CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et tibliographiques

The Institute has atempted to obtain the best original copy avallable for filming. Features of this copy which may be bibliographically unique, which may alter any of the Images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloursd covers /
Couverture de couleur

Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée etou pelliculée

Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches e, ou illustrations en couleur

Bound with other matenial /
Relié avec d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distorton alorig interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparalssent dans le texte, mals, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le mellieur exemplalre qu'il lul a été posslble de se procurer. Les détails de cet exemplaire qul sont peut-être unlques du point de vue blbliographlque, qul peuvent modifler une image reproduite, ou qul peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagéesPages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence

Quality of print vanes /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked beiow I
se document eat filimi au taux de réduction indique ci-dessous.

Tha copy fiimad hara has been reproduced thanks to the ganarosity of:

Health Sciences Library MeMmater University

The images appearing hera are the best quality possibie considering the condition and legibility of tha originai copy and in keeping with the fiiming contract specificetions.

Originai copios in printed paper covers ere filmed beginning with the front cover end ending on tha iast pege with a printed or iilustrated impression, or tha back covar when appropriata. Ali other original copias ara flimad baginning on tha first page with e printed or liiustrated impression, and ending on the iast page with a printed or lilustrated impression.

The iast recorded frame on each microfiche shaii contain the symboi \rightarrow (meaning "CONTINUED"), or the symboi ∇ (meaning "END"). whichever epplies.

Maps, piotes, charts, etc., mey be fimed at different reduction ratios. Those too iarge to be entireiy inciuded in one exposure are flimad beginning in the upper ieft hend corner, ieft to right and top to bottom, as many frames as required. The foilowing diagrams liiustrate the method:

L'axamplaire filmé fut reproduit gráca d̀ la génórosité da:

Hedth Sciences Library McManter University

Les images suivantes ont cte reproduites avec ie pius grend soin, compte renu de ia condition ot de ie nettet' de l'exempiaire filmd, ot en conformité avec les conditions du contrat de filmage.

Les exempiaires originoux dont ia couverture on pepier est imprimbe sont filmbs en commençent par ie premier piet et en terminant soit par io derniere pege qui comporte une emprainte d'impression ou d'iliustration, soit par is second piat, seion ie cas. Tous ies autres exempiaires originaux sont fïmés en commencent par ia pramidre page qui comporte une empreinte d'impression ou d'iliustration et en terminant par la derniere page qui comporte une telie omprainte.

Un des symboies suivants apparaitra sur ia derniere image de chaque microfiche, seion ie ces: ie symboie \rightarrow signifie "A SUIVRE", ie symboie ∇ signifie "FiN".

Les cortes, pianches, tabieaux, otc., peuvent dtre filmés à dos taux de réduction différents. Lorsque ie document est trop grand pour dere reproduit on un seui ciichd, il est fiimd dportir de i'angie supérieur gauche, de gauche à droite, et de haut en bas, on prenant ie nombre d'images nécessaire. Les diagrammes suivants iliustrant ia méthode.

MICROCOFY RESOUUTION TEST CHART

(ANSI ond ISO TEST CHART No. 2)

TEXT-BOOK

OPERATIVE SUR(iERY

TEXT-B(JK
 0F

 OPERATIVE SURGERY

 OPERATIVE SURGERY}
if

Dr. THEODOR KOCHER

THILI) EN(il.ISH EDITION

AUTHORISED THANSLATION FHOM THE FIFTH GERMAN FIHTION

BY
HAROLI) J. STILES, M.R., F.R.C.S. EMN:

AND
C. BALFOUR P.AL', M.f., F.li.C.S. limis.


```
WITH 415 ILLUSTRATIONS
```

IN TWO VOLS.
VOL. 1

TORONTO
THE MACMILLAN COMPANY OF CANADA, Ltd. LONDON: ADAM AND CHARLES BLACK

1911

TRANSLATORS' PREFACE

No apology is needed for the endeavour to render more aceessible to the profession in this comntry a work on operative surgery by so eminent an anthority as Professor Kocher.

The book is essentially a recorl of the anthor's personal experience and of his own methods of operation. To avoid an appearance of exotism he has written in the first person plural, and this plan has been followed in the tramslation.

The first English edition, which apreared in 1895^{5}, was tmanlated from the second German edition, while the seomd Finglish edition, which was twice the size of its predecessor, was translated from the fonrth (ierman edition. The present volume is a translation of the fifth and latest German edition.

The amonnt of new material that has been added, the rearragement and revision of the text, and the great mumer of new illustrations introdnced i. been responsille for an increase of :300 pages. The work now e. is the whole field of operative surgery. In the first of the five parts into which the volume is dividen, the preparation of the patient, the disinfection of the surgeon and his assistants, the methods of sterilication, surgical technique, treatment of wommls and anasthesin have been greatly amplified, local and regional antesthesia being lealt with at length.

In the second part the surgery of the vasenlar systenn has been systematically considered, no less than 106 pperations on the arteries being descrived, while the sutnre of veins receives full attention.

The thirl part, ? Paling with the surcery of the nervons system, has been rearranged as well as largely amplitied. The portion levoted to the operations on the brain an cranial nerves has been practically rewritten, and full acknowledgment is given to the work of the present-day neurologists, especially in connection with the removal of tmonoms and of the Gasserian ganglion. Operations on the peripheral nerves are also described
in a systematic manner, and emphasis is laid on their topography in relation to conduction anarsthesia.

In the fourth part l'rofessor Koclerer writes with nuthority on the surgery of the extremitics. Fresh material has been motrodnced in connection with the operative treatment of paralysis and deformities, whise his well-known descriptions of arthrotomies, resections, and anputations have been revised and enlarged. As excision of the wrist-joint has been unaccountably omitted in the (ierman, we have thonght it desirable to insert it in the form of am appendix at the end of the book.

The fifth part, which forms the second half of the volnme, is devoted to the surgery of the heal and trunk. The section on the surgery of the thorax has been practically rewritten, anl the recont advances in the treatment of the thoracic viscera receiv. full attention.

As regards the section of the nblomen, special mention should be made of the chapters on the liver and bile ducts, which have been rewritten and ocrepy rearly thirty pages of the text. The operntions on the intestine. including rectum, as well as those on the kidney and ureters, have also been dealt with much more fully than in the former editions.

For the time and habur expended in the translation the writers derive no inconsiderable reward from the conscionsness that the teaching and methods of so great a master as l'rofessor Kocher will be welcomed not only by senior students and practitioners, but also by all who are actively engaged in the teaching and practice of surgery.

We have much pleasure in expressing our indehtedness to Mr. W. I. Stuart, F.R.C.S. Edin., for kindly assisting us with the translation of some of the more diffienlt passages, and we again desire to thank Mr. George Stromach, M.A., for the literary care with which he has read the proofs. To Miss A. C. Huteheson, M.A., we would express our thanks not only for compiling the index, bit for much general assistance.

HAROLD J. STILES.
c. BALFOUI PAUL.

Edinaterat, February 1911.

AUTHORS PREFACE TO THE FIFTH EDITION

I. the prefaces to the former editions of this work on "perative surgery I have specially emphasised the fiact that the more surgery has become the common property of medical men, the more it is incumbent on my one who intends to devote himself : practical surgery to take every opportunity of improving his technique. l'his is essential, because any gencral practitioner of repute may be suddenly called upon to take charge of a surgical department in co country hospital. The iesponsibility of suc' $11 \mathrm{p}^{\text {msition }}$ mast weish heavily upon the conscientious practitioner if he has not hal a thorongh training as a clinical assistant in a hospital, ns he may be repuired at any moment to decile instantly on a course of action on which may depend not only the finture health but even the life of the patient. Culess he wishes to be classed among those who resort to exploratory incisions on all occasions regardless of risk, he minst lear how to make an exact diagnosis and th; extablish precise macations f, eatment. This nccessitates the stem discipline of a long elisical a tantship. The requisite dexterity in operating is acenired in a shartar apprenticeship to a gonl practical surgeon.

The possession of these requisite: wh ald destr: ilde favourite arguments of those physicians who are inchond . disparage surgery and belittle its successes. They maintain that the cases are inmmerable in which munecessary and even injurions operations are performen, and they are apt to hold the whole profession responsible for such mawaranted operations undertaken by men of little experience.

Just as the physician is not permittel to write prescriptions without a knowlenge of the action and effects of druss, so the surgeon should not he allowed to perform operations unles he is capalile of tirst making an exact diagnosis and promosis.

Even if we admit that the surgeon is respo ible for the results of his "ferations, it must never be forqoten that amissions and bhunders in the
previous treatment on the part of the publie and the physieian respeetively aecount for an infinitely larger number of vietims than do the errors of the surgeon. The surgeon's task is hard enough, and his difficnlties ought to be lessened as muel as possible-indeed, we consider it justifiable to raise the question: What partieular eonsiderations are due to the surgeon from physieians and from the publie? I wish to call speeial attention to these in the interest of the patients.

1. In every case where there is any question of operation the surgeon ought to be summoned in the first instance for the purposes of examination and eonsultation. Surely the time will come when eases of ilens will reeeive operative treatment at onee, and will not be left until gangrene of the intestine and perforation make it impossible to deal suceessfully with the eause of the condition. Every ilens ought to be examined at the beginning by both the physieian and the surgeon. If two eonsultants are unneeessary, i is the surgeon who is indispensable.

A case of acute appendieitis can be easily and entirely eured lyy an operation on the first day, but without an operation the life of the patient may be very serionsly endangered hy the rapid supervention of perforative peritonitis. The relations of the patient should therefore be informed at once of the possibility of a eure by operation: it is unwarrantable to (mit to call in the surgeon until peritonitis has become advaneed. In eases in whieh carcinoma is suspeeted, a suceession of speeialists should not allow the best time for a radical eure to slip away ly wasting weeks and months in establishing a diagnosis. The statisties which we shall produce in this book elearly prove that if patients suffering from malignant misehief receive operative treatment at an earlier stige of the disease, an important addition to the number of permanent eures would eertainly be oltained.

If suspicious symptoms appear in a case of brain-tumour the general health of the patient shonld not be reduced by preparations of mercury for several a onths on the assumption that syphilis exists: it is nuse handing the patient over to the surgeon when the operative treatment is eertain to fail.

These are all experiences I have had, and I eould easily add to them.
2. The choice of where the operation is to be done, as well as the mamer of its performance, should be left entirely to the surgeon.

It is no easy matter to arrange all the preparations for an operation so as to ensure eomplete asepsis. We have mate such strides since the days when sepsis prevailed, that when a patient inyures if the operation is serious, we ean assure him there is no danger. In the days of sepsis suel an assertion would not have been strietly true, even with small operations.

A smrgeon cammot gnarantee tie satisfactory progress of his patient after an operation unless it be done in a place where he can make all his own arrangements, where he can thoronghly depend on his staff, and where he has entire control of all details, such as the previous treatment of the patient, the preparation of ligatures and sutures, of bandages, of instruments, and of everything which comes in contact with the wound ; and lastly, lie must be sure of the cleanliness of the assistants' hands.

How often does the doctor write to say that he has prepared everything most punctilionsly and that there is no necessity to bring instrments, ligatures, sutures, or baudages. Accordingly, the trusting surgeon arrives and finds that some very necessary instmments are wanting, that there are no drainage tubes, and that the well-sterilised dressings have been handled in such a way that they are no longer sterile.
lt has frequently been my lot to see doctors disinfect their hands before an operation almost to the extent of injuring their skin, while the theatreunrse, after disinfecting her hands, quietly helps the patient to take off his dirty clothes and to place him properly on the operating table. She often wears a regulation dress which quite prohibits a purification in the surgical sense of the word, and when the well-sterilised thread is handed to her, she lets it truil over all mamer of towels and artieles of chothing.

The surgeon can only guarantee a successfinl issue in its full sense, i.c. aseptie healing, when the patient is brought to his own hospital where he has thomgh confidence in the staff innl the ippliances, and, noreover, where he has authority.

Many times I have bitterly repented having embarked mon a serions operation under conditions over which I hand nu control, in consequence of having modertaken a distant journey to the patient becanse his doctors and relations conld not make up their minds to let him be moved. If the patient cannot be moved, the smgeon shomld be allowed to bring his own staff and appliances. I camot arhire those itinemint surgeons who place themselves at the service of wemeral pactitioners and offer to operate on their patients on the spot.
:3. I have already shown that it is absmed to eall in the smgeon when ${ }^{4}$ patient has become moribmad, according to the enstom expressed in the well-known words of the physician-" The patient is lost at any rate, now we can hand him over to the surgieal chingue." And it is ednally unwarrantable to eall in the surgeon to perform merely seconlay operations,

A small carcinoma of the skin will often be exeised, perhaps even a small recurent nodule removed, hat directly the growth has spread and deepened the case is thrust upon the hospital surgen. Or a primary
carcinoma is removed and subsequently the adjacent glands beeome enlarged: the patient is then handed over at this late stage to a surgeon who has to perform an operation whieh was plainly indicated at the beginning.

How frequently a tuberculons abscess is merely incised, with the result that mixed infection from staphylo- and streptococei arises. The prognosis is now fundamentally altered and only at this late period is the surgeon called upon to remove the disease from its foundation.

In order to participate fully in the benefits of surgical therapy, doetors and surgeons must regard the smallest operation as an inportant matter, and must give it the most careful eonsideration. There is no oljection to a general practitioner performing an operation himself, but if he is not quite clear as to the possible results his conscience ought to lead him to consult any experienced surgeon in order to gain a clear idea of the indications, dangers, and teclinique of the operation. Young general practitioners who are fresh from the examination room undertake cheerfully quite lig operations simply because in the clinic, they have seen the largest womms heal uninterruptedly under aseptic treatment, and because they have observed how regularly a simple abdoninal or appendix case, or even one of goitre, can be disnissed after eight days. They have had too little opportunity of realising that sneh an uninterrupted recovery is dependent on certain definite rules whieh must on no acconnt be broken.

It is the aim of this work on operative surgery to bring these fundamental principles to the knowledge of the medical profession: plyysieians and surgeons must, however, co-operate if the best results are to be obtained. In our opinion, the doctor is most to be eommended who establishes a eorreet diagnosis at onec, and, regardless of other eonsiderations, sends his patients for early operation to the place where there is the best prospect of a permanently suceessful result; he ean then consider that he has been the chief cause of the success, and he is cortainly much more to be congratulated than the man who camot resist the temptation of trying to prove his ability as an operator under conditions where the requisites for success are muttainable.

CONTENTS

INTRODUCTION

SECTION I

General Considerations

A. PREPARATION FOR OPERATION i
(a) Preperation of the l'atient. :3

1. In the Ward :: \quad 2. By the Medical Attendant
4
4
(b) Preparaliwn of the U/erating Inome ;
(c) Preparation ty the Assisting staff of the Ithlevials required i
2. THE BEGINNING OF THE OPERATION !
(d) Position of the I'ulient 9
(e) Asepsis uf the I'ationt antl Iferutors-Finul Cleunsiny, 11
(j) Ancesthrsiue
1:
1:
3. General i. Conduction 1.
4. Local 115
5. Stumal $2: 4$
C. OPERATIVE TECINIOUE 31
(g) Direction of Shin Inrisions :30
(h) Dirision of IVep Tissurs: :3:3
(i) Arrest uf Hirmorrhaye :3
(k) Closure of the 11 oum : 4
D. AFTER-TREATMENT OF THE PATIENT $: 5$
E. DETAMLS HiTH REGARU TO AN.EATHESLA $: 7$
(I) Fiurther Rem:erks on Lencul I Ineshessite $: 3$
6. Lenuander's luvestigations 37
(iii) Appendir to Medullar! Amrsthewiet 41
(n) Eipitural Injectime into the sjumul Canal 4.7
(b) F'urther Inelails on Cienriel Amershersiut $1 i$
F. TREATMENT WF WOUNUS $6 \cdot 3$
(p) Sterilisation of Inessings, Instrnments, und Lutioms. n:
(q) Disiufection of the Ski" 65
(r) Prowntiom of - lir-Infection 7
(s) Implentation-Infettion, und the éncstion or Ligmtures 7
(t) The Sitmifirunce of Aecrotic Tiswue in rrgart to Lutertion-I'rrention of Jimponis 75
((1) Tircatment of Infreted IInums .$7!$

SECTION II

Surgery of the Vascular System

A. SURGERY OF THE IIEART AND PERICARDIUM

1. Exposure and Suture of the Heart8. 2
B. SURGERY OF THE LARGE ARTELIES
2. l'uncture, Ineision, and Drain- age of the Perieardinm 89
3. Cardiolysis 91
4. Ligature of the Abdominal Aorta 92
5. Ligature of the In uominate Artery 93
6. Ligature of the Conmon Carotid Artery 93
(a) Branches of Common Carotid Artery
7. Ligature of the Internal Carotid Artery 95
(b) Branches of Eirtemal Carotill Artery92
8. Ligature of the External Carotid Artery 96 6
9. Ligature of the Superior Thyroid Artery 87
10. Ligature of the Lingual Artery 99
11. Ligature of the External Maxillary Artery (Faeial) 101
12. Ligature of the Sterno-mastoid Artery 102
13. Ligature of the Oceipitis Artery - 10%
14. Ligature of the Posterior Aurieular Artery 103
(c) Branches of Internal Carolid Artery
15. Ligature of the Ophthaluie Artery anl its Branches, the Supraorbital and Frontal Arteries 10:
(1) Subclavian Arler! and its Brancles 105
16. Ligature of the Subelavian Artery 105
17. Ligature of the Vertebral Artery 106
18. Ligature of the luternal Diamnary Artery 167
19. Ligature of the Sinerior Inter- costal Artery 108
(r) A.rillary Irtery and Arterics of the .I.
20. Ligature of the Axillary Artery 110
21. Ligature of the Superior Thoraeie Artery $11:$
22. Ligature of the Acromio-thoraci: Artery 115
23. Iigature of the Long Thoracic Artery 11.5
(i) Brachial Artery thed its Dirunch's 120
24. Ligature of the Arteria Culater alis Ralialis Superior $1: 0$
25. Ligature of the Sufurior l'ro- funlai Artery 120
26. Ligatme of the Arteria Collater. alis Mellia 121105
27. Ligature of the Iuferior Thyroin Artery 108
2.2. Ligature of the Transversalis Colli Artery 110
2:3. Linature of the Posterior Scabular Artery 110
28. Ligature of the Auterior Circum- flex Artery 115
29. Ligature of the l'ssterior Circum- thex Artery 117
30. Ligature of the Sulseapular Artery and Branehes. 120
31. Ligature of the Ascending Pharyn- geal Artery 103
32. Ligature of the Ascending Palatine Artery 103

14. Ligature of the Internal Maxillary Artery 104
15. Ligature of the Sinpericial Teniporal Artery 104

0497
(g) Arterics of the Foreorm amil Ituml
38. Ligature of the Radial Artury - 123
39. Ligature of the Ulnar Artery $1: 3$
40. Ligature of the Cummon Interosseous Artery.
125
41. Ligature of the Superfieial lalma
Areh 105
(h) Branches of the Thoracic Alortu .
44. I.igatare of the Intereostal Arteries $12 \bar{i}$
(i) Erauches of the Ablominal Aorta
45. Ligature of the Panietal Branches 129
46. Ligature of the Culiae Axis 130
47. Ligature of the Coronary Artery 130
48. Ligature of the Splenie Artery 130
49. Provisional and P'emanent Ligature of the Arteries of the Stomach, Pancreas, and Juoleunin 130
(k) Common Iliat Arvery and is lictenchos
42. Ligature of the Deep lilmarArch$1: i$
43. Sigature of the Digital Arterien in the l'alu, Collateral Inisital Arteries 127
127
E4. Ligature of the Common Iliac Artery 13:2 $13:$
(l) IIypoyestric Aitery umt its lirunches
55. Ligature of the Internal Iliac Artery $1: 4$
56. Ligature of the Superior Vesical Artery 134
57. Ligature of the Ilio-limbar Artery 131
58. Ligature of the Obturator Artery 134
59. Ligature of the Lateral Sactal Artery 130°
60. Ligature of the diluteal Aitery.
60. Ligature of the diluteal Aitery. 135 135
(m) Esternal Iliuc Artery tude its IIranthes
67. Lisature of the Extmal Iliac Aitery 139
68. Ligat"re of the Derp Liphastric Artery $13:$
69. Ligature of the Deef Circmmfles: Hiac Artery $14 i$
70. Ligature of the Fenoral Artery 14:3
71. Ligature of the Internai Circman- Ilex Artery $14 i$(a) Popliteal Artery amits inverches
76. Lisature of the Popliteal Artery 145
7\%. Lignture of the Anterior Tihial Artery 145
(o) Arteries of the Fint
S0. Ligatare of the Dorsali, H'cdis
Artery131
61. Ligature of the sciatic Antery 13i;
6.3. Lisuture of the Infenior Vesical Astery 136
i3. Ligature of the Aitery to the Vas 136
61. Ligathre of the Midile Mithar- thoidal Artery 136
8in. Lisature of the Leterine Artery 137
bet. Ligature of the Internal Pudic
i2. Ligature of the l'volunda femorin

Artry

Artry

Artry

Artry 1110 1110 1110 1110 -

73. Ligiture of the External Ciremm-
74. Ligiture of the External Ciremm-
75. Ligiture of the External Ciremm- Hex Artery Hex Artery Hex Artery $14 i$ $14 i$ $14 i$
76. Linature of the Perforating
77. Linature of the Perforating
78. Linature of the Perforating Arteries Arteries Arteries 14: 14: 14:
B. higature of the Absetometica
B. higature of the Absetometica
B. higature of the Absetometica Magna Attery. Magna Attery. Magna Attery. 143 143 143
79. Ligature of the surenior Mesen- teric: Artery 131
80. Ligature of the Infiorion Nenen- teric Artery $1: 1$
81. Lisumre of the IRenal Artery 131
5.3. Lisature of the Internal Sprmatio Arteries 132
124$1: 1$
Atery
Atery $1: 9$ $1: 9$
. 1:914
is. Litature of the I'osterior Tibial Artely 151
7! L Ligathe of the l'emeneal Artery. 155
C. SUTGERY OF TIIE VENOUS SYSTEM$15: 4$
(a) Gicneral In? itations for the E.rpusure and Ligutwie uf the Jotryer l'ins 159
(b) Exposure, Suture, aıul Ligature of Indirudul Veins. 161
8.2. Exposure of tha Superior Vena Cava 161
82. Ligature und Suture of the Inferior Vena Cava. 162
Tribularies of the Innominute l'eins84. Ligature and suture of theLunominate Veins164
83. Ligatire of the Thyroidea Ina Vein 165
Tributaries of the Common duyular Vein
84. Ligature of the Common Jugular Vein 166
85. Ligature of the Superior Longi- tndinal Sinus 166
86. Ligature of the Lateral Sinus 166
87. Ligature of the Occipital Sinus 167
88. Ligature of the Spheno-parietal Sinus 167
89. Lizatıre of the Diploie Veins 168
90. Ligature of the Superior anul Iuferior Ophthalmic Veins 167
Tributaries of the Inferior l'ma Carn
91. Ligature and Suture of the Common Iliae Vein 168
92. Iigature of the Internal Iliac Vein 168
93. Ligature of the Common Femoral Vein 168
94. Ligature ol the Tributaries ofthe Femoral und Internal IliacVeins169

SECTION III

Surgery of the Nervous System

INTRODUCTION 171
A. METIODS OF EXPLORATION, AND RELIEF OF CEREBRAL TENSION 172

1. Puncture of the Skill and Brain 172
(c) Ceneral Remarks 172
(b) Speeial Indications ior and Tect. nique of Puncture of the Brain 173
2. Trephining for Enploration and Decompression 175
B. OSTEOPLASTIC TREPHIXIN(: 182
3. Osteoplastie Resection of Skull 182
4. Cireular Craniotomy 15: 185
C. SIPECIAL INDICATIONS FOR TREPIINING
(iv) Arrest of Hemorrhage Inring Trephining 174
(b) Partial Cirennseriheal Craniec- tomy 178
(c) Extensive Reserion of the Shull 179
Ligatire in the l'ortal Area 1.0
5. Ligature of the Superior Mesen- teric Vein 170
6. Ligature of the luternal Jugular Vein 167
7. Ligature of the External Jugular Vein 167
8. Ligature of the Auterior Jugular Vein 168
9. Ligature of the Subelavian Vein 168
10. Ligature of the Axillary Vein 168
11. Ligatire of the Veins of the Arm 168
12. Ligature ol the Long Saphenons Vein 169
13. Ligature of the Short Saphenous Vein Vein 170 170
14. Trephining over the Simbes of the Durs Mater 186
(10) Trephining over the Superior Longitndinal Sinus. 186
(b) Trephining owre the Oorcipital Sinus 187
(c) Trephining over the Lateral Sinus 188
15. Trephining for lntractanial Ilemorrhage 189
D. CRANIO-CEREBRAL TOPOGRAPII 193
E. SUKOERY OF TIIE SPINAL CORD AND ITS COVFRINGs $\because 0:$
(a) I'uncture of the subarachnoid (b) Extensive Eixposure of the Spinal Cord 24
$20:$
$20:$
16. Twhnigur of Lat invetomy 204 ? 24
F. SURGERI OF NERVE-ROOTS(ii) Intracranial anl Intraspina:
Nerves 204
17. Extirpation of the Gasserian Ganglion, division of its Inot and Intracranial Branches 24
1% sham of terlanigue which we rucuman $\because 10$(h) Ditision " Kout of theAamerian G.t i. .(.) Intracranial $H 0$ on of the213CianclionDivinion of the Trigeminal.1:3. Division of the posterior ronts inthe spinal canal
207
G. SUIRGERY OF INDIVIDUAL I'ER'PHERAL NERJEG314
(a) General Rewurls ou suryrery of Siries $\because 14$
(b) Cranaial Jorres 210
18. Optic Nerve $\because 1$. Trigeminal Nerve (Extra.
19. Kinmsure of Palatine Nerven . En:
(c) Thin Division-cranial)217
(n) First Division-
20. Frontal 219
21. Nasal $\because 19$
(b) Secoml Divisiont-1. Exposure of superiorMaxillary Nerve at theBase of the skull$21!1$
22. Expmare of \%ygonatic Nerve $2: 2$
23. Exposure of Spheno-palatine Nemes $2: 2$
24. Exposure of Superion Dental Nerves 2
25. Exposure of Infrabobital Nitw 29
H. SPINAL NERVES
(it) The loper four liercicul Irrecs. 236
362). Great Oecipital Nerve23
26. Suall Occipital Nerve (GratAuricular and SuperticialCervieal Norvers)Cervical N(orus) Superticial
$: 3: 3$
27. Buceinator Nerve. 29
28. Antionlo-temparal Newe 24
29. Infirior Dental Nerve. 22
30. Mental limach of Inferior Ibental Nerve $\because!$5. Mylo-hyoul Nerve
$2!1$6. Limgual Nerve
1.5. Facial Nerve $\because 1$
2491i. Aremblic Xervir
31. Aromstic Newro $2: 3$
32. Vigh:- Nerve 232
(io) Superior Laryngeal Nerne 2:2
(b) Inferiow Largngal Nerve $23:$
33. Spina: Aecenory Norve 2:33
34. Itypeglo sial Nirve 236
35. Fonth Cinven Nowe isurat elavicular ath Phrunic Norve) $2: 39$
(b) The Lover Four Cerrical Nirese (Drochial Jlexus, 240
36. Auterior Thoracie Nerves $\because 43$
37. Short mul Long Subscapular Nerves 44
38. Long Thoracio Nirwe 243
39. Cireumtlex Nerve 213
2i. Supraseapular Nierve. 24:3
(0) C'tmmon Julmar Jigitut Lranches
40. Nerve tu the Rhombuids $21: 3$
41. Lesser Internal Cutaneons, Nerw 243
42. Intermal Cutaneons Nerve. 213
43. Musculo cataneous Nerve. 243
44. Dedian Nerve and Branclen 245
94
(d) Anterior Interosscous Direre. 245
(e) Filmer C'utancous Birnuch 248
(j) J'almar Digital Drauciirs 248
45. Uhar Nerve and Bramehes 245
(b) Dorsal Cutanous Branch 44
(a) P'almar Cutaneous Braneh $\because 19$
(c) Palmar Branch210
46. Musculo-spiral Nerve 250
(a) Upiper External Cutaneous 2.0 Branch
(b) Lower External Cutaneons Branel 250
(c) losterior Interosseuns Nerse 20
(d) Radial Nerve 252 2: 2
(g) Thoracic Nerves
47. Intercostal Nerven $2: 2$
(h) Lumbar I'lexus
48. Auterior Crural Nerve and Branches. 255
49. Ilio-iuguina $2: 2$
3\%. Hlio-hypogastric 252 252
50. External Cutaneous Sierve. 255
51. Genito-criral Nerve 255
(a) Anterior Cutaneous Nerves 0%
(b) Long Saphenous Nerve 2. 2.
(i) Suecral Plexus
52. Superior Gluteal Nerve 25°
53. Inferior Gluteal Nerve 25%
54. Small Sciatie Nerve 207
55. Great Sciatie Nerve and Branches 25%
(e) Internal Popliteal (posterior Tibial). 459
(a) Kamus Communieans Tibialis 2:0 2:7
56. Obturator Nerve
57. Obturator Nerve 25 25
(β) Internal Mlautar Ner 260
(y) External Plantar Nerve 264
(b) External Popliteal. 0
(a) Kamus Communicans Fibularis 264
(3) Anterior Tibial 2nt
(γ) Musculo-cutaneous 26246
(j) Pudcudal Plexus
(i) Pulic Nerve 26
(k) Coceygeal Plexus
58. Ano-Coceygeal Nervess 268265
(l) Sympathetic Cord 268
59. Division of the Cervical Sympathetie above the Superior Cervieal Ganglion 268
SECTION 15
Surgery of the Extremities
(a) Gcncral $\because 0$
(b) Nere-AMastomosis, Nerv-Transplantation, Nerve-liraftions
(c) Surgery of Muscles $2 \because$
(d) Surycry of Temens 27
(c) Suryery of Articular Liyaments \because
(f) Suryer jof Boncs
A. ARTH 26
(a) Technique $\because 3$
(b) Indications and C'ontrainlications $\because \square$
(c) Ajter-Ircutment $\because 1$
(d) Operations on the Foot 2. Rescetion for Mallux Valgus 281
Keseetion of the Phalanges and
Keseetion of the Phalanges and 251
60. Osteoartlirectomy at the Tarsu.Metatarsal Joint and AnteriorTarsectomy281
61. Osteoarthreetomiy at the Mid.tarsal Joint282
62. Excision of the Scaphoil 233
63. Arthrotomy at Chopart's Joint $28: 3$
(e) Operations one the Le!! .
64. Supramalleolir Osteotomy. 99013. Resection of the Lower Third ofthe Lesg
29
(f) "prations on the Kitce.
65. Arthrotony, Arthrutomy anul Resection at the Kner.joint 292
66. Meniscotomy $\because 99$
(y) Operalions on the Thigh
67. Supracondylar Ostcotony of the Femilr $: 90$
68. Osteotomy and fiessction of the Fenur 301
(h) Operathons ut the Hip and lehcis.
69. Arthrotomy ant Resection ofthe Hi^{2},303
70. Arthrotomy in Condenital Dis. location of the $\mathrm{Hip}^{\mathrm{p}}$. 307
(i) Operations on the Fingrers and Iliond
(a) Preliminary Remarks on Operations on the Finger, $30: 1$
(b) Preliminary Kemarks oll Operations on the Hand :110
(h) Opmertions on He Furcurm
71. Osteotomy and Reseetion of theUlna31:3
(1) Operations "t ther Eilhorr
72. Arthrotomy, Arthrectomy, aulResection of the Ellow:11
(m) opcrations on the tipmr Aim
73. Osteotomy and Kerection of theDiaplyysis of the. Ihnuerns319
(12) Operations at the Shoulter34. Arthrotomy, Arthrectomy, andKesection of the shonkler-joint35. Resection of the Clavicle, of the
F. Fixcisiou of the Asteagalus $28: 3$
74. Fixcision of the Or Caleis 285
©. Astrigalo. Calcancatu Arthrec- tomy and Postrerior Tarnectomy $23 ;$
75. Arthrotomy anl Hesection of Aukl. 286
76. Total Tarsectomy 259290
77. Ostrontomy of the Tibia
78. Ostrontomy of the Tibia 290
79. Hewection with Tilis
80. Hewection with Tilis 15. Resectiou of the Tihia 241
81. Hesection of the Fimas 292
[4. Arthrotomy for Inabithal Dis. lecation of the latella :300
82. Excisiou of the P'atella 300
300
2:3. Ostentomy and Subtrochanteric Cuncifitu Remotion of the Femur 301
83. Ostentony uf the Pelvis
307
2%. Resection of Half the Pelvis 308
84. Resection of the siarman 309
:30!1
2!9. Excision of Phalanges and Whetatarpal Bours, of Inter- phatangeal atm Motararpo- phalangeal Joints 311
85. Ostcot: י $י$ and Rewection of the Rarlins :1:31:;:18
319
Sterme Clavicular amb Actmas. claviular Articulations. 327
86. Resection and Total Excisiou of the S:ulunit 327
B. AMPUTATIONS AND DESARTICULATIONS 329
(11) Introdutitine 329
(b) Exolution of the dethots of Ampulution 330
(c) Performance of the different Methois
(d) Methots of obtaining useful Stumps
(e) Amputations of the Fiot
87. Removal of the Toen and In- dividual Metatarsal Bones 342
88. Disarticulatlon of all the Toes (Metatarso-phalangeal Disarti- culation) 342
89. Amputation through the Meta- tarsus 343
90. Disarticulation at the Tarso- netatarsal Joints (Lisfrane) 343
91. Anterior litertarsal Disarti- culation 344
(f) Amputations of the Ley
92. Amputations of the Leg 350
(h) Amputations at the Kinee
93. Disarticulation at the Knee 356
(i) Amputations through the Thigh50. Amputation of the Femurthrongh the Condyles (Cardenand Buchanau)359
94. Osteoplastic Amputation of the Femur throngh the Condyles (Ssabancjetf) 360
95. Supraconlyloid Amputation 361
96. Osteoplastic Supraconlyloid Amputation of the Thigh (Gritti) 361
(k) Amptation of the Mand and Finyers
97. Amputation and Disarticula-tion of the Fingers371
(1) Amartition of the Arm
98. Anputation of the Forearm 373
99. Disarticulation at the Elhow- joint 373
332
332 33512. Posterior Intertarsal Disarticn-lation (Chopart)345
100. Intertarsal Ampurtation 346
101. Subastraguloid Disarticulation - 346
102. Subastragal old Osteoplaytic Ain- prutation 346
103. Disarticulation at the Aukle. joint (Syme) 347
104. Ostenplastic Auputation of the Foot (PirogotI) 348330355357
105. Anputation through the Midale of the Thigh 362
106. . High Anputation of the Thigh 363
107. Disarticulation at the Hip 363
108. Amputation of the Pelvis and Interilio-almlominal lisarti- culation. 367
371
109. Disarticulation at the Wrist- joint 373
110. Disarticulation at the Shonkler. 376
111. Interscapulo-thoracic Amputa- tion 379
(62. Amputation throngh the Upier Arm 374

ILLUSTRATIONS

SECTION I
General Considerations
11."

1. Arrangement of Sterilised Sheets for Operation ou Goitre IAN.E:
8
2. Stand for Lotions insed in Author's Cliuic
12
12
3. Braun'* Apharatne for the Almiuistration of Chloroform and Fither
15
15
4. Conduction Auesthesia (lraun) of Front of Ulyer Arun (after Epalteloola)
10
10
5. Conduction Auresthenia (Branu) of Dack of Ulymer Arm (after Spaltholz)
$\because 0$
$\because 0$
6. Conduction Aniesthesia (13tatui) of Frout of Forearin (after spalielohz)
21
21
7. Conduetion Anesthesia (Bramı) of Back of IIanl (after Sipiltehole)
2
2
8. Conduction Aniesthesia (Braun) of Finger (after S_{l} ralteholz) .
9. Conduction Aniesthesia (Braun) of Finger (after S_{l} ralteholz) .
22
22
10. Conduetion Anewthesia (Braun) of Auterior surface of Thigh (after spaltehole)
23
23
11. Conduction Anesthesia (Brame) of Front of Lerg (after Spralteholz)
24
24
12. Couduction Anasthesia (Braun) of Dack of Leve (after Spraltehola)
25
25
13. Conduction Anasthesia of Metiau and Vhar Serves (after Spalteholy)
26
26
14. Dissection of Right Side of Neek (Spalteholz) to illustrate Condnction Anesthesia (l3ranu) $: 17$ $: 17$
15. Dissection of l'erineum (Spalteholz) to ilhustrate Coulnetion Aursthesia (Braun)
16. Dissection of l'erineum (Spalteholz) to ilhustrate Coulnetion Aursthesia (Braun)
15-16a. Normal lucisions illustratel on Lauger's Figures 28 28
17. Koeher's Artery Forceps 31, 32 31, 32
18. Point of Introluction of Needlo in the l'ronhetion of Melullary Aneesthesia 33 33
19, 20. Skiagrams of the Lunbar Vertebriv (Klien) 42
21, 22. Cathelin's Method of Epidural Injection of sacral ('anal 43 43
19. Chloroform Mask 45 48 48

SECTION II

Surgery of the Vascular System

24. Incision for Exposure of Heart
83
$25,26$. Exposure of Heart .
81, 86
81, 86
25. Outline of Heart, Lungs and Pleure (Spaltcholz-Merkel)
88
88
27a. Transverse Section of Thorax shnwime Eftasionz in the Pericarchiam
89
89
26. Ligature of Lingual, Common Carotid, Imominate, first part of the Axillary, and Internal Mammary Arteries.
94
94
27. Ligature of External Carotid and Sulselaviau Arteries
96
96
28. Ligature of Superior Thyroid Artery 98
29. Ligature of Lingual, Common Carotid, Innoninair
irb. Pate
30. Ligature of Fiaeial, Inferior Tliyrold, and Vertebral Arteries 101
31. Lligature of Ocelpltal Artery 102 102
32. Ligature of Ficina and Temporal Artirles. Trephining the Jaw to expose the Iuferior llental Nurve 103
33. Ligatare of Supraorbital Artery. Exposure of Supruorbital Nerve and Infraurbital Nerve. Opeling of Frontal Sinus 104
34. Ligature of Fix:erual Carotid and Subclavian Arteries 106
35. Bigature of Facial, Inferior Thyroill, aml Vertelral Arterien 107
36. Ligature of Supras 'apular Artery 108
37. Fixposire of 10 th Rib and 10thi Intercostal Artery and Nerve. Ligature of lousterior Seaplular Artery 109
40, 11. Authoris "Normal Incision" 111. 112
4.. Ligature of Lugnal, Conmon Carotid, Innominate, firmt jat of Axillary and Interual Manmary Arteries 113
38. Ligature of Axillary Artery, ahove or immediately leluw the l'ectoralis Minor 114
39. Expmare of Avillary, Lirachial, Superior I'rofunda and Subseaphlar Arteties ani Median, Suhscapular, Musculo-spiral, and Ciremullex Nerves 118
40. Ligature of Anterior Circhuales Aitery. Expmare of Musculo entanenins Serve 117
41. Ligature of l'osterior Circumflex anl Superior Profumba Arteries and Lixposure of Cirennflex and Musculo-xpiral Nerves 118
42. Li -ature of Axillary, Brachial, Sumerior Profnmla, and sulseapular Arteries; Ex- posure of Median, Subsapmar, Musenlo-spial, and Ciromblex Nerves 119
43. Ligature of Drachial amI Ikadial and Uhar Artories 129
44. Ligature of Ralial Artery ou Back of Wrist. Exposure of Ratial Nerve 12.4
45. Ligature of Interosseons Artery ; Hxpmosire of Merlian and Auterior Interosseons Nerves 126
46. Ligature of Superticial and Deep l'almar Arehes $1: 9$
47. Eixposire of 10 th Kil, aul 10 th Inturostal Artery and Nerve. Ligature of l'ost fior Scapular Artery 129
48. Lixature of Common Iliae Aitery 133
49. Ligatre of Profunda Femotis, Eisternal Ciremmflex, Obturator Arteries 1.5
50. Nept. ony. Ligature of Sciatic, Internal Pulic, and Glateal Arteries Exposure of Great and Small Sciatie, Internal Pudic, and Superior Ghiteal Nep 137
51. Ligature of Interual I'mlic Artery at the Ischial Tulerosity $1: 3$
52. Cholecystntomy. Ligature of Deep Circumblex Iliae, Combon Iliac, and Common Femoral Arteries : 10
5\%a. Ligature of Devp Hipigastric Artery 141
53. Cholecystotony: Lisiture of Deep Cirenmilex, Conmen Iliae, and Conmon Femoral 142
Arteries 59. Ligature of Cummon Femoral, Femoral Arteries. Exposure of External Cutancous Nerves 144
54. Ligature of Iuternal Ciremmex Artery 145
55. Ligature of P'ufumla Femoris, Exterual Cireumflex, and Obturator Arteries 147
56. Ligatine of Popliteal Artery
57. Ligature of Auteriur Tihial Artery. Exposine of Anterior Tibial Nenve 1:0
if. Ligature of Posterior Tibial Artery ubove the Origin of the Peroneal 15
58. Ligature of the l'osterior Tihial Irtery. Fingosnte of the Internal Saphenons ann Posterior Tibial Nerves 153
59. Ligature of Peroneal Artery 15.4
60. Ligature of Dorsalis Drdis Artery. Expmare of Anterior Tilial and Mlusculo-entaneous 156
Nerves
61. Ligature of l'hantar Arteries at their Oigin from the losterior Tibial Artery. Exposure of Posterior 'Tihial Nerve 157
62. Ligature of Ilantar Arch and External I'lantar Artely. Exponime of l'lantar Netre 15,8
63. Technique of End-to-Emi Arterial Suture (Carrel) 160
64. Technique of End-to-Sile Arterial Auastomosis (Cushing) 160
72, 73, 74. Osteoplastic Kesection of the Manulrimm Sterni $162,163,164$
65. Ligature of the Long Saphenons Vein, below where it opeus into the Femoral Vein 169

sf:CTION 111

Surgery of the Narvous System

nis.76, 7\%. Doyen's Burm1 W.
78. Application of Elastic Band romul skill in Claniontumy 111
79. Lane's Forceps. $1: 7$
80. Cushing's Temperal $\mathrm{O}_{1 \text { wration of }}$ Trephining for Decoluproxsian 1:!
81, 8.3. Cryer-Suleck Burrs 1 181
18183. Cushing's Cerchellar Operation of 'I'rephiniag fin Ibeconturwion
84, 85. Doyen's liuris 1×2
96. I'ovt-unricular Incivion for opening the Mastond Antram, the Lat ral sinus, and the 1-3, 1×1[Ewcemling Cornu of the Lateral Ventri-h.
 187
 148

88. Ligature of the Midille Menimgeal Artery
89. Ligature of the Midille Menimgeal Artery
90. 'xposin of Inotis Certelellar Lolves $11!$ $11!$
 194
of the Cerelello-jmitine Anale
91. Cortical Aruas of the lirain 1 14i
$1: 9$
92. Position of the Motor Areas in the lirain of Man (Krame 19 M
93. Centres upou the Inuer Cerelimal Itemisplier (Ihorsloy)
199
199
94. Anthor's C'ranionneter $\because 00$
95. Determination of the Chief Cuntres and Convolutions mu the skall by Anthers Craniometer $\because 01$
96, 07. Osteoplastic Laminectomy $\because 01, \because 0$
96. Tatient after Extirpation of Gassurian (ianglion $\because 03$
97. Exposure of the (iasserian Ganglion by the Trapernspormondal lionte 209
98. Fxcivion of Gavserimu Ganglion throngh an Angular Incivion.
911
911
99. Osteoplastic Exposure of the Orbit ?31;
100. Liamitications of the Facial Nime (Buck wheiner) to illu-tratu I'roper Direction of fucisions on Fare
 Verver. Oprening ol the Froutal Sinus. 215 215
 218 218
101. Exposure of the Second (Sugerior Mavilary) hivi-ion of dee Irignana' 'inve at the Foramu Ovale $2 \div 1$
 Foramen Ovale $2: 3$
 Netwes. Ojuning of the Frontal Simus 29
102. Eifosmre of the That (Interior Maxillary) IVivixion of the Thgminal Nerve at the Foramen Ovala 29
103. Incision for resecting the Thiri (Jufeniorsillary) Divinion of thu Thigeminal Nerwo at the Foranten Ovale, Exposire of the Fiacial Nerve 124
104. Ligature of che Facial and Temporai Ateries. Trephining the drembling himun of the Jaw to expose the Inferion Dental Neme 293
105. Facio-lyproglossal Anastonosis (Hurin) 2.1
106. Ligature of the External Cirotill with the Otigins of the Lingual, Farial, and Oceipital Arteries. Ligature of the shbelavian Artery 233
107. Exposure of the Spinal Aceessory Nea ve in the Midule of tha Neck 2:34
108. Ligature of the Lingual, Common Caretid. Inmonamat, and tirst fart and Axtm and Internal Mammary Arterics 235
109. Expmosure of the Upper Three Cerrical Nieven 237
110. Ligature of the Oecipital Artery. Exposure of Gruat and small Oecijpital Netver 238
111. Ligature of the External Carotill and Subelavian Arterics $\because 40$
112. Ligature of the Axillary, Brachial, Superior IProfinda, and Sulneapular Arteries. Exposure of Median, Subscapular, Musculo-spiral, and Circumitlex Nerves 241
113. Ligature of Posterior Ciremutlex and Superior Profunda Artiries. Exposure of Circuntlex and Museulo-spiral Nerves 242
114. Ligature of the Brachial, Radial, and Ulnar Arteries 244 244
115. Ligature of Interosseous Artery. Exposinre of Melian and Anterior Interosseous Nerves 246
116. Ligature of Superfieial and Dtep Palnar Areh with two Branches of Median Nerve 447
117. Conduetion Anasthesia (Braun) of Finger (Spralteholz) 248
118. Fxposure of Ulnar Nerve at the Internal Epicondyle 249
119. Ligature of Posterior Ciremmflex and Superior Profunda Arteries. Exposure of Circunttex and Musculo-spiral Nerves 251
120. Exposure of Posterior Interosseous Nervo below Head of Radius aml Dorsal Braneh of Ulnar Nerve at Wrist 253
121. Ligature of Posterior Scapular Artery. Exposure of the 10th Rib and 10th Inter- costal Artery and Nerve 254
122. Ligature of Common Femoral and Femoral Arteries. Exposime of External Cutaneons Nerves 256
123. Exposure of Great Sciatic and External and Musculo-entaneous Nerves 258
124. Ligature of Popliteal Artery 260
125. Ligature of Posterior Tibial Artery. Exposire of Internal Saphenons Nerve 261
126. Ligature of Plantar Arch, Internal and External Plantar Artery. Exposire of Internal and Fixternal Plantar Nerve 26.2
127. Ligature of Autcrior Tibial Artery and Exposure of Anterior Tibial Nerve 263
128. Ligature of l'eroneal Artery. Exposure of Extermal Saphenons, Posterior Tibial, and Musculo-cutaneons Nerves 265
129. Ligature of the Dorsalis Pedis Artery. Exposure of Anterior Tibial and Mnsculo- cntaneous Nerves 266

SECTION IV

Surgery of the Extremities

136. Methol of diviliug Tendons 273
137. Methot of suturing divided Tendons (Wihns-Siever Stiteh) 273
138. Methow of shortening a Tendon 273
139. Teuoplasty 274
140. Osteotomy for Hallux Valgns. 281
141. Excision of the Anterio" Tarsins 281
142. Incision for Excisionr the Mid-Tarsus and Coneiform Excision in Club-foot 283
143-111. Excision of an Osseons Welge in Cluht-foot 284
143. Excision of the Astragilus 285
144. Coronal Section throngh the Aukle-joint (ttenle) 285
145. Excision of Cs Calrois 285
146. Resection of the Posterior Tarsus 286
147. Incision for Arthrotony of Aukle on Right Side 287
148. 151. Excision of Aukle 288
1. Resection of the Entire Tarsus (Wlatimitof, Mikulica) 289
2. Result after Complete Kesection of the Tarsis $\because 89$
3. Resection of Lower Third Leg (Brohnitz) 291
4. Resection of Lower Third of Ler 292
5. Osteotomy of the Femmr. Juneiform Osteotomy of the Tihia 292
6. Incision for Arthrotony of Kure 493
$158,159,160,161$. Arthrotomy of the Knee 294-297
152, 163. Exeision of the Patella 300
7. Osteotomy of the Femur: Cuneiform Ostentomy of the Tibia 301
165, 166. Subtrochanteric Osteotomy of Femmer 302
8. Incision for Arthotomy of Ilip 303
168, 169. Arthrotomy of the Hip 304,305

fic.

