Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

THE

UPPER CANADA JOURNAI

of

ALGCST, 1852.

ORIGMNAL COMMTEICATIONS.

Art. XIV.-On the non-contagions nature of Scarlatina. By Lucios O'Buen, M. D., M. R. C. S. E., 'Toronto.
[The following sketch was read at a meeting of the Toronto Medico-Chirurgical Society, in October, 1844, in consequence of my having, in conversation with some of the members, expressed my conviction of the non-contagious nature of Scarlet fever. At that time, I stood alone in Toronto in this opinion. Since then, I bave seen nothing to induce any change in this opinion; and a careful examination of the several authors withini my reach, has shewn me that their belief in this contagion is of a very dubious character, and not grounded on a similarly firm foundation as in regard to Small Pox, Measles, and Typhus; e.g., Rayer says that it is contagious, "but in a less degree than measles."

In speaking of the lever which prevailed in Edinburgh in 1817 and seq : lhave used the term "typhus" in accordance with the then prevalent opinion, although it was a very different form of fever, if not essentially different, from that which prevailed so fearfully in Ireland, and of which we had such melancholy illustrations amongst ourselves in 1847. The fever in Edinburgh alluded to has been lately happily described under the term "Relapsing fever," in consequence of one very distinetive character. It is to be haped that the Editor of the Journal will nom liee this important subject.]

Toronto, August 18, 1852,

Perhaps there is no subject, which, apparently easy to inrestigate, has led to more extraordinary differences of opmon, than that of Contagion. The remarkable manner in which the same series of facts have been brought to support oppositc results, should make us very cautious in drawing our references. The talented, clear-minded, and highly-educated Sir Gilbert Blane, affords a remarhable instance of how far even decpinvestigation and patient research, may be misled. He speaks of the "cnminal folly" and wilful "self-deception" of those who believe that Yellow Fever is not contagious, whereas the united experience of almost all the numerous Britiah miliary aurgeons, of the highest class, under whose observation this disease has fallen within the last thirty years, as well as of every civil practitioner with whom I had the pleasure of being associated for several years in the West Indies, has proclaimed their conviction to the contrary.

I will not now enter into any distinction between contagious and infectious diseases; let it suffice that by either term I mean diseases which, being found in one human mdividual, may be communicated to another by the actual touch, or msertion of some peculiar fluid, or by exhalation from the lungs or surface.

In order to establish the fact of contagion or infection, it is necessary to observe, 1st, whether the exhalations or breath of the diseased person will (not invariably, but commonly) produce the same disease in others, whose exemption is not secured by previous circumstances. 2ndly, whether this apparent communication is or is not influenced by circumstances of location. 3rdly, whether the diseaso may not spread from some general cause (atmospheric constitution, as Sydenham calls 1t), independent of contagion or location.

Thus, in illustration, First, let us take Typhus Fever, Measles, or Small Pox. Exposure to the exhalations of an individual labouring under any of these, will produce the same disease in all individuals, except when these exhalations are much diluted, or when the constitution is originally or temporarily insusceptible, or rendered so by a former attack, as in the two iast named cases. This reproduction of disease is irrespective of location; and such diseases, together with those in which inoculation is necessary to such reproduction, as Vaccima, Syphlis, Frambœsia, \&c., are what we correetly term contagious or intfectious.

2dly. In places very liable to the production of malarious fever and its various grades, inchining Remittent and Yellow Fever, we find whole familiee, and hodies of men (e.g., malitary and naval), attacked sometimes oncersaively, sometimes sumbl-taneously-witness the intermittents uthis country and Eng.
land, the Walcheren fever, the jungle or hill fever of the East Indies, and the yellow fever of the West Indies and this continent. In none of these cases can we prove the existence of contagion, and one of the strongest proofs of their non-contagionsness is, that individuals labouring under any of them, on being removed to a heallyy location, have never been hnown to communicate the disease. One conclusion to be deduced from this class of diseases is, that the spread of a disease among the individuals of a family, or of any mass of persolis, is not to be taken, per se, as a conclusive pruof of contagion.

As examples of the third class of diseases, I shall mention Cholera and Influenza. I am aware that they have been considered contagions, but I believe that extensive and accurate investigation have sufficiently proved that they are not.

Now, in endeavouring to ascertain huw far Scarlatina is contagious, let us compare it with the foregoing examples. It would be very easy to multiply instances of its apparent contagion; and one gentleman, for whuse judgment and talent I entertain the highest respect, has stated that he has known it conveyed a long distance (I furget how many miles) by means of a letter sent through the Post Office '-we may exclaim with Do minie Sampson-Pro-dt-gious! But in such a case the only fact arrived at is, that an attack of Scarlatina occurred in a certain family about the time of the arrival of a letter from a honse where this disease existed. In Edinburgh, in the years 1817, 1818, 1819, 1820, typhus (I use the term generally) oscurred to a fearful extent. During that time the Edinburgh Infirmary contained somewhere about two hundred patients. The fever patients were placed in wards appropriated to them, except in the clinical wards, where, to a certain extent, they were mixed with other diseases. Almost all the individuals whose duties were connected with the fever wards, were attacked with fever-the physicians' clerks, matron, apothecary and nurses were, without exception I believe, attacked; several of the clerks and nurses had fever a second time, and some few eren a thard time. (In some a fatal termination tooh place.) To the best of my recollection no case of fever occurred among the nurses belonging to the other wards, or among the uther servants of the establishnent, and certainly in two years nu such circumstance occurred. In Queensberry Hunse, which was open part of that time as a fever hospital, and comtaned from thirty to forty or more patients, several of the nurses and some of the clerks were attacked with fever. I have the best authority for stating that in the Toronto Ho-pital, patients who were admitted with other diseases, and who had been placed alongside typhus fever patients, become affected with that disease I have no doum but that many of our members have observed similar facts.

During the period above named, Scarlatina was also prevalent in Edinburgh, and numerous cases, in all its various forms, were admitted into the fever and clinical wards. Yet not a single instance has ever come to my linowledge of this disease being supposed to have been propagated in an huspital. Many instances also occur where Scarlatina has attacked one or two members of a family, and where no other individual has been affected, although the intercourse has been unestrained. In my own family, three children had it with some days interval between them. The servant and other individuals who attended on them, and were constantly about them, did not evince a single symptom of the disease, whilst another, who never was exposed to the contagion, had a sharp atlach. I had lately two fatal cases of Scarlatina, children of one family, one of which was assiduously visited also by our excellent Secretary;* the first fatal by sudden congestion of the brain, with retrucession of the cruption, the other from acute hydrocephalic symptoms. Their parents, Mr. and Mrs. B——, who had also a young baby, with these two, took up their abode at a house (of a Mr. R-) in this City, just as the eldest began to complain. Mir. il.s famity consisted, besides, of four adulis, if not five, and four children of different ages. During the illness of Mr. B.'s two children, the other children were certainly hept down stairs, but the other individuals were indefatigable about the two little sufferers by day and night; and up to this very day of Writing this sketch, no one else of either family has had any trace of the diseasc. \dagger Mr. R. had a slight attack of cynanche tonsillaris, with aching of his limbs, easily accounted for by his being exposed for a considerable time one night to damp and cold, without suflicient clothing, while trying to procure leeches. True it is that after the funcral, I recommended fumigation, cleansing and ver tilation to the utmost ; for while so many men of observation and talent maintain the contagiousness of this disease, I should noi feel justified in not direcung what is su desirable under any circumstances.

The rarity of a second attack of Scarlatina is no proof of either opimon, as second attacks of Measles and Small Pox occur occasionally, and are by no means unfrequent in typhus.

