IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

(716) 872-4503

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy avaliable for filming. Features of this copy which may be bibilographically unique. which may atter any of the images in the reproduction, or which may significantly change the usual method of filmir.g, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture andommagte

Covers restored and/or laminated/
Couverture restaurde et/ou pelliculde

Cover titie miasing/
Le titre de couverture manqueColoured maps/
Cartes geographiques en couleur
Coloured irk li.e. other than blue or bleckl/
Encre de couleur (i.e. autre que bleue ou noirel
Coloured plates and/or illustrations/
Planches of/ou illustrations en coulour
Bound with other material/
Relif avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liuris serrée peut causer co l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restopation may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pajes blanches ajoutdes lors d'une restauration apparaissent dans le texte. mrais, lorsque cela était possible, ces pages n'ont pas dte filmdes.

L'institut a microfilmd le meilleur examplaire qu'il lui a ded possible de se procurer. Les details de cet axemplaire qui sont pout-áre uniques du point de vue bib!łgraphique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la mdthode normale de filmage sont indiques ci-deasous.

Coloured pagea/
Pages da coulour
Pages damaged/
Pages endommagdes
Pagas restored and/or laminated/
Pages restaurdes ot/ou pelliculdes

Pages discoloured, stained or foxed/
Pages decolordes, tachetdes ou piqudes

Pages detached/
Pages d'trachdesShowthrough/
TransparenceQuality of print varies/
Qualité ind́gaie dé l'impressionInciudes supplementary materiai/
Comprend du matériel supplémentaireOnly edition available/
Soule édition disponible

Pages wholly or partially obscured by errata
slips, tiasues, utc., have been refilmed to ensure the best possible image/
Lea pages totalement ou partiellement obscurcies par un fauiliot d'errata. une pelure. etc., ont óté filmbes d nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiăue ci-dessous.

or lliu

The la
shall
TINU which

Maps diffor ontire begini right , requir methe

Additional comments:/
Commentaires supplémentaires:
opy filmed here has been reproduced thanks genarosity of:

Library of the Public Archives of Canada nages appearing here are the best quallty se considering the condition and legibility original copy and in keeping with the e contract specifications.
al copies In printed paper covers are filmad ning with the front cover and ending on ot page with a printed or Illuatrated Impresor the back cover when appropriate. All original copies are filmed beginning on the ege with e printed or illustrated impresand ending on the last page with e printed strated Impression.
ast recorded frame on each mlcrofiche :ontain the aymbol \rightarrow (meaning "CON[D"), or the symbel ∇ (meaning "END"), ever applies.
, plates, charts, etc., may be filmed at ont reduction ratlos. Those too large to be ly included in one exposure are filmed ning in the upper left hand corner, left to and top to bottom, as many frames as ed. The following diagrams lliustrate the d:

L'oxemplaire filmb fut reprodult grace al la gónérosité da:

La bibliothique des Archives publiques du Canade

Les Images sulventes ont dté reproduites avec le plus grand soln, compte tenu de le condition at de la nettote de l'exempialre filme, ot en conformite avec les coriditions du contrat de filmage.

Les exempl:alres originaux dont le couverture an papler ast imprimbe sont filmbs an commencant par le promior plat ot en terminant zolt par la derniere page qui comporte une empreinte d'Impression ou d'llustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmbs en commençant par la promière page qui comporte une empreinte d'Impression ou d'illustration et en terminant par ia dorniere page qui comporte une telio omprolnta.

Un des symboles sulvants appareltra sur la dernil̈re image de chaque microfiche, seion ie cas: le symbole \rightarrow signifle "A SUIVRE", ie symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, otc., pouvent Atre filmés à des taux de réduction différents. Lorsque le document eat trop grand pour étre reprodult en un soul clichb, il est filmé d partir de l'angie superieur gauche, de gauche à drolte, ot de haut an bas, on pronant le nombre d'Images nécessaire. Les diagrammes suivants illuatrent la méthode.