170,171. Scoop for Reposition of Ilcad of Femur in Open Operation for Congenital Disloen.
tion of the Hip
172. Surengel's Incision for Osteotomy of the l'elvis 306Panf:
173. Result after Excision of Hip, and Lumoninate Bone for a Tunone of the Pelvis 307
174. Excision of the Phulanges and First Metacarpal Bone 308
175. Excision of the Phalanges and Metaearyal Bunes. (Coronal surtion of the Wrist, 311after Henlc)
176. Incision for Arthrotomy of the Elhow and Wrist 311
177, 178. Arthrotony of the Elbow 314
179. Ficis f Ull
179. Ficis f Ull 179. Excision of Elhow, showing Methorl ol ohtaining Rommed Eints of the Bones 315, 316
180, 181. Excision of the llead of the llumerns by the Anterior Ohlique heision 317
182.185. Arthrotomy of the Shoulder by Ponterior Curved Ineivion $3 \pm(1,321$
186. Result after Excision of Shonlder for Tuhercular Disease. 320.2-325
187. Excision of the Scapula 326
188-192. Schemes showing the Evolution of the Different Methuls of Imputition 328
193. Position of the Line of Suture by the Transterse Cirentar heision 330, 331
194. Position of the Line of Suture by the Oblique lucision 332
195, 196. Method of performing the Transterse Circular lucision. ;332
197-199. Alcthod of performing the Ohlique Iucision 3:3
200. The Lynn-Thomas Forceps 133:
201-206. Skiagrams of Stumps after Amputation 331
207. Disarticulation of the Great 'loe at the Metatarsi-phalangeal Joint, inn of the erdToe along with its Neticaryal Bone: Amputation throngh the :mol Tom, andthrough the 5th Metatarsal hone
208. Disarticulation of all the Toes at the Metintarso-phalaneral Jants: :! !
209. Disarticulation at the Tarso-nictatarsal Joint. 342
210. Lisfranc's Amputation (Dnrsal View) 342
211. Lisfranc's Amputation (Plantar Vicw) 343
212. Anterior lintertarsal Amputatign (Jaiger). Horizontal section of fori (aftir 313Heitzmann).
214. P'osterior Intertarsal Disarticulation 34
215. Subastragaloid Disarticulation (Malgaigne, Textm) 315
216. Disarticulation at the Anklc.joint (Syme's Anmutation monlife!) 316
217. Gnyon's Wave-eut for Disarticulation at the Ankle 347
218. Coronal Section throngh Ankle-joint (Ihenle) 317
219, 220. Disarticulation at the Ankle.joint lie an Internal Flaj, 315
221. Osteoplastic Disartionlation of the Fout (l'irog, (l) 318, $21:$
222. Amputation through the Matleoli :3,11
223. Ampmations through the Lack 351
224.226. Ostcoplastic Auputations of the Lery $3: 1$
227. Transverse Section throngh the Leminwere it. Mihlly $3.243: 1$
228. Disartieulation at the Knee-joint (3)
229. Section throngh the Kneejoint at the larion af the e : rlyles of the fromur 8.5:
230, 231. Anputations throngh the Thigh 3,:7 3,:7
232. Transverse Suetion through thr Thigh $3: \times$
233. Amputation of Thigh through the Condyles (Cartan) 3:5
234. Ostcoplastic Amputation thongh the ('milyheo of the Femur (s.ahanejoll) 3
235. Osteophastic Supracondyloid Amputation (tiritti) :3if) :3if)
236. Ostcophastic Supraronlyloid . Impulation (iritti) hy :an Ovil Inafion ; ;
 ! 12 ! 12
 :6! :6!
239. Disarticulation at the Hip-joint 3 fit 3 fit
 $361 ;$
242. Interilio-ahdominal Disartienhation $3 ; 9$
243. Longitudinal Section through the Flexul Finger $3: 0$
214. Disarticulation of Finger's ジ・
24. Disartienlation of Nidfle Finger, Mind at Wrist joint. and Amputation thomgh Forcarn172
5tG. PanE:
246. Transverse Section through Upper Third of Forearnu 374
247. Disarticulation at the Elbow-joint by a Cirenlar Incision 375
248. Ligaments of the Elbow-joint 376
249. Disartientation at the Elbow-joint. Longitndinal Section through the Elhow-joint (after Bramine) 376
250. Amputation throngl the Upper Arm 377
251. Disarticulatic t the Sloulder-joint 377
252. Disartienlat: Shoulder by Hacket Incision 378
253, 254. Removal us the Upher Extremity together with the Shonlder Girdle 379, 380

ERliATUM

lage 162, for deseription of Fig. 72 read deseription of Fig. 73, and vice rersu.

(iENERAL CONSIDERATIONS

INTRODUCTION

Combaten with that of former times, the pratice of ngerations on the ealawer has beeme a less important facter in the colnation of the surgem in oprative tee haigne. Such practice munt ine shlplementerl by a thorongh kinwlelge of (perations on the living smbert. But well that is not invarialy nufticiont, ats :a practitioner dhring an operation camot satifartorily diselnss ali the feathres of a cane and the sometimes intricate details of the teclanidue in ath ordinary or even dittient emervenry.

This want can le suphlied ly text-books. A text-hook on oprerative margery shond include all that ean be gathered from practice on the cadaver, and all that can he observed during olperation on the lising sul. et. It shond, in addition, discuss the indieations which point to the neressity of this or that "preation, deede the rhoice of methorl, and, finally, explain the emolitions which tend to seene a gornl result from onerative interference.

We do not altongether share the opinion that "perative training on the carlaver
 experience in operating. The perfomanee of "perations on the cadaver affords an excellent methorl of revisimg topgraphical anatomy, anm is specially valnable. to the stuelent when sunervined hy an oprextor who is alsu an experiencerl elinician.
some anatomists deserve the credit of having lost mo "Iprortenity of inculeating surgieal anatmy in their text-books: lint one feels that the pure anatomist may gos tow far in this direetion and attempto take up points which can only he dealt with by one possessing a practical experience of smyery. The interes: In intomists in surgical mitters womld meet with greater apmeciation if they wond enter into amatunieal detail more folly than hats hitherta leeen the practice.

Surgeons mowalas. repuire a mene achate dexeription of the marse of the
 the presme time we ate called men to do more than simply expose an artery it the seat of election for the phrpme of ligaturing it. The veins, tox, have th be
 of the conse of evon the smaller meres, of the layers in which they lie, and of the regions in which they are distriturterl, as it is by injertion into the newes that local imiesthes in (eomeluction) is ohtained.

The position, relations, and attachments of the organs are far tow superfecially studied by anatomists for us to content moselves with deseriptions from that somere. It is, for example, still an mudecided question low the nomal kidney is hell in position. This is surely a sulhect of inpuiry for anatony to decide first of all.

The surgen umst fall back on his own remores in detemining the incisions which will prodnce least harm in opening into joints or in expming some deeplysithated structure. Amatomieal text-hooks give us little or uo help iut this matter, a manifest reasin why there is still surh " multiplicity of methorls in use, all of them uming at the satme ohject. There is strely only one methoul that can be the best, manely, that fommed on matomical and physiolugieal gromuls. In this
work we shall restrict. ourselves to describing certain operations as typical. We do not intend to compare all the alternative methons, merely becanse they have a famous man as sponsor. A young surgeon who has mastered the anatomical and physiologieal principles on which operative surgery is based, can readily draw his own conclusions as to the merits of different methorls authorised or preferred hy experienced surgeons, if he watches them operating on the living subject.

It is a very serions mater for putients if a junior surgeon diveregards the necessity for methonl in operating. In operations on the face we have seen incisions useel which damaged the facial nerve and intlieted on the patient an monecessary lifelong distignrement.

As we pointel out in the preface, it is even more reprehensible to mudertake an operation without having established definite indications and instructions for its perfomance. Apart from giving an acenrate deseription of indivilual operations, supplemented by intelligible illustrations, we eomsider it one of the chief repuirements of a text-hook of operative surgery to afforl full information on this point. Young practitioners often cone straight from a course of olverative surgery on the colaver-generally a cran-course lefore in examination-withont the slightest knowledge oi the enditions which eull for the performance of an operation.

SEC'TION I

(iENERAL RULES

A. PREPARATION FOR OPERATION

(a) The Preparation of the Patient

IT is widently not the pactice everwhere to prepare patients lefore "pration, hut it is reetainly mot always advisible to prerate on the patieat the day after almission. We were once consulted by a lady who informed ons that ovarotomy had been performed on her twiee, and that on carl weasion she had mate a very rapial meovers. She was sutfering from an at lominal swelling of rerent development. When we pointed gut that it would be necessiry to mate a carcful examimation of her, and that she would have to he properly preparel for the oproation, she heeme or impatient that we cemsulted another surgical anthority, who next day performed a laparotomy. Within wenty-fur hours se were present at the antopy. It was fomm that she lad been suffering from cirrhosis of the liver with ascites, and that there were extensive intestimal adhesions as a result of the previons "wariotomies." The bowel hat heen ineised. Both ovaries were found to he intact! She had thus heren three times subigeted to explomany "preations. This is an example of what may result from undne haste in oprating on an impertenate patient.

1. Preparation to be carried out in the Ward. Our ward statl are provided with printed instructions regarling the preparation of patient. for sperial operations: and gencral instrmetions insine that every patient is properly prepared for the ahministration of amestheties, the prevention of aceidents, and the comdurt of an aseptic operation.
(1) Every patient should be nade to take a hath, auth submit to a thorounh wash with soap and warm water. The head should not he omitted from the cleansing process, and the shim in the region of the openation shomblalsis le shaved.

There is no reason why every patient should not have the lnotefit of a vise,rons cleansing from head to foot in the strgical semse of the term. If he is acenstomed to pay attention to the skin in the British namer, he will be interestell to know that his habits are in acendanee with the methonls of aseptic surgery. On the other hand, those who have always regarted washing ats sulperthous will fimd themselves phite rejuvenated after the imusial experience of a bath.

When the whote houly has heen surgieally cheansed, there shouk be nu trace of dirt ahout the sealp, mails, mouth, throat, or grenitals. This washing premess, whieh is earried out in a warm hathrom on the day lefore the operation, is to be preferred to the practiee of some surgeons who aply antiseptic poultices to the skin at the site of opration. " ari the latter tratment as a t devoid of danger, as ponltices may gise rise ! ritation and earema. It is sutlieient to wash the infected part
with soap，and water，then with cther and alcohol to remove the fats，ass an aseptic dressing las to be subseqnently apllied．

Antiseptic treatuent of the skin is to le hronght into oneration when the akin is the seat of an cezema or other form of skin ermption．In these ciremmetances it is obvious that the womd cammot be treated on：aseptic lines，and antiseptic treatment must be resorted to thronghont．It is immenvible to make an mulealthy skin aseptic in a slorts space of time．

Special care must tre taken in clemsing parts of the holy covered with hair，as shaving and seruhbing with a brush are indixpensalbe aids．
（2）All accessible murons memhrames must be suljijeted to a process of direct cleansing similar to that aplien！to the skin．

Mee hamical elemsing is of primary inmortanes．Special attention mot be given to the bucc，a and hasal envities．Ali sorfles amel tartar must first of all le remosed from the seeth，as otherwise it is impossille to keep the month elean．This perform－ ance may be undertaken ly a dentist．The repeated use of a teoth－brush with soal mul warm water is sulicelent t．aleanse the teeth，and prevent fur from accmmatinge on the tomgue and gunas．If an antiseptic must le used，salol or a weak solution of carlolie comstituter a smitalble wash for the nose，mouth，ambl thront．Stronger solutions，by inducing excessive secretion，may don more ham than goorl．C＇rusts in the nostrils and deposits on the tonsils must be removed and the parts painted with iorline．

The disinfeetion of the mouth is a matter of so murlimportane in the prevention of phemmonia from aspriation during anesthesia that it shonk never lee neglected．
liesides the mper air amd alimentary passages，the vulva，vagina，ambl rectum must have attention paid to them．All discharges should bee removed by washing with soal and water，or alternatively by swabhing with a weak solution of l and． sulseeplent soiling ean be prevented by repated irrigation with warm water previonsly losiled，or with a weak anueons solution of 1 y ：ol．

There shonld be no diffienty in making the patient mulerstand that the eleansing must not le made illusory by ine inating the prepared region with posibiny infected hatuls

Nopatient shombld come to an＂peration with a fin＇l blader or rectum．On the morning of the operation a warm soap and water enema shonk be alministered：the patient should empty his blader，and whell neecesary a catheter shomble be cmployed．
（3）The intestinal canal mast he conptied．The luwels，however，should not act

Many sumeme dinpruse entirely with preliminary purgation．The reason for this is puite intelligible．The worst condition of all is when the patient is sutfering from an artificial diarrhea at the time of opreation．It has heen shown that when ant aperient is winot the mumber of hateria inerease as the intestinal contents lecome more limpind，while they only diminish in a material degree with the ahatement of the diarrhea．It is impurtint，thepefore，that the action of the purgative shond have ceased lyy the day of the operation．Soiling of the loody will thes lee a voided．

Two days lefore the operation the patient is given cither 1 to 2 tablespoonfuls of castor oil or a dessert poomfin of natural Karlsad salts in a glass of warm water． The nature of the subsepment diet is impertint ：it should consist of meat rather than egres．Fhids may loe freely taken．＂egetahler anl carlohydrates（with the exeeption of silgare）are to lac ivoided．In adults we allow practieally no milk，as it prodnees copionts stouls．In＂preations on the alimentiry camal，it is safer for some time previously to limit the diet to artiticial foods such as trepm，or Huids somatose．

When the intestine has been comptied as far as possible，an intestinal antiseptir should he given to limit decempration amb gras formatom．We prefer subnitrate of bismuth（ 6 gr ．six times daily）．This imparts a black colonr to the motions，and remoses the offens．smell in a remarkalle mamer．

2．Preparation by the Medical Attendant．（t） 1 thorongh examination must be made of the respiratory organs，and special attention shonlld be given to the treatment of any existing bronelitio．

The limge, if alrealy the seat of bromelitin, are only too liathe to develop bronelorpmeunonia. The aypration of solid shostanose and inderiat duriner anesthesio, the mathene of the ferments of hatmormage, small embeli, or timally imparment by the
 dhetion of this eomelition-bromblopmemmonia,--whith not infrephently proves fatal.

 the antion of this drug for some veans, has shown that it prevents eomplications and

 may he alministered night and moning in the form of an embin with milk. 'The

Nhegrist: of the plamonary eironlation, which eloes not yield to treatment, is
 risk of all operation. It is slealt with in the followings summary :-

 - manen : hat there ix coasiderable diversity of "pinion as to the apliation of the ancesthetie. Jany pratitioners do mot hesitate to anaenthetise a patient who is

 the urdeal. Buerything deponds. however, on the ratent to whinh the heart is -ompetent to cope with any inereased demathats which may be made on it, ablitional

 little importanore.

 taken under a weneml anesthetic. Jarked renons congention, even without ang diseoverahle rardiar lesion, indicates atmall more sorions conditim. Wir have mot infregrently seen rases, for example, of obstruetion ramed hy endargement of the
 [minmary and fencral cirvolation.

Katzenstemb has deseribed an eflertive method of texting the function of the heart prior to opration. He phts a comsiderahlo foree of resistance in the eomerse of the eireulation and olserves the resultant etlere on the arotion of the leant. In at normal heart, the functional activity is mantained nithemt any inerease, lamally with a decrease, in the heart's contraction. Insutheiency, ont the other ham, is alown by ath increase in the pulse mite with a fill, instead of it rise, of home-presure after
 to 3 minutes.

We ham once an interesting case of atheromat of the comonary arteries in a woman who sutfered preat distresis after smddell movements, and died suddenly a week after
 was imbinated hy a mated diminution in the pulac-rate whereve the patient mased
 wortly symptom to find a ronsiderable increase in the phlae-rate when gro ter demathes are made on the heart.

Consiberable alteration in the freguchey of the heatis eontruetions under increased stratin affords a viluahle means of fomming an opinion on the ettionemer of the aletion of the heart, in rases of dilatation, in castes with toxie changes in the luant musele, in basedow: disease, and in infertive diseasor, in cases with athromatoms changes in the combary arteries and their results, and esperially in rases distinguished

[^0]by the presence of fatty heart. A practitioner not infrequently sees death oreur with mateomutahle mpility in comucetion with somewhat prolonged anesthesia and severe operations in stont preople, chicfly as the result of impaiment of the leart musele by poisoms and ferments both during and after the operatiom.

The hiva-loocei apparaths is ant indispensable means of extimeting the hoonpressur:s. When it is urplied duning rest as well as after exertion, an even better indieation is ohtained of the efficient action of the heart. By the simmitancous use of the Biva-lincti apparatus and the -phympraph we find the average pressine in robust

 the reverse.

The ne of the Riva-herei instrment met only gives nos valualle infon mation regarding the strchigth and recistance of the heart hut alsu indicates the state of the vasumotor centre. We have twiee seell patients "ith slight manifestations of Addisonis disense' die smblemly, where a preliminary estimation of the hared-pressure might have inducel the surgen to lamse in his conleavom to bring the opreation to a suecess fin issuc.

The emadition of the veins nust alons b_{n} examined before an operation is madertaken, so that sulden aceidents from this somre may he prevented. Carefnl attention must l^{2} paid to variees and thromboses in the hower extremities, as the production of thrombuses and embeli is assisted hy the action of the anaesthetice, the fixation: of the patient chring the operation, and the penition subsegnently assmued, as well an hy the action of howel ferment and other poisons.

Lennauldor has emphasised the necessity of elevating the legs in the eases we have instanced. It is even more inmortant to see that constriction of the lower extremities by straps is avoided and that the legs are not allowed to be left in suxpense during the operation. The leyss mast he massuged while the patient is in bed, and completely. swathed in tirm Hamel lambages lefore a foot is allowed to be put on the gronnd.
(6) Preparation with reference to the function of the urinary ongans. We have already alluled to the necessity of the mume ohserving that every patient's bladiler is emptied lefore erreration.

The efficient action of the kidneys must also Ine extimated ly eryoseopy of the boon and urine. Since Komanyi's inmurtant discovery, this is recognised as an essential iteu in surgical opreations.

The kidneys play so inpurtant a part in the elimination of all poisons present in the blowd during or after opreration, even if they are only due to the anasthetie ur derived from the alsorption of effised blood in a plurely aseptic case, that the assurance of the patientis progress to revenery can only be eertitied when the kidneys are found to be abting eftiviently. I thorongl examination of the urine must alway: he undertaken by the assistant before every nieration.

It is advisable to stimulate the kidneys by administrating fluids ly the montl, and by sulneutanems or rectal injections of normal saline, in order to ensure a rapid exaretion of the texic problucts that have been set free in the tissules as the remult of the operation or the matter achministered.
(b) Lastly, there are a few weneral comditions which must be regarded as contraindications to merative interference.

Besides such pathological comblitions of the hood as permeions anemia and lencemia, diahetes, Chlison'x disease, the staths thymiens and lymplatieus are some of the most frequent cansess of sulden aceidents after plemtive interference. In these "ases the opration ean only be saffely undertaken after the patient hats madergone prolongel treatment sperially adialted to the condition, e.f. the tratument which has
 curbonate till the reartion of the nrine is alkaline) which, muthelis mumemesis, is no less indicated in rertain ambemias, Adhlisonis disease. Baselow's disease, aud status lymphaticus.

(b) Preparation of the Operating Room

The surgeon will lae savel every diftionlty if he follows onf :alvie and operutes
 be done when one has to oprerate in a room which is haed for other pmrpenes.
(1) The room mist tre completely chared of all piewe of finnitme (ineluling the ehandeliers and entains) whicla are not repured for the "preration. Lii articles that eamot be remowel, e.g. stowes, fireplaes, ete., minst he cowered with harge damp elothe. The fowe null walls atre to lee waslod with somp and leot water and the ceiling
 ensured, the rome shombly lowed till the performane of the "peration.

The disiufection of a room preparatory to operation may have far-reaching results. So one wonld eber select a rom in wheh there hand bern a base of infections disense. Disiufection of the walls with suhlimate, mathilic, or furmel newesarily gives rise to sapmors which mast ant injurionsly on the patient daring a longe opration.

We were onee askel to mperate in a rowoll whidh hat beedn sh thoromghly disinferted with formol that it was alment immonsible to betathe in it aren atter a thomgh eourse of ventilation. The effere of surh an athemphere on the langs of all masthetised patient tan ine well inaginemb.

Mechanied chamsing is ull that is rexpired, hatt it must tee of at therongh nature. For an ordinary roenn, strulhing with skit and hot water, or with breal (Fimardh), is more eflective than disinfeetime with corrosive sulbinate. The elief matter for attention is t^{\prime}. "In dhat slomild he left whind ran he disturled and fall on the Operating table or dreswings. It is therefure sultioment if the tablen and elmire whieh are th le hsed are washed with soap and hot water. Disinfertion by moans of autiseptios is only harmful. lefore any piece of furniture is bromphe intu now it must tre empletely eoverial with sterilisell thwels.

One thing mast be maleranol, and it is this-the rann is to the emptied, thormghly washol from corner to comer, inchating all womieen, ledgen, ete, and must lie then cloned.

(c) Preparation by the Assisting Staff of the Materials required for Operation

The knowledge that all infective germs can te destrayed by sufficient beiling, and that all materials which have heen etfectively hoiled are remeleced steribe for surgical gurpmes, has enormously simplitied the preparations for an operation.

The nuse who is entrmsted with the preparations has to be informed that all the materiaks whid are to be need in an operation are to tre previmoly builed for a time ranging from ten mimutes to two loners, or, ats an alternative, are to be placel in a carrent of steam.
(1) In the first place a large momber of sterilised cotton shets are meeressary, a monher sifficient to eover completely all the fimiture in the nerating chamber.

If one is mot sure that, in apite of wasling, dirt will wit the foreed through, "impermealle" washel in lukewarm water monst he phaved muler the chothe.?

Similarly the ehothing buth of the patient and of all thome taking part in the operation must be cased in sterile eomeringe so that only those parts-anch as arms, hands, and face, which can l_{n} thromghly washeel, are left mencored. In operations athout the heal atul face, the smalp ind heand mant be shaved, on that mo hair can come in contart either with the instrments or the wome. The math should be covered with a luriled ruhiner eap over whels a sterile bathlage shonth be apdied, to prevent any lair from appearmg rombl the efiges.

[^1]The putient's face munt ine concealed by means of a sereen (Fig. l), i.e. a eloth suspended from a niekel-plated how such no we first intronlucel for nse in goitre "perations. "Drop" infection (Flugge) is therely preventerl shonhl the patient vomit, eough, or sneeze. The mont effective sercell is compansed of cloth, limed with wadling, so that no deleterions matter r on oltain m centrance. This is as important a preantion as enveloping the heat nod face of the surgeon in a mask like that of at Turkish woman. An opemtive mank is ouly effective when the month is covered with a hayer of wadling (Menden de Lemon ${ }^{1}$. If the surgeon is sutficring from a colld, he shoul 1 protert his mose and month effeetively with wadding (Leonis helmet).

We lave often been interested in watching un operation where the surgeon was envered up to the eves, while his assistants, who were rharged with the sulervision of instrments, wahs, mul ligathres, and for whom surely masks were ntill more necessary, were unproviled with so important a paraphernalia. In shelh a case it is

Fin: 1.
plain that the risk of infeeting the womd ly wheaking or eoughing has not heell properly appreeiater.
(2) All compresses, swabs, and landages which come in contact with the patient, as well as the gloves of the operator and his assistants, must he boiled for an hour and a lalf, or sterilised by steam, previons to the "pration. They should le hoiled in small separate hondles, only to be opened imm it only lefore use. Swals and muslin eompresses shonld be bwiled in -ats per cent 1 b- .. ir igical salt solution.

The operation sister should he trained to paek :le bundex so that hy simply unfolling the wrapling immediately before the operation, the contents can be sprean ont at onse in proper orler on an aseptice surface. The :heet for spreading on the tables should be patcked on the ontside of the hunde, which contains separate pat kets of large and small gamze dressings, swalns, gloves, Irainage-tules, threaded needles, and instruments.

[^2](3) The nevesary instrmments nre aterilised in a seprate conmpirtment of a

 to blunt the edge.

When ome has ue, suecial apparaths, the instruments are wraplyed in palluge and
 are melone. 'The instruments, whieh should lee kept entirely free frem dust, are

 Ine further coverel with aterike galle. . Ifter an oneration the instrments minst the Wanded in sula and water, afterwards in hot water, and finally Iriod.

(t) Sintmes, ufter havine the fats remesed ly sabille fur twelve homrs in ether and twelve lemes in ateohol, are luiled for tive imimutes in al per wht wolntinn of perchlorise of merenry, hensely wommen onsunds with ehan hands protereded by sterilized towels, and phared in fach perchloride in which they are again luibed for
 best left in the solution in the ghase vessel in which they were levibel. To asoid the tromble of the ading meedtes at the opmation, they may be theated leforemant, arranged in order, and wrapped of in one or two hayers of sterike gamze. They are
 in the ganze in which they were luiken. The opreator himself murolls the gatlae and takes the threated needles come after another as they are regnirel. Ligatures may be - healt with in a similar mamer.
livery theatre burse most the tallight that she may mily handle sutures with I-rfectly cham hames and sterilised gheves. It is difticult to threml needles with mblier gloves.

The sargeon amel his assistants bunt exercise eqgal care, and never hamethe the
 are the mest servievalite.
(5) Drainage thleev, like the sutures, are buited for ten minutes in 1-1000 perchleride, in wheln sthution they are retained and from whid they are lifted dirent
 lefore the operation and heilal or steathed for one mimuts. The surgeom himself then morolls the gatize and hays it on the sterilised sheet moverige the talle.
(ii) I'reparation of sterile plyysiolugial salt solution. 1 - -i.) per remt salt solution is prepared leforehand by builing for anl home in a kettle with an owerhanging lid. If there is II" suitalle vessel at hamd for preparing large quatities of solntion, the
 inmmediate covering of luiled eloths. Iate of the saline shomble te prepared some

If uos suitable apparatus fitted with a solerenk is available, a latle with whiels to verve the lotion mast lre lwifed and kept immersed np, th the handle.

B. THE BEGINNING OF THE OPERATION

(d) The Position of the Patient

 the segments of which eath he raisell or lowered so as to atter the jwition of the bonly. Many tabler, heweser, dumotways fultil the eqmally neereswry combition of placing the patient in a comfortalay prition.

Tis nttain this emb, it whould the pessible quickly und eaxily to seerure the legns move the knees, to place the urms mul hame clome to the lxaly and fasten them securely withont hurting the putient. Thim pesition of the hands anel arms is speeially alvomated by hothe of Breslan in order to prevent anewthetic parexis, and we agree with him that it is molvisahle that the arms shonald not lise fixed above the head.

In addition, the Trendelenhurg pwition mont le readily avaluble, for in many lapmotomiex it is necessury to displuce the intextines mowards townta the diaphragni. This is the chief valne of the 'Premblemburg position, hat there are other important prints in its favour.

Dhring masthexia, when hargugeal refles is umolished, it is of importaner to
 hangs. All Hluids shonld gravitate to the pharyox and month, from which they can rembly esenge or the removet. Elevation of the pelvis is therefore of sperial value in preventing anpiration premonia in operations in the region of the month, pharynx, hove, and harynx.

The Trendelenlmrgy $\mathfrak{l}^{\text {position }}$ has the additional advantage of peventing cerelial miemia hen the bowel-pressure has leen reducel either from severe loss of hown or by the use of an anexthetio such ns chloroform. Its advantages are so evident that the Trendelenhurg position has freprently leen overdone, expecially hy gymerologists.

One necassimally sees the plesition alopiten in operations with the pratient suspended almost vertieally. Kraske has drawn attention to the dangers of so
 ou his head for half an hour to an hour withont his cirenlation being verionsly atflected is obvions to any one who hats 14 knowlodge of the meelanies of the cirenkition, and who has witnessed the cophoms veloms hemorrhage associated with a tlepenlent ansition of the heard, as in hose'× opremation.

Kraske instances twa etsees of death excurring from strain thrown on a heart alrady: wakened as the result of myomeditis, withont the nse of ehloroform. Eiselsikerg and lhatrsen have also ohserved apoplexy resolt from the employment of the high pelvis position. An oprator mant therefore be carefnl mot to elevate the hips withont dhe consideration in patients whare obese, or who have disense of the heart or vessols (arterionelerosis). Such putients, apart from those muler oleration, can often oltain sleep withont respiratory embarrassment only when the head and shonlders are elevated.

Further, in olese perwons, Kranke has pointed ont that the fat-liwlen omentum may slip Hpwarls, aml ly interfering with the portal eirculation give rise to haemorrhage into the stomach. It may also be remonsible for intestinal obstruction by dragging on the colon, of which he has seen one fatal case. The onentun shombld alwas be replatel after a harotomy even when the patient has heen oropying the melinary prowitom during oneration.

The position in which the shonders are raised and the feet lowered is of less frepuent neressity: We regnlarly employ this $p^{\text {nosition }}$ in operations on the thyroin, whie Horsley recommends it for oprations on the skull and bram, its object incing to diminish the hemorrhage from the veins in the head and nerk.

Ele vation of sperial parts of the lomly is frequenty of great assistance during opreations, experially thone on the gall-hladder, stomath, and pancreas, when the epigastric region is nised, and in kidney operations, when the loin is elevated.

Iroprer preantions mast always I_{r} taken to keep the patient's looly warm, for which purpme we nise a table heatell ly hot water. Krounig embeys heat direetly to the patient ly means of sixteen elertric lamps placel muler the ciprating table. Henke has showin experimentally the prejudicial effeet prexheed by conling of the louly during an ofration.

To aroill this loss of heat hy owerheating the seene of operation as was formerly drme canmot be recommended, hecanse there in too great a variation in the temperatures of the operatime rom, the corridor, and the bedromin. It is alon inadvisable fur thee surgeon amil his assistants to olrerate in an atmonghere charged with moist heat like that of a Turkish Math.
 direetly : the clange rapilly the pasition of the whone or if apecial parts of the lanly:
 mull lastly to give comint to the pationt.

(e) Asepsis of the Patient and Operators. The Final Cleansing

 is prepared the hay lefore the "prevition as we hate desoriluel. The surgeon and

 ont previous to the operation. The ompratir anil his aswistants mum divintiet their hamels inmeliately after contart with infertise matter, such as feres, mumens
 immersing them in an mutivetie, and afterwats wanhing them theronghly with wajp inll wattre.

This is the explanatim of our hietmen that gheses shath lee wow in the intervals
 contact with infertive matter will he preventerl. Bint when such matere las theled

With these premutions, the thal timaning is initiated ly wanhing all parts of the laxly that are left expeserl, experially the fate evolicows, heard, and lmir.

 a somewhat warmer strean of water, withont the map.

The chicf fanlt at this stige is that suthicient care is not consured that the
 It is not sullievent th prrify the petient:- akin only in the aroa of the opration: every part that is mot entinely emorem most be as conefnlly deansed. finther,

 III recess hetween thom and the pulp of the tinger. It is then an cany to reten the m with a mail-hrush amb sump it is to wash the reat of the bathel.

 Warm sterile saline solution, and tinally eleansel with alemhon, which wemes

 gimee. It is more advisible. therefore, to reanse the patients skin with ether after

 cess interferes with the action of the aleohol. F"g.g. \because illustrates the stanl we have
 of alcohol and sterile water. Wi. wond , lireet attentioni to the suall rublere capses attached to the "Imer jars, which are slijpen weer the stopereme whet they are

[^3]opened and shut. The brushes, like the rubber caps, are kept immersed in :s per cent carholic solution in one of the three basins.

Antisepties do not come under anrey in in aseptic operation. They are no

Fif: 2.- Ohe of the glian vereds contains five litres of warm aterile nalibe solution, the other is thed will 80 g per cent aloobol. Eued has an ebply hasib moter it. The thimb hasio contains the nail-hrushes in $1 \cdot 20$ carloolic solation. In the smatl wiwh, the roblere cips. which are litted over the glans ressels, are kepl in $1 \cdot 20$ arbolie when not in 11sis. more effective than the method of cleansing we have described, and they are oftell responsible for their toxic effects and cansation of eczema. Soaking the shin of the patient and of the operating staff in corrosive sublimate, carbolic, or ionline is only to be adopted when previons prepaation has been omittel, or when the disinfection in considered to have heen incomplete. This will be discussed in a later chapter.

During the conrse of the pleration the hamds shonld be frepuently dipped in warm sterile water to remove any hool, and washed in 50 per cent aleohol. If the latter solntion is tom strong and atfects the shin, en per rent atcolol, as propesed hy Sollaffer, may be nsed instead, the hauls lecing afterwards dried with sterile ganze.

It is neecsiary to nise cormsive mhlimate, matmic, or lysol miny in case of the hands Incoming infecterl with pms, the comtents of viscera (fares), or serretion from a mueons membane. Then, the employment of an antiseptic is neressiry, lout it must always be afterwards remowi from the hamels with sterile water. As it is impossible to foresce such casess of infection, it is alvisalle to protect the lands) with rubber gloves, which can le dipped in an antiseptic fron time to time and then rinsed in sterile water.

Whenever a ligature has to be appled, it must omly be handled with sterilised gloves. Cotton ghoses are nseful for this purpose, and are much more pheasint to work with than those made of ruhbur, eipecially when the tingers have to he ntilised for inserting the medle. The eroves shond be domed after the heeding has heen arrested and the hambs have been eleaned. By this means the ligature is prevented from coming in diert contact with the skin of the surgeon or that of his assistants.

(f) Anæsthesia

1. Crumerl Amexthesin. It is assumed that a thomong examination of the pratient has heen mate prior to the alministration of it genemal anesthetic. If there are any contraindications to a general masesthetic, local anasthesia minst he cmployed, or if the former has to be milministered, the attendant rishe must be carefully considered. All emblitions in which the circhlation or rexpration is serionsly affected are to be regarded ats contraindimations.

Mikuliez ${ }^{1}$ has given mu almimhle acemut of these comditions. His riews mad onrs are in complete correspomblence. (ieneral masthesia is dangroms in nll cases of heart disease where the efficiency of the cardiae mensle is serionsly inmaired. Cardiac

[^4] a fatty dequencration of the heart with myonarlitio and a weak irregnlar pulat.

We wruld lay more stress, however, tham Mikilie\% doex, on the danmers of thome
 acompanied hy ertema and eranosis. halluled in thene are certain canes of dilatation of the heart, expecially of the right side. marsed emplysema, marroning of

 Basedow's diseave.

 respect. Diabetes, basedows divene, it. - stathe thymions and lymphaticns, as well as mell renal conditions characterised hy a diminished exoretion of urinary whlds, are calses in which a general andenthetio incilves a metain anmunt of risk.
 suffering from any serions impaiment of the circulation on respiations of from a toxaemia, either of an acme on ehrmin matme.
 the stomach is empty, and the patients henly hept wam, amatheresia with ethere (if we assume it is properly administerel) presents an risk of ant ace indent. The benult

 insisted on giving the patient chomonm, becanse in all his. longe experiente he had never had a death resnltime from its administration. The patient, howerer, died luefore the commenement of the opreation.

Let in many plares chlomoform is ahmest exelusisely emploved. In a small town where we had a revent "peration, the nise of "homoform had to herement tha as there. was no practitioner at hatud who had any kinwledge of ether anministration.

Inexperienced anaesthetists are inclined to give tow mume ether, while delarving the admixsion of a necesary amont of air. We holl with Mikulio\% Hofmanm, Sindeck, Kohlank, and others, that the suffiontion method of giviner ether shemble ho. almuloned in fatome of administering it in sumall dowes with free aceress of airs. Tho disadvantages aemompuing the administration of ether, suelh as excitement, omgh, and severe walivation, will then disalpear.

Given aterorling to Hofmamis dryp methorlo i.e. where it is drolned on a mask simply cover with gataze (with no waterprof material), the alministration of ether

 aplears lefiore the stage of exectement and previnas th the eomplete lass of eonamons-
 ('zernys mask, which consists of a rylinder men at lonth funds with soveral layers of thamed stretelhed acposs it , into, which are pented 1 to $1 \frac{1}{2}$ mures of ether: The patient is repuested to make deep inspirations, amd the mank, to which a puemmati-bare-piece has been attached, is pheed wee the mee and mouth, whon witer a few inspirations the intoxieation stage oremrs. by this mothonl. havever, a wery mall Itantity of air is at tirst almitted, so that the ghestion arises as to whether appliysia. to some extent, is not promberd. When the stage of exritement mipears, the mank should be at once removen, at whiel stage Kromecker takes the mank away and lnegins the speratim.
 recently sim a patient die of suffioation when this preemation hat heen omitted, a sudfen attack of vomiting of a large ghantity of the contentes of the shmarla leading to "appiration."

 arinsation and contimes for a longer peliond.

This method, though entirely unattended ly danger, has the disadvantage of not inducing suffieiently-deep anesthesia in many patients, exprecially in males and others of an excitable temperament. It cannot be naintained that "ether-intoxication" produces anesthesia when the patient is only enjoying pleasant dreams and when he makes vigorous cjaculations. Witzel and other surgeons who favour the drop-method employ, as a matter of fact, a mixed amesthesia.

Witzel and Hofmann adnimister an injeetion of morphia ($\frac{1}{6}$ to $\frac{1}{2}$ grain) one hour previons to the operation, and a larger dose if the patient has become inured to the drug. Witzel's uniformly-good results lave to be attributed to the addition of the morphia. Kuttner ' also, who is accustomed with success to operate under simple ether-intoxication (in Braun's clinic), regards "the combination of ether and morphia" its essential. As Witzel very properly remarks, Nusshaum's methor of producing morphia-chloroform anastuesia does not eorrexpond with his own methol since he (Witzel) gives the morphia one hour previous to operation, as recommended by Hiedel and practised by Juillard.

A mixture of ehloroform and ether can also be employed. Whenever it is evident that the necessary degree of anasthesia camnot lee oltained by means of ether alone chloroform shonld lee administered in drops. Kionka" refers to the experiments of Honigmam and kochmam, which show that the anesthetic properties are materially raised when the two anestheties-ehloroform and ether-are eombined. Willy Meyer,' on Weidig's authority, asserts that when ether and chloroform are mixed, a new ehemital comnound is produced whieh has a special molecular weight of its own. The addition of -2 to 30 drops of ehloroform is sufticient to induce sleep during the administration of the ether. After a single experience of the method, we canuot recommend it as entirely free from danger. The only fatality attributalle to administration of the anestletic which we have had in the comre of private practice during thirty-five years oceurred when chloroform was used becanse the antenthesia produced hy ether was not sufficiently leep.

When the combination of ehloroform and ether is to be employed, it is necessary to follow Braun's advice and use either his own or the loth-Driger oxygen apparatus (Fig. 3), which prevents the administration of the anesthetic in too concentrated a form. In a review of Dumont's handhook on? ineesthesia, ${ }^{4}$ liose deelares that the introduction of Jumer's apparatus is the must important advanee that has been made in the matter of amesthetics.

On the authority of Honigmamis preliminary work, Bram emphasises the fact that dilute ether vapour does not produce cyanmis or stimnlate the secretion of saliva or muens. The latter results only occur when concentrated ether is used. With his alparatus, which is adapted for the alternate or simultaneons administration of ether and chloroform, Brann extimates that on every orcasion on which the !ag (which holds 500 c.em. of air) is emptied on inspiration the air the patient breathes contains 1.7 per cent of chloroform or 6 per cent of ether.

A great advantage of Brann's apparatus (Fig. 3) is, that by the addition of a catheter it ean be nsed at once in all operations comnected with the newe, mot.th, jaw, and pharyns. Both Rose and the author (with Armdis apparaths) drew attention to this fact so far hark as leis.

Finally, there is another anmesthetic of a mixed nature to he considered, viz. that in which ethyl bromide is used as a preliminary to the administration of ether. We are well aware that deaths have occurred from the use of ethyl hromide, lom they seareely outnumber the fatali.ies for which ether is responsible. Witzel has deseribed in full detail a fatal case which occurred in the practice of one of his colleagues. It is a signifient fact, however, that we have never had a simgle aceident in the thousunds of cases in which ethyl bromile was used to induce the anaesthesia. We will certainly never dispense with its use, and we regard it as n less dangerous

[^5]methol than that of administering chloroform in mmeasine quantities. I recent death in the Canton of Bem was attributed to the nise of ethyl bromide in the case of a child affected with status thymicus.

The use of ethyl bromide ealls for a doser attention to contrambieations than doess that of ether alone, hut the same demand applies to the mse of every mised anesthetic, such as morplia, lint more experially elloroform. It is satisfactory to note that it is unneerssiry to administer a mixture insteand of pure ether when dealing with children or feeble anemie patiente, who ean ln readily bronght umber the inthence of the latter anesthetic. It is only in cases where the action of pure cther is not etheient, when administered to prwerful men or excitable persons with a high bowdpressure, that ethyl hromide provides an excellent means of inhlucing rapial and quiet inkesthexia.

Mang years ago we recommenderd, and for at long time monle it onr pateriae, that the anesthesia should eommence with ehtoroform and be eoheinued with ether, in orrer to bring on sommel sleep rapidly in strong and resistant patients, who ronstitute a large manker of those who rome under opreation: for an liram hat prowed -. once andesthesia is oltained, the main rity of patients can he kept molar its inthence by merely giving small but repeated administrations of ether. We are now romsined

It may le mentioned that one of the lant deathe we laind burler chloroform oremred in an old woman who hand previonsty received an injection of morphiat. In this cane the aggregation of the poisoms semed to loe ropomsible for the fatal effect of a minimal dose of ehbroform administered in hels.

Witzel, in whose method morphia is the chicf agent, has abopted and even exaggerated our practice of giving stimulants lefore लperations. One or two hours before operation le gives a rectal injectonn of strong tea with red wine and bramb, ome onnee of cach with five to six drops of opium, or atont a puarter of a wineglass of brandy to the simi antity of tea and wine. For many years it has leen our practice to give a smati ap of tea with bramy half an hour or an hom Infore the administration of the amasthetic. With the same ohject Lemander gives at hyor-
 nil ($1: 1$) half an hot before the opreation. lomeet also gives a sulcutaneous injection of hrandy (with one-third to two-thime of water) durimg the opetation; while kimmel gives large dases of bramdy.

The amastletic should be administered with attention to the following eonditions: The patient, if he has been properly prepared -if his stmach is empty, and the mouth and pharynx have been disinfected-is placed upon the table, care being tuken to see that cooling of the booly is prevented and that respiration is quite mimpeled. About thres quarters of an limur before the operation he is given laff
a eul of tea，with two tablespormfuls of red wine or branty，which，in the eatere of alcololic sulijects，is perlapis lest administered lyy the rectum，after Witzel＇s method． It is only in the case of powerful allalts that we give a lyppodermic injection of morphia（ n_{6}^{1} to ！！gr．）Italf an homr hefore operation．

The antesthesia is induced with ethyl bromide dropmed on a special mask，it c．e． being used for women， 20 to ：30 c．e．for robmet men．Nareosis is obtained in from 60 to 90 seemuls，after which it is mantained with ether administered ly the drop methorl，or with Bramis alparatus．In ehildren and weakly sulgeets，ether alone should lee used from the commenement of the operation．In the latter case，if the mixture of ether and air fials to prolnee suthiciently－delel anesthesia，diluted chhoroform vajme may be given for a short time with a regulating alparatis，suld as that of Brame or Roth－1）rigere．

When there is any reason for ansiety it is an excellent practice to combine the influenee of a loral anaesthetic by means of an injertion of cooan when the patient is muter ethy bromide，or in the stage of malgesia which，aecorting to Smbeek， tollows the early arministration of ether．The pain of incising the skin cenn thes le prevented，while sensation in the deeper protions of the womed is destroved hy． intiltration（Selleich），or hy endmenral injections into the expesed nerves（Conshing）．

Lemander generally combines lowal anasthesia with repeated administrations of ether or ehlorofirm in eases where sensitive tisanes like the parietal peritonemm lave to be divided or torn，and again when the wound has to le elowed．

In maintaining the anesthesia it is of advatage to adrere to the minimmon dase． Yonng and inexperienced anesthetists are inclined to over－administration：and，if the truth were told（r．Mikuliza＇s interesting statisties），it is chiefty from this oner－ stepping of the permissible dose that deaths inder anaesthenia weenr．＇＇The chief
 Wihlgenuth，and the present Roth－l）riger apparaths）i．it it makes it imposible for an inexperiene practitioner or an muphalified ma ．a to exceed the anesthetio limit．The drop method posisenses a similar advantage，but it not infrequently hecomes a＂pouring methol，＂as a result of inexperience or youthful zeal．

Insensibility to pain is the test of suttieient anesthesia．The large majority of anesthetists consider it their duty to take observations of the expunsion and con－ traction of the pupil of the eve，the disalymanere of the concal retlex，the variation of the $p^{m l s e}$ ，and the relaxation of the museles，very interenting experiments in the amesthetising of amimals，but not alvisable in the ease of＂perations on the lmman subjeet．The prodaction of amaligesia is the only ，bljeet in view in the latter cine， althomg it is a matter of some difficulty to convey this instruction to the mind of a young and impulsive practitioner．

丷．Lexed Amesthesin．Before depriving a patient of the lenefits of a genemal aniestletir，a surgeon mast decide umber what combitions general aneesthesia can \ln ． dispensed with．The first repuest made hy the generality of patients is that they may be ahte to＂sleep＂laring the operation．Not only do they wish to he free from pain，hut they want to be prared the excitement usmally entaiked hy ant operation．The amagesic effects of the early stage of ether nareosis will often prove sufficient．We agree with Mikulic\％（lor．cit．）aml Kïttrer that on sensitive people the peychic eflects of the excitemont associated with lowal natesthesia may have results more dangeroms than those of a gemeral amesthetic．

Local anasthesia has invariably to he carefully eonsidered where there are comblitions present which remler the administration of it general amaesthetie dangerous， as in cases of adsaneed disense in internal organs，whod changes，low bloompressure， intoxieations，diabetes，Addisen＇s disease，advanced Basedow＇s divense，seppis，status lympmetiens，and diseases of the cardiae musele，liver，hoth kidneys，ete．When an operation cannot he performed ly means of local anasthesia，the means may he combined with narensis，as we lave already deseriled．

The question further arises－To what extent should general maestliesia be

[^6]restrictel (provided of course it is affected by a sife methonl) when there are no contran lications to its cmployment? Sehleich, who has won many adherents to the use of local anaesthesia (after Koller had enriched the world in $1 \times 6 \mathrm{l}$ with the diseovery of eocain), hats evidently far overshot the mark in regard to the indications for its use.

Ninor operations may certainly le undertaken muler lonal anesthesia. It is, however, just these so-called minor "preations that make pationts fight shy of further surgical measures which may be deemed necessary. The local ansesthesia froress is not always so painless as its desrription would lead us to lolieve, and rven Schleich candilly ahmits that he occasionally has to have recourse to the use of the chloroform mask. If a patient has suffered pain, for instance, from the excision of a small primary cancerons tumour, he is almost certain to refuse to allow th. removal of the ghands to be undertaken subsemently, at the prener time.

Further, there is the risk that, in removing a small matignant primary tmmour with loeal amesthesia, the operation may not lue sufficiently thormgh. Ficheich, in a monograph on the sulject. mentions is eases where maligmant growths were removed hy means of a local anasthetic without recurrener of the matarly, hat ene looks in vain for the exact details of the "perations, whed mght sinely tw lue pronluced in dealing with results of on marvellons a deseription.

If the thoroughess and aceuracy of a surgioal mutritaking are at ath prejucheed hy the nse of a beal aneesthetie, general ansesthesia must lne sumtitutel, provided its nse is not contraindicated. This puint must lwe phanly moderstoni hy the physician whose attitude in regard to carly opreation at the begiming of the disease si) often inflomees the ultimate fate of the unformate sufferer from eancer.

The full signitimance of the worts "loeal amesthesia" is, in our opinion, most clearly demonstrated when the analgesia is problueed at the site where the anasonthetie is injerted. In this form local anesthesia was tirst exelusively developend, and was bronght into most extensive nse ly Reclus and others. It is still the prineipal methol of rendering the skin insensitive prior to incision.

At the present time this methon is extemsively employed, exproistly in th. majority of onr operations on the thyroid. It consists in intiltrating the skin ane subeutanems tissues along the line of ineision, which is marked on the skin ly a fine sorateh with the point of the knife, so that the rena: cant lue injected with aceurary. An angled camula is used, and I to $t 8$ grmmes (30 to 100 min.) on :hore of a 1 per cent solution of rocein in normal saline are injecterl, the solution lecing sterilised by boiling once. It must be remembered that coeam lowes a considerahle part of its. ansestlietic eflece when heated to briting point.

The needle is inserted immediately unler thre skin, sum the injeetion is makle while the needle is gradually withdrawn, the fuint, at the same time, Incing kept in eontact with the skin. In a minute the incision can he made without pain, and without any risk of poisoning, as there is not suthicient tinu- for shaspotion into the hoorl stream.

The intiltration anesthesia of Schleiehs ${ }^{1}$ is quite distinet from this propess, as he dnes not regard his methol as a corainization of the tissnes in the same sense as in the ohder methonl. Decording to Schleich, the $\because \underline{\sim}$ per cent saline whion he uses produces analgesia by prely physical means, the encain heing added only to make the process of intiltration painless, It is the flooting of the tissues with a heterotonic tluid (\because ger cent instead of the normal 7 -5 or * $\mathrm{I}^{4} \mathrm{r}$ cent) that canses loss of sensation."

Schleichis injeetion consists of a solution of encein (1 tw 1000) iथ satine (2 to 1000), with morphia (4 to 1000). I quantity not exceeding 50 g . (13 whees) of this solution may le injected without harm, till an wedema similar to that in aent. Bright's disease is produced. When repuired, the solution hay be strengthened by the addition of a trace of tropoocain or diluted to a tenth with saline lotion, when

[^7]a very extensive redema is desired．Sehleich admits that he has often seen＂the carly stages of cucain intoxieation＂produced by these means．

It＇s only in exeeptional cases that we employ Sehlech＇s method．Like Bram， we consider that so marked an udema，as well as the injection of heterotonic fluin， in what Braun calls＂＂Quellungsanaesthesie，＂eannot fail to impair the tissue ritality， and may retard the healing process．It is true that in Schleieh＇s solution the inritative effects of the hoterotonic solution，so far as pain is concerned，are masked ly． the addition of comin．evertheless the irritative effeets are there．C．litter，＇in diselnsing the methol by which nature relieves pain，has shown that inflanmatory exndates．on acerunt of their high coneentration（with a freering point of 0.76 comparei with 0．2f of urnal sernm），indice a reaetion with hyperemia and cedema till the difitienee in coneentration i－equalised．

In our opinion the older methowl of prolueing local anesthesia is sutticiently． effective，because the deeper tissmes and organs are mainly insensitive．Lemnander：－ deserves great credit for his excellent work on the sensitiveness of the viseera and tiswues，in which he show，that a large numher of deeply－sithated organs am be clealt with without any form of anmesthesia．We shall refer to this point more fully in a later chapher．

A secoml reason why intiltration anaesthesia should not be carried to extremes is to be found in the inereasing importance and practical value of＂conduetion＂ anaenthexia．

3．＂Comeluction＂Amosthexsio To H．Bram＂of Leiprig helongs the credit of laring，as a result of careful resareher，hronght this methool of producing analgesia into more general notice．${ }^{4}$

If＂conduction＂anasthesia has not heen utliciently athpted by the professiom， it is lnecranse a more accurate knowledge of athentomy is reguired for its practive than ter that of the infiltration methorl．No one，however，should oprerate ing either method withont considerable anatomian expertence．bram makes nse of
 the extremities of which the majority of anatomical attases are singulirly neglectful．
＂Conduction＂amesthesia is produced hy a prinemral or－after the nerve trunk hat heen expmsed－by an emdenenal injection of an iontonic saline solution of cuatin．It is therefore essential that the oprerator must have is calable anatomical knowhetige of the course of the nerves．Following himms exauple，we hate intrenheed illustrations to show the points where the nerves will be encountered．

The metherl is almost identical with that deseribed ly．Onernt in 185s，in which constriction wats brought into nse．Krogins utilised the metherl withont constric－ tion（s．History）．Bram，however，was the first to demonstrate in the elearent manmer that＂conduetion＂anasthesia is really produed liy intheneing the nerve． trunk．and is not a variety of intiliation anaesthesia，while he further proved the thentages of simultaneons constriction，a point which had already heen allnded to be Kummer．

For＂rondnetion＂ansesthesia lios ementrated solutions of cocain are requirel， and the anaesthesia is produced mone rapidy if the limb is constricted lefore making the infection．The constricting agent need not be firmly applied，for obstruetion to the venois return is all that is necessary：A rubber hand is placed round the root of the finger，into which，in the position of the four nerves there，\because c．e． （ 30 minims）of a 1 per cent cocain solution are injected．Complete peripheral anesthesia of all the tissues is procheed within the space of tive minutes．The addition of 1 to $\ddot{3}$ drops of a 1 to 1000 solution of adrenalin aets in the sume way as constriction ly aiding and prolonging the aetion of the cocain．

The methom of＂combuction＂aniesthesia may lee employed in three different Nuys：－

[^8](1) In portions of the horly, like the hand and font, where the peripheral nerves
 or semieitenlar injection of ren"tin (Bhann .

 rembers the skin of the forearm insensitive, and a similar injection round the limh below the hneegoint has the sime etlent on the skin of the leg. The toes and the anterior part of the font are made insensitive ly an injection at the hases of the
metatarsal bones. If no cutaneous nerve has become smperticial by piercing the deep fascia in the area to be anasthetised, this area may simply be encircled hy a

ring of cocain injections (Hackenbruch). The acempanying figures after Spatelofl: indieate the site at which the entanems nerves can be treated with injections atter they have piereed the deep fascia (Figs. 4-11).
(1) Perineural Injection. In order to anasthetise burtions of the lakly where the nerves have mit yet lneome surerficial, an "priator must be thoroughly aequainted with the erourse of the merve trunks. Bram hav marle earefnl experi-

 fon the purpose of perinemal injection.