Scarlatina is hown to have spread very entensively throngh this Province during the last three yeare, and yet this fact is far more explicable on the adea of tis being an epidemic, ariving from some gencral cause, than from contagion. The experience of Ireland and other places sleews that typhus will invariably

[^0]run through every family where poverty, confinemen, and dirt are the immates, and that on the contrary, in the houses of the afluent, where cleanliness, separation and ventilation are thoroughly observed, typhus is very rarely found to spread, and if it should, it is almost invariably confined to those who have been in direct and constant attendance on them. The prevalence of Scarlet Fever hav been wholly at variance with this rule. It has prevailed equally among the aflluent and the poor, in the well-ventilated and well-cleansed honse as in the contined, and I question whether it hav not been as fatal among the former as the latter, except where proper medical means have been wanting, or improper treatment adopted at first.

In the summer of $1542, \mathrm{Mr}$. B., a young man, an inmate of my house, was attacked with this discase while on a visit to a friend a few miles out of town. He was brought home in about 24 hours, just before the erteption appeared, and bad a tolerably sharp attack. Although my three eldest boys alone of all the family, had ever had Scarlatina, no restriction was put on the attendance of the others, and no one either of my family, or of that in which he was atiached, had any symptoms of it. Mrs. O'B. attended him assiduously by day, and I by night, and his washing was all done at home. Last spring Mr. E., another young gentemnan also residing with me, was simulany attacked. As in the former case no restrictions were employed, and again no one else was attacked, although five adult, and one mfant about a year and a half old, in the honse, never had had this disease.

1 could adduce many other instances of a similar nature, but I fear the subject must have become qedions by the time to my hearers, and shall therefore hasten to a close.

Dewees of Philadelphia, no mean authority, says, "the evidence" (of its being a contagious disease) "to say the least, is equivocal. The facts comected with" its "spreading seem to be perfectly explicable, on the ground of its being epidemic and not contagious." "I have never seen so far, any decided proof that it has communicated itself in any one instance; on the contrary, 1 am strongly dieposed to doubt its contagious quality."Pract. of Med., page 184.

In conclusion, when a student and for some years afterwards, I was strongly impressed with the contagious nature of Scarlatina. I had been sutaught, and in spite of the evidence to the contrary, I so believed. More experience has gradually changed that belief, and notwithstandiug the difficulty of the subject, and the weight of authority against me, I now unhesitatingly declare that I believe Scarlatina is not a contagious DISEASE.

Toronto, October 1st, 1844.

Art. XV.-Apparatus for making Extension in Practures of the Lower Lextromily of the Rudius. By Prof, Beaumont, F. R.C.S., Eng., Svc. Sc. Sc.

Having introduced into the practice of the Toronto Hospiral an apparatus for making extension in fractures of the lower extremity of radins, and finding ats success commensurate with my expectations of its usefulness, I was induced to publish an account of it. I have now the pleasure of adding Dr. Warren's opinion of its value :-

Dec. 8.-Fracture of the Leaver End of the Radias, with other Fractures - Description of Proftessor Beaumont's Apyaratus, \&c.Dr. J. M. Warren presented the specimen, which was quite interesting from the fact of the opportunities being rare for observing this fracture in a recent state.

The patient was a man thirty years old, and was brought into the Hospital, having fallen a distanee of forty feet through a scuttle to the floor. The following is the Hospital Report:-
"There is now, at six P. M., fracture of the right radius, apparently just above the joint. There is great deformity, simulating dislocation of the wrist backwards. Crepitus distinct.
"The right log is shortened, by measurement, one and a quarter inches. It is everted, with edge of foot lying flat upon the table. There is distinct erepitus at or near the cervix femorix. When pressing the two iliac crests, they yield sensibly, and give a feeling of indistinct crepitus." The patient died at ten P. M.

I'lie pathological appearances of the parts exhibited were as follows: The right radius was fractured transversely half an inch above the joint, with a comminuted fracture extending into the joint. The internal lateral ligament was torn awty from its attachments to the ulma, carrying a bit of the bone with it.

The right femur was the seat of a comminuted fracture through the trochanter, and a longitudinal fracture of the shaft of the bone extended from its cervix downwards for four inches. Neither of these fractures communicated with the capsular ligament.

The right sacro-iliar synchondrosis was torn asunder, and the bones forming it, fractured. The ramus of the ischium and pubis was fractured. The lower half of the sacrum and os coecygis were comminuted.

In connec.ion with the specimen of fracture of the lower extremity of the radius, Dr. W. made some remarks on the interesting nature of this accident to surgeons, from the liability to deformity so likely to occur in spite of the best-directed treatment. The various apparatus invented by so mariy distinguished surgeons, with the object of preventing this deformity, show
the importance attached to it. From simply regarding the external appearances presented by this fracture, it was formerly supposed that the bones yielded in an oblique direction; but observation of pathological specimens has shown that it is, on the contrary, almost always transwerse, the peculiar deformity arising not so much from the overlapping of the fragments, as from the direction of the displacement by muscular action. Dr. Smith, of Dublin, in twenty specimens which he examined, found the fracture to have a transverse direction in eighteen, In the present specimen it is transverse.

Dr. W. said he would avail himself of this opportunity to show a very efficient apparatus for making extension in fractures of the lower extremity of the radius, contrived by Prafessor Beaumont, of Toronto, to whom the prolession is indebted for the invention of many ingenions surgical instruments, some of which have been for a long time in use at our Mospital.

This apparatus consists of an angular splint, made of guttapercha, adapted to the bend of the elbow. Ta this is attached a bar of iron, which extends beyond the hand, and is then bent to a zight angle. This latter portion has attached to it two andes, with ratchet wheels, for the purpose of making extension by means of cords attached to a leather cap laced to the wrist just above the joint. In addition, there are two small splints adapted to the anterior and posterior part of the forearm.

The following extract from the letter of Dr. Beaumont to Dr. W., describes the method of application :-
"The patient's arm and forearm, having been bent at a right angle, should be placed in the angular splint, and there fixed by a bandage. A piece of gutta-percha, of the shape of the leather cap, may then be softened and wrapped round the carpus and metacarpus, in order to protect the skin from any painfu! pressure ; and when the gutta-percha has becone hard, the cap is to be laced tightly over it, and in such a manner that one loop of the cap shall be on the radial border of the metacarpus, and the other loop on the ulnar border. The strings from these loops may, by turning the angles, be more or less tightened, so as to keep up permanent exteosion, which will be as nearly as possible in the axis of the broken radius, and the distal fragment will thereby be drawn very nearly into its nomal relative position with the proximal fragment. The extension should be so gradually made as to remove the displacement with little or no pain to the paient: but should the extension becune painful, it may be lessined by throwing the catch out of the teeth of the ratchetwheel, and allowiug the angle to revolve backwards. The anterior and posterior splints nced not be applied for the first week, repecially if the distal end of the furearm should be nuch swollea and inflamed, and as this part may be left exposed in it
whole circumference, we can very effectually apply cold evapo: rating lotions, and can see and feel that the fragments are in their normal relative positions before applying the anterior and poserior splints. These splints are made to reach very nearly to the metacarpns, and, as you see, are so made as to press most against the interossons space (so as to preserve its width), and also to prevent pressure in a direction from radius to ulna."

Dr. Beaumont also thinks this apparatus might be found useful in fractures at other parts of the radius, also in fractures of the coronoid process of the ulna, with dislocation backwards, and in fractures of the humerus just above the condyles, when the latter and the bones of the forearm are drawn backwards.

Ant. XVI.-On the While Globules in Disease. By James Bovehr, M. D., Toronto.
From the numerous observations that have been lately made by different eminent Pathologists, we seem to he in the possession of those facts which render the nature of some of the ultimate changes of the White globules much more intelligible than formerly.

Are we yet in possession of a sufficient number of facts to lead to the conclusion that the Pus corpuscle is nothing more than a fatty degeneration of the White? Impressed myself strongly in favour of such a change, I nevertheless feel much diffidence in enunciating it, being well aware that a mere Provincialist has not the same opportunities for investigation and experiment enjoyed by Physician or Surgeon to a large huspital.

Before, however, proceeding to collate the proofs which seem to support the doctrine advanced above, I may be allowed in passing to mention the result of an examination which was made this spring on the web of a frocs's foot.

