherever chasms or ravines had existed, have been a, and that, ation, from conpari uly peculators, of existing ther forces nse with a bria'rose er of Miluld deprive form atrewhich they operation. istinct conins caused ve as butrom exerte agraiucut ; and overfleet in the 3. In this , he proved. to existing hat all valil)sequently isting races t before the hought that en the ori10ants of enh deprosited course over eses of stone culable ent capacioms hal existed,
or wherever the land had been previously depressed; and if we admit this, it is unnecessary to suppose a series of convulsions, precipitating landslips from the brows of mountains, to be slowly removed by orlinary currents, acting imperceptibly during the lapse of intervening periods, which separated them from one nnother, and made them "like ansfcl visits, short and far between."

The exearation of the deep bed of the St. Lawrenee, for a number of miles helow the eelebrated Falls of Niagara, has been referred to as an operation which must have required many thousands of years at its present rate. Had nothing ever occurred to aceelerate the process, it woukl have been perfectly fair to have estimatel its past hy its present rate; but if times have necurred which were attended by cireunstances that dispatched the work of centuries in a rlay, it would be unfuir in the highest degree, and could not fuil to lead to the most erroncous conclusions. Now, though the senerul features and aspect of the country have undergone no material change sinee the ern of the boulder formation commenced, the excavation of the trough has been evidently going on since that time, aul must therefore have been aceclerated in uosmall degree by the great catastrophe, in the comrse of which that formation originated. The shale which maderlies the calcareous roek, from the top of which the river is precipitated, is soft and very easily abraded; but the fall, by couverting the water into form, renders it in a great mensurn powerless, und the sibale is slowly wasted away by the inthence of the wenther. The whter has little or no eflees "pom it, but when the momatains were operflowed by a current, which rolled rast masses of solid rock over their summirs, it must have acted with tremeduous energy in such rasires as the bed of the river below the fallz. The force or if current is ulways greater at tho botion than at the surface, in proportion to its depth, becanse it lins the weight of the superincumbent volume to give it impetus; and its excavisting power is immeasurably increased when it fills from a predpice without bring broken, as it mast have done whe a the mountains were rovered.

The strongest argument in support of a very high antiquity, is furnished hy the Great Coal Formation. Coal is chiefly composed of vegotable matter, but the way in which such vast masses have happened to be acemmatated in particulur localities, is only a matter of speculation as yet, and camot therefore he adopted as the basis of any theory of the age of the earth. So fir as is known, all the plants in the coal formation have been long extinet, hut they belong to orders which are still in existence; and they serve to show, that though the state of the earth has madergone a very great change, it has hem in many respects the very same from the rarlicet times, and that some of the actual phemmenn of nat ture may be safely referred to in our speculations about the past.

The coal lies in distinct bedte, which are separated from one another liy intervening strata of sambstone, limestone, shate, or conglomernte. 'The mumber of the beds is not everywhere the sane, but difiers considerably in different fields; ind they difier fiom one another in the samo field, in respect of thimbless, quality, and some other particulars. In the great eoal formation in the North of England, the whole number of the beds is upwards of 90, of which one thiod are coal, and the rest limestone, samdstome, \&se. In Scotland the seans of coal amount to 80, min in Wales to nearly 100 .

The origin of this important formation is enveloped in mystery, and very litto has yet beon done towards its oluci-
 sent, and lie supposer every roal-fichl to to the site of in ancient lake, or estumer, in which was produced a plentiful arop of the stigmaria, ficoides, in mquatie phant that nhomonds in the conl, mad whose 1 mig und slender hranches mid leaves, floating in tho water, beemmoso intertwines and elosely matted ins to form a groundwork for other phats: such as gigantic chub-musses, wee-firns, flngs, \&o. which comtimed tio ancumbute til! materials were produced for a coal semm, when the whole sulsided helow its ensemary lovel, mad he-

fresh ther be re pleter

Th formi somet sions; le col place in the same mulust of the ways Ciener forma 11101 lowest the be may b If the (im, must linth partial not han and sl
Oth rinls o ters, al sme 1 with n in the origin sists of mansio tugethe
gh antiqnial is chicfly which such particular and camot l' the age of it the conl g to orders show, that very gireat no fiom the nema of nitsabout the
rated from limestone, eds is not in different me fichd, in particulars. ngliand, the whiclı oue He, Ese. In il Wiles to
iveloped in ds its elacigne nt pree site of "m a plentifinl ait aboumds mud leaves, clasely matchas arigullontinued to coal somin, Pal, und beHowed hy a
fresh crop of the stigmaria and its msund attendants, till another depression oceurred; and that this process continued to be repeated till the number of beds in the field was com pleted.

This theory is original and ingenious, but liable to some formidable objections. Coal is usnally found in basons, sometimes of smaller and at other times of larger dimen sions; and the different seams or beds in the formation may be compared in some respects to an equal nmber of hasons placed the one within the other, and diminishing so regularly in their size and form, that their edges or hrims are upon the sume level. Now the origimal bason, with all its contents, must either have repeatedly subsided in a borly, or the aren of the subsidence must have been gradually diminished, always leaving the rim of the last formed bason unbroken. fienerally sqeaking no disturhanco has occurred in the coal formation till after it was completed, for the fiults so conmon in it for the most part descend from the highest to the lowest bed in the system, and ons the opposite sides of a fault the beds correspond in number and thickness, though they may be depressed on the one side or uplifted on the other. If the whole tason liad subsided at any stage of the formation, before it was completed, the next bell deposited in it must have been just as extensive as the first; the area of ${ }^{\circ}$ lonth mast have heen the same, and if the subsidenco was partial, if a section of the field only sank down, there would not have been a comespondence between the beds previously and subsequently formed.

Others, rejecting Mr. Logran's theory, suppose the materials of the coal to have been rollected from difterent qumeters, and deprosited in tho places where they now rest, in tho same manner as a vast collection of vegetalbe matter, mixed with man and other substanees, is at present aecumulating in the deltn of tho Mississippi. 'This was most probnloly tha origit of the coul of the tertimy suries, whichevisently von sists of a collection of trees, and other plants of interion dimimsions, intermixed with mod, mul all hadlled and jumme. tagether, as if by the action of sente powertal eurnent. "!

Pietzherg, new Bonn," says Dr. Buckland, "six or seven heds of brown coal alternate with beds of sandy clay and plaster. Whe trees in the coal are not all parallel to the Now planes of the strata, but cross one another in all directions, like the drifted trees now aceumulating in the alluvial plain and Itelta of the Mississppi. Some of them are occasionally foreed into a vertical position."

But that some of the plants cubcdded in the coal have been froduced on the spot which they still occupy, uppears to be certain: as the roots of the stigmaria are still found insorted in their natural order, in the bed of clay which underlies every seam of coal; and there are plants, of which the loaves and other tender and delicate parts are in such a completestate of preservition, and deposited with so much regularity, as to exclude the illea of their laving been drifted to the spot by any current of sufficient power to have transported stich a mass. 'The long and slender arms of the stigmaria, and its proportionally long and slender leaves, must have been prodncel in water that was generally at rest, for in no other element could they have spreal aromed the trunk 10 such a distance in it horizontal position. It is ecitally clear that part of the materials were brought from a greater or less distance, and by an agent that only acted periodically, or was at least sulyject to frequent interruptions; and moreover that the mutorials thus collected were not alwas equally abmilant, for the seams of coal generally nlternate with heds of :omething eloe, -n proof that they were formed int difierent times; mal the are neither of equal thicknoss nor of the same quality.

A lage lake or inland wat, having no tidea, and lying at the hase of sumo mountain range, fion which the vegetution might Jate been asily swept, mast have been fivomrably sitmator for a coal formation. 'Fropical cometries ure in general suljeet to perindical rains, when extensive trates of lamb aro uverfowod, and stripped not only of their luxuriant vecrenton. hut in many instanes of a portion of their soil; and whan tim raty smath termantes, but the rivera retreat

ix or seven ly elay aud rallel to the directions, luvial plain occasionally
coal have py, appears till found invhieli muderf which the sucha a comso much rebeen drifted have tronss of the stigleaves, must y at rest, for and the trunk It is equally onl a greater periodically, ; and moreways equally ternate with are formed it hicknoss mon'
aurl lying at he vegretation a fuvournhly ries ure in gesive tracts of heir luxuriant of their soil; riveran retreat ull with 11 rio
gonr unknown in temperate climes; and another abundant crop is produced to follow its predecessors in due time. Now, when a tropical or more than a tropical heat prevailed over the greater part of the carth, it is probable that it was accompanied with periodical rains, and that the inmataons which they oceasionel collecud the masses of vegetable matter which has been converted into coal. During every intervening period, between one rainy season and another, a feesh crop of the stigmarit, sigillaria, and other plants of the coal formation, would le produced in the lake and surrounding comntiy, and when the rainy seasen again retnmed, and the land becume imundated, this would be first swept down by the current, and afterwards masses of other substances, to complete the deposit for one season.

The scams of coal, with the intervening beds with which they alternate, gencrally dip towards the eentre of the basou in which they rest, and are wedge-shaped, hoth at their cxterior and interior edges, which is the usual form in which all such materials as are not for a time held in suspension are deposited in bodies of deep whter, into which they are carried by rumuing streams. "It is well known," says Dr. Lyell, "that torrents and streants, which now descend from Slpine deelivities to the shores, bring down ammally, when the snow melts, vast quantitics of shingle and sand, ind then as they subside, fine mud, while in sut aner they are nearly, or ent tirely dry; so that it may be safoly assumed, that deposits like those of the valley of Magnan, consisting of enurse gritvel alternating with fine sediment, are still in ! ress at many points, as for instance, at the mouth of the Var. 'They must advance on the Mediterrancan in form of great shoals terninating in a steep talus, such being the original mode of ${ }^{\circ}$ accumulation of all coarse inaterials conveyed into deep water, especially when they are eomposed in a grent part of pebhles, which cannot be transported to indefinite distmess ly currents of morlerate velocity." In the deposition of a coal formation, the vegenble matter being more easily temoved fromits bative phace, wonht be thet owopt fern the land into the buson, and atier it the shingle, sand, and nud,
when the ground had been loosened by the influence of the water, and the finer sediment being longer held in suspension than the pebbles and other grosser substanees, would he deposited last, and eonsequently form the bed of clay on which the coal generally rests, and in whieh the roots of the stigmaria were fastened.

In Nova Seotia the coal measures sometimes rest on the Silurean, and at other times on the Devonian strata; and these are supported by primary sehists, which in their turn recline agrainst a mass of granite that runs from end to end of the Province, and defends it on the west from the eneronehment of the Atlantic. 'I'his mass appears to be the remains of soine ancient mountain chain, which being undermined when the porphyries of the Andes rose 11p, or when some ither great convulsion occurred, sunk down io its present level for want of support, and rent the strata in different directions, and opened the Gulf of St. Lawrence in the rear. 'The appearance of the rocks in sections along the Gulf shore, accords well witl this speculation, and supposing it to be correct, the mater als of the coal which abounds in some districts of the Provinee, may lave been produced on the rastorn declivity of the chain, and eollected in a lake which stretehed along its base.

Assuming this to have been the origin of the Gieat Cual Formation, we may form a general estimate of the time that elapsed while it was accumblating. Supposing one seann of coul, with its accompunying beds of other sulustances, to have been formed every dainy season, and that there was a rainy season once in the jear, the mamber of seans in a coal field would indicate the time necupied in its formation. Now the grentest mumber of seams yet diseovered in and fielil, does not exced, and probably does not amount to a hinindred.

It may be objected to this, that some seams are so thiek, and at the same time so widely extended, as to make it altogether improbable that tho mass of materials of whieh they nes comproged eoukt have been frotheed in such at limited time: but it is universally admitted, that the fertility of the
carth than it there and of seem stance

I ha
respor sill of fertilit are th all thi the re told, a there for tho when mover versio many, sulici due for

Dr. coal f ber of wedyo elige seams we cat srend ditier nss soo other, loriza :hove le di (n)tuit 10 111
nee of the in suspent ces, would of clay on oots of the
est on the ; and these urn recline cud of the roachment remains on indermined when some its present ifierent di1 the rear. the Gulf supposing abounds in oduced on in a lake
ireat Coal c time that one sean stances, to here was a is inl|l coal ion. Now any fich, a linndred. so thick, ake it altowhich they a bimitad lity of the
carth durin? the carboniferous era was incor parally greater than it has ever been since; and there camot be a doubt that there may have been tracts of land possessing this fertility, and of sullicient extent for such a purpose; and it can ouly seem improbable to those who reason from existing circumstances to a state of things that has passed away.
I have supposed the close of the carboniferous era to correspond with the epoch of the cursing of the groumd for the sin of man, when it was deprived of much of its original fertility; but the precise date of this is uncertain; and we are therefore at liberty to refer it to the time which, taking all things into consideration, appears most likely. When the retributive dispensations of Previdence have been foretohd, and referred to particular offences as their oecasions, there hats generally been some time allowed for preparation for them, and if we suppose this course to have been followed When the ground was cursed, the chiel didientty will be remmoved. The birth of Seth, which, aceording to the Greck version of the Sacred Chronology, which is prefered ! y many, was 930 years after the ercation; and this will allow sulficient time, provided we admit of competent agemey, for the formation of the whole of the tramsition series.
Dr. Lyell seems to adnit that 150 feet in thicknoss of coal formation, might have been deposited in an equal numher of years, provided the beds had been horizontal, and not wedge-shaped at the edges, but of an equal thiekness from elge to elige; (ELem, Geol. vol. ii. p. 142;) but because the seams wre wedge-shaped, and less or more inclined, he thimks we camot come to the same conclusion. But a strean deserending from higher grounds into a lake below, and rolling diflerent substruces along with it will fill up the basun just us soon, hy beginaing at one side nud advaneing towneds the wher, as hy spreading the materists over the whole area in horizontal beds of equal thickness, and depositing one beol ahove another, thlt the whole be completed; ant if the beat: be divingrishatle firm one another, their mumber ean he

afiected hy the form in which the additions are made to it fiom time to time, but by their magnitude.

Though there is an established order among the different formations, it does not follow that they were always deposited at different times. In point of order, the lias precedes the oolites, and the oolites the ehalk; yet some of these misht have been formed simultaneously with one another, and there may even have been instances, in which a later in boint of order, was earlier in point of time. 'Ihough the order is seldom violated, they are very rarely all present in one place, and still more rarely do they ail lie in the same jlanos. One oceurs in one place and another in a different one, and both may be present in a third, where others are wanting, with which they are sometimes conjoined. Again, the difterent formations may not only be distingnished from mo another by their mineral eharacters, but likewise by the fossil remains preserved in them. One formation contains finsils of one type, and another those of a different one; and these are supposed to have belonged to different ages of the earth, hut for what reason is not always clear. Different formations may have been simultaneously deposited in difterent localities, and these localities may have been oceupied by different but contemporary raees. 'Where is in this respect a striking similarity beween different depths of the sea, and different elevations on the land; and both may be compared with the different zones into which the face of the "arth is divided. According as we aseend above the level of the sea, or descend below it, we pass throngh different degrees of temperatme, and something that afieets animal life in the same way as it is affected in passing from the Eypator to the Poles. Like the different parallels, different altitudes are adnpted to different living forms, and it appears, fiom thr researches of Professor Forbes, to be the same in regard to degrees of depth in the sea. 'l'hey are inhathited hy different races of shell-fish, which graduate into one another, as they approach the limits of their respective ranges. Now, ats a great proportion of the fussiliferous siruta, and inded of the sedimentary rocks in general, have heen formed in
the se their re Had th alike ti the sat mothe have bo
)ifle becaliti for rea no deci pachyd :and hy rhinoce (ion to would diversi they m must h Now, chi pel evideno years 1 ingrly ir

Cons differen origina demolis change scut da tempor dence short ti valid. the He which impossi of the lways depolias precedes ne of these one another, ich a later in 'Ihough the H prescut in in the same in a different c others are ed. Again, mished from ewise by the ion contains ent one; and t ages of the r. Different sited in difcen occupied s in this reepths of the both may be te face of the e the level of different diis animal life the Equator ent altitudes ars, from the in regard to ed ly differanother, as iges. Naw, and intiesi nformed in
the sea, might not the deposition of different orders, with their respective, fossils, have been going on at the same time? Had they been deposited within the same area, and extended alike to all its boundaries, no two of them could have had the sane date. But where one occurs in one place, and another in a different one, it is quite possible for them to haw been formed simultaneously.

Different races of terrestrial amimals prefer very different localities, sometimes for obvious reasons, and at other times fur reasons which are not easily aseertained; and we have no decisive evidence that it was in different ages that the parhydermata inhahited the valley of the Scine, the bears and hyenas the Hereynian forest, and the elephant and rhinsecros the banks of the Lena. Were a general revolution to occur at present, and affect every region of the world, would futnre geologists be warranted to conclude, from the diversity of forms found embedded in different regions, that they must have all lived in different ages, and that the earth must have existel a sufficient time to have adnitted of this? Now, if different races, which have keen referred to diffierent periorls, may have been cotemporaries, the grological evidence, that the earth must have existed for millions of years before the date of the Mosaic ereation, will be execedingly impaired, if not completely overturned.
Considering then that the carly condition of the earth was: different from the present-that many of the strata consisted originally of mud and sand, and were consequently easily demolished and re-constructed-that the agents of such changes were more numerous and energetic than at the present day--that the different formations may have been contemporaneously deposited, and that we have undoubted evidence of the formation of rocks in different places in a very short time, the objection we have been examining camot tw valid. We have three versions of the Sacred Chronology: the Hehrew, the Samaritan, nod the Alexandrian Greek, which differ widely from one another; and though it may he: impossible to determine, under such circumstances, which of the three is to be preferred, our mest approved ehronolu-
gists, for deasons which they assign, mul which are at least plansible, preter the last: according to which, the Deluge happened in the year of the world 9242 ; and though that period will bear no comparison with the millions of years which geologists claim for ine revolutions of the eartl, it is it period in which mighty changes may have happened, provided that competent agents were in operation.*

OBJECTION II.

The absence of human remains from the strata, shows that man was not in existence at the time of their formation.
The non-existence of man during the period in question, has been confidently but very inconsiderately assumed, because it rests entirely on neggative grounds. 'Where are eases in which negative proof is decisive, but this is not one of them, for even though we gront that human remains have not yet been discovered in the strata, we camot say that they will never be discovered, till every place where they may possibly be preserved has been thoroughly examined. Not a year passes but fossils are discovered which were not previonsly known to be in existence, and what geologist would ventme to ailim that wh have at last arrived at the nltimate limits of such discoveries, and that nothing more of the kind is to be erpected.

Admiting the total absence of human remains among the
undor for in of in regio wher been " [1ar sible its be the s and, main: have

But that were earth and it great sulje more inhab easily sions their in the as tho

* The following T'able exhibits the three dillerent versions referred to in the text :

硣	Ifeh.	S:1n.	Greek
Slam,	130	136	230
Seth,	105	105	205
linos,	90)	(9)	190
Cainar.	71	71	170
Mahalaleel,	(ij)	6.5	165
Jared,	162	62	162
linoch,	6.7	63	165
Methasnlele,	187	67	167
Lamedi,	183	5:	188
Noali,	600	600	600
	1650	1307	2242

to the
the el clima to the withi level
seer:
appen those lill st though that ons of years c cartl, it is prened, pro-
, shows that formation.
in question, :ssumed, beere are cases not one of emains have not say that where they y examined. ich were not rat geologist rived at the rothing more
is among the
versions re-
Greck.
undonbted relics of a former world, it may be accounted for in different ways, without supposing the non-existence of imm, as one of its inhabitants. We camot tell in what region the human race mey have then been located, and where human remains have been preserved. It may have heen in a region that is yet uncxplored, or which now forms a part of the bed of the ocean, and is consedn utly inaccessible to our researches. If the ocem has repeatedly changed its bed, as geologists maintain, aud if it cover two thirds of the surface of the globe, this is by no means improbable; and, if adnitted, it will account for the fact that human remains have not been discovered. We will not in that caso have access to the places where they are ehiefly to be found.