The median nerve above the wrist is reached hy intronhcing the needle from the uhar side umber the paluaris longus tembon: the nhar nerve at the wrist by bassing the needle from the uhat side moler the tendon of the Hexor cargi mlnaris.

Fila, i. Comluctinn anradial mever.

 (atter simaltehola).

The latter berve catl als, the reached by 1 mimeturing the deep faseria immerliately Inehind the internal emilyle. of the hameris (Fig. 12).

The panterior tihial nerve can be encomitered hehinel the internal malleohis b y inserting the needle elose to the tendo-Aehrillis and directing it forwardxtowards the Inene so that the vessels wenly the imer side. The external ${ }^{\text {noploliteal marse }}$ is fomme at the inner side of the limeps in the pepliteal *pace, a phature being mate muler the faselia from Wehind: while it can alw, the encomintered lehind the head of the tilmla. The long *aphenoms nerve is reached ly injeeting direetly backwards immediately lelow the internal tuberosity of the tibia. The musenloriltineons and short saphenoms nerves are reacheal l y injecting transversely haif romed the legr along at line a handbrealth alove tha external malleolns.

Nyströn and Jemmander minert the external eutmerosmere juxt below the anterion smperin spine of tha ilimm for the primpore of ohtaining skin in Thiersels suifting.

A transwers: injeetion ahove the eschow rembers insensitive that part of the scalp, which is supplied by the fromtal hatarbere of the trigeminal. Nimilarly thro handeres of the amiculotempmal, which prass in front of the ear close to the neck of the jaw, are encomateral by a transveree injection on ther temple, while a similur injection on the suッ'jut will strike the great ann small aceipital nerves. The great ocripital em le reached with
 (ather spultelullz). it has piereed the tringezins.

We agree with Halsted and Schleich that the lingual nerve ean lee rendered insensitive by a subrumous injection at the point where the anterior pillar of the fauces joins the floor of the imintlo. The point where the inferior dental nerve enters the loone is acemrately indicated by the lingula on the imerer surface of the ramms of the jaw. For the extraction of teeth, the small branches of the nerves to the pulp can be saturated hy simple infiltration through the bone ly injeeting a 1 fer cent cocain solution into the gun on either side of the tonth. An interval of from six to ten minutes should elapse before the extraction is performed (Bramu).

One side of the nerk and the region of the ear can be made insensitive hy an injection along the middle third of the pesterion lurder of the sternomastord. This
 region immediately helow this, in rontination with the plper part of the thoras anteriorly, can be rembered insemsition liy injecting the descending smprachaviontar brameles of the cervimal nerver (Fig. 1:3).

Anesthesia of the lingux is ohtained ly perinemen cocainisation of the smerion
laryngeal nerve, the injection leing male immediately lelow the pristerion cond of the corme withe hyoid bone lown to the thyohyoid membrane.

Aerording to Lemmanke, the penis is minde insensitive ly injerting both ehasal

 combluclum ationthesia (Bathe).

 " comeluction" matesthesia in the narmwer serne (Fig. It).

residue being dissolved in 10 e.e. of physiological saline. Immediately before use 1 to 3 drops of a 1 to 1000 solution of adrenalin are added. The injection shonk, as a rule, he given fully half an hour before operation.
(c) "Condnetion" anesthesia ly endomenral injection is an important snlestitute for general anesthesia when the latter is contrandiented in an extensive operation. A knowledge of the exposure of the nerve is assumed. We have on three recent occasions preformed a high amputation of the thigh lyy this method. One was a case of severe sepsis following fracture of the femme with tearing of the fomoral artery: The seeond was a case of gangrene of the leg in a pationt with alvanced myorarditis:

While the thimd was for suppuation in the kneejoint in a patient with advameed pulnonary tulnerolosis, The anterior erumal newe was exposed without dittienty in the groin, as was alon the preat sciatie nerve in the buttock, and a ler vent cocan
 rases anacothesia was immediate amb complete. In the last ease (where perhaps the cocatin had bean over-boiked) severe buming pain was complated of duriag the
 amblinjerterl.

Crile and Matas were the first to allpit "eombuction" anesthesia for the ampmeation of a limb (arm and leg). Crike has shown that a 1 per cent conain sohtion is repuired, the action of which is ahmost immediate in distinction th the perinemal injeetion. Its effects last, at most, half int hom, him it miy lee prolongerl liy the addition of adrenatin.

Crile and Cushing have demonstratel that the injeetion prevents shoek, which otherwise manifests itself by a suden fall in the blonl-pressure whenever the nerves are divided.
(d) There is still amother methenl of empheying "emmetion" anesthesia, viz. that used by Cushing where endonemal injeetions are made daring the comrse of an oneration $1^{\text {rerformed under local maesthesis. }}$

Cushing has shown that dhring an operation for hernia, the exposed tromks of the ilio-hyogastrie and ilio-inguinal nerves can le anasthetised ly endoneural injection, a complete absence of pain resulting. We agree with bram that this methon is of
 pared to anasthetise, by perineural or endomenal injertion, every expused nerve, which will suljeet the patient to sme anomit of pain if ent transersely, or which supplies part of the area of opration.
4. Syinel Amesthrsiel (hachiceminisetion). Since Mier, who introhnced spinal eocainisation, has warned ns of the dangers to which it is liable, there are few surgeons who practise this methon to any great extent.

Tuttier performs practieally all his operations on the pelsis aud the lower extremities (incluching cenes of hernia) with stovain anesthesia, and assones ms that after several years' experience he wonld rather leave the performance of a stovain injection to his assistants than he womld the administration of a gemeral ansesthetic.

Cennezai also speaks in eulogitic terms of the value of stovain in "conduction"

 cocain. Cernezzi nses it along with adrenalin, no otherwise it has the effer of
 ceut solntion in suline, to which one drop of a 1 to 1000 molution of adrenalin has theen added (Parke Davis). Stovain cam le beikel withont harm. The limit of

 C'encazi has also performed laparotemy unker this ansesthetio.

Sho-called "spinal" anasthesia romes partically maler the clasification of
 that the nerseronts in the pinal canal (which have no mednllay shath) are perenliarly sensitive to intiltation. In iujection of water and of $0 \because \underline{\underline{-}}$ per ernt salt sohntion prohneed andesthesia which rontimed for a ronsiderable time. I mhation of cocain wouk threrefore prove more eftiesint were it mot that there is the same risk here as in loeal amasthesia, mamely, of maloweption in the honnl, a risk Which we attempted to aloolish in the latter form if amesthe ia ly means of renstriction and the addition of adrenalin.
 as if it had been made dirently inten the how. That stwan can he mene readily
 "ongulation is a poin" : rematins moleciled.

Cernequi states wat st wain is precipitated in the presene of alkaline solutions, fon which reasom no alkali must he need when hoiling on chaning the syrinee. Kiapl has shown experimentally that intradural iujeetions of milk sugar ate ahsorbed moth more biphilly than when the injertion is administered subentanemisy: He also produced complete andesthesia of the contire hoty in dhes withont any symptoms of poisoning, by injeetions of oily or concentrated solutions of gelatine. Donitz, muder Bier's divections, hais shown that in man the indition of momalin to a large extent retards the process of uhsorption. Notwithstumbing this, the danger of meontrollable absorption remains a great drawhack in spinal injection,
a method of producing anesthesia otherwise so convenient, for its technique is very simple, and all the nerves helow the conus medullaris which have not yet left the eanal are reached at a point where they are close together.
M. Mori has maintainel in a very interesting work that the injection of cocain into the spinal canal presents amother serious danger, namely, that it prodnees a fall of bloml-pressure. Aecording to Crile, who was the tirst to establish convineing proof of this faet, a considerable fall in the bloorl-pressure takes place after injections in the region of the medula, but even after ingections lave been made lower down, a vasomotor paralysis of the alncominal vessels is prohuced throngh the nerves travesing the arachnoid space (Tuttier and Hallion).

In eonnection with "conduction" anesthesia, Bramn has observed that an impaiment of the vasomotor nerves corresponds with a rise of temprerature in the bart affected, but in the extremities this has no serions conserfuences such as severe bleeding.

It the present time, spinal cocainisation as a method of producing anaesthesia eannot stand reasomable eomparison with proper ether maesthesia or with local and "conduction" anasthesia.

C. OPERATIVE TECHNIQUE

(g) The Direction of the Skin Incisions

As we pointed ont in our previons editions, the appearance of operation scars is greatly improved if the incision is made in the direetion of Langer's lines of cleavage of the skin. This is especially applicable to all ineisions about the face or nerk. The fusion of the surrounding tissues does not draw apart the edges of the skin, and t_{1} " scar, after cicatrisation is complete, often becomes invisible even to a critical eye We have abundant mportunty of obercing the differences in the appearance of the sear in comnection with operations on the thyroid as some of our own colleagues employ very different methods.

Since the arloption of aseptic principles, one can afford to make free shin incisions, as the resulting sear, even in exposed parts, is always of the slightext description. Certain oprators, more especially yonnger men, in their muxiety to asoid disfigurement, employ incisions which are much too small. This is a great mistake, for malignant thmours of the faee, nose. jaw, and month have often rearred from this eanse, while in the removal of ghands in the neck ind other regions the nse of a small incision often adals comsiderably to the dittionty of the olreation.

All incisions shonld therefore be made of sufficient length and shonld follow the lines of eleavage of the skin. We regard thene as nomal incisions.

It is further possible to avoid making ant incision direct, wer a diseased forns Ir organ when the skin covering the hatter does mot lend itself to aseptic treatment. This applies particularly to the serotum, where, owing to the wrinkled chameter of the skin, disinfection is not only a difficult lant often a painful proces. Our inguinal incivion is sperially adapted for the majority of these cases, und enables the dixplacement of the testicle upwards. It has ineidentally the finther advantage that it allows one to inject the nerves to the testicle at C'ushing's point.

In the carlier editions we illustrited by means of tigures the results of small incisions in the body such as are employed as special openings for drainage tules. While these are of valne in showing how proper incisions come together naturally and improper ones tend to gale, we think it will be simpler to indicate merely on langer's fignres the normal incisions for a few onnations, and eonsider the other incisions in the elapter dealing with the speeial part (Fig. in and 16). Although the metian incision is not depieted, its use should always he preferred on aceount of the small amome of lamage it involves.

Figs. 15 and 15a.-A few normal incisions illustrated on Langer's figures.

Fio. 16.
Figs. 16 and 16r,-A few normal incisions illustratell on Langer's figures.

(h) Division of Deep Tissues

It is not enough to divide the skin only in the proper line : the deeper tissines must also be divided in such at way that no unnecessary injury is intieted. In onr earlier editions we eonsidered this matter moler the head of segmental incisions.

It is obvious that an incision which divides large arteries and veins munecessarily is to be avoided. In most cases, however, the preservation of nerves is of yreater importance, for the resnits of nerve division (paralysis) atre, as a rule, much more serious than those following ligature of a vessel: yet these are the simple points which are so often neglected.

Consider, for instance, the unsightly apparance of the neck after an operation on the thyroid which hus resulted in paralysis of the sterno-laryngeal minseles. The deep hollows that are produeed are very repulsive to people of refinement. It is far more important to avoid injnring the nerve supplying a misele than the misele itself, for with proper care the latter ean be divided aud sulsequently sutured without any danage to its function being sustained. At the most, a tendinons inseription is formed such as mormally exists in muscles which have a segmental nerve-supply (rectus abslominis). In operations eonnected with the th: roid, we therefore divide the museles high up and sulsequently unite them with sutures. There is now resulting harm, beeause there is no interferenee with their nerve-supply.

As a general rule, however, exen the segmental division of museles is not necessary. A minsele may be simply separated in the direction of its filres by hout discetion. Its sheath alone is divided, and is afterwards sutured. This procednre may be designated interfibrillar muscular division. The same prineiple is also adopted in the operation which was reeommended hy Roux and called hy ne the permuseular methonl, an operation usually performed for perityphlitis. liy separating the muscle filmes, preferably with a hinut disseetor, and holding the er', es apart with blunt hooks, a wide interval is gri 'tally oltaineel, without my harmful results. When the enlyes of the muscles are releasel, they eome together again naturally (pile Fig. 3×2 under perityphlitis).

Once the skin, fascia, and miseless have heen divided, the edges of the womul must le protected while the deeper tissues are heing dissected. This can le attained either hy covering them. with sterilised towels, or ly pulling ont and fixing to the skin with our artery forepp a layer of deep faseia or serons membrane (expecially peritonemm).

(i) Arrest of Hæmorrhage

Every bleeding peint, no matter how small, should be seenred in the line of the incixion so that the womel may unt lrecone infiltrated with hoorl. This is an important consideration ann one whieh is often distregarded. A womm that is infiltrated with blool is more diftieult to heal.

The bleenling puints, however, should not be immediately ligatured, for it is dangerons to expmse

Fui. 17.-Kocher's artery forceps. ligature material to the risk of eontamination cluring the whole conrse of an operation. The newer p^{n+t}. n of artery foreeps has the advantage that even when a large number are neeessary they are conveniently hung out of the way and do not interfere with the surgeon's movements. The variety
we use (Fig. 17) is very light, is easily applied, and takes n firm grip even in the case of dense tissues.

The ligatures should only be applied at the end of an operation-if they are then found to be necessary. Small vessels should merely be twisted. In simple operations like the radical cure of a hernia we do not employ ligatures. In the neek, however, every vessel should be tied, for in the act of coughing or vomiting even the smaller veins suffer considerable distension. Antiseptic silk should be used as the ligature muterial. A substitute for silk is only necessary in the absence of
asepsis.

(k) Closure of the Wound

Before a wound is closed all bleeding should have ceased. A collection of hoon in a wound predisposes to infection and, next to tissue necrosis, is the most important faetor in retarding healing. It is maivly due to the care we bestow on the arrest of hemorrhage that our operation wounds, e.g. hernia, goitre, or perityphlitis, are healed in the course of a week, when the patients are, as a rule, able to leave their beds and return home. The avoidance of excessive tissue necrosis is equally important. It was on aecount of the cervieal portion of the uterus being ligatured en masse that the results of suprmaginal hysterectomy were for many years unsatisfactory. In this case, as in certain others, ligature en masse is to be avoided.

In modern practice, an aseptic wound is no longer regarded as strictly sterile, for there is no wound entirely free from the presence of bacteria at the end of an operation. Staphylocoeci grow in the fluids pressed from a glove after it has been worn. All that micro-organisms require for their development is a nidus of bloodelot or dead tissue at the body temperature. So-called dead spaces are of no inportance so long as they are empty. Tissue neerosis and effusions of blood are the real sources of danger.

Primar; union by complete elosure of the wound must therefore only be expeeted when neither effused blood nor neerotie tissue has been left in the wound. If there is any ehance of blood collecting in the wound, free escape must be provided by inserting a drainage tube, which we invariably use when we are not absolutely certain that sulsequent hemorrhage will not oceur. If one is satisfied that suffieient escape has been provided for blood and serum, the rest of the wound may be closed.

For many years it has heen our practice to suture our wounds eompletely and bring out the drainage tube through a sprecial opening in the skin. In this way the least observable scars are obtained. The drainage tube may, however, he simply brought out between the stitches. Burkhardt ${ }^{1}$ has olserved that tissue neerosis is always assoeiated with an exudation of leucocyter, which sometimes amounts to suppuration. Absorption of the necrotic tissue cam only occur in spite of the exudation provided that no baeteria are admitted. Aecording to Burkhardt the process of absorption begins on the sixth day, while a conple of months are required for the absorption of a piece of tissue the size of a bean.

When one eamot prevent the necrosis of a large picee of tissue, no closing sutures must le used. For in such a case it is not sutticient merely to provide for dranage of the wound secretions as in the case of a blood-clot. Bacteria grow in dead tissue, and must te sucked out, as it were, and immediately rendered harmless. When, therefore, necrotic tissule is left in a wound, it must lee prevented from undergoing decomposition by keeping the wound open by autiseptic packing. Surgeons who are not partieular in their method of arresting hemorrhage, who are not careful to a void bruising the tisshes, and who eluploy ligature en musse, do well to make it a rule to pack their wounds tightly witn iodoform gauze, a practice whiel is still observed in certain clinics. Irrigation is only required for washing blood from a wound or when a wound has been soiled with some discharge. Normal saline solution at the

[^9]booly temperature should be nsel for irrigation. Tavel's solution canses a snperticial cautcrisation and produces a whitish diseroloration of the woum. This, of conrse, may have an antiseptic metion similar to that of hisminth or zincoxide paste. In clean wourds (i.e. those which are not direetly soiled by hile, fieres, sativa, ete.) this is rather a disadvantage than otherwise.

When there is nothing to contraimlicate closure of a wound, callh layer of tissube should be sutnred sebrately. A contimuses suture of antiseptie silk is the lexst mad simplest, and will secure the certainty of ase 1 wis.

A layer of collolion is all that need tre placed over the womel to protect it from contact with the clothes. If it does not hold well, bisminth piste may be smeared over the wound from time to time (e.\%. in the region of the nose, month, sagina, or rectum). The bismuth keeps the line of suture and the ends of the stitchess dry.

When drainage or packing is adopitel, the exposed cmid of the thle or gatuze must be thoroughly covered over with antiseptic gauze (iodoform, xeroform, or vioform gauze), and the dressings renewed every time the diselarge makes its, way through.

It is only ly carefully distinguishing between wounds which may safely be closed at once, wounds in which an aceumulation of bousl may oceur, and wounds in which a large amount of dead tissue has to le absorbed, and lyy adopting treatment suitable to eaeh, that dangerous disturbances in the course of healing can be avoided.

D. AFTER-TREATMENT OF THE PATIENT

When a patient has undergone the nervous strain of an operation, amd in addition has had no food for some hours previously; when hee has heen kept under an anesthetic for some time, and when he has liecome chilled, partly from the effect of the anesthetic, and partly from exposure of the skin: when he has lain on the table with his hands and feet tied, and when in addition there hass leen much loss of hood, which, of course, can and shonld he prevented, his condition is one calling for immediate steps leing taken to restore the functions of the vital organs, especially by improving the action of the heart.

Many years ago, ax a result of ohservations we made with pulse tracings, we advised, as a prophylactic measure, the administration before opration of tea and sugar, with an admixture of aleohol in the form of brandy or warm wine. is already mentioned, Witzel's plan of giving strong encmata is also to be recommended.

Similar treatment is atso alvisalle after operation, when the cireulation is weak. The hond-pressure can lee raised hy the use of stimulants, e.\%. tea or coffee with sugar, with or without the adlition of alcohol. If vomiting is present, the stimntant should be given in the form of an enema. The armministration of warm fluds ly the mouth, reetum, or subcutaneously, hats a meneticial artiom. The use of sulputaneous saline infusions should never be omitted after a prolonged or serims operation.

It is very inmortant to maintain the boly heat by means of hot lootles mul hlankets, measures which must he pressisted in till the patient is warm, or is noticed to be in a state of gentle perspiration.

Witzel is a strenuous advocate of respiratory gymnasties, i.f. deep inspiration and forced expiration, methods to be recommended for all patients who are confined to bed. After an operation they are even more effective, as they accelerate the elimination of the ethyl bromide and cther from the lungs. Further, foreible expiration is of value in expelling muens from the upper air passages.

Vomiting is best arrested ly washing out the stomarl, for in this way the andesthetie whieh has been swallowel with the saliva is removel, and acute paralytic distension of the stomach, which is oceasionally olserved after ablominal operations, is prevented. It is of advantage also to rinse out the mouth and nose after as well as before operation. So far as it is due to the action of the anesthetice on the nervous system, vomiting is benefited by saline infusions and enemata, the latter treatment effectively flushing out the system (Sahli).

Every patient does not require all these remedies. Robust suljeet.s, expecially those whose pulse ufter operation is found to le strong and who sleep quietly, need only be placed in a well-sentilated room and covered nj, warmly : $: 1$ led.

The prosition in which the patient lies after operation is a matter of great import mee. Quincke ${ }^{1}$ gives general direetions in regard to the position patients should le made to adopt in bed for rest and sleep. Sht in the case of a patient who has just leen opented on it is well to bee more preeise. If there is marked unemia, shock, or collapse, and the pulse is weak, the he. - must the maintained at a low level in a position which is not necessarily nncomfortable, and is most conveniently oltained ly raising the foot of the bed.

The same position should also be adopted when it is devired to prevent the gravitation of saliva and mucus into the trachea, either when the putient remains uneonscious, or when there is inımirment of deglutition or lows of the laryngeal reflex.

When, on the other hand, it is important to avoill congestion of the vessels of the head and neck, especially of the veins, the patient must be placed with his pelvis low: This is most conseniently secured by elevating the head hy means of pillows. It is curious to olserve the frequeney with which pillows are simply placed behind the head nud shoulders of a patient, with the result that within a quarter of an hour he has slipped of the inclined plane. In addition to the pillows lwing placed under the head, the patient should also have the additioual supprort of a flat beoster pushed transversely under the mattress below the upher part of the thighs.

As Lemander has pointed out, a dependent position of the legs may give rise to thrombosis of the veins, espreeially if varix is present. In these cases, therefore, the pelvis alone nus. be kept low, while the legs should be raised und maintained at a higher level than the buttocks.

Witzel has emphasised the inportance to le attached to the position in which the patient is carried after operation, for if attention to this is negleeted when the patient is still unconscious, aspiration may take place of the fluids in the mouth and result in post-operative preumonia, a by no means infrequent complication after laparotomy.

Apart from the danger of thrombosis, there are two conditions which must be carefully watehed for shortly after operation, namely, the onset of pheumonia and paresis of the bowel.

According to Kionka, the rapidity with which the anesthetic vapour is removed by the lungs once its administration has ceased depends on its insolubility in water. Its local effect on the air passuges continues for a somewhat longer time ; and eson. if the alleged powerful action of ether in increasing secretion does not prove so * still the diminished resistance of the epithelial cells to the attack of Dacteria is t : taken into consideration. Existing bronchitis aggravates this. We have al . iy referred to the prophylactic treatment with large doses of ereosotal in the cneme

The activity of the intestines after ahdominal operations may be greatly impaired even to the extent of producing paralytic ileus. The passage of a rectal tube and the introdaction of glycerine suppositories to stimulate contractions, and also the administration of saline purges (magnesium suphate, and harlshad salts), may be urgently indicated, and must be resorted to without delay. In an intestine which is securely stiteched, the sutures hold so securely that even in the first day or two movements of the Inwel have no prejudicial effect.

The most important consideration to attend to, however, is to see that the stomach and intestine are empty lefore oferation, and, if necessary, to have them emptied during the operation, e.g obstruction of the lowels. Further, intestinal decomposition should be restricte. 'y giving beforchand frequent small doses of bismuth, which frrvent putrefietion and the formation of gas (vide Ireparation of the Patient). Physostigmin is a very powerful remedy, but it must be used with caution. Even 1 mg. (no gr.) is very active, so that it is advisable to begin with ${ }_{\sigma}{ }^{\frac{1}{0} \sigma} \mathrm{gr}$ (a decimilligram).

With regard to the treatment of a patient whose stomaels will retain nothing in ${ }^{1}$ IIie Krankenaplegs, Bd. 1, 1901.
the shape of monrishment, or in whon feerling ly the month is not permi-xible, the introluction of finial is of the kreatest impertance. I'ationts may lee kept for days on sulorutameons injoctions of suline lotions.

When rectal feeding is empoged, an omema of warm milk will be foumb to

 smatese do so still more.

When rectal feeding cammot lee resorted to, sugar and fats, or allmmin in womes
 an alternative for smbentaneons injertjons of sterilised olive oil ($\mathbf{2 0}$ to 100 gr . with

 of which is reckoned as mbont 100 , the daily requirement of man heing $4: 00$) ralories.

E. DETAILS WITH REGARD TO ANESTHESIA

The preceding ehapters A to I) have lnem manle as short and practicol as passible, and everything tembing to canse comfinsion has levol omitted. Irgmment has been
 subject have been awible The direntions we have given are idential with thone anmmarised for the lenefit of our assistants and statf, in order that the lest resulta may le olitained ly a combined stistem of alminist ration.

For this reasom mastlesia has leen hrietly comsinlered merely as an ablunct to
 thesia and wonnt-treatment which rempire further elobidation. In the next wo daps ters additional questions will be disenssed which are of more theoretionl ingortance.

(l) Further Remarks on Local Anæsthesia

As we observed in our former editions, the majority of the deep tisones possess no great degree of sensitiveness. This has been charly prowed hy the fart that onr thyrond operations are eondneted without either a gemeral ananthetie on tiswne infiltration, in this way textifying to a noteworthy and wanement in the pratiore of lucal andesthesia,

Only a few tissiles are sensitive, and if they are arelesoly tom, pulled, on cmshed, insteal of being ent, any "herative procedure hats a piaful reanlt. With careful methonds of operation, eveli childeen have admitted that they felt absolntely no fain during an opration for groitre.

To Lemanmer is due the ereolit of having systematically investigater the semsibility of the organs and tissmes in the hums: innly. A hrief smmany of his results is of great interest.

1. Lennander's Investigations. ${ }^{1}$ Iemmanter in his work acknowlediges the value of the experiments of Bloch, Byron Lohinsen, and Max Buch, and calls attention to the diversity of opinions on the remsibility of the organs and tiswhes, at the sume time giving a full aneonnt of the literatime on the smbent. The first facts le entablished were in anmection with the alnhmen.:

Lemmander's investigations are singularly lnilliant woing to the simplioity of their results. He finds that in the almbinen the orly seonstive tisones are the
 The peritonemm includel lnetween the sympathetic cords in front of the Ithend Eth limbar vertelore, and prohaliy also in front of the sacom, where semsory nerves are not foum anatomically, is nom-semsitive.

The pratial peritonemm is semsitive maly to pain, not to tonel, heat, or cold. Finther, according to Lemander, normal or intlamed peritomenm is

[^10]equally mensitive, but earher inventignturt have considered the latter condition more keenly alive to sensation, of which all $!!$ abdominal viscera which he examined were shown to be entirely devoid.

The conclusion can therufore be drawn that only the intercoatal luminr and saeral nerves (possibly also the phrenie reri"), which nre distributed in the sulmerons tissues, are coneerned in the conduction of pain, as all the organs supplied by the vagus and sympathetic are entirely non-unsitive.

According to Lennander, intlammati,n of all aldominal organ entuils wevere pain when the parietal peritoneum becomes involicil by the sprend of the toxins mad the inflammatory process along the subsern'14 ig e, mites into the lymphatie glands in the posterior abdominal wall. I'ains of a rin why thate in hollow muscular viscera such ax the stonaeh, intestines, gall-hladder, bin in a d ureter, are the result of musenlar contractions exerting traction on the cr:-...in..| nerves of the alrlonimal wall.

Unless the parietal peritoneun: . Whil, these is no pain. The viseral

 provocative of pain.

The reason why pain is frequrnt, actual disense is that in this situation che el $1 / \mathrm{Hs}$ bacterial, or mechanieal irrita-
 referred to the imbilicus or the region of the st ma. while in n strangulated hernia it is referred to the urethra or other orgran. Acerrding to Kronecker, Weber has proved that the eommon sensation is fnlly developed in the aldominal organs, and that iusernal organs, though they hive no sonse of temel, are sensitive to prain. Nerves, muscles, and the brain are insensitise to toudh but are sensitive to pain. Nothnagel explains eotlic, for instance, lyy the artion of "adequal" stinmili.

The nansea and woniting that are so frepuently prodnced when traction is made on an abdominal myan, e.f. the omentum, are simply due to irritation of the cerelrospinal nerses in the adominal wall.

The mucous membrane even of the rectum is insensitive as far down as its junction with the skin. Distension of the reemme merely creates a desire to go to stool and only locomes ${ }^{\text {rainful }}$ when the retal contractions, which are really the underlying eanse of the pain, stimmate the sensory nerves of the periproctal connective tiswle ly traction. The vagina and nterns are insensitive to pain as long as traction is mot made on the abdominal wall.

The testicle and epididymis, whiels are sulpliend ly the sympathetic nerves in the spermatic cord, are insensitive to pain: they only give rise to a sensation as if pressure was luing put pon the abdomen. The only pain-conducting nerves are derived from hranelres of the humber plexis which enter the surnatic cord and are distributed in the coverings and the parietal layer of the tumica vaginalis, in the same way an the serotal branches of the internal pmolic nerve give sensation to theeonnective tissue on the posterior surface of the eppididymis. The $p^{n-n i s}$ is suphlied with sensation throngh its two dorsal nerves as well as ly the deeper terminal branches of the internal purlic nerve.

Like the thyroid ghand, the trachea, hugs, and visceral layer of the pleura are all insensitive. The parietal phema, in the contrary, is particularly sensitice.

Lemander regards lome and hone-marrow as insensitive, the preriostemn alone. proving sensitive to pain, while he als, considers grambiation tissine devoid of
sengation.

It is clear, therefore, that the observations of Lemamder and his associates must have an important effect on the teelnique of local anasthesia. There is no necasion for infiltrating tissues with cocain, aceording to Schleichis. method, when they are alrealy insensitive. Further, as cerebro-ginal nerves alone transmit painfnl semsitions, it folluws that the eonduction methon is the one which really goes to the ront

more acperate anutomical detail to be able to obtain the effects of comduction anexthessia in my part of the lxaly.

Lennander, and more especially lraun, have led the way in this direction, but there is mueh still to he learned about the sulyect. The conduction method has the great advantage that the injection can he made sumetime before and at a distance from the site of operation, whereas in Sehleieh's methosl the actual tissues to be eut have to be rendered cedematoms ly frireible intiltration.

Cutil we can accurately lecate for the majerity of operations all the points at which peri- or eulo-nenral injections can le mate, Cinshingis motitieation of Schleich's intiltration methorl may still he alopted with advantage for the deeper tissues. Schleieh, who was the first to demonstrate the practieal value of dilute solutions of cocain, Ifeserves the credit for raising lecal anesthesia to the prsition it mow luhls. It will the no disadvantuge, however, were the methoxl he adopts, in which "the tissnes when ine ised aplear glazed and jelly-like and Irip, like an "wer-ripe melon," to ine disarded. The directions Selleciela gives for the removal of a ril, whieh consist in forcing the injection throngh the priostemin into the lomy canals and marrow so as to prochluce saturation of the posterior perionteal sufface round the edge of the ribs, and many similar injumetions are from Lemuander'x olservations, entirely monecessary:

If the nerve which supplies the area of the "pration is known and is accessible, the injection should be blade previous to opemting. But when this is impossible, the akin in the line of ineision may be remlered lasensitive ly the injowtion of a 1 per cent solution of "erecin / with alrenalin).

When injeeting the ocain we always kerp the print of the medle in eontact with the deep surface of the skin, and endeavonr to avon mising wheals in the skin iteelf, which, apart from the pain they entail, interfere with the vitality of the skin after suturing. We have hever fonnul "enternatie" injection a necessary ureasure. Braun states that it sule tameons injertion of eromin, combined wish the simultancous application of the ethyl horide spray for one to two minutes, produces sutisfactory anesthesia, as the artion of the ethyl chloride on the sensory merves intensifies the effeet of the cerain. Once an ineision is mate in the skin (or fascia), the morse twigs suplying the area of operation can freqnently he ohservel; if not, their approximate pasition can easily le aseertained. Jireet perinenral or endoneural injections (Cushing) can then lee administered. Cushing deseriked his methom as ancrially effective in lorniotomy, but it is also well alapted for the intercontal and other nerves. If the ee nerves fail to be expmed in the ineision, sunsitise areas may be
 lowerer, specially indicated before invising the shenth of a murte preparatory to dividing it, as, for example, in oprations in th." thyroith, where nul he rim resulte, as it is followed hy incision into the intiltrated hayers.

Irevions to division of the minseles the injections shomblate mate. If. atan

 process is applicalle to the periontemm.

It may often le prosible to render a large surface of muton- wel. rame ampletely ausesthetic hy simply sprinkling it with a rubher epray contain: fare at erain, b. encain, or tropsereain solution. As sehleinh olserves, the । fer whstance in the solid state ucts effeetively and is harmhes, while 13. enean has s.a. advantage of heing less poisonons, is more stadle, iund is not affected hy boil an in ation uf 1 part in bets wonnal saline suinion, problncing anesthesia which hast- irom :-il minutes to an hour (Braun). Anesthesin (Bitsert) (3-1000) solution) i- equally serviceable. sibudler atrongly recommends akoin (Trolldenier) $1-1000$ solus on in fhysindegical

 affords cxcellent results whem employen in combination with the wher le, the , ethect of which is increaned ly freczing.

When the capsule has leen separated, the insensitive sulstance of the organ or the bone, as the case may be, is enconntered. Lennander has shown that in the case of organs whieh have a pediele, e.g. the testicle (we wonld inehule the thyroid), a more effeetive anesthesia is obtained by a simple injection into the predicle rather than by the production of a diffuse redema. During excision of the thyroid gland, the resulting pain is more severe when the superior thymid vessels are ligatured or pulled upon. It is at this stage that the excruciating "radiating" pains occur, e.y. the earache and toothache referred to elsewhere.

Our observations have hitherto been almost entirely restricted to the consideration of coain and its administration, as we agree with bram that it is more adrantageous to possess a thorough knowledge of the nse of so well known a local anzesthetic as eocain hydrochloride, than to le continnally texting the miesthetie properties of sul)stances whieh are new.

The anesthetic effeets of cocain can easily be increased, and at the same time may be more readily obtained, by eombining it whi.. other sulstances in the same way as chloroform is used to angment the narcotie effects of cther. As we have already mentioned, Schleich occasionally adopts solid tropococain for this purpose, expecially with regard to the surface of the peritoneum. To serape or canterise a large ulcer of skin, braun employs extensive infiltration with a $\frac{1}{2}$ per cent solution of tropecocain (up to more than 50 e.em.) accompanied ly freazing. Schleich also frequently comhines the ethyl ehloride spray with intiltration in opening certain collections of pus, Lennander making use of anestil for the same purpose. In hypersensitive patients the insertion of the needle maty lee rendered painless by previously freezing the skin. Braun has shown that local cooling increases in a marked degrec the action of cocain by delay ng the process of absorption und by lowering the vitality of the tissues (ride infin). The combination of a local anasthetie with freezing has leen found very satisfactory in fierations on inflamed tissines, which camnot be easily cocainised, e.!. in cases of furuncle, whitlow, and dental abscess.
 although the necessity is seldom indicated-is also an aid to local as well as general anesthesia. More importance is attached to the necessity of increasing the lucal action by dininishing the eirculation or ly relucing the vitality of the tissues (Braun). ${ }^{1}$ Cocain is, to a certain extent, a vaso-constrictor, lont its anesthetic gualities are not dependent on this property to the extent that Escrsbusch, Laborde, and Maurel declared them to be. Kionka agrees with sehleich in attrilnting the production of anasthesia to the fact that the tivues are intiltrated under high pressure, i.e. the intiltration produces isehemia ny meehanical compression of the nerve clements.

Ether, ethylchloride, or methylchloride in the form of a spray; act directly on the vitality of the skin ly cansing a considerable loceal removal of heat and in this way assist the action of the local aneesthetic. (Ethylehloride, which has a low loilingpoint (105 C.), is particnlarly effective.)

Cocain, on the other hand, is a protoplasin poison and acts in virtue of its combination with the protoplasm of nerve tissue. According to Kionka, Hans Meyer maintains that certan matestheties net chiefly on the lecithin hoolies and cholesterin fats contained in red blood eorpustles and in the cells of neve ganglia, acting locally as well as when they are taken n! in the blood corpmscles and conveyed to the bmin. The property of dissolving fat is, for example, an important factor in the explanation of the narcotic aetion of chloroform.

To explain the specitic and elcetive netions of narcoties, a sprecial affinity for the albumins of the cells must le assumed. This assumption also applies to the ahminetration of coctin, as in eases of cocain peisoning omly a small quantity of the drug is exereted. The combination is certainly a loose one, and the nerve protophasin recovers with grent rapidity.
by reducing the vitality of the tissues, the local action of an unersthetie can be strengthenel. Further, a similar effeet is proluced if the tissues are rendered

[^11]amamie, for hy this process absorption is retardel. This is the explanation why such artifiees as local constriction, eooling (per ethyldoloride spray), and the adhition oi adrenalin, materially increase and prolong the action of a lexal anasthetic. Corning ${ }^{1}$ was the first to demonstrate the immortance of constriction. Similarly Custer's experiments lave proved that dilute solutions of eoman diminish the risk of toxarmia due to the delayed absorpition on account of the iarge quantity of the solutions unde nse of. By intensifying the local effects, the general effeets, and in partientar the symptoms of poisoning, are obviated not only fon the time during which the cirenlation is interruptel (e.g. by constriction), but sulsequently when they either fail to alpear in any form, or aprear only in a slight degree, as the cowin las then entered into harmless combinations which ean be readily eliminated from the sy :tem.

Adrematin, which is a local vasocemstrictor (Biedl), is now regarilet as the hext aljusant to local aneesthesia. It was first adopted in ophthalnic surgery by lor and Darns,' and in maso-largngeal surgery by Swain, Borle, nul Bukofzer, Braun initiating its use in general surgery. The intensity of its action must, howeser, he
 animals.

I $1-2000$ to $1-5000$ solution of adrenalin proluces anamia of muterux surfaces. Bram fomm that the injection of a $1-1000$ solution into the akin of the forearm prombeed in five minntes complete hanching for an area with a dimuter of 1 to 2 ins., the effeet of which lasted for an homr, and was mot followed hy hypremia. Accorling to Bram, $\frac{1}{2} \mathrm{mg}$. of adrenalin in very weak solution ρ :orluces no general symptotis, white he has never observed any local tissine dixturbunce camsed livanding 3 drops of a $1-1000$ sulution of adremalin to 1 ce. ot a 1 per cent or 10 ce. of a $1-1000$ solution of cocain. The aldition of adrenalin mulonbtedly prolongs anasthesia for homers, and therefore the injection may be given half an hur lefore the operati- n, wo as to a void unnceessary delay in its commencement.

Braun notieed that if mg. adrenalin, alministered on himself, produced hoth ablatary and respiratory disturbames: while Sehafer observed that intravenons injections were followed by increasing re-piration and muscular etlicieney, stimulation of the vagus, with slowing of the pulse and more powerful contractions of the anrieles and ventricles, with a rise of the burd-pressure due to contraction of the peripheral vessels. The vessels of the brain also contract muler the action of adrenalin."

(m) Appendix to Medullary Anæsthesia

 could itself, hy injection into the humbar region uf the subaminumid spare, was first put into practice by Bier. Unfortunately, even thung it hanl hern taken up with enthusiastu on all sides, Bier himself had very shortly afterwards to publish a warning against the use of this procedure.

The technique is emplaratively easy. With the patient sitting ${ }^{4}$ (ur lying on the side, if the former pusition is not possille), a line is drawn joining the highest points of the iliae crexts. This erosses the fifth lumber xpine ('Tuther). At a paint on this line, 1 em. from the middle line, a fine hollow aredle is thrust dirertly firwards for a distmee of $\mathrm{E}, \mathrm{6}$, or 7 cm . between the fourth and tifth humbar spines,

[^12]through the soft tissines and the tongh ligamentum subflavum between the laminae down to the dura and arachinoid. The escaje of a few drops of clear cerebro-spinal fluid shows that the point of the neelle has reached the right place. Fifteen minims of a $\frac{1}{2}$ to 2 per cent solution of cocaine are then injected. If no fluid escapes it is useless to inject, for there is no proof that the subarachnoid space has been reached. The same may be said if blood escapes, a lesult due to the wounding of the extradural plexus of veins.

Klien (Grenzgebiete, Jena, 1903) utilised the X-rays in order to detrmine throngh

F14: 1 Is.
which intervertehral spare the spinal canal ean be mont rasily reached by pancture. He found, howeser, that there were very great individual difterences. As a role, the puncture is most easily made in the interval between the third and fourth hmabar vertonae.

Khen's akiagman demonstrate the improtance of foreihy thexing the trumk so that the intervertehral spmees may tee made wider. He recommends the insertion of the needle immediately below the spimons prosess in a slightly upway direetion. If there is my diticulty the pmetnee may le made sume millimetres to one side, the operator at the same time direeting the needle towards the midhle line.

When the injuetion has leron neeomplished, complete anesthesia of the parts of the
body below the level of the injection is obtainel in the spuce of ten to tifteen minutes, the anasthetic proving effective on the parts supplied from the lmminer and sacral regions, and in exceptional cases on the areas smplied by the torsal and lower cervical spinal nerves. This anesthesia lasts from one to three hours, so that even extensive operations can be performed withont sensation on the part of the patient.

There is no doubt something very attractive ahout this procedure. In the first case in which we employed this methorl we did not let our students into the serret of the injection, and performed an excision of the unkle, which was very murh inflamed,

Fill 19.

Fic. 20.

in a child much addicted to seremang. During the operation the patient was engaged in cating mud in talking neoncernediy with an ussistant behime a entuin which hid from him his diseakerf fert.

Cufortmately, the anesthesia is not always. . \quad complete, as symptoms mpear in a few home which far exceed in mplensanthess the orphelie of genemal andenthexia. The principul resultant is severe healuche, "en lasting for several days, frepuenty acempmiad loy vomiting, with almost invar aly a rise of temperature (to $104^{\circ} \mathrm{F}$.), which is particularly liable to cause merronemis inguression of the state of the wombl. The temperature generally falls the next day:

Stumme ${ }^{1}$ has reported the results of medullary anesthesia in Mikulicz's clinie. In 21 out of 40 cases amesthesia was incomplete or ahsent, while nansea, vomiting, sweating, oppression, tremor, headache, and collape (2 cases) were noted. As a rule these symptoms were of short duration, but the vomiting occasionally continued for days, while headache was the sulject of complaint for as long a period as two months. In aldition, pain in the lack, exhaustion, and fever were also observed.

In isolated cases mose severe after-effects have heen notul, whieh take the form of delirium, with violent excitement, extreme anxiety, breathlessness (respirations 42), very rapid poulse, dilated piliss, and crampsor exaggerated semsibility of the lower extremities. Fever and rapid respiration and pulse contimed in ore case till the third day, while in a few cases transitory motor paralysis was olsserved.

Two serious results of this form of anaesthesia still reguire to be taken notice of. The first may seem questionalle to many, hut we have observed in cases where the anesthetic worked partienlarly well that the wond ran a mark dly mufavourable course. This ohservation was coufirmed lyy Dr. Cusining, to whom the snlyject had lneen inentioned. A still more serious result is death following the injection. We have seen one such case, in which the fever and headache failed to snhside, and tulerenlons meningitis developed. Dr. Dumont has also pulished a case where death oceurred. We cannot with certainty exelude the possibility of deleterious effects pronluced by eocain on the central nervous system, and espeeially on its corerings, and which show themselves in headache and other irritative phenomena, giving the necessary impulse to the proluction of peculiar inflammation in predispused prersons. In consideration of the above facts there can be no guestion, at least until further research has been carried out, of the general disadvantages of medullary anmesthesia as compared with the much less dangerons and more pleasant form of general anesthesia.

Every practitioner is not so fortnnate as Bier to le able, in his first experiments with a new procedure, to draw attention to its disulvantages. The possibility of preventing the serious nfter-effects of medullary anasthesia hy choice of suitable media has not been worked out. Bier himself entertains hope of improvemeut in this direction, and K . Schwarz had no evil results froms the use of tropa-cocain ($\mathrm{a}_{\mathrm{s}} \mathrm{g}$.)
instad of cocain.

Neugelauer "also recommends tropa-coeain in ${ }_{4}^{3} \mathrm{gr}$. doses. It should le freshly prepared and boiled. He states that anesthesia appeared in the perineum in the conrse of a minute, and gradually spread to the genitals, posterior surface of the thighs, the feet, logs, groin, and absomen. Following lier's suggestion, Dönitz injected adrenalin along with the cocain. He first injected half a e.cm. of a I to 1000 solution of adrenaliu dilnted with an equal amonnt of water, followed hy ant injection of $\frac{1}{8}$ to $\frac{1}{4} \mathrm{gr}$. $\left(3-1 \frac{1 \mathrm{cg} .) \text { of cocain. Entirely satisfactory anaesthessia was }}{}\right.$ obtaned in this way in animals, and prejudicis 1 afterefferts were alsent.

As we have already imbicated, spinal antestitwine weived a new impulse after the introdnction of stowain ly Fomrneau in 1904. Rechns, who is a stamelh supporter of Ineal anesthesia, derlares that stovain is as powerfnl an analgesie us cocain, and has the adsautage of proving less dangerons. P'omarn Caplesen of Jommeseo's elinic regards it as a valnable loceal anesthetic in dowes of from $\frac{1}{4}$ to $1 \mathrm{gr} .(3-7 \mathrm{cg}$.). Gemusens, working under. Dumont, uses $\frac{1}{d}$ to 1 drachm of a $\overline{4}$ per cent solution for tooth extraction. Foisy considers that stovain is less active than comin, aud that :-1 combination with adrenalis! it is apt to cause tissine necroses.

It is elietly employed in the prombetion of spimal amesthesia, and we have called attention to the extensive nse made of it ly Tuffier, while it is: highly recommended hy Jomesco. ('zerny himls it serviceable in doses of $\mathrm{J}-1 \frac{1}{\mathrm{gr}}$ ((6.10 cg .) and Somenhmg has reported it opratimis muler stovain. lat eleven of these it failed, but in the other 46 cases the anasthesia lasted from one-half to three-fuarters of an hour, and was attended loy no bad aftereffieets.

Somenhury uses the preparation that is sold in sterile tules. He dilutes it in the syringe with spinal Hilill and injeets I to $1 \frac{1}{2} \mathrm{gr}$. (5-7 cg.). After nu aserage

[^13]interval of five and a half minutes the anesthesia reaches the upper purt of the nbdomen, ineluding the abdominal organs.

Lastly, at the Berlin Surgieal ('ongress in 190.), Bier and Jonitz commumicated their experiences of stovain in combination with paranephrin. They employed a 4 per cent solution instead of the 10 per cent solution that is solle ready for nse. It is easily sterilisel. They consider that the ingertion shomld lne made at a ligher level than is elustomary; mamely, letween the finst and seeomd lumbar vertelones. We *hould refrain from injection alove the interval leetween the secomd and third on accome of the close proximity of the comms mednallaris. The needle is intronaced in the middle line. On several cecasions Bier and Dünitz formal that only unilateral anasthesia was produced -a satisfactory proof of localised infiltration of the nerve-roots. Bier specially recommends spinal aniesthesia by stovain, combined with puranephrin in elderly feelle [rople with disease of the pelvie organs.

(n) Epidural Injection into the Spinal Canal

Pefore leaving the suljeect of apinal anesthesia we must make allusion to epidual injection. After Tunfier and Hallion's olservations had shown that medullary injection racts only oin the nerve-roots, Cathelin 1 attempteid infiltration of the nerve-roots ontside the dura, i.e. between the dura and the bony wall of the minal canal, ly puneture of the sateral canal. The veins in the dorsal plexus carry the injection as high as t!. dorsal region of the corrl, owing to their free intercommmication and the narrow outlet from the spinal tamal.

The puncture is not easily

Fic. 21.

 into saleral canal. sote the alteration in the divetion of the beedle. areomplished, and we have performed it with the patient in the lateral pwition. A neadle, $2 \frac{1}{2}$ imelen lomg, is inserted lelow the last sacral spine hetweon the two prominent pesterint satial tulnerile.
 sufticiently penetrated the thiek membrane which clones the space. The needle is then direeted upwards towards the saleral comal for a depth of 1 to 2 incher, exantly in the middle line, when the injeretion is given.

Cathelin explains that the injection aets ly the entranee of the amsesthetie into the rich venous plexus leetween the dura and the wall of the spinal canal. It has also, however, a local aetion, ass he has fomed the injertion pronlure very satixfactory results in nemalgia of the lower extremitios, Inmbago, in the radiating pain of tales and also in cases of enuresis. Ciathelin injecte 1 drachm (t g.) of at per cent

[^14]solution of cocain. In dogs he was able to produce complete antesthesia of the whole body. The two conditions in which Cathelin's methorl are chiefly indicated are incontinenee of nrine and pain in the lower half of the boxly.

