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PREFACE TO FIRST £dITION.

This Treatise contains the text of the Lectures which I

have delivered for some years past in University College.

As my design has been only to furnish to Students a text-

book for such parts of the subject as are required for the

ordinary degree of B, A. in Universities, I have not thought

it advisable to burden this work with mere explanation or

illustration, or to add examples
;
presuming that such, where

necessary, will be furnished in the Lecture-room or by the

Tutor.

University College,

Toronto,

April r, 1858.





CHAPTER I.

DEFINITIONS AND nUNt'lPf.ES.

1. A material 2iartide is a portion of matter occupying ni
y^J^'iTi,-.'

iDdofinitoly small spnco ; or, a geometrical point endowed with

the properties of matter.

All bodies may bo gcomctrioally conceived as made up of

particles.

2. When the distance lotween two particles remains un- Force,

changed during any period of time, they are relatively at rest,

and we conceive that they will continue so unless one or both

bo acted on by some causo to which we give the name of

Fo7'ce.

The state of rest or motion of a particle can only be con-

ceived of in relation to others, but it is oonyenient to speak of

it absolutely as being at rest or in motion, reference being

understood to ourselves (or some particles in a known relation

to ourselves), and changes of rest or motion are to be consi-

dered as produced by forces acting on the particle alone.

3. When a particle at rest is set in motion by a force, it
j^^ijfj*""^'""

will begin to move in a particular line, which we may define uitgnitude

to be the direction or line of action of the force. The motion

might be just prevented and the particle kept at rest, by a

suitable force applied in an opposite direction. In this case

the two forces are said to balance or counter-balance each

other ; and the magnitudes of two forces are said to be equal Eqnai

when each would separately counter-balance the same force.

4. Generally, when forces acting on any system of particles statics,

keep them at rest, the forces are said to counter-balance, or problem or.
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Forro, hfiw

ni«Muri'il.

Wclb'ht.

JJlllt of
Kuri'u.

niKldity.

to bo in or|ullibrium ; ntxl tliu investigation o? tho rdutioni

ainon^ tlioni in such oaiio, or the conditions of o<{uilibrium,

conHtitutoa tho ^oionoo of Slutla.

6. 8oino convenient forco beinp; nsHunuMl nn n Ntnnilard or

ifiiiV, tho uingnitudo of any furco in niciiHured numerically with

rcferonco to tho unit l>y tho nuinl)or of nuch uniln (acting

hiniultnncouHly at a point and opponito to tho force), which it

will counter-balanco. Thus, if tho forco will couutor-balanco

V unit forces, its magnitude is Huid to bo n.

Tliia Hupposes n to bo a wholo number, nnd wo can nlwayn take a

unit-foroe of auoh magnitudo that it Nliall be so ; then, whon any

other force is tnkon tin tlio unit, tho mnKnituIo of rur original force

will bo cxprcMHcJ by tho ratio (whethor n wliolo number or n fraction)

wliicU its niagnituiio bears to tlint of tho forco assumed nn unit.

In general, tho term Pmtsnre may bo used for a Force thus

statically conaidcred and measured.

C. It is found that on all bodies on tho Earth a pressure is

exerted downwards, in a vertical direction : that is, in a direc-

tion perpendicular to tho surface of still water at tho place;

and this pressure (which, for any particular body, is culled tho

wciyht of that body) is invariable at tho same place for the

same body at all timos, whatever form, size or position tho

body bo made to take. Hence the weight of some particular

body may conveniently bo assumed as a unit to which other

pressures may bo referred for measurement.

In the EDglish systom the weight of a certain picco of brass caro-

fuUy preserved as a standard, is called one pound Troy, and all other

weights are referred to this. If lost, it might be restored from tho

knowledge that this pound being divided into ^7GO ffrains,
'• a cubic

inch of distilled water, of the temperature of 62° Fahrenheit, when

the barometer is at 30 inohee, weighs 252.724 grains "

7. When a system of particles, or a body, is such that the

relative distances of the particles undergo no change by the

action of the forces applied to them in any manner, the system

is said to bo rigidly connected, and the body is called a riyid

body, relatively to the forces concerned.



8. Prnm the dcfinitloni^ laid down, it will bo ohsprviMJ fhfit

thrco nletnenti enter into ovory Forcp : (I), itii pi)int of np-

pHcntion, or tho pnrliolo on which it nctn; (2), \tn ilirpction

;

(8), \tn ma^iiitudo. When thr«o arc known, tho forco in fully

dolcriJiiimd.

Tho fullowinuf is tho fumlaniontiil law, deduced from r;tr"iiMKrj

eiporiiuunt, oo whigU tho Sciuuco of 8tatic» is based :

*" '"*

// two equal forcct act rmpectiiulij on tiro jxirtiiltt, whirh

are rijUUij counrctrd, in the line jolninij them but in "pftosite

ilii'f>CtioH»f thnj will connterhahinvr.

Ileiicc, either of these forces iiiny bo tninHfcrrod to tho

other particle, preserving tho hhmio direction, without altera-

tion of its Htuticol effect) or:

" // force may be tvppoBcil to act at ASY j>oint in its own

line of action, the new point of ajtpliation hc!u<j ri'jlilli/ con-

nected iciih the former one ; and in this latter furni the law u

frequently stated.

10. The followiji^ consciiuenees rany bo noted :

When a pressure is coinmunicated by means of a j-fraij.'ht

ri^id rod in direction of its length, tlie pressure is wholly

eirective in this dircctiuQ and uiay bo supposed to act at any

point of the rod.

When an inoxtensiblo string is stretched straight by a force ^ .

at each end, these two forces must bo ecpial, and their mag- iistriiiK'

nitudo is independent of the length of the string. Also at

erery point of tho string there are acting along it, in opposite

directions, two forces equal to tho farmer, and either of these

is called the tension of tho string, which is thus uniform

throughout its whole length. Tho same is true when tho

string (if it bo perfectly flexible) is stretched over a nmooth

surface. •

A smooth surface is one which can exort a iircssure at any poiut of

it, only in direction of the normal at that point.
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11. Sino« the (hreo olcmonti which lorro to dttlcrmine a

proMuro aro in thoir naturo iJootioal with thoM which dutor-

piino A itraight line—namely, magnitude, direction, and point

through which it ia to be drawn— it foilowi that a atrnight

lino may properly bo takon aa the reproaentatife of a proaaure.

When, however, a line yl Z7 ia ao takon, it will be underatood

that the prcaaure ^cU in tho ditootion from A towarda B ; if

written // A, thon fr()m Ji towarda A. Frequently alao, the

worda " reprcaentod by " will bo omitted, and wo ahall uao

" tho force A Ji" to indicnto tho foroo reprcaentod in ningni-

tudu and direction by tho line A 11, acting in a iiroction from

A towarda Ji.

12. Wo now prncood to atnto tho two problems of Stntica

which alone will bo hero touched upon.

(I). Tho condition.s of crjuilibrium for any act of Forott

acting on tho Hnnio particlo.

(2). Tho conditiona of equilibrium when Forcca oct on a

rigid ftystcm of particica which hn.s n fixed axia round which

it can turn fruoly, tho Forcoa acting perpendioularly to thia

axia.



(JlIAl'TlUl II.

AOTIN(» AT A roINT.

in. Whon Forcftn net ninmltancouNly on a pnrliclo at rest, noflniiion of

IkMUlUltl.
if tho pikrtiolo ho^iri to inovo, itfl tnutiun will coiumcnco in a

dcflnito (liroction, and mi^lit bo junt provontoJ by n nin^lo

furco of auitablo lna^nitudo applied in an opposite direction.

ThiM force would then couiitorbalnnco tho ori^^inal act of Foroei,

and a force equal and oppoHito to it would produce tho Hoino

Itatical efTcct us tho first not of Forces, and is therefore termed

their liraultnnt,

14. Hence, whon any set of Forces acting at a point keep

it at rest, sinco any one of thotn may be considered as coun-

tcrbiilancinp; nil the rest, a force c(|ual and opposite to any one

of them is tho UcsulUnt of all tho others.

15. Ilcnco also tho condition, In order that Forces acting ron.iition of

at a point may keep it at rest, is that the magnitude of their '•'i""''*''"'"

Resultant shall bo zero, or that their Resultant shall vanish.

IG. Whon Forces act in the same line and direction on a ForcMinthn

point, their Resultant acts in tho same direction, and its mag- •'"" "'"-'

nitude is equal to tho sum of th'^ir magnitudes. If some of

tho Forces bo acting in the opposite direction, tho magnitude

of their Resultant will bo the difference between tho sums of

tho magnitude of those acting in the one direction and in the

other, and it will act in the same direction ns those Fores

whose sum is the greater. We can, however, indicate oppo-

siteness of direction by attaching to the magnitudes of the

Forces the Algebraic signs -|- and — ; so that, any one

Forco being considered positive) all Forces in that direction
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will also bo considcrcJ ponili've, but forces in tho opposite

diroftion will be considered ncjativc.

The above results may then bo combined into the following ;

Till ir Resui- fjig Resultant of am/ set of Forces actinn on a point in
taiit and ... ,

the same linCf is the ahjchraic sum of the Forces.

( rnniition of 17. Hence also the condition that tho point may be kept at
Iviuilibriuiu Ml 1 1 ,

</ r

rest will bo that

The ahjehraic sum of the Forces shall he zero.

*'k

Va\\\:\\ ob- 18. If two equal forces net in different directions at a point,
ll'liit Forces. , . -n , ..i • ,..,.. , ,

their Kcsultant will act in a direction bisecting the angle

between their directions. . .

Any two
Voria-s.

I'lirillelo-

uiaiii (if

Isewton.

Diivotion of
Resultant.

Du'iamel's'
ill- . ul'.

19. The Principle of the PARALLELonRAM of Forces. .,

Tf two Forces acting on a particle bo represented in mag-

nitude and direction by two straight lines drawn from a point,

and the parallelogram, of which these lines are adjacent sides,

be completed, that diagonal which passes through the point'

will represent in magnitude and direction the Resultant of

the two forces.

Let the lines AAj,, AL be drawn representing in magni-

tude and direction two

forces acting at A ; and

let p, q be the numbers

de lotingthemagnitudes

of the forces.

Divide AAp into p
equal parts in the points

^1, Ai, jg, , and

AL into q equal parts

in the points B, C, D,

: then each of these equal parts will represent in magnitude

the unit force. Through these points, draw lines f-arallel to
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the original lines, completing the parallelogram ; and suppose

all tl c lettered points of the figure rigidly connected.

Then, since the two for(»Od represented by AA^, AB, acting

at A, are equal, the direction of their resultant bisects the

angle between them, and it therefore acts in A By: it mny

then be supposed to act at 7?, (§ 9), and may there be again

resolved into its original components, which will be represented

by BBi and AiB^, of which the former may act at B, and

the latter at Ay

Proceeding in the same way with this latter force, Ail^u

at A^, and the force A^A.^, which we may also take to act at

Ai, we can replace these by B^B^ at i?i, and A.^B^ at A.,.

Proceeding in this manner we arrive at last at B^„ where

we find the force Aj,B^ and the set of forces BB^, BJl,,

B.,B^, (which latter make up the original forces?) as the

equivalents of p and AB at A.

Now taking up the set of forces in BBj, and the force

represented by BC at B, we transform them by the same

process into B^Op and the set in CCp at C^.

Following this method we arrive at last at Z^, whova we

have for the equivalents of the original forces the sets of

forces in LL^ and ApL^, which may be supposed all to act

at Lj, and their magnitudes are p and q. Hence we have

transformed the original forces p and q acting at A to the

same forces acting at Lp in parallel directions to the former,

and this without alteration of their statical effect. Hence L^

must be a point in the direction of the Besultant of the

original forces at A; that is ALp is the direction of the

Resultant, which proves the principle enunciated, so far as

the direction of the Eesultant is concerned.
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M ignitudo Let AB, A C, represent the two forces acting at A. Com-

unt.'""'" plete the parallelogram A C DB. Then AD is the direction

in which the Resultant acts, and we have now to prove that

AD represents also its magnitude.

In DA produced hackwards

taku AE to represent this

magnitude, so that a force

represented by AE will be

equal and opposite to the

B Ilesultant ; and the three

fl^rces represented by ABf
AC, AE, will keep the point

^ at rest, and each one of

thmn is equal and opposite

to the Resultant of the other

two.

Complete the parallelogram AEFC; then, AF is the direc-

tion of the Resultant of the forces AE, A C, and is therefore

opposite to AB. Hence, FAB is a straight line, and there-

fore FACD a parallelogram. Hence, the lines AE and AD
are equal, being each equal to FC : but AE was taken to

represent in magnitude the Resultant of AB, AC, and con-

sequently AD also represents it in magnitude. Q. E. D.

Xle^oiution
of a Force.

20. Conversely, a force acting at a point can ho resolved

into an equivalent pair of forces at that point in an infinite

number of ways ; for, taking a line drawn from a point to

represent the Force, and constructing on it as diagonal ani/

parallelogram, the two adjacent sides terminating at this point,

will represent an equivalent pair of forces.

If this pair consist of two forces acting in perpendicular

directions, each of thom is called the effective part of the

original force in this direction.

<llMPiii
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Thus, if i? be the force at A, represented by AD, and it bo

resolved into two forces in per-

pendicular directions— namely,

Xalong^J5 and Falong AC;
then Xand Y ate the effective

parts of R resolved along ^^
and A C respectively. Comple-

ting the rectangle A C D B, X and Y will be respectively

represented by AB, AC, and, calling the angle BAD, 0, wo

have from the right-angled triangle BAD,

X=Rcos0, Y=R Bin 0.

21. Hence, to find the effective part of a force in any

given direction, or, jaorS briefly, to resolve a force in any

given direction, multiply its magnitude hy the cosine of the

angle contained between its direction and the given direction:

and to resolve a force perpendicularly to a given direction,

multiply it hy the sine of this angle.

22. So also from the same figure we obtain the Eesultant

(^) of two perpendicular forces (JT, F), and the angle {&).

which its direction makes with one of them (X) ; for \

Rule for.

/?»= 2:» + rS- and, tan <? = £ .

•

23. When any number of Forces act at a point, their wholb

effect in any direction will be the Algebraic sum of the sepa-

rate resolved Forces in this direction, which will evidently

therefore be equal to their Resultant resolved in the sama

direction.

Henoe also the algebraic sum of the separate resolved forces ia

direction of the Resultant ia the Resaltant itself, and the oorreapond-

ing sum in a direction perpendicular to the Resultant is zero.

24. To find ike magnitude and direction of the Resultant !*.»,#

of any forces acting at a point, their directions heinj all in^ any forces lu

one plane.
. .

and
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u
Taking anj two directions at right aoglos to each other, let

each force be resolved into its componentB id these directions.

Let the algebraic sum of these resolved parts in the one direc-

tion be X, and in the other Y.

Then the whole set of Forces is equivalent to the two X,Y.

Hence, if R be the Resultant of the whole set, and there-

fore also of the two X, Y, and the angle it makes with the

direction of X, the equations in § 22 give

\i\:

Conditions of
equillDrium.

ii?» = A^»+ r«,tan 0=-,

which determine the Resultant in magnitude and direction.

We have also the equivalent relations

-r= B cos 0, r= li sin 0.

25. To find the conditions of equilibrium when any Forces

act at a point, their directions being in one plane.

Retaining the notation and method of the last article, since

the only condition, in order that the point acted on by the

Forces may be kept at rest, is (§ 15) that the Resultant of the

Forces must be zero; that is, ^= , we have

2r=o, r=o.

And, conversely, if X=0 , and T=0 , then we also have

^= , and the point will be kept at rest ; hence the neces'

sary and sufficient conditions of equilibrium are that

The algebraic sums of the Forces resolved into two perpen-

dicular directions shall separately vanish.

This principle will be cited under the name of " The

vanishing of the Resultant.^'

26. The process might be readily extended to forces not all acting

in one plane.
^

Thus, if three forces not in one plane act at a point, and three lines

be drawn representing them in magnitade and direction ; then, if the

parallelepiped, of which these lines are adjacent edges, be completed*
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that diagonal of it which passes through the point will represent in

magnitude and direction the Resultant of the Forces.

Also, if any number of Force . act at a point, the necessary and

Buffioient conditions of equilibrium are that the algebraic sums of the

Forces resolved along three mutually perpendicular directions shall

separately vanish.

Tho following propositions aro historically interesting,

though included in what han preceded.

27. Triangle of Forces.
Triangle of
forces.

If the directions of three forces acting at a point, be parallel st«vin«H

to the sides of a triangle taken in order, and their magnitudes

be proportional to these sides, they will keep the point at rest-

For if ABC be the triangle, and A the point at which the

B >_ _ forces act; then, comple-

ting tho parallelogram

ABCD, the two forces re-

presented by ABf B Of will

be represented by A B,

A D, and their resultant

by A C, which is equal and opposite to CA, the third force.

28. Conversely. If three forces acting at a point and

keeping it at rest, be represented in direction by the sides of

a triangle taken in order, these sides will represent them also

in magnitude.

29. Hence, all problems relative to three forces keeping a

point at rest are reduced to the solution of a plane triangle.

Thus, if P, Q, R, be the forces, and the angle between Pand Q
be represented by (P, Q); then the angles of the triangle in

the above proposition are the supplements of the angles be.

tween the forces ; and, since the sine of an angle is equal to

that of its supplement, and the cosine of an angle is the cosine

of the supplement with opposite sign, we have (Trig. §34, 40.

