dup

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF THE COURSE OF INSTRUCTION.

SEPTEMBER, 1888.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF THE COURSE OF INSTRUƠTION.
0

SEPTEMBER, 1885.
1

CONTENTS.

Page.Mathematics and Mecharions152
Military Engineering, $\left.\left\{\begin{array}{l}\text { Theory, } 109 \\ \text { Drills and } \\ \text { Exercises. }\end{array}\right\} \mathrm{t} 34\right\} \ldots .$. 109
Artillery, $\left\{\begin{array}{l}\text { Theory and Construction of } \\ \text { Drills, }\end{array}\right.$ 25
Military Law, 91
Military Administration, 95
Military History and Geography 101
Tactics, 103, and Strategy, 106,85
Surveying, $\left\{\begin{array}{l}\text { Military Topography, Civil Surveying, } \\ \text { Practical Astronomy, and Geodesy, }\end{array}\right\}$ 73
Practical Geometry and Magineoring Drawing 137
Freehand Drawing and Painting 65
English Thafguage, Litorature, and Elocation 69
French 37
Physics 41
Chemistry 49
Geology and Mineralogy0 59
Civil Engineering 1Architecture19

- (Infantry Drills, 149
Infantry Drills, Equitation, Equitation, 151 and Military Wxercises, Gymnastics, 152 147

A
444

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN CIVIL ENGINEERING.

This Oourse is Voluntary-It is taken up in the Second Class and is continued in the First, and extends over a period of two years. No marks are allowed for the Second Class, the whole being assigned to the First Class.
1.
ALLOTMENT OF MARKS.
2
Section III-Estimating and Supervision.
Marks 400.
Sub-Section A-Estimating, Setting Out and Sapervision of
Works.
Marks
1 Section? 1 IV - Iydraulic Engineerin. Examinations 400
Marks.........1,100.
:Sub-Section A-Storage, Evaporations, flow through orifices
Marks and through pipes under prossure.
Sub-Section B-Practical Corstractionations 500
Marks $\left\{\begin{array}{l}\text { Examinations Water...... } 400 \\ \text { Drawings and Notes. } 200\end{array}\right.$
Section ∇-Mechanism and Prime Movers.
Sub-Section A-Steam Marks.......... 300.
$\begin{aligned} & \text { Marks Examinations } 300\end{aligned}$
Architectural Courses, one-half only of the markineering and
Sectiors I and III (being common to Eng marks assigned to
tecture) will be available for each sugjeering and Archi-
Engineering only, then the full mach subjeot. If he takes
sections are available for that subject.

TEXT BOOKS.

- $: 0:$

TEXT BOOKS IN CIVIL ENGINEERING.
Principally Lectures. Rankine's Civil Eingineering. Henck on Railway Curves. Trautwine's Pooket Book. Fanning's "Treatise on Water Supply."

BOOKS RECOMMENDED TO BE READ.
Tate's Mechanical Philosophy. Twisden's Mechanics.
Peck's Mechanics. Vose on Railway Construction. Stevenson's "Canals and Harbors.",

SUMMARY OF COURSE OF INSTRUCTION IN CIVIL JENGINEERING.

Ist, OLASS. SECTION I. .

Nature, production and use of materials of construction. (Common to Engineering and Architecture.) Sub-section (A)-Materials, Desoriptive and Processes.

Bujlding stones-Their classification, by constituent elements, rather than geologically, calcareous, argillaceous and siliceous, sandstones, limestones, granites, slates, traps.

Durability of stone-Esposure to frost, to heat, to city smoke, hardness, structure, free, granular; shelly, natural or

Making artificial stone-Ransomes process, concrete blocks, breakwater works of North Sea canal, brick clay, mixing, moulding, burning.

Limes-Air limes, water'limes, cements, materials, physical characteristics of hydraulic limestones, calcination of limestones, lime kilns, fuel slaking of lime, sprinkling, drowning, immersion, manufacture of artificial hydraulio limes and Portland cement, Rof uniformity of quality, manufacture of

Mortar-Sand man mortar, puzzolanas. durability of mortars, pulation; proportions. Setting and Tests of the strength of meory of the hardening of mortar. per struck bushel. Time required to hard or cement. Weights

Concrete-Of airlime; of to harden. proportions, manipulations, cement. Ingredients, definite frost.

Woods-Age and season for felling, climate, soil, structure; sap wood, heart wood; seasoning in air, water, or steam; girdling.

Decay-Wet rot, dry rot; terredo worms.
Preservation-Ground line ; froe air current, wet situations; kyanising; oreosoting.
Sub.-Seotion (B)-Strengte oz Materials.
Stress-Strain, Working load 'tests' set, Factors of safety, Modulus of Elasticity.

Tension-Law; experiments; tables; various. woods; irons, steel.

Direct Compression-Law ; experiments; tables; various woods, irons, steels.

Compression resulting in cross breaking or collapsingForuulas; various woods, irons, steel; kolid and hollow croes
sections.

Action of transverse load on a beam causing shearing stress towards abutments, causing bending monent towards middle of length of beam.

Resistance of beam to cross-breaking-Formulas, tables; various woods, irons, steel, and influence of cross section area, and form oröss sections of equal strength.

Modulus of rupture of east iron beams:
Allowance for weight of beam.
Limiting length of beam.
Proportion of greatest depth of beam to the span.
Deflection within safe limits of beam.
Expansion and contraction of beams.
Beams fixed at both ends. Beamis fixed at one end.
Shearing Stress-Law; experiments; tables; várious woods, irons, steels.

Sub-Section (C)-Determination of Stresses on Framed Struqtures.- (Bridags and Roofs.)
This course is begun by considering the internal strength of beams and pillars as referred to in the part B of the Syllabus:

Resistance of a beam to crushing or buckling, Gordon's formula.

Practical problems for designing beams to support given loads when acting as pillars.

Formula for the sum of the moments of the fibres of a beam to resist cross-bending.

Formula for the sum of the moments of the fibres of a beam to resist cross.bending with a given factor of safety.

Conditions of equilibrium of any rigid body acted on by a system of forces in space.

Conditions of equilibrium of aby rigid body acted on by a system of forces, for a frame.

Ranking's theorem of the equilibrium of all the forces acting on one side of a section.

Expansion of this theorem so as to form a method of sections,

Dead loads, live load, special loads, apex loads.
Effective reactions at the abutments.
Section to cut three bars.
Infinity to right or left for cen(re of moments.
Positive and negative rotations.
Kinds of stress-red, towards the section; blue, from the section.

Stresses on the chords.
Stresses on the verticals.

Stresses on the diagonals. Braces-Counter braces.
Definition of the Howe trass.
Separation into systems.
Determination in detail of the stresses on every member of the Howe truss.

Designing of a Howe truss.
Testing of a Howe truss.
Position of the rolling load to produce maximum stress on the main braces.

Position of the rolling load to produce maximum stress on the counters.

Position of the rolling load to produce maximum stress on the chords.

Definition, designing, testing and calculation of the Pratt truss in irgn (the Whipple.)

The Phoenixville truss and the Keystone truss.
Separation into systems.
Calculation of stresses on all members of the Phœnixville trüss.

Towne's lattice truss and its defects.
Definition, designing and calculating and testing of the Warren girder.

The Fink truss.
The Bollman truse.
Practical specification for bridges of wood and iron.
Drafting various type forms of bridge trusses.
The tubular girder.
Other forms of bridge trusses.
Srow and wind pressure on bridge and roofs. Calculations of the Tay bridge.

Stresses on cranes.

> SECTION II.

Design and execution of structures.
Sub-Sectión (A)-Prindiples of Enainerbina Field Work
and of Engineering Offige Work, applitd to
Surveys and to Construction of Railways and Common Roads.

RAILWAY EXPLORATIONS.

Matters influencing the choice of Route.
Organization of Staff-Ranks, duties.
Control and Payments.
Penetrating Country-Moving supplies.

Aneroid explorations-Field observations; check observations ; camp observations and weather profile.

Traverses with compass or with transit along roads, rivers, watersheds, or divides. Trial lines with transit and level, or compass and level.

Handling surface-Topography, valleys, ridges, summits, crossings, passes, divides and terraces.

Governing points of a country ruling gradients and local gradients, and adding distance to lessen gradient.

Topographical notes along trial line belt of information, as to streams, roads, slopes, coasts, banks, ice-marke, freshets, river beds, foundation strata.

Approximate estimates off trial line profile-quantities, masonry, excavation, fencing.

PROJECTED LOCATIONS.

Cross sections, summit cuttinge, maximum gradients and curvature, level contours, grade contours, alignment distance, and alternative projects.

Compiled profile section-Parliamentary estimates of quanties and cost-Basis for tonders from contractors.

Preparing reports, plans and profiles for Parliament.

ACTUAL LOCATIONS.

Tangents, apexes-intersections.
Reference hubs-centre stakes and pege.
Circular curves-simple and compound degrees of curvature ; calculation of lengths of curves; calculation of points of curvature; long chords and chord offeets problems flowing from curves, avoidance of obstacles closing a curve trace; limit of accuracy desirable.

Reduction of quantities of work by successive improvements of a location; shifting alignment ; altering gradients.

Balancing gradients against curvature-formulas used on Canadian Government railways; on Pennsylvania railway; on Canada Pacific railway.

Analysis of mass of trials made by trunk lines advisory committee as to effects of curvature and gradients separate as well as combined upon traction of three types of locomotives.

Rules recommended to be used in future locations for balancing gradients against curvature and for undulating gradients on either curves or straights. wasting.

Ballasting-object of ballast, qualities of ballast-tamping; surfacing; shimming ; tracklaying; ties.

Rails-principles governing rail section and distance from points of support designing of a rail section, weight per yard.

Rail joints-spliced, fished, chaired or scabbarded, sus. pended and supported joints. The bridge joint the best. Steel compared with iron rails.

The foregoing course of railway field and office ongineering is performed by the cadets in the field by their running of trial and location surveys as if they were in aotual service, and the office work is performed in the same manner.

COMMON ROADS AND STRERTS.

Uses-Freighting; travel; mails; intercommunication; outlets; commerce; settlement; defence. Colonization is dependent upon and is gauged by the read systems of a country.

Terms-Trunk road; high road; main road; bye road; occupation road; trail,

Routes are decided by reasons topographical, military, agricultural, commercial.

Dimensions-Tables of existing roads and streets; necessities always affecting dimensions; necessities occasionally affecting size of roads.

Surveys-Plans; estimates; reports and staff for constructing common roads are much the same as for railways of the same length.

Gradients of common roads for ascending traffic, and gradients for descending traffic; co-efficients of friction for different road surfaces; co-efficients of draught for a horse at different spèeds.

Destructive agents for roads-frost; water; wind ; traffic; weights; widths of tires of wheels.

Drainage of water and anow; surface water to run off; sub-water to be sucked away by low drainage; water line to be maintained not lees than three feet below road surface in order to have durable road.

Road-bed and road metal.
Oross section-crowning, and footways and side ditohes.
Telford's road-bed ; Roman road-beds. Macadams road-bed.
Metalling - earth, gravel, broken stone ; stone pavement, wood pavement, asphalt pavement, planks, corduroys.

Streets-drainage, dimensions, gradients, alignements, diagonal thoroughfares, rectangular laying off of cities, circular or concentric laying off of cities.

Systems of maintaining the common roads of a country.
Governmental, municipal, corporated individuals.

Sub-Segtion (B), Construotion and Desian in Wood, Stone, Earth and Iron.
sus. teel

Carpentry-Framing of wood work, mortised, scarfed, halved, apliced, fished, dowelled joints.

Beams-Solid, built up, truseed.
Pannelling-Rails, styles, surbases, cheeks and jambs.
Brick-work-English, Flemish and Amerioan bond string courses, copings, chimneys, menturation, estimates.

Mason-work-This comprises a fall course of instruction on the specifioations for various classes of mason-work used on the Government railways of Canada, and is supplemented by excursions to inspect and explain existing railway structures on Canadian railways.

Process of building for mason-work of bridge piers and abutments, and culverts and cattle guards.

Designing the dimensions at base and top of piers and abutments, and the length of abutments.

Hollow abutments-Cellular; well; and arranging given quantity of masonry to give a shape of greatest strength.

Distinctive principles between "wing wall" abutments and "tower" abutments.
. Oaloulating lengths of wing walls for retaining embankments of earth or rock of given depths, and widths and angles of repose.

Finding lengths of inclined, or of skew culverts on level or on sloping ground by the following methods:-
(1.) Experimentally with rod and level, in a manner analogous to setting out embankment slope stakes.
(2.) By finding, analytically, the point of intersection of two right lines given by their equations.
(3.) By a graphic construction.
(4.) By snocessively galoulated approximations from an assumed length.

Retaining walls for earth and water; earth level with top of wall ; earth higher than top of wall.

Dams-Stone ; crib; clay; plank.
Principles for economising mason work in culverts by reducing their lengths, by using wing walls, and by raising coping and by selecting of sites.

Principles for economizing mason work in abutments by using cells, and wells and concrete.

Foundations of structures-Explanations of the different kinds of materials which have to be dealt with in founding structures.

Principles governing the permanerce of foundations, set-
tlings, scour, frost, springe, piling, platforms, concrete, sandpiles.

Excluding of water from foundation areas, dams, cofferdams, caissons, divers, pneumatic processes.

Designing and executing rook and earth excavations and embankments, tunnels, slopes, gullets, lifts, falls, ohambers.

Drainage of storm and sub.water-Catohwaters ; under. drains; road-bed; water tables; crowning; snow sheds.

Fencing-Post and board; block and picket; block and rail; A fence; snow fence.

Protection work-Rip-rap; cribbing and stream diversions.

Designing of iron bridges.
Sections of members of iron bridge frames.
Sections of connections for members of iron bridge framess. STEOTION 211.
Estimating, setting out and supervision of Work.
Sub.-Section (A)-Construation ayd ube of Tableg of Exgavation and Embankiennt.
The information necessary before estimate of quantities can be made forshowing probable cost of a proposed public
work.

Calculation of cubic contents of line cuttings and embankments, by the method of mean heights and tables.

Calculation of do do by the method of prismoidal.
Formula and tables.
Calculation of do do by the method of mean areas.
Comparison of the advantages and the disadvantages of these methods as regards accuracy in theory, and accurasy in practice and time and labor of the computor.

Construction of Tables, MacNeil's.
do Canadian Pacifio Railway.
Methods used on the Intercolonial Railway, the Oanadian Pacific Railway, and the Quebec Government Railwayi for final estimates for contractors.

Setting out of Excavation and Culverts.
Measurement of line excavations, and borrow pits by level, rod and tape in the field, and degree of accuracy required setting in slope stakes, grade pega, centre outs and fills, gullets, \&c., \&c.

Setting out position and lengths of level culverts in the field.

Setting out position and lengths of inclined culverts in
feld.
sylla
strea
tions the field.

Four methods as shown in the preceding part of this syllabus.

Limit of the safe inclination of a culvert.
Paving to be a few inches below the original level of stream.

Gauging freshet areas, ice marks of floods.
Discharge capacitien of various types of culverts.
Precautions with the foundations.
Frost level, springs, scour, wing walls, artificial foundations, \&\&C, \&c.

Methods of economizing masonry in culverts by reducing length by means of wing walls, coping, \&c., \&c.

Estimating Quantities of Masonay and Paving.
In abutments, piers and culverts off the drawings.
Tabular form for culvert quantities.
Estimates and Contracts general form for Quantities from a Railway profile.

Allowance for shrinkage, balancing, excavation and embankment waste, borrowing.

Details of items.
do prices.
Various methods of letting contracts.
Schedule of prices for limit of work.
Lamp sum.
Comparison and history of these methods.

SEOTION 1 V .

Hydraulic Engineering.

Sub-Section (A)-Water Supply; Storage Evaporatiońs
Flow throvai Orifiges and throval Pipes under Pressure.
Introduction :-Necessity of Public Water Supplies; Phy. siological Office of Water; Sanitary Office of Water Supply.

Consumption.
Quantity of water required.
Statistics of consumption.
Ancient cities; European cities; American cities-
Increasing consumption.
Relations of supply per capita to total population.
Monthly and hourly variations in the draught.
Ratio of Monthly consumption.
Reserve for fire purposes.

12

Rafnfall.

The liquid and gaseous successions.
General rainfall statistics.
Climatic effeqts-sections of maximum rainfail.
American western rain rystem.
American central rain system.
American eastern coast rain aystem.
Influence of elevation or precipitation.
River basin rains.
Grouped rainfall statistics.
Monthly fluctuations of rainfall.
Secular do do
Local physical influences.
Uniform effect of natural laws.
Great rainfalls.
Maximum ratios of floods to rainfalls. Volume of water from given rainfalls.
Gauging rainfalls.

- Flow of Stream.

Flood volumes inversely as the areas of basins.
Formulas for food volumes.
Tables of
do
Seasons of floods.
Inflaence of absorption and evaporation upon flow.
Flow in seasons of minimum rainfall.
Summaries of monthly flow statistios.
Minimum mean and flood flow of streams.
Mean annual flow of streams.
Tables of flow equivalent to given depths of rain.
Storagar and Etaporation.
Artificial storage.
Losses incident to torage.
Sub-strate of storage basin.
Percolation from storage basin.
Evaporation loss from a reservoir.
Evaporation from water.

> do do and. oarth.

Ratios of evaporation.
Resaltant effect of rain and evaporation.
Practical effect upon storage.
Supplying Capacity of Watrer Shed.
Estimate of available annual flow of streams.

Betimate of monthly available storage required. Utilization of flood flowe.
Qualifications of deduced ratios.
Infuence of storage upon continuous supply.
Artificial gathering areas.
Springs and Wells.
Subterranean waters.
Porosity of earths and rocks. Causes of percolations
Subterranean reservoirs.
Overflowing wells, American artesian wells.
Supplying capacity of wells and springs.
Impurities of Water.
Composition of water.
Solutions in water.
Mineral impurities.
Organic impurities.
Tables of analysis of potable waters.
Deep well and surface impurities.
Vegetal organic impurities.
Vegetal organisms in water pipes.
Propagation of aquatic organisms.
Purifying office of aquatio life.
Intimate relation between grade of organisms and quality
Agricultural ; mineral; manufactaring and sewage impurities.

Well, Spaing, Laki and River Supplies.
Locations for wells ; fouling of old wells.
Spring waters; impregnations; mineral springs. Lake waters ; impounding; plant growth.
Preservation of purity; natural clarification.
River waters ; pollutions; sanitary discussions.
Spontaneous clarification.
Artificial
do
Sugar test of the quality of water.
Flow of Wayer throuar Sluiors, Pipes and Channels.
Weight, pressure and motion of water.
Atomio Theory-Molecular Theory.
Influence of Caloric-Relative densities and volumes.
Weight of water and its constitpents.
Cryitalline forms of water.

Formule for volumes at different temperatures.
Weight of pond water.
Compressibility and elasticity.
Weights of single molecules.
Pressure of, water.
Pressure proportional to depth
Individual molecular reaction.
Pressure from vertical, inclined and bent volumes of water.

Pressure on unit of sarface.
Equivalent forcas; weight on measure of pressure.
Line a measure of weight; line a measure of pressure upon a surface.

Diagonal force of combined pressures graphically represented.

Angular resultant of a force represented by sine and cosino of the angle.

Direction of maximum effect.
Pressure upon a curved surface and effect upon its pro-l jected plane.

Centre of pressure upon a circular area.
Sustaining pressures upon submerged and floating bodies.
Upward pressure from a submerged lintel.
Syphon-Inverted syphon.
Transmission of pressure to a distance.
Fluw of water-Action of gravity upon.
Individual molecules:
Acceleration of motion.
Equation of motion.
Parabolic path of the jet.
Velocity of efflux proportional to the head.
Converting of the force of gravity from pressure into motion.

Resultant effects of pressure and gravity upon the motion of a jet.

Resistance of the air-Theoretical velocities.
Flow of Water through Orifioms.
Theoretical volume of effiux.
Converging path of particles.
Classes of orifices.
Form of submerged orifice jet.
Ratio of minimum section of jet.
Volume of efflux-Co-efficient of efflux.
Maximum velocity of the jet.
Factors of the co-efficient of efflux.

Experimental co-cfficionts, from Michellotti, Bossut, Rennie, Oastel, Lespinesse, Ellis.

Oo-efficionts diagramed.
Effects of varying the head of the proportions of the orifice.

Oo.efficients of velocity and of contraction.
Variable value of velocity and contraction.
Jets of varions crossections.
Flow of water through short tubes.
Adjutage - Vacuum of adjutage, and its effect
Divergent tube-Inward projecting adjutage.
Experiments with cylindrical and compound tabes.
Range of Eytelwein's Tables.
Flow of Watiz throurh Pipes under Pregsure.
Definitions of pipe and conduit.
Theoretical volume of discharge.
Mean efflux from pipes.
Sub-diviaion of the head HI into h, to generate velocity in pipe; h^{\prime} to overcome resistance to entry; $h^{\prime \prime}$ to overcome resiatance of pipe wall.

Resistance of the pipe wall varies direetly as the length, and as (approximately) the velocity, and as (approximately) the oircumferenoe divided by a function of the area.

Variable values of co-efficient m, and its peculiarities.
Effects of tubercules.
Equation of velooity neutralized by resistance to flow. Equation of resistance head.
Equation of total head.
Eiquation of diameter.
Equation of volume.
Relative value of sub-division of total head.
Olassified equations for the above.
Mean co-efficients for smooth, rough, and foul pipes. Bends.

Branohes.

How to economize head.
:Sub-Segtion (B)-Phantoal Construomion of Water Works, Reazavora, Tmbankments and Chambars.
Ultimate economy of akilful construetion ; embankment foundations ; springs under foundations; surface soils; concrete out-off walls ; treacherous strata; embankment core materials ; reconnaissance for site ; frost covering ; slope paving puddle wall; distribution reservoirs; masonry-faced ombankment ; ombankment aluices and pipes; gate chambers; sluice valve areas; gate chamber foundations.

Retaining Walls-Equations of stability; materials ; dimensions and cross-sections of retaining wblls actually constructed.

Masonry conduits.
Mains and distribution pipes.
Distribution Systems-Hydrants; fire supply.

$$
\text { SECTION } \mathrm{V} .
$$

- Mechantsm and Prime Movers.

Sub-Srction A.-Steam Enaines and Water Engines.
Laboring Forces-Vital, water, steam, wind.
Friction-Laws, co-efficienta, tables.
Work-Measure, equality of moments, modulus.
Water Engines-Wheels, pumps, ram.
Steam-Boilers, flue, tabular Cornish.
Steam-Engines, condensing, non-condensing, direct acting, rotative, rotary, compound, the marine engine, the locomotive engine, the compound engine.

Heat-Combustion, radiation, fire grate surface, evaporating surface.

Expansion of Steam and Aotion of the Valves.
(a) Application of the calculus to find analytically the mean pressure of the steam during expansion.

Formula for work performed during expansion.
Work of steam having a mean pressure.

- Work of steam considered in relation to the quantity of water evaporated.

Tables of volume of steam derived from one cubic foot of water when evaporated under different pressures.

Modes of Estimating tee Power and Performanoe of Engines and Bollers.

Horse-power.
Duty of engines and boilers.
The indicator.
Dynamometer and gauges.
Proportions of boilers.
Evaporation powers of boilers.
The blast in locomotion.
Steam room and priming.
Strength of boilers.
Boiler explosions,
Steam passages.
Air pump - Condenser and hot and cold water pumps.
ials ; dially con-
ect acthe loco.

raporat-

Es.
lly the
tity of foot of

Fly-wheel.
Strength of land engines.
Strength of marine engines.
Constration Details of Engines.
Pamping ongines.
Various forms of marine engines.
Cylinders, pistons and valves.
Air pump-Condenser.
Pumps, cocks and pipes.
Details of the screw and screw shaft.
Details of the paddles and paddle shaft.
The locomotive engine.
Loss of Work due to Friotion of Machines.
(b) Investigation to find analytically the work absorbed by friction of an axle in a journal.

Practical problems on the frictid of an axle.
(c) Investigation to find analytically the work absorbed by friction on a flat pivot.

Practical problems relating to the work absorbed by the friction of turbine wheels on their pivots.,
(d) Investigation to find analitically the work absorbed by the friction between a belt and a pully. a pully.
(e) Investigation to find analytically the work absorbed in compressing an elastic gas, steam or air.

Application of the investigation (e) to the calculation of work absorbed (and given out again) by the air compressing engines of the Mont Cenis tunnel.

Application of investigation (e) to the calculation of the work done during expansion of a high pressure engine.

Application of investigation (e) to the calculation of the work done during expansion of a condensing engine.
\qquad

ROYAL MILITARY COLLEGE OF CANADA.

Syllabus of instruotion in arohiteoTURE.

This Course is Voluntary-It is taken up in the Second Class and is continued in the First, and extends over a period of two years. No marks are allowed for the Second Class, the whole boing assigned to the First Class.

ALLOTMENT OF MARKS.

Wor Entire Course, $\left\{\begin{aligned} \text { im } \\ 3,200 .\end{aligned}\left\{\begin{array}{c}\text { Yearly and Intermediate } \\ \text { Examinations......... }\end{array}\right.\right.$ (1,900
Section I-Nature, Production and Use of Materials of Construction.
Marks.
.................. 1,900.
Sab-Section A-Materials: Description and processes.
Marks-Bzaminations.
Sub-Seption B-Strength of materials.
Markg.
$\left\{\begin{array}{l}\text { Examinations, } \\ \text { Notes and Rec }\end{array}\right.$
300
\{ Notes and Recitations....... 200
Sub-Section O-Stresses on Framed Structures.
Marks. $\left\{\begin{array}{l}\text { Examinations................ } 500 \\ \text { Notes and Recitations..... } 500\end{array}\right.$
Section II-History and Principles.
Marks

.200
 Sub-Section A-History and Principlos.
 Marks-Nxaminations .200

Section III-Design and Execution of Structures.
Marks. .700

Sub-Section A-Buildings, Domestic.
do B- do Public-Civil. do \mathbf{C} - do do-Military. Marks.,........ $\left\{\begin{array}{l}\text { Examinations.......... } 300 \\ \text { Notes and Drawings....... } 400\end{array}\right.$

> Section IV-Estimating and Supervision. Marks.................. 400

Sub-Section A-Measurements, quantities, prices. Marks. $\left\{\begin{array}{l}\text { Examinations....... } 200 \\ \text { Notes and Recitations. .. } 200\end{array}\right.$
Nore.-If a Cadet takes up both the Architectural and the Civil Engineering Courses, one-half only of the marks assigned to Sections I and IV (being common to Fingineering and Architecture), will be available for each subject. If he takes Architecture only, then the full marks assigned to Sections I and IV are available for that subject.

As both the Ciyil Engineering and the Architectural Courses are voluntary it is allowable for any Cadet taking the Architectural Course, to also take up additionally any such subjects or sub-sections of subjects in the Civil Engineering Course as shall carry marks for competition sufficient when added to the 3,200 marks available for Architecture, to raise the total number of marks for competition available for such Cadet to the total number 5,600 marks, available for competition for Cadets taking Civil Engineering only.

TEXT BCOKS.

Principally Lectures.
Mitchell's Elements of Arohitecture.

BOOKS RECOMMENDED TO BE READ.

Ferguson's ' History of Architecture."

SUMMARY OF COURSE OF INSTRUOTION IN ARCHITEOTURE.

plates
gener
Ist OLASS.
SECTION I.
Nature, Production and Use of Materials of Construction. Sub sections A, B, \& C. (Common to Engineering and Architecture. For details. see Syllabus of Engineering Course.)

SECTION II.
History and Principles.
Sub-Section (A)-Descriptive and Historical. Early history. Greek architecturc. Roman do
Byzantine do
Romanesque architecture.
Mediæval pointed do
English mediæval do
Elizabethan do
Renaissance do
Modern do
SECTION III.
Design and Execution of Buildings. Sub-Section (A)-Building Construotion. General Prinoiples.
Foundations, natural and artificial, concrete Béton, hydraulic lime, foundations under water, piles, pile-driving;

Masontr.
Uncoursed rubble, course, ashlar work, through stones, bond beds, joints, tools used.

Brickwork.
Bricke, size, thickness of brick walls.
Principles of walling, headers and stretchers. Plans and elevations of walls in English bond. Plans and elevations of walls in Flemish bond. Plans and elevation of walls in lake and herring-bone bond.

Protection against frost, application of wall-plates, tem-
plates, discharging arches, lintels, construction of brick arches, general rule as to brick-work, tools used in brickwork.

Drawing for Bricklayers.

