CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagéeCovers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appeur within the text. Whenever possible, these have been omitted from filming / Ilse peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meillecir exemplaire qu'il lui a été possible de se procurer. Les létails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessıus.Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquéesPages detached / Pages détachèes

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplèmentaire
Pages wholly or partially obscured by errata slips. tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below /
Ce docunent ēミf filmé au taux de féduction Indiqué cl-dessous.

The copy filmed here hes been reproduced thenks to the generosity of:

```
National Library of Canada
```

The imeges appeering here ore the best quelity possible considering the condition and legibility of the originel copy and in keeping with the filming contruct speciticetions.

Original copies in prineed puper covers ere fllmed beginning with the tront cover and unding on the lest page with d prinied of illustreted impres. sion, or the beck cover when eppropriete. All other originel copres aru filmed beginning on the first page with a printed or illustreted impression, end ending on the lest pege with e printed or illustreted impression.

The lest recordad freme on each microfiche shall contein the symbal Imeaning "CON. TINUED"), or the symbal ∇ (meening "END"). whichover applies.

Maps. plates, chars. etc., may be filmed at different reduction ratios. Those too large to be entiraly included in one exposure are filmed beginning in the upper left hand corner. left to right and top to botiom. es meny fremes as required. The following diegrams illustrate the merhod:

L'exemplaire filmb fut seproduit grace a la genérosite r

Bibliothèque nationale du Canada

Les images suivantes ont ete reproduites avec le plus grand soin. compre tenu de la condition ot de la nettert de l'exemplaire filme. et en conformite evec les conditions du contrer de tilmage.

Les exampleires originuux dont te couvarture an pepior ast imprimes sont filmos on commencans par le premiar plat of en zerminant soir par la dernitre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plot, selon le ces. Tous les ourres exemplaires originaux sont filmos en commençant par la premiere pege qui comporte une empreunta o'impression ou d'illustrotion ot en torminant par le derniere page qui comporte une relle empreinte.

Un des symboles suivants apparaitra sur la derniere imege de chaque nicrotiche. selon te ces: le symbole signifie "A SUIVRE". Ie symbole ∇ signifie "FIN".

Les certes, planches, tebleoux, orc., peuvent itre filmes da des toux de reduction differents. Lorsque le document est rrop grano pour etre reproduit en un seul cliche. il est filme a partur de l'angle supérieur gauche. de gauche a droite. ot de haut en bas, en prenant te nombre d'imeges necessaire. Les diagrammes suivants lllustrent le mothode.

MICROCOPY RESOLUTION TEST CHART

ANSI and ISO TEST CHART No ?

(1)anada国epartment of inines

Hon. LOUIS CODFRRE, Mininle*.
K. W. BROC' Depars Mimater

Meological Suruen

Museum Bulletin No. 3

GEOLOGICAL SERIES, No. 19

OCTOBER 30, 1914

TIIE INTICOSTI ISI.IND
F.llNiS
by
II. II. Twenhofel

W11.111.1

1914

Canada

Geological Survey

Museum Bulletin No. 3.
GEOLOGICAL SERIES, No. 19.

The Anticosti Island Faunas.
By W. H. Twenhofel.

INTRODUCTION.

The study of the Anticosti Island section wa: indertaken by the writer in the summer of 1909, the field work bein, done under the auspices of Peabody Museum of Yale University. The results derived from the field work and the preliminary study of the collections, were presented by Schuchert and Twenhofel at the Boston Meeting of the Geological Society of America and, later, published in the Bulletin of the Society. Subsequently the Geological Survey of Canada ge ?erously assumed the expense connected with the study of the faunas and a memoir will ultimately be published in which the palæontology and everything pertaining to the geology will be exhaustively treated. The many questions arising from the study of the faunas have made further field work desirable, if not actually necessary, and this will be undertaken before final publication, although the manuscript and plates of the work as originally planned are now completed. In the meantime, it has not appeared wise that the information gained and the conclusions reached should be withheld and the present paper is an attempt to give a summary of the chief results. i is hoped that their publication will elicit comment and give the writer the benefit of suggestion and advice
from other workers in equivalent strata. Throughout the entire study of the collections the writer has hat the criticaladsice of Professon Charles Schuchert and the getie ous co-operation of the officers and scientiots of the Geolngical Sursey of Canada. Doctor R. S. Bassler assumed the study of the bryozoa and ostracoda and the ielentifications of all such specties are his. A large number of other scientists have given advice and assistance. To them acknowledgment will he made in the final publication.

The study of the Anticosti fammas and the section have leveloped five facts of importance. They are as follows: (1) Billings' statement that the section is complete from lase to summit and contains no stratigraphic break is sustained; (2) many of the species have ranges through greater thickresses than the same species have in other regions; (3) the faunas of the north and south shores show great differences which in cvery instance correspond to differences in lithology and hence to differences in the ecolegic conditions at the time of sedimentation; (4) the section is much thicker on the north shore than on the south, contains fewer corals and no coral reefs, and the sediments are less calcareous, but far more shaly and sandy; (5) the rocks of the Anticosti section once extended fat inland on the Laurentides and much higher rock once overlay the highest rocks now present.

The alsence of stratigraphic breaks in part explains the long virtical ranges of many of the species, since they occur in the strilta which are wanting in erpuivalent sections of other regions.

While the fannas of the north and south shores are markedly different in many of the zones, it is also true that they are almost absolutely identical in those zones wherein the sediments of both shores are the same. These faunal differences are rendered more conspicuous by the absence on one shore of species to which great diagnostic value has beon given, but which are present on the other shore. One of the r.ost striking examples of this fact is the presence of Rhynchotrema perlamellosa in great abundance and with a ronsiderable range in the torthern outcrops of the Charleton formation, while to date no collector has obtained a single specimen of this species from the south shore, although the equivalent lieds are most certainly exposed and less than twenty
miles separates the two outcrops. The number of such species is quite large and will be given in the tinal work. These faunal differences of the two shores leads to the conclusion that the fannas of the Anticosti seas were at leant partly controlled loy the depth of water and the character of the sedimemts. I'here is nothing new or strange in this conclusion sinee similar conditions always obtain in the case of modern waters. The fact, however, has great importance in corclation; but by many writers it appears tr. . ave been almont whol'- ignored and diferences of faunu hare heen explained in other ways. Exhaustive trentment of this phase of the stratigraphy is ultimately contemplated.

Anticonti isfand consists of a part of a cuesta on an ancient coastal plain which probably began to develop in the Devonian and existed until the time oi the post-glacial submergence. It will be called the Antir ,ti cuesta. Alrout twenty miles to the north the Mingan islands fringe the Quelwe shore and consist of the remnants of a parallel cuesta. This will be named the Mingan cuesta. Between the two cuestas lay an inner lowland which near the west end of Anticosti was crossed by a north-south divide from which streams drained east and west, the former being the longer. North of the Mingan cuesta is another lowland. The latter will be called the Laurentide lowland and the former the Channel lowland.

FAUNAL SUMMARY OF THE SECTION.

Introduction.

The lithic characters of the zones wer iven in the earlier $1 / \operatorname{ler}^{1}$ and repetition at this time is $\mathrm{u} \cdot \mathrm{C}$ plete faunas of each formation will be e. sary. The com.
, ut not zonally. sion: Ordovicin are represented in the a...ticosti Island succescosti Ordovician cal division of the Antiin place; but fragments in the north shore show face of the woter presence at no great depth below the surthe largesi pieces near the buried divide of thost abundant and in it is frobable that the parent reck divide of the Channel lowland, extent on this ridge. It has been outcreps over a considerable The rock consists of a soft, inighly bitumino macasty black shale carries a small biota of five species as finous black shale and spiniferus, C. typicalis manificus, as follows: Climacorraptus becki macastyensis and Orthocer, Leptobolus insignis, Triarthrus are in harmony with : Both lithology and fauna Ottawa and elsewher eastern Can da

> Urdi- ician System, Richmond Series.

