

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
 Couverture endommagée

Covers restored 3nd/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or blackl/
Encre de couleur (i.e. autre que bleve ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Lareliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se prccurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes

Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Quaiité inégale de l'impression
Includes supplementary material/
Comprend du ma:ériel supplémentaire
Only edition available/
Seule édition disponibie
Pages wholly or partially obscu:ed by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., cnt été filmées à nouveau de façon à obtenir la meilleure image possible.

The in possit of the filmin

Origin beginı the la: sion, other first p sion, or illu:

The la shall tinue which

Maps, differe entirel beginn right a require metho

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The c to the

Additional comments:/
Commentaires supplémentaires:

The cepy filmed hore has been reproduced thanks to the generosity of:

> Library of the Public
> Archives of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specirilcations.

Original copies In printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when approprlate. All other original copies are filmed beginning on the first page with a printed or lllustrated impression, and ending on the last page with a printea or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applles.

Maps, plates, charts, etc., may be filmed at different reduction ratlos. Those too large to be entirely included in one exposure are fllmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reprodui: grâce à la générosité dé:

La bibliothiuque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compia tenu de la conditlon et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papler est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'Impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiàre page qui comporte une empreinte d'imprassion ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le syinbole \rightarrow signifie "A SUIVRE", le symbole $\overline{7}$ signifie "FIN".

Les cartes, planches, tableaux, etc., pelivent étre filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à parsir de l'angle supérieur gauche, de gauche à droite, et de haist en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illuctrent la méthode.

ADYANCE PROOF-(Subject to revision.)
This proof is sent to you for discussion only, and on the exprese understanding that it is not to be used for any other purpose whatever.-(See Sice 40 , of the Conatitution.)

Canadion Society of Civil Ingineas. incorporated 1887.

TRANSACTIONS.

iN. B. -This Socioty, as a body, does not hold itself responsible for the facta and opinions stated in any of its publicestions.

DISCUSSION ON TRANSIIIION CURVES.

By M. W. Hopkass B.A.Sc., A.M.Can.Soc.C.E.
To be read Friday, 25th November, 1892.
The much vexed question of transition curves is getting pretty nearly settled when such excellent methocis as that of Mr. Lordley's are given us and gord tahles made out which he tells us is being done.

His method is very necurate und not so diffieult to use. I have employed a method which is not quite so uceurate without corrections, as the one in Mr. Lordley's paper, hut it is much more simple to apply, and is, to my mind, sufficiently accurate for 999 cases out of 1000 , and with corrections given below can he made as accurate as wis please.

It is composed of two separate curves, and is in fact two separate eubic paraholas, one of which is measured along the tangent from the P. T. C. to the middle of the olfiset opposite to the P. C. marked P in Mr. Lordley's tig. 1 , which I will refer to as simply fig. 1 in my following remarks, and the other is measured along the circular are heginning at the $P . C .{ }^{1}$ and continuing back to the point P, where it meets the first oubie parabola.

The following is the formula employed for the first cubic parabola :

Let the curvature increase in proportion to x measured along the tangent and not along the curve as in Mr. Lordley's paper.

Then we have

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}=2 k x=\frac{1}{r} \tag{1}\\
& \frac{d y}{d x}=k x^{3} \tag{2}\\
& y=\frac{k x^{3}}{3} \tag{3}
\end{align*}
$$

From fig. 1 it will be seen

$$
\begin{align*}
& \text { when } x=F K, r=2 \mathrm{R} \text { and } x=a \\
& \therefore \quad x=F K, y=\frac{0}{2} \text { and } x=a \\
& \text { where } a=\text { the offset } \\
& \therefore 2 k a=\frac{1}{2 R}=\frac{D}{2 \times 5730} \tag{4}\\
& \therefore k a
\end{aligned} \begin{aligned}
& \therefore \frac{D}{22920} \\
& \text { and } \frac{0}{2}=\frac{k a}{3}=\frac{D a}{3(22920)} \\
& \therefore a=185 \cdot 4 \sqrt{\frac{0}{D}}
\end{align*}
$$

Now, this part of the transition is only used fiom the P.T.C. up to the point P opposite to the P. C, in the circular arc in $\mathbf{f g}$. 1, end the difference of length between ' a ' in this formula and the length of the curve is smatler than is ustally measured in the tield.

