IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

CIH:M/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

回

Canadian In stitute for Historical Miczoraproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtair، the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover titie missing/
Le titre de couverture manqueCo!oured maps/
Cartes gsographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur li.e. autre que bleue ou noirel
Coloureci plates and/or illustrations/
Planches et/uu illustrations en couleur
Bound witl. other mater'al/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de le distortion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whensver possible, these have been oinitted from filming/ II se pout que certaines pages blanches ajoutbes lors d'une restauration apparalssent dans le texte, mais, Icrsque cela étalt possible, ces pages n'ont pas été filmées.

L'Institut a microfilmA le meillour exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être unigues du point de vue bibliographique, qui peuvent modifia: une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stainer or foxed/
Pages dćcolorées, tachetées ou'piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print vcries/
Qualité Inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Or.ly edition evailable/
Seule édition disponible

Peges wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filriées à nouveau de façon á obtenir la melleure Image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Llbrary
Environment Canada
Chaudidra Branch
(Parks Canada)

Tho images appcaring here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustreced impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol -r- (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reductlon ratios. The se too large to be entirely included in one exposure are filmed begi:!ning in the upper left hand corner, left to right and tcp to bottom, es many frames as required. The following diagrams illustrate the method:

L'oxempivilre filmé fut reprodult brice à la génér osité de:

Bibliothiqua

Environnamint Canada
Succurrale Chaudilre
(Parcs Canada)
Les images suivantes ont été reprodultes avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée zont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, solt par le second plat, selon le cas. Tous les autres eג mplaires originaux sont filmés en comniençant par la première page qui comporte une emprointe d'impression ou d'iliustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaître sur la dernière image de chaque microfiche, velon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifle "FIN".

Les cartes, planches, tableaux, etc., peuvent ©tre filnı́s à des taux de réduction différents. Lorsque le document est trop grand pour être reprodult en un seul cliché, il est filmé á partir de l'angle supérieur gauche, de gauche à droite, ot de haut en bas, en pronant le nombre d'images nhcessaire. Les diagrammes suivants illustrent la méthode.

A MANUAL OE THE
 EXAMINATION
 08

 MASTERS AND MATES

 MASTERS AND MATES

 AS INSTITUTED BY THE

 AS INSTITUTED BY THE
 DEPARTMENT OF MARINE AND FISHERIES OF CANADA
 WILMIAM C. SEATON
 supehintendent of the govehnament mailine schools Late Nautioal Master to the Sooiety of Merohant Venturers
 Bristol, England.
 .:...
 $\because \cdot \cdot$
 SECOND EDITION,

$$
\begin{gathered}
\text { QUEBEG } \\
\text { DAWSON } \frac{18{ }^{7} \mathrm{~g} .}{}
\end{gathered}
$$

Entered according to Act of Parlian of Our Lord One Thousand Eight it. five, by Willian Cixarles Seatoajoin the Office of the Minister of Agricultare.

PREFACE

SECON:D EDITION.

The First Editiun of this work was issned almost in the light of an experimenti, and it is consequently with all the more thankfulness that I have to acknowledge the favor with which it has met. In publishing this Second Eidition of my Manual, I have endeavored to supply all the deficiencies which experience'shewed existed in its predecessor and it is hoped that the large additions which have been made in consequence, will win for it the favor of the class for which it is specially designed.

Many hundreds of examples have been introduced, thus copionsly illustrating every rule treated of; the answers to these exercises are also given at various stages of each problem, and the requisite elements from the Nautical Almanac and the Admiralty Tide Tables are appended, so as to make the book, as far as possible, complete in itself. I have thought it advisable to adapt both rules and examples to the Epitomes of Norie, Bowditch and Raper, the three works on Navigation
in most common use, so that students who have accustomed themselves to either one or other of these books, may aroid the disadvantage of having to unlearn that which they may have already acquired, or of hat ag to alter the text so that it may coincide with their Tables.

The section upon Seamanship appears for the first time in this edition, much care has been expended upon it, and it is hoped it will be found useful not only to the applicant for a Certificate of Competency, but also to the Master in actual command of his ship and the Officer in charge of the deck. It is with the greatest pleasure that I have to acknowledge the assistance which I have received in this particular from Capt. H. J. R. Langdon (in charge of the Government Marine School at Halifax, N. S.) for I have felt the this thorough knowledge of eevery thing appertaining to a seaman and his long experienç̣e.in his profession, made all suggestions emanating from himi;of the greatest practical value.

The leading lights have been corrected as far as possible to the time of.publication, and the 'Definitions and answers to the questions in the varions filmination papers have been made as concise as clearness would allow.

With the revision that the whole of the original work has undergone, together with the many additions made to it, I trust the result will be so far sitisfactory that its shortcomings may be overlooked, in the good service it has been my endeavour to make this little 'Manual capable of performing.

Wilhiam C. Seaton.

Quebec, August 1875.

COPY OF HER MAJESTY'S ORDER

IN, MOUNCIL, $\therefore \because$
giving effect to certypriates of competency issued in CANADA, AND COPY OM RULES AND REGULATIONS RELATING TO EXAMINATION Or CANDIDATES AND GF CERTIFICATES OF COMPETENCY AND SERTICE.

The QUEENS Most Excellent Majesty in Council.
Whereas by "The Merchant Shipping (Colonial) Act, 1869," it is (among other things) enacted that where the Legislature of any British Possession provides fur the examination of, and grant of certiflcates of competency to, persons intending to act as masters, mates, or engincers on board British ships, and the Board of Trado reports to Her Majesty that they are satisfled that the examinations are so conducted as to be equally efficient as the examinations for the same purpose in the United Kingdom under the Acts relating to Merchant Shipping, and that the Certificates are granted on such principles as to show the like qualifications and competency as those granted under the said Acts, and are
liable to be forfeited for the like reasons and in the like manner, it shall be lawful for Her Majesty, by Order in Council :

1. To declare that the said certificates shall be of the same force as if they had been granted under the said Acts :
2. To declare that all or any of the provisions of the said Acts which relate to certificates of competency granted under those Acts shall apply to the certificates referred to in the said Order :
3. To impose such conditions, and to make such regulations with respect to the said certificates, and to the use, issue, delivery, cancellation, and suspension thereof, as to Her Majesty may seem fit, and to impose penalties not exceeding fifty pounds for the breach of such conditions and regulations :
And that upon the publication in the London Gazette of any such order in Council as last aforesaid, the provisions therein contained shall from a date to be meitioned for the purpose in such Order, take effect as if they hat! been contained in the Act ; and that it shall be lawfinl for Her Majesty in Council to revoke any order made under this section $\because \because \because$

And whereas the Legislature of the British possession of Canada has provided for the examimation of and grant by the Minister of Marine and Fisheries in:the said possession of certificates of competency for sea-going, ships to persons intending to act as master or mates on board'British seagoing ships, which Certifcates are hereinafter' denominated Colonial Certificates of Competency, and the Bodifd of Trade have reported to Her Majesty that they are satisfied that the said examinations are so condncted as to be equally efficient as the examinations for the same purpose in the . Watited Kingdon, under the Acts relating to Merchant Shipping, and that the certificates are granted on such principles as to show" the like qualifications and competency as those granted under the' said Acts, and are liable to be forfeited, for the like reasons and in the like manner :

Now therefore, Her Majesty, in exercise of the power vested in Her by the said recited Act, by and with the advice of Her Privy Council, is pleased,
(1) To declare that the said Col nnial Certificates of Competency granted by the Minister of Marine and Fisheries in the said possession of Canada shall be of the same force as if they had been granted under the said Acts, that is to say, the said Colonial Certificates of Competency as Masters of such sea-going ships shall be of the same force as if they were Certificates of Competency as Masters of foreign-going ships, granted under the said Acts, and the said Colonial Certificates of Competency as Mates of such sea-going ships shall be of the same force as if they were Certificates of Competency as First Mates of foreign-going ships granted under the said Acts.
(2) To declare that all the provisions of the said Acts which relate to Certificates of Competency for the foreign trade granted under those Acts, except the 139 th section of "The Merchant Shipping Act, 1854," and so much of the 3rd paragraph of the 23rd section of "The Merchant Shipping Act Amendment Act, 1862,n as reduires at the conclusion of a case relating to the cancelling or suspending of a Certificate, such Certificate, if cancelled, or suspended, to be forwarded to the Board of Trade. And the whole of the fourth paragraph of the same section shall apply to such Colonial Certificates of Competency.
(3) To impose and make the conditions and regulations following, numbered 1 to 10 respectively with respect to the said Colonial Certificates of Competency, and to the use, issue, delivery, cancellation, and suspension thereof, and to impose fer the breach of such conditions and regulations the penalties therein mentifipned.

Forni of Certificate.

1. Every such Colonial Certificate of Competency shall be on parchment, and as nearly is possible simiiar in shape and form to the corresponding Certificate of Competency for the foreign trade, granted by the Board of Trade under the Acts relating to Merchant Shipping.

Name of Possession to be inserted.

2. Every such Colonial Certificate of Competency shall have the name of the vaid Possesssion of Canada inserted prominently on its face and back.

Certificates to bernumbered consecutively.
3 Such Colonial Certificates of Competency shall be nimbered in consecutive order.

Lists of Certificates granted, cancelled, de., to be sent to RegistrarGeneral of Seamen.
4. The Government of the said Possession shall furnish the Registrar-General of Seamen in London from time to time with accurate lists of all such Colonial Certificates of Competency as may be granted as aforesaid by the said Minister of Marine and Fisheries, or as may for any cause whatsoever, be eaucelled, suspended, renewed, or re-issued.

Three years Domicile or Service necessary,
5. Such Colonial Certificates of Competency shall be granted
only to persons who have been domiciled in the said Possession, or who have served in ships registered therein for a period of, or for periods amounting to, at least three years imnediately preceding their application for such Colonial Certificates.

Certificates of Competency granted contrary to this regulation shall be regarded as improperly granted.

Certificates not to be granted when former are Cancelled.

6. Such Colonial Certificates of Competency shall not be granted to any person who may have had a Certificate, whether granted by the Board of Trade or by the Government of a British Possession, cancelled or suspended under the provisions of the said Acts, or of any Act for the time being in force in any part of Her Majesty's Dominions uuless the period of suspension has expired, or unless intimation has been received from the Board of Trade, or the Government by whom. the cancelled or suspended Certificate was originally granted, to the effect that no objection to the grant of such Colonial Certifieate is known to exist, or unless a new Certificate has been graitited to him by such Board or Governnient, and in the last named event no such Colonial Certificate of Competency shall be for:a.higher grade than the Certificate so last granted as aforesaid. Calonial Certificates of Competency granted contrary to this regadation shall be regarded as improperly granted.

Certificates improperly granted may be cancelled without formal investigation:"

7. Any such Colonial Certificate of.Competency which appears from information subsequently acquired or otherwise, to have been improperly granted, whether in the above or in any other respect, may be cancelled by the Goverriment of the said Possession or by the Board of Trade in the United Kingdom, without any formal investigation under "The Merchant Shipping Act, 1854," and the holder of such Certificate shall thereupon deliver it to the Board of Trade or the Government of the said Possession, or as they or either of them may direct, and in defanlt thereof shall incur a penalty not exceeding fifty pounds which shall be recoverable in the same manner as penalities imposed by the Acts relating to Merchant Shipping are thereby made recoverable.

Cancellation, dec., of a Certificate shall involve Cancellaiion of all the other Certificates possessed by its owner.

8. Every decision with respect to the cancellation or suspension of a certificate pronounced by any Board, Court or Tribunal under the provisions of the said Acts shall extend equally to all the

Colonial Certificates at the time possessed by the person in "espect of wl.om the decision is made, as well as to all Certificates granter to him under any of the Acts relating to Merchant Shipping, and whether such Certificates be specified in such decision or not.

Certificates beiieved to be fraudulent may be demanded.

9. Any officer of the Board of Trade, or the Registrar-General of Seamen, or any of his officers, or a Superintendant of a Mercantile Marine Office, or a Consular Officer, or duly appointed shipping officer in a British Possession, may demand the delivery to him of any such Colonial Certificate of Competency which he has reason to believe has been improperly issued, or is forged, altered, cancelled or suspended, or to which the person using it is not justly entitled, and may detain such Certificate for a reasonable period for the purpose of making inquiries respecting such issue, forgery, alteration, cancellation, suspension, or possession and any person who withont reasonable cause neglects or refuses to comply with such demand, shall incur a penalty not exceeding twenty pounds, which shall be recoverable in the same manner as penalties imposed by the Acts relating to Merchant Shipping are thereby made recoverable.

Suspended Certificates to be re-issued only by Colony by which originally granted.

10. Any such Colonial Certificate of Competency which has from any cause been cancelled or suspended whether by a Tribunal in Canada, or elsewhere, shall be renewed or re-issued only by the Government of Canada.

This Order shall take effect in the said Possession of Canada from and after the date hereof.
(Signed) EDMUND H/ARRISON.

Notice 'Jo candidates for examination as mas. ters and mates, and regulations relating thereto.

Plaon of exausi- The examinations will be held in the ports of Mon-
nation. treal, Qucbec, St. John, and Halifax, at such times as may be decided upon by the Minister of Marine and Fisheries, of which due notice will be given.
Testimonials of Testimonials of character and of sobriet., expe-
ohananoter, conn-
duet and abiliduat and abi be re, ability and good conduct on board ship, win be required of all applicants, and without producing them no person will be examined. As such testimonials will have to be closely examined by the examiners for verification before any certificates can be granted, it is desirable that candidates should lodge them as eaily as possible. The testimonials of servitude of foreigners and British seamen serving in foreign vessels, must be confirmed either by the Consul of the country to which the ship in which the candidate served belonged, or by_{5} some other official anthority of that country, or by the testimony of some crediblu person on the spot, having personal knowledge of the facts required to be established. Upon application to the Board of Exa. miners, candidates will be supplied with a form which they will be required to fill un and lodge with their testimonials in the hands of the Examiners.
How time in Where the Board of Examiners are in every res. Cowasting Trade
will count. pect satisfled with the testimonials of a candidate, service in the coasting trade may be allowed to count as service, in order to qualify him for a certificate of competency for a "sea-going ship," as a mate, and two years' service as mate in the coasting trade may be allowed to count as service for a Muster's Certificatu, provided the Candidate's name has been ontered as mate in the Coasting Articles, or other proof satisfactery to the Examiners, and provided he has already passed an examimation.

Reles.

Qualiflontions
for
orithfonto for oortifoctor as mato.

The qualifications required for the ranks under mentioned are as follow :

1. A Nate or only Mate must bu nincteen years of age, and have been four years at sea. (Service in a superior capacity is in all cases to be equivalent to service in an introrior une.)
2. In Navigation.-He must write a legible hand, and understand the first rules of arithmetic, and the use of logarithms.. He must ba able to work a day's work complete, including the healings and distance of the Port he is bound to, by Mercator's methot ; to correct the sun's declination for longitude, find qualifioations his latitude by the meridian altitude of the sun, and of cor competifoteres by single altituue of the same body off the meridian. ne mates.
He must be able to observe and compute the variation of the compass from azimuths and amplitudes; he able to compare chronometers and keep their tes; and be able to flad the longitude by them anm an observation of the sun by the usual methods. He must le able to lay off the place of the ship on the chart, both by the bearings of known nijjecte, and by latitude and longitude. He must be able to determine the error of a sextant and to adjust it ; also to find the time of high water from the known time at full and change.
3. In Seamanship. - He must give satisfactory answers as to the rigging and stripping of ships and stowing of holds; must understand the measurement of the logline, glass and lead-line; be conversant with the rule of the road, as regards both steamers and sailing vessels, and lights and fog-siguals caried by them, and will also be exanined as to his acquaintance with "the Commercial Code of Siguals for the use of all nationss," In addition to which he will be required to know how to moor and unmoor and keop a clear anchor; to carry out an anchor, and to make the requisite entries in the ship's log. He will also be questioned as to his knowledge of the use and managenent of the mortar and rociet lines in the casc of the stranding of a vessel as explained in the official logbook. He will also be required to know to shift large spars and sails; to manage a ship in storny weather, to take in and make ssiil, to shift yards and masts, \&c., and to get heavy weights, anchors, \&c., in and out ; to cast a ship on a lee-shore; and to secure the masts in the event of accident to the bowsprit.
4. A Saster must be twenty-one years of age, and Mater have been six yea's at sea, of which at least two years must have been as Mate or Only Mate.
5. In addition to the qualification for a Matc or Only Mute, he must be able to find the latitude by a star, \&c. He will be asked quostions as to the nature of the attraction of the ship's iron upon the compass, and as to the method of detormining it. He will be
examined in so much of the lavs of the tides as is necessary to enable him to shape a course，and to compare his soundings with the depths marked on the charts．He will be examined as to his compe－ tency to construct jury rudders and rafts；and as to his resources for the preservation of the ship＇s crew in the event of wreck．He must possess a sufficient knowledge of what he is required to do by law as to entry and discharge，and the management of his crew，and as to penalties and entries to be made in the official \log ，and a knowledge of the measures for preventing and hecking the outbreak of scurvy on board ship．He will be cuestioned as to his knowledge of invoices，charter－party，Lioyd＇s agent， and as to the nature of bottomry，and he must be acquainted with the leading lights of the channel he has been accustomed to navigate，or which he is going to use．
Sarvice in fore－ and－aft rikgod vessels．

In cases where an applicant for a certificate ，and is ignorant of the management of a square－rigged vessel，he may obtain a certificate on which the words＂Fore－and－aft－rigged vessel＂will be written．This certiflcate does not entitle him to command a square－rigged ship．This is not，however， to apply to Males，who，being younger men，are expected for the future to learn their business com－ pletely．
Punotuality of 7．Candidates are required to appear at the exa－ candidnte＇s at－mination room punctually at the time appointed．
tendune

8．Candidates are prohibited from bringing into the examination room books or paper of any kind whatever．The slightest infringement of this regu－ lation will subject the offender to all the penalties of a failure．
Candidatea in．
9．Iu the event of any candidate being detected juring exami－
nation papers， in defacing，blotting，writting in，or otherwise in－ juring any book or books belonging to the Board， the papers of such candidate will be detained until the book or books so defaced be replaced by him． He will not，however，be at liberty to remove the damaged book，which will still remain the property of the Board．
Candidates dis．10．In the ovent of any candidate being dis－ ing，oto．oopy－covered copying from another or affording any assistance or giving any information to anuther，or communicating in any way with another during the time of examination，he will subject himself to a failure and its consequences．
11. No candidate will be allowed to work out his problems on a slate or on waste paper.
12. No candidate will be permitted to leave the Time allowed room until he has given up the paper on which he to $\begin{gathered}\text { to marigation pa- } \\ \text { out }\end{gathered}$ is engaged.
pers.
13. Candidates will be allowed to work out the various problems by the method and tables they have been accustomed to use, and will be allowed six hours to perform the work. At the expiration of six hours they will, if they have not finished, be declared to have failed, unless the Board of Examiners see fit to lengthen the period in any special case. If, however, the period is lengthened in any case the spe ?al circumstances of that case and the reasons for lengthening the period must be reported to the Minister of Marine and Fisheries by the Examiners at the time they send in the Report.
14. The corrections by inspection from the tables Corrections by given in many works on navigation, will not be inspeotion not allowed (see Tables IX, XI and XXI, in Norie's Epitome, \&c.) ; every correction must appear on the papers of the candidates. The first-class are referred to page 513 of the Nantical Almanac, 1867, for further information on this subject.
15. Candidates are expected to bring their answers to all problems within, or not exceed a margin of one mile of position from a correct result.
16. In finding the longitude by chronometer, the logarithms used in finding the hour-angle should be taken out for seconds of arc.

In all other problems the logarithms to the nearest minute will be sufflciently correct for all grades, except Master, from whom a degrees of precision will be required, both in the work and in the results, beyond what is demanded from the inferior grade.
17. In every case the examination for Master is to commence with the prohlems for Mate.

Examinatlon to oommeade with that of mates.
Re - examinge tion in oase of fatlu. re-examined de novo. If the candidate fails in Seamanship he will not be re-examined until after a lapse of six months, to give him time to gain experience. If ho fail three times in Navigation he will not be re-examined until afte: a lapse of three months.
19. The Examiners are to insert in the Report of Examination Examinations (under heading Remarks), the words of toknowiedse "passeü," (or "failed,") in Commercial Code of oode of airanals Signals, as the case may be.

Notes.

Gorrecting dee- Candidates will find it more convenient, both lination, dec. here and at sea, to correct the declination and other elements from the Nautical Almanac by the " hourly differences," which have been given in that work in order to facilitate such calculations, they will thereby render themselves independent of any proportion or logarithmic table for such purpose.
Standard of ex: As the examinations for Masters and Mates are anminntion witil
be raised. as low as possible, but it is distinctly to be underStandard of ex. stood that the Minister of Marine and Fisheries aminntion to be may raise the standard from time to time, when-
ralsed. ever, as will no doubt be the case, the general attainments of officers in the Merchant Service shall render it possible to do so without inconvenience; and officers are strongly urged to employ their leisure hours, when in port, to the acquirement of the knowledge necessary to enable them to pass their examinations; and masters will do well to permit apprentices and junior officers to attend schools of instruction, and to afford them as much time for this purpose as possible.

NOTICE.

Examisation of Masteis and Matbs.

By virtue of an Order in Council bearing dale the 26 th of June, 1871, the following amendments have been made to the Rules and Regulations for examination of Candidates for Certificates of Competency as Masters and Mates in Mercantile Marine, us approved by Order in Council of 27 th February, 1871.

1st. Rule 1st has been so amended as to require five years service at sea instead of four years, for a Mate or only Mate, of which one year must have been as either second or ouly Mate, or as both; services in a superior capacity being in all cases equivalent to service in an inferior capacity.

2nd. Candidates for Certiflcates of Masters and Mates must be examined in the use of the International Code of Signals, and failure in this branch will be treated as failure in Navigation.

By Order,
Dopmty of the Minister of Marine and Fisheries. Depaitment of Mafine and Fishemes, Ottawa, 20th July, 1871.

EXAMINATIONS OF MASTERS AND MATES.

NOTICE OF alteration in examination papens.

By virtue of an Order in Council, bearing date the 12th October, 1872, all Candidates presenting themselves for examination for Masters' and Mates' Certificates for the flrst time will be required to give short definitions of so many of the terms contained in the following list [A]* as may be marked with a cross by the Examiner. These questions are at the same time intended to test the Candidate's handwriting and spelling, to both of which special attention should be paid by him.

For the "Table of Deviations" which heretofore formed part of Exu. 7, the questions contained in the following list [$\mathrm{B} \mid \dagger$ have been substituted. Candidates for Certificates of Competency as Masters Ordinary will be required to answer at least eight of such of these questions as may be marked with a cross by the Examiner.

WM. SMITH,
Deputy of the Minister of Marine and Fisheries.

[^0]
HINTS TO STUDENTS.

When a rule has been explained to you, study it in comection with the worked example until you can see a little into it ; then work out the first example two or three times until you get into the swing of it, for you must remember, that it is not the number. of examples you work out, but the number which you understand, that is the real test of your progress. Never puzzle too long over a difficulty: int go and ask for an explanation directly you find you camot see your way clear; for you may not only be very needlessly wasting time, but you may be getting a wrong idea into your head which may give you a lot of trouble to unlearn: a very few words from a competent authority will generally make a crooked path appear straight. Again, refer as little as possible to the data given with the answers ; these are only supplied to help you in detecting a possible error, but if you use them as a kind of running eheck while you are working out the exereises, you will be accustoming yourself to leading strings which you will look for in vain when before the Board of Examiners. Do not leave oie kind of work for another until you are desired so to do, for there is often a great deal to learn in the work you are about, at the very time that you may think yourself master of it. Any one $w: s$ understands and can work out the exercises given in this Mantul may, with justice, consider himself a eood narigator; but this is not enough for an applicant for a certificate of competency, for he not only requires a certain amount of polish in his work, but he requires to be kept posted in the little minor changes which are constantly occurring in the conduct of the examinations; this is effected by what may he termed the floating sets of examination papers in the schools under my control, and these will be given to the student when he is prepared to use them.

Lastly, learn every thing thoroughly, for in the same way that one weak link will destroy the strength of a cable, so one little problem, carelessly learnt, oftentimes brings a man to grief when he is before the examiners.
gutw in in

LOGARITHMS.

TO FIND THE INDEX OF A NUMBEIR.

1. If the given number be a whole number.-Count the number of figures contained in it, and the index will be 1 less than that number :

Ex.	$1-$	The index of	8	is	0
$"$	$2-$	$"$	36	6	1
$"$	$3-$	6	459	$"$	2

2. If the given ammber is a mixed number.-The index will be 1 less than the number of figures to the left hand of the decimal point :

Ex.	$4-$	The index of	$3 \cdot 6$	is	0
$"$	$5-$	6	$45 \cdot 9$	6	1
$"$	$6-$	$"$	$82 \cdot 65$	$"$	1
$"$	$7-$	$"$	$369 \cdot 4$	"	2

3. If the given mumber is a decimal number.-If there are not any cyphers following the decimal point, the index will be -1 , but every cypher between the point and the first significant:

[^1]figure will increase the index by 1 ; these are called negative indices:

Ex. 8	The index of	-36	is	-1	
6	9	6	-036	6	-2
$"$	10	6	.0036	6	-3

4. What are termed complementary indices are sometimes used in their place, to obviate any difficulty that may be found in using the negative sign ; these indices are found by subtracting the negative index from 10 - or directly, by subtracting the number of cyphers immediately following the decimal point from 9, the remainder being the index required. In the last three examples, the complimentary indices would be 9,8 and 7 respectively. The objection to the use of these indices is, that in some computations, there may be a difficulty in judging, whether the resulting index be of a positive or negative character.

TO FIND THE LOGARITHM OF A GIVEN NUMBER.

5. In the left hand column of the table (Norie Table XXIV, Bowditch Table XXVI, Raper Table 64) will be found a series of numbers in regular order from 100 upward, and to the right of this column of numbers, will be scen several other columns, marked at the top and bottom from 0 to 9 .
6. If the given number contains four figures.-Look in the column of numbers for the first three figures of the given number (never mind the decimal point of there is one) then in that line, and in the column marked with the fourth figure at the top (or bottom) will be found the logarithm required, which set down alongside its index.

Ex. 11.-The logarithm of 82.65 is 917243 , and would be the same, if the decimal point in the natural number were in any other place, the change effected by a removal of the decimal point, being recorded by the index. The index of the above number being 1 , the logarithm will be set down as 1.917243 .

Ex. 12.-The logarithm of $369 \cdot 4$ is 9.567497 .
7. If the given number contains less than four figures.Suppose as many cyphers added to its right hand, as will made up four figures, then take out the log. of it as directed in the preceeding paragraph (5).

$$
\text { Ex. } 13 \text { The logarithm of } 3 \cdot 6 \text { (or } 3 \cdot 600 \text {) is } 0.556302
$$

" 14 " 45.9 (or $45 \cdot 90$) 1.661813
8. If the given nmmber contains more than four figures.Find the log. of the first lour figures, after which take out the number found opposite in the "Diff" column* and multiply it by the remaining figures of the given number, cut off from the right of the product, as many figures as you have multiplied by, and the number thus left will be the correction, which is to be added to the log. first taken ont.
9. In Raper this correction may be caken out by inspection, thus:-look at the bottom of the page for the line having your "Diff" number at its left hand, then in that line and under the fifth figure, found at the top of this subordinate table, will be given the correction reguired. Although the correction necessary for six or more figures may also be found, by plating each further tabular correction successively one place more to the right, yet when the natural number exceeds five figures, it will be found more accurate to compute the correction as directed in (8). See examples 15 and 16 where the correction there found by calculation, will be seen to be the same as those given by inspection.

[^2]
TO FIND THE NUMBER CORRESPONDING TO A GIVEN LOGARITHM.

10. If a natural number containing four figures will be sufficient.-Find the nearest log. in the table to the given one, and in the number column opposite, will be found the first three figures of the required number, while the fourth will be given at the top (or bottom) of the column where the nearest log. was found ; the decimal point is now to be placed as explained in the rule below ($10 \& 11$.)

Ex. 17.-Required a natural number to four places of figures corresponding to the logarithrn 707847.

Here the nearest log. to that given is $\mathbf{7 0 7 8 2 6}$ the natural number corresponding to which is 5103.

Ex. 18.-Required a natural number to four places of figures corresponding to the logarithm 863600 .

In this cas; the nearest \log. is 863620 giving as a natural number 73)5.
11. If the natural number is required to more than four places of figures.-Find the nearest less log. to that given, you will thus obtain the first four figures of the desired nnmber ; now subtract the log. taken out from the given one, and place a cypher to the right of the remainder ; divide the number so formed, by the number found in the "Diff." column * opposite the log. taken out, and the quotient will be the fifth figure required. If a sixth figure is desired, add a cypher to the last remainder and divide by the tabular difference as before; in this manner, by placing a cypher to the right of each successive remainder, and dividing by the tabular difference, any number of additional figures may be obtained. It may be mentioned that if the exact \log. is found in the table, any additional figures required will be cyphers.
12. In Raper a fifth ilgure may be found by inspection thus:look in the table at the foot of the page for the line having your "Diff." number at its left hand ; then in this line, select the nearest you can to the difference between the given log. and that taken out, and the figure at the head of the column will be the fifth

[^3]n four in, you ; now cypher ed, by taken a sixth divide cing a ing by hay be und in
ills :5 your earest taken e fifth
he log. jitional able at at hand and the
figure required. Further figures may also be obtained by this method, but as their accuracy cannot be depended upon, it is better to find them by calculation, as explained for Nerie's epitome.

See Ex. 19, and the fifth figure found by inspection will be seen to be the same as that given by calculation. In Ex. 20, the " Diff." by Raper is 333 instead of 332 as give by Norie, but this does not change the result.

Ex. 19.-Find the natural number to five places of figures corresponding to the logarithm 575916
Given log.
Nearest less log. 575880 corresponding natural number 3766
"Diff." 115)360(3 345

15
The required natural number therefore is 37663 .
Ex. 20.-Required the natural number to six places of figures corresponding to the logarithm 115500 .
Given log.
115500
Nearest less log. 115278 corresponding natural number $130{ }^{\prime}$
$3 3 2 \longdiv { 2 2 2 0 0 } (6 6$
1992
2280
1992
288
Here the remainder being more than half the divisor, shews that in the last figure of the quotient, 7 would be nearer than 6 , the natural number required is consequently 130467.

Ex. 21.-Required the natural number to five places of figures corresponding to the logerithm 447003.

In this case the exact log. is found with a natural number of 2799 the natural number required with therefore be 27990 .

TO PLACE THE DECIMAL POINT.

13. If the index is positive.-Add 1 to the index, and reckoning from the left of the natural number, point off that number of figures.

Ex. 22 -	tur	m		
23	"	"		
24 -	"	"		

14. If the index is negative.-Subtract 1 from the index, and prefix to the left of the natural number, that number of cyphers, placing the decimal point to the left of all.

Ex. 25 - The natural number of -1493190 is 3113

$$
\begin{aligned}
& \because 20 \text { — " " - } 2 \cdot 321184 \text { " } 02095 \\
& \text { " } 27 \text { - " " - } 3 \cdot 049692 \text { ".008906 }
\end{aligned}
$$

15. If the complementary indices have been used, subtract the index from 9 and this will give the number of cyphers to be prefixed to the natural number.

In the threg last examples, the complementary indices would have been 9,8 and 7 respectively ; and it will be seen, that the application of the rule will loring the same result to that given above.

TO FIND THE LOG. SINE, COSINE \&e., OF A GIVEN ARC.

16. These logs. will be found in Table XXV of Noric, Table XXVII of Bowditch or Table 68 of Baper as fotiows:-
17. If the are is less than 45°.-Find the page having the required degrees at its top, now seek the minutes in its left hand column and opposite to this, in the column marked with the uame of the desired log. at the top, will be found the log. required.

18. If the are is greater than 45°.- Now in seeking the proper page, the degrees will be lomed at the bottom of the page, with the minutes in its right hand columm, opposite which, the \log. tequired will be found in the column marked at foot with its name.

	31-Tho log. sacan	of 470 $54 \prime$ is 10.173649
	32 - The log. Co. tangent	of 700 39\% ${ }^{\text {c }}$ 9.545524
	33 - The log. sine of	$57^{\circ} 12^{\prime}$

19. If the are exceeds 900°.-Wither subtract the are from 180° and take out the required log. of the remainder, or take out the complement of what the are exceeds 90°, that is, tha tange't for the Co-tangent \&c.

Ex. 34 - Find the Co-Secant of $9 \mathbf{n}^{\prime} 18^{\prime}$.

The supplement of this are (that is, what it is less than $180^{\prime \prime}$ is $80^{\circ} 42^{\prime}$ the Co-Secant of which is 10.005746 , and the Secant of
9018^{\prime} (which is what the arc exceeds 90°) will be found to give the same logarithm.
20. If the log. is required to seconds.-By Nurie, take out the required log. for the degrees and mirutes as above, and also the number opposite it in the difference column adjoining * now multiply the difference by your seconds, cut off two figures (always two) from the right of the product, and the figures remaining will be a correction, which is to be applied to the log. of the degrees and minutes; subtractive if it is a Cosine, Cotangeni or Co-secant (that is, if it is a Co.) but additive, if it is a sine, tangent G° senant (that is, if it is not a Co).

Ex. 35 - Requred the log. sine of $188^{\circ} 42^{\prime} 35^{\prime \prime}$.

Ex. 36 - Required the log. Cosine of 490 24' $8^{\prime \prime}$.
The log. Cosine of 490 24 $9 \cdot 813430 \quad$ Diif. 246
Correction for $8^{\prime \prime} \quad-\quad 20$
8
Log. required
9.813410 Correction 19,68

Ex. 37 - Required the \log. Co-Secant of $100^{\circ} 14^{\prime} 40^{\prime \prime}$.
The log. secant of 15014 Diff.
Correction for $30^{\prime \prime} \quad+23 \quad 40$
Log. required $\quad 10.01555 \%$ Correction 22,80
21. By Bowditch, take out the required log, for degrees and minutes as above, and then look out your seconds in the left hanf column of minutes (always the left hand) and in the "Diff." coltumn adjoining tho log. taken out will bo found a correction.

[^4]which is to be applied to the \log of the degrees and minutes, subtractive if the log. taken out is a Cosine, Cotangent, or Cosecant (that is. if it is a Co.l bat additive if it is a sine, tangent or secant (that is, if it is not a Co.)

The examples 35,36 and 37 given above are now worked as under:-

Ex. 35. 180 42 'Sine $9 \cdot 50598$				Ex. 36.			Ex. 37.		
				490 $24{ }^{\prime}$ Cos.		9.81343	11014'See. 10.01553		
$3 i^{\prime \prime}$	Cor.	+	22	$8{ }^{\prime \prime}$	Cor.	2	40°	Cor. +	2
9) 5 8620						9.81341			

It will be noticed, that for the first four pages of th table, there are no lettere at the heads of the colmmis of logs. ; if the required log. falts in either of these pages, the correction must be calculated ; thus:- unltiply the difference alongside the log. taken out, by the seconds, and divide the product by 60 cont off the right hand figure and divide the remaining figures by 6) and the quotient will be the correction to be applied as before directed.

Ex. 39 - Required the log, side of $\mathbf{4 0}^{19} 15^{\prime \prime}$.

The log. sine of $4^{\circ} 19$ is	8.87661	Diff.	168
Correction for $25^{\prime \prime}$	+ 70		2i,
Log. required	8.87731		840
			336
			20,0
		ion	70

22. In Raper the logsiare given to every half minute, aud therefore the required \log. is to be taken out to the nearest less are given, and adjoining it will he seen a culumn of "Parts" frem whence the correction for the remaining seconds is to be taken, this is io suhtracted from the log. taken ont if it be a cosine, colangent or cogecant that is if it is a co) but added if it be a sine tangent or secant (that is if it is not a co). For the first few pages of the table, the columns of "Parts" helonging to some of the logs. are omitter, but Tables 66 and 67 supply their place; the flist, by giving the sines and cosines to every second of are an far as the tahle extends; and the other, by giving them to every 10 " with a table of correc:-
tions at the side for any seconds remaining; the tangents to seconds are not required for the problems treated of, but still, they may he found by_{y} adding the log sec. to the log. sine of the required arc. The Examples 35, 36, 37 and 38 , given above, are now again worked underncatin.

Ex. 35. $18{ }^{\circ} .42^{\prime} 30^{\prime \prime}$ sine $9 \cdot 506168$			$\begin{gathered} \text { Ex. } 36 . \\ 49^{\circ} 24^{\prime} \cos 9 \cdot 813430 \end{gathered}$		
${ }^{6}{ }^{7}$	parts +	31	$8{ }^{\prime \prime}$	parts -	20
	$9 \cdot 506199$		$\overline{9.813410}$		
Ex, 37.$15^{\circ} 14^{\prime} 30^{\prime \prime}$ sec. 10.015551			$\text { Ex. } 38 .$		
$10^{\prime \prime}$	parts +	6	$5{ }^{\prime \prime}$	parts +	140
	10.0	557			7312

TO FIND THE ARC COIRIRESPONDING TO A LOG. SINE COSINE, de.

23. In the proper column find the nearest to the given log., then if this eolnmn is marked with the name of the given log. at the top, take out the degrees at the head of the page, and the minutes will be found opposite the nearest log. in the left hand column of the page; but if the name of the given log. is found at the bottom, then the degrees are also taken from the bottom and the minutes from the right hand column of tie page.

Ex. 39.-Find the are corresponding to the log. sine $9 \cdot 429600$.
Here the nearest log. in a sine column in $9 \cdot \$ 29623$ and the arr required s $15^{\circ} 36$.

Ex. 40.- Find the arc corresponding to the log. tangent $10 \cdot 280180$.

The noarest log. is 10280138 and consequently the desired arc is 62019 .

MULTIPLICAFION BY LOGRRITHMS.

24. Take out the logs. of the two numbers to the multiplien, and add them together; the natural number comesponding to the stim v:ill be the product required. As far as the indices are con-
cerned, this is the algebraic sum, that is, if the indices are both positive or negative, add them togetiser, marking the result with the same sign ; but if one is positive and the other negative, then take their difference, and name the remainder positive or negative the same as the greater of the two, bearing in mind, that a carrying figure is always positive.

Ex. 1.-Multiply 289 by 6.991 by common logarithms.

Ex. 4	Multiply	17882	by	3.906	y commo	logarithms.
" 5	"	62.72	"	$4 \cdot 273$	"	6.
" 6	"	4.792	"	49.96	"	6
" 7	"	$367 \cdot 16$	"	29.678	،	6
" 8	"	49.074	6	382.67	${ }^{6}$	"
" 9	"	$4789 \cdot 4$	"	38892	"	"
" 10	16	82-291	"	$468 \cdot 46$	"	6
" 11	6	42364	"	29.5467	6	6
* 12	6	10000	"	100	6	6
" 13	6	28.887	"	$462 \cdot 92$	"	"
" 14	"	$7400 \cdot 2$	"	$386 \cdot 450$	46	6
" 15	"	$447 \cdot 3$	"	76.682	"	"
" 16	6	880.008	"	88.08	6	*
" 17	"	$\cdot 77005$	"	-6514	6	6
" 18	.	$\cdot 00362$	"	-0009	6	. 6
-19	" 6	$6543 \cdot 2$	"	. 02475	*	6
" 20	"	$\cdot 00699$	"	. 54427	"	6

25. Take out the logs. of the two numbers, and from the log. of the number to be divided subtract the other log.; the remainder will be a log. the natural number corresponding to which, will he the quotient required. Vy nen the index of the livisor is the larger, or when the negative indices are used, the indices are subtracted as follows:-add the carrying figure (if any) to the index of the divisor, if the latter is positive, but subtract the carrying flgure if the index is negative, naming the difference positive or negative the same as the larger; now change the sign, and add it, algebraically, t ther Endex as shewn in the rule for multiplication.

Ex. 1. Divide 396.7 by 82.76 by logarithms.

	$396 \cdot 7$ $92 \cdot 76$	log. $2 \cdot 598462$ log. $1 \cdot 917820$
Quotient	$\underline{4 \cdot 793}$	$0 \cdot 680642$

Ex. 2. Divide 40.92 by 922.6 .

$40 \cdot 92$	log. $1 \cdot 611936$
$922 \cdot 6$	log. $2 \cdot 965013$
-04435	$-2 \cdot 646923$

Ex. 3. Divide $\cdot 000909$ by $\cdot 04242$.

	$\cdot 000909$	log.-4:958564
	-04242	log. 2.627571
Quotient	$\cdot 02143$	$-2 \cdot 330993$

Ex. 4	Divide	4386	by	7 by common logarithms		
5	"	$987 \cdot 4$	"	31	"	
6	"	$8928.7{ }^{\circ}$	"	473.62	"	"
7	"	742-42	"	99.603	"	"
8	"	74620	"	$9 \cdot 9674$	"	"
9	"	4268.8	"	$1 \cdot 2361$	"	"
" 10	"	890000	"	29.282	"	"
* 11	"	740008	"	34702	"	"
" 12	"	. 96473	"	-04552	"	"
" 13	"	. 08643	"	-12111	"	"
" 14	"	456.78	"	. 00523	"	"

PARALLEL SAILING.

26. Fake out the secant of the latitude (rejecting 10 in the index), and the log. of the departure; their sum will be a log., the natural number corresponding to which, will be the difference of longitude required.

Ex. 1.-In latitude $17{ }^{\prime} 18$ the departure made good was $51 \cdot 34$ miles, required the difference of longitude by parallel sailing.
Latitude $10^{\circ} \quad 18^{\prime} \quad$ Sec. 0.020105

Departure $51.34 \quad \log .1 .710456$ diff, Long. $53.77 \quad 1.730561$

With the following elements find the difference of longitude by parallel sailing.

Ex. 2-In latitude $53^{\circ} 16^{\prime}$ the dep. made good was 118.5 miles.

$"$	$3-$	$"$	12	12	$"$	$"$	75	$"$
$"$	$4-$	$"$	41	14	$"$	$"$	$14 \cdot 41$	$"$
$"$	$5-$	$"$	39	22	$"$	$"$	10	$"$
$"$	$6-$	$"$	49	19	$"$	$"$	$211 \cdot 3$	6
$"$	$7-$	$"$	40	37	6	$"$	$29 \cdot 6$	$"$
$"$	$8-$	$"$	56	19	$"$	$"$	$89 \cdot 5$	$"$
$"$	$9-$	$"$	0	0	$"$	$"$	329	$"$
$"$	$10-$	$"$	16	24	$"$	$"$	67	$"$
$"$	$11-$	$"$	46	14	$"$	$"$	$39 \cdot 64$	$"$
$"$	$12-$	$"$	60	20	$"$	6	$69 \cdot 4$	$"$

COURSE AND DISTANCE, BY MERCATOR.

TO FIND THE DIFFERENCES OF LATITUDE.
27. If the latitu les are both \mathbf{N}. or both \mathbf{S}.-Subtract the less from the greater, and bring the difference into miles; the
result will be the true difference of latitude, to be named N . or S. the same as the latitudes, if in going to your destination you are increasing your latitude, but the contrary if you are decreasing it.
28. If the latitudes are one \mathbf{N}. and the other S .-Add then together and bring the sum into miles, naming the true diff. lat. thus found, the same as the lat. to.
29. To find the Meridional difference of latitude.- Enter Table III (either Norie or Bowditch, Raper Table 6) and find the meridional parts corresponding to both the latitudes; add then together if the latitudes are of contrary names, but subtract them if they are of the same name, and the sum or remainder will be the mer. diff. lat.

TO FIND THE DIFFEIRENCE OF LONGITUDE.

30. If the longitudes are both E. or both W.-Take their difference, bring it into niles, and it will be the diff. long., to be named E. or W. the same as the longitudes, if in going to the desired port you are increasing your longitude but the contrary if you are decreasing it.
31. If the longitudes are the one E. and the other W.-Take their sum, and it will be the diff. long. E. or W. the same as the long. 10 ; but if this sum should exceed 180°, take it from 360°, and reverse its name; in either case bring the diff. long. into miles.

TO FIND THE COUIRSE.

32. Take out the log. of the diff. long. adding 10 to its index, and from this subtract the log. of the mer. diff, lat., the remainder will be a \log. tangent, the degrees and minutes corresponding to which will be the Course, to be mamed N. or S. the same as the diff. lat., and E. or W. the same as the diff: long.

TO FIND THE DISTANCE.

33. Take out the log. secant of the course, atd after rejecting 10 in its index, add it to the log. of the true diff. lat., the natural mumber corresponding to the sum will be the Distance.

Ex. 1.-Required the course and distance from A to B by calculation on Mercator's principle.

Lat. of A $8^{\circ} 34^{\prime} \mathrm{N} \quad$ Mer. parts 516 Long. of A $811^{\circ} 21^{\prime} \mathrm{E}$
Lat. of B $4 \quad 35$ S Mer. parts 275 Long. of B 5556 E

Diff. long. $1525 \quad$ log. $13 \cdot 183270$ Course $62035^{1} \quad$ Sec. $0 \cdot 336810$ Mer. diff. lat. 791 log. 2.898176 True diff. lat. 789 log. $2 \cdot 897077$

Course S $62 \mathbf{2 0}^{\circ} 35^{\prime} \mathrm{W}$ tang. $10 \cdot 285094$ Distance $1714 \quad 3 \cdot 233877$
Ex. 2.- Required the course and distance from Monte Video to Port Philip, by calculation on Mercator's principle.
Monte Video-L_at. $34^{\circ} 54^{\prime}$ S Mer. parts 2237 Long. $56^{\circ} 16^{\prime \prime}$ W Port Philip -Lat. 3818 S Mer. parts 2491 L.ong. 14438 E

'True diff. lat.	$\begin{aligned} & 324 \mathrm{~S} \\ & 60 \end{aligned}$	254	$\begin{array}{ll} 200 & 54 \mathrm{E} \\ 360 & 00 \end{array}$
	204		${ }_{60}^{59} 6 \mathrm{~W}$
		Diff. long.	9546
long. 9546	log. 13:979821	Course 88029^{\prime}	c. $1 \cdot 577283$
, diff. lat. 254	log. $2 \cdot 404834$	True diff. lat. 20	g. $2 \cdot 309630$

Course S.830 29 ' W. tang. $11 \cdot 574987$ Distange $7707 \quad 3.886913$
Find the courses and distances between the following places, by calculation on Mercator's principle.

Ex. 3.-From Sambro To Cape Race

Ex. 4.-From A To B

Ex. 5.-From A
To B
Ex. 6.-From St. Agnes (Scilly) To St. Michaels

Lat. $44^{\circ} 26^{\prime} \mathrm{N}$ Long. $63^{\circ} 33^{\prime} \mathrm{W}$ " $46 \quad 39 \mathrm{~N} \quad$ " $53 \quad 4 \mathrm{~W}$
$\begin{array}{lllllll} & & 51 & 25 & \mathrm{~N} & 6 & 9 \\ \mathrm{~W}\end{array}$
" $20 \quad 31 \mathrm{~S}$ " $29 \quad 19 \mathrm{~W}$
$\begin{array}{llllllll} & & 55 & 59 & \mathrm{~S} & 67 & 12 & \mathrm{~W}\end{array}$
" $15 \quad 55 \mathrm{~S} \quad$ "6 545 W
" $4954 \mathrm{~N} \quad$ " 621 W
" $3752 \mathrm{~N} \quad$ " $25 \quad 52 \mathrm{~W}$

Ex 15.-From A
To 13

Lat. 3354 S Long. 1825 E
" $38 \quad 52 \mathrm{~S} \quad$ " 14331 E
$\begin{array}{llllllll}\text { " } & 49 & 54 & \mathrm{~N} & \text { " } & 46 & 19 & \mathrm{~W}\end{array}$
" $46 \quad 48 \mathrm{~N} \quad$ ، $58 \quad 2 \mathrm{~W}$
" 124 S ." 7711 E
" $3317 \begin{array}{llllll} & 17 & \mathrm{~N} & 72 & 12 & \mathrm{~W}\end{array}$
، 3422 S " 1824 E
$\begin{array}{llllllll}\text { " } & 37 & 49 & \mathrm{~N} & 122 & 27 & \mathrm{~W}\end{array}$
$3351 \mathrm{~S} \quad 15120 \mathrm{E}$
$\begin{array}{llllllll}\text { " } & 33 & 51 & \mathrm{~S} & & 151 & 18 & \mathrm{E}\end{array}$
$\begin{array}{llllllll} & 6 & 12 & 3 & \mathrm{~S} & 7 & 76 & 59\end{array}$
$\begin{array}{llll}6 & 9 & \text { S } \\ 6 & 106 & 52 \mathrm{E}\end{array}$
" 947 S " 12227 E
" $55 \quad 30 \mathrm{~S}$ " $78 \quad 45 \mathrm{~W}$
$\begin{array}{llllllll}\text { " } & 54 & 29 & \mathrm{~S} & 71 & 10 & \mathrm{E}\end{array}$
" 4138 N " 12257 W .

PRELIMINARY RULES FOR WORKING A DAY'S WORK.

TO BRING COMPASS INTO TRITE COURSES.

34. The courses given in a Day's Work are Compass Courses (Def. 15), and to bring them into 'lice Courses (Def. 13) the follow. ing corrections must be applied, viz : the Variation (Def. 16) of the place, the Deviation (Def. 17) corresponding to the direction of the ship's head, and the Leeway (Def. 19).
35. Variation if E is applied to the right of a course.

W is applied to the left of a course.
36. Deviation is applied similarly to Variation of the same name, that is, E to the right and W to the left nand of a course.
37. Leewhy is applied to the right if the vessel is upon the port tack, but to the left if she is upon the starboard tack.
38. The safest way to apply these several corrections is to find the residual correction and apply it to the compass course, thus : set down the leeway, marking it R (for right) if the vessel is upon the port tack, but L (for left) if she is upon the starboard tack; underneath place the deviation naming it \mathbf{R} if it is East, but L if West; now, if they are of the same name (both R or both L) add them together, but if of contrary names one \mathbf{R} and the other L) subtract them, and name the sum or remainder R or L the same as the greater. Under this result place the variation, naming it R if it is East, $c: L$ if West, again add or subtract according as they are of the same or of contrary names, and the result will be the correction, to be named \mathbf{R} or L the same as the larger of the last two terms. Under the correction place the course, * expressed in degrees, marking it N if it is a northerly course, or S if it is a southerly one; and R if when looking from the centre of the compass, your course is to the right hand of the \mathbf{N} or S point from which it is reckoned, but L if it is to the left hand; again add or subtract according whether they ire of the same or of contrary names, and giving the result the same name as the greater; this will be the true course; should this last result exceed 90°, subtract it from 180°, and reverse both its names. In correcting the courses, it will be hardly necessary to say, that the sum of all terms having like names can be taken in one operation. Now to change the \mathbf{R} or \dot{L} of the true course into E or W.; if when looking to the R or L (as named) of the point from which your true course is reckoned, you look into an easterly quarter, name your course E, but if into a westerly quarter, then name it \mathbf{W}.

[^5]Day's Work.
Correct the following courses :-
Ex. 1-Course, S 55 W - Wind, N 55 W Leeway 18 I.
Deviation 14 L

Leeway	180°		$\overline{32}$ L
Deviation	$14^{\circ} \mathrm{W}$	Variation	15 R
Variation	$15^{\circ} \mathrm{E}$		Correct
		$\overline{17} \mathrm{~L}$	
		Course	S 55 R

True Course S $38^{\circ} \mathbf{W}=\mathbf{S} 38 \mathbf{R}$
Ex. 2-Course, N 23 W - Wind, West Leeway 19 R
Leeway 190
Deviation 8 E
Variation 13 E
Deviation 8 R
Variation 13 R
Correction 40 R
Course N 23 L
True Course $\mathrm{N} 1 \mathbf{1 7}^{\circ} \mathrm{E}=\mathrm{N} \overline{17} \mathrm{R}$
Ex. 3-Course, S 45 W - Wind, W N W Leeway 14 L
Deviation 6 R

Ex.	Course.	Wind.	L,way	Dev.	Var.	True Courses
5	N $28{ }^{\circ} \mathrm{E}$	N $40{ }^{\circ} \mathrm{W}$	130	$21^{\circ} \mathrm{E}$	$15^{\circ} \mathrm{E}$	N 770 E
6	N 26 W	N 40 E	20	13 E	34 W	N 67 W
7	S 68 E	South	16	23 W	19 E	S 88 E
8	West.	N 20 W	10	10 W	13 E	S 83 W
9	N 54 E	S 60 E	18	20 E	22 W	N 34 E
10	S 10 W	S 55 E	12	5 E	12 E	S 39 W
11	N 73 E	North	12	20 W	32 E	S 83 E
12	S 82 E	N 28 E	8	10 E	28 W	N 88 E
13	N 52 W	NN E $\frac{1}{2} \mathrm{E}$	10	9 W	22 W	S 87 W
14	S 58 W	S by E	10	30 E	18 E	N 64 W
15	$\left.\begin{array}{c} \text { Up West } \\ \text { Off } 34 \mathrm{~W} \end{array}\right\}$	N W by N	55	12 W	12 E	S 7 W

THE TRAVERSE TABLES.

39. Enter Table Il with your course, and if this is under 45° it will be found at the top of the page, but if it exceeds 45° it will be found at its foot, and you will have to take care that the different columns in this table, will have to take their names from the same end of the page, as that in which the course is found.
40. If the distance is expressed in miles only.-In that page in which the course appears, look for the distance in the distance column, and opposite their respective columns will be found the diff. lot. and dep. crime, ponding.

Ex. 16-For the c iarse 280 and distance 40 miles, the diff. lat. and dep. corres ionding are respectively, 35.3 and 18.8 .
41. If the distance is expressed in miles and tenths (Ω).When the distance is less than 30 miles, pay no attention to the decimal point, but look for the distance as if it were altogether a whole number; now if the tenths of either the diff. lat. or dep. opposite are less than 5 , throw them away, but if 5 or over, call the miles 1 more; now make the right hand figure of the miles into tenths, by placing a decimal point before it, and you will have the diff. lat. and dep. corresponding to your proper distance.
ind

Ex. 17--iet the course be $54{ }^{\circ}$ and the distance 16.4 ; taking the distance as 164 miles, the diff. lat. opposite is 96.4 and the dep. $132: 7$; throwing away the 4 in the diff. lat. and pointing off the right hand figure, it becomes $9 \cdot 6$; in the dep., make the miles 133 because of the $\cdot 7$ and after placing the decimal point it will be $13 \cdot 3$; thus, $9 \cdot 6$ will be the diff. lat., and $13 \cdot 3$ the dep. for the given course and distance.
(b) If the distance exceeds 30 miles; first find the diff. lat. and dep. corresponding to the miles of your distance, after which suter the table with the tenths of the distance as if they were miles, and as in (a) make the right hand figure of the miles of the opposite diff. lat. and dep. into tenths, as before calling them one more if the actual tenths equal 5 ; add this to the diff. lat. and dep. of the miles of distance already found, and the sum will be the diff. lat. and dep. required.

Ex. 18-Given the course 42° and the distance 54.8.
Course 320 dist. 54 , the diff. lat. is 45.8 and dep. 28.6 dist. 8, gives 6.8 . 7 and 4.2 4

Dify. Lat. $\quad 46.5$ Dep. 29.0

DAY'S WORK.

42. To find the true courses.-Reverse the bearing (if any) and then apply the Deviation belonging to the first compass course, and the Variation (38)

To the set of the current (if any) apply the Variation.
Now with the Leeway, Deviation and Variation, correct the compass courses, and get the irue courses corresponding.
43. To find the diff. lat. and dep. made good.--Opposite each of the above, set down the distances run upon each course respectively.

Turn out the diff. lat. and dep. corresponding to each course and distance (39 to 41), taking care to set the diff. lat. ci all the Northerly courses in the N. column, and that of the Southerly courses in the S . column ; in the same way the dep. of each course must be set in the E. or W. column, according as the course is East or West.

Find the sums of the N. and S. columns, and subtract the less from the greater, the remainder will be the diff. lat. made good to
be named N. or S. the same as the greater; in a similar manner, find the difference between the sums of the E. and W. columns, and the result will be the dep. made good to be named E. or W. with the greater.
44. To find the Latitude in.-Place the diff. lat. made good under the lat. laft, and add them together if they are of the same name, but take their difference if they are of contrary names, and in either case, the result will be the latitude in, which is to be named \mathbf{N}. or S . the same as the greater.
45. To find the diff. long.-If the lat. left and the lat. in are of the same name, add them together and divide the sum by 2 , the result will be the middle lat.; if the lat. left and lat. in are of contrary names, half their difference will be the middle lat., but in such a case, the dep. may at once be taken as the diff. long. Enter Table II with the middle lat. as a course, and then in the diff. lat. column find the nearest you can to your dep., the distance corresponding will be the diff. long., E. or W. the same as the dep.
46. To find the Long. In.-Place the diff. long. just found under: the long left, and if they are of the same name, their sum will be the longitude in of the like name to the long. left, but should this long. in exceed 180°, it must be subtracted from 360°, and have its name reversed. If the long. left and the diff. long. are of contrary names, subtract the less from the greater, and the remainder will be the long. in of the same name as the greater.
47. To find the Course and Distance made good.-In any page of Table II and in the column next the distance, find the nearest to whichever may be the larger of the diff. lat. and the dep. made good, and see what is given in the adjoining column, if it exceeds the other of the two above terms, try a page or so back, otherwise look a page or so anead, and so, go on, page aiter page, until the nearest possible to your diff. lat. and dep. are found alongside one another; now take out the distance opposite, and this will be the Distance made good, and if the diff. lat. is larger than the dep. then the Course made good will be found at the top of the page, but at the bottom if the contrary.* The Course made good is named N. or S. the same as the diff. lat. made good, and E. or W. the same as the dep.

[^6]Day's Work.
Ex. 1.

Hours.	Courses	Knots	10 ths.	Winds.	L'way.'	Dev.	Remarks, \&c.
1	$\overline{\mathrm{N} 23^{\circ} \mathrm{W}}$	5	-	N E		$\overline{9^{\circ} \mathrm{E}}$	A point
2	- .	5	-				in Lat. $46^{\circ} 2^{\prime} \mathrm{N}$
3	- -	5	-	- •			Long. $140^{\circ} 9^{\prime} \mathrm{W}$
4		5	-				bearing by Cow-
5	N 50 W	5	5	$\underline{\mathbf{N}}$	7	$\overline{17 \mathrm{E}}$	pass
6	- .	5	-				S $14^{\circ} \mathrm{W}$
7	.	5	5	. . .			ist. 18 miles.
8	-	5	5				
9	N 65 W	6	$\bar{\square}$	N $\frac{1}{2}$ E	10	$\overline{20 \mathrm{E}}$	Variation $20^{\circ} \mathrm{E}$.
10	- . .	5	5				
11	.	5	5	- •			
12	-	6	-				
1	885 E	$6{ }^{-}$		$\mathrm{N} \mathbf{N} \mathbf{E}$	14	$\overline{22 W}$	
2	. . .		3	- .			
3	- -	6	4	- •			
4		6	3				
5	S 76 E		-		15	23W	4 current set $\}$
0	- .		-	- .			by compass $\}$
7	-	7	-				
8	$\cdot{ }^{-} \cdot$	7	-				22 miles from the
9	N 13 W	7	-	Ditto	14	IW	was taken until the
10	-	7		,			end of the day.
11	-	7		- .			
12	- •	7	5				

are of 2, the f conout in long. in the tance e dep. under. rill be d this veits atrary 1 will d the id the umn, ur so aîter found and arger te top made and

which

 while at that| Cor. Courses. | Dist. | N. | 8. | E. | W. | ${ }^{20}{ }^{0} \mathrm{R}$ | N $\begin{array}{r}20 \mathrm{R} \\ 40 \mathrm{R}\end{array}$ | ${ }_{9}^{4} \mathrm{~L}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N $43^{\circ} \mathrm{E}$ | 18.- | 13.2 | | 12.3 | | N 14 R | N $\overline{60} \mathbf{R}$ | 58 |
| N60 E | 12.- | 6:- | | $10 \cdot 4$ | | N $\overline{43} \mathrm{R}$ | | 20 R |
| $\begin{array}{ccc}\mathrm{N} & 1 & \mathrm{~W}\end{array}$ | 20.- | 20-- | | | 0.3 | N 43 R | | 20 R |
| N 20 W | 22.- | $20 \cdot 7$ | | | 7.5 | | | 25 R |
| N 35 W | $23 .-$ | 18.8 | | | $13 \cdot 2$ | | | N 26 L |
| $\begin{array}{lll}\text { S } 73 \\ \text { S } & \text { E } \\ \text { E }\end{array}$ | 25-- | | 7.3 | 23.9 | | | | \cdots - 1 |
| $\begin{array}{cccc}\text { S } & 64 & \mathrm{E} \\ \mathrm{N} & 8 & \mathrm{~W}\end{array}$ | 28.- | | $12 \cdot 3$ | $25 \cdot 2$ | | | | |
| N 8 W | 29-- | 28.7 | | | 4.- | 7 L | 10 L | 14 R |
| $\left.\begin{array}{l}\text { Diff.lat. madu } \\ \text { good. }\end{array}\right\}$ | | 107.4 | $19 \cdot 6$ | 71.8 | $25 \cdot 0$ | 17 R | 20 R | 22 L |
| | | 19.6 | | $25 \cdot 0$ | | 10 | | |
| | | | Dep. | $\overline{46 \cdot 8 \mathrm{E}}$ | | 10 R 20 R | ${ }_{20}^{10} \mathrm{R}$ | |
| | | 87.8N | | | | | | |
| Lat. left Diff. lat. Lat. in | $\begin{array}{cc} 46^{\circ} & 2^{\prime} \\ 128 & \mathrm{~N} \\ 128 \end{array}$ | Long. left Diff. Long | | 140° | $9^{9} \mathrm{~W}$ | $\begin{array}{r} 30 \mathrm{R} \\ \mathrm{~N} \\ 50 \mathrm{~L} \end{array}$ | N30
 65 | $8{ }^{12}{ }^{12} \mathrm{~F}$ |
| | | | | 1 | | | | |
| | $\overline{47} 30 \mathrm{~N}$ | Lona. in | | 1390 | 0 W | N 30 L | N ${ }^{36} \mathrm{~L}$ | $8 \sqrt{3}$ |
| 2) 0332 | | | | - | | | N 168 | 14 L |
| | | | | 23 L | 1 L | | | |
| Mid. lat. | 4848 | | | | | | | | | |
| | | | | | | | $\begin{array}{r} 8 \mathrm{~L} \\ 20 \mathrm{R} \end{array}$ | |
| Courbn ${ }^{\text {N }} 388^{\circ} \mathrm{E}$ | | Digtanca 99 milies. | | | | | 12 R | ${ }_{5} \mathbf{R}$ |
| | | | - 76 L | N 13 L | | | |
| | | | | | | | | | | | $8 \overline{64} \mathrm{~L}$ | N $\overline{8} \mathrm{~L}$ |

Ex. 2.

Hours.	Courses	Knots.	10 ths.	Winds.	L'way.	Dev.	Remarks, \&c.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\overline{\mathrm{N} 11^{\circ} \mathrm{W}}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \overline{2} \\ & \mathbf{5} \\ & - \end{aligned}$	W by N	13	4 E	
6 6 7 8	N 25 E	6 6 6	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	NW	10	9W	pass N W W Dist. 13 miles.
9 10 11 12	N 10 E	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	8 8 -		12	$\overline{\mathbf{3 W}}$	Variation $15^{\circ} \mathrm{W}$.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	North	7		Wby ${ }^{\frac{3}{4}}$	12	0	
$\begin{aligned} & \hline 6 \\ & 8 \\ & 7 \end{aligned}$	West	6 3 6	$\begin{aligned} & 4 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	N NW	11	$\overline{24 E}$	A by cohtuapis, S by E 22 miles from th
9 10 11 12	876	6 6 6	-	N W br	11	23 E	time the departure was taken until the end of the day

Cor. Courses	Dist.	N	8	E	W
\$ $62^{\circ} \mathrm{E}$	13-		$6 \cdot 1$	11.5	
826 E	22.-		18.8	$8 \cdot 6$	
N 9 W	$28 \cdot 7$	28.4			4.5
N 11 E	24.8	$24 \cdot 3$		$4 \cdot 7$	
N 4 E	$27 \cdot 6$	$27 \cdot 4$		1.8	
N 3 W	27.4	$27 \cdot 4$			$1 \cdot 4$
S 88 W	25.2		-. 8		26.2
878 W	24.2		$7 \cdot 1$		$23 \cdot 1$
107.833.9			$33 \cdot 9$	27.7	$84 \cdot 2$
			$27 \cdot 7$		

Diff. lat. made good 'is.6 N. Dep.made good 26.5 W .

[^7]Day's Work.
Ex. 3.

Hours	Courses	Knots	10 ths.	Winds	L'way.	Dev.	Remarks, \%c.
1	Erat	10	2	38 E	10°	$34^{\circ} \mathrm{E}$	
2		10	-				in Lat. $45^{\circ} 24^{\prime} \mathrm{N}$
3		10	5				Long. 5820 W
4		10	2				bearing by compass $\mathrm{N} \boldsymbol{\square} \mathrm{E}$.
6	$870^{\circ} \mathrm{W}$	10 9	5	Ditto	12	$\overline{22 W}$	N ${ }^{\text {P }}$ E. Dist. $7 \frac{1}{2}$ milics.
7		9	5				
8		9	6				
9	Ditto	1,	-	Ditto	10	22W	Variation $26^{\circ} \mathrm{W}$.
10		10	5				
11		10	-				
12		10	-				
1	$\mathrm{N} 80 \mathrm{E}^{-}$	9	- 7	SEby	10	$\overline{35}$	
2		9					
3			4				
4		9	2				
5	S12 W		-	$\overline{\mathrm{EE}} \mathrm{byE}$	8	IE	A current get
6		9	-				by compass $\}$
7		9	-				S W ${ }^{\text {d }}$ S.
8		8	7				20 miles from the
10	South.	8	7	ESE	11	6 E	
10		8	7				was taken until the end of the day.
11		8	7				the end of the day.
12		8	7				

Cor, Courses.	Dist.	N	S	4	W
$86^{\circ} \mathrm{TV}^{-}$	$7 \cdot 5$		$7 \cdot 5$		-8
S 13 W	23-		$27 \cdot 3$		$6 \cdot 3$
N78 E	$40 \cdot 9$	8.6		40.-	
8 3\% W	$38 \cdot 8$		31.9		21.5
532 W	40.6		34.3		21.5
N67 E	37.8	14.8		34.8	
8 © E	80.7		35.6	$3 \cdot 2$	
89 E	34.8		34.4	8.4	

$\begin{array}{llll}23.3 & 171.0 & 83.4 & \mathbf{6 0 . 1}\end{array}$
$23.360 \cdot$
$147.7 \quad 33.3$

Lat. left Diff. lut.	$45^{\circ} 24{ }^{\prime} \mathrm{N}$	
		398
Lat. in	42	$66 . \mathrm{N}$
	88	30
Mid. int.	44	10

Coumay $813^{\circ} \mathrm{E}$. Diatakor 151 milea.

Day's Work.
Ex. 4.

Hours	Courses	Knots	10 ths.	Winds	'L'way.	Dev.	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\overline{\mathrm{N}} 86^{\circ} \mathrm{W}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 5 \end{array}$	5 7 5 3	S8 \bar{W}	13°	$33^{\circ} \mathrm{B}$	point in Lat. 52° $15^{\prime} \mathrm{S}$ Long. bearing by compass 12 W ber
5 6 7 8	N79 W	$\begin{aligned} & -6 \\ & -6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} -2 \\ 2 \\ 2 \\ 2 \\ \hline \end{gathered}$	$\overline{\mathrm{S}} \overline{\mathrm{W} \text { by } \mathrm{S}}$	15	32 E	SE E Dist. 141 $\frac{1}{2}$ miles.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	875 W	6 6 6 6 6	$\begin{aligned} & 2 \\ & - \\ & - \end{aligned}$	S	10	$\overline{32 \mathrm{E}}$	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	S 58 W	$\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{l\|} \overline{5} \\ 5 \\ 5 \end{array}$	S by E	10	$\overline{30 \mathrm{E}}$	Variation $18^{\circ} \mathrm{E}$.
5 6	N $65{ }^{-1}$	5 5 5	-	s \mathbf{W}^{--}	10	$\overline{29} \mathrm{E}$	A current set by compass $\}$ s $\frac{3}{4}$ W 23 miles from the
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	S 19 W	6	5 5	West	11	12 E	time the departure was taken to the end of the day.

