IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Collection de microfiches.

- Canadian Instltute for Hiatorical Microreproductions / Institut canadien de microreproductione historiques

The Institute has attompted to obtaln the beat original copy avallable for filming. Features of thla copy which may be blbliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual mothod of fllming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture redaurbe et/ou pelliculce

\square
Cover tithe missing/
Le titre de couverture manque

Coloured maps/
Gartes geographiques an couleur
Coloured ink (I.e. cther than blue or black)/
Encre de couleur (I.e. autre que bloue ou nolre)
Coloured plates and/or illustrat: ins/
Planches ot/ou illustrations on coulour
Bound with other matorial/
Roliśs nvec d'autres documents

\square
Tight binding may cause shadows or distortion along Interior inargin/
Lare liure serroe peut causer de l'ombre ou de le distortion lo long de la marge intírieure

\square
Blank leaves added during restoration may appear within the toxt. Whenover posslble, these have been omitted from filming/ II se pout que certaines pages blanchce ajoutbes lors d'uno restauration apparaiasent dansi lo toxto. mals, lureque cela fitait poselble, ces pages n'ont pas ét fillmces.

L'Inatitut a microfilmóle molllour exemplalre qu'll lul a ét' poselble do se procurer. Lee d'talls de cet oxemplaire qui sont pout-etre uniques du point de vue blbliographique, qul peuvent modifier une image reprodulte, ou qui peuvent oxiger une modification dans lo múthode normale de filmage sont indiqucs d-dessous.

Coloured pagua/
Pages de coulour
Pagse damaged/
Pages endommagies
Pages restored and/or leminated/
Pages restaurbes et/ou pelliculces

Pages discoioured, stained or foxed/
Pages dícolordes, tachotfes ou piquices
Pages detachod/
Pages átachies

Showthrough/
Transparence

Quality of print varios/
Qualit'́ Indigale de l'Impression
Includes supplomentary matorla//
Comprend du matériol supplómentaire
Only edition avaliable/
Seule édition disponible
Pagas wholly or partially obscured by errata sllps, tissucs, etc., have been refillmod to ensure the beat posilblo image/ Lee pacse totaloment ou partidloment obecurcies par un feulliet d'orrath, une pelure. etc., ont ćt'f filmbee in nouveau do facion obtenir la melleure image posesble.
\square Additional commente:/.
Commentalres supplómentalres:

This item is filmed at the reduction ratio checked below/ Ce document cet filmé au taux de réduction indliqu's ci-doesous.

The copy filmed here hes been reproduced thanks to the generedity of:

Universlity of Alberte Edmention

The imagee appoiering here are the beot quality poestble coneideriting the condition and legibility of the originix copy and in keoping with the fillming contract specelfications.

Original copice in printed peper covere are filmed beginning with thu frome cover snd ending on the leot page with a princed or illustiated imprsesion, or the beck cover when eppropitace. All other original copice are filmed beginning on the firset pege with a pintest or illuatrated imgreeclen, and ending on the leat pece with a printed or illustrated impreceion.

The ler recorded frame on cech mierofiche shall contein the symbel \rightarrow (moening "CONTINUED"I, or the symbol ∇ (meaning "END"). whichower applice.

Mopo, plotes, charts, ste., may be filmod at different ruduction ration. Thoee too large to be entircly included in one axpooure are filmed. beginning in the upper left hand corner, loft to right and top to bottom, te meny frames ace required. The following dilagrams illuctrate the mothod:

L'oxempialve filme fut reprodult grice dila gendroolitd de:

Univerity of Alborth
 Edmonton

Les images sulvantee ont ét reprodultes avec io plus grand soin, compts tennu de le condition ot de le nettett de l'exemplaire filmb, et en conformith avec les conditions du contrat de filmage.

Les exemplalres origineux dont la couverturn an papier eot imprimbo somt filmes on commencant par lo premior piat ot en terminant soit par io demilitre page qui comperte une emprointe dilimpreseion ou d'lliustration, solt par io second piet, selon lo cas. Tous lee autres oxempiaires originaux sont filmbe en commencent par ia promiliere page qui comporte une empreinte dimpression ou d'illuetration ar en terminant par la dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur io dernilre image de chaque microfiche, soion te cas: io symbolo \rightarrow signifio "A SUIVRE", lo aymbole ∇ signifie "FIN".

