BULLETINS

OF THE

Aerial Exprrintent Amariatian

Bulletin No. YII
Issued mantay, abg. 24, 1908

MR. MoCURDY'S COPY.

1. Mastarial Hatea and Corsantys-

Jottera fren Marburs. .inb

Work of Bosum Bheagh Laboratory by
Vh. F. Bedwin. .. 3
y. Butnuat Ingine and its Admptibility

Juperiston te with oionee Kite, 2003, Aug.
$1,3,44$ by A. 0. Bel1....................................... $6-18$
Haparimonts with Kitea, 2003, Aut. 14
by A. 6. 3e11..20-27

Baldain'a lydroplane experiments with
约 Oatamarin Mabert: by A.G. Beli................ $31-37$
Baldutn's experinente with the mphonae 3eages 1903, Auge 19t by A. a. Ball................ 38 . 39
4. Higeshanaens cormundeationst-

Gatamaran of two rubber rionta inflated

Aluninuat easting of twolve logeod globular
cannectsen-derioe
Hydroplane Zxperimenta with the trin beat
Rabert.
Hual of Haldwin'a Hiydraghane beat wi th twe
forms of out-rigerara.
zegerarens.

Te br. Ana. Boll,
Baddeek, II.

 patent innyers in seeuring applieations for your imedinte inspection Boply liamondaport.

> Y.A.D. Meturdy.

To Br. A.B. Beal,

Fandnaten, D.g.o. Aure 15 , 100ate In air two hours tomight.
 sielale pleased.

> 6. H. Curtias.
(Hotete Above refor to arficial triala of Capt. Baldwin's Beiloon with Capt. Baddwing and G.ll. Curtiss on beard.A.C.B).

Ge Dr. A.C. Bell. sadesek, H.E.

Herraendaport, HaY.a Aura. 27, 190

J.A.D. HoCurdy.

TO Hzs. A. G. Bell, Beddeok, H. S.
 diseppointing indead. The Pirat day he rlew 240 yarde at shem vation of 3 foet time 12 aeconda, 保ioh gives a volecity of about 20 milea an hour. 理 made two auch 921 ghta that day ond then Fheeled the suchine back to tho tent.

The noxt day there were about 3000 poraens in attendance and at it was teo windy he did net attonto to ghy at aly much te the diamppointanent of the 3000 persens. Thay vare howevor, civen ewind chequest and told to oere again the next day. Ve thought that we had seen all worth seesng se rom and
 anxious to get beuck here and do secse Plyinge Fo have howevor, had the ongine overhauled and 0112 be, 211 rendy this eveninfe We have alse revarnished the surfinges.

Mo. Ourtsas anys that the reason that the ongine overm hestod was because it did not have surficiont oil, it veing really an oilmeeoled engine, ao we have atteched an aiditione a1 tank efivinga abundent flow of osi through four difforont feed pipes. Prof. Wood of Johns Hopkins Unspirsity the is vialting us auggeated that we oool the ongine by paoking the eyIInaers in abaorbont ooston anturatod with witer. The apoest fie hoat of water being se high it weula censegianthy abaero a large quantity of hast. We trind this asperimant tomday in the toating-roen with a aingle cyilnder meter with startiing reanlis. We ran the moter on the stand for seven minutes with
perfeet oecling while under ardinary eireukstancea we can only rum it for one simate and thon it gete hot. We coukd prop long the eooling by allowing a manl atroam of water to play on the ootton but thia would neesasitate a watarotenn and foet pipen. We are going to try the oettonmoeoled sehenge on the effot oyinder thia ofternoon, and if it keepa ua for soven min+ atea, it will be quase an advance. Wo have deelded thet we ought te have a wator-ooeled ongine and Curtios anys we ean get it out in three weoks, and perhuys in time so use on the nev machine.

J.A.D. Hecturdy.

```
30 Mra. A. 0. Bell,
    Baddect, 龍3.
```

 bout roady to asomble; the elotid for the surfaces is finimhet. John will being is froen wew York. tolfridgw ham bean orierod to Fahingtong and I axppose we have leat him for the reat of the sumar.

> To Dr. A. Ge Bell, Beddeck, No.
 sion, ete., for the re. 4 are rendy, and we will make a thosm ough test or the doubla propeliers this week. Bverything alae is alse ready to assomble. Fhile in Wiahington I had a 1 ong talk with itr. Causeron and we expeet hin draughtanon hore tee day to finsth the details of the tuachine.
(6.H. Curtian.

To Br. A. G. 3e2.

 cloalng in this letter. It does look thin but it is luparm Vious to the alr and is not aa moak na it looke. Fhave had as far no trouble with our aurfice tearing and this is a 100 atronger then anything we have usod ao fas. Ao a matm ber of faet I thougto this waud bo a littae heavier but is looka pretty good as it le.