In Mr. Hassall's highly valuable work the following paragraph had attracted my notice very forcibly, and I felt maturally anxious to observe, if possible, the phenomenon described.

Mr. Hassall observes, " it is not alone the aggregation of the colourless corpuseles that may be seen in the minnte vessels; their escape from the vessels may likewise be delf ained by a prolonged examiuation of them."

If, after the continuance of this congected ec r_{t}..ion of the vessels for twenty four or thirly six hours, they are again evamined, it will be obvious that certain of the corpuseles have become entangled in the fibres which form the walls of the vesels, and that certain others have altogether passed the boundaries of the vessels, and now lie external to them. If such a phenomenon as this could be proved true, of course there would be a
'great step gained; but, aware of Prof. Williams' instructive remarks on the condition of the vessels in determination of blood, I was induced to watch the more narrowly. The following are Dr. Williams' observations:-

In the frog's web gently irritated by an aromatic water we see the atteries become entaryed, supplying a larger and more impnlsive flow of blood to the capnlaries and vems, whehall become enlarged also; and the whole vascular plexno, including vessels which before scarcely admitted red particles, then berome the channels of a much mereased current. This-is determination on blood.

As these phenomena have not been distinctly described by observers apart trom the further effects resultiny from over irnation, which leads ut obstuction and intammation, I will state shortly some results of nany obserattons on the circulation ot the frog's web, under the influence of moderate stimuli applied to it. These observations vere made in the summer of 1841 , and some of them are mentioned in ny Gulstonian fectures, published in the Medical Gazette of July, ISt1.

The arteries may be distinguished from the veins in the frog's web, not only by the direction of their current and its greater rapidity and manspareney. but als, by a series of lines along their course, marking the size to wheh they muve bean distended at some prevous time. These lines or chanmelags are most hasunct, and are more remote from the artery at its angles or bifureatious. They are to be seen at some pomts along the veins, but mueh less distinctly.Sow the se lines are in themselves proofs of the varying distention of the arteries, and they also furmsh the means of measuring this varymg distention.

When a weak infusion of capsicum is applied by a camel's hair pencil io the web, there is a momentary retardation of the current in the veus, and the artery distmetly shrmks in size. But in a few seconds the reverse takes place; the artery swells to beyond ths tormer size, and reaches the outmost han of th channel ; the low of blond hrough it tis tro rapid to be disungushed, and all the capullaries present a scene of busy motion: in some the particles passue th umbers and apeed greater than he eye can appreciate; in ohers. before misible, smeste files fore them way in mona dehberate, hut contimuou, muntun: whatst m the vens the movement is agat more rapid. This motion
 if 19 on that the arteries have already begun to chrink in sime, and the chanded hues wheh they had reached re-appear. Sometimes, 1 s shrinking. the atery assumps for a tume a more fortums shape than before, so that tis walis cease fo te parallel wath the hmes, which seem to shew that it contracts in ditmeter betore its lengh is proporuonally reduced. The contraction of the artery, an I consequent reducion of the quanty and movement of the bloce th the was uhar plexus, was promoted her repeated appheations of cold water, whech in some makinces stopped the monom oi bool atogether, by contractung the atery toso emall a size, tiat no blond pancles entered it. A solution of aretute of lead aloo produced this ehect.

The determination of blood thus excited produces an increased rednes qute visible to the naked oye, but at in less intense and of lighter hue than the sehness of mflammation or congestion.

Thus keeping in mind the exictence of "chanmeled lines," as described by Dr. W. and the assertion of Mr. Ilassall, I was engaged in April in some mieroscopic examinations of the circulation in the foot of a frog, and which had been two days before under observation. After a time in one of the vessels in which the blood was flowing along by siugle file of globule;, 1 noticed three white corpuseles Jying, as I thought, ontside the line
of the vessel, and felt, of course, gratified at the sight. Whils: intently watching the three hodies, the crreulation becune gradually increased in the veasels, and, to my surprise, I sau the white out-laying corposeles re-enter the carculation, and vanish from the field of view, and on subsequent occasions I have witnessed the same phenomenon.

Finding that the white corpuscles had only passed withia the channeled lines, and had again entered the onward current, the next question which arose was as to nature of the lines themselves-How are they formed ${ }^{\prime}$ Dr. Williams considers the as "as proofs of the varying distention of the arteries, and that they also furnish the means of measuring this varyang distention that the vessel contracts." It would appear from the observativir alluded to above, that the channelings were apparemt when the vessel was in a state of collapse from exhausted imtability, and that only the central portions of the vessel admited the passage of the current, so that a vessel, under such a state, if divided transversely, would present the appearance represented by the following diagram, at L. I have given the diagram from DrW.'s work, placing the white corpuscle in the position in which they were seen :-

The opinion which scems to be generally current, attrbuting to the capillaries the power of suddenly altering their calibre, has always appeared to me to be far too mechanical a method of accountiag for the increased admission of blood-corpuscles, and does not seem to be borne out by observation. It may frequently be noticed that the vessels enlarge sometimes all at once; and agam, that some remain molarged while otherio appear to contract. We further notice, that while the part is not mider arnation, that connparatively fewer vessels ar: seen; but so soon as anirritus: is applied, "a busy seene ot motion" commentes, and th.

hood-eorpuseles are now sedi in rnter chamels which before were not molierd; and if the arrtation be sfli, it nly protongot, a stagmation of the blood is the result, and the whie held is oesrpied by an indefinite sheet o' red colouring.

Whatever the nature of the forces which determine the flow through the capillaries, it appears that these vessels, at all events, do not enact any very important physical power over the fluid passing through them. The rapidity of the current through one or wo branches, while in the neighbouring ones the flow is much more slow, would certainly lead to the supposition that the movements were regulated or under the guidance of dynamical forces. The readiness with which these important vessels open to the course of the moving curpuscles would seem to point out their almost passive state, and that their distention or collapse would be oceasioned by the mere passage of greater or less quantities of corpuscles through them. The readiness with which the corpules go into vessels and as quickly retrograde again has induced some to look on the capellaries as chanmels through the tissue. It seems, too, that we may in this way account for the appearance and disappearance of the lines. I have, hour after hour, watehed for the transit of the white corpuscle, but in vain.

That the white corpuscles are must intimately concerned in mutrition, is a doctrine supported by the best observers, and their ennversion into higher developments would seem to be influenced by determinate laws. It does not seem to be in accordance with general observation to admit the actual escape of the white corpuscle from the vessel ; on the contrary, the views held by Messrs. Carpenter and Addison are much more probable, and are not so generally brought forward as their intrinsic merits deserve, and, as they have an important hearing on the question before us, they are given in full-
"That the white corpuscles are concerned in the process of nutriton, there is more evidence to show than there is in favour of their connexion with that of secretion. The question to be solved, however, is, in what way do these rorpuseles administer to nutrition? do they contribute to nutrition and growth, by their direct apposition to and incorporation with the different tussues of organs? This is the opinion of Mr. Addison, who says of them, that they are the " foumdations of the tissues andthe special secreung cells, the limk between the blood and the more solid structures, the umty from which the plurathes arise."

In regard to the purpnse of the colourless corpuscles in the anmal economy, a view has been brought forward by the author, which mereased consuderation has only served to strengthen; and which he advances here with some degree of confidence that it wili be found, on attentive examination, warranted by a large number of physiological analogies, though not capable of bemg drectly proved. That it may be rightly understovi, a general sketch of certam known operations of cells in Plants and Anima's will tee first given. It is not duticult, on taking a comprehensive survey of the assimilating processes, to find a number of examples in which cells are developed in a temporary manner; growing, arriving at maturity, and then disappearing, apparently wathout having performed any particular function. In the albumen of the seed, for instance, this often takes place to a remarkable extent. In the Yolk of the Eag there is a stmilar transitory development of cells, of wheh several generations succeed each other, without any pernanent structure being the result. In the Germual vesicte, again (according to Dr. Barry), several annuli of cells are seen to
occupy its cavity, when it is prepared for fecundation; and the oldest and largest of these contain another generation: yet all these disappear by hquefaction, as soon as the two permanent cells begm to be developed in the centie. Further, in the subsequent development of all the cells wheh are descended from these, and form the " mulburry mass," the same process is repeated; a great number of temporay cells berig produced, ouly to heyufy agam as soon as the two temporary central cells make then appearance. It can sarcely be imagined by the well-judging physologst, that all this uth-life comes mo existence whont some decuded purpose: and at we can assigh to it an object, the fulfilment of which is consistent wath the facts supphed by analory elsewhere, this may be reasonably considered as having a tair cham to be tecenved de a physion uiral induction. In all these instances, and in many more wheh might be quated, the crude almentary matenals are beng prepared to underyo conversion mo permanemt amd regularly organced structuen.