ADVANCE PROOF-(Subject to revision).
This Proof is sent to $y \cdot u$ for discussion only, and un the express understanding that it is not to be used for any other purpose whatsoever.--(See Sec. 30 of the Constitution.)

Clanadian Society of Civil שingiteers.
 INCORPGRATED 1887.

TRANSAOTIONS .
N.B.-This Society, as a boily, does not hold itsolf rosponslble for the facts and opinions stated in any of its publications.

BRIDGE CALCULATHONS.

By H. E. Vanvelet, M.Can.Soc.C.E.

To be read 10th October.

The opinion of many well known authorities is that it would be preferable to use a distributed load, that would be safe for all existing types of locomotives in use on railways, and that would leave a margin for the probable inercase of weight in the future. The wheel base of a locomotive as well as the weight on each axle is limited by the radii of the curves and the section of the rail; and although the weight of cars is constantly increasing, there exists a necessary relation between the engine and traiu weights. In gencral practice, the train weight is considered as distributed and the engine weight as concentrated. The author thinks that the weight of a whecl is always distributed by the rail and ties (more so in locomotives than in cars, owing to the lesser distance between the wheels), and that both weights should be considered as distributed. It will always be neecssary to use two different distributed loads, and the equivalent distributed load will vary with the length of span.
Furthermore the stresses, although calculated with the greatest care, are not the actual stresses in a -bridge, and frequently discrepancies, amounting to several thousand pounds, are shown during the ereetion. The general practice is to have the posts fastened by pins or rivets, allowing them to work as tension members, and the top chord is rigid, instead of having articulations at every pancl point. It follows that the strains are not what they would be in an articulited system, where the posts could only take compression, the differcaces being more ospecially apparent in bridges with inelined top ehords, which act partially as an are, the posts acting ass suspenders. Another cause of error is the use of stringers, rivetted to the floor beams, which aet as parts of the top or bottom chords, as the case may be.

It must not be supposed that the author is advoeating free articulations with bolted stringers and slotted holes, as he believes that the actual practice increases the solidity of the bridges, and prefers to have stiffess in his work, at the cost of some uneertainty in his calculations. He would also follow in the lead of an eminent briage engincer in the United States, whose trusses are rather light, a large quantity of material being used in the stiffening of the bridges, in the top and bottom laterals; sway braeing, and especiully in the portals, the last of which is certainly a very important part of a bridge. Most of the actual specifications seen to be made for the perusal of outsiders more than for actual use, and it seems (to give one instance) that the rivetting foreman and inspector should know without being told, what the appearance of a rivet must be after it is driven.

In treatises on bridges, written by French authors, it is always said that we must not rely too much on calculations, and the best that can be said about their rules is that bridges built according to them and with a lirge factor of safery have withstood the test of time.

Experience would seen to show that, usually, the lunger the spacifi-

If instead of two weights !' and p a weight R is distributed

$$
\therefore y=\frac{R}{2}\left(a \mathrm{~L}-a^{2}\right)
$$

The weights P and p can then be replaced by a weight R such that

$$
\begin{aligned}
\mathbf{R} & =\left(1-\frac{\mathrm{V}}{\mathrm{~L}}\right)^{2}(p-\mathrm{r})+\mathbf{P} \\
\text { or } \mathbf{R} & =\mathbf{P}-(\mathbf{P}-p)\left(1-\frac{\mathrm{V}}{\mathrm{~L}}\right)^{2}
\end{aligned}
$$

$F_{i g} 2$

The shearing force immediately on the right of BD

$$
\begin{gathered}
=\frac{\mathrm{VP}\left(x+n \mathrm{l}-\mathrm{V}_{2}\right)}{\mathrm{Nl}}+\frac{\mathrm{M}^{2} \mathrm{P}}{2 \mathrm{Nl}}-\frac{\mathrm{P} x^{2}}{2 \mathrm{l}} \\
=-x^{2} \frac{\mathrm{NP}-p}{2 \mathrm{~N}]}+x \frac{\mathrm{VP}+(n \mathrm{l}-\mathrm{V}) p}{\mathrm{~N} 1}+\frac{\mathrm{VP}(n \mathrm{l}}{\mathrm{N} 1}-\frac{\mathrm{V})}{2}+\frac{(n \mathrm{l}-\mathrm{V})^{2}}{2 \mathrm{~N}!} p
\end{gathered}
$$

