The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliogi phically unique, which may alter any of the images in the reproduction, or which may signifirantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de conleurCovers damaged/
Couverture endommageeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion alung interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte, mais, lorsque cela àtait possible. ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplėmentaires: Various pagings.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se nrocurer. Les détails de cet exemplaire qui sor: peut-étre uniques du point de vue bibliographiqise, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:Title page of issue/
Page de titre de la liyraisonCaption of issue/
Titre de départ de la ljvraison

Masthead/
Générique (péricdiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réducrion indiqué ci-dessous.

OLD SERIES, VOL XV.
 EIGHT LEEADING GOVERNMENTS. High-speed Engine, Dunamo, Rolling-Mill, Steamship, Railroad, Saw-Mill, Gotton-Mill, Pader-Mill, Woolen-MIn, Silk-Mill, Jute-Mill, Rubber-Mill, Sugar-Mill, Flour-Mill and all Machineru Bearinos.
MAGNOLIA ANTT-FRIGTION METAL GO.,

London Office: 75 Queen Victoria St. Chicago Office: 41 Traders Building. Montreal Office: H. McLaren \& Co., Agents.

JOHN LANGTON \& CO. Canada Life Building, Toronto

ELEGTRIGAL - ENGINEERS - AND - GONTRAGTORS Plants requiring special combinations of Electrical Machinery a Specialty. CORRESPONDENCE SOLICITED.
"DIREGT-DRIVEN" DYNAMOS for large and small plants. SLOW SPEED GENERATORS AND MOTORS.
Sole Canadian Agents for the Waddell-Entz Alkaline Storage Batteries.

Automatic Arc Dynamos and Lamps. Direct Current Incandescent Dynamos. Alternating Current Incandescent Dynamos. Transformers of High Efficiency. Electric Motors. All Electric Supplies.

Our record for the past 10 years as Electrical Manufacturers guarantees purchasers satisfaction. Ask our customers about cost of repairs on Ball apparatus.

National Electric Mfg. Co.

THE BALL ELEGTRIC LIGHT COMPANY, LIMITED,

And Wircs for Annicuidators, Ofices, Magnets aul Dyzamos.

Factory: 4iy William St., MONTREAL.
Orders soliciicd and carefully executed. P. ©. Stox, 8490.

E. Garl Brethaupi

 consulitingElectrical Engineer Graduste in Electrial Enginecring nt Johns Hopkins University, Baltimore
.... . . . Adidrew: amalin, onx.

N'E W \& 2" MEXE (Whantro MACHINE? chalogave fREE HW PETRIE

TENDERS WANTED
A Weckly Jurmal of advance inforcma. Hy Juirnal of advance.
and jullic works.
The reengnized mediun for adveitise: CANADIAN CONTRACT RECORD TORONTO.

EdGene F. Philuips Elbumical Works

Magnot Wire, Office and Annunclator Wire, Rubber Covered Wire, Lead Encased Wire, TELEPHOME AND IMOAMDESGENT CORDS. FARADAY GfBLES.

RAILWAY FEEDER AND TROLLEY WIRE.

OFFICE AND FACTORY:
St. Gabriel Locks, MODNTIREA.I.

EF Write for Price List and Discounts.

DOMINION WIRE MAN'FC. CO., LTTO. MOINTEEAI.

Guarantedep pure lake Copper of the highest conductivity, carefully drawn to decimal gauges, and equal in quality and finish, and price guaranteed lower than can be imported.

Capacity: 10 Tons Per Day.

TINNED COPPER WIRE, MERCHANTS' COPPER WIRE GALVANIZED TELEPHONE and TELEGRAPH WIRE:

FIRSTBROOK BROS. King St. Ertat, - TOIIONTO. manupacturazs op toppins,

```
        SIDB-BLOCKS
``` anv GRO88-ARM8. whith fok particulars.


ROBE ARMSTRONL ENCINE,
C-nasining all the best points of Standard Amencan High Speed Encines and several improvements. \({ }^{1}{ }^{\text {'rofof. Sitrect'n }}\) traght Lane Governor and Valve, The Cown limolle, drontirong Crishied Valve Goct Alispment Lare bearings
ROBB ENGINEERING CO., LTD.
Amherst, Nova Scotia.

\section*{COTTON WASTE}

For Railway, Machinist and Engincers' uses. Efectric Lona tock yor glectikical. uses a specialty.

ARNOLD FENWICK \& CO
Factory and Office, MONTREAL.

\section*{Ganada Lumberman runcisuzo montheix by}
A. G_MORTIMNER
A. G. MEOETMIMEERE
Canada Life Assurance Blid. - TORONTO, ONT,

\(\qquad\) SIDB-BLOCK8

\section*{F. E. Dixon \& Co.}
manufacturkhs of
0

\section*{LEATHER BELTING}

\section*{70 KING STREET EAST, TORONTO.}

\section*{Headquarters for Electric and Dynamo Belting.}

We have the following Leather Bets in use in the works of the Toronto Electric Light Co. :One 36 inch belt 98 feet long.
[This belt has been in constant use since August, 1885, and looks good for another ten yonrs yet.] Also
One 36 inch belt 100 fect long. One 38 inch belt 100 feet long. One 36 inch belt 123 feet long. One 24 meh belt 100 feet long. And over 1500 fect of 8 inch belting.
All the above belts are DOUBLE THICKNESS and are all giving satisfaction.
The \(3^{8}\) inch belt is the targest telt ever made in this Province.
The following Electric Companies are also using our Delting:
The Toronto Construction and Electrical Supply Co.
The Ball Electric Lisht Co.
The Hamilton Electric Light \& Yowet Co.
The Niagara Falls Electric Light Co.
West Toronto Junction Electric Light Works.
The St. Thomas Electric Light Co.
The Barrie Electric Light Co.
The Berlin Electric and Gas Co.
The Woodstock Electric Light Co.
The Mantoba Electric and Cias Light Co., Winnipeg.
The Goderich Electric l.ipht Co.
The Markham Electric Light Co.
The Oshawa Electric Light Co.
The Orangeville Electric Light Co.
The Port Arthur Electric Railway Co.
AND OTHERS.

We are the only Belt Manufacturers in this Province who can show Belts of OUR OWN HAKE Which have been in uso AS LONG AS FIVE YEARS. We can point to belts of our own make in THIS CITY ALONE which have been in constant use for TEN, THIRTEEN and even NINE.TEEN years, and are stlll good.

We are prepared to furnish Belts of any size, two or three ply, of any width. Every bell fully guamnteed.
Send for'Discounts. Dixon's Belurg Hand-Hook mailed free on application.

Please mention the Electrical. News when corresponding with advertisers.
A. Alfan, President. J. O. Grayel, Sec.-Treas. F. Scholes, Man.-Director,

THE CAMADIAN RUBBER CO. OF MONTRBLL
CAPITAL, - \(\$ 2,000,000\).
MANUFACTURERS OF ALL KINDS OF

\section*{HERRD \\ SOFIT \\ RUBBER GOODS}

FOR ELECTRTCAL PURPOSES, —— INCI.UDING -
BLACK AND WHITE TAPES, TUBINGS,
ROD, SHEET, TELEPHONE RECEIVERS, ETC.
Rubber Beltings, all kinds of Hose, Packings, ctc.
Mould Goods of every description.
western branch:
COR. FRONT AND YONGE STS.,
J. H. Walker, Manager.

\title{
Kay Electric Works
}

No. 263 James Street N., Hamilton, Ont.

. . . manupacturrrs of . . .

\section*{DYNAMOS}

For Arc and Incandescent Lighting.

\section*{MOTORS}

From /\& H. P. 1050 H. P. Electro Plating Machines and General Electrical Appliances. Special attention 10 Mill and Factory Lighting.-

WRITE FOR CIRCULARS.

\section*{NORTHEY MFG. CO. \\ LIMEMED}

afanueacturers of

bOILER FEED PUMPS AND PUMPS FOR ALL DUTIES
CONDENSEIRS, ETC.

FOR HIGH DUTY, SUITABLE FOR TOWN AND CITY WATENWORXS.

.. . OUR SPECIALTY

We also manufacture Horse and Trail Cars of every description.

PATTERSON \& GORBIN. ST. CATHARINES, ONT.

T. W. NESS

Canadian Hoadquarters for Electncal Supplics.

749 Graig Strat, MONTREAL.

CANADIAN

\section*{STEAM ENGINEERING JOURNAL.}

Vol. III. TORONTO AND MONTREAL, CANADA, MAY, 1893.

\section*{dUTY TEST OF NEW BLAKE PUMPING ENGINE AT TORONTO WATER WORKS.}

TuE following particulars taker: from the report of Mr. John Galt, C.E., of Tororto, will be found specially interesting and instructive to engineers and others. The report as a whole is a very able one, and reflects credit on Mr. Galt. The perusal of it will repay the student.

The analysis of the report must be "very. satisfactory to the
sumed, figures at 136 million foot pounds, which is at the rate of 1.45 lbs . per horse power per hour. This, however, takes the most favorable view. Assuming the actual conl burm and put in furnaces of boiler to be 50,693 pounds, the duty would fall to something under 120 million foot pounds, and the coal to 1.68 lb. per horse power per how: It is only fair to note in this connection that the percentage of ash or refuse from the coal is reasonably too high, consequently the commercial standard of

Nfin Blake Pumping Engine fer the Toronto Water-Works.
city of Toronto and cyually gratifying to the designers and builders, The Blake Co., of Boston. We understand that Mr. Keating, City Enginecr, has advised the immediate acceptance by the city of the engine, and provision is being anade for another similar engine. Although the contract called for a capacity of ten million lmperial gallons in 24 hours, it pumps in excess easily ten per cent. more, giving a duty on an average of 114 million foot pounds for every 100 lbs. of coal burned, equal to a duty of 130 million foot pounds when a similar weight of combustible is considered.
The friction or intermediate resistance of machinery, including air pumps, icc, is less than 20 iase power, thus giving a very high efficiency between the steam cylinders and the pumps. The total driving power of steam cylinders, both high and low pressure, is registered at 612.52 horse power, while the resistance of both double acting pumps convered into horse power registers 594.21.

The duty of the steam engine on a basis of combustible con-
engine for coal burnt would be somewhere between 130 and 120 million foot pounds. The reduction, however, of duty to a basis of 100 lbs. of combustible actually consumed, is quite legitimate, and forms a scientific basis for comparative reference of other engines and other performances. The report is quite clear on all these points, and not too claborate, giving all the essential and necessary deductions on a scientific basis.

Mr. Galt has taken into accouut, we think wisely, the resistance of the pumps in lifting the water from the well level up through foot valves on suction pipe, also suction and discharge valves, Sc. So long as pumps require these, it is absurd to distegard their resistance, which is always taken into atcount on the discharge side of pumps by the careful readings of pressure gauges and the conversion by calculation at frictional head in fect.

The pump valyes, \&c., are well designed, and contain large arca for the speed run at, and the allowance referred to above tallies exactly with the readings of indicator cards, viz. 105 lbs .
total average working pressure, which gives an absolute frictional head of 2.42 .22 fect.

Wurng the test of twodiss aretghing worhed smoothly and well. Ihe engine, whelh is cross rompound, direct an ting, with two double actung puntis, appears to be designed on good sound printiples, and will doubtless take its place anong the best anywhere. The eapacity size is a specially gool standard, viz. . 10 to 12 milloungallons per day, and with perfection of details will come a perfect machanc. The illustrations of engine will assist the reader in studying and understanding the machine.

I'lie particulars of the test are as follows:
princibal, dimiensions of bingine. steam.
4 multutubuhar boilers \(6^{\prime} \times 6^{\prime \prime}\), with no \(3^{*}\) tubes, grate surface

watke.

2 water plungers. double acting, each diameter..... 20 ins.
Plunger rods, crink end, diameter.............................. 48 ins
cengits of stroke. 48 ins.
\({ }^{8}\) ins.
+1 ils.
\(418 q\) ins.
Effes, suction and dischurke, \(G_{f}\) in ench set, diameter.
E:ffective area of valves, ench set......
Air pump, singic acting, a6" diameier, stroke.
Feed pump, \(7^{7}\) diametet, stroke.
12 llis.
6 ins.
data ditainkid duking test.
Trest Legan February 16th, \(1893.10: 22 \mathrm{a} . \mathrm{m}\).\(\} . \}\) Durntion, 49 hours.\(\infty 8 \mathrm{~min}\). Tess finished february \(181 \mathrm{~h}, 1893,11: 30 \mathrm{n} . \mathrm{m}\).
Total revolutions ns per counier..................... 12,838
Average revolutions per milute 38.276
38.288

3 steam boiters only in use:
Total aren of fire prate surface........................... \(\quad 78\) sq. f.
Wood burned has stating fires 700 liss. \(=\)
\(78 \mathrm{sq}\)..8
280 lbs.
Coal put in furnaces during lest
Gross total weipht.
Refuse, ashes, cinder nind percentage of uniburnai coni....
Total comitustibice consumed.
Per cent. of refuse..
Conal butned per si. i . of fir...................................
Average stequp pres. of fire grate per hour.
Average steam pressure in engine room.
50413 lbs
\(50,693 \mathrm{lbs}\)
\(6,910 \mathrm{lbs}\)
\(+3.7^{83}\) I43
13.6
13
\({ }^{1323} 117 \mathrm{lbs}\)
114

Hich pressure piston. cmuk end. as per cards.
low pressure pision. crank end, as per ce. 's

Low pressure piston, cmink end, as per airds 50 . 852.45

Imperial Rallon, standand vol., Act of Butliament, \(1825=277.274 \mathrm{c}\). in.
inperial callons in i cubic fooi. 6. 23321
Wheight of one cuble \(n\). of wniter \(\Omega 1\) 35 F. 62.422 lbs
Wejght of one standard gillion 10.061 lbs

Avernge revolutions fer 24 hours \(=55 . \times 27.08=38.276\) revolutions per nin. Working revolutions per 2i hours \(=55,134,6, f=38.288\) revolutions per min.
Difference due to starung and stopping slowly.
I Dal water punfped, theoretcal displacement. 23.826,200 imp. gal.
Capacity of punps in 24 hours \(2211,154 \times 55,134.64 \times 11,642,000\) galions.
Conmercmil cupnicity in at hours \(=11,0,2,000\) gallons.

Scale 100

Duty calculated on difterent basis
Avernge reading of pressure gauge. 66 lis.
Averige reading of suction gauge \(\frac{0.26 \times 31.295}{700}=\quad \$.6 \mathrm{lbs}\)
Average pressure in remainder of suct. pipe, also suct. valves 2.0 lbs .
 Add pressure for 5.5 ft. vertical distribution from suction
valve gauge to pressure gauge.
Average working pressure on plunger as per reads............ 2.4 ibs.
Average working pressure on plunger as per reads.......... 105 libs.
Average working pressure on plunger as per cards......... 105 lbs.
Calculated head resistance \(\frac{105 \times 154}{62.422}\) in feet........... . \(=242.22 \mathrm{ft}\).
Duty of engine on coal consumed per 1 horse power per
hour \(\frac{43.783}{49.233 \times 612}\).
3.45 lbs.
\(33.000 \times 60 \times 100\)
36,000,000 lbs
Weight of stean per h. p. per hour, is per indicator cards.. 13.94 lbs .
Equivalent evaporation at boiler per lb. of combustible con.
sumed under actual conditions \(\frac{13.94}{1.45}\)
9.8 lbs.

Standard equivalent from and at ac2* per lb. of combustible consumed \(=9.81 \times 1.05 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\).
Commercial duty at pump for every 100 liss. canl put in furnaces:

> ares liss H. Rev.