We hate thu a class of facis. wheh modeates that the conver-ion of the Chemical compound into the Organable pracepie-the aphasta mu the plas'ic material-is ettected in the partecular stuations where it most wathed, the the vial agency of transitory cell-itie: that is, by the productun of tell- whech are not themselves desmed to torm an megrai par ot any permathen strut int, but wheh, atter ataming a certan maturig, reproduce themsehe, and dicappear-succecsive generatons thus following one anther unth the ofject is atecomplished, after whech they altogether samh. We shall now con-ubtr amother clas of tacte, which cems io inderate that a change of than kmds
 through the body: by Cells, wheh are eather cancel abuit whthem. "t which are developed tor the purpoe in partucular statuns, do in plant. Tue former is the mare common urcuncuce: smee the condamin of ammal hite, usually involving a general movement of the tody, requate alise a gemrai reparation of is parts, and an adapation of the cacolatugs dlund thencture to the wants of the whole tabrie.

It has been already shewn that cell. whech seem ilemical with the white corpuscles of the Blood, are to be met with m the (hyte and Lomph.fiuds m whim the elahoramon of pathe hitrun sume on ; and that suth an elatoraton mut be contmually taking place an the thon the if, to suppty the phastic material wheh is bemer as connumaly drawn wif ty the matime processes. Hence there would seem reanou tor attobuthy thin mportant turction to these lloating celk: the number of whet present in the fluds "eems to bear a very close relanom with the cnelyy ot tas elaturatum phee - .
Believing with Mr. Addison that these bodies, whether appearing in the blood as floating cells, ready to pass into higher developments, or as exudation corpmedes without the vessels, are "the foundation of the tissues and the special secreting cells, the link between the blood and the moes solid structures, the unity from which the plumalities arise, let us ce how far we are ahie to mace the white corpascles tu their destination and namsformation, hoih under heahliy and diseased comditions. Messis. Todd and Bowman would seem to entertain almost similar views whith those of Mr. Addison, and have peabaps more fully explained the circumstances under which the varions forms of tissue are developed, and the shave which various parts of the cell penforms in the change.

The changes lwhich the cell undergo in the formation of the tissuce, may be described under two heads; tust, those afectur the erll-nu mirane; and, secondy, those a whel the meleus is concened. la those tornat, whose
ultmate elements are fibrous, that is, consisting of real or apparent fibres, as areolar and fibrous tissues, the cell-membranes become elongated, and so folded or divided as to give the appearance of a subdivision outu mante threads or tibres. In the tissues, which ane composed of tubes of homogeneous membrane contaimag a pecular substance within them, as muscle and nerve, the cells are joined end to ond, and, the partions of each bemg removed, then cavines communicate, so that they together form a tube, or sheath, wh wheh the deposit of the pupular muscular or vervons substance tahes place. The smallest or capiltary blood-vessels also are formed by the coalescence of the walls of the cells, not at one or two, but at several ponts, owng to therr elongation, here and there, mito punted pe esses, which unte and torm the ramiticatons of the vessels.

From the piceding brief and necessarily amperfect shetch, it seems evadent that, in the vanous metamorphoses of the fuetahnto the perfect tissues, both the clements of the cells take a patt. In no motance dores thete appear to be an actual converson of enther cell-wall or nucieus mito the ulumate etements of the ussues. The cell-walls may be changed nito a part, accessory to the comptete tevare, as the sar-collemma or sheath of the muscular inbre; but the thither erganizing process takes place oll ths outer or muer surface. And the melet, hkewse, may be changed mo patts, which contribute to the mutrion of the insue ; but not into as essential elements. These, it must be icmarked, are always the product of an ulterior organiang precess, comected chatly wath the cell-wall.

There seems reason to believe, that during the crranzang process wheh occurs smuitaneously wath the chages of the cell, a chemeal ateratoon tahes pace ; for the cells of carnlage somelimes conian fat, and the cartuate of bane pror to osstication comams chondrme, but, atter the ossthe process. gelatine is found: and it is also stated, that the element wheh may be obtuned fiom the young celis of areolar"tissue is pyine; whereas gelatue ds yelded by the fulytormed tussue.

The formation of cells dues not cease with the nfancy of the organem. These minute organte elements ate most impotant agents an butrous tunctions of the body an every periol of its existence. Iby them the secretoms are separated; and it is not mprobable that they sombube largely to those changes m wheh nutrition immedately conssts. They ate found thatiteg m mmense numbers in the blood, as well as in the ctole and bupth; and even an diseased secretions, as pus, they exist in great quantity. In the miammatory process, they are formed in great abundince; amd mithe malynat growtis, whech miest the body, so as to mamifest themselves at datheren pants of in, such as the varions forms of cancer, the sane urgathe forms ate to be fount.

In short, Sehleiden and Schwam have proved that the nucleated cell is the agent of mot of the organte processes, whether nt the plant or ammat, from the separanon of the embryo from ns parent, to the development, gevoth, and nutritou of the adnit monvidual.

Mr. Paget in his Lectures on the Process of Repair and Reproduction has perhaps more fully stated the nature of those Gorees by which the progressive develupenent is effected.

The accepted doerrine in physiolory seems to be, that eachstructure in the body has the power of taking from the bloul, by a had of electise atimity. certain appropriate materials, and of so moluencmg them that they assmatate themselves to it; i.e. they adopt or recenve its form and propentes, andincoryomethemselves with it ; or else it is held that each cell or structual element of a part, whilst developing iself mto some higher form, leaves behnd of produces germs, cytoblasts, or of-shoots, which shall pass through the same development as itself, and in due time succeed to its place and ollice.

But since we see that the contmal mutation of patheles for the growth and maintenance of the living looly by uutrion manfests all eseentol.
things the pecular features that characterized the tarst formation of the same tody from the germ, we feem justified in holding that it is une and the same power whoch, being maintamed contmousty from the germ to the hatest perind of hormal hife, determines all orgame formation. IV hatever be the properthes of the germ from which this formative power emanates, they must, ha tue measure, ve cummunicated in all the maternals that the germ approprotes, and, successively, to all that entpr into the consiruction of the develophag lualy, so that an all its linang parts there is a measure of the same powed as was must vivily cuncer ied in the germ. Under the power the organk assumblate fone, in fume mstances, and the production of successme tissut--germs in uthers, appear to work as sulnordinate agents: but an many mstances, as in the tormation of blow, the prower seems to act more darectly upull diliurphous organic matter, which is the perlect body, as m the germ, it mfuns accurdins to the lan of specific chararter.

In the gleater part of congenital maltormations we fund arrest of derelopment, but do hindrance of growh: as o heart, in wheh a sentum fuls to be develuped, fet grows to its inll hulk. So, th tadpoles be exchuded from due laght and, heat, their derdnpment rill be murh retarded, but their givoth wall be less cheched. So, too, in the miscalled cultivation and mprovement of flowers, growth is increased. but devplapment is hindered; and an eacess of culvured leates is formed, instead of the due number of male and termale uigans. Or agaili, in ar uld uh or ar a sinus, rells may be contmually reproduced, mantuming ur eicn inareasing thr gramulatoms, yel they will not develope themselves into cellulur tissue and cutiolf for $1 h^{\circ}$ hpaling of the part; and so, even when repair and reproduction have gone far wwads ther ulumate achevennent, that whit h 1dhes a lunger time, and nftener fails, is the improvement, the perfectarg the new material, by its final development. This as observed in all cases of reprodaced limbs, and even in ordinary scars.

