IMAGE EVALUATION

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy avallable for filming. Feotures of this copy which may be blbllographically unique, which maiy alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée ot/ou peillculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes geographiques en couleur
Coloured ink (i.e. other than biue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches ot/ou illustrations en couleur
Bound with other material/
Relíd avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Lare llure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure
\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajouteses lors d'une restauration apparaissent dens le texte, mals, lorsque cela était possible, ces pages n'ont pas été filmées.Additional commenta:/
Commentaires suppiémentaires:

L'Institut a microfilmé le mellieur exemplaire qu'll lul a été possible de se procurer. Les dótalls de cet exemplaire qui sont peut-Stre uniques du point de vue blbllographlque, qul peuvent modifier une image reproduite, ou qui pouvent exiger une modification dans le muthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de coulour
Pages damaged/
Pages endommageses
Pages restored and/or laminated/
Pages restaureses ot/ou pelliculeses
Pages discoloured, stained or foxed/
Pages décolorbes, tachetbes ou piqueses
Pages detached/
Pages dótachées

Showthrough/
Transparence
Quality of print varies/
Qualit' inegale de l'impression
Includes supplementary materlal/
Comprend du matériel supplómentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, otc., have been refilmed to ansure the best possible Image/
Les pages totalement ou partieliement obscurcies par un feuillet d'errate, une pelure. otc., ont ót'́ filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here hes been reproduced thanks to the generosity of:

The iast recorded frame on each microfiche shall contain the aymbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichover applies.

Meps, plates, cherts, etc., may be filmed at different reduction ratios. Those too large to be entirely inciuded in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illuatrate the method:

Hamilton Public Llbrary

The images appearing here are the beat quality posalbic considering the condition and legibility of the original copy and in keeping with the filming contract specffications.

Original copies in printed peper covere are filmed beginning with the front cover and ending on the leat page with a printed or illuserated impres. sion, or the back cover when appropriste. All other original coples are filmed beginning on the first page with a printed or illuatrated Impreasion, and ending on the last page with a printed or illustrated Impression.

L'exempiaire filmd fut reproduit grace ala gênêrositéde:

-AN

ELEMENTARY TREATISE

ON

MECHANICS;

DESIGNED AS A TEXT-BOOK FOR THE UNIVERSITY EXAMINATIONS - FOR THE ORDINARY DEGREE OF B. A.

STATICS.

BY
J. B. CHERRIMAN, M. A.,

LATE FELLOW OF ST. JOHN'S COLLEGE, CAMBRIDGE, AND PROFESSOR OF natural philosophy in university college, toronto.

SECOND EDITION.

TORONTO: COPP, CLARK \& CO., KING STREET EAST.

$$
1870 .
$$

PREFACE TO FIRST EDITION.

This Treatise contains the text of the Lectures which I have delivered for some years past in University College.

As my design has been only to furnish to Students a textbook for such parts of the subject as are required for the ordinary degree of B. A. in Universities, I have not thought it advisable to burden this work with mere explanation or illustration, or to add examples; presuming that such, where necessary, will be furnished in the Lecture-room or by the Tutor.

University College, Toronto, April I, 1858.

CHAPTER I.

DEFINITIONS AND PRINCIPLES.

1. A material particle is a portion of matter occupying at $\begin{gathered}\text { Maternaid } \\ \text { particle. }\end{gathered}$ indefinitely small space; or, a geometrical point endowed with the properties of matter.

All bodies may be geometrically conceived as made up of particles.
2. When the distance between two partieles romains un- Force. obanged during any period of time, they are relatively at rest, and we conceive that they will continue so unless one or both be acted on by some cause to which we give the name of Force.

The state of rest or motion of a particle can only be conceived of in relation to others, but it is convenient to speak of it absolutely as being at rest or in motion, reference being understood to ourselves (or some particles in a known relation to ourselves), and ehanges of rest or motion are to be considered as produced by forces acting on the particle alone.
3. When a particle at rest is set in motion by a force, it Drection will begin to move in a particular line, which we may define magnitude to be the direction or line of action of the force. The motion might be just prevented and the particle kept at rest, by a suitable force applied in an opposite direction. In this case the two forees are said to balance or counter-balance each other ; and the magnitudes of two forces are said to be equal Equal when each would separately counter-balance the same force.
4. Generally, when forces acting on any system of particles statics, keep them at rest, the forces are said to counter-balance, or $\begin{aligned} & \text { genebalem of. }\end{aligned}$
to be in equilibrium; and the investigation of the relations ameng them in such case, or the conditions of equilibrium, constitutes the science of Statics.

Force, how ниеай
5. Some convenient foree being assumed as a standard or uait, the magnitude of any furce is measured numerically with reference to the unit by the number of such units (acting simultancously at a point and opposite to the force), which it will counter-balance. Thus, if the force will counter-balance n unit forees, its magnitude is said to be n.

This supposes n to be a whole number, and we can always take a unit-force of such magnitude that it shall be so ; then, whon any other force is taken as the unit, the magnitude of car original force will be expressed by the ratio (whether a whole number or a fraction) which its magnitude beara to that of the force assumed as unit.

In general, the term Pressure may be used for a Foree thus statically considered and measured.
6. It is found that on all bodies on the Larth a pressure is exerted downwards, in a vertical direction : that is, in a direction perpendicular to the surface of still water at the place; and this pressure (which, for any particular body, is called the uesight of that body) is invariable at the same place for the same body at all times, whatever form, size or position the body be made to take. Hence the weight of some particular body may conveniently be assumed as a unit to which other pressures may be referred for measurement.

In the English systom the weight of a certain picco of brass oarofully preserved as a standard, is called one pound Troy, and all other weights are referrod to this. If lost, it might be restored from the knowledge that this pound being divided into 5760 grains, " a cubic inch of distilled water, of the temperature of 62° Fnhrenheit, when the barometer is at 30 inohes, weighs 252.724 graios "

Rigldity.
7. When a system of particles, or a body, is such that the relative distances of the particles undergo no change by the action of the forces applied to them in any manner, the system is said to be rigidly connected, and the body is called a rigid bods, relatively to the forces concerned.

Porces can lie repirto le repire
aentell liy straight
IInes.
11. Since the three elemente which serve to determine a prensure are in their nature identical with those which determine a straight line-namely, magnitude, direction, and point through which it in to be drawn-it follows that a atraight line may properly be taken as the representative of a pressure. When, however, a line $A B$ in so taken, it will be understood that the pressure sets in the direetion from A towards B; if written $B A$, then from B towards A. Frequently also, the words "represented by" will bo omitted, and we shall use " the force $A B$ " to indicate the force represented in mingnitude and direction by the line ΛB, aeting in a lirection from A towards B.
12. We now proceed to stato the two probleus of Statica which alone will be here touched upon.
(1). The conditions of equilibrium for any set of Forees acting on the same particle.
(2). The conditions of equilibrium when Forese act ou a rigid system of particles which has a fixed axis round which it can turn freely, the Forces acting porpondicularly to this axis.
nine a deter. point raight ssure. ratood B; if 0 , the 11 use angni. from tatics orces

chapter it.

Honces AOTING AT A PoINT.

13. When Forces act aimultancously on a particle at rest, Defnition of if the particle begin to move, its motion will commence in a lenultant. definite direction, and might be just presented by a single force of suitable magnitude applied in an opposite direction. This force would then counterbalance the original set of Forces, and a foree equal and opposite to it would produce the same statical effect as the first set of Forces, and is therefore termed their Resultant.
14. Hence, when any set of Forces acting at a point keep it at rest, since any one of them may be considered as counterbalancing all the rest, a force equal and opposite to any one of them is the Resultant of all the others.
15. Hence also the condition, in order that Forces acting condition of at a point may keep it at rest, is that the magnitude of their Equllibrium Resultant shall be zero, or that their Resultant shall vanish.
16. When Forces act in the same line and direction on a point, their Resultant acts in the same direction, and its magnitude is equal to the sum of their magnitudes. If some of the Forces be acting in the opposite direction, the magnitude of their Resultant will be the difference between the sums of the magnitude of those acting in the one direction and in the other, and it will act in the same direction as those Forees whose sum is the greater. We can, however, indicate oppositeness of direction by attaching to the magnitudes of the Forces the Algebraio signs + and -; so that, any one Force being considered positive, all Forces in that direction
will also be considered positive, but forees in the opposite direction will be considered negative.

The above results may then be combined into the following:

Thelr Resultillit and

Combition of Liquilibrium
17. Hence also the condition that the point may be kept at rest will be that

The alyebraic sum of the Forces shall be zero.

Rifual obs Wint Forces.

Aly two
Furces.

Paralleloyram ol Forees.

Newton.

Direction of Hesultant.

Duhamel's prof.

The Resultant of any set of Forces acting on a point in the same line, is the algcbraic sum of the Forces.
18. If two equal forces act in different directions at a point, their Resultant will act in a direction bisecting the angle between their directions.
19. The Principle of the Paralielogram of Fohces.

If two Forces acting on a particle be represented in mag. nitude and direction by two straight lines drawn from a point, and the parallelogram, of which these lines are adjacent sides, be completed, that diagonal which passes through the point will represent in magnitude and direction the Resultant of the two forces.

Let the lines $A A_{p}, A L$ be drawn representing in magni-
 tude and direction two forees acting at A; and let p, q be the numbers denoting themagnitudes of the furces.

Divide $A A_{p}$ into p equal parts in the points $A_{1}, A_{2}, A_{3}, \ldots$, and $A L$ into q equal parts in the points B, C, D, : then each of these equal parts will represent in magnitude the unit force. Through these points, draw lines rarallel to
the original lines, eompleting the parallelogram; and suppose all the lettered points of the figure rigidly connceted.

Then, since the two forces represented by $A A_{1}, A B$, acting at A, are equal, the direction of their resultant biseets the angle between them, and it therefore acts in $A B_{1}$: it may then be supposed to aet at $B_{1}(\S 9)$, and may there be again resolved into its original components, which will be represented by $B B_{1}$ and $A_{1} B_{1}$, of which the former may act at B, and the latter at A_{1}.

Proceeding in the same way with this latter force, $A_{1} B_{1}$, at A_{1}, and the foree $A_{1} A_{2}$, which we may also take to act at A_{1}, we can replace these by $B_{1} B_{2}$ at B_{1}, and $A_{2} B_{2}$ at A_{2}.

Proceeding in this manner we arrive at last at B_{p}, where we find the force $A_{p} B_{p}$ and the set of forces $B B_{1}, B_{1} B_{2}$, $B_{2} B_{3}$, \qquad (which latter make up the original force p) as the equivalents of p and $A B$ at A.

Now taking up the set of forces in $B B_{p}$ and the force represented by $B C$ at B, we transform them by the samo process into $B_{p} C_{p}$ and the set in $C C_{p}$ at C_{p}.

Following this method we arrive at last at L_{p}, whesa we have for the equivalents of the original forces the sets of forces in $L L_{p}$ and $A_{p} L_{p}$, which may be supposed all to act at L_{p} and their magnitudes are p and q. Hence we have transformed the original forces p and q acting at A to the same forces acting at L_{p} in parallel directions to the former, and this without alteration of their statical effect. Hence L_{r} must be a point in the direction of the Resultant of the original forces at A; that is $A L_{p}$ is the direction of the Resultant, which proves the principle enunciated, so far as the direction of the Resultant is concerned.

Mennitude of Resultant.

Let $A B, A C$, represent the two forees acting at A. Complete the parallelogram $A C D B$. Then $A D$ is the direction in which the Resultant acts, and we have nuw to prove that $A D$ represents also its magnitude.

In $D A$ produced backwards
 take $A E$ to represent this magnitude, so that a force represented by $A E$ will be equal and opposite to the Resultant ; and the three forces represented by $A B$, $A C, A E$, will keep the point A 'at rest, and each one of thom is equal and opposite to the Resultant of the other two.

Complete the parallelogram $A E F C$; then, $A F$ is the direction of the Resultant of the forces $A E, A C$, and is therefore opposite to $A B$. Hence, $F A B$ is a straight line, and therefore $F A C D$ a parallelogram. Hence, the lines $A E$ and $A D$ are equal, being each equal to $F C:$ but $A E$ was taken to represent in magnitude the Resultant of $A B, A C$, and consequently $A D$ also represents it in magnitude. Q.E. D.

Resolution of a Force.
20. Conversely, a force acting at a point can be resolved into an equivalent pair of forces at that point in an infinite number of ways; for, taking a line drawn from a point to represent the Force, and constructing on it as diagonal any parallelogram, the two adjacent sides terminating at this point, will represent an equivalent pair of forces.

If this pair consist of two forces acting in perpendicular directions, each of thom is called the effective part of the original force in this direction.

13

Comection e that

Thus, if R be the force at A, represented by $A D$, and it be
 resolved into two forces in perpendicular directions-namely, X along $A B$ and Y along $A C$; then X and Y are the effective parts of R resolved along $A B$ and $A O$ respectively. Completing the rectangle $A O D B, X$ and Y will be respectively represented by $A B, A C$, and, calling the angle $B A D, 0$, we have from the right-angled triangle $B A D$,

$$
X=R \cos \theta, Y=R \sin \theta
$$

21. Hence, to find the effective part of a force in any given direction, or, more briefly, to resolve a force in any given direction, multiply its magnitude by the cosine of the angle contained between its direction and the given direction: and to resolve a force perpendicularly to a given direction, multiply it by the sine of this angle.
22. So also from the same figure we obtain the Resultant (R) of two perpendicular forces (X, Y), and the angle (θ) which its direction makes with one of them (X); for

$$
R^{2}=X^{2}+Y^{2} ; \text { and, } \tan \theta=\frac{Y}{X}
$$

23. When any number of Forces act at a point, their whole effect in any direction will be the Algebraic sum of the separate resolved Forces in this direction, which will evidently. therefore be equal to their Resultant resolved in the same direction.

Henoe also the algebraic sum of the separate resolved forces in direction of the Resultant is the Resaltant itself, and the corresponding sum in a direction perpendicular to the Resaltant is zero.
24. To find the magnitude and direction of the Resultant of any forces acting at a point, their directions. beinj all in one plane.

Resultant'of any forces in one plane, and.

Taking any two direetions at right angles to each other, let each force be resolved into its components in these directions. Let the algebraic sum of these resolved parts in the one direotion be X, and in the other Y.

Then the wholo set of Forees is equivalent to the two X, Y.
Hence, if R bo the Resultant of the whole set, and therefore also of the two X, Y, and 0 the angle it makes with the direction of X, the equations in § 22 givo

$$
R^{2}=X^{2}+Y^{2}, \tan \theta=\frac{Y}{X}
$$

which determine the Resultant in magnitude and direction. We have also the equivalent relations

$$
X=R \cos \theta, Y=R \sin \theta
$$

Conditions of 25. To find the conditions of equilibrium when any Forces equillurlum. act at a point, their directions being in one plane.

Retaining the notation and method of the last article, since the only condition, in order that the point acted on by the Forces may be kept at rest, is ($\S 15$) that the Resultant of the Forces must be zero; that is, $R=0$, we have

$$
X=0, Y=0
$$

And, conversely, if $X=0$, and $Y=0$, then we also have $R=0$, and the point will be kept at rest; hence the neces ${ }^{-}$ sary and sufficient conditions of equilibrium are that

The algebraic sums of the Forces resolved into two perpendicular directions shall separately vanish.

This principle will be cited under the name of "The vanishing of the Resultant."
26. The process might be readily extended to forces not all acting in one plane.

Thus, if three forces not in one plane act at a point, and three lines be drawn representing them in magnitade and direotion; then, if the parallelopiped, of which these lines are adjacent edges, be completed,
that diagonal of it whioh passes through the point will represent in maguitude and direction the Resultant of the Foroes.

Also, if any number of Force nct at a point, the neoessary and suffiolent conditions of equilibrium are that the algebraio sums of the Forces resolved along three mutually perpendicular directions shall separately vanish.

The following propositions are historically interesting, though included in what has preceded.

27. Triangle of Forces.

Triangle of forces.

If the directions of three forces acting at a point, be parallel stevinus. to the sides of a triangle taken in order, and their magnitudes be proportional to these sides, they will keep the point at rest.

