CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original cony available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée

Covers restored and/or laminated / Couverture restaurée et/ou pelliculée

Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illıstrations en couleurBound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela jtait possible, ces pages n'ont pas été filmées.Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées

Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been roproduced thanks to the generosity of:

National Library of Canada

The imeges appeering here are the best quelity possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed peper covers ere fllmed beginning with the front cover end ending on the lest pege with e printed or illustrated impression, or the back cover when appropriate. All other originel copies are filmed beginning on the first page with a printed or illustrater impression. end ending on the lest page withe printed or illustroted impression.

The lest recorded freme on each microfiche shall contein the symbol \longrightarrow Imeening "CONTINUED"), or the symbal ∇ (meening "END"). whichever applies.

Meps, plates charts, etc., may be filmed et different reduction retios. Those too lerge to be entirely includud in one exposure are filmed beginning in the upper left hend corner, left to right and top to bottom. es meny fremes es required. The following diagrams illustrate the method:

L'exempleire filmé fut reproduit gráce a la générosité de:

Bibliothèque nationale du Canada

Les imeges suiventes ont dté reproduites avec le plus grand soin, compte tenu de la condition et de la netreté de l'exemplaire filmé, ot en conformito evec les conditions du contret de filmege.

Les exampleires origineux dont le couverture en pepier est imprimde sont filmes on commencant per le premier plet et en terminent soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration. soit par le second plet, selon le ces. Tous les eutres exemplaires origineux sont filmós on commencent par la premitre pege qui comporte une empreinte d'improssion ou d'illustretion at en terminant par la derniére page qui comporte une telle empreinte.

Un des symboles suivents appareitra sur la dernidre imege de cheque microfiche. selon le cas: le symbole signifie "A SUIVRE". le symbole ∇ signifio "FIN".

Les cartes, planches, tableaux. etc.. peuvent òtre filmés à des taux de réduction differents. Lorsque le document est trop grand pour ètre reproduit en un seul clichd. il est filme à partir de l'angle supérieur gauche. de gauche à droite. et de haut en bas, en prenant le nombre d'imeges núcessaire. Les diegremmes suivants illustrent le methode.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

CANADA
DEPARTMENT OF MINES
MINE RRAKCK
 Evozmi Hunva, Pa.D., Draterom.

REPORT

ON TRE

IRON ORE DEPOSITS

ALONa LRE
OTTAWA (QUEBEC SIDE) AND GATINFAU RIVERS 3
$8 \mathbf{8}$ FDITE CuACHME ME

OITAWA GOVERNMEAT PRINTING BURTAX 1009

NORTHERN PART OF CHAT

CHATS FALLS, OTTAWA RIVER.

（＇ANAIA
 MINES BRANCH

Hon II．Tfmplevas Mivimtrin；A．I＇．l．ow，I．l．．D．，Ih．pity Mivimt： limozer Ilansu．，l＇h．I．，Dharctoh．

バかりパ゙
（1）TH1．
\section*{IRON（ORE I）E円（）SITS}
NI．ON：TIII：
Oll＇AWA（！）（EBEC SLDE）AND
G．JTINEAE RIVERS

HY
FRITZ CIRKEL，M．E．

ottawa
（GOVGRNMENT PIRINTING BCRLEAU
1009
Nu．2：；

J！

Himeton of Millas
 （1）いい。

Sir．

 foterompanty the repirt．

I hate thr homant to be．大is： Pomt nhedient arvant，

(0.10Nな

("HAI'T1N I

History atm Littrathers.;
 i
Ciatinean liver 1
 tiace atong 1la ()ttan: River 11
(Dttawa River. II
loures Conditions. I 1
rllillt ERR II.
 $11 i$
Western I!ivision If
 $1!9$
 2.
('IISIP'I:R HI.
 i2
M:gurtite. 32
Ilcumatite. :3:
hon Ore lopasits atong the (i:ntine:n liver : 4
(rystalline Limestone. ; 1
Forsith :and b:ddwin Mines 3
K:1hlwin Mines 0
L:Awhesm Mine. i. 3
Her (hes of the Hull lron R:ater i;:
Hinctah atesuciated with the Ilull Vatgmote it
Chemistry of the (ore 5
summany of Imestigations ferarthar the Ihn! Iron Renme 7
Inall 'Templeton lown Lime Lok:ations. (i)
Hatyonelk Lacation. (i)
 6
Ore of the I (eposits along the Itall-Templeton Town line $6!9$
 Fown Line Loedatons. $7 \because$
seatered Ibemsits along the (iatibeath Rivers. 74
Bristol Mines. 7.5
Wre of thr LBrimal Vimes． 1：Wit：
AHmmaty remating the Hotal fron Range
St
St

 W W
 ！ 10 ！ハ
SHm
SHm ！！！

い尸にないふ

 119
L．IAlet R：gnils． 10．
 108
xahle Raphil $10!1$
Ripuil．Head of Ire－jurlin Ialimal 110
Timbler slime 1111
lianvin（lhnte． 110
＇rintomel Raphil－ 110
Inlarli lall： 110
Miere Raphis 111
Masis：at Rapial． 111
R．01Hy Rapinis 111
Romber leath（＇hate． 111
riallal Callanmer Fialls． 111
 11：
Untrgi－Rapind $11!$
 121
1 hills Fall－ $1 \because 2$
（itovelr Ras．k． $12: 3$
－ix lontace latls $12 x$
 128 $1: 30$
（ inherath R：ypicls
（ inherath R：ypicls
lawn lialuil． ！： 1
Codiar liapill． 1：1
1，a P：ane Ratpid． 1：32
 1：3：3
（＇Ax：ulle－ $1:: 3$
Chelve：Rippins． 1：3：3
R：alons＇hute $1.21 ;$
Clmbe：a loulls： 1：77
 $1: 3$
 $1: 37$
lalle：
lalle： 141

1＇1，119：。

Ilate I．（hatwfalls，

10

IRar．IV．Bhack River lialls t：－
111
Ihater．（ionlomge lialls． 1111
Hに IIIINは，
Fig．1．Mannetite（ryotar ；；：；
 llull．
11
11
 1.5

$\mathrm{H}:$
$\mathrm{H}:$
 If
 い

ill
ill
P゙ig．G．The Hayemeli Vimes．
ii：；
ii：；
Fige．！Th The laristol Xinces． is
 ，！
Fig．11．Typital sumession of rocks in conmedon with imn reins on lot 12，range VI．township of sheen 17
Fig．12．The（＇alumet loall：water－pmwer． $11: 3$
 $12!$
lig．14．The（ascoules on the（batineatu river． $1: 3$
Fig．．5．The watorpowers from kirks fers to Ir right limene． on the fiatinemu river $1: 3$
MAS

av TH!
 IRON ORE DEPONITS

ALoNe. Tht:

HY

FRITZ CIRKEL. M.E.

The following reprit is intented tormanatize the rements of an invers
 county, and :long the liotinesan river.

The t:asis of iron mamufacture is, of contro. the raw materind from which the metal is produced. I study of the economio features of the ore depinsits: their geelogical ocernmence. their manmer of Jovalomment, as well as their most profitalle exploitation, will sorve to furnish the practimal mannfacturer with the necessary data for laving the fommation of a new imbastry.

It must be pointed out, howerar, that most of the imul ore deposits in the district under consideration hate hem known ion at long perionl : some of them for over sixty : ears; and that. the extabli-hment of an iron iadustay has been attempted more than once. The question naturally arises. Why hate these attempts firiled? What and the principal canses that lob to the abandonment of the economie exploitation of these resorneres? .In answer to these questions will be found in the presant report: in whieln an attempt has been matio to bring to light all the fact-, with a wew of ambling thoer interested, to jetge impatially the tue eronomie hearing of thi very important shisat: The forts presented afforl a comprehensive view of the possibilities for the ofthlishment of an iron indmetre in at least two places Where irom ore of good quality. and in large qutatitios, is known to oremp.

 now he hade a complete success.

In this reepert. mention must he made of the -teress remently arhiever in the smelting of iron ores by electricity. Many undeveloped water powers are found in the district under comsideration-offering facilities for the generation of comparatively (heilp clectrical energy; abd siner a numbor

great part of thin "white coal" will he used, bert only for the exploitat

 of the industry-a very heary initial rapenditure hat th he mande:

 rall material. luither, the extablishanent of the phat itself demands rey leasy outlay, much heavier in propertion th the ont put than is repuire for the prenturtion of alle other artiele of embneree. The initial wage

 maty think serinuly of umbertaking the exploitation of the iron ure resomene in the diatred investigated, with a view to the cotablishment of a premanem molustry. haterested parties are furmisherl with a hath athement of fare as to the character, extent, and location of the depmits.

Ih compang an examination of irn ome lepowits with that of other metalliferous deposits, we final that there is a great differeater: :and thi
 In dealing with iron ores, we encounter minerals of low int rinsice value, widel? distributed wer the country, and frefuently oremoring in large lanties, the imlustrial valhe of which depends chiofly on factors mot direetly romerected with the geol. ar of the deposits; lant on their chemical composition, and on transputation farilities. fucl, ate.

In the district investigated someral depmise were foum! th he of such a promising chatarter, that a detailed examination of their extent will be necessary loy means of magnetometric survers*; sinee in most cases, the owelling humbs makers it ahost imposible, ler ordinary means, to determine their nathre and extent.

[^0]－Moloitation Mretion of
 wit stiges mathe：in chations． fly of the （mamula：： s required 1 stage at Ws－is of rge seale． at．It is lus．s．whon rexonice rimathent （If f：lはた。
of other ：llal thin trenter． －willely limes，the Hillertet and on
such ： will he ses，the termine

Mag－

（HADTER 1.

HISTORY，LITERATURE，GEOGRAPHY，AIDD TOPOGRAPHY OF THE DISTRICT INVESTIGATED．

Matomy and litmatrene：

The distriet cowered ly the prement report extends firm the rity of Witawa，along the Ottan：tiver，on the Quebere side，for a distance of over Hitiones，and from Ottawa，along buth sides of the liatinu：on river，to the town of Maninaki，a distance of so：miles，comprising atotal areat of ap－ proximately aro square miles．la alditom，several deposits have been ＂Aamind mear Buckinghan，on the liewe river，：unt morth of Grenville ＇In the Ottawat river，half－way betwern Ottawa and Montreal．

Fhe firs weorded oceurence of magnetie ore nom of othana is prob－ ahly a brief mote on the llull deposit，in a paper read by Lieut．Baddeley，
 1s：31．The writer states that the deposit forms ：a rein，on hed，from $10^{\prime \prime}$ 10）I2＂thick，aml ： 1 peam to traverse the mountain in a southwest conrse， hatring a remtead position as regarts the walls of the vein．On the oppersite side of the momutain．at al distanee of nearly a mile，and in the direction of

In the deological survey report for 1 sis．pre $46-7$ ，is a des－ ription of the liult ore bed，in which the opinion is expressed that，＂ac－ ＂ording to provent indicatons the Hall wre bed must be considerable＂
 we on lot？comession i ，townhip，of Bristoh．It is salid there that＂it minsists of ifoll in the micaerou－forme ：1 the junction of a bed of white

In the（irohngeal surver repont for 1si：3，p．3s，Nir Willinn Lagan wems to an wemence of iron ore in Cirmille．on the moth hati of lot 3 ． ranere It was cetimated that the bemeth of the bein ranged from 1 tos sards．It was tared for 1.0 yarts．in a westerly and southeast－
 wish many hat－of guartzite．

 fidge，about mid length of the lot，of mather south of it，therw ineme several

lot. In the whole of theere the une in lent pmere, lemg manixed with spar, and it offern disphays harge strinted fares, whate in fracture it is a graimed, and of a steel grey colome," siar Willimu Lagan adom refers other surface outcrope of irom one on this praperty, as on lot 1 , ramge of Hull.

 to the IIull mines, giving an exhanstive deseription of the - inetting "peratio at t at time carred on in the virinity of Irmsider.

In the report for 1s70-1. Mr. dames Richardson gives a description the country along the upper Giatine:u, from it whre to the month of Dise river.

In the (ieologienl survey report for 157:3-4, Ir. Harringtom man several references to the IIull ore bed, and the Bristol irm mines, on hot-: and 22 , range ii, township of [ristol. Of the hater mines he salys: " It ore here forms a series of heds, with reddish syenitic guriws, imd ghistemin micureous und homblendic schists. Julging from the qu:lutity of ore tah out, the thickness must be considerable. Besides this hed three others hath been exposed by stripping; one of them was ef feet thick, another only a fob inches, but underlaid by occasional small honticuhar patehee of ore, while th fourth nppeared to be about! or 10 feet thick, wor far :1- the small amom of work done enabled one to jutge."

In the reports for $1573-4$, and $1876-7$. . Mr. II. (i. Vimmor enumerate the results of his investigations into the geology of the romuty of P'ontirre: part of the country drained by the fintine:m and Lievre rivers, making sperin reference to the structural relations of the several divisions of the crystalline rocks. His abours induded a study of the rock formations in the townslip. of Templeton, Hull, Lochmber, and Iortland. Mr. J. F. Torrance gawe: synops, of the structural relations of the apatite-bearing members of the Laurentian, in the reports for 1882-83, and 8t; finally, Messirs. E. I). Ingal and James, White made an areurate survey of the important mining areas in the Buckingham district in 1swr mad I8so.

In the Report on the Mineral Resources of the Provine of Quel e , by Dr. R. W. Ells, issurd as part of the Annual Report of the Geological Survey, in 1890, the author gives a full symopsis of all that was known at that time, regarling the iron ores of the district nerth of Ottawa; he outlines the history of the mining industry from its inception up to that time.

Additional information, as to the geological formations in the region under consideration, will be found seattered thromgh the repont- of the (ieological
 of a part of Pontiar and Ottawa counties '.. Ihr. R. W. Ells, appears in the Anmal Rejort for 1sog. A part of this met with in the Ifull, Buckingham, and bet ween the lairve and Giatineau rivers.
t is devoted to the furmation weliohi districtes, :dsu in the are:

I with may o it is fine (1) refers to ringe xi.

11mıt huル sit longth oprorations
(rxiption of of Diesert
ton mase on lot* 21 ab: " ${ }^{\text {alh }}$ glistening ore tahron hers la:1/. only a fou \mathbf{w} hile tho. 1 :monnt
umerstos "ontiar: : ag sperial restalling ownships e gave: rs of the. 1). Ingall areas: in
el ce, by cologie:al nown at outlines in unter clegic:al geolory. *in then nationhre are:a

 Gttawa, with its threve tribstario, the Black river, the Combuge river, and

 miles-white a grat momber of lathes situated - Lo immerlate vicinity of

 seltimments north of Maniwhi to the settronents on the blyer Rouge river.

 navigable mmall lakes witt which the romatrs is dottenl. melie the whole of

 It is proposed to extemat this lime of rablway, from its prevent termimas at

 hills. whel are underlain hev the limmones of the dirmbille series bands
 the greater purtion of ilfe bathern embutry. on the liatime:n river; amb the excellence of mom of the suil throughout this diantice is dombtles due to the decomposition of the calcareous members of the eret alline rocks. A great development of thras argisalline limestomes ram he motierel on the east side of the river, in the town-hips of Low, I!hin, Wright, Bouchette, amd ManiWak: while vory exomsive limestone bands, prodncing goond agrioultural
 tf hetwern Thirts-onte-mile lake and the river, ass far as Kensington township. The agmeultural danacore of thr country west of the Gatineat is, to a great extent, due to the presence. in a mumber of places, of teposits of same and rlay,
 chains of hills, somethare in ishlated hatsoes.

Is to the phesical features of the romatry trihntary to the fiatine:tu river, it must be sibl that the country noth of the rity of Ottawa is generally. of a bigged chatartor. Hilks, and even monntams, of gramite and gneis. form a conspicuous part of the landse:pe, athl some of then are sery frequently of a steep and abrupt character. From Nonth Wiakofiehl, ip to
 the horder of the river, on both sides. They erene rally entle shope

 from this canse. Tomgalihe eminenes, atreteling out from the river and mumtains, form interionimg valleys, with gool woil. Althoggh the eoment
 demaled of its abmolat vegetation, the mometainy and hills neprear to be al
 is traversel by of geat mamber of aball stremes, emptying dirwity into tha
 ther west side of the (intinem, the manally mgen character disapperars some what, and the genernl aspert of the momery altanghthere is a general increase in elecation is thut of a fairly In wol montry, interrapted at interval lig gently rising litls.
'The eastern border of the fationm, loweror, retains its general hilly character, as olserved in the lower part of the (iatinem combtry; Inrge atretches of agreultural land are a rare orearroner, but, instemd of these, the intervening valleys are ocropiol largely ly lahes. 'Two of these Thirty-ancmile lake and Whitefish lath-form large, elongated atretolaed of water aso. 20 and 30 miles long, with a inhheas and sonthwestern comes, all proximately parallel to the Gatinent river. The lakes an fed ley mumerons small streams, and are bordered by high, well wowled hills. (Da aceome of thair highly pieturesgue arpeet, and being well stomed with tontt, they are in great favomr with sportsmen. Thity-me-milo lake emphices through sereral small lakes, and through lows reek, into the tiatinem, whike White fish lake is draimed by the Lievere river.

The sand phans of hizahazua form a prominent part of the generally level enment to the west of the fatinem. The drift of these mhans is mostly composed of a pure siliereous samel, and is ofter fomel to werlie : stiff blue "lay. Rock evposures are seldom seen. Farther to the moth these samply phains disappar. and well wooded level phatemes take their place, interrupted be large stretehes of agricultumal hathe and lakes, of which Blase sir:a lake, with its many smaller tabutary lakes, is the most important. Near the confluence of the river levert with the Gatineat, the genemal aspect of the country in that of a rolling bench land mostly mpresenting gencl pasture and firming land, while hernand the well wooded phateans add considerably to the beanty of the landseaje.

The Gatineal river-the largent tributary of the Uthana-is, aceordiny tu the best authorities, about 2 (i0) miles in length; aud drains, according
 miles. This river-flowing through a valley lomered by lills of the Laurentian formation-with its many tributaries, large and numerous lakes, well Wooled shores, swamps forming natural reservirs, and stomage grounds for its waters, is most admirably adapted for emsuring a constant volume of water. The impermeable rock which anderlies the sariace.

｜uI stery

 fiver abll －eollutr it herwixe （1）le ：all －Polliti？ inlい lla law， 1 明 tsx moller 4 general intervins ral liilly ry；large heser，the irty－ォル1－ ter wio Iriv，：： mmeron： rollilt ：if they urr thromgh （ II liter
generully is mostly tifi blue we sumly crrupted ake，with mlluence unt ry is farming fe benuty
coordingr ccorling 0 stןuare Lithren－ kes，well groundis constant suritee．

 alsu Baskatome romok，wheh drains bankatomg lake．

 the Gatime：ru．

 falls，of water powers．A pate of the six Rapile＂w！ite coal＂hata bered de－ Proped，and farnishes light and power to the village of Maniwakianl lheort．

From Bittolit ereek the river flows due weat for B milos．when it mans
 tributary is the l＇ifhamok river．＇This river draine ：mamber of lakes，in
 empties intor the Catime：n near the town of（ivarelielal．Another strean which empties inta the river is the k：azabazu：n，which drans the monn－
 Below the eonfluener with the Kazabam：the river follows a pont wons roures． weasioned by the high borlering hink int the aint dile of the river．Below
 a mumber of rapids and falls. In the tomonip of how, near low station,

 location, present geat facilitico for waller power development. From this point to beyond the village of Waheredel the ceurent is shonth athe the pasiage easy. About half way lectween this village and kirliv lomy the (:aseade rapids, with a total head of 12 fert. atre "apahle of devedoping great water power for industrial phrposes.

 whtes and below kirks lerry, they repreant a difixemer in elevation of the
 Wright Bridge: above the village of hromsiles. for bath rhater. the dis-

 rate of fall, of ower 25 feet per mile, indieatere the wrat pmaihilities of the river for phwer development.

In summarizing the results of an investigethon into the pernibilities of power development on the Ottawat river for indust mal, and ceperdally mininer purposes. whe eannot fail to be impressed with its armeral fopmeraphie and
 perature. large rainfall, amb small evaporation, the inmorne facilition for storage, the extensive foreste. allul ath atsence of destruetive freshete dil
 stream. Thi is further exilencosl by the difference in elevation of the rivere level hotween thall and Maniwaki. Alout $3 \cdot ⿱$ miles from thall the ehe-

 idel feet: the fill of the river between these two towns being, therefore. 12 t feet. On anoonat of the injontane of the atailable waterfalls for power
 report. Whiel will he foum in the appentix.

In atdition wo thene data, a mumber of elevations are given in the foll lowing list, whell have heen taloen form Mr. dames White's bowk, entitled: " Altitndes in C'inn:ala.."

Whises fom Hull
(1) U Hull, junction witla ('analian l'aritu Railway main line,

a. 1 lronside station.....
3.8 Stream, Led $1: 34$; rail.
($0 \cdot \mathrm{~F})$ ('helsea station.
7-11 sinminit. rail...
when loy station. ake:1 natural tis point passage (:ascade at water minsilco , Eathn of the
From hee dis(6) bing
 of the ities of mining xir :me? x. telliin fir . 11
 riwn he resfrom II. it i, 18. power perial lic foll titlect :

S. 7 Depressinn. rail. .	2sis	reet
10.: Kirks lemy station.	294	..
	296	.
12.8 summit, ground, 365; rail.	36:3	.
14.0) Consadew station.	30.4	.
15.8 Patterson creek, water, 3ni.) mail.	317	
1!9.0 Ruchurst station.	3:7	"
	3	
19.s W:akefied station	:29	-
22-2 Indiam creek, water, :31s: raml	:13:	.
2: 0 (1) North W:akefield -tation.	33,	.
	341	-
2s. 1 Farrellom tation.	35	
31.5 Hremam station.	36	.
:31-7 Aeckery howk, water, 3n7 rail.	36	
32.6 stag creeli, herl, 330, mial.	4.5	*
33.4 Low station.	+15\%	
:H.7 Pank, water, Hö: rail.	+46	.
	3:3	"
	$16: 1$	
:30.fi \emmeta station.	531	
1f.! Liazahazua creek, hell . 517 ; rail.	S 61	..
L.i.() Kazabazua station	-1	.
1.50 S Smmat, ground amal rail.	5	.
17.1 Arwin station.	t! ! ${ }^{\text {a }}$.
51-. Marks Cross station.	5\%	..
	515	.
5.5-! I'ickanok tiver water tiot hed, H69; rail.	S0!	.
	SH0	
tate.f summit, grount, dit: rail	012	
(iai, 1 (enstor creek, berl, 501 ; mail.	.7\%	.
(if. () Bhe sea lake, high water, niat: water, (Mareh, 1s90). 533: : rail.	.74!	
71.11 Station groun I.	\%1	.
71.:3 simmuit, gramul, ift: mail.	6:3:	.
Zis.0 Browk, berl. n-t mail.	-32	
If 3 S Station grouml.	Sis	.
Ti.s) Browk. Leel. .fit; rail.	585	.
4.ei Iherert, station ground.	-14	،

feet.

294
-96
36,3
,
,
-
:30
:3.3
3.3.)

345
36.5
:60)
:4.
33.4 Low station.
:3.7 R"onk, water, Wā: rail....

:3-2 livan creck, water. H:3: rail. . $16:!$

1+!! に:azalmazas creek, herl. .517; rail. . . . 561
L.5.() Kazabazua station.... ... 51
$1.5 \cdot: 3$ simmit, ground ans rail. 519

.7-.5 Marks Cross station. 50.5
3:3-6 Browk, water, mot ; rail. 51.5
5.5.! lickamok river, water tio, hed, t69; rail. 0 ,

hï.0 hhe seal lake, high water, n:37: water, (Mareh, 1s9a). 53:3: : rail.
.it!!

71-:3 Simmit, grouml, 164 : rail
is"
it. $\%$ Station grount.
5\%

0,1
"
..
.
"

..
..
.
..
..
..
..
..
.
-
-
..
$\stackrel{-}{-}$
..
..
..
..
.

Commerneing with the town-hif of sheen, alout 1.5 miles west of the tewn of Pembroke. on the Gutam side, the rountry north of the Ottawa river. which is neaty all iakell up the Latentian formation, present.
 and flat land, catend fiom the riwer. for a number of mite into the interi rountry, at othes the shores of the river are row ame precipitons, an give a elear indieation of the gerolugical nat we of the vations rowk formation throughout the greater part of the comeres. In the tomanhip of Nheen. high precipitons mountan range may the seen, striking through the comatr in an easterty direction, and having its westem torminus at Gisean rob on the Ottawa tiver, about lof mile, west of lembroke. This mometai range, with a few interuptions, wan be followed through nearly all the tow -hips bodering on the Ottaws riwer and has its last gutleers in the town -hipe of laratley :Hni hull.

In the afperts of its relief this whole Laurentian reuntry is a sommewhat aneven plate:an, berdered to the swinth ly ottana river, and rising gentl? 10 the chain of mountain: abow reforrel to. Its landseape, except that of the Iower lands near the Ottawa river, is of a promoneed trpe, which while lacking the beatios of high mountain regions, and the reposeful tran quility of well cultisated lowhands. hats a rentain rugged character of its own and may readily be distinguished as such, expectially when bovered with the bright, alutum foliage. The deprestions in it. sibface and generally filled with drift forming fats, in which can be fomm many picturespue lakes of dear water. Drainage is provideal for be a great many ereeks, and several rivers, all enptying inte the ottana hive, the largest heing the coulonge, and Batck river, in the townships of Wiatham and Hansfied. Hhech of the romotry in these township, and farther west in sheen and Chichester. is takep up hy well wooded, hilly, and to some extent mountainons land, and contains only intermediate strips and flats of land fior agricultural purpmes; the the country father east of Mansfield, as far as bardley and Hull, although oreasionally interupted by ehains of hilly. ridges, presents at more exen phatean, in which lange stretehes of agricultural *oil, doted with numerons settlements, altemate with rochy, tongue-likic eminenees, for the most part cowered with goorl timber. A great number of sandy phans extond along the ()ttawa river, experially in the twowshipof Clarendon, Bri h, and Gnslow. Fome of them, particularly in Bristol, are coverel with tronl timber, aperially cedar.

As a vesult of the matual physical conditions. the remion under consideration is eayy of aceess. I great many colonization roads have been constructed, and by these means, large areas, formerty diflicult to reach, can now be trasersed with case. One of the ollest colonization roads in the montry is the one which leads from Alhmer, past the village of (Quio, throngh the lower sections: of the townshipe of bristol and Clarendon, to the town of 13 rewn, in Litelfiedt. In addition th this main road a great many cross roads have heen construeted in weren times; hene it may be said that this part of the Pontian requm is one of the most arcessible districts in the Prowine of Quebee. In addition to these arteries, the Pontiar Pacific railway, now a branch line of the Camadian Pacific railway, stanting from Ottawa, afforls accommenhation in reaching quichly the prinepal villages and towns of the region.