These facts (and there are many others like them) seem to justify the expression that, nut only nure favourable ronditions, but also a larger amount ot organuag furce is expended in develoment than in growth. It we may thus inlerpret the facts, they will be collateral evidence for the beliet that, in different species of animals, the reparatsve power wall bear auluverse ratio to the amount of development already passed through; so that, for each apectes in ats pertect state, the reparative power might be measured by the degree ot liseness between the eubry onic and the perfect form, structure, and composition. The greater the cum of dissimilarities m all these respucts between the e nbryo and the perfect animal, the less seems to be the reparative puwer in the latter.

In the British and Foreign Medical Review, we find an interesting commentary on Dr. Carpenter's views on the Mutual Relations of Vital and Physical Forces, which certainly seems to promise a much more philosophical exposition of the various phenomena which are exhibited in the animal body than any which has hitherto been attempted.
"Looking at the phenomena of Lafe from the came point of virw as that from which we are now taught to regard Physical phenomena,-namely, as the recults or mamfestations of certain forces acting through those forms of matter termed Organaed, which torces may be provisionally termed Vital, it should be our furst object to ascertann whether these phenomena (such of them, at least, as are nether Chemacal nor Mhysical) can all be referred to the agency of one Force, operating through a variety of instruments, or whether it is necessary to have recourse to the idea of a number of distinct forces. "Our clearest adea of the agencies essentally concerned in the production of vital phenomena, is derived trom the study of the development of any single organism ;" and the simplest vegetable cell is selected by Dr. Carpenter as presenting
this series of phenomena in their least complicated form. Now in the growth of such a cell (belonging to any one of those simple Cryptogame tribes, un which each cell may be regarded as an independent organsm, trom th germ, we notice in the first place, that it exerts a power closely allied to, it not identucal with, that of ordinaty chemical-transformation; for it decomposes carbome acid, and unites its carbon with the elements of water; at the same tume decomposing ammonia, and uniting its azote with the oxygen, hydrugen, and carbon, derived from the sources just named; thus formang organtc compounds, such as no operation of ordinaty chemistry has yet been able to imitate. This process, as is well known, can only be effected under the stimulus (to use the common phraseology) of Light; but it would rather appear from the preceding consideratiuns, that light is the force, which, aeing through the Vegetabie cell as its instrument or " materal substratum," produces those new Chemicat attractions, which determine the formation of these new compounds. Dr. Carpenter then goes on to show, that in the application of the nutritave materials ihus generated to the development of the cell, we must distinguesh a force of assimilation or vital transformation, by which these matermis are cendered plastic or organizable, and a force of organzatton or complete vitalication, by which they are incorporated with the sold texture, and become possessed ot Its properties.-Now, although we may provisionally designate these as dsetinct forces, on account of the diversity of their manfestations, it is appossibie not to see that they are mutually dependent, and that they form the successive elements of a conthnous series of phenumena belonging to the same category, that of cell-life; and further, we observe that they operate under the same conditions, namely, the presence of a cell-germ and of the materals of ats growth. and the action of Light and Heat. Agrun, w the multiphcation of the original cell, by whatever method performed, we cannut but trace the contasued action of forces of the same character; since this operation takes place as a contmuation of the process of growth, and under precisely the same minences."

The reciprocal actions which are constantly going on in the budy, point out the impossibility of any of the pants of the great while exercising an undue or superior influence, and we must admit that both the blood from which the nutritive maternal is taken, and the tissue or organism to be repaired exercise recoprocal influences on each other, as has been shown by Rohitanshy and Mr. Paget. The condition of the blood in determining that of the eflused plasma is very strikingly seen in the result of the application of the same irritant to the same parts in different persons.

Evidence may be obtained by examinng the products of smanar athammations excited in several persons, in whom the state of the wiood may by considered dissimilar, and here the evidence may be mure pututed that at the former case; for, if it should appear that the same tissue, intlamed by the same stimulus, will, in different persuns, yeld different forms of bompit, we shall hate come near to certainty that the character of the blood is that what chiffy determines the chatacter of an nillammation. To rest this matten, 1 erimined rarefully the materials effused an blisters raned by cantanade=plast ars applied to the skin of thuty patients a St. Batholomew's Huspial.Denbiles ri, among the results thas obtanaed, there might be some diversitus depending on the time and severity of the stimulas appheti ; still, it seemed a fair test of the questum in sew, and the general resutt proved it to le so.For, although the differences the gencial ispects of these materidis were dicily, get there were great ditlerencesim the macroscopic characters. abd these diff rimites so far corresponded wath the nature of the disease, or of the patient"s grnerul health to whom the bhsters weed aphed, that at latit cuade generaisy
guess accurately, from an examination of the fluid in the blister, what was the general chameter of the disease from which the patient suffered. Thus, in case, of purely local disease, in patients otherwise sound, the lymph thus obtained formedi an almost unnixed coagulam, in which, when the thad was pressed out, the tibrm was firm, elastic, and apparently fiiamentous. In caseat the opposite end of the scale, such as those ot advanced phathess, a mmimum of tibran was concealed by the crowds of corpuseces imbedded in h . Between these were numerons, mitermednate condtions wheh it is not necessary now to paticularise. It may suthee to say that, after some practice, one might torm atair opmion of the degree m wheh a patient was cachectue, and of the degree in wheh an mftammation in ham went tend to the adhesse or the suppurative character, by the mucmscopic character ot these exudatons. The highest health is marked by an exudation of the most perfect and unmed ntrm; the lowest, by the most abundant abundant corpmesee, and therr nearest approath, even in their carly state, to the claracter of pus-cells. The degrees of deviation from general heaith are marked, ether by increasms atumdance of curpuscles, their gradual predomuance over the hibrin, and their gradual approcth to the character of puscells, or else by the gradual deterioram of horm, whe whe from beng lough, elastuc, clear, untorm, and of itamentons appearance or filanentous structure, it becomes less and less filamentous, soter, more pastelike, tarbad, nebulous, dotted and mugled with munte oil-molectules.

The true unlluence of the ussue in this respoct is best shewn in some of the cases in wheh milammation, exented, apparenty, by the sane means, has lappened coincidently in two or more very dalerem parts in the same rersor. Thus we may dind, e. g., that in pleuro-pneumona the lymph on the pleura so commonly more fibrinous than that whan the substance of the lung; and adhesions may be forming in the one, white the other is suppuratug. In cases of concidem pneumonia and pericarditis, the lymph in the lume may appear nearly all corpuscutar, and all the corpuscles may show a tendency to degenerate into granule-cells, while the lymph on the perteardum may have a preponderance of fibrin, and what corpuscles it has may tend to degenerate into pus-cells. So, too, one may find, in the sutstance of an mitamed synoval or mucous membrane, abundant lymph-cells, whe all the ceudaton on tis surface may appear purulent.

And Mr. Simon observes,-

The determination of blool, though over and above the usual supply, mas admit of application according to the ordinary and heathy thnchons of the part. 'The biceps muscle of a blacksm'th's arm recenves, perhaps, as much blood as all the musctes of my upper extremity pit tugether; but thete ts no blood wasted-all that goes there is tumed to decomit, and contributes to the development of a normal tissue. Or, the supply ot blood may be more than can be used and approprated by the organ so copously supphed; and then it is that we can get a contmued supertiuty of exudation petrating the hasue, and tind that superfhity undergoing an independent development into certam shaped products-cells or fibres, torelga to the healthy strut ture of the part.