But, independent of this, it must have been in the regions that were most frequently disturbed, that the inferior races were most liable to be involved in the revolutions of the earth, and to have their existence registered in its archives; and it is in such regions that their remains are found in the greatest numbers. But for the very reason that they were subject to such events, they would be shmmed by man, the: nore especially ns the carth must have then been hut thinl: inhahited, aud as more eligible situations must have heen easily found. 'The danger of approaching the disturbed ingions would have its own intluence, and independent of this, their sultry atmosphere would render them intolerable. If: in the lower grounds, a tropical heat prevailed even as far as the Polar circles, man, nud many of the inferior rate. which have shared his fortunes, wonld in general the confined to the higher ranges of the great mountan chains, where the climate would be more temperate and saluhrions. 'The climate and productions of every parallel from the Equator th the Poles, may be fomad in difterent degrees of elevation. within the limits " the same area under the line. At the level of the sea, nothing but tropical productions can be ween; at a greater height the forms of the temperate region
 those that are peculiar to the Polar regions maintain a douhfiul struggio for existence, on the margin of the (ilacione
which surmome the whole. Now, provided that the temperature of the higher regions, in ancient times, bare the same relation to that of the lower which it bears now, the Peak of Chimborazo, and loftier summits of Dhawalaghiri and Jewaker, must have cujoyed a mild and agreeable climate; and it was in all probability in some such extrenc elevations that the eralle of the human race was phacet.

Some races have eridently been prepared for cutcring on the stage before they actually made their apparance; for instead of appearing in the first instance in small numbers, they entered in such force as to make it evident that they had been previously in existence for some time, but remained coneealed behind some cover, till they were in a condition to compete successfully with those races which they ultimately supplanted. In their original habitations, little had occurred to preserve their memory, and they have left no vestiges behind them, till cither invited or expelled from their retreats, and drawn into secnes where their momorials have been preserved.
To such a conclusion the Scriptures as well as Geology would lead ns. The topographical eccount which they give us of Paradise, shows that it must have been situated in some clevated ground; for besides that gold and jewels were fome in it, which are chiefly confined to lofty regions, it gave rise to four large rivers, which appear to have flowed in different directions, - a circumstance that would have been uncommon in a low or ceren a level country. Accordingly we find it repeutedly called The .Mountan of God, which is a common Hebraisin for a high momntain. "Thou hast been in Eden, the garden of God; cvery precions stone was thy covering, the sardius, the topaz, and the diamond, the beryl, the ongr, and the josjer, the sapphire, the emerald, the carbunek, and gold.-Thou wast upon the holy mountain of Cod.-liy the abmance of thy merchnudise they have filled thee with violence, and thou hast simed: therefore I will east the as a mofane thing out of the montain of God." Ezek. xxriii. 13-16. In its literal sense the passare does not relute to Eden; but it refers to it, and whatever is here
repro to be moun Su the e time ирои usefu highe they in So wher mate of th there ter co equal supp ed ly ted, reget heen may the in numb mitel rian to be races es ac comp comp tages. betwe xequo hers: come prass
the tems, bore the is now, the lawalaghiri reeable clistreme clelaced.
entering on nee; for inil numbers, It that they but remaina condition h they ulti, little had lave left no pelled from memorials as Ceology ch they give situated in jewels were y regions, it have flowed ld have been Aecordingly Godl, which ،'Thou liast is stone was iamond, the he emerald, sly mountain e they have therefore I ain of God." massage does cyer is here
represented as belonging Tyre, must have been supposed to be true of it; and it is not ouly called the garden, but the mountain of God, or in other words the great momntain.
Supposing our present races of animals to have existed in the early ages of the earth, and to have been confined for a time to its higher regions, this must have operated as a check ipon their increase, and limited their numbers. The more nseful productions do not eome to the same perfection in the higher regions, even when the elimate is very favourable, as they attain $\%$ temperate latitudes. Prieat does not prosper in South America, at 10,000 feet ạbove the level of the sea, where the mr an temperature of Europe prevails. The elimate of the table lands of Mexico corresponds with that of the North of Italy, and Sonth $i \boldsymbol{i}$ France, but vegetetiona there is in general fess hualthy and vigorous than in the latter countries, and the productions of Europe do not prosper equally well as in their native soil. The reason of this is supposed to be, that the rays of the sun appear to be affected by the rarified medium throngh which they are transmitted, and do not act with the same caergy on the powers of regetation. This being the case at present, must have also been the case anciently under similar circumstances; and we may therefore take it for granted, that in the higher regions the means of subsistence were less plentiful, and that the numbers of the raees by which they were inhabited were limited in proportion. The great lengevity of the antediluvian patriarchs maturally leads to this conclusion. It seems to be an established daw of nature, that the most ephemeral races are the most prolific, and that their fecundity diminishes accerding to their athoited period of life; and it is by such compensations that the ladance is preserved, and that in the competition for enjoynent each has its own peculiar advantages. 'There were but ten generations of the human race letween the Creation and the Deluge; and though, in convequence of lieing nearly all cotemporaries, their whole numhers may have appened to be condiderable, yet they will become insiguificant when compared with the numbers which pass through life within an equal period in Jater times; and if
their numbers were limited, the chmees must have ulso been proportionally few of their being involved in the ancient revolutions of the eurth, and preserved in the ruins occasioned by thom.

Be this as it may, we have decisive proof that different maces inhahted much higher regions than they eun live in now. 'The horse and the deer have been found at the height of 6,000 feet in the Himmaleh-range, whiel! is within the line of perpetnal congelation, mud too severe for these mitmals at the present tinic. And Burnes informs nis, in his 'Fravels to bokhara, that he had seen petrified 'I ortoises which had been bronght from the same elevated regions. Vul. ii. p. 273. "In n!y seurch," says he, "for such euriosities, I have heard of some petrified stones shmped bike hirds, and abont the size of a swallow, found in the hill of Budukshan. I did not see a specimen, as the owner was absent from lbokharn. I am the more dirposed to give credit to such things, since I have innmmerable stones in the shinpe of small turtles or tortoises, which were brought firom the higher ranges of the Himmuleh." sigain, the remmens of the elephant mod mostodon were funnd hy Humbolet in the lofty plains of Mexico und ((uito, -heights to which the elophan. never ascends in our day. 'Ihat animals chose their respective hahtations in nucient times, on the same principles that they choose them still, npears from the fitco, that thongh in South America the mastodon aseended to the lues ght af 10,000 feet nhove the level of tho sea, he never went beyond 1500 eect in the Centrul States af North America.

Moreover, the ouly terestrinl quadrupeds, whose remmins lave heen fond in the secondary rofes, are mansupinls, which are able to endure agrouter hent, and might therefare have frequented the more disturbed regions, hat are also notorions for their want of sagacity, mat liability to be involved in dungers which other races would shan; and imuly of the rocks have heen origimally deep heds of mud, of such a con-

'I'he grent majority of fossil animmls yet diseovered, helong to marino and lacustrino orders, whose instinet: nud hathits
exposed them to dangers, from which man was exempted; and this will account for the greater abundance of the re* mains of such races in the sedimentary strata. A sudden change in the temperature of their native element-the mixture of salt water with feesh, or of a certuin propertion of mud or quick-lime with cither, nad , dher changes to which water is subject, nll prove fital to immmerable mulitudes of aquatic animals, which have not in sueh eases the same resources with such animats as breath with lurgs; and ns for reptiles, they generally slecp in mud, and in an age when revolutions were so fres it n.d sudden, their bed smust have uften become their ghoos. In South America, the large samians bury themselves in the innd and sand, on the margins of rivers, when the waters are low, and sterp till the return of the ruiny seasons; and if in the nreun time a revolution were to occur, innmerable maltitules would be entombet where they hiy.

We have audoubted pronfs of the existence of amimats during the catier nges of the earth, of which no other memoriul has bern preserved, or at lenst discovered, than a few foot-mucks inprinted on struta, over which they had walked; and we may rensombly suppose other animuls to huve existed, thongh no sucts evidence of the faet has been discorereds.
There are presumptions as strong as positive ovidence, of the existence of ruces of which not the slightest vestiges has ben disen"ered. The prevalence of certain preduceous races in particular regions, during part of the tertiary era, proves beyond a doubt that the herbivorons zuces wero proportionnlly mmerous in the sanme regions, for the one cannat subsist withont the other; but thim conchesion is not warranted hy the proportion itr which their fossil remains have lomu disenvered. The whole extent of tho Hircyean forest, comprehending a distriet of not less than two hmmed lengues, mpears to have been monost it the exclusive pese sestion of the Benr und Hyema, luring a great part of the tethaty chas but heir wat mamers jovo decidediy that thei: steans of subsistence were equally abondant, for ne
rite can ever prosper in a state of faminc. The prodaceous races oecupied cave.s, where many of them died and became fossilized; while the herbivora lived above ground, where their rentains, being exposed to the action of the elements, were soon roluced to their respective elenents.
'The practice of burying the dead, which ean be traced to very ancient times, would have favoured the preservation of human remains, had it been general in the revolntionary fines of the carth; but there have been countrics where it was the custon to burn the dead, and there are countries where it is the custom still; and unless we can say that the practice of burying is cocval with man, it camot be referred to in support of any theory whatever.
'There have been diflerent races in early times, of which only a very few imperfect remains have yet been discovered. The foot-marks of the cheirotherium have only been found in two places; and though it is exceclingly probable, it is un more than probable, that a few firgments of his bones have been obtained, and from these few mutilated relies it biss been confidently inferred that there was more than one speries of the animal. 'There have been other races, of whose past existence the proofis obtained are equally scanty, thourh quite sutisfactory; mal they warrat the supposition thot races have become extinct, of whose existence no proof remains.

Had the fossil remains of every extiact race been abun-dimt-had complete skeletons of every one of then been fomed in mmbers, the totnd absence of human remains dufing the period in question, would have nflorded a very strong presumption that man was not then in existence; but of" f great number of the extinet races no other remains have been discovered than n few decayed and mutilnted fragHens: fuch is at part of the skull of one, or shoulder-hlado of another, a jaw-hone of a third, a tooth of a fourth, and s) on of others; fund as the preservation of not a fow of these may be regnoded more as an needent than a common oeem-
 of man, as a cotemporary of the races to wheh they belong.
redaceous nd heeame nd, where elements, traced to ervation of olutionary where it countries y that the e reterred
of which iscovered. ene found the, it is no ones have lies it has n one spe, of whose ty, though sition that proof re-
necn abunthen heen mains duled a very stence; limt remains Inted frag-ilder-blate ourth, and w of these non ocenracaifemer ney betong.

The non-existence of man, during the period in questinn, camot therefore be taken for granted, and cammo be admitted as a valid oljection to the alleged identity of the revolutionary times of Geology, with the antediluvian age of the Sacve! Namative, especially as that itertity is supported ly the agreement already pointed out letween these periods,an agreement which is too minute and circumstantial, and extends to too many particulars, to be merely apparent or accidental.

But have no human remains been discovered in the strata? 'This has been hitherto taken for granted, -not because it is a fact, hut for the purpose of mecting the oljection on it, own merits, and showing its invalidity even if establi-hed. But it is not the fact. Human remains have been discovered in different places, intermixed with those of extinct races, and no other reason has been assigned for referring them to a later age than the non-existence of man, as a cotemporary of those races. In the neighbourhood of Bize, of Pondres, of Souvgnarque, and of Liege, there are caves which contain human hones mmong other fossils; and in the island of Ginadaloupe, and at Waterford Haven in Ireland, hmman skeletons, nearly eutire, and in a high state of preservation, have been found entombed in the strata. Geologists, however, allege that these strata are recent deposits, and will not therefore prove the existence of man in ancient times. 'They first nssume the non-existence of man in the times in question, from the supposed absence of his remmins in the strata, and then they pronounce those strata in which his reemains are discosered cecent deposits, hecnuse his remains nre contained in them. 'This is clenrly reasoning in a circle, and camnot be mdmitted. Let them first prove the non-edistence of man during the period in question, ly some other evidenee than that of the absence of his remains in the stratis; and then the presence of his remains in a hed, will prove it to be at recent deposit; or let them frove hy some other evidence that the beds nre reement, and then the presence at haman semains in them will givemo suppurt to the existenee of man in times more ancient. The bed in Whterford Ha-
ven is a marine deposit of sand and clay，and extends cight miles into the country，where it rises wo the height of 45 feet above its level in the haven，where the slseleton was found． the bed in Guadaloupe is a hard limestone，and contains，be－ sides human bones，arrow－heads，and fragmeuts of pottery； but wherever man existed in life，some vestiges of his skill and industry may be expected．The age of the bed in Guadaloupe may be doubtful，but the presumption is that all hard rocks are ancient；and its antiquity should he taken for granted，till its recentuess be proved；and the extent of the bed at Waterford Haven，and the height to which it rises in the interior of the country，prove its antiquity，unless we can show that there has been an uplifting in that locality in more recent times．

Thongh the existence of man in the times in question be gencrally denied，it is admitted by some geologists of high standing，and for reasons of mo small importance．＂To what point of the supercretaceons period，＂says Professor Phillips，＂shall we refer the creation of man？＇To this im－ portant question impartinlity mist allow that Geology gives no clear and certain answer．It has no evidence upon the subject that is at all of a positive character．We believe that the older stratified rocks were Pre－adamite，for the fol－ lowing reasons：because no remains of plants or amimals oc－ cur in them，the same，or very similar to the existing forms of life－becmuse hand quadrupeds are about uterly maknown to them，and because the physical conditions of the globe were utterly different from what we now behold．＂
＂Let us apply these tests to the supercretaceous deposits． In none of those，which have been formed in tla sea，have we yet fomm the remains of man or his warks；but remains of animals and plants，identical or very similar to existing kinds，are found even in the oldest of them；land quadro－ as occur both in tresh－water and marine stratas．which are miong the earliest cocene tertinry deposits；and tumlly，the presical conditions of the globe were，at the beginning of the periot，very simitar to the prosent，ant thit similarity continually angmented．＂Pages 191， 102.

For
could that
ara．
still i
that t
seluts
the er
was f my 0 great races have istene ing，a the ci were

We was p of the trary． marin were， remai by sul

Thous
ani
are
reg
It n
the w
creatil
while
い保い。
nds cight of 45 feet as found. atains, bef pottery; his skill e bed in on i_{5} that he taken extent of ch it rises unless we locality in
testion be s of high e. "'गo Professor o) this imogy gives upon the e believe or the folnimals ocing forms muknown the glolie deposits. sea, have t remaills o existing 1 quadruwhich are mally, the: imuing of simharity

For these reasons he believes that the creation of man could not have been carlier than the chalk formation, but that it probably occurred during some part of the tertiary rra. The appearance on the stage of those races which are still in existence, or of races very similar to them, shows that the earth had come nearly, if not entirely into its present state; and we camot assign a satisfactory reason why :he creation of man should have been delayed, after the earth was prepared for his reception. Man is more capable than any other terrestrial animal of accommodating himself to a great variety of external conditions, and if many of those races which have shared his fortunes, und which appent to have been formed priucipally for his use, were then in existence, the Professur asks, "What is to prevent onr receiving, as the most probable indirect inference, that the era of the creation of man had arrived while t.a tertiary strata were in the course of deposition?"

We have no proof whatever, from Geolary, that the carth was purepured for the reception of man prior to the deposition of the chalk formation, but we have as little proof to the comtrary. The fossilanimals of the earlier formations are chiefly marine or lacustrine races; but it does not follow that there were no terrestrial animals in existence, as the absence of their remains in the strata may be otherwise accounted for than hy supposing them not to have been created till afterwarls.

OHJECTION 111 .

Though the great majority of existing retces of plants anul animals are generically the same with fossil races, they are specifically different from them, and may therefore l," regarded as a distincl and later creation.
It appiears from the Scriptures, that many int least, if mot the whole of existing races, ne to be referred to the Musaic areation as their origin; hat it is ahleged by geobigist, that while many races that were formerly in oxisteme have heen utterly lost, mad have no representutives anong living firms,
those that appear to be represented, such as the ox, the horse, the dog, the lion, the tiger, the elephant, the rhinoecros, and many others, difer in so many respects from their representatives as to slow that the latter are not their descendauts, hut have had a different origin.

A difference of some importance may exist between a lising and a fossil race, without amounting to what is properly a specife diffrence. Every species may be divided into arecidental varieties without number, and with our limited acernainance with the extent of the plastic powers of natmre, it would be impossible for nis to decide how fir the subdivisions of a species may; in the course of time, diverge from one another, and from the parent stock. 'The shape, colour, and general appearmace of the greater part of known animals, may he less or more modified lyy their hahits, and their hahits are often controlled by circumstances, and remdered in a great mensure artificial, or different from what their natural instincts would form. Habits which originate iz any partienlar combination of cricumstances, may be perpetimated by its continued operation, und will in the course of time affret the form, and in some respects the organization of the individuals which have been compelled to adopt them. 'The more full aud perfect developement of one organ mny he promoted by its sustained and more intense action, while the tevelopement of others is cheeked hy their disuse. By the combined influence of such canses, a peculiar conformation may be prodused, mud not only prodnced, but transinitted through a series of generations, till it ultimately becomes constitutional, and it will then be retained till reduced hy *ome counteracting iufluence.

These facts ne known to all who ure conversant with the improvement cither of phants or mimuls, and it is ou then that their ceperiments are genernht fomeded; and in many instances their esperiments have heen attended with great success. 'Tlie grenter part of on valuable grinins were ori-
 proved condition ly memns of sultivation; and some of onr finest fruits are known to bav, fad a poor and wortheres ori-
gin.
and 1 whicl red ca one a from in its opinic standi betwe are bs
Thi
stanec
dom.
log,
any s cut br regars are lo horule partic stance cident intere neral take the hat of the modif? respec four o from is brol minut
Nov atecide rating natte
te ox, the the rhinofrom their t their aleween a livis properly rided into ar limited of nathre, sublivierge fiom pe, colour', Hown ani, and their 1 rendered at their nitate ian an crpetnated of time afion of the em. The ny lie prowhile the e. By the formation ransinitted y becomes oduced by

It with the s on them d in many with great wore oritosent int the of oll rthless ori-
gin. 'The common sloe, or black thorn, which bears a small and worthless berry, is medestood to be the parent from which all our varieties of the plum are descended; and the red cablage and caulitlower, which do not differ more from one another than from their common stock, are both sprung from the wild Brassica Olevacen, a marine plant, which is in its native state of no valae; and I shall only add, that tho opinion of Limmens has been fully confirmed, that notwithstanding of the striking difleronce in form and appearance, hetween the primeose, the polyanthus, the cowslip, Sic., they are but accidental varieties of the same plant.

This tendency to dirersify minder the influence of cireumstances, extends to the animal as well as the vegetable kingdom. The varieties of the dorg, the horse, the ox, and the hogg, for instance, are much more numerous than those of any species of plant that is known. 'Ilac varieties or different breeds of the ox, do not only differ from one another iat regard to configuration, size, and colour, but some of them are long homed, others short horned, and others again aro hornless; and what is curious, the other characteristics of ${ }^{\circ}$ particnlar breeds seem to be comected with these cireumstances. A few individunls of hormless cattle have been accidentally obtained in my own neighbourhood, withont any intercourse with the Galloway breed, and such is their generul resemblance to that breed, that a Gallovidean would take then for Humble Duns from his native hills, Even the human race, which has fir more resourees than fuly one of the lower animals, and is better qualifed to resist the modifying inflnence of extemal circumstunces, las in this respect partially shared the fate of the rest. It consists of four or five gencral divisions, which are easily distinguished from one another hy eertain peeuliarities, and each of which is broken into smaller sublirisions, between which there are minuter points of difference.

Now, those who allow the difierences which exist Jetwee: accidentai morictics to bo the efiect of physicui cunses, opmrating through a long succession of ages, will find it in lars! natter to prove that physical causes still more powerful may.
never have existed, or that they would not produce, in the course of time, those wider divergences which are supposed to constitute a difference of species. We have not yet ascertained the limits within which accidental variations are confined, and till we know the points where they terminate, and original and specific differences begin, we are not in a condition to speak with certainty on this subject.

We are ouly acquainted with two certain or infallible tests of a specific difference. The one is the impossibility by erossing to produce a permanent hybrid race. There are instances in which a hybrid individual may be obtained by the union of one species with another,-as of the horse with the ass, or the lion with the tiger; but the individual is incapable of transmitting its own mixed nature, in its full integrity, through a series of gencrations. A mule may in some cases have progeny, but not by union with a mule, or in any other way than hy connexion with an indivitual of one or other of the parent stocks; and this necessarily destroys the equilibrian between the two natures, mind brings back the progeny so many degrees nearer to the race with which it has been crossed a second time. The other test is, that accidental varisties, being freed from the influcnce of those circumstances in which thry origimated, aud of all others which are capable of producing them, or on heing restored to their original state, gradually lose their aequired pecularities, and revert again to their original form.
But we camot subject existing races to either of these tests, so us to ascertain whether or not there is a specific difference between existing aud the fossil races represented by then. Wo enn neither cross an existing with a fossil individual, nor, supposing existing to he descended from tossil races, can we relieve them from the influcnce of the physical causes which have produced the change, nor replace them in the precise condition of their progenitors, to see if they would revert to the fossil types.