For if $A B C$ be the triangle, and A the point at which the
 forces act; then, completing the parallelogram $A B C D$, the two forces represented by $A B, B C$, will be represented by $A B$, $A D$, and their resultant by $A C$, which is equal and opposite to $C A$, the third force.
28. Conversely. If three forces acting at a point and keeping it at rest, be represented in direction by the sides of a triangle taken in order, these sides will represent them also in magnitude.
29. Hence, all problems relative to three forces keeping a point at rest are reduced to the solution of a plane triangle. Thus, if P, Q, R, be the forces, and the angle between P and Q be represented by (P, Q); then the angles of the triangle in the above proposition are the supplements of the angles be. tween the forces; and, since the sine of an angle is equal to that of its supplement, and the cosine of an angle is the cosine of the supplement with opposite sign, we have (Trig. §34, 40.

$$
\frac{P}{\operatorname{Sin}(Q, R)}=\frac{Q}{\operatorname{Sin}(R, P)}=\frac{R}{\operatorname{Sin}(P, Q)^{\prime}}
$$

Lami's Formulas.
and also the equivalent expressions-

$$
\begin{aligned}
& R^{2}=P^{2}+Q^{2}+2 P Q \cos (P, Q) \\
& P^{2}=Q^{2}+R^{2}+2 Q R \cos (Q, R) \\
& Q^{2}=R^{2}+P^{2}+2 R P \cos (R, P)
\end{aligned}
$$

Polygon of Hurces.
30. Polygon of Forces.

If Forces acting on a point be represented in magnitude and direction by the sides of a polygon, taken in order, they will knep the point at rest.

For if $A B C D E F$ be the polygon, the forces $A B, B C$, have for their resultant $A C$; and the resultant of this and $C D$ is $A D$; and so on till we come to the last side which is equal and opposite to the resultant of all the previous ones.

Hence the proposition, as well as its converse, is established.
31. In this way, the Resultant of any number of Forces at a point can be constructed geometrically; for, having drawn consecutive lines, so that, taken in order, they are parallel to, in the same direction with, and proportional in magnitude to, the forces; the line drawn to complete the polygon will represent in magnitude and in reversed direction the Resultant required.

It may be noticed that the Polygon referred to need not be a plane one, neither are re-entering angles or crossed sides exoluded.

CHAPTER III.

agnitudo ler, they 0 , have $C D$ is is equal blished. drawn allel to, cude to, 1 repressultant
not be d sides

Fordes in one plane afting on a bystem or matdiy oonnected zonnts, whiol oan turn freely about a fixed point in the plane.
32. Two intersecting forces act on a rigid system, in the Condition o same plane woith a fixed point sound which the system can whilltrium turn. meet.

Let O be the fixed point; P, Q, two forces in the same plane with O, their directions intersecting in A, at which point, rigidly connected with O, they may be supposed to aot.

Then if \boldsymbol{R} be the Resultant of P, Q, in order that the point A and the whole system with which it is rigidly oonneoted may be kept ai rest, it is necessary and sufficient that the direction of R shall pass through the fixed point O : that is, $A O$ must be the direction of R. Draw $O B, O C$ perpendicular to the direetions of P, Q. Then, resolving the forces at \boldsymbol{A} in a direction perpendioular to $A 0$, we have ($\$ 21,28$):
$P \sin O A B-Q \sin O A C=0$, and therefore

$$
\begin{gathered}
P . O B-Q . O C=0, \text { or } \\
P \cdot O B=Q . O C
\end{gathered}
$$

Moment defined.
33. The product $P . O B$, which is the product of the number expressing the magnitudo of the foree, and the length of the perpendicular dropped from the point O upon its direction, is called the moment of the Force about that point.

Hence the above result may be expressed by saying that when the two forces keep the system at rest, their moments about the fixed point are equal, the forces tending to turn the system in opposite directions about the point : but if we indicate this oppositeness of direction by difference of algebraie sign, so that the moment of one loree which tends to turn the system round in one direction being considered positive, that of another Force tending to turn it in the opposite direction will be considered negative; we may still more briefly express it in the form:

The algebraic sum of the moments of the two Forces round the point must be zero.

Moment of resuitant of two forces which interseet is equa moments of forces.
34. The moment of the Resultant of two intersecting Forces round any point in their plane is equal to the algebraic sum of the moments of the F'orces.

Let P, Q be the two forees intersecting in A; O, any point in their plane; \boldsymbol{R}, their Resultant.

Draw the nerpendiculars $O B, O C, O D$.

Then (§ 23) the Resultant resolved in any direction being equal tn the algebraio sum of the resolved Forces in that direction, let them be resolved perpendioularly to OA. Hence, from § 21,

$$
R \sin O A D=P \sin O A B+2 \sin O A C .
$$

the num. length of direction,
ying that moments 3 to turn but if wo θ of algetends to red posiopposite till more es round
ersecting the algethe two in A; in their - Resul-
jendicu$0 D$.
the Rein any qual to I of the in that Hence,
and therefore

$$
\text { R. OD }=P . O B+Q . O C
$$

which proves the proposition.
Cor. We have taken the case in which the moments of the Forces have the anme slign, the proof in this oase being sufficient for all. $\square \begin{aligned} & \text { Where, as in the tigure, } \\ & \text { the two forces tend to }\end{aligned}$ the two forces tend to turn the system in op. posite directions, their moments will bear dif. ferent signs, and we have, by the same process as above,
$R . O D=P . O B-Q . O C ;$ and the direction in which the eystem tends to turn will be indicated by the sign of the mo. ment R. OD found from this expression.
35. Two Forces act in parallel directions on a rigid system. Two parallel

Let P, Q be the two Forces; O, any point in their plane. $\begin{gathered}\text { equivalent } \\ \text { to } \\ \text { single }\end{gathered}$

Draw $O \subset B$ perpeudicular to the forces. At B, C, apply two equal and opposite forces T; these will in no way affect the system.

Let R be the Re- narallel to sultant of $P, T)^{\text {the }}$ aoting at B; and S that of Q, T, at C. Then the directions of R, S will in general meet: let them do so in A, and suppose them to act at this point. They can now be here resolved into their original components,

Whoee mas altude in their oum
$P, T ; Q, T ;$ of whioh the forces T, being equal and opposito, may be remored altogether, leaving the foroes P, Q aoting in a dirootion parallol to their original direotion, and oombining into a aingle force ($P+Q$).
Again, the moment of this single force $(P+Q)$ about O is equal to the algobraio sum of those of ite componente R and S ($\$ 84$); and the moment of R in equal to the num of the moments of its compononta, namaly, P and T; and ea is that of S to the sum of the moments of Q and $T_{;}$amona which moments those of the forcen T decrey moh othery leaving the algobricio sum of the mounents of the original forces P, Q equal to the moment of the sipglo force $(P+Q)$, whioh has been shown to be thoir oquivaleat.

If the Forces P, Q had been takon aoting in opposite direotions, we should heve found by the name proones that the single equivalent foree had for its magnitide the difitarence of those of P and Q, and acted in the dirrection of the greater foroe, but that its moment was atill equal to the algobraio sum of their moments.

If, therefore, we now oxtend to parullel forces the same method of indicating oppositeness of direction by difference of aign, which was used in tho case of Yoroes aoting in the same line, we can inolude the above canes in a single atatement, as followa:

Two parallel foress acting on a rigid ayotem are equivalont to a single parallel forcs which is equal to thair algobraic sum, and whose moment round any point in the plano of the forces is equal to the algebraic sum of the momente of the tuo forces.

Exception. A couple.

In one case, however, the above procen becomen nagatory, which is when the two forces are parallel, equal, and oppoaito. Epoh a pair of forces is called a couplo, and the coue munt be aroluded fisom ons. general atatementh
36. If to this single equivalent Foreo in 8.85 , we give the name of Resultant, we can now include the results of the two last articles in one statement :

21

> Any two Forces in the same plane acting on a rigid sytem (unlose they form a couplo) arc equivalent to a single Feenttant fores, whose moment round any point in their plane is equal to the algobraic sum of thoir momente round this point.

37. Any Furces act in one plane on a rigid aystem.

Any Porcen In one plane

Taking any two of these, wo find their Roaultant, its moment being the sum of the moments of the two round any assumed poiat in the plane; combining this Resultant with a third to form a new Resultant, whose moment will be the sum of those of the three forecs; and this again with a fourth; and so on till wo havo tuken all the forces, we are loft at last with a aingle Resultant only, whose moment is equal to tho sum of the moments of all the Forces. In thus proceeding, we must avoid combining with any one of the partial resultadts a force which would form with it a couple; and this we can always do by taking instead of this force another one whioh will not form a couple, for if it did, there would then be two equal and parallel forces, not opposite, and these two could be combined into one whioh would now no longer form a couple with the Resultant spoken of; we can thus always evade forming a couple until we have combined all the forces but one, and it may happen that this one is equal, parallel, and opposite to the Resultant we have obtained from all the rest, so that we have a couple remaining.

Hence, any set of Forces acting in one plane on a rigid are reductsystem are either reducible to a couple, or else to a single Re- Ble cosultant, sultant Force, whose moment round any point in the plane is in general. equal to the algebraic num of the moments of the Forces round that point..
38. To find the conditions of equilibrium when Forces in one plane act on a rigid system which can turn freely abowe a fixed point in that plane.

The forces are reducible either to a couple or to a single andfor equiResultant Force.

In the former onase, equillibrium is not ponsible; in the lattor, equilibrium will subaist if the Resultant aithor be zero or pase through the fzed point, and each of those suppocitions will make ita moment about this point vaiahh, and therefore alno the algobraic sum of the momente of all the Foreen, to which num it has beon shown to be equal.

Henee the necessary and sufficiont condition of equilibrium is, that

- $14 m$ of efr moente van. hen.

The algebraic sum of the moments of all the Forces about the fixed point must vanish.

This prinoiplo will always be quoted by the name of "the vanishing of momenta."
89. The name princlple may easily be neen to apply when the rigld body in capable of turaing aboat a fixed atralght line or axis, and the forces are not all in one plane bat are perpendicular to thls axle. The moment of each Force being taken about that point of the axis which is cut by a perpendicular plane containing the Foree, we can atate the condition of equillibrium In the form:

The algebraic sum of the momente of the Forces about the fixed axis muse vanieh.
the lat. be $z 0 r o$ pocitions therefore sreen, to

CHAPTER IV.

CENTAE OF PARALLEL, FORCEA, AND OT ORAVITY.
40. It has been shown that two parallel forces (not forming neaniant of a couple) aoting on a rigid aystom, have for Rosultant a single forco in the samo plane; ita dircetion being parallol to that of the two, ita magnitude being the algobraio sum of their magsitudes, and its moment about any point in this plane being the algebraio sum of thoir moments about this point.

Also, the moment of a foreo about a line to which its direction in perpondicular has been defined to be the product of the number expressing the magnitude of the Foree, by the porpendicular distanco between its diroction and the line.
41. It will now be shown that the moment of this Resultant of two parallol foreen, about any line porpondioular to their direotion, is equal to the algobraic sum of the moments of tho two foreos about this line.

Suppose the forces P, Q, to be acting in the mme direotion perpondioularly to the plane of the figure and meeting this plane in tha points B, C; and their Rosuitant R equal in ithe (whiob $-P+Q$, and aots parallel to and in the same plane with them), to meet the plane of the igure in A. Let $b a c$ be any line in this plane, and draw to it the perpendioulars $A a, B b, C c$. Then, if $B A C$ be parallel to $b a c, A a, B b, C c$, are all equal, and the proposition is manifestly true, for

But if $B A C$ be not parallel to bac, let them meet in 0 . Then, O being a point in the plane of the forces, the moment of R round O is equal to the sum of those of P and Q round it, and therefore

$$
\text { R. } O A=P . O B+Q . O C .
$$

But by similar triangles

$$
\frac{A a}{O A}=\frac{B b}{O B}=\frac{C c}{O C}
$$

and therefore
moments of
the Forces.

$$
\text { R. } A a=P \cdot B b+Q . O c
$$

which proves the proposition for this ease, and the proof holds good also for the cases where the forces or their moments are in opposite directions, having due regard to algebraio sign.

Any number of parallel Forces have in general a aingle Resul. tant.
42. Any parallel Forces, acting on a rigid system, are either reducible to a couple or else to a single Resultant Force which acts in a parallel direction, its magnitude being the algebraic sum of the magnitudes of all the Forces, and its moment about any assumed line perpendicular to their direction, being equal to the algebraic sum of the moments of all the Forces about this line.

Taking any two of the forces (which do not form a couple), we find their Resultant, which acts in a parallel direotion, its magnitude being the algebraic sum of their magnitudes, and its moment, about any assumed line perpendioular to the direction of the forces, being equal to the algebraic sum of their moments about this line: combining this Resultant with any third force to form a new Resultant, and this again with a fourth, and so on as in § 37 , we arrive at last either at a couple or a single Resultant Force acting in a parallel direction, its magnitude being equal to the algelraio sum of the magnitudes of all the Forces, and its moment about the assumed line being equal to the algebraic sum of all their moments about this line.
p. Then, ent of R round it,
oof holds nents are sign.
tem, are nt Force eing the and its ir directs of all
couple), irection, nitudes, : to the sum of nt with in with er at a direo of the at the 1 their

43. The centre of Parallel Forces.

When given parallel Forces, acting at given points of a rigidly connected system, are reducible to a single Resuliant, its direction passes through a point whose position is invariable with regard to the points of the syslem, whaiever be the dircction of the Forces.

Take any two of the Forces P, Q, acting at the given points B, C. Join $B C$ and let their resultant R cut it in A. Then, the moment of R about any point in the plane being equal to the algebraic sum of the moments of P, Q, about this point; let these moments be talicn about A.

The moment of R about A is zero; hence, drawing $b A c$ perpendicular to the direction of the forces,

$$
P . A b-Q . A c=0
$$

and, by similar triangles,

$$
\begin{aligned}
\frac{A B}{A C} & =\frac{A b}{A c}, \text { and therefore, } \\
& =\frac{Q}{P}
\end{aligned}
$$

Hence $B C$, which is given, is cut in the point A in a ratio which is independent of the direction of the forces with regard to $B C$, and the position of A is therefore given with regard to B and C.

Now, taking any third force, acting at D, we may combine it with the resultant of P and Q, and the point in which the new resultant cuts $A D$ will be given in position with regard to A and D or to A, B and C.

And thus we may go on till we arrive at the final resultant.
Hence, the proposition as enunciated is true.
This point is called the centre of Parallel Forces.

The syatem may bo turned about it.

t

 be rigidly connected with the system and supported or fixed, the system will be kept at rest, and will remain so when the forees are turned about their points of action into any other direction. It will also still be at rest if it bo turned about this point into any other position, the forces acting always at the same points of the system and being always parallel to each other, though their directions may be varied at pleasure.The pressure supported by this fixed centre is evidently the algebraic sum of the forces, and the algebraic sum of their moments about any line through this point vanishes.

45. The Centre of Gravity.

Centre of Gravity.

When the only forees acting on a system are the weights of the several particles of that system, if we suppose the vertically-downward directions in which these weights act to be parallel to each other, and the weight of any particle to be independent of its position ; then, since the forces all act in the same direction, they have a single Resultant which is equal to their sum, that is, to the weight of the whole system, and aets vertically downwards through the centre of parallel forces, which is in this case called the centre of gravity.
46. The statieal effect, therefore, of any rigid system will not be altered by supposing it to be without weight, and the whole weight to be collected at its centre of gravity and there to act-this point, however, being rigidly connected with the system.

We may also, without alteration of the statical effect, coneeive the system to be geometrically divided into any number of systems, and the weight of each of these to be collected at its own centre of gravity and there act, these partial centres of gravity being rigidly connected with each other and the system.
in a given supported remain so ction into be turned es acting pg always be varied
47. Also, if the centre of gravity of a system be supported or fixed, the system will balance about this point in all positions under the sole action of the weights of the parts of the system, these being rigidly connected with each other and the centre of gravity, and this is sometimes made the definition of the centre of gravity.
48. The position of the centre of gravity relative to a given system How found. will bo determined from the consideration, that, placing the system so that any given line in it shall bo horizontal, and equating the moment of the whole weight collected at the centre of gravity with the moments of the several weights of the particles about this linc, the distance of the centre of gravity from the vertical plane passing through this line will be found. Taking thus three planes in succession intersecting in a point, the distances of the centre of gravily from each of these planes can be found, and its position therefore determined.
49. Since the position of the centre of gravity in the system depends on the relative and not the absolute weights of its parts, this position will not be affected by increasing or diminishing proportionally these weights.
50. If a rigid body be of uniform density : that is, if the weight of a given volume of its substance be the same in every part of the body; then, if there be a line about which the form of the body is symmetrical, the centre of gravity will be in that line; and if there be two such lines, the centre of gravity will be their intersection. Thus the centre of gravity of a circle or sphere is the centre; of a parallelogram or parallelopiped, the intersection of its diagonals; of a regul.. prism or cylinder, the middle point of its axis.
51. If a uniform body balance in every position about a line, the centre of gravity lies in that line; and if about two such lines separately, it will be their intersection. Thus a triangular area will balance about a line drawn from one angle to bisect the opposite side, for the triangle can be generated by a line moving parallel to one side, and the small area generated at any stage of its motion will balance about the line

Of a triangular area.