I oalled on the patent erfice and tald itr. Counorom that we aluhed the patonts ruabod right shrough and that Farman was thinking abous uning our tipw. He has been xow called fron his vaestion on wocount of him mothoria 111 nese and hes promiged to propare aur appiloastonsat onee. They sent their druaghtanen, ire, Fhlliswa, down here and he made aketehoe of nal the werktre parta to halp its. Cownoren in draving up and wording the elaish. wr. Villiamo left here tomas开t fer Whathington.
A.2 the pratte nate made yor the now aerocrocse and it is probable that will have her nasmecthad whe niddie of next week.

18r. Curbse had coestea to buske an elcht oyilnder watorncoeled engine wich we will try out in the now muchane and if it proves matiarnesory ve ann thke is so paddect for the tetrahedrad aorodroese. You oartainly aught to have an angine wich will maintain ita pevar for a oanaldmrable length of thae and the pure sixeeooled wontt to thate.

This engine ham eortainky workod out well and we have had no troubie with it watever, but nem that we have peeved the waeconds* atage and the malmutes" we wnat soasthing to go into the mhournis.

I suppese you know thes the nev condition for the Belentarte mmorican srophy haw boen deelded upon. Thoy are to fly as kilomoters rounding the gtartingoodint, wich mouns one corplete circie anyway. the date mat for this trial is September 7th and the ontries muat be in ©opteatber lint.

Do you Mink we ought to entert Gonaral axion saye that he will aliaw the new Govormeont mochanes (irlathen and Harring ${ }^{\text {l }}$ to ontor providing thoy ure dolivarod in tiase. Horring has been allowed an extension of so day for dolivory.

Balduinat balleon is o basuty sud othey are all pleased with it.

The official R11/ht will be temoorrow. Thoy have alroaidy mude 16 milea an hour.
J.A.N. Wocurdye

Th Br. A. G. Bo21.
Madteck, $\mathrm{M}_{6} \mathrm{SO}_{6}$

 Leok like a roal aoredrove.
J.A.D. Moturdy.
 Baddeck; ${ }^{2}$ 。
 whillithlle more all rood, the ovisnders wo can get power row a langar period of tize and ae we are having a forna feed plate
put on the ongine, and I at hope it will prove satiafaetory. Wo have net boen deing any flying thia weet on that aoeount and the asoombling of the new machine takes ry a lot of thase and we want te get it findehed in time so try before geing to Baddcele. If that new watarweooled engine ia only giniathed in thee wo whll have a fair ehnneo of beating Parann'a record of 20 minutes 12 seconds in the sir. What do you think of the new olothp*ee

I was just in Vahhington long onough to get an order algnad by Cast. Baldain for that allu and to aee a plight. Waa in Sep York a day but didn't see any permons thore as they *ere all in Whahington.

J.A.D. MoCurdy.

by Win. F. Bedwin, Buperintendent.
 fren Mr. Forgasen of the hlue M112 Obeorvatery a bettle of apecial ink, and three Richurd pena for the Giino-Anomoneter, an instrusent which is to bo sent win a kite for the purpese of obtaining a reeard of windmoleaity at the kite itself. and of recording automationily the inelination of the kite surfaces to the horizon while the rite is in the air. Tetrahodral Aoredreme Hea S.

The oget-Anay (lulletin $v_{0}, 20-31$) is very noarly rendy for work. Ve tried teuing hor with the Gauldrie some days age, and suceeoded in getting a apeed of 5.62 miles per hour with four mon on the moteAmay at the time of teving.

Fe have nearky finlahed swo medels of the propesed tetrahetral aeredrean \%o. 5, and we are now at work putting on the beading.

The have recelved fren the Goedrich Hubber Comany; through itr. Gurtise, 20 large rubber tubes to be used as fleats for the tetrnhedral aerearere Mo. 5. Wo heve made a eatemaran of two of these floats inflated with allk bage ready ie try experizents with. (See acoupanying photegraph).

The elobuat connectionmevice for tetrahodral structe ures having large eelle whem in Hulletin $\mathbf{V}_{\mathbf{y}}$ si wore turned out upon a lathe. Wo have sucoesded in making a solid oasting of this device in alvaninum, and alse in oasting one with a hollow eontar mich laoka well. (sies acooryanying photographs).

Aunast 10, 1909smitydroplane axp erivents with the wathertes

 - Thumary
beat. (Beo aceortsanying phetography).
resdy, and we wre at prewent puting an eaginembed uyon the

 placed en the "gotennay" so get awny.

 upon abrodrone wo.6, a totrahedred atrueture of the Oionos
 the two wheds we will have mongh se mabe a wtrueture very pieces, abme turned un a lathe, and others onot. Jetween

We art moicing 49 lot of those glohelat aluninse aonnoetion

- ${ }^{-8}$

 Kite C , rite D_{5}, the old Oionos Kite, the Katy Froat-king rite, and the Thite gite with Maldrinta truasing. 200 observations. Windoveloelty 26 observations, altitude 72 obsorvationa, pull 72 observations.
 planes, wich are not quite ourpleted) with outmigger and weoden fleata was towed full apeed by the Gaularie somang. 46 observationa of the pull on the towing line wore mode yielaing an average of $\mathbf{2 5 . 2}$ 2ba.

