The Institute has attempted to obtain the best original copy available for tilming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restoted and/or laminated/
Couverture restauree et/ou pelliculee

Cover tixle missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de ia marge intérieure

Blank leaves added during restoration may appear within the rext. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas ètė filmēes.

L'Institut a microfilmé le meiiteur exemplaire qu'il lui a èté possible de se procurer. Les dètails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/ Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Titie on header taken from:/
Le titre de l'en-tete provient:

\square
Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Gènèique (périodiques) de la livraison

Additional comments:/
Coinmentaires supplëmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE NEW CANTILEVER BRIDGE OVER THE NIAGARA RIVER.

THE successful completion of this fine structure marked a new crit in bridge construction, and we take pleasure in transcribing, from data furmshed by C. C. Schneider, chief engineer of the structure, the following details of the progress ot its building and the dimensions of the great work. Is of undoubted interest to the majority of our readers we also present engravings which accurately show the progress of tic work at differext tires on both sides of the river, also of the completed structure.

The bondage is a double-lrack railroad bridge, and designed to connect the \cdots. V. Central and Michigan Cen taal railways. It is located about 300 feet above the present railroad suspension bridge, where the width of the opening to be spanned, from bluff to bluff, is 800 feet. The general dimensions are as follows: -length of bridge proper, from center of end pins, 910 ft . $1 \% \mathrm{in}$.; divided into two cantilevers of 395 fl . 2 din . each, and one intermediate spat of 119 feet 9 inches. The towers are braced wrought-iron structures, 130 feet 6.5 inches high, resting on masons piers 39 feet high ; the found azions under the towers are of beton, $\&$ feet thick, directly
whole of the superstructure is pin-connected. The tow ers contain $\&$ columns each, and each column is made up) of plates and angeles in sections of about 25 feet in length, birred with horizontal struts, and with tie-rods. The batter of columns at right angles and the center line of the bridge is one in eight. In the cantilever trusses the lower chords and center posts are made of plates and angles latticed, the intermediate posts are made of 12 inch and is :neh channels latticed. The upper chords of the cantilevers are 8 inch eye-bars, the shore-ann having a compression member a S inches deep, composed of plates and angles packed between the chord-bars.

The shore ends of the car.ilesers are attached to short links, revolving on pins anchored to the mason, ; these links serve as rockers and allow for the expansion and contraction of the shore cuds of the cantilevers. Exmansion joints are also provided for at the connection of the intermediate span with the river ends of the two cantilevers; the intermediate span being suspended from the extreme ends of the river-arms. The floor beams are four feet deep, and are made of plates and angles; they are riveted to the posts. There are 4 lines of longitudinal stringers, resting on top of the floorbeams; these stringers are plate girders 2 feet 6 inches deep. The ties are white oak 9×9 inches, spaced 18 in-
been erected on false works in the usual manner, and after theist completion the river-arms were built out panel by panel, by means of a "traveller" (shown in Figs 5 and 61 an ingenious and practical auxiliary projecting over the completed portion, and advancing as each panel was in place and its bracing adjusted. The center, or intermediate span of 120 feet, is of a design which allowed its being built out from the river arm of the cantilever until reaching the middle panel, which was accurately fitted to close the gap between the two sides, as shown in the fine large engraving of the completed structure.
The near approaches to the main stricture, on both sides, ate substantial iron trestles (shown in large engraving) resting on masonry foundations erected upon solid rock.
The building of this bridge, the first of the kind ever completed, presents one of the moss wonderful feats of bridge engineering, both as to the character of the undertaking and the energy and efficiency with which it has been so successfully carried out, on record. On the 11 th day of April, 1883 , a contact was enter $\cdot \mathrm{d}$ into with the Central Bridge Works of Buffalo, of which Gen. Geo. S. Field is president, C. V. N. Kittredge treasurer and Edmund Hayes, er.gineer. General plans were prepared by them, and after a very critical and thorough

the New canthever bridge over the Niagara riles.
on the rock, forming a uniform, solid and endurable mass.
There are sro trusses, $2 S$ feet apart between centers; the panels are 25 feet long, cerrepuing those of the intermediate span, which are 29 feet. and the end panels of the shore -arms of the cantilevers, which are $=0$ feet $=1 /$ aches long. The depth of the cantilever trusses over the towers is j^{6} feet, and at the ends 21 feet for shore ends, and 26 feet at the river ends.
The structure has been proportioned to camp; in addiion so its own weight, a freight train on each track at the same time, weighing one ion per li cal foot, with each train headed by two $\mathbf{j 6}$ ton consolidation engines. The factor of safety is 5 . Wind bracing ,las been pro. portioned for a pressure of jo lbs. per square foot, or a surface trice she area of one face of the truss, plus the area of face of train taken at 10 feet vertical height.
The material used in the superstructure is open hearth steel and wrought imo. Towers and heavy compression members, such as lower chords and center posts, are of steel, as are all the pins. All tension membees are wrought iron. The only use made of cast iron is in the pedestals on the masonry and in filling-rings; she castings at the top of the towers are all steel. The
hes between centers; evert river lie projects to support a plank walk and hand-raiims, which later is made of asst iron posts 6 ieee: apart, and + longitudi..al lines of 12 inch gas piping. The guard timbers are of white oak SxS inches.
All masonry is built of Queenstown limestone, in courses of 2 feet rise. The piers for the towers are in feet square under the coping, and have a batter of 6 incher to the foot ; each pair of piers is connected by a wall 3 feet 9 inches thick at the top, and battering the same as the piers.
The anchorage piers are is by jj feet under coping, with a batter of six in. to the foo: They rest on a platform consisting of 12 iron-plate girders, $=\frac{1}{2} \mathrm{ft}$. deep and 36 ft . long ; under these plate girders are iS 15 -inch i beams, through which the anchorage-bars pass, in such a mannet as to distribute the pressure over the entire mass of masonry: Each anchorage pier contains $\{60$ cubic $\}$ ards of masonry; weighing $2,000,000$ lbs; as the maximum uplifting force from the cantilevers, under the most unfavourable position of load, is only $6 ; 8,00$ lbs, it will be seen that this upward force is amply counter-balaneed.
The shorenims of the cantilevers, as will be noticed by reference to the small cuts (Figs 1,2 and 3) lidice
examination of two weeks' nation, were referred to C. C. Schneider, appointed chief engineer of the Bridge Company, April 26 , who gave his approval May jd. The task: of working out the detailed plans was then entered upon by himself and Mr. Hayes, and was continued by unremitting energy and carcfulatteation from that period on, their progress necessarily keeping pace with the construction.
Work on foundations began April rath, and tine introduction of the " baton coignet "began June Goth, and nos completed June got: on the American side, and seven days later on the Canada side. The first stone for the piers on the drncsican si:le wis laid June 26 th, and on the Canada side July 1 isth. The American piers were capped Aug. azoth, and the Canadian Sept. 3 d. August =9th, the first column of steel for the tower was lowered on the American: side, and on the Canada side Sept. roth. The last section of the American tower was laid Sept. 15th, as show r in Fig. 1, while the progress on the Canada tower to same date is shown in Fig. 2 , which was completed Sept. 18th. Sept. 24th, the first iron for the cantilever was min out, and both cantilevers were completed on Nine, 1 th. The small engraving's show the progress of the work un either side, at different dates.

 hul with the tup of the tancr loun the ex the shont
 the recel bumer, ims he wher upon motomen un the Whati the thore and was tirmb anthered to the

tons at each end to displace it. This constitutes the counter-weight to balance the unequal loading on the mer-arm. As this, under the most unfavourable conditions, can never evceed 3 yo tuns, the provisum is ample.
There will lee none of that was mution noticed on a suspemsion bridge as a tran moses over it. Remember-

Fire a. Sirt istu ciavan Sur
ing that it tomk orer three years so build the present susfernsion bridere for a single track, that this bridge for a double track not only had to be finished within seven and a half months from the execution of the contract, but has been actually completed with eight days to spare, it refiects great credit upon the advancement of American

Fitm 3. Octe 3ru-Camada Sitax.
enginecring skill as exemplified by the ability, capactty and skill of all who have lieen associated with the project in positions of responsithility. 400,000 feet of timber and is ions of boits were consumed in the false work. The piers contain $t, 100$ cubic yards of " jeton coirnet," and the abutments of the approaches 1,000 yards of masong; The tmaelling derricks are the largest yrit built. They are calculated io sustain a ueight of 32 tons
"in the w. rhataring arm, and project to fect beyund ati! support lt is the onls bridge of an! maknitude com pleted on this primeiple. The Firth of Forth bridere in Civetand, witn d elear spatn of 1,600 feet, is tw be buile upen thi, plan, and also in this countr) the liaser Rise bradiee 315 reet clear spant, on the Cianalian l'acitia These are the only examples of this design set under

taken, but the principle especially recommends itself to long span bridges :hat must be erected wihout false work.

The total ueight of the ison and stcelentering intothe composition of this massive structure is about 3,000 tons. The excavations for the mason work of the towers, upon

Which stand the stecl towers supporting the cantilevers were carried down until solid rock was reached. The total weight resting on each of the towers under a max imum condition of strain is in round numbers, 3,200 ons. Each ingot of stecl was submited to a chemical analysis, and samples to a mechanical test. The stan-

Fisug. Nít. sert.-Cavada Sidx
dard of excellence adopted was more severe and exacting than usual, and all steel that fiiled to meet the requirements was rejected.
On the moming of November 21,1883 , the work of putting in the fixed span began, and when the hour of: noon had arrived the sections had been connecter, and
the brids. praticall, completed. The weather during this perfondmate "ats ear) bud, bue a large crowd of spectiturs, which induded ladies, railread officials, and bridge evperts, roond patiently in the midst of a heang fall storne, and inserestedly, "athed the uperation.
The tutal length of the briage is yto fect. It has a doulse track and is built strong enough to carrs upon each track ot the sam time a freigh tain of the heaviest Lind, extending the eatire length of the bridre, headed by two "consulidation 'engines, and under a side pressure of 30 pounds to the symare fout, which prissure is prov ed by a wind hating a velocity of 75 males per hour, and will even then be strained to omb) one fiath of its ultimate streng:th.
The erection of this substantial and elegant structure over the most dangerons, turbulent and furious rupids in the known world, withuut a jar, serivus accident or loss of life. and in less than $7, i$ month. from the anarding of the contract, ramhs as une of the most splendic: achievements of engineering skill, bordering the domain of the marcelous. Our large engraving furnishes a splendid view of the completed structure, which presents at new and desirable combination of principles, and as before stated, is the first of any magnitude ecer com pleted upon this plan.

PATENT LAWS IN EUROPE

11. l'alm, in l)er Oesterrecichisin- ('ngurische Muelior writes very sensibly as follows: Within a few years sume of the European countries have adopted new haws for the protection of inventers ; Germany in 1877, and England in 1878 . Whoever compares the history of cermany in 1877, with that of to day, must be surprised at the immense industrial progress made dunng these seien years. The hard, but just sentence of Prof. ReuJaux, at the Philadelphia Exhibition in $18 ; 6$, about the exhibits of Germany: : "Cheap, but peor," scems to mark the turmang point in German mdustry. In spate of many apparent faults, the German patent laws have aided more than anything else, to bnng about a change in the manufacturing systems of Germany. It mduced specialization, and with it improved methods, and it is fair to state that all improvements in the industries of the country; are atry present protected by patents. German capitalnew invenuons, and more alsposed to miest in ably, increase as soon as the patent laws cover chemical products as well as others, which is simply a quesion of time.
Enghand, above all other countries, has erjoyed the benefit of paten: laws longest, it ran be traced back as far as 1623 , and the pre-eminence of Engish manufacturing interests is due largely to these anws. Strange oo say, the new patent laws of 18,5 show very little improiement upon the old ones, and restrict the privileges of the inventor, by allowing third persons to make use of such invention, on a payment of a license to be fixed by the board of trade
In Austria, the necessity for .ew patent laws becomes more and more apparent, and the eendency there is to increase the privileges of the inventor, and protect his interests to the fullest extent
All mechanisms of to-day have been inverted at some ime or other, all are more or less the sum of a varging number of ine entions and improvernents.
The inventor is the pioncer of industry; the mental path-finder in the realnis of industrial progress; therefore les us protect the inventor, for the soundest protection of industry rests with him. This should be understood, for almost everywhere industry and invention are lonked upon as two opposing factions. Of course this does not apply to the truc, intelligent miustry; which strives to accomplish its work economically, quick and good, and is giad to avail itself of all improvements but it applies to that monyrel-industry which looks upon an inventor as an enermy, and because it lacks the conjunction of an intelligent mental property; does not hesisate to live upon intellectual robbers:

ZINC FOR PREVENTING BOILER CORROSION.

The use of zinc for preventing boiler corrosion in steam. boilers has formed the subject of several patents, and recontly Mr. J. B. Hannay; of Glasgow; has obtained a patent for further improvements on his invention of ESt . According to the present invention, the zine masses of spherical or spheroidal, or polyhedral, or cubical form, or other forn having small difference of thickness in diff. crent directions are rendered mere durable and efficient by being brought into the condition known as malleable. instead. of being used in the condition they have when simply cast. For this purpose the masses are hammered or forcibly pressed or rolled, the opication being by
preference effected suddenly. Thus, a consement and satisfactors means for the purpose consists in a ponerful screw-pres fitted with a heats fly whed or heanily weighted arms and frovided with sumtabl) shaped dies. By a further unprovement the zun is made mure sus ceptible of being rendered malleable bs being alloyed with a small portion, sat, not more than to per cent. of lead, tin or copper. Another maprovement consists in carn ing ealh of the sinc masses in the builer in an iron ladle of suitable size, such being champed to sume of the tubes or fixed inside the builes in ans cumeniemt was, and not required to be removed when supply ing new blochs or b.llb of zime, as sula bluchs ou balls hase siluply to be placedin the lades after these hate beencleanedout. The patentec claims as novel and orginal . t. The use of zinc blucks or masses of a spheric.il, or sphervidar, or pulshedral, or cuicual ur other sumilar furm, for presenting comrosion in steam boilers, such blochs or massess hat ing been subjected to compressiun after hating been wast. 2. The forming of the blocks ur masses of ainc allused with toper cent. or less oflead, tin of copper, and subjected tu compressien after having been cast.- Einginecting Reauew.

ELECTRICITY UTILIZED IN HILLING.

L
IKE other industries milling profits by the latest discoveries in slectrical science. By its application several improvenents inave been introduced which brings the milling industry to a high degree of perfection, while at the same tume they make the management of complicated milling machinery considerably easier and also more accurate. I mertion here in the tust place the different electric bells and signal apparatuses which afford communication between proprietors and enaployees, which communication they simplify to a great extent. At the same time a certain signal language is invented by the use of which the necessary orders are distributed orer the enture establishment. The electric bell shows the miller which stones or rolls are running 100 hot, while through the "ten,perature contace" the so-calted metallic thermometer, whech is placed near every stone or set of rolls, the miller is warned and can do what is necessary in the matter. In large milling cstablishments a cemplete system of bells is introduced which, like the communicators in hotels, is ecnnected with a board on which the different apartments are sepresented by numbers, and the whote is arramiet insuch a menner that when any stone or roil runs hot, at onre the corresponding number on the board in the engine room drops down. In America successful attempts have been mad= to separate the bran from the middlings by means of electricity: They have also rucceeded by means of an electro-magnet to climinate metallic particles which may be found with the grain. The grain runs over a surface which is shaken in different directions before the poles of a powerful electro-magnet. The magnetic force works in this way as well on the grain as on the particles of ircen found with it. By the atractive force of the electro-magnet these particles of iron are taken out and adhe-s to the magnet, and are remored from this by suitable devices.
Without doubt the transmission of powe by means of electricity will find its application in the milling industry at no distant date. Although we are alrcady able, by means of electric transmission, to utilize lange for zes at great distances with a fair degiec of success, still this application has up to the preecent time been made onls in a few instances. The probletn of the transmission of power by means of electricity has, however, been solved only in a very few instances in a way that would be of general application, as for instance :o the steam engine, water wheel and the wind motor, and these two last named forces are the ones which some day, perhaps in the near future, will be destined to furnish the motor power for machine shops and also for mills, with the help of electricity. Even if, as has been satd, the transmission of greater forces has not beet. put to practice as yet, the reason for this is by no means that the transmission of power by means of electricity is at its present stage still 100 incomplete to solve satisfactority the problem assigned to it , but the reason lies in the newness of the thing, and in fact, that the persons interested have thus far had no sufficient opportunities to convince themselves of the advantages of this transmission of force. To meet this want the "Electric Expecition of Vienna" is called together, where an opportunity is offered to the interested public to become acequainted with the electric transmission of porcr.
The electric transmission of power for milling purposes is shown here by the firm of Ganz \& Co., Buadapest, who have on crhibition a machine expressily constructed for this purpose, by which about twelve horse-power is transmitted by electricity. To accomplish this two primary engines in the machinery hall are set in motion by a locomobile, and the electric current
uriginated in these primary engines is cunducted bs thin wire to at secondars motur, which is set into motion b) the electricits supplied by the primary eugines. This wire, befure reahing the secondars mutur, is passed through an ingeniousl) constructed regulatur, the purpouse of which is to secure a tuniform number of revelutions to the motor. Since it is a well-known fat that in a mill the pressure frequentls changes, so that in propurtion is the feeder lets in mure or less grain, in the same pro purtion more or less furce is required, we can readil perceise that the selucits of the secondars motur won'? continually change. This changring is pruhibited by the restulator, wlich by an automatic intruduction of rcsist ance kecps the velocity of the mathine uniform.