By work \(\frac{306.21 \times 105 \times 15.94 \times 112.838 \times 110}{50.693}=114,078.000 \mathrm{fl}\). pounds.
\[
50,693
\]

By gallons \(\frac{23,826,200 \times 10.0126+242.22 \times 100}{50,093}=114,038,000 \mathrm{fL}\) pounds
Commercial duty at pump calculated for every 100 lbs of avemge lbs.cad
comhustible consumed \(\xlongequal{134,055,000 \times 50,693}=132,050, c 00 \mathrm{ft}\). pounds.
43.88
lbs. combustible.

\section*{PUBLICATIONS.}

The April Arena contains a strong paper by Hamlin Garland on "The Future of Fiction." Dr. Alfred Russell Wallace writes on The WageWorker and how he may be delivered from the Social Quagmire. W. D Mectrackan discusses "How the Initiajive and Referendun may be Intro" dured into our Government."
Messrs. D. VanNostrand \& Co. of New York, have published, in connec. tion with their science series, an interestung little work on the measurentent of eiectric currents. The book, which is illustrated, is made up of two valuable papers, "Electrical Measuring. Instruments," by Janies Swinhurn M. Inst. E. E., and "Meters for Electrical Energy." by C. H. Wordingham. Assoc. M. Inst. E E The writers deal with their subjects very comprehensively, and the book will be found to be a very usiful one.

\section*{EEGAL DECISIONS}

As this issue of the EI.ECTRICAl NEWS is about to go to press we learn that Chief Justice Galt has quashed the by-laws of the cittes of London and St. Thomas granting exclusive privileges to the Bell Telephone Co. The Bell Telephone Co. have appealed from the decision.

\section*{EQUIPMENT OF ELECTRIC CARS.}

\section*{by bic Wastcott and E. Craig.}

It we cast a glance at the electrical industrics in our city six months ago, and compare them with those now existing, we camnot but realize what important and gigantic steps bave been made in so timited a time. At that fime Montreal employed byodreds of ate lamps, brillimaty ulluminating ats thoroughfares, white the meamdescent lamp could be counted by thousamels, lighting residences and stores. Molive power was also then distributed on a limited scale. To these has been added a sale, comfortable and specdy mode of elcctric transporiation.

It is not the aim of this paper to treat all details connected with electric traction, nor even to consider its essential clements. We shall only examine to a certain extent the electric equipment of the cars, making mention of the varying characteristics of the different types to be found in our streets, and the necessary ftarting and regulating devices pertaining to each system.

The most striking rescmblance which characterizes the four different types used, is the laulable pactice of imbedding all armature conductors in grooves cul in the armature core for that purpose. Two of the types of motors are so nearly alike as not to need it different treathent, the most striking resemblance being that one is built in Montreal, while the other is a native of Lym, Mass. Each ammature is of the Gramme ring type, the former being wound with ordinary wire and connected to commutator in the usual way. The latter is wound with copper ribbons of such width as to just fill the grooves in which they are placed. A piece of ribbon is fastened by a rivet to the loop between the sections so as to connect same with commutator. These grooves are so shaped that after the winding is finished there is a space left, which is filled with it wooden wedge to keep the ribbon in its place, thus doing away with bands, and affording a better protection to the winding.

The most popular construction is known as the "iron clad," which carries the existing coll on the top pole, thus preventing anv moisture which might collect at the botton of the car, from harming \(\%\). The armature and field coil are easily replaced in case of a burn-out. The pole pieces of the former are built up of sheet iron, being placed in the mould before pouring, while in the \(T\) and \(H\) the pole pieces are cast solid with the yoke We are informed that a secret process is employed for making the metal in which they are cast.

The Edison motor also has a Gramme armature, differing from the others in that it depends on bands to hold the winding in place.

The winding is done in the usual way, the commutator being cross connected so as to allow of placing the brushes at go degrees, in the pooper neutral field. It has a four pole field of the iron-clad type, with two field coils placed on opposite poles and has therefore two consequent poles. The castings are of steel and are made in four pieces, bolted together. These motors are not waterpronf, but when covered with canvass which is very easily done, thes are very durable.

The last motor which we have to examine is in no respect similar to the others with the exception of the field and armature which are in grooves. The armature is of the drum type, sotating in a feld of four poles. The coils of this armature are wound on taped forms, and afterwards placed in the grooves before inentioned, the ends of same being brought out one section less than 90 degrecs apart, instead of the usual style of drum winding. In connecting the commutator; the two ends of each coll are placed in one segment, less than \(180^{\circ}\) apart. This arrangement has the advantage of having two circuits and overcomes the necessity of having four, and cross connected commutator bars, as in the previous cases was necessary, or there would be an unsafe difference of potential; a cause of trouble, and in doing which there would be no sacrifice of simplicity of construction nor of ease in repairing and replacing damaged coils. In this last case the coils lave been wound in a form and then bound with tape before being placed in their respective grooves and it is an easy matter, requiring very little time to renove a number of such coils and if required replace them with new ones.
All of the foregoing motors are series wound, having so many turns that even with a small current they can saturate the field sufficiently to give the armature torque enough to start, even under load. It is a prartice with the Edison and T. H. motors, to cut some of the coils after alloutside resistance has been short circuited.

The Edison cars in this city have been equipped with the combined rheostat and controller of Thomson-Houston make, being an exception to their general practlce of commutating the fields. In order to keep an excessive current from blowing in the motors there must be sufficient counter E. M. F. generated in armatures which is itself dependent on speed and saturation of field ; or there must be necessary total resistance provided. If certain devices affecting the necessary field strength changes, ate employed, they will prove very beneficial, providing they do not bring such complications as to be sources of trouble. The Edison commutation of fields has a two fold end-while having the property of altering the strength of the field it at the same time alters the total internal resistance of the motor.

The object in view is obsained by winding the coils in seccions, (as in mile three, and of an unequal resistance), and having on both platforms as contioller in the fortis of a cyliniter on whub a certam number of brass pieces liave been fastened in such position and of such shape that rotatio. of cylinder brings these pecular shaped pieces under the different stationary contacts to which the individual terminals have been brought.
the position of cylimer will canse the circuit to be completed through one ot the following combinations, that is three coils in series with an indispensable outside resistance; the conls in series and thecstat short circuited ; leaving two only in circuit the coil just shot circuited placed in shant to one out of the series; the fast coil of the series shot circuited ; and lastly, the hast named coil placed in multiple with the other two. But the adrantages of such a devised system lead to a great complication of wiring and intoduces the reasomability of making field coils cores a place to build the rheostat.
In the 'T. and Il. system, the motors arecontrolled with one controller and are comected with controllei's handles al both ends of the car by means of steel cable threaded through pulley sheaves. Although the rheostat and controller are combined in one, saving a large amount of wire which would have to be used otherwise, yet the advantages pertaining to having an independent controller at each end more than compensate for the saving of wire in the fact that it is almost impossible for both contiollers to break down at once.

The Westinghouse theostat is made of spmalled wire divided into five sections, five contacts being placed on rheostat box in such a position as to be easily accessible for connecting the wires from controllers. The controller consists of a cylinder having six brass pieces of varging length attached, which are for cuming in aml out the rheostat sections. The longer of these makes contact with the first section of the rheostat on turning the cylinder, the rest following according to their length. The reversing switch is placed on the same cylinder, consisting of six contacts, two of which make contact with the ground fietd respectively, tine other four being cross connected in such a manner as to reverse the current in the armature, the direction of which is determined by the direction in which the cylinder is moved, the controller contacts acting the same in either direc tion.

The greatest troubles that heve been experienced with the cars, are the giving out of armatures and field coils, which are traceable in the majority of catses to the most anfavorable conditions to which they are subjected. It is certainly not the purpose of electric machinery to be run in water, but many a day this is almost the case. The best remedy is unquestionably to replace the damaged part, but to prevent the trouble is rather more difficult, allhough judging by what one reads in periodicals reparding receipts for overcoming moisture and water-proof paints, preventives seem to be within reach. If such paint were obtainable, and the design of motors was such as to admit of all wire being out of the reach of water, care being taken to keep the car from wide differences of temperature, it would certainly help a great deal and save a great number of burn-outs. The fact that the scies woumd motor is being used in almost all cases, in preference to the shunt motor so successful in stationary work, may lead to questions regarding the reasons of such practice. Perhaps the unrelidibility of the supply reaching the mitchinery through the dirty tails and the shivering trolley may account for it to a certain extent, as evety time that the circuit is opened, the field will lose its saturation. An armature without counter E. M. F. is practically a short circuit, but this could certainly be obviated without much complication by having automatic devices in the armature circuit which would let current flow only as long as the field was saturated. Another consideration very objectionable, is that of having 500 volts of pressure between the serminals of the field coils. Also with the cars the constancy of speed being of no consideration and impossible the great advantage of shunt motors would be lost.
There is good reason to think that in the near future the alternating motor of single phase will be made self starting and of sufficiently powerful torque to make it adaptable for traction purposes. When that has been realized, the ideal will be reached, for the armature of the motor would be merely a num ber of copper bars not necessarily insulated from the core, and all short circuted at the ends on flanges and without a commu tator, while all the regulating devices required would be the re active coll, not even reversing switches being needed. Trolley cars will not then require a higher pressure than 100 volts.

Owing to advantages to be secured by the use of transformers, currents can be generated at distant points where power may be had for a minimum cost, but this is not very important when we rememoer that the fucl expense is no more than \(10 \%\) or \(15 \%\) of the total expenditure.

\section*{CORRECTION.}

The Doty Engine Co. advise us that they constructed the brecching in connection with the power plant at the Toronto Strect Ralway Company's power house, and not Mr. John Abell, as stated in our hast issuc. The error was due to our having been mis-informed. We take pleasure in now placing the credit for this excellent piece of work where it properly belongs.

\section*{ADVICE TO YOUNG ENGINEERS.}

For nhout in elve yeurs I have been leathing my trade, Suld donit clam to know it all yel;
Hut have loanned a few llings lyy the blunders I ve made That I'll not very soon forpct.
ISxperience is a pouki, shough very dear school. thut we needn't nil learn llings ibat way-
From trooks and good papers we naty lemen some good rules, And will have less tultinn to pay.
While speaking of rules, let me give you just one On which you ain nlways depend
In simane enginecring the less risk yous run,
the lecter youll come out at the end.
You may of hear it enfld, "no risk no gnin." But it won't do to risk much with stomm.
For li's risky enough; so be sure of your run. As you would with a runaway tenti.
Donit run any risk. If your pump docsn't throw.
Stop, while you have water in sight.
Thie boiler may stand ti, but that you idon't know, It may blow you ns high as a kite.
Men often gain lime by just going slow. Hut many tuar lives liave leen lost
13) going liy guess, when facts liey should know Could be had at a tifte of cost.
Now just one thing morel when your day's work is done, liklose from the thoiler house you retire.
If with water and steam no sitk you have run ike sure you run none with the fire.
Don't rule nay zosk, boys, unless
It's with something you can'i make secure.
hont do uny wat by the ruic of "1 guess,"
When the facts you can easy procure.
Have some litule pride as to how your place looks,
And whatever you do, do it right-
Inve plenty of tools and plenty of books,
And don't run nound nuch al night.
And now my denr boys, of all that l've said
Thope you'll remember the lext.
Don't run nay risk, and you'll comic out aliend; l'll tell you the test in my next.

ORGANIZATION OF HERLIN ASSOCHATION NO. 9.
Ar at preliminary mecting of stationary engineers held in liserlis, Ont., April 8th, it was decided to organize a branch of the C. A.S. E. on Saturday, April 22nd. This decision was the result of some missionary work done by Iro. Joln A. Angell, Distric: Depury and l'resident of (iuclph No. 6, who was assisted in the work in a most able manner by Bro. W. J. Rhodes and several other engineers of Berlin.
lro. Ingell had applicd to the Executive Council for, and had reacised the charter for the new Association, iwhich will be known as Berlin No. 9, C. A. S. E.), and hat instructions to proceed with the organization, but unfortunately a few days previous to the day appointed, was taken very ill and thus was unable to finish the work he hat so well begun.

The news of Bro. Angell's illness was communicated to A. E. E.dkins, I'resident of the Executive Council, with the request that he stould visit Berlin and complete the "ork of organization, which he did, being accumpamied by lBras Jortan, Green and Truck, of Guelph No. 6.

On arriting at Herlin the visitors were met by Messrs. W. J. Rhodes, A. Vice and Geo. Steimetz, who conducted them to the Commercial hotel.

At 8 o'lock the enginecrs interested began to arrive, and at 3.30 the meeting was opened by Bro. Edkins, who was requested to lay before those present theobjectsofthe Association. This he did in a brief speech, laying particular stress on the need of such an organization in every manufacturing town in Canada, as it would not only prove beneficial to the engineers, but even more so to the stenm users. By raising the standard of the enginecring knowledge of its members, it would certainly follow as a natural result, that the employer's plamt would be kept in a greatel state of efficiency. Steam users, he said, were prejcdiced aganst the Assocmation at first, but the majority of them now apprectated its work. There were some engineers even, who were, as they themselves put it, "down on the Association." Some of these men wore good engineers and mechanics, who would be a credit to the organization, but who for some reason or other, had formed a wrong impressior of it. Then there was another class who, when asked to become meabers, would in-
form you, with a deal of wind and blow, that they know all they ruant to know of engincering, and therefore could not learn anything themselves by joining the Association, and were cerIninly not going to come up to the meetings and tell all they had learned during their long and varied experience. If the truth were known, this class of men would g!adly become members, but for the fact that they are fearful lest they should be asked for information on some subject, which they could not give, and that would make them appear ridiculous in view of their previous boasting. It was a pity that men acted in this manner, for the chief object of the Association was to assist its members to become better engineers. He hoped the day would never come when they would "know it all." the election and installation of officers was then proceceled with, and resulted as follows:-
l'resident, IV. J. Rhodes; Vice-l'res., Alf. Vice; Rec. Sec. Gco. Steinmetz, 13erlin post office, Ouf.; Treasurer, Henry Snider; Fin.Scc., Joln Fennell; Conductor, Abram McKessic; Doorkecper, Win. Fiedt.
About 15 charter members were initiated, and several other engineers have signiticd their intention of joining.
A vote of thanks was presented to the brethren from Guelph and 'Toronto for their kindress in being present, and the hope was expressed that l3ro. J. Angell might be speedily restored to health, and be enabled to visit No. 9 in the near future.

ANNUAL, DINNIER OF HAMILTON NO. 6.
The above Association held their sixth annual dinner on Thursday, 30 h March, at the Commercial hotel. About 100 of the members and their friends surrounded the tables in the fine dining room of the hotel, and were well aleased with the delfcacies which mine host Maxey and his staff of waiters placed before them.
The ehair was occupied by Bro. Wm. Sweet, l'resident of the Association, and the vice-chairs by Bros. W. Norris and A. Nash. On the removal of the cloth the chairman welcomed the members and guests on the occasion of their annual reunion, and bespoke for all a pleasant time. He then proposed the toast of the "Queen and Royal Family" to which the company responded by singing leartily the National Anthem.

The "Army and Navy" brought fortha response from Bro. Thomas Carter, a veteran.

Mr. II. N. Thomas sang "The Longshoreman," and received such a hearty encore that he favored the company with "Hearts of Oak"
"The Donininion Parliament" was responded to by Mr. Jas. Weir, of the Inland Revenue Department. l'he speaker clamed that Canadians had at Ottawa representatives who could hold their own in point of ability with any in the world.