The art of making light engines for saronaustieal purposea may fairiy be eonaidered to be in ite infanoy. We aistinet bype of motor for aeronautionl work has a0 far beon doveloped and this alone indicater that what wo are uaing ta a vary alighthy modiried marine or sutenobile moter neithar of waich is particularky well aulted for the purpese.

Firyt of all our enginea are upaide dow, the oranio ahaft of a marine metor must for convendence be kopt 20 and the eylindera naturaliy arrange thenselves abeve it. Thie has pretty weli atandardimed marint and autenoblle ongines, but the oxset eppeaite of this arrangmant is the nost natural one fer seredrese meters. Wio want the thrugt high and the oenter of egravity $10 w$, and in an aerodrome thore is roen for the oylinders below the orank-okart. Unless the oylindera ard dispoaed all round the whaft fify finouldn't they be undere neath and not on tep as we have thein now

I waw a ceaeription of Dusaunt engine the othor cay
 prosaion on me. The thole dealg ia a now and original eobe bination of old and vell known principles. There iantt a single fonture of the engine that in itaelf ia novel, but the eanbination leoke geod.

It is a doublementing, Pour ayole ongine with 20 aye linders. Fhere in ne orankeease and the orankwahart is on top. The oylindera are diapesed twe on oach piatonered, and hy the
doublomacting arrangement ench eylindor is alwaya on a power atrode.

The cylinders are V ahaped upwarde (\wedge) juat the aye poaite to our aight oyilnder ongines and the lubrieation is or course force feed from throe purqs, oundiriven off the eranim ahart.

The cooling would probably be difrieult but seemb to be arfily provided for by a genorous aupply of water through geod alzed ooppermjackets and is naturally sasisted by all the parts on the interior of the oylinders being hollow, and as there is ne oronimease they get a geod eurrent of continually framh alr which should be a great mivantace.

I lanow thr. Curtias does net like ayindera with the hoadz at the botton because it coes away with the poasibility of aplash lubrieation, but mas not mpamh lubrication get to go anyway

Trking it altogethor I aee no reasen my M. Dufanat ongine id not perfeetay practicables and if it is, my is it not a deeided improvenont evar anything wo have at proaent, In advantiggous disposition of wight, possibllition for lightneas and eany aceesalbility of parts.
 by A. G. Bo11.

1003, Ange 18 An ald Oiones fite reaurreetod from anong the old models was tried tomday. Fer photegraph see Bulletin $V_{\text {, }}$ page 34. Findevelecity 4.85 miles per hour. Ralsed Oiones by running with the line and it suetained itsele in the air for a Hhort time, but as at could only be ropt wo by mursing it wae allowed to fall on a alaek line. It fell vary gontly and Was uniafured. Anothor reading of the anveneneter wns then taken giving windwoleetty of 4.08 miles per hour. 1903. Auge 3for your neries of experimente were made to-day with the 0iones Kite flown by a oerd 209 maters long, weifhing 975 ens and attachod at point +25 am , Jeight of kite withe
 arranged horizentally and 2,6502 seq marranged obliquely making a total atik aurface of 5.0644 aq m. The following table gives a surgary of the obsernvtions made with the average obtainedte

Broertinente with otenes rite Ausg 3. 1908 ,

Find	Axtituce	Pu13	
Obs Males	Obs Angle	Obs	2bs.
2 22.an	10 329	10	124.0
17.65	832	8	129.5
10.74	1038	10	227.5
2 5nes	10	10	109,5
$\begin{aligned} & 32_{\bullet} 48 \\ & 6.50 \end{aligned}$	$\begin{array}{r} 38010 \\ 3100 \\ 30^{\circ}, 8 \end{array}$	38	$\begin{aligned} & 490.5 \\ & 12.9 \end{aligned}$

2908.Amg. ise Foperimente were mate temany to tent the asm feet of loading the oionos kive with a pisee of lead welghing 45 ens placed (1) at the extreme and of the back, 210 an frem
the center of the kite at as to be as far formard as posadbla, and (2) pleced under the tail, at a point - 50 ent from the center of the kite.

(Toine +25 , Lead - 50).
Obind wizes Olititude Angle Obs lbs.
7x. 8
3xp. 4
roten
Aver.

2	$\begin{aligned} & 23.92 \\ & 21.78 \\ & \hline \end{aligned}$	10	$\begin{aligned} & 4300 \\ & 49^{\circ} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 115.0 \\ & 1080 \end{aligned}$
2	$\begin{aligned} & 25.69 \\ & 22.65 \end{aligned}$	20	$\begin{aligned} & 866^{\circ} \\ & 43^{\circ} \cdot 2 \end{aligned}$	20	$\begin{array}{r} 227.0 \\ 10.9 \end{array}$

(3.0. Areraseg, 4)

vind

22.6 miles 12.8 miles

Altitude
$30 \cdot 9$ $43^{\circ} .2$

Pull
9.0 2be. 20.9 18.

In experimonta $2_{8} 2_{0} 3$ a 4 the kite K 2 ow steadily but It was found diffigoult to land it on moeount of vartical and horisentel osesilatiops wen nour the ground. It would strike on one wing and ananh a few atidiks. In axperiment 5 a dangling bow-line was attached at point +210 , the extrene ond of the boak, to facilitate landinge.