To. nhow how to put in this part of the curve, let us tuke an example. Suppose we desire to put a trassition on a 4° curve
and wo ehoose an offset of $: ? \mathrm{ft}$. These numbers are taken as a simplo case in order to be botter understood. From (5) we seo that this gives us " a " $=131 \mathrm{ft}$. Now, the ordinates from the tangont $F R$ (tig. 1) are prop. to x^{3}, as will he seen from (3), and tio ordinate at P will be $\frac{2}{2}=1 \mathrm{ft}$. The ordinates then will be, begiuning at tho P. T. S.,

$$
\begin{aligned}
& \text { 1 ft. from tho } P . T . C .\left(\frac{1}{131}\right)^{3} \times 1=00 \\
& 2 \text { " " } \quad\left(\frac{2}{131}\right)^{3} \times 1=00 \\
& \begin{array}{lll}
10 & " & "\left(\frac{10}{131}\right)^{3} \times 1=00 \\
20 & " \cdots & \left(\frac{20}{131}\right)^{3} \times 1=00
\end{array} \\
& 30 \text { ". " }\left(\frac{30}{131}\right)^{3} \times 1=\cdot 01 \\
& \left.40 \quad \text { " } \quad \text { " } \frac{40}{131}\right)^{3} \times 1=\cdot 0.3 \\
& 45 " \quad \text { " } \quad\binom{45}{131}^{3} \times 1=\cdot 04 \\
& 50 \text { " " }\left(\frac{50}{131}\right)^{3} \times 1=\cdot 06 \text {, ete. } \\
& 125 \cdots \quad \text { " }\left(\frac{125}{131}\right)^{3} \times 1=.87 \\
& 130 \text { " } \quad . \quad \text { : } \quad\left(\frac{130}{131}\right)^{3} \times 1=\cdot 47
\end{aligned}
$$

This is a vely envenient length, 131 ft .. of transition, which being doubled gives $u s 262 \mathrm{ft}$. of transition curve. If we always make the offset haif the derree of eurvature, that is $\frac{o}{D}=\frac{1}{2}$, it will be seen from (5) that wo will always get this length, and indeed it ean be nearly always used to good advantage. But as we will sometines require other lengths or other oflsots, we enn prepare, say, half a dozen such little tables as the above, and put them in the back of the tield-book.

We can have, perhaps,

$$
\begin{array}{lll}
\frac{o}{D}=1 & \cdot a & =186 \mathrm{ft} \\
\frac{o}{D}=\frac{1}{2} & \cdot & a=131 \mathrm{ft} \\
\frac{o}{D}=\frac{1}{4} & \cdot & a=93 \mathrm{ft} \\
\frac{o}{D}=2 & & a=262 \mathrm{ft} \\
\frac{o}{D}=4 & \ddots & a=372 \mathrm{ft}
\end{array}
$$

and tabulate the ordinates as abeve for the transition curve for every 5 ft ., nay, from tho $P . T$. C. to the P. C. One table does for each lengilh of ' a,' Mako it out for an offset ol' 2 ft ., and then, if your offset is :my other multiple of 2 , multiply the ordin. ates so tabulated by this multiple mentally when you wro putting in the transition curvo to get the proper ordinates.

So far we huve only given the curve for the first half of the total, that is from the $P . T^{\prime} . C$. to the $P . C$.
I intend to show that en exactly simila formula can bo used for the second purt of the transition eurve, only it will bo measured from the $P, C{ }^{1}$ backwards from the peint B in figg. 1 to the P. C. at the point P. Bat the curvaturu will bo supposed to rary ns the distance from B measured along the circular arc totards A and up to the $P . C$.
Now, since the curvature of the straight line $F K$ is constunt (and always zero), its curvature can properly be represented by
a horizontal straight line as a basc of no curvature. Let $A B$ (fig. 4) reprosent this.

Again, sinco the curvature of the transition varies as the distance from the P. T. C., its currature can be properly represented by a straight line beginning at A and makiug an angle with $A B$ depending on the constant $2 K$ in (1). Let such a linc be $A C$ and let $A B=a$ in fig. 1. Then the ordinate from $A B$ to $A C$ at any point x from A will represent the curvature a_{i} that point, and of course will represent the difference of curva. ture betwcen the tangent and the transition curve at that point.

