The Institute has attempted to obtain the best original copy available fur filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manqueCoioured maps/
Caıtes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieuse

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from tilming/
Il se peut que certaines pages blanches ajoutėes lors d'une restauration apparaissent dans le texte. mais, lorsque cela ètait possible. ces pages n nont pas ètė filmèes.

Additional comments:/
Commentaires supplémentaires:
Irregular pagination.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger ura modification dans la méthode normale de filmage sont indiqués ci-dessous.
Pages damaged/
Pages endommagées
$\square \begin{aligned} & \text { Pages restored and/or laminated/ } \\ & \text { Pages restaurées et/ou pelliculées }\end{aligned}$Pages cliscoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShowthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from: / Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Gënésiqu: (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

$10 x$	

Seterted 家aurrs.

On the Aniline or Coal-Tar Oolours.
by w. H. PERKIN, F.R.s.

Corttinucd.

The first apparatus used in the manufacture of nitrobenzol, for the preparation of anilme for the mauve dye, consisted of a large castiron cylinder fitted with a stirrer and closed with a door, fastened by a cross-bar and screw. This cylinder was capable of holding between wirty and forty gallons. It was provided with two necks, one for the introduction of the benzol and sulphuric acid, which was supplied through a syphon tube; the other for the exit of nitrous fumes. This last was connected with an earthenware worm, to condense any benzol which might be volatilized by the heat of the reaction. The nitrate of sodium was always introduced into the cylinder before the door was faster. ed up and luted. Until the projaration of nitrobenzol was understood, there was a great amount of uncertainty in its manufacture, and several explosions occurred; but fortunatelv vithout causirg any injury to the workmen attending the apparatus. Theso explosions originated generally from the liberation of too much nitric acid from the nitrate of sodium, by the sulphuric acid, before the formation of the nitrobenzol had begun, so that when it started, the chemical action sot in with such energy that an explosion ensued. Aftor a few of these unpleasant occurrences, howerer, sufficient experience was obtained to get the manufacture under cöntrol. Apparatus of a much more extensive character has since been substituted for the cylinders.

This apparatus consists of large cast-iron pots, about 4 feet 6 inches deep, and 4 feet 6 inches wide ; they are arranged in rows, and provided with stirrers, worked from a shafting by means of bevel wheels. The covers of these vessels are also made of castiron, and are in tro pieces, of unequal size, provided with a tail rim, and so arranged that cold water may bo lept circulating orer their surface; this assists in condensing the benzol, which would otherwise distil away by the heat of the reaction. Through the larger half of the cover the spindle of the stirrer passes, and on account of the difficulty of keeping a stuffing-box in order when using the powerful chemicals riecessary in this manufacture, a kind of water-joint has been substituted. It is necessary that it should be deep and rather capacious, instead of filling this joint with water, which would absorls the nitrous fumes, and prodnce an acid solution which would soon destroy the apparatus, the joint is filled with nitrobenzol; a cast-iron tube passes through the lid to carry awray nitrous fumes; this is also cooled so as to condense any benzol vapor which may have escaped the cooling action of the lid; small pipes are introduced through another opening for the purpose of supplying the necessary chemicals. Besides these there is a large opening in the smaller half of the lid, for the purpose of introducing any of the products, which may be added in large quantities at a time. At the bottoms of these large vessels are openings for running out the finished product.
The process of preparing nitrobenzol with
a mixture of sulphuric acil and nitrato of sodium in place of nitric acid, may bo carried on very well in this apparatus, provided sufticient sulphuric acid bo empluyed to produco an ncid sulphato of sodium, as this will be found quite fluid at the close of the operation, and can bo freely rua out at tho small ontlot. A mixture of strong nitric acid and sulphuric ncid is now usually errployed for the cunversion of benzul into nitrobenzol. In working by this latter method the entire charge of benzol is first introduced through the large opening in the lid ; this is then closed and tho stirrer set moving ; the nituic and sulphuric acids arc then cautionsly. rum in through the small pipes, care being taken not to add too much nitric acid, until tho red fumes begin to anpear. After all the charge of acids has been added, and the reaction has perfectly cciascal, the product is drawn off. At first a mixture of sulphuric and nitric acids run out, and thest tho nitrubenzul, this is cullected seliarately and purified, first by agitation with water, and then rendered perfoctly noutral by means of a diluto solution of sorla. Should it contain any uncunverted benzul, this may be distilled off by means of stean. On the continent manufacturers do not aplecir tu have siner seded well in manufacturing nitrobenzol ; shen it first became a cummercial article, their diffenlty appeared to have arisen from the fact that they experimented in earthenwaro vessels, which are both dangerous and unsuitable, and it was nut until information Tas ubtained frum England, I believe, that they were able to produce this body at a moderate price.

We will now pass un to the prucesies fur converting nitruluenzal into aniline. I lave already mentioned that Zinin was the first who discovered that nitroluenzol cund be converted into aniline, or, as he termed it, benzidam. His process consisted in treating an alcololic solution of nitrobenzol with ammonia and sulphuretted hydrogen; but although the discovery of this process was ono of great importance from many joints of viow, still it was very tedious. Bechamp, however, futud that by employing a mixturo of acetic acid and finely divided iron insteni of ammonis and sulphuretted hydrogen, the. nitrubenzol was very rapidly converted into aniline, and this process has been fuund the best yet proposed for manufacturing aniline in largo quantities. Many other reayents lave been suggested, as arsenite of soditum, powdered zinc, dec., but none of them hare been found soadvantageous asiron and acetic acid.
In carrying out Bechamap's prucess, cylinders like those used for nitrubenzul were originally empluyed. The cylinder was set in brickwork, und heatel by means of a small furnace, iron borings wers first introduced, and the door fixed in its place airtight. One neck was cunnected to the upper cxtremity of the cast-iron worm by means of a pipe called an adapter; the secund neck bcing fitted with a syphon-tube, for the introduction of the nitrobenzol and acetic acid. In rorking on tho largo scale it is necessary to add the nitrobenzol and acetic acid in small quantities at a time, otherwise the reaction is so violent as to almost burst the apparatus; by norking carcfully, howorer, there is no need to fear any difficultics, cspecially if the stimer is rell used. By the time all the charge has been introduced a quantity of fluid rill lave distilled over;
this is returncel intu tho cylinder and tho fire lit, and tho aniline distilled off.

Jho principal chango which lias taken phaco in this procuss consists in using ligh presaure or superheated steam for tho distillation instoad of fire, and working the apparatus by means of a stem by hand.

Yout will obsurve that the stimer, which is worked hy buvel wheuls, has it holluw shaft or spinille, as secen in tho sectunn. This is ground to an cllow, connceted to tho stean inain, aud huld duvin by a serew, so that whin the stean is tarned wh, it passes through the leolluw elbuw duwn the shaft, and tles bluns wint at the hottum among the producta; anal in this manaer tho anilme is Vulatilizud, and inass with the stean thongh tho nech, and is condenseal by at worm. Anilinu thas ultatimed is femeraily re-distilled, and sumetimes with a little lanc ur caustic suda, fur the jurpuse of deconlijensing at budy called auctanilide, which is often podnced in the mana.facture of anilme, esinecablly if the operation is cunducted user a lise instend of witlı stean.

Cumnercial aniline eenerally appears of a pade sherry culor; when chenhablly puro it is cululless, but if hept lung at liceomes yuite brurin. It pessesses a peculiar vieur which is slightly vinunas when the andate 2 s pure. It buras witha smoky flame, but is not very inflımnable, its builing puint is $182^{\circ} \mathrm{C}$. One of its must claracteristic atiactions is its power of pruducing a blue we blue-violet culuration with chluride of lime, to which I shall as:am have uccasion to refer. Aniline differs entirely from benzul, amd sitrobenzul. being lerfectly soluble in dulute acids. This is uning to its leing an organic late, and forming compunads with acids. Thus with hydruchloric acid, it furms liydruchlumate of anilime; with sulphuric acid, sulphate of aliline, etc.

We will now, in a very rapid and general way, glance at the chemicial changes which take phace in conncotng benad with nitrobenzol and aniline.
Benzul, as I have already stated, is a hydrucarlson, i. c., aborly compused of hydrogen and carloon only; it is represented by Co Ifo. This is treated with nitric acid, which contitins HNO ${ }^{3}$
Tlu nitric acts upon tlo bunzul and intruduces its nitrugen and parts of its woygen, at the same time rumoving liydiogion and forming water.
$\mathrm{HNO}^{\circ}+\mathrm{CuHO}=\mathrm{CO}^{\prime} \mathrm{NO}+\mathrm{HE} \mathrm{O}$
Nitricarhi. Benzol. Nitrubenzol. Water.
Nitrobenzol, when treated with iron and acetic acid, is cunverted linto anline by the infiuence of hydrugen gas, in mhat is termed the nascent state, or the peculiar condition in which it is when liberated from a contpound.

This hyalruisen unites with the uxygen of nitrobenzul and remores it as water, and at the same time two atoms of ligdrogen combined with th.e deoxygenated nitrubenzol, forming anilinc.

$\mathrm{CO}^{0} \mathrm{H} \mathrm{NO}+\mathrm{H}^{\circ}=\mathrm{COH}^{\circ} \mathrm{N}+2 \mathrm{H}=0$

Nitrolienzal.
Aviline.
Having nus seen the rarious uperations which require tu be perfurmed fur the pruduction of auiline from coal-tar, se are prepared for the consderation of its colured derivatares. We will, therefore, commence at once with the first of the coal-tar colors, "tho maure dye." I have already giren yun tho history
of its discovery ; I will now tell you how it is made.
First of all aniline and sulphuric acid, in proper proportions for the formation of sulphato of aniline, aro mixed in alargo vat with water, and boiled until perfectly dissolved. Bicromnte of potassium is then dissolved in a second largo yat. These two solutions, when culd, are mixed in a third and still larger vessel, and allowed to stand one or two days. In this way a large quantity of a fine black precinitate is formed; this is collected upon slanllow filters, woll washed with water, and then dried. When dry it is a most unpromising sootyblack powder, and contains various products besides the mauve; the most troublesome of theso is a brown, resinous product, soluble in most of the solvents of the coloring matter itself.

At first this resinous substanco was removed by digestion with cunl-tar naptha proviously to the extraction of the coloring matter, which was afterward effected with methylated spirits of wine, and the solution thus obtatned when distilled left the manve a fusible bronze-colored mass.

