The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculèe

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or blank)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, iorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(er)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

$16 x$	$14 x$

The Canada School Journal. AND WEEKLY REVIEW.

Vol. X .
TORONTO, SEPT. 17, 1885.
No 33.

Cable of contents.	
Estoriat:-	pagr
The World.	385
Business Announcenieut.	. 385
The School............	
Sbscial Aricluss :-Elemantry Chemistry	
Examisatios Paprsb .. 392	392
Litgrary Review..	

The Canada School Journal and Weekly Review.
An Educational Journal devoted to the advancement of Literature, Science, and the teaching profession in Canada.
———TRRMS.-O-_
THE uefbachifing. price for Tur Canada School Journal is $82,00 \mathrm{per}$ annum, strictly in adtvance.

DIAUONTINUANCES.-The CanadaSchool Jocrsal will not be sent to any person after the expiration of the time for which payment has been made.

HENESALS of subscriptions should be made promptly.
ALL BUHENESS communications should be addressed to the business manager. Articles intended for publication should be addressed to the editor.

ADVERICISEVENIS of a suitable nature will be inserted at reasonable torms. See schedule of rates in another column.
canada school journal pub. Co. (Limited)
Office : 423 Yonge St., Toronto.

The adorlo.

One of the foulest blots on the later pages of United States history will be the outrage recently perpetrated on the Chinese at the mining district of Rock Springs, Wyoming. The mining company had imported a large number of Chinese to take the place of discharged whites. About 150 white miners, armed with guns, attacked the Chinese quarter, set it on fire, shot down in cool blood some forty or fifty of the unresisting fugitives, and drove some five hundred of them to the adjacent hills to starve. A more cowardly and brutal deed can scarcely be conceived. Suppose the victims to have been Americans in China and their murderers Chinese, what would the great Republic say and do?

The September bulletin of the Ontario Bureau of Industries shows that the fall wheat crop of the Province is excellent reaching the high average of 24.3 bushels per acre, and indi', cating a total product of $21,280,543$ bushels. The spring wheat has been unfortunately very badly damaged by rust ; in fact, the crop throughout Western Ontario is almost totally destroyed. Much of it is not worth threshing and farmers in many localities are cutting it for fodder. In the Eastern part of the Province, the great spring wheat region, the reports are
more encouraging and there is reasonable hope that the grain will thresh out a fair average. The barley crop was badly damaged by the storm ot August $3^{\text {rd }}$, and much of what was left is injured by bad weather in harvesting. The total product is put at 693,000 bushels. Oats, rye and peas, are estimated at averages of $36.5,16.0$, and 22.2 bushels per acre respectively.

The question to be decided by the race between the Eng lish yacht "Genesta" and the American yacht "Puritan," is, according to some humorist, whether a plank can be propelled faster through water on edge, or on the flat. The "Puritan" is comparatively broad of beam, and requires only some twenty or thirty tons of lead ballast to enable her to stand up under her immense load of mast and canvas. Instead of a keel proper she has a centre board which can be raised or lowered at pleasure. The "Genesta" is sharp and deep, and has her equilibrium preserved by about seventy tons of lead in her keel. The question has raised a great deal of fecling, not the best-natured, but the handsome conduct of the owner of the "Genesta" in refusing to accept the race as a "walk over," when the judges unanimously gave him the option, in consequence of the foul caused by the "Puritan's" violation of rules and consequent collision, have done much to restore a better humour.

BUSINESS ANNOUNCEMENT.

We have to announce to our subscribers and all others interested that a change has been made in the management of the Canada School Journal. Mr. J. M. Kennedy who has been business manager since the Journal began to be issued as a weekly retires to accept another position, and Mr. J. L. Robertson, having purchased a large interest, assumes from this date the entire charge of the business department. It is unnecessary for us to say a word in reference to either of these gentlemen, as both are well and favorably known to most of the patrons of the Journal. Mr. Robertson does not take hold of the work as a novice, as the Journal prospered under his hand for several years when it was being published as a monthly. Mr. Kennedy was unable to give his time exclusively to the work in consequence of various other engagements, but Mr. Robertson, we are glad to say, will devote all necessary time and attention to the management of the Journal. He is determined to make it a still greater success in the future than it has been in the past, and those who know his thorough business habits will know that he is the right man in the right place. All business communications addressed to him at the Educational Emporium and office of the Canada School Journal, 423 Yonge St., Toronto, will receive prompt attention.

Thin School.

Question Drawer next week.

In :esponse to reguests of teachers we commence in this i-sue the publication of the last Entrance Examination Papers. These will be continued in future numbers.

Apropos to the incident of the clerical advice referred to in another paragraph, it seems to us too high ground cannot be taken by the teacher in church or school against the vice of lying. Truth is one of the eternal laws of the universe. It is based on the very foundation of our nature. It underlies the whole superstructure of confidence between man and man. A community of liars would be a pandemonium. Law, order, business, social intercourse, everything that makes life worth living would be undermined and tottering. Once admit with the clergyman in question, that Jying may be justified under certain circumstances, and you make honor a myth, and morality a dream. Truth is dragged down from heaven and trampled in the mure of human expediency. It is but a matter of profit and loss, a thing of barter. If this, that and the other gain in money or personal salety, warrants the lie, who sha!l draw the liae, and where? Let Canadians ever and everywhere be taught that " nothing needs a lee."

The clergy take it upon themselves to exhort teachers to have a care in cultivaung such moral qualities as honesty, honor and truthfulness in their pupils. This is all reght and proper, and most teachers will gladly "suffer the word or exhortatuon." But alas, for poor humanity: Happily there are not many clergymen like the English Liberal one who lately addressed a circular to his parishioners in regard to their political duties, in which he distinctly advised the poor electors, enfranchised under the new act, if they had reason to fear loss of employment as a result of voting according to their convictions, to lie deliberately to their employers, rather than vote against their consciences. It is no wonder that the Bishop of Carlyle felt called upon to denounce such monstruus teaching, but it is ominous that a leading Canadian journal should be found half-condoning, half-apologizing for so grave a violation of the sumpler code of manly, nut to say Christian hunor. One of the benefits looked for by thoughtful men from the extension of the ballot is belueved to anhere in its educational power. It would be sad indeed if its first educational influence should be in the shape of a direct training in the meanness and cowardice of iying.

Normal School and other students will learn, we are sure, with much satislaction that the "Elementary Chemistry," in this and subsequent numbers, is being specially revised for the Journal by Dr. Karkland, Principal of the Normal School. These lessons were origmally prepared by Dr. Kirkland for The Sclinol Exammer, and arrangements have now been made to have them revised by the author, so that they will conform in every respect to the present requirements of the Normal School course.

We have received of late from subscribers an unusually large number of complaints of non-delivery of The Jounnal. These are explained in part by the fact that the paper was issued only on alternate weeks durmg the holidays (July and August). Our arrangements in this respect were fully announced in the JourNal, but the announcement seems to have escaped the notice of a number of subscribers. Apart from this, however, there seems to have been altogether too much arregularity in the delivery of the paper-an irregularity for which we are unable to account. We regret the fact and are chagrined and annoyed by it. We hope to be able to supply missing numbers in most cases, and the attention of the new business manager having been specially called to the matter he will spare no pains to insure careful and punctual mailing. He will be glad if every subscriber, who fails to receive his Journal duly, will notify him without delay.

We hear it rumored that the Minister of Education is about to authorize the preparation of a Sixth Reader for use in the Schools. It is to be hoped that this is not the case. In the opmon of many of the best cducators we have too many scrap readers already, and it would greatly promote both good reading , and the taste for good literature, if select, complete works of the best authors were substituted for at least the fourth and filth readers already used. 'o carry the process of the manufacture and use of these books further would be to fly in the face of the opinions of those most competent to judge and to choose retrogression rather than intelligent progress.

The latest educational report for Great Britain and Ireland shows that about 30 per cent. of the teachers are now furnished with residences free of rent. Next to a handsome increase of salaries we know of nothing that would be more effective in improving the status of teachers and securing and retaining good men in the profession in Ontario, than to provide comfortable residences in connection with the schools, especially in country districts where it is often very difficult to find suitable houses for rent. This circumstance alone has, no doubt, much to do with driving married men, and those wishing to marry; out of the profession.

Several partues have of late written to the Mail complaining of the exorbitant price charged for the new drawing books. It is said, and so far as we have observed, is uncontradicted, that these books for which ro cents is charged, could be produced for 3 cents, with a profit. If this is so the arrangement is a monstrous imposition upon the public, out of which the publishing company must make a large fortune in a very short time. According to the computation, which is certainly a moderate one, at least 400,000 of the books will be required per year in the schools. This makes a net gain of $\$ 28,000$ per year to be divided between the publishers and the retail dealers. As the latter receive only a fixed percentage on the selling price, the publishers of these books, like those of the readers, must have a decidedly "good thing." The same process will be repeated, we suppose, with new geographies, grammars, \&c., as fast as these are authorized. The fact is the
whole system which permits the Education Department to have relations with the publishers, and to make fortunes for them, as it eviden:ly can, at pleasure, is one of the worst conceivable. The wonder is that the intelligent people of Ontario can sanction it.

EDUCATION AND CRIME.

