The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\squareColoured covers/
Couverture de couleurCovers damaged/
Couverture endommagée

\square
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cattes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight birding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaints pages blanches ajoutèes lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-Être uniques du point de sue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShowthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue\{ncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

VOL. IV. .No. 37.
 ORIGINAL AND SELECTED PAPERS.

 OK FIUTD EXTRAOTS AND THEIRR

 OK FIUTD EXTRAOTS AND THEIRR MENSTRUA.'

 MENSTRUA.'}

BY EDWARD R. SQUIBB, X, D.
To the American Phar,naceulical Assocuation.
In continuation of the subject of Percolation and Economy of Alcohol, annually presented to the Association for some year's past, the writer offers an abstract of the results of his last yoar's experience, premising that he has neither the time nior inclination-as time becomes nore valuable-tos defend his notions, judgment, or accuracy, or even to point out many of the deductions that might be drawn from the statements made as facts.

It is not uncommon to hear observant physicians say that thry do not obtain results from the fluid extracts corresponding in the proportion of minim for grain to the drug which they represent; and pharmacists who use the officinal formulas must be aware that the drugs are not entirely exhansted by the processes given. A critical inquiry into this subject, in this direction, is the chief object of this paper.

A practical way to measure the rate and extent of exhaustion by percolation las long been necded, and tho want of some simple and casy plan has, perhaps more than any other obstacle, stood in the way of accurate knowledge and progress in the art of percolation. After many trinls, some of which were described in previous paners, the method by specific gravity has thus far proved the most satisfactory and siuccessful. But when applied by the hydrometer, or by the ordinary specific gravity bottle, with the necessary calculations, it is too abstruse and complicated for common usage.
It is to a more plain and simple application of the principle of specific gravity that ittention is now to be directed, and the formula may be stated as follows:-In percolation ine density of the percolate will vary from the density of the menstruum in propartion to the extent and rate of the exhaustion. It follows from this proposition that to measure the extent and rate of exhaustion, it is only necessary to measure the cxtent and rate nt which the percolate varics from the menstiuum. at the beginning of a percolation and approaches to it at the end, absolute exhaustion being indicated by cqual density-or equal weight of the same volume at the same temperature-of the menstruum and percolate. This measuring is usefully accomplished with sufficient arcuracy by separating the percolate as it passes into successive portions of a pint each and weigling them. By subtracting from this the weight of a pint of the menstruum at the same tempernture, is scries of differences will be obtaincd cxpress ing tl:e extent and rate of exhaustion. When the

[^0]exhaustion is practically completed,--it is nevor absolutely accomplished,-the residue is dried and weighed, and its weight subtracted from the weight of the substance as originally taken for percolation. The differenco or loss in weight indicates the total amount of solid matter dissolved and removed by the menstrumm. Then, as the sum of the differences in weyght between equal volumes of the menstruum and percolate at the same temperature, is to the total-amount of solid matter or extract dissolved out by the menstruna, so is each separate difference to the weight of solid extract in the portion of percolate which that difforenco represents. That is to say. the total weight or amount of solid extract being ascertained, the rativ of the differences in density is applied to it to obtain a ratio of the rate of exhaustion, and to ascertain the distribution of tho total extract throughout the percolate.
This method, applied to nearly all the thuid oxtracts which are at present officinal, and to some others, $1 / 2$ s convinced the writer,

First. That che present officinal processes do not sufficimently exhat st the drugs to which they are applied; and,

Second. That these processes do not take the best way to attain the object. That the supposed advantage of using coarse powders is a delusion. That maceration is useless at the commencement of the process of percolation, but useful after the substance has been pantially exhausted. That the menstrua are not always the best that could be selected, either for extracting the useful portions of the drug or for excluding the useless portions. That glycerin is preferable to sugar, where cither gives any positivo advantage, but that auything like a general use of glycerin in fluid extracts is to be deprecated, as the advantages are more in appearance than reality.

The foregoing table, embracing the substances of nine officinal fluid extracts, and one other, is limited in extent by the size of the page, but is large enough to illustrate these points. These percolations, excepting ergot and lupulin, were all made with fine powders, moistened with more menstruum than is directed by the Pharmasonceia, and the moistencd powder put through a sieve of about trelve meshes to the inch before the packing. Tho packing and percolating was then done with all the care and skill which the writer's experience could suggest, so that the results are considered to be much better than an arerage practice would give. Each pint of percolate wis weighed in a flask marked in the narrow part of the neck, and the menstrunm at the same temperature was weighed in the same flask, and the difference in weight set down in the column under that heading. The same porder, managed in the same wiay, was percolated at once; and another portion, after macerating four days, with no practical differcnce in result; whilst a maceration of twenty-four hours after the third or fuurth pint of percolate liad pissed, would always increase the difference somewhat, nnd would often increaso them much. Changes of temperature, also, by changing the snlvent power of the menstruum, caused the differences to rise and fall somewhat, concident with changes of weather. A simple inspection of the proportion of the extruot
contained in the first pint of each percolate will probably expose the fallacy that any amount of expert skill and management could ever make that pint represent the whole etti. cacy of the drug. In percolating the powder of good aconite root by a very slow and careful percolation, the charncteristic numbing impression upon the tunguo was distinctly though faintly perceptible by the application of a few drops from the thirteenth pint. Tho bitterness of cinchona was perceptible in the seventeenth pint ; but noither the tasto nor odor of wild cherry bark were perceptible in the sixteenth pint, though the amount of extract contained was large. Ergot was necessarily percolated in coaxse powder (No. 60), and was easily and rapidly exhausted; but the dried residue powdered finer gave a notable propurtion of extract, which, for want of time, was not determined. Not so with lapulin, however, which, percolated in its uatural condition of coarse powder, left a light ressdue, fron which no ordinary management could extract anything more. The percolation of lupulin was very regular and uuform, and maceration at any stage of the process had no perceptible effect. Effective percolations of dandelion root are very slor, and therefore very perfect; and like those of sarsaparilla, often became slower as they approauh completion.
The great differcuce in the rate of exhaustion in the eximples given in the table indicates that no general rulo of limit can bo adopted, but that each substance must bo studied by itself. From results given in a previous paper, the solid catract obtained by percolation from some druys, and probably from all, is not of miform medicinal value as found in different parts of tho perculate, but becomes weaker toward the end. When this ceases to be of practical value, or, in other words, where the percolation should terminate, was not determined. Among tho examples given it will bo seen that if the Pharnacopoiia used fine powder and slow percolation, it would, in the case of dandelion, obtain 86 per cent. of the totai extract; and it is probable that this is somewhat near or beyoud the limit of practical utility. If so, it might be directed that fluid extracts as a class of preparations should not contain less than 80 per cent. of the total solid extract thich the drugs rere capable of yielding to the given menstruum ; and the limit of perculation necessary to obtain this is shown by one of the lines of the table. But where this 80 per cent. of tho solid extract has been obtained, it is not within the compass of a pint, but is contained in a number of pints, never less than $2 \frac{1}{2}$ nor more than 11.

To get these various large quamtities within the measure of a pint each without the use of heat, and with the least loss of menstruum, is the next and great requisite, without which they are not fuid extracts:
To accomplish this, there appears to be no choice of means. There is one way, and only one way, known to the writer by which it nay be done, and that is by repercolation, or percolating fresh portions of the drug with percolate from previous portions, until the normal difference in weight between equal volumes of the menstruum and percolate in attained.