Now, what I have just stated is the distanction between hppertrophy and anflammation; their general pathology has much in common-therr causes are often alihe-ther modes of production identical. But an hypertrophy, however large may be the supply of blood it all goes to the true nourishment of the orgran, roes to increase the number of its molecules; while, in inflammation. ath that is redundant and unappropriated goes to the formation of new products. After what I have said of the pathologital alinities of these two processes, it will not surprise you to be told, that m many organs of the boty, hypertroph; and indammation run into one mother by almost insensiole gradations-as. for instance, with secreting surfaces, where, atter a cettain time, that which at fist proluced a mere excess of secreied maternal, presently 'causes to be mixed with that secretion more or less albumin, fibrin, blood, pus and the like.

The exndation out of which these respective tissues are formed, even under disease, is thus deseribed by Mr. Paget:-

It seem; to us that the development of such low forms of tusute as anse a matumatury effisions, is not to be attabuted to the furmative power of the sohds, but to hat of the blool, which seems to he augmehted in somewhat the sam. proportion as that of the soluls is dummshed; and the mbluence of the sohe hassursof an nuthmed part seems to ns to be rather employed in degradug me characters of an ehasion, wheh, if thrown out in the form of an otherwise healths hisute, or upon a heathy surface, would more readily pass mato hagher torms of organtsation. The dufferener between the modes of development of wein material, dwelt upon by Mr. Paget in has "Lectares on the Proeesses of Repar and Reproducton affer Imurtes," seems to us clearly to show, that whist the blood aequires a hugher plasterty when the state of mhammation is estabisthed, the miltamed tusues pazeess far less nower of audug m the developement of the etfused maternal, than do those armondurg a subcutaneons wimid, wheth as alvanemis, with the leat posible distuibance form milam matoon, toward complete uparatum. That in the proper sabstance of the manded part there is a decrease of formative power, is a pomt wheh cat scarcely almi of questoon. All the changes wheh is umdergues, as Mr. Paget justhy remarks, are sigus or results of demmehed on suspended natram mats ussnes: they are all characteristic of atrophy, degeneratum, and de wh; -precnedy the doetrine, wheh, as Mr. Paget does nut omat to mentom, was taught in the pages of one of our predecessors, and there apphed, we belteve tor the arsit tume, to the explamation of other phemmena of intammation.

Lastly, Mr. Paget observes that-
The tissue becomes soft or quite disorgamsed; they are re lased aud weahened; they are degencrate, and remain lowered di once in the structure. chemical compositon, and functional power: or else, atter degenelation, they atr absorbed, or are dismtegrated, or diseotred. and cast out : they dhe m parteles or to the mass. During all the process of milammation, there $1 s$ no such thung as an mereased formation of the natura structures of the milamed part : they are not even maintained; their mutrition is always impared, or quate suspended. It is only after the inflammation has caved that there is an appearance of increased formation in some of the lowly orgamised thsues, as the bones and cellular tissue.

In the conclading portion of these notes, it will be my endeavour to show, from the various experiments and observations wheh have been made, that there is strong reason to believe that those bodies which are known as pus-corpuscles are arrested developments which either by degeneration or chemical inthences contain fat.

That Purulent deposits or secondary suppuration in distant tissues can only be accounted for on the supposition that there is general disturbed condition of the system, under which the mutritive material is not perfected, but is degraded.

Io be continucd.

Correapondente.

THE PEOPLE थs. MEDICAL MONCPOLY. (From the Western Progrcss.)

A letter, with the above heading, and subscribed a "Medical Reformer," appeared in the Examiner oi last week-a journal which, like the North Amerian and the Globe, is one of the strongholds of Quackery in Physic. The writer of the letter in question, it is easy to perceive, belongs to the inmumerable bands of Quacks, who are levying black mail upon the ignorance, the folly and the superstition of the public. From several indications I take his place to be in the ranks of IYomcopathy, one of the slltest and most mischievous delisions medical, that ever sained temporary credit or currency among mankind. I confess to a sort of satisfaction matching these knaves in a pmblic print, beyond the pale of the advertising columens; it uffords one so favorable an opportumity of exposing the impudence of their pretensions, and the brazen falsehoods with which they support their clams. The first question which I shall examiae, is thes: is the Medical Profession as at present constituted, or will it, if sramed the corporate privileges which it seeks, be a Monopony? Monopoly is a very lateful and unpopular word, and (nghtly used) signifies a very hateful and mpopular thing. My friend, the Ifomeomenist, is fully aware of this fict, and with a dextenty worthy of a thimblerigger, at once phaces the medical professon in an odious hght, by dubbug it a "Monopoly." The Medical Profession nether is nor secks to be a monopoly. All persons who are legitimate practitioners of physic have undergone a preparation and an ordeal whoh the haws of the comtry impose upon them; every indovdual in the hand who suljects himself to the came process, can become a lwensed fractitioner, and place himself on the same footing as those already heensed; no olstacles to practice are interposed in the way of the nuw unlicensed, which were not interposed in the way of those now licensed. How can this be called a monopoly? Did the heensed practitioners seek to prevent any one from obtaming a heense-that would in truth be demadarg a monopoly; but they are not such shots; they know that they are living in Cimada and not in Itmdoostan, and that any such attempt to urganize a medical monopoly or caste wond qualify them in phithe estimation for a lonatic asylum. A profession which all men are free to enter, on fulfilling condtions demanded alike from
all, has not a single characteristic of monopoly in its composition ; a truth which requires only to be stated to ensure it acceptance in every intelligent and muprejudiced mind.

Having constituted the Medical profession a monopoly by a dash of his pen, my "Medical Reformer" groes on to show that educated practitioners and meducated quacks ought to be put on a level, for these "truthful reasons," that "all systems of practice are good for some diseases, none good for all diseases," and that the whole theory and practice of medicine as tanght by schools and followed by the "regulars," is little better than "the art of amusing the patient while mature cures the disease."

Very pretty, indeed, my man of infinitesimal doses! Very clever, very satirical, very witty and very wise to be sure, you are! No wonder you "mprone" the exchanges of the Examiner to copy your letter, that the whole communty may participate in the inestimeble dehght and advantage of perusing it! You are on such admirable and gracious terms with yourself that I almost repent having undertakea to prick the blown-up bladder of your concent, atraid that the ridicule of the collapse will be too much for your nerves-it is an idle fear that, though ; for

> "Who shames a scribbler? Break one cob-web through, Me spins the slight, self-pleastmy thead anew; Destroy his fib or sophistry - in vainThe creature's at hos diry work again!"

It is not in the hope, then, of consincing you, that I write; bat you have thrust yourself forward as the spukesman of your fellow quacks, and a very apt type and representation of the genus yon are; and I take the opportunity of shewing the "people," whom you affect so generonsly to take under your protection, what surt of stufl you and the like of you are made of. Culicensed and licensed practitioners are to be placed on the same footing, you say, beeause the art of the "regnlars" is little better than the art of '" amsing the patient while nature cures the disease." A man, for instanee, gets his hip, his shoulder, or his ellow put out of joint, or some of his lones broken; a "regular" is called in; to amnse his patient while nature cured the disease, would take up rather an inconvement length of time; the "regular:" having been instructed in his business, is able to reduec the dislocation or set the fracture; he does so, of course, from the selfish motive of saving his time, but certainly very much more to the relief than the amusement of his patient.

A woman is in difficult labour; it is a cross-birth, or a case of flooding, or one of the comntless deviations from natural labour; ac-
cording to the correspondent of the Examiner, the "regular" has only to amuse his patient while nature cures the disease! Was ever stupidity equal to this? No man who has not been properly trained to his bnsiness can aftord relief in a case of this kind; and if relief is not afforded, the death of mother and chald is incvitable. An educated man can give immediate relief; and yet the art pactised lig the "regulars" is merely "the art of amusng the patient while nature cures the disease." The patient in a case of this kimd firds the doctor anything but an amusing character.

A man gets wet and cold, and is attacked with pleuritic inflammation, with "side stitches that pen his breath up," such as Prospero threatened Caliban with. The "regular" treats him secundem arten, and in three days all traces of disease have vamshed.