Les cartes, plenches, tableaux, otc. pouvent Otre fillmis a des taux de refluction diffirents. Loreque lo decument eat trop grand pour Atre reproduit on un seul cliche, il eat film't i partir de l'engle supdriour gaucto, de gauche à droito. ot de hout en bes, en prenent lo nombre d'images niccesaire. Les diagrammes suivants Illustrent la múthode.

(n)

Ticerimied from the Monfhly Notices of the Royal Agtronomifal Soctiviv, Vol. LIL. No. 5.

ON THE DYNamics OF the earth's rotation, With respect to the periodic variations 0F latitude.

BT
SIMON NEWCOMB.

On the Dynamics of the Earth's Rotation, with respect to the Periodic Variations of Latitude. By Sitoon Newcomb.

The recent remarkable discovery of Mr. S. C. Chandler, that the axis of rotation of the Earth revolves aronud the axis of maximum moment of inertia in a period of about 427 days, is worthy of special attention.* At first sight it seems in complete contradiction to the principles of dynamics, which show that the ratio of the time of sach a rotation to that of the Earth's revolntion should be equal to the ratio of the polar moment of inertia, of the Earth to tbe difference between the equatorial and the polar moments. Representing these moments by A and C, it is well known that the theory of rotation of a rigid body gives the equation

$$
r=\frac{A}{C-A},
$$

r keing the period of rotaticn of the pole in sidereal days.
Now the ratio in question is given with an error not exceeding a few hondredths of its total amount by the magnitude of the precession and nutation. The valne found by Oppolzer is $\frac{1}{305}$, giving the time of rotation as 305 days.

This result has long been known, and several attempts have been made to determine the distance between the two axes, especially at Poulkova and Washington. A series of observations was made with the Washington Prime Vertical Transit during the years 1862-1867, inclading six complete periods of the ineqnality. Thus the determination of the coefficient and zero of the argument is completely independent of all sources of error having an annual or dinrnal period. Such errors are

[^0]liable to affect the determination unless it is continued over this period.

A preliminary discussion of the observations, which was made at the request of Sir William Thomson, and published by him, gave a coetficient of $\mathrm{o}^{\prime \prime} \cdot 05$ for the inequality. A more complete discussion, nadertaken quite recently, reduces the coefficiont to $0^{\prime \prime} \cdot 03$, corresponding to a distance of three feet between the two axes. This result was quite within the limits of errors of observation, and seemed to show that there was no appreciable difference between the two axes. This result was in complete accordance with the conclusions reached from the Poulkova observations, and seemed to show, beyond doubt, that there could be no inequality of the kind looked for.

Mr. Chandler's discovery gives rise to the question whether there can be any defect in the theory which assigns 306 days as the time of rotation. The object of this paper is to point out that there is such a defect-namely, the failure to take account of the elasticity of the Earth itself, and of the mobility of the ocean.

The mathematical theory of the rotation of a solid body, on which the conclasions hitherto received have been based, presupposes that the body is absolutely rigid. As the Earth and ocean combined are not absolately rigid, we have to inquire whether thei: flexibility appreciably affects the corclusions. That it does car be shown very simply from the following consideration:-

Imagine the Earth to be a homogeneous spheroid, entirely covered by an ocean of the same density with itself. It is then evident that, if the whole mass be set in uniform rotation around any axis whatever, the ocean will assume the form of an oblate ellipsoid of revolution, whose smaller axis coincides with that of rotation. Hence, the axes of rotation and of figure will be in perfect coincidence nuder all circnmstances.

To apply a similar reasoning to the case of the Earth, imagine that the axis of rotation is displaced by $0^{\prime \prime} \cdot 20$ from that of greateat moment of inertia, which I shall call the axis of figure. Then, with an ocean of the same density as the Earth, its equator would be displaced by the same amount. The ocean level wonld change in middle latitudes by about one inch at the maximum. But this change would have for its effect a corresponding change in the axis of figure. As the ocean covers only three-fourths of the Earth, the axis would be displaced by three-fourths of the distance between the two axes, were ocean and Earth of equal density. But, as the density of the Earth is some five times as great, the actual change wonld be only one-fifth of this. It would even be less than one-fifth, because the displacement of the ocean equator would be resisted by the attraction of the Earth itself. The exact amount of this resistance cannot be accurately given, but I think the displacement would thereby be
reduced to one-half. I therefore think that one-fourteenth would he an approximate estimate of the displacement of the axis of figare, in consequence of the movement of the ocean. As Mr. Cbandler's period requires a displacement of two-seventhn, the ocean displacement only accounta for one-fourth of the difference.