Since $\mathrm{M}=x+n l-\mathrm{V}$
If the shearing force is to be a maximum

$$
\therefore x=\frac{\mathrm{V}(\mathrm{P}-p)+n \mathrm{l} p}{\mathrm{NP}-p} \text { or } \frac{\mathrm{P} x}{\mathrm{l}}=\frac{\mathrm{VP}+\mathrm{M} p}{\mathrm{Nl}}
$$

with the condition

$$
\begin{aligned}
& \quad \mathrm{V}<n+n \mathrm{l} \\
& \text { ie., } \mathrm{V}<\frac{\mathrm{NP} n \mathrm{l}+\mathrm{V}(\mathrm{P}-p)}{\mathrm{NP}-p} \\
& \text { or } \mathrm{V}<\frac{\mathrm{N} . \mathrm{nl}}{\mathrm{~N}-1}
\end{aligned}
$$

Hence max. shearing force

$$
=\frac{\left.\mathrm{V}(\mathrm{P}-p)[2 \mathrm{NP} u]-\mathrm{V} P(\mathrm{~N}-1)]+\mathrm{N} n^{2}\right]^{2} \mathrm{P} p}{2 \mathrm{~N} \mid(\mathrm{NP}-p)}
$$

For a uniformly distributed load the $m \cdot 1 x$. shearing force $=\frac{n^{2} R l}{2(\bar{N}-1)}$
Hence, that these two shearing fores may be equal,

$$
\mathbf{R}=\frac{(\mathbf{N}-1) \mathrm{P}}{\mathbf{N} \mathbf{P}-p}\left\{\mathbf{P} \cdots(\mathrm{P}-p)\left(1 \frac{\mathrm{~V}}{1-n \mathrm{l}}\right)^{2}+\frac{(\mathrm{P}-p) \mathrm{V}^{2}}{\mathbf{N} n^{2} \mathrm{I}^{2}}\right\}
$$

By taking

$$
\mathrm{R}=\mathrm{P}-(\mathbf{P}-p)\left(1-\frac{\mathrm{V}}{n \mathrm{l}}\right)^{2}
$$

we have a close approximation on the safe side. The weights P and p can be replaced without material error by one weight R; V being the length occupied by the distributed load P , and n the number of panels which must be fully loaded to give the maximum stress.
2° Graphic calculation of bending moments, taking every wheel into account.

If a weight P is moving along $A B$, the bending moment at the point of application will be:

$$
y=\frac{\mathrm{P}(l-x)}{l} x
$$

 length occupied by the distributed load P , and n the number of panels
which inst be fully loaded to give the maximum stress.

To find the moments at D_{0} draw a series of triangles $\mathrm{ABC}, \mathrm{A}_{1} \mathbf{1 3}_{1} \mathrm{C}_{1}$ $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ ete., so that

$$
A D=A_{1} D_{1}=A_{2} D_{2}=A_{0} D_{0}
$$

$\dot{A} B=A_{1} B_{1}=A_{2} B_{2}=$ lengili of span l
$\mathbf{A A}_{1}, A_{1} \mathbf{A}_{2}, \ldots$ being the distances between the weights.
As $\mathrm{AA}_{1} \mathrm{~A}_{2}=\mathrm{BB}_{1} \mathrm{~B}_{2}=\mathrm{DD} D_{1} \mathrm{D}_{2}$ it will be sonvenient to have these distanees on a scale, and the whole series of triangles may be drawn very quickly for every point, at which the bending moment is required, and the sum $M N+M N_{1}+M N_{2}$ will represent the moment at Do when the weight I_{2}, is at M .