Now, is similar diagram will apply to the second part of the transition eurre. For since the curcature of the circular arc is constant, its curvature can properly be represented by a horizontal straight line at a distance of $\frac{1}{R}$ above the base line $A B$ of no cuivature, since tho curvature of the circle is $\frac{1}{R}$, Let this be represented by the straight line $D E$. Now make $D E$ equal to the length of the circular are between the P. C. and the P. C. ${ }^{1}$ and also equal to the length of tangent from the $P . T . C$. to the P. C., and also, of course, equal to $A B$ in fig. 4.

Then, since at the P. C. the curvature of the transition curve is equal to that of the cireular are, its curvature at this point can properly be represented by the ordinate from E to the base line of no curvature, the same as that of the circular are. And since the decrease in the curvature of the trunsition curve is proportionate to the distance from the P. C. ${ }^{1}$ measured backwards towads the P. C., this decrease of curvature can properly be represonted by a straight line diawn from the point E in (tig. 5) below $D E$, and making an angle with it depending on the constant K in (1), und this angle will, of course, be equal to the angle $B A C$ in (fig. 4) and the curvature of the transition at any point x from the $P . C .{ }^{1}$ will be ropresented by the ordinate hetween this inclined line and the hase line of no curvature. Then let the curvature of the transition curve be represented by the strait line $C E$. Then the difference of curvature between the circle and transition at any point x from E will be ropresented by the ordinate from $D E$ to $C E$ in fig. 5 .

Now, on examining figs, 4 and 5 , it will at once be seen that they nicely tit into one another, and that one is not complete witheut the ether. Of ceurse $B C$ in fig. 4 is equal to $B C$ in tig. 5 ; that is, the curvature of the two parts of the total transition is the same at the P. C. or ut point P in fig. 1 . And as the second part of the transition curvo recedes from the circular are at any peint with the same angle as the first part of the transition recedes from the tangent at the corresponding point, both depending equaliy on the constant k in (2), and as the length of the circular are is equal to the length of the tangent from the P. T. C. to the P. C., it follows that the inclination of the first part at P to the tangent $F K$ is equal to the inclination of the secoud part at P to the tangent of the circular are at P. C., and consequently the tirst and second parts of the transition have a common tangent at the point P, and from (5) it is evident that the point P must blseet the offset at the P. C.

It will be seen from the explanation above that the same equations will apply to the sccond part of the transition curve as for the first part, with this distinction: the formule for the second part represent not the total enrvature, or tungent, or ordinate, na in the formule for the first part, but represent the difference between these functions of the circular are and the transition curve. Then the above equations are ldentical for the two parts.

Now, since the lengti of the tangert from the $P . T . C$. is so very neurly equal to that of the first part of the transition, and the length of the circular ure is so very nearly the same leugth as the seoond part of the trunsition curve, I an pretty sufe in assertjigh that a passenger riding in the traiu passing over this part of the track would not be able to say whether the variation in curvature was calcalated according to the length of the tiant sition curve or of the combined lengthe of the tangent and the circular arc.

- The second part of the transition is put in exactly as the first part excepting that you commence at the $P . O_{1}^{1}$ and measure backwards towards the P. C, along the circular arc, and mensure the ordinates outward from the circular are in fig. 1. But in practice the circular ale will be the distance of the offiset " 0 " outside of the circular are (which we will call the inner circular arc); äd wili be a continuation of the tangent $F K$ iustead of the line $D A$, and will bave its P. C. at the point K instead of at A. Consequantly it will be necessary to measure the ordiantës for the transition curve inuards the distance of the offset, minus the tabulated ordinates, or, if " y " is the tabulated ordinate from the inger circular are to the trausition curve, it will be necessary. to measure the distance ($0-y$) inwards instead of the distance " y ". outwards. I always run in the regular ciroular curve in location just as if there were to be no tramsition; and then, just before construction, go along the line and with mus asistant, pull up the stakes in the circular curve and move them in the distance ($0-y$) for the second part of the transition. But for the first part of the transition the stakes are mored in only the distance " y."