English . rui formation. The lowest rocks of this formaton neet the witers of the North channel at the edge of the rel. sear Englisit head on the northwest end of the island, and the summit is placed at the top of the so-called "track bed", a bed marked by peculiar impressions which Billings considered as probably the tracks of cephaloprds. The fauna consists of one hundred and seven species of v hich seventy-nine pass into higher formations. Brachiopods are the most numerous, both in species and individuals, with the gastropods vying with them in each

[^0]```
ANIICOHTI IsLAN' HLNAg
```

respert. The later have an aspert somewhat more ancient
 ciated with many typical Ri. lmond species, they are considered surviours of wher depesits and given little weight. The firmation has a thicknesi of 229 feet. 'the complete faund com. nally. sucres. e Anti. in the of the he surand in wland, lerable shale e and raptus rthrus fauna ed at of the formation is is foslows:-


6
MUSEUM BULLETIN No. s.


Charleton Formation. The English Head formation is succeeded without lithologic or stratigraphic break by the Charleton formation. The faunas are likewise continuous and typical Richmond species which are introduced in the former become exceedingly abundant in the latter. A fact of some importance for geography and stratigraphy is the greatly increased thickness of the formation in the northern outcrops, the thickness of the south shore consisting of 730 feet, while that of the north exceeds 900 feet. The lithology of the north shore is also quite diferent from that of the south, the latter consisting largely of limestones and shales with the former predominating, while on the north shore shales are far more important and toward the top much sand is present, although a real sandstone is not developed.

Corals which occur quite commonly in the English Head formation, here become abundant, particularly on the south side, where heads of nearly three feet diameter occur. Through a considerable thickness near the middle of the formation the peculiar hydroid, Beatricia, lies around on the reef like logs in a swamp, or, slightly salient in the cliffs, projects like gunsfrom a battery. Gastropods are not nearly so important as in the English Head, while the brachiopods play a greater rôle. The complete fauna consists of one hundred and sisty species of which seventy-five have come from the English Head. Sixty species are confined to the formation and fifty-six pass into succeeding formations, twenty-eight of which have come from the English Head. The species of the formation are:-

| 1 | Lockcia | n. sp. |
| :---: | :---: | :---: |
| 2 | l.ycrophycus | Vagans |
| 3 | Rusophycus | 1,ilobatum |
| 4 | Ilindia | Litrosa |
| 5 | Rauffella cf. | filuas |
| 6 | Beatricia | norlutosa |
| 7 | B. | undulata |


| 8 | Calaperecia | canadene |
| :---: | :---: | :---: |
| 9 | Columnaria | alveolata |
| 10 | H.alysites | catenulatus |
| 11 | l.sella | affinis |
| 12 | I.jopera | goldfusi |
| 13 | Pheotao |  |
| 14 | 1 '. | asperat n . |

segmenta-
aensis


70 1.
Wrthis ? forbesi
Paristrophia liwitson in. var.
Paristrophia lenticularis
Pholilups
th. sp.
4 Plectambonites sericeus
l'rotozemga anticostiana
Pseutolineula elegtatula
R.afines (pisit. n . 4).

Rhipithonalla sola
Rhymehotremationticuationsis

Schizoramia tilos.a
Schuchertella perten
Stophomen,1 matiguata
$\stackrel{9}{4} \quad ?$ arothusi
S. lluctuos.
$\underset{\mathrm{S}}{\mathrm{S}} \quad$ Heculat
Trematic 1u. sp.
Trematis ottawimenis n. var.
Z.gotpira recurvirustra n. var.

13 ysianychia n. sp.
Cienotionta cf obligua
Cyrtorlonta anticonilenas
C. hirrionti

Perinea bellilineata
I.
$I^{\prime}$ viari=triata
Rhytimya emmı
Whitelli plebi,
II: sign sile:a
Bellerophon n. ip.
Cluthrospira subronnica
Cyclonemis thelia
llormotoma gracilis
gracilis
multivolvia
teretiformis.
teresifurmis
americina
n. s )
motlesta
notesta
n. p.
i1.
ip.
2 .

112 Phragmulites p.inussi
113 Kaphisioma n. -p.
114 Silpinuoituma camalensis
115 Sinntes ef. bilohta
110 Subulite; rictatrilumi
117 ('onataria spleselila
118 (.
P'ieruslece
n. $s_{i}$ ).
lefinuerers n. sh.
120 Acrimuerat antierstiensis
111 A. ? fulgor
122 A. Senlwicki
12.3 Billingsites canmbense
$12 \downarrow 13$. newberrsi
125 Cyrlorerasci, nicolle:i
126 Cyrtucera: n. s.

| 127 | Endoceras |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 128 | litoceras | proteiforme | 146 | Primitia | lativa |
| 129 | Orthoceras | formosum | 147 | I'rimitiella | canadensis |
| 1.30 | 0. | lyelli | 148 | Schmidtella | sublenticularis |
| 1.31 | 0. | nuagnisulcatun | 149 | Tetratella | lunatifera |
| 132 | 0. | seiboldi | 150 | T. | simplex |
| 133 | 0. | n. sp. | 151 | Trichia | noulosa |
| 134 | J'oterioceras | apertum | 152 | Brachyaspis | alacer |
| 135 | I'. | obesum | 153 | B. | alitis |
| 136 | Spyriceras | bilineatum | 154 | Bumastes | orbicaudatus |
| 137 | S. | feruns | 155 | Calymmene | callicephala |
| 138 | Aparchites | ininutissimus | 156 | Ceraurus | pleurexanthe- |
| 139 | Beyrichia | parallela |  |  | nius |
| 140 | Bullia | semilunata | 158 | Ceraurinus | icarus |
| 141 | Bythocypris | cylindrica | 158 | Chasmops | ת. sp. |
| $1+2$ | B. | lindstruma | 159 | Isotellus | gigas |
| 143 | $B$. | obtusa | 160 | P. cf. | maximus |
| 144 | Ctenobolbina | hamnelli | 161 | Proctus | alaricus |
| 145 | Krausella | anticostiensis | 162 | Ischyrina | winchelli |

Ordovician System, Gamachian Series.
Ellis Bay Formation. On the north shore the sandy shales of the Charleton formation give place without stratigraphic break to the basal Ellis Bay sands; but on the south shore the sequence is continued with limestones and shales, the latter becoming more important near the middle. The formation is excellently and extensively exposed in Ellis bay on the south shore and Prinstie bay on the north. On the south side the thickness is 180 feet, but in the northern outcrops it greatly exceeds this figure.

This formation is placed in a series distince from the Richmond, the ground being taken that it is younger than any division assigned to that series. On the other hand it is considered older than any North American formation referred to the Silurian. The great number of Richmon,i species which continue into this formation and the total absence of any evidence for a break of any kind are considered good reasons for its retension in the Ordovician. it is to be noticed, however, that twenty-four of the twenty-six species of Charleton bryozoa become extinct with that formation and that of the twenty-two species of Ellis Bay bryozoa, twenty species are introduced with the Ellis Bay formation. Furthermore, the Ellis Bay bryozoa have their closest affinities with Silurian faunas, although fifteen of the species become extinct within the formation.

The fauna is one of the largest of any of the island's formations and nearly every species is represented hy numerous individuals, although their vertical ranges are generally not extensive. Near the top occurs the first coral reef of the Anticosti section, but it is found only in the southern outcrops. It is about ten feet thick and formed almost wholly of Paleofazosites, Lyellia, and IIalysites. On the present wave cut reef the coral masses rise as small mounds and in the cliffs the reef appears as a structureless mass with the superjacent berls overarching it, giving rise to an appearance of folding. Also near the top, but below the coral reef, is the second Beatricia zone and here they are equally as numerous as in the Charleton zone. The total fauna consists of one hundred and forty-two species of which thirty-five originate in the English Head formation and twenty-three in the Charleton. Fifty-eight species are confined to the formation and one hundred and seven speciesnearly eighty per cent of the fauna-become extinct therein. The species are:-