Drawing for bricklayers. Examples of rough arch squareheaded windows, extrados, intrados, centreing, square-headed doors, with relieving arch and tie-rod, segment arched windows, Gothic arch in birch wood, with centreing.

WOODWORK.
Scantling, modes of lengthening timbers, strapping, bolting, fishing, halving, scarfing, trussed girders, joints in timbers, notching, morticing, fos-tail joint, tennon.

Construtation of Roofs.
Gable, hip, mansard, tie beam, rafters principal and common rafters, king.post, strap, queen-posts, arch track, straining beam, struts, purlin, determination of stresses in roofs, wind and snow pressure.

Construation of Floors.

Single floors, trimming, arch and joist, herring.bone truss, sound boards, double floors, binders, ceiling joists, framed floors, floor boards, square-edged, rebated, ploughed, tongued and dowelled.

Partitions.
Principles of construction, fire-proof, must form portion of carcass.

Joinery.
How distinguished from carpentry, mitre-joint, dove-tail joint, staircase, general construction, bracket staircase, doglegged stairease.

Fire-Proof Construction.
Behavior of various building materials under fire, fireproof layers.

General Arrangements.

Cellars, drainage, sewerage connections, ventilation, traps, warming, water supply, ready egress in case of fire, doors opening outwards.

Sub-Sections B and C.
Sub-Section A will be continued so as to embrace the designing of domestic buildings and of public buildings, for civil and military purposes.

SEOTION IV.

Sub-Siotion (A)-Methods of Estimatina Quantities in Buildings.
Stone work, brick work, wood work, plastering, slating, shingling, painting, glazing.

7

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUCTION IN ARTILLERY.

ALLOTMENT OF MARKS.

	Obligatory................................	3,000
For	Volunta	1,000
Entire Course.	Drill...........................e.............	400
4,560	(Communicating Drill (N. C. Officers	160

For 1st Class. $\left\{\begin{array}{c}\text { Communicating Drill (N. C. Officers } \\ \text { only)...................................... }\end{array} 160\right.$

TEXT BOOKS AND BOOKS OF REFERENOE.

Text Books:

Practical and Theoretical Course.
Handbook of Artillery Matériel (Morgan).
Manual of Siege and Garrison Artillery Eizercises.
Notes on Ordnance, carriages, \&o.
Treatise on the Construction of Ordnance (Royal Gan Factory) 1879 (Voluntary).
Treatise on Carriages (Royal Carriage Department) 1879 (Voluntary).
Sladen's Gunnery (Voluntary). Tracts on Mechanics (Voluntary).

Books of Reference:
Treatise on Ammanition (R. L.)
Instructions for the Service of the Siege Train, Field Artillery Ezercises (Royal Artillery and R. H. A). Notes on Manufacture of Gunpowder and Guncotton. Reports of Experiments with Bashforth's Chronograph.

SUMYARY OF INSTRUCTION IN ARTILLERY.

$-0-$
Each Cadet fires annually three rounds of Segment Shell, two with percussion and one with time fuze.

Both the practical and theoretical courses are carried on simultaneously during the 20d and 3rd Terms.

PRACTICAL COURSE.

THIRD OLASS.

(Obligatory.)
Standing gun drill and simple manceurres of a Field Battery. Disabled ordnance. Drill of Garrison guns on standing oarriages and on traversing platforms, Mortars. Drill with Armatrong B. L. R. 6 Pr. and 7 -inch gans.

Making up ammunition.

SEOOND OLASS.
 (Obligatory.)

Material and appliances, knotting and splicing.
Elementary shifts of ordnance, such as slewing, pinching, rowing, raising a gun on skidding, parbuckling and moving a gun on rollers, and on temporary sleighs.

Gyns and sheers.
Special marks for N. C. Officers as Drill Instructors in First Class, 160.

THEORETICAL COURSE.

> THIRD OLASS.
(Оbliaatory.)
Brief History of Artillery to the present day.
Definitions of various torms in Gunnery.
S. B. ORDNANCE.

Printed Notes:
Guns, Howitzers, Mortars and Carronades.-A short description of their natures and uses. The names of the different parts of a gun.
Ohambers.-Cylindrical and gomer.
Vents. "The necessity for a vent " bush," "The cone" and "through" vent.

Sighting S. B. Ordnance.
The various lines on a smooth bored gan.

Dispart. Line of metal elevation. Clearance Angle. Means of giving direction and elevation. Wooden and brass tangent scales.
Millar's Sights.
Mode of graduating sights.
Examination of S. B. Ordnance.

RIFLED ORDNANCE.

 Text Book, Morgan's Treatise.Ceapter I-Metals used in Gun donstriotion:
Cast iron, wrought iron, steel, bronze.
Chapter II-Rifled mozzlebloading Builut-tp-Guns :
Construction, process of manufacture, rifling, chambering,

Ceaptrar III-Rtplid mozzleloondina converited auns-

 Old pattern R. B. L. guns:R. M. L. converted guns, process of conversion, sights, examination, old pattern R. B. L. gans, construction, breech fittings, rifling, tights, converted 35 owt. 40 Pr. R. B. L. gun, examination.

Caapter IV-Nrw type Breech-Loading auns:

Construction-breech mechanism, systems of obturation, vents, rifing, chambering, manufacturing operations, natures, examination.

December, 250 marks.
AMMUNITION.
Chapter V-Gunpowder Cartridaes, \&o. :
Gunpowder, composition, advantages, density; natures of gunpowder; classes; gunecotton; detonating compositions, cartridges cases and barrels. Precautions to be taken in. making up ammunition.
Chapter VI-Projectiles :
Projectiles for R. M. L. Ordnance, general description. Armour-piercing projectiles, common and double shell, shrapnel shell, case shot, star shell, studded projectiles for R. M. L. Ordnance, description; service gas cheok for ditto. Studless projectiles for R. M. L. Ordnance and automatic gascheck, description; altered studded projectiles, studless Palliser shell, projectiles for 16 in , and $12 \cdot 5 \mathrm{in}$. new line projectiles for old pattern Armstrong R. B. L. Guns.

Iatures, segment shell, common shell, shrapnel shell and case shot.

Projectiles for Smooth-Bore Ordnance, natures, \&c.
Projeotiles for new pattern B. L. Guns.
Chapter VII-Fozes, tubes, \&o.:
Fuzes for rifled Ordnance, wood time fazes; description, M. L. wood time fuzes; wood time fuzes with detonators; remarks on wood time fuzes; percussion fuzes for rifled ordnance; Description, Pettman's G. S. fuze, R. L. fuze; large percussion fuze; small percussion fuze; B. L. plain fuze; direct action fuze; delay action fuze; time and concussion fuzes.

Fuzes for S. B. Ordnance. Friction tubes. Vent sealing tubes, Abel's electric fuze ; electric fuzes and detonators; safety fuze ; quick and slow match; hortfires ; wedge wads; tin cups; primers ; Hale's war rockets ; disabling guns.

March, 250 marks. Repeat course in June, 1,000 marks.

SECOND OLASS.

(Obligatory.)
 MILITARY CARRIAGES.

Text Books :-
Morgan's Treatise and Manual of Siege Artillery Drills.
Printed Noles :-
Principles of construction, pointing out the considerations that govern the height of wheels and the dimensions of the various parts.
The offect of firing on a field or siege carriage.
Considerations by which the various strains on a field gun carriage may be minimized.
Advantages and dieadvantages of iron as compared with wood for the construction of a gun carriage.
Construction of wheels and axles, naming the varions parts. The dish of a wheel and why necessary. The inconveniences arising fromothe dish, and how they are overcome. Definition of hollow, lead, strut and set.
Description of the "old pattern" and "new pattern" or "Madras" wheel, pointing out the great advantages of a metal over a wooden nave.
Classificution of wheels and azles.

Wooden Carriages.

Description of the carriage for a 40 .pr. B. L. R. gun, with traversing saddle.
Points of difference between this and the carriages for S. B. guns.
Limber for above gun carriage.
Description of the mode of shifting shafts for sirgle or double draught and four abreast. Pole versus shaft draught.
The question of driving with reins or from horse's back.
The ammunition waggon.
The heavier natures of wooden carriages.
Mortar beds.

Iron Carriages.

The carriage for the 9-pr. R. M. L. gun, Mark II, described in detail, it being the pattern on which all the larger ones are constructed.
The limber for above, its boxes and fittings.
The proposed "Limber System" of carrying ammunition.
The ammunition waggon and its fittings.
Carriage for 12 -pr. B. L. gan.
The chief points of difference between the above carriages and those for the $16-\mathrm{pr}$., $25 \cdot \mathrm{pr}$., 40 -pr. and $6 \cdot 6$-in gun.
The overbank attachment and its uses.
The carriages and beds for the howitzers, $40-\mathrm{pr}$. B. L. con-
verted.
Methods of checking excessive recoil in field and siege carriages, hydraulic buffers and achorages, breaks, \&c.

> Stear Platroam, \&o.

The ground platform ; Clarke's platform ; special platform for the howitzer beds.
Detail of carriages, \&c., in a siege unit.
The various other artillery carriages, such as sling and platform waggons, general service waggons, forage waggons, \&c.

Garrison Carriages and Platforms,

General principles of construction.
Wooden carriages and platforms.
The garrison standing carriage, with Allen's break.
The rear chock carriage.
The sliding earriage and wooden compressor, both dwarf and casemate.

Traversing Plattorais.
The common, dwarf and casemate platform.

Racer

Wrou
Singl
The F The d Vava
The a
The h
The e
Worm
The al
Iron
Vario
10
The M
The p
(MA

D

1. Ma
2. Rif
3. Mv
4. Pr
5. Gu
6. Qu:
7. Por
8. Del

ह. На
6. Pro
7. Siz
8. Am
9. Poi
10. Le
11. Siz
12. Cali
gun, with 8 for S. B.
or double ught. cck.
scribed in ger ones
tion.
ages and
L. con.
arriages,
form for
platform
Racers and pivots, real and imaginary. Iron Carriages and Platforms.
Wrought iron standing carriage.
Single plate construction of sliding carriages.
The Elswick compressor.
The double plate construction of sliding carriages.
Vavasseur's carriage.
The small port oarriage.
The hydraulic buffer.
The elevating screw and quoins.
Worm wheel elevating gear.
The arcs and indicator.
Iron traversing platforms, pivots and racers.
Various methods in use for running in and out, traversing and loading guns. Mantlets.
The Moncrieti system, its advantages and disadvantages.
The preser vation and care of carriages and their parts.
December, 250 Marks.

ELEMENTARY GUNNERY.

(Manual of Artillery Exrrotibs and Printed Notrs)
Part I.-Seotion I.
Definition of Gannery Terms.
Seotion II.-The Gun.

1. Material for ordnance.
2. Riffing.
3. Muzzle versus breech-loading.
4. Proportion of weight to calibre.

Skotion III.-The Celabge.

1. Gunpowder and its action on the bore of a gan.
2. Quality of the ingredients.
3. Porportion of the ingredients.
4. Density.
5. Hardness.
6. Proportion of moisture.
7. Size of grain.
8. Amount of space occupied by charge.
9. Point of ignition of charge.
10. Length of the bore of the gun.
11. Size of the powder chamber.
12. Calibre.
13. Amount of the charge.
14. Weight of the projectile.
15. Windage.
16. Rifling.

Short description of the methods of measuring pressure in the bore and the velocity of the projectile.

The Projectile.
tie fordes atting on a projectile in the bore of a gun.
The force of projection of the powder gas.
The rotation imparted by the grooves.
tere forobs acting on a projegtile durina flight.
The force of projection.
The force of gravity.
The resistance of the air.
The rotation due to rifling.
The rotation of the earth.
variable forges adting on a projectile.
Variability of the charge.
Variability of space occupied by charge in bore.
Difference of level wheels.
Force and direction of wind.

ARTILLERY FIRE.

(Mandal of Artilleriy Exerdises.) Part I.-Section VI.-Firld Artillery. Effect and use of projectiles.
Shrapnel shell.
Common shell.
Firing at moving objects.
Practice with reduced charges.
Use of range tables, times of flight, angles of descent.
Part III., Sections IX and X.-Siege Artillery.

Method of Laying, -

A. When object is visible.

1. The tangent scale is used.
B. When object is visible from battery, but not from gun.
2. Laying by plumb line.
3. Laying by hanging scales and quadrant.
4. Laying ly an auxiliary mark in front.
5. Laying by an auxiliary mark in rear.
6. Laying by Capt. French's scales.
7. Laying on plumb line and mark to rear with service sights.
C. When object is not visible from battery.
8. Obtaining line of fire.
9. Laying the gan.
10. Firing by night.

Projeotiles used from Siege Guns,-
Their mode of use and effect.
Common shell.
Battering shell.
Shrapnel, case and star shells.
Observations on the effects of fire.
Mode of using rockets.
Part I., Seot. VI-Garbison and Coast Artillery.
Land fronts and sea fronts.
Nature of work to be done.
Principal projectiles-Palliser shot and shell. When each will be used.
Common shell.
Shrapnel and case.
Notes on penetration of iron plates by chilled projectiles.
Drsoription and Uses of "Ranae Finders," -
Part IV., Segt. IV.,-
And "Siege Train Manual" and "Field Artillery Drill Book."
Nolan's and Watkins range finders.
Principle of Weldon's range finder; the objections to its general use.
The hydroclinometer for elevated batteries.
Arming batteries by night.
Hasty disablement and destruction of ordnance.
March, 250 marks.
Manual Garbison Artileery.-Vol. II
Part V.-
Material and appliances.
Part VI. -
Hlementary instruction.

Pabt VII.-

Machines and transporting carriages.
3

Part VIII.-

Moving, mounting and dismounting ordnance, carriages and platforms.
Part IX. -
Gun sleighs.

Part X.-

Sheers and derricks.
Repetitionand completion, in June, 1,000 marks.

SECOND OLASS.

 Segtion A.-(Voluntary.)Construction of Carriagre, \&o., in Royal Arsinal Printed notes.

Machiners-Steam hammer.
Notes on the various woods, British, and Foreign, used in the construction of carriages, \&c.
Form and quality of iron used, tests used.
Nature of bronze used.
Care and preservation of leather, \&ce.
Sizes of cordage and uses.
Manufacture of Projectiles and Fuaes.
Selection of iron for shells. Preparation of core and mould. Casting of common shell and shrapnel.
Peculiaritios in the manufacture of Palliser projectiles.
Fitting studs and gas checks.
Lacquering inside of shell.
Construction of wooden and metal time fuzes.
Construction of tubes, port fires and rockets.
Various laboratory compositions.
Notes on the Manufacture of Gunpowder.
Manufacture of gun powder.
Manufacture of gun cotton.
Section B.-(Voluntary.)
Sladen's Principles of Gunnery.
Ceapter I.
Definition of terms used in gurnery.
Chapter II.
Relation between and problems upon the "angle of spiral"
and "twist of rifling." Velocity of Rotation determined
from that translation. Energy due both to translation and rotation, omitting the note to pages 15, 16. Velocity of recoil withont noticing the weight of the cartridge and without the considerations in pages 18, 19, which should, however, be read over, the causes of inaccuracy being noticed. Energy of recoil, omitting the cartridge as before. Omit Major Kemmis' table.
Chapter III.
Pressure in the bore of a gan.
Chapter IV.
Work done by a charge of powder, omitting the table of work and its applications. "Factor of Effoct." Velocity in the bore and muzzle velocity, omitting details in pages 31, 32.
Chapter V.
Resistance of the air. History up to Bashforth's experiments and conclusions. Calculations leading to V $v=-$ and to the tables of remaining Velocity. $1+c V_{8}$ Practical use of these tables. Consider the table of K, page 48. Omit table page 54.
Cifapter VI.
Calculation of Trajectories; vertical height and angle of descent. Omit pages 69 to 84.
Chaptrar VII.
Drift of elongated projectiles. See also manual of Canadian Artillery.

Chaptra VIII.

Probability of fire.
Chaptrr IX.
Penetration of projectilos. General principles without detail.

Appendix.

General acquaintance with the principles of Le Boulenge's Chronograph; Bashforth's Clock and gravity Chronograph; Watkin's Electric Chronograph; Chrusher Gauge and Chronoscope.

Srotion C.

(Tracts on Mrehanios, Part III.) Application of mathematics to artillery machines, including tackles and purchases; bydraulio and other jacks; elevating screws; triangle gyn, shears, derricks, acc.

ROYAL MILITARY COLLEGE OF CANADA.

syllabus of instruotion in french.

ALLOTMENT OF MARES.

For entire Course (Obligatory)............. 3,000

4th Class.
Marks (Obligatory) $500\left\{\begin{array}{l}\text { Examinations } 100 \\ \text { Notes and Recitations... } 400\end{array}\right.$
3rd Class.
Marks (Obligatory)..... $600\left\{\begin{array}{l}\text { Examinations } 150 \\ \text { Notes and Recitations... } 450\end{array}\right.$
2nd Class.
Marks (Obligatory)..... $800\left\{\begin{array}{l}\text { Examinations } 200 \\ \text { Notes and Recitations... } 600\end{array}\right.$
1st Class.
Marks (Obligatory)...1,100 $\left\{\begin{array}{l}\text { Examinations } 250 \\ \text { Notes and Recitations... } 850\end{array}\right.$

TEXT BOOKS USED.

Contansean's French Dictionary.
do
Grammar.
French Classics, Gustave Masson. Horace, Corneille.
Cinna
do.
Les Écrivains Militaires de la France, Karcher. Histoire de Charles XII. Frederick the Great, by Lord Macaulay. Le Page's "French Master for beginners."
do "Petit lecteur des collegen."
do "Jugevile treasury of French conversation." Guilgault's Hand Book of French.

SUMMARY OF COURSE OF INSTRUCIION IN FRENCH.

Grammar; reading; dictation ; exercises for translation from French into English, and English into French; vocabularies and conversational lessons; comparison of the most usual French and Kinglish idioms.
The exercises are graduated in difficulty, according to the ability of cadets.
Special importance is attached to the acquisition at an early stage of the knowledge and correct pronunciation of the sentences, most ordinarily employed in conversation.
A complete course of literature is also given for those who sufficiently understand the French language.

sYLLABUS OF INSTRUOTION IN PHYSIOS.

ALLOTMENT OF MARKS.

\checkmark

For Entire Course.
Obligatory. $\left\{\begin{array}{l}\text { Examination...............1,200 } \\ \text { Recitation................. } 300\end{array}\right\}$ Total.2,500
Voluntary. $\left\{\begin{array}{c}\text { Examination...... } 1,000\end{array}\right\}$

For Second Class.

Nory.-In order to quality for any Certificate of Graduation or for "Pass" in Physics, a Cadet must study in the Second Olass, the course of Elementary Inorganic Chemistry of that Olase.

TEXT BOOK.

Ganol's Physics translated by Atkinson (eleventh edition.)

SUMMARY OF INSTRUCTION IN PHYSIOS.

OLAS8 II
 EXPERIMENTAL PHYSICS.

(Obligatory.)

Matter : ite constitution and physical conditions. Atoms and moleoules. Genoral properties of matter. Units of measurement. The metric system.
Energy : its varieties, transmutation and conservation.
Atomic and molecular forces. Chemical affinity, cohesion and adhesion. Elasticity of traction, torsion and flexure. Universal attraction; its laws. Terrestral gravitation, and causes modifying ita intensity.

Hydrostatics-

General character of liquids. Equality of pressures. Laws of pressure. Pressure independent of shape of vessel. Hydrostatic paradoz. Condition of the equilibrium of liquids. Hydraulic press. Water and spirit level. Artesian wells.

Principle of Arohimedes. . Equilibrium of floating bodies. Specific gravity. Hydrometers.
Capillarity: its laws and explanation of capillary phenomena. Endosmose, diffusion.

Pneumatics -

General properties of gases. Atmospheric pressure. Toricelli's and Pascal's experiments. Different kinds of barometers. Corrections of barometers for capillarity and temperature. Barometrio variations.
Measurement of elastic force of gases. Boyle's law. Manometers, Aneroid barometer.
Arohimedes' principle applied to gases. Air balloons. Airpump, Bianchi's, Sprengel's, Bunsen's and Morren's: Gauge and Babinet stopcook, Uses of air-pump. Oondensing pump. Suction and force pumps. Fire ongine. Fountain in vacuo. Intermittent fountains. Velocity of efllux. Quantity of efflux. Direction, form and height of jet. Water wheels and turbines. Sound-
Sound and noise. Cause of sound. Propagation, intensity, velocity, reflection and refraction of sound. Fchoes and resonances. Speaking and ear trumpet. Stethescope. Measurement of number of vibrations. Savart's apparatus. Syren. Limit of perceptible sounds.
Musical tones. Pitoh, intensity and timbre. Diatonic scale, semitones, chromatio scale. Number of vibrations producing each note. Musical notation.

Wavo length. Production and perception of sout.d. Vibra.
Lat
refr

Voluntary.
Motion in a circle. Centrifugal force.
Work; measure of work; unit of work.
The Bulance. Conditions to be satisfied in its construction. Atwood's and Morin's machines for verifying laws of falling bodies. Compound pendulum.
sound
Calculation of the velocity of sound in gases. Velocity of sound in various gases. Doppler's principle.

Compoand masical tones and harmonics. Helmholtz' analysis of Sounds. Beats. Musical chords.

Verification of laws of transverse vibrations of strings. Nodes and loops of an organ pipe.

Vibrations of rods, plates and membranes. Graphical method of representing vibrations. Phonautograph. Manometric flames.

Text Book.-Ganot's Pbyaics; books 1st and 2nd (selected portion) and books ard, 4th and 5th.

> Crass I.

Obligatory.

Heat.-Theorics of emission and undulation. General effects of beat. Expansion. Temperature. Thermometers, their manufacture and graduation. Comparison of Fahrenheit, Celsins and Reaumur scales. Corrections on readings of thermometers. Alcohol, differential and metallic thermometers. Maximum and minimum thermometers. Pyrometers.

Linear and cubical expansion; coefficient of expansion. Practical application of principle of expansion. Compensation pendulum and balance.

Exparision of liquids. Force exerted by liquids in expansion. Maximum density of water.
Expansion of gases; its laws. Practical application. Air thermometers. Density of gases.
Fusion; influence of pressure. Latent heat of fusion. Solidification and circumstances retarding it. Change of volume on solidifying. Freezing mixtures.

Vaporization. Elastic force of vapors. Evaporation. Ebullition and circumstances affecting it. Papin's digester.

Vibra reed and nograph.
truction. f falling

Latent heat of ebullition. Cold due to evaporation. Carrés Distillation. Liquefaction of gases. Spheroidal condition. Hygrometric state of atmosphere. Hygrometers. Conductivity of solids, liquids, and gases. Applioatione. Radiation of heat; its laws. Newton's law of cooling, Reflecting, radiating and absorbing powers of substances.

Dynamical theory of heat. Thermal spectrum. Transmutation of obscure rays. Application of properties of absorbing, emitting, and refleoting heat. Radiometer.

Thermal unit. Specific heat. Dulong and Petit'd law.
Steam engine. Donble and single acting engines, Locomotives. Low and high pressure engines. Hot air and gas ongines.

Sources of heat; friction, pressure, percussion, chemical action. Solar and terrestrial heat.

Methods of heating; open fire-places, stoves, steam, hot water. Cold produced by expansion of gases. Absolute zero. Dissipation of energy.
Light.-Definitions. \int Theories of light. Propagation of light. Shadows. Images produced by small apertures. Velocity of light. Laws of intensity. Photometer.
Reflection; its laws. Formation of images by plane mirrors. Virtual and real images. Multiple images, Diffased light. Concave and convex mirrors; their foci and images. Parabolic mirrors.

Refraction ; its laws and effects. Total reflecticn. Mirage. Prism, and its effect on light.

Lenses; their effect on light, foci, and formation of images. Relative magnitude of image and object. Laryngoscope.

Solar spectrum. Recomposition of white light. Color. Mixed and complementary colors. . Spectrum and pigment colors. Homogeneous light. Properties of spectrum, Spectroscope and its application.

Microscope, simple and compound.
Telescope, astronomical and terrestrial.
Camera obscura and lucida. Magic lantern. Solar microscope. Photographic apparatus.

The eye-its parts ; path of rays; inversion of images; visual angle. Estimation of distance and size. Distance of distinct vision. Accommodation. Stereoscope. Persistence of impression on retina. Use of eye-glasses. Opthalmoscope. Magnetism.-Definitions. Theories of magnetism. Magnetic induotion. Coercive force.
Directive action of earth on mggnets. Terrestrial and mag. netic couple. Declination and its variation. Mariner's
compass. Inclination. Astatic needle. Intensity of earth's magnetism. Laws of attraction and repulsion. Magnetio curves.

Methods of magnetising ; single, separate and double touch and action of earth. Magnetism of iron ships. Magnetic battery. Circumstances influercing the power of magnets.

Statical Electricity.-Deyeloped by friction, provsure, cleavage, heat. Conductors and insulators. Positive and negative electricity. Theories of Electricity.
Laws of Electrical attraction and repulsion. Distribution of olectricity. Loss of charge.

Induction. Limit to its action. Motion of electrified bodies. Electroscopes.

Electrophorus. Plate and cylinder electric máhines. Maximum of charge. Holtz's electrical machino. Electric spark. Electric chimes and whorl.
Condensers. Slow discharge and instantaneous. Fulminating pace. Leyden Jar. Residual charge. Electric battery. Condensing electroscope.

Electric discharge; its physiological, luminous, heating, magnetic, mechanical and chemical effects.

Dynamical Electricity.-Galvani's and Volta's experiments. Electricity from chemical action. Voltaic couple., Electromotive series. Electrodes. Voltaic pile. Wollaston's battery, Enfeeblement of current. Daniell's, Grove's, Bunsen's and Leclanche's batteries. Amalgamation of plates. Dry piles.

Detection and measurement of Voltaic currents. Multiplier. Tangent and sine galvanometer. Ohm's law.

Heating, luminous and chemical effects of current.
Electric light; its properties and intensity. Electrolysis. Electroplating.

Action of currents on currents, of magnets on currents and currents on magnets. Λ mpère's theory cf magnetism. Magnetization by currents. Electromagnets.
Telegraphy. Single needle and dial telegraph, and MorseSounder. Electric alarum and clocks. Electromotor.
Induction by currents. Lenz's law. Induction by magnets. Extra current. Property and laws of induced currents.
Magneto-electrical machines; commutator. Ruhmkorff's coil, and effects produced by it. Geissler's tabes. Telephone.

Principles of diamagnetism and thermo-electricity.
Meteorology.-Winds; their direction, velocity, cause and rotation.

Eogs and mists, clouds, rain, watersponts.
Influence of aqueous vapour on climate.
Dew, hoar-frost, snow, sleet, hail, glaciers.

At
retur
Cli
$\boldsymbol{H e}$
Meas
and c
tric a
sion
Ter
mixtr
Rer
Me
missic
racter
tion o
to mo
Mes
and cc
equiv:
Lig
For
Mea
gases.
For
escenc
Galilec
Photo-
Und
and re
Inter
Polariz
Mag
of dete
Total
of ma
magne
Hrict
capacit
Fara
tion.
Arm
Limi
densing
of a bat
of earth's Magnotic
ble touch Magnetic gnets. re, clearnegative bation of lectrified ея. Maxiic spark. ulminatbattery. heating, riments. Electrobattery, n's and piles. iltiplier. trolysis. nts and Mag. Morselagnets. nkorff's aphone. se and

Atmospheric electricity, cload electricity, lightning, thunder, return shook, lightning conductors, rainbow, aurora borealis. Climate and influences modifying it.

Voluntary.

Heat.-Measurement of coefficient of linear expansion. Measurement of absolute and apparent expansion of mercury, and coefflicient of expansion of glass. Correction of barometric and thermometric readings, Determination of the expansion of gases and density of vapours.

Tension of aqueous vapour and of mized vapour. Laws of mixtures of gases and vapours.

Recent researches in liquefaction of gases.
Measurement of radiant heat. Reflection of heat. Transmission of heat rays. Influence of nature of heat and charracter of screen on transmission. Diffusion of heat. \& Relation of gases and vapours to radiant heat, and of absorption to molecular state.
Mesurement of specific heat of bodies by fusion, mixture and cooling. Specific heat of gases. Calorimeters. Mechanical equivalent of heat.
Light.-Fizeau's method of determining velocity.
Formule for spherical mirorrs. Heliostat.
Measurement of index of refraction in solids, liquids and gases. Spherical aberration. Caustics.
Formulæ relating to lenses. Combination of lenses. Fluorescence and phosphorescence. Achromatism of microscope. Galileo's, Newton's, Gregory's and Herschell's telescopes. Photo-electric microscope. Lighthouse lenses. Stereoscopes.