When digesting the black precipitate with naphtha or strong spirits of wine, the operation had to be performed in closed vessels under pressure or in connection with a condensing arrangement, otherwiso large quantities of these valuable solvents would have been lost and great dificulty was oxperienced in getting apparatus perfectly tight, on account of the "scarching" character of these fluids. Substitutes had also to bo found for the ordinary materials employed by engineers for making good man-holo joints, and a number of other matters which are apparently of but small importance, but it is remarkable the amount of difficulty and annoyance they caused. The method of extraction has, howover, bcen materially improved upon by substituting dilute methylated spirits of wine for strong, as this weaker spirit dissolves only a small quantity of resinous matter but all the coloring matter, so that the digestion with the coal-tar naphtha is now found unnecessary.

The solution of the coloring matter in diIute epirit is placed in a still and the spirit distilled off, the coloring matter remaining behind in aqueous solution; this precipitated with caustic soda. It is afterward collected on a filter, washed with water, and drained until of a thick pasty consistence, and, if necessary, dried.

The solid mauve dissolves rery freely in spirits of rine, forming an intensely colored solution ; it is also soluble to a small extent in water, but the aqueous solution on cooling forms a kind of jelly.
The formation of a mauve or aniline purple by the action of bichromate of potassium upon sulphato of aniline is a process of oxidation, and since the pnblication of the original specification at the Patent Offico a great number of patents have been taken out for the preparation of this coloring matter, in which the bichmomato has been replaced by other oxidizing agents, as peroxide of lead, permanganate of potassium, peroxide of manganese, chloride of lime, ferrocyanid of potansium, chloride of copper, cta; but I need not make any special remaris upon these rarious processes, as experienco has shown that bichromate of potassium and at salt of aniline, the reagents first proposcd,
now nearly universally omployod for the preparation of aniline purple. Tho next best process appears to bo that of Dale and Caro, in which chloride of copper is employed.
The affinity of aniline purple for silk or wool is very remarkable; and, if I take some wool, and pass it througla a solution of mauve, you will see how rapidly it absorbs it, even from a very dilute solution. Aniline purple is sont into the market in threo dificront con-ditions-in paste, in solution, and in crystals; but the latter are very carcly employed, as they aro very expensice, and do not offer corresponding adrantages to the consumer.
Tho mave is the most pernament coal-tar purple known especially in respect. to its power of resisting the action of light.
I will now endeavor to give you some idea of the approxinate amonint of the various products, we have considered, obtainable from 100 lbs . of coal ; and, for this purpose, I have arranged them in the following table, with their respectivo weights:-

	Lus,	Ozs.
Coal	. 100	0
Coal-tar	10	12
Coal-tar naphtha.	0	81
Benzol..	0	2
Nitrolenzol	0	4
Aniline.	0	2
Mauve.	0	4

You see the smallness of the amount of coloring matter obtaiuable from conl to coaltar; but there is fortunately ono thing which to some extent comperisates for this, and that is the wonderful intensity of this coloringmatter. I will illustrate this remarkable fact. I have here a large carboy, containing 9 gallons of water, and will now add to this in sclution containing 1 grain of mauve, and illuminate tho liquid with tho n:agnesiumlamp; and you see the singlo grain has colored this largo bulk of water, A gallon of water contains $70,000 \mathrm{grains}$; therefore 9 gallons contain 630,000 grains. This solution, then contains only 1 part of mavere to 630,000 of water.
I have now shorn you the manifold operations which have to bo performed before we can derive the mauve from coal-tar, and have also mentioned a few of the obstacles which had to be overcomo before its manufacture on the large seale could be accomplishicd. We have thus laid the ground-work of our subject ; and in our next lecture, I hope to tell you a little more abont maure, and then give an account of the many other coloringmatters of which it may be considered the parent.

Purification of Chloral Hydrats.*
DY DL. F. A. FIULTRGER.
There is perheps scarcely a liquid in which choral hydrato is insoluble at ordinary temperatures ; four parts of it dissolvo gradually in one part of water, the solution crystallizes at $0^{\circ} \mathrm{C}$. but not in well-formed crystals. Alcohoral and either dissolve it to such an extent that it likewise dues not crystallize well on evaporating these solrents ; absolute alcohol must be excluded, because it com. bines with chloral.
${ }^{-}$From Niucs Jahr. f. Pharm. in Ain. Jour Flarm.

Chloroform and benzelo are well adapted for recrystallization, but the first is ton dear, and tho last camot be entirely removed from tho crystals. The same holds good for oil of turpontine, from which beautiful tables and lamino àro obtained, if 1 p . chloral hydrato is dissolved in from five to six parts of the oil at from 30 to $40^{\circ} \mathrm{C}$., and the solution allowed to cool slowly. Fat oils, which dissolve it readily, are evidently not adapted for this purpose. Firon petroleum ether, which at a modmate heat dissolves much chloral hydrate, it crystallizes well on cooling, but too rapidly to admit of large prisms boing obtaincd; on a large scale, howeper, it may be of li.ter service.

Uniformly satisfiactory results were obtained with bisulphide of carbon. $4 \overline{0}$ parts of it dissolve at $1 \overline{0}$ to $18^{\circ} \mathrm{C}$., but 1 p . chloral hydrate; it precipitates ethereal and alcoholic solutions of tho latter. But at temperatures below the boiling of bisulphide of carbon, 4 to 5 p . of it are sufficient for dissolving 1 p . chloral hydrate. If allowed to cool slowly, bedutiful crystals often an inch in iongth are obtained, casily collected, aud readily freed from the last traces of tho solront by exposing them in thin layers to the air. Thus obtained, chloral hydrate possesses $n o$ acid reaction and does not attract moisture. The best prisms begin to fuse at $49^{\circ} \mathrm{C}$., larger quantities at 53 to 64^{\wedge} C., the fused mass congrealing again at 34° or at $40^{\circ} \mathrm{C}$. if a few crystals had remained unfused. Samples not well crystalized fuse at a lower temperature. The boiling point is $975^{\circ} \mathrm{C}$. if the entire thermometer is sirsounded by the vapors.

Bisulphide of carbon is cheap. Some loss is unvoidable; impuritics in the motherliquor increase gradually to such an extent that a rectification of the bisulphide over corrosice sublimate becomes necessary. With the last portions of the solvent a little chloral hydrate evaporates from the crystals, but the l.pss.from the source is insignificant, $\frac{1}{2}$ grm. having lost but 3.3 per cent. in nine days.
A draft of cold air, the addition of some A draft of cold air, the addition of some petroleum ether, and the employment of the centrifugal machine will be of scrvice when operating on a large scale. The price of chloral hydrate ought not to be raised in consequenco of such purification.

Ohloralum-A New Antiseptic.*

by here johis cangere.
The hydrated chluride of aluninum is a salt, which, as preservative of organic compounds, I have made the subject of niumerous experiments for sume months past, and the more I work rith it the more am. I surprised that it has not been used in medicine. That, in common with other aluminous salts, it has the power of arresting decomposition, may not be altogether unknown; and what I claim as the result of niy researches is, the recogn:tion of its cetrierdinary value as an antisep-tic-indeed, as as substitute for the very poisonvins solutions of chlorde of zirce-the canstic carbolic acid, which, from its smell, cannot servo for maiay purgises; chloride of lime, which evolves the nost unpleasant fumes when used in water closets or elscwhere; the pemaugenates, which stain; and sulphurous acid, which cannot be conirenicat:y used in hospitals or ia the sick chamber.

Two obstacles havo presented thomselves to its prompt intreduction into goneral uso. The first is the source of supply, and the second the name.

Since the chloride of aluminum has never beon a commercial article, and it was important to securo large quantities at a noderate price, la alf a ton was first mado to detormine the best mothod of production. Supplics can now bo insured at a cost not exceeding that of the poisonous claloride of zinc, and below that of carbolic acid-indeed, so far bolow carbolic acid that it must supersede this where disinfectints are used in abundance-to water streets, closets, alloys, etc.g which aro now often redolent of the tar acid odor, that by no meais finds favor in every household.

Secondly, as to the name. An antiseptic and disinfectant of such a character as this non-poisonous chloride, cannot be too widely used. That a long scientific mame is an objection in a commercial point of view, and attended with great inconvenience, every one will admit. Carbolic acid isEusually termed "carbonic" acid by the people, and every chemist is called upon daily to check popular blunders in nansing articles asked for across the counter. I recently heard a respectable youth ask a dispensing clerk for "erorescing," and I was astonished to seo a bottle of efiervescing citrate of magnesis opened to supply the demand. I have consulted several medical friends and chemists as to the best popular name for the liydrated chloride of aluminum, and after many fruitless efforts, have determined on calling it " chloralum." Iam aware of the objections to be raised to this, but since I scarched for a singlo word whereby to designsto it, ono that vould, in some sense, iadicate the nature of the compound, and at the same time be quite nerv, I have resolved to adhero to a name which, like telegram, may become popular in spite of classical objectors.

All this matter of business may seem irrelovant; but only those who have happened to introduce somo novelty are aware of the insurmountable barriers whicle present themselves in commerce.

And now, referring to the more pleasaut part of my revelations-the results of experi-ments-it is not unimportant to state, that in January last I lad to pay from 12s. to 24 s . per pound for small quantities of the chluride to bo found in:tho shops of manufacturing chemists in London. I did hear that the Messrs. Bell, of Nerreastle, had supplied the anhydrous chloride to be mixed with size by Manchester cluth dressers; but, on applicition to this firm, I was told they had discontinined tho manufacture of the metal, and, thercfore, liad none of tho chloride. With the small quantities I could find, anuountins in the whole to less than a couple of pounds, I made solutions of nuch greater strength mersed raw hide, meat, the feot of cattle cut off at the knee, rough fat, and other agents, for rarions periods, varying from a fen minutes to twenty-fuar liours. The result was absolute preservation, and, what is mure astonishing, after keoping these specimens up to tho present time, Ifind no insects attack. ing them, as in the caso of other means of preservation, even with arseniates.
Mreat dipped in solution of 1.030 lo 1.010 specific gravity, had a strung astringent lavor; but a retricver dos did not object to make a daily meal-off lesh thus preserved,
and thrived well on it. I know from provious work that the chloride was non-poisonous but I reponted my experiments to satisfly myself on the point, and then commenced preserving fish. I tried large quantities of place, soles, cod, whiting, mackerel, haddocks, mullet, and other kinds. Somo wero bought when far from fresh, and a dyp purified them and arrested decomposition. A fisbby cod, of suspicious appearance, becane firm, nud was good e.ting after a day's 1 m mersion. We had the least success with the mackerel and mullet, nud, as a rule, none with the tish that lad not been cleansed.