Ex. 5.

Hours	Courses	Knots.	10 ths.	Winds	L'way.	Dev.	Remarks,
1 2 3 4	(1) $20^{\circ} \mathrm{E}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 4 \end{aligned}$	6 6 5 -	East	14°	$7^{\circ} \mathrm{E}$	A point in Lat. 43° Leng. Long. bearing by compass
5 6 7 8	\$22 6i	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	\qquad	Ditto.	13	- \bar{W}	Noith. Dist. 11 miles.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	S45E	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & - \\ & \hline \end{aligned}$	ENA	14	$2 \overline{68}$	
1 2 3 3	N 34 E	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	-6 6 6 2	Eby 8	12	13E	Veriation $23^{\circ} \mathrm{E}$
6 7 8	N 6 E	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	2 2 2 3	- $\overline{\text { Eby }}$	10	21 E	$\left\{\begin{array}{c} \text { A current set } \\ \text { by compass } \end{array}\right\}$
	810 E	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 6 \end{aligned}$	E 18	11	0	time the departure was taken to the end of the day.

Day's Work.
Ex. 6

Hours	Courses	Knots	10 ths.	Winds	L'way.	Dev.	Rec.arks \&c.
$\begin{array}{r}1 \\ \hline 1 \\ \hline \\ 3 \\ 4 \\ \hline\end{array}$	$824^{\circ} \mathrm{E}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	7 5 5	SWIW	7	$\overline{11 W}$	$\begin{array}{ll} \hline \text { point } & 35^{\circ} 26^{\prime} \\ \text { in Lat. } \\ \text { Long. } 1010 & 10 \mathrm{E} \\ \text { bearing by compas8 } \end{array}$
5 6 7 8	$\overline{\mathrm{N}} \mathbf{6 5 \mathrm { W }}$	5 4 4 5 4	$\overline{5}$	Ditto.	6	$\overline{19 \mathrm{E}}$	SEby E 年E Dist. 9 miles.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	820 W	$\begin{aligned} & 4 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{l\|} \hline 8 \\ \hline 5 \\ 5 \end{array}$	West.	6	8 E	Variation $14^{\circ} \mathrm{W}$.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	S 43 W	6 6 6 6	$\begin{aligned} & - \\ & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \end{aligned}$	W N W	7	17 E	
$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	Sonth	6 6 6 6 6	3 5 3 3 -	W 8W	8	$2 \bar{W}$	A current set $\}$ by compass S $14^{\circ} \mathrm{W}$ 14 miles from the
$\begin{aligned} & 9 \\ & 10 \\ & 11 \\ & 12 \end{aligned}$	\$56W	6 5 5 5 5	$\frac{4}{2}$	S by ${ }^{-1}$	6	21E	time the ceparture was taken in the end of the day.

Ex. 7.

Hours	Courses	Knots	10 ths.	Winds	L'way.	Dev.	Remarks, \&c.
1	North	3	${ }^{-}$	ENE	9		
2		4	-		0		in Lat. $0^{\circ} 46^{\prime} \mathrm{S}$
3		4	-				Long. 3624 W
4		4	-				bearing by compass
5	Ditto.	5	-	E by 8	0	$\overline{5 W}$	Dist. miles
7		4	5				
8		4	-				
10	$\overline{\mathrm{N} 25^{\circ} \mathrm{W}}$	4	5	N H	12	18W	Variation $8^{\circ} \mathrm{W}$.
10			-				
11		${ }_{5}^{5}$	3				
	N38 W			NEby	10	24W	
2	No W	4	$\overline{6}$	Neby			
3		4	6				
4		4	-				
5	N 40 E	4	-	$\overline{\text { NWbyNat }}$	8	$\overline{16 \mathrm{E}}$	A curront set
13		4	-				by compass $\}$
8		4	-				$871^{\circ} \mathrm{E}$
8		4	2				21 miles from the
10	N 28 E	4		NW¢N	9	12E	
10		4	${ }_{5}^{2}$				was taken in the end of the day.
11		4	5				end of the day.
12		4	5				

Ex. 8.

Hours	Courses	Knots	10 ths.	Winds	L'way.	Dev.	Remarks, \&c.
1 2 3 4 4	N $13^{\circ} \mathrm{W}$	-8 7 8 8	7 7 	W by N	9°	$\overline{8^{\circ} \mathrm{E}}$	A point in Lat. $32^{\circ} 42^{\prime} \mathrm{N}$ Long. 2710 W bearing by compass
5 6 7 7	$\overline{\mathrm{N} 25^{\circ}} \overline{\mathrm{E}}$	$\begin{array}{r} 9 \\ 9 \\ 9 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & \overline{5} \\ & 8 \\ & \hline \end{aligned}$	N ${ }^{\text {w }}$	10	$\overline{15 W}$	$\begin{aligned} & \mathrm{S} 27^{\circ} \mathrm{E} \\ & \text { Dist. } 14 \text { miles. } \end{aligned}$
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	Ditto	$\begin{aligned} & 10 \\ & 11 \\ & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 8 \\ & \overline{-} \end{aligned}$	do	14	$\overline{15 W}$	Variation $23^{\circ} \mathrm{E}$
1 2 3 3 4	$\overline{\text { N } 18^{\circ} \mathrm{E}}$	9 8 8 9 9	$\overline{-}$		11	$\overline{11} \bar{W}$	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\overline{\mathrm{N} 37 \mathrm{~W}}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \overline{2} \\ & 3 \\ & 2 \end{aligned}$	N E by	15	$\overline{985}$	A current set $\}$ y compas3 miles from 18 miles from the
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	North	7 7 7	- 6	E by Na^{3}	8	0	time the departure: was taken to the; end of the day.

Ex. 9.

Hours	Courses	Knots	10 the.	Winds	L'way.	Dev.	Remarks, \&c.
1 2 3 4	$\overline{\text { N } 25^{\circ}}$ W	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \end{aligned}$	N E	14°	$14^{\circ} \mathrm{W}$	A point in Lat. $38^{\circ} 10^{\prime} \mathrm{N}$ Long. $148 \quad 47 \mathrm{~W}$ bearing by compars
5 6 7 8	S 70 E	8 8 8 8	$\overline{-}$	do	14	22 E	W $\frac{3}{4} \mathrm{~N}$ Dist. 10 milies.
9 10	$\overline{\mathrm{N}} 88$	6		N by E	11	20 W	Variation $16^{\circ} \mathrm{E}$
11		6	8				
12		7	-				
1 2 3 4	N76	$\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\overline{5}$	North	12	$\overline{28 E}$	
5 6 7 8	N 47 E	6 6 6 6	$\begin{aligned} & 6 \\ & 2 \\ & 2 \end{aligned}$	$\mathrm{N} \mathrm{N} \mathbf{W}$	9	$\overline{16 \mathrm{E}}$	$\left.\begin{array}{c}\text { A current set } \\ \text { by compass }\end{array}\right\}$ by compass $48^{\circ} \mathrm{E}$ 27 miles from the
9 10 11 12	N 45 E	6 6 6 6	5 5 5	N W by W	0	$\overline{165}$	time the departure was taken to the end of the day.

Ex. 10.

Hours	Courses	Knots	10 ths.	Winds	L'way.	Dev.	Remarks, \&c.
1	North	8	3	W N W	8°	0°	A point
2		8	2				in Lat. $44^{\circ} 30^{\prime} \mathrm{N}$
3		8	3		\%		Long. 2519 W
4		8	3				bearing by com-
5	N $18^{\circ} \mathrm{E}$	7	8	$\overline{\text { N W } \frac{1}{2} \text { W }}$	12	6W	pass
6		7	8				- Eby 8 星 5
7		7	5				Dist. 31 miles.
8		7	-				
9	871 W	7	-	Ditto	12	$\overline{23 \mathrm{E}}$	Variation $29^{\circ} \mathrm{W}$.
10		7	-				
11		7	-				
12		6	5				
1	West	6	5	N N W	10	$\overline{25 \text { E }}$	
2		6	5				
3		6	5				
4		7	-				
5	N 70 W	8	-	N NE	0	$\overline{20 \mathrm{E}}$	A current set
6		8	-				by compass
7			-				N W by $\mathrm{N}+\mathrm{N}$
8		8	-				24 miles from the
9	Ditto	7	5	North.	14	30 E	time the depar-
10		7	5				ture was taken to
11		7	-				the end of the
12		7	5				day.

Ex. 11.

Hours	Courses	Knots	10 this.	Winds	L'way.	\|Dev.	Remarl.s, \&c.
1 2 3 4	N $73^{\circ} \mathrm{E}$	6 6 7 7	8 8 - -	North.	18°	20 W	A point in Lat. $48^{\circ} 22^{\prime} 8$ Long. 9426 E beaing by com-
6 6 7 8	$\left\{\begin{array}{l}\text { Up N 34E } \\ \text { Off } 80 \mathrm{E}\end{array}\right\}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\mathrm{N} \mathbf{N W}$	58	$\overline{17 \mathrm{E}}$	pass S by W Dist. 13 miles.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	$\left\{\begin{array}{l}\text { UpN 10E } \\ \text { Off } 52 \mathrm{E}\end{array}\right\}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \overline{2} \\ & 2 \end{aligned}$	N W	54	$\overline{10 \mathrm{~W}}$	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	N 5 E	$\begin{aligned} & 8 \\ & 8 \\ & 7 \\ & 7 \end{aligned}$	$\bar{\delta}$	W N W	16	1 W	Variation $26^{\circ} \mathrm{E}$.
6 8 7 8	N 12 W	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\overline{-}$	West.	12	12 E	$\left.\begin{array}{\|l} \begin{array}{l} \text { A current set } \\ \text { by compass } \end{array} \\ \text { \& \& } \& 8 . \\ 29 \text { miles from the } \end{array}\right\}$
9 10 11 12	Ditto	7 7 8 8	6 6 -	Ditto	14	12E	time the departure was taken to the end of the day.

Ex. 12.

Hours	Courses	Knots	10 ths.	Winds	L'way.	Dev.	Remarks, \&c.
1 2 3 4	East	9 9 9 10	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & -\end{aligned}\right.$	8 S E	11°	$\overline{22^{\circ} \mathrm{E}}$	$\begin{array}{\|llll} \hline \text { A point } & & & \\ \text { in Lat. } & 48^{\circ} & 10^{\prime} & \mathrm{N} \\ \text { Long. } & 29 & 50 & \mathrm{~W} \\ \text { bearing by compass } \end{array}$
5 6 7 7	$825^{\circ} \mathrm{W}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	-	S E	13	$\overline{\mathrm{W}}$	NE Dist. 4 $\frac{1}{2}$ miles.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	East	10 10 10 9	$\overline{-}$	88 E	13	22E	Variation $34^{\circ} \mathrm{W}$
1 2 3 3 4	875	9 9 9 9 9	6 6 6 6	S $\frac{1}{2}$	12	$\overline{21 \mathrm{E}}$	
5 6 7 7	$\overline{882 E^{-}}$	10 9 10	5 - - -	S by E	13	$\overline{22 \mathrm{E}}$	A current set) in compass $\}$ $828^{\circ} \mathrm{W}$. 18 miles from the
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	820 W	8 8 8 8 8	7 7 -	SETE	11	IW	time the departure was taken in the end of the day.

Ex. 13.

Hours	1 ourses	Knots 10	10 ths.	Winds	L'way.	Dev.	Remarks
1 2 3 4	$\overline{\text { S } 36}{ }^{\circ} \mathrm{E}$	$\begin{array}{l\|} \hline 8 \\ 8 \\ 8 \\ 8 \end{array}$	$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	$\overline{\mathbf{S 3 2}^{\circ} \mathrm{W}}$	14°	$6^{\circ} \mathrm{W}$	A point in Lat. 35° 35^{\prime} N Long. 0 47 W bearing by compass
5 6 7 8	$\overline{\text { S } 25 ~}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	- - - -	\$85 W	0	$\overline{11 \mathrm{E}}$	W $\frac{3}{4}$ N Dist. 12 miles.
9 10 11 12	, Ditto	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	S	13	11 E	Varlation $18^{\circ} \mathrm{W}$.
1 2 3 4	870	$\begin{aligned} & 8 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 8 \\ & - \end{aligned}$	out	11	$\overline{20 \mathrm{E}}$	
6 6 7 8	829 W	$\begin{aligned} & 8 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & -6 \\ & 4 \end{aligned}$	840 E	12	3 W	$\left\{\begin{array}{c} \text { A ourrent set } \\ \text { by compass } \end{array}\right\}$
9 10 11 12	843 W	7	2	827 E	10	8 W	time the departure was taken to the end of the day.

Ex. 14.

Hours	Courses	Winds	10 t ? s .	Winds	L'way.	Dev.	Remarks, \&c.
1 2 3 4	$\overline{\mathrm{N} 32^{\circ} \mathrm{W}}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 8 \\ & 6 \\ & 5 \end{aligned}$	S $40^{\circ} \mathrm{W}$	0°		point in Lat. $44^{\circ} 15^{\prime} \mathrm{S}$ Long. $104 \quad 10$ E bearing by compass
6 6 7 8	N 30 W	8 7 7 7		S 80 W	8	$\overline{16 \mathrm{E}}$	N E Dy E Dist. 5 miles.
9 10 11 12	$\overline{\mathrm{N}} 16$	$\begin{aligned} & \hline 8 \\ & 9 \\ & 9 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \end{aligned}$	N 8	10	9 E	
1 2 3 4	N 80	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 5 \\ & 5 \end{aligned}$		9	$\overline{32 \mathrm{E}}$	Variation $17^{\circ} \mathrm{E}$
5 6 7 8	N 49 W	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \\ & \hline \end{aligned}$	5	N 20 E	10	E	$\left\{\begin{array}{c} \text { A current set } \\ \text { by compass } \\ \text { N } E \text { by E E } \\ 18 \text { miles from the } \end{array}\right\}$
9 10 11 12	N 32	10 10 10 9	$\overline{5}$	N 58 E		$\overline{17 E}$	time the departure was taken to the -.nd of the day.

Ex. 15.

Hours	Courses	Knots.	10 th8.	Winds	L'way.	Dev.	Remarks, \&c.
1	\{ UpS $\left.76^{5} \overline{\mathrm{~W}}\right\}$	1	5	W by 8	50°	$\overline{4^{\circ} \mathrm{E}}$	A point
2	\{ Off S 26 E$\}$	1	5				in Lat. $30^{\circ} 12^{\prime} \mathrm{N}$
3		1	5				Long. 17930 W
4		1	-				bearing by compass
5	\$10 W	5	8	Ditto	18	1 E	Dist. - miles.
7		5	9				
8		6	-				
9	\{ Up West \}	1	2	NW by N	55	$\overline{12 \mathrm{~W}}$	
10	$\left\{\right.$ off S $\left.34^{\circ} \mathrm{W}\right\}$	1	2				L
11		1	2				
12		1	2				
1	West	7		N N W	16	22W	Variation $12^{\circ} \mathrm{E}$
2		7	5				
3		7	-				
4		7	-				
	Ditto			North	0	$\overline{22 W}$	A current set
6		6	8				A by compass $\}$
7		7	-				S $78^{\circ} \mathrm{W}$
8		0	8				36 miles from the
9	W 148	6	8	$\overline{\mathrm{NW} \text { by }}$	16	18W	time the cleparture
10		6	5				was taken to the
11		6	5				end of the day.
12		7	-				

Latitude by the meridian altitude OF THE SUN.

48. To find a Greenwlch date.-As it must be noon at ship when this observation is taken, the ship time astronomically expressed, will be, the date of the observation followed by $0^{\mathrm{h}} 0^{\mathrm{m}} 0$. Turn the longitude into time * (Norie table XIX, Bowditch table XXI, Raper table 17) and add it to the ship date if the longitude is West, but subtract it if it is East, and the sum or remainder will be the Greenwich apparent Time.
49. To find the true declination.-In page I of the month in the Nautical Almanac, will be found the sun's declination at apparent noon of each day (for mean noon see Note). Take out the declination opposite the day of your Greenwich date, and also the "difference for 1 hour" alongside. Express the Greenwich time in decimals, by dividing the minutes by 6 , and placing the result after the hours with a decimal point between. Multiply the difference for 1 hour by the Greenwich time decimally expressed; count the number of figures at the right hand of the decimal point of both the numbers multiplied, and point off the same number of figures from the right hand of the product, the number r-maining will be the correction for the declination in seconds ; and of course, if this exceeds 60 it must be brought into minutes. Place the correction under the declination, and if the declination in increasing, add then together; but if it is decreasing, subtract the less from the greater, bearing in mind that if the correction is the larger, the true declination will be N . or S. contrary to that taken from the almanac.

Nors. The declination at mean noon is given in Page II of each month in the Nautical Almanac, but the hourly difference is still to be taken from Page 1 .
50. To find the Sun's true alutude.-To the observed altitude apply in rotation the following corrections, viz :

Index error (if any).-This is additive or subtractive according to its siga (+ additive, - subtractive).

[^8]Dip.-In Table V Norit, Table XIII Bowditch, or Table 30 Raper, will be found the dip corresponding to the given height of the eye; the dip is always subtractive.

Refractinn and Parallax.-In Norie this correction is found in Table XV:II cpposite the App. Alt. and in the column marked "Sun's Cor." at the top. In the other Epitomes the Refraction and Parallax are given in separate tables, and the correction will be found by taking out the Refraction from Table XII in Bowditch or Table 31 in Raper, and from it subtracting the Parallax, Bow. elitch Table XIV, and Raper Table 34. 'This correction is always subtractive.

Semi-diameter: - Open the Nautical Almanac to the given month, and in page II, in its proper column, you will find the semi-diameter opposite the day of your Greenwich date. If the lower limb has been observed, the semi-diametor is additi e: but if the upper limb has been taken, it is then subtractive. The result is the True Altitude of the Sun's centre.
51. To find the zenith distance.-Take the True Altitude from 90°, and the remainder will be the Zenith Distance, to be named N. or S. contrary to the observed altitude. In some very rare cases, the true altitude is fomnd to exceed 90°; in such an event, take 90° from it, and the remainder will be the Zenith Distance of the same name as the observed altitude.
52. To find the Latitude.-Under the zenith distance place the true declination, add them together if they are of the same name, but take their difference if they are of contrary names, and in either case, the result will be the latitude N . or S . of the same name as the greater.

Ex. 1-1876, May 17th, in longitude $82^{\circ} 30^{\prime}$ W., the observed meridian altitude of the sun's lower limb was $54^{\circ} 54^{\prime} 0^{\prime \prime}$ bearing North, index error $+1^{\prime} 14^{\prime \prime}$, height of eye 17 feet. Required the latitude.
Ship date May $17^{\mathrm{d}} 0^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$ Decl. 19" $28^{\prime} 21$ Hourly diff. $33^{\text {n. }} 32$
Long in time $+5300+33 \quad 5.5$
$\left.\begin{array}{c}\text { Greenwich } \\ \text { App. Time }\end{array}\right\} \overline{\overline{17530} 0}$ T. decl. $\overline{1931} 24$

16660
16660
$183 \cdot 260$
Correction
33

Norie

Obs. Alt	$54^{\circ} 54^{\prime \prime} 0^{\prime \prime} \mathrm{N}$
Index error	+ 114
	545514
Dip.	- 357

Bowditch

Raper
$54^{0} 54^{\prime} \quad 0^{\prime \prime} \mathrm{N}$
$+\quad 114$
545514
$-\quad 45$
R. $41^{\prime \prime} 54519$
R. $40^{\prime \prime} 545111$
P. $5-36$

545033

$+\quad 1551$
$55 \quad 628$
90
345332
193124
15228

$+1551$
$55 \quad 624$
90
345336 S
193124 N
$15^{9} 12 \mathrm{~S}$

Ex. 2-1876, October 30th, in longitude $112^{\circ} 48^{\prime} \mathrm{E}$, the .. ved meridian altitude of the Sun's lower limb was $53^{\circ} 8^{\prime} 40^{\prime \prime}$ bearing North, index error- $1^{\prime} 20^{\prime \prime}$, height of eye 14 feet. Required the latitude.
 $\begin{array}{llll}\text { Long in time } & 73112 & 1336 & 16.5\end{array}$
$\left.\begin{array}{c}\text { Greenwich } \\ \text { App. Time }\end{array}\right\} \overline{29162848}$ T. decl. $\overline{135353} \quad \overline{24725}$ 29670 4945
$815 \cdot 925$
Correction 1336

Latitude by the Meridian Altitude of the Sun.
Norie

Obs, Alt.	$53^{\circ} 8^{\prime} 40^{\prime \prime} \mathrm{N}$		$5308^{\prime} 40^{\prime \prime} \mathrm{N}$		
Ind. error	- 120		- 120		$\begin{array}{r} 120 \\ -\quad 1 \end{array}$
	$53 \quad 720$		53720		53720
Dip.	- 336		- 341		$\begin{array}{r}\text { - } \\ -\quad 340 \\ \hline\end{array}$
	$53 \quad 344$	R. $43^{\prime \prime}$	53	R. 44^{*}	53340
Ref.-Par.	38	P 6	37	P 6	- $\quad 38$
	$\begin{array}{llll}53 & 3\end{array}$		533		$53 \quad 3.2$
Semi-diam	$\begin{array}{r}169 \\ \hline\end{array}$		+169		a +169
True alt.	$\begin{aligned} & 53 \quad 19 \quad 15 \\ & 90 \end{aligned}$		$\begin{aligned} & 531911 \\ & 90 \end{aligned}$		$\begin{aligned} & 531911 \\ & 90 \end{aligned}$
Zen.dist.	364045 S		364049 S		364049 S
True decl.	135353 S		135353 S		135353 S
Latitude	503438 S		51) 3442 S		503442 S

Ex. 3-1876, April 26th, in longitude 10900 E., the observed meridian altitude of the Sum's Lower Limb was $520^{\prime} 10^{\prime} 0^{\prime \prime}$ bearing North, index error + $\mathrm{I}^{\prime} 16^{\prime \prime}$, height of eye 11 feet. Required the latitude.

Ex. 4-1876, July 11 th, in longitude $111^{\circ} 25^{\prime}$ E., the observed meridian altitude of the Sun's Lower Limb was $18^{\circ} 46^{\prime \prime} 15^{\prime \prime}$ bearing North, index error $-0^{\prime} 49^{\prime \prime}$, height of eye 22 feet. Required the latitude.

Ex. 5-1876, November 8th, in longitude $11^{\circ} 46^{\prime}$ E., the ob served meridian altitude of the Sun's Lower Limb was 730 $18^{\prime} 20^{\prime \prime}$ bearing South, index error- $-0^{\prime} 28^{\prime \prime}$, height of eye 16 feet. Required the latitude.

Ex. 6.-1876, March 27th, in longitude 8022 W., the observed meridian altitude of the Sun's Lower Limb was $32^{\circ} 22^{\prime} 10^{\prime \prime}$ bearing South, index error $+1^{\prime} 47^{\prime \prime}$ height of eye 13 feet. Required the latitude.

Ex. 7-1876, September 23rd, in longitude 104020° E., the observed meridian altitude of the Sun's Upper Limb-was $18^{\circ} 47^{\prime} 50^{\prime \prime}$ bearing North, index error $0^{\prime} 0^{\prime \prime}$, height of eye 18 feet. Required the latitude.

Ex. 8-1876, Jannary 24th, in longitude $73^{\circ} 18^{\circ}$ W., the observed meridian altitude of the Sun's Lower Limb was $89^{\circ} 53^{\prime} 50^{\prime \prime}$ bearing North, index error $+1^{\prime} 27^{\prime \prime}$, height of eye 14 feet. Required the latitude.

Ex. 9-1876; July 4th, in longitude $133^{\circ} 48^{\prime}$ W., the observed meridian altitude of the Sun's Lower Limb was $51^{\circ} 16^{\prime} 50^{\prime \prime}$ bearing South, index eraor - $I^{\prime} 16^{\prime \prime}$, height of eye 13 feet. Required the latitude.

Ex. 10.-1876, Mareh 20th, in longitude $32^{\circ} 48^{\prime}$ E., the observed meridian altitude o! the Sun's Lower Limb was $39^{\circ} 26^{\prime} 30^{\prime \prime}$ bearing South, index error- $0^{\prime} 20^{\prime \prime}$, height of eye 12 feet. Required the latitude.

Ex. 11.-1876, September 22nd, in longitude $76^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{W}$., the observed meridian ailtitude of the Sun's Lower Limb was $499^{\prime} 27^{\prime} 30^{\prime \prime}$ bearing Sousil, index error $+2^{\prime} 20^{\prime \prime}$, height of eye 21 feet. Required the lacitude.

Ex. 12.-1876, May 15 th, in longitude $16^{\circ} 45^{\prime} \times{ }^{\prime} \times$., the observed meridian altitude of the Sun's Lower Limb was $38^{\circ} 19^{\prime} 20^{\prime \prime}$ bearing North, index error $+2^{\prime} 28^{\prime \prime}$, height of eye 15 feet. Required the latitude.

Ex. 13.- -1876 , March 20th, in longitude $24^{\circ} 15^{\prime}$ E., the observed meridian altitude of the Sun's Tower Limb was $38^{\circ} 4 \mathbf{6}^{\prime} 15^{\prime \prime}$ bearing South, index error - $1^{\prime} 15^{\prime \prime}$ height of eye 16 feet. Reyuired the latitude.

Ex. 14.-1876, Jume 29th, in longitude $160^{\circ} 50^{\prime}$ E., the observed meridian altitude of the Sun's Lower Limb was 710 $2^{\prime} 30^{\prime \prime}$ bearing North, index error- $0^{\prime} 58^{\prime \prime}$, height of eye 16 feet. Required the latitude.

Ex. 15.-1876, March Ist, in longitude $54^{\circ} 55^{\prime}$ E., the observed meridian altitude of the Sun's Lower Limb was $62^{\circ} 6^{\prime \prime} 0^{\prime \prime}$ bearing South, index error-- $1^{\prime} 14^{\prime \prime}$, height of eye 20 feet. Required the latitude.

TIME.

TO EXPIRESS TIME ASTRONOMICALLY.
58. If the given time be P. M.-Set down the time as it stands, and proflx to it the day of the month upon which it oceurs ; thusMay 15 th at $4^{\mathrm{h}} 20^{\mathrm{m}} \mathrm{P}$. M. is equal to $15^{\mathrm{d}} 4^{\mathrm{h}} 20^{\mathrm{m}}$ astronomical time.
*. 54. If the given time be A.M.-Add 12 hours to the time, and prefix the date of the preceding day; thus-May 15th at $5^{\mathrm{h}} 30 \mathrm{~m}$ A. M. is equal to $14^{d} 17_{\mathrm{h}} 3 \mathrm{e}^{\mathrm{m}}$ astronomical time.
55. The above rules may be explained by stating that all astronomical time counts from noon; now, in the example given above (59), the $4^{\mathrm{h}} 20 \mathrm{~m}$ P. M. is reckoning from noon of the 15 th as it stands, therefore no change is necessary beyond prefixing the noon from which it reckons; but in the following example (54) the $5^{\mathrm{h}} 30^{\mathrm{n}}$. is not reckoning from noon, but from the preceding midnight ; it is plain, you canuot count your time frum noon of the 15 th, because that time has not yet arrived; you have no alternative therefore, but to reckon it from noon of the 14th, and this is done, by adding to your time the 12 h between noon of the 14th and the midnight from which your A. M. is reckoned, and you must distinctly understand that $5 \mathrm{~h} 30^{\mathrm{m}}$ A. M. on the 15 th , civil time, and $14^{\mathrm{d}} 17_{\mathrm{h}} 30^{\mathrm{m}}$ astronomical time, is exactly the same lime only differently stated.

TO GET A GREENWICH DATE.

58. Express your ship time astronomically (53 and 54). Turn your longitude into time by multiplying it by 4 and dividing by 60, or by inspection from Table XIX Norie, Table XXII Bowditch, or Table 17 Raper. Subtract the longitude in time from the astror:mical time, if the longitude is East; but get their sum, if the longitude is West, the result in either case will be the Greenwich date; and will he either mean or apparent time the same as that at ship.

Ex. 1. January 27 th, in Lat. $180^{\circ} 25^{\prime} \mathrm{N}$. Long. $87^{\circ} 30^{\circ} \mathrm{E}$. the apparent time at shif, was $3^{\text {h }} 17 \mathrm{~m}$ P. M.; required the corresponding Greenwich date.

Longitude		$\underset{4}{30 \mathrm{E}}$	A. T. S. Long. in tirive	$\begin{array}{ccc} 27 \mathrm{~d} 3 \mathrm{~h} & 17 \mathrm{~m} \\ -\mathrm{i} & 50 \end{array}$			
	(6,0) 35,	00		26	21	27	0
	e 5	00					

 the mean time at ship was $8^{\boldsymbol{h}} 27^{7 \mathrm{~m}} 16^{\mathrm{s}} \mathrm{A}$. M. ; required the Green. wich date.

Longitude	$109032^{\prime} 14^{\prime \prime}$ M. 'T. S.		$11^{\text {d }} 20^{\mathrm{L}} 27 \mathrm{~mm} 16^{4}$			
	4	Long. in time	+		18	9
	$43,8 \quad 856$	G. M. T.	12	3	45	25
Long. in tim	$718 \quad 9$					

Ex. 3.-Feb. 2nd in Lat. $0^{\circ} 12^{\prime}$ S. Long. $48^{\circ} 22^{\prime} \mathrm{W}$, the apparent time at ship was $5^{\mathrm{h}} 29 \mathrm{~m}$ P. M.; required G. A. T.

Ex. 4.-Octoher 12 th in Lat. $17^{\circ} 10^{\prime}$ N. Long. $1201 \frac{1}{\prime}^{\prime} 16^{\prime \prime}$ E, the apparent time at ship was $3^{\mathrm{h}} 27^{7 \mathrm{~m}} 40^{\mathrm{s}}$ A. M.; required G. A. T.

Ex. 5.-August 20th in Lat. 32014^{\prime} N. Long. $112019^{\prime} 50^{\prime \prime} \mathrm{W}$, the mean time at ship was $11^{\mathrm{h}} 15^{\mathrm{m}} 45^{\mathrm{s}} \mathrm{P}$. M. ; required G. M. T.

Ex. 6.-March 16th in Lat. 80 42^{\prime} S. Long. $36^{\circ} 24^{\prime} 25^{\prime \prime} \mathrm{E}$, the apparent time at ship was $9{ }^{\mathrm{h}} 17 \mathrm{~m} 52^{\mathrm{A}}$ A. M.; required G. A. T.

Ex. 7.-April $29 t \mathrm{th}$ in Lat. $44^{\circ} 25^{\circ} \mathrm{S}$. Long. $62012^{\prime} 15^{\prime \prime} \mathrm{E}$. ; the mean time at chip was $3^{\mathrm{h}} 12^{\mathrm{m}} 49 \mathrm{~s}$ P. M.; required G. M. T.

Ex. 8.-July Sth in Lat. $12^{\circ} 13^{\prime} \mathrm{N}$. Long. $147^{\circ} 18^{\prime}$ W.; the mean time at ship was $7^{7 \mathrm{~h}} 32^{\mathrm{n}} 23^{s}$ P. M. ; required G. M. T.

Ex. 9.-May 1st in Lat. $15024^{\prime} \mathrm{N}$. Long. $83^{\circ} 22^{\prime} 30^{\prime \prime}$ W.; the apparent time at ship was $10^{\mathrm{h}} 26^{\mathrm{m}} 20^{\circ} \mathrm{A}$. M. ; required G. A. T.

Ez. 10.-Dec. Ist in Lat. $29^{\circ} 30^{\prime}$ S. Long. $55^{\circ} 55^{\prime} 45^{\prime \prime}$ E.; the mean time at ship was $1^{\mathrm{h}} 5^{\mathrm{m}} 4^{\mathrm{s}}$ P. M. ; required G. M. T.

AMPLITUDE.

57.-With the ship's time and longitude, find the Greenwich apparent time (56), Get out the True Declination. (49).
58. To find the True Ampitude.-Take out the secant of the latitude and the sine oi the declination, the sum will be the log. sine of the True Amplitude ; this is to be named E. if the observation was taken in the morning, but W. if in the afternoon, and \mathbf{N}. or S the same as the True Declination. It must be understood that Amplitudes reckon from the E. or W. towards the N. or S. consequently the E. or W. from which your True Amplitude may count, is placed at its left hand. If the True Declination is $0^{\circ} 0^{\circ}$ the True Amplitude is also $0^{\circ} 0^{\prime}$.
50. To thd the Error of the Compass,- Set down your Magnetic Amplitude under the True, making them both reckon from
the same E . or W . point, now add the two together if one is \mathbf{N}. and the other S , bit get their difference of both are of the same rame, and the result will be the Errcr of the Compass to He named E. or W. as follows:-... make a cross to represent the four quarters of the compass, and lay of ef epon this the places of the Magnetic and True Amplitųdec; now suppose yourself standing in the centre, looking along the line representing the Magnetic Amplitude, then if the True Amplitude falls to your right hand, the Error is to be named E., but W. iffit falls to your left hand.
60. To Hind the Deviation. -Under the Error of the Compass place the Variation ; add them together if they are of contrary names, but get their difference where they are of the same name, and the sum or remainder will be the Deviation, to be named E. or W the same as the error of the compass except when the Error and Variation have like names and the Error is the least, in this case, the Deviation takes the contrary name to the Error; thus :-

Error	$14010^{\prime} \mathrm{W}$	Error	14010		Error	$14^{\circ} 10^{\prime} \mathrm{W}$22225		
Var.	225 E	Var.	225	W	Var.			
Dev.	1635 W	Dev.	1145	W	Dev.	8		

The name of the Deviation may also be found by laying off' the Variation and the Error to the East or West, as named, of the North point of the compass; then if the Error is to the right of the Variation, the Deviation is East, but if to the left hand it is West.

Ex. 1.-1876, January 21st, at 7 n 3 n A. M. appt. T. Ship, in latitude $35^{\circ \prime} 20^{\circ} \mathrm{N}$. , longitude $48^{\circ} 20^{\prime} \mathrm{W}$., the Sun's Magneti 1 mp litude was E. by S. Required True Amplitude, and Error of the Compass, and supposing the Variation to be $17^{\circ} 10^{\prime}$ W. required the Deviation of the Compass for that position of the ship's head.

Corrertion $\overline{\overline{115 \cdot 729}}$

Latitude	$35^{\circ} 20^{\prime}$	Secan	0.088416
True declination	2000	Sine	9-534052
True Amplitude	E 2447	Sine	9.622468
Mag. Amplitude	E 1115		
Error of theCiompass 1332 E			
Variation	1710	V	
Deviation	3042		

Ex. 2.-1876, November 10th, at $6^{\mathrm{h}} 20 \mathrm{~m}$ P. M Appt. T. Ship, in latitude $15^{\circ} 33^{\prime} \mathrm{S}$, longitude $108^{\circ} 59^{\prime} \mathrm{E}$, the Sun's Magnetic Amplitude was W 1404 N . Required True Amplitude and Error of the Compass, and supposing the Variation to be $1024^{\prime} \mathrm{W}$, required the Deviation of the Compass for that position of the ship's head.

Lutitude		15033	Secaut	0.016195
True declination		1720	Sine	9-474115
Trie amplitude	W	181	Sine	9•490310
Mag. Amplitude	W	144		
Erbor of the com		325		
Variation		124		
Deviation		3041		

Ex. 3.-1876, April 15th, at $5^{\text {h }} 43 \mathrm{~m}$ P. M. Appt. T. Ship, in latitude $22^{\circ} 56^{\prime} \mathrm{S}$, longitude $73^{\circ} 18^{\prime} \mathrm{W}$, the Sun's Magnetic Amplitude was W $3^{\circ} 30^{\prime} \mathrm{N}$. Required 'True Amplitude and Error of the Compass, and supposing the Variation to be $12056^{\prime} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 4.-1876 Octobei: 31st, at $4^{\mathrm{h}} \mathbf{4 0}^{\mathrm{m}}$ A. M. Appt. T. Ship, in latituce $54^{\circ} 9^{\prime} \mathrm{S}$, longitude $168^{\circ} 0^{\prime} \mathrm{E}$, the Sun's Magnetic Amplitude was S $81^{\circ} 20^{\circ}$ E. Required True Amplitude and Error of the Compass, and supposing the Variation to be $19^{\circ} 17^{\prime} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 5. - 1876 , February 8th, at $6^{\text {h }} \mathbf{4 7 m}$ P. M. Appt. 'T. Ship, latitude $37^{\circ} 30^{\prime}$ S., longitude $116^{\circ} 14^{\prime}$ E., the Sun's Magnetic Amplitude was N $85^{\circ} 20^{\prime}$ W. Required True Amplitide and Error of the Compass, and supposing the Variation to be $8^{\circ} 0^{\prime} \mathrm{W}$, required the Deviation of the Compass for that position or the Ship's head.

Ex. 6.-1876, Ju'y 2nd, at $2^{\text {h }} 17 \mathrm{~nm}$ A. M. Appt. T. Ship, latitude $62042^{\prime} \mathrm{N}$, longitude $55^{\circ} 38^{\prime} \mathrm{W}$, the Sun's Magnetic Amplitude was E $90^{3} 30^{\prime} \mathrm{N}$. Required True Amplitude and Error of the Compass, and supposing the Variation to be $60^{\circ} 15^{\prime} \mathrm{W}$, required the Deviation of the Compass for that position of the Snip's head.

Ex. 7.-1876, January 5th, at $5^{\mathrm{h}} 46^{\mathrm{m}}$ P. M. Appt. T. Ship, latitude $8^{\circ} 13^{\prime} \mathrm{N}$, longitude $41^{\circ} 29^{\prime} \mathrm{W}$, the Sun's Magnetic Amplitude was $\mathrm{S} \mathbf{W} \not \mathbf{W}$. Required True Amplitude and Error of the Compass, and supposing the Variation to be $700^{\prime} \mathrm{W}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 8.-1876, October 1st, at $6^{\text {h }} 12 \mathrm{~m}$ P. M. Appt. T. Ship, latitude 31° Rf' S, longitude 1290 50' E, the Sun's Maguetic Amplitude was W S W. Required True Amplitude and Error of the Compass, and supposing the Variation to be $0^{\circ} 0^{\prime}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 9.-1876, March 21st, at $6^{\text {h }} 5^{\mathrm{m}}$ A. M. Appt. T. Ship, in latitude $48^{\circ} 36^{\prime} \mathrm{N}$, longitude $0^{\circ} 0^{\prime}$, the Sun's Magnetic Amplitude was S E by E $\frac{1}{2}$ E. Required True Amplitude and Error of the Compass, and supposing the Variation to bo $20^{\circ} 20^{\prime} \mathrm{W}$, required the Doviation of the Compass for that position of the Ship's head.

Ex. 10.-1876, September $22^{\text {nd }}$, at $6^{6} 0^{\mathrm{m}}$ P. M. Appt. 'T. Ship, in latitude $18^{\circ} 9^{\prime} \mathrm{S}$, longitude $13^{\circ} 35^{\prime} 30^{\prime \prime} \mathrm{E}$., the Sun's Magnetic Amplitude was W by $\mathbf{N} \frac{8}{4} \mathbf{N}$. Required True Amplitude and Error of the Compass, and supposing the Variation to bo $24^{\circ} 14^{\prime} \mathrm{W}$, rwquired the Deviation of the Compass for that position of the Ship's head.

Ex. 11.-1876, Decemler zbth, at $3^{\text {h }} 0 \mathrm{~m}$ P. M. Appt. T. Ship, in latitude $59^{\circ} 0^{\prime} \mathrm{N}$, longitude 1 fino $46^{\prime} \mathrm{E}$, the Sun's Magnetic Ampli-
tude was South. Required True Amplitude and Error of the Compass, and supposing the Variation to be 1800^{\prime} E, required the Deviation of the Compass for that position of the Ship's head.

Ex. 12.-1876, June 30th, at $2^{\text {h }} 14^{\mathrm{m}}$ A. M. Appt. T. Ship, latitude $63018^{\prime} \mathrm{N}$., longitude $130^{\circ} 10^{\prime}$ W., the Sun's Magnetic Amplitude was N 25° W. Required, True Amplitude and Error of the Compass, and supposing the Variation to be $38^{\circ} 0^{\prime}$ E., required the Deviation of the Compass for that position of the ship's head.

Ex. 13.-1876, December 11th, at $9^{\mathrm{h}} 2^{\mathrm{m}}$ P. M., Appt T. Ship latitude $59{ }^{\circ} 16^{\prime} \mathrm{S}$., longitude $80^{\circ} 30^{\prime}$ W., the Sun's Magnetic Amplitude was S. by E. Required, True Amplitude and Error of the Compass, and supposing the Variation to be 27° E., required the Deviation of the Compass for that position of the Ship's head.

Ex. 14.-1876, May fst, at $6^{\mathrm{h}} 0^{\mathrm{m}}$ A. M., Appt. T. Ship, latitude $0^{\prime \prime} 0^{\prime}$, longitude 152" 21^{\prime} E., the Sun's Magnetic Amplitude was E by $\mathrm{N} \frac{1}{2} \mathrm{~N}$. Required, True Amplitude and Error of the Compass, and supposing the Variation to be $5^{0} 45$ E., required the Deviation of the Compass for that position of the Ship's head.

Ex. 15.-1876, July 31st, at 6n $^{37 \mathrm{~mm}}$ P. M., Appt. T. Ship, latitude $27^{\circ} 12^{\prime} \mathrm{N}$., longitude, $180^{\circ} \mathrm{E}$., the Sun's Magnetic Amplitude was West. Required, True Amplitude and Error of the Compass, and supposing the Variation to be $11^{\circ} 50^{\prime}$ E., required the Deviation of the Compass for that position of the Ship's head.

AZIMUTH.

61. With the Ship Time and Longitude find the Greenwich Date (56). From the Observed Altitude get the True Altitude (50)Find the True Declination (49) taking the declination from page II of the Nautical Almanac, and the "diff. for 1 hour" from page 1 as before. Subtract the true declination from 90° when the latitude and declination are of the same name, but add it to 90° when they are of contrary names, the sum.or remainder will be the Sun's Polar Distance.
62. To find the True Azimuth.-Under the Polar Distance place the Altitude and Latitude, add them together and divide the sum by 2, now take the difference between the Half Sum and the Polar Distance and let the result be called the Remainder.
63. Turn out the following logs. to the nearest minute :of the Altitude the Secant

"	Latitude	" Secant	
"	Half Sum	"	Cosine
"	Remainder	"	Cosine

64. By Raper the sum of these logs. will be the log. Sine Square of the True Azimuth; but by Norie or Bowditch, divide the sum of these logs. by 2, and look out this log. in the sine column, the degrees and minutes corresponding will be half the azimuth, which being doubled will given the True Azimuth. Name the True Azimuth N or S contrary to the latitude, and \mathbf{E} if the observation was taken in the morning but W if in the afternoon. If the True Azimuth does not reckon from the N or S the same as the sun's bearing by Compass, make it do so by subtracting it from 180^{n}.
65. To find the Error of the Compass.-Under the True Azimuth place the sun's bearing by compass, and if they are both \mathbf{E} or both \mathbf{W} take their difference, but if one is E and the other \mathbf{W} add them together, and the result in either case will be the Error of the Compass. With two cross lines make the four cardinal points of the Compass, and upon this lay off the Compass and True Bearings of the Sun; now supposing yourself standing in the centre, looking along the line representing the sun's compass bearing, then, if the True Azimuth falls to your right hand the Error is E, but W if it is to your left hand.

66 To find the Deviation of the Compass.-With the Error of the Compass and the Variation find the Deviation (60).

Ex. 1-1876, April 16th ; Mean Time Ship at $8^{\text {h }} 43^{m}$ A. M., in latitude $37 \circ 18^{\prime} \mathrm{S}$, longitude $93^{\circ} 22^{\prime} \mathrm{W}$. The Sun's bearing by Compass E N E, altitude © $23^{\circ} 24^{\prime} 0^{\prime \prime}$. Height of the eye 20 feet. Required the True Azimuth and Error of the Compass; and supposing the Variation to be $15^{\circ} 45^{\prime} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.
Ship date April $15^{\mathrm{d}} 20^{\mathrm{L}} 43^{\mathrm{m}} 0^{\mathrm{s}} \quad$ Decl. $10^{\circ} 20^{\prime} 52^{\prime \prime} \mathrm{N} \quad 52^{\prime \prime} \cdot 91$ Long. in time +61328 Cor. $+233 \quad 2 \cdot 9$
G. M. T.
$16 \quad 256 \quad 28$
'T. Dec. 102325
47619 90 10582

Polar distance $1002325 \quad 153 \cdot 439$

Norie.

Obs. Alt. ©	$23^{\circ} 24^{\prime} 0^{\prime \prime}$ Polar distance	1002325	
Dip.	- 417 True altitude	233338	Secant 0.037822
	Latitude	37180	Secant 0.099374
	231943		
Ref.-Par.	- 23 Sum	161153	
	Half sum	803732	Cosine 9.211526
	231740 Remainder	194553	Cosine 9.973625
Semi-diam.	+ 1558		
True alt	233338		19.322347
		$\begin{array}{r} 2 \pi 017 \\ 2 \end{array}$	Sine 9.661174
	True Azinuth N	- 5434 E	
	Magnetic Azimuth N	-6730 E	
	Error of the Compass	1256 W	
	Variation	1545 E	
	Deviation	2841 W	

Bowditch.

Obs. Alt. © $23^{\circ} 24^{\prime} 0 \prime$ " Polar distance $100^{\prime \prime} 23^{\prime} 25^{\prime \prime}$
Dip. $\quad-424$ True Altitude 233328 Secant 0.037 Tit

R. $2^{\prime} 14^{\prime \prime}$		Latitude	37180	Secant 0.099
	231936			
P. -8	- 26	Sum	1611453	
		Half Sum	80 37 7	Cosine 9-21229
Semi-diam.	231730	Remainder	194558	Cosine 9.97363
	+ 15 58			1932306
True Alt.	233328			
			$27^{27} \stackrel{18}{18}$	Sine 9.66153

Thue Azimuth	N	$\overline{54} 36$	E
Magnetic Azimuth	N	6730 E	
Enron of the Compass	$\overline{12} 54 \mathrm{~W}$		
Variation	1545 E		
Deviation	$\overline{2839} \mathrm{~W}$		

Raper.

Obs. Alt. © $23024^{\prime} 0^{\prime \prime}$ Polar distance $100^{\circ} 23^{\prime} 25^{\prime \prime}$
Dip. - 420 TrueAïtitude 233333 Secant 0.037795
R. $9^{\prime \prime} 13^{\prime \prime}$ Latitude $\quad 37180$ Secant 0.099374
R. $2^{\prime} 13^{\prime \prime} \quad 231940$
P.
-2
Sum
Half sum
231735 Remainder

1611458
803729 Cosine $9 \cdot 211909$ 194555 Cosine $9 \cdot 973625$

Semi-diam.
True Alt. $23 \quad 3333$
$\begin{array}{lll}\text { Thue Azimuth } & \text { N } 5435 \mathrm{E} \text { Sine Sq. } \overline{9.322703} \\ \text { Magnetic Azimuth } & \text { N } 67 \quad 30 & \mathrm{E}\end{array}$
Erroh of the Compass
1255 W
Variation
Deviation 1545 E

2840 W
Ex. 2.- 1876 , August 13th; Mean Time Ship at $7 \mathrm{~h} 20^{\mathrm{m}}$ A. M., in latitude $19^{\circ} 10^{\prime} \mathrm{S}$., iongitude $43^{\circ} 33^{\prime}, \mathrm{E}$. The Sun's bearing by Compass E. 量S., altitude © $12^{\circ} 9^{\prime} 0^{\prime \prime}$ Height of the eye 10 fett. Required the Time Azimuth, and Error of the Compass ; and supposing the Variation to be $18^{\circ} \mathrm{W}$., required the Deviation of the Compass for that position of the ship's head.
Ship date Aug. $12 \mathrm{~d} 19^{\mathrm{h}} 20^{\mathrm{m}} 0^{\mathrm{s}}$ Decl. $14^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N}$. Longitude intime $\quad-\quad 25432$ Cor. $\quad-1226$
G. M. T.
$\begin{array}{lllll}12 & 16 & 25 & 28 & \text { Truedecl. } 1436\end{array} 14$ 90

Polar distance 1043614

Norie.

Obs. Alt. © $120 \quad 9 \quad 0^{\prime \prime}$ Polar distance $10^{\circ} 4^{\circ} 36^{\prime} 14^{\prime \prime}$

Dip.	- 32	True Altitude	121736	Secant 0.010085
Ref. - Par.		Latitude	$1910 \quad 0$	Secant 0.024767
	12558			
	- 412		$\begin{array}{lll}136 & 3 & 50\end{array}$	
			$68 \quad 155$	Cosine 9.572950
	$12+46$		363419	Cosine 9.904804
Semi-diam,	+ 1550		-	
				$19 \cdot 512606$
True alt.	21730		3447	Sine $9 \cdot 756303$
			2	

Azimuth.

True Azimuth	$\begin{gathered} \mathrm{N} \\ 180 \quad 34 \mathrm{E} \end{gathered}$
	S 11026 E
Magnetic Azimuth	S 8134 E
Error of the Comp	ass 2852 W
Variation	180 W
Deviation	1052 W

Bowditch.

Obs. Alt. © $120 \quad 9,0^{\prime \prime}$ Polar distance $104^{\circ} 36,14^{\prime \prime}$

Dip.	- 37	True Altitude	121729	Secant 0.01006
		Latitude	$1910 \quad 0$	Secant 0.02477
R. $4^{\prime} 23^{\prime \prime}$	$12 \quad 553$			
P. - 9	- 414	Sum	$136 \quad 343$	
		Half Sum	$68 \quad 152$	Cosine 9.57295
	$12 \quad 139$	Remainder	363422	Cosine 9.90480
Semi-diam.	+ 1550			10.51258
True Alt.	121729			19.51258
			34047^{\prime}	Sille 0.75629

Tinue Azimuth

$$
\text { N } 6934 \mathrm{E}
$$

The remainder of the work the same as in Noric above.

Raper.

Obs. Alt. © $12^{\circ} 9^{\prime \prime} 0^{\prime \prime}$ Polar distance $104^{\circ} 36^{\prime} 14^{\prime \prime}$
Dip. $\quad-310$ True Allitude 121723 Secant 0.010071
R. $4^{\prime} 25^{\prime \prime} \quad \overline{12} \quad 550$
P. - 8 - 417 Sum
$1910 \quad 0$
Secant 0.024767

Half sum
12133 Remainder
$\begin{array}{lll}136 & 3 & 37\end{array}$
$68 \quad 149$ Cosine 0.572950
363425 Cosine 9.904757
Semi-diam.
$+1550$
Trise alt. 121723
Tinue Azimuth N 6934 E Sine S $¢ .9 .512545$
The remainder of the work the same as in Noric above.
Ex. 3.-1876, January 28th ; Mean Time Ship at $3^{\text {h }} 4^{\mathrm{m}}$ P. M., in latitude $24^{\circ} 10^{\prime} \mathrm{S}$, longitude $79{ }^{\circ} 14^{\prime} \mathrm{E}$. The Sun's bearing by Compass N. $87^{\circ} 0^{\prime} \mathrm{W}$, altitude $\bigcirc 36^{\circ} 1 \cdot 20^{\prime \prime}$. Height of the eye 13
feet. Requirel the True Azimuth and Error of the Compass; and supposing the Variation to be $8^{\circ} 38^{\prime} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 4.-1876, February 25th; Mean Time Ship at $8^{\mathbf{h}} \mathbf{1 5 m}^{\mathbf{m}}$ A. M. in latitude $17^{\circ} 35^{\prime} \mathrm{N}$, longitude $118^{\circ} 26^{\prime} \mathrm{W}$. The Sun's bearing by Compass E. by $\mathrm{S} \frac{3}{4} \mathrm{~S}$, altitude $\bigcirc 28^{\circ} 10^{\prime} 20^{\prime \prime}$. Height of the eye 17 feet. Required the True Azimuint and Error of the Compass; and supposing the Variation to be $7{ }^{\circ} 14^{\prime}$ E., required the Deviation of the Compass for that position of the Ship's head.

Ex. 5.-1876, September 22nd; MeanTime Ship at 7h 14m A.M., in latitude $26^{\circ} 26^{\prime} \mathrm{S}$, longitude $146^{\circ} 6^{\prime} 45^{\prime \prime} \mathrm{W}$. The Sun's bearing by compass $S^{\prime} 78^{\circ} 40^{\prime} \mathrm{E}$, altitude $\bigcirc 17^{\circ} 59^{\prime} 45^{\prime \prime}$. Height of the eye 10 feet. Required the True Azimuth and Error of the Compass; and supposing the Variation to the $80^{\circ} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 6.-1876, October Ist; Mean Time Ship at $4^{\text {h }} 37 \mathrm{~m}$, latitude $12026^{\prime} \mathrm{N}$, lougitude $88^{\circ} 26^{\prime} \mathrm{E}$. The sun's bearing by Compass N $74^{\circ} 30^{\prime} \mathrm{W}$, altitude $\bar{\odot} 17^{\circ} 15^{\prime} 40^{\prime \prime}$. Height of the eye 14 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation to be $2^{0} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 7.-1876, December 20th ; Mean Time Ship at $4^{\text {h }} 17 \mathrm{~m}$, latitude $58^{\circ} 52^{\prime} \mathrm{S}$, longitude $80^{\circ} 22^{\prime} \mathrm{W}$. The suu's bearing by compass $S 64^{\circ} 20^{\prime} \mathrm{E}$, altitude $\bigcirc 8^{\circ} 20^{\prime} 45^{\prime \prime}$. Height of the eye 7 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation to be $26^{\circ} 30^{\circ} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 8. - 1876, February 12th; Mean Time Ship at $4^{\mathrm{h}} 8^{\mathrm{m}}$, latitude $27^{\circ} 47^{\prime} \mathrm{S}$, longitude $94^{\circ} 4^{\prime} \mathrm{E}$. The Sun's bearing by Compass N. W. by W $\frac{1}{4} \mathrm{~W}$, altitude $\odot 34^{\circ} 0^{\prime} 45^{\prime \prime}$. Height of the eye 21 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation to be $9^{\circ} 30^{\prime} \mathrm{W}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 9.- 1876, November 14th, Mean Time Ship at $2^{\text {h }} 58 \mathrm{~m}$, latitude $49^{\circ} 12^{\prime} \mathrm{N}$, longitude $34^{\circ} 29^{\prime} \mathrm{W}$. The Sun's bearing by Compass West, altitude © $9^{\circ} 47^{\prime} 30^{\prime \prime}$. Height of the eye 13 feet. Re quired the True Azimuth and Error of the Compass, and supposing the Variation of the Compass to be $35^{\circ} 0^{\prime} \mathrm{W}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 10.-1876, March 20th, Mean Time Ship at $9^{\text {h }} 15 \mathrm{~m}$, latitude $26^{c} 50^{\prime} \mathrm{N}$ longitude $34^{\circ} 32^{\prime} 45^{\prime \prime} \mathrm{W}$. The Sur's bearing by Compass S $50^{\circ} \mathrm{E}$, alritude © $-40^{\circ} 30^{\prime} 40^{\prime \prime}$. Height of the eye 20 feet. Recuired the True Azimuth and Error of the Compass, and supposing the Variation of the Compass to be $17^{\circ} 40^{\prime} \mathrm{W}$, required the Deviation of the Compass for that position of the Shif's head.

Ex. 11.-1876, June 18th, Mean Time Ship at $4^{\mathrm{h}} \mathbf{1 7 \mathrm { m }}$, lat. $0^{\circ} 0^{\prime}$, longitude $31^{\circ} 28^{\prime} \mathrm{W}$. The Sun's bearing by Compass $\mathrm{N} 70^{\circ} 20^{\prime} \mathrm{W}$, altitude $\bigcirc 233^{\circ} 30^{\prime} 50^{\prime \prime}$. Height of the eye 17 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation of the Compass to be $11^{\circ} 0^{\prime} \mathrm{W}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 12.-1876, July 1st, Mean Time Ship at $2^{\text {h }} 45 \mathrm{~m}$, latitude $58^{\circ} 16^{\prime} 40^{\prime \prime} \mathrm{N}$, longitude $131^{\circ} 30^{\prime} \mathrm{W}$. The Sun's bearing by Compass $\mathrm{S} 6^{\circ} 20^{\circ} \mathrm{E}$, altitude $\mathrm{\sigma}^{-45^{\circ}} 5^{\prime} 10^{\prime \prime}$. Height of the eye 6 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation of the Compass to be 320 E , required the Deviation of the Compass for that position of the Ship's head.

Ex. 13.-1876, October 18th, Mean Time Ship at $5^{\text {h }} 28 \mathrm{~m}$, latitude $15^{\circ} 47^{\prime} \mathrm{N}$, longitude $78^{\circ} 47 \mathrm{E}$. The Sur's bearing by Compass $\mathrm{W} \neq \mathrm{N}$, altitude $\odot 1^{\circ}{ }^{\circ} 34^{\prime} 20^{\prime \prime}$. Height of the eye 21 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation of the Conıpass to be $1^{\circ} 7^{\prime} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.

Ex. 14.- 1876, September ${ }^{2} 4 \mathrm{th}$, Mean Time Ship at $2^{\text {h }} 19 \mathrm{~m}$, latitude $40^{\circ} 12^{\prime} \mathrm{S}$, longitude $155^{\circ} 51^{\prime} \mathrm{W}$. The Sun's bearing by Compass S $86^{\circ} 30^{\prime} \mathrm{W}$, altitude $\bar{\complement}^{\circ} 38^{\circ} 44^{\prime} 15^{\prime \prime}$. Height of the eye 7 feet. Required the True Azimuth and the Error of the Compass, and supposing the Variation of the Compass to be $10^{\circ} 30^{\prime} \mathrm{E}$, re quired the Deviation of the Compass for that positien of the Ship's head.
Ex. 15.-Decernber 24th, Mean Time Siip $2^{\text {h }} 18 \mathrm{~m}$, latitude $49^{\circ} 17^{\prime} 20^{\prime \prime} \mathrm{N}$, longitude $134^{\circ} 10^{\prime} \mathrm{W}$. The Sun's bearing by Compass South, altitude $\bigodot 10058^{\prime} 0^{\prime \prime}$. Height of the eye 12 feet. Required the 'True Azimuth and the Error of the Compass, and supposing the Variation of the Compass to be $220^{\circ} 40^{\prime} \mathrm{E}$, required the Deviation of the Compass for that position of the Ship's head.

CHRONOMETER.

TO FIND THE MEAN TIME AT GREENWICH.

67. Upon looking at the time shewn by the Chronometer, it will be noticed that it is not specified whether it is A. M. or P. M.; the first thing to be done then, is to find whether it is A. M or P. M. at Greenwich. Get out what will be an "Approximate," Greenwich date with the given mean time at ship and the longitude by account (56) ; and generally, if the time thus found is less than 12 hours, the chronometer is shewing P.M. time upon the day of the Approximate Greenwich Date, while if it is over 12 hours, the chronometer is shewing A. M. time upon the day following the Greenwich Date. Cases may occur, however, in which this will not hold good, for if the actual time at Greenwich is close to noon or midnight, any inaccuracy in the approximate time may cause the chronometer to shew time in a different division of the day to that upon which one real time falls; and the same thing is liable to happen if the chronometer has a large error, but this should not cause any difficulty, for as the Approximative Greenwich Date cannot be very far froin the truth, a moment's consideration will shew whether it will be necessary to take the chronometer time as A. M. or as P. M. to arrive at a date close to the approximate time. Having determined whether the chronometer is shewing A. M. or P. M. time, express it astronomically, and apply the last error of the chronometer to it, subtractive if it should be fast, but additive if slow, and let the result be called the Corrected Chronometer Time.
68. To find the Daily Rate.-Find the interval between the given errors of the chronometer, that is, if they are both fast or both slow, get their difference; but if one is fast and the other slow, get their sum. Bring the interval into seconds, and place a cypher at the right hand, now divide this by the number of days between the dates of the two errors, and after making a decimal of the right hand figure, the result will be the Daily Hate in seconds and tenths, and will be marked as a gaining or losing rate as follows :

Errors both fast.-If the chronometer is increasing its gain, it is evidently still "gaining"; but if is decreasing its gain, it must be "losing."

Errors both slow.-In the same way, if the chronometer is increasing its ioss, it must be "losing," but if it is decreasing its loss, it is "gaining."

Errors one fast and the other slow.-In this case, the rate must evidentiy be of the same name as the second error.
sss. To find the Accumulated Rate.-Find the number of days that have elapsed between the date of the second error and that of the corrected chronometer time. This may be done by taking out the "day of the year" corresponding to the date of the corrected chronometer time, and also to that of the second error, as given in page $\mathbf{X X}$ of their respretive months in the Nautical Almanas; if they are both of the same year, then their difference will be the number of days required; but if the dates are in following years, take the "day of the year" corresponding to the dite of the second error from 365, (unless the Nautical Almanac in use is for a leap year when 366 days must be applied if the date of the second error is after Feb. 28th, as is almost sure to be the case, and add the remainder to the "day of the year" of the corrected chronometer time. Now change the hours of the corrected chronometer time into decimals, by taking them to the ncarest hour, and after placing two cyphers to the right, divide flist by 4 and then by 6 , and if, as in the case of the first and second hour, the result only gives one figure, made it into two by preflxing a cypher. Place the decimals thus foumd after the number of days run by the chrononeter. Multiply the number so formed by the daily rate, and point off from the right of the product as many figures as there are decimal figures in the numbers multiplied, the figures romaining will be the Accumulated Rate in seconds, which if more than 60 mast be brought into minutes.
70. The Accumulated Rate must be applied to the corrected chronomter time, additive if the daily rate is losing, hut subtractive if it is gaining; the result will be the Mean Tine at Greenwich.

Ex. 1.-1876, May 18 at $2^{\text {h }} 18{ }^{\mathrm{m}}$ P. M. at ship, Longitude by account $88087^{\prime} \mathrm{W}$. Time by a ehronometer $9^{\mathrm{h}} 10^{\mathrm{m}} 3 \mathrm{~m}^{\circ}$, which was fast $47 \mathrm{~m} 15^{5}$ for mean noon at Greenwich on Feb. 4, and on Feb. 27 was fast $49 \mathrm{~m} 5^{4}$ for mean noon at Greenwich. Required the Mean Time at Greenwich by chronometer.

Ex. 2.-1876, Supt. 24 at $8 \mathrm{~h} 4^{7 \mathrm{~m}}$ A. M. at ship, Long. by accomit 13048^{\prime} E. Time by a chronometer $7^{\mathrm{h}} 41 \mathrm{~m} 4^{7 \mathrm{~s}}$ which was slow $18 \mathrm{~m} 17^{*}$ for mean noon at Greenwich on Jan. 24, and on Feb. 19 was slow 17 m 12s for mean noon at Greenwich. Required the Mean Time at Greenwich by chronometer.

Ex. 3. - 1876 , Feb. 20 at $9 \mathrm{~h} \mathbf{4}^{\mathrm{m}}$ A. M. at ship, Long. by account $43^{\circ} 32^{\prime} \mathrm{W}$. Time by a chrónometer $0 \mathrm{~h} 1 \mathrm{~m} 22^{*}$ which was fast 14^{s} for mean noon at Greenwich on Jan. 31, and on Feb. 18 was slow 0 m 9 s for mean noon at Greenwich. Required the Mean Time at Greenwich by chronometer.

Ship date Long. in time	$\text { Feb. } 19 \begin{array}{ccc} \text { h } & 21 & \mathrm{~m} \\ 4 & \mathrm{~s} \\ 0 \end{array}$	Time by chron.	$\begin{array}{cc} \mathrm{d} & \mathrm{hm} \\ \text { Feb. } \\ 20 & 0 \\ 0 & 1 \\ \hline \end{array}$		
	+2548	Error on Feb. 18	$+$		
Approx. G. Time	e 1923588	Corrected Chr. Time Accumulated Rate	200		0131
		G. M. T. by Chron.	20	0	13
Error Jan. 31 fast ${ }^{\text {m }} 0$		Interval from			d
Error Feb. 18 slow 09		Feb. 18 to Fel). $20=$ Daily Rate		$?$	
78	18) $23 \cdot 0(1 \cdot 2$			$1 \cdot 3$	
		Accumulated Rate	$2 \cdot 6$		
$\underset{\substack{\text { Daily Rate } \\\{\& \cdot 3 \text { losing }}}{\substack{\text { and }}}$	50				
	36				

Ex. 4.-1876, Aug. 12 at 3 h 10 m P. M. at ship, Long. hy account $124^{\circ} 20^{\prime}$ E. Time by a chronometer $6^{\mathrm{h}} 37 \mathrm{~m} 28^{\circ}$ which was slow $2 \mathrm{~m}^{\mathrm{m}} 4 \mathrm{f}^{8}$ for mean noon at Greenwich on June 1, and on June 12 was slow $4{ }^{n} 40^{\circ}$ for mean noon at Greenwich. Required the Mean Time at Greenwich by Chronometer.

Ex. 5. - 1876 , April 18 at $8^{\mathrm{h}} 24^{\mathrm{mm}}$ A. M. at ship, Long. by account $47^{\circ} 48^{\prime}$ E. Time by a Chronometer $5^{\mathrm{h}} 36^{\mathrm{m}} 9^{\mathrm{s}}$ which was fast 12 m 22 s for mean noon at Greenwich on Jan. 5, and on Jan. 19 was fast $13^{\mathrm{m}} 49 \mathrm{~s}$ for mean noon at Greenwich. Required the Mean Time at Greenwich by Chronometer.

Ex. 6. - 1876 , June 26 at $2^{\text {h }} 44^{m}$ P. M. at ship., Long. by account 30° W. Time by a Chronometer $4^{\mathrm{h}} 47 \mathrm{~m} 50^{\mathrm{s}}$ which was slow 6 m 17 s for mean noon at Greenwich on May 12, and on May 20 was slow $4^{m} 29 \mathrm{~s}$ for mean noon at Greenwich. Required the Mean Time at Greenwich by Chronometer

Ex. 7. - 1876 , Nov. 16 at $2^{\mathrm{h}} 47 \mathrm{~m}$ P. M. at ship, Long. by account $47^{\circ} 45^{\prime} \mathrm{E}$. Time by a Chronometer $0^{\mathrm{h}} 4^{\mathrm{m}} 54^{\mathrm{s}}$ which was slow $0 \mathrm{~m} 48^{\mathrm{s}}$ for mean noon at Greenwich on March 10 , and on Sept. 23 was fast $22 \mathrm{~m}^{\mathrm{m}} 31^{\mathrm{s}}$ for mean noon at Greenwich. Required the Mcan Time at Greenwich by Chroncmeter.

Ex. 8.-1876, Oct. 28 at $7{ }^{\mathrm{h}} 28 \mathrm{~m}$ A. M. at ship, Long. by account $99010^{\prime} \mathrm{W}$. Time by a Chronometer $2 \mathrm{~h} 2^{\mathrm{m}} 40 \mathrm{~s}$ which was fast $18 \mathrm{~m} 22^{\mathrm{s}}$ for mean noon at Greenwich on June 2, and on July 15 was fast $12 \mathrm{~m} 25^{5}$ for mean noon at Greenwich. Required the Mean 'Time at Greenwich by Chronometer.