Another application of electricits which is sery impor tant for mills, ats well as for other establishments, is the well known fire telegraph, which shuald not be wanting in any establishment. Huweser, this telegraphean unl, indicate a fire that has altcady broken wat, and cnable men tw present its further spreading. Electricits, how cier, offers a much mure effectise presentive against fire. Fur eleatricity has made it pussible to establish for places which are in great danger of fire a method of illumination which, when properly used, wupletely ca cludes all danger of fire and explosion. It is the so-called "incandescent illumination," i. r. the illumination with slow lamps, which since their in zention have made considerable headway. The princupte of the glow light rests on the incandescence of a bad conducter of electricity The history of this invention reaches back to the first te: years of this ce.atury. Tine first impulee to practical experiments with rectric lamps was given by Prof. Jobirt, of Brussels, who in 1826 advanced the theore that carbon, used as a conductor in a vacuum would give \mathfrak{b} beautiful and intense light. DeCinangy: Belgan engineer, took ap this theory and experimented for a long tire with glow lamps, while he first used pieces of carbon and aftenwards platinum as glowing substances, without being able to bring forth practical results. The American, Start, was somewhat more successful, w'o in the year 1844 made in England very interesting experiments with the glow lamps constructed by himself. But the sudden death of Siarr hindered the further perfection of these first experiments, and his invention was soon forgotton, but whiclt his partner King, tad patenied in the year 18.5 . Then followed a number of experimenters, who with different materials as platinum, iridium, and mixtures of these two metals, and later also with carbon, made experiments with glow lights, without any great stecess however.

Thus far I have spoken of electric illumination in general as it can be applied in every industrial establishment, and especially in mills. Allow me now to go a little more into details concerning such application and the cost of such electric light as has already been intioduced by Ganz \& Co. into several flour mills and wher establishments with the best results. This should be the more welcome to the milling interests, as to the best of my knowledge and belief, this topic las not been discussed in any of the periodicals with the elcarness desiable for millers and manufactu.ers who wish to int. oduce electric light. I will, therefore, suppose you wish to do away with your present manner of lighting and introduce electric light in its place into your mill. Hitherto you have had in use a certan number of coal onl or gis lights. A coal onl flame in auills has an illuminating power of from five to erght candles, and a bas flame in a mill has no more as a rule; in other localiues the illuminating power increases to from ten to twelve candies. All will be ready to admit that the manner of illumination in mills at the present time leaves much to be wished for, a.nd especially is the degrec of brightness in most cases extremely small. The proprictors of mills are forced to economize on accoun of the exponse of illumination. Here electricity lends $\frac{1}{3}$ helping hand on the propriciors to beautify and better the ligkrt wi,hout additional cexpense. In Hungary the Suan lamps have been extensively introduced of late ; especially two kinds are used, those of iwelve and these of twenty candle power. For mills the former would be sufficient. We shall now replace every coal oil or gas Aame by an electric lamp, and the miller car determine the number of new lamps by the number formerly in use. In small establishments, especially in those in which water-power is used, it is preferable for the salke of economy to use the motor power of the mill for a generator of the electric light. In larger institutions, however, it is better to use the motor power of the mill for the gencrator and to crect besides a special engine, and to arrange the combination in such a way that the genemtor for the light is ordinarily supplied by the special engine, and only, in case that for some reason or anotl.er this engine should get out of repair, the large motor power would be called into action by means of friction couplings, in order that the illumination, might
continue without interruption. The boiler for bothen fines can under all circumstances be a common one, so that there is no necessity for double healing apparatus It is the most appropriate to place the electric motor in the engine house, in order that it may be under direct superisan of the engine ir. Irom thas mator go the conducting wares, properly speaking, the mann cable to the different places whel are to be lighted. Frem the main cable the wres whel lead to the separate rooms bramch uff, and frum these wares the thinner wares to the induidual lamps. The whole , item has much sumnar it) with the sy stem of prpes in gas illumanation, with the difference that by the latter onl; one line is necessatry while with electric light, conductur, back and forth are necessary, and consequentl) a double mann cable has to be laid. As in gas works, su is here also the dianeter of the man conductor in direct ratio with the number of flames and the distance, whlale for the branchang off into separate lucalities there as well as here small conductors are used. As with gas so it is also possible with electric light, so let the mdividual lamps go out or to light them as mas be necessary, and in electric light it is easily ac complished in a much simpler and more appropriate way, and I would especially call attention to the fact that the lighting of the several lamps is accomplished without the aid of combustible material-only by a sim ple movement of the band. For the sake of economy as well as for other reasons, it is often desirable to increase the illuminating power of the lamps or to de crease it. For this purpose there is near the engine : resisting apparatus, with which it is possible to regulate the light. This apparatus can be compared with the value of a gas tube which regulates the amount of gas and thus regulates the bightness of the several lights This apparatus also serves to reduce the current in case a large number oflighte are extinguished, and to increase it if more lights are in use. The firm of Ganz \& Co have constructed apparatus which are self-regulating As this apparatus is rather expensive for smaller estab lishments, an ingenious apparatus has been constructed which warns the engineer when too nuch or too little cursent is gencrated. - Tramshated froin the German of Carl Ziperno:isky.

IS IT GOOD TASTE?

 this agreement that cach of the three ctinpante winmex - continue to manufacture their distinct line of goods
 most omithologists of America, makes the following caustic remarks: "The style used to be to wear plumes selected either for their beauty or colouration, or their gracefulness of shape; but the itch of savagery has broken out with aggravated symptons, to be appeased by nothing short of an ornithological muscum. I once counted the feathers of no less than fifteen difierent birds on the dress of an Indian squaw ; but then her alleged husband had one necklace of grizaley bear claws and another of human finger-tips, and circumstan ces alter cases, you know. It secmed to me less sin gular than the case of another woman whom I examined with some care shortly afternards, on whase bosom rested a gilt tipped tiger's claw, from whose cars deperded two claws of the same animal, in whose :.ai nestlef the grenter part of the external aratomy of a bird and to whose loins a live poodle dog was tied with a blee string. Such a toilet, I think, would be stil more efiective with the rouge and lily white in streaks instead of layers, and a fish bone through the nose.

TO CENTER AN ENGINE.

Tove the engine by the fly wheel towards the end on wh. h you wish to center it, till the cross-head is net the end of its travel, and mark the slide even with the end of the cross-head, and then with the surface gauge, or any fixed point, moke a mark on the fly-wheel rim crank dise, shaft or any finished revolving part, pry the engine past the renter and till the cross-head passes the mark on the slide, then pry back again till the cross-head agrees exactly with the mark on the slide. This last, in order to have all lost motion in connecting rod taken in same direction both times. With engipe in present po sition make another mark on the revolving part first selected. With a pair of dividers bisect the distance between these marks and prici-punch the spot. Pry the engine around until this point coincides with the points of your surface gauge and the crank is absolutely on the dead center, if the axis of the piston rod and axis of shaft are in the same plane, as they should be"Amos K"."in Slcamo.

The box-huckleberry, Iracrisiest brachycerzos, is stat ed to be a species ir, the process of cxtinction. A small patch of a few acres in Perry county; P_{2}, and another in Delaware are singularly isolaicd,

HOW LUMBER SHRINKS.

A
 dhout the manner in which lumber w.s "hatuled" acrons the monntains dowin in his coments. "Why". s.lld he. "they sall it atcen, leave it in the sun, and wif
 In lexs thatn at minute, and and to the other ade of the mountain before sunvet." "Whan," asked a bs statrder, would be the result if n was attacked in its widd carcer by a shower of rion, would it come batk ?" Ilete was at poser, but the tatceller was equal to the occasion amd replied: " No, it would turn on the other side and contunteits cours.
The subje.t of the comeration of limber is an interesting one to wood-wotkers, and the doors and shutters

In man: of our mushroom cities are satd to come of the lursics in retaliation of the persistent disobedience of the natural law of slorinkighe. An examination of the en "f ath oak or beech tree will shon the arransement of tos structure. It consints of a mass of longatudinal fimrous tubes, arrathacel in irregralar circles that are bound together by means of radial strings or shoots, which hatre been aabously named : they are the "siluer grains" of the carpenter, or the "medallary rats" of the hotanist, and ate in reality, the same as end wook, and have to be considered as such, just ats much as the longitudinat woody fiare, in order to cuncerstand its action. From this it will be seen that the lateral comraction or collap. sing of the longritudinal, porous, or tubulat jate of ace

structure, cannot take place without first erushing the medallary rats, bence the effect of the shrinking finds relici by spblitiong in another direction, n:medy in radial lines from the centre, parallel with the onedullary riys, thereby enalling the tree to maint:in its full diameter, as shown in Fig. 3.
If the entire tubular tibre composing the tree were to contract butiay, then the medullary rays wouk of nenecessity have to be crushed in the redial direction to enable it to take place. and the timber would thus be as much injured in propurtion as would le the case in crushing the wood in the lompitudinal dirertion. If such an oak or beech tree is cut into four quasters, by passing the saw twice through the centre at right angles, before the contracting ind splittide: hane commeneed, the lines as ,
 right angles to earh other, or, in the technical language of the workshop, ther would be squ:are, but, after lecing

surced in it dry place, sats for a year, it would then be secen that a great change had taken place both in the form and in sume of the dimenswns, the lines $a \operatorname{a}, \mathrm{c} \phi_{\text {, }}$ "und ie the same $\mathrm{len}_{\mathrm{i}}$ th as lefore but at would have cuntiated form atob very consticrably, and the tuo
 ly the purtion here shoun an blach in fug. 3. a he uicaluliar) (ays ouc thas brought cioser ibs the collopsing of the retical fibre.
But suppwing that sid parallel sav cuts are passed
Bul suipuing that aia paralial zir culs are passad
through the tree so as to form it mito seven planks, as shown in Fig. 4 , let us see what wombl be the behaviour of the seseral planks. Take the cente plank tirst. After due seasoning amd comeracting, it would then be fomed that the middle of the board would still retain the original thickness, from the resistance of the medallaty tats, while it would be sradually redured in thickness toward the edges for wath of support, and the entire

breatth of the plank sould be the same as it was at first, for the foregoing reasons, and as shown in Fig. 5 . Then, taking the planks at eath side of the center, by the same law their change and behaviour would be guite different ; they woald still retain their original thickness at the ceatre, but would be a little reduced on each edge throughout, but the side next to the heart of the tree would be the reverse, or hollow, and the plank would be considerably umrower throughom its entire lengh, more especially on the face of the hollow side, all due to the want of support. Selecting the next wo planks, they would be found to have lost none of their thickness it the centre, and very litte of their thickness at the edges, but very much of their breadth as planks, and would be

curved round on the heart side, and made hollow on the autside.
Supposing some of these planks to be cut יp into squares when in the green state, the shape that these stuares would assume, after a period of seasoning, would entirely depend on the part of the tree to which they belon;ed : the greatest alteration would be parallel with the medullary rays. Thus if the square was near the outside the effect would be as shown in Fig. G, namely, to contr.st in the direction from at to b, and after a ge a or two is woild te thas, as seen in Fig. 7 , the distance betucen c and a being nearly the same as they were before, lout the other two are brought by the amount of their contraction closer together. By understanding this natural law, it is comparatively casy to know the future behaviour of a board or plank hy carefully cx-

amman: the end of the wood, in order to ascertan the part of the . rg from which at has been cut, as the :ngre of the ring grows and the medullary rays will show ats in Fis. S .

A plank that has it will evidently show to have been cut from the outside, and for many ycars it will gradually shorink all to the breadth. While the next plank shown in Fig. 9, clearly pounts to the centre or heart of the tree, where it will not shank to the breadth, but to the varyong thickness with the full dimensions in the madde, but tapering on the edges, and the planks on the nght and left will give a mean, but with the centre sides curved round, and the outsude still more hollow. These remarks apply more especially to the stronger exogenous woons, such as irech, oak, and the stronger firs. The sofier woods, such as ycllow pine, are governed by the same law, but in virtue of their softness another law comes into force, which in some degree affects their behaviour, as the contracting power of the tubular wood has sufficient strengih to crush the softer metullary mas to some extent, and hence the primary law is so far modified. But even with the softer woods, such as are commonly used in the construction of houses, if the taw is carcfully vbeyed, the greater part of the shrmaking, which we are all too famliar with, would be obviated,
is the following athecdote will serve to show: It wats esolved to bund four houses, atl of the best class, but one of the four to be pre-eminently good, ats the future residente of the propictor. The timber was purchised for the entire lot, and the best portions were selected for house No. t, but by one who did not know the law, and to make certain of success this porison of the wood hat an catrat twelve months' statsoning after it was cut up. The remainder of the wool was then hamded ever to a contractor for the other three hooses, who hiod :th intelligent young foremin, whoknew the structure of wood as well as how to oby the law, and who, t?.ere-

Hys. H

fote, hat the wood for the three honses cut up in accordance therewith. The fourth house was buit the follow. ins jear by another man; but long before ten years had passed to the great surprise and annoyance of the proprictor it was tound that his eatrat good house had gone in the usuat manner, while the other three houses were without a shrinkage from top to bottom.
A similat want of correct knowledere of the natural figure atud properties of the structure of wood, such as the oatk, is constantly shown by the imperfect painting to resemble that wood, as exhibited on doors and shutters of many houses. If we can afford to have genuine wainscol doors, as in France and other countries, but

Flı: :

yet desire to have an imitation, it would surely be worth the trouble to have a block cut from the quarter of an oak trec, and to lave each of its six sides planed and polished, in order to make phan their several features. The house painter would then see who nature really is, and: :hus save us from the ridicule of other nations, when we mix up "silver grains" and all the other natural features upon one side of a board or panel. This is a subject that should interest all wood-workers and builders and a great deal of attention should be given to the structure of the various woods. It is alinost as necessarv foridndoodimacker 10 understand the anatomy of his tree, so to speak, as a surgeon to understand the anatomy before he commences to operate. The importance of the subject is therefore obvious.

A SCALE OF HARDNESS FOR METALS.

The atuthor describes a scale of hardness in use in the laboratory of the Technical High School at Praguc, composed of the following eighteen metallic substances, armaged in ascending order, from the softest to the hardest:

1. l'ure sofit lead.
2. Pure tin.
3. Pure hard lead.
4. Pure annealed copper
5. Cast fine copucer.
6. Soft bearing copper (copper. $S_{5} ;$ un, 10 ; zinc, 5).
7. Cast iron anncaled.
S. Fibrous wrought iron.
8. Finc-grained light-grey cast iron.

1a. Surngthened cast iro: (melted whth to per cent. of wrought turnings).
11. Soft ingot iron, with 15.00 per cent. carbon (will not harden).
12. Sted, with 0.56 per cent. carbon (not hardened).
13. Steel, with 0.96 per cemt. cation (not hardened).
14. Crucible cast-stecl, hardened and tempered bluc.
15. Crucible stecl, hardened and tempered, violet to orange yellow:
6. Crucible steel, hardened and tempered straw yellow.
17. Hard-beanng metal, copper, is; zunc, 17.
18. Crucible steel, glass hard.

The test is made by drawing a cylindncal piece whth a conical point along a polished surface of the metal to be tested. In the case described, that of a bronze used for the crosshead guidic of a locomotive, the point, when with j kilograms, was drawn six times through a distance of j centimetres. Under these conditions the points of the number below 5 in the scale were blunted without marking the surface; with Nos. 5 and 6 neither point nor surface was abraded; but with No. 7, while being slightly worn on the point, began to scratch the surface. The hardness was, thercfore, that of pure copper or soft bronze. The absolute tensils tesistance was found to be $2,0 j 1.7$ kilograms per square centimetre, while that of copper is $1, y=0$ kilograms per square centimetre, and hat of the bronze, Nio. 7, is 2,300 per square centumetre, thus showing an mimate relation between the strength and hardness of sumilatr inctallic compounds,

SKETCHES OF THE TRADE.

No. II.

THE PROMINENT MANUFAGTURES OF LONDON, ONT.