Mr. Frank Buckland anded ne ma procuring salmon from Thurso, Aberdeen, and Galway,
dipped in the solution, when caught, and sent up to London without ice. All the fish arrived in good order, and kept several days. A sea tront was dipped in tho solution in Aberdeen, exposed to 80° for thirty hours, and then sent up in a box. Mr. Buckland and Mr. Brudenell Carter tasted tho fish, and coincided in the judgment termed of it in my lrouschold. The trout was firm and of excellent flavor, and, in both respects, contrasted favorably with salmon that had been transpurted in ice. The result of these experiments was, that the fish would bear immersion for five or six days. The scales softened, and the flavor was somewhat affected by longer immersions. Shees of fish were apt to discolor and lose their flavor in a much shorter time than whole fish; but a salmon split in two would dry slowly and prove good eatmr many days after being caught. As an aid in the drying of cod on the Newfoundland coast and elsewhere, a mild solution of the chloride would be invaluable, since thonsands of thas of fish have to be thrown away, when cought in abundance, because they can not be dried fast enough.
The chloride of aluminum is a delaquescent salt; but it has a tendency to part with its chlorine, and thens no obstaclo is efferca to the drying of the fish. These crperments show how safe an agent chloralnm is, and every medical man cin appreciate on the innportance of having an inofiensive agent to be used in tho sinks, dust-holes, and accumulations of filth and garbage int and around kitchens. A rad on the dust-holes and dustpans is, probably, nert in importance to the disposal and disinfection of serrago, and physicians have never had an antiseptic at thear disposal which could safely be used in the dirtiest corners of most dwellings.

For ordinary disinfecting purpuses, sulntions varying from i.6ic to 1.010 specitic grivity, are quite strong. Stronger solutio:s are usually umnecessary, and impart flarur to ediblo substances.

Any one why wishes to try a convincins experinent as to the value of chloralum, should drup some in strong scrrago rater. The solid matter is precipitated more rapidly than by the use of a persalt of iron, and the odor disappears. I an quate satisticd that it will and those who are attemptung to deal with the sewage of towns by combined nechnmeal and chemical mentis when irrigation is ampracticable. It has ono ereat virtue, which Dr. Budd, in is letter to mysclf, says must belong to " the antiseptic of the future," viz.: that it is quate harmless to vegedtion. The chlorine combun:cs with ammonia and other bases, and alumina is deposited with the solid organic clements. In the dead house, the dissecting room,
musem laboratory, chluralum will be found invaluablo.
It is most important to increase the number of agents available for samitary purposes. The destruction of animal poisons, so much neglected a few years since, marks an epoch in medncial hastory wheln is in pleasant contrast to the days of long prescriptions and infalliblo cures. Cattle-plagne times, fortumately, brought into fashon the stamping out of a malygunt contagia, and, for this purpuse, a good antiseptic, which cannot do harm, offend the most delicate nose, nor soil the finest limen, is a great desideratum.

1 have striven to show, for years past, that we lave it very distinct and destructive group of diseases in ammals-the epizootics proper-propagated through timo and spaco by contagion. Wherever these expizootics a_{i} pear, antiseptics are of great value to destroy the virus as it is thrown off by tho sick animals. All excreta suould bo disinfected, and all agents whech are at all likely to be contaminated by the breath or discharges.

In the contagious pleuro-pheumonia I noted, some years since, that mild case3 are controlled, and even cured, by astringent preparations, such as the sesquichloride of ron, and in the earliest stages of exudation, the mernal use of chomalum would tend to limit the disease. It must be understuod that 1 do not advocate treating cases of pleu-ro-phoumonia, except whon special circumstances render it vely desirable to do so. As a rule, the animals do best without medicine, but the carly exudation occurs rapidly, much in the same way as hemorrhage and hemostatic propertics of the chlorides of iron and aluminum render guod service.

In the foot and mouth discase, which should never be permitted to reach our farms, a chloralum solution checks the discharge, destroys the virus, favors the cicatrization of ulcers and may vo regarded as the best remedy to be used.
In conclusion, I wish to direct the attention of surgeons to the use of the hydrated chloride of aluminum in the treatment of vounds, erysipelas, gangrene, and rarious contrigious inllammatory diseases of the superficial lats, such as the cuntagious ophinahuria of claidren, suldiers, ete. In ferer wards, and every sich chamber, gargles and lutions cuntaining it will frequently be found of use, atid linen ann bo dipped in solution of it bufore semonal frum the sick chan ber. It is a powerful styptic, and, in the treatment of chawhic and , weute Mishiarges, hemoralage, cic., it is ufoco.t valace. It is sufficient to have drawn attention to this subject, to insure the multiphintion of cipuriments; and the more the new compomal is tried, the Leticr will it ha nurediated.

Poisonous Iflets of Carbo.ic Acia.

The Didinbugh arclicul Xumrnuisays. Professus Buraluwial fubsil that when externally applical in sus onc! c.abes calulic acid was ivisurised, and anici luisumbialy in about 1 case 10 10. This puibatand actiun was revealed, oftel:, sp catly an the secund daj, by a peculiar fifect vat the ariac which, pile at Girsi, beconces otalualiy dadect, on standing. No albumen, was fresent in th.o i:xiat, but the patiexits lust arpetito and strusth, Ho recumments as a substit:ite the sulphocarbolate of zine, first employed by Wnesd. Mr. Lister states that he lizs nerer olseered the
peculiar dati urine since tho 1 nasto was ro placod hy he plaster.

Dr. J. Wallace applied carbolic oil (1 to 8) to an nbeess comnected with morbus comro, in a child aged tive. In about two months' time it was romarked that vomiting and dyephagia invarinhly followed enel dressing, and on examining the urino ho found it to possess a dark, sumoky tint, very sumilar to the rppentance of tho urine in lmul scarlotimal nopharitis. Nitric ncill added to tho boiling urino threw down a heary, dark precipitate. No traco of allonuen. This deposit of pigment invariably nppeared after oach dressing with tho carbolic acill, and disappeatred again in a few days. A fortnight after the above symptoms were nuted, ho adopted Professor Lister's most jecent method of carbulic dressings by oilskin, coated with destrino amd shell lac, and carbolic acid phaster; matters becamo moro favorable, and the urine resumed its normal :ppearance. (British Mrelical Jourmal, April $30+1$). Dr. Lightfoot in the samo journal rejnrts a case in which alaming symtoms resembling those of pyemic poisoning clearly resulted from the application of a weale apecons carbolic lotion (1 to 50). The symptoms ate doveloped threo successive times when the lotion was employed and gradually subsided on its removal. Vomiting was changorously severe, so that the patient's life was almost despaircd of, but the urine was not darkened in colour. Numervas observers havo recently met with cases of poisoning in comexion with the uso of carbolic acid, and it is very necessary to obsorve caution a3 to the too free external use of this agent. The blacis or darkenind urine, which is the most constint symptom, has been shown to occur in an equally marked form, whether tar or some colorless preparation oi it bo the agent employed. The exact ceuse of the coloration is still an open quection, but it is at least probable, that the coloring matter is not derived from tho blood. Tho constitutional disturbance is sometimes very grape, and scems to bear some comnoxion with different forms of solution of carbolic acid, the Jac plaster appearing to bo the safest, while a weak watery snlution, frcely used, appar-
ently involves the most risk. ently involves the nost risk.

Manner of Applying Ooments.

Quite as much depends upon the mamer in which a cement is applied as upon the cement itself. The best cement that ever was compounded would prove entirely worthless if improperly applied. Wo have hundreds of recoipts for glues, pastes, and cements of different linds, and yet the public is constantly on the qui rire for new ones, and no. more acceptable receipt can bo sent to our popular journals than one for a new cement.
Now, the truth is, that wo have cements. Now, the truth is, that wo have cements
which nasirer cvery reasonable demand, when they are properly prepared and propcrly used. Good common glue will unite two pieces of rood so firmly that the fibres will part from each other rather than from the cementing material. Two pieces of glass can be so joined that they will part anywhere rather than ou the line of union. Glass can be united to metal, or metal to metal, or stone to stone, ind all so strongly that the joint will certainly not bo tho weakest part of the resulting mass. What are the rules to be observed in enceting this?

Tho first point that demands nttention is to bring tho coment itself into intimato contact with the surfaco to bo united. If gluo is enployed, tho sarfaco shotild bo mado so wam thint tho moltod glue will not be chulled before it has timo to effect a thorough nelhesion. The same is noro eminently truo
in recrard to cements that aro used in a fused state, such as mirtures of resin, shellac, and similar materials. Theso matters will not adhere to nny substanco unless the lattor hat been leated to nearly or quito the fusing puint of the conent usedt This fact was quito familiar to thoso who used sealing-wax in old days. When the seal was used rapidly, so as to become heated, the scaling-wax stuck to it with a firmaess that was amoy-ing-so much so that the impression was in gencral destruyed-from the simple fact that tho sealing wax would rather part in its own substance than at the point of adbesion to tho stamp. Sealing-wax is a very good arent for uniting metal to glass or stone, provided the masses to be united are inade so hot is to fuso tho cement; but, if tho cement is applied to them while they are cold, it will not stick at all. The fact is well Enown to itinerant ienders of coment for uniting earthenwarc. By heating two pieces of delf so thint they will fuse shellac, thoy are ablo to smear them with a little of this gum, and join them so that thoy will rathor break at any other part than along the line of union. But although people constantly seo the operation performed, and buy liberally of tho cemont, it will bo found in nine cases out of ten the cement proves vorthless in the hands of the purchasers, simply because thoy do not know how to use it. They are afraid to heat a delicate glass or porcelain vessel to a sufficient degree, and they are apt to uso too much of the material, and the result is a failure.
The groat obstacles to the junction of any two surfaces are air and dirt. The former is universally plesent, the latter is due to accident or carclessness. All surfaces are covercd with a thin adhering layer of air which it is difficult to remove, and which, although it may at first sight appear improbablo, bears a relation to the outcr surface of most bodies different from that maintained by the' air of a few lines away. The reality of the existence of this adhering layer of air is well known to all who aro familiar with electrotypo manipulation. It is also seen in the case of highly polished metals, which may be immersed in water without becoming wet.
Tnless this adhering layer of air is displaced, tho cement cannot adhere to the surfaco to which it is applied, simply becauso it cannot como into contact with it. The most effcient agent in displacing this air is heat. Mctals warmed to a point a little above 200° become instantly and completely wet when immersed in water. Hence, for cements that are used in a fused condition, heat is the most efficient means of bringing them in contact with the surfaces to which thay aro to be applied. In the case of glue, the adhesion is best obtained by moderate pressure and friction. Another very important point is to use as little cement as possible. When the surfaces are separated by a large mass of cement, we have to dependnupon the strongth of the cement itself, and not upon its adhesion to the surfaces which it is used to join; and, in general, cements are comparatively brittlo.-Englash Mechanic.