Now consider a motion of the weights betw en two consecutive apices. Each abscissa inereases or deercases in proportion to the distanees moved, and it is necessary to reach an apex so that one of the inereasing abseisso may decrease. A maximum ean then ouly be reached at an "pex, i. e., when oue of the weights is applied at D_{o}. It will then only be neeessary to consider the ordinates at the different apices, and a curve $B_{2} b_{1} b d_{2} \mathrm{~m}_{2} a_{2} a_{1} d_{a_{1}} A$ may be drawu whose ordinates will represent the bending moments at 1) from the time P_{2} enters the bridge until the I' leaves it.
This solution brings forth a property of the parabola that the writer has never seen mentioned before, and whose limits can be enlarged by analytical demonstration.
Draw the triangle AKB (fig. 6)

$$
\mathrm{KM}=\frac{\mathrm{R}(l \cdot-x)^{l}}{l} x \text { and } \mathrm{VN}=\frac{\mathrm{P}(l-x)}{l} a=\mathrm{MN}
$$

Join (fig. 6) tive points C and K of a parabola to the points of interseetion B and A, and of a perpendicular to the axis. The lengths VD and MN are equal.
3° Graphic calculation of stresses in the members of a truss, taking every wheel into account. This calculation is based on the two following theorems, for which the writer is indebted to Mr. Joseph Meyer, of the Union Bridge Co.

To have the maximum stress in diagonal CB (fig. 7), the sum of the weights on the left of B including the weight at B must be larger than the sum of all the weights on the truss divided by the number of panels.

To have the maximum stress in AB (fig. 7) the sum of the weights at the left of A, not including the weight at A, divided by the number of panely at the left, most be less than the sum of the weights on the bridge divided by the number of panels in the truss.

Fiy 8

$-A+B+C+D$

The ordinates of the different points $B_{1} C_{1}$ etc., measure the moments in relation to B, C, etc., of all the weights ut the left, and if we want to find the values $R \times N l$ and M_{1} when M is at D and the ends of the truss at K and T_{1}, M_{1} will be measured by $D_{1} D_{2}$ and $\mathbf{R} \times \mathbf{N} l$ by $\mathbf{T}_{1} \mathbf{T}_{2}$
Remarking that for a distributed load the polygonal curve $\mathrm{AB}_{1}, \mathrm{C}_{1} \mathrm{D}_{1}$ becomes a parabola, we could find the demonstration of many interest. ing properties of the parabola.
4° Bending moments in continuous bridges of 2 spans.
The maximum bending moments at each point are given by onosidering three cases of loading, viz., each span loaded and both spans loaded.

The maxima are then given by the line

$$
\begin{equation*}
M_{1}=1^{\prime} p^{l(l-z)} \tag{1}
\end{equation*}
$$

and the two parabole

$$
\begin{gather*}
\mathrm{M}_{2}=\frac{\mathrm{Z}}{16} p l(l-z)-y^{(l-z)^{2}} \tag{2}\\
\mathrm{M}_{3}=\frac{3}{2} p l(l-z)-p \frac{(l-z)^{2}}{2} \tag{3}
\end{gather*}
$$

If a complete discussion were made, it would be found that for a length $\frac{l}{5}$ from the centre, an hyperbola intervenes, increasing the ne-
tions with bolted stringers and slotted holes, as he believes that the actual practice increases the solidity of the bridges, and prefers to have stiffness in his work, at the cost of some uncertainty in his calculations. He would also follow in the lead of an eminent bridge engineer in the United States, whose trusses are rather light, a lirge quantity of material being used in the stiffening of the bridges, in the top and bottom latcrals, sway bracing, and especially in the portals, the last of which is certainly a very important part of a bridgo. Most of the actual specifications seem to be made for the perusal of outsiders more than for actual use, and it scems (to give onc instance) that the rivetting foreman and inspector should know without being of i, what the appearance of a rivet must be after it is driven.