ONDON, in the county of Middlesc., Ont., the "Forest City," as it has been mamed, is situated :about midway between Niagara Falls and Detroit, on the Great Western Division of the Grand Trunk Railway, and has an enviable position as a commercial and manufacturing centre, having easy access, both east and west, to all peints of importance either in Camada or the United States. On the west it has direct commmication with such important towns as Clencoe, Chatham and Windsor, whilst, to the enst, Ingersoll, Woodstock, Pars and other places are situated on the direct line. By the Sarnia branch of the G. T. R., which has its ciastern terminus here, another important section, the fine county of Lambton, is brought in contact with the Forest City. We find on this line the rising and importam towns of Strathroy, Watford, Sarnia and Wyoming. from the latter place runs a short line of railway to Petrolia, the centre of the most important oil producing section of Canada. The north is reached via the London, Huron \& Bruce Railway (also under the G. T. R. system), which runs through the magnificent counties of Middlesex and Huron to the outskirts of Bruce county, thus passing through two of the finest counties in the Dominion, and touching the third, communication through which can be had by means of the Wellington, Grey \& Bruce from Wingham. To the south we find the London and Port Stanley line, about twenty-four miles in length, which wends its way through Middlesex and Elgin. About sixteen miles from I.ondon, in the latter county, is the enterprising and growing city of St. Thomas, with a population of about 10,000 . Eight miles further south, on the banks of Lake Erie, is locat ed Port Stanley, London's favourite pleasure resort in the summer time. From St. Thomas, by means of the Air I.ine, G. W. Division, London connects directly with AyImer, Tilsonburg, Simcoe, and other important points. Then, again, by the old Grand Trunk system, communication to the north, east and west is to be had with those pushing towns of St. Mary's, Stratford, Mitchell, Dublin, Seaforth, Clinton, Goderich, Lucan, Parkhill, Ailsa Crig, Forest, Arkona, ctc. The city may accordingly, thanks to the natural advantages of its location and the enterprise of its citizens, be justly termed the commercial metrapolis of Western Canadn, and has attained the position of a prominent manufacturing centre.
The first survey of the town plot was made in 1826 , and the year following the town was constituted by Parliament the capital of the Western district, and a frame Court House was immediately erected. In the succecding year this was replaced by the present brick structure. which a few years ago was greatly enlarged and cmbellished. The first merchant in London, and indeed of Middlesex county, was Mr. Geo. J. Goodhue, he having kept a store and carried on a distillers in Westminster for some time previous to the first settlement of the city. Among other business men at this very early period may be mentioned Mr. Lawrence Lawrason, a partner of Mr. Goodhue, Mr. John Jennings and Mr. Dennis O'Brien. In 1835 the town had atained a population of over 1000 souls. During the ravages of the cholera in 1832 a large number of the inhabitants had been swept away and the village became largely depopulated through these deaths and the flight of many of the citizens to escape the plague. Notwithstanding this the town two or threc years later had become a place of considerable importance and had outstripped the rival villages of Delaware, St. Thomas and Port Stanley; all of which were older places than London. In 1840 London was incarporated as a village, with a population of almost 2000 . In 1847 the village became a town. During the intermediate period the place was visited by two large fires, one in 18_{i+1}, which swept over a great part of Dundas street, then, as now, the principal business street, and the other in the spring of the year 1845, which consumed the principal part of the village, rendering many families homeless and ruining many business men. Nearly nine years elapsed before these disasters had been retrieved, at which period the assessed valuc of real estate amounted to $\$ 228,000$. In 1855 the town had attained a population of 10,000 and was inconyorated as a city. Owing to the demand for produce of all kinds, occasioned by the Crimean war, money was plentiful and an era of prosperity set in. Here as elsewhere throughout Canada considerable fortunes were realized in a short time by reason of the rise in the value of real estate, but in 1859 this brom suddenly came to a dead stop, when the value of real property shrank fully So per ct. and "hard times "were the order of the day. As an illustration of this may be mentioned, that th
assessment of the city, exclusive of persomal property, in 1858 amounted in $\$.426,966$ and in 1850 had frallea to $\$ 23+, 976$. One of the principal causes of the enormous rise in the value of real estate had been the constaction of the Great Western and the L.ondon \& Port Stanley railways, the former of which was opened ia, 1853 and the latter three years later. Previous to the opening of these roalls all produce had to be teamed to Dort Stanley, receiving merchandise from this poim or from H:anithon by that same medium. Whilst these railways were being builf, people formed very largely exasgerated ideas of the benefits that would accrue to the city and, ats a consequence, cmbarked in the wildest speculations in city lots, not realizing that new markets would spring up along the lines of these railways and chain their share of the trade. It fimally turned out that the contemplated advantages of the railroads were not so large as had been imagined, and these too sanguine speculators found themselves considerably out of pocket. However there is no doube that the building of these railways was the foundation of the rising prosperity and growth of the city: The first Provincial fair held in London was in 1854, and in 1868 the Western Fair was organized, which is held here annually, except in the years the Provincial takes place.
The presen population of the city; including the suburbs, London East, West and South, aunounts to about 28,000 . Among the fine structures of the city may be mentioned the Custom House, Post Office, Federal Bank, Bank of British North America, Masonic Temple, Merchants' Bank, Bank of Montreal, Oddfellows' Hall, Sc., all of which are imposing buildings. The waterworks system, which was completed several years ago at a cost of about $\$ 350,000$, is one of the finest in America. The water is obtained from springs on the banks of the river Thames, at a distance of about $31 / 2$ miles from the cit:-
The duties collected at the prort of London for the fiscal year ending June joth, $18 \$_{3}$, amounted to $\$ 629$, 963.60, an increase of $\$ 17,256.93$ over the previous yc...r. The Inland Revenue collections for the year ending June 30 hh, 1883 , were $\$ 305,812.98$, and the value of declared exports from the consular district of London to the United States during the four spuarters of the year ending June 30 hh, 1883 , amounted to $\$ 367,862.40$, a decrease of $\$ 290,291.58$ over the corresponding period in 1882.
At the present time the manufacturing industries of the city, of which to speak is the purport of this sketch, are labouring somewhat under a depression, at least some of them, and manufacturers generally are experiencing dull times. It is a well-known fact that there is over-production all over the country and I.ondon manufacturers have to bear the bad results of this just like their brethren at other prominent manufac turing pmints. Another reason for the dullness of business is the deficiency in the crop. The city being situated in the centre of one of the in general most fertile agricultural districts in the Dominion, the unfarourable influences of the short crop on the large local trade are of course ali the more keenly felt. Agricultural machincry and implements of all kinds are among the most prominent products of the London industrics, and also in this line the bad effects of over-production have jus now become strongly apparent, some of the hitherto most prominent concerns having had, as a consequence langely to reduce their capacity: With these few introductory remarks on the origin and building up of this now thriving manufacturing and commercial centre, we will now pass on to a brief review of the more prominent manufacturing estallishments in the city.
agricultural. machinery
At the head of the manufacturing establishments of this class stands the Phoenis Foundry of the wellknown firm of Messrs. Joun Eliotott \& Sons This business was started in $18 j 0$ by the present senior partner upon a limited scale and has gradually developed to its present very extensive proportions. The works, which consist of large and fine brick structures, are located on the comer of Wellington and Bathurst strects. The firm manufacture a large line of machincry; prominent among which is the celebrated McCormick Twine Binder. Other machines made by this firm are the Warrior Mower, Triumph Reaper, Champion Hay Rake, Meadow Lark Single Reaper, Single Mower and Combined Reaper and Mower. A short review of the arrangement of the extensive factory buildings will prove of interest to the reader. On the ground floor the toolroom is located, in which all the tools used in the different departments of the establishment are manufactured. This tool-room is a feature which very few manufacturing firms in the Dominion possess. In this department all washers, set-screws and like articles for the machinery are also made. Another department of the works is the arge room, fitted with all the latest convenierices and
appliances, where all the castings are moulded. Firom lere they are taken to another room, where they are thoroughly cleaned and prepared for use. All the iron work is here dipped into a large vat, which process innparts a fine polish to the surface. The blacksmith shop is fitted up with all the nccessary machinery, including a trip hammer and steam punch, and in the machine shops we find the latest and most improved appliances for doing the work to be performed here. Just the same must be said of the department where all the wood-work is done. Among the features of this depart ment is noteworthy, that all the canvas for use on the self-binder is here stretched upon a frame by a machine that causes the same tension as when it is in practical operation, so that when the slats are placed upon it and the camvas belt is completed, it is in perfect order with no danger of proving net right. Ir another separate room the knotting of the binder is thoroughly tested. Besides the departments mentioned in the foregoing, there are separate paint, finishing, packing and erecting shops, besides large store-rooms and an extensive showroom. In the jards are stored over a half-million of feet of well-seasoned lumber.
The firm operate also the Jackson Ploow Works in connection with their establishment. The principal articles of manufacture at these works are the Moline plows, land-breakers, harrows, sleighs, etc.
The business carried on by the firm has now acquired very large dimensions and their products have an excellent reputation all over the Dominion. Besides large sales throughout the country, from the west to the east, a very censiderable export trade to foreign countries has been built up. During the last season 500 self-binders, 500 mowers, 400 reapers, besides a large quantity of other agricultural machinery of all kinds, were tumed out by the firm. In the busy season about 250 men are employed, of whom about forty are on the pay-roll of the Plow works.
Under the name of
the north american agricultural. indimenent
and general. manufacturing company
an amalganation is abous to be consummated of the Stevens, Turner \& Bukina Ifog Co., the Glome Agricuitural. Works, and the l-jumer Waggon and General. Mfog Co. It is, howerd. stipulated in this agreement that each of the three cempanics tim continue to manufacture their distinct line of goods.
The Stevens, Tukner \& burns Mfg Co. was established in $15 \% 1$ and are makers of all kinds of engines, saw-mill machinery, threshers and a general assortment of agricultural imptements. Their premises, consisting of a new threc-story brick building, 200×50 fect, are located on the corner of Richmond and Bathurst streets, and were newly erected three years ago and occupy 114 acres, together with the foundry, storehouses and the blacksmith shop. Among the specialties manufactured by this company should be mentioned : the "Western Empire" Portable Engine, the J. I. C. Separator, the Woodbury horse-power, and porable or stationary Saw Mills. Besides this they are general irnn and brass founders and finishers, and water-works contractors. During the last jear the company employed about 150 hands.
The second company constituting the above-named comolidation are The Globe Agriculitural. Works, who own extensive works on the corner of Adelaide and Dundas streets. This concern was established in 1870 by Mr. Sam Crawford, who is still the manager at the present time. The factory buildings are of brick occupying a large space of ground, and are fitted up throughout with the most improved natit::i:ny. The principal owners of the works are Sam. Crawford, B Cronin, Dr. Woodruff and other capitalists. The specialties of manufacture are the Thomas Paten Smoothing Harrow, the new Model Mower, the Imperial Reaper, the "Farmer's Friend" Grain Drill, the North Am-rican Harvesterand Twine Binder, the Decre Sulky Plow, the Prairic Farm Plow, and Hay Rakes. During the last season the compiny employed from 150 to 20 nands.

The Plemmer Waggon Co. likewise forming a part of the new amalgamation, principally manufacture what is called the Light-Running Moline Waggen. Their works are located on the comer of Ridout and Fullerton strects.
engines ind bollers.
The manufacture of engines and boilers is carried on in an cxtensive way by the old established firm of E . Leonard \& Sons. This establishment is located on East York strect, between Wa,crlon and Colbome strects. The business was established as early as 1834, then, of coursc, on a small scaic, and has in the lapse of years acquired such proportions that the sales reach all over the country from British Columbia to Halifax. The
speci, lte of the tirm is the l.eonand Fam Enyine, which has become celobrated all chough the wemes! for us many superior qualtues , und prominem featuecs pertan-

 potable engines with lecomone benlots engmes with uprght boolers, deduatable fotce pump. dupher imiec.
 The factory bualdugs tre © (V)enole ..nd itteci up throughout with the mose mproned appliaaces. Absut 100 men are employed by this titm.
At the Foriat Cin Mumat Wosks, operated be Vk. Gito. Whire and hrated om Kimg hreed wert, the mamufacture of ste.un cugrnes and boulets io likenise entensisely carried on, threshing agines fomming the spectaley. The worhs hune been corablinhed dhout 27 jears and now curn out from to to too thre hinse engine every season. Mr. White whim his engine to be the most durable and cariont handed engine in the bominion, and is backed in thi by a latge number of wery flaterms tertimomah. His sale, reach all onerontario and also to Maniken and Roma somia. The factory is contained in a tine brick buld mis. 312 go fert, newly erected hast fall and bited up throughout with the hatest mproved machuery. About to hands are cmployed at these works.
Another estableshanent de woed wholer maknen is the Xew lonk Bumer Work oi Menra, Ehwakn Wis.
 firm manufacture all kinds of stam boller, ath, ayitators, and are abo licensed to manufa sure the Buras. wamath Steam la ket Feed-Wher Heater and luwifier. The trade dome by this cotablishment is consederable, principally local. . 111 of hersers Wimett, products hase the repuation of bemg firsteclas. 1 hurns the busy season about is hands are emphyed.

The brewins indusery is prominemty represented in London by the widely known and evtenside cotablan-
 and Jons Lanture. The buidding, of in,th tirm are an ornament to the city. and rank. withont dowht, omong's the most perfectly arranged :ad wellecquipped breneries in the Dominion.

 financial meams. The building, which is of impo ing dimensions, has been fited up thromghout with -pecial ate ntuon to the parposes for which it is cmployed. The basement, whech is is feet high, comains the working cellar, stock cellar, bouthing cellar, and the wouts. The malting room extends throughout a eries of foons, the drying kilns used are " Ha, done in a larte copper of 9.000 ;allons capacity. the fermeating; is done in exghe tubs, of 5.500 satlons rapacity each. A distinct feature of this brewery is the manuficture of bager, of which abour (x0.000 ken are turned out annually. This deparument is excellentiy equipped in cuery particular wad carlin;"; laser will compare very favourably with the best American. Mr. ladwig. employed for a number of sars in the entersive and widely known breucries of the Phillip Best Brawing Co., at Miluauke, Nis., and a frist-clas pratical brewer artsas special "brew-master" in thin depherment, "hilst Mr. Mrbeth is the courteons peneral manager. The caparity of the brewery is about $j^{6}, 000$ barrels and there is a storage caparity for 6,000 harrels. The matt. house has a capacity for almut So.000 buhhoh amnailly. The product of the Carlan: brewers, ale, porter, os well as their lager ramks 1 Nie. 1. and has made for the manufacturers an cavinible repmatoon among all friends of mall and hop liquors.
Mk. Jons I.anitri, weit-known brewery has been established about to years, Mr. L..'s father havimg been the founder. Ale and porterare carlusively brewed, and the fame of the products of the lablatt breucry evtends far over the borders of the Dominion. The capacity of the brewery is 35,000 barrels per year. whilst the matehouses have a capacity of So,ooo bushels annually. The business was begun on a small scale and has steadily increased until in the course of years it has attained its present extensive proportions. The sales of the famurus Labiatis ales and porcer now reach from Wimaper to Queber, and there is not a mwn or villa;e in this vast area of space where the product of the brewery is nos found. Mr. Labailt has been awarded melats for his ales and porter at the Centennial exposition in Phitadelphia in 1576 , at the Australian exhibition in 1877 , and the Paris exposition in 187 S . About jo hands are on an average constantly cinployed in the estahlishment. The buildings are all of brick, very substantially erected and making an imposing appearance. They consist of four separate large buildings, covering in area of from jto 6 acres of hand, whilst the whole premises cmbrace about to acres
 prese mated in tonden of confertomery and biscuins is represented in 1 .anden by a comple of the largest and most prominemt extublishancuts in thes hae in the 1)eminion. St the head of them, and we think we are futitied in sating, ot the head of thes business in Camada, stamds the widel) and favourably known firm of 1). I.. P:Eknas Aco. This establistment should mes only be classed mang the tiss in thes line of industry on Camada, bet hotd a foremine ta:ik anoung all kinded factories on the Amencan comtinent. In the manufature of ogar tow, ormamented thowers, hearts, ett., etc., the pooduts of this firm are cortainly not surpassed in Ameraca. In the biscuit line they manufacture everything, from the phon soda ctacken to the finest table and wine brscuit, and their catalugue of loeenger, medeated loeenges, pan goods, boiled goods, acidelatad drops, caramels, gum goveds, cream sood, cheo olate gooch, marshmallow goods. grained goods, cordial goods, jell, woods, etc., embraces everything in these varions lues, and new deparments ofe constantly being added. The estab. bishment is located on Dumbas street, rumming through to Carling street, a depth of is; feet, and having a fromatace of zo feet on the firs-mamed street, and of 120 feet on the fatter. On the owher side of Carling street are located the bor factory. the boiler and engine house, the stables, etc. The whole establishment is very extensice, covering a large area of ground. Owing to the cominued increase of hasiness the proprieturs have constandy had to add to their premises and to provele more room, and have not done yet, as a further entargement is contemplated for the near future. As it is now, the norks make an imposing appearimee, and the visitor is at once impressed that nothing has been left undone bey the proprictors to meet the pressing demands of their wast and contimally increasing business. The baking apacity of the factory; in two ovens, is over 1 go bags of thour per day; whist in the confectionery department the capacty is over 30 barrels of sugar per day: The main hulding is three stories high and admirably arranged far the purposes for which it is used. A brief stroll through the difticrent departments and iloors will without double prove interesting to the reader. The basement, which extenrs, through the entire length of the buildins, is high and well ventilated, and here you see luundreds of barrels of sugar and thour, besides innumerable boves of raisms and the other varied stock used in the mamufacture of the tirm's good, you at once see that you find yourself in that part of the premises that has been set apart for general storage purposes. On the ground Howr, to the from on Dundas street, are beated the business ofices, fitted up very nicely throughout, and the room containing the samples of the different prodacts of the firm. A visit to this rom is of special interest, and among the various exhibits there you can find many articles in the sugar line, which are true pieces of art, and that you cannot see more artistic and tasteful in the largest confectionery establishments of Germany or France. To the rear of the office the pach. mand shipping is done, and in this department a large number of hands are constanty busy. On the first iloor is the deparment where the sorsing and packing into boses of the different candies is performed by a large number of young women. On this same nat are also located a number of matime, all operated by stam. amongt which may be mentioncd one for the manufacture of lozenges, capable of making 1000 pounds of plan and toos poumds of printed lozenges per day, with the assistance of bus ferur hands. Three revolving pans, heated and driven ly steam, are further located on this hoor, and used for manufacturing sugared almonds and that chass of sweets. These pans are able to turn out :llout ; 300 pounds per week. Other machines on this Hoor are at Japanese miver, used for the manuficture of J.panese cocoanur, and a sugar-bolting machinc, the only one of the kind in Canada. By means of this sugar can be around from the coarsest sample to the finest dour, and it is capable to run off from 25 to 30 barrels of sugar per day: Anther department on this thoor is the caramel departunent, where 2∞ in 300 pounds of this favourite confectionery are turned ous daily: A drying room, capable of drying about 6000 pounds of lozenges at a time, and fitted up with the latest and most approved appliances, is also lncated on this thoor. On the second tioor we find the departments where cream, gum and chorolate drops are manufactured, and here about 1000 pounds of these different varcties are turned out daily: Then there is another drying room on this that, in every respect similar to the one below, and the nonti. ern part of the flomr is devoted to the manufacture of stick candy, drops, bulls' cyes, ctc, having a capacity of making $=000$ pounds per day of these goods. On the top floor is located th room of the artistic designer of the firm, a Germange :leman who has learned his trade in the largest confectionery establishments of Germany,