Ex. 9.-1876, Dec. 2 at $2^{\text {h }} 47 \mathrm{~m}$ P. M. at ship. Long. by account 18027^{\prime} E. Time by a chronometer $10^{\mathrm{h}} 36^{\mathrm{m}} 12^{\mathrm{s}}$ which was slow $2 \mathrm{~h} 58 \mathrm{~m} 40^{\mathrm{s}}$ for mean noon at Greenwich on July 14, and on Sept. 1 was slow $2^{\text {h }} 58 \mathrm{~m} 6^{\mathrm{s}}$ for mean noon at Greenwich. Required the Mean Time at Greenwich by chronometer.

TO CORRECT THE ELEMENTS.

71. From the observed altitude find the True Altitude (50); get also the True Declimation (49) taking the declination from page II of the Almanac and the diff. for 1 hour from page I as before.
72. Subtruct the True Declination from 90° when the latitude and declinatio are of the same name, but add it to 90° when they are of contrary names, and the sum or remainder will be the sun's Polar Distance.
73. From page I* of the Nautical Almanac, take out the
[^9]Equation of Time opposite the Greenwich date: marking it + or as directed at the head of the column from which it is talien. Multiply its "diff. for 1 hour" by the Greenwich Time decimally expressed this is the same as the hourly difference of the declinaiion is multiplied by), cut off from the right as many figures as there are decimals in the two numbers multiplied, and the result will be the correction in seconds.

Place this correction (to two places of decimals) under the Equation of Time, and add them together if the equation is increasing, but subtract them if it is decreasing; in this latter case, if the equation is less than the correction, the True Equation of Time, thus found, will have a contrary sign to that tiken out.

TO FIND THE APPARENT TIME AT SHIP.

74. Underneath the True Altitude set down the Polar Distance and Latitude; now add them together, get half the sum, and then the differeńce between the Half Sum and the True Alt., and let the result be called the Remainder.
75. Take out the following logs. to seconds (20 to 22) Of the Polar Distance, the Co-Secant. When the I'olar dist.

" Latitude,	" Secant.	exceeds 00°, take
" Half sum,	" Cosine.	out the Secant of
" Remainder,	" Sine.	the T. Dec.

76. Norie.--Take the sum of these four logs. and in Table XXXI flad the Apparent Time corresponding to it, as under, viz:

If it is P. M. at Ship.-Take out the time corresponding to the log. from the top of the page, (start by taking the next lass log. to the given one) prefix the date at Ship, and it will now be the Apparent Time at Ship.

If it is A. M. at Ship.-Take out the time corresponding to the: log. from the bottom of the page, choosing the next greatest log. to the given one) and it will be the Apparent'Time at Ship, reckoning from the day before the ship's date. In the earlier additions of Norie, the time is always taken fron the top, therefore when it is A. M. at ship, the time found will have to be subtracted from 241, and the remainder will be the apparent time at ship, reckoning from the day before the ship's date.
77. Bowditch.-Take the sum of these four logs. and divide it by 2 , now look for this log. in the sine column of Table XXVI,
choosing the next less to the given log. if it is P. M. at ship but the next greater if it is A. M. at ship, so that the odd seconds may always be additive, then :-

If it is P. M. at Siuip.-Take out the time corresponding in the P. M. column, to which prefix the ship's date, and you will have the Apparent Time at Ship.

If it is A. M. at Ship. -Take out the corresponding time in the A. M. colnmn, add 12^{h} to it , and you will have the Apparent Time at Ship, reckoning from the day before the ship's date.
78. Raper. - The sum of these four logs. will be the log. Sine Square (Table 69) of the Hour Angle, then :-

If it is P. M. at Ship.-The Hour Angle is the Apparent Time at Ship, reckoning from the day of the ship's date.

If it is A. M. al Ship.-Take the Hour Angle from 24h, and the remainder will be the Apparent Time at Ship, reckoning from the day before the ship's date.

TO FIND THE MEAN TIME AT SHIP.

79. To the Apparent time at Ship apply the Equation of Time, additive or subtractive according to its sign, and the result will be the Mean Time at Ship.

TO FIND THE LONGITUDE.

80. Under the Mean Time at Ship place the Mean Time at Greenwich, subtract the less from the greater (mind and look at your days), and the remainder is the "Longitude in Time," turn this into are by multiplying it by 60 and dividing by 4, or by Table XIX Norie, Table XXI Bowditch, or Table 18 Raper, and this will be the longitude, which can be named E. or W. by the following well known couplet :

> "Greenwich time best, Longitude West,"
> " Greenwich time least, Longitude East."

Ex. 1.-1876, July 16th at $3^{\text {h }} 6^{\mathrm{m}}$ P. M. Mean Time at ship, in latitude $27^{\circ} 14^{\prime} \mathrm{N}$, , longitude by account $18^{\circ} 18^{\circ} \mathrm{W}$. The observed altitude of the Sun's Lower Limb was $48^{\circ} 34^{\prime} 10^{\prime \prime}$. Height of eye 18 feet. 'lime by a Chronometer $4^{\mathrm{h}} 19 \mathrm{~m} 46^{4}$ which was fast $8 \mathrm{~m} 13^{5}$ for mean noon at Greenwich on April 10th, and on May 5th was fast for mean noon at Greenwich $6^{\mathrm{m}} 18 \mathrm{~s}$. Required the 'ongitude by Chronometer.

Error, April 10, fast 8 m 13 . May 5 , fast $6 \quad 18$

July 16th, day of year 197
May 5th " " 125
Interval
Daily rate
25) $115.0(49.6$ 100
$\left.\begin{array}{ll}\text { Daily rate } \\ 4 \times 6 \text { losing }\end{array}\right\} \quad \begin{aligned} & 150 \\ & \end{aligned}$
$\overline{25} \quad \overline{155}$
60) 331.982 72.17 4.6

43302
28868
-

Accumulated rate 532

in s

Declin. $21^{\circ} 17^{\prime} 17^{\prime \prime}$ Hourly diff. Equ. of T. +547.51 Hourly diff.
Cor. -148 25.08 Correction $+\quad .98$. 227

T. decl. $21 \quad 15 \quad 29$ 90
$\frac{4 \cdot 3}{7524}$ True E.T. $\quad 548 \cdot 49 \quad \frac{4 \cdot 3}{681}$
$\overline{68 \quad 4431} 10032$
908
Correction 9761
Correction 148

Norie.

Bowditch.

Obs. Alt. 〇 $48^{\circ} 34^{\prime} 10^{\prime \prime}$ True altitude $48^{\circ} 45^{\prime} 0^{\prime \prime}$
Dip. - 411 Polar distance 684431 Cosecant 0.03060
P. 0^{\prime} 51" $\quad 48 \quad 2959$
R. - 6 - 45 Sum 1444331

482914 Remainder
722146 Cosine $0 \cdot 48142$
233646 Sine . $9 \cdot 60266$
Semi-diam. +1546
2) $19 \cdot 16570$

True Alt. 48450

| A. T. S. | $16^{\mathrm{d}} 3^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$ Sine |
| :--- | :--- | :--- |
| Equ. Time | $+\quad 548$ |

M. T. S. $16 \quad 3 \quad 548$
G. M. T. $16.419 \quad 0$

Longitude $\quad 1.1312=18^{\circ} 18^{\prime} 0^{\prime \prime} \mathrm{W}$.

Raper.

Ohs. Alt. © $48^{\circ} 34^{\prime} 10^{\prime \prime}$ True altitude $4800^{\prime \prime} 5^{\prime} 0^{\prime \prime}$

Dip.	410	Pol	68	4431	Cosecant	604
	4830	Latitude	27	140	Secant	0.051025
-	46	Sum	144	43 3:		
		Half sum	72	2146	Cosine	9•481427
	$48 \quad 2914$	Remainder	23	3646	Sine	9.602660
Semi-diam. +1546						
		A. T. S.		$0^{\mathrm{m}} \mathrm{G}^{\text {s }}$	Sine sq.	$9 \cdot 165716$
True Alt.	49450	Equ. Time		548		

M. T. S.	1633548
G. M. T.	164190
Lonaicude	11312

Ex. 2. -1876 , December 25th, at $9^{\text {h }} 37 \mathrm{~m}$ A. M., mean time at ship, in latitude $49^{\circ} 57^{\prime} \mathrm{N}$. Longit $1 \mathrm{c}^{\circ}$ by account $7^{\circ} 28 \mathrm{~W}$. The observed altitude of the Sun's Lower Limb was $90{ }^{\circ} 55^{\prime} 30^{\prime \prime}$ Height of eye 15 feet. Time by a chronometer $10 \mathrm{~h} 17 \mathrm{ml} 4^{\mathrm{s}}$ which was slow 4 m 32 for mean noon at Greenwich on February 12th, and on June 8th was fast for mean noon at Greenwich Im 7\%. Required the Longitude by chronometer.

Declin. $23025^{\prime} 16^{\prime \prime}$ Hourly diff. Equ of 'T. +0 6.68 Hourly diff.

Cor. - 120	$3^{\prime \prime} 60$	Correction	+ 27.54	15:246
Tr. decl. 232356	$22 \cdot 1$	True E. T.	034.2)	$22 \cdot 1$
	360		0342	
P. dist. 1132356	$\begin{gathered} 720 \\ 720 \end{gathered}$			2492
				2492
	$79 \cdot 560$		Correction	27.5366
	1.20			

Norie.

Obs. Alt. © yo $55^{\prime} 30^{\prime \prime}$ True altitude $10^{\prime \prime} 2^{\prime} 56^{\prime \prime}$

Bowditch.

Obs. alt. ©	9^{0} aš $30{ }^{\prime \prime}$	True altituȧe	$10^{\circ} 22^{\prime \prime} 4{ }^{\prime \prime}$		
Dip.	- 349	Polar distanco	1132356	Cosecant	0.03727
		Latitude	49570	Secant	0.19148
R. 520	95141				
P. - 9	- 511	Sum	1732344		
		Half-sum	864152	Cosine	8.76046
	94630	Remainder	76394	Sine	9.98810
Semidiam.	+ 1618				
					18.97731
True alt.	$10 \quad 248$		d h mms	Sine	$9 \cdot 48866$
		A. T. S.	24213627		
		Equ. time	+ 34		
		M. T. S.	2421371		
		G. M. T.	242270		
		Longitude	2959	$=7029{ }^{\prime} 45^{\prime}$	$5^{\prime \prime} \mathrm{W}$.

Raper.
Obs. alt. © $\odot 9^{5} 55^{\prime \prime} 30^{\prime \prime}$ True altitude $10^{\circ} \quad 2^{\prime} 42^{\prime \prime}$
Dip. $\quad 350$ Polar distance 1132356 Cosecant 0.037270
R. 5 95" $95 \overline{5140}$
P. - 1 - 516
$946 \quad 24$
Semi-diams. +1618
True alt. $10 \quad 242$

49570 Secant $0 \cdot 191481$
1732338
864149 Cosine 8.760552 $76 \quad 39 \quad 7$ Sine $\quad 9.988106$ 2 2334 Sine $\mathrm{sq} . \overline{8 \cdot 977409}$ 24

$$
d \quad \mathrm{l} \quad \mathrm{~m} \mathrm{~s}
$$

A. T. S. $\quad 24213626$

Equ. time
M. T. S. 2421370
G. M.'T. 242270

Longitude
$30 \quad 0=7^{\circ} 30^{\prime} 0^{\prime \prime} \mathrm{W}$.

Ex. 3.-January 26 th at $3^{\text {h }} 20^{\mathrm{m}}$ P. M. Mean time at ship, in latitude $25^{\circ} 50^{\prime} \mathrm{S}$., longitude by account $70^{\circ} 25^{\circ} \mathrm{W}$. The observed altitude of the Sun's Lower Limb was $46^{\circ} 8^{\prime} 0^{\prime \prime}$. Height of eye 18 feet. Time ly a Chronometer $8 \mathrm{~h} 3 \mathrm{~m} 14^{\mathrm{s}}$ which was fast $2 \mathrm{~m} 47^{\mathrm{s}}$ for mean noon at Greenwich on January 2nd, and on January 12th was fast for mean noon at Greenwich 2m 16s. Required the longitude by Chronometer.

Ex. 4.-1876, March 19th, at $8^{\mathrm{h}} 38^{\mathrm{m}}$ A. M. Mean time at ship, in latitude $23^{\circ} 0^{\prime}$ N., longitude by account $13^{\circ} 27^{\prime}$ E. The observed altitude of the Sun's Lower Limb was $33^{\circ} 41^{\prime} \mathbf{2 0 \prime}$. Height of eye 7 feet. Time by a Chronometer $8^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$ which was fast $15^{\mathrm{h}} 8^{\mathrm{s}}$ for mean noon at Greenwich on January 13th and on January 22nd was fast for mean noon at Greenwich $15^{\mathrm{m}} 15^{\mathrm{s}}$. Required the longitude by Chronometer.

Ex. 5.-1876. February 12th, at $6^{\mathrm{h}}{ }^{57 \mathrm{~m}}$ A. M. Mean time at ship, in latitude $56^{\circ} 17^{\prime} \mathrm{S}$., longitude by account $9^{\circ} 40^{\prime} \mathrm{W}$., the otserved altitude of the Sun's Lower Limb was $17^{\circ} 17^{\prime} 0^{\prime \prime}$. Height eye 18 feet. Time by a Chronometer $9^{\mathrm{h}} 19 \mathrm{~m} 37 \mathrm{~s}$ which was fast $1^{\mathrm{h}} 49 \mathrm{~m} 16 \mathrm{~s}$ for mean noon at Greenwich on January 2nd, and on January 18 th was fast for mean noon at Greenwich $1^{\mathrm{h}} 47 \mathrm{~m} 3 \mathrm{~s}$. Required the longitude by Chronometer.

Ex. 6. -1876, May 25 th at $8_{h} 57 \mathrm{~m}$ A. M. Mean time at ship, in latitude $45^{\circ} 15^{\prime} 26^{\prime \prime} \mathrm{S}$., longitude by account $45^{\circ} 48^{\prime} \mathrm{W}$. The observed altitude of the Sun's Lower Limb was $11^{\circ} 58^{\prime} 30^{\prime \prime}$. Height of the eye 20 feet. Time by a Chronometer $11^{\mathrm{h}} 45 \mathrm{~m} 12 \mathrm{~s}$ which was slow $18^{\mathrm{na}} 38^{\mathrm{s}}$ for mean noon at Greenwich on April 4th, and on April 19th was slow for mean noon at Greenwich 17 m 30 s. Re quired the longitude by Chronometer.

Ex. 7.-1876, June 13th at $7^{\mathrm{h}} 29^{\mathrm{m}}$ A. M. Mean time at ship in latitude $47^{\circ} 12^{\prime} \mathrm{N}$., longitude by account $106^{\circ} 50^{\prime} \mathrm{E}$. The observed altitude of the Sun's Upper Limb was $32^{\circ} 9^{\prime} 0^{\prime \prime}$. Height of the eye 18 feet. Time by a Chronometer $9_{h} 18^{\circ n} 7^{7}$ which was slow $3_{\mathrm{h}} 8^{\mathrm{m}} 7^{\mathrm{s}}$ for mean noon at Greenwich on May 1uth and on June Ist wat slow for mean noon at Greenwich $3^{\text {h }} 5^{\mathrm{m} 7 \mathrm{7}}$. Required the longitude by Chronometer.

Ex. 8-1876, October 18 th at $4^{\mathrm{h}} 57 \mathrm{~m}$ P. M. Mean time at ship, in latitude $44^{\circ}\left[2^{\prime} 30^{\prime \prime} \mathrm{S}\right.$., longitude by account $128^{\circ} 4^{\prime} \mathrm{E}$. The observed altitude of the Sun's Lower Limb was $15^{\circ} 14^{\prime} 30^{\prime \prime}$ Height of the eye 19 feet. Time by a Chronometer $8 \mathrm{~h} 40^{\mathrm{m}} 10^{\mathrm{s}}$ which was
fast $13^{\mathrm{m}} 25^{5}$ for mean noon at Greenwich on September 26th, and on October 17th was fast for mean noon at Greenwich $15^{\mathrm{m}} 12 \mathrm{~s}$. Required the longitude by Chronometer

Ex. 9.-1876, January 25 th at $3^{\mathrm{h}} 47 \mathrm{~m}$ P. M. Mean time at ship, in latitude $18^{\circ} 40^{\prime} \mathrm{S}$., longitude by account $114^{\circ} 2^{\prime} \mathrm{E}$. The observed altitude of the Sun's Lower Limb was 3901640°. Heigint of the eye 18 feet. Time by a Chronometer $7 \mathrm{~h} 30^{\mathrm{m}} 37^{\mathrm{s}}$ which was slow 47 m 27 s for mean noon at Greenwich on October 18th 1875 and on November 22nd 1875 was slow for mean noon at Greenwich 44 m 50 s . Required the longitude by Chronometer.

Ex. 10.-1876, April 19th, at $6^{\mathrm{h}} 48^{\mathrm{m}}$ A. M. Mean time at ship, in latitude $43^{\circ} 12^{\prime} 25^{\prime \prime}$ N., longitude by account 39020° E. The observed altitude of the Sun's Lower Limb was $16^{\circ} 21^{\prime} 30^{\prime \prime}$. Height of the eye 19 feet. Time by a Chronometer $5^{11} 25^{-\mathrm{mm}} 288^{\mathrm{s}}$ which was fast $57 \mathrm{~m} 7^{7}$ for mean noon at Greenwich on January 3 rd and on March 4th was fast fir mean noon at Greenwich $\mathrm{I}^{\mathrm{h}} 9^{\mathrm{m}} 14$ s. Required the Longitud: by Chronometer.

Ex. 11.-1876, February 29th at $7^{\mathrm{h}} 48 \mathrm{~m}$ A. M. Mean time at ship, in latitude $15^{\circ} 15^{\prime} 15^{\prime \prime} \mathrm{N}$., longitude by account $122^{\circ} 50^{\prime} \mathrm{W}$. The observed altitude of the Sun's Lower Limb was $20^{\circ} 23^{\prime} 45^{\prime \prime}$ Height of the eye 11 feet. Time by a Chronometer $4 \mathrm{n} 9 \mathrm{~m} 28^{s}$ which was slow $0 \mathrm{~m} 36^{\mathrm{s}}$ for mean noon at Greenwich on January 1st and on January 25th was fast for mean noon at Greenwich 3 m 29 s . Required the Longitude by Chronometer.

Ex. 12.-1876, May Ist at $6^{\text {h }} 50^{\mathrm{mm}}$ A. M. Mean time at ship, in latitude $51^{\circ} 31^{\prime} 16^{\prime \prime} \mathrm{N}$., longitude by account $12^{\circ} 22^{\prime} \mathrm{E}$. The observed altitude of the Sun's Upper Limb was $20^{\circ} 23^{\prime} 30^{\prime \prime}$. Height of the eye 12 feet. Time by a Chronometer $3^{\mathrm{h}} 57^{\mathrm{m}} 17^{\mathrm{s}}$ which was slow $2^{4 \mathrm{~h}} 18 \mathrm{~m} 4^{4}$ for mean noon at Greenwich on September 30th and on November 13th was slow for mean noon at Greenwich $2^{\text {h }} 15 \mathrm{~m} 10$ s. Required the Longitude by Chronometer.

Ex. 13.-1876, March 25th, at $4^{\text {1 }} 10 \mathrm{~m}$ P. M. Mean time at ship, in latitude $38^{\circ} 12^{\prime} \mathrm{N}$., longitude by account $15^{\circ} 54^{\prime} \mathrm{W}$. The observed altitude of the Sun's Lower Limb was $23^{\circ} 38^{\prime \prime} 0^{\prime \prime}$. Height of the eye 18 feet. Time by a Chronometer $5^{\mathrm{n}} 8^{\mathrm{m}} 50^{\mathrm{s}}$ which was fast $1 \mathrm{~m} 46^{s}$ for mean at Greenwich on January 31st and on March 1st was slow for mean noon at Greenwich $2^{\mathrm{m}} 5^{\mathrm{s}}$. Required the Longitude by Chronometer.

Ex. 14.-1876, May 20th, at $2^{\mathrm{h}} 14^{\mathrm{m}}$ P. M. Mean time at ship, ill latitude $22^{\circ} 54^{\prime} 45^{\prime \prime}$ N., longitude by account $104^{\circ} 14^{\prime} \mathrm{E}$. The
cbserved altitude of the Sun's Upper Limb was $580^{\circ} 11^{\prime} 20^{\prime \prime}$. Height of the eye 12 feet. Time by a Chronometer $77^{\mathrm{h}} 25^{5 \mathrm{~m}} 28^{8}$ which was fast 19 m 19 s for mean noon at Greenwich on March 1st and on April 6th was fast for mean noon at Greenwich 13m 23*. Required the Longitude hy Chronometer.

Ex. 15.-1876, October 28th at $9^{\mathrm{h}} 17 \mathrm{~m}$ A. M. Mean time at ship, in latitude $18^{\circ} 18^{\prime} 35^{\prime \prime} \mathrm{S}$., longitude by account $68^{\circ} 58^{\prime} \mathrm{W}$. observed altitude of the Sun's Lower Limb was $54^{\circ} 12^{\prime} 0^{\prime \prime}$. Height of the eye 8 feet. Time by a Chronometer $1^{\mathrm{h}} 48^{\mathrm{m}} 30^{\mathrm{s}}$ which was fast $0^{\mathrm{mi}} 32 \mathrm{~s}$ for mean noon at Greenwich on May 13th and on June 2 nd was fast for mean noun at Greenwich 0 m 0 s . Required the Longitude by Chronometer.

Ex. 16.-1876, June 27th at $10^{\mathrm{h}} 59 \mathrm{~m}$ A. M. Mean time at ship, in latitude $28^{\circ} 16^{\prime \prime} 40^{\prime \prime} \mathrm{N}$, longitude by account $15^{\circ} 32^{\prime} \mathrm{W}$. The observed altitude of the Sun's Lower Limb was $74^{\circ} 37^{\prime} 20^{\prime \prime}$. Height of the eye 17 feet. Time by a Chronometer $0^{\mathrm{h}} 33^{\mathrm{m}} 54^{\mathrm{f}}$ which was fast $17 \mathrm{~m} 322^{8}$ for mean noon at Greenwich on February 2nd and on March 3rd was fast for mean noon at Greenwich $14^{\mathrm{m}} 44 \mathrm{~s}$. Required the Longitude by Chronometer.

Ex. 17.-1876, Augnst ist at $7^{\mathrm{h}} \mathbf{5 4}{ }^{\mathrm{nn}}$ A. M. Mean time at ship, in latitule $14^{\circ} 34^{\prime} 9^{\prime \prime} \mathrm{S}$., longitude by account $167^{\circ} 0^{\prime} \mathrm{E}$. The observed altitude of the Sun's Lower Limb was $20^{\circ} 20^{\circ} 0^{\prime \prime}$. Height of the eye 12 feet. Time by a Chronometer $88^{\mathrm{h}} 45^{\mathrm{m}} 37^{8}$ which was slow $0 \mathrm{~m} 0^{\mathrm{s}}$ for mean noon at Greenwich on May 19th and on June 19th was slow for mean noon at Greenwich 1.w $2 \pi \mathrm{~s}$. Required the Longitude by Chronometer.

Ex. 18.-1876, July 28th at $4^{\mathrm{h}} 0^{\mathrm{m}}$ P. M. Mean time at ship, in latitude $29^{\circ} 40^{\circ} 40^{\prime \prime} \mathrm{N}$., longitude by account $73^{\circ} 40^{\circ} \mathbf{E}$. The observed altitude of the Sun's Lo:ver Limb was $35^{\circ} 51^{\prime} 10^{\circ}$. Height of the eye 12 feet. Time by a Chronometer $0^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$ which was fast 52 m 0 s for mean noon at Greenwich on February 28th and on April 1st was fast for mean noon at Greenwich 52 m 20 s . Required the Longitude by Chronometer.

Ex. 19.-1876, September 24th at $4^{\mathrm{h}} 52^{\mathrm{m}}$ P. M. Mean time at ship, in latitude $37^{\circ} 21^{\prime} \mathrm{N}$., longitude by account $173^{\circ} 4^{\prime} 4^{\prime} \mathrm{E}$. The observed altitude of the Sun's Lower Limb was $11^{\circ} 21^{\prime} 15^{\prime \prime}$. Height of the eye 7 feet. Time by a Chronometer $5^{\mathrm{h}} 20^{\mathrm{m}} 30^{\mathrm{s}}$ which was slow 0 m 35 for mean noon at Greenwich on November 22nd and on January 5th was correct for mean noon at Greenwich. Required the Longitude by Chronometer.

Ex. 20.-1876, January 18 th at $8^{\mathrm{h}} 0^{\mathrm{m}}$ A. M. Mean time at ship, in la'itude $15^{\circ} 54^{\prime} 40^{\prime \prime} \mathrm{N}$., longitude by account $0^{\circ} 36^{\prime} \mathrm{W}$. The obser red altitude of the Sun's Lower Limb was $18^{\circ} 38^{\prime} 30^{\prime \prime}$. Height of the 3 y e 19 feet. Time by a Chronometer $8^{\mathrm{h}} 1 \mathrm{~m} 58^{\mathrm{s}}$ which was fast $0^{\mathrm{m}} 29^{\mathrm{s}}$ for mean noon at Greenwich on August 16 th and on October 9th was slow for mean noon at Greenwich $0 \mathrm{~m} 20^{\mathrm{s}}$. Re. quired the Longitude by Chrenometer.

Ex. 21.-1876, July 15th at $1^{\mathrm{h}} 17 \mathrm{~m}$ P. M. Mean time at ship, in latitude $20^{\circ} 46^{\prime} 18^{\prime \prime} \mathrm{N}$., longitide by account $377^{\circ} 18^{\prime} 0^{\prime \prime} \mathrm{E}$ The observed altitude of the Sun's Lower Limb was $73^{\circ} 10^{\prime} 40^{\prime \prime}$. Height of the eye 19 feet. Time by a Chronometer $1^{\mathrm{h}} 17^{\mathrm{m}} 0^{\mathrm{y}}$ which was fast $1^{\mathrm{h}} 48^{\mathrm{m}} 56^{\text {s }}$ for mean noon at Greenwich on January 28 th and on March 5 th was fast for mean noon at Greenwich $1^{\mathrm{h}} 57 \mathrm{~m} 45^{5}$. Required the Longitude by Chronometer.

Ex. 22.-1876, December 16 th at $9^{\mathrm{h}} 1 \mathrm{~m}$ A. M. Mean time at ship, in latitude $31^{\circ} 47^{\prime} 16^{\prime \prime} \mathrm{S}$., longitude by account $180^{\circ} \mathrm{W}$. The observed altitude of the Sun's Lower Limb was $50^{\circ} 19^{\prime} 0^{\prime \prime}$. Height of the eye 11 feet. Time by a Chronometer $9^{\mathrm{h}} 1^{\mathrm{m}} 0^{\mathrm{s}}$ which was slow $31^{\mathrm{m}} 13^{\mathrm{s}}$ for mean noon at Greenwich on February 3rd and on May 6th was slow for mean noon at Greenwich $22 \mathrm{~m} 4^{4}$ Re. quired the Longitude by Chronometer.

Ex. 23.-1876, September 22nd at $5^{\text {h }} 0 \mathrm{~m}$ P. M. Mean time al ship, in latitude $0^{\circ} 0^{\prime}$, longitude by account $0^{\circ} 0^{\prime}$. The observed altitude of the Sun's Lower Limb was $13^{\circ} 21^{\prime} 40^{\prime \prime}$. Height of the eye 18 feet. Time by a Chronometer $4^{\mathrm{h}} 59 \mathrm{~m} 48^{\mathrm{s}}$ which was slow $0^{\mathrm{m}} 17^{8}$ for mean noon at Greenwich on May 5th and on July 3rd was fast for mean noon at Greenwich $0^{\text {m }} \mathbf{2 4 s}^{4}$. Required the Longitude by chronometer.

Ex. 24. - 1876 , November 10 th at $3^{\mathrm{h}} 47 \mathrm{~m}$ P. M. Mean time at ship, in latitude $42^{\prime \prime} 27^{\prime} 30^{\prime \prime} \mathrm{N}$, iongitude by accomnt $177^{\circ} 47^{\prime} \mathrm{W}$. The observed altitude of the Sun's Lower Limb was $7952^{\prime} 50^{\prime \prime}$ Height of the eye 13 feet. Time by a Chronometer $4^{\mathrm{h}} 49 \mathrm{~m} 53^{*}$ which was fast $1^{1 /} 14{ }^{4} 36$ for mean noon at Greenwich on Octo ber 15 th and on November 9 th was fast for mean noon at Greenwich $1^{\mathrm{h}} 10^{\mathrm{m}} 11^{\mathrm{s}}$. Required the Longitude by Chronometer.

Ex. 25.-1876, March 20 th at $3^{\text {h }} 51 \mathrm{~m}$ P. M. Mean time at ship, in latitude $53^{\circ} 35^{\prime} \mathrm{S}$., longitude by account $145^{\circ} \mathrm{E}$. The observed altitude of the Surn's Lower Limb was $190^{\circ} 20^{\prime} 50^{\prime \prime}$. Height of the eye 19 feet. Time by a Chronometer $6^{1 \mathrm{~h}} 24^{\mathrm{m}} 43^{\mathrm{s}}$ which was slow $5 \mathrm{~m} 50^{\mathrm{s}}$ for mean noon at Greenwich on November 30th and on January ist was fast for menn noon at Greenwich $0 \mathrm{~m} 2{ }^{\mathrm{s}}$. Requirer the Longitude by Chronometer.

EX-MERIDIAN.

TO FIND THE APPARENT TIME AT SHIP.

81. Express the ship time astronomically, and apply to it the error of the watch, additive if it should he slow, but subtractive if the contrary; now take the difference of longitude made since the error was determined, turn it into time, and add it if it should be East, but subtract it if West jon will notice that this is contrary to the usual rule), the result will be the Apparent Time at Ship. Now observe this, if your observation is taken in the morning, the hours of the apparent time at ship must be 23^{h}, while if it is an afternoon sight, it must be 0 h .

TO FIND THE HOUR ANGLE.

82. If it is P. M. at ship, the apparent time at ship is the Hour Angle.
83. If it is A. M. at ship, subtract the apparent time at ship from 24^{h}, and the remainder is the Hour Angle.

TO FIND THE GREENNWICH DATED.

84. With the Apparent 'Time at Shipand the Ship's Longitude, get the Greenwich Apparent Time according to the usual rule (56).
85. Get out the True Declination (i9) using the declination found in page I of the Natical Almanac. From the observed find the 'True Altitude (50).

TO FIND THE AUGMEN'AATIONS.

86. 'These angmentations are found in 'Towson's Ex-Meridian Trablew Table I is entered with tho 'True Declination and the Hour Angle; at the top of the page, flad the nearest to your 'True Declination, and underneath, opposite the Howr Augle, or tho noarest given, wiil be found the 1 st correction, which is always to be added to the true declimation, the sum being called the Augmented Declimation; take out also the Index Number fomm in the margin of the Table opposite the Comection. Tintele II is
entered with the True Altitude and the Index Number, found above; at the head of the Table find the nearest to the 'True Altitude, then underneath, opposite the Index Number, will be found the 2nd Correction, which is always additive to the true altitude; the sum is called the Angmented Altitude.

TO FIND THE XATITUDE.

87. Subtract the Angmented Altitude from 90, and name the Kenith Distance resulting, contrary to the bearing of the sim; undermeath, set down the Angmented Declination, and add tho two together if they are of the same name, hat subtract them if they are of contrary ? ?ames, and the sum or remainder will be the Latitude of the same name as the greater.

Ex. 1.-1876, September 'th $⿷^{\circ}$. M. at ship, in latitude by account ofo $53^{\prime} \mathrm{N}$., longitude $18^{\circ} 49^{\prime} \mathrm{W}$., the observed altitiade of the Sua's L. L. Sonth of the observer wats 40 39' $20^{\prime \prime}$. Height of eye 20 feet. Time by watch $0^{h} 19 \mathrm{~m} 18^{*}$ which had been found to be slow $6 \mathrm{~m} 12{ }^{\text {s }}$ of apparent time at Ship. "Tho difference of longitude made to the West was $37^{\circ}{ }^{\circ}$ after the error on Apparent Time at Ship was determined. Reguired the Latitude by the Reduction to the Meridian.

Ex-Heridian.

Ex. 3.-1876, May 14th A. M. at ship, in latitude by account 660 50 N., longitude $680^{\circ} 14^{\prime}$ W., the observed altitude of the Sun's L. L. South of the observer was $41^{\circ} 20^{\prime} 0^{\prime \prime}$. Height of eye 19 feet. Time by watch $11^{\mathrm{h}} 33^{\mathrm{mN}} 16^{\mathrm{s}}$ which had been found to be fast 5m 19* of apparent time at Ship. The difference of longitude made to the West was $27^{\prime} \cdot 4$ after the error on Apparent Time at Ship was determined. Required the Latitude by the Reduction to the Meridian.

Ex. 4-1876, March 25th, A. M. at ship, in latitude by accouni 40 43^{\prime} N., longitude $19^{\circ} 59^{\prime}$ W., the observed altitude of the Sun's L. I. South of the observer was $499^{\circ} \cdot 5^{\prime} 10^{\prime \prime}$. Height of eye 22 feet. Time by watch $I_{h} 0^{\mathrm{m}} 34^{\mathrm{s}}$ which had been found to be fast. $1^{\mathrm{h}} 21^{\mathrm{m}} 14^{\mathrm{s}}$ of appareni time at ship. The difference of longitude made to the East was I1, after the error on Apparent Time at ship was determined. Required the Latitude by the Reduction 10 the Mejilian.
Lix. 5-1870, May 10th, A. M. at ship, in latitide by account. $37050^{\prime} \mathrm{S}$., longitude $18049^{\prime} \mathrm{W}$., the observed altitude of the Suns 1. L. Nowh of the observer was $35^{30} 30^{\prime} 15^{\prime \prime}$. Height of oye 18 feet. Time by wach $1 t^{1 / 2} 2 \mathrm{~m}$ his wich had been found to bo correct upon apparent time at ship. The difference v° anritude

Ship was determined. Required the Latitude by the Reduction to the Meridian.

Ex. 6-1876, June 29th P. M., at ship, i. latitude by account ven She s., longitude $124^{\circ} 0^{\prime} \mathrm{E}$, the observed altitude of the Sun's L. I. North of the observer was $29^{\circ} 18^{\prime} 45^{\prime \prime}$. Height of eye 16 feet. Time by watch $3^{\mathrm{h}} 14^{\mathrm{m}} 27^{5}$ which had been fornd to be fast $2^{\mathrm{h}} 42^{\mathrm{m}} 15^{\mathrm{s}}$ of apparent time at ship. The difference of longitude made to the East was 1' after the error on Apparent Time at Ship was determined. Required tho Latitude by the Reduction to the Meridian.

Ex. 7-1876, December 15th, A. M. at ship, in latitude by account $53^{\circ} 50^{\prime}$ S., longitude $86^{\circ} 56^{\prime} 15^{\prime \prime}$ W., the observed altitude of the Sun's L. L. North of the observer was $58^{\circ} 20^{\prime} 0^{\prime \prime}$. Height of eye 11 feet. Time by watch $5^{\mathrm{h}} 12 \mathrm{~m} 42 \mathrm{~s}$ which had been found to be fast $5^{\mathrm{h}} 42 \mathrm{~m} 29^{\mathrm{s}}$ of apparent time at ship. The difference of longitude made to the East was 26 ' after the error upon Apparent Time at Ship was determined. Required the Latitude by the Reduction to the Meridian.

Ex. 8-1876, November 23rd, P. M. at ship, in latitude by account $2900^{\prime} \mathrm{N}$., longitude $77^{\circ} 20^{\prime} \mathrm{W}$., the observed altitude of the Sun's L . L. South of the observer was $39^{\circ} 24^{\prime} 50^{\prime \prime}$. Height of eye 19 feet. Time by watch $7_{\mathrm{h}} 43 \mathrm{~m} 42^{\mathrm{s}}$ which had been found to be slow $5^{h} 0^{\mathrm{m}} 36^{\mathrm{s}}$ of apparent time at Ship. The difference of longi. tude made to the West was $1^{\circ} 9^{\prime} 30^{\prime \prime}$ after the error on Apparent Time at Ship was determined. Required the Latitude by a Reduction to the Meridian.

Ex. 9-1876, August 5th, A. M. at ship, in latitude by account i70 7^{\prime} S., longitude $79^{\circ} 5^{\prime}$ E., the observed altitude of the Sun's L. L. North of the observer was $25^{\circ} 46^{\prime} 15^{\prime}$. IHeight of eye 15 feet. Time by watch $5^{1} 27 \mathrm{~m} 20^{3}$ which had been found to be fast $5^{11} 27^{\mathrm{m}} 12^{8}$ of apparent time at Ship. The difference of longitude made to the West was 45^{\prime} after the error on Appiarent Time at Ship was determined. Required the Latitude by a Reduction to the Meridian.

Ex. 10-1876, January 28th, A. M. at ship, in latitude by account $47^{\circ} 40^{\prime} \mathrm{N}$., longitude $175^{\circ}{ }^{3} 7^{\prime} \mathrm{W}$., the observed atitude of the Sun's L. L. South of the observer was $23^{\circ} 18^{\prime} 0^{\prime \prime}$. Height of eye 13 feet. Time by watch $0^{h} 17^{\mathrm{m}} \mathbf{4 2}^{\mathrm{m}}$ which had been found to be fast $1^{\mathrm{h}} 2^{\mathrm{m}} 3^{\mathrm{a}}$ of apparent time at Ship. The difference of ion-
gitude made to the East was $8 \frac{3}{4}$ after the error upon Apparent Time at Ship was determined. Required the Latitude by a Reduction to the Meridian.

Ex. 11-1876, March 1st, P. M. at ship, in latitude by account $42^{\circ} 15^{\prime} \mathrm{S}$., longitude $16^{\circ} 28^{\prime} 30^{\prime \prime} \mathrm{E}$. The observed altitude of the Sun's L. L. North of the observer was $54^{\circ} 50^{\prime} 20^{\prime \prime}$. Height of eye 18 feet. Time by watch $11^{\mathrm{h}} 18^{\mathrm{m}} 47^{8}$ which had been found to be slow 45 m 22 s of apparent time at Ship. The difference of longitude made to the East was $22 \cdot 8^{\prime}$ after the error upon Apparent Time at Ship was determined. Required the Latitude by a Reduction to the Meridian.

Ex. 12.-1876, September 22nd P. M. at ship, in latitude by account $39^{\circ} 20^{\prime} \mathrm{N}$., longitude $72^{\circ} 27^{\prime} \mathrm{W}$., the observed altitude of the Sun's L. L. South of the observer was $50^{\circ} 20^{\prime} 20^{\prime \prime}$. Height of the eye 14 feet. Time by watch $10^{\circ} 58^{\prime} 29^{\prime \prime}$ which has been found to be slow $\mathrm{t}^{\mathrm{h}} 18 \mathrm{~m} 30^{\mathrm{s}}$ of apparent time at Ship. The difference of longitude made to the West was $17 \cdot 2$ after the error upon Apparent Time at Ship was determined. Reçuired the Latitude by a Reduction to the Meridian.

Ex. 13.-October 11 th A. M. at ship, in latitude by account $31015^{\prime} \mathrm{S}$., longitude $125^{\circ} 30^{\prime} \mathrm{W}$., thie observed altitude of the Sun's L. I. North of the observer was $65^{\circ} 50^{\prime} 40^{\prime \prime}$. Height of the eye 10 feet. Tine by watch $8{ }^{1} 0 \mathrm{~m} 55^{5}$ which had been found to be fast $7^{\mathrm{n}} 59 \mathrm{~m}$ for of $\Lambda_{\text {pparent }}$ Time at Ship. The difference of longitude mate to the West was $2^{0} 1^{\prime} 155^{\prime \prime}$ after the error upon Apparent Time at Ship was determined. Required the latitude by a Reduction to the Meridian.

Ex. 14.-1876, January 25th A. M. at ship, in latitude by account $180^{\circ} 26^{\prime} \mathrm{N}$, longitude $142^{\circ} 37^{\prime} \mathrm{W}$., the observed altitude of the Sun's L. L. South of the observer was $511^{\prime \prime} 41^{\prime \prime} 45^{\prime \prime}$. Height of the eye 15 feet. Time by wateh $8^{11} 16 \mathrm{~m} 2 \mathbf{2 k}^{3}$ which had been found to be fast $8^{h} 47 \mathrm{~m}^{\mathrm{m}} 9$ s of apparent time at ship. The difference of longitude made to the East was $16 \cdot 2$ since the error on Apparent Time at Ship was determined. Required the Latitude by a Reduction to the Meridian.

Ex. 15.-1876, November 5th P. M. at ship, in latitude by account $46^{\circ} 17^{\prime} \mathrm{N}$., longitude ! 9 In 0^{\prime} E., the observed altitude of the Sun's L. L. South of the observer was $27937^{\prime \prime} 0^{\prime \prime}$. Height of the eye 10 feet. Time hy watch $6^{\mathrm{h}} 17 \mathrm{~m} 32^{\mathrm{s}}$ which had been foumd
to be slow $5^{\mathrm{h}} 56^{\mathrm{m}} 30^{\mathrm{s}}$ of apparent time at ship. The difference of longitude made to the East was $18 \frac{1}{4}$ after the error upon Apparent time at Shicu was determined. Required the Latitude by a Reduction to the Meridian.

Latitude by the meridian altitude of a star.

88. To the observed altitude of the star, apply the following corrections :

Index error (if any), according to i's sign.
Dip, subtractive, Table V Norie, Table XIIl Bowditch, Table 30 Raper.

Refraction, from Table XVIII Norie found under the Star's Correction, Bowditch 'Table XII, or Raper 'Table 31 ; having subtracted which the remainder is the Star's 'True Altitude.
89. Subtract the True Altitude from 90°, and get the Zenith Distance, naming it N or \mathfrak{S} contrary to the bearing of the star.
90. To find the Star's Declination.-About page 325 in the Nautical Almanac will be found a catalogue of fixed stars, whose Right Ascensions and Declinations are given for every tenth day in a table immediately following. In this catalogue find your star, and take out the hours and minutes of Right Ascension opposite; now, in the table following, the stars are arranged it the order of their Right Ascensions, that is, from $0^{\text {b }}$ to $24^{\text {th }}$ therefore, using the Right Ascension just taken out as an index, it is easy to find your star in the table; having done this, take out the degrees and minutes of Declination, found at the head of the column which is underneath the star, and the seeonds will be found opposite the nearest date to that given ; no correction is necessary. The Declination is named N. or S. at the head of the column.
91. To find the Latitude,-Under the Zenith Distance set down the Declination, add the two together if they are of the same naue, but subtract them if they are of contrary names, and the sum or remainder will be the Latitude of the same name as the greater.

Ex. 1.-1876, July 10th, The observed Meridian Altitude of the Star π Leonis, bearing North, was $30^{\circ} 37^{\prime} 30^{\prime \prime}$, height of the eye 14 feet. Required the Latitude.

	Norie.	Bowditch.	Raper.
Obs. Alt.	$30^{\circ} 37^{\prime} 30^{\prime \prime} \mathrm{N}$.	$30^{\circ} 37^{\prime} 30^{\prime \prime} \mathrm{N}$.	$30^{\circ} 37^{\prime} 30^{\prime \prime} \mathrm{N}$.
Dip.	- 336	- 341	- 340
	303354	$30 \quad 33 \quad 49$	303350
Refraction	- 136	- 135	- 139
True Alt.	303218	$30 \quad 3214$	303211
	90	90	90
Zenith dist.	592742 S	592746 S .	592749 S .
Declination	83816 N .	83816 N .	83816 N.
Latitude	504926 S.	504930 S .	504933 S .

Ex. 2.-1876, April 28th, the observed Meridian Altitude of the Star Arcturus, bearing South, was $53^{\circ} 26^{\prime \prime} 0^{\prime \prime}$, height of the eye 18 fect. Required the Latitude.

Norie.

Obs. Alt. Lip.	$\begin{array}{cc} 530 & 26^{\prime} \\ -\quad 4 & 0^{\prime \prime} \mathrm{S} \\ \hline \end{array}$
	532156
Refraction	42
True Alt.	53 90
Zenith dist.	363846 N .
Declination	194929 N.
Latitude	5628

Bowditch.

$53026^{\prime} 0^{\prime \prime} \mathrm{S}$. | $-\quad 411$ | | |
| :--- | :--- | :--- |
| | 4 | 11 |
| 53 | 21 | 49 |
| - | | 43 |
| 53 | $21 \quad 6$ | |
| 90 | | |
| 36 | 38 | 54 |
| 19 | 49 | 29 |

Raper.

Ex. 3. 1876, November 29th. The observed Meridian Altitude of the Star a Corvi, bearing South, was $17^{\circ} 14^{\prime} 30^{\prime \prime}$, height of the oye 22 feet. Required the Latitude.

Ex. 4. 1876 , July 11th. The obserred Meridian Altitude of the Star α Persei, bearing North, was $38022^{\prime} 20^{\prime \prime}$, height of the eye 12 foet Required the Latitude.

Ex. 5.-1876, December 18th. The observed Meridian Altitudu of the Star γ^{\prime} Leouis, bearing North, was $45^{\prime \prime} 45^{\prime} 45^{\prime \prime}$, heighl of the eye 16 feet. Required the Latitude.

Ex. 6.-1876, June 20th. 'The observed Meridian A!titude of the Star β^{\prime} Scorpii, bearing South, was $29^{\circ} 12^{\prime} 50^{\prime \prime}$, height of the eye 12 feet. Required the Latitude.

Ex. 7.-1876, February 27th. The observed Meridian Altitude of the Star α Gruis, bearing South was $31^{\circ} 16^{\prime} 40^{\prime \prime}$, height of the eye 13 feet. Required the Latitude.

Ex. 8.-1876, October 25th. The observed Meridian Altitude of the Star α Ophiuchi, bearing South, was $59030^{\prime} 30^{\prime \prime}$, height of the eye 10 feet. Required the Latitude.

Ex. 9.-1876, Angust 26th. The observed Meridian Altitude of the Star Sirius, bearing Sonth was $35^{\circ} 50^{\prime} 20^{\prime \prime}$ height of the eye 14 feet. Required the Latitude.

Ex. 10.-1876, February 2nd. The observed Meridian Altitude of the Star Achernar, bearing South, was $63033^{\prime} 40^{\prime \prime}$, height of the eye 17 feet. Required the Latitude.

Ex. 11.-1876, August 15th. The observed Meridian Altitude of the star Procyon, bearing North, was $52010^{\prime} 15{ }^{\prime \prime}$, height of the eye 16 feet. Required the Latitude.

Ex, 12.-1876, November 8th. The observed Meridian Altitude of the Star δ Orionis, bearing North, was $89^{\circ} 20^{\prime} 30^{\prime \prime}$, height of the eye 15 feet. Required the Latitude.

Ex. 13.-1876, April 7th. The observed Meridian Altitude of the Star Canopus, bearing South, was $43^{\prime \prime} 32^{\prime} 0^{\prime \prime}$ height of the ey' 12 feet. Required the Latitude.

Ex. 14.-1876, January 5th. The observed Meridian Altitude of the Star Algenib, bearing South, was $60^{\prime \prime} 14^{\prime} 40^{\prime \prime}$, height of thir eye 20 feet. Required the latitude.

Ex. 15.-1876, May 28th. The observed Meridian Altitude of the Star Spica, bearing Sonth, was $51033^{\prime} 0^{\prime \prime}$, height of the eye 18 feet. Required the latitude.

TO FIND THE TIME OF HIGH WATER.

A'P A SITANDARD POIET.

Abstract

92. In the Admiralty Tide Tables the Times of High Water are given for each day of the year at twenty-four ports, the names of which are enumerated in the index of that book; these ports

are called "Standard Ports" because they are used as bases from which the times of high water at other ports may be found. If the time of high water at a Standard Port be desired, it is only necessary to find the given port in the proper month, and there, opposite the given date, in the morning and afternoon columns, will be found the A. M. and P. M. tides required. Where the mark \qquad occars, it shews that there is but one tide during that day; 10 high water, therefore, takes place in the morning or afternoon in which the mark appears.

Ex. 1.-1875, March 7th. Find the time of High Witer at North Shields. A. M. and P. M.

$$
3^{\mathrm{h}} 8^{\mathrm{ma}} \text { A. M. } \quad 3^{\mathrm{h}} 26^{\mathrm{m}} \text { P. M. }
$$

Ex. 2.-1875, July 28th. Find the time of High Water at Galway A. M. and P. M.

$$
\text { No A. M. } \quad 0^{\text {th }} 30^{\mathrm{m}} \text { P. M. }
$$

On the dates given, find the times of High Water at the following places :

> Ex. 3-1875, June 12 th, at Kingston.
> Ex. 4- 1875 , February 19th, at Harwich.
> Ex. $5-1875$, April 27th, at Thurso.

WHEN THE GIVEN PORT IS NOT A STANDARD PORT.

93. Look out the port in the Table of Tidal Constants, and opposite will be given a "Standard Port for Reference", together with a Constant for time, which is to be applied according to the following rules:
94. When the Constant is additive.-At the given port, take out the morning tide on the given day, and add the constant to it, then :
(a) If the sum is less than 12^{11} it will be your A. M. Tide; in this case, take out the afternoon tide of the given day, and having added the constant to it, the sum if less than 12^{h} will be your P. M. Tide; but if the sum exceeds $12^{\text {h }}$ there will be no P. M. Tide, because the tide resulting will be that of the next morning.
(b) But if in adding the morning tide and the constant together, the surn goes over 12^{h}, take 12^{h} from it, and the remainder is your P. M. Tide; now take the afternoon's tide of the day before, and after adding the constant to it, if the sum exceeds 12 n , then what is over 12^{h} will be your A . M. Tide; but if the
sum does not reach 12^{h}, t remains the afternoon tide of the day before, and there is no A, M. Tide on your day:
(c) In any case where the mark - occurs, take out the tide preceding it, and if after adding the constant the sum exceeds 12 h , what is over 12 h will be your thle, but if the sum is under 12^{h} then there is no tide.

Ex. 6-1875, March 7th; find the A. M. and P. M. tides at Scarborough.
Sunderland, March 7th A.M. $3^{\text {h }}$ 7m $^{\text {m }}$ March 7th P. M. $3^{\text {h }} 26^{m}$
Constant

$$
+49
$$

+49
High waten at Scarborough $3 \mathbf{5 6}$ A. M.
Ex. 7-1875, August 23rd; find the A. M. and P. M. tides al Wexford.
Waterford, Angust 23rd A. M. $9^{\mathrm{h}} 10^{\mathrm{m}}$ August 23rd P. M. $9^{\mathrm{h}} 3 \mathrm{~m}^{\mathrm{m}}$
Constant
$+21$
$+21$
H. W. at Wexfond

11 11 A. M.
1132 P.M.
Ex. 8-1875, April 4th; flid the A. M. and P. M. tides al Crinan.
Greenock, April tha, M, $10^{\mathrm{h}} 32 \mathrm{mz}$ April $3 x \mathrm{dP}$ P. M. $10^{\mathrm{h}} 10^{\mathrm{m}}$

+ 441	+441
1513	1451
120	19. 10
313 P. M.	251

Ex. 9.-18\%, April 10th; find the A. M. and P. M. tides at Lerwick.
Thurso April 10th A. M. $11^{\text {h }} 8 \mathrm{~mm}$ April 9th P. M. $10^{\mathrm{h}} 43^{\mathrm{m}}$ Constant
H. W, at hamwige.
$110 \mathrm{P} . \mathrm{M}$.
$+\frac{22}{045}$ A.M.
95. General Izule for Addi+ive Constants. When the sum of the constant and the tide takon from the Tables is less than 12h, it remains a tide of the same name as that used ; but where thi sum exceeds 12^{11}, the time over 12^{h} will be a tide oí the name following that taken out, consequently, in such a case, you must take from the Tables the tide immediately preceding the one you require.

At the undermentic ned times and places find the times of Migh Water A. M. and P. M.

Ex. 10.	1875,	April	2nd	at Glasgow.
" 11	"	May	ath	" Port Carlisle.
" 1?	"	April	14th	" Jersey.
" 13	"	March	31st	" Burdeaux.
" 14	"	April	16 th	- Crinan.
" is	'6	June	6 6h	" Ramsey.
- 16	"	July	12th	" Limerick.
" 17	-	January	16th	" Erraouth.
" 18	\cdots	June	20 th	' Ramsey.
'. 19	'6	dammary	22nd	" Newhaven.
* ? 0	"	July	?8th	Lamerick.
" 21	6	May	6 6th	" Amman Foot.
" 29	6	March	17th	" Filey Eay.
" 23	"	February	4th	" Chatham.
" 24	"	May	29thı	" Llanelly.
" 25	"	March	17th	" Whitby.
- 26	"	June	18th	" S'rangford Quay.
27	6	January	8th	" Shoreham.
28	'6	April	30th	" Jersey.
6 29	6	July	12th	"Killyhegs.
" 30	6	August	11th	" New Ross.

96. When the Constant is Subtractive. - If the morning and afternoon tides of the day required, are greater than your constant, subtract the constant from them, and the remaiuders will be your A. M. and P. M. tides respectively.
97. But if the morning tide upon the given day is less than your constant, take out the afternoon tide, and :-
(a). If this afternoon tide is less than your coustant, subtruct your constant from it by borrowing 12^{h}, and the remainder will be your A. M. Tide; now take out the morning tide upon the following day, if it also is less than the constant, again borrow 12h, and having subtracted your constant, the remainder will be your P. M. Tide; but if this morning tide is greater than the constant, there will be no P. M. Tide.
(b). If the afternoon tide of the given day is greater than the coustant, subtract the constant from it, the remander will he your P. M. Tide; and there will be no A. M. Tide.
(c) In any case where the mark - occurs, if the tide follow.
ing is less than your constant, add 12 h to it , and subtract the constant from the sum, the remainder will be your tide; but if the tide following the mark is more than your constant, then there is no tide.
98. General rule for Subtractive Constants.-If you can subtract your constant from the tide as it stands, the remainder will be a tide of tae same name as that taken from the Tobles; but if you have to borrow 12^{h} to enable you to subtract your constant from the tide, then the tide resulting, will be the tide preceding that taken from the Tables, in this case, therefore, you must take from the Tables the title following the one you require.

Ex. 31-1875, June 15th; flud the A. M. and P. M. tides at Barmonth.

Holyhead June 15th A. M. 7h 41 m June 15th P. M. $8^{\mathrm{h}} 2^{2 \mathrm{~m}}$ Constant
-251
-231
H. W. at Banmouth
$510 \mathrm{~A} . \mathrm{M}$.
5 31 P.M.
Ex. 32-January ! $_{\text {2tin }}$; flud the A. M. and P. M. tides at Southampton.
Portsmonth Jar. 19 th A. M. $9^{\text {h }} 20 \mathrm{~m}$ Jannary 19 th P. M. $9^{\text {h }} 54 \mathrm{~m}$ Constant
$-1 \quad 11$
$-1 \quad 11$
H. W. at Southampton
$8 \quad 9$ A. M.
8 43P.M.
Ex. 33-June 8th ; find the A. M. and P. M. tides at Ballycastle.
Belfast June 8th P. M. $2^{\text {h }} 7 \mathrm{~m} \quad$ June 9 th A. M. $2^{\text {h }} 36 \mathrm{~m}$
Constant $-418 \quad-418$
H. W. at Ballygastle 9 A. M. 1018 P. M.

Ex. 3 亿-August 8th ; flud the A. M. and P. M. tides at Aberistwyth.

Constant -240 -240
H. W. at Ahenystwyth 1149 A. M.

No P. M.
On the dates given, flnd the times of High Waier A. M. and P. M. at the undermentioned places.

$$
\begin{array}{rcclrrl}
\text { Ex. } & 35 & 1875 & \text { May } & 9 \text { 9th } & \text { at Beaumaris. } \\
\text { "6 } & 36 & \text { "6 } & \text { June } & 22 n d & \text { " } & \text { Arklow. }
\end{array}
$$

Ex.	37	1875	April	4 th	at	Cromarty,
"	38	6	July	25 th	،	Coleriaine
"	39	"	August	9 th	"	Cardigan.
"	40	"	February	6 th	"	Margate.
"	41	"	April	2nd	6	Gibraltar.
"	42	"	March	1 st	6	Bridlington.
"	43	"	May	12th	6	Ilfracomb.
"	44	"	July	9 th	"	Port Rush.
"	45	"	April	16 th	، 6	Cromarty.
"	46	"	February	17 th	6	London Docks.
"	47	"	January	Ist	"	Penzance.
6	48	'6	Apil	19th	،	Peterhead.
6	49	"	May	12th	"	Lundy Island.
6	50	"	February	6th	6	Helgoland.
"	51	"	May	14th	6	St. Ives.
6	52	6	January	11th	"	Christchurch.
"	53	6	August	26th	6	Castletownsend.
"	54	6	August	27th	"	Valenia Itrrbor
"	55	"	August	11th	"	Bantry Harbor.

WHEN THE GIVEN POIRT IS NOT IN THE UNITED KINGDOM.

99. Most ports adjacent to the British coast are specifled in the Table of Tidal Constants ; but if the given port is outside this range, take Brest as your Standard port of Reference, and compute the Constant by the following rule.
100. To find the Constant-Get the difference of longitude between Brest (long. $4^{0} 29^{\prime} \mathrm{W}$.) and the given place; find also the difference between the Moon's Transit on the given day and the one preceding it; with these two elements enter the proper 'Iable (Noric Table XVI, Bowditch Table XXVIII, Raper Table ${ }^{2} 8$) and their intersection will give the correction for the day's change in the Moon's transit over the meridian of the given ilace. In the Alphabetical List of Ports at the end of the Admirably Tide: 'Tables, flnd the time of High Water, Full and Change, corresponding to the given port, and add to this the correction found above if the diff. long, is West, but subtract it if kast. Now find the difference between this corrected time and the time of High Water, Full and Change, at Brest ($3^{h} \mathbf{4 7 m}^{7}$), the remainder will be the Constant, additive if the Full and Change at the given port is greater than that at Brest, but subtractive if it is less.
101. With the time of high water at Brest and the Constant found above, get out the times of high water by the usual rules.
Ex. 56.-1875, January 21st. Find the time of High Water A. M. anu P. M. at Rio Janeiro in longitude $430^{\circ} 9^{\prime} \mathrm{W}$.

Liong, of Rio Janciro $43^{\circ} 9^{\prime}$ W. Moon's Transit Jan. 21st 11 h 34 m
do Brest 429 W . do Jan. 20th $10 \quad 32$

Diff. of longitude 3840 Transit difference (62m) $1 \quad 2$
H. W. Full and Change at Rio Janeiro 3 h 0 m

Correction for Moon's Transit

$$
\begin{aligned}
& +7 \\
& \hline 37 \\
& 347
\end{aligned}
$$

H. W. Full and Change at Biest

Constant
-040
H. W. at Brest on Jan. 21st A. M.
H. W. at Ric Janeiro

321
241 A. M.
$-0 h 40 \mathrm{~m}$
Jan. 21st P. M. 345

Ex. $57 .-1875$, August 5th. Find the time of High Water A. M. and P. M. at Macio in longitude $11303 \mathbf{3}^{\prime} \mathrm{E}$.

H. W. Full and Change at Macao 10^{h} 0m

Correction for Moon's 'Transit	- 14
	946
H. W. Full and Change at Brest	347
Constant	$5 \quad 59$
H. W, at Brest on Aug, 5th A.M.	65
H. W. at Madio	04

On the dates given, flad the times of High Water at tho mudermentioned places.

Ex.58. 1875, Jan. Ith at Quebee in Long. $71^{\circ} 16{ }^{\prime} \mathrm{W}$
" 59 " April Ist " Pictou N. S. \quad " 60 " 6240 W
"60 "6 July 2nd" Parrsboro' N. :. ". " 648 W
"61 " Mareh 11th" Batavia \quad. " 106 48. E
" 62 "June 18th" Shanghai " $12129 . \mathrm{E}$

Ex. 63.	1875, Jan.	17th at Bencoolen
" 64	" Feb.	27th " Halifax N. S.
" 65	" May	1st " Acapulca
" 66	" Jan.	13th " Suez Bay
" 67	Aug.	12th" Tobago
" 68	" April	15th " Hammerfest
" 69	July	3rd " Yokohama
" 70	Feb.	19th" Sydney Harbor C.B.
" 71	July	28th " Honoruru
" 72	March	23rd " St. John N. B.
" 73	" May	28th "'Texel
" 74	March	3rd " Magdalen Islands
675	" Feb.	15th " Zauzibar
' 76	April	1st" Cape !illar
" 77	June	28th " Nanaimo Harbor
" 78	May	16th" Melbourne
" 79	April	11th " Iquiqui Road
" 80	March	1st " Madras

in Long. 10213 E
" 6334 W
" 9952 W
" 3233 E
" $60 \quad 27 \mathrm{~W}$
" 2842 E
" 12952 E
" 6055 W
" $15 \% 51 \mathrm{~W}$
: $666 \quad 2 \mathrm{~W}$
" 442 E
"6 $62 \quad 2 \mathrm{~W}$
، $39 \begin{array}{lll}15 & \text { E }\end{array}$
" $148 \quad 0 \quad \mathrm{E}$
" 123 55 W
" 14459 E
" $\quad 7011 \mathrm{~W}$
" $80 \quad 16 \quad \mathrm{E}$

DEVIATION OF THE COMPASS.

TO FORM A TABLE OF DEVIATIONS.

102. For this purpose, the bearings of some object are given, which have been taken by the Standard Compass, while the ship's head has been brought in succession upon not less than eight different points of the compass; generally, the four cardinal and the four mid-cardinal points.
103. To find the correct Magnetic Bearing. - See that all the bearin, "s are made to reckon from the same point, which may be either the N. or S. point, as may be most convenient; in cases where they differ, this is done by subtracting each bearing, of the name contrary to that selected, from 180°; now, if the beariugs all \mathbf{E}. or all W. add them togetier; but if some are E. and others W. add up the Eastings and Westings separately and get the difference between the sums; divide this sum or difference, as the case mey be, by the number of bearings observed, and the result may be taken as the Correct Maguetic Bearing, which will of course be named E. or W. the same as the largest of the above sums.
104. To find the Deviations.- Find the angle between the Correct Magnetic Bearing and the first Bearing by Standard Compass, which is done by adding them togetber if one is E. and the other W., but by getting their difference if they are both of the same name; this will give the Deviation corresponding to the direction of the ship's head when this bearing was taken, ans. now, by laying off the two bearings upon a rongh compass, as in an Azinnth (65), the Deviation svill be named E. if the Correel Magnetic Bearing falls to the right of the other, but W. if ihr contrary. In like manner, find the angle between the Correct Magnetic and each of the other bentiags in snecession, and with the Deviations resultivg, the required Tahle can be completed.

Ex. 1.-The bearings of athorld steeple which were taken from a ship by the Standard Compass, while her head was lying apou the points indicated, were as follows:-Ship's head at North, Beatur N. $44^{\circ} 10^{\prime} \mathrm{E}$; at N. E., N. $32^{\circ} 30^{\circ} \mathrm{E}$; at East, N. $30^{\circ} 50^{\prime} \mathrm{E}$; at S. E., N. $35^{\circ} 15^{\prime} \mathrm{E}$; at South, N. $17^{\circ} 15^{\prime} \mathrm{E}$; at S. W., N. $59010^{\prime} \mathrm{E}$;

Ex. 2. The bearing of an object by the Standard Compass with the Ship's head at North was S. $\left.13^{\circ}\right)^{\prime}$ E.; at N. E., S. $33^{0} 45^{\prime}$ E.; at East, S. $37^{\circ} 10$ E.; at S. E., S. $29^{\circ} 30^{\prime}$ E. ; at South. S. $17^{\circ} 10^{\prime}$ E.; at S. W., S. $00^{\circ} \mathbf{4}^{\prime}$ W.; at West, S. $8^{\circ} 0^{\prime}$ W. ; at N.W., . $10^{\circ} 50^{\prime} \mathrm{W}$.

Ship's' Head.	Bearings by Standard Compass.	Deviation.
N.	S. $13{ }^{3} \quad 5^{\prime} \quad \mathrm{E}$.	$1^{\circ} 55^{\prime} \mathrm{W}$.
N. \mathbf{H}.	S. 3345 E .	1815 E .
E.	太. $37 \quad 10 \quad \mathrm{E}$.	2210 E .
S. E.	S. $29 \quad 30 \quad \mathrm{E}$.	1430 E .
S.	S. 1710 E.	219 E .
S. W.	S. $\begin{array}{llll}0 & 45 & \mathrm{~W} .\end{array}$	1545 W .
W.	s. 800 W .	230 W .
N. W.	S. 1555 W .	1655 W .

Cor. Mag. Bearing
S. ; $30 \quad 40 \quad$ E.
S. $10 \quad 40: \mathbf{W}$
$8 \mathrm{~J} 120 \quad 00$ …

Ex. 3.-The bearings of an obieat by the Standard Compass with the Ship's head at North hats N. $85^{\circ} 10^{\prime}$ W.; at N. E., N. $67^{\circ}{ }^{\prime \prime} 5^{\prime}$ W. ; at East, N. 39020^{\prime} W. ; at S. E., N. $63^{\circ} 45^{\prime}$ W. ; at South, N. $81^{\circ} 30^{\prime}$ W. ; at S. W., S. $72^{\prime \prime} 3 a^{\prime}$ W.; at West, S. 7100^{\prime} W.; at N. W., S. $79^{\circ} 35^{\prime} \mathrm{W}$.

Ship's Herd.	Bearings ly Standard Compars.	Deviation.
N.	N. $85^{3} 10^{\prime}$ 。W.	$0^{3} 30 \cdot \mathrm{E}$.
N. E.	N. 67 45 W.	1655 W .
E.	N. $59 \quad 20 \quad \mathrm{~W}$.	2520 W.
S E.	N. $63 \quad 45$ W.	2055 W.
S.	N. 8430 W.	010 W .
S. W.	N. 10725 W.	22.45 E ,
W.	N. 10900 W.	2420 E .
N, W.	N. 10025 W.	1545 E .

$8 \int 677 \quad 20$
Cor. Mag. Bearing
N. $84 \quad 40 \mathrm{~W}$.

Ex. 4.-The bearings of an object by the Standard Compass with the Ship's head at North was S. 630 30^{\prime} W.; at N. E. S $73050^{\prime} \mathrm{W}$; at East, $\mathrm{S} 79^{\circ} 15^{\prime} \mathrm{W}$; at S E, S. $75^{\circ} 0^{\prime} \mathrm{W}$; at South, S $64^{\circ} 50^{\prime} \mathrm{W}$; at $\mathrm{S} \mathrm{W}, \mathrm{S} 53^{\circ} 30^{\prime} \mathrm{W}$; at West, $\mathrm{S} 50^{\circ} 45^{\prime} \mathrm{W}$; at N W, S $56^{\prime \prime} 0^{\prime} \mathrm{W}$ 。

Ex. 5-The bearings of an object by the Standard Compass with the ship's head at North was $\mathrm{N} 5^{\circ} 40^{\prime} \mathrm{W}$; at $\mathrm{N} \mathrm{E}, \mathrm{N} 28^{\circ} 50^{\prime} \mathrm{W}$; at East, $\mathrm{N} 30^{\circ} 50^{\prime} \mathrm{W}$; at S E, N $23^{\circ} 30^{\prime} \mathrm{W}$; at South, $\mathrm{N} 10^{\circ} 50^{\circ} \mathrm{W}$: at $\mathrm{S} \mathbf{W}, \mathrm{N} 1^{\circ} 40^{\prime} \mathrm{E}$; at West, $\mathrm{N} 9^{\circ} 20^{\circ} \mathrm{E}$; at $\mathrm{N} W, N 4^{\circ} \mathbf{4} 0^{\prime} \mathrm{E}$.