```
cutumborid
sp.
oronica
lia
ala
umilis
sp.
antea
cilis
ricand
Ona
losa
Allina
p.l
r. }
ma
r.
jerata
adensis
S
rdsoni
leta
wi=ki
ificum?
erryi
c
sum
di
udatus
phala
wanthe-
to-cau-
us
mgmenta-
```

ri

Silurian System, Anticosti Series.
Becsie River Formation. The passage from the lillis Bay to the Becsic River formation witnesses the extinction of about eighty per cent of the Ellis Bay fauna and the major portion of this extinction takes place in the upper three zonles, which in their rapid lithic and faunal changes presage the initiation of a new geologic cycle; but beginring with the first zone of the Becsie River formation, stability or sedimentation and fauna $^{\text {sen }}$ is again instituted. Beyond the faunal evidence, there is none other, either structural or depositional, suggesting a stratigraphic break and the faunal change can not be taken to indicate any interruption of deposition, since it can as readily be explained by a change in ecology which may have been brought about by some physical event in a region comparatively distant, and until more is known of the factors that determine the characters of faunas, the causes of their local extinction and the replacement of one by another, it appears to the writer to be idle to assume that faunal changes are indicative of breaks unless they are accompanied by other evidence. Since no stratigraphic break has been ascertained, the base of the Beesie River formation and the Silurian has been somewhat arbitrarily placed where there is the most decided famal and lithic change.

In the earlier paper by Schuchert and Twenhofel, the writers were inclined to the opinion that the early Silurian beds of Anticosti could be enbraced within the series term Niagaran. This view has now been abandoned, since it appears that it would give the terin too great an extension beyond its original application.

Savage has lately proposed the series term Alexandrian for certain early Silurian deposits of southwentern Illinois and eastern Missouri, the series to embrace all deposits between the Ordovician and the Clinton'. In 1857, Billinge, nramosed to place all the Anticosti section above what is now d...ted as the Charleton formation in a new group which he proposed :. call the Anticosti group, considering this portion of the Ansionsti section as holding a position intermedia' jetween th Urdo-

[^1]vician (Hudson River beds) and the Niagara limestone. ${ }^{1}$ has since been learned that he erred in including too muct since the lowest division of his Anticosti group belongs to th Ordovician and the upper two divisions to the Clinton and highe formations (Niagaran). The future employment of Billings term requires its emendation and it appears to the writer tha this should be done, since Billings gave the term its prope significance, erring only in including too much, and also in tha the Anticosti section is far more complete and hence far mor representative of this time than any other on the North American continent. This course has been followed in the present paper In the final paper the matter will be more adequately treated.

Silurian deposition was initiated by the formation of a yellowish-white limestone in which is recorded the almost complete disappearance of the species which had been so abundant in the Ellis Bay formation. The tabulate corals, however, form an exception, since they continue in almost undiminished numbers. The number of species decreases to thirty-nine, of which nineteen have come from lelow, consisting for the most part of the Anticosti and generally well-known long ranging corals and brachiopods. In the lower half of the formation the number of species is few and none is abundantly represented, but in the upper portion there are more species and most are extremely abundant in individuals. Nineteen of the thirtynine species are brachiopods. The thichness of the formation is 188 feet. The species present are:-