Which bisects it. Hence the centre of gravity of a triangular area is the intersection of lines drawn from the angles to bisect the opposite sides, and this intersection is at a distance from the anglo of two-thirds of the bisecter drawn from it.

For let $A B C$ be the triangle, and $B D, C E$ bisect $A O, A B$, and meet in G. Then G in the centre of gravity.

Join $E D$, which is parallel to $B C$ (Eucl. B. VI. 2),

Thon $\frac{B G}{G D}=\frac{B O}{E D}$, by similar triangles $B G O, E G D$

$$
\begin{aligned}
& =\frac{C A}{A D}, \text { by similar triangles } A C B, A D E \\
& =\frac{2}{1}
\end{aligned}
$$

Hence $B G$, being double of $G D$, is $\frac{2}{3} B D$.
The same point G is also the centre of gravity of three equal bodies placed at the points A, B, C.

Of any polygonal area.

Cor. In this way can the centre of gravity of any polygonal area be found; for, dividing the figure into triangles, the weight of each of these may be supposed collected at its own centre of gravity, and the centre of gravity of the whole figure will be that of these weights, considered as heavy particles situated in those points.

The method of finding this latter will be traated in the following article.
52. To find the cestre of gravity of a system of particles all in one plane.

Let $O x, O y$ be two perpendioular liaes in this plane, with regard to which the positions of the partioles are known.

Let P be the place of one of the particles, w its weight.
triangular es to bisect tance from it.
riangle, and and meet in of gravity.
allel to $B C$
$E G D$
$A D E$
qual bodies
polygonal gles, the at its own he whole as heary
d in the
particles ne, with
wn.
eight.

Draw $P N, P M$ perpendioular to $O x, O y$, respeetively, and denote $P M$ by $x, F N$ by y.

Suppose the plane of the figure to be horizontal ; then $O x$ is a line perpendicular to the direction of the weights, and therefore (§36) the moment about $O x$ of the whole weight collected at the centre of g. vity is equal to the algebraic sum of the separate moments about it. Hence if W be the whole weight, and the distance of the centre of gravity from $O x$ be denoted by \bar{y}, we have
and

$$
\begin{gathered}
W \cdot \bar{y}=\Sigma(w \cdot y) \\
\bar{y}=\frac{\Sigma(w \cdot y)}{W}
\end{gathered}
$$

where Σ denotes the algebraic sum of all the products corres ponding to that within the bracket. Also, if a moment be reokoned positive when P is above the line $O x$, it will plainly be negative when P is below the line, and the difference in sign of the moments will therefore at once be indicated by considering a y positive when drawn upwards from $O x$, and negative when downwards.
Similarly, by taking moments round $O y$, if \bar{x} be the distance of the centre of gravity from $O y$, we have

$$
\bar{x}=\frac{\Sigma(w \cdot x)}{W}
$$

where x will be considered positive when drawn to the right of O_{y}, negative when to the left.

The distances of the
 centre of gravity from these two lines being thus found, and the directions in which these distances are drawn being indicated by the signs with which they are affected, the position of the centre of gravity is fully determined.

Of particlea n a intralght ine.

Cor.-If the partieles all lie in the same line, take this for Ox. Then, overy y being zero, \bar{y} is so also, and the centre of gravity is in $O x$, its distance from O being given by

$$
\bar{x}=\frac{\Sigma(w x)}{W}
$$

The following independent proof of this may be noted.
63. Let $O x$ be the line in which the particles lie, O being any point from which the distances of the particles are known, and let this line be placed horizontal. Let x be the distance from O of the particle whose weight is w.

Let W be the whole weight, and \bar{x} the distance of the centre of gravity from 0 .

Draw another horizontal line from O perpendicular to $O x$. This line will then be perpendicular to the direction of the weights, and the moment about it of the wholo weight collected at the centre of gravity will be equal to the algebraic sum of the moments of the several weights. Hence we have
or

$$
\begin{aligned}
W . \bar{x} & =\Sigma(w . x) \\
\bar{x} & =\frac{\Sigma(v . x)}{W}
\end{aligned}
$$

where $\mathbf{\Sigma}$ denotes the algebraic sum of all the products corrcsponding to that within the bracket. Also, if a moment be reckoned positive when the particle is on one side of O, that of a particie on the other side of O will be negative, and the difference in algebraic sign of the moments will therefere at once bo indicated by considering the x 's of the particles to be positive or negative according as they lie on one or the other side of O.

Heavy body suspended freely, its centre of gravity Is vertlcally above or below the poin of suspen-
54. When a rigid lody rests suspended from or supported by a fixed point, and acted on only by its weight, the vertical line drawn through the centre of gravity will pass through the point of suspension or support ; and, conversely. sion.

For the weight of the body may be supposed collected at its centre of gravity, and there to act vertically downwards; and the necessary and sufficient condition of equilibrism is that its moment about the fixed point must vanish, which requires that its direction shall pass through this point.

ke this for

 the centre n bynoted.
1g any point let this line the particle
e centre of
o Ox. This hts, and the e of gravity the several

lected at

 pnwards ; brism is h, which
CHAPTER V

THE MECHANICAL POWERS.
ho Machines.
56. It is usual to treat of the Simple Machincs, or Mechanical Powers as they are sometimes called, under six classes, namely-the Lever, the Wheel and Axle, the Pullice, the Inolined Plane, the Screve, and the Wedge. Of these, the Wedge will not be here considered, as in its practical applioation the investigation on the principles of the forcgoing ehapters would be of small utility.

When a power P sustains on any one of these machines a

Mechanical
ndvantage lefined. weight W, the ratio $W: P$ is called the mechanical advantage of the machine; and the machine is said to gain or lose advantage according as this ratio is greater or less than unity.

In the following investigations, bodies will be supposed rigid, surfaces smooth, strings perfectiy flexible and of insensible size, and the parts of the machine to be without weight, unless otherwise specified.

57. The Lever.

A straight lever is a rod capable of tarning freely in one plane about a point in itself which is fixed. This fixed point is called the fulcrum.

Case 1.-The weight W at one end of the lever supported
Fig. 1. by a weight P at the other end. $B A C$ the lever; A the fulcrum.

Draw b $A c$ horizontal, and therefore perpendioular to the direction of the weights.
'When by the vanishing of moments,

$$
\begin{aligned}
& \text { P. } A b-W . A c=0 \\
& \text { or } \quad P \cdot A b=W \cdot A \\
& \text { But, by siuilar triangles, } \frac{A B}{A b}=\frac{A O}{A c}
\end{aligned}
$$

and therefore

$$
P \cdot A B=W \cdot A C .
$$

Cor. 1.-The pressure on the fulerum is the weight $(P+W)$ actinge vertically downwards.

Cor. 2.-Since the relation $P . A B=W . A C$, does nut involve the angle at which the lever is inclined to the horizon, it follows that if the lever be at rest in any one position (except a vertical one), on being turasd into any other position it will still be at rest.

Case II.-The power P and the weight W acting in oppo Flo. . . site (but parallel) directions, and the weight nearer to the fulcrum than the power.

Using the same construction and reasoning as in the former case, we have here also

$$
P . A B=W . A C
$$

Cor. 1.-The pressure on the fulcrum is here $W-I$, acting vertically downwards. The second corollary also holds.

Case III.-The power P and the weight W acting in ${ }_{\text {Fg. }}$: opposite but parallel directions, and the power nearer to the fulcrum than the weight. As before, we have

$$
P \cdot A B=W . A C
$$

Cor. 1.-The pressure on the fulcrum is $P — W$ and acts vertically upwards. The second corollary also holds.
58. In all these cases, the wechanical advantage $\left(\frac{W}{P}\right)$ is $\frac{A D}{A C}$ sech. ©ith. or the ratio of the arms of the power and weight. In Case I.
this ratio may be cither equal to, greater, or less than unity; but in Case II. it is always greater, and in Case III. less: hence, advantage is alwnys gained in the second case and lost in the third, but may be either gained or lost in the first.
lever milio boachlieavy.
89. If the welght of the lever (10) be taken Into account, it may be supposed collected at the centre of gravity a (which will be the milidle point if the lover be milform).

Let the vertleal through a ineet the horizontal $A b c$ in g.
Then, by the vanishing of momenta nbout A,

$$
I \cdot A b+w \cdot A g-W \cdot A c=0
$$

but by similar trianglea,

$$
\frac{A B}{A b}=\frac{A G}{A g}=\frac{A O}{A c}, \text { and therefore }
$$

or,

$$
\begin{gathered}
P \cdot A B+w \cdot A G-W \cdot A C=0 \\
P \cdot A B+w \cdot A G=W \cdot A C
\end{gathered}
$$

Similarly, in Casea II. and III. we should find

$$
P \cdot A B=W \cdot A C+v \cdot A G
$$

Here also the lever will balance in all positions about the fulerum.

Rombn
Steelyard.
Fig. 4.
60. In the common Balance, which consists of n heavy beam, having scale pans suspended at its ends, and balaneing about a horizontal knifo edge, the pans and arms of the beams aro made perfectly equal and similar on ench side of the edge, but the centre of gravity of the beam is made to fall vertically below the knife-edge when the beam is horizontal. The benm will therefore rest in a horizontal position ouly when the pans are londed with equal weights; and if then disturbed from this position, the moment of lts ows weight bringe it buck, so that tho equilibrium is stable.
61. In the common or Roman Steelyard, a heary beam has attached to it a knife-edge which is supported as a fulcrum; a weight runs along the upper straight edge of the benm on the longer arm, and the substance to be woighed is attnehed at n fixed point to the shorter arm by thook or seale-prn. The longer arm is graduated, and the weight of the substance is known from the graduntion at the point where the moveable weight is, when the beam is at rest.
than unity; - III. less: ase and lost he first.
nt, It may be will be the
ng.
the filcrum.
beam, having a horizontal de perfectly re of gravity lige when the rizontal posi; and if then ght brings it
has nttached weight runs arm, and the shorter arm d the weight at where the

In fig. 4, A is the kilfoedge or fulcrum, P the weight moveable along A $B: C$, the point whence the substance, whone welght W is requirod, is suspended.

C A 13 being horizontal, let O be the point on the other side of A where P ' would keep the Steelyard at reat when the weight W la a way. The moment of the weight of the Steelyard about A is therefore equal to P '. $A O$.

Now let the weight W bo attached, and lot M be the place of P when equilibrium is obtalued. Then, taking moments about A,

$$
\text { W. } \begin{aligned}
A O & =P \cdot A M+\text { monent of weight of steelyard } \\
& =P \cdot A M+P \cdot A O \\
& =P \cdot O M
\end{aligned}
$$

Hence, $W=\frac{P^{\prime}}{A C^{\prime}}$ O. M,
And, since P and $A C$ are invariable, W is proportional to $O M: O$ therefore is the point from which the graduntion must be made. Thus, if P be at B_{1} when W is 1 lb , and we take $O B_{1}:=B_{1} n_{2}=$ $B_{2} B_{3}=\ldots$; then when P is at $B_{2}, B_{3}, \ldots W$ will $!32,3, \ldots$ lbs.
62. The preceding eases of the lever are only special appli- "Principle," cations of the general investigation in Chap. HI. In fact, any body moveable about a fixed point and acted on by forces in the plane of that point may be considered a lever, and the principle of $\S 38$ is often quoted as the principle of the lever.

63. The Wheel and Axle.

Wheel and
This machine consists of a circular drum or wheel, which $\begin{gathered}\text { nxle. } \\ \text { F. }\end{gathered}$ is attached to a cylinder or axle, its centre lying in the axis of the cylinder and its plane being perpendicular to this axis. The whole system runs freely on this axis, which is fixed; and the power P acts by a string coiled round the wheel, and supports a weight W which hangs from a string coiled round the axle. The strings being perpendicular to the axis, and also to the radii of the wheel and axle respectively at the points where they become uncoiled, we have for the condition of equilibrium, by § 39 , taking moments about the axis,

$$
P \times \text { radius of wheel }-W \times \text { radius of axle }=0
$$

Mecho adv. Hence the mechanical advantage $\left(\frac{W}{P}\right)$ is equal to the ratio of the radii of the wheel and axle.

Cor-Any number of wheels and axlea may run on the mame axis, and the condition of equilibrium will be that the sum of the products of each power into the radius of its wheel is equal to the corresponding sum for the weights and radii of the axles, the powers being all supposed to turn in the same direction and tho weights all in the opposite.

Pullices.

64. The Pullies.

A pully is a wheel running freely on an axis, which, pase sing through its centre, is fixel in a block by which the pully .s suspended and to which a weight may be attached. The circumference of the pully is grooved to admit of a string passing over or under it. The pully is said to be fixed or moveable according as its block is so.

Single fixed Pully.
Let P, Q be the foreos, applied at the ends of the string passing over the pully. The whole system being smooth, the tension of the string is the same throughout (§ 10), and, therefore,

$$
P=
$$

No mechanical advantage is gained or lost.

Niflapmere.
nhte pully: nh, prolly.

65. Single moveable pully supportecl by a string passing under it, the free portions of the string being parallel, and a weight attached to the llock.

Let P be the force npplied to the string on one side of the pully; then, the whole system being smooth, the tension of the string is the same throughout, and P is therefore also the force applied to the string on the other side. There are then two parallel fornes, each equal to P, supporting a weight W which acts vertically. Hence the strings must be vertical, and

$$
W=2 p
$$ be that the radius of its weights and 1 to turn in osite.

which, pas. ich the pully ached. The of a string bo fixed or f the string smooth, the § 10), and,
ing passing rallel, and a
side of the b tension of fore also the cre are then a weight W rertical, and

Here the mechanizal advantage is 2.
Cor. 1. If one end of the string be attached to a Axed point, the mane reault holda good, fur the tenaion munt be the amme throughout.

Cor. 2. If the weight s of the pully, Including the block, be taken into account, it may be nupposed attached to the block, and we havo

$$
W+v=2 P
$$

65. First syatem of pullies.

Pirne nyatorn Fige.

A number of pullies are attached to tho same block, which supports a weight, and the same string passen round all tho pullies.

The portions of the strings between the pullies are supposed to be parallel, and will therefore also be vertical as in § 65 . Let P be the foree applied to the string; P will then be the tension throughout, and the weight W is supported by as many parallel forces, each equal to P, as there are parallel portions of the string at the lower block; and the number of these portions is evidently double the number of pullies at this block. Hence, if n be the number of moveable pullies,

$$
W=2 n P
$$

and the mechanical advantage is $2 \boldsymbol{n}$.
Cor. If the weight of all the pullies within the lower block be w, the weight of the block aiso being included, we may suppose this weight attached to the block, and

$$
W+w=2 n P
$$

67. Second system of pullies.

Each pully hangs by a separate string, the last pully supporting the weight; the frec portions of all the strings are parallel, and therefore vertical.

Let $A_{1}, A_{2}, A_{3}, \ldots$ be the pullies, n being the number of them; W, the weight supported at the last ene; P, the power applied at the first string. Number the strings $1,2,3, \ldots$ according to the pully under which each passes. The tension of cach scparate string is the same throughout.

The tension of (1) is P; the weight supported at A_{1} is double the tension of (1), and therefore $=2 P$, and this is the tension of (2).

The weight supported at A_{2} is double the tension of (2) and therefore $=2(2 P)=2^{2} P$, and this is the tension of (3).

The weight supported at A_{3} is double the tension of (3), and therefore $=2\left(2^{2} P\right)=2^{3} P$, and this is the tension of (4).

Proceeding in this way, we come at last to the weight supported at $A_{n}=2^{n} P$, and this is the attached weight. Hence,

$$
W=2^{n} P
$$

and the mechanical advantage is 2^{n}.
Cor. 1. The mechanical advantage is doubled by every additional pully.

Pullies sup-
Cor. 2. The weight of the pullies may be readily taken into account by observing that, from the preceding, the force required to support a weight W on n moveable pullies is $\frac{W}{2^{n}}$.