In the ehanges which living forms have undergone, it is remarkable that the carnivora and pachydermata have suifered much more than the ruminatia, though the latter were
conte same anima dergo that tl culiar istics suish butes less d of ess size, sions identi with the pr vicr, and 1 with e same fossil longin Difl doubt than a specie: horse of the nul co posses quires traine spocies been 1 While thwed pend to coun
uce, in the e supposed not yet asiations are terminate, c not in a
allible tests ssibility by There are btained by horse with dual is inits full inule may in a mule, or dividual of essarily deand brings race with ther test is, influence of and of all Ir on being cir acquired orni.
or of these sprecific difresented by fossil indifrom fossil the phy'sical place hem see it they
 ta have sutlatter were
contemporary with the former orders, and exposed to the same dangers and catastroplies. Among the ruminating animals, the deer, the ox, and the buffalo, have perliops intdergone the least eliange. It must be admitted, however, that the fossil remains of this numerous family present peculiar dificulties to the naturalist; for though the characteristies of the ruminantia are so strongly marked as to distinsuish them from every other family, the distinctive attributes of the genera, and still more of the species, are much less discernible. In aseertaining the species, the horns are of essential importance, and as these differ both in form and size, in accidental varieties of the same species, the conclusions drawn from them with respect to the diversity or even identity of one species with another, are always to be received with much hesitation. Keeping this in view, and looking to the probable, more than to what is absolutely certain, Cnvier, the chief of comparative inntomists, after a careful and laborions examination, and comparison of the fossil with existing races, decides inforvour of their identity. 'The' same accurato and minute resemblance subsists between the fossil and the living horse, and various other races not belonging to the ruminating fumily.

Differences between the fossil and existing races are nu doubt discernible, but they are in many instanees not greater than are to be found between varieties of the same existines species. Into how many varieties, for instance, lave tho horse and the dog become divided? and how fin have somm of these diverged from cach other, hoth in regard to size and configuration? Numbers of them even appear to be possessed of different instinets. The pointer no donht requires training, but what other variety of the species can be trained to the same habits? Some of the varieties of tha species seem even to be possessed of properties that latre been bestowed in compensntion for the want of others. While tho fleet groy-hound is destitute of seent, and not enthowed witi uny superior degree ol sagacity, but has to depent on liis sight and power of action, which are sntheicnt to counterbalame those deficiencies, some of his more clmm-
sif formed congeners have an acuteness of scent, tenueirys a) purpuse, and power of endurance, from which it is difficult ultimately to escape.

The causes of change, whether in plants or animals, are not in all cases easily ascertained. A change is sometimes purely aceidruta? ot depends on causes that appear to be occasional, and of rare occurrence, while at other times it is ihe effect of causes that are permanent, whatever they may be. Both in Britain and in Beitish America, where the clin mate and other physical conditions are widely different from those of Africa, Negroes in generab retain the distinctive peculiarities of their race, at least through a considerable number of generations; while individeats lose them in a very short time, and at the same time become handsome iviulattoes in the course of one or two generations, in the country of Sennar, which differis little from their native country, either in clinate or any thing else. When Poncet visited that country, in 1696 , the inhabitants were Negroes, who had some time before expelled their predecessors, and taken foreible possession of it. When visited by Bruce, seventy years later, they bad bost much of the Negro features, while they retained a consideralle share of their complexion; and when recently visited a third time, by Caiklaud, the transition appears to have been still greater, Their features are now regular and agreeable, and their complexion has become a copper-brown. Again, though tho natives of Nova-Scotia are in general healthy and well-proportioned, and capable of enduring both privation and fatigne, they would be thought in Britain to have a sickly complexion; and emigrants from Bricain become climatized in less than a year after their arrival. 'The change which the inferior raees undergo is for obvious reasons not very soon visible, but equally certain, and of still more importance. All the domestic animals degenerate in the course of a very few generations, the yonng in general appear to me to linve comparatively little of the bnoyancy of youth, and full-grown dogs often lose themselves within a few miles of their liomes, which rarely or never happens in the mother country.
at, tenaeiry I it is eliffinimals, are sometimez pear to be r times it is r they may ere the clin fferent frooll distinctive onsiderable m in a very me iviulatthe country ve country, neet visited groes, who s, and taken ate, seventy tures, while alexion; and the transifeatures are has become Nova-Sco1, and capay would be 11; and enian a year afor races une, but equalthe doinestic enerations,omparatively in dogs often omes, which

Mants are as liable to transmutation as mimals; and there are both particular localities and races, in which the tendency to it is greater than in othors. I have olitained a variety of oats in this country, which hat: degenerated little in twenty years; hut have repeatedly imported the Potatoe, Hopecone, Blainstie, Zealand, Enrly Angus, and Kildrimmie viarieties, and could not preserve them genuine for threc crops. The badd wheat readily rans into the bearded, and the whitebearded into a small reddish-coloured variety, of a superior quality, but deficient in bulk; and there are some districts in this neighbourhood in which potatoes for the most part improve, and others in which they commonly degenerate. Keeping all these facts in view, the objection we have been considering camnot be sustained.

OBJECTION IV.

d'he Gengraphical distribution of plants and animels is i.reconcilable wilh their dispersion from a combon centre.
'The Geographical distribution of organized forms opens. an important fietd of enquiry, and presents for solution some: highly interesting but difficult problems. It would perhap.; he mpossible, in the present state of our acquaintance with the subject, to assign a sutisfactory reason for the preference given to particular localities, by particular rices. Distance fion the Equator, mid clevation above the level of the sea, have in general a marked and powerfal influence; hut it mity be partly counteracted by the features of a country, or some peenliaritios not easidy detected. What is most edrious, and hard to lre expfaired, is, the want of unifomity in regard to the preferences manifested in different localities, by the very anne races. In Scotland for instance, the hazel grows in a higher latitude than cither the Scotch fir or the sprones, while in Norwny, which is at no great distance, the case is reversed. Again, in the latter comitry, the bireh extends one degree nearer to the Pole than the Scotch fir, and that in its turn three degrees nearer than the spruce. While in Sis seria the sprace extends further in the same direction than
the Scotch. fir, and the Scotch fir farther than the Birch. Other instances might be given equally contradstory, and how they have originated, or to what they are owilig, it may lie impossible to determinc.

It is however a well-known fact, that, generally speaking, different countries are preferred by different races; and the questions now to be considered are: if they have been dispersed from a common centre, as the Seriptures affirm, by what means have they arrived at their respective destinations? and, how has it happened that they have continued in the countries which they must have in many instances reached with difficulty, while they have left no trace behind them in that from which they have all taken their departure? 'To either of these questions it may he impossitle to give a satisfactory answer; but if there are actual phenomena, as has just been shown, in the distribution of plants, for which it may be difficult if not impossible to account, there may be other pinenomena, equally inexplicable, though not exactly of the same nature; and when a theory accounts in a satisfactory manner for a great number and variety of facts, it is not to be rejected, though it should leave some dificultie, unsolved.

We may give instances of a particular species of animals which has spread from one locality to another, in a way for which it would be difficult to account. The mydaus meelireps, an intermediate link in the chain of being between the polecat and the badger, is an inhabitant of the higher lands of Java, and is not known to descend to a lower elevation than 7000 feet above the level of the sea; and yet it inas found its way from one lofty peak to anoiher, though many of them are isolated, and separated from one another by intervening plains, where it is mknown, and has never been seen. A rircumstance which is in some respects similar, is at present axciting no little interest, and occasioning no little speculntion in this Province. 'The wolf has been long an inhabirant of the Canadas, and also of the neightouring Provine of New Brunswick; but has not till within a year or two made a descent on Nova Scotia. But he has at last made
his ap is still very 1 ahit namel he lan of St. been s a raft veyans seau, to ope the ral place alarm. ing thi shot in anothe Ciut, a rences the mo formida Provin Men dr The ge ffected
The ower th roment fi sist us subjecet rictices, The M_{1} tace ca pure ant mily man mixed through
the Birch. ctory, and iig, it may speaking, ; and the been disaffirm, by e destinacontinued instances ace behind departure? to give a omena, as for whieh re may be ot exactly in a satisfacts, it is difficultic.
of animals a way for daus n.relietween the gher lantis - elevation thas found ny of them ntervening seen. A at present le speculaan inhaliProvine car or two last made
this appearance, atall \therefore at too in considerable forec and what is still more rel ardolle, and to the point in question, in the very place whe to as least of alt to have been expected; ani where his awal appears the most unaccountable: namely, in Muse, uboit, to the castward of Halifax, Had he landed in any part of the Province bordering on the Gulf of St. Lawrence, or washed by its waters, he might have heen supposed to have come from Canada or Labrador, or veyance; but he must have passed through the Gut of Can* seau, doubled the Cape of that name, amiafter egetting out to open sea, and sailing along the shore of the Atlantic, had the rare fartuae of arriving safe on terra firma, near the Blace where his depredations are now creating so much alarm. It is nearly thirty years since an individual, following this route, came ashore in the Gut of Cinsean, and was shot in Guysborough, and not more than half that time sinee another lamed at Cape George, near the entrance of the Gut, and soon after mot with the same fate; and theso ncemrences point out the course that must have been followed hy. the more fortunate adventurer, who, after escaping the most formidable dangers, has planted a eolony jut the heart of the Province, before the possibility of such an occurrence was eren dreaned of by the most credulous and apprehensire. The geographical distribution of many races may have been uffected in the same, or in a similar way.
The human race has been more extensively disemminated over the face of the carth than any other; and if we can ar"ount for their dispersion in a satisfactory mamer, it will asvist us in solving a number of the difficulties by which the subject is beset. Mankind are divided into four or tive valretios, but there is no specitio differance between them. The Mulato is no more a hybrid than the White. A hyinid race cannot be continued through a series of generations pure nod unaltered, but any twa varicties of the limman filmily may casity be biemied, and under proper conditions the mixed progeny may lee preserved entire, and hamsmited through an indefinite mamer of ernerations. whon the
aid of either of the stows from which it sprong. Neither do they manifest a tendency to revert to the original type, after having been changed by the influence of cireumstances. 'This shows the whole race to be of one species-to hive had a common origin, and therefore to have diverged from it common centre.

Keeping this in view, it is easy to account for the very reneral diffusion of the race. Man, relying on his superior resources, trusts himself sh the water as well as on the land, and there are many well-authenticated instances, in which individuals, and even mmbers, have been drifted at sea to a great distance from the different points from which they respectively started. Cinptain Cook met, in the island of Wiateuo, with three natives of Ctaheite, who, laving lost ibemsilves at sea, had urrived there, though the islands are 550 niles apart, and they had not seen land leeween them. In 1696 , thirty personss who had left Ancorso, in two canoes, vere thrown upon Samar, one of the Plillippines, at the distance of 800 miles; and Kotzobue found, in one of the (imoline istands, in individun, the only remnnat of a party, who had come form Ulea, a distance of 1500 miles, which is equal to linli the breadth of the Athantic. Other instances might be given if necessary. Now, as no inhabited land, Yet diseovered, is 1500 miles distant from all other inhobited bands, we see at once from these facts in whint why one continent or one islund may lave first receivel its inlabitnats fiom another.

In the same wry may we necoment for the dissembation of some at least of the inferior animals. 'Jo whatever regions inan has wandered, the fuithful log has been his companion. fund though divided into an end ass number of varieties, their Hercific identity cous bo easily aseertnined. 'The crossing of nhost any wo varicties produces n third, mad whenerer the animal becomes wild it apeedily loses its mequired hatita, and reverts to something !ike a common stmulart. 'The forger domesticated anmals have for obvious reasons hern less axtensively dispersed, wherever a combegame by water is indianensable. When there was an other means of tratso

Neither ginal type, unstances. es-to heve erged from or the very is superior on the land, s, in which at sea to which they e istand of having lost islands are ween them. in two callippines, at n one of the tof a party, ites, which rer instances abited land, er inlmbited a one contiinhabitanto
emination of ever regions companion. rieties, their e crossing of Wheneser the nired hathits, ularid. 'The reasons bern nee by water cans of trans.
portation ly water than the frail canoe, constructed of !ark, reed, or skin, or even of the hollow trunk of a tree, the semoval from cne island to nnother of the larger animals, unless for the most important reasons, was out of the question; and aceordingly we find that they are seldom met with in countries which have depended on such means of mutual intercourse, when first discovered,-a strong presumption that the smaller anmals have been conveyed to such countrics by human agency.
Were the actions of men always dictated and guiderl by reason, or could they he all accounted for on rational princibles, it would be difficult to assign to human ageney many occurrences that can ine distinctly traced to that origin. 'There are few of the anmals by which the earth is inhahited, whether surage or tame, whether wild or domesticated, that have not been deificd in some country, or in some nge; and to whtever quarter man emigrates, he carries with him the symbols of his finth. Whether the Egyptians cmigrated from Hindostan, or the Hindoos from Egypt, the perfert identity of their ancient superatitions shows them to lim deseculd from a common origin; nud wherever they have gone they have carried their gods and rites of worshijp. The Phenicians did the same. In all their wide-spreat cotomies, the altar was duly erected to Baal, its precinets stremmad with human hood, nod its fires smoked with the living bodies of hapless infonts, immolated hy the ignorant devor tion of their parents. Fvery wation, and every tribe of the haman family, nets on this principle, and the Poet only orpresses a common feoting of our nature, in making the shate of Hector address Nencas to this effect:

Sacra, sunaque tili commendat 'I'onj? Penates: Ilos cape fatormm comites, his moomin quaere, Angim perer rata matues quat denigne ponto.

$$
\text { [ANE:10 xi, v. } 243 \text {, }
$$

'I'roy now enmmends in thee her finture state, And gives ber fads compmions of thy fale: Frader their mborage hope for hoppier walla, And follow where thy sarions fortula calla,
When men hat "changed the giorg of the incolvaptille

God into an image made like to corruptible man, mud to lifds, and quadrupeds, and reptiles," which they did at "t very early date, it is not surprising if they carriod the oharess of their worship along with them in their different migrations.

This will account for the dispersion of at least a momber of races, but not fin the fact that different races have their respective localities. If Noal and all his companions in whe ark disembarked at a particular point in Λ sia, whether it was onl Mount Ararat in Armenia, or on fome part of the Ludim Cameasins, which is the most likely, how does it happem, than, while some have not emigreated at nill, hut contimed stationary in heir original seats to the present day, whers have longs since bid a final adien to it, and repared to Afri'an, America, of Amstrabia, where they have respectively be"ome stationary, mad are ouly to be fomal? There are cermin races that cannot continne in the vicinity of man, and which minst retrent as he manaces. 'The lion was an imhabitant of $W^{\text {cstern }}$ Asin, aud even of Finrope, posterion to ;he commencement of the histomeal age; but, with all bis musculat power and activity, he is mable to contend with the ingemity of man, ume deseres his hobitation when it is ianmed by his cureng. The furests of Britain were, till a rernt date, infested by the wild hoar, tha wolf, and the bear, fult he times ut which they were respectively e"termimmed ."e known.
'Fhere wre variont other emases which may oceasion the "surpation of some races form particular localitios. 'The :mimal aconany of every comatry depends cither directla or

 ontion, ar to destroy it ntterly. Shonha a herbionoms race
 It may he in time exterminated by the protureons races. which depenel upon it, frem the simple fiet that its diminian.
ed nu ing a accele more the los es upo and 11 dence. Newf appea riod. tonsive riod; tudes, in the

It m
will o athers it is al :13.d ${ }^{2}$ ported leaving udmitt the N_{1} marsu the ex ?uch Hemis lugro not hat (1) He
"Onlletr
Sho
the ger moral wey carlien
berollis
did it 1 the ols－ crent mi－ manber ive their mions in whether It of the is it hap－ ontinued ＇，wheris to Alii－ ively be－ are cer－ 1an，allul an inh：1－ terion to hall his ud with cell it is ©（ till ： hir hear， minated sion the $\therefore \quad$ The ＂ertly w culv oll licls ure sc：asolk いいいい 1．làlı． dis race
 \＆races． miniah．
ad numbers camot supply the usuab demand，withont snfler－ ing a farther reduction；and the stock is diminished with an accelerating rapidity，in proportion as the increase becomes more and more inaleguate to the combined demand．Aud the loss does not terminate here，for the race that encroach－ es upon its capital dries up the sources of its regular income， and must sooner or later becone the victin of its impro－ dence．The musk－ox has for some cause or other deserted Newfoundland，since the era of its diseovery；and the Dodo ＂ppears to have become entirely extinet within the sane pro－ riod．I may adn that the range of the musk－ox is less ex－ tensive now that it has ovidently been at no very distant pe－ riod；and as it is retreating fion the lower to the higher lati－ rudes，on the continent of America，the buffalo is extending in the same direction．

It must be admitted，howerer，that what has been stated will only apply to a number of cases，and that there are uthers which mast be acconated for in a diflerent way，－for it is altogetiner improhable that such momats as the Jagnar， and Puma，and some other races，should have been trans－ ported by limman agency to the Ameriean continem，withous leaving any trace of their existence in the Old Wrorld；unt， admitting even this to have been the case，is it likely that the New Hollanders would have selected such a varioty of marsupiads，ath left every other species of quadruperl，with the exception of the doig，the rat，the bat，and the ornitho－ ruchus？It was fommerly stated，that pats of the Sonthern Hemisphere was most prohably not overflowed at the De－
 not have been or－ressed to the same degree as in the North－
 pomatcons may have beon preserved to the present time．

Sho，this be mbmitted，the whole diflienty suggentent het the greographical distribution of animals will be eatill re－ masol．＇Thomerh it would appear that the same races weor
 cartier perionts of its existence，it had，foom whatever ratan， herombe diflerent in the tertiary era．Diflerent races hadse－
parated from one another, and chosen different localities for their habitations. In the gypseons formation in the Basin of Paris, which extends over an area of twenty leagues, almost the only fossil animuls riseovered belong to one family, The Hireynian firest was occupied ly a completely different fimnidy; and the lower gromids of Siberia were in possession of a fimily different fiom either. At the ereation of all things, different races would be found near the localities to which their natures were respectively adnpted; and wherever they have survived the repeated catastrophes which the earth has undergone, and their original habitations have not been too much atered for their pecuiiar hat bits, they will still remain.

The distribution of plants is not attended with the same difficulty. Many roots and seeds retain their vitality for a very considerable time in water, mod for a mued longer time in the gromme. In some instances seeds thave been drifted across the Athantic, from America, and the West Indies, to Finrope, mid deposited on the coasts of the hitter country, in a state suticiently sound to germinate, and phants have been actarlly mised trom them. Now if this be the fact, it solves the main difficulty respecting the geographical distrihution of vegetables. Supposing all the existing paces of plants to have been anterior to the Deluge, and that out of We vast mmbers of seeds which must have floated on the waters, some of one lind and some of amother escaped destrestion, and were left in phaces where they subsequenty prospered, reernitela and spremd from so many centres, the aethal state of the vegetable kinglom would in due time heeome the result.

I have thas examined the man ohjections to the identity of the meient times of Geology, with tho antedilusian age nt the Sucred Seriptures, mud shown them to be mere spedions than solid, anl consequently insufficient to disprove that identity, or t^{\prime} vor doubtul the decisive avidences on Which it rests.
§ 1.
eart's

> conù
molte
surfac thons the d usual But imme
seque
comp
serie
prese
strue
at the
more
disig
alleg
seque
mode
not 1
We
calitics for the Busin eagues, ulne fimily, ely differre in pose creation the Iocaliipted; and tastrophes nul habitacuiiar hat

It the same tality for a onger tine een drifted Indies, to r country, lants have the fact, it ical distrigraces of hat out of ted on the scaped deliseguent'y entres, thas ne time be-
le identity luvian age more spe(1) disprove idences on

B00K IV.

Abstract

OF THE bENEFI'S WHICH THE PRESEN'T IN~ HABI'TANTS OF THE EARTH DERIVE FROM THE PHYSICAL CHANGES IT HAS UNDERGONE,

сНАР. 1.