P Q R
Sia(g,i2) Sin (i?, P) Sin (P, Q)

'

Lami's For-
mulas.
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and also the equivalent oxprcssioni

—

»

^

7?— i" 4- g» -f 2 P (2 cos (P, <2)

P«— (^i-f-iiji-l- 2 QR COB (Q,Ji)

^«— i2« + p» 4. 2 /? /» cos (7?, /*)

30. Polygon of Forces.

If Forces acting on a point he represented in magnitude

and direction by the aides of a polygon, taken in order, they

will krep the point at rest.

For \fABCDEF be the polygon, the forces AB,BC, have

for their resultant AC ; and the resultant of this and CD is

AD; and so on till we come to the last side which is equal

and opposite to the resultant of all the previous ones.

Hence the proposition, as well as its converse, is established.

31. In this way, the Besultant of any number of Forces

at a point can be constructed geometrically ; for, having drawn

consecutive lines, so that, taken in order, they are parallel to,

in the same direction with, and proportional in magnitude to,

the forces ; the line drawn to complete the polygon will repre-

sent in magnitude and in reversed direction the Resultant

required.

It may be noticed that the Polygon referred to need not be

a plane one, neither are re-entering angles or crossed sides

excluded.



CHAPTER m.

Forces in one plane acting on a system op rigidly

connected p0int8, which can turn ftteely about a
fixed point in the plane. ,

,

32. Two intnrsecting forces act on a rigid sgsfem, in the Condition o

tame plane with a fixed point round which the »i/slem can wlicnthe

turn.
two forces

in»«t.

Lot be the fixed point; P^ Q,t\7o forces in the same

plane with 0, their direc-

tions intersecting in Af
at which point, rigidly

connected with 0, they

may be supposed to aot.

Then if R be the Be-

sultant of Ff Q, ia order

Q that the point A and the

^ whole system with which

it is rigidly oonnected

may be kept ai rest, it is

necessary and sufficient that the direction of li shall pass

through the fixed point : that is, J.0 must be the direction

of R. Draw 0J3, perpendicular to the directions of P, Q.

Then, resolving the forces at ul in a direction perpendicular

1)0-40, we have (§21, 23):

PBrnOAB-^-Q Bin OAC=0,&nd therefore

P. OB— Q. OC =0,QTf

P.OBz=Q.OO.
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MoDtf^nt (le- 33. The prodaot P. B, which is the product of the num*

bor eipresBtng the magnitude of the force, and the length of

the perpendicular dropped from the point upon its direction,

is called the momml of the Force about that point.

Ilcnco the above result may be expressed by saying that

when the two forces keep the system at rest, their moment*

about the Jixed point are equal, the forces tending to turn

the system in opposite directions about the point : but if wo

indicate this oppositencss of direction by difference of alge-

braic sign, so that the moment of one Force which tends to

turn the system round in one direction being considered poai-

tive, that of another Force tending to turn it in the opposite

direction will be considered negative;, we may still more

briefly express it in the form

:

The algebraic turn of the momenta of the two Forces round

the point must be zero.
, ,, -^.

Moment Of 84. The moment of the Resultant of two intersecting

two forces Forces round any point in their plane is tqfual to the ahje-

•oct iseauti braic Bum of the moments of the Forces.
to sum 01

Let P, Q be the two

forces intersecting in A
;

O, any poiut in their

plane; i2, their Resul-

tant.

Draw the ;>erpendicu-

lars OB, C, D.

Then (§ 23) the Re-

sultant resolved in any

direction being equal ><^

the algebraic sum of the

resolved Forces in that

direction, let them be resolved perpendicularly to OA. Hence,

from § 21,

iJsin OAD = Pb\q 0AB'{' Q sm AC.',

momenta of

'•T***—-
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nn<J tliorororo

R. OD^ l\ OB \- Q. O Cy

which proves tho proposition.

Cor. Wo have tnkon tho cbso In which tho momentfl of tho Forres

hnvn th(< snmfl A^n, tho proof in this case being sufficiont for itll.

When', as iu the tigure,

tlie two forces tt-nd to

turn tho systfm In op.

posito directions, their

moments will bear dif-

ferent signs, and we
have, by tho same pro-

cess as above,

R.OD—l\OIi—Q.OC:

and tho direction in

which the system tends

to turn will be indicated

by the sign of tho mo-

ment 7?. OD found from

this ozpressioa.

35. Two Forces act in parallel directiont on a rigid tyttem. Two paraiipi

Forces arc

Let P, Q be the two Forces j 0, any point in their plane, tlfa H?iig'i«

-.^ ^ ^ ,^ Force
Draw OCB per-

poudlcular to the

forces. At B, C,

apply two equal

and opposite forces

T; these will in

no way affect the

system.

Let iS be the Re-

sultant of p, r,

acting at ^; and

S that of Q, T,

at C. Then the directions of i2, S will in general meet

:

let them do so in A, and suppose them to act at this point.

They can now be here resolved into their original co^»ponents,

Tirtrnllel to

the^
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whnM mac. ^t T: Qt ^i <>' whioh tho foroM r, b«Iog •qaal tnd oppoiltei

iMrium n>iy b« remoTed dtogethor, leaviog the forooa /*, Q lotiag in

a direotion parallol to their origioftl direotioo, and oombiniog

into a liogle foroe (P -f Q).

Again, the moment of this tingle foroe (P -j- Q) ^bout

!• equal to the algebraic turn of thoM of ita components

R and 8 (§ 84) ; and th« momanl of iZ if equal to (h« ran
of tho moments of its oompooenti, namely, P and T; and aq

is that of ^ to the sum of the momenta of Q aod T; amoo|

whioh momenta thoic of the foroea T deairoy each olher|

leaving the algebraio anm of the momenta of the original

forces P, Q eqaal to the momsntof the single foro« (P+ Q)%

which has been shown to be their equivalent

Md WhOM
niniiifltit 1«

tb« aum uf
their uiu-

iiianta.

If the Forces P, Q had bean taken aoiing in opposit*

directions, we should have found by the same procssa that tha

single equivalent force had for its magnif.de the difference of

those of P and 9> ^^'^ t^cU^ in the direction of the greater

foroe, but that its moment was still equal to the algebraio aun^

of their moments.

If, therefore, we now extend to parallel forces tbo same

method of indicating oppositencss of direction by difference

of sign, which was used in tho case of Voroea aoting in tbt

same line, we can include the above oases in a aingle Btat*>

jnent, as follows

:

Two parallelforeu acting on a riyid tjfiiim are equivalent

to a tingle parallelforce which it equal to their algebraio eum,

and wfioae moment round any point in the platu of the fortwe,

ie equal to the algebraic eumqfthe momenUof the tvoforeee.

In one case, however, the above proeess becomes nogatorj, which

is when the two forces are parsUel, equal, and oppositei Snob a pair

• of forces is called a eoujJe, and the case must b« exduded from onr

general statement.

Any two 80. If to this slugls equivalent 7oroe in § 86, we give the

'tdtaAiof.' name of Resultant, we can now include the results of the two

last articles in one statement

:

'Exception.
A couple.
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Anjf two Forctt in th« iam« plant acting on a rigid tyttfm

{unlttt thty form a coupU) an ^quivalmt to a tingle Jietul-

tant fura, tohote monunt round any point in their plane it

tqual to the algibraic 9Mmqfth$ir momtnti round thit point,

87. Any Forcet act in one plane on a rigid tyttem.

Tak{0(^ aoy two of thene, we find their Resultant, Its mo-

ment being the sum of the momentA of tho two round any as-

lumcd point in the plune ; combining this Resultant with a

third to form a new Resultant, whotio moment will be the sum

of those of the throe forocM ; and this again with a fourth ; and

0 on till we have taken all the forces, we are left at lost

with a kingle RcHultnnt only, whoso moment is equal to tho

•um of the moments of all the Forces. In thus proceedings

we must avoid combining with any one of the partial rosult-

antfl a force which would form with it a couple ; and this we

ean always do by taking instead of this force another one

which will not form a couple, for if it did, there would then

bo two equal and parallel forces, not opposite, and those two

oould be oombinod into one which would now no longer form

a couple with the Resultant spoken of; we can thus always

evade forming a couple until we have combined all the forces

but one, and it may happen that this one is equal, parallel,

and opposite to the Resultant we have obtained from all the

re»t, so that we have a couple remaining.

Any Kon-r*

Hence, any tet of Forces acting in one plane on a rigid are reduci-

tysfetn are either reducible to a couple, or else to a tingle Be- iil^iuiuntf^

ndtant Force, tohone moment round any point in the plane it
'°**^*"'»

equal to the algebraic turn of the moments of the Forces

round that point..

88. To find the conditions of equilibrium when Forces in

one plane act on a rigid system which can turn freely about

a fixed point in that plane.

The forces are reducible either to a couple or to a single andforaqtiu

Resultant Force.
^"^^



lo th« fbnntr mm, equilibrium !i notpoiiibtt; In the Ut-

ter, equilibrium will ubaint if the UeaulUnt either be loro

or p«M through the flie<l point, and eeoh of theae upp<N^itioos

will make ita moment about thia point raniah, and therefure

•lao the algebraio aum of the momenta of all the Foroeii lo

whioh aum it haa been ahown to be equal.

ITeoce the nooemarjr end lafllcient condition of equilibrium

la, that

• mm of Tht algthrak lum of thi motnenh of all tht Forcet about

Knu v«n- the fixed jioxnt mu$t vanuh,

Thia prinoiplo will alwaya bo quoted bjr the name of " the

vaniahing of momenta."

89. The Mm« prlnclplo niny ctally bo io«n to apply when tha rigid

body U capable of turning about a Hxcd itraight line or axia, and tlie

forcoe are not all in one plane bat arc perpendicular to this axil.

The moment of aaeh Force being talcen about that point of the axia

which !• «ut by a porpendicular plane containing the Force, wo can

•tate the condition of oquillbrium In the form

:

TTit alg«hraie turn of the momenU of the Forctt <d>out the fixed axit

mvat vanith.

t

'"/r^iiMWWPWWHIIM i I
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ciinriui or parallbl roucui, and op oiuvitt.

40. It hu bo«n hown that two ptnllel foroM (not furminff RMniunt of

• ooupI«) Aottng on a rigid jst«in, hare for KMultaDt » lingU vnrvm iim

force in the Mme pUne ; ita direction being parallel to that of

the two, i^j magnitude being the algebraio lum of their mag- momani

oitudoa, and ita moment about any point in thia plane being rxTnlitculTi''

the algobraio lum of their momenta About thia point.

Alao, the moment of a force about a line to which ita diroo-

iion ia perpendicular haa boon defined to be the product of

the number ezpreeaing the magnitude of the Force, by the

perpendicular distance between itM direction and the line.

41. It will now be shown that the moment of thia Resultant

of two parallel forcea, about any line perpendicular to their

direction, is equal to the algebraio sum of the momenta of the

two forcea about this line.

Suppose the forces P, Q, to be acting in

the same direction perpendicularly to the

plane of the figure and meeting this plane
, „^, ^^ ..^

in ihn points B, C; and their Resultant R aumof Um

(which ^P-f* ^1 (^°<^ '^oii parallel to and

in the same plane with them), to meet the

plane of the figure in A. Let d a c be any

line in this plane, and draw to it the per-

pendiculars Aa, Bbf Cc. Then, \t B A C
be parallel to 6 a c, Aa^ Mb, Cc, are all

equal, and the proposition ia manifestly

true, for

E. Aaz=(P-\- Q) Aa = P. Bb -\- Q. Cc.
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But if BA C bo not parallel to bac, let them meet in 0. Then,

being a point in the plane of the forces, the moment of H
round is equal to the sum of those of Pand Q round it,

and therefore

H. OA = P. 0B-\- Q. OC.

But by similar triangles

Aa Bh Cc

OA OB 00

moments of

tlio Forces.

and therefore

R. Aa = P.Bb-{- Q. Cc,

taut.

which proves the proposition for this case, and the proof holds

good also for the cases where the forces or their moments are

in opposite directions, having due regard to algebraic sign.

Anynurahcr 42. Any parallel Forces, acting on a rigid si/stem, are

FonfeThavo C'^^^'* reducible to a couple or else to a single Resultant Force

B?n«ieBe8ui- ^^*^^ ^^'* *^ ^ parallel direction, its magnitude being the

algebraic sum of the magnitudes of all the Forces, and its

moment about any assumed line perpendicular to their direc-

tion, being equal to the algebraic sum of the moments of aU

the Forces about this line.

Taking any two of the forces (which do not form a couple),

we find their Resultant, which acts in a parallel direction,

its magnitude being the algebraic sum of their magnitudes,

and its moment, about any assumed line perpendicular to the

direction of the forces, being equal to the algebraic sum of

their moments about this line : combining this Resultant with

any third force to form a new Resultant, and this again with

a fourth, and so on as in § 37, we arrive at last either at a

couple or a single Resultant Force acting in a parallel direc-

tion, its magnitude being equal to the algebraic sum of the

magnitudes of all the Forces, and its moment about the

assumed line being equal to the algebraic sum of all their

moments about this line. t - L ...

WP"
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43. The centre of Parallel Forces.

When ghen parallel Forres, aeting at givai points of a

rigidly connected syxtem, are redwAble to a nngle Remltcnt,

its direction passes through a point tvhose position is invaria-

ble loith regard to the points of the system^ whaiever he the

direction of the Forces.

Take any two of the Forces P, Q, acting

[at the given points 5, 6^ Join J5Cand let

their resultant R cut it in A. Then, the

moment of R about any point in the plane

I

being equal to the algebraic sum of the

moments of P, Q, about this point; let

these moments be taken about A.

The moment of R about A is zero;

hence, drawing h Ac perpendicular to the

direction of the forces,

Contro o(

imrallcl

Forces.

P. Ah— $. ^c=0.

and, by Bimilar triangles,

— == -- ' and therefore,
AC Ac *

Hence B C, which is given, is cut in the point ^ in a ratio

which is independent of the direction of the forces with regard

to B C, and the position of A is therefore given with regard

to B and G. • i a
: . . .

y

Now, taking any third force, acting at Z>, we may combine

it with the resultant of P and Q, and the point in which the

new resultant cats A D will be given in position with regard

to ^ and Z> or to ^, JB and C.
'

And tiitiB we tiia^ go on till We Urtive at the final resultaiit.

Henoe, the proposition as enunciated is true. f ,

This point is called the centre of Parallel Forces^

%'

€
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Vm "bo*""
^'^' ^^ ^^'^^ point—the centre of parallel forces—in a given

turaudabout gygtem be rlgidlj connected with the system and supported

or fixed, the system will be kept at rest, and will remain so

when the forces are turned about their points of action into

any other direction. It will also still be at rest if it be turned

about this point into any other position, the forces acting

always at the same points of the system and being always

parallel to each other, though their directions may be varied

at pleasure.

The pressure supported by this fixed centre is evidently the

algebraic sum of the forces, and the algebraic &um of their

moments about any line through this point vanishes.

Centre of
Gravity.

Whole
weight may
be collected
At:

45. The Centre of Qraviti/.

When the only forces acting on a system are th€ weights

of t1ie several particles of that system, if we suppose the

vertically-downward directions in which these weights act to

be parallel to each other, and the weight of any particle to be

independent of its position ; then, since the forces all act in

the same direction, they have a single Besultant which is

equal to their sum, that is, to the weight of the whole system,

and acts vertically downwards through the centre of parallel

forceSf which is in this case called the centre of gravity.

46. The statical effect, therefore, of any rigid system will

not be altered by supposing it to be without weight, and the

whole weight to be collected at its centre of gravity and there

to act—this point, however, being rigidly connec^fid with the

system.

We may also, without alteration of the statical effect, con-

ceive the system to be geometrically divided into any number

of systems, and the weight of each of these to be collected

at its own centre of gravity and there act, these partial centres

of gravity being rigidly connected with each other and the

system. v

imjiyLJiiii « ilJMJ ' JLI '

I
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47. Also, if the centre of gravity of a system be supported syst«m

or fixed, the system will balance about this point in all posi- lilunJunali

tions under the sole action of the weights of the parts of the i"^'*'^'"":

system, these being rigidly connected with each other and the

centre of gravity, and this is sometimes made the definition

oi the centre of (jravity.

48. The position of the centre of gravity relative to a given system iiow found,

will be determined from the consideration, that, placing the system

so that any given line in it shall bo horizontal, and equating the mo-

ment of the whole weight collected at the centre of gravity with the

moments of the several weights of the particles about this lino, the

distance of the centre of gravity from the vertical plane passing

through this lino will be found. Taking thus three planes in succes-

sion intersecting in a point, the distances of the centre of gravit}'^

from each of these planes can be found, and its position therefore

determined.

49. Since the position of the centre of gravity in the sys-

tem depends on the relative and not the absolute weights of

its parts, this position will not be affected by increasing or

diminishing proportionally these weights.

50. If a rigid body be of uniform density : thru is, if the
or aunifom

weight a given volume of its substance be the same in ^"^y*

every part of the body j then, if there be a line about which

the form of the body is symmetrical, the centre of gravity will

be in that line ; and if there be two such lines, the centre of

gravity will be their intersection. Thus the centre of gravity

of a circle or sphere is the centre; of a parallelogram or paral-

lelepiped, the intersection of its diagonals; of areguh.. prism

or cylinder, the middle poiut of its axis.