Let $w_{1}, w_{2}, v_{3}, \ldots$ be the weights of the several pullies, blocks in. cluded. Each of these weights may be supposed a weight attached to its block, and supported on the system of pullies above it.

The power required to support w on one moveable pully is $\frac{{ }^{w}}{2}$.

	"	"	"	w_{3} on three	،	*
	n	"	"	${ }^{20}{ }_{n}$ on n	"	
Also	"		"	W on n	"	

ed at A_{1} is , and this is n of (2) and ision of (3). ht. Hence, to support a
ss, blocks in. ght attached e it.
lly is $\frac{w_{1}}{2}$. les is $\frac{w_{2}}{2}$
${ }_{2}^{w_{3}}{ }_{2}^{3}$.
$\frac{{ }_{n}^{n}}{2^{n}}$
$\frac{W}{2^{n}}$

And the whole power required will be the sum of these; therefore,

$$
\begin{gathered}
P=\frac{w_{1}}{2}+\frac{{ }_{2}}{2^{2}}+\ldots+\frac{{ }^{n}}{2^{n}}+\frac{W}{2^{n}} \text { or } \\
W=2^{n} P-\left(\because^{n-1} w_{1}+2^{n-w_{2}}+\ldots+w_{n}\right)
\end{gathered}
$$

The weight of the pullies therefore lessens the advantage of the machine.

Cor. If the weight of each pully be the same (w), then

$$
\begin{gathered}
W=2^{n} P-\left(2^{n-1}+2^{n-2}+\cdots+1\right)_{v} \\
=2^{n} P-\left(2^{n}-1\right) w .
\end{gathered}
$$

68. Third system of pullies.

Third sys-
$\stackrel{\text { tem, }}{\text { Fig. } 0 .}$

Each pully hangs by a separate string which is attached to a bar or block earrying the weight, and the free purtions of all the strings are parallel, and therefore vertical.

This is the second system turned upside down, the weight becoming a fixture, and the beam to which the strings are attached becoming a moveable bar carrying a weight, and the mechanical advantage might be inferred from the preceding. The pressure supported by the beam in the second system is the sum of the tensions of the strings, that is, $P+2 P+2^{2} P+\ldots$ to n terms, $=\left(2^{n}-1\right) P$, and this becomes the weight W in the third system. Therefore,

$$
W=\left(2^{n}-1\right) P
$$

The last pully $\left(A_{n}\right)$, however, becomes fixed, so that the number of moveable pullies is only $(n-1)$. Making n the number of moveable pullies we have

$$
W=\left(2^{n+1}-1\right) P
$$

The following is an independent investigation for this case.
Let $A_{1}, A_{2}, A_{3}, \ldots A_{n}$, be the pullies, n being their number exclusive of the last one A, which is fixed, and $\overline{n+1}$ the number of strings.
$B_{1}, B_{2}, B_{3}, \ldots B_{n+1}$, the points at which the respective strings are attached to the straight bar whioh carries the weight W. Number the strings $1,2,3, \ldots$ aecording to the pully over which each passes.

The tenison of each separate string is the same throughout.
The weight supported is the sum of tise pressures of the strings at $B_{1}, B_{2}, B_{3} \ldots$

The tension of (1) is P, and this is the pressure at B_{1}.
The weight supported at A_{2} is double the tension of (1) and $=2 P$, and this is therefore the tension of (2) and the pressure at B_{2}.

The weight supported at A_{3} is double the tension of (2) and $=2(2 P)=2^{2} P$; and this is therefore the tension of (3) and the pressure at D_{3}.

Proceeding in this way we obtain the tension of the $(n+1)$ th string and pressure at $B_{n+1}=2^{n} P$.

Taking the sum of all these pressures,

$$
\begin{gathered}
W=F+2 P+2^{2} P+\ldots \ldots+2^{n} P \\
=\left(2^{n+1}-1\right) P
\end{gathered}
$$

and the mechanical advantage is $2^{n+1}-1$.
\mathbf{P},llies sup- Cor. The weights of the pullies may be taken into account by poiedheary. observing that each may be considered as a power - ting by means of the string from which it hangs, and supporting a weight on the system of moveable pullies above it.

Let $w_{1}, w_{2}, w_{3}, \ldots w_{n}$, be the weights of the pullies, blocks included. The weight supported by w_{1} on $(n-1)$ moveable pullies is $\left(2^{n}-1\right) w_{i}$.

$$
\begin{array}{rlllll}
& " & " & w_{2} \text { on }(n-2) & " & " \\
& " & " & \left.w_{n}^{n-1}-1\right) w_{2} . \\
\text { Also } 0 & " & " & (2-1) w_{n} . \\
\text { Als } & \text { " } & P_{\text {on } n} & \text { " } & \text { " } & \left(2^{n+1}-1\right) P .
\end{array}
$$

e respective carries the ding to the
hroughout. ures of tho
at B_{1}.
ion of (1)
2) and the
ion of (2) tension of
$(n+1)$ th
ccount by y means of on the sys-

3 included.
$\left.{ }^{2}-1\right) w_{i}$. $\left.{ }^{-1}-1\right) u_{2}$.
$2-1) w_{n}$.
+1 1) P.

The whole weight W (including that of the bar) is the sum of thees; therefore,
$W=P\left(2^{n+1}-1\right)+w_{1}\left(2^{n}-1\right)+w_{2}\left(2^{n-1}-1\right)+\ldots+w_{n}(2-1)$.
The weight of the pullies therefore increases the advantage of the machine.

Cor. 1. If the weight of each pully be the same (w), then,

$$
\begin{gathered}
W=P\left(2^{n+1}-1\right)+w\left(2^{n}+2^{n-1}+\ldots+2-n\right) \\
=P\left(2^{n+1}-1\right)+w\left(2^{n+1}-2-n\right) .
\end{gathered}
$$

If we put $P=0$, we have

$$
W=v\left(2^{n+1}-2-u\right),
$$

which is the weight that would be supported by the pullies alone.
Cor. 2. The point of the bar to which the weight should be attached in order that the bar may be horizontal will be the centre of parallel forces for the tensions of the strings and the weight of the bar. If we neglect the weight of the pullies and the bar, this point will remain the sume in a system, whatever be the power; if, however, the weight of bar and pullies be considered, it will be different for different powers.
69. Taking the same number n of moveable pri.ics in each sys- Systens tem, the respective mechanical advantages are $2 n, 2^{n}, 2^{n+1}-1$, compared. and these numbers are in ascending order of magnitude. Hence the mechanical advantage of the third system is greater than that of the second, and of the second than of the first when there is more than one pully.

$$
\begin{aligned}
& \text { 70. The following combination of pullies may be noticed. } \begin{array}{l}
\text { Spanish1 } \\
\text { Itantun. } \\
\text { It is called the Spanish Barton. }
\end{array} \begin{array}{l}
\text { Hed }
\end{array}
\end{aligned}
$$

The tension of the string to which F is attached is the same throughout and $=P$. That of the ether string is also the same throughout and $=2 \mu$. Therefore $W=4 P$.

If we take the weights of the pullies A, B into account, we have $W+B=4 P+A$.

Inclined piane.

71. The Inclined Plane.

This is a plane fixed at a certain angle (called its inclination) to the horizon, and on it a heavy particle is supported by a force applied and the reaction of the plane. ' Since the plano is smooth, its reaction is exerted in a normal direction; also the weight of the particle acts vertically: therefore if a vertical plane be drawn through the particle and the normul to the inclined plane, since the plane thus drawn contains the directions of those two forees acting on the particle, the third furce or P'veer must also act in this plane.

Let il figure represent this plane ; $A B$, the section of the inclined ane; $A C$, horizontal.

The angle $B A C$ is the inclination, a (suppose).
Let P, the power, act at an angle θ to $A B$, and let
R be the reaction of the plane exerted perpendicularly to $A B$.
W the weight of the particle acting vertically downwards.
The particle is then kept at rest by the three forces P, R, W.
Taking the resolved parts of these along $A B$, that of P is $P \cos 0$; of R is 0 ; of W is $W \cos \left(90^{\circ}-a\right)=W \sin a$.

Hence by the "vanishing of the Resultant,"

$$
P \cos \theta-W \sin a=0
$$

which gives the mechanical arlvantage $\left(\frac{W}{P}\right)=\left(\frac{\cos \theta}{\sin \alpha}\right)$.
Cor. 1. For a given inclination, the mechanical advantage is greatest when $\cos \theta$ is greatest ; that is, when $0=0$, and the force acts parallel to the plane.

For a force acting at a given angle to planes of different inclinations, the mechanical advantage increases as the inclination diminishes.

Con . 2. Resolving the forces horizontally we have

$$
P \cos (\theta+a)-R \sin \alpha=0
$$

Also resolving them perpendicularly to the direction of P,

$$
W \cos (\theta+a)-R \cos \theta=0
$$

These two equations give R in terms of P or W.
Or these relations might at once have been asserted from the "trianglo of furecs" (§ 29): for this gives

$$
\frac{P}{\sin a}=\frac{W}{\cos \alpha}=\frac{R}{\cos (\theta+\alpha)}
$$

Althongh these results have been obtained only for a particle, they are true for a body of finite size supported on the plane by a power whose direction passes through its centre of gravity.
72. In the case where the power is acting parallel to the power act plane, as where it is exerted by a string, parallel to the plane, tug parante. passing over a pully and supporting a weight P hanging freely, we have from the above by putting $\theta=0$, or at once by Stevinus. resolving the forees along $A B$, observing that P is the tension of the string,

$$
P-W \sin \alpha=0
$$

and the mechanical advantage $-\frac{W}{P^{2}}=\frac{1}{\sin \alpha}$, and is the cosecint of the inclination.

If $B C$ (vertical) be called the height of the plane, $A B$ its length : then, since $\sin a=\frac{B C}{A B}$, we have

$$
P-W \frac{B C}{A B}=0
$$

$$
\text { or } \quad \frac{P}{W}=\frac{\text { height }}{\text { length }}
$$

Again, resolving forees perpendicularly to the plane, we have

$$
\begin{gathered}
R-W \cos \alpha=0 \\
\text { or } \quad R=W \cos a=W \frac{A O}{A B} \\
\text { and } \quad \frac{R}{W}=\frac{\text { base }}{\text { length }}
\end{gathered}
$$

Hence the power, weight and pressure on tho plane are proportional to the height, length and base of the plane.

Con. This latter result is at once seen from the "trianglo of furces;" for, drawing C $C N$ perpendicular to $A B$, the sides of the triangle $B C N$, taken in order, are parallel to the direotions of the forees, and therefore represent them in magnitude; and the triangle $A B C$ is similar to $B C N$.
surew.

Fig. 1.4.
The Screw is a circular cylinder, on the surface of which runs a protuberant spiral thread, whose inclination to the axis of the cylinder is everywhere the same. This thread works freely in a fixed block, wherein has been cut a corresponding groore. The power is applied perpendicularly to a rigid arm which passes perpendicularly through the axis of the cylinder and is rigidly attached to it, and the weight is supported on the cylinder (whose axis is here supposed to be vertical), and may be supposed to act in the direction of this axis.
74. The complement of the invariable inclination of the thread to the axis, or (the axis being vertical) the inclination to the horizontal line which touches the cylinder at the point, Fig. 13. is called the pitch of the screw. If a right angled triangle $B A C$ be drawn, having the base $A C$ equal to the circumference of the cylinder, and the angle $B A C$ equal to the pitch of the screw (α), and this triangle be wrapped smoothly on the cylinder, its hypothenuse will mark on the cylinder the course of the thread, and by superposing similar triangles the whole
course of the thread may be continued. $B C$ is then the Wistance between two contiguous threads, and we have

$$
\begin{aligned}
& \tan B A C=\frac{B C}{A C^{\prime}} \\
= & \frac{\text { dictance between two contiguous threads }}{\text { circumference of cylinder }}
\end{aligned}
$$

75. The Screw is kept at rest by the weight (W) which Fig. 14 acts vertically, by the power P which acts horizon' 'ly, and by the reactions of the groove on the thread at the various points in contact.

Since the thread is smooth, the reaction at each point of it is normal to the thread; and the angle between the directions of this normal and the axis, being the same as that between the thread and the horizontal tangent which are respectivels perpendicular to them, is a, the $p^{\text {sich }}$.

If then we resolve this reaction at any point, R (suppose) rik. 15 iuto two forces; one, vertical, and the other, horizontal and touching the eylinder, the former will be $R \cos a$, and the latter $R \sin \alpha$.

All these vertieal portions being parallel, will form a single vertical resultant whose magnitude is $\cos a \Sigma(R)$, and this must counterbalance the weight W, since all the other forces are horizontal.

$$
\begin{equation*}
\text { Hence } \quad \cos \alpha \check{L}(R)=W . \quad \ldots \ldots \tag{1}
\end{equation*}
$$

Again the korizontal portions of the R 's tend to turn the cylinder about its axis, and since each acts in a horizontal direction touching the cylinder, the radius of the cylinder is itself the perpendicular distance between the axis and the direction in each case. Hence the moment of one of these $(R \sin \alpha)$ is

$$
R \sin a \times \text { radius of cylinder, }
$$

nud the sum of them all is

$$
\sin a \times \text { radius of eyliader } \times \Sigma(\boldsymbol{R})
$$

and this must be equal and opposito to the moment of the power, namely, $P \times$ arm of P.

Henco \sin a \times radius of cylinder $\mathbf{\Sigma}(R)=P \times$ orm of P. Dividing the sides of this equality by those of the equalits (1)

$$
\frac{\sin a}{\operatorname{eos} a} \times \text { radius of cylinder }=\frac{P \times \operatorname{mrm} \text { of } P}{W}
$$

$$
\text { Hence, since } \frac{\sin a}{\cos a}=\tan a=\frac{\text { distance between threads }}{\text { circumference }}
$$

dist.bet. threads $\times\left(\frac{\text { radius }}{\text { cireum. }}\right.$ of cylinder $)=\frac{P \times \text { arm of } P}{W}$

$$
\text { but } \frac{\text { radius }}{\text { circum. }}=\frac{1}{2 \pi}
$$

and $2 \pi \times$ arm of P is the circumferenco of the cirele which the end of P 's arm would describe, and may be briefly called the circumference of P; hence

$$
\frac{P}{W}=\frac{\text { distance between contiguous threads }}{\text { circumference of the power }}
$$

Wesh adv. and this ratio inverted is the mechanical advantage.
Cor. 1. The mechanical advantage is inereased by diminishing the distance between the threads or increasing the arm of the power.

[^0]Sometimes the serew is fixed and the block moveable, as in the ense of a common nut; or the groove may be cut in the screw itself, and the thread project in the block.

To all these cases the preceding investigation applies,

76. The Wedge.

This is a solid, whose bounding surfaces are two intersecting planes. Most cutting instruments come under this class. It is used generally to separate the parts of bodies, either by blows or a moving pressure, and in this mode of use its inves. tigation belongs to Dynamics. When used to keep open a rift in a body, it acts generally by means of friction, and not by a weight applied to it; it is therefore useless to proceed with its examination on tl : principles employed hitherto.

VIRTUAL VELOCITIES.

77. If a machine int rest under a power P and a weight W virtual be put in motion, so howeser that its geometrical relations are unaltered, the space described by the point of application o^{f} the power, estimated always in the direction of the Pover, is called the virtual velocity of the power: and similarly for the weight.

The principle of virtual velocities asserts that the product of P by P 's virtual velocity is equal to that of W by W 's virtual velocity.
78. This priuciple is only a special application of a far more general one, which it is not hero necessary to examine. We
shall therefore only establish the principle, as above stated, in n fow of the more simple eases, by proving that it leads to the relations of equilibrium already found.

The geometrien relations in a machine being such that the spaces described in different displacements are always proportional, it will be only necessary to prove the principle for a particular disphacement, and we may select this as convenient.

Miealghe
bever.
Flpi, 16.
79. The straight lever under weights at its ends.

Let the lever BAC be horizontal, and displace it round A into the position $B_{1} A C_{1}$ the direetions of P and W meeting $B A C$ in l, c. Then $B_{1} b$ is $P^{\prime \prime}$ 'sirbual velocity, and $C_{1} c$ is W^{\prime} 's.

The principle then asserts that

$$
\begin{gathered}
P \cdot B_{1} b=\mathrm{V} . C_{1} c \\
\text { but by similar trinngles, } \frac{B_{1} A}{B_{1} C}-\frac{C_{1} A}{A_{1} c} ;
\end{gathered}
$$

hance $P \cdot A B=W . A C$, the condition found in $§ 57$.