"Knowledge comes, but wisdom lingers." the laureate's aphorism is as true of the race as of the individual. The whole history of prisons on the one hand and public schools on the other proves it. The day is near when all intelligent people will look back with amazement, not unmixed with horror, on the manner in which the most enlightened nations, even in the latter half of the nineteenth century, dealt with their street waifs and juvenile criminals. To suffer thousands of orphaned, or worse than orphaned, children in every great city to grow up in sinks of material and moral filth, in training for lives of vice and crime, is a folly surpassed in depth and culpability only by the infatuation which hands over the youth convicted of his first offence to be branded with the infamy of a jail-bird, and made the constant associate of the most confirmed criminals. Is it any wonder that the prisons are crowded with inmates and the streets dotted with detectives? Is it any wonder that people everywhere are crying out that free schools and universal (?) education are failures, so far as their promised results in annihilating crime are concerned?

We know of no two agencies which to-day contain the promise and poizacy of so much good to society as the Industrial and Reformatory Schools which are springing into existence. They are but in their infancy as yet, but already they are accomplishing wonders. According to a recent report of the Inspector of these schools in Great Britain there were in 1884 no less than 6,360 youths in the reformatory schools, and 19,483 in the industrial schools. This means a total of nearly 26,000 boys and girls of the most destitute and dangerous classes being trained systematically for lives of honest industry and uscfulness.

But what of the results of this training? To what extent is it successful in cradicating the taint of evil too often born in the blood, or vagrant and vicious habits too often bred in the bone? It would be idle, of course, to expect either that the be ${ }^{-t}$. modes of treatment should be formed at once and applied, or that even the wisest treatment should be in all cases success. ful. Those who set out to be moral benefactors must lay their account for a plenteous crop of disappointments.

Nevertheless, the results as reported are encouraging even beyond the expectations of any but the most sanguine. Statistics show, for instance, that no less than So per cent. of those who are sent out from the reformatory at Elmira, N.Y., are permanently reformed, and go forth to lives of honorable industry. The farts presented in the British Inspector's report correspend with thes: in a wonderful manner. In regard to the refurma tory schools, we are told that of the $4,90.4$ boys discha:ged during the three years from 1881 to 1883 inclusive, " 79 per cent. were doing well; 2 per cent. were doubtful; 14 per cent. were convicted, and about 5 per cent. were unknown. Ot the girls, 72 per cent. were doing well; 9 per cent. were doubtlul; 6 per cent. were convicted, and 13 per cent. were unknown."
"In the industrial schools the exhibit was still more satisfactory. In the three years ending with 1883 the dismisstons were 9,569 . Of the boys thus discharged 81 per cent. were doing well, 3 per cent. were doubtfut, and about 5 per cent. were committed. Of the girls 81 per cent. were doing well, 7 per cent. were doubtful, and only 2 per cent. had been convicted."

Who can fail to see in these facts a new hope for humanity ? Surely these philanthropic men and women amongst us who are working, for the establishment of such institutions are deserving of every encouragement and aid. 'I'he British inspector says there is no better work for the purpose of industrial training than farming. Suppose that every boy and girl in our Canadian cities who is without homs, employment, or guardianship could be given a few years' t:aining in such a school and then transplanted to the wholesome atmosphere of ihe farm or mechanic's shop, can anyone doubt that a wonderful depopulation of our jails and penitentiaries would shortly follow?
Our space forbids us to pursue the subject, else we believe it could easily be shown that there is not an argument from the principles of political cconumy which can be urged in favor of the expenditure of public money in the support of schools and colieges which does not apply with increased force to such institutions as these. We do not know to what extent those who are engaged ir_{a} the work find their effurts hampered or frustrated by the extreme to which the doctrine of parental rights is carried in modern legisiation. There is, no doubt, need for considerable modification of the laws in this respect. Parental rights should be sacred only so far as parental duties are discharged. The drunken and dissolute should not have it in their power to entail misery upon their posterity and injury upon the State by training their offspring to follow in their own footsteps.

Succial.

ELENIENTARY CHEMISTRY.

CEIAPTDR II.
 siction 1.
 OXYGEN.

Symbul, O. Atomic Weight, 16 (15.96.) Molecular iFcight, $O_{2} 39$. pIREPARATION.
 possesses special interest, since it is that by which oxygen was first prepared by its discoverer, Priestly. When mercury is heated in contact with air to a temperature of about $450^{\circ} \mathrm{C}$, it gradually becomes covered with red scales of Mercuric Oxide, HgO , and when tiese red scales are exposed to a temperature of about $630^{\circ} \mathrm{C}$. they begin to be decomposed into oxygen and metallic mercury. Atoms, when liberated form molecules, and in order to satisfy Arogadro's Law, the molecule of mercury must consist of a single atom, aud the molecule of oxygen of two atoms, and since a single molecule of mercuric oxide does not yield au even number of atoms, we take two molecules and r. present the reaction by the following equation :-

85.j. Disanceiationsl.- Decomposition like that of mercuric oxide under the influence of heat is an example of what is known as dissociation. 'This term is applind to those cases of decomposition in which certain bodies are resolved at an elesated temperature into simpler bodies, which are capable of re-uniting and reproducing the original compound when the temperature is again allowed to fall.

Exp. 1.-A molecule of the white crystalline sulstance called Potassium Chlorate consists of one atom of Potassium, the symbol of which is K , one atom of Chlorine, Cl , and three atoms of $\mathrm{Oxygen}, \mathrm{O}_{3}$; henee its formula is denoted by KClO_{3}. Take a few erystals of this substance, put them into a test-tube, and heat, gently at first, loosely stopping the mouth of the test-tube with the thumb. The salt logins to spirt or "decripitate," then fuses, and on further heating appears to boil Plunge a glowing splint of wood into the tube ; the splint in mediately bursts into thame with a siight explosion, showing that oxygen gas has been produced. Now, if oxygen has been produced from potassium chlorate, that substance must have undergone a change. To put this to the test, take a few crystals of the chlorate, dissolve them in water in a testrtabe, and add a drop or two of a solution of si ver nitrate : the liquid remains clear. Dissolve a sulall quantity of the substance re. maining in the test-tube, and add a drop or two of silver nitrate solution; at once a white solid forms in the liquid, showing that the potassium chlorate has been chauged by heat. The substance remaining in the test tuhe when the oxygen is given off is called Potassium Chloride, KCl . The reaction which has taken phace is expressed ly the following equation:-

$$
\underset{\text { inopasium chlorate }}{2 \mathrm{KClO}_{i}}=\underset{\text { Potassium chloride }}{=} \quad \underset{\text { oxygen }}{3 \mathrm{KCl}_{2}}
$$

Fifarggranese Hpioxiole.

To obtain oxygen from potassium chlorate, greater heat is required than glass vessels generally lear, and it is, therefure, seldom adopted in practice, except when very pure oxygen is required. It is found, however. that of the potassiun chlorate is mixed with about one-fourth its weight of manganese dioxide, MnO_{2}, the oxygen is given off at a much lower temperature

Exp. 2.-Coursely powder 20 grams (nearly $\frac{3}{3}$ on) of potassium chlorate, place it upon a piece of paper, turned up at the edges so as to form a kind of trough, and by neans of this transfer the chlorate to a test-tube Gin. by will about half fill the tube. Place upon the sime paper about 5 grams of manganese dioxide and transfer it to the test-tube. Place a small piece of paper on the mouth of the tube to keep the thumb clean, and shake vigorously till the two substances are thoroughly mixed. Chiose a sound cork, very slightly larger tham the mouth of the test-tube, squecze it well till it becomes soft and clastic, and with a cork borer or rat-tail tile lore a hole through it so that a glass tube may be inserted tightly into it. Take a piece of glass tubing about 45 enti. meters (18 inches) in length, bend it in two places, one downwards about 5^{5} centineters (2 inches) from the end of the tube; the other should be upwards and as near the other end of the
tube as possable. The object of the second bend is to facilitate the escape of the bubbles of gas by giving them a forward and upward direction. The' downward hend should now with gentle pressure and twisting motion be inserted in the cork.
Take a large cork, hore a hole in it to fit the rod of the retort-stand, twist a piece of copper wire around the cork, leaving about eight incles of the end free. Twist the free ends of the wire around the test-tube, insert the cork in the tube and arrange for collecting the gas.
Take two quart and five pint bottles, fill two of them with water, and place mouth downwards, one on the shelf of the prenmatic trough, the other in the water in the trough, ready to take the phace of the one on the shelf. On gently heating the test-tabe, oxygen will readily be given off. When the bottle is full, slide it off the shelf with one hand, and with the other slide the full bottle into its place. Bring a ghass plate under its mouth while still under water, raise it ont of we water, and place it mouth upwards on the table. If any of the bottles have to be kept for a considerable time, they shou'd be placed mouth downwards in a saucer containing a little water, which will act as a valve to prevent the gas from escaping.
One ounce or 28.3 grains of potassium chlorate should yield 13 gallons, or nearly 7.55 litres.
Bt. EPreseanafienis.-In performing this experiment, the following precautions should be observed :-
(i) In the preparation of the mixture, care must be taken to avoid the atcidental intioduction of small fragments of organic matter. A small guantity of the oxygen mixture should be heated in a test-tube before using it on a large seale, as occasionally the manganese dioxide contains lamp-black and substances of kindred nature, the presence of wiich would lead to an explosion.
(2) When the delivery-tube is fitted into the cork, and the fork into the test-tube, blow down the upen end of the delivery. tube; no arr must be heard to escape: or must be seen to bubble out on moistening the cork.
(3) As soon as the oxygen begins to lie delivered, the heat leneath the test-tube should be so regulated that the evolution of the gas should be tranquil and uniform.
(4) The upperinost portions of the mixture should be heated before the lower, s.aich should be heated only after the uppermost parts refuse to gield any more gas.
(5) The test-tube should never be more than threc-fourths full, lest particles of solid matter be projected into the deliverytube.
(7) The test-tube should be inclined at anangle of about 45°, and must never be placed upright.
(7) When the process is to le stopped, the end of the de-livery-tube nust be inmediately removed from the water, otherwise the cold-water is lizble to go back into the hr testtube and break it ; and the test-tube must not be allowed to touch cold or wet objects, which would cause the hot glass to crack.