- (3)
0tt + anyt-moq 2 urv

- 7

(tine * $25_{\text {, }}$ no lemet dongling boomline * 230 voighing 377 ge 16 m 2ong).

Aver.

(Line $+120, ~ n e ~ l a n d ~ d a n g i n g ~ l i n e ~$ as waigho

30.

2 12.39
2
2 \%

Pu23 Obs 2bas.

In thic last experinont (orgoe) the hite moe flown wy a bevoline and it only supported itaelf for a murficient line to onable one ebeorvatsion of alsitude and puzl to be made. Ine kite turnod half over on its side in the alr, and oarso down asternes, very sloway until it tounhed the ground.

The latte wale then again raised inte the alr by rumning with the ifne in the hepe that we might be able to eemplete a aories of obsorvations. Fine lidte hevevar went through the same porformence as before eoning doum gontly sideway to the ground. to dasmeg cone, Inse oonoluded the experimento for the cay.

A good sailing preese was blowing on Friamy Auguat $\mathbf{1 4}$, and tw. Bedwin whe regueated by telephone to put us the new
 of the Frosthking romng of full construetion, and oonetitntes a madier edifion of Kite A (Bualetin 2, s4). It has 22 cella oa toy. 7 eolla en bostom, and is 6 ealle high, containing in
 oblique. Ratie 406 gns por $\mathrm{m}_{\mathrm{B}} \mathrm{F}$ oblique.

Upen aypromehing the Joborstery the Pilos IIte wae observed in the air riying with grast ateadineas at a high angle of thtitude. It was roally a beantiful alght to see this inne strueture at reat in the ais, mupported apparentiy as Inpeveabie as theugh glued to the sloy.

Fe had here a goed illuatration of the wonderful atao bility exhibited by large tetrahodral kites of full eonetruetIon whon fiom in a fuxiy axpperting breesef and the exhibition of atability hanmered hene the oonvietion that we ahevid not depart frem thin fom of atruoture without good and aufflelent anuse.

A southemegt wind of betweon 15 a 26 malles an hour was blowing at the tine, and it was semewhat remaricable that the cloude were moving in guite other direetions indieating the prosenee of three auperpesed curronte of air moving in aise forent directions. The upper layer of aloude movod from vo tir
 freo wind blew frem wie to me

 Line t 200 of ateut cord 200 呈 leng. The tro Iines

30.3

Iite D was not noariy as atemay in the air as the pilot kite. It mowod mbeut with vind sluetuantions but there was no raguiar ogolilasion. fonab to be a good riying kite. Kite D

Fxpertinente wh Fite D, 1909. Atr, M.
(Itain Line +50 of thanilia rope 100 m long bow Line 4800 of ateut cort 100 in longt The tue Iinea woichoe s6gs gns. ingow by bow-iine).

7xp. 4

Ind	Alsitude
Os 3x1es	On Ange

 Iine * 200 of steut oora 100 m longe the twe Iines weighed 5698 git. Move hy main Ifinol.

Aver.

Bap. 6. The attorapt was then mude to fly Kite A in a wind of 9.54 miles sn hour, the kito wam not quite self-mupportings but was kept up for acme time by asperul nurging in hopes of obtaining readings, but uithantoiy oune com, and we then preeeoded to try the now indte Kite oonstructed of 30 an cells with saldvin's trusising. For photographe of this kite sea Bulletin V F. 33.

Erperimente with white Eite with Baldwin*e Sruasing, 1908 , August 26.
Chain line + 25 of atout cord 200 mangs bow Line + 100 of ateut cord 100 m longe The two Lines weighed l2aO gis. Mown by main 12nol.

Heq.

Wind		A1tituate		PuLl	
Obs	H2es	Obs	Angle	Obs	2ba.
1at	6.99	2at	296	2mt	8
		2nd	30°	2nd	6
		3×1	80°	3 md	2
		4th	23°	4th	10
		5 th	24°	5 th	5
and	6.47	6th	25	6th	11
		7 th	29\%	7th	8

Total
Aver.

Zxperimant \% continuale

Obs inden Obsitude Angie Puas 2bse

This proves to be a Light 2nying ldte, but net as steady as desirable. It would rly orf the wind to one mide, and by athe bye riy off the wind to the other aide showing a tendeney to regular oselilation. It would eeeasionally ilp to one side roeovering its equisibrive after a wile. conolde arable oselization then near the ground. Landed badly thdugh iftile if any damse reanted. It shoula be notiged in doromet of the kite that the rindevaroctity was not groat and that the riying line was atteched at a point se near the center of the kite (4 25) as to place it in the ment unfavorable oone dition Ior atemalineas. Jpon the whele wo wore very much time appointed with the behavier of this mplenasi looting hite. Certainky we hevo never rade finer looking eolla, The maine a00k oovering thom was atretched tightay and there wea mothing bages about the ealls.