Ex. 6-The bearings of an object by the Standard Compass with the ship's head at North was S $34^{\circ} 40^{\prime} \mathrm{E}$; at N E, S $49^{\circ} 15^{\prime} \mathrm{E}$; al East, $\mathrm{S} 50^{\circ} 20^{\prime} \mathrm{E}$; at S E, S $44^{\circ} 0^{\prime} \mathrm{E}$; at South, $\mathrm{S} 31^{\circ} 0^{\prime} \mathrm{E}$; al S W, S $18^{\circ} 45^{\circ} \mathrm{E}$; at West, S $14^{\circ} 15^{\circ} \mathrm{E}$; at N W, S $18^{\circ} 30^{\circ} \mathrm{E}$.

Ex. 7-The bearings of an object by the Standard Compass with the ship's head at North was $\mathrm{S} 83^{\circ} 45^{\prime} \mathrm{W}$: at N E , N. $76^{\circ} 30^{\prime} \mathrm{W}$; at East, $\mathrm{N} 68^{\circ} 45^{\prime} \mathrm{W}$; at S E, N $72^{\circ} 15^{\prime} \mathrm{W}$; at South, N. $88^{\circ} 30^{\circ} \mathrm{W}$: at S W, S $67^{\circ} 30^{\prime} \mathrm{W}$; at West, $\mathrm{S} 62045^{\circ} \mathrm{W}$; at N W, S $71015^{\prime} \mathrm{W}$

Ex. 8-The bearings of atrabject by the Standard Compass with the ship's head at North wasi N go $00^{\prime} \mathrm{W}$; at NE , N $1045^{\prime} \mathrm{W}$; at East, N $2045^{\circ} \mathrm{E}$; at S E, Noth; at South, N 7030° W ; at S W. $\mathrm{N} 16^{0} 45^{\circ} \mathrm{W}$; at West, $\mathrm{N} \$ 8^{\circ} 0^{\circ} 10^{\prime} \mathrm{W}$; at $\mathrm{N} \mathrm{W}, \mathrm{N} 17^{\circ} 0^{\circ} \mathrm{W}$.

Ex. 9-The bearings of andobject by the Standard Compass with the ship's head at North was'S $74^{\circ} 30^{\prime} \mathrm{W}$; at N E , S $53{ }^{\circ} 0^{\circ} \mathrm{W}$; at East, S 490 $40^{\prime} \mathrm{W}$; at S E, S $56^{\circ} 10^{\circ} \mathrm{W}$; at South, S $780^{\circ} 0^{\prime} \mathrm{W}$; al

105. To find the Corrget Magnetic Course made good. - Express the given compass coursẻ in degrees, and as in a Day's Work, set it down as \mathbf{R}. or L. of the \mathbf{N}, or \mathbf{S}. point from which it is reckonins (38). Place the Deviation corresponding to the comse underneath, and mark it R if it is East but Laf West; now if they are of the sume name take their sum, but get their difference if oi contrary names, and after changing the R or L of the result into E or W as in a Day's Work (38) it will be the Correct Magnetie Course required.

Fix. 10-Supposing you have steered the following courses by the Standard Compass, viz: East, N. W. and Sonth, flnd the: correct magnetic courses made, from the Deviation Table as given in Ex. 1.

Compass Courses,	$\mathrm{E}=\mathrm{S} 90^{\circ} 0^{\circ} \mathrm{L}$	$\mathrm{NW}=\mathrm{N} 45^{\circ} 00^{0} \mathrm{~L}$	$\mathrm{S}=00^{\circ} 0$
Deviation	1545 R	1245 L	040 L
Magretic Courses	S 7415 E	N 5745 W	S 040 E

Ex. 11.-Supposing you have sfeered the following courses by the Standard Compass, viz:- North, N. E. and S. E., find the correct magnetic courses mate, from the Deviation Table as given in Ex. ?

Ex. 12.-Supposing you fave steered the following courses by the Standard Compass, viz:- West, South arrl N. W., find the correet magnetic courses made, from the Deviation Table as given in Ex. 3.

Ex. [3.- You have steered the following courses by the Standard Compass, viz:-N. E., S. E. and S. W., find the correct magnetic courses made, from the Deviation Table as given in Ex. 4.

Ex. 14.-The following courses. , have been stecred by the Standard Compass, viz: East, N. W.: ihid West, find the correct magnetic courses made, from the \cdot deviation Table as given in Ex. 5.

Ex. 15.-The following contses? Standard Compass, viz:-North, S. ${ }^{\text {en }}$; and South, find the correct magnetic eourses made, from the: Deviation Table as given in Ex. 6.
106. To correct Bearings.-Exprtis the Bearing in degrees, and proceed in the same manner as directed in the proceeding. rule (105) for correcting a course steered, except, that instead of using the Deviation cormespondirg to the given Bearing, youtake the Deviation correspondirg to the. gourse upon which the ship's head saas lying when the bearing was observed.

Ex. 16.-The bearings of two distant objects by the Standard Compass, with the ship's head at N. E., are S. W. and N. W., find the bearings correct magnetic, using the Deviation Table as given in Ex. 7.

Ex. 17.-The bearings of two distant objects by the Standard Compass, with the ship's head at S. E., are N. E. and West, find the bearings correct magnetic, using the Deviation Table as given in Ex. 8.

Ex. 18-With the Ship's head at East, the bearings of two distant objects by the Standard Compass are S. W. and South, find the bearings correct magnetic, using the Deviation Table as given in Ex. 9.

Ex. 19-With the Ship's head at North, the bearings of two distant objects by the Standard Compass are North and S. W., find the bearings correct magnetic, using the Deviation Table as given in Ex. 1.

Ex. 20-The bearings ol iwo distant objects as taken by Standard Compass are West and N. E., the ship at the time steering dhe East, find the bearings correct magnetic, using the Deviation Table as given in Ex. 2.

Ex. 21-A vessel heading up N. E., finds the bearings of two distant objects to be West and South, as taken by her Standard Compass ; find the bearings correct magnetic, the vessel's Deviation Table heing the same as that given in Ex. 3.
107. To find the course to steer, by calculation.-As Deviation is applied to courses in the same way as Variation, it is clear, that to get a course to steer, Easterly deviation must be allowed to the left hand of the correct magnetic course and Westerly to the righl.
108. Suppose for instance it is necessary to have the course to steer by compass to make good a N. E. course correct magnetic; then using the Table of Deviations given in Ex. I the operation would be as under :

$$
\begin{array}{lc}
\text { N E } & \mathrm{N} 45^{\prime \prime} 0^{\prime} \mathrm{R} \\
\text { Deviation for N E } & 145 \mathrm{~L} \\
\text { Approx. Course to steer } \mathrm{N}, 055 \mathrm{E}=\mathrm{N} \mathrm{E} \text { by } \mathrm{N}+\mathrm{N}
\end{array}
$$

But a glance at the Table of Deviations will shew that the deviation for N. E. by $N . \not+N$ is not the same as that for N. E., consequently should the vessel be put upon the former course, she would not make good the course required; a second operation therefore becomes necessary. Find the deviation correspond-
ing to N. E. by N. \ddagger N., which by interpolating between N. and N. E. will be found to be $10^{\circ} 26^{\prime}$ E. and apply this to N. E. as before :-
N. C. N 450 R

Deviation of N. E. by N. $\frac{1}{4}$ N. 1026 L
Approx. Course to steer N 3434 E
There is still a difference of about 4° between this course and the one for which the deviation was calculated, and if the process is again repeated, the deviation for N. E. by N. will be found to be $11^{\circ} 10^{\prime}$ and the final result :-
N.E. $\quad N 45^{\circ} 0^{\prime} R$

Deviation for N. E. by N. 1110 L
Course to steei-
N $3350 \mathrm{E}=\mathrm{N}$ E by N neariy.
Usually the second result is sufficiently accurate for all practical purposes, but even this is a somewhat tedious process, and the result is found in a far easier and simpler manner by a Graphic Method, the explanation of one of which follows.

NAPIER'S DIAGRAM.

109. This Diagram (see Plate VI) has a central line divided int" 360°, and also into 32 points, consequently it represents the outer circle or rim of the compass card straightened out. At each point of the compass a dotted and a straight line intersect one another, and upon these lines the different deviations forming the curve are laid off.
110. To make a Curve of Deviation.-Having the deviatious corresponding to not less than eight equi-distant points of thi" compass, prick off each of them upon the diagram as follows :-

Place a pair of parallel ruters upon a dotted line, and move them mutil they cat the direction of the ship's head, corresponding to the deviation to be laid off; now from any part of the central line, take off a distance equal to your deviation in a pair of dividers, and setting one foot upon your course, lay off the other against the rulers, to the right of the central line if your deviation is East, but to the left if it is West. Having in like manner pricked off all the Deviations, take a pencil, and draw such a curve as will pass as nearly as possible through these
points; this may take two or three trials to accomplish, but when a satisfactory curve is obtained, it can then be drawn in ink.
111. To find the Deviation corresponding to any given Course.-Lay a pair of parallel rulers upon a dotted line, and move it until it cuts the central line at the given course; now with a pair of dividers measure the distance along the edge of the rulers between the central line and the curve, and this, read off by the scale of degrees upon any part of the central line, will be the Deviation, E. or W. as named at the head of the diagram.
112. To find a Course to Steer by the Diagram,--Place your parallel rulers noon a plain line, and move them until they cut the central line upon the course required to be made; now place one foot of a pair of dividers upon that point of the curve cut by the rulers, and following the direction in which the dotted lines run inwards, let the other foot of the dividers rest upon the central line, and this will shew the Conrse to Steer to make good the correot Magnetic Course given.

With the Curve and Deviations given in Plate VI find the courses to steer by the Standard Compass to make the following courses, correct magnetic:-

Ex. 22.-N $40^{\circ} \mathrm{E} ; \mathrm{S} 25^{\circ} \mathrm{W} ; \mathrm{N} 38^{\circ} \mathrm{W}$.
" 23.-S $84 \mathrm{E} ; \mathrm{S} 62 \mathrm{~W} ; \mathrm{N} 17 \mathrm{~W}$.
" 24.-N 5 W ; S 85 W ; East.
" 25.-North; N 88 W;S 86 E .
113. To find the Correct Magnetic Course by the Diagram.Lay your rulers parallel to a dotted line, and move them until they cut the given Course upon the central line; now place one foot of the dividers upon the point where the curve is cut by the rulers, and following the direction in which the plain lines pass inwards, let the other foot of the dividers fall upon the central line, and this when read off will given the Correct Magnetic Course desired.

EXAMINATION PAPERS.

SET No. 1.

1-Multiply 89.764 by 384.59 by common logarithms. 2-Divide 248.25 by 36.487 by common logarithms.

3-

Correct the courses for Deviation, Variation and Leeway, and find the Course and Distance from the given Point, and the Latitude and Longitude in by inspection.
4-1876, Augnst Ist. In longitude 50° 40' E. The ohserved meridian altitude of the Sun's Lower Limb was $64^{\circ} 32^{\prime} 15^{\prime \prime}$ bearing Sonth, index error $+I^{\prime} 5^{\prime \prime}$, height of eye 12 feet. Required the latitude.

- - In latitude $36^{\circ} 14^{\prime} \mathrm{N}$. the Departere made good was $4^{\prime} 96$. Required the Difference of Longitade by parallel sailing,
G-Required the course and distance from Cape Ray to Scatteri, by calculation on Mereator's principle.

Lat. of Gape Ray $47037{ }^{\prime} \mathrm{N}$ Long. 590 $18{ }^{\prime} \mathrm{W}$ Lat of Scatteri 462 N Long. 59 41 W
1.-Find the time of High Watcr A. M. and P. M. at the following places : 1875, May 28ih, at S. Ives G. B.
" July 3:d, at Nagasaki, in Long. 1290.52' K.

2—1876: A.pril 29th, At $\tilde{j}^{\mathrm{h}} 0^{\mathrm{m}}$ A. 3. Appt. 'T. Ship in latitude $47^{\circ} 1 z^{\prime} \mathrm{N}$., longitude $160^{\circ} 12^{\prime} \mathrm{E}$. The Sun's Magnetic Amplitude was N. E. $\frac{3}{4}$ N. Required the True Amplitude and Error of the Compass, and supposing the Variaiion to be $4^{\circ} 20^{\prime} \mathrm{E}$., required the Deviation of the Compass for that position of the Ship's head.

3-1876, November 12th, at $4^{14} 3^{m}$ P. M. Mean 'lime at Ship. in latitude $0^{\circ} 12^{\prime} 16^{\prime \prime}$ S., longitude $61^{\circ} \mathrm{Si}^{\prime}$ ' $30^{\prime \prime} \mathrm{E}$. 'The observed altitude of the \odot was $23^{\circ} 50^{\prime} 40^{\prime \prime}$ height of eye 15 feet. Time
 noon at Greeli wich on May 1st and on June Ist was fast for mean noon at Greens ${ }^{\text {ich }} \mathbf{1}^{\mathrm{h}} \mathrm{i}^{\mathrm{m}}(\mathrm{)})$. Required the Longiturle by Chron meter.

1-1876, June 4th, Mean Time at Ship at $5^{11} 25 a$, in latitude $97039^{\prime} \mathrm{N}$., longitud. 38016 W . The Sun's bearing by Compass W. I S., altitude $\bar{\circ} 18021^{\prime} 45^{\prime \prime}$. Height of the eye 14 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation to be $15^{\circ} 36^{\prime}$ W., required the Deviation of the Comps ss for that position of the Ship's head.

2-1876, May 16th A. M. at Ship ; latitude by account $31^{\circ} 50^{\prime} \mathrm{S}$. ; longitude $87^{\circ} 54^{\prime} 35^{\prime \prime} \mathrm{W}$. The observed altitude of the Sun's L . L. North of the observer was $380^{\circ} 22^{\prime} 40^{\prime \prime}$, height of eye 12 feet. Time by watch $10^{\mathrm{h}} 333^{\mathrm{m}} 55^{8}$ which had been found io be slow $1^{14} 2^{\mathrm{m}} 18^{8}$ of apparent time at Ship. The difference of longitude made to the East was 14' after the error upon Apparent 'Time at Ship was determined. Required the Intitude by the Reduction to the Meridian.

1-1876, November 12th. The observed Meridian Altitude of the Star δ Ophiuchi bearing North was $45^{\circ} 26^{\prime} 0^{\prime \prime}$, height of the eye 10 feet. Required the Latitude.

2-Deviation of the Compass.
(7) in the following table give the correct magnetic bearing of the distant object, and thence the deviation :

Ship's head by Standard Compass.	Bearing of distant object by Standard Compass.	Deviation required.	
North	N. 38^{n}	0^{\prime}	W.
N. E.	N.	16	30
W.			
East	N.	13	10
W.			
S. E.	N.	19	40
W.			
South	N.	41	30
W.			
S. W.	N.	60	50
W.			
West	N. 66	0	W.
N. W.	N.	el	30
W.			

(8) With the deviation from the Curve at the end of the book, give the courses you would steer by the Standard Compass to make the following courses, correct magnetic.

Correct magnetic courses, N. N. E. ; N. 47 W.
(9) Supposing you have steered the following courses by the Standard Compass, find the correct magnetic courses made from the above deviation table.

Compass courses, N. E. ; South.
(10) You have taken the following bearings of two distant objents by your Standard Compass as above; with the Ship's head at S. F., find the bearings, correct magnetic.

Compass bearings, West; North.

SET No. 2.

1-Multiply 682 by 543.21 by common logarithms.
2-Divide 73829 by 55.555 by common logaritims.

3-

Hours.	Courses	Knotr.	10 the.	Winds.	L'way.	Dev.	Rcmarke,
1 2 3 4	$820^{\circ} \mathrm{E}$	8 8 9 7	4 6 1 9	ENE	6°	$\overline{545}$	A point in Lat. $60^{\circ} 20^{\prime} \mathrm{S}$ Long. $40 \quad 27 \mathrm{~K}$ bearing by Com-
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	5 82	$\begin{aligned} & 6 \\ & 6 \\ & 4 \\ & 5 \end{aligned}$	2 4 5 5	S E	6	$\overline{13 E}$	pass $\mathrm{N} 8^{\circ} \mathrm{W}$. Dict. 14 miles.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	S68 E	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	6 5 5		11	19 E	Variation 37 ${ }^{\circ} \mathrm{W}$.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	S 34 E	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\overline{5}$	SW	13	9 E	
5 6 7 8	N 53 E	$\begin{aligned} & 7 \\ & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 2 \\ & 9 \end{aligned}$	SEby E	9	8 E	$\left\{\begin{array}{c} \text { A current set } \\ \text { by compass } \end{array}\right\}$
9 10 11 19	\$8 W	7	5 5 5	ESE	3	2W	time the departure was takes until the end of the day.

Correct the Courses for Deviation, Variation and Leeway, and find the course and distance from the given Point, and the Latitude ald Longitude in by inspection.

4-1876, September 22nd. In longitude $60^{\circ} 13^{\prime} 30^{\prime \prime}$ W. The observed meridian altitude of the Sun's Lower Limb was $39^{\circ} 19^{\prime} 0^{\prime \prime}$ hearing South, index error - $0^{\prime} 20^{\prime}$, height of sye 19 feet. Required the latitude.

5-In latitude $18^{\circ} 13^{\prime} \mathrm{S}$. the Departure made good was 14 miles. Required the Difference of Longitude by parallel sailing.

6-Required the course and distance from Panama to Hobarton, by calsulation on Mercator's principle.

Lat. of Panama $\quad 8057$ S Long. $79031, \mathrm{E}$ Lat. of Hobarton 4254 S Long. 14722 K

I-Find the time of High Water A. M. and P. M. at the following places :

1875, Jinuary 8th, at Southampton.
"6 February 20th, at Basrah Bar in long. $47{ }^{\circ} 40^{\prime} \mathrm{E}$.
:-1876, February 15th at $6^{\text {h }} 36^{\mathrm{m}}$ A. M. Appt. T. Ship, in latitude $34^{\circ} 14^{\prime}$ N., longitnde $15^{\circ} 36^{\prime}$ E. The Sun's Magnetic Amplitude was S. E. by E. $\frac{3}{4}$ E. Required the True Amplitude and Error of the Compass, and supposing the Variation to be $13^{\circ} 0^{\prime} \mathrm{W}$. required the Deviation of the Compass for that position of the Ship's head.

3-1876, April 26 th at 2 h 28 m P. M. mean time at Ship, in latitude $1050^{\prime} \mathrm{N}$. longitude $78053^{\prime} \mathrm{E}$. The observed altitude of the \bigcirc was $500^{\circ} 55^{\prime} 40^{\prime \prime}$, height of eye 26 feet. Time by a Chronometer $8^{\mathrm{h}} 9^{\mathrm{m}} 0^{\mathrm{s}}$ which was slow for mean noon at Greenwhich $59 \mathrm{~m} 36^{*}$ on November 12 th 1875 and on November 30th 1875 was slow $\overline{5} 9 \mathrm{~m} 59 \mathrm{~s}$ for mean noon at Greenwich. Required the Longitude by Chronometer.

1-1876, Angust 18th Mean Time at Ship, at $10^{\mathrm{h}} 35^{\mathrm{m}}$, in latitude $26^{\circ} 15^{\prime} 21^{\prime \prime} \mathrm{S}$., longitude, $93^{\circ} 30^{\prime} \mathrm{W}$. The Sun's bearing by Compass N. by W., altitude © $45^{\circ} 10^{\prime} 30^{\prime \prime}$. Height of the eye 18 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation to be $130^{\prime} 40^{\prime}$ E., required the Deviation of the Compass for that position of the Ship's head.

2-1876, April 15th P. M. at Ship; latitude by accomnt 460 45' S., longitude 790 30^{\prime} E. 'The observed altitude of the Sun's L. l. North of the observer was $32040^{\prime} 10^{\prime \prime}$, height of eye 21 feet. 'Time by watch $7^{\mathrm{h}} 18^{\mathrm{m}} 46^{8}$ which had been found to be slow $5^{12} 14^{\mathrm{m}} 12^{8}$ of apparent time at Ship. The difference of longitude made to the East was $15^{\prime} \cdot 7$ after the error upon Apparent 'Time at Ship was determined. Required the Latitude Ly the Reduction to the Meridian.

1-1876, December 30th. The observed Meridian Altitude of the Star of μ Geminorum learing South was $58^{\circ} 40^{\prime} 0^{\prime \prime}$, height of the eye 10 feet. Required the Latitude.

Q-Deviation of the Compass.
(7) In the following table give the correct magnetic bearing of the distant object and thence the deviation :

Ship's head by Standard Compass.	Bearing of distant object by Standard Compass.	Deviation requircd.	
North.	S. 111°	5	E.
N. E.	S.	0	45
E.			
East.	S.	4	40
W.			
S. E.	S.	0	25
W.			
Soath.	S.	9	45
S. W.			
West.	S. 21	5	E.
N. W.	S. 23	60	E.
	S. 18	35	E.

(8) With the deviation from the Curve at the end of the book, give the courses you would steer by the Standard Compass to make the following courses, correct magnetic.

Correct magnetic courses, S. 50' W.; South.
(9) Supposing you have steered the following courses by the Standard Compass, find the correct magnetic courses made from the above deviation table.

Compass Courses, West ; N. W.
(10). You have taken the following bearings of two distant objects by your Standard Compass as above, with the Ship's head at N. E.; find the bearings, correct magnetic.

Compass bearings, S. W. ; East.

SET NO. 3.

1-Multiply 46742 by 96.732 by common logarithms.
2-Divide 746206 by $294 \cdot 1$ by common logarithms.

Examination Papers.
3-

\mid Hours ${ }^{\text {\| }}$	Courses	Knots	10 ths.	Winds	L'way.	Dev.	Remarks,
1 2 3 4	S $50^{\circ} \mathrm{E}$	-6 7 6 6	8 1 6 4	$\overline{\mathrm{N}} \mathrm{E}$ by E	14°	$\overline{8^{\circ} \mathrm{E}}$	$\begin{aligned} & \text { A point } \\ & \text { in Lat. } 88^{\circ} 15^{\prime} \mathrm{N} \\ & \text { Long. } 145 \quad 37 \mathrm{~W} \\ & \text { bearing by compass } \end{aligned}$
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	845 E	- 6 6 6		Ditto.	17	7 E	$\mathrm{N} 89^{\circ} \mathrm{W}$. Dist. 27 miles.
9 10 11 12	North	5 5 5 5 5	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 8 \\ & 9 \end{aligned}$	ENE	11	1 W	Variation $30^{\circ} \mathrm{E}$.
1 2 3 4	N 45 W	$\begin{aligned} & 7 \\ & 7 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 7 \end{aligned}$	N	8	13W	
5 6 7 8	East	6 6 6	8 6 0	Ditto.	10	$\overline{25 \mathrm{E}}$	A current set $\}$ by compass $\}$ N E by E . 15 miles from the
8 10 11 12	N 67 W	7 7 8	5	North	6	29W	time the departure was taken to the end of the day.

Correct the Courses for Deviation, Variation, and Leeway, and find the course and distance from the given Point, and the Latitude and Longitude by inspection.

4-1876, November 1st. In longitude $7 \mathbf{7 6}^{\circ} 0^{\prime} \mathrm{W}$. The observed meridian altitude of the Sun's Upper Limb was $80^{\circ} 40^{\prime} 10^{\prime \prime}$ bearing South, index error $+2^{\circ} 30^{\prime}$, height of eye 22 feet Required the latitude.

5-In latitude $30^{\circ} 19^{\prime}$ the Departure made good was 421 miles. Required the Difference of Longitude by parallel sailing.

6-Required the course and distance from Cape Finisterre to the Lizard, by calculation on Mercator's principle.

> Lat. of C. Finisterre $42^{\circ} 53^{\prime} \mathrm{N}$. $\begin{aligned} & \text { Long. } 9^{\circ} \\ & \text { Lat. of Lizard } \\ & 49^{\circ} \\ & 58^{\prime} \mathrm{W} \\ & \mathrm{N} . \\ & \text { Long. } \\ & 5^{\circ} \\ & 12^{\prime} \mathrm{W}\end{aligned}$

I-Find the time of High Water A. M. and P. M. at the following places:-
1875 August 12th at Valentia Harbor.
" May 1st at Portland U.S.
2-1876, September 22nd at $6^{\text {h }} 0^{\mathrm{m}}$ P. M. Appt.'T. Ship, in latitude 37012^{\prime} N., lougitude $0^{\circ} 13^{\prime} 30^{\prime \prime} \mathrm{W}$. The Sun's Magnetic Amplitude was W. $4^{0} 20^{\prime}$ S. Required the True Amplitude and Error of the Compass, and supposing the Variation to be $170^{\circ} 30^{\circ} \mathrm{W}$. required the Deviation of the Compass for that position of the Ship's head.

3-1876, November 2nd at $8^{\text {h }} 44^{\mathrm{m}}$ A. M. Mean Time at Ship, in latitude $38^{\circ} 0^{\prime} \mathrm{N}$. longitude $64^{\circ} 5^{\prime} \mathrm{W}$. The observed altitude of the $\overline{(0)}$ was $22^{\circ} 39^{\prime} 20^{\prime \prime}$ eight of the eye 15 feet. Time by a Chronometer $11^{\mathrm{h}} 16 \mathrm{~m}^{\mathrm{m}} 42^{8}$ which was slow for mean noon at G:eenwich $1^{\mathrm{h}} 45^{\mathrm{m}} 36^{\mathrm{s}}$ on May 13th and on May 18 th was slow $1^{\text {h }} 45^{\mathrm{m}} 32 \mathrm{~s}$ for mean noon at Greenwich. Required the Longitude by Chronometer.

1-1876, March 29 th Mean Time at Ship $4^{\text {in }} 6 \mathrm{~m}$, in latitude $28^{\circ} 20^{\prime} \mathrm{S}$., longitude $80^{\circ} 45^{\prime} \mathrm{E}$. The Sun's bearing by Compass W. $10^{\circ} \mathrm{S}$., altitude © $21^{\circ} 45^{\prime} 30^{\prime \prime}$. Height of the eye 22 feet. Required the True Azimuth and Error of the Compass, and supposing the Vartation to be $10^{\circ} 30^{\circ}$ E., required the Deviation of the Compass for that position of the Ship's head.

2-1876, August 14th A. 'I. at ship; latitude by account $15{ }^{\circ}$ 40' S., longitude $47^{\circ} 36^{\prime}$ W. 'The observed altitude of the Sun's L. L. North of the observer was $59^{\circ} 54^{\prime} 40^{\prime \prime}$, height of eye 22 feet. Time by watch $2^{\mathrm{h}} 49 \mathrm{~m} 7^{8}$ which had been found to be fast $2^{\mathrm{h}} 48^{\mathrm{m}} 51^{\mathrm{s}}$ of apparent time at Ship. The difference of longitude made to the West was $48^{\prime} \cdot 6$ after the error upon Apparent Time at Ship was determined. Required the Latitude by the Reduction to the Meridian.

1-1876, February 24th. The observed Meridian Altitude of the Star Capella bearing South $89^{\circ} 53^{\prime} 50^{\prime \prime}$, height of the eye 19 feet. Required the Latitude.

2-Deviation of the Compass.
(7) In the following table find the correct magnetic bearing of the distant object and thence the deviation :

Ship's Head by Standard Compass.	Bearing of distant object of Standard Compass.	Deviation require.l.
North.	N. $82^{\circ}{ }^{\circ} 15^{\prime}$	E.
N E.	N. 61	35
E.	E.	
East.	N. 58	10
E.		
S. E.	N. 65	50
E.		
South.	N. 78	10
S. W.	S. 83	E5
W.	E.	
West.	S. 76	40
N. W.	S. 82	45
		E.

(8) With the deviation from the Curve at the end of the book, give the cuurses you would stee. by the Standard Compass, to make the following courses, correct magnetic.

Correct magnetic courses N. E. $\frac{1}{2}$ N. ; S. 14° E.
(9) Supposing you have steered the following courses by the Standard Compass, find the correct magnetic courses made from the above deviation table.

Compass courses, S. E. ; N. E.
(10) You have taken the following bearings of two distant objects by your Standard Compass as above, with the Ship's head at East, find the bearings, correct magnetic.

Compass bearings, East ; N. W.

SET No. 4.

1-Multiply 28.4291 by $\mathbf{7 . 4 3 9 5}$ by common logarithms.
2-Divide 384444 by 85 by common logarithms.

3-

Correct the Courses for Deviation, Variation and Leeway, and find the course and distance from the given Point and the Lati tude and Longitude in by inspection.

4-1876, February 12th. In longitude $130^{\circ} 34^{\prime}$ W. The observed meridian altitude of the Sun's Lower Limb was 610 $13^{\prime} 20^{\prime \prime}$ bearing North, index error - $1^{\prime} 20^{\prime \prime}$, height of eye 10 feet. Required the latitude.
j-In latitude $57{ }^{\circ} 16^{\prime}$ the Departure made good was $846 \cdot 2$. Required the Difference of Longitude by parallel sailing.

6-Required the course and distance from Boston U. S. to Sable Island.

Lat. of Boston U. S. $\quad 42^{\circ} 23^{\prime} \mathrm{N}$ Long. $71^{\circ} 8^{\prime} \mathrm{W}$
Lat. of Sable Island 4359 N Long. 5946 W

1-Find the time of High Water A. M. and P. M. at the following places :

1875, July 26th at Mellon.
" May 31st at Table Bay in Longitude $18{ }^{\circ}{ }^{\circ} 5^{\prime}$ E.
2-1876, June 22nd at $8^{\mathrm{h}} 29 \mathrm{~m}$ A. M. Appt. T. Ship, in latitude $54^{\circ} 10^{\prime}$ S., longitude $14^{\circ} 22^{\circ} \mathrm{W}$. The Sun's Magnetic Amplitude was N. E. \ddagger E. Required the True Amplitude and Error of the Compass, and supposing the Variation to be $8 \circ \mathrm{~W}$. required the Deviation of the Compass for that position of the Ship's head.

3-1876, September 22 nd at $7^{7} 53 \mathrm{~m}$ A. M. Mean Time at Ship, in latitude $180^{\circ} 0^{\prime} \mathrm{N}$., longitude $1500^{\circ} 0^{\prime} \mathrm{W}$. The observed altitude of the \bigcirc o was $28^{\circ} 26^{\prime} 40^{\prime \prime}$, height of the eye 14 feet. Time by a Chronometer $5^{\mathrm{h}} 55^{\mathrm{m}} 0^{\text {s }}$ which was slow for mean noon at Greenwich $1^{\mathrm{m}} 14^{8}$ on September 2nd and on September 22nd was $1^{\mathrm{m}} 34^{8}$ fast for mean noon at Greenwich. Required the Longitude by Chronometer.

1-1876, April 9th Mean Time at Ship, at $7^{\mathrm{h}} 55^{\mathrm{m}}$ A. M. in latitude $40^{\circ} 10^{\prime} \mathrm{S}$, longitude $88^{\circ} 0^{\prime} \mathrm{W}$. The Sun's bearing by Compass N. 60° E., altitude © $15^{\circ} 39^{\prime} 40^{\prime \prime}$. Height of the eye 9 feet. Required the True Azimuth and Error of the Compass and supposing the Variation of the Compass to be 18015^{\prime} E., required the Deviation of the Compass for that position of the Ship's head.

2-1876, March 1st P. M. at ship, latitude by account $23^{\circ} 28^{\prime} \mathrm{S}$. longitude $50^{\circ} 5^{\prime} 45^{\prime \prime} \mathrm{E}$. The observed altitude of the Sun's U. L. North of the observer was $74^{\circ} 10^{\prime} 0^{\prime \prime}$, height of eye 11 feet. Time by watch $8^{\mathrm{h}} 47 \mathrm{~m} 50^{\mathrm{s}}$ which had been found to be slow $3^{\mathrm{h}} 18 \mathrm{~m} 22^{\mathrm{s}}$ of apparent time at Ship. The difference of longitude made to the East was $17{ }^{\prime}{ }^{\prime}$ after the error upon Appar nnt Time at Ship was determined. Required thi latitude by the Reduction to the Meridian.

1-1876, October Ist, The observed Meridian Altitude of the Star
 11 feet. Required the Latitude.

2-Deviation of the Compass.
(7). In the following table give the correct magnetic bearing of the distant object aud thence the deviation :-

Ship's head by Standard Compass.	Bearing of distant object by Standard Compass.	Deviation required.
North.	S. $11^{\circ} 30^{\prime} \mathrm{W}$.	
N. E.	S. 1845 W .	
East.	S. 2315 W .	
s. E.	8. 2030 W .	
South.	S. 130 W.	
S. W.	S. 345 W .	
West.	8. 215 W .	
N. W.	S. 330 W .	

(8) With the deviation from the Curve at the end of the book, give the courses you would steer by the Standard Compass to make the following courses, correct magnetic.

Correct magnetic courses. W. $\frac{8}{4}$ N.; N. 620 E.
(9). Supposing you have steered the following courses by the Standard Compass, find the correct magnetic courses made from the above deviation table.

Compass courses, South ; S. W.
(10). You have take the following bearings of two distant objects by your Standard Compass as above, with the Ship's head at North, find the bearings, correct magnetic.

Compass bearings, S. E. ; West.

SET NO.

1-Multiply $128 \cdot 968$ by 2243.8 by common logarithms.
2-Divide 296400 by $947 \cdot 29$ by common logarithms.

3-

Hours 1	Courses	Knots.	10 the.	Winds	L'way.j	Dev.	Remarks, \&c.
1	$\overline{\text { West }}$	7	6	South	1 Pt .	$\overline{27}{ }^{\circ} \mathrm{W}$	A point
2		6	8				in Lat. $20^{\circ} 16^{\prime} 8$
3		7	4				Long 2323 W
4		8					bearing by compass
5	W N W	11		8w	17	21W	S E by E.
6		7	7				Dist. 21 miles.
7			9				
8		7	4				
${ }^{9}$	N W	${ }^{8}$	-	W S W	1	$\overline{15 W}$	
10		${ }^{8}$	1 -				
11		7 6	$\overline{4}$				
1	N ${ }^{\text {N }} \mathbf{W}$	6	2	West	1	4 W	Variation 13 Pt. E
2		4	-				
3		4	-				
4		3	4				
5	$88 \mathrm{~W}+\mathrm{W}$	3	2	Ditto	4	3 E	A current set
6		3	-				by compars $\}$
8		3	-				S E.
9		3	-				
9 10	Sps ${ }_{\text {Off }}$	5		Ditto	5	2 E	time the departure was taken to the
11		1	-				end of the day.
12		1	-				

Correct the Courses for Deviation, Variation, and Leeway, and find the course and distance from the given Point, and the Latititude and Longitude in by inspection.

4-1876, December 1st. In longitude $67{ }^{\circ} 56^{\prime}$ E., the observed meridian altitude of the Sun's Lower Limb was $18^{\circ} 48^{\prime} 10^{\prime \prime}$, hearing South, index error- $3^{\prime} 6^{\prime \prime}$, height of eye 18 feet. Required the latitude.

5-In latitude $18^{\circ} 1^{\prime} \mathrm{S}$. the Departure made good was 110 miles. Required the difference of Longitude by parallel sailing.
${ }^{6}$-Required the course and distance from A. to B. by calculation on Mercator's principle.

Lat. of A. $5105^{\prime} \mathrm{N}$. Long. $10^{\prime \prime} 0^{\prime} \mathrm{W}$.
Lat. of B. 5125 N. Long. 929 W.

1-Find the time of High Water A. M. and P. M at the following places :-
1875 July 11 th, at Foynes Island.
" June 29th, at Dalhousie Harbor N. B. in long. $66^{\circ} 22^{\prime}$ W.
2—18*6, August 6th at $6^{\mathrm{h}} \mathbf{4 0 \mathrm { m }}$ A. M. Appt. 'T. Ship, in latitude $31^{\circ} 21^{\prime} \mathrm{S}$., longitude $130{ }^{\circ} 10^{\circ} \mathrm{E}$. The Sun's Magnetic Amplitude was E. by N. $\frac{3}{4}$ N. Required the True Amplitude and Error of the Compass, and supposing the Variation to be $0^{\circ} 0^{\prime}$ required the Deviation of the Compass for that position of the Ship's head.

3-1876, September 1 st at $8 \mathrm{~h} 54^{\mathrm{m}}$ A. M. Mean time at Ship, in latitude $13^{\circ} 17^{\prime} 15^{\prime \prime} \mathrm{N}$. longitude $5^{\circ} 40^{\prime} \mathrm{W}$. The observed altitude of the \bigcirc was $44^{\circ} 2^{\prime} 20^{\prime \prime}$, height of eye 18 feet. Time by a Chronometer $9^{\mathrm{h}} 24^{\mathrm{m}} 42^{\mathrm{s}}$ which was slow for mean noon at Greenwich $0 \mathrm{~m} 18^{\mathrm{s}}$ on May 22 nd and on June 8 th was fast $1^{\mathrm{m}} 2^{\mathrm{s}}$ for mean noon at Greenwich. Required the Longitude by Chronometer.

1-1876, November 1st Mean Time at Ship, at $8^{\mathrm{h}} 27 \mathrm{~m}$ A. M. in latitude $16^{\circ} \mathbf{~}^{\prime \prime}$ 'S., longitude $89^{\circ} 3^{\prime} \mathrm{E}$. The Sun's bearing by Compass S. 85° E., altitude $\odot 43^{\circ} 3^{\prime} 10^{\prime \prime}$. Height of the eye 12 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation to be $2030^{\circ} \mathrm{W}$. required the Deviation of the Compass for that position of the Ship's head.
?- 1876 , July 15 th A. M. at ship; latitude by account $36^{\circ} 50^{\prime} \mathrm{S}$. longitude $5702^{\prime} 30^{\prime \prime} \mathrm{W}$. The observed altitude of the Sun's L. L. Nurth of the observer was $31^{\circ} 18^{\prime} 20^{\prime \prime}$, height of the eye 21 feet. Time by watch $3^{\mathrm{h}} 44^{\mathrm{m}} 22^{\mathrm{s}}$ which had been found to be fast $4^{\mathrm{h}} 7 \mathrm{~m} 16^{\mathrm{s}}$ of apparent time at ship. The difference of longitude made to the West was $11 \frac{1}{4}$ after the error upon Apparent Time at Ship was determined. Required the Latitude by the Reduction to the Meridian.

1-1876, August 22nd the observed Meridian Altitude of the Star $\boldsymbol{\gamma}^{1}$ Eridani bearing North was $57036^{\prime} 20^{\prime \prime}$ height of the eye 12 feet. Required the Latitude.

2-Deviation of the Compass.
(7) In the following table given the correct magnetic bearing of the distant object and thence the deviation :

Ship's hesd by Gtandard Compass.	Bearing of distant object by Standard Compass.	Deviation zequired.		
North.	S. 240	40	E.	
N. E.	N. 82	10	E.	
East.	N. 80	10	E.	
S. E.	N. 87	30	E.	
South.	S. 79	50	E.	
S. W.	S. 67	20	E.	
West.	S. 69	40	E.	
N. W.	S. 64	20	E.	

(8) With the Deviation from the Curve at the end of the boc:give the courses you would steer by the Standard Compass to make the iollowing courses, correct magnetic.

Gerrect magnetic courses. West ; E. by N. \ddagger N.
(9) Supposing you have steered the following courses by the Standard Compass, find the correct magnetic courses made from the ahove deviation table.

Compass courses, N. W.; East
(10) You have taken the following bearings of two distant objects by your Standard Compass as above; with the Ship's head at West, find the bearings, correct magnetic.

Compass bearings, N. E.; South.

GET No. 6.

1-Multip!y 4742.9 by 200.02 by zommon logarithms.
2-Divide 345609 by 7.7870 by common logarithms.

3-

Correct the Courses for Deviation, Variation and Leeway, and find the course and distance from the given point, and the Latitude and Longitude in by inspection.

4-1876, January 19th. In longitude $67^{\circ} 30^{\prime} \mathrm{W}$. The observed meridian altitude of the Sun's Lower Limb was $49^{\circ} 24^{\prime} 10^{\prime \prime}$ bearing South, index error $+0^{\prime} 17^{\prime \prime}$, height of eye 13 feet. Requir: 1 the latitude.
j-Required the course and distance from A. to B. by calculation on Mercator's principle.

Lat. of A. $5^{50} 37$ IN. Long. 790 $36^{\prime} \mathbf{W}$.
Lat. of B. 3118 S . Long. 12615 E .

1-Find the time of High Water A. M. and P. M. at the following places:-
1875, April 5th, at Peterhead.
" August 1st, at Hobarton in Longitude 14722 E.
2-1876, March 20th at $6^{\mathrm{h}} 2^{\mathrm{m}}$ A. M. Appt. T. Ship, in latitude $310{ }^{\circ} 49^{\prime}$; longitude $124^{\circ} 9^{\prime} \mathrm{W}$. The Sun's Magnetic Amplitude was E. $\frac{3}{4} \mathrm{~S}$. Required the True Amplitude and Error of the Compass, and supposing the Variation to be $8{ }^{\circ} 35^{\prime}$ E. required the Deviation of the Compass for that positon of the Ship's head.

3-1876, December 24th at $2^{\mathrm{h}} 45^{\mathrm{m}}$ P. M. Mean time at Ship, in latitude $0^{\circ} 0^{\prime}$, longitude $57^{\circ} 21^{\prime} \mathrm{F}$. The observed altitude of the б was $43^{\circ} 55^{\prime} 0^{\prime \prime}$, height of the eye 17 feet. Time by a Chronometer $0^{\mathrm{h}} 18^{\mathrm{m}} 29^{\mathrm{s}}$ which was fast for mean noon at Greenwich $1^{\mathrm{h}} 15^{\mathrm{m}} 22^{\mathrm{s}}$ on Decemver 31st 1875 and on February 3rd 1876 was $1^{\mathrm{h}} 16^{\mathrm{m}} 3^{\mathrm{s}}$ fast for mean noon at Greenwich. Required the Longitude.

1 - 1876 , May 21 st Mean Time at Ship, at $6^{\mathrm{h}} 0^{\mathrm{m}}$, in latitude $29^{\circ} \mathbf{1 5}^{\prime} \mathrm{N}$., longitude $130^{\circ} 45^{\prime} \mathrm{E}$. The sun's bearing by Compass East, altitude © $10^{\circ} 21^{\prime} 20^{\prime \prime}$. Height of the eye 12 feet. Required the True Azimuth and Error of the Compass, and supposing the Variation to be $2^{0} \mathrm{~W}$., required the Deviation of the Compass for that position of the ship's head.

2-1876, Marel 20th A. M. at ship; latitude by account 490 35' S. longitude $51^{\circ} 0^{\prime} \mathbf{W}$. The observed altitude of the Sun's L. L. North of the observer was $39^{\prime \prime} 21^{\prime} 30^{\prime \prime}$, height of eye 22 feet. Time by watch $11^{\mathrm{h}} 12 \mathrm{~m} 42 \mathrm{~s}$ which had been found to be slow \& $\mathrm{m}^{3} 30^{\mathrm{s}}$ of apparent time at ship. The differense of longitude made to the East was $40^{\prime} 5$ after the error upon Apparent Time at Ship was determined. Required the Latitude by the Reduction to the Meridian.

1-1876, Mareh ith The observed Meridian Altitude of the Star β Orionis bearing South was $81042^{\prime} 40^{\prime \prime}$ height of the ey 26 feet. Required the J atitude.

2-Deviation of the Compass.
(7) In the following table give the correct magnetic hearing of the distant object and thence the Deviation :

Ship's head by Standard Compass.	Bearing of distant object by Standard Compass.	Deviation required.	
North.	N. $111^{\circ} 10^{\prime}$	W.	
N. E.	N. 22	50	W.
East.	N. 24	30	W.
S. E.	N. 20	5	W.
South.	N. 8	5	W.
S. W.	N.	3	50
E.			
West.	N.	8	50
N. W.	N.	4	0
W.			

(8.) With the deviation from the Curve at the end of the book give the courses you would steer by the Standard Compass to make the following courses, correct magnetic.

Correct magnetic courses. N. $82^{\circ} \mathbf{W}$; E. $\frac{1}{2} \mathrm{~S}$.
(9.) Supposing you have steered the following courses by the Standard Compass, find the correct magnetic courses made, from the ahove deviation table.

Compass courses, North; S. E.
(10.) You have taken the following hearings of two distant objects by your Slandard Compass as above; with the Ship's head at S . W., find the bearings, correct magnetic.

Compass bearings, S. W.; East.

THE SEXTANT.

TO READ THE REXTANT.

114. Each long stroke upon the arc is a degree; each long suroke upon the vernier is a minute. Divide $\mathbf{6 0}$ by the number of divisions between the degrees out the arc of your sextant, this
will tell you what it cuts to, that is, the value of each division; do the same with the divisions upon the vernier for the same purpose.
115. Now see where the zero of the vernier cuts on the are, and read the value of the division immediately at its right hard; after which look carefully at the vernier and note which of its divisions makes a straight line with a division upon the arc, read the value of that division, and add it to what is shewn by the arc, the sum will be the angle measured by the sextant.
116. To real the Are of Excess.-On the arc, read to the divisigu to the left hand of the zero; now see where a division uon the vernier makes at straight line with one upon the are as before, but in reading the value of this division you must count the number of minutes and seconds from the left hand division of the vernier, that is, yor must reckon it backwards.

THE ADJUSTMENTS OF THE SEXTANT.

117. To set the Index Glass perpendicular to the Plane of the Sextant.

Place the vernier about the middle of the arc; hold the Sextant horizontally with the limb from you, and looking obliquely into the Index Glass, see if the arc reflected in it, and the true arc, is scen outside, appear in an unbroken line, if not, it is rectified by the screws at the back of the glass.
118. To set the Horizon Glass perpendicular to the Plane of the sextant.

Place the Zero of the veruier to the Zero of the arc, hold the Sextant horizoutally and see if the reflected and true horizons appear in the same straigh ${ }^{+}$line, if not, turr the upper screw upon the İorizon Glass until they do.
119. To set the Horizon Glass parallel to the Index Glass.Place the Zero of the vernier to the Zero of the arc, hold the Sextant perpendicularly, and see if the true and reflected horizons appear in the same straight line, if not, turn the lower screw upon the Horizon Glass until they do.
120. Th set the Axis of the Telescope paraliel to the plane of the Sextant.-Screw on the inverting telescope, and by turning the eye piece makes two of the wires parallel to the plane of the

Sextant ; then select two objects in the heavens (not less than $90^{\prime \prime}$ apart), and bring them in contact upon the wire nearest the plane of the Sextant, alter the position of the instrument a little, until they are made to appear upon the upper wire, then if the contact remains unaltered this adjustment is correct; but if the objects
 plane of the Sextant, and the upper screw upon the collar must be slackened and the lower one tigitened; while if the objects overlap one another, the inner end of the telescope is elevated and the screws must be turned the reverse way.

TO FIND THE IND"N WRROR.

121. By the sun.-Place the zern of the vernier abont 40 mi nutes to the right of the zero of the arc and bring the thue and reflected suns in contact, marking the reading off; then place the: zero of the vernier about 40 minutes to the left of the zero of the: are, and again bring the true and reflected suns in contact, call this reading on. Find the difference between the two readings, and divide it by 2, this will be the Index Error, additive if off is the greatest, but subtractive if it is the leasi.

Ex. 1-18\%6, May 19th. The following observations were taken by two sextants for the purpose of finding their respective errors

Readirig of $32^{\prime} 20^{\prime \prime}$
Reading on 3100
2) 120

Index error +040

Reading off 29' $\mathbf{z o}^{\prime \prime}$
Heading on 3330
2) 340

Index error - 150
122. If the above observations have been taken correctly the sum of the readings off and on divided by 4 , will be equal to the sun's semi-diameter, as given in the Nautical Almanac for the day oll which the observations were taken.

Ex. 2.-Check the observations taken in-Ex. 1 for Index Error.

Reading off $32^{\prime} 20^{\prime \prime}$
Readiug on 3100
4) 6320

Semi-diameter 1550

Reading of $29^{5} 50^{\prime \prime}$
Reading on 3330
4) 6320

O Somi-diameter 1550

On May 19th the sun's semi-diameter as given in the Nautical Almanac is $15^{\circ} 50^{\prime} 1$.
123. By the horizon.-Place the zero of the vernier to the zero of the arc, and bring the true and reflected horizons in one straight line, then what the sextant shows will be the Error, additive if the reading is of the are, but subtractive if it is $o n$.

MERCATOR'S CHART.

TO FIND THE LATITUDE AND LONGITUDE OF ANY PLACE.

124. To find the Latitude.-With the compasses measure the distance between the place and the nearest parallel of latitude; now place one foot of the compasses at the end of this parallel (in the margin of the chart,) and let the other foot rest upon the scale upon the same side of the parallel as the given place, this when read, will be its latitude.
125. Tofind the Longitude.-Measure the distance between the place and the nearest meridian, and take it to the scale lying at the end of your meridian, now in the same way as for the Latitude read what this will shew, and the result will be the Longitude.
Ex. 1.- Find the Lat. and Long. of West Point, Anticosti.
"2.- " " Mount Desert Rock.
"3.- " " Cape Race N. F. L.
"4.- " " Cape Cansu Light.
" 5.- " " Pictou Island Light.

TO FIND THE PLACE CORRESPONDING TO A GIVEN LATITUDE AND LONGITUDE.

126.-Place one foot of your compasses on the given lat. as shewn by the scaln, and measure the distance between it and the nearest parallel; take your parallel rulers and having placed the edge upon this parallel, move it in the direction of the given lat. until it is at the distance shewn by the compasses from the parallel; now taking your longitude upon the scale, measure the distance between it and the nearest meridian, and placing one
foot of the compasses upon the same meridian and arainst the edge of the rulers, then, where the other foot falls against the edge (in the direction of the long.) will be the position required.

Give the soundings upon which the following Latitudes and Longitudes fall.

TO FIND THE COURSE AND DISTANCE BETWEEN TWO PLACES.

127. To find the Course.-Lay your rulers so that the two places appear upon its edge, move the rulers to the centre of the compass and the point upon which it lies will be the course; if the compass is Magnetic the course found will be magnetic, but if True the course will also be true, and may be brought into the magnetic course by applying the variation the reverse way, that is, East to the left and West to the right.
128. To find the Distance.-If the distance is not too long, place a foot of the compasses upon each of the two places, and take them to the scale at the latilude side of the chart, and having placed them so that their centre will be over the middle latitude (roughly guessed) then the distance will be the number of miles spanned by the compasses : if however, the distance is too long to be taken at one stretch, flind the rough middle latitude, and over this, on the scale, take as many miles in your compasses as you may find convenient, see how often this distance will go between the two places, and measure off the remainder, if any, and these distances taken together will be the distance required.

Find the Course and Distance between the following places. Ex. 11.- From Scatteri to Cape Race.
" 12.- " St. Pauls " North Puint P. E. I.
"13.- 6 Miscou Light " Amherst, Magdalen Islands "14.- " Seal Island
" 15.- " Cape Rosier
" Truro Light, Cape Cod.
" 16. - " Mount Desert
"17.- " Lat. $500^{\circ} 5^{\prime}$ N. Long. 58056^{\prime} W. to Heath Point, Anticosti.

Ex. 18.- From Lat. $43^{\circ} 10^{\prime}$ N. Long. $622^{\circ} 27^{\prime}$ W. to Cape Ann.
" 19.- " Lat. $45^{\circ} 47^{\prime}$. N. Long. $57^{\circ} 4^{\prime}$ W. to St. Pauls Island, S. W. poi:it.
" 20.- \quad Lat. 42024^{\prime} N. Long. $56^{\circ} 18^{\prime}$ W. to Seal Island.

TO FIND THE POSITION OF THE SHIP BY CROSS BEARINGS.

129.-Lay off your bearings from the points given, and where the lines cut one another will be the position of the ship. If the chart has a True Compass only, the Variation and Deviation must be allowed to the compass bearings in the same way as in a Day's Work.

TO FIND THE POSITION OF THE SHIP BY TWO BEARINGS OF ONE OBJECT.

130. Lay off the bearings from the object observed; place your parallel rulers upon the course steered during the interval, and now with the distance run in your dividers, slide your rulers along the lines of bearings antil one leg of the dividers falls upon each line, then the points indicated will be the positions of the ship when the bearings were taken. In finding your position by this method, you should sail on until you have altered the bearing of the object not less than three points.

TO FIND THE COURSE TO STEER IN A CURRENT.

131. Lay off in pencil the course it is required to make, have a dot anywhere upon this line and from this lay off the current ; from the dot and along the line of current prick off the drift, and now having the rate of sailing in your compasses, place one foot at the end of the drift and mark where the other falls upon your line of bearing, lay the edge of your parallel rulers againsi these two marks, and having taken it to the compiss, you will have the course required.

THE COMMERCIAL CODE OF SIGMALS.

132. Code Signal. - When this is hoisted under the Ensign it signifles that the vessel is using the Commercial Code, but if it is hoisted singly it is then used as an "answering nennant," denoting that the last signal has been understood.

THE "COMMERCIAL CODE" OF SIGNALS
As Code Signal it is
Code Signal
hoisted under the Ensign

THE "COMMERCIAL CODE"
Examples
PLATEIII

CLASSES OF SIGNALS.

133. Signals of a like nature have been grouped into classes, and as these classes are made by hoists distinguished one from the other by the number of flags shewn as well as the name or shape of the upper flag, you can, by this means, tell by the form of the signal the nature of the communication made, although of course. the actual meaning. $0^{\text {: }}$ the signal can only de ascertained by reference to the Code Book; the distinctive forms of these hoists are as under:-

134. Gne Flag Signals.

There are only two of these, C " yes," and D " no."

135. Two Flag Signals.

Burgee uppermost.-An "Attention Signal."
Ex. 1.-B. C.-Show your Ensign. (See Plate IIi.)
Pennant uppermost.-A "Compass Signal," except when the under flag is W in which case it is a "Meteoro. logical Forecast" (or Weather Signal) mind this is the only case where the name or shape, of an under flag alters the class of the signal.
Ex. :̈.-D H-E. S. E. (See Plate III.)
6 3.-G W - Meteorological report for to-morrow gives "Winds Variable" between the points (indicated) (See Plate III.)
Square flag uppermost.-An " Urgent or Distress Signal." Ex. 4. - N C-In distress; want assistance. (See Plate III.)
\because 5. - H M—Man overboard.
1336. Three Flag Signals.

Any hoist of three flags, no matter how made up, is a "General Signal."
Ex. 6. - M Q R-I have not seen the land. (See Plate III.)
" 7.--B Q C -Report me all well.
" 8.-LL C M-Am I in a grood berih?
" 9.-F P D-Longitude 220
" 10.-G W H-36 minutes.
137. Four Flag Signals.

Burgee uppermost.-A "Geographical Signal."
Ex. 11.-B Q N H-Halifax, N. S. (See Plate III.)
Pennant C. D. or F. uppermost.-A "National Vocabulary Signal :" that is, sigrals to be used only when speaking your own countrynuen. "Spelling Signals," which are
used for spelling words or names not given in the Code Book come into this class as well, they all haviric C. uppermost.
Ex. 12.-C J T K-Inform owner of my arrival. (See Plate III.) Ex. 13.-D Q R T-Repeat the last signal made.

Pennant G. uppermost.-The "Name of a Man of War." Sx. 14.-G Q K S-Bellerophon 15 Guns. (See Plate III.)

Square Flag uppermost.-The "Name of a Merchant Ship." Ex. 15.-V H F M-Empire Queen of St. John N. B. Official Number 46123, Ton. 1174 (See Plate III).

READING GIGNALS.

138. By a Reference to the Code Book it will be seen that the Signals are arranged in Alphabetical order, (as in a Dictionary); they commence with the Attrntion Signals, and then after using up all the two flag hoists, proceed with the three flag, and then the four flag signals. The Gicographical Signals are found at the end of Part I; Part II is taken up entirely with, the Spelling, and National Vocabulary Sigials. Names of Men of War and Merchant Ships are in a separate book.

Ex. 10.-Give the meaning of the signal B Q C

TO MAKE A SIGNAL.

139. In Part 11 of the Code Book the leading words of phrases are arranged alphabetically; look out the one you want, and underneath will be found one or more sentences bearing upou
this word, from which you can select the one which will suit you besi, and alongside will be found the Signai corresponding. The names of places (to make a Geographical Signal) will be lound at the end of Part II ; to find a Ship's Signal Letters, enter the list in the separate book with her officia' number.

Give the Signal Letters corresponding to the following sen-tences:-

Ex. 31-I have spring a leak.
" 32-Tack instantly.
" 33 -You are in a very fair berth.
" 34-Quebec.
" 35-Keep on the starboard tack.
"36-"Humming-bird" of Windsor N. S. Official Number 4846:
" 37-N. by W. $\frac{1}{2}$ W.
" 38-What is your Longitude, brought up to the present moment

- 39-6700.
" 40 - You are in a dangerous or unsafe position.
" 41-Signal is annuled.
"42-Yon will be aground at low water.
"43-"Iona" of Pictou N. S. Official Number 43073.
"44-Meinorological Repurt for to-day gives "Moderate Winds" in direction (indicaled).
"45-How much cable have you out.
" 46-Great risk in sending a boat.
- 47-5h $43^{\mathrm{m}} 27^{7}$.
" 48-H. M. S. "Royal Alfred."
". 49-Longitude 17020 '.
" 50 -John Smith.

DISTANT SIGNALS.

140. Distant Signals are used when, through fog or distance, the colors of the flags cannot be distinguished. The characteristic of one of these hoists is that there is always not less than one ball in it, consequently when a holl is seen in the formation of a signal, the names of the flags are not to be taken into consideration, you have simply to look at their shape, and notice them only as being either Square Flags or Pennants. In making a signal, the hoist representing each letter must be run up separately, so that for a General Signal, three distinct hoists would have to be made, and
then a ball will be run up to show that the Signal is completed. When a mistake has been made, two balls are run up, this annuls the preceding hoists.
141. The following is an easy plan for committing the Distant Signals to memory. Learn them as they are placed below, that is, without attending to the balls:-
$\begin{array}{ll}\text { Pennant and Square Flag... } & \text { B i Q } \\ \text { Square Flag and Pennant... } & \text { C K R } \\ \text { Two Pennants } & \text { D L S } \\ \text { Two Square Flags.............. F M T } & \text { G N V } \\ \text { One Pennant................... } & \text { G P W } \\ \text { One Square Flag.............. } & \text { B }\end{array}$
Now when a signal is made, the group to which it belongs will immediately come to the recollection, and then by noticing the position of the ball, the actual signal will at once become known, because, if the ball is uppermost it will be the first letter of the group, if in the midale (or in the case of two balls, if they are divided) it will be the middle one, and the last one if the ball is at the bottom. Thus, suppose the signal made to be a pennant, ball and pennant, then the group to which two pennants belongs is DLS , and the rall being in the middle shews the signal to be L. If the signal had been two pennants and a ball, then the place of the ball would have given the sigual as S.
142. Signification of Distant Signais when male singly, which will be indicated by the "stop" following each hoist.
B-Asks name of ship or signal station in sight.
C-Yes.
D-No.
F-Repeat signal, or hoist it in a more conspicuous place.
G-Cannot distinguish your Flags. Come nearer or make Distant Signals.
H-You may commmicate by the Semaphore, if you please.
'I'-Stop, or bring to. Something important to comminicate.
K-Have you any Telegrams or Despatches for me?
I_{1} - Want a Pilot. Can I have one ?
M-Want a Tug. Can I have one ?
N-What is the Meteorological Forecast.
P-Calls attention to the Signal Station in sight.
Q-Vessel asks for orders by Telegraph from owner, Mr._-at-_
R-Report me by Telegraph to my owner Mr._-at _

The following Distant Signals composed of Two Symbols have the special specification indicated beneath.

 into danger. immediate assistance. A. Irving.

Aground. Want in mediate asulatance.

S -Send the following message by Telegraph.
T -Send the following message, by the Signal Letters through the Telegraph.
V
W
143. In addition to the above the following Distant Signals have the special signification indicated.
One Ball.
Preparative, Answering, and "Stop" after each complete signal.
Two Balls
Annul Signal.
Ball and Pennant
You are running into danger.
Ball and Squarc Flag... Fire or Leak. Wantimmediate assistance.
Pennant and Ball.
Short of Provisions. Starving.
Square Flag and liall...
Aground. Want immediate assistance.

SEMAPHORE SIGNAIS.

144. These are made from the shore stations, arms in different positions being substituted for balls and flags; thus, taking the N. and S. line of the compass to represent the signal mast, tinen a square flag will be represented by an arm in the direction of N. E., a ball by one on the East line, and a pennant by one at S. E. Thus:

C
 2Dise.
 Ball.
 Square Flag.
 Pennant.

So that according to the position of the arms, you read the signal as balls, pennants; or square flags, and interpret them the same as if they were Distant Signals. As Semaphore Stations sometimes telegraph one another, you have only to pay attentiun to them when the disc at the top of the mas. is turned towards you.

THE "S COMMERCIAL CODE OF SIGNALS" VERSIEIED,

Now, as you read this lesson in rhyme,
Scan well each flag, ' t is no waste of time :Just see if perchance I've made a mistake
In describing color, use, or shape:-
By doing thus, you'll keep from error,
And learning Flags will lose its terror.
When the Code Pennant inits stripes of white and red Answering
Is seen flying quite alone,-say, at the mast head, Then as the "Answering Pennant" it is intended To say, "Your hoist is seen, and is comprehended."

But when under the broad Ensign it proudly flies, Code Pennant. Then is quite changed its meaning, for it now implies "On board this ship the Commercial Code is in use For questions and answers, courtesy and abuse."

Should you think you know the Commercial Flags
[at sight
Skip the following six verses, and you'll do right , - $^{-}$ When blues and reds, whites and yellows hold a levée, You'll find with shapes and colors they're very heavy.
B is swallow-tailed, all red, 't is called the "Burgee;" Oode Flass.
Next in order are Pemmants four, C, D, F and G, C has a red ball which from a white ground shows [clear,
D is of dark blue, with a white ball in its rear.
F shows a white ball in a fleld of bright red hue, vode Flags.
While G's in two parts, one yellow, the other blue; Remember them well, for ' t is an important part
They play in tinis very pretty Signalizing Art.
Each flag following now, perfectly square is its |shape:
H with cne half red, the other white as snow-flake; J in blve, white and blue, horizontally true;
K in vertical halves of yellow and blue;

L is quartered alternately yellow and blue; M also blue, bears the white cross of St. Andrew ; Chequered blue and white, \mathbf{N} shows as the wind [blows it;
P is the "Blue Peter," well each seaman knows it.
Q's the yellow flag that's hoisted in Quarantine ; On R's red ground St. Ge; rge's yellow cross in seen ; S is a little blue square, with a big white border ; T the tricolor which keeps Frenchmen in order ;

V is all white except a red cross: there's a bull Quietly inserted to keep my line full ; W's a little red square bordered with white, With a blue frame all round it to keep the parts tight.
o "Yes." Thus, if alone, Pennant C's flying, Pleasant "Assent" 't is signifying;
D "No." But D's dark pennant singly waving, Shows a stern " No" you now are braving.

Thiree kinds of hoists are of two flags made, Each known by the upper Flar displayed,
Attention So when uppermost flies the "Burgee," Elgnal.

But this Code has advantages left Of which other Codes are (fuite bereft, For by a glance at the hoist you guess What a Signal intends to express.

Companssignal When a pennant is topmost bent,
A "Compass Bearing or Course." is meant,
Metaorologioal Except when W is below
Forecmat.
Tells how the wind's expected to blow.
Urgent signal. But any square flag having the lead, Shows danger, distress, or urgent need, So quick with the book, and see what's there, And bear a hand and relieve their care.

Now, of a very large class we'll treat :
Where any three flags the eye will meet,
"General Signals" they are really

General Signals.

 For they treat of all things nearly.Latitudes, longitudes, wants, wishes, Everything's there, even to fishes ; Thus you see if sought for with due care, All things needful will be given there.

Four classes of four-flag hoists remain, By their top flags distinguished again, That where uppermost floats the Burgee Names some port, place, river, land or sea.

No Signal Book made can give all thingsThe uames of the Smiths, Browns and Tomkins, So to spell at length with A, B, C, Four flags having C atop 't will be.

Where at the head C, D or F flies, Each Nation its own meaning supplies; From English to English, then all's right, But English to Dutch! 't is nonsense quite.

Where above the whole, G floats wavy, It names one of our brave old Navy, Perhaps some big looming Iron-clad That would seud our foes "all to the bad."

Now for the last, but far from the least, One Signal more before I have ceased : Four flags, the square one being over, Names a rich Merchant Ship or Rover.

Stop a moment, for it 's very needful Of Distant Signals to be heedful; Colors now are of no importance, But shapes rule letters in accordance.

Distant
Sirnals.

Geographical Signal.

Spoling
Sjeama
Signal.

National
Vooabulary
Sigmal.

Name of a Man

 of War.Now, as in these signals, each letter Is hoisted by itself, ' t is better Not to use this Code when you're lazy, But only just when things look hazy.

Preparatory Sismals.

A single Ball at a vessel's peak Implies "Prepare, I'm going to speak;" But after the hoists have upward run, A single Ball tells "My Signal 's done."

Answering Signal.
 Then, when his signal you comprehend,

 A single Ball to your halliards bend;Annul Signal But if you see him two Balls flying, To mend a mistake now he 's trying.

Now mind, to make these "Signals Distant," Two of each-Ball, Square Flag, Pennant, Is all the bunting on deck required, Now we want shapes, of colors we 're tired.

A Pennant and a Square Flag gives B, J or Q, According to the way the Ball is seen by you; Over the flags 'tis \mathbf{B}, betwe n them, it is J , But Q is designated ' f it under lay.

A Square Flag and a Pennant 't is easy to show, By Ball on the top, in the middle, or below, Makes C, K or \mathbf{R}; and so by the Balls places Two Pennants in like fashion D, L or S is.

Again the Ball tells you which letter it will be When two Square Flags signifles it's F. M or T : One Pennant with two Balls will give G, N or V, But with two Balls now a slight differencethere'll be.

The two Balls on lop gives G, when divided it's \mathbf{N}; Both below't is now V, -to this you must listen, For then you'll see how two Balls and a Flag will [show H, P or W , just according as these two Balls go.

Now that the Semaphores are fixed on land, We 'll try their lingo to understand; Quite easy of interpretation You'll find this kind of chatteration.

When from your sight the disc is hidden, Some long-shore friend to gossip 's bidden; But when the disc is to you abreast, Your close attention is then in requesi.

It's a Ball when the arm straight out lies, But a Flag if upward it should rise; A drooping Pennant will be expressed When slanting downwards the arm's at rest.

Now, these moving arms translating, Balls, Peanants, Flags, you now are making ; Read these hoists, as in the Distant Code, And see, you've conquered this other mode.

Now, having shorn these Flags of all their mysteries, And given you fully their secret histories, With an imaginative eye, pray see me now, With the very utmost respect making my bow.

William C. Seaton.

MASTING AND RIGGING.

145. In the present day, when a vessel in port is either getting rigged for the first time, or is undergoing any extensive refit, the work is mostly carried on by a gang of riggers and consequently officers have but little opportunity of studying this branch of their profession. But independently of the great value a thorough knowledge of masting and rigging must have, in many situations in which an officer in charge may be placed, the Board of Examiners have made a familiarity with this subject, an essertial part of their test of a man's fitness to hold a certificate of competency. In entering upon it here, it will be best, therefore, to begin at the beginning-let a vessel be sup, osed to be just off the stocks, and that she is lying at anchor in the stream, having her spars towing alongside all ready for getting aboard. In the situation in which the vessel is placed, it will be necessary to get up a pair of sheers wioh which to step the masts, consequently with this, work must commence.

THE SHEERS.