Hindaidie acts.

Exp. 3.-Mix one gram of potassium chlorate with half a gram of each of the following substances, viz: Manganese
dioxide, MnO_{2}, copper oxide, CuO , ferric oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, head oxido, PbO , zinc oxide, ZnO , magnesium oxide, MgO, sund, and powdered glass. Put these several mixturos into as many test-tubes, and into another test-tube put one gram of potassium chloratealone. Imbed the tubes side byside in sund toabout the same depth as they are filled within, apply a gradually inereasing heat, and by means of glowing splints frequently plunged into the different tubes, observe the difference in the readiness with which the oxygon is evolved from the several mixtures. It will bo seen that there is little ditierence among the first four tubes, and that the heat will probubly not be sufficient to cause the oxygen to be evolved from the other five. After all the oxygen has been given off; about half-fill the first tube with water and gently heat till its contents are dissolved, filter through a piece of blotting paper, and gently dry on the hat sand the bluck subituce remaining on the filter. It will be found to be marganess diovide, and that it is in the same state after the experiment, as at the commencement. The same is true of the next three oxides. These oxides may, however, undergo a temporary change. We know that NHO_{2} is capable of taking up more oxygen and, combining with a molecule of water to form manganic acid, $\mathrm{ML}_{2} \mathrm{MHO}_{4}$; and it is possible that when heated wit: potassium chlorate the manganese dioxide may absorb oxygen from this substance, and pass to the state of the higher oxide which is immediately decomposed, the oxygen being ovolved and the manganese dioxide returning to its original state. The same applies to the next three oxides, all of which are known to be susceptible of higher oxidation. The zinc oxide and maguesium oxide, on the other hand, which do not form higher oxides, do not facilitate the decomposition of the chlorate.

Exp. 4.-Take the first bottle filled, which will contain a little nir, but will suit well enough fur this experirent. Ob serve the physical properties of the gas; it has neither color, taste, nor smell. Plunge a glowing splint of wood into it; the splint bursts into flame as in the proceding experiment. Hold the glowing splint at different heights alme tho mouth of the bottle; it will not burst into flame. Jeave the bottle for a short time standing on the table with its mouth open; the glowing splint will show that the gas has not escaped. Turn the bottle mouth downwards, and hold the glowing splint near. its mouth; it will burst into flame. Hold the bottle in this position for a short time ; the splint will no longer burst into flame wher plunged into the bottle. The gas has escaped. O.rygen is, therefiore, heavier than air.

 dryiem.Exp. 5. - Cake a quart bottlo of oxysen, and aljust the denayratings spoun by holdug it against the outside of the bottle, so that the nttle metallic cup may be about 5 centimeties (2 inches) from the bottom of the butte, and put a hitle hime into it to absorb the mosture. Take a piece of phosphorns wot harger than a small pea, dry it carefully with soft bloting paper, and phace it on the lime in the cup. The phoshorus must not be touched with the fingers after it is dry, and it should be dreed
only when nbout to be used. Place the spoon in the bottle and touch the phosphorus with the end of a heated glass rod. The phosphorus burns brillimetly, and when the heat volatilizes it a It:sh of light fills the whole vessel, owing to the points of con. tact between the phosphorns and the oxygen being indefinitely increased, and the botile is filled with dense white funces. The phosphorus has combined with the oxysen, forming the white, snow-like substimeo called Phosphorns Pentoxide, $\mathrm{P}_{2} \mathrm{O}_{5}$. Tho molecule of phosphturns consists of four atoms, and the reaction is expressed as follows :-

Phosphoric Acid.-Pour a littis water into the bothe and shake it up; the phosphorus pentoxide dissolves in the water. Taste a few drops of the solution; it is execedinoty sour. Pour into it some blue l-tmus solution; it will be immediately reddened. A substance possessing these characteristics is called :m acid. The phosphorus pentoside has com:bined with a molecule of water thus:-

$$
\underset{\text { Phosphoras reuthoxilec. }}{\mathrm{P}_{2} \mathrm{O}_{3}}+\underset{\text { Water. }}{\mathrm{H}_{2} \mathrm{O}}=\underset{\text { yctaphosploric acia }}{2 \mathrm{HPO}_{3}}
$$

Exp. 6. Wash the lime out of the cup of the deflagrating spoon, and dry it by holding it in the thame of the spinititamp. Place in it a piece of sulphur about as large as a pea. Heat the spoon in the flame until the sulphar melts and begins to burn with a pale-blue almost invisible flame, then place the spoon in a bottle of oxygen; the sulphar burns with a much brighter flame, emitting a beautiful violet-colored li-ht. When the combustion is over, remove the spoon and observe, (1) the pungent suffocating smell of the gaseons combination of sulphur and oxygen which has been produced; (2) the seeming absenee of anything in the bottle, the product of combustion being im invisible gas; (3) that a hghted paper phungel intu the bottle will be unmedhately extinguished. The gas is called Sulphur Dioxide, SO \Rightarrow, and the reaction is a follows:-

$$
\underset{\text { Sulphur. }}{\mathbf{S}_{2}}+\underset{\text { oxykui. }}{20}=\underset{\text { Sulphur dïxidu. }}{2 \mathbf{S O}_{2}}
$$

4 Sunpinazroass Aceid. Pour a litlle water into the bottle and shake it up. Observe that the hand is drawn into the bottle, showing that a vacuum has been produced Taste a few drops of the water; it is somr. Pour a little of it into litmus solution in a test tube ; the solution is immediatoly reddened. This reddening of the vegetable bluc coloring-matter is called the "acid reaction." The gas has combined with a molecule of water to form Sulphurous Acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$, thus:-

$$
\underset{\text { Sulphur dioxide. }}{\mathrm{SO}_{3}}+\underset{\text { Waice. }}{\mathrm{H}_{2} \mathrm{O}}=\underset{\text { Sulphurous acid. }}{\mathrm{H}_{2} \mathrm{SO}_{3}}
$$

Exp. 7.-Cleanse the deflagrating spom from sulphur, by holdung it in the flame of the spirit-limp till no smell of sulphur is percenved. Select a few splints of wood charcoal ; place them. upon the deflagrating spoon, and aljust it in a botlle of oxygen, is in the first experiment. The charoal burns energetically in the gas, emuting much light and heat but little or no tlame; ob. serve that the product of combustion is an inodorons, invisible gas. Plunge a lighteal taper into the bottle; the taper is extin.
 formuris Ciarluna Diurete, CO., thas.-

$$
\underset{\text { Cartoon. }}{\mathrm{C}^{*}}+\underset{\text { Oxyben. }}{\mathrm{O}_{2}}=\underset{\text { Carbon aloxitice. }}{\mathrm{CO}_{2}}
$$

14. Carlbonnic Acial. Pour ahout half a tumblerful of water into the bottle allil shake it vigoronsly: The hand will be drawn in, but not as forcibly ns in Exp. 6 ; carbon dioxide is only moderately soluble in water. Pour some of the water into a g!ass and taste it; it is slightly sour. Pour some of it into litums solution ; the solution is turned a dark-red color. The carbon dioxide has combined with the water, forming Carbonic Acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$, thus:-

$$
\underset{\text { carbon dowide. }}{\mathrm{CO}}+\underset{\text { Water. }}{\mathrm{H}_{2} \mathrm{O}}=\underset{\text { Carbonic ncild. }}{\mathrm{H}_{2} \mathrm{CO}_{3}}
$$

4\%. Wieanhistg of trent. Pour some clear lme. water mite the ceathome aed reserved from the last experment; the elear humed becomes milky, mideatuog the presence of carbone ated, as will be hereafter explaned. Lime-water is sand to be a "test" for carbon dixade or carbume ache. A test is a material for some experiment metemded to bratu cut a property
 the presence of that body many be detecten.
48. Drimina af manne onvgern:-In the preeeding experiments the products of combustion in oxygen when combued with water formed acids. The name oxygen (from the Greek nent, sour, and geman, I produce), was given by Lavoisier, under the aistaken impression that this element contained a principle common to all acids. This is now known to be an error. Later researches have brought to light a mumber of compounds containing lydrogen possessed of acid properties in which no oxygen is present. Nevertheless the name was not ill-chosen, for of the many hundreds of acids known there are only about six which do not contain oxygen,