Two men can do this as fast as they can walk along, and one pull up the stakes and move them in the proper distance, witile the other gives that distance from the little tables. If the stakes are cet 50 ft . apart in n transition of 262 ft ., only five stakes will have to be moved on each end ef the circular curve, which will give an idea of the rapidity with which this can be done. A number: of miles can be done in a few hours even where there is considerable curvature, as in a hilly country.
'It must be remembered that this transition is composed of two distinct parts which happen to fit in together nicely. But one is measured along a circular arc backwards, while the tirst is measuxed along the tangent forwards.
I always keep the same hube as were used for the ordinury cirenlar curie, and when the transition is put in no other hubs are required, but the old ones must be preserved, and if it is neces. sary to run in the line àgain the circular are is run in first as if no transition were going to be put in, and at any time convenient the stakes moved as directed above. In the transit boek it is only necessary to note down the oftset chosen or " a," as the degree of curvature will have been already noted for the ordinary circular curve. Then the transition curve can be put in any time afterwards.

And then we hare to consider that by this method we can lay down the transition curve frem lines already established, and without any calculation more than can easily be done mentally by any one who can do ordinary multiplication.

As said abere, this method, without using the corrections, is only an approximation, but a very close approximation, so close, in fact, that as far as making the trains ride eawily over it, it is ay good us if the variations of' eurvature wore calculated to vary with the listance from the P. C. along the transition curve itself; But as there may be times when it will be neeessary to know the exact difference between the length of the total transition, and
"2 $a^{\prime \prime}$, and as this is a very ensy mater for find und the rentling formala is verg simple. the solution is given in what follows.

Fin the tirst part of the transition lot
 along the transition cur ve, mal let
$\varepsilon=$ the eorresponding distanco mensured alomg the tulyent.
'Ilsen we have

$$
\begin{aligned}
& d s=\sqrt{ } d x^{2}+\sqrt{2} l^{i}=\sqrt{1+l_{i}^{2} t^{3}}, t \text { limus (2) } \\
& =\left(1+\frac{L^{2} \cdot e^{4}}{3}-\frac{k^{4} \cdot x}{8}+\frac{k \cdot c^{13}}{11 i}-s \cdot 0\right) d
\end{aligned}
$$

$$
\begin{aligned}
& \cdot x_{1}^{\prime \prime}=\left(1+\frac{h^{2} a^{\prime}}{11}-\frac{k^{\prime \prime} u}{32}+\frac{k a^{12}}{2 n}-k_{0} .\right)
\end{aligned}
$$

$$
\begin{align*}
& a_{2}^{\prime \prime}=1+\frac{b^{4}}{10}-\frac{b^{4}}{i 3}+\frac{b}{20} \quad \text { N. } \tag{1i}
\end{align*}
$$

 If we make this prowhet l:: It.

$$
\begin{aligned}
& \text { then } b=0.507155
\end{aligned}
$$

Now it' $1=1: 11$ it :and $11=11{ }^{\prime}$

$$
\begin{aligned}
s_{1}{ }^{\prime \prime}-1 & =. \| A: 11 \\
& =\text { hatitur inch. }
\end{aligned}
$$

It will be seen that it is a very simple mallore to timi the value of the ratio $\frac{g_{1}^{\prime \prime}}{a}$ from the nhove limmula, an with a table of loge srithms unte logarithon will do tore all the torme, mill when this logarithan is maltiplien by the repertive expments of " $/$ " "tl the values of b^{2}, b^{2}, de. "ablin foral at once. But it is evident that b^{2} and b^{2} are ull the lerins that noed to be considered to secure the greatest aceuracy ever requirel.

I: is non easy to tiad the differeace in lengh between the second part of the hanston carve athl that of the eiredal alt, trom which it is measurod ofl, in the listowing mather':

Let s be the length of may ponit tram the 1 '. (!. meanured atong the transition eurve, and r the lengrth of the contenpomd , beg point mensured along tho inner circular :ac. As before et $y=$ ordinate messured along the inmer virenlow arr, and lat $R_{1}=$ radins of curvature of the inner cirenlai are, and D_{2} its degree of "urvatare, and a_{i} its lengh measured along the inner circular are. Then,

$$
\begin{align*}
& y=\begin{array}{c}
k \cdot x^{3} \\
a
\end{array} \\
& \therefore \frac{d s}{i / L}=\frac{h_{1}+y}{R_{1}}=\frac{k_{1}+\frac{k_{1} i^{3}}{3}}{R_{1}}=1+\frac{h x^{3}}{3 K_{1}} \\
& \therefore s=l+\frac{k x^{4}}{12 R_{1}} \\
& \text { "hen } x=u_{1} s=s_{0}{ }^{\prime \prime} \\
& \therefore s_{2}^{\prime \prime}=a_{1}\left(1+\frac{h u_{1}^{8}}{12 R_{1}}\right)=u_{1}\left(1+\frac{J_{1}^{2} 1^{d}}{3\left(2, \frac{1}{20)^{2}}\right.}\right) \\
& \therefore \frac{s_{1}{ }^{\prime \prime}}{a_{1}}=1+\frac{D_{1}{ }^{2} a_{1}^{2}}{3(22920)^{2}} \cdot \cdot s_{2}{ }^{\prime \prime}-a_{1}=a \frac{b^{2}}{3} . \tag{64}
\end{align*}
$$