Undulatory theory of light ; its explanation of reflection and retraction. Double refraction.

Interference of light. Diffraction. Newton's rings. Polarization, its effects. Saccharimeter.
Magnetism.-Declination and inclination compass. Methods of determining laws of magnetic attraction and repulsion. Total action of two magnets on each other. Determination of magnetism in absolute measure. Portative force of magnets.
Frictional Electricity.-Rlectric density. Potential and capacity and their measurement. Potential of a sphere.
Faraday's experiments on induction and theory of induction. Specifio inductive capacily.
Armstrong's hydro-electric and Carrés dielectric machine.
Limits to oharge of condensers and calculation of condensing force. Charging by cascade. Measurement of charge of a battery. Laws of electric charga Thomson's quadrant
and absolute electrometers. Potential of a Leyden jar. Heating effects of electric discharge. Application in firing mines. Duration of electrio spark. Velocity of electricity. Dynamical Electricity. - Electromotive force. Recent forms of voltaic battery. Gravity batteries. Comparison of power of different batteries. Marine galvanometer. Arrangement of battery for maximum effeet.
Laws of heating effects of current. Regalators for electric light. Comparison between tangent galvanometer and voltameter. Polarization. Gas battery.
Laws of angular and sinuous currents. Rotation of currents by currents and by magnets. Directive action of earth on currents.
Writing telegraph. Duplex telegraphy: Narth current. Induction in telegraph cables. Electromagnetic machines. Inductive action of Leyden discharge, of magnets on bodies in motion, and of earth.

Magneto-electrical machines : Clarke's, Wild's, Ladd's and Gramme's. Siemen's armature.
Microphone. Tasimeter.
Diamagnetism.
Different forms of thermo-electric batteries. Electrical thermometer and pyrometer.
Determination of electric constants. Meteorograph.
Text Book.
Ganot's Physics. Books 6th to 1
eyden jar. on in firing electricity. cent forms 1 of power rangement for electric r and vol-
of currents earth on
current. achines. on bodies dadd's and

Electrical

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION in CHEMISTRY.

ALLOTMENT OF MARKS.

For Entire Course.
Voluntary. $\left\{\begin{array}{l}\text { Examinations..................... } \\ \text { 2, } 200 \\ \text { Recitations } \\ 300\end{array}\right\} 2,500$

For Second Class.
Obligatory. $\left\{\begin{array}{l}\text { Examinations.................... } \\ \text { Recitations.................... } \\ \hline\end{array} 100\right\}$
500
For First Class.
Voluntary. $\left\{\begin{array}{l}\text { Examinations }\left\{\begin{array}{l}\text { Inorganic Chemistry...650 } \\ \text { Organic Chemistry or } \\ \text { Chemistry of Metals. } 550 \\ \text { Laboratory600 }\end{array}\right. \\ \text { Recitations.. }\end{array}\right\}$ 2,000
Nore,-In order to qualify for any Certificate of Graduation, or for "Pass" in Physics, a cadet must study in the Second Class the course of Elementary Inorganic Ohemistry of the Class

TEXT BOOK.

Blozam's Chemistry-Inorganic and Organic (fourth edition.)

SUMMARY OF INSTRUCTION IN CHEMISTRY. ©Lass II.

Inorganio Chemistry. - Vol untar

General principles. Constitution of matter. Solid, liquid and gaseous condition of matter.
Nlements and their classification. Symbols and atomic weights.

Chemical affinity. Chemical combination and mechanical mixture. Solution.

The nod-metallic elements: their occurrence in nature, physical and chemical properties, and modes of preparation. Compounds of these elements with each other and with the metals.

Water.-Its decomposition by the galvanic battery, heat, electric spark and chemical action. Constituent elements of water, and their relative weight and volume. Laws of definite proportion-atomic theory.

Hydrogen.-Illustration of its properties, physical and chemical. Diffusion. Theoretical unit of weight and volume. Hydrogen a metal.

Oxygen.-Its history, source and properties. Carbon, phosphorus. sulphur, potassium, iron and zinc burnt in oxygen; differences in the emission of heat and light, and in the character of the productp. Oxides, anhydrides, acids, bases and salts. Rôle of oxygen in nature ; combustion. Chemical notation and nomenclature. Use of formulæ and equations. Relation of volume of a gas to temperature and pressure.

Analysis and Synthesis of Water.-Explosive gaseous mixtures. Oxyhydrogen blow-pipe. Different varieties of water in nature. Testa for its purity and hardness. Presence of organic matter. Antion on lead. Petrifying springs ; stalactites. Chemical relations of water. Hydrates, efflorescence, deliquescence, crystallization, distillation. Peroxide of hydrogen. Ozone, its production and properties.

Nitrogen.-The air, its constituents and methods of analysis; Eudiometry. Rôle of its several components. Uniformity of composition, how maintained. Proof that air a mechanical misture.

Carbon. - Natural and artificial varieties. Allotropes. Diamond, its cutting, polishing, valuation and usés; how dis. tinguished from other substances; proof that diamond is pure carbon. Graphite, its uses. Amorphous carbon; different varieties and their applications in the arts. Peculiar value of lampblack as a printing material. Imperfect combustion (f
wood in meilers or retorts. Absorption of odors, gases and coloring matters by carbon. Coal its varieties and their special uses. Products of combustion. Smoke nuisance. Carbonic Anhydride, - Evolved in respiration, combustion, ventilation. Relation of animal and vect on flame and life; bonic acid; effervescent dimal and vegotable world to carliquefaction of carbonic anhydrid Baboock's extinguisher ; carbonic anhydride and of organic ; carbonates; analyais of Carbonic Oxide - It ous and other characters tion ; composition by volume and heat by incomplete combusMarsh gas. Explosions in coal weight of carbonic ozide. Chemistry of fuel ; temperature of ine safety lamps. of combustion. Chemistry of the or ignition and temperature ture of flame; conditions of the lamp and the candle; strucand smokeless; Bunsen becessary to render flames luminous and ozidation. Hot blast blow- Blow.pipe flame. Reduction Coal Gas.-Its production and pur.
gas works. Subsidiary products in distillation. Deseription of Silicon.-Silica: varioties in in distillation of coal. phons. Dialysis. Silicates: mature, orystallized and amorglass and their composition, methods of fusion. Varieties of ling of glass. Manufacture of ghealing, coloring and enamel-Boron.-Borax, borecie of glaes utensils. General Charactracic acid.
Ammonia Paceristics of Carbon Group of elements. traction of salt from the ammoninal its properties. ExLiquor ammonise Lique ammonincal liquor of gasoworks. refrigerator. Ammoniumefaction of ammonia. Ammonia Analysis of ammonia. Atomiseory. Salts of ammonium. Molecular weights and volumesht and volume of nitrogen. Molecular types. Determination of Atomicity of elements. stances. Production of ammon of nitrogen in organic sub. Nascent state.

Nitric Acid.-Its manufacture, properties, industrial applications and laboratory uses. Oombining weight of nitric acid. Nitrates. Tests for nitric acid. Nitric anhydride.
Nitrous Oxide and Nitric Oxide.-Their preparation and properties. Nitrous anhydride and nitrous acid. Nitrites.

Review of Oxides of Nitrogon.-Anhydrides and acids. Laws of definite, reciprocal and multiple proportions. Gunpowder.-Preparation of ingredients and mand Propertios and products of explosion. Caloulation manufacture. fired gunpowder. Blasting powder. Calculation of force of Guncotton.-Abel's process of manulacture.

Effect of tamp.
ing gur sions.
Blox: 511 to

Metalloi tion

Chlori common of chlor ing pro chloric solution oxides. Aqua re lime.
Prepara positions Perchlor with oxi
Bromi blance to
Bromide
Iodine. and uses. Iodide of
Fluori Etching fluosilicic
Review dual diff quantival

Sulphui and refin forms: El explanati
res, gases and es and their aisance. combustion, 10 and life; orld to carxtinguisher ; analyais of
ces ; poison. lete combus: aic oxide. mps, temperature ndle ; struces luminous Reduction
seription of oal,
and amorVarieties of nd enamel-
ints. rties. Ex gasaworks. Ammonia mmonium. ? nitrogen. elements. sanio subnature.

ial appli.

 itrio acid.and pro. e8.
s. Laws ufacture. force of
of tamp-

53
ing gancotton compared with ganpowder. Theory of explosions.
Bloxam's Inorganic Chemistry, pages 1 to $146 ; 411$ to 438 ; 511 to 518.

CLASS I.

INORGANIC CHEMISTRY.

Metalloids.-Their occurrence in nature and modes of preparation continued.

Ciloorine Group.

Chlorine.- History, occurrence in nature and extraction from common salt. Physical and chemical properties. Attraction of chlorine fur bydrogen. Oxidizing, bleaching and disinfecting properties. Applications in industrial arts. Hydrochloric acid-Preparation and properties of the gas and its solution in water. Action of the acid on metals and metallic oxides. Chlorides, Analysis of acid. Molecular weight. Aqua regia. Hypochlorous anhydride and acid. Chloride of lime. Uses of hypochlorites. Chloric acid and chlorates. Preparations and uses of chlorate of potash. Colored fire compositions. Chlorous acid and chloritos. Chloric peroxide. Perchloric acid. Review of oxides of chlorine-Comparison with oxides of nitrogen. Caloride of nitrogen.
Bromine.-Extraction from mineral water and uses. Resem. blance to chlorine. Oxides of bromine. Hydrobromic acid. Bromides.
Iodine.-Extraction from sea-weed ashes. Characteristics and uses. Iodic and periodic acids. Hydriodic acid. Iodides. Iodide of nitrogen.
Fluorine.-Its occurrence in nature. Hydrofluoric acid. Etching on glass-(1) dull, (2) clear. Fluorides. Hydrofluosilicic acid.
Review of Chlorine Group.-Group characteristics and individual differonces. Gradation in properties. Atomicity and quantivalence of elements and radicles. Types.

Sulphur Group.

Sulphur.-Its occurrence freo and combined. Estraction and refining of salphur. Commercial varieties. Allotropic forms. Electronegative and electropositive sulphur. Received explanation of allotropy and dimorphism. Methods of crys-
tallization : (1), sublimaticn ; (2), fusion; (3), solution. Uses of sulphur. Influence of heat on specific gravity of vapours, Hydrosulphuric acid, its preparation, propertios and laboratory uses, Sulphiues, their separation into groupe. Aotion of hydrosulphuric acid on paint. Sulphur acids, bases and salts. Action of air on sulphides. Analysis of hydrosulphuric acid. Persulphide of hydrogen. Sulphurous anhydride and acid. Bleaching, deoxidizing and antiseptic properties. Dibasic acids. Acid and normal salts. Sulphites. Tests. Sulphuric anhydride and acid. Old and now methods of manufacture. Theory of the new process. Economic expedients in manufacture. Importance of acid in industrial arts. Physical and chemical properties. Tabular representation of steps in bydration of the anhydride. Impurities and tests. Sulphates. Acid, normal and double sulphates. Determination of composition of sulphuric acid. Polythionic acid series. Structural formulæ of oxides and hydrated oxides. of sulphur. Bisulphide of carbon, its preparation and uses. Sulpho-carbonates. Chlorides and iodides of sulphur.

Selenium.-Compounds with hydrogen and oxygen.
Tellurium.- Compounds with hJdrogen and oxygen.
Review of sulphur group. General characters. Gradation of properties. Relation to oxjgen.

Phorphorus Group.

Phosphicrus.-Distribution in nature. Preparation, Varietien Manufacture of red variety. Physical, physiological and chemical properties of phosphorus. Comparison of red and yellow varieties. Reducing action. Uses. Friction matches, (1) lucffer, (2) silent, (3) safety. Posphorus fuze composition.

Osides of phosphoras. Table of anhydrides and acids, Structural formulæ.

Phosphoric anhydride and acid. Meta-, pyro, and orthophosphoric acid and salts. Uses and chemical tosts for acids and salts.

Pbosphorous anbydride and acid. Hypophosphorous acid. Phosphides of hydrogen. Chlorides, iodides and sulp ides of phosphorus.

Arsenic.-Occurrences in nature. Extraction from mis. pickel. Properties and chemical relationship. Arsenious anhydride. Chemical and physiological properties and uses. Arsenites. Scheele's green ; Arsenic acid. Arsenates.
Arsenietted bydrogen. Marsh's and Rheinsch's test for arsenic.

Antimony.-Its sources and properties. Alloys. Oxides of antimony. Antimonetted hydrogen. Tests for antimony.
olution, Uses ty of vapours, s and labora. oupe. Action acids, bases sis of hydrohurous anhy. tiseptio pro. . Sulphitos. new methods. Economic exin industrial or representaapurities and θ sulphates. Polythionic trated oxides. on and uses. aur.
yen.
gen.
Gradation
o. Varieties, logical and of red and on matches, composi-
and acids, and orthots for acids alp ides of from mis. Arsenious 5 and uses. tes.
's test for imony.

Bismuth.-Extraction, properties and uses. Oxides. Flake white and poarl white.
Review of Phosphorus Group.-Chemical relationship of members of group to each other and to nitrogen. Gradation of properties. Gradual passage from metalloids to metals.
General Review of Metalloids.-Atomicity and quantivalence. Monobasic, dibasic and tribasic acids. Structural tormulæ. Metals and their classification, Alloys, Haloid Salts, Oxysalts and Double Salts. Theory of Types. Principal Metallurgical Operations.

Metals of thi Alkalies.

Potassium.-Caustic potash. Carbonate and bicarbonate. Nitre. Chlorate of potash.

Sodium.-Common salt. Manufacture of carbonate of soda. Caustic soda. Borax. Soluble glass. Sulphate and phosphate of soda.

Ammonium.- Its principal salts.
Lithium, Rubidium and Ccesium.-Spectrum analysis. Cbaracteriatios of alkali group.

Metals of Alkaline Earths.

Barium, Strontium, Calcium and Magnesium and their chief Salts,-lime, Gypsum. Mortars. Characteristics of group. Tests. Relation between specific heats and atomic weights.

Metals of the Earths,

Aluminium.-Its preparation and uses. Chief salts, Silicates. Clay. Porcelain. Pottery. Cements. Alum. Ultramaring Other metals of the earths. Characteristics of group. Tents,

Iron Groups.

Iron.-Orgs of Iron. Cast iron, wrought iron and steel. Blast furnace. Chemistry of process of smelting. Hot blast. Grey, mottled and white iron. Chill casting. Refining and puddling. Bessemer process. Different varieties of steel. Catalan process of extracting iron. Oxides and salts of iron. Manganese,-Oxides and salts.
Cobait and Nickel and their chief compounds.
Chromium and Uranium.-Bichromate of potash. Characteristics of group. Tests.

Zinc Grour.

Zinc.-Methods of extraction from ores. Uses. Galvanized iron.
Cadmium and Indium.-Characteristics and tests.

Copper Group.

Copper.-Smelting of copper ores. Uses of metal. Alloys: brass, bronze, \&e.
Lead.-Metallurgy of lead. Extraction of silver from lead ores. Type metal, shot, solder, \&o. Salts of lead. Manufacture of white lead.

Thallium.-Discovery by spectroscope. Characteristios and tests of group.

Tin Group.
Tin.-Extraction and purification. Tin plate; alloys. Principal salts.

Titanium, Molybdenum, \&c.-General characteristics and

Noble Metals.

Silver.-Extraction from copper by liquation. Standard silver. Electroplating. Principal salts.
Mercury.-Extraction and purification. Uses. Amalgams.
Gold.-Methods of extracting. Standard gold. Testing and aseaying of gold. Gilding. Purple of Cassius.
Platinum.-Sources and preparation. Spongy platinum. Platinum black. Salts.
Iridium, Palladium, \&ic.-General characteristics and tests. Bloxam's Inorganic Chemistry: pages 146 to 256 , and 411 to 417 ; selected portions from pages 256 to 410.

Organic Ceremietry.

Analysis of Organic Compounds.-Determination of molecular weight. Empirical and rational formule. Substitution. Isomerism. Homologous series, saturated and unsaturated

Classification of Organic Compounds based upon atomicity General Characteristics of Groups.-Hydrocarbons. Alcohols. Mercaptans. Nithers, Aldehydes, Ketones. Acids. Anhydrides. Amines. Organo-metallic compounds.
Marsh Gas and Substitution Products.- Halogen substitation products and their general reactions. Chloroform. Hydrozyl substitution products; general re-action of Alcohols. Methyl, Ether and Aldehyde. Formic Acid. Sulphur substitution products. Nitrogen derivatives; Amines, Amides, \&c., Nitriles and Nitro compounds. Uses.

Hydrocyanic Acid and Cyanides.-Ferrocyanides and Ferricyanides and similar compounds. Cyanogen, \&e. Cyanic Acid. Cyanuric Acid, Fulminates. Polymerism. Compounds of
tal. Alloys: ver from lead d. Manufac-
cteristics and
alloys. Prin-
eristics and

Standard Amalgams.

Testing and
platinum.
and tests.
6 , and 411
molecular abstitution. nsaturated
tomicity. ons. AlAcids.
bstitation Hydrozyl Methyl, bstitation , Nitriles

Ferricy nic Acid. ounds of

Methyl with Phosphorus, Arsenic, Antimony and the metals. Compound Ethers.
Ethyl Compounds.- Ethylene and Acetylene and their derivatives. Preparation and properties of Bthyl Alcohol, Ether; Aldehyde. Ohloral, Acetic Acid and its Salts. Acetic Anhydride, Ozalic Acid. Glycols. Mercaptan.
Propyl Compounds.-Propylene. Allylene. Acetone. Ketones and their properties. Lactic Acid. Glycerine. Nitro'glycerine. Dpnamite. Isomeric compounds.

Butyl Compounds.-Butyric, Succinic, Malic and Tartaric Acids, and other derivatives.
Amyl and Hexyl Compounds.-Valerianic and Citric Acid, \&c. Mannite.
Fats and Oils.-Soap. Saponification.
Sugar.-Itt varieties. Extraction of Cane Sugar. Sugar refining. Beet-root Sugar. Production of Sugar from cotton, paper, \&o.

Starch.-From potato, wheat, rice, sago, tapioca, \&cc. Dextrine. Cellulose. Gun cotton, its preparation and properties. Collodion.

Fermentation.-Alcoholic, lactic, butyric, mucous and acetous. Conditions necessary for fermentation and circumstances influencing it. Action of heat, acids, alkalies, \&o. Wines and distilled spirits, Germination of Seeds. Malting and brewing. Aromatic Series of Organic Compounds.-Theory of their constitution. Benzole and its derivatives. Aniline. Toluol, Xylol, Cumol, Cymol.
Naphtalene, Anthracene, dec.-Camphors, Essential Oils, Resins, Alkaloids, Ooffee, Tea, Cocoa, Tobacco.

Coloring Matters.-Their general properties and preparation. Dyeing and Oalico printing. Coal-tar dyes. Products of the destructive distillation of wood and coal.

Vegetable Chemistry.-Food of plant and its sourcer. Tissue of vegetable. Growth of plant and ripening of seed. Decay.

Animal Chemistry,-Chemistry of milk, blood and flesh. Excrementitious products. Putrefaction and disinfectants. Chemistry of tanning.

Text Book,-Selected portions from Blozam's Organic Chemistry, pages 439 to 646. Notes from Lectures.

Pratitoal Chemistry.

Qualitative analysis of substances containing a single metal and a single inorganic or organic acid.
Use of the blowpipe.
Flamo reactions.
Exercises in writing out formule expressing reactions.

58

Qualitative analyais of a few mixtures.

- - a few simple minerals.

Analysis of subataneof gunpowder.
Text Boiler and acids.
Text Book--Blozam's Laboratory Teaching.
Printed table of course of analyses of miztures.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN GEOLOGY AND MINERALOGY.
-

ALLOTMENT OF MARKS.

1st Olass.
Voluntary,
2,000. \(\left\{\begin{array}{l}Examinations,

\begin{array}{l}Notes and

Recitations.\end{array}\end{array}\right\}\)| 1,800 |
| ---: |
| 200 |

TEXT B00Ks.

Dana's Text Book of Geology, fourth edition. Dana's Manual of Mjneralogy, third edition.

SUMMARY OF INSTROCTION IN GEOLOGY AND MINERALOGY.

Class I.—Voluntary.

Relations of Geology.-Relations of Earth to the Universe.Object of Geology.-Sub-divisions of Subject.
Physiographic Geology.- Rarth's general contour. Form of earth and probable causes. Sub-divisions of its surface and character of its reliefs. Mountains, river systems, \&cc.
System in the surface form of Continents: Continents bounded by high borders, with comparatively low interiors and highest boarders facing deepest oceans.

System in Courses of Earth's Feature Lines ; North-western and north-eastern trends.

System in Oceanic Movements and Temperatures; Oceanic currents ; their courses, causes and effects.

Atmospheric Currents and Temperature. Climate. Effect of currents of air and ocean, on distribution of sterility and fertility. Forest regions, prairies, deserts, \&c.

Lithological Geology.-Constitution of rocks. Elements composing minerals and minerals constituting rocks.
Silica and Silioates : Quartz and its varieties, feldspars, micas, hornblende, pyrozene, serpentine, \&o. Mineral Carbonates, Sulphates and Phosphates: Materials of organic origin: Corals, coal, phosphates, \&o.
Kinds of Rocks: Properties to be observed in the determination of rocks ; texture ; hardness ; specific gravity, \&c. Terms used in desoribing rocks.
Fragmental rocks: Conglomerate, sandstone, shale, \&o.
Limestones : massive limestone, dolomite, chalk, marl, marble, \&o.
Metamorphic Rocks : quartzite, granite, gneiss, mica-sohist, syenite, \&o.

Eruptive Rocks: Trachyte, dioryte, doleryte, \&c.
Examination of specimens of principal minerals and chief varieties of rooks.

Condition, Structure and Arrangement of Rock Masses-
Stratified Rocks : nature of stratification. Structure and arrangement of strata. Natural positions and dislocations of sirata, dip, strike, outerop, faults, \&o. Fossils.

Unstratified Rocks: veins, dikes, \&e.
Short Sketch of Animal and Vegetable Life-
Historical Geology : Rocks, in order of their formation and contemporaneous events in geological history. Floras. Faunas. Geographical progress. Progress of life.

Dynamical Geology.-Forces at work in development o earth's crust.
Life.-Its protective, transporting and destructive effects, and contributions to rock formations. Peat and coal deposits. Coral islands and reefs.

Atmosphere.-Its rending and abrading effects. Transportation of inorganic matter and living species.

Water.-Fresh water rivers and lakes, their mechanical effects, erosion of soil and rocks ; transportation of gravel, sand, \&c., and distribution of material transported. Mechanical effects of subterranean waters. Land slides.

Oceanic Waters : their mechanical effects arising from (1) the general system of currents, (2) wind waves and currents, (3) tidal waves and currents, (4) earthquake waves; their effects in eroding, transporting and distribating material and in the formation of deposits.

Freezing Water : its disintegrating effects. Ice as a transporting agent. Icebergs. Glaciers: their nature, formation, canse, manner of movement and eroding and other effects.

Chemical effects of Water : in consequence of (1) its solvent properties, (2) the affinity of its elements, (3) substances taken into solution.
Heat.-Causes influencing its distribution. Sources of heat: (1) sun, (2) earth's interior, (3) chemical and mechanical action. Effects of heat in dilatation and contraction and metamorphosis of rocks.

Volcanoes.-Their nature and geographical distribution, varieties of volcanic cones, non-volcanic igneous eruptions. Heat of lavas and condition of volcanic action. Thermal waters, geysers.
Metamorphism.-Definition of the term; phenomenon due to action of heat and water, \&c." Effects of metamorphism, as consolidation, crystallization, loss of vaporizable or soluble materials, \&c. Origin of heat causing metamorphism-Local metamorphism.

Mineral veins, lodes and local ore deposits.-Positions, forms, structure; origin and filling of fissures.

Effects of the cooling of the earth on its crust.-Changes of level. Formation of mountains, origin of mouttains. Results of action of mountain making force. Epoohs of mountain making. Flexures, fractures and faults, Earthquakes.
Evolution of the Earth's fundamental features.- Continental borders and system of trends, how developed. Climatal
developments. developments.

> Summary of Instruciton in Mineralogi. Gencral characteristics of Minerale.
pment o e effects, deposits.
ansportaechanical f gravel, ochanical
from (1) currents, 38 ; their rial and
a transrmation, fects.
s solvent es taken
of heat : chanical nd meta-
ribution, uptions. Thermal
n due to hism, as soluble -Local
, forms,
nges of Results ountain

Crystallization. Systems of Crystallization in detail. Cleavage. Dimorphism. Measurement of Angles. Crystalline Aggregates.

Physical and Chemical properties of Minerals. Action of acids, blowpipe, \&c.

Classification of Minerals. Description of Minerals in detail. Ores. Chemical composition of Minerals.

Methods of determination of Minerals.
Text Book.-Dana's Manual of Mineralogy and Lithology
ird edition).

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION--FREEHAND DRAWING AND PAINTING.

ALLOTMENT OF MARKS,

4th Class.
Obligatory- 300 Marks.
Drawing from objects.
copies and $\left\{\begin{array}{l}\text { Examinations, (Annual, }) 100 \\ \text { Term work, 200. }\end{array}\right.$
3rd Class.
Obligatory-400 Marks.
Drawing from copies and $\left\{\begin{array}{l}\text { Examinations. (Annual, }) 150 \\ \text { Injo }\end{array}\right.$ objects.

T Term work, 250.
Voluntary- 100 Marks.
$\left.\begin{array}{r}\text { Painting in monochrome from } \\ \text { copies, objects and nature. }\end{array}\right\}$ Term work, 109.
2nd Class.
Obligatory- 800 Marks.
Drawing from copies, objects
and nature, or Examinations. (Annuai,) 150 .
Painting in monochrome from copies

Term work, 650.
Voluntary- 300 Marks.
Drawing from objects and nature, or
$\left.\begin{array}{c}\text { nature, or } \\ \text { Painting in colour from copies, } \\ \text { objects and nature. }\end{array}\right\}$ Term work, $300 . ~ . . ~ . ~$
1st Class.
Obligatory- 1,100 Marks.

Painting in monochrome from
copies objects,and nature. \int Term work, 900 .
Voluntary - 500 Markg。
Drawing from objects and
$\left.\begin{array}{l}\text { nature, or } \\ \text { nting in colour from objects }\end{array}\right\}$ Term work, 500.
Painting in colo
and nature

TEXT BOOKS USED.

Burchetl's Perspective.

Redgrave's Catechism on Colour,
Warren's Artistic Anatomy of the Human Figure. do
do
Horse.
Merrifield's Manual of Light and Shade, with reference to Model Drawing.

Green's Sketching from Nature. Part 1 and 2. BOOKS RECOMMENDED TO BE READ.
Bonomi's Proportions of the Human Figure.
Ruskin's Modern Painters, Publisherf, O. Robinson, London, W.C.; Smith \& Elder, London, or Wiley \& Sons, New
York, U.S. Ruskin's Stones of Venice, Publishers, C. Rubinson, Lon. don W.C.; Smith and Elder, London, or Wiley \& Sons, New
York, U.S.
J. D. Harding's Principles and Practice of Art. Chapman
Hall, London. -Field's Chromatography. Winsor \& Newton.

* SUMMARY OF INSTRUCTION, FREEHAND DRAWING.

Grade 1.-(Obligatory),
Preliminary courses in linear perspective.
Freehand outline drawing from copies of ornaments, objects
and models.
Freehand outline drawing from the round, models, objects and ornament.

Shading from flat examples or copies.
Shading from the round or solid forms.
Time sketching and sketching from memory.
Drawing the buman figure and animal forms from copies in outline.

Drawing flowere, foliage and landscape details from nature. Grade 2.
(Obligatory). Practical application of perspective to general drawing-landscape, architecture, \&c.
(Voluntary). Studies of historic styles or ornament and applied design.
(Voluntary). Drawing in a given time the bones and muscles within the outline of the antique figure,
(Obligatory). Drawing the human figure and animals forms from the "round."
(Obligatory). Painting from flat examples and from the cast in monochrome and colour.
(Voluntary). Painting direct from nature in water colour, flowers or still like, landscapes and views of buildings.
(Obligatory). This grade to embrace a general knowledge of the principles and practice of art, i e, light and shade compositions, omit and principles of harmonious colouring.

Gradz 3.-(Voluntary).
Painting the human figure or animals in water colour from copies and from nature.