Wrathers, 10 intrimor tonts, : : 1 dr mantions. Nheell. a e conntry call rock. momint:an the tow he twぃにOntowhat ng gentl! epet that e, which, ful tranits own. red with :140 : 1 mamy at man! - litrgest aln a!!d west in e oxtent of liand , as f til of hilly cultural gue-lik: mumber Wnship: |3ristol.
ar cone heen reach, ads: in f (litio. lon, to a great hay 1 ofe disontiac startinemal
II.IT\% II.

North of the great whina of hills, extroming in an cant and west dimection. the country is undmating in character; though hills, and evere mountains,

 eany of ardess: white the romls, through the intermediate vadleys, have a very erratic coumse. The uphads of this region comsist of rather levelthpled elevations, or rifges, which senturate the vathers; in faet the whole surfare may be comsitered as an mblatitige. well womed platin, which olope
 cut numernes vallew. The general featurs of his country may ine aron from the tope of the montan ranges, semaiating it from the somthem, in river porr.

What hat beren sainl requrding the gemeral phesimat aperets of whe (iat
 drainage area from the township of shern. hown to the city of Ottan:a, is: comparatively much farger than that of the (atineath, owing to the fact that there are two large tribatarion-the Back river and Contonge now
 in the interior, farther to the month.

Taken as: a whote, the comes of the Ottan: river in : rey tortmonone, white the character of the shoms is themmed, in hust rases, by the umberlying rork fomations. From lont II illim. in the township of shen. down to Petawama, on the Ontario, sidfe, the river reprewnt, a latere lake. dotted with numerous small aml rocky i-limis, mostly romporid of senite. At letawawa the river oplits up inter two ehamels, a northern, called cialbute chamel, and a southern, forming betwen them the thitugutar shaped ithand of Allumette. In the north, or Culbute channel, a heary rapid is overeome oy a lock, while in the south, or Pemboke channel, the navigation is interrupted by the Allumette rapids, about : ailes below the twwn of Pembroke. This, however, fan be tavered by teamboats. .t rettan seasms of the year.

Above the town of Pembroke the river is navigable, :mbl in the summer a steambout plies between Des Joachims rapids and Pembroke, a distane of ahout to miles. Below the Allumette rapids the southern channel commenres its northern course, and joins the northern chamed at a point below a chain of elongated shaped islands, which fom lextieen then a nu- Wher of rapids, called laquette rapils. X ar the imetion of the two channels, the Black river empties into the ('ulbute chamel. This river has a very tortuous course, flowing, as it does, for a great part of the way through banks of sand, w. the watcr is lo of portages, sut porages, sor which are vers :ficult. The greatest of them is past the Long rapits, till miles from the month, whem a patage of :? wilos is necessary, over the spur of a mountain.
 and its wrll timbered shores, fomming ereat storage gromblas for its water
 -tant suphly witer. Near its jumetion with the lalhute channel, abont one
 the fermation af the beantiml Il^{\prime} althann falls. 'fhese falls are now being
 will he supplied with power and electale light from this sesurer. The eountry

 pall

In the wsm-lap of Vanstield, on range is. the Foulonge River

 Which forms the falmeretiner link for the tran-portation of timber, between the upter Conlonge and the Ottawat river.
 thate : milo hedow the village of lomase daliont. (ompared with that part of the rivere and its ehamels above the junction of the latter. the entire stretels

 tant beines the Rowhe leenda, in the southern, and the f'almonet falls in the
 of l'utage dla koot.

Fimbl this villace the river takes at mutheastem romer for abont 20

interior. t. witer, aml conlwht one lg rine to w heing mbroke country t- $\cdot h_{\text {litin }}$

abouts 8

 islatuls. of of the 1. This: ireetion a gre:at princilie pres-River要保 of at tha Wher Her
r lisle. wiwn
mrox:abuut bart of tretela ispert. sellt :l timol, lerous le the erous: ttaw umet. roken 110(1) n tha ill:uge

 of a straight mourse. From ('lates lake the fiver tahr a marth-
 ielow ('hats lathe, into several small rhamels. Whels give rise, in rommexion with the rome river beth, to the formation of rhate falls;

 difliculty tor rive matigation. Bolow Britamian the -howe of rie river

In the following table a mumber of (aseations of the ottawa river, amb
 Mr. Jamer White's bunk. "Atitula- in 'antala':

Milow fom Ittanal.
(1) Ottawa, Comtral stationof $\mathrm{a}: \mathrm{i}$!
1.7 Hull :tation.

- - B Berburner -tatinh
!. S. A.Jmer. .
11.0) Brook, water, 216; rail
17-1 Breekentudye credk, water. 2011: rail

21. 1n+
1--is Brerkemidge atation.

1ii:) ien
!!
217
2-1$\because 1$
1.7
1!1.2 Ferris creek, water, 201 : mil .$21:$
26.4 Trembley crek, water, 204: mail. 211
2:3.3 Bardley station. $\because 1.7$
25.1 Parker crnesiug
2-A.S. Mohr creek, water, 21t: a:ail
i2: - 11 . Moln station.?
29
$\because 2$3:-9) (Quyon station
272n!

	3:13	frer
	311	.
	:191	
	His:	"
(10.1 \|hri-fol station	His.	"
12.N Mr-Kire.	17	
H6.f kh:urvills	121	
	i27	
Stl.! ('latick tationt.	illı	.
	in.	
hish water, $34!$: low water :3:3!!: wal	.11:	
it a tomphell liavestation . . .	Wil	
til-.) Framkown creeh, herl, :0.j: mi!	?1.,	
ti2.3 V'uton station	36.;	
	: 6	
	371	
 :BRA. B ; rail.	3titi	
76.6 Mrdon station		
so. 4 Waltham.	(0.)	
low water (Sept. 30, 1.5ヶ\%)	Oi	
104 Bay of Ottawa iver near I'multuke.	:iin	

Fonest (

 thathe: 'The lmaherman's labours were first direrted to getting out the pine;

 it- phometion, its the region maler comsideration, is waning every par. It- pare is heing taken, to a lare extent, hy hamb wool timber : eedan
 hern wrought :mmally by the lumbemani: : ase, ant the sucereding forest

 the whate cothatry. esperially : Inome the liatine:lu river. Wits worthless after

 minter. :mal hy their rapirl lise in mather value. It is only fair. however, to alse call attention to the firt thatt. Iange ameas of the wriginal

1.

Abstract

30 is fert.
\qquad

(1I.11'T1:R 11.

GEOLOGY OF THE DISTRICT. DISTRIBUTION OF FORMATION

 deposits proper, it was necossary, in order to mate hive repurt :a comp

For the salie of eonvenienere, the writere hase divided fle dintrict
 These portions will emblatore:

 about 8is milion

> T'A!: Wiatik! lollalols.

 A *xetion thromeh the formation, in :

 wheh, romeritige with the general rime of the formatimb, has ar mothewest-
 balline linestone, wete shown to me, when travelling through that pat of

 phite, and magutio iron, luth of them in a limly divemintated form, are reognized

 of rust colnurel guartates. Bome of the limentomes are of the line gramend atrietios, and ane of magnesia, or dobmitic, dharater.

 wake up the high momtain rame otriking through this contity in : mothwestery divertion throngh Watham. (hichester, and sheron, trminating
 clearly hedded, and neaty werywhe dipe at a low anghe. In some phes
 -plemblif water powers: for instance, the great falls ou the Combune river.
 immediate vicinity of the village of \mathbb{W} altham, mot far from the comfluene with the Ottawa riwer lu the siemity of Walthat the rows are a beyt
 also the line grained whitish varieties, aboumding in fedlypar and quartz. and red gmatoin gneisses, sometimes with whenere stratiliration. Most

 is mustly romownel if -vente.

 comsideration. is. with the main Dthana valley, apmosimatole montherst-

 - |latil
 ferent from that of the wetrom division, in that ervadline limestone belts.

 we have the gra:a limestone hott, which strike atong the townshing line

 lot- mas parallel with the ramge line. Farther th the east this limestom
belt apparena, tembinates, :mot drift emmed howlands, in the wirinity of the lake in range \mathbf{x}, take its plare. From lotes, 9 and 10 , in the fast named range, the areet abowe referced to rums romad a spur of mountains, composed of dark greenish, homblendic gurissers, ahounding in fethepar and quantz, and aloo of coarse grained pale and the h coloured syenitco. The dip of the gneiss, as observed in vamus phares, is 50° to the westwarl, its strike N.W. 10°. It is on this gneisite spenitio ramge, just on the line betweren hotstand $\overline{5}$, on the shope of the momatan, where marnetic ion ore, in apparently large puekets, has been diseovered. The hilly character of the eountry gives rise to quite appreciable water falls in Bernard ereek, on lot $\overline{3}$; hut up to this time they have not heen atilized. Near these falls, the contart of the gneiss with the erystalline linestomes ran be noticelal. and followed for quite a di-tance. From lot $\overline{5}$, range ix, Bernard creok takes a southwesterly direction. The limestones are entiedy lust sight of bencoth the great ace umulation of sand, which bere follows the creok. The drift -and extents mot ondy paist the mouth of the Comlonge river, but wrupion uratly the whole front of Mansfieh. It aho turne upon itself, :and runs :hnir the shore of the columet ehannel, in a general southeastertydimertion. It is Likely that the Litchfied limestones, abote referred to. follow this "omes of the sand drift also, beembe on a partion of the shore, in range is of this townihp. they are again expmed, and owerlic: : belt of gneiss, of ratons colours and compositions. This gneiss strike in : ofortlawerterly direction throngh the enuntry, dipping at an angle of 50) degrees to the sonthestward. The chamater of this gneiss, its: dip and strike, coincide exactly with that found near Bernard reerk, on fot . . range in, Litchfiekl, and we may, therefore, enclude. that the strata in woth localities belong to the same getogieal horizon. These same gucis.sirocks set through to the banks of the Combinge river: and the greater part (If then maty be said to oreupy the comery from tange ii, in lamsfirk, up to the township of Pontefract.

The eentre, and enstom part of litchatid. form contimuations of the ancissid st mata encountered on the hankis of the Conlonge river: and along the upper course of hemard rexck. The great mountain ridge, which strikes through ranges siii and is. in at nothwentrety dirertion, sems to divide the townships inte: sont hem and monthem are: The southern arral, along the Calumet channel, is wepuped by sandy hifte and phans. Xill ral rock exposures are not frequent. Thuse in evidenere, well as small pits and erosscuts mate in the course of mitume operations, serem to peint to the fact that, the row formations, which underlie the hug sand hearbes, alre mostly hornhendie, though frequmbly interstatition with grey enciacie strata. All of these row have nearly the same strike and dipas thase ohemed in the weotern part of Litchfieh. Magnetic iron ore of exerllent quality. hut in apparently limited quantities, has heen fonme in the nort hern parts of rang \mathbf{v}, in a coase grained, pale coloured syenite. Impregnations and dissemina-

not as yet reachen the inmputame gemerally attawhed the them, their frequent
 levelopinent work.
 cai greiss and syenite series. "Mmion: יnna, meks, found in the westem
 be the more prominent constit ch: - of the an atan tamge. In approich-
 and are often nearly homizontal; but them ane exeeptime to this rule, and localities were visited through which the dip of the strata was aremp or altogether vertical. In several phaces on thi high momatain ridqe magnetic iron ore was seen, associated with syenitic rork, fresh coloured leldspar, or a ghass. transheent quaty. Its most northerly owerrence is near Otter lake, and here, near the shore of the latter, a highly "ryataline magntite was foumd, asomelated with a flesh eoloured feldipar.

Beyond the momatain range abow wefered to, the comentry is of a rugged desmption. It is for the sreater par maressible, being destitute of rowhand densely worked: and even on the canow romps. many stretches, along lakes and stre:ms. show no rock outwons, owing to the heary manthe of frift; and it is presible that limmone hambe maty oreur, even though is there is visible on the surfare.

From the townline between Litehteh aml Man-fieht, down to the village of brson, in the southern pertion of litelfiek, the C'ahmet channet shows tout few rock outcrops. The hank of the river are componed of sand and clay, while the chamel itself is often shallow, with mmerous driftine sand bars.
 of the Calume rhamel, the rystalline lime tome is arain in widenee, and forms a mos prominent element in the seohgicen -t meture of that par of the country. The first widene of this we timb on the ahore of the ()tawa, in range ir. Here the limestone ram be followed in a southerst ward eourse, towards the tomship of (larendm, into rame ix, on lots 23 : mal 24 , where its position is indieated by a long. low lying atrip of mandow lame, the centre of which is trawersel be a creek, which rms nombestwan into the ('alumet. chamel. Finllowing hown the latter, we find that the greatest wevehpent of limestone is around the village of Brysom. Xear this village a lime kihn is
 eeptionally pure chanacter. The strike of the rock is \widehat{N}. $10^{\circ} \mathrm{E}$., and it- dip,
 on the western side of the rowt, near bryom, an apparently tinge helt of erystalline limestone, with if botheasterly strike, c:an be moticed, in wheh magnetite iron ore has been found, in at disseminated form. This limesteme belt extends southwestward along the shores of the Cahmet chamel, as far as I'ortatye du Fort, some nime miles from Brysom, and it is probable that it crosice the river at that point, into the thwnships of liorton and Ross. At Portage du Fort village there is a great devedopment of the crystalline roels,
 limesone being indicated by the alteration of this rock into marhle. From rertain beds of this loceality the mathle employed in the interior of the partiament buildinge, at (ottawa, was obtained.

Near Breson the limestone crosses the (ahmet chamed and enters the
 the somthern extrenity of that islamd, it probally merosese the : .taws. and (nters Ross tomaship, somewhere ahont is miles west of lortage don Fort. It a print about !! miles weot from Pontage dh Fort another lime tome belt wan be noticed entering ('ahmet island. hat whet her this has any comexion with the one above refered to camot be said with certaints:

The erystalline limestone belt alnose referred to at pasing by the village of lontage dh Fort, and along the Cahmet channel, exhihite perntiar characteristics, not observed in any wher limestome belts so far deseribed. The limestone is rendered peculiar by the curions forms of serpentine whieh it contains. These weather ont in reliefo on the surface of the hambs, and present the apparance of broken layers, (ap and saucer thapos, cireular concretions, and other forms difticult to describe. As a rule, the colour of the serpentine is grey and yellowish grey, opaque weathering and white; but where the limestone has been exposed to the action of the water, as at the great Cahmet fath- helow Bryson, and alse at a point a little helow Bontage du Font, on the shore of the river, the enelosed fragments are of a brilliant red or orange colour on their surfaces, and where polished, by the artion of the water, might easily he mistaken for layers and hmps of jasper and chert. The gnciss underlying these limestones exhibits a rusty, or a deep bown discolomation, due to the demmosition of irom prites, or other fermginow hatter present in the row. These deep diseolorations have ted in a lalief in the presenee of iron ore deposits moterneath, :and in several "ases development work has been molertaken, in the hope of diseovering iron ore, but with no surees. However, magnetic iron ore has been found near Bryon, in this limestone, sometimes in disseminated, sometimes in compact form, as small lenses or porkets.

Past of Bryson, a fonsiderable area of syeritic and gneissic rock, merging at some places into an alnost pure hormbende rock, oecurs, and it is in this latter formation that magnetic irom wre has been fouml, in pockets and in a disseminated form.

The rocks in the northern and eastern part of Calumet island are prineipally eomposed of rusty and grey gneiss, and flesh coloured wenite, the latter mostly of a eoarse character. Intrusives of diorite are frequent, and it is in these diorite intrusions that blende and galena have been diseovered in large deposits, the most important of which are on the Bowie properts: Nagnetite has been found on the shore of the Ottawa. on lot 2 , range ix, in a quartzose and gneissie roek, but the deposits appear to be of little economic importanes. Farther inland it has been diseovered on lots $7,8,11$, and 12. rarige v, and lots 11 and 12, range vi, assoeiated with quartz. in erystalline
moll thr From - parliaters the -ersing ".tall: Hu Fort ele r:un on with

- vilhagr ar chat1. Thu which it ds, and cincular olour of 1 white; cr, as at e below are of , ly the of j:loper y , or a or other rave led several covering en found in com-

merging

 s in thi: and in
e princi-

 ite, the ent, and seoveret roperty. e ix, in : conomic and 12. ystalline

 limestone. mulemaid hy rusty grey ghens, hat the semitio and dimitio
 intrusive focho.

 tian to the higher member of the Tremtom, and in mathey place the int meate

 and at plates form a compichant part of the rocks exporent.

At the Chemeans rapids, near the bemmary line betwern the fown-

The western part of (larenton is monly taken mp be hack weathering
 interspersed. The lwundary of the gheiseie ramer, fowards the west, may
 field, while in (lamenton is to i, would very meary.
 whe with its castrun outline. The avemge
 and in posimity to lootage du fort, this width raphichy diminishes, until at the ham of this river, and in the extreme fromt of (latendom, the whole berty of roek is confined betweed he mouth of a sinall stremm, in Lot 24. ami the town line of litchfietd. These revek apparently erose the
 No expersure of limestone ran be moterel atong the centern berder of this gneis.sic range in ('larendon, het on ranges ix and iii, but in this last range.
 limestone may again be seen in considerable body.

On the guefisid range above refered to, deposit- at intu hats heen kiown for a number of yeass to occur. Fixt of the town of bryon magnet ite oecurs on lot $2 \overline{2}$. range vii, of Clarenton, in a coarse homblende dionte. Impregnations of iron ore have been found also at several place in this range towards the smath, the most westerly wecurence, so far known, being a hematite on lot: 24 and 25 , range ii while on lot 26 . to the mast, an apparentIS large deposit of iron pivites has been discovered.

Proceding farther to the enst we fin! that dark Eremich and trey gneisses are again abmalant, between lots 10 and 15 . striking themgrat ramges

21

 nom encounter limetone, of the same grality as heretofe met with

This limestome belt has a gemeral moth and south coures dips the the east, and exterds sumth th the Gtawa river. and east th the town line of Bristol. Finm the abow deseription of tie frout of Clarendon, the strueture of the shore of the (otatwa maty he easily enferred. Thus:, helow Portage dul lict we find that the limestone sunderlail he mica and granitord gneiss. Which strmes butheant, with emoterly dip. Murlo of the shore to bot
 with dioritic int rusions, were fomed to ocrelp: a prominent position in the
 on a southeentery stribe, with at nearly vertical dip. The width of the river at tilis point is ebout one mite and a half. and its comme is direetly armos the strike of these rocks. The emeissie hills on the Gutario side. which c:an lwe sem from (larenton, are mathuberily the extension of the

 genturival atmeture eammot be station.

Femeding farther cast ward. to the townhip of liristol. We fime that the

Xear Brival handing as small matlier of gurin-w stratal eete in, whels wecupies the share of the river :- far as the ernte of the front of Bristols but farther cont of this the limestome again werepies the shome. This lime--tone in comedy handed with derker or lighter hasers; it dipe to the northwarl at an angle of 1.5 to 20°. and elearty undertioe the macise abowe alluded to. Ahmen lhe whate valle? of the river, along the fromt of Bristol, is or-
 theif extemion is in narrow limits.

Finther inland frome the shore, towads range it and iii, the limenone is overtain ly : rolume of dark homblemdir and red granitnit gneiss, the latere rek forming the horizon of mage tir iron ore in that part of the country. On this horizon are situated the opmings known as the Bristul iron mines. The ore forms bere a serie- of heds, interstratified with reddish syenitio
 traced to the east for several miles, whike to the west, and moth, there are conecraled by extensivn samly and daye drifte

The nerthern parts of the townshi; of ('larendon and Bristolare cowerd ly another and extensive drift of yellow samb, which conceals, for some distanee, the outerops of rock. The arystalline limestone, howere', is again met with on the towntine between Chamenten and Brintol, on emmession
viii, and at : mather point, ahout thee makes the the notheard of thi
 the strike is to the notheastward, and the dip for the somthenstwarel

 hot in Bristol township exposires of hemestone, with eatarle atrike, ant
 amb in concession xif amatle quaty has bern opemed up of : wey exten-
 hirewtion.

 for the howe railway wa- sithated, :hmet "pmoste Ampmes

 maser on the northern hank of the river.

 'buyn village. This great mige rive like a wall fronting the ottawa river

 is gemerally masive, without statification, and very often without foliation. The expeed beatht of the limestone atrea, thas rut off be this mas: is
 piore on the Gutario side.

 जides of the (iatimeall river, in tar meth :ls. Manwaki. With the exeeption off a strip of from one to finur mike will along the bitallat riser west of Hull, the whole :meat momer comsideration is taken up by the crestalline proks
 in Ponatia county. The formation in the strip athene alluleal to is rom-
 the part of the Silurian formation.

For the sake of completeness of the geolugieal deacription of the whele are: lealt with. a brief outline witl be given of the varions kimk of oncks tomat in this lablawore portion, and whel lawe been fully dereribed be
 the areal included in the 1 ap of the rity of (1atan: amb viemity.

31

 ernered hy there rocks mathe bereribel in the following maner: from a peint 2 mites (ast of the villaqu of (iatineall Point. on the ottanat river

 westerly diertion to lat i, range vi, Earther :and fom them in an apposimately eastern dieretion to the Ottawa river. It mand he mentioned, howaver, that the wide-preal mantle of drift. fumad all wer the areat, hat mand all exare location of the above line imposible therefore the extent of the rabions formations is pather romjectural than otherwise and :dditional

The vatums formations reeognized in the area may that be emmemat
 nest the Chaty hales and limestomes, then the Batek liaver and finally the Trentom.
 of at mile south of the ('analdian lawife railwat, west of Templeton -tation
 ing tw'rempleten mills. on the shome of the Ott:aw: wher they have : bathe
 minate wertwat on the (iatine:m river in the virinity of Wrigh Bridge.

 oecupy the greater part of the rountry immerliately north of the eity of Otaw a The shales are gemerally greyth in coblene with shates of green, and have
 berome ename in the lower atmats. Redelinh shatle may be notioed in tha Whates abug the Ottana river, at several points, with interamatifed hand of limestone. What of these shales are in a horizontal prition, hat neat the lines of fant they are often highty indined. These shales come intu vies west of Hull, about two miles east of Deschomes mills. They are also wel exposed along the line of railway to Aymer, in numerous ruttings, and th strata are all nearly horizontal. They form : helt ahout at mile in width past the fown of Aytmer, where they are well developed. and continne west warl, as a marow belt, to a point below brekemidge station. Dong th road west of Ayhuer, and also along the Comatian I'acific railway, exposure are numerous. The northern margin of the Paheozoir strata, against the erystalline series, is also oecupied by those shales, mad the latter continu sontleastward to lot 7 , range \mathfrak{r}, of Hull, wher they are cut off by a fault but appear again northward on loth shoms of the (athene.

The limestones of the Chazy formation cover most of the Pabeozoi area north of the Ottawa mer, from Tetreauville westwarl. They are eon Wat rivor. hence 1" al lowth-
 ctl, howt:1: madu. at of the dilition:al is down. meratem: kiferous. nally the
n- flialles -tation. xay le:n : a mather al tor terrivine.
loteil:m. nching inw:a river. :at inlurau. and thesis fottawa (1) have a and thes el in the erl bimes: but near into view also well and the in width. nue westAlong the expusurerainst the continue y a fault.

Palieozoi

 are eon-

 berder of there limetomes is -

 The course then mintimese abme paralkel with the ritere inter the township, of batley, follow then the whembization mat for sermai miles, and finally disappeas merthwal under the heary mante of dift. The mos

 frosils.

 underlyity he Trenten to the east, the strata heing taturh tilted and howern near the contare. Sonthward, this formanion extends west of the Rear or meadew. in the diretion of Fairy lake. Fiather west it mot- upon the Chaze !imestome of the areal eant of Ayhuer. There is alon a -mall detached pertion oi Black River limetome to the wota covering sarmal lots, from is to 2 ? in range is, and a pat of some lot-on range r.

The Trenton limestone oecupies the area immediately nowth of the rity. of Ottawa, extends westwad to the outerop of Black Rever limentome ami also to the line of fall, bartherly from Tretranille to the contare with the rytalline rocks.

The nort hern limit of the formation is ahout two miles morth of the ()tanat river, but, owing to the heary mantle of dift, the boundary lines are to some extent conjectural. To the north, this formation is bommed in a falt, Which sparates it from the Chazy, and which extends costwand towards the north emb of Lemy lake. East of this the Trenton is cut ont bes seral faults, and rrosses the river to the Ontariu side.

Having deseribed the prineipal genlogibal feature of tha conntre immediately adjoining the Ottawa river forming the southern part of the Gatineau or eastern division, we now rome to the consideration of the rock formations on both sides of the Gatineau, fom Wright Bridge up to the town of Maniwaki. Here the rocks are all of the haurentian or erystalline varietips, and are confined more or less to • an great Cimuvil! armes, or fambit mental gneiss, now regarded beologists as representing the ohler Laurentian.

 intruise rock- werne in the form of dinitio and pegmatitic dikes, pyroxene granite, amd grem-tome, while diker of diahase are also fomme The fre

 "Ie:lill.
 but, wing to the heasy drift cotering wheld fills up the intereming valleys

The suthern horder of this Laturentian area is formed by the great
 ieal feriture in the comatre moth of the Ottanal They strise through Ilull
 minater on the virinity of (gnem village. This Ereat mige rise like a wal

 ('hat: falls to a print on the Otatwa tiver opmeite Ampmor. After passing

In its rantern, in mote gneisib pution, "xtemsive limestone belts ar frequent, amb in one of them, which hat an aproximate wilth of nearl therefouthe of a : aile. the well known lomsith, and l3:ldwin magneti tron ore mine ate lowed. on lots 1 and 2 , range vii, and on lot 14 , range vi of Hull. Here the mandice ore oremsin assomation with very dars hom blende rowhe. striking a little month of west, through the great band of erys talline limestone abeve :dluded to.

From ohererations made so far in the tield it appears that mont of the limestone hand- in this district have a nomberly, or a mortheasterly etrike, and form tongne-like, and wher axpesed, well marked outliers in the laurentian formation. Their dip. however, changes a great deal; it is sometimes to the east, sometimes to the west, sometimes steep, and again that, apparently . リllatlzfolsphar 1 gatuetYatallint f rleimly yroxene. The frerercgular ti) therse : mineral 1111erons 4 vialleys. limg theis ijectural. he rieal thenlig Irl Hull. ancl terfr al wall hreatth Unship) of and lorrnr; tw the es ahomest 11月as:ive the great iles from r passing lie river. elt along of nearly magnetir rancre vi, ars lionil1 of crys-
st of the rike, and ulirentian esestothe paraently

 hata beren changon! int., mathla.

 of the \&

 -

 thibution of the gneiores and limestuner.
 there are seattered throught 1 e distriet a mamber of irom foratioms, which.

 location, on lat 2s, range vi, Timpleton. The rexk in which the iron we

 limesthe and gneiss can he notired following the roink going in eistern directions: proxenie dikes, some of them of very monsilemble extent, roblish
gramte,, egmatite and dioriter dikes, cut thengh the of tatilied gneiss, son times at right angles. The whole formation, compared with that found the west si.le of the Ciatinem, is of a different aspert, and it is alsur "hanemet taed by the frepureury with wheh economie minerals, principally apat oerur. Irmen hasenfome also in sestered doposits; !ut as wery lit
 their extension or chameter could twe collerted.