Whect and
axle,
Flrior

Pulles.
single pulty.

S0. Hohed and Axlc.
Suppose the machine to make one complete turn; then, the siace descended by P is the circumferenee of the wheel; and by W, that of the axle. The principle then asserts that
$P \times$ circumference of wheel $=W \times$ circumfercace of usle,
and the circumferences are as the radii: therefore,
$P \times$ radius of wheel $=W \times$ radius of axle, the condition found in $\S 63$.
81. Pullies.

In the single fixed pully, the principle is obviously true.
In the single moveable pully (fig. 6), let the pully be raised through one inch, then W is raised through one inch, and
o stated, in leads to the rh that tho ays propornciplo for a convenient.
it round A W meeting y, and $C_{1}{ }^{c}$
ono inch of each portion of the string is set free ; therefore, P ascends through two inches, and the principle asserts that

$$
P \times 2=W \times 1
$$

which is the condition in §65.
82. In tho first system of pullies, let the lower block bo Firat nystem raised one inch : then W is raised one inch, and one ineh of Fls. 7. each portion of the string at the block is set free; therefore, on the whole, $2 n$ inches are set free, and this is the space through which P descends.

The principle then asserts that

$$
P \times 2 n=W \times 1
$$

the condition found in § 66 .
83. In the sceond system of pullies, let W be raised 1 inch: then A_{n} rises through 1 inoh, and each pully rises through sernnt. twice as much as the one below it, and P rises through twice Flg s. as much as the top-pully; therefore on the whole, P 's aseent will be 2^{n} inches ; and the principle asserts that

$$
P \times \boldsymbol{\Omega}^{n}=W \times 1
$$

the condition found in $\S 67$.
84. In the third system of pullies let W and the bar be thiru raised 1 ineh : then each pully descends through this 1 inch "yntem. and twice as much as the pully abcoe it, and P descends ${ }^{\text {Fg. a }}$. through 1 inch and twice as much as A_{1}.

The last pully A_{n} descends through 1 : therefure, the last but one descends through $1+2 \times 1$

| " two " | |
| :--- | :--- | :--- | :--- |
| " three " | $1+2(1+2)$ or $1+2+2^{2}$ |
| " | $1+2\left(1+2+2^{2}\right)$ or $1+2+2^{2}+2^{3}$ |

and so on.

On the whole, P " $1+2+2^{3}+2^{3}+\ldots+2^{n}$, or $2^{n+1}-1$.
And the principle anserts that

$$
P \times\left(2^{n+1}-1\right)=W \times 1
$$

the condition found in § 68 .
firlinud jlaties,
Fig. 12.

Hirew.
Fig. 13.

Holerval' Halance.

Fig 17.
85. In the inclined plane, the power acting parallel to the plane, (fig. 12), let W be at the bottom of the plane and be drawn up to the top. Then W 's vertical displacement is the height of the plane, and P_{8} descent in its length. The principle asserts that

$$
P \times \text { length }=W \times \text { height, }
$$

the condition found in § 72.
86. In the serew, let one complete turn be made. Then the distance moved through by the end of P 's arm, eatimated always in the direction of P, is the circumference of P; and the space descended by W is the distance between two threads. The prineiple then asserts that
$P \times$ circumference of $P=W \times$ distance between two threads, the condition found in § 75.
87. Assuming the truth of this prinoiple of virtual velucities, it may be conveniently employed to find the mechanical advantage in many machinos-as examples, let us take Rolerval's Balance, The Differential Axle, and Hunter's Screw,
83. In Reberval's Balance the sides of a parallelogram are conneoted by free joints with each ot'.ar and with a vertical axis passing through the middle points of opposite sides; so that the figure is symmetrical about this axis, and the other opposite sides aro always vertical. The weights P, W are carried by arms fixed perpendicularly to these latter sides, which arms are therefore always horizontal. If the machine, when at rest, be displaced, one of the weights ascends as much ns the other deseends, and they are therefore equal.
arallel to the dane and be ement is the The prin.
nade. Then 's arm, estiircumference anco betwoon
petween two
virtual veloe mechanical take Roler. r's Screw,
lelogram are th a vertical ite sides ; so ad the other P, W are carsides, which chine, when as much as

This result is indepondent of the particular pointa of the arms from which the weights depend, and in this lies the convenience of the machine as a Balance.
89. In the Differential Axle (fig. 18), two axles of different miriementia sizes run fixed together on the same axis, and the weight is axle. supported on these by a pully, whose string is coiled round Mr, as. these axles in opposite directions. If P bo raised by a complete turn of the machine, W descends through a space equal to half the quantity of atring net free from the axles; that is, through half the difference of the eircumferenecs of the axles; und, the circumferences being as the radii, wo have
$\boldsymbol{P} \times$ radius of wheel $=\boldsymbol{W} . \perp$ (difference of radii of axles).
In the common wheel and axle, the power and wheel being given, the mechanical advantage is increased by diminishing the radius of the axle, but this diminution is practically limited by regard to the strength of the axle. In the abovo machine, the mechanical advantage may bo increased indefinitely, by making the axles more nearly of equal size, without too much weakening them.

If the asles were absolutely equal, the mechanical adrantage weald be infinite, and it is obvious that any weight would be hero supported without a power at all.
90. In Hunter's Screso (fig. 19), the weight is supported Hunter's on a smallor serew, which runs in a companion in the interior of a larger sorew, the latter passing through a fixed block and Fig. ${ }^{13}$. being acted on by a power as usual.

When the power makes a complete revolution, aud ruises the large screw through the distance between its threads, the smaller sorew at the same time descends in the large one through tho distance between its own threads, and the weight therefore on the whole rises through the difference between the "distances of the threads" in the two screws. Hence,
$l^{\prime} \times$ circumference of $P=W \times$ difference between dis. tances of contiguous threads in the two screws.

The mechanical advantage can therefore be indefinitely increased by making the distance between the threads more nearly the same in each screw. In the common screw, the advantage is increased by diminishing the distance between the threads, but the diminution is practically limited by regard to the strength of the thread.

If each screw had the same distance of thrends, the advantage would be infinite, and it is obvious that any weight would be sup. ported without a power at all, the outer screw rising just as much as the inner screw descends within it, so that the weight would be stationary.

Inevery ma"hitue,
what is gained in !ow er
in lost in time.

W゙ork done innt etthciency.
91. When a power P is supporting a weight W on any machine, if the machine be set in motion, it will continue to move uniformly so long as its geometrical relations with the power and weight are unaltered; and if s, S be we spaces \mathfrak{r} one through by the power and weight in any time (that is, thsir virtual velocitics) we bave $P \times s=W \times S$. Hence a given force acting through a given space for any time will lift the same weight only through a given space, whatever be the machine through which it acts; and if the weight lifted be increased, in the same proportion will the space through which it is lifted be diminished. Also when a given power lifts a weight through a given space, the greater the weight, the greater in the same proportion is the space through which the power must act, and (the motion being uniform) the longer is the time employed. Hence the principle of virtual velocities is sometimes stated in the form, that "in every machine what is gained in power is lost in time."
92. Hence also this product $P \times s$ or $W \times S$ may be considered the work done by the machine, and is sometimes termed its duty; while with reference to the power, the names of mechanical efficiency and laboring force have been given.

In this sense, although advantage may be gained by a machine, no efficiency is gained or (thecretically) lost, but it remains the same as if the power were applied directly without the intervention of the machine.

53

 threads more on serew, the ance between ted by regardthe advantage would be sup. ist as much as would be sta.
at W on any continue to ons with the 0 l.e spaces ime (that is, S. Hence a time will lift atever be the ht lifted be rough which ower lifts a weight, the h which the he longer is al velocities achine what
S may be sometines the names peen given. ined by a est, but it ly without

Practically, efficiency is always lost, owing to the various resistances due to the parts of the machine.
93. Among engineers the standard of efficiency in the com- Horse parison of machines has usually been taken to be a horse power, ${ }^{\text {power. }}$ which is represented by 33000 , a lb. and foot being the units employed, and the power being exerted for one minute of time. Thus a horse in one minute is supposed to lift 33000 lbs. through 1 foot, or 3300 lbs . through 10 feet, or 330 lbs . through 100 feet, and so on. A machine is then said to be of so many horse-powers, whence the work done by it in any time can be sulated.

FRICTION.

.. Hitherto the surfaces of bodies in contact have been considered smooth, and excrting on each other no pressure except in a normal direction. In nature, however, all surfaces are more or less rough, and when one surface is pressing or moving upon another a force is called into play which acts in a direction contrary to that of the motion, or to that in which motion would occur if the surfaces were smooth. This force is called Friction.

In machines, when a power is supporting a given weight, the magnitude of the power, determined on the supposition of the smoothness

Efect of in machines. of the machine, may be increased beyond this value without disturbing the equilibrium, until it is great enough to overcome the friction together with the weight; and on the other hand, may be diminished till it is so small as with the aid of friction just to prevent the weight overcoming it. So also, with a given power, the weight may be increased or diminished within certain limits without disturbing the equilibrium. Generally, when the power is on the point of raising the weight, friction acts to the disadvantage of the power; but, when the power is just preventing the weight from descending, fric. tion acts advantageously. When the equilibrium of a system depends on position, this position may with the aid of friction be varied within certain limits of the position determined on the supposition of smooth. ness, and the equilibrium be still maintained.
95. The motion of one surface upon another may be of the nature of sliding or rolling, or both these. The former will

Stiding Fric. tion.
J.iws of. be the case when two plane surfaces are in contact, and the laws of the friction in this case (denominated sliding friction) have been determined by experiment, the two surfaces, however, only tending to slide and not in actual motion. They are,-
I. Between plane surfaces of given substances, the amount of friction is independent of the extent of area in contact, and depends only on the mutual pressure between them.
II. The amount of friction is, for the same two substances, proportional to this normal pressure.

Hence, by the seconc of these laws, if F be the friction, and R the normal pressure, $\frac{F}{R}$ is a constant quantity for two

Conefficient of.
given substances. It is called the coefficient of friction for these substances, and may be determined experimentally as follows:-
96. Let one of the substances form an inclined plane (fig.20)

Found by experiment. Fig. 20. and a block of the other, of known weight W, and having a plane base, be placed upon it; and, by varying the inclina- tion of the plane, let that inclination (a) be found at which W is just on the point of sliding down the plane.
Then F acts upwards along the plane, and we have (§ 72.)

$$
\begin{gathered}
\qquad \begin{array}{c}
F=W \sin a \\
R=W \cos a
\end{array} \\
\text { Therefore the coefficient of friction }\left(\frac{F}{R}\right)=\frac{\sin a}{\cos \alpha}=\tan a
\end{gathered}
$$

The values of this coefficient for varicus substances have been found by experiment.
may be of the he former will ntact, and the iding friction) surfaces, how. notion. They
ss, the amount ea in contact, en them.
vo substances,
the friction,
ntity for two
friction for rimentally as
plane (fig.20) and having a ; the inclinaund at which
have (§ 72.)
in
$-=\tan a$ os a
stances have

AN

ELEMENTARY TREATISE

on

MECHANICS;

DESIGNED AS A TEXT-BOOK FOR THE UNIVERSITY EXAMINATIONS FOR THE ORDINARY DEGREE OF B. A.

DYNAMICS OP A PARTICLE.

BY

J. B. CHERRIMAN; Mi.A.,

LATE FELLOW OF ST. JOHN'S COLLEGE, CAMBRIDGE, AND PROFESSOR OF NATURAL PHILOSOPHY IN UNIVERSITY COLLEGE, TORONTO.

SECOND EDITION.

TORONTO:
COPP, CLARK \& CO., KING STREET EAST:..

$$
1870 .
$$

PREFACE TO FIRST EDITION.

The arrangement of this elementary work differs from that of most of the recent English writers on the subject, and is in the main the same as that employed by Professor Sandeman in his "Treatise on the motion of a Particle." Adopting in full the principles and method of that admirable treatise, I have attempted little more than to translate out of the language of the Calculus into ordinary algebra the investigations there given of the simpler cases of particle-motion.

For the reason stated in Part I., I have not added any examples, and have endeavored to be as concise as possible in any explanations $u r$ illustrations that have appeared necessary.

Chapter I.

THE MOTION OF A PARTICLE GEOMETHICALLY CONSIDERED.

1. When the distance between two particles changes con- Motion of a tinuously during an interval of time, they are relatively in point motion.

The position, and consequently the motion, of one particle can only be conceived in relation to other particles, but it is convenicnt to speak of a particle absolutely as being at rest or in motion, reference being made to ourselves or to some points in known relation to ourselves, considering theso as fixed, and referring all motion aud change of motion to the particle itself.

By a particle is here to be understood only a geometrical point.

Uniform motion.

2. When a particle is moving in a fixed straight line, its in a straight motion is measured by the change of its distance from a fixed point in this line, and the rate of this change of distance at any instant of time is called the velocity of the particle at that velocity. instant.

The change of distance in any time is here the linear space described by the particle in that time. If equal spaces are described in equal times, the ehange of distance in any given Uniform, time is always the same, and the rate of this change, or the mev velocity, is said to be uniform, and is measured by the space described in a given time.

Taking a foot and a second as the units of linear space and time, the velocity v of a particle moving uniformly will be measured by the number of feet deseribed in one second.
space deserithed in any time.

The space described in 1 second being v, that in 2 seconds will be $2 v$; in 3 seconds, $3 v$; and, generally, in t seconds $t v$: hence, if s be the space described in time t, with a uniform velocity v,

$$
s=v t
$$

Apparently this formula is proved only for the ense where t is a whole number of seconds ; but, if t be fractional, we cen always assume a unit of time such that the interval of time expressed by t shall contain a whole number of these units, and the formula can then be shewn to apply. Thus let n be a whole number such that $n t$ is also a whole number T; and let $\frac{1}{n}$ th of n second be 'aken as the unit, and V be the velocity referred to this unit. Then the time t being expressed in this unit by a whole rumber T, we have $s-T . V=n t V^{r}=v t$; for v being the space in one second or n units, is n times the space in one unit, that is, $=n V$. Henea the formula is general.

Velocity, + and -
3. Assuming some fixed point in the line of motion, if a be the distance of the particle from it at one instant, and s be the distance, estimated in the same direction, after the time t during which the particle has been moving uniformily with the velocity v, we shall have $s=a+v t$, or $s=a-v t$, according as the particle has been moving in the direction towards which 8 has been estimated positively, or in the opposite direction. Both these cases can be included in one formula by indicating oppositeness of direction of velocity by the arzebraic signs + and -. Thus, fixing on one direction from the fixed point towards which when measured the distances are to be considered positive, a velocity in this direction will be positive, and in the opposite direction, negative.

Hence, if a particle move during successive intervals of time with different uniform velocities, and a be the distance from the fixed point at the beginning of the time, s its distance at the end, then

$$
s=a+\Sigma(v . t)
$$

where Σ denotes the algebraio sum of all the products corresponding to that within the brackets; and the particle will be on one or the other side of the fixed point at the end of the time according as a comes ont from this expression positive or negative. uniform
re t is n Iways as. by t shall then he (is olso a it , and V expressed $V^{r}=v t ;$ space in , if a be s be the e time t aly with $a-v t$, direction he oppoformula the arzeion from distances tion will ce from tance at
cets coricle will d of the sitive or

The whole apace described will, however, be tho numerical sum of these products, disregarding algebraic signs.
4. When a particle moves from a fixed point in a straight Lemma. line with different velocities during successive equal intervals of prownance start.
 the distance of the particle from the point at the end of the theriensif muttime is the product of the time by the arithmetio mean of all the velocities. furin 1130. tonan Is the name line,

By the arilhmetic mean of n number of quantities is meant their nlgebraics sum divided by the number of them,

For let t be the whole time ; $\frac{t}{n}$ the duration of each interval; $v_{1}, v_{4}, v_{3}, \ldots$ the successive velocities during the first, second, third ... intervals. Then the required distance will be the algebraic sum of the spaces deseribed with these velocities; t.at is, by § 2 ;

$$
\begin{aligned}
& v_{1} \cdot \frac{t}{n}+v_{2} \cdot \frac{t}{n}+v_{3} \cdot \frac{t}{n}+\ldots \ldots ; \text { or, } \\
& \frac{v_{s}+v_{2}+r_{3}+\ldots \ldots \cdot}{n} \cdot t \mathrm{Q} . \mathrm{E} . \mathrm{D} .
\end{aligned}
$$

Is tlin pro. ilect of the गusun velority and the tline.