PRFIIIMBNARY ORSERVATJONS,
§ 1. From the foregoing discussions, it appears that the earth was in ancient times in a very unsettled and disturbed conaition-that it was ever and anon poaring streams of ${ }^{\circ}$ molten minerals from its boiling entrails, while its heaving surface rose and fell like the vast undulations of a tempesthons sea; and that there were particular occasions when the disturbing forces acted with fim more intensity than usual, and produced the most violeut and exteasive changes. But every natural phesomenon, whatever may the its more immediate effects, is ultmately attended with henefieial consequences, a ad these of suel2 importatice as to do mope than compensate for all its evils, If the enth has undergone is series of great and violont clangen, before attaining to its: present state of rest, and if these revolutions proved destructive to innumerable raved of animated heings, they have at the same time prepared it for tha necommodation of far more importunt races, und for the fibl developement of the designs of Providence in regard to their destinies.
§ 9. 'Io some, it may seem a reflection on the Creator, to allege that his work was imporfect at first, and has heen sintsequently improved by physical ngeney; but this is his nsuat mode of procedure, and it is no reflection to suy that he hus not depurted from it in bringing the earth to its present state. We generally prefer approaching our conds by the shortosi
and most lirect course, especially when their attainnent in this way affords an opportunity for the display of our abilities; and we too readily suppose the Creator to be influenced by the sune motives with onrselves; but though the divine fower is the moving principle in all the diversified phenomena of mature, it is generally masked by second causes, and there is unspeakably more, both of wistom and powar, manifested in the direction of the conflicting elements which Providence employs in the accomplishment of its purposes, than if these were attaned by supernatural interpositions. 'I'o an enlightened mind, which delights in searching into the mysteries of nature, and tracing the relation between cause and eflect, it aftords the highest and purest pleasure, to contemplate the sure, but gradual and imperreptible manner in which Providence accomplishes its endsthe unerring precision with which its elenents are adapted to one nothor, and the whole to the particular object in view-the perfect regularity with which the movement arrives it its intended destination at the time appointed, and the mulitiling cet tainty with which anticipated results are obtainal: and because it pirifies, cularges, mol elevates the mind, it is the way which Providenco generally prefers. 'The great mujority of its works appear in the first place in embryo, and are gendually and impereeptibly developed and mutured by plysicul agency. Indeed it is only for special purposes, and on rare oceasions, that any other mode of procedure is : Alopted. Did ever we know an instance of is plant or animai coming into the world in a state of matnrity? m° cun we point to any arrangenent of Providence, that stamls uncomected with every other, or that appenrs wholly independeat of previons changes.
§ 3. In nll our attempts to trace the inflatere of timal canses, an exercise which is not more dinlicult than fiscimuing, it is neressary to ohserve the greatest degree of vigilame and cireumspection,--lor, thongh the proofs of design noe manifest mul mequivocnl, in a vist mnjority of the phebomena of utture, we are very linble to err, in impurting to then objerets which me purely inagimary; and when a mis-
take ence § 4 viden too p the a ly suc subse ces, e mate call with spect ly pla the h have perce feren for a they for a lesig comb)
farth ereat yictd their progr by 1 and d crime tyran ticclin pated impre rapidl 11:ay
aimnent in four abiliinfluenced the divine ied plenond causes, and powg elements of its pural interpos in searchhe relation and purest and impersits endsue adapted ar olject in vement ared, and the are oltainthe mind, it The great in embryo, ind matured 1 purposes, proeedure © a plaut or ity? or con : stants unbolly inale-
ce of timal an hascinntee of vigiis of design of the phenpurting to hen it mis-
take of this kind has been detected, it does an injury to scienee which is not easily repaired.
§ 4. It is moreover proper, ill tracing ale objeets of f'rovidential arrangenents, to beware of defining their limits too precisely, or of representing them as intended only for the attaimnent of single ends,-for thougln we muy completely succeed in tracing a comection between a previous and a sulsequent movement, there is very often a chain of sequences, every one of which is sulsidiary to a common and ultimate design; and the importance of every link of the chain can only be pereeived by being viewed in connection, boib with its inmediate and remote eonseguences. In some respects the machinery of Providence may appear exceedingly plain and simple, but it is complicated ant involved in the highest degree; and though purticular operations may have a special regard to certnin things, which we diveilictly perceive, they may not be restricted to these, but haw is irference to other oljects besides, which may be impereepribile for a tine; and even when they come distinctly into view, they may be preliminary to other objeets, which we camon for a time perceive. Now this complexity and variety of design must affect the adjustment of the elements, by whoss. combined operation it is to be progressivety accomplished.
§ 5 . It has evidently not been originally intended, that the: marth should receive, it the very first, or even soon ater it, creation, the fill number of human beings for whom it may yied the means of subsistence, or that they should attisin to their maximmm mombers, before they had made a certain progress in improvement. Hud it become densely inhabited hy a race of savages, without ekill and enterprise to explore and develope its hidden resources, nothing but misery mud crime would have been the result. 'The strong would have tyramized over and oppressed the weak-every generons fieling of our nature would hove been chilled mud extirpated, and insurnoumtable obstacles placed in the way of ant improvement. The numbers of the humn race, though rapidly increasing, are still few, in eomparison of what they sasy hereaffer anount to; and while extensive regions atc
yet murechaned from a state of nature, there are but few districts improved to the utmost extent of their capabilitios, or which lave been made to yield all the means of subsistence, that may be extracted from them by the most skilful modes of cultivation that may be adopted. Now, so long as thris contimnes, it :a in perfect accordance with the divine benevolence, that every spot which man is not in a condition to reclaim, and convert into an abode of rational enjoyment, shonld be in the mean time con iitionally occupied hy inferior races, and readeret the scenes of such kinds and degrees of happiness as are best adapted to their respective natures. The arctic regions have long heen, and in all probability will continue to be, the undisputed domain of such amimals as the musk-ox nud the Polar bear. ' I'he hardy frame and close covering of the mask-ox enable him to withstand the rigours of the climate, white the vegoeation which is peculiar to that dreary region, is more to his taste than that of more genial climes; and wherever herbivorous races are stationed, there must also be pre laceous mimals, to prevent their increase from overrmang their resources, which would be the very worst thing that could befal them; and atso to terminate, by a speedy death, the sufferings of old age and disease, which might otherwisa be protracted, and aggravated hy want.
§ 6. On the same principle, we may reasouably suppose a great proportion of the surface of the earth to have been anciently oecopied hy sach races, as were adapted, hy their peculiar instincts mud habits, to its less advanced condition, hut which bave one after another disappeared foom its surface, us they bocmue ineapable of accommodating themselves: to the successive matations liy which it was prepared for the convenience of man. I shall endeavour to show in the sequel, that these mutations had ultimntely this effect: that they improved the comdition of the enth in a variety of ways. ns the habitation of man, and prepared it for those grent transuctions of which it has become, and wats intemded to bre. the theatre. At the same time it must he admitted, that, in

of a quen ty of be as darir impr nera prog ly ea bitat vater adjoi these time telle tion stacl
e but few pabilities, of subsisost skilful v, so long the divine condition enjoyment, d ly infels und derespective in all proin of such I'he hardy im to withtiour which taste than orous races nals, to prerecs, which ent; and al; of old age , and aggray suppose a have heen ed, hy their d condition, OHIr its shrg themselves mared fir the ow in the soct: that they ety of way: those great rended to lir, tted, that, int endency waw
of a deteriorating nature. "When earthquakes are frequent," says Dr. Lyell, "there call never be perfect security of property under the best govermnent; industry camot he assured of reaping the fruits of its labour; and the most daring acts of outrage may occasionally be perpetrated with impunity, when the arm of the law is paralysed by the general consternation. It is hardly necessary to add, that the progress of eivilization and natural wealth must be retarded hy convulsions which level cities to the gromid, destroy habitations, render roads impassable, mid canse the most cultivated valley-plains to be covered with lakes, or the ruins of adjoining hills." Prin. of Geol. vol. ii. p. 359. And for these reasons, namely-that the state of the earth in ancient times was unfavourable to the progress of society-to the intellectual and moral improvement of man-a great proportion of it was occupied by inferior races, till the greatest obstacles to this were removed.

This opens an extensive and diversified fied of enquiry, where matters of the highest importance crowd upon our notice, and invite our attention; but where brevity is required it is necessary to make a selection, and if the particular: horeafer to be discussed be properly examined, they will show, that the revolutions which the barth has undergone have been productive of henefits, which do fur more than rompensate for all the temporary evils which attended them.

CHAP. II.

 FARTH HIVEBEEN THE MEANS OF゙ PRFPAIING AND RES 1)EIINGACCHSSIBI.E.

If we penetrate helow the surfuce of the carth, and cre nuite the stoves of mineral weath deposited there, we wit find them to be hoth varied ant rich in the highest degrem; and also that they have dither been prepared or renderen? available by the revalutions of the earth.
§ 1. I shall begin with limestone. Reing extensively used in arehiceture, und agricnliture, as a mux in the reduction of
some valuable ores, and in other branches of industry, its value is generally known and admitted. Lime, which is one of the earths, is an oxide of ealcium, and it combines readily with a number of acids, and forms substances possessing different properties accordingly. In combination with carbonic acid gas, it forms limestone, and chalk, or the hard and soft carbonates of lime, the great majority of sea shells, fad other bodies of less importance: combined with sulphuric acid, it forms plaster of paris, alnbaster, \&cc.: with fluoric acid, the fluate of lime, which is used in the reduction of copper ores; and with phosphoric acid, the phosphate of lime, of which the bones of animals are chiefly composed. It is of vast importance, therefore in the economy of nature, and many interesting phenomena depend upon it. It enters into the composition of a very great proportion of plants; nad no coral insect, no shell-fish, and no vertebrated animal whatever, could exist without a regular supply of it. It is necessary to repair the waste of bone which is continually gning on in the animal economy. Were lime, therefore, wanting in the earth, or did it exist in a very small proportion, there is probably not another substance that would supply its place, or answer all the purposes for which it is intended; and it is impossible to calculate what would be the consequences, or how many alterntions in the system of nature would become indispensable.

Lime, in some one or other of its combinations, is very common, and is supposed to constitute an eighth purt of the crust of the earth. It is present in all, or at least the greater part of the strata, but generally so mixed up with other earths, or so combined with other substances, as not to be available for many of the purposes to which it is applied by man. 'This evil is obviated by its formation into himestone, which is so very common among the sedimentary rocks, but esjpeinlly anong the sccondary and tertiary systems; and for this we ure indelted to the early condition of the earth.

It is probable that vast magazines of calcium exist in its interior, and that coming into contact with currents of water, is combined with the oxygen of the latter, and formed
lime, which was again deposited among the other materials of which the cruse of the earth is composed. Be this an it may, wher fittering through the earth becomes less; or momer charged with lime, which it holds in whation till it beromes stagnant, when it absorbs carbonic nefil from the ntmosphere. and forms lamine of the earbonate of lime. At the botom of a majority of lakes and ponds, there is a bed of marl. which if taken away will again be restored in the comse of time, -which shows that it is deposited by the waters that flow into it, and that it will continue to inerense till the sources from which it is derived are exhamsted.
'The waters of thermal springs generally contain a larger proportion of lime than other water, and from this it may be inferred that heat promotes its solution, and separation from the other earths with which it may be blenden; and if so, the high temperature of the primeval earth, combined with the exeess of carbonic acid contained in the ntmosphere. must have been peouliarly favourable to the formation of limestone.

Besides the stratified limestones which are so common, there are large masses of coralline roek, possessing the same mineral propertices, and which have been constructed by the mited labours of immmerahle multitndes of marine insects; and orhers ngain, which consist in a grent measme of shells, cemented and compresed into a solid mass. But these are not exceptions to the genemal rule, for the culy condition of the earth was equally finvourable to their formation. 'Tho coral insect is chiefly confued to warm regions; and repeated and sucerssfin depressions of the acean bed are undonheedly fivaurablo to its operations. It camot rise above Jowwater matk; mad thongh it may carry on its labours in depper water than Mir. Darwin supposes, it is reasomble to helieve, fiom the reduction of the temperature in decp water. that it mast decidedly prefer shallow water. If the mans should therefore sulside for one or two homdred reet, after having teen ruised nemly to the sw:hee, the superstructure would go on with rencwed activity, and the unsettled stat: of the earth contributed to the occurrense of such depres.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation
sions. The aoundance of line in the ancient waters was
his ca effect It faci respe sciello The that a wealt vigati while pines: each ceive
§ 3 neral stanc poses also o Phisi
a ver and i

Iro
avail
whic
dish
sprin
porti
strea befor
rious into of th W
vege perat a cor whic es,
ters was dy menmaking ater, and rial, the We may ricties of uch proearth.
t imporchanges e origin, -for beparts of ; and as rally bestate for fly comen occasince the been in a xtent for
finel, and aily proensely to " present become e tempente withcoal, nor ogress of man, as call, and means of ions, and mit to a profit on
his capital; and its application to novigation has the same effect, as the bringing distant nations to each others shores. It facilitntes the ir mutual intercourse-the exchange of their respective productions-of their discoveries in the arts and sciences, and improvements in manners, customs, and laws. The discoveries and inventions of one country-the lights that are struck out, and the new paths that are opened up to wealth and power, are speedily diffused through steam navigation, and become the common property of our race; and while every nation is compensated for what it gives, the happiness of all is simultaneously increased, and the power of each to fulfil its ohligations, and repay the favours it has received, is extended and brought into more intense activity.
§ 3. Iron occupies a prominent place among the useful minerals contained in the earth. We have no mineral substance whatever which is applied to so many different purposes, or which is of more essential service to man. It is also of very great importance both in animat and vegetable. Phisiology, as it enters less or more into the composition of a very great number and variety hoth of phants and animals, and is essential not only to their health but their existence.

Iron is very generally diffused, but not in a state to be available for a number of the most important purposes to which it is applied. It tinges a great proportion of the reddish and ferruginous coloured rocks and soils. Chalybeate springs are strongly impregnated with it; and there is a proportion of it in the waters of the greater part of running streams. But it is necessary to be put into a different stato before it can be applied by the ingenuity of man to tire various ends for which it is nsed; and great masses wore put into that state through the influence of the early condition of the carth.

Wherever decayed organized inatter, whether nnimal or vegetable, is deposited in stugnant water of a certain temperature, the surfice of the water is suon covered over with a costing of scme greenish or ferruginous cotoured matter, which is a hydrate of iron; and when it is deposited in masses, as frequently happens, in the vicinity of ponds, it is tiss-
finguished by the different names of marsh ochre, bog ore, and meadow carth, Sce. 'T'his has heen discovered hy Professor Elarenberg to be secreted by infusoria, or very minute mieroscopic insects, which multiply with incredible rapidity in stagnant water, in a tepid state, and loaded with animal or vegetable mutter in a sinte of decomposition. 'lide iron secreted is formed into tiny shields, which continue to attract more of the metal, till they assume the form of small nodules, when they are deposited in some convenient place, and ultimately hecome beds of iron ore. Bog ore, of which there are several varicties, is very common abont the margins of old and extensive morasses, and it comtinues to accuImulate till the locality be changel.

Iron, in some one or other of its combimations, is nsually found in more or less abundance in the vicisity of conl; and it was prolably formed in a similar way with the boy ore of the present time. The high tempernture of the carboniferous ern, acting on the vast masses of vegetable matter collected from time to time in the coal basons, contributed to its active secretion and rapid accumulation in such locali-tie:-
§ 4. In this wn! have limestone, coal, and iron-stone, heen formed, and placed in juxta-position with one mother; and their contignity is of very grent importance to the progress of the arts. Coal is necessary to produce the heat required in the reduction of iron ore, nud lime is one of the best fluxes for assisting in the operation. 'The Rev. Mr. Conybeare says, in reference to this sulyject, "The occurrence of this most nseful mineral in the immediate combertion with the fhel necessary to its reduction, ant of the limestome whicu facilitates that reduction, is minstrnce of ar rangement so happily suited to the purposes of haman ind dustry, that it ean hardly be considered as recurring moneensurily to fimal causes, if we conceive that this distribution of the rude materints of the enrth was determined with a vien to the convenience of its inhabitanta." As pronfy of design have not unfrequently been pointed out in the phenomena of natme, which mre by no means obvious to
commo final cs utfords mude rude n wisder in that and w tuation
§ 5. neral meas! It is nc used it ing ant lorge separa countr heavy tramsp a cost made which ta, ane and re localit tained penso
'I'lie
heen o Africa ter du dry nt nated ish, su rents the wi ern A
common capacities, some degree of caution in referving to final causes may be proper; but the arrangement in questior, affords such a clear and striking instance of the provision made for the convenience of man, in the distribution of the rude materials of the earth, that we camot lut atmire the wisdom and gooduess, of placitg the intant globe for a time, in that peculiar condition which led to such an arrangement, and which placed the minerals, when so distributed, in a situation to preserve them for our benefit.
§ 5. The muriate of soda, or common sult, is anothermineral of great utility, for whish we are indebed in a great measure to the early condition and revolutions of the earth. It is necessary to man in a state of civilization, and has hecu used in all countries and in all ages, as a means of preserving and seasoning food. 'The waters of the ocean contan a lorge proportion of it in a stute of solution, and it is easily separated from them by means of evaporation. But inlamet countries have not sea water to evaporate, and salt is too heavy, and though necessary, is of too little value to be transported to a distance by an overhand conveyance, and at a cost that would admit of its general use. Nature has made provision for this, in the immense masses of rock sult Which oceur so often in the early part of the secondary strata, and which only require to be extracted from the rarth, and reduced to powder, in order to be fit for use. In many localities springs arise from beds of salt, and it can be olftained by evaporating the water, without the trouble and expetasn of mining.
'There are different ways in which beds of sult may have leen originully formed. In the great dresert of 'Zahama, in Africa, there are extensive busons which are filled with water during the rainy season, but either partially or wholly lry at other times; and as the sand of the desert is impremnated with sult, and the water of most af the spring brachish, sult is annually carried down into the basous by the currents which flow in the rainy season, nod left there when the wuters are dried up; and from this the interior of Northern Africa is supplied with the nrticle. 'The deposition of'
beds of salt in these localities, sometimes to a very great thicknes, may suggest to us the way in which rock salt was aften formed in the early times of the earth. Though the strata of the new red samdstone system are commonly regrarded as atueous deposits, some of them may have been formed of drifted sand, 'ike those of Zahara, and the Lybian droserts; mad salt may have heen formed among them in the same maner as above mentioned. It may also have been formed in lakes an! ponds, into which the sea flowed at high water, and where the water was evaporated during the recoss of the tides. It muy also in some instances have had a volcanir arigin, as it is one of the most common saline subatamees, formed by sublimation in the craters of volcanoer; onl Messrs. Smythe and Lowe give an instance in which it afloresces from the gromed, and covers it like a fill of snow. Journcy from Lima to Para, p. 145. When compost heaps containing salt have become heated, the salt sometimes rises to the surfice and forms an encrustation. In an age when so many regions of the globe were subject to intense volcanic artion, masses of salt may have been formed by its influence. But in whatever way it was formed, it originated in the peculiar condition of the earth, and is therefore to be numbered anoug the henefits, which we now derive from that condition.
§ 4. There are many other metals besides iron, which are of very great use to mat and there are numbers of them at leat which have heen readered accessible to us hy the revolutions of the earth. 'They generally oceur in veins, and these vein: have evidently been formed subsequently to the strata in which they are fund, and they 刀ppear to have heen filled from the interior of the carth. They do not lie heween the strath, or on the same planes with them, but incorsert them at higher or hower angles; tud conmencing it grenter or less depths helow the surface, they descend in a rertical or inclined direction, through all the umderlying strata, and even through the crystalline masses heneuth, to minterminable depth in the interior. Small veins ure occasionally discovered, which are wider above and murrower below, till their opposite sides meet, and they consequently run out:
and r ly , tha heen i sionel rather But as the pens branc forme or str: ving 1 forma ly an of me branc wards of ch and r centre cliffer opem till th warts the 1 some of the

Th ferre or ev also, unde have cours issue often On b or le:
ery great salt was ough the nonly reave been e Lybian era in the ave heen ed at high ig the rewe had a aline subolcanues; which it 1 of snow. ost henps imes rises e when so volcanic influence. in the penumbered condition. which are of them at - the revoeins, and thy to the have hem ot lie bein, hut inencing at seeml in a lying stra1, to min in-occasionver below, y run unt:
and from this fact, taken in comection with another, nanefy, that they sometimes contain water-worn pebbles, it has been inferred that they bave been formed in chasms oceasioned by the drying of the gromed, and filled from above, rather thall from below.