19. Combinstiona of Sodiauna ín ©xygen.

Exp. 8.-Take a small piece oí metallic sodium, scrape it clean with a knite, heat it in the deflagrating spoon till it me'ts and begins to burn, then plange it into a bottle of oxygen; it will burn with great brilliancy and with a bright yellow diane. 'A white solid called Stulium Oxild, Na..O, is formed. The reaction is-

$$
\begin{aligned}
& 2 \mathrm{Na}_{2}+\mathrm{O}_{\mathrm{o}}^{2}=2 \mathrm{Na}_{2} \mathrm{O} \\
& \text { sodium. } \\
& \text { Oxygen. Sodlum oxide. }
\end{aligned}
$$

 little water to the bottle, shake it up and tiste a few drops of the solution : it does not taste sour, but has a peculiar nauseous taste, and is soapy to the touch. Add a iittle to blue litmus solution; it is not reddened, but on the contrary hecomes rather darker in color. Dip a glass rod into hydrochloric acid, and with it redden some blue litmus solution. Pour into this some of the solution of the sodium oxide; the red solution at once becomes blue. The solutivn of sulium oxide acts upon vegyetable culurs in just the "unpusite way from acid., and well, in fact, neutralize their action. It is called an allani, and substances like this which will restore the blue color of reddened litmus are said to have an "alkaline reaction." The sodium oxide has combined with a molecule of wator, forming o. sub-

[^0]stance called Sindium IIydirucide or Sulime IIydiate, NaOHI, better known by tos common iame of Canstic Sinda, thus

Similarly, if we burn the motal potissium in oxygen, we obtain Putassium Oxidle, $\mathrm{K}_{\mathrm{E}} \mathrm{O}$, which combines with water, to

Dxygen.

Exp. 9.-Murn 10 or 12 centimetres (4 or 5 ithelies) of Magnesium ribbon in oxygen. A white solid called Maynesium Oxide. MgO , is formed; thus:-

$$
\underset{\text { sagnestum. }}{2 \mathrm{Mg}}+\underset{\text { 0xyben. }}{\mathrm{O}_{2}}=\underset{\text { yaxar.esiun oxide }}{2 \mathrm{MgO}}
$$

 small quantity of water into the bottle containing the mannesium uxide and shake it vigorously; it dous not seem to disenlve in the witer. Aild sume of it to hat and rehened litmas solutimes; it has apparently neither acidnor altaliue reations. Dip a pieve of white bluttin! paper in redlened litmus solution, put it into the liquid and leave it for some time ; it becomes blue. Hallf fill a test-tube with witer aud ady to it une drop of nitric acid ; the solution will reatily redden bue litmus priper when dippen into it. Pour the solution into the bottle in which the magnesium was bumtaml shake it vigorously; it will no longer wedden either blue litmus paper or blue litmus solution. The aeid has been nextralized. A body posicossing the characteristic of nculraliziny an acid, cither partly or entirely, is called a base. An allali is only a base, which is freely soluble in water. Acids and bases will be fully discussed in a future chapter. It may be stated hese that the characters of taste and reaction belong to all well-marked acids and bases which are soluble in water; but they do not belong to all the acids and bases. In this case a molecule of water has combined with the magnesium oxide to form Magnesium Hydrate, $\mathrm{Mg}(\mathrm{OH})_{\mathrm{s}}$; thus:-
 (Dxyctern.
Exp. 10.-Take a piece of thin wateh-syring, which may be obtained from any watchmaker, heat it in the flame of a spiritlamp till it is red-hot, and allow it to cool; it will then have lost its elasticity. Coil it into a spiral around a glass tube, clean one end with a file, twist it round a bit of charcoal, and fasten the uther end to the cap of the deflagrating spoon, and plunge in into a quart bottle of oxygen, on the bottom of which there is at least an inch of water. The burning cork heats the steel to redness, which then combines with the oxygen burning brilliantly, fomming Magnetic or Black Oxide of Iron, $\mathrm{Fe}_{3} \mathrm{O}_{1}$, aul throwing out abundance of sparks. The sparks are red hot carkon contained in the steel, which also combine with the oxygen, forming carlon diuside. The uxidized iron falls to the bottom in black globules, which are so hot that they aro apt to melt into the ghass and crack it, unless they have to pass thro":gh a considerable depth of water. The reaction is :-

$$
\underset{\text { Iron. }}{3 \mathrm{Fe}}+\underset{\text { Oxygen. }}{2 \mathrm{O}_{2}}=\underset{\text { Magnetic oxide of iron. }}{\mathrm{Fe}_{3} \mathrm{O}_{3}}
$$

 and examine the ma in the preceling experiments, They io not produce an acid with water under any conditions, nor do they exhibit may alkaline or basic characters, and may therofore be classified as incliferent or neutral oxides.
55. Fenrric axide.-Ohserve that the inside of the bottle becones covered Juring the experiment with brick-red oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, which is called Verric Oxide. This ferric oxide is insoluble in water, cand, thercfore, camot be tested with litmus. It will, howevor, noutralize ncids, and is, therefure, a base.
56. Dxieilew.-These experiments show that there are three kinds of oxides:-
I. Acid produciuy oxides or Anhyllitides.-These oxides combine with water to form actel, or substances usually p ensessing a sour taste, wheh turn blue htmus red, and which neutralize basic oxides, forming aclass of compounds termed salls. All tho non-metallice clements, with the exception of hydrugen and dorine, form one or more compounds with oxygen, which when united with water, yeld acele, and in many cases intensely powerful acids. The following are of this chass:-
$\left.\begin{array}{c}\text { Phosphorus } \\ \text { pontoxide, }\end{array}\right\} \mathrm{P}_{\mathrm{y}} \mathrm{O}_{3}$ yiclds with water Metaphosphoric acil, HPO_{3}. pontoxide,
Sulphur dioxide, SO_{2} "
" Carbon . ${ }^{\circ} \mathrm{CO}_{3}$ " Carbonic " $\mathrm{H}_{2} \mathrm{CO}_{3}$.
II. Indifferent Oxides.-These oxides are indisposed to enter into combination with: either acids or bases. They usually contain more oxygen than the basic oxides, a portion of it being loosely combined, and given off on heating. The following belong to this class :-

> Manganese dioxicio, MnO_{2}.
> Black oaide of iion, $\mathrm{Fe}_{4} \mathrm{C}_{4}$.
> Lead dioxide, PbO_{3}.

IIL. Basic uxides:-Many of the metals, by their union with oxysen, give rise to oxides the characteristic property of which is their power of neutralizing acils, the eby forn ing salts Many of them combue with water to form a class of compounds called Hedroxides or Hydrates. The following are of this class :-
Sodium oxide, $\mathrm{Na}_{3} \mathrm{O}$, yields with water, Sodium hydrate, NaOH .

Magnesium oxide,	Ifgo,	،	"	$\left\{\begin{array}{c} \text { Magnesium } \\ \text { hydrate, } \end{array}\right\}$	$\mathrm{Mg}(\mathrm{OH})_{3}$.
Ferric oxide.	$\mathrm{Fe}_{3} \mathrm{O}_{3}$	"	"	Ferric hydrate,	$\mathrm{Fe}_{3}(\mathrm{OE})$

gen.

From Mangances Dioxide.-By heating the manganese dioxidz to redness in a piece of gas-pipe or gun-barrel, it gives off the one-third of its oxygen ; thus:-

From Manyanese Dioxide and Sulpharic Acid.-By gently heating manganese dioxido and sulphuric acid when manganese sulphate and water are formed, and half the oxide which the dioxide contained is disengaged ; thus:-

[^1]
58. Teats Tor Oxygen.

(1). Exp. 11.- Fill a test-tube with oxygen, pour into it a small quantity of a strong solution of caustic potash, and add an equal quantity of a strong solution of pyrogallic acid. Cut a piece about the size of a cent from an old rubler over-shoe, place it on the mouth of the tube to protect the thumb, and shake vigorously; the solution in the tabe becomes intensely broon. This test will indicate the presence of very small quintities of oxygen. Invert the tube in water and withdraw the thumb ; the water will rush into the tube and entirely fill it, showing that tho solution has absorbed the oxygen.
(2). Exp. 12.-Put n few bits of clippings of sheet-copper intc a test-tube. Add a small quantity of dilute nitric acid; an efforvesence begins, and the tube is filled with red vapors. These soon disappear, and a coloriless gas comes over. Allow this to escape, and then pass the gas into a bottle of oxygen standing mouth downwards on the shelf of the pneumatic trough; immediately red vapors are formed which the water soon absorbs. The colorless gas is uitric oxide, NO, which unites with the oxygen forming higher nitrogen oxides; thus :-

$$
\begin{aligned}
& \text { 2NO }+\underset{\text { OXyben, }}{\text { Oitrowen peronide. }} \\
& \text { Nitrie oxide. } \\
& \text { SUMMARY ANI ADITIONAL, FACTS. }
\end{aligned}
$$

599. ITistedry.-Oxygen was discovered by Priestly in 1774, who, heating merenric oxide with a burning glass, decomposed tho oxide into oxygen and metallic mercury. Scheole, a Swedish apothecary, obtained it independently a year hater. It was liquified by Pictet, of Geneva, in December, 1877, under a pressure of 300 atmosipheres and the temperature produced by the evaporation of liquid carbon dioxide in a vacuum.
600. Ancearrrence.-It is the most abundant and most important of all the elenents. About one-fifth of the atmosphere consists of free oxygen; noless than ejght zinths of water is formed of the same gas. It makes up three-fourths of our own bodies, not less than four-fifths of every plant, and about onehalf of the solid rock. Indeed, it seems to be the preponderating element of the globe.
601. Reroperties.-Oxygen is a colorless, odorless, and tasteless gas. It is a little heavier than air, its specific gravity being $1-1056$, air being taken as unity, and 16 when hydrogen is taken a ' the unit. It is only slightly soluble in water, 100 volumes os which at ordinary atmospheric temperature dissolvo about three volumes of water. On the solution of this small quantity of water depends the existence of fishes and other forms of animal hife in the waters of rivers, lakes, aud seas. Fishes pass water continually through their ofills, in which the oxygenation of their blood takes phace.