France, England, Demmark, \&c., and has made splendid use of the opportunities afforded him, which the artistic work done by him amply proves. He is conramely introducting sumething new, and is already now again at work on new designs and goods for next Chrisumas. Messrs. Perrin \& Co are fully recognized as the leaders in ornamented goods throughout Cimada, and are the sole manufacturers of a large variety of this chass of goods in the Dominion. As they are constantly adding new styles and designs they seem determined to mainain their place at the heati of this particutar line of mamufacture, ats well as of everything else made by them. The motive power for the whole establistument is furnished by a 30 -horse power engine and at 70 -horse power boiler, which are located in a separate building on the other side of Carlings street, where is also the box factory; in which about half a million feet of basswood lumber is manally worked ines pachisig boxes. The mumber of hands at present employed in the various deparments of the establishment is 150 , in charge of Mr. James Henderson, the practical superintendent of the works and a very courtenus genteman.
A second prominent establishurent in the confectionery line is that of the Mecormick manufactuens Co., whose commodious premises are located on the corner of Dundas and Wellington streets This business was established in $18 ; 8$ and has now attained such eatensive propertions that its products are well and favourably known throughout Canada and also many points throughout the United States. The firm manufacture confectionery, biscuits, and candied peel, jams, jellies anal preserves. The basement of the fine and large factory building is divided into two apartments, in one of which is at large set of sugar pounders, the other beine used for storage purposes. On the ground floor are the elegant offices, caule, sample romm, sales room, shipping room and the bake shop, the latter being fitted out with large kiln.ovens, and all the latest machinery tor the manufacture of biscuits and soft cake is to be found in this department, likewise an expensive machine for cutting and printing lozenges, ete. On the floor abote are the boiling and packing rooms, the former being fitted out with seven furnaces. On the third floor are the cream, jam and pan room, the fancy goods deparment, the peel and preserving room, and the drying room. Above these are located the storage rooms for ctupty preserve botties, pots, jars, etc., and two dining rooms for the hands employed in the establishment, one for the females and another for the males, the number of employecs averaging about 125 . The officers of the company are : T. McCormick, l'resident, A. W. Poric, Managing Director, and Geo. G. MeCormick, Treas. The MeCormick Company was awarded high honours for their exhibit at the Paris exposition in $18 ; 8$. mmerial. oll. compant.
The enensive works of the Improkial. Ont. Combast, The entensive works of the limparial. Ont. Compans,
torated in london East, are not only the largest oil works in Camada, but hold a formmost rank among all kindred establishments on the American continent. The works are operated by a joint stock company, with a paid up capital of haif a million of dollars. The establishment owned by this company, of which the L.ondon works only form a part, cmbraces an area of 16 acres in L.ondon and 22 acres in Petrolia, Ont, not including the wells. The company employ about 500 workmen at buth places of manufacture. They are effiners of petroleun and manufacture illuminating oils, lubricating, machine and wool oils, paratine oils, paraffine way and candles, axic grease, refined naptha, benzine, cte. Their sales reach all over the Dominion, and their wax and paraffine oils are largely exported to England, Germany and France. The paraffine works were totally destroyed by fire in July last, but have since been re-built and fitted out with the very tatest and most improved machinery. In addition in their old goods the company have lately introduced a new line of goods, which have previously never been manufactured in Canada, and amougst which are noteworthy : Mineral Colza illuminating oil, for mailuajs, 300° test; hand lamp oil, for milways; Palm cylinder oil, 600° test; Swect Artic Zero oil ; and Imperial axle grease, of all of which they are exclusive manufacturers. The company have now engayed the services of an expert clemist, Mr. Hermann Frasch, late of Cleveland, O., under whose supervision all their goods are manufactured. The head office of the company is at L.ondon East, and is presided over by Mr. W. M. Spencer, the secretary and treasurer, a very courtcous and genial gentleman. President of the company is Mr. F. A. Fitzgerald.

stove wokks.

The stove works of the McCiary Manuracturing Co., located or, Wellington, King and York strects, are among the most prominent in Canada. The company manufacture stoces, stamped, ja;innned and piece tinware, and are dealers in metals and tinsmiths' trimmings.

Thes have wholesale branches at Toronto and Wimipeg. In the busp season alout 300 hands are empluyed. The sales of the firm extend from the Rocky Mountains to Italifax, besides this a considerable export trade to England, Scolland, Australia and the West tudies, has been built up. Their sales reach about $\$ 500,000$ amm ally. The ammal production of stoves is about 15,000 . a lamge fiour mil.
The largest flouring mill in London of an aggregate of three, with several more in the inmediate vicinityare the Blackfrtars Mhlis, of which Mr. J. I). S.usum is proprietor. The capacity of these mills is 300 barrels per day of 24 hours. The mill has recently been completely remodelled on the gradual reduction plan, and the machinery put in by the well-known mill furnishers, Goldie \& McCulloch, of Galt. The building is 85 feet high to the eaves, and $51 / 2$ story. On the wasement floor are three water-wheels, one 5% feet, and two 4% feet, under a head of 8 feet. These wheels all cohnect with one shatt on the that above. Nearly all the conveyors are in the first story, and, passing into the next flat, we find the stone gearing, the cleaning machinery, 2 purifiers, scatp reels and roller shaft. On the next tloo, 9 double set of rolls, 3 pair of stones, 3 purifiers, and 3 packers. Ascending one more fight, 2 bran dusters, wheat bins, middlings bins, 16 reels, storage for bran and packer bins. On the top floor, continuation of the bolting machinery, centrifugal bolt, bran bolt, wheat grader, etc. The storage for wheat is under the grinding floor, the bins being about $3=$ feet deep. There are z^{3} sets of elenators. There is a splendid water power, which is available for about it months in the year. During this time water power is wholiy used, but for steam purposes the mill is furnished with one of Coldie \& MeCulloch's Whe:lock engines, of 150 -horse power, and two boilers. In some years it is not necessary to use steam at all. Mr. Saunby's " Ruby" patent four, and his "Tecumseh" brand are known all over and have acquired an enviable reputation. The mill is in charge of Mr. Wm. Hages; well-known to the millin ${ }_{z}$ Eummunits.

Carkiagl: works

London has a number of carriage and waggon shops, prominent anong with are the works of ex-Mayor lous Campleni, on King strect west. Mr. C. manufactures carriages of all descriptions, including landau coaches, hacks, sleighs, cutters, and buck-boards and carts for use in the Northwest Territories. This business is the oldest of its class in London, having been established about 30 jears. The sales extend all over the Dominion, and a good many carriages manufactured by the firm find their way to Australia. Mr. C. also does a large business with Toronto, principally in backs. The works are only rumning at about half their capacity at present, employing about 30 hands. As a general ruic Mr. C. carrics of about nine-twelfths of all prizes at the fairs wherever he exhibits his goods, and was awarded about a dozen at the last Western Fair.
machine tools.
The London Macunse Tool. Co. has been established since is8o and have their premises, consisting of fine newly erected buildings, on York street west. The works are sub-divided into the machine shop, the pattern sinp and the foundry, the whole being in charge of Mr. Wm. Yates as mechenical superintendent, who, iosether with Mr. Gibson, constitutes the company owning the works. The firm manufacture tools of all descrip. tions, including every tool used in their own establishment. Their goods have made for themsclucs an enviable reputation and are acknowledged to be firstclass in every particular. They have a wide sale and the firm have always a lange quantity of orders ahead. Mr. I. A. Morrison, of Toronto, is the agent for the sale of these gonds. Among the varied line of goods manufactured we note: plows, shapers, sloters, hammers, milling machines, cutting-off machines, engine lathes, sap lathes, turret lathes, chucking lathes, polishing lathes, upright drills, suspension drills and radial drills. About 30 hands are constantly employed in the works. fencing and wire work.
Mr. R. Devinis' establishment, at $21 t$ King strect, for the manufacture of all kinds of fencing and wire articles generally is worthy of a notice among the more prominent industries of the "Forest City." Mr. Dennis manufactures wire-wove goods of all kinds, sish as wirc-rope, steel and iron smoke-stack webs, fanning mill webs, mosquito blind webs, etc., and further a special line of fancy wire goods, such as window guards, bank railings, flower stands, baskets, etc. Fencing, milings, cemetery fencing, stable fixtures, crestings and finials form another specialty of these works. Mr. D. turns out only first-class work, and this being generally recognized, has so many orders ahead that he sees himself foreed to enlarge his works, which will be done
this spring. The capacity of the factory will then be nearly doubled, and a line of new goods added to the already large and eatensive catalogue.

car, car whera. ind sthen works.

The extensive works of the Gxtarto Cak and Foundry Company, under the geiaral mamagemem of Mr. Thos. Munk, athough situate in loondon East may be reckoned as anong the manufacturing industries of Loondon, the wages and other largedisbursements by the company being largely received by the city merchants and traders. This organization now embraces the Ontaio Ciar Co. and London Car Wheel Co., which were separately chartered in 1871 , and worked in com. bination for the construction of railway and street cars. The foundry, for genen ll castings, has a capacity for 12 tons of castings daily, and the wheel foundry ordinarily turns out +5 car, locomotive and tender wheels daily; but has cupola, floor and ammealing capacity for 65 such wheels, representing an aggregate melting of 19 tons. In ordinary working 20 to 25 tons ironare used daily in this establishment. A great deal of casting work outside of the Car Co.'s requirements is done at these foundries, including heating furroces, machinery fittings, contractor's plant, chilled rolls, gear wheels, furnace froms, grate bars and brass castings. Mr. Peter Watson, a thoroughty practical mouiter and metal worker is in charge of this department.
The cars of the Ontario Car Co. are to be found upor. almost ewery rainay within the Dominion-Western councies of Nowa Scotia, Halifax and Cape Breton, Intercolonial, Quelec Central, International, North Shore, Grand Trunk, Quebec $\$$ Lake St. John, St. John, St. Lawrence \& Otawa, Canada Atlantic, Central Ontario, Grand Junction, Whitby \& Port Perry. Toronto, Grey \& Bruce, Northern \& Hamilton Noth Western, Credit Valley, Canadian l'acific, Great Western, Canada Southern, Port Dover \& Lake Huron, and Manitoba \& North Western. The present capacity of the Ontario Car Works is eight freight cars per day; besides passenger car work ; and having always a large stock of scasoned oak, ash, walnut, whitewood and other lumber on hand, together with the facilities under their own control for getting out castings, whecls, bariron and springs, they are always ready to put urgent orders promply in hand. Mr. Alex. Willis is superintendent of the Car Works and the iron, wood and painting departments being under the immediate direction of experienced foremen, the workmanship and material in
 not surpassed by any other estabiishment in the Dominion. They are now completing a large order for handsome second-class and smoking coaches for the Dominion Govermment.
Tue lombon Steel Works are a new industry; and also situated in London East, under the same general management as the Car and Car Wheel Works, Mr. Thomas Mutk being manaying director, with Mr. Thomas Kikkiand as Superintendent. The building is of corrugated sheet iron, of large capacity, and contains the most improved melting and heating furnaces, cupola, rolling mill, hammers, \&.c., for making crucible stecl, and working both steel and iron. It is the first, and at present. the only steel works and steel rolling mill in the Dominion. The products of the works are crucible stecl for railway and carringe springs, rake :ecth, files and tools, machinery and fire steel, crucible steel castings of all sizes and for all purposes, milway and machinery coil springs, files, picks, and bar iron of the best grades from "Refined" to genuine "Norway," all of which are chaily growing in favor with the trade and consumers. The Rolling atill department has several months work ahead. The stecl workers and rolling mill men employed by the company are from Shefficld and Pittsburgh, and are giving to the Companythe benefit of much practical knowledge and many years experience. The stock for making the crucible steel is imperted direct from Europe, and the entire process is most interesting. With this nstablishment so centrally situated, and having a capacity for producing 8 tons stecl, and 10 to 12 tons bar iron daily, our Ontario trade should be well provided for without having to import and carry such heavy stocks, involving a considerable charge for interest, and the sencing of a large amount of money amnually out of the country to benefit foreign labor. The enterprise of the London Steel Works Company deserves and should reccive the generous support and patronage of our manufac:uring firms and the trade generally.

cigar factories.

The cigar manufacturing industry is one of the most prominent industries of London, and perhaps theie is no other town in Canada where this industry has become so largely developed. Besides a number of smaller fac-
tories, thereare no lesstinan seven cigar factories in the city emploging each from 65 down to 25 hands. The names of these firms are Mckay \& Co., employing $6 ;$ hands; Kelly \& Sons, employing about the same number ; Albert Smith \& Co., and T. L. Rutherford \& Co., with about 90 hands each; Jos. Smith \& Co, 30 hands; and Bremer and II. L.awson \& Co., with about 35 hands each. This industry, therefore, gives employment to a larse number of working hands, albout one half of the hands employed being females. The writer of this sketch had ombs time to visit one of these factories, that of Messrs. Mckay $\&$ Co., where he was shown around by the courteous superintendent, Mr. Adolph Meyersahm, a genteman who has gained his wide experience in some of the largest American cigar factories.

THE IMPROVED PRINZ DUST COLLECTOR.

If from no other standpoint than that of safety from fire, the dust collector is a necessity in any flour mill. The stive room is a poor apology for a dust collector, yet it is clung to as a make-shift by many millers simply because a few feet of pine flooring will make one; and when made, it should be named the waste romm. Numerous devices have been tried for giving reliet from the dust generated by millstones, rolls, purifiers, and grain cleaning machinery, many of them being bulky in their arrangements, and requiring undue attention to keen them in working order, and which for these reasons, if for no other, unfit them for use by any but the most careful and skillful workmen. Compactness and concentra tion are of the greatest importance in any machine in tended for the flour mill, and in these requisites a dust collector must find some of its strongest points.
Though it is true that many enlightened millers have continued in the use of their dust rooms, as first constructed, it is just as true that a goodly number of fine mills have been destroyed by fire, and in many cases these fires could be traced to no more definite origin than the ignition of mill dust in the vicinity of the dust room. Leaving out of the account entirely the risks of any such accident, the proper receptacle for the dust arising in the production of flour, is evidently such a contrivance as will save all the dust and permit the free escape of the air after it has deposited its lond.
endure the constant strain exerted upon it by the ${ }^{2}$. ; will only too often hasten to an early srave. Indulgence -....esione arr another great factor to shorto remore moisture as well as dust, its province is of course immeasurably enlarged, and it then exert- its inHuence on every machine where moisture will be ha:mful. These two properties are claimed as being fulflled by the Prinz Dust Collector, manufactured by the Mil waukee Dust Collector Manufacturing Company, Miiwaukec, Wis., U.S.A.
The leading feature of this machine is Simplicity: The dead air clamber which has been a source of much trouble in other machines, by wearing out and allowing the air to get in, thereby; injuring the power of the cleaning mechanism on the cloth, which results in the cloth filling up, is entirely overcome in this machine, as it has no dead air chamber.
The cloth is cleaned by successive jarring (without moving the portion of the cloth thus being cleaned until the jarring ceases), combined with the air, which is reversed on that portion of the cloth, and the draught comes through the opposite way from which it cuts through into the fan, and by this action all the dust is retained in the machine. Less power is used with this machine than any other, as, there is no back pressure on the fin.

It does away completely with those long spouts leading from purificrs to dust rooms, which give so much trouble by filling up.
It does awny with the cumbersome, dusty, dirty, old fashione: dust-room entirel; and the numerous spouts leading to them, which fill up the mill, leaving no room 10 get around.
It does away with the liability of dust explosions, as the air coming from this machine is entirely free from dust, which is not the case with the air coming from any other Dust Collector offered to the milling public heretofore.
It retains all the dust in the mill, thus allowing no waste of stock by being blown out into the air, as is the case with the old fashioned dust-room.
Any other information will be gladly furnished by the manufacturers, who have now completed arrangements to manufacture the machine also at Stratford, Ont., and supply it from there free on board cars to Canadian milIers, thereby saving thein the heavy daty on American machinerg:

STEAM "NIGGER.