But though the minor brauches sometimes become thimer as they descend, till they ultimately run ont, this never hapgens with the large veins, from the sides of which these brauches start off. Wherever metallic veins have been formed, the rocks which they intersect, whether crystalline or stratified, present the most unequivocal evidences of having been ruptured and dislocated abont the time of their formation; and if a main rent were formed in the surface, hy an expansion beneath, so as to admit the roshing upwards of melted minerals, it could hardly hail to produce some branches ruming transversely, and becoming narower downwards, till they terminate in an angic, 一for if we take a pile of clay, or any other substance adapted to the experiment, and furce a body of some magnitude npwards throngh its centre, till it reaches the surface, it will rend the mass in different directions, and the lateral branches from the main opening will be wider ahove, and barower as they deseend, till they at last terminate; and if moy liquid were foreed nipwarts through the main opening, it would fill every one of the luranches. Again, white this process was going on. some of the loose materials might drop from the upher part of the sides of the chasms, and he found embedded in the veit.

That veins have been filled from the interior, may be inferred from the fact, that no great ane is known to rimu outs or even to become thi... "r as it descends into the earth; amb also, that the materials with which they are filled, have heen under an interse heat nt the time of their repletion. They have been forced into every erack mud fissure atomg their course; hut what is of still more importunce to the point it issne, is, they wre in general highly erystallizen, and wery often compactly mited with the rack which they interseret. On both sides, the contignons part of the rock, ta a gremere or less distmace in proportion to the thickness of the win.
has heen partially fused, and in the process of cooling they have become firmly united. Now, as there can be no doubt that, veins of granite, porphyry, trap, greenstome, \&ce., have come from the interior, and as mietallic veins agree with them in many particulars, we may confidently infer that they have had a similar origin. Like veins of granite, they frequently intersect one mother, and very often the strata on one of their sides have been raised up, and those on the opposite side depressed. On one side they lie on one plane, and on the other on a different one, and show by their position that they have been both violently and repeatedly distarbed, on the different occasions on which the different sets of veins were filled.

Metallic veins oceur more frequently in the older than in the more recent formations. "Not one care," says Professo: Phillips, "is known, of a mineral vein being at any time worked, in any part of the British Istands, above the new red sandstone. In the new red sandstone, and magnesian limestone, hardly more than slight traces of such products appear; they are raye in our coal tractis, but become abumdant in the mountain limestone, and the older strata."

It is morecver admitted, that the richness of such veins does not depend on the kind of rocks in which they oceur; but on their vicinity to the axis of the disturbing force by which the recks have been affected. While they abound in some districts that have been repeatedly and viotently disturbed, they occur hut rurely or not at all in other districts, that have been but little disturbed, although the rocks are preciscly the same. "'ille most generul point of view in which mineral veins present themselves," says the same writer, " is that of dependarce on proximity to the sourses of subteranean heat. In the rocks nearest these sourees, they are most nmmerons und varied; they abound nearest the disturbunces which are consequences of variation of intermal heat; and in certain cases (Pyrenees, \&c.) they are not rar" among newer strata, where the subtermean igneous rocks have exerted a remarkable influence." Whether we suppose them to have been filler by the injection of matter tiom
the in ent fro to hav neous to ma we ho By veins ny of of the of so thait as the peus: some havo. caser Lror, posse dant the c But incre dimit in w in a us ir

It

> tion,
adop
exch
comr
we 1
this
al va
man es in
mitt
ling they no deubt Sce., have ree with nfer that nite, they the strata se on the me plane, heir positedly diserent sets
r than in s Profesany time the new nagnesian products me abuinta." uch veins ey occur, force by abound in ently dis-- districte, rocks are f view in same wriources of rees, they st the disfinternal e not rarn ous rock - we supatter trom
the interior, or by sublimation, or in some other way different from either of these, their repletion appears very clearly to have been connected with and dependent upon subterraneous disturbances; and, in so far as their contents are useful to man, ve are indebted to these disturbances for the access we have to them..

By far the greater part of the metals contained in these veins are useful to man, either in one form or another. Many of them are seseful in a very high degree; and numbers of them are shonost indispensable to inis interests in a state of society. And it is a circumstance well entitled to notice, thae they appar: ic be more or less abundant, in proportion as they : "now or less aceful; and also according to the peusibar mata in whish they contrithute to our welfare. In some nowneres in, metals found in the bowels of the earth, havo a conventional as well as an intrinsic value; and in such caser wa me: moulane: woula do ar inore harm than good. Lror, lemd, wad devcial others. such as tin and copper, \&c., possess only an intrinsic value, and therefore the more abundant they are the better,-provided the supply do not exceed the consumption, and a useful brauch of industry be ruined. But were the precious metals, such as gold and silver, to be increased beyond a certain proportion, their value would be diminished, and their utility destroyed. In the proportions in which they have hitherto been obtained, they are useful in a verv high degree, hut were they to become as common as iron i lead they would be good for nothing.

It is of the utmost importance to the progress of civilization, that we possess an article which may be universally adopted as a representative of value, and an instrument of exchange; as a standard by which we can compare all other commoditics, and that will facilitate tho exchange of what we have to dispose of for what we need. But an article of this kind should possess an intrinsic as well as a conventional value, in order that the supply may not exceed the demand. Under proper regulations, a paper currency possesses many advantages. It is casily hauded, and easily trausmitted from place to place,-its cost is trifling, and when ae-
cidentally lost or destroyed, the community at large does not soffer by the event; but unless it be convertible inte specie at pleasure, an over-issue cannot be prevented, and its value cannot possibly be sustained. Besides, it cannot, by any regulations whatever, be prepared to neet the exigencies of it crisis, or made capable of resisting the influence of a panic, and preventing its consequences on conunercial evedit; and not only is it ineffectual under such circumstances, but it is calculated, from its very nature, to prodace alarm, and to aggravate its evils,-for no sooner is a crisis apprehended, than the issner who possesses neculiar fucilities in forcsecing its approach, begins to limit his accommodations, and to withdraw a portion of his paper from cireulation; and this in itself, when markets are ghutted, and sales dull, may lead to a crash, which might have otherwise been avoided.
'The precieus metals are not liable to any sudden or sensible depreciation from a superabundance,-for the monent they begin to exceed the demand for them in any one comtry, and eonse quently to sink in value, they find a vent to other countries, and the equilibrium is restored. Neither are they so likely to be withdrawn from circulation, as a puper curreney,-for this reason, that being real, and not fietitious property, and the capitalist having given value for then, he cannot so well afford to lock them up in his coffers, and when he can obtain security for them, he will let then still continue in circulation. They sustain their eredit at the very height of a paroxysm of commercial suspicion; and though their circulation may suffer a momentary check, it is easily restored. 'They are like every other commodity, no one wishes to hoard them, and those who are in possession of them are anxious to invest them in something that promises to yield a profit.

Moreover, the precions metals may be easily coined, and linve their integrity guaranteed by public authority. 'They are not easily counterfeited, and they can never become more ubundant than is sulticient to meet the general demand for them. While copper, lead, tin, \&e, oecur in distriets where they can be procured at an expense which admits of their
applic it is a ver m Potos means from the na ration fienlty pay,

It n a givo have lıe eq be div an ins more tions be the preve on the dent and in the sion, The portic less 1 a cor ecive price tillue shoul lated tion. of th disco fieial
does not te specie its value y any rencies of a f a panic, edit; and , but it is n, and to ehended, oreseeing s , and to and this may lead led. 1 or sensie moinent one comna vent to
Neither n, as a pa1 not fictivalue for his coffers, let thent edit at the icion; and heek, it is modity, 一 in possesthing that ty. They come more emand for rets where ts of their
application to all the purposes for which they are adapted, it is a wise provision of nature, that the richest gold and silver mines which have yet been discovered, namely, those of Potosi, Pasco, and Chota, are placed in regions where the means of subsistence camot be raised, and must be brought from a distance, and that at a very heavy cost, on account of the matural features of the country; and where all the operations of the miner are necessarily performed with such difficulty, that the produce of the mines could not be made to pay, were the supply to become greater than the demand.

It may perhaps be supposed, that though a supply beyond a given amount might operate injurionsly, a defieiency eonhd have no bad effect: as a smaller weight would possess a value equal to a greater one, and as the quantity obtained might be divided into smaller portions, and answer the purposes of an instrament of exchange equally well as if they had been more abundant; but this is a mistake. 'The smaller the portions into which gold and silver are divided, the greater will be their surface, and the more the waste. For in order to prevent them from being counterfeited, they must have roon on their surface for the devices of the mint; and, independent of this, whatever is scarce is moze easily monopolized. and when money, or whatever may be a substitute for it, is til the hands of a few, it becomes an instrument of oppression, rather than of advantage to the community at large. The circulating medium should always hear a certain proportion to the commerce of a country, but an excess doos fess harm than a deficiency. When it exceeds, it preduces a corresponding depreciation, but that is not generally perreived at first. It is rather surposed that a general rise of prices has taken place; and when the markets in general contime to rise, or are supposed to do so, although the rise should be only apparent, every branch of imlustry is stimulated, and all the elements of improvement are set in operation. Accordingly we find, that the sudden and great influx of the precious metals into Europe, consequent upon the discovery of Americh, exercised a most powerful aud beneficial influence on the progress of all the nseful arts, and

Eave a spring to industry which continues to be felt at the present day.
§ 7. When the usetul minerals had been rendered accessible, it was a matter of no small importance to the main ohject of the change, to have them properly secured from waste and destruction. Had they lieen exposed on the surface of the earth, many of them would have suffered from the netion of the elements, and others would have been wasted in thougntless prodigality. What is easily obtainct, however valuable, is for the most part freelv apent; and had the mineral stores which fire treasured up in the bowels of the carth, for the benefit of all ages till the end of time, been less protected by the arrangements of nature than they happen to be, they might have been exhausted by improvidence, before the cime comes when they shall cease to be necessary. The labour and skill necessary to the successful operations of the miner, together with the amount of capital which they require, ensure a greater degree of economy in the use of the difierent products of the mines, than would have been thought requisite, had the expense of working them been much less.
§ 8. Moreover, had the crust of the earth consisted chiefly of loose and friable carths, instead of eolid and compact rocks, it would have been everywhere permeable to vater; and all the water that fell on its surface, torether with a great proportion of that of the sea, would circulate through it in all directions, and there would be no springs, running sureams, lakes, or ponds, above the level of the sea; or any other neans for performing their functions in the economy of nature. This evil is prevented by the disposition and general compactness of the strata. If there are some beds through which water permeates, others are impervious to it; and when it reaches these, it accumulates on their surface, till it runs into troughs, which conduct it again in the form of springs to the surface, where it is collected into rills, hronks, and rivers, and conveyed to the sea, to be returned again to the heavens by evaporation; and sprend anew aver the face of the eartla.

The usual state of coal fieids may be here referred to, as a striking instance of the beneficial effects of the 1 'tions of the earth on the disposition of the strata. T.ey have been everywhere more or le-s disturbed since the conl was deposited; and though their dislocations have in some respects been burtful, they have been far more bencficial that injurions. Coà is naturally a prorous substance, and readily admits the entrance of water, and its free circulation through the whole mass; and resting as it generally does in capacious basons, that retain the water which finds its wn : to them, it would in many instances have been an insurm : table obstacle to the progress of the miner, had the fomation contimued in its original state. But coal fields are genarally divided into sections, some imes of greater, and wother times of less extent; and these sections are separated on all sides from one another by natural partitions, usually called "faults" in mining phrascology, whien run through the bason in different directions, from side to side, and from tup to bottom; and being in a great measure impervious to water, they prevent its passage from one section to another. The strata of the furmation have been violently agitated, ruptured, and displared. Sometimes one part has been raised up above its original ievel, and another adjoining has sunk below it; and averywhere rents and chasms have boen opened, intersecting one nuother in all directions; and these having leen subsequeutly filled with mud, which has in course of time become solid and compact, the sections are separated by massy walls, through which the water does not penetrate. By means of this arrangement, one scetion may be wrought at a timr, which would have been otherwise impossi?. 's: as the most powerful machinery that ever was construcied, woukd bave heen wholly inadequate to the drainug of the pit, or the preventing of it from being filled with water. Of this all miners are sensible, and ieaving the faulte entire, they gonerally contio their operations to one section at a tine. to water; r with a e through , running ; or any economy on aud geome beds ious to it; r surface, the form into rills, e returned anew over

become impregnated in their course; and while it retains every thing that is noxious, or useless, and renders them innocuous, it returns the purified water to the heavens, to perform the same circait anew.
 a lieneficial arrangement, that of the land into monntain and valley is equally advaltageous, though in a different way. Besides giving a pleasing variety to the face of nature, it is directly conducive to a variety of objects, both physical and moral, of vast importance to the inhabitants of the earth, and for which substitutes would not easily be found. Were the surface of the hand as uniform and level as that of the sea, it would be very hurtful, if not destructive, both to animal and vegetnble life.

Rain is indispensable to the health and nourshment of all the more usenul kinds of plants, and it promotes their growth in different ways,-sometimes directly, and at other timies indirectly. The atmosphere is a compound of different gases, some of which are more adapted to the support of animal, and others to that of vegetaide life. Carionic acid gas, and ammonia, mee among the latter; and as large quantities of these are continually disengnged, and set alloat in the air, in eonsequence of the decomposition of organic suhstances, in which they are contained, it would in course of time become over-charged with them, and become injurions to animals, were it not that rain carrics off the excess, and communicates it to the soil, which they tend to fertilize, and where they cease to he injurions either to man or beast. A creat dent of ruin falls in the sen, where it prohably performs no other service than that of purifying and rendering the atmosphere more salnhrious; but a great deal more would have the same destination, were not the clouds whirh are formed in the higher regions attracted to the enrth by the imhence of the mountains. It is always around the tops of the mountains that the clouls first come in contact with tho earth, and from these they descend to the lower grounds It is ot the bigher tanda that ruin in both most frequent and nbundant; while on some low, level, and extensive regions,
such as Egypt and the Lybian deserts, it seldom or mever rins at all.

Mombtnins are also a great protection to the lower grounds, from the injurions influence as atmospheric currents, in their sweepring course from the Pole to the Equator. Coid air is abwas more conilensed, and cansequently heavier than what is heated; and in consequence of this, there is aregnlar current form the coller to the wamer regions, which is more on losis ricplid accorling to cirromstances. In the equatorial reserasis it heated and rarified, and phshed upwards to a Wrat heright above the earth, hy the pressure of an meatio ing convent from the Poles, and firnn the higher regions of the atmosphere it falls back açain towards the Poles, ir run the sume course ngatn. ' Γ his is a bighly importan moringeancut, but wore it not for the shelter which the ramntains atford th the lower gromals, it wonld be attended with very promicions effects.
'The ereat Plains of Central Λ sin, and Nowthern Afrias Whore the winds meet with no eflectual absimetinn, lase forn converted into oceans of dritting sand, mal unless re-- damed by means of some great physical change, they have bre: fromered mintahitable till the end of time. "The samts of Latha," shys DeNon, "driven hy the west winds, havr loft no land capulile of tillage on any part of the west"rim bame of the hill, nat shelecred hy the monntains." And Burnes gives the following aeconsit of the great Plan of the Oxus:-"'The heat wf the samel wese to 150°, and that of the atmosphere to 100 ; hat the wind blows stemily, wor do I herlieve it wonld be gassible to traverse this tract in the summer. if it ceasod to blow. 'The stemy' matner in whirh it comes in one direction in this inland emontry is remarkable. It is true that, in every dimetion except the Nomb, we haw mountains, but they are too distant tu abert the winta." Fivery one knows that, nll other things being "qual, fratite tion pros, wers most in sheltered situntions, hat compmantively Lew nee sulticiontly aware of tho dereree m which proper
 tiveness of the gromed. At the relebrated fialls of " l'equers.
dama, of 574 the ves of whe other i where and \mathbf{N} culiar of a ki camot vels, f Humb to the lofty a with n helow the su But ed to : ties, tl descen ing; A a mor groun laving ty wh and co which looth r menn: § 3. trics, influe much impro the in! much saved
grounds， ＊，in their ohd air is han what rular cur－ 1 is more equatorial arals to a n theeas－ egions of es，in run 1 mrau；ge－ Intains at－ with very

In Africa， ion，have unless re－ they hacre ＂Plee est winds， the west－ s．＂．And lain of the hat of tho в（н）（小） 1 H tho sum－ whirh it markablo． 1，we huw e wintro．＂ al，hrexata－ pmantively新 戶rope！ fr frothia－ Terıин－
dama，where the Rio de Bogata is precipitated from a heimht of 574 feet，there is a complete change in the character of the vegetation ut the two levels．Above，there are fine crops． of wheat，surrounded by rows of the oak and the el：，and other plants of the temperate circles；lut from this termare， where the traveller is reminded of the vegetation of Europe：， and North Amerien，he looks down upon a scene that is pe－ coliar to the tropics，where the lofty pabm，and other phunts of a kindred character，flourish in his view．This difference camot be owing to the difference of elevation nt the two le－ vels，for what are 574 fect in an equatorial region？M． Humboldt inerely hints at the shelter afforded by the higher to the lower ground．The falls are upon the verge of the lofty and extensive Plain of Bogata，where the winds meet with no ohstraction；and the current sweeps over the ground helow at too grent a lieight above it to injure the banana and the sugar cane which flourish in the shelter．

But，independent of this，the ground is mueh better adapt－ ed to agricultural purposes，in consequence of its inequali－ ties，than if its surfacs had been even．Had there been no descent，there had neither been natural nor artificial drain－ ing；and a grent part of the fucs of the earth must have been a morass．In consequence of tho undulating state of the ground，the waters which fail upon it from the clouds，after laving maistened，and imparted to it the elements of fertili－ ty which they hold in solution，are collected into stipans， fand conveyed to the sea；and besides this，artificial drathing， which in of the very highest importance to shriculture，is hoth rembered less expensive and more efficient hy the sam：－ menus．
§ 3．Agran，the geographienl situation of different conn－ tries，which have exereised a very powerful und beneficint influence on the progress of civibization，has combibuted much to the preservation of their independen＂r－their own improvement，and the extent of their influence in promoting the innurovemont of other Lands，lBrition，for instanco，ownes much to her insular situation．It has on difterent oconsions sared ber from the ealamities of a hestile invasion，whind are
adways great, even when the invasion is repelled. It has favoured the pregressive improvement of her institutions, which has been slowly but steadily and surely advancing for many generations; and is, along with her inexhaustible mineral resources, the origin of that commercial greatness on which her vast power depends, and by which she has been enabled to disseminate the elements of social improvenent over many extensive and popnlous regions, situated in distant quarters of the globe. Had she formed a part of Continental Europe, she could hardly have escaped from the blasting imilnrace of despotism which so long predominated there; and had her civil liberty been erushed in the bud, the human race must have suffered to an extent of which it would be difficult to form an estimate.
'The division of mankind into families, all speaking differrut languages, and observing different customs and laws, may appear at first sight as an injurious arrangement,-as an arwangement calculated to produce national jealousios and dislikes, and to prevent the free interchenge of their diseoverics; and to a certain extent this is truc; but uational jealousies and untional emulations have their beneficial as well as their injurious inflnence, and the one will do more than romuterbabnece the other Austria ans Italy, Spain and Pormral, have never looked with the same hostility on the growing power of Britain, with which it has been long regarded by Pramee; and France las been the first of the continental nations to adopt her constituticn, and to follow in her wake; aul this is very easily accomted for. In every contest in Which they have been engaged, she has felt the superior power wi her opponent, and has after repeated trials becomie sensible that the only way of attaining to an equality, is to the the sume comrse. 'The real secret of a rival's power is very often soonest discovered by an insuccessful trial of strength. National amimosities have no doult been a fruitful source of Woody wars; bat even these, with all the frightful consefurnces that uthend thom, have not unfrequently a redeening eifict. When civilization bas attaned to a certain stage, in cau diypense with the assistance of violent stimulants; but
whethe at least gress n ferent differe and dif ring th is ofte posed, made 1

But by the mounta mation never tablish ean be formid termin service avail, them. sians, the Gr ders th of the

Eve ohject eflect of tas ierent differe promo ficinl these tempt. strictic it allo
thas frs, which for mamineral II which enabled er many quarters tai Eung ininlure; and lan race be diffig differd laws, ent,-as sies and ir discoonal jea1 as well ore than and Porhe growregarded ntinental er wake; ontest in or power seusible tuke the ery ofter th. Nuource of ul conse-redeemin stage, antis; but
whether it would have reached that sage without them, is at least questionable; and that they have accelerated its progress may be easily proverl. But, independent of this, lifferent nations, speaking different languages, and observinf different customs and laws, necessarily form diflerent taster, and different habits, and modes of thinking; and by comparing these, and analysing their tendencics, a clearer light is often struck out-practical errors are detecied and exposed, und the path of improveneut in the arts of life is made more plain and easy.