TABLEOJPERCOLAYIONS．

TABLE OF REPERCOLATIONS．

	yELLOW CLNCHONA bARE． Grains．						DANDELLOM ROOT． Grains．						semsa leaf． Grains．					
菭	1st Portion．		2nd Portion．		3rd Portion．		1st Portion．		2nd Portion．		3rd Portion．		1st Portion．		2nd Portion．		3rd Portion．	
悪						$\begin{aligned} & \text { +せ̈ } \\ & \text { H } \\ & \text { 曾 } \end{aligned}$				$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{:}}{\underset{ت}{\leftrightarrows}} \\ & \text { 出 } \end{aligned}$						＋ 烒 菏	遃	苞
1	398	514	587	757	765	988	808	1927	1484	3539	1624	3874	563	1166	841	1742	1098	2275
2	155	200	280	361	493	636	374	892	676	1612	1000	2385	286	593	485	1005	878	1819
3	70	90	230	297	321	414	169	403	298	711	704	1679	103	213	258	535	370	767
4	48	62	195	252	260	336	119	284	156	372	405	966	45	95	169	350	289	599
5	53	68	135	174	193	249	53	126	125	299	234	$5 \overline{53}$	47	98	132	274	229	475
6	26	34	94	121	175	220	31	74	c 7	231	161	384	36	75	100	207	145	301
7	28	35	87	112	183	236	8	19	102	243	137	327	34	71	65	135	128	265
8	65	84	112	145	182	235	7	17	95	226	112	267	32	64	51	106	110	228
9	95	123	86	111	168	217			75	179	95	228	18	37	45	93	113	230
10	71	92	87	112	153	197			07	136	30	191	23	48	34	70	100	207
11	31	40	65	84	134	173					66	155		4	42	87	94	192
12	30	39	48	62	106	137					43	103		8	48	99	75	156
13	26	34	38	49	91	118									39	81	68	141
14	14	18	47	61	101	130									33	68	48	99
15	32	41	41	53	71	91												
16	25	32	45	58	83	107												
17	38	49	40	51	48	62												
	1205	1555	2217	2860	3527	4552	1509	3742	3165	7548	4661	11117	1226	2540	2342	4862	3745	7759

This process is somewhat comples and troublesome, and reguires knowledge and skill ; and, wo:se than all, requires that a stock of weak percolate of diderent densities be carried from ono making to the next for each fluid extract. But, as it appears to be absolutely the only means of accomplishing the end well and properly, there is no choice between it and those means which give results too imperfect for the present state of pharmacy.
This process of repercolation has been described in previous papers, but it may be useful hero to offic a table of examples, carried out to an exaggerated extent, to exhibit its scope and capacity ; and yellow cinchona, dandelion, and seman are selected for illustration. All these drugs were taken in the very fine powders as net with in the markets. One Pharmacopocia portion of 7680 grains of each was taken for each percolation, and three percolations of each drug were made. The percolate from the first purtion of cach was takeu to moister and percolate the second, and the percolate from the second portion of each was taken to moisten and percolate the third.
The menstrunm used for yellow cinchona Was a mixture of one part, by weight, of glycerin, and three parts, by weight, of stwonger alcohol. That used for the seme was diluted alcohol, and that used for the dandelion was a mixture of equal weights of stronucr alcohol and water. The yellow cinchona and dandelion were each moistened with 8 fis, of menstrumm and percolate, and the semma with 9 fy. All the moistened powders wero passed through a bicve before packing, and were packed and managed alike, each pint as it cance from one funnel being poured on top of the other.
It will be seen by reference to the first table that it is cstimated that the Phammacopoin may get in yellow cinchona 05 per cent. of the extract from the bark, or 860 grains in the two pints. By the last cinchona column of the table of repercelations, it will be seen that if the first four pints from the third portion bo mixed together, each pint of the mixture will contain almost as much extract of cinchona as the officinal tro pints, and the whole four pints mill male, by adding the next four pints of the columm, eight pints, having nearly the stiength of the officinal preparation, and this from three portions of powder.
If the flaid extract of cinchona be changed in the new Pharmacopocia to double the present oflicimal strength, and the standard for percoiation be unchanged, then this column would yield about $2 \frac{1}{s}$ pints of double the present ofticinal strength. But if the standard be increased so that the preparation shall contain 80 per cent. of the extract, or 1244 instead of 866 grains, then the first pint of the column is not strong enough, and another portion must be percolated with the percolate from the third portion. This portion may be larger or smaller than the uthers in proportion to the rants of the operatur, and will yield accordingly, the larger portions being more économical.
Inthe case of dandelion (shouldnot the Pharmacopoia change the English name to taraxacum ?) the Pharmacopecia is estimated to get 86 per cent. or 3222 grains of the extract in its pint. This would make the first two pints of the last dandelion column nearly officinal. But if the standard be reduced to the 50 per cent. uniformity, or 2993 grains instead of 3222 to the pint, tho column would yield nearly $2 \frac{1}{2}$ pints of thatstrength.

In the case of semm, the Phamaconoia, as estimated, may get 78 per cent. or 1072 grains of the extract in its prescribed pint of thaid extract. The last seman column of the table would yield about 21 pints of this strength. Bat if the standard bo increased to 80 per cent., or 2032 areins of extract to tho pint, the colum woild yield just 2 pints of this strength.

Of courso the we:ker percolates of these final columms of this tablo yield proportionately more when applied to other fresh portions of powder, but in some instances at least, if not in all, repercolation cannot bo carricd on indefinitely, because of the weak percolate becuming overloaded with extractthe 20 per cent. which is rijected and goes on accumulsting-which is assmmed here to be medicinally fecble. After a year or two of active practice, it becomes necessary to recover the alcohol from the weaker of the weak percolates, only carrying on the stronger ones. In no case need each separate portion of the residuary weak percolate be kept separate from one making to the next, but the different strengths may be grouped together so as to preservo the whole in three or four botlles for each substance.
From the abovo considerations it would follow that a fluid extract yepresenting a drug minim for grain, might be delined or described as a solution containing 80 per cent. of the extract of that drug, which is soluble in a given prescribed menstruun. And fuid cxtract of sema, for example, would be powdered semma repercolated with diluted alcohol until equal volumes of the menstruum and percolate weighed at the samic temperature, differ to tho extent of 14.5 per cent. $=988$ grains to the pint.
(T'o be continacd.)

REVISIGN OF THE CHENICAS HOMENCLATERE OF TEE PHARHIACOFGIA.'
Bs J. Atiyidid, Ih. I).

The mames of Pharmaconceial chemicals should fulfil certainfunctions or possess defiuite qualities, positive or negative, namely, -

1. The name shonld, as far as possible and practicable, indicate composition. 'ihis Lavoisicrian principle is, as I have already shown, one of necessity as well :3 expediency.
2. One name should be associated with only one substance; but the converse I would by no means urge, ma aely, that one substance should bo known by cinly one name, synonyms being useful both from a theoretical and a practical point of view.
3. A name, even if fallen out of use, should not be transferred to a snbstance having propertios different from the original substance.
4. The namo of an official chemical substance, that is, a name officially lecognised in national pharmacopecins, should possess tho minimum of instability. This quality is most inportant. Verbal changes almust of any kind are unpopular; changes in chemical nomenclaturelinvo done much to retard the progress of chemistry amongst the people; but changes

[^1]in the nanes of pharmacopuial chemicals aro objectionablo in the interest of medieal practitioners, their patients, and pharmacists.

The frecemployment of Latin and Greek numerals in a chemical name was strongly advocated by tho late Professor Miller. ISit though highly useful in general chemical literature for indicating detials of composition, the principle is too dependent on hypothesis respecting atomic values and weighte, and too susceptible of disturbance caused by new discoveries to possess the element of permanence; hence it must be avoided in pharmaceutical chemistry.
b. A phamacopœial nume should admit of being either eassly spoken or written, both in the full and in the contracted form, in modern languages and in Latin.
6. When closo resemblance between two salts is indicated by identity in all but one of the svllables of their names, that syllable should be at the commencement of tio names and not at the end, where it would be liablo to be omitted by a prescriber. Indeed, such variations are often indicated with most usefulness by a separate word altogether, coinfusion and even mischicf being thereby avolded. Thus, for calomel and corrosire sublimate the names subchloride of mercury and perchloride of mercury aro greatly to bo preferred to mercurous chloride and mercuric chloride; for a physician, in writing a prescription, should contract the former to hydh: subchlor, and hylr. perchlor., which are still sufficiently distinctive, while the others would both be liable to be contracted to hyd. chlor., and a patient perhays bo lilled by corrosive sublimate instead of cured by calomel. So green iodide of mereury and red iodide of mercury are better than nerctrous iodide and mercuric oodide, or green sulphate of iron and persulphate of iron to ferrous sulphate and forric sulphute; any greater percision that may be desired being given by chemical formuire.
7. A namo should not be changed for mere purpose of euphony, real or fancied; thus, chlorhydric for hydrochloric.
8. Names of pharmacopocial chemicals should be consistent witl. each other.
9. The chemical names employed in pharmacy should be :onsistent with thoso used in other branches of applied chemistry, and with the language of scientifo chemistry and general chemical literature. I say consistent, certainly not identical. For 1 bclicee the time has come when, by mating a fces slight altcrations in the tcrminations of a fcw of our chemical names, we shall have a system of pharmaccutical nomenclature which, while perfcctly harmonous with, is quite independent of scicntific chemical nomeaclature, and rehich thercjore contains greater clements of pormanence thatu any yet adopted. Theso alterations be it noted, are in the ierminations of the names only; hence the contracted names almost universally used by physicians and pharmacists would in no way bo interfered With,-an argument which, if somerblat left-handed, must bo admitted to be one of great strength.

the prorosed sases.