In treatises on bridges, written by Freneh authors, it is always said that we must not rely too much on calculations, and the best that can be said about their rules is that bridges built aecording to them and with a large factor of safety have withstood the test of time.

Experience would seem to show that, usually, the longer the specitieations the worse the bridges are ; tud what may be cousidered to be a standard in bridges in the United Stites is built with a two page specification.
This paper brings forth solntions of the following problems, which the author believes to be uew :-

To find the maximum bending moments and shearing stresses in girders or trusses: 1° taking into account a distributed engine load, followed and preceded by a distributed train load. 2' Taking into account the load on every wheel. A simplificition in the calculation of beuding moments, in continuous bridges of two spalls, will also be referred to.
1° Calculation of the maximum bending moment with a distributed load P, occupying a length V, preceded and followed by a distributed load p .

Let y be the bending moment at "

$$
\begin{aligned}
& \left.y=-x^{2}\binom{\mathrm{P}-p}{2}+x(\mathrm{P}-p)(1-\mathrm{V}) "-(\mathrm{I}-p)\left[\begin{array}{c}
\mathrm{V}^{2} n \\
2 \mathrm{~L}
\end{array}\right) \mathrm{V} n\right] \\
& -\frac{P_{a}^{2}}{\underline{a}}+\frac{p l_{a}}{\ddot{u}} \\
& \frac{d y}{d x}=-a(\mathrm{P}-p)+(\mathrm{P}-1) \quad\left(1-\frac{\mathrm{V}}{\mathrm{~L}}\right)^{\prime \prime}
\end{aligned}
$$

If y is to $b:$ a maximum $\frac{d y}{d x}=0$ and $\cdot x="\left(1-\frac{\mathrm{V}}{\mathrm{J}}\right) *$
Hence, $y=-n^{2}\left[\left(1-\frac{\mathrm{V}}{\mathrm{L}}\right)^{2}\binom{p-\mathrm{P}}{2}+\frac{\mathrm{P}}{2}\right]$
$-a\left[\frac{P V^{2}}{2 \mathrm{~L}}-\mathrm{PV}-\frac{\mathrm{PI}}{2}+1 \mathrm{~V}-\frac{p V^{2}}{2 \mathrm{~L}}\right]$
or $y=\left[\left(1-\frac{V}{\mathrm{I}_{4}}\right)^{2}\left(\frac{v-\mathrm{P}}{2}\right)+\frac{\mathrm{P}}{2}\right]\left[a \mathrm{~J}_{4-a^{2}}\right]$
 length occupied by the distributed load P , and n the number of panels which inst be fully loaded to give the maximum stress.
2° Graphic calculation of bending moments, taking every wheel into account.

If a weight, P is moving along $A B$, the bending moment at tho point of application will be:

$$
y=\frac{\mathrm{P}(l-x)}{l} x
$$

Having drawn this parabola, the bending moment at a point D at a distance a from A will be:

$$
\left.y=\frac{\mathrm{P}(l-x)}{l}\right)_{a}
$$

and CD being an ordinate of the parabola for an abscissa $x=a$

$$
\mathrm{CD}=\frac{\mathrm{P}(l-a)_{a}}{l}
$$

In the triangle ACB we have:

$$
\mathrm{MN}=\mathrm{CD}_{\overrightarrow{l-a}}^{l-x}=\mathrm{P} \frac{l-x}{l} a=y
$$

The bending moment at D is then equal to the ordinate of the triangle $A C B$ at the point of application of the weight P. For another load P_{1} we should have another triangle $A C_{1} B_{1}$ and if b is the distance between the two weights, $M N+\mathrm{H}_{1} \mathrm{~N}_{1}$ will represent ane bending moment at D produced by the weights P and P_{1}. By sliding the triangle $A C_{1} B$ a distance b to the left, M: comes to M, and the bending moment at D for any position of the two weights is given by the ordinates $M N+M N_{1}$ of the two triangles.
The same reasoning will apply to any number of weights.
To apply the method it is sufficient to draw the $\frac{1}{2}$ parabola $y=\mathrm{P} \frac{(l-x)}{l} x$ to a convenient scale.