(0) Further Details on General Anæsthesia

Hose has stated that no one can avoid an occasional fatality under aneesthesia, as a patient may die suddenly from the nature of his disease, quite apart from the use of the anasthetic. The truth of this cannot be denied. Death may oceur very suddenly from the status thymicus and status lymphaticus, and also from certain circulatory disturbances, e.!/ atheroma of the coronary a 'eries. Patients who have a high blood-pressure are liable to apoplexy, and in this connection death has taken place suddenly from an inereasel blood-pressure in the vessels of the brain. In diseased conditions of nutrition, such as diabetes and Addison's and Basedow's disease, death may occur rapinlly nuder anaesthesia if the disease is far advaneed.

All this, however, is no excuse for the frequency with which deaths occur under anesthesia, because, as we have already observed, gencral anesthesia is elcarly contraindicated in these diseases, and if these eonditions are not observed, no anæsthetic is free from danger. If a careful examination of the patient is invariably undertaken previous to the operation, one can make practically sure of preventing a fatality as the result of administering the anesthetic.

We agree with Mikuliez that till the present time ether and chloroform are the only anesthetics which are sufficiently understood, and which can be safely used for a prolonged severe operation. Among the anasthetics for minor operations, ethylbromide comes first. As we have already stated, it is more advantageous to make oneself familiar with the method of administering a well-known anaesthetic than ever to be striving after new agents for the sake of novelty. The use of laughing gas, which was first discovered by Horace Wells in 1844 (according to Rose), has now been abandoned.

According to Gurlt's statistics (Deutsch. Gesellschaft f: Chir.), the mortality from chloroform is 1 in 2075, and from ether 1 in 5112 , although countless deaths from chloroform are never published. These figures, as well as personal experience, have induced a large number of surgeons to adopt ether. Certain schools, notably those of Lyons and Boston, have always held firm by ether, and surgeons, who, like Juillard, have used ether exclusively for namy years, are most enthusiastic in its favour. Witzel, in recent years, has lecome one of its staunchest advocates.

Ether was first administered by inhalation by Collins Warren in 1805. Long utilised it for small operations in 1842, hut it was not till 1846 that it was regularly adopted by Morton. ${ }^{1}$ In 1847 came Simpson's discovery of ehloroform. Why is it that in spite of the eathusiasm with which ether has heen adopted from the time Morton first made use of it (יivle carlier editions, and Kappeler's great texthook on Anesthetics) there are still so many hospital surgeons and practitioners who give their alherence to the use of chloroform? The reason is simply this, that with chloroform one can be certain of prolucing eomplete anasthesia in a brief space of time, whereas with ether this result is impossible. It is, moreover, significant that George W. Gray,' a surgeon edueated in the Harvard Sehool at Buston, even now finds it necessaly to draw particular attention to the cases in which ehloroform is preferable to ether, i.e. cases in which there is any respiratory impairment.

Firther, San Martin ${ }^{3}$ makes the assertion that only one fatality from chloroform oceurred in Spain during last century, and that in twenty-four years he has only had one death-a result which he attributes to the rarity of alcoholism in Spain, and also to the fact that the anasthetic is always administered by a specialist. Apart from the latter consideration, we consider that the use of bellows apmaratus for giving the

[^15]anesthetic is important, while Martin lays stress on the use of a small nozzle through whieh the ehloroform vapour is blown into the nose.

Chloroform is a much more inteuse poison than ether. All experiments ${ }^{1}$ (Hylerabad Commission) intemled to prove that elloroform always canses first an arrest of respiration, and through this an arrest of the ation of the hart, are contrary to the experience of surgeons, even in the case of persons in whom after examination no defect of the heart or respiratory system has been demonstrable. This fact is now supported by Embley's experiments (vide intive). It may happen that suddenly during chloroform narcosis the face turns puile, the pupils leccone: dilated and immobile, the pulse disappears and the heart stops, while respiration continues regularly or irregularly for a time. Certain observers would refer the carly as well as the late syncope to trigeminal retlex with irritation of the carrioinhibitory eentre in the medulla, sinee often a few drops will determine denth (\%nege Manteuffel), but the experiments of Gaskell and shore on eross circulation in dogs prove with certainty that constant lowering of the blood-pressure and consequent danger of collapse may ensue even if the influence of the brin l_{n} excluded, and Winogradoff and Sehmidt, under Kronecker, have reforred this result to disease of the heart ganglia. Numerous other experiments (English Chloroform Committee, Wood and Hare, Schmey, Kronecker, and others) have proved that chloroform ean cause death as a pure cardiae poison. Kroneeker and his fellow-workers have shown that the eo-ordination centre of the heart is paralysed, and that in dngs it fails to make recovery.

Embley ${ }^{2}$ has reeently undertaken a large number of experiments with chloroform anasthesia. Sudden arrest of the heart is due to stimmation of the vagus. Inhalation of air containing more than 2 per cent of chloroform causes weakening of the heart's action and a fall of the blool-pressure ; a still higher percentage produces paralysis of the heart. Cardiac paralysis does not ocenr if the vagi are previously divided, and can be prevented by section of the vagi. On the other hand, stimulation of the vagi, if the heart is already, weakened by more than 2 per cent of chloroform, canses eardiac arrest. The fall in blood-pressure is the result of paralysis of the musculature of the heart and the small arteries. The cardiac paralysis comes on without stimulation or sudden alteration in the pulse rate, and the lieart dilates. The arrest of respiration either occurring lefore or after arrest of the heart is due to the fall of blood-pressire, and does not oeeur without it. Respiration is restored on mising the blood-pressure.

Nevertheless, all these experiments, which appear to dixprove the possihility of cardiac paralysis of mednllary origin, do not prechude the contingency of cardiac fatilure from paralysis of the vasomotor centre in the brain, although Gaskell and Slore only observel excitement of the same.

We can, fortmately, avoil these cardiac dimgers ly administering to the patient only the dose he cill sustain. The administration of chloroform not sufficiently diluted with air is the eause of the bad effects, and the latter may be referred primarily to retlex intluences through trigeminal and vagus twigs in the nose, larynx, and hugs on the eardiac and respiratory centres, and also to the direct inflnenee of the poisoned blood on the heart. Holmgren has shown that the retles respiratory and cardiae arrest caused by the use of non-concentrated chloroform disinplears spmitaneonsly, along with the diminished sensibility whieh accompanies the further anministration of the chloroform ats long as the aceess of fresh air is allowed. Aecording to Cushing, also, death from rardiac arrest is avoided ly administering chloroform in proper dilution. Only then it embangers life through paralysis of the respinatory centre of the medula when mareowis is very prolonged. The volumetric proportion of choroformand air in which animals can live the longest and with the least damage to themselves has heell definitely estimated (5 c.c. to 100 litres air, aeeording to Kronecker). The dangers, therefore, may be avoided by inducing narcosis with a mimmum dose, and not inereasing the degree and duration of the anesthesia beyond a eertain point.
${ }^{1}$ Cf. Kappeler's excellent article on Narcosis for more exact details in fiermen Suryery. ${ }^{2}$ Brit. Mcel. Journ., April 1902.

The dietum of Selillot, "pure ehloroform properly administered never kills," is therefore justifiel, and the astonishment of some authors at our earlier method of giving first chloroform and then following up with ether, causes no surprise to thowe who are properly versed in the use of chloroform. Without the help, of an apmuratus, or such precautions as will prevent the cverstepuing of a certain degree of concentration, inexperienced operatoms shonld never le allowed to induce chloroform nnesthesia.

Junker's and purticularly Kappeler's apparatus, eonstricted on the hasis of Snow's expreriments, give the greatest protection in this resplect, ns they can le regulated so as to obtain a definite percentage of air and ehloroform. Dumont recommends Krohne and Sescmann's appamatus. ${ }^{1}$ Braun's appuratus is amongst the bewt.

Although an alparatus by which an almixture by volume of chloroform and air can be supplied possesses muloulted mdvantages, yet Exmarch's simple nask is still in most common ure. The mask depieted here, while preserving the shape of Ewnarch's and of Gerarl's, leaves a sufficiently wide gap all round to render it impossible to respire too concentrated ehloroform, and it has the alvantage that narcosis may le intduced with minimal doses at first, if the drop methol le adopted. This methol, which was recommended by us a year lefore the publication of Znckerkandl's 1 niper in the Corveapmdenzhintt fiur Schreizeriorzte, in ignorance of Leion Lable's pmblication, is now, ly the employnent of Kappeler's mplaratus, the method in general practice. It permits of such a dose being administered to any patient as will induce narcosis without risk.

In the hands, however, of inexperienced or careless anaesthetists a mask does unt

give assurance against the worst aecident, viz. sudden death at the beginuing of the nareosis in comparatively healthy individuals. That these deaths may surely l_{n} avoided with proper foresight, every surgeon who has seen thousands of chloroform cases without one sueh accilent will attirm. Bardelehen, after 30,000 cases, had his first experience of such a death. But, it must lee admitted that this danger is more difficult to avoid with the use of ehloroform than it is with that of ether, bectanse chloroform proluces its toxic action in much smather doses, and therefore lert's safe. interval ("zone maniable") is a much narrower one.

Even careful surgeons are still emfronted with the great ditieulty of maintaining the right degrece of narcosis during a prolo ged operation, becanse hy it the hlondpressure lecomes markedly reduced, and such eomplications ats loss of blood add still further to the danger.

However, it is not possible to avoid the more intense toxie action which fimls its expression on certain organs in the after action of the drug, when nareosis has ceased, since, when anesthesia has been prolongel, degenerative processes are developed in the vital organs. These changex alpear in certain suljgeets with chronic eonstitutional or mutritional disturbances, and generally phas off without promanent effeet within

[^16]a few hours or days, but may in exceptional eases learl to a fatal termination. The latter cases have drawn attention to the fact that certain serpielae, which were accepted as the more or less nevessary accompminents of the mareotic effect of the marsthetic, such as vomiting, ete., may have a very palpable causal fommelation in certain organie diseases. These special serpuele of ehloroform narcosis do mot always even now receive the attention they deserve. Since Fischer and Thiem drew ittention to them from their experience of an unfortunate case, a number of observers have furnished experimental proof of their cansation.

Nothnagel was the first to furnish experimentally the anatomical lasis for the clinical phenomena. Unger, Strassmamn, C'asper, Frainkel, Schellmam and Ustertag, Bander and hastianelli have contributed to a more definite knowledge of the changes. These consist in fatty degeneration of the muscles, especially (but not insarially) of the heart musele, of the kidneys, stomach, and mucons membranes generally, and of a coincident fatty infiltration of the liver. Ostertag, from the presence of the pigment in the urine, deduces destruction of the red blood corpuscles. Ajello finds hyaline degencration of the vessels, and deposits of the products of degeneration in the spleen. Fitty degeneration is associated with necrosis of the renal epithelium (Friakel) and of the lobules of the liver. Marthen fomid that the changes in the kidneys were especially well-marked. Pohl showed that the largest amomit of chloroform was found combined in those orgams which contained the greatest proportion of constituents soluble in ehloroform-that is to say, in the brain and the red bloorl corpuseles. Uvertoun observed that the different narcotics act ly combining with the lecithin and cholesterin-holding constituents of the eells, whereby they induce a change in the physical condition of these cerebral fatty matters, even the loss of the function. Kionka has certainl; minted out that the solubility of fat does not constitute the essential point, but that a specific action must be assumed.

Stiles and M'Donald ' have sought for the explamation of the deposit of fat in the property of chloroform as a protoplasm prison. They find a similarity between delayel chloroform prisoning and other auto-intoxications, and have obsersed an increase of acetone in the urine as a result of the fatty degencration. Offergeld? holds with Neudorffer that the defieient oxidation and fatty degeneration are due to the distinctive action of chloroform on the hemoglobin. He finds parenchymatous neplaritis with fatty degeneration the most constant danger. The latter is presented by ligature of the cenal artery, but is increased by ligature of the vein or the ureter. If there is a coexisting nephritis (buterial or toxic) the epithelial degencration is inereased by the chloroform. Regeneration takes phace as the fat disaplyars and is stored up in the liver. There is less fatty degeneration when chloroform-oxygen nareosis is induced.

Kast and Mester have shown that there is destruetion of allommen in chloroform nareosis as proved be the increased excretion of nitrogen, and hy the increased proportion of nentral sulphates in the mine. Aecording to hattier and Soulier, choroform diminishes the amount of glycogen in the liver, and since the latter acts ans a destroyer of the prisen, the propurtion of poison in the urine is inereased, and given rise to vomiting, which may be counteracted by miththol, washing out of the stimarch, and by the administration of glycogen. Aceording to Them and Fischer, the :afety of repated chloroform administration may be aseertained ly the ismitril reatem uper chlorofom in the urine. The urine should no longer reduce Fehting solution. This: is impurtant, for, as Schenk has almonstrated, the frequently repeated administration of chloroform at short intervals is followed hy a well-marked degeneration.

To lwe ahle to definitely ascribe the dergenerative changes in the orrans to chloroform, other toxic, and especially septic, intlnences must be exeluded. This peint has not alway: been carefully enough noted, as wound infection and its more severe results are especially apt to assert themselves after general anestliesia. The greater risk of poisoning with other toxie agents, whether they be antiseptic or hacterial, is indeed one of the unfavourable results of general anesthesia. Galeazzi and Grillo found

[^17]that after chloroforn narcosis rabbits were killed by a dose of diphtheria toxin, which was not fatal to a non-narcotised rabbit, because its elimination suffered in consequence of damagel kidneya, just us, aceording to Battier's views, the destruetion of the poison in the liver was diminished.

As previously mentioned, the direct action of the anasthetic on the epithelium of the lung is to be regarderl as diminishing the baetericidal gower of the lungs. Aceording to Snels's experiments it predisposes to severe infections of the lungs after prolonged aniesthenia.

That individuals with fatty lis . Lidney disurders, digestive disturbances, chronic poisoniags, such as Basedow's disease, ete., should be specially liable to the dangerous seguela of genernl anasthesia can be readily muderstoxd.

Bandler and Leppmann have shown that, in animals, degenerative changes are far less frequent and extensive with ether than with chloroform narcosis. In fatal casew the symptoms from the after-effeets of chloroform are mainly those of impairel funetion of the kidneys and liver, giving rive to vomiting, icterns, diminution in the quantity of urine, and the presence of albumen mad cants, and, as Heintz describes, marked aeceleration of pulse, und collajse. In Baudler's case (Ẅ̈lter's clinic), which ran its course like an acute yellow atrophy, there oceurred, in aldition to the above symptoms, pins over the liver, headache, delirium, bloon in the motoms, unconsciousness, and petechial heenorrhagen, while, towards the end, lenein and tyrosin appeared in the urine. Bandler asserts that it is the fat infatty liwer which combines with chloroform, and so indnces a complete degeneration resembling that of teute yellow atrophy. These pathological changes are the remilts of an overdose of chloroform, since they are found only after operations of long duration. Aurd as it is of great importance, in the administration of chloroform, to guard against the occurrence of syncope, it is ergally important not to exprose the patient's life to the risks of these after-effects when the operation to be performed is likely to le prolonged. It should also be noted that in anemic and cachectic individnals, and in operations in which a serious loss of horkl is entailed, all the ubove conditions will be exaggerited.

The contraindications to the use of chloroform are mmerous-as already dencriberl. It is suitable for persons of strong constitution, for ehildren and idelescents. Hagenbach, a very careful observer, has nsed it alnost exclusively for twenty-five years in the Sick Children's Hospital at Basle without a single mishap, using an apparatus devised by himself, which allows of the administration of air ulong with the chloroform. In time of war, chloroform is the anesthetic most commonly adopted, because one has to deal with young and healthy suljects, in oferations undertaken, for recent injuries to soldiers. In mulcealthy individuals, e.g\% in septic cases, the contraindications hold gool.

In the author's private clinic, where for twenty years chloroform has heen used almost exclusively, only one death has occurred. The case was one in whieh, during a long operation, legun under ether, chloroform had afterwards to lee administerefl. This is a method we consider objectionable, mont one to which we were driven on this occasion, because the patient's strugeles rembered it impossible to complete the operation. In our private chinic we have always had the servires of the same anesthetist-a very carcful and conseientous man, and a layman.

The dangers of dhloroform can threfore le avoideri, hut experience, and at thorough examination of each individual case before its administration, are imperative. For this reason it is far more convenient to have at our disposal an anaesthetice whose range of safety is less limited, and where want of foresight in its use is not forthwith punished by death of the patient. Such an amasthetic we have in ether.

That ether marcosis may prove fatal is shown hy statistirs, but it has this advantage over chloroform, that its action on the leart is insigniticant ats compared with its action on respiration, and also that the poisonons aftereffects involse the other organs to a far less extent. The contraindieations to the use of ether can lex more precisely formulated, mad are in pratice more easily determined than are those

[^18]of chloroform. Respratory disturbances and pathological changes in the respiratory organs with dyspmea ure the eontrainditations of prime importance, as ether canses more severe and more lasting dumuge to the respiratory organs than can le attributed to eliloroform. ${ }^{1}$

But we here repeat that these pontraindieations really apply when the ether is incorreetly mbinintered, wot when mhinistered acourbling to the methoms ofescribed in she earlier section on andesthesia. Chapman" fonth! in mits that the repeated administration of ether proluced ecelyymses on the surface of the fing, with alveolar and peribronehial exmbation. l'nemmonia was readily proluced in mumats which were made to inlate cultures of the diphowems after repeated miministrations of ether, while it did not excor whell they were not etherimel.

A deleterions action on the kidne y shas alsw been attrihuted toether, but experiments and elinival observation by home and Wumberich, we well as by fineter and Leriner (under Dumont \& direction), show that in this rejuret ether is cettainly nent more dangerous thath chloroform. Vet Thomson, (iobemann, mat Kiomp, hy direet meanmements, have shown that ether ennses a grenter diminution in the anmont of
 chlorofirm. Unt of ninety deathes in the lionsevelt Hespital, tive were dhe to remal atfection following ether narensis. Brown has deserimed a comsiderable decrease in the solids excreted in the urine after etherisation.

Casts muld allomen are cortainly met with just as frentiently after the nse
 Lerlner, Barkacei and behi, Lather and himeskopf, "ven more frequently, while Stockvis and Dover muintain, on the contring, that kidhey affections we deridedy more common after ether.

The peenliar effects of ether on preexisting engestive, hyperemie, and intlammatory emolitions of the larynx, hromehi, and lunga are well known. Sineh deaths ats we have observed following the administration of ether cecurred after opmotions on cases with marked tracheal stemonis, diseaves of the hugs, or empyema.

In eaves dying shortly after the "protion, with steadily inereaning dyspumen, it was remarkable to obserse how great was the hymemia of the tracheal and bronchial mucons membranes of even the finest tules. In all these anses, however, pure ether was eiven without morphia, and was freely poured on a mask covered with waterprof sheeting.

It is worth while infuiring inte, the cemation of the damage to the rexpiritory orgams, which may end in celema of the lung, severe bronclitis, hepatisation, and premmonia. For the elucidation of this point the interesting work of (iottstein is deserving of notice.

If ether, even more than choroform, be redited with prowlucing a tembency to phemmona, then, as Contstein arghes, these premonias should reare to weur when Ineal antesthesiat is employed. Lint Gutestein (Mikulieqs clinie.) has observed that of it mon-alnfominal nperations under cocain, omly 1 was followed by phemmenia,
 eases of pueumonia camsed ly lymphatic infection following peritonitis, and the eases succeding vomiting, he still fombl $14 \times$ per eent as against only jes per cent in chloroform amesthesia,
(iotestein ateomes for these firnres ly the tact that the alubminal operations muler coain were performed on ohl peophe, and were of a serions mature. Mikulicz comsiders that there is a dager of pmemmaia in all abdominal opmations, and for this reason he dows not perform the ratial cure of hernia muless there are symptoms of incarcelation.

He aceepts the Gu*senbather-lietrozowski theory, viz. that pmeumenia in these cases results from emboli, which reath the lunge either throngh the liver, or through direet

[^19]communication leetween the portal vein and twigs of the inferior vena cava, mul he considers that the infarets su formed in the lungs may, without leing primurily infected, beeome seemdarily infected from the air pusagen.

These deduetions of Gotestein's prove, therefore, thint pmenmonia following ether narcosis is not to be considered an ether pmeumonia as a unater of course. Aecordinge to some statistics, those of Selultz, for example, pheumonia is more common ufter ehloroform-a fact in aceordanee with many clinieal obsurvations. What is chietly of importance, however, is the fact thit the lond effects of ether on the lumgs are in largepart avoidahle since they are caused by faulty administration of the anaesthetic:

Hoblseher ${ }^{1}$ (Esmareh's elinie) statex that most muthors refer l,rouchitis and pneumonia following ether nareosis to direct irritation of the ether, or to some impurity in the ether (Bruns) aeting on the mueous membranes. Smwerck deserver the credit of having called nttention to a new and important source of infection, viz. that owing to the paralysis of the soft palate, the root of the tongue, and the epighottis, the saliva and mucus, whieh are both greatly increased, are apt tol l_{n}. drawn lack during inspiration, carrying with them organisms from the buccal cavity.

Grossmanu considers that the "rattle" consequent on the back-thow of muens and saliva is the result of bad technigue, which he bames as the true eanse of the lung affections.:

Hobleher, prior to indueing anesthesia, eoloured the fluid of the month with a watery solution of gentian violet, aceorling to Lelirwald's procednre. He has ascertained that with the patient in a horizontal position, and with a plentiful aecumulation of Huid at the back of the throat, the act of respiration is sufficient to earry the colomring agent to the finest bronehi, and even to immediately under the pleura. Where respiration is olstrueted this is proportionately incrensed in one or other lmug, aceording to the pusition of the patient, und if the heal be propped up this overflow into the lung is mueh more marked.

But with the heal dependent no aspration ocenrs, except in enses of tracheal stenosis, und then only as fir as the trachea itself. sio long as the head is horizontal and is inelined to one side, the moneus and saliva, which are eopiously seereted in ether narcosis, are prevented from accumulating at the orifiee of the largnx, and are allowed to How out at the eorner of the month.

In the surgical elinie at Kiel the headpiece of the operation table is lowerel sot that the head is dependent, while Witzel oprates with the head foreilly thrown buck wards.

Holscher does not ledieve that a hyperservetion of mucus is demonstrable. It an autopsy perfonmed shortly ufter death he found mo collection of muchs and no hyperemia. He hax also observed, that however marked salivation maty be, mo muchs is seereted.

In cats, however, which, like hmman leings, amb mulike dogs, are suplicel with a great number of mueous glam!s in the trachea, he fonmed distinct inerease in the secretion, ns well as muens in the chalice cells, and nlso constantly on the general surface of the membrame, lut considerel that the amount was so small as to lee easily. removed by the eiliary movements, whieh, eontrary to Bernard and Engehamm, statements, are not paralysed by ether and chlorofom.

Holscher conld never satisfy himself of the presence of hyperamia or inflammation of the trachea or hronchi. For this reasm he considers that the trachaal and hronehial mucous membranes are less affeeted than are thowe of the month, nose, and pharyms, hut he thinks that this may be explained on teleological grounds, sinee the trache: and bronchi cannot exercise this facilty, as they are protected hy the mouth and nose.

He finds that salivation oecurs with pure ether, ev:u althongh administered through the trachea; but he almits that a part of the action may be a local irritative one on the termination of the lingual nerve, a view held by Claude Bernard.

He attributes bronehitis and [menmonia partly to the cooling effect of ehloroforn

[^20] he eonsiders them the result of aspirition of intertenl material, and of this he adures
 some very interesting contributions on the sulijert at the inthence wi combing in the masation of pnemmuris, and we agree with him thut, for grotracted "arations a heated operating taile, such as we lave fud fire the bist twenty-five years, should las universally employen.
 This is all the more important from the fart that, in cerery probuged anasthesia, whether from chomoform or ether, mot omly dees the innly teminerature fall ine the thonsl-pressure in com-idemily lowreal.

One must comeluate from Hilsolners caperimente that, with healthy rexpiratory organs, the had eflerets of ether may he gharded against, bint at the same time there is
 it certuin that herrt disease null weaknew are the compramimatimes to the nar of
 reppiratory pasages emintrandiations to the lise of ether.

 dhef fartor in its presention. Fimindism and extension trum the lymplaties wero

 long. That interference with rexpiration phays an impar it funt in the predurtion

 of the injury is not withont its inthence on the results. iellotfer ohserved more enses of purmonia after laswini's operation for the malical rine of hernia than after any of the other methoxls. When nsing ether, therefore, omer chief are shombline to refuce this tembency to mase lanage to the respiratory pasages to a minimum hy following the rules laid down iy Sanwerch, (irossmam, and Holseher, viz. tu adopt a suitable positinn of the patient, with the head deprement and turned to me side, to allow the saliva to flow away an it is secreted areording to the statements of Hofmam, Witzel, and others. But still mure important than pesition is the dilution of the ether vajnur with air.

Selmidt (Kromecker) has ohserved how well amimals, which otherwise nuffer from severe catarrhal affertime of the air passiges, bear ether mhinistered by Kronecker's alparatus, the ether mixed with moist air leing hawn down the nostrils, Hint there is still amother factor which must the kept rarefully in mind. When ether (on aceount of its weaknes, as compared with chloroform, and of the larger dose repuired) is administered by the "nsphyxiation methenl," whielo is effeeted ly puring a large quantity of ether into a mask and excloding the air, hejneramia of the limgen and markell salivary secretion always resnit, arils which may twe fremed ly diluting the ether with his.

Dreser has formulated the same rule for ether as firr ehlomemom, viz. that a definite pronertion of air should le 1 ted will it. He starts with 2 e.e. and rives to 4 cer. of ether in 10 litres. In this way he gnards aginst the semsation of choking, and arainst irritation of the bromelio. Cushuy (Kroncher) has experimented with carrefully measured mistures of chlorofinim and if ether, which he introduced thromple tuines into the nose hy means of water pressinere, and he prowed that nareosis cond he induced ly means of 15 to 20 per cent of chlornform valumer, and that it conld le maintained with 5 to $\overline{7}$! per cent, while a 20 to :30 per eent ether mixture did not always canse anaesthesia, aml, to maintain marrosis, ether remined a higher

Leipzig, has arrived at the conclusion that, in preper dilution (6 to 7 inel cent by volume), ether has no laad effects on the respiratory urgans, hut that in this form it is not always $p^{\text {rowerful enough to induce complete ansesthesia. Hofman and Witzel dilute }}$ the ether with air by dropping the ether from some height on to mopen mask. In cases where the diluted mixture is not strong emongh to produce complete nareosis, we endeavour to avoid the evils of more concentrated ether vapour ly inducing anesthesia with a small dose of a rapidly acting ansesthetic, such as lromethyl, whichl for healthy amults is harmless in small dones. Bromethyl haw now quite supmerseded chloroform for this purpose, thongh Lemander, following hathrisson, ohtained very good results with the hatter.

Resommended ly Numeley in 1849, brometlyy has found a strong adsoate in Hafter of Fromenfelis. We have made use of it in aeeordance with Hafter'x methorls and writings, and can fully contirm his experiences.

Narcosis no le inducel in alults by 20 to 30 g of ofomethyl, the whole dose being put into a mask, covered with inpermeable tissue, and inlaled for 30 to 60 s.conds. There is then no need for the large doses of ether with exelusion of air, and satisfactory anaesthesia can be maintained for a long tine withont the cyanosis from impeciment to the brenthing, and without the matle conserpuent on the lack ward flow of the saliva. Bromethyl is unite munceeswary for children or weakly and delicate individuals. We have never seen anything to cause us ansiety when using Haffe:'s doves; but we use only one small dose, and never repeat it, as it is omly hy prolonging the brouethyl narcosis that we feel any danger is incurred. It shoulit not he administered for any prolonged operation.

Regli has deseribed a deleterious act:on oin the kidness and lings after the use of brometl yl alone, mul, in the case of alcoholies, he las entirely failed to induce narcosis sofficiently deep as to ensure muscular relaxation. Alonig and lanatz give similar experienees. The latter author righly points out that induction of chloroform narcosis witt: bromethyl is dangerous, although, since introluced ly Ehermann, this method (the Poiton-Dijllessy methot) lats attained great popularity in France (Dnmont), and although, aceording to Dastre, the toxie properties of the two sulnstances are antagonistic, hoth, however, aet deleterionsly on the heart (Liohrs) and hiloril-pressure, and whereas ether at once connteracts the passing depression raused hy hronethyl, chloroform rather accentuates it.

The results of bromethyl-chlorvform nareosis recordedl ly Rein in Diaknow's elinie are not in favour of this combined 1 rocedure. In 167 rases asplysia renolteci 12 times, the pulse stopmed in $*$, and no fewer than 7 deaths oceurred in :2ebo riees anasthetivel.!

Whether the drop-methol of ndministering hromethyl or the administration hy Braun's apparatus prior to ether should remove the last wijection to this procedure, if the maximum dose is never exceeded has still to le proved. We dow not ernsider it adapted to all rases. lartsch's experiences (Larised)) are very much in favour of the drop-methol. The method shove deseribed of administering hromethyl prior to ether so fatilitates the induction of anasthesia (lonth tore the doctor and the pratient, on account of the mpidity and case with which it is iaduced in strong imdivilnals) that we shonld nu longer neghert sudn in exeellent expedient. For ull demes where there are no detinite contraindications to a general antasthetic, it is inmensurahly suprerine to mednlary anaesthexia.

A perind of excitement with seroming, stragyling, and chonic and tomic econtrac. tions of the museles, accompanied ly ditficulty in rexpiration and cyamosis, reflex artion on the heart and rempiration, spasinndic respiration, or arrest of hinth heart and respiration, we have neser seen orecur in bronethyl amesthesia. Il ww these unt wand
 in all carliev ehapter on Aneenthesia.

In a certain mmaner of diseases there are alsolnte contrandications to the une of ether as well as elloroform, as one or other comld omly le alministered at a riak to the patient $*$ life.

associated advanced degeneration of the cardiase musele, of the liver, of the kidneys, or of the lymphatic system-that is to say, in a mumber of conditions implying disturbances of general nutrition, such as Addiwm's and Basedow's disenses, "cachexia thyreppriva," severe forms of amemia, uarkel degrees of fatty degeneration ar: 1 alcoholixm, conditions of inamition, sepis, severe prisoning, diabetes (Becker has collected twelve cases of death from diabetie comat following anesthesia), and particularly the s'atus t:ymicus and statu* lymphatiens.

According to Miknlic\% and Stein, chronic inflammation of the cervical ghands increases the risk of miesthesia. Death may wecur after operation in patients who are of a "lymphatie diathesis" (Doyer), ${ }^{1}$ even without colargenent of the thymus.

The number of deaths umder an andesthetic (ether as well as chloroform) in sulgects with enlargen thymus and enlargement of the lymphatic aproratis is proportionately high, and is all the more striking from the fact that the victim is usially in the early decales of life, when, as a rule, the administration of a genral andesthetie prese.ts the fewest dangers. Friedjung, in his review of the literature relating to the status lymphaticus, has fomml only one leath unler ether, as olnmed to numerous deaths umer chloroform. Dr. Hedinger reperted to us a case of death following the administration of ethylbromide. Here also the status lymphaticus was present. In our own practice, one death under ether (in a loy aged sixteen years), which ocenrred, in 1896, during all oneration on a fistulons empyema, depended on the status lymphaticus. In these cases death occurs from cardiac paralysis during the aministration of the anesthetic, but it oceasionally oncurs after the alministration of the anasthetic. In goitre, and expecially in cases of liasedow's disease," fatalities are particularly frequent.

Dr. Hedinger has stated that the jnof mortem examinations held in the Pathologieal Lustitute at Berne (Langhans) showed that the status Iymphatiens or a persistence of the thymme was present in all the w..ses of denth under ehboroform. This is in accorlanee with Kumdrat's statements. The smme conditions were alsin fomm in a case of Baselow's disease, where the $1^{\text {mitient died sudlenly after "struma }}$ extirpation." The explanation may be fonnd either inc mechanical influence on the hart or its nerves, a hyperthynisation or an antointoxication, from inefticiency of the lymph ghands in removing the prohnets of assimilation, or in a hypophasia of the chromation apparatns.

Frieljung attributes the fatal issue in part to meelanical canses resulting from the position of the trachea betwell the thymms and the imomivate artery. Bint Paltanf and Kundrat very properly do not consider it as positively proved that the cause is mechanieal. Sifhlimiseher points out that, in sulhjects nffeeted with the status lymphations, death does not depend on the natnee of the andesthetic, bint oceurs as freguently with ether as with choroformi. It is, therefore, desirable th premss out the stermal region, to palpate the smpa-stermal fossi, to e.simine the throat for tonsillar hypertrophy, and to investigate the spleen, siace by urghent if these precantions the patients life may be expmest to extreme danger. If it shombl
 as magested ly Focheri,

The opiniom we he the procellure we favon in regratel to andesthesia hawe lneeln atready stated in the chapter dealing with the regnlations for the Ineginuing of the - pleration.

In the abmene of the emolitions mentione previonsly as comtamimations, ether administered in the way alromly dempribed is the best aneenthetic.
(1) If the state of ether-intoxication (Sudeck) is desirem, the ether is mhninistem on ('zerny's mask, which is firmly alplien to the fare, a formentally nseful for cither shirt or interrupted andenthesia (e.g. comhined with local ansesthesia).
(2) It may le administered by means of the drיp-methonl (llofmann and Witzel)

[^21]where the pelvis is lowered and, if necessary, the head is thrown baek, or as an equivalent, Braun's bellows may be brought into operation.
(3) It inay be administered in complination with other drugs if the operate r finds the individual resistant to the action of the anesthetic. Morphia nuy be previously injected (Riedel, Kïmmel, Witzel, and others) or the anasthetic may le induced with a single dose of ethylbromide. Stimmlants should always be given half an hour before opreration.

In all cases where there is no hindrance to the breathing and no affection of the respiratory organs, ether munt he regarded as the most suitabie anasthetic. The best method of procedure is to indure nareosis with a single dose of bromethyl, and to maintain it with ether in measured doses. The drop-methol is not sufficiert, but success is generally ensured hy pouring on measired guantities of ether, acrording to the effect proluced on the patient.

In this way, as proved hy statistics collected from our climic by Dr. Oppikofer, quiet anesthevia is ohtained, on an average, in $6 \cdot 41$ minutes, the p ratient's sensation and respiration reguiring careful observation.

The condition of the pupil is a valuable indication of the degree of anesthesia According to Kappeler, as sensibility disappears the pupil hecomes s.mrll, whereas ia the excitable stage it may le dilated. The lehaviour of the pmpil is, however, much less constant with ether than with chlorofori:1. In prolmged ether narcosis the pupils should be watchel, , ind this is still more important when there is a special necessity for inducing anesthesia with chloroform. In a patient muler the influence of chlornform, whenever slowing of the pulse is apparent enough has leen given. Further administration is to court danger, while slowing of the breathing is also it sign to be cautious in continuing the chloroform.

Stertorous breathing, athetosis of the tinger (Koblank), complete muscular relaxation, and irregular pulse indicate that the full permissible dose has leen exceeded. It is frequently difficult to obtain quiet a. mplete marcosis in alcoholic suljects. The difficulty is lest overcome ly n previnus injection of $\frac{1}{2}$ grain morphis. We restrict the use of morphia, fearing, like liumnel, the production of respiratory disturbances. Moreover, by giving alcohol in large doses, we can much niore efficiently facilitate the induction of anaesthesia. Franck also protests against the use of morphia on account of its depressing action on respiration. The addition of ${ }^{\frac{1}{6}}$ grain atropin, as suggested by Dastre, would ajprear to guard against dangerous reflexes (e.g. cardiac arrest) acting through the vagus. It certainly nets effectively by preventing the secretion of siliva, but Framek asserts that it camot lee given in sufficiently large doses to be of any service.

Chioroform should supplant ether in all cases where, in the nhsence of a definite contraindication, disense of the respiratory organs is fomm to be present. It should invariably be given ly an appratus which allows of an mbinisture of air, at first in minimuni doses, ame its administration should lee regnlated hy the condition of the pulse and the state of the pupils.

Prolonged amast hesia with chloroform should always he aroided, and in any casc it is only to be emploged with an apparaths which elisures acearate mensurement of the done. According to Wollgemuth' Nemdiortfer was the first to combuct investigations with ehloroform and oxygen. Krentanam improvel the methol of nsing it, while llilliseler recommembls gas .nd oxygen anirsthesia, und Krïnig still commence's his oxygen-ether-chloroform anesthervia with langhing gas.

In 1901 Vohlgemuth alopted a practiral method of administering chloroform and oxygen, in which oxygen from in sted eylinder was passed through a 1^{1}-shajued
 chlowform, ether, and ethyl hromide is an improwed and simplitiend form of
 the oxygen can be aeruratel: mensured, atal any alteration ran at one lee made by simply moving an indieator.

Whohgemmth states as the advantages of oxygen-fhloroform anaesthesin:-The ${ }^{1}$ atrch. f. klia. chir. Bat. 6t.
face retains a good colonr, the pulse is slower, the loreathing regular and quiet, and the pupils are contracted and do not reat, while the stage of exeitement is alsent or short, and there is no salivation.

The Roth-Driger apparatus admits of the administration of 3 litres of oxygen fer minute. If the indicator pints to $\mathbf{2 0}^{5}$ drons, the mixtmre contains $\frac{1}{2}$ gr. (5 min.) of ehloroform ; and as a rule it is sutfieent to have the indieator at 3.5 drows, while in aleoholies it has to be placed at 6:5 dreps. Wohlgemuth fomm $0 \cdot 1$ of chboroform in 1 litre of oxygen was necessary for satisfactory anaesthesia.

Oxygen-ehiorofom anesthesia should replace ether, when the latter is eontraindicatel by dyspmea or disense of the lungs.

The hest forms of apparatus are built on Bramis principle, i.e. it is possible to administer different anestheties simmlaneonsly, or alternately, by simply turning a stopeock. Aceorling to calenhations made by Kionka for Krimig, the lioth-1)riger appuratus is misatisfactory when the ansesthetie is legmen with ether, for only 5.7 per cent of ether vapour by volume is produced instend of 7 vilmues.

Kromig begins ly placing tio drops of chorotorm and lat drops of ether in the apmatns, and emtinues the maesthesia with of drops of chhoroform and $1: 20$ of ether \mathbf{l}^{n+1} minnte. As a rale, however, he indnces the anasthesia with langhing gas (Hemet's inhaler) jnst as we use ethyilhromide.

By following the instruetions we have ahready given, the risk of sulfiocation and fainting with whith we had formerly to contrond need an longer le faced. Sutheation may follow incantions alministration and depenks on elosure of the ghottis owing to the so-called "swallowing of the tomge" (really falling Dack of the eprighottis), or on spasm, or on blowl, minctis, or forml getting into the ghotis. Syncope is depudent on cerehral amemia.

Sutforation ly too intense stimulation of the terminations of the tifth nerve (atso of the laryngeal nerves, and of the vagus terminations in the mper air pansess) is due to the sidden comtact of eoncentrated vapmess. This is the eanse of the retlex spanm of the ghotis and of the involuntary museles of respiration, mul also of arrdiac arrest. Liosenherg prevents these reflox effects hy spraying the mineons memhrane of the nose with a 10 per eent solution of enain, and Framenis Framk alse recommends this methorl.
"Swallowing the tongle" is a eonsequence of the paralysis of the musdes of the tongue and pharynx, the Hareid epighottin falling back and oerelnding the entrance to the laryux during inspiration. In a patient in whom we had toresert the lower lip atong with the chin and the central part of the jaw, we were casily able to convince omrselves that such is really the mechanism.

This eompliation is avoided hy the Heiherg-Fmarelh prip, ly phacing the four tingers lehend the angle of the jaw nol pmange it lorwards. The rffeet of this, as we were ahle to demonstrate in the above ease, depends not merely on the pushing torwarl of the tongine-how frepurently we see that pulling out th.1 tomghe with foreeps hats ne effect-hut on its heing lifted mp, thiss putting the ghosincepighotidean liganents and the epighotis on the stretelt. Onr mask is comstructed with two rimgs (Fig. 2:3) for the thmons, the tingers leing kept in surch a prition that they ure remly to grip the jaw. Witad prevents its wemrenw hy having the head bent
 the stretch.
 the head downwards.

Fonal may lee prevented firm entering the laryin ly keeping the stmanh compty, either hy a fiast for three to tive homrs previnis th the ondatim, or, where this is inn"naible, owing either to the exhansted enmelition of the pationt or the the pesing neressity for inmertate opration, ly emptying the stmarh hy mans of the syphom. This shomld never he forgotten. Comiting of itweff is of me consephemee, exerpt in so
 A sperial preantion to te taken to heart ly yomg anasinetins is mot to keep the jaw forward when vomiting sets in, as lay litting ny the epighotis stomach contents.
gain access to the larynx. ${ }^{1}$. Attaches of nyneope are far graver than the danger of suffocation. The best means of preventing the cerebral amemia, which is responsille for sndelle syncope, is by placing the pationt on ant incline, with the head nore depenelent than the trmak and lege. The introluction of the Trendeleninurg poxition las made it wery easy th curry this omt, and experiente goes to prove that syncope need not be fearerl with the putient in this p^{n} wition. This gives the Tremelenburg position the advantuge over that of lioser, in which the eneration is performed with the hearl hanging over the ent of the talle:
 and, when this is mavoindable, the aneexthesia should be inmediately stoplyed. The best means of avoiling the dinger conseguent mon the loss of blows is immediate
 administration of the anasthrtic should he stoplided also in enses where anamia of the brain is proluced, e.\%. in ligature of the carotid.

Another important eanse of cerelwa maemia is marked cooling of the booly. This is all the more impurtant from the fact that, in every jrolonged ansesthesin, whether from chloroform or ether, not only does the body temperature fill bint the boonpressure is considembly lowered. It is to be a mided liy keeping the patient wam. ${ }^{-2}$

Fear and anxiety perceptibly increase the tendency to syneope. In such circumstances a done of morphia may le ungridgingly given before operation, but an appropriate dose of aleohol, or, letter still, of tea with some branty in it, is 1 cerhaps more effective. According to Feilelemfeld, the addition of tive or six Irops of tincture of strophanthes is sutticient to ensure complete eomposure if given on the morning of, and for two nights before, the operation. The sulseutameons injection of morphia before beginuing the operation wonld seen to be a very doubtful proceeding, becanse in certain persons morphia rapidly prohluees a sellastion of measiness with accompanying attacks of symeope.

In one of our hast casen of death under chloroform, in which all precantions had leed taken, we are inclinel to ascribe death, whieh took place at the very eommencement of the operation, to this idionsnerasy. The patient hatd had an injection of $\frac{1}{6}$ grain of morphia immediately before the operation, instead of half an hour Ineforehand, as hand leen ordered. The patient, a wonan of eighty years of age, suffering from trigeminal nemralgia, collapsed at the tirst incision, the pulse disulpement, respiration stopperd, and the fisce assumed a bluish tint.

Finally, cerebral anemia from shock consequent upm too early commencement of the operation must le guarded against. If the sensibility is not entirely suspended, a sudden intense pain in certain sensitive nerve arma mily result in severe shock, as Crile hass fuite reently shown. Cinshing has also noticed similar shock during anasthesia when large nerve tronks are severed. This can lee avoided ly making the whin incision muler cratin or hy injerting the nerve trums with comin.

Stein, ${ }^{3}$ who has a wide experience in anaesthenia, draws operial attention to the sudden onset of the following symptoms, vi\%. dilated pupils, intermittent heathing, rapid pulse and pallor, whell very semsitive tiswles (parietal peritomemin) are handed.
 able eombitions, whel are reflexly probuced and necasioned lis pain. It alson prevents the stage of great excitement daring which impatient administration of the manethetio is purtienlarly dingerons.

If eareliar and respiratory arrent (which are nomally assombiated with prallor on
 of carefol attention to the above preseriked mbes, there remain but three reliable procelmes, viz. artiticial respimation, tramsfinson, and mardiae masage. Artididial

[^22]respiration is the expedient to which one naturally thrns in every case. In long as respiration contimues there is lope of resuscitating the carliate and cervelral metion. Many experimenters have heen much astonished lige fact that amimuls, if artificial respiration le kept "p, are not killed even ha very eonsiderable pressure on the brin, and it is muforthate that in man we have not sot a convenient mons of inducing and maintaining respiration. Witl Kroneekers apluatus a deep and regular respinttion can te kept ip for homs, he firmly tying a tulne into the tracha and pimping in nir perimalionly. There apmears to ns ine dontht hat that the inetticiency of artiticial
 carrying it out. Lartorele reflexly stimulates the volumtary museles of revpiration by rlyythmienl traetion on the tomgen, with irritation of the man-larygneal nerves. Kinap and others extol this method, which is simpsed th act ly exciting the respiratory centre through irritation of the glosso-phanygeal and sumerior laryngeal nerves. Strong faradic stimulation of the pherenie nerver, as alreaty descriturl, is very useful mader certnin circumstaneres, and we nre not convincel of the welleral "Inlicatiolity of Brantz's oljgeetions to the procelare.

Of the methods in vogne for inducing passive respratory movements, that of Schinller is, according to Djelitzin, the most effective. The salne methonl was introduced in our own elinie quite indepentently hy limes. It comsists in raising and furcibly depressing the lower contal urches ly seizing them from athise with fome fingers elose to the stermum (Djelitzin). How deep mininimion amb expiration mre thus obtained can casily ${ }^{\text {le }}$ demomstated. Djelitain at the same time rases the therax and relases the alxhmen he Hexing the thighs.

Sylvester's methent, also very sucessful, comsists in stretching the thomome muselew by raising the arms thll the ellows tonch hehind the head, and then foreibly depressing them ngainst the rilas and towards the sternm. The tomge must he simultamemoly pulled out or tracheotomy berfirmed. Broselı eordially agrees with Djelitain's observations and writings on the teelonithe of Sichuller's metherl. Lhe las estathisherl the fact that the greatest inerease in the eapacity of the thorax is oltained ly inereasing and decreasing the sagital diameter. He therefore places a high enshion
 back wards towards the gromm, thens cansing inspiration. For expration he presses the niproximated ellows with inerensing force agionst the chest wall.

Of the methonls of pumping air into the lange Kronecker* : alpatus seems to, ns the most etheient. The month is kept apen for expination.

Transfusion may take the form of mito-transfusion hy pating the luwly in a sloping position.

The supreme importance of the prasition of the Inaly duriner miestlesial has ineth recently demonstrated liy the interesting "uperiments of Lemaral Ilill on the inthemes of gravity on the circulation. In dogs mpidly amasthotised with chlorofurm, on

 disemtimued.

Onening the abdemen when the feet ure lawer than the lewel cansen a sorions tall

 from tachymarlia) is partionlarly great if the efleet of the inthence of gravity on the erenlation lee not carefully consindered. Fiuther, the monal rompensation fir the
 is unset in all persons who have heen in the lorizental pesition, a combition on entring in a large number of our "pmation cases. . Hhough cessition of mepimation nlways necurs first, get, acowing to Ilill, it is the vast-motor parnlysis which indueses the most urgent symptoms. But the final and mont dangeroms arent of respiration (with shallow Cheyne-stokes breathing) is the result of a failing howd-anl|ly to the
respiratory centre and to the lomin in general, and is consequent mon viso-motor paralysis, which can only be removed ly mpidly mising the blowl-pressure.

That the leart can still continue to bent nfter the brain is paralysed is accounted for loy the fact that the circulation may persist longer in the coronary arteries.

It should nlso lee kept in mind that firm landaging of the almoneen, which Leomard Hill lims practised in animals, is an aid to the vaso-motor nerves in producing compensation for lowered lood-pressure. This procedure is, however, only permissille when it does mot suriously interfere with respimation-that is to say, where respiration is almost completeiy thoracic, and therefore chiefly applicable to women. For this reason chlorofum is very safe in purturient women (Hill). It is more advisable in every case where viso-motor pamlysis is apmehenden-that is, according to Hill, in every case of marcosis, and especintly chloroform narcosis-to phace the patient in an inclined pwsition.
.lecorling to Hill it is of greater importance to ruise the pel is than to raise the legs, but this must not lee carried so far as to slowly engorge the heart, for chloroform itself may diretly paralyse the heart muscle. This was proved ly Gaskell and Shore in their experiments with crossed circulation, the lirain heing excluded and respiration lesing maintnined. Llill recommends the alternate eompression of the abalonen and the thoras: ly the former the hemrt is filled and ly the latter comptied. This is, in short, the prechure usually followed in performing artiticial respiration.

Next to transfision, therefore, correct position of the landy is our most valned sufemard, but more as a prophylactic measure - 1 precantion to be taken at the commeneement of the oleration. Every opration muler chlomofom and even when the patient's blome-pressure is maturally low, should lee performed with the looly in a slightly shoped pasition, the pelvis mul hower extremities being slightly raised, and attempts at rexnseitution, in nill cases in which the bomel-pressure has fallen, should be comblueted with the Imoly inelined at a monlerate angle.

Heart mussuge has recently proved one of the most effective measures ngainst syneone whon the latter is produced lyy the action of the anasthetic on the heart.

Krinig recommeluds a mupl suceession of hows over the pracordia, while Hill compresses the alnlomen and thomx altemately. A still more effective methonl of carrying out this principle is loy massage of the exposed heart, as recommended first ly Schiff, then ly hatelli ${ }^{1}$ and Prus, and carried ont ly Thatier, Hallion, Mung, and others on the living sulyert.
liy this heroic treatment l'rus succeeded in resuseitating sixteen ont of twentyone ammals killed ly eflorofom, and thirty-me of forty-fonr artificinlly suffecated, although rexpirution had leen suspended for an lome.

Kemp mul Gurdiner ${ }^{2}$ were alle to resinseitate ly cardiac masmge deven of twentythree dogs killed ly chloroform. They recommend devation of the pelvis, urtificial respiration with intulation and an air lump, ineision of the chest wall, and even resection of parts of tifth mad sistl rils. Two tingers are then passed behind the heart, and the latter is rhythmically compressed agamst the chest wall or against the thmul. Sidhiff, med alwo latelli, performed artificial respration at the same time. Care shonhl be taken that the temperature le sustamed.
lbomeard ${ }^{3}$ has sureessfilly performent carliac: massage in mimats throngh an necisen in the diaphrigm. A mesial ineision was made downwards from the siphistermm threngh which the heart wats pulled down and masaged till it heat agaiu with regularity:

I'revont and batelli haverestored the heart rontametions by means of alternating
 the heart. Rironerker plams one eloetronle in the nesophagin insteald of over the heart.
l'ms. however, cmployed another aid tor resmectation, viz. thansinsion, which was meme and ther mans of attiming llills olyect of omplying hand to the heart and bain. The extrantinary effects of this in hemorrhige, where the blowe pressure

1 durnioul de phagual.. 1900.

longer suffieient. Moreover, as it in so often repmired in those eates where, eombined with severe hatnorrlage, the bookl-pressure is heing lowerel hy some toxie ahsoption, it would appear quite justifiable ns at means of resuseitation in those cases where the blood-pressure has fallen.