But had it not been for the lines of demareation formed by the hand of nature, in the formation of such barriers, as mountain chains, unfordable civers, and arms of the sea, the national existence of many families of the human race could never have been established; or having been accidentally established, they could not have been preserved. No country ean be effectually protected hy natural idefences, however formidable, unless these defences be manned by a people determined to be free; but they are nevertheless of essential sarvice to such a people, and have oiten proved of machs avail, when the boldest spirits would have failed without them. 'The Pass of Thermopyle was turned thy the Persians, but the determination with which it was defended by the Greeks, made an impression on the minds of the invaders that was not lost, and contributed materially to the fute of the campnign.

Every region has its peculiar prodnctions, which berome ohjects of desire to the inhabitants of every other; and the eflect of this physical diversity is increased hy the diversity of taste and linthit, which necidentally grows up among differest mations. By giving a diversity of soil and climate to different regions, Providence has mule arrangements for promoting a mutual intercaurse between them, in the benfieial exchange of their respective productions; and were those arrangements not interlered with, by the paltry attempts of statesmen to improve them-were there no rostrictions imposed on commerce, by impolitic tarifis-were it allowed to flow in the chnmels that mitare has openet, it
would excreise a far more powerful and beneficial influence on the character and condition of human nature, than it can possibly do under the shackles unwisely imposed upon it..

CHAP. IV.
OF THF BENEFITS WIICH RESULT FROM THECOURSE OF THF SEASONS, AND TIIE DIPEERENCEOF CLIMATENN DIFFERENT PARAI, I, ELSS.
§ 1. The earth has, in consequence of the revolutions it has undergone, become better adapted in various ways, to the constitutions and habits of a great majority of the existing races, both animal and vegetable.. The greater part both of plants and animals have their times for activity and their times for repose. A very great proportion of both wake in the duy, when all the functions of life are in exersise, and sleep in the night, when the exercise of these functions is suspended for the time. There are both noeturnal phants and animals, with regard to which this order is inverted; but the inversion is not accidental or acquired, it is original nud constitutional, and accortas with certain peculinrities of their orgunization. 'To both ciasses, therefore, the regular alternations between day ani night are not only convenient and agreeable, but even necessury. Rest and sheep are as necessary to heahh and vigour, us any of the other means of subsistence. An artificial stimulus, judiciously applied, may enable individuals to dispense for a time with the repose and nourishment which nature reqnires; but the experiment is always atienderi with risk, und when often repeated seldom fails to impuir the constitution, and ender it more liable to the attecks of disease. 'That rest is in all cases indispensabie, is miversntly known; and the regular return of the night, after the fatignes of the day have been borne, is a wise and henevolent provision of nuture, and well adapted to the purposes of affording retiof and refroshment.

Again, by for the greater number of plants, and not a few animals, hybernate. 'They sleop in the winter und revive in the spring; and the seasous have a very powerful influence.
even mals great bits, atten contr alons dow, the g turn and mals aspe year all it a ca in fu thin, knov sons B a sti

fere

 theshru bloo
inde to b hav stag nulu diff mot bru: "th Hos of eve
influence than it can upon it.

SE OF THE DIFFERENT
olutions it 13 ways, to of the exreater part ctivity and on of both ce in exerthese funch noeturnal rder is inpuired, it is rtain pecutherefore, re not ouly
Rest and any of the lus, judicie for a time equires; but when often and :ender est is in all the regular have been re, and well efroshment. ad not a feew nd revive in al influence.
even on races whose habits are different. Domesticated animals have, through the force of circumstances, become in : great measure artificial, and we cannot reason from their habits, withregard to the point under consideration; but if we attend to those which: ore guided by their original and uncontrolled instincts, we will find in gencral that they change along with the changing year.. The lengthening of the shatdow, and turning of the leaf, are signals for the meludy of the groves to cease; and it is hushed till awakened by the return of the spring. In autamn the trees drop their teaves, and the fields put off their cheerful green-the inferior animals relinquish their gambols, and all nature assumes tho aspect of sadness and decay.. On the other hand, when the year comes round, the woods resume their wonted dress, in all its varied tints and hues-the fields are overspread with a carpet of flowers-the melody of the groves opens anew, in full chorus, to weleome in the summer months, and every thing again looks fresh and gay. 'These, mad other wellknown facts, are decisive proofs of the influence of the se:asons on animated nature.
But, whatever effect they may have on animals, they have a still greater influcuce on vegetation. There are two different seasons of the year, namely, spring and autumn, when the majority of plants undergo a change; but every, tree, and shrub, and flower, has its proper season for coming imo bloam, and bringing its seed to maturity. There is a clas.s indeed, natives too of the temperate regions, which continue to bloom and bear seed during the whole year, and which have at all tines a. succession of crops, in ull the different stages of their progress towards maturity; hut a far grenter number bear seed biut once in the year, and they prefer very different times for this purpose. 'The hardy mezereon, and morlest snow-drop, bloom in the midst of the snews of Fo-bruary; the dazzling crocus prefers Mareh; and in April "the primroses paint the swect pluin." A vast number thoon in May, many in June, and not a few noar the close of summer. Some delay till the approach of harvest; an:! even a few wait to relieve the sadness of the scene, whers
"the seared and yellow leaf of antumn" has tinged the forest with the hue of decay, and as it were signed the passports of the departing year. But whatever particular peiids of the year they respectively prefer, they in general require twelve months, and all the alternations of light and shade, and of cold and heat, which usually occur within that space, to perform their cycles.

It nay however be supposed, that the ordinary phenomena of vegetation are rather to be regarded as the proper ef fects of the changes of the seasons, than that the course e\% the seasons has been adapted to them; and in many instances this may be correct. But though the cycles of plants appear to be regulated by the course of the seasons, and thougly many plants possess the power of adapting themselves to external circumstances, there are others that do not. The different hemispheres are in respect to climate the exact countervarts of one another. 'They have respectively, their tropican, their temperate, and their polar circles; and eack has the same changes as the other, but they tappen to occur in different times. Now we might suppose that it would make little difference to a plant, if it enjoyed the same course of the seasons, whether its changes occurred or not at the same time, yot the vegetation of the two hemispheres is different; and wh at is more, many of the plants of the one hemisphere do not prosper under the same circumstances in the other. 'Thongh all other things are equal, the winter of the one is the stmmer of the other, and vice versa; and they do not readily couform to this arraugement, and some persevere in refusing to conform to it thll they die in their obstinacy.

Besides, though there are plants which are capuble of adapting themselves to an artificial existence, there are others that are not, and which resist every attempt to sulsject them to it, till they ultimately become a sacrifice to their own immutability. Some will after a short time grow in the night and sleep in the day; provided the one be artificially illuminated, und the other made dark; but others continue to expand their leaves luring the natural day, even thongh
in da place Th stitut range feren the e they siste

T pens anim rath of t day,
most
bein men
Tho ble
so w
titio
ence
exp
tant
pria
of t
iste
fies
um
uig
the
nen
has
но
d the tiothe passcular pe neral relight and ir within henomeroper efcourse e? instances ts appear d thougly iselves to ot. 'The the exact ely, their and each n to oceur it would the course lot at the res is difhe one hestances in winter of ; and they ome pertheir obthere are pt to subice to their row in the artiticially s continue en though
in darkness, and to shut them during the night, even though placed in a blaze of light.

These facts show, that there is something in the natural constitution of plants, which accords better with the actual arrangements of nature, than it would have done with any difderent arrangement. And whatever this property may he, the established course of the seasons is adapted to it; and they act in accordance with one another, in producing subsistence for man and beast.

To every thing possessing life, times of repose are indispensable; anit though there are both nocturnal plants and animals, vhue organization fits them for acting in the night, rather than in the day, all other races, when left to the bias of their natural instincts, retire to rest with the oloan of the day, and start with the dawn; and this habit is nat only the most natural but the most beneficial. It is, all other things being equal, better calculated to promote bodily vigour, and mental activity, than any other arrangement we can follow. Those who possess a robust constitution, may not be seusible of any inconvenience from a different habit, but it is not so with those who are delicate; and all sound medical practitioners, who generally base their prescriptions on experience, recemmend a natural regino to their pationts. 'Their experience confirms the homeje maxim, in which an i!nportant truth is expressed in plain and simple, but not inappropriate or unbefitting language.

The way to be heallhy, wealthy, and wise,
Is early to bed, and early to rise.
In the earlier stages of the history of the earth, the course of the seasons, as was formerly shown, appears to have been interfered with, and prevented from taking effect, by the frequency and inteusity of volcanic action, which gave an umatural temperature to the earth, and often turned the night inte day by its vivid coruscations. 'Till this state of the earth terminated, the order of nature was held in abeynuce; but the tranquility to which it has long since attained, has removed the obstruction out of the way, and we are sow enjoying the benefits of the change.
§ ~. The reduction of the temperature of the earth to its present standard, has been of the greatest service to its existing inhabitants. Frem til that we car learn of the nature and habits of the extinet races which intabited the earth in ancient times, it does not appear that we have sustained any serious loss by their destruction. Their fossil remains may he regarded as authentic and invaluable memorials of the ancient state of the earth, and of the repeated and mighty revolutions it has undergone; but had they been preserved to our times, they would have been of no use to us; and they must have occupied room which is isar more advantageously filled by others.
In consequence of the reduction of the temperature of the earth, there are different elements in different parallels; and a far greater variety has been introduced, both into animal and vegetable life. We have, both in the animal and vegetable kingdoms, equatorial, temperate, and polar races; and each of the divisions is subdivided into an almost endless number of varieties. Now, as the productions that are peculiar to one region of the globe are, from the censtitution of our minds, objects of desire to the inhabitants of every other region, a foundation is laid for a free and friendly intercourse between them, for an advantageous exchange of their respective commodities, and a still more beneficial exchange of their discoveries and improvements. The Poet's imagination may be pleased with the prospect of that anticipated state of things, when-

> Cedit et ipse mari vectnr: nec nautica pinus Mutabit merces: omnis feret ounia tellua. VIRGIL.
> The greedy sailor shall the seas forego;
> No keel Islall cut the waves for foreign ware; Tor every soil shall every product bear. DrydEN.

But to the philanthropist, the statesman, and the philosopher, it appears in a very different light,-for if "every land prodnced every thing"-if every man got in his neighbourhood whatever he might expect to obtain from a distance, there would be no motive sufficientiy powerful to induce the great majority of mankind "Tentare Thetim ra-.tibus,"-to brave the dangers of the ocean; and there would
ve no commanity of interest or opinion among the different families of the human race. Whatever discoveries or improvements might be made, would either be confined within a comparatively narrow circle, or if they penetrated farther, it would be slowly and imperfectly, and the interests of civilization would thas be sacrificed.
§ 3. It is a trite saying, that " man is the creature of circunstances" -that if the basis of his sharacter be founded in nature, it is greatly modified by his externel condition. In a tropical country, where his real wants are comparatively few, and the means of supplying them easily obtained, he has not the same incitements to industry, nor the same motives to endeavour to abridge or supersede the necessity of inanual labour, by ingenious contrivances, and he therefore seldom or never attempts it, and permits both his physical and mental energies to lie dormant, or beconie impaired through disease. And independent of the absence of stimulants to action, the enervating influence of a tropical climate relaxes the system, and unfits both body and mind for sustained exerticn. Mrs. Wilson, of the Scotcls Mission in Hindostanls, says, in one of her letters to her friends, "The climate has a depressing influence, and the susceptibilities, which would be awakened and ronsed to energy in England, are here permitted to lie dormant. Most of us live like the natives, creatures of mere senzation, and scarcely conscious of the existence of intellectual life." It would be e-lly to expect that any decided improvement could originate in such a situation, and under such circumstances. It must be in colder climates, where the system is braced by physical agency-where the wants are both more numerous and ur-gent-where a man must be comfortahly clothed and fedwhere he can neither go naked, nor sulsist on a handful of rice for a day, and where consequently his imagination is taxed and exerted, to supply what is deficient in the bount ties of nature, that all the resources of the haman mind are put in requisition and gradually developed.

If in the warmer regions, where the imhabitants can afford to spend their days in voluptuous ease, any thing should oes
cur of sufficient influence to agitate the stagnant waters of life, and produce some temporary symptoms of encrgy, the attention is directed to the arts which only serve to embellish, and not to chose that really improve; and while the higher and stemer attributes of miad are wholly naglected, the reveries of a heated imaginacion are indulged; and the results are, a fervid species of fiction, and glowing style of poetic representation, which having no actual types in nature, possesses no practical influence, and though it interests and excites for a moment, the excitation speedily terminates in exhaustion, and leaves no other fruit behind. Those who are independent of the useful arts, will not trouble themselves with framing laws and institutions for their encouragement; and withnut useful laws and customs, men are either harbarians or slaves. If they have not sufficient energy of mind to attempt the improvement of their social system, they will pay little attention to their personal improvement; and thousti they may yield for a time to an unuatural excitement, and iee impelled into an artificial and misdirected activity, they speedily relapse into their former apathy, and even become more hopeless than before.

With the siugle exception of the Saracen movement, which originated in no permanent principle, and swept over the East with all the rapidity and violence of a hurricanc, till it spent its force, and terminated in a 'cad and fatal calm, no agitation of any importznce, and berring along with it the elements of improvement, ever proceeded from South to North; but on many occas' ns have such movements taken an opposite directirn, and either directly or indirectly ameliorated the er fion of the sountries which they visited. One of the most memorable and important of ${ }^{\circ}$ these, was that which overthrew the western empire in the Middle Ages. Under the influence of a system that was radically vicious and defective, the South had sunk into a completely rotten and demoralizing species of social existence, and nothing bui a violent dismembernent of the system, and reconstruction of its elements on an improved principle, could have produced an amelioration. This was accomplish-
ed by Nort The the sit ment from more the h recti lowe thern tions ward men the p it ba
atten cid been have bann and men potis Tl roote quir and temp the have pari and Wes men teres 'iur natic
ed by the overwhehming irruption of the Baxba...ans of the North, the most fitting agents for such an weinievement. The Reformation originated in the same quarter, and took the sane direction. The general current of human imprevement is like the course of the wind from North to South from the Pole to the Equator. The prospect of finding a more genial climate, fairer skies, and a brighter sun, invites the hardy sons of the North to try their fortunes in that direction. Surge after surge, and wave after wave, have followed one another with longer or shorter intervals between them, but whatever may have been their respective destinations, or wherever they fell to pieces, none has returned towards its starting roint. Cyrus and Napoleon, the greatest men of their respective times, and who have few rivals or the page of history, both tried to stem the torrent, and roll it back on its own source, and botk feli victims to the vain attempt. Afte: the flow had settled into a smooth and placid state, and been imperceptible for severat centuries, it has been again agitated in our nem times; the Scythian hordes have once more made a descent on the South-placed their banners at the foot of the Alps, and on the banks of the Seine, and acted a very prominent part in the overthrow and dismemberment of one of the most powerful and warlike despotisms ever erected by the ambition of man.

The elements of inprovement have become too deeply rooted in the social system of Western Europe, either to require or even to admit of a total dissolution of that system, and it is impessible for the North to produce more than a temporary agitation in that quarter. 'That has been done on the occasion just referred to,-the elements of improvement have been agitated and they are now fermenting, and preparing to enter into new combinations, and to assume a new and ameliorated form; and it is highly probable, that white Western Europe is engaged wioh its own internal arrangements, Russia may perform an important service to the interests of civilization in Eastern Eurcpe, and Western Asia. 'Turkey and Persia have ceased to perform the functions of nations, and can hardly be regarded in any other light than
as cancers in the social system of the world; and the sooner they are extirpated, so much the better for the good af the whole. The operation may be painful, snd the more so if performed by an unskilful hand; but if it restore health and sounduess to the system, the enlightened mind will regret it the less.

The necessity for skilful and sustained exertion imposed on the inhabitants of the higher latitudes, combined with the bracing intluence of their climate, first opened to them the path of improvement; and the success which attended their first attemps:s, operated as a stimulus to increased exertions. Though the elements of intellectual and moral imsprovement are thus prepared in the temperate circles, their influence is not limited to these, but extends to regions nearor the Line,-for though the indolent and cnervated iuhasitunts of the latter may not possess the requisite energy to make discoveries, and originate and mature important changes, they have capacity to receive these when presented to them; and even the very indolence of their temper, prepares them the more to act the part of passive recipients, when foreign improvements are imposed upon them, by those who have an interest in pursuing such a course.
Moreover, the arrangement under sonsideration is productive of a number of physical benefits of grent importance to the welfare of our race. Although tiere are electricai changes in the atmosphere, which, in consequence of being local und limited in their inflnence, produce currents in muy direction, there are, ns has been stated uheady, general and unceasing atmospheric currents from the Poles towards the Equmtor; mod these meeting together within the tropics, produce the trade winds, which are known to be of vast importunce to commerce. But this is neithe. the onfly nor the greatest benefit we derive from them. They pu-ify Whe air mud render it aulubrions, and fit it for porforming is varions fanctions in the econony of nuture. Wherever organized bodies are in existence, there nre nlways some of them in a state of tecay. 'The process of decomposition is continually going on, either on a larger or more limited
scale; life, th if allov mosph solutel should state to with o In the subjec the co gases to an of ve langs. sandst overw freque winds have under they a carbol hoth 1 fined means where

We
ture, natur cause an eq cede
where

and 18

 howa ful cil the utscale; and the consequence is, that gases, injurious to animat life, though necessary to plants, are freely disengaged; and if allowed to accumulate in any locality would poison the atmosphere, and render it destructive to animal life. It is absolutoly necessary that these should be dissipated-that they should be dispersed over the face of the earth, or put into in state to enter into new and useful combinations; and this, with other interesting phenomena, is effected ly the wiml. In the earlier ages, the temperature of the earth was not subject to the same arrangement as at the present time, and the consequence was, that in the carboniferous era, azotic gases accumulated in the atmosphere in particular localit'es, to an anount that proved higlily conducive to the progress of vegetation, but deatructive to animals breathing with dangs. In the succeeding age, which is that of the new red sandstone, a large propertion of the surface of the land was overwhelmed with an ocean of drifting sand; and though the frequent changes in the direction of the strata, show that the winds by which they were broken up and reconstructed must lrave heen extremely variable, they must tiso have been more under local influences, than under the general law by wich they are now regulated. If they did not stagnate, as in the carboniferons age, their action was insalubrious; and during both periods, man and all the more useful animats were confined to the more elevated regions of the earth, where their means of subsistence mist have been less plentiful, nud where serious checks were imposed on their increase.

Were the atmosphe, o everywhere of an equal temperature, it woald 'ue without metion of any kind; laut it is the matural tendency of cold air to displace what is heated, because the later, being also made lighter, camot present an equal resistance to i; and it therefore continues to recede before it, till it arrives within the tropical regions, where it is met by a curreut from the opposite Pole, and mounts up to the higher regions, from whence it falls
 ful circulation of the atmospheric fluid, depends chiefly on the unegual distribution of heat to the different parallels.
'There are oceanic currents which have a similar urigin; and if they periorm no other function in the economy of nature, they serve to carry off some portion of the excess of heat from the equatorial regions, where it has a tendency to accumulate, and to impart it to the temperate and polar rogions, where it has a tendency to become deficient; and it is partly by this means that their redative proportions are contimually preserved.

CHAP. V.

 TUFS SIZF OFANIMALS, AND THEABBREVIATION OF THETERM UF IIUMAN LIFE.
Tlie reduction of the size of animals, and abbreviation of the term of human life, since the earth emme duto its present state, are interesting facts; and must form points of less or more importance in the general economy of mature. They are evidently conducive to the main object of the different revolutions which the earth has undergone, namely, to render it an abode of the grentest amount of happiness, consistent with the nature of things; and also a mursery for raising the rreatest number of human beings, consistent with their due preparatien for a future and higher state of existence. 'The changes referred to in the economy of anmals were formerly pointed out; and they have no doubt resulted from the mutations of the earth. Had they been ocensioned by supernatural, mol not by physicnl agency, they would have in all probability been completed at once; whereas they nppeur to have been progressive, and even slower in some instances than in others. The mean ages of the antediluvian patrinchs, anitting Enech, was something more thm 91: yeurs; and Nouh, the last of then, li ed to the nge of 050 ; which shows that, till the Delure, no muterial change hal ocenred. The nge of Shem was reducel more than onn thith, and his son's agatm was nearly one thtrat ahorter thats his own. For three generations miter Shem, the term of life remuined stationary; when in the thext following, it fell again
one ha or five durd.