TIIIS mathine. Which the accompanvong cut $i!$.., 15 Hattes, in one of those impronements in satis mull mathomery sugesested by pratuce in the moll, and has been found gute valuable, is $1 t$ satere time, is dutable bein, made emtitely of iton, steel and brass, and is quickly and easily controlled. The machnoe, beine worked by ditect steallo, is elastic in its movements whereby obviating hability to breakage', which is a ver! desirable point in any machine. The toothed stock is made of forged Swede iton, with hanged, receding, forg ed steel teeth, so constructed that when their point: conce in contact with a that surface, they tecede back into the stock, and the tecth below said tiat suaface take bold of the round part of the cant ot lose and turn i whont tearing or marring it. The lever by which it is operated is so constructed that it will wotk either cylin der, singly or together, in the same directon or it opposite directuons. In rolling a log from the log-uay to the mill-carriage the lever is moned in the direction which it is intended to move the toothed stock in order "oget thatk of the lon: stean is then applied to the botom of the large cyluder, using the same lever and thes catuses the log to be tolled on to the carriage.

This mathme has at strong power stede mosemem, and when the log is turned with the dat side toward knees. it can be pressed uf wath arainst them simply by move ing the lever in the direction you wish to press the log or cant. By using this machine the circular mill, it is clamed, will saw from five to seven thousand feet more per each eleven hours, according to cuting capacity of mill.
The manofacturers make two sizes of this machine and say that it has given entire satisfaction to every one using it. In the standard machine the large colinder is ten inches in diancter by six feet longs, and the small one six inches in diameter by sic feet long. Both cylinders have journa, on lower heads, and oscillate. Theyare very cheaple set up in mill, requirins only a base for the cylinders on lower thoor, and no bridge-trees, shafting, boves, pulless, beles or chains. Both celinders are supplied with ste:m by a 1 d-inch ste:an pipe. It requires less ste:m to work it than it takes to wercome the friction on the old style friction turn-
 dimensions, has been titted up throughout with special attention to the purposes for which it is employed. The จpuat oq uns yuann <

 saw mill ; and by so doing, all defects are disconered and adjusted. Anotherimpontamt use is in spinging and straightening long timbers; for long timber mills two machines are placed to one carriage, so as to turn long logs nicely and straighten lungr timber quickly.

Further information may be obtained from the m-nufacturers, lion. E: Hill ※ Co.. K゙:alamazoo, . li_{1} :.., C. S. A.

WOOD-WORKING FACTORIES.

Kecping too's in their place and kecping them ingood condition to do their work sood and casp, are two very different things, although it would seem that a person that was nice and orterly about one thing would be so in others, and would take pride in the work of his hands.
We will gointo a mill, however, and took around, and we come to a saw bench and see a saw with one large tooth and one small one and one lons and one short one, and one filed very teaming and another almost spuare and looking at some sawn stuff, it looks as if a thousand demons had gone through it with a hurricanc. More than is likely as not, this abused servant had three or four black spots on it, slowing how terribly it had been handled.
This is a specimen of the rest of the tools in the mill. A pair of side cuters on a bench nea: by confirms the statement. One is filed short and the other a long bevel, and the grooving bit of one stands out one-cighth of an inch further than the other, and one is filed standing and another the opposite, and every individual bitt is sharpened at a different bevel. We look for stuff that has come from the mill with tools in this shape and we find the last production and, oh $:$ horror of horrors, the demons have been here surely and have been recruited. Do we wonder that carpenters complain of the bad work done by planing and matching machines? But there is a relicf to this picture, and a little turn of our magic picture inaker lorings it to us in an instant.
We see a man just stopping his saw, and before he shuts off he takes a piece of broken grindstone, and
carefully holding it up to the saw, just brushes it over Noticing this we ask " 1) o yout joine a saw every time jou take it sut 10 sharpen?" He tells us "No," not atways, but is often as once a day he just goes over it it keep the teeth of an even length which helps to keep the out corners full and makes the salw run enough better to pay for the trouble. When loe takes the saw out he holds it up to you, and you see every tooth is so near alike that the eye camot see any difference in their size or shape, and the saw shines like a piece of burnished silver. This drams out the remata that he has not got any black spots on his saw. Pleasantly he tells you, there is no need of any if you use the salw right. If you keep a saw soun 1 , and the outside corners full, and a nood fair set in it, and don't coowd it if it linds in the cut, which it will do sometimes, there is no need of mak. ing blark spots in a saw. He slows us some of the sawing, and you are surprised ti. \cdot a saw can do so nice work, but when lee comes to pu in another and you hear it make that line, cleam, clear cut so peculiar to a saw in perfect order, that you do not wonder that his sawed stulflooks so nice. He tells us that they have one man to look after the saws and no other man ever has anything to do about tiling or senting, which makes the saws all come from the tiler uniform in set and shape of tooth, and if there is hard wood to salw, there is al ways something ready for the work. We now go to see the man sharpening the knives of a matching mill, and we see him taking pains that the knife is straight, and he gives it a good bevel so that there will be a good

Steam " Nig:cer."
clearance in the cut, so as not to go pounding through stuff instead of making a clean, easy; cut, which old planing mill men can tell by that peculiar sound given by a mill when it is in good nice working trim. The side cutters are now looked after, and we see that each bitt has done an equal share of the work and are all done al:ke; and in filing them to use again, pains is taken that every butt is the same bevel and they are set out alike, and if for working two sides they are set perfectly square and filed, so that they will make a tight joint on the surface. We see the work couning from this mill as near perfect as can be. The work comes just right, and the matching is neither too loose nor too tight.- \int. T. Iangrain, in Builier and Horod-uarker.

A SIMPLE MILL ARRANGEMENT.

iv as ole mhowright

JUST now the information most sought by millers who have not up to the present had the means to adopt the gradual reduction system by putting in a new plant is how to arrange a mill with a capacity of say from 25 bbls. to one of 100 bbls. Of course it will be next to an impossibility to give precise information on this topic for the well-known reason that the circumstances are nut alike in any two mills, so that information can only be given in a general way, to be applied by ench to suit his peculiar circumstances. The improvements which have been made in milling methods
within the past ten jears or so have generally given good results wherever introduced. There call be no longer any doubt as to the success of gradual reduction by rolls, but there are many mills in which it would be very much better and safer to introduce gradual reduction gradual15: The war which has been waging for some time between rolls and stones has ceased to be heard, except in a few isolated cases in out of the way places, where it is very hard for improvements to find a votary of amy kind. The war started by M. Tonaillon from the quarries of ha forte sums fondero was to say the least perfect looking enough. The ciermans introduced the roller process in Europe, and outside of the fact that the Fiench had the monopoly of the burr stone trade, this and the fact of rolls having been introduced by (iermans was too much for the French people to stime. The French millers said: "Rollers are old ; we trie' then fifty years ago and found them wanting." (ierman mill. ers kept on improving, and to-day the roller-made flour from Anstro-Hungary brings the highest price in the European markets. The war has ceased, but no one system has been completely able to drive the other ou of the fiedd. The progressive miller improves, but there is a targe majority who make very litte improvement Our object in this article is to point out a possible methool of making improvements in small mills by a combined roller and stone system. It matters very litte what system of gradual reduction will gain the ascendam, there is one thing very certain, and that is, we are b? joud the flat grinding system as far as it was beyoud the peste and mortar of the aborigines. There are hundreds of millers who have spared no expense in the last decade to keep in the van of improvement. The past ten years have been a tramsitional era in milling. Systems and methods have been adopted, tested and abandoned in favour of the system of gradual reduction by rolls, which systen is admitted as being correct by atmost every one who has given it a trial. It behooves the Camadian miller who will very soon have : large supply of sp:ing wheat from the Northwest Territory, which is admitedly a great wheat commery, to be pre pared to profitably convert it into flour. the wheat coming from there is noted for its excellent quality. The development of this territory will no doubt add millions of bushels to the yearly wheat crop, so that it is a me for millers to bestir themselves in making such improveatents as may be necessary to make a flour out of this wheat that will hold ite own in any market. All this fine wheat should be milled in accordance with a sy stem which has demonstrated its excellence in mills all over the world, and thus render: it possible for Canadian millowners to place their output on the Canadian markets in cempetition with that of establishunents where the old system is in use, and thus convince them of its superiority. It akes but litte to locate a popular de mand for a betact grade of an; staple article, and when the demand is once created it will continue to demand its supplies. There are a great many who, of course, are not able to meet the expense ofan emire roller plant, and to those the advice can be given, that they can exchange gradually by putting in a few sets of break-rolls and at few sets for fimishing up on, and the result will aston:sh them, provided their bolting system is all right. No change should be made execpt it would be under the supervision of some one who is competent to make it and who understands his business thoroughly. The nbject of the change is to make as much middlings as possible and then purify them. In ease the miller decides on not puting in rollers-which is a very bad decision for him to come to-and he desires to make middlings on his burrs, he must have about twice as much furrow as land surfice. The burrs must not be run too fast, and there must be a separate stone for the middlings. We will suppose that there are three runs of burrs. The stones must be dressed in the manner already mentioned, except that the furrows in the middlings stone should not be quite as deep as in the wheat stone. The bolts must be changed to sumt and plentyof bolting capacity given. There must be a dusting reel covered with No. 15 cloth for dusting the middlings, but if a couple of sets of rollers be added they will be found a considerable help. The chop should be sent to the bolts in the usual way, and the reel should be cloticed with Nos. 11 and 12, and the return recl with Nos. 15,7 and o cloths. In the middlings chest one reel sliould be clothed with Nos. 12 and 15 cloth, and the return recl with 14 and 7 . After being dusted the middlings are passed to two purifiers. The writer changed a few years ago an old process flat grinding mill in the following manner. - Would have put in rolls but the owner would not .ear of it, so he hat to do the best he could by maki g changes in the mill as he found it. The miller ons content, and said that it gave complete satisfactio.n, but if he knew anything about rolls he would not
be so well satisfied. There was only an old rolling screen and wheat separator used. There were two runs of 52 -inch burrs for wheat and one for corn. The bolts consisted of four reels in one chest, two on each side. There was a bran duster, and this sumned up the en tire machinery. The first thing done was to ori 30 inch ruth of burrs for midellings, a good sn ener a brush machine, new bolting clowhs, :and : rutter, a purifier. I then went to work and laid. a first-class by running in a marrow furrow h. out the stones When everything was ready the .etween the leaders. I sent the wheat through th. . mill worked as follows: did not disturb, to th: ed old rolling screen, which I smutter and scoury .e separator, fron there to the from these it - P - r , and fanally to the brush machine ; revoluti- ap passed to the burrs, which made about 40 an...ns per minute. The chop from the burrs was carried to the upper reel of the chest, on one side, covered with 6 feet of No. 10 cloth and the balance No. us, the reels being ao feet Jomg. After the flour was cut off all went in the reel below, covered with sis feet of No. 12, ten feet of No. 13, and the badance No. 1. Fiour was also taken from this reel, and the remainder, with the exception of the bran, which .vent over the end of :he reel, was passed to the upper reel on the other side, ugether with the chop from the middlings stone. This reel was covered with six feet of No. 12, ten feet of No. 1.4, and the balance No. 2 cloth. Flour was taken from this reel also, and the returns were returned to this reel. The middliags from No. 2 cloth wen to the reel below, covered with No. $12 \times$ throughout, the dust being returned to the reel above, and the middlings going over the end of the reel to a first-class purifier, covered generally wih Nos. $9,6,5,3$ and 1 cloth. The middliness all run together, except No. I, to the 30 -inch stone to be re-ground, and then to the bolt covered with No. 12 and it cloth. This flour rives satisfaction, but we could make benter four with a few sets of rolls additional.

OATMEAL AND OATS.

OATS are generally considered somewhat less nutritious than wheat. But from Boussingault's ultimate amalysis the quantity of nitrogen yielded by them is nearly equal to that obtained from wheat, and accordingly the nurritive equivalent for oats, according to this celebrated chemist, differs but little from wheat. Oatmeal, says Dr. Cutlen, "is especially the food of the people of Scotand, and was formerly that of the northern parts of England ; counties which have always produced as beallhy and vigorous a race of men as any in Europe."
This grain camot be cultivated with adrantage in the lower latitudes of the temperate zone, hence it is held t, have :-s origin in a more northern climate than other of the cereal plants. It arows apon soils and in situations where neither barley nor wheat can be raised, and is unquestionably the hardest of all the cercal grains. It differs from wheat and barley in the form of its ear which is not a spike, with a single rachis, but a panicle, resembling somewhat tite stem of and branch of a pine tree; while young and light these branches arrange themselves around the centre of the stems, but as they advance towaros maturity and acquire weight, they generally bend over on one side. The air and light are enabled to visit, and the min to wash each individual grain so that any lodgment of the larval of insects, or the sceds of parasitical plants is prevented. The grains beng pendant, and laving the opening extrenities of the chaff towards the earth, are effectually defended from the lodgment of rain within, an adsantage which does not attend the growth of wheat or barley; and the liability of these grains to diseases from which oats are cesempted. This grain will not grow in hot or dry climates, and if it does it will be small, husky, and tasteless, and containing no farinaceous matter.
The most remarkable of the common varieties are the black or long bearded oat, the white, the red, and the naked, or pilcorn oat.
The lest varicty of oats is that known as the potato ont. It requires to be sown in good land, and when the gronns are ripening they will be found large, plentiful, and firm and bring the highest price in the market. The seed time is March and April, and the grain is seatterell broadeast over the ground in the proportion of four to six bushels to the acre, the average produce of which in Scoland and Ircland is from forty to fifty bushels. Formerly a drink called called A fume was made from oats, but its manufacture has been discontinucel.
Oats and bariey have been less perfectly examined than any of the other grains, and the nature of the gluten contained in them may be said to be totally unkrown. All that can be said with certain'y upon that poiat is confined to the observation that the gluten of
these two
greate. grains is mechanically separated with much by I difficulty than that of either wheat or rye, that the agency of some other substince in the flour, it is almost wholly disolved in water. It is also probable that it contains but little fibrin. From these causes the amalyses, comsisting in the separation of the constituents of the flour which are hardly known even superfic:ally, can be of no value in themselves, and ate only of interest for the sake of comparison.
Four varicties of Scotrin oats were examined by Messrs. Norton and Fromberg which gave exclusive of husks.

мu:T	¢10w	N*k	Axk. ${ }_{\text {and }}$	Акк.
Starch.	65.24	04.80	6.479	65.60
Sugar	4.51	$2 \cdot 58$	2.09	v.80
Gum.	2.10	2.11	2.12	2.88
Onl..........	5.44	6.97	6.41	$7.3{ }^{8}$
Avenin...	15.76	16.26	17.72	16.39
Almumen. 15×1	0.46	¢. 29	1.76	2.17
Gluten ${ }^{\text {a }}$	2.47	1.46	1.33	1.45
Epidermic. $=$ \&	8. 18	2.39	2.84	2.28
Alkalate silt.		1.84	0.94	. 75

From these anaryses it appears that the nat is very rich in oily matters and protein compounds.
The proportion of nitrogen and protein compounds in tine splecimens of oats have been determined by Norton as follows:

It will been seen by this analysis that the New York oats was richer in the protein compounds than the Scotch oats. Oats should always be ripened before the frost sets in, because frost has at tendency to make the grains bitter, and this should tee avoided by all means. Now that the growil: of oats and the manufacture of oatme:al are becoming more extensive, it is to be hoped that our chemists will pay more attention to the amaly sis of this excellent article of food."

GREASE YOUR SHOES.

In its issue for December the American Tanner yives the following advice:-A celebrated doctor, some time back, said: " "If people took more care of their feet our labours would be considerably lessened," and it is well known that damp feet are a common source of ear diseases. Therefore we would urge our readers at this season to grease their shoes. Don't buy a thin, cheap shoe or boot for winter wear, but walk on a stom, heary sole, and use good uppers. But it is little good gettin: a winter shoe if we do not know how to take care of it, and on this point we wish to say a few words.
When the leather is tanned, before it is finisined and dried, it is thoroughly oiled by the tanner in order to make it supple and lasting, as the friction on leather in ordinary wear is constant and heary. In preparing the upper leather for shoes and boots, the currier takes the finished and d y leather from the tanner and makes it wet again, and then completely fills the open pores with oil and grease, and this is done as long as the leather wil take it in ; after that it is dried in cool rooms and sold to the shoemaker. It is well, therefore, to recollect that as the leather has been living on grease for a long time it will maturally expect a regular apply, so long as any fair amount of use is expected from it.
Take for instance a pair of shoes that never get greased or oiled but are worn straight along in wet and fine weather. In course of time the leather grows hard; it won't bend to the tread of the foot, but seems harsh ant: stiff, and before long it cracks or tears, and we indignantly blame the store keeper for selling bad goods! Does it always so follow? No, the heat of the foot evapontes the grease of the upper leather or "top" and as this slowly disappears without renewal, like an engine without lulrication, the leather soon rot and wears away. For this reason, therefore, grease your shocs. It is an easy and simple matter, and can be done cicanly and pleasantly by taking a little care.
To make good useful "dubbin"-take of ordinary cod or fish oil a small quantity, and of common tallow about one-half of the quantity of oil you have. Melt the tallow to lukewarmness, zad to the warn oil add uthowIf stirring all the white, and then put away in pots to cool. You now have a homely mixture which use as follows: The only way to soften uppers of boots is to wash them quite clean from dirt and old blacking, by soaking in warm water, and as soon as the water is soaked in, which you can tell by the soft fecling of the boot, rub in a good coat of this "dubbin" and hang up in a conl place to dry: This will amalgamate with the leather, causc it to remain soft, and keep the wet out, is-well as give way to the form of the foot. It is a mistake to rub "dubbin" into boots before the fire; all artificial heat to leather is injurious, it forces the grease through, in.
stead of allowing it oo unite with the leather, thus causing it soon io harden instead of soften.
Grease your shoes, and the water will run off, and your feet instead of feeling damp and causing bad colds and other diseases, will keep warm and dry, and it is worlh the trouble. Using fish oil solely, is bad, as the leather will only dry slowly and is liable to crack. We can strongly recommend lard as :- capital waterproof for boots, either for winter snow or summer heat. Wet the bouts as for "dubbin" use, and also melt the lard, so that its salt may sink to the botoon of the jar, leaving the purer oil at the top. An application of this is of great berefit, and is a favourite remedy for tough boot tops. We give here a few receipts which maty prove of benefit to our readers.