Oaroumine.

J. Kachler.-Tho nuthor's researches on this subject woro begun before those of M.M. Daube and Gajowsky on this subject were publishod. As regards the contents of this paper, wo learn, in the first place, that an nequeous decoction of the proviously-ground root is a yollow-colored turbid liquid, which can only bo obtrined freo froni vogetablo mattor insoluble in water by bcing passed thirough a silk sievc. The decoction contains, in addition to the ordinary vegctable substances, a large quantity of acid oxalate of potassa. The residue of the root, having beoin driod, was first treated with aulphide of carbon, yielding to it about 8 .per cent. of dark red-colored, fixed, fatty, vory difficulty suponifible oil, which, when treated with sodium amalgam, is decolorized so far as to bocome straw-yellow colored; it consists 7.08 por cent. of carbon and 9.6 per cent. of hydrogon, the remainder being oxygen. After having been treated with suphide of carbon, and dried, tho residual mattor of the turneric was exhausted with concentrated alcohol, yielding to it a dark brown-red colored resin, whicli. was found to bo. partly solublo in cther, and constituting what has been named curcumine. The author purificd this resinous body, by dissolving it in dilute anmonia, precipitating that solution with chlorido of calcium, collecting on a filter what was thrown down, and obtaining, by adding to the yellow-colored filtrate, somi hydrochloric acid, a yellow flocculent substance, which, after having been thoroughly well washed, was dried. in vacuo over sul. phuric acid, nod constituted a chromo-jel low colored powder, which, on elementary analysis, yielded, in 100 parts-Carbon, 69.00 ; dydrogen, $5 \cdot 70$. The author's opinion is that this body may be simply chyrsophanic acid; and he tested this experimontally by distilling a small portion with pulverized zinc, obtaining thereby as far as tho testis executed upon a small quantity admitted of ascertrining it, a body identical with anthracen. Raw curcumine, as first obtained by the oxhaustion of the turmeric with alcohol as above mentioned, pras dissolved in warim and very dilute caustic potassa, the deép red-brown colored solution was boiled with sodium amalgam, and thus decolorized to a light yellow coloration. Access of air being sedulously avoided, the alkaline fluid was precipitated with acid, yielding a buffcolored, flocculent, resinous precipitate, a; the filtrate containing a substance, b, which was extracted from the liquor with ether. a is ovidently a resin readily soluble in alcohol, but difficultly in ether, benzol, and suljhide of carbon; after having been dissolved in alcohol, and precipitated again with water, and dried, it was found, on elementary analysis, to contain in 100 parts-carbon, 73.77 ; hydrogen, 7.76. On being oxidized With fusing caustic potassa, it yielas protocatechusic acid. As regards b, it wail left, after evaporating of the cther, as a syrupy body, consisting chiefly of a weak acid: which combined well with bases; but the author?s researches in this direction are not complete, for want of sufficient material, and are to be resumed.-Chemical News.

THE SUPPLY OF IndIA-ROBDER. There are in America and Europe more than $i 50$ mannfactorics of Indiarrabber, the consumption of which is goore than $\mathrm{J}, 000,000 \mathrm{lbs}$. of gam per ycar.

ONTAREO COLLEGE OF PIEABMACY

President,

Wm. ELLIOT, Esq.

The regular meetings of the College take place on the First Friday ceveniny of each month, at the Mechanics' riwtitute, when, after the transaction of busincss, there is a paper read, or discussion engaged in, upon subjects of intercst and value to the members.
The Collcge admits as members, Chemists and Driggists of good standiny, and their assistants anid apprentices, ai associates, on payment of the following fees:
Prinoipals, $\$ 100$ por Annum Assistants \& Apprentices, 200
The Journal is furnished rree to all members.
Parties wishing to join the College may scnd their names for proposal to any of the nicmbers of the College. A copy of the Constitation and By-Laws of the College will be furnishod on application.

HENRY J. ROSE, Secretary.

THE GANADIAN

安haxuarcutian divaranl.
в. B. BHUTTLEWOHTI, EDITOR.

TORONTO, ONT., NOVEMBER, 1870.
Corresponilence and general communica. tious, of a character suited to che oljects of this Jounsisin are invited, and will always bo welcome. The writer's name sloould accompany his communication, bat not necessnrily for publication.
Snbscriptions will not be acknowledged by letter, as our sending the paper may be taken as sufficient evidence of the reccipt of the moncy.
All communications connected with the paper to be addressed, post-paid,
"Emitor Canadias Phananacectical Jounsad. .Tononro."

OUR NATIONAL PHARMAOOPGIA.

Some few months ago we reccircd a communication from a druggist in this province, requesting us to inform him in regard to the price of a work which, lio understood, had been recentily published, and which, under the general title of the British Pharmacopacia at once did away with the annoyance so often realizid from the use of the different anthorities representing the national colleges. Our correspondent stated that ho "went in" strongly for progress, and that as he considored the publication of a work, like that indicated, was a step in the right direction, he intended to possess a Pharmacopoeia himself, and that at once, so that he might be fully up to the times.

As it is now abont six years since the British Pharmasopocia made its appcarance in this countiry, we must confess to considerable surprise on reading the remarks of our progreasive druggist. Visions of a plarmacoutic Rip Van Winkle, whowe slumbers had been too profound to be disturbed by pharmacopooias, or pharmaceutical joumals,
ditted through our mind. Whoso fancies wero soon dispellod, for, on looking un our archives we soon discovered the fact that our correspondent was a venerablo druggist, doing a flourishing business in a flourishing bordor town. It was at onco apparont that his proximity to Unclo Sam's dominions had aonething to do with his jgndrance of British enactments ; and so it turned out to be. The U.S. P. was to him the authority tho medicines which ho was required to furnish were those sanctionod by that rork, and by its formulow his, preparations wero compoundod ; although it would appear that ho still chorished a lively remembrance of tho perploxitics of "London," "Edinburgh" and "Dublin."
Although wo hopo the caso nlluded to is a solitary ono, as far as ignorance of tho existonce of a national authority is concerned, we aro well convinced that when taken in a more genoral sense, the instanco will not inaptly represent tho stato of things in many of our border towns, especiaily thoso in the western portion of this province. In some of theso tho British nuthority is diaregarded alike by doctor and druggist, and preparations are made altogether by tho U. S. P.; while in others both nuthorities are tased, as the proclivities of the prescriber or dispenser mary dictate. 'Even in the larger cities, in which are located our medical schools, the most disloyal and heterodox practices prevail. We venturo to say that is a prescription requiring a quantity of Tinct. Aruice were to be sent to every retnil druggist in this city, in nearly every cose the United States proparation would bo returned. This is not a solitary instance ; we could cito many others, but as our readers probnbly understand the matter as well ns oursolves, further illustration is unnecossary.
On one point there can be no difference of opinion-that some authority should be officially recognized and adhered to ; wo say officially recognizel, fur, though we havo made use of the term " mation,l standard" in referting to tho British tharmacupcia, "o only do so by a kind of tacit acknowledgement of the authority, as wo are not aware that any legislative enactment, or any decision of the Medical Cumeil have ever been made in reference ta the matter. The proposed Pharmacy Act contains a clauso to the effect that all medicines shall be compounded according to the British standard: which virtually means, that where n medicino is designated in perscription by a general tille, as tiuct. curice, that a preparation of another standard cannot bo subatituted for it. In case of such an casctment, our physicians will have to be a little more particular in their preseriptions in specifying the particular
compound thoy reguire, or much disappointmont must inovitably result.

Wo sumotines chorish a hope that we shanl havo a pharmacopoin of our own. The proparations of England do not seem to bo generally acceptablo in this zomi-Anericanized country, of fluid extracts and concentrated remedics; and though wo ontortain tho most profound respect for tho B. P.ospecially tho cdition of 1804-wo aro inclined to think that the adinizturo of a little of tho ready art of our pharmaceutical frionds over the lino would render the work more palatable to both physicinn and pationt.

Montreal Chomists' Association.

Tho first meoting of the now Council of the Montreal Chomists' Association was held on Wednesday for the olection of officers, when the following offico-bearers were appointed for tho coming year :-Benjamin Lyman, presidunt: Nathan Morcor, 1st vico-prosidont ; Henry R. Gray, 2nd ricuprestlent ; Richard Britton, troasuror ; Ebonezer Muir, necretary. The lectures for tho coming season, which are to bo on an extended scale, embracing practical chemistry and butany. ©.c., were under discinssion, as also was the matter of legislation. We havo sinco learned that a courso of loctures on chemistry han been arranged under Dr. Girdwoud, while Dr. Ke.llymer's lectures embrace materia modica, botany, and toxicology.

To Our Students.
We havo been obliged to depart from the prescribed courso in regard to the publication of the answers sent to questions. We find our space will not allow 13 to givo thom in full ; and, moroover, most of tho answers gent have not beon altogether correct. We have, however, given a table of order of merit, in which the rating of each answer is represented by the numbor of marks credited. We intend to represent the matter at the next meoting of the Socicty, mad hope to induce the Council to offor a prize or prizes cach month fur the best answurs. This will be an inducoment for our cindonts to continue, and though we havw that the knowledgo gained in ansacring the cunestions is a full equivalent for the troulle and time expend. ed, we tlunk a little encouragement by the Society wulld :ahd the the interest of the undertaking.
Too Good to be Lost.
The Med:cal Tians contains the following:
"We copy the following paragraph, eceustint et literatim, frome the London Medical I'ress and Circular for May 4, 1870 :
" "The Boston Jredical and Sírgiall Journal contains an article "On the Surgical Lessons of the Late War," by Dr. Asterisk,
who praises very highly a proparation of tho rortentions namo of ichtlyocollac proparato Spaldiugii. This remedy is recommended in cases of alopecim, of norvous prostration internally, as a dressing for wounds, rec. Thero scems to us to be far too many of such proparations in tho Americ:n practico of medicine.'
" 'Spalding's Drepared Gluo' was made tho subject, a year or two since, of a bur. lesque articlo, by well-known surgeon in the United States army, At the suggestion of Ω friond, he sent it to tho joumal namoal in the nbove quotation, in which, to his surprise, it appeared. We hopa ho will langh as heartily as we havo over the excellent cthics, but stupidity, bad grammar and bad suclling of his British commentator."