The remainder is to be attribnted to the elastioity of the Earth itself. It is evident that the fiexnre cansed by the noncoincidence of the two axes tends to distort the Earth into a spheroid of the same form an that which the ocean assumes, and thus to bring the two axes together.

We have now to show how this deformation of the Earth changes the time of revolation. Let as imagine ourselves to be looking down apon the North Pole, and let \mathbf{P} be the actual mean pole of the Earth when the two axes are in coincidence, and \mathbf{R} the end of the axis of rotation. Then, in consequence of the rotation aronnd \mathbf{R}, the actnal pole will be dieplaoed to a certain point, \mathbf{P}^{\prime}. Now, the law of rotation of \mathbf{R} is such that it constantly moves around the instantaneous position of \mathbf{P}^{\prime} in a period of 305 days, irrespective of the instantaneous motion of P^{\prime} itself. In other words, the angular motion of R at each moment is that which it would have if P^{\prime} had remained at rest. Hence, the angular motion as seen from P is jess than that from P^{\prime}, in the ratio of $\mathbf{P}^{\prime} \mathbf{R : P}$ R.

But, as \mathbf{R} rotates, \mathbf{P}^{\prime} continually changes its position and rotates also, remaining on the straight line PR. Thus the time of revolution of R around P is increased in the same ratio.

We may next inquire what degree of rigidity the Earth must have in order that the total displacement of the axis of figure produced by the change in the centrifagal force may be twosevenths that of the displacement of the axis of rotation; in other words, that the ratio $P^{\prime} R$: PR may be 5:7. A rigorous treatment of the problem is scarcely possible, ss the rigidity probably varies from the surface inward; I shall therefore only attempt a rongh estimate, founded on oertain conclasions as to the deformation of a rotating spheroid reached in Thomson and Tait's Natural Philosuphy. To proceed in the simplest way, I shall assume the earth to have the rigidity of eteel, and inquire to what displacement the axis of figure would be nubjeot, in consequence of the centrifugal force arising from a rotation around an axis difforing from the normal axis of figure.

Conceive a solid sphere, of the same size and general constitation as the Earth, to be set in rotation like the Earth. Let ϵ^{\prime} be the ellipticity induced in it by the rotation, and let \& be the actnal elliptioity of the Earth. We shall then have a eaperposition of two ellipticities, the one s, such that P is the pole of figure ; the other, ${ }^{\prime}$, such that \mathbf{R} is the pole of figure. P^{\prime} being the pole arising from the combined ellipticities, I assume that we have the proportion
PP': : d = P'R : © .

To find the value of $\boldsymbol{a}^{\prime} \mathrm{I}$ start from the conclasion of Thomson
and Tait ($\$ 837$), that a ball of steel of any radins rotating with an equatorial velocity of 10,000 centimetres per second will be flattened to an ellipticity of $\frac{1}{7220}$. The Earth's equatorial velocity is 4.65 times this. Its density is less than that of steel : the density whioh we shoald assume is not the aotaal mean density bat a mean in which greater weight is given to the saperficial portions, because these have the greatest centrifugal force. Probably the actual mean to be adopted is 0.6 of the deusity of steel. We have, therefore, negleoting the effect of gravitation,

$$
A_{0}^{\prime}=\frac{0.6 \times 465^{2}}{7220}=\frac{1}{557} .
$$

But the deformation of the Earth is resisted by the gravitation of its parts. By a theorem given by Thomson and Tait, we should have, taking this effeot into acconnt-

$$
\frac{1}{i^{\prime}}=\frac{1}{i_{0}^{\prime}}+\frac{1}{4}-557+292=849 .
$$

Hence we have

$$
A^{\prime}=\frac{1}{849} .
$$

Hence, considering only the solid Earth,

$$
P P^{\prime}: P^{\prime} R=292: 849 .
$$

We have already concluded that the motion of the ocean will shift P^{\prime} oue-fourteenth of the way from P^{\prime} to R. Hence, fiually,

$$
\begin{aligned}
& P P^{\prime}: P^{\prime} R=353: 788 \\
& P R: P^{\prime} R=114^{2}: 788 .
\end{aligned}
$$

Time of revolation of pole $=\mathbf{4 4 3}$ daye
Period for a rigid earth = 306 "
Computed increase of period = 137 "
Observed increase of period $=121$ "
The conclusion is that the Earth yields slightly less to the centrifagal force than it would if it had the rigidity of steel, and that it is conseqnently slightly more rigid than steel.