Iborrow has seen such success follow the sulcutaneons injection of relatively small guantities of nurmal saline solution that lee is quite enthesiastic nhmot this neethonl. Long before lorrow's paper was pulbished, we were in the hatit, in our leeturex, of recommembing intravenous transfision as a valuahle remedy in cases of ehbroform collapse, and we instructed one of our studente, Misw Gomikerg, to study the action of transfusion experimentally under Kroneeker's iliretion.

Some of our clinical experiences are thoroughly consincing. A lwy of eleven, who was lecing operated on for a retro-maxillary tumour, sudelenly Inerame pulseless at the end of the opration, respiration reaverl, and the pupils no longer reaeten. Stimulating infections and subcitancous infusions were ahministered withont snecess. Lowering the head had no eftect. Traeheotony was performed and artilicial respiration legun ; at the end of twenty minutes no reaction erould lne made out leyond an oceasional spasmonlic eontraction of the face ; the median lasilie vein was opened (no Hoonl eseaped from it), and one litre of salt solution at 41° C. Was slowly injecterl. Spontaneous respiration then apmenrent, the cardiae impulse leceane patpathe, and, lastly, the pulse returned at the wrist.

After removal of a filmosarema from the luase of the skull in a hey, puralysis of rexpiration supersened, and lasted for one homr, with a just fereeptible, wery rapial pulse (150), and complete meonstionsiness. Chloroform bad bren given though a
 although the applieation of a strong faralie current to the phrenie nerves (the dise on the atslonen and the small romedel electronk on the anterim horiter of the scalemens anticus) camsed satisfactory respiratory movements. Immerliately on stolpling the faradic current the pulse lneame weak. After an hom two lites of salt mohtion were transfused into the median basilic vein. One litre had leen previonsly given sulhcutanconsly with no effect. Ahost immediately phontaneous respiration commeneer, and the patient hegan to responel when shouted to. In cases of death fromether, mell as those or Kiarsinerg, where respiratury arrent one urvel whike the heart continuel to heat, transfinion might have leen entually sumersful.

By filling the henrt with than, therefore, the activity of the eardiac and rempintory
 recommend that the saline solntion used for intravenems injection (110 to $0 \underline{2}$! litren) he heated to a temprature of $40^{\circ} \mathrm{C}^{\circ}$, at which degree it in suticiently warn to exert a stimmating action of the leart. Aecorting to Gotlielis experinemts, the bootpreswure may he promanently impored by repeaterl injection of in milligram of adremalin (i.e. approximately two minims of a $1-10 \mathrm{mo}$ solution), which" effects a direct action on the cardiar gamglion (Manel). He whtained this reaction after complete arrest of the leart tor fise minuter, erpecially when he combined it with massige and compression of the precordia.
 supmenal extrat is more efticacions than any other means of reaneitation.

Our experience in such canes prints very definitely to intratemons transusion.

 grese to the heart, and in thenere sent to the hain. We hase need up to two litres to attain this oljeet.

 transfusion is more strongly indieated than any other treatment. If, as Winngradoft,

Selmidt, and Kroneeker maintain, this depends on pmralysis of the cardiae ganglia, then it, like any other methol, will have no influence on a fluttering heart.

It is atill an open question whether any lenefit is derived from direct stimulation of the cardiac museles by the Königg.Mnsw methol, which consists in rhythuniond compression of the heart by repeated tirm compression of the precordia. Kirte bronght a matient romd after forty minutes' continued cardiac arrest ly this methonl, combined with iutravenous trausfuxion of sult solntion. Krawke whes the first to, point out that the suceess attributed to expansion und compression of the thorax in artificial respiration was, in part, due to the urtiticially-extablisheyl circulation.

Lackhart Mmmmery ${ }^{1}$ avoids, giving stimulanta in cases of show k. He advister phacing the hend low anil giving an intravenoly injection $1: 0(1,000$ wolution of alremnlin in saline (in case of haparotomy it may le injected inte the alnlonene) compressing the uhbomen, and-as has heell already done in Datrica-raixing the boomp pressure ly pueumatic compression of the extremities.

The improved methods of administering ether have remberyl the use of methyl chloride supertuons, although moless an authority thans seneer Wells caployed it as his chief masenthetic. Similarly ethyldoride (Keleme) has uo chain to le recommended as a general amesthetic, as it is nut free from danger and offers molowions advantage over ether or Iromethyl.

Ethylchloride was introluced as a gebwal marcotie by Billeter aud Carlom, It is much praised ly Lothenssen for short "prerations, ats a resint of his expericnee with it in v. Hacker's clinic at lunshruck. Five grammes are sprayed from fine tulnes on to worl, so that it freeges, null this is then inhaled from a lirener's mask. It is. side to cause rapid nareosix, followed ly mpind asakening, generally withont vomiting. Dumont also praises it. He pours 5 ' to 10 c.e. into a large luillard-I Dumont ether mask, and when the patient is maesthetised he continuex withe ether. He recommends it more experially for the induction of ether uarcosis, as its own effect is very transitory, but Königis experiments do not say much for it. Seit\% published a fatul

In 1896 soulier disenssed the suljeet und recommented ethyldhloride. Several years ngo we gave it a trial for general nareosis, with unsitisfactory resinlte, which we cannot, unfortunately, rejort, as the clinical records of the cases have leen lont, and we are therefore mot in a position to give detinite information as to the preparation employed. Ethyldhoride, which hoils at 129 (\mathcal{C}, is of ehief value as a local anaexthetic, acting by the withilrawal of heat.

Mixtures of different anasestheties render it more diffieult to pronounce a judgment on the individual effects of each.

Kemp points ont, if the mixture containing chloroform be considerel from the point of view of its volatility, ether remanes cther and chlornform chlorsoform, and, when it is anministered by the opeoll inhalation methon, the etfect is that of inire chloroform. The popularity enjoved ly Harley's .I.C'E. mixture, and billroth's cllloroform and ether mixtme given in a special way, depmends partly mon the fact that thag are comparatively safe anesthetice. If they were meed sparately, a much more reliable opinion of their value wonld be formed.

Ther researeles of Lomighanu and Kodmann (kionka) have shown that when two nareoties are nsed in conblination, their anmenthetie properties are considerably
increased.
 one anarsthetic can I_{k}, pivell after or in conjuation with the other, as in braun's apmaths altealy deseriloul.

 ander the inthe are of the dibuted cther, the chanoform conk sem lee farther opened without exceeding at siff puatity. If, on the other lanad, the full dowe of ehloroform has lnedi given, it may lee shat off, and ether, with the correet proportion of nir, administered alone.

[^23]A double lottle is used (1:0) c.e. of ether and to e.s. of chloroform) with a kellows which, when sume-zeel at each inspiration, ulmits 90 e.e. of air. At first the air contains f vols. per cent of ether vapur and 1.7 of chloroform, late later, us the result of coroling, it contuins only hali this puantity.

Bramn, like Witzel, onrselves, anil othera, only considers ether relialde when it is inspined in at diluted form. In if th $\overline{7}$ vols. per cent it probluees an idenl narrosis without eyamosis, and withont inerasing salivary seeretion. Where this propertion is not jowerful enough, it should lee st rengithened with chloroform, or choroform ahould le sulstituted. This is the principle on whiel his apparaths is constrneted.

Willy Meyer has also shown that whell ether and chloroform ane mixet, a new solnatance, mestol, is formed, the use of which he does not consider entirely safe.
horff has made efforts to reinforce the action of the anientletic by athinisteriug seopenamin and morplia, mal kionka (Kinchmann) hass shown that in the ease of doges the aetion of earh element is greatly inereased hy the combination of the two trugs. In the case of man, however, several deaths have ine 1 recorilen as the resilt of serpo-hamin-morplian mareosis. Aecording to a more reqent eommunieation, Kurfif injects
 "pration, the ingection leing relpeated two homs hater and again half an hour provions. to its performance, from which procelure he has net observed any evil effects.
 1-1! hemrs before ophration with an suberpuent mhinistation of cother. Death hats Ineril mutal, however, ly Lasek, Rys, and \%ahralluicky, after a reprtition of this alose. Israel has recorded one death during the "preation and two fatalities after geration, whil? lick has notities there leathe cecorring in the conse of "In rating.

Quite recently Mathaci has recommended aleohod nareovis, the ateolal being

 repmiring to take leforchand a lottle of strone wine. This mathonl may le lironght
 Ihath might have ineen prevented, for example, lay the employment of aldohol nareonis, in a case we hate of excision of the thyroid in a crotin with marked tratheal stemesis, where the opreration was commenced without inn anienthetie, hat whewe on aremut of

TREATMENT OF WOUNDS

(p) Sterilisation of Dressings, Instruments, and Lotions

Ill the skill hronght inte play the the sungen in of no avail if step atre met bichell
 which are relneed to a minimmo if it is alministered with sultiecient catre and in

treating wounds ly proving that decomposition in wonmen only oceurs after the admitance of orgmic particles from without. Jules Lemaire had previonsly formulated the axion, "las de suppuration, si l'un the les germes," while Lister, with his Insmat caution, stated that these organic particles are really germs capulide of developnent.

Koch has euabled us to discover in indivilual casen the germas which are responsible fo: wound infertim, and the stuly their aetion with closer attention, after Billroth Lad worked on the sume lines, int with insintlieient methods. Billroth mul Thiersch assumed the presence of germs in the interior of the tissnex, but the adoption of inmpred methols has served to prove that, in healthy imlividnals, germs only exist on the surface-skin nud mutous membranes-and that they are always corrietl inter the deeper tissues from the exterior.

Our knowlelge of wound intectionnme its preventin! rexts on this laxis. Schiiltze, Lesser, and schede trumphanted Lister's principhes int" (ierman anil, where they at once trok root and lore fruit plentifnlly, a resint mainly owine tu Valknamis enthosiastic initiative. But in spite of the cmormons amonat of work contributed in the last deeade to mbance the preeedure in the tratiment of womls, 14 complete understanding of the best memosimd methons has only bee reachool in a fow directions. So much has, however, been ascertained that we can with almolute oftainty prevent infection of wounds ns fir nas this is depement on the materials incessary firs the treatment, and expecially of everything which is cemprised meter the heating of dressings, instruments, an! lotions destined to come into contat with the wommd surface. The greatest mannere in this direction is, that in the preparation of these materials we have alautumed the wh highly-complicated methonls in favome of thone of molern simplicity, which cmable ne to observe the rephirements we have mbomated, not only in the elaborately furnished clinies anel operating theatres, hut ulso in the simplent mad mont humble canditions now introdneed into praretier.!

As regards the instruments, dressings, and lotions, they eani Ine sterilised by means of boiling, or ly suljeeting them the the netion of cirenhting mul compresmel stean for a sutficient lengeth of time. Infeetion ly direet contaet, generally designated as contact infection, which threatened the life of every persom "!eratel on prior to Lister's antiseptic tratiment, is thas entirely prevented. Althongh the faeteriohgical therapeuties, expecially in wombl treatment, are not at present making remarkable progress, the aequisitions already made tu our knowledge will not readily be abandoned.

The tirst essential in the treatment of wommen may therefure ine stated ne follows: all solid and thinl sulhstances which cone into rentact with a womel, either direetly or imbirectly, mast le sterilised. This is aceomplished hy lailing them for twenty mimites in ordinary water, or in solntimes less injurinus tos the materisis lemilen, sind as a 1 per cent solution of sodan for instmments. Sterilisation of dressinge and instrmments is materially slourtened by nsing circulating and rompresed teman, a
 sterilisation is cubtained, as Tavel aml his pupilv have amply demmestrated."
 investigatimen into this matter, and fimls that, os long as the stemm is in contact with the water which primeno it, it is satmatend. When it is separatel from the water its temperature may l_{n} raised by heat withont its pressume Incing altered : the stemn is then superheateil, althngh it faiks to obtain any preater mumut of latent heat. If a steriliser is sibigeted to further heat when all the water has heell wherted into stemm,

[^24]steam proves less effective thath suturated stemin, sinere it lus only the uetion of loot
 organismas. For the satme reason sterilisation will prove imperfart if all the nir hats not been previously expelled from the steriliser, which often results from failure to open the valve at the luittom of the storilizer, where the air is fonmel to collerit. The expulsiom of air is alsw, interfereal with ly guthing tow elomely the (lressings in the steriliser.

The grevention of infeetion of the Iressingentior steriliation ant Infere nse was for many gears overlowkerl and neglecterl. Doly thome materials man le regarderl us completely sterilised whiels lave lsell taken diroetly from the lwiling or atramims appuratus by menns uf storilised instruments or flowes, inul itplied tu the wombl, while the dressings slomhl not lav stored for uny ledgeth of time. The stmo rule

 from one resisel into another for atoruge.

 simplieity.

Secmoling to Skirving, the dressings remath damp only if they are mot at mur romoved from: tho steriliser while they are still hot, in whiels tase they iry rambly.

 atructed at drum of his own devising, whiels is lermetioally seated ly simply gushing

 must le phaced Ingide thown, i.e. with the boles downwarls, ins it is mbly in this
 which is of somewhat similar comstrmetion, hat whe whide has two sets of lateral "pernings, one alwive and one lelow.

(q) Disinfection of the Skin

 intu rontact with a wonlul, as the humbut lanly will emblume meither lniling water mor semm, owing tu which eircmmstances the patient's skin, nsw well its the surgen's hamis, lronght, fluring the oreration, into intinnate rontint with the surfare of the

 'There ermoterations are gemerally grompal maler the lomaliag of puritiention of the

 mily the cleansing of the surgeonis habis and those of his assistants, but that if the

 ratefnl ibont the elemsing stat seruhbing of their wwn hamls, while the patient's skin is washed with a little sarip and lotion immediately lafore the opration, romiviag shthorguently a few donehes of corrosive lotion, proceedings which imply a antratiction. This proeednre can only le partially exeused on the gramme that infertion "onveyed liy the surgeon's hands is caleulated to have mulh more serioms results than infection originating in the phtient's skin. We shall afterwarils return the

MUCROCONY RESOLUTION TEST CMARI

(ANSI and ISO TEST CHART No. 2)

APPLIED MMAGE Inc
1653 East Moin Street
Rochester, New York 14609 USA
(716) 482-0.00-Phone
(716) $288-5989-$ Fox
consideration of this print. In the meantime we shall only observe that it is nut very unusual for a severe form of infection to be carried from the patient's shin when this is the seat of a sore, however small it may be and difficult to recognise.

The present opinion of the majority of surgeons on the question of disinfection of the skin is, that sterilisation is not attainalle ly any means at present at our dispmsal. 1 Those who maintain that no process of disinfection can render the hands ahsolutely sterile insist on the use of gloves made of an impermeable material, which can he sterilised by means of hoiling, and thus afford perfect protection against contactinfection from the hare hands of an operator.

The introluetion of the systematic nse of rubber gloves ${ }^{2}$ is due to Halsted of Baltimore, and it affords a precantion which no surgetin can afford to neglect, the improvement in their mannfacture, their cheapmess, and their chrability recommending their general use, while the thin rubler of which they are emmosed proves an alditional advantage as not interfering with the sense of touch which formerly militated against their serviceability.

The chief use of rubber gloves is to protect the surgron's hands from eontamination when he is operating in the presence of pus or infected tissues, for whiei purpose they are indispensable in the daily routine of a practitinure's work. No careful surgeon at the present time makes an examination of the month, pharynx, rectum, vagina, etc., without protecting his hands with ruhber gloves, while it is equally necessary to take similar precantions to prevent contact with any form of wound secretions.

Why then do we not systematically wear gloves for all operations? Becanse, strictly speaking, all the assistants and operation sisters should wear them as well as the operator, and this would entail great expense, as the gloves are eontinually liable to he torn by instrunents or against edges of lone, when they have inmediately to be replaced. In addition to this disadvantage, Heile has shown that the organismis on the surface of the skin may increase from 88 to 30,000 in the moist interior of a rubber glove.

As the sense of toueli is necessurily somewhat impaired by the use of gloves, it is more difticult in abdominal cases to make an accurate diagnosis from palpation, or to handle smooth organs like the intestines. Their use is this necessarily restricted. Finally, we camot protect the skin of the patient in a similar manner, for, even although a thin sleet of guttapercha can be satisfucturily attixed to the skin by encans of hot water, it does not adhere with sufticient firmess and is readily detacherd when handled.

What is therefore refuired is a methon of purifying the skin, which, if it does not amount to absulute sterilisatiom, set affords efficient disinfertion. As we shall sec, this implics the exelusion from the wound of pathogenic organisms calable of develoment, a point which is ensily caprable of demonstration. The quextion further arises whether, after having procured a thorongh disinfertion of the skin, an operaton can secure any alvantage by wearing cotton glover, whieh are not only chenper hut more eomfurtable to wear. Originally introduced ly Mikulice, cotton gloves were for some time in general use, until it was proved that they failed to prevent the invasion of germs.

We can confirm the statement that after thonough systematie washing of the hamb, it is beymal doult gloven sonden with Huid and blood abmand with germs, expeeially the staphylococens albus, the most common organism in the human shin. This power of arpuiting organisms possesses a certain advantage, us although the germs are present they remain entangled in the glove and have thas less olportunity of gaining admission to the wound. Since it las leen definitely proved that the mumber of germs cannot increase during the time accupied ly an ortinary "peration, the aboutive 1 werer of gloves might be regarded as of considerathe value, although we fail to attach much importance to this point. Heile has shown that 4×8 per eent of

[^25]the germs on the surface of the skin pass through stockinet gloves, while 28 per sent renain enveloped in the gloves. Thread gloves, and more notably the closemeshed yarn gloves recommenled ly Heile, are really only of serviee from their efticacy in the absorption of germs. It is also with the oljeet of soaking up the secretions and ${ }^{\prime}$ mssible germs that we eover up our womds and the elges of the ineision with ganze during the emuse of an "reation, the gamze heing frequently changel.

It is wortly of notice that germs have been shown th exist in gloves only when they are sonden with thid and hoond. If the gloves are changed frepnently during the operation a detinite ghantity of infertive material is remowel from the hambat every change. The experimental inventigations of Hacoler and others have proved that the majority of the germs do whe come from the ais. Dut that they are derived from the surface of the skin.

Fiuther, Mohmit's researcher demonstrate that, even after thormgh puritieation of the skin, germs are left in the sweat glands, and that they reach the surface in the secetion in half an hure if the person swats, otherwise within twelty-fnur hours. It follows, therefore, that gloves, to be really usefinl, must he perindically changed whenever saturated with blood or flumb.'

There are mo microorganisms on the surfaee of ghoses when they are removed from the steriliser. For this reasme gloves are of great value, and in our opinion their ehief use dependx on the fact that they prevent contact lee ween the skin sufface and ligatures and swabs, and therefore prevent the now sprions of all forms of inteetion, namely, that which we have designated implantatiminfection.

Swabs can he very effectively manipulated with sterilised nopoge-lohlders. Contaet with the fingers is thus avoided. Ligatures, on the emintrary, have to be taken in the fingers, even when they are kept in the ghas tubes whinh hanz introlueed. Haeglerhas proved that even when the hands have been most carefully fleansed, a ligature cannot be firmly drawn through the fingers without reeciving iserms from the skin surface. For this reasm we are of opinion that it is of great importanee that the nurse in elarge of the ligatures, as well as the singeon and his assistants, should put on gloves (even thongh they should lne permeahle ones) just lefore the ligatmes are tied. This is also the reason why we always defer the tying of ligather, however many there may be, till the end of the oneration. It an ons ration for goitre, for example, it oceasionally happrens tha: as many as firty to ome limured artery forceps are aplied hefore any ligatures are tied.

Infection of ligatimes from eontaet with the hamb and be ahsolntely fresented if
 Gocpel sterilises lis gheres in a roment of stean and apphes them to his hands in a thy comedition, while we preter to remme them direet from the sterilised lation and slip them on whild they are wet.

Before putting on either mbine on cottom ghowes, we mast see that the hambla have been as carefully dixintered as if the operation had to lat romducted withont the nise of glowes, as the mbiner may le realily tom and mittom may ahsurb, germs from the akin. With or withont the hee of gheve, thoremgh deamsing of the hamds and skin is therefare absolutely neecessiry:

Can the skin be eleansed so ciffertively that we ath regard the promen as disintertion? If the distinction between strilisetion (freedem from all serms) and disintection (freedom from pathogenic gems caprable of development) the mantained, it is possible that werem achieve disinfertion of the skin event thomsthe way have to give up the inlea of absolute sterilisution. 'This is, in truth, the sase, if the results of disinfection be measured hes the she of of one one rations.

In $\mathrm{l}: 19$, in a communication dealing with the ghove frestion real hefore the

[^26]which we had obtained in all our operations (numbering 32:5 aseptic cases) performed during the winter ression $1898-99$. From these we demonstrated that with our routine and purely aseptic methol of treating wounds we had not a single case of suppuration of a womb, let alone n more serious form of infection.

We are able to slow also that, in an operation in which infection is apt to prose very serious, for example in excision of goitre, some inmureds of these operations could be performed with minterrupted and faulthess primary union (i.p. true adhesion and complete union in eight days). For all pratetieal purposes, therefore, satisfactory disinfection of the skin and hamds ean he effereted an that the severest operation may le undertaken without fear or danger, and with every prospect of uninterrupted repair in the wound.

Dührsen has expressed the opinion thatt surgical operations are in these motern tines devoid of danger, lasing the prowif of his assertion on the results he ohtained in 267 vaginal oprations necessitating "pening of the peritoneum, in 68 total exeisions of the uterus, in 60 operations for uterine myomata (withont a death) and in 500 other gynaedogial operations, in all of which contact-infection was absolutely prevented.

We are completely in aceorl with Ahlfeld (although in other matters we seldom agree) when he says that the chegree of freedom of the hambs from germs may be julged by the results of oprations. Wee should mot, however, care to assert positively that in every ease in which prinary union ocenrred disinfection of the skin had lreen absolute, Lanz and Flach, in our clinic, have foumd that in wounds hataling ly first intention no intensely pathogenic orgamism, suelh an staplyy be demonstrated, hat only the atalhylococeus allhus and some others which, from our experienee, we are not inclined to regard an athally pathogenie in the huma:a sulgeet. The fiact of their constant oceurrenee in gloves used at cherations where repar was faultless supports this view.

Brumer and also Bulinger, however, have fomm staphylomects aureus, an organism whese virulenee is umpestinned, wounds healing ly first intention.

To what methonds of prevedure are the fitultless revalts which can be obtained in an uninterrupted series of severe operations to the referred? On the so-called ahstinence. But we use the word in a mueh wider sense than the gyareologists, not in the sense of entire albstinene from oprative interference, but alstinence from risk of infection with pathogenic and virulent germs. A surgeon who has to perform aseptic oferations shonld most sernpulonsly guard his hatuls frem jossible eontact with virulent pathogenie organisms. This indication amot be too carefully remembered when it beconess neressary to touch an infeeted wound, or where examinations have to be made in whel the surface of the skin comes into intimate contict with ahmulant infertive material, as in the examination of the mouth, fallees, vagina, or reemm. In surla cases, without exception, the hamd shand loe protected by rubher gloves. Therein lies the true usefulness of groves, nimely in wearing them, not at the operation, but in the intervals between operations. Much hatughter was cansed when, at a meeting of doctors, while disernssi"; the yuestion of "opration sloves," we emmeriated the pramens "gloves should be worn between the opreations and taken of at the momencement of an oneration." The trine seeret of freedom of the hands from germs lies in the use of gloves whenever there is it possibility of a large number of germs being pressed or rulbed into the skin. As
 locome spontameonsly germ free in a short time if not constantly re-infected; and Haegler hass shown that the dread that the deeper parts of the shin are always crowded with germs is exaggerated. He finds that, as a rule, there are no germs in the sweat ghads, and in the hair follicles they are only found close to the surfate. They maty gan aceess to the hair follicles merely by inction, lat are at onee foreed vut again by the current of secretion. On the other hamd, in every injury to the skin, however small, microbes at once legin to grow mal multiply.

Neglect of the skin is therefore unpardonable. We do not consider it any excuse to
say that it is not possible for a ductor in practice to aroid contact with infective naterial in handling patients. If a doctor tinds it impossible to avoid loading his lands with pathogenic organisms, then he must leave orerative surgery to others. But we do not see any reason why a duetor who wishes to operate should not put oia gutta-pereha gloves when le has to make a digital examination of the mouth, throat, vagima, or rectum, of when he has to touch unclean skin, an cezema, a furuncle, or a fistulous wound. There still remains pontamination ly those germs which are present on our own lwolies, or whieh fall by arevent on our hands withont our being able to avoid it. Sut against these we lave a very sure defence in inmediate and thorongh pmitieation lefore they have time to dre: This, too, is the sole oecasion on whieh it is necessury to monentarily donele the skin with a stronge antiseptic, especially with 1-1000 perchlonide of memury solntinti-a precantion which aequires a double signticance when a merhanical eleansing of the skin is impracticable from want of water.

The methonk whieh we employ to sermere a satistactory puritication of the lands apply only to hamds which are not highly infected with virntent organisms. Even for highly-infected hamds we hold that a sutticient degree of disintertion is 1 onsible if, besides the meehanical clemsing, the akin is satmrated with antisepties, i.e. hathed and sernbbed in a $1-1000$, or leetter, a 1.2000 sulbimate solution for ten mimutes. It can be proved that virnlent organisus are in that way rembered sutheiently innocuous. Kronig and blumberg have made extensive trial of suldanin. late in practice we onght not to repuire such strour disinfertants. It is rertain that he who camot emform to "abstinence," as alowe defined, can never know the ideal meaning of a purely aseptic treatment of wounds. He remains comblemed to the use of antisepties.

What are the methons of disinfection which yield at the present time the most satisfatory results ? Furbrimger's theatment with atcoliol is the most reliahle, and it has been extensively exploitenl ly lieinecke of \%weifel: clinic; while Ahlfeld, who is an enthusiastie adrocate of dixinfectinn ly means of hot water and alcoloh, has estahlished the hemetit derivel from the proper utilisation of this methon, which has hein adopted in munerons opratimis with excelient results.

Ue wash our hands with satp, (and the mudhedefaned hinsh) mude" a strean of
 to the time it takes to complete the prowes. The lanids are mot dried, lint are thoroughly freed from sobal muler a streallo of warm water. 'The hambs are then scrubbed with fresh sterile hroshes under warm rmuing sterile water, after which they are treated to a seeme sombling with s.is per rent alcolow and fresh lonhes that have
 particle of skin is thus treated, with further brishing. inels lig inch, esperially the nails and n:id-folds, withnot any regan: for time, till the cleansing is as thorough as it ean be made. It this stage scrubhing with a sterilised compres may he useful. Haegler finds that by this means the superficial eppidermie smales, together with a number of germ harioured in them, are rubled oft: 'Iwn prints. in this methon of purifieation are ai importanes. In the first place, the brushes, after having been sterilised ly $\mathrm{l}_{\text {miling, }}$ minst never lic, or remain lying, in anything except a stromg disinfecting thid (1-1000 comsesive sulblimate or is per cent ratholic arid). The latter should remain yuite clear when the hrushes, thommphyy loiled, are pheed in it. With the above preatutions taken we lave never heen athe to tind any neeessity for the brashes recommended ly sichleid. Should dombts he entertained with regard to
 etficient than Schleich's marlhe soap.

The second dxint, and one which is essential to suceess, is the removal of the projecting portion of the nails. The surgeon who keeps his nails hugh has no prospect of attaining complete cleanliness by medhanial means. If, on the contrary, the mails are ent as short as posilble, there is no need for the mischiesons mati-cleaning instrments, as a hrush with suap and hot water, followed ly alcolol, suffices to elean even the dangerons crevice leneath the mails. Then, once and for all, away with these nail-cleaners!

In this method we do not aseribe the chief importance to any disinfecting property peeuliar to the aleohol. We intend, rather, by the use of alcohol after soap, to obtain a more radical removal from the skin surface of all le fatty eonstituents and the organisms harboured ly them.

It has heen shown by fett and others that aloolml penetrates the cutis to a much greater depth tham can be attained ly water. Ii.lnamm has demonstrated by the use of eolouring matters that 96 per cent alcohol wathes further into the cutis, even as far as the subentaneous tissue, and tills the hair folliches, hut is only able to penetrate slightly the sweat glands on account of the pressure of the secretion. According to Leedham Green, contimed and energetic washing with suap and hot water, or even with marble dust or Sehleieh's somp, fails to diminish the number of germs. A prolonged system of washing and the nse of a solp suth as soft soap, rich in alkali, couse seat damage to the ephermis and conserts it to a sodlden condition. ${ }^{2}$ There is no antiseptic which can render the hands entirely free of germs. We would especially emphasise the opinion of sehaiffer, an opinion smported hy leedham Green, that it is a mere superstition to think that any real menefit is oltained merely by dipping the lamuls in an antiseptic lotion. Even the use of alcolol for the purpmise does not effeet hand sterilisation, as, apart from diswolving fats, the disinfecting action of alcohol depends on its, property of fixing the sulperticial layers of the epridermis.

A 70 per ceut aleohol supplies the most effective action, as it is stronger than 1 to 1000 perehloride solution, the addition of lywol or hinionlide of mercury failing to increase its action, while Mikulize's spinit of soat, is lese effective than alcolh $1 .{ }^{3}$ Engels further has shown that with Ahlfuld's methol of hot water and aleohol the more deeply sitnated organisms in the skin retain it: ar viability. Futh, as the result of his experiments, arrived at the same conelusion and recommends the nse of rubber gloves as the only certain methonl of obtaining disinfection. After what we have said it is hardly necessary to ohserve that the skin of the patient requires elensing for some dixtance around the field of nheration, in exaetly the some way as cleansing is necessary for the oneratoris hamb.

By Klein's method, which is worthy of notiee, ${ }^{4}$ he first thon oughly serubs the skin with soft soap, which is then washod ciff umber a stream of warm water, the skin at the same time being sermbed with fresh bushes, the operator immediately afterwards soaking his hands in ether and alrohol, in order to remove the fats. It will be seen that we have entirely giveli up the nse of any of the more active sulnstances to disinfeet the patient's shin and cur own hands. This was the result, in the first instance, of cur own inability to withstand the adtion of corrosive sublimate. But as soon as we were convinced that it could be di-pensed with withont any evil consequences we countermanded its use for a.sistants, nurses, and patients, and we have not had the slightest reason to regret the step. To be absolutely candii, however, we must admi: that we have come acoss individnals whon abin neither attain true
 persons the use of strmg antiveptics for the hanls is an abshlute mecesity. Couler certain combitions the same holds gow for the patients skin. Hategler comsiders that preliminary trentment with 60 to 70 per cent alcohol allows of a deeper penetration of the comsive sublinate ly the removal of fat.

According to Engel, the lest methorl is that in which 99 pre cent alderhel is used in conjunetion with lysofun, onldanin ($\frac{2}{2}$ per cent according tor Krinty and Mhmberes) or even Bacillol alcohol. The aleohol diswreses the fits liy divplacement of the air,

[^27]and enables the disinfectant to come into eloser contact with the bacteria. Where, however, skin incisions have to be made in the neighburhoel of sonrces of infection from virulent organisms, or where the patient has a "fuite impusihle" skin, with cracks, wrinkles, and set les (we recently excised an ellwow-joint in a sulyject of ichthyosis), one may then endeavour to arrest the aetion of the alcohal (99 per cent) ly the addition of antiseptics; lhit, in our opinion, muth stronger antiseptics than these should be bronght into employment. When, as not infrefuently happens, ache pustules, or small furuncles, are sitmated in the area to lee "proted on, each forus must be most carefully destroyed with the thermomatery.

Whea fistulie, granulating surfaces, or necrotic tissucs are present in the fied of operation they must be mechanically removed ly excision or ly seraping, followed by disinfection of the surface by the thermomatery. Otherwise a severe infection is sery liable to oceur. When coarse, wrinkled, scaly skin is involsed in the areat of operation, ${ }^{1}$ a med anical removal of the organisms is impmasible. An antiseptic fomentation of carbolic or formol-glycerine should be applied trom the to two dises previmaly, but the prognosis with regard to infection should he very gnariled. Absolute security can only le guarmited by the use of impermeable coverings (rubler gloves).

It is not yet absolutely demonstrated, even ly l'aul and Sarwey's admirable researches, that the mumer of $\%$ rms is at all diminished hy such chemical disinfection. We are inclined to acept Hargler's theory that moly dimmution of virulence is thus ohtained. As these authors admit, deatruction of all the serms caunot be aceomplished even ly means of reliable antiseptics: ${ }^{2}$ the few that remain would certainly suthec to infect the wound, were it not that their virnlence is diminished.

The last point well worth considering in this relationship is the prevention of importation of infective material from skin or murous membranes sitnated at a distance from the field of operation. As rebards the skin, it is nowadays enstomary to eover our bolies, with the exception of the face and hands, with a sterile material, and it is just as important to eover up the patient and the oprating talle with sterile sheets as it is for us to wear a sterilised coat, sleeves, and cherating cap.

The transplantation of germs from the mouth and nares, not only of the "perator and his assistants, hut also of the patient, deserves special notice. We are imblebted to Flagge for demomstrating how widely germs from the month and nares are disseminated during epreeth, coughing, or she exing.

During speech, germs native to the mouth infect mutrient plates at a distance of several metres. Aceorling to Mendes de Leon's ohservations, ${ }^{3}$ the munher of organisms in the air exhaled during oweela amome to ahout a pharter-of-amillion, consisting chiefly of streptocorei, diplocerei, staphylococei and sateinar. To awod these germs it is not suthicient merely to rinse out the mouth and war a gamemask, ats aholute pontection can only be ohtaned by wearing a rexprator made of cotton wowl. The omditions here are exactly similar to those governing the use of mber ghoves. As every participator in an opration has to thomghly disinfert the hamds, wo must he completely disinfeet the month, nore, and esperially the teth. If the surgenin or his assistants are suffering from a cold or sore throat, or if cleasing of the mouth is not posible, a conton-wool respirator shonld insarially the worn wer the month, similar precantions heing adoped hy the patient. It is mineeresary to draw attention to the amount of infective material which exists in and aromed a carions tonth. Suel a modition should always reveive careful attention. la our numerons oferations for guitre a shoet is seenred to the front of the patients neck, and ontad wer a singort which arches over month, nose, and face i^{-}such a way as not to intorfere with respiration, but yet completely to exelude at , umiliatity of contaminating the site of operation. According to Leons experiment deadition of a layer of coton wool

[^28]lends cminsiderably to the security of the mask. The covers for mouth, nose, and leard aet for a time ns tilters, or mic? 'e traps, and retain organisms which are exhaled and shaken ont. Jike the wis they must be frequently elanged. Thorongh and repented rinsing of mouth nose, along with pronging of the beard and hair before and during the dreration, have always sutfieed for us if eare be exereised. It is also to be noted that the patients, ly thorough meehanical eleaning of the teeth and antiseptic gargling, materially lessen the risk of aspiration pneumrnia after nareosis.

(r) The Prevention of Air Infection

Besides contact-infertion there are two other modes of infection of wounds which play an important part in the treatment of wounds. The first of these, nir infection, as it has long leen called, was originally considered very important, but has beeth proved to be less so than contact-infeetion already describec!. The second, to which we have givell the name implentution iufertiom, is at the present time just as important as contact iniection, and even more to he dreaded.

Thvel has distinguished a fourth form of infeetion, which he calls lesion infertion, which we shall discuss later om.

That air cutcection is of tar less importance than contact-infection is certain: experiments, however, show that it has been somewhat neglected. We agree with Rydygier that air infection is not to be despined, for we olserved in our own clinic that operations performed in the elinieal lecture theatre for the lenefit of a mumber of students were much more liahle to go wrong than those performed in the aseptic operating room. ${ }^{1}$ We cannot ahsolntely cxelude air infection, lint we can reduce it to such a minimmon that it may he disregarded. This is effected ly operating in dust-free air. The room in whieh the operation is to le performed and everything entering it must be absolntely freed from dust. Fligge has shown how difficult it is to detach germs from a damp surface by means of air currents, and also how easily dried mierobes are carried away hy draughts of air, and how they remain suspended for a long period.

The Hoor, w, dls, and esperially the seats ${ }^{2}$ in the operating theatre must lee thoroughly freed from dust, either with hot water or with a steam jet, and special care must lee taken to prevent dist leing raised in any shaje or form during an Operation, as the restlessness of the spectators just makes the difference we have referred to alove in the progress of womds. We have been thoroughly convinced of these facts by exposing plates lefore, during, and after a clinic (Hacgler).

The romins most suitable for operation, and in which we ohtain the best results, are those whieh are devoid of fixtures, such as wash-hasins, etc., as Witzel very justly ohserves. Further, the walls shonld he smonth and free from rccesses so that they can he readily washed down and he free from the accumulation of dust germs.

The reasim why air infeetion is of less importance than contact - infection, as shown by 'riedricli's experiments, is that germs which fall on to a wound without any pressure are far less frequently ahsorbed than are germs which are pressed into the tissues, whether by fingers, instrments, or by eovering thrm over with skin, a proceeding which causes tension proportionate to the depth of the wound. Contact infection is nearly related to that form of infection to whieh we proposed to give the name of inoentation infeetio 1 , in which the germs are intronluced or rubbel into the deeper layers of the tissues. If such mechanical factors can be excluded, air infection can le ceasily combated by freynently douching the wound during the operation. The lest lotion is hot normal saline solution, which washes germs from a wound just as well as any antiseptic Huid, without the disadvantages possessed ly the hatter of

[^29]lowering the vitality of the tissue elements an It is, however, simpler and more practical to prowt the wombl by means of moist ganze compresses, which, as we mentioned alwse, suak mp hown and lympland assist in the removial of the bucteria.

(s) Implantation Infection and the Question of Ligatures

The importance of imphentation infection is, on the contmary, very grent. It ronsists in the introluction of mieromeanisms into a womm alome with rertain foreign bulies whieh have to bee left in inside. Of these the most improrant are ligatures and sutures. The ghestion of ligatmed eanoot lee regardol as thally settled, as is
 bugieal pajers. New farts are constantly being acemmolaterl to assist in detormining the relative merits of silk and catgit, or of some new subatitnte. hint a long time wall in all probability elape before this penint is mamimomsly settleal, for it is dittionlt to obtain a dear idea as to what disadvantages shomblor shomb mot la aserived to encla patientar ligature on acomont of the grat manler of factors involved. lat we have for long taken up a very detinite pasition with regatal th this question, and exjerience has confirmed our opinion.

There is mo possible doubt that ratgut, intronhed ly Linter, has great anlvantages over other ligatmres owing to its being so readily absomed when introbleced into
 juilicially affected by new metheals of prepmation regatded as specially reliable and valuable. Minervini has demonstrated this fiat ly clabmote experiments. In this way the principal alvantage of catgut is lneing dome away with. Pesides this. catgut, even when sterilised, is liable, as Poprert has shown, to an muphant chemiotactie a tion owing to the inclusion of chemical pronlacts whid reman active even after steribisation. Abserses eontaining sterile phs may then form, delay healing and introduce secondary dangers, althongh this form of reation dones not give rise to progressive inflammation or suppmation. Still, Lamenstein and Brant have shown that in a larger propertion of these rases the action suymsed to be purdy chemical turns ont finally to be a trie infertion, with all its matmal ronseruences.

Acorrling to Minervini and Jarohs, tratment with junijer oil, as we reommended, as one of the most reliahle methots of preparing categit, lant the artion must he very arolonged. We have pail great attent.on to this puint, and have preserved all our - for months in juniper oil. Jucohs, after sterilising the catght in jusijer oil, ;hates it with iohlorm, accorling to Korte's formala, and is thoronghly sitisfied the result.
is nevesary, however, before using the catght to wask out the junijner oil by
aking in ether amd alcohol, in order to awoid any serions chemieal action on the adjacent tissues. For immediate use the ratgint is lest put into l-1000 solution of sublimate in aleobol. We employ eatgnt where a womd is alrealy infected, or where infection camot he aboided, and expecially in smplatathg womals. In all wher cases we have remainel true to our moton, "I way with ratght, and wie silk sutures for all aseptie oprations." No entirely satistied are we with silk, that we have never even given atrial to the mmerous other eatgut preparations, amongst whirh are recommended bergmamis sublimate catorut (espacially schaifters formma, biling in aleohol smblimate), the emmoleatgut of Kimong , and the iodiserk ratgut of

[^30]Chudies. ${ }^{1}$ Neither have we given a trial to metal thrends such ns Sicein's bromze aluminimi, or to the tendon preprations of Suegiroff and Marey: While eatgut prepared by Hofmeister's methoul (loiling in formatin) is very relinible, its absorlstbility is impaired, and Bram's celluloid thrend, thongh worthy of notice, is less ensy to prepure than sublimate silk. The sme helds true for Selaiffer's gutta-percha thrends, annl tu" I'agenstecher's cellnloin threads, to which keell gives ligh reconmendation.
W. Burclett places the catgut, aftor it has luevi dried at 10.0° for twelse hours, in fluid parattin 'ill it hecomes transpurent, when it is grambally heated no to lho' C ' for two hours, atter which it is kept lier twenty-furr hours in al 1 per cent sulntion of iodine in methylaleohol. Wehater prepare his ratgut hy woking it for eight days
 stored diy.
 better tha: refer to the results of ome enitre mentatoms. In theae "lerations, as a mule, large mombers of ligatures are aplided, and yet in a series of humbeds of eases not a single case of infertion onembed.

We eamot aceppt the statement that a properlyprepared siik ligature or stitch may canse either carly or late inflammation, and we rejuat that it is only anti-
 retention of wound reeretion, which satiegurde us against lath primary and secondary infeeticin.

Haegler peinted out that in all cases where the ligatures were merely aseptic, eren though the course of the womml 1_{n} favomable or omly in little sermu gathers (which

 nhoorhs wandering germs and lolds them fast, just as ghowes du. Ciure, therefore, must be taken that the germe which have fenetrated into the wombl shall he unable to develon in the ligatures amb sutures lefore an aeemmation o: ldow or sermu is no longer possible, and the nomal eirenlation is reestahbisheol ly perfeet minn, whirh renders the bacteria harmbess or carries them awas: Impregnation of silk with antiselties is easily managed, and aecording to Haegler's experiments the thrtads kee 1 ,

 silk ligatures are used, while coarse ligatures may give rise to suly mantion.

The neesesity for antiseptio ligatures is emphasised ly the finct that each the I
 and therefore camses a mertain degree of tissue-nemosis. Is may he demomatratem,

 the drednpment of the orgmisms whid may have penetrated into the necrotir tismbe of the stmmp. From this pinint of view it may even he desirable that the : real
 a grave ohjeetion to the nse of catogut. If the ligatures are mace rembered etliciently mitisertic, then, accorling to Hargler, it is "f little importamer whether they he timit with hands carefully cleaned or mot. Serertheless, as we should avoid infrimgement of any rulde, we comsider it advisable, at least, to attempt lop prevent contact of the ligatnese sith the skin ly pitting on a pair of sterilised thread or mbler gloves, or to prevent the ligature passing from haud to hame by using sumal ghass holders

[^31](Halsted and Lamz) which can be held in the hand. Our methol of pregmaing silk, the almohate reliability of which we eall whell for, is as follows. ${ }^{1}$

The skeins of tine silk (Nos. 1 and 20) are treated as follows:-

1. Pheed in ether for twelve homrs.
-. Pheed in abental for twelve homs.
 corrosive sulitimate.

\therefore. The spools are again loiled in the sume suldimate solution for ten minutes junt lefore the operation.
6 The ligatures are then hambed out of the sublinate mbtum in wheh they were si loiled. 'They have thereture ahwes remaned in the same glaw.

(t) The Significance of Necrotic Tissue in regard to Infection. Prevention of Necrosis

Eiven thongh a fresh womm has heon treated acemoling to the principhes anmelated, we must not conelule that we have neecesarily chataned a ermbition of abolute sterility. It hav heell proved ly endless reent researches that even where "prerations are comdhetoll with the greatest eare mal with every uttention to asepsis, niganisms are almost invariably fomm in the womed both dhring and after on reation, white a great number of organionts are fomm in the drainage toles which have been used for a day or two to draw off hoond and semms exudate. In our dinie: Flach and Lame have for a whole year comblated exhamstive experiments on this
 infertive diseasers). It must, however, ine taken into nemont that when the womeds were examined by these investigatore, the perent preeantions, such as the nse of sterile puhber gloves, or cotton-wom respirators, ete.. had mit yit heen introdured. Otherwise nure favomalle eomlitions wond probaly late lwen aseertuined.

The umbenialle fact that we are mot yet able to sermere absohte sterility, even in a wound wheh we intict under the most faw onable ciremmatanees, rembers it wir duty to pat; greatar attention to certain tedmical factors uther than the ster:lisation amil disinfertion of Jressings, and shin, and hands. This leads ns to a consideration of what Tavel hats called "lexiom utiction." It is a remarkable fact that even though our shin and mucons membanes are covered with enomens numbers of microorganim. don net in any way suffer. It reguires an inguy to the tisnes lefore the ha can acpuire power wer the eells and proshere a disturlance in the
 fate demonstrating the inmortanee of this fartor.

Any lesion, however small, of the epthelial eovering of the skin ofr of a mocous membrane, he it a purely medianical mpture of combimity, an i.fory due
 acempanies catarth, maly allow of the entranee and thevoloment of surh mirro-
 a series of almirable experments in the ease of the perithomem, and Hacgler has shown that whereser the outer skin is wemuled, howewer migigitiontly, a pertal is opened wherely the entrance of germs is rendered posible. Sow in all opreations a wombl is olviondy preent. Without a womd there womld be bu injertion, and therefore the ter "lesion infection" Neems to us tor general and mut explieit enongh for what Tavel meme to suggest.

${ }^{1}$ We have not employed nik impresuated with the powea ful antiseptics recommended by Haegher, Merlin, and stinson (Merlin, for exanple, recommendel al per cent etheral molution of corrosive suhlimate for silk or catgut, while Hawgler boils tor one or two minutes in a 5 pre ceut sublimate solntion) lureanse they are mmecessary, anl hecanse such strong sublimate impregnation protnees a too encrgetic local cheminal action; and if many ligatures were applied, poisoning is to be antucipated.
the death of larger or amaller portions of the tissme. We can, in rarrying ont ant oneration, very largely determine the amount of damage to the vitality of the tissuges. Bumon, amonget uhers, has on this accoment recently pointed ont that the technigue of an operation has a mueh greater inthenee on the subsequent course of a wound than was ascribed to it during the perienl of enthusiasm which followed the introluction of the antiseptic method of treating womods.

It is the technigue which derides whether the germs which fall on every wonnd, esprecially on neerotic tiswue, shall develop to a dangerons extent or not. As we have. mentioned, we do not consider a womd infected mint pathogenie organimus have developed in it. Until such a development has ocemred a wombl is only what Friedrich would call "muler shapicion of infection," mind can still heal if the lacteriat are destroyed.

Recent researeles, of which those of selimmellonsh. correlwrateyl hy hicker and Noeteel, have aroused most attention, have shown that if, for example, a womal in a monse's tail le inoculated with anthrix, absorption of organismes mod dissemination to distant organs takes place from the womed in an extrardinarily shont space of time, even in a few minutes. Were the hacteriological conditions the same in every case, we should have to admit in every operation the presence, :ut only of womm infeetion from organisms paining arress to the wonnd itself, but also of a general infection of the whole orgamism. But the admission amd ahmorption of hacteria do not constitut. infection in the elinical rense. It is only when the organisms develop and prombere harminl toxins in t^{\prime} : borly that inflammation and general symptoms appear. In the case of a womd in nich, in spite of the presence of hacteria, complete union has taken place in a faw da! a without intlanmation and with the pritient in perfect health, it is impossit clinically t, pakk of general infection. We therefore agree with Friedrich i_{1}, serting than it is wrong to consider such experiments as parall It to the process of repair in operation womels.

On the other hand, we regard it as a matter of capital importanee that, in - meaking of the infection of a wond, one should distinguish not only hetween organisms which are pathogenie to man amd those which are not pathogenie, hut aloo letween those which are virnlent and those which, for the time leing, are mot virulent. These organisuns which are neither pathogenic nor virnlent get into the hond hy purely physial proceses of aborptiom. Bint this rapidity of absorption, far from acting prejurlicially, exereises, on the comtary, an entirely favomahle influence on repair. Miero-opgimisms which are not adipted to a particular soil are neither pathogenic nor virulent, ind are destroyed in the hoobl and healthy tissues. This also holds goom for pathogenic or virulent organisums wo long as they gain aceess to the living boond or healthy tiswes separately or in small mumbers. Lint it is another matter when virulent orgamsmes reach a stace of hosurions growth in a wound, due to the presence of suitable mutrient media (homblamblyubh), and especially foreign berlies (ligatures) or necrotio tissue.

Friedrich hat slown, hy a series of ahmirahle experiments, that ii an amimal be ine hated with a pathogenie oggaism in just such a manner as wonld gecur if accidental inoculation ocenrred (e.g. malignant reverna in! guinea-pigs), six to cight hours mmst elapse lefore the infective material which is develhing disweminates. itself throngh the tissues, and berome, ingurious and dangerous on accomit of it, toxin. This has a very importins, ang on the treathent of wounds, and it. importance is emplasised liy the a...t, proved ly the sime author, that if the ineculation he performed with organisms which have already passed through the animal, the incuhation periol is much shorter, and for this reason the elinical symptoms of infection appear much more rapidly. The germs are rendered mueh more virelent ly passage through a similar soil.

Further, Frietrich has shown that pathogenic and virulent microorganisus require a certain time for division, as Koeh also found, and consequently serions infection camot oecur until this time has elapsed. This time is dependent on the presence of decayed tissue (ligatures, extravasation, neerosis).