Prof. Cline sang "The Maple Leaf."
"The Ontario Legislature" was received with lour applause. Brother Duncan Robertson responded. He expressed regret that the Hon. J. M. Gibson, at the last moment, had been prevented from being present. He was sure that that gentleman would be gratified if he knew the kindly feclings which the enyincers cherished towards him for services rendered the Association. Not only the members but the community at large owed the Hon. Mr. Gibsor and the Ontario Government a debt of gratitude in this connection.

\section*{Mr. Thomas Jones sang "Fammer Magee."}
"The Electrical Engineers" was responded to by M:. Wells. Prof. Cline sang "The Old Red Cradle." "The Mayor and Corporation" was ably responded to by Ald. A. D. Stewasi. He referred to the importance of the Association of Stationary Engineers, a body of skilled artisans, without whose services the public would fire badly. The toast to the "Mantufacturers" was replied to briefly by Mr. Mckcown, followed by a song "Cockles and Mussels, \({ }^{D}\) by Ald. Stewart.
"The Press" was acinnowledged by Mr. Buchanan, of the Times.
Mr. Thomas James sang a comic song.
"The Canadian Association of Stationary Enginecrs" was responded to by Bro. A. M. Wickens. He said he was proud of the organization, and there were a great many reasons why he was proud efit. He referred to the brainy men who had been enginecrs in Canada in the past, one of whom had built the first stcamship to cross the Atlantic, and it was constructed of Cana-
dian materials, too. He mertioned the names of Edison and Bell, Canadians who hid distinguished themselves in engineering science; and there were many others as well. A little over six years ago the Association had been founded in the speaker's dining room in the city of Torontu, when there were just eleven men present. Now a chain of branches extended from Ottawa to Wimipeg. All of these were doing good work.
"Prof. Cline sang the "Cameron Men."
"Our Sister Associations" was responded to by Messrs. Wier and Bates. Boll reported that the Association in Stratford was fourishing and the demand for men holding certificates was increasing.

Mr. Thomas Lewis of the rolling mills, dropped in and favored the company with a couple of his inimitable songs.
"The Honorary Members" was responded to by Bro. Duncan Robinsen.
Songs were sung by Messrs. P. Casey and J. Church. Bros. Langton and Johnson responded on behalf of "The Ladies."
"Our liost" was acknowledged in a neat specell by Mr. Maxcy.

After one or two volunter toasts, and the singing of a few more songs, the merry evening was brought to a close with "Auld Lang Syne" und "God Save the Quecn." Mr. Thomas Baine played the accompaniments for the several singets during the evening in a very acceptable manner.
Toronto No. 1 held its regular mecting on April sith, W. G. Blackprove, president, in the chair. Mr. Edkins read a portion of Desinond's Electricity and a general discussion followed. There was an exceptionally large attendance of members. Three new candidates were initiated and one proposal received. The officers for this Assoctation for the ensuing year are to be elected on June zadd next.

Guelph No. 6 met on the 1 th ulf. The President read a paper on "Lining up an Engine," which was great appreciated by the large number of members present. One new candidate was initiated.

Mr. W. G Blackgrove, Secretary of the Executive Council, has removed from 43 to 45 brant street.

\section*{QUESTIONS AND ANSWERS.}

Member C. A. S. E., Guelph, asks:-
1. Does the fly whecl increase the working power of an engine?
2. Will the drive wheel have the same effect on the engine as an igle fly wheel of equal weight and diameter?
3. If raising a safety valve will cause water ,o leave the bottom of the boiler, what effect will blowing the whistle have?
Ans.-1. A fly wheel does not increase the working power of an engine. It acts as a reservoir of power. Power accumulates in it as its speed increases and is given off by it as its speed diminishes.
2. A drive wheel will act efficiently as a fly wheel if made heavy enough and of sufficient diameter.
3. Raising a safety valve allows some steam to escape, and so does blowing the whistle. If letting some stean escape from a boiler maises the water of the botiom of the boiler how is it that a steam engine can be run in connection with a boiler? Every time the ergine valve opens some steam escapes from the boiler, and according to the supposition in the question the water ought to gotool Does it?
H. F. Thompson, Recording Secretary Montreal No. 1, C. A. S. E., asks:-

What qualifications must a man have to pernit him to write after his name the letters M. E., and also the letters E. E.? M. E., in this case, stands for Mechanical Engineer, and E. E. for Electrical Enginecr.
Ans.-The letters M. E., standing for Mechanical Engineer, may in this countly be appended to any man's name who thinks himself entuted to use them. The same with the letters E. E., standing for Electrical Engineer. So far as we know, the law of the land takes no cognizance of these letters as it does of M. D. and sundry others, and till the law defines who alone may use them, every one who meddles with engines may call hinself an M. E., and every egotistical idiot may write E. E. afer his name if he can.

\section*{THE COMPLAINT OF A MOTORMAN.}

Toronre, April tili, 8893.

\section*{Editor Klactrical News.}

SIR: I am employed liy the Toronto Railway Co., ns motorman, and have been a ver, diligent student of electricity as a motive power since its intruduction in this eity. The company will not even allow us, however, to replace the plugs, when they are blown, but we have to wait for the next car to push us to the shoj, catising worry and dclay to massengers as well as motormen. 'There are men employed by the company, calling thensedvis "inspectors,"-men who worked in tie shop, for probably three months, arit who bave the audacuty to rank themselves with experts, but who in reality do not know the first rudiments of the hork they are engaged in. These mess and the roallmaster (who prokably never ran more than three srips on an electric car) are only allowed to replace the plags or do other tetumomry repairs, while motomen, who have leen driving motor cars since their introduction, and know the diferent catuses of obstruction, are unable to use their knowloige. I give you an illustration wnich luppened to nue about two weeks ago: I was tmining a man to run a motor, and antong other things took up the floor to show him one of the machines and explain to hint the different wires on the motor bard as well as my rant knowtedge would permit, when one of our lordly "inspectors" swooper down on me and nsked me any right to interfere in his business. I told him very politely but firmly that although I would not interfere with the machine in his charge, I woukd take up the floor as often ns I liked for my instnaction as well as for the imformation of those under my puidance. Is not this amusing? If this letter could niect the eye oi sonie of the oflicials, whicit I hope it will, I would respectfully submit the following for their consideration:
t. To emplof only the most intelligent men as motormen.
2. To nuthorize six mortormen on each line to make temponry repairs in passing obstructud cars; this will do awny with inspectors who, like policemen. are never to ice found when wanted.
3. In course of time every motorman will te his own inspector. 'This would reduce expenses and would increase the efficiency of the service \(50 \%\). Until such tinue as some surh course ns thes is nitoptelall the information we could gain from your instructive paper would be uscless so far as us practical npplication is concerned.
In a discussion nmong motormen, last Saturday, as to the merits of your paper they were favourably impressed with its contents, but emphatically refuse to subscribe umil the company's mode of procedure is reversed. the motormen treated as intelligent men shuold be, not as block-heads.

Respectfully yours,
Howard W. Stani.ky.
Motorman Toronto Ry. Co.

\section*{MAMXLTON.}
(Comespondence of the Eilectrical News.)
This litule city will be the scene of great activity very shortly in an electrical way, for in spite of the assurance of the managers of the Hanilton Street Railway Co. that their old rails would do them a couple of years longer. they now find that they must all be renewed, which will involve an outlay of many thousind dollars, but they will save in the end, because the mils now are pounding the life out of their motors in more ways than one. They have also made a saat at a cross town road to run to the G. T. Railway station, and have commenced gradmg and tracking a mile and a batf extension to the new fair grounds and race tmack. They are having several new cars built with which to erpuip these extensions, and are putting in a new Corliss engine and Westinghouse generator for the sanie purpose.

You have perhaps heard of our little extravaganza here in the shape of "Ye Olde English Fayre" which came off in the drill hall, and in which was installed by the Hamilton Electric Light Co., some II are and 100 incandescent lights. It was well patronized and enjoyed thoroughly, and is something to be remembered in more ways than one, but from an ejectrical point of view. particularly, as our friend Cochrane, the well known photo. grapher, with his usual vim and push, had a full fledged photograph gallery rigged up and did a gushing business, even at night titne, with four 2000 c . p. ares to take the place of daylight. 'The work turned out was excellent, and as good as any produced by daylight. It was quite a novelty and took well.
I must also tell you that one of our enterprising grocers is now serving out as samples, pan cakes cothed on a litile clectric griddic, and they are perfection as far as the cooking is concerned.
The Hon. Senator Sanford has some 300 incandescent lights in his private residence in this city.
John Calder \& Co., wholesale clothiers, lave just had 136 incandescent lights put in their establishment, together with an electric motor to operate their elevator.
There is some talk of installing an are light plant at the Beach this summer to light the hotels and a summer theatre which it is proposed to erect there, and perhaps the rond for a nule or so.
We had a call from our genial friend, Mr. D. A. Sharr, of the Royal Electric Co. Montreal, who it is perhaps needless tosay, shines as bright as cver. Mr. C. W. Henderson, the electrical supply man, of Montreal, also gave us a call a few days ago, and is up to the neck in business. He took away one or two orders with him, and is plensed in consequence.
The Eagle Knitung Co. have placed an order for a 10 h. p. motor to uperaic their works, cmploying some 200 hands.

Electri.Cus.
The Bell TelephoneCo. have obtainedan exclusive ten years' fmnchise at Ottawa fer \$1,500 a year.

JUH.ASHKD ON THE YIKST OF RVERY MONTH BY

\section*{CHAS. H. MORTIMER,}

Office: Confederation Life Builiding, Corner Yonge and Rickmond Strects.
 at Texpur Bunhone 2362

> JILDING, ISell Telephone 2299.

\section*{А I) FRILTYSA.M\&NTK.}

Advertising rates sent promptly on applicatton. Orders for advertising should reach the office of pubicication not later than the asth day of the month immediately preceding date of ixsue. Changes in advertisements will be made whenever desired, without cost to the advertiser, thut to insure proper compliance with the instructions of the advertiser, requests for change should reach the office as enily ac the and day of the month.

\section*{NOBSCRIFTIONS.}

The Electincal. Nxws will be mailed to subscribers in the Dominion, or the United States, poat frec. for \(\$ 1 . \infty 0\) jer annum, so cents for six months. The price of sulacription may be remitted by currency, in registered letter, or by postal ordet payable to C. H. Mortimer. Pleste do no send cheques on local banks unlexs zs cents is added for cost of discount. Money sent in unregistered letters muxt be at Unwn, \$i.so per annum. Sulseriptions are payable in advance. The paper will be diwontinued at expiration of term paid for if so atipulated liv the subucriber, but where no such underxtanding exisis, will the continued until instructions to dis. continue are receivrd and all anc cirafes waid.
Sulncribers may have the mailing addresi clanged as often as desired. When niering thasfe, altuags fires the old as urvil as the nese address.
The fuldisher should be notified of the failure of salscribers to seceive their papers promptly and reculativ.

HDITOH'S ANNOUNCSER1:NTS
Correspondence is invited upon all topics comme lenitimately within the scope of this joumal.
 OFFICIAL. BA!'KR OF TIIY CANADIAN KI.ECTRICAL ASSOCIATION.

\section*{CANADIAN GIGCTRICAI. ASSOCIATION.}

\section*{OFFICERS:}
l'RESIDENT:
J. J. WRIGIIT. Manager Toronto Electric I.ight Company. 2st Vice-PkKsibkint:
K. J. JUNSIAN. Jocal Manager Ikell Telephone Company. Toronto. 2ND Vich-PkKsivent :
JOHN CARROL.I., Sxe:'Treas, Eugene Phillips Eitectrical Works, Montreal. SECKKTARY-TKRASURER :
C. H. NORTJMER. I'ublishes Ele:ctincal. Nrws. Toronto. Executive Committfe:
D. A. STARR. Koyal Electric Company. Montreal.
11. O. FiSk. Electrician Electric I.ight Company. I'cterboro'. Ont.
W. A. JOHNSO.N, Manager Lall Electric laght Company, Toronto.
S. J. INRK゙ER, Managing Director Owen Sound Electric Ljght Conn. pany. Owen Souml. Ont.
A. 11. SMillif. Inspector Canadian lloard Fire Underwriters, Toronto. 1). THOMSON. Generil Marager IIamiloon Electric I.ight and Jower Company. Hanititon. Ont.
THOS. H. WADIANID. Supmintentent Consiruetion, Bell Telephone Company. Hamilion. Ont.
1. 13. McFaRLaliNE, bell Tclephone Company. Montreal.
 Guelph. Ont.

CANADIAN ASSOCIATION OF STATIONARY ENGINLERS EXRCUTIVF: BOARD:
Iresulent, A. E. Einkins.
Vice-President. G. Ilunt,
Secretary. W. G. Bi.nckgoove
Treasurer. R. MacKik.
Conductor. Citas Hikal.
Door Kerner. 7 . Ilrisbois.
Tononto Brancu No. 1.-Mcets and and ath Friday cach month in Room D. Shatiestury IKali. W. G. Mackgrove. Dresulent: G. Fowler. Secretary. 137 l'niversiby surect.
11antitron ibsancis No. 2, Mecte 2st and 3rd Fnday each month, in Macralre's 1lall. W. Sweet. I'resident: E Niash. Secretary. \&y Littie Wheralices 18al Willam Strect.

Stkatyukil lrancailo. 3-John Hoy, President. Simuel II. Wemr. Secretaty.
Heantronn lrancit Na, f.-Ncets and and fith Firiday cach month. Thos. Ihlgim. I'resudent: John Ogle. Secretary. Ifraniforl Cordage Co.
 President , J. Mcintosh, Nectetary.
 in City llall. A. R. Crawford. President ; Arthur Fleming. Secretary.
Monswhat. Heancil No. I-Meets ist and 3nd Thursday each month, in Mechanics Institute gat St. James sireet. Thos. Naden. President. Jos, G. Rolertson. iqzo Mignonne strect, Serclary.
St. Laturnet Brancit No. 2.-Mects rst and 3nd Tuesday ench mont. in Mechanics Instivute, 20; St . James sireet. Mathims Guimoad, Frecident. Alfred hatowr. Secretary, 306 ilelisie sireet. St. Cuberonde.

GUR1.ll bKANCIt NO. G.-Mrets ist and 3rd Saturtay ench month at 7:30 p.m. J. A. Angell. President; C. Jorden, Secretary.
 month, in
Secretnry.
Berbin Ilkancil No. 9.-Meets and and 4 th Siturday each month at \(8 \mathrm{f} . \mathrm{m}\). W. J. Khodes, l'resident. G. Steinmetz, Stsretary, Ikerlin Ont.

Kingston. Associatiun Stationahy Enginkers. - Meets twice ench month over No. I Pire Station, J. Devlin. President: W. Gilmour, P. O. IBOX Gog. Sereretury.

IT is gratifying to us to observe that the invitation which was recently extended through these columns to engineers to ask for information through the "Question and Answer" department of this journal is being res,onded to. Several answers to guestions thus submitted are published in the present issue, and we would be pleased to see the number increase. In this way much valuable information may be disseminated. We would be pleased if our readers would not only ask for needed information, but also when possible supplement our answers by any additional information on the subject which they may be in possession of.

The Executive Committee of the Camadian Electrical Association is taking tume by the forclock in resard to the arrangements for the second annual mecting to be held in Toronto next Sep. tember. The promises of several papers for that oceasion have already been secured fiom members of recognized ability. It is expected that the full number of papers required will very shortly bearranged for and be in course ofpreparation. A meeting of the Executive Committee will be held on the 17 th inst. for the purpose of forwarding this and other arrangements for the convention, which it is expected and believed will surpass in attendance and interest any that has yet been held. Every member of the Association is urged to endeavor to increase the nembership, an 1 in eiers possible way to assist its progress and practical usefulness.