Sino been t shorte count dard, to 110 his til of the abate of N cient and tl ticula to the fore the F In duce a rac they ii. 10 fow dotu "the the 1 tic, 0 Plon
'I
duce
slow
doul,
it wa
that
the
gene ndency to polar re; and it is ; are conuld hatro they apsome inediluvian than 91: e of 950 mige hall than one
 ren of lifo fell ugam
one half, and then continued nearly stationary for other four or five generations, when it sunk rapidly to its present standurd.

Since the days of Moses, "three score years and ten" have heen the measure of our days; but it may be lengthened or shortened by the influence of circumstances; and in some countries it overruns, and in others does not reach that standard, which may no doubt be traced to a difference in regard to modes of life. Herodotus represents the Ethiopians of his time as " the tallest, the bandsomest, and longest lived of the human race,"-a description which, with very little abatement, may be applied to the Tuaricks, a nomad race of Northern Africa, supposed to be descended from the ancient Ethiopians; (Captain Lyons' Narrative,pp. 108-112;) and the Macrobians, or Sabcans, to whom Hero !otus particularly refers, lived to the age of 120 , which they imputed to the influerse of a generous dict. 'This was 500 years before the commencement of the Christian Era, or 1800 after the Flood.

In the sume gradmal manner was the stature of man reduced, from its ancient to its present state. 'Ihere was still a race of gimuts in the days of Moses; (Numb, xiii, 39, 83;) they had been much more numerons in former times; (Dent. ii. $10,11,20,21$;) mal they were not even extinct, although fow in mamber, in the reign of David. According to Herolotus, in the passuge already quoted, the Muerobians were "the tallest, as well as the handsomest, and longest lived of" the human race." Isniah represents their persons as majestic, Chap. xlv. 14; and Agratharchiles, as quoted hy Bocham, Pholeg. ii. 96 , spenks of them in smitar temes.
'The fict, that the age and stnture of man were both reduced in a gradual manner, mud also that they fell more slowly in some instances than in others, proves beyond a fonbt that the change originated in physical canses, mul that it was bronght nbont ly physical ngeney. It is well known
 the conrse of thme produce a very sensiblo elleet on thein general uppearance, or that they can he either deterionated
or improved by treatment; but they can neither be brought all at once to the highest pitch of improvement of which they are susceptible, nor do they sink all at once to the ne plus ultra of deterioration. They come progressively to both. One generation gains or loses to a smaller extant; a'mother does the same, and so or:, till the full effect is ultimately produced;:and the process in either direction may be accelerated, or it may be retarded by the influence of cireumstances.

Now, considering the present state of existence as introductory to-another, and the earth as a nursery, intended for raising the greatest number of human beings that is consistent with their due preparation for that other, the removal of every thing that might operate as a check upon the inicreass of their numbers must be favourable to the attainment of that end; and there cannot be the slightest doubt that such is the tendency, both of the reduction of the staurre of man and of the abbreviation of his allotted term of life. The larg r the size of any anmat, the more in general will it r fuire of the means of subsistence: and as the fertility of the earth has its impassable llmits, Leyond which the inost skilful modes of cultivation could not stimulate its powers, it must be a wise arrangement to rethee the amount of bone and muscle to be kept in repair, as fir as may be done consistently with the due performanco of their functions. 'There are Pigny races in different quarters of the globe, bet to whatever it may be owing, or however wo are to accont for it, their mental capacities appear in generen' to be as deficient as their stature; and it may be laid down as a general rule, in every comtry, that diminutive races hive inferior intellecte, though if taken individually there are many striking exceptions to it. On the other hand, a gigantic stature is no proof of superior intellect, but rather of the contrary, at least , y eredit be due to the miversml opinion of mankind on the point,-for the fubulous ginnte of ail ages nai every mation have ioceli equally marheal by bratality of disposition aml mental incapacity; and three nations of them, then estemed numerous and powe r -
brought of which to the ne ssively to er extent; ect is ultion may be ce of cir-
as introended for is consisremoval on the inhe attaintest doubt f the stioed term of ore in gee: and as Imits, Le could not ent to rerepair, as rmance of rent quarg, or howies appear nay be laid liminutive dividually ther hund, t, hut ruo the unia fulmlous aily markacity; and nit power.
ful, were simultancously defeated by a roving band, which was pure.. ' and routed by Abraham, at the head ot the traineds :" ts of his own establishment, anounting only to 818 , tien. xiv. 5.

We may then conclude that the present stature ol man is, upon the whole, the best adapted to the ent of his beingthat it conld not admit of any greater reduction, consistent with that end, and that an increase would have the efiece of relucing our mmbers, without being compensated by any positive gain, if not attended with loss.

With respect to the inferior animals, there are some resers in which weight is a benefit, as it may enable a simgle tean to perform a piece of work for which it would be otherwise mith, and where the employment of a double tean wonld be necessarily attended with a waste of harness, time, ind power, heyond what might have been smaticient. But in all nther cases, if we can reconcile our minds to it, what is wanting in weight may he compensited hy manders; and its every mimal of the same species, in the satue rondition, mat unler the satue circmustances, must enjoy un cynal mmont: of happiness with each of its fellows, whether its size lue at little less or a little more, it is clear that a ereater nomber of mimats, of dimensions suhicient for the cond of their exirience, must have an itgigegnte of emjoyment superion to that ot a smatler manber of the smme race; nad it the smatles number have no more weight mad no more valne than th. greuter bumber, thero is a lose of enjoymont without any sdequate compensation. 'The Dinoherinm may have em;sumed the vegretation of a latio, nud conserpently expenta. foom it all the happy herbivorous forms that 1 ondt haw sported in its whters; and the consiquence wonh have liors. that all the happiness which that seene aftomed, would has
 Which his sluggish form was sustrptihh. 'Theee axin, ut foo Ibs, each, wre of the same value at two of 750 ; hut. supposins the circuastances of ench to be the sume, ant that they hat a ull the same capacity for enjoyment, the difleromer ia regard to tho latter will bomont to $53!$ pre rem:. A!!t.
this, that gigantic animals dos not in general appeas to have भn "(qual capac:ty for enjoyment with those of inferior dinensions, ceon when they belong to the same species. All our different races of dogs are but accidental varieties of the stme species,-they have ali sprung from one stock, and are reducible to a common type; hut thongh the larger varicties generally possess more sagacity, and are therefore more usefill, the sinaller ones as commonly exhilit a greater flow of spirits-a greater propensity to frisk and to gamhol, and enter with a kecner zest into all the forms of canine anusement; and there are various other animals besides the dos, to which these observations are applicable. If such facts are forced upon our attention, our selfishones leads us to overlook their importance; but we may rest assured that they enter into the primary calculations of the great and infinitely henevolent Being, without whom ever a sparrow falleth not to the gromm, and whoso chief delight is to multiply, to diversily, and ratend enjoyment-to contemplate the endless varicty of its forms-is provide for their permanence, and to watch over and protect them from ingury.

This is, however, to be kept in mind, that as the inferion animals were not wholy made for themsolves, their eapacity for enjoyment mast ho eombined with their usefulness; and thomgh a still greater reduction in size might have increased the eross amount of happiness, it might have been attended with a correspondiag lose of atheiency, which would have acted milivourably in some instames even on the very object it was intended to promote. Prodaceons minals, far instanco, aro imbisponsable in tho system of nature. They are its suxenters, and its police. Illoy prow.at an exeess of bumbers, and eonsequently a fomine amony the herbivorat and thoy oiten prevent, by n speedy doatruction, the lingering miseries of ricknoss and of nge; but that they may bat reate manecossary suffering-hat they may despateh theib victuns as speedily at possible, they mast have size and strentgh adequate to the work.

Fhat the reluction of tha sizo of ammals, ne far as attentoa to their ediciency would ndmit, is n wise armagement, rior dis. All of the and are arieties ore use-- flow of and en-amusethe dnos, ch faets ds us to hat they nfinitely Heth not y, to diendless nee, and
inferior capacity ess; and nereased attended uld have very obmals, fir e. They m exepusi herbivoetion, the they may despatch esizo and ingement,
and that it admits of an incrense of numbers, and especially of the nunibers of the human race, cannot admit of 1 doabt; and it is one of the innumerable benefits which hase resulted from the ancient mutations of the earth.
§. a. 'I'he abbreviation of their term of life is another. So long as the earth was hut thinly inhabited, and so long as it was incapable of affording subsistence to a dense population, the longevity of man was an evident benefit, rather than an evil. It must have been the effect of a more hardy and durable eonstitution than has been transmitted down to the present time; and such a constitution was in all probatility indispensable in the state in which man was then placed. But were the term of dife again restored to 900 y ears, it could not fail, at least in all the older and more densely inhabited countries, to oceasion the most extensive misery, anless the ancient system in all its parts was compleiely restored at the same time; and even then, the consequence would necessarily he, that at the end of 1000 years there would not have been more than one in thirteen, or even less, that would have passed through life under the existing arrangements.
'This is a consideration of the greatest importance. 'The mincal treasures of the earth are vast, but still they have their limits. They are far from being inexhmustible; and the higher the degree of civilization we attain to, the greator is their consumption, and the sooner umst they be spent. From this it is clear that the earth is not intended to lnst for ever. It is eoming to an end, and camot even exist under the present arrangement for a very long time. Supposing it then to be designed, ns we have every reason to believe, for raising and preparing human beings for a future and higher state of existence, it is of the ntmost impertance that the term of life be us short as is consistent with the metnimment of this end, that the nmmber thus raised and prepared ma, he as great as possible. The earth ean only contain a given number at ore time; and as that number must go out before another enters, the sooner they can dispatch their business and depart, the more will their numbers amount to in the end

As a certain amount of information and experience necessarily dies with every gencration, and indeed with every individual, and has to be acquired anew by the next in suecession, and as much of this must, from its very nature, be acquired by means of instruction and example, and that too in a slow and progressive manner, it camot be transmitted from race to race, unless they go out and come in ly divi-sions--numbers being at all times in aht the different stages of the progress. Now this cannot be done in a very few years. We come very slowly to a state of maturity; cad a considerable number of years are spent hefore we can even be gin to learn the useful arts, a number more are spent in the learning, and all this preparation would be useless, were there no time allowed, after the aequisition, to practice the arts thus slowly acquired. All things eonsidered, the present standard of the term of life could not suffer any farther reduction.
But the question is, Has it not been roduced too much already? It is certainly possible, if not more than possible, that a greater progress in improvement might have been made, had the lif' of man still extended to hundreds of years; but we have no great reason for thinking that a greater intprovement would have actually taken place. It is for the most part before we enter on the deeline of life, when all our powers of body and mind begin to flag, that we embark with the greatest ardour and success in the busy scenes of active life; and though a man who lived to the age of 900 years may have made groater progress than another who lived only 70, the progress made ly thirteen successive generations of the latter, might have been much greater than that of the former. it was not before the eighth generation, which was about 900 , or if we prefer the Greek version of the Sacred Chronology, 1450 years from the creation, that some of the most necessary and casily-invented immrovements were adopted, which is no great evidence that long life is favouralle to improvement, Gen. iv. 90-22. Constituted as we are, the prospeet of a lengthened period before us might operate very unfaromably unon our activity. irther
ch alssible, been years; er illor the en all nbark es of f 900 : who - ge-- than ation, ion of , that rovelong Contdi betivity,
while the certainty that we have not very iong to live, may prove a stimulus. It is certain that moralists, in recommending diligence to their fellow men, have in all ages represented the shorturess of human life as a powelftal motive to diligence and perseverance, and it is reasouable to suppose that it should be a stinmus.

But giens supposing that something might have been gaimeif in the way of improvement, hat the antedilavian term of life been continued, what loss wust have been sustained in respert of numbers by such an arrangement? What was gained in one way would have been no compensation for what was lost in another.

CONCLUSION.

§ 1. In these rescarchus into the physical history of the earth, we have seen that it has undergone a number of violent and extensive revobtions before attaining to its present state of rest; and though these revolutions may appear to us at first sight to have been the effeets of acoident-to have been based on "general principle, ant to have possessed no unity of design, the very reverse is foumd, upon an attentive enquiry, to be the case. That they may be afl traced to physical agency is readity adnitted, but this is only moving the enquiry one step farther back; for whatever links we may be able to number in the chain of sequences, we must come at dast to a first cause. The revolutions of the earth, without one exception, contribute directly, though in diferent ways, to a common objeet; and in doming this. they present to us the most clear and decisive proof's ot mity of design. Now design implies intelligence, which physinal agency cannot possibly pessess. Mutter may act in different ways upon matter-one class of substances may have the property of attracing and another that of repelling one another-one may condense and another may expend; but when we wiserve g tumber of eontlicting clements, apparently working confusion and disorder, but terminating in
the establishment of an improved state of things-when we see this perplexing process repeated, and that for a considerable number of times, with longer or shorter intervals betheen each-when we seo that every succeeding repetition is attended with some variation in the phemonena, but that notwithstanding of the diversity in the length of the interveuing periods, of the change of circumstances, od difference of the more immediate resulte, they all bear upon one onject, and promote that object more effectually by their partial lisagrement, than they could have done by the most perfect uniformity, we may rest assured that the whole is arranged by a presiding intelligence, and directed by a skilful and omnipotent han!? or in other words that it is the work of Him who has "prepared his throne in the heavens, and whose kingilom ruleth over all."

The intelligence which directed the revolutions of the
sequ have cult s catas have marl stollo 81110
'Il fuse terio such then lave and prool usef the ly ir appe rend all forn whi grea been no d
and
mul
othe
sam
gar
ated
and
they
pre
obje
mos
whea we onsider－ wals be－ epetition but that e inter－ d differ－ pon one heir par－ the most whole is y a skil－ it is the havelis，
s of the conceal－ villing to is of His displays working e revolu－ ree；and he order good－at t possible precise st exten－ uld have of them sive；and are been celi－that ；of their that they miplished ons evils： ，and con－
sequenty left the earth in an unfinished state；or they might have blown it into atoms，and dispersed them amoug differ－ ent sections of the universe；or without imagining：tch a eatastrophe，no great addition to the disturbing forces would have been required，to convert all the limestones cither into marble or caler reous spar－the coal into coke，and the sand－ stones into schists；and it wonld be impossible to estimate the amount of loss we should have sustained from such a change．
＇There camo＇be the slightest doubt，that the heat which fused the erystalline masses，and ejected them from the in－ terior，in incaudescent floods，might have heen increased io such a degree as to melt the sedimentary strata，and convert them likewise into refractory masses．The primary strata lave all been partially crystallized since their deposition， and had they been suljerted to an additional heat，the change produced must have bern proportionally greater：or the more useful formations may have been buried to sueh a depth in the bowels of the earth，as to have been rendered complete－ ly inaccessible to man．The difierent geological perionts appear to have becn continued just as long as they could be rendered subsidiary to the great object towards which they all converged，and no sooner were their respective parts per－ formed，than they teminated respectively in revolutions， which still contributed，though in different ways，to the samo great and ultimate object．Had the carboniferous period been much prolonged beyond its actual duration，it would no donbt have produced a greater amome of coal，i lime， and other minerals；bnt while these would have been acen－ mulated to a greater anomet than will probably be required， other important objects would have been sacrificed．Tho same，or at least a similar observation，may be made in re－ gard to every other geological era．Had they been abberevi－ ated，they wonld not have done the good they have done； and had they continued loager than their napointed times， thoy would have accomplished more than was required，and prevented the accomplishuent of other and more important objects that were required，and from which we derive t⿱十⿰⿴囗十心 most important beacfits．

Now, had there been only one or two changes, their beneficial tendency, or even their agrecment in promoting one great olject, might have been accidental, or at all events it would not have amounted to a fatl and satisfying evidence of design; but in the calculation of prohabilitics, fine miform agreement, in regarl to tendency, of such a number of changes as the enrth has undergone, ard ef ehanges which, while they agreed in tendency. differed in many other re--pects, chmot be set dow. as accidental. 'Ihey differed from one another in too many ways, and ro such an extent, as to show that they could on no acount be regarded as similar effects of similar causes-that they were not dependant, like the rising and setting of the orbs of hearen, on some uniform mod permanent law; and yet they acted in such a manmer, as to indicate a common relation to a common object, and subjection to one presiding power. 'The combination and adjustment of so many different and conflicting ele-ments-the balancing and directing of such tremendous torces, and the adapting of their intensity to the ends intendea, are oll evidences of the most deeisive nature, that the presiding Intedigence unites .t his character, unbounded wivdom, power, and goodness.
§ ?. And besides establishing the fundamental doctrines of tural 'Theology, the discoveries of Geology .. $\begin{gathered}\text { be to confirm }\end{gathered}$ the truth of the Scriptures, and consequently give their support to Revealed Religion. They corroborate the truth of some of the most diflicult passages of the Saered Narrative, am: illustrate some of the most obscure.

But there is no way in which they give more efficint support to the Seriptures, as a Dirine Revelation, than by affording the most conelusive and satisfactory evidener of the truth of miracles. 'Itse truth ot' miracles is ene of the main pillas of Revealed Religion, and for this very reason it has been more fieredy assailed, and warmly defended, than any other point in which religion is concerned. If 'he miracles recorded in the Scriptures were genuine, they prove the Seriptures to be beyond all doubt the Word of Giod; but if they were an imposition practised on the crectulity of man-
kind, th ver sul, pure al 'the "onfirm juuliciou commo ly the less lik ritior wortd, as the more st Divine nacy by port of quire st cles in harden, many o the exte nission are bett commo whethe 'There though tural a them as vellous, can pro no smal which and the any suc an unfa for the doubtiu ting one avents it evidence the uniumber of : which, ther rediftered 1 extent, ed as si-depcularen, on din such mimon ob-ombinating ele mendous s intendthat the bounded
trines of , confirm heir sup. truth of arrative,
ient supn by afre of the the main on it has than any eniracles rove the d; but if of man-
kind, the Scriptures are not divinely inspired books, howerer sublime their compesition and sentiments, or howerer pure and cexcellent their morality.
'The truth of miracles las often been exposed, rather that ronfirmed, by the indiscrect zeal of its well-meaning iut injudicious friends. The evidence of miracles has little in common with hurran testimony. 'The latter is .arengthened by the aumisers who concur in it, because it is at all thes less likely, that a multitude of men of common sense stion:!? nitlier be mistaken or conspire to impose a falsehood on the world, than that this should be done loy a very few. Whereas the more common that miracies become, they become the more susplicious; for we have no right to suppose that the Divine Being will either condescend to overcome our obstinary by the performance of a long serics of miracles in sup)port of one point, or that there can be many points that require such proof. Moses performed a loug series of miracles in Egypt; but the lesign was not to convince, but to harden, and it was calculated to produce this eflect. And many of our Lord's miracles were rather designed to show the extent and variety of his power than the divinity of his mission. One or two genuine or well-attested miracles, are better than a thonsand; because when miracles become common oceurrences, they cease to be regarded as miracies, whether we be able to trace them to secondary causes or not. There are many events recorded in the Scriptures, which, though by no means common, may casily be referred to nittural agency; and yot it has been customary to represe:it them as miracles, either from anatural fondness for the marbellous, or from a mistaken idea that the more miracles we can produce the better. 'This is unwise, and attended with no small degree of danger. The multiplication of positior: which must be defended, serves to fritter away our strength, and the more especially if the points le untenable; and when any such point must be surrendered, it invariably produces an unfavourable impression. It would be well, therefore, for the frieads of religion, to sureender at onee all that is doubtifi, sud to reserve their unhroken strength for the de-
fence of what must be defended; and to act in general upon the maxim of Horace, which was origmally intended for a rery different purpose:

> Pirc Bons intersit, nisi dignus vindice nodug, Incidernt.
> Dı: Anre l'oer., v. 191

Never presume to make a God appear, But for a busuess wothy of a Giod. Roscommon.
Had the friends of truth always actel upon this principle, they would have strengthened their position; hut they have in bany instanes acted differently, and their opponents have made dexterons nse of their hlunders. Hat the latter heen contented with the detectian mad exposure of frand and folly, their conduct would have been mohjectionable, if not praiseworthy; lint their ohject was not to improve, but to destroy-not to prunc and diess, hut tu extirpate; and hat ving tom oft some excrescences, they laid the axe to the root of the trees, with the full intention of levelling it with the gronnd. They lave denied even the passibility of proving a miracte, to the satisfaction of any rationat mind, - partly because, as they allege, a miracle is from it: bature masusceputible of proof, and partly hecause it is contrary to the constitution af our muture to admit of it however stiong the mrod may seetu.