```
Cyclocrinites halli
Clathrodictyon vesiculosum
Cyathophyllum wahlentergi
Diphyphyllum caspitosum
Favosites forbesi
\(F\). gothlandicus
Halysites catenulatus
Lycillia affinis
Palcofavosites aspera
Zaphrentis stokesi
Helopora concava
H. formosa
Pachydictya crassa
Phænopora superba
```

| 5 | I'tilodict ya | gladio |
| :---: | :---: | :---: |
| 5 | Atrypa | marginalis |
| 17 | Brachyprion | leda |
| 19 | $B$. <br> Cimarot | n. sp. |
| 20 | Clorinda | undiata 1 l |
| 21 | Cadospira | planoconvexa |
| 23 | Crania | n. sp. |
| 23 | Hindella | prinstana |
| 24 | H. | umborata |
| 25 | Orthis | davidsoni n . |
| 26 |  | flabe |
| 27 | Parastrophia | lenticularis |

[^2]tone. It $\infty$ much, gs to the nd higher Billings' riter that s pioper $o$ in that far more Imerican it paper. reated. on of a ast conlbundant lowever, ninished nine, of he most ranging rmation esented, onst are thirtymation
lis

| a |
| :--- |
| n. |

n. var.
nvexa


| 31 | V. | n. sp. |
| :--- | :--- | :--- |
| 35 | Bumastes | orbicandaus |
| 36 | Calymmene | callicephala |
| 37 | Cl. | nidgarensis |
| 38 | Cuphapis | n. sp. |
| 39 | Ilidenus | grandis |

Gun River Formation. Corals play a greater rôle in the Gun River than in any previous formation, but the common species are the same as those of lower horizons. Two large reefs occur in the southern outcrops, one at St . Ann cliff and the other at East cliff. They are not, however, in the same horizon and there is none on the north side. Fossils are abundant in aimost every zone and the vertical range of each species is gencrally quite extensive. The total fauna consists of one hundre! and thirty species of which forty-eight are brachiopods and these constitute fully eighty per cent of the individuals. Of the entire fauna eighty-seven originate in this formation and fortyfour are derived from lower horizons. The formation has a thickness of 500 feet. The species are:-

| 1 | Buthotrephis cf. gracilis |
| :---: | :---: |
| 2 | Rusophycus bilobatum |
| 3 | Cyclocrinitis gregarius |
| 4 | C. internmerlius |
| 5 | Ischadites krrnigi |
| 6 | Aulopora cf. precius |
| 7 | Clathrorlictyon vesiculosum |
| 8 | Clinatograptus typicalis n |
| 9 | Cyatiophyllum euryone |
| 10 | C. walulenbergi |
| 11 | Cystiphyllum niagarense |
| 12 | Diphyphyllum caspitosum |
| 13 | Favosites furbesi |
| 14 | gothindicus |
| 15 | Halysites catmulatus |
| 16 | Helerlites subrubslata |
| 17 | Lyelliar affinis |
| 18 | Palcofavosites uspera |
| 19 | P. aspera n. var. |
| 20 | Petraia pygnea |
| 21 | Streptelasma hatusculum |
| 22 | Strombodes diftuens |
| 23 | Syringopora verticillata |
| 24 | Zaphrentis stokesi |
| 25 | L. n. sp. 1 |
| $26$ | Z. n. sp. 2 |



MUSEUM BULLETIN NO. 3.


Jupiter River Formation. With progress upward the Gun River formation becomes more shaly and this culminates in the second zone of the Jupiter River formation which is almost entirely so, though carrying a small proportion of sand. Following the shale zone the sectiments become more calcarcous. The above statements apply only to the western outcrops of the south shore. In the eastern outcrops, both the upper Gun River and the Jupiter River formations consist of alternating shales and limestones. The thickness in the western outcrons is 562 feet, that in the eastern is unkiown.

In the western outcrops the ecologic conditions at the time of deposition provided a facies favourable for graptolites and tri-
lobites and such are present in considerable abundance. The fauna consists of one hundred and forty-seven speries of which forty-six are leachiopols. Sixty-fives species are int rexfuced in the formation an, one hundred and twelve species do not appear in the succeeding division. The apparently local extimetion of this great number of species has no great significance since it was probably determined ly the entrance of the reef coral-crinoid filunas which were in complete possession of the parts of the Anticosti sea bottom whose preserved deposits now constitute the Chicotte formation. To what factors these faunas owe their entrance cannot be said and speculation appears idle. The species of the Jupiter River formation are:-

| Buthotrephis ef sracilis | 39 | 1 |  |
| :---: | :---: | :---: | :---: |
| Hyalisslelia ? n. sp. | 40 | IIclopora | 11. 5T. 2 bellala |
| Alveolites labechi | 41 | 11. | concitbal |
| Chonophyllum canadense | 42 | 11. | formusi |
| Clathrorlicty un variolare | 4.3 | 1.isclema | virrioporum |
| C. vesiculosum | 41 | I'achydictya | crasmi |
| Climacograptus n. sp. | 45 | Ihano rora | 11. sp. |
| Cuenites labrosus | 46 | Prilodictya | glatiosa |
| C. lunatus | 47 | !'. | sulcobia |
| C yathophyllum anticostiense | 48 | Thammisens | ก. sp. |
| C. $n$ sp. | 49 | Trematopora | irrchularis |
| Dictyonylum niagarense | 50 | Vinella | multiradiata |
| Dictyonemia n. sp. | 51 | $V$. | ruliciformis |
| Favosites favosus | 5. | Atiypa | reticularis |
| F. forlesi | 5.3 | Bilobites | biluba |
| F. gothlandicus | 54 | Brachyprion | led. ${ }^{\text {a }}$ |
| F. hisingeri | 55 | 13. | philomena |
| Halysites cattnulatus | 50 | 13. | n. sp. : |
| Heleolites interstinct.t | 57 | 13. | ก. sp. 2 |
| H. subrubulata | 58 | Camaroturhi | iil ? argentea |
| Ivellia affinis | 59 | C. | decemplicata? |
| Monograptus clintonensis | 60 | C. | ghıri.tis |
| Paleofavosites amera | 61 | C. | nestecta? |
| Petraiat pinmea | 62 | Chonetes | prinus nius |
| Plasmapora petalliformis | 6.3 | Clorinda | linguiler. |
| Streptelasma hatuseulum | 64 | Culospira | hemionherica |
| Syringopora bercicillata | 65 | Crania | n. - 1 . |
| \%,uhtentis puteni | 66 | 1)dmandla | cleg ant ul.? merlia |
| \%\% stuhesi | 67 | I). | ก. al. |
| 7. $\quad$ ก. sp. | 68 | Eospirifer | radiums |
| Crotallocrinus $\mathrm{s}^{\text {p }}$ | 69 | Ioma:unpira | 11. -1). |
| Eucalyporrinus ap. | 70 | Lept،ena | juli.i |
| Cornulites serpularius | 71 | I. | rhenmbeidalis, |
| Allonema botellus | 72 | I ingula | n. -i) 1 |
| Ascotiction n. sp. | 73 | I.: | ก. sp 2 |
| Chilotryba circe | 74 | 1.i=atrypa | atherside.t |
| Jiplexterna sparsum | 75 | Orthi= | thanelitus |
| Fenestella sp. 1 | 76 | Pentamerus | uble ngus |


| 77 | Pholidops implicata |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 8 | P Prectamlonitew (ransversalis | 114 | 13. <br> Hloloma | f turricula mediocris |
| 80 | Rhipiclomella nitberia | 115 | Pleurntur | i,. ? crypt. |
| 81 | R. | 116 | Silpingos | ma n. sp. |
|  | mixeris rhyncho- | 117 | C'onularia | niag. |
| 82 | Rhynchonella ? nutrix | 118 | Tentaculit | f. minutis |
| 83 | Shuchertellia pectenl | 120 | T. | ornatus |
| 84 | Saricklandinia lirevis | 121 | Actinnceras | 11. falix |
| 85 | S. davidmoni | 122 |  | whitei |
| 86 | S. lavirdsoni n. var | 123 | Glosmoreras | ? deside |
| 87 | S. lirata | 124 | Muronias <br> 11 | persiph |
| 88 | S. nirlisa | 125 |  | , |
| 89 | S salieri | 125 | Kinnoceras | lellatulun |
| 90 | S. $n$ Fr. | 127 | Oncoceras | futile |
| 91 | Strophoniena antieju.ta | 128 | Orthiceras | n. sp. 1 |
| 92 | Strephoprion geniculatum | 129 | A.archites | n. 9p. 2 |
| 9.3 | Triplecia, insularis n. var. | 1.30 | Amarchites heyrichia | minutiss |
| 95 | IV: fredslas? julia | 131 | E. 1 velilina | Venusta |
| 96 | 7.gospira nica | 132 |  | anticosti |
| 97 | \%. paum | 13.3 |  | frontalis |
| 98 | Conscardium elegrinfulu | 134 | Slacrocypris | subeylind |
| 9 | Cienoxlonta cf. socialis | 13. | Calymmene | nia zarensi |
| 100 | Mroliolopsis iniser | 137 |  | cf. vogle |
| 101 | Myıilarca ef. nyytiliformis | 138 | Cheirurus | nuperus |
| 102 | il. nitula | 138 | Cyphaspis | christ yi |
| 103 | Pterinea curiost | 1.3 | Cybele | elegantulus |
| 104 | $P$ Prasrata | 140 | Dalininites | crudatus n |
| 105 | P. striata | $1+1$ | encrinurus | punctatus |
| 106 | P. thisle |  | E. | punctatus |
| 107 | Cyclonema commanis |  |  | var. |
| 108 | ${ }^{\text {Cr m percingulata }}$ | 14. |  | n. sp. |
| 109 | )iaphorostom:1 humilis | 145 | 1 m | grandis |
| 110 | D. niogarensis | $1+5$ |  | n. sp. |
| 111 | Hormotoma ? aculeata | 147 | Pracopidellas | orestes |
| 112 | H. Pfunata | 147 |  | perplexa |

Chicotte Formation. The Chicotte facies was one favou the development of reef corals and crinoids and the entranc these faunas and the ecologic conditions to which the entra was due, dirove the mud loving animals of the Jupiter Rive extinction or to other parts of the sea bottom. The thicknes the formation is 73 feet, the greater part of waich consists either a structureless mass of corals plastered over each other a breccia formed of the broken stems of crinoids. In some pla the rock is so highly crystalline as to constitute a marble.

The fauna consists of fifty- ${ }^{-}$vo species of which ninet are introduced in the formation. This is the only one of Anticosti formations in which the corals outnumber the brach pods in species and individuals; in respert to species the ratio
turricula mediocris 1 ? cryptata
a n. sp. niagarensis f. nimut is orn.itu 1.! .flix whitei desideratuis: persiphonatum
vertebralis
bellatulum
cutile
futile
n. sp. 1
n. sp. 2
minutissimus
venusta
liillings
anticostiensis
frontalis
subeylindrics
diazarensis
cf. vogílesi
quperus
christ yi
legantulus
rudatusn. var.
unctatus
unctatus
ar.
sp.
randis
. sp.
restes,
erplexa
fe favouring
entrance of
he entrance
er River :
thickness of
consists of
ch other, or
some places
rble.
h nineteen one of the he brachio. the ratio is