MONTHLY MEETING.

The adjuurned monthly meeting of the Ontario College of Pharnacy was held in the Mechanics' Institute, on Friday, November 11th, Mr. Brydon was called upon to preside.

Ordinary business having been disposed of, the fullowing gentlemon were elected members:

```
J. H. Hewson.............Smithville.
Samuel Snell
```

\qquad

``` Orangeville.
```


associates.

```
\[
\begin{aligned}
& \text { J. McHafie.................Hamilton. } \\
& \text { Andrew Rutherfurd......Hamilton. }
\end{aligned}
\]
F. H. Murdock.............Perth
```

An informal conversation was held on the prospects of the Pharmacy Bill, but in the absence of the members of the Committee on Legislation, nothing new was elicited. The secretary was instructed to urgo upon the committeo the necessity of promptaction, so that the Bill nay be brought before the Legislative Assembly at an early period of the coming session.

The chairman expressed his regret that no discussion had been appointed for the even. ing. He was not aware of any method which could be devised by which the interest of meetings could be so well sustained as that of the discussion of subjects in which al ${ }^{\text {l }}$ were personally interested. Ho then called the atfention of those present to the ingenious and simple invention, used for the ready preparation of distilled water, and known as "Parrish's Pharmaceutical Still." He had one in operation in his own establishment, and ras so pleased with its working that he could but recommend it to those who had not yet tried its merits. He then announced "Tinct. Ferri Perchloridi," as tho subject for next erening's discussion.
Mreting adjourned.

> H. J. Rose,

Secretary.

Sundents' ancurturent.

Auswers unst be formanied to the Eilitor befire the fifth of each month. It will be ureferable for stadents to cmploy the new. system of atomic weights nad formila as adopitad in Fowne's Ifunual of Chemistry, or Roscoés S.essoas in Elc. mentary Chemistry; but in coso the stulent is not fumiliar with the moro modern system, the older method miny be resorted to. Weiglits and measures, excopt when otherwisu expressed, are those of tho lisitish l'hamucopuia. Caleulntions need not be caried beyond the first place of decimals.

questrons.

1.-A vessol is canablo of containing exactly one pound of Ether., B. P.; how much officinal chloroform will it hold !
II.-How much commercial alcohol (65 o.1.) will be required to make 10 gallons of spiritus rectificatus, B.P. 1
III.-What quantity of commercial hydrochloric acid (sp. gr. 1.15) corresponds to 10 parts of HCl ?
IV.-Describe, by an equation, the chemical changes which take place in the preparation of liquor potasse?
V.-What test would you apply in order to ascertain whether tho reaction in the above process was complete !
VI.-Define the term equivalence, or atomicity $?$
VII.-Give tests for nitric, sulphuric, and hydrochloric acids?
VIII.-Describe a process for tho assay of opiua?
IX.-Describe the varieties of jalap occurring in commerce, and give the sources of each.
X.-Enumerate the principal substances incompatible with tinct. fervi perchlor.?

ANSWERS.

I.-A gallon of water of 231 cubic inches, apothecaries' or wine measure, weighs, at the standard temperature, 58328.8 grains, and contains 61440.0 apothecaries' minims; 200 eubic inches will, therefore, be equal to 63194 minims, or 6 pints, 14 oz 6 dr . 34 minims, wine measure.
An imperial gallon of water of $277 \cdot 27$ cubic inches weighs 70000 grains, and contains 76800 imp . minims ; 200 cubic inches will thereforc be equal to 55397 minims, or 5 pints, 15 oz. 3 dr .17 minims, imperial measure.

III.- NEW SXSTEY.

Sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, comb. weight 98
 old sistrm.
Sulphuric acid, $\mathrm{SO}_{3,}$ comb. weight 40

TV.-(a) On adding a solution of cliloride of sudium to that of nitrato of silver, a dense precipitate of chlorido of nilver is thrown down,
$\mathrm{Ag} \mathrm{NO}_{3}+\mathrm{NaCl}=\mathrm{Ag} \mathrm{Cl}+\mathrm{Na} \mathrm{NO}_{3}$.
(b) The amount of chlorido which may bo obtained from one ounce (437.5 gr) of the nitrato is 309.3 gr .170 parts (the cumbining weight) of the nitrato is equal to 108 parts of silver, which, with the addition of 36.5 of chlorine, makes the woight of the chloride $143 \cdot \mathrm{~b}$. If, then, 180 parts of nitrato yield 143.0 of chloride, how much may be obtained from 437.5 parts of nitrato? As $170 \cdot 0: 437 \cdot 5:$:143.5. Ars., 369.3.
(c) Chloride of silver is soiuble in a solution of common salt, consequently the precipitato would, ultimately, bo diesolved.
V.-Ten ounces of perchloride of mercury require for decomposition, 12.2 oz of iodide of potassium :-

$$
\mathrm{HgCl}_{2}+2 \mathrm{KI}=\mathrm{HgI}_{2}+2 \mathrm{KCl}
$$

Tho combining weight of $\mathrm{HgCl}_{2}=271$; that of $\mathrm{KI}=166 \cdot 1$. But two atoms of iodine are required to form the biniodide of mercury; therefore, the weight of KI must be doubled $=332 \cdot 2$; then as $271: 10:: 332 \cdot 2$. Avs., $12 \cdot 2$.
VI. When solutions of carbonate of soda and sulphate of iron are mixed, a precipitato of carbonate of iron is produced, and sulphate of soda remains in solution:
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{FeSO}_{4}=\mathrm{FeCO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}$.
VII. -Ten ounces of iron should gield 49.6 o2. of sulphate. One atom of iron $=56$, requires one combining proportion of sulphuric acid $=98$, and produces 278 parts of crystallized sulphate of iron, (the crystals contain 7 equivalents of water of crystallization which equal 126 parts.)
$\mathrm{Fo}+\mathrm{H}_{2} \mathrm{SO}_{4}=\left(\mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}\right)+\mathrm{H}_{2}$.
VIII.-We are somewhat astonished at receiving such meagre answers as those forwarded, in regard to an enumeration of the different varieties of cinchoris, and their respective alkaloidal strengths, as the excellent article on Cinchona in the U.S. D. which is, we are sure, within the reach of every student-contains ample data from which to compile a full and complete list. We adrise students to give the question reconsideration, and ompare the result of their examination sith the table appended:
I. CINCHONA FLaVA-(Yeilow Bark). 1. cinchona anyishya.
(a) Flat Bark.

A0riozity.	procritasax
Soubeiran	
Santen	... 1.75
Wittstock	2.30
Winckler	. $2 \cdot 14$
Michaelis,	. $3 \cdot 72$
Riegel...	2:78
Delondrc.	... 2.23
Averag	$2 \cdot 3$

gotes mal (Quexics.

Mr. Chrre, of Meaford, writes :-"Did you ever use a tool, somewhat like a carpenter's chiscl, for reducing stiff extracts and masses? The pestle and mortar are nowhere beside it ; and with a stout pill-knife, having the round part of the end cut off square, and ground on both sides to an odge, you can thoroughly clean tho alnb, as woll as liend the mass most effectually. I alwnys cut my pill-knives so, and would now feel lost without them. 'lhis in a trivial mattor, and yet I havo met somu who were not aware of the pleasure with which you can accomplish what is often a rather tedions operation without it."
J. S. Allar.-Wo havo sent by mail tho catalogues of medical and sciontific works for which you enquire, and shall bo happy to procure any books you may requiro.
E. S. P.-Metallic Antimony.-The ordinary black antinony of commerce, is a sulphide, and does not occur, in nature, in the form in which wo usually seo it, but is prepared from the uative sulphido-a mineral found chefly in IIungary, Saxony, Scotland, andat Cornwall, in Eughend. The sulphide is separated from the matrix by fusion, and is cast into blocks of six or eight inches in height, by noout hali that width. It may be reduced to the metallic form by mixing cight parts of the powdered sulphito with six paris of cream of tartar, and three parts of nitro; and throwing the mixture in small portions into a red hot crucille. The heal must be maintained until perfect fusion. The yield will be about 70 per cent. of the sulphide employed. Metallic antimony fuses at 800 F.; it póssesses a silvery lustre, and aiways exhibits ovidence of crystalization. A metal for taling sharp impressions, such as you require, may bo mado by fusian together antimony 25 parts, leed 70 parts, and tin 5 parts. This is the usual composition of typo founders' metal.

Assistant wants to know what studies he must pursue in order to qualify himself, for his business. We have already treated this subject, at lenyth, in previousnumbers of the journal, hut may now briefly say that as a basis, a thorough English education is necessary ; the student should also possess some knowledge of Latin. The special branches of -study are clomistry, materia medica, and botany. For chomistry, cither Fownes or Roscoe, may be sehectod; materia medicaParcira, Garrod, or Royle; botany-Gray cr Bentley. A careful study of theso works, and due attention to shop duties, if continued for a few years, cannot fail to make a good druggist.

Member-Testingor Calonoform.-There is no tost of tho purity of chloroform which is
moro effectual, or more readiy appliod, than that of pouring a small quantity-say half a drachm-upon a pieco of clean filtering paper, and allowing it to ovaporate ; any deloterious impurities aro roadily recognizod by the smell which romains. According to our experience-which we may say is based upon observations during the proparation of many t? lousands of pounds of chloroform-there is ni.) test which affords, practically, more accurate results. If considerable quantitios a.e at disposal; a lalf an ounce, or so, may be poured upon a clean plate; the slightest odorous impurity can then bo easily recognized.

Philo asks: "Can any of your readers furnish me with a plan for making mucilago acacice that will not readily spoil? I have tried a formula which was published in the Dmogists' Circular a short time ago, in which glycerine was the preservative, but I find that the preparation gets mouldy. Some of the essontial oils make it keep well erough, but render it of no value for internal use. The quantity used by physicians here is so small that our stock often spoils befors it is used up."

Changes.

Mr. Brumoll, who fur many years carried on the business of retail druggist, in King street east, Toronto, las been appointad sole agent for tho well known English house of Messrs. Burgoyne, Burbidges \& Co., of London. An advertisement of the establishmont will be found in another column.

The business o. the late Mr. W. McConnell, of Cobourg, is continued by his widow, and managed by Mr. Orren Lloyd.

The busincss carried on by Messrs. Tead \& Brother, Stouffille, is now continued by W. Fead.