Ifad the "regular" occupied himself with amusing his patient instead of doing his duty to him, nature would have made a pretty mess of this case ; inflammation would have been followed by eflit Ston or water on the chest, death would very soon have taken the case out of nature's hands, or the patient would have remamed throngh life a confirmed invalid, unfit for any of the duties or employments, which, thanks to the regular who never thought of amusing the patient at all, he can discharge as well as if he had never been sick.
'lhese are cases which occur in "regular" practice every day: instances of a smular kind might be adduced ad infinitum, in rehch "the art of physic, surgery and madwifery;" as practised by the "regulars," saves life, prevents lameness and deformity, relieves suffering and pain, and restores health, where the remarnder of hife would, without its assistance, be only a long disease.

Now, I too, will appeal to the people at large; I will ask them what they think of these quacks, who say that the art of the regular practitioner consists in the amusing of his patient while pieking his pocket; a farmer's wife has been m hard labuar (phin words must be used to express phain facts), for hours upon huurs, and no signs oi a termination; the husband and all the attendants are in agonies of ${ }^{\circ}$ anxiety he mounts his horse and rides a dozen niles for a ductor; does he go to the IIommopath, the Hydropath, the Thomsoman, the Eclectic. or one that wears the badge of any tribe of पancker; ? not he indeed; he goes to the "Regular," the "Regular" returns with him-and where all was misery, confusion or dismay, in a slort tume all is ordes, peace, hope and comfort. I ask the prople of this country, then, many af whom have had experience of the truth of the above picture, what they think of these (quacks-what rehance can be placed upon their
nssertions or pretensions, when they advance as a "truthful reason;" that the "regular" art of physic is little more than the art of amusing the patient, sc.

For my part, I do not hesitate to denomece these wretelies as fonl and false libellers and liars-utterly moworthy of trust and confidence. Neither do I hesitate to denoumee the journals that patronize and defend them as recreants to their office and mfaithful to ther daty:We expect from a journalist that instead of pundering to ignormec and prejudice he shall vigorously assault them ; that instead of maligning, insulting and depreciating science, he should give it its best assistance and support, even should the quacks withatraw their advertisng custom, but the Examiner, the Globe, and the Norlh American dare not take any such manly and independent position ; the purse is in danger, and with all Scotehmen, the purse is a vulnerable point.
J. have not have-done with the Examiner's correspondent yet, but what I have written is enough for one dose: if you will permat me, I will resume the suljeent next week, and shond be obliged by a hint to that effect.

Yours, faithfully,

> A.ti-Quick.

TORONTO, AUGUST 15, 1552.

COLLEGE: OF PIYSICLANS AND SURGEONS, CANADA WEST.
The question of Incorporation is one which deeply concerus the medical men of Tpper Canada, and we beheve that there never was a subject brought under their notice which recenved such unammons support.

Some of onr non-professional cotempuraries have completely misunderstood our withes, and have endeavoured to prejudice the Jegislative mind by inculeating, or rather attributner sentiments to us, which we do not entertain. Once for all: then, we distinctly state that our sole object is the improvement and elevation of the standard of professicnal acquirement, and of our genemd character. Wedestre to see a uniform plan of education established muler a system wheh shall obtain our own confidence and that of the public also.

In England we find that there are several edncational Colleges, many of them possessing the power of conferring degrees, yet thear sraduates must seek admission into the College of Phystemans, or Surgeons' or Apothecaries' Companies, and in very many instances before
graduation in their respective Colleges. Now we should opyose mout strenoonsly any interference with the vested rights of existing bodier. and would obyect at once to any curtahtuent of the privileges of 1 miversity Boards on the Province. It is to them that we must look for the elevation of Education; it 18 our daty to strengthen their hands. and aid them in every legtumate way to give increased thme and standing to future aspirants to medical honours. Let, therefore, the Provinctal College fix the standard with wheh it will be at peresent content, and below wheh no College can chucate, and the honcrable rivalry maturally existmg between respective educatumal bodewill soon induce them to shoot higher above the mark.

An objection has been started agoinst the establishment of mic Provincial Board which we think really very weak. It is that Graduates woukd not like to sulmit to a scomed exammation, after haring obtained the degree of their own College. To this we answer that the Colleges thenselves have the remedy in then own hands. If they wish to prevent the possibihty of ther candudates being "phluched," let them make a bye-law never to confer a degree betore the candidate has been licensed by the College of thysicims and Surgeons. We think this wond be a wise and salutary caution, and must effectually prevent any improper deprecation of Universty honors.

That the Profesion is babouring under serious dexadrantases every one admits, and until we are phaced in as gavorabe a position as our hethren of the Law, we shall contime to be degraded and low in the sucial seale. The Jaw society require, as we have elsewhere stated, that ali candulates for law honors shal! pass exammatoms befure themselves; and surely, if surh be the bractice wath them, we camnot be wrong in adopting it.

The evis ander which the Profesion lakotrs are many of then the efiects of our own ill-pulged acts. Instead of there beme a chome bond of umon formed by the very tharacier and nature of orr pusmuts, it must be athutted that galtry jealonses and the most conrmptible feelugs hat ten often estrange ns. Our ain shonk be to work towether as brethren, provokme one another to seek out and develope the truths of semenc-stmalating cach other by an honorable rivatry. and never allowing a monentary feeling of disuppomenment to procke us to wrong or ingure one another.

The advantages wheta are offered by the ciencral Hoopital and other Instutions in 'loronto and elsewhere, nught to be made a walahe for purposes of study and olservation; and insteat of bing obinged to hunt tor papers for our perwiteal, its pages ought to be pressed
for rom. As yet we have been lat scantily suppled with such material. Now we do not wish to he mosuderstool, nur have at suppoed that we attach all the lhame to the mederd officers of the General liospital: on the contrary we believe that there are daffiedilies in the way preventing that complete and perlect orgamzation which would render the Tustutution rest effective as a school and as an asyhum for the sick. As the Hospital esat present conducted, the Students are unable to acquire that practical acepanatimee wath disease which is so desirable; for exceph during the visit of the Medical Officer, or by special permission, he is not permitted to enter the wards, to take down the history of any disease, or to whess the varyng changes which a malady like fever may undergo.

In the General Lying-in Ifospitals of this City, Stadents have for ${ }^{-1}$ two years been allowed to enter the wasds at regular hours, for the express purpose of gathering the daily histury of cases, and in no one instance has there been either complaint, nor as fir as we com leam, o catuse for comphant. Their conduct has been excellent, amel such as we would expeet from those who are ireated as Christan gentiemen.

Medical students are, by the generality of persons, leoked on with feelings of ramcorous distike, and they are shamed and pat asde by those whose very duty it is to win then to evod ways. If, mstead of marling and snapping at ther foibles, and kakng every cipmotumty to stigmatise them, the teachers of sehgon wouh seek ther socety, and use them as helps to solten and win the condidence of the jathemts, we whould soon see a very great difierence in the conduct add chameters of pupiis. We have seen the gond efiees of such a course at Guy's Hospitat and other London iluspitals, and we therefore msist on such an one being purstued here. If the student wats allowed to ad in colloting the details of cases for the Physichan and surgeon, aceurate iniormation would be obtained aganst the hate of vist, and the patients woudd soon larn to feel the benefits of that sympathy and kind care which is gratefully disphayed in large liosputals. 'llus would they become familiaized with disense, and teach a discermars pulto that the medical student is not different from lus fellows, lut can, under a kind and friendly persuasion, he bronght to compare an acts of sympathy and eharity, with thair reverend bastors.
'These and other evils must of necessity be matigated. If we had ${ }^{t-}$ in P'pur Camada a College aubhorized to wateh over the uterests of the l'rofrusion, we should thea be enabled systematically to set about phacing the whole educational system on such a fooning as to convonce students that there was no necossity for thear goug to the llosputalet
and Schools of the United States for information which is lying within reach of their own home; and the Colleges and Schools of Upper Canada would not be disgraced by the ammal migration of their students from these shores.

THE CLLMATE OF UPPER CANADA.