We have next to consider the effect of viscosity of the earth. Those geologists who have given special attention to the subject regard it as well established that the Earth yields nnder the waight of deposits as if it were a thin crust floating upon a liquid interior, and mast therefore be a viscons solid, if a solid at all. The effect of viscosity is that the normal pole P of the Earth would be in slow but contintous motion towards the revolving pole R. Both P and \mathbf{R} would then describe logarithmic spirals, so related that the tangent to the inner spiral at the position of P at any moment would pass through the position of \mathbf{R} at that moment, and cut the \mathbf{R} spiral normally. Thus the line PR would diminish from centary to century by equal
fractions of its amount in equal timen. Thus the poles would eventually appear to meet, unless separated from time to time by the action of causes changing one or both of them.

Since the position of the pole of figure of the Earth may be supposed to hare been originally determined by the rotation itself, and continually to approach the pole of rolation if it were very slightly separated from it, the presumption would appear to be that the two poles would now be in apparent colucidence, in the abnence of disturbing canses. Moreover, the evidence of the most accurate observations hitherto made with Prime Vertical Transits seems to show that the separation of the two poles at the epochs 1842 and 1864 could scaroely have exceeded the tenth of a sucond. But observations made with probably equal exactness at the present time seem to show, according to Mr. Chandler, a aeparation of $0^{\prime \prime} \cdot 3$. It would seom, therefore, accepting these provisional numerical results, that sume disturbing cause has acted. A vera causa was pointed ont some years ago by Sir William Thomson, in the motions of the winds and oceans, and especially in changes in the polar icecap. In order to have its greatest effect such a movement, of matter mast occur in the middle latitudes; a change in the polar ice-cap would be the less appreciable in its effect the nearer it occurred to the pole. A heavy snow-fall over the whole of Northern Asia, nnacoompanied by a corresponding fall on the American continent, would undoubtedly canse a slight displacement; but I donbt whether the greatest effect of this kind could amonnt to $0^{\prime \prime}$.05.

But we have also to consider the effect of an annually repeated distarbance of this kind. Mr. Cbandler's period is such that the pole of rotation makes six revolutions in seven years. Hence, during one-half the period of seven years, the effect of an annually repeated canse will be camulative. In a recent volnme of the Bulletin Astronomique, Mr. Radan has investigated the effect of an annual periodic change in the position of the Earth's axis of figure, and shown that it will be maltiplied three times, in consequence of this comulative effect. But his analysis rests on the hypothesis of a 306 -day period. It is worth while to show how such an annual cause would act when we adopt Mr. Chandler's period.

Let \mathbf{Q} be the mean position of the pole of figare of the Earth, and let as assume that the aotual polo \mathbf{P} revolves aronnd it in a radius a, and in a period of one year. Let \mathbf{R} be the position of the pole of rotation at any time. Then, at each moment, \mathbf{R} is revolving around the fixed position P with a uniform motion, which, if continned, would cause it to complete a revolution in 427 days. Let us put
n, the mean motion of the radius $P Q$;
μ, the mean motion of R aronnd the position of P ;
x, y, the rectangular co-ordinates of R refurred to Q as an origin. The law of rotation then gives the equations

$$
\begin{aligned}
& \frac{d x}{d t}=-\mu y+a \mu \sin (n t+c) \\
& \frac{d y}{d t}-\mu x-a \mu \cos (n t+c) .
\end{aligned}
$$

The integration of these equations gives

$$
\begin{aligned}
& x=\alpha \cos \mu t-\beta \sin \mu t-\frac{a \mu}{n-\mu} \cos (n t+c) \\
& y=a \sin \mu t+\beta \cos \mu t-\frac{a \mu}{n-\mu} \sin (n t+0),
\end{aligned}
$$

a and β being arbitrary constants.
Sabstituting for μ and n their numerical -nlues, we have, approximately,

$$
\begin{aligned}
& x=\alpha \cos \mu t-\beta \sin \mu t+6 a \cos (n t+c) \\
& y=\alpha \sin \mu t+\beta \cos \mu t+6 a \sin (n t+c) .
\end{aligned}
$$

Such a rotation as we bave supposed, around a circle of $0^{\prime \prime} \cdot 05$ in radius, would suffice to produce anomalies as large as those actually observed.

If the winters in Siberia and in North America ocourred at opposite seasons, we should have no difficulty in accepting the sufficiency of annual falls of snow to account for the anomaly. Bat, under the actual circamstances, we mast await the resalts of farther investigations into the whole subject.

$$
\nabla
$$

[^0]: * Astronomical Journal, Numbers 248, 249.