The case of any of the velocities being in the opposite direction (and therefore accounted negative) is here included; the resulting sign of the nlgebreic sum determining on which side of the fixed point the particle is at the end of the time.

Accelerated motion.

5. When the velocity is not uniform, but changes during the motion, the velocity of the particie at any instant is measured by the space which it would describe in a unit of time, $\begin{aligned} & \text { how } \\ & \text { meas }\end{aligned}$ if it were to move uniformly during that unit with this velocity.

The rate of change of velocity at any iustant (provided it Acceleration be continuous) is called the acceleration.

If the change of velocity in a given time be always the same Uniform, throughout the moticn, the acceleration is said to be uniform, hew and it is measured by this change of velocity in a given time.

The change of veloelty may be elther an increase or decrease, and in tho latter ane the acceleration in in effect a retardation. The use of both termis is, however, rendered unneceasary by introducing the algobraio algns + and - ; for n doereaso is algebralcally a nergative Increase, and thus a retardation is a negative acceleration; and when we apeak of veloolty being biscrensed, aided, or generated, we also ine'ude the case of velcolty heing diminished, subtracted, or des. troyed.

The velocity
Ather nuy ferlad of inifiorm necederallon

From rost.

Retardation

Accelerntion nulform: to find the space described and the plare of the particle after any time.

Taking a second as the unit of time, the arceleration f, when the motion is nniformly accelerated, is the change of velnecity in one second. Then $2 f$ is the change in 2 seconds, $8 j$ in 8 ; and gencrally if in t secomds.

Hence, if u be the velocity at the beginning of the time t, and v be the velocity at the ead of this time, we have

$$
\begin{aligned}
& v-u=f t, \text { or } \\
& v=u+f t .
\end{aligned}
$$

6. If the particle started from rest at the Leginning of the time, that is, if $u=0$ then we have

$$
v=f t
$$

7. If the motion be uniformly retarded, f is to be taken negatively, and we have

$$
v=i t-f t
$$

The partiele will be reduced to rest when $u-f t=0$, or in a time $\frac{n}{\sqrt[f]{f}}$; and after this, the velocity will be accelerated is the opposite direction and by the sume steps in a reverse order; till after a time $\frac{2 n}{f}$, its value will bo the same as at starting.
8. When a particle moves with a unijormly accelerated motion from a fixed point in a straight line, to find the dis. tance from the point after any interval of time.

Let f be the uniform acceleration of the particle's motion; u be its veloeity when at the fixed point; s the required distance from this point after a time t.

Let t be divided into n equal intervals. Then, by $\S 5$, the velocities at the beginnings of these intervals are,

$$
u, u+f_{n}^{t}, u+2 f_{n}^{t}, \ldots \ldots, u+\overline{n-1} f_{n}^{t} ;
$$

and the mean of these* is $u+\frac{\overline{n-1}}{2} f \cdot \frac{1}{n}$
Hence, by § 4, if the particle moved uniformly during each interval with the velocity at the beginning thereof, the distance required would be

$$
\begin{aligned}
& u t+\frac{n-1}{2}-f^{t^{2}}, \text { or } \\
& u t+\frac{1}{2} f t^{2}\left(1-\frac{1}{n}\right) .
\end{aligned}
$$

Similarly, if the particle moved uniformly during each interval with the velocity at the end thereof, the distance required would be

$$
u t+\frac{1}{2} f \iota^{2}\left(1+\frac{1}{n}\right) .
$$

Between these two values the actual distance s always lies; but if we increase indefinitely the number of tho assumed intervals, and diminish the duration of each, $\frac{1}{n}$ becomes indefinitely small, and each of the above quantities approaches to the eame limit, which must therefore be the value of s. Hence,

$$
s=u t+\frac{1}{2} f t^{2}
$$

Cor. 1. If the particle start from rest, then $u=0$, and we motion have

$$
s=\frac{1}{2} f l^{2}
$$

* If a, l be the first and last of a series of n quantities in arithme. tic progression, their sum $s=\frac{a+l}{2}, n$.

Hence, the mean of them $\frac{8}{n}=\frac{a+l}{2}$, or the mean of the first and last.

Mollon putantut.

Cor. 2. When f is positive, the velocity in continually increased, and s is the space deseribed by the particle in the time t. But if f be negative, wo have

$$
t=u t-\frac{1}{2} f t^{\prime}
$$

and the distance of the particle increases till the time ${ }_{j}^{\prime \prime}$, when it is momentarily at rest, the space described being $\frac{n^{\circ}}{\frac{g^{j}}{}}$. After this the particle moves back by the same stages in reverse order its distance diminishing till the time $\frac{2 u}{f}$, when it is again at its starting point. It then moves to tho other side of tho point, s becoming negative and being now given numerically by the formula $\frac{1}{2} f t^{2}-u t$, and the whele space described in the time t being $\frac{u^{2}}{f}+\frac{1}{2} f t^{2}-u t$.
9. The following is another investigatios of the above pro-

Abother ith.
vanthatlon
o the math vewtun's

Fls. 1. position, after Newton's manner. Draw nay line $A K$ representing on any senle the number expressing the time ℓ, and divide $A K$ into equal parts in the points $B, C D, \ldots \ldots$. Draw A" perpendicular to $A K^{\prime}$, and take its magnitude on the same seale to represent the number expressing u the initial velocity. In the same way take $K^{\prime} l^{\prime}$ to represent $u+f t$, the velocity at the end of the time. Draw ak parallel to $A K$, and at each of the points $B, C, D \ldots$, draw perpendiculars to $A K$, meeting $a k^{\prime}$ in $l^{\prime}, c^{\prime}, d^{\prime} \ldots$, and complete the parallelograms in the figure. Then, since $l i k^{\prime}$ represents $f t$, which is the change of velocity in the time $A K$; by similar triangles, cle will represent the corresponding change in the time $A D$, and $D d^{\prime}$ will represent the velocity at the end of this time, and similarly for each of the lines $B b^{\prime}, C c^{\prime}, \ldots .$. .

Now, if the particle moved unifornly during any interval as $C D$ with the velocity $C c^{\prime}$, which it has at the beginning of this interval, the space described ($\$ 2$) would be represented
numerically by the area of the inner parallelogram $C_{1} \|_{\text {; }}$; no alan if it moved uniformly during $C D$ with the volocity $/ D l^{\prime}$, which it has at the end of this interval, the space described would be represented by the aroa of the outer parallelogram Cil'. If, therefure, the particle moved miformly throughont each in. terval on the former supposition, the whole apace described would be the sum of the inner parallelograms ; and if on tho latter supposition, it would be the sum of the outer purallefo grame ; and the space (*) netually described lies numericully between the spaces described on these two supponitions. But as the number of intervals is increased, nud the magnitude of each diminished, the two series of parallelograms both approhech nenrer and nearer to the quadrilateral area $A K^{\prime} l i^{\prime}($, nud this must therefore be the value of s. Hence s is represented by the parallelogram $A k$ and triangle $a k \cdot k$, that is numericolly by

$$
\begin{gathered}
K k \times A K+\frac{1}{2} k h^{\prime} \times a k, \text { nnd, therefore, } \\
s=u t+\frac{1}{2} j i^{3} .
\end{gathered}
$$

Cors. 1. If the particle were at rest at the begiming of the prom wem. time, that is, if $u=0$, the line ak coincides with $A K$, mind flo. the space described is represented by the area of the triangle akli'. Hence,

$$
s=\frac{1}{2} f f^{2}
$$

Con. 2. If the velocity be retarded instead of accelerated, the figure will take another form. At first, the spaco deseribed and the distance from the initial point nt the time $A K$ will
the velocity will be destroyed and the particle momentarily at rest, the space described and the distance from the initial point being represented by the triangle ALa. Afterwaris the particle returns towards its initial point, and the whole space described in the time $A M$ will be represented by the sum of the areas of the triangles $A L a, L M m^{\prime}$, but the distance of the particle from the initial point will be represented by the difference of these two triangles, and at the time $A N(=2 A L)$
this distance vanishes, and the particle is again at tho initial point, the whole space described being represented by twice the triangle $A L a$. Afterwards the particle passes to the other side of the initial point, and its distance from it at the time $A P$ is represented by the area $N n^{\prime} p^{\prime} P$, while the whole space that has been described in this time is reprosented by the sumof the triangles $A L a$ and $L P P^{\prime}$, that is, by twice the triangle $A L a$ and the quadrilateral $N n^{\prime} p^{\prime} P$. This result is identical with that in § 8, Cor. 3 .

Motion from rest with uniform acaneration.
10. When the particle moves from rest and its motion is uniformly accelerated, we have seen that the velocity and space described at any time from the beginaing of motion are given by the formulas,

$$
v=f t ; s=\frac{1}{2} f t^{2}
$$

and these are sufficient to determine all the circumstances of the motion in any case.

When any two of the quantities f, v, s, t, aro given, the remaining two can be found from the above equations. The following cases may be noticed:
11. Given the acceleration and space described, to find the velocity aequired.

$$
\begin{gathered}
\text { Here } s=\frac{1}{2} f t^{2}=\frac{1}{2} f\left(\frac{v}{f}\right)^{2}, \text { and, thercfore, } \\
\qquad v^{2}=2 f s ;
\end{gathered}
$$

and conversely, to find the space through which the particle must move to acquire a given velocity, we have

$$
s=\frac{v^{2}}{2 f}
$$

12. The equation $s=\frac{1}{2} f t^{2}$ becomes, by putting v for $f t$, $s=\frac{1}{2} v t$. Hence the space described in acquiring any velo. city is half the space which would be deseribed with that velocity continued uniform through the same time.

10 initial by twice he other the time le space the sum: triangle identical
rotion is sity and tion are
13. Putting $t=1$, we have $s=\frac{1}{2} f$, or $f=2 s$. Hence, twice the space described in the first second from rest measures the acceleration.
14. The spaces described from rest in successive equal intcrvals of time, are as the odd numbers, 1, 3, 5, 7,

For, taking any interval as the unit of time, let F be the accelcration referred to it.

Then the space described in $\overline{n-1}$ intervals from rest is $\frac{1}{2} F(n-1)^{2}$, and the space described in n intervals from rest is $\frac{1}{2} F n^{2}$.

The difference between these is the space described in the $n^{\text {th }}$ interval, and $=F n-\frac{1}{2} F=\frac{1}{2} F(2 n-1)$.

Giving to n the successive values $1,2,3, \ldots \ldots$ this becomes $\frac{1}{2} F .1, \frac{1}{2} F .3, \frac{1}{2} F .5, \ldots \ldots$. which was to be proved.
15. The initial velocity being u, and this being uniformly accelerated during the time t, the velocity v at the end of this time and the distance s of the particle from its initial point, is given by the equations

$$
v=u+f t ; s=u t+\frac{1}{2} f t^{2}
$$

Creurastances cut motion when the perticlo was not at rest at the commells'的 nent ait tho period.
and these are sufficient to determine all the circumstances of the motion in any case.

When any three of the quantities u, f, t, v, s, are given, the remaining two can be found from the above equations.

The following cases may be noted:
16. We bave

$$
\begin{aligned}
s & =u t+\frac{1}{2} f t^{2} \\
& =\frac{1}{2} t(2 u+f t)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} t(u+u+f t) \\
& =\frac{1}{2} t(u+v)
\end{aligned}
$$

or, the distance is that which would be described in tie same time with a uniform velocity equal to the mean of the initial and terminal velocities.

This result might at onee havo been inferred from $\$ 8$.
17. Given the initial velocity, the acceleration and the distance, to find the velocity acquired.

Here u, f, s are given to find v, and t must be eliminated from the two equations.

$$
v=u+f t, s=u t+\frac{1}{2} f t^{2}
$$

Squaring the first, we have

$$
\begin{aligned}
v^{2} & =u^{2}+2 u f t+f^{2} t^{2} \\
& =u^{2}+2 f\left(u t+\frac{1}{2} f t^{2}\right) \\
& =u^{2}+2 f s .
\end{aligned}
$$

If the velocity were retarded, we should have

$$
v^{2}=u^{2}-2 f s
$$

Con. This result might have been obtained without finding the second equation, for we have directly, from § 5 ,

$$
v-u=f t,
$$

and from $\S 16$ or 8 ,

$$
\frac{1}{2} t(v+u)=s
$$

multiplying these equalities, we have

$$
v^{2}-u^{2}=2 f s
$$

The following geometrical proof may also be noticed:
Let, B be the initial point, where the velocity is u; $B C$ the space deseribed (s) when the velocity is v.

Let A be the point from which the particle, proceeding from rest under the same acceleration, would acquire the velocity u at B. Then (§ 11).

$$
u^{2}=2 f . A B
$$

Also, sinco the whole motion may be taken to proceed from rest at A, we have (§ 11)

$$
\begin{aligned}
v^{2} & =2 f . A C \\
& =2 f .(A B+A C) \\
& =2 f . A B+2 f . A C \\
& =u^{2}+2 f s .
\end{aligned}
$$

By a proper adaptation of the figure, this proof may bo extended to all the cases included in the algebraic formula.
18. Given the initial velocity and the acceleration, to find the time when the particle will be at a given distance from the initial point.
Here u, f, s are given to find t.
Solving as a quadratic in t the equation $s=u t+\frac{1}{2} f t^{2}$, we have

$$
t=\frac{-u \pm \sqrt{u^{2}+2 f s}}{f}
$$

The significance of the double sign is here note-worthy.
If f be positive, or the velocity be numerically accelerated, one of the values of t is positive, and the other negative. The former is the solution required, but the latter can be interpreted thus : Suppose A the initial point, $A P$ the distance s, and the velocity u at A to be in the direction $A P$. Then the positive value of t in the above gives the time of moving from A to P; the negative value gives the time that would have clapsed if the particle had moved from P towards A, with a retarded motion, passed through A to the other side of it, been reduced to rest and again returned to A.

If f be negative, then, writing -ffor f, the values of t become

$$
\frac{u \mp \sqrt{u^{2}-2 f \mathrm{~s}}}{f}
$$

If then $u^{2}>2 f$, both values of t are real and positive, and the particle will twice be at the same distance from the initial point, once during the recess from and again during the return towards it.

If $u^{2}=2 f s$, the two values become the same, and the distance in question is that where the particle momentarily comes to rest.

If $u^{2}<2 f s$, both values of t are imaginary, and the particle can never reach that distance.

If, however, s be negative, both values are real, and one positive, the other negative, the latter referring to a time previous to the epoch from which w, are reckoning, when the particle, if it had been moving towards the initial point from the negative side, would have been at the assumed distance.

Component Velocities.

19. The position and motion of a particle moving uniformly of velueitics. in a straight line have been determined by the distance of the particle from a fixed point in the line, and by the change of this distance in a given time. Its position, however, might have been defined by its distances from two fixed lines, measurcd parallel to these lines. Thus: let $O x, O y$ be two fixed lines, B the place of a particle moving in the line $A B C$, and A a fixed point in this line, the distance from which determines the place of the particle. Let C be the place at which the particle would arrive after any tine if it moved uniformly with the velocity it had at B, and complete the figure by draw. ing lines parallel to $O x, O y$.

The position of B is known. when $B P, B Q$, its distances from these fixed lines, are given; and $C E, C D$, or their equals, $B D, B E$, would be the changes of these distances if the particle arrived at C by moving uniformly.

Now $B C$, whioh would be the change of distance in a given time from the fixed point A, measures the velocity of the par-
positive, from the during
the disy comes
the par-
and one ime prehen the int from stance.
niformly of the hange of r, might es, meawo fixed $B C$, and d dotert which iformly draw.
ticle : and $B D, B E$ are always proportional to $B C$, and therefore measure what we may call the component velocities of tho particlo in the directions of the fixed lines. Henee,

If a straight line be taleen 'to represent in maynitule and pranalleln direction the velocity of a particle, the aljacent sides of any shant parallelogram constructed on this line as diagonal will represent the component velocities in the directions of those sites.

Conversely.
If the component velocities in t:eo directions be given, the actual velocity will be found in magnitude and direction by draving the diagonal of the parallelogram of which the components form adjacent sides.