Thi: members of Toronto No. 1, C. A. S. E., have introduced an interesting feature in their mectings. They have taken up for study and discussion Electricity. A member reads a chapter from an atuthority on the stibject, after which the question is discussed in all its bearings by the members. This practice should be the means of making the gatherings of the association more attractive, while affording opportunities to the members to become acepuainted with a subject which, next to that of steam engineerng itself, applies most closely to their calling, and exerts the greatest influence upon their material interests. The fact is becoming increasingly apparent that the engineer who neglects the study of electricity will soon find hamself placed at a serious disadvantage as regards ability to obtain and hold the best positions.

We learn that active preparations have already been commenced by the engincers of Montreal for the annual convention of the Canadian Association of Stationary Engineers which is to be held in that city carly in the autumn. The Montreal City Council has granted \(\$ 300\) toward the cost of entertaining the visiting delegates, and has also given the free use of the City Councl Chamber for the meetings. It is expected that the manufacturing fims of the city will contribute liberally for the purpose of making the occasion one of much pleasure and interest. It is hoped that liberal armangements can be made with the riilroad companics, such as will enable a large number of members from the western cities to attend. Perhaps the best arrangement would be for the Association to charter a car for the use of these members, as many as possible of whom will go if the rates are reaser zble. At this convention a number of papers of much interest to engineers will be read and discussed. Everything points to a successful mecting.

I: our correspondence column we publish a communication received from a molorman in the employ of the Toronto Sirect Railway Company, complaining of a grievance cxisting among his fellow worknen. At an intervicw with an official of the companv in reference to this letter, we were given to understand that it is their intention to encourage among their motor men the study of electricisy as a motive power, and how this can best be done is :o be considered at an early meeting of the directors. Our correspondent must bear in mind that when the motor
cars were first run on the streets in Toronto it was necessary to have regulations of the nature he mentions in order to present incompetent men from interfering with the machinery or else import experienced men from places where cars had been runming for some time, in other words American labour would have had to be resorted to. There is no doubt that it is to the compang's interest to satisfy this desire for knowledge among the motormen: in the ar employ. The Elitulkiant Nites would be pleased if in any way through its columns the object sought might be promoted.

The list of new subscribers to The Electrical. News during the present year is gratifyingly large. About two hundred new names have been received since the first of Jammy, and these have come from all parts of the Dominion. Such a liberalmeasure of appreciation will stimulate us to raise the standard of the paper's interest and usefulness to the highest possible degree. There are three ways in which we would be pleased to have the assistance of every reader: 1. Endeavor to send us at least one new subscriber each year. 2. Contribute as frequently as possible information to our columns. 3. When in need of electric or engineering supplies, consult out: advertising pages, write our advertisers for what you requite, and when doing so menton the fact that you saw their advertisement in the ElectTrical. News. If you do not find advertised what you require, write us to that effect, and we will immediately put you in the way of getting it. It need scarcely be added that considering the widely extended and rapidly extending subscription list enjoyed by the Electrical. News among users of electric and engsneering appliances, the makers of such articles need not hesitate in deciding how they may most directly and cheaply reach these classes.

The city council of Montreal are threatened wa th hugatoon over their telephone communication by the new Merchants' Telsphone Company who are insisting upon the city council granting them the privilege to erect poles on the streets. The company maintain that according to their charter, they have the right to do this in any city in the province. They declare their intention should the city refuse their application to carry the matter into the courts. The difficulty the council find in granting this request is that the Bell Telephone Company refuse to continue the work of placing their wires underground according to their charter until the council pass a resolution permanently prohibiting the erection of poles in the city by other telephone companies. This step of the Bell Telephone Company is we think perfectly justifiable, for they have already expended nearly \(\$ 40,000\) in underground work, and it will cost yet a large sum before the work is completed. Why should they be put to this expense in order to make room for poles to be fixed in the street by another company who would, by this means, be able to enter into competition with wires laid at one seventh the cost of underground work. It appears strange that a company should be given a franchise to put up poles in the streets of any city in the l'rovince without giving the municipal authorities power to prevent such work if they should deem it desirable to do so.

DURINg the !east year the development of electric midways in Canada has been exceedingly rapid. One new enterprise of this character has crowded so fast upon another that there have usually been from half a dozen to a dozen roads under construction at the same time. The efficiency and economy of the trolley system has been so clearly demonstrated that little difficulty is now experienced in securing the necessary capital for the construction and equipment of new roads where the conditions are such as to make it reasonably certain that sufficient business can be developed to pay it air return upon the capital invested. In fac:, judging from the number of new roads, and the reputation for sound judgment of many of the persons who are embarking their capital therein, electric railways have come to be regarded as being amongst the safest and most desirable business investments. Electric railroad development is said to be more rapid proportionately in Canada than in the United States, notwithstanding the speedy revolution which has taken place in this direction on the other side of the line. Nor is there at present any prospect that the rate of progress in this country will in the near future decrease. The fact is becoming apparent that in the ease of suburban roads it will not be necessity to look to passenger
traffic alone to provide the necessary returns, but that a profitable business may also be done in the carrying of light freight. This fact will doubtless lead to the extension of such roads moo the rural districts and to their use by farmers instead of the familiar two -horse waggon, which in the present stage of perfecton of country roads, is a slow and costly method of conseymg produce to market.

TuE: Railway Committee of the Privy Council have amended their order passed in September last, under which the City and Suburban Electric Railway Company of Toronto Junction were held liable for the entire cost of protecting the crossings with the Grand Trunk Railway on the Davenport Road and the Canadian Pacific and Grand Trunk railways on St. Clair avenue. The committee now order the cost of maintenance to be apportoned as follows: The cost of protecting St. Clair avenue crossing is to be borne, one-half by the electric millay, onequarter by Toronto Junction, wo thirds of the remainder by the G. I. R., and one-third by the C. P. R. The electric railway will beat one half of the expense of the Davenport road crossing, Toronto Junction and the G. T. R., one quarter each. The cost of protecting both crossings would be about \(\$ 2,000\) per year. This is not only a question affecting the company dunning the cars at the present tome, but the public, as the franchise of an electric railway is made less valuable when the whole cost of maintaining such crossings is thus imposed upon street railway companies. It must also be remembered that the parties who maintain the crossings, will also be held liable for improvements, such as the building of bridges, \&e., should the traffic on the road increase to such an extent as to make these necessary. While this question of crossing tracks has been agreeably settled in the north-west of the city with a new street railway company, it is surprising that a difficulty should have taken place between the G. T. R. and the Toronto Street Railway Company in reference to the crossings at the Don. This latter company is of long standing and its right of crossings, which has been exercised for years, has never been suspended. True, it has been held that street cars come under the Railway Acts when they are propelted by electricity, but surely the law never intended that when an old company by this means placed itself under these Acts, it should forfeit its prior existing rights to cross railways. Such legislation to our mind would be as unjust as to saddle the City and Suburban Railway Company with the entire cost of maintaining the crossings already referred to. The crossing no doubt reeds better protecting, which could be done by the execton of gates similar to those described elsewhere, and the Street Rainy Co should have no difficulty in arranging wi th the G. T. K. and the city regarding the terms upon which it should be carried out and mantained.

\section*{ENGINES FOR ELECTRIC LIGHTING.}
Iv.

One of the largest and at the same time most complete and most successful systems of power transmission is to be found in Paris, France. It was originally designed to supply compressed air for the regulation of clocks, and four years ago 8000 clocks were connected with the system. It is now the largest compressed air system in Europe.

The company has four central stations; three of these have each two thousand horse power, and the fourth has machinery for eight thousand horse power, and is laid out to contain machancery capable of supplying tweniy-four thousand horse power.

The air is compressed by means of steam engines, and is distribute under as high pressure in mains and used to drive ensines, instead of steam, and for other purposes. In some of the earlier appliances about \(50 \%\) to \(54 \%\) of the power developed at the station was utilized in the engines of the consumers. Later improvements have been effected so that So \(_{\text {: }}\). and over has actually been made use of.

In the new large station the stem engines used are triple expansion vertical engines using about \(3, \underline{3}\) pounds of coal per horse power per hour.

The air is delivered at a pressure of 60 lbs. per square inch, and is in some cases made to pass through a heating arrangemont before being used in the engine.

This system of using air for distributing motive power has many points in its favour, and will prove a strong competitor
with electricity. The pipes conveying the air are made in lengths of about 9 feet with flanges and jonts made with India rubber. The loss from leakage is very slight. When power is required for lighting purposes an air driven engine may be used to run an electric dynamo and so produce electric light.
Another method of power distribution which has very much to commend it has been long in partial use. The distribution of gas as a fuel and its use in gas engines for the production of power will yet be much more extensively employed than it ever has been. There are ne scrious difficulties in its manufacture, storage, distrobution and use. It can at once be applied for power, light or heat and can be carried long distances with very litte loss, and used with safety even by unskillful persons.

Gas engines are now made of all sizes, from one horse power up to over two hundred horse power. The quantity of gas used in the first commercially successful gas engine was from 20 to 25 cubie feet of coal gis per herse power per hour, in engines of even small size, that is under 40 horse power. Reduced to a coal consumption, these engines have been run as low as one and one-tenth pound of coal per horse power per hour. Within the last few years improvenents have been made, making the gas engine a much more perfect machine than it was, and it bids fair to be a formidable rival to the steam engine.
The use of gas as a means of distributing power has probably more to commend it than any of the schemes considered. By it engines may be driven and light and power distributed by electricity as so many are now doing by steam When the demand for more power comes, another engine can be at once started willout any preliminary getting up ofsteam. When the demand ceases, the engine can be stopped without any loss from leaving boilers with steam up and fires burning.
The convenience of working the powerat distributing stations .s at once apparent, and as fuel gas can be made more cheaply than illuminating gas and can be used in the engines, the economy will be found by all who will try it.
Another advantage in such a system would be that many customers could be found who did not want either power or light, but would take the gas for cooking and heating purposes. In some places there would be a difficulty in getting such works started owing to the existence of illuminating gas companies having chartered rights as to the laying of pipes under the streets and such like privileges, but in other growing towns where there are no gas companies there would be less difficulty, and once the great advantages of the system were put into practical use the way would be opened up in large cities.

\section*{AUTOMATIC TELEPHONES.}

Ir is as much an open question now as it ever was in the days of the immortal Shakespeare, whether it is not better to "bear the ills we have" than "fly to others that we know not or." It is perhaps ungallant to speak of the long suffering and usually patient "hello girl" as a cross to be borne with Christian resignation, but the stem and solemn fact remans, that if you rang your bell too much in her ear the "linked sweetness long drawn out" that is supposed to characterize the ans;clic switchmaiden of your lightning expressions is liable to be changed to something undeniably peppers.
A device more or less complicated, intended to do away with the "central" operator, is now bcing brought before the public, but why the expense of such a complicated conglomention of apparnatus should be gone in in order to deprive a few young ladies of a chance to cam their daily bread is totally beyond our comprehension. Our comprehension may be limited, but while the fact remains that the ammal interest on the coit of a six or eight wire system, such as the new-fangled idea requires, would be more than enough to pay the wages of expert operators, we are compelled in cry cui onone, what is the good? Why disphace the operators whose wages aue a small fraction of the expense of a telephone systen in orter to introduce ether complications and expenses.
"The ills we have", to wit, the exiremely affable young ladics at "central," we are all more or less acquainted with ; now let us leok at one or two that at present we "know net of," but which the cloquent automatic projectors would like to run us up against. We all know how thone:oghly reliable electric currents are when there is a speck of dust in the key contacts or a leakage of battery power to ground during wet weather. This last
factor is so important in the adjustment of a magnet and variation, that a telegraph operator has sometimes to keep the adjusting sciew of his relay continually in his hand white using the instrument. The "automatic" exchange instrument fir each telephone, contaning four or five magnets, is expected to look after itself (no operators need apply), to adjust itself, to keep itself clean, to automatically put on its own bib and tucker and to go to church Sundays-in fact to lead an exemplary life gencrally; no one is allowed to take a fatherly interest in the orphan becausc-is it not "automatic"? Now we will suppose a subscriber wants to call up the general hospital and has gone through the cabalistic pefformance on the keys required to make the necessary number, and we will stretch a point and further suppose he has done it correctly, and some wandering microbe of a fy, as we ex-speckt he might, has been fooling around one of the contact points and the machine has slipped a cog-only one cog, mind, in the possible 9999-instead of the general hospital he would be just as likely to get the jail. Imagine what a shock to Cholly's feclings if he tried to call up his sweetheart and yot an und:naker, or the effect on the presiding maiden of the Y . W. C. G. if some besotted bibulist took her for a brewery and ordered a dozen of beer and one of old Tom gin and send it in a brace of shakes at that! There would be a delightful uncertainty as to what you were going to get about the business that would be paricularly charning. It would be a soutdestroying invention, no doubt of that. If yeu wanted the Salvation Aumy for instance, and got the Mercer Reformatory, you would not, metaphorically speaking, take off your hat and apologize to the polite operntor at Central for not speaking plainer. Oh no! The restraining infuence of that young lady's presence as it were would be absent, and you would illuminate the dark depths of the automatic's transmitter with a blue streak of indignation that would make the six wires sizzle to try and carry it all away at once.
Any system that depends on a battery current to work its mechanism at a distance, must in the nature of things be uncertain. The failure of the writing telegraph that was shown some years ago was enturely due to this cause. The apparatus would work perfectly with a defimte resistance and umform battery, but was inoperative when exposed to vicissitudes of weather and distance. If, as is proposed, a common battery main is used with branches to each subscriber, a cross on the line, liable to lappen at any time, would paralyze the whole exchange.
The switch board would have the same number of connections as the ordinary telephone switchboarl, with the addition of a complicated piece of mechanism in place of the phain annunciator drop of the ordinary system. Its adoption, instead of saving in the cost of labor, would simply substute expensive mechanics for comparatively inexpensive operators.
The claim that a small country town or village could use this system instend of the ordinary one does net appear to have geod foundation. If automatic instruments were installed it is idle 10 say that they would look after themselves. They would have to be maintained. It would simply mern the substitution of an expert to keep them in order, instead of the cheaper boy or girl . whose only qualification needed would be the ability to ring a \(\checkmark\) telephone bell.

The immense cost of the system in a large city would far ioverbalance the amount of the wages of a few girls, while the uncertainty of results would be a scrious, if not a prohibitive drawhack. We have fresh in our mind the words of caution given on the subject of electric investments by the president of the Canadian Flectrical Association at its last convention, but do not think that investons, though theymay not know very much about the matter technically, will place much faith in a telephone company who would offer to equip every town and village in the county and baild trunk lines from New Branswick to British Columbia on a capital of \(\$=5,000\).

Work on the \(\$ 3.000,000\) contract for laying the tracks of the Montreal Street Kailway was commeneed on the \(=4\) th wh.
The Montreal Street Railuay Company have discovered an extensive system of stealing amongst their conductors, by resarting to the old srick of puting a tube th the boxes.

A proposition has leen made to coum the hours for. telegraphic prorposes frome a fixed meridian so as to obrizat the anomaly of receiving news of events happering a day after it is neceived bere.