51. If a uniform body balance in every position about a

line, the centre of gravity lies in that line ; and if about two

such lines separately, it will be their intersection. Thus a

triangular area will balance about a line drawn from one angle

to bisect the opposite side, for the triangle can be generated

by a line moving parallel to one side, and the small area gene-

rated at any stage of its motion will balance about the line

tmm



\4 or a trian- V7hich biseots it. Hence the centre of gravity of a triangular
«u ar area.

^^^^ .^ ^^^ intersection of lines drawn IVom the anglea to bisect

the opposite sides, and this intersection is at a distance from

the angle of two-thirds of the bisector drawn from it.

For \ei A B C be the triangle, and

BD, CE bisect AO, AB, and meet in

0. Then G in the centre of gravity.

Join E D, which is parallel to B C
(Eucl. B. VI. 2),

Thon = by similar triangles BOO, EOD
OB ED' ^

C A=
, by similar triangles A CB, ABE

AB
_ %_

2
Hence B 0, being double of OB, la — BB.

o

The same point O is also the centre of gravity of three equal bodies

placed at the points A,B,C.

Of any poly- Cor. In this way can the centre of gravity of any polygonal

area be found; for, dividing the figure into triangles, the

weight of each of these may be supposed collected at its own

centre of gravity, and the centre of gravity of the whole

figure will be that of these weights, considered as heavy

particles situated in those points.

The method of finding this latter will be tr'^'vted in the

following article.

ofanyheavy 52. To find tlie centre of gravity of a system of particles
paiticles in ,, . ,

neplane. all in one plane. •<
. , : . ? ". .; ..^ '

, .
•..

Let Ox, Oy be two perpendicular liaes in this plane, with

regard to which the positions of the particles are known. <

Let P be the place of one of the particles, io its weight.

'.,. »WWIT".'HI'.l



Draw P Ny i^ jl/ perpendicular to Ox, Oy^ respectively; and

denote P M hj x, F N hy i/.

Suppose the plane of the figure to be horizontal ; then Ox
is a line perpendicular to the direction of the weights, and

therefore (§ 36) the moment about Ox of the whole weight

collected at the centre of g. tvity is equal to the algcbiuio sum

of the separate moments about it. Hence if TV be the whole

weight, and the distance of the centre of gravity from Ox be

denoted by f, we have

W7i= I {w. 1/)

y=and
W

where I denotes the algebraic sum of all the products corrcp

ponding to that within the bracket. Aho, if a moment be

reckoned positive when Pis above the line Oj\'\i will {lalnly

be negative when P is below the lino, and the difiFercnco in

sign of the moments will therefore at once bo inuicatcd by

considering a y positive when drawn upwards from Ox, and

negative when downwards.

Similarly, by taking moments round Oy, if oj be the dis-

tance of the centre of gravity from Oj/, we have

Hi'io.x')
X: w

where x will be considered positive when drawn to the right

of Oy, negative when to the left.

„ The distances of the

centre ofgravity from

these two lines being

thus found, and the

directions in which

these distances are

drawn being indicated

by the signs with

which they are aflFeo-

ted,the position of the

centre of gravity is

fully determined.
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Cor.—If the particles all lie in the same line, take this for

Ox. Then, every ij being zero, y is so also, and the centre

of gravity is in Ox, its distance from being given by

— S(wx)
W

The following independent proof of this may be noted.

6a. Let Oz be the line in which the particles He, O being any point

from which the distancea of tlio particlca are known, and lot this line

be placed horizontal. Let x bo the distance from of the particle

whose weight is w.

Let W bo the whole weight, and x the distance of the centre of

gravity from 0.

Draw another horizontal line from O perpendicular to Ox. This

line will then be perpendicular to the direction of the weights, and the

moment about it of the whole weight collected at the centre of gravity

will be equal to the algebraic sum of the moments of the several

weights. Hence we have

W~x = 2 [w.x)

— 2 (w.x)
or X = —^

'

W
where S denotes the algebraic sum of all the- products corresponding

to that within the bracket. Also, if a moment be reckoned positive

wlien the particle is on one side of 0, that of a particle on the other

side of will be negative, and the difference in algebraic sign of the

moments will therefore at once be indicated by considering Mie x'a of

the particles to be positive or negative according as they lie on one or

the other side of 0.

I j
iioavy body 54. When a rig.id hody rests suspendedfrom or supported

freely, its hy a fixed point, and acted on only by its weight, the vertical

gravity is line drawn through the centre ofgravity will pass through the

above^oi^ho- point of Suspension or support ; and, conversely.
low the point
of suspen-
*'""• For the weight of the body may be supposed collected at

its centre of gravity, and there to act vertically downwards

;

and the necessary and sufficient condition of equilibrium is

that its moment about the fixed point must vanish, which

requires that its direction shall pass through this point.
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Cor. 1.—Whon the ^ontre of grovity h vertically under the

point of support or suspension, if the body bo slif^htly dis-

tutbcd from rest, tho moment of the weight will tend to bring

it back again to its original position. Tho equilibrium i^

thorcforo said to bo alable. Whon the centre of gravity is

vertically above, tho contrary takes place, and the equilibrium

is umtable.

Cor. 2.—This affords a practical method of finding the

centre of gravity of any plane area. Thus, suspending it

freely from any one point, trace on it, when at rest, tho

direction of tho vertical passing through this point : thon,

taking any other point (not in this line) for a new point of

suspension, trace also the vertical through it. The intersec-

tion of the two lines thus drawn is the cectre of the gravity

required.
'

55. When a rv/id body, having a plane base, is j)^f^<^^^ ""''y ri.u'-''

with (his in contact with a fixed horizontal plane, and is t.ii j)i.inf,

acted on mdy uj its men weight, it will stand or /nil according or fall ovU

as the vertical through its centre of gravity passes within or

without the base.

By the base is here meant the figure included by a string

stretched completely round the outside of the plane section of

the body which is in contact with the horizontal plane.

If the body fall over, it must begin to turn round some

tangent to the curve formed by this string, and the moment

of the weight, supposed collected at the centre of gravity,

must tend about this tangent in a direction from the inside

towards the outside of the area of the base, and the vertical

through the centre of gravity will pass outside the base.

A ho, when this vertical passes outside, the body must fall

over; but if this vertical pass within the base, the moment

of the weight about every tangent to the string tends in direc-

tion from the outside towards the inside, and the body cannot

fall over. ^ -
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CHAPTER V

THB MECUANICAL POWERSw

do
Mftchinet.

56. It is usual to trout of the Simph Machines^ or ^leihanU

cal Powers as thoy arc soniotiincs culled, under six classes,

namely—the Lever, the Wheel and Axle, the Pullios, the

InoliDed Plane, the Screw, and the Wedge. Of tho^c, the

Wedge will not be hero considered, as in its practical appli*

cation the investigation on the principles of the fuicgoing

chapters would be of small utility.

u

When a power P sustains on any one of these machines a

Mechanical weight TT, the latio W: Pis called the mechanical advantage

«ioflned. of the machine; and the machine is said to gain or lose ad*

vantage according as this ratio is greater or less than unity.

In the following Investigations, bodies will be supposed rigid, snr«

faces smooth, string? perfectly flexible and of insenbible size, and the

parts of the machine to be without weight, unless otherwise specified.

57. The Lever. ,,

straight
Lever.

Archimedes

A straight lever is a rod capable of turning freely in one

plane about a point in itself which is fixed. This fixed point

nn^iiXd. is called the yw/crum.

Case 1.—The weight Tf at one end of the lever supported

Pig. 1- by a weight Pat the other end. ^

B A Cthe lever; A the fulcrum.

Draw h Ac horizontal^ and therefore perpendicular to the

direction of the weights.

<s!-mim^



Thoi» by tho vniji.-ihliij* of motncntu,

or

P. Ah — W. Ar -^

r. Afj = H". A':

An AC
13ut, by Hiiiiilur triuQulos, —— =

' -^ ^ ' Ab Ac

aitd lhui'cf>)ro r. An= w. AC.

Cor. 1.—Tho prcflfluro on the fulcrum U tho weight (/'p IT)

acting vertically downwards.

Cur. 2.—Since tho relation P. AD = IF. A (J, doo.s nut

involve tho atij^lc at which tlio lover h inclined to tho horizon,

it foll(jwa that if tho lover bo at rost in any one position

(excopt a vortical one), on being turned into any other posi-

tion it will still bo at reat.

Cask II.—Tho power Pand tho weight W acting in oppo- p, ,
._,

fiito (l)ut parallel) directions, and tho weight nearer to tho

fulcrum tiiun the power.

ILsinti' the same construction and reasoning as in the former

case, wo have here also

P.AB=W.Aa

Cor. 1.—Tho pressure on tho fulcrum is hero IK — 7*

acting vertically downwards. Tho second corollary also holds.

Ca.se III.—Tho power P and tho weight IF acting in p, .,

opposite but parallel directions, and the power nearer to tho

fulcrum than the weight. As before, we have

P.AB=W.Aa

Cor. 1.—The pressure on tho fulcrum is P — IV and acts

vertically upwards. The second corollary also holds.

58. In all these cases, the toecbanical advantage ( — i is
"^^— „ .

or the ratio of the arms of the power and weight. In Case I.
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thiH ratiu tnny bu ciiliur o(|unl to, greater, or Il>m than unity;

hut in Cofio H. it in always f^rcator, and in Cmo III. \vnn:

honco, advanta^^o iw iilwnyN gained in tho looond caiio nnd lust

in tho third, but may bo either gninud or lottt in tho lirnt.

[.••v.T diij)- f*'*' If ''"' wolifht of tlin I«'Tor (w) ho tnkon Into nrconnt, It niny br

iKx.aiiciivjr. BH|,|„,,o,i collDctiMl (it tlm ci-rilro of jfrutlty (/ (which will Uu lh«

niiiMlo |)oli)t If tho loror bu uniform).

T.ct tlu) Turtlcal through (^ meet tliu liori/.ontal A ic In {/,

Tlioti, by Ihu vanlHliIng uf niomontH uhont A,

P. Ah-{-w. Ag— W.Ae^O

but by Bimllar trianglos,

AB A a AO ,,, ,
•-r-r = —.— ==s —:— I ond thcrcforo
Ab Aij Ac

P. A B + w. AG — ir. AO ~ a

or, 1\ A B \- w. AO =^ W. AC

Slmiliirly, In Cusps II. nnd III. wo should find

P.AB=:W.AC^w. AO.

Hero nlso tho leYur will balance in nil positions about the fiili-rum.

00, In tho common Bnlnnco, which consiHtsof n heavy boiun. having

scalo pans uuHpcmk'd at Its ends, nnd balancin*; about a hoii/.onlul

knifo edge, tho pans and arms of tho beams are made pcifcctly

cqnnl nnd similar on each side of tho cdjjo, but tho centre of ;;ravity

of ilio beam is nmdo to fall vertically below tho knife-ed<je when tho

beam is horizontal. Tho beam will therefore rest in a horizontal posi-

tiun only when tho pnna are 'oaded with equal weights ; and if then

disturbed from this position, the moment of its own weight brings it

back, so that the cc^uilibrium is stable.

Gl. In tho common or Roman Steelyard, a heavy beam has attached

to it a knife-cdgo which is supported as a fidcrum; a wei;;ht runs

along tho upper straight edge of tho beam on tho longer arm, and the

substance to bo weighed is attached at a fixed point to tho shorter arm

by i hook or scale-pr.n. Tho longer arm is graduated, nnd the weight

of tho substance is known from tho graduation at tho point where tho

moveable weight is, when the beam is at rest.

<'0III(III)I1

M:ilniirc,

KdIU.'III

Slnclyard.
Fig. 4.



the fulcrum.

as

In fijf' . ^ l" *'»" knlfocdjfo or fiilcnun, P tlm wolijhl moTM!»l«

•IniiK A //.- r, tli(> |Miliit vtliuiico tlio lubittatici', whono wulght U' i«

rv«|itlr«(l, U iiN|icii<|i'il.

t' A /! I)i>tni( hoHxrintnl, lot O im tlio piiliit on th« othor uliln of A
wlicro /'woiilil kcoptlio Sti'i'lyiirtl ot nmt, wln-n th« Wtl^lit U'Ih awny.

Till) moment of ilio wulght uf thu Htuulyuril about A h therefore

«qii*l to /'. A O.

Now lot thu wolght 11'!)') iittni'hml, iitnl lot .1/ ho iho plnco of P
MrhoD vquUlbrliiiii U ohtuliii'tl. Thuti, Utkitig uioniuiit* about A,

W. AC T=t P A Sf
f-
moment of weight of Stoolyard

= /'. ,1 1/-}- r. Ao

Ili-nco, ir=--'' OM,AC

And, ulnco Pand AC Mfi Invnrinblo, W U proportlonol io M :

thorcforo lg thu point from which the (^riuluiition niiirit bu nmdo.

ThuH, If /' bo at 1\ when \V U 1 lb, niul wo tftko O li^ .:= /?, Jl.^ sa

"^a ^a = •••
'

'*»''" ^''«'* ^ '" "^t ^j • ^^3 ' - ^^' ^'''' '- ^ '^' ^' - "^''

('2. Tho prcccdinj; cases of tho lover oro only special appli- "Prinrij.io

cations of tho pcnoral invcHtij^iition in Chap. III. In I'uct,

any body moveable about a fixed point and acted on by forces

in the piano of that point may bo considered ft lever, and tho

principle of § IJS is often quoted as tho principle of the lever.

C3. The Mhed and Axle.

This trachinc consists of a circular drum or wheel, which

is attached to a cylinder or axle, its centre lying in the axis

of tho cylinder and its piano being perpendicular to this axis.

The whole system runs freely on this axis, which is fixed; and

the power P acts by a string coiled round tho wheel, and sup-

ports a weight W which bangs from a string coiled round tho

axle. Tho strings being perpendicular to the axis, and also

to the radii of the wheel and axle respectively at the points

where thoy becomo uncoiled, wo have for tho condition of

equilibrium, by § 39, taking moments about the axis,

P X radius of wheel — W X radius of axlo = 0,

Wheel and
nxlu

i'ig. 5.
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Putltoi.

ti. idv, ITvnoo tho ntiu'hanical ndvnntngo ( ., I i* 'n'"^^ ^^ ^^

ratio of iho rtulii of tho wliucl iuhI iixU.

Cor.—Any niimbor of whocN ntnl axlt^N mny run on tlio

aino Axiii, uiul tho contiition uf «<(|uilihritim will hu thut tho

Muni uf thu products of each power into tho rmliuN of itft

wheel la cqunl to tlie corrcHpotuliii^ nam for tho wci^hta and

radii of tho axluR, tho powcra hoin^ nil niippoMMl to turn in

tho tam% dirootion and thu woi^htii ull in tho oppoaito.

C4. ThtPuWrn.

A ptili)' is n whocl runninj^ frcoly on an axiw, which, pn««

^in^; through ita centre, in flxod in a blt)ck by which thu pully

.8 auMpcndud and to which n weight mny bo nttnched. Tho

circunifercnco of tho pully in grooved to admit of a Mtring

passing over or under it. Tho pully i.s miid t') bo fued or

tnoveahle according as itH block ia ao.

Single fixed PuUy.

Lot /*, Q bo iho ft rcoa, applied nt the cndn of tho string

passing over tho pully. Tho whole Hystem being stnooth, tho

ten.sion of tho atring ia tho aamo throughout (§ lU), and,

thcrtforo,

No mechanical advantage is g.'iincd or lost.

C5. Single moveable pully supported Itj a stritifj passin(/

under it, the free portions of the strinj being parallel, and a

wci'jht attached to the block.

Let J* be the force applied to the string on one side of tho

pully; then, tho whole system being smooth, tho tension of

the string is the same throughout, and P is therefore also tho

force applied to tho string on tho other side. There are then

two parullel forces, each equal to P, supporting a weight W
which acts vertically. Hence the strings must be vertical, and
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Ilvro iho mochani'^nl n(lvaninp;o U 2.

Cnr. I. If nn« «ncl of thn atrlni; hfl iittiich«d to • fliA^t |>olnt, th«

Mmo rvault I111I1I4 Kooii, fur tlit< tttnnlon tniiat !*« th« iiariio throiiu^hoQt.

Cur. 1. If tlio wi'l^lit w of titit piilly, lni'lti<llrii( lltu \>lul, li.* takim

luto account, It may ba luppuacd Mttachau to Uio block, and wu h«To

IK -fn -I 9 A

CO. Firtt ijf»ttm of pulliet,

A nuitibor of puliion aro nttnchod to tho iiAmo block, which

pupporta a weight, ami tho aatno Htriiig paa^cN round all tho

pulliea.

Tho portiona of tho Mtririj^H botweon tho pullics aro Huppoaod

to bo pnriiliul, and will thoruforo aNo bo vortical as in § OS-

Lot /'bi! tho forco applied to tho atrinj;; /*will then bo tho

tcnHiou thr()Uf,:huut, and tho weight W is aupportod by na

many purfillol forces, each e(|ual to /*, nn thero aro pnriillul

portions of tho string at tho lower block; and tho number of

thcNU pitrtiona is OTidently double tho number uf pullics at

this block. Ilonce, if n bo the number of movcublo pullic.>«,

W=2nP;
and tho mcchaniciil advantage is 2 n.