146. Selection of spars.-To get at the length of spar required, plumb the hold from the upper side of the mast hole to the keelson, and measuring from the heel, run this distance off upon the mainmast, now the length of the remaining part of the mast will give the hoist your sheers must have; to get this, you must choose a spar about a quarter longer than the required hoist, and see that it carries its size well up, and is free from spauls and flaws.
147. Taking in and Rigging.-Lay your spars alongside with their heels or butts forward, and if you are in a small vessel, you can sling skids over the side to keep the spars clear of the channels and then parbuckle them on board, letting their after ends rest upon a spar, placed athwart ship from rail to rail, and far enough forward to give the head of the sheers sufficient hoist for raising them. But if you are in a large ship, carrying topgallant bulwarks, the weight ue the spars if parbuckled aboard, may possibly break them in, you had better therefore rig a couple of small derricks, in this way :-take a small spar, clove hiteh the bight of a hawser round its smallest end to be used as guys and above this lash a good lulf-tackie; now place the heel of the spar against the corrbings of the hatchway. close to a deck ringbolt, and catch a turn of a lashing through the ring, then take one part of the guy forward and the other aft. Hook the tackle to the side and raise the derrick, hauling the guys well tant, when it is high
enough, unhook the tackle and overhaul it over the side; rig another derrick in precisely the same way.

When ready, lash a derrick tackle to each end of the sheer leg, and thus hoist these spars aboard, and launch them aft. Take your derricks aft., and lash the heads of them together so that they may form a small pair of sheers; when they are secured, with the derrick tackles hoist up the small ends of the masting sheers into the crutch of the derrick sheers and get their heels square. Lash the heads of the sheer legs together with a figure of eight lashing ; having done this, open out the heels of the sheers and place each upon a good stout hardwood shoe. Secure your masting purchase over the lashing of the sheers, so, that one half the turns of the lashing will go over each horn of the sheers, and give it drift enough to let the block well clear. You can easily tell the upper from the lower block of this purchase, because the upper one should always be fitted with two long lege and a lashing eye, while the lower one has only an ordinary strop with a large eye at the lower part, through which to pass the lashing when securing it to the mast. Now having the upper block secured, get guys, by middling a couple of hawsers and making a clove hitch at the bight of each ; place the hitch over the heels of the sheers and run them up rather over two-thirds of the distance from the heel to the lashing and there jamb them taut. Lash a good luff tackle to the foremost horn of the sheers, and call this the truss tackle; clap on a couple of tackles to each heel of the sheers, and let one of these lead forward and the other aft, these are called heel tackies.
148. Raising Sheers.- Rouse taut the after he ϵ_{\perp} tackles; reeve the masting purchase (commencing with the middle sheave) and taking the lower block away forward, toggle it across the forehatch; now snatch the fall to a block toggled through the hawsepipe, take it to the windlass and heave away. As suon as the sheers are nearly erect, catch a slack turn with the after guys and fore heel tackles, also be prepared to steady tant the fore ;uys. Come up the purchase, and see if the block will plumb the masthole, if not, make it do so by slacking the necessary guys; after which, look round and see that your heel tackles and gnys are hauled well taut and are properly secured.
149. Shifting sheers.-Although shifting or taking down sheers immediately after getting them up, does not fall into the natural order of events, yet it is taken here so that all work appertaining to the sheers may be kept logether. Wet the deek on the fore side of the sheers so that the shoes may slip more easily. Ease away the after guys, until the head of the slieers is canted well forward; now haul away upon the fore heel tackles and when the sheers are nearly in the position required, take a turn with the after guys, and belay when the lower block plumbs the masthole.
150. Taking down sheers.-Get your sheers alongside the mast, and keep the topping tackle hooked on forward to prevent the heads of the sheers from falling aft.; send down the main purchase, lash each sheer leg to the mast h ?ad, cast off the head lashing and hoist each spar singly over the side.

TAKING IN A LOWER MAST.

151. In flush decked vessels, the mizenmast is the first spar taken in, because when all the masts are stepped; the sheers are then upon the fore side of the foremast and this latter spar can be used to support the head of the sheers, wl : they are canted over to take in the bowsprit. But in the case of vessels having a house abaft, so made, that there is not room enough for the sheers between it and the bulwarks, then the mainmast should be the first to be stepped, and by drooping the sheers aft, the mizenmast could be taken in, while the mainmast could then be used to take off the extra strain upon the sheers, which an operation of this nature wothd entail upon it; but in such a case, care must be taken to have the sheers of an extra length, for not only would the droop aft lessen their hoist, but they must be lorg enough to pass clear of the mainmast head, otherwise, you would have to take ther. down and re-rig them, to get them into positiofor taking in the foremast. Again, where a ship has a lon :opgallant forecastle, reaching well up to the foremast, then as his spar must necessarily be taken in on the fore side of the sheers, it must be taken in the first, so that there may be nothing in the way of transporting them aft. As in the following description of taking in masts, a particular case must be chosen, we will suppos. that the vessel under our hands is flush decked:
152. Get the mizenmast alongside with its he:d aft and fore side up. Starting from the heel, measure off the depth of hold upon the mast, and lash the lower purchase block about two feet above this mark, using a narrow lashing with riding turns ; make fast the truss tackle to the lower part of the cheeks; when ready, hoist on end, and as the mast-head appears above the rail, lash a couple of gantline blocks to the tenon. Continue heaving on end until the heel is very nearly over the rail, when a heel-tackle must be lashed on and taken away aft, upon the same side that the mast is coming in upon; steady it well taut, so that when the mast is free from the ship's side, it can be kept from swinging across the deck and perhaps knocking the sheer leg off its shoe. Having got the mast inboard, get it pointed to the partners, steadying well taut the truss tackle as it is being lowered away; when nearly upon the keelson, wipe the tenon dry and give it a coat of tar or white lead, after which the mast can be landed into its place. Shift the sheers forward (149) and take in the main-
mast and then the foremast in the manner just described for the mizenmast.

TAKING IN A BOWSPRIT.

153. Ha ing just taken in the foremast, the sheers are sup posed to be upon the foreside of that mast. Dip over the triss tackle and take it forward, and it will now take the name of the topping tackle.

Take the masting purchase away aft and secure it in the fore hatchway, and by it ease away the heads of the sheers, at the same time rousing on the fore heel tackles, until, having got the sheers far enough forward to permit the head to plumb the fore part of the stem head, make fast the heels to the stanchions. Secure : the fore guys aft, while the after ones should be taken to the foremast head and rove through two good top blocks (lashed one. on each side of the mast), and then taken as far aft as the length of these guys will permit; after which, have the heel tackles, more especially the forward ones, steadied well tant. Get the bowsprit alongside with its head forward, and mark off upon it the length from its bed to the outside of the knight heads; sling or lash the lower purchase block about two or three feet wutside this mark, according whether the stem projects much or little, that is to say, the lashing should come about a foot outside the stem head; make fast the topping tackle to the bees. Hoist away upon the spar, and when high enough, point, it through the bowsprit port, top up upon the topping tackle and so launch it inboard, having a heel or bedding tackle, if necessary, to assist in rousing it afi. Should it happen that the vessel has a long forecastle deck, the head of the sheers may not be able to go far eupugh forward, to enable the bowsprit to be pointed into the port; in such a case, get a spar, having a tackle and guy upon its, outer end, rigged out upon the side opposite to that upon, which the bowsprit is being taken in; hook the inner block to the main purchase and heave it out until the bowsprit can be pointed. Again, where the head of the sheers cannot be thrown sufficiently forward, it may be inpossible to heave the bowsprit up, it will then be best to rig a derrick upon the fore side of the sheers making the latter its principle support. Having the bowsprit bedded, unrig your sheers .(150).

TAKING A MAST OUT.

154. The sheers for this purpose will have to be rigged similarly to that used for taking a mast in, but the spars will be sent up singly. Place the heel of one of the sheer legs opposite the mast to be taken out, and having set a hardwood shoe under it, secure it well, to prevent its slipping. Reeve a hawser through your top block, make it fast to the head of the sheer leg, and hoist
away until you have get the spar against the masi, to which ii will have to be temporarily secured; proceed in like manner with the other sheer leg and then lash the heads together with a figure of eight lashing, hanl taut your fore and aft guys, rig the masting purchase and lash its lower block to the mast about a couple of feet above the ueck. Now rig a belly gantline, thas: select two topblocks of sufficient swallow to take is small hawser and at about where the sheer guys are secured, lash one of these blocks to each of the sheer legs; reeve the end of the hawser through one of the topblocks, from forward aft, take it round the aft side of the mast and then through the block upon the opposite side, leading both parts well forward. The use of this latter gantline is, that it forms a parrai for the mast to travei through, which prevents any injury being done to the deck or the mast combings, ueither does it require the continual slacking of the truss tackle as the mast goes up on end. When the mast is clear for lifting, heave round upon the main purchase and when the heel of the mast is clear of the deck, lower away handsomely upor: the truss tacile and belly gantline. It will be as well to leave the sheers standing until the new mast is taleen in, when they can be sent down (150).

THE BOWSPIRIT.

155. Gammoning. - In most vessels of the present day, the gammoning of a bowsprit consists merely of a band and screws, a fitting which presents no difienlty in its attachment. But if this is required to be rigged in the old. style, take the gammoning chain and secure one end to the gammon port in the stem-head, then have it passed round the bowsprit, up to port and down to starboard, working ounwards with the turus, and setting up each turn separately with a spanish windlass; when all the turns are passed inap them together. After this, set up the bolstays and bowsprit shrouds (167).
156. Cap.-'To place the bowsprit cap, rig a triangle under the bows, by letting the inner ends of the spars rest upon the rail - vilile the outer ends are shmg to the bowsprit just in the wake of the cap tenon; now get a spar with a tackle attached to its head, secure its lower end to one of the spars forming the triangle, and pass a lashing where it comes up alongside the bees. Bring the cap in a boal muder the bows, sling it, and hoisting it up, phace it upon the tenon of the bowsprit. Shonld the cap be on deck, it can be eased out with a line.

NITING RIGGING.

157. Uutthg. -In the absence of any rigging plan, obtain the lengith of the stamoard foremost shmod of cath mast, thas : send
a band aloft with a piece of houseline, let him take its end up through the top upon its starboard side and passing it round the fore part of the mast, place the end about the centre of the port side of the masthead; now take the other end of the line, and haul it taut down to the upper part of the lower deadeye, and this stretch of line will represent the length of the foremost swifter upon the starboard side. Lay off this length upon the rigging loft .oor, or any other flat surface and drive in a spike at both of its extremities. Now give the shroud rope a good stretch and then flemish coil it round the spikes, after which cut the whole of the coil tirrough at the point abreast of the inner end of the coil, and in this way will be got the length of each pair of shronds for the mast whose measure has been taken; the inner fake being the starboard fore pair, the second inner one being the port pair, and so on in alternation until each pair of shrouds is named. If there shotild not be any place to coil the rope down in this manner, then taking the length of the starboard fore pair as a standard, the port fore pair will be longer than it by twice the diameter of the rope, the starboard second pair by four diameters, the port second pair by eight diameters, and so on doubling for every succeeding pair of shrouds.
158. Eyes.-The size of the eye of the starboard fore pair of shrouds, is one and a quarter times the size round of the masthead; and the eye upon each following pair of shronds is two diameters of the rope, that is, two breadths of a seizing, greater than that upon the shroud preceding it.
159. Worming, parcelling and serving.-The shrouds being cut to their proper length, get them upon a slack stretch and proceed to worm them, this should be done with the lay of the rope. In parcelling, always commence with the part that will lie below and work upwards, thus : start upon the end part of the rope and finish at the crown, and following the same principle, in paicell. ing round the deadeye, commence at the centre and work outwards, towards the end on one side and the hight on the other Having completed the pareelling, get the rope well on the streteh and serve it ageinst the lay of the rope.
160. Deml eyes.-Parcel romid the score of the deadrye, then thirn a kink with the sun if the rope is right handed, but against the sun if it should be left hamed; now pass the throat seizing and afterwards the quartre and end seizings. Make a Matthew Walker knot at the end of the lanyard, and reeve it throngh the deadeye so that the knot shall come inside upon the hole in the upper deadeye nearest to the end of the shroud, this will be the fore hole upon the staboard side and the after hole upon the port side. Bnt in reeving lanyards for new rigging, they should be rove fitil off the coil and cut when steadied tant by the single purchase, consequently they must then be rove
back-handed, that is, starting from the after hole of the lower deadeye upon the starboard side, and the fore hole upon the poriside, the knot will be made when the line is passed through the last hole. This plan saves considerable waste of rope.
161. Marking slirouds.-When completed, shrouds are distinguished one from the other by their having a knotted tail put upon the centre of the eye; this tail has one knot upon the starboard fore pair of shrouds, two knots upon the port fore pair, three knols upon the starboard secoud pair, and so on, when it will be seen, that all the odd numbers of knots will be upon the starboard shrouds and the even numbers upon the port. The tails should be made of spunyarn for the fore and mizen rigging, but of houseline for the main.
162. Topmast rigging.-Measure from half way round the topmast head, at just above the hounds to the lower edge of the fid-hole and this will give half the length of the starboaid foremast shrouds, increase this by two diameters of the rope and the length of the next pair will be arrived at, and by following the same rule of increase the length of each succeeding pair of shrouds will be found. The length of the starboard backstay will be from half way round the mast down to the lower dead eye, the port backstay wilh be twice the diameter of the rope longer. The size of the topmast rigging should be three-ffths that of the lower rigging, while the size of the backstays will be a quarter larger than the lower rigging.
163. Topgallant rigging.-No general rule can be given for the measurement of the topgallant rigging, so much depending upon the way it is set up. If upon the crosstree legs, then its length would be from the hounds to the heel of the topgallant mast; but if it sets up to a spider hand round the topmast, then its length will be from half way round the topgallant masthead to a point lying one-third from the lower edge of the topmast crosstrees towards the upper edge of the lower cap.

SENDING UP THE TRESTLETREES.

164.-Having the fore ends of the masthead gantlines on deck, take out the after chock of the trestletrees and then stand them up deck on the fore side of the mast, with the fore part down and the under part leaning against the mast. Bend on the lines to the fore part, stopping them at intervals on their way up to the upper fart of the irestletrees; now sway up and when the upper part of the trestletrees are above the cheeks. ent the upper stops and haul well tant, then the lower stops are to be cut and the trestletrees will launch gradually aft in their place; send up the after chock, let it into its place and bolt it.

GETTIING TOPS OVER THE MASTHEAD.

PLACING LOWER RIGGING.

166. Ta: the masthead in the way of the rigging and cover the bolsters with well tarmed canvass. On either side of the inmer part of the midde crosstree. secure a siugle block with a goni line rove through and bend it on to the starboard foremasis shonds, at ahout a third of the distance down from the eve; stop it also to the eye, well up. Sway up, and when the eye of the rigging is in hamd, cut the stop, and hanl again chock up, the men in the to H at the same time guiding the eye of the shroud orer the masthead and settling it well into its place. Each pair of shrouds is sent up in like manner. The shrouds being up, the stay is sent aloft, two gantines being used, so that the legs of thin stay may come up upon their respective sides of the masthead.
165.--Taking the mizen top first, start by standing it upon the fore side of the mizenmast, with its fore rim on deck and the uider part against the mast. Pass the fore ends of the masthead gantlines along the under side of the top, and make them fast, well apart, to the fore rim, stop them to each crosstree, closing them in as the upper part of the top is approached, so that when completed the lines will appear something like this \mathbf{A}. Bund on tripping lines to the leg of each after crosstree and one also to the fore rim of the top, using in this lat'er case the after end of one of the gantlines from the maimmast; row sway up, and when the first sto, is chock up to the block, eut it and steady taut all the tripping lines; in this way, eut each stop in succession until the lubbers hole is over the masthear, or if it ouly gets partially over it can be helped by keeping a good strain upon the after tripping lines and hauling in upen the fore ones. When the top is over the masthead, lower it into its place, after which send up and stop the bolsters; a coat of tirr or white lead ought to be given the masthead in the wake of the top and bolsters. The main and fore tops are sent up in a similar manner, except that for the convenience of a masthead tripping line, it is customary to send them up upon the after side of their respective masts, when of course they will have to stand on deck upon their after edges, and the masthead tripping line must lead from aft and be bent on the after rim, while the other two lines are made fast to the fore ends of the crosstrees.

SIMTING UP LOWEIR RIGGING.

167. Bobstays and Bowsprit-shrouds.-Having got some heary weight slung to the end of the bowsprit, set these up with a luff upon luff. The donble block of a luff:tackle is hooked to $\begin{gathered}\text { strop }\end{gathered}$ upon the bobstay anil the single block hookd to the lanyard; the fall is now led throngh a leading block on the bowsprit and
coming in upon the forecastle, the other luff is put upon it. After the bobstay set up the bowsprit-shrouds.
168. Stay,-Get a slight pull on the rigging just sufficient to get it settled down upon the masthead. Proceed to set up the stay by getting a tackle on each side of the masthead, in a line with the stay; secure the lower blocks to the stay below the collar, heave well taut, and take in the slack of the collar by heaving in upon the turus of the eye lashing with a spanish windlass.
169. Shrouds.-Now having finished with the stay, get the lower rigging set up for a full due. It is customary to use a runner and tackle for this purpose, the tackle being attached to the misthead and the standing part of the rumner to the rigging, whiln the single block of the runner is made fast to the lanyard, wh h latter should be well greased, 30 that it may slip easily through the holes of the deadeyes.

TOPMAST, LOWER CAP AND TOPMAST CROSSTRREES.

170. Get the spar alongside with its head forward and the after part up. Lash a good topblock to the lower trestletrees, reeve the mast rope through it, from aft, forward, and then take it through the sheave of the topmast, carrying the end to the topmast head where it is sect.red with a clove hitch. The hauling part of the mast rope is racked to the standing part about one third down from the head, passing the two first turns round the mast to keep it from slipping; heave on end until the masthead is pointed through the trestletrees, when the clove hitch at the masthead is to be cast off and made fast to the lowermast head. Hoist the cap into the top and place it athwartships, so that its round hole is over the square hole of the trestletrees; the topmast is now hove up through the cap until the latter can be lashed to the topmast head; a spar with slue ropes is put into the fid-hole and then the topmast is swayed up nutil the under part of tho cap is above the topmast head, when the topmast is slued rommd and lowured nutil the cap is fitted into its place. Now shift the: block from the trestletrees to the lowermast head, cast off the racking and hoist on the topmast mntil three or four feet of it is above the lower cap. Lash a couple of gantlines on the topmast. head, and making them fast to the fore part of the crosstrees, land the crosstrees upon the after part of the lower cap, with their after part down and the under side resting ngainst the topmast, at the same time stopping the after horns loosely to the lower cap; have also a line from each of the after crosstrees to guide them in falling into their place. Now lower away the topmast and as it goes down the crosstrees will fall into place. Heave away upon the topmast until the crosstrees are clear of the lower cap, when the topmast is to be fitted with its rigging, by flrst placing the bolsters, then the riguing. starboard backstay, port backstay,
topmast stays and lastly the jib stay and lift strops. Send the mast up into its place and fid it.

TOPGALLANE MAST.

171. Having sent the topgallant mast up, the general rule is to place the grommet on the masthead and then place, in the following order, the stuy, rigging, backstays, lifis and jewel blocks; when this rule is deviated from, it is only when a fore and aft sail is set upon the stay, in which case the stay goes on last.

GETTING YARDS ALOFT.

172. Lower Yard.-Lay the lower yard alongside, with that yard-arm forward which will be of a different name to the side of the ship upon which it is taken in. Lash a good stout tackle to the topmast, just above the lower cap, overhaul it over the side and secure it to the lower blosk forward of the sling band, sway away and land it across the rail. Get a tackle from the lower stay and made it fast to the middle of the yard, hook on the lifts, and secure the yard-arms with a preventer brace (any line will do) ; now hoist away, keeping a good strain upon the stay tackle so that the arms of the truss may be kept clear of the mast; when high enough, secure the yard with the slings, truss it, peak it and hook on the brace pennants.
173. Tr" sail Yard.--This is sent aloit by a yard rope rove Hrough the masthead sheave hole, which, after being made fast to the slings, is stopped to the quarter and yard arm. Heave it on end until the upper yard arm is above the cap, when the brace pennants and lifts are hooked on; cast off the yard-arm stop, the other yard-arm is then hoisted above the top and rigged, when the yard is lowered crossed and parralled. Should the topsail yard be a heavy one, a gin tackle purchase should be used for sending the yard aloft, securing the block to the slings of the yard, and wren the yard is well above the cap, secure the lifts, then lower away and steady tant the braces.
174. Topgallant Yard.-Is sert aloft much in the same way as a light topsail yard, having aiso two stops, one on the upper guarter of the yard and the other on the yard-arm. When the yard-arm is hoisted above the crosstrees, cast off the yard arm stop and place the gear on in the following ordor; foot rope, brace, and then the lift, finally stopping the whole on the yardarm.
175. In sending down topgallant yards, the main should be sent down on the starboard side, while the fore and mizen are sont down to port and so placed in the rigging.

STOWAGE.

176. Examination of hold.-Before going below, see that all the mast and pump coats are secure and in good condition. When in the hold, examine the limbers and see that there are neither dirt nor chips either there or in the well. Look to the iron fastenings in the wake of the channels; then nnder the deck and transom for leaks, also make sure that the ends of the chain are secured round the mast, close under the dreck.
177. Dunnage.-Lay the dunuage athwartships. If the vessel is flat bottomed, she should carry about four inches more in the wings than on the floor; while if she is sharp bottomed, the greatest quantity of dunnage will be required amidships.
178. Arrangement of cargo.-In a general cargo place the heavy goods and those the least liable to injury at the bottom; the light goods should go in the upper tiers. Articles such as silks and perishable commodities of a like nature should be stowed away aft.
179. Bale goods.-Amidships stow them on their flats with their marks and numbers nppermosl, but when in the wings let them be upon their edges, keeping them well off the side by dunnage.
180. Cotton.-For this cargo ballast will be necessary, the amount of course depending upon the huild of the ship; but as sometimes as much as 20 tons per 100 tons register is requisite, care must be taken that a sufficient quantity be laid in. When the bales come on coard, see that none are wet or even damp, for bales in such a condition get heated and would be liable to take fire during the voyage.
181. Iron, rails or bars.-Have the bottom well durnaged, so that there may not be a risk of any claims for damage from sea water. With railway iron the flist tiers are laid loosely fore and aft, until they rise an inch or so above the keelson, when having a good floor to work upon, lay the remaining rails diagonally and well apart, protecting the sides of the vessel by ails laid fore and aft, with their flanges agaiust the skin. The last two tiers should be laid fore and aft, so that a platform may be made for shoreing it down, thus : get planks athwartships on the top of the iron, and place a sufficient number of shores between the planks and the deck beams, taking the precaution to cleat all the shores both to the planks and the beams.
182. Molasses.-Should the cargo consist wholly of molasses, it is advisable to commence the stowage amidships, alongside the pumpwell, working towards each end so as to have the breakage fore and aft. Do not take in over four heights; stow the casks bilge and contline, bung up and bilge free, with good beds well quoined off under the quarters. Have a vent hole at the side of
the bung of each cask, otherwise the cask may burst from the fermentation during the voyage.
183. Petroleum. - In some ports it is customary to stow petroleum bilge and bilge, an exceedingly dangerous practice; and further, having as a consequence to carry a much larger proportion of dunnage, the ship cannot take any thing like the quantity of cargo she ought to.
184. Ore.-A vessel carrying this cargo, not only requires to have it stowed well up, but also that it should be kept at some considerable distance from her sides. The hold is prepared by building a good strong platform upon the keelson, bilge and sister keelson; a bulkhead is built upon both sides of this platform well secured with shores against the ship's side and the deck.

LLOYD'S IRULES FOR THE STOWAGE OF MIXED CARGOLSS.

Prepared by Henry C. Chapman \& Co., Agent for Lloyds, Liverpool.

185. Owners, Commanders, and Mates of ships, are considered in law in the same situation as common carriers, it is therefore necessary that all due precautions be taken to receive and stow cargoes in good order, and deliver the same in like good order. The law holds the shipowner liable for the safe custody of the goods when properly and legally received on board in good order, and for the "delivery" to parties producing the bill of lading. The captain's blank bil! of lading should be receipted by the warehouse keeper, or person anthorised to receive the contents Goods are not unfreq reully sent alungside in a danaged state, and letters of indemnity given to the captain by the shippers for signing in good order and condition; this is nothing more or less than conniving at frand; fine goods are also often damaged in the ship's hold by lumpers, if permitted to use cotton hooks in handling bales. All grods must be received on board according to the castom of the port where the cargo is to be taken in; and the same custom will regulate the commencement of the responsibility of the master and owners.
186. Hemp, flax, wool, and cotton, should be dunnaged 9 inches on the floors, and the upper part of the bilge; the wing bales of the second tier kept 6 iuches off the side at lower corner, and $2 \frac{1}{2}$ inches at the sides. Sand or damp gravel ballast to be covered with boards. Pumps to be frequently sounded and attended to. Sharp bottomed ships one-third less dunnage in floor and bilyes. Avoid horn shavings as dunnage from Calcutta.
187. Oil, wines, beer, molasses, tar, \&c., to be stowed bung up; to have good cross beds at the quarters (and not to trust to hanging beds); to be well chocked with wood, and allowed to
stow 3 heights of pipes or butts, 4 heights of puncheons, and 6 heights of hogsheads or half-puncheons. All moist goods and liquids, such as salted hides, bales of bacon, butter, lard, grease, castor-oil, \&c., should not be stowed too near "dry goods," whose nature 's to absorb moisture. Shipowners have often to pay heavy damages for leakage in casks of molasses, arising from stowing too many heights without an intervening platform or 'twixt decks. From Bengal, goods also are frequently damaged by castor-oil.
188. Tea and flour, in barrels; flax, clover, and linseed, or rice, in tierces; coffee and cocoa, in bags; should always have 9 inches, at least, of good dunnage in the bottom, and 14 to the upper part of the bilges, with $2 \frac{1}{2}$ inches at the sides; allowed to stow 6 heights of tierces, and 8 heights of barrels. All ships above 600 tons should have 'twixt decks or platforms laid for these rargoes to ease the pressure-caulked 'twixt decks should have scuppers in the sides, and $2 \frac{1}{2}$ inches of dumage laid athwartship, and not fore-and-aft ways, when in bags or sacks; and when in boxes or casks not less than 1 inch. Rice, from Calcutta, is not unfrequently damaged by indigo, for want of care in stowing.
189. Eutire cargnes of sugar, saltpetre, and guano, in bags, must have the dunnage carefully attended to, as laid down for other goods. Timber ships are better without 'twixt decks if loading all timber or deals. Brown sugar to be kept separate from white sugar, and both kept from direct contact with saltpetre.
190. Pot and pearl-ashes, tubacco, bark, indigo, madders, gum, \&c., whether in casks, cases, or bales, to be dunnaged in the bottom, and to the upper part of the bilges, at least 9 inches, and $2 \frac{1}{2}$ inches at the sides.
191. Miscellaneous goods, such as boxes of cheese, kegs and tubs of lard, or other small or slight-made packages, not intended for broken stowage, should be siowed by themselves, and dumaged as other goods.
192. Barrels of provisions and tallow casks, allowed to stow 6 heights. All metals shonld be stowed under, and separated from, goods liable to he damaged by contact.
193. All manufactured goods, also dry hides, bales of silk, or other valuable articles, should have $2 \frac{1}{2}$ inches of dumage against the side, to preserve a water-course. Bundles of sheetiron, rods, pigs of copper or iron, or any rough hard substance, should not be allowed to come in contact with bales or bags, or any soft packages liable to be chafed. When mats can be procurrd, they should be used at the sides foksilk, tea, \&c.
194. Tar turpentine, rosin, \&c., to have flat beds of wood under the quarters, of an inch thick, and allowed to stow 6 heights.
and 6 Is and grease, oods," ften to g from rm or maged
seed, or rs have t to the wed to s above r these ld have artship, when in , is not ving.
in bags, own for lecks if separate ith saltaged in inches.
egs and ntended es, and
to stow parated of silk, unnage of sheetbstance, bags, or ocurd,

d under

 shts.195. Very frequent and serious loss falls on Merchants on the upper part of cargoes, particularly in vessels that bring wheat, corn, tobacco, oil-cake, \&c., arising from vapour damage imbibed by wheat, flour, or other goods, stowed in the same vessel with turpentine or other strongscented articles; the shippers are to blame for such negligence, for not making due inquiry before shipping.
196. Ships laden with full cargoes of coal, bound round Cape Horn or Cape of Good Hope, to be provided with approved ventilators, as a preventative against ignition.

Abstract

Norz.-Shippers abroad, when thep know that their cargoes will be stowed properly, will give a preterence, and at higher rates, to such commanders of ships at will undertake to guarantee the dunnage. The American shipowners, in the stowage of mixed cargoes in large ships, have, from experience, discovered what "pressure" flour barrels, provision casks, \&c., will bear, and so avoid reclamatlons for damage if otherwise properly stowed; hence, in large ships above 600 tons, with dimensions exceeding in length 42 times the beam, and 21 feet depth of hold, orlop decks will come into general use, so as to relieve the pressure, by dividing a ship's hold like a warehcuse, into stories. A large ship, called the ' Liverpool," which left New-York in December last, with an entire cargo of flour, has never since been heard of; it is supposed the lower'tier of barrels gave way under the pressure, and the cargo having got loose, shifted in a gale of wird, and cepsized the vessel. Ship's cargoes for Insurance, will also become a matter of special agreement between merchant and ship-ownor, and merchant underwriters, and the premiums vary according to the dunnage agreement. The stowage and dunnage must stand Al, and is often of more importance than the class of the vessel, as experience has proved. When ships are chartered for a lump sum, the draught of water should be limited, ad it not unfrequently happens that brokers insert a clause that coals are not to be considered as dead welght, in order to fill the ship up in a case of goods lalling short, to make up the chariered freight. All packages, balea, and cases, not weighing more than $25 ; \mathrm{wt}$. th the cubic ton measurement, are designated as light frelght.-Lloyd's ifay, 1851.

MONTREAL, \&c.,-STOWAGE OF GRAIN CARGOES

Lloyd's instructions to Masters and Mates.

197. No ship exceeding 400 tons register can be entirely loaded with grain i:l bulk; and all exceeding 400 tons register may take two thirds ot the cargo of grain in bulk, and one third in bags, or rolling freight instead thereof. In the latter case, the grain in bulk should be stowed 6 inches, but not more above the beams, to allow for settling.
198. When ships take wheat, corn, \&c., in bulk, it must be stowed in sections Gr 'bins" (not to contain more than 12,000 bushels each), to be lined with thoronghly seasoned boards, grain tight, not less than 10 inches from the flat of the floor, and from 14 to 16 inches in the bilges graduated to the sides, which must be clapboard lined to the deck. Care must be taken to preserve a water-course inder the lining. Good shifting boards, secured to
the stanchions, extending at least 6 feet downwards and fitted tight to the deck. The stanchions not to be removed, but firmly secured. No loose grain to be stowed in the extreme ends, and no admixture of other goods. Pumps and masts cased and covered with mats and canvas, made thoroughly grain tight, with suffi cient space in the well to admit the passage of a man-hole from the deck, or by a clear passage from the 'tween decks aft. Mats to be used for covering knees, keelsons, and stanchions, if required, but not for lining or covering the sides.
199. Grain, when stowed in bags, must be dunnaged not less than 10 inches on the floor, 14 to 16 inches on the bilges, 3 inches on sides up to the deck; between decks the dunnage must be taid athwartships, at least 2 inches from the deck. Shifting glank extending at least 4 feet from deck beams downwards, secured to stanchions. The dunnage in the hold must be entirely covered with boards and sails, or masts, graintight.
200. All butk or loose grain must be taken in bins prepared for that purpose.
201. For dunnaging, deals. are preferable to anything else. They should be laid fore-and-aft, about 3 inches apart, the second tier over the spaces of the first tier, the third tier over the spaces of the second, and so on. Staves or other materials generally used for dunnage to be placed so as to give free conrse for the water to reach the pumps. The dunnage should be raised from 10 to 12 inches from the floor, and in the bilges from 14 to 16 inches, according to the build of the ship and the discretion of the Inspector. Flat-floored wall-sided ships should be fitted with bilge pumps.
202. The studs for the bulkheads should be made of threeinch deals, placed about 2 feet apart, and firmly secured at the top and bottom, and properly braced and cleeted on the lining and to the beams (or deck), to resist the pressure of the grain.
203. The studs for the bulkheads forwards, and after bulkheads for ships not exceeding 10 feet depth of hold, must be 4 by 6 inches in size, and of 1 entire piece; of a greater depth than lif feet, they must be 4 by 8 inches. They must be set 20 inches apart from centre to centre, firmly secured at the top and bottom, and properly braced and cleeted on the ceiling and deck, to resist the pressure of the grain.
204. The sides above the turn of the bilge must be lined on one-inch battens after the manner of clapboarding.
205. Shifting planks 2 inches thick must extend to the derk on each side of the stanchions, fitted tight under and between the beams and carlins, and extending notless than 6 feet downwards; care must be taken thit the stanchions are well secured on both. ends. In no case can single boards be substituted for plank, and
the shifting boards must be shored from sides, midway between the stanchions.
206. Materials for bins must be perfectly seasoned; unseasoned lumber must not be used where it will come in contact with the grain. Water-tanks, whether of wood or iron, must be cased with wood to prevent damage from sweat or leakage. And all ships with grain in bulk ought to have feeders and ventilators.
207. It must be seen that the grain is well trimmed up between the beams, and the space between the beams completely filled.
208. When ships are chartered, the dranght of water should be limited, and provision made for loading under inspection.
209. The load draught must be regulated by the depth of the hold, allowing 3 inches to every foot depth of hold, measured from lowest line of sheer of deck amidships to the water, when upright. Ships having an additional deck put on after construction, the depth of hold to be measured from original deck.
210. Ships loading grain complying strictly with the above rules, lined and loaded under the supervision of the surveyor appointed by Lloyd's agent, will be entitled to a certificate to that effect.
211. Applications for supervision will have to be made in writing, and a fee of 10 dollars charged for such supervision and certificate.
212. To secure the yards for lifting heavy weights.-Brace the main yard forwad so as to plumb the gangway, then peak and untruss it. Lower the yard about half way down and lash it to the mast, keeping the truss arms clear. Get a spar up and down on the after side of the yard, resting its heel on a good shoe just inside the waterways. Lash the purchase block upon the yard, outside the upright spar. If the weight to be taken in is so heary that additional precautions may be considered advisable, have a spar, as a preventer from the lowermast head to the yard outside the upright spar. Sling skids up and down the side. Now rig the midship purchase ; get a spar on the fore side of the main hatch, attach guys to it which leading to both mastheads pass through blocks on deck again; to the head of this spar secure the purchase intended to be used, together with a guy provided with a tackle, so that the head of the spar may be brought into any nosition tessired.

BENDING SAILS.

213. Courses.-See that the head cringles are well parcelled, the buntline holes leathered, the midship stop in its place and the reeftackles in good order. This done, stretch the sail across the deck, with the clews aft and the buntline holes and leech line cringles forward; clinch the buntlines and leechlines to the sail; reeve or hook on clewgaruets, sheets and tacks; mouse all hooks. Stop the midship part of the headrope to the inner buntlines, and the outer headrope and earing to the leechline; sway up, made fast the midship stop, hanl out the earings, bend the robands and furl the sail.
214. Topsail. -Get a sail rope from the masthead with which to send the sail aloft. Open out the sail and see everything is secure, chafes protected, reeftackle blocks, \&c., all right. Bend the sail rope round the sail on one side of the midship stop; sway up to the yard and bend the midship stop, reeve the reeftackles and clewlines, shackle on the sheets and haul up on the buntlines; haul out the carings, leeping the head cringle well up on the yard ; pass the robands, see that all the reef earings are in the sail and then furl it.
215. Topsail in bad weather. - Where the maintopsail has blown away and it is desirable to bend another, get the sail rope and weather reeftackle rove and overhanted down on deck. Make the sail up by the foot, leaving the buntline holes, reeftackle bocks and clew out clear. Tie the third reefpoints over the foot of the sail, after which tie up the second and then the first reefs, finally, stopping the head with ope yarns. Bend on the sail rope and reeftackle on one side 6 , he midship stop; sway up to the yard and make fast the midship stop, reeve the reeftackles and clewlines, clench on the buntlines and shackle on the sheets. Whon the gear is hent, hanl out on the reeftackles on both sides and bend the head of the sail; after which reeve the first reefrarings, haul out and cast off the first reefpoints and so follow on until all the reefs are taken in; then, if necessary the sail can be set.
216. Topgallant sail. - This is sent aloft in moch the same way as a topsail.
217. Royals.-Are generally bent on deck before the yard is sent aloft.
218. Jil, or Staysail.-Get the luff of the sail so made u! that all the eyelet holes will be free for bending. Overhanl the halliards and downhanl, and bend them a cund the head of the sail about a foot iuside the luff; bend a line to the cleweringle. Sway up on the halliards, ham out on the downhaul until the sail is boomended, then hook or lash the tack to the sail and bend
the hanks. When bent, clinch the halliards to the sail, reeve the downhaul through a couple of the upper hanks and clinch it; now secure the pendants to the sail and furl it.
219. Spanker, Mizen or Trysail.-Stretch it out upon deck and make it up, leaving the head and luff eyelet holes out; if the sail has brails, seize them to the after leech of the sail. Get a line from the rim of the top, bend it on to the sail and sway it to the jaws of the gaff. Bend the head of the sail first to the hoop and then the jackstay. If the sail travels up and down the mast on hoops, it is better to lower the gaff and get it bent on deck.

MAXING SAIL.

220. To set a Course (Main).-Loose the sail, overhaul the gear, buard the main tack; haul tant the weather lift and aft with the sheet; hanl out the bowline.
221. To set a Topsail or other square : dil--Cast off the yard arm gaskets and then the bunt, let fall the sail, overhanl the: buntlines, and haul home first the lee and then the weathersheet. Hoist away on the yard and trim by the braces.
222. Spanker or Mizen.-Loose the sail. Overhaul the lee topping lift, man the foot outhaul, let go the brails, ease away the tripping line and hand out. Let go the downhand and throat brails and hanl away upon the head outhanl. When set, trim the gaff by the vangs and the boom by tho sheet; steady tant the hoom g!ys.
223. To seta Jib or Staysail.-Loose the sail, haul aft the lee sheet, let go the downhanl and hoist away upon the halliards; when the weather leech of the sail is taut, belay and trim aft the sheet.
224. To set a lower (three-cornered) studdingsail.-Thrboom being rigged out and secured, bend on the inner halliards to the inner cringle and the onter halliards halfway ont on the yard. See the tripping line is made fast to the onter yard-arm and that the end of the sheet is secme. Hoist on the inner halliards matil the sail is halfway up, then clap on the onter halliards, boom end the sail, sway up taut the inner halliards, and tifin down the sheet.
225. Topmast studdingsail.-Bend the halliards outside the middle of the yard, hitch the lownhan over the inner yard-arm. and see that its outer part is clear, bend on the tack, secure the ends of the downhaul and the sheet. Make up the downhanl with a slip hena and then hoist away; when about twodhirds up
the leech of the topsail, break the hitch on the downhaul, hatl out the tack and hnist up; trim down the sheet.

TLEIIVIMING YARDS.

226. Clovelauled. - The lower yards should be braced sharp up, and each weather yard e m kept abaft the one below it ; that is, the lower yard being sharp u_{j}, , the topsail weather yard arm should te kept in a quarter of a point abaft the lower yard arm, the topgallaut weather yard arm a quarter of a point on the aft side oi the topsail yard, and so on ; but as in a sea way a vessel's yards require a little play, they should never in such a case be braced too sharply up.
227. Windabean or quarterly.-The head yards should be braced a little more forward than the after yards.
228. Wind hauling.-Should the wind haul aft, the after yards should be trimmed first; but if the wind shifts forward, then trim the head yards first. The crossjack yard is always trimmed witin the main.

TAKING IN SAIL.

229. To take in a Course.-Slack off a foot or so of the lee sheet and han tant the lifts; man the weather gear, mureeve the bowline, ease away the tack and haul close np; now haul up the lee side and furl the sail.

2:30. Reefed foresail or hainsail.-Start the lee clew, now haul up the weather side and take in the lee side aftervards.
231. Closed reefed Topsain.-Round in on the weather braces to spill the sail and steady taut the lower lifts. Slack the lee sheet; man the weather gear, ease off the weather sheet and haul up the weather clewlines and buntlines; after which, hitul up to leeward and furl the sail.

2:32. To take in a Topgailmistail.-Let go the lee brace, lower away on the halliards at the same time hauling down on the clewlines. When the yard is down on the lifts, steady tant the braces, start the lee sheet, and hand up on the lee clewline and buntline. When these are up, inal up on the weather clew and stow the sail. Supposing that in a squall, after having started the: hatliards, the yards will not come down, slack up the sheets and clab on the clevtines, thes in all peghability will relieve the parrel and allow the yard to come down.
2333. To take In a Mizen or Spmerer.-Supposing it to be flted with a standing gaff; man the head downhanl and lee

REEFS.

2:33. Tabing a reef in the Topsuils.-Romed in on the weather brace and lower away on the halliards, some hamls laking in the slack of the reeftackles as the yard comes down. When the yard is down on the lifts, steady the braces so as to keep the sail spilled: hanl ont the weather reeftackle first, and then the lee one; hand tant the buntlines. Send the hands aloft, the flrst man laying out to the weather earing, the second to the lee one. Hail ont In windward flrst, keeping the dog's ear well upon the yard, after which, haul out to leeward ; tie the puints and lay off the yart, one man remaining in the top to overhan the rectackles, ete.
237. Topsadi reef-enrings mal reefpoints.-In passing the reel earings, the flrst and second should be passed from forwarl over the top of the yad and down alt throngh the rringle; the thime refeetring is passed in the opposite direction, that, is to say, up aft, over the gard and down forward throngh the cringle. ln tying the points of the third reet, the band should be kept as nearly as possible to the centre of the mader part of the yard. Reef points should be whippad and fitted to the sail according to the reef to which they severally belong; in this way, the thind reef pointa have three whippings and are sewn into the sail with the shorlest ley aft; the points for tho second reef have two whippings and they are sewn in with the longest leg aft, while the
first reef points have only one whipping and are sewn into the sail with equal legs.
238. To close reef the topsail.-Brace bye the yard to spill the sail, lower asay the yard, haul out the reeftackles while slacking up the sheets; when the recftackles are up, hanl the buntlines well taut, steady the yard by the braces, lay aloft and take in the reef. When this is in, haul home the sheets, hoist on the halliards so that the strain may be taken off the lifts and then trim the yard.
239. To reef a course.-Start the lee sheet a little. Haul up the weather and then the lee side of the sail; hanl out the reeftackles, taking the weather side first. Now lay aloft and take in the reef in a similar manner to that in which the last reef of a topsail is taken in. In some vessels there are not any reef points in the courses, in such cases, it is usial to lace the reef band to the yard with a marling hitch, having the hitch on the fore side ; this plan has its advantages, but it takes a long time to get the sail reefed.
240. Shaking out reefis in a topsail.-Settle the haliiards, haul out the reeftackles, haul tant the buntlines and steady the braces. Lay aloft and cast off the points, commencing amidships and working outwards to each yardarm, taking care to tie afresh the other reef, if any. When all the points are cast off, ease away both earings at the same time, otherwise, if one is eased off before the other there is a risk of splitting the sail. Make fast the reef-earing through the cringle of the sail above the reof and let ont by a long bowline. Lay in off the yard, orerhat the reefackles and bmothes, then hoist away upon the yard and trim by the braces.
241. To let ont the reef in a course--Slack up the sheet and fack, hanl tant the elewganels and huntlines, hanl ont the reeffackles. Cast off the points, starting amidships amb working outwards, after which, cast off the earing, owerhan the gear, board the lack, aft the sheet and hand ont the howline, ete.

HANDLING A SHIP.

$\mathbf{2 4 2}$. To thek ship.--Kop the vessel full lor stays, and while
 lines or teechlines; lay down the braces cloar for moming and fort the tacks and sheets ont of their beckets. All being ready, gralmally easedown the helm, mad give the word-Hman's ande-
 Gacks and sumbrs-mpon which the fore mad man lack, together with the man sheet, ime let go and overnanied. When tho vessed has come up within a point of the wind-Mansaf, hath-lhis
directs the main and crossjack yards to be swong, down main tack and aft main sheet. Unless working short tacks, immediately the main tack is down, haul tant the weallier main lift before the bowline is hanled out, and at a similar time do the same with the fore tack. Right the helm. As the main topsail begins to flllFonebowline, let go and hadl-down fore tack, aft fore sheet and head sheets. In a strong breeze, care should be taken that the weather braces should be eased off when the head yards are swong, so that the yard may be prevented from swinging up and endangering the truss of the lower yard, or the parrel of the topsail yard. Should the vessel fall off very mach in stays, 'vast bracing the fore yard and keep the head sheets flowing; and fiur. ther, should the vessel cary her headway well round, it will be unnecessary to entirely reverse the helm when the head yards are being swing.

24:3. Tacking in a light wind or againsta short chop of a sen. -Having put the helm alee, let the head sails run down; when the foretopsail lifts, check in the weather fore braces, and keep the fore tack and fore sheet aboard, so that all the sail forward may be pressing on the bow. When the wind is on the opposite bow, hanl the main yard; after which, follow on the same as when tacking moder ordinary circumstances.
244. Missing stays.-Supposing that the mainsail has been fanted and the helm reversed; then shift the helm back as before for sternboard and get the main yard swang romad again. As she falls off once more, trim down the after canvass, and then when she has got weigh enough upon her, try her again, This is of course supposing that the vessel has plenty of room; where it is otherwise, and it is imperative to get upon the other tack without loss of time, then she must be brought romd upon her lieel by boxhanling her, as given iu the following paragriph.
245. Boxhanling.-Suppuse the ressel is lying head to wiml, with the after yards swang and the helm reversed for sternway. Square the after yards, brail up the aftor canvass, hamb the forsyad round al ix and hanl over the head sheets to windward. Tend the after brm sas she falls off before the wind, so that the after canvass may bu kept on the shake as long as possible In this way, when she gets dore the wind, the after jarde will be bacod sharp up on the other tack; now spuare the hesd yards and shift the heln when she gathers headway; while she is coming to, keep the foreyard shaking as mnch as possible. Set the head sails as she comes to the wind.
448. Wearing-Brail up the spanker. Up helm, square in the after yards, hind as shes falls off before the wind proceed as directed in boxhanling (245). If it is dasirable to wear her short round, luif her up a little to deaden her way, before running her off.
nd while Is, buntfing and y ready. SA'LES: ft-malse: together ho vessel ut-lhis
247. Wearing in heavy weather.-Suppose the canvass has been reduced to a close reefed maintopsail and fore topmast staysail. Put the helm up and sfruare in the mainyard to shiver the topsail; if she refuses to pay off, loose the lee side of the foresail and haul aft the sheet. When before the wind, haul ap the clew of the foresail, shift over the topmast staysail sheet and having the hands at the lee main braces, watch for a smooth sea to round her to, when this presents itself, brace up the main yard and down helm.
248. Wearing by a drag.-Get a hawser up and pass the end outside all, from the lee bow along the lee side, round the stern, and bring it in to windward on the weather quarter. Make the hawser fast to a spar large enough to float it and pay out from the weather quarter. When about forty fathoms are out, take a turn, and the vessel being now hung by the stern will necessarily pay olf; as she gets before the wind, let slip the hawser from the weather quarter; as the lee side faces the wind, let slip the stop from the lee quarter, and as she is now held forward, the ship must round to, head to wind. This may be found useful where a vessel having lost her spars, lies in the trough of the sea.
249. Laying to. - Supposing that in wearing as given for heary weather, it was intended to lay her to, then when hefore the wind and having the clew of the foresail hauled up, together with the topmast staysail sheet shifted over, man the lee main and maintopsail braces. As soon as a smooth presents itself, down with the helm, brace up the main yard, and swing the fore yard so that the wind will blow direetly along the yard. Should it be blowing so hard that it is impossible to present any sail to it, spread some canvass in the mizen rigging, and should that prove useless, then it wiil be necessin' y to construct a drag.
aso. Laying to with indrag.-Get a spar and bend a hawser romid the middle, spiking the bend to the spar. So as to be enabled to recover the spar, before lannching. get a small line bent on to the end of it, bring the bight of the line to the hend of the hawser and stop it there with a split ropeyarn. Now lamel the spar overboard, and as the hawser is paying out, take a few loose turng with the small line romd the hawser, so that in hating in the hawser, the spar is hronght in end on by means of the smath line. Pay out to about fifty fallows and secure it abreast the fore channels, if the ressel now lays well, this will be all that will be necessary, lont should she fall off and the reverse too much, it can be remedied by getting a comple of good stout bridles on the hawser, in this way-take a good line and bend it on the hawser outside of all, and get it led nfl; now have another line made fast in the same way and take it forward. Pay outanother lifteen or twenty fathoms of hawser and steady tant both lines; should she fall oif she would immediately get hung by the head. mid come to again; on the contrary, should she come to, the after' opmast shiver e of the haul ap eet and joth sea in yard

the end

 ne stern, lake the from the e a turn, arily pay from the the stop the ship where agiven for on before together main and If, down fore yard ould it be ail to it, hat prove
a hawser e enabled bent on to he hawser the spar pose turn's ng in the mall line. the fore al will be much, it bridles on it on the other line at another oth lines; the head. , the afte:
line will keep her in check. So managed a vessel should lay well, but she may be expected to roll heavily.
251. Broached to.-If while running with the wind quarterly the vessel should broach to, trim the head yards forward and up with the helm, keeping the mainyard nearly square. It is not a bad plan when running with the wind quarterly, to have the head yards carried a little more forward than the after yards, but while this considerably lessons the risk of broaching to, yet, if the vessel steers badly, it has the disadvantage of causing her to swing off more. When scudding with a quarterly wind, the foretopmast staysail should alway: be kept hoisted.
252. Caught aback.-If caught aback by a sudden shift of wind, put the helm up, flatten in the head sheets and brail in the after canvass. If she still refuses to pay off and is gathering sternway, reverse the helm, haul round the fore yard abox and the head sheets to windward. But if caught aback in a squall, let go the topsail halliards, for as the vessel is almost certain to get sternway, the canvass should be reduced as soon as possible. In shifting the helm for a sternboard it should never be put hard over.
253. Caught in a squall.-Should a vessel, by the wind and with all sail set, be caught in a squall at night and thrown upon her beam ends, her rudder may not act, and when the halliards are let go it is very probable that the yards will not come down. In such a case, let go the lee sheets, this will immediately ease the parrels of the yards and allow them to run down, thereby relieving the ship at once; of two evils choose the least, therefore it is better to risk losing your canvass than your masts, and indeed many a fine ship with her crew is lost, by endeavouring to clew up their sails, instead of spilling them and letting them come down at once. If caught in a squall with the wind quarterly and studdingsails set, trim the foreyard flist, so that the studdingsails may be kept quiet.

ANCHORAGE.

GETTING UNDEIR WEIGH.

254. With plenty of room.-See that all the gear about the deck is secured, boats in, steering gear in good working order, compasses all right, anchor gear all ready for use, the hand lead convenient, and the side and masthead lights to hand. Suppose the vessel is iaying with one anchor down and that it is desired to get under weigh upon the starboard tack; heave in short and as the shackles come in, examine them and see that the marks
are not worn off. * Cast off the topsails, sheet home and masthead them, brace up the after yards with the port braces and the head yards with the starboarl braces. Get the jib and staysail ready for hoisting: the after canvass set and the helm to port. Man the windlass and trip the anchor. Immediately the anchor is off the ground and the vessel begins to fall off to port, run the jib up, and if necessary stand by to fill the fore yard. Heave the anchor up, cat and fish it. Set the courses and the other requisite sails. If it is not necessary to have head reach on the vessel, it is as well to let the head yards remain until the anchor is catted and fished.
255. In a crowded harbor.-It would be as well to hang on to some friendly vessel until the anchor is catted; then when ready for making sail, slip or let go the lawser by which she is hanging on.
256. With a vessel or other obstruction in thic way.-A square rigged vessel when getting under weigh will make a stern board flrst, therefore it is better to cast her towards anything laying in her way. Suppose, for insta ice, there is a vessel well down on either quarter, then caut towards her when getting away.
257. - Trom a lee shore.-A vessel laying at single anchor in an open roadstead, with the wind blowing on to the shore, taking in cargo, always lays with buoys and slip ropes on her cable, and consequently has little difficulty in getting away at any moment. But suppose that your vessel has run in for shelter, and the wind hauling round, she is canght upon a lee shore ; assume that she is laying to her anchor with a range of sixty fathoms. From the quirter, pass a hawser away forward, outside all, and make it fast to the chain. Now loose the topsails, courses, and fore and aft canvass; sheet home the topsails, and brace up the after yards for the tack upon which it is intended to get away, but the head-yards will have to be braced slightly fihos. Set the after canvass and jibs. Ease away the chain until the maintopsail filis, then brace round the fore yard ; when it fills, slip the chain and cut the hawser. It is advisable to buoy the end of the hawser as well as the chain, so that it may be picked up the more readily. Nows suppose you have run in again to pick up your anchor. While approaching the roadsteal, get a boat out and coil a hawser into her. Sail to windward of the
[^10]
1 mast-

 ces and d stayto port. anchor rt, run Heave o other on the anchor n when h she is n board ying in own onachor in , taking cable, at any shelter, - shore of sixty outside opsails, ils, and nded to slightly in until when it o buoy may be n again d, get a iof the
buoy and when abreast of it, let slip the boat, which at once proceeds to the buoy and gets hold of the end of the hawser, to which the end of the one in the boat is bent on. The boat now returns to the ship, paying out her hawser as sha goes; the ship in the mean time shortening sail and tacking to close in with the boat. When the boat is alongside, get the end of the hawser aboard and run it in until you are abreast of the buoy on the chain ; pick it up and pass the end in through the hawsepipe, and heave it in : when the end of the chain is on board, shackle it on and heave up the anchor.

COMING TO AN ANCHOR.

258. Selecting a berth.-Care should be taken that in bringing up, you do not lie in the wake of another vessel; for should she drive down upon you, you have not only to stand to your own damages, but are responsible for any that may occur to her. Had you not come to in her wake, no such accident could have taken place.
259. Bringing up at single anchor.-Get the anchors off the rail, the working anchor a-cockbill and the shank painter and stopper of the second anchor ready to let go at a moment's notice; have the squares of the windlass down, norman riding chocks shipped, and the range overhauled on both sides; see that the halliards, braces and all running gear, are down ready for use Having a light breeze, reduce canvass by taking in royals and topgallant sails and haul up the courses. When close to your proposed anchorage lower away the foretopsail, hanl down the jib and round her to. As the ship comes head to wind, let the fore and main yards run square, ind as soon as the vessel gets sternway, let go the anchor. Pay out the chain, then clew 11 p and furl all smig. Shonld the wind be at all fresh, it would be advisable to clew up the foretopsail instead of merely lowering it down.
260. Coming to in a tideway.-If the wind is blowing against the tide, reduce the canvass until the tide takes, but it is advisable to retain such canvass ou the ship as will keep her under control should the anchor not take hold. If the wind is howing with the tide, round her to, with nearly all the after available eanvass set, say, the main and mizen topsails, spanker and after slaysails. In this case, it is not necessary to wail until the vessel has lost the whole of her headway, becanse the tide will make the anchor take hold.
261. Coming; to with both anchors.-Reduce the camvass to as little as possible, leaving her only enongh to give her barely headway. Suppose it is iutended to drop the starboand anchor first. Overhanl a range of forly-five fathoms of the starbeard chain, while on the port there should be from fifteen in twenty fathoms, let these ranges be soppered to ringbolts with spunyarn, or any-
thing else which can be cut in a moment. Get the remainder of the cables ranged on deck and having selected the posicion of the anchorage, down helm and drop the starboard anchor ; immediately this is upon the bottom, right the helm, so as to sheer the vessel away from her anchor, when the forty-five fathoms have run out, let go the other one and pay this out also to forty-five fathoms; now veer away upon both chains and when sufficient cable is out furl all sails.

RIDING OUT A GALE.

262. At single anchor with a long scope.-Both practice and theory have so completely demolished the old usage of riding with an open hawse, that it is hardly necessary to enter upon the subject here. It is apparent that when a ship is riding at anchor, that the more chain that is out, the more nearly the strain is brought upon the anchor in the line of its greatest resistance, that is, parallel with the bottom. Not only has it this advantage, but in a heavy gale, she would under these circumstances have a long range of chain clear of the bottom, this would act upon her as a spring and zase her from those heavy jerks which are so liable to capsize the windlass. A long scope, with the second anchor dropped about ten to fifteen fathoms ahead of the ship, will enable her to ride out a very heavy gale, for by dropping the second anchor just ahead, it prevents the vessel shearing about, which is a very common rause of anc'urs coming home. If there is plenty of sea room, the end of the second chain can be shackled or to the first, thereby giving the advantage of an additional scope. When riding out a gale, it is a very good plan to ease the windlass by having a spring bent on its fore side, and after passing over the top of it let the line be secured away aft, well parcelling the spring in the wake of the windlass. Now pay out just sufficient of the chain to allow the spring to take a little of the strain. In South Eastern African ports this is a nevessity, and consequently all traders there are furnished with a coir hawserfor the purpose.
263. Cutting away the masts.-Supposing the gale rises to such a height that it becomes necessary to cut away the masts to save the ship from driving on shore; then the forennast and bowsprit shoild be the first to go, for the after masts act much the same as the tail upon a wind-vane, and will keep the vessel head to wind. If it should be determined to spare the bowsprit, rig the jibboom close in, for sithiated as this spar is, the wind which strikes upon it, acts as a lever in sheariug her abont. Now having to cut the masts away, suppese that it is desirable to throw the masts over on the port side. Commence upon the port side of the foremast and cut about two-thirds of the way through; after which, cut away all the rigging on the starboard side except the foremast swifter ; station hands ready to cut away the head stays and foremast sliroud at the moment required. Now deepen
the cut in the mast until the remaining part of the latter has been sufficiently weakened, then as the ship rolls to port, cut away the stays and swifter and the mast is immediately over the side; cut away the port rigging and let the wreck go clear of the ship. The mainmast shoald be the next to go, and will be cut away in a similar manner; the mizen mast should be left to the very last extremity, as it assists materially in keeping the vessel steady.

TENDING A SHIP AT SINGLE ANCHOR.

264. Wind quarterty.-The vessel should be steered to windward of her anchor and the yards pointed to the wind. Laying in this way will make the wind, helm and tide, all aet against the chain and thus keep the vessel steady at her anchor. It is generally understood, that the helm affects the course of a ship by making her head move to the same side as the blade of the rudder is turned; but although the vessel's course is certainly altered in the direction specified, yet the above generally received idea as to how it is done, is an erroneous one, although to the eye following the apparent motion of the ship, it has all the authority of a self-evident truth. Now in the above position of a vessel at anchor, the helm is put down, consequently the blade of the rudder coming upon the weather side, the tide runs against it and pushes the stern away to leeward, and will continue to do so until the fore part of the ship breaks the effect of the current upon the rudder, when everything else being equal, the vessel romains in that position. Now having shewn how the rudder acts, it will be seen, that as the stern goes over to leeward, her lee bow presents itself to the tide and consequently the ship turns herself as upon a pivot, the wind and helm acting upon the weather quarter and the tide upon the lee bow, all therefore acting so that the chain may be kept taut.
265. Wind abeam. - The 'shear should be to leeward, headyards pointed to the wind and after yards laid aback; this will lail her free from her anchor at slack water.
266. Wind on the bow.-The whole of the yards should be pointed to the wind, and a shear given to windward to ease the chain.
267. Riding windrode.-This is when the wind is stronger than the tide and is very a ticklish position. First see upon which side the chain grows; say for instance that the chain grows away down upon the port quarter, then the after yards should be braced up by the port braces, head yards spuare, and, if possible, set the spanker, so that by pressing her quarter to leeward the tide may strike on the port bow. If when the yards are braced in this manner, the vessel should slew broadside on, there will be no danger of her fouling her anchor; should she slew with her head to port, the head yards can be braced aback, and if with her head
to starboard, the foreyard can be filled and a staysail run up if necessary, so that she may be kept clear from her anchor.

ACCIDENTS.

268. Weather brace and parrel of maintopgallant yard carried away. - While a vessel is by the wind, the parrel of the maintopgallant yard is carried away, and with the surge forward, it snaps the weather brace. Now it must be borne in mind, that the weather brace and the lee sheet command a square sail, and so having lost one of these, we must turn our attention to the other. Let go the lee brace and start the lee sheet, which will cause the weather yard arm to fly in aft. Stand by to lower the yard as the sail comes aback, hauling in the weather clewline as the yard comes down. When the yard is down on the lift, have a hand aloft to pass a small lashing round the tye and the mast, so that the yard may be secured to the latter. Now get a preventer brace on the weather yard arm,] making a bowline knot round the weather topgallant lift at twe masthead and letting it slip down to the yard arm, throw the other end on deck, outside all, and leading it aft, steady taut.
269. Parrel carried away while rumning.-Brace the yard bye and lower it, keeping the ship with the wind on the quarter, so as to shiver the sail and bring the yard to the mast. Hands must now be sent aloft to secure the yard to the mast while the sail is shivering.

270 . Parrel of the maintopsail yard carried nway.-Suppose it an old fashioned topsail, and to be donble reefed, for it is more likely to be carried away so than when mastheaded, the parrel being then to a great extent relieved by the tye. First haul up the clews of the mainsail ; round in on the weather main brace and thereby throw the sail to the mast. Get the mast in the rolling chocks of the yard, steady taut the weather malntopsail brace and fit a temporary parrel.
271. Truss of the lower yard earried away.-Get a couple of good sized top blocks, whose swallow is sufficiently large to take it small hawser; lash them to the lowermast just above the truss band. Reeve the ends of the hawser throngh them, take the port end over to the starboard side and make it fast to the yard outside the truss band ; in a similar way, take the starboard end over and secure it to the port side of the yard; the bight of the hawser leads down on deck abaft the mast. Now to each of its parts clap on a good luff tackle and hand taut. In bracing up the yard it will be necessary to slack the lee tackle, so that the weather quarter of the yard may be allowed to go forward.
272. Lanyards of rigging carred away.-These will of course be on the weather side, therefore, down with the helm and bring the.vessel upon the other tack. If circumstances will not allow this, or if sailing with the wind large, up helm and thus bring the wind upon the opposite side; now re əve new lanyards and set up afresh.
273. Bobstays carried away.-This usually occurs when the vessel is being driven against a head sea. Upon the supposition that there is plenty of sea room, together with favorable weather, take in the after fore and aft canvass, up helm, and run the vessel before the wind, after which the bowsprit may be secured by one of the following methods.
(a). If there is plenty of steeve in the spar and the hawsepipes are well down, get the end of a stream chain out through the hawsepipe and make it fast round the bowsprit end; take the other end of the chain out through the hawsepipe and secure it also to the bowsprit; now take the inboard parts of the chain to the windlass, first settling in the slack of each separately so that they shall bear an equal strain, heave round and set them both up tant.
(b). If the bowsprit has but little steeve and the hawsepipes are well up, get the ends of the chain out through the hawsepipes and secured to the bowsprit as described in (a), now have a martingale rigged under the bowsprit, clove hitch the chain round its lower end and heave tant.
(c). Get a good strong tackle and lash its fall part under the onter end of the bowsprit. Pass out the end of a stream chain through the bow pipe, take it round the bows outside all and pass it inboard again through the opposite pipe; this chain will be used as bridle. Take another piece of chain which is just abont long enough to reach from the head rail to the fore foot, and to one of its ends hook on the lower block of the tackle which is secured to the bowsprit, then shackle the other end on to the chain bridle where it crosses the middle of the cutwater. Now let the bridle slip, and when it falls moler the fore foot, hanl it taut and well secure it, then clip on to the tackle and set up the new bobstay. In this mamer a long stay will be obtained, which, reaching from the bowsprit end to the fore foot, will prove a sufficient support for any spar. Should the bobstays carry away while beating out of harbor, it would be advisable to run back again and repair damages.
274. Bowsprit sprung.-Fish it with smal! spars and chain lashings, wedging off the lashing after it has been hove in well tant.

275 . Bowsprit carricd away.-The first immediate necessity is to secure the foremast. Take m the after fore and aft canvass, check the lee fore braces, square the mainyard and get the vessel
before the wind. Get tackles from the foremast head and hook them to strops toggled through the hawsepipes, or should they be plugged, get a large strop round the fore part of the cutwater.and bring the other part up between the knightheads; having the tackles hooked, set them well taut. The bowsprit being of course alongside, get hold of the topmast stays and unreeve them from the bees; get tackles on them and hook the tackles to the strop which is made fast round the cutwater, and having set them up, the topmast will be secured. The next thing to be done is to get the wreck hung up alongside. First get hold of both parts of the jib stay, lash them together, and with the strop so formed and a tackle from the masthead, hoist up the jibboom. This being secured, try to get the bigh: of a hawser round the bowsprit end, form a bowline knot in it, and let it run down and jam on the bowsprit; take the hawser away forward, place it in the warping chock and from thence to the windlass; now heave away until the spar is lifted out of the water, when the bobstays, bowsprit shrouds, etc., can be cast off. All the gear being detached, try to drive off the lower cap and save the jibboom, so that it may be used for a jury bowsprit. When this is done, reeve the jibboom in the vacant place, securing the heel in the bowsprit bed, and fit with a gammoning, bobstay and bowsprit shrouds. The fore and foretopmast stays will have to be set up to a strop fitted round the cutwater and in between the knightheads. If additional strength is required to the temporary bowsprit, another sparcan be lashed to it with chains.
276. Lower trestletrees sprung.-Secure the heel of the topmast by passing turns of chain through the sheave hole in the topmast heef and up over the cap. When sufficiont turns have been taken, frap all together.

277 . Cap or Mast-tenon decayed.-When from any cause the cap becomes insecure, a spanish cap should be made. This consists of a number of turns of chain passed round both masts, just under the cap; frap them together between the doublings of the mast and wedge them off if necessary. This is also applicable to a bowsprit cap.
278. Lower masthead sprung, - A large spar should be lashed up and down on the aft side of the mast, well securing it with chain lashings and wedges.
279. Lower yard sprung.-Fish it by lashing small spars with chain to the yard, wedging the lashing off well. If the defect is at the yardarm, a preventer lift should be fitted to the yard.
280. Topmast carried away.-Say it is a foretopmast and the vessel is by the wind. Up with the helm and square the mainyard; so that the wreck may be brought to the weather side. As the wind comes on the opposite side brace up the mainyard, er.and g the course from e strop em up, to get of the and a being it end, on the rarping y until owsprit ed, try may be ibboom , and fit ore and und the trength lashed
of the e in the ns have
cause e. This h masts, lings of plicable
puld be uring it

1 spars If the d to the tare the her side. inyard,
and so let the vessel lay abox, the fore yard not being in a position to be swung, in consequence of the wreck which is hanging on to the fore side of it. Send a large topblock and a small hawser in the top; lash the block to the lowermast head, and when rove, overhaul the hawser down on the fore side of the fore sail and bend it on to the middle of the topsail yard; unparrei the yard and send it down across the forecastle. Now bend on the hawser to the upper part of the topmast and raise it enough to slacken the topmast rigging; send a second line down on the fore side of the sail, reeve it in the sheave hole in the heel of the topgallant mast, steady it taut, coure up the topgallant rigging, free the topgallant mast of the topmast crosstrees and lower them on deck. Raise the wrecked topmast high enough to permit the crosstrees, rigging, backstays, etc., to be taken off the masthead, and they had better be hoisted into the top and placed over the cap, really ior going on end again. Now if no spare topmast is to hand, cut a fid hole in the upper half (masthead half) of the broken spar, send it on end and rig it. Take kinks in the rigging and backstays, securing each kink with two lashings. Set up the gear, send the topsail yard aloft with the sail bent on, take two reefs in the latter and set it, for half a loaf is hetter than no bread. The topgallant mast may be sent on end and the topgallant sail set. If the jib is found to be too long in the leech, use a long tack lashing, which will remedy as much of the defeet as is possible.

RUDDER DAMAGED OR LOST.