The interior of Wahelied township is practically unexplowed, with exerption of the shores of the (iatine all river, and lakes farther miand. Cr
 while the pineipal rocks sen were at bam and Clear lake. These w mestly a medinh granitic gneiss, cut through by quatzose and foldspat dikes, and these roek apparently owerope a large pertion of this townsh On bot 23. range wi, Wakelield, and other hots in the viemity, magnetic: it
 gneis.s. cut be diarite and limestone, is alsen met with, and forms the presail rork of the comery lyitg to the northwarl. Alang the salley of the (iatine river cxpmese uf limestone are very frequent. While greissio st rata ocel the long mountain samges fart her inlat-r.

The coun a woth of the townships of Wakefeh and Mashami, aiong tiatinean, pere. :as abont the same features, from a geologival poin of vi as that just doseriboll. At Kazabazua a wide sambly plan orikes in a we enly direction throngh the comutry, whiel entirely conceals the unterly fomation. Of the gncisens on the wesiem side of the riser it may be that they are reengnized as representing the lowest members of the hament fomation, and consist of reyl granitic gneiss, or hornblente gmeiss, w - matl hatuls of arestalline limestome. On the eastern side of the river
 rowh, with small bands of erystalline limestone, and int low numerous int sise likes of diorite, pegmatite, and sometimes diabase. As mentioned abo it is prothes the th the presenere of these intrusions that this part of Lanmatian fomation is more pereluctive in eromone minerak than the in which 1 . (me int rusums are absent, and for this reasm, perhaps, we f that the romber eat of the Gatinealu river, on betwern this and the lie aser, is far mote perdurtive of eemomic minerals, sulth as apatite, graphi and mica.

Of the connty adjacent to the Gatine:n river, that between the lat and Thinty-one-mile lake, in the township of Cameron, is of apecial intere herause in the ghaissid hills, running gencrally in a north-south course, seve disomeries of irm ore, some of them of impontance, hase been made. 'I shores of this lake show the usual arrangement of proxemie and redd athorlase gneisses, and litnestone, the former being prominently developed

Fiom the west site of Thity-6if-mite lahe at ceek leats into Round lat at abont lot Bit), range vii, and this erreek euts, through limestone, with seve hands of a reddish gneiss. In fact eestone forms the greater part of
neiss, some1t. foum on i hurneterlly apatite, wery little braring on
d. with the mil. Crysl. Germain, These ware follopathhic - township. gnetic iron Nymitir e prestailing ne Ciatinean at:a wechpy
11. tiong the it) of view. sin a westintherlying liy lo satid Lamrentian Reis.s. with e river the and feldepar arous intruned :ilxove. part of the l:111 the one ps. we find the lieis re e, graphite.

It the latter ial interest, arse, several nade. The mil reddish eveloped.
Pound lake, vith several part of the

 10formal 10 .

 1.e fullowed down to the liatmenn, a distanere of half : mile.

 the is .atry rech romsioto of a mica gacion, diatinctly foliated and banded
 slaty matter, and for this reanon is dithendt to bum in kilus. Sio iron ore of importame has been fomed around Maniwaki: but the disemination of the

 of iron perite.

＇11．1191．1： 111

THE ORE DEPOSITS．

 Maxary：

（ \because ） 11 ．inatitu．
（it） 1 mistime ai hoth．

Similar ara

Similar ores moror in Norwor

 Nepmit．
Mw:いいにな *

 |inll, :14l| In : im:s their Milline P. if the :1, pir:al Hoh in min

Hinall н世, (\%川) chiten! ind 11 Tolitit f thr. Mis. 117 milar if the U:It:,
1 , ire wi:n

 Whemb:

 actimohtr. and very often sealea of praphite.

11:MuTite.

 misareons and carthy red iron ores, ant is frequently found in the ciatincons
district, though lesi abundantly than magnetite. It is fomm either in a pure state, or in assoriation with magnetice iron ore. When pure, the most eommon eperies met with in the district is the sheralled specular variety. Its ehemical composition is $\mathrm{Fe}_{2} \mathrm{O}_{3}$, or irm sespuioxide contaning theoretically 70 per rent iron, and 30 per cent oxygen. The lustre of the ore is highly metaltie, or shining. Its frarture is meven; it is very brittle in compart form, and has often a lamellar strincture. It is elastic in thin lamine and soft and unetnous, in some loosely atheme rarieties. The colour is dark sted grey; in very thin particles red by transmitted light; when earthy, red. The streak is cheny red, or redthish brown. Some varieties are magnetic, but this may be
 reale: its sperifir gravity $4 \cdot 9$ to $\begin{gathered}\text { o. } 3 \text {. }\end{gathered}$

Before the blowpipe hematite is infusible; on charoal in reducing flame it beromes magnetie; with borax it gives the iron reations, and with sucta on chareoal in reducing flames is retuced to grey magnetio, metallie powder. It is soluble in coneentrated hydroehlorie acid.

The hron Ori: Deposits alona ?ili: Gitineal Raver.
As outlined in a previous chapter, the area along the Gatineau river, in which iron ore in commercial quantities has been found, is composed prineipally of a series of gneisses, with whieh are associated white erestalline limestone, ealeites, hornblende rocks, rut and traversed by dikes of diorite, pegmatite, and sometimes of pyroxene.

The most important member of this fermation, and the one which is of special interest, for the purposes of this report, is the erystalline limestone. and in the following, al general deveription is given of this important part of the formation, and its connexion with the iron ores found in the same.

The: ('rimtahani Lamestonis.
The erystalline limestones which constitute the principal members of the formation, containing iron ores, esperially magnetite, are usually white. light gres, or pale reddish, or fadting bher in colour, and are sometimes wedned and spotted with yelhow, green, bluish-grey, and other tints. They present most eommonly a fine and coase granular structure, much resembling that of loaf sugar, but some varicties are more or less compact, and othere preent. in places, a fibrous aspert, from intermingled tremolite, or greenish white to white liornblende.

The masses of himestone are in general crystalline in a high degree, and occasionally they are composed of an acgregation of rhombohedral erystals, of calespar; with faces an inch square. Lsually they are coarse grained; but sometimes also granular, though it rarely happens that ther are so fine in texture as to be entitled to the designation of conpart. In large masses their general colour is white; they are often barred with grey in the direction
of the strata, and are ocobsionally wholly grey. They are sometimes partially sahmon or thesh-red, hut this tinge has mot beon diffised throughout athent or penetrated to any great distance. It is seldom that beds are composited of pure carbonate of lime. Many aceidental minerals are usuatly associatobl with this, and they maty vary in quantity and kinds in different parts of at group of strata, both homizontaly and vertically. The most frequent minerals embedred in the limestone are serpentins. prowenc. hormblenth. tremolite, elastonite, mica, wraphite, apatite. qualtz, scapolite, iron pyritezircon spinel, flaorapas, tourmatine, and copper pyritos.

Hornblente is at most frequent ronstiturnt of the erystalline formation. and in many pheres, as in the Hull me deposits, it is associated with magnetio iron ore. Bets of homblente rock, and hornhlendir arhist. seem often to bre more abmalant near the interstratified bands of cry-talline limestone than elsewhere, and, it has often been notioed, that impregrated magnetite has heen noted at the selvage phanes of the two low k . They constitute layers. sometimes many feet thick. aml the iron ore orens: in these in parallel streatiand beds, sometimes attaining several fere in thickness, the interstices among them being filled with limestone, quart\%, raleite, on dolomite.
serpentine is found frequently asoociated and disseminated throug! the limestone formation, in grains varying in size from $0 \cdot 10^{\prime \prime}$ to $\left.0 \cdot 0^{-3}\right)^{\prime \prime}$. It forms abso romad, concretionary masess, which show grahual transition into the limestone on the untsidis. while in the cise of an ellipsoid ring-like deposit, the inner part, or the core, exhibits no transition, hut an abrupt ehange from serpentine to limestone. Grains of magnetite have been found in association with such serpentines, but sil far they have not clevehoperl into deposits of such slape and size as to wartant exploitation.

When the serpentine occurs in grains, or latger seattered masses, the grains, more or less closely aggregated sometines run in bands parallel with the beds, and clearly mark the stratified chararter of the rock. The serpentine can he essily distinguished from the other rock, in which it is embedded, by its colours. These are usually some tinge of green, to oil green and pale greenish yellow; sometimes the mineral is resin coloured, and oce:tsonally masses of pale yellowish green are spoted with crimson or bloond red patches, from disseminated peroxite of iron, as seen near the columet falls, helow the town of Bryson, Pontiae countro.
l'yroxene is also met with berasionally forming massive beds, but it presence in large masses has not heon noted in the immelate vicinity of irma ores. The limestone beds are sometimes charactenized hy grains of pyroxeme. disseminated in the roek, in the same handed arrangement as the serpentine; but not in sucla almotance, and ocrasionally they rum with the stratitication masses composed of cleavable proxene, associated with several other minarals, making a very coarsely erystalline rock: but these perhape may sometimes constitute veins of segregition, rather than bets.

Mica and graphite very generally acompany one another in the calcareous beds, and some of these beds, of targer dinensions, are rarely without
them. It appears to be findy disseminated graphite that occasionally imb parts to large maser of the limestone a grey colonr, and the greater or less arcoumbation of it in different layers produces the band of darker or lighter grey above refered to. (iaphite is also in some hocalities intimately associated with magnetite, and the Hull ore contains, in some plares, flakes aquarter of an inch in length. sometmes it oreurs in small veins of $\frac{1}{2}$ ", or less. in thickness, in the limestone, or on the eontact with some other reek. and when foumb in this condition it is mostly pure, and not intermingled with iron ore, or :my other mineral.

The principal variety of the mica is the phlogopite, which can be reatily recognized he its sugar brown, sometimes brownish yellow, also dark tints. Muscovite mica is also frequently met with, as sealy glistening particles, of silsery or peat white colour.
(rystals and grains of iron pryites are often aboudant in the calcareous formations, and are, at some healities, thickly disseminated through the formation. or ocern in accumutations so as to form a solid bed, as on lot 2 i , range ii, wwiship of Clatendon. They frequently accompany the erystals of mic:a and graphite, arranged like these in parallel hands, holding a greater or less abundane of the mineral.

P'rite often characterizes large norlules and lenticular masses of gneiss, or gneissoid proxenie rork, subordinate to the caleareons beds; and st rata of this deseription, weathering to a rusty brown, and holding disseminated graphite, very often limit the great masses of limestone, and afford a useful guide in tracing out their clistribution.

P'yrite is often associated with magnetite, or hematite iron ores in the district, and has, if associated with these in appreciable quantities, a most detrimental effect upon the quality of the ores.

Apatite, although so abundant generally in the limestone formation, has not heen met with, at least as far as the writer is aware, in the limestone sries in which the iron ore oreurs.
some of the larger limestone belts. which contain iron ores, have been involved in fohling and histurbances, which have affected some parts of the calcareous. gneisicie st tata.

The direction of these crushing forces is not well established, though in some cases. as in the Hull mines, where they couk he better studied, it appears that the disturbances had a northeast and southwest direction. The result of these disturbances can be well seen in those parts of the limestone formation where a dieplacement of the strata, and also of the mineral veins, has taken place. For instance, on lot ii. range vii, and atso on the aldjacent lot So. 12 . of Hull, the iron ore deposits have been cut off and thrown in a southwestern direction.

Some of the bands of limest one are of great thichness, and passing to them from the grneiss there is oce:sionally an interstratifieation of smaller eat rareous bects.
ally imr or less r lighter : issociIfuarter or less. reres. mingled rk tints. icles, of
leareous ugh the a lot 25 , erystals - greater
f gneiss, strata of minated a useful
is in the a most
mation, mestone
we been is of the
ough in appears e result rmation as taken No. 12. western
to them Her ral
 some distance. and then compared with the gencos, it whe be betioed that the limestone, as a whole, is conformable with the hed of gheme and parathel with those heds and streaks with which they are manken. This relation is mot su nevent, when only small portions are compared for it often happenthat while in overlying or underlying mas- of gaciow wilh onhilht wery regnlar and even lamellation, the subordinate 1 , as. dividing the ealearems bed,
 heds wheh form the sulxdivisions, will - and fulded in :1 very wataordinary mamer, or partially bewen u_{1}. limestone.

The Forsyth and Baldwin Mines have heen known for over it vars:

 Lient. Bradley deseribed thi deporit in the following manmer: "This
 the monntain in a southwest conre. having a sertical position as regards the walls of the vein. On the oppmite side of the mometan, at the dis taner of upwards of a mile, and in the direetion of the vein, ore was again seen in great abmadane

 there stated to be but mow than 20 fere and as remata the extension. the fol lowing note is interesting: "On the wht herap pat of lot 11 . ange vii, lhall, the
 and beinge again met with in the rear of hit $1: 3$ on the same range -

And as to the puantity of we in sight the repor ense on to aly: "The quantity of iron the thall bed containe must he considmable. If its breadth

 :malyed hy lor. Stery lhunt give:

$$
\begin{aligned}
& \text { Magnctic oxille of irm. . . . : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Metallir itrn. . } \\
& \text { (89.8.) }
\end{aligned}
$$

In at suberement repant of the ferobrical surver, the width is otated an In fert, and the graphite as assuming sometimes the form of weins of sereral inches in thickness.

It seems strange that the llull depusits were known for sueh a long period without being further investigated as to thoir extent and quality. It was only in the year 185t that actual cxplorations and levelopment work were hegun, by an Ameriean firm, The Forsyth and (o., of littsburgh. This firm realized the high value of the magnetite, from the very begiming of mining operattions, and supplied its works in l'ittshurgh for a number of years with the ore. It is reported that in 18.5 about 5,000 tons were raised. As there was at that time no direct railway eommmieation between the mines, and (Itawa, and the I nited States, the ore had to be shipped by way of the Rideau camal to Kington, and from there by lake vessels to Cleveland. Ohio. Operations were -nspended for some time, owing to the disencery of a new ore bed in south ('rosis, Ontario, which being situated directly on the Rideau canal, offered greater adwantages as to transportation.

Operations, however, were som resumed on the Hull property, and it is reported that, up to 185 s , about $\mathrm{s}, 060$ tons were shipped, averaging 60.70 ber cent of metallic iron.

In 1867 a hast furnace was erected, and it is reported that smelting operations were conducted in 1867, and a part of 1868 .

The ores treated, aeeording to 11 : Hunt,* showed the following analyses:-
131ark ore:-

Red ore:-

Peroxide of iron.	$6 \mathrm{ti} \cdot 200$	(metallic iron 58.78)
Protoside of iron.	17.780	
Oxite of mangancse.	trace	
lime as silicate.	11.760	
Magnesia as silicate.	$0 \cdot 450$	
('arbonate of lime.	$2 \cdot$ - ${ }^{\text {2fit }}$	
Siliea.	$10 \cdot 440$	
tiraphite.	0.710	
Phosphorus.	$0 \cdot 015$	
sulphur. .	$0 \cdot 280$	
	$99 \cdot 295$	

[^1]| Surap irom. | --2 |
| :---: | :---: |
| Limestonle. | 211 - |
| Charesal. | |
| Wionel. | 2-311 curts |
| Peat, so toms yielding cohr. | $\because 1 \cdot 0.9$ tons |
| Pig irm produced. | $10+11 \cdot 1.5$ tons |

The cost of iron thus produced was ans follows:-

$$
\begin{aligned}
& \text { Ore, fucl, wages. } 60 \\
& \text { salaries and general expensco.... 3. } 10 \\
& 826.89
\end{aligned}
$$

If we dechuct from the total amount of iron produced the serap iron added. we obtain as the average results during the time of the experiments, in 1s6s, the following figures:-

Daily production of iron	6.5.5 tons
Yield of ore per ton	54.5 percent
Chareoal commmed per tom.	2:3: bushels
Peat coke.	47 pounds

Leaving out the amomen of peat coke consumed, we have a consumption of 37.75 cuts. of charcoal for a ton of iron, while of ham wood ehareoal there were consumed from 34 to 35 ewts.

In Sweden the average consumption of chareal for smelting similar ores was from 16 to 17 ewts., for the ton of white and mottled iron, and about onethird more, or from 21 to 22 ewts., for the ton of grey met al suitahle for foundry. purposes, or of Bessemer steel. At Lang-kytta, in sweden, the consumption was as low as $13 \cdot 5$ to 14 ewts., while the very poor ores of Taberg, where the charge contained only 20 per cent of iron, required as much as 50 to 60 ewt. of chareoal perton.

At the large blast furnares of Port Henry, on Lake Champlain, where magnetic ore, similar to that of Hull, is smelted with anthracite coal, the arerage consumption wats from $1 \cdot 10$ to $1 \cdot 14$ tons, equal to 22 to 23 cwts. of anthracite. to the ton of pis iron produced.

The composition of the charge of the Hull furnace was very poorly catculated, for besides limestone, considerable amounts of clay and siliceous sand were used, which were entirely unecessary, not only decreasing the capacity of the furnace, but abo inereasing the consumprion of charenal.
 twexphain the failute te produce inon protitahly at Itull, where the quality " iron manufarmerd was inded exerlent.

Other reasons were :adsamed in explanation of the faidure of smeltims operations, and ammon these were the absene of tramsurtation facilitios and the lach of fuel.

In centinarige these lucations with other mines, we find, howerer, that there are me impertant puints in farour of the former, that is , ore and flus
 at that thate were working muler great disadrantages as to the flus and fue supply. 'The latter had to be thought froms spmenhil, in the raw state, and coked at the mines. or as coke from Pieton. a distane of so miles; the thas had to he tramported from Brookitiehl. 44 miles diatant. Igain, the ores at Lombmbery were not nearly so rich in metallie irom at the magnetites from Hull, and sometimes they alon hat to he carried long distames. Taking therefore, all things together, it appears more than probable that the unsure ressful operations were not only due to the lack of tramportation facilitios, and fuel, but atoo to the inexperienee of the manasement, which sermed to be incompertent to deal suceesfully with the important questions arising out of the gradual development of the emterprise. The consequence was that the mines were shut down, the old furnare was remowed from Ironsides village. near the hank of the fatinean river, athont laso. The mines hate bern lying idle erer since.

In order to form an idea of the extent of the operations carried on in this mine, and also of the charamer and quality of the ore bodies, the following desuription, based upon a thorough investigation, is given. It must be borne in mind. however, that, owing to the long stapension of ate tual mining work, all the pit. and cuts were filled with water and debris, that some of them were covered with brush, underwond. and ewen trees, and that on this areont the examination was not as complete as cond he wished for. Prospeeting pits and ditches, which, at all carlier periond, served to throw light on the extension of the deposite, were filled with waste, and covered with dense vegetation. But in some phaces, where the expense was not excessive. these were deaned out; in the majority of rases. however, such a procedure would hase involved a heaty outhy. for which no provision had been made.

The principal operations carried on at the Forsyth mine were confined to the southern portion of lot 11, range vii, of the township of Hull. (Ace fig. 2). They consisted of a long, shallow, opencut (fig. :2i), commencing near the roid to Old (lldsea, and continuing into a hilly range, which traverses the country in a bortlrwesterly direction. The main strike of this open-rut is a little morth of cast and west, its length is 735 feet. it = width from 10 to so feet, and its average shallow depth irom 25 to it) feet. There are two levels in this open-cut. One commences near the roarl, and represemts an open-wit. I
sutficiont |Haliţ̣ of smeltiug facilitios.
ver, thiat sund thax : Sootia. and fuel tate, and the flux e ores at ites from Taking. (e minsucfacilitiws. ned to be ig out of that the - village. are been cll on in e followmust be l mining ait some tit oll this Prosow light red with scessive. rocedure ad been

ere con-

town-оренal ron-worth(e north Si) feet, evels in ll-rut. I

(fig. '2b), approximately on the same level with the roand; and the othe marked 11 , in the same figure, 10 feet higher than 1 , being the main lev upon which all mining operations were carried on, and which extended f the full length of the main open-cut, that is, for 7 735 feet.

This opere-cut runs through a belt of erystalline limestone, which strik in a northwesterly direction, and has an approximate width of over a mil The open workings of the Forsyth mine afforl gooll opportunity to stud the eharacter of the ore containing formation, the limestone. In tooking : the crystalline limestome formation, as a whole, we camot but come to t conclusion that it has-at least where the hull iron range is loeated been involved in a serios of folding and disturbance. The dhection the crushing fonce was apparently from the notheast to the southwes and it includ 1 alko the masses of iron ore associated. The results of the: pressure forces call be well studied, by examining closely the walls of the lon cut in the formation. In several places the roek has assumed a decidedl slaty and schistose chanacter, as will be noticed on the northern side of th cut, elose to the lower bridge (see fig. 2 b), about 280 feet from the entran Here a highly decomposed, blackish, graphitie hornblende ack has been ou off by a nearly horizontal fault, whieh, along the lines of fracture, exhihi magnetic iron ore of a crystalline character.

An analysis of the ore, which oecurs here in the form of small pocket gave the following percentage composition:-

Silica	14.160
Ferrous oxide	2:3.660
Ferric oxide.	51.870
Sulphur	().230
Phosphorus.	$0 \cdot 004$
Metallic iron. .	54.710

In following the lines of fracture, we noticed that decomposid, greenisl slaty material had filled up the cracks, which at sone plares present slicket sided surfares, as a sign of novements of the rocks. Inmediately under th little bridge (A in fig. 2 b), a number of pockets of magnetite can be notice Their form and arrangement in the wall are very irregular, and adding to thi the crushed condition of the containing rock, it appears that this part of th formation has undergone a considerable amount of disturbance. There no doubt that the little pockets, above referred to, are parts of a ore lode which has been opened up and followed in the lower cut (I), bu which has been thrown out of its course towards the north, and cut up b. dynamic forces; this is also inclicated ly the widening out of lower cut (i towards the location of the pockets of magnetite, at the places under con sideration, which necessitated the construction of a bridge on the level cut (II).

The ore deposits, themselves, sometimes show nany fractures, especiall. along the contact with the wall rock. The individual layers, where har
the other. main level rended for
ieh strikes cer a mile. to study looking at me to the. locatedrection of outhwest. 3 of thess of the long decidedly. ide of the entrance. been rut exhihits I pockets. greenish. slickenunder the noticed ng to this art of the There is ts of an (I), but ut up by er eut (I) nder cone level of especially ere hard

enough, are broken into, small bows, hy frarturs, which, in the main, arre

 theasured loy inghes rather than fred.

In following the lower ent (b), we fimb along the mothern watl a namber
 Inder. partly worked in the lower ant. The lime me tonte of harger dimennimax
 This outerop secmes to cormespond with a weind which apparw on the mortherty

 of smaller poekete than in a vein-like form, and in the virinity of this place. in the bottom of the lower eut, a momber of prechets may be noticed. Some of the ore is componed of very pure mannotite, white a lage portion of it is an intimate mixtme of homblemberer, magnetite and hematite, with flahes of graphate distributed through the whole mass.

Another outcop, 1), uppears near the fare of the lower ent, on the morth(rn wall. This ore is here irregulaty distributed wher a width of 4 feet: mucliof of howerer, is assomiated with country rock. 'The nutrenp in C'is in the form of a vein, with northwesteriy strike, and dip to the morth; it has a width here of approximately is fert, is made up of paratlel atreaks of ore, of country roek, or of a mixture of both, and continues west warl. This maty be seen in prospecting ditch E , which shows distinctly that the ore bate constitutes a very strong lead, extending, not only horizontally, hut to tho depth as wrll. An analysis of a sample gate the fullowing percentage com-mesition:-

Siliceous matter	(i.)(\%)
Ferrous oxide	26.100
Ferric oxide	.11.800
Sulphur	0.075
Phosphorus.	0.1010
Metallie iron.	. 16.0

Near the southem wall, in the fare of the lower cat, at F^{\prime}, fir. $2 \boldsymbol{2}$, appars another outcrop of ore, of a width of 4 feet, dipping : little north, and striking in a westerly direction; its whole habitus is vemblike, while the ore itself is composed of a number of streaks of pure ure, and :a mixture of back hornblente rock, with magnetite. A sample of this ore analysed gave the following:-

Silicems matter. 11. 5 so
Ferrous oxide. 24.4:30
Ferric oxide . 48.410
sulphur . $0 \cdot 370$
Phosphorus. $0.10 \cdot 4$
Metallie iron. $53 \cdot 580$

It-

tho mant Maft, :tiont this littt la. larelateremedint

R(1):18171118 :1 munl|⿸厂 of 1,11 (i. alholit fll fexy 'rionded zinlle: al langest diturnvions the rembiniti-. ur at jurtion of bato the wall just were bal to

 -

 dirution of there

 misture of the lattor with a gremish hatek homblatere mok, but the whote

 the rexel of the hill, : hoight of ta fere
 netioed. Comformine with the strike atul dip of all :he ot har vons so far de-

k of llatg ｜ytarm！ ：：iv1ring
所和 wh ＂ख：口и！ nere comblal
（1）（｜｜）
 leve， is 10 －II，W／an： Wial（1）In per level ing along re，in the －llv－hat －Hatter． worthern 11 liscume as to tha fillltug Ilurlal to． －allid de－ Slickerl－ on（onted －hlorite．
aill shat nort herin sugerment aid tw he $-3^{\prime \prime}$ ，and 10．and as he whole 11100 of－ \therefore a willh latis the all up to

Mle．I，is （\％）fir de－

Silireoble－	［1：－1417
Forrous axide	（1）．730
Fierrie with	$11.11!10$
Sulphur	11.1111
P＇lorphorus．	11．112i
Mreallie imon．	

 planes．

 later．

several outerops of gowl ore, with layers and streak of greenstone, prol:able homblendic rock. Of a whole breadth of $\underline{2} t$ feet, the ore is distributed ove 15 feet in the mamer indieated in fige. is.

An analysis of a s:mple of ore gave the following:-

Silicemme mither	11.010)
	26.100
Ferric axide	.7-.310
Sulpher	$0 \cdot 3610$
Thosphorus.	(1.114
Metallir irun.	(ii). 4610

 wise.

Most of the are here comists also of parallen rich, and lean zones and i bordered to the morth and south hy erystalline limestome.
 "Eally: their trike :and dip and gemeral hathitus, one arrives at the condusion

that, apparmoly there ts mo selation or anmexion betwern the two series and that, therfore, they shombly constitul two distinetly sparate ore bodies which have been worked from the upher level. We almull (hor also juige that onclusion

 ti) justify this contemum, and as the buthon of the heng cul was entrety.

 and facte preaterl. But informatinn remeral comerning the working of

 lack of miformity. of looth me lonles. Where in II and L. ont of at total if 17 feet. ! feet is taket up bey orros and diatributed over only two weins
 15 feet of ore, distributed wer three wills. From what can be metiod in the big cut, ats well ats in wher mine of hike chatatere the same ore hedes are sulbeet to great var:ations: they sometimes - ylit up into stmaller verins. which may again coaldere and form a wider wein: they sutdenly take the -hape of ad drawn out lense :mal anon. Fior this mation the lack of miformity -ama to form a weak witerion in this care.