${ }^{*} \operatorname{tax} \theta^{\circ} 9$	07		$\begin{gathered} \text { ert } \\ \text { ot } \end{gathered}$	$\begin{aligned} & 0^{\circ} 0 \tau \\ & \\ & =0^{\circ} 0 \tau \end{aligned}$	T	$\begin{aligned} & \text { exody } \\ & \text { xegeg } \end{aligned}$	
Of	101	\％	W0t				
4	416	08	＋1\％				
－	tee	0t	$4{ }^{4}$				
9	4 ta	＊＊	484				
07	499	－68	ter				
＊	\％n	ete	489				
	42t	－0\％	$4{ }^{5}$				
	par	5et	pax				
	樶客	at	put				
	数	et	\％＊	$70^{\circ} \mathrm{Ot}$	9\％7		－＊Are
${ }^{\circ} \mathrm{Pax}$		otivy epna	eqe		政e		
＊Suet	003	$\begin{gathered} \text { efutt } \\ \text { pase } \end{gathered}$	zuens	$\begin{aligned} & \text { cme } \\ & \text { je } 93 \end{aligned}$	0\％T	แ\％ที）	
			＊＊＊		W1\％ 1	xemge	ภutwet

${ }^{\circ} \mathrm{yat} \mathrm{~T}^{+} \text {e }$	et		ent		\％	＊seay Twey
\％	40\％	－6］	\％0t			
－		48	＋6\％			
ET	\％	det	4 \％	＊ $6^{*} 4$	par	
6	48	－98	485			
4	49	－38	＊${ }^{\text {\％}}$			
¢\％	tis	tte	$4{ }^{4}$	96＊＊	54ts	
5	\％	－39	40			
6	pts	－s5	parg			
Ot	pute	－s3	puty			
8	\％ธT	－3T	ขอ\％	$48^{* *}$	\％et	

The Line was then longthened until about 300 were
 and tho Line asggod on the ground. Brought kite dovn. Bad landing. 堅ight lanage te beth enda of vingopsees. The Pilet riste men then again tried.
 (Main Line + 37.3 of gteut eord 200 m long weleg ing 605 gras. He bevinline).

Hxa. 20

The line wad thon gradualiy longthened, the kite Ryw Ing at a very high angie untsi bbeut 300 m hod been let out. Bafore Innerumontex readinge obuad be thiren the Plying Line brolce and the kite flouted avray enaing down slowly. Froa the IItemitouse it aeoned as if the gite burned its bow from the wind and glided dovis at mathes a atwep angiet in faet it semed to be making a hesder. This , however, must have beon an eption iliusion on soceunt of the diatence and point of viow, for the kite was found in the public road at some asotanet outasde our ontronee ghte faging the find and quite une Injured. Fet a aingle atick was broken se far an we could
 ing the wind te that the drifting of the kite causod the bow to maite orily a glaneing biow on the ground. Kap. 2. Anether atterge was mate te raise Itte A without
 not oustain istaid in thia wind athough of atmilat construet Ion to the pilot Kite whioh had just been flowng and of abcut the ame theoretien Rying woigit. The Rying line of rite Ap however, weighed 528 gee, therens the line of the Pilot Kite welghod only 605 gye. This concluded the experimente for the day.
by F_{e} W. Baidwin.
(A Letter nadressed to Mr. J.A*D. MeCurty).
 had to give way for a tine to hydroplanea. We have retaekiee. the old problen of apeed over the mater. This time witha View to teveloping an merodrome of the triter-fom type, Thioh would atart orf as a boat, then as sho spoeds' up ifft out of the water on hydroplanes, and finally lifting out of the wiber aitegether muport hernelf at a free flying msehine. This aerohydric trinity of a boat, a hydroplane, and on aereplane seens perfeetiy possible with the engine propallers ete., that we have now.

It has alwayas aeomed to se that the hytroplane was worthy of a let mora oenaideration than 14 is gotting, and that perhmps the grentees apeet of 2 eoenotien will be over the water in this way.

Wen apeed is the only considaration wy whould a bost diaplace water and ume up a marge part of the engine power in useless wavemanking?

The reaistance of an ordinary bast when puahed beyond a certain point inereases ne the oube of the apeed. For this roasen no aubstantial Incrases in the moed of boata hae been made for years. the erawining of huge ongines into modern race Ing boata is clearly a misapplieation of power when greater apeed oan be obtained with not more than a quarter of the wame pewer on the hydroplane prinelple.

Floperinonte have atrom that a boat oan bo ontirely life ted out of the water by very anall hydroplanes. This is the
key to epaed. Ones a baat en be made to do this her displacoment is reduced to a minimum i.e. the vertical coraponent of the pressure on the hydregianes aupperts the entire weight of the beat. The hydreplanea thanselvea have auch a mall diaplacemant that it may be fairly conaidored as negligible. Speed then is simply a question of isft and drift comparable to the aeraplane.

The resistance will not increase with the ayeed bew cause as the upsed inereasea the sanc propeller thruat will sustain the boat upon a analler surfaee of hyereplanes. The linst ef apeed therefore will be determained by the realatanes the hull meata with net in the water but in the air. 2nis at high apeode for a motor beat is net very great, and as it Increases only as the square, and not as the oube of the apeed the 1 imit will be very much highor for a baet with a given horsempower when hydroplanes are used in this way. The liftIng out of the hydroplanes from the water anounts to the amas thing as reofing them.