We regret to announce the destruction, by fire, of the establishment of a member of the Society, Mr. M. Wilson, of Madoc. The fire occurred on Monday, Th, and was of the most destructive character, as one-half of the business part of the village was destroyed beforo its ravages could be stayed. We learn from a Belleville paper, that Mr. Wilson's stock was insured, in the Toronto Mutual for \$800, an amount which will not cover the loss sustained.

PBEPABATION OF OOBATULINE FOR USE IN DYEING.

Editor Candian Pharmacentical Journal :
Drar Sir,-Having scen some time ago, in the Jounssl, a request for information as to the method of using corallino as a dye, I thought it might be interesting to some of your readers to fiear of my success. Aiter
many experiments, which all resulted in disappointmont, oxcept that wo could produce a vory fino yollow, I at last got, from a cir cular, a hint which, aftor a fow more trialsh furnished mo with tho following valuablo formula:
Dissolvo 3 drachuns coralline in 16 oz. alcohol ; ald 1 drachm liq. ammon. fort, or sufficient to give the solution a decided pink color; thon add 3 drachus acetic acid, No. 7, or onough just to tako off tho pinkish appoarance. A littlo of this solution, dropped into water, will dye silk or wool a beauinl scarlet. After once using, the dye-bath is not exhausted, but asccond piece of goods may bo put in and dyed. The solution of coralline must be used liberally, as it is not ncarly so strong as magenta, consequently much nore is needed. I enclose a piece of wool, dyed according to this formula, for your inspection.

> Yours, \&c.,

Pililo.
Address of the Prosident of the British Pharmacoutical Oonference.

The English mail brings us details of tho procecdings of the British Pharmaceutical Conforence, which was held, at Liverpool, during the latter week of Soptember. We should like to reproduce, in extenso, the interesting report which appears in the Chemust and Druggist, and which cmberdies the introductory address of the President of the Cunforence, but a consideration of the amount of space at our disposal precludes anything but a passing notice of the procecdings. Wo cannot, however, forbear giving the following extract from the address referred to, which, as it furmishes a concise though comprebensive resume of the progress of pharmaceutical science, during the last few yerrs, cannot fail to be interesting to our readers.
"Our younger members will need no reminder from me, that great changes have within the last few years taken place in chemical philosoplyy. Chemistry now, more than ever, claims to be an exact science; and, although I fear many of us havo bemoaned the change in notation and the attendant difficulty of unlearing an old system, yet the more simplo explanation of puzzling organic metamorphoses will amply repay any trouble taken by the persevering student.

Nearly twenty ycars ago, our countryman, Professor Williamson, introduced to public notice the modern view of chemical types. Threo years afterwards Gerhardt auded to the Professor's water-type two others, the hydrochloric acid and ammonia.

From these views we have a more complete classification of the clements and their combinations than wo evor had before. Ere many more years have elapsed, works on chemistry must be arranged on quite a different plan, especially with regard to tho terms inorganic and organic.

In our older books the compounds included
under theso liends woro supposed to bo ns distinct as if they belongod to tha animal and mineral kingdoms. The term "organic" then donoted thoso compounds which were thought only producible in the bodics of plants and animuls, and that thoir production Was due to a supposod "vilal force." Of course I hore allude to organic and nut organized hodies.

In lator yoars many of these have beon, and protiably all will be formed by tho chemical transformation of inorganio eloments or molecules, as cares in point I would mention the artificial production of alcohol, sugar, acetic acid, etc. otc.

Porkiaps the best definition of an organic substance is, that it is a carbon compound, and that carbon in chomistry is analogous to desmids and diatoms in microscopy. The lattor seems to be debateable ground between the an anal and regetable lingdoms, as carbon is between inorganic and organic chomistry.

Oxalic acid was once considored to bo only found in the juices of plants. IJow it has boen prepared from puroly inorganic olements. By the decomposition of a piece of chalk we produce the weil known gas carbonic anhydride, or carbonic acid. Then, by passing this gas over sodium and sand we have oxalic acid, identical in every respect with that found in the Rumex and Oxalis.

$2 \mathrm{CO}_{2} \times 2 \mathrm{~K}=\mathrm{K}^{2} \mathrm{C}_{2} \mathrm{O}^{4}$
 Carbonic Oxalate of
 acid. Potassium.

Our well-known alcolol is snother instance of the artificial production from inorganic ingredionts of what whs formerly supposed to be formed only by the fermentation of starch or sugar.

By passing the vapour of that commonest of all minerals-sulphur-over the surface of red hot charcoal, we liave carton disulphide, the disagreeable liquid so often used for dissolving indin-rubber. Then, again, if we mix this witl hydro-sulphuric acid gas, and pass the mixture over red-hot copper, or with carbonic oxide over iron, we may, as proved by the experiments of M. Berthelot, produce olefiant gas, or, as it is now callod, ethylene (C2H4).

$$
\begin{aligned}
& 2 \mathrm{CS}_{2}+2 \mathrm{H}^{2} \mathrm{~S}+6 \mathrm{Cu}=\mathrm{C}^{2} \mathrm{H}^{4}+3 \mathrm{Cu}_{2} \mathrm{~S} . \\
& \text { Carb. Hydro- Ethy. Cuptic. }
\end{aligned}
$$

Lastly, if we dissolve the othyleno in strong sulphuric acid, dilute with water and distil, we shall have as the result alcohol, similar in every way to that prepared by the distillation of grain.-
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{6} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}$ Eibylene. Sufjh. Δ cid. Alcoliol. Sulph. Achd.

We might, in like manner, follow the synthetical formation of acctic acid from the same inorganic materials, carbon and sulphur.

The vegatable alkaloids, it is true, have not yet been artificially produced; but so great an advance is being made in the formation of organic compounds by artificial means, that I think it is not too chimerical an idea to expect a pharmaceutical solution of the philosopher's stone problem, and to manufacture quinia and morphia on the large scale. We should then bo entirely independent of the Cinchonaceer and Papaveracco, on which we now entirely rely for these invaluabie medicincs.

In the January number of tho Journal de Pharmacie et de Chimie is an article by M.

Bourgoin on the olectrolysis of the vogetablo nlkaloids,-an intorcoting subject that has not hithorto recoived the attention it deserres.

- It has for somo time been known that tho salts of vegotable alkaloids, when subjected to galvanic action, oboy tho usual lar of metallic bases and actids, for the alknloid appears at the negative and tho ncid at the positive polo.

The author statos that the sulpliates of atropia, brucia, strychnia, codcia, aud quinia, when acted upon by the galvanic current, boliavo exactly liko anmonium sul-phate-

$$
\mathrm{NH}_{2} \mathrm{SO}:=\mathrm{SO}_{4}+\mathrm{NH}^{4}
$$

But, more than this, he goes on to say, that when an acid solution of cither alkaloid was used, and the conductibility of the liquid thereby rendered more perfect, the eluctrolytic action was much more violent. The solution became colored round the positive clectrodo, and ovolved oxygon, carbonic acid and carbonic oxide gases.

The most remarkable result of the experiment was that, in each case, the color produced was equal to that seen whes the allatoid wore acted upon by strony sititric acid. Thus, atropia and atrychnia gave a yellow, brucia a blood-red, and codoia an orange color.

This effect was the result of true oxidation, and not from the formation of nitric acid.

The experiment appears to strengthon the ides of liebig, that the nitrogeuous alkaloids aro substitution compounds containing amidogen, NH_{2}; in other words that they may be derivates of ammonis, NH9, in which one atom of hydrogen has been displaced hy an organic molecule.

Having alluded to botany and chemistry, allow me to take u_{1} a little more of your time by giving an illustration of tho advanteges of a knowledge of natural physics, because many of the most beautiful phenomena pass under the dispenser's notice every day.

At our last meeting I had the honor of alluding to some experiments, showing the practical application of spectrum analysis to several of our fluid preparations. By means of the spectroncope many elemonts hure since then been detected in articles of the Materia Medica, which a few years ago were considered grest rarities.

On the table are the ashes of many pharmacopoial substances which contain the metals, rubidium, lithiv*, and atrontium.

Lithium has been noticed in crete proparata, potassw tartras acida, radix taraxaci, radix rhei, Gentiani lutea, Atropa Belladonna, Nicotiana Tabacum, Triticum wulgarc, commércial pearlash, raisins, carbo animalis, carragheen, and kaolin.

Strontium exists in many specimens of: tarazacum, creta proparats, calamine, etc.

Rubidium has been detected in syrup made. from losi sugar, which most probably liad been manufactured from Anstrian beetroot, also in oak bark, from trees growing on beds of lias in the neighborhood of Bristol, and in tea, coffee, and cream of tartar.

Many samples of bismuthum album show the green line of thallium very distinctly, while oxide of einc will sometimes indicato. the presence of iridium.

By some authors it has been denied that plants aborb from the earth nuch motals as

Exporimonts, howover, afford strong ovidonco to tho contrary.
Mr. R. Warington (Jour. Chcm. Sor. 1S05) found in the ashes of the beoch and birch - 103 per cent. of niaganeso. In a case of cattlo poironing at Wells Assizes, the animuls wore proved to have been killed by eating plants containing lead derived from tho soil on which they grow. Analysis showed that grass, weeds, fungi, thistles and shrubs, contained a poisonous quantity of lead, although totally unaffected in thoir growth.

Tho triasoic marls in Cotham, nnar Bristol, are celebrated for an abundnnce of celestino, or sulphate of strontium. Án examination of the ashes of plants and shrubs growing on these strats nearly always shows the presence of strontium in small quantity. I havo detected this metal in Taraxacuin, Arabi. Seiecio, Capsella, Poa, Sencbiera and Scoparium.

In a communication to the Royal Society (Proc. Roy. Soc. 18,546) Mr. Higgins says ho has found traces of lime in every specimen of magnesia he has examincd, even in whai was sold as puro magresium oxide and magnesium chloride.

When magnenium oxide was examined, the heat of the oxyhydrogen flamo was necessary to bring out tho calcium lines distinctly. Ho noticed that it was always most satisfactory to employ a minumum quantity of oxygen, for when too much vas used thoy wero not so distinctly visiblo. Dr. Emerson Reynolds, whose experiments wero recorded in tho same papor, gives the samo results.
But perhaps of all tho phenomena observed in pharmaceutical optics, that termed fluorescence is the most striking and beautiful. It is the ghostiike appearanco which wo sco every time we disponse a bottle of mixture containing quinine or ayrup of red poppies. By very delicate methods of observation tho singular fluorescent property may actually be seen on the white demy in which wo wrap our bottles before sending them out.