Time studies from the living model.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABOS OF INSTRUOTION IN ENGLISH LANGUAGE AND LITERATURE.

allotment of marks.

For Entire Course.

Fourth Class.
Obligatory, $\left\{\begin{array}{l}\text { Exxamination (Anrual)....... } 300 \\ \text { Term Work..... } 500\end{array}\right\} 800$
Third Class.
Obligatory, $\left\{\begin{array}{l}\text { Examination (Annual)................... } 300 \\ \text { Term Work.......................... } \\ 500\end{array}\right\} 800$
Second Class.
|
Voluntary, $\left\{\begin{array}{l}\text { Exxamination (Annual).................. } 300 \\ \text { Term Work...................... } 400\end{array}\right\} 700$
First Class.
Voluntary, $\left\{\begin{array}{l}\text { Examination (Annual) } 300 \\ \text { Term Work........................ 400 }\end{array}\right\} 700$

TEXT BOOKS.

— 0
Shaw's "Students Manual of English Literature." ,
Bain's "English Rhetoric and Composition."
Marsh's "Leotures on the English Language."
Whately's "Rhetoric."

BOOKS RECOMMENDED TO BE READ.
— 0 -
Earle's "Philology of the English Language."
Max Muller's "Science of Language."
Mootzner's "English Grammar."
Taine's "English Literature."

SUMMARY OF INSTRUCTION IN ENGDISH LANGUAGE AND LITERATURE.

Practice in writing letters, reports, and essays, and also in grammatical and critical exercises, form an important part of the Obligatory course of the 4th and 3rd Classes. Essays and criticisms of a higher order form a portion of the Voluntary course of the 2nd and 1st Classes.

4Th Class.

(Obligatory.)
Seotion I.-On the philological relations of the English language.
Seotion II.-On the historical changes in the English language.
(1) From the inflected form in Anglo-Saxon.
(2) Through the influence of Romance and other langnages.
Section III.-On composition.
(1) Philosophy of style.
(2) Formation of sentences.
(3) Figures of speech.
(4) Different style of writing illustrated by readings from various authors, viz:-Addison, Macaulay, Johnson, Alison, Sir James Stephens, Carlyle, Helps, Ruskin.
(5) Formation of a good style considered as Narrative ; Descriptive ; Didactic.
Section IV.-History of English Literature.

3ad Class.

(Obligatory.)
Section I.-Poetry-different kinds :
(1) Dpic ; (2) Lyric ; (3) Didactic.

Section II.-Different metres.
Sgotion III.-Dritical examination of poetical works:Scott's "Lady of the Lake ; " Tennyson's "Princess;" Byron's " Manfred;" Shakespeare's
"Hamlet"; Pope's "Iliad."

2nd and Ist Classes.

(Voluntart.)

Section I.-Early English - Spencer's "Faerio Queen," Book I; Chaucer's "Canterbury Tales," Prologue.
(1) Anglo-Saxon Grammar.
(2) Böowulf. Skotion III.-Rhetoric and Public speaking.

Note.- Oadets of the 2nd and 1st Classes who are at any time reported by the Professors as being deficient in knowled ge of English may be required
to continue in those Olasses the to continue in those Classes the practice of the obligatory course of the 4th in the higher Classes.

ROYAL MILITARY COLLEGE OF CANADA.

rio Queen," ury Tales,"

ALLOTMENT OF MARKS.

Nore,-The proportion shown for Drawings, Examinations, \&c., are not absolutely adhered to.

3		\{Yearly and Intermediate Exami- $\}$	
ర్̃	Obligatory,	nations................. $\}$	2,000
		Term Work. $\left\{\begin{array}{l}\text { Notes } \\ \text { Drawings }\end{array}\right\}$	About
		(Surveys $\}$	2,000
1		Yearly and Intermediate Exami- $\}$	
5	Voluntary ${ }_{2,000}$	nations........................... $\}$,00

		(Yearly and Intermediate Exami- \{ About
	Obligatory,	nations..................... ${ }^{\text {a }} 700$
	1,400	Term Work. $\left\{\begin{array}{l}\text { Notes } \\ \text { Drawings }\end{array}\right\} \begin{aligned} & \text { About }\end{aligned}$
	Voluntar	(Surveys.

[^0][^1]
TEXT BOOKS.

——: $0:$
Richards' Military Topography.
Heathers' Surveying and Astronomical Instruments.
Practical Astronomy and Geodesy, by Col. Oliver, R.A.
The Nautical Almanac.
The Manual of Dominion Land Surveys.

Books recommended for reference.
——: $0:$
Gillespie's Land Surveying.
Gillespie's Higher Surveying.
Deville's Examples of Astronomic and Geodetic Calculations. Clarke's Geodesy.
Loomis' Practical Astronomy.
Chauvenet's Spherical and Practical Astronomy.
The U. S. Naval Asademy Text Book on Surveying.
Whartons' Hydrographical Su: veying.
Germain on Projoctions.

SUMMARY OF INSTRUCTION IN SURVEYING, MILI* TARY TOPOGRAPHY, AND PRACIICAL ASTRONOMY

(The practical work ordinarily done by the Cadets is shown between brackets.)

3RD CLASS.
(Obligatory).

SURVEYING AND MILITARY TOPOGRAPHY.

General principles of surveying and map making. The amount of accuracy expected in a survey dependent on the purpose for which it is made and the time available. Military sketches often hurriedly made against time.
Scales generally used, both in military sketches and civil surveys.

Conventional signs and colours used in map making. Copying plans by tracing, pricking off, squares, eidograph, and photography.
(After a little practice in conventional signs each Cadet makes from memory a map of some piece of country with which he is well acquainted.)

The necessity of a preliminary examination, of the ground before commencing a survey.

Description of Gunter's and the 100 foot chain, the steel tape, surveyor's cross, and offset staff. Relative advantages of the two chains. The method of chaining a line. Precantions to be taken and amount of accuracy to be expected, Allowance for slopes. Chain surveying. Cutting up the ground into triangles. Necessity of getting good intersections to fix pointe. The details of the survey, how obtained.

Methods of calculating areas. (1) By measurement on the ground; (2) by measurements on the plan; (3) by division into squares; (4) by reducing a figure to a triangle ; (5) by latitudes and departures.

Surveying by tie lines. Chain angles. Perpendiculars. Various methods of keeping the field book in chain surveying. Groand problems in chain surveying. Erecting perpendiculars to a line. Running parallel lines. Passing obstaoles! Interpolating points in a liñe. Finding the distance between points where the intervening space cannot be chained.
Methods of checking a chain survey by measuring proof lines and by the test of points that lie in a straight line.
(The Cadets are shown how to make and plot a small chain survey. They then survey and plot a fresh piece of ground, keeping and plotling from their own field books.)
The principles of angular surveying.
The limits of well conditioned triangles.
Measuring a base line and expanding a triangulation from it.
The onnstruction and uses of the pocket sextant and prismatic compass. The adjustments of the sextant. The defects of each instrument. Their relative advantages and disadvantages. The variation of the compass and facts connected with it. Fixing points by interpolation.
(The Cadets are practised in taking angles with the sex. tant and bearings with the compass, and in plotting them. They then make a triangulation of a"piece of ground from a measured base with the sextant, and afterwards fill in the details by the compass and pacing, each having first ascertained the length of his pace.

The Cadets next make a sketch survey by the compass and pacing alone. They afterwards do two examination surveysone with the sextant, the other with the compass. In these surveys they are taken to a fresh piece of ground and given a certain number of hours to do it in, each working alone and the sketches being given in on the ground.)
Triangles plotted either by the angles or by the calculated length of the sides. How to construct a large paper or card protractor. Plotting angles by the scale of chords.
Forms of field-book used in angular surveying. Traversing with the compass. Local attraction-how to get rid of it in traversing. Restoring the magnetism of a compass. Changes in the variation. Surveying land by the compass and chain. Latitudes and departures-their use in checking, balancing, and plotting a survey. Given the bearings and lengths of the lines oounding a rectilineal figure, to calculate its acreage by the tables of latitude and departure. Supplying omissions. Describing bounds.
Contours-their nature and use. The horizontal equivalent. Use of the hand level and clinometer for contouring a plan roughly, Definition of "water course," "watershed" and " orthogonal." The different methods of showing slopes by shading. Horizontal hachuring, vertieal hachuring, stump shading, and brush work. The light supposed to come from a little to the left. Uses of each method. The scales each is best adapted for-their employment on the Ordnance Survey. The scale of shade. Its uses. Mounting plans on calico.
(The Cadets are practised in copying plates of horizontal
achuring in Indian ink,

If ti Transi

SURY

The

and tr:

 cal ang for rea angles traver meridi circula placin dolite horizol and up such at Choice the ca passes. angles. into ac Metl Provin point. northinMak
(The
dolite
travers
the me
How
from
filling
lation
The sc: sheets.
ordina
Prin
(Sur
The

If time allows, instruction in the use of the Theodolite and Transit Theodolite is commenced.)

2nd CLASS.

tion from it. int and prisThe defects ad disadvannected with
th the sex. tting them. und from a fill in the ascertained
mpass and 1 surveysIn these and given a one and the
calculated per or card

Traverset rid of it 8. Changes and chain. ncing, and of the lines age by the ons. Dee-
al equivantouring a atershed" ing slopes ng , stump me from a each is Survey. lico. horizontal

(Obligatory.)

SURVEYING AND MILITARY TOPOGRAPIY (Cont.)

The construction, adjustments, and uses of the theodolite and transit theodolite. How they give the horizontal and vertical angles. Taking a round of horizontal angles. Reason for reading both verniers. Repeating angles. Correcting the angles of a triangle when all three are measured. Methods of traversing with the theodolite. Plotting the traverse from meridians and the advantage gained by doing so. Use of the circular card protractor. Uses of the attached compass. Replacing broken level tubes and spider lines. Use of the theodolite in ranging out a base line and reducing the slopes to the horizontal. Measuring across obstacles (such as wide creeks) and up to the point immediately under an inaccessible object, such as the top of a church spire. Making a triangulation Choice of trigonometrical stations. Plotting the triangles from the calculated lengths of the sides. Use of the beam compasses. Finding the points approximately by plotting the angles. Finding the relative heights of the stations, taking into account the allowances for curvature and refraction.

Method of plotting by means of rectangular eo.ordinates. Proving the accuracy of a traverse by closing it on a known point. Proving a traverse by eastinge and westings and northings and southings.

Making sections by the theodolite.
(The Cadets are practised in taking angles with the theodolite and in running a traverse. They afterwards plot a traverse from the field book, and also a given triangulation by the method of co-ordinates.

How to check a triangulation by calculating the same side from different triangies. Bases of verification. Methods of filling in the details of a triangulation. Plotting a triangulation on a lage scale. Expansion and contraction of paper. The scale to be laid down on the paper. Plotting on different sheets. How this is done by means of the calculated coordinates.

Principle and uses of the plane table.
(Survey with the chain and plane table.)
The omnimeter or other instruments of that class.

Problems in dividing up, parting off, and laying out lund.
(The Cadets are practised in copying models of hills, put ting in the slopes by horizontal hachuring, first in pencil and then in ink. They are afterwards given a contoured plan of a convenient piece of ground which they take out and hachure by scale of shade. Those who are sufficiently expert practice shading in brush work.)
The principles of laying out roads with reference to tho gradients.
The methods of laying out railway curves.
The principles of levelling, with the corrections for curvative and refraction. Construction and adjustments of the different kinds of level. The water level and reflecting level. Forms of field book used.
(A traverse is run with the transit theodolite and a section of it made by levelling)

Sarveying without instruments.
(Examination survey of a piece of gronnd without instruments.)

The principles of bydrographical surveying.
PRACTICAL ASTRONOMY.
Elementary facts of Astronomy. Apparent motions of the heavenly bodies. The seasons. Short description of the solar system, with a fow facts as to distances. The celestial globe. The principal northern constellations. Explanations of the ordinary astronomical terms. The coordinates employed. Altitude and azimuth. Latitude and longitude. Declination and right ascension. Different methods of reckon. ing time. Civil and astronomical time. To convert one into the other. Apparent solar, mean solar, and sidereal time; reason of the difference between the two first. The equation of time. Hour Angles : their numerical expression in time and arc. Time at different meridians. To convert the apparent time at a given meridian into moan time, and vice versä. Given the sidereal time at a certain instant to find the mean time. Given the mean time to find the sidereal time. To find at what time a given star will be on the meridian. Given the hour angle of a star at a given meridian to find the local mean time. Astronomical clocks. Use of the sextant and artificial horizon. How to measure the altitude of a heavenly body, both with the natural and artificial horizons. Corrections to be applied, index error, dip, refraction, parallax, semi-diameter.
Taking altitudes with the theodolite. Necessity of observations in reversed positions of the instrument. Night observations. Reasons for observing both north and south or east and

Reca ments, instram Telesco
The regulat veys.
Devil
To fir differen distance known; running on the ε by offise
gout lund. of hills, put in pencil and ared plan of a and hachure pert practice
rence to the
ons for curva ts of the dif. ecting level. nd a section
hout instru.
ions of the of the solar stial globe. inations of inates emlongitude. of reckon. rt one into real time; e equation on in time e apparent vice versä. the mean 9. To find Given the ocal mean d artificial nly body, ections to diameter. t' observa. tobserva. east and

The Nautical Almanac, corrections for longitude, simple interpolation. Finding the latitude by a meridian altitude of the sun or star. Finding the latitude by an altitude of the pole star at any hour.
To find the time by equal altitudes of a fixed star.
From an observed altitude of a heavenly body to find its hour angle and thence the local mean time.
To find the longitude by comparing the local mean time with a chronometer showing Greenwich mean time.
Finding the longitude hy differences of local time; the difference being ascertained either by signal or electric telegraph.
To find the azimuth of a heavenly body from its observed altitude, and hence (using the theodolite) the azimuth of a terrestrial mark: from which follows the true meridian and variation of the compass.
Other mothods of finding the meridian, viz:
(1) By equal altitudes of the sun or a star.
(2) By the greatest elongation of a circumpolar star.
(3) By observation of the pole star at any time.
(4) By meridian transits of high or low stars.

Sundials, horizontal, vertical, and mean time.
The solar compass.
(The Cadets take and work out observations for latitude, time and azimuth, using both sextant and transit theodolite.)

Ist CLASS.
(Obligatory.)
Recapitulation of the principles of construction, adjustments, and uses of the various surveying and astronomical instruments, with a short account of the portable Transit Telescope and Zenith Telescope.
The method of laying out Canadian Public lands, with the regulations contained in the Manual of Dominion Land Surveys.
Deville's method of solving the following problems:
To find the convergence between two points; to find the difference of latitude and longitude of two points when their distance apart and the azimuth of the line joining them are known; to correct a traverse by the sun's azimuth; when running a line to correct it by azimuths; to lay out a figure on the ground; to lay out a parallel of latitude by chords and
by offsets.

Lectures are given on the method of carrying out a triangulation on a large scale, the astronomical work involved, probable errora, and the elements of projection and map drawing.
(The cadets practise, as occasion offern, road traverses, triangulation, contouring, and hydrographical surveys. They also observe and keep registers of various meteorolegical instruments, and practise taking meridian transits and alt-azimuth
observations.)
lst CLAss.

(Voluntary.)

PRACTICAL ASTRONOMY.

Por table Astronomical Instruments.

The refracting telescope. Magnifying power and field of view. Brightness of images and intensity of their light. Spherical and chromatic aberration. Achromatic eye pieces. Diagonal eye-pieces. To measure the magnifying power of a telescope. The micrometer. The reading microscope. The spirit lavel. To obtain the value of a division of the level. To find the level error. The chronometer-winding and transporting. Correction for temperature. Comparison of chrono. meters. The electro chronograph.
The sextant and its adjustments.
The simple reflecting circle.
The repeating reflecting circle,
The prismatic reflecting circle and sextant.
The portable transit instrument. Its adjustments. The instrument in the meridian. Methods of correcting the deviation. To find the error due to inequality of pivots. To apply the level correction to an observation. To find the latitude by transits of stars across the prime vertical. Adjustment in the prime vertical. The meridian mark. The personal equation.
The zenith telescope and its use in finding the latitude by Talcott's method. To find the corrected latitude. To find the level correction. To find the value of a revolution of the micrometer screw. Reduction to the meridian. The correction for refraction. The transit instrument as a zenith telescope.

The altitude and azimuth instrument.
Additional methods of finding the latitude.
(1) By a single altitude taken at a known time.
(2) By circum-meridian altitudes.
out a triannvolved, proaap drawing. werses, trian8. They also gical instrualtozzimath
and field of their light. - eyo-pieces. g power of a scope. The he level. To and trans. of ofrono.
ments. The g the deviaTo apply olatitude by tment in the ial equation. latitude by To find the ation of the The correccenith teles-

Interpolation by second difforences. To fiod the Greenwich time corresponding to a given right ascension of the moon on a given day. Interpolation by differences of any order. To find the longitude by transits of moon culminating stars. To find the longitude by lunar distancer. To find the longitude by an altitude of the moon.
To find the amplitude and hour angle of a given hoavenly body when on the horizon. 'To find the equatorial horizontal parallax of a heavenly body at a given distance from the centre of the earth. To find the parallaz in altitude, the earth betng regarded as a sphere. General laws of refraction. Tables. of refraction. Semi-diameters of celestial bodies.
Star catalogues and how to use them.
Differential variations of co-ordinates.
To find the correction for small inequalitios in the altitudes when finding the time by equal altitudes of a star. Effect of errors in the data upon the time computed from an altitude. Effect of errors of zenith distance, declination, and time, upon the latitude found by circum-meridian altitudes.

The probable error ; weight of observations and results.

GEOODESY.

Meuning of the word "Geodesy." The true figure of the earth an oblate spheroid. Methods by which this has been proved. Measurements of arcs of the meridian at different latitudes. Pendulum observations. Abnormal deviations of the plumb line. How cansed. Method of detecting them.

Definitions of "compression," "eccentricity," "geocontric latitude," "geographical" and "astronomical latitude," "reduction of the latitude."

To find the reduction of the latityde for the compression of the earth. Development of the expression for it in series. To find the radius of the terrestrial spheroid, the normal terminating in the axis, and the radius of curvature of the meridian for a given latitade. To find the length of a second of latitude and of a second of longitude at a given latitude.

Geodetical operations. Mapping a country by triangulation. Laying out the earth's surface in certain figures and tracing them on the ground. Expanding a triangulation from a measured base. Primary, secondary, and tertiary triangles. The usual size of each. Well-conditioned triangles. Bases of verification. Examples of the latter. Networks of triangulation. Intersecting chains of triangulation.
Account of the measurement of certain celebrated base lines. The different means and materials employed. Description of the American compensating bars. Bases for small surveys measured by steel tapes or pine rods.

8:

Preliminary measurement and levelling of a baso line, Division into sections. Permanent monuments, Correction for changes of temperature of rods. Reduction of inclined rods to the, horizontal. Distance across a creek or other obstacle. The broken base. Measurement of bases by sound. Astronomical base lines. Reduction of the base to the sea level.
Triangulation. Selection of stations. Size of the principal triangles in various triangulations. Signals for flat countríes, Stations to be seleoted so that they can be observed from, as well as to. Various forms of signals: tripods, poles, polished cones and hemispheres. Scaffoldings, towers, station marks, The heliostat. The electric light. The latter used successfully at very great distances.

Measuring the angles. Instruments employed. Various sizes of theodolites. Repeating and reiterating theodolites. Comparison between them. Method of repeating en angle.
To reduce a measured angle to the centre of a station, Correction for phase of signal. To reduce an inolined anglo to the horizontal plane.

Calculation of the spherical excess. Correcting the observed angles of a triangle. Calculating the size of the triangles, Legendre's theorem.
Reduction of a difference of latitude on the spheroid to the corresponding difference of latitude on the sphere, the radius of which is equal to the normal of the spheroid for the mean latitude.
Calculating the latitudes, longituder, and azimuths of the points of a triangulation, taking into account the ellipticity of the earth. Ihe convergence of meridians, Co-ordinates of the points of a triangulation referred to the meridian and a perpendicular to it.

Given the latitude and longitude of two points to find their distance and the azimath of the line joining them; given the latitudes of two points and the asimuth from one point to the other, to find their distance; given the latitude of a point, the azimuth from this point to another, and the difference of their longitudes, to find the distance between the two pointe.

Geodesic lines.
To find the area comprised between two meridians and two parallels (spherical solution).
To find the offisets to a parallel of latitude.
Methods of delineatifg a spherical surface on a plane. The orthographic, stereographic, gnomonic or central, globular, equidistant, Mercator's, conical, and ordinary polyconic projections.
of a baso line, ents. Correction otion of inclined creek or other bases by sound. base to the sea
of the principal or flat countries. bserved from, as 3, poles, polished , station marks. or used success.
ployed. Various ting theodolites, ting an angle. atre of a station. a inclined anglo
ing the observed of the triangles.
spheroid to the here, the radius id for the mean
azimuths of the the ellipticity of Co-ordinates of meridian and a
ints to find their g them; given om one point to itude of a point, the difference of the two points.
ridians and two
n a plane. The ntral, globular, polyconic pro-

Trigonometrical levelling by reciprocal zenith distances; by the zenith distance measured at one station; by the observed zenith distance of the sea horizon.

To determine the co-efficient of terrestrial refraction by means of reciprocal zenith distances.

The barometrical measurement of heights.
Measurement of heights by the temperature of boiling water.

General explanation of the use of the pendulum in determining the compression of the earth. Kater's reversible pendulum.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN MILITARY RECONNAISSANCE.

\qquad
ALLOTMENT OF MARKS.

N.B.-The Professors of Military Engineering and Military History assist the Professor of Surveying in awarding marks for Reconnaissances, but only as far as relates to their respective subjects of instruction.

TEXT BOOKS AND BOOKS OF REFERENCE.

Those used in Courses of Instruction fur Military Topography, Military Engineering, Military Administration, and Tactics.

SUMMARY OF INSTRUOTION IN MILITARY RECONNAISSANCE.

Nots. - The Professors of Military Topography, of Strategy Tactics and Military Administration, and of Military Engineering will conjointly carry out the instruction in Reconnaiessance.

Necessity of reconnaissances. General and special recon. naissances. The former usually made in peace time to ascertain all points necessary to be known in case of war; such as climate, topography, inhabitpnts, supplies, transport, fortresses, armed strength, \&c. Special reconpaissances always required, and any officer may have to make them. Maps of a country generally on too small a scale and have to be enlarged, and details inserted. Besides, maps do not show the state and width of the roads, the depth and current of rivers, the nature of the soil, the kind of woods met with, and a host of other points that it is necessary to know ; therefore a report must always accompany the sketch.

Scales ordinarily used for the sketches.
Reports to be written on foolscap with half margin.
Maps to be enlarged in preference to making a triangalation.

* Pencil work of sketches to be neat and clean. Sketches for hasty reconnaissances to be in pencil, tor deliberate reconnaissances to be in ink. Use of colored chalks. Different kinds of special reconnaissance. Roads, railways, rivers, woods, positions, encamping grounds, districts.

Road Reconnaissancts.-Made either on foot or on horseback. A note book may be used and the work plotted in the evening. A few bearings taken and distances judged by the time occupied in traversitg tham. Rates of a horse's paces. Points to be specially observed. Form of sketch and report used. Estimate of accommodation afforded by villages and towns. Report to contain the following details:

1. Construction of road, present condition, materials obtainable for repair, defiles (bridges, streets, cuttings, \&u).
2. Nature of adjacent country, cultivated or not ; open or enclosed; woods; facilities for moving troops.
3. Halting places, including facilities for watering, and places where troops can file past.
4. Camping grounds, and for what force.
5. Positions suitable for advanced and rear gaaids adjacent to road.
6. Positions within range of road enemy may occupy.
7. Lateral communications.

River Reconra:ssances.- A. When the course of the river is in the direction of the line of operations; the object of the report being to show how connection may be maintained on the march, or for action, by a force moving on both banks.

1. General nature of valley in which river lies, whether swampy, rocky, woody, \&o., ; proximity of heights.
2. Nature of stream, general direction, bends, rap dity of current, depth, liability to floods, banks, islands, fords.
3. Tributaries.
4. Nature of existing bridges, and materials for extemporizing others.
5. Boats, numbers available, \&ce.
6. Towns and villages on banks.
B. When the river is to be used as a defensive obstacle. In addition to the above:
7. Nature of approaches, and points at which/access by them may be barred by troops or obstaoles.
8. Command and distances from the stream, of heights on either bank within cannon range.
9. Points and means for effecting inundations.
10. Points on either bank suitable for covering the passage of troops to further bank.

Railways.- (For points to be noted, vide p. 133, Jones's Notes on Administration ; and for Railway Stations, p. 135.)

Arrangements tor the despatoh of given bodies of troops
whet
flank such rear by rail, with plans and ostimates of works necessary to enable them to entrain and detrain with the greatest facility, either at stations or elsewhere; with sketch of a railway station, show. ing approaches, platforms, arrangement of switches, additional temporary erections, \&o.

Camps and Billets. - Selection of camping grounds for given bodies of troops of all arms, with sketches of the ground showing disposition of the troops, accompanied by reports.
Billeting of troops on the march in given villages and towns.

Outposts.-Covering a stationary force with outposts; sketch to show positions of line of sentries, piquets, supports and reserves, if any. Report to detail number and nature of troops required, general dispositions and action in case of attack.

Positions.-Both offensive and defensive ; their selection (see Tactical Notes, p. 350.)
Sketches of ground to show dispositions of troops, clearances and obstacles, \&c.

Reports to contain :
General description; length, depth, nature of soil, ground,
whether cultivated, fenced, wooded, slopes. View obtainable, flanks where resting, approaches to front and flanks; obstacles such as rivers, marshes, \&c.; lateral communications, roads to rear and positions covering them.
2. General suitability to object in view, and to troops available.
3. Decisive points, weak pointe, enclosures, villages, woods, sto.
4. General position of first line, including main defensive line and advanced posts, showing allotment of troops and artillery positions.
5. General position of second line.
6. General positions of reserves, allotment of troops, facilities for counterstrokes.
7. General summary of works to be executed and allotment of tools and working parties.
8. Facilities for offensive returns, parts suitable for and positions suitable for enemy resisting the same.
9. Means of retreat and covering positions for artillery and rear guards.
10. Artillery positions, and approaches available to the enemy.
N.B.-A number of the foregoing reconnaissance schemes, both hasty and deliberate, will be given to Cadets of the 1st and 2nd classes as time and means may allow.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN MILITARY LAW.

ALLOTMENT OF MARKS.

Boolos recommended for reference:
The Army, Acts.
Militia and Defence Act of the Dominion of Canada. The Queen's Regulations and Orders for the Army. Regulations and Orders for the Militia of Canada. All Official Orders, Regulations, Rules of Procedure, and Official Instructions bearing upon the subjects
specified.
.

M of re

SUMMARY OF INSTRUCTION IN MILITARY LAW.

Comparison between Military Law and Civil Law. Army Act contains written part of Military Law.

MARTIAL LAW.
Martial Law, contrasted' with Military Law, when it may be proclaimed, and by what authority.

The classification of Martial Law under three heads :-

1. Applicable to Officers and Soldiers.
2. Applicable to Provinces during War.
3. Applicable to the whole community in time of Rebellion.

Lessons to be derived from the past and opinions of eminent Lawyers on the subject.

```
MARTAL LAW.
```

Brief historical summary of the growth of a code of Military Law in England and causes which led to it,

Circumstances which led to the introduction of the first Mutiny Act.

Statatory Courts and Prerogative Courts.
Powers of the Crown as to Articles of War and Rules of Prócedure.

Short description of the Army Act. Classification of Contents : Discipline, Enlistment, Billeting, General Provisions, Application of Military Law, Saving Provisions and Definitions.

Annual passing of the Army Act by Parliament.
Persons subject to Military Law.
Military Law as it concerns the Militia of Canada.
Maintenance of good order and military discipline; chaín of responsibility.

Course of procedure on commisssion of offences.
Military custody.
Power of Commanding Officer, with remarks on the punishment he can award.

Duties of the Provost Marshal.
Courts Martial. Desoriptions, warrante, convening, composition, jurisdiction, order for assembling.

Scale of punishments, when special punishments may be awarded and how combined.

Special application of the Army Act to warrant officers, non-commissioned officers, and to persons not belonging to Her Majesty's forces.

Preliminaries to trial, framing and investigation of charges, warning the prisoner for trial.

Responsibilities, duties, and privileges of persons attending Courts Martial:-President, Members, Prisoner, Prosecptor, Deputy Judge Advocate, Witnesses, Interpreter.