ANTI \&It IALANUFATMAB.
two to one and in respect to individuals there is no comparison. The species are:-


Th sulist the narleton formutionsare correlated directly h the is Iriur Richmond and are considered ti - ahturnt species common t. occurrence renderi ing to the inferest vailed between the - and open communication preat least the upper f. un of thating the times of deposition of the whole of the Chat, ton. The minmon species are:-
tumon species are:-

|  | Nu |  |
| :---: | :---: | :---: |
| 2 | Hinclis | fil |
| 3 | Beatric | norlulies |
| 4 | 13. | undilat |
| 5 | C, |  |
| $6$ | Columnari |  |

7 1. yopora gellifu-ni
i) Mesograptus putillus

1) Stepmalsmbr rusticum

10 Cornalites riifumadensis
11 Arfirestemat amsulare
12 Bjethopura striata
32 i.


|  | Platystrophia den |
| :---: | :---: |
|  | r |
| 35 |  |
| . 36 | $k$. |
| 37 | Sclizorrania |
| 3.4 | Strophomena fla |
| 3) | Bysmout chi.ucf. r |
| 41 | Ctensuanta cf. obl |
| 41 | Plerines prolit |
| 42 | Mormatollas gracilis |
| 43 | Sinuite cf. hilolmet. |
| 44 | Aparchites |
| 45 | L3eyrichia par |
| 46 | I3ytherypris cyl |
| 47 | Teiramela la |
| 48 | $T$. simplex |
| 49 | I'Iriclia nexlosa |
| 50 | Calyommene call |
| 51 | Ceraurus p |
| 52 | Ceramrinus icarus |
| 5.3 | Isotellus |
| 54 | I. cf. Hnaximu |

It is significant of the above list that it embraces son the most commion of the English Head and Charleton spe but that many common forms of the Interior are wanting. nearly all the :orms considered lelong to the benthos in adult but plankton in the early stages when distribution is affecte currents, it is : gested that the Anticosti Richmond form of North Atlantic origin and were carried into the Mississip sea loy west ward trending currents which made it almost in sithe for incerior species to reach Anticosti.

One of the most striking examples of the parallelism let the Richmond faunas of the Interior and those of Antico that afforded ly the outcrops at Stony mountain in Manit where nut of a total of fifty-three identifialle forms, there thirty which are present in the Anticosti rocks, and of thirty species, no less than twenty-two are considered fossils to the Richmond. The distribution of the species is similar to that in the Anticosti beds, so that a correlation ca made with zones 3,4 and 5 of the Charleton formation th practically positive.
dentata-acutilir.1ta es sericeus allicoratiensis perlimellosa tilos. Huctura f. rarli.sta f. whliqua prolificus.lenis5 gracilis bilolatt.1 minutionimus phrallela cylinulrica lunatifera simplex norlowal callicephah pleurexanthe-

11นะ icarus gigas maximus
aces some of leton species, nting. Since in adult life, is affected by nd forms are Mississippian Imost impos-

## lism between

 Antionsti is in Manitoba, 1s, there are and of these idered index pecies is also lation can be ation that isANTICONTI INLANIG FIIVA*。
The fatman of the Ellis Bay formation are partly derivative from those of the previous formations, party indigenous, and pandy migrants from European sas. Most of the specien consist of forms not dhewhre known in denericia, or not in a horizon so low as this. That there is a decided Richmond aspert is clearly evident; but the assemblage is not identifiable with that of any interior deposit. This suggests that the interior wat free from marine waters, or that all paths permitting migration (1) the interior were closed. The former siew is adepted and it in hence concluded that the I:Ilis Bay formation has no equivalent in North America.

The lack of recent comprehensive works on 【ritish tratigraphy and palamology renders correlation with Brith-h sections difficult and this is particularly trme for the Eisplish Head and Charleton formations; but the evidence indicates that these two formations find an equivalence high up in the Bath series. The Ellis Bay formation contains eleven species which are atso found in the English Bala, of which seven are considered diagnostic by reason of their first appearance or limited vertical distribution, and a correlation based on the common presence of thesespecies would assizn at least the lower portion of the E:llis Bay to the upper Bala.

In the Kisistiana region of Norway, the Orlovician and Silurian have lately been exhaustively studical hy Professor Kiaer. He erects a number of divisions and the Ellis Bay formation and the upper Charleton correlate fairly well with his etage 5.1

In Baltic Russia, the Lyckholm and Borkholm formations are the equivalents of the lower parts of the Ellis Bay and parts of the English Head and Charleton formations. The Borkholm carries eighteen species of great diagnostic value which in the Antieosti section occur chiefly in the Ellis. Bay and ('horleton formations, and it is considered that the Borkhom holds about the same stratigraphic position as the iuwer zones of the former and the higher of the latter.

The Becsie River fauna shows its nearest relationships with

[^3]that of the cataract formation of Schuchert ; but if the long r species be not considered, there are only three species comr the two formations, while most of the Cataract species mah first appearance in strata higher in the Anticosti section th Becsie River formation, and, since the general expression Cataract formation is younger, it is concluded that there i basis for equivalence and that the Cataract should proba correlated with the lower portion of the succeeding format

A fauna holding a stratigraphic position somewhat sin that of the Becsie River is that of the Alexandrian series of and eastern Missouri; but of the total fauna of that series are only nine species which also occur in the Anticosti and, since they are mostly species of extended vertical di tion, their presence affords no basis for correlation. Ho since four of the nine species do not appear in the Anticos tion until the upper zone of this, or the succeeding formation also, since the general appearance of the fauna is younge that of the Becsie River, it is believed that it will find a erquivalence with the upper portion of this and some parts succeeding formation.

The highest zone of the Gun River formation shows $t$ pearance of typical Clinton species, but the Clinton fanmal a blage does not attain full development until the succeeding J River. Since the Jupiter River fauna correlates best wit higher New York Clinton, the Willianson shale, and the Ir quoit limestone, this being particularly true for that part above zone 2, it is considered proballe that the lower zon the New lork Clinton, the Sodhs shale, Furnaceville ore lee Walcott limestone, find representation in the lowest zones Jupiter Riser and the highest zone of the Gun River, espe as the Walcolt limestone carries the same diagnostic fosis does zone 5 of the Gun River formation. It is farther consi prolable that the middle and lower zones of the Gun Rive mation are the Anticosti equivalents of the Cataract of son Ontario and the Brassfield of the Ohio valley. An app reminder of the Brassfictd appears in zone 5 of the Gan formation in the occurrence of Triplecia insularis anticost which then extends untilzone 3 of the Jupiter River. In apre
paper considerable e:aphasis was placed on the presence of this species', there considered a variety of 7 . ortoni; but further study has shown that it is sperifically distinct from that apecies and only varietally different from the Old Wiorld T. insularis.

The (Chicote formation carrice a pronounced coral fantar of which most of the species are those which are common in the coral zones of hower horizons. The writer dees not consider that the stratigraphie position of the coral funa means amything in relation to correlation, for the Anticosti section proves without Tlestion that coral deposits are not uecessarily of great horizontal
stribution and may recur again and again with the faunal components practically the same. On stratigraphic gromets it is correlated for the present with the Irondeguoit-Rochester of the New York section.

Elsewhere in the Anticosti embayment there are extensive Silurian deposits; but they are either somewhat younger than those of Auticosti or present a different rype of sedimentation. Thus the Black Cape section of Chaleur bay, recently described by Clarke ${ }^{2}$. legins with what appears to be the probable equivalent of the upper Jupiter River or the Chicotes, while the Arisaig section begins with a black shale lithology with a corresponding faunal assemblage, the result being that few species are common to the two series or deposits. These indicate that the Arisaig section begins with the cepuivalent of the upper portion of the Gun River formation and then continues upward nearly to the Devonian.

In terms of the Furopean section, stratigraphic grounds would assign the Becsie River and Gun River formations to the Lower Lldudowery; but, excepting the upper zones of the Gun River, the fauna gives little support. The upper zones of the Gun Riser record the appearance of Pentamerus ablongus, Clorinda liguifera, Coelospira hemispherica, Stricklandinia davidsoni (represented in Europe by S. lens) which make their appearance in the Lower Ilandovery, but become abundant in the Cpper Llandovery: These and other species and their vertical

[^4]distribution lead to the assignment of the upper zones Lower Llandovery and hence that which lies before has similarly placed, although it is possible that the Becsie may have no representation in the British section.