281. Steering by sails.-If it should be desirable to steer a vessel on a wind by her sails, brace the fore yard sharp up and let the after yards be checked in about a phint and a half. It will then be seen that as the vessel comes up to the wind, the after canvass will be on the shake, and the ship having nothing but her head sail upon her, will naturally fall off until she is met by the after canvass, which will check and bring her to the wind.
282. Rudder stock carried awity. - If this is carried away above the woodlock so that the lower part of the rudder is left in place, get a lanyard rope middled and clovehitched to the crown of a kedge, whose stock must be unshipped. Bend a hawser to the ring of the kedge and another to its fluke, and lead the hawsers away forward one on each side of the ship. By the rope at its crown, lower the kedge over the stern until it is halfway: down the remaining portion of the rudder, then haul forward on the fore guys or hawsers, until the after end of the rudder is hooked fast by the fluke of the anchor. Upon each side of the vessel forward, rig out a spar, having the block of a tackle lashed on
to it, the other block of each tackle is then made fast to the fore end of the guy which is upon its own side of the ship, and by getting leading blocks, the falls of the tackles may be brought to the barr 3 of the wheel, and the vessel steered by their means wi:h very little trouble.
283. Temporary steering apparatus.-With the ruddergone, no matter how it occurs, some plan must be adopted whereby the vessel can be steered. Collect the following articles :-an empty water cask, a pair of chein water cask slings, a spar of sufficient length that when laid from rail to rail it will project well over on both sides, and a couple of topblocks. Lash one of the topblocks to each end of the spar and place it across the rail, a little on the fure side of the wheel, securing it there, and having guys leading forward from its ends, of necessary. Sling the water cask with the chain slings, placing them over each end and racking the rings to the standing part, now frap or snake them together. Bend on the hawser to the ring of the water cask slings, get the cask over the stern, ond pay out about twenty fathoms on the hawser. Get about sixty fathoms of lanyard rope, pass turns of it round the barrel of the wheel taking care to leave equal ends, each of which is then rove through one of the blocks at the end of the spar. Make both ends fast to the hawser, which latter is then paid ont until both parts of the lanyard rope are nearly taut. Make the hawser fasi amidships, and this apparatus, which can be rigged in an hour is ready for service.
284. Making aJury Rudder.-Look up the following materials :- a spare topmast, a quantity of small chain, some stuff for bolting, and several short lengths of a stout spar with which to form the body of the rudder. Ascertain the length of the rudder stock by running a small spar down the rudder trunk until it comes upon one of the drift figures upon the sternpost ; mark the spar where it comes level with the rail and add this length to the draft of water measured from, and this will give the length of stocl: required. Cut two holes in the rudder stock, one abont three feet from the heel and the other at what will be about flive feet down fiom the lower edge of the rudder trunk. Now, make and holt the frame together, plank up the sides, leaving space at the heel in which to place the ballast. Reeve the chains through the two mortice holes in the rudder stock, and take the heel chains forward, outside of all, to the fore side of the main channels, and those at the upper part of the stock in through the mizen chains, in both cases bringing the port chain to the starboard side of the vessel and vice versa. Get a rope down through the rudder trunk, and after bringing it aboard again over the stern, make it fast to the rndder head. If it should bo a matter of doubt, whether the bailast will be sufficient to sink the rudder when thrown overboard, drive a staple or a timber doginto each side of the heel of the rudder, resve the end of a lanyard rope
through each, and afterwards make the ends fast to the rudder head ; to the bight of this rope sling a kedge, crown up, and have a good rope bent on to its ring which (leaving a good slack) is to be taken forward. Launch the rudder over to windward and haul in on the head rope and lee heel chain, until the head of the rudder is got into the rudder trunk; directly it is entered, clap on to all the chains and get the rudder up and down. When this has been got into its place, cast off one of the ends of the lanyard holding the kedge, which immediately frees itseif and swings away forward and is taken aboard; unreeve the lanyard rope. Although the rudder is now in its place, it will be necessary to rig a purchase to prevent it from jumping up; this can be done hy placing a plan' or spar right over the rudder head, securing it to the rail at both sides. Ship a tiller in the fid hole, reeve the wheel ropes and take them to the barrel of the wheel.

VESSEL ASHORE-CARRYING OUT AN ANCHOR.

285. Yessel broadside on.--Suppose a vessel in stays has touched upon a sandbank and is now broadside on, it thus becomes necessary to get an anchor out by which to warp her off. First thing, get all the yards pointed to the wind, haul up the courses, let go the topgallant halliards and run down the jibs. Have the largest boat taken to the lee side of the ship, and lower into her the stream anchor and hawser, together with a buoyrope and buoy for the anchor. Run away with the boat right to windward, drop the anchor and bring the hawser back to the vessel's lee bow, pass the end aboard and com sence to heave the ship off. When her head begins to cant towards the anchor, assist her if possible with the foretopsail. Having hove the vessel off to her anchor, drop the hower and heave up the stream auchor. Doubtless it will be necessary to have another fleet of hatwser, hefore the vessel is in a safe position.
286. Vessel stem on. - It now becomes necessary to carry out the bower anchor and say ninety fathoms of chain; now, first, let it be supposed there is no boat aboard large enough for the work. Run away the kedge with a guesswarp. Hang the anchor to the cathead, crown up. Get two boats alongside, and lay a couple of good stout spars right across the gunwales of the two boats, one forward and the ohher aft; now, leaving a good snace between the two boats, lash the spars to the thwarts. Get the boats under the cathead, lower the anchor down so that the steck comes betwean the boats, and secure the ring to the after spar; now lower away nntil the crown of the anchor is to hand, when it is to be lashed to the foremast spar. Trake in as much chain as the boats will carry, then unshackle, hanl out by the guesswarp and drop the anchor. As the boats are being brought back to the ship, pay out the chatn as far as it will go, buoying
the end to the smaller of the two boats; now cast off the spars connecting the boats, and send the larger one back for the remainder of the chain, or as much as she can carry. Proceed in this manner until the whole of the chain required is paid ont. But if there is a boat large enough to carry the anchor out by herself, then sling it to the bont's stern, crown up; pass the chain away forwara under the hoat's bottom and secure the bight. Now stow as much chain in her bows as the boat will carry, haul her out by the guesswarp mutil in the pasition selected for dropping the anchor, when the boat is to be slewed round, stern on, and the anchor dropped. The chain in the boat is to he paid out and the end buoyed by a small boat, while the large boat returns for more chain, as heiore described. When enough chain has been paid out, take the end in through the stern pipes, elap strong purckeses upon it and heave away. When the vessel is hove oif to her anchor, let her swing round to the kedge and fleet the chain cable forward to the hawsepipe; the anchor can then be hove up if necessary.

MAKING A RAFI,

287. If it becomes necessary to desert a vessel alter having lost all the boats, a raft may be rigged, whica if securely lashed logether, wonld allow a crew to spend time enough upon it to enable them to make some corsidorable distance. Get three topmast studdingsail boo:as, or any other such spars, square their heels and lash their other ends rathe: loosely together, nailing er spiking the turns when passed, so that they cannot possibiy come annift. Now stand tl: spars upon their heels and open them out as far as the head lashing will allow, so as to make a tripod or three leggel stand. Lash a spar, low down, from leg to leg on each side. Now starting parallel with any one of these spars, lash some others to the remasing two; they in ist be placed wide enough apart to allow athont one-third of the bilge of a puncheon to lay hetween them; there ought to be room enough in the longest space to admit three puncheons' end on to one another, there would then be ;ace in the middle compartment for two purcheons and one in the next. Having placed the pancheons in their places, bung up, iash short spars over them to prevent their heing washed ont, and if planking is at hand a temporary deek may be laid over this; a few lines passed round above this lor bilworks, would make things sefer. The centre pmeheon of the thae in the flist tier may be fllled with fresh water, so that the misery of thist may be provided against for some time. A atil can casily he rigged, and hy having a rowlock over the three cask tier, in the after part of the raft, it can be stecred very reatily by in oar. roceed iid ont. out by chain bight. carry, elected round, is to be e large enough 0 stern nen the kedge anchor

RULE OF THE ROAD.

VESSELS LIGHTS.

288. Sailing Vessels carry a Red light upon the port side, and a Green light upon the starboard side; each light is visible ten points round the horizon, that is, from right ahead to two points abaft the beam, and in clear weather should be seen when about two miles off. As small vessels in bad weather cannot always carry these lights in their proper places, they are allowed to keep them on deck, on their respective sides, ready for instant use.

289 Steam Vessels have in addition to the ahove lights, a Bright mast-head light, visible twenty points round the horizon, that is, through the whole range of the side lights, and if clear, it should be seen about five miles distant.
990. Steam Vessels when towing other ships have two bright mast-head lights, instead of one; they are carried vertically.
291. Steam Vessels under sall only are to be considered as sailing vessels.
292. Steam Vessels laying Telegrophic cables carry two nen lights, not less than three feet apart, upon their foremast head while by day they shew two black balls similarly placed.

29:3. Fishing Vessels and open bonts if they do not carry the ordinary lights of a sailing vessel, must have a lantern with a green slide on the one side and a red one upon the other, so that upoutho approach of other vessels, they may be enabled to shew the light proper to the side nion which the vessel is approaching. Fishing Vessels laying to their nets must exhibit a munar masthead light, and if they consider it advisible, they may also use a Flare-up ir addition. On the French coast, Fishing Vessels laying to their nets must use wwo muner mast-head lights, not less than three feet apart.
294. Pilot Vessels will only carry a mught light at the masthead, visible all round the horizon; but they will also be redutred to exhibit a flare-up light every fifteen mimutes.
295. Vensels at anchor shall exhibit where best sern, lint not exceeding twenty feet from tho deck, on monnt light visible all romme the horizon.
2968. A Vessel's movements as shown by her Hights.-(it) If the two lights of 11 sailing vessel, of lioe three ligliti if a steam vessel, are vishlh, such vessel is bearing down upon you end on.
(b) If the Net light of a ressel is seen upon the l'ort bow, she is
passing you to port; but if it is seen upon the Starboard bow, she is crossiny you to port.
(c) If the Green light of a vessel is seen upon the Starboard bow, she is passing you to starboard; but if it is seen upon your Port bow, she is crossing you to starboard.

FOG SIGNALS.

Sailing vessels shall use a fog-horn when under weigh, otherwise, a bell.

Steam vessels shall use a steam whistle when under steam. The whistle must be placed before the funnel, not less than eight feet from the deck. If she is under sail only, the same rule applies as if she were a sailing vessel. These signals must be made not less than every five minutes.

PILOTAGE SIGNALS.

299. Vessels requiring a Plot will in the day-time hoist at the fore, the Jack or other National Color usually worn by Merchant Ships, having round it a white border one fifth of the breadth of the flag, or they will hoist the Commercial Code Signal P 'T. At night a blue light every fifteen minutes, or a bright white light flashed or shewn at short or frequent intervals, just above the bulwarks for aboat a minate at a time.

DISTRESS SIGNALS.

300. In the Day-time the following signals numbered 1, 2 and 3 , when used or displayed together or separately shall be deemed to be signals of distress in the day-time :
301. A Gun fired at intervals of about a minute.
302. The Commercial Code Signal of distress indicated by NG.
303. The Distant Signal, consisting of a square flag, having either above or below it, a ball or anything resembling a ball. (The Ensign, Union down, has been advisedly omitted, because many foreign flags are the same whether right side or wrong side up; and because it is hoped that all these proposed signals may beromse international.)
304. At Nigiat the following siguals, numbered $1,2,3$ and 4 , when used or displayed togecher, or separately, shall be deemed to be signals of distress at night:-
305. A Gun fired at intervals of abour a minute.
306. Flames on the ship (as from a burning tax barroi, oil barrel \&c.)
? Rockets of any color or ciecerintion, Ared on no aime al intervals of abous five minutus

3 and 4. b deemed
4. Blue lights burned one at a time, at intervals of about five mínntes.

30\%, THE ARTICLES OF THE MERCHANT SHIPPING ACT, GIVING THE STEEERING AND SARLJNG IRULES.

Art. 11. If two Sailing Ships are meeting End on Two Sailing or nearly End * on so as to involve Risk of Collision, *hips meoting. the Helms of both shall be put to Port, so that each may pass on the Port Side of the other.

Art. 12. When two Sailing Ships are crossing so Two saiiing as to involve Risk of Collision, then, if they have Ships orossing. the Wind on different Sides, the Ship with the Wind on the Port Side shall keep out of the Way of the Ship with the Wind on the Starboard Side ; except in the Case in which the Ship with the Wind on the Port Side is close hauled and the other Ship free, in which Case the latter Ship shall keep out of the Way; but if they have the Wind on the same Side, or if One of them has the Wind aft, the Ship which is to windward shall keep out of the Way of the Ship which is to leeward.

Art. 13. If Two Ships under Steam are meeting Two Ships Eud on or nearly End on so as to involve Risk of nader stoan Collision, the Helms of both shall be put to Port, so that each may pass on the Port Side of the other.

Art. 14. If Two Ships under Steam are crossing so Two Ships as to involve Risk of Collision, the Ship which has $\begin{gathered}\text { ninder Steam } \\ \text { aromsing }\end{gathered}$ the other on her own Starboard Side shall keep out of the Way of the other.

Art. 15. If Two Ships, one of which is a Sailing saining ship Ship, and the other a Steam Ship, are proceeding in And Ship nuder such Directions as to involve Risk of Collision, the Steam Ship shall keep out of the Way of the Sailing Ship.

[^11]Ships under Steam to slacken Speed.

Art. 16. Every Steam Ship, when approaching another Ship so as to involve Risk of Collision, shall slacken her Speed, or, if necessary, stop and reverse ; and every Steam Ship shall, when in a Fog, go at a moderate speed.

Vessels overtaking other Veseels.

Construotion of Articles $12,14,15$, and 17.

Proviso to save specíal Cases.

Art. 17. Every Vessel overtaking any other Vessel shall keep out of the Way of the said last-rrentioned Vessel.

Art. 18. Where by the above Rules One of Two Ships is to keep out of the Way, the other shall keep her Course, subject to the Qualifications contained in the following Article.

Art. 19. In obeying and construing these Rules, due regard must be had to all Dangers of Navigation ; and due regard must also be had to any special Circumstances which may exist in any particular Case, rendering a Departure from the above Rules necessary in order to avoid immediate Danger.

Noshiv, undor Art. 20. Nothing in these Rules shall exonerate any Ciroumstanees. to negleot proper Precautions.

Art. 13. Si deux navires sous vapeur se rencontrent courant l'un sur l'autre, directement ou ì-penprès, et qu'il y ait risore d'abordage, tous deux viennent sur tribord, pour passer à bâbord l'un de l'antre.

Art.14. Si deux navires sous vapeur font des routes qui se croisent et les exposent à s'aborder, celui qui voit l'autre par tribord manœuvie de manière à ne pas gèner la route de ce navire.

Art. 15. Si deux navires, l'un à voiles, l'autre sous vapeur, font des routes qui les exposent à s'aborder, le navire sous vapeur mancuvre de manière à ne pas gêner la route du navire à volles.

Art. 16. Tout navire sous vapeur, qui approche un autre navire de manière qu'il y ait risque d'abordage, doit diminuer sa vitesse ou stopper et marcher en arrière, s'il est nécessaire. Tout navire sous vapeur doit, en temps de brume, avoir une vitesse modérée.

Art. 17. 'Tout navire qui en dépasse un autre gouverne de maniere à ne pas gêner la route de ce navire.

Art. 18. Lorsque, par suite des règles qui précèdent, l'un des deux bâtiments doit manœuvrer de manière à ne pas gèner l'autre, celui-ci doit néanmoins subordonner sa mancuvre aux règles énoncées à l'article suivant.

Art. 19. En se conformant aux règles qui précèdent, les navires doivent tenir compte de tons les dangers de la navigation. Ils auront égard aux circonstances particulières qui peuvent rendre nécessaire une dérogation á ces règles, afin de parer à un péril immédiat.

Art. 20. Rien dans les règles ci-dessus ne saturait athranchir un navire, quel qu'il soit, ses armateurs. son capitaine ou son exquipage, des conséquences d'une omission do porter des feux ou signaux, d'un defaut de surveillance convenable, on, eninn, d'unr négligence quelconque des précantions commandées par la protique ordinaire de ia navigatiou ou par les fircoustances particulieres de la situation.

REMARKS UPON THE STEERING AND SAILING RULES

303. As detailed in (296) the position and color of the light seen, shews, not only whether the vessel to which it belongs is passing or crossing you, but it also points out the s de upon which she will pass in the one case, or towards which she will cross your bows in the other. Knowing this then, it ought to be a very simple matter for you to determine what course to adopt to avoid danger. But a very erroneons idea has unfortunately become prevalent among seamen, which is, that in all cases, where a green light is seen the helm must be put to starboard, or to port for a red light. Now this generalisation of the rule is only half true. for while the way in which the helm is to be put, if altered at all, is right, the "in all cases" is decidedly wrong, as it will be endeavored to make evident. In the practical comprehension of the rule of the road, the main fact to be borne in mind is, that the rute of the road at night is exactly the same as it is by day; but as in the day a vessel's conrse is at once manifest, at night, it is very often otherwise, and consequently lights are borne, which while they give notice of the approach of the vessel, also indicate, as above laid down, the direction in which she is approaching. This being understood, then, if two vessels are crossing one another, the one will see a red and the other a green light; it is plain, that if the one which sees a red light ports, while the other starboards because he sees a green one, that a collision is almost inevitable; while on the contrary, if they had governed themselves by the rule of the road, and ome liad stood on, while the other put her heln so as to keep clear, an accident would have been impossible. A few examples will be given of the leading cases of vessels
ceting under risk of collision, which while shewing what onght to be done to avoid danger, has also (except in the first example) snecial reference to exposing the error of always putting the helm arcording to the light seen.

Ex. 1. In Plate V Fig. I is given an illustration of two vessels neeting rad on; here the vessels are in full view of both each others lights, and according to Article 11 the helms of both are put to port, and they go clear of one auother as shewn by the dothed ships.

Ex. 2. In the position given in plate V Fig. 2 it will be seen that. A sees a green light upon her port bow
B sees a red light upon her starboard bow
both alter their helms :-
$\left.\begin{array}{l}\text { A stimboards } \\ \text { B ports }\end{array}\right\}$ and collide.
Buth ressels being closehanled, as A is upon the starboard tack she keeps her course (Article 12) and B purts.

Ex. 3. In Fig. 3.
A sees a red light nцou the starboard bow
B sees a green light upon the port bow

Rule of the Road.
Examples.
plate v.

OLES
le light longs is e upon he will it to be o adopt unately 1 cases, sard, or is only at, if alsit will hension is, that ; but as is very h while sate, as g. This her, the at if the because ; while he rule put her possible. vessels ought ample)
te helm
vessels th each ooh are by the
en that.
aboard

both vessels shift their helms :-
$\left.\begin{array}{l}\text { A ports } \\ \mathbf{B} \text { starboards }\end{array}\right\}$ and collide.
There is no difficulty here, A is on the starboard tack and morder all circumstances would stand on; B is free and starboards.

Ex. 4. In Fig. 4.
A sees a red light upon the starboard bow
B sees a green light upon the port bow
both vessels alter their course.
$\left.\begin{array}{l}\text { A ports } \\ B \text { starboards }\end{array}\right\}$ and collide.
This is a case which requires some consideration; B is upon the port tack and consequently if the approaching vessel is close hauled, B has to give way, but, on the other hand, if A is going free, as in Fig. 4, B stands on and A gets out of the way. Now upon an examination of Figs. 4 and 5 it is seen, that as long as B sees \mathbf{A} upon his weather bow, A is going free and consequently the responsibility of keeping out of collision rests with the latter. If however \mathbf{A} is seen at A_{1} she is right ahead and both vessels port; if she is to the southward of A_{2} then she appears upon B 's lee bow, and consequently although A will not be closehauled until in the position of $\mathbf{A} 2$ yet \mathbf{B} must be all ready to starboard if A stands on and gets broader upon her lee bow.
304. In the case of a steamer crossing a sailing vessel with risk of collision, as the steamer is supposed to have a fair wind she gets out of the way of the sailing vessel, which latter keeps her course. When two steamers are crossing one another. then as it is only the one which sees the other upon her own starboard side that moves (Article 14); it follows, that under such circumstances, the steamer which sees a red light upon her starboard side, ports her helm, the other not seeing a red light, keeping her course.

HEADS OF EXAMINATION

In Regutations respecting Lights and Fog Signals and in the Stecring and Sailing Rules.

1.- What light or lights are requred by the reguations to br exhibued hy sailing vessels at anchor in a roadstead or fairway ?
A.-..ne light only, viz, a white light.
2.- What light or lighis are required by the regulations to bre exhibited by steam ships in a roadstead or fairway at anchor.
A.--The same as for sailing ressels.

IMAGE EVALUATION

 TEST TARGET (MTT-3)

Photographic

3.-Where is the anchor light to be exhibited ?
A. Where it can best be seen. It must of course be placed where there is the least possible chaice of obstruction from spars, ropes, \&c., \&c.
4.-T'o what height may the anchor light be hoisted ?
A.-It may be exhibited at a heigho of 20 feet above the deck, but not higher.
j.-What is the description of the lantern containing the anchor light required by the regulations ?
A.-Globular.
6.-In what direction or directions must the ancher light show?
A.-It must show a clear, uniform, and unbroken light, visible ali round the horizon.
7.-At what distance must; it be visible ?
A.-At least one mile.

8 -What is the number of lights required by the regulation to be carried by sailing ships when under weigh at night?
A.-Two.
9.--Or what colour are these lights, and how are they to be placed on board the ship?
A.-A green light on the starboaru side, and a red light on the port side.
10.-What description of light must be shown from the sides of sailing vessels under weigh ; and over how many points of the compass, and in what dire ctions, a.dl how far, are they required to show?
A.-Each light mast be so constructed as to show an uniform and unbroken light over an are of the horizon of 10 points of the compass; sof fixed as to throw the light from right ahead to two points abaft the beam on the starboard and port sides respectively; and of such n, character as to be visible on a dark night, with a clear atmosphere, at a distance of at least two miles.
11.-What lights are they to carry when being towed at night?
A.-The same.
12. - Are the side lights required to be fitted with screens; and if so, on what side, and of what length, and how?
A.-Yes, on the inboard side ; at least three feet in Iongth, measuring forward from the light. They are to be so fitted as to prevent the colonred lights. from being seen across the bows.
13.-What is the number of lights required by the regulations to be carried by steam ships when moder stean at night?
A.-Three lights.

> Rule of the Road.
14.-Of what colour are these lights, and how are they to be placed on board the ship?
A.-White at the fore-mast head, green on the starboard side, and red on the fort side.
15.-Over how many points of the compass, in what direction, and how far, is the fore mast-head light of a steamer required to show?
A.-Over 20 points, viz., from right ahead to two points abaft the beam on both sides. It must be of such a charactir as to be visible on a dark night, with a clear atmosphere, at a distance of at least flve miles.
16.-Are they required to be fitted with screens; and if so, on which side, and of what length ?
A.-The green and red lights are to be fitted with screens on the inboard side, extending at least three feet forward from the light, as in the case of sailing vessels.
17.-Over how many points of the compass, in what directions, and how far, are the coloured side lights of steamers required to show?
A. - Each light must be so constructed as to show an uniform and unbroken light over an arc of the horizon or 10 points of the compass, so flxed as to throw the light from right ahead to two points ahaft the beam on the siarboard and port sides respectively, and of such a character as to be visible on a dark night with a clear atmosphere at a distance of at least two miles.
18.-What description of lights are steamers required by the regulations to carry when they are not under steam, but muder sail only?
A.-Side lights only, the same as sailing vessels.
19.-What exceptional lights are to be carried by small sailing vessels in certain cases?
A.-Whenever, as in the case of small vessels during bad weather, the green and red lights cannot be fixed, these lights shall be kept ou deck, on their respective sides of the vessel, ready for instant exhibit'on, and shall, on the approach of or to other vesvels, be exhibite? on their respective sides in sifflcient time to prevent collision, in such matiner as to make them most visible, and so that the green light shall not be seem on the port side, nor the red light on the starboard side.

To make the use of these portable lights more certain and easy, the lanterns containing them shall each be paiated outside with the colour of the light they respectively contain, and whall be provided with suitable screens.
21.-What description of light are sailing pilot vessels required to carry ?
A.-Sailing pilot vessels are not to carry coloured side lights, but a white light like an anchor light, and to burn a flare up every 15 minutes.
22.-What lights are open boats and fishing boats required to carry?
A.-Open fishing boats an other open boats shall not be required to carry the side lights required for other vessels; but shall, if they do not carry such lights, carry a lantern having a green slide on the one side and a red slide on the other side; and on the approach of or to other vessels, such lantern shall be exhibited in sufficient time to prevent collision, so that the green light shall not be seen on the port side, nor the red light on the starboard side.

Fishing vessels and open boats when at anchor, or attached to their nets and stationary, shall exhibit a bright white light.
23.-May open boats use a flare up?
A.-Yes, if considered expedient.
24.-Is the flare up to be shown by open boats instead of or in addition to the lantern with the coloured slides ?

A-The flare up must be in addition to the lantern with the -two coloured slides.
Q.i.- What lights are steam ships required to arry when towing; other ships?
A.-Stean ships, when towing other ships, shall carry two bright white mast-head lights vertically, in addition to their side lights, so as to distinguish them from other steam ships. Each of these mast-head tights shall be of the same construction and character as the mast-head lights which other steam ships are required to carry.
26.-Are sailing vessels required to use any wignals when al anchor or when sailing in thek weather or in a log; and if so, what are they?
A.-. Yes; a fog horn and a bell.
27.-When is each sort of signal to be used?
A.-The fog horn is to be sonnded when under weigh in a fog, and the bell when in a fog and not under weigh.
28.-How often are the fog siguals of sailing vessels to be: sounded?
A.-As often as necessary, but every five minutes at least.
29.-Are steam ships reguired to use any signals in a fog or in thick weather; and if son whe wey are up
A.-Yes, a steam whistle and a bell.
30.-When is each signal to be used ?
A.-The steam whistle to be sounded when under weigh, and the bell when not under weigh.
31.-How often are the fog signals of steamers to be sounded ?
A.-As often as necessary, but every five minutes at least.
32.-At what height above the deck is the steam whistle to be placed ; and where?
A.-Not less than eight feet above the deck. Before the fummel.
33.-What other precaution is to be observed by steamers. when steaming in a fog?
A. - The regulations require that steam ships in a fog shall go at a moderate speed.
34.- What precaution is to be taken by steamers approaching another yessel?

A -If there is risk of collision, the sieamer is to slacken speed, or if necessary stop and reverse.
35.-If you see a white light alone, what does it denote as regards the ship carrying it?
A.-It denotes the presence of a vessel at anchor, or a pilot vessel, or a fishing vessel attached to her nets; or it may be the foremast-head light of a vessel, under steam, with her side lights not within sight on account of distance, fog, \&c.
36.- If you see a green or a red light without a white-light, or both a green and a red light without a white light, is the vessel carrying the lirht or lights seen, a vessel under steam or a vessel under sail?
A.- A vessel mucer sail.
37.-How do you know?
A.-Because there is no white light at the foremast-head.
38.-If yo: see a white light over a coloured light, is the vessel a ressel under saib or a vessel under steam?
A. $-\boldsymbol{A}$ vessel under steam. The mast-head hight denotes that the vessel is under steam.
[The Examiner will then take one model of 3 vessel, which he will place on the table, and call it $A, H e$ will then take the mast or stand with a whito and a red bali on it, and place it at the other end of the table, and call it B.
The Examiner should be careful that the moitel of one vessel only is used when the questions numbered 39 to 49 aro asked.]
39.- A is a steamer going north, seeing a white light and a red light ahead at B. Are A and the vessel showing the lwo
lights B meetirig end on or nearly end on, or is B passing A, or is B crossing the path of A, and in what direction; and how do you know?
A.-Passing to port, because if I see a red light ahead I know that the head of the vessel carrying that red light must be pointing away in some direction to my own port or left hand. The ships showing the red light has her port or left side more or less open open to A.
40.-If A is going nor'h, within what points of the compass must the vessel B showing the white and red lights be steering?
A.-B must be going from a little W. of S. to W. N. W.
41.-How do you know this?
A.-Because, the screans being properly fitted, I could not see the red light of \mathbf{B} at ali with the vessel's head in any other direction.
42.-Is the steamer A to starboard, or to port, or to keep on?
A.-To do neither suddenly, but, if anything, to port a hutle.
43.-Why?
A.-To bring the red light of \mathbf{A} to the red light of the stranger B.
[The Examiner skould then explain that if the steamer A starboards she will run across the path of the vessel carrjing the lights B, because the vessel showing the red light must be passing to port.]
['The Examiner should now substitute the mast with the white ball end green ball for the mast with the white ball and red ball. One ship only is still to be used.]
44.-A is a steamer going north, and seeing a white and green light ahead. Are A and B meeting, or is B passing A, or is B crossing the course of A, and in what direction ; and how do you know?
A.-B is passing to starboard of Λ, because if I see a green light ahead I know that the head of the vessel carrying that green light must be pointing away in some direction to my starboard or right hand. The ship showing the green light has her right or starboard side mure or less open to me.
45.-As A is going north, within what points of the compass must the vessel showing the white and green lights be steering?
A. -B must be going from a little E. of South to E. N.E.
46.-How do you know?
A.-Because, the screens being properly fltted, I cannot see thr green light at all with the ressel's head in any wher direction.
47.-Is the steamer A to starboard, or to port?
A.-To do neither suddenly, but, if necessary, to starboard.
48.-And why?
A.-To show her green light to the stranger's green light. There can be no danger of collision when the green of one vessel is opposed to the green light of another:
49.-What would be the result if you ported to a green light ahead?
A.-I should probably run right across the path of the vessel carr: ing the green light.
[The examiner fhould then explain that A must not port, because as the vessel showing the white and green lights B must be passing to starboard, \mathbf{A} would run across the path of B by porting.]
[The examiner should now place the models of two steamers on the table meeting end on. One he should call A, and the other B.]
j0.-If a steamer A sees the threc lights of another steamer B ahead or nearly ahead, are the two steamers meeting, passing, or crossing ?

A.-Meeting end on, or nearly end on.

51.-Do the regulations expressly require the helm of a ship, to be put to port in any case; and if so, when?
A.-Yes; in the case of two steamers or two sailing vessels meeting end on, or nearly end on.
52.-Do they expressly require the helm of a ship to be put to port in any other case ; and if so, in what other?
A.-No. The nse of the port helm is not in any other case expressly required by the regnlations.
[The Examiner should then explain that the only case in which port-helm is mentioned in the regulations is in Articles 11 and 13 for two ships meeting end on, or nea:ly end on.]
S3.-If you port to a green light ahead, of anywnere on your starboard bow, and if you get into collision by doing so, do you consider that the regulations are in fault?
A.-No, because the regulations do not expressly require me to port in such a case, and becanse by porting I know that I should probably and almost certainly rum ateross the other vessel's path, or run into her.
[The Examiner should see the candidate put the models in the positions indicated by the questions 54 and following.]
if.-If it steamer \mathbf{A} sees another steamer's red light B on her own starboard side, are the steamers meeting, passing, or crossing ; and how do yon know?
A.-Crossing, becanse the red light of one is opposed to the green light of the othur: and whenever a green light is opmosed to a red light, or a red light to a green light, the ships carrying the lights are crossing ships.
55.-Is A to stand on; and if not, why not?
A.-A has the othe vessel B on her own starboard side. A knows she is crossing he course of B because she sees the red light of B on her (A 's) own starboard side. A also knows she must get out of the way of B , because Article 14 expressly requires that the steamer that has the other on her own starboard side shall keep out of the way of the other.
56.-Is A to starboard or to port in such a case ?
A. - A mitist do what is right so as to get herself ont of the way of 1 ; she must starboard if necessary, or port if necessary; and she must stop and reverse if necessary.
57. -If A gets into collision by porling, will it be because she is acting on any rule ?
A. - No ; the rule does not require her to port. If she ports, and gets into collision by porting, it is not the fault of any rule.
58.-If a steamer A sees the green light of another steamer B on her own (A's own) port bow; are the two steamers meeting, passing; or crossing; and how do you know ?
A.-Crossing, because the green light of one ship is shown to the red light of the other.
59.-What is A to do, and why?
A.-By the rule contained in Article 18 of the Regulations, A is required to keep her course, subject only to the qualification that due regard must be had to all dangers of navigation ; and that due regard must adso be had to any special circumstances which may exist in any particular case, rendering a departure from that rule necessary in order to avoid immediate danger. The crossing ship B on A's port side must get out of the way of A, because A is on B 's starboard side.
60.-A, a steamer, sees the green light of another stramer, B, it point on her, A's, pert how. Is there any regulation requiring I to port in surh a case, and if so, where is it to be found?
A.-There is not any.
61.-Are steam ships to get out of the way of sailing ships?
A.-If a steamer and a sailing ship are proceeding in such direction as to involve risk of collision, the steamer is to get out of the way of the sailing ship.
62.-What is to be done by A, whether a steamer or sailing ship, if overtaking B?
A.-A is to keep out of the way of B.
63.-When by the rules one of two ships is required to keep out of the way of the other, what is the other to do?
A.-To keep her com'se.
64.-Is there any qualification or exception to this? the red ne must equires rd side
of the essary ;
use she
e ports, ny rule. samer B neeting,
hown to
tions, \mathbf{A} ification on ; and nstances eparture danger. way of
mer, B , equiring 1 ?
hips ?
in such get out
r sailing
to keep
A.-Yes. Due regard must be had to all dangers of navigation, and to any special circumstances which may exist in any particular case to avoid immediate danger.
65.-Is there any general direction in the steering and sailing rules; and if so, what is it?
A.-Yes, it is this: that nothing in the rules shall exonerate any ship, or the owner, master, or crew thereof, for the consequences of any neglect to carry lights or signals, or of any neglect to keep a proper look-out, or of the neglect of any precaution which may be required by the ordinary practice of seamen, or by the special circumstances of the case.
66.-Can you repeat article (-) of the regulations. I refer to the article containing the rule for (-) ?
[The Examiner shouid repeat this question, naming a different articie each time.]
67.-What does the Act of Parliament provide as to the obligation of owners and masters in obeying the regulations respecting lights, fog signals, and steering and sailing ?
A.-Section 27 of "the Merchant Shipping Act Amendment Act, 1862," provides that owners and masters shall be bound to obey the regulations, and it also provides that in case of wilful default by the master or owner he shall be deemed to be guilty of a misdemeanor for each infringement.
68. What do breaches of the regulations imply ?

A-If an accident happens through non-observance of the regulations, it implies wilful default on the part of the person in charge of the deck at the time, unless it is shown to the satisfaction of the court hearing the case that the special circumstances of the case rendered a departure fron the rules necessary.
69.-If collision ensues from a breach of the regulations, who is to be deemed in fault for the collision?
A. -The person by whom the regulations are infringed, unless the court hearing the case decides to the contrary.
70.-Do the regulations apply to sea-going ships in harbours and in rivers?
A.-Yes unless there is any rule to the contrary made by a competent authority.
71.-Do they apply to British ships only ?
A.--No, to foreign ships as well.
72.-When did the present regulations come into operation ?
A.-On 1st June 1863.
73.-Do you kuow where the present regulations are to be lound?
A.-Yes in "the Merchant Shipping Act Amendment Act, 1862," and the order in Council of the 9th January 1863. Copies are given away on application to the Board of Trade.
74.-Is one ship bound to assist another in case of collision?
A.-Yes.
75. -What is the penalty for default?
A.--If the master or person in charge of the ship fails to render assistance without reasonable excuse, the collision is, in absence of proof to the contrary, to be deemed to be caused by his wrongful act, neglect, or defant.
76.-Is there any other penalty attached to not rendering assistance?
A.-Yes. If it is afterwarts proved that he did not render assistance, his certificate may be cancelled or suspended by the court investigating the case.
77.--Is it not expected that you should understand the regulations belore you take charge of the deck of a ship?
A.-It is.
78.-Why ?
A.-If I do not understand them and am guilty of default, the consequence will be very scrious to me.
79.-What would be a serious offence?
A.-To canse a collision by porting the helm when not reguired to port by the regulations and without due consideration.

an example vorage.

We are laying at anchor, ready for sea, in a harbor the entance of which opens out hetween R. by S. and S. E. by S., the wind is S. by W.. a nice working breeze. Having made all the necessary preparations for a start we get under weigh (25\%). The harbor being cleared aud a sufficient offing made to lay upon onr course, which is dur West and therefore upon the opposite tack, we eall the hands up, and put the ship about (242). When she comes head to wind, she refuse's stays, but having overcome that difficulty, (244) she is got upou lier course. As the vessel is known to be in the vicinity of shoals, extra care is taken and a good look-out is kept for any changes in the color of the water or for a sea of a broken or irregular chanacter, but in spite of all she
grounds upou a sand bank. The pumps are at once sounded with good results, and there not being much sea on, there is every prospect of her being got off, so preparations are immediately made to carry out an anchor $(235,286)$ and eventually she is hove off all right. The ship now carries a fair wind for some time and makes a good run towards her destined port ; but in conrse of time, the wind freshening a good deal makes it necessary to take in the topgallant sails i232) and as the wind still continues to increase we take a reef in the maintopsail (236). The weather now begins to look dirty so we hand the mainsail and jib (229,234) and as we are evidently in for a gate we take in the spanker (233) then close reef the topsails (238) and reef the foresail (239). Blowing hard, weather very heavy and threatening; take in the foresail (230) and fore topsail (231) and lay her to (249.) Wind still increasing, and the main topsail is blown away, the ship falls into the trough of the sea, and as it is blowing too hard to shew any canvass, we must wear her and lay her to under a drag (248. 250). This being done the hands are set about bending a new maintopsail (215); the drag is then hauled in and the close reefed maintopsail set. The weather shewing signs of moderating we set the close reefed foretopsail and reefed foresail. The wind going down, we set to work to shake out the reefs in the topsails (240) and foresail (211) and as the weather continues to lighten $n \mathrm{p}$, we set the jib (223), topgallant sails (220) and spanker (222). The wind diaws aft (228) with a moderate breeze and the topmast (225) and lower (224) studdingsails are set. The wind now shifts forward (228) and the studdingsaisis are hanled down; it being :eported that one or two of the lanyards of the main rigging have parted, measures are taken to reeve others (272). Dark masses of clond appear away to leeward, and the sea becomes more and more heavy and irregular ; a cyclone has evidently passed over here very recently. The sea is rumning in every direction and the ship labors very beavily ; and at a moment when she has driven against a very heavy lump of a sea, word is passed that she has carried away her bobstay and the hinds are at once set to repair damages (273). This has hardly been accomplished before the parrel of the matin topgallant yarid is carried a way logether with the weather brace (268) ; a temporary parrsi having been fitted and a new brace rove and the ship having passed out of the track of the revolving storm, makes good weather of it and sights her port. The signal is make for a pilot (299) but no notice being taken of it, it is decided, being well accustoned to the place, to take the vessel in without one, and we proceed to get every thing ready for anchoring (250). As we get close in, we select a berth (248), shorten sail and loring up at single anchor (259) in due course. Having to wait some days in the stream, in a tideway, before we can get alongside the wharf, we take all necessary precantions to lieep her steady at her anchor (264 to 267).

LOG LINE.

305. The length of a knot is found by multiplying the number of feet in a nautical mile (6080,) by the number of seconds run by the glass, and dividing the product by the number of seconds in an hour (3600).

After allowing a sufficient length of line as stray line (generally from 15 to 20 fathoms), the log line is marked as follows:

The Marks.-End of stray line, a piece of rag; one knot, a piece of leather; two knots has two knots; three knots has three knots, and so on, and between each, a single knot is placed for the intervening half knot. These marks correspond to the long glass, and they signify their double for the short glass.
Ex. Find the length of knot to correspond with a 28 s glass. 6080

28
48640
12160

26240
2:200

3600) | $\frac{1040}{12}$ |
| :---: |
| 10800 |
| 12480 |

1680
Length of knot 47 ft . $3 \frac{1}{2}$ in (nearly).

LEAD LINE.

306. In the hand lead line, there are nine marks and eleven deeps; the marks are as follows:

Two fathoms, leather with two tails
Three " leather with three tails
Five " white rag, cotton
Beven " red rag, bunting
Tan " leather with a holo in it

Thirteen fathoms, blue rag, banting Fifteen " white rag, cotton Seventeen Twenty
red rag, bunting two knots

In the deep sea lead line, every ten fathoms additional to the above is marked with an additional knot, until it is 100 fathoms, this is marked with a piece of bunting; 110 by a piece of leather; 120 by two krots, and then go on increasing, one knot, as before, for every additional ten fathoms; each five fathome between these marks will be shewn by a single knot.

In calling the soundings, if it is a mark, as at ten fathoms, it will be given by the mark ten; if eleven fathoms, thy the deep eleven; if a $\frac{1}{4}$ or $\frac{1}{2}$ fathom more than a mark or deep, as at $10 \frac{1}{4}$ or $11 \frac{1}{2}$ fathoms, then and a quarter ten or and a half eleven; but if it is $\frac{3}{4}$ more than a mark or deep, such as $4 \frac{3}{4}$ fathoms, it will be called a quarter less five.

:MASTER'S DOCUMENTS, \&C.

307. A Charter Party is an agreement by which the ship is hited either for a certain period or to perform a certain voyage; and to prevent disputes the following portions of it should be clearly specified :-

The description of the Voyage.
The number of Lay Days, and whether they are working or running days.
The amount of Demurrage, (this is claimed daily; and on Satarday for Sunday).
The amount of freight, when and where it is to be paid, also if it is to be paid in Foreign Money, some arrangement should be made with reference to the rate of exchange.
The amount of Penalty for non-performance.
308. A Bill of Lading is a receipt for certain specified goods in a given order and condition; it is also an agreement to carry those goods to a certain port for a given rate of freight. Three are usually sigued, two of which are stamped; one of these is for the shipper, and the other for the consignee; the unstamped copy is held by the master.
309. A Manifest is a document headed by the description of the ship and voyage, and contains a detailed account of the cargo with the marks and numbers, the weight or measurement of the goods, and the names of the shippers and consignees.
310. Invoice is an account which contains a description of certain goods, ${ }^{\text {, }}$, together with their value and the particulars of any further charges which have been incurred thereon.
311. A Bottomry Bond is a document whereby the ship becomes security for money borrowed to puther in seaworthy condition. The Bond is payable when the ship arrives at her port of destination, therefore, should the vessel be lost, the bond is cancelled. If through further damage the vessel has to put
into another port for repairs, and money is again borrowed upon Bottomry, the second bond is payable first, hecause it is considered that without the additional outlay the ship would not have completed her royage, and conseguently the first bond would have heen lost. When about to raise money ropon Bottomry it is usual to adrertise what is required, and then to accept the lowest interest offered.
312. Protests are noted when the Master anticipates damage to his cargo through bad weather, or othes causes beyond his control. Within uwenty-four hours of his arrival, he goes hefore a Notary Fublic if in a home port, or a British Consul in a foreign port, and protests against bring held responsible for such damage; if damage has happened he is now in a position to make his claim upon the Underwriters by having his protest extended, which latter must be done within six menths.
313. Surveys are held when damage has occurred to Ship or Gargo. In many ports persons are officially appointed to hold them, but where such is not the case, and it is the Ship which has to ve surveyed, then two Shipmasters or Shipwrights ar: generally called in, and they give in writing a detailed account of the damage which has taken place, and in case these damages have been made good, a Certificate to that effect should be obtained from the Surve pors. When it is cargn that is damaged, two Merchants who by tcade are competent to give a judgment, are the best persons to hold the survey.
314. A Survey of Hatches is held by one Shipmaster, who gives a Certificate that the hatches were properly battened down and secured.
315. Lloyd's Agent is a person employed by the Underwriters to see that Ships are well fomme, and also to report to them upon any elaims made for damage. He has no control over the Master.
316. The Official Log Book contains a list of the Crew, with their characters fo: seamanship and conduct, together with the account of all misdemeanors or finable offences commitited by them; in these latter cases, the entry detai.ing the offence must be signed by the Master, and also by the Mate or one of the crew; it must be read over to the offionler, and after his reply (if any) is taken down, a statement of this having been dome must also be attested in the same manner. An entry in regard to the death of a semman must be made, by giving the mase of his: death, with an incounit of his warges, and also of each article of his effects sold. A list of other logable evonts, not so likely to necule as the abo ar, are given in the Directions to be fond in every Official Log Book. This book, thgother with the wnges and effects of all deeeased samen, mist be delivered to the Shipping Maste: within twenty four houls of the ship's arrival into port.

HINTS TO SHIPMASTERS.

The following are extracts from the general instructions issued to shipmasters at London, Liverpool and Sunderland, and are reprodiced here in consequence of the practical value of the advice they contain.

Official iog to be kept by the captain and every occurrence of moment to be inserted, duly aitested by the signatures of the chief and second officers. Important entries to be further certified by the signature of carpenter and one of the crew, if necessary.

You must on ne account omit io keep your lead going whenever near the land,-nor forget to keep a good look-out. We believe one half of the castalties at sea arise from neglect of these two most impoitant matters. The relieving officer of the night watches should muster his own watch and station his look-outs fifteen minutes after the watch is called. The names of the lookouts should be stated in the ship's log.

We beg your closest attention to the stowage and dunnage of the cargoes-both at home and abroad, as in case of improper Etowage or deficient duinage, your own wages, and your mate's. will be liable for the loss in consequence; and we wish to observ' that no advantage of freight or stowage can compensate for the evil of leaving out any of the 'twixt deck stanchions during the voyage. We can never admit it as an excuse that you trusted these things to your officers, they are of sufficient importance to merit your own personal superintendance.

It is desirable that you should retain your officers and carpenter until your return home.

You must avoid tie infliction by yourself or officers of corporal punishment on your crew, particularly on your apprentices, whom you will always mess apart from the rest of your crew, and instruct as much as you can in your profession.

You will take care your carpenter keeps all the upher works of your ship free irom chafe or appearance of injury, making him pay particular attention to the canlking of the tolsides, gunwales, waterways, stanchions, bitts, knightheads, Acc., as these places arr most liable to leaks, and vessels require particuiar care in dunnagin: in this vicinity.

In the event of your loading a cargo liable to steam or "sweat," you must take care your ventilators fons and aft are kept open, by every opportmily and means in your powe;, to allow a draught throngh the ship).

Yon innst keep a chip's disbursement booi, and post it daily, and whenever you leave any port abroad, where you have spent any money on account of the ship, yon must leave a copy of your
disbursements behind you to come by the next conveyance, so that, should anything happen to you or the vessel, her accounts can be made up.

On arriving at any port abroad, your first letter should contain a sketch of your passage, with any particulars you think may be of interest to us.

We trust you will always keep up a proper state of discipline amongst your crew, which is not only conducive. to the interests of the vessel, but to the comfort of all on board.

You will carefully superintend the keeping of the vessel's log book, into which the whole of the day's work must be entered, including the dead reckoning, latitule by observations, longitude by chronometer and lunar observations, wheneve: taken ; you will also take care that all casualties are carefully noted.

Sails, at all times, to be kept well aired, and repaired when necessary.

Never leave any port withont being properly victualled and equipped for your intended voyage, in order that you may not have occasion to put back or touch at any intermediate port, which can only be justified by circumstances of extreme necessity.

When disclarging cargo, never allow anything to go from the ship withunt consignees' $0:$: captain's order to first officer.

Forecastle to be kept clean and well ventilated. We suggest that the crew may be allowed one afvernoon per week for serubbing their clothes. [An experienced master suggests that the bedding of the crew should, in fine weather, be taken out and aired frequently, and that in the event of the serious illness of any member of the crew at sea, accommodation should be provided aft in a cabin if possible, so as to ensure careful attention, and to avoid the disconraging influence on the other seamen. That divine service be performed at least once on the Sabbath at sea. In harbour in foreign ports, he deprecates the system of ship to ship visiting on the Sabbath, and prefers that the ship's boats be used ouly for the purpose of taking the men to and from the Bethel ship, or any church on shore. The apperntiees or other lads to be encouraged in their religions duties, and all unnecessary Sunday labour to be avoided.|

Listings to be removed, and coal-hole, fore and after peaks, and limbers to be well cleaned out, at every opportunity. We attach the utmost importance to this duty.

Protests and surveys to be all in orter, in event of damage to ship or cargo. The latter to be surveyed before leaving the vessel, claims being often made yon the ship eren weeks after the rargo is :ll the warehonse.

Bills of lading never to be signed for weight or contents unless you have personal knowledge of same being correct.

Immediately on your return, we require to be furnished with vouchers and accounts for the voyage, to be kept in consignees' acsounts current, portage bill. \log, and expenditure books, statement of condition of hull, sails, rigging, and spars, with a list of all stores remaining on board.

If ever you should unfortunately be in any difficulty with your ship, that it became necessary to procirre or take assistance either by steam or manual service, be cool and collected, act with firmness, and make every endeavour to arrange the terms (either in writing or in presence of third parties) upon which your engagements are made. Claims for salvage often arise when, by a litile foresignt and presence of mind, an agreement might be entered into which would prevent any dispute.

If possible, never give away the consignment of your ship, but reserve it.

In running down the Trades, you will as usual shift your sails. repairing such as require it ; the same may apply to your home ward passage, as all sails have to be repaired on board. On arrival at your port of discharge never neglect to note your protest immerliately. Then make arrangements for discharging your cargo, and give notice when ready to do so.

Hold a survey on yorr haiches before opening them, and at the same time get a Certificate of Survey from the Surveyor : fer should it so happen that any cargo turns out damaged, ano you have not obtained such certifleate, it may cost considerably more, and occasion far more diffienlty to get than it would otherwise.

Should any cargo be damaged, get a certificate to that effect as above.

Gei receipts for all your cargo at time of delivery.
Having discharged ontward cargo, give notice, in writing, of being ready to load homeward cargo. On the expiration of your lay days, give notice i:n writing of same, (inserting a copy thereof in ship's \log book) and then claim temurage.

Should your claim for demurrage not be paid before sailing, get your charter party endorsed as to the number of days oceupied in loading, and if the consignee refuses to do so. go to the British Consul, or a notary, and note a protest of his refusal.

Always get copies of your protests and surveys.
Should you encage cargo at one port and have to flll up at others, you must, before signing bills of lading at flrst port, insert the clause ol" "vid such and such port or ports," neglect of this will
made the ship liable for all losses consequent on a deviation from the direct voyage from port of loading to port of discharge.

In case of ship being open for charter, and you should not, on your arrival, find letters enclosing homeward charter, do not appear to be over anxious about a freight, but state that you expect instructions from your owners by next mail, and in the mean time make yourself thoroughly acquainted with every thing offerng in the freight market. However much you may desire to return to one port in preference to another, conceal your wishes on this point, is otherwise by your openly stating a particular, wish to your consignee to return to London or Liverpool rather than any other port, may, and very frequently does, occasion a considerable loss to the ship. Always endeavour to keep consignment of vessel open in this country.

In Fixing ship. lst Take care to have stamped charters and bills of lading. They can be got stamped within i't days after date, withont payment of any penalty, and at the head office in 'London, within one month after date on payment of $£ 10$ penalty. After a month they cannot be got stamped at all.

2nd Let no charterer sign as agent unless he states for whom he is agent. A man of straw, or a foreigner, may be the principal.

3rd When a foreigner is the principal, try to get the agent, who effects the charter, to make himself liable as principal, and to sign the charter without adding the word agent.

4th If freight is not payable in cash on delivery, take care that the bills are to be "approved bills," and not charterer's bills, as in the latter case, the shipowner camot hold the cargo for his freight, even though the charterer was notoriously insolvent. If a charterer objects to the stipulation for "approved bills," he is generally not safe, and his charter should not be taken.

5th In stating days allowed the merchant, it is proper to say "rimning days," or "working days," according to the intention. "Days" means " working days," and Sundays and holidays do not count until the ship is on demurrage. After that time all days connt.

6th In bills of lading of a ship to consignees in England from consignors abroad, have a clanse inserted-"consignees paying. treight and "emurrage," if you wish to have a remedy for your deminrage.

In doabing. Ist linter the ship at the custom-honse. The days combt from entry at the custom-house and being ready to load.

It is however proper to give notice to the merchant, of arrival and being ready to load; and it is generally better to do this in writing, as it is more easily proved in case of need.

Euter in the log-book the day of arrival at the port of loading and entering at the custom-house. Also enter a copy of the notice
given to the merchant. Also enter in the log-book the day loading is completed.
N. B. The signature of the master to the entries in the log, as well as that of the mate is very useful in case of dispute. If the master be owner or part owner, the entries should be signed by the mate, and the second mate, carpenter, or eldest apprentice.

If the merchant's correspondeat abroad is willing to give a certificate on the back of the charter or bill of lading, of the correct number of days expended in loading, get him to do so, but do not on any account allow him to certify a smaller number of days than were really spent. Rather do without his certificate, as it is not at all necessary to have it.

In case the merchant's correspondent at port of loaaing should - refuse to furnish a cargo, the master should, on the expiration of the lay days aliowed by charter, protest against the merchant, and he is then at liberty to return in ballast to his chartered port of discharge, and has a right to his full freight. The better plan, however, is to take the best freight he can get for his chartered port of discharge, and claim the defliciency of the freight from the merchant. It is improper to wait the demurrage days, unless required so to do by the merchant.

In discharging. Enter ship at custom house.
Give notice to merchant of being ready to unload.
Make similar entries in the log-book of entering ship at customhouse, of notice given to the merchant, and of the day the d's. charging is completed, and let them be sigued as before directed in the case of loading, by the master and mate, or if the master. be an owner, then by the mate, and the second mate, carpenter, or eldest apprentice.

If you are chartered, but have signed bills of lading, to a coursiguee, before you part with the cargo, the consignee should produce the endorsed bill of lading. He should also undertake. for payment of freight according to bills of lading, particularly if you have any donbt of your charterer's solvency.

It is donbted whether the owner of a char:pred ship can recover . is freight from a consiguee who has onee go hold of the cargo, without giving an express undertaking to pay ; and it is said the. only remedy is against the charterer.
N. B. You camot hold the cargo for demurrage, and;only. for freight in terms of charter party or bill of lading.

Payment of freigut. When an advance of freight is to ben. paid, make it payable on signing biats of lading and not on the, sailing of the ship. When foreign money, is to be paid, make it:; at current rate of exchange. When bills are to be given, haye them good and approved bills, and not charterer's acceptance. Do not make the freight payable two months, or any time after the.
delivery of the cargo, but either "during delivery," or "on delivery."

The following mode of payment of freight is objectionable. "The freight is to be paid on the quantity delivered, by an approved bill on London at three months' date from the delivery to the charterers of a certificate, signed by the consignees, of the right and true delivery of the whole cargo, agreeable to bills of lading ; or in cash, under discount, at charterers' option."

Instructions to masters. It cannot be too clearly understood that the payment of freight depends very much on thes care that the master bestows on the cargo, and that he is bound to deliver it in the same good order and condition in which it was received, (the act of God, dangers of the seas, \&c. \&c., excepted.) Owners have often had large sums to pay for damage to cargo, arising from the following causes, which with ordinary care might have been prevented :-

Runs not being clear.
Dumnage not being good and sufficient.
Ship not being properly matted out.
Pump-well, mast-cases, bulkheads, shifting boards, and chain locker not being substantial and secure.
Neglected air ports, by which cargo reaches the pumps and chokes them.
Leaky ports.
Coverings of hatchways and coatings of masts being insufficient or imperfect.
Inattention to the pumps. Attend the pumps carefully, and enter in each day's log, "pumps carefnlly attended."
Improper stowage, a point to which too much attention cannot be given.
Cutting timber or deals, and breaking open packages for stowage beyond what is provided for by the charter, the usages of the trade, or without the written consent of the charterer or shipper, and deck load being earried over a perishable cargo.
Rats, mice, or other vermin.
It is recommended for all captains to examine the mast-cases, pump-well and chain trunks, and to have the domage laid under t \because eir own inspection, before taking in cargo.

No master shonld consent to vary the terms of his charter, or alter his voyage, withont the greatest caution, and then only with the charterer himself, or his agent, having his written consent, which written consent ought to be given up to the master before making the alteration, otherwise the charterer will be discharged from the contract, and the owner liable to an action
for breach of contract. If there be a telegraph, it would be better for the master to refer to his owner for instructions.

Sunveys. A ship having received damage, or touched the ground, before arriving at her port of loading, ought to be surveyed and a certificate of her sea-worthiness, in duplicate, obtained before taking on board cargo; the master to send one by post to his owner, and retain the other on board for his own use.

A ship putting into an intermediate port for repairs, the master must have a certificate of survey on the damage received and the ship's sea-worthiness before leaving. If the cargo be a perishable one, and there is a reason to think it is damaged, it will be necessary to have a survey on it, and obtain a certificate that it is or has been put into proper condition for its passage to the port of destination.
reight cannot be claimed on damaged cargo sold at an intermediate port, hence it is always better to put it into the best condition possible, and bring it on. In most cases of survey abroad, it will be proper to have the certificate in duplicate, attested by the consul or nther public functionary; one to be sent to the owner by post, the other retained on board for the master's use.

It will be proper to have a survey of the hatches and dunnage at the port of discharge; and when hatches are opened, to take samples; at a port of call, get a certificate from the merchant's agent that they were in order when opened.

When you call at one port for orders to discharge or load at another. ask for your orders in writing, and take care of them, they will be useful in case of dispute.

Bll of Lading. Never be iaduced to sign bills of lading before the goods are on board, or without the mate's receipt being given up or cancelled, or without first carefully reading them over, and c nparing one with the other, not only to see that they are alike, anc that the quantity of goods and rate of freight are correct, but that nothing is inserted contrary to the fact on the charter party, if there be one.

Do not sign bills of lading for a less freight than what is in the charter party, but say-freight, demurrage, and all other conditions, as per charter.

Insert the correct number of days consumed in loading, on the margin of the bill of lading, but do not have a smaller number certified than were really spent; rather do without it.

Interest and insurance on money advanced, and address com mission paid at port of loading, nught to be endorsed on the bilis of lading. This is a receipt which the receivers of the cargo cannot dispute.

Qualify your risk by adding "quantity and quality unknown, not accountable for leakage, breakage, rust, or injury by vermin,";
or whatever else you think will suit the goods you have on board.
If it be attempted to ship goods in a damaged or improper condition, give the shipper notice in writing, and if he fail to . replace them with sound, say-"shipped in a damaged condition," or "shipped in improper condition."

If the shipper refuse to allow the above qualification, and you find it necessary to protest on this or any other account connected with the bill of lading, say-"signed under protest"

Before signing bills of lading, enter deck load at shipper's or charterer's risk, even if provided for in charter or otherwise.

Deliver your cargo to no one unless he produce one of the bills of lading which you have previously sigaed, properly en dorsed.

Before signing bills of lading in a foreign language, they ought to be translated. Many of them omit the usual exceptions, "the Act of God, the Queen's Enemies," \&c., and have objectionable clauses in them. Where they cannot be translated, it will be proper to add, "freight and all other conditions, as per charter party, and anything contrary thereto to be void."

Bill of lading, when there is no charter party, should say, "consignee paying freight, demurrage, and all other charges;" also, "goods to be taken from alongside at consignee's expense and risk."

In England, it is customary in the case of ships loading general cargoes for abroad, to sign bills of lading for freight paid in advance, but not to receive it for a month or six weelis after the sailing of the vessel. In this case, say "nevertheless the owners to have a lien on the goods for freight until paid."

A master of a ship, on signing a bill of lading, ought clearly to understand he is only required to give a receipt for the cargo; not to enter into a second agreement. hence the necessity of referring to the charter party in the bill of lading for "freight and conditions," the bill of lading being the last document signed.

Always keep on good terms with your charterers, shippers, and consignees; do anything you can to oblige them consistent with your duty to your owners.

INSTIRUCTIONS FOR USING THE

MORTAR AND ROCKET APPARATUS.

In the event of your vissel stranding within a short distance of the United Kingdom, and the lives of the crew being placed in danger, assistance will, if possible, be rendered from the shore in the following manner, namely:

1 board. nproper fail to 1 condi-
and you nnected
per's or se.
e of the arly en
e, they eptions, jectionit will r char-
ld say, rges;' expense
oading ht paid fter the owners
:ument
ippers, isistent

1. A rocket or shot with a thin lineattached will be fired across your vessel. Get hold of this line as soon as you can; and when you have secured it, let one of the crew be separated from the rest, and, if in the day time, wave his hat or his hand, or a flag or handkerchief; or, if at night, let a rocket, a blue light or a gun be fired, or let a light be displayed over the side of the ship and be again concealed, as a signal to those on shore.
2. When you see one of the men on shore, separated from the rest wave a Red flag (or if at night show a Red light), and then conceal it, you are t^{-}haul upon the rocket line until you get a tailed block with an endless fall rove through it.
3. Make the tail of the block fast to the mast about 15 feet above * the deck, or if your masts are gone, to the highest secure part of the vessel. When the tail block is made fast, and the rocket line unbent from the whip, let one of the crew, separated from the rest, make the sigral required by Article 1 above.
4. As soon as the signal is seen on shore a hawser will be bent to the whip line, and will be hauled off to the ship by those on shore.
5. When the hawser is got on board, the crew should at once make it fast to the same part of the ship as the tailed block is made fast to, only about 18 inches higher, taking care that there are no turns of the whip line round the hawser.
6. When the hawser has been made fast on board, the signal directed to be made in Article 1 above, is to be repeated.
7. The mrn on shore will then pull the hawser taut, and by means of the whip line will hatul off to the ship a sling, cot or life-buoy, into which the person to be hauled ashore is to get and be made fast. When he is in and secure, one of the crew must be separated from the rest, and again signal to the shore, as directed in Article 1 above. The people on shore will then hanl the person in the sling to the shore, and, when he is danded, will hanl back the empty sling to the ship for others. This operation will be repeated until all persons are hauled ashore from the wrecked vessel.
8. It may sometimes happen that the state of the weather and the condition of the ship will not admit of a hawser being set up; in such eases a sling or life-buoy will br hanled off instead, and the ship-wrecked persons will be hanled throngh the surf, instead of along a hawser.

Masters and crews of stranded vessels should bear in mind that SUCCESS in landing them, in a great measme liEPENDS UPON THEIR COOLNESS AND ATTEENTION TO THE RULES HERE L.AID DOWN ; and that by attending to them namy lives are ammally saved by the mortar and rocket apparatus on the coast of the United Kingdom.

The system of signaling must be strictly adhered to; and all women, children, passengers and helpless persons should be landed before the crew of the ship.

EXAMINATION PAPERS.

ADJUSTMMENTS OF THE SEXTANT.

The applicant will answer in writing, on a sheet of paper - which will be given him by the Examiner, all the following questions, numbering his answers with the numbers corresponding to the questious.

1. What is the first adjustment of the sextant?

To set the Index glass perpendicular to the plane of the sextant.
2. How do you make that adjustment ?

Place the vernier about the middle of the arc; hold the sextant horizontally with the limb from you, and looking obliquely into the index glass, see if the arc reflected in it, and the true arc as seen outside, appear in an unbroken line; if not, it is rectified by the screws at the back of the glass..
3. What is the second adjustment?

To set the Horizon glass perpendicular to the plane of the sextant.
4. Describe how you make that adjustment?

Place the zero of the vernier to the zero of the arc, hold the sextant horizontally and see if the reflected and true horizons appear in the same straight line, if not, thrn the proper screw until they do.
5. What is the third adjustment?

To set the Horizon Glass parallel to the Index Glass.
6. How do you made the third adjustment?

Place the zero of the vernier to the zero of the arc, hold the sextant perpendicularly and see if the trie ard reflected horizons appear in the same straig' line, if not, turn the proper screw until they do.
7. In the absence of a screw how would you proceed?

Find the index error.
8. How would you find the index error by the horizon.

Place the zero of the vernier to the zero of the are, and bring the true and reflected horizons in one straight line, then ,what the sextant shews will be the Index Error. ould be

ChART.

The applicant will be required to answer in writing, on a sheet of paper which will be given him by the examiner, all the following questions according to the grade of certificate required, numbering his answer with the numbers corresponding with those on the question paper.

1. A strange chart being placed before you, what should be your special care to determine, before you answer any questions concerning it, or attempt to make any use of it ?

See if it is a British Chart by ascertaining if its longitude is reckoned from the meridian of Greenwich, also whether the compasses engraved upon it are true or magnetic.
2. How are you to ascertain that in our British Charts ?

The North point of a true compass is marked by a star and is drawn parallel to a meridian. The line bearing the North point of a magnetic compass makes an angle E. or \mathbf{W}. of a meridian equal to the variation.
3. Deseribe how you would find the course by the chart between any two places A and B?

Lav the edge of the parallel rulers upon A and B, move the rulers to the centre of the nearest compass which will then shew the course required, magnetic or true as per chart.
4. Supposing there to be points of variation at the first-named place, what would the course be magnetic, the true course being about ?
I would shape my course to the right for Westerly variation, to the left for Easterly.
5. How would you measure the distance between these two or any other two places on the chart?

By using a pair of dividers, take the space between the two places to the graduated meridian, which if the middle latitude is the centre of the scale used, will give the distance required.
6. Why would you measure it in that particular manner?

Because the distance between the parallels is, increased towards the poles, in order to compensate for the expansion of the meridian difference.

The above comprises all the questions on the chart that are put to first Mates.

In addition to the above the Masters are required to answer :-
7. What do you understand those small numbers to indicate that yon see placed about the chart?

Soundings, generally in fathoms.
8. At what time of the tide?

Low water ordinary spring tides.
9. What are you required to know in order that you may compare the depths obtained by your lead line on board with the depths marked upon the chart?

The time from high water and the half range of tide at ship. With these, Table B in the Admiralty Tide Tables will give a correction to be applied to the half mean spring range of the place, the result being the rise of tide at the time of sounding.
10. What do the Roman nu:nerals indicate that are occasionally seen near the coast, and in harbors?

The time of high water full and change.
11. How would you find the time of high water at any place, . the Admiralty Tide Tables not being at hand, nor any other special tables available?

By adding 48 minutes for every day since full and change.
All the above questions should be answered, but this does lot preclade the Examiner from putting any other questions of a practical character, or which the local circumstances of the port may require. ude is

DEVIATION OF THE COMPASS.

['The candidate is to answer correctly at least eight of such of the following questions as are marked with a cross by the examiner. The examiner will not mark less than 12.]

1. What do you mean by Deviation of the Compass ?

It is an error of the Compass caused by the magnetic action of the iron in the ship or cargo upon the needle.
2. How do you determine the deviation (a) when in port and (b) when at sea?
(a) By reciprocal bearings.

Let the ship lie with her head upon any point of the compass ; now, take a compass on shore, and let the observers on board and on shore take the bearings of one another; reverse the bearing taken from the shore, and the difference between it and the bearing taken from the ship will be the devlation corresponding to the direction of the ship's head. Proceed In like manner with the ship's head on the remaining points of the compass.
(b) By astronomical bearings.

Take the bearing of the Sun and by computing the True Azimuth find the error of the compass, then the difference between this and the Variation, as found from a chart of Equal Variations, would be the Deviation for the direction of the ship's head when the bearing was observed. Now take like observations with the ship's head upon not less than each cardinal point of the Compass, and also upun the courses lying half way between them.
3. Having determined the deviation with the ship's head on the various points of the compass, how do you know when it is Easterly and when Westerly?

It will be Easterly, if when laid off upon the compass the correct magnetic bearing is to the right of the one taken from the ship, but Westerly if the contrary.
4. Why is it necessary, in order to ascertain the deviations, to bring the ship's head in more than one direction?

Because every change in the course brings the iron in the ship into a different relative position with regard to the compass needle.
5. For accuracy what is the least number of points to which the ship's head should be brought?

Eight.
The four cardinal and the four mid-cardinal points are the best.
6. How would you find the deviation when sailing along a well known coast ?

When the reciprocal bearings of two well defined ubjects, such as lighthouse towers, are known, bring them in one, and the difference between the observed and given bearings will be the deviation for the direction of the ship's head when such aarings were observed.