It was formeriy suppose 1 to be occasioned by the reflection of light irom an irregnlar surface, or from particles mechanically suspended in a solution, as when tincture of arnica is added to distilled water. In such mixtures tho effect to the eye very much resembles fluoresconce, yet is of a very different character, and may be distinguished by the rays of light being polarized, which is never the case with the true difusion of fluorescence.
The most convenient way of viewing theso phenomena is by looking at the solution under examination through a prism, or by the actinic light of burning magnesium, or by passing the spark of an induction coil through a central vacuum tube.

Fluorescence may thus be observed in many substances of the Phurmacopoceia, such as guaiacum, sulphate of quinine, Hyoscyamus, Stramonium, Chrcuma, C'annabis indica, Digitalis, Lobelia. litmus, orohil; madder and Papaver Rheas.
For some time the phenomena were explained by Sir J. Herschel, under the term epipolism, and afterwards by Sir D. Brewster as internal dispersion. It, however, remained for the Prenident of the British Association, Professor Stotes, to discover the true explanation, vir. that the effects wore caused by a change of refrangibility in tho rays of light. The index of refraction is always diminished, because the leugth of the light wave is increased and the velocity lessened.
For instanco, the inviniblo actinic rays
quinino in tho bluo, by stramonium and curcuma in the yellow, and by chlorophyllin the red. In overy case the chango is towards the rod ond of tho spectrum.

It sometimes happens that fuoresconce is observod to commorico in two parts of tho spectrun, and would indicato that the sulution under oxamination contair two dis. tinct chomical compounds.

Tho bark of the horsc-chestnut (EEsculus llippocastanum) is a remarkablo examplo of this. Its beautiful greon fluorescence was formerly supposed to originato from crystalline sulistanco called pesculin. A more accurato scries of experiments by Mr. Stokes has shown that two parts of tho spectrum wore simultancously effected.

This fact arouscd the professor's suspicion, which a cheinical analysis afterwards proved to be well grounded: Two glucosides were produced, viz. sesculin $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{13}\right)$, which gives a sky-bluo light, and paviin ($\mathrm{C}_{2} \mathrm{H}_{30} \mathrm{O}_{13}$), which gives a bluigh-green. When an aqueous mixture of both these principles is submitted to examination, a light is preceivod in overy particular identical with that from an original infuaion of the origiual bark.

Thus it is that wo often obmerve the difforent branches of natural philosophy dovetailing as it were into each other, and lastening to complete the chain of evidence required for elucidation of some intereating problem.
Tho past year has been prolific in so many new and important discoverios that it becomes difficult to point out one or two only for consideration.
At our last meeting Mr. Hanbury brought before our notico a now hypnotic, the chloral hydrato. Then it was an expensive curiosity, now it is in evory one's pharmacy and manufactured in enormous quantitien. The general impression is, that it will prove a very efficient remedy, especially where opiates arc inadmissable. It is, however, much to be regretted, that already another preparation has been introduced into the market, which only contains 70 instead of 90 per cent. of chloral, and which is declared by Dr. Liebreich to bo devoid of any therapoutic power. The chloral alcoholate, as it is callec., is not so deliquescent as the hydrate, and has a boiling point of 113.0° Cent. and a 8p. gr. of 1.31, while the true hydrate buils at 97° Cent., and has a sp. gr. of 1.57 .

A very simple methor of detceting the imposition by the use of ammonia, has been described by Mr. Umney.
Sulpho-carbolic acid is another preparation that has recently been brought into use. It is made by combining sulphuric and carbolic acids in their molecular weights (49 to ${ }^{94}$) at a temperaturo of $290^{\circ} \mathrm{F}$.

That true chemical union occurs is evident from the fact that sulpho-carbolic acid gives no precipitate with chloride of barium or nitrate of lead. It produces a characteristic purple colour with perchloride or pernitrate of iron.

Many physicians affirms that it is a more powerful disinfectant than plain carbolic acid. The salts most commonly used aro the sulphocarbolates of soda and zinc.

Last year Mr. Hanbury alluded to the madder plant, a species of the Rubiarceie, which, although not in our Matoria Medica, yet is employed as a medicinal agent in manufacturing districts, and rill, therefore, be my oxcuse for again alluding to it.

Itis principal consumption, as you know, is for tinctorial purposen, añ its value may be
easity conccived when no less a sum than $£ 1,000,000$ is nanually paid by us for foreign madder.
It owes its colouring matter to alizarino, which, singularly enough, does not cxist in the living plant, but is produced by a kinel of fermentation,
A fow months ago tro Germans succeeded in artificially making alizarino in quantity by the destructive distillation of coal-tar, like the well-known aniline dyes, alizarine being a product from anthracine as aniline is from benzol.

Montreal Ohemists' Association.

Tho regular monthly meeting of this Association was held in their lecture-room on Thursday, Nov. 3rd, Nathan Mercer, Esq., in the chair.
After the reading of the minutes of the previous mecting, threc young gentiemen wero jroposed and duly clected associate mombers of the Society.
Tho subject of the ovening's lecture, namely, "The study of Chemistry and Materia Medicn," by N. Mercer, Esq., was now introduced. On rising, Mr. Mercer said that his remarls would be directed specially to the junior members, a large number of whom he was pleased to sec present. The lecture was one of very great interest and instruction, and showed conclusively that the Sociciy has among its members those who are thoroughly qualified to teach the rising youth of tho trade. When the lecturer sat down he wis greeted with rounds of naplause.
J. Kerry, Esq., now touk the chair.

Dr. Edisards rose to more a rote of thanks to Mr. Mifereer for his valuable lecture, seconded by Mr. R. Bolton, in a few appropriate remarks. This motion was carried unanimously.

Alfred Savage, Esf., addressed the meeting, and gave an amusing account of his examination before a Board of Physicians appointed as examiners, telling now nearly he been rejected, because he insisted that castor oil (being a fixed oil) was soluble in alcohol.
Before the mecting adjourned it was announced that tho Winter Course of Lectures by the Professors would commence on inonday, the Fth inst.

Soluble Iodide "of Starch.

According to MI. Petit, iodide of starch prepared by the process described belor is entircly soluble, of nearly constant composition, and always of a beantiful bluc colour :Tako
lodine, 12 grammes.
Ordinary starch, 100 grammes.
Ether, 1.8.
Dissolve the iodine in a sufficiency of ether, pour the solution on the starch, and triturate until the ether has completely exnporated. Transfer the porder to a porcelain capsule, and expose to 2 temperature of 212° orer the water bath. In making considerible quantitics it is necessary to stir the mixture. In the first part of this operation considerable quantities of iodine rapour are disengaged, lint this soon ceases. The iodido of starch is exposed to heat for half an hour, auring which space of time it acquires the property of being solyblo in hot water.

From souble iodide of starch thus obtained, the syrup may be prenared by dissoiving the
formor in hot water, and then adding a sufficient quantity of sugar. By employing Iodide of starch, 20 grammes,
Water. 345 grammes,
Sugar, 635 grammes,
a syrup is obtained containing one grammo of iodine per kilogramme, and of which cach spoonful of 20 grammes corresponds to 20 milligrammes of iodine.-Chemist and Druggist.
Deteotion of the Adultoration of Quinine with Salioine.
Dr. Solencin.-The author lias comparatively tested the degree of accuracy and sensitiveness of the different tests in use for thio detection of the presence of salicine in quinine, which, if mado with tho view of fraudulent adulteration, will always be at least at the rate of 1 per cent. of salicine, or more, because less will not pay. The anthor employed three hinds of sulphuric acid-riz, the funing, pure concentraed acid, fren from arsenic and nitric acid; ordinary concentrated suphuric acid of commerce, containing a trace of nitric acid; and, lastly, sulphuric acid to which, purposely, nitric acid had been added. A match-glass having been placed on a sheet of white paper, and a drop or tro of tho acids above referred to (cach in a separate glass) having been poured therein, a few crystals of the alkaloid (sulphate of quinine) were put on the acid; if pure, there is no colnration, but, even with 1 -100th of salicine, the tro first-named acids caused a dist ict red coloration, which did not ensue with the acid containing nitric acid. This latter acid uras not even colored by pure salicine.-CTicmical Neres.

Comoination of Tron and IHydrogen.

Tho Scientific Americurtis responsible for

 the following:-Professor Jacobi, of Russia, has succeeded in depositing pure iron by means of the galranic battery, and of manufacturing nmerous articles out of.it. But this supposed pure iron on being placed under the receirer of an air punap, and lieated to redncss disengages torrents of hydrogen, increascs in volume, and changes into a sitver white metal, very malleable and ductile, and so soft that it can be easily cut with sissors. Iron prepared in this way oxidizes rapidly in the air, and decomposes rater belor the boiling point. All deposits of iron by th:o battery nro rich in hydrogen, and what is very renarkible, their rolume is less than that of pure iron. This is just the opposite of what takes placo when palladum is charged with lifydrogen. It sould appear from these facts that hydrogen combines directly with iroan the same as car-
bon, and that hydrogen increases flse hardness and density of iron, while it diminishss tho malluability and oxidation.
Professor Jacubi has succedied for the first time in making pure inon, and wo can now study its propertics. What was hitherto sup. posed to be pure metal was a compound.

Use of ifercury in Mifedicine.

Mcrcury appears to have been first used internally by Paracclsus, ibout tho year 1520, althongh Theoduc, the Friar, in the twelfth century, describes the salivation that mercuzial friction will produce. Calomel is first mentioncd, although obscurely, by Ospald

Crollins, in 1608; in tho samo year Bequin davribed it most fully and clearly. After this time chemistry tool possesssion of the schools, and gradually the other preparations wore discovered und introduced ; and at this period there is no medicine in tho pharmacopoia that enters into so many different receipts as that of nercury in its different combinations. In looking over "Griffith's Formulse" we find no less than 192 different receipes vith this mineral entering into and forming tho active part of the prescription. Wo learn by this that it is a drug of powerful import in medicine, nor is thore any remedy that has leen moro oxtolled and more abused than mercury. - Mred. and Surg. Reporter.

The Kr'Boundon, or Icaja, a Poison in uso at Gabon,

MM. Pabuton and Pcyre report in the Coriptes Rendus that, at Gabon, a French settlement on the west coast of Africa, there is in use a vegetable poison locally known as m'boundou, or icuja. That substance is the root of a plant which is not further specified. The authors haro been oxperimenting with this substarice, which, even in very dilute decoctions, is very bitter, and appears to contain one or more alkaloids, since the aqueous decoction is largely precipitated by iodide of potassium, and also by phospho-molybdic acid. Tho poisonons effects of this substance bear some similarity to the effiects of brucia, but the authors state that, under certain conditions, this poison does not hurt nicn. Some of the lower animals are readily hilled by it; a dose of threo milligrms. of the alcohnlic extract, placed under the skin of frog, wills it; and rabbits and dozs aro killed by doses of from 15 to 25 centigrms of the same extract introduced into the stomach.-Phila. Mral. and Surg. Rep.