Following the ore lowes from M, in a wemerty direvtion, we find no ont-
 where a dep hatural cut comburnere, we find aberal expmates of ore, some of whelh. lowever, maty he lage hamps of irn we from the dump. It at dis-

 1:iturel that this. .tephth is loti feet.

The whly expestre of nre in this hate was at the western fare, where : bout teed of ore, intemised with country rock, could be serolt. This wilth of ore is aported to have beed maintanemb to the lot that.

It must be mentioned that the line betwern lat: 11 and 12 armotes shat th exaretly in the midthe (are fir. 2at), amd that aperations on lat 12 are of much later date than these of the Forscith mine. On this property not mush de-

 be somewhat complieated on this phot, becalise a wein of 2 feet width, of exrellent ore oerms at the face, and also in the hettom of the eut, white there is

Fig. 1:. Inll-Forsyth iron rande. Scale 1 inch in 1,000 foet

 in that pant of the property.
 ath gave the following result:- -

Silieeons matter.		く・11010
Fermomis oxide.		$310 \cdot 0$
Ferrie uxide.		incri!
suphur.		1.173
Phosphorre.		11.196
Metallir irm.		12.120 ${ }^{1}$

 a face of about 2.0 fere high, and 1.5 fert witle. There does not sem to be a

 of iron propes, and its value for smelther pupmes. on that areount, is diminished.
 the following:-

Silita	$17 \cdot 20$
Sulphur. .	$1 \cdot 171$
Phesphorus.	11.0411
Metallic iron.	.7-130

Fine Bamwin Mivas.

 fig. 万) : and forn the comtinnation of the iron bearing fommann deseribed in
 thi- fonmation, fully applies to the baldwin mines akso with the angle

 of small, and large porkets. Ienses, diswomin:tions, amd deposits of irregulan shape, following. mote or loss, the genemal ternd observed in the Forsth
 serons that the formation, in gromeral. has hern subjeredel to distanhing forees. Which :nr, to a lirge extent. responible for the detached position of sume of the are bodies. The orecurmere of the are is ronfined to a hilly range, in the mothern pant of the property. with east-westery strike, and is distributerl wer at lengtl: of appoximately l. 100 feer. The wre is emered, for long
 its conlor, and eontinuation in an enst-westerly sense. There has beren a great deal of work done all over this pat of the property but it in of a momeseat teren
nather than that of the Forseth mine, and ematined to the iron range, one :

 and an apmeximate depth of on feret. Whon vioted it wan tilled with water.

I s:mple of ore from the dump gate the following anall-i-:

Siliceorss matter	11.11011
Ferrous oxide.	:31.6)
Ferric axide. .	+13.919
Suphur. .	11. 26.3
Phosphorus.	$0 \cdot 1005$
Metallic iron.	\% 3169

The ore is not pure. hornblende row heing the principal:almixture. It oerors in paraflel streaks, and gradations, due to , he presence of impurities To the west of this pit the vein ean he motirel again. turning mone to the south. in a width of $t^{\prime}-t^{\prime \prime}$. Streaks of rich we oecur in the sont hern parts of the vein, while impurities are more frequent in the remaining parts. About 71 feet to the east is another opening (No. 2), 20×10 feet and 2.5 feet deep. in the course of the rein fomed in No. I; but as this pit was also fillem with water, ond as nu are conld he seen near the collar exept a tew small porkets. min furtl... tletails cau be given.

I sample of ore from these pockets gave the following :malysis:-

siliceous matter	(1.781)
Ferrous oxide. .	2! -190
Ferric oxide.	(1). 790
Sulphur.	(1.173
Phosplorus.	(1.012
Metallic iron.	$1 \mathrm{i}_{2} \cdot 9 \times 0$

Xorthward from this pit several outcrops of iron cam be serm, some nf them of high quality, but as the work was rather of a superfieial character the extent of the deposits could not be well established. From what can lit seea, it ippears that the ore occurs in poekets, and small lenses, hat wing nu ronnexion with the vein described in pits 1 and 2 , but forming detacheal. isolated masses.

About SI feet from No. 2, northeasterly, another pit (No. 3), hats heen sumk, in what appears to be considerable accumulations of irregular deposits of irom ore. This pit measures approximately 45 feet $\times 31$ feet, and its: depth is about 25 feet. On the western side of the shaft a number of pockets appear. but whether they form part of a hater theposit, or of a veinibe ureur-

i:

rence, eould not te determined. Wheh of the rock, which ronsists mostly of the usual dath, qremish, hornhlembe varioty. and whels can he sen al aromal the pit. ar well as on the surfare, contans ore in streaks, in lenses irregular poekets, atmel impregnations. In some plares it ocerurs in small, but phere. patehes, of the size of one's fist.

I simple of ore gate the following analysis:

Silicrous matter.	I-3600
Firmous oxide.	
limrie oxile.	61. s (0_{0}
sulphur.	0.170
Phosphorus.	11.0111;
Mretallir iron.	(i3) 4161

 tion, : qual deal of strippinge and hasting hatsheen dome. over quite an rexten sivo are: No. \&. 'The rock is maty looking, sometimes greonish and hackish and the ore socms to mantain its irregular distribution throughont this rorb as ohserved in pit i, furt much of the ore is of excellent quality.

I simple of this ore analysed give the following perentate eomposi tion:-

Silicrous matter.	15.380
lierrons oxide.	.31-340
lemrie oside.	45.310
Sulphur.	$0 \cdot 11.5$
Phosphorus.	11.1118
Vetallic iron.	-3. 260

At a distance of about loo feet from pit t, an area me maring aboun bit $\times 41$ feet (No. 5), along a hluff of rock, hats been thoroughly strippet, and in some plaes hinsts lave heen put in, which, more or less. exhihit iron ore. The furmation is the same as observed on No. 4, heing backish green, hormblende necasionally gralling into a miea diorite, of whel the rich bluff just mentioner corsists. In many places the ore is alherent to the rock, and no distine solvage (:an be seen. Impregnations are frequent, and sometines accumula tions of the latter form considerable parts of the formation. No distinct veins, or vrinlike occurrences, could be recognized, and the nature of the rock, so far conducted on that spot, seems to sulstantiate this statement.

Just helow No. San open-cut into the hill. So feet in length, and :30) feet in width, has followed a deposit of ore, whirh ippears to he of eonsiderable dimensions. At one plare, at the western torminus of this cut, in the face. vein of iron ore of a mixed eharacter can he noticel. This deposit, at the western side. has a width of $11^{\prime}-6^{\prime \prime}$. but of this, however, only severa barallel streake are really good ore, the remainder consisting of hornblente roek. impregnated with mignetite, and sometimes nixed with iron pyrites.
－mostly －seell all in Jenser， mall，bint
rin direr－ III Cxteni－ 1）1：rekisha， this rock
composi－
ng ：lhout ped，and ore．The mblende， entioned distin＇t ccumnl：1－ distinct re of the rent．
d 30 feet siderable le fitec．a it．at the y several ornblende yritrs．
 f＂rition whell athalyond：

Siliewnememather．	－．Finl
Lermus axile．	$\because 1 .-111$
Ferric axile．	\therefore－． 311
Suphur．．	$1 \cdot \mathrm{OM}$
Metallic irm．	（6）何耍1）

Till：Lawtis：Mハに：
 mines，on the sonthwestern part of lot 14 ，range vii，and on the erest of it step
 －ank in ：white．coarse gramed limestome．Ont the cathern side of this pit shane mixel ore can he notied：impregnations are impurnt hut un regular wiat is met with．This pit was filled with water，and nu redianke information

Below this pit，about 120 feet ifecetly enstwat，is another openime． 20＜ 10 feet，whith was also filled with water．On the＂astern dille of this．pit
 from this．the explonation work hats yiedud mothing of importance on the surface．In comparing this property with the bablain mines，the absence of the dark hornhlematie reck，in association with the iron ore is nuteworthe． The surface imb the various dumps，to not exhibit its presence，but what was fond in the ：uttom of those two pits is but known．The ore wheh
 whectionalhe impurtics．is mentioned above，an sulid ore lordy of extent ＂an be sern on the smfine；the latter．Iowever，exhilhts．limitanl porkets． Fenses，and dimeminations，through the limestone．

This mine，as well ta the Baldwin mines，offer ：reat facilitie：for mining operations．Path are located on the sopes of mountanome ramges．There is alsto a good supply of wood and timber，for general purpuses，on the pre－ mises．

The principal onstituent of theoe mes is magnetite，intermixed at some
 the ore，therefore，varics rather widely．Sometime pure nengetite，is met with； sometimes a mixture of inoth magnetite and hematite：the hater recognizalke by the geneally red streak it makes，atesompamied by mom on less gangue material．Ia the absence of data regarding the average characte， of ore from previous shipments，it secms that the average grade wonld somsint of ahwout threr－quaters of magnetite．sometimes mixed with hematina．

 distrihuted oser the whold width of the veinlike oretremese lout very ofter this is the wase in the smaller parallel st meaks of which they are romposerl The we is agyogated along sheet like zones, which are distingnished fron therommtry tock, only her their alhommal richness in magnotite. It might b said that mo wrll definel walls with a selvage exist., ati the relation to the com thining limestone is one of gradation. Oreasionally lenso" aml porkets, o
 the veinlike oreurrencers, and are seddom isolated. The orro in these is of the ambe charaver as that met with in veins, that $\mathrm{i}-$, it consists mamen of mag melite, with smme lematite, and mone or less gangme material. . Wost of the magnetite is highly eryotalline amd oreasionally small crystals are found it the form of rubes, of eubu oetahedrons. The colour is gencrally blath the ermaish tints sometimes ohsared are due to the presence of hennblendic ore charitic material. The lustrous hack of the magnetite, the clear white anmetimes pink, raleite or quartz, and the green tint of the chlorite, give thi iean ore a Hilliant apcanance, which, however, is excelled lys that portion of the ore body frequently met with, where the purer mimeral is fomme ane where innumerable crystal faces reflert the rays from the sunlight. The ar is kenerally of hard textmre, lut when exposed to the air for some time, es perially the impme varicty, rmmbles, and the particles separate easily ofierng then satisfactory ronditions for producing concentated ore from the lean material.

The magnene of the lhall mines is assoriated, as ate, with severa other mincruls, which, on areount of their importance in the profuction of the iron from these ores, will be described separately. Among these assoriated minerals the more important ones are ealeite, rhlorite, graphite immblembe, hematite, pyite. quartz, and pyrosene.
 but perfect epstals, in hexagonal prisms, and in soalemohedra. Rhom boheral erystals have also been wherved, hat these seem to be less frepmon than the other forms. There are also granular and eleavable aggregation of this mineral, and this occurence is characterized by its arramgement in small parallel veins in the ore. In linated quantities, calcite cannot be mo sarded as an injurious aceompaniment of these iron ores, berether, if it i not present in the latter, it has to he added, in order to produce ${ }^{\text {iog in }}$ in the smelting process.

Chlorite is a frequent eoneomitant of the Hull ores. It is ofte. . untul on bedding or sels age phanes of the ore, and causes the latter to be easily detaneler from the watl-rock. It is found also in small vains, and strolss, sometime in lenses through the ore body, and gives the latter a peruliar greansh tint sometimes a pure massive variety. made up of a confused agregation o impused. hed from might lo , the conrkets, or :anions tu -is if the - of m:14set of the Ie found. lly bark. nhlendie. ar white. give this prortion und, and The ore time, este easily. ore from

I several roduction ong thest graphite.

Rhomfrequent regations ement in at be rer, if it is Ig in the (1) 1 ml 1 det:achent ometimes tish tint. gation of

 where

 tim it constitutes the primeipal ingredient. Whan splatated from the irm

 flosible, and ;-x.ses greal colmang pmowe.

 amb is also mifurmly disseminated thengh the ore. Comblitumenthe the pres-

 It in pwhable that in the latter cane the hematite is prevent in the ervatalline
 shows the fine interater hetween the ersalline agregate taken up be fine

 wored ill qu:

 n:

 with the ore itadi.

Quat\% is loot :hmmlantly no: with in the llull omes. It is usually font

 athotimes fonumb cmbeded in the s:ame.
 alparently in the form of steatitre, the earthy vartot! In the fatter c:ise

（1） 11 m

 divertiomes． ＊（ain insw （1）rublemle． sur paralle！ 1．：illil the जnmewhat follownt to contaill I film ge is mome ：19s．atilt rarcly wh 2 latt of ：1p－ ith peytre． ramge vii in mimute veins．At it リリバロー sminatom of acerral （1）：4raimil｜ The tim：all twerll the －s，allid the are（：1－il）

Itull range． he reystal－ proxeme allyparent minl．there－ aso oremer issociation
：1lly found cryst：alline ular joint：
line red wotals ：he

11 ore bexi． ler rise it

 maturtite ors frer of hematile．

 tom of her irom ore with rexat to their commermal sahte．

 lose eromatir impntame The following features of distribution may be
Analyses of Iron Ores from thic Hull Iron Range．

11						
（3）（i）	－ 4 1！	$\therefore \mathrm{NH}$	31	\geq	\％	
11.10	（1） 5	（il W	1	：		

пин	11.5	1－nis									
1 －	（1）．94	11.1									
11027	8．en	0．101．	1）． ChH^{1}	11.611		11．（x）f；		16．01：	（1．thn	（1）	12
0．が；	1.11	11．2	Н．－M ${ }^{\text {a }}$	11.40		11．7i：3	1.07111020	11．183	11 E	（1） 11	（1）
20	：$\%$	$11 \cdot 11$	1i－16	（i．f）	$11-5115$（6） 11 （h）	A（4）	$15 \cdot \underline{\underline{2}-11} \mathrm{ml}$	い－	－ h ．	1．5 \％	7 ¢
11\％		$\begin{aligned} & 1414 \\ & 11-11 \end{aligned}$									
$3 \cdot 9$											
1－17											
1（x）－ity	（1） 1 hr	（1）－295；									

\％＂ o－called red．（ore a mixture of magurile athl hemathe．
Aulyses iron Ores firmitio Hill Iron Range．

[^2]and ：have
So 3．the

 qu:lutite.

 large steel company of the louted states. muler the matamensent of . Wr

 alidities for the extension of the ore lom liew with dopth.

 ath there is no evidence -at hatat from a geolugival puint of view that the same, as an integral part of the Laurentian formation, fould flamge it -

 painte to the probability that the depmeste will contmue whth cieph.
 prospect for an immediate ore supply In answering this question we hatse to comsiter the amotnt ant eharacter of the explatation work dome all wer the ramge. While it is true that mond of this work doens not admit

 with proper mining methors, alater quatity of iron ean be minel. The

 anthenter information, that from the lithe pit heserthed on page it of this

Su: anthentie intore ation is at hamd as to the -hipment- of the Badwin

 the townhipe of Templetoll and Hull, of which the ment impert:me ome is

 brommioh miral.

 intawive masises.

 ocerarel at the contact of both the proneme row :and the gheis.

> Fie: Il wron's i.orms.

 amome of heary regetation, wometime whith trew, that the irnm we, in sith.

The princepat deposits, amd these which hate heen wewhell tome some extent, are all sitmated in the motheas romer of the sonth half of bet es
 on this lot; and in the report on the mineral rambere of cillarlat, in witi

Log:m refers at longth th the orcurrene of hematite on the lot above mentionel. In atb, nine outcrops of spectar iron ore were mentioned, and of the quality of the ore it is saind that, "the ore is very pure, being ummixed with ally shar; in fracture it is fine graned and steel grey." However, the property, whel belonged to Messrs. Darly, was not worked until the fall of 180^{2}, when Mr. Hateock bought the same, and an additional 200 aeres in the townhip of Templeton. In April, 1s73, extensive operations were hegun, which lasted, with few interruptions, until the fall of the following year. During this time a number of dwelling homses, oflices, storehouses, residener f.r manager, stathles, and powder house, were huilt, and the property put in shane generally for work on an extensive seale. There were also built. four charcoal kilns, a forge of four fires, in which some very good bloons were made, a rrusher house, and all accessories for combinel mining and smelting oprations. A trammay, 3 feet gange, of miles in length, was huitt from the principal pits, through the property, along the town lime between Hull and Templeton, to the Gatineau river, where connexion was made with the C'anadian Pacific railway and adl comecting railway and steanship lines at Ottawa and Montreal.

In addition to the above a steam sawmill of 90 horse-power was erected, with all facilities for cutting timber and logs.

As to the results of these operations, which extended over several years, no authentic information can be ohtained. It appears, however, that white the quality of the ore was excellemt, the quantity necessary to keep the furnares permanently in operation seems to have been lacking.

With the exception of some diamond drill borings, which were underlaken carly in the eighties, near the present iron loeations, and of which no recorls are now at hand, work has not been taken up since the year 1504.

As regarls the topographical features of the property, it may be stated that the latter. wh the places where the iron ores occur, is traversed by a number of mome or less broken ranges, or high hands, rumamg roughly paratlel in a general nomeneasterly direction, with intervening stretches of sumewhat. marshy gronam. The specular iron ores orcur principatiy in highly feldspathic gneis.s, of a redilish coldur. interstratified by oecasional grey bands, the whole heing referable to the lower pait of the upper portion of the Laurentian fomation andernibed under No. 1 , on page sa. There strata have a general nontheant :mblemest atrike. and dip towards the northwest, at an aberage :agle of from 4.) to . it ilegrees.

Wuterops of hands of iron ore, ruming parailed with the stratification, wewr mon ar les throughout the popery, and ane equetally freonent on the slognes of the ridge along the certeral hine of lot 2s. The strata exhibit here sumber follonge and corrugations ahong their coures, and thus it may happen that cuterops opened on the fare of the bidge, although at somewhat
 on the :anne herl. Altogether 11 pite comblide noted, conted in the north-

 awount of its being filled with water, wand wot he amotaty determined: however. it was learned from the migush owner. Wh. Inaly. thist thas depth

 heratuse no extension, of the same. either in a hert larm, win at southern there

A simple tatken from the dump gate the following alatil - i-
Silic:i.
Titanir a all. .
\therefore (160)
limere. .
$\therefore .831$
H:aymexia.
11. 1010

11.6011
l!asphturus.
(1).12:?
: inlphere. .
Mrealli iron.
(1.01)
(is. inia

Titanir ald.	$\therefore 1101$
Phosplurice :ria!,	11.010)?
I'hosphurus.	$0 \cdot 0.101$
sulphar. .	(1.01ハ
Nutalla inom	(i) - 1.10

(i.)

Silica.	1-:3.31
'l'it:mur :ncid.	(1.1)00
linue.	11.19!
Mitruexilı.	11.:3年
	1). 1 Hhi
	11.10:3
-uh¢иня. .	11.010!
Ihetallir irma.	1i. $\cdot 7.11$

 with dehris and umherbrush.

 pesit of conmmemerial value.

Siliein.		10.8.510
'Titamic acit.		11.!1010
Limer	.	: \cdot ! $!10$
Magmesis. .		$2 \cdot 3100$
Phosphorice arith.		11.012
1'masphatus.		11.1010 i
Sulphar. .		(1-16! ${ }^{\text {(1) }}$
Notallic iron.		17.?.in

No. 6 is an exposed rock suface. ou a high hlufi. and exhihits a number uf sumall, eham-like aremmalations of ion ore similar to those found in pit No. 4. The st bike of the row wheh is at this phare a rembish hambed gher-s.
 ":tion lines, at some places, am dother with small, hut very pure lenses of Iematita, free from :mus almixture. with a brilliant lustre. In their entirety they ! ! mw strikingly the mamer in which the irom has hern tepositerl, amd
 "lydied to thase all wior the property.

Silicis．	$11 \cdot+10$
l＇itani゙・ ：パ｜	1．－ibi）
limue	11． B （1）
W：1ヵ111－1\％	： 3 － 11111
I＇tusplente ：wid	11．115
Plasplario．	11． 11.47
Sulphimr．	11．115
Wriallia mom．	．）11．－7\％

 ：1hout 11 －－xtollt

$1 i$

 the mines. Gue of them wise fithel with watere. whe the othere, Io fere loug

 -1tom:

Silicor.	11.066
Titamir arme	-.950
lime.	11.250
Magnesia.	11.410
1'thephoric:	(1.022:3
Plosphorus.	(1.111)
Sutphur: . .	11.0.319
Matallie itour	$663 \cdot 1120$

On the north that of lot 1. range si. Hull. Whemging aton to the Haymek

 tish gramue enem. . Hong the lime of stratification. A number of prosereting

[^3] cation lines of the gueiss. It is hritte and streaky, hut very pure, and shows wemaionally a hamimed structure. The depneit is it presente itsolf is of bittle value, but a gond deal of float irmore has herom lound in the homus that covers the surounhags of this outerop, and it is mot mulikely that, upon further investigation of this lower hmal, a depmat of cemomie vahe might be
 arranged wer the surface of the rock, may he powen to be simply and oner, or offohnot of a karge foposit in the immerlate viomity. The that of irm ore
 under consideration, and big pieces of iron ore though internixerl with combtry rock, ran be duy out at a number of plarer.

\[

$$
\begin{aligned}
& \text { Fermus oxide. . }: 3 \cdot 10 \\
& \text { Ferric oxide.4.).23i } \\
& \text { 'Titanic aciel. . . } 16.51 \\
& \text { Metallir inom. . .is. } 0_{1}
\end{aligned}
$$
\]

On the southern part of lot :3, range x, Hull, the property of Mr. Therophile Via , a promising deposit of hematite ore orems, in as syenitic formation. The vein has an irregular winding course, hut its treat, on an average, is about northwest and suutheast. The arrage thickness is from $8^{\prime \prime}$ to $10^{\prime \prime}$. In one phace, where it splits into two hanches, of 10 and $12^{\prime \prime}$ in width respertively, it has a thickness of e30". The ore lade is exposed for over 3 feet, and disinpears, on both sides, nuder the soil ar a heave capping. With the exception of a few hastr, there has heen no work done on this shawing, although the appearame of the latter justifies furt! er serions investigations. The oro is of a brilliant lustre, and surns to be free from foreign matter. An analysis of an average sampir tahen from a wilth of $20^{\prime \prime}$ near the forking of the vein, gatse the following results:

> Titanic arid
> 13.5\%
> Netallic iron
> 510 ON

There are twother propertes which might he induded in the erroup under consideration, althongh they are located some distance from the thwn line hetwen Hull and Templeton, viz, lot 2 , range ix, and lot $2: 3$, range vii, both in the township of Templetom. On lot e2e, range ix, : low ridge of orthodase, and syenitic gheiss, werupios the unthern side of Rainville areok, Much of this gueiss is of a red lish colour, but it is intemstatified, at intervals. with hands of lighter and darker grey. The gromeral dip of the gheiss is west ward, at :an average high anghe. Hong the somtherm side of this ridge.
 of hematite ore orem: A mumber of these expmosure, not one of them, however, excreding 3 feet in leagth, of dianuotr, are induden in a space

 san he foumb :mong-t the debris lying in frome of the preapines. The ore

 it beromes then owered with dehris from the ditf, athl whit mil mul vege-

 portante to require Inseription.

Silic:ı.	$1 \cdot \mathrm{Ttil}$
Titatuir :urid.	-
Lime.	11.2.5\%
M:Mresit.	11.300
Plumhunix :arid.	(1)+1!
Plasplurila.	U.1ヶti
Sulphur.	19.1419
Mrotallic itom.	-51. 510

On the wher ln, No. 23, range vii, float of hematite iron was found, at various phares, inside an area of about 2: areses, in the sonthern part. several trenches were made. for the purpose of lowating an ore body, and in one of them ore in sith wals found, but as there was very little work done, the exprescion of :lat upinion on the value of the sane is deferred. An analyas of a s:ample taken from this outerop gave the following: -

Silic:a	3.96\%
Tlitanir :nrisl.	11.こ.\%
Lime. .	11.2 \% 11
M:ıgnesia.	11.330
Phosphonic aciol.	$11 \cdot+19$
I'hosphumes.	1.179
Sulphur:	11.164
Metallie irm.	(64.T30)

The: Ore: from the: Hemi-Ita Ahove the: Huli-Tbmpleton Tows have
The ore in these deposits is very remarkable, in being principally a specular hematite, with a considerable portion of magnetite. It is wery hard

 oftell emtains -hall weins of the bewhe of the emblong formation. There
 the alljarent rowks the ore is meneroll! :athermit the the hatter which

 -how slight polatity. Uf the minerals montly asomiated with hemathe

 ing the surfaces of the ome.

 Inte:

 Hayench heation somu sample of ofe were taken which duwed a paralled

 a pinh colnur, with permaide of iron from a metallur intint of virw the assoriation of hematite with e:aleite, if the latter werens: wht the furmer in limited guntities, ramot be regarded as injurims, beremae calrote must he :aded to :1n iron are in the smelting promess, if it is mot preant

Quartz is also a frepuent companion of the hematite. It is mastly found at the selvage hetwee the we and the enclosing rew. ('avitiow in

 III: Pruki-h culathe.

 "S. .rllomt ynalit! of the amo

 the ure, ins a time sater of division, bery likely in the etatathere -t:Itr.

MICROCOPY RESOLUTION TEST CHARY

 ANSI and ISO TEST CHART No 2)
 Lave lantown.
 cations, the write: hat presented the sabject as it appeats to him in the light of recent investigations. some of the reants are different from those expressed her other athorities, experially an far as the as ailathe quantity of ore in the varinus developed lenations is concerned, more experially in the Hatyock mines. sor far as the develnpment work on the deposits discovered has shown, the iron ore does not ower in very large deposits, thas admitting of ease and chemp extraction. Theoe chemsits are confined to lenses, and poekets, most of them of smath himenioms: and reinlike oceurrences which can be followed for at considerable dist:ater are eonpicuous hy their absence. It has been frequently repited that in the principal pit, No. 1, of the Haycork misu, a deposit was opened ip, which measured on the surface \because feet in thichncos. but that in following the same in depth, it widened out to 12 feet, and showed indieations of increase in width, when operations were suspended.

This pit is now filled with dehris and water, and coubl. therefore, not be examined, but from reliahle sourefs I gathered the information that the same was pumped out and deaned several years ago, on hehalf of an American syndicate. It was found that the bottom contained only several small vein: not 3 feet in width in all, showing no signs of coming together, but rather deereasing, as they apparently had done from the sufface downward. This case, amongst uthers, is merely mentioned to show how deceptive appearances on the surface sometimes are, and disprowes the standing opinion of some of the interested parties, that "the ore body increases with depith."

All the deposits examined hy the writer, so far as surface indications go, are of limited extent, and do not warrant exploitation on a large seale. But this does not mean that the existence of large ore bodies is exeluded. There are large tracts of virgin ground. covered heavily with hrush and forest. in the region under consideration, wheh have neve: seen the piek and shovel of the prospector: indications of iron ore, in the form of float, have been found in various places, and it is not improbable that some day a large deposit of iron ore, wheh warrants developrent and exploitation on a large scate may be discovered. The sporadic oceurrences of ore, over different properties in the region, show that the original deposition of the mineral, in that particular part of the formation, is not a continuous iron range simitar to the Hull range, described above: and, for this reason, each deposit must be tested in lividually, upon its merits. The economic utilization of these excellent iron ores is desirable, yet it involves questions, similar to those suggested in the discussion of the nature of the deposits, which deserve careful consideration. Thorough investigation wil be necessary in each ease, to determine the actual value of the deposit.