For the questions 7,8 and 9 see the article upon Deviation page 96.
11. Name some suitable objerts by which you could readily obtain the deviation of the Compass when sailing along the coasts of the English Chanuel?

The Lizard, Pootland and the South 'Foreland Lights.
12. Do you expect the Deviation to change, if so, state under what circumstances?

It will change sapidly for a tirae after launching, also through any considerable change of latitude, any alteration in the position of the Compass, or the quantity or place of the iron on board.
13. How often is it advisable to test the accuracy of your tabl? of deviations?

At every convẹnient opportunity.
Mor. particularly in a new ship; and also after having made any considerable change of latitude, or aiter having stood upon the same tack any length of time.
14. State briefly what you have to guard against in selecting a position for the compass?

That it should be removed as far as practicable from all iron stanchions, deck beams, smoke stacks, or other disturbing influences of a like character.
15. The compasses of iron ships are more or less affected by what is termed the heeling error; on what courses does this error vanish, and on what courses is it the greatest?

It vanishes at the East or West points, and is greatest about North or South.
16. State to which side of the ship-in the mejority of cases-is the north point of the compass drawn in the Northern Hemisphere, and what effect has it on the assumed position of the ship when she is steering on northerly, and also on southerly courses?

The north end of the needle is drawn to windward, and consequently when steering to the northward the ship makes a more weatherly course than that indicated by the compass, while on southerly courses she is to leeward of her appareitt course.
17. The effect being as you state, on what coursts would yoii keep away, and on what courses would you keep elozer to the wind in order to make good a given coinpass course?

I should keep away upon northerly courses, but kepp closer to the wind on southerly courses.
18. Does the same rule hold good in both Hemisfreres wioh regard to the heeling errer?

No, with few exceptions the rule which holds good in the

A Great Circle is a circlo whose pane passes through the centre of the sphere ; it therefore divides the latter into two equal parts, and is the largest circle there can be drawn upon a Glohe.

A Small Circle is a circle whose plane does not pass through the centre of the sphere, consequently it divites the sphere into inequal parts.

Def. 1. The Equator is a great circle equi-distant from the poles.

It divides the earth i:to the Northern and Southern Heminpheres.
Def. 2. The Poles are the extremities of the earth's axis.
The one which lies upon the same side of thas equatur as the Dominion is called the North Pole, while the other is termed the South Pole.

Def. 3. A Meridian is a gieat circle which passes through the Poles.

It is one of the two lines which define the position of any spot upon the earth.

Def. 4. The Ecliptic is a そreat circle showing the apparent path of the sum in the heavens.

This apparent movement of the sun amougst the stars is caused by the moticn of the earth in its orbit.

Def. 5. The Troples are two small circies parallel to the equator, eech cutting a vertex of the ecliptic.

There is alwaye a point between these two circles iohere the sun is vertical.
That one which lies to the Northward of the equator is called the Tropio of Cancer, while the other is the Tropic of Caprlcorn.

Def. 6. Latitude is the arch of a meridian intercepted between any given place and the equator.

It is reckoned from the equator towards the poles, and is naued North or South, the same as the pol. towards which it is reckoned.

Def. 7. Parallels of Latitude are small circles parallel to the equator.

Tt is the intersection of a parallel of latitude with a meridian at any given yoint which defines the position of that point upon the face of the Globe.

Def. 8. Longitude is the arch of the equator intercepted between what is called the First Meridian and the meridian passing through any given place:

Any meridlan may be made the First Micridinn, many nations using that which parsen through their respective Capitals, buit must maritime nationn have adopted the English First Meridian, which Is the one which passere through the Observatory at Greenwich. Long. is reckoned frum 0 e at the First Merjdian to 180°, where it meets the , ther (or inferior) part of the First Meridian ; and is named Last, if, when lowking towards the North, it is reckoned to the right of the First Meridinn, but Wi st if the eontrary.

Def. 9. The Vistble Horizon is the circle in the open sea, formurd by the limit of vision.

It will expmend whith an hereaned clevntion of the eyr nbeve the level of the nea, and contract an the cye appronelles the surface.

Def. 10. The Sensible Hortzon is a plane which passing Hhrongh the eye of the observer, is fazallel with the visihle hori\%.On.

Dof. 11. The Rentpmin! Hortzong is, Iho plan! which passes
through the centre of the earth parallel to the visible horizon.
Def. 12. The Artificial Horizon and its uses. The artificial horizon is a small shaliow trough containing quicksiiver. It is used when there is no visible horizon, for the purpose of measuring the altitude of an object

As the angle taken is the angle of r.ffect en, it is double the actual altitude, mad must therefore be halved after the error of the nex'ant han been applied to it.

Def. 13. True Course of a Ship is the angle contained between the ship's head and the true meridian.

It is therefore the compasi course corrected for all its errors.
Def. 14. Magnetic Course is the angle contained between the ship's head and the Correct Magnetic meridian.

Is in error by the amount of the deviation.
Def. I5. Compass Course is the angle contained between the ship's head and the meridian, as shown by her compass.

Consequently it is in error by the amotant of the variation, devistion and leeway.

Def. 16. Variation of the Compass is the angle batween the true and magnetic meridians.

Every place has its own variation, and this again is also subject to a slow change in its amount. The variation of the compass is caused by the true and magnetle poies not being located in the same place, and the ehange which is always taking place in its umount appears to arise from a slow movement of the magnetic round the true pole.

Def. 17. Deviation of the Compass is the angle between the correct magnetic meridian and that showin by the corrpass.

Def. 18. The Error of the Compass is the combined effects of both variation and deviation upon a ship's compass.

As the variation is affected by a change of place, and the devintion, in addition, by uny alteration in the direction of the ship's head, it is "vident that the error of the cumpass found in the amplitudes or azimuths by getting the angle betwern the true and compass barings of the sun, can only be used whan in about the same locality, and with the ship lying upon the name course as when th. compass bearing was taken.

Def. 19. Leeway is the angle formed by the ship's keel with her actual course through the water.

It is cnused by the action of the wind upon a ship's alde, which gives her a lateral as wrfll as a progressive motion.

Def. 20. The Meridian Altitude of a Celential ohject is its altitude when upon the meridian of the place of observation.

Def. 21. Aztmuth is the angle contaned between the North or South Pole and the vertical circle passing throngh the object.

It is calted the true or magnetic azimntls, according whether the augle in reckonet from the true or magnetle pole. The aximuth found by computation is true.

Def. 2a. Amplitude is the angle contained between the Eist on

West point of the horizon and an object in the act of rising or setting.

It is called the true or magnetic amplitnde according whether the angle is reckoned from the truc: or magnetic East or West point of the horizon ; the amplitude found by calculation is true.

Def. 23. Deslination is the angular distance of any heavenly body North or South of the celestial equator.

Def. 24. Polar Distance is the angular distance of any celestial object from the pole of the ohserver.

Def. 25. Right Ascension is the arc of the Celestial Equator contained between the First Point of Aries and the Circle of Declination passing through any given heavenly body.

It is expressed in time, and is reckoned Westward from the First Point of Arics in continuation right through the whole circ'e, that is; from 0 h , to 24 h . Th. First Point of Aries is that poirt in the: Celestial Iqquator which is crossed by the Sun in March.

Def. 26. Dip is the angle contained between the sensible horimon and a line drawn from the eye of the observer to any point in the visible horizon.

As the: visible horizon expands or contracts with any increase or decrease of the height of the observ. r's eye above the luvel ef the sea, it follows that the dip of the horizon is regulated by the height of the $1 \cdot y \cdot$.

Def. ${ }^{27}$. Refraction is the amomn by which the altitude of a heavenly body is increased by the effect of the earth's aunosphere.

The rays of light which form the image of an object, while forcing their way though our atmosphere, get more or less bent downwaris from their proper straight line. and as an object is seen in the same direction as that with which the ray enters the eye, its having been earved downward from its trive direction will naturally give the object an apparent altitude greater than really beloings to it

Def. 28. Paraliax is a correction alditive to an altitude to make it equal to what it would have been, supposing it hal been observel from the centre of the parth.

Def. 2!). Semi-diameter is the half of the apparent diameter of a heavenly body.

Def. 30. Augmentation of the Moon's Semi-diameter is the increase of the apparent semi-diameter of the Moon, cansed by the place of the observer getting closer to that body white she is rising from the horizon to the ze:nith.

When the Morin is in the zonith, the observer is immediately underneath, and consequently at his shortest distance from her; but as the Moon sets (a motion diue to the rotation of the earth eastward), the place of the observer is gradnally removed from the moon, untli when that body is in the horizon, it is plain that the observer has incrensed his distance from her by the length of the "arth's radius ; and the moon's distance from us is not so great but that this amount has an appreciable cffect upon her apparent size.
angle is the Am -
avenly
elestial
quator
rcle of

Def. 31. Observed Altitude is the angular distance of any heavenly body from the horizon as shown by a sextant.

Def. 32. Apparent Altitude is the angular distance of an object from the sensible horzon.

It ife found by applying the index error and dip to its observed altitude.
Def. 33. True Altitude is the apparent altitude of an object corrected for refraction and parallax.

Def. 34. Zenith Distance is the angular distance of al: object from that point in the heavens immediately over the observer.

It is found by subtracting the true altitude from 90°
Def. 35. Vert'no' Gircles are great circles passing throught the Zenith.

They are consequently perpendicular to the horizon.
Def. 36. Prime Vertical is that vertical circle which is at right angles to the Celestial Meridian.

Therefore any object upon the Prime Vertical must brar due Last or W.st.
Def. 37. Civil Time is the ordinary way of reckoning time oll shore.

The civil day is contained between two following midnights ; it is 24 h . long, and is divided into two parts of 12 h . each ; the first is called 4 . \boldsymbol{x}. or ante meridian, the second P. M., or past meridian.

Def. 38. Astronomical Time is the interval of time from the preceding noon.

The astronomical day commences at norn of the civil day of the same date; and closes at the noon following ; astronomical time is reckoned cons.entively up to 24 h .

Def. 39. Sidereal Time is the time elapsed since the preceding transit of the flrst point of Aries.

Def. 40. Mean Time is time as shown by an ordinary clock.
The interval between following transits of the sun is not regular, a mean ann ther fore has b:en imagined, which moving at one unlform ante is sappryed to make the cirunit of the Celrstial Equator in the same tim", exnetly, that the sun requires to pass through the Ectiptic.

Def. 41. Apparent Time is the time elapsed since the precedling transit of the true sun.
Dcl. 42. Equation of Time. - The interval of tine hetween Mean and Apparent time.

Def. 43. Hour Angle of a Celestiat ohject, - The angle contained between it and the Celestial Meridian.

Def. 44. Complement of an Are or Angle.-The difference between it and 90°.

Def. 45. Supplement of an Are or Angie.-The difference between it and 180°.

LEADING LIGHTS.

ENGLISH CHANNEL.

Bishop Rock
St. Agnes
Seven Stones, Lt. V. Longships Wolf

Lizard

Eddystone
Start Point
Portland Bilt
Shambles Li. V.
Needles
St. Catherines
Warner Lt. V.
Nab Lt. V.
Owers Lt. V.
Beachey Head
Royal Sovereign Shoals Lt. V. I R. Every minute, three flashes
Dungeness
Varne Shoal Lt. V.
South Foreland East Goodwin Lt. V.
South Sand Head Ltt. V.
Gull Stream Lt. V.
North Sand Head Lı. V.
North Foreland
Ushant, East יud
Casquets
Alderney Island
Cape do la Hague
Cape Barfleur
Cape lirisne\%
Calais
in quick succession.
1 F.
I R. Every minute.
2 F .
IF. Red towards the land.
I R. Every thinty seconds. Red and White alternately.
2 F. These lights will shortly be altered to Electric.
1 F.
2 R. Every minute.
2 F .
1 F .
1 F.
1 F.
l'R. Every minute.
2 F .
I R. Every thirty seconds, twice White and once Red.
1R. Every two minutes. Light visible for 15 seconds.

IF. Electric.
IR. Every twenty seconds. Red.
2 F. Electric.
I R. Eviry fifteen seconds. Gr cen.
1 F.
I R. Every twenty seconds.
3 F. Triangular.
1 F.
1 F.
3 R. Every twenty seconds. Triangular.
2 F. Red.
1 F .
I R. Every thirty seconds.
I R. Every thirty seconds.
1 F. Flash every four minutes.

NT. GEOIRGE'S OHANNEL.

Skelligs	IF. Fing
Calf Rock	F. Flash every fifteen seconds.
Fastne.	I R. Every minute.
Kinsale	IF.
Daunts Rock Li. V.	I. F. Red.

Roche Point

Ballycotton Minehead

Waterford (Hook)
Saltees Lt. V.
Tuskar
Lucifer Shoals Lt. V.
Blackwater Bank Lt. V.
South Arklow Lt. V.
North Arklow Lt. V.
Wicklow
Codling Bank Lt. V.
Kish Lt. V.
Bailey (Howth
Rockabill
Carlingford
Chicken Rock
Great Orme Head
Point Lynis
Skerries
South Stack
Caernarvon Bay Li. V.
Bardsey
Cardigan Bay Lt. V.
South Bishop
Smalls
(I R. Red, every minute.
11 F .
1 F. Flash every ten seconds.
I R. Every minute. Light visible for 50 seconds.
1 F .
2 F.
1 R. Every minute. Twice white and once Red.
IF. Red.
1 F.
1 R. Every thirty seconds.
2 F .
I R. Every thirteen seconds. Light visible for 10 seconds.
1 R. Every twenty seconds. Red.
1 R. Every minute.
1 F .
1F. Flash every twelve seconds.
2 F .
1 R. Every thirty seconds.
1 F.
1.R. Every ten seconds. Light visible for 8 seconds.
2 F. One White and the other Red.
1 R. Every two minutes.
1 R. Every twenty seconds. Twice White and once Red.
1 F .
I R. Every thirty seconds. Red.
I R. Every twenty seconds.
1 F .

BAY OF FUNDY.

Cape Sable
Seal Island
Cape Fourcher.
Cape St. Mary
Briar Island
Grand Passage
Petit Passage (Boar's Head)
Point Prim
Marshall Cove

I R. Every forty seconds. Light visible for lis seconds.
1 F .
I R. Every one minnte and three quarters ${ }^{6}$ Light visible one minute and a quarter.
I R. Fivery thirty seconds. Hed and White alterinately.
1 F .
2 F. Horizoutal.
I R. Every minute. Rech and White alternately.
F.

F: Vertical.

Mar ${ }_{\text {¢ }}$ retsville
Black Rock
Horton Bluff
Burntcoat Head
Parrsboro'
Apple River
Cape Enrage
Grindstone Island Quaco
Cape Spence:
Partridge Island
Point Lepreau
Whitehead (Bliss Island)
Wolf Island
Campobello Island
Port S. Andrew
Grand Maman (Swallow Tail) Gannet Rock

Machias Senl Island
West Quodiy Head
Little River
Moose Peak
Nash's Island
Petit Manan
Mount Desert Rock
Bakers Island
Bears Island

2 F. Red.
1 F .
1 F .
1 F .
1 F .
1 F .
1 F .
1 F .
1 R. Every twenty seconds.
1 R. Every foriy five seconds. Red and While alternately.
1 F :
2 F. Vertical.
1 F. Red.
1 R. Every minute and a half.
1 F .
1 F.
1 F.
1 F. Flash every four and a half seconds.
2 F.
1 F .
1 F. Flash every ninety seconds.
1 R. Every thirty seconds.
1 F. lied.
1 F. Flash every two minutes.
1 F .
1F. Flash every ninety seconds.
1 F .

NOVA SCOTIA-EAST COAST.

Scatterie Island
Louisburg
Green Island
Cape La Ronde
Sydney Harbour
Cape Causo
Hart Island
North Canso
White Head Island
Green Island (Guysboro')
Liscomb Island
Beaver Ishand
Egg Island
Sable Island, East end

1 R. Every ninety seconds. Light visible for one minute.
1 F .
1 F. Hed.
1 F .
1 F. Red.
2 F. Vertical.
1 F. Red.
1 F.
1 R. Every twenty seconds.
F.

1 R. Every two minutes. Red and White alternately.
H. Every two minutes.
R. Every minute. Red and White alternately.
F.

Sable Island, West end

Devil Island
Mullin's Point
Chebucto Hear
Sambro
Mahone Bay
Chester
Cross Island
Shelbourne Harbor
Green Island !Margaret's Bay) 1 R. Every ninety seconds. Red and White alternately.
Lunenburg
West Iron Bound Island
Port Medway
Liverpool
Little Hope Isiand
Port Hebert
Ragged Island Harbor
Shelbourue Harbor
Negro Island
Barrington
Barrington Bay L. V.
Carters Island
Cape Sable
Tusket Kiver
Seal Island
I R. Every three minutes. Light visible for a minute and a half, during which time there will be a flash every half minute.
1 F. Red to seaward.
1 F.
I R. Every minute.
1 F.
IF. Red.
1 F .
\{ 1 R. Every minute.
1 F.
1 F.

1 F.
R. Every thirty seconds

1 F .
1 R. Every two minutes.
I R. Every minute. Red.
I F. Red.
1 F. Red.
z F. Vertical.
1 R. Every minute. Red and White alternately.
1 F. Red.
1 F.
1 F. Red.
I R. Every forty seconds. Light visible for 15 sncouds
2 F. Horizontal.
1 F.

THE ST. LAWRENCE.
Belle Isle
Amour Point
Cape Norman N. F. I.
Point Rich
"
Cape Ray
St. Paul Island N. E point
St. Paul Island S. W. point
Bird Rocks
Entry Island
Amherst Island
Etang du Nord
Cape Despair
Percé Roadstead
IF.
IF.
I R. Every two minuteo
IF. Flash every fifteen second
l F. Flash every ten seconds
1 F.
I R. Every anin:::
1 F .
IF. Red.
I R. Every thirty seconds. Hed and Whire alternately.
1 R.
I R. Every half minute.
1 F.

Cape Gaspé
Cape Rosier
Anticosti Island :

Cape Magdalen
Egg Island
Matane
Cape Chatte
Point des Monts
Little Metis Point
Manicouagan Lt. V.
Father Point
Port Neuf
Biquette Island
Red Island Reef Lt. V.
Red Islet
Lark Islet
Green Island
Brandy Pots
Long Pilgrims
Kamouraska
Lower Traverse Lt. V.
Upper Traverse Lt. V.
Stone Pillar
Crane Island
Belle Chasse
St. John, Island of Orleans Point St. Lawrence, do.
Monté du Lac
St. Antoine
St. Croix
Port Neuf

1F. Red.
1 F.
1 F.
1 F. Flash every twenty seconda.
1 R. Every minute.
1 F .
1 R. Every two minuter. Red and White alternately.
1 R. Every ninety seconds.
1 F. Red.
1 R. Every thirty seconds.
1 F .
1 R. Every minute.
2 F .
1 F.
1 F .
1 R. Every two minutes.
2 F .
1F. Red.
1 F.
1 F .
1 F .
1 F.
1 F .
2 F .
2 F.
1 R. Every ninety seconds.
1 F .
1 F.
1 R. Every thirty se onds.
1 F .
1 F .
1 F .
1 F .
2 F .

LAKE ONTARIO.

Snake Island.
Simcoe o. Gage
Pigeon Island
Outer Drake or False Rocks. Point Pleasant
Point Peter
Salmon or Wicked Point
Telegraph Island
Scotch Bonnet or Egg Island

15 Rell.
15
1 R. Every seventy seconds.
$1 F$
F
1 R. Every hundred seconds.
$1 \sqrt{1}$ Red.

1. \mathbb{F}
$1: \mathbb{F}$

Presqu'Isle:
East point
On hill inshore
Cobourg
Peter liock or Gull Island Port Hope
Darlington
Pickering or Liverpool Gibraltar Point, Toronto Port Credit Oakville
Burlington Bay Dalhousie Harbor Fox Island

1 F .
2 F .
1 F .
1 F
IF. Red facing South. White facing East and West.
1 F .
1 F .
1 F .
2 F .
1 F .
1 F.
2 F .
1 R.
1 F .

ELEMENTS FROM THE NAUTICAL ALMANAC.

JANUARY, 1876.									
Day of the month.	Page 1. AT APPARENT NOON.					$\begin{aligned} & \text { Page II. } \\ & \text { AT MEAN NOON. } \end{aligned}$			
	The Sov's.		Equation of Time to be added to Apparent Time.		$\begin{aligned} & \text { Var. } \\ & \text { in } \\ & 1 \text { hour. } \end{aligned}$	The Son's.			
	Apparent Declination	Var. in 1 hour.			Apparent . Declination.	Semi- diameter			
						8			
1	S. $23 \quad 236.4$	12.05	3	38.54	1.190	S. 23 2 37.1	1618.2	0	
2	225733.5	13.20	4	6.92	1.175	225734.4	1618.2	1	
3	22523.1	14.34	4	34.94	1.159	22524.2	1618.2	2	
4	2246 5.1	15.47	5	2.56	1.142	$2.246 \quad 6.7$	1618.2	3	
5	223940.6	16.59	5	29.76	1.124	223942.1	1618.2	4	
6	223248.9	17.71	5	56.49	1.104	223250.6	1618.2	5	
7	$22 \begin{array}{lll}25 & 30.5\end{array}$	18.82	6	22.75	1.084	222532.5	1618.2	6	
8	221745.7	19.91	6	48.50	1.062	221748.0	1618.1		
9	22934.7	21.00	7	13.72	1.039	22937.2 :	1618.1	8	
10	$22 \quad 0057.7$	22.08	7	38.39	1.016	$\begin{array}{lll}22 & 1 & 0.5\end{array}$	1618.1	9	
11	215155.0	23.14	8	2.49	0.992	218158.1	1618.0	10	
12	214226.9	24.19	8	26.00	0.967	214230.3	1618.0	11	
13	213233.6	C5.24	8	48.91	0.941	213837	16179	12	
14	212215.2	26.28	9	11.19	0.915	212219.2	1617.8	13	
15	211132.2	27.30	9	32.83	0.888	211136.5	1617.8	14	
16	$21 \quad 024.8$	28.31	9	53.81	0.860	$21 \quad 0.29 .4$	1617.7	15	
17	204853.2	29.31	10	14.12	0.832	204858.2	1617.6	16	
18	203657.8	30.30		33.76	0.803	$\begin{array}{llll}20 & 37 & 32\end{array}$	1617.5	17	
19	202438.9	31.27	10	52.69	0.774	202444.6	1617.4	18	
20	2^{\prime} : 1156.9	32.23	11	10.89	0744	$2912 \quad 2.9$	1617.3	19	
21	19.352 .1	33.17	11	28.37	0.713	19 Ef E8.5	1617.2	20	
22	194524.8	3-1. 10	11	45.10	17.681	194531.5	1617.1	21	
23	193135.5	35.01	12	1.08	0.649	193142.5	1617.0	22	
2	191724.5	35.90	12	16.28	0.617	191731.8	16169	23	
25	$\begin{array}{lll}19 & 252.1\end{array}$	36.79	12	30.69	0.584	$\begin{array}{lll}19 & 2 & 59.7\end{array}$	1616.8	24	
26	1847587	37.65	12	44.30	0.550	1848 6.7	1616.7	25	
27	183244.9	38.50	12	57.10	0.516	183253.2	1616.6	26	
28	181710.9	39.33	13	9.08	0.482	$\begin{array}{llll}18 & 17 & 19.5\end{array}$	1616.4	27	
29	181817.2	40.14	13	20.24	0.447	$18 \cdot 126.1$	1616.3	28	
30	17454.1	40.94	13	30.56	0.413	174513.3	1616.2	29	
31	172832.1	41.72	13	40.05	0.378	172841.6	$1616 \cdot 0$	30	
32	S. 171141.6	42.48		48.69	0.343	S. 1711151.4	1618.9	37	

FEBRUARY 1876.

	Page I. A' APPARENT NOON.				$\begin{gathered} \text { Page II. } \\ \text { AT MEAN NOON. } \end{gathered}$			
	The Suns		Equation of Time to be added to Apparent Time.	Var. in 1 hour.	The Sun's			
	Apparent Declination.	Var. in 1 hour.			Apparent Declination.		mimeter.	
	- ' "	"	m s	8	- , "		"	
1	S. 71952.6	57.17	1227.16	0.507	S. 7204.5		10.0	60
2	65657.6	57.41	1214.74	0.528	$657 \quad 9.3$	16	9.8	61
3	63356.8	57.64	121.82	0.548	63488	16	9.6	62
4	61050.7	57.86	1148.42	0.538	61112.1	16	9.3	83
5	54739.6	58.05	11134.57	0.586	54750.8	16	9.1	64
6	52424.1	58.23	1120.28	0.604	52435.1	16	8.8	65
7	$5 \begin{array}{lll}5 & 1 & 4.1\end{array}$	5840	$\begin{array}{ll}11 & 5.57\end{array}$	0.821	$5 \quad 1152$	16	8.6	68
8	43740.9	58.5b	$10 \quad 50.46$	0.637	43751,4	16	83	67
9	41413.9	58.69	1034.98	0.652	41424.2	18	8.0	68
10	35043.8	58.81	1019.15	0.666	35053.9	16	7.8	69
11	32710.9	58.92	$10 \quad 3.00$	0.679	32720.8	16	7.5	70
12	33356	59.02	9 ¢6.56	-0.691	$3 \mathrm{3} 4 \mathbf{4} 5.2$	16	7.2	71
13	23959.1	59.10	929.84	0.702	240 7.5	. 6	7.0	75
14	21619.0	59.16	912.87	0.712	21628.1	18	6.7	'(3
15	15228.4	59.21	$8 \quad 55.67$	0.721	- 5247.3	16	6.4	74
16	12856.8	59.25	838.27	0.729	1295.4	16	6.2	75
17	1514.6	59.27	820.69	0.736	1522.7	16	6.9	78
18	04131.9	69.28	$8 \quad 2.94$	0.742	04139.8	16	5.6	77
19	S. 01749.3	50.2"	745.05	0.748	צ. $0 \quad 17 \quad 56.9$	16	5.3	78
20	N. 0 5 $5 \quad 52.9$	59.24	727.03	0.753	N 0 6 645.5	16	5.0	79
21	02934.3	59.30	78.91	0.757	$029 \cdot 27.2$	16	4.8	80
22	$\begin{array}{lllll}0 & 63 & 14.5\end{array}$	59.14	650.79	0.760	0537.7	16	4.5	8 i
23	11653.2	59.07	632.41	0.763	11046.7	16	4.2	82
24	14029.9	5898	614.08	0.765	14023.8	16	3.9	83
25	$\begin{array}{llll}2 & 4 & 4.4\end{array}$	58.88	585.71	0.766	$2 \begin{array}{llll}2 & 3 & 58.6\end{array}$	16	3.6	84
20	22736.2	58.76	537.33	0.766	22730.1	16	3.4	85
27	2614.9	58.62	518.95	0.766	25059.7	16	3.1	86
28	31830.2	68.47	50.58	0.165	31425.3	16	2.8	87
29	35751.7	08.31	4 42.26	0.763	33747.1	16	2.6	88
30	419.0	58.13	423.07	0.760	418.7	$1{ }^{10}$	23	89
31	4821.7	57.93	$4 \quad 5.76$	0.75	42417.7	16	2.0	90
32	N. 44729.6	57.71	347.83	0.753	N. 44725.8		1.7	91

JUNE, 1876.							
	Page I. at APPARENT NOON.				Page II. AT MEAN NOON.		
	Tab Sun		Equation of Time to be subt.from		Tue	n's.	
合	Apparent Declination.	Var. in 1 hour.	added to Apparent Time.	$\left\|\begin{array}{c} \text { Ver. in } \\ 1 \\ \text { hour. } \end{array}\right\|$	Apparent Declination	$\begin{gathered} \text { Semi- } \\ \text { diameter. } \end{gathered}$	
1	N. 228850.8	19.81		8.880 0.380	N. 228851.6	1548.1	152
2	221634.7	18.84	213.41	0.396	221635.4	1547.9	153
3	$22 \quad 23.50 .3$	17.87	23.73	0.411	222356.0	1547.8	154
4	223052.5	1.6 .89	153.71	0.425	2230531	1547.7	155
5	223726.1	15.90	143.35	0.438	2237266	1547.6	156
6	224335.9	14.91	132.68	0.451	224336.3	1547.5	157
7	224921.9	13.92	1.21 .71	0.463	224922.2	1547.4	158
8	2254 44.0,	12.92	110.45	0.475	225444.2	1547.2	159
9	226942.0	11.91	058.93	0.485	2259421	1647.1	160
10	$\begin{array}{llll}23 & 4 & 15.7\end{array}$	10.90	047.17	0.495	$23+15.9$	1547.0	161
11	238825.2	0.89	035.17	0.504	$23 \quad 835.3$	15469	162
12	231210.3	8.87	022.96	0.512	231210.4	1546.8	163
13	231630.91	7.85	010.57	0.520	231531.0	1546.7	164
14	231827.0	6.82	01.99	0.526	231827.6	1546.7	165
15	$23 \quad 2058.4$	5.79	014.69	0.532	$23 \quad 2058.4$	1546.6	166
16	23235.1	4.76	027.52	0.537	$23 \quad 23581$	1546.6	167
17	233447.01	3.73	040.46	0.541	232447.0	15.46 .4	168
18	23264.1	2.70	053.48	0.543	232641	15 4 4	169
19	232656.4	1.66	16.55	0.545	2326564	15463	170
20	232723.9	0.63	119.65	0546	2327239	1546.2	171
21	23 27 27	0.41	13275	0.545	232720.5	15. 46.2	172
23	$\begin{array}{lll}23 & 27 & 1.2\end{array}$	1.44	115.82	0.513	$23 \quad 274$	1546.1	173
23	$23 \quad 2617.1$	2.48	158.82	0.540	232617.2	1546.1	171
24	$23 \quad 25 \quad 5.2$	3.51	211.72	0.535	233504	15 15	175
25	232328.6	4.54	224.50	0.529	23.2388	1546.0	176
26	23212% ?	6.57	237.13	0.523	232127.5	15460	$1: 7$
27	2319 , \% 2	6.5	249.59	0.	23191.5	1540	178
28	$\begin{array}{lllll}23 & 16 & 10.7\end{array}$	7.61	$\begin{array}{ll}3 & 1.84\end{array}$	0.506	231611.0	1546.6	179
		8.64	313.87	0.496	2381256.1	1548.0	180
	23916	9.65	325.67	0.436	23016.8	1548	181
31	[N. 23 b 12.5	10.86	337.20	0.475	N. 2351313	16 te.en	182

JULY, 1876.							
	Page 1. AT APPARENT NOON.				Page II. AT MEAN NOON.		
	'The Sun's.		Equation of Time to be added to Apparent Time.	$\begin{gathered} \text { Var. } \\ \text { in } \\ 1 \text { hour. } \end{gathered}$	The sun's.		
	Apparent	Var. in			Aypurent.	Semi-	
	$0 \cdot 1$		m	8		"	
1	N. $23-512.5$	10.66	3 37.90	0.475	N. $23 \quad 5 \quad 13.2$	15460	182
2	$\begin{array}{llll}23 & 0 & 44.7\end{array}$	11.66	348.46	0.463	$23 \quad 0 \quad 45.4$	15460	183
3	225552.8	12.66	359.42	0.450	225553.6	1546.0	184
4	2250370	13.65	410.66	0.436	225038.0	1546.0	185
5	224457.4	14.64	420.37	0.422	224458.5	1546.0	186
6	223854.2	15.62	430.34	0.407	223855.3	1546.0	187
7	223227.5	16.60	439.93	0.392	223228.7	1546.0	188
8	222537.4	17.57	449.14	0.376	$22 \begin{array}{llll}25 & 38.8\end{array}$	15460	189
9	2218241	18.54	457.96	0359	221825.6	1546.1	190
10	221047.7	19.49	$5 \quad 6.37$	0.342	221049.4	15461	191
11	$22 \quad 248.5$	20.44	514.36	0.324	$22 \quad 250.3$	1546.1	192
12	215426.5	21.39	521.91	0.305	215428.4	1340.2	193
13	214541.9	22.32	529.01	0.286	214544.0	1546.2	194
14	213635.0	23.25	53565	0.267	213637.2	1546.3	195
15	$2127 \quad 5.9$	24.17	541.82	0.247	21278.2	1546.3	196
16	$\begin{array}{llll}21 & 17 & 14.8\end{array}$	25.08	547.51	0.227	211717.2	1546.4	197
17	$21 \begin{array}{lll} \\ 21 & 19\end{array}$	25.99	562.71	0.206	2174.5	15464	108
18	$\begin{array}{llll}20 & 56 & 27.5\end{array}$	26.88	587.39	0.184	205630.2	1546.5	109
19	2045318	27.76	61.55	0.162	204534.6	15466	200
20	$20 \quad 34151$	28.63	$6 \quad 5.16$	0.139	203418.0	1546.6	201
21	$20 \quad 2237.5$	29. ${ }^{\text {8 }}$	8 8.22	0116	202240 b	1546.7	202
22	$20 \quad 10 \begin{array}{lll}29.4\end{array}$	30.34	610.71	0.002	$201^{\wedge} 42.6$	1546.8	203
23	195821.1	31.18	61261	0.067	1958244	15469	204
24	194542.9	32.00	613.91	0.042	1945462	15470	205
25	1032440	32.82	614.61	0.016	193248.3	1547.1	200
26	1910275	33.63	614.70	0.009	1919310	15472	257
27	$\begin{array}{llll}19 & 5 & 50.0\end{array}$	34.42	614.18	0.035	$19 \quad 504.5$	1547.3	208
28	$\begin{array}{llll}18 & 51 & 55.5\end{array}$	35.20	613.04	0.f.60	185109.2	1547.4	209
29	183741.5	35.06	611.28	0.086	$\begin{array}{llllllll}18 & 37 & 45\end{array}$	1547.5	210
30	$\begin{array}{lll}18 & 23 & 0.3\end{array}$	36.72	$6 \quad 8.90$	0.112	183313.1	1547.7	211
31	$18 \quad 8 \quad 19.1$	37.46	6 6 91	0.137	$18 \quad 0229$	1547.8	212
32	N. 175311.1	3820	62.30	0163	N 175315.0	1547.9	213

AUGUST 1876.
\square

	Page I. AT APPAREN'T NOON.				$\begin{gathered} \text { Page II } \\ \text { AT MEAN MOON } \end{gathered}$		
	The Sun's		Equationof Time to 18 adied to	$\begin{gathered} \text { Var. } \\ \text { in } \\ 1 \text { hour. } \end{gathered}$	'Ine Sux'	's.	
	Apparent Declination.	Var. in 1 hour.	s bt. from Appuren! Time.		Apparent Declination	Semidiameter.	
1	N 17753111	38.20	$\begin{array}{ll}\text { in } & 8 \\ 6 & 2.30\end{array}$	0.163	N. 175315.0	1547.3	213
2	1737457	38.91	558.07	0.189	173749.6 !	1548.1	214
3	172233	39.62	55323	0.214	$1722 \quad 7.2$	1548.3	215
4	$17 \quad 6 \quad 39$	40.32	547.79	0.239	$17 \quad 678$	1548.3	216
5	$16 \quad 4948.0$	41.00	541.74	0.264	164051.9	1548.5	217
6	163315.8	41.68	535.10	0.289	163319.7	1548.6	218
7	161627.6	42.34	$\bigcirc 27.87$	0.313	161631.5	1548.8	219
8	$15 \quad 5923.7$	42.99	52006	0.337	$15 \quad 5927.5$	1548.3	220
9	$\cdots 154242$	43.63	511.69	0.361	154288.0	1540.1	221
10	1524296	44.25	$5 \quad 2.75$	0.584	$15 \quad 2433.3$	1540.3	222
11	$15 \quad 640.1$	44.87	45327	0.406	$15 \quad 643.8$	1549.4	223
12	144836.0	45.47	443.24	0.428	144839.6	1540	224
13	143017.5	46.06	432.69	0.450	143021.0	1549.7	22.5
14	141145.1	46.64	421.62	0.472	141148.5	1549.9	226
15	135259.0	47.20	410.03	0.493	13532.2	1550.1	227
16	133359.4	47.75	357.94	0.514	13342.6	$15 \quad 50.3$	228
17	131446.9	48.29	34535	0.535	131440.0	$15 \quad 50.4$	229
18	125521.7	48.81	332.26	0.556	125524.6	$15 \quad 50.6$	230
19	123544.1	-49.32	318.68	0.576	123546.8	$15 \quad 50.8$	231
20	121554.5	49.81	$3 \quad 4.62$	0.596	121557.1	$15 \quad 51.0$	232
21	115553.3	50.29	250.09	0.615	115555.7	1551.2	233
22	113540.8	50.75	235.09	0.634	123543.0	$15 \quad 51.4$	234
23	111517.3	51.20	219.64	0.653	111519.3	1551.6	235
24	1054431	51.64	$2 \quad 3.75$	0.671	105444.9	$15 \quad 51 \cdot 9$	236
25	103358.7	52.06	147.43	0.688	10340.3	1552.1	237
26	10134.4	52.46	130.71	0.705	$1013 \quad 5.7$	$15 \quad 523$	238
27	95204	52.80	113.58	0.722	0521.4	$15 \quad 52.5$	239
28	93047.0	53:24	1388.07	0.737	93047.9	$15 \quad 52.8$	240
20	9824.7	53.61	138.10°	0.752	9 O	$15 \quad 83.0$	241
30	84753.8	53.06	019.97	0.766	84754.1	1583.2	242
31	82614.4	54.31	$0 \quad 1.41$	0.780	82614.4	15 153.4	243
32	84270	54.64	017.46	0.793	N. 8, 420.8	1563.7	244

SEPTEMBER, 1876.

प7	Page I. AT APPARENT NOON.				$\begin{gathered} \text { Page II. } \\ \text { AT MEAN NOON. } \end{gathered}$		$\left\lvert\, \begin{aligned} & \text { Page } \\ & \mathbf{X X} . \end{aligned}\right.$
	The Sun's.		Equation of Time to be substracted from Apparent Tzme.	$\begin{gathered} \text { Var. } \\ \text { in } \\ 1 \text { hour. } \end{gathered}$	The Suxis		
	Apparent Declination.	$\begin{aligned} & \text { Var. } \\ & \text { in } \\ & 1 \text { hour. } \end{aligned}$			Apparent Declination.	Semidiameter.	ค็ ${ }^{\text {n }}$
	- , "	"	m		-	"	
1	N. 8427.0	54.64	017.46	0.793	N. 8420.8	$15 \quad 53.7$	244
2	74231.9	54.95	036.63	0.805	74231.4	1553.9	245
3	72029.4	55.25	056.08	0.815	72028.5	1554.2	246
4	66819.7	55.65	116.77	0.825	65818.5	$15 \quad 54.4$	247
5	6363.2	55.83	136.70	0.835	$\begin{array}{llll}6 & 36 & 1.7\end{array}$	1554.6	248
6	61340.1	56.09	155.84	0.843	61338.2	1554.9	249
7	55110.7	5635	216.16	0.850	6518.5	1555.1	250
8	52835.3	56.59	236.65	0.857	62832.9	$15 \quad 55.4$	251
9	$5 \quad 554.3$	56.82	257.29	0.862	$5 \quad 551.5$	$15 \quad 56.6$	252
10	$4 \begin{array}{lll}43 & 7.9\end{array}$	57.04	318.04	0.867	44348	1555.9	253
11	- 42016.5	57.24	338.89	0.871	42013.0	1550.1	254
12	35720.3	67.43	359.83	0.874	35716.5	$15 \quad 56.4$	255
13	33419.8	57.60	420.84	0.876	33415.7	1556.6	256
14	31115.3	57.76	441.89	0.878	31110.8	1656.9	257
15	2487	57.91	152.98	0.879	2482.2	1557.1	258
16	22455.6	58.04	¢ 24.09	0.879	22450.4	$15 \quad 57.4$	259
17	2141.2	58.15	545.15	0.879	$2 \begin{array}{llll}2 & 1 & 35.6\end{array}$	$15 \quad 57.8$	260
18	13824.2	58.25	86.28	0.878	13818.3	$15 \quad 57.9$	261
19	115080	58.34	627.33	0.876	11458.7	$15 \quad 58.2$	262
20	$\begin{array}{lllllllllll}0 & 51.0\end{array}$	58.41	648.33	0.874		1568.4	263
21	02821.4	58.46	$7 \quad 9.20$	0.870	02814.5	$15 \quad 58.7$	264
22		58.50	730.10	0.866	N. 0 4 40.5	1559.0	265
23	S. 01826.6	58.53	750.84	0.801	8. 0181834.3	1659.3	268
24	04151.4	58.54	811.45	0.856	041 69.4	1559.5	$26 i$
25	$1 \begin{array}{lll}1 & 5 & 16.3\end{array}$	58.53	831.92	0.849	1524.6	1569.8	268
26	12840.9	58.51	$8 \mathbf{8 2 . 2 2}$	0.842	12849.5	$16 \quad 0.1$	269
27	$1 \mathrm{BL}^{1} 4.8$	58.48	912.34	0.834	15213.8	$18 \quad 0.4$	270
28	21527.8	58.43	c 32.26	0.825	21637.1	160.7	271
29	23849.4	58.37	981.95	0.815	23859.0	$16 \quad 1.0$	272
30	$\begin{array}{llll}3 & 2 & 9.4\end{array}$	58.29	1011.40	0.805	- 3210.3	1818	273
31	S. 32527.4	. 8.20	10 30.57.	0.793	8. $3 \quad 25 \quad 37.0$	$16 \quad 1.5$	274

OCTOBER, 1876.

Elements from the Nautical Almanac.

ํํ	Page I. A'T APPARENT NOON.				Page II. AT MEAN NOON.		$\begin{aligned} & \text { Page } \\ & \mathbf{X X} . \end{aligned}$	
a	Ter Sun's		Equation of Time to be subt. from added to Ap in parent Time. 1 hour.		Apparent Declination.			
宝	Apparent Declination.	in			Semidiameter.	き		
	- ' 1			8		- '"	, "	
1	S. 215516.6	22.66	1034.56	0.955	S. 215520.6	1616.0	335	
2	$\begin{array}{llll}22 & 4 & 7.8\end{array}$	21.60	$10 \quad 11.32$	0.981	$22 \quad 411.4$	1616.1	336	
3	221233.4	20.53	947.47	1.006	221236.7	16 16,3	337	
t	222033.3	19.45	923.03	1.030	222036.3	1616.4	338	
5	$22 \quad 28 \quad 7.2$	18.37	858.02	1.054	222810.0	1616.5	339	
6	223514.9	1727	832.46	1.076	223517.4	1616.6	340	
7	224156.1	16.16	86.38	1.097	224158.3	1616.7	341	
8	224810.5	15.04	739.79	1.118	224812.4	1616.8	342	
9	225357.9	13.91	712.73	1.137	225359.6	1617.0	343	
10	225918.2	12.78	645.23	1.154	225919.7	1617,1	344	
11	$23 \quad 411.2$	11.64	617.32	1.171	$23 \quad 412.4$	1617.2	345	
12	2388636	10.48	549.03	1.186	23.837 .7	$16 \quad 17.3$	346	
13	231234.4	9.33	520.40	1.200	-23 $12 \begin{array}{lll}25.3\end{array}$	$16 \quad 17.4$	347	
14	23164.4	8.17	451.45	1.212	23165.1	1617.4	348	
J5	23 19.6.5	7.00	422.24	1.222	231978	1617.5	349	
16	232140.5	5.83	352.79	1.231	232140.9	1617.6	350	
17	232346.4	4.66	323.14	1.239	232346.7	1617.7	351	
18	23254.1	3.48	253.34	1.244	2325243	$16 \quad 17.7$	352	
19	232633.6	2.31	223.42	1.248	232633.7	1617.8	353	
20	$23 \quad 2714.8$	1.13	153.42	1.251	232714.8	1617.9	354	
21	232727.6	0.06	123.37	1.252	232727.6	1618.0	355	
22	232712.0	1.24	$0 \quad 53.31$	1.252	$23 \quad 2712.0$	$16 \quad 18.0$	356	
23	$23 \quad 26$:8.11	2.42	023.28	1.250	232628.1	1618.1	-57	
24	232515.9	3.60	06.68	1.246	232515.9	1618.1	358	
25	2323 35.5	4.77	036.55	1.242	232335.5	1618.2	359	
26	232126.8	5.95	16.29	1.236	232126.9	1618.2	360	
27	231850.0	7.12	135.87	1.229	231850.2	1618.9	301	
28	23 it 45.1	8.29	$2 \quad 5.26$	1.220	231545.4	1618.2	302	
29	231212.3	9.45	234.43	1.210	231212.7	1618.3	363	
30	238111.6	10.60	$3 \quad 3.35$	1.199	$\begin{array}{llll}13 & 8 & 12.2\end{array}$	1618.3	364	
31	$23 \quad 343.3$	11.75	331.99	1.187	$23 \quad 344.0$	1618.3	365	
32	S. $22 \quad 5847.4$	12.90	$4 \quad 0.32$	1.174	S. $22 \quad 58 \quad 48.2$	1618.3	360	

APPARENT PLACES OF STARS 1876.					
at upper transit at greenwich.					
$\boldsymbol{\gamma}^{\mathbf{l}}$ Leonis.		- Corvi.		\propto Virginis. (Sprea)	
Date.	Dec. North.	Date.	Dec. South.	Date.	Dec. South.
Dec. 16 16 26 36		Nor. 16 Dec. 26 6 16			$\begin{array}{cc}0^{\circ} & 1^{\prime} \\ 10 & 30 \\ 65.2 & \\ 65.3 & 0.1 \\ 65.3 & 0.0 \\ 65.1 & 0.2\end{array}$
\boldsymbol{a} Bootis. (Arcturus)		β^{1} Scorpii.		δ Ophiuchi.	
Dat9.	Dec. North.	Date.	Dec. South.	Date.	Dec. South.
	$19^{\circ} \quad 49$		19 " 27		${ }^{\circ} \mathrm{n}$, 22
Apr. $\begin{aligned} & 10 \\ & \\ & 20\end{aligned}$	$\begin{array}{ll} 26.4 & 1.3^{\prime \prime} \\ 27.7 \end{array}$	June $\begin{array}{r}9 \\ \\ \hline 19\end{array}$	$\begin{array}{ll}67.8 \\ 67.8 & 0.0 \\ \\ 67\end{array}$	Nov. $\begin{array}{r}6 \\ 16\end{array}$	$\begin{array}{ll}35.0 \\ 36.0 & 1.0\end{array}$
30	$\begin{array}{lll}29.2 & 1.5\end{array}$	29	$\begin{array}{ll}67.8 & 0.0 \\ 0.0\end{array}$		$\begin{array}{ll}37.3 & 1.8\end{array}$
May 10	30.81 .6	July	67.8	Dec. 6	38.71
α Ophiuchi.		ζ Aquilæ.		α Gruis.	
Date.	Dec. North.	Date.	Dec. North.	Dste.	Dec. South.
	12" 38		$13{ }^{\circ} \mathrm{H}$		47* 33
Oct. $\quad 7$	$\begin{array}{ll}66.7 & 0.7 \\ 66.0\end{array}$	Sept. ${ }_{17}^{7}$	$\begin{array}{ll}56.5 \\ 87.1 & 0.6\end{array}$	Feb. $\begin{aligned} & 10 \\ & 20\end{aligned}$	$\begin{array}{ll}46.3 & 2 . \\ 43.7\end{array}$
	66.0 68.0 1.0		$\begin{array}{ll}67.1 & 0.4 \\ 87.6 & 0.4\end{array}$	Mar. ${ }^{20}$	$\begin{array}{ll}43.7 & 2.6 \\ 41.1 & 2.6\end{array}$
Nov. 6	63.718	Oct. 7	$87.6 \quad 0.1$	11	$38.5 \quad 2.6$

ELEMENTS FROM THE ADMIRALTY TIDE TABLES.

FEBRUUARY, 1875.

MARCH, 1875.

APRIL, 1875.

AUGUST, 1875.

Elements from the Admiralty Tide Tables.
TABLE OF TIDAL CONSTANTS.

NAME OF PORT.	Constants.		Standard Port for Reference.
	Time.	Height.	
Bantry Harbor	H. -114	Pr. in.	Quecnstown
Valentia Harbor	-119	-08	"
Limerick, R. Shannon	+145	+19	Galway
Mellon, "	$+126$		"
Foynes Island, "	+10	+ 07	"
Killybegs	$+013$		Sligo
Coleraine	- 137	-16	Londonderry
Port Rush	-153	-26	"
Ballycastle Bay	-418		Belfast
Lough. Strangford, Quay	+121		Kingstown
Arklow	-225		"
Wexford	$+21$	-74	Waterford
New Ross	+344	+ 0	."
Castletownsend	- 040	-10	Queenstown
St. Ives	-210		Weston-super-mare
Lundy Island	-139		"
Ilfracombe	- 112		"
Llanelly	$+04$		Pembroke
Cardigan	-310		Holyhead
Aberystwyth	- 240	-30	'6
Barmouth	-231		"
Beaumaris	-051	-47	Liverpool
Annan Foot	+ 033		${ }^{\prime}$
Port Carlisle	+ 047		"
Ramsey	+11	+33	Holyhead
Glasgow	+117		Greenock
Crinar	+ 441		"
Lerwick	+22		Thurso
Cromarty	-221		Leith
Peterhead	-143		"
Whitby	+ 023		Sunderland
Scarborough	+ 049	$+15$	"
Filey Bay	+ 058		"
Bridilington	- 150		Hull
Chatham	+ 034		Sheerness *
L..ondon Docks	- 5	-0 0	Loudon
Margate	-218		"
Newhaven	+ 039		Dover
Shorelam	+ 022	- 12	"
Southampton	-111		Portsmouth
Christchurch	-241		:
Exmouth	+038 +		Devonport
Penzance	-113		"
Qibraltar	-127		Brest
Bordenux	+ 33		"
Jerney (St. Helier)	+ 238		+
Helgolnnd	-033	-210	Harwich

Time of High Water on Full and Change days at the following places, arranged alphabetically, with the Rise of the Tide at Springs and Neaps.

PLACE.	High Water Full and Change.	R18E.	
		Springs.	Neaps'.
	H. M.	ft.	ft.
Acapulco, Mexico, W. Coast	36	11	
Basrah (Bar) Persian Gulf	noon		
Batavia, Java	100	2	
Bencoolen, Sumatra	60	3-5	
Brest, France	347	19	133
Dalhousio Harbour, G. St. Lawrence	310	9	
Halifax, Nova Scotia	749	6	5
Hammerfest, Norway	110	9	
Hobarton, Tasmania	815	41	31
Honoruru, Sandwich Islands	40	2	
Iquiqui Road, Peru	845	5	
John St., Day of Fundy	1121	27	23
Macao, China, E. Coast	100	63	
Madras Road, Coromandel Const	734	31	
Magdalen Islands, G. St. Lawrence	820	3	2
Melbourne, Australia, S. C.	248		
Nagasaki Bay, Japan ,	715	8	$7 \frac{1}{2}$
Nanaimo Harbor, G. of Ceorgia, Vancouver Id.	50	14	
Parsboro, Bay of Fundy	${ }_{0} 17$	43	$37 \frac{1}{2}$
Pictou Harbor, Nova Scotia	100	6	4
Plllar Cape, Tasmania	10	6	
Portland, United States	1125	10	84
Quebec, R. St. Lawrenc-	638	18	13
Rio Janelro, Brazil	30	4	3
Shanghai, Yang-tse-Kiang, China, E. Coast	040	10	7
Suez Bay (head of Gulf) Red Sen	110	7	4
Sydney Harbor, Cape Breton	90	6	4
Table Bay, Africa, W. Coast	240	5	3.
Texel, (outside shoals) Netherlands	630	4	$3 \frac{1}{2}$
Tobago, Caribbeau Sea	30	4	2
Yoko-hama, Yedo Bay, Japan	60	64	4 4
Zanzibar, Africa, E. C.	415	15	10

ANSWERS TO EXERCISES.

These Exercises are worked by the Tables of Norie, Bowditch and Raper; but the answer by Norie will cover that of elther of the two other Tables where the solutions agree; where they disagree, separate answers will be given.

MULITIPLICATION BY LOGARITHMS.

DIVISION BY LOGARITHMS.

Norie.
Ex. 4.-626.57
Norie. ${ }^{7}$ Bowditch.
-6 $5 .-31 \cdot 852$
" $6 .-18 \cdot 852$
" 6 . $7 \cdot 4538$
.6 8. $7486 \cdot 4$
" $9 .-3453 \cdot 4$
" 10.- 30394
" 11.- $21 \cdot 32$
" 12. $\quad 21 \cdot 19$

Ex. 13.-
$\cdot 7136$
" 14.— $87338 \quad 87340$
" 15.— 05171
" 16.— 6798
" 17.— 91.91
" 18.— 0001025
" 19.— 08773
" 20.— 6.672

PARALLEL SAILING.

Ex. 2.-198.1	Ex. 6.- $324 \cdot 1$	Ex. 10.-69.84
" 3.-76.73	" 7.- 39.00	" 11.-57.31
" 4.- $19 \cdot 16$	" 8.- 161.4	" 12.-140.2
" ${ }^{\text {¢ }}$.- 12.93	" 9.- 329	

Answers to Exercises.

COURSE AND DISTANCE BY MERCATOR.

 Ex. 3.- N. $73^{\circ} 12^{\prime}$ E. $\quad 460 \cdot 2$ | Ex. 10.-S. $51^{\circ} 32^{\prime}$ E. $652{ }^{\circ}$
ERRATA.

Page 242-Lugarithms. Ex. 4-Answer 18678.
" 243-Day's Work. Ex. 6.-Distance 91'.
" 244- " Ex. 9.-Departure course, S. 80° E. ; Course S. 65° E Dist. $66 \frac{1}{2}^{\prime}$. Long. in $147^{\circ} 30^{\prime}$ W.
" 245-Mer. Alt. of the Sun. Ex. 8. -The Lat.should be uamed S. Ex. 11.-Latitude $40^{\circ} 19^{\prime} 17^{\prime \prime} \mathrm{N}$.
". 246. Greenwich Date. Ex. 9.-G. A. T. May Ist. $4^{\mathrm{h}} 0^{\mathrm{m}} 0$. Amplitude. Ex. 7.-Declination, $22^{\mathrm{s}} 37^{\prime} 20^{\prime \prime}$.
" 248.-Azimuth. Ex. 14.-Raper, True Azimuth N. 490 57' W.
" 250.-Chronometer. Ex. 13.-G. M. '1. March $25^{\mathrm{d}} 5^{\mathrm{h}} 14 \mathrm{~m} 1 \mathrm{~m}$.
" 252.-Star. Ex. 14.-Bowditch, Latitude, 60 $5^{\prime} 27^{\prime \prime}$ S. Tides. Ex. 23.-No A. M. $\quad 0^{\mathrm{h}} 14 \mathrm{~m}$ P. M.
" 253.- " Ex. 50. - $11^{\text {h }} 4 \mathbf{4} \mathrm{~m}_{\mathrm{m}}$ A. M. No P. M.
" 255.-Set No. 1 Day's Work.-Longitude in $19^{\circ} 30^{\prime}$ E.
" 256.- " Deviation. -The names of the Deviation as given should be reversed.
" Correct Mag. Courses, N. $21^{\circ} 51^{\prime} \mathrm{E}$; S. $1051^{\prime} \mathrm{W}$. " Cor Mag. Bearings.S. 70 1^{\prime}, W ; N. $19^{\circ} 59^{\prime}$ W. Set No. 2. Deviation-Course to steer, S. 670 W.
" 258 -Set No. 4. Deviation-Course to steer, N. 48 E.

ANSWERS TO EXERCISES.

rent

N. 4

Diff
$178{ }^{\circ}$
N.

East
C
E
cours
S. 39 depa

C
E
N. 29
N. 56

Co

COURSE AND DISTANCE BY MERCATOR.

CORRECTING COURSES.

Ex. 5. - N. 77% E.	Ex. 9.- N. 34 ${ }^{\circ}$ E.	Ex. 13.- S. 870 W
${ }^{6} 6 .-$ N. 67 W.	" 10.- S. 39 W .	" 14.- N. 64 W
" 7.-S. 88 E.	" 11.-S. 83 E .	15.-S. 7 W
${ }^{6} 8 .-\mathrm{S} .83 \mathrm{~W}$.	" 12.- N. 88 E.	

DAY'S WORK.

Ex. 4.-Corrected Courses.-Dep. Course, North $14^{\prime} 5$; Current Course S. 26° W., $23^{\prime} ;$ N. 22° W., 22^{\prime}; N. 14° W., $24^{\prime} \cdot 8$; N. $45^{\circ} \mathrm{W} ., 24^{\prime} \cdot 2$; N. $64^{\circ} \mathrm{W} ., 22^{\prime} \cdot 5$; N. $80^{\mathrm{o}} \mathrm{W}$., $21^{\prime} \cdot 5 ; \mathrm{S} .38^{\circ} \mathrm{W} ., 25^{\prime} \cdot \overline{5}$. Diff. lat. $66^{\prime} 5$; departure $80^{\prime} \cdot 3$.

Course N. 50° W. Distance 105. Lat. in $51^{\circ} 8^{\prime}$ S. Long. in $178^{\circ} 38^{\prime}$ E.

Ex. 5. - Corrected Courses. - Dep. Course S 30 W. 11'; N. 35° E. $18^{\prime} .9$; S. 13° W. $19^{\prime} \cdot 5$; S. $17^{\circ} \mathrm{W} .20^{\prime} \cdot 7$; N. 58° E. 18^{\prime}; East $16^{\prime} 8$; S. $18^{\circ} \mathrm{W} .17^{\prime} \cdot 9$. Diff. lat. $\mathbf{4 0}^{\prime} \cdot 5$; departure $21^{\prime} \cdot 7$.

Course S. 28° E., Distance 46'; Lat. in $44^{\circ} 27^{\prime}$ S ; Long. in $90^{\circ} 0^{\prime}$ E.
Ex. 6.-Correeted Courses.-Dep. course, West $\mathbf{9}^{\prime}$; Current course, South 14^{\prime}; S. 56° E. $19^{\prime}{ }^{\circ} 7$; N. 54 4° W. 19'.3; S. 8° W. $20^{\prime} \cdot 8$; S. 39° W. 24.9 ; S. 24° E. $25 \cdot 1$; S. 69° W. 20.6. Diff. lat. $84^{\prime} \cdot 0$: departure $35^{\prime} \cdot 9$.

Course S. 23" W. Distance 93'; Lat. in 3402' N.; Long. in 9o 26 Li.
Ex. 7.-Corrected Courses. - Current course S. 790 E. 2.1'; N. ${ }^{20}{ }^{\circ}$ W. $15^{\prime} \cdot 8 ;$ N. 13° W. $18^{\prime} \cdot 5 ;$ N. 63° W. $19^{\prime} \cdot 8 ;$ N. 80° W. $18^{\prime} \cdot 2$; N. $56{ }^{\circ} \mathrm{E} .16 \cdot 2$; N. $41^{\circ} \mathrm{E} .17 \cdot 7$. Diff. lat. $63^{\prime} \cdot \frac{1}{\prime}$; departure $0^{\prime} \cdot 0$.

Course. North Dist. 63'4; Lat. in $0{ }^{\prime \prime} 17^{\prime}$ N. Long. in $36^{\circ} 24^{\prime}$ W.
Ex 8.-Corrected Courses.-Departure course N. \&' E. 14'; current course N. 40° E. 18' ; N. 27° E. $32^{\prime} \cdot 9$; N. 43° E. $38^{\prime} \cdot 3$; N. 477° E. $42^{\prime} \cdot 8$; N. 41° E. $35^{\prime} \cdot 5$; N. 10° W. $32^{\prime} \cdot 7$; N. 15^{0} E. $99^{\prime} \cdot 5$. Diff. lat. $201^{\prime} \cdot 8$; departure $110^{\prime} \cdot 1$.

Counse N. 29" E. Distance 231; Lat. in 36"4' N. Long.in 240 ö'W.

Ex. 9.-Corrected Courses.-Departure course S. $80^{\circ} \mathrm{W} .10^{\prime}$; Current course S. 32° E., 27^{\prime}; N. 37° W. $32 \cdot 9$; S. 180° E., $32^{\prime} \cdot \tilde{5}$; N. 73° W., $27^{\prime} \cdot 2$; S. 59° E., 26 ; N. 88° E., $24 \cdot 7$; N. 77° E. $95^{\prime} \cdot 5$; Diff. lat. $28^{\prime} \cdot 0$; departare 40.7 .

Course S. 56° E. Dist. 49 ; Lat. in 37042^{\prime} N. Long in $147^{\circ} 55^{\prime}$ W.
Ex. 10.-Diff. lat. 56.0; departure $145^{\prime} \cdot 9$.
Course N. 69° W. Distance 156^{\prime}; Lat. in $45^{\circ} 26^{\prime}$ N. Long. in $28045^{\prime} \mathrm{W}$.

Ex. 11 -Dif. lat. $42^{\prime} \cdot 8$; departure $103^{\prime} \cdot 2$.
Course N. 67° E. Distance 112^{\prime}; Lat. in $47^{\circ} 39^{\prime}$ S. Long. in $99^{\circ \prime} 00^{\prime} \mathrm{E}$.

Ex. 12.-Diff: lat. $47^{\prime} \cdot \tilde{\text {; }}$; departure $146^{\prime} \cdot 9$.
Cgurse S. 720 E. Distange 154'; Lat. in 47' 22^{\prime} N. Long. is $26^{\circ} 10^{\prime} \mathrm{W}$.

Ex. 13.-Diff. lat. $100^{\prime} \cdot 0$; departure $90^{\prime} \cdot \mathbf{2}$.
Counse S. ${ }^{420}$ E. Distance 135'; Lat. in $33^{\circ} 55^{\prime}$ Mf. Longi. in $1^{\circ} 3^{\prime} \mathrm{E}$.

Ex. 14.-Diff. lat. $201 \cdot 7$; departure 0.0 .
Course. North Distange $201 \cdot 7$; Lat. in 40° j3 $3^{\prime} \mathrm{S}$. Long. in $104^{\circ} 10^{\circ} \mathrm{E}$.

Ex. 15.-Diff. lat. 65.9 ; departure 1110.
Course S. 59° W. Distance 130^{\prime}; Lat. in $29^{\circ} 6^{\prime}$ N. Long. in $178^{\circ} 22^{\prime}$. E.

MEIRIDIAN ALTITUDE OF THE SUN.

Ex. 3.-Green. App. Time, April $25^{d} 16^{\mathrm{h}} \mathbf{4}^{\prime \mathrm{m}} 0 \mathrm{~s}$. True decination $13^{\circ} 37^{\prime} 21^{\prime \prime} \mathrm{N}$.
Norie True Altitude $52^{\circ} 23^{\prime} 22^{\prime \prime} \mathrm{N}$. Latitude $23^{\circ} 59^{\prime} 17^{\prime \prime} \mathrm{S}$. Bowditch "6 " $6 \quad 52316$ N. $\quad 4 \quad 23$ i9 23 S.

Ex. 4.-Green. App. Time, July $10^{d} 16^{\mathrm{h}} 3 \mathbf{m}^{\mathrm{m}} 20^{\text {s. }}$. True declination $22^{\circ} 5^{\prime} 24^{\prime \prime} \mathrm{N}$.
Norie \quad True Altitude $180.54^{\prime} \quad 33^{\prime} \mathrm{N}$. Latitude $490 \quad 0^{\prime} 33^{\prime \prime} \mathrm{S}$. Bowditeh " \quad " $18 \quad 53 \quad 54 \quad \mathrm{~N} . \quad$ " $\quad 49 \quad 0 \quad 42 \mathrm{~S}$.

Ex. 5.-Green. App. Time, Nov. $7 \mathrm{a} 23^{\mathrm{h}} 12 \mathrm{~m} 56^{\mathrm{s}}$. True declination $16^{\circ} 45^{\prime}$, $41^{\prime \prime}$ S.
Norie True Altitude $733^{\prime \prime} 29^{\prime} 58^{\circ} \mathrm{S}$. Latitude $0^{\circ} \quad 15^{\prime} 39^{\prime \prime} \mathrm{S}$.

$\begin{array}{llllllllllll}\text { Raper } & 6 & 6 & 73 & 20 & 48 & \mathrm{~S} . & & 0 & 15 & 29 & \mathrm{~S} .\end{array}$

Ex. 6.-Green. App. Time, Mar. $27^{\mathrm{d}} 0^{\mathrm{h}} 33^{\mathrm{m}}$ 28s. True declination $2051^{\prime} 40^{\prime \prime} \mathrm{N}$.
Norie True Altitude $32^{\circ} 35^{\circ} 11^{\prime \prime}$ S. Latitude $60^{\circ} 16^{\prime} 2 y^{\prime \prime} \mathrm{N}$. Bowditch " " 6235 4 S. " $60 \quad 1636$ N.

Ex. 7.-Green. App. Time, Sept. $22^{\mathrm{d}} \mathbf{1 7} \mathrm{h} 2 \mathrm{~m}$ 40s. True declination $0^{\circ} 11^{\prime} 37^{\prime \prime} \mathrm{S}$.
Norie True Altitude $18025^{\prime} \quad 9^{\prime \prime} \mathrm{N}$. Latitude $71^{\circ} 46^{\prime} 28^{\prime \prime} \mathrm{S}$.
 Raper " ، $18 \quad 2456$ N. . $71 \quad 4641$ S.

Ex. 8.-Green. App. Time, Jan. 24 $4^{\text {d }} 533^{\mathrm{m}} 12 \mathrm{~s}$. True declination $19{ }^{\circ} 14^{\prime} 29^{\prime \prime} \mathrm{S}$.
Norie True Altitude $90^{\circ} \quad 7^{\prime} 58^{\prime \prime} \mathrm{N}$. Latitude $190 \quad 6^{\prime} 31^{\prime \prime} \mathrm{N}$. Bowditch " " 60 Raper " $6 \quad 90 \quad 7 \quad 54 \quad$ N. \quad. $6 \quad 19 \quad 6 \quad 35$ N.

Ex. 9.-Green. App. Time, July $4^{\text {d }} 8^{\text {h }} 55 \mathrm{~m}$ 12s. True declination $22^{\circ} 48^{\prime} 36^{\prime \prime} \mathrm{N}$.
Norie True Altituds $5 l^{\circ} 27^{\prime} 12^{\prime \prime}$ S. Latitude 6[0 $21^{\prime} 24^{\prime \prime} \mathrm{N}$.
Bowditch " $6 \quad 5127 \quad 7 \quad$ S. $\quad 6 \quad 612129$ N. Raper ". " \quad " $1 \begin{array}{lllllllll}27 & 8 & \mathrm{~S} . & 61 & 21 & 28 & \mathrm{~N} .\end{array}$

Ex. 10.-Green. App. Time, Mar. $19^{\mathrm{d}} 21^{\mathrm{h}} 48^{\mathrm{m}} 48{ }^{\text {s. }}$. True declination $\mathrm{Co}^{\circ} 3^{\prime} 43^{\prime \prime} \mathrm{N}$.
Norie True Altitude $39037^{\prime \prime} 53^{\prime \prime} \mathrm{S}$. Latitude $50^{\circ} 25^{\prime \prime} 50^{\prime \prime} \mathrm{N}$.

Ex. 11.-Green. App. Time, Sept. $22^{\mathrm{d}} 5^{\mathrm{h}} 5^{\mathrm{m}} 38 \mathrm{~s}$. True declination $0^{\circ} 0^{\prime} 0^{\prime \prime}$.
Norie True Altitude $49^{\circ} 40^{\prime} 43^{\prime \prime}$ S. Latitude $40^{\circ \prime} \mathrm{i} 9^{\prime} 17^{\prime \prime} \mathrm{N}$.
Bowditch " " 494034 S. " 40 19 26 N.