We must see that mirroorganismis shonld be offered no chance of developing in
the wounds until the defensive almarathe of the normal fruly is again set in working orrler by the re-entabli-hnent of the mormal cirmalation. Ti, present develoment we must mot only privent the ateress of "pathogenic" germs in the manner nhove indionted, hat we must remose as mathy of the "sippophytic germs"
 other soils which serve ns mutrient media fir the growth of microorganioms: they
 itself (e.g. ligature pedieles), mul Huid, chictly blowl, "andates into the womme.
 infeetion of an artiticial hae matema than of healthy timues, nud linser, likewine numbr Tavel, has exprimentally demomstrated the comprative larmberoness of an iujection
 tissues which have beed artiticially ingured on whene circulation has twell artiticially
 healthy tissues, will mpilly canse an almees with all its sepplelie if the cirmatation has lneen tirst of all imperded lysalagulation of the tissues. I lamtericidial
 puinted ont that though such may exist it is fire ontweighed lay the matritive of the seeretion for macteria. I'ratieal experienere leads ins wery deviden, !" yuestion the defensive value of the secretions from the womm where imenlation. athally occurreal.
"op prevent "lesion infection" (Tavel) or, as we prfer to call it, "ne crasis infor-
 the tissues, ray. splitting, ernshing, and tearing. Incised womms are mont innerent in this respect, a fact long recognised and proved hy Tavel, whervan rmshang, event to a slight extent, is followed ly a mone or leas extensive neerois of the sulfate of the

 similar conditioms as to sterilisation and disinteretion.
 the asoidane of chemical or thermal ingury is just as impertant for the prevention of neeronis. Aecording to Walthard's experimente drying is bume deteterime for certain tissues than anything else: This can lee avoided hy reperted irrigation with wam mormal suline solution. The methorl of "dey "perating." munch alsweated in carlier days, is thas contraindiented, althong even ly it the unfa'omalle efferts can memini
 Gerations, sueh as thove on the alnhomen, the eoverin, compresses or eoppous irrigation with silt solutien at it ev.jumation. Lu certai:a .lee miltents "ith Warm sper tomperame is of sulpeme impratane, not only on aceount if the dather of infertiom, hat als, as a preventative against the show which arempan: evey severe opration, and in the
 firat introluced at the clinic at Be se.

Soless :mportant than the pr. ©ion of themal ingurics is the prevention of chemical ingury. This indication is very frequently negletted. There are at certain mumber of surgeons who refine to diseontinue the practice of donching and valhing ont wombli with antiseptic solutions, in spite of the faet that it has leeen demon-
 athont without severe injury to the tisones. The prom of this is dhe to Kontsinewsiky. He has demonstrated delay in haryokinesis and in repai, as Gohlury and others have also done. Antiseptic washing and douching cam, therefere, only he weaswarly justifialle when the chemical injury caused by it is more than eomuterlatimeed by the infective material destroged. This oceurs in womds which are already hadly infeeted.
 an indifferent osmotic Huid, such as normal saline solution at the body temperature, should be used mstead. We never employ anv other form of irrigation than this, which we use freely. It was not until we gat up, antiseptics that we arrived at the: knowledge of what perfect repair in wounds really meant. Koller, under Tavel's
direction, has shown that, in rablits, wounds caused by infected shot give the best results, when they are cleansed with an indifferent solution, whereas the use of the best kinds of strong antiseptics did not save the animal from progressive iuflammation with fatal results.

If one cammot usoid leaving stumps of tissue behind which necrose from being ligatured or from other causen, one must hear in minul that sucl stumper nud neerotic tissmes produee exudation of leucoeytes and filorin withont bacteria (accorting to Burkhard ') and to a greater extent in the presence of baeteria, which find in the exndations conditions necessary for their development. Necrotie tissues must therefore le protected antisepptically by saturating them with anti-bacterial substances, such as alcohol, iodine, iodoform, or lismmth. Bröse has shown that when ehboride of zinc has leeen applied to a wound, the resulting rechars (50 per cent zint chloride) afford absohte protection against the development of pathogenic orgaisms. Alcohol and bismuth possess, a similar anti-bacterial though not bactericidal action.

A third factor in the building up of a teclmigue to avoid necrosis consists in preventing the accumulation of fuids, more especially of hoot, in the wound. This is lest attained by arresting all hamorrlage, by apllying artery forceps to every bleeding point, and by elosing the vessels at the end of the operation, avoiding the use of ligatures and substituting torsion wherever possible. Torsion is puite sufficient for small vessels, and deserves to le widely employed. Next to torsion, erushing ly means of small angiotriles (strong artery foreeps) has recently come into prominence ats a very useful method of clowing vessels without ligatures. But augiotriles are still more valuable, lecause they allow as to splueeze and compress large pedieles of tissue to such an extent that when a ligature is applied the resulting stump is reduced to it minimum and is quite dry: We introduced pressure forceps-histiothriptors they were called-for this purpose in dividing the isthmus of the thyroill long lefore Doyen brought out his well-known instrument. Crushing of tissues is now one of the lest means we possess of dealing with masses of tissue which are liahle to decompose in a wound, and it phys an important part in the removal of all organs which have a pedicle reruiring to lee tied.

A further means of preventing the accumalation of deal material in the wound is, by the avoidance of cavities and by the complete approximation of the surfaces of the womm. Complete elosure of a large irregular womm is, however, not always possilhe, especially when dee 1 sutures endanger important structures. There is then won chaice buit to prevent the accumulation of fluid in the cavities ly dramage. The drainage tube should be introluced at the ${ }^{\text {mint }}$ where the outhow of hood and sermm is likely to be greatest.

Sineh drainage meets the requirements demanded hy Friedrich, viz. that Hmid enntaining bacteria shombld not he allowed to acemmatate moler injurions tension. The chanage tuhe creates a flow of fluid from the womed whieh earries with it tha micromganisms. 'Tositarcke belongs the eredit of having, before Friedrich, dawn attention to the impurtance of the flow of sermo in preventing the ingress of germs.

For drainage we have long advised the exclusive use of glass tulse's provided with large lateral "penings They are ensily kept ithsolutely sterike, anf they kerlp the womed open. fin hamds which are to ine completely elosed it is desimble to introndere a gatue swal, before suturing, and hefore the last suture is appled to withinaw it, pressure lueing at the sume time applied over the womm. The sinfaces of the wombl are thas bromght into exact contact.

Laxtly, it mast mot be forgotten that the circulation in the edger of the women is to be interfored with as little as possib) hy avoiding tension or iujurions pressure, and hy facilitating the venons return from the womm ly a suitahle 1 usition. Maintename of nerve influene would not appear to be a matter of indifference, if only
 recommended ly bier, a marked tendency to mafavourable symptoms in the wombl hats heell noticed.

[^32]
(u) The Treatment of Infected Wounds

The tratment of primary operation womms must le considereal as entirely different from the treatment of sum wombls as are already infected with pathogenie and virulent infective material. Ionder this leading are budnded all those arecilental womds which have leen infected directly with virnlent mganisms, or whid are mot hronght for alviee when revent, and whieh have not berol protected from firther

 allopicion uf infection."

When we sity the treatment is to l_{k} e entirely different from the trathent of aseptie womma we feel that it is neressary at bure to prevent a mismmeristambing and to eradicate the idea that it is a matter of mo importanee whether or mot surh an infected wound be treated with sterile dressings, lotions, and properly-rleansed hablas. Seghert of these rules is often the means of comserting a single infertion into a mixed infection. Moreover, even with septic wounls the ahsolnte rule to exereise the greatext care and most rigid msejnis in regard to the cleansing of the skin and hands and the sterilisation of instrmments and dessings shomblyever to broken.

Opinion is still divided as to the proper theatment for infueted womdx. experially in regard to the phestion as to whether antisegties slomblal be used ar are text left alone. In the light of Sehimuelhuselis experiments, which showed that gerus which

 and simere, areording to the manmons opiniton of elinicians, maph growth of gems and their acempanying disemination in lealthy tisules acour chetly in the case of pathogenie organisms, that is , virulent micon-orgathisms, antisejtie treatment womblajerar to be of hast benetit in just the worse casex, sime it is, as a mole, apliend too late.

The methorl of treating aceidentally-infeeted wounls (as remomenderl lyy Volkmam! in the treatment of compenmel fratures) by donding with strong antiseptice suintions is still enstomary.
'Tle majority of doetors consider it their daty to wash ont acrodental womble with

 his pmpils, lean to very diflerent comblasions.

The late Dr: Kaller, woking under lavel's ditertion, prower that in slat womads in ratothts inotulated with rertain arpathisms, antiseptic thatment mot maly adered
 womma were irrigated with mhlanate or catula lation, or treated with iondine or
 wherens a latge momber of ambalin treated on merely aseptir primeiples rempered. friedrieh otstaned like results when using suecial material for inferting the wombs.

 How very differently ernshed wommla and incised wombls lehave when inferede is a matter of emmmon atsemation. Limser, alsa at 'Tavel's instigation, showed how distametly this differemere of smserptibility to detinite infertive material ain be demon-
 dost of virulent organisms, whereas rensled and laterated womme invariahle develoged the nsmal sempelat of infertion. I similar differeme may be demonstrated leetween womads whose surfates are eanterised with demiad substances and similat wounds left mitreated. The dange: conserfuent upon admitting organisms atter allowiug a womed to dry has been demonstmed hy Waltharl in the rase of the profonemm. The combition common to the surfare of the womm in all these inguries ronsists in the loss of vitality and nerosis of the sipertidial tissue elements, frepueutly only to a mieroseppir lint oecasionally to a marresenpie dengee. Ill juwerfully-
active antiseltic measures increase the neerotic change in the tissues. For this reason, as a general rule, whether in infeet:d wounds or in wonnds only snspeeted of being infected, the principle must be olserved that injury to the surface of a wound by means of chemical agents must be avoided, and when, owing to the presence of foreign borlies and germs, the wound requires to be cleaned this must be effected with an indifferent lotion, such as we possess in the most suitable form in normal saline solution. This is the best treatment for wounds which are accessible to it. But the eondition met with in punctured wounds offers another point for eonsideration in the treatment of infected wounds. We refer to the prevention of all tension and pressure within the tissme, the importance of which has been emphasised hy Friedich. Free opening-up of the part as a precaution against tension must therefore be added to douching with a chemically and thermally indifferent solution (normal saline), because if infection sets up inflammation the resulting tension is mueh greater than thatt cansed by effinsed blood and exudate.

So measure for relief of tension is so efficient as the open treatment of the wounds, a method which was introduced and most suceessfully employed hy Kern, and especially. by Burow before the days of antiseptics.

Friedrieh, as the rexult of his researches, has arrived at the conclusion that there is only one method of treating spreading infeetion, mamely, hy open treatment of the wound ; and he points out that the difference of opinion as to the advantageons aetion of antiseptics is due to the fatet that antisepties were employed at one time in eonjunction with, and at another time without, open treatment of the wound. The open methol of treating a womed bossesses the advantage that besidex preventing tension on the surface of the wound and in the tissues, it induces a flow of the exudation from the deeper parts towards the surface. This results in a mechanical extrusion of germs, and owing to the hactericidal pronerties of the exmed serum, a retarding inHuence is exercised on their development. Infected wounds must, therefore, be freely laid open by a suitable incision (avoiding all mmecessary tearing and brusing) in order to prevent tension and to whimit of aneptie douching. The salutary effects of this treatment, expecially in the early stage of extravasation of urine, are very remarkable, as the temperature, which may have heen as high as $42^{\circ} \mathrm{C}$., falls to 30° immediately after incision.

Although even in infected wounds there is good reason for avoiding any further imjury to the tixsues, yet the falet must not be overlooked that a number of wommbs are alrenly so far under the influence of bacteria that these have already cansed extensive neerosis by their toxie action. Only one conrse is here possible, namely, to remove as quickly as pusible the necrosed tismes. This can easily I_{m} done as remards necrotic tissine, which is merely loosely atherent on the surface of wonmes. Necrosed blool, lencosytes, and tibrin can easily be washed away hy douching or spmging. Adherent slonghs and infected tissues repuire a different treatment.

Friedrech, in his experiments on wound infection with malignant cedema, succeeded in denonstrating that infection and death can in definitely prevented by camefna :und fitirly free incision of the whele surface of the wonnd within an hour of infection and before development of the bacilli has begum. In the same way, exeision of a wound is indicated where it is certain that ehamges are contined to the superficial layers omly. That such is the case may often be recognised hy changes in colour and consisteney. Ohrionsly-neerosed tisone may be removed with a knife and scisonss. Whare the changes in the tissues have led to induation and intlammatory thickening the shar spon may be advantageously cmployed for the remoral of the neerosed gramulation tiswles.

But cases are frepucntly met with in patiee in which the symptoms of deeprer and more extensive infeetion have alrealy supervened to an extent which absolutely prechades the pussibility of complete exchion of all the neerosed, or even of the infeeted tissues. In cases where this treatment cammot he carried ont, even ly umputation, we must be content to endeavour to prevent further spread of the disease from the neerosed areas by means whieh will himer its development, lout whieh will not further injure the subjacent tissues, and so cause more extensive neerosis. For this
purpose the various dry methods are most suitable when the reletions of the wound are not such that the same end may be attained by continued douching and poultieing. If the latter methods are applicable, they should be earried out with antiseptic solutions just strong enough to exercise a retarding influenee on organismal development (salicylboric solution, chloride of zinc, lysol $0 \cdot 2$ per eent, ete.). Starcke also recommends these weak lotions. The most satisfactory means of drying up the necrosed tissues are, on the one hand, swabbing with alcohol, which causes shrinkage of the tissues, and, on the other hand, the application of powders, the most important of which are iodoform and bismuth subuitrate, whieh entail no injurious effeets on the deeper tissues. ${ }^{1}$ A. Friakel has recently made a praiseworthy attempt to show that the effect does not greatly depend on the nature of the powder, and that in many cases iodoform might be replaced by wood charcoal.

This method of freely laying open the diseased tissues, in order to limit putrefaetion occurring in the necrosing parts of the wound, camot be carried nut in all infected wounds with necrosis of the tissues. Many deep wounds do not admit of leing opened up in the sense understool by the open treatment of wounds. In such cases we must contine ourselves to open up the womd freely enongh to admit of agents capable of preventing the development of germs being bronght into contact with the most inaccessible parts of the wound. The most etficient means to this end my be grouped under the term "antiseptic tamponage." This method is speeially designed to prevent the development of germs in the deeper parts of the womud, and it serves at the same time partly as a drain. When the skin, fiscia, etc, have been sufficiently opened up and the wound has been washed with an indifferent lotion, the whole cavity is stuffel with iodotorm ganze, or with a suitable substitute, which must he renewed as soon as the secretion raises it from the surface of the wound. Such tamponage is also employed in newly-made wounds when they are very liable to infection, and, as a rule, whencer an operation has heen performed without preparation, or in the region of old foci of inflammation, or in the neighbourhood of the passages of the borly which may le injured (as in the vicinity of the throat or intestine). In such cases reconrse should the had to secondary sutures, which are highly recommendel for doubtful cases, and the introduction of which was eonsidered by Starcke to be epoch-making. The wound remains open, proteeted by aseptic dressings or tampons soaked in a weak antiseptic, and a few days later the sutures are tied and a large drainage tube is employed till the seeretion from the wound has dried up.

[^33]
sECTION II

SURGERY OF THE VASCULAR SYSTEM

A. SURGERY OF THE HEART AND PERICARDIUM

The heart, ever active and difficult to deal with, has at last yielded to surgical treatment. Several important works have now appeared on "The Surgery of the Heart," the most important being those of Brentano, Terrier and Reymond (translated and enlarged by Lardy and Beek) and of Brann. Previously Paré had reeognised that every wound of the heart is not necessarily fatal, and Morgagni had shown that one of the elief causes of death was due to compression of the heart ly the accumulation of blood in the pericardium. In 1888 Fiseher gave a carefnl review of 452 cases of injnry to the heart and pericardium, and showed that in a certain number of cases recovery had resulted. Rose has pointed out that to save life it is necessary to prevent the heart's action becoming opnressed by the extravasated blood.

The majority of persons who receive a cardiae injury, even a perforating wound of the heart wall, do not die directly from the injury (as in Kronecker's case of stak of the heart), but from the subsequent loss of blood combined with the emptring of the lieart, the result of pressure of the extravasated blood on the large veins (Cohnheim). It has been proved by the statistics and experiments of Del Vecchio, Bode, Elsberg, Salomoni, Bloch, and Filipoff, that a perforating wound will cicatrise firmly if the results of bleeding are avoided. A tibrous scar is formed, whien may, however, later on lead to the formation of an aneurism and rupture.

If a person who has sustained an ingury in the region of the heart is found to be suffering from great dyspmea with cyanosis, or from collapse and anemia, and with eorresponding variation in the pulse, and if on examination hemorrlage into the pericardium, with or without simultaneous hemothorax, is discovered, immediate exposure of the heart is elearly indicated, first, with the objeet of opening the perieardium and emptying out the extravasated blood which is compressing the heart, and, seeond, of suturing the wound in the heart.

1. Exposure and Suture of the Heart. When, from the position of the wound and the symptoms of collapse and dyspmea deseribed above, there is presumption of an injury to the heart, it is the duty of every surgeon to be prepared to promptly open the pericardium and lay bare the heart with the least possible damage to the neighbouring structures.

That this can be attained in various ways is shown ly Terrier and Reymome, who frum in 1900, that in chesen cases of heart injury, ten different operative inethous were put into practice. The 1 ? sition of the injury as regards the heart naturally modifies the methon employed, $i . \%$. whether it is to the right or left of the sternmi, alove in the region of the aurieles or helow in that of the ventricles. But in surch an opration as exposure of the heart, which demands rapidity of execution under
exeiting conditions, it is urgently neeessary that the surgeon be faniliar with one methol of procelure which can le adopted in any case wita whieh he is called on to deal.

The surgeon must first of all In 2 ahle to open the pericardium without iucreasing the danger from further severe hamorhage, or withont the necensity of a severe preliminary opration, and especially withont injuring the pheura. It generally happens that in injuries of the heart, the plenra is damaded as well, hut we are not justified in cansing still further ingury and presihyy pronducing a tatal collape from the proluction of a sidden pmemethons.

Although only a small area of the periatimu is nemered ly the preura, incisions armst le strictly maintained within these limit., the unenvered area errresponline to the junction of the sixth contal tartilitere with the sternmm ((ri/d lig. : 2). Accorlinge to Terrier and lieymond, the interplemral space varices considerably in size and position, hat in the majorty of erse.s one enn only "xpert to sheced in avoiding injury to the plenra, and still more to be ahle to expose and retmet the plenalal retlexion $\begin{aligned} & \text { y } \\ & \text { kequing within this }\end{aligned}$ limit.

Secondly, after haviug rapidly exposed the berieardinm, where it is in contact with the elhest wall, the surgem must know how to release it suthieiently from the overlyine pharas so that it may he freely incised :mbl the heart fully expmed. This necessitates thrning bate a portion of the ellent watl ("volet" of the French), and this
 with satiety when the phena hats been pushed aside at the site of incision.

If attention is paid th theme prelininates there is no risk of injuring the survombling strictures. Weare mad to oh serve that Trume and lityoumd in their compre hollosive work on cardiace angery

 line white :be tran-verve cut alone the th:isd for seond yil.) is reprentere by a firer hate. reemmend the sillue prowdure

 is that of cinimone and fomtan, while the treatment of the penma is the methen deserihed by Lamay: Terrier and heymond sise an whmathe detailed deseriptime uf the oncration.

Operative Procedure. 'the whin is quinkly hut thomphly disimewted with scap
 An incinion, 10 cm. (+ insles) bing, is mate from the middle line of the sternmm ahong the sixth costal catilage as far out as its juretion with the rate clividing the costal attachment of the recthes abuminis. The fibres of the peetoratis major and of

the reetus are separatel from the niper and lower lworders of the rib, while the incostal museles are also detached above and helow with the knife. Ifter the posterio, surface of the periehondrimm has been freed with a raxpatory, the sixth costal cartilage is then divided elose to the stermm, and when raised up with a horsik, the comecting bridge leetween it and the seventh costal cartilage is eut thromgh.

The internal mammary artery and vein are expmed dese"nding vertically a tinger's hreadth from the edge of the sternum, and are dividfal between two ligatures. Behind them the musendo-tendinous triagularis sterni is seen spread out like a fan, and is divided close to the stermm.

The trimgularis sterni which (as was fir-t pe ..ted methy helorme and Mignon) is alherent to the plenta is retracted outwarls. The mal retlection can oifen he recognised ly the presence of a layer of fatt, and rant aily separated from the ferieardium so that the anterior simfice of the later a: he expensed down to its attichment to, the diaphragn. The tough, glisteming promadimen can then be safely
 blentl.

If there is no great nrgeney the prucedure is as follows:-Aceording to the situation of the womd in the heart, the incision is prolonged masard in the middle line of the sternmm to the fourth, third, or, if the womm is situated higher up, th the level of the seeond eostal cartilgee. It the ujper end of this wombl, an ineision, * cm. long (3 inches) is camied transersely ontwark throngh the pectoralis major down to the cartilage and lome of the correx manding rib, (1snatly the third), from the upper horder of whieh the musenlar and tendinous fibere of the intercostal museles atre detached.

The plema, along with the triangularis stemi, is then marefully selarated from the deep surface of the fifth costal cartilage and pushed aside, while the rib is divided with hone forreps elose to the stermun, a tinger heing pusholl helind the foreeps. The restal cartilages of the fonth and third ribs are dealt with in exactly the same mamer

The costal curtilages are now mised, and after the trianglaris sterni and plema have heen firther retracted, are broken anmas at their jumetions with the ribe, while
 is thus turned outwarls and the perieardinn enmeed from the auricles alove to the apex below. It may now he freely ineised if this be fomed neessary.

Terrier and leymond assert that he throwing hack a thap in this way one can readily detect and clamp any tear in the plema.

When the injury is sitnated in the region of the hart, the "peration is naturally commenced over the seat of injuy so that it may thas he 1 ingited in extent. For example, in Grekow's . .e (a womd of the left ventriece through the recome intereostal sibee), the heart was sutured after remon! of the third and .th costal gartiluges. In such a case as this the ineision dexribed may be hegm above, although it introluces a rivk of injuring the plemia. The second ribh mint also be divided, if an examination of the great vessels has to be undertaken.

If hetter access is required to the right heart, esperially to the region of the right auricle, the suft parts (muscle, fascia, and plema) of the other side are separated from the posterior surface of the stemm, the latter being then divided mansersely ahove and below with cutting foreeps, and turned hatek as a Hia, by lowhling the costal cartilages of the other side. When this Hap is fully lnent lasekwarls the cartilages break, aceording to Terrier and heymond, it the junction with the rib, and not at the junction with the stermun.

Fixpoure of the heart from the front by resection of the stemum (the method adopted ly Podrez, Wehr, Rydggier and Pagensteder) is in our cpinion too matilating an operation in the majority of caren, and thonl he reservel for cane: of ingury of the right leart. For wounds in this sitnation lioter reermmends the formation of a Hal, which is turned lack like a folding door on a median hinge, when the right auricle, right ventricle, great veins, and arch of the aorta are thoroughly exposed. Access can only be obtained to these structures ly turning latek the sternum to the right, and we eonsider that the method of Nimi, hydygier and Rotter, in which the
heree of the thap is made at the sternmm, prolnees more ingury than the "neration we reemmend.

Two fingers should le passed helhiml the heart, which should tre raised up hefore the sutures are inserted. To explure the posterior surface of the heart Therrior and heymond grasp the apex with a pair of Musens's foreeps, the sime instrment which Longo uses for seeuring the erlges of the womal.

Aceording to Relm, it is impretant to leave the embls of the first suture Imp, as the weat of the injury can then l_{e} pulled up and the insertion of a montinuons suthre is facilitated. Heitler recommends that the heart shomble beanted with eroain lefore introdueing the sutures so as to prevent retlex ary thmia.

The strietest asepsis must :e observed thonghont the operation as otherwise death may result from periearlitis and plemrixy. If the "peration is aseptically carried out the pericardimm and plenra shonlel be immediately stitched mp, while a drain is ueessary only in infected cases.

Vangham has olserwal that the prognosis is hetter if several homs hase alrealy -laped since the ingury, for in thest cases the damage is not wor severe. His case
 an that it is well to resort as early as inswible to sellime tramsfinsions.

It is beyond donbt that we can attain omr object ly various methorls, num the position of the exterm wound is to lee comsiderent in chonsing our procedure. Relm, larozanni and lagenstecher have reported suceessful cases of suture of the leart. The latter surgeon was able to collect 10 cases of heart suture with 6 meoveries (all heing wounds of the ventrielex). Other methorls have heen employenh manceresfully hy Farina, Cappelen, Giordam, and for exposure of the heart only, by Stelzuer, Pinliex, and others.

The results of cardiat surgery up the thesent time show that it is the duty of every physician and surgeon to take inmediate and active measures in casso of injury in the cardiae region, associated with symptomx of involvement of the heart. The latter consist, abirt from acme amaemia, of "heratamponale" (impairment of the heart'x action hy effinsion), specially referred to ly Morgagni, and described he Rose as a cliagnostic symptom of carliae ingury. In this connection the following prints are to be speeially noted:-

1. Blant force may also danage the heart withont prometing any external wome. Mansell-Monlin removed a large quantity of boul from the previcirdim, the renult of a heavy blow three weeks previons, anil the patient recoverel.
?. Still more remarkable are the effects of gumot injuries, where, although the shot had not penetated the perieardimu, serimsingury to the heart wat produced, as in eight eases collerted hy Deschamps. On the , ther hand, shot ean he tolerated in the heart for a eomsidemble time without the aprarance of severe sumpens.
2. Fiurther, one must not forget that punctured womuls iuflicted by a needle are often wery serions. Loison eollected $\because 3$ surld cases, 14 of whieh resulted in death. The wonst cases are those in which the needle remains stuck in the thriacio wall, as the hart then tears itself against it. Thrier aml hevmonl fomel 3 recoveries (rases deseribed ly Foy, MaeDongall, andi Stelzner), in whieh the neethew were simply pushed right into the leart, as they coulal not be removel.
+. It mist lne remembered that the initial sympoms are not neressarily of a serions nature, as some phtients can even walk (as in A. Parés cate), but afterwards die suldenly, Stewart adhuciug suth a eise observed ly a colleague and another hy tza, There may even he an entive absence of dyspmeat and cyamosio, the result of "ompression of the great veins (Colnheim) or of associated pulmomary complimation (hemothorax). If these complieations are prewent the pive is alhent insensible the ardite region is dull, and when there is an associated injury to the lung the heart's action makes a gurgling noise whieh naturally renders the diagnosis much easier.

Witson, Sens, Begonin, Bruht, and others have proved the ettieiency of ardiocentesis in animals in eases of crance of air into the veins, and thence into the right side of the heart, and in eases where the right side of the heart was overdistendel with blood. The proe Iure has also been emploged in the hunam suljeet.
 these casen first, that in ruptrme of the heart nevombary to divease of the arteries, the patient dees mot die immediately, hat may live for twenty four homes or more. Even in these caves, therefore, it is juxtitiable to nttempt to relieve the pressure on the heart (herztamponade), minl even to siture the rupturel urgins.

 The diaphragm is outlinet in black.
 the heart, eardiac smpery has develoned in thee other direetoms, namely- cardian massige, curdine entesis, and carliolysis.

In considering the trathent of collape under chatorome, expmare and masive. of the heat hase heen recommented as impurtant measures. Theticer has expmend and massaged the heart in anmats in which cardian paralysis had heen produced lis

 splece of nu lowir (Helfreioli's elins).

in which there was injury to the empary arterim, sitewatio pationt moly, in whene

2. Puncture, Incision and Drainage of the Pericardium. Fïs. $\underset{-1}{ }$ (after

 artery) from the anta, and the hifurcation of the pulnmary artery. A comennming

 the midille of the mamulninm sterni.

[^34]rapid pulse'; (: and whell absorption dines mot take phace, especially if there is eonenrent disense of the heart and lingso or the presence of fluid in the plemra.

Curschmann usem a flat trocur with a lancet-whyed flattened point. It is fitterl with a stopereck, to which a rubler tule is attached, and the fluid is very showly drown off.

In selectiag the site where we should make the puneture, which is only indimed when there is an extensive effision, Curselmann las shown that the ehoice is determined by combitions quite different from those which fix the site when the henrt itself is to be reached in cases of injury to the organ. The portion of the perieardinn, which is in closest contaet with the thoracic wall, is to ${ }^{2}$ e avoilet in performing paracentexis, for when flaid aceumalates in the perimardinm it dexes su chiefly haterally, and at the same time distends the perieardinm ontwards, specially to the left, anid lackwarix. In this way the heart itself comes to lee elosest to dee ehest wall. Fig. :-in repronnees in lorizontal section the apparance of an extensive effusion after Curschamanis excellent demonstration.

Curschmann, therefore, advises puneture in the mammary line in the fifth or sixtlo intercost : apace, or even farther out su ha to ellinire reaching the fluid. The needle, of comrse, thaverses lanth lavers of pheura. If the puneture is made elose to the sternum, as recommended by Delorme, Mignow nud Voinitsel, cire must be taken to avoid the intermal mammary vessels which lie one to two centimetres from the ealge
 the edse of the sternum) is nttended with the risk of injury to the heart. Iateral pmeture necessarily injures the pheura, althongly the lung escapess as it is pusted ande in alt extensive effinvions, which nlone jnstily puncture. Aecording to the researehes by Ferrand and Voinitsch-Sianojentzky, a smald quantity of Huid collects in the perieardinn loetween the heart and the diaphragm, chiefly anteriorly and towards the apex when the patient is in the sitting prosture: and when the patient is in thi recumbent posture it also eollects between the elest wall and the anterior surfiace of the heart towards its base, and romed tho large veswels. Pameentevis pericardii is in such cases but free from danger of ingnring the heart. The use of guneture for smbition effinsion 'ould therefore lee extremely limited.

The renoval of a serons effusion is only indicated when ther symptoms of pressure on the heart, i.e. when the effision is very extensive. In these cises pancture, areording to C'urselmamn's direetions, is of itself sufticient.

Whea the effision is of a sero-fibrinoms or hemorlagie elaracter, in addition to cansing pressure ons the heart there is the further risk of perieardial alhesions forming after the fluitl has comgulatell. This formation is leest prevented hy pericardiotony mather than parachtesis, as the coagulated lymph cem only be thoroughly remowed by the former procedure.

The statist is: in regard to suppurative pericarlitis are so eonvincing that aspiration hy simple punture is no longer regarded as ade pate. Terrier ann heymond guote a thesis ly Ferrier. in which 9 cases of sulpmrative pericarditis treated by puneture are repmorted with ! deaths. On the other hand there were 6 recoveries in $1!$ (ases treated ly incision withont resection, and 8 recoveries in 14 rases treated ly incision aml resection. Reichardt reports: eases suceessfully operated on by Linduer (in Ewald's clinic).
 carlium, viz. by ressetion of the fifth rib. Ollier has also practised this methonl, while Roberts and Porter cstablished the technigue and raised it to the status of it normal procedure.

To avoid the necessity of resectiag a rib, Larry reaches the pericardium throneht an ineision along the lower borker of the seventh rib, a route whieh Mintz has recently approved. An ineision, 7 cal long (3 ineless), is made along the bwer border of the seventh rib, and the abominal moseles are detached and the cartilage divided in two places and turned upwards. Ia this way the perieardium is exposed in a few minutes. Delorme and Mignon resect both the sisth and fifth rilow.

A number of surgeons have favoured trephining and resection of the sternum, it
methol whiel was recommemert by lidion and which has lately received the smlunit of Voinitsel and Giordan！．Since Voinitseh has droverl ly experiments with gelatine injections that in so sitting posture small etfinsions collere in the recexs between the nuterior nttachur it th the diaflimgin and towarls the apex，this pesition is on the eronsideryl the m st suitahle to serme drainage at the＂furation as well as aterwards． If there is any risk attacheel to the ndministration of a gellemal anexthetic，the resec－ tion of the ril，and the prening of the pericardimm may he satiafuctorily aceomplished under local aneestlossia．

3．Cardiolysis．The term curliolysis is aphlien to the nerration in which the

 aphlied it to the heart．

Very free necess is essential，and fur this reanom a preliminary y yation，sumilar tu that deseribed for inguries to the hatat，is required．In our fontrin edition we amerven
 from danger，as the heart may he torn is，spite of the graitent cance．

When the molhesions inselve the strmetnres aljacent the the premolium，namely，

Iy to free the heart from the great mechanioal divalvantage to which it is sulbiected in pushing the surrounding strmetners，e．！／when it pulls in the eleses wall at every systele．

He makes no attempt to separate the indurated melherions，but embearomes to mobilite the thoracie wall in front of the leart liy means of resection．The term curdiolysis does not therefore quite aptly deserile the ngration．It might le termed pericanliolysis as it impless removal of purtions of the stermm，althongh it is really a thenambysis precardiaca．

Simon（who with Peterson opreratel ou Bramer＇s cases）Mmpheyl a method similar to that liotter uses to expme the pricarlimm，viz．ley meanis of a awing－door Hap with the base at the midule line．A tlap of skin and immele is thrown hack，several riths are resected，athl a correspmang portion of the sternimi is removed．Sinnn comsiners that it is ahsolutely necessary to reme we the pasterin layer of the periontenm of the stemmin in order to prevent it iresh formation of lwate．The removal of the atermm is the most eritien stage of the operation．

This methenl umdoulterlly affords relief from the cardac insitticieney，dymmen， cyanowis，hepatie eongestion amb aseites，which resalt from indurated adhewive
 eardium，the complete removal aml permanent drainage of shich las to be take．n into consideration．
 eftusions in the periearlimm in the same way as with expenare of the pericardiam for mijuries of the heart．As there is ouly a limited ares where it is thembly certain that the perimatium is not eovered with plema，there is a doulde reasom for choosing this region for puncture and incision when dealing with purulent etfinsions，wh as not tio infect the plenra．

In the case of a simple preteardanomy，we therefure advise resection of the sixth rih at it：jumetion with the stermm，using in ohlipue indivini along the eonrse of the rib（eide the low whligue incivion in Fig．© 6 ）．The cartilige is removed，the
 with the plewat，and an incision is then mate into the periatrinum latge enough t1）alluit at finger．

If this doen not gise sufficient room for separating the indurated allesions，the lifth rib also may lee removel，ly means of a short vertieal incision，as is advised by Ollier，Poter，Delorme and Mignon．If a pocket of pus still remains in the anterior enl－de－sate of the periearlium，the seventh rib may ansio be remevel（Miatz）and free danage oltained ly proshing the pleura aside．If neeeswary the peric：ardium may tee incised as far as the eardiac apex，a procedure which heichard regards as essential．

To present the formation of dense allhesions hetween the heart and pericardium，
it is well in all cases of suppurative pericurditis to interfere at an carly stage and Wash out the coagulated tibrin. Normal saline is employed for this purpose us the use of corrosive sublimate, carbolic and other antiseptices must lee regarded as pmsitively larmful. Irrigation with weak (l per cent) intoformol may le considered in the recumbent position, but the semi-recumbent posture should be adopted to ensure fool drainage of the exudate.

Beck ${ }^{1}$ has reported three cases of mediastino-pericarditis (Brauer). The patients exhibited symptoms of tugging on the thorax during systole, diastolic cardiac impmlse, legeneration of the myocardium, congestion of the liver and kidneys, and ascites due to pleuritic effision.

The operation consisted in a partial rescetion of the lemy thoras. A flap of skin and musele was turned npwarts, extemling from the sternum to the anterion axillary line, and the convex free-lorder reaching down to the lower border of the sixth rilh. The third, fimerth, fifth, and sixth rilis were resected from the stermm to the anterior axillary line. The three patients recovered, and all the symptoms of congestion were relieved.

B. SURGERY OF THE LARGE ARTERIES

1. Ligature of the Abdominal Aorta. Keen of Philalelphia (1900): has pulbished the most recent article on ligature of the aorta giving 13 recorded cases. 'The first ease was oprated on ly Nir listley Coper (2⿹\zh26灬th June 1N15), and the latest by Tillanx and liche. 3

In no instance has liggture froved successful. Tillans and Liehe's patient died thirty-nine days after the ligature from the effects of the altered cirenlation. The ligat me did not give rise to ulecration, but, in this case, the oeclusion of the aorta was ineomplete. Keen's patient liverl forty-eight days after the operation and died ats a resilt of uleeration at the site of ligature, with conserpuent hemorrnage.

Furtherattempts to ligature the aortacamot therefore lee jnstified, ind other methouls must be arlopted for the treatment of anemrysm (the most common indication), such as the insertion of sibser wire, or the use of intra-minscular injeetions of gelatine (2 to 5 per cent in 200 g .). In injuries to the aorta ligature must be efferted hy other methonls.

Keen has chevised a special instrument for compressing the aorta. By means of a serew, two horizontal plates are gradually alprosimated and the anta is ohstructerl. the instrment heing left in position for the requisite time (two to three days) and then removed. We venture to think that it wonld be more advisable to follow Lambuttes advice and nse a metal clamp, wheld would thaten the anta from the front lackwards, as in Keen's case circular constrietion proved disastrous. Such a clamp, conld easily he r moved at any moment. ${ }^{+}$

From the evidence afforded hy the literature on the subject it is puite elear that in man, as in dogs, it is posilhe to ligatme the artat withont producing fatal circulatory disturbances. The profombl initial congestion-in Keen's case, the head and nerk becoming livid-the aceeleration of the pulse and the altered cireulatory relations assonjated with paralysis of the legs, strangury amb diminution in the surection of urine maly all disinpear withent permanent evil results.

As in previons cases, the operative procelure mast he regnlated by the prevalent combitions. When the pritonemm can be easily separated from the ablominal wall the operation may he satisfactorily performed extra-peritmeally. and we refer the reader for tetails of the operation to mor description of ligature of the left common iliae artery, a 1 ethol which we regard as a distinct improvement on its predecesers. The primatr, ubligtte incision is simply made a little higher up, convenient access is olitainol, and the faseiae, not the museles, are divided. The vertical

[^35]and transverse limbs of the angled incision through the fascia may be enlarged to any extent withont any resultant harn.

If the peritoneum eamot be readily separated on aceomit of inflammatory or hemorrhagie intiltration, access to the aorta must lee obtained hy means if it median lapmotomy. In Keen's case the pancreas was pmsined mp, and the verteloral eolumn was reathed between the panceras and the stomach after division of the gastrow olic omentum, certainly no easier a ronte to follow than hy aceess from the left side. Exery case must le carefully considered lefore a decision is arrived at is as to the methol of procedure, while in, one lut an expert surgeon should attempt the oneration. "the advantages of arterial suture can omly be olverved in ape fial cases, but, " premer, there is ao reason why arterial sutnre shonld not be employed, more especially if the line of suture can le strengthened ly the smperposition of a reinforcing tissme sume as faseia, beriostem, or pritmemm. Cases have heen reemed where fatal hemorrhage was pevented simply her the relation of the ining in the arta to the spinal colman.
2. Ligature of the Innominate Artery. To ligature the inmeminate artery an oblique incision (Girife, Winniwarter) is made from the junction of the middle and lower thirds of the anterior border of the right sterme-mastoid to the anterion surface of the manubrimm sterni. After the skin and faseia are divided, the sternal origin of the sternomastoid is sepurated from the sternum. Two veins are to le avoidell, namely, the transverse vein connceting the two anterior jugulars at the sinprasternal notel, and the transverse terminal jortion of the anterior jugular hehind the origin of the sterno-mastoid. The outer borders of the stemo-hyoid and sternothyroid museles, which are attached to the posterior surface of the mambinimn sterni, are drawn inwards along with the branches of the desecmens noni nerve, and the secomed layer of faseia is thendivided. In this way the emmmon carotid artery is rachod lehind the sterno-tavicular articulation. The right inferior thyroid vein is ligatmed mod divided. After pasing between the stermo-mastoid and the museles last named we follow the carotid downwards to its junetion with the sublavian, below which the trumk of the imominate is ligatured, the plenar, which lies pusterior and external, being avoided. The left inmominate vein crosses from left to right in front of the artery. The vagns nerve, which deseends in fromt of the subelavimartery, the reenrent laryngeal nerve, which winds round it, and the phrenie nerse remain minumeal.
 the clavicle. la our opinion this is not so effective a methorl and is only necenary in cases whe it is desimble to expose the sulnclavian an well. On the other hamd, a vertieal incision in the middle of the neck in the interval lntween the stomothyroid museles (l^{2} irognff) is the simplest method and entails the heast amomut of lamage in cases where the pulsation of the artery ean be felt above the stermon. In these cases, as well ats in the pertimance of hiw tracheotony, the urtery can easily Ine reached with the finger.
smith ' has reported a case in whiell the imominate, common carotisl, and vertelral arteries were suceessinlly ligatured after an ininy to the subelawian.
 artery passes vertically upwards in the shortest direction from the chest to the head. It may he felt in its entire extent ahomsside of the trachea mid esophagns, and may. hee securely compressed against the vertehral columm, preferably at the level of the crienid, olmsite which may be felt the progeting tramserse poreess of the sixth cervieal vertelrat, the so-called carotid tulnerele. The lewo of the ericoid cartilage is the seat of eleetion for ligaturing the artery. The incisim to expose it rums thansversely in the line of cleavage of the skin, at the level of the criomis cartilage, the middle of the incision leing at the anterion horder of the sterno-manstm, the direverim of which correnomens to a line passing from the angle of the jaw to the sternodavieular articulation.
 is seell prassing forwards over the sterno-mastoid from its posterior border: The nerve
${ }^{1}$ C.f. Jordan, Ilamiluah dir piaht. Chir., Stutgart, 1900.

Fif. 28. - Ligature of the lingual artery above the greater curan of the hyoh. Vigature of the combun carotil at the lavel of :he cricold eartilage. Ligatme of the imominate artery. Ligature at the first purt of the axillary artery, Ligature of the intermal mamary artery:
is avoided, and the faseia is divided so as clearly to expose the muscular filmes of the sterno-mastoid, the anterior border of which is drawn outwards with a blunt honk, exposing beneath it the omo-hyoid muscle, which passes upwards and somewhat inwards. The artery is now sought for in the angle formed by the divergence of those two muscles. It is still covered by a second fisceia, which at the same time forms the sheath of the vessel. On oproning the sheath the artery is expreel. The deseendens noni nerve passes downwards up,n the sheath and gives off hranches passing forwards to the museles whieh aseend to the haryn. This nerve is carefully drawn in wards. Great eare must be taken that the vagus, which lies close to the posterior surface of the artery, is not included in the ligature. It may here he remarked that this close apposition occasions symptoms of pressure mon the ragus (slowing of the pulse, dyspmea, a:m syncope) when the artery has to be compressed. The internal jugular vein lies upon the antero-lateral aspect of the artery, with the xympathetie nerve behind.

The risk associated with ligature of the eommon carotid artery is very considerable. Aecording to Pilz, Lefort, and Zinmermam, ${ }^{1}$ in antiseptic as well as in pre-antiseptic days, about one-third of the patients operated on died of cerehral disturbances. The condition of the arteries is an impromt fartor in this respect as, if the eollateral circulation is defective, the risks are considerahly mervanil. Ligature is therefore to be aroided, if possilhe, whe: there is any arteriosclerm ithough in young robust individuals there is no risk of mitoward results.

Temprary ligature of the commos carotid is generally of great servere. It is indieated, e.g., when the somrce of hemorrhage in the region of the phargna camot he ascertained, or when heeding in the area of the internal carotill camot be eontrelled by other means, while it also proves invaluable during arterionaphy.
G. Fowler: has even attempted to render excision of the Gaserian ganglinn bloodless by the temporary ligature of woth common carotids.

We suggest that the metal champ used by Lambotte in the case of small arteries are suitabie applianees for sceuring temporary closure, simee less injury is cansed hy mercly flattening out the intima and museularis than by adopting a circular ligature.

Ceci ${ }^{3}$ has proposed as a means of diminishing the danger inchrred by ligiture of the eommon and internal carotid, the methorl of tying the jugular vein on the same side in order to prevent anamia of the hrain. (Cif. Ligature of the Internal Ciarotid, No. 4.)

(a) Branches of the Common Carotid Arteries

4. Ligature of the Internal Carotid (sec Fig. 29?. in intractanial hemerrlagex (with the cxception of those due to the midule mu: ingeal atery), ligrature of the internal carotid is preferable to that of the common carotid, as the endlateral sinply throing the angular termination of the facial and the ophthalmie arteries is retained. The operation is identical with that for ligsture of the external carotid, exerpt that intervening between the two vessels we find the stylo-ghosus and stylo-pharyngents muscles, alomg with the decp fascia and the stylo-maxillary ligament.

In pharyngeal operations, in which sudden profuse hamorilages may oreur, as well as in occasional cases of tonsillotomy, it is important to be certain as to whether the Heeding arises from the internal carotid, or from the bramehes of the external earotid (pharyngeal and tonsillar arteries). As regards tomsillotomy, althongh the iutermal Gurotid can he felt pulsating hehtime the tonsil, injury of the artery is not usually. to be aprehended. The tonsillar branch of the pabatine artery and the ascending pharyngeal artery are more likely to be the seats of injury, as they ascend towards the base of the skull within and in front of the internal cincotid.

Boari ${ }^{4}$ has shown the value of simultaneous ligature of the internal carotil and jugular vein (Ceci's theory), as he performed this "peration with complete sulecess

[^36]on a man aged forty-nine, for a gunshot wound intlieted on the carotid and the cavernous sinus.
5. External Carotid (Fig. 29). When ligature of the external carotid is sutficient for the arrest of hamorrhage, the common carotid must never be ligatured in its place, as the procedure is dangerous, giving rise, acrorling to Pilz and Friedlander, to hrain disturbances in 19 to 32 per cent, and to a fatal termination in 13 to 1 N per cent, of the cases in which it has been adopted.

Wyeth has reported similiar results in a collection of $\operatorname{iN} 9$ cases, hut, in his experience,

F1:i. 29.- Lisature of the external camotid with the origins of the lingual, facial, and occipital arteries. Ligature of the subchatian artery:
the mortality from ligeture of the external carotid is only $1 \cdot 3$ per cent (169) caves). While Lipp, in 130 operntions had only two fatalities. Ligature of the external carotid is not only indicated in hamorhage and when malignant thmours are adherent to it, but also an : prophylactic measure in extensive operations upon the jaws, the nose, and the face, while it also diminishes to a very great extent the harmorthage durime resection of the jaw and operation on the masopharynx.

All haemorrhages in the region of the head, with the exception of intracranial and intraorbital ones, can be arrested by ligaturing the external earotid artery and also the arteries from the vessels of the dura mater.

The point in our nornal incision where the artery is felt to pukate and where it is ligatured is at the anterior lorder of the stemomastoid musele. The edge of this monsele is considerably more vertical than is unally represented, being drawn forwards towards the angle of the jaw hy the cervieal fiscia. The artery is ligatured opposite a point whieh lies a finger's-breadth vertically lnlow the angle of the jaw. To expose the vessel, therefore, we employ that $p^{\text {arr }}$ of our normal ineision which courses over this region. The ineision divides the skin and the platysma, the fibres of the latter passing mwards and forwards over the margin of the jaw, forming oceasionally a well-developed musenlar layer. At the posterior part of the womel is the extermal jugnlar wein, amb hehind it the great anricular nerve, Inth ascembing vertieally unom the sterno-mastoid. They are not divided, hat are drawn bathwarls. On division of the cervieal famedia the anterior border of the sterno-mastoin is expused, and the facial vein is seen passing downwards over the digastric misele to join the jngular. After dra wine downards the former vein, and ligaturing some of its branches, we get the external and internal carotid arteries into view, the latter lyinge posteriorly. The internal carotic gives off mu hamehes, whilst the external carotid is identified hy giving off the superim thyroid elose to its ongin, and farther up the lingual and other hamehes. These vessels eamot by thin means be mistaken. Ligature of the external earotid is not an easy "peration, lecanse the only guides are soft parts (especially the stemo-mastond musele), which may vary with each opration. It is an excellent rule, therefore, after retraetion of the stemo-mastoid to begin the dissection at the lower border of the digastrie muscle. The hypoglossal nerve, which is reengised ly the eurved eonrse it p,ursuer, and from which the deseendens hypoglossi is given off, is here the chief handuark. By division of the fiseia immediately helow the loop, the external carotid artery will he exposed, with the nerve emrving from behind romd it. Before apllying the ligature, however, the operator must make certain, ly observation of its branches, that it is not the internal earoti!! which has cone into view. The descendens noni nerve, which supplies the depressons of the laryme, must be avoided, and it is still
 forwards belind the artery and the thyro-hyoid muscle.

The majority of the branches of the external carotid, via. the supresior, thaymon, limpurl, fierial, and orripithl arteries, may he ligatured at their origin from the same incivion. The conrse of these four important branehes is antliciently eharaterised by their direction, namely, downwards, forwards, upwards, amd backwards respectively ; and for practical purposes they may be regarded as springing from that part of the: eatotid which is crosed by the hylmondosial nerve. Whell those arteries are to be ligatured more peripherally, situations are to be selected whieh are more readily acresible and less dangerons.

(b) Branches of the External Carotid

6. Ligature of the Superior Thyroid Artery (Fig. 30). Ligature of the suprion thyroid artery by itself is not easily preformend. louless there are any shecial diftientties in the way we always tie the antery in goitre operations, after the thyroid hats heen freed and "dhishocateri."

The operation is effered in the following mamer:-An incision 6-7 cm. (20 to 3 im .) long is carried oblithely mparts from the mintle of the thyroid cartilage
 fascia are divided, and the anterion Worder of the stemomatoid is defised and retracted, the external jughlar vein and the great aurionlar morve being earefully avoiled in the penterion angle of the womm.

The ono-hyoid momele, whieh runs u_{4} watels and inwarts under cover of the sterno-mastoid, is then freed ahne its couter border and is drawn inwarls, while the facial wein, which juins the common facial vein alove and behind, is freed and retaleted backwards.