Cor. If the weight of all the pnlliua within tho lower block bo w,

tiiu wcigltt of the block Also being iucludud, we may luppotio this

wcijjht ulUchtid tu thu blurk, and

ir 4- !• = 2 n /».

07. Second tyntem of pulliet.

Each pully hongs by a separate string, tho last pully sup

porting tho weight; tho frco portions of all tho strings are

parallel, and thorcforo vertical.

Let yli, ^j, vlj,... bo tho pullies, n being tho number of

them ; W, tho weight supported at tho last ono; /*, tho power

applied at tho first string. Number tho strings 1, 2, 3,...

according to tho pully under which each passes. The tension

of each separate string is tho same throughout.

flr»tiy»lo;u

BprouJ <yi-

Fit;. 9.
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The tension of (1) is P; tho weifijht supported at A^ is

double tho tension of (1), and therefore »> 2 P, and this is

the tension of (2^.

The weight supported at A.^ is double the tension of (2) and

therefore = 2 (2 P) = 2' P, and this is the tension of (3).

The weif!;ht supported at A3 is double thfr tension of (3),

and therefore = 2 (2^^ P) = 2^ P, and this is the tension of

Proceeding in this way, we como at last to the weight sup-

ported at An == 2" P, and this is ihe attached weight, ftence,

Tr=2"P,

and the mechanical advantage is 2".

Cor. 1. The mechanical advantage is cioublod by every additional

pully.

Piillioa sup- Cor. 2. The weight of the pullies may be readily taken into account

by observing that, from the preceding, the force required to support a

W
weight W on n moveable pullies is —-.o •'2"
Let Wj, Wj, Wg, ... be the weights of th" several pullies, blocks in-

cluded. Each of these weights may be supposed a weight attached

to its block, and supported on the system of pullie» above ii

w
The power required to support w on one moveable pully is -J.

w
w on> two "
2

w on three "•

3

to on n
n

pullies is —f.

Also iron n

2

w

a
2

w
n

w
" •

n

ill
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And tho wliolo power roqn'ircd will be the sum of tlioso ; therefore,

w W-
9

P-= J + -^ +... + -+ -.or
2 2 2 2

IF
/ ,«-l 71-2 \

Tilt' WL'if^lit of tho pullied therefore lessens tho advantage of the

rnnchiiie.

Cor. If tho weight of each puUy bo tho same (w), then

G8. Third system ofpullies.

Each pully hangs by a separate string which is attached to

a bar or block carrying the weight, and the free portions of

all the strings are parallel, and therefore vertical.

Third sy.s-

teiii,

Fig. 9.

This is the second system turned upside down, the weight becomiiiw

a fixture, and tlio beam to which the strings are attached becoming a
moveable bar carrying a woiglit, and the mechanical advantage njight

be inferred from the preceding. The pressure supported by the beam
in the second system is the sum of the tensions of the strings, that is,

P+ 2 P + 22 P 4- ... to 71 terms, == (2» — 1) P, and this becomes
the weight IF in tho third system. Therefore,

Tr=(2''— 1)P

The last puUy (J„), however, becomes fixed, so that the number of

moveable pullies is only {n — 1). Making n the number of moveable

pullies we have

lF=(2»+»— 1)P.

The following is an independent investigation for this case.

Let ^1, ^2» ^3) ••• ^nt he the pullies, n being their num-
ber exclusive of the last one A, which is fixed, and n -\- 1

the number of strinjis.
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^1, 7>a, B3, ... Bn +1, tho points at which the respective

strinj^s are attached to tho strai}j;ht bar which carries the

wcijzht W. Number the strings 1, 2, 3, ... accordinj; to the

pully over which each passes.

The tenison of each separate string is the same throughout.

The weight supported is tho sum of tiie pressures of tho

strings at i/j, B.^, By ...

The tension of (1) is P, and this is tho pressure at B^.

The weight supported at yI,^ is double the tension of (1)

and = 2 P, and this is therefore the tension of (2) and tho

pressure at i)^

The weight supported at ^3 is double the tension of (2)

and = 2 (2 P) = 2^^ P; and this is therefore the tension of

(3) and the pressure at By

Proceeding in tliis way wc obtain the tension of the (?i +l)th

string and pressure at B^^i = 2"^ P.

Taldng the sura of all these pressures,

pr=P+2P+2^P+ + 2T
=(^r + ^-l-)P, '

and the mechanical advantaere is
2'*"^^— 1.

P lilies Slip- Cor. The weights of the pullies may be taken into account by
P .e( K'a\y.

Q^^ggj-ving that each maybe considered as a power ' jting by means of

the string from which it hangs, and supporting a weight on the sys-

tem of moveable pullies above it.

Let u' , w , w , ... w , be the weights of the pullies, blocks included.12 3 n

The weight supported by w on (m—1) moveable pullies is (2 — 1) w .

>i-l
" (2 —\)w .

-Also

w on (n—2)
2

M on
n

P on n

" (2— l)w
n'

" (2 — IJP.
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Tlio whole weight ]V (including tlint of tho bar) is the sum of theeo

;

therefore,

Tlio woij;ht of tho pullics therefore incrcdsea tho fiilvftntage of tlio

nincliine.

Cor. 1. If tho weight of oftch pully bo tho same (w), then,

ir= P (2" + ^— 1) -i- w (2'* 4-
2**~ ^ + ... + 2 — «)

= 7^(2" + 1_ 1) + „, (2" + ^ _ 2 -n).

If we put i' = 0, we have

whicli is the weiglit that would bo supported by tho puUies alone.

Cor. 2. The point of tho bar to which the weight should be attached

in order tiiat tlio bar may bo horizontal will be tho centre of pdrallcl

forces for tho tensions of the strings and the weight of tho bar. If wo

neglect tho weight of tlie puUies ond the bar, this point will remain

the same in a system, whatever bo the power; if, however, tho weight

of bar and pulliea be considered, it will be different for different

powers.

69. Taking the same number n of moveable pr.i.Ic? in each sys- systems

tern, the respective mechanical advantages are 2n, 2", 2' — 1,
'^'^"'i''^'"

and these numbers are in ascending order of magnitude.

Hence the mechanical advantage of the third system is greater

than that of the second, and of the second than of the first

when there is more ihan one puUj.

70. Tho following combination of puUies may bo noticed. Spanisii

It is called the Spanish Bartun. Fig. lu!

The tension of the string to whicli F is attached is the s.'vme

throughout and = P. That of the '. ther string is also the

same throughout and = 22. Therefore IF == 4 P.

If we take the weights of the pullies A, B into account, we

have W-\- B=^ P-^ A.
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Fi«. 11.

71. Tho, Inclined Plane.

This is a plane fixed at a certain angle (called its huiiiuttion')

to tiio horizon, and on it a heavy particle is supported by a

force applied and the reaction of the plane. Since the piano

is smooth, its reaction is exerted in a normal direction ; also

the weij^ht of the particle acts vertically : therefore if a verti-

cal plane be drawn through the particle and the normal to tho

inclined plane, since the plane thus drawn contains the direc-

tions of those two forces acting on the particle, tho third force

or Power must also act in this plane.

Let tl figure represent this plane ; AB, the section of the

inclined ine; yl C, horizontal.

The angle BAC\s the inclination, a (suppose).

Let /*, the power, act at an angle to AB, and let

li be the reaction of the plane exerted perpendicularly to

AB.

W the weight of the particle acting vertically downwards.

The particle is then kept at rest by the three forces P, R, W.

Taking the resolved parts of these along AB, that of P is

P cos ^; of i? is 0; of W^is TF cos (90°—a) = W sin a.

Hence by the " vanishing of the Resultant," ,.•

PcoaO — W sin a=0,

which gives the mechanical advantage ( — | = (-;— ).° ViV Kama/

Cor. 1. For a given inclination, the mechanical advantage

is greatest when cos is greatest; that is, when = 0, and

the force acts parallel to the plane.

For a force acting at a given angle to planes of different

inclinations, the mechanical advantage increases as tho incli-

nation diminishes. ' ''
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Coa 2. Resolving the forces horizontally we have

P cos («>-[-«) — /? sin a = 0.

Also resolving them perpendicularly to the direction of /*,

IV cos {0 -f-
a) — R cos ^ = 0,

These two equations give li in terms o^ P or TF.

Or these relations might at once have been asserted fVoiu

the " triangle of forces" (§ 29) : for this gives

P _ W li

sin a cos a cos (<y -j- ")

Although these results have been obtained only for a particlo, they

are true for a body of finite size supported on the plane by a power
whose direction passes through its centre of gravity.

72. In the case where the power is acting parallel to the rower a -t

piano, as where it is exerted by a string, parallel to the plane, tu*i>lane."'

passing over a pully and supporting a weight P hanging freely,

we have from the above by putting ^ = 0, or at once by
^''^^"""'

resolving the forces along AB, observing that i-^is the tension

of the string,

P— Trsina=0

W 1
and the mechanical advantage — = , and is the

P sin a

cosecant of the inclination.

If BC (vertical) be called the height of the plane, AB its

length : then, since sin a = , we have
AB

AB

or
P
W

height

length



Screw.

Fii!. M.

Fig. 13.

Again, resolving furccs perpendicularly to the plane, we have

2i — W 008 a —

or JR = Trcos a
AJJ

and J?

W
base

length

Hence the power, weight and prcs.suro on the plane are

proportional to the height, length and base of the piano.

Cor. This latter result is at once seen from the " triangle

of forces;" for, drawing C'A'^ perpendicular to AB, the sides

of the triangle BCJV, taken in order, are parallel to the direc-

tions of the forces, and therefore represent them ia magnitude;

and the triangle ABO ia similar to BOX,

73. The Screw.

The Screw is a circular cylinder, on the surface of which

runs a protuberant spiral thread, whose inclination to the axis

of the cylinder is everywhere the same. This thread works

freely in a fixed block, wherein has been cut a corresponding

groove. The power is applied perpendicularly to a rigid arm

which passes perpendicularly through the axis of the cylinder

and is rigidly attached to it, and the weight is supported on

the cylinder (whose axis is here supposed to be vertical), and

may be supposed to act in the direction of this axis.

74. The complement of the invariable inclination of the

thread to the axis, or (the axis being vertical) the inclination

to the horizontal line which touches the cylinder at the point,

is called the pitch of the screw. If a right angled triangle

BAC be drawn, having the base AG equal to the circumfer-

ence of the cylinder, and the angle BA G equal to the pitch of

the screw (a), and this triangle be wrapped smoothly on the

cylinder, its hypothenuse will mark on the cylinder the course

of the thread, and by superposing similar triangles the whole

^-T"""^fl^^WWBp*
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course uf tlio thread may bo continued. liU is thou tlio

dlitaiico bctwoou two coiitiL'Uou.s thnads, and wo havo

tan BA C = -
BC

or tan a=

AC
dLtiincu between two conti^^uons threads

oircuuit'urence of o^liudur

75. The Screw ia kept at rest by the weij^ht ( W) which ijj,. i

j

acts vertically, by the power i-* which nets horizoi' !y, and

by the reactions of the groove on the thread at tlie various

points in contact.

Since the thread is smooth, the reaction at each point of it

is normal to the thread ; and the anj^le between the directions

of this normal and tlie axis, being the same as that between

the thread and the horizontal tangent which are respectively

p>erpendicular to them, is a, tho^'iVc/t.

If then we resolve this reaction at any point, R (suppose) pjg. i,-,

into two forces ; one, vertical, and the other, horizontal and

touching the cylinder, the former will be R cos «, and the

latter R sin a.

All these vertical portions being parallel, will form a single

vertical resultant whose magnitude is cos a 2' (7t*), and this

must counterbalance the weight W^ since all the other forces

are horizontal.

Hence cos a 2' {R) = W. (1)

Again the horizontal portions of the 7i's tend to turn the

cylinder about its axis, and since each acts in a horizontal

direction touching the cylinder, the radius of the cylinder is

itself the perpendicular distance between the asis and the

direction in each case. Hence the moment of one of these

(i2 sin a) is

i? sin a X radius of cylinder,
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Qud tlio 8UIU of tliciu nil 18

Bin a X rmlius of cyli.idcr X - (^)»

and thi.s must bo C(|ual luid opposito to tho moDiutit of tho

power, namely, /* X urin of l\

Ilonoc sin a X radius of cylinder i' (^R) z=r P y^ vrm of P.

Dividing tlio siile.s of this ccjuality by those of tho C(juality (1)

8in a

008 a

r r !• J ^* X «»'"1 of P
X radius of cylinder= —

W
g]p Q disttnoo botwooD threads

llencc, since = tan a = ;;

—

—

7~ ;r.,
—

c^** " circumference or cylMider

1-^1.^, 1 ,,, radius ... P X arm of i*
dist.het. threads X(

,
of cylinder)= —

circuin. W

but
radius 1

circum. 2s

and 2rr X fi^m of Pis tho circumference of the circle which

the end of i^'s arm would describo, and may be briefly called

the circumforeneo of /*; hence

P distance between contiguous threads

W circumference of tho power

Mcjh. adv. and this ratio inverted is the mechanical advantage.

Cor. 1. The mechanical advantage is increased by dimin-

ishing the distance between the threads or increasing the arm

of the power.

Cou. 2. If the cylinder be heavy, its A^eight must be inoludcd in

W. Instead of supporting a weight, th j screw may bo producing a

pressure at its lower end, and in tliis case the pressure produced will

bo increased by the woiglit of tho screw. It may also be producing

a pressure at its upper end, and theu the pressare produced must be

diminished by this weight.

Xf''^llgia^l.mrm>«ttmlt)l$0>llmmf^-»-<
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Sonn'ilmcn tlio hcppw Im flxod ntul tho block nioToablo, nn In thf pmo
of A common fiM^; or thu (^ruoTo may bo cut In liio ecruw ItHi-lf, itnd

thu thrcaii project in tho block.

To nil IhoHO casc'B tho |>rncf'(lin{; inTCBtljjiitJon Appliofi.

70. The Wrdije. Th. WcIk.-.

Tliis is n solid, whose bouiitlinj^ purfaccs arc two iritrrMrcrtiiif^

pliincH. Most outtinjr iristruuietits conio under this clii^s. It

is u.^ed ij;encriiily to separate tho parts of bodies, either hy

hliiws or ft inoviti}; pressure, and in this mode of use its invos-

titration beh)nf;s to Dynamics. When used to keep open a

rift in a body, it ucts generally by means of friction, and not

by a weij»lit applied to it; it is thcireforo useless to proceed

with its examination on tl , principles employed hitherto.

VIRTUAL VELOCITIES.

77. If a machine at rest under a power Pand a weight irvirtimi

be put in motion, so however that its geometrical relafion.s arc
^'' "*'***•

unaltered, the space described by tho point of application o**

tho power, estimated always in the direction of the Pov^er, is

called the virtual velocity of tho power : and similarly fo'' the

weiuht.

Tho principle of virtual velocities asserts that the product „ • , ^

of P by P's virtual velocity is equal to that of W by IK's

virtual velocity.

78. This principle is only a special application of a far more

general one, which it Is not heu Becessarj to exaniine. We
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•li.tll thoruforo only oxt!ibIi><h tho pritu'ifile, nn ub >vo nttitoJ, in

n I'l'W of llio iiioro hiiMpIo Qixnan, by pr.tviii^ thut it Io.kIh to tbo

rvhttioiiM of (M|uilibrium nirondy iDurid.

Tbu ^noiiictrical rclatiunN in n macbiiio boiii}^ xiioh ilint tho

lipneoi (lu!4cribo(l in difTrrcnt ilinplnrcMnontH nro iilwayM propur-

tiotiul, it wi" bo only ncccssjiry to prove tho priiu-iplo lor ii

pMiticulur di.spiuceniont, und wo mny Huloot thin um convenient-

7U. T/it! »tr tiijht lever under wiit/hia at it» ends.

Tjct tho lover liAC bo horizontnl, und diaplaco it round A
into thu pohition //,.'! 6\ tho diroctions of 7^ und \V niooling

JIAC in I, c. Then /),A is I*'a virtual vehvitt/, und C'lC

is irs.

Tho prlMciplo then ns.sorts thut

n,A
but by similar triii»)j^los,

nj»

CjA

li nico P. Ali = W\ A(\ the condiiion found in § 57.

80. Wiirrl aud AAc.

8ii|'po.se the nmchins to make one coiupletc turn ; then, tho

jspneo descended by F is the circumfercnco of tlio wheel; and

by ir, that of the axle. The principle then asserts that

P X ciroumfereuco of wheel = IF* X circuiufereuco of

ttxie,

and the circunifercnces are as the r;.ilii : therefore,

P X radius of wheel = W X radius of axle,

the eondiliou fouud in § G3.

81. Pxdlit's.

In tho single fixed pully, the principle is obviously true.

siiiirK'imiiy. In the single movoal)le pully (6g. G), let the pully be raised

through one inch, thou W is raised through one inch, and
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ono iuuli of cnch portion uf tlio ntrin;; irt oct fruo ; iherofurtfi

/'Moendu tUruugb two inuhuit, auU tho prinuiplo luiitirtit that

i» X 2 - ir X 1

which ii tho condition in § G5.