But am in practice the last half lengtla of the transition curve is measurod nlong the outer circular bre, which lies just the dine tal ce of the otfet "o" radially ontward from the inner circular n c , what we really want is uot the ratio $\frac{s_{2}^{\prime \prime}}{a_{1}}$ but the ratio $s_{2}^{\prime \prime} a^{\prime \prime}$. If ofet D, a nud R stan! for similar functions of this onter cirenlar re, an follows, we can easily transfiom the above equation to give us this requitrement, for $\left.D_{1} a_{1}=I\right)$ a since the fitctors ill each vary inversely ts one another,

$$
\begin{aligned}
\text { und } a_{1} & =R-o a=\frac{5730-o D}{R} a=\frac{5730}{} a \\
\therefore \frac{8_{3}^{\prime \prime}}{a} & =\frac{5730-o l}{5730}\left(1+\frac{D^{2} a^{2}}{D_{1}}\right)
\end{aligned}
$$

(r using " b " to stand for 2,920 (we bave

$$
\left.\begin{array}{rl}
& s_{2}^{\prime \prime} \\
a & =\frac{5730-a b}{5730}\left(1+\frac{b^{2}}{3}\right) \tag{7}\\
\therefore & \left.a-s_{2}^{\prime \prime}=a\left\{\begin{array}{l}
0 \\
5
\end{array}\right)\left(1+\frac{b^{2}}{3}\right)-\frac{b^{2}}{3}\right\}
\end{array}\right\} .
$$

It will be noticed that, althongh lu our formala tor $\frac{g_{1}^{\prime \prime}}{a}$ for the first part of the transition curve, we have taken D to the the degree of earvatare of the imer circalar are instead of that of the onter circular are, it makes so very titthe ditterence in the result that we need not consider it when the offeet is small, but when the offisel is large it becomes considemble. For in that formala

$$
\begin{aligned}
s_{2}^{\prime \prime} & \text { depends only on } D a \text { and consthats, and since } \\
a & =185 \cdot 4 \sqrt{\frac{o}{D}} \\
D a & =185 \cdot 4 \sqrt{o D}
\end{aligned}
$$

Honco the correction fir " b " in that formnln wonld thke the form

$$
\begin{equation*}
b^{\prime}=\sqrt{\frac{5730}{5730-o D}} b . \tag{x}
\end{equation*}
$$

This is only a correstion ot a correetion, it will be noticed, and a small one at that if 'o D ' is kept small. Of' course this cotrection would seldem reed to be applied ' more than the second term to give the grentort aceuracy required, For instance, if we take the example given of the application of that formula where $D=10$ and $a=131$, and consequently ' o ' $=\mathbf{5}$, the cor'. rection is only

$$
\begin{aligned}
& \cdot 0000287 u \\
= & \cdot 0037 \mathrm{ft} .
\end{aligned}
$$

when applied to the second term, and the corrcetion from the succeeding terms is practicnlly intinitely small. But for larger' values of 'o D,' it will be scen from equation (s), the correction increases very rapidly.

Hence the total difference lwtween ' $2 a$ ' and the total length' of the two parts of the transitiea curve can now be put in one single formula, which will be very simple.

For the first part,

$$
s_{1}{ }^{\prime \prime}-a=a\left(\frac{b^{2}}{10}-\frac{b^{4}}{i-}\right)
$$

For the second pirt,

$$
a-s_{2}^{\prime \prime}=a\left\{\frac{0 D}{5730}\left(.1+\frac{b^{2}}{3}\right)-\frac{b^{2}}{3}\right\}
$$