These two statements constitute the "parallelogram of com. ponent velocities."
20. When the two components are in perpendicular direc- velocty tions, it will be convenient to call them the resolved parts of fesgivel the velocity in these directions; and the rule for finding these direction. resolved parts will be the same as that for the resolved parts of a Force (STATICS, § 21), namely :

To find the resclved part of a velocity in any direction, Rulc for. multiply it by the cosine of the angle between this direction and that of the velocity; and to find the resolved part perpendicular to this direction, multiply by the sine of the aforesaid angle.

CHAPTER TI.

THE MOTION OF A MATERIAL PALTICLE ACTED ON DY UXIFORM FORCES.

1prolivitwn wipereding ressits to the authal mothatis of material batithlas.
21. In the foregoing chapter the geometrical conditions of the motion of a point have been examined. It now remains to exhibit the connection of these results with the actual motions of material particles, and the relation between these mutions and the forces acting on the particles, and this inves. tigation constitutes the science of Dynamics.

For this purpose it is necessary to appeal to experiment and observation, and it appears that all the phenomena of the motions of material particles can be referred to three elementary principles or laws, which are commonly known as "Newton's Laws of Motion." These laws, from their nature, are incapable of being demonstrated by direet experiment, for it is impossible to make experiments under the precise circum. stances conditioned by the Laws, and which would not involve other phenomena besides thoso which it is desired to test. Direct experiments may, however, afford a presumption in favor of theso laws by showing that the more nearly do the circumstances of the experiment approach to the exact conditions required, the more nearly are the results of the experiment in accord with those indicated by the Laws; and also that whenever a diserepancy is found between these results, there can always be traced some disturbing cause which ought to have been excluded by the conditions postulated.

The ultimate ground on which these and all other laws in Natural Philosophy rest, is the entire and universal concordance of the results of experiment or observation with those calculated on the assumption of the truth of the laws.
22. Although the motion of a particle and the forees acting on it ean only be conceived in relation to other particles, it is convenient to speak absolutely of a particle as being at rest or in motion, reference being made to ourselves or to some space in a known relation to ourselves which we consider fixcd, and then to regard the phenomena exhibited by the particle as due to forces acting only on itself, these forces being defined by the measures of them already eneployed in Statics.

23. First Law of Motion.*

A material particle, when not acted on ly any force, if it rest, will so remain; and, if in motion, will more in a straight line with uniforn velocity.

The first part of this law has been already assumed (Statics $\S 2 j$ as the basis of our conception of a force. Experience asthing, shows that whenever a quiesceut body is set in motion, we can trace the action of some cause external to the body; thus, when a body is suffered to drop to the earth, wo assign its motion to a pressure exerted on it due to the earth itself, and which would have no existence if the earth did not exist. Also, there seems no reason why a particle, apart from any external force, should begin to move in one direction rather the partich either than arnother.

Again, when a particle is in motion there seems no reason moves in a why it should change the direction of its motion in oue way stratight rather than another, unless some force be acting upon it to determine such change ; and in all eases of any such clange, we can always trace the action of some external force; as, for instanee, when a stone is projected from the earth in any direction, the deflection of its motion from a straight line is produced by the aforesaid pressure duc to the earth, which we know is always acting vertically downwards. If this pressure be counteracted by projecting the stone horizontally along a

[^1]Uniform forces acting on a partlele.
fixed plane, the path approaches to a straight line, with on!:" such deviations as may be accounted for by friction or irregularities in the plane, or from the stone not being small enough to be considered a particle.

So also with regard to the velocity of the particle, it does not scem possible to conceive any way in which its velocity could increase or decrease unless by the action of some external cause and in act sal cases of variation of velocity we can alway: tar . To existence of such causes. Thus when a stone is thro: at atally along the ground, it gradually loses its velocity whises, but here the friction of the ground and the resistnnce of the air set as retarding causes, and we see that in proportion as the surface on which the stone moves is smoother, as on a sheet of ico, the longer and more uniform does the motion continue.

This law is sometimes termed the Law of Inertia, being understood to express that a material particle is inert, and has no tendency of itself to change its state of rest or uniform motion.
24. It follows that the motion of a material particle when not acted on by any forces, "or acted on only by forces which counterbalance, is determined by the formula of uniform motion, $s=v t$, investigated in § 2.
25. We now proceed to consider the motion of a particle acted on by any uniform forces, of which the following are the observed laws :-
(1.) When a uniform force acts continuously upon a particle in the line of its motion, the velocity is uniformly accelerated.

The investigations of § 5 et seq., therefore, apply to this case, (noticing also that retardation is included in the term acceleration), and we can compare the results there calculated with those of experiment. Thus when a body is permitted to drop freely to the earth, or is projected vertically downwards or upwards with any assigned velocity, its path is a vertical line, and the force acting on it is its weight which always acts ver- prirregu. 1 enough , it does velocity external , we can h a stone loses its 1 and the see that moves is uniform
inderstood ndency of
cle when es which form mo.
${ }^{2}$ particle wing are
n a parly accele. this case, m acceleated with 1 to drop wards or ical line, acts ver-
tically, and (for not great heights above the surface) is sensibly uniform. Here then the required conditions are fulfilled, and the result of experiment, when due allowance is made for the resistance of the air, is that the motion is uniformly accelerated, the amount of this aeceleration being about 82.2 feet a second, but varying slightly for different latitudes nad elevations above the sea-level. This acceleration is usually denoted by g.
(2.) When several uniform forces are acting simultaneously Any forres in the line of motion, the resulting acceleration is the algebraic if the thine sum of the accelerations which would be prorluced by cach force acting separately.

Hence it follows that n equal forces acting simulta : unsly on a particle in its line of motion will produce $n \operatorname{tim}$?s acceleration whieh one of the forees alone would pridure 1 the same particle; add, consequently, the accelerat: . r 'aced in a given particle is proportional to the magnitudt of the force acting.

It will be hereafter shown how this may be tested by comparing the accelerations of a particle down inclined planes of different inclinations.

Hence also the change of velocity in a given time is proportional to the magnitude of the Force, the particle acted on being the same.
(3.) When a moving particle is acted on continuously by a uniform force which acts always in the same direction and obliquely to the direction of the particle's motion, its velocity

A singh firce ob-
linue to the direetion of motion. after any time is found to liavo for components-first, the original velocity, unaltered, in its own direction-second, a relocity in the direction of the Force, the magnitude of which is the same as if the Fores had acted on the particle originally at rest. So that the velocity and direction of the motion may be found at any time by calculating the velocity which would be produced by the Force acting for that time on the particle originally at rest, and then compounding this with the original velocity according to the principle of the "parallelogram of velocitics."

Or, this may be expressed more simply thus: if we resolve the original velocity of the particle into two components, one in direction of the force, the other perpendicular to it, the latter remains unaltered and the former is changed by the Force precisely as if it alone were the actual velocity of the particle. So that

The change of velocily produced by the furce in a given time is in direction of the force and is proportional to it in magnitude.

In this case the path of the particlo is no longer a straight line, but a curve, the tangent to which at any point is the direction of the par. ticce's motion there.

I: other words, the above expresses that the dynumical effect of a force on a particle is wholly independent of any motion which the purticle may have, and is the same as if it were exerted on the particle originally at rest.

Thus, the vertical descent of a body let fall from the masthead of a ship in motion is precisely the same in all its circumstances as if the ship were at rest. The principle can also be tested by comparing the results of calculation with observations on the motion of a body projected obliquely to the horizon and acted on by gravity, due allowance being made for the resistance of the air.
(4). When several Forces act simultaneously, retaining

Any forces wimy in tay directlon on a particte ither crigimally at rest always the same magnitudes and directions, on a particle originally at rest, the motion is uniformly accolerated in the direction of the Resultant of the Forces, and the acceleration is that duo to this Resultant acting singly.

Also the velocity generated after any time, being that due to this Resultant, is also that which is compounded of the velocities due to the Forces acting singly on the particle from rest.

Also if the particle be in motion when the Forces begin to act, its velocity and direction of motion after any time will
resolve (4 , one it, the by the of the being
be determined by eompounding its original velocity with the velocity due to the Resultant of the Forces, or with all those due to the Forces separately. Or,

When forces act on the same partirle under any circum. sances providd each force be uniform and ahouys preserce the same direction, the change of velocity in a!, iven lime due to cach force is in direction of that force, and is proportional to it in magnitule.
(5.) It follows from the preceding that if f be the neceleration due to a force P 'acting on a certain particlo, then the ratio $P: f$ is invariable for this particle. This ratio is found, however, to be different in different partieles, and we thus discover a quality which distinguishes one particle from another, of which this ratio will serve as a measure. The name of mass is given to it, and one particle has the same mass ns another when the same force preduces in each the same acceleration. The enit of mass is arbitrary and it is not necessary to fix it, but we shall take as the measure of muss the above ratio of the umbers expressing a Furce and the acceleration it produces on the partirle. Tlius, if m be nimasurect. the mass of a particle, and P, f as above,

$$
\frac{p}{f}=m
$$

It has been mentioned that the aceeleration produced by gravity (g) is the same for all bodies at the sam? place on the Earth's surface. Hence, if W be the weight of a body, m its mass, we have

$$
\begin{aligned}
& \frac{W}{g}=m, \text { and } \\
& W=m g
\end{aligned}
$$

Hence, for a given place, the weights of bodies may be taken to measure their masses.

The fact above stated (namely, that the acceleration of gravity is the same for all bodies at the same place) is apparently contradicted

Dancertinn.

by the different timen occupled by difforent bodios in filling from the wnme height to the earth; but this is due to the different resid. tancen of the nir, an batown by trinl in an exhanated rocelver, where tho foather and tho grinea aro meen to fall prectacly in the eame time.
(6.) Since $P=m f$, and f is proportional to the change of velocity in a given time ($\$ 5$), it fullow that P is proportional to the product of the mass and the chango of velocity in a given time.

Musentum.
The product of the mass and tho velocity (that is, of tho numbers expressing these, is called the momentum of the particle, and the preceding results can now all be combined in one statement, which constitutes

TIE SRCOND LAW OF MOTION.*

Aveond law. When uniform Forces act continuously for a given time on material particles, each produces in ita own direction a change of momentum proportional to itself in magnitude.
impulalve furces.
26. The forees hitherto treated of have been of such a nature as only to produce finite changes in the motion of a particle by acting on it for a finite time. There is, however, a certain class of forces, such as those manifested in explosions or the collision of bodies, which produce Lnite effeets in changing the velocity or momentum instantaneously. Such forces aro called impulsive, and must be carefully distinguished from forces of the former class, with which they do not in any way admit of comparison. These impulsive forces are measured by the momentum which each would instantaneously communicate to a particle at rest, and the second Law of Motion applies to them, stated under the form :
secom Law When impulsive Forces act on material particles, each applitel to. produces in its own direction an instantancous change of momentum proportional to itself in magnitude.

* Lex. II.-Mrutationems motus proportionalem esse vi motrici impressee, et fieri secundum lineam rectam qua vis illa imprimitur,-Pranc. Lea Mot.

Thus the motion of a particle when neted on by mimultancous impulses will be determined by calculating the pelveity instantaneously generated by each in its own direetion, and compounding these with the original velocity of the purticle according to the parallelogram of velocities. For instance, if Parallelin a partule at rost bo noted on by two impulses whioh, separately chitellew. communicated, would give the particle respectively such velo- Arntent. cities ns would canse it to describe uniformly the vides $A B$, $A O$ of a parallelogram $B A C D$, the particle will aequire from the impulses simultaneously communiented a velocity which will cause it to deseribe uniformly the diagonal $A D$ in that time.
apledeations asb tests of the sicond law of mothos.
Viertomal
IInctloil hy
27. The vertical motion of a particle under the action of grtilly. gravity.

Gables.

The acceleration of gravity (g) has already been stated to be $g=32 . \%$ about 32.2 feet per second, and to be sensibly the same for all bodies in the same latitude and at nearly the same height above the sea-lovel.

Hence, applying the formulas in § 10, we have, when the From rext particle moves from rest,

$$
v=g t=32 \cdot 2 \times t ; s=\frac{1}{2} g t^{2}=16 \cdot 1 \times t^{2}
$$

Thus the spaces described from rest after the lapse of $1, \therefore$, $3, \ldots$ seconds, are $16 \cdot 1,6.4 \cdot 4,144 \cdot 9, \ldots .$. feet; and the velocities aequired are $32 \cdot 2,64 \cdot 4,96 \cdot 6, \ldots \ldots$ feet per second.

If the body do not fall from rest, but be projected down- Projectect wards with a velocity u, then wo have § 15

$$
v=u+g t, s=u t+\frac{1}{2} g t^{2}
$$

Or if it be projected vertically upwards with a velocity u, then the velocity and distance from the point of projection at the or ar. time t are given by

$$
v=u-g t, s=u t-\frac{1}{2} g t^{2} ;
$$

and the particle is brought momentarily to rest after having ascended a height $\frac{u^{2}}{2 y}$ in the time $\frac{u}{y}$, and then descends again by the same steps in reverse order, reaching its point of projection in the time $\frac{2 n}{y}$.

The resistance of the air and the rapidity of the motion render it difficult to test these results directly by experiment.

Motion down nn inclined

 plane.
28. Motion down a smooth inclined plane.

Gaillo.
Let a be the inclimation of the plane.
The particle is acted on by two forces, namely, its own weight (W) acting vertically, and the reaction of the plane in a normal direction. If we resolve W into two furces, one perpendicular to the plane, and the other ($W \sin a$) downwards along the plane, the motion estimnted along the plane will be due to this latter only. Hence, f being the acceleration along the plane, we have § 26 (5),

$$
\begin{aligned}
f & =\text { Force } \div \text { mass of particle } \\
& =W \sin a \div \frac{W}{g} \\
& =g \sin a
\end{aligned}
$$

And with this value of f the formulas of $\S 10$ and 15 arail to determine fully the motion.
L. da vinci. Cor. For the same particle, on planes of different iaclinations, the accelerations are as the siness of the inclinations, or, the length of the plane being given, as the heights; and this is the test mentioned in $\S 25$, (2), allowance being made in performing the experiment for the resistance of the air and imperfect smoothness.
29. The velocity acyuired by moving from rest down an inclined plane, is equal to that acquired by falling frecly down the height oj' the plane.

For, f the acceloration down the plane is $g \sin a$, and if v bo the velocity acquired in moving down its length, § 11,

$$
\begin{aligned}
v^{2} & =2 f \times \text { length } \\
& =2 g \sin a \times \text { length } \\
& =2 g \times \text { height }
\end{aligned}
$$

and this is the same as if the body fell freely down this height.
Cor. If the particle were projected down or up the plane with a velocity u, and v be the velocity after moving through any length of it, we should have in like manner, § 17,

$$
\begin{aligned}
v^{2} & =u^{2} \pm 2 g \sin a \times \text { length } \\
& =u^{2} \pm 2 g \times \text { height }
\end{aligned}
$$

which is the same as if the particle were projected vertieally downwards or upwards with a velocity u, and moved freely through the corresponding height.
30. The time of moving from rest at the highest point of a vertical circle down any chord (considered a smooth inclined plane) is the same as the time of falling freely from rest down the vertical diameter ; and so is also the time of moving from rest down any chord to the lowest point.

For, $A B$ being the vertical diameter, the acceleration down Fig. 4. the chord $A C$ is $g \cos B A C$, and therefore, § 10 ,

$$
(\text { time down } A C)^{2}=\frac{2 A C}{g \cos B A C}=\frac{2 A B}{g}
$$

which is the square of the time down $A B$.

So also, the acceleration down $C B$ is $g \cos C B A$, and

$$
(\text { time down } C B)^{2}=\frac{2 C B}{g \cos C B A}=\frac{2 A B}{g}
$$

the same as in the former case.

A particle projected in any direc. tion and acted on by gravity.

Galileo.

Time of Hight.