Tho following is a table of names of all the clemical substances in the British Pharmacopria. Column I. contains the official names; Column II. the names now suggested for employment in pharmacy, medicine, and the next edition of the British Pharmacopxia; Colunn III, the unitary nomenclature of modern chemistry.

Ot.p Naxis. lodide of suphar. Iotodine. lron. Lime.	Phorossid N.ines. . Iodide of sulphat: Iodine. Iron. Lime.	Sivoryss. Sutphur iodide. Iodinc.	On.1 Nams. Prussiate of potash, yellow.	ro	Srworyms. I Fellow potassium prus	
				ssiun,		
		Iodine.	Reluced iron. Santonin.			
					Sentonit.	
			Slak		m hydrat	
nagn	agu		Slak			
Magnetic oxide of iron.	Magnetic oxyhydrate of ironl.	Ferroso.ferric oxyhyldrate.	Soda, solution of. Starch. Stry cimia. Subaquate of copper:	Sodn, sclution of. Starch. Strychnia.	Soln, solution of Starch.	
Mercury. Mercury with chalk. 3Ioist peroxide of iron. Nitmet of lead, Nitrite of meicury. Nitrate of potish.	Mevery. Mercury with chalk. Moist perhyhletetc of iron Nitrate of leal. Pernitrate of mercany: N:trate of potassium.	Murcurs: Mereary with chalk. Ferric hydivale.		Oxynctute of eopper (syn) Cupric Oxyactatc.		
		Iozul nierate	Suinitrate of bismuth.			
		Mercuric nitmate. potassium mitrate. $\{$ sirycntic nitrate.				
Nitrate of	I	$\left\{\begin{array}{l}\text { Argentic nitrale. } \\ \text { Silcer nitrute }\end{array}\right.$	\%			
Nitrate of soda.			Suphate of atropia.	Sul		
Nitric acid			ph	,		
Nitro-hylrochluti	Nitrohyd		Sulphat	alphate	Sutiphiardigotic acid.	
				Sulphate of iron.		
Nitrous ether, spi	Nitrous			Sulphate of catcium. Sulphate of mayncsium.		
Oxalate of ammonia. Oxalute of cerium.	Oxalate of ammonaium. Oxalate of cerium.	Ammonium oxalatr. Cerium oxalute. $\{$ IIydrogen oxalute. Oxalic acid. $\{$ Antimony trioxide. Antimonious oxide. - Ferroso fervic oxhydrate.	Supphate of magness.a,	Prorsulphate of mescury:	cra	
			Suphat or	Sulphate of putassium. Sulphate of quinia. Sulphate of solium.	Polassiumt su?phate. Qutinine sulphate.	
Oxalic aci	Oxalic acia.		Sutphate of quinia. Sulphate of sodi.			
					Solium sutphatc.	
Oxide of iron, magnetic.	Oxyhydrale of iron, magnutic.		Sulphide of ammonium.	Sulpha	$\left\{\begin{array}{l}\text { Zincic sulphate. } \\ \text { Amoniat sulphyltrate. }\end{array}\right.$	
				Sulphhydrvate of ammonium.		
O	Oxide of lead.	Lcad oxidc, or Plumsic - oxidc.	Sulphide of iro	Sulphite of iron. Sulphur.	Ferrous sulphide. Sulphur.	
			Suphar. Sulphurated antimony.			
				Sulphur. ${ }_{\text {Sup }}$ Suthated antimony.	Sulphur. Animonious oxysylphide.	
Oxide of sil	Oxide of silver		Sulphurated potash. Sulphuretted hydrogen.	Sulphurated potash. Sulphuretted hydrogen.	Sulphurated potash. Sulpharetted hydrogez.	
Oxide of						
Perchloride of iron.	Tercilo		alp	Sulphuric acia		
Perchloride of utercu	Perchloride of merci	$\left\{\begin{array}{l} \text { Platinum tetrachloride. } \\ \text { Platinic chloride. } \\ \text { Potassinin yermananate. } \end{array}\right.$	Su	Sulphurons acid.	$\left\{\begin{array}{l}\text { Suphurous acid. } \\ \text { IIylrogen sulinhitc. }\end{array}\right.$	
Perchloride of platinum. Parıanganate of potash.	Perchloride of platimum.					
	Permangenate of potas-		Tannio acid. Tartar cmetic (syn.)	Tanain (sym.) Tartar cmetic (sym.) Tartratc of antimony	Tamin. Tartar emetic.	
Pernitrate	Pernitrate of iron.	Ficrric nitrate. Ferric oxhydrate. Ferric liydrate. Ficric sultphate.			Potassiorantimonious tartratc.	
Peroxideoriron,	Reroxil			Tartratc of antimony and jotassium.		
Peroxide of i	Prorlegir		Tartarnted iron.	Tartrate of iron and Potassio-ferric tartrate. potcassiam.		
Persulphate of iron.	Persulphate of iron.					
Phenic ncid (syn.)	Phenic acid (syn.)	(IIydroge		Tartrate of sodium and Pokussio-sodium tartrate. potassium.		
Phosphate of ammonia.	Phosphate of anmonium. Ammonia phosphatc. Phosphate of iron. Ficrous phosphate. Piosphate of calcium. Calcium orthophosplatc. Phosilhate of solitum. Disadiohydric phosshhate. phōsphoric acid. $\left\{\begin{array}{l}\text { Ilydrogen pheitate. } \\ \text { Mhosphoric }\end{array}\right.$ Phosphorous. Phasphorous. Platinuar. Platinum. Potash, solution of ? Prussiate of poucssium, ? Red jotassitm prussiati. red.		Tartaric acid. Tirtrate of potash.	Tartaric acid. Tartate of potassium.	\{ Tartaric acid. Inydrogen tertrate. Potassinm tartrate. \{ Dipotassic tartrate.	
Phosphate of iron.						
Phosphate of lime.						
Phospliate of solla.						
osphoric acid.			Tin. Valerimate of soda. Valcrinatte of zinc. Veraticia. Verdigris. Water. Zinc.	Tin. Valerianate of sudium. Falerianate of zinc. Verittia. Verdigris. Water: Zinc.	Tin. Sodium cralerianate. Sinc valerianate. Veratrine. Verdigris. Watcr. Zinc.	
P1						
Potash, soluti						
l'mssiate of pot						

Resumé.-The chicf alterations in Pharmacuperial nomenclature now proposed amount to this, that the compounds of the alkali-metals and alkaline-oarth-metals instead of being named as hereto on two distict systems, sheuld iollos but one :-that instead of salts of protassium and of potash we should have salts of potassium only; instead of solium and soda compounàs, sodium only; and so with preparations of mm monium, lithiun, calcirm, magnesium, and aluminium. This is a step in che direction of simplicity and pernanency, and away from that of theory.
Symonyms.-Modern scientific chemical names, and the old dualistic names should, I think, be included as synonyms of the eading name in all;Pharmacopceia. Many might be mentioned in addition to those in the third column; I have givon a selection becanse the complete and consistant sets (for, unfortunately, there are moro than one) would have occuped too much space.