Oxygen is a great supporter of animal life. Pure oxygen, however, differs from dilute oxygen in its effects on life. A small animal placed in a vesel of oxygen soon dies of excessive. excitement produced by a too rapid oxidation of its blood. It is equally necessary to vegetable life, being needful to the development of the buls of maturer plants, and also being abscrbed by their roots. Hence, if much earth is piled about a healthy tree, the tree soon sickens; while, on the contrary, if its roots find their way into a drain, the tree grows better than ever.

In all cases in which bodies bum in oxygen, the sulstance burnt combines with oxjgen to form new substances, and the Hat and light developed are a consequence of this union. 'the weight of the proluct corresponds exactly with the weight of the body burned, plus the weight of the oxggen consumed. The combination of the or more bodies, then acompaniod but the devolopment of heat and light is termed Combustion, the body burnt being the combustile, and the body in which the buning takes place the supporter of combustion. These are, however, merely relative terms, as will be shown when combustion is discussed.

The combination of oxygen with other elements is termed oxidation. In all eases of oxidation heat is developed, but it depends on the rapidity with which the oxidation is effected whether light is also prodused. Thus, when iron is burnt in oxygen, the combination of the two clements is rffected with great repielity, a large amount of heat is developed within a short space of time, and the product of combustion becomes incamlescent. When, however, iron oxidizes or rusts slowly, no light is produced, although more heat is developer that when the same weight of iron is burnt in oxygen, the oxide, $\mathrm{Fe}_{3} \mathrm{O}_{4}$, leing formed in the latter, and the oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, in the fromer case.

Oxygen combines with all the non metallic elements, except fluorme. All metals combine wath oxygen. When metals are easily soluble, as is the case with magnesium and aine, they burn with a bright flame in oxygen. A few metals such as gold and platinum, camot be made to unite directly with oxygen, even at the highest temperatures. The oxides of such metals can, however, be prepared by indirect means.

Oxygen readily combines with oils, woollen refuse, greasy tow, monst hay, de., the beat developed by their slow oxidation being to a great extent retained, as they are bad conductors of heat, until finally it is sufficient to inflame them. This is termed Spmontancous Combustion, and it is one of the most common sources of fire, both in manufactories and on board ship, and in hay-ricks in which the hay has been put up - damp, for moisture greatly assists the process of slow combustion.

By oxidation earth, air, and sea, are purified from co.ttamination; noxious vapors and pestilential effluvia being destroyed by a process of burning, more slow indeed, but as real as takes place in a furnace. The offensive impurities which flow into rivers and lakes are oxidized by the dissolved gas, and thus the waters are kept pure.

609. Trests.

(1) A ghowngy splint of woud bursts into flatme when planged into oxygen, and the purity of the gas may be roughly estimated by the degree of sharpness with which the wood bursts into flame.
(2) Pure oxygen turns a solution of pyrogallic acid in strong potash brownish-black, and is completely alsorbed by it.
(3) With nitric oxide, oxygen gives red fumes of nitric oxide.

Exiantination 引apcts.

ILIGH SCHOOL ENTRANCE, JULS, 185.

ENGLISH LITLERA'PURE.

Examiner-Johi Srath, B.A.

Nors.-100 marks constitute a fall papor. A maximum of 15 marks may also be allowed for composition, and of 5 marks for writing and neatness.

CASADIAN HEADERS.
Lives of great men all romind 118 , We can makes our lives sublime, And, departing, leavo bohind us Footprints on the sands of time;

Footprints that, perhaps, anothor, Salling o'or life's stormy main,
A forlom and shipwrecked brother,
Seeing, shall take lieart again.
Lot us, then, bo up and doing,
Withat heart for any fato;
Still achieving, still pursuing,
Learn to labor and to wait.
(a) Why is the poem to which these stanzas belong called "A Palun of Life"?
(b) Explain "sublime," and illustrate by an example the meaning of 11.12.
(c) As what are "time" and "lifo" here represented? Exphain the use of "solemu."
(d) What is roally meant by "a forlurn and shipwrece ed brother," and "take heart again"?
(c) How could the "footprints" produce this effect?
(j) Express by a clanse the meaning of "then."
(g) Show by the preceding part of the poem what is meant by "up and doing" and "With a heart for any fate."
(1) Distimguish "achieving "and "timshing." Why is "still" repeated:
(i) Give m your own words the meaning of 11.11 and 12.
(j) Name the emphatic words in 11 . I.f, and show where the patises should be mado in II. 1-4. What feclings should we express in reading ll. 9.12?
(k) What lessons, for our guidance in life, may we learn from "A Psalm of Lifo"?
2. The Town Pump and the Cow! Such is the glorious partuership that shall finally monopolize the whole business of quenching thirst. Blessed consummation! Then l'overty shall pass 'wiy from the land, finding no hovel so wretched where her squalid form may shelter itself. Then Disease, for lack of other vietims, shall gnaw his own lieart and die. Then Sin, if she do not die, shall lose half her strength. Then there will be no war of houscholds. The husband and the wife, drinking decp of peaceful joy, a calm bliss of temperate affections, shall pass hand in hand through life, and lio down, not reluctantly, at its protracted close. Tu them the past will be no turmoil of mad dreams, nor the future an eternity of such momonts as follow the delirium of a drunkard. Their dead faces shall express what their spirits were, and are to be, by a lingering smile of memory and hope.
(a) Give for each of the following a meaning, which may be put, for it in the foregoing passago: "Monopolize," "consummation", " "squalid," "for lack of other victims," "war of households," "a calm bliss of temperate affections," "its protracted close," "no turmoil of mad dreams," "the delirimm of a drunkard." [In answer to the guestion, tho candedate shoula write duwn sinily the ex pressions he proposes to substitute, without making any further explamation.]
(b) Whai is the real object of the lesson to which this pass:go belongs?
(c) Explain how the "consummation" will produce each of the effects described.
(d) Why dues Hawthurne add "not reluctantly"?
(e) With what are "turmoil of mad dreams" and "delirium" contrasted?
(f) Explain fully the meaning of the last sentence.
3. Quate frem the lessons you have memorized a passage containing one or more noble thoughts.
4. Reproduce in prose "'The Burial of Sir John Mroore.'

COMPOSI'LION.

Examiner-J. E. Hovasos, M.A.

Note. -70 marks constitute a full paper. A maximum of 5 marks may also bo allowed for neatuess and writing.

1. Combine the following elements so as to form complex sentences:
(a) Parrots nbuand in the forests of South Americi. I. theso forests there is summer all tho year around. In these forests the leaves are always green. In these forests the flowers are always blooming.
(b) Tho bison is found in North America. Tho bison is also found in the nurthern parts of Enrone and Asia. In America the bison is commonly, but orroneonsly, called the butialo.
2. Express in your own words the meaning of the following :
(a) I dare do all that may become a matn; He who dases do more, is none.
(b) All alono by the sido of a pool A tall man sat ona three-lugged stool, Kicking his heels on the dowy sod, And puttugg together his reel and his rod.
(c) Only in slecp shall I behold that dark eye glancing bright;

Only in sleep shall hear again that step so tirm and light:
(And when I raso my dreamng arm to check or cheer thy spued,
'Than must I, starting, wake to feel-thou'rt sold, my Irab steed.
3. Write a letter to a friend, describing how you spent Arbor Day, or the Queen's Birthday.
4. Correct the following :
(a) He is seldom or ever hero.
(b) Has either of your three friends arrived?
(c) I shall neither depend on you nor on him.
(d) Neither riches nor beauty furnish peace and contentment.
(e) Our mutual friend arrived yesterday.
(f) The winter has not been as severe as we expected it to have been.
5. Expand the following sentence into a paragraph :

William Toll, the Swiss patriot, having pierced with an arrow the apple placed (for a mark) upon his son's head by the Austrian tyrant, dropped a second arrow ; and being asked its purpose, replied that it should have found the tyrant's heart if ho had harmed his son.

ARITHMETIC.

Examiner-J. E. Hobason, M. A.
Note.- 100 marks constitute a full paper. A maximum of 5 marks may be added for neatness and writing.