 F.C.S., Iondon, 1 ss4.

 magnetite in the different townshipe botering the (i:thenenn river; hut most of them ate seattered. distributed at random. and of surh minor ims

 of thens comsiot simple of inpregnations of matrontite in revetalline limestome. small lenses of hematite along the stratitication of the gariseie strata,
 No work hat heren done on them, mast of them were nat ural onterof of the
 theriv valure mast lue deferered.

Among the more important deposits ane the following: -
Lot 2:3. range vi, townahip of Vakefield, helonging to Ir. (iraham, of Hull, Que. Nagnetite is foumblure, in the form of sinall pockets, and veins. in syentio and homblende ancis:. In the southemprat of the property, in a little gnlly near a small lake, an "xabiation. $\bar{\sigma} \times 7$ feet, exhihit-magnotite ore, of appamently goorl quality, mabeded as lenses in the eomatry rock. The extent of the omterop eould mot well be established, but it appears that the ore continues alome the little valley. towarls the lake. Float, of the same ore, has heren fommat in the soil in that direction, showing the ore in at disseminated state

Farther down this rully. on aterp precipice. Wasting has heen done over several sumare yarts, and here the oceurence could be broter studied. The ore is closely associated with a coarse, highly crystalline hombleme rock, interstratifiol with veins ant reinlets of quantz. The ore is found in trawn out lenses. uf irregular shape, embedeled partly in the hornblende rock, and partly interpolated hetween the quartz and the latter. The country rock is dark colourel, and, upon Moser examination, exhibits crystals of iron pyrites distributed imegulan! through it, hut no such iron prorites can he deteeted in the ore. The ore is brittle; when exposed to the weather it disintegrates and crumbles to pieces, taking a bluish tamish. The country surrounding the location is prett! well covered with timber and underibush, and not easily accersible.

A sample of this ure, analysed, gave the following results:-
Silic:a 2.5011
Titanic acid. 2.980
Lime. 1.100
Magnesi:. (1).590
Phosphorie acid. 0.002
Phosphorus. $0 \cdot 001$
sulphur $0 \cdot 023$
Metallie iron. 6.) $\cdot 140$

 :Hue.

 iron pyrites and other injorionts impnritios.
 8×10 feet, and is several feet deep. Hepe the ore aromist: of : misture at

 sription.

 early in the seventies, amt the first mining in the same wan done in the winter
 menced, and for four years it was continned, with great aretivits.

The output of the mine amounterl to l:. toms of iron ore fer dat. The mine, it is reported, was chiefly workel on the su-malled! =onth wem, his mathe
 and several cross drifts of 21 . Jut. and lon fert, all of these whrking heing ent tirely in ore. The total output, up to 1 SSS, was abont 12,140 toms of high grade magnetite, whicls was shipped primeipally to furnares in Pembsymais, where a high grate Bessemer iron was produced.

The plant comsisted of a complete mining amd masting eatalishament. together with a stambarl gatuge hranch rais:o:ly, ronnorting the mine with
 man, If miles distant. The marlimer? phat comsisted of a $14^{\prime \prime} \times 20^{\prime \prime}$
 f:athine the owe from the bin at the heal of the slope to the top of the roasters.
 soll drills, furnished the accomorios for mining on a large scale. A large eru-luer revered the ore, at the thp of the manters from atumatic dumping
 the whuleplant. The oere robisting plant was of the late-t appowed bavis-
 feft high. The mastars were combeted with six gas produces, of the Taylor
 buildinge, while the shatt mouth was equiperd with a sulstantial gallows

*ince the !ear 1ste) the mines and pant have heen allowed to lie idle and adhough there are large ore loodies available for immediate exploitation, no attempt has hem mate. in weren hass, to exploit them.

In presenting at repen on these mines. it mus: be barme in mind that all the pits which had herem worked, with the exeption of two. were filled with
 fully :a desimed. Whrower there are no reliable reports, and no records, or drawines, arsilable. For this reason, an opinio: expresed on the value of the property, and its prospects as a shippre, hust be, to some extent, conjectural, and the writer has hased the same largely on a eomparison with other mines producing similar ore.

The rowls associated with the magnetites in the region under consideration are composed, for the greater part, of grex, werkled homblende gneisses. of a shhistose chanacter, ocensionally stripes with darker and lighter cotours. caused by a greater or less preponderance of liack hornhende and blackish hrown mica, and reldish syenitic gneisses, compened of red feldspar, translurent eolourle.s quartz, with occasional layers of a greenish black hornblende.

The general trend of the formation is north-northwest, with a general steep dip to the east. Intrusions are fregumely met with, and they are eomposed mostly, either of !ands of red fellepar, intermixed with quartz. or greenish black diorite.

Crystalline limestone does not orfur in close proximity to the Bristol iron l.. ines, limt is found on the slore of the Ottawal river, almost immediately opposite the town of Arnprior. This limestone is overlaid be a volume of dark homblembic and red granitoid gneiss, with epidote, above, or in the upper portion of which, the horizon of the magnetic iron ores oecurs. This limestone. which outerops on hots 14 and 15, range ii, near the roud to Norway village. hats a general strike of east-west, with a dip of 45° north.
 lot 15. gave the following analysis:

Involuble mattor.	$\therefore \cdot 117$
Ferrir widfos ant almantar.	1.1.
('arluntato of' calciums.	
	(i.ti ${ }^{\text {a }}$

 in a very extmordinaly maner, or partally homeln up into fragmento. Tha limetome in this reginn is free from impintione and produres : all cerellont
 frequently met with.

As to the iron bearing rocke, immethately ataciated. Whe fistingri-hing character is the great paratlelism which they matintan, wer a large extmat of country. and the steep dip of the strata. The atrike is N. . . . 1 .. ant the dip is atment always over 45°, generally $(6)^{\circ}$ to who. While perfectle vertical ot ratal have been observed. As to the suceresion of the roms insite the bristol iron range, I think some general order maty be oberend. Fin instance, the red and grey syenitie gneisses almost invariably immediately wiond. ant on orthe. the ion ore or iron bearing rocks. These are followed hy gnomere, in which hornd leade becomes and important ingredient, and whinh ahmest impruceptibly graduate inte the micaceous gneises, sehists, amd homblemberbli-t of the series.

A simitar sucession of roeks, however. Wrould :uppear to herpeated at : distance from the iron bearing rocks. Whether this remetitum premise: 1he same roek is due to frequent foldings of the at atat: or whe have they repre*ent deposits made under like conditions during surex-ivo promb: with further. Whether they may be looked upon an ratued by repeatel apthrows connereted with faults, are questions eret underemincel, and whirb will wequire moleh detailed investigation.

The iron ore which is comperol of a misture of magnetite :5, hamatite. forms a series of beds and pockets, nustly interat ratified with redthst wranitio gneiss. and hormbendic selists. The hedelog. White in gemeral mushly. parallel to the containing strata, sometimes shows discordance with the latter. and the ore penetrates various lity ers of the fimmation in an irregular fachiom.
 of econdary importance. and is due to the limitul dinatation whe themet w in haped.
 fractures, especially along the enntact with the wall-rock. The imtividu.l
 in the main are imblewembent of these in the lavers abowe and below. some

 meanored has inelues rather than fere. Owatomally a fant of weral fert

Fig. 9.-Bristol mines. Scale 1 inch to 100 levet.
The Bristol iron mines comprise an area of ?on arres. Cearly all the important work, and the whole original working pant. are located on lot 2 ? while the continuation of the iron hearing rance can be traced for some distance, alow on the adjacent lot, No. 22 , fig. a.

As regarls the topographical features of the country in general, it may be stated that the latter, where the iron ore onecurs, is of an undulating ehararter, and presente a series of how rombed hills, with st metches of fummer land between. Most of the country is open, the hills being to a great extent

 leading to (ttalwa

 theser is givent

 le reatily mined from this outromp. Smme fine sto ats of ion prites maty her ser from
hly obtamed sperimens of the ore. There sibuples, taken " a of this outcong. save the following results:-

	Sample 23	S:mplo - 4	N:mple - .
${ }^{\text {t. }}$.17.120	$17 \cdot 211$	A.s.')
Titanie actid.	$0 \cdot \underline{000}$	11.1211	(1) 101)
Linne.	. $1 \cdot 1661)$	1.1010	0.13.0)
Magnevia.	$3 \cdot 700$	4.53:3	II. (\%)
J'mosphate acid.	0.1119	(1).012.3	trace
I'hosphorus,	0.1017	11.11111	1 rater
Suluhur:	(1).310	1.3.30	11. 11\% $^{\text {a }}$
Metallic iron.	$54 \cdot 90$		(il) Ind

I'it So. 2 represents an inclined shaft, hut as the latter was fillend with water, nothing definite com he said about the same. It is reported that this shope was 200 feet in depth, that a lange quantity of good ore wat mined fron sones loeated to the morth of the shaft, somewhem under the present ofliop luilding. and that the mine was worked hy there levels, ome at if feret, and a serond one :at l!w feet lepth, that it contamed drifts and gatleries in vaious diecetions, and that all these workings are still in good ore. The pit yielled little water, seareely sufferent for the redurements of the machinery and Lilns, and keming the same dy during operations was, therefore, an inexpensive item. In the immediate vicinty of the shaft there are some dumps of a

Silic:ı, .	- ! ! 00
'litanir :	11.2 .011
Lime.	11. 4111
Magnesita.	-.1711
I'lasplarie areil	11.1714
Plosphoris.	11.1714
Suphorr.	11.7187
Metallix imus.	. - .lill

 lomg, the other dimensions heing the sume. The iron ore rapmet in theor "proings appears to be of excellent quality, mearly freo from impultics: it shows a highly metallic lustre amil has an meven anf shap frathote. Fro results of the analyses of two (sunposeal to be average samphes are sibu in the following table, in whicle No. 1 refers to sample taken from pit No. : and No. 2 to sample from pit No. I:-

Silica	12.200	9.370
Titanie acid	(1.100)	(1) 1:0
lime	(1. Gill)	11. 100
Magnesia.	1.3110	2. 11.41
l'hosphoric acil	0.1006	(1).0102
Plos ${ }^{\text {phorus. }}$	(1).171:	10.111%
Sulphur	11.8 .39	(1) 6 (\%)
Metallic irmo. .	8.5) 3 ! 310	(i) 3 : 3 (\%)

Pit No. 5, as per fig. 10 , measures 50 feet in length amil 35 feft in width, and is reported to have a depth of about io teet. This is an inclinet shaft, towards the enginu romm, hut without any drifts. It ith the execption of 10 feet. the pit was hlled with water, and an examination was, therefore, confinet only to a small part of the workings. On the nothern sifle of this pit the rocks, with the containing iron ore, are will expmed, and orfur in the following ascending order-see fig. 10:-
(a). Schistose grey syenitic rork, oceasionally stripet with dark ant lighter colours. caused by a greater preponderane of haw and greenish homblende, and also by the presence of disseminated irom wre and small veinlets of the latter. Towards the bottom some of the lavers have thin lines of a redtish eolour. oceasioned by flesh red foldipar. The thickness of this hayer is $\underline{2}^{\prime}-\mathrm{fi}^{\prime \prime}$.
(b). Schistose, hornblendac, micareous rock. liack layers of an inch are of frequent oreurrence, the colour heing derived prineipally from horn-

(e.) Dath lemolilemere wits somer hl. felfatit: the whale of this mel is hights -rhintore

 of iron ore, are froment:

Silia:	$13 \cdot 1038$
'Titanir :uctul	11.111
l.inue.	1. 1.101
Magnexia.	1.510
l'h phorice amid	$11.112 t$
Ihosphurils.	11.1111
Sulphur	11.717
Wethllic irom.	-2.170

In a sometherly divertion, a romimation of the stata just described
 of them.

 from 10 feet to 15 fiet witle. The rock- mpaned here are of the same deseription as these met with in pit $\overline{5}$; their white and dip are also the s:mume. while

In the mone easterty part of this opening an onterop of ore fan be noticed. in a series of rovk ill whirh semitie gueise : and horntlento form alternate layers. The are ocrolls in a hed, : Buallel with the strata, in : thickurss of $18^{\prime \prime}$, dipping to the merth. I amtallus small, fime stmaks of prate.
 this ontroop wate the folloming resulta:

Titanic:ard	11.1919
1'hosphoricam	11.0135
Illaphorus.	11.111 .5
Sulthur	1-23:3
Metallie iron. . .	4:3.76i)

No. 8 is a rock exposure near the line hetween lots 21 and 22 and exhibits impregnations, and sunall pockets of wre, in a syenitic pueiss, emerging, ly its increased contents of hornblende, on one sille into sechistose. hornblende rock. 'The ore seems to oecur here in ton sinall quantity to be eommercially useful, hut whatever there is of it is of very pure quality.

 .analysxiv:

Silica. .	2-4.4(x)
Titamir umil.	(1).こ:4
Limue.	1.971
Maghesia. .	1.s.int
Plosphimice :mid.	11.110
I'hosphoris.	1. (17: ${ }^{\text {a }}$
Nulphise..	11.129
Metallio imom	1:3. wita

 reason mo measurementa condla la mate, nor the eharacter of the weurrence atudied. Ahout half a ton of gened clean ore rombld lee serell int the i unp, athl in the pit. An average sample gave the followime athalyos:

Silir:a. .	
T'itanic :urid.	
Lime.	为
Magneia. .	(\%)
I'lusphoric amid.	1.10: 2
Plusphuris. .	11 inli
Sulplur. .	$\underline{2} \cdot 14$
Mretillir iron.	ition:M

 noticed. Somb diseminated ore can be seen, in a greyish, ped swate.
 paratively large openings, which are reported to have vielded harge quanthich of a gonel fuality of ore; but as both pit. were filled "'I water and debris, at the time of nyy visit, nothing of a definite nature can lie reported.

On the other side of the line, between lots 21 and 22. on $\mathrm{M}_{\text {r }}$. Killroys property, several outerops indicate the continuation of the irom buang (1)rmation, in a sontherly direction. One of these outcrops, No. 14 , is close
 inser :IIf area of lof feet square. Some of this wre is pare. while other pieces.
freshly broken from the outerops, showed impurite of country rock. As the place was thickly covered with herbare, and akso with stones thrown out from the field, nothing further cen be said regarding this oreurrence. Other outerops, in the immediate virinity, sem to indieate that there is a boaly of iron ore near the line bet ween the hats, the extent and charater of which should be investigated her test pite and cuts. Farther ceast, on Killroy's property, float of iron wre has hean found in a number of places, in ploughing the fiedd; whild erar Kilheses revidener ore in situ was found in digging a well.

In a northwesterly direetion from all the outerop: just deseribed, several indications point to the probable entent of the iron bearing fomation in that part of the property, and from one pit, alume sem fect in a somtherest erly direction from the oflice, it is reported some fine magnetite me has been extracted. Judging from the dump of this pit, the ore oreme in a gremish hornhlende rock, intermixed with chlonite, and convists of a fine grained ergstaline magnetite and hematite. Streake of iron prithe in the ore are met witl., but whether this mineral occurred oceanonatly, or in surh quantities as to materially detract from the value of the ore cammet be sail, as an examination of the pit was rendered imposible. it being filled with water.

The: Ori: of the: Buston, Mive.
The principal constituents of the Bristel ore are magetite and hematite. mixed, as analyses of a number of samples show, in variahle proportions. The average grate would consist probably of about equat proportions of magnetite and hematite, mixed oreasionally with gamgue material. Sometimes small erystals ean be detached from the ore, which. upen examination. prove to be cubes, or cubo-ortahedrons. Much of the are is found in a erystalline condition, the shining small plates of the magnetite sometimes: producing a brilliant effect.

These ores are, as a rule, iron hark, with a hatw streak, and a highty. metallic lustre, and are strongly magnetic.

The more fine grained varieties rontain sometimes very fine streaks of iron prites. sometimes of a hrown tarmished colour, raming at landom through the ore, and protucing be their varied eolours, : peculiar effect Ores rich in hematite have a more even fracture, exhihit sometimes a greasy appearance, and have a dark red streak. If iron pyrites is present, it igenerally diffused irregularly through the whote mass ats fine impregnations. whieh take a brown colour, when exposed to the air. The ores have sometimes a dark greenish tint. due to the preseme of green nodules of hornblende. Much of the ore is clean. and does not recpire any cobbing, or roasting. to eliminate the sulphur, especially the ore produced from the interior of large deposits. But the are which is fonm in small pockets, or lenses, of veins, is more or less intimately mixed with country rock, of which the more prominent are hornblende and mical schists.
nis

ANAGYEE UF	SAMPLF:	FHOM THE:	Bristar.	Itio.	RIN:EF.						
1* \quad -	$3 \dagger$	4									
\cdots	--	- - -	-	-							
(i.) - 14		1									
14.5)											
(1).11 (1).1.)	1.100)										
(1.(id) trict	trace										
$3 \cdot 9010 \cdot 92$	$1 \cdot 100$	$1 \cdot 6 i j$	$1 \cdot 10$								
(1.4.5 $\quad 3.11$	$2 \cdot 160$	3.70	4.3)3	(1.) 0	\cdots	1.31)	a.10 -3.11	1.1.7		1.97	(1). 11.7
(ritce 0 0.0t) 1	0.005	0. 010	(1).010	trace	(1).(H)1	0.116:3			11.01 .5	$1.8 . j$ 11.00 .5	(). 6,0 (1).enis
2.74 0.54	(1)-2:3)	- $0 \cdot 310$	1-3.j	1. 1.15		(1. $5.5!1$		11.715	1.0.3:3	$\begin{aligned} & 10 \cdot(10.7 \\ & 0 \cdot 1 \because 5 \end{aligned}$	
$11 \cdot 4.55 \cdot 35$	$7 \cdot 5$	$\cdots 17 \cdot 12$	$17 \div 1$	s.u	-.!9!		9.34	$17 \cdot 6.7$		$\begin{array}{r} 10 \cdot 1: 2 \\ 24 \cdot 40 \end{array}$	$\frac{2}{1(i \cdot 1) 1 t)}$
mone .		0.20)	(1.12	$(1) \cdot 1 t$	(1) -	$11 \cdot 10$	$11 \cdot 1: 1$	$10 \cdot 11$	13.15		$0 \cdot 3$
$0 \cdot 11$											
1-6.1											
101).9\%											
S $3782 \cdot 003$	(i2.80	54.2.	. $11 . \mathrm{is}$	1il 1	in.til .	39, 3 \%	(1) $3: 1$	I-17	13.71	3.3!	Itio.

The deposits do not, as a rule, exhibit a clean selvage from the adjacent rocks, the ore generally being attached to the latter, and its mechanical separation is, therefore, difficult.

Near the surface of the deposits a partial alteration of the ore maty he ohserved. The magnetite is often patially changai into hedrated peroxide of iron, and the enclosing rowks also frequently present a rusty appearance. It may be found, perhaps, that the origin of this hydrated peroxide of iron, which is mineralogically a limonite, is probably the deconposition of prrites associated with the ore, rather than an alteration of the magnetite itself.

Of the more important minerals associated with the Bristol iron ores. may be mentioned, homblende, calcite, chlorite, fellipar, quartz, mica. pyrites, and pyroxene.

Hornblende is the most frequent mineral in the ore, and occurs in several varieties. It is of a dark greenish to blackish colour, and is found in the ore in the form of fine streaks, and sometimes also in a semi-fibrous state, along the contact with the adjacent country rock. The dark greenish colour of the ore is due to this cause. While the ore containing this formation consists largely of hornblende and schists, cleavable along lines of stratification, the hornblende found intimately associated with the ore is massive, and is not easily detached from the latter. In some instances it forms beautiful green nodules, buried irregularly in the fight green aphanitic matrix. In some of the pits, the hornblende associated with the iron ore is ferruginous, and has a rusty colour. This rock can be used in limited quantities in the furnace. because, besides a certain portion of iron, it contains essential constituents for the formation of slags.

Feldspar is often present in the ore, because it is a prominent constituent of the containing formation, which consists largely of a reddish swenitic gneiss strata. A great portion of the dumps, near the shaft, is made up of iron ore, associated with feldspathic rocks, and it appears also that large masses of syenitic gneiss had to be penetrated, at some places, in orter to reach the ore bodies. At the contact of the feldspar and the ore mo selvage or bedding plane, as a rule, can be observed. In many cases both minerals nerge into one another, and often a greenish tint is observed on these contacts, but the cause of this cannot be sufficiently explained.

Feldspar in large quantities does not form a good gangue stone for an iron ore, for, being acid in its chemical composition, it would require the addition of larger quantities of lime in order to form a good slag. Quartz is a frequent companion of the ores, being met with in connexion with the syenitic rocks enclosing the deposits. It frequently accompanies the ore, in the form of disseminated grains, or in little veins. Being strictly of acidic composition. its presence in the ore requires, in smelting, the addition of lime, or other basic substances, in larger quantities than would otherwise be necessary.

Mica is a frequent gangue material. Being one of the principal constituents, like hornblende, of the containing formation, it is frequently inter-

$$
87
$$

mixed with the ore. In general it is of a pale, silvery grey, amblametmes
 longs to the hiotite speries of mimas. It forms anali weins and sometimes pockets in the ore, and frecuently the later hreaks up ensily, due to the presence of mica veins. Orcasiomally the ore at the contact with the syenitic strata is covered with a film of silvery grey misa, and in this cave it can be easily freed from the containing rock, some of the mica schists contain impregnations, pockets, and fine veins of ore, whelh. when hematite is preseat, can be distinguished by its dark real colour and red st reak.

Calcite is mot frequently met with in the binith ores. In some of the specimens, disseminated grains of calcite could hereen with the g!ass. Smatl aggregations of crystals of the mineral were also ohserved in cavities, but not in dirert association with the ore.
l'yites is a frequent companion of the ore aml its preance, above a certain limit, detracts serionsly from the market value of the later. As outlined above, it occurs in the form of small veins, nests, or pockets, through the mass, some of them ne:urly half an incla thick. It is foum also as fine disseminations, which, when tarnished to a hirown colour, wiwe the ore a beautiful, striking appeazance.

In the Hull iron ramge, irom protes is met with mostly in at coase form in certain portions of the ore bodies, and these can masily he sparated he hand from the pure ore. The distribution of iron pyrites througlout certain mases of the ore horlies at the bristol mines, in the form ,f fine irregular veins, and disseminations. remers mechanical deaning impossihle, ronsequently, such ores. wnich from outside appearance contain too much pyrites, must be sul:mitted to a roasting process, in order to kerp the contente of sulphur in the smelting ore below the admissible limit. However, the quantity of prites which necessitated masting of most of the ore from the upper workings of the mine. haci, aceorling to an examination made by Mr. Jolm Birkenbine, at the time when the mines were in operation, so much diminished in the lower workings, as to remler roasting no longer necessary. The effect of sulphur upon iron, as is well known, is to make it reashort, or b, ittle, when hot.

Pyrusene is an occasional iompanion or gangue material of the ore, but he no means as common as the hormblende or feldepar. Its assoriation with the ore is very irregular. Sometimes it forms irregular fine streaks, 1 I" thick, penetrating the ore in every direction, forming a regular net work. At other times it forms mall nests, or pockets, as large as a wahut; again it is seen forming parallel lavers, of $t^{\prime \prime}$ and even $1^{\prime \prime}$ in thickness, at the contact with the enclosing formation. The mineral exhibits no cleavage. or hed ding planes; it orcurs in a massive form, is intimately associated with the ore, and attached to the latter. It is of a pistachio green colour and very frequently runs in thin, reticulating veins, in the syenitic gneiss near the contact with the ore. When the feldspar is flesh red, which is mostly the case, the mixture produces a beatiful ornamental stone.

Besides those ahowe mentioned, there are : mmaner of other arefesory minerals fomul asoriated with the Bristol irom ores, hat they are of no innportance, as far as the gemeral chameter of the we or the efommie ne finhess of the latter, is coneerned.

From the foregoing desertiption of the phas sala asperets of the various outerops of iron ore on the property on, which the Bristol irom mines are torated. we come to the condusion, that, in genemal, the ore lies in lenticular budies, elongated mothwest and southeant. With a steep dip towarls the east, in parallelism with the enclosing row, which comsists principally of reddish senitic gnciss, and homblendie micareons sehists. One bedies sary in size from rich inpreguations to hage lemse shaped hoodies, of a wilth of 2 f feet or evom more. Mr. John Birhentine. MIF... who made a mont on the Bristol mines, durang the time of chereation in liss. silys that the mine at that time was opened to a depth of liol fero. with drifts along the strike for 1.0 feet, and across the ore beat tor sh feet, in ome place, and from on to 60 feet in another. Whether these cross-cuts were all in good ore camot be said with certainty. hut it is known that large qualutios were raised from these worhings, and whipped to the l nited states.

The ore though generatly called magnetite, is really a mixture of crystalline magetite and hematite, of varying propertoms. The iron heang formation has, as detailed surveys hate shown an apposimate width of ofof feet. and extends from lot 21 , on which the mines are located, inter lot ${ }^{2}$? where. with the exception of several onterops in the westempant, the formation is concealed by a heaty mantie of hmus. Howerer, pieces of irom ore have heen frequently found a: float in phowing the fiedd, while in sinking a well. in the centre of the property, the ore forly is sam to have been met with. 'Taking, therefore these indications intor consideration, we have an approximate length of the ore bearing formation of 1.5 on feet. As to the extension of the ore bodies in depth, it is known that in the main shaft, a depth of doo feet has been reachet, and that the ore there is still comtinuons. In another place, No. $\overline{5}$, as per fig. 9, a depth of 7.5 feet was rearded, and, aceording to the statement of the foremin who worked this pit, the bottom is still in good ore. There is no adequate reason to suppose that there combly he any material change in the character of the ore hodies, at least for a depth of several hundred, or even a thousand feet. The syenitic gneiss formation, in which the deposits oceur, is here strongly developed. without any evidence of having been subjected to disturhances which could have had any hearing on the lateral as well as vertical extension of the ore hodies.

As to the quality of the ore towards depth, the writer is not able to enlarge on this subject through personal investigation: hecanse the omly pit which attained a depth of nearly 150 feet was filled with water at the time of examination. But here again we have the important statement of Mr. John Birkenbine. above refered to, that the quantity of sulphur which necessi-

 seale. It seents very likely that, in the cront of the deposit- binhtine wre with

 different.
S. to the quantity of a wabable ore in the briotal mines, the witer is mot

 to make amy estimates, and the molergoumd warks, whoh comh materially ascist in such a task, were all submerged at the time of examination. How many tons of iron ore have been raised dusing the conrer of forrations bannot he said with certainty, as the reports at hand are rather comitioting. One report before me suys that 12,000 tons have been shipped. priabipally to fumates in Pemnstranis, making high grate Bessemer. In the abseme of
 hise his opinion of the ore smply on eonjeetural evithence only, thal he romes to the comelusion that, so far ans the large outcrops and the results of the undergronnd explorations seem to indicate, there is every reason to suppose that the mine contains quite extensive ore reserves, the exatet quantity of which can only le determined hystematic development work.