*This formula has tet. used, if the writer is not mistaken, by the Keystone Bridge Co.

To have the maximum stress in dingonal CB (fig. 7), the sum of the weights on the left of B including the weight at B must be larger than the sum of all the weights on the truss divided by the number of panels.

To have the maximum stress in AB (fig. 7) the sum of the weights at the left of A, not including the :weigit at A, livided by the number of pancls at the loft, uust be less than the sum of the weights on the bridge divided by the number of panels in the truss.

Fiy 8

First draw the diagram shown in fig. 8, and let it be required to find the sum of weights on truss K ' T, and sum of weights at the left of M. The first sum be given at O by following the diagonal $\mathrm{F} O$, and the sceond sum at V by following the diagonal A V.. By moving the truss so that M occupies the different positions $\mathbf{A B}$ (, ete., it will be easy to find the worst situation of the load, applying the theorems given before,

Now let M_{2} be the bending moment at M
I the reaction at K
M_{1} the moment in relation to M of the weights: on the left of M.

Let l be the pancl length

$$
\begin{aligned}
& \text { N " number of panels in truss } \\
& \because \text { " " " left of M } \\
& \mathrm{M}_{2}=\mathrm{R} \times n l-\mathrm{M}_{1} \\
& =(\mathrm{R} \times \mathrm{N} l) \frac{n}{\mathrm{~N}}-\mathrm{M}_{1} \\
& M N=R-\frac{L_{1}}{l}=\frac{\frac{(\mathrm{l} \times \mathrm{N} l)}{\mathrm{N}}-\mathrm{M}_{1}}{l} \text { as, to have the maximum of } M \mathrm{~N}
\end{aligned}
$$

a part only of MS is usually loaded; we wart then only to know the quantities $\mathrm{R} \times \mathrm{N} \ell$ and II . To find those valnes we will draw another diagram.

If a complete discussion were made, it would be found that for a length $\frac{l}{5}$ from the centre, an hyperbola intervenes, inereasing the negative moments, and giving also positive noments as shown by double lines. But the results would not be changed materially.

If M_{4} is the bending moment produeed by a distributed lond p on a single span l we have a parabola

$$
M_{1}=-\frac{p l}{2}(l-z)-\frac{p(l-z)^{2}}{2}
$$

$$
\mathrm{M}_{5}=\frac{p l}{16}(l-z) \text { and } \mathrm{M}_{6}^{\prime}=\frac{p l}{8}(l-z)
$$

and it is easy to see that

$$
\begin{aligned}
& M_{2}=M_{4}-M_{3} \\
& M_{1}=-M_{5} \\
& M_{3}=-\left(M_{6}-M_{4}\right)
\end{aligned}
$$

whieh gives an easy method to have the bending moments.
The author thinks that the first formula given may have some praetieal value, and he would like to have the opinion of bridge engineers abont it, as well as the opinion of mechanical engineers as to the value to be given to the eonstants.

The coefficients to be deterwined are P_{p} and V . In the Canadian Paeific Ry. specification p is taken at 3000 , and in caleulations of many bridges the writer has taken $P=3730$ and $V=105^{\prime} 0^{\prime \prime}$ and has found very little difference when taking every wheel into aecount.

For spans under 105 feet and over 21 feet he hats taken

$$
\mathrm{P}=4600, p=3240, \mathrm{~V}=21^{\prime}-0^{\prime \prime}
$$

and the formula becomes

$$
\begin{aligned}
& R=3730-730\left(1-\frac{105}{n l}\right)^{4} \text { for spans over } 21^{\prime} \\
& R=4600-1360\left(1-\frac{21}{n l}\right)^{2} \text { for spans over } 21^{\prime} \\
& R=4600 \quad \text { for spa2s under } 21^{\prime}
\end{aligned}
$$