Exseptional Alterctiois. - Constitutional objections to the mame acidum arseniosum woald be obviated by the old namo arsenicu:a album. Some other bodies, apparently similar in constitution to whito arsenic, are alliuded to in the text of the British Pharmacopoeia is colhydrons acids-a most ambigunus and self-contradictory tern; for the bodics in question either aro acids or they are nut acids; whereas the term indicates that they are both-which is impossible. The not rery satisfiactoxy word "anhydride" is coming generally into use for these bodies, and this might be employed officially ; but all objection would be avoided if the strength of the Pharmacopoeial acids, which are mostly arqueous solations of acids, were solely given in terms of real acid (the hydrogen salt.) The correlative of the word ankydrons, I would suggest, should bs hydrous, never hydrate; especially as the latter woril is now given to the members of a class of bodies derived from water, as
lydrate of potassium, and not the bodies containing water. The compound from which unhydrous sulphate of copper is prepared is hydrous sulphate of copper, not hydrated sulphate of copper. In view of tho peculiar composition of bichromate of putassiam tho first word of its name is most unsuitable, and would bo advantagcously replaced by red chromate, a name which would usefully distinguish the salt from yelluts clromate of potassinm. The names of the bismuth porders are not at present consistent with each other; if the one bo termed subnitrate the other should bo subcarbonate, - not "carbonate." But these preparations and thio simple compounds of copper and lead are normal rather than "sub" salts, containing oxyben in the placo of an exactly equivalent quantity of the neidulons radical of the neutral salts, and might well bo termed rospectively oxycarbonatc of bismuth, oxymitrate of bismuth, oxijacetate of copper, oxyacetate of lead; at all evonts tho latter names
would do good nervice as synonyms. Similar remarks apply to the peroxyhydrates of iron. The prefix "sub" is most usofully and indeed indispensably apphed in the case of calomel, which is the "lower" or underchloride of mercury; it would be well if the meaning of the syllable could bo always thus reatricted to its etymological signification, and never again used in its old conventional sense. The names tartarated antimony, tartarated iron, tartarated sodium, I do not liko at all. The sister terms sulphurated antimony, and sulphurated potashare most happy, their utter lagueness fairly representing the nondescript character of tho preparations. But tartrate (or owytartrate) of antimony and potassium, tartrate of iron and potassium, and tartrate of sodiunt and potassium, are at least as definite in composition as the citric trio which are already honoured with the dofinite names (or, rather, with the old forms of the names) citrate of bismuth and anmonium, citrate of iron and ammonium and citrate of iron and quinia. "Prussiates" might now, I think, bo relegated to the synonymic category. Instead of Liquor Sudo Effervescens, B. P., which might possibly be confounded with Liquor Soda, I would prefer Aqua Soda Effervescens, and so with Potash Water. These are the prominent excoptionill alterations to which I would draw attention. Their acceptance in not insisted on, nor is the list exhaustive. Allusion is made to them in the hope that discussion may show which names, on the whole, possess the greatest number of advantages. The alterations I do urge are those considered in the main portion of this paper, those of which I have already given a resumé.
In conclusion, I would state that the Lavoisierian names now proposed for uso in medicine and pharmacy have already been freely adopted by many authors, and used as the leading nomenclature of my own and some uther Manuals of Chemistry. I conmend them to the medical practitioners and phamnacists of Europe, Ancrica and the Colonies.
The President, expressing his sense of the important character of Prof. Attfield's paper, remarked that one point in it (leaving the discussion of its chemical value to such gentlemen as Professors Frankland and Odling, whom he saw present) was worthy of the best consideration of pharmacists, namely, the importance insisted on by the lecturer of having such a system of nomenclature as should admit of no error betreen the prescriber and dispenser.

Dr. Frankland expressed his coincidence, on the whole, with the viers advanced by Dr. Attfeld. He said the scientific chemist was frequently compelled to modify the nomenclature of chemical substances, in order to explain his procosses and theories; but for a Pharmacopœeia the most important point was that the names should individualise the substances. He noticed one or two inconsistencies in Dr. Attfield's list of proposed names; one that he proposed to leave the name sulphate of iron to distinguish the ferrous sulphate. To take, also, the frst name on the list, acetate of ammonium. The termination here had been changed, but a little further down he found acetate of morphis, which was a corresponding salt. He asked if it would be possible to change this name to morphium. Or at least the indefnito termination ine might be maintained. Prsctically it was of but little moment, for physicians would doubtless continue to avoid the
terminations, whatover they might be. Ho (Dr. Frankland) thought that with but very fow changes Dr. Attfield's scheme was well calculated to harmunize the numenclature of the Pharmacopwia with the present condition of science, and that it would make but a very inappreciablo differenco to those who had to employ the names in medicine.
Dr. Redwoud romarked that in every new Pharmacoposia change of numenclature had to be made, the ubject generally having beon to assimilate the names to scientific theories. In the last Pharmacopocia sumb changes hed been made with this oljject, and others with the view of rendering the names mure specific. In a future Pharmacopceia ho had littlo doubt that a stiil greater chango of nomenclature would be requived. But there was no immedinte intention of producing a new Pharmacopoeia, and the present one would probably last for another ten years. If a new one were now in preparation he (Dr. Redwood) would bs an adrocate for exactly such clanges as Dr. Attfield had proposed. The changes were so simple, and yet so perfectly in accordance with modern chemistry, that it would be hardly possible for any Pharmacopeia committee to reject them. He also agreed with Dr. Frankland that the ternination of the alkaloids should be ine instead of ic, as in the caso of morphia, stryclnia, and others. Dr. Frankland had mentioned that the terms sulphate of iron was not sufficiently distinct, there boing two substances of that name. He (Dr. Redwood) considered that it was quito sufficient in such a case for the more unusual salt only to be distinguished, which was done at present. It would only be more tronblesomo to use the affix proto to the sulphate of iron, and would serve no purpose. He could not agree with Dr. Atticld's propusition to substitute white arsenic for arsenious acid. Dr. Attfield had proposed that the term acid should not be employed for substanees which did not contain hydrogen. If this wers the only instance, it might be allowed to pass. But there were other cases, as for instance, chromic acid. Ought we to change this for chromic anlydride? He was not prepared to advocate such a cumbrous nomenclature. He quite agreed that red chrumate of potash would bo a good substitute for the present namc. For the sake of brevity ho would advocate the retention of the name blacis antinony, not giving it the titlo which $\mathrm{Dr}_{\text {r }}$. Atifield had suggested, namely, black sulphide of antimony. He would not care to see the name carbonate of bismuth altered to oxycarbonate of bismuth as now proposed. Carbonate of lead and , ther salts were just as objectionable, these being quite as certainly oxycarbonates. To change the names of the double salts now named tartaratod iron, tartarated antimony, and tartarated soda, to the suggested names tartarate of iron and potassium, and so on, would nut, ho thought, bo an advantage. He would like to see the names changed, but not to what was now suggested. Why not return to the old names of potassio-tarirate of iron, etc., and use also the old term ammonio-citrate of iron? With regard to the salt citrate of iron and quinine, ho would suggest ferro-citrate of quinine as an expressive and simple title.
Dr. Odling thought Dr. Attfield's proposed scheme of great importancs. Ho could hardly coincide with Dr. Redwood respecting the value of such a discussion. Presuming that ten years was, as Dr. Redwood had said, the avorage duration of life for a Pharma-
coposia, and considering that the present ono was of exceptional excellence, allowing it ton years from now, ho could not think that it was any tuo varly to commence the discussion of any changes in the nomonclature. He would have commented on Dr. Redwood's criticism of the propused term white arsenic, but he thought that after tho gluwing enlogium which Dr. Redwood had himself passed on black untimony almost immediatoly aiterwards, he (Dr. Odling) might leavo the two to balance each other. IIe fully agreed that nancs including the nse of Latin and Greel anmamials should be nvoided as much as pessible. Tu distinguish substancas by naming their colour was an excellent means of definition, for while it involved no theory, it possessed tho strongest probability of buin, 5 a description which inight bo oxpectad to be permanent. He also concurrod with Dr. Atffield's remarks concerning acids. It was not origially of much importance to which class of bodies tho term acid should be applied, but as general consent had given it to those which were compounds of hvdrogen, he thought it of some importanco that it should bo retained for them. Bodios similarly described should possess similitrity of character. He (Di. Odling) did not exactly agree with Dr. Attield's skotch of tho history of the origin of the binary nomenclature of salts. He wats aware that the theory might be fr und in some of Lavoisier's writings, but he hardly thought it had been recognized by him. ' He instanced many terias used by Lavoisier, which seemed to indic:ate that he had not fnrmed any such theory. And he believed that it was not until the time of Davy that it was fully expressed. In a few cases he thnught Dr. Attfiold had striven a littlo too earnestly to attain exacit scientific accuracy, which le (Dr. Odling) conld not think was required: He coincided with Dr. Redwood in inany of his remarks on this poiut. Ho agred that the name sulphate of iro: was quite sufficiently distinctive. The sane argument, howerer, would not apply wit! regard to calomel und corrosive sublimate. It was important that sub-chlor, and porchlor, should be designated. He concluded with a few words on suffixes and prefixes. In a scientific sense he preferred the adopt tion of suffixes, but he could not but admithe force of the arguments adi:anced for distinguishing chemical substances used in medicine by prefixing the sylliable. This was necessary as long as physicians would perversely adhere to their system of ibbreviating words.
Dr. Quain boing called upon by the President, said he had not cone to speak but to learn ; ho had not been disappointed. He had come also as a conservative, to protest against any changes of the names of medicinal substances merely to ment the views of scientific chemists; but, scheme proposed, he was glad to fina was the reverse of this. It was impossiblo for practical physicians to follow minutely the theories of scientific mists, and they had the strongest possible objection to any violent changes of nomenclature. He thought the present Pharmacopreia so exceedingly good that he articipated for it a long existence.

Mr. T. B. Groier made one remark on the danger often arising from the similarity betwecn the abbrevia ${ }^{2}$:d forms of the names acid, hydrochloric, dil., and acid, hydrocyanic, dil., and suggested a return to the old name for the latter of acidua jriasaicum.