R'J. In tho fifHt »y«tcm of pullicn, lot tho lower hhick bo Kir»tHyNf.i,

ruiHod ono inoh : then Win rained ono inch, nnd ono inch of ("ikt-

7

each portion of tho string at tho blocic i.s Mut free ; therefore,

on tho whole, 2n inchon aro Bct froo, and tiiin i.s the hpuco

through which J* dcflcondfl.

Tho principle then asserts that

tho condition found in § GO.

Hi'cntiil

157.
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Oo the wbulo, r " l-l-2-f2M-2*+...+2", or 2-*'-l.

A 11*1 tho prinuiplu an^crtN that

i»x (2-+'— i)=»rx I

tho oonditioii fuuud in § 08.

fi5. Tn tho inclinotJ piano, tho power aotlnp; purnllcl to tho

piano, (fig. 12), lot H^ bu nt tho bottom of tho plnno niid bo

drawn up to tho top. Thon W'n vorticnl diMplncomcnt h tho

height o( tho piano, and /"h doHcont i« its length. Tho prio*

ciplti ODHortii that

P X length = TF X height,

tho ooudition found in § 72.

80. In the Bcrow, lot ono ooinplcto turn bo luado. Then

the di.stanoo moved through by the end of P'h arm, cti-

matod always in tho direction of /* is tho circumfcronco

of i'; ond tho apaco doHconded by Win tho diatanco bctwocn

two threads. Tho prinoiplo thon assorts that

P X circumforcnco of P = IF X distanco botwcoa two

threads, tho condition found in § 75.

87. Assuming tho truth of this principle of virtual vrlu'

Cities, it may bo conveniently employed to lind the mechanical

advantage in many machines—as examples, let us take liober-

vol's Balance, The Differential Axle, and Ilunter'a Screio,

88. In RohervaVs Balance tho sides of a parallelogram are

connected by free joints with each ot' -r and with a vertical

axis passing through tho middle points of opposite sides ; so

that the figure is symmetrical about this axis, and tho other

opposite sides are always vertical. Tho weights P, W are car-

ried by arms fixed perpendicularly to these latter sides, whioh

arms are therefore always horizontal. If tho machine, when

at rest, be displaced, one of the weights ascends as much as

the other descends, and they are therefore equal.
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Thin roiult U indopendont (if tho particular polntii of tho

oriiiN frDiii which tho vr«M^hti4 tlcpoml, and in thia IIom tho oon-

voiiiuDoo uf tho iimchino an n Hulance.

nade. Thon

's arm, cti-

lotwcori two

HI). Iti tho Difftrrntltd Axle (tlj?. 18), two axloii of dilToront rn(T.f»ut..»

nixiiN run fixod tou'cthor on thu Runio uxin, and tho woi^ht ia
*''"'

Hiip|)<»rtcd on tho«o by n pnlly, whono Btrin;^ i« coilod round *''* '"

thoHO uxhit ill opponito diroctiona. If P bo ruiavd by a com*

pliito turn of tho ninchiiio, IK duNcondrt through a Mpiico i'(|uiil

to half tho r|(itintity of atrin;; Mot frvo from the azlca; that in,

throned) half tho diflforonoo ot tho circutiirorotiouN of tho axica;

iind, the oiruuiuferenooH buing an tho riulii, wo havo

P X rudiuH of wheul =3 \V. \ (difToronoo of radii of axica).

In tho oon)riion whoci nnd oxio, tho powor ond whocl boin;»

givon, tho moohrinicitl ndv:intu^o is incronHcd by diiniriiMhin^

tho rndiiiH of tho axlo, but this diuiitiutioii in practically limited

by ru^ard to tho Htron;: ii of tho axlo. In tho abovo mrichino,

tho mechanical ndvantn;^o mn^ bo inoroa«cd indefinitely, by

mnkinj; tho axles more nearly of equal «i/.o, without too much

weukonin^ them.

If tho Mxles wcro Abnoluloly ociuiil, tho moclinnical adTiititn^o wcild

bo ititinlto, uikI it U obvioiirt thai uiiy woljjht would bo liuru supportuil

without II powiT nt all.

90. In FIuntrr'H Srrew (fii,'. 19), tho weight is supported niint.r'H

on a nmallor screw, which run.s in a couipaniun in tho interior
**"''"**'•

of a larger screw, tho latter passing? through a fixed block u!id ^''^ *''

being acted on by a power as usual.

When tho power makes a complete revolution, nu-J ruincs

tho largo screw through tho di.stanco between its threads, tho

smaller screw at the samo time descends in tho large 0110

through tho distance between its own threads, and tL j weight

thoroforo on tho whole rises through tho difTerencc between

tho *' distances of tho threads " in tho two screws. Hence,

i* X circumference of P =:^ IF X difference between di.s-

tances of contiguous threads in the two screws.
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Ill (weiyma-
iliiue,

whrxt is

j;nincil in

is lost in

liiiif.

The incchmical advantnge can thcrcforo bo indefinitely

increased by making the distance between the threads more

nearly the same in each screw. In the common screw, the

advantage is increased by diminishing the distance between

the threads, but the diminution is practically limited by regard

to the strength of the thread.

If onch screw bad tho same distance of throacis, tho advantage

would bo infinite, and it ia obvious that any weight would bo sup-

ported without a power at all, the outer screw rising just as much aa

tiio inner screw descends within it, so that the weight would bo sta-

tionary.

91. When a power P is supporting a weight W on any

machine, if the machine be set in motion, it will continue to

move uniformly so long as its geometrical relations with the

power and weight are unaltered; and if s, S be i. e spaces

j,'one through by the power and weight in any time (that is,

ihcir virtual velocities) we have i* X *= ^^X *^- Hence a

given force acting through a given space for any time will lift

the same weight only through a given space, whatever be the

machine through which it acts ; and if the weight lifted be

increased, in the same proportion will the space through which

it is lifted be diminished. Also when a given power lifts a

weight through a given space, the greater the weight, tho

greater in the same proportion is the space through which tho

power must act, and (the motion being uniform) the longer is

the time employed. Hence the principle of virtual velocities

is sometimes stated in the form, that *' in every machine what

is gained in power is lost in time." ,

v.'oikdono 0^- Hence also this product F X ^ or W X S may be

i'itLy!' considered the work clone by the machine, and is sometimes

termed its dutj/ ; while with reference to the power, the names

of mechanical efficiency and laboring force have been given.

In this sense, although advantage may be gained by a

machine, no efficiency is gained or {theoretically) lost, but it

remains the same as if the power were applied directly without

the intervention of the machine. ...
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rractlcttHy, efficiency is always lost, owing to tho various resiatancea

due to the parts of the raacliine.

93. Among ongineors the standard of effictenci/ in tho com- norse

parison of machines has usually been taken to be a horse power, i'"**""*

which is represented by 33000, a lb. and foot being the units

employed, and the power being exerted for one minute of

time. Thus a horse in one minute is supposed to lift 33000

lbs. through 1 foot, or 3300 lbs. through 10 feet, or 330 lbs.

through 100 feet, and so on. A machine is then said to be

of so many horse-powers, whence the work done by it in any

time can be ' julated.

FRICTION.

^. Hitherto the surfaces of bodies in contact have been

considered nmooth, and exerting on each other no pressure

except in a normal direction. In nature, however, all surfaces

are more or less rough, and when one surface is pressing or

moving upon another a force is called into play which acts in

a diroction contrary to that of the motion, or to that in which

motion would occur if the surfaces were smooth. This force

is called Friction.

Friction.

In machines, when a power is supporting a given weight, the mag- p«- * <•

nitude of the power, determined on the supposition of the smoothness macliines.

of the machine, may be increased beyond this value without disturbing

the equilibrium, until it is great enough to overcome the friction

together with the weight; and on the other hand, may be diminished

till it is so small as with the aid of friction just to prevent the weight

overcoming it. So also, with a given power, the weight may be

increased or diminished within certain limits without disturbing the

equilibrium. Generally, when the power is on the point of raising

the weight, friction acts to the disadvantage of the power ; but,

when the power is just preventing the weight from descending, fric.

tion acts advantageously. When the equilibrium of a system depends

on position, this position may with the aid of friction be varied within

certain limits of the position determined on the supposition of smooth-

ness, and the equilibrium be still maintained.



95. Tho motioD of one surface upon another may be of the

nature of sliding or roHivg, or both these. The former will

HiidingFiic- ho tho caso when two plane surfaces are in contact, and the

laws of the friction in this case (denominated sliding friction)

have been determined by experiment, the two surfaces, how*

over, only tending to slide and not in actual motion. They

Hot

are,

1^,1W8 of.

I. Between plane surfaces of given substances, the amount

of friction is independent of the extent of area in contact,

and depends only on the mutual pressure between them.

II. The amount of friction is, for the same two substances,

proportional to this normal pressure.

Hence, by the second of these laws, if F be the friction,

—
:
-*

F .

and E the normal pressure, — is a constant quantity for two
Ji

cneffloient given substanccs. It is called the coeficient of friction for

these substances, and may be determined experimentally as

follows :

—

Found by
I xperimeut.

Fig. 20.

96. Let one of the substances form an inclined plane (fig.20)

and a block of the other, of known weight W, and having a

plane base, be placed upon it ; and, by varying the inclina-

tion of the plane, let that inclination (^a) be found at which

TTis just on the point of sliding down the plane.

Then F acts upwards along the plane, and we have (§ 72.)

M = IF cos a.

(j<'\ Bin a _
I = tan a

' cos a

The values of this coefficient for various substances have

been found by experiment.

^.''SSBB«>^,..^
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PREFACE TO FIRST EDITION.

The arrangement of this elementary work differs from that

of most of the recent English writers on the subject, und is

in the main the same as that employed by Professor Sandeman

in his *' Treatise on the motion of a Particle." Adopting in

full the principles and method of that admirable treatise, I

have attempted little more than to translate out of the

language of the Calculus into ordinary algebra the investiga-

tions there given of the simpler cases of particle-motion.

For the reason stated in Part I., I have not added any

examples^ and have endeavored to be as concise as possible in

any explanations jr illustrations that have appeared necessary.

University College,

Toronto,

April I, 1858.



i



CHAPTER I.

TUB MOTION OF &. PARTIOLK OEOMKTUICALLY C0N8IDERKD.

1. When the distance between two particles changes con- Motion of n

tinuously during an interval of time, they are relatively jn

motion.

The position, and consequently the motion, of one particle

can only be conceived in relation to other particles, but it is

convenient to speak of a particle ahsolutely as being at rest or

in motion, reference being made to ourselves or to some points

in known relation to ourselves, considering these as Jixed^

and referring all motion and change of motion to the particle

itself.

By a particle is here to be understood only a geometrical point.

Uniform motion.

2. When a particle is moving in a fixed straight line, its in a straight

motion is measured by the change of its distance from a fixed

point in this line, and the rate of this change of distance at

any instant of time is called the velocity of the particle at that velocity.

instant. «

The change of distance in any time is here the linear space

described by the particle in that time. If equal spaces are

described in equal times, the change of distance in any given Uniform,

time is always the same, and the rate of this change, or the mcusurcd.

velocity, is said to be uniform^ and is measured by the space

described in a given time.

Taking a foot and a second as the units of linear space and

time, the velocity t> of a particle moving uniformly will be

measured by the number of feet described in one second.
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ili'Hcrlbod in

uuy timu.

Velocity,

+ and —

Dlstttii'-o of
a iiioviii);

]>i>int from ii

llxt'd point
ill itH lint! of
motion after

any timo.

Tho space doscribod in 1 sooond boing v, that in 2 socotids

will bo '2v; in 'i seconda, '.in', and, Ronorally, in t Hcconds lu :

henoo, if k bo tho Hpuco doaoribod in tiiuo t, with a uiiit'urm

velocity v,

a = vt.

Apimrontly this formula is proToil only for tho caso wliere t \h n

whole number of 8ocom]« ; but, If t bo fractional, wo can alwayw as-

Bumo a unit of timo such that tho interval of tinif oxproHHOil by I nIuiII

contain a wholu numbor of thoHo unita, and tho formula can thou bo

shown to apply. ThuH lot n bo a wholo numbor Huch that nt in uUu a

wholo numbor T; and let -tb of a socoud b«. > tkon as tho unit, and V
n

be tho velocity roforrod to this unit. Then tho timo t being oxpro88ed

in this unit by a wholo number T, wo have a — T. V= nl r-= vl;

for V being tho Hpace in one aoconrl or n units, is n times the space la

one unit, that is, = n V. Uonc^ the formula is general.

3. Assuming some fixed point in tho line of motion, if a bo

the distance of the particle from it at one instant, and s be the

distance, estimated in the same direction, after the time t

during which the particle has been moving uniformly with

the velocity v, we shall have s z= a -\- vt, or 8 = a — vt,

according as the particle has been moving in the direction

towards which s has been estimated positivcli/, or in the oppo-

site direction. Both these cases can be included in one formula

by indicating oppositoncss of direction of velocity by the ai^^e-

braic signs -\- and — . Thus, fixing on one direction from

the fixed point towards which when measured tho distances

are to be considered positive, a velocity in this direction will

be positive, and in the opposite direction, negative.

Hence, if a particle move during successive intervals of time

with dififerent uniform velocities, and a be the distance from

the fixed point at the beginning of the time, x its distance at

the end, thea

8 = a -{- S (yi) . < •

where S denotes the algebraic sum of all the products cor-

responding to that within the brackets ; and the particle will

be on one or the other side of the fixed point at the end of the

time according as 8 comes out from this expression positive or

vegative.
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Tlio wliolo .npitre tfesrri/ieil will, however, ho the nunioriciil

Huui ut' thuHu pruduulfl, UUrogardiiig ul^tbruic HigiiH.

4. Wlit'ii ft piirliolo niovcH from a fixc'd point in a Htrnight '.<'t>itnii,

lino with difTcront vcU)citio.s 'luriiif^ succcBsivo equal interviils of imm'HUrt-

time, oacli velocity continuing uniform throu^'hout its interval,
!,'n,.r','i?.*n.

the distunco of the particle from the point nt the end of the lI.','II,'H!!fu„|,

tinje is the product of the time by the arithmetic mean of ull
[il'i'iVi'tiUM.

the velocities. "'»»"' "«"•

By tho arithuutie mean of n nutiibcr of quiintltlos Is monnt tlit-ir

nl^'obrnii! huiii lUvidud by tho niiiiibur of tbuiii.

/

For let t be the whole time : the duration of each interval

;

*'ii *'.') ^'3> ••• t^o succesMvo velocitioa during tho first, second,

third ... intervals. Then tho required di.stunco will be the

alf^ebraic sum of tho f^paces described with these velocities

;

l.iUt irt, by § 2

;

; or,

I'l 'f- ^2 + '3 +
n

'-.t Q. E. D.

\fK the i)ro-

"liict (if till-

llll'llll Vtilo-

fity and the
time*.

The Ci\3o of iiiiy of flio velocities bein;^ in tiio opposite tlirocti'iu

(and tlicreforo ftfcountocl iie<j;ativo) is Iiero included ; the rcsultiii;;

slynof the algcbri'lc sum delermliiing on wlilch side of the tixed point

the particle is at tiie ond of the time.

Accelerated motion.

5. When the velocity is not uniform, but changes durinjj; vinyinj?

the motion, the velocity of tho particie at any instant is mca- ^'^'"'''^y>

sured by tho space which it would describe in a unit of time,
]|[|^^^„rc(i

if it wore to move uniformly during that unit with this velocity.

The rate of change of velocity at any instant (provided it Acceleration

be continuous) is called the acceleration.

If the change of velocity in a given time be always tho same uniform,

throughout the moticn, the acceleration is said to bo uniform^ Illeasurcd.

and it i.s measured by this change of velocity in a given time.

(



Thtf olian/o of Ti>li)city may ho •lltivr an InorpAHo or docroaiio, nml

In tho latter "Auo the atictUratinn Ifl In vfToot • rc/arr/'ifjon. Tin* imo

of both tt'rniB In, however, rcndcri'd unneccasary by introducing' ilio

iil(;obraio iiiifiih -f- and — ; for n ducruait') in al^obrAli^nlly n niytUn>«

innrAAAo, und tituf a retardation in a npi^ativo acculoratlon ; and \\\wn

wo Rpoak of ^oli)city bclnjf incrtsiiMed, odd'd, or i;i'nornl«!<), Wf uUo

Inc'udo tho caao of Tuloolty hcln{j dlnilninitod, Hubtrnctcd, or doa*

troy»d.

Tlie vi'lmity Tukirij; a Bccotid ns tho ui it of tliuc, th ) n'rchration /, whon

iorNfof tho motion is nnljormli/ nccdurntod, Ih tho chim^o of volHi'ity

amkruiion •" ono Bccjotid. Then 2/' is tho chnn^'o in 2 seconds, 8/ in 3;

and j^(!fiunilly tf in t Becoiids.

Hotjoc), if u ho tho veh)citv ufc tho hi;;:ifiiiir)}^ of tlui timo ^,

and V bu tho velocity at tho cud of this tiuic, wo havu

V — u -r=.fi^ or

</=:«-{- ft.