In eonclusion, a word may be said conceming the method of working the mine. The perculiar oecurrenee of the ore in paralled beds, or lense-shaped bodies, along the stratification of the enclosing formation, from the size of a Walnut to deposits of over 20 feet in thiekness, and their apparent frequenes inside the limits considered, would seem to point to quanrving, instead of umderground work, as the best means for extracting the ore cheaply from the roek. There is no reason why this method should not be applied with success to the exploitation of there orn braties. Wide and long quarries. along the st ratifieation of the rorks, and taking in the greatest posible number of ore deposits, should be established, and worked by a mumber of eable derrieks phaced on the long siges of the pit, a pratetiee which is now followed in nearly all large ore quarres. There is no question in the mind of the writer that the ore could be fuarried, and broten to witable size, for sixty rents a tom. The cheapness of the opentpit mining mothod, as compared wit 'nderground mining, is due to the large profluction possible, to the atet .ant timbering is not neressary, comparatively fewer men are required. lighting expense is less. all the ore ban be mowed (white in motergrmund methods more than 10 per eent is lost), the ore can le better sorted, and it has to be handled once only. In the foregoing statement of the rise fon
development in areordance with morlern methork, the writer dres not clam to have terlmisally exhansod the sulject: but he would like to merely sulmit the facts ior finther senious consideration.

There is another very impontant fartor to which the writer would like to draw attention, and that is, the utilization of the Chats falls, at a distance of 4 milcs, on the Ottawa river, for the production of power. These falls possess sperial alvantages as regards the establishment of an edertric power station, amb, upon goon authority (see Appendix 1, page 12:3), it is stated
 would be no dilliculty in transmitting enotigh power to the mine for general purposes, such as the production of compressed air, which in turn eould be utilized for drilling and hoisting, and also, last but mot least, for electric smelting of the iron ores on the spot.

As is well known, the great success with which the experiments in the electric smelting of magnetic iron ores at s'ault site. Marie. ${ }^{1}$-comducted on hehalf of the Dominion government, by Jr. Eugene Hatand --have been arowned, has opened a new era for the reduction of iron ore, especially in those phares where fued is ditticult to ohain. There should be no reason why, after extensive development work in the mine, the production of pig iren, by electric enorgy, on the spot, should not be proceeded with; especially in view of the fart that, acording to good authority, the water power at (hats falls can be developed at a rost of $\$ 4.50$ per Fill.P. year.

Other Ore: Deposith in thl: County of Pontiac.

There are quite a number of deposits known to exist throughout the county of Pontiac. but many of them afford a mineral of an impure character, or are too limited in extent to be of any commercial value. Many attempts have berom made to develop these deposits, but most of them have failed for the reason that they proved to be composed of emall porkets, or impregnations. Amonget the more importat ones may it mentioned the following:-

Lot 2, range i, Bristol. Here specular iron, in hroal erystalline plates. occurs with quartz, and also with calrite, in what appears to be true veins. cutting the crystalline limestone and the aljoining gneiss. A small deposit of specular iron exists at the junction of the granular limestone, holding mica and pyrites, with uverlying reddish syenitic gueiss. Another vein. partially mixel up with limestone, is split up into small parallel strings. The reddish syenitic gneiss, associated with the limestone, occupies the south side of the Chats falls, and here another deposit, of considerable extent, is said to have been discovered. On account of the small amount of work done on all these deposits, an opinion on their general character and extent must be deferred.

[^4]Lat 2: range i , Bristol. Near the eentre af this properts. in the midat

 to the contact between the two formations.

A sample of the irom ore from thi harality, amatroul. S.ane:

Titamic arid	$11 . \mathrm{Tv}$
Plosphorie arcial	(1.14)
Phosphorus.	H17:
Suphur	11.019:3
Metallir irom.	:3-2.ar

 be outerops of rith iron wre, were mante he the writur. when (evamining thi-
 to some extent. imprgutal with grain- ant line verins of qualt\% it has

 ore could he seen in phace. It gewus- in chase ansumiation with at reldish syenitic gneiss, merging in certain parts intu homblemble gucise, :t the con-
 in an eastern and western direction. for that hate beell fombl, in :umarouplaces, in ploughing the fielt, whike some of the humus is dietine ity stamed red. An analysis of a sauple from the prine pat outcerns gave the following:-

Siliea. .	-1.0.13:31
l'srrous oxide.	1.7: 5
ferric axite.	$11 \cdot \mathrm{fi} / 11$
Titanie acid.	1 1:\%
Lime.	1.2.01
Magnesia.	11.3.\%
Manganese.	ガa"\%
Phosphoric aeid.	11.1104
Plesphorus.	$0 \cdot 110$
Sulphur.	0.112
Alumina.	1.2.011
Metallic iron.	312.6.31)

In the western part of the lot, arsenical pyrites orcur in comncxion with quartz, cutting a rusty deeomposed gneiss. The surfure of theue rocks, as well as of a number of others in elose proximity, is stained quite red,
 al thie locility is herivily rhargere.

 shows, it has a width of te feet. allul is rlowely asomiaten with quartane

 thens masding the elamerer of the deposits were minde:

 and of ewedlent quality. While other specimens slawed an intimate mixture of the orr ind lamblembe, the latter forming dark green streate in the otherwise Wach, slimening ore matrix. A sperimbla submitted to amalysis gave the following results:

Silics.	7.540
Fermum oxile.	$27 \cdot 4.010$
Forrie oxite.	$4(\mathrm{i} \cdot \mathrm{i} 60$
Titanie arid.	7.230
lime. . .	11.860
Magnexis.	1.760
Manganese.	1.920
I'hespherice aril.	$0 \cdot 101{ }^{2}$
Plowphortas.	11.1611
Silphur.	11.8.80
Netallic iron.	it.041

On rloser inspertion, with the naked eye, of a large sample freshly hroken. there am be seen irregular dark borlies, thiekly comoded in a light green gromblams. With the hamd lense, the imterstitial mater appears th he fincly arystalline quart\%, and magnetite, while the roumled bodies appar:aphanitic, with uniform colour, and conchoidal fracture. No further invertigatu:ns of this interesting deposit could be made, as the loeality is dencely conmed with hasy underhush, hernage and trees. Indioations of matgutie iron ore were abs, found in seversl other spots, but nothing definite fan lie said almont these.
L.ot 12. minge i, Litel field. This property helongs to Messers. de Nouche, of Brywn, and has heen known for many years to contain magnetite. These ocrurrenes consist of impregnations of a coarse ervatalline magnetite in conse erystalline limestone, which strikes N.F. 20 ${ }^{\circ}$, and dips towards the east, under an angle of 10°. Some work has heen done on the steep slope of a hill, near the roul fommecting Camplell biy with the village of liryson. This woth chasisted of sermal opraings, whe of them being 8 feet long, 6

 titios．

 sele etod from the dump．sane the following woult：

Ailim．	＋．f141
Permome wide．	：3． 170
Prorim axile．	4：3．！101
Titanim alcial．	13．01：31
lime．	11.110
Magnesia．	－－ハハハ
M：ang．mese．	10．！ 110
Phowhmic arit．	（1．t19．9
Planphorus	11.1614
sulphur．	11.9121
Wetallic irm．	\therefore－！！

 the texture finely granular．Seatered erystal－if magetie．Whengh the

 very near togrether，and join．These two are alowt ？＂wile．White the
 selvage strip，which is distinguished by it a rusty red endour．Thume I mis evident！follow pre－existing racks．There was mo work dome wh this oceurence．outnite the sinking of the little whift，and it apeome that the deposit is mat large．Indieations of magnetite ore were found on the farms east of lot 123 helonging to Mr．Mretuire and Mr．Colle resperticely，is

In" work had berem dome on the we wall outerops mothing definite ron the sald ahout them.
L.at Wh, northwest half, range viii, Litehtiedi, the property of Mr. John
 atriking 1 'romgh concessions viii and is, in an cons-westerly dirertion. The formati a comists, for the greateat part, uf intartaose, fellapathic rocks, merging, lowards the summit of the range, into rist! gneiss. Blocks of an apparently pure magnetite cun be sern strewn all ower the hills, and in one plare un enterip, of the sotid ore can be motiect. Sn work of any kind hand been deme on the same, and the plate was thickly covered with soil, herlage and umberbrush. In analysin of the ore gave the following resulta:-

Silicis.	2.7.01)
Firmux mide.	32-100
Fervir oxide.	11-(120)
'Fitanir amid.	15.750
Lime. .	(1.5\%)
Magnewia.	$1 \cdot 1$ (i)
Mankathese. .	(1)-4th)
1'hmphowie acid.	11.1110
Phosphorus.	11.1015
Sulphur...	11.078
Matallia iron.	23.681

There serms to be a possibility that. by systematic prospecting work,
 hase also been found in an eastern direction from the hot just described, on luts 11 and 14 . samples of the ore show impregnations of magnetite in reddish fehsputhic rocks. One of the hand specimens dows two distinct parts. The first is massive, without clearage jointing or any other parting, and is thickly mottled with small grains of magnetite. The second part is drck grey, banded and heng with irnor. The handing is marked by lighter and darker shades, and there is a parting parallot to the hambing. Nothing com Ine said about the extent and character of the deposits, as no work had been deme on them.
sionu samples have heen brought down from Otter lake, in the townhip of Lesilic, about 12 mites northeast of ('mmphell bay. From what can be sern on thees samples, the ore, a dark gristeming magnetite, occurs ans small prekets in a matrix of pegmatite, the lateres ting of a tlesh coloured, ort horlane feld-par. and a translueent, vitreons a

- masy tooking quartz.

On (alumet istand magnetie we has hera found in several places; some have bun kuwn for wer twenty yars, hat they hare never en thoroughly tested, and as most of them are now rovered with dense bushes and herbage, any opinion expressed must of necessity be of a conjectural nature.
 hematite ore ocew here, hut little work has been done on them. The somery

 ore is mom-magmetio, is of a highly metallie lastre, amt appears to le very

 strike of the formation at right amgles.

A stan . analysed give the following vorllo: -

Sili'ti. .	$2 \because \cdot(6) 0$
Titmnie s.cig.	11.2 .00
litue.	(1. 100)
Staphexia. .	11.110
l'maphorice aciol.	11.1023
Phoxjumrus.	11.1111
Aulphur.	(1).1):35
Metallie iron.	. $52 \cdot 670$

There are sevaral places, on this priperty. where the ore outerops, but as there has heen mu worli done, nothing (ain be samb regariing the extent of the Inposit.

Indieations of the presence of the wre ase impregnations and small poekets, can be notioed on the aljoining lots, th the calst and west, and, from what can be seen of the extent of the ore teposit, it appeare that the later has a general nontheast, whithwest tronl.

Lat 2. range ix. Jorlonging to . Wr. . Wery shea. Magnetite iron ore has

 and the eruptive dikes oreboring in the roek expmentes rontaining the ore, as well as in the viemity of the sime. . Nong the ratak formod hey these disturhances and mowmonts, the rocks have been impregnated with magnotite, forming sometimes small porkets and bants. In the bock immodiately atljoining these eracks the slight sohistose structure induced has givon rise to
 by a faint linear strurture. The ore is not found ronomic masses, but may be described in general at oremring insina, shaped, or veinlike borices, from alew inches, up to 2 and s fect in wilth, irregularls distrobuted through the rock. Some paits of the ore are very pure, free from any count ry

 1he Indmisitions.
 Late the fullowing re-ulta:

Tisanio acmo.	$15 \cdot 110$
I'lumblarice amit.	-1/3)
I'lowpharth.	11.1614
- ${ }^{\text {aldur. }}$	11.104
Metallir iron.	17.010

 .age 11..).
 on bermarl ereek, it a diatome of abomt lalf a mile from the irom ow lowaton

 tions the situe eould lue utilizell to ereat ansantage.

 coloured pegmatite, of a width of 10 fied and wers 'The ore nemes in the openmg abowe referrel to, in one of these pegmatite liker, the latter consist-

 as fine veins, athl sometime in boy emall wetals. The suall veins when

Silir:ı, .	$2 \cdot 200$
Citanio aria	- $\cdot 1711$
lime.	$11.1+11$
Magnesia.	(1) 16in
I'hosplonie arial.	(1-1110
I'hospliorus.	11.017
Sulphur.	(1) $2 \cdot \underline{1}$
Metallie iron.	(i0.710)

These tepmits are heated abmut half-way hetween the cities of Montreal and Ottawa, to the north of the riser. henoer are somewhat isolated from those in the comty of lontiar, and along the (iatinaum river. They have heen known for owersisty years, hasing heen diseowerd in the pear iste, but they have mever been worked to any extent. The most important de-
 number of openings have been made, on an east amd west course, on what appears to be am acemmulation of poekets, and lemed shaped thposits of mangnetic iron ore. All the hottoms of these pits. which were of shatlow depth. were covered with debris and water at the time of examination, and it was, on this aecomen, very diflicult to form an idea of the "hameter of the ore depesitions.

The more casterly pit, on the side of a hill, is 20 bes 30 feer, and of apparently shatlow depth. This pit was filled with dump, aml only on the western side could several small porkets of magnetite, of 1^{\prime}-li" and 22 feet in diameter, he seen. The rock on both sides of the pit appears to be a micaceous gneiss, interstratified with hands of grey quartzite. 'The iron ore is associated with the minerats of the gneiss, sometimes also with hornblende rocks. The ore locke, as far as can be made out, is about 25 fore wide, striking east and west in the pits, and heing embedded paralled with the run of the comery rock. The most westerly pit measures about 50 feet (north sonth) ly 20 feet. A small drift had heen run from this pit, in westerly direction. on the contrance of which sereral pentions of a disseminated and pockety deposit were noticed. On the northern wall of the pit a mumber of lense shaped deposits oreur, hut nowhere could the eharacteristic features of a vein be detected. The ore lode, west of the pits just described, turns to the southwest, and ean be traced for over 400 feed.

Syenitie rocks are met with to the north of the gmeissie strata; they cut off the latter, and also the ore drposits, in a western direction. The ore. which appears to be a pure masnetite, is highty magnetic, hate a crystalline surface, and appears to be mixed, ats a rule, with the minerals of the gangue and the containing gneiss. These are, for the most part, a dark fine-grainemd greenstome, sometimes of a maty colour, flesh coloured feldspar, quartz, and a rusty hornhteme. From what cam be seen, these impurities do not as a rale reduce the quality of the ore below a fair workahle peremtage of iron. heeause a sample of the ore, which exhibited quite a rusty. grey colour due

some of the hathe sperimens show a maty, weathered, almost black
 of which is quartz and feldeparr. The magnetite, which comstitutes most of
 a much smatler portion of hornblende, and an aphanitic greenstone.
some of the ore is poroms，and is trabersod by ravitios，wheh are lined with rerstalline quartz，and in a lesser degree，with felfopathe material，the latter sombetimes rhanged into katolin．

There are also some indieations of maget ite in the noth half of the same mumbered lot，on lamge iv，but the oreurence is slath in extent，being only $6^{\prime \prime}$ th $10^{\prime \prime}$ wide．The ore is traceahle for about fow foet．bex indications on the suffere．lat nume of them uncovered so far warrant exploitation．

 of magnetio ore rums in a winding mamor，with the stribe of the emelosing

 puint of vew，they may possibly indieate the preseno of ath ore lote between them：：mal it womh not be a surpuse if am：anerie iron ore deposit of work－ able dianen－ions should some day be found in this ate：
（ONsimethrow．

The following is a list of all the localities where iron ore is known to exist in the dist ridet maler consideration：－
（）Triaw（ounty

Hull

Kamge vi，lot： $1: 3$ and $1: 3$.
Ramge vii，luts $11,12,13,14$.
Range x ．lot $3:$
Ramge ai．lot 1.
R：ange viii，lot 14．
Templator
R：ange vi，lot ゴ N．
Ramge vii，lot $2: 3$.
Ramge ix．lot $2 \underline{2}$ ．
Wroketiched
Range i．lot \％N．
R：mgre iii，lots 1 s ：an｜ 19.
Range iv，hots 1：3，22，2：3．

R：11！口 vi．lot $2: 3 心$ ．
Bu＂tin！！ham
Kange vini，but 19 s．
Ramge in，lot 17 N ．
Ramge si，lot 17 ．
R：mgre sii，lot ： O N．

Ramge ii．lot 30.

```
Pontiac -
    Bristol-
        Range i, lots 2, 22.
        Range ii, lots 21 and 22.
    Clarrudon-
        Range ii, lots 25 and 26 .
        Range vii, lot 27.
    Litchfield-
    Range i , lot 12 .
    Range v , lot 12 .
    Range viii, lot 10 N .
    Range \(x\), lots 4 and 5 .
(Ahenfet Inhani-
    Range v, lots 7, 8, 11 and 12.
    Range vi, lots 11 and 12.
    Shern-
    Range vi, lots 12 and 13.
Argenteull-
    Grenville -
    Range \(\mathbf{v}\), lot 3.
    Range vii, lot 4 N .
    Range viii, lot 5.
    Wentuorth-
    Range vi, lot 26.
```

The remarkable industrial activity of the present age is strikingly exemplified in the 1 ugress that has been made in the world's production and consumption of iron and steel. This progress has been very marked in recent years. The world's production of pig iron, in 1876, was about $14,000,000$ tons; but in 19017 it was over $60,000,000$ tons: an increase of over $46,000,000$ tons in thirty-one years.

In Canada, however, the iron industry is still in its pioneer stage. The subject of iron manufacture, from ('anadian iron ores, has not received the attention its importance demands. It has heen urged that, most of the iron ore deposits are of limited extent, involving a large expenditure for their exploitation; or they are of a quality unsuited for the manufacture of iron on a commercial seale; and this, it is further asserted, has heen substantiated by the failure of so many iron mines in the I'rovince of Queber and Ontario. But upon investigating the conditions under which these fentures were conducted as far back as thirty years ago-we find that the
failure of most of the mines was not due th the quality, nor the the limited extent of the deposits, but solely to caluses which lie entirely outside the mining tenture proper.

As investigations on this suljeet have shown, sume of the failures were due to incompetent manamoment others to the lack of fued and of transportation farilities: and, last. hut mot least. to the lank of proper comentration methose for the wilization of h:on wes. buring the last ten vears, however, inereasing cfionts have heen made to utilize iron ores which have heretofore heen considreel useless: either on amomit of large quantities of gangue stuff, or owing to the prewere of deleterious ronstituents. In varions directions attempts were man, coperiatty in the Cniter states. ${ }^{+}$- separate the good material from the bad and useless, and so to produce .. material rich enough. or pare enough, for hast furnare treatment. Conditions of to-lay, in this respect, hate entinty changel, and where fifteen vears agoan ore, giving less than of per cent of metallic iron, would not be looked upon as an eromomic utitity, to-diy, ore : is low ans 2.5 per cent-hy proper concentration methenk (am he raised to the mormal standard of a shipping and sonelting ore, It is trme that the new disenveries of large hematite tracts in western Ontario have somewhat owershadowed. in the estimation of the trade, the available manetite deposits in the browince of Queher: henee there has bepla a dispusition to nuderestimate the great importance of the latter as a posible fartor in the iron industry of ('anada. It may be mentioned that the magnetite mines in the Adirondacks, which could not be worked surcessfully in the early days, owing to the lack of proper "oncentration methools, are now working with feti" success, and have become the source of a important ore supply. Tha; mines are not only equipped with extensive ore concentration pliants, but with furnaces as well, which are reported to produce iron and steel of excellent quality.

They have been in operation since the year 1849, and have producea, up to the present day, approximately $15,000,000$ tons of oret. The ore is shipped as far west as Columbus, Ohio, and as far east as Sydney, Nora Scotia. Two years ago a shipment of 50,000 tons was sent to Germany: The ore is targely used for puddling, and as ore additions to the open-hearth process. Practically all the furnaces east of the Alleghany mountains use it, to a more or less extent, as the base of their mixture in the manufacture of foundry, mill, and basic irons and steels.

The largest firm operating in the Adirondacks is Wetherbee, Sherman \& Co., who own nearly all the productive mines at Nineville. It may be of interest to give here a brief account of the operations of this Company, whose progressive policy of improvenent, in both underground and surface installations, has had a very beneficial influence on the magnetite mining industry, not only in the Fnited states, but also in other countries. During the pasi

[^5]year attention has been directed specially to increasing the efficiency of the various plants, rather than to adding further equipment. The most extensive changes have been undertaken in the old mill, and when completed, it is hoped that the milling capacity will he sufficient to hande the full quota of ore. The new nill has worked very successfully. In improved Ball-Xorton separator, of the endless helt type, perfected at . Wineville. has heen installed in phace of the machines formerly used, and has been found to be well adapted for treating the highly phosphorice ore from the Old bied. The arrangement of the magnets, in series of alternating polarities, whed chatacterizes, this separator, imparts a constant vibratory motion to the particles of ore as they pass from one magnet to another, and gives the entangled gangue matter opportunity to free itself. With its use the Old Bed ore, which earries about 60 per cent iron, and often $1 \cdot 5$ per cent, or 2 per cent phosphorus. is con-
 per cent to 11.7 per cent phosphorus. The tailings made in the prowes are re-treated in Wetherill separators, which recover a further portion of thro magnetite: which is added (1) the first concentrates. They also take out the hornblende, as a middlings product. The other components of the original ore consist mostly of apatite and quartz, and constitute the taihings from the Wetherill machines. The tailings analyse about $1: p_{\text {pel ellt phos- }}$ phorus, or 60 per cent thicalcium phosphate; they form a vahuible hy-product, which is sold to fertilizer manufacturers. The hormberende tailings aiso contain phosphorus, to the extent of 7 or 8 per rent, but they are, at present, mostly held in reserve.

A feature of interest, in connexion with these mines. is the extensive use of electric power for driving the various plants, ats well as for lighting, pumping, and hoisting in the mines. A large central power house. erected in 1903 . furnishes most of the electrie energy that is required. The generator is of alternating type, 700 kw . cupacity, and is directly comeeted with a 1,000 horse-power Nordberg-Corliss engine. A second power house, containing a 200 horse-power engine and 150 kw . generator, supplies "urrent to the ohd mill. The Company has also an electric generating station at Whathams mills, on the Bouquet river, the power from which is transmitted to the mines. and used to supplement the regular supply.

From the ahove general description of the lineville magnetite mines. it will be seen that much of the success obtained is clue to the elaborate system of concentration, and mine equipment. and that the initial difliculties. which had to be overcome in preparing the lean ore for the market, are sinilar to those in the Canadian mines.

As a result of the examination of the iron ore deposits along the Ottawa river (north shore) and the (Gatineau river, the writer comes to the following conclusions:-
(1.) The iron ores, as far as present deverupment indicates, are scattered over a comparatively large area, and the full extent of most of their deposits an only be determined by further development work, or by magnetometric rarveys.
(2.) At two places -the Bristol and Hull iron ranges where considerahle work had alrealy been dome many bans ago, the deposit: are extencive. and hold magnetite and hematite ores of exedlemt guality. hatdition to the advantages that warrant contident expertations for the future, based on natural eonditions, it may be further stated that the methons: of formentration of lean ores, such as have lately been pht into practioe for low grande
 A pationarly moticeable feature, eomected with the manmer of oceurrence of the magnetites. is the abumbanee of medinm grate ores oceurbing alongeide the rich magnetito. The magnetion is well pronounced in these ores. and sometimes ran be followed for long distances, although, when carefully examined, the perentage of iron is foum often to be lower than furnace practice demands.

The objection is osemionally raised that magnetite ores ate mot :s readily reduced in the furnate as homatites, and ane therefore, fort worth as muld money to the smelter: In a general wey this is the, athomgh ome fact desorves fonsideration, and that is, that manetites are prawtally frow from moisture, so that freight is not pal on the latem, :s in almo-1 any other iron ores. Generally speaking, it is estimated that magnetite involse an extra expenditure, in smelting, of :thont 2.5 rent-per ton of pige itom, and exen this is only a renemal statement, sine there is a comsiderable difference in the ease with which different magnettes are reduced in the furnate.

But here :another interesting shdjert presents itself for disenssion, and that is, smelting iron ores belortricity. Ls alrealy pointed out in a previous parag: aph. the suressful experment : in smelt:'g magnetite ores
 tite. Marie, in 190.5-7, on helalf of the bominion government, upen an entirely new sphere in the ecomonic prometion of pies irom. It has been demonstrated on a mommercial siate." that pig iron "an he produred. economically, at a price to compete with the hatit furnare. whan electrical energy wan he prolured at less than $\$ 7$ per electrical homepower year. In this comexion, it may be interesting to learn that, incombag to grod autnority, the water power at Chats falls ean ine de veloped at at ent of $\$ 4.50$ per E.H.B. Year. Inaldition to these falls, there are a number of phentid water powers in close proximity to extensive bodies of tom ore: as, for "xample, the comparatively large falls between Kirks Ferry and Ironsides, on the (aatineau river. These falls, located only two mies distant from the forsyth and Baldwin iron mines, when properly developed, ran probtwe bet ween 150,000 and 200.000 horse-power.

When these powers are nwnel by the company intending to use them for electrie smelting; and peat, coke, and briquetted chareal from mill ref-use-which wo bbahly not cost more than it per ton-is employed

[^6]for reduction, the cost of the of the heariest items, entering inte the rost of produeing pig iron by tive electrothernair process, will be redured th onehalf.
 containing murh suphur bey electrity, there are other proweses by which these ore can be treated sucersfully for mondern bast furnace prartice.

As an mimple of how magnotite ores. high in suphor, are seated, it may be mentioned that the writer inspeeted the newly extablishod furnace plant at Por Athur, of the Itikokan fron company, and fomb there, magnetite ores high in sulphur (up to 1.00 per eent, and phosphorns up to 0.85 per cent $)$, being first treated in Rohert = wasting furnaces: hence there is 210 difliculty experienced in reduring the rontents of sulphur below the limit admisible for hast furnace practice.

Mondern bast furnace mowere hav heren rembated during the last fifteen veas by the emolitions of the irm ore maket. In the early history of inhastrial fomadi, irom-as a commerial product-was in the form of miacral ore; hat to-laty, in commere, is almost wholly in the metallic form of pise irom. The barge ammont of carbon, howerer, present in the pige iron makes it brithe and weak, and for that reasom renders it. unfit for many engincering purposes. It is, therefore, purifed be menns of either the esemer converter, open-hearth furnare, or pudding prosess. By earh wi these reduring proesses the objectionable impurities-arbon, manganese, and sifiem-a $:$ ble chminated to :my devired degree. But the removal of the phosphorns and sulphur can only he accomplished by special means: mechanical washing in the pudtling furnace; the nise of hasic lining and lime affinity in the Bessemer and open-hearth metalhurgien systems: and the application of high temperature in the electride furnale: in whith the sulphur ran be effertively removed, but not the phosphorus. By no known chemical of electrothermic proeres can phosphorus be eliminated from the bath of any of the diverse metallurgical furnaces. It is essential, therefore, that the iron ores used in the manufacture of pier iron should contain as little whpher and phowhorus as possible. Some 15 years ago, when there was little trouble in obtaining this class of ores, the Bessemer process was mostly in vogue; but sithe that time, on account of the unsatisfactory condition of the iron ore market, the basicopenhearth furnace has been more and more cmployed, so that to-day, in the Conited States, there are 62 bessemercomverters and 465 hasic open-hearth furnaces. This is explained by the fact that the pig iron for the Bessemer furnaces must contain such a small perentage of phosphorus, that after allowing 10 per cent loss of metal during the blow, the phosphorus in the steet should not be over $0 \cdot 110$ per cent. Ores low enough in phosphorus to make this grade of metal are known, therefore, as Bessemer ores. The requirement of such an ore is, that the percentage of iron in it must be at least 1 .n!!! times the percentage of phosphorus. However, the production of Bessemer ores, and

 trated hy the hasic opro-he:nth promer.

 in making iron, kepps these depmats in romparative dismpate. The frese

 maty safely predict that, at some time in the future these titane deposits will be fommed useful and valuable.