Hiaterphoufing for boots and shat's:-Linseed oil, 1 pint, yellow was, $\boldsymbol{1}_{1}$ pound, Burgundy pitch \nexists pound, and vil of terpentine if pint. To be metted together with gentle heat, and poured into a handy jar or can. When required for use, to be warmed and well-rubbed into the leather before a file.

Tarnish for bools.-Take a pint of linseed oil with half a pound of mutton suet, the same quantity of beeswax, and a small piece of resin. Boil all this in a pipkin together, and use when milk-warm with a hair brush. Two applications will make them waterproof.

WHY DO WE DIE?

In looking over vital statistics we must be astonished to find how very few men really dic of old age. The large majority die of disease engendered by ignorance, accident, disappointment, passions, mental or bodily toil, etc. Men of great physical strengeth often die young, while weak ones enjoy a longer life; but this seeming paradox finds a simple explanation when we remember that strong mon only too often waste their etrength, while the weak, having none to use, take care of themselves. As it is with the body, so it is with the mind. Men of genius will break down mentall;, where the men who have no mind worth mentioning, will never incur such risks. The active mind, unless thoroughly trained, will only too often overstep the boundary set to it by nature in the physical strength of the body, and in the struggle between mind and matter, mental work agginst physical strength, the later will, in every instances win; and the bodearnanch in man, unable to
 will only too often hasten to an early grave. Indulgence in the various passions are another great factor to shorten the lives of men. There is a beautiful littie legend somewhere, which states that the gods endow each human being at his birth with a certain number of heart beats which he can nake use of as he pleases. Every time a man allows a passion to obtain control over him his heart beats quicker and his allowance is reduced correspondingly: According to a general law of nature, animals live about five times as long as the time necessary to maurity, but man very seldom lives this average, as centennarians are found but seldom; aye, he barely attains to an average of four times his growing period, and there secms to be very good reason for this. We eat and drink, as a rule, in the most unnatural manner possible; we treat our stomachs to foods at boiling heat in one minute and to ice creamin the next ; we consume astonishing quantites of indigestible fond in the shape of pies, cakes, or candies, and then complain of dyspepsiat.
The simple enumeration of all the sins of commission and omission, mentally and physically, would fill a volume in itself; add to this the various sins against our health through ignorance ; the mans dangers to life and imb due to infectious discases and accidents, and we cannot ferl surprised that most men die at a comparatively early age. As compared with other animals man is not only the most irregular and intemperate, in a general sense of the word, but also the hardest worker in all creation, and with this constant stmin and friction between mind and boety, the majority of men live but half of their alloted time ; in spite of all modern improvements and discoveries, which have already lengthened man's life considerably, the millennium, when :ll men will dic of old age, seems yet to be a thing of the far-far future.

The question of driving t^{1} Kabyles in Africa from the land they cultivate, to make room for French colonists, is largely discussed in France ; so it seems that the Americans are not the only people capable of robbing the aborigines.

In the State of Michigan over fifty thousand men are employed in the production of lumber and salt in the various branches, at wages fully twenty-five per cent. higher than are paid for the same labour in C̣anada.

DOMINION

PUBLISHED MONTHLY, BEAYER PUBLISHING COMPAHY, PROPRIBTORS, Office, 31 King Strect West,
 TORONTO - - ONTARIO

 1. .6. WENBONE: Mamuyer.
 ambum
Inc

 bre sisemperi inverio

 2 numbu:z:72a:

 ment, have derided not to urie the (inemmert in re dure the suaty on riheat. Tic Onario members should knoar Icrict ilana so adopt so silly a resolution. It has loen cosaduxisely shoman, that with the hack of stheas in
 -ivo- Ife Camadian milting industry mosi shut doun alto. net The rountry is already thomided nuht imerican thour. uhach ant! payx a desy of jo cenes per harecl. and azainst whioh Canadian millers rarsont counpete as luage 2s :he de:y on wheat remains as hirgh as it is at prescrat. Wie aress she (inverameat nill, withous delay, taike siçs to actede so the request of the lommanon Miliers Asscm ciation. and to redere ithe dut: on forcijen wheat io sech 2 soale inat it is proscible fors Canadian millers :o use 18. su long as itheg are short of it in their orm land crea if they have in in withost the supjons of the "uise Ontario members.

Fiviky merhatice and husiness man should know the josraals esperially intended in adsoraic his respective hranch of irdasiry or irade. Aside from the numer-
 preblished sta: raight and ovaht in tre of gecat serice to the mise craftsmen aho read them, for there is tardly in sinale issec of me st ithen ;hat does not coniain a areat-
 Enerolcitec of some puas of the tresincse io which thes have given slrcir sime and atteation, and shrovenh which sher sain sheir livelihoods Fiven she advertisementsesperall! if thet be of new maicmal. new machmerf; of new processes -roniala $12 f$ formation well worthy the 2 :ientmin of cuery ance who morild lectier hitasclf, of the crafi of which tic is a member. Eivery faraxaph which дines an insight inan nither people's nomes ofdeing businesk or tritich calls a:icaition to ncx inventionas and discorcrics ore net ases of oid faciliticx is mathy of siudy and prescriatius. The asscrion shat one ${ }^{\circ}$ cannot learn from book " $^{-}$is disproued ty erem a carcicss cxammationa of $2 \pi y$ of the numerores irade journals pablishicd in dracrita, and itsemechanic -masicr or workman-who wmold keep himelif abreast of the morld's propress in his wan banch, musi give then caretal atteation. Wic hoje shat ceres manufariurer and miller who recerves it, will no: oaly read and preserve the seceessive issies of :tic 1)Osivion M. A.vil M. Nrimy bras also those of all oiher similar jonmais tre may be so fortumate tc obiain. They will. in the gears to come, be even nore valuable ihan nown, amh, like sew fricods, and rew wine, improve with age.

Accorinsiti to the trade and navigation retums for the fiscal year iS5:-53 juss laid befure she 1)mminion Parliament, the rotal value of amports inio Canaid durias the

This gives a balance of trade against Canada for the) ear, of $\$ 3,168,218$, which is the largest adverse baiture sunce 1576 , and certainly does not show very gratify io: results of the protective policy carried out by the (iovcramem. The imports have increased \$12,\$3t,522 wer 1SSi-St, whilst there has been a decrease of $5.5,051,3 \not 9)$ in the exports for the sanme period. The difference between the mports and exports for last year is very much larger than in any one gear since the Confederation, the annual excess of the imports over the exports during this period having atrerged bu: $510, \mathrm{Si}_{5} 5 \mathrm{3S}$. The eaports from Canada to the United States were about sesen millions less in value in $^{2} 85 ;$ thian in 1882 , white the im ports from the States wh this country increased about eight millions. This state of affairs com hardly be reparded as particularly encourajing eten by the warmest adherents of at high tarift as means for promotin: and protecting: Canadian manufactures.

Is arcordance with a resolution adopted at a joim mecting of the patent committees of the Dominion Mit. lers and Manutacturers' Asseciations, held at Toromos 1)ec. Evih, a depuatation recently waited on lion. J. 11.
 ed on him, an behalf of the Associations abose-named, that areater care be exercised in the examunation and passing of patems. A large amoum of money had been put into jantents ly Canadian capizalists, notably those connected with the new process of makinf: ilour, and the machases made by them bad ireen eatensively sold to Canadian millers, who were now being subjected us vexatious interference on the pari of American manufactur. in: companies who claimed that they held p-tents which were being infringed on. Kaya'ies and danajies were now being suct for. The deputation uried that the patent office could well afford to be more strict, as since iSja there was a surplus of receipts alone expenses of Sijo.000. Mr. l'ope promised the matuer consideration. is we have laad necasion io remark before the main trouble in the Otamal latent office is, that in the selection of the patent examiners not sufficient care is cxercised to appaint only experts in such positions. If ment were exclusively apposated nho thoroughly understand she business ther are called io perform, itere would be less suass for anfringement on pateans, simply from the reason shat before any paien is frantel. $t^{2}-$ fact would have loen fully estahlished that the inven on for which the paicat is sought. is really a new and ariginal one. 2ard not an after-picec of something else lung before pisented in some other countri.

The sepmre of C.'S. Consul Taylor, at Winnipery gites a mos: fatoratable aspect of the trade of stec inited States with our Nonth-Wiesiern provinces. The value of imports from the l - nited States intothat consular district is shown to have increased from $\$ \$_{j 4,000}$ i:s 1 SSO. so noless than $5,2,55,000$ in 1585 . Acrording to the nainion of the Consul, more than one half of this imporation is ancidental to the constrection of the Canaitian lacitic Railway: Besides $51,003-353$ included in the free liss as ardicles tescd in orizinal construction of the railmay. she following detiable articles reccised at llinnaijes have beenmostly in demand for the same olject:-

Cha:s
Rass
Reanmer ass
(10 d

8.008soont
5230.306
$81.85 i$
81.357
618.032
618.052
20.353
209.383
$=19.508$
=49.508
$593-933$
The imports frme she niter Canadian provinces :nio Hinnipos durina iSS 5 amouniced io $511,6=5,000$, and ai Encrson so $5=5375 . c 00$, making a rotal of Canadian imports of 519,197,000, consisting principally oí diy goods, fruteries, machi:xert; harduarc, leather manaiactu:cs Se The imports froma Great Britain amoanted to S_{1}, 55 . 000 , corsisiing of cotoons, mmolens, and imn and secl foods principally. The ralue of the expors from Winaiper during 3 SS 3 mas S935,7iS ro Fasiem Camada
 More than one hall of the exports to Eastern Canada was wheat and ziour.

DOMINION MILLERS' ASSOCIATION.

The Dominion Villers' issociation held their annual meciong in the llaard of Tracic ronms, Imperial Bank bsildinga, in this city, an jancary jist. In anticipation that the mectina would le an importans nac, the forms af ahis pazer were kept open beyond the regular time for soing to press in order to be able in give a full repors of the proceedings in the present namber, but-ithe ex ceutive committee decided oihermise, and the represenpatives of the press, this paper incleded, trese informal that she mecting mould be a secret one and be open to members only ; in other words, they were politely asked

- "pack up their duds" and go, which they of course did. We are therefure only able to give so much of the procecolings of the meeting as we have been able to pick up, confiding in our good reportorial nose, lere and siisc.
As specified in the call, which had been widely circulated ina sent out to about 2000 millers all over the Dominion, thi meeting had been calleal for the following purposes:- (1). and other routime business. (z). For receiving the repurt of the Committec appointed to intervies the Goverame custops duties on wheat and form. (3). For receiving the seporis of the committec on Patents.
The document further says: "Information ias been received that a large number of writs have leen isstrée by (ieo. T. Smith, akainst millers using purifiers infringing his chamed patents, and that a still larger number of wris are about to be issucd. The writs claim $\mathrm{h}_{\mathrm{o}} \cdots$ dannges and injunctions against millers. The Association has secured the advice of Daton McCarthy, Escl., Q. C., who has entered exhatustively into the case in all its aspects ared bearings, carcfully studying the whole cise of Smath irs. Coldic, ns well as all obtainable cri dence. And this mecting; is perticularly called for the purquses of (1st) hearing Mr. McCarthy; who will ad dress the meetin: stating the present aspects of the case and the best course to adopt. and. Instructing the committer of the course the Association iniends to pursue in the matier. As the objects of this meeting are of vital imporance ta every mille: in the country; it is earnestly requested that the millers will make a poin (1) attend and join the Association."

The election of officers was theld with the following rexult:-- P'resident. C. Whitlaw, Paris; Vice. I'res, J L. Spink, Toronto: Treas, 11. N. Baird, Toronto ; Scc. Edrar A. Wills, Toronto : Fxecutive Committee-S Veclon. St. Catharines: W. Galbnith, Toronto; David Blewes. Hrantford; J. Warcup, Oak tille; S. Coldic, Guelph; 1). Moore Wal icrion; A. Watts, Brantord
As regards the wheat duty question, the commitec appointed at she last mecting to procecd to Ottawa and lav the maties befne the Goverament, made a report the purport of which was, in the main, what has alreads leen pulblished in this gaper concernin: the effors of the commitice.
Mr. Whithas thereupon made the following motion, which was seconded br Mr. .icelon and unanimously carricd :

- That at memoriai be prepared for presentation so the Goverament secking for cancellation of bonds given for wheat uithin six months upon payment of 30 cenis per barrel, the same as paid by Anicrican millers, and that a delegation be named to present the same and funther the objects of the Association.?

It was furtier agreed : "That all members of this issocialion be such delegation" Messrs 引aird, J. L Spink, and Mel_aughlin, uere appointed a comburtee to make the recessary arringements for the trip of the delçation to O:tame.

The main part of the afternoon session nas devoted to discussing the suits instituted by George T. Smith against a number of millers for alleged infringement on his I'urifier patents, and to arriec at some decision te مarding the course the Association siould ialee in this matect. i)alton Mcianti; 2.C. whose legal scrvice the issaciaton has secured in the matker, and Mr O. A. Ilowiand, counsel for Mr. Smith, reere present and toih gentlemen addressed the meeting. iftera iencrity and aesultess discussion the whole matere was finally refered back :o the paleni commitee for their further repart.

During the mecting $==$ new members had their names enroiled on the lists of the Association
A gond deal of dissatisfacion mas expressed among the inembers present about the indolence and apparent dont-careism of the millers gencrally. The parifier ques sion was oat of vital importance 10 ever; individual mernber of the frateraity; special notice of this mecting had been sent so every miller in the Dominion, about $=000$ such notices, stating the objects of the meeting ka:jan been formadded, and what was the result-all iold, lardily jo millers had responded. It was anticipated that the mecting woulld be a representative one and 50 millers present could certainly not be regarded as cmbodying the sentiments of athe whole Canadian faternity: In such and similar words the members gave vent to their feelings about the iaxity of the millers at a time, when a matier uf such grave mpcrance should engross the zitention of every individual miller.

1 Nor
It is cstimated that Canada will want at least sopo0,0∞ bushels of smerican wheat, before hanest. One miller is saking from Chicago aboun 12000 busho weckly:
fotsfiom the ftills

Flouring: Mila. Notes.

 mill ${ }^{-\mathrm{K}}$-Janes Moore's mill at Carthenge, Ontariv, has Imen Imurnal.

- The towns of Russell and Silher Crrek, ${ }^{\prime \prime}$ talk of having grist mills shorthy.
-Rebolting flour is lcconung \mathfrak{r} pular in t :ng land. at least so says the Miller is Gazetic.
 Assinaboine Millls. to tonage ta lraxir, Manitolo. -Fanmer, alout kapid City. Man, ate forming : jom stock company to trild a s so.000 mill. It is estimated thas nearty two.000 purs of solls are now in ogeration in the millang cuntrities of the siote.
The four made in 1.jrerpool is duall Ameri. can prices ate soo high to allow of much Imeness txing done.
-II. Gertich. of the well-Lnown tirn of wil Bian Gerluch \& Co., mitiks Sc., Milwauker. Wis, is tead
- Bhe iluar uselliys the propte of Jerusalem is all impored from Furope and Ekyph Kye flour is most largely used.
- Wirnipx. Manitoing it is stasest, will slup 3.500.000 luxichets of wheat turnge the wanter ana spank:
-.1 harge number of new mills, some of thern very large ores. will tre luilt in Manitotn and the Northucs during the caming year.
-The Dominion Ciry. Man. foest mill. has te. conaly inad an oat and cochle sperarator and a sci of roils addend to is craupmenc.
 The firm name is Hortop $\&$ Aifo
-hour is selling as Cocur ipitcere. Monenna, as sont dollars per lartel Canalizas nosid consider these pricess rather exorkitana.
-The flosr trule in Glastiox and I.iretpool. accoaling to Anton Kufeke's reporec sill continecs tadt, with no prospect of an mmentiate ampeore. ment.
The sew mill of 11 bisthw. Hinird is Ca. at Brank Ont. is compibectd, and rumant nught and day. The minl conians sixieen dozilic sets of solicers
-rasmens in ithe manicipalitr of IYympton Man. have formed a joins siock company with a capizal to keikd a grist mill
10 veika a grist 1 mill

 in wortine oute.
 soow ratal worling onler. The prodiact is saxd to 01:mon min brint in the iforiver.
 Dak. Which it is shid wid be the larger seam

-Tie Gra. T. Sinith lerifise Ca of Jackson, Mish apd Seratod Oat, arc leinging ousa nea
 -The Gea T. Smith Ireiser Ca of Sirationd, Ont., have closed contac:s with Vansoax thor of
 trection of cocmplete milks entiatering the mone maden machixers.
- Sajs an Aestion, Mlan. cormspondeat: - It woich lic wril for some one contembiting the Fral
 laurners bere in the way of
somehing stight be doac--
-The "Cify Miss" of Si, Catharider Onz. maich have bech closed for 2 year. have beed in opexd and siried by Mir. Kojern Fierr. 31r.
 the "Grantiona alix" of the same pince
\rightarrow dinath is Ca's ceralor. Pinazicoc, Vio. was darixitd lic sire oe jan gih, to the crieat of sizoó The Usmage so uhe siock is St,000, and
 $300 c^{2}$ med and wen
 is Ca, at Chatam, Ont, which are lecing luation the site or the leree mind of this surn lxarat a fow months aco, are well under way amb are bring fi. ind Io by ule Gea. T. Smith Thrifec Ca, of Siralforch Oat
 there is a milke with oals osekg. and yet he talts a haif.aight watch rizht aloses. Hic loss a keg over 2 sear ago. of geting curght ia soxe beary gear.
ing, and upon recovering m the millas purtier tillerp sumed his position in -enty swid med di. of Iramford. Onk. Ias me dlings lunfi of his Nu a Common Siax Mid Noryuny. sian lie sanne firm is puthing a in II. 1 ijvro rooks Ontario combined sempanar and courer No 3 . into their mill.
- l'eter Sutherland has keen in Manitola arrangung for the Norlhnestern Grain Dealers As sociatuon. of Minnenpolis, to enter field for the purchase of wheat. The assocation intends to buth elevators at Winniges. Emerson. Portage La brairic. Neche. and Branturn.