Description of proseedings at Courts Martial, rules as to a challenges, arraignment of prisoner, rules for addresses, examination of witnesses, the finding and sentence.

Confirmation. Persons having authority to confirm. Duties and powers of the confirming anthority.

Revision of findings and sentences. Quashing proceedings.

Persons having power to alter the sentences after confirmation.

Execution of sentence. Disposal of proceedings.
Exceptional Courts Martial. Special provisions relating to Field General Courts Martial and to Summary Courts Martial.

Crimes. Their classification and punishments for each. Crimes punishable only by Civil Law, with exceptions.

Definitions of some legal terms with explanations. Malice. Principal of the first and second degree. Accessories. Treason. Misprison of treason. Felony and misdemeanor. Homicide, theft, robbery, arson, forgery, \&cc., \&cc.

COURTS OF INQUIRY AND BOARDS.

1. Royal Commissions; 2. Courts held under the Statute; 3. Ordinary Courts assembled by a commanding officer.

How assembled, duties of members, order of proceedinge, powers, \&c.

EVIDENCE.
The five general rules as to the admissibility of evid: nene: -

1. Evidence as to character, and evidence in res.gesto.
2. Direct and positive evidenee, satisfactory evidonce. Presumptions of the law, presumptions drawn from the evidence (oircumstantial evidence.)
3. Evidence to be confined to the charge.
4. Hearsay evidence.
5. Documentary and secondary evidence, when admissible ; publio records, private writings, proof of handwriting. Confessions by prisoners. Depositions.

Witnesses. Number required, their competency ; examination of witnesses.

Form of proceedings of Courts Martial, how recorded, \&ic. Form of proceedings of Courts of Inquiry and Boards. Oaths and solemn declarations.

ROYAL MILITARY COLLEGE OF CANADA.

s as to exami-

Daties
roceed-
SYLLABUS OF INSTRUCTION IN MILITARY ADMINISTRATION.

For 1st Class, $\{$ Yearly Examination300300 Term Work. . . $\left\{\begin{array}{c}\text { Notes. } \\ \text { Recitations. }\end{array}\right\}$ Nil.

TEXT BOOKS.

-: $0:$
Operations of War. Part 1. (General Sir Edward Hamley, K.C.B., K.OM.G.) MILITARY ADMINISTRATION.
(Major Douglas Jones, R.A.)
Requlations and Orders for the Militia of Canada.

Books recommended, and sources from which information may be obtained:
The Queen's Regulations and Orders for the Army. Regulations and Instructions for Encampments.
Army Circulars and General Orders.
Précis of Modern Tactics. Colonel Home.)
The Armies of Europe and Asia. (Genergal Upton.)
Sir Garnet Wolsely's Soldier's Pocket Book.
Official Military Regulations governing the various branches of the Military Service both of Great Britain and of Foreign (Oountries,

SUMMARY OF INSTRUCTION IN MILITARY ADMINISTRATION.

- General principles of the organization and maintenance of armiee, and the special laws relating to soldiers.

Maintenance of discipline, and chain of responsibility.
British Military Units:-from companies, troops and batteries, up to army corps.

War Establishments of the different units of the British Army.

```
FORMATION AND MAINTENANCE OF ARMIES.
```

Systems of reeruiting, terms of service, etc. Comparison between voluntary and compulsory enlistment; relative advantages and disadvantages of each system. Comparison between long and short service.

Rules of Enlistment in the British Army.
Reserves of the British Army-Army reserve; militia, reserve. Auxiliary forces-Militia, Jeomanry, volunteers. Organization, composition, mode of recruiting or enrolment, training and exercise, bounty and allowances, numbers, and liabilities of each.
Organisation of the Regular Army:

1. Combatant branches-Infantry, cavalry artillery, engineers.
2. Non-combatant branches-Commissariat and transport department, ordnance store department, army pay department, veterinary department-organization and general functions of each. Army medical department-organization in peace and war, field hospitale, general hospitals, convalescent depôts, transport and care of sick and wounded in war.

Pay and allowances, and a brief description of the accounts to be kept by the captain of a company. Gratuities and pensions.

Supply and Transport in time of Peace.-Rations, quarters, medical attendance, equipment, clothing, necessaries.

Sketoh of different Military Systems.-Germany, France, Austria, Russia, Italy, United States, Canada, Switzerland.

Appointment and promotion of officers in different armies.
Organization and distribution of the Staff of the British Army.-Staff at headquarters, corps, divisional, brigade, and regimental staff.

The Prussian General Staff.
Subdivision of Duties.-Office work and method of conducting official correspondence.

CONDITIONS AND PRINCIPLES OF SUPPLY IN TIME OF WAR.
Supply of ammunition in the field; expenditure in battle. Reserves of ammunition. Equipment.-Arms, ammunition, etc. Rations-Amount of nutriment required, nutritious properties of different kinds of diet, daily rations per man and horse; how carried, and amount required by an army in the field.

SYSTEMS OF SUPPLY 6F FOOD AND FORAGE BY AN ARMY' IN THE
FIELD.

1. From home magazines.
2. By contract to deliver at base or depôt of operations.
3. By purchase in the country.
4. By requisition or seizures.

Relative advantages and disadvantages of each system.
Billeting of troops, with calculations for billeting.
Forage and ration depôts; railway depôts.
1 The Prussian system of Supply.
MILIRARY TRANSPORT.

1. Inland water transport, by means of navigable rivers, lakes and canals.
2. Railway transport, use of railways in war, construction of military railways.
3. Transport by means of wheeled vehicles.
4. I'ransport by means of pack animals and human carriers.

Comparison between the different methods, and their relative advantages and disadvantages.

Requisites of a good military carriage; relative merits of two-wheeled and four-wheeled vehicles. Traction engines.

ORGANIZATION OF TRANSPORT FOR AN ARMY IN TEE FIELD.

1. "Regimental transport" of a battalion, regiment of cavalry and battery of artillery.
2. "Departmental transport" of different units from brigades to army corps. Organization and expansion of the Commissariat and Transport Corps. Calculation of length of road occupied by military transport. Difficulties of supply.
3. "General transport." Organization required, Advan. tages of working it on the stage system.

RAILWAYS.
Their value and use for concentration and supply at the outbreak of war, and for conveyance of troops and stores during the operations. Their influence on supply and the movements of armies.

Adm of a
ber 0
and
railw
T)
unde
Adva
tions.
for matio
and
culat
town
Arra
of m
roads ment distar

Organization required for the working of railways. Administrative and executive staffs. Daties of officer in charge of a station.

Arrangements for forwarding a force by railway. Number of trains that can be despatohed in one day. Entraining and detraining troops. Rate of travelling. Requirements of a railway station for military purposes.

the line of communioations of an army in the firlid.

Daties and responsibilities of the Inspector General, and under him of the officers in charge of the Bage of Operations, Advanced Depôt, and of the "Road Commandant."

Railways on the Line of Communications.
Force required for the defence of the Line of Communications.

gNOAMPMENTS, BTVOUACS, OANTONMENTS.

Military and sanitary requirements as well as principles. for oncampments. Spaces required by different units. Formations for encampments. Escimates of water supply required and watering arrangements.

Bivouacs. Prussian system.
Cantonments. Area over which troops can spread. Calculation as to number of troops that can be cantoned in a town or district, on the march or for lengthy occupation. -Arrangements for cantoning troops and billeting on the line of march.

marches.

Number of roads to be used by an army; selection of roads' ; rates of march ; length of marches ; general arrangements for a march; order of march in proximity to and at a distance from the onemy.
' Length of column of route for British divisions and army corps. Calculations of space required. Considerations limiting the size of columns that can march on one road. Marching in "Echelon." Framing orders for a march.

smbarkations and diskmbarkations,

Transport and freight ships. Vessels, how chartered and by whom. Boards of survey. Description of vessels most suitable for troops, capacity required. Fittings and interior arrangements of transporte. Calculations as to the nu piber of men and horses a ship will accommodate.

Operation of embarking troops and horses. Disombarkation in presence of an eriemy, orders for. Selection of landing places.

ROYAL MILITARY COLLEGE OF CANADA.

sYLLABUS OF INSTRUOTION IN MILITARY HISTORY, GEOGRAPHY, STRATEGY, AND TACTICS.

ALLOTMENT OF MARKS.

TEXT BOOKS.

MINOR TAOCIICS. (Lieat.Colonel Clery.)

OPERATIONS OF WAR.
(Gen. Sir Edward Hamley, K.C.B., K.C.M.G.) ${ }^{\text {m }}$
TACTICAL NOTES. (Major Douglas Jones, R.A.) INFANTRY FIELD EXERCISE.

Books recommended to be read and sources from which information: may be obtained:
Précils of Modern Tactics. (Colonel Home.)
Great Compaigns in Europe. (Major Adams.)
Tactical Deductions from the ${ }^{\circ}$ War of 1870.71. (Colonel Boguslawski.)
Official Report on the conduct of the American Civil War.
Cavalry Regulations.
Instructions for Cavalry by General Von Schmidt. (Translated.)
German Official Accounts of the Wars of 1866 and 1870.71.
Russo.Turkish War. (Lt. Green, U. S. Engineers.)
War in Bulgaria. (General Baker.)
Daily News Correspondence of the Russo.Turkish War. (A. Forbes.)

War in Armenia. (Norman.)
Journal of the Royal United Service Institution.
R. A. and R. E. Institution Papers.

SUMMARY OF INSTRUCTION IN MILITARY HISTORY, AND GEOGRAPHY, STRATEGY AND TACRICS.

TACTICS.

Meaning of Tactics as distinguished from Strategy. Fighting tactics. Manoeuvre tactics.

A brief account of the changes that have taken place in tactics at varions periods, including tactics of the present day as modified by the experience of recent wars and the introduction of modern weapons, showing the nature and cause of the various modifications.

Tactical and fighting units of the different arms. General functions and characterigtics of the various arms.

Calculations of time and space occupied in marches and formations of the three arms, separately and combined.

Relations of offensive and defensive in regard to tactics. Principles of attack and defence.
Principles upon which the present tactics of European armies are based.

SECURITY AND INFORMATION.

The measures by which armies obtain security and information, whether at the halt or on the march.

Superiority when coming into collision with the enemy depends partly on timely information and partly on power of rapid concentration. Power of concentration dependent on mobility and supply. Difficulties of keeping an army concentrated entail necessity of early and accurate information of enemy's movements.

Outposts - Their objects and duties. Their composition, and considerations which affect their strength. Infantry and cavalry outposts, separately and combined. Line of resistance. Distance of outposts from main body. Usual subdivision into sentries, picquets, supports and reserves; composition, relative strength, position, and duties of each. Different kinds of patrols and their object. Adaptation of outposts to ground. Resistance and retreat. Artillery with outposts. Outposts by night; modifications required.

Advanced Guards.-Their object, necessity, and duties Composition and strength, and causes affecting them. Formation and subdivision. Position of each arm. Distance from main body and the eauses which regulate it. Daties and responsibilities of the Commander. Conduct on meeting the enèmy, whether to hold his ground or retire on main body.

Rear Giuards.-Of two kinds: 1. To an army advancing.
2. To an arm retreating. Their object, duties, strength, and composition in each case. General mode of action of a rear guard to a retreating army. Daty not to attack but delay the enemy. Manner of occupying positions, special care required on the flanks. Withdrawal in the presence of the enemy. General dispositions on the march. Retiring througf a defile. Degree of resistance to be offered by Rear Guards.

Reconnoitring - Necessity for obtaining ample and accurate information about enemy, and surest manner of obtaining this. Importance of screening movements from enemy. How a considerable force of cavalry would be employed in screening and reconnoitring duties in advance of an army. Small reconnoitring parties, infantry and cavalry patrols, their composition and strength. Qualities required in commander. How information is obtained; transmission of intelligence to the rear. Points to be noted in country passed over. Reconnoitring the enemy's position.
ground in relation to tactics.
Character of ground best suited to each arm. How nature of ground affects the view and affords concealment. Danger of confounding cover from view with cover from fire. How nature of ground affects movements. Character of roads, nature of soil, \&e.
tadtioal employment of the tiree arms.
Principles of omployment of infantry in action, both in attack and defence. Modern infantry firo.

Principles of employment of cavalry in action. Offensive and defensive lactics. Dismounted service of cavalry. Mounted infantry.

Principles of employment of artillery in action: The positions and objective of artillery in attack and defence. Attack of field intrenchments. Development of artillery fire. Tactical employment of machine guns.

Principles of employment of the three arms in combina-tion-in attack, in defence, in pursuit, in retreat.

DUTIES AND RESPONSIBILITIES OF A COMMANDER OF A MIXED FORCE.

TENDENCY OF MODERN TACTICS.
Principles to be kept in view in considering the tactios of the future.

OCCUPATION OF POSITIONE.
Principles on which ground should be occupied. Requirements of a good defensive position. The occupation of a position selected as a field of battle.

GENERAL COURSE OF AN ENGAGEMENT

Attack and defence of positions. Night attacks. Counter attacks and offensive returns.

INOREASED USE OF FIELD FORTIFIOATION BY THE ASSAILANT.
Issue of intrenching tiols to soldiers has a direct bearing on tactics. Used by assailant to secure ground won, to contain defender in position, \&c.
marches.
Objects and requirements. Pace and halts. Length of marches dependent on the condition of the men, weight carried, nature of roads, etc. Langth of column. Use of several roads. Importance of accurate timing of marches. Connection to be kept up between different columns. Place of each arm on the line of march. Discipline.

Flank Marches.-Their danger in presence of an enemy. Exposed flank to be protected. Distribution of force. Defiles on exposed flank to be guarded.

Night Marches.-Disadvantages attending them; precautions necessary.

RIVERS.
Defence of a river line, and gencral principles for distribution of force ; active defence of a river line.

Forcing a river line; different methods. Selection of point of passage; what constitutes favorable points. Tributary streams. Islands.

Preparation of materials and assembly of troops. Secrea y and stratagem nevessary. Covering party. Secondary cross. ings.

DEFILES.
Definition of a defile, Different kinds of defiles; their importance. Manner of defending defiles and of conducting a retreat through them. Mode of attacking defiles. Mountain defiles. Bridges. Fords. Causeways.

```
HOUSES AND VILlAGES.
```

Their importance and use. Conditions that affoct their utility in a military sense. Isolated houses and villages form "tactical points," if in front, on the flank, in rear, or in the line of a position.

General mode of putting them in a state of defence. Importance of exterior line of defence, inner lines and citadel. Disposition of troops. Positions of artillery.

Attack of isolated houses and villages-1. by in?antry alone ; 2. by infantry supported by artillery.
woods.
Advantages afforded by woods to the defence or to the attack, according to their nature, extent, position. Difadvantages attending fighting within a wood.

Manner of putting woods in a state of defence.
Active defence of woods, and dispositions of the threo arms.

Attack of a wood ; disposition of troops for attack ; movements of attacking force within a wood.

CONVOYA.

Different kinds of convoys, either by railway, road or water. Difficulty of conducting a convoy. Length of convoy. Causes governing strength and composition of escort.

Disposition of escort on the march ; its duties. Advanced guard, main body, and rear guard. Conduct in case of attack. Mode of parking a convoy. Convoys by water.

Attack of a convoy; method of attack.
bATTLES.
The principles of tacticsillustrated by the study of battles at different periods.

STRATEGY.
feneral principles of strategy, objects to be attained by strategic operations.

Difference ketween offensive and defensive war ; advantages and disadvantages of each.

Success of strategy dependent on mobility, and the result of it on tactical success.

The difference in the art of strategy between the Feudal period and the present time. How the introduction of standing armies and civilization effected the change.

Improvement in the art of strategy by Napoleon.
the three important principles of strategy.

1. The " object." Selection of objective and theatre of operations. What generally must constitute the "object."
2. Base of Operations. The requirements of a base, extent, description, effects of configuration and position. Angular bases. Offensive and defensive bases.
3. Line of Operations. Necessary conditions for a line of operations. Distinotion between single and double lines. Disadvantages of several lines, bat difficulty of using one line. Independent lines. Limits of use of a single road for strategic purposes and advantages of operating by several roads.

Point of junction of different fractions of an army ; danger of concentrating too near an enemy.

Combined armies operating from divergent bases, and armies operating on interior lines.

OFFENSIVE STRATEGY.

Offensive strategy classified under three heads:

1. Endeavour to turn a single flanki
2. The advance against the centre of a strategic line.
3. Operating against both flanks.

Advantage of compelling an enemy to form "front to a flank

An army throwing itself across the adversary's communications.

DEFENSIVE STRATEGY.

Direct and indirect defonce. The evils of dispersion in defensive strategy. The strategical advantage gained by abandoning a certain amount of territory under certain circumstances. Employment of retarding forces.

LINES OF COMMUNICATION.

Influence of good communications, such as good roads, navigable rivers, canals and railways on strategical operations; also telegraphs.

Necessity of fortified points on the line of communications. The disadvantages of a long line of communications, and especially in the enemy's country.

OBSTACLES.

Influence of obstacles, such as mountain ranges and rivers, on offensive and defensive operations, when their general direction is parallel or perpendicular to the line of operations. Fortresses viewed as obstacles.

FORTRESSES.
The effects fortresses have on strategical operations. The cause of the establishment of fortresses. How they firstaffected strategy, causing sieges to be so numerous. The causes of sieges being reduced in these days in proportion to the number of battles.
campaigns.
The science of strategy illustrated by the study of cam. paigns at various apochs.

GEOGRAPHY.
Special study of the theatre of war of such oampaigns as may be selected. General study of the military geography of the Dominion of Canada.
N.B.-The campaigns and battles selected for study are $\$$ varied from time to time, and no special text books are used for these, original lectures being given.

ESSA YS.

Original essays on the subjects of instruction will be required to be written according to the time available.
N.B.-In the examinations, as well as in essays which may bo written on the subjects of instruction, great atress will be laid on clearness and conciseness of style and expression, legibility of handwriting, and correctness and precision in statement. Allowance will be made for those Residents of the Lower Provinces who may not be thoroughly acquainted with the English language.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN MILIIARY.
ENGINEERING.

* ALLOTMENT OF MARKS.

Theoretical Part. Marks available for entire Course.

	mination.	Yearly,	1,900	
Obligato		Intermediate,	and	
11		Drawings,		
Voluntary,	Examination.	$\left\{\begin{array}{l} \text { Yearly, } \\ \text { Intermediat } \end{array}\right.$	$\begin{aligned} & 1,200 \\ & \text { nil. } \end{aligned}$	1,200
2,000	Term Whork.	Notes, Exercis Drawings,	and $\}$	00

Practical Part or Engineerina Drill.
Marks available for entire course.

Voluntary, Nu.
Distribution of Marks by Classes. (Theoretical part.) 4th Class.
Obligatory.
1,000 $\begin{cases}\text { Examination. }\left\{\begin{array}{ll}\text { Yearly, } & 300 \\ \text { Intermediate, } & 300 \\ \text { Term work. } & \left\{\begin{array}{c}\text { Notes, Exercises } \\ \text { Drawings, }\end{array}\right. \\ \text { and }\end{array}\right\} & 400 \\ \hline 400\end{cases}$ Voluntary, Nil.

3rd Class.

Distribution of marks by Classes. (Practical part.)

```
4TH Class Nil.
```

3rd Class Nil.
2nd Olass 250
let Clabs. 250 and 170 for N.C.O's. only.

TEXT BOOKS.

The following is a list of the text-books in use :-
Guide to the Coarse of Military Engineering pursued at the R.M.C., Canada, by Major Walker, R.E., and Capt. Sankey, R.E. Text-book of Fortification and Military Engineering, for use at the R.M.A., Woolwich. Parts I and II.
Instruction in Military Engineering, S.M.E., Chatham. Part III, Bridging; Part IV, Military Mining; and Part V, Miscellaneous.

Explosives, their use for Military Engineering Land Operations, and Electrical Measurements, by Captain Sankey, R.E.

Manual of Instruction in army signalling.
Books recommended to be read.
Instruction in Military Engineering, S.M.E.,Chatham.
Lendy's Treatise on Fortification:
Professional papers of the Royal Engineers.
Sir Howard Douglas' Military Bridges.
Haupt's Military Bridges.
Von Scheliha's rreatise on Coast Defence.
Journal of the Royal United Service Institution.
The defencees of Washington, Barnard.
The Attack of Fortresses (R.E. prize essay), by Major Frazer, R.E.
The Defence of a Position (R.E. prize essay), by Major Fraser, R.E.
Brialmont's Hasty Intronchments.
Brialmont's Traité de Fortification Polygonale.
Home's Precis of Modern Tactics.
Principes de Fortification, Noizet.
Fortification depuis Vauban, do.
Fortification du Champ de Bataille, Brialmont.
Nouvelles défences de la France, Tenot.

[^2]
SUMMARY OF COURSE OF INSTRUCTION IN MILITARY ENGINEERING.

The theoretical conre of Military Engineering is partly obligatory and partly voluntary. The practical course, or Engineering drill, is entirely obligatory.

Gerieral Summary of Subjects.
Fortification, -
Field Fortification.
Permanent Fortifi zation.
Semi-permanent Fortification. Coast Defence.
Attack and Defence of Fortresses.
Mining.
Pioneer Duties, -
Construction, demolition and restoration of

Water supply, hatting, etc.
Method of Instruction. -The above subjects are taught theoretically, and, as far as possible, practical instruction is given in them. The theoretical instruction is carried out by means of lectures and personal instruction, explanatory of the text-books above quoted, and of other matter given in the form

Theoretical Part.

IV Class.-Field Fortification :-Nature and construction of the works required for the defence of a Position.
III Class.-Permanent and Semi-Permanent Fortification, and Coast Defence.
II Class.-Attack and defence of Fortresses, Mining, and Applied Field Fortification.
I Class.-Applied Field Fortification (continued.) Use of Field Fortification by the Attack, Pioneer duties, Camp duties.

> Engineering Drill.

IV Class.-Field Fortification.
III Class.-
II Class.-Field Fortification; The attack and defence of Fortresses ; Signalling.
I Class,-Use of explosives ; Pioneer duties, Camp duties, Sigaalling.

4th Class.

Obligatory.

FIELD FORTIFICATION.

1st Part.

1. Introduction.-Influence of Tactios on Field Fortification. Sketch of the attack and defence of a Position. Principles of defence and deductions from them of the works required to defend a Position. Effects of the arms at present in use.
2. Tools. - Various kinds. Transport of tools.
3. Materials.-Raw : how obtained; earth, wood, brushwood, iron, \&co.
Manufactured: how made ; pickets, fascines, gabions, hurdles, \&o.
4. Labour.-Tasks and Reliefs. Working parties.
5. Revetments.-When required. How made Anchoring. Comparison of the various kinds.

Work to be Donie for the Defenoe of a Position.

6. Clearing the foreground.-Object. Requirements and how fulfilled.
7. Obstacles.-Object. Divided into natural and artificial. Principles and requirements. Description of the various kinds of artificial obstacles used, namely: Abatis of various kinds, 8

Entanglemente, Wire entanglement, Irregular pits with wire
18.
19.
20.

Makin
21.
I. 0
II. 0
III. P
IV. F
V. I
VI. I

The
SleERO
Subue
Decem

Requirements and how generally falfilled. Description of the various works used, namely: Adaptation of natural cover, gun pits, gun-epaulments (the placing of guns in Field Works is considered under that head.)
12. To cover Limbers.-Requirements and how generally fulfilled. Description of the various works used, namely : Adaptation of natural cover, Limber pits.

> Blinduges.
13. Specially onnsidered.

> Hasty Intrenchments.
14. Nature and object.

Methods of Flanking.

15. Object. Special requirements and how generally fulfilled. Description of the various special works, suitable for flanking, namely : Tambours, caponiers, \&c.

Fortification of the Strong Points of a Position and of Isolated Posts.

16. Object and special requirements, various kinds, namely:
17. Field works. Trace, profile, details and execution. Garrion, \&c.
18. Detensibie knolls. Trace, profilo, \&o.
19. Defensible houses and villages.
20. Defensible woods.

Making and Destroying_Communications in a Defensible Position. 21. Object and statement of work to be done.

PLATES.

I. Cover for shooting line.
II. Cover for supports and reserves.
III. Profiles of Field redoubt.
IV. Field Trace.
V. Defensible Kn
VI. Defensible Post.

These plates are varied from time to time.
Sxeroises and fair notes.-On the above subjects.
Subjeots for Examination :-
December-Sections 1 to 6 inclusive.
March-Sections 1 to 14 inclusive.
June-The whole subject.

III Class.
Obligatory.

PERMANENT FORTIFICATION.

A. Introduotory :-

Definition of permanent fortification.
Principles and object the same as in field fortifioation, and unchanging.
Details subject to change with the arms in use.
Situations in which permanent works are required.
Classification of fortresses with reference to the duties they perform.
B. Requirements of a Fortress -
α. Absolute security against attack with the means at the disposal of the enemy's field army, viz.:-
α. By surprise.
β. By open assault.
γ. By bombardment.
δ. By blookade.
b. The maximum amount of security against attack by regular siege.

Sketch of attack and defence under the above heads with the object of showing the general nature of the works necessary to give effect to these requirements.
C. Elements of Permanent Works -

The fortress, in its elementary idea, consists of an enclosed space, protected from the enemy's fire, and surrounded by an obstacle which secures it from assault. Require. ments and how fulfilled.
a. The ramparts as a platform for artillery and musketry fire, and as affording protection to men and guns.
b. Profile and plan of the obstacle, to secure it from assault and provide flanking fire.
c. Works outside the obstacle to watch and defend it, and to secure the passage to the defenders.
d. Retrenchments or keeps, to prevent the enemy from securing his footing inside, even if the obstacle is forced.
a. α. The rampart; its object, command, thickness, terreplein, slopes, ramps.
3. The parapet; its object, command, thickness, form, slopes.
γ. Means for use of musketry and artillery fire; the banquette, barbettes, embrasures, Haxo casemates, Moncrieff pits, mortar casemates, iron shields, cupolas.
δ. Trace ; for strong frontal fire, as straight as possible.
ع. Means for shelter for men and material ; traverses, solid or hollow, parados, bomb-proof shelter; under rampart for men, in traverses for guns, bomb-proofs for reserves, their construction and position.
b. α. Conditions of defence which all profiles must fulfil.
B. Profile; with dry ditches, with wet ditch, width and depth of ditches in each case, comparative advantages of wet and dry ditches.
γ. Various kinds of revetmente, their construction, comparative advantages and disadvantages of each kind.
δ. The trace to obtain flanking fire; why necessary, how obtained. Three aystems-

1. The Tenaille.
2. The Bastioned.
3. The Polygonal.

Describo and compare these systems.
c. Under this head are included outworks, advanced works, detached works and communications.
a. Outworks-

1. Covered way and glacis, and ravelin, with their keeps, object, construction.
2. Counterguards; their objects, construction, defects, when useful.

117

3. Tenaillons and demi-tenaillons, mention only.
§. Advanced works-
Horn works, crown works, lanettes, flèches, their objects and traces.
Discuss the general objects of outworks and advanced works, and show that the accumulation of these works, formerly thought desirable, is now obsolete.
4. Detached works-

Requirements, when used. (See also applied F. F.)
反. Communications -
Requirements; simply, easy, safe, how carried out.
d. Retrenchment-

Requirements, how carried out.
a. Open works; cavaliers, gorge retrenchments, coupures.

及. Closed works; casemated keeps, interior glacis, iron plating.
γ. Citadels; how they differ from ordinary retrenchments, their requirements and how fulfilled.
D. Arranaement of the Elements in Fortresses.

General considerations which govern the combination of the above elements.
a. Detached Forts. Requirements.
α. Good artillery positions.
β. Secure against assault.
How carried out.
b. Enclosed Enceintes.
a. When a regular attack is not possible.

1. Long simple fronts.
2. Simple outworks.
3. Escarps, caponiers, and keeps conpletely covered from view.
4. When a regular attack is to be anticipated,
5. Shorter fronts, more elaborate in detail.
6. Strong salient outworks. Countermines under glacis.
7. Escarps, caponiers and keeps, completely covered, hence masks, iron plating, interior glacis, the latter countermined.
c. Combination of Enclosed Enceintes and Detached FortsTo form first-class modern fortresses.
α. The enceinte as in (D-b- β) above.
β. The detached forts.
8. The individual forts as in $(\mathrm{C}-c-\gamma)$ above.
9. Considerations which have brought into prominence in modern fortification, the combination of detached forts, with enclosed enceintes.

d. Examples of Modern Works-To illustrate the above.