Ex. 12.-Green. Apr. Time, May $15^{\mathrm{d}} 1^{\mathrm{h}} 7 \mathrm{~m} 0 \mathrm{~s}$. True declination $19^{\circ} \mathrm{I}^{\prime} 4 \mathrm{C}^{\prime \prime} \mathrm{N}$.
Norie True Altitude $38^{\circ} 32^{\prime} 52^{\prime \prime} \mathrm{N}$. , ". $32025^{\prime} 28^{\prime \prime} \mathrm{S}$.
Bowditch " \quad " $38 \quad 3244$ N. $\quad 4 \quad 32 \quad 25 \quad 30$ S.

Ex. 13.-Green. App. Time, Mar: $19^{\mathrm{d}} 22 \mathrm{~h} 23^{\mathrm{m}} 0^{\mathrm{s}}$ True declination $0^{\circ} 4^{\prime} 19^{\prime \prime} \mathrm{N}$.
Norie True altitude $38^{\circ} 56^{\prime} 11^{\prime \prime} \mathrm{S}$. Latitude $51^{\circ} 8^{\prime} \quad 8^{\prime \prime} \mathrm{N}$.
Bowditch " \quad " 38 56 6 S. \quad. 51813 N.
Raper " " $\quad 38 \quad 55 \quad 59 \mathrm{~S}$. " 51820 N.

Ex. 14.-Green. App. Time, June $28^{\mathrm{d}} 13^{\mathrm{h}} 16^{\mathrm{m}} 40^{\mathrm{s}}$ True declination $23^{\circ} 14^{\prime} 30^{\prime \prime} \mathrm{N}$.
Norie True altitude $71^{\circ} 13^{\prime} 11^{\prime \prime} \mathrm{N}$. Latitıde $4^{\circ} 27^{\prime} 41^{\prime \prime} \mathrm{N}$.
 Raper " " $71 \quad 13 \quad 1 \mathrm{~N} . \quad$ " 42731 N .

Ex. 15.-Green App. Time, Feb. 29d $20^{\text {h }} 20^{\mathrm{m}} 20^{\text {s }}$ True declin. ation $7^{\circ} 23^{\circ} 27^{\prime \prime} \mathrm{S}$.
Norie True Altitude $62^{\circ} 16^{\prime} 13^{\prime \prime} \mathrm{S}$. Latitude $20^{\circ} 20^{\circ} 20^{\circ} \mathrm{N}$. Bowditch " " 6216 6.$\quad$ " 202027 N. $\begin{array}{lllllllllllll}\text { Raper } & 6 & 6 & 62 & 16 & 9 & \text { S. } & & 20 & 20 & 24 & \text { N. }\end{array}$

GREENWICH DATE.

 " 4.-G. A. T. Oct. 11143843 " 8.-G. M. T. July 8172135 " 5 .-G. M.T. Aug. 2018454 " 9.-G. A. T. Apr. 30400 " 6.-G. A. T. Mar. 15185214 "10.—G. M. T. Nov. 30212121

AMPLITUDE.

Green. Date. True decl. True Amp. Error. Dev.
d h m

AZIMUTH.

Ex. 3.-Green. Mean Time, Jan. 27^{4} 214 47 m As. Polar distance $71^{\circ} 41^{\prime \prime} 6^{\prime \prime}$.

Noric Remı. 5393 'T. Az. N 9538 W Er: 838 W Dev. 1716 W. Bowditen " 5 : 390

Ex. 4.-Green. Mear Time, Feb. 25d $4 \mathrm{~h} 8 \mathrm{~m} 44^{\mathrm{s}}$. Polar distance $99^{\circ} 9^{\prime} 12^{\prime \prime}$.

Norie Rem. 263638 T. Az. S 6850 E Er. 129 E Dev. 545 W. Bowditch " 263641 " " "
Raper " 263643 " S 6852 E " 127 E " 547 W .
Ex. 5.-Green. Mean Time, Sept. $22_{\mathrm{d}} \mathrm{4}_{\mathrm{h}} 58 \mathrm{~m} 27 \mathrm{~s}$. Polar distance $89^{\circ} 59^{\prime} 58^{\prime \prime}$.

Norie ‘Rem. 22421 T. Az. N 8036 E Er. 2044 W Dev. ${ }^{r}$ a. 'V. Bowditch " 22423 " " " Raper " 22427 " N 8037 E " 2043 W " 243 W .

Ex. 6.-Green. Mean T:me, Sept. $30^{\mathrm{d}} 22^{\mathrm{h}}, 43^{\mathrm{m}} 16^{\mathrm{s}}$. True declination $3^{\circ} 24^{\prime} 22^{\prime \prime} \mathrm{S}$.
Norie Rem. 32236 T.Az. S. 8230 W. Er. 230 W. Dev. 250 W. Bowditch" 32240 " " Raper " 32242 " $2.8230 \frac{1}{2} \mathrm{~W}$.

Ex. 7.-Green. Mean Time, Dec. $19^{\mathrm{d}} 21^{\mathrm{h}} 38^{\mathrm{m}} 28^{\mathrm{s}}$. Time declination $23^{\circ} 27^{\prime} 24^{\prime \prime} \mathrm{S}$.

Norie Rem. 02353 T. Az. N. 12210 E. Er. 630 E. Dev. 200 W. Raper " 02348 " N. $1227 \mathrm{E} .{ }^{2}$ " 627 E . " 203 W .

Ex. 8.-Green. Mean Time, Feb. $11^{\mathrm{d}} 21^{\mathrm{h}} 49 \mathrm{~m} 0$. . True declination $133^{\circ} 50^{\prime} 13^{\prime \prime} \mathrm{S}$.
Norie Rem. 7544 T. Az. N. 88 L2 W. Er. 298 W. Dev. 1938 W. Bowditch " 7547 " N. 8813 W . " 290 W. " 1939 W . Raper "7 546 " N. 8813 W. " 299 W. " 1939 W .

Ex. 9.-Green. Mean Time, Nov. 14d $5^{\text {h }} 15 \mathrm{~m} 56^{\text {s. }}$. True declination $18^{\circ} 28^{\prime \prime} 5^{\prime \prime} \mathrm{S}$.
Norte Rem. 244032 T. Az. S. 4558 W. Er. 442 W. Dev. 92 W.
Bowditeln "244036 " S. $46 \quad 2$ W. " 4358 W. " 858 W .
Raper "244037 "S. 460 W. " 440 W . " $9 \quad 0 \mathrm{~W}$.

	Norie.	Bowditch.	Raper.
Ex. 10.-Remainder	111135	111139	111137
True Azimuth	S. 6422 E .	S. 6422 E .	S. 1422 E .
Deviation	318 E .	3 18E.	318 E .
Ex. 11.-Remainder	445252	445257	445257
True Azimuth	N. 6416 W .		N. 6415 W
Deviation	174 E	-	175 E

Ex. 12.-Daily rate $4^{\prime \prime} \cdot 4$. Acc. rate $12 \mathrm{~m} 27^{\mathrm{s}}$ Green. Mean Time Apr. $30^{\mathrm{d}} 18^{\mathrm{h}} \mathrm{Om}^{\mathrm{m}} 0 \mathrm{~s}$.
Norie Rem. $5308^{\prime} 49^{\prime \prime}$ A. T. S. $30^{d} 18 \mathrm{~h} 52 \mathrm{~m} 53^{\mathrm{s}}$ Long. $12027^{\prime} 30^{\prime \prime} \mathrm{E}$ Bowditch " $\begin{array}{llllllll}53 & 8 & 52 & \text { " } & 30 & 18 & 52 & 52 \cdot 5\end{array}$
Raper " $53 \begin{array}{llllllll} & 51 & 6 & 30 & 18 & 52 & 53\end{array}$
Ex. 13.-Green. Mean Time Mar. $25^{\mathrm{d}} 5^{\mathrm{h}} 4 \mathrm{~m}^{\mathrm{m}} 1^{\mathrm{s}}$.
Norie Rem. $51^{\circ} 7^{\prime} 29^{\prime \prime}$ A. T. S. $25^{\mathrm{d}} 4^{\mathrm{h}} 4^{\mathrm{m}} 8^{\mathrm{s}}$ Long. $16^{\circ} 0^{\prime} 15^{\prime \prime} \mathrm{W}$ Bowditch " $\begin{array}{lllllllllllll} & 5 & 7 & 31 & \text { " } & 25 & 4 & 4 & 9 & " & 16 & 0 & 0 \\ W\end{array}$ Raper " $51 \begin{array}{llllllllllll} & 7 & 33 & 6 & 25 & 4 & 4 & 9 & 6 & 16 & 0 & 0 \\ W\end{array}$

Ex. 14.-Green. Mean Time May $19^{\mathrm{d}} 19^{\mathrm{h}} 19 \mathrm{~m} 19$ s.
Norie Rem. 170 $29^{\prime} 16^{\prime \prime}$ A.T.S. $20_{\mathrm{d}} 2^{\mathrm{h}} 17^{\mathrm{m}} 56^{\text {s }}$ Long. $103^{\circ} 43^{\prime} 45^{\prime \prime} \mathrm{E}$ Bowditch " $17 \begin{array}{llllllllllll}17 & 29 & 20 & " & 20 & 2 & 17 & 57 & 6 & 10: 3 & 44 & 0 \\ E\end{array}$
Raper $\quad \begin{array}{lllllllllllll}17 & 29 & 17 & \text { " } & 20 & 2 & 17 & 56 & " & 103 & 43 & 45 & \mathrm{E}\end{array}$
Ex. 15.-Green Mean Time Oct. $288^{\mathrm{d}} 1^{\mathrm{h}} 52 \mathrm{~m} 27 \mathrm{~s}$.
Norie Rem. 200 15 $47^{\prime \prime}$ A. T. S. $27^{2 \mathrm{~d}} 21^{\mathrm{LI}} 33^{\mathrm{m}} 13^{\mathrm{s}}$ Long. $68^{\circ} 50.45^{\prime \prime} \mathrm{W}$
Bowditch" 201549
Raper " 201551
Ex. 16.-Green Mean Time June 27a $0^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$.
Norie Rem. $10^{\circ} 4^{\prime} 21^{\prime \prime}$ A. T. S. $26^{\mathrm{d}} 22^{\mathrm{h}} 56^{2} \mathrm{~m} 10^{\mathrm{s}}$ Long. $15^{\circ} 15^{\prime} \quad 0^{\prime \prime} \mathrm{W}$
Bowditch" $10 \begin{array}{llllllllllll} & 4 & 25 & 6 & 26 & 22 & 50 & 9 & 6 & 15 & 15 & 15 \\ \mathrm{~W}\end{array}$

Bix. 17.-Remainder	Bowditch,	Raper.
	510 3'32'	51" 3'31"
Longitude 1665915 E	1665915 E	16659 !5 E
Ex. 18.-Remainder 322247	322250	322248
Longitude 733245 E	73330 E	733245 E
Ex. 19,-Remainder is $13 \quad 9$	581311	381315
Longitude 1734345 E	角	173410
	83.33	5353
Longritude 033445 W		0350 W
Lix. 21.-Remainder 75810	7819	75818
Longitude 37 18 OE		
Kx. 22.-Remainder 23 3638	235642	235642
longitude 180000 W	179 5! 45 E	179 8! 45 E
Ex. 23,-Remainder 38 lis 8	381511	$38 \quad 1512$
Longitade 0000	0	0015 E
Lix. :4.-Remainder 70 59 50	70 (1) 53	70 50) 33
Langitude $178 \quad 3830 \mathrm{~W}$	17830 W	$178 \quad 315 \mathrm{~W}$

	Norie		Bowditch			Rajer		
Ex. 25.-Remainder	62	226	62		28	62		29
Longitude	145	545 E	14.5	6	0 E	145		0 E

EX. MERIDIAN.
Ex. 3. - Hour Angle 33^{m} 53s. Green. Apr. Time, May $14^{\mathrm{d}} 3^{\mathrm{h}} 59 \mathrm{~m} 3$. Ist Aug. $11^{\prime} 42^{\prime \prime}$. 2nd Aug. 29' $57^{\prime \prime}$.

Norie Bowditch
Raper
Latitude $\quad 66^{\circ} 54^{\prime} 20^{\prime \prime} \mathrm{N} . \quad 66^{\circ} 54^{\prime} 26^{\prime \prime} \mathrm{N} . \quad 66^{\circ} 54^{\prime} 27^{\prime \prime} \mathrm{N}$.
Ex. 4.-Hour Augle 19o 56'. Green. App. Time, Mar. $25^{\mathrm{d}} 1^{\mathrm{h}} 0^{\mathrm{mm}} 0^{\mathrm{s}}$ 1st Aug. $0^{\prime} 28^{\prime \prime}$. 2nd Aug. 15' $28^{\prime \prime}$.

Norie Bowrliteh
Raper
Latitude $41044^{\prime} 1^{\prime \prime} \mathrm{N} . \quad 41^{\circ} 44^{\prime} 8^{\prime \prime} \mathrm{N} . \quad 41^{\circ} 44^{\prime} 2^{\prime \prime} \mathrm{N}$.
Ex.5.-Hour Angle 37m 44s. Green.App.Time, May 10d $0^{4} 37 \mathrm{~m} 32 *$ 1st Aug. $13^{\prime} 50^{\prime \prime}$. 2ud Ang. 28' $13^{\prime \prime}$.

Norie Bowditch Raper
Latitude $\quad 37049^{\prime} 21^{\prime \prime} \mathrm{S} . \quad 37049^{\prime} 28^{\prime \prime} \mathrm{S} . \quad 37^{\circ} 49^{\prime} 33^{\prime \prime} \mathrm{S}$.
Exx. 6. - Hour Angle 32 m 16s. Green. App. Time, Jume $28_{\mathrm{d}} 16^{\mathrm{h}} 16 \mathrm{~m}^{\mathrm{m}} 16 \mathrm{~s}^{\mathrm{s}} . \quad$ Ist. Aug. $12^{\prime} 22^{\prime \prime}$. 2nd Aug. $16^{\prime} 13^{\prime \prime}$.

Norie
Bowditch
Raper
Latitude $\quad 30^{\circ} 48^{\prime} 11^{\prime \prime} \mathrm{S} . \quad 36^{\circ} 48^{\prime} 18^{\prime \prime} \mathrm{S} . \quad 36^{\circ} 48^{\prime} 25^{\prime} \mathrm{S}$.
Ex. 7.-Green. App. Time, Dec. $15^{\mathrm{d}} 5^{\mathrm{h}} 19 \mathrm{~m} 42 \mathrm{~s}$.
Norie Bowditeh Raper

Ex. 8.-Green. App. Time, Nov. $23^{\mathrm{d}} 5^{11} 49 \mathrm{~m} 0$.
Norie Bowdicth Raper
Latitude $\quad 28^{\circ} 56^{\prime} 16^{\prime \prime} \mathrm{N} . \quad 28^{\prime \prime} 56^{\prime} 22^{\prime \prime} \mathrm{N} . \quad 28^{\circ} 50^{\prime} 21^{\prime \prime} \mathrm{N}$.
Ex. 9.-Green. Apl. Time, Ang. $4^{d 1} 18 \mathrm{~h} 4 \mathrm{~m} 48 \%$.

Norie Bowditelt
$47^{\circ} 9{ }^{\prime} 166^{\circ} \mathrm{S} . \quad\left\{7^{\circ} 99^{\prime} \mathrm{S}\right.$.
5. $\quad 17^{\circ} 9^{\prime} 58^{\prime \prime} \mathrm{S}$.

Ex. 10.-Green. App. Time, Jan. $28^{d} 11^{h} 0^{m}$ ow.
Latitude $\quad \begin{gathered}\text { Noile } \\ 47^{\circ} 37^{\prime} 3 j^{\prime \prime} \\ \mathrm{N} .\end{gathered} \underset{47^{\circ} 37^{\prime \prime} 41^{\prime \prime} \mathrm{N} .}{ }$

Raper

$17^{\circ} 3741^{\circ} \mathrm{N}$
Ex. 11:-Green. App. Time, Feb. 2! 224 5!m $10 \times$
Norie Bowditch Raper

Ex. 12.-Green. App. Time, Sept. 224 6t 5m, 38.
Norle Bownitelx
Latitude $\quad 3!9^{\prime \prime} 18^{\prime} 1^{\prime \prime} \mathrm{N} . \quad 39018^{\prime} 7^{\prime \prime} \mathrm{N} . \quad 39018^{\prime \prime} 7^{\prime \prime} \mathrm{N}$.

Ex. 13.-Green. App. Time, Oct. $11^{\mathrm{d}} 8^{\mathrm{h}} 15^{\mathrm{m}} 2 \mathrm{2s}$.

Norie
 Bowditch

Raper
Latitude $\quad 31^{\circ} 16^{\prime} 31^{\prime \prime} \mathrm{S} . \quad 31^{\circ} 16^{\prime} 30^{\prime \prime} \mathrm{S} . \quad 31^{\circ} 16^{\prime} 40^{\prime \prime} \mathrm{S}$.
Ex. 14.-Green. App. Time, Jan. $25^{\mathrm{d}} 9^{\mathrm{h}} 0^{\mathrm{min}} 48^{\mathrm{s}}$.
Norie
Bnwditch
Raper
Latitude $\quad 18026^{\prime} 37^{\prime \prime} \mathrm{N} . \quad 18^{\circ} 26^{\prime} 43^{\prime \prime} \mathrm{N} . \quad 18^{\circ} 26^{\prime} 45^{\prime \prime} \mathrm{N}$.
Ex. 15.-Green. App. Time, Nov. $4^{\mathrm{d}} 18^{\mathrm{h}} 11^{\mathrm{m}} 15 \mathrm{~s}$.

Norie Bowditch
Latitude $46^{\circ} 16^{\prime} 58^{\prime \prime}$ N. $46^{\circ} 17^{\prime} 1^{\prime \prime} N$.

Raper $46^{1} 17^{\prime \prime}$ N.

MERIDIAN ALTITUDE OF A STAR.

Ex. 3.- Latitude		Norie		Bowditch $50^{\circ} 57^{\prime} 14^{\prime \prime}$ N.	Raper
		5005	57' $\mathbf{5}^{\prime \prime}$ N		$50^{\circ} 57^{\prime} 11^{\prime \prime} \mathrm{N}$.
'6. 4 .-	6.	21	17 \& S.	21711 S.	2176 S .
" 5.-	،	235	518 S	235123 S .	235128 S .
" 6.-	"	112	43 N.	42410 N	11247 N.
" 7.-	"	111	li 39 N .	$\begin{array}{llllll}11 & 14 & 47 & \mathrm{~N} .\end{array}$	111446 N
"8.-	-	4312	1211 N.	$43 \quad 12 \quad 16 \quad \mathrm{~N}$.	431220 N.
" 9.-	"	374	422 N .	37426 N.	37427 N .
"10.-	،	3121	2130 S .	312123 S .	312120 S .
" 11.-	"	322	2144 S	3221515	$32 \cdot 2156 \mathrm{~S}$
"12.-	،	1	630 S .	16.37 S .	1638 S .
"13.-	"	${ }^{4} 6$	534 S .	$\begin{array}{lll}6 & 52 & 7 \mathrm{~S}\end{array}$	$6 \quad 530 \mathrm{~S}$.
" 14.-	'6	4419	1952 N.	441959 N.	441956 N.
"15.-	'6	28	044 N .	$28 \quad 0 \quad 52 \mathrm{~N}$.	28052 N .

TIDES.

		$\begin{aligned} & \text { A. M. } \\ & \text { h. m. } \end{aligned}$	$\begin{aligned} & \text { P. M. } \\ & \text { h. m. } \end{aligned}$		$\begin{aligned} & \text { A. M. } \\ & \text { h. } m \end{aligned}$	$\begin{aligned} & \text { P. M. } \\ & \text { h. } \\ & \text { m, } \end{aligned}$
Ex.	1-	38	326	Ex.	13-0 28	116
"	$2-1$	No. A. M.	$0 \quad 30$	"	14-1 19	1 bl
"	$3-$	5 50	(6) 18	.	15-0 11	036
6	1 -1	1138	No. P. M.	6	16- 0 34	125
"	5-N	No. A. M.	$1) \quad 20$	"	17-No. A. M.	$\begin{array}{ll}0 & 27\end{array}$
،	6 -	(3) 36	415	"	18-11 il	No. P. M.
\cdots	$7-1$	1111	$11 \quad 32$	"	19- No. A. M.	016
"	8 8-	2 il	313	"	20-1 35	215
"	9-	0 45	110	\cdots	21-11 57	No. P. M.
6	10-1	$10 \quad 3$	$10 \quad 33$	*	22-0 14	1 I
6	11-1	110	11 is	, 6	$23-\mathrm{No}. \mathrm{A}. \mathrm{M}$.	14
،	12-	() 4!	138	6	24-No. A. M.	0) 26

A. \mathbf{M}.
P. M.
A. M.
P. M.
h. m.
h. m.
h. m .
h. m.

Ex. 25-No. A. M. $\quad 0 \quad 26 \quad$ Ex. 41- $1141 \quad$ No.P.M.
" $26-1157 \quad$ No.P. M. $\quad 5 \quad 42-10 \quad 18 \quad 10$
" $27-11 \quad 55 \quad$ No. P. M. \quad " $43-10 \quad 36 \quad 1115$

	68	28	1	7	1	49	"	$44-10^{\circ} 36$	11	6

"	$29 —$	0	13	0	42	"	$45-$	9	39	10	3

"6 30- 0		11	0	47	6	$46-11$	40	No.P.M.

| 6 | $31-$ | 5 | 10 | 5 | 31 | i6 | $47-10$ | 48 | 11 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6	$32--$	8	9	8	43	6	$48-$ No. A. M.	0	11

4	$33-$	9	49	10	13	4	$49-10$	9	10	48

" 34-11 $49 \quad$ No. P. M. " $50-11$ i5 No. A. M.

6	35	0	30	0	54	"	$51-$ No. A.M.	0	4

	6	$36-10$	42	11	4	$"$	$52-11$	24	11	44

" $37-10 \quad 51 \quad 11 \quad 11 \quad$ " 10 53- 11 41 No.P. M.

| " | $38-11$ | 4 | 11 | 39 | $"$ | $54-N g . A . M . ~$ | 0 | 37 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6	$39-N o . ~ A . ~ M . ~$	0	4	6	$55-10$	32	11	13

Norie and Raper.

A. M.
P. M.
h. m .

Bowditch.
A. M.
P. M.
h. m.
h. m.

Ex. 56- 2413
" 57 -No. A. M. $0 \quad 4$
$\begin{array}{llllll}\text { " } & 58- & 9 & 4 & 9 & 24\end{array}$

	6	59	5	25	6

" $60-11 \quad 38 \quad$ No.P. M.
"61-11 $58 \quad$ No.P.M.
" 62-No. A. M. $0 \quad 6$
" $63-0 \quad 47 \quad 1 \quad 28$
". 64- 1147 No P. M.
" 65- $1153 \quad$ No P. M.
"66- $214 \quad 238$
" 67- 1132 No P. M.
" 68- 9 45 1017
‘69— $\quad 513 \quad 540$
$\begin{array}{llll}16 & 70 & 836 & 856\end{array}$
" 71- No A. M. 06
" 72- No A. M. 013
6 73- 1156 No P. M.
6 74- 423 59
$\begin{array}{llll}5 & 26 & 6 & 15\end{array}$
$11 \quad 57 \quad$ No. P. M.
$\begin{array}{llll}0 & 46 & 1 & 27\end{array}$
$512 \quad 53!$

No A. M. $0 \quad 7$
No A. M. O 14

Norie and Raper.

a. m.
P. M.

A. M.
 P. M.

h. m .
h. m.

No P. M.
6 70- 844
925
6 77- No A. M. 012
6 78- No A. M. () 13
" 80- 0 A1 M. 0

DEVIATION OF THE COMIPASS.

Ex. 1-Cor. Mag. Bearing N. $46^{\circ} 35^{\prime}$ E. Ship's head, North, Dev. 2025^{\prime} E. ; N. E., $14^{\circ} 5^{\prime}$ E. ; East, $15^{\circ} 45^{\prime}$ E.; S. E., $11^{\circ} 20^{\prime}$ E.; South, $0^{\circ} 40^{\prime}$ W. ; S. W., $12^{\circ} 35^{\prime}$ W.; West, $17^{\circ} 35^{\prime}$ W.; N. W.. $12^{\circ} 45^{\prime} \mathrm{W}$.

Ex. 2-Cor. Mag. Bearing S. $15^{\circ} 0^{\prime}$ E. Ship's head, North, Dev. 1055^{\prime} W.; N. E., $18^{0} 45^{\prime}$ E.; East, 220 10^{\prime} E.; S E., $14^{\circ} 30^{\prime}$ E. ; South, $2^{\circ} 10^{\prime}$ E. ; S. W., $15^{\circ} 45^{\prime}$ W. ; West, $23^{\circ} 0^{\prime}$ W. ; N. .W., $16^{\circ} 55^{\prime} \mathrm{W}$.
 Dev. $0^{\circ} 30^{\prime}$ E. ; N. E. $16^{\circ} 55^{\prime}$ W.: East, $25^{\circ} 20^{\prime}$ W. ; S. E., $20^{\circ} 55^{\prime}$ W. South, $0^{\circ} 10^{\prime}$ E.; S. W., $22^{\circ} 45^{\prime}$ E.; West, $24^{\circ} 20^{\prime}$ E.; N. W., $155^{\circ} 45^{\prime}$ E.

Ex. 4-Cor. Mag. Bearing S. 64 35^{\prime} W. Ship's head, North, Dev. 105^{\prime} E. ; N. E., 9015^{\prime} W. ; East, $14^{\circ} 40^{\prime}$ W.; S. E., $10^{\circ} 25^{\prime}$ W.; South, 0" 15^{\prime} W. ; S. W., $11 "$ ' $^{\prime}$ E. ; West, 13° so' E. ; N. W., $88^{\circ} 35^{\prime} \mathrm{E}$.

Ex. 5 -Cor. Mag. Bearing N. $10^{n} 30^{\prime}$ W. Ship's head North. Dev. $4^{\circ} 50^{\prime}$ W.; N. E., 18020^{\prime} E.; East, $20^{\prime \prime} 20^{\prime}$ sı. : S. E., 1300^{\prime} E. : South, (0' 20^{\prime} E.; S. W., $12^{\prime \prime} 10^{\prime}$ W.; West. $19^{\circ} 50^{\prime}$ W.; N. W.. $15^{\prime \prime} 10^{\prime} \mathrm{W}$.

Ex. 6-Cor. Mag. Bearing S. 32" 36^{\prime} E. Shipis herad, North.
 South, $1^{\circ} 36^{\prime}$ W.; S. W., 13". I' $^{\prime}$ W. : West. I $8^{\prime \prime} 21^{\prime}$ W. ; N. W., $14^{\prime \prime} 6^{\prime} \mathrm{W}$.

Ex. 7-Ship's head, North. Dev. 3" 39^{\prime} E. ; N. E., $16^{\prime \prime} 6^{\prime \prime}$ W. : East, 23° 51' W. ; S. E., ? $0^{\prime \prime} 21^{\prime}$ W.; South, t" 6^{\prime} W.; S. W.,

Ex. 8-Ship's heod North. Dev. $0^{\circ} 34^{\prime}$ E. ; N. E. 6° 41' W.; East, $11^{\circ} 11^{\prime}$ W.; S. E., $8^{\circ} 26^{\prime}$ W. : Smuth, 0^{\prime} át' W. : S.W., 8o $^{\circ} 199^{\prime}$ E.; West, ! $0^{\circ} 49^{\prime} \mathrm{E} . ; \mathrm{N}, \mathrm{W} ., \mathrm{ri}^{\circ}: \mathfrak{i}^{\prime} \mathrm{E}$.

Bowditch.

No A. M. 013
No A. M. 012
No A. M. 017

Am
Chr

Ex. 9-Ship's head North, Dev. $1^{\circ} 39^{\prime}$ E. ; N. E. $25^{\circ} 9^{\prime}$ E.; East $26^{\circ} 29^{\prime}$ E. ; S. E., $19^{\circ} 59^{\prime}$ E.; South, $1^{\circ} 51^{\prime}$ W.; S. W., $21^{\circ} 11^{\prime}$ W.; West $26^{\circ} 21^{\prime}$ W.; N. W., $21^{\circ} 51^{\prime}$ W.
Ex. 10 -Comp. Courses. S. $74^{\circ} 15^{\prime}$ E.; N. $57^{\circ} 45^{\prime}$ W.; S. $0^{\circ} 40^{\prime}$ E.
I1- \quad N. 155 W.; N. 63 45 E.; S. 3030 E.
12- " N. 6540 W.; S. 010 E.; N. 2915 W.
13- " N. 3545 E. ; S. 5525 E.; S. 565 W.
14- " S. 6940 E.; N. 6010 W.; S. 7010 W.
15- " N. 29 E.; S. 3336 E.; S. 136 E.
16-Mag. Bearings. S. 28.54 W.; N. 616 W.
17- \quad N. 3634 E.; S. 8134 W.
18- \quad S. 7129 W.; S. 2629 W.
19— 6. N. 225 E.; S. 4725 W.
20- $\quad . \quad$ N. 6750 W.; N. 6710 E.
21- " S. $73 \quad 5$ W.; S. 1655 E.
22-Mag. Courses. N. 29° E.; S. 35° W.; N. 29° W.
23- \quad N. 80 E.; S. 81 W.; N. 13. W.
24- " N. 5 W.; N. 78 W.; N. 74 E.
25- " N. 2 W.; N. 71 W.; N. 78 E.

SET No. 1.

Latitude. Bowditch 48040 S .
" Raper 48044 S .
Deviation.-North, $1^{\circ} 39^{\prime}$ E. ; N. E., $23^{\circ} 9^{\prime}$ E.; East, $26^{\circ} 29^{\prime}$ E.; S. E., 1959 E.; South, 1 ol W.; S.W., 2111 W ; West, 2621 W.; N.W. 2151 W.

Courses to steer, N. $14 \frac{1^{\prime}}{}{ }^{\prime}$ E. ; N. 36° W. Correct Mag. Courses N. $68^{\circ} 9^{\prime}$ E.; S. $\|^{\circ} 51^{\prime}$ E.
Correct Mag. Bearings N. 70 1 W.; N. 1959 E.

Parallel Sailing.- Difference of longitude $14 \cdot 75$ miles.
Mercator.- Course S. $60^{\circ} 22^{\prime}$ E. Distance 4120
Tides.- Southampton $10^{\mathrm{h}} 50^{\mathrm{m}}$ A. M. $11^{\mathrm{h}} 11 \mathrm{mP}$. M. Busrah Bar No A. M. $0 \quad 1$ "
Amplitude. - Deviation $\quad 3^{\circ} 20^{\prime}$ E.
Chronometer.- Lougitude Norie $78^{\circ} 52^{\prime} 45^{\prime \prime} \mathrm{E}$. " Bowditch 78530 E. " Raper is 53 0 E.

6 Bowditeh 53 i8 17 N .
" Raper 33 is 21 N.
 S. E., 1025 W.; South, 0 1. W.; S. W. II 5 E.; West 13 $00 \mathrm{E} . ; \mathrm{N} . \mathrm{W}$. \& 3 s E :

Courses to steer, S. 67° E. ; S. $1^{\circ} \mathrm{W}$.
Correet Mag. Comsars N. $760^{\circ} 10^{\circ} \mathrm{W}$.; N. $366^{\circ} 25^{\prime} \mathrm{W}$.
Correct Mag. Bearings S. $3: 5$ 4.5 W.; N. 80 4.5 E.

SET No. 3.

Logarithms. - Product Norie 452146 Bowditch 452150 Quotient "6 2537
Day's Work.- Course S. 2° E. Distance 34 miles. Latitnde in $57^{\circ} 40^{\prime} \mathrm{N}$. Longitude in $145^{\circ} 34^{\prime} \mathrm{W}$.
Mer. Altitude.- Latitude Norie $5^{\circ} 4^{\prime} 32^{\prime \prime} S$.
" Bowditch 5426 S .
" Raper 5432 S .
Parallel Sailing.- Difference of longitude $487 \cdot 7$.
Mercator:- \quad Course N. 21030^{\prime} E. Distance $456 \cdot 8$.
Tides.- \quad Valentia Harbor $11^{\mathrm{h}} 50 \mathrm{~m}$ A. M. No P. M.
Portland U.S. $\quad \begin{array}{lllll}7 & 37 & \text { " } & 8 \\ 8 \mathrm{~m} & \text { P. M. }\end{array}$
Amplitude.-
Deviation 210 49' E.
Chronometer.-

Longitude	Norie	64°	4^{\prime}	$15^{\prime \prime}$	W.
"	Bowvitch	64	4	30	W.
"	Raper	64	4	45	W.

Azimuth.-
Deviation $16^{\circ} 36^{\prime}$ E.
Ex-Meridian. -
Latitude Norie $\quad 15^{\circ} 44^{\prime} 38^{\prime \prime}$ S.
" Bowditel 154445 S .
" Raper 15 4 39 S .
Star.-
Latitude Norie $46 \quad 248 \mathrm{~N}$.
" Bowditch $46 \quad 254 \mathrm{~N}$.
" Raper $46 \quad 252 \mathrm{~N}$.
Deviation- North, 1055^{\prime} W. ; N. E., $180^{\prime \prime} 5^{\prime}$ E. ; East, 22010^{\prime} E. S. E., 1430 E. ; South, 210 E.; S.W., 1545 W. West, 230 W. ; N. W., 1655 W. Courses to steer, N. $28^{\circ} \mathrm{E} . ;$ S. $19^{\circ} \mathrm{E}$. Correct magnetic courses S. $30^{\circ} 30^{\prime} \mathrm{E} . ; \mathrm{N} .63^{\circ} 45^{\prime} \mathrm{E}$. Correct magnetic bearing S. $6750 \mathrm{E} . ;$ N. 2250 W.

SET No. 4.

Logarithms. - Product 211.5
Quotient 4593
Day's Work. Course N. 73" W. Distance 117 miles. Latitude in $51^{\circ} 46^{\prime} \mathrm{S}$. Longitude in $85^{\prime \prime} 37^{\prime} \mathrm{W}$.
Mer. Altitude. Latitude Norie $42016^{\prime \prime} 8^{\prime \prime} \mathrm{S}$.
" Bowditch 421614 N
"Raper $42 \quad 16 \quad 17 \mathrm{~S}$.
Parallel Sailing.-Difference of longitude 1565 miles.
Mercator.-- \quad Course N. 79o 8' E. Distance 509. 2 miles.

De

Deviation.- North, $0^{\circ} 34^{\prime}$ E. ; N. E., $6^{\circ} 41^{\prime}$ W. ; East, $11^{\circ} 11^{\prime}$ W. S. E. 820 W ; South, 026 W.; S. W. 819 E. West, 949 E. ; N. W., 8 34 E.
Courses to stcer, N. $65_{2}^{11^{\circ}}$ W.; N. 45° W.
Correct magnetic comrses S. $0^{\circ} 56^{\prime}$ E. ; S. $530^{\circ} 19^{\prime}$ W. (C ret magnetic bearings S. 4426 E. ; N. 8926 W.

SET No. 5.
Logarithms. - Product Norie 289379 Bowditch 289373 Quotient " $312 \cdot 9$
Day's Work. - Course N. 65o W. Distance 101 miles. Latitude in $19^{\circ} 33^{\prime}$ S. Longitude in $25^{\circ} 1^{\prime} \mathrm{W}$.
Mer. Altitude.- Latitude Norie $4901 l^{\prime} 1^{\prime \prime} \mathrm{N}$.
" Bowditch 491150 N .
" Raper $49 \quad 11 \quad 33 \mathrm{~N}$.
Parallel Sailing.-Difference of Longitude 115.8 miles.
Mercator- \quad Course N. $44^{\circ} 5^{\prime}$ E. Distance 27.84 miles.
Tides.- Foyues Island $\quad 1^{\mathrm{h}} 38 \mathrm{~m}$ A M. No P. M.
Amplitude. -
Dalhousie Harbor 11 2'4 " 1150 P. M.
Chronometer. -
Deviation $0^{\circ} 0^{\prime}$.
Azimuth.-
Ex-Meridian. -

Star:-

Longitude	Norio	$50400^{\prime \prime} \mathrm{F}$ W.
،	Raper	54030 W.
Deviation	Norie	$204^{\prime} \mathrm{E}$.
،.	Raper	25 E .
Latitude	Norie	$360^{\circ} 50^{\prime} 0^{\prime \prime} \mathrm{S}$.
"	Bowditch	36509 S.
"	Raper	$36 \quad 50 \quad 6 \mathrm{~S}$.
Latitude	Norie	$46^{\circ} 18{ }^{\prime} 9{ }^{\prime \prime} \mathrm{S}$ S.
"	Bowditch	461915.
$\cdot 6$	Raper	$46 \quad 1857 \mathrm{~S}$.

Ex. 1.
" 2.

Deviation.- North, $4^{\circ} \mathrm{j} 0^{\prime}$ W. ; N. E., 18° 20' E.; Eust, $20^{\circ} 20^{\prime}$ E. S. F., 130 E. ; South, 020 E. ; S. W.. 1210 W West, $1950 \mathrm{~W} . ;$ N. W., 1510 W.
Courses to stcer. N. $73 \mathrm{~W} ;$ N. $60 \frac{1}{2}$ E.
Correct magnetic courses, N. $60^{\circ} 10^{\prime} \mathrm{W} . ;$ S. $69^{\circ} 40^{\prime} \mathrm{E}$ Correct magnetic bearings, N. 2510 E. ; S. 1950 E

SET No. 6.

Logarithms.- Product Norie 948676 Bowditch 948660
Day's Work.- Course N. 39o E. Distance 136 miles. Latitude in $28^{\circ} 28^{\prime} \mathrm{S}$. Longitude in $0^{\circ} 28^{\prime} \mathrm{E}$.
Mer. Altitude.- Latitude Norie $20^{\circ} 1^{\prime} 8^{\prime \prime} \mathrm{N}$.
" Bowditch 20 I 15 N.
" Raper 20113 N .
Parallel Sailing.-Difference of Lougitude 14.71 miles.
Mercator. - Course S. 75° 56' W. Distance 9113 mlles.
Tides. \quad Peterhead No A. M. $\quad 0^{\text {h }} 9^{\mathrm{mm}}$ P. M. Hobarton 726 A. M. 750 "
Amplitude.- Deviation $17^{\circ} 10^{\prime} \mathrm{W}$.
Chronometer. - Longitude Norie $57^{\circ} 21^{\prime} 15^{\prime \prime} \mathrm{E}$.

- Bowditch 572130 E.
" Raper 572130 L.
Azinuth. Deviation Noric 150.24' W.
Raper 1.i 23, W.
Ex-Meridian. Latitude Norie 49? $355^{\prime} 6^{\prime \prime} \mathrm{S}$.
6 Bowditch 49, 3 s IS
" Raper 49 35 7 S.
Star. Latitude Norie Cor l'31"N. " Bowditch 0 I 40 N .
" Raper $0 \times 1 \quad 39 \mathrm{~N}$.
Deviation. - North, $202 \sigma^{\prime}$ E. ; N. E., $14^{\prime \prime} 5^{\prime}$ E. ; East, $15^{0} 45^{\prime}$ E. S. E. 1120 E.; South, 040 W.; S. W., 12 35 W West, 1735 W. ; N. W. 1245 "W. Courses to steer. N. 66° W. ; N. 7920 E. Correct magnetic courses N. $20^{\circ} 23^{\circ} \mathrm{E} . ; \mathrm{S}_{\mathrm{ol}} 33^{\circ} 40^{\prime} \mathrm{E}$. Correct magnetic bearings S. 32 25.W.; N. 7725 E .

CHART.
Ex. 1.-Lat. 49" 23^{\prime} N. Loug. 63" 36^{\prime} W.
" 2.- " 43 5צ N. " $68 \quad 1 \mathrm{~W}$.

Ex 3．－＂ 4639 N．Long． 53 W．
＂4．－＂ 4520 N ．＂ 6055 W ．
＂ $5 .-$＂ $45 \quad 50 \mathrm{~N} . \quad$＂ $62 \quad 30 \mathrm{~W}$ ．

Ex．11．－Course E．by S $\frac{1}{2}$ S
12．－＂W．N．W．
13．－＂S．E．$\frac{1}{4}$ S．
14．－＂W．by S．
Distance 278 miles．

15．－＂S．E．$\frac{1}{4}$ S．
16．—＂S．E by E．
17．－\quad W W．$\frac{1}{4} \mathrm{~N}$ ．
18．－＂W．$\frac{3}{4} \mathrm{~N}$ ．
19．－\quad N．W．by N．$\frac{1}{4}$ N．
20．－＂N．W．by W．$\frac{1}{2}$ W．
＂159＂
＂ 114 ＂
＂ 196 ＂
$\begin{array}{lll}\text {＂} & 210 & \text {＂} \\ \text {＂} & 100 & \text {＂}\end{array}$
＂ 100 ＂

COMMERCIAL CODE OF SIGNALS．
Ex．16．－Report me all well．
17．－I will send the mate．
18．－Chan you supply me with salt beef．
19．－E．by N．
20．－I am waterlogged，take people off．
21．－Vessels that wish to be reported all well shew your dis－ tinguishing signals．
22．－When were your chronometers last rated．
23．－S．E．$\frac{1}{2}$ S．
24．－＂Seanfatis Pride＂of Halifax N．S．official number $37599.0^{\circ}{ }^{\circ}$ Tommage 108.
25．－St．Johin N．B．
26．－Long． $2 \times 20^{\circ} 0^{\circ} 9^{\prime}$
 mage il？
28．－Pictou N．S．

30．－Scaton．
Ex．31－N S EFx 37－G S
$32-\mathrm{J}$ T $\quad \therefore .638-\mathrm{F} \mathrm{G} \mathrm{H}$ 33－L D B 39－W M N $34-\mathrm{BQSW} \cdot \mathrm{O} \cdot 40-\mathrm{JF}$
$35-\mathrm{M}$ H P $36-V$ STP \quad 42—M G

Ex．43－T M K L 4i－D W 4－L．J P 46－C L T J
47－G SM，G W Q，W B T 48－G T M L
Ex．49－F NT，GV S 50－CDJQ，WTP，WVL，CFMD，CDHP，WTH

INDEX

PAGE.
Accidents 166
Adjustments of the Sextant 122
Admiralty Tide Tables, Eiements from the: 232
Amplitude 54
Anchor, Carrying out an 171
" Coming to an 163
" Tending ship at single. 165
Answers to the problems 242
Azinuth 58
Beneling sails. 154
Bill of lading 191
Bottomry Bond 191
Bowsprit, Rigging a 142
Taking in π 141
Boxhnuling 159
Candidates for Examination, Notice to 10
Chart. 124
" Examination paper on the 203
Charter party 191
Chronometer 65
Commercial Code of Signals 126
" Versified 133
Correting Courses 33
Course and distance by Mercator 30
Day's Work 37
Definitions in Navigation und Nantical Astronomy 297
Deviation of the Compass. 55
6 " To form a Thable of 96
" " Application of 99
" " Examination paper oñ? $2: 5$
Ditierence of Latituds 30
Longitule. 30, 31, 38
Division by Logarithms, 29
Elements from the Admiralty Thbles 232
" " Nautichl Almanac. 218
Vxamination papers, Chart 203
" " Definitions 207
" " Deviation 205
" " Sets of 103
" ". Sextant $2(12$
Hxumple Voyage, un 188
Ex-Meridian, Latitude by 81
Fitting Rigging. 142
Gale, Riding out a 164
Greenwich Date, to find. 53
High Water, to find the time of. 89
Hints to Shipmasters 193
" Studients. 17
Index Error of the Sextent. to find 123
Involee 191
Latitude, by a Meridian Altitude of a Star. 87
" " " the Sun 48
" by the Reduction to the Meridian 81
Laying to 160
Lead line 100
Leading lights 212
Lights for Vessels 173
Lloyd's Agent 192
" Rules for the stowage of mixed cargo. 149
Logarithms, Division by 29
" Explanation to Tables of 19
" Mnltiplication by. 27
Log line 190
Longitude by Chronometer. 65
Lower Mast, taking in a 140
taking dut a 141
Manifest 191
Making Suil 155
Master's Documents 191
Masting und Rigging 138
Mercator Sating 30
Melidian Altitade of the Sun Lavitude by 48
Mortar and Rocket Apparatus: 200
Multipliation by Logarithus 27
Napier's Ditgram. 102
Nanticul Almunac, Eldments from the. 218
Notice to Camlidates for Exmmination. 10
Ofticial Log Book 108
Order in Comedl, copy of 5
Parallel Satiing. 30
Protests. $1: 12$
Raft, making a. 172
Reefs taking in and minking ollt 157
Riding out a grale 164
Rigging, cutting and hoting 142
plneing mind (ting up) 145
R'iddier, dinmaged or lost 119
INDEX. III
Rule of the lioad l'age. 173
Rule of the Rond Heads of exnmination upon
Remarks upon 178
Bails, Bending 154
Sull, Making $15 \hbar$
Sail, Taking in 155
Securing Yurd for lifting heavy weights 153
Sexisint, exaniluation paper upon 202
"the 121
Sheers, taking in and rigging 138
Ship, handling a 158
Ship-masters, hinw io 193
Signals, commercial Code of 126
" " Versified 133
" Fog, Pilotage and Distress 17
Star, Latitude by a Meridian Altitude of a 87
Sterering and Sailing lules 175
Stowage 148
Students, Hints to 17
Surveys 191
Treking 158
Tides. 89
Time. 52
Tops, getting over 145
Topgnilantmasi, sending up. 147
Topmast, lower cap \&e., sending up 140
Traverse table, explan vion of 36
Trestle trees, sending up 144
Vensel ashore, carryiug out an anchor 171
Vessels llghts 173
Voyage, an example 188
Yarda, getting aloft. 147
" securiag, for lifting heavy widghts 153
" trimming 156
Wenring ship $15:$
Weigh, getting under 161
Zenith distance, to find 49

GUVERNMENT MARINE SCHOOLS

Saint John N. B.
84, Water Street, opposite head of Lawton's Whar:

Halifax iv. ©̃.

Anderson's Building, corner of Prince Street and Bedford Row. 1

Quebec.

Department of Marine and Fisheries, Old Castom House.
These schools have heen ins'inted sine 1872 for the thorough preparation of candidates for

MASTER'S and MATE'S CERTIFICATES

fand upwords of six hundred stments traned in them have obtained Cartiacales of Competency. Pupils who have to leave before obtaining their certificates, may re-enter bither of the above Schonls, at any time, without additional expense.

Whinan C. Seaton,
Superintendem.

DEVIATION OF THE COMPASS.

Napier's Diagram

HORTH POINT OF COMEASE DRAWN TO TEE
情ET
nORTE PONST OR COMRASA
DRAW T TO TEX
EAst

DEVIATION OF THE COMPASS

Napier.'s Diagram.
Plate V1.

NORTA POINT OF COMPASS
DAAWN TO TBE
FEST
sorta ponst or compass
DRAWX To The East

APPENDICE.

PROGRAMME DES CONNAISSANCES REQUISES POUR L'ADMISSION DES CANDIDATS.

AJUSTEMENTSDUSEXTANT.

Le candidat répondra par écrit, sur une fenille de papier que lui remettra l'examinateur, à toutes les questions suivantes, en apposant à chacune, le numéro correspondant à celui de la question.

1. Quel est le premier ajustement du sextant?

Celui de placer la lunette d'index perpendiculairement sur la surface du sextant.
2. Comment faites-vous cet ajustement?

Placez le vernier à peu près an milieu de l'are; tenez le sextant horizontalement entre le limbe et votre persome et regardant obliquement dans le verre indicateur, voyez si l'are qui y est réflété, et le véritable are, tel que vu au dehors, paraisseut faire une ligne non interrompue ; si non, il faut la rectifier an moven de vis, placés au d's du verre.
3. Quel est le deuxieme ajustemert?

Celui de placer ta lumette d'horizon perpendiculaire à ta surface du sextant?
'. Comment faites-vons eet ajnstement ?
Placez le zéro du veruier au zéro de l'are, tenez le sextant horizontalement, et voye\% si les horizons réflétés et rrais paraissent daus la mème ligne droite, si non, tommer te vis requis jusqu'a ce gu'ils le suiom.

万. Quel est te troisime ajustement ?
Slacez la lumette dhorizon pamallelement à lamette d'index.
6. Comment failus vous ce troisicme ajustement ?

Placez le zéro da vernier sur le zéro de lare, tenez te sextant perpendicularement. et voyezsi les horizons vrais et rételés, paraissent dans la meme ligne droitr, si mon, tommez te vis requis, jusqu'i ce fu'ils le soient.

7 Si un vis venait à manquer, comment procéderiez-vous? Trouver l'erreur d'index.
8. Comment thouveriez-vous l'erreur d'index au moyen de l'horizon?

Placez le zéro du vernier au zéro de l'arc, et faites disparaitre les horizons vrais et réflétés dans une seule ligne droite, alors ce que le sextant indiquera sera l'erreur d'index.
9. Comment doit-il être employé?

Il sera additif, si le niveau n'est pas sur l'arc, et soustractif s'il y est.
10. Placez l'index à erreur de. minutes, à ètre ajoutées. changez le et laissez-le.

Note.-L'examinateur verra à ce que cela soit fait avec exactilude.
11. L'examinateur placera alors le zéro du vernier sur l'are à distance des divisions inserites, et le candidat le lira.

Note. - Dans chaque cas le candidat nommera, ou désignera antrement les vis dont on se sert daus les divers ajustements (117 i 120).
12. Comment trouvez-vous l'erreur d'index au moyen du soleil?

En mesurant le diamètre du soleil, sous et sur le niveau de l'are, puis la moitié de la diffärence dé deux chiffres sera l'erreur d'index (121).
13. Comment ceci s'applique-t-i!?

Additif si le numéro inférieur est le plus considérable, mais sonstractif si il est le moindre.
14. Quelle prouve aveq-vons que ces mestimages, on angles ont etté établis avec me exactitule passable?

La somme des deux mesurages, divisée par 4, devrait être égale an demi-diamétre du soleil, tel que porté al l'almanac nautique, pour le jour où les ohservations ont été faites.

CARTE.

Le candidat devar répoudre par éerit, sur une fenille de papier que lui domera l'examinatenr, a toutes les questions suivantes, se
rapportant à la classe de certificant demandé, en apposant à chaque réponse le numéro correspondant à la question.

1. Une carte inconnue ayant été placée devant vous, qu'est-ce que vous auriez à déterminer avec le plus de soin, avant de répondre à une quesơion y ayant trait, ou avant d'essayer à vous en servir?

Voyez si c'est une carte britannique, en constatant si sa longitude est basée sur le mé rdien de Greenwich, aussi, si les boussoles qui y sont gravées sont vraies ou magnétiques.
2. Comment pouvez-vous constater cela dans nos cartes britanniques?

Le point nord d'une boussole vraie est désignée par une étoile et est tiré parallèle an méridien. La ligne portant le point nord d'une boussole magnétique fait un angle Est ou Onest d'un méridien égal à la variation.
3. Comment trouverie\%-vous sur la carte la course entre denx endroits A et E ?

Conchez l'arête de la règle à parallèles sur A et B, faites mouvoir les règles jusqu'au centre de la boussole la plus voisine qui alors vous indiquera la course à prendre, unageétique ou vraie, selon la carte.
4. En supposant qu'il y ait. \qquad points de. \qquad variation à la première place nommée, quelle seruit la course magnétique, la vraie étant d'environ. . ?
Jo dirigerais ma conrse par la droite ponr la variation Ouest et par la gauche pour la variation Est.
5. Comment mesureriez-vous la distanceentre ces deux endroits ou denx antres places sur la carte?

Avec une paire de compas ; portez l'espace entre les denx endroits et appliquèz-le sur le méridien gradue, qui, si la latitude du milien est le centre de l'échelle rmployée, donnera la distance requise.
6. 'ourguoi mesusurier-vons ainsi ?

Parce quo la distance entro les parallèles ast angmentée vers les pôles, afin de balancer l'expansion de la differrence dn méridien.

Ce qui précède comprend tontes les questions sur la carte qui sont posées alax contre-maitres.

A ce qui précède les patrous devront de plus, répondre aux questions suivantes:
7. Que signifient ces petits numéros qui se trouvent sur la carte?

Des sondages, généralenient par brasses.
8. A quelle époque de la marée?

A marée basse, dans les grandes marées ordinaires.
9. Queis renseignements devez-vous avoir afin de pouvoir comparer les profondeurs mesurées par votre ligne de sonde, à bord, avec les profondeurs indiquées sur la carte?

L'intervallo de temps jusqu'à la marée haute, et la moitié de la portée de la marée à l'endroit, où se trouve le navire. Avec ces données, la table B dans les tables des marées de l'amiranté fournira une correction qui pourra être appliquée à la moitié de la portée moyenne de la grande marée à cet endroit, le résultat ébat le montant de la marée au moment du sondage.
10. Que signifient les chiffres romains que l'on voit parfois près de la côte et dans les ports?

Le temps de :a haute marie lors de la pleine et de la nouvelle lune.
11. Comment trouveriez-vous le temps de la haute marée dans un endroit quelconque, quand il n'y a pas moyen de se procurer de tables de marées de l'amirauté, ni aucune autre table spéciale?

En ajoutant 48 minutes pour chaque jour éconlé depuis la pleine et la nouvelle lume.

Toutes les questions qui précedent doiveni avoir me séponse, mais cecí n'empèche pas l'examinateur de poser tonte antre question se rapportant i ce sujet, ou que les circonstances locades dan port penvent rendre utiles.

DEVIATION DE LA BOUSSOLE.

|Le candidat doit répondre comredenen at anoms hat des questions suivantes désignées par une croix litite par l'examinatenr. Celni ci ne deva pas en marquer moins de donze.

1. (Qu'rutendez-vous par dêriatiou de la boussole?

C'est une erreur de la bonssole cansée sim l'aignille par I'action magréligue du fer dans lo navire ou sa cargaison. onde, à moitié Avec nirauté oitié de résultat re table epuis la tue réte antre lochles l'exalze.
lle padr
2. Comment constatez-vous la déviation (a) en rude et (b) en mer?
(a) Par des relèvements réciproques.
(b) Par des relèvements astronomiques.
3. Ayant constaté par le nez du vaisseau la déviation des divers points de la boussole, comment savez-vous quand elle est à l'est ou à l'ouest ?

Elle sera à l'est, si le relèvement magnétique posé sur la boussole "st à la droite du relèvement pris du vaisseau, mais elle sera à l'ouest dans le cas contraire.
4. Pourquoi est-il nécessaire, pour bien vérifler ces déviations, de diriger le nez du navire dans plus d'une direction?

Parce que chaque variation dans la course place le fer dans le navire dans une position relativement différente par rapport à l'aiguille de la boussole.
5. Pour arriver à un résultat exact, quel est le plus petit nombre de points vers lesquels le nea du navire devrait être dirigé?

Huit.
6. Comment trouveriez-vous lā déviation en naviguant le long d'une côte bien connue?

Quand les relèvements réciproques de deux objets bien défiuis, tel que des phares, sont connus, mettez-les en regard, et la différence entre le relèvement observé et le relẻvement connuserut la déviation pour la direction vers laquelle se trouvait le ne\% du navire an moment du relevement.

Pour les questions 7, 8 et 9 voyez le paragraphe qui traite de la déviation, à la page
11. Nommez quelques objets propres à aider à la constatation de la déviation de la boussole en naviguant le long des côtes de la Manche ?

Les feux du cap Lézard, de Portland et de Forelani sud.
12. Croyez-vous que la déviation change? dans le cas afflrmatif, dites sous quelles circonstances :

Elle changera rapidement pendant quelques temps, apres la mise à flot, de mome que, par un changement considérable co latitude, par un changement dans la positicn de la boussole, la quantité do for, ou encore, l'endroit où se trouve lo fer à hord.
13. Combien de fois est-il bon de vérifier l'exactitude de votre table de déviation?

A chaque occasion favorable.
14. Dites en peu de mots, ce dont vous avez à vous méfier, en choisissant une position pour la boussole?

Qu'elle scit éloignée autant que possible des épontilles en fer, des baux, des cheminées, ou de toute autre influence semblable.
15. Les boussoles des navires en fer sont plus ou moins affectées parce qu'on appelle, erreur causée par la bande; sur quelles courses disparait-elle, et sur quelles courses est-elle la plus considérable?

Elle disparait aux points Est et Ouest, et elle est plus considérable aux points Nord ou Gud.
16. Dites à quel côté riu navire, dans la pínpart des cas, est attiré le point Nord de la boussole, dans l'hémisphère boréal, et quel est son effet relativement à la position supposée sur une course Nord ou Sud?

La pointe Nord, de l'aiguille est attirée au vent et cunséquemment en tirant au nord le navire fait une course plus vers le rent que ne l'indique la boussole, tandis qu'en tirant au sudil se trouve sous le vent de sa course apparente.
17. L'effet étant tel que vous le dites, sur quelles courses arri-veriez-vous, et sur cfuelles courses lofferitz-vous afin de gouverner salon une course bâsée sur la boussole ?

J'arriverais sur les courses an nord et je lofferais sur les courses an sud.
18. Est-ceque la méme regle pent-être suivie dans les deux hémispheres, ôn ce fui a trait à l'erreur cansée par la bande.

Non, ì quelques exceptions près, le contraire de la règle suivie dans l'hémisphère boréal doit être suivi dans l'hómisphère arstral.
19. Votre bonssole errant considérablement, comment procé-deriez-voụs à la corriger, au moyen d’amanis équivalents et de fer poli, de manice à faire rentrer l'erreur dans des bornes controlables.

Faites une marque sur le pont, exactement sous le milien de la boussole, tracez deux lignes en craie à ce point, l’une de l'avant à l'arricre, et l'antre en travers. Redressez le navire et mattez le nez an vrai N. ou S. magnétique; puis placez une barre amantée cu travers, avec son centre sur la ligne de l'avantà l'arrière, et lo N. ou bout marqué, pointant à tribord, si la pointe N. de l'aiguille est attirée à tribord, et vice-versá. Gardant toujours le centre sur la ligne de l'avant à l'arriere, faites mouvoir la barre aimantée, de et à la boussole, jusqu'à ce que le nez du navire soit N. ou S. par la boussole. Mettez alors le nez à E. on O. magnetique exart et placez la barre aimantée de l'avant à l'arrière, avee la pointe marquée à l'arrière, si l'aiguille est attirée vers l'arrière, at vico-versa; placez le centre de la barre le long de la ligne en travers, jusqu'ì ce que le nez dy draavire soit dirigé vers l'E. ou O. par la boussole. Ensuite dirigerg devant sur un des 4 points de courses magnetiques exacte, foplacez une boite de fer poli de chaque coté de l’habitacle, "fẹ"̣iveau avee l'aiguille. Mettez plas ou moins de fer dans ces: baithes jusqu'à ce que la boussole saccorde avee la direation dur llevant dn navire. Ce dernier ajustement est pormanent, mạis \}es deux autres exigeront de la surveillance, et par conséquent les aimants devraient ètre fixés de manièr à pouvoir ètre déplacơs se volonté, dans ce but, pendant le voyage. Les aimants devraient être de 10 à 18 pouces de long, leur largenr un dixième de la longueur et leurépaisseur un quart de la largeur. Ils ne devraient jamais Btre approchés de plus de deux fois leur longueur de l’aiguille de boussole.

DEFINITIONS DES TERMES DE NAVIGATION ETI D'ASTLRONOMIE NAUTIQUE.

Le candidat devra écrire une courte définition vis-ìvis de chacun des termes suivants, que l'examinateur désignera par une croix. Il n'en marquera pas moins de 10. L'écriture devra itre lisible, et l'épellation soignée.

Un plan est the surface piate et unie sans profondeur, rette surface neut etre supposée placée dans toute direction roulue, et alors tous les oljets qu'elle comprend sont dits appartenir à ce plan.

Un grand cercle est in corcle dont le plan passe par le centre d'une sphère; par conséquent il divise cette dernière en doux parties
égales, et est le plus grand cercle qui puisse être tracé sur un globe.

Un petit cercle est w cercle dont le plan ne passe pas par le centre de la sphère, conste : ${ }^{\text {-amment }}$ il divise la sphère en deux parties inégales.

Déf. L. L'Equateur est un grand ceṛcle également éloigné des deux pôles.

Déf. 2. Les Pôles sout les extrémités de l'axe de la terre.
Déf. 3. Un méridien est un grand cercle qui passe à travers les pôles.

Déf. 4. L'Ecliptique est in grand cercle qui indique la route apparente du soleil dans le firmáment.

Déf. 5. Les Tropiques sontidélx petits cercles parrallèles à l'équateur, coupant chacun unoz'sibith de l'écliptique.

Déf. 6. La Latitude est l'abicid' un méridien interceptí entre un endroit donné et l'équateur: ${ }^{\prime \prime} . .$.

Déf. 7. Les Parallèes de liaititfide sont des petits cercles parallèles à l'équaten:

Déf. 8. La Longitude est l'avéde l'équateur intercepté entre ce qui est appelé le premier méridiéén et le méridien passant par un endroit donné.

Déf. 9. L'Horizon visible esí le cercle, dans la pleine mer, formé par les limites de la vue.

Déf. 10. L'Horizon sensible est le plan (fi’i, passant par la vue de l'observateur, est parallèle à l'horizon visible.

Déf. 11. L'Horizon rationnel est le plan qui passe par le centre de la terre parallèle a l'horizon visible.

Déf. 12. L'Horizon artificielle et son usage. L'horizon artifi cielle est motit ange ì bas-fond contenant du vif argent. On s'en sert lorsifu'il o'y a pas d’horizon visible pour mesmer la hautens d'un objet.

Def. 13. La conrse exacte d'un mavire zst l'mgle contemu entre le nez do havire et le varai méridien.

Déf. 14. La conuse magnôtique est l'angle contenn entro le ne\% du navire et le méridien magnétique exact.

Déf. Ió. La conrse a ta Boussole est l'angle rontemuentre le noz du navire et le méridien à la boussole.
jar le deux
é des
avers route les à
entre
ercles
tre ce ar m

Déf. I6. La Variation de la Bonssole est l'angle entre les véritables méridiens et les méridiens magnétiques.

Déf. 17. La Déviation de la Boussole est l'angle entre le méri dien magnétique exact et le méridien indiqué par la boussole.

Déf. 18. L'erreur de la Bonssole est le résultat produit par l'effet combiné de la variation et de la déviation de la boussoln, à bord.

Déf. 19. La Dérive est l'angle formé par la ruille du navire avec sal course actuelle dans l'ean

Déf. 20. La hauteur méridienne d'un astre est sa hauteur sur le méridien du point d'observation.

Déf. 21. L'Azimut est l'ägigh compris entre les pôles Nord et Sud et le cercle vertical qui ipasse par cet objet.

Déf. 29. L'Amplitude esifg.tangle compris entre les points Est et Ouest de l'horizon et moded à son lever ou à son coucher.

Déf. 23. La Déclinaison est $\mathfrak{C a}$ distance angulaire d'un astre Nord on Sud de l'équateur cobliste.

Déf. 24. La distance Politrequ est la distance angulaire d'un astre dn pôle ou se trouve l'ohservateur.

Déf. 25. Lascension droitée ést l'arc de l'équateur céleste compris matre le premier point dun Bélier et le cercle de déclinaison passant par un astre domé.

Déf. 26 L'abaissement est l'angle compris entre l'horizon sensible et une ligne tirée deporis l'wil de l'observateme à un point tre l'horizon risible.

Dél. 27. La Refraction ast la somme dont la hatemr d'un asho est angmentée par l'effot de l'atmosplèe de la teme.

Def. 28. La parallaxe est la correction additive, à mo hautemp,
 été laite da centre de la teme.

Dél. 29. Le demi-diamère est la moitié du diamotherpparent f'mutastro.

Déf. 30. L'angmentation din demi-dinmètre de la Lume nst l'augmentation du demi-diametor aprarent de la lune, cansée par le rapprochement de l'endroit on se tronve l'observatene de la fime, pendant fu'rlle monte de l’horizon an zenilh.
 unt astro el l'horizon d'apres lo sextamt.

Déf. 32. La hauteur apparente est la distance angulaire entre un objet et l'horizon sensible.

Déf. 33. La hauteur traie est la hauteur apparente d'un objet corrige par la refraction et la perallaxe.

Déf. 34. La distance au Zenith est la distance angulaire eatre no ohjet et le point dans le firmament, immédiatement an dessus de l'observateur.

Déf. 35. Les cercles verticaux sont des grands cercles passant par le zénith.

Déf. 36. Le premier vertical est le cerele vertical qui est à angles droits avec lo méridien céleste.

Déf. 37. Le temps civil est lemgyen ordinairement usité pour calculer le temps à terre.

Déf. 38. Le temps astrononịhie est l'intervalle de temps écoulé depuis la lune précédentẹ....

Déf. 39. Le temps sidéral est: sage du prenier point du bélier.

Déf. 40. Le temps moyen esple. lemps ordinaire à l'horloge.
Déf. 41. Le temps apparent est le temps écoulé depuis lo passage da varai soleil.

Déf. 42. L'Equation du temps est l'intervalle de temps entre le temps moyen et le temps apparyint.

Déf. 43. L'angle Horaire d'nn astre est l'angle compris entre l'astre et le méridien céleste.

Déf. 44. Le complément d'un are ou d'un angle est la différence entre un are ou un angle et 90°.

Déf. 45. Le supplément d'un are ou d'un angle.-La différence entre cet are et un angle de 180°.

$$
\nabla
$$

[^0]: - Seo Defnitions in Navigation and Nautical Astronomy.
 \dagger See " Deviation."

[^1]: - The first significant figure is the figure not a cypher.

[^2]: - In Bowdich this number is found by subtracting the log. taken out, from the one following it in the tailes; and if the given number contains but five figures the correition may be found by inspection thus :-select the little table at the right of the page, which has this difference at the top; now find the fifth figure of the given number in its left hand column, and opposite will be given the required correction, which is additive to the log. of the first four figures.

[^3]: - In Bowditch, as before, this difference is found, by subtracting the log. taken out from the one following it in the table; and if oniy one additional figure is required, it can be found by inspection, thus :- select the little table at the right of the page having this difference et its top; then find in its right hand column, the nearest number to the difference between the log. taken out and the given one, and a'ongside will be found the fifth figure requireu.

[^4]: - In the earlier editions of Norie the dilference for the Co-suecant will be found'alongside the Sine volumn, while that of the Secant will have to be taker. from the difference column next the Cosine.

[^5]: - If she is hove to, your course will be the middle point between where she comes up and falls off.

[^6]: - It may be noticed, that if the diff. lat. is the larger, the column In which It is found is named diff, iat. at the top, therofore take the course from the top; while if the dep. is the greatest, the column in which it is found is named dep. at the bottom, in this oase thercfore, the Course will have to be taken from the bottom.

[^7]: Conrua N $20^{\circ} \mathrm{W} \quad$ Dibtayoy 78 miles.

[^8]: - This may be done by caiculation, by multiplying the long. by 4 and dividing by 60 ; with a littie practice this is much the quickest way of doing it.

[^9]: - Theoretically, the Equation of Time should be taken from page II, but as errors are very likely to ocour in consequence of having to refer to page I to see how it is to be applied, it is better-wore enpecially as it make no practical difference-to take the Squation alno from pare I.

[^10]: - Shacklew.-The way in which these are usually marked in to haven piece of spunyarn round the pin, putting one knot in it for fifteen fathoms, two knots at thirty fithoms, and so on, giving an extra knot for every additional fifteen fathoms. Instend of this, some lave adopted white rings painted upon the bow of the shaekle, but an these are very liable to get worn off, it can hardly be thought an improvemeut upon the other plan. 'The pins shouid never be of iron, which if ruated in become immovable, but they should be made of wood, leather or lead, so that they can be bored out if necessary.

[^11]: * The only Casen in which Articles 11 and 13 apply, are when ships are meeting End on, or nearly End on, in anch is manner as to involve risk of eollision; in other worif, in cases in which by day ench shlp sees the maste of the othur ill a line or nearly In a line with her own ; and by night to cuses in which esch ship is in such a position as to see both the side lighta of the other.