The Portare Mi"ing Company has offered to sell to the Mumerpalty of tortage ha liraine, Mar, iss nill rad cletator at alse onginal cost. The mill ias a cipacity of 500 lnarels ger clay and is fine p with rollers and other recenty improved ina ctunery. The capaety of the elctator is 125.000 shels.
There is a good deal of talk of givng honuses 20 grist milhs in sarious jarss of Mantita and the
ifnish Northeest territories. Should the local Innish Sorthuest terriories Should the local
Corcrnakent grant the fight to munapalitics to Inild and operate mills and elerators, these is like y to be a building: boon in llese institutons ai orer that country at no distant date.

- The Montreal Corn exdiange in its anumal re prors adsocties the abultaion of canal suls, and strongly recommends in the interests of . mers. husir milkess, the grain tratie, and the juilike ket rammeted inictchanse of national production le wren cinale and the Enitat Siztes, and the alohtion of all imposis and bualens upon shipporg Ing the Si. I ampeace scase.
-Irooks livuthers cterator. at Minncisk Minn, einhteen miles abore Winona, oa the river uas lxumed at $=o^{\circ}$ cluct on the moraing of Jana 6th. :ogether with a four-story duciling near in and a hoocl accoss the roach The loss is octimat culat $\$ 35,000$: insurancos $\$ 19,000$. The ckerator conaincal oret thiny thousand bashels of grain, chie:ly wheat and tariey.
-Dering the last yen the Oriental flocs Miil of lannaister lhoothers al Clintora Iowa, was ren
 ine roiler processol. Fine hands are craployed at coss $n \mathrm{n}$ uases of 53.500 a year, and fifty thoos
und kushels of wheat were converied inio forty thomend lartels of Aowir, aside from the srioding of other grain
 Theat throaghoon Alanitolanaxdit is harinat the of fert of siffeniag the prive The lortage Mithing Ca hare all ther can ch, and wheat sponing in trom In tirertions so lortage $1, \alpha$ itrinic. whre ithe bess
 Canadian lizaife
$-77 x$ Nasitola firce firces writes as follomex: - Thece is a siront demand for Maniola whent in casten markes, and it is sot calihets that an ad. rasoc in prixe will fotow. opeciatis for wicat damased by fros: The Oniario comtrpondent of a fratiag frra bere rejoris thas Na i fromen wheas fire good sacisfacion to minkers there. Many of ihern pecter is for grioding to the renaler quelits. hroged intucriateis after thivec -

 in the erreico of a 350 larrel :oiker minll as O:tava
 berculy so opecaiva ratir in she sping. Goldic © Mcinioch ast fermishing the mactiocty. Mc-

 other 2 siose mill lcisides 1 wo large cat meal mines Their prinopul kexidess is in cat meal their losads farian a maticenl repocation.

 minks and a coosiderable dors has ocerord in fricc it is quoied a: $\$ 3$ jertion in car loss 0 an in syonjaihy with bran. leiag offered arsio is ar lows Choproci feed is in fair vermandas soa in cor tosis

Fin okl citisen of Torosio has bear giviza twAnocar his necoricticos is that of the first foct mill owned in Gocicriturn fo lionts lie sers: - Ther
 laringe a gak ard ther pri in steam powes. The tucuiness was in a swanl way then Thery bogith Whear from the frimest, of grocnd it for them Thes used to comp to matkei with a larec day drawing five or six larets of foce, and sedl so ean ronex 1 have seen oid Mr. Wiats kriag a hoad in the moening. 50 homec so dinnet at noost and
return with another load. 1 Lought many a larrel of flour from him. Aitervard the) bought tartey and became distillers"
-In reply to a mumber of enquiries, we publish the flllowing ". Wheat I'urchasin" Table." adopted by the Waterloo (and adjacent cou vies) Millers Association, together with the alterations recrnely nade. for the information of millers generally:-

 dud to pria one cent extra for
over $c o$ pounds to the lusitel.
-superiatendent kigan, of the Cianadian lacifie Railuay. in reply to a deleration of Nicuthern Mian. Kia farmers, recently assured them tiat Messs Ogilue had no monopoly of eleratoss on the soad. and that they had a right so ercet at hat warehouse at Manitou for the pruppose of shipping fion athere rouen wheat of course grina.: that to assist thuse wiw had theer grain snjured hy frost, the railway compnity lad ratuced the tariff 30 jer cent. to those shuppins: so diseant poonts and had ask. ald the lise south also to malic a mellection : that the line south tata modifice ats pretrous arler so that in future thete worthi te to reason to cumshain of azat of foreign cars for the shijment of a heatio Ontatio.
-A corespondeat of the Ikonsi:os M. .ant 11. Nivus from Inoomseld, Oas. arites:--Think ing that a few mords from our linke toun in regard o miking might be of some interes: to the milliag raternity. I tuke this oppocienity of writing you a few libes in rerasd to a nex rolike mind started bas Conember, and trint by Messrs James jones is Ca. of Thorold. Ont. for Burr Mros. of this rown, which I mast say is a Cecdit so this well koman firm, boih in xorkmanship and workiag of the millic The rajpary of the saill is sfty so sisty lorrels, operated ir seren rolls and as giting EOOX atisliction and rooi results 1 think likert frox deserve great andit for theis caterprisc, not only izt their sew roller mill. tat also ia theis large roolkn factory and hage store asel atso very er. tensive bricl-rani. which, zaken as a whokejeniken resionss quite fircly. and alco gires emimonne: to a gooll mant revidras of the town.
-Messts. ITheiker hros \& frowa, of Cumach are frishiag work oa itheit nex rolker minl a shora description of which mary prove interesiang to oas ninitiat fricads The tribding. which is located in a derp rocky forge is a res sebstantial store wreaurc. sifty feet long and fortr foet wide ocesside. There are foer fall storics of cleorn. inetre sixten 2nd eigh:cea fect, wich with the basemeat $=x d$ cupoin, matios a soial heighs of over serenty.fin cet: this bowere. on accuant of the situation of the mind docs not craic tbe same improstion in rosid if it were spadies on fercl procmed The ocendions wallo, uhich are bid on the soiid rock ane fourfect ithick: the firse siont ihree fere second wo 3xid oss-huif, thind two foct, and rop stors weat inctres All ibe sioxe Exed in this structer als fienriced oat of the tin nae xithin fift feet of ise beidion. The porce is secined from one of ithe brexches of the fincer Ciedi: whin at ihis poins
 tor the mex forming oex of the -fan- for witich inc locality is fumons among sporisican and soce sis The foon bead ralisad be inkisg the wate ato a sube a shot districce above the mill is a
 ble whate mind will be sicanied as tbe bosion of a
 This ned is hocicd iaxide tbe saill wails axd comp

 our feri hixh A saca:r-ase hach tartixe is so be 5ed which is intended to dervion abosi 1 tro hran-

 will be the faest ital can be procerch, it being the antention of the propretors. 10 ganle the mind fras
 moatios in cisisiag an ite largess zad bear rater mints sow in opcration buxte decitod oa a compikte

 oxction with utheir rats ithere nin be the followize mexhiocs: Two wheal brosh machises iso scrar-
 tritafal boisine seche ithere latesi improved socr

 onc mind dess charss, motion indicaloss cic. The coniract for the ribolc of the machincrs 2ad scp-
 dars Win is J. G. Giery, of Terosia Mro Lanic unir sepcriziendent, win supph pisas and regreaine 2 an look afier the minaright work

The contract for wheth is m the hands of Mr. E. y Care, who will no doult sustain his reputation in that line.

Lusmen NOTES
The leaver l.umber Co. of Tanaschiche has suspended. Liabilitics, $\$ 108,000$: assets al most equal.
-c: Lamereux \& Co.. furniture dealers of Montreal. have suspended. 1.iabilities. $\$ 35,000$ they offer Gs cents on the dollar.
-The value of the lumber shipnents from the port ot Otuwa tothe United States during 1883 was $\$ 610,108$, aganst $\$ 500,291$ in 1882, an inctease of $\$: \infty, 8: 7$.
-The Bennett Furniture Manufacturing C a of tondon. Ont. have tenupratly suspended. and the establishment is in the Sheriffs tands. The wn was issuadat the instance of Molsons thank.
-A saw-mill belunging to the Stinson cstate on the river nar Camfton. Ont, was bumed on thr nugh of jana $=5$. Loss $\$ 5.000$ The fire was no doubt incendiary. as the premises have lieen unoccupicel for sumve monith
-On Jan sith the tim kelonging to the Claalum Alanufacturiar Cormpany uas destruyed Ing fire. The nillthulnot tren running for some time mast and was to recommence opentions in a fer Lars. The loss is orer $52=. \infty$. instrance only \$5,000

The sux mill of Fienacth McKienzic. of Gkencoc. Oni. was destroyed \ln fire on the morning of Jan in loss alous s1.00: no insurance. The fire is surposed to have originated from a spark from a smoie-stack or fire lox of the boins. which amoskiered and barss forth wheat the mind was lets for the night.
-Mr. Witn Maclay. of Otama, lumberman. will buidal a saw-mind ether at Calatoric or Kocnd
 zeen opernel aboat a doren mills have leen erces. Cd, and az immense cat of fainler and timber is Cd, and an immense cat of fanler and tamber is
cuming over the line, sent to the American marcuming
kets.
-The panacrship betciofore cristimy le:xeen Gea J. Shimer, Sumued J. Shitract, axd C. 1. Johnsoca, under the frim manc. Shimer $\&$ Co. Minor, 12. manulac:erers of the famoss Nimact fousd ekerabere in this priserents been dissolved Suavel J. Nuiser can:inuins the ignünc

 Oni. was destroyed by fic. This is the seoond freman weat to the sill carts in the moraing. and weat so wake up the enginers. Whea be retrined the min was ian a linece. The loss was large. The गricuics wrex insared for 53,000 .
-The largat siagk coatrace cter made by Si. Croix lemberince is zha: eniced iaso between lass F. 11. Todd 5 Sons, of the ane part and
 for the casian =2d yaidinit of $7,000,00$ fert of tors tring ibe procal winicr. The grocend 10 be onernied os covers a block six nites syenc oa ithe
 Maide
 ther now all in, papre leater-hare opered $2: 3$ offec in Ncm Yorksoe the prepose of "dercioging"
 ed ibe osfoe mito: " Allention was ditered to sercial aricics of alkisetware niouc of the ma:cina Two of these were ondizary prioe ulisor ooce cs

 foce of the talic wos rimithed z=d bixhly pains.

 an as woll as 2 net tint, shats of caicer. The kinh ber is mode primizalif of the pelp of nikent गुe. .on: sum, axd oiber veriable strox, conlized with cbenializisticass and cencois li is formed a
 and shece layers are pressed sogether lo powerfil
 ci mood buides much more dense. The boards are aino reodered waietproor in raiging dgrace soccering to the periope for which ince zore to be wect. The matcial is as dirabic, is itixe, $2 x d$ an be sald at asood prosifor alknos. jall sle Taich ondrany pixe tomier. Ia wil ralle wn band woods Morover, is cal be mantiliend in

Fndustrial flotes.

Rathans Nobls.

 fowenger ngeney of the Mambohn satuan, and is otwouder by C: II. Winem, who hise the tuthe of peweral paverger and twhis herem.

The Niw Sinh "entrol R.ailrend havalicided to hargel tevluee it wothing foree, wath the objices of

 the fine. It (a monomed that the number of tran

 meil.

Kumber have that the Girom trunh rintuay ottemphate the buhdug of anobher comblever lirdge oner the Nophera mar th whate direct
 denolume rablosat, for the coment of whoh they

 It whot wat diculed whether the tathite tram
 ran wer the New Vosh cearal fom Nugant

 that the Later conire will her qurvacel.

Mr. T.nman Englivh, of Chhmar. Encer noter

 Tensnotap of tact Whathy, te conture with the

 worth. K. © "mact, amd 1, S, s.athouth. Th

-At at mexting of the sharelolders of the On
 hedit on J:m sat. the lease of the Ontarivand oluce Ince yotem to the Canalian theitice his been confirmit. The lowe is for gogs years, and includes the line of railu, y formerly hives is as the 'foronto. Grey d Ifrter amil C'rodit Villey, Inesike, the jore. tion of the Ontario A Quethery now conthirteted.
 numely, from tornito to Smith's Fills. Nent
sprims the lime from Sunth's tills to Montreal will
 woth on the dine will one a bridgederens the St. taw. rence near the laterine K.ipids. When this is completed the C: It K. will hate control of as sis. wat of railway centerngs in Toronto, ambestending so Montreat and Othwas in the cost, St. Thomas and tunden neat, and Owell sumbl north,
 happlanel to be in the city wav meet ly a fejkerter and ly way of a fever tike question was put:-- What is this I hear rumoural athout sour juepte argothtims with ilte Crodit lathey Koad for an evtelnvin fromn sit. Thentas to Tketroit? .. Well.

 be:t the 'reatit Vather will thateatine tothe thetroit

 deloy it vetring : chatser fom the Gosername
 the project, athl wall nomer it material whentio nkent. We tath mevt the line tive the ant of the month thaze will in_{c} - smerthing tiote detinte to

 to it. The Xerateot difticulty tocmeontiter juat nom is the afpocitions St. Thumas geqphe will offit if
 tributed hathlunindy to the Crevit Vilhey Rasid with the underotanding that they sloukd tue on the ullín hime of should have the neotern ternainus of
 Ifut I think the cotersinal will lecthrough tankm

 alont it dowith

Inox Notks:

I fite in fulbohat', Finumlty. Menteral, int

 53.8 cos

1hw Mathry Mtanufacturing Compony, of

 of their empingers 25 int evit.
-d decivion hasen ghen by fudge Righy -A devivion has), she on lechatf of the progranting , an application the eve Comphay of Canvision.al liquidation of the site. © the ofticiat digus. ada, Lomdonderry. to authorive ecompany so diutors to carry on the busines of ind:on contracts fir as might lee necessury to performitis te, and evisting when the winding up onder was nime, in to carry on the works of the Company so Ame minht le heressary to a lencticial wiading-up of the affitirs of the sath Connminy, and also toathor.
 cmingonerer earned prior to the ist of thesember cminglo
l.sst.
 Cork, (1trosichetht of the tmacioter Mathufacturing (omplany), has purctiavel the emtire phant, futterns and goxal-will of the luatimes of f. 1f. Dirting: on (Hiarlem Kailroul Itymat) conker Centre ant Franhlith atruets. Now Vork City. This Insions was foumbed ty. Mr. J. II. J.urligithom wotke zhirty gonrs ako, and hars Iken in suceespolut opration ever sinc: The prowent phan and fatticras coos Ar. Dhatington upmaris of $\$ 30.000$, aul to this

 thor lithes, and a complete ver of cuncry urimbin
 roul work hitherta cerrial on at these morh se
 atifi $1 \cdot$ atonc mupite

 sthli worh of the lameaster Manafokturimg (ina guny an this plant is suited. At peenot the busi

 ine conductert distinctly from that of ilm: I intreiter Manuf.kturine Comusury, fonarkevl by Mr. 1 civer manc eikhtern manthe ater

Cientikal.