THE COST OF STEAM POWER PRODUCED WITH ENGINES OF DIFFERENT TYPES UNDER PRACTICAL CONDI－ TIONS，WITH SUPPLEMENT RELATING TO WATER POWER．＊

By Cuantims E．Enkry，Din．D．
（1）The author first refers to his previous paper on＂The cost of Steam Power，＂published in the Ttamsactions of the American Society of Civil Engineers in 1883，stating that he had been urged to modify it to suit more recent conditions，but that he believes it still substantially correct for the particular purposes
is cleliveted at a speed of 250 to 350 revolutions per munute，cor－ responding to the jack shaft speed of slow engines and the actual speed of high speed engines．
（3）White the writer attempts to examine all the principal causes which affect the cost of stean power，the prominent fea－ ture of the discussion is the substantial equalization of the cost of the power developed with engines of different types and dif－ ferent degrees of economs when expenses independent of the coal consumed are considered．Attention is called to the fact that such expenses are fairly constant and will in some cases
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \％ & ＊ & ¢ & & － & \(\boldsymbol{r}\) & E & s & 2 & 1 & & \(\pm\) & 20 & \(\cdots\) & （\％ & ¢ \\
\hline \multirow{4}{*}{2
0
0
0
2
2
0
0
0} & \multirow{4}{*}{OP ENGINE} & \multirow[b]{3}{*}{} & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{med matse pra ixdicatio honsz nower jab hovis}} & \multirow[t]{3}{*}{} & \multicolumn{5}{|l|}{afrroximate cost pix hit houst rowak or} & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{20ns or coal ror one Les）PIA DAY \＃Irll ayerace coal ina una hoya alderotor arazinga amdsturbiar． fines}} \\
\hline & & & & & & & & & & 109AL Of & Tand & watz： zyarom． & \begin{tabular}{c}
conlizas \\
oxplcitso \\
\hline
\end{tabular} & & \\
\hline & & & & Nining & Comer & & огıratiox & 3is？ & & & －60 & & & & －1 \\
\hline & & 2．x．8． & mon & Le． & 24． & cm．r． & 0 & － & Dent & anm & Dok & 14. & 24 & Im & 4 \\
\hline & & 89 & 10012180 & 35604 & 3） & 380 & 178 & 26.11 & 13.81 & 989 & 6381 & 45 & 2.651 & 16.381 & ［830 \\
\hline & －Lov＊：\(\quad \cdots\) ： & 386 & 100610 & 28.1034 & 9 & 137 & 300 & \(3{ }_{3}{ }_{3}\) & 163 & 62.85 & C6．19 & as & 3815 & － 810 & 1735 \\
\hline & & 348 & 10010150 & 2010820 & \(\cdots\) & 80 & \(3 \infty\) & nots & 12.3 & stis & 3808 & 48 & 3064 & 9 & 13514 \\
\hline & & 83 & 1501＋1900 & 271031 & 4 & 4 & \(\pm \infty\) & 11.90 & 1258 & Cas \({ }^{3}\) & 685 & as & 234 & 7816 & 4 s 9 \\
\hline 4 & & 83 & 100以1\％ & 23619 & 0 & 37 & \(08 \infty\) & 179 & 129 & S2，4 & & 13 & 3．380 & 0.85 & 29850 \\
\hline & \(\cdots\) Lo6 7 －．．．． & 356 & & 29618 & ＊ & 73 & 27，0 & 14．310 & 11.81 & 34.35 & 3438 & \％ & 2． 315 & Q 218 & 118 \\
\hline & Crmpon Hict－\％．．．．． & 43 & 500 20150 & HL4 \({ }^{2}\) & 0 & 8 s & 2430 & 1s 4 & 11.8 & \(31: 4\) & 83.14 & 3 & 2．3s3 & 4．0．0 & 1190 \\
\hline & －Lomº ．．．．．． & 384 & 3 stsen 138 & 2080138 & 13 & 34 & 2000 & \(14 \%\) & 19.8 & 18 Cl & cass & as & 2.186 & 2.883 & 1180 \\
\hline & Mrin Spint Cospmad & 34 & 18080 280 & 350814 & 17 & 30 & \(\pm \infty\) & 1338 & 10.5 & 44.4 & 3880 & 2.5 & 800 & ［133 & 1a1cs \\
\hline & Trich rampioed leo Spowl Comboske & 388 & 150 lo 180 & 3810 315 & 15 & 297 & 378 & 1485 & 12.31 & & 400 & 18 & 1285 & 318 & 2410 \\
\hline \(\boldsymbol{x}\) & \(4 \rightarrow\) & 83 & athents & 1264t & 4 & 18 & 4300 & 130 & 0.15 & 61．4s & 72.9 & 2.1 & 1．848 & 4269 & \＄200 \\
\hline 2 & & 386 & 100000000 & 360194 & 14 & 194 & 1800 & \(3 \times 8\) & 2.85 & －\％ & 9L7t & 18 & 3．674 & 4 cts & \(\mathrm{fL}_{3}\) \\
\hline
\end{tabular}
table 1，S：Owino Cost of Steam Power．
for which it was originally designed，to wit ：to show the capital－ ized or present yalue of steant power in different units maintained forever．The prices of engunes have varied since the paper was prepared，but this fact has proportionally little effect on the results，and in any case corrections must be made for the differ－ ence in prices of fuel．
equal the cost of coal．The result is，that if one engine saves a certain laige percentage of fuel compared with another，such percentage is reduced one－half when applied to the double quan－ tity，and in many cases the lower percentage will be balanced or more than balanced by the difference in interest on the cost of the different engines．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline a & & 5． & － & c & \％ & \％ & \％ & x & & \[
\begin{gathered}
x \\
x=1 \\
x=10
\end{gathered}
\] & & & coses． & D 0 & & \％ \\
\hline \multirow[t]{4}{*}{－} & \multicolumn{8}{|c|}{COSt Of Cell fex horse rower ter yenk} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ couts fin tiak or serfise axd ajza． aer kefark}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ rowes fil rche or －acti}} & \multirow[t]{4}{*}{} & \multirow{4}{*}{\begin{tabular}{l}
20728ETT \\
OR Divz \\
bruces 3iy \\
w TER CRXT \\
0700578 \\
axcole 2
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TOTAL CUST 7ER moxiz Pu日E月 FRZ yan or all orrz ATIMQ，CEREXXT AND intiacst Exinnds． THics excert conl}} \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Ow sums of re pars of anorss cace and cost op conl jex jow－mocyos di Iryact as rotans．}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{ coss of coniz jes tox of an roukse jx uranco as rolloms．}} & & & & & & & & \\
\hline & & & & & & & & & \multirow[t]{2}{*}{\(2 \cos ^{20}\)} & \multirow[t]{2}{*}{Nancos} & \multirow[t]{2}{*}{N20tane} & \multirow[t]{2}{*}{xticex} & & & \multirow[t]{2}{*}{\(x^{3} \sin \cos\)} & \multirow[t]{2}{*}{athen} \\
\hline & ．Seco & 1200 & ＊ \(4 \times 0\) & ＊） & \＄000 & 83，00 & \(4 \times 0\) & esom & & & & & & & & \\
\hline & 24 & 8 & Din & Sens & Per & D－ & 20．6． & 0 & －8． & － & 3 & Derer & D－ & Das． & Deam & 8 \\
\hline A & 28\％ & \({ }^{30} 90\) & 58 & － 31.43 & 33 ¢ & 48\％ & 3760 & 7200 & 20 & 8.08 & 4.78 & 11．46 & 2.68 & 630 & 8308 & \％\({ }^{3}\) \\
\hline 3 & 2183 & 27．02 & 22．4 & 22.80 & 2S 08 & 384 & \＄9．8） & 480 & 2.35 & SPr & 4－40 & 3a．s & 3.4 & 4.85 & 3685 & mes \\
\hline c & J003 & 1res & ．3n06 & 3804 & 82.08 & 3406 & 4）\(n\) & SA34 & 180 & 808 & 4，28 & 2.87 & C．s & 2ns & 1285 & 45 \\
\hline \(D\) & 28 & 2180 & 3238 & 2313 & saps & 314 & 41.80 & 32.17 & 208 & 308 & 300 & 948 & 208 & 4.81 & 26.30 & 4 \\
\hline E & s－m． & 127 & 36 & 128 & \(18:\) & 28.4 & 34.60 & 4200 & 2．96 & 381 & \(233^{\circ}\) & 003 & 4.85 & 868 & 2486 & 408 \\
\hline \(\cdots\) & 7\％ & 31．23 & 18t） & 8970 & 1798 & Sc．16 & 3si！ & 487 & 2.31 & 300 & 384 & 278 & 2.74 & 8.88 & 8400 & 2380 \\
\hline 0 & 2.78 & 。 & is 4 & 8970 & 17．86 & 3t． 11 & 3488 & 48.4 & 2．0 & 7．81 & 263 & 2.60 & 2.50 & 285 & 84.80 & 231： \\
\hline E & 2.13 & sals & 14：3 & 1783 & 24.3 & 24.18 & 38．34 & ＋aso & 2.35 & 300 & \(2-4\) & 2.80 & 2.78 & 8.04 & 34.8 & 8309 \\
\hline \(\underline{1}\) & 48 & 14 & 12.12 & 3ase & 1486 & 338 & 30.4 & ． 37.80 & 286 & 788 & 23 & 197 & 2\％ & 408 & 3508 & 3267 \\
\hline \(j\) & －43 & 250 & I2．es & 18.8 & 12：3 & 22－4 & 22， 6 & 2881 & 2.18 & S．t & 231 & 9．45 & 213 & 430 & 1877 & 337 \\
\hline IC & sen & \(8 \%\) & & 14.4 & 138 & 3ais & 4．3 & 3283 & 431 & 8.0 & 20 & 763. & 230 & 850 & 26， 8 & 20\％ \\
\hline \({ }^{1}\) & － 40 & ：4 & 290 & 18， & 81.83 & & 824） & nem & 43 & 400 & 1.78 & 238 & 338 & ． 1.85 & 26.75 & 383 \\
\hline
\end{tabular}

Tabli 1 （Continted），Ehowlia Comi or 8tray Powia．
（a）The author has therefore decided in the present paper to compare the cost of dereloping a given amount of power with several of the different kinds of engines now in general use．A unit of 500 net horse－power has been selected，which it is assumed

\footnotetext{
－An abstract of a paper read before the American Insitute of Electrical Engi－ neers，March 13 ， 1893 ，and printed in the Ni．Hi．Elertrical Expinser．For conveni．
exec of refertoce to the orinimal paper，she garagraphs in the abstract have been ence of refertoce tu the orininal paper；the gan
}
（10）The writer submits Table 1 ，showing in hetail the cost of one－horse power per year developed in engines of different kinds when operated for to hours per day for \(30 S\) days in the year，and for 20 hours per day for crery day in the year，with columns showing the results in each case for coal costing：\＄2．00，\＄3．0， \(\$ 4.00\) and \(\$ 5.00\) per ton．The results are at first presented on the basis that the power required is comparatively steady so that
no susplus machinery is required. A second presentation shows the results for electric light and other plants in case 50 ver cent. surplus machinery be provided to supply the maximum power during certain portions of the day and the power for the remainder of the day be sufficiently low to mantain the averagn.
(11) The different lines of the table refer to engines of the types stated in column b. The authot stites that the last three lines are devoted to low speed condensing triple compound en. gines. Of these, line / shows the probable sesults with machinery designed to secure economy in construction rather than the highest economy of fucl. line \(K^{\prime}\) refers to a low speed triple compound engine more expensively constructed, for which the cconomy is assumed lower that in the other case and for which the results ate believed to be the best that can be secured under ordinary average practice even with the best machinery. There has, bowever, for comparison, been added amother line, \(/\), assumed to be operated at still lower economy by the use of boilers of unusual cconomy and careful attention to the details of operation, for which purpose \(\$ 1.00\) per day is added to the labor ac count. The results shown in this line are believed to be the maximum which can be obtained under the conditions of unusually good practice whth the best care available.

The author then proceeds to describe the several columns of
large numbers of small machines of any kind under conditions securing a substantially unifom load will necessarily give nearer the minimum results shown in column e, but engines generating electric current for electric railsays or subject to variable loads of any kiad will rarely show cconomies as low as has been assumed for comparison in column \(\rho\).
(16) Column \(g\) shows the commercial horse-power of boilers on the now accepted basis of 30 pounds of feed water per horsepower. It will be noticed that the high speed non-condensing engines in line \(A\) required 596 boiler norse-power to produce 500 net horse-power, and that the power of the boilers continually diminishes the reduction in feed water per horse-power, so that for the case last named, line \(L\), only 259 boiler or commercial horse-power is required.
(i7) The cost of the boilers is shown in column \(i\), the prices including not only the original cost of boilers proper, but the erection and connection of the sane. This section also discusses at some length the desirabilty of duplicate values and connections to insure the continuous operation of boilers where stoppages cannot be permitted.
(18) The prices on nbove basis have been fixed at \(\$ 22\) per commercial horse-power for the lower steam pressures and \(\$ 25\) for the higher pressures. These prices are believed sufficient to
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline a & \(\underset{\sim 0+t 3}{\text { G }}\) & & \(\underset{\sim}{1-0+8}\) & \(\underset{\text { Jore }}{J}\) & \(\underset{\substack{\text { I }}}{\text { co+ }}\) & 上 & nit & \(\xrightarrow{N}\) & \(\underbrace{0}_{0}\) & \(\left\lvert\, \begin{gathered}P \\ \text { ratata+ } \\ i 0+c\end{gathered}\right.\) & \(\left\lvert\, \begin{gathered}\text { Q } \\ 0+4+6+ \\ 10+c_{0}\end{gathered}\right.\) & & & \(\left\lvert\, \begin{gathered}\mathbf{T} \\ \substack{\text { bitatet } \\ i 0+c}\end{gathered}\right.\) & & & \(\stackrel{ }{*}\) \\
\hline & \multicolumn{8}{|c|}{total cost frx nct horse fowek ple yzax on masi or} & \multicolumn{8}{|l|}{\begin{tabular}{l}
total cost tex net honse howik yer year for hisctaic a a and \\
 the revence sa II. \(F\) insurance increastio to if per cent., encing. xenemals to a fer cent and boilzr renewale to y pex cent
\end{tabular}} & \\
\hline & \multicolumn{4}{|l|}{\begin{tabular}{l}
mante or mouxs rack axp awi or \\

\end{tabular}} & \multicolumn{4}{|l|}{m DATS OF * HOURS EACM AXD COSt Ot COAL JFS TOX or \(a=181\) it fotiotry.} & \multicolumn{4}{|l|}{\begin{tabular}{l}
rop ye dart or m huyks cack axd coss \\

\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
rax w dars or an yozes Eech axd cost \\