Sometime ago I resolved the forees acting on a hydroplane and by a littie trigonemetriand jugeling arrived at the conelusion that the water reaistance was direetiy propertional to the welght of the beat and did not aopend in sny way upon the velealty. of course thia conclusion involved a fow assuape tions whieh I was not oure of at the time, and the result seoned so atartiling ae hardiy to warrant thone Howevor reeentily In EDMarophile M. Fomianini makes the utetonont that the roe alatanee or a hyareplane best is praetieally independent of the veloesty and equal te about $1 /$ hath of the weight in his
apparatus up to apoeds of over 40 alles an hovar. Boyond this the air reaiatance beooaea a limiting facter.

These rosulte are very eneouraging when we oonsider the aismpliaity of the urrangensente, the relatively lew poww and the tremondoua lift exerted by the hydroplanes.
3. Forlanini uaes a 75 horaemowar anglne geared to twe large aerial propeliors ono in the bew and ans in the stern turning in eppoaite direetiens. The propellera each haw five blades 1.7 meters diameter, and a pitch of 6 meters. The hydreplanes are on a kind of a rack extending froze oithor wide of the beat and arranged in superposed faahion like a Vonotian Blind, se that an the beat liftn out of the water the aubmerged hyaropliane area in proportionally reduced. Whe planes are vary narrow from fore te art and ho atates that at a apeed of 70 kilenetern an hour the ontire weicht of the beat (1650 kg) was aupported upon a surfaee of only . 123 square meters. Thia eiven the netoniohing reault that one square meter is axfficiont to support 21 metrie tona at his apeed. (11000 kga).

How judging from those Fi gures I think we whoule be able to got aerse good results with the 11 thle oatanaran on whioh we have been trying ou: aen hydroplanes.

The rabert earrying a san and with the four cylinder 20 horsompower moter, and the 1.5 meter propeller weischa mbeut 500 1bs. The thruat ean anfely be counted on se 90 lbs., and this secerding to H . Forlanini is aore than twiee what we meed to obtain high ayoed.
(3igned) F.W. Balduin.

Hatidistby A.G. Bell.

On Fodneaday, Aug. 5, 2905, the o2d twin beat madbert was fisted with the curtias Fo. 2 metor for an oxperinent wioh P.V. Baldwin deaired to try. A propeller was attoched directly to the onginomaraft. It was 250 an diametar having sn angle of $2 \% \mathrm{2} / 2$ at the tip; the pitch egualled the diaxgoter. On sow oount of the sise of the propelier the ongtne had neoesenrily to be plaeed high ty abeve the 2 enta. The eenter of gravity of the ongine munt have been at laagt ona meter above the floats. A pushing propelior whan unod so it was brought aft and itr. Balduin proposed to alt under the onglne, but there was hardly roen for him to sacase the belanoe wheel. The rutm der was in front. Mr. Baldwin propoaed to mee wht speed the "Beberto would athain then propelled by an aerial propeller and then attach twe hydroplanes below the boat te tent har as a hydroplane boat. The information gained would be of value In relation to an aeredrene we propase to make orpioying a ving od atrueture of the olenes type. The aeredrone to be plaeed upon floats and se rise out of the water when propelied by its ovn metive pover. 1tr. Baldwin think that mubrverged hydroplames will assigs the pregese of riainge

whe. 1. The Rabert having been fitted with its angine and propelles, 背. Baldoln got on beardg but he eould not orank the angine while sitting below it, and so stood up in front in order to erank it. This depressed the bew of the bost we tha it was lower than the atorn and the momont the ongine was
atarted the prepeller, retating I thousi think at leaat $2: 200$ times a minuse if net mors, ounsed the boat instantly to thoot forvarde, and bury her bowa. Before anything could be aone the boat turned over forwards and aideways in the water. pro. Baldwin thut orf the power as the beat went over which wae fortuante as the balanoe when grased his atm and made on ugly bruise mich sight have boen aorious hat the balanoe wheol boen in full rotation. The Bdburt turned upaide dovn in the miter an int. Baldwin guocoedod in molmaing clear.
some darficulty wes experieneed in righting the boat and tha groater art of the afternoon was oceupled in trying to get the ongine to run again. Three of the eyzindors seomod to work well but the rourth (Fo.2) was an wro. Badain exprowe sed it "dead". However, 1 t wan detemained te make unother aym periment with the three oylinders in operation loaving the Sourth to be repalred noxt day.

Fowerdment with she sibarth Auge Sh 2903 .
Zxp. 2. The Bebart was fitted with hydroplanes eonaisting of twe thin weoden beards oach $238 \times 20.5 \times 0.5 \mathrm{~cm}$. These werw set at an angle of $14^{\circ} 4^{\circ}$ with the betten of the beat. The rudder whes shifted to the stern and a moeden guard was plaeed below the balanee theel to prevent any accidental eontaet with it ralie in retation.