The diflieulty that has to he met in the nse of titamie ores pertains. not to its low pate in iron, nor the presenee of fhosphorus or sulphur. hut the the Chemisisy of its metallurgy. liy which a considerable amoment of the iron is bost in the slag. and hy which the throat of the furnace leromes puickly obstructed with refractory accumulations. litanio ore makers a surfior iron: the small amount of titanium that remains in the proluct giving the iron greater hardness and toughness, emabling it to stame greater wear. The iron is abso well adapted for making steel. The loss that is oreasioned hy the smelting of titanic ores is due to the fact that, the only solvents of titanie iron are the double silicates of iron and lime, or iron and alumintand lime, or iron. potash and lime, ete.. and as these constitute a part of the shig that runs from the furnace, they carry away a percentage of the iron, and the loss is greater it proportion to the amount of titanium it is necessary to remowe.

Titanium has generally heen held in disrepute by irommanters, and they have gone so far as $t 0$ sily, that the result of their experience has been that a mixture containing in greater percentage of titanie arid than $1.2 i=$ per cent could not be sucressfully used. When present in greater quantities, titanium has a tendency to render the slag pasty, and elog the furnace with titanium deposits, if it is not made, by judicious treatment, to pass into the slag. On this account, many deposits of titaniferous iron ore have been neglected as of no value, although such ores are apt to be vers free from phosphorus, and are, therefore, especially suitable for Hessemer iron.

In Swedea, and Norway, however, ores containiag from 5 to 10 per cent of titanie dioxide have been smelted alone in charcoal furnaces; others containing from 15 to 20 per cent or more, have been smelted in admixiure or even alone; and, lastly, Nornegian ores, containng as much as 40 per rent of titanic dioxide, and only 36 per cent of iron, have been smelted by

IIII

 treatment was comermed-althomghat comsideralile experas for furl.

Per ment
Thitiliar :mil... . 34.20
Fiorte uside. .. . IN..j!

\luminta. 2.s!

Silir:i.jo

Irun. . .31..30
 opheme:-

	Slig	Wrerage shluetm
Nilir:a.	27.*:3	31-75
'litame aril.	. 36.15	10.0) 0
lime.	24.315	24.59
Oxitle af irun.		$2 \cdot(10$
Alımin:ı.	! 1 14	$2 \cdot(0)$
Maguosia.	11.150	$\because \cdot 00$

 the small pereemtage loft in the pig metal, perlaps one wr two per eent.

APPENDIX.

 to-day regarding the water powers akng the Wtawa and watinean river.

 remate from "mal mine is not lihely th he werentimatad. V'ngurationably these powers arre dratimed to cexerexe at wade influmere on: the dasedopment of all kinde of industries, and more partiondarly irm induthes. Roference lats already been made, in another chapter, to the posibitities whe sudting magnetite iron ores begectraty, whaly wenerated from watcr pewers. and it is specially with this ohject in view that the following repmet io presented. It is the intention simply tu shaw, an far as pessible hew murh water is asailable for nise in the twa strame mentionad athe their trilutaries, and to indicate hriffly what stope tan he taben in hamesing thie. one of the greatest dynamies of nature. for the wie of mand. The datal here presented would batk much of the value and completenese they may have: were it not for the gencrous stpport of hydr:mber engineers and mill-owners Ifter exhausting all possible soures of information he merespombene. however, it was found that many [wints of impertane fon be beared up only by a personal inspection of the wathe powers, and for the ahwe reason the following falls were visited:

1. On the Ottura rirer:

The I.'slet rapids in the Coulbute chanmel.
The Blark River falls.
The Coulonge River falls.
The Calumet Istand water powers.
The Grand calumet falls.
The Mombtain. and Dargis rapids.
The Portage du Fiont falls.
The Chats falls.

[^7]11. On the Cintinum river:-

The six partages.
Thu l'ink:un falls.
Thu' Coscales.
Ther ('lusloe: rapins.

OTTAWA RIVER.

The L'Islet Rapids.

This water phore lies betwern lots 37 and $: 3$, ratge ii. of the town-

 on the loft hamk, in Chicheoter, or rather on the smath chanmel whelh efparates that banh from an small island lying in front of said hote : 8 : and 3 , a canal, with two lucke. having a tuat lift of 16 freet, this leing the difference of level hetween the upher and hawer readres. . It the works built there are mate of earth amb if woml. Betwen the aforeabial small indand and the someth or
 long, which was hailt in romention with satil ramal.

These works make it quite pasy to utilize the hyiraulic prower existing there.
 village. Where its discharge is pretty morh the same as at lilslet rapid. The resuite of these insertigations may he lail down in the following points: (6::uvin.)
" I'seful widtlo of water surface.
" Avernge depth. $16 \cdot 13$ feet
"Area of rens-sertion
"Mean velocity. .
"Diselharge. ..
$2673 \cdot \mathrm{i}$ square feet
1 . 6,333 feet per second
titht ruhic feet per second
"The velowity of the stream wis measured witls the Price current meter, at 20) different points, in the five principal spans of satd bridge.
"Ther measurements were mate when the river was approximately at its mean level. the low water mark being about 4 feet below this.
" lirnm the results of measurement, and from information obtained coneming the variations of the level of the river, Mr. Gauvin estimates the dischary of the (u lhote chamel to be $2,2 t$) enhic feet per second, at ominary low-water, and I believe the discharge of the same can go down to 2. ,ott ruhin fert per second, in rount figures, at extreme low water.
"As before mentioned. the difference of level between the upper and lower reaches of the I.'Istet somal is 16 feet, in round figures. But tha available lead there is only about 14 font
11 711 11

"The mimimum ahsolute power of the fall, which combl ine practicall! used, is 3,1 in horme.jnwer, ill rommel figur...

Recapitulution:

Mintmum pewer which can the develond.	i.\|M1
Itright of fall which rould le used.	11 lixe
Minimum diswharge. 2,0min	
Distamer heewern the intake and the of Wevelopherit.	

 $\frac{1}{10}$ of a font abowe what hall heen pminten ont to hima as law water marn.

 t. dunits.

The Calumet Island Water Powers.

Thuse on' ('ilumet whamel, on the mortherest and somth sides of the island, and lying entirely in the Irovine of (enelver:
(irand Columet falls.
The bargis rupid.
The Mountain rapid.
Tho sable rapide
Those on the Rorloe Fendu chamel, burluting the stide chamed, on the somthwest side of the istand, and lying aton emtirely in the Province of Queber: -

Rappid near head of Denjardin istand.
Timber slide.
Garvin mute.
Crawford rapids.
Those on the Ruche fendu chamel and lying partly in (endere ant partly in Ontario:-

> Black falls.
> Nice rapio.
> Muskrat rapiul.
> La barmere.
> Long rapids.
> Roche Fendu chute.

The total fall. or difference of hevel, betwern la limer. at the head of Calumet island, and Roche Femblu lake, at the forot of same. is $x i$ fert, arcording to the returns of the Ottawa ship camal survey.

Ifu Ig is all abstrat of Mr. (immin's exhamstive reports:-

sible lionpids.

 the suith), are situated at the ronfluence of ('alumet and Rocher Fenta chammels.
"They are simated one alons-ike the wther, as it were separated by a smatl inlamk, and not one abowe the other: their head is only $t^{\prime}-3^{\prime \prime}$:and their
 surver.
 ther offer mostriking allothtare as at watr-power.

Rimpid. Moul of Desjurdin INlumds.

" Aecording to the redurns of the ()ttaw, ship c:anal survey, its length is abont 1 . 1 mo feet, ant its head ahmost ! fort. Its minimm horse-power would heralmat :3.000).

> Timber sitide.
"This timber stide is between lafontame and laxjarlin islands. It has bern for many years aboudoned. the timber now following the calamet chammel.
"The difference of elewation between the heal and the foot of same, is $12-30$ feet, on at distance of 430 feert.
"The probable minimm horse-power there, would be abont I, foo.

Garmin ('huts.

"(iarvin rhate is probably the mast remarkable chate on the north hrameh (morth of hesiardin ishmd), of the Roche lometn channel, and is situated in front of lot No. Is, of range ix, of the townshp of firand c'alumet. which lot was patented in 185 s.
"This chate is, acoording to the returns of the ()ttaw: shipe eanal surver. $10 \cdot 51$ feet high in : 200 feet distance. The river, at the head of the chute, is
 istets. prosenting groat farilities for damming. Nr. (iaturin thinh- that the lead could easity be increased to 1 a feret.
 had there. 'This mill-site is about 6 mile- distant, in at at aight line from the lontiac and l'arifa dunction ralway.

C'rawforl Rapids.

"These immediately follow (iarvin chute, and have a total length of :3, low feet, and a head of very nearly ? fert. "They might be utilized a waterpower in commexion with Garvin chute, as the river eould be easily dammed

Bherk Finlls.

Mier líprid.

 a water-power: but atemeling to Mr. Gatusin. it might he utilized in comexion with the Maskitat rapull hedw.

1/natirat Riapid.

 Cahmet. Thene two lots are patented. The fall there is not great, it is onts. about 7 feet in $1,30 \%$, hut there i.s. on the (gueber side, on a narrow pasatace hetwen two istands, a perpendiculat dop of alwout if feet. Sothing is left
 and whel is indieated as "edd mill " on the phan of the (ttanat river made in romexion with the Ott 'ib math, in 15:9. The grater purtion of this rapidl lies in the Provin.

- nere."

Mr. (Gasin estimate : otal minimum homerower of Maskrat rapitl at 7.000 . The river might he easily dammed amens there. of that the head rould he inereased to about 1.5 feet.

Lomeg liupia,...

Acereding to the returns of the Ottawa ship canal surver, they are 4.50 feet long and have, in! that distanee :t total fall of fulle 16 feet. I'robally this head, or a purtion of it, could be mate use of to inereave the heat at the Ruche Femdur chute, in the cast se later heng utilized as a water-power.

> Rowhe ficmlu chute.

This is the last pitch on the Roelne Fendu chamel: it lies at the head of what is callent the Ruche Fembulake. The greater pertion of this clnte is in the Provine of (queleer. in front of hats Xis. 1 :und 2 (patented in Lssa) of range is, of the township of (imand Calumet.

 long rapids. The total mininmm bose-power there arcording to Mr. G:avin, is about 5,600 .

The Grand C'alumet lioll..

There comstitute one of the most remakkable fathe on the (btawat riter They are situated in the eounty of lontare, some fi.) mite- abowe the rity of Ottawa, on the arm of the Ottawa river kiown as the Cahume chanmel, which runs to the east of calumet island, the hatter forming the twonship of diand Columet. They are at a distane of 31 mike in a tratight lime, from the

The fotlowing abstract is. gisen from the report of Mr. (tancin:
"They are lowated bet ween the village of ligroon, on hit-14. 15. 16, and
 6 and 7 , range i . If the Gowernment rearere. Enduked in the sonth range of the township of Grand columet on the weot bank. 'They are finmed of as sucression of cataments and rapids interrupted hey small istands. eqparated here and there hy short med strethes or hains. Their total hength measured along the centre line of the river. from the govermment dam, nerth of istand

 tremity of said dam to the foot of the hast mpid, almost cpposite the landing. on Calumet island, of the old ferry, is ouly about 4 , (fon feet.
"The total difference of level hetween the head and the font of these falls, that is to say, between the surface of the river, immediately abowe the govermment dam aforesaid. and the surface of the river at the site of the old ferry, is 57 feet, in roun figures, this heing what $11 r$. (. Galloin, ('.ls... found by actual levelling !cen these two points, in the first days of september, 1900, when the water in the river stood some 2 or 3 feet above its howest leve!.

The accompanying figure, No. 12 , shows a general phan of the Cramd Calumet falls. This plan is the work of Mr. C. Li., (iausin, C.E., for the Queher govermment, and represents an extrant from maps of the Ottawa ship canal, deposited in the Depatment of l'ublic Work, Ottawa, with numerous :dditions mate to it, and ohtained from the phan of the govermment resere on Columet island, he O. Sullivan, inspector of survers, from the cad ant ral phan of the village of Brywon, and also from persomal chereations of Mr. (iauvin on the ground.
 made an exhatstive surver of the firand (ahmet fathe in the year 1900.
"The Grand Coiumet fats may be considered as forming three distinct group): of water-jowers (see fig. 12).
"First.-Those connerted with islandm Nos. 10 (eant part), 11 , and 12.
"Second.-Those connected with istands Nos. 10 (the ssuth part) !. 8. 7, 6, and 5.
"Third. Those comnerted with inhands Nos. 1. 2. 3. and 4.
"In order to estimate the total power of these three groups, or, in other words, the total power of the Grand Calise falls. I had first to ane atain what is the diselarge of the Catumet channel at that place. This. however. coukd not be casily done on the very site of the falls, and for this re: son, 1

 foe than 6 fer.:

 depth being bit feet. - ind les.

 hes water. They are the resulte of meatimenents mate when the fevel was.
 may he taken as the aremge manmer heve.

- It cetrome hew water, the areal in the cros-section of the stream.

 rublie feet fur werond.
 the eolle tive minimum pewer of the (itand C'alumet fathe would be equal to

- I Famging mate in the eamal, at the lueal of the bites, gave 19\%, saly 200. whice feet diseharge pres serent. But the bulkent, at the heat of the slifes, was thell partially fhed, wh that the volame of water fowing over the botem of the sliter was very smath. :und it may be safely :chnited that the volume required to preperly flome the timber in the slifere is two and :

- If we deduct these olow cubie fere from the assumed total minimum

 falls proper.

 wholice hat horn math alwor.

 Horam, amb hait on the east bank at the fant of the latter fatl.
 homso-porer.

 betwern them: howereer, the eastern one, between the manamel and istand
 extimato it muler the rimemstances, at 1.100 rabie foet per somble beaving
 and $1:$.
 of the river immertiately bolw the government dam, the total minimum power of the First fall, which has a perpendimular drep of fron $1: 2$ to 1.5 feet,
 power. But the facilities for deseloping this pumbere ant bry great, as hamby any place for a large installation can he foume in the vicinity of the fall. The only suitable phare that I ran sere for the erection of a mill is at the small inlet, or bey., on ther cast side of iskand No. 10, upposito fall Su. 2. which ties between istamds Nos. 11 and 12. and at the emb of a tleep rawime that exists on island No. 10, as shown approximately on the abeompanying plan.
"At the bottom of the small inlet, above refered to. a lam coull be built across said ravine, whech runs from this peint, in a notherly dipection. towarls the heal of the island (No. IO), where a shent canal, sme foul feet
 with the river abowe the govemment dam. A vertical fall. 26 feot high (26 feet is the fifference of level betacen the fotawat hor abow the later dam and the deep water hasin immed itely lelow ishand So. 11), wonhl therefore he ereated at the said inlet. In that way 1 ,omo to e.one hore-
 would be well alapted for a pulp mill, or for at samill, an the tomber roukd he hrought to the very site of the mill, throngh the camal alowe referred 10 , more than half of which has been dug mat hes nature.
 oi being isolaterl, situated as it is betwern two small islimb. Nas. 11 and
 of a mill.
"Islands Nos. II and 12 were patemed te the Itom. (iroo. Hryson, Hecember 2, IS8:2.
" Mr. Thomas Moran's grist-mill, to which reforeme has hern mate above. is on lot So. 15, range i, of the township of litehfiedl, and in the village of Bryson. A ganging was made of the head-race of this mill. and the diselarge was found to be in rubic feet per second, which gives, with the: 17 ft . head utilized, only fow horse-powery.
"The head at this place could be increased to 24 feet, or thereabont. by damming the channel between islands Nos. Il and 12. and a larce power (say 10,000 horse-power) could be very easily developed there. I say very easily, heeause this 24 ft . head ean be got in a space of hamdly 150 feet, and with eomparatively little expense. A dam has already existed, I believe, in the channel between said islands, Nos. 11 and 12 . The remains of an old dam are still to be seen at the sonthern extremity of islind No. 12. 'The damming of this channel, besides increasing the head at the mill site, would create a splendid basin between the east bank of the river and island No. 12, for the storage of logs.
"The site of Mr. Moran's mill is eatainly a very fine one, and the power there, as already stated, can be very easily developed.

> SECND Ciroter.
"From the foot of the recond fall to the next cataract, on the main channel, t_{a} se is a level reach, some 1,400 feet long, and sou feet hroad, at its widest spot, forming a splendid deep water basin, covering an area of about 18 aeres. From indications on the rocky banks of the river, the high water level in this basin would be about $7^{\prime}-6^{\prime \prime}$ higher than the level on september 8,1907 , taken as the average summer level.
"On the west side of this level reach, and about half-way between islands Nos. 7 and 11, a small stream, taking its rise in the expunsion of the timber slides channel, lietween the first and the second slides, pours into the said deep water busin. The difference of level hetween the latter and the uforesaid expansion of the timber slides channel, is 20 feet.
"On the right bank of this small stream, on island No.9, is an ohl salwmill, known as Carmichael's mill. It is now abandoned. The building, a substuntial wooden one, is still in pretty good condition, but there is no machinery in it. The bank on island No. 10 is high, steep, and rocky. Car-
michaet's mill is toented at the heot phace where the power of thax ot mam ran the developed.
 2] freq long, ath at the time of m! inspretiost, the depth of water thowing

 water to thow over the uperer bulkhent if the tirst timbur stide.
"The smatl and very short chamel hetwern ialimh Xis. s and ! wos

 A eomparatively small power eould be easily doveloped there.
" Between iskands Nos. 7 and s, there is a narrow amd crooked chanmel, What I would call an arm of the main ('alumet rhannel of tan Ottawa. Iry at low water, this unrow chamel is dammed at its upper ond, widently to prevent logs from entering it at high water. The differener of howe bet wern the extremities of this channel, that is to saty, between the large deep wat or busin aforessid and the next lower leved sp reteh or basin of the river, is laf fect, but here the head coutd be very easity increased by 20 feet, which is tho difference of level that exists between the large deep water hasin of the main channel aud the expansion of the timber shicles channel at the foot of the first slide, and, therefore, made ed tal tw 33 feet. 'lhere is mot, however, mueh room for a large mill there, at the mouth of said sumall channel, but, in other respects, the situation is very fine, and quite a large power could be cheaply developed there. A penstock from the millsite-mouth of the channel in question, to the upper hasin or expansion, on the timber slitles channel. would only be from 330 to 400 feet long.
"'There is a pretty cataract between ishands Nos. 6 and 7 , but 1 do not see how its power coukl he either easily or profitably utilized.
"The fall between islan Jo. 6 and the east bank cannot be direetly utilized, the east bank of the -iver opposite this island, and in fact all the way down to the site of the landing of the old ferry, being very high, rocky and precipitous.

THIRD GROUP.

"Between the falts of the sceond group and those of the third, there is a level reach, or basin, some 400 feet $\times 600$ feet, about $5 \frac{1}{2}$ aeres in area.
"The difference of level between the latter basin and the smaller one inmediately below it, at the foot of the third slide, is 11 feet.
"A dam is built between the islands Nos. 4 and S, and one bet ween islands Nos. 2 and 4. The latter has a gate by whieh part of the water of the main Calumet ehannel nay he, at that point, allowed to flow into the timber slides channel.
"I do not see that the water-powers of this last group can be practically developed. A mill might be put up at the lower end of island No. 2, near the

 cipitoms.

 lartere potion of tle sillare, erold be aftered.

 with a very large fertion of the phome of water Howine in the rivar, of vils

 point.

 from an short distanere. at the falls to the landing of the whe fery at the fort

 a closer examination of this rawitue. I took the elevation of amme of the prim-

 its natural course, a large pertion of the volmon of water thwing in the fahs-

"Informmately, the ereation of such an amifieial water-w:y would luc mather expensive : sts, suppesing the hontom of the trench to he only fere below the urlimars smmmer level of the river, above the falls, the summit to be erossed would be about sif fere above sad botom, and the deptlas of the various sertions of the trench would le approximately an follows:-

1,350 of it womhl be wer til derer, arerage tij.
1,000 of it womlal be from 30 to 40 deep.
l.0.5) of it would be from 20 to 30 deep.

1,250 of it would be from 10 to 20 deep.
1,500 of it would be about 6 deep; and
6,200 would be about the total length of the tremel.
" Deritledly this would not be practicable, and proininit the hest solution of the problem would he the following:-

114

 In1.

1/ounturin lílpad.

 fम:

 fall rapist.

 the event of the construction of surlo al dan, sot that the then high water

 9 feet deep.
"Mountain and Wargis rapichs together womblat constitute quite a fine Water-power, and our which could he bume anally develaped.
"There is a very fime site fur a mill, wh the laft, wr seuth hank of the river, right at the fout of the raphe. (in the aforesald het No. 21 , of range iii, of Litehfied. The distane from this mill-sht the the head of the rapid is only ahut enfolect in a straight line and, to utilize the power of said rapid, the water can he bronght from the uper level to the milh-site, through Humes or large pipes, without it bring necessary to cwerome any serious difficulty. Pipes could be laid either close to the bank of the river, along the timber slide, or along the lortage road, about 300 fept fom said hant

There is no ground for development on the ight or north bank of the river, that is to say, on Calumet island (township of (irand Calumet).

1.1
 |hervis lírpinl

 1)argis.

 the lo:ngia r:pinl.

 silltol an having at lougth of latof fere only. and a fall, at low water mark,

" The minimum |"ower of the loargis rapill woulal be, with is fert of head.

 long, as ever with the beot of theace conditions, that is tos say, with the greatest heal and the shotesi length, I do not see that this water-power can he developed with alomatage, esperially when there are so close to it manỵ finer ones.
"It must mot he inferred from this, linwever, that the liargis rapid is absolutely of to value as a water-power, atul when I say I ho not ane that it can lo eleveloped with alvantage, it is when 1 eonsider this water-power alone, and its utilization irrespective of that uf the neighbouring waterpower.
"But if the Dargis rapid is regarded as a portion of the Mountain rapid, its importance and value then becomes totally different."

Portage Du Fort Water-Power.

 a surver of these falls, in the year fen) , on behatf of the (Qnetwe gevermment:-
"The village of Pontage dalent, on the rast -ide of the Ottawa river.

 aruthern extremity of ('alumet island, we come to the he:al of the lentege

 to thew from all direetioms, hetween at comsiderable mumber of istands large and small.

 in (quedere : mul patly in Gutatio. It is most proballe that the greatest

 village of Portage dulfort

 that hate, the suatl chamel, sepatating the main showe from the istand lying

 rapid at dam hat heon built armos from our of the inlames, on the south side of the Devil's fithow, th shea istand, masing the leve of the river, cast of the later island, :and inereasing the flow in the Portage chamed, east of the

 very stomg permbent one wheh exists lextwen the matn there village
 there a great many years ago form, of that part the chamed of the Ottana fiver lying betwern sad show and shea intand, a megular basin, from whene the gristmill and the satwill now boilt immediately below the big dam and near the haghay latige, betweel the village and ohe indand of lortage du lont, derive their water:

 sill-

The Chats Falls.

 for the l'rowitere of Quebere, the writer is ablace ento the following athet atat
 in 1s!!!:-
"The graging was mathe as mear the site of the falls as pratiocahle.
 Chats, opposite lot mumber 13 , of rame iii of the township of Oushow, (Zute. The water at the time of this surver was at its ordinary low level.
"The Ottawa, at that place, is about !20 feet wide, and its greatest depth, at low water, is $60^{\prime}-4^{\prime \prime}$, which greatest depth is found at some boo feet from the Quehec shore. The average depth of the stream there is $44^{\prime}-9^{\prime \prime}$, at low water.
"The total area of the cross-section of the river at the place above mentioncd, is 41.110 square feet; but as, where I took the cross-section, there happened to be no appreciable velocity of flow from the Ont ario shore, to a distance towards the middle of the chamel of some 240 feet. it follows that the useful area of this cross-section is only equal to about 35,oon square feet.
"The greatest and smallest velocities obscred with the current-meter in that (ross-section, are respectively equal to about 0.67 and 0.2 s feet per scoond, and the average mean velocity is very nearly equal to 0.4 N feet per second.
"The velocity of flow was measured at 13 different points of said crosssection, hut unfortunately rould not be ascertained at a depth greater than about 17 feet from the surface of the water, as the instrument used (the (urrent-meter) did not permit of reaching a greater depth.
"The total discharge of the river at that place, calculated from the above data, is equal to $16, \overline{4}$ が cubic feet per second.
"As my intention in gauging the river at that place was to determine, as near as could he done under the circumstanecs, the volume of water, flowing, at the Chats falls, between the mainland on the Quebec side and Morris island on the Ontario side, I had to gauge the Mississippi channel, in Ontario, between Morris island and the mainland, and also the Quio river, in Quebee, as botlo these streams empty into the Ottawa, between the Chats falls and the place where the former had been gauged; in order to deduct their collertive diseharge from that of the Ottawa opposite lot No. 13, range iii, of Onslow.
"The discharge of each of these two streams is as follows:-
Mississippi channel
75 cubic feet per second
Quio river \qquad
Total
197 culic feet per second
" By - deducting this amount from the discharge above referred to $(16,748)$ of the Ottawa, we get 16,551 cubic fect as the discharge at the Chats. Inasmuch as the velocity of the stream (the Ottawa), could not be measured at deptlis greater than 17 feet, and it is expected that the mean of the measured velocities, in the two or three central sections of the cross-section above referred to, is somewhat less than the true average velocity in those central sections. I think it safe to increase ahout 7 per cent the discharge corresponi.ng to the latter. Py doing so, the total discharge of the Ottawa, at the Chats, at ordinary low water. would be equal to almout 17,200 cubic fect jer second.