The greater portion of the Jupiter River formation is Llandovery, in which no less than thirty-nine identical or c related species of Jupiter River forms occur-nearly thirt cent of the Jupiter River fauna. The vertical distribution of of the speciessustains the correlation. Triplecia insularis ho the Upper Llandovery, and its Anticosti variety appears fo last time in zone 3 of the Jupiter River formation. Pental oblongus is rare in the Gun River, but very abundant in the Ju River. In England. is rare in the Lower Llandovery, but a dant in the Lipper Llandovery. Many other species shov same distribution.

The English Wenlock carries a large coral fauna and in respect is like the Chicotte, but in the writer's judgment th semblance has no correlative value, as the Anticosti se teaches that a coral reef formation may recur again and and locally lie at many different horizons. The English lock, however, has forty-nine species which have representati identical or closely related forms in the Upper Jupiter River Chicotte formations and these facts make it extremely prol that these Anticosti strata have a time equivalence with Wenlock.

In the inistiana region, the Silurian (Lower Llandover Wenlock) u: the Ringerike section, there is a facies some similar to that of Anticosti, and has thirty-seven species which represented by identical or closely related forms in the Antic Silurian. The Lower Llandovery; Kiaer's etage 6, correl fairly well with the Gun River and the upper portion of Becsie River; while etage 7 or the Upper Lhandovery, exhi a close parallelism with the Jupiter River, and ctage 8 , or Wenlock, shows close faunal equivalence with the upper Jup River and the Chicotte formations.
zones to the fore has been Becsie River ation is Upper tical or closely rly thirty per ution of many ularis holds to ppears for the
Pentamerus in the Jupiter ry, but abuncies show the
a and in this ment this recosti section in and again English Wenesentation in er River and ely probable ce with the
landovery to es somewhat ies which are he Anticosti 6, correlates rtion of the ry, exhibits ge 8 , or the pper Jupiter

## NEW GENERA ANI) SPECIE , OF FOSSILS FROM ANTICOSTI ESLANU.

The postponement of publication of the complete fanne., of the Anticosti Istand section until the completion of further field work, is the excuse for the present appearance of the descrip:tions that are given on the pages which follow. Since one of the generic terms has already been referred to by Proferior T. E. Savage ${ }^{1}$ and there is a prospect that another will $-0, n$ be used by another student, it has seemed desirable and wise that their definitions and those of a few others of the more important forms be given. Bibliographies will be omitted as far as possible, leaving this to the complete description of the faunas.

> Phylum, Coelenti:rita. Class, Hyprozon Hexley. Order, Graproloidea Laimortif. Suborder, Axusophora Frecif. Genus, Cliniacograptles Hall. Climacograptus typicalis zar. magificus $n$. var.
A common form in the Macasty black shales is a giant variety of the C. typicalis group and to this the above varietal name has been applied. It has the same type of rhabolusome with the rapidly narrowing sicular end and the two sicular spines. The rhabdosome attains a width of it least 4 mm . and an unknown length, but at least 70 mm . There are eleven to fourteen thecae in 10 mm . It differs from C. typicalis in being longer and wider.

Horizon and Locality. Ordovician; the specimens were collected at Macisty bay from a large block of the Macasty shale. The writer has collected simile specimens of almost the same size from the Utica black shal on the banks of the Rideau river at Ottawa, Canada.

The holotype is in Peabody Museum, Yale University.
Class, Actinozon.
Order, Madreporaria Milne-Edwards.

[^5]
# Sub-order, Tibulata Minee-Enwirds and Hame. Family, Favositidae Milne-Edwards and Hame Genus, Pallofavosites new genus. 

From the Ordovician and Silurian rocks of Anti Billings described Favosites prolificus and $F$. capax, the having the pores at the angles and the former having It has since been learned that the two species are identica also the same as $F$. aspera d'Orbigny and $F$. alveolaris Gold the four species having the common character of having the at the angles with none on the sides. It is proposed to in corals of this type under the above generic name. As defined the species will have for its genotype, F. aspera bigny. The only other form to be included is a new one described from the Anticosti section.

Phylum, Molits cu Class, Brachiopoda Dtimeril. Order, Protremata Beeciler. Super-family, Orthace. Walcott and Schuchert. Genus, Orthis Dalman (s. str.)
Orthis? lameliosa new species.
(Plate 1, figures 1-3)
Outline semielliptical, greatest width about halfway beak to lorder where it is 8 mm .; 7 mm . wide at the hinge thickness 4 mm .; length 6 mm . Sides of the shell straight almost parallel, gently and uniformly curving around the terior-lateral margins; anterior margin for about half the w almost straight. Dorsal value shallow with a broad m sinus, beak slightly incurved. Ventral valve pyramidal, 1 highest portion, not incurved; no fold to correspond to dorsal sinus; surface slopes uniformly from the beak to the ante and lateral margins. The cardinal area as long as the hinge 2.5 mm . wide on the ventral valve, almost perpendicula the plane of the lateral margins. Area of the dorsal valve than 0.25 mm . wide and in the same plane as the lateral mard

Hamie. Hame.
of Anticosti, $7 x$, the latter having none. identical and aris Goldfuss, ving the pores ed to include ne. As thus aspera d'Orew one to be
chert.
alfway from te hinge line; straight and und the anilf the width road mesial midal, beak pond to the the anterior re hinge line, enclicular to al value less ral margins.

Foramen narrow, about 0.25 mm . wide, sifes almost parallel, extends to the beak and finds its other continuation in the dorsal valve. Wetting of the sentral area shows that harrow side plates are annexed to the sides of the foramen; these are supposed to lec continuous with the teetl, as in O. bouchardi, the nearest related species. These plates simulate deltidial plates with which, however, they are probably in no way homologous.

This species finds its nearest relative in $O$. bouchard ( )avidson, from the Wenlock of England and Scotland, from which it differs in having no ventral sinus, the sides of the for,umen parallel instead of conserging to the beak, the ventral area making a right instead of an acute angle with the plane of the lateral margins, no longitudinal striations on the area such as exist in that species, and in being more finely plicate with all the plications rearhing the beak. That species also has the ventral area curved and the beak incurved.

Horizon and Locality. Ordovician; Ellis bay in zone 5 of the Ellis Bay formation.

The holotype is in Peabody Museum, Yale University. Only a single specimen has been collected.

## Superfamily, Strophomenacea Schuchert. Strophoprian new subgenus.

The above sulygeneric term is proposed for those resupinate forms of the Strophomenidae which are like Strophonella except that they have some ten or a dozen denticulations along the hinge line instead of a completely denticulated hinge margin. That is, these forms mark the inception of the Strophonella stock, Sirophoprion holding the same relation to Strophonella that Brachyprion does to Stropheodonta. In one line of development there are Strophonena-Strophoprion-Strophonella; in the other Rafinesquina-Leptaena? (ceres-nitons stock, not rhomboidalis)-Brachyprion-Stropheodonta. The type of Strophoprion is Strophoprion geniculatune (Shaler) (Brachyprion geniculatum Shaler, Bull. Mus. Comp. Zool., vol. 1, No. 4, p. 63, 1865).

Genus, Triplecia Hall.
Triplecia insularis quar. Anticostiensis new va: ie
1871. Orthis insularis Davilson, Mon. Brit. Foss. Brach., vol. iii p. 273, m. xxxvii, figヶ. \&-15.
1910. Triplecias ortoni Schuchert and Twenhofel, Bull. Ceol. Sox. A 21, p. 710.

The discovery of this somewhat widely ranging European species, in the lowest Clinton dequsits of the A section, is a matter of considerable interest, since it $h_{1}$ previously been definitely recognized in America althot probalble presence in the Anticosti rock, was mention Davidson. It is somewhat larger than the European for has a deeper ventral sinus.

Horizon und Locality. Silurian; Gun River (5), a mile west of Jupiter River; Jupiter River (3), Jupiter

The holotype and plesiotypes are in Peabody Muscur

> Genus. Cionetes Fisiler.
> Chonetes (Eodevonaria) primigenius new species. (Plate I, figures $4-5$ ).

The shell of this new species closely resembles th Brachyprion leda (Billings) and was at first mistaken for species Hinge line greatest width, average 9 to 12 mm ., as length 6 to 8 nm . Ventral valve moderately convex, bu nearly so much so as in Plectambonites. In the Ellis Bay f tion specimens were found attached by the dorsal val the shells of other brachiopods, but whether this has anys cance or not is unknown. There are four small spin each side of the beak. The surface of each valve is co with numerous fine strix-about one hundred and fifty to valve-and in the centre of the ventral value is a single stri very much stronger than any other, such as occurs in Lept nitens, whose ventral interior that of this shell also closel sembles. The hinge area is striated as in Brachyprion The dorsal interior is not known.