The boat was brought to the and of the $11 t t 10$ wharf at the aerodrane ahedj and 1tr. Bodmin lay down upon the wharf and hold the boat by the atern wom the ongine wan atarted to provent the bait fron ahooting orf berore itr. Baldwin could take Mis preper poaition in the bost. Mr. Maldwin atood up in the
boat te eroak the ongine. After many mamacousarte atteay ta he sucoeeded in getting the three eylindora to work and poor Mr. Bedrin with his heod uithin a oouple of foet of the rapict ly rotating propeller looked as 18 he weuld heve hiv hair blom off by tha powerful draugt of air while ho hald the bant in position. Mr. Buldwin then exrefuyly erept inte his positiom under the ongine and atuok his head out undor the
 otharwise in hia engerness te try the exporimont he might
 Gwis wan in poastion he gave the stgnal to ler. Bodivin to let 89 , and the boat ahot out. The Babert wont a distance of, X whould think, about three hurdred meters, but the apeed was not surfieient to eause any markea hydroglane aetion, st loaet I could net porceive that the boat rase in the water whon propelled. Mr. Bulduin thon earestaly atoered the boat round in a wide olrele. fortunately pithout upatting, and oontinued baek to noar the whaf whore tho ongine une stopped.

Furthar experinento were then postponed until the ongine could be put in good ordor ngain. The rotation of the propeller whe much loas than with all rour oylindors in oporm ation. This ended the experivoonta for the day.

Experimento with the Bthertanuse Be 2908.
Following ohmigea have beon nado in Babert hydroplane beat aince the last experiments of Aug. 5.

The ongine has beon lewered and slifhtly thl ted down at rear. It has boan lowored an moh an posalble without blade touching water. The blade of the propeller was probably net
nore than about two inches frocs the water.
Angle of hyaroplanne reduoed fren $14^{\circ} 40^{\circ}$ to $5^{\circ} 45^{\circ}$. Bighat thormaghy oloaned. Proeese of atarting aave ma in zoperiment a (Auges).

Exp. 2. Magins atarted, Btr. Bulamin toar his soat as before,
 leased Bebort atartod off well gradunily gathering apeed. the word mabert whioh was oloce to water surfmoe vacn whe loft the wharf, (1) rese wo as whe ghered woud until nearky the whole of the rual at the bew mas expesed. (e) This deprassed the atern 30 much that the adge of the propolier atruck the water and the propeller manhed in two. 解. Balawin at onoe whut off the power, and the bow foll to lts origtinal position (1). There oun be ne doubt that the hydroplanes, at their reAuced angle, lifted the beat. Portunately the ongine doea not seen to have been infured, and we have other propollers wo oen try.

On Baturady Aug. 3, Hr. Brlawin oontinued his experim mente with hyaroplanes. Changea in apparatus ainee laat axperiment (Ange6). Fngine thrust horinentel. Wew propeller 140 emr dioneter. This was made fron an eld propeller 130 an dianeter and $270 \mathrm{~L} / 2$ at tid, the onds wore out down and rounded a0 propeller only 140 an diameter nowi.

Three hydroplanes aaeh $236 \times 20.5 \times 0.5 \mathrm{~cm}$ were atm tached asoh making an angle of 5043 , wi th the bottem of the beat.

Jxparimonta winh Ethort Auge Ge 2909.

Exp. 2 Gating the pull. Mr. Whaldwin wont on board the Ede bert and atarted the ongine while Mr. Bedvin hald the boat from the wharf. Only three oyilndara working welk, yul2 60 2bs. After serse fuasing ovar tho ongine and baving out of oarbum attora all four oylinders atarted off woll. The pull of the Bdbart want up at first to 90 2bs, and thon antti, od down to a atocidy 85 2bs. This mas oonsiderod falmy matiaractory. Thin. 2 Another experisent gave 480 retations of the propeller in 1/a minute with a pull of 70 2bse, but itr. Balderin thinks that tho meod-indienter reving wan unalinble. thes. S tbers then takan out inte harbor to test orfoet of hydroplanea. Under action of aerial propellar the atern rame and the hoad was depressed, ao that Baldvin fearing another upast like the firat, whut off the pewar. Thero oan be ne question that the boas was iffted by the action of its hydroplanes.

Kap. 4 The uncle of the bow hydroplinno was shen inereased to $12^{\circ} 29^{\circ}$; the other twe hydroplanes ramining at angie ge4s.。 Heault was very promiaing. Boat undeubtediy rowe mhen propelled and ssore on oven heel. Buin stopped further experimontis.