1. Express in words : 17089053.005004, $\$ 705.637$, and MDCCC. LXXXV.
2. Simplify:

$$
i^{7}(3 \underline{t}+913) \div 1_{1}^{1} 5 \text { of } \frac{£ 15}{16 \mathrm{~s} .} \frac{10 \mathrm{~s} .}{2 \mathrm{~d}} \mathrm{~d} .
$$

3. Find the value of $17.0 \ddot{5} \ddot{4}+4 \dot{8} 3 \dot{\overline{5}}+640 \dot{8}$.
4. Make out a bill of the following goods :

23 yds. cotton © 11c. ; 13 yds. gingham (a) 23c.
25 yds. flannel © 37c. ; 181 yds. tweed © $\$ 1.20$.
$12 t$ yds. serge © $\$ 1.75$; atity yds. broadeloth © $\$ 4.50$.
5. A merchant purchases sugarat $\$ 7.50$ per cwt. ; at what price per pound must he sell in order to gain 10% ?
 amum.
7. In what time will any sum of money double itsulf at 6% simplo interest?
8. $\$ 1,200$ is to be divided between two persons, A and B, so that A's share is to ll's sharo as 2 to 7.

9, At what two times between three and four oclock are tho hands of a watch equally distant from the figure III ?
10. A man having $\$ 720$ spends a part of it, and afterwards received $7 \frac{1}{2}$ times as much as he spont; ho then had $\$ 1,305$. How much did he spend?

WRI'INGG.

Examiner-J. E. Hodgson, M.A.

1. Write oach of the following letters, or combinations of letters, threo times :

$$
l, u, m, c h, s p, w, d, W, H, Q .
$$

2. Write tho following statza:

The curfew tolls the knoll of parting day, The lowing hord winds slowly n'or the lea, Tho ploughman homeward plods his weary way. And loaves the world to darkness and to mo.

DRAWING.
 Examiner-John Seath, B A.

Note. -25 marks constitute a full paper.

1. - Draw a horizoatal line 1 inch long, by the judgment of the oyo alune. Indicate its divisiou into lalf inches by a short, upright line; the division of the half inches into quarter inches by shorter upright lines; and the division of the quarter inches into eighths of inches by faint duts placed on the line.
2. Draw two horizontal lines across your paper, about one inch apart. Beginning at the luft lay off towards the right, an oblong two inches in lergth ; skip $\frac{1}{8}$ inch, and lay off a spuare; skip $\frac{1}{8}$ inch, and lay off an oblong 3 inches in length.
(a) Within the first oblong draw the outline of a portion of any picket fence.
(b) Within the square draw the side view of a tea cup. Place the handlo on the right side of the cup and draw two horizontal borders, each $\frac{1}{8}$ inch wide across the top-one nu.tr the wop, the other near the bottom.
(c) Within the second oblong draw a border, composed of a fourpointed star repeated three times horizontally.
3. Draw a circle two inches in diameter, and within it dr.w une of the following : an octagon, it hexagon, two interlacing equilateral triangles, the interlacing bands being $\frac{1}{8}$ inch wide.
4. Drave the following:
(a) An oval, having its diameters respectively 1 and 2 inchesthe longer diameter being horizontal.
(b) An ellipse, having its damaters respectively 1 and 2 inchesthe longer diameter boing horizontal.
(c) A clover leaf, using the diameters of the ovals as construction lines.
N.B. The ruler may bo used, if necessary, to draw the long hurizontal lines across the paper in question No. 2, but for no other purpose.

Gractical Beparment.

DRAIVING.

BY WILLIAM BURNS, DRAWING MASTER, HIGH SCHOOI, BRAMPTON.
(The Fiditot of this Department will bo ghad to answer questions for information addressed to him in care of the Scuool Jovis.st.)
I.

Naturally the subject with which we must commence is the straight linc. First explain to the pupils the meaning of the terms line and straight, curved, crouked or broken, horizontal, vertical, oblique, right oblique, left oblique as applied to lines; not morely by verbal illustration, but by a pictorial represeatation on the black board. Then test accuracy of this hnuwledge by a dictation les on -as an accurate knowledge of the terms used is the foundation of all correctuess, especially in eximination work. The first thing to be noted in tho drawing itself is, that all lines should be drawn from left to right. Show this upon the board by assuming any two points at a distance of say 2 feet apart and join these by a straight lue. Before drawng the line place the chalk over the left.hand point, then keeping the eyo fixed upon the point to be reached try whether you could strike that point, without actually drawing upon
the board. Probably one or two attempts will be required at first. Eren whon you hato drawn a straght line lut it be marhed very lightly at first, and afterwards strongthened in when seen to bo accurate. These remarks apply equally to penen drawing, 'et I every lane be tried first, then lightly dawn and only strengthened in when the figure, whether simple or olaborate, is quite completed. Hawing crawn one straight line in the above positions, next let a series of lmes bo drawn parallel to each other. In ordur to get these of equal length, draw lightly two benminge lines ono on each side-then, suppose the question is to draw tive parallel lines, divide these lines into five equal parts, and draw lighty the lines joming tho puints, and after erasugg lines of construction, strengthen in the lines containing answer. Adopt this plan in every picture. In order to prove the parallelism of these lines, lot the pupil hold the paper obliquely so that he looks down the paper, and the least irregularity will be apparent ; it is obviously better to let the pupil discoser his own crrors, than for the teacher to point them out. As an exercise in parallel lines the pupil may draw a picture of an ordinary diour with its four panels.

Next draw two lines ten thmes longer than their brealth; make tae ands to represent the broken ur turn ents of slips of wood or paper. Then supposing one of these to be laid wer the other, it is plain that a purtiva of the luwer will be misible. show the p"pils how to represent thas by erasure of hadden portion, bat be sure that the full line is drawn at first, otherwise there wall be an incorrectness in the work. This exercise may easily be extended, so as to show three or more slips crussing one another, at rightangles, then obliquely. Extend this idea by takirg a slate, and asking the pupils to draw ontline of it. Hating this done correctly, hold up before the class troo slates, so that a portion of one is covered by the other. Let these bo drawn first as if buth were visible, then let the picture be completed as seen by the class. Thus we have obtained even by straght lines only, the most anterestang kind of drawing for the pupnls, namely, object drawing, and have shown practically the use of the study. A picture of a window with rectangular panes of glass, and afterwards of one with rhomboidal panes will furnish a good lesson in straght lme drawng. In combination with these practical drawings the use of simple scales may well be taught Suppose we notice one of the windows of the school-room. Ask the class its size; tell them to draw it. You will naturally iret tho reply that the piaper is too small. Then you can easily explam that by representing every foot of the window by an anch on the pajer, a picture is produced simiar in every respect to the oloject before the class Hence nue inch on the paper will
 sumple scales can be explatned by any intelligent teache-. As an excrease the following question may well bo given: Draw picture of portion of common picket fence with straight upright pickets and horizontal bars. Let the picture be 6 inches long and let the pickets be cach $\frac{1}{2}$ inch wide with $\frac{1}{2}$ inch intervals, height 4 inches and rails $\frac{1}{2}$ inch from top and bottom and also $\frac{1}{2}$ inch wide. Any earor in such an exercise is easily seen by the must experienced eye. Such questions will train the pupil in correctness of work. Practical examples may be indefintely multiplied ; as, an ordinary gate, a pair of shutters, and numerous objects of common occurrence.

Educational fotes amd Alus.

The Shelburne School Trustees have requested the Council to take advantage of the amendmont to the School Act, which permits the election of sch onl trustees at the same time aud place and in the same manner as the dlection of municipal councillors, and to make arrangements accordingly.

Brantford Ladies' Collego is arranging its courso so as to coror the ground of the jumor and semur matriculation examinations in the L'inisersity of T'Uronte.
Miss luessio E. Hahhata, the newly apponted prampal of the Kindergarten Departmuat of the Toronto Normal Subul, is at graduate of Cook Comnty Normal School, Illmota, aud comes with tho recommendation of Culonel Darker, the somewhat celobrated Principal of that sehool.

A college of muste is about to be established at Parts ann a comprehersivo plan. There will be, bustes a free school of musac, it theatre capable of holdag 2,000 persons, concert and lecture halls, a dancing school, an exhbition of painting, scupture and archatecture, \mathfrak{a} free school of painting on chma, an artiats' club, in which gamblug will be stretily prohibited, an mmense fencmg hall, billiard rooms, conservatory, shooting gallery, library and roading rooms, and finally a wing containing forty small suites of apartments, which will be reserved for the foregn mumbers of the club.

Mr. John Houston, formerly teacher in the London Collegrate Institute, but lattorly at Purtave la Prairie, has recenved tho offer of the English mastership in the Kingston Collogiate Institute.

Froan the ammal report of the Tuspector of Public achools of the County of Glengarry for the year 1884 it appearo that the higheat salary paid to a male teacher was $\$ 550$, the averago being $\$ 336.41$. and lowest $\$ 180$; highest paid to femalo teachers- $\$ 330, \$ 32 \mathrm{i}$, $\$ 320$ and $\$ 300$, avorage $\$ 3190$, and luwest $\$ 100$. Thereate in Glengarry County six brick schoul-houses, thirty frame, and thirty-seven of log ; many of the latter are clapboarded, lathed and plastered. Tho following facts show some of the difficulties with which teachers in that county have to contend : \boldsymbol{T} 'The total number of pupils' names entered on the school registers during the year was 4,429 (2.38:) boys and 2,044 girls), with a yearly averago attendance of 1,80 is. Of the whole number enrolled, 423 attended less than 20 days, $90 t$ betteen 20 and $\overline{50}$ days, 1,201 between $\overline{5}$ and 100 days, 1,09S between 101 and 150 days, 681 between 151 and 200 days, 119 between 201 and 222, the number of teachng days in the year.