31. Motion of a projectile.

Let a particle bo projected from a point in the horizon, with a velocity v, and in a direction making an angle a with the horizon. The force acting on it being its weight which always is directed vertically downwards, the motion of tho particle will be in one vertical plane.
If we resolve its velocity of projection into two : namely, $v \cos a$ horizontally, and $v \sin a$ vertically; the former continues unaltered, and the latter is retarded and accelerated by gravity precisely as if the particle had been projected vertically with this velocity. Hence, g being the acceleration ky gravity, the velocity v sin a is destroyed by it in a time $\frac{v \sin a}{g},(\$ 10)$; at this moment the particle is moving horizontally, and has reachod its greatest elevation above the horizon. The velocity $v \sin a$ is again generated by gravity by the same steps in a reverse order, till on again reaching the horizon the velocity is the same in magnitude, and its direction is equally inclined to the horizon in an opposite direction, as at the point of projection. The path, therefore, consists of two equal and similar branches on each side of the greatest elevation.
The whole time of fight is therefore $2 \cdot \frac{v \sin a}{g}$, and during this time the horizontal distance described with the uniform velocity $v \cos a$ is (§ 2)

$$
\begin{aligned}
& v \cos a .2 \cdot \frac{v \sin a}{g}, \text { or } \\
& 2 \frac{v^{2}}{g} \sin a \cos a, \text { or } \\
& \frac{v^{2}}{g} \sin 2 a . \quad \text { (Trig. § 72.) }
\end{aligned}
$$

and this is called the Range.
The greatest elevation is the space due to the velocity $v \sin a$ for the acceleration g : that is (§ 11),

Again, if x be the horizontal distance of the particle from rlace at :my the point of projection at the time t, and y its elcration above time. the horizon at that time, wo have (§§ $2 \& 15$),

$$
\begin{aligned}
& x=v \cos a \cdot t \\
& y=v \sin a \cdot t-\frac{1}{2} g t^{2}
\end{aligned}
$$

which determine the place of the particle at any time.
The path of the particle is the curve called by geometers a parabola. In comparing these results with observation, the resistance of the air has to be taken into account; and for largo bodies, or considerable velocities, these results are thoreby rendered quite wide of the observed facts.

32. Third Law of Motion.*

When one material particle acts on another, the second Thirdtaw. exerts on the first an action equal in amount and opposite in direction to that which the first exerts on it.

The actions here spoken of may be of various kinds; such as the mutual pressures between bodies in contact whether at rest or in motion; or the action of one particle on another by means of a stretched string or a rigid rod; or the action may be of the nature of attraction or repulsion; or finally of an impulsive character, as in cases of collision.

The measures of these actions are either their statical measures or those furnished by the second law of mution.

Sometimes the law is stated in the form:
The actions of bodies are mutual, equal, and opposite.
The law may be tested by direct experiment in various ways; such as by noting the motion of two bodies hanging freely by a string passing over a pully: by observing the motion of a magnet and piece of iron floating on water : and by observing the velocities of balls that have suffered collision.

[^2]applications and tests of the third hath of motion.

Motion of two weights over a pully.
33. Two bodics connected by an inextensiole stric \boldsymbol{z}, which passes over a smooth fixed pully, descend by the action of gravity, to determine the mation.

Let P, Q be the weights of the two bodies, P being the greater of the two.

The pully being smooth, and the weight of the string insensible, the tension of the string is, by the third Law, the same on each body.

Since the string is supposed inextensible, the downward motion of P is the same as the upward motion of Q, and we may consider them as one mass acted on in the direction of motion by the uniform pressure $P-Q$

The weight of the mass moved is $P+Q$, and the mass is therefore $\frac{P+?}{g}$.

But the pressure divided by the mass is the acceleration (f); hence,

$$
\begin{aligned}
f & =(P-Q) \div \frac{P+Q}{g} \\
& =\frac{P-Q}{P+Q} g,
\end{aligned}
$$

and with this value of f, the formulas of $\S 10 \& 15$ apply.

Atwood's machine.

Fig. 5.
34. It has been mentioned that the velocity of a body fallingly freely is too rapid to be conveniently experimented on. In the above case of motion, however, the acceleration can be made sufficiently small, depending as it docs on the difference between P and Q, to enable obscrvations to be made with some accuracy. This is effected by the arrangement known as Atwood's Machine, which consists essentially of two weights souncted by a thin string passing over a pully, and the disturluce caused by friction is lessened by the axle of the pully bicing riade to rest on frition-wheels. The resistance of the air, bute

The weights are contained in two boxes A, B, and the motion of the descending one A is measured by means of a vertical rod, graduated in inches, on which a moveable stage can be fixed at any point, and the coincidence of the striking of the bottom of the box on this stage with the beat of a second's pendulum attached to the machine is employed to measure the time.

The weights used are equal pieces of brass, denominated ems, and it is found that the effect of friction and of the motion of the pully can be represented by supposing an additional number of these ems to be added to the whole weight.

Thus, the weight of the two boxes being 12 , and each being loaded with 20 ems , in which condition they would balance, let 1 em be added to A, and 11 ems be allowed for friction and the effect of the pully.

Then the weight of the whole mass moved $(P+Q)$ is taken as 64 ems, and the movirg pressure $(P-Q)$ is 1 em . Therefore, applying the formula in the preceding article,

$$
f=\frac{1}{64} g
$$

On making the experiment the spaces described in $1,2,3$, 4 seconds respectively are found to be about $3,12,27,48$ inches. And applying the formula $s=\frac{1}{2} f t^{2}$, the value of g comes out in each case 32 ft . per second.

The experiment may be varied in several ways, and we have thus a test not only of the third law, but of the uniformity ot the acceleration prodaced by gravity, and of its constant value for bodies of different weights, $\S 25$ (1). The machine may also be employed to test the proportionality of the acceleration to the moving pressure, $\S 25(2)$, the mass moved remaining the same.

Thus, the boxes being loaded so as to balance, one or more ems in the form of long bars can be placed on A as a moving pressure, and a ring-stage can be fixed at any point of the
vertical bar which permits the box to pass freely, but removes the long ems. After which removal the box continues to descend uniformly with the velocity aequired (or would do so but for friction and the resistance of the air), and the spaco thus described in one second can be measured, giving the velocity acquired, and therefore the acceleration.

For example, let the boxes be loaded each with 20 ems ; their weight 12 ; allowance for friction, \&o., 11 ; and let 1 long em be added to A. Then the weight of the whole mass is 64 . After the box has descended from rest through one second, let the long em be removed by the ring stage. Then the space described in the next sccond by the box moving uniformly is found to be six inches, and this is the measure of the velocity acquired in the first second, and therefore of the arceleration.

Hence, the mass being 64, and the moving pressure 1 , the acceleration is 6 .

Again, lot the boxes be loaded each with 19 ems, and 3 long ems be put on A; and by the same method the acceleration is found to be 18 .

Thus, the mass being 64, and the moving pressure 3, the accelcration is 18.

So that the acceleration is proportional to the pressure.
Again, the effect of gravity as a retarding force may be exhibited by allowing box A to acquire a certain velocity in its descent, then remoring the long ems, so that the other boz becomes the hcavier, and noting the time when they are reduced momentarily to rest.

Impant and Collision.

Newtur:

Collision of smooth balls.
85. Since balls are extended bodies, we eannot apply to them directiy the laws for the motion of mere particles, but when the balis are uniform in substance, the motion of their centres will be the same as that of imaginary particles of the same masses as the balls, placed in these centres.

Direct impact of tueo balls.
36. The impact is said to bo direct when the eentres of the tro balls are moving in tho same line. Tho impulsive action

Two matas "uphas tltertly. which occurs between the balls on collision takes place wholly in this line (the balls being smooth), and is measured (§26) by the instantaneous change of momentum in caeh ball in this direction, and, by the third law of motion, this must be the same in amonnt and opposite in direction on each ball. That is, the gain of momentum by one ball is the same as the loss by the other, and the (algebraic) sum of the momenta of the two balls remains unaltered by the impact ; or, in other words,

The alyehraic sum of the momenta after impuct is equal raw of to that before the impact.

This gives one relation between the velocities after impact; but, to determine them, another relation is still required. This is furnished by the following experimental law :

The two balla either proceed in contact with a commes velo- raw of city, or they separate in such a menner, that the magnituede rellative of their relative velocity after impact lears to that of their relative velocity before impact a ratio which depends only on the nature of the substance of which the balls are composed.

In the former case the balls are called inelastic; in the Elasticity. latter, clastic; and the constant ratio above spoken of is called the elasticity for each particular substanco, and is geverally denoted by the letter e. Its valuc for all known substarices lies between 0 and 1 ; thus for steel it is $\frac{5}{9}$; for ivory, $\frac{8}{9}$; for glass, $\frac{15}{16}$. If e were equal to 1 for any substance, it would be perfectly elastic, but no such substance is known in mature. It is clear that the case of inelastic bodies is included in that of elastic ones by giving to e the value 0 .

By the relative velocity of the balls is meant the algebraic difference of their velocities. Thus if u, v are the velocities in the same direction before impact, and the ball moving with u
overtukes the other ; then $u-v$ is their relative velocity ; and if u^{\prime}, v^{\prime}, are the corresponding velocities after impact, the second ball moving away from the first, then $v^{\prime}-u^{\prime}$ is the relative velocity, and the experimental law asserts that,

$$
\frac{v^{\prime}-u^{\prime}}{v \cdot v}=e
$$

l'wo Inelat tic balls lmphughy Hrectly.
37. Two inelastic balls inpinge directly with given velocities, to find their velocity afte.• impact.

Let A, B be the masses of the two balls, and u, v their velocides estimated in tho same direction; then, after impact, they proceed with a common velocity, V (suppose). The algebraio sum of the momenta before impact is

$$
A u+B v
$$

and, after impact, it is

$$
(A+B) V
$$

Hence, by the law of equality of momenta,

$$
\begin{gathered}
(A+B) V=A u+B v, \text { and } \\
V=\frac{A u+B v}{A+B}
\end{gathered}
$$

If the secud ball were moving in an opposite direction to the first, v would be taken negative, and the direction of V will be indicated by its resulting sign.

Cor. 1. If B were at rest, then $v=0$, and

$$
V=\frac{A}{A+B} u
$$

Cor. 2. If the balls be brought to rest by the impact, then $V=0$, and, therefore,

$$
\begin{aligned}
& A u+B v=0, \\
& \text { or } \frac{u}{-v}=\frac{B}{A} .
\end{aligned}
$$

Or the balls must have been moving in opposite directions with velocities inversely proportional to their respective masses.
38. Two clastic balls impinge directly woilh given velociities, Tww elantlo to determine their velocities iffer impact.
Let A, B, be the masses of the two balls :
$u ; v$, their velocities before impaet, estimated in same direction, u^{\prime}, v, " aftor " " " e, the elasticity.
A is supposed to overtake B.
Then the sum of their momenta before impact is $A u+B v$. and " " after " $A u^{\prime}+B v^{\prime}$.

Hence, by the lav of equality of momenta,

$$
A u^{\prime}+B v^{\prime}=A u+B v .
$$

Again, by the law of relative velocitics,

$$
v^{\prime}-u^{\prime}=c(u-v) .
$$

From these two equations, finding u^{\prime} and ${ }^{4} v^{\prime}$, we have

$$
\begin{aligned}
& u^{\prime}=\frac{A u+B v-B e}{A+B}(u-v) \\
& v^{\prime}=\frac{A u+B v+A e(u-v)}{A+B} .
\end{aligned}
$$

If B wore moving before impact in an opposite direction, v would be taken negative, and the directions of u^{\prime}, v will be indicated by their algobraic signs.

Cor. 1. In no case can both balls be brought to rest by the impact.

Cor. 2. If the balls be perfectly elastic, or $e=1$; and $\mathrm{Two}_{\text {o }}$ equal if also their masses be equal, or $A=B$; then we kave

$$
u^{\prime}=v, \quad v^{\prime}=u
$$

and the two balls exchange velocities.
Thus, if the second were at rest, the first after impact would remain at rest, and the ser.ond would go on with the velocity of the first before impact.

Cor. 3. Hence, if a row of equal, perfectly elastle balls be ranged in contact in a straight line, and another ball, also perfectly clastio and equal to each of them, impinge in ench line on the first of these balls, the lmpinging ball will remain nt rest after the lmpact, and the firat ball will start with the same velocity; lt will then lompinge on the second, communicating to it this velocity, and itself remaining at rest ; the second on the third, and so on, till the last ball fles off with the velocity, all the others rembining at rest.

Again, If two such balls, moving with the samo velocity, impinge on the row of bulls, the first of the lmpinging balls will, ns before, drive off the last of the row; and the second will then drive off the last but one, all the others remaining at rest. And so on for any number of impinging bails, whether greater or less than that of the balls struck, the number of balls driven off will be the same as that of the Implaging balls, the others remaining at rest.
limparet on a lixed burly, derliceed.

Cor. 4. In the general ease, suppose B to be at rest before impact, then $v=0$, and we have

$$
u^{\prime}=\frac{A-B e}{A+B} u, \quad v^{\prime}-\frac{A+A e}{A+B} u
$$

Now suppose B to become indefinitely great compared with A; then the limiting values of $\frac{A-B e}{A+B}$ and $\frac{A+A e}{A+B}$ are $-e$ and 0 . Hence,

$$
u^{\prime}=-e u, \quad v^{\prime}=0
$$

and we havo the case qf a ball impinging directly on a fixed body, and the first equation shows that the velocity after impact is in the opposite direction to that before impact, and its magnitude is less in the ratio of e to 1 .

39. Ollique impact of smooth balls.

oblique impret.

Here the centres of the balls are not moving in the same line, but the impulsive action takes place (the balls being smooth) in the line joining their centres at impact. If therefore the velocity of each ball be resolved in two directions; one, along the line joining the centres; the other, perpendicular to this line; the latter resolved parts will not be altered by the impact, and the former will be altered precisely as if the
impact were direet, and the resolved velocitien in this direction after impact can be calculated by the preceding inveatigation, and then compounded with those in the perpendicular direction by the parallelogram of velocities, thus determining fully the motion and direction of motion of ench ball.

40. Oblique impact against a smooth fixed plane.

Impact at in fixed plato.

The impulsive action exerted by the plane is in a normal direction, the plane being amooth. Hence, if we resolve the velocity of the ball in two directions; one, along the plane; the other, normal to it: the former will be unaffected by the impact, while the latter will be changed just as if the impact were direct, that is, its direction will be reversed and its mag. nitude diminished in the ratio of $e: 1$. Combining theso velocities, the motion and direction of motion of the ball after impact are determined. Thus:

Let v be the velocity of the particle, θ the angle its direction makes with the normal to the plane at the point of impact.

Let v^{\prime} be the velocity after impact, and θ^{\prime} the corresponding angle. Then $v \cos 0, v \sin 0$ are the velocitios respectively normal to and along the plane, and we have

$$
\begin{aligned}
c v \cos \theta & =v^{\prime} \cos \theta^{\prime} \\
v \sin \theta & =v^{\prime} \sin \theta^{\prime}
\end{aligned}
$$

from which we obtain

$$
\begin{aligned}
& v^{\prime}=v^{\prime} V\left\{\sin ^{2} \theta+\iota^{2} \cos ^{2} \theta\right\}, \text { and } \\
& \tan \theta^{\prime}=\frac{1}{e} \tan \theta .
\end{aligned}
$$

Or, the same may be dono by an easy geometrical construc- Geometrical tion; thus, take $A C$ to represent the velocity at impact, $C M$ tion. the normal, $A M$ perpendicular to $C M$. Then $A M, M C$ repre- Fl . 6 . sent the componeat velocities along and perpendicular to the plane. Tako $C N=e C M, N B$ perpendicular to $C M$ and equal to $M A$; join $C B$: then $C B$ will represent in magnitude and dircetion the velocity after impact.

IMAGE EVALUATION

Photographic Sciences

Corporation
with perfect Cor. If the elasticity be perfect, the velocity is the samo the nungles of after impact as before, and its direction is equally inclined to indidence
andreflexion the normal on the other side of it.
wre efiual.
This furnishes a simple construction for finding the direction in which a particle in a given position must be projected so as after reflexion at a fixed plane (perfectly elastic) to strike a given point. The rule will be: aim at a point directly behind the plane at the same distance from it as the point required to be bit.

So also, if it be desired to strike a given point after reflezion at two fixed planes in succession, imagine a point at the same distance directly behind the second plane as the given point is before it, and then aim at a point directly behind the first plane at the same distance from it as this imaginary point is before it. And a similar construction serves for the same problem after successive reflexions at any number of planes.

Fig. 1.

Fin.

Fig.

Fig. A

[^0]: Cor. 2. If the cylinder be heavy, ite weight must be included in W. Instead of supporting a weight, th, screw may be producing a pressure at its lower ead, and in this case the pressure produced will be inereased by the weight of the screw. It may also be producing a pressure at its upper end, and then the pressure produced must be diminished by this weight.

[^1]: * Lex. I. Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum itlum mutare.-Princ. Leg. Mot.

[^2]: * Lex. III. Actioni contrariam semper et aqualem esse reactionem: sive, corporum duorum actiones in se mutuo semper esse cequales et in partes contrarias dirigi-Prinu. Leg. Mot.