ew ra:iety.
h., vol. iii, pt. vii, ol. Scx. Am., vol.
ranging north of the Anticosti nce it has not a although its mentioned by pean form and
r (5), about a Jupiter river. Museum.
o species.
nbles that of aken for that mm., average nvex, hut not lis Bay formaorsal valve to as any signifiall spines on ve is covered fifty to each ingle striation in Leptacna? so closely rehyprion leda.

This is the earliest known appearance of this genus and since it is already a fully developed Chonetes it follon's that it orisinated still earlier in the Ordowician. From its deculed resemblance to Brachyprion leda it is extremely probable that woth came from the same stoek, viz.; a small leptaenoid? with a narrow musele scar, fine plications, and a single central plication of large size. In the Naticosti mosasures Lepteena? nitens answers to this, description.
C. primigenius is smaller than the Europan C. striatella and more fincly striate; it is larger than $C$. comtues from the New York Clinton; it is ithout the seme size and shape it $C$. tenuistriatus from the Arisaig Silurian, but that shell does not appear to have the prominent mid striation and is less finely striate.

Horizon and Locality. Ordovician and Silurian. The species first appears on the north side of Anticusti in zone 3 of the Charleton formation. Its next appearance is at Ellis bay in the Ellis Bay formation and again at Wreck beach in the Gun River formation. A single specimen was collected at the Jumpers in zone 9 of the Jupiter River formation.

The holotypes and paratypes are in Peabody Museum.

## Superfamily, Pentameraia Schuchert. Genus, Virihana neeg genus. <br> (Virgie, proper name.)

The generic name of Clorinda was proposed by Barrande for shells of which casts of the interior showed a series of strong ridges radiating from the umbonal ridge of the pedicle value, these being produced by the vascular or ovarian sinuses. Ite stated that his two species were pentameruids not unlike $c$ : linguifera. For this group IIall and Clarke proposed the seneric name of Barrandella, the genus including shells which externally are moderately transverse, sentral valve the larger, moderately galeatiform, with a sinus on the ventral valve and a fold on the dorsal. In the Becsie River formation of the . Inticosti section occurs the shell described by Billings as Pentamerus barrandei which in its young stages has all the characters of a true Clorin-
da. With maturity, however, the shell attains larg becomes decidedly elongate, narrow, and pronouncedly tiform and the fold and sinus become reversed, the latte obliterated and transformed into a fold by the devel of an axial ril, and the former disappearing through bifu of the initial fold proflucing a sinus at the margin. The is that of clorinda.

For this type of clorindoid the generic name of Virg proposed: the genus to include V. barrendei-the geno anc' wo varieties of that species.

Order, Protremata Beecher. Superfamily, Rifychonellacea Scilciert. Genus, Camarotoechia Hall and Clarke. Camarotoecilla dectismplicata (Soneriy).
1866. Rhynchonella Eva Billings, Cat. Sil. Foss. Anticosti, p. 44. 1871. Khynchunella decemplicat, Davilson, Mon. Brit. Fuss. Bra iii, pt. sii, p. 177, pl. xsiii, fig. 20-2t.
1900. Anabaia anticntiana Clarke, Archivns do Musen Nacional to Janciro, vol. 10, 1899, Author's Eng. Ed., p. 15, pl. i, figs. 26-28

This slecll was described by IBillings in 1866, as Rhync eqa. Sulsequently (1900) Doctor John M. Clarke ligı specimen with a size somewhat above the norm, from the collection at Harvard. It came from East cliff, Anticos had leen collected ly the Harvard expedition of 1861. specinen Clarke was not able to identify with any of $t$ scriptions of Billings and finding that it bore considerat semblance to his Anabaia paraia from Brazil, he descri as A. anticostiana. A large series of specimens was co at the type locality of both forms and from the descri of Billings and from specimens in the Victoria Memorial Mt these were identified as Rhynchonella exa. They wer rompared with the holotype of A. anticostiana and th species were found to be identical. The genus $A$ nab spire bearing and is referred to the Coelospiridae. More a dozen specimens of $R$. era were studied by grinding and e with hydr aloric acid and no traces of anything resen
ins large size, ouncerlly galeathe latter being te development ugh bifurcation The interior
e of Virgiana is he genotype-

HERT.
ARKE.
ERHY).
i, p. 44.
Foss. Brach., vol.
acionat do Rio de figs. 26-23.
is Rhynchonella arke figured a rom the Shaler Anticosti, and of 1861. This ny of the deonsiderable rete described it was collected e elescriptions orial Muscum, ey were also and the two is Anabaia is e. More than ng and etching ng resembling
spires were seen although the preservation was such that traces of them were to be expected had they been present. On the contrary the internal structure is rhynchonelloid and ats no vestige of a cardinal process appears to be prestht the spreies apparently is to be referred to the genus Camarotorchic. Through the kindness of Professor Johan Kiater the writer was alhe to obtain specimens of Rhynchonella decemplicata from etage 6 (Zone, with Khynchonella 10-plicati) of the Silurian Ringerike section of the Kristiana region and the identity of the two species was clearly shown. As the Europan name has priority by over twenty-five years, the American name must yiekl.

Horizon and Locality. Silurian; Gun River ( $t-5$ ), ('ape Sand Top bay, East cliff, and west of Jupiter river. In Norway the species 's limited to Kiaer's zone cof etage 6, the topmost zone of the Le ser I.landovery.

Anticosti ples:otypes of this species are in both the Victorid Memorial (No. 2449) and Peabody Museums.

> Superfamily, Terfiritelacea Waben. Division, Terebrithioms Scmumbt. Family, Protozeghae new family.

Primitive Terebratuloids with loops. like that of Magellania but developing without metamorphosis. The shells are small, smooth, biconvex with the ventral valve subearinate and the dorsal with a sinus.

P'rotozelga new yenus. (Protos, first; zeugos, a yoie).
1882. Waldhcima Davidson, Suppl. Sil. Foss. Brach., p. 76.

This new genus is proposed to include a group of small l'alaozoic brachiopods which constitute the oldest known terebratulids and which are characterized by the possession of a long loop simu. 'o the matured structure seen in Wialdheimia or Magellania to which these little shells have been erroneously referred.

Diagnosis of the Genus. Shells extremely small; ge lonser than wide; anterior margin straight or reentrant; value very convex, sulbarimate with a narrow median gro the at, rior margin; dorsal valveonlyslightly convex at the rior end, but concave with a fleep sinus at the anterior and in this sinus there may $1 e$ a small rib; surface of both smooth. Dorsal hinge plate with a distinct cardinal from which an elevated median ridge extends almost to terior margin. The crura are slender, short, almust hori giving off two triangular crural apophyses which conve ward and ventralward almost to the point of meeting, principal lamella extend forward to within a short dista the front and are then reflected posteriorly to form the which is not angular, but uniformy curved; it rises the primary lamellir until its apex is on a level with the apoplyses, having been retlected a distance equal to abot the lengih of the primary lamella. Shell structure plent but not thickly punctate (this was demonstrated by tr the shell with hydrochloric acid and specimens so treate studded with small needle-like elevations) Genotype heimia mawi: Davidson.

The matured loop of this genus is very like that of th metamorphosed form as developed in Waldheimia or.Mage but the resemblance is one of parallelism. In Protozeu loop develops direct and without metamorphosis in a ways to that of the Devonian Centronellidae, while in Waldhei Magellania the mature loop is the final stage of a great se developmental changes. This character and others given diagnosis show Protozeuga to be a primitive type of terebr whose systematic position is near the Centronellidae; bu fan. "ly distinet therefrom, the l'rotozeugidae. To this gen referred Haldheimia maǎii; W'? glassit Davidson, a sum larger form whose brachial apparatus has not yet been do stated, both from the upper Wenlock of Shropshire; W. nata Angelin from Cotland, considereci by Davidson as i cal with W. mawii; Protozenga sulcomarginata Savage frot Girardeau Limestone of tllinois and Missouri (Bull. Geol Mo., vol. 24, p. 359, 1913); and the new species from Ant described as Protozeuga anticostiana.
nall; generally ntrant ; ventral edian groove at ex at the postenterior margin of both values rrlinal process ose to the anust horizontal, converge inmeeting. The rt distance of form the loop rises above vith the crural to about half re plentifully, d by treating so treated are notype Wald-
lat of the final or.Magellania, Protozew:I the a way similar Waldheimia or great series of ss given in the f terebratulid idae; but in a this genus are 1. a somewhat been demonre; W. bicarison as identirage from the ill. Geol. Soc. rom Anticosti

Protozietca ivticostiana new species. (Ilate I, figures 8-10).