'Tus diagrams on the opposite parge have ieen reduced from a series exhibited by Professor Mind at the late conversazione of the Canadian Institute. The diagram marked A exhibits the approximate curves of the mean monthly temperatures at Toronto, Fort Preble, and Fort Armstrong. The climate of Toronto (lat. $43^{\circ} \cdot 39$, long. 79‥) may be taken as an illustration of the ameliorating influence of the great lakes upon the climate of Western Camada generally.

The curve for Toronto is deduced from the metereological observations made at II. M. Observatory in the neighbourhood of that city, under the able direction of Capt. Lefroy, M.A., F.R.S. Dr. Forrey's treatise upon the climates of the Tuited States, has firmished the data for tracing the curve exhibiting the mean monthly mareh of temperature at Forts Preble and Armstrong.

Fort Preble is situated in the State of Maine, in lat. $43^{\circ} .35$ and long. 709.15 , it is, therefore in the same latitude as Toronto, and nearly 9. long. east of that place. Fort Armstrong, in the state of Illinois, in lat. $41^{0.28}$ and long $90^{\circ} \cdot 33$, is upvards of 2° of latitude sonth, and 9^{2} of longitude west, of 'Toronto.

It wili be observed upon inspection of the diagram, that the general direction of the curve for Toronto exhibits a much milder climate than do the corresponding earves for Forts Armstrong and Preble. From March to November, hoth inclusive, the march of temperature progresses with constderable miformity at all the stations. At Fort Armstrons,-as illustrative of the climates of the Western States,-we ohserve the intensity and duration of summer heat strongly elaracterzed: the direetion of the curve for the months June, July, and August, corresponding to the mean monthiy iemperatures of $73^{\circ} .59$, $77^{\circ} \cdot 82$, and $76^{\circ} 21$; the temperatures at Fort Preble and Toronto being respectively $61^{2} \cdot 29,69^{\circ} \cdot 71,67=19$, and $61=.42,66=54$, and $65^{\circ} \cdot 76$.

The diagram marked 3 exhibits a very remarkable difference between the climates of Toronto and Montreal. High summer and low winter temperatures,-the characteristics of the climates of the North-western and North-castern States of the Union remote from the lakes,-distinguish the true continental climate of Jower Camada (trom the almost mamtime climate of the Upper Province.

- Above of betow the mesn. \ddagger above of betow the mest.

Greatest dally range, $29^{5} 3$, irom 4.30 p.m 22.1 to $\mathrm{n} . \mathrm{m}$ of 23 rd .
Wramest daf, 2lst. Mean temperature, If $\left.^{\circ} 72\right\}$ Difference.

TFth-At 90 pim , large meteor in N falling in a line from alpha I.yre through Polaris.
The "Mcans" are defived from six obsersatious dally, viz:-at 6 and 8 , a.m.; and $2,4,10$, and $12 \mathrm{n}, \mathrm{m}$.

The column headed " Blaguct" is an attempt to ditiaguist the character of each day as regards the frequescy or extent of the fuetuation of the Magnetic decifnation, findiented by the self-rentsterlnginstruments at Turonto. The clasitication lis to some cxtcut arbirary, ano may requite future roodifieation, but has been found tolerably detiate astar as aphled. It is as follows:-
(a) A marked absence of Magnetical disturbunce.
(d) Unimportant morenents,-not to be called disturbance.
(c) Marked disturbance,-uhether shewn by fropuency or anount of deviation from the normal ctrre.-but of no greas importance.
(d) A greater degree of disturbance,-but not of long comtinuance.
(e) Consherabie diturbance,-lasting more or less the ahote dos,
(f) a magnetical disturbance of the first clast.

The day in reckoned trom noon to noon. If two letters are placed, the irst applles to the eariler, the latter to the later patz of the trace. Although the decifnation is particulary refered to, it rarely happens that the same terms are not applicabie to the cianges of the hortzontal force also.
H.ill. Alngncticai Observatory, Toronto, C. W.-JUHE, 1852.

Elcuation above Lake Ontario, 108 feet.

Sum of the Almospheric Current in Miles, resolved into the fior Cardinal Lirections:

North.	Wrxt.	Sowth.	East.
1063.59	977.60	$\$ 52 .: 8$	305.17

Mean veloctes of the wind- $\mathbf{3 . 3 3}$ milles per hour.
Hax. velochy- 179 miles per bour, from 2 to 3 p.m. on 30 b.
Most windy day-30th : mpan veloclty -1016 miles per hour.
l.edst windy day- $\%$ h : mean elocity-0 20 ditto.

Hom of greatest mean velocuy-3 p.m : mean velochty-5 81 do.
Home of ient $\quad 4 \quad-9 \mathrm{am}$: do. -1.10 do.
Mean diurnal rariation- 4.74 mlles.
The velncity of the whind fir a spare of four minutes during the thanderstorm on the might of 20th, was at the rate of 38 mites per hour.

	Tintrgantine			Hav , Wimb.		
* Tet1	Niv.	18i	llange	D. ${ }^{\text {a }}$	haches	ata betucing.
1610, $65 \mathrm{St}_{4}$	75.1	1-2	31.2	6	5*741	Nilles.
1811 O'S0s	Eか3	41.2	43.	10	K 150	
1818 124.3*	S103	52.15	4.7	4	3.608	
1443 63.12	861	402	459	\$	d.6n5	
18:3t 6\%.41	S5 1	40.3	4.7.5	12	2, 4ia	
183 66.8 c	98.6	156	490	7	2.1931	
Jxdi: 67.7	950	44.9	491	9	2 mgs	
1827 67 9:	873	438	447	8	3355	
1315.65.*:	82\%	467	36.0	10	1290	4.91
inis 6x.32	\$9.1	H 1	351	4	3 1131	3.32
[15561 6901	8: 8	328	32.1	12	5.170	+36
1591, 65.31	W_{2}	621	310.5	12	3645	4.13
$1 \times 32466.6{ }^{-1}$	40.1	49.9	40.6	8	4.025	3.33
Mean 6631	87.23	$44^{\circ} .19$	41.84	8.3	3849	4.10.

NOTICE TO OUR SUBSCRIBERS.

In sending forth the August No. of our Journal, we have to ask indulgence for the defects which will no doubt be discovered in it. Up to this time it has received the warm support of the Profession, and has confessedly tended to improve the prosition which we held in Society, and has been the means of dissemmating information on a variety of subjects which would otherwise have remained dormant. 'lo effect these important objects, it was necessary that the Conductor of the Journal should have possessed a cultivated mind, generous, honorable feeling, and withal great firmmess and honesty of purpose to avoid all mere party brawls, and independently to stand forward the asserter of the rights and privileges of the whole Profession. We unhesitatingly declare that these qualifications were enjoyed in a high degree by our friend, who had lately the gratification and honor of filling the Editorial chair ; and we have reason to know that many of his brethren in 'Loronto, who appreciated his zeal and intellectal ability, deeply regre his resignation of so important a trust. The duties of Editor of this Journal now devolve on other hands, until some better arrangement can be made; and as the Profession at large will necessarily require some definite pledge for the correctness, of the principles on which the periodical will be conducted, we think it right to state that no changes will be made, nor will there be any deviation from, the plan hitherto pursued.

The object of the work is, lst, the diffusion of information, and the general improyement of the Profession, by forming a common centre through which our wants and wishes might be expressed.

2nd, The advocacy of those principles which tend to raise the character of the medical man, and place him in the formost ramk in society.

3rd, To bring the Profession more closely together, hy cultivating sentiments of mutual esteem and regard-avoiding all selfish and narrow views.

It cannot he expected that the opinions enmeinted will always be umamously entertained; bat as we feel convinced that no society can be perfected except through difierences of opinion, our aim shall be to let those difierences be so brought out, as to be the means of improving ourselves, withont the necessary involvement of personal ill-will.

[^0]: - The late deeply lamented Dr. Grasett.
 \dagger One little boy was affected twenty days afterwards.