EDITORIAL,

Correspuadence and general communications, of a character suited to the objects of this Jounnal, aro invited, amd will alvays ba welcome. I'te writer's name should aceompany his comununiention, but unt arecessarily for publication.
Subscriptions will wot be aknowledged by letter, as oar sending the p.per may be taken as suificient evidence of the receipt of tha money.

All comnunications cunascted with the paper to be alluested, post-paid,
"Edifur Cangolas Panmanaurcaldounsal. 'гономто."

OPIUM CUYTURE.

The high price maintainod by opium, during the last two or throo years, has given a fresh impotus to the efiorts of those who have been eudeav uaring to introduce the culture of the poppy in countries nthor than those from which our supply has been, herotofore, derived. In France and Germanyeapecially the former-the poppy has boen extensively cultivated, for a length of time, for the sake of the oil contained in the seeds; but not until latar years was any ad. vantage taken of the opiun, although it is said that both productsinight bo cullociadfrom the aame plants without injury to either: In 1855, M. M. Bsenard and Cullas, the latter a pharmacion of Paris, bostoirel cunsiderable attention on the production of opium, and carried on oxtensive exporiments in the department of La Somme, whero abont 30,000 acres were set apart for the cultization of the poppy, for oil. It was fomd that the collection of opium could be carried on with considerable profit, and that tho dras w.t3, if anything, superior to that obtained from Turkey, often contaiaiag as much as 20 por cent. of morphia.
Opium cuiture in Eagland, has proved anything but successful, although as early as the beginsing of tho prosent cantury it was shown that the enterpriza might is carried on with results which were by no moans discouraging From trelve acres oi land 190 pounds of opium wero collected, which, at that time, realized over thirteen hundred dollars, (Edin. Phil. Jubr.) Whether every -season would turn out as profitable is very questionable, for as stated by Prof. Bentley, at a recent meeting of the British Pharmaceutical Society, "the point is not whether a specimen of fair value can be produced, but whether, on the average of summers, there is such an amount of light and heat as will enable the cultivator to grow it to commomial adrantage." The climate of Eng. land does not appear to favor the production of opium, or rather of morphia; and from experiments made in different quarters of the globe, it has been demonstrated that warm and dry weather is required for the developmext of the more valuable alkaloid; while
a daup and cold atmosphere tends to the production of mavotine, and wher less valuabls y-insiplo3, the quantity of morphia being propurtionately diminished.
In the Fubruary number of the Jounnal, will bo fount an intaresting ancount of oxparimenta, male by a Melbuarau chemist, on tho prodaction of opin'n in Australia. To those intorested, wo refer this pupar is containing many useful facts, in regard to the influence of soil, de., on the yiuld of alkaloid. The poppy seens to thrive well i: Austrulia, tho plants attaining a height of five to sevein feet. The amount of opinm realizod was from gity to eighty four pounds per.acrs. Its morphia strength ranged from four to seven per cont. The subjeat is further alluded to in a puper which iupeared in a recent number of the Phrincentical Journod, of Landon, The writer details the experiments made by if frend residing in the south-east portion of the colony of Victoria A quarter of an acro was sown, in rows two feet six inches apart, from which the plants were thinned out antil about mino inches apart. The capsules wero punctured, or nicked, and tho liquid juice w is c.llectad as it dropped from the incisions. Tho yield was 14 pounds of opium, of the usual consistonce, and on ansalysis gave 0 per cont. of morphia, 4 of nereotime, and 4 of meconic acid. It is much to be regretted that neither of these writers give any estimato of tho amount of labor; as on this point the profits of the undertaking materially dopend.

Turning to this side of the Atlantic wo find that the Amoricans have boen trying to turn the cultivation of the poppy to profitable account; with this, our readers, are probably, fumiliar, as most of the published accounts lave from timo to time, appared in thes Journal. Wo neod not recapitulato, but may say that the generil result has boen favorable to the vicer that opinm, of good quality, can be produced on this continent, at an expenditure wisch allows at hamisome margin, far exceeding that from the culture of any of our ordinary agricultural products.

Our inte:tion in writing this article is to draw the attention of oar readers to opium culture in Canad3. There is no reason, why we should be dependent on other nations for for our supplies; o: neglect a branch of trade which promises to be so profitable. If opium ca: ba prodnced to adrantage in the climate of the New Englaud State3, it appears reasunable that tho samo might bo done here-at least in this Western Province. We aro not aware that the attenpt hias been made, but hope that some of our resders who are foad of agricultaral pursuits, will tako up the sabject and let us know the result of their experience. We shall bo pleased to give aisy information in our poser, in regard to the mode of cultivation, or any other gard to the mode of cultivation, or any oth
details with which we may be acquainted.

LEGAL DECISION IN REGARD TO THE PHARMACY ACT.

Ar a late mectug of the Sucuty, a lengthy discussion took place on the powers of the Provisional Council mamed in tho Act. Some mombera maintained that the uflicial duties , of that buily commenced at tho time of the passing of the Act, whal. othess held that as tho first meeting was to tiko phace in July, tho council were not vested with any power until thatporiod. In vie, of thas differenco of opinion, it was decided that tho mattor should bo refurred to legal iuthority ; and, accordingly, a fow questions, ombodying the points at issue, were propusod by the meeting, and directed to be furwardod to Mr. J. G. Scott, of the Attorney Genoril's oftice. Tho reply of that gentlomu has bem received, mad the following extract handed to us for publication:
"In accordance with your request I give below answera ts the following questions :1. Has the Provisional Cunncil of the Ontario College of Pharmacy power to hold meetings before the 1st July, 18711

Had it not beon that I am informed that it is utterably imposable to carry out the peovisions of the Act, respecting certificatss, I would have considered that the first meoting of the Cuancil, with rights of oxecting their functions as such body, could not have beon held before this date, although, of course, thero could have bren no possiblo objoctions to meetings of the members of the Cunncil for preliminary parposes. However, in viow of the fact before montiuned, I should adviso that the Cuanall migit be callod togother for the parpose of doing such asts as are absolutely necessary, forcarrying their act of incorpuration ints offeat. One of these would ba the adoption of a corporate sual, with which tlo registrar fruald seal the certificatesauthor-ized-I would, however, advise that upon the moeting of 1st July, all previonts acts bo adopted and conürmed.
2. Has the Ragistrar poiver to grant certificates before the 1st July?

The Certificatos are, I understind it to be, under the seai of the College. If so, the adoption of the seal is an act preliminary to the issue of yuch cortificates. Inmediately a seal is adopted the Rogistrar may issine certificates.
3. Does Section 30 come into effect upon the passing of the Act?

Yes."
In regard to this latter question, we may oxplain that section $30 t h$, is that respecting the old law for the sale of poisons, and the point to bo settled was whether the new law came ints forco Fubruary last, or is to do so nost July. Mr. Scott confirins the upinion advanced, somo time ago, in the Journal, that the cld law vas abolished at the time of the passing of the Act.

The corresponding seoretary desires us to say that in caso any momber has not beon notified of the amount in arrears, and in consequonce, his namo does not appear in the pnblished list of members, the mistako can be rectified by communicating at onco with W. Brydon, Corresponding Scc. O. C. P., Toronto.

Mr. J. B. Dalo, of Wyoming, has consonted to furnish us with a monthly report of the petroloun markot, which will, duubtless, prove valuable to our readera.

Disoovery of Bismuth in Toxas.

A. R. Rosseler, in the Journal of Applied Chemistry, calls attention to tho invest:gations instituted under the U. S. Land Office into the mineral products of the several States, and tho discovery of bismuth in Aucher county, Texas. A railroad line is being run through the new region, which, heretofore, has been little known, from the hostile bands of Indians which infest the place. We are not told in what quantity the metal exists, jut it is said to be abundant, and is easily reduced by a heat of 500°.

Prosorvation of the Olle of Lemon and Orange.

Mr. Carl Frugh, communicaies to the American Joumal of Pharmacy, the following plan for the above purpose: To every pound of oil 1 oz . of alcohol is to be added, and well mixed; then 1 oz . of water is put with it, which again withdraws the alcohol from the oil, and collects at the bottom of the bottle as dilute alcohol.

The oil I have treated in this manner was in a large quart bottle, hardly more than hulf full, and is to-day as nice as when first purchased.

In trying to explain to myself tho theory of this action, the oil was closely observed and a resinous film was found floating on the surface of the dilute alcohol. Whether the separation of this resinous film preserves the fragrance of the oil, or whether the presence of water has so good a result, I have not yet determined, but am cortain that the general theory of deterioration by contact with ai= does not hold good in this case. Precisely the same effect was observed with oil of orange, and it was an agreeable surprise to find the experiment work so well with both vils.