Preparod Coffee Leaves in Placo of Tea.

Dr. Gardner (England) has made a curious discovery; viz. That leaves of the Cofice plent may bo substituted for those of tea without any considerable loss of the peculiar properties belonging to the latter. Dr. G., in craminingat a grocer's shop a grant raricty of teas, noticed that one chestlabelled "Assani Tea" had a very peculiar appenrance. On his purclasing some, he found it to be prepared coffer leaves. These were in small pragments, not rolled, being too hitsh for that operition, but conrenient for mcasuring Tith a spoon, and ficlding a strong, plesisant infusion, accentable to many on account of its comparative clicipness. The dietetic question acttled, the dishonesty of the transaction remains for punishment to prevent as customer from being imposed on, and buring coffec when he wants tea.-Phila. Med. and Surg. Rep.

Wines.

In an interesting paper in the Proctitioner, on wincs, the ditor and stafi arrivo at the following conclusions:
Sound natural wines are to bo obtained most econominally from the Bordeaux distriets, the red vines beins the best.
Rlane wines (white) aro equally good, but more expensive.
Hungarian and Grcek rines are often rery good, but vnequal, from delsets of manufacture, and too cxpensive.

The fortificd wines (i.c. those to which alcolol is added during manufacture) dorelop, no proper qualities till thoy have been some years in boitle. Sherry is, however, greatly superior to the other wines of this class, in the rapidity with which it develops the volntile ethers, upon whicle much of the value of wi ces denends. Sherry is the appromiato st mulus of the cnicelied nervous system of ous age, as well as of certain kinds of infantile and youthful debility. Childeren who aro especially benelitted lyy the habitual use of wine are-1. those in whom a tendency to wasting is very mabed, i.c. those who, without positivcly seming ili, are very apt to run down suddenly in fesh, with or withont loss of appetito; 2. those who readily contract catarrhal affections, which are very elowly shaken off. The beat way of admiaistraion is in combination with a simple bitter at a fixed time of day. Thus, a child three or four years old may take a teaspoonful of sherry, made up to at tablespoonful with infusion of gentian, three times a day.-Mcelical Times.

New Researches on Oalisaya Bark from Jaya:

J B. C. Moons.-The anthor communicates the esults of his rescarches of ten species of Calinaya dubict, and two of calisayu rera. The ireshly-cut bark contains 6.1 per cent. of water, and when when air-dried about 13 per cent. The quantity per cent. of all alkaloids together in the tea first-maned species varies from $2 \cdot 405$ to 0.010 . The quinine varies in quantity from 0.559 to 2.831 per cent. The cinchonidine (not met with in all the barks) is present in quantities from 0.039 to $2 \cdot 41$; the quantity of cinchonine varies from $1 \cdot 105$ to 3.909 per cont The barks of Calisaya rera contained, resjectively, 7.442 and 7.482 per cent. of alkaloids, the quinine amomated to $3 \cdot 670$ per cent., aud the cinchonine to $2: 812$ per cent. The barks allided to contain on an arerage, after having been dricd at $125^{\circ}, 2.332$ per cent. of zsh, of which $0 \% 25$ per cent. is lime.-America:t Chemist.

Scionco and Labor.

Dr. Lyou Playfar, 3I.P.; the ners president of the Midland Institute, Lirmingham, in succession to the late Mr. Chis. Diekens, -to whuse merits as a man of noble syuparthies and beliefs, and an effectivo socinl reformer, he paid a fecling tributo-ropened the session ly an eloquent and thonghtful address on the union of scicuce and labor. Ridiculing the idea that advances in sceence lind been the result of accident, he pointed ont that man's wants had led to the indiostrial aris, and the practice of these and long continucd expericuces give birth to science. It wras not promoted by aleisured aristocracy but, as a rule, by men rising from the indus. trial classes. Slephenson was a collicr, Davy and Dalton druggists, Faraday a bookbinder, Garrison a carpenter, Watt a philosophical instrument maker, and Arkwright io barber. Even statesmen, sucli $2 s$ Cobden, Bright and Gladstone, were being drawn fron the same ranks. In a graphic stictch of the development of arts, Dr. Playfair nhowed how much science had contributed to their progress, and concluded by urging the vital necessity of education, that lnowiedge and libor might be joined. In Ω rell-educated community, he obserred, deaths by violence should be impossible, and yet in the last five
years 82,853 persons porished by violenco in Eaghad and Wales, and thrungh disubedience to sanitary lans 110,000 were sacrifioed every year.

Glycerine.

Dr. ITayer is convinced that glycerine often determines, particularly in regions where the skin in thin and delicato, crythematons and other eruptions. IIagar found in glycerino which produced irritation, oxalic and formic acids, and in some specimens, ammonia. Besides these impurities, MI. Scliepty has verifed, in glycerine reputed to bo pure, tho presence of nitric acid, fatty volatile acids, and allalies; traces of chlorine, lime, and sulphuric acid sometimes exist in glycerine, rhich has not been distilled-(Rce. de Ther. Mcl. Chir., No. 2, 1970.) ML. Peruts states that butyric acid can easily bo detected by gently lienting the glycerine with a little alcohol and strong sulphuricacid. If butyric acid be present, the pine-apple odor of butyric ether will be developed. According to Mr. J. Watts. the forcimi or Yienna glycerine is apt to contain chloride of calcium, as much as ane gr. in 3 oz . An old specimen of yellow glycerine in my possession, labelled "pure glycerine," gave a distinct precipitate with nitrate of silver, soluble in rmmonia, and a slight cloudins: "ith oxalate of ammoniuan. - Nad. aıal Sury. Juarnal.

Wax contained in Opium.

O. Fiesse.-The author describes, at great length, the process by which, from the socalled foccs opii, may be obtained a waxy matter, which, on closer inrestigation, proved to consist of two different substances-viz., ceiotate of coryl and palmitate of ceryl-the latter formung the clice portion of the mass. HI: first-named substance fuses at $822^{\circ} \cdot$; the list-named substance, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, fuses at 79^{2}, is soliable in alcolol, chloroform, cther, and aceton, and crystallizes in prismaticshapell crjstals.-Chemical Netes.

Pharzazentical Fína.

Fun gives the following intercsting ancedote of Dr. B.-A P-istic npothecary (the late Dr. B.) re-O in secret at being den-oz-ed by a ccrtain 3 -atist as "as an un-马-ously poisonous old slop-seller.". Erer methodical in his habits, notwithstanding thero were paticnts at least crrt-ing in his shop, the worthy apothecary went out into the strect where, mecting his 3 -atic reviler, he so constly ex-lb-cd the rudiments oi P-ism on the occlputand sinciput of his opponentas to compel him to R-rocate these hostile Mi-ations on his orn be-ss. The 5 -atist, howerer, getting q. 3. of the morst of it, Co-cd the matter by ren-oz-ing his injurious opinion, and from that time they beanme fast friends.

We need only to explain that P stands for muzil (a pinch,) and DI for maniple (a hand-ful.)-('icmist and Druggist.

©rade ${ }^{3}$ enjort.

Oue remarts regarding the prosperous state of trade last month, are equaldy anplicable to the present time. Busincss is still quite brisk, and all our wholeanle dealers appear to be doing a lively trade.

The staic of the market, as regards priecs,
is, however, by no means settled; fluctuations are luth frequent and mumerons. China goods aro held much firmer, as an carly advance is expocted.

Amongst goods whic! have advanced in price we may noto Cantharides, Mercury and its preparations, Iodide of Potassium, Canary Sced, Hemp Seed and Nutmegs.
Those articles which favor the purchasers are Alleuhul-which is held at 10 cents luwer tham last guotations; Cochineal, Oil Cassia, Ipecac, Jalap, Indigo and Cassia; Sperm Oil is aiso considerably lower.
Níajal Stomes. - Rosin, Pitch and Tar are at little casier in price, but winterfreights will probably keep then at the same figure for some time; Spirits Turpentine still continues to advance.

As Hanager or Fartner.

TO CFIEMISTS AND DRUGGISTS.

ALONDON (Eng.) CHEBIST sceks a situation as Mramager, with a view of cither becoming parther or purchaser of a business. Thoroughly uuderstands French and Einglish pharnacy. Apply to SPES, Box 30 , Torouto P.O.

THE EUROPEAN MATI:

A Weckly Summary of News for North America

USUAL CONTENTS: Accidents; art and Science; Births; Dlarriages and Deaths; Commercial Summary; Correspondence; Court; Criminal; Emigration; Forciguand Colonial; Gazette, General Sumaary; linferial Parliament; Irelaud; LatestShipping; Lemal; Litcrary; Market Heports; Medical; IIcreantile; Military; Miscellancous; Mlusic and the Drama; Natural Nistory; Naral; Ohituare ; Political; 1 Prices Current; Scotland; Shipping sud Freights; Sjecial American Notes; Sporting; Stocks anä Sinasm; Wills and Bequests; sc., sic
Subscriytion, payable in adrazce, 17s. 4n. per canam, inclusire of pastagr

```
PERETMNERT
```

HANDKERCYIEF Extracts, Jackcy Club, Frangipanni, Patchouly, West End, Musk, Spring Flowers, Mignonette, New arown Hay, Swect Pca, and all the popular scents.
Extriz Quality.-G oz. Octagon Cat; 3 oz. Octagon Cut; 12 oz. Mlain, stoppered.

Best Quality.-1 $\frac{1}{1}$ Oz. Plain, stompered.
Mo. 1 Quality.-14 oz. Squat Cork'd; 1 oz. Stone Jug; luz Glass Juss; 3 oz. Pancl; $\frac{1}{\text { oun }}$. Squat; \ddagger oz. Squat; \ddagger oz. Oval; \ddagger oz. Squat.

Hair Oils, Pomades, Tooih Washes, Tooth Powders, Colognes, Laranders, Sachets, Camphor Ice and looll, Toilet Vinegar, Milk of Roses, cte, in all the popular styles.
Price Lists on application to
LYALAN BROS. \& Co.,
-1y.

WHOLDSAIE PIRICES OTURFENNT-NOVEMIBER, 18%.