\end{tabular}} & \\
\hline & Hos & 0200 & 460 & \$30 & 8.50 & 320 & 400 & 6200 & 8200 & 0200 & 400 & 3600 & \(2 \times 0\) & 3 & 8400 & 2800 & \\
\hline & 2 & \(\infty\) & D4 & sm & on & \({ }^{\circ}\) & D & O & D & \% 4 & Oon & Dis & Dien & Bat & Den & Son & \\
\hline \(\wedge\) & 231 & \(3 \times 17\) & 42 & \(4 \infty\) & sacs & 3 & 3.80 & 200 & 33.15 & \&1, ¢ & 88.19 & 36.53 & 62.86 & 3 asc & Sase & 205.4 & \\
\hline & 21.46 & 4.5 & 3+0 & 4 \({ }^{4}\) & 385 & cs 31 & Ss & 81.82 & 3485 & 40.21 & shas & \$173 & secs & 32.46 & & 07.50 & : \\
\hline & 284 & 306 & \(3{ }^{18}\) & & \(11 \%\) & 5004 & \%and & \(2 \times 38\) & 31.10 & 34.19 & 41.13 & \({ }^{4} 18\) & Sts & at 17 & 80,92 & \({ }_{3} 3.8\) & c \\
\hline - & 25.8 & \(3{ }^{24}\) & 403 & socs & cas & 3893 & 6781 & 3 c 38 & s.es & \({ }^{4} 223\) & 49.85 & 43.4 & 3283 & 6231 & 3880 & 4 & D \\
\hline 8 & 3813 & 324 & 3.73 & 3 Sols & 423 & 2881 & 848 & 2300 & :2acs & 328 & \%rs & 49.18 & 4 cos & 328s & 68.23 & gas & E \\
\hline \% & 20,5 & 2477 & 9a73 & 2409 & \(4 \%\) & sass & 5280 & 4, 16 & 22.88 & 3203 & sus & & 8.60 & 38.85 & 4850 & 2245 & F \\
\hline - & 41 & 3286 & 30.13 & 2408 & 4.37 & 1480 & & \(0_{2} 8\) & 73.4 & 31.30 & 38.19 & 3705 & 4,24 & 3486 & 8200 & 324 & 0 \\
\hline m & 01 & 2393 & 290 & 3is & 3278 & 41.8 & 15311 & 6) 8 & 70\% & 30.9 & 3043 & 3204 & 4 He & sacs & casp & \(4{ }^{4} 8\) & 24 \\
\hline 3 & 31.37 & 24.85 & \({ }^{218}\) & 31 & 3181 & 488 & 3831 & cas & 29.08 & 3050 & 3248 & 80 & 4s & 31.28 & 8180 & ca, 21 & 1 \\
\hline 3 & \({ }^{26.16}\) & \(0{ }^{48}\) & 2mas & 316 & 32,09 & 4208 & 3268 & 8282 & 2.5 & 1248 & 32.6 & 3.77 & 445 & \({ }^{1218}\) & 889 & Cs.73 & 3 \\
\hline & 3818 & 13 & 228 & & 278 & 464 & 31.14 & 314 & 29.38 & 319 & 3203 & \(8 \infty\) & 4146 & 81.14 & 37.4) & 6462 & \(x\) \\
\hline 2. & . \(n\) & 410 & shis & 248 & m, \({ }^{5}\) & 40.19 & \(47 \%\) & 12,4 & 213 & 80.82 & 320 & \(38 \%\) & *13 & 419 & & cacm & : \\
\hline
\end{tabular}

Talle 1, (Contruode), Suowing Cost of Stram Powiek
the table. Nlost of these will be understood by reading the headings. We note, however the following:
(ri) In celumn \(c\), the indicated horse-power required to produce 300 net horse-power his been fixed at 542 for the high speed engines and 556 for the low speed engines, to include the friction of transmission to the jack shaft.
(15) Columins \(e\) and \(/\) relate to the feed water per indicated horse-power per hour, column e showing the portable limits within which the feed water required will vary for engines of the types stated, when constructed by different manufacturers or operated under different conditions. The lower limit is believed to have been fixed in each case at the minimum result which has been obtained by reliable experiments with the class of engenes referred to; these figures ate therefore too low for average practice. The large figures in column erepresent results which in the opmion of the writer may be obramed under less favorable but practical circumstances, and of course still larger costs would result from the use of apparatus imperfectly designed or mproperlyoperated. Column fshows the feed water per indicated horsepower per hour assumed for comparison. The figues in this column are not intended to be averages of those given in column \(r\), but those which can be safely depended upon under condtions of practice, with the load varying between considerable limits, thereby affecting somewhat the economy. It should be staied that the desire to have these figuros decrease progiessively where possible has somewhat influenced the values selected as well as the above considerations. Fingines operating cotton mills or
provide sectonal boilers with settings and all attachments, and the writer expresses the belief that this class of boilers should be estmated for, even at somewhat increased first cost, from considerations of safely and reduction in repairs. The influence on the results due to difference in the prices of boilers is discussed later in connection with Table 2, which is not here reproduced.
(20) Column \(\lambda\) shows the cost of engines erected and connected ready for operation. The writer speaks of the difficulty of obtaining these proces. Circulars were sent to different engine mannfacturers and all kindly responded but many did not make engines of 500 h . p. or of all the types; some gave very low prices which migh not be sufficient for close specifications, others added varions percentages. The cost of some steam plants complete were, however, accessible. Mr. Pearson, of the West End Railroad in Boston, gave prices checking well with the prices gwen for the inple compound engines, and the prices of six com. plete plants of various sizes, using simple engines, were obtained from advance pages of a work in course of pleparation by Messrs. T. C. Matin and W. H. Schlessinger, the average of which also checked the prees stated in the table, being a little lower on account of the type of boilers employed.
(23) Column \(/\) shows the amount in column \(k\) augmented \(21 / 2\) per cent. for inspection and 6 per cent. for Joss of interest during construction, inctental salanes, etc. There percentages are independent of architects commissions and are intended to cover numerous incidental cipenses due to staring a plant. The per.
centage will generally be insufficient rather than the contrary, except in cases where a plant is simply increased after the organization is established.
(24) An inspection of column \(L\) shows an unexpectedly small difference in the total cost of steam machinery of different types when everything is constdered. It is a curious fact that steam machunery of fairly good economy shows the lowest first cost, the cost of the simpler machinery being higher on account of additional boilers, and that of the more economical machinery being higher on account of the ligher cost of engines, etc.

\section*{(To be Continucd.)}

\section*{engineering and electric plant at the parliaMENT BUILDINGS, TORONTO.}

The new home of legislation for Ontatio is about completed, and we give some particulars of the engineering plant which will be found interesting.
The boiler room is situated in the north basement. It contains six horizontal mult-tubular boilers built by John Abell, of Toronto. They are made of "Otis" homogeneous steel, 60,000 pounds tensile strength. Fach has a dhameter of \(5 \frac{1}{5}\) feet and is 16 feet long ; the shell is \(3 /\), the head \(\frac{1}{2}\), and the dome (\(30 \times 30\)) \(3 f\) of an inch thick. The boilers have each 98 three-inch tubes running the whole length, made of charcoal iron, and are furnished with McClave's patent grate. They are provided with cast iron flush fronts of a neat design, double folding doors, and all the exposed fittings are mekel plated, which gives a good finish to the work. The boilers have been tested by hydraulic piessure to 150 pounds per square inch.

The engine is a self-contained automatic cut-off of 50 horse power, and was also made by Juhn Abell, of Toronto. It is said to be the first of its kind bult. There is also in the boiler room one of Curtis' hot water putifiers connected with the high pressure steam lincs. The entire buildings are warmed with low pressure steam, and provision has been made for utilizing the exhaust steam by passing it through the purfier and heater.
The heating is carried out by direct and indirect radiators, and over 8 miles of wrought iron piping is employed in this work- 5616 feet of main pipes being from 3 to 12 inches in diameter, and 37,208 feet of branch pipes varying in size according to radiators supplied. In the direct system thete is 26,173 square feet of heating surface in the radiators, and the indirect supplies 5,060 square teet.

The indirect radiation to the principal rooms is controlled by a clever electric device: attached to the thermometer in the roon to be heated is a small thermostat which is so sensitively arranged that whenever the aunosphere chainges the reading of the thermometer from \(68^{\circ} \mathrm{F}\)., the instrument, by its connections with the switch dampers, is able to instantly throw the cold air over, under or through the radiators in the same proportion.

Mecinanical ventilation is resorted to in the buildings by means of two large extracting flues (\(8 \times 7\) each), which are connected by large galvanized iron ducts or pipes to every room in the building. The flucs are each provided with an 80 -inch Blackman's exhaust fan, and the main duct has a fresh air propellor 48 inches in diameter. In the main air shaft there is a cheese cloth bag sercen 25 feet long for cleansing purposes, which is so arranged that when one bag becomes full a dupltcate can be easily substituted.
The electric lighting is entirely on the "three wire" system and the current is supplied by the Incandescent Light Co. to the east and west ends of the building, and is conducted along the ceiling of the basement by means of a double. set of "0000" mains. From these there are 18 large distributing risers, and each one supplies a section of the lighting on cach flat. The total number of lights in the building, which is arranged for gas as well as electric light, is 2600 , of which 2000 are 16 c . p., and the remainder \(j_{2} \mathrm{c}\) p. and upwards. About 8 miles of wire is used in order to supply these lights.
Special care taas been taken to provide means by which the distributing wires, while concealed, can yet be easily got at in case of necessity. The wires are carricd along the wall covered by a moulding about 5 inches deep. This is fixed round the entire room whether there are wires to hide or not, so that the work appears as part of the decoration. If the wires need attention, it is only necessary to remove a length of this moulding, and the work can be done without furthertrouble or any damage.

It is a very simple but useful contrivance, and is said to be adopted for the first time in these buildings.
The electric light fittings throughout the several departments are worthy of notice. They are in bronze, old gold, brass and black iron. In the l.egislative Chamber there are four electoliers well worth inspecting. They wete made from special designs by the Central Gas and Electric Fixture Co., of Brooklyn, ind cost about \(\$ 1500\) apiece. The metal used is polished bronze, which blends well with the other decorative work of the Chamber. Each electrolier has 24 lights, with the same number of gas burners, which are most artistically arranged. It is doubfful whether there is a finer specimen of this class of work in America, either in design or workmanship. Besides these chandeliers there are 22 brackets, each giving 5 lights, and there also is an arch of lights over the Speaker's chair.
Before leaving the electrical appliances it is necessary to mention the four electric elevators erected in the building by Messrs. Otis Bros. \& Co., of New York. In these elevators the power is derived from the Eichemeyer motor, the use of which this firm controls for elevator purposes. To give motion to the elevator machinery the motor shaft is conniected by a double worm gear to the winding drum, thus giving perfect steadiness of operation. The power is controlled by means of a starting wheel in the car, and is communicated to the motor in such a way that the car stops and starts with perfect ease. This is effected by means of a rack and firside arrangement, which works the brush in the face of the resistance box, thus :urning on more or less current as may be requited. In addition to the usual Otis safeties on the car these machines are provided with an automatic brake and with safety stops at the top and bottom of the cars' travel, which completely control their operation. The cars are overbalanced by counterweights running in wood guides, so that, as a rule, the power is simply needed to give a first impetus to the cars, afier which the use of power is reduced to a minimum. Should the cable become slack, the current is immediately cut of by an automatic slack cable stop, and in the motor room and cars the state of the switch is indicated by electric indicator lights.
The whole of the enginecring plant, which is one of the most extensive in Canada, appears to have been constructed and installed in a most satisfactory manner. It is under the control of Mr. A. M. Wickens, whose enginecring abitities are well known. He was until recently engineer to the Globe Printing Co., and is a past president of the Executive of the C. A.S.E.

\section*{TRADE NOTES.}

Mr. C. W. Henderson, electrical \({ }^{4}\) contmator, Montreal, is moving into larger premises on Bleury street:
Messrs. J. M. Harriston and H. A. Seyler, both practeal clectricians lately in the employ of the Royal Electric Co., are about to stant business on their own aecount at 78 C Criig strect. Montreal, under the name of the Montral Electrical Supply Co.
Those of onr readers who were at the exhibitions held at Toronto and Montreal last year, will no doubt remeniber secing an automatic high speed engine exhibited by the Robb Engineering Co. of Amherst, N. S. At that time these engunes were in use only in the maritime provinces, but several are now placed and others contracted for at Montreal and other points west. This engine is one of the latest put on the market, and is up to date in every respect: the governor and valve being escentially the same as the "Straight Line." and are used by arrangement with the Straight Line En. gine Co. The Robb Enginecting Co. also manufacture an improved boil er called the Monarch Economic. a large number of which are in use in electric light stations and factories in the marit me provinces. and three of which, we understand, are soon to be placed in an electric light station at Windsor, Ont., along with a large Robb-Armstrong engine. Users of the boiter find it very much mare economical than the ordinary brick set boiler. and it has all the advantages of light portable forms. being ready to put in
position when it leaves the works. position when it leaves the works.
Mr. T. W. Ness, of Montreal, has sent quite a large exhibit of the tele.
phones and switchboard appraus which he manuactures to the World's phones and switchboard apparatus which he manufactures to the World's
Fair at Chicago. Before sending it a pholograph was taken, by which we Fair at Chicago. Before sending it a phologrnph was wiaken, by which we
notice that a very interesting display will be made Besides the ordinary notice that a very interesting display will be made. Besides the ordinary
Standard gell Telephones, which are used for private lines and local ex changes, there is a switchiourd for use in central ofices fited up com plete ready for work. This is a sarmple of th: large number of switchhoards which this firm has recently been building and supplying throughout Cana da Quite a large varicy of wirchouse iclephones was also shown. This system, although largely used throughout this country, is compantively
new in the United States. Briefly decribed it is a sysicm by wich cach new in he United Staces. Briefly described it is a sysicm by which each telephone is its own central exchange. By turning a switth to the desired number any depanment of a factory may be alled up from the office or
from one deparment to another as desired. Fhere were also a number of from one deparment to another as desired. There were also a number of
desk telephones on fixed and also moveable arms for special use in tanks desk relephones on ixed and also moveable arms for special use in kanks and public or private offaces lislake and Carbon transmitters, receivers and annunciators completed the list of articles sent. Owing to the pati nts on will cuuse more than ordinary interest to those attending the World's Fair.

\title{
ELECTRIG RAILWAY DEPARTMENT.
}

\section*{CITY AND SUBURBAN ELECTRIC RAILWAY.}

In our last issue we gave some particulars relating to a proposed electric strect railway to be built and operated in the castern suburbs of'Toronto. Some notes concerning the electric railway now running along the north-west limits of the city may also prove interesting.

The railway was built by the Canadian Edison Electric Co. and is the property of the City \& Suburban Electric Railway Co. This company, with which is incorporated the Davenport Railway Co., has a capital of \(\$ 200,000\). Their offices are situated at the corner of Dundas and Kecle strects, Toronto Junction.

Mr. H. W. Darling, of New York, is the President; Mr. R. H. Fraser, late superintendent of Nova Scotia Ceneral Railway, is the manager and secretary; Mr. 1. M. McNaugh, electrician, and Mr. H. Mowatt, engineer. We show a diagran of the present route of the railway which is about six miles long and has a single track with loops at convenient stages to allow cars to pass each other. The line passes under the C. P. R. tracks on Keele street by means of a substantial subway built in stone. It also crosses the G. T. K. on St. Clair avenue and again on Davenport Road. At these two points sigual towers have been built with gites and ptoper diamonds to the tracks. This work was executed by Messrs. N. S. Piper \&Son, of 314 Front strect, Toronto, and is the first of its kind. We refer to this at more length in another place, giving an illustration reproduced from a photograph, of one of the junctions. Four and one-half miles of the line are laid with \(\sigma 6 \mathrm{lbs}\). \(T\) rails upon sleepers, and the remaiteder is shorty to be relaid with similar material. Along the strects in Toronto Junction the mils are 69 lbs. T rails laid
seating 30 persons, is fitted up exceptionally comfortable. The platform at each end is covered in by glass partitions, which not only shelter the motorman and conductor during rough weather, but greatly assist in preventing the cold from finding its way into the interior of the cars.
One car is worked by a Westinghouse motor of \(50 \mathrm{~h} . \mathrm{p}\). ; three have Edison motors of \(20 \mathrm{~h} . \mathrm{p}\). each, and the remaining one has a similar motor of \(40 \mathrm{~h} . \mathrm{p}\). Threc of these are now nunning on the road, giving a 10 minute service.
The railway will be found a great convenience to those having to travel between the city and Toronto Junction, as the service, combined with that of the Toronto Street Railway, is far better than the railway facilities on account of the cars running more frequently. This benefit will be still better appreciated when the latter company runs an electric car service on Bathurst strect.
The City and Suburban Railway Co. also provides improved means of transportation from the western to the northern suburbs of Toronto, and as the Toronto and Richmond Hill Railway, which is shortly to be built, will tenminate at the same point on Bathurst street, further improvement will be obtained in this direction.
The company have made arrangements to extend their line down the west side of High Park to Swansea, meeting the Toronto and Mimico Railway on the Lake Shore Road. The track is now being laid, and it is hoped to have the cars rumning on this extension during this summer. As the new line passes through some of the well known Humber scencry, the cars will be much appreciated during the excursion scason. It is proposed at an early date to extend the company's lines to Lambton

on girders, and bave concrete foundations where the strects are paved.