A Frumrrat. 6- If tbo pjirticlo startL'd from rest at tho 'uCginniti^ of the

time, that Is, if m =r: thon wc have

Retardation 7. If tho motion bo Uniformly retarded, / is to be ttil^cn

negatively, and wo havo

v=zu~ft. •

The particle will bo reduced to rest when u — // = 0, or

in a time -; and after ihis^ tho volocity will be accelerated iu

tho opposite direction and by the s.inio stops in a reverse oiJer j

2»
till after a time --, its value will bo the same as at starting.

AcMerntion 8. When (i parficle moves with a nnifonnly accclcroU'd
uniforni :

. . . .-• • t i- /.J77.
toiiiuithu motion Jrom a Jixea pnnt in a strmc/ht line, to jind the dts-

Boriiicd jiriii tuncc from the point ajter avy interval of time.
tho i)lii('t' of

the jiiirt iolc '

time
""^ Let / be the uniform acceleration of the particle's motion'

7i*bc its velucity when at tho fixed point; s tho required dis-

tance from thi: point after a time t.
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Lot t bo (lividmi into n cqunl intcrvalrt. Then, by § 5, tho

Tclocitii!ri at tho bcgi^^in^M of t'uuno intorvalii aru,

''iM-f-/-. M-f 2/-, , M -I- n — 1 /-

;

fi n fi

and the moon of thoHu* in u -f- tLZli, /-.
a "

Ilonoo, by § 4, if tho partiolo moved uniformly during caoh

intorviil with the velocity at tho beginning thoroof, tl*o dii-

tance required would be

1// + — /-, or

'"+X'-i)-
Siiniliirly, if tho particle moved uniformly during each

interval with tho velocity at tho end thereof, tho distance

ro(iuirod would bo

Between these two values tho actual distance a always lies

;

but if wo increase indeGnitcly tho number of tho asHumed

intervals, and diminish tho duration of each, - becomes in-

definitely small, and each of tho above (|uantitics approaches

to tho eamo limit, which must therefore bo the value of s-

Hence,

Cor. 1. If tho particle start from rest, then w= 0, and wc

have

1''

McHiiiii

from rvM.

* Jt a, I be tho first and last of a series of n quantities in aritluuo-

tic progression, their sum a •

a + I
-. n.

ITcnco, the mean of them
a + I

, or tho mean of tho first and

last.
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Cor. '2. Whon / in poHitivo, tho roloclty in conlitianlly

inoretBOiJ, and i in the !<(mico doHcrihod by tho particle in tho

tiint t» l\\ii if /U nogattvt), wu huv«

and tho dJNtanoo of thn pnrtiulo {ncroaHCH till tho tiiiin ,whon

it in inoinontarily nt rof«t, tlio npiico doHcrihod hoitipf . After

tltin tho pnrticlu iiiuvch l):ick hy the naino fitn^os in ruvurne order

itN distanoo diiuituHhing till the tiuo -^, wbon it in n^nin at

its Htartin^ point. It then moves to tho other nido of tho

point, I becoming negative and being now given numerioally

by the formula //'— vt, and tho whole Hpaco described in

the time t being -;
-f-

-• /<'— ut.

9. The following i.s anotlur invcstigatio-i of tho above pro-
Aii>ithi<r ill- .^. c Ki ,. < i\ 1' J I'
v.HtiKntiim position, after iNcwton h manner. Draw urjy line An ropro-

?Vdwtou'T Bcntiiig on nny Kcale tho number expressiir^ tho time /, and

divide A/\ into c(|uul parts in the points Ji,L' I), J)raw

PI J
A'^ ])i'rpondieul»r to y| A', und take its magnitude on tho wamo

Hculo to rc'prcHent tho number expressing m tho initial velocity.

In tho same way take A'// to represent m -j-ft, the velocity at

the end of tho time. Draw a/c parallel to AfC, and at each

of the points J], C, /)..., draw perpendiculars to AK, meeting

f/A'in //.c'jci'..., and complete tho parallelograms in tho figure.

Then, (sinco hk' represents//, which is the chjuigo of velocity

in the time AJC; by similar triangles, dd* will represent tho

corresponding change in tho time AD, and Dd' will represent

tho velocity at the end of this time, and similarly for each of

tho lines ISO', Cc',

Now, if tho particle moved uniformli/ during any interval

as CI) with the velocity Cc', which it has at tho beginning of

this interval, the space described (§ 2) would bo represented
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naflHlwlly t>y tho nroa of t)io Innor pnrfttlflo^mtii Cif^ \ no a\n(\

\t U tnovoci ii«i/(f)rw/// tluriniir/) with till) viilucity //./', wliirh

it ImN nt tlin onj of thin iiiturval, tho npaou lioMcrihotl wmiM ho

rcpn'««»nto(l l»y tho nrni of lh«' oiWcr piir!ill.l<»_'riuii Ti/'. If,

thcri'loro, the piirtichi mnviMl unifortnly thrttu^hiMit rtu'h In.

tcrviil on thi) rofiner supposition, tho whnlo Hpiico (IfNcrihni

wouM b« th«< sum of tho innor prirtinolo^nunx ; ami If on lint

Inttor nupponltion, it would ho tho huiu of tho outi^r pariiihto

f^niinH ; un*l thu npnco («) notually (loMorilu'tl Uoh iiuinoiiiiilly

between tho ^pa<'CN dcticrihoil oti thoMO two HUppoHiiionH. Hut

as tho nunihii* uf iritcrvulit \n incroaftcd, nml tiio ii>:i^'riitU)lo of

onch cliiiiiulMht'il, tho two HcrloM uf parulli ]o|;rauiH hoth npproucli

nvat'or anil nonrer to thu <|Uiiilrihitoral www AKL'tt^ wxA \\\'\n

must thiToforo bo tho value of «. Ifciit'o a \a ropro.scntoti by

tho parullolojj;ram Ale and triangle dH*', tltut i.s nuniuriciilly by

Kk X AK -\ ,
/.^' X <'/.-, !in<l, thoroloro,

CoK. 1. If tho particlo wcro at roKt nt tht! bo^'iiiniii^of tho
i-,,,,,, ,.,.hi.

time, that is, if u = 0, tho lino ale coincidos with .lA', and
,.,^ ,

tho spiico di'Mcribod is reprcsoutol by tho area of tho triun^lo

akk'. IIoiico,

Cor. 2. If tho velocity bo retarded instoad of nccploratod,

the figure will take anotluT form. At tir.st, tho Hpaco dcscribi'd

and tho distance from tho initial point nt the time ^1 A" will

each be represented by tho area of ylA'/'tj. At tho time Afj,

tho velocity will bo destroyed and tho particle ino!ncnt;uiIy

at rest, tho space described and the distance from tho initial

point bcin^ represented by the triunj^le A La. Attorward-j

the particle returns towards its initial point, and the whole

space described in the time AM will be represented by tho

Buni of tho areas of tho trianj^les ALa^ LMin\ but the distance

of tlic particle from the initial point will be represented by tho

difference of these two triangles, and at the time AN {= 2 AL)

S

Mi.tlmi

rrt.iriU't.

VV:. •-'.
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this distance vanishes, and tho particle is again at the initial

point, the whole space described being represented by twice

the triangle ylZa. Afterwards the particle passes to tho other

side of the initial point, and its distance from it at the time

AP is represented by tho area Nn'p'Pj while tho whole space

that has been described in this time is represented by the su~:

of the trianf>;le3 ALa and LPp\ that is, by twice tho triangle

ALa and tho quadrilateral Nii'p'P. This result is identical

with that in § 8, Cor. 3.

10. When the particle moves from rest and its motion is

uniformly accelerated, we have seen that tho velocity and

space described at any time from the beginning of motion are

given by the formulas,

1

v—ft; s f^\

and these are sufficient to determine all the circumstances of

the motion in any case.

When any two of the quantities /, v, s, t^ are given, the

remaining two can be found from the above equations. The

following cases may be noticed :

11. Given the acceleration and space described, to find the

velocity acquired.

1 1 / 1^ \ 2

Here s = -fC' = o/i 7 j ? ^^^^ therefore,

and conversely, to find the space through which the particle

must move to acquire a given velocity, we have

^ = v- .> -..

12. The equation s = - ffi becomes, by putting v for //,

s = - vt. Hence the space described in acquiring any velo-

city is half the space which would be described with that

velocity continued uniform through the same time.
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13. Putting f = 1, we have « = - /, or /= 2s. Hence,

twice the space described in the first second from rest measures

the acceleration.

14, The qmcei described from rest in successive equal

intervals of time, are as the odd numbers, 1, 3, 5, 7,

For, taking any interval as the unit of time, let 2^ bo the

acceleration referred to it.

Then the space described in n— 1 intervals from rest is

- F (ii—1)", and the space described in n intervals from rest is

iFn'.2

The difference between these is the space described in the

71
t)i interval, and = Fn — - F = - F (2n — 1).

Giving to n the successive values 1, 2, 3, this becomes

-F . 1. -F . ^) 7.F. 5, which was to be proved.

15. The initial velocity being u, and this being uniformly cnum-

accelerated during the time t, the velocity v at the end of this m'otio'ii wi.

n

time and the distance s of the particle from its initial point; Av!',s\'il!t 'It"

1,1 , • rest -dt tho
IS given by the equations

i V = « + /U; s :r= ut + - /e,

and these are sufficient to determine all the civcumstances of

the motion in any case.

When any three of the quantities «, /, t, v, s, are given, the

Remaining two can be found from the above equations.

(OlilllU'llri'-

lllf lit lit tll'i

Iierio'l.

The following cases may be noted :

16. We have s = ut-i--ft'

= lt{2u-\-ft)
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or, the distance is that which would bo described in 'iie same

time with a uniform velocity equal to the mean of the initial

and terminal velocities.

This result might at onco have boon iuferred from ^ 8.

17. Given the initial velocity, the acceleration and the

distance, to find the velocity acquired.

Here n, /, s are given to find v, and t must be eliminated

from the two equations.

t; = w -1- //, s = M< -f - /(2.

Squaring the first, we have

= w2 + 2/s.

If the velocity were retarded, we should have

Cor. This result might have been obtained without finding the second

equation, for we have directly, from § 5,

V — U —ft, : , : ..
;

and from § 1 G or 8, ,

multiplying these equalities, we have

The following geometrical proof may also be noticed

:

Le'. B be the initial point, where the velocity is ?<; i?C the space

described (s) when the velocity is v.
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Lot A bo the point from winch the pavticlo, proceeding from rest

nndor the same acceleration, would ncqnire the velocity w at li. Then

(§ 11).

uS =r 2 /. yl B.

Also, since the wholo motion may bo taken to proceed from rest at At

we have (§11)
t)2 = 2/. yl C
= 2f,{A B + AC)
= 2/. A B -{-2/. A

By a proper adaptation of the figure, this proof may bo extended

to oil the cases included in the algebraic formula.

18. Given the initial velocity and the acceleration, to find

the time when the particle will bo at a given distance from

the initial point.

Here u,f, s are given to find t.

Solving as a quadratic in t the equation s =z u t -\- -ft'-,

we have

t =
— M + i/u' + 2ys

/
The significance of the double sign is here note-wortliy.

If/ be positive, or the velocity be numerically accelerated,

one of the values of t is positive, and the other negative. The

former is the solution required, but the latter can he inter-

preted thus : Suppose A the initial point, AP the distance s,

and the velocity m at J. to be in the direction AF. Then the

positive value of t in the above giv^s the time of moving from

.^ to P; the negative value gives the time that would have

elapsed if the particle had moved from P towards -4, with a

retarded motion, passed through A to the other side of it,

been reduced to rest and again returned to A.

If/ be negative, then, writing —/ for /, the values of t

become

M -f- i/w* — 2/s.



70

If then m' > 2 /s, both values of t aro real and positive^

anil the particle will twice be at the same di8^anco from the

initial point, once during the recess from and again during

the return towards it.

If M^ = 2/8, the two values become the same, and the dis-

tance in question is that where the particle momentarily comes

to rest.

If it^ <; 2/s, both values of t are imaginary, and the par-

ticle can never reach that distance.

If, however, s bo negative,, both values are real, and one

positive, the other negative, the latter referring to a time pre-

vious to the epoch from which wj aro reckoning, when the

particle, if it had been moving towards the initial point from

the negative side, would have been at the assumed distance.

Comivisition
nrvt:lui;ilii;b.

Fi^

Component Velocities.

19. The position and motion of a particle moving uniformly

in a straight line have been determined by the distance of the

particle from a fixed point in the line, and by the change of

this distance in a given time. Its position, however, might

have been defined by its distances from two fixed lines, mea-

sured parallel to these lines. Thus : let Ox^ Oy be two fixed

lines, B the place of a particle moving in the line ABC, and

A c fixed point in this line, the distance from which deter-

mines the place of the particle. Let C be the place at which

the particle would arrive after any time if it moved uniformly

with the velocity it had at B, and complete the figure by draw,

ing lines parallel to Ox, Oy:.

The position of B is knowc. when B P, B Q, its distances

from thcie fixed lines, are given; and CB, CD, or their equals^

B D, BE, would be the changes of these distances if the par-

ticle arrived at C by moving uniformly.

Now 5(7, which would be the change of distance in a given

time from the fixed point A, measures tlffe velocity of the par-
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tide : and J57>, BE aro always proportional to li(\ and there-

fore measure wliat wo may cull the component velocities of the

particle in the directions of the fixed lines. Iloneo,

1/ a stnii'jht line he tuken'to rrpreSfmt in mnyniliule and I'lnii'ii"

direction the veliciti/ of a pariiclr, the adjacent sides of any <'i>iii|'"ii'iit

parallelogram constructed on this line as diarjonal ivill repre-

sent the COMPONENT VELOCITIES in he directions of those

^ides.

Conversely.

If the COMPONENT VELOCITIES in tico dircrtions be (jiven,

the actual velocity loill be found ir .nafjnitude and direction

by drawing the diagonal of the parallelogram of which the

components form adjacent sides.

These two statements constitute the "parallelogram of com-

ponent velocities."

20. When the two components are in perpendicular direc- v.io,iiy

tions, it will be convenient to call them the resolved parti of Inauy'^

the velocity in these directions; and the rule for finding these
^"'^*^*''"^'

resolved parts will be Ihe same as that for the resolved parts

of a Force (STATICS, § 21), namely :

To find the resolved part of a velocity in any direction, uuietor.

midtipJy it by the cosine of the angle between this direction

and that of the velocity ; and to find the resolved part perpen-

dicular to this direction, multiply by the sine of the aforesaid

angle.
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21. In the foref^olnrr cliiipter the j^comctrical conditions of

the tnotinn of a point have been examined. It now remains

to exhibit the connection of tlieso results with the actual

motions of material particles, and the relation between thcso

niDtions and the forces acting on the particles, and this inves-

tigation constitutes the science of Di/namics.

For this purpose it is necessary to appeal to experiment

and observation, and it appears that all the phenomena of

the n)otions of material panicles can bo referred to three

elementary principles or laws, which are commonly known as

" Newton's Laws of Motion." These laws, from their nature,

are incapable of being demonstrated by direct experiment, for

it is impossible to make experiments under the precise circum.

stances conditioned by the Laws, and which would not involve

other phenomena besides those rhioh it is desired to test.

Direct experiments may, however, afford a presumption in

favor of these laws by showing that the more nearly do the

circumstances of the experiment approach to the exact condi-

tions required, the more nearly are the results of the experi-

ment in accord with those indicated by the Laws; and also

that whenever a discrepancy is found between these results,

there can always be traced some disturbing cause which ought

to have been excluded by the conditions postulated.

The ultimate ground on which these and all other laws in

Natural Philosophy rest, is the entire and universal concord-

ance of the results of experiment or observation with those

calculated on the assumption of the truth of the laws.
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22. Allhouf^h tho motion of u pnrticlo nnJ tlio forces nctin;^'

on it can only bo conceived in rolution to other particles, if is

convenient to speak uholiitch/ of a particle as beiii<; at rest oi*

in motion, rcferenco beinp; made to ourwelves or to some spaco

in a known relation to ouiselves which wo consider /j:k/, and

then to regard tho phenomena exhibited by the particle as duo

to forces acting only on itself, these forces being delined by

tho measures of them already cuiployed in Statics.

23. First Law op Motion.*

A riuiteriul j^article, when not advil on lij nni/ fotce, if it

rest, irill so remain ; aml^ if in motion, v:!U move in a »tra!ijht

line ioi/h nni/orm vdocitj/.

The first part of this law has been already assumed (Statics

§ 2) as tho basis of our conception of a force. Experience

shows that whenever a quiescent body is set in motion, we can

trace the action of some cause external to the body ; thus,

when a body is suffered to drop to tho earth, wo assign its

motion to a pressure exerted on it duo to the earth itself, and

which would have no existence if tho earth did not exist.

Also, there seems no reason why a particle, apart from any

external fljrce, should begin to move in one direction rather

than another.

til ire I,;l\VH

III' Miitliiii.

First Law.

No forces

iii'tiiii,',

thi' particle

t'itlK'l'

ri'iiiiiitm at

rest, or

Again, when a particle is in motion there seems no reason m.ivpsina

why it should change the direction of its motion in one way liuo.

rather than another, unless some force bo acting upon it to

determine such change; and in all cases of any such change,

we can always trace tho action of some external force; as, for

instance, when a stone is projected from the earth in any

direction, the deflection of its motion from a straight line is

produced by the aforesaid pressure due to the earth, whicl? we

know is always acting vertically downwards. If this pressure

be counteracted by projecting the stone horizontally along a

* Lkx. I. Corptis omne perseverare in statu sito qniesccndi vel movendi

wuformiter in directiim, riisi guaientcs a viribus impressis coffiiur siatum

iilum mutare.—Princ. Leff, Mot.
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\rlt!i

iini''iinn

vi'Ioclty,

Onllloo.