If the loop of the sumerion thyroid artery has not come into view, the gade to t
tion of the artery is furnised by the large anterior branch, whieh can

alnost invarially be felt at the posterior loorder of the thyroid cartilage in the interval between the larynx and the＂Iper pole of the thyroid lualy when this is high in position．By following this guidanee we find the main trunk lying on the uter surface of the inferior censtrietor of the pharyns，with the superier laryngeal netse situated a little higher up．

As the trink of the supmior thyroisl is extrenely short，it $1 s$ more effective to place the ligature heyond the hyoid and sulurior largingeal hamehes，so as to cause uo interferenee with the circulation in the laryin．The musenlar Iramches must he ineluded，particularly the erieo－thyroid lmuch，which forms a free anatomosis with the vessel of the other side．

The artery is most satisfactimily divided hetween two ligatheres，so that the operator may be able to pull the uliner pole of the thyroid downwarls anal ensure the certainty of having also ligatured the posterion hanch．Otherwise the danger is incurred of the establishment of collateral cireulation from the mmerous commenica－ tion．＇the hyoid and laryugeal hranches．

A nerve which aceompanies the artery must lee ishlated，since its inclusion in the ligature may canse severe timothardie and eanathe．

In difficult ceases it is advisalle to expnse the extermal carotin artery ly the same incision and isolate the sulperion thyroid artery at its migin，oftherwise the barge veins comeeted with the upper finde of the thyroid ghand often make inslation of the artery near the glame very ditticult．In women suffering from Basedow＇s disease，in whom it is inportant to ohtain a fine sear，the ineision，should lee carried not tor ohbipuely but rather more tramsersely over the midhle of the wing of the thyroid cartilage on to the stermomantoid musele．At the ulpur prile of the ghail the artery lies under eover of the ealsule，whiels mant therefore le divided，hy whirh means the upler pule can le drawn down wards，and the opration comsennentiy facilitated．

7．Ligature of the Lingual Artery．Ligature of the lingual artery is of great importanee hecanse it sulphes a deeply－situated organ，the dirent arrent of hemornhage from which is not always easy of attamment．So it is oftell denitable to perform a prephylactie ligature．The antery has a very detinite comme，inasmum as it is directed towards the hyoid bone，and is placed clone to the pesterion extremity of its great cornu．It is most convenienty ligatured at this situation，hecrane in mont perple the extremity of the great cornu if the hysid lome can be felt throngh the shin，and therefore serves an a very distinet gunde for the incision，whielo is made in the diree－ tion of our nomal incision from the edse of the sterno－mantuin mumble along the great comu of the hyod bone as far ats its buly．The incision extends thangh ＊kin，platysulat，and fivela．just as if the objeet was merely to expuse the great eormu of the hyoid hone．The fatial vein often passes vertically downwarde，or downwards and baeliwards，aeross the fied of operation．The lower hurder of the suthasillary ghand aplears beneath the upler edge of the womed，helow which the penterior helly if the digastrie and the stylo－hyoid manseles desemed tewarde the homly of the hyoind bone．Those muscles are at a higher level than the acat of ligatome．

It is advisable to press formard the hyoid hone from the י口⿰口口isite side of the nerk． Iftere．ing the great cornu in this way，we seize it with a honk and the bone is drawn forwards，a proeens which has the great advantage of rendering the entire tield of opration more sumpericial．It the thickened pasterior extremity of the com of the hyoud bone the fibres of the lyo－ghessis muscle asemed rettically in a charaeteristic maner．The hymplossal nerse passes from behind forwards ung the outer surface of this murde，ind behind the extremity of the hyoid lone it winds roumb the external carotid artery．The ohelatom must mow he very carefing to cot through meither more nor less than the musenlar fibres of tie hyongossus elose al ase the elnh－ like extromity of the great cormu of the hyoid lome，immediately ahove whieh the artery is sitnaterl．We comsider this to be the most relialle methoul of ligature．

As a second methen for ligaturing the lingolal artery，the ineinom above the
 This is described by Winiwarter as due to l＇irowott－Hueter，while linser，Malgaigne and Béclard incised underneath the digastric．The ineision is mate parallel to the great

cornu of the hyoid bme through skin, phatysma, and fascia, and the lower lworder of the submaxillary ghand is drawn upwards along with the facial vein. The artery lies
 muscle) mind the posterior border of the mylo-hyoid under the aseending filpes of the hyoglossus. Lipn the outer surfaee of this latter muscle is the hyproglossul nerve, and often the lingual vein.

We reeommend ligaturing the urtery in Beelard's triangle, and further eomsider it munecessary invarially to look for the artery at its origin from the extermal emrotid, at proposed ly Mérid, fin the ubove methon is one of extreme satety and cintails less

Fig. 32.-Ligature of tho fatial artery. Ligature of the inferior thyron and vertelral ateries.
damage if care is taken to yranp the tip of the sreat cormu of the hyoid with one of our artery foreeps or with a hook, and to make the ineision chase to the lone and jnot thrigh the lyo glossms muscle. Thiersech had pevionsly reemmemend the methond of pulling up the hyoid hone with a hrok.
8. Ligature of the External Maxillary Artery (Facial) (Fiy. 3:2). The place for ligathring this artery can le very detinitely determined, as it aveenls over the lower trender of the jaw ju-t at the anterior londer of the masseter musele. It is acemmpuied hy the facial vein, whieh, however, is not so eonstant in its eourse. An incision is miade parallel to the margin of the jaw olposite the anterior border of the masseter. Ifter dividing the skin, platy:mia, and faceia, we expme the artery, which is then to he freel fimn its surroundings. The surpamaxillary lrameh of the facial nerve, which comses along the margin of the jaw, is to le carefully avoided.

Fig. 34 illustrates the ineision suitahle for ligature of the facial artery at the angle of the mouth. Bleeding from the labial arteries (e.g. in harelip, mperations) or from the angular artery can readily le eontrolled ly the npplication of appropiate clamps to the eheek and lip,
9. Ligature of the Sterno-mantoid Artery is only undertaken in the case of injury.
10. Ligature of the Occipital Astery (Fig. 33). The oceipital is the largest artery of the scalp, apprearing at the inner horder of the splenins inusele, midway hetween the external oceipital protulserance and the highent point of the mastoid provess, where it pierees the strong faveia and ascends over the oxciput muler the aponeurosis.

Fis. 33.-Ligature of the necipital artery moterneath the splenins eapitio.
The ineision extends from a point inmediately behind the mastoid proeens downwards along the posterior lurder of the sterno-mastoid mimsele, the centre leing phaced opposite the tip of the mastoid process. Th. posterior berder of the sterno-mastoid is exposed and its tendinous insertion is sepa: from the sknll and retrated forwards. The splenius eapitis, the fibres of which ru anituely upwards and forwards, is then exposed and divided transversely. At its anterim herder the longissimus capitis musele cones into view, under which the artery will be found running transversely baek wards in contact with the skull.

The artery may le tied higher up, where it lies underneath the fascia at the outer horder of the trapezius musele, and aseends to the skin of the occiput. Here the artery is joined by the great oeeipital nerve, which passes mpwards and outwards.

The artery may alse be ligatured at its origin by an incision similar to that for ligature of the external carotid. Here it pusses under the digantrie and stylo-lyoid. The occipital vein is not invariably fouml lying close to the arters.

Kappis ${ }^{1}$ has collected -1 enses of mieurysm of the accipital artery in which either ligature or exeision of the anenrysin was performed.
11. Ligature of the Posterior Auricular Artery. This artery, which ascends in the interval letween the auricle and the nanstoid process, is liable to be injured

Fig. 34.-Ligature of the fa fial artery. Ligature of the tempmal arters. 'Trephming the ascending ramis of the jaw to expose the inferior deatal nerve.
only by an ineision made too close to the auricle. With the incision we have described and which is now in gemenh hise for rxpmstre of the mastrid proeess, the artery is pushed forwards along with the soft parts in operation on the antrum.
12. Ligature of the Ascending Pharyngeal Artery. 13. Ligature of the Ascending Palatine Artery. Ligature of these two arteries, whieh are in contact with the lateral wall of the pharyux, is only necessary in case of injury, ligature of the external carotid above the lingual artery, as a rule, being preferable.
${ }^{1}$ Beitrige sur klin. chir. Bul, 40.
14. Ligature of the Internal Maxillary Arterg. Notwithatanding the large size of this artery and its branches, ligature is seldom empleyed, us the artery lies entirely under enver of the lower jaw, at first lehind the neek and then mader the coronoid process.

Ligature of the external carotid alove the origin of the facial artery is genemally adopted in most ensen of hamorrhage in the regien of the npper jaw, temple, or hase

 Infraorhital hetre. Opening of the frmial ims.
of the skull, when the heeding cannot be eontrolled hy simple ligature of the heeding points or by other means.

The most important of its hamehes is the fare midille meningeal artery. exponare of which branch is frepuently necessary: But since the procelure of trephining is unavoidable in oriler to ligatire this artery. we refer the reader to the chapter on Surgery of the lrain (section on Surgery of the Nerrons System) for consideration of the sulject.
15. Ligature of the Superficial Temporal Artery (Fig. 34). In contrast with the internal maxillary artery, the other terminal hrameh of the external carozid,
namely, the numerticial tempmal artery, is ensily aceemilde for ligatare, mal it an ine traced from the jesint where it croseses the zygrona ins far as the temple and forelemal.

The pulation of the smperticial tempral com be felt ly indueing preswres on the aygoma $\frac{1}{1} \mathrm{cmm}$ in front of the attachuent of the lelix, Mevding from its hranelnes leing easily enintrolled ly pressure over this point, where it may alon le ligaturen, a vertical ineision heing made 1 com. in front of the anterior eme of the helix. After the skin is divided, the faseiat and then the smerticial layer of the amoneurosis are expmed, the artery lying under the famia.

The pensition of the fimpmol reim is not constant. It is generally parallel to and belind the artery.

(c) Branches of the Internal Carotid

16. Ligature of the Ophthalmic Artery or of its termimal hrancles thr. Supraorbital and Frontal Arteries (Fis. 3is). The supraorlital is the prineipal artery of the forchead. It is smaller than the tempromartery, and leaves the whint at the supramintal motch, which serves an the ghide in ligaturing the vemel. The connse of the artery is vertionlly mawards throngh the filores of the orbicularis and umber the "pmenrosis. After the eyebrow is shated off, a transwerse incinis.m is made over tho sulpraorbital margin.

(d) Subclavian Artery and its Branches

17. Ligature of the Subclavian Artery (Fig. 3if). Arising hehind the mamnbrimu sterni, the artery areles ower the pleura and apex of the long and ahwe the tirst rib between the meilemin antions and medins, then fassing leneath the midde of the elavicle between the sulelavins and the serratus magume to the onter surface of the thonax. It may he securely eompressed at the onter lurider of the sealemsinations muscle.

To ligature the artery a tramserse incision is male a fingers-ineadth aluwe the elaviele, the "perator hegimming over the elavinlar 1 urtion of the stermo-mantoind and basing ont wards and slighty mpards to end at the anterior hurder of the trajueins. After division of the skin :imb phatyma, the clavientar lrameles of the descemeling smperficia! cervind nerse are sentand must be divided. They pass over the elavide to supply the shin over the shombler and chest down to the level of the seemal rib. The external jugular wein, which lies atong the pesterion herder of the sternomistnid, and firally whels romed it to join the internal jngular, is to ine aveoided. It is dangerons to open this vein, becanse it is kept patelt where it pases themgh the famem, and air nuay be drawn into it during ingpiration. In case it canmet be drawn inwards, a domble ligature is to tre applied hefore it is divided. After division of the fascia the omo-hyoin musele appears at the imer angle of the womal, and passes plwards ame inwards in the fatty tisone which comatains the lymbatic plands of the triangle. The muscle is drawn either mowards and outwards, or downwards and inwards. In the fatty tiswue lie the supraseapular artery, ruming ont wards ' ehime the elavicle, and the superficial cervical artery, maning hackwarls and npwards. Ahove the latter. hut under the deep faseia, is the larger transwersalis colli antery, whieh passes harkwards either umon or through the cords of the brachial plexus. Aiter the mipose tisune has treen removed the large nerve cords of the lrachial plexus (eovered by a thim fascia) aplear hetween the scaleni, amd pass almost vertieally downwards muder the claviele. Ther relation of the artery to the plexus is very detinite. The stalenux anticus is uew followed downwards in front of the plexn:s to its att:ebment to the scaiene tuluerde (tulerele of Listivur) of the first rib, Ineliml whiels lies the artery overlatiped by the nerves. Internal to the sealenus antieus is the bulbons portion of the internal jugnlar vein; in front of the artery, and separated from it ly the scalenus anticus, is the snbelavian vein. The phrenie nerve descends into the chest upon the anterior surface of the scalenus anticus. The thoracie duct aseends from the chest into the neek elose

In the sealemus anticus, and opens into the angle between the subclavian and internal jugular veins.
18. Ligature of the Vertebral Artery (Fig. 37). The "ןeration for ligaturiug the vertebral artery is similar i., that for the inferior thyroil, hint is more difficult, as the artery lies much c.eper, behind the prevertebral fascia, and werlapped ly the outermust filires of tae longus colli. The so-called corotid fulurecle at the transverse process of the sixth cervieal vertelra affords an excellent guide to the artery. The satue thkercle is also made use of in tying the common carotid-lenee its name. It

Fin: 36. - Ligature of the external carntil with the origine of the lingnal, facial, and necipital arteries. Ligature of the onlulavian artery.
is of no great signiticunce, however, in ligoturing the arrotid, but is very important in tying the vertebral, secouse the artery passes under it to enter the foramen in the corresponding transverse process. It would, therefore, be more to the purpose to
 under surface of this tuhercle. After drawing the sterno-mastoid outwards along with the large vessels, and the sterno-hyoid and sterno-thyroid inwards, we divide the prevertelial fascia above the arch of the inferior thyroid artery; when the vertebral artery will he felt ascending vertically upon and purtly within the fibres of the longus colli, aud disappearing at the lower surface of the transverse proness of the
sixth cervical vertelna. Externally lies the sealems antichs, and mon it the phemic werve, which descends from. the onter luorler of the musele atorss its anterion surface to enter the upher aferture of the thorax. Below the arch of the inferior thyroid artery the vertehral ascemds almost vertieally along with the rewirrent laryigeal nerve.

Ligature of the vertelmal artery on me side presents no puint of smecial interest. Both arteries have leen ligatured hy Alexauler and Jarac\% for epilepsy. Jorrlan attrifntes the opreation we deseribed to Frays and Kowher.
19. Ligature of the Internal Mammary Artery (ef. Fing. 3i). The internal manmary artery si? 1 , ila imer surface of the anterion watl of the thoms, and

 her the triagglaris sterni muscle. Anteriorly lie the contal cartibuges and the intercintill minseles.

It is ligatmeni ly making a transerse ineivion in thene interental spares opmsite
 arried from the middle line of the stermmen transwisely ontwards inetween the contal cartilages. After dividing this wery thin and oftem interimpted memhanme we reach the musenlar fibres of the intermen interesistal, which pass downwarde mul out wards with a well marked fiaceia mun their moler surfated After these are divided the artery is seen descembing unom the pleman abont $\frac{1}{2}$ to 1 cm. from the larder of the sternme,
the vein lying to its inner side. In the lower intercostal spaces the internal mammary artery lies somewhat farther from the border of the stermm ($1 \frac{1}{2}$ to 2 em.) than it does higher up, and is separated from the pleura by the triangularis sterni musele, on which it lies. In these intercostal spaces the artery requires consideration mainly in the operation for opening the pericardium.

Of its two terminal branches (superior eprigastric and museulo-phrenic), ligature of the superior epigastric has only to be considered when the rectus aldominis is divided transversely in a laparotomy, the artery being found on the posterior surface of the muscle included within the sheath.
20. Ligature of the Superior Intercostal Artery. This artery is so deeply phaced that the question of ligaturing it only arises when it has been accidentally injured during excision of the inferior cervical sympathetic ganglion.
21. Ligature of the Inferior Thyroid Artery (cf. Fig. 37). From a surgeon's

Fici. 38.-Ligature of suprascapuhan artery at the sury or angle of the scapula.
point of view, the inferior thyroid artery is eertainly the most important hranch of the thyroid axis, on aceront of its relation to the thyroid gland. The ascending cervical, superticial rervical, and supraseapular arteries have frequently to be ligatured in "preations in the region of the sumplavicular fossa. The last-named artery, whielo runs belinel the clavicle to reach the sampla, is specially liable to ingury.
[In this comuetion wige Ligature of the Snlelaviain Artery, 1. 10.) and Fig. 36.] The supraseapmlar artery may lie ligatured with advantage in opreations involving the seapula, as it sends large lrameles to the supha- and infra-spinots fossit.

Ligature of the infionor thyroid artery is not easily performed. Its isolation
 the other hand, during suitre operations it can he readily ligatured, if the lateral lobe is dislocated, -aceording to the method we describe, -the ligature always being applied after disloration of the thyroid.

The artery passes inwarls hehind the common carotid, describing at the same

Fifo 36 Fixposime of the 10 th riband the 10 th intemental artery and nerve.
Ligature of the fossentor simphar atery.
time a well-marked curve convxe upwards. It can be safely exponed here on the anterior surface of the vertebral column, or in the transverse part of its course on the longus colli museles.

A transverse incision of some length is required in the lower third of the neek,
in the direction of the "collar" incision whieh we recommend for exeision of the thyroid, and extending from the prominence of the sterno-mastoid muscle to the middle line. The skin, platysma, and deep fascia are divided as already descriked. By forcible retraction of the sterno-mastoid outwarls (see Fig. 37) and the sternothyroid inwards, the carotid artery is exposed in the outer and the thyroid gland in the inner part of the wound. By division of the capmle of the glanil they emm be separated. The inferior thyroid artery lies behind the gland.

All hemorrhage must be carefully arrested during the operation, in order that a satisfactory view of the $p^{\text {wirts may be obtained, and the recurrent laryngeal nerve }}$ (which is the main motor nerse for the larynx) thereby preserved from ingury where it crosses behind the artery. The nerve usually crosses behind the bend of the artery and ascends upon the longus colli muscle, from which it continues upwards in the groove between the trachea and cesonhagns to the lower loroler of the erienid cartilage. The cardiae branches of the sympathetic must not l_{x} injured, nor indeed the trunk of the sympathetie, which often consists of two parts cmbracking the artery. When the thyroid gland is enlarged the fascia must be freely divided so that the gland may be raised aud drawn towards the midnle line with a large blunt hookretractor, in the course of whieh the inferior accessory thyroid vein is divided between two ligatures, while the sterno-thyroid muscle must he freed in the middle line, detached high up, and retracted mitwards.
22. Ligature of the Transversalis Colli Artery (eite Fig. 36). This large artery is ligatured hy the method adopted for the subelavian artery above the clavicle. The artery is readily recognised from its position at the outer border of the scalenus medius and the course it takes between the trmaks of the hachial plexns. The supraseapular and the superticial cervieal arteries lie requectively below and above it.
23. Ligature of the Posterior Scapu:- Artery (Fig. 38). This terminal branch of the transversalis colli deserves spee mention, ats it can be ligatured both at the sw, erior angle of the seapula where in lies under the insertion of the levator anguli seapula, and at the sertebral border of the seapmla beneath the insertion of the rhombuids.
(a) At the upher myle of the sropultu. An ineision is made from a little outside the vertebra prominens, obliquely outwards and slightly downwards towan in the shoulder. It passes over the plate where the superior angle of the seapmat cat be felt. The skin, fascia, and traperins are divided paralled to the fibres of the muscle, whereby the upper horder of the rhombidens minor is expmend, rumuings trom above downwards and outwards. Exterually is the thick belly of the levator anguli seapule descembling from the neek to he attached to the angle of the seapmla. By pulling this musele outwards we time the artery mpon its under surfare. Upan the thomas lie the moer part of the ilinecostalis mume internally, the insertion of the sealenus posticus superinly, and the ribs and interenstal muscles externally:
(1,) At the inner bomere of the serpuln (lig. 33). At the level of the midhle of the infla-spinous fossa the artery will he fomul by making an ineivion along the inner borrler of the seaplula. It the uplow angle of the ineision is the willinpe lower edse of the traperins muscle, the strong apmeurosis of which is diviled clone to the eflge of the scapmala. On detaching the iendinons insertion of the rhomboidenmajor from the seapula the artery will he seen mpen the nuler surface of the musch, ruming parallel to the horder of the seapula on the serratus prosticus crosing the upper border of the rhomboidens minors.

(e) Axillary Artery and Arteries of the Arm (Figs. 40 anl 11)

24. Ligature of the Axillary Artery (Figs, 42, 43, 4). According to anatomieal deseription, the axillary artery extends from the subelavius masele on the under surface of the claviche to the lower border of the peetoralis major (anterior axillary fold). It can be ligatired at three points in its course.
(a) By a tremsmerse imrision belom the rlumide (Figs 42). The ineision is made 1 cm . below the middle third of the clavide, dividing the filmes of the platysua together

Fisi, 40.
with the semory smpuralamirular mormes. In diviling the fascin, we must atoid the rphatia rein at the anterion exlye of the deltaid. The clavienlar thbes of the pectomis major are now dividet, and the erphalic vein, together with the hrameles of the acromio thoracic artery mai the anterior thonticic nerves, is dmwn upwards. The

nerves ate small, appearing lechow the clavicle, and cross the veswels to supply the fectoral muscles. The costocoracoid membrame is divided helow the elavicle, and the upler elge of the pectomis minor is expmend. The arillory rein now appears,
 the larger nerve trinks alongside the vein in the outer head of the , median. After it is freed alongs its inner edge, the urtery comes
 into view umberneath it in the mogic hotween the elaviele and the upher border of the peectomis nimor, lying upou the serratus miaghins minsele.

 sulide tor the resesel is atforded in this situation hy the visible and palpabie hollow Inctwern the deltoid amd pectomalis major museles. The imoinion is hegum wer the juntion of the onter and middle: thiris of the "laviele, amb

The lower border of the peetoratis minor is exprosed from the eomeoid process. towards the thorax: between it and the coraco-brachialis he the vessels and nerves, the large vein being internal. The axilhary vein and the median nerve [immer head] nre now drawn inwards, when the axillary artery will be seen !ying beneath and external to them. External to the artery is a smather eollateral vein.

The onemation is more ensily perfomed by separating the pecteralis majo mosele from the claviele for n short distanee. The artery may ahso loe ligatured ahose the pectoralis minor with this incision.

As will be observed from Fig. 43, the operation is remetered simpler if the pectoratis minor is divided at the coracoid process. Kolliker ${ }^{1}$ even regards division of the jectoratis major ins the normal methol for exposing ane ligaturing the axillary artery. It shonkl, however, be reserved for specially-ditheult cases. . Is already stated in clearing ont the axilla in clisense of the breast, the pectoral museles are divided so that the man vessels may le emmpletely exposed np to the elavicle.
(c) From the unille to its lomext eml (Fig. 4t). The line of the vessel is from the middle of the clavide to the middle of the auterior fold of the axilla. The artery is in eontact with .he rater wall of the triangular prisulatie sinee let ween the thoras internally, the pe:toralis major and minor anteriorly, and the seapula covered by the subseapularis musele posteriorly. With the arm fully alxheted, an incision is made through the shin and faseia along the line of the intemal bieipital growe over the inner edge of the prominenee of the eoraco-brachialis. The museular tilres of the eoraco-hrachalis are expesed, with the large nerves of the axilla - which may he felt throngh the skin upen the prominence of the head of the hmmerus-lying along its immer horler. The dissection is now to the continned letween the muscolocutmeons and modian nerves, otherwise a collateral rein moming atongside the coneobrachialis may easily le taken for the artery. The sualler external nerve is the musrentocutrmenns; the larger internal one is the mellien, which is single below, hut ligher up consists of two conds, the external of which unites above with the musenlo-entaneous, the artery lying in the fork hetween the two heads of the nerve. The ninus and interuml contoineons wores lie internal to the artery, the muscruls-spimenl and cionmenter belind it. The main rein is quite internal to the artery, and a smatler rollateral vein lies external to it.
25. Ligature of the Superior Thoracic Artery (Fig. 12). This artery arises from the axillary at the lower bonder of the subelavius monsele, and in ligaturing it the operator mast be careful not to include the internal and external anterion thoracie nerves, whieln smply the peectoral museles. The operation is similar to that of ligature of the avillary (seee $\because / 1$ ie).
26. Ligature of the Acromio-thoracic Artery. This is the eltief artery of supply to the ateromial region, and is expoed at the mper horker of the pectoralis minor, throngh the incisim, leserined in 21%. It has nust frepuently to be ligatured in "pruing into the shoulder-joint by an incision hetwern the deltoinl muld peetriatis major, as its acromial branch which mus ontwards ower the ermeode, and its hunseral hranch which desceluts in the alnowe intorrat, are dividend.

27. Ligature of the Lateral Thoracic (Long Thoracic) Artery.

 the axillary is given oft at the lower border of the peecomalis miner. This brameh of chlly alnluctesl, in incision is make immediately bedind the swellin. With the arm

 arrathes hamens, which it snpplies.
28. Ligature of the Anterior Circumflex Artery (firs. Ai). I:miniont atung
 meladie vein lies unon the fascia. It is important to define the growe between the Idtuid and peetoralis major, and after division of the fasclia the mustes are "larated from cone another, the deltoid being drawn outwark and the pectoralis iniger inwark. The onter horders of the shont heal of the beep and the eoraco-

[^37]Tricep, m.
limarn.
laner head of trice ${ }^{\text {ns }}$ th.

Inferior profumlaná
beep fascia.
Linar i.

Inner lieall of triceps mi .

Ahst .. : Jranch.
Muscuio.xpiral th.
Latisisimas dorsi m:

lorachialis museles which descend muler the pecturalix majur are exposed and drawn
 in some fat inmediately ledow the howd of the humerus and above the insertion of the lectoralis major.
29. 'igature of the Posterior Circumfex Artery (Fig. 16). If the ${ }^{\text {nusterior }}$ horder of the deltoind misele le pressid twards the surgial neer of the humerns, the
 folt. The skin and the fiaseb (which is alleremt to the deltoid) are divided
 deltoid having lneell cymed and drawn forwards, the lower edge of the teres minor

and, in from of it, the tendon of the long head of the triops are bronght into view. In the angle bet ween the teres minem and the minur horing of the lome head of the triceps the posterior circumtlex artery, ahome with the ciremuthes nerve whell is abone it. cones ont from lefore backwards. The latter cirses roman the posterine surface of the hamerus in order to enter the moler surface of the deltoid, after having given
 materin circmithex artery curves furwiorls ont of the interphae hetween the teres minor alove and the teres mejor lelow, and divides into ansentine and dercending banches. The main trum surrounds the nerk of the humerus. Below the penterior riremintlex, and selpirated from it only ly the long lead of the tricels, the donstlis serpmee artery will be seen winding round the axillary hosder of the seapula.

Fic. 16.-(1) Ligature of posterior circunflex artery, circumflex utic. (ㄹ) aud (3) Musculu-ppiral mrand superine profunda artery.

Ittaring profundon,
thrpfascia.
Char !!.
thamer head of triceps m.
Superior jrofitilat.
Mtuscular branelo.
Mitsenlo.spital n.
Latissimu dunsi :n.-

Treumilis F .
Trises major ing.
subseaphlat od
J. 1 日g larat of tricepan 3

Iharsalis su"tuluta at.
l.atis-imms dursi m
subecaphar meros.
Subseary ular a.
Suhaseapmariv m.-
Yeoltan n .

$1^{\text {ITharan. }}$
30. Ligature of the Subscapular Artery and its branches, the Circumflea scapule (Dorsalis scapulm) and Thoraco-dorsalis (Fig. 44). The limb being fully abducted, an ineision begimning at the arm is carried along the anterior surface of the posterior axillary fold. Intercosto-hmmeral branches going to join the lesser internal eutaneons nerve may ajpear mon the fascia. After dividing the fascia we find the artery lying in loose cellular tissae at the edge of the insertions of the latissimms dorsi and teres major monseles, which together form the posterior axillary fold. About an inch from its origin it gives off the dorsalis scapmiat artery, which passes backwards. At the mper angle of the incision the circumflex nerve may be seen upon the projection cansed ly the head of the humerus.

The largest branch of the subscapular artery, the dorsalis scapulax, renches the posterior surface of the scapula in company with a branch of the subscapular nerse, by passing lockwards in the space hetween the teres najor and latissimus dorsi below, the sulscapularis and teres minor above, and the long head of the triceps externally. It can be exposed from hehind hy the same procedure as descrihed for the posterior circumflex urtery (No. 29 and Fig. 46).

The other main brameh is the thoraco-dorsalis, the continuation of the tromk in the gap between the latissimus dorsi and the serratus magnus (Fig. 44).

!(f) Brachial Artery and its Branches

31. : igature of the Brachial Artery (Fig. 47). The hest landmarks in examining the upper urm are the internal mul external hieipital sulei: the biepps and the long head of the triceps can be gripped between the tingers and raised up, from the bence.

The brachial artery can be felt in the entive length of the upper arm along the internal hiepital sulens, from the hend of the humerns, which can be palpated throngh the axilla, down to the middle of the beme of the ellow: the median nerw, which crosses the middle third of the artery from withont inwards, ean also be felt, while the artery can le compressed in its whole length against the hiceps.
(a) In the mithly. An incision is intule alon., the line of the median nerve, which is very distinetly folt in the internal biepinal suldens when the arm is nhdueterl.
 heen divided, the inmer border of the bieeps is defined and dhaw ontwards. The median nerse is then completely expmed, freed, and drawn inwards. lmmediately mader it is the brachial artery (with its two whar comites) lying in front of the intermusendar septum. Internal to it is the intornal entanems nores 'The uhar nerve lies muler the faseria covering the imer heal of the triceps at the hinder part of the intermal hidipital sulens.
 nerte will be seen at the phace where they pievee the fascia. They may be expesent ly the same inesion as for ligature of the brachat artery.
(1). It the ellour. We make an incision in the direetion of the axis of the forearm. Ingeming internal to the berepostemben a little to the ulnar side of a point midway letween the combles of the humerns. The olditue median hasilic vein and the main brames of the intermal cutanems nerse me seem lying umon the faseia. Under the stuerticial fascial is the anmenrotic bicipital fascia, the fibres of whieh rum in a elanacteristie mamer downwards mel inwards, lmmediately moler it, or covered by a thin layer of fat, lies the brachial artery, with its two vema comites. Fixtermally. is the licepis tembin. The division of the harathal artery inter ralial and uhar takis phare a finger's beath below the level of the joint.
32. Ligature of the Arteria collateralis radialis superior. Ligature of thaurtery is performed only in the case of imply and then at its site.

 of the lulisximux dorsi musele (Fig. 41). An ineision commencing at the levei of the
pmosterior axillary foll is carried downwards along the :nternal hicipital sulcus. The lesser intermal cutaneous nerve is met with upon the faselia. The fisecia is dividerd over the prominence of the long head of the triceps Indind the white line of the internal intermusculur septun, and the dissetion is contime towards the loone now the muterior surface of the long heal nul above tise origin of the inmer head of the tricelns. By following up the large hrameln to the imen head of the tricels, we meet v' in the trunk of the suprew profunda atery lying anainst the leme.
behind the atery lies the museulo-spial nerve, whicn descends from nlmese over the tendon of the hatissimus and passes tuwards the pesterior surface of the humerus letween the inmer and the loug heads of the tricepls. An operator must he careful not to go too far backwards, as otherwise he wouk pass helime the nerve and nrtery whiel are situated chase to the bone in the internal licipital groove. The musculospiral nerve is identified by its resting unom the lati-simus.
 a line is drawn along the pusteriun surface of the upher arm from a peint a finger's. hreadth behind the posterior horder of the deltenid and close to the long heand of the triceps down to the tip of the olecranom. The inision legins low the level of the pusterior axillary fold, and passes domawards along this line in the intersal hetween the long wind onter heals of the tricens, which are sepmated from one annther down to the home. The newe lies between the imer and moter hembs of the trivep after haring passed muler the long head at the hewer loorler of the latissimus donsi. larallel to and in front of the nerve lies the sun rion profunda artery, which is also in contact with the imure surface of the lomerns.
 is made at the onter border of the wintor houl of the trieeps (the limits of which ean
 the external comlyle of the limanerns th at Inint midway hetwen it and the inertion
 dissection along the extemal intermmentar sipthm, and selpatang the hrachialis antiens musele from it as far as the lnome. The aterey pases obliphely form hedime

34. Ligature of the Arteria collateralis needia (branch to Inner Head of Triceps). This vessel, which mus in the filn'e of the immer heal of the trierp, is ligatured only in womus inemren hy the latter mumere.
35. Ligature of the Arteria collateralis radialis inferior. This is the terminal
 fomen in the lower thirel of the arme at the lateral harder of the outer head of the

36. Ligature of the Arteria collateralis uinaris superior (Inferior profunda

 mailu vessels.

 intermisenhar :eptum.
37. Ligature of the Arteria collateralis ulnaris inforior (Anastomotic Artery). The urtery lies unan the base of the intemal chionelyle athove the origin of the pronatur ratii teres. It ean lie felt theres. It is fommalter dividing the strong
 jumetion of the methan brasilie with the hasilic vein.

Fici. 48.-Bradinal atery. Ralial and uluar arteries.

(6) Arteries on the Forearm and the Hand

38. Ligature of the Badial Artery (Figs. $4 N$ and 49). This vessel, the direct continuation of the braehial artery, is easily felt in two-thirds of its length, It is nowhere eovered by muscles, exeept in the upper third, where it is slightly overlapped by the supinator longus muscle. The direetion of the artery is indicated by a line from the middle of the lend of the elbow, down the front of the forearm, and along the "pulse" to the ridge on the trapezium.
(a) In the unger thind the artery lies more rleeply uron the supinator hrevis and the pronator teres, between the projecting supinator fongus and the fleser carpi molialis muscles. An ineision is maie along the interval which may le distinetly felt between the two latter muscles. The median eephalic vein and a large braneh of the museulocutaneous nerve appear upn the fascia. The fascia is divided, and the supinator longus nusele is drawn well outwards. The artery is found lying deeply upon the insertion of the pronator radii teres. To the redial side of the artery, and at some distance from it, is the radieal nerve covered by the supinator longus.
(b) In the middle third. Ineision in the intervial (in which the madius may lie felt) between the flexor earpi radialis and supinator longus museles. In this interval the artery lies upon the radial origins of the flexor longus pollicis and Hexor sublimis digitorum muscles. The melimel werre lies at a little distance to its radial side, more muder eover of the supinator longus, beneath which it passes hackwards.
(c) Abom the wrist. The hand heing dorsiffexed, an incision is made between the prominent tendon of the flexor earpi radialis and the edge of the radius. The skin and faseia are divided. At the lower horder of the pronator quadratus the artery passes deeply towards the radial aspect of the wrist-? int, and sends merely the small superfieial volar hramels downwards to the palnt wer the ridge on the trapeximm. The tendons of the extensor ossis metaenpin and extensor primi internorlii pollicis lie enveloped in their sheath external to the artery at the edge of the radins. The radial nerve is no longer to be seen, as it passes lackwards under the tembon of the supinator longus at the lower third of the forearm.
(1) On the lurch of the uroist (in the simerthed Tabutiore) (lig. 49). Longitudinal incision from the lower end of the ralins to the hase of the dirst metararpal bone between the prominent temdons of the extensor primi and extensor secmadi internorlii pollicis. The vessel ean here lef felt throngh the skin. In the subentaneous tissue parallel to the tendin are the radial vein and nowe, which are to be avoided: the latter can be felt upon the outer side of the ramlius. The artery courses ohliguely beneath the above-mentioned struetures upon the seaphoid and external hatemal lipanemt.
(e) On the barf of the hermp (Fig. 4!). This vessel goes to form the main part of the deep pahmar arch.

Incision from the uprer end of the first intemsseons space along the uhar side of the temdon of the extenson seeundi internomii pollidis. The vessel man he felt here. The branches of the radial nerve and vein which lie upon the faspia are to be avoided. The diswection is eontinued between the bases of the first and seemed metararpal bones, upon whieh the artery lies just lefore it pases towards the palm, under the tembinons areh joining the "o hearls of origin of the tirst dorsal interosseons mensele. The hroat tenlon of cextensor cappi ralialis longior, which is inserted into the serond metaear wone, appears upon the uhar side. The artery has previnusly given ofl the eommon digital lomeln for the forefinger and thomb, which may readily tre mis, taken for the nain trunk.

The radial reeurrent, posterior madial earpal, and superficial volar; branches of the radial artery, are anly ligatured in the case of injuy. The superficial volar is a small twig whieh assists in forming the superfieial pabmar areh ($\%$.r.), and runs downwards under the delicate fisele of the museles of the thenar eminemere.
39. Ligature of the Ulnar Artery (Fig. $4 N$). The uhar antery ean he felt in the lower thirl, heing for the most purt meovered ly muscles. Ifter arising at an angle from the brachial artery, it passes letween the flesir sulhlimis and tlexur profumbus

Fiti, 4!. - Ramial artery on the haek of the wrist. Radial nerve.
digitorum muscles. Ineisions for ligaturing the artery are made along a line extending from the internal condyle for the humerns to the projection of the pisiform hone. This line does not correspend to the eourse of the artery, which in its upper part liew muel more towards the middle line. To ligature it at its origin, the directions already given for ligature of the brachial at the lxind of the ellow sutliee, except that the incision is prolonged somewhint more downwards.

In the "uper: hallt: With the nrm heldahducted, an incision is made in a line descending vertically from the posterior edge of the interual epicomlyle of the humerus. The incision must not be hegun higher than four finger-breadths below the epieondyle (i.e. at the junetion of the upher and mindle thirds of the forearm), and must not fall in front of the nhove line: it strikes the radial edge of the tlexor earpi uharis, which is indieated by a distinet intermaseular septum. Oceasionally the ulnar nerve can be felt throngh the skin. After division of the skin, the auterion uhar vein along with a braneh of the internal cutaneous nerve cones into view. In the fascia is the intermuseuhar septum between the Hexor eapi uharis and the sulgacent Hexor suldimis, indicated by a distinct white line. The fascia lasving been divided along this line, the finger is passed deeply nt the outer border of the flexur carpi ulmaris und somewhat out wards mon the anterior surface of the tlexor profundus digitorm, the flexor suldiunis being drawn aside. If the right intermoscular space hass heen struck, the nhar nerve will first lee met witlo. hy lawing external and somewhat anterior to the nerve, we find the artery lying $\frac{1}{2}$ to $1 \frac{1}{2}$ em. (atcording to the leight) to its outer side. Higher up, the artery is still further external to the nerve.

In the lonere hentf. An incision is made down to the thexor suldimis in the interval hetween the Hexor carpi ulnaris and the palmatis longus. This interval is definitely: marked out hy projecting a line vertically mpards from the radial border of the pinform bone. After the skin and fascia have been divided the dissection is carried down upon the flesor sublimis and mot unter the Hexor carpi mbaris. The artery lies bet ween two vene comites. The uhar nerve is chase to its, uluar side.
40. Ligature of Common Interosseous Artery (Fig. :0). This hratuch of the unar artery may be exposed hy the sume incision as that for the uhar artery in its upper third (Fig. 4N), by passing down upon the Hexor profundus digitomun until the median nerve with its branches is met with. The interosseous artery passes monder the nerve towards the internsscous menhmane between the tlexor profudus digitormm and the flexor longus pollicis. The interossems branch of the median nerve lies upou the artery. The interossents artery may also bee exposid ly the same ineision as that for the median nerve in the upger third. The nhar artery here lies deeply towards the suphator here inud above the tendinous ared of the flexor sublimis digitornm, leneath whieh, close to the radius, the interosseous antery is. given otl.

Of the other hranches of the whar artery, ligature of both the bhar reenrent arteries at the ellow, or of the muterior : $:$ posterion nhar cappals at the wrist, need un special consideration. For ligature of the poftumba branch of the ulnar, which helpis to complete the deep palmar areh, see No. $4 \because$.
41. Ligature of Superficial Palmar Arch (Fig. il). Longitudinal incision from the junction of the thenar eminence townts the ring finger, the midelle of the incision heing opmosite a line drawn across the palum at the level of the welh of the alulucted thmul. The suprerficial arels may the folt pulsating at the print where thuse two lines interseet. After division of the shin, the superticial faselia (which is often of considenthe thickness), and the strong ammenrotic palmar fasciat, the areh is at once expmeed embediled in fat beneath the smonth moder-wirfare of the latter. The arch as thes contintation of the nhaar artery, aud at this poiut it curves outwards towards the thumb. Passing downwards from the ardare the emmon digital arteries. The areh lies upon the digital brumehes of the median and nhar nerves, the latter being exposed. If the artery cannot be fonme here, the uluar irtery may be ligatured at
the pisiforn bone.

The uhar urre may be expostal ly a similar iucision. Its superficial division

FIG. 50. - Median hrw, wherin interoweons nerve, interosseons artery.
descends over the hook of the mmeiform bone, which can be felt through the skin. The deep division passes letween the alductor and Hexor brevis minimi digiti at the ulnar side of the hook of the mueiform, and supplies the Hexor brevis and opponens minimi digiti, the two inner lmmbricals, and all the interossei, together with the udductor pollicis.
42. Ligature of the Deep Palmar Arch (Fig. ill). In the contrast with the superficial areh, the deep arch is formed mainly by the radial artery. It gives off large bramehes to the radini side of the hand, whilst its interosseous branches are sumill. It does not reach so far downwards as the superticial arch. To expose it, an incision is made from the junetion of the two themer eminences along the ollonens crease towards the index finger, the middle of the ineision corresponding to the midile of the ball of the thumb. After division of the skiu and palmar fiseia the supurticial areh is ligatured. The superticial musenlar layer of the themb (opmenens pollicis) is ligatured, and, together with the anterior ammlar ligament, is slightly incised at the "plper end of the wond. At a deeper plane is the slender first hmbirical musele with the white thexor tendon of the indes tinger to its ulnar side. The dissection is continued nlong the radial side of the hmmbrical letween it and the thmmb museles. by retracting the museles of the thenar eminence up wards, together with the branch of the median nerve supplying the museles, and the adductor transwersus pollicis downwarks, we find the artery lying between the hases of the first and second metacarpals running transversely on the deep favela covering the lomes and the interossei museles.

43. Ligature of the Digital Arteries in the Palm and of the Collateral Digital

 Arteries. The large digital brameles, of the salperficial palmar areh are ligatured through an ineision in the palmar faseia, similar to that for ligature of the superticial palmar arch.The collateral digital arteries, which call casily the felt, may he tied on either side of the palmar angeet of each proximal phalanx, leing distrilunted to the middle and distal phalauges.

The metacarpal art ries from the deep balmar arch, the dorsal interossems hrameses from the car!: 'areh, and the small donsal digital hranchen to the proximal phalanx are only ligatured in cases of wounds intlicted on the pahm.

(h) Branches of the Thoracic Aorta

44. Ligature of the Intercostal Arteries (Fig. ity). Of the intercostal hranches of the descending thomacie aorta, which extends from the fourth to the twelfth dorsal vertebra, only those from the third to the eleventh need lex taken into consideration. In exprosing the bohlies of the sertebre (costo-transversotomy) we have to ligature them near their point of origin, where they lie muler cover of the lower margin of the head of the rib.

The anterior division of the intercostal artery, which is elosely applied to the lower lorder of the rib, is the ore most eommonly ligatured. I'rimarily it lies on the phemra, hut it is not generally long in insinuating itself lelow the internal iutereostal muscles.

Thu chief branch of thix artery rons hetween the two intercostal museles at the lower horder of the rib, a smaller br neh ruming along the upper horder of the subjacent rib. The artery is not easily ligatured, hecause it lies hidden moder the overhanging lower margin of the ril). The olliquer fibres of the external intercostul musele are divided close to the rib and drawn downwats. The ferve, and with it the atery, can now lee drawn down ont of the groove of the rib, when an anemrysm needle is carefully passed romad the artery. To secure the vessel with greater suffety a piece of the overlying rib, may le resected sulpreriosteally.

Fig. it. - lifature of the superficial and derp palmar arches. The stmmp of the superficial arch ireperented as lying lirectly on the flexor suhbinis, whereas the palmar fasciar really interwe.

Ftio 52--Exposure of the 10 th rib, and the loth interontal artery and nerve.
ligature of the poxterion scapular artery.

(i) Branches of the Abdominal Aorta

Ligature of the abominal aorta lats already leen considered (see 1, 92).
45. Of the Parietal Branches of the alnominal aorta, the phrenic arteries whith are distributed on the under surface of the diaphagm need mot be considered. The
mindlle satenal artery，which is the eermimal brameh of the anta，is ligaturet in detneling the soft parts from the coceyx and sarmm，e．g．in excision of the reetmm．

The hage humbir urteries，whith are overlapgel at their origin ly the ermera of
 Their position makes it imposihle to ligature them without intioting extensiwe injury on the surromming pirts．

Of the visereral lirameles of the almpomital anta，
46．The Collac Axis，whel arises atwise th panermas，ammot he ligatimeal on aceount of the importance of its branelose．Likewise，ligathere of the hepatie artery， a hranch of the celiae axis whielh has oncasiunally sutfered injury in the excixion of a earcinomat of the stomadid，proves fatal within a few days as the ressilt of suded interference with the function of the liver．Extreme mare must therefore lee exarcised to avoid injury to the hepreto－duenlemal liganent in which it lies to the left of the common life duct and the portal vein．Acerrling to Halnerer，${ }^{1}$ the lepertic artery may le ligatured int a point immediately lefore its division into the right and left heputies（Art．hepat．commmis），and also lefore it gives oft the pyloric artery，Ineyond whiclo point ligature is impussible．

But，if we may julge ly the results of pylorectomy，the main branch of the hepatie artery（viz．the gastro－dinolenal）as well as its two brameles，the superior pancrentieo－lumemal and the right gastro－epiploie arteries，may be ligatured withont hesitation．

The pylorie lranch may also le ligatured，even if the gastro－duchenal has Inem divided（according to Frieker＇s experiments，see note under 47）．

Ifter ．gature of the suprior pancreatieo－dnombal a sutticient blood－smply is pru－ vider by the inferior pancreatico－duchlenal branch of the superior mesenteric（Fricker）．

47．Ligature of the Coronary Artery．Like the pyloric branel of the hepaitic． the coronary artery can be ligatured without endangering the hlood－supply of the stomach．It may be excised in its entire length（as is often effected in cases of （arcinona of the stomach）in removing a chain of malignant glands along the lesser eurvature．The corresponding veins can be erphatly well ligatnred，as the anastomosis bet ween the vessels on the greater and lesser curvatures is very rieh．The vessels are found along the lesser curvature between the layers of the sinall onentin．

Simultamems ligatme of the eoronary and left gastro－epiphe may le followed hy serimis results，althongh Ins．Frieker has slown experimentally that the gastri－ duonemal or the right gastro－epiploie may loe ligatured at the same time as the iglorie artery withont injurions efferts，nes in suthicient hoom－smpply is provided hy the vessels ruming from left to right（rifle No．ts）．

48．Ligature of the Splenic Artery．This artery，the larges ，anch of the celiar axis，is ligatured in the cense of injary cither of the spleen $\%$ ．the tronk of the ressel，the most important indication being in cases where a ：it gastric ulcer has eroded the artery and caused serions hemorrhage．

The sume aplies to its lranch，the left gistro－epiploie artery，as well an th the other vessels alromly mentioned，the right and left coronary arteriex，the right gastroepiploie and aho the gastro－dumblemal．The splenic artery mus transwersely outwards Inchind the stomach atone the 1 II

49．Provisional and Permanent Ligature of the Arteries of the Stomach． Pancreas，and Duodenum．Although this subject is considered in connection with revection of the stomach，attention must le called to the interestimg researches maler－ taken by Fricker ${ }^{-}$at onr suggention，as they show how the rireulation enn be fnlly maintained along the sater and lesser curvatures by the arteries on the left side． after ligature of the co ay and gastro－lnodenal arteries．

Frecker＇s experments were combeted on doge，in which the emmitions an precisely similar to those in man．His ohservations have proved that，owing to the complete restoration of cirenlation，the mmerons allesions otherwise so frejuentl！ olsersed after opration are found to $\left.\right|_{x}$ absent，a $\mathrm{l}^{\prime \prime}$ int to which we shall return in diseussing resection of the stomach．

A loop of intestine and a large part of the stomach can in kept free of blowl for one to one-and-a-quarter hours by means of elamps (like Doyen's in the form which we have urodifierl), without any permanent disturkinee of the eirculation resulting in the case of dogs.
50. Ligature of the Superior Mezenteric Artery. Ligature of this vessel, the main artery of the small and large intestine, is not to lee nttempted. The artery enters the root of the mesentery below the pancrens, a pint to which we rall attention, as a large branel of the artery may be ingured during the excision of a tumour whieh is adherent to the intestine or mesentery. In the event of this accident oecurring, it is necessary to ascertain the vessels in the region of the mesenteric attachment to the intestime in whieh pulsation has divily heared, for the whole portion of intestine atfected minst at onee lee resecterl.

In the small intestine the rami intextini tenuis are me re closely related to mue another near the gut than are the main branches for the large intestine (ileo-olic, right and middle colic arteries), which are widely separated and only communicate through numerons arterial arches. In the ease of the large intestine, therefore, cone main trunk cannot replace another, nud experience has shown that in lesions, especially of the middle eolic, the left eolic (branch of the inferior mesenteric) is not sutfieient to maintuin the nutrition of the transverse colon. It should be made an absolnte rule, therefore (ride Reseetion of the Stomach), in all injuries of the coliarteries, or in oferations necessitating resection of the transerse colon, to remove every portion of the bowel in the mesentery of whieh pmation emmot le felt.

A further important indication for exposing the sujerior or inferior mesenterio arteries is to be found in thrombewis or embolism of the mesenterie vessels.

The symptoms of this condition ${ }^{1}$ are very charateristic; amprising sulden ante colie, vomiting, and severe bleeding from the stomarh and intestine, with the early signs of peritonitis.

Jaekson, Porter, and Quinby: have collected 214 cases of embolism and thrombsis of the mesenteric vessels. The treatment consists in inmediate resection of the gangrenons portion of gut.
51. Ligature of the Inferior Mesenteric Artery. Although this artery originates at a lower level than the remal and spernatic arteries we shall now give it consideration, becanse what has beens said regarding ligature of the sherior mesenterie and its. lraneles applies equally to the ligature of the inferior mesenterie artery. It is not advisable to liguture the trunk of the vessel or its main branch, the left eolic, although ligature of one of the sigmoid arteries is a less serious ofreration, for the reason that the latter are more numerous.

It is doubtful whether the terminal branch, the sulerior hatmorrhoidal artery, can be ligatured with impunity, as the descriptions given ly hehn and others of amputation of the rectum would lead ns to believe. It ix, of course, tied in a eomplete extirpation of the rectum, in which ease, however, a prehiminary ligature is of the greatest advantage. But it i very doubtful to what extent the bramehes of the hypogastrie, more especially ${ }^{4}$, midule haemorrhoidal, can le relied on to maintain the eireulation.

On the other hand, no risk is incurred in ligaturing one of the two branches of the superior hiemorrhoidal artery whieh descend close together behind the rectum, as there is an ample cross amastomosis hetween the two vessels.
52. Ligature of the Renal Artery. Despite the importance of the suprarenal glands, ligature of the suprarenal arteries is only mulertaken in the course of other operative procedures.