The power house, a view of which can be seen in the cut showing the crossings alreatly referred to, is situated on the south side of St. Clair avenuc, and has a car house adjoining capable of holding 12 cars. The building is in red brick, and about 150 feet long and jo feet wide. The engine room is fitted up with \(125 \mathrm{~h}, \mathrm{p}\). l.conard-Ball engine, which is coupled wiha No. 3.5 Edison generator of 100 kilowatts or h.p. The cars, of which there are five, were built by Patterson \(\&\) Corbin, of St. Catharines. They are 16 feet in length, and the interior which is capmble of
and Weston. When these extensions are carried out, this portion of Toronto suburbs will be well provided with means of local transporation.

\section*{PROTECTION OF RAILIWAY CROSSINGS.}

Tut: introluction of electricity to strect cars as a motive power, has made it necessary to introduce where the tracks cmoss railway lines some complete system of signalling to prevent accidents, and a perfect and ingenious set of strect gates with nutomatic signals have been invented for this purpose. The City and Suburban Electric Railway, of Toronto Junction, have had
gates of this description erected where they cross the C.I'. R. tracks on St. Clair Avenue, and also where they cross the G. 'l. R. on Davenport Road. We give alt illustration of the former gates which are operated by a sigmalman in the tower, by means of a cank atached to a gear stand, the one movement working the four street gate arms, four side-walk arms and semaphore signals, as follows : when the gates are open for traffic on the street the semaphore target is at right angles to mast, showing during day a "danger" signal, and at night a bright ted light. The action of lowering the gates pulls the target to "safety," this being a perpendicular position, and at the same time changes the red light to white or green in accordance with rules governing colors in semaphores on the railway which crosses.

The appliance is so arranged that the gates have to be lowered to an angle of \(35^{\circ}\) before the target starts to move, and . when gates reach the level, the signal is completely changed from "danger" to "safety." Thesame applies when gatesare being rained after a train has passed, the signal gradually changing and showing complete "danger" signal when gates are at an angle of \(35^{\circ}\). The semaphore is a positive signal in this wayThe change of light is effected by an inside case holding the different colored lens, which slides on a frame, the two ruby lens coming opposite the plate glass dise in the outside case when the target is at right angles or " danger." When target is pulled perpendicular, or "safety", a corresponding movement takes place in the case, which now shows white or green light, as the case may be, where it before showed red, so that but one color at a time can be seen by the engineer on train about to cross. The gates are also equipped with red lamps, which swing between two shields which shut off the light from the trainmen and show bright red light in center of street when gate arms are down. In day-light, the red light is replaced by a bright red. target, which is a great improvement on a red flag, for unlike a flag, the target does not require a wind to make it fly, and on the score of durability there is no comparison. Another advantage is that a man who has been unfortunate enough to have an arm or leg taken off on the milway is cartabie of attending the signal, as there is noladder to climb, the lamp being elevated to its position from the ground by means of a cham, and the combined gates and signal easily worked with one hand from the tower. Messrs. Noah L. liper \& Son, Toronto, are the inventors and patentees of this very useful appliance. A large number of prominent railway and Government officials have inspected the gates as erected, and expressed their entire appreri tion of the method adopted as a preventive of accidents. The system is well worth the attention of all companies situated so as to require the use of protective devices.

\section*{NIAGARA FALLS ELECTRIC RAILWAY.}

Rimin prod ress is being made with the bulding of this line, and every effort is being used to have the railway open on the ath of May next. When completed this will be the only road operating from its own water power, and the first ume any part of the hidden power stored in the waters of Niagara Falls will have been put to any practical use.

The construction of the wheel pit and the driving of the tunnel to the river bank under the Falls, in order to provide for the discharge of the water passing through the water wheels, was no easy matter, and the engincer, Mr. R. W. Leonard, of Brantford, Ont., is to be complimented on the way the work has been carried out. The wheel pits are 80 feet deep, and contain two turbines or horizontal wheels of \(1,00 \mathrm{~h}\). p. each, which were made by William Kennedy \& Sons, of Owen Sound, Ont. These wheels have immense iron cases, 10 feet 6 inches in diameter, set on iron girders, which are fixed to solid stone work.
The inlet camal, situated at the foot of Cedar Island, is 250 feet long, 14 deep and 18 wide. The water is conducted along this canal to a large basin and then through large iron penstocks; 7 feet 6 inches in diameter, 10 the water wheels. The outlet tunnel already referred to is 600 fect long, 8 by so feet in size and discharges near Table rock.

The electric power house is to be a handsome structure \(100 \times 62\) feet, built in limestone, and will be situated opposite Cedar Island. Mr. Jas. Balfour, of Hamilton, is the architect, and Mr. J. G. Pocock, of the same city, the contractor. The
mterior of the building will consist of one large room in which will be the main shaning and three dynamos of 250 h. p. each, which are to be buite by the Canadian General Electric Company.

At Queenston the milway is to be provided with another power house, near the river, in order to drive the cars up the heavy grade of the mountain, which is a mile and a half long and has a fall of 250 feet in a mile, The buikling will contain a boiler room \(35 \times 30\) feet and an engine room \(55 \times 70\) feet. The plant will consist of two engines of \(150 \mathrm{~h} . \mathrm{p}\). each. The two dynamos to be used will have a capacity of 300 kilowatts.
There is no doubt the line will be greatly patronized by the excursionists who visit this locality and it is hoped that the wishes of Mr. Grant, the general manager of the company, will be realized by the line being in operation by the Queen's birthday.

MONNLIGHT SCHEDULE FOR MAY.
\begin{tabular}{|c|c|c|c|}
\hline Day of Month. & Light. & Extinguish. & No. of Hours. \\
\hline & 11.3. & H.3. & 11. M . \\
\hline 1. & 1. M. 7.30 & P. M. 9.00 & 1.30 \\
\hline 2...... & 117.30 & 110.00 & 2.30 \\
\hline 3...... & 117.30 & " 10.50 & 3.20 \\
\hline 4...... & " 730 & 11150 & 4.20 \\
\hline & 117.30 & A.M. 12.40 & 5.10 \\
\hline & 117.30 & " 1.20 & 5.50 \\
\hline 7..... & " 7.30 & (1) 2.10 & 6.40 \\
\hline & 177.30 & 112.40 & 7.10 \\
\hline 9...... & 117.30 & 1) 3.10 & \(7.40^{\circ}\) \\
\hline 10...... & " 7.30 & 113.30 & 8.00 \\
\hline 11...... & " 7.30 & (1) 3.50 & 8.30 \\
\hline 12...... & 117.40 & 113.50 & 8.10 \\
\hline 13...... & 117.40 & 113.50 & 810 \\
\hline 14...... & 117.40 & 113.40 & 8.00 \\
\hline 15..... & 117.40 & 115.40 & 8.00 \\
\hline 16 & " 7.40 & 113.40 & 8.00 \\
\hline 17 & " 8.40 & 113.40 & 7.00 \\
\hline & " 9.50 & 113.40 & 5.50 \\
\hline 19 & \({ }^{11} 10.50\) & 11 3.40 & 4.50 \\
\hline 20 & " 11.50 & \(3 . .\). & \(\{3.50\) \\
\hline \(\cdot\) & A 41310 & "1 3.40 & \\
\hline & A.3. 12.10 & " 3.40 & 3.35 \\
\hline 23...... & " 12.30 & " 3.40 & 3.10 \\
\hline 24...... & "12.50 & 113.40 & 2.50 \\
\hline \(25 \cdots\) & " 1.10 & 113.40 & 2.30 \\
\hline 26...... & " 1.30 & " 3.40 & 2.10 \\
\hline & 11.1 .50 & " 3.40 & 1.50 \\
\hline 28...... & No light. & No light. & \\
\hline 29...... & No light. & No light. & \(\ldots\) \\
\hline 30...... & No light. & No light. & \\
\hline 31...... & 1. M. 7.50 & I. M. 9.50 & 2.00 \\
\hline & & Total, & 140.30 \\
\hline
\end{tabular}

\section*{PERSONAL.}

Mir John litule, of Hamition has been appounted manager of the Wimutsor electric railway.
Mr. Albert E. Edkins, the president of the Executive Board of Statoonary Engeneers, has returned from a visit to the Lower Provinees.
After a successful career, President Higgins, the originator and manager of the National Electric Tmaway and Light Company, of Victoria, B3. C., has resigned.
We rexret to announce the death of Mr. A. Muir, manager of the Bell Telephone Company's branch at lindsay. The deceased was a nephew of Judge Muir and was much respected.
Mr. John W. McRac, president of the Electric.Street Railway at Oltawa, is likely to be the successi- to Mr. C. H. Mackintosh should that gentleman be appointed Lieutenant-Governor of the North-west Territories in May next.
We are pleased to record the recovery of Mr. W. E. Davis, the electrical engineer to the Toronto Street Railway, from his severe illness of typhoid fever. He las gone to his home at Fall River, Mass, to recuperate his health.
Mr. George W. Inglis, of the firm of George F. Blake Manufacturing Co., Liberty st., New York, builders of the new high duty pumping engine at the main pumping station of the Toronto Waterworks, has taken up his residence at 28r Sherbourne st., Toronto.
Mr. Chas. A. Bassett, of St. John, P. Q., has been appointed Dictrict Superintendent of the Bell Telephone Company of Canada over the district south and east of the St. Lawrence. We congmalate the compxiny upon securing the services of such a well qualified man.
While Mr. Eckert, the manager of the Bell Telephone Company al Brantford, was helping to fix a wire over the Gmand nver, he carried an end round his waist and was dragged within a few inches of the river by some moving ice, but succeeded by a desperate effort in securing a foothold. We congrmtulate Mr. Eckert on his narrow escape.

\title{
CARBONS AND PORCELAIN
}

OF 7HI: HIGHEST QUALITY ARE MANUFACTURED IN CANADA.

\title{
PETERBOROUGH CARBON AND PORCELAIN COMPANY.
}

\author{
SKETCH OF AN IMPORTANT CANADIAN INDUSTRY.
}

FHE accompanying illustration represents the busmess offices and manufactory of the l'eterborough Carbon and - Porcelain Company, situatedat leterborough, Ont. The readers of the Eleectricat. News will no doubt be interested in learning some particulars regating the establishment :und development of this enterprise, whi it is the only one of its class in Canada.

I'rior to 18 go all the rarbons required for the Canadian market were supplied from American manufactoiles. The rapid growth of the electric lighting industry in the Dominion, however, led to the formation at Peterborough, in January, 1890 , of the Brooks Manu. facturing Co., who immediate. ly commenced the buildins of the necessary plant formaking carbons. The management of the company was vested in Mr. Thomas brooks, wilh Mir.J.W. Taylor as Mechanical Supermendent and SecretaryTreasurer.
In April, 1890 the company commenced 10 manufaciure with : staff of 30 workmen, which

Works of the Petfrboro Carbon and Porcelain Company, Peterbono', Ont.
capacity of the old ones. With this additional furnace capacity, the works will now heve it total output of 500,000 carbons pir month, making the year's output six million carbons. An adrdition has also been made to the plating room, increasing its capacity in accordance with the doubling of the furnace output. The number of employees has also been increased to eighty.
Having determised to manufacture also porcelain goods for clecirical and other purposes, the need of a more significant name became manifest, and on December tath, 1892, an Oider in Council was passed by the Ontario Government authorizing the company to change its name from the "Broõks Almufacturing Company" to the "l'cterborough Carbon and lorcelan Company."

In connection with this change of name, the personnel of the company was somewhat changed as fol-lows:-
Presiden:-W. Cluxton.

Vice-Presi-dent-Jas. Kendry.
Managing Lirector and Sec-retary- Treasur-er-J. W. Taylor.
Directors - Thomas Brooks, George Stevenson, James Stevenson, M.P., Gco. A. Cox, T. E. Bradburn and A. L. Davis.
In the manufacture of porcelain goods the company bids fair to achieve as great success as in the production of carbons, the volume of their business in this depatment having doubled within the period of two months and the poreclain has the reputation of being superior to any brought into Canada. Among the preat varicty of porcelain goods manufactured are electric insulators of all designs, switch bases of different styles, ceiling rosettes, lamp sockets, inain line and branch cut outs, door knobs, castor wheels and numerous artucles of special ware required in different manufactures. The company has an order for supply\(i_{\text {ing }} \mathbf{2 6 , 0 0 0}\) pieces to the Bell Telephone Co., another order for special blocks for the electric lighting apparatus and fixtures in the new l'arliament buildings in Toronto, and are supplying most of the carbon brushes and porcelain goods required by the General Electric Co. Since the re-organization of the company great changes and inprovements have been made in the offices at the works. As they are arranged the offices are bright, cheerful and complete in all conveniences, while they have been furnished in a style which gives them an air of taste and elegance as well as comfort.

\title{
CARBON POINTS OF ALL SYSTEMS OF ARG LICHTS, \\ and all kinds of Porcelain for Electrical and Hardware Lines.
}

This Company are now making a carbon equal to any made in the States, and guarantee satisfaction in every respect. The following letters, comprising the largest consumers in Canada, will fully substantiate the above statement, and we kindly solicit the whole Canadian trade, offering the assurance that we will use every effort to please our patrons:-

OTTAWA, April 24th, 1898.
the peterboro' carbon and porcelain co., Peterboro', Ont.
Gentlemen: In reply to your request we now have the pleasure of certifying to the good quality of the carhons you have been supplying this Company. We have heretofore been buying frcin the Carbon Companies of Cleveland and elsewhere, but the last lot of 200,000 which we recelved from you, we found gave us better satisfaction, both as to life and light, than any we have ever had. We think it would be but a shori time when the Canadian carbon market would be all your own.

Yours truly,
the ottawa electibic light co.
(SIgned) A. M. SPITTAL, Sec'y-Treas.
J. W. TAYLOR, ESQ.,

Sec. Peterboro' Carbon and Porcelain Co.
TORONTO, March 18th, 1893.
Dear Sir: We would like you to increase monthly shipments of carbons, as our stock is getting too low. The carbons are now giving us excellent satisfaction. We shall be glad if you can make a monthly shipment of \(\mathbf{1 5 0 , 0 0 0}\) for three months, which will increase our stock sufficiently, and thereafter ship 100,000 per month until further orders. Do not fail to send at least 150,000 or 175,000 this month.

Yours, \&c.,
THE TORONTO RLECTRIC LIGHT CO. (LIM.)
J. J. WRIGHT, Manager.
J. W. TAYLOR, ESQ.,

MONTREAL, February 22nd, 1898.
Sec.-Treas. The Peterboro' Carbon and Porcelain Co., Peterboro, Ont.
Dear Sir: In reply to yours of the 20th instant, I beg to say that the carbons which we are using at the present time for our city and commercial lights are giving us entire satisfaction, and I have made comparative tests with the Brush (first quality), and I find there is litule or no difference, and as long as you continue to manufacture the same quality of Carbon which you are at the present time, there is no reason why it should not displace or supersede all other Carbons in Canada.