The wind was too atrong in the harber to do muth with the rabort. About 5 obeloek it had nodersted sonenthat and we tried her with an adeitional hydroplane under the bows, matcing rour hydraplanea in ald. (Towed by the bauldrie). At speea of about 4 miles an hour she avooeeded to lift about 2 inchea at the bow and about 4 inches at the stern. The wived however was not ankiafooterifo

Babert Eriod at Taboratory tomalay with fouz hydroplenea Jow hydroplant $235 \times 25 \times 0.5$ en. The three othorn ouch $\mathbf{1 8} 8 \times$ 20.5 $x 0.5$ em. ALL boing eet at un angle of goget. Hwp. 2 Ingine remaved and replaced by lead of lead. Mr. Baldwin went on beaurd Zabert wich wad sowed by the Gavie. drie se an te produee a puli of betwoon 00 and 90 2bs. Fhis wa done so auoecsarul2y that 40 suceeseive obeervesiens of pull fowe 90 2bs each tare. The apoed of the oundirie in produeing this puLi wan 400 m In 3 ninutea and 40 seconds, ox 6.545 rilanneter per hour.
 observassons suve an avarage puld of 89.3 2bs. (3 obaervate Ions at 65 Lbe; 27 obsorvatiant at 90 2bis and 2 obacrvation at 200 2bs). Spoed of the Goundrie wan 400 m in 3 minutes und 50 meoonds, or 6.202 rilametern por hour.

Kap. 3 Angle amo at in exparivant 2, natyely 140 . Nineo tean obsorvations geve an sporage puil of 22.3 2he. (2 obe servacion at as 2bs 28 observations at 90 2bs; 4 observate Lons at 95 2bs; and 2 obearvation at 100 Lba . Bpeed of the Gauldric wam 400 min 3 mimutos and 45 vooonts, or 6.428 rilenoters per hour.
-60

The Mebart, with hyaroplanoa Delow the bottoma, was towed tomey by the Guusdrie at various mpeeds with the rollewing roaultaso

Top. 1 Yous hydrepzanes at se. Beod with wind 10.3 han per hr. Pu2l to 2bs.

Wap. 2 Weur hydraplanea at 50 , spood againat wind 9.2 hen per hap. Pual a0 2bw.

Bxy. 3 Your hytroplanes at 20°. (1peed wh thind 7.6 lan per hr. Pull 90 1ba. Pull 1 full apeed 200 1bs.

BLP. 4 Pour hydroplanes at 20°. Speed against wind 6.9 man per hro Pull 05 to 00 1ba.

Bap. 5 Four hydroplanes at 00 . Bpeed with wind 6.9 lan yer $h x^{\circ}$ Puil 75 to 00 1bs. Pull at full

Expe 6 Your hydroplanes at 0°. Speed againat wind 9.0 yes per hr. Pull 90 2bs. Pull at full apeed 90 1ba.

Tax. 7 Twe mydrophinnes at 0°. The interinodiate hydroplanem wart reanoved. The bow and atern planes alone being kept. Speed with wind 20.3 ten per hro Pull 75 1bus.

Bxp. B Hydraplanes all reacoved. Speod againat wind 9.3 in par hre Pull 35 2bu.

15 The botton of the boat 1 twals made an angie of sbout 50 with the water 1 ine when at rest, se that 18 mifth peringe be wall to eonsider the above anglea of the hydrem planes as je greater than noted.
 By A. G. Bell.

The mev hydroplane boat now being construeted aoeordm Ing to the plans of str. P. W. Baldwin was tried (without the hydroplanes whieh sure not set quite congleted) Aug. 19, 1906. A photograph of the atrueture in ita preaent condition is ape ponded. The hull weigha 51 lba, the two outmrigger fieate ter gethor 5 2bs, the truaa to aupport the floate ? lbe, the enginom bod 10 2bs, and the engine and aoenaseries 145 2bs. If we inm alude the weight of a sam as 170 lbs the whole atruoture, with man and ongine (but without the hycroplanea) woigho 3882 bs

In the axperimente made Aug. 19, 2908 the hull was loaded with laed te represent the onglne etc. so that the whole weight of the atrueture with Mor. Haldain on board was about ses 1bs.

The bent was towed by the Geuldrie at the rate of 13 kileneters per hour (22.273) and wan it was found that the strain on the towing-line was leas than 12 lbs., one of our Oatile werienan ajaculated "Dhonas Beag" (1ittle devil). This toek itr. Balduin'a faney and he haw acoordingly naved hia boat the "Mhonas Beag" .
(see lower photograph p. 15)

	Pulse			Seeed	Pumateles
	Surean	tion	Avarage	in lat	
	Obs	2bs	1bs	yex hr	
\#xp. 2	27	188	20. $\%$	24.073	with wind.
Exp. 2	25	297	29.8	23.092	against wind.
Kxp. 5	18	329	17.0	23.002	with wind.
1up. 4	18	388	29.3	18.748	aminst wind.
8xp. 5	14	202	14.4	10.827	with wind.
2xpe 6	28	287	13.2	10.667	sgadnot wind.
3\%. 7	25	236	18.7	10.909	with wind.
3up	25	295	28.7	10.902	agoinst wind.
Exp. 9	14	287	29.2	21.00s	with wind.
30. 10	12	261	22.7	21.339	agninst rind.
	13	218	16.2	21.623	with wind.
H\%. 28	14	310	28.2	22.000	agrant wint.

Tall oonfldence in the above reaults eannot be ontortained on geoount of the puify wind in Boinn zeroagh Marber. Buring the experinents the wind as noted on the kite field above variod from 9.08 nilea per hour to 22.05 zallen. The WInd wan about Feat and wan extrenely Rluetuating in the parte lally aheltered harber.