I would like to add, that the resinous film observed seemed to be in much larger quantity in the oil of orange, and for that reason I think this is the true cause of its spoiling more rapidly than the oil of lemon.

Glycerole of Iodine.

This preparation, recommended for loss of voice, is composed of a solution of sixteen grains of iodine in one ounce of inodorons glycerine.-Med. Record.

STUDENTS' DEPARTMENT.

QUESTIONS.

I. - What weight of red iodide of mercury should be obtained from the quantities ordered in the B. P. 1
II. --What quantity of sode carb. exsiccat. may be obtained from 8 ounces of the crystallized salt?
III. -What is the excess of iron over that required by the iodine in the formula of tho B. P. ?
IV.-How many minims of tincture of opium are equivalent to 1 grain of dry opium?
V.-Classify the simple tinctures in groups, in the order of their strength. Thus, Aconiti, 1 in 8.

ANSWERS.

Mr. W. A. Card, of Orono, sends the following answers to questions in last number. I.-Sulphuric acid-when mixed with a little powdored charcoal, and heat applied, is decomposed, effervescenco taking place from the evulution of gas. In the reaction, two atoms of carbon unite with four atoms of oxygen, porducing two molecules of carbonic acid gas ; and also forming four molecules of water, while sulphurous acid gas escapes, as shown by the equation :

$$
4 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{C}_{y}=2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{SO}_{2}
$$

If this sulphurous anhydride (SO_{2}) becomes moist or is passed into water, heat is evolved, and true acidsulplurosum $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ is formed, thus:-

$$
\mathrm{SO}_{2}+\mathrm{H}_{8} \mathrm{O}=\mathrm{H}_{2} \mathrm{SO}_{3}
$$

12 parts of C decompose 196 parts of $\mathrm{H}_{2} \mathrm{SO}_{4}$, liberating 128 parts of SO_{8}, which, combining with 36 parts of $\mathrm{H}_{2} \mathrm{O}$, will form two molecules of acid sulphurusum $\left(2 \mathrm{H}_{2}-\right.$ $\mathrm{SO}_{3}=164$.) The amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required to produce 1 lb . of $\mathrm{H}_{2} \mathrm{SO}_{3}$ is found by proportion: 164: $1:: 106: 1 \cdot 19$; this is equivalent to $1 \cdot 22 \mathrm{lbs}$. Acil. Sulphuric. B. P As 196 parts of $\mathrm{H}_{2} \mathrm{SO}_{4}$ aro decomposed by 12 parts of C.; 1.19 lbs. may be decomposed by 072 of a lb . of C . (charcoal.)
II.-Spinit. Ammon. Aromat. IS. P., is a spirituous solution of hydrate of ammonium (AmHO), neutral carbonate of aramonium $\left(\mathrm{CO}_{3} 2 \mathrm{NH}_{4}\right)$, and the oils of nutnees and lemon. In preparing seven imp. pints of the above spirit, four fluidounces of strong solution of ammonia (Sp. gr. 891) are employed, containing 32.5 per cent., by weight, of gaseous ammonia. One fluid oz. of a solution whose sp. gr. is 891 will weigh 389.81 grs , and the four ozs. $1559.2 \overline{5}$ gis. $=3.56$ ozs. the amount by weight, of strong solution of ammonia employed, is equivalent to 1.15 gts . gaseous ammonia. Eight ozs. carbonate of ammonia ($\mathrm{N}_{4} \mathrm{H}_{16} \mathrm{C}_{3} \mathrm{O}_{8}$) aro also required in preparing seven pints of the spirit. If one molecule (230° parts) of carbonate will yield sufficient nitrogen to form 68 parts of ammonis gas, 8 ozs . of carbonate, if completely decomposed, will yield 2.3 ozs. of gaseous ammonia, making in all $3 \cdot 45 \mathrm{ozs}$. in seven imp. pints sp. ammon. arom. B. P., or $\cdot 4928$ of an oz. in one imp. pint. If one imp. pint ($8750 \times 870=7612.5 \mathrm{grs}$. of a solution whose sp . gr. is 870), holds in solution 4928 of an oz. of NH_{3} one wine pint ($7291 \cdot 2 \times 870=6343.34$ grs.) will re-
present, therefore, 4106 of an oz., and 10 pints, wine, $4 \cdot 100$ ozs., A 1 s.
III.-Sp. Ammon. Arom., U. S. P., is a proparation somewhat similar to the above. One troy oz. carbonate of ammonia and three fluid ozs. water of ammonia aro consumed in preparing two pints, wine. As 236 grs . carbonate represont 68 grs gascous ammonia, 480 grs . carbonato are equivalent to 138.3 grs . NH_{3}. 236: 480:: 68: $138 \cdot 3$. The "water of ammonia" (sp). gr. ${ }^{260}$) contains $9 \cdot 7$ per cent. of NH_{3}. One fluid oz., wine, of a solution whose sp. gr. is 960 , will weigh $437 \cdot 47$ grs.; the three tluid ozs. weigh, therofore, 1312.41 grs. and contain $127 \cdot 3$ grs. NH_{3}, this added to 138.3 grs obtainable from the carbonate, gives 265.6 grs. in two pints, and 1328° grs. in 10 pints, wne, which is equal to 3.03 ozs, av., Aㄴus.
IV.-Liquor Arsenicalis B. P., is 037 per cont stronger in areenious acid, than Liq. Potasse $A_{\text {: }}$-nitis U. S. P. One fluid oz. (437.5 grs .) Fowler's solution B. F. contains 4 grs . arsenious acid; or 014 per cent. One fluid oz. (455.7 grs .) Fowler's solution U. S. P., contains 4 grs of arsenious acid, which is equivalent to 877 per cent.; 037 per cent. is, therefore, the difference in the arsenical strength. An im. perial minim at $60^{\circ} \mathrm{F}$. weighs 9114 of a grain; a wine minim, under like circnmstances, weighs 9493 of a grain. One oz. imp.j or wine, each represents 480 minims, therefore the difference in the strength of the solutions.
V.-Chloroform, Perchloride of Formyl.-Properties-Chloroform is a limpid, colorless, very volatile, neutral fluid, of a bland ethercal odor, and hot, aromatic, ethereal, and very sweet taste. It is fieely soluble in alcohol and in ether, and slightly so in in water, communicating to it a sweetish taste, a strong alcoholic solution is decomposed by abundance of water, setting the chlcroform free at the bottom of the liquid. It readily and entirely volatizes, with characteristic odor, at common temperatures, and boils at $142^{\circ} \mathrm{F}$.; sp. gr. varies from $1 \cdot 490$ to $1 \cdot 494$. Burns with a sluggish green smoky flame, and impartsto the flame of an alcohol lamp a yellow sootiness Exposure to sunlight, or even diffused daylight, for a lengthened period will decompose it, generating an acid or bleaching reaction on litmus paper, and among the products of decompusition may be found hydrochloric acid, chloroxycarbonic acid, formic acid, and free chlorine. When pure, it exerts no influence on potassium, sodium, nor solution of nitrate of silver, and is not colored by agitation with sulphuric acid. Chloroform is a powerful solvent, capable of dissolving mostgumsand resins; as mastic, tolu, benzoin, guaiacum, scammony, cmphor, \&c. It also dissolves iodine, bromine, tho organic alkalies, fixed oils, fats, and all the volatile nils. Chloroform is nometimes considered to be the cllloride of a trivalent radical methenyl (CH). It may also be regarded as the chloride of dicllurmothyl, and has the formula $\mathrm{CH} \mathrm{Cl}_{3}$. Tests for purity-Heavy volatile oils, occurming as an impurity, may be detected by agitation with sulphuric acid, which produces a black coloration, if present. Alcohol or ether lessens the sp. gr., and renders it immediately inflammable, while pure chloroiorm is not immediately inflammable. When pure, if diopped into water, the globules fall bright; if adulterated