Yours truly,
THE ROYAL ELECTRIC CO.
J. F. BADGER, Jr., Supt. Light and Power Dept.
J. W. TAYLOR, ESQ.,

HAMILTON, April 20th, 1893.
Manager The Peterboro' Carbon and Porcelain Co., Peterboro', Ont.
Dear Sir: It gives us much pleasure to say that we are using carbons of your production in our lamps and find these we now have compare very favorably with the best makes from the other side. We will thank you to book our order for \(25,0007-16 \mathrm{c}\). c. to be delivered about the middie of next month. We should like to have a few samples of your one-half in. \(x\) one inch oval earbons, plain, when you get them out; we think they will turn out to be an A No. 1 carbon for all night use.

Yours very truly,
hamilton electric light and power co.
D. THOMSON, General Manager,

ST. JOHN, N. B., February 15th, 1898.
the peterboro' carbon and porcelain co.. Peterboro', ont.
Gentlemen : A few days since we referred the Halifax Illuminating and Motor Co. to you for some carbons that they wero in need of, and it may be that you can get some business from them. We have also to-day sent a box of your carbons to the Fredericton Electric Light Co., and if you will send them quotations upon carbons you may also do something with them. We have in both cases recommended your carbons-as being a very good article.

Yours truly,
the CONSOLIDATED ELECTRIC CO., Ltd.
C. D. JONES, General Manager.

\section*{SPARKS.}

A storage inttery is to lxe used by Briggs Bros. of Inmilton, to drive their milk wagkens.
The eleetric light company of l'rescolt. Out . will install no boo light ineandescent plant.
the Gamanopue Ejectric laght Company inlend to erect a new power house nad mike nidditions to thear phant.
A new telephone company is to le formed in Pembroke with mies considerally lower thans those at present existing.
An electric milway is to be luilt under the nues Thanes. landun, ting. the hat will te land 77 feet below the surface.
The Niagam Finlls bilectric light Company hate replaced their 100 h . p. engine with one of 150 hl f. and added nother 100 hp p. boiler.
A commany for the manufacturing of the Wool-
 a charter by the Ontario Government. The capital slock is \(\$ 25.000\).

The llamillon Street Railway Company are increasing their power They liave added to their plant a Tandem compound condensing engine of 250 b . p., atho two suitable boilers.

The Toronto and Richmond Hill Sircet Ranway Co., nre completing arrangenems for hayng their tmeks. They bave beten negotiat ing for the supply of the regulred motive power, but find it will be cheaper to purchase and use the \(r\) own plant. It is probuble they will adopt this course.
The Ottawa Electic Street Kailway Co propose extending their service to liull. and have offered to pay the city comncil for the prisilege \(\$ 100\) per mile for the first fifieen years, \(\$ 500\) for the next ten yenrs, and \(\$ 300\) for the following ten yeirs, if they are gmated a charter for thirly-five yenrs.
The directors of the Hamiton. Watcrdown and Gindph electric railway hive decided to engago an electrical expert from Toronto to advise the company as to the dynamos to employ. and to give a general estimate of the cost of the elestrical plant required. Engoneer Keitung is likely to lee engaged for this purpose.

The Toronto Street Railway Company are tak mgesteps to prevent acculents dirough passengers on their open ears getling on or of on the wrong side. Wire guards will te fastenced along one side of the car covering the steps at cither end and extending up to a puint two feet above the semts. This armagement will also prevent passengers while sitting down from puting their heads out, and no onecan hang on the step. Engineer Keating lins given his approval to the guard.
The Koyal Electric Company held its ammal moeting recently. The report of the year's business is very atisfietory. The gross receipts were \(\$ 189.765\) and the gross expendinte \(\$ 118.967\). leavng a Ialance of 570.797 , or over \(10 \%\) on the capital. Dividends to the amoint of \(\$ 52.092\) were prid out of this amome, and \(\$ 18.705\) was carriet to the profit and loss account. which now anoumts \(10 \$=67.639\). The directors of the com. pany are Hon. J. R. Thiknudetu, Sir Joseph Hickson, and Messrs. T. L. Beique, G. K. Robertson, F. A. Snall. J. Alex. Struthy, A. R. McDonnell. II. S. Holt and Davd Morns.
The Bell Telephone Company have sent in two tenters for providing Momiteil with an clec. tne putrol system, the first being \(\$ 21.757 .50\) for a complete clectncally equipped system of six circuits, exclusive of conveyances and horses. This was accorthag to the instructions of the police committee. The serond tender is the company's dia of what would le a complete outfit. It comprises 100 alarm stations with six circuits, with full alam apparatus in the ceninal station with connections to the stabiles. Their price for ihis outfit is \(\$ 24.007 .07\). They agree to carry the wires on their poles and kerp them in repair for \(\$ 2,000 \mathrm{per}\) amum for 100 stations, which is 8 t the same ratio as Toramo pays for 60 stations. Mr. Badger, culy electrectan, is to make a foll repoti on the tenders.

\section*{\({ }^{\text {the }}\) TORONTO ELEOTRIGAL WORKS}

\section*{Manufacturiug Electricians and Engineers.}

Dealers in Electrical Supplies. Makers of Dynamos and Motors. Dealers in Electrical Books.
35 Adelaide Street West,
TORONTO.

\section*{Packard \(\begin{gathered}\text { High Grade } \\ \text { Incandescent Lamps }\end{gathered}\)}

MANUFACTURED BY THE

\section*{PAOKARD LAMP CO., LTp.}

96 to 100 King Street,

Please mention the El.ECTRI ni. News when corresponding with advertisers.

\section*{Special Pulleys} made in all sizes, from \(3^{\prime \prime}\) motor pulleys to 15 ft . driving pulleys, ... нити...

\section*{IRON CENTRES AND WOOD RIMS, AND ALL WOOD.}

Our pulleys are used in all large stations in. Canada.
SEND FOR CATAROGUE

83 KINO STREET WEST,图 \(=\) TORONTO.

At a recent annual meeting of the Canada Mulual Telegraph Company and the Mutual Telegraph Company the following officers were elected: Mr. H. P. Dwight, president; Mr, T, F. Clark; of New York, vice-prestdent ; Mr. D. G. Perty, secretary aud treasurer; Messrs, C. A. Tinker and A. S. Irving, directors.

The nnnual meeting of the Toronto Electric Light Company was held recenily. The report shows that quarterly dividends were pald at the rate of elght per cens., and \(\$ 25,000\) was added to the reserve fund which now amounts to \(\$ 55,000\). The directors for the year are Messrs. A. H. Campbell, W. H. Howland. S. F. McKinnon, Henry M. Pellatt, S. Trees, T. Walmsley nud H. Blaine, with J. J. Wright as manager.

The Canadian General Electric Company has amalgamated with the Peterboro and Ashbyrnham milway for the purpose of operating an electric road in Peterboro'. The undertaking will be carried out under the charter of the latter company. The officers are ns follows: Mr. T. E. Bradbum. president; Mr. F. Nicholls, vice-president; Mr. A. P. Pousetle, secretary (pro tem.), with Messers. H. P. Dwight, T, G. Hazlitt, A. Stevenson, E. H. D. Hull and W. Walsh as directors.

IF you have any pipes or boilers uncovered, you are losing on same at the rate of 80 cents every ycat on each square foot of surface exposed. By having them covered with our Minineral Wool Sectional Covering you will save \(85 \%\) of this loss. The saving thus effected in fuel will in one year more than pay the cost of covering, which we guarantee to last as long as the pipes. Our covering is the best fuel saver on the market.
Montreal Agent:
GEO. A. GOWAN, Room 33. 204 Su. James Sirect.

CANADIAN MINERAL WOOL CO., L.td.,
122 Bay Street, TORONTO.

Undergrousd or anbmarisic.
In a letter from the Inspector of the Boston Fire Underwriters" Union, he states: " \(A\) A thoronghly reliable and desirable Wire in every respect."
The rubber used in insclating our wires and cab'es id especially chemically prepared, and is guaranteed to be water:proof, and will not deteriorate, oxidise or crack, and will rematin fexible in extreme cold weather and is not afected by heat. The insulation is protected from mechanical injury by one or more braidd, and the whote alicked with Clark's Patent Cimpound, and special exra finish, which we have now adopted for all our solid wires as an extra weatherpioof provection, and also preventing chafing of all gauges and diameter of insulation for Telegraph and Electric Lights from stock. Cables made to ordef. We are now prepared to furnish our Clark Wire witha white finish for celling cleat work as well as our standard color.
Clark Jolnt Gum should be used for making waterproof joints. This is put up in half.pound boxes, in strips about one foot long and five.eighths inch wide, and when wrapped about jount and pressed firnly it makes a solid mass. For rallway and Motor use, we make all sizes of stranded and fexible with Clark hasulation. We guarantee our Insulatlon wherrver used, Aerlal, Underground, or Submarine, and ous net prices are as low, if not lower than any other first-class Insulated Wire. We ahall bo pleased to mail Catalogues with terms and discounts for quantitice.

Eastern electric Cable Co.,
61 to 65 Uampshire Street,
EOSTON, - DNABS.
HENRY A. CLARK, Treasurer and Gen'l.Manager.

LAKE GIRARD SYSTEM OF MINES.
Lake Girard Mine
- Nellie and Blanche Mines. - The Horseshoe Mine.

CONTROLLING 2,500 ACRES CHOICEST MICA LAND.
The LARGEST USERS in the United States are among our EARLIEST CUSTOMERS, and can testify to the excellence of our material as well as to our PROMPTNESS OF DELIVERY.

All MICA SHIPPED BY EXPRESS, and sales made at PRICES INCLUDING ALL CHARGES TO POINT OF DESTINATION.

Why buy through MIDDLEMEN and pay COMMISSION, when you can DEAL DIRECT WITH THE MINES, and receive your MICA AT FIRST HANDS?

We are prepared to SUPPLY the requirements of SMALL USERS, on advantageous terms, looking to the FUTURE GROWTH of their BUSINESS.

Our PRESENT STOCK OF MICA actually mined EXCEEDS 300 TONS, and this, too, AFTER A YEAR'S STEADY OPERATIONS.

ALL SIZES AVAILABLE, and we will either cut to size or in rough split shects, with edges trimmed or untrimmed, as may be desired. We will cut dises or segments of circles when required.

Send us a SAAPLE ORDER-we only ask a fair trial ; once we receive that, we are not afraid of holding your business. Address all communications to

The Toronto and Scatiors Ralway are mak. ing rapid progress with the work of taying their line of the new ralluay in Enst Toronto. Two miles of grading is completed with turnouts at the Woolline, Norway, Bast Toronto and Blantyre Avenue. The rnils are now being lald and the Company expect as promised to loe opemang this section of their road by the apth of May. The kork is being carried out under the management of Mr. John Galt, (C F; , whose assistant is daily on the ground superintending the operations. The company have completed arrangements with the Toronto Eidectric l.ght Company to supply the necessary motive power, nud a wire for this purpose is now being strung from that company's station on the Esplanade along Front street to George and then along King and (limen streets to the Woodline. Mr. A. W. Dingman, manager of the street railway compminy hiss purchased from Messrs. fintiersun \& eurting, of st. (athef. fincs, two restibule cars supplied whit Thomson Henston w. p. motors of 29 h. p. Each, and fur. nished with a Inylor truck.

\section*{THE RELIANCE ELECTRIC MFG. CO., LTD.}

WATERFORD, ONT.
maNUPACTURERS OF ALL KINDS OF

FOIE LIGHTING AND TLANSMIISSION OF I'OWER.

Constant Current and Constant Potential Dynamos, for Arc and Incandescent Lighting.
Electric Railway Generators and Motors.
Stationary Motors of any horse-power, to run on Arc and Incandescent Circuits.

Arc I.amps for Constant Curront and Cons'ant Potential Circuits.
Our Dynamos, Generators and Motors are automatic and self-regulating.
All kinds of Station Fixtures, Switches, Lightning Arresters, Rheostats, Ammeters, Volt-meters, \&c. \&c.

Wo glvo special attention to Long Distance Transmlssion of Power. Our apparatus is slmplor and contains more morit than any other on the market.

WRITE US FOR PARTICUI.ARS AND PRICES.
Head Office and Works : WATERFORD, ONT. Toronto Office : 141 King St, West, TORONTO, ONT,
C. W. FIFINDERSOIN

Manufacturer and Contractor Electrical Supplies
. . . . ESTIMATES FL'RNISHED FOR

Experimental Apparatus, Models, Patterns and Light Machinery. Electrical Apparatus of all kinds repaired.

\section*{COMMUTATORS A SPECIALTY}

Storage Batteries, Doctors' and Dentists' Electrical Apparatus and Machinery.

The Canadian Oifice \& School Parniture Co.

STEAMUSERS
Desiping tha sngeices of COMgRETENT RN: GINFESRS of nuy cluas, can oblain snber, tutelligqut amil rellable mon, by applytug to

\section*{CANP:LIAN ASSOCIATION}

StATIONARY ENGINEERS.
A. E. Edkins, President, care Boiler Inspection \& Insumnce C'o., 'loronto.

Jas. Romertson, Secretary Montreal Branch, 8420 Mignonne Strect, Montreal.

\section*{FORR}

EXEXRY
EUSINESS

\section*{MAIN}

Interested in any branch of the Hardwius Wrought, Cast Steel or Spun Metal Trades, he will find
"The Hardware Merchant" acts like a right bower, and keeps you posted on all business changes and items of note. Its market quotations are reliable. \$2 per year.

THE J. B. MeLEAN CO., Ltd., to Front Street Eist. Published weekly. TORONTO. ONT.

\section*{Hill Patent Friction Pulleys}

\section*{AND CUT OFF COUPLINCS}

For Electre Light Stations and all purposes where intermittent power is required.

\title{
Miller Bros. \& Toms,
}
(Sncerssors to Millun Hros. A Mitchell)
MONTREAL, QUE.
Toronto Office: 74 York Street.
ESTABLISHED 186\%.

\section*{The Canadian Locomotive} and Engine Co., Ltd. . . .

-. MANUFACTURERS OF-..

\title{
Locomotive, Marine . . . and Stationary Engines
}

\section*{ARMINGTON \& SIMS' HIGH SPEED ENGINE} FOAR ELECTRIC LIGAT PLANT, ETC.

\section*{NONECE.}

The Cariadian Locomotive \& Engine Co. Limited, of Kineston, Ontario, have the exclusive license or building our Improved Patent High Specd Engine for the Dominion of Canada, and are fur nished by us with dmwings of our latest improvements.

Providence, R. I., Nov. 18th, 1889.
(Sinned) ARMINGTON \& SIMS

\footnotetext{
"CYCLE" GAS ENGINE IMPULSE EVERY REVOLUTION without
} Descriplive Catalogues of the above on application.

\section*{Tне GARLOCK PACKING COMPANY}

LONDON MACHINE TOOL CO., IONTDON, - ONTREIRIO,

\section*{Machinist \& Brass Finishers' Tools} L. A. MURRISON, with A. R. WILLIAMS, General Agents, JORONTO. ONT.

It is no longer necessary to import Carbon Points.

\section*{THE PETERBOROUCH CARBON AND PORCELAIN CO.}
. . . . can furnish them equal to any in the world, as they are...
hanufactureks or
CARBON POINTS for all Systems of Arc Light, BATTERY PLATES, CARBON BRUSHES, and rill kisude of porcela n for Ethectrical and Marducaro lines.

70 MOEANO
76 ㅍㅇㅈㅈT BTRREDT

\section*{VULCANIZED FIBRE CO.}

SOLE MANUFACTURERS OF```