11x0(1 plnno, the path approaches to a 8trnight line, with onl7

siu.'h (loviutions um niny bo accounted for by friction or irrcgu-

huiticfi in the piano, or from the stono not being nuiull enough

to bo oonsiilorcd a particle.

80 also with rogurj to the velocity of the particle, it docs

not seorn possible to conceive any way in which its velocity

could increase or decrease unless by the action of some external

cause and iu act lal cases of variation of velocity wo con

alwa}. t a.' u existence of such causes. Thus when astono

is thru.Vii hi-i, itally along the ground, it gradually loses its

velocity I' i .1 aloj." ')ut here the friction of the ground and the

resi.stanco of the mt ct as retarding causes, and wo see that

in proportion as the surface on which the stone moves is

smoother, as on a sheet of ico, the longer and more uniform

docs the motion continue.

Thia law is sometimes tormod the Law 0/ Inertia, bein;^ understood

to express that a material particlo ia inert, and has no tendency of

itself to change its state of rest or uniform motion.

24. It follows that tho motion of a material particle when

not acted on by any forces, or acted on only by forces which

counterbalance, is determined by tho formula of uniform mo-

tion, s = vt, investigated in § 2.

Unitonn -•'• ^^^ ^^'^ procced to considcr the motion of a particlo

ftl" cm a* acted on by any uniform forces, of which the following are

i.i»rtiuic. ^jjQ observed laws :

—

(1.) When a uniform force acts contiimoudi/ upon a par-

ticle in the line of its motion, the velocity is uniformly accele-

rated.

A sinple

fort^e ill tho
line of
motion.

The investigations of § 5 e< seg., therefore, apply to this case,

(noticing also that retardation is included in the term accele-

ration), and we can compare the results there calculated with

those of experiment. Thus when a body is permitted to drop

freely to the earth, or is projected vertically /^downwards or

upwards with any assigned velocity, its path is a vertical line,

and the force acting on it is its weight which always acts ver-
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tically, and (for not grcnt hci^htH nbuvo the; Hurfuco) in flonHibly

ui)it'(irtii. Ilvro then the rcr|uirc(l cuiulitiunH iiro fulfilled, :itiil

tbti result of experiment, when duo allowiince is nmdo fur the

rc8i.sttinco of the nir, in that tiie motion is uniforiuly accelerated,

the ninount of this acceleration being about 2)2.2 feet a second,

but vuryinp; slij^htly for different latitudt-M and elevations ubovo

the 8ca-level. This acceleration is usually denoted by <j.

(2.) When several un>formforcct are. avtinff Aimuftaneonuli/

in the line oj motion, the reuniting accrlcration I's the ahjdiraic

tuni ofthe accelerations which would he produced hy each forca

art inJ aeparatdi/.

llcnco it follows that n equal forces nctiiij^ Hiniuitn -nsly

on a particle in its lino of motion will produce n tip. ^s ltd

acceleration which ono of the forces alouo would r. '^^X'^\. i

the same particle; and, consequently, the accelerati /r^ 'acod

in a given particle i« proportional to the mngni*ud» of tlio

force acting.

It will bo hereafter shown how this may be tested by com-

paring the accelerations of a particle down inclined planes of

dilTorent inclinations.

Hence also the change of velocity in a given time is pro-

portional to the magnitude of the Force, the particle acted on

being the same.

(3.) When a moving particle is acted on continuously by a

uniform force which acts always in the same direction and

obliquely to the direction of the particle's motion, its velocity

after any time is found to have for components—first, the

original velocity, unaltered, in its own direction—second, a

velocity in the direction of the Force, the magnitude of which

is the same as if the Forcp bad acted on the particle origiually

at rest. So that the velocity and direction of the motion may

be found at any time by calculating the velocity which would

be produced by the Force acting for that time on the particle

originally at rest, and then compounding this with the original

velocity according to the principle of the " parallelogram of

velocities."

Any fiiri'i'H

ill till' lliii'

llf lliotlnli

A sin«LL

forci' 1)1)-

Vu\\w to till-

(liiT''tiou (it

luutiou.

W^
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Or, this mtij ho oxproMod moro simply thu.^ : if vro rcnolvc

tho original velocity of the prirfiolo into two coinpoiu'ntH, ono

in ilircction of tho force, tho other perpendicular to it, iho

latter rciniiinH unnitored nnd tlio former is changed hy tlio

F<,rco prccinoly an if it uloiio wore tho actual volooity of tlio

p.'trticlo. 80 thut

T/te change of velocity/ prnJncerl ly th", force in a given

time iH !n direction of the force and it proportional to it in

tnoynitude.

In tliiH cnHo tho pdtli of Uio piirtiolu in no longer a Htrni^lit linu, but

a ctirvo, tliu ton^ont to wliicli nt any point U tliu dlroctlun of tho par-

ticlu'd ni()th)n tliuro.

It: Other vvordH, tho ;.bove oxprosacH tliat the dynamical

effect of a force on a particle in icholli/ independent of any

motion which the particle mag have, and is the tame a» if

it were exerted on th-^ particle orijinalli/ at rent.

Thus, tho vertical dc.^cont of a body let full from tho mast-

head of a ship in motion is precisely tho samo in all its cir-

cumstances as if tho ship wero at rest. Tho principle can

nl.Ho bo tested by comparing tho results of calculation with

obi^crvations on tho motion of a body projected obli«iucly to

the horizon and acted on by gravity, duo allowauco being

made for tho resistance of the air.

. , (^^' When several Forces act .siniultancously, retaining
Any forres ^ •'

, . . .

a-tin^'in always the samo magnitudes and directions, on a particle
iiiiy dirco ..m, . ...«, . 1*1
tionona originally at rest, tho motion la uniformly accelerated in the

. ithur origi- direction of the Resultant of tho Forces, and tho acceleration

is that duo to this Resultant acting singly.

Also tho velocity generated after any time, being that due

to this Resultant, is also that which is compounded of the

velocities duo to tho Forces acting singly on the particle from

rest.

orinmotion, -^^^° ^^ ^^'^ particle be in motion when the Forces begin to

act, its velocity and direction of motion after any time will
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to (li'tcrminod by cftmpoumlinjr Un ori^inul Vi'loclty with ihe

TuliK'ity (Itio to llio UcMultiitit of tho l''orci>ii, ur with nil thitHC

da« to tho Forc'-'i acpuratrly. Ur,

Whm forctt act on the iiimf pnrh'rlo uwler any circuiti'

ttanrex pruvltl d each forte fm unt/urm and aliiun/H ptesrrre

tht t'ime dirertioHj the chanije of rclncitif in a f/iven time d in-

to each /one in in direcliitn of thut forcr, and is proportionnl

to it in mnjni'.udc.

(J).) It follow!* from llio pi-t'(;c<liii;^ tluit if/ btt tho nccolo- VorWw

ration duo to n forco /'nctiti;; c a certain pnrtiolo, thori tho til'il tho'"

ratio /*; /is invnriablo for thin particlo. Tliii ratio i.H found, i7|!i!'i'!..r''

''

howovor, to bo dilfcriMit iti dilforont particles, and wo thus
lo,''!u.'

'' ''*'

discover a ((uulity which di.stiti^ui.shus otic particle frotrt

another, of which this ratio will «crvo us a meaHuro. 1'lu;

naiMO of mass is given to it, and one partielo has the Kaino
,'|'jli'*^,,,i

maan us another when tho Hutnu force produces in each tho

saiDO uccelorution. Tho unit of nia-ss is arbitrary and 't is

not necessary to fix it, but wo Hlntll take as the measure of

vutss the above ratio of tho iiunibors exiiressin'' a Force and

the acceleration it produces on the partij-'o. Thus, if m bo iKumucii.

the miisa of a particle, and P, J as above,

P— = m
/

It has boon mentioned that the aoceloration produced by

gravity (y) is tho fiauio for all bodies at tho nam? pluco on tho

Karth's surface. Ilenco, if W bo the weij^ht of a body, m
its mass, wc have

, .

r— = m. and
U

W = ing.

Hence, for a given place, tho weights of bodies may be taken

to measure their masses.

The fiict abovo stated (iianioly, that tho acceleration of gravity is

the same for all bodied at the same place) is apparently contradicted
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•--,-11,1^ by thn UKforent llm»i« ocfliiplod by illffttrBnl ho<lt«4 In fulling (mm
tliu MiMiio hHlt(lit to till) iiiirtit ; but thU U diiM to tha tlltruruitt r<i|«.

tAriCen of tlio nir, oh U nhown by trial In Rii vxhnnittul roctlvvri

wh«)ro tlio fcAthur »tu\ llio Kiilnoft nro Huttn to fall precUuly In tli<

t«mo timn,

(0.) Sinoo P sam/t ninl / 1^ prDporllun.iI to thu ohan^o

of volooity in ft givon time (§ f)), it fulloWH that J* in prDpof

tionul to tho proJuot of tlio iuumji Jiml tlio iihunj^o of velooity

in n ^ivon titno.

Momctituiii,
'^'''" product of tho umhh nnJ tho vclority (thnt in, of the

nuntbtTH cxprc'swinj;; thcBo,) is tralit'd tho momentum of tho

piirttcio, nnU tho pn'ciulin;; rosultn cuii now nil bo cuuihitioJ

in one Htutoiuotit, wliiuh cunHtitutCH

TitK MKCONT) LAW OP MOTION."

l!»i^

Hi'iioiul Law ITTi'-'u uniform Forrcn art cant innonalj for a <jiven ti'ma ott

material pnrlicUff each 2>*'0<fucea in ita own direction a

cham/r of momentum proportional to itstlf in m(i;piitn(lr.

ItnptiUlvo 2G. Tho forces hitherto treated of have boon of 8iich a ii:itiiro

as only to produce finite chang(>s in tlio motion of a partiek' by

actiiif; on it for a finite timo. There is, however, a certain class

of forces, Huch as those nianifestud in explosioDs or the collision

of bodios, which produce Lnite effects in chanp;ing tho velocity

or momentum inatantanrouith/. Such forcoH are called itnpul'

aiie, and must bo carefully distin':;uishcd from forces of tho

former class, with which they do not in any way admit of

comparison. These impulsive forces are measured by tho

momentum which each would instantaneously communicate to

n particle at rest, and tho second Law of Motion applies to

them, stated under tho form :

HiMond Law Wficn impufshe Forces act on material particles, each
<il>li o< u».

pi'QfiiK'cg 1,1 {ig fjjtvi direction an instantaneous chamje of

momentum proportional to itself in mafjnitude,

• Lkx. 11.

—

Mutatloneiamotm proportionalein exse vi molrid imprmsn,

«t fieri secundum lineam rcctam qua vU ilia imprimitur.—Puino. Lko
Mot. .
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Thuii iho moUon of n pftrUcto when noled on hy >(iiiul(a*

noous itii|)ulii(>(i will bu (lotcriiilixtl by culculntiriK tint wlucity

iiiNtuitt iiiiiouNly Kuncratod by unoh in its own ilirt;i!tion, nn*l

couipournlin^ (hoNO with thu uri^itial vulocity of thu |wirti(lo

nccorillri;^ to thu parnllulo^roin of vulocitlm. For Inntsinou, if I'lruii.i-^

A pnrticlo ut rout bo notuil on by two impulMCH whioli, mpitratcly xIhuiv*

coiniiiuiiicatoil, wouM ^ivo tHiu particle ro^poctivi'ly Huch volo. .vrutotl

citioH ns would cnuMO it to iloMcribu unifnrrnly tlio Aden All,

AC o( li p(iralli!lti^ra?n JLiCJJ, tlio parliulo will acquiro from

thu itnpiilM(vs itiniultaiu'oUMly cottiiiiunioatod a velocity whioli

will cauNu it to duHuribo utiifuriiily thu diaj^onal vt/>in that

tiuiu.

APi'UCATIUNH AND TKSTS Ut' TIIK 8KLUM) LAW Ol' MoTIo.N. V.rtl.ul
tiintloit by

27. Thi vertical motion nf a partuh under the ac/iou o/ ""^ "* "^

Untlleo.gravity.

The nccolcration of gravity (</) has already been Mtatod to ))0 ';» aaa

about JJ2-2 foot per second, and to bo HonMibly tho satuo for all

bodicH in tho Natnu latitude and at nearly tho natnu height

above the hcu-IuvcI.

Ilonco, applying tho furuiulus iu § 10, wo have, when the
irou,rt»t.

particle moves from re«t,

v = //< = 32 2X i;*=\ 9^'' = l^'l X t\

Thuri the spaces described from rest after tho lapse of 1, 2,

8, ...BCcondH, are 1(51, ()M, 141-9, feet; and the velo-

cities acquired arc .'{2-2, 044, 900, feet per second.

If tho 'M)dy do not fall from rest, but bo projected d<jwn- Pr..i,..;tf.i

, . , . I 1 OIK <l«wn
wards witi. a velocity m, then wo have § 10

u = M 4- <//, « = w< -f-
- gt*.

Or if it bo projected vertically upwards with a velocity m, then

the velocity and distance from tho point of projection ut tho or op.

time t arc given by

V =:=u—gf,8 = iit — ,^fjr;
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nnd the piirticlc is brought momentarily to rest after having

oscondcd a height ~ in the time -
, and then descends aj'tiiaO 11,, ,, ' o°

i^i/ If

by tlio same steps in reverse order, reaching its point of pro-

..... 2«
lection in the time —

.

9

Tlic resistance of the . ir and the rapidity of the motion reader it

ditlicult to test these result" directly l)y experiment.

Jintiondnwn 28. Motion doxon a smooth inclined i)lanc.
o'l iiicliiii.'(l

lilane.

Galileo
^'^^ " ^^ ^^"^ inclination of the plane.

The particle is acted on by two forces, namely, its own

weight ( IF) acting vertically, and the reaction of the plane in

a normal direction. If we resolve IF into two furccs, one

perpendicular to the plane, and the other ( TF" sin «) down-

wards along the plane, the 'notion estiui'ited along the plane

will be duo to this latter only. Hence, / being the accelera-

tion along the plane, wo have § 2G (5),

/= Force -~- mass of particle

= I) sm a-~
9

= <j sin a .

And with this value of /the formulas of § 10 and 15 avail to

determine fully the motion.

L. da Vinci. Cor. For the same particle, on pianos of different inclina-

tions, the accelerations are as the sines of the inclinations, or,

the length of the plane being given, as the heights ; and thi..

is the test mentioned in § 25, (2), allowance being made in

performing the experiment for the resistance of the air and

imperfect smoothness.

29. The velocity aci^uired hij movb\cj from rest dotcn an

inclined plane, is equal to that acquired hjj fallinj freely

doicn the hcijht of the plane.
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For, /the acceloration down the plane is g sin a, and if v

bo the velocity acquired in moving down its length, § 11,

1)2 = 2 / X length

= 2 ^ sin a X length

= 2 j7 X height

;

and this is the same as if the body fell freely down this height.

Cor. If the particle were projected down or up the piano

with a velocity m, and v be the velocity after moving through

any length of it, wo should have in like manner, § 17,

r' = w'^ i: 2 ^ sin a X length

= w' ± 2 (7 X height,

which is the same as if the particle were projected vertically

downwards or upwards with a velocity w, and moved freely

through the oorresponding height.

30. The time of moving from rest at the highest point of

a vertical circle down any chord (considered a smooth inclined

plane') is the same as the time of falling freely from rest

down the vertical diameter ; and so is also the time of moving

from rest down any chord to the lowest point.

For, AB being the vertical diameter, the acceleration down Fig 4.

the chord AC'i^ g cos BAG, and therefore, § 10,

(time down A Cy = 2 AO 2AIi

g cos BA C g

which is the square of the time down A B,

So also, the acceleration down C B is g cos C B A, and

2 CB 2 AB
(time down CBf =^

the same as in the former case.

g cos CB A 9

11

t _
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A jiartlclc
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Time of
.night.

31. Motion of a projectile.

Let a particle be projected from a point in the horizon, with

n velocity v, and in a direction making an angle a with the

horizon. The force acting on it being its weight which

always 's directed vertically downwards, the motion of the

particle will be in one vertical plane.

If we resolve its velocity of projection into two : namely,

V cos a horizontally, and v sin a vertically ; the former con-

tinues unaltered, and the latter is retarded and accelerated by

gravity precisely as if the particle had been projected verti-

cally with this velocity. Hence, g being the acceleration by

gravity, the velocity v sin a is destroyed by it in a time

, (§10) ; at this moment the particle is moving hori-

zontally, and has reached its greatest elevation above the

horizon. The velocity v sin a is again generated by gravity

by the same steps in a reverse order, till on again reaching

the horizon the velocity is the same in magnitude, and its

direction is equally inclined to the horizon in an opposite

direction, as at the point of projection. The path, therefore,

consists of two equal and similar branches on each side of the

greatest elevation.

The whole time of Jligid is therefore 2.
V sin a

, and during

this time the horizontal distance described with the uniform

velocity v cos a is (§ 2)

V sin a
V cos a. 2. , or

2^ siQ a

9

COS a or

Kange.