Mr. Peter Campbell, M.A., Toronto, has been apponted Principal of the Hamiton Cullegrate Institute rice Mr. Dickson, now principal of Upper Camada Colloge.

Mr. G. W. Vanslyke, late Head Mastor of thu Ingersull Public Schnols, has accepted a similar position in the Woodstock Public Schools.

The last report of the committeo of the British Privy Council of Great Britain, on Education, contains the following statistics :Number of pupils on tho books, $4,337,321$; averago attendance, $3,273,124$. At the ex mamatoms, $1, \overline{0} 34,624$ out of $2,342,521$ passed without failure many of the three branches prescribed - realing, writug, and arithmetic ; 90.78 scholars out of every 100 passed in reading, 82.42 in writing, and 77.03 in arithmetic. With the increase in pupatation, whath may bo estumated at 1.30 , educition dues mure thats merely huld lts ursn. The number of schomilhuses nacreased by 3.45 per cent., the scholars on the rolls by 1.5 per cent, and the aver,ge attendance by 4.67 per cent. The Govern. ment grant is anceatsed by $£ 200,000$, or about $\mathbf{d} \ddagger \mathrm{d}$. per head. The average salary of a certhed mastor, whoh was tyj an lotio as aus £119, and that fur selivol unstresses hats risun from fis un 18i0, t., £:2 in 1884. Abuat 30 per cent. of these teachers are alsu provided with residences free of rent. In Scothand a school master's salary was, in 1870, £102, now it is $£ 13 \overline{3}$; school mistress, $\mathfrak{£} \overline{5} \mathrm{C}$ to £66.

The high schools of Massachusetts are fitting thirteen hundred young men for college every year; the primary sehools are fitting more than one hundred and thirty thousand children for tho training of the higher schools. Interesting as it is to consider the regiment that ammally marches into college, it is of greater moment that an entire army of little folk marches annually onward to the higher grades. - The American I'eacher.

Leamington Public Schuol sent up three pupils to the recent Entranco Examinations, ahl of whom passed. Of six third-chass candidates, three passed.

Dr. Jack, who has been for many years President of the University of Now Brunswick, and Professor of Mathematics in that institution, has sesigned.

Mr. Charles D. Ruberts, M.A., fur sume time editur of The Wech, has been appointed to the Chair of Enghish Literature in King's College, Nova Scotia.

TEACHLRS' CERTIFICATES.

Thmo Clasy Non.Phofbssional Cemthficatey.
16i). Candidates fur a 'lhird Class Non-Professional Tuachor's
 fur Furm I. of the High Sclavul Cuurse of Study, viz:-Nos. 1-10, 10,20 , and 21 , with an option between 15, 17, 18, and group 12 mind 14
161. When a Third Chass certificato has expired, the holdor thereof may, on passing the Departmental examination, obtain a renewal of the same for a period of threo years, subject to attendance at a Connty Modol School, at tho discrution of the County Board of Examiners.
162. In the case of such applicants for a renowal of Third Class Certificates as take the minimum number of marks in each sulject, but fail in the agureg.te, a bonus not oxceeding 200 marks for olficiency and aptitude in teaching will be allowed on the roport and at the discrotion of the Cuunty Inspector.
163. A holder of a Third Class Certiticate who passes the NonProfessi mal examination for any certificate of a highor grade shall, on application to the Cuanty Buard of Examiners, and on proof of his etficiency as a teacher, be entitlod to have such Third Class Cortificate extended, by undursement, fur a pertud nut uxceeding three years from the date of such exammation, but no certificate sidall be catended for a longer purtod thath threo years without re-oxamination.
164. In ceso of ath emergency, such as a scarcity of teachers, or fut any other specaal cause, Thard Cass Certificates may be oxtended liy the Ministor of Education, on the joint request of any Buard of 'l'rustees and the County Yaspector; but all such extonsions shall bo limited to the school unt whosu behali the request is made.
160. A tomponary certificato may be given by the Comnty Inspector under the couditions stated in regulation ol (14).

Srconi Class Nons-Pbopessional. Cebtificates.
16i. C.undadates for a Second Class Non-Professtonal Teachors' Certiticate will be exammed in the followner subjects as prescribed for Form II. of the High Schoul Cuurse of Study, uxcepting Ancient History and Gempraphy, viz:-Nos. 1-10, 13, 21, with an option botweon 15, 17, 18, group 12 and 14, and group 19, 20, and 23 . Candidates who do not take the commerctal option for Socond Class, shall pass the Thard Class Non-Professional exammation m Nos. 19 and 20. Unly. such cindidates as pass the Second Class Non-Professional oxamination will be eligible to write for First " C ," but botn exammations may be taken the same year.

Filst Class Non Phofrisional Cbrtificates-Ghadr C.
16i. Candidates fur a Furst Class Nun Prufessiomal Certificate, Grade C, will be examined in the following subjects as prescribed for Form III. of the High School Course, viz.:-Nus. 3, 4, 5, 6, 7, 9, 10, 11, 13, and 14 of Form III., and also 12 of Furm II. At the ex.anmativa an Buhaty, candidates will bo expected to deseribo and classify it submitted specimen of a Canadian flowering plant.
168. Candidates who, in addition to the Departmental Second Class Non-Professional examination, have passed the junior matriculation exanination of Turonto C'incersity with \mathfrak{f}.at class honors in Mathematice, English, and Hastury and Geegraphy, or an cupuivalent cxaminatiou in any of the chartored Chinersities of Ontariv, shall bo avarded a First C Non Professional certificate without further examination.

Gmades A and B.-Non-Professional.

169. Candidates for a Dopartmental Certificate, Grade A or B, taking the Departmental Examinations, shall not be eligiblo to writo for this gradu until thoy have first passed the examination required for Grade C , but nothing herein contanned shall prevent a candidate from writing at both examinations the same year. A cardidate fur Grade A or B will be allowed aia option between English and Mathematics.
170. Graduates in Arts who have proceeded regularly to their des ree, and who, at their final examination, havo taken First or Secund Catas Hunurs in one of the departaments of Science, Classics, Mathematics, or Modern Languages, or in the department of Mental and Moral Science and Civil Polity, shall, on application to the Education Department, recoive a First Class Non-Professional Certhicate, Grade A or B, according as the honurs were First or Second Class.
171. Non-Professional cxanunations tur First Ciass Coruficates, Gride A or B, shall be limited as follows:-

Debartment of Enghisis.

Composition. - History and Etymology of the English Language ; Rheturical Finms; l'rosody.
Books of Reference: Earlo's Philology of the English Tongue ; Abuot and Seeley's English fur English People, Bain's Cumposition and Rhetoric, or Hill's Rhetoric; Marsh's English Language and Literaturo, Lectures VI. to XI. inclusive.

Literature:

1. History of English Literature, from Chaucer to the end of tho reign of James I. Books of Reference: Craik's History of the English Litereturo and Language, or Arnold's Literature, Enghsh Elition; Marsn's English Language and Literature, Loctures VI. to X. I. inclusive.
2. Specified works of standard authors as prescribed from timo to time by the Dopartment.

History:

Greece. -The Pursian to tho Polnponnesian War inclusive.-Cox's History of Greece (unabridged).
Rone.-From the bercinining of the Second Punic War to the death of Julius Cisar.-Mommsen's History of Rome.
England. -The 'Tudor and Situart Poriods, as presented in Groen's Short History of tho Enghash Puople, Macaulay's History of England (or Franck Bright's History of England, Second Volume), and Hallam's Constitutional History.
Canada - Parkman's Old Reqime in Canada and 'Volfe and Montcalm.
Geography:
So much Anciont Gengraphy as is necessary for the proper understanding of the portions oi the Historics of Greece and Rome prescribed.

department of mathematics.

Algebra.-Symmetry, Binomial Theorom, Multinomial Theorem, Exponential and Logarithmic Sories, Interest and Annuities, Indeterminate Coefficionts ; Partial Fractions, Series (Convergency and Divergency, Revorsion, Summation), Inequalities, Determinants as far as in Gross, Reduction and Resolution of Equations of first four Degrees and of Binomial Equations, Relations between Roots and Cueflicients of Equations, Indeterminate Equations, Problems.

Analytical Plane Geometry. - Thu Point (including Transformation of Co-ordinates), the Right Line, the Circle, the Parabola, the Ellipse, the Hyperbola, the General Equation of the Second Degree, Abridged Notation.
Trigonometry. - Trigonomotrical Equations, Solution of Triangles, Measirement of Heights and Distances ; Inscribed, Circumscribed, and Escribed Circles of a Triangle; Quadrilaterals, Description of Vernier and Theodolite, Trigonometrical and Logarithmis Tables, Demuivre's Theorem.
Statics. Equilibrium of Forces acting ir one plane; Parallelugram of Forces, Parallel Forces, Moments, Couples, Contre of Gravity, Virti al Work, Machines, Friction, Experimental Verificatious.