-iburing $28 x_{3} 2,323$ kiternts were insurd toy the

The cug.ar refitury off the timemto sirijuc
 tio Mr. K. W. Sintiortast for $\$ 3,4,000$ It is me.
 Inve Iwemety:

 ont ybown, asol was incuret for $\$ 2, \mathrm{Al}_{12}$

- The Cullingnomel sixap fiactury. smmint ly

 and sa.0co newth of stowik, was totally okstreyed ing fire om jan. 1gith. Tlice cauke is unkmonn.
\rightarrow It is aryurtiol that the glass-lidonerss of Mcm.
treal and a few of the ghoss deakers have comblime to etret new class works in that city. About thiry glass-blowers would ise employed in the thew Hatnufactory, and flint loottes are to the the prin.
 oferations in the spring.
-On the night of Jatuary ist, F. OHts tannery at Itrunford, Ont. was hurned. 'Ihe Imikidigk was awoed toy A. Wats, who has an insuratice on = :iluke for $\$ 1$, Row. Atr Oti's insurance om machthe ior it seck amounts to $\$ 5,700$ The fire is Inery atheic, 'ave lneto the work of an lincendiary
 as there had laven hi
some tithe.
atic ${ }^{\text {Pel }}$ in the Ankrizan
-d bill hav lexen introduce. ownides for the

 Ni.g.ara Comuty. N. V., to connect the natigazill watters of l.thes Firice and Ontarise It growides for oxexinuing the suncers for alke work within six "nemills from the fobstige of. ife Act. The fecation of the Canal is to In make Ing a theard of Commis. sionkers alymintert ty the I'revikest.
 hises in Montreal, whore united : annuat 1 woduc tions evervedivi in value: $\$.000,000$: the mumaker
 w.1v 117, ellimpyitg 5.060 jersolls, with ath ammul
 $\$ 5.673 .415$: tell yoars later there nere wo extale
 wayer, and the truniuct valuyl at efosionex.
 en the Lirwest manufacturius inlustry in that city
 ©
 ine ciye of deneinc having all outjut ar $\$ 2,000,000$
 $\$ 1,225.000$, lialfits nund Li. Juhto $\$ 500,000 \mathrm{exh}$.

 lluge of thater and lumaler.

 Montoral for sun, it ay mears that slowe las Inew a

 tise first of July, maver ef the manwactwers having
 that date to awidl payige the hixher dimy: The

Having been repeatedly urged by many leading Millers in Can ada to introduce our MILL MACHINERY into the Dominion we are making arrangements for the manufacture of our various 1illing Specialties in CANADA.

TORONTO MILL FURNISHING WORKS

Office and Factory : 2, 4 and 6 Church Street, Toronto. MANUFACTURERS OF THE CELEBRATED

VELOCITY PURIFIER

Perfect Purification without waste, is the important consideration in New Process Milling.
Greey's Newly Improved Velocity Purifier is an extraordinary success in this particular, and is acknowledged by many Millers to be a beauty to behold, and a pleasurable duty to attend.
"THE PRINCE OF PURIFIERS,"

|lartical tlotes.

Fixinat conours.- A paper of value to dyers has been read by M. Horace Kuechlin, of the Industrial society, Mullanse. It re lates to the thasation of colous by means of gelatine rembered insoluble by theans of potassiumdichromate. Mineralcolouns ond certain aniline colours are thickened with gelatine, and printed uphen cloth prepared with sodium hypusulphite and then passed through potassium dichromate. The colours hear sobiping at boiling heat, and sus. tain the action of sunlight withoutalteration.
Chatht: Efrect or shams, -A Nor negian botanist, Pra. Schubeler, states that most plats in high latitudes pronluce larger and heavier seeds than in regions near the equator- an effect which he :se cribes to the protonged intuence of sumbight during the summer days in high latitudes. In some cases the difterence of seed development is astonishing. Dwarf leans taken from Christiana to Drontheim-less than four deg. further morth wained nore than 60 per cent in weinht ; and thyme fronn l.pons when planed at Drontheim showed at pain of 71 per cent. The teaves also of most plants are larexer and more decply coloured in high batitudes. The same is true of thowers, and many which are white in southern climates become violet in the far morth
I.enctathenen hafs. The curious question has been raised fin Eingtand whether the recent decline in the death rate has actuallyadded to the average lenghof tusfut life, or whether its betefits hate not chiefly been spent in the relatively unimportant decrease of mortality amoms children and the aged. It has been answered ty. Mr. Noel A. Humphreys, after at nen exaluintation of the returns of mortality and the compilation of new life tables. He finds that the aveorir that .o. catation of the life of

 tive tew tames, of olais been in creased by swo years or five je: cent., and that the expectation in the case of females has been raised from to. 86 years to 43.56 years or by 2.70 years, or nearly seyen per cent.
Nifich akethe Primaky ColouessThe accepred theory of colour has at last found a dislocliecer, and from having deen considered an immutable fact it is now be. lieved to bean ansound conclusion to how that the three primary colours are red, yellow and Wae. The late I'rofessor Maxwell has we are reld, proned beyond question that the essential primaries are red, green and vinket, so that a goond many cssays and claborate works, as well as more numerous volumes of adoice to painters, must be wrong from the very: ${ }^{2}$ grinning, and our experienced window dressers must believe a great part of this scientific treatmem of cotenar to be erroberous. The adimiscion of areen into the motalle trin is thus account. ed for:-"The difficulties which stonad in the way of an accurate determination of the primaries were largely due to an ele. ment of confusion introducel by the use on pigments for the parpase of experiment. teopple who were sccustomed to miv hue paint and yelkwe paint te proxiuce srgen found it difificult so belicte that the green of the spectrum was anything more than a mixture of the bluc and yelhow lyy which it was bordered; but an sdonsixture erithe thee and yelliou or ibe syectrum dues man ponduce green, late white. The ilve lighe being * compoomed of green with viroker, and the yelluw lighe beinge a compround of green with red, the iwn iagetiver affival the there primaries, which comlenec in form whice. In the paints, one the cuntraty; the material Which apmears bluc abrortss and ywenches red, whike the manerial which appecars yel. low anseribs and quenches viovet ; mo that monly the igreem, which is conmaon to both, is reffected machanyed to the spectanor from the mintive."
rutes on whant to Cort Arthur as follows: ndured ii) Pore Anthur Kegins ins Yinden itratulats
iftrond i iew liwian Ifeal. Quatymelle Mimuives
Maninus From poines beyond Rexina the additumat that will he one sent a ton jer mile. A seluction of
 the p mant nethtonest.
-bunann a Phelp, tamers, North Brominster, Mass, hanc asibinel :all their jomt and sparato
 mes $\$ 275.000:$ aw wh $\$ 220,000$, comsituly of per. Mond property on and athout the sumery: mamecmenFrned teal estate and tamnery huilhtigs:- His staterl that the litm aho, howls a horge ctam nopanst 11. © Milhuphastix Co., Chusign, recemtly fuited. Nearly

 the Latier. The firm nas eng:ogedin the prosesutuen of the roje and fur lumenes mathe Wiot. Juat he. fore ale fuilure the tirm prefermed the L.cominster humk, of which Puman is presultem, ly tumnimk wer stoch and wher propery to it in stisfoction of chima ab:ainst the trim.

W:Hha the that month, the echame of stipping: introkem by stamese mateat of salling teowi, has lown tred from New Vork Clty, Thus cells to mant the effiet of slappong . Mmenean petrobenm to tudta. All oil shipphed to india is required tyy Law tur reath a fixent bifety teet. The on is testext to the lmit tefore leing slappxad. but on its :arival in Iandin foumed to fall soncenhat theow the reguined tamdird. this is attrikuted to the etfict of the thathee in clinute, and the authontes have decist. di not to admit any more cils unkes they ate ujp the keading authuari. Sir Francis . Hei, one of Whe keadngk authorities in oit matter, and explos. nes. thinks that in consegwence of thin dangerous Scoture the standard of the test showid le raised rather than fonerved, and states that "as shipwents of mil from more ienuyerate climates are uccasion. Why laste, when lestett in Implia, to furnich eestis aloult 3 cig. F.. Koner than the flashing pwint recordve Infore shipment. trate arranjements Should be maxte in tiew of thas contingetry:"
 laumiter of comsiderabte importance so Anictican drange in dimate luer for omly as an iteru of duced ty the warmith of the steamers as ecturt proped with that of the saiting vessel. The change from siling vessel to steanger traficic may yot have a any effet on the quality of she oill. mat who nould have wet prediked this India deppeciation? forewarno od is furearmed.

GRAND TRUNK RAILWAY.

 Ir.ainati tive.

2.15a. ma. Iaxal for mainte EMart to Moutreal.
 1 pr.m.-Minatsor his.
 ruane te... mand taily.

9.10: tata- Lacal (

grent Whathen midison.

BACK NUMBERS

Dominina luctivical and rallity livis
DWIGHT CUSHIAN,
 The Maxtyactiwite ow

 The Hevelt Whewt Jevile
 Aho Min Ciaming nem Sinating

TED WATMP: STEAM ENGINE GOVELRNOH. THE:
ons. corehnor: गekftectiv sutted 10 Ever vakitiv of
stattonaky and
toktalli: POKTAML.E.
TTEAM ENGINES.
Winrownered tol anve ar wis able.

EDMARD DEWEY \& CO. 34 OLIVER ST., E0870W, mace.

BEITD FOR OITROTAAR

BOLIMNG OLOTMES

GEO. C. TAFTS 13maroved Vipual Enfyn DRILIS.

 inmotin
 Crio.O.TSAT

One Order sor Gandy Patent Belting:

WATEROUS, BRANTFORD, Sole Canadian Agents.

TURNER'S HEATER AND PURIFIER.
 Silver Medal Awarded at the ioronto Exhibition, 1883.

PATENNTED IN CANADA, MAY B, 1882.

The alv,
 Hy the uee of the Comitener, wethwe rige, and ettheet pure water.

 atul causion: :man, ance to an Enginecr.

 crat in fuch.
16
exelis
 "1) jur laiters after its uke.
This herater has leret resami, erd and iested l.y nearts all

 We claim t bave not only the MOST EFFICIENT Lut also the MOST ECONOMICAL Heater and Parifice cuer invented.
H. C. ZOLLINGER \& BRO.,
((ismic of John /huy, Tivomhi, (nntario.) THE BARBER \& ELLIS COMPANY,
 TOFOINTO, - ONTAFIO.

PAPER DEALERS \& WHOLESALE STATIONERS.

ACCOUNT BOOKS, ENVELOPES and MUCILAGE.
 JNO. F EIIIS,

JNO. R EAFBER

R. HINCHLIFFE, RLECTRIC ENGINERR,

Hamilton, Onterio, Cunuele.

Electric Light, Electroplating and Electrotyping. PLATERS' SUPEIIES.
FULL PARTICULARS FURNISHED ON APPLICATION.
 wire ci.otis.
Fanning Mill Webs, Threshing Machine Webs, Strong Iron and Steel Webs for Malt-Kiln Floors, Smoke Stacks, \&c.; Beam Duster and Mill Webs; Perforated Zinc, all Sizes; Iron and Steel Wire Ropes, for transmitting power, Elevators, 'Derricks, \&c.; Galvanized Smoke Stach' Stays and other Strands.
CASt-Iron wheels for transmitting power; bank and office couhter railINCS, AMD ALL DESCRIPTION OF WIRE CUAADS; MOULDERS' RIDDLES, bellows and steel wire brushes; samd and coal screens, \&c. B. GREFININJG \& CQ. H.AMILTON,

ONTIA13TO.

BUY THE BEST!
M Y Ontario Combined Separator and Scourer and Polisher will remove more fuzz and germ from the ends of the wheat than any Smut and Separating Machine on Hen MY COMMON

SENSË MIDDLINGS PURIFIER
will purify any middlings. It has no equal on earth. It will be shipped to compete against the G. T. Smith Purifler or any Puri

 H. J. Livergood Brantford, Canada.

PAXtun,
 PANIUS Minn Port Perry, ontruio.

GURNEY' \& WARE STANDARD SCALES.

Mill and Eleviator Scales OF hit:Ry DEsCRIITION. Dormant Wanchouse Scales,

Hopper Scalcs, Flour Packing Scalcs, All Sizes of Portable Platform Scnics
HAY, COAL \& STOCK SCALES, Mr:ncitidits. Cante xempiel by wis with

 2.187.720.tDSS Mant lrawers All Makes Promptly Repaired. 2区 Scxa for flisuirated frice lisf. GORIBYS \& HaRR, Hamilton.

Important Amnouncement to the Trade!

HAVING bought the plant of the
THOMSON \& WILLIAMS MANUFACTURING CO.
of this place and put everything in first-class order, I am now prepared to offer to the trade (constructed in good workmanlike manner) the following machines:

I have a full line of Patterns for general work as well and shall be glad to correspond with anyone anticipating changes in their mills, am prepared to supply ANYTHING BELONGINC TO MILL FURNISHING and expect to meet the trade fairly.
Hoping to receive a fair share of the trade of the Dominion I will endeavour to give one and all of my patrons satisfaction.

CEO. T. SMITH, STRATFORD, ONT.

GOLDIE \＆MCCULLOCH，

GAIT，OINTARIO．

ST円AMI \＃NGINWS，BOITERS，

Improeed Twbime Weter Wheels，Hhour cemed Grist arill Mrachimery， Saw Mill Machinery，Shingle and Lath Machinery，Stave and Barrel Machinery，Wood Working Machinery， WOOL MACHINERY，SAFES，VAULT DOORS，\＆C． S卫玉CエAエエIES＝

The Wheelock Automatic Cut－off Engine，

slide valid，condensing and compound mangines，
CHILLED IRON ROLLER MILLS，FOR THE GRADUAL REDUCTION SYSTEM OP MLLLING．SOLE MAKERS IN THE DOMINION OR THESB ROLLS．
Wheat Cleaning and Flour Dressing Machines of Every Description，

Plans and Specifications for Fitting Up Flour Mills on the GRADUAL REDUCTION SYSTEM furnished at a Reasonable Cost．Rolls Re－ground and Re－Corrugated．

FIRE PR00F BAB BURGLAR PROOF

FIRST PRIZES AWARDED AT THE TORONTO INDUSTRIAL EXHIBITIOH， 1882.
OUR FOUNDRY AND MACFIINE WOEKS，

 I F 1 I yand best Eqititrated catalocues for our various departments furmished on application． All Orders will Receive Prompt Attention．

GOLDIE \＆McCULLOCE，Galt，Ontamio．

Celebrated us the Best Part－Gate Wheel Euer Built．From the Records of Actual Tests at the Holyoke，wass．，Testing
 WE PUBLISH OUR PART－GATE FIGURES．

OTHERS SIGNIFICANTLY OMIT THEM．
 W．H．BARBER \＆CO．．

PATENT

Planing Mills，
Sash and
Door Work， Carriage and Car Shops． Latest and most improved desicins．
 MACHINERY． Furniture，Chair and Bracket Factories， and General Wood－Workers．$\frac{2}{\text { scrolisny }}$ BEST OF MATERIAL \＆WORKMAMSHIP．

PEIOIOGRAPEIS, CUTB AND PRIOES ON APEIIOATIOIN.

THE JAS: JONTES COMBINED SYSTEM OF ROLLER MILLING

IS THE MEST IN THE WORID FOR SOFT WIIEAT, EQUAL TO ANY FOIR HIARI.

Mr. lames Jones, 3 Myles' Dock, lisplanade St. 'Toronto
Toronto, Ihecemiler $=\mathrm{d}, 188=$.
Drak Sik:-My mial at Wateddown has now been working since carly in September, with the machinery put in ty you. The quality of the four made, the yield and the anount of work done daily is perfectly satisfactory, and fulfis in every respect the representations made to me by you, and I consider your /'ROCESS UFF MIIIIIING SUI'R:KIOR' to any other I have seen.

Yours truly.
W. D. HOWIAND

Spencer. Incl. January 1, 1883
Mr. James Jones.
Deak Sik: -After a test of 3 months' running. we are pheased to inform you that the mill you built for us is giving perfect satislaction, and we think that the work we are doing cannot be surpassed. We have the yovpit Mili. of this State, and can recommend your combined system of GKADUAI. REDUCTION as the best we have sten.

MACHINES USED IN THIS SYSTEM OF MILLING.

 - Bix inchus of grinding contact can'be used, or any part of that surface down to one-half an inch. This is cione at the pleasure of the miller. Thit'
by any other rolls.

FOR GRINDING MIDDLINGS.
A stone foll, working into a stone concave, is ujed. The stone used is especinlly achapted to this work. having a fine sharp gat especially adapted to reducing middlings to itmit.
This machine has leen in the market for five years: has stood the test, and is monounced by those using them to be the lest machine made for that purpose. It requires No Dressing, is always ready fo work, and keeps in perfect face all the time. and the flour nade on these machines is letter than can be made on any nathine in the martet

FOR GRINDING BRAN.
A corugatel chilled iron roll is used. Equal to the lest standurd rols in the market

FOR REDUCING GERM MIDDLINGS.

A smooth chilled iran oll is usct. A combination of these rolls makes it a system of nilling that conimends itself to any and all millers that are locking for the Best Restirs.

James Jones \& Co., - Thorold, Ontario.

2，500 MACHINES
 BACK－DRAFT CLEANING MECHANISM，
1H：©N．，rokktict resin writ．
 READ TIE TESTIMONIALS＝

Yous truly，Canada．Fell fth． 2883.

Sole Manufacturers for the Dominion of Canada，under the Secret Chemical Process，of Tempering，which toughens and refines the steel
HAND SAWS，CIRCULAR SAWS AND CROSS－CUT SAWS，A SPECIALTY．
Ont Silver Steel sines are Unequalled．Largest Munnjucturers in Canada．

THE SHINER MATCHING HEADS

wonld－Wide Reputation
a）Work in direst trey Planing at ar
 Strongest．The Most Durable EASIEST BUMMING is

exphins why thece．ilits
explain g why there．lints
GROOVE HEAD．
out nard work uniihusel op：the entire＿circle of nit being Tool

Milton，Pa．U．S．