With alcohol, the surfaco of the drop becomes opalino. Potissium or sodium will color chloroform containing this impurity, and give rise to sharp, acid fumes ; a solution of bicarbonato of potash in sulphuric acid becomes groen on the addition of chloroform containing alcohol; and albumen is congulated by chloroform containing this impurity. Chloroform, adulterated with alcohol or ether, is diminished in volumo by agitation with wator. Ether may bo recugnized by tinging chloroform dull red, added to an aqueous solution of iodine. Chlorine, hydrochloric and hydrochlorous acids, if present, dovelop a strong smell; a bleaching or acid :aaction with litmus paper; fumes of chlorine, with vapor, if ammonia be ndded; and white precipitate with nitrate of silver. If pure, odor not mpleasant, neutral action on litmus, and the last two regents give negative indications. If tho chloroform has un acid reaction, and nitiate of silver does not produce a precipitate, or one soluble in a quantity of water, acetic acid is present. Sulphuric acid may be detected by the chluruform giring a precipitato when solution of chloride of barium is added, and its acid reaction on litmus. The prosence of Dutch liquid, by an alcoholic solution of potassa, volatile chloride of acetyl is emit. ted, of an offensive odor. When pure, two or three drams, spontaneouisly evaporated from a porcelain plate, or a small quantity poured on a piece of clean filtoring paper, and allowed to ovaporate, the last portions have a slight aromatic odor, free from pungency and empyreuma, and the plate left covered with a film of mois. ture, davoid of odor and taste. The chlorinâted pyrogenous oils, or any peinicious foreign matter, may be easily and readily detected in this way, by their offensive smell remaining after then ndor of the chloroform has dissipated. Chloroform is purified by agitation with distilled water, and then with pure sulphuric acid, which chars and removes hydrocarbons, but does not affect the chloroform. It is freed from any trace of acid by agitation with lime, and from moisture by solid chloride of calcium.

ORDER OF HERIT.

NOTES AND QUERIES.

J. B. D. - Twaddell's hydromoter is used, principally, in bleaching and dyeing operations, though it is fast giving way to the more rational standard of specific gravity. Twaddell's zero corresponds with 1,000-the sp. gr. of distilled water, at 60° F. Each degree of Twaddell is equal to 005 sp . gr. so that by multiplying this number by the indication of the hydrometer, and adding 1- the specific gravity is given. The following table give the corresponding degrees on تشت: both scales

Twaddoll.	Sp. Gr.	Twaddell.	Spl. Gr.
0	1000	100	1500
10	1050	110	10500
20	1100	120	1600
30	1150	130	1660
40	1200	140	1700
50	1250	160	1750
60	1300	160	1800
70	1350	170	1850
80	1400	180	1900
90	1450	190	1950

Beginner.-To stain wood a mahogany color, a liquor mado in the following mannor, may be applied ; $\frac{1}{2} \mathrm{lb}$. of nutulder and 2 oz . of logwood are boiled together in a gallon of watera Apply to the wond, while hot, with a brush, whon dry, brush over with a solution of $\&$ oz. pearlash in a quart of water.
For walnut, a strong solution of potassium permanguate makes a fair imitation.

ONTARIO COLLEGE OF PHARMACY.
 MEETING OF THE COUNCIK.

Agreeably with the resolution adopted at the regular monthly meeting, the members of the Provisional Council of the Ontario College of Pharnacy were called together for preliminary purposes coniected with the carrying out of the Pharmacy Act, on Wednesday 26th inst., at noon. The following gentlemen were present:-Messrs. J. W. Bickle, Hamilton; W. Saunders, London; C. Stork, Brampton; J. C. Holden, Belleville ; E. Gregory, Lindsay ; A. W. Kempt, Peterboro'; II. Miller, Geo. Hodgetts and H. J. Roso, Tornato. Mr. Miller wis appointed chairman.

Letters of apulogy proro read from Messrs. Jas. Mills, jr., St. Catharines; F. Jordan, Goderich, and T. Matchett, Omenee, and the absence of Mr. Elliot, Toronto, was accounted for by sickness, and of Mr. Dunspaugh from family affliction.

The chairman explained that there were many questions arising at the present time with regard to the now Pharmacy Act, which it was thought adrisable to place before the provisional Council, rather than decide them at the regular monthly meetings of the Toronto members of the Society, such as the adoption of a seal for the Society, the kind of certificates to be got up, the registration of partners, sc.

With regard to the legality of the present meeting, as the Act specified that the first mecting of the Council shonld be held in July, they had obtained the advice of Mr. Scott to the following effect.

Dear Sir,-In accordance with your request, I give below answers to tho following questions:-
"1st. Has the provisional course of the 1 ntario College of Pharmacy power to hold mectings before the 10th July, 1871 ?"

Had it not been that I am infurmed that it is utterly impossible to carry out tho provisions of the act respecting cortificates, I would have considered that the first meeting of the council, with rights of exercising their functions as such body, could not have beon held before this date. Although, of course, thore could have been no possible objection to meetings of the members of the council for preliminary purposes.
However, in viow of the fact before-mentioned, I would advise that the council might be called tugether for the purpose of doing such acts as are absolutely necessary for carrying their Act of Incorporation into eflect. Une of these would be a corporate seal, with which the registrar would seal the certificates authorized. I would, however, advise that upon tha meeting of 1st July nll previous acts be adopted and confirmed.

2nd. "Has tho registrar power to grant certificates before the list July?"
The certificates are, I understand it to bo, under the seal of the college. If no, the adoption of the seal is an act preliminary to the issue of such certificates. Immediately a seal is adopted the registrar may issue certificates.

3rd. "Does section 40 come into effect upon the passing of the act ?" Yes.
I have not the act before me and speak from a recollection of its provisions.

Yours truly,
J. G. Scort.

H. J. Rose

Registrar, Ontario College of Pharmacy.
From which it would be sonn that it was quite competent for them to take the present steps.

The first question taken up was the adoption of a seal, and after_discussion, it was moved by Mr. Bickle and seconded by Mr. Holden, that the general design of seal for the College be as follows: Hand holding torch over mortar and pestle, encircled by wreath of maple leaves with the words, "Ontario Collego of Pharmacy ; incorporated 1871," and that the Chairman, Secretary, and Mr. Hodgetts te a committee to procure a die and press in accordance with this resolu-tion.-Carried.

The style of the certificates to be used, was then discussed and on motion of Mr. Saunders, it was decided that the size should be 12 by 16 inches, and the design and particulars should be left with the committes appointed in Mr. Bickle's resolution, six hundred copic: to be obtained.

Mr. Gregory brought up the subject of books for registering sales of poisons, and the same committee was royuested to have 500 copies printed similar to the English books, with a cony of the Pharmacy Act, table of antidotes, and a limited number of advertisements, maki: 3 the column for signatures a little wider than the sample shown, to be furnished to tho trade at a slight advance on cost price.

The question of the registration of firms was talen up, and it was moved by Mr. Holden, seconded by Mr. Bickle, that this

Council declares that the first clanse of the Pharmacy Act requires each partace in a firm to be registered. - Curried.
Mr. Gregury moved, seconded by Mir. Stork. That the Registrir be requested to issue printed notices forthwith to all druggists in Ontario, who have not alveldy made application, calling their attention to the reguiremonts of tho las and requesting them to register immediately, and enclosius a blank decluration of their cligibility, to be signed before a magistrate. -Caried.

The secretary said that lee hitel reecived a letter, wishing to know the course to be taken with reference to branch establishments. After discussion it was moved by Mr. Saunders, seconded by Mr. Hodgetts, that in the case of registered druggists opening branch establishme:ts, a duphicate certificate may be obtained on applicatiun to the Council, by the payment of one dollar amaally, provided sufficient evidence is given that such basiness is to be manared by a cominetent person.-Carricd.
The applications recoived by the Registrar werg subinitied, and that of Mir. J. True:nan, Hamilton, withdrawn by order of the Council, and the Registrar instructed to anply for the necessary declatation before a magistrate in the case oi some obhers.

It was then on motion of SLr. Bickle, decided that the Torortw members oi the Council, be a committee to decide on the eligibility of applicants for registretion.
Mecting adjourned.
Hrany J. Rose, Sce.

HONTETY MEETEME。

The regular monthly mecting w... Joch nt the usual phace, with Arr. Miller ia the chair.
Minutes of last mesting were read aud adopted.
AIr. Shuttleworth isined if it would be in onder to have the minmes of the preliminayy mecting of Council read, is l:o understood the Council had taken action regarding poison Books, \&c.

The Chairman consented, and tiomenates were read.
Mr. S. said that these minutes confirand a repoit which he had recciect of the meeting from a member of the Council, ant phened him in a very awkward position indecd, as he lad been appoinicd, aloner with two members of the Society, a printing committea to oblaina a scal and get the poison books primeed, and that part of the work allotied to them had been done-iadeed, but for the news of the action of the Comeil, roahd hate been ly this timo completad -waile a committer wit the Conneil had been orppuintad fur the sause purpose, with:ont any refere:ce to, onackuwneligent of the labors oi the conamittee appoinhed at tho monthly mecting.