In support of this ohjection, they by down the gexeral principle, that like catses invariably produce like effects; and that we instinctively take this uniformity for granted that we have no exprerience of any thing else, and that we fannot believe in any deviation from it. It is true in genmral that we rely upon the umbevinting unitomity of causar sion, und instinetively anticipute like effects fiom like cunses; and that we niso reason hackwards, us wall at forwods, from this point; und take it for gronted that like eflects have al. ways had like couses. But ns mothing is impossible but what injulies a contradiction, we never daubt that the trais of sequences may he interruptel hy the interposition of a new canse, difterent foom uny cause, of the eflects of which we have yet had experience; mad we can as little doubt that 2t may have been interrupted by such an interporitios in
tume pa change tion, : 1 and the tive fut the skil moven he iner the mo from th it must existen of the nitely a systo gree, b surd to vided that su jurlge cirle.
'Tle ustains to nder digios: сопџ! fire me haturu eredul and 19
'Tlıs possil ad wi necor ulity or not si!̣n 1 whic!
eral upon nded for :

OMMON.
principle, they have bents have atter heen ul and folble, if not ove, but to ; and lato the root it with the of proving d,-partly ure unsusrary to the strong the
he geveral ke effects; - grantedid that we e in genoof causaihe chuses; inds, from ts have al. oswilite but t tue trais sition of as ts of what donbt that poyitions is
the past, and either temporamly suspended or permanentiy changed. When we see a complicated machine in operation, and observe the perfect regularity of its movements, and the skilful adaptation of its various parts to their respos tive functions, we can no more doubt of the competency of the skill displayed in its constructio", to alter or suspend its movements entirely, than we can doubt that its speed may he increased or diminished, by an increase or aminution of the moving power. 'The power to alter cannot be different from the power to make; or if it differ from it in any thing, it must be in degree, and not in kint; and it we allow the existence ot a Gad at all-if we ullow him to be the Creator of the aniverse-to have adjusted its inmmerable and infinitely diversified parts, and to have shbigected the whole th a systom of laws, necersarily complicated in the highest degree, but never intertering with one mother, it would be alr surd to guestion his power to interfere with these laws, provided he has a sufficient reason for doing so; and to allege that such a reason eannot exist, is to assume the right to judge of matters of which we are not competent to decirle.

There is nothing in the constitntion of hunan naturn nerainst the truth of miracles, but an evident predizpositien to menit of it . All nations and all ages have had their prodigies; and chiddren, and nll ignorant people, who are morn completely undor the uriginal prineiples of their nature, are fur more casily imposed upon tha philosoyhers. We are maturally disposiod to bre cerclabous, and even to cary our erednlity to excess; and exporicuce alone corvecta this hathi, and renders us disimintfinl.

The point then to be consilered in, nother whether it is possible far the laws of nature to be internuted or diapenged with oa to proper occasion, bor whether we we enpable. necording to the constitution of our wature, to momit the reulity of an interruption of \&nspension of the:n, but, wheder or not, in the maturo of hings, there cent be mell an secasign us this supposes. Nus this is ono of tho probleme which can only be solved by in reference to fisets. It is reas
somable to suppoze that there may be such oceasions. That every emergeacy must have been furesenn, and that it might have beon provided for hy the divine prescience, so as to have remlered any direct interposition of the divine power unnceessary, is readily admitted; bitt the question is not, what mifht have been done, but what would have heen proper; and as we have been created by the divine power, and are wholly dependent upon the divine bounty, it may be usefial to us, from time to time, to be reminded of this; and nothing can make us more seasible of onr dependence on Cord, than to see distinctly that the laws of nature themselves are in his power; and this is placed beyond all doutn hy the discovries of Geolnay.

In the composition and structure of the crust of the earth, we meet with frequent and decisive proofs, either that the laws of mature have been different from what they are at present, or that it they were the sane, they were at times commeracted by inthenees which are not nots in operatim. 'The uniform tembary of the laws of mature, so for the we hivo the ahility and means of ascertamint it, is to preserve cever thinf in the smane state, or at least from any permanent change. "There are many estahlished regelos in mature. but they are regular and miform in their respestive courses. 'They we exact repetitions af one another, witant nny real deviation; and we con tell at the combumenemt of any one of them, how long it will move in a certain direntions and when it will retarn to tho starthere point; and it is liom onf -xperience of this mabvating mifinmity in the operation"f natare, that we havo cone to the emmbanot that like Canses will ulways produce like cfients, and thet like ationt. have ulways been prodnced liy like cau-cs-that the chan -1 sombences las alwnes been, und will aloass continte to Le mbintorypted. Bit when wo exmmine the past history of the corth, aur confetener in the sommenese of this conch:sion mu-t les shaken, for in nnelint thase the opreations of ${ }^{\circ}$
 now tend to provent nll surh phanges. "Amid nll the re-

riy of nature has been uniform, and her laws are the only
ons. Ihat nat it might C, so as to ine power ion is not, c been prooower, and nay he necis; and noce on Ciorl, nselves are hy the di.s-

- the earth, re that the hey are at e at times operation. for the we (1) prescrve ay permati? nature, vecourses. nt any real of any ond cetion, and sirem olli (1perittions thent like she alicet, t tho chain outiuns to :s: hi-tor": hi ; ronchePationts of A, as they ill the ros the me, 1 - things that have resisted the general movement. The rivers and the roeks, the seas and the continents, have been ehanged in all their parts; but the laws whieh lirect these changer, and the rules to whieh they are sulheet, have remaned invariably the same." Again, "The inhabitants of the globe, like all other parts of it, are subject to change. It is not only the individual that perishes, but the whole species."
"A ehange in the animal kingdom scems to be a part of the order of nature, and is visible in instances to which human power cannot lave extended." Illustrations of the Hattonian Theory, § 374, \& §413. And Dr. Lyell, to mark his eordial coneurrence in these statements, has placed them on the title pages of his "Prineiples of Geology."

Now, if this be true, if all things have been changed but the laws of nature, the operation of these laws has net always been sufticient to prescrve every thing in the same state; and whatever confilence we may have in the miformity of eatusation, there have been times when it lailed. Day and night, and summer and winter, with their respective phenomena, ure uniform in titeir courses; the the carbonifi-rous period having ance passed has never returned-it has had no representative in any subseqnent ago of the earth, and there has been no repetition of any of the other geological epochs, - n one of then can be regarded as areturn of any one that has gone before it. But it may perhups be alleged, that they are ouly the stages of a larger eyele, which requires millions of ages to rom its rommi; and that when the iron and coal havo been exhmusted, past changes will agrin commence: that thore will be a new series of all the formations, with their respertive repolntione, disruptions, and reconstructions-that nnother delnge shall overwhelm tho sarth, and that-
Alter erit tum 'Tiphys, et-nltera quate vehat Argo,
Delectos herons: ernint altera bolla;
Atque itermm ad 'Trojom magnas mittetur Achilles.
Anether "liphys shall now seas explore,
Another Argos Iand the chiefs upon th' Iberian shore.
Another llelen onher wars ciente,
And great Achilles urge anew 'Iroy's fate. Dnymenn

far more the cou, tha: to who rety ine said, d thongh not to the rove that they have dly counoctrine of asons for and if so, tgain.
this, they restrictly repented, rler. No ation of " is; mond it tedly thut vegyetable, we udopt, was tuteIust thereo dissents eprimmry id that the obliteras llut the on of man t impossihroughont
Being to cereted betion?") in to the ex-
i-tence of man. Wo can prove that man hal a begioning, and that all the species now contemporary with man, and many others which preceded, hat also a beriming, and that eomsequently the present state of the organic work has not que on from all etemity as some philosophers had maintainmi." Elements of Geology, vol. ii. p. 85. He goes farther than this, he says also, "It appeari, that fiom the remotest periods there has been for ever a coming in of new organic fortus, and and extinction of those which pre-existed on the earth; some species have endored for a longer, others for a shorter time; while nome have ever reappeared after once dying out. The law which has governed the creation and extinetion of species seems to be expressed in the verse of the Poet:

Natura il fece, e pai ruppe lia siampa. Ausostro.
Nature made it, and then broke the die.
And this circumstance it is, which confers on fossils their highest value as chronological test., giving to euch of them, in the eyes of the Geologist, that anthority which belongs to contemporny medals in history,' rol. i. p. 200.

There have then, without all controversy, been repeated instmees in which the Divine Power has acted directly, or withont the nse of means, when there was a proper oceasion for it. Aad if for the pmpose of giving existence to man, nud of giving existence to such plants mud ammals as may be directly or even imdireetly usefne to man, that Power has ween direetly exerted, wonld it be improper to exert it directly ugnin, for the purpose of promoting the great end o." his creation, when it whe exposed to danere, and could wot be so effectually promoted otherwise? If religion be neessatry, or even nsefil, in preparing ne for a higher state of existence, and if we mre in dunger of oldopting a folse religion, as is clen from the frequencry with which this has hem done, we comot conceive a more suitable ocension for the performnuce of a mirasls, than that of mosting a divine commission, and putting an end to wll dombthbout whe is tenth. If phants mod animaly have been ereated, partly for the supply of our temperal wants, and purtly for one instruction, ly
presenting us with more varied and interesting exhibitions of the divine wisdom, and the divine power, may not nimacles have been performed in confimation of the divine inmpiration of the Scriptures, which give us far more clear and precise information with regard to the perfections of the Bivine Character-the duties we owe to our maker, and to oue another, and the importance of attending to these duties, than we can possibly obtain from any other souree, or by atny other means?

But while we adhere to thas ats a reasonable smppositien, and one that is borne ont by seience, let us heware of rendering the miracles resorded in the Scriptures susjicious, by bringing them down to the level of events, which, though memorable and instructive in a high degree, were not intended foi the same purpose, and which may be .ecounted for by a reference to physical agency. There is a sumicient number of gemme :niracles recorded in the Seriptures, whieh can le accounted for in no other way than by a direct reference to the divine fower; and nothiner can he sained by increasing their mumber. Anxicty to do this rather hetrays a suspicion of their ufticiency, or a douht that something farther is necessary; and it may be the means of croating donlts where none would have existed, and will certanly be taken advantage of by those who deny the truth of the Seriptures.
§.3. Again, Gealogy comoborates the vies presented in the Scriptures, respecting the future destiny of the earth. 'Whe Apostle seems, in Rom. viii. It, to reder to some great and heneficial change, which the fiame of mithre is yet to undergo, and that change, and the mamer in which it is to lee accomplished, is distanctly foretoded in s Pet. iii. 10-13: "The day of the Loord will cone as a thief in the night; in which the heavens shall pass away with a great moise, and the clements shall melt with fervent heat, the eath also and ull the works that are therein shall he lunnt up. Sceing then that all these things shall be dissolved, whit munner of persons ought ye to be in all holy conversation and godliness, looking for and hasting unto the coming of the day of

Gond and less a lle dent senti at vie rlea mats recol (iiffe ritht ther to th the o inpry und Iy ad the t it.s st lity : that state herea part no de suge, ever the r that
hibitions ot miraivine inre clear us of the r, and to hese duource, or sирровіeware of tres susevents, degree, may be There is d in the way than hing call do this a doubt me means and will the truth ented in le earth. ne great is yet to lh it is to 10-13: night; in oise, and also and
Sceing mumer of nd gon!lite day of

Gon, wherein the heavens being on fire shall be dissolved, and the clements shall melt with ferment heat? Nevertheleos we, according to his promise, look fo: new heavens and " new earth, wherein dwelleth righteonsness." 'This is evidontly not to he regarded as a portical or fignoative representation, but as a plain matter of fact statement, made with at vien to arlect our minds and inthence our conduct; and it clearly foretolls another general revolution, in which the mass of the globe is to be melted, and its elements are to be reconstructed on a new principle, and adapted to a new and different mode of existence from the present. We have no rieght to regard one part of the passage as literal, and another as figurative; and as one part of it undonbtedly refers to the dissolution of the earth, and itsattendant atmosphere, the other must refer to the reconstruction of both, ifpon an improved plan. It is at present infested with vice and crine, and a seene of much privation and suffering, and consequentiy adapted to the nature of the transations of which it is the theatre, and the characters of those who are actors upor its stage; but it may be destined to become the abode of purity mak of peace, and to he bronght into an accordance with that design. Man is intended for a far higher and happier state of existence than the present, and should the enth be hereafier the occasional resort, or stated residence of any part of the human fanily in their improved condition, it will no doubt be adapted to that cald; and it is clear from the passage, that to whatever extent it may be changed, or to whatover future use it may be appropriated, heat is again to be the revolutionizing agent, as it has so often been in times that are jast.
for all this onr minds are prepared by the discoreries of (ieology. ' Chough we may now regard the earth as an emhem of stubility, its mutubility is indelibly written in its structure. It is the mursery of a race of beings who are formed with aspirations which it cannot satisly, and who instinctively look forward to another state of existence than the present, and one more adapred to their capucities and powers. It has ahealy madergone a series of vast and in-
portan mutations，by whel it has ben more and more in－ proved，and better fitted foi the accommodation of its inha－ bitants，and which may all lie rogarded as so many stages ia it s gradusi progrose to ita final lesimation；and as its present siato wial not warmat the conclasion that that destanation bas been already attained，we may believe that some farther viange is approaching．＇Ihere are diferent facts which pant to this eonelusion．The bmana race cannot go on in－ rerasing to eternity，for moses the universe be infinite，and all its sections be lesigned for their reception，which we have no reason to believe，bat the contrary，the thme must soner or liter come，when their umblers wonld be greater than the means of their accommodation，and their farther jacrease would bo a serious evil．

But what is more level to our comprehension，the mineral stores laid up in the earth，on which we are in some impor tant reapects dependant，are not inexlanstible，as has been already observed，－they are limited，and will ectainly be fxhnusted before the expiration of many thonsands of yeare． Where are extensive regions，in which neither coal nor iron have been discovered，and in which we aro certain they ei－ ther do not exist or are wholly inaccossible to haman indus－ try；and it is not impossible to calculate the amount of the unesenvated coal in all the known cod fields，and the pre－ cise periot when they will he exhausted，should the present rate of consumption be continued．＇I＇lat the rate will lie recured，we have no reason to believe，－that it will be in－ creased，may be regarded as ecrtain；but to what amount it is impossible to tell．＇That the present state of things will continue while the provision which nature las made for it lasts，we may cortanly belicve，－for mo mistake is made in her calculations，and when her purposes have heen acoon－ plished there will be no deficiency in that provision，and no口иене．We may therefore conclude that the present state of things will not eontinue beyond a given tme；and as the comsmmpton of its means is rapilly inerensing，the e cpect－ ed cermination will probably come as the Scriptures exprens it，＂as n thief＂in the nierht，＂or somer than was antieipated，
rithe been adap ordis tiant revo hing the f ＂乡 on．

In of tl othe be c
$\therefore b$ requ以es crea： itig ter t ther He siont atee more pell： viole if th ol＇tl resp pil＇il und Pisti spru whic in it and i！̣ th
rither than the reverse. 'Ilte past history of the earti has been divided into priods, every one of which has heen adapted to the acemplishment of a particular olject, sub)ordinate to its main and ultimate dosign; and no sooner was fiat object attanct, than the period terminated in a violent revolution, which introduced anew and inproved state wit lings; and if we may be allowed to reason from the past io the future, we may conchate that there is another revolution upproaching, and that the preparations for it are now groing (113.

In all the past revolutions of the earth, leat has been ome of the principal agents, and wo are not acemanted with any other equally well adtuted to the phrpose, or more likely iot be called again into action. Fhore are ditherent processor by which it may be gronerated, and lhat to any amonnt regtimed: and when subjected to a high degree of compression, the elfmeats of expansion may be statly increased. 'lhe fires which burnt with at muth intensity' dufoty the ecrlier ages of tho eath, have groatly aboted in lator thes, but the have not been extimginhed. There are thermal springs, and active voleanoos, in crery quarter at the globe; and there are few countries which are not oncensonally agitatol hy earthquakes. 'The elements of disfurtance are thers still in existence, and may be thrown into at more tremendoms paroxysm than wer. It frequently happens that the longer that ative voleanoes stimber, the more violent are the eruptions by which their rest is broken; and if the earth has remained foe thonsands of years in at stete wi tranquillity, we may believe that the explosion will entrespond in matenitude to the tine that has heen spent in preparing for it. White we are living in peaco on its surtirece, und bnsily ongaged in works which we fondly hope to b: hasting, mines are charged mader our feet, and ready to ha sprung. 'The elements of the most anfol catastrophe with - which the earth has yot been visited are silently elaboratiod in ita intorior firmaces, and accumulatine; in its magnzines; and when all the prepmations have been brought to a cleme, ip the twinkling of an cye, and withont any previous waris-
ing given, it will be rent into firagments, and thrown onee more into the crucible of Ommipotence, to be fused and recast in a more heantiful mould; and I do not know with what more suitable thonghts and reflections we can contemplate the approach of such an event than those of the Apostle, "SeoGug then that all these things shall be dissolved, what manner of persons onght we to be in all holy conversation and godliness, wating for and hasting unto the coming of the day of God."

THE END.

ERRATA.
Gare 3, line 6, - Fur ' epuator,' read, Equator.
$\begin{array}{llllll}\text { "6 } & 8, & 6 & 13, & \text { "6 'they enter th. } \\ \text { entater,' read, they } \\ \text { enth the latter.. }\end{array}$ clearly.
" 54, " 37 , «. sidentified,' read, illentifiable.
" 55, "6 1, "s 'salulary,' read, sultry.
" 60 , " 30 , " 'raining,' read, rainy.
"6 61, " 17 , "6 'n cherubim,' read, chernbim.
"6 64, 6. $95, \quad$ ". 'then,' read, them.
" 66, " 7 ,. " 'propably,' read, probably.
" 70 , "s i, 6 'in coming, read, as coming.
" 84, " $19, \quad$'s 'developed,' read, dissolved.
" 85 , " 30 , " 'that,' read, than,
" 91 , " 98 , " 'events,' reul, effects.
" 92, " 98 , « 'intermittent,' read, intervening.
" 93 , " 11 , " 'hurge,' read, larger.
" 96 , $6 \quad 19, \quad$ " 'dimension,' read, dimensions.
". 98, 6s 97 , "6 'by which they are intersected,' read, which they intersect.
" $146, \quad$, $5, \quad 6 \quad$ 'Jewaker,' rend, Jewaher.
" 151, " 19 , " 'Souvgratque,' read, Sovignargnes.
\& 1.08 , " 37_{g}. "s 'imparting, read, imputing.
he.
im.
ng.
ed.
vening.
ions.
ersected,' rsect.

Sovignar-
ng.

[^0]: - Quaque fuit inllus, illie ct poatus, el aer

 Sic erat instabiles tellus, immatilis unda,
 Lanis eg as arer, nullis sua formn mancéas.

[^1]: * In verse 5 , in the abnee quotution. I lunve follownd the Gieck Tranalators, and dinaworth, in preference to the text of obr comman veraion. Our 'ramsanos have come mearer to tho originat in their marginal reading, which is ulso more intelligillo.

[^2]: * When it is said, Con. xii. 9, !lent Ahsham gharno ad, going and journcying, towards the South," it means that he renewed

[^3]: * The confusion of tongues, nnd consequent division of the hu-
 birth of Poteg, 1 Chron, i. 19, which wan in tho year 101, after the Plood, Gen. xi. 10-16.

[^4]: * 'This was on a mountain stream in Lauderdale, called the East Water, on the banks of which I spent many of my younger years. It falls into the I,eader, directly opposite to Thirlestane Custle, and at the foot of the bank whereon it stands. Ine old red conglomerate, which skirts the base of the Lan mermoor ridge, appears at different places on the banks of the stiemin. It first juts out, and forms a promontory on the eastern bank, a little above the northern road, which crosses the stream in that quarter, and is seen last on the westernside, at the entrance of a gorge, about half a mile above the first. At the very faot of the promontory, and about 40 or 50 rods below the gorge, at which places the current is impetuous when the stream is swollen, there are often haminuted slabs formed, of considerable extent and thickness; and which remnin for a longer or shorter period, according to ciream. stances. Thay consist of fine-grained sandstane, with pehbles embedded in it; and having more or less of a ferrnginous colour. The extent of the formation at both places, depends on the height and duration of the flood. The stone is soft and easily demalish. od at first, but when left dy, and exposed to the airo it soon hardens. The hed will sometimes remin for a few years, and at other times it is broken up, and swept away, in as many monhls.