E. Sketch of Progress of Permanent Fortification-videvoluntary course.

F. (Jreneral Application.

Application of fortresses to the defence of a country, including a general sketch of coast defence. *
General trategical considerations: Method of frontier lines, its failure illustrated by examples.
Experience of the German invasion of France in 1870-71.
Discussion on the best method of defence.
Tactical ase of Fortresses.
Distinction between a fortified place, or fortress, and a fortified position.

SEMI-PERMANENT FORTIFICATION.

A. Introductory-

Definition.
Objects to be attained. Requirements.
Means available for construction of semi-permanent works, including time.
Characteristics of semi-permanent works.
Capes in which they are applicable.
B. Appligation-
a. To semi-permanent detached forts.
b. To semi-permanent enceintes.

Requirements, and how carried out under each of the above heads.
C. Various Exampies of the Application of Semi-Permanent Works.

PLATES.

I. Permanent profiles.
II. Plan of a Permanent work.
III. Sections and elevations of II.
IV. Details of Permanent works.

These plates are varied from time to time.
Fair Notes.-On lectures during the term.
Exercises.-Examples of permanent profiles and bastioned traces.

[^3]Subjects for Examination :-
December.-Sections A, B, C and D, Permanent Fortif. cation.
March.-Section F, Permanent Fortification, and SemiPermanent Fortification.
June.-The whole subject.

III Class.
Voluntary.
PERMANENT FORTIFICATION.
E. Sketch of Progress of Permanent Fortifioation.
a. Permanent Fortification before the introduction of Gunpowder; methods of attack to which it was exposed and means taken to resist them. Show that the principles were the same as in modern fortification.
b. The Transition Period.

Effect of the introduction of cannon, and of mining with ganpowder.
On the site.
On the construction. On the profile. On the trace.
c. The early Italian, Dutch and Fi ench Schools.

Introduction of the bastioned trace in Italy.
Origin of the ravelin.
Paciotto's trace, the first regular bationed work.
Cbaracteristics of the Dutch school, example Cœovorden.
Improvements by Coehorn, his principles and methods of construction.
c. The French School under Vauban and his Successors.

Vauban's systems, first and third. Cormontaingne's improvements ; the school of Mezières; the school of Metz (modern French system.)
Later improvements in the bastioned system and its application to detached forts in France during tho present century.
e. Rise of the Polygonal System in Germany.

What it owes to Montalembert, and to the early designs of Durer (16th century.)
Various examples of the application of this system in modern German works.

COAST DEFENCE.

*A. Introductory -

Principles unaltered.
Considerations which influence the modifications in detail, characteristic of coast defences.
Considerations which influence the selection of the points to be defended.
Sketch of methods of attack to which such defences are liable.
Requirements and means of carrying them out.
a. By special arrangement of batteries-site.
b. By constructive details for protection of guns and facilitating their service.
c. By utilization of naturel obstacles and creation of arti ficial ones.
B. Combination of these principles in works for coast Derenoe-

Nature of defences :
a. Batteries.
b. Obstructions.
c. Submarine mines.
d. General discussion on method of defending coasts by the combination of the above.
a. Batteries.-Requirements and how fulfilled for the following:-
α. Earthon batteries with or without Moncrieff carriages.
β. do do with iron embrasure shields.
γ. Casemated batteries with do do
δ. Iron fronted batteries fized or revolving.
Situations in which these batteries are suitable, respect-ively:-
b. Obstructions.-Requirements and how fulfilled for the following:-
α. Sunken obstructions.
β. Floating do
Situations in which they are suitable, respectively :-
c. Submarine Mines - Requirements and how fulfilled for the following :-
α. Defensire.

1. Mechanical.

[^4]2. Electrical,

Situations in which they are suitable, respectively. Attack on submarine mines. (For explosives used, see Explosives).
B. Offensive (Torpedoes.)

1. Locomotive.
2. Outrigger.

Brief sketch of the use of torpedoes.
d. General discussion on method of defending coasts by the combination of the above.
C. General Military Operations for the Defenge of Coasts.

PLATES.
V and VI. Coast Defences.
These plates are varied from time to time.
Fair Notes.-On lectures during the term.

> \| CLASS.

Obligatory.

ATTACK OF FORTRESSES.

A. Introductoriy.

Modes of dealing with fortresses-how determined.
Various methods of attack which can be carried out with the means at the disposal of a field army. When they are applicable respectively, and how carried out.
a. By Surprise.
b. By Open Assault.

Application in connection with the regular attack.
e. By Bombardment.
α. For destruction of arsenals, \&c.
β. For obtaining possession of the place.
Application in connection with other methods of attack.
di By Blockade.
Methods a, b and c may be used in connection with blockade.
Application of blockade in connection with the regular attack.
B. The Reqular Attack.
a. Introductory.-When used, general sketch of the method of appoaching the fortress.

Corps of observation, necessity for.
Siego corps; its strength and composition.
Siege train ; artillery and engineer.
b. Investment -

Object, strength and composition of the investing force.
Method of execution.
Sketch of the arrangement and fortification of the investing line. (See applied F. F.)
c. Preparation for the regular siege.

Choice of front of attack.
Project of attack.
Site and arrangement of siege parks.
Preparation of materials.
Preliminary batteries, discussion as to whether they are to be recommended.
d. The regular siege.
α. The first artillery positions; object, requirements of batteries, considerations affecting their site.
Type of battery employed, method of execution.
β. Progress of attack up to the formation of the first parallel.
Object of first parallel, requirements, former method of opening, present method.
Tracing and extending.
Execation by common trench work.
The approaches.
Extent of the paraliel.
Covering troops.
γ. The second artillery position -
Its object; duties of the batteries; their sites; number of guns required, and their distribation; requirements of the batteries.
Type of battery used; modifications of typical battery ; Screens ; their object and mode of construction.
Communications to batteries.
Arming batteries and opening fire.
ס. Advance from first to third parallel.

1. The second parallel ; its object and position.

Requirements, execution of the second parallel and its approaches, genarally by flying trench work. Advance
in front of second parallel, generally by sapping.
2. Definition of sapping and requirements.

Single saps shallow and deep; when used, how executed.
3. Demi-parallels; their object and position.
4. Third parallel; its object and position, requirements and method of execution.
E. Advance to the covered way.

1. Special difficalties to be encountered in front of the third paralle?
2. Circular portions.
3. Mine attack necessary, if counter mines exist. (See Mining.)
4. Advance from circular portions by double sap on the capitals.
5. Demi-paraliels ; their object and position.
6. Fourth parallel; its object and position, and require ments.
7. Crowning the covered way by sap lodgments.
8. Double and cube saps; object, requirements, how executed.
9. Crowning the covered way by assault, 受hen attempted.
10. Fifth parallel; its object, position and requirements.
ξ. Breaking info enceinte.
11. General arrangements, and usual order of procedure against the various works in succession.
12. Breaching escarp, position and range of the breaching batteries, method of forming the breach, obsegvation of effect of fire. Batteries in the lodgments when required, position, execution and armament.
13. Breaching by mines, silencing flanks, descent into ditch, passage of ditch.
14. Occupation of the breach.

By assault, preparations for assault, dis position of troops, execution.
By gradual occupation, method of execution.
5. Further proceedings against retrenchments, if they exist.

Breaching by distant curved fire if the escarps are not well covered.
Attack by mining.
C. Examples-
a. Application to the attack of a front of the modern French system.
b. Probable course of attack on a polygonal front.
c. Attack on a chain of detached forts.

DEFENCE OF FORTRESSES.

A. Introductort-

Readiness to resist attack. State of preparation during peace with respect to works and stores.
Garrison; peace and war establishments.
Armament; guard and full, nature of pieces, amount of ammunition.

Eingineer stores.
Provisions.
Preparations for defence if threatoned; interior organization of the place.
Works which require to be carried out by the Engineers and Artillery.
Distribution of troops. Measures required to fesist attack.
By the enemy's field army under the heads given in syllabus of attack, section A, viz :
a and b. By surprise or open assault.
c. By bombardment.
d. By blockade.
B. Against regular attack-
a. Preparatory arrangements.
b. Resistance to investment.
c. Obstruction of the preparations" of the regular siege.
d. Resistance to the operations of the regular siege.
α. Against the first artillery position.
Modifications of armament. Retrenohment commenced. Special for first class fortresses,-intermediate batteries between, and retrenchments behind, the detached forts.
ß. Against progress of attack to first parallel.
Defence of advanced posts.
Lighting up ground at night and careful obsorvation.
Firing on working parties; large sorties.
δ. Against the second artillery position.
Concentration of fire on batteries in succession.
Interruption of working parties if discovered by shrapnel fire.
§. Against advance to third parallel.

1. Same operations against second parallel as against first.
C. Ep_{p}

Vari
D. GEI

On t
un
th
10. Against fifth parallel. Same as against other saps.
5. Against breaking into enceinte.

1. General preparations.
2. Against breaching of escarp.

Concentration of fire, and sortie, against breaching batteries in lodgment, and gallery of descent, retaining possession of covered way as long as possible.
3. Against breaching by mines, \&e.

Sorties and vertical fire in the ditch. Water manceuvres in wet ditch. Shells rolled over and flank fire against attached miner. Countermines under ditch.
4. Against occupation of the breach.

Scarp and countermine breach. Arrange obstacles. Retrenchments in the ditch aud on rampart. Flanks restored. Concentration of fire on breach and approaches. Strong bodies of troops under cover close to breach. Sirong fire from keep on breach.
5. Against attack on retrenchments.

Countermines under glacis, strong fire of musketry, facilitios for counter attack with bayonet. Final defence of citadel or of a second fortress.
C. Epamples of the Defence of Fortresses-

Various.
D. General Disoussion-

On the relative gains and losses of the attack and defence under modern conditions, and on the probable course of the attack in the future.

MINING.

A. Introductory

Brief sketch of mothods of mining in use before the application of gunpowder to this parpose.
Application of gunpowder to mining operations.
a. By the attack.

Object, to continue advance when sapping is stopped to breach escarps and blow in counterscarps.
Means of defenders to resist such attack; countermines, galleries behind escarp, under ditch, behind counter-
b. Offensively by the defence.

Object, to blow up the onemy's works, and so delay his advance.
Measuros taken for this purpose.

Countormines; galleries arranged systomatically under the glacis, in one or more planes (undercharged mines.)
Measures taken by the attack to neutralize this means of defence.
Countermines offensive (overcharged mines.)
c. Submarine mines. (See Coast Defence)
a. Defensive use, submarine mines proper.
β. Offensive use, torpedoes.
B. Requirements.-Means for placing charges.
a. Land mines ; offensive and defensive.
α. Shafts and galleries; object, dimensions, method of execution and lining. Tools, appliances and time required.
β Bored mines ; object, dimensions and method of execution.
γ Ventilation of mines ; requirements, method of carrying them out.
δ Preparation of charges, loading, tamping and firing mines. (See Explosives.)
b. Submarine mines.

See for details, Coast Defence, Section B, Sub-section c.
C. Explosives aenerally used.-Their different effects, and the quantity of each required.
a. Explosives.
α Gunpowder, gun cotton and dynamite; comparison of their effect, and when they should be used respectively. Sketch only.
β Calculation of charges, land mines ; definitions ; overcharged and undercharged mines; camouflets; radii of rupture. Rules for calculating the charges and effects of mines. Influence of the nature of the soil upon the charge.
γ For Submarine Mines, see Coast Defence and Explosives, as above.
For the application of mines, Syllabus of Voluntary Course.

FIELD FORTIFICATION.

2nd PART.
Application to the Ground of the Wobk to be done for the Defenoe or a Position-
Object of defending a Position. Subdivision of the defence into two kinds: offensive-defensive and purely defensive.
"The ec of Tactics.

Application of the different kinds of defence.
The positions of the works must conform to that of the troops.
Statement * of the tactical requirements and of the consequent distribution of the troops.
General arrangement of works to conform to this distribution, namely, Lines with Intervals. Comparison of Lines with Intervals and Continuous Lines. Inflaence of the kind of defence and of the object for which the Position is defended on the arrangement of the works.
Object of advanced works and of a second line of defence and general arrangement for each.
Choice of a Rosition.-The approximate site depends on strategical considerations, the accurate site mainly on tactical and slightly on technical considerations. General requirements. Special requirements according to the kind of defence. Defects that may occur in Positions, and how best to neutralizs them. Description of various kinds of Positions.
Choice of site for works.-The site must be chosen principally on tactical and slightly on technical considerations. Requirements, and how fulfilled, in each of the following cases:-
a. Infantry : shooting line, supports and reserves.
b. Artillery: Guns and limbers.
c. Strong points : Advanced posts, Main line pivots. 2nd line pivots, Keeps of Position, Works covering retreat.
d. Flanks.
e. Communications, radial and lateral.

Order in which the various works should be executed. Inquiry into the effect of intrenching on the field of battle. Application of the foregoing to the defence of positions occupied for the following purposes, giving in each case the object of defending the Position, the special requirements and how they are falfilled :-

1. Field of battle. Offensive-defensive and pure defensive.
2. Lines of investment.
3. Defence of the environs of a fortress.
4. Defence of defiles-bridge heads and mountain passees.
5. Intrenched camps, depots, \&c.
6. Rearguard Positions.

Attack and Defence of field works.

[^5]
PLATES.

I. The attack to the third parallel.
II. The attack to the summit of the first breaoh.

1II. Defence.
1V. Mining, \&c.
V. Applied field fortification (project).

These plates are varied from time to time.
Fair Notes.-On lectures during the term.
Exercises.-Journal of attack, Report on project.
Subjegts for Examination-
December-To end of attack.
March-To end of defence and mining. (Sections \mathbf{A} to C inclusive.)
June-Attack, Defence, Mining, (Sections A to C) and application of field fortification to the defence of a Position.

> 2ND Class.
> Voluntary.
> atTACK.

Skotion B.-Obligatory course.
Sitb-Seotion $d,-\alpha, \gamma, \delta, \varepsilon, 5$, more in detail.

MINING.

D. Applioation of Mines-
a. To the Defence.
α. Defence of glacis : object, requirements, how carried out. Countermine systems for defence of glacis.
β Defence of breach, object, requirements, how carried out. Countermine systems.
b. To the Attack.
a. On countermines under glacis, tactics of assailant, ordinary method of attack by galleries, attack by shaft mines.
β. On countermines for defence of breach.
γ. On escarp and counterscarp revetments, to form breach.
c. To the demolition of permanent works after capture or during peace.

PLATES.

$\left.\begin{array}{l}\text { VI. } \\ \text { VII. }\end{array}\right\}$ Siege Works.
These plates are varied from time to time.

Fair Notes.-On lectare during the term.
Exeraises.-Examples on application of mining; Journal of attack on countermines.
Subjects of Examination-
June-Whole subject.

> İt Class.

Obligatory.

FIELD FORTIFICATION.

Use of Field Fortification by the Attack,
Object.-The assailant may employ Field Fortification for two distinct purposes, namely : A purely offensive and a purely defensive use. Cases in which Field Fortification would thus
be used.

Purely Offensive Use.

Nature of Works.-The same as those for defence, of a very hasty description. But inclades, besides, the destruction of ennemy's works when captured; methods of doing this.

Application to the ground.-The sites of the works depend on the tactios of the attack. Statement of the tactics of the attack and deduction therefrom of the arrangement of the works.

Choice of sites for Works. - Very limited. Requirements and how generally fulfilled for Infantry, Artillery and communications.

Purely Defensive Use.

Nature of Worhs.-The same as those for defence, of a hasty description. But includes, besides, the adaptation of the ennemy's worke, when captured, for defence against him ; methods of doing this.

Application to the ground.-As in the defence of a position, and in some cases the choice of sites will be influenced by the tactics of the attack (see a and b below). Consideration of the following cases:-
a. Intrenching front to assist flank attack.
b. Securing captured position.
c. Preparing rear guard positions in case of reverse : conneetion between the above use of Field Fortification and the "regalar" attack by means of siege works. 9

EXPLOSIVES.

Their Use for Military Enaineering Land Operitions.
Qualities and capabilities of the various explosives used. Detonation.

Construction of magazines for the storage of explosives.

> Use of Explosives.

Fuzes.-Electrical and for use with slow or instantaneous leader.

Preparation of Charge.-Primer ; preparation of charges for various purposes.

Preparation of Firing Arrangements.-Slow and instantaneous leaders.
Firing by Electricity. - Voltaic batteries, quantity and tension dynamos, arrangement of circuit, jointing.

> Testing.

Examination of explosives.
Electrical testing (with the apparatus contained in the Field Service Testing and Jointing box) of fuzes, firing apparatus, batteries, dynamos, calculation of battery power, Circuit, testing circuit wires and complete circait.

PIONEER DUTIES.

Communications considered under three heads. Construction, Demolition and Restoration.

> COMMUNICATYONS FOR THE GONVEYANOE OF MEN, MORSES AND MATERIALS.
> CONSTRUCTION.

Bridarng (Railway bridging omitted).-Object, requirements, methods of determining dimensions of opening, considerations regulating the class of bridge to be made according to the nature and dimensions of the opening, namely: Frame and suspension bridges for narrow, deep openings; Trestle bridges for shallow, wide openings ; and floating bridges for wide openings containing deep water.
Approximate rules for rapidly calculating the dimensions of spars when the stress in them is known. * General considerations as regards the roadway, road-bearers, trussed beam and shore ends.

[^6]Methods of connecting spars together; lashing, trec-nails, spikes and loge.

Plant used for bridging.-Tackle, Spanish windlass, dorricks, shears, gyns, earth anchors of various holding power.

Frame bridging.-General desoription of such bridges. Materials required. Details of construction. Methods of erecting and calculation of stresses for the following kinds of frame bridges: Single lock, double lock, single sling, ordinary and stiffened treble sling; in each case with and without vertical frames at shore ends.

Trestle bridging.-General description of such bridges. Materials required. Details of construction. Mothod of making and calculation of stresses for the following kinds of trestles ; Two-legged, four-legged and tripod. Advantages and disadvantages of each kind. Forming up into bridge.

Miscellaneous methods of obtaining points of support, crib piers, piles, \&c.

Floating bridges - General description of such bridges. Materials required. Details of construction. Calculation of dimensions and buoyancy required for floating bridges composed of pontoons, barrel-piers of various kinds, timber rafts of various kinds, and boats. Arrangements to be adopted at the shore ends: 1. When the water level does not alter or varies but little; 2. When there is a considerable variation of level.

Flying bridges. - Their requirements and construction.
Miscellaneons.-Rough bridges made of trees; passing weights across wide openings by means of shears, etc.
Roads.-Object, requirements, method of construction of military roads, ordinary, hills over marshes, corduroy roads, road engines, repairing roads.
Railways.-Object of constructing military railways in time of war. Requirements, consideration as to selection of route, gauge, engines and rolling stock of military railways. \dagger Adaptation of existing stations to military purposes.

Trench raiway.-Object, requirements, considerations as to section of route, gauge, engines and rolling stock. Works required and how executed (bridging mentioned only).

Demolition.

Object. Description of methods generally adopted: 1. By hand. 2. By use of explosives. 3. By fire.

Roads.-Vulnerable points : bridges, cuttings and embankments. Demolition of each.
\dagger The laying and construction of the road are not considered, being part of the Civil Engineering Course,

Railways.-Vulnerable points: bridges, cuttings, tunnels, embankments, permanent way, engines and rolling stock. Hasty demolition by cavalry, and deliberate demolition.

Canals.-Vulnerable points: locks, cuttings and embank. ments. Demolition of each.

Rebtoration.
Object. General considerations.
Roads.-Repairing bridges, or replacing the original structure by a temporary one. Repairing cuttings and embankments, or other works undertaken to replace them, if not repairable in time.
Railways.-General considerations only.
communtcations for the trangmisgion of mesisages. Construction.
Object and general considerations.
Signalling.-Object. Alphabet. Code. Oyphe日. Means of signalling : flags, lamps, shutters, heliograph. Selection and arrangement of signal stations and method of working them.
Telegraphs.-Object. Short sketch of method of working without introducing technical matters.
Combination of cavalry scouts, signalling and telegraphy for the service of an army.

Demolition.

Telegraphs.-Breaking the circuit. Tapping the circuit. Restoration.
Thlegraphs.-Same as making.

CAMP DUTIES.

Water Supply. - Sources of water supply. Purifying water. Distribution of water. Methods of obtaining water. Norton's Abyssinian tube wells. Boring for water.
Huting.- Requirements. Huts of various kinds. Bivouacs. Misorllanecus.-Field kitchens and ovens. Latrines.

PROJECTS.
I. Project for the defence of a position.
II. Demolition project.
III. Project for a military bridge.
IV.

These projects are varied from time to time.

Chair Notes.-On lectures during the term, when ordered. Exprcices. - Reports on projects.
Subjegts for each Examination-
December-Field and Permanent fortification; use of explosives and bridging, as far as trestle bridging, inclusive. March-Attack and defence and remainder of pioneer duties. June-Whole course for class.

Ist OLASS

Voluntary.

ELECTRICAL TESTING.

General Considerations. Units to which these measurements are referred.

Instruments.-Description and method of using the following instruments : Contact keys, standard colls, galvanometers (detector, sine, tangent, Thomson's reflecting and Clark's differential galvanometers,) resistance coils, condenser.
Testing.-Various methods of obtaining measurements of resistance, (resistance of a conductor, of a galvanometer, of "earths," etc., internal rosistance of a cell), difference of potential, electro motive force, strength of a current, and capacity.
(Part II of Explosives and Electrical measurements forms the voluntary Course).

PIONEER DUTIES.

COMMUNIGATION FOR THE OONVEYANOE OF MEN, HORSES $A N D$ MATHRTALS.

Bridaing-

Suspension Bridges.-General desoription of such bridges. Materials required. Details of construction. Method of ereoting and calculation of stresses, and dimensions for the following kinds: Ordinary suspension bridges, tension bridges, and strutted tension bridges.
Railway Bridges (temporary).-Object and requirements. Materials used. Details of construction. Method of erecting, and calculation of stresses and dimensions for the following kinds: Frame bridges for small openings, trestles for wide shallow openings, and trestles in tiers for wide deep openings. COMMUNIOATIONS FOR THE TRANSMISSION OF MESSAGES,

Ballooning.-General considerations.

Observatories.-Object, requirements and mothod of construction of various kinds.

Plates,-Pioneering project.

Fair Notzs.-On lectures during the term, when ordered.
Subjeots for Examinations-June-The whole subject.

ENGINEERING DRILL.
4th CLASS.
Field Fortification.
Preliminary.
Carrying tool drill and extending working parties. Field Geometry. Use of Field Level.

Obstacles.
Abatis ordinary. German hough abatis. Shallow military pits. Wire entanglements. Ralisades. Fraises. Chevaux defrise, \& c .

Cover for Troops?
Infantry.
Shooting Line.-Shelter pits and rifle pits. Shelter trench exercise. Blinded shelter trenches, defensible hedges, walls and snake fences. Log, hurdle and plank parapets. Stockades of various kinds.

Supports.-Deep shelter tronches. Blinded shelter trenches. Field casemates of various kirds.

Reserves.-Lean to shed covered with earth.
Artillery.
Guns and Detachment.-Gun pits. Gun epaulments. Ammunition.-Ammunition recesses in above. Limbers.-Limber pits.

> Use of Brushwood.
> Making pickets, gabions, fascines and hardles.

Revetments.
Made of the following materials:-Gabiona, casks, fascines, logs planks, hurdles, continuous hurdle work, sand-bags, bricks, stoné, miscellaneous.

Fi
batte
v_{x}

Fla

 lamps Select
135^{-2}

II CLASS.

Field Redoubt.

Tracing. profilling and defilading full sizg. Executing in model. The redoubt to contair splinter proofs, traverses and occasionally gun-banks.

> ATTACK OF FORTRESSES.

First Artillery Position.-Execution in model of suitable batteries

Up to 1st Parallel.-Common trench work for parallels and approaches

Second Artillery Position.-Tracing of full size siege.gun battery and execution in model, with magazines, screen, platforms and approaches.

Up to 2nd Parallel., Flying trench work.
Up to 3sd Parallel.-Single'sap shallowand deep.
Advance to covered way.-Circular portions. Double saps. Blinded saps. Crowning the covered way.
Breaking into enceinte.-Batteries in lodgment on covered way. Descent into the ditch. Passage of ditch (1) when dry, (2) when wet. Occupation of breach.
Mining.-Sinking shafts with cases and frames,* Driving galleries with cases and frames. Preparing charge for mine.

Signalling.
Flag Drill.-Practice with flags. Lamp drill with dummy lamps. Practice with lamps. Practice with heliograph. Selecting stations. Transmission of messages.

I CLASS.

Use of Explosives.
Preparing charges of gunpowder, guncotton and dynamite for various purposes.

Preparation of firing arrangements.- Firing charges by means of slow or instantaneons leader and by electricity.

Testing.-Practical application of the theoretical course.
Pionegr Duties.
Bridging.
Preliminary.-Reconnoisance of site. Measuring width,

[^7]taking sections (boning and levelling). Knotting. Lashing spars. Making Derricks, Shears and Gyns. Trussed beams.

Frame Bridges.-Single lock, double lock, single sling.
Trestle Bridges.-Making two-legged, three-legged and fourlegged trestles with various materials. Forming up into

Miscellanecus.-Points of support formed by gabions, casks, crib piers, \&c.

Water bridging.-Barrel pier drill. Preparing boats. Form. ing the above into bridge.

Signalling.-2nd class work continucd.
Camp Duties:
Bivouacs. Field kitchens and ovens. Latrines, \&c.

ROYAL MILITARY COLLEGE OF CANADA.

SYLLABUS OF INSTRUOTION IN PRACTICAL GEOMETRY AND ENGINEERING DRAWING.

> ALLOTMENT OF MARKS.

Marks available for entire Course.
Plane Geometry and Engineering Drawing.

Solid Grometry and Enaineering Drawing.

4th Class.
Plane Geometry and Engineering Drawing.

3rd Class.
Solid Geometry and Enaineering Drawing.

Par
R. M.

Pra Chath
R. 1

The
geome ing," b

Heat
Wdge
Woo
De F

TEXT BOOKS.

Part I. Text Book, Fortification and Military Engineering, R. M. Academy, Woolwich.

Practical Geometry and Permanent Fortification, S. M. E,
Chatham.
R. M. College notes on Practical Geometry.

The teat book in use for the voluntary course in solid geometry is "Practical Geometry and Engineering Drawing," by G. S. Clarke, Lieut. R. E.

Books recommended to be read :
Heather's Descriptive Geometry, Weale's series.
Edgar and Pritchard's Solid or Descriptive Geometry. Woolley's Descriptive Geometry.
De Rheim's Geometrical Drawing.

[^8]
SUMMARY OF THE COURSES OF INSTRUCTION IN PRACTICAL GEOMETRY AND ENGINEERING DRAWING.

Plane Geometry.-Only simple constructions are attophpted in the Obligatory part of the course, those for the Voluntary part are more difficalt. The course is throughout designed so as to teach ease, accuracy, and neatness in drawing with instruments.

Solid Geometry.-The Obligatory course consists of such simple problems as are necessary for Field and Semi-Permanent Fortification. The Voluntary course is of a higher nature, containing such problems as are useful for Civil and Mechanical Engineering.

Method of Instruction.

The instruction is carried on by means of lectures and personal instruction. The lectures will be explanatory of the text-book, and occasionally additional matter will be given, of which fair notes will be made. The Cadets will farther be required to execute numerous plates and exercises.

The course of Plane Geometry and Engineering Drawing (Obligatory and Voluntary) will be studied in the 4 th class, and the Obligatory course of Solid Geometry in the 3rd Class. The Voluntary course of Solid Geometry will be commenced in the 3rd class on completion of the Obligatory course and will be continued during the 2 nd class.
The following is a syllabus of the courses for each class (fully detailed when no text book is available for reference).

4TH CLASS.

PLANE GEOMETRY AND ENGINEERING DRAWING.

Obligatory.

General rules for the use of instruments, construction and use of ordinary, comparative and diagonal scales, and verniers. Explanation of the problems contained in the plates.
Fair Notes.- On such of the above subjects as are not con. tained in the printed notes and text book.