\therefore total ditference $=d_{3}-d_{1}$
$=d=2 a-8_{1}{ }^{\prime \prime}-s_{2}{ }^{\prime \prime}=a\left\{\begin{array}{c}0 D \\ 0730\end{array}\left(1+\begin{array}{l}b^{2} \\ 3\end{array}\right)-\frac{b^{2}}{3}\right\}-a\left(\frac{b^{2}}{10}-\frac{b^{4}}{72}\right)$
As the term $\frac{b \text { ' }}{72}$ will only latve to ho used when ' b ' is excep-
tionally large indeed, it ean be neglected for milroad work, and still the equation will give the eorreet result to a small fraction of an inch when small ofiset is usod.

$$
\begin{aligned}
\therefore d & =a\left\{\frac{o D}{5730}\left(1+\frac{b^{2}}{3}\right)-\frac{b^{2}}{3}\right\}-a \frac{b^{2}}{10} \\
& =a\left\{\frac{o D}{5730}\left(1+\frac{b^{2}}{3}\right)-\frac{b^{2}}{3}-\frac{b^{2}}{10}\right\}
\end{aligned}
$$

If the maximum degree of curvature used be 10° then the last ' d ' will be correet to less than half an Inch, even when ' a ' is as great as 262 ft .

It will be evident from the above that it would be waste of time to make out a set of tables for these correctlons, as they will not have to he applied in more than ons case in a thousand, and for that inolated cuse it would be better to calculate the correction than to carry a recdless lond around so loug.

As for in set of tables for the ordinates along ' a ' for the transition curve, 1 dozen snch :is the one given above would be enough and to spare. In every caso where it is not desirable to choose a particular offet so us to fit the ground, it is likely that the one where ' a ' $=131$ and $\frac{0}{D}=\frac{1}{2}$ will almost always be employed. This method has this in its favor, among other things, that it is so simple and eany to put in on the ground that, no mat ter how indolent or ill-informed an engineer might be, he would in all probability put it in. And then, after it is in, it is as good as the hert. I can't help bat think that it is the one that will always be used when all engineors como to understurd the importance of transition curver, and to see how emsy it is to put this one in on the ground. It is simplicity itself, is as good as if it were better, and can the accurately calcalated as to leagth, se, from the formule given above, when such calcutation is necessary, which will not beoneo in a thonsand times. Enough is as good us a feast and much more wholesome. And lust but not least, it con be put in at any time after location hy simply moving the stakes as directed above.
If, as might happen nometimee, it is necessary to have a result infiniely correct, the combiantion of (6), (7) and (8) will give

$$
\begin{align*}
& i t \text {, and then we have } \\
& d=a\left\{\frac{0 D}{5730}\left(1+\frac{b^{2}}{3}\right)-\frac{b^{2}}{3}\right\}-a\left(\frac{b^{\prime 2}}{10}-\frac{b^{\prime 4}}{72}+\frac{b^{\prime 3}}{208}-\& c .\right) \\
& =a\left[\frac{o D}{5730}\left(1+\frac{b^{2}}{3}\right)-\frac{b^{2}}{3}-\left\{\frac{\left(\sqrt{\frac{5730}{5730-o D^{\prime}}}\right)^{2}}{10}\right.\right. \\
& \left.-\frac{\left.\left(\sqrt{\frac{5730}{5730-0 D}}, 6\right)^{4}+\& \mathrm{ce} .\right)}{72}\right] \tag{9}
\end{align*}
$$

With this correction the method is practically corroct, and when it is required to tind the ditlerence in length between the total length of the transition curve and " $2 a$ ' this lant formula (9) should always be used, unless the offret ' o ' is small. For accuracy it whoald be run oat the name number of terms as is done above.

If it should be desired to run in new tangents from an abready established circular curve, this circular curve would then become the inner circular are, and the second part of the transition would be measured along it. If it should be required to know the difference in length between the whole transition and ' $2 a$,' this eam be tomnd by combining (6) and ($6 \frac{1}{2}$), and we get

$$
\begin{aligned}
d & =a\left\{\frac{b^{2}}{10}-\frac{b^{4}}{72}+\& c .\right\}+a \frac{b^{2}}{3} \\
& =a\left\{\frac{13 b^{2}}{30}-\frac{b^{4}}{72}+\& c .\right\} \\
& =a \frac{13 b^{2}}{30} \text { very approximately. }
\end{aligned}
$$

The trasition should be put in as in the other case, of course, except the ordinate ' y ' for' the transition curve is measured outward from the circular arc, and ($0-y$) outward from the old tangent 01^{\prime} ' y ' incart from the new tangent in all cases in same direction as the other case.