Greatest
heiglit

— sin 2 a. (Trig. § 72.)

and this is called the Range.

The greatest elevation is the space due to the velocity v sin a

for the acceleration g : that is (§ 11),

{y sin ay
~27~



V sin a

88

Again, if x be the horizontal distance of the particle from riaceat.uiy

the point of projection at the time t, and y its elevation above
^'""^"

the horizon at that time, we have (§§ 2 & 15),

rr = V cos a. <

y =: V Bin a. t — i (/ t^

which determine the place of the particle at any time.

Tho path of the particle ia the curve called by i^eometers a para-

bola. In comparinjr these results with observation, the resistance of

the air has to be taken into account ; and for largo bodies, or con-

siderable velocities, those results are thereby rendered quite wide of

the observed facts.

32. Third Law of Motion.*

Whoi one material particle acta on another, the second Third law.

exerts on the first an action equal in amount and oj)posite in

direction to that which the first exerts on it.

The actions here spoken of may bo of various kinds ; such

as the mutual pressures between bodies in contact whether at

rest or in motion ; or the action of one particle on another by

means of a stretched string or a rigid rod j or the action may

be of the nature oi attraction or repulsion j or finally of an

impulsive character, as in cases of collision.

The measures of these actions are either their statical mea-

sures or those furnished by the second law of motion.

Sometimes the law is stated in tho form :

J'he actions of bodies are mutual, equal, and opposite.

The law may be tested by direct experiment in various

ways ; such as by noting the motion of two bodies hanging

freely by a string passing over a pully : by observing the mo-

tion of a magnet and piece of iron floating on water : and by

observing the velocities of balls that have suffered collision.

* Lex. III. Actioni contrariam semper et cequalem esse readionem

:

sive, corporum duorum actiones in se mutuo semper esse ccquaks et in

partes contrarias dirigi,—Princ. Leg. Mot.
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APPLICATIONS AND TE8TS OF TIIR THIRD LAW OP MOTION.

Motion of 83. Two bodies connected by an inoxtensible HtrL-^, which

!ivoraimiiy! pasBcs ovcr a smooth fikcd pully, descend by the action of

Nowton. gravity, to determine the motion.

Let P, Q be the weights of the two bodies, P being the

greater of the two.

The pully being smooth, and the weight of the string in-

eensible, the tension of the string is, by the third Law, the

same on each body.

Since the string is supposed inextcnsible, the downward

motion of P is the same as the upward motion of Q, and we

may consider them as one mass acted on in the direction of

motion by the uniform pressure P— Q

The weight of the mass moved ia P -\- Q, and the mass is

P+ Q

mj

Atwond's
machine.

Fia

therefore
ff

But the pressure divided by the mass is the acceleration (/)

;

hence;

ff

P-Q

and with this value of/, the formulas of §10 & 15 apply.

34. It has been mentioned that the velocity of a body fall-

ingly freely is too rapid to be conveniently experimented on.

In the above case of motion, however, the acceleration can be

made sufficiently small, depending as it does on the difference

between /*and Q, to enable observations to be made with some

accuracy. This is effected by the arrangement known as

Atiooocfs Machine, which consists essentially of two weights

:-o;in.^cted by a thin string passing over a pully, and the distur-

I ace caused by friction is lessened by the axle of the pully

lebg nvade to rest on fri.fcion-wheels. The resistance of the

^^r^ huTe7er, stvll interferes with the results.
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The weights are contained in two boxes A, i?, and the mo-

tion of the descending one A is moaaured by means of a

vortical rod, graduated in inches, on which a moveable stage

can be fixed at any point, and the coincidence of the striking

of tlo bottom of the box on this stage with the beat of a

second's pendulum attached to the machine is employed to

measure the time.

The weights used are equal pieces of brass, denominated

ems, and it is found that the effect of friction and of the motion

of the pully can bo represented by supposing an additional

number of these ems to be added to the whole weight.

Thus, the weight of the two boxes being 12, Jtnd each being

loaded with 20 ems, in which condition they would balance,

let 1 em be added to A, and 11 ems be allowed for friction

and the effect of the pully.

Then the weight of the whole mass moved (P -{- Q) is taken

as 64 ems, and the moving pressure (P

—

Q) is 1 em. There-

fore, applying the formula in the preceding article,

On making the experiment the spaces described in 1, 2, 3,

4 seconds respectively are found to be about 3, 12, 27, 48

inches. And applying the formula s = -ff^, the ralue of g

comes out in each case 32 ft. per second.

The experiment may be varied in several ways, and we have

thus a test not only of the third law, but of the uniformity o.

the acceleration produced by gravity, and of its constant value

for bodies of different weights, § 25 (1). The machine may

also be employed to test the proportionality of the acceleration

to the moving pressure, § 25 (2), the mass moved remaining

the same.

Thus, the boxes being loaded so as to balance, one or more

ems in the form of long bars can be placed on J. as a moving

pressure, and a ring-sUig^ can be fixed at any point of the

11

fi'

31)
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Tcrtical bar wbicb permits the box to pass freely, but rrmovcs

the long ems. After which removal tlio box continues to de-

scend uniformly with tho velocity acquired (or would do so

but for friction and the resist mco of the air), and the space

thus described in one second can be measured, giving the

velocity acquired, and therefore the acceleration.

For example, let tho boxes be loaded each with 20 emsj

their weight 12; allowance for friction, «&o., 11; and let 1

long em be added to A. Then tho weight of the whole mass

is 64. After the box has descended from rest through one

second, let tho long em bo removed by tho ring stage. Then

the space described in tho next second by the box moving

uniformly is found to be six inches, and this is the measure

of tho velocity acquired in the first second, and therefore

of the acceleration.

Hence, the mass being G4, and the moving pressure 1, the

acceleration is 6.

Again, lit the boxes be loaded each with 19 ems, and 3 long

aiis be put on . 1 ; and by the same method the acceleration is

found to be 18.

Thus, the mass being G4, and the moving pressure 3, the

acceleration is IS.

So that the acceleration is proportional to the pressure.

Again, the effect of gravity as a retarding force may be

exhibited by allowing box A to acquire a certain velocity in

its descent, then removing the long ems, so that the other box

becomes the heavier, and noting the time when tbey are

reduced momentarily to rest.

Collision of smooth halh, ' '

S5. Since balls are extended bodies, we cannot apply to them

directiy the laws for the motion of mere particles, but when

theballis are uniform in substance, the motion of their centres

will be the same as that of imaginary particles of the same

masses as the balls, placed in these centres.

01
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Direct impact of tiro halh.

30. Tlio itupnct ia saiJ to bo direct when the centres of tlio

two balls nro moving in tho fnine lino. Tlio itnpulsivo action

whicli occurs bctwoon tho bills on coUi.-tion takes place wholly

in this lino (tho bulls beinp; Bmooth), and is nioasurotj (§ li(i)

by tho instantaneous chanj:j;o r»f momentum in each ball in this

direction, and, by tho third law of motion, this must bo tho

Harac in amount and opposite in direction on each ball. I'lmt

is, tho gain of momontum by ono ball is tho same as the loss

by tho othcrj and tho (alpobraic) sum of the momenta of tho

two balls remains uiialtercd by the impact j or, in other words,

The aJyvhraic sum of (he moyncntd after Inijiact i.i equal

to that he/ore the impact.

This gives one relation between the velocities after impact;

but, to determiuo them, another relation is still ro([aired. This

is furnished by the following experimental law

:

The two halh either proceed in contarl with a commoi velo-

city^ or they sqmraie m such a manner, that the mognitmlc

of their relative velocity after inijyact bears Ij that of their

relative velocity hrfure impact a ratio which dcpcndx onlt/ on

the nature of the Hulstance of which the balls are compoHed.

In tho former case the balls arc called inelastic ; in the

latter, daatic ; and the constant ratio above spoken of is called

the elasticity for each paiticular substanco, and is generally

denoted by the letter e. Its value for all known substances

6- 8
lies between and 1 ; thus for steel it is ; for ivory, - ; for

y J

15
glass, — . If e were equal to 1 for any substance, it would be

perfectly elastic, but no such substance is known in nature.

It is clear that the case of inelastic bodies is included in that

of elastic ones by giving to e tho value 0.

By the relative velocity of the balls is meant the algebraic

difference of their velocities. Thus if u, » arc the velocities in

the same direction before impact, and the ball moving with u

Two luilln

lllll.ill;,'!'

iliivctlv.

r.ilW nf

t'llMulity of
lii(ilii('lit;i.

Tiiiw of
itlativo

volucitics.

Elusticity.

^J%
(aa atm'ummiiimeA



overtakes tko other ; then u— v i» their rolntivo velocity ; nnd

if u\ v'y nre the corresponding veloeitios after impact, the

Bocond ball njoving away from the first, then v'— u' is tho

relative velocity, and tho experimental law asserts that,

Ttvii iiioLiH-

tl<! balli

iiii))limiii;;

.llriK^fly.

37. Tioo inelastic halls ivipin>/e directly wUh given vdoci-

tief, fo find their velocity afte - inqtdct.

Let A, Ji ho tho masses of tho two balls, and u, v their ve-

loe.Lics estimated in tho same direction; then, after impact,

thoy proceed with a common velocity, F" (suppose). Tho al-

gebraic sum of the momenta before impact is

Au -{- Bv ;

and, after impact, it is

{A + B) V.

IIcucc, by the law of equality of momenta,

{A -\- B) V=Au-\- ^y, and

„ An -\- Bo
'^ a + b''

If the sec (id ball were moving in an opposite direction

to the first, v would be taken negative, and the direction of V
will be indicated by its resulting sign.

Coa. 1, If 5 were at rest, then v = 0, and

A
V: u.

A-r B

€011. 2. If the balls be brought to rest by the impact, then

F= 0, and, therefore,

Au -{- Bv = 0,

— V A
or

Or the balls must have been moving in opposite directions

with velocities inversely proportional to their respective masses.
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88. Two clastic balls impinge directly with given vdocilieSf Tw'o ciaiiiit

to ditermint their velocitiet o/ter impact,

Let A, B, bo tho masnes of tho two balls :

lMi|>tni(in(;

•llreftly.

n, V, their velocities bofuru impact, estimated iu eamo diroctiun,

w', v/, " after " " "

e, tho elasticity.

A is supposed to ovcrtuko B,

Then the sum of their momenta before impact is An -\- Bo.

and " " after " Au^+Bv'.

Hence, by the law of equality of momenta,

Au^ + ^vf = Au -{- Bv.

Again, by the law of relativo velocities,

t;/ — u' = e (u — v).

From these two equations, finding m' and v', we have

yl « 4" ^^ — -^^ (" — '0
«'=

d'=

A -\-B

Art -{- Bu -{- Ae {u — v)

AA-Ji
'

If B wore moving before impact in an opposite direction,

V would bo taken negative, and the directions of m', v^ will

be indicated by their algebraic signs.

Cor. 1. In no case can both balls be brought to rest by the

impact.

Cor. 2. If the balls be perfectly elastic, or e = 1 ; and Two equal

if also their masses be equal, or A = B; then we have "yeiasu"

W V, V = u.

balls

exchange
velocities.

and the two balls exchange velociiies.

Thus, if the second were at reit, the first after impact

would remain at rest, and the second would go on with the

velocity of the first before impact.

•«l

ss::



90

fkr. 3. Honcp, If A row of «qiial, pflrfoctly clnstlo bnlln bo rnn^^ixl

In contofit In a HtralKiit lino, and nnutliur bull, oUo |>orfootly claiitlo

and crjiml tu each of tlium, Impint^u In cncli lino on the (Imt of tlumo

bnlU, tlin itiipln^dn^ (<nll will ruinnin nt rest nflcr thn Irnpnct, ntid the

firrtt ball will Htart wllh tlio Mntno velocity; It will tlicn Irnplni^o on

tbu second, conirnnnlcatln(( to It tbl* velocity, and Itnttif rrninlrdnt; nt

rest ; tlio second on tho third, nnd no on, till the luat ball llloH olf with

tho velocity, all thu othom runiblnlng at ruat.

At;^ain, If two Ruch balln, rnovini; with tho anrno vuhu^Uy, linpln;^;'*

on th(t row of bulU, tlio flr^t of tho lnipin;(ln(; bulls atIII, as before,

drivo off tho lust of tho row ; nnd tho second will then drlvo off tho

lust but oiu!, nil tho others roinaliiiii}; nt rest. And so on for any

iiiunbcr o! iMipiii;rin^ balls, whether (greater or Icsh tiian that of tho

balls struck, the nutnbor of balls driven otf will bo tho same as that

of tho itn[)ingtn;; balU, thu others renmuilng at rest.

iiiii.ait (.1111 Oor. 4. In tho general case, Huppo«o J3 to bo at rest before

I'^au.'i'a.'^' impact, then v = 0, and we have

W
A-\- B

u, V' — A 4- A e

yl + J5
n.

Now suppose B to becouio indefinitely great compared with

; then tho limilir

— e and 0. Ilonoe,

A ; then tho limiting values of :- and -
,

- are
A -\- B A -\- Is

u' =Bi — CM, Vf «= 0,

OlillqUD

irniiaut.

and we have the case Qf a ball impinging diroetly on a fixed

body, and tho first equation shows that the velocity after

impact is in the opposite direction to that before impact, and

its magnitude is less in the ratio of e to 1.

39. Oblique impact of smooth halh.

Here the centres of the balls are not moving in the same

line, but the impulsive action takes place (tho balls being

smootyO in the line joining their centres at impact. If there-

fore the velocity of each ball be resolved in two directions

;

one, along the line joining the centres; the other, perpendi-

cular to this line ; the latter resolved parts will not be altered

by the impact, and the former will be altered precisely as if tho



iropAol wore diront, and tho roiolvcd volocition in thii< direolion

after impact ouri ho onloulutod by tho proccdinp; invcxtlfi^ntion,

and thuii cotnpoutidiMl with f.hoau in tho porpundicuhir direc-

tion hy tlio parnlltloi^rani of vt-IooitioM, thut dotoruiiuiug fully

,
the uiutiun and diroctign of ntutiun gf uugh bull,

40. ^hltqut tmpnet arjtumt a twooth fixed phtne.

Tho iinpulnivo action oxcrtod hy tho pluno iH in a norniiil

dirootion, tho piano beinp; piiiooth. Iloncn, if wo 'cmoIvo tho

velocity of tho hall in two directions ; ono, alonj; tho plono

;

tho other, normal to it: the former will ho unafTectcd by tho

impact, while the latter will he clumped just nn if tho impact

were direct, that is, its direction will ho reversed ond its mag-

nitude dimini.shed in tlio ratio of « ; 1. CombiniMi; these

volociticfl, tho motion and direction of motion of the bull after

impact are determined. Thus :

Let V bo tho velocity of tho particle, tho anj^Io its direc-

tion makes with the normal to the piano at tho point of impact-

Let y'bo the velocity after impact, nnd 0^ the corrcspondinj*

angle. Then v co.s 0, v sin are tho velocities respectively

normal to and along the piano, and wo have

cv cos => v^ cos 0'

V sin = v^ sin 0'

Ititt>«''t nt i»

from which wc obtain

V ]/ ^ siu2 tf + t^ cos^ I
,
and

tan <?' = 1 tan 0.
e

Or, the same may bo done by an easy geometrical construe- ocomotricai

tion; thus, take AG to represent tho velocity ot impact, CM ilZi!'^^^''

the normal, AM perpendicular to CM. Then A AT, MC repre- pi r. o.

sent the component velocities along and perpendicular to the

plane. Take C^ = e CM, NB perpendicular to CM and

equal to MA; join CB : then CB will represent in magnitude

and direction ihe velocity after impact.
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Cor. If the elasticifj bo perfect, the velocity is the same

after impact as before, and its direction is equally inclined to

the normal on the other side of it.

This furnishes a simple construction for finding the direction

in which a particle in a given position must be projected so as

after reflexion at a fixed plane (perfectly elastic) to strike a

given point. The rule will bo : aim at a point directly behind

the plane at the same distance from it as the point required to

be hit.

How to hit So also, if it be desired to strike a given point after reflexion

imlnTaftur at two fixed plaucs in succession, imagine a point at the same

rlfluxfonrnt distance directly behind the second plane as the given point is

iTi'i'iaues!''''^
before it, and then aim at a point directly behind the first

plane at the same distance from it as this imaginary point is

before it. And a t^imilar construction serves for the same

problem after successive reflexions at any number of planes.

THE END.

I

I

mmr-mmmf^



I

i

\
W0^>p»'m-fK»TR :-m *!«R». «««• «at'»a»M».<WI«««tBaaW£ai!^aW»»3«IMMIMllB^^ i Lllijl.illTiT^lffi^n itwfli



•t.

A
H
c

n

kL

o

''i.iii.yiL':'TCi''''iii"nu '
.iiiiiiii"<";'j.



/>>/ If/ J



!
--» tf

-

-V-. 1* ''
- V-J

'W



"waimmfmmmmmmtf'Mmm
\

J i

,.M . .

-

.-.«« 1 .^. ,



W=j

% .'

B

V

f/.7.

)

}

.

w

L-l

N=



Ill»i

% .'

I

/}yj
l*T^'

V

V.7
/>'«/.

-7 S

- ij^py
I'

I

5*5
— f



"*p*i



», ..•"!'• i :. t,:H. -ct.'.-c