PLATES.
J. Printing plate.
II. To bisect a given angle. To draw a straight line through
a given point towards the intersection of two given straight lines, this intersection being unattainable. To divide a finite straight line into parts, having given ratios to one another.
III. Ordinary and comparative scales.
IV. To find third, fourth, and mean, proportionals to given lines; by various methods. To divide a given line in extreme and mean ratio. To determine straight lines representing given ratios. To plot an angle from its chord, sine \&o.
V. On a given straight line to describe a segment of a circle to contain a given angle. To describe a circle about a given triangle, or to pass through three given points, centre attainable and unattainable. To inseribe a circle in a given triangle. To escribe a circle to a given triangle. To divide the circumference of a circle into equal parts, and inscribe regular polygons. To construct regular polygons on a given side.
VI. Colouring.
VII. Diagonal scales and verniers.
VIII. Colouring a lithographed drawing.
IX. To draw tangents to a circle; circles tangent to given straight lines and given circles, under various conditions.
X. To draw tangents to two given circles and to a given circular are, centre unattainable. To reduce an irregular rectilinear figure to a triangle of equal area. To draw rectilineal figures of a given form and area.
XI. To draw an ellipse from conditions. To draw a tangent and a normal to an ellipse.
XII. Copying a Geometrical figure.

These Plates are varied from time to time.
Exrroises. Various exercises to teach use of instruments and laying flat washes of colour. Simple geometrical problems. Subjeots for Examination.

December-From beginning up to Plato V.
March-From Plate V to Plate VIIL.
June-The whole course.

Voluntary.

Explanation of the problems contained in the plates. Fair Notes.-Of the above explanations.

PLATES.

XIII. To divide rectilineal figures into equal parts and into parts having given ratios to one another. To draw rectilineal and curved figures equal in area to the sum or difference of the areas of two or more given similar figures.

143

XIV. To draw a parabola and a hyperbola from conditions.
XV. To draw various curves or curved loci.
XVI. "
" " "
XVII. More difficult examples on the Obligatory courso.

XVILI. Copying a drawing.
XIX.
"
These Plates are varied from time to time.
The drawings for Plates XVIII and XIX will be principally parts of machinery, and will sometimes bo coloured.

Exwrases:-
Subjects for Examination.-There will only be one examination in June, and problems based on the obligatory and voluntary courses will be set.

> 3kD OLASS. SOLID GEOMETRY.

> Obligatory.

Object of solid or descriptive geometry. Necessity for some means of representing points, lines, planes, etc., lying in' space on a plane sheet of paper. Explanation of the two methods of doing this, namely the two plane and indica method. Reasons why the indice method is more suitable for fortifications.

Definitions.
Notation.
Theorems of solid geometry required for the prosecution of the subject; stated only.

Proof of the following theorems and deductions therefrom :
I. The plan or elevation of any point must lie in a straight line, at right angles to the ground line.
II. The distance of the elevation of any point from the ground line is equal to the difference of level between the point and the horizontal plane containing the ground line.
III. The length of the projection of any finite straight line on any plane is equal to the length of the finite straight line multiplied by the cosine of the angle of inclination of the straight line to the plan.

Forty two problems as given in Printed Notes, comprising problems on points, straight lines, and planes; principles of "constructing;" problems on intersections and measurment; and problems relating to ground.
Fair Notes - On subjects of lectures not in text-book. PLATES.

143

II. Contoured field work.
III. Problems relating to ground.

These plates are varied from time to time.
Exercises.-Numerous problems, a written explanation of process to be given.

> explanation of

Subjrots for Examination-
December-From beginning to problem 23 inclusive. March-Problems 24 to 36 inclasive.
June-The whole course and revision of obligatory course
of plane geometry.

Voluntáty.

Definitions of the terms required by two-plano methods. (Clarke, pp. 13, 16 and 21)
Notation. (Clarke, p. 13 and notes.)
Theorems. (Clarke, theorems 1 to 26.)
Fundamental problems-Adaptation of the two-plane method to the fundamental problems given in the obligatory course. The following additional problems will bo adapted to both mothods.

1. To find the conditions that a straight line passing through a given point in a given straight line may make a given angle with this straight line.
2. To find the conditions that a straight line passing through a given point may make a given angle.
3. To find the conditions that a plane passing through a given point in a given straight line may have a given inclination to this straight line.
4. To find the condition that a plane may pass through a given point and make a given angle with given plane.
5. To find the horizontal and vertical traces of a cone, the position of whose axis and the angle at the vertex of which are given. (This problem is required for the solution of problems 1 to 4.)
Application of the above problems to the solution of prob. dems on straight lines and planes, and to the projection of plane figures. (Clarke, chapters II' and III.)
Translation of the indice method into the two-plane method and vice versa. (Note.)

Fair Notes-Of such matter as is not given in text-book. PLATES.
IV. Problems relating to straight lines and planes,
V. Problems relating to plane rectilineal figures.
VI. Problems relating to plane curved figures.

These plates are varied from time to time.
Exeroises - Viarious problems.
Subjeots for Examinatron.-There will only be one exaexamination, in June, comprising the whole of the course.

2ND CLASS. SOLID GEOMETRY. Voluntart.
Projection of solids. (Clarke, chapter V.) Description of the most usual solids. Projection of solids in simple positions. Proof that whatever be the data the problem resolves itself into the following: To find the projections of a solid given the plane of one face and the position of an edge lying in that face ; solution of this problem and hence: Projection of solids in any position. (Notes.) Projection of right cylinders and cones. (a) When the position of axis is given. (b) When the inclination of plane of base is given. Projection of helices on right cylinders and cones, and hence projection of ordinary sorews. (Ontouring a solid. (Note.)

Section of solids by planes. (Clarke, chapter VI.)
Interpenetration of solids. (Clarke, chapter VII.)
Development of surfaces. (Clarke, chapter VII).
Tangent planes to surfaces, such as spheres, cones, cylinders, and surfaces of revolution. (Clarke, chapter VIII.)

Projection of curved surfaces tangent to each other. (Note.)
Determination of shadows, (Clarke, chapter IX.)
To determine which faces of a surface, bounded by planes, are in shadow, and which in light. (Note).

Isometric projection. (Clarke, chapter XI.)
Perspective projection-Definition and use. Dofinition of the following terms : Object, vertex. Plane of projection. To show that the perspective projection of any point can be obtained from its orthographic projections, and hence to obtain the perspective projection of anv object in any position from its orthographic projections. Variation of the method in the special case where there are systems of parallel straight lines. Vanishing point. Comparison of this method with the ordinary method. (Notes.)

Fair Notes.-Of such matter as is not contained in textbook.

PLATES.

VII. Orthographic projections and seetions of solids.
VIII. Isometric projection.
IX. Interpenetration of solide.

145

X. Shadows. XI, Perspeotive.
These plates are varied from time to time.
Rxerovsrs, - Various problems solved either by the indice
or the two-plane method.
Subjrots for Examination-
December-Projection of solids.
March-Section of solids by planes. Isometric projection. Interpenetration of solids.
June-The whole course of solid geometry.
10
147
ROYAL MILITARY COLLEGE OF CANADA.
SYLLABUS OF INSTRUCTION IN INFANTRY DRILL, EQUITATION, AND MILITARY EXERCISES.
ALLOTMENT OF MARES.Segt. I.-Infantry Drills.
Total marks Cadets and N. C. O. (obligatory) 500 N. C. Officers. 170
4th Class (obligatory)
200
200
3 rd do
3 rd do 200
1st Class, Communicating Drill (N. O. O........................... 100only eligible)170
Segt. II.-Equitation.
Total marks (obligatory) 300
$18 t$ Class (obligatory) 300
Sect. III.-Gymnastios.
Tota marks, $400\left\{\begin{array}{l}\text { Obligatory } \\ \text { Voluntary }\end{array}\right.$ 200 200
4th Class (obligatory) $3 r d$ do 100 100 100
2nd
$1 s t$
do
do
do
2nd
$1 s t$
do
do
do 100 100 100
Sect. IV.-SWORDSMANSHIP.
Total marks, 400 Obligatory 200

\int Voluntary

\int Voluntary 200 200
4th Olass (obligatory)
100
100
$3 r d$ do
$3 r d$ do do do
100
100
2nd do (voluntary) 100
1 st do do 100Seot. V.-Swimaing.Total marks (obligatory)100
4th Class, do
4th Class, do 50 3rd do

do 50

TEXT-BOOK.

Infantry Drill.-Field Exercise.

Rifle Ezercises and Musketry Instruction.
Regulations and Instructions for Eqcampments.
Equitation.-Nil.

Gymnastics.-Nil.
100
Swordsmanship,-Infantry Sword and Carbine Swordbayonet Exerciees.

SUM

SUMMARY OF INSTRUCTION IN INFANTRY DRILL, EQUITATION AND MILITARY EXEROLSES.

Sibction I.
 INFANTRY DRILL. 4TH OLASS:
 (Obligatory.)

 Exercises," Part I.Riffe Exercises-Instruction in manual, firing, and bayonet exercises. "Riffe Exercises and Musketry Instruction." Sec. 1 to 13 inclusive.)

Company Drill-Instruction. "Field Exercises," Part II. up to Sec. 20 inclusive.

Miscellaneous-Guards. "Field Exercises," Part VII.,Sec. 15 to 21 inclusive.
Musketry Insiruction-Theoretical principles, preliminary drill, judging distance and target practice ; firing 55 rounds as follows : vide notes 3 and 4.
individual firing.
100 jards,
10 rounds. Standing.
100 "

10	$"$
10	$"$
10	

10 " Kneeling.
volley firina.
200 for 300 Jds. (Reduced Target.) 5 rounds, Close order.
200 for 400 " " 5 " Extended order INDEPENDENT FIRING.
200 for 400 Jds. (Reduced Target) 5 rounds, Close order.
"Rifle Exercises and Musketry Instruction," Parts II, III,

[^9]
3RD OLASS.

(Obliaatory)
Company Drill-Instruction in "Field Exercises," Part. II, Sec. 21 to 28 inclusive. Revision of the whole of Company drill.

Advanced and Rear Guards, and Outposts (E)-Instruction, "Field Exarcises," Part VI, Sec. 1 and 2, and paragraphs I, V, YI, VII, VIII and IX of Sec. 3.

Miscellaneous.-Tent pitching. "Regulations and instructions for encampments." Appendix, page 33. Cavalry sword exercise.

Musketry Instruction.-Preliminary drill, target praetice, judging distance ; firing 55 rounds, as follows : vide notes 3: and 5 , page 181.

INDIVIDUAL FIRING.
150 jards.
10 rounds. Standing

200		
500	10	10
Kneeling.		

Rifle exercises and Musketry Instructions." Parts III, IV and V.

2ND CLASS.
(Obligatory.)
Company Drill (E).-Communicating. "Field Exeroises," Part II.

Battalion Drill.-Instruction. "Field Exercises," Part III up to Sect. 35 inclusive.

Musketry Instruction.-As for 3rd Class.
Ist CLASS.
(Obligatory.)
Battalion Drill E).-Instruction. "Field Exercises," Part III., Secs. 36 to 49 inclusive. Revision and communicat-

Nors (1). When practising Route marehing or Out-post duty, a cadet N. 0. Officer will be detailed to make a brief report of the proceeding.
(2) -Oadets' will be practised in marchiug on snowshoes as opportunity offers.
-151
ing the whole of battalion drill. "Field Exercises," Part III. Advanced and Rear Guards, and Outposts, (E.)-Communicating " Field Exercises," Part VI. Musketry Instruction.-As for 3rd Class.

Srotion II.

EQUITATION. (Obligatory.) Ist CLASS.
Leading the horse.
Mounting and dismounting.
Extension and balance motions.
Seat while the horse is in motion.
Dressing.
Walking and trotting.
Riding in saddles without stirrups.
Saddling.
Bridling.
Fitting the stirrups.
Mounting and dismounting withont stirrups.
Aids in turnings and paces.
Single Ride.
Formation of the ride.
Bending lesson.
Turns in the bending lesson.
The canter.
Position with stiprups.
Position of briddle hand with the bit.
Mounting and dismounting with stirrups.
Riding with swords.
Leaping.
Salute when mounted.
Double Ride.
Formation of the ride, \&c.
Bending lesson.
Elementary instruction on care, management and veterinary treatment of horses.

Segtion III.

GYMNASTICS. 4THं CLASS. (Obligatory.)

 Simple Exeroisms.First Practice-Movements and positions.
Second " With dumb bells. Third " With bar bells.
Running-To run at slow time short distances.
Vaulting Bar-To vault the bar, three movements.
" " " two "

Vaulting Horse-To vault on the horse, two movements, standing.
" To vault on the horse, one movement, standing.
To vault on the horse, one movement, running.
To vault over horse, ranning.
Parallel Bars-The single march, forwards.
" The double march "
" The single march, backwards.
" The double march "
" To clear the right bar by the front,oscillating.
" To rest on the right bar and clear the left by the front, oscillating.
" To rest on the right bar in"the rear and clear it in front, oscillating.
Pair of Rings-The single circle, evoluting.

*atina To turn with feet in the rings, evoluting. The row of Rings-The single step.
Horizontal Bar-To march with right hand leading. " To turn round the bar, raising above the bar. " " " raising abore with the hands revers" ed, raising above the bar.
" To raise above the bar, right and left. Bridge Ladder-To" " both hands at once, " Ladder-To climb both hands at once, backwards. " " forwards.

153
Vertical Pole suspended-To climb hand over hand, with hands and feet. To climb both hands at once, hands and feet. The double step both hands at once, and feet.

Vertical Rope	"
"	"

Indian Club Exercise.

To climb with right hand leading. left " hand over hand.

3RD CLASS.
(Obligatory.)
Adyanoed and Arduous Exercises.
Running-To run at speed short distance.
The Leaping Stand-To leap height, running.
The Vaulting Bar-To Vault over the bar by the back lift. The Vaulting Horse-To vault to the right, running.
" To leap, clear overt, "
Pair of Rings-To form a eap, clear over
".
Row of Rings-The single step " front.
Bridge adder-To climb step back wards. wards, by the both hands at once backTo
To climb with both hands at once forwards, by the spars.
To olimb with right hand leading, by the
sides. sides.
To climb with left hand leading, by the sides.
To climb with both hands at once, by the sides.
Horizontal Bar-To form a straight line by the back.
"" "
" To clear circle and vault right and left.
" To form a balance by short arm.
Parallel Bars-To form a " straight arm.
" Balance at short line by the back.
$\begin{array}{ccc}\text { " Balance at short arm and march forwsrd. } \\ \text { " } & \text { " } & \text { straight } \\ & \text { " } & \text { " come slowly down and }\end{array}$ form a straight line by the back.

154
The Vertical Rope-To climb both hands at once. The Vertical Pole " Indian Club Exercise.

Sbotion IV.

SWORDSMANSHIP.
 4th OLASS.

(Obligatory.)
Infantry Swoord Exercise,
Extension motions and positions.
Preparatory instruction with sword.
Review and inspection exercise with sword. Attack and defence.
Stick drill.

3RD CLASS.

(Obligatory.)
Infantry sword exercise-continued. Stick drill.
Officer's salute (Infantry.)
Cavalry sword Exercise.
Fencing.
Foil vs. Foil.
Sword vs. Sword.
Sword vs. Bayonet.
Bayonet vs. Bayonet.
Quarter Staff.
Nots-(1) Voluntary classes of 1st, 2nd, 3rd, 4th Olasses are instructed in any branch of gymnastios, or, of defensive exercises, i. e, sword, bayonet, boxing, \&o.
(2) The annual competition for voluntary gymnastios and swordmanship in 2nd and 1st classes, will take place toward ond of March.

Skotion $\overline{\mathrm{V}}$.
SWIMMING.
3rd and 4th CLASS.
(Obligatori)

ROYAL. MILITARY COLLEGE OF CANADA.

SYLLABUS Of INSTRUOTION IN MATHEMATICS AND MECHANICS.

ALLOTMENT OF MARKS.

TEXT BOOKS.

- $0:-$

EucLid (Todhunter.)

Abithiertic (printed notes by Lt. Col. Kensington, R. A.)Together with 8mith and MoMurchy or any other approved text-book. Scales of notation and mercantile arithmetic are omitted.

Algebra (printed notes by Lt. Col. Kensington, R. A., Todhuuter's Elementary; and Todhunter.)-The latter only for the more advanced students.

Logarithms (Chambers' or other tables)-Thorough practical use of Logarithms.

Plane Trigonometay (Todhunter.)
Spherical Trigonometry (Todhunter.)
Conio Sections (Tidhunter and printed notes by !Lt. Col. Kensington, R. A.)-This subject is taught almost entirely by lecture, geometrical proofs being given whenever practioal and easy. The course is founded to some extent on Salmon's

Statios and Dynamios (Todhunter's. Mechanics for begin-ners)-The most advanced students are instructed further by lectures grounded on Todhunter's Analytical Statios, Tait's Dynamics, and other standard works, free use being made of the calculus.

Statical Probleys bolved by Construction (Tracts on Mechanics by Grofton and Kensington.)

Work and Eneray (Tracts on Mechanics)-Special refer ence to artillery problems.

Rotations considered geometrically without text books up to the resiltant motion of an elongated projectile.

Hydrostatios (Besant's Elementary)-Special machings used in the Royal Artillery. Higher course of lectures with the ase of the calculus.

Mensuration (Printed notes by Lt. Col. Kensington, R.A.) Applizd Meoeavios (Crofton's Elementary) - Higher course of lectures groanded on Rankine, Collignon, and other

Mechanism (Goodeve ; and lectures aided by models.) lecture.

Stream Enaine-Genoral principles only taught by
re.
Note-The whole of the above course is tanght by lectures and personal instruction, aided by text books as far as possible. Shorter and easier proofs than those in the text booksare given whenever practicable. Notes of the lecturas are talken by the cadets and revised by the instructors.

The Obligatory Examination at the end of each Term in each Section includes all back work in that seetion.

The Voluntary Course for the 1st Class is less detailed than that for the other classes, to admit of some elasticity, regard being had to the previous success of each cadet.

The whole Voluntary Course is purposely framed so as to be longer than can probably be completed by any, except cadets of unusual mathematical ability. Thus any cadet who wishes to devote himself more particularly to mathemation is provided with ample employment. Such portions of the Course as may be neglected without affecting the continuity of the whole are omitted at the disoretion of the Professor subject to the approval of the Commandant.

BOOKS OF REFERENOE.

[^10]
SUMMARY OF INSTRUCTION IN MATHEMATICS AND MECHANIOS.

4th Class
Obligatory, 1,600 Marks. MATHESFATICS.
Arithmetic to Interest, Discount, Stocks, Proportional parts and extraction of square root and cubo root. (Printed hotes and authorized text books.)

Euclid (Todhunter) to Book II.; III. Algebraical explanations will also be given of the propositions in Book II. Marks, Dec., 100; March, 100; June, 200.
Algebra (Todhunter's for beginners, and printed notes) to simple Equations, Chap. I-XXV, A pril ; to Evolution XXXII, March. Progressions and Revision I-XL, June.

Marks, Dec., 100; March, 100 ; June, 200.
Plane Trigonometry (Todhunter and lectures or printed notes.) 1st. Initial line. Terminal line. Angles of any size. Therules of signs. Trigonometrical ratios. Reasons for their names. Elementary formulæ proved from definitions. Formulæ connecting each with every other. Construction of angles when the ratios are given, also by the table of ehords. Changes of the ratios in sign and magnitude. Circular measure. Logarithms. Chaps. I to V, omitting § 5.9 ; proof of § $14 ; \S 24$; proof of § 51 ; §53; § 66-75, Déc. Formulæ of two angles, Chap, VI, omitting Ş79, 80. Chap. VII, § 95, 98. The angles $18^{\circ}, 36^{\circ}, 54^{\circ}, 72^{\circ}$ Chap. VIII, § 107-10, and note process of 113. Relation of $\sin \theta: \theta: \tan \theta$, Chap. IX, § 116-18, March. Revision I-XL. Solution of triangles, Chap XIII, XIV, omitting alternative methods § 231, 2, 7, and § 119-231, 238.

Marks, Dec., 50 ; March, 50 ; June, 200.

$$
\begin{aligned}
& \text { Voluntary, } 500 \text { Manks, } \\
& \text { Qualification, one.third for any section. } \\
& \text { Skotron A. }
\end{aligned}
$$

Euclid III, IV.-Algebra, (Todhunter's, for beginners, and printed notes.) Quadratics, Evolution, Indices, Surds, Ratio, Proportion and Variation, Progressions, Permutations and Combinations, Binomial Theorem, Interest. Plane Trigonometry. -Formule of two angles, ratios for $15^{\circ}, 15^{\circ}, 8 i 0^{\circ}$. Solution of triangles; Chapters VI to XIV, omittiog 219, 221, 231, 232, Marks, Dec., 100.

Seation B.

Euclid.-Definitions of Book V explained Algebraically; Book VI, omitting Props, XXVII to XXIX.

Marks, March, 100.

Seoxion C.

Algebra (Todhunter).-Equations, Chap. XII; XIII; XIV. Anomalous forms XV to § 206. Indices XVIII to § 265 , and proof of $\left(a^{m}\right)^{n}=a^{m n}$. Surds XIX, omitting § $296-8$ and 307 to end. Quadratics XX to XXIV with special attention to XXII. Imaginary expressions $\Sigma X V$ to $\S 364$, and read over the rest of the chapter. Ratio, Proportion and Variation; practical applications only, XXVI to XXVIII. Logaritimas XXXVIII; XXXIX, omitting § 549, and only reading over Marks, March, 100.
Section C.
Plane Trigonometry (Todhunter.) Chaptersil to XV, omitting XII from § $180 . \quad$ Marks, June, 100.

Section E.
Conics and Analytical Geometry of two dimentions (Todhunter and printed notes.) Straight line, Chapter I to III, omitting $\S 27,37,48$; examples 1 to 21 . Change of co.ordiVI to $\$ 99$. Marks, June, 100.

- 0

3KD CLASS
(Obligatort, 2,000 Marks.)
MATHEMATICS AND MECHANICS.
Arithmetic.
4th Class Course.
Marks, March, 150.
Euclid (Todhunter)-Book IV. Definitions of Book V, explained algebraically. Book VI, omitting Props. XXVII to XXIX, and first proof of XXX.

Marks, Dec, 100 ; June, 300. Complete Book, omitting scales of notation; Drinted notes)Clasis course, particularly Factors, Quadraties, Proportion, Variation, Series, and applications to Problems.

Marks, March, 100 ; June, 200. Plane Trigonometry (Todhunter and lectures or printed notes) - Complete use of Logarithms and natural tables-Solution of triangles. Heights and distances, Chapter XV, § 239-241. Properties of triangles, Chapter XIV.. omitting § 253-4. Inverse ratios without examples Chapter XVIII, § 263 . December.

Mensuration (lectures or notes to be printed) -Construction of ratios as $\sqrt{2}, \sqrt{3}, \sqrt{5}, \frac{1}{\sqrt{7}}, \frac{\sqrt{3}}{2}, \sqrt{\frac{2}{3}}$, se., and combinations of these. Rectilineal and circular aroas and perimetere and combinations of these. Area of ellipse. Area of a parabola intercepted by any chord, proved geometrically. Polygonal approximation to the areas of curves. Simpson's rule. Weddle's approximation. December.

Marks (Trigonometry and Mensuration), Dec., 100 ; March, June, 250.
*Spherical Trigonometry Todhunter)! Chaps. I, II, III, IV, omitting § 38,39, 42, 50, 51, 53, to end of Chapter V. Solution of right angled triangle. Ohap. VI. Solution of oblique angled triangles. Chap. VIII, omit. § 98 to end.

Co-ordinate geometry, introduced only by leotures.
Statics (Todhunter's Mechanics for beginners.) Marks, 150. Chapter I. II.-Omitting proof of parallelogram of forces $\S 45$ to end of Chapter.

Chapter III, IV, V.-Omitting § 78 to end.
Explanatory notes in lieu of Chapter $V f_{\text {, }}$ on the equilibrium of a body and the method of working examples. Constrained body and the principle of the lever.

Chapter VII.- $\S 99$; Statement of $100 ; \S 102$, 6, March. Centre of paraliel forces. Chapter VIII io § 113. Short notes on § 114, 15.
Formula $\bar{x}=\frac{\sum(P x)}{4} \cdot$ (P) § 116-120
Centre of gravity, Chapter IX to § 135. Trapezoid, alternative proof for § 136. Results only for pyramid and cone § 137-140. § 141-3. Formula $\bar{x}=\frac{\sum(m x)}{\sum(m)}$, $\S 144-6$, compared with § 114-5.

Properties of the contre of gravity, Chapter X, omitting

[^11]§ 154.6. Alteration of centre of gravity of a body or system when a portion is transforred to another position.

The lever and balances, Chapters XI, XII; omitting analytical proof of the requisites of a balance ; § 173.

Machines ; Chapter XIII ; with a simpler view of a train of wheels, \& 187, omitting all considerations of the size of the teeth. Machines in combination; product of their mechanical advantages.

Pulleys ; Chapter XIV; omitting weights of pulleys, 202.6, and second case of Spanish Barton given erroneously in § 207.

Inclined Plane; Cbapter XV.
The Screw ; Chap XVI.
Compound Machines ; Ohapter XVII.
Friction. Co-efficient of friction. Angle of friction. Limiting angle of resistance. Chapter XIX ; omitting § 255-\% and $\S 260$.

Hasy problems on the above course.
Narks, March, 100 ; June, 400.
Notes and Recitations ... 50.

> 3Rd Class.
> Voluntart, 2,000 Marks.
> Qualification,-one-third for any section.

Szotion F.
Eruclid XI., to Prop: 21.
Marks, December, 200
Seotion G.
Algebra (Todhunter.) Theory of quadratics and quadratic expressions, Chapter XXII. Simultaneous equations involv. ing quadratics, XXIII, XXIV. Imaginary expressions, Ratio, Proportion and Variation ; practioal examples only, XXV to XXVIII. Progressions, including the sum of the squares, cubes, \&c., of the first n natural numbers, and thence the summation of series having the last term, rational and algebraio, XXX to XXXII, omitting § 456-8. Mathematical Induction, XXXIII. Permutations and combinations, XXXIV, omitting § 500. Binomial theorem, proof for positive integral exponent only, XXXV to XXXVI, omitting \$ 516-20, 523-25, and only reading over § 527. Logarithms, XXXVIII, XXXIX, omitting $\$ 549$, and only reading over § 551 . Ojnvergency of series,

162

only teading over the inveatigations and applying them to examples, XL. Interest, XLI. Annuities, XLIII, omitting §589, 90, 97-99. Continued fractions, XLIV, XLV, omitting © $604 \cdot 11$ and 613-32. Indetorminato equations, XLVI to § 628 . Partial fractions and indetorminate coefficients, XLVIII, with notes on partial fractions involving multiple and irrational roots. Summation of series, L, omitting § 661-1; 666, 670.1. Summation by finite differences without proot (Notes). Inequalities, LI to § 680 . Note result of $\S 68 \mathrm{l}$.

Marks, December, 250.

Section H.

Plane Trigonometry (Todhunter.) I to XVI, omitting § $180-210$, but reading them over for comparison with the Differential Calculus, and omitting XVI, § 25 i. Inverse Fanc-tions-Chapter XVIII, omitting § 264 . Demoivre's Theorem. Chapter XIX, § 266.8. Marks, March, 250 Section K.
Conics (Todhunter) and printed notes) Straight LineChapter I to III. Transformation of co-ordinates; practical applications only, Chapter V.

Circle.-Chapters VI, VII, omitting § 119, except for definition and position of centres of similitude.

Parabola,-Chapter VIII-Notes, principally geometrical, as follows: Equations to the curve and tangent compared; $y y^{\prime}=2{ }^{\prime} a\left(x+x^{\prime}\right)$; similarly for the circle and other conics. Equation to the normal.
Deduction of the general equation $\left(y-y^{\prime}\right)^{2}=4 a\left(x-x^{\prime}\right)$ from the simplest equation $y^{2}=4 a x$; similarly for all other curves, (x^{\prime}, y^{\prime}) being the origin for the simple equa-
tion. Latus rectum as the parameter. Explanation of the constants in an equation, both those of size and form which are parameters and those of position which may be removed by choice of axes. Construction of tangent; inclinations to axis and focal distance. Locus of the foot of the perpendicular from the focus. Portion of tangent intercepted between the point of contact and the directrix subtends a right angle at the focus. Tangents at the extremities of a focal chord are perpendicular and meet upon the directrix. $p^{2}=a r ; r=\frac{a}{\sin ^{2} \theta} ; r=a+x_{0}$ Polar equation. Angle between two radii vectores is double that between the tangents. Sub-normal $=2 a$. Sub-tangent
$=2 x$. Curvo bsects sub-tangent. Length of normal $=2 d$, Analytical investigation into diameters and their properties (alternative with § 147.) Geometrical proof of the equation to the parabola reforred to diameter and tangent, together with a proof that the chords parallel to the tangent are bisected, \&o., (as in the obligatory course.