He olsu umlerstuve that there had been a propusal to add to the committe the name of the chairman of the one already appointed, but the pruposal was met with the rejly that no outsiders would be ampointed, aldangh this did not appear in the minates. Fle thought that if tho Council tool: matte:3 up with such a high hame-shighting the habors of those who had exerted themselves for the benefit of the Society-it would cause a matural feeling of opposition to the Ceuncil, and be the canse of unpleasantness.
The Sucretary said that he had some recollection oi Mr. S.'s mame being proposed to be addel to the committee, but there was no motion in writing handed to the chairman whh Mr. Shathewu:th's mane, wtherwise it would have appeared, and ats to the exelusion of outsilers, it was thong's tiant the Council had no puate: to aposiat aty wat bit their own members on the comanitese.
Mr. Hodgetts said that heir was no intention of slighting the other comanitte or its charman in not appointing them on the Comacil committee, sud the fact of no acknowledgenemt being give: wats doabtleas owing to the harried mature of tiae mecting,
 aiternson train.

The Chairman said that the verbal report of the fumatil mecti:1g t., Mr. S. land conveyed a wrong idea if he th.onsiat that any slight had bem inteaded io lian or the committe. The mectibit was called of all the members of the Council to decide on questions which the moatily meetings declined to dispose of on tilecir ow: antiority, and, so far irom slighting the lowento me:nbers. had phacel so much conableace in them is to leave the question of printing in thair liands as to details. He rhonght that the goni!emen ap)pointed at tia monathly meeti:es were only to proc:re designs for certificates, de., but on reference to the minutes of tiac February mectins it was ionand that they were anthosized to obtain poisoan books and designs for seal and certificatcs. He thonght tise remarks reflecti:g oa the members of the Council quitu u:called for.

Ather further remarks by the membera preseat, Air. Finter moved, secouded by MIr. Ijve, Fhat the Cuancil haviag appainted a commistec for printiar parposes, the comaitse apiointed at the sebr:ary mesting be aitlan:zed t.g ant ia coacent with the
Council cominittec in the matter of ceatifiCounc:l cominittee in the matter of certificates, \&e. Carried.

Irectiag andjairned.

> 11. J. Ross, Secy.

LEST OF REGISTRATIONS

 Rocelival to MKng Ilth, 1871.Archer, Ger. H................Lenangyton.
Adams, Alex.I2.ckwoni.
Appleto:i, 32. H...............Simenterd.
Apileton, F. D...............Stmiford.
Eacle, J. II.Iondon.
Banks, J. II....................Weston.

Corrcction.-In April list published, read W. O. Forter instead of W. D. Fostcr.

PRACTICAL FORMLLE.

Essenco of Remnot.
'Take fresh remet, ent small. ... 12 outces
Common salt.
........
linead them together and leave in a cool place for 6 weeks; then add, of

Water.............................. 15 ounces
Alcohol, dilute (or whiskey).... 2 "
Digest for $241_{10 u r s, ~ a n d, ~ i f ~ y o u ~ w i s h, ~ c o l o r ~}^{\text {a }}$ the liquia with burnt sugai: A couple of teaspoonfuls will curdle a pint or more of milk. Drug. Circular.

Fumigatinf Pastillos.

1-'lake Benzoin.
2 ounces.
Balsam of Tolu,
YcllowSandal-wood, of each. 1 drachms
Nitre. . 2 drachms
Labdanum. 1 drachun Charcoal
\qquad C ounces
Mix with a solution of gum tragacanth, and divide the mass into pastilles, cone shaped, and dry them in the air. The foregoing is the formula of the Paris Codex.
z-Take Benzoin............... 4 ounces
Cascarilla................... $\frac{1}{2}$ ounco
NitreandGumABbic 3 drachms
of cach........... 3 .

Myrrh.................. 1 drachm
Oils of Nutmeg and Cloves, of cach 25 drops
Charcoal............... 7 ounces
All in fine powder. Beat them to a smooth mass with cold water, q. s., and form into small cones and dry in the air -Ibid.

Mrucilago for Inbols (damp proof.)

The Archives of Pharmacy gives the following recipe: Macerate five parts of sood glue in cightecn to twenty parts of water for a day; and to the liquid add mine parts of rock candy and three parts of gum arabic. The mixture can be brushed upon paper while lukewarm; it keeps well, does not stick together, and when moistened adheres firnly to bottles. For the labels of sodia or seltzer water bottles, it is well to prepare a paste of good rye flour and glue, to which linsced oil vamisil and turpentine have been added in the proportion of half an ol:ace each to the pound. Labels prepared in the latter way do not fall of in damp cellars.

TRADE REPORT,

Sales in White Lead, and Linseed Oil especially are reported actire. Iienittances somewhat backward. New goods by sniling vessels are coming formard frecly, and by the end of this month assortments will be quite completc. In prices there are no rory sudden or marked clanges to report, with the execpution of Opium, which is much cheaper. Quinine, Shellac and Mrercurials are much casier, and Spts. Turpentine, which has been scarce and dear, shows signs of being easicr at the close. Tartaric Acid and Cream Tartar are costing more, and the quotations are sliglitly adraneed. Iodine and the iodides are dearer. Soda Ashand Bicarbare coating more, and guotations are adranced in proportion; Oil Lemon is repurted sloest io: first quadity; and the price his been somewhat adranced; Oil Bergamot, on the con-
trary, is sliflthy easior, Oil Puphermint is somewhat lower ; Bichromate Potish is hrld for ligher rates; Madder and dyewoods generally are firmer; Mragenta Aniline Crystals are coming out higher than last year, and other anilines are unchanged ; Glues of all kinds are dearer and somewhat scarce; Whito Lead in Oil is frmer on account of advances in dry lead and the high price of oil in Eng land. There seems to be a distrust that Seal Oil will be greatly lower on account of tho large catch of this season ; it is, however, argued that the owners of the nil are able to hold it until it realizes remunerativo prices, and rates are not more than $2 \frac{1}{2} \mathrm{c}$ to 5 c easier; Lard Oil is comparatively cheap ; Olive Oil is lower ; Linsecd Oils, although not quite so dear as about a fortnight since, are firmly held at quotations.

PETROLEUN REPORT.

Great activity now exists in Petrolia, so faras the sinking of new wells and development of new oil lands is coacerned. East, west and north, new wells are being located in, as yet, unthied territory, and the promoters and owners are as sanguine as ever of success. So fat, however, new wells havo demanded nothing more than passing mention, their production only coming up to the average, and by no means contitling them to be ranked with those commonly termed "lucky strikes." Nevertheless, tho actual production is constantly on the increase, and, I think, may be safely estimated at about 8,000 barrels per rreck. But eren with thisincrease in production, the crudo oil business is at present anything but remunerative to producers. This is owing chiefly to the home market being overstocked with refined oil, consequent upon the great competition now existing among refiners. Great efforts hare been made to organize a combination of the refiners of Canada, with the object of protecting cacl olher's interests by concerted action in buying the crude article and selling its products. We think the scheme would prove beneficial to all concerned could it bo unanimously carried into effect as was contemplated, but oring to the non-compliance of one or two large firms, it seeas probablo that no arrangenent of the kind can be effectcd, and the scheme will, perforce, have to be abandoned.
The quantity of oil, (Crude, refined and distilled,) which was shipped from Petrolin station, during the m:onth of April, is as follows:-
Crude.
Refined.
Distillate. 19,539 brls. 858 brls. 3,710 brls. Parrafin Wax, (solid) greaso for lubricating purposes (not fluid), lubricating oil (made mithout undergoingany process of distillation, tar and other refuse remaining in the still and not passing through the romm or condenser, and any product of the residuum, wero all exempted from excise duty by an Act passed during the last session of Parliament. The fire test has been lowered from 115° to 105°, a chango which mects rith the appromid of the refincrs generally, as they consider Canada oil, safe aud perfectly free from explosive qualities, at eren a luwer test thinn 100°.

Crude oil may now be guoted as worth from \$1.35 to $\$ 1.40$ per barrel, with a depressed markct.

Refined oil, nominal at 18c. to 19e per gillon for flrst-class oil.

Tar dull at 50 cents per barrel.

WエIOLESAIE PFICES CORFPINT.MMAK, 1871.

[^0]: - Promen tha Proceedinge of the American Phamacelladovethitioc.

[^1]: * Extmet from 2 paper risd beforc the Pharnaccutical Socicty of Great Britian, A pril sth 1971 , ind roported in Socicty of Great Britian, spril sth19.
 l:o Chemkts and Drtggit, April, 15 th.