12:

"As there is a total difference of level of atifeer, in romel figures, between the head and the foot of the falls, it follows that the total theorctie power of these falls, from the Quehec :hose to the Ontario shome, is ergual, at low water, to very nearly $\mathbf{T}, 000$ horse-power. I ant as this total heal of 36 feet is not a vailable, or cannot he utilized at each of the faths romposing the fotal power, it follows that the total maximum mower that ran be practically derive! from the Chats falls, at low water, is lese than that amount, and probably not much $\mathrm{r}^{\text {r }}$ han oll,000 horse-power.
"After completing the gauging 'If 'tawa, I proweedent to the "samination of the falls: on the Quebee terr These are eight in number:

Ohl Mill ehute.
Fill No. 1.
Eyan chute.
Conroy chute.
riturgeon rhute.
Black chute.
Moore chute west.
Moore chute east.
" In order to get thoroughly acquainted with the place, and to be able to locate exactly the position of every point of interest in connexion with the investigation entrusted to me, I decided to make a regular survey of the ground from the old mill-Egan mill on the west shore of the Ottawa, along with the upper shores of the islands, and the heads of the chutes, to the southwest point of Moore island, and thence in a southwesterlydirection to the upper end or head of the long dam, built ly the Upper Ottawa Improvement Co., to divert part of the water in the main channel of the Ottawa, and cause it to flow through the loug channel, and sturgeon canal. I also made, in compliance with the instructions I had received. a survey of the channel, at high water, acros: Moore islami, in its widest part, and finally, a surver of the whole of the cast shore of the latter island, and one of the Old Indian portage road, on Indian islaml.
"The arcompanying general plan of the Chats falls and istands has been partly drawn from actual survey, and partly from the map of the Chat:islands, he the Ottawa ship canal surver, and from a plan drawn by Gi. (i. Rainhoth. Esq., P.L.s... and furnished to the Department by the "pper Ottawa Improvement Company.
"Ohd Mill chute is that which is situated between the mainame, at the site of the old Egan mill, and the lower end of Egan island. The lead there at low water is ahout 13 feet, from the level above the old dam of the mull to the level in Big bay helow the island. The prition of this old dam still in existence produces, of course, the effect of moreasing the natural head of the fall. Taking, however, the head as it is, $1: 3$ feet, and the discharge as being equal to athout 320 cubic ieet per second, at low water, the power of this chute is equal to about 470 horse-power, in round figure..
"'The only smituble place that I can sere, for the crection of buildings, ete., in comexion with the development of the power of this fall, is on the main shore, at the very site of the old mill.
" Fall No. I is, after the fore invection I have made of the ground, and from the comparison betwern my own plan of survey and that of the Ottawa ship canal surveg, the first fall from the manland, between the mainland and island No. AT. and is oure which Mr. Matte has designated as Fall No, It, on his plan.
 low water, and the total available head - the difference at level between the Chats rapids, at the head of the chates, amb the hasin immediately above the old mill. heing $2: 3$ feet, its power fall No. 1 -is equal to about 580 horsopower
" Egan chute is situated between figan inama. No. 4, and island No. is. The total discharge there, at low water. is 116 cubic feet per second, and the total heal hoing 23 feet, that is from the (hats rapids to the basin immediately above the old mill, the total prwer that could be developed from this chute would be equal to 301 horse-power. in round figures.
"(onroy chute is situated hetween tigan island and Indian island. The ".hame of water flowing through it, at low water, is equal to about 54 cubi- feet per second only, and as nearly the entire head of 36 feet is available there, the total power of the fall at low water is equal to about 200 horsepower. But 1 see no great room in the immediate vicinity of this chute for the erection of a mill, or power house, unless it was partly built on made up ground, on the north side of Egan island. The feasibility of this, however, could only be properly ascertained in the summer time, when the snow and ice are gone.
"Sturgeon chute, and Sturgeon anala were improwed and built by the Upper Ottawa lmprovement Co. for the proper floating of the logs, and form part - what is called the Log channel. This canal is provided with three sluice-gates, 2s"- $6^{\prime \prime}$ wide each. I extimated the discharge over the sills of these three gates to be about 1,134 culie feet per secomd. The total hearl that can be practically utilized there, at low water, may be taken to be ahout 22 or 23 feet. The power of this fall, consequently, is equal to 2,900 horse-power, or thereabont.
"There is no great room for the individual development of this power. the only place 1 can see where buildings could be erected in connexion with this development, is on island No. 2, which seems to me to be rather an awkard place for such purpose.
" 131atk chute, next to sturgeon chute, and quite close to it, the distance between them being only about 100 feet, is separated from the later hy Merrill island. (No. 34.)
"Before the existence of Sturgeon camal, the logs uned to pass inrough this chute.

127

 horse-power. in rombl figures.
 spare for indivithal devedoment of its power
"Morere chute west is situated at the westermmont exteraity of . Howne

 gromad for that purpose.
 a perpendicular drop of 2.5 feet. I could make no premere gatuging there: but, taking the total length of the reat at fow fert, inchatine the namme
 berteal hemat of water abowe the erest to aterage abont 1 -fi", and eonsidering the flow wer said erest as that which takes phare ower an orthary weir. I ealeulate the total discharge at how watere, to he ahout e.ano cubie feet per second, in romad figures. With this dischatere and the heat of eis feet, the power is cqual to ahout 7.000 homer-pwer."
summing up the above figures we have
For the discharge:-
ohl mill.
f:all No. 1. . .
Fg:m chute.
Comroy chate.
sturgeon chute.
131ack chute.
Howere chute weat.
Monte chute catist..
Tot:al discharge (Guchere -ide)

:300) rubic feet	
211	.
116	.
i)	-
1.134	-
1.154	.
-45	.
?.(1) 0	.

Forthe powir:

(1) mill chmu.	1-in hir	
Fill No. 1	\%	h. 1
1:g:m chute	atu	
Cimmey chute	\cdots	.
\therefore Angern rlate.	3	..
Bhack chate.	? (1)	.
Whate chate wrat	18:0	.
Mowre chute enst.	-	

$$
1+!420
$$

Say 15,000 horse-power, in round figures, which is mot quite one-third of the whole power of the Chats falls, (Qucher and (Ontario tugether, :at how water.

Mr. Matte, in his report, gives the eollective puwer of the three falls-$0,1,2$-west of ligan ishand, as heing equal to 2.000 homsopmower, when my estimation of the same is only 1,350 home-power. He adds: "With regard to the power that mate he derived from the other falls, wit the Quebee side. it will vary in proportion to the works that may he exeruted for their development. In any case," he salys. "it is cortain that with the comparatively small outlay, they couth he mate to proture 9,000 to 10,000 horse-power rach."

Therefore, according to Mr. Matte, the total power on the (Quel hee side. at low water, would be 2,000 , say $9,600 \times 5,50,000$ home-pwer; this heing equal to what he gives as the total availahle power, at low water, of the whole of the Chats falls, in (Queher :and in Ontario.

GATINEAU RIVER

The Six Portages Falls.

These falls are a series of rapids and fatls, which have an aggregate length of about 5 miles. They extend from lot No. 14. range i, of Kensington (down stream), to lot No. 51, range iii, of the township of ('ameron. An abstract of Mr. C. E. Gauvin's report on these falls, which he made in the year 1903, on behalf of the Quebec government, is given in the following:-
"The six l'ortages folls are composed of six minor falls, (see fig. 13,) the total, or difference of level, between the head of six portages and the font of the Ronnet rouge being 50.73 feet. The fall of eacb rapill, or group of rapids, is laid down in the following table:-

Rapids at the head of the six portages	S.07
Corbeau rapids.	
Bromm rapids.	$1+17$
Cedar rapiots.	! $1 \cdot 0$
La l'asse mpids.	$1 \cdot 00$
Bonnet Rouge rapids.	2.00
Total	50.73

Mr. Gaurin made a gauging of the (aatinean, some 1.500 feet below the Maniwaki bridge, ahout 3 miles atowe the heal of the sid portages, at a place where the biver is divided into two distinct chamek. separated by a large sand bank. The level of the river was not then very much above its lowest pitch, it stood at what might he considered at its ordinary summer level.

＂Here is a stmpris of the gamging：

I seful surface winlth．
Arorage clepth
Crafol areat of roma－soretion．．
Meam velonit！．
l hisilatrge

W以゙TEM（HINMII．
IVajul－uffare wielth．
Trerage lepith
Iseful area of rass－sertion
Mean velority
lincolarge
32．： 19 fert
2－111 ••
（i．i）athlater ferot
$1 \cdot 3 t$ fere per meromil

 of the river above that point．

 300）effertive hots－power．But as the fiver was mot at its lowest level，
 at low water，for every boot of head．
＂The minimmm efferotive pewers of tha vations riphls，or grompe of rapiels comprised in the six portages，are therefure approximately as follows：－

$$
\begin{aligned}
& \text { Ilean of the six portages. } \\
& \text { The (orbeath. } \\
& \text { The lBann } \\
& 2, x_{0}=1 \text { h.j. } \\
& 5.520 \\
& \text { (erlar } 16 \\
& \text { Lal Jisise. . } \\
& 3,210 \\
& \text { Le lament Kumgo } \\
& 3.50 \\
& 85.5 \\
& \text { Tot:al } \\
& 17.74 .7
\end{aligned}
$$

＂Of this power，however．there is，properly speaking．moly 16.500 horse－power which can he practically utilized．＂

Mr．Gauvin then examines surcessively each of the water－powers crated by said rapids，or groups of rapids．

Rapids of the Mcad of the Nix Portages．

> "Total fall.
> Enfective power, at low water . 0 feret
 by datm :ang the riwer an an tor raise the level ather the six portager, as from this print to Maniwahi there is hatly :my fall, and the imhathitats, of this impentant village question whether it would la powithe or mot, by cularging the chamed at the head of the six portages, that is 10 way, bere re-
 way at that spot, to prevent, in at least attemate the domare and ineon-
 thent.
"On the right bank the laml helones to the Imlians of Maniwaki, ant

Corbrau Rupids.

$$
\begin{array}{ll}
\text { "Tural fall } \\
\text { f:ffertiwe power at low water. . }
\end{array}
$$

"Thro :are here two channels, apatated hy atarge iatand. lite du
 rhamel, called the bamd Corheau, and on the right side the amalleat one, callent the Pertit (intheatu."

Mr. (ianwin estimates at 4 ,300 homepower the phemer of the finst, and

"There is. near the fout of the rapilk of the l'entit Comeatu, a fine plate To dan the river, and to coneentrate there as it were the theal fath, 15. 7 ? fert of these napits. At the fowe of the lattere. on the Mamiwaki vilce. there is a groul mill-site.
"The rapide on the (irand Corthan are much hager than those on the Pettit Corbeate. The Grand Conteme could, however, be quite rasily dammed
 the rapids, where a genel mill-site can be foumd. on the sout herre extremity. of the island.
"Probably the best way to develop the water-powers of the corbeau would be to dam the Giand Corbeau chamel at its head, foreing thereby the whole volume of the river to pass through the Petit Corhean channel, to dam the latter near the foot of the rapids, and to put up the mill. or plant, on the right bank, on the Maniwaki reserve side.
"By giving these dams a sullicient height to drown the rapils at the hear of the six portages, a 24 ft . head rould be made awailable at the foot of the Petit Corbeau rapids, and the power which then might he devel-
 power, at hw water.

Boom Rupids.

"Fall.	
Effertive power at low water.	$4.960 \text { h.p. }$

1:i:-

 the fireat Buma, on the left sulfe, and the suall Booms, ont the right side.
"Nearly the whole volume of thr (iatiarean, at low-withr at least, flows
 rompaned to that of the other chammel, is in-ignificant." Mr. Cinwin eslimates it at $\mathbf{N l}$ rubice feet per seconal omly.

 the fireat boom, at the hered of the small casoule lying opposite the midello

 That way. with the difference of level, 141615 feret, berwern the head athe

 coubl lie devoloped there
" It is prohnoly at that point of the six partages that the greatesi hydraulic forre could be most easily and reomomically developed.
 of the township of bouchette, which lots are no more the property of the ("rwor.

> l'allar Rapids.

$$
\begin{aligned}
& \cdot{ }^{-1} \text { :ill. } \\
& \text { liffertive power, at low water. } \quad \text { ! } 3 \geq 20 \text { fent. }
\end{aligned}
$$

"To the right of Cedar iskuml, which has an areat of liz arres, 1 the cascade called Great Cedar falls, and to the left of the same is th atle Cedar chamel. The latter is very narrow, and is hut from 150 to f feet long."

The discharge of the Little Cedar chambel is very small at low water. Mr. Gauvin estamates it to be about No coular feet per second.
 the level at the head of the rapids, the heid of l3oom rapids eould be added to that of the Cedire rapils, forming a total head, or fall, of from 23 to 24 feet; and by giving, for instance, to the lam on the Little Cedar channel. an elevation slightly greater than that of the other dam, so as to force, at low-water. the whole volune of the Gatincau to flow through the Cireat Cedar channel, 8,006 hon morer could be ceonomically developed, at lowwater, on the latter channel.
"It is probably on lot So. 57 , runge i, of the township of Bouchette. that the hest mill-site could be found for the exploitation of this watrpower. This lot is sold, but the one next to it. No. 58 , is still the propert! of the (ruwn.

1:is

 in thor follow 'ry.

 suround

	1.3%
Erom!	1 "14
Thim	\| 1 mil
L'urroh	1.111]
Piflo	!2ill

I'u:
 [11.11111

 (9)

1isi

 the (ancodus

Chelsea Rapids.

 werring to these survers.

- The falls lie hetwen lromsides and hivh fory. and were survered with a biew of slowing cxtent and rapabilition of the water pmorers. The

 the river. Tha surver was malu in spotemher. As!9, at : time when the
 ments To detemane the thew of the river were mate at the paint- stawn in the

Velowits.
l:hw:

$1: 17$

 if f:lll.

 the fixer :

 river for pwor develaphems.

「Mrlarir fílls:

 fumman lime of t!e fory

$13: 1$

This would represent an effective horse-power, at extreme low water, of $47,0.11$. The development of these rapids would consist in the construction of a diam across the river, at the heal of the fall, and to rontimue the same from the ishand opposite the east shore. The series of short dams between the ishands would form a natural channel het ween the ishands and the east shore, which would be closed hy a dam at the lower end. The water power formed by these dams, on the east side of the river, would have al heal of 26 feet at its lower end, at extreme low water. On the west side of the river. the present chamel or flume rould he enlarged, and a head of 2es feet at its lower ond obtained. Below this power, two powers conld he formed hy dims. eath with a head of 15 feet.
"These powers are all at a distance of a to 6 miles from Ottawa
" Below these powers, to a point alsort distamee above Wright Brike, there is a further fall of 16 feet, which might form another pwwer, wh the wist side, if requime. This power, however, more likely wouht hive to he developed in the event of a high dam heing built, and alarge amomat of pwor concentrateal.
"As I have stated, in view of the extremely low water when me:narements were made, on which an effective horse-power for every font of fall in the river of $\$ 40$ horse-power was based, I am of the opinion that for ordinary low water this might be increased to 1 , onf horse-power

Summary Results.

"Between Ironsides and hirk Forry is a rise of almost 161 feet. The rate of rise from Wright Brilge, atmout 1 ! miles atmere lronsiles. is a littlo over 2 se fet per mile.
"This total fall would represent in effertive home-pmere:

"All this water pewer would he calmble of devetopment, if it were desired. The plans 1 have outlinel for the development of prower alowe
 at different puints, as follows:-

Bolow shingle mill, for ratirmely low water: ()rdinary low water.

Level of October 19. 1s09.

> For chulsta loalls. (iul jut inud.

For extreme low water:
For ordinay low watre. .
Level of Octolier 19, 1NO!
$(1.01+11)$
(21.1111)
$(1(1.1114)$

Fior Einllow rlurle ．2l jul hrud．

＂In combexion with the very larne ammat of power on the datineatu river，at the abowe points，it is intoresting to notice the atailable powers on Hhe Vermate amd fommeroicolt rivers，at the pincipal manufacturing rities

 effertive horse－power．The results are an follow：

Araikd	роия	Tinat promer
Morimare river	（immiotiom	Cotherim
	river is．（HIN	river
	10.90	． 81.100
！ 1.111		17.1111
－いい！		17.130
17．．心！	： 0.7 .00	11．i．（M） 1.10.

心．13i31 1 ．！．
＂This erompsarisen of the water powers of the diat ineall biver with the
 pincipal Imerican water power rities．will be finterest，in giving some idea of the matratule of the（iatinealu powers．
＂The topegiaply athlyentogy of the diatimean river，the farourable dimatio comblitions．the low temperature．（atusing a harge manfall and small

 front rank as a water power stream．On the seotion of the river in which these walde powers are situated．the rapid lecolivity．bowken loy falls over

Summary of Water Powers．

In the fodlowinstathes as stmmatry of the total minimum home－powers

わтいい limble

Rondle Fitulla r！lathel
sillin．ruplly
Timitar Jisé．
B：arvin mate．
「EMulorl rati，1－
11：ach raplo．
Mastat rapil

Cirand（：nlmual fall－
Mombtain t：1pil．
11．tinior rat

Chat－f：11／．

rimploner River filli，near fors （muloner

Tit：11

11＇4］＂	$\because 1411$		
$1^{\prime}=3^{\prime \prime}$	． CNO	（a）tilıitha）	
$1 \underbrace{\prime \prime}$	1．1011	－．．	
$1010{ }^{\prime \prime}$	－1．1411	．．	
－ $10 \cdot 10$	－ 1 （\％）1	．．	
10＇－10＂	－$\%$（\％）	．．	
「＂゙＂	T． 1 （\％）	＂	．
＂－1＂	．）．Ci（H）	．	
18： 10	？Simm	．．	．
18＇－10＂	1：314）	．	
： ＇10 $^{\prime \prime}$	1．201	．．	
$!9^{\prime \prime}$	Hиا	\cdots	．．
34i＇－1＂	－1．104\％	．．	\cdots
$11 t^{-110}$		．．．	
$\because 10$		．．	J．F Broply 141：11．
－100＂	－0．201	．	．．－
1－0 $0^{-10 ゙}$	21.1 M\％1	．	．
ハぶーイ゙	21.120	．	．．

（ivisubl liafle

 Ha．Contualt． The Contixatit

lal l＇inee．
1．1．Bentio Romer
The lanusull falls．

9．117ent．		
1．i． 7 ！${ }^{\text {a }}$	－5：010	
11.17	1 117 11	．．．．．
11.21	1120	
1， 171	3．311	
（11）	－Nin	
（in）（m）	ころ．\％\％	
\because－		
3．3：3	$1 \therefore 11$	1．．！
－	1.1711	
！¢		－．．．

 Fin manald

Thirl e：swar．e．
Fonith ciatal．
Fift

shingele mils
Thelwat f．ll－

$$
216.3: 3
$$

 the district moler consider：lthant．lhus - ：

Ottawat river．

$216,3-3$
（irand total．
2－3．345 h．p．

IN1)EX.

I	page
Achison and l'slmone	23
Actirmbita	
Adirombinchay irnm mines in	.7.64. 70,16
Agrienltural land.	101
Alle wil township)	, 6, 14, 78
Allumethe islamm	${ }^{6}$
" rapuin	11
Altitula	11
Analysis of Bristol iron ores.	77-79, (1), 5: $\begin{array}{r}8,13 \\ \hline 3.85\end{array}$
" Fiorsylt und Butdwin ores	$37,34,42,43,45,46,49,50-53$
(iatimeall River Valley ores.	
(ircmille ore	98
- 11ayromb ores.	63-67
lhill iron range ores	6,58 -58
Hull-l'mpleton towar line ares.	73
ilmenite ore	106
orre from locations in vicinity of 1layeorh mine.	
l'ontiat C'onmy ores.	08, 97
" Nimg	9197
Aputiter	17. is. 306
Apmendix, water-powers on Ottawn amd tatinean	17. 18, 30, 36
Argenteril comnty.	\%
Atikukn Iron Co's furnace. .	10.4
Aylwin townslip	
H	
Badeldey, licut., paper lag.	3,37
Baldwin mines, .	28, 50, 60
Barytes. 71
Baskatong erech	
" lake	
" township,	
Bratley hay	
13ernard creek	19, 20, 96
Bessenter process disconseed	... 104
Birkenbine, John .	.. 87.88
Bittobi latke	
Black riwer	
" ralls.	$\begin{array}{r} 5,10,11,12 \\ 107,109,111 \end{array}$
" formation	
Blisut furnare at lhall	
Blar seat lake.	
Bonnet Ronge mibiels	128, 130, 133
Boom rapids.	128, 130, 131
Bourhette township	128,130, 131
kawim propety	
Bradley, Iicut., R.1:.	... 37

Mristol iron mines.
Palif:
13. 1, 21, 75, 89

10, $3.5,9 n, 91$
Brown, dusply, milla
lirysm. Iloth, (imo 123
villag.
116
Marking han.
10. 11:

1
C'alcifarmern formation
Calcite.
('alumet fallas
islanul.
('amerom townatip).
(anadian lacifin Railwas
C'armicharl's uill.
(:arre (wore Llibhard untl ('arre)

('inl:ar rappids
(hapxan villaver
Chats fally
lahr.

(hame formation
(Chedieare rappids
Cheneatux rapils
Chiduestar township,
(Hhorite.
Chureh townalhip
Claremton towariai. .
(la!
(Hear lathe
Colr, Mr. .
Colonization romb.
$\therefore 1 . \pi 0$ sti, 80
1ㄹ. 107, 10! 112
12.91 1(1)
(4), 31, 75, 128

10, 112, 12:3, 1:3:3, 13:5
116
8. $10 \mathrm{~K}, 1: 3: 3$

125, 1:30, 1:3:
$13,30,10: 3,107,1: 2: 3$
12. 13

13
26, :?
108, 1335, 137, 13:3
13, 23
. 10,16 -18
54. 86

7
10. 23: $24,91,92$
5. $17,21,27$

30

Corlesau rapictara
.i. 10
Coriseau ripicts.
100
12N. 1:30, 131
B. $10,11,14$

107
Comsines, Ma:
Crinforil rapids. 99
('rowkicl rapid. 109, 110
('rostur simith. $1 \geq 2$
(ulbute "h:umal
$3 \times$
11. 104

Inam lake
1)

Diarly, Mexam.
Darkis rapiels.
De sourhe, Berars
62, 67
Desert rivirr
Danjur'in inlatul 92

In ill's l:llaw io!

Disthint covered his repurt
09. 6

Poikle river
Biarlligy tawn－hip
D：Aten＂lown．
F：Lan inlan！． mill

1：latric－mathinge sumal． of Brival umo
トリッ＊，Ir．II．II

I：
luik
10．
1．14．1．17． 1111
129．1－6．129
$12: 9$
7
$110: 3$

（H）

1．16． 2 ：
1
in，4i
\because
Filuorvisar
Flyme，Itre
113
Forall crech
11
11
Formar runlition－
11
11

 is
Finer comlonigeFinsilsI：
Fine consmorl in smedthe $1!1$ ：$!1$

（i
（8：rrati，N．I．
6arvin elowte
fiatimesm river 1019． 1111

Giamsin，（：F：．，C．E：． 7
Ginhe de Tarro
（iengraphy and mongraphey of the cuatrict 7
diedloger of Hull－Timplefon havations． i
of the diatring （i）
Gilmour and Hughem，limitad 16
（irahamr，I）r． 1：3i；
（irmal（ihhmed fills fore（illumed）． 7.
township
（iraphir．
5． 2.
3.

Harringtan，In：
H：Haven mis＂． 1ho：ntinns in virinity of：3．2！1，46）， 1 il
Harriv，John 1is
Hematite．

Hurtun wartahip，
Hull iron depwat．
＂．＂．ran：zr．am：ly－it of urex 3．1． 3 3
S \therefore

11.7


```
        tombsho.
```


1
IIMi:an i-l:ant

-quenlar

fie. Norl!': |ralbocibos af
1131

111

Kinetre， $1^{1} .1^{\circ} .1$ ．

ii

1.

1．1 li：11 riour rafil

： 11
1014．1：4 1：30．1：3：3

i：；

l．ractimble－tive rapides．

licury siver ！！
1ineーに！！！

1．I del ratiol：

：31． $7: \pi$

110 101
l．1t the ：： 1 h．revpial
l．w－lolmer town－lar
ハハ
：1：！14．！
1111

1．！

I．as：4 risplam
$\therefore 1 i=$

（II）

I．©1－－：1：t！1＋1
11．14．1． 111

－．

II

W．4

 Mathle

10．1．

Matte，Mr．
Medirentre lohe
$2!4$
1214，12．
111

117

$1:$	

－remblilitr

$171=\therefore 1.1$

111111
－heat．I＇res 1．i $i=|: 11,1|$ 1：－

 $11:$
slif：：1
vilumbll 1one：
11．： 3

－111～1：－
r：！ア！に
－liatit． is，
－－llı：
111

〒－い

 ＇W

i
Tial！．

li．19｜luth11 nill．
1しいル－lに
1 －＂

1i．it ：31

1月．10．7

111°

1 la

1．91：！ 11 1： 11.
li．11．｜lı．न．phil

11

	111：
	$1-1.1011$
II： $1111: 1111$ lill	11
－towli－lij）	11116
	th；
	1111
	117
	1111
	in
	11）
	1
Whitrfinlı litir	＊
Wriglt iownslsi！	7． 7
Uricht－IRrilat	｜．i¢！

Ifpartmrnt of

Water Powers
Ref ${ }^{\circ}$
Paugunfuil
The Cancalta
Chelsea Rapuds
Great Falls Coulorige R
Rüche Fendue Channol
Calumet Folls
Forrage du Forr Rapid－ Chats Falla
Deachenes Rapids
Remur Rapids
il Chatiere Fallo
Black River Falls
Blater
neas Waltharn
Six Porrage Rapids
below Manluaki

Hn

735100

10000
115.000

24000
35.500
25.000

17900
50000
35000
$\angle 5.000$
705130

21000
17750

Dlpartment of flines

HONCJRABLE WILLIAM TEMPLEMAN MINIS:
MINE: HRANCII
Eutene Heanel Ph D. Direrpor
190

MICROCOPY RESOLUTION TEST CHART

(ANSI and 150 TEST CHART No 2)

APPLIED IMAGE he
i653 East wain Street
Rochester, New yoy 14609 USA
(716) 682-0500-Phone
(716) 288-5989-Fg

$$
\sigma
$$

[^0]: * ser Repory ob the Location and E:amination of Magheric Ore Dheovits by Man

[^1]: *Report of Progress, 1866-9, pp. 2ini-256.

[^2]:

[^3]:

 -av divation, with a dip of 50^{c} to the sonth, ant cut throngh ber rikes

[^4]: 1 For comnercial success, see Report on the Investigation of an Electric Shaft Furnace, Domnarfvet, Sweden, by Eugene Haanel, Ph.D., 1909.

[^5]: In the year 1904 the shipments from the tmines amounted to 559,500 tons of magnetite.

[^6]: ${ }^{1}$ Siee repurt 0_{1}
 Investigati . oi s elfectric shaft furnace, Domnarfiet, Sweden. By Dr. Eugene Hatnel. Director of Mines, 1909. (Publishat by the Mines Branch Department of Mines, Ottawa).

[^7]: *The groater gart of the data here presented, was furmished hy Mr. P' E. (ianvin, CiE. the well-known liydraute engineer, Qubbee. who has made an cxhaustive study of atl the Quebec water powers. and whose reports have bean published from time in fime by the Gucbec Govermmeth, duitional informathon. and datas were also ohtained through the conitesy of Mr. J. P. Brophy, C.F... and from Mr. © Kiefor, ('E... both of the rily of Ottrea.