To draw a parabola, given any diameter and the tangent atits vertex and one other point.

To draw a parabola touching two intersecting straight lines at given points; also, to construct the focus and direotrix, the latter by at least six points.

To draw a parabola, given its vertex, axis and one point; thence to draw it, given the axis and two points at different distances from the axis.

Construction of tangents from any external point; their lengths are proportional to the cosecants of their inclinations.

Intersections of Conics, straight lines and other curves. Contact. Circle of curvature ; 2ρ as limit of $\frac{y^{2}}{x}$ or $\frac{y^{2}}{x \sin \theta}$ $\because \rho=\frac{2 a}{\sin ^{8} \theta}=\frac{N}{\sin ^{2} \theta}=\frac{N N^{8}}{\delta L^{2}}$; thence construction of radius
of curvature, and evolute.

Intersection of circle and conic, equal inclination of oppo site chords; thence construction of radius of curvature, § 208. Ellipse.-Chapter IX, X, omitting § 205.
Equation found from the definitions of an ellipse as the projection of a circle, as described by the trammel, and as $r+r^{\prime}=2 a$, instead of that given in Todhunter. Geometric properties proved from the definition $r+r^{\prime}=2 a$, as follows: Construction of a tangent; its equal inclinations to the focal distances; locus of the foot of the perpendicular from the focus. $v p^{\prime}=b^{2} ; \frac{p}{p^{\prime}}=\frac{r}{r^{\prime}} ; p^{2}=\frac{b^{2} r}{r^{\prime}}$.

Locus of intersection of tangent with the perpendicular at the focus to the radias vector; proof of Todhanter's definition of an ellipse; locus of intersection of tangent at the extremities of a focal chord; straight lines $a e, a,--r=a \pm e x$.
Polar equation referred to both focus and centre. Equations to tangent and normal. Points where they cut the axes. The length $e^{2} x^{\prime}$ both analytically and geometrically.

Equation at the vertex becomes a parabola if $e=1$ or $a=\infty$. Latus rectum $=2 \frac{b^{2}}{a}=2 e\left(\frac{a}{e} a e\right)$, compared with
parabola. e is the tangent of the inclination of the tangent from the foot of the directrix, Other properties compared with the parabola. Relation $p^{2}=a^{2} \cos ^{2} a+b^{3} \sin ^{2} a$ for perpendicular from centre on tangent; thence locus of intersection of perpendicular tangents.

General comparison of ellipse, parabola, hyperbola.
The eccentric angle; $x=a \cos \theta ; y=b \sin \theta$. Locus of a point obtained by measuring $\frac{a+b}{2}$ at an inclination θ and then $\pm \frac{a-b}{2}$ at $-\theta$

Diameters investigated analytioally as for parabola (alternative with § 187.) Conjugate diameters as the projections of. two perpendicular diameters of the auxiliary circle; hence the properties of conjugate diameters and the equation to the ellipse referred to them (instead of \S 198.)
$a^{\prime 2}+b^{\prime 2}$ constant $; p b^{\prime}=a b$.
Iength of Normal $=\frac{b b^{\prime}}{a} ; \cos \psi=\frac{p}{r}=\frac{p^{\prime}}{r}=\frac{p+p^{\prime}}{2 a^{\prime}}=\frac{\mathbf{b}}{b^{\prime}}$
$P G . P G^{\prime}=b^{\prime 2}=r r^{\prime}$ and other properties.
Radius of curvature (as for parabola) evolute.

To construct the foci of an ellipse, given the axes; also to construct directrices and latus rectum.

Given an ellipse, to find the centre and axis.
Given either axis and one point, to describe the ellipse.
To construct an ellipse,given a pair of conjugate diameters.
lf any tangent meet two conjugate diameters, the rectangle contained by its segments is equal to the square of the parallel semi-diameter; thence, given a pair of conjugate diameters, to construct the azes,

Hyperbola; Chapters XI, XII, omitting proof of equation referred to conjugate diameters $\S 252$, also § 262.63 ; 265 .

Notes as for the ellipse wherever practicable. Equation and properties deduced from the definition $r-r^{\prime}=2 a$. Substitution of $-b^{2}$ for b^{2} or - a^{2} for a^{2} in the equation to the ollipse. The same substitution in the case of properties in. volving b^{2}; geometrical meaning of the negative sign in each case. Diameters as for ellipse (alternative with 236.)

Asymptotes. The conjugate hyperbola. The equation $\left(a^{2} y^{2}-b^{2} x^{2}\right)^{2}=a^{4} b^{4}$. The four foci equidistant from the
of §
effici direc
ditio
indep chapt
noted
Theor
§ 65-6
Inter
on a
at son
necest
§ 92.
of $\$ 97$
§ 102.
of chs
result

Equation referred to the asymptotes. Area between the asymptotes (as ases) and the co-ordinates of any point.

General equation of the 2nd degree; Chapter XIII. General acquaintance with the method and results of § 269 to 272. To trace a conic, easy examples only., Read over § 272, 280. Meaning of "discriminant of a conic."

Chapter XIV-General equation to a conic. Read over § 288.3. Pole and polar. Read over § 289.91. Equation referred to the tangents, § 293-4. Similar curves, 296-8.

Chapter XVI-Section of a cone; a different proof will be given showing the foci and directrices. Omit § 348.9. Anharmonic ratio; the ratios $A B . \quad D C .: A C . D B .: A D . B C$. Harmonic pencil. Omit §356.61.

Chapter XVII -Projeotions; § 362-89, and read over the Marks-December, 50 .

SECTION I.

Differential Culculus (Williamson, Ed., 1880.)

Chapter I-Proof of $d\left(x^{n}\right)$ by binomial theorem, instead of § 16.18. Differentials used equally with differential coefficients. Differential of the function of a function obtained directly without the investigation of $\S 19$. Geometrical condition for $\frac{d y}{d x} \times \frac{d x}{d y}=1$.

Chapter II-Successive differentiation; differontial of the independent variable is constant. Omit $\S 39,43$ to end of chapter. Read over Liebnitz Theorem § 48.

Chapter III-Expansion of functions. "Remainder" noted but not used in applications of Taylor's and Maclaurin's Theorems. Expansion of $\tan -{ }^{1} x$ by integration. Omit §65-68. Read over § 73 with equations (27), (28), (29), (33). Interpretation of remainder to shew that if two points be taken on a curve, the chord joining them is parallel to the tangent at some intermediate point, $\S 76$. Omit $\S 77$ to end of ohapter.

Chapter IV-Indeterminate forms; algebraic processes not necessary. Consider also $\propto-\infty$. Read over the proof in § 92.

Chaptor V-Partial differentiation, § 95-6. Result only of $\S 97$. Omit $\S 98$, 101. Result only of Euler's Theorem, §102. Read over § 103-4. Omit § 107, also § 110 to the end of chapter.

Chapter VI-Read orer the first two pages and note results. Omit the rest except $\S 120$.

Chapter VIII-Read over \$ 127 and note result.
151 to the end of the chapter. Minima. Omit § 136.7, 143. \%,
Chapter XII-Tangents and normals. Omit § 173-7, 185 to the end of the chapter oxcept definition of inverse curves. Read over § 195.

Chapter XIII-Asymptotes, § 196-200 explained more simply. Eixcention when the asymptotes are impossible.

Chapter XLV-Brief explanation of multiple points. Noder, cuspe, conjugate points.

Chapter $X V$-Brief explanation of onvelopes, and the general methods of determining them.

Chapter XVI-Convexity and concavity. Read over the analytical investigation in \$ 223.

Chapter XVII--Radius of curvatare; Omit § 228. Omit § 232-3; 236. Read over § 239. Omit § 241-2. Read over 8243.8, and note conclusions. Omit § 249-54. Read over § 256, and study the approximations.

Chapter XVIII-Brief explanations and easy examples. The Limacen and Trisectrix. Trisection of an angle. The conchoid § 270 .

Chapter XIX-Roalettes § 271-7. Road over § 278. Geometrical proof of hypocyeloid and hypotrochoid when the radius of the inner circle is half that of the ofuter, $\S 285$.

Chapter XXI-Elimination of Constants and Fanctions, § 311-12.

Chapter XXI-Clange of the Independent Variable, § $320, \S 3245$.

Marks, June, 600.

section m.

Integral Calculus.
This subject will be commenced as soon as the prucess of differentiation has become easy. The elementary formule as the reverse of differentiation, and easy variations of them. Substitution, and particularly trigonometrical substitution, $\tan ^{2 n} \theta d \theta$. Integration by parts. The various cases of $\sin ^{m} \theta \cos ^{\mathrm{n}} \theta d y$. Rational fractions. Marks, March, 100. Notes on Voluntary Course................................. 100.

> 2nd Class.
> Obligatoby-2,500 Marks. MATHEMATICS AND MECHANICS. Enclid (Todhunter) - 3rd and 4th Class course., March Marks. Algebra-4th Class course

Mensuration (Lectures or Notes to be printed)

The bases of similar pyramids are in the duplicato ratio of their altitudes. Equality of pyramids (also prisms) on the same or equal bases, and having the same altitude, provel by equality of sections. Trisection of a prism into three equal pyramids. Volume of a pyramid or cone. Truncated right prism on a triangle or parallologram as base, in terms of its mean altitude. Wedge regarded either as a truncated prism, or as a pyramid and right wedge or semi-parallelopiped. V.olume of frustum of pyramid or cone. Volume of a prismoid (defined as a solid bounded by planes hetween two parallel ends) assumed to be divisible into prisms, piramids and wedges, all having the same altitude; mean section $A+4 M+B$. 6 eral definition of a mean. Application to calculations of earth work. Surface of pyramid or cone. Centre of gravity of pyramid or cone (both volume and surface), omitting proof for former. Surface of a sphere, zone or segment, and centre of gravity of each. Volume of a spherical sector proved by summing the volume between two consecutive sectors, considered as a conizal volume. Volume of a sphere. Volume of prolate and oblate spheroids and of paraboloid of revolution (without proofs). Statement and use of Guldin's Theorems; thence determination of the centres of gravity of the aro and area of a semi-circle and quadrant. Marks, Dec., 200.

Trigonometry, former course................. June, 300
Statics, 3rd Class course, and Graphic Statios (Tracts on Mechanics, Part II.) Problems 1, 4, 6, 7, 8, 11, 12, 21.

Graphic, Statics. Marks, March, 100, Statics, June, 300.
Dynamics and work- (Todhunter's Mechanics for beginners.)
Velocity. Chapter 1.-Angular velocity in terms of circular measure. $v=r a ; a=\frac{2 \pi n}{t}$.

1st and 2nd laws of motion.-Chapter II.
Uniform acceleration and the equations of motion.- Chapters III, IV, omitting proof in § 37 .

Parabola of projection.-Cihapters V, VI, omitting § 72, 73, 75.7.

Mass and 3rd law of motion. Chapters VII, VIII. Acceleration obtained directly from $P=m f$, in $\S 89,92$.

Impact. Chapters IX, X. Omit § 109, proof of loss of Vis Viva in § 108-124, and continuous rebounds, § 122-3.

Motion of centre of gravity of a system $\bar{v}=\frac{\sum(m v)}{\sum(m)} ;$
$\bar{f}=\frac{\sum(m f)}{\sum(m)}$; proved from $\bar{x}=\frac{\sum(m x)}{\Sigma(m)}$ Chap. XI.
Laws of motion and parallelogram of velocities. Chapter XII. Motion down a smooth curve, $v^{2}=2 g h$, without proof, except for an inclined plane. The pendulum $t=\pi \sqrt{\frac{l^{-}}{g}}$ with. ont proof. Second's pendulum. Soe chapter XII, § 147,152.

Centrifugal force $=\frac{v^{2}}{r}$, proved differently from Chapter

[^12]point
(1), (2), § 13. Integrate forms involving $a+2 b x+c x^{2}$ or $\sqrt{a+2 b x+c x^{2}}$ by completing the square. Compare $\S 4,22$, 23,24 with 61-3. Omit § 8.

Chapter II-Rational fractions; easy examples only with explanatory notes.

Ohapter III-Formulæ of reduction; easy examples only with explanatory notes. Read over § 63.73 ; omit 74 to the end of the ohapter.

Chapter IV-Rationalization, § 77 and read over § 78.
Chapter V-Infinite series § 88.
Chapter VI-Integration as summation; more elementary proof of § 90. Read over 92-94. Omit 95.114. Double and treble integration § 115 with notes and examples. Omit $\S 116$ to the end of the chapter.
Chapter VII-Areas, § 126-131, omitting 130 (a). Closed curve; easy examples. Read over 132-4. Polar areas, § 135, 139. Omit $\S 136.8 ; 140-7$. Areas by approximation § 148, Amsler's Planimeter § 149, or alternative investigation as given in Collignon. Asymptotic areas of rectangular hyperbola ; hyperbolic logarithms.
Chapter VIII.-Ares $§ 150-152,155,156,167$. Rectification of evolutes. Read over § 153.4.
Chapter IX-Volumes and surfaces \S 168-175; 178-181. Note process in § 184.5 ; 187.
Chapter X-Moments of mertia. Special etention to § 196 98. Read over § 206.207 ; 216-17. Mar/s-December, 500.

Seotion 0.

Analytical Geometry of three dimensions (by lecture and printed notes). Equations of a point in space. Distance between two points. Projections of a straight lino proportional to the direction cosines. $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$ $=1$. Equations to a surface; conditions of parallelism to one or two axes of co-ordinates. A line in space (or line of donble curvature) as the intersection of two surfaces, usually two projecting cylindrical surfaces ; particular case, a straight line. General equations to a sphere, ellipsoid, spheroid and cone, with principal axes parallel to the axes of co-ordinates. Equations to a straight line. To find the inclinations from the equation. Angle between two given straight lines. Definition of a plane (1) as described by a straight line moving parallel to one given straight line, and always intersecting another given straight line ; (2) as the locus of a point equidistant from two given points. Equation to plane
found from each definition in terms; 1st, of the inclination of its traces and intercept on the axis of Z; 2nd, of the three intercepts on the axes; 3rd, of the perpendicular from the origin and its direction cosines. Length of a perpendicular from a given point on a given plane. Tangent to a curve; normal plane. Tangent plane to a surface; normal to a surface; Properties of radii of curvature of two perpendicular normal sections of a surface (withovt proof; section of spheroid, normal to a meridiam.
N.B.-The preference is Mings-December, 200. symmetrical equations.

Section P.

Statics and applications to Stresses. (Todhunter's Mechanics for beginners.) Harder examples and the omitted articles in the 3rd Class obligatory course. Altornative proof of $\$ 155$. Omit § 154; 156 to 158.
(Lectures or notes to be printed) Resolution and Com-position-1st, of forces in space; 2nd, of couples. The six oquations of equilibrium (following the notation in Todhunter's Analytical statics.) Any system of forces reducible to two forces. Condition that there should be a single resultant. Equilibrium of a particle constrained to move; 1st, on a smooth curve; 2nd, on a smooth surface. Centre of parallel forces. Culman's graphical method. Alteration of the centre of gravity by transposition of a part of the body. Elementary methods of finding the centre of gravity of a circular are, sector and segment. Centre of gravity of a small are or segment respectively $\frac{2}{3}$ and $\frac{2}{5}$ of the distance from the chord to the are. General formula for centre of gravity of area, are, volume and surface of revolution. Guldin's Theorems. Attraction of a straight bar on a particle (1) in the direction of its length, (2) in any given position. Attraction of a circular lamina on a particle in a perpendicular axis through the centre. Attraction of a cone on its vertex ; of a thin spherical shell on an internal particle; of a homogeneous Vphere on an external or internal particle. Principle of Virtual Velocities. Proof in the cases (1) of any system of forces on a particle, whether free or restricted to a smooth curve or surface; (2) of a pair of particles connected by an inextensible rod or line; also of any number of particles similarly connected, that is, a rigid body; (3) when any pair are connected by an inextensible string round a fized point or palley, or round a point which is one of
the p tions parti centr tion; latter restin surfac smoot equilil given at the curve three the sas nary; larity of a he rods of of equa the poi angle o the mor
$D y$
question impact, over onl XIV, X

Note to rectili (2) vary square of the attra heavy ch with part cally on a the veloci of resistar motion, th tions of r tangential Viva. Eq
the parts of the system. Converse of this principle. Applications of the principle of Virtual Velocities. If any system of particles be in equilibrium under the action of gravity, their centre of gravity is (generally) in a highest or lowest position; in the former position the equilibrium is unstable, in the latter stable. Condition for stability of a heavy curved body resting on a horizontal plane ; also of a flat body on a rough surface. Elementary proof that the ends of a ohain over a smooth pulley must rest in a horizontal plane, but in unstable equilibrium. Pressure on a curve produced by a string of given tension, wrapped round it. Relation between the tensions at the extremities of a string passing round an arc of a rough curve ; application to obtain the advantage of passing the fall three times round the windlass of a gyn. Parabolic curve of the suspension bridge with vertical rods. The common catenary; its equation, length of are, tension at any point, similarity to a parabola near the vertex; position of equilibrium rods of equal sin resting over two smooth pegs. Suspension of equal strength. Th, equation to bounding curve. Catenary the point of contact problem of the traction of a carriage; angle of draught. The forces acting ond the pipe box ; the the moment of discharge.

Section Q.
Marks—March, 400.
Dynamics (Todhunter's Mechanics for beginners.) - Harder questions on the obligatory course. Loss of Vis Viva after impact, \S 108. Motion in a circle or conic section to be read over only, more advanced proofs being furnished. Chapters XIV, XV. Kepler's laws, § 178.

Notes.-The differential equations of motion. Application to rectilinear motion under the action of a force, (1) constant; (2) varying as the distance; (3) varying inversely as the square of the distance. Law of attraction outside and inside the attracting body. Simple harmonic motion. Motion of a heavy chain, (1) hanging over a smooth pulley, (2) placed with part hanging over a amooth table. Body moving vertically on a resisting medium, the law being as the equare of the velocity; rectilinear motion, neglecting gravity, the law of resistance being as the cabe of the velocity. Curvilinear motion, the parabola of projection. Given the general equations of motion in two perpendicular directions, to find the tangential and normal accelerations, also the equation of Vis Viva. Equal areas are described in equal times, under the influence of a central force. If the force varies as the inverse
square of the distance, the orbit is an ellipse, parabola or hyperbola according as the velocity $<,=,>$, the velocity of falling from infinity. Motion of a particle on a smooth curve ; velocity acquired. Cycloidal pendulum, time of an oscillation; length of "second" pendulum; oscillation through a small circular arc. Conical pendulum. D'Alembert's Theorem. Angular acceleration. Sum of moments of impressed forces

> Moment of inertia.

Compound pendulum. Centres of oscillation and suspension. Kater's method of finding the equivalent simple pendulum. Expression for the alteration of angular velocity produced by impulses. Simple investigation into the pressure on a fixed axis, centre of percussion and axis of spontaneous rotation. Application of D'Alembert's principle to the motion of two equal heavy particles connected by a light rod and constrained to move on two axes, one vertical, the other horizontal ; also, of two equal weights connected by a string over two horizontal pulleys, a third weight being suddenly attached midway.

Calculations of momente of Inertia, as in Sections P. R. Special attention to the equation of Vis Viva wherever it occurs. Work done in stretching an elastic rod. Vibration of a thin vertical elastic rod caused by a falling ring stopped by a projection at its lower end.

Any motion of a plane figure in its own plane represented by roulettes, combination of rotations, motion of a solid round a fixed point, rotations round intersecting axes, application to the rotation of the earth about an axis through the zenith at apylatitude, application to the derivation of elongated projectiles.

$$
\text { Marks-March, } 400 .
$$

Section R. $\left\{\begin{array}{l}\text { A. } \\ \text { B. }\end{array}\right.$

A. Introductory chapter.

Chapter I-Omit the numbers and investigation in $\S 3$. Alternative proof of § 10. Omit examples (11), (12).

Chapter II-Omit § 22, 29, 30.
Chapter III-Omit § 34, 35. Shorter proof of Ex. (5), § 48. Geometrical proofs of centres of pressure of the triangles
in § 49.

Chapters IV, V-Omit § 80. Read over § 83. Omit § 87-9 and 93 to the end of the chapter.

Chapter VI-Omit § 98-101 and 108 to the end of the chapter.
B. Notes-Elementary investigation into the distribution
of pre reserv Inertia angle, a lami of $\mathrm{I}=$ calculo centre pressu determ tion for The va its spec La accordi heights
$z=524$
Str sphere. sions in cylinder under ex

Flo Vena col proporti ity. Cal
N.B. total of 1 ,
of pressures over a plane rectangular joint with application to reservoir walls ; the two conditions for stability. Moments of Inertia of a square, rectangle, circle, ellipse, equilateral triangle, regular polygon and other figures, also ot a sphere ; of a lamina about a perpendicular axis. Proof and explanation of $I=M\left(h^{2}+k^{2}\right)$. Radins of gyration. Application of the calculus to determine the whole pressure on a surface and the pressure pressure on a plane surface. Proof that the centre of determination of height the centre of gravity. Metacentre; tion for stability. A phlicole abo the centre of flotation, condiThe various positions of its specific gravity varies from ty of a square log of timber as Law of pressure of gases Dhing to 1. according to different laws, Barometrical measurements of heights. Proof of $z=26215^{\prime} \log \frac{H}{h}=262^{\prime}$ '5. $\frac{H-h}{h}$, approx. $z=52430 \frac{H-h}{H+h}$. Height of the "homogeneous atmosphere."

Streses on boilers and thin metal cylinders. Thin hollow sphere. Relation between pressure on a surface and the tonsions in the directions of principal curvature. Thick hollow cylinder $t=\frac{\boldsymbol{R}^{2}+r^{2}}{\boldsymbol{N}^{2}-r^{2}}$ Resistance of tubes to collapsing under external fluid pressure.

Flow of water through pipes. Torricelli's Theorem. Vena contracta. Fluid friction independent of the pressure, proportional to the wet surface and to the square of the velocity. Calculation of the sizes of water pipes. Open channels. Marks-June, $\left\{\begin{array}{l}\text { A. } 150 .\end{array}\right.$ Note's on Voluntary Course, $\left\{\begin{array}{l}\boldsymbol{B}, 250\end{array}\right.$ Ist Class. Voluntart-1,500 Marks. MATHEMATIOS AND MECHANICS.
N.B.-Only Section V and so many of the others as make a total of 1,500 may be taken up.

Sedion S.
Algebra and Trigonometry. Re-examination on the former course, (Sections C, G, H). Probabilities (Todhunter.)

Chapter IIIII to $\S 737$ and examples 1-10. Theory of equations of all degrees. I'ransformation of equations to others having different roots. Solution of cubic equations by Horner's and other methods. Daterminants; Factors by inspection ; reduction to a lower order by addition of columns or rows or their multiples; application to solve simple simultaneous equations, and to processes of elimination. Demoirre's Theorem; some of the less difficult applications. ('Todhunter's Plane Trigonometry.). Chapter XIX, § 266-72; 274-76; 78. Exponential values of sine, cosine, tangent. Gregory's series. Calculation of π. Chapter XXI, omitting $\S 898$ to the end of the chapter. Summation of the series in Chapter XXII, § 303.4; 6.9, and others of the same nature.

Marks, 250.

Section T.

Geometry with deductions, Co-ordinate Geometry and Conics. Reexamination on, and completion of the former course, (Sections A, B, F, K, O). Abridged Notation (Todhunter, Chapter IV.)

Marks, 250.

Section U.

Differential and Integral Calculus. Re-examination on, and completion of the former course. Easy examples of tracing curves. Elementary notes of the solution of differential equations. Finite differences considered with reference to summing rational algebraical series ; interpolation and correction. Summing areas. Weddle's approximation. Method of least squares. Marks, 250 or 500.

Section V.

Applied Mechanics. (Crofton.) Re-examination on and completion of Section P. (Statics.) Moments of Inertia. The elipse of Inertia. Momental ellipsoid. Principal axes. Graphical construction of Moments and Products of Inertia. Amsler's planimeter. Internal stresses in a plane lamina. Principal stresses; direction of pure shearing stress ; Ellipse of stress. Internal stress in beams ; moment of resistance; general formulæ and application to beams of symmetrical. section. Shearing force the differential co-efficient of the bending moment; diagram of shearing force used to determine the bending moment. Distribution of shearing stress; application to girders. Theory of fixed beams; application to a beam fixed at both ends' ; (1) loaded at the centre; (2) uniformly

175

loaded. Beams on three supports; pressures on the supports; maximum bending moment. Distribution of pressure on a plane joint ; intensity assumed to be a linear function of the co. ordinates of the point ; general formula for the intensity at any point ; application to reotangle, circle or ellipse, rhombus, circular or elliptic annulus. To find what force should be applied at any point of a rectangular joint in order that (1) the maximum should alwaye not exceed a given amount, (2) the intehsity above simple joints. Marks, 500.

Section W.

Dynamics and Lydrostatics. Re-examination on, and coma, pletion of the former course. Fluid under the action of any forces X, Y, Z. Rotating Fluid. Determination of approximate form of Earth. Pressure in a flaid in motion.

Markis, 250.
Seotion X.
Lecture attendance. Obligatory.-Examination. Voluntary. Mechanism and the Steam Lingine (Goodeve, and a course of lectures aided by models and diagrams, Notes.) Omit special applications such as those to weaving and mangling machines. Omit Chapter V on Teeth of Wheels. Action of D slide valve. Lap. Lead. Relative position of crank and eccentric. Elementary determination of faults in the engine by examination of the indicatordiagram. Marks, 750.

[^0]: On Obligatory, $\left\{\begin{array}{l}\text { Examinations about } \\ \text { n }\end{array}\right.$
 500
 1,000 Term Work.about 500
 Voluntary, $\left\{\begin{array}{l}\text { Kxaminations }\end{array}\right.$
 1.500

 2,000 \{Torm Work
 *500

[^1]: "These marks are for drafting, and count for place, but not for "Pass" or "Honours."

[^2]: - Only those books at present in tho Library at R.M.O., have been quoted.

[^3]: ${ }^{*}$ Coast defence is chiefly dealt with in the Voluntary Course.

[^4]: * Portions of Sections A, B and C, Coast Defenceare included in Obliga-
 tory Oourse under Section F,

[^5]: The consideration of these tactical requirements belongs to the Oourse of Tactics.

[^6]: Accurate methods are given in the Mathematical and Oivil Engineering
 Courses.

[^7]: - The actual sinking of ahafts, \&o, will not, as a rule, be possible.

[^8]: Only those books, at present in the Library at R. M. O., have been
 quoted.

[^9]: Nors (1).- "Communicating" means that cach cadet is fallen out in his turn, and imparts instruction in the various drills, etc., to the remainder
 (2.)-The 3rd and 4th Olasses, when in the ranks, obtain incidentalinatruetion in Company and Battalion drill, and in advanced and rear guards, and communicating thilst the 1st and 2nd Classes are being instructed in, or are
 (3.)-The entire course of
 range, and time, available to Cile Instruction is necessarily determined by the
 (4.)-The 4th Olass Prastice to be
 completed before 30th April.
 (5.) -The annual apsil.
 to be commenced 10th Septemife Instruction of the 3rd, 2nd and lat Classes
 (6.)-Examination-partly written, be completed before 30th October.
 the end of, the Term, in the subject marked (E).

[^10]: Rules and Tables (Rankine.)
 Evolip (Potts.)
 Geomitry (Pierce.)
 Abithimetio and Book kexping (Hadden.)
 Alarbra (Hadden, Colenso.)
 Trigonometriy (Hann, Snowball, Hamblin-Smith.)
 Mensuration (Baker, Maote, Fodhunter.)
 Conio Skotions (Salmon.)
 Higher Planis Curves (Salmon.)
 Statios and Drnamios (Baker, Goodwin, Tomlinsm.)
 Pradtioal Megeanios (Troisden.)
 Mrohanios of Constrootion (Fenviak.)
 Applied Mrohamios (Rankine, Bovey.)
 Strengith of Materials (Barlow.)
 Cours de Mrohanigue (Collingnon.)
 Ls Construotrua (Reuleauc.)
 Graphio Statios (Karl von Olt, dlarke.)
 Practioal Grombtry (Clarloe.)
 Synopsis of Results in pube and App'd Mate'os (Oarf.)

[^11]: ${ }^{-}$Norn.-This subject is obligatory for instruction. Marks counted will assist towserds place "Pass," "Diatinguished," "Honours," but if below minimum the subjects will be omitted from qualification for the same.

[^12]: Integral Calculus (Williamson).
 Chapter 1-Compare (e) with $\S 9$; (f) with $\S 5$; also Ex.