Shell wery small, longitudinally pentagonal; anterior angles gently rounded, front straight; cardinal angles nore abruptly rounded than anterior; cardinal wopes straight, meering at abont 90 degrees; an average specimen is 5 mm . long, 4 mm. wide, depth of both valves 2.25 mum., surface smowth; shell strnctur" pmoteate as shown by etching with hydrochloric acil.

Ventral value highly consex, deepest about one-third the longth, keeled at the heak, toward the middle of the volve the keel widens out to a that-topped fold which at the anterior margin is replaced by a sulcus; slopes to the lateral margins quite steep and at the cardinal angles the surface is slighty concave. Beak small, narrow, truncated by a small foramen, incurved and overarching the linge line; no area.

Dorsal value convex posteriorly and laterally, slighty depressed or concave just anterior to the hinge and divided into two lobes by a wide uniformly concave sulcus.

This shell closely resembles Protozeuga mazii (Diwidson), but is slightly larger and proportionately wider. It occurs in mach older strata and, while its brachial apparatiss hats not been demonstrated, its strong resemblance to the ab species shows it to be congeneric.

IIorizon and Locality. Ortlovician; Finglish llead (2-3), English head; Charleton (2-3), English basy and White cliff of the north shore.

The holotype and paratypes are in Peaborly Museum.
Superfamily, Sprimeractia Whagen.
Family, Irrypinal: Gili.. Subfamily, Lisisistryte;ale neze sute : ${ }^{\prime} y$. Smooth atrypoids with the e nal arpeet u. Viucleospira.

Genus, Lismatrypa neeu g (Lissos, smooth; atrypa).

In 1866 Billings described from Gull cape (Wreck beach),

Anticosti, a smooth brachiopol to which he gave the na Athyris lara. He called attention to the fact that some mens have a faint indication of a mesial sinus in the ventral but are generally without cither fokl or sinus.

In 1882 Davidion stated that Mr. Glass had been a expese the spirats of Athyris lara and that these "entirely re those of Atrypa, the apex of each vertical cone being di towards the middle of the bottom of the dorsal value." shells were collected by Doctor (3. J. Hinde near Jupiter and it is now known that they were not correct' $;$ identified

Specimens of Athyris lara which were collected at th Iocality and compared with the proterotypes show that true merintellid and probably to be referred to the genus fieldia. This leaves the shells whose structure was work by Mr. Cliss without a name. The writer has also dee the internal structure of several of the Jupiter River and there is no question but that their spirals are of the at type. Externally they have the expression of Nucle but lack the hirsute exterior. For atrypoids having chatracters the generic name of Lissatrypa is proposed.

Diagnosis. Shell of medium size, lenticular, subov subpentagonal in outline, greatest width near the both values of nearly the same convexity, a faint sinus it spectimens at the anterior margin of the ventral valve, a sronding small fold in the dorsal, in some specimens the a margin slighty linguate; hinge short, gently curved; no beak and umbones small, surlace smooth with concentric le; shell structure fibrous and on exfoliation it has a silky

Beak of ventral value closely ineurved and in conta the doraal valve; formen triangular, extending to the line, no covering oberved; teeth relativdy large, diver an angle of about 135 degrees, summits rounded and slighty toward the centre of the shell: they rise from the slopes of the interior and are unsupported by lametlie; m impressions apparently very faint.

Dorsal valve with a faint sinus at the umbo; hing composed of two diverging processes meeting at the about 60 degrees; each has two longitudinal grooves d
e the name of at some speciventral valve.

## 1 been able to

 tirelversemble burg directed alve." These Jupiter river lentified.ed at the type w shat it is a te genus Whitas worked out also developed r River shells of the atrypoid f Nucleospira, laving these osed.
r, subovate or the middle; silus in some valve, a correns the anterior rued; no area; neentric lamels a silky sheen. in contact with g to the hinge e, diverging at ed and curved from the lateral elle; muscular
of hinge plate at the apex at rooves diviling
















Dileyris, midte. lihes


 longth it mon.: depth of beth valuen imill.

 Wetermination it is mecesary tre ee the charater of the -pital
 lxak, in tights larger, lean oftern ha- the wempal simmand deral


 andy be mat in cither yucters.
 mile wea al lupiter riber: fupher Riven 3.5. Immbly of fubicer river.


## Fomily, Meristelidd.aE llaif. aNi) Clarkf. Hyammona (marletona new species.

 (Plate 1, figures 6-7.)The single sperimen upon which this species is based was discovered on a slat, from charleton point, the same sab containing Plirasmolites pannosa, Zygospira recureirostra n. var., and other Richmond fossils. Had it occurred in higher strata no hesitancy would have been fell in refersing it to $I I$. congesta junea, although it is somewhat smaller, proportionately longer. and has a small longitudinal groove on the doral fold which is not present in that species. The general shape is clongate ovate, the posterior outline being trigonal, the anterior twotherds, lliptical. The apical angle is about 110 degrecs. Both values are conves, the ventral slightly the more. The beak of the ventral valve is suall, narow, pointed at the aper, beneath which is a smatl foramen. A merlium ridge groowed towarl the front, extents from the umbo to the anterion margin. Wrom the depresion bounding this ridge the surface slopes to the lateral mareins. "The dorsal valve i marked 1 y three convex lobes of which the middle widens towards the margin an $\perp$ becomes divided hy a longitudinal groove. No area has been seen on either value. The shell is +mm . long, 3.5 mm . wide about mid hasth, and 1.25 mm . thick just in front of the umbo.

ㅇor he-itation is felt in referring this little shell to the genus Ifyatidind thoug the interior has not been seen. This genus has hitherto in Americat not been found below the Clinton, but in England Rhynchonella? porllockiana Davidson [demonstrated by Reed to bolong to the genus Myattidina (Reed, Quar. Jour. Genl. Suc., 1897, 1. 75)] ranges from the upper Llandeilo to the Bala; hence its appearance in . Imerican strata as early as the Richmand should occasion no strprise. It is further probable that $H$. charleton is a migrant from the Britioh seas and is in the direet line of abeentry to $/ I$. congesto. since it chietly differs frome II. portockiona in having the lateral slopes near the cardinal angles concave insteded of convex, and Reed states that the latter differs from $M$. consesta only in the "presence of a fhort nedian eptum in the brachial valse, and in the greater length of the process of the loop."

Horizon and Locality. Ordovician; ('harleton (3). (harleton point.

The holotype and only knowil mporimen is in Pealouly Museum.

Phylum. Artitopobis.
Class, Crustacta.
Subclass, Trisobiti II.in.cia.
Order, Opistiofitat Balichier.
Family, Olenidale Burmister.
Genus, Triartiot ra Grbin.
Triartireus 1s. Chi qur. macastifenta new variely.
1910. Triarthus spinosus Schuchert and Twenhofel, Bull. Creol Soc. Am., vol. 21, p. 694

This new form is like $T$. becki exerpt in one respect. The facial sutures are slightly more sinuous and in front they diverge from the axis instead of converging as in $T$. becki. The glabella of the most perfect specimen is 3.5 mm . wide; 4.5 mm . 1 ong; the entire cephalon 5 mm. long. That it grew to a larger size is proven by a specimen which has the cephalon at least 8 mm . long. The same type of facial suture is seen in the T. becki from the Collingwood black shale of Ottawa, Canadd, and Doctor Ruedeman has called the writer's attention to the fact that T. jemellendicus Lindstron has a similar facial suture, though otherwise different.

Horizon and Locality. Ordovician: evidently present in considerable abundance in the Macasty black shales.

The holotype and a single paratype are in Peaborly Muneum.


## 





- $\therefore$ Ventral balue of bolotym, x 3

1 igs. +5 chometes primigenius nell spectes.



5 \iew of a - pecimen from Charleton perint, $\lambda 2$, ante 3 of (harleton formation, quecincon in leaborly Mamemin.

1is. 0 i. I/ mattitima charlchna nuw -qucies.
6. Liew of clorsal valte of holotype, x t, Charleton poin:, zonc 3. of Thar?
7. Ventral vinw of sume -pecinen, $x 4$.

 formation, sperinten in Peaberly Xhatam.
9. Pan-al value of holotype, a t.
10. Vimeral :ahe on holotepe, at.



 - |ecinmen in Pealnels Xascem.
t. 1 Wors.l value of holotys, a 2.
14. Doral aspect of the spialha, a 2 , same lexatity almel horizon an preceting, suecinen in I'abonly Musemun.



## ||1. || iliiliifi| ||| <br> 33286089346122

[^6]


[^0]:    ${ }^{1}$ Schuchert and Twenhofel, Bull. Geol. Soc. Am., Vol. 21, 1710.

[^1]:    ${ }^{1}$ Savage, F. 1. Gcol. Soc. Am.. Vol. 24, 1913, p. 351.

[^2]:    ${ }^{1}$ Billings, Rept. Progress 1853-1856, Geol. Surv. of Canada, 1857, p. 250.

[^3]:    ${ }^{1}$ Kiaer, Videnskabs-Selskabets Skrifter, 1, Math-Naturv: Klasse,

[^4]:    ${ }^{1}$ Schuchert and Twenhofel, Bull. Greol. Soc. Am., Vol. 21, 1211, p. 712.
    ${ }^{2}$ Clarke, Guide Book No. 1, pt. 1, International Ceol. Congress, 1913. pp. 110-113.

[^5]:    ${ }^{1}$ Savage, Bull. Geol. Soc. Am., Vol. 24, 1913, p. 359.

[^6]:    
    