Dymamics. - Measuroment of Volocities and of Acceleration, Laws of Mutiun, Efer,y, Mumentum, Cnifurm and Uniformly Accelerated Motion, Falling Budies, Xoments of Inertia, Uniform Circular Motion, Projectiles in Vacuo, Collisions, Simple Pendu.am, Experimental Vorifications.
Elementary Geometrical Oplics.-Reflection and Refraction of Light at Planeand Spherical Surfaces, ircluding Prisms and Lonses (aberration not considered) ; the Eye; Construction and use of the more simple Instruments.
The following books are recommended for reference in addition to thuse prescribed for Grado C:-
Algebra-G-oss \& Todhunter.
Analytical Geometry,-Vyvyan and C. Smith. Refer to Salmon. Trigometry-Hamblin Smith; Refer to Colenso or Todhunter. Dynamics - Garnet, or Gross's Kinematics and Kinelics.
Geomotrical Optics. - Aldis.

Valuation of Subjp,cis for Fulst, C, Seconin any Third Class Non-Puopegsional Cemtificates.

1\%2.-The values of the different subjects in which candidates for Non. Professional Critificates will be examined, shall bo as follows : 1-Readıng (ural), 50 marks ; Reading, Principess of, 50 ; OrthoIgraphy and Orthuepy, 00 ; Euglish Granmar, 150 ; Composition,

100; Literature, Poetry and Prose, 200; History, 100 : Goography, Tis; Arilhmetic, written and Mental, 200 ; Algebra, 100 ; Geumetry, 100 , 'Irigonumetry, 100 ; lhysics, Chenistry and Bo. tany, each, 100, IAhi, French, whd German, each, 200 , Writms, Buah Kecping an! Comanervial transathons, Prects wratang and Indexing, 200 ; Drawing, $7 \overline{7}$.

173 Any can lidate who obtains one third of the marks in each subject, and one half of the argregate marks ubtanable, shall be entitled to rank as the holler of a non professional certiticate of the class for which he is such candidate.

Profesilonat, Cehtificates.

174. The !whder of Third Class Non-Professional Certificate, who tahes the c.arse and f, sses th: ex,ana,athon prescribed fur County Mudel Scluods, shatl be eatatled to rawh as ia Third Class l'eacher of I'ublic Schonls.

1\%). The holder if a Suend Class Nim Professional Certiticate, who has taught a Puhlic Schunl suceessfully for one year, and who attends a Provincial Normal Sehoal one session, and passes the prescribed examination, shall be entitled to rank as a Second Class Teacher of Pablic Schools.
176. Any Graduate in Arts with Honers as prescribed in Requlation, 170, or the hohlder of a Fust Clies; Non-Professional Certificate, who has passetan exammationat a Provincial Normal School, and who attends a Training Institute one Session and passes the preseribed examination theacar, shall be entitled to mank as a First Class Teachen of Pabiah Suhunds or an Assistatit Mister of Migh Schools.
17. Any teacher wh, holds a First Class Non-Professional Certificate and a Second Class Professiunal Certificate, and who has taught successfully for at least twa years in a Pablic Sehwol, High School, or Colleginte Institute, shall be entitled to ramk as a First Class Teacher or Assistant Master of a High School, on passing the final eamination prescribed fur a Tramiag Institute, without attendance thereat.

special, stbifers for 1886.

Ciass III. Enghinh Litemature:
Macaulay-Essay on Warren Hastings.
Coleridge-Ancient Miariner, Ode to Jejection, Odo to France, to William Wordsworth, Youth and Age, Ole to tho Departing Year.
Latis:-Cissar-Bellum Britannicum.
Fhesch:-Soureatre-Un Philosophe sous les Toits. First four chapters.

Germas:-Grimm-Kinder-and Haus-Miirchen (Whiliamson's Edition) to end of Selection, Brudere.ien and Silhwesterchen.
Class II. English Litbuatche:
The same as for Cliss III., but the questions will bo distinct and of a more difficult character.
Leatis:
Ciesar-Bellam Britannicum.
Cicero-Cato Majur.
Fingil-Encid (bv i.-304).
Fuencu :-Sonrestre-En Philosophe sous les Tuits.
Genmas:-Grimm-Kinder-und Haus Marchen.
Ciassi.-Grade C. Enghisii Litrbature:
Shakespeure-Merchant oi Venice.
Colcrulyc and .Treculuy-As for Classes 1I. and III.)
Class I.-Grades A and B. English Intemature:
Shakespare-Merchant of Venice.
Chuncer-l'rolonue to the Canterbury Tales. The Kuight's Tale. Pope-Prologue to the Satires.
Tennym-Enida and The Pissing of Arthur.
Wurdscon $\mathrm{H}_{\text {- }}$. Oide on the Intimations of Immortality.
Addisur-The Selections From Addisun's Centributions to the
Stictitor, made by J. Arnold, under the headiags (1) Manners, Fayhions, and Humours; and (2) Tales and Allegorics.

Macanlay-Iife and Writings of Addison.
The following editions of the above are mentioned for the in-
formation of candidates: Chancer, Clarendon Press: Pope, Clarendon Press, Addisun, Clarenilon Press.

Candidates are recommended to consule the following books of reference: Dowdens MInd anil Art of Shakespeare, or Gervinus', (inm:nentarien, Enalisio. Den oi Letters, Stedmanis Victorian Poets, IInston's Literiry Fisoys, 'Timsh's Stuly of Tennyson.

Etitctaty © Chil- © hat.

Gina \& Co. ammancy to les ready about September 20th a now work for the use of theso who wish to read anal understand music, entitled " Hease's Singing Book."
The approaching visit of Archdeacon Furrar to Americ is awaited with a ruvel deal of interest. Amonest the subjects on whech he is expected tu lecture 111 the Couted States are D ante, IR bert Browa ing's Poems, and The Talmud and its Authors.
Admiral Porter's "Anecdotes and Incidents of the Civil War, will be published this aucuma by D. Appieton © Co.
The Pupe has distribated anu his the Carduats o pios uf his Latin meons, piated wa ruse paper, in E.ewar type, with illaminated borders and rich engravings.
Macmillan \mathbb{K} Co, are to publish eariy the fall a spac:al American edition, carefully revised, of Dr. M uthmus " Types of Ethical Iheory."
A book that will bo most interesting and useful, if crefully and reliably prepared, is promised by Funk \& Wignalls. It is to be a record of the first century of the temperance co iflict, edated by the Rev: Wilbur F. Crafts, and catitled "What the Temperance Century has Mide Certam." It will contun letters from Neal Dow, Dr. Cayler, Presitent Sse ye, Juseph Cuok, and many others.
A new edition of Cacke Toun's C.abin." priated from new plates, is to be brought out by Houghton, M flin \& Co.
The: "Breat-wnumers" his been translated into French, German, and Swedish, and has been maluded an the Thuchntz: "British Authors. It is sand that Horfor \& Brothers have sold 25,000 copnes and that 3000 coptes have been sold an Austrahia.

Titctary ficuictu.

Shakrspeahe, Smect Piaks. Twelftil Night, ob What Yuu Whl. Edited by W. Aldis Wright. One of the best auxiliaries to the revival of the readug and study of the Enghsh Classics, is the production of cheap and yet tasteful editions, with necessary annotations. The Series of Select Mhays from Shakespeare, issuing from the Oxford Clarendon Press, is at the same time one of the most scholarly and most attractive of these editions. Twelfth Sight will mantain and enhance the reputation of these volumes. It is neatly lound in limp cloth, the pref tee is an interesting specimen of historical criticism; the notes are simple and yet scholarly, and the lights thrown upon obseure and difticult passages will be appreciated ly many besides the School and College Students. For Sale by trillianson d Co., Toronto.
 Puepabstumy Schools. By Frederick T. Hohen M.A., Late of Emmanuel College. Cambridge; As istant Muter at Cisselfiedd Dreparatory School, Edinhargio.

Eans Piecha, Fon Latin Prosh. (Finst Shames) By A. C. Champnoys, M.A., and G. W. Randall, M.A., Assmant Master at Marliborough College. These two litile looks from ilivingtons, London, are admirable in their way, and snow that English Teachers are now in the the formmost ranks amongit thuse whonrestricing to smanthe the way of the Tym wo the complexities of the Isatin Aecidence and Syntax. The first is a course of casy Latin Exercises for preparatory schools. On one pare are arramged a series of ample Fughth Srntences, designed to illustrate in order the various inlections ric., and on the opposite are given the uninfected forms of the Latin Wonds required, the whic book being thas a series of fexercoses manderring Easy Enghah Sentences uh, Latin. "The Enag Paeces deats in a somenhat smblar progressive way, with Syntactical dintuatues, and baves tic vocabularies required at the cond of each excrcise. The exercises iu thas are prefa ed wath some sitniple rales on the use of the Relative, Sequence of Tenses, Oratio Obliqua sec As we turn over the pages of sueh works, and contrast them with the dry and hard textbooks for our nehool dys, we are sempted to eavy the Tyros, whose lines have failen io them in such plasant places. It is to be hoped that the inereased repurements of examiners in the way of "Sight" re thing of the classics, will cheorrage tho atrodaction to a larger extent of sueh simple yot Phil doviphucal inxthowhs in our Canalian Schomis.

[^0]: - The number of atoms in a molecule of carbon is unknown, and in such cases the symbol tor the atom is uscal in equations.

[^1]:
 By decomposing Water by Electrolysis.-This has already been effected.