Ligature of one retal aftery is undertaken in excision of the hidney, the temporary application of n elamp, heing an effective measure in preventing loss of blood during a partial excision of the kidney, and especially in splitting the renal pelvis.

Ligature of the renal vessels has recently been recommended by Major Holt in the treatment oi long-standing renal fistule.

[^38]53. Ligaturo of the Internal 8permatic Arterien (cf. also No. 54 and Fig. 53). Ligature of these long dehate arteries ruming from the norta in front of the second lumbar verteira to the testime is of little rurgimal importanee. Instead of ligaturing thenn near the seat of their omigin, a simpler methon is to operate clowe to the tenticle or to the ovary in the femal?

The artery is reached l:, exposing the spermatic cord through our inguinal excision, and dividing the puneurosis of the external obligue muscle over the inguinal camal. Apart from inmien, the chief indication for ligaturing the artery is to produce atroply of the Custicle and epididyuis, in which case it is generally. included in the whole bun lle - essels, i.e. spermatic veins and the artery to the vas.

The ovarian artery is 1 'll mang with the uterine, so as to control the hamorrhage associated wit' 1111^{\prime}, be hysterectomy.

(k) Counmo: : \because Artery and its Branches

54. Ligature of the Lorviva ?Jace a, iv,1.53). The common ilinc artery
 level of the unbilicus, $w 1 \ldots, 1$ i.... 1_{1}. iner border of the pisoas. The common iliac veins are situated whin the man iliac artery, the left vein occupying a higher and the right sein a lowe k. The ureter, and, on the right side, the stlperior hamorrhoidal arter (from the in ior mesenterie) (ross it in front.

Ligature of the common iliace so only inlieated in conditions of severe injury, for muless the colhteral circulation is satisfatery, gangrene supervenes in nearly half the cases. Ligature of this artery is a necesary prelimimry to interilio-abdominal disarticulation. Temporary ligature (first attenpted by Travers and performed several times loy sehönhurn), or temporary compression (which, according to
 meilushe of operation.

In oblighe inciaion is made, parallel to and three fingers-hreadtly alove Ponpart's lighament, dividing skin and stnperticial faseia, the sulperticial epigastric artery being ligatnren. The aponeurnsis, and in the wuter gart of the ineision the muscular fibres of the external oblique are divited prarallel to the direction of the fibres. The internal obliqne and transversalis are then split in the direetion of their fibres, retractel, mad their combined annemrosis is further divided with the knife. The sheath of the rectus is now opened in a vertical direction, and the musce'e retracted inwards. The maderlying fascia tramsversalis aml peritoncum can then be casily suprated with the finger from the fascia of the almoninal muscles down to Phumart's ligament, and also off the fascia covering the ilio-psmas munde in the internal iliace fossa, this separation leing continued as far as the bifurcation of the common iliac at the edge of the poas. The pale rell ureter is here oherved crossing the artery abliguely, and is raised mpalong with the peritonem. In the male the spermatic vessels, which dexcend in front of the nreter and in front "f the external iliac artery to reach the internal abrlominal ring. are also elevated. In the fomale, the ovarian artery crossew in front of the external iliac artery to enter the sumpensory ligament of the ovary.

The external cutaneous nerve and, at the erest of the ilim, the iliac braneh of the ilio-hmbar artery, a branch of the internal iline, are encountered on the fascia iliaca. The genito-crural nerve lies on the main artery, its genital branch, which enters the inguinal canal at the internat atelominal ring, lecity also raised up, while the crural branch pursues the conse of the external iliac artery. On the left side the inferior

[^39]lat. obly!u! BHI t1ans-
 fixt. iliac a.
Int. illac an.
1 lienitu.
crural in
crear.
I Fivt. cutan
1 IN.
I'rriLomernas

- Kertism.

Inm. ext
(1)W. 14.

Fic:. 53.-Angular incision for ligature he ommon iliac artery.
(Only a small part of the trunk of the artery bere representel.)
mesenteric artery or its, signoid branches, and especially the superior hamorrhoidal artery, cross in front of and to the inner side of the ureter, and are also raised up.

This procedure for ligaturing the common iliac artery differs essentially from that lescribed in our 4 the edition (Mott's incision), and also from all the methods mentioned by Tillmann. We regard it as a great advance on other methods, because the process entails division of neither muscles nor nerves. Further, hy making a simple long oblique incision t'rough the skin and fascia, and then an angled ineision through the deeper fascite and muscles, we can obtain much better access without eausing furthe injury. By splitting the deeper nuscles in the line of their fibres, i.e. transversely, and liy opening the sheath of the rectus in a vertical direction we turn down a threecornered flap (see Fig. in.3), which gives excellent access to the hifureation of the common iliac artery and even of the aorta itself.

We would recomment this incision when a free exposure of the internal iliac fossa is desired. It should le performed in preference to the intra-peritoneal method except in cases when the peritonemm is c elosely atherent that it cannot be separated (e.q. in Anenrysin).

(1) Hypogastric Artery and its Branches (Pelvic Arteries)

55. Internal Iliac Artery (Fig. ini). The intelnal iliae artery can be ligatured by the same method as that clescribed for the common iliae, or transperitoneally with the patient in the Trendelenburg ןosition, as has been successfully attained by Dennis and Treves. Eistra-peritoneal ligature is preferable to intri-peritoneal as it is simpler and less dangerons. It is only when the vessels on both sides are to be ligationel that the intra-peritoneal method should be adopted.

The artery passes forwards from the bifurcation of the common iliac artery; upen the imer aspeet of the poas muscle, and in front of the sacro-iliac artienlation. It then passes inwards and downwards into the true pelvis, from the point where the common iliac arte. ${ }^{*}$ is crossed $h y$ the ureter. The ureter, which descends in front of the artery, is raised up along with the peritonemm. Aceording to latudet and Kendirdjy, the intermal iliac artery has heen ligatnred for hypertrophy of the prostate, for inopreable cameer of the uterus, in excision of the rectun, for vasenlar tumours, and for anenrysin of the ghteal and seiatic arteries.

Qnénn and Dinal recommend the transperitoneal method with a mesial incision, the pritonemm of the bosterion ablominal wall leing divided over the promontory of the sicrinn \boldsymbol{B}^{3} to 5 em, from the midelle line.

Kroung las ligatured ho ${ }^{\prime \prime}$. anternal iliaes for inoperable eancer of the ntems, in which eases the intm-peritomeal operation is preferable, Ifanmensticls transverse corved incision hetween the umbilicus and pubis being the best, while Kosker (Xiemer) places the inciaion (7 cm. long) 1 cm. above the line of the pulic hatis: The hifmeation of the norta is exposed and the peritoneun split longitndinally for a length of $10 \mathrm{~cm} .(4$ inches), after which the bifureation of each iliac artery is detined ly hlint dissertion, and both internal ilias arteries are ligatnred.

Vinillet ${ }^{1}$ has successfully ligatmed the internal iline artery intra-ueritoneally, for sceombiny hemorrhage from the glateal urtery.
56. There is mo indicntion, except in the course of an operation, to isolate and ligature the suprioi cexical artory (mmhilical artery in the fuetus'. Which traverses the previo wall toreach the ajex of the hacher.
57. 'The ilio-hmbar artery mons backwards behind :he poas, and is continued along the crest of the ilium, where it lies on the iliacus muscle and anastomoses with the cirmuntlex iliac artery. It is ligaturel in operations involving the iliac fows from bellind.

The ehief importance attached to this artery is that it forms an anastomosing link letween be:meles of the aorta ame of the hypogastrie (internal iliac) (virle No. 54).
58. The Obturator Artery (Fig. 54) in its conse to the olintmator camal is

[^40]situated between the peritoneum and the ohtnmar intermis mumbe. Its pulice branch, whieh aseends on the back of the pmhis to the inmer side of the erural ring, may be injured in relieving the constriction of a femoral hernia.
(1) In the pelvis. The peritoneun is raised up in the same way as for ligature of the internal iliac artery. The artery may lave to be ligatured in the felvis when it arises abnormally from the deep epigastric, and when it is injured in the eourse of all operation for femoral hernia. The deep epigastric itself would then have to he tied.
(b) Liguture at its exit fivem the ohenritos comal at the unper forder of the obelurator e.stermus musele (Fig. 54). The incisiun-the same as for ligature of the internal cireumtlex branch of the profunda fenuris-descends vertically from a pint a finger's-breadth intermal to the midale of Phmpart's ligment. The skin, supertieial fascia, and supertieial hyer of the fascia lata are divided. The internal sti henems vein, which lies mon the faseia, is drawn outwards. The strong peetineal faseia is divided just internal to the femoral vein. After the outer border of the pectineus musele has leevn defined the hatter is sepmated from the on pulhis and fascia over the ohturator exterms, and is drawn well inwards. The strong transversely striated faseia over the ohturator exterms musele is now divided, and the finger, passed alowe the upper lorder of the unsele, feels for the inder surface of the horizontal ranans of the pulis, below which the artery leaves the olthrator foramen aeeompanicd by the obturator nerve which lies above it.
59. The Lateral Sacral Artery is ligatured when divided in resection of the sacrum.
60. Gluteal Artery (Fig. 55). The place where the artery is ligaturel may ln . ascertained through the skin ly fecling for the upper edge of the preat sacro-sciatie formen, at the level of the mpiger end of the ghteal fissure and of the upper colge of the glutens maximus musele. Here the artery passics backwards from muder cover of the gyriformis.

The incision corresponds th the mper two-thirds of a line extending from the pusterior superior iliac spine to the mper inmber of the great trochanter. The skin, fiscia, and thiek gluteus maximus-the fibres of which rmm garallel to the ineision-are divided. After division of the faseia over the lower horder of the ghtenss medins, the muscle itself is exposed and drawn upwarls. On the finger being passed under it the npper margin of the great samo-sciatic foramen is folt. Here, above the upher horder of the prifomis, the large ghoteal artery pisses directly hackwards nut of the prwis amd at once gives off large bamehes, the largent passing outwards. The superion ylutenl merer passes ont of the pelvis along with the artery, and mans ontwarth betwern the whtens medins and minimus, to coud in the tomsor fasciae femoris. minsele.
61. Sciatic Artery (Fig, in). Incision corresumbling to the midtle twothirds of a line extending from the pusterion inferior iliace pine to the mase of the great trochanter. The inesion is helow and parathet to that for ligature of the shateal artery. The skin, the thick sulsemtaneons fat, the fisceia, and the filmes of the thick ghtele maximms are divided. The hawer horder of the pyriformis musele is visible
 acempanied hy the inferior ghteal nerve, appears from mater the proximat end of the: prifurmis. The ners, after giving of large hanerhes to the ghtens maximus and a
 the hark of the thigh. The pine of the ischinm and the lesser maroweciatic liganemt which is attached to it serve as a guide th the place of exit of the artery from tha pelvis.
62. Inferior Vesical Artery. This artery is ligatmed in low in expmin!s the base of the hlalder.
63. Artery to the Vas Deferens. This artery is miny of inmpertaner in that it urts as a subatitute for the spermatie artery in maintaning the mutrition of the texticle. If nevessary it can lne ligaturerl ly meme of the inguinab incision over the :perimatic eord, where it lies elone tol the vas deferens,
64. Middle Hæmorrhoidal Artery. This artery, which is ligatured in excision
of the rectum, is found closely applied to the wall of the rectum alwse the coceygeus and levator ani museles and the jelvie fascia.

65. The Uterine Artery. I athre of the mevitue attery is chiefly priformed
 to produce atropliy of itterine mponatia.

 preferred, an incision lxing mate into the bromel ligament paralled to and hehime the
 the matian vein momin lnhiml with the pmoterion layer of the hroad ligiment.

The artery can alm, be ligatured atter it has crossed the meter in its course to the cervix uteri. It is fomed close to the lateral wall of the nterus between the layers of the broad ligament, where it gives off a branch to the vagina and a branch which paises. behind the nterus to anastomose with the artery of the other side.
66. Internal Pudic Artery (Fig. 5n). (4) This vessel may lee ligatured from behind through the same incision as that made for ligaturing the seiatic artery (vide No. 60). At its exit from the pelvis it lies helow the priformis musle internal to and deeper than the seiatic artery, and reenters the 1μ-lvis ly passing romul the base of the ischial spine. The relation of the artery to the ischial spine can be reatily determinel. The internal pulie nerve lies on the artery.
 the tuber ischii, one-third being placed in front and two-thirds inehind, through shin, thick fatty layer and perineal fascia. Anteriorly, the transwems perinei muscle is defineed and retracted forwards, while the edge of the ghotens maximus and the sacroseciatic ligament are exponed in the posterior ead of the womm. After division of the fascia covering the obturator interms. along the inmer horder of the tulservesity the artery is fommi deeply phated, aceompanied hy the pudic nerve, the latter heing more superticial.

The brameles of the internal pulic arters, viz. the iuferior hamorrmidal, superficial merineal, dorsal and profunda arteries to the penis (one elitomis) and the artery to the himb, are ligatured when divided in the course of opration.

(m) External liac Artery and its Branches (Arteries of the Lower Extremity)

67. Ligature of the External Iliac Artery (Fig. iif). The resilts of ligature of the external iliac artery are more satisfartory than those of the common iliae, as there is a free collatemal anstomosis letween the internal iliae and the hranches of the rommon femoral and profunda femoris. The artery is much more easily ligatured thim the internal iliate.

An incision is made close above and parallel to the middle third of poupart: ligament, with division of the skin and well-developed sinperticial fatcia, while the
 After division of the anneurosis of the extermal obliffe, the internal obligule ami
 arr detached upwards from out of the groove of Poupart's liganent with the landle of the scalpel, and the dense transersalis fascia whelh cloven carch groove he him is divided. The artery together with some lymphatie glame, lies heneath some fatty tiswue maler Pumpirt : ligament. Internal to it is the rein, and extemal to it the faseia of the
 celfe of the iliacus, ahout 2 em. (${ }_{4}^{3} \mathrm{in}$.) external to the artery. 1 pou the arter is the sember crumb hanch of the genito-e mat nerve, which supples the skin of ime lalf of the frome of the thigh in its "phere patt. Aceording to Currie, : "1 collected eight cases of ligature of the external iliact, the transperitmeal opreration is neecesary in dealing with an ancorysm, atthongh it should not be regarided as the normal procedure.

The branches of the external iliar artery, mamely, the dee endemstric and the drep, cirnumber ilime arteries, may be expmet at their origin ahove Ponpart's ligament, helow the abominal museles and the fascia transersatis, hy the same ineivion as that fir the external iliate artery:
68. Ligature of the Deep Epigastric Artery. This artery :rises a short distanec alove Pompart's liganent, lying heline the fascia transwersalis and ruming "pwathe and iuwards nlong the inmer side of the intemal ablmuinal ring.
 its migin in womels of the almboninal wall, or when an ahmornal oltmator artery ${ }^{1}$.Innaln af surgery, vol. 4, 1905.

Fui. $\mathbf{7 \%}$.-(b) Cholecystotomy. (b) Ligature of the deep circumtlex iline artery: (c) ligature of the common iliac artery: (1) Bigature of the conmon femmal artery.
from the eprigastric has been injured in dividing the constriction of a strangulation in femoral hernia. It is exposed in the same way as the external iliae artery. At it origin it lies in front of the external iliae vein and to the inner side of the main artery.
(b) Lignture at the outer border af the rectus (Fig. siin). This is effeeted by an ineision three fingers'-breadth above and prallel to the imner half of Pompart's ligament, the operator dividing skin, sulerfieial fascia, the strong obligue filres of the aponeurosis of the external obligue, and the transwerse fibres of the ajoneurosis of the internal obligue and transversalis muselex, which fuse together to form the anterior layer of the sheath of the rectus. The outer edge of the rectux is exposed and drawn

inward.. licheath it, and covered by a very thin layer of comeetive tissme (faseia (ransersilis), is the extra-preritoneal fat, mind unn it the artery, ascending obliguely from below ujwarils aud inwards under the edge of the reetus.
63. Ligature of the Deep Circumflex Iliac Artery (Fig. is). An incixion is made alove the outer third of Poupurt's liganent, with division of the skin, the supertieial fisciat, and the strong ohligue filres of the external obligue. The thick ascending fibres of the internal obligue, and the transversalis muscle are sepmetated and pulled

Fu, fis, - (и) Clus. istotomy. (b) Li.atme of the deep circumtiex iliac artery. (c) Ligature of the common iliac artery. (d) Lignture of the common femoral artery.
apart. Between the two latter muscles are some vessels and branches of the ilio-ingtinal nerve. The transversalis fascia is now divided, and the peritoneum is carefully raised from the iliac fascia. After division of the iliac fascia the artery is found lying
parallel to Pompart＇s ligament men the ilinens mumede．The extemal entanemon nerve passes whliquely downwards mehiml it．It is important tu know the relation of parts
 lies mulerneath the fascia．

70．Ligature of the Femoral Artery（Fis．is！）．The femoral is thre direct contimation of the extermal iliae artery，comsing in a line from the midelle of Poupart＇s ligament directly downwads towards the midille of the［nastrane aspect of the kneejoint，and pissinge from the inner towarels the pristerior anfare of the fenme at the junction of the midille and lower thirds of the Inne．The ineisions for ligatmring the artery，however，are mate along a line extempling from the midhlle of
 reached not from the frome bat from the inmer ampert．
 and helow the middle third of Pompart＇s liganent，followed by ligature of the superlicial eprigastric artery in the sulnentancons tissure，and dis：sion of the superficial layer of the fascia latia below Pomparts ligament．The artery，along with the orgins of the derpepigastrie and deep ciremutlex iliac arterics，anpenrs lelow the middle of the ligannent lying ipmon the pobie lome，where it may lne distinetly felt．The ernal hranch of the genito－rnalal nerve lies umen the sheath of the vessel．Internal to the artery is the femoral vein：external to it the fasciat coverinn the iliopmonas，and lenteath the fasciat the trink of the anteriur crural nerve at the outer edide of the prima．
 lata（the latter forming the interior sheath of the sartorins）are disided athong the line already mentioned．The sartorins is freed anml drawn ontwards．C＂mer this musele are the sheath of the vessel and brancles of the anterior ermmal neve．the large internal saphenons nerve leing external to the artery．The femoral vein is to its mener side．Upon the faxia，externa：i to the incision，is the middle cutanerms nerve， while the internal saphenons vein lies anternal to the ineision．
 Longitudinal inession is made at the junction of the middle and luwer thirds of the thigh（reckoned from the anterior superion iliac spine tu the lower end of the femur），along the groove which ean lee felt inet weell the andmetor and（ext elmor minsiles． The internal saphenous rein is aroided，and after division of the fasmia，the sirtorins： menselo，wheh is recognised ly its longitulinal tiber，is drawn inwards and hack wards． The diasection is comtimed down the the fibes of the faspia consoring the vistus interme， which are direeted oblifnely forwards．This fasiat is dividen at the anterion mge of the white glistening temon of the adductor miagms，to whel it is alluerent．The： artery lies very near the brine．Posterior and external to it is the vein，whilat the
 ton）tar batk wards－that is to say，wehind the adductor tembum．

Lymer mert of moplitenl urtery－（a）From the Inside．Incixinn is mate belind the prominent eord－like tenden of the adductor magnes，which is insertenl into the and hetor tuberde．Posterionly lie the sirturins，the tembons of the gracilis，and semitemolinosus，

 mamentar filres of the sartorins appear．On the disaection leeing contimed deeply intwen it and the tembon of the indurtor magme，the artery will he fomme men the
 thetwen it and the interuments is the intermal popliteal nerve．On drawing the

 armoss the imer edge of the temon of the adhector marinns．
（b）From the Outside．Ligature of the phllitemalrery lu－low the opming in the

[^41]

Frs. 8. - (1) External cutaneons nerve. (2) Common femoral artory: (3) Femoral artery. (1) Femonal artery at the opening in the alductor magms. (5) Femoral artery at the lower end of the femm.

Fig． 60 －Ligature of interual circumbex artery．
the cater than the imer side．The ineision is N to 10 cm．（ 3 s to +in ．）long，extending upwirds from the hack of the extermil conlyle of the femur through the skin and atrong fascia lata．In front of the incision are the ilio－tilial Inum and the tendon of the nastus externus，lehind which the finger is pussed deeply towards the trigone of the femur，while the short hend of the liceps is selparated from the bone with al bunt dissector and retracted Incekwards．In the fat，ulong the inmer enge of the birelm， is the 1 wpliteal nerve，sumerticial to which is the popliteal vein，with the propiteal artery situated more deeply mind to its inner side．

The sumall branches of the rommon femoral artery，viz．the superticial epigastere， superticial eiremmex iliae，and external pulic，are only ligatnred in the ctase of aceidental or operation wounds．The superficial eprigastric lying in the fascin is frequently cut，und is alwuys divided in the inguinal ineision we recommend for heruia and for operations on the texticle．

71．Ligature of the Internal Circumfex Artery（Fig．60）．This artery arises us a rule from the common femoral，althongh in many cases it takes its origin from the profunda femoris．An incision is carried vertically downwards from a point a finger＇s－lreadth intermal to the middle of Pounart＇s ligament．The long saphemons vein，which is met with upon the faseia，is drawn outwards．The gectineal fascia is divided intermal to the suphenons opening，so hs to expose distinetly the muscular tibres of the peetineus．The artery passes alove the outcr Iorder of this muscle above its insertion into the femur，and thence along the lower lowler of the obturator extermas directly downwards and luck wards to the inner aspeet of the femur，where it gives off it large superticial branch which pisses inwards over the peetincus muscle．

The artery is freed from the fatty tissue at the inmer aspeet of the felmoral vein． When arising from the profunda artery it passes inwards lehind the femonal vein： but when from the common femoral，it occasionally passes in front of the vein．

72．Ligature of the Profunda Femoris Artery（Fis．（i1）．（ie）At its origin titum the common femmerl．An incision is carried vertically downwards from a foint tw． fingers＇－breadth kelow and 1 cm ，extermal to the middle of Poupart＇s ligament．＇The centre of the incision is to be oplosite the level of the hase of the groat trochanter． After division of the skin and the strong fascia lata the imer edge of the sartorims is exposed and drawn outwards．Under it is the inner edge of the reetus，close to which，embedded in fat，are the branches of the anterior cruabl nerwe，which desesend in front of the ilio－poas musele near its insertion．On drawing the nerves ontward－ the outer surface of the femoral artery appears，with the jrofunda artery prasing ontwards and downwards from it ；whist arising from the latter is the external cirenmflex artery，which passes transversely outwards leneath the rectus．The point of origin of the vessel corresponds to the lower part of the palpable prejection of the ilio－pwoss muscle．
（b）At the uyper eolye of the insertion of the cellurtor lomgus．An incision is made through the skin and fascia at the junction of the ulper and middle thirds in the femur a liand－breudth below the inner edge of the fold of the groin，in the same line as for ligature of the femoral artery－that is，in the growe where the hone can lee felt Ietween the adinctors and extensors．The surtorius is drawn outwards，hat instead of dividing the deep fascia over the vensels（sheath of the vessels），as is dont． in ligaturing the femoral urtery，the fascia over the adductor longins is divided internal to the femoral vessels，and the dissection is continued deeply along the fibres of the adductor longus towards the bone，as far as the inner asiect of the vastus internu－ the tibres of which pass obliquely downwards and forwards．The artery will $l_{\text {we }}$ fomid at the posterior attached edge of the vastus internus immediately alowe the upler coud of the insertion of the adductor longus，muler which it is continued downwarls．

73．Ligature of the External Circumnex Artery．（a）At its migein：thr operation is the sume as that for ligature of the profunda femoris（vide Fig． 61 and No． $72 a$ ）．

The artery at once divides into a descending branch，whieh passes downwards beneath the rectus as far as the knee，and
（b）An ascending branch which runs outwards under the rectus，and which may

Fhis．61．－（1）Ligature of profumla temoris artery mul enternal cirenuthex artery of obturator artery．（3）Ligature of profunda femoris artery．
（2）Ligature
be ligatured at the base of the sreat trochanter as a terminal braneh of the external cireumflex artery, where it is trequently injured in the course of operations.

The terminal branch may lne exposed on the bone by an incision through the skin a finger's-breadth below the nust prominemt lateral projection of the great trochanter, and by the division of the strong faseia lata (aponeurosis of the gluteus maximus) and the glistening tendinons attachment of the vastns externus musele.
74. Ligature of the Perforating Arteries. The terminal brauches of thr profunda femoris, i.e. the perforating alieries reach the back of the thigh :.: close contact with the imer side of the femur, and are occasionally ligatured in a dinntal wounds.
75. Ligature of the Anastomotica Magna Artery (Fig. 59). An incision is made through the skin and strong fascia along a line extenting vertieally minardfrom the addnetor tulnerele of the femur. The sartorins musele is drawn batekwarls. Under it, cmbedded in fat, is the long saphenons nerve accompanied hy the sulperticind brancl of the anaxtomotica magma artery: To find the deep branel, pass in front of the prominent glistening tendon of thee addnetor magms towards the bone in the suhstance of the vastus intermus. The artery arises from the femoral in front of the opening in the addnetor magmes, so that it may be ligatured by the same metheni as that for the femoral itself. The superine internal articular branch of the peppliteal artery is seen lying trimsiersely mon the lome above the internal comble.

(n) Popliteal Artery and its Branches

76. Ligature of the Popliteal Artery (Fig. 6:). I vertical incisiom is ma ،e over the midalle of the popliteal space opposite the knee-joint. The short salphenme vein is to be avoided at the lower part of the incision. It asednds between the twin heals of the gastrocmemins and opens into the popliteal vein. To its onter side i , the commmicans fibularis nerve. The dissection is contimed through the fiat to the inner side of these structures and between the heads of the gastronemines. The interual popliteal nerve is the first strneture to appear. When this is Irawn outwardthe popliteal vein comes into view, elosely bomed down hy a stroug sheath to the. subjacent popliteal artery, which lies above upon the fat covering the femoral trigone, and below upon the proplitens muscle.

The muscular branches of the popliteal artery are representel hy the sural arteriewhich end in the two hoads of the gastrocnemins, while there are five artienlar arteries, vis.. the snperior and inferior external and internal, and the azygos, the latter of vanch is very conspicuous. These vessels are only ligatured in the ease of injuries or operation wounds.
77. Ligature of the Anterior Tibial Artery (Fig. 6:3). This is the first larg. branch of the popliteal artery, and reathes the frout of the leg by passing directly. forwards alwo the upper end of the interosseons memhrane. It can omly ine ligatureil from the front of the leg. The comse of the anterior tibial artery is indicated hy a line extending from the projection at the anterior aspect of the outer tulberosity of tue tibia (midway lnetween the tulnercle of the tibia mul the head of the fimia) tio the mid-point hetween the two matheoli.

In the "fyer third. An incision is carriad downards from a puint milwat between the tubercle of the tibia and the head of the tilonla, lepoinuing a thmmin. breadth below the onter tulerosity of the thin. After division of ... 'skin and faswia, the onter edge of the temlinons origin of the tihalis umtions, whill arises from the outer tuberosity, is seen : it correspomis to the intermmsenhar spare leetween the tilhiahantions and the extensor longos digitornm. This spaee is now onened 川, with the timger down to the interossens membrane, thromgh whieh the artery passess from behinul forwards, about a tinger's-breadth below the head of the fibula. The anterin tibial nerve reaches the artery somenhat farther downwards, coming from the outcr side omder the extensor commmis digitorimn umsele. The transverse lraneles of the nerve to the tibialis anticus are given ofl' very ligh up.

In the middle third. An ineision is made 3 clu. (rather more than an iach) external to the anterior edge of the thibalong the palpable and often visible furrow at the outer border of the tibialis anticns musle. The faseia is divided along the white line corresponding to the above furrow (a second white line, somewhat farther ontwards, corresponds to the intermisenlar sepitmu between the extensor longns hallucis and the extensor longhs digitorum), and the finger is $\mathrm{p}^{\text {al. }}$ I down the the inturosscous membrine, upon which is the artery, under cover of the ansenlar fibres

Fin, tio - lifatur if popliteil arters.
of the thaisis antions, Intween it and the extemser longus halluris. The anterion til hial nerve lies munot the onter sithe of the artery.

 lurder of the tilia), hetweon it inul the temben of the extemon lomzus hatlucis. After

 of .e tilnalis antion musle is the anterim tibial nerve, lemeath wherl is the artery.

Fus, 63. - Anterior tibial artery and ueve.

As regards ligature of the small brancher of the anterior tibial artery, viz. the unterior and posterior tibial reeurrent and the internai and external malleolar arteries, only that of the dorsalis pedis on the dorsum of the foot requires corsideration (vile No. 80).
78. Ligature of the Posterior Tibial Artery (Figs, 64 and 65). (a) In the upper thived of the ley (trumens tihio-peronealis) (Fig. 64). ${ }^{1}$ That prortion of the posterior tibial artery betwee: the origin of the anterior tilhal and the peroneal artery may be conveniently referren to ns the truncus tilio-peronealis. Incision is made downwards along the middle line, legeining at the level of the head of the fibula three fingers'- hreadth lelow the popliteal erease. In division of the fascia, the short saphenons vein and communitans tibialis nerve are avoided and drawn outwards. The line of jumetion of the two heads of the gantrocnemius is sought for, and the tendinous raphe is freely dividet. The large vessels and nerves to the heads of the gastroenemins are Iravin aside. Beneath the outer head of the gastrocnemius is the upper border of the soleus cxtending oblicuely from above downwards and inwards; ant upon it, also passing downwards and inwards, is the slender tendon of the plantaris musele. The posterior tibial artery hegins at the bifureation of the popliteal, opposite the lower lmorder of the poplitens and upper iorder of the solens miseles. The edge of the latter misele must he drawn downwards, or leetter nieked, in order to reach the posterior tibial artery, the corresponding vein and nerve leing drawn outwards. The anterior tibial artery passes to the front throngh the interosseons membrame about $2!2$ inches below the line of the knee-joint (a linger's-breadth below the lowest gart of the heal of the filmala). The tendinous surface of the soleus can be distinctly seen descending olliquely inwards towards the inner lorder of the tibia, muler the inner head of the gastrucuenius.
(b) In the upper hulf (Fig. Gi.5). The incisions for the posterior tibial artery lie in the direetion of a line extemling from the lower edge of the internal tuberosity of the tibia to a point midway between the internal malleolus and the tendo Aehillis.

The ineision is made half an inch behind the inner lorder of the tibia. The lones saphenous nerve and vein (the latter in front) rim in the line of the incision, and care must therefore le taken to avoid them. Ifter division of the fascia the imer borler of the gastroenemius appears, and is drawn aside with a bont hook. The oblique fibres of the suljacent soleus are nuw seen arising hy a broad attachment from the tibin. They are to be divided until the strong obliguely-striated deep fiseia which is attached to the prosterior surface of the tibia is exposiel, on dwiding whieh the innseular fibres of the Hexor longus digitmmeme eome view. The finger is now introlueed into the wound and direeted mitwards between this musele and the fascia rovering it, when the artery will he felt lying umon the tibialis pontiens musele I! inelh leyond the inner lorder of the tilhia. The large pesterior tilhial nerve is heyond the artery-that is to say, to its outer side. The tibialis justiens muscle lies upen the interosseons membrane. One monst be eareful not to pass inetween the tibia and the tlexur longus diyitormm. The mistake whieh is most frequently made is to 1 bass in letween the gastroenemins and the solens, instead of dividing the whele thickness of the latter muside.

In the lomer third (Fiye. 65). An incision is ratied downatrols from the angle at the unper end of the visilde and pridpable furrow hetween the inner Inviner of the
 of the tilia).

The long saphenols vein and nerve are to le avoided in dividing the skin athl lascia. The free imer lorder of the soldens is then exposed and drawn batekwards, when the tendon of the flexir lomgns digitomm (with its masealar tibres behind it) will l_{e} seeln lying umen the tibia. On dividing the thin fastia covering the derep thexors, the artery will he fomm immediately under it to the onter side of the flexur lungux digitorm. The posterior tilhial nerve lies still mere extermal.

Brlimel the interumel melleodux. Incision is made midway lnetween the pusterion

border of the internal malleolus and the tendo Achillis, dividing the skin, sulerfieial fascia, and the strong transversely striated deep fascia. Bet ween the internal malleolus and the artery are the tenilons of the tibialis posticus and fexor longus

digitormm, which lie in the order mentioned from hefure Inckwarls. Behint the artery is the large pesterior tibial nerve, and hehine it again the temen of the tlex fongus hallucis. In this operation care must be tuken not to pass in anmongt the fat lying in front of the tendo Achillis.
 malleohes.

Filo. ti6. - Lisature of peroneal attery in the midele and lower thind of the leg (${ }^{\text {wistero- extermal aypect } \text {). }}$
79. Ligature of the Peroneal Artery (Fig, 66). The course of the vessel is indicated by a line continued from the popliteal artery down along the inner part of the posterior surface of the fibula. The posterior surface of the fibula may lee felt through the akin along the whole length of the leg. The incisions for ligaturing the artery are made along a line drawn from the posterior lorder of the heal of the filmata to a point midway between the external malleolus and the tendo Achillis.
(a) In the upper hal!. Incision is made behind the muscular projection of the peronei muscles down to the prosterior surface of the fibula, which can be readily felt. The nervus communicans fibuharis is observed running downwards along the outer border of the gastrocnemius, the solens lying deejer. After division of the fascia covering the soleus the musele is separated by blunt dissection from the posterior surfare of the deep fascia (ligamentum intermusculare pasticum), until the peroneus longins is exposed on the fibula external to the solens. The deep fascia is now divided and rased from the posterior surface of the fibula along with the museular part of the flexor longus hallueis, mutil the grome between the fibula and the tibialis postiens is reached. The artery runs nearly vertically downwards on the hatter musile.
(1) At the junction of the mildle and lomer thimis. Incision is made on the posterior surface of the fibula. The fascia letween the solens and the peromens brevis (on the filmha) is split and the soleus retracted outwards, and after dividing the faseia (Lig. intermusculare postiemm) covering the tlexor longus hallucis, we dissect the later off the posterior surface of the fibnla, thus exposing the faseia which covers the tibialis posticus under which the artery has its position.

(0) Arteries of the Foot

80. Ligature of the Dorsalis Pedis Artery (Terminal Branch of the Anterior Tibial) (Fig. 67). The course of the vessel is indicated ly a line extending from midway leetween the two malleoli to the himder end of the first interosseons space.

At the anklejuint. The skin is divided longitudinally midway leet ween the two mallenli. The internal branch of the musculo-eutaneons nerve is seen running in the direction of the incision, and is drawn out wards. The fascia, along with fibres of the anterior ammar liganent, is divided over the tendon of the extensor longus hallucis (here partly musenar), which is drawn inwards. The artery is now exposed, the anterior tilial nerve lying umon its onter aspect.

Belone the ankle. An incision is made along the line alrealy mentonen. The
 wards. I'nder the fascia lie internally the tendon of the extensor longhs hatheis, and externally the imermost tendon and the muscular tibres of the extelnsor brevis digitormm, whieh on being drawn downwards and outwards expuses the artery which lies beneath it upon the tarsal liganents. The anterior tibial nerve is upon the outer side of the artery.

II'here it dipas denem info the firse interossenens spmere. An incivinn is made thrmonh the skin and fasela letween the lases of the tirst and seemod metatarsal lwher. The internal bameh of the musenlo-cotameons nerve is avoided and drawn mutwarlalong with the intermal saphemms vein. Latermally is the immermost tendom of the extensor hrevis digitorum, and still farther inwards the hemal tembon of the extensor hagus lallucis. The artery, with tho rataneons termination of the anterion tibial nerve lying unn it, apmas from lemeath the outer elge of the extensor limevis tendon, and gives off the lirge tirst dersal interosems luanch.

The small hrameles of the domalis perlis, viz, the tarsal and metatarsil arteries, the later formine an arch on the dossum of the font, may have to lne ligatured in meridental womula of the fint.

Of the bramehes to the tones only the dorsalis halluris antery repmires comsideration. It is the eomtimation of the dorsalis pedis in the first internsserns spare.
81. Ligature of the Plantar Arteries (the Terminal Branches of the Posterior

Fia. 67. - Dorsalis pedis artery, with anterior tibial amd musculo-cutaneous nerves.
artery is the furent trunk of the two plantar arteries, mid may lwe termed the arteria plantaris conmunis. An incision is made beginning a finger-loreadth lelow and in front of the sustentaculun tali is carried horizontally lunkwords along the imer border of the foot alove the proninence of the alnhetor latheis muscle. After division of the skin and fasein the aluluctor halheis is expmexl, mul sunnteyl fownwards from the subjarent deep finscia. On diviling the latter we fime the phantar versels opposite u line contimend downwards from the ponterior boriker of the internal malleolus. The posterior tihial nerve hes immediately ledow the urtery.
(b) Infermil plather artery (Fig. 69). Sn incision is made in 11 line from the point of the heel to the grent toe, legiming in frout of the hall of the heel and extembing forwords. The skin, a thick layer of fut, mul the dense longitudiual fibres

Fic. 69.- I'latar arteries at their origin from the posterior tilinat artery. Posteliarly, the posterior tilial herve.
of the plantar faseia are divided. The musenlar sulstance of the nhenture hallueis is expmed, ind the artery is foum pessing under it into the sole. The thexor Irevis digitorum lies citermal to the artery.
(•) Externet phoutar atery (Fig. 69). An incision ismade from immediately in front of the ball of the leed forwards in the dinection of a line from the priat of the heel to the fonrth toe. Ond division of the skin, abumbant fat, the strong phantar fiascia, and the muscular fibres of the aljacent elgees of the thexor limevis digitorum and abluctor minimi digiti are exposen, with the artery lying betwren them.
(1) The plantur arch at the first interosspons apmere (Fig. 69). In incision is male backwards in the hollow outsile the lath of the great tor, in the direction of a line from the serome toe to the point of the here, thromeh skin, almandat fat, and the -trong plantar faselia. Con the inuer side of the womed is the tendon of the flexor longus hallucis nlong with, posteriorly, the muscular fibres of the absuctor hallucis,

Fig. 69,-(1) Plantar arch. (2) and (3) Internal and external plantar artery and nerve.
und, anteriorly, thase of the Hosor lirevis hallucis: these structures are drawn inwards. f'pon the outer side of the wound is the lurge internal phantar nerve with its branches to the second and third toes : these are drawn townrals the little toe. The nerve to the great toe does not come into view. The sloort flexor tenlon of the surond towe and the smbjacent long Hexor tenton with the first limbrical musele ure expmed and drawn outwirls, the powerful ahbuctor hallucis minsele which !ies still dexper lexing then exposed. After cutting through this nusele the urtery will lne foumel lying deep at the first interonseons space where it joins the dorsilis perlis artery. The artery lies upon the interosseons museles. To the immer side of its termination is tho projecting lworler of the first metatarsal lwne, to the hase of whieh is inserted tho tendon of the promeus tongis musele.

C. SURGERY OF THE VENOUS SYSTEM

(a) General Indications for the Exposure and Ligature of the Larger Veins

Veins are now exposed und ligntured muth more frepucutly than was the cane in former yeurs. A vein, like an artery, his to the ligitured for the arrent of hiemurrhing but, owing to the low hown pressure in n vein, heeding is muel more cisily urested by pressure or plogging than is possihle with an artery.

In the case of at injury to a large vein, it is often mowise, and inkerd innpractieable, to mply a ligature. For example, there is cominhrable rink in ligatming such veins as the superior und inferine vente ravie, the common iliae, the inmominate, or even the femoml vein, and to a less rxtent the sulbhemin and junhar veins. In these cases plugging, when properly mplienl, is gelmally suthicient.

We have on more than one armsion sureessfully dealt with the hemorbhare following a wound at the junction of the jugnlat and sulvelivian veins hy means of plugging. This injury is most liahle to oecur in the rourne of the relnowal of a malignant gland (secondary to carcinomat mammar) sithated in the angle between the two veins. Similarly, when the octasion arimes, the internal jugnlar vein can be plugged with safety at its exit from the skill (jupular foramen), when it lits tol ${ }^{\text {a }}$. divided in exeising malignant growths which reach high up in the nerk.

We have observed, however, that when phageng is alopted in vaves of this nature, especially if the eentral end of the cirenlation rembins onen, serions complieations of tell arise from the displasement of thrombi inte the leart and lings with the production of infarets nad gallgrene. Sutnre slumhl therefore be substituted fon plugging whenever possible.

 a year later Siblunle publishod a series of rases allud hought the operation into general repute. We have mopted it sumesofnlly in the mase of the inmminate voin, at the jumetion of the internal jugular mul sutelitvian reins, using fore the pheme at contimont shture of tine antiseptie silk. I small wouml may le dealt with ly holding up the edges oi the rent with forceps and prosing a ligutne romed them. Tichow $=$ hats made atudy of the process of repriar following suture of win.
 produce artiticial changes in the cirenhatom, ligature of the saphennus vein for varicose veins in the lower extremity being one of the best-known and most widely performed operations. Ligature of veins may ula, be undertaken for the eure of

[^42]- reutralhe firir., 10:5.

MICROCOPY RESOUUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 East Main Strest Rochester. New York

14609
USA
(716) 482 - 0300 - Phane
(716) 288 - 5989 - Fox
variees elsewhere. In the lower extremity the objeet of ligature is to relieve hydrostatic pressure.

The superior longitudinal sims is ligatured for the enre of epilepsy, a methoni of treatment recently advanced and recommended by belageniére.

Carrel ${ }^{1}$ has recently shown that "portion of a vein ean he utilised to replace a lefect in an artery by means of a

 (Carrel). The limen of the artery is converted into triangular shaper, and the tinest silk and needles are usen. Tlue cut mats are simply united with a montinuons suture.

Fini, 71. -Techulyne of elif-tioside arterial anistomovis. From a sketch hy Coshiug. plastic "pratim, the fommer being sutured between the two ends of the artery. Carrel and Guthrie' have even suggesterl that in cases wherill artery is obliterated, the circmlation may he reversed and gatmprenepreventen ly miting the central part of the antery with the peripheral part of the vein. We here repronime. two diadrams from Carrels work, for the nse of which we are imbelted th Harvey Cusling, who further states that the onter wall of the interphatell prition of vein mapilly underves comsiderable hyjertrophy.

Figs. 70 amd 71 show how Carril prevents stemosis of a rein after suthre. liy means of three traction stitelhes the lumen of the vessel is opened out in a triangilir form and stitelned with the finest linen thread (Valenciemes lace) or $\mathbf{5 0 0}$ Alsitiath cotton (Cushing) or thic thimmest China silk threal on the finest beedles (Kirly 13-14, Cushing 15-16). The tmica intima is not incluleal in the case of larger arterie. Cirrel has in this way suecessfully: performed ent-to-eml ats well ats emid to-side amastomosis lwoth in arteries, and in veins, and has even been able to transplant whole organs (kilney, thyroit), and even invert the arterio-senons cirenhatim.

According to Jacobsthal, lambert, an Euglish surgeon, first sugge:tol arterioriphy, while Hallowell in 1759 was the tirst to earry it to a succes.ful issme. He closed a wound in the brachial artery ly means of a cirealar stitch inserted over a steel neelle. After repeating the carlier experiments of Gluck, Postemsky and Horoch, Jissinowsky has perfected the techuipue of arterioraphy he experiments on the aorta and carotid, while Murphy and Dortler have proved the alvisalility of including the intima in the suture.

After Mmply haid diseovered the invagination metlood in the ease of vessels which had loen ent transversely, layr perfeeted the technique of the operation by

[^43]stripping back the artery wall wer a small magmeximm rine sliphed wer the poximal end, so that the endothelime projects and can lne approximated with the embethelimen of the distal emd (intusonseipiens), to which it is joined ley sutnre. After cironlar resection of the femoral artery (Kimmel, 5 cim.). Murply and Kummel have ohtained mion of the emds of the vessels by invaination, withont interfering with the lumen
 of lateral arterial suture.

Apart from inguries, thrombsis is ant emally important indiation fo: peration.
 restore the ciremation ly removal of the rlot, i.e. ly inoinom of the win, and remmal of the thrombins with submerpent suture.

In the seconl rass, which is even more important, the oljere is an mpent one, and eonsists in the immediate removal of the thombles in ortere tor preant its disblacement, with shlseynent ligature : are, as a rule, too suphe with regame to this rlass of ease, for whenever thrombosis neenrs in a vein (most commonly in the lower rxtremity) there is always the extreme danger of the elot leceming suldenly detached, with the pronlartion of embinisin in the pulmonary arteries.

Whenever, therefore, a latge vein becomes thombused, there is abwas the attembant risk of this catastrophe, which may oceme nuexpectedly and prowe shidenty fatal, and the question of arresting it by rattine down ind remoring the thrombins munt always le brome in mind.
'The removal of infectise thrombi is quite as impurtant as that of ath aseptic one. which is only dimgerons on meehamieal grommls. It the perent time. their removal is manly practised in commeetion with otitis molia. It is the lateral sims amb the internal jugnlar vein which are most eommonly explomed and lizatmred or jhered when
 leen ton timid in the early treatment of infective thrombsis in the veins of the ex-
 of the pelvic veins in pherperal conclitions (Bmmm) arr su satistactory that exom here

(b) Exposure, Suture, and Ligature of Individual Veins

82. Exposure of the Superior Vena Cava. Suture uf the surnin vena rava may hate to he consintered in the eane of womms involving the tirst two right

 nhtainol to the velat rava and luth immonimate wins.
 sterni necesary to expose the njer part of the anterior merliastimm. Vion in the
 thronghthe comertions of the inmminate, jughlar amb anhelavinn veins. Clomme

Resection of the mambrimu stemi for suture or ligeture of the surerion vena
 bume along the episternal notely mossine both stemal emels of the chavides. 'l'he priosteum is freed, the commmicating atreln letween the anterior jurenar veins being avoided, an' the sterno-elavienlar joints are oproed, atter whieh the left pertomatis major is detarhed from the stermm along with the perinstemm, for the latter mamembre n vertieal incision lecing carried downwards over the tirst and seromd lett coatal emrtilages.

A transverse incision is then made at the 1 , et of the seeond costal eartilage, and the first mal serond costal eartilages are separated from the perielomedrime and
divided. The bone having been raised with a strong hook, the capoule of the left terno-clavicular joint is cut through posteriorly, after which the periosteum is detached from the pesterior surface of the manubrimm with a ravisatery, si) that the latter can le divided at the junction of the manubrimm and berly without injuring the plenra aud internal mammary vessels (Fig. 73).

The portion of the sternum is then raised with a heok and turned over to tha other side (Fiy. 74). By this procedure the tirst and second right eontal cartilages treak at the junction with the bone.

The periastem on the posterion surface of the mambrimm is now carefnly opened in the middle line, by which means we expose on the rixht and left of the stermm,
 fatty tismo mud small glants.

 wherved. Dhose the latter and at

 the sternumb allal turuel bpwatels, the sternos

 allil soerond iontal cartilages are theth divided elowe

 the level of the first rib the left immominate wein passes transversely outwarls, while to the right near the anorta a jertion of the superior vena eara is moticed. A large thyroiden ima rein enters the left imominate from aluse. The retracted plemra forms the vertical boundaries, right and left, of this anterior bart of the suluerior meediastinum.

83. Ligature and Suture of the Inferior Vena Cava. ${ }^{1}$ (ioldmam:-

 :as recently made eareful i vestire:tions regarding ligature of the iremon vena mata in comuetion with special (anes. The vein is mest likely to h_{n} torn in eprating thmmes of the right kiduey (Limduer). Oreasiomally the rent in the vein has been stitched (1. Nechele, v \%urge, linsse, Groln. (arrè). In schede's "ane the right remal rein hoss rut twe shent in the exeisim of a malignant kidhey: He, however, clesed the oproning in the side of the vena casa with tine catput. the womul hecoming completely eisatrised in four weeks without any thrombenis and with maly slight narrowing of the lmmen. hi, v. Zawe's rave (nephrectumy for $2!$ em. hroul, wats surcessfully clowed by suture.

Whenerer ome has to deal with tummers of the kidney which are at all " rent, the incivion should always le mate sutbiciently large to allow of the wena , cint sutured, i.e. the peritonemn should !ee freely opened and the relations of the yrowth
 preation, it is not alway, possille to suture the vein, ane ligature may have to be (mplesed. (Eddnam refers to the excellent results which Hoteed. Ilereser), Alhamm, Bottini and Hartman have obtained hy this means: Limber, indeed, regards the venib cava in the sume light as all other later wine in the lumy. ien mot maty ean it ie hgatured, hat it can alsin be excised when allarent to thmours of thrombosed.

[^44]It mast lee pointed ont, howerer, that the almwe remarks only ajply to the rava below the entrance of the reblat veins, ow ligathre alowe thas fuint i-
 has fomd experimentally that leath meed mot ocur, if, from an alreary existing stemosis of the vena cavib, a collateral eirnatation hats Inem estahlished.

 In these the concestion was more marked (adema and ascites) than aftri lidature and dowire of the vena cava. In the bitter the symp'ons of enngestion may 'ac absent. Injeetion experiments hy Lappe, Poirier, finhmam, and others, have shown that after ligature of the inferior vent cava the bood is returned to the hart $11 a$
withont dillionlty unl, that of the numerums ansilinry anastomoses in existence, the beins in and ahout the spinal cam: in the groin and the azgens veins, are the principal chanmels low which it is effecterl.

It would seem, therefore, quite legitimate to ligature the vela rava below the renal veins, amb even tu resect a purtion of its. length. A ease has recently leen
dinglat whernarlitiolular foint.

fr.eft st+ris.

 comprinsited.
84. Ligature and Suture of the Innominate Veins. Inring the remowal of deep-
 is often 'menmaterd from the tearing of deepr veins (thymindea inferior ant inat). The bleding from these veins ran le tenporatily arested by persing the bledine foint, or the seft inneminate vein, against the posterior shriace of the stemmen, while it can be permanently controllen by plagging. where ligatme is not $\mathrm{p}^{\text {masible. }}$

Jordan reports two mases of womds of the immonimete vein in which revovery

 thated ly lateral suture, while a case of biohll's in which the left inneminate voin
 resertion of the elaviele being performed.

 anastomosis between the veins of the nerk. In Hrohlis case, mot the smalleat \because astubance was noted after rexision of the immomate, intermal jugulat and subrewian veins: and the thoracie durt.

Oeclusion of the immonate vein by ligatme is well tolemated even when there has been no preliminary stemosis to establish a collateral circulation. (iohdmamb

 mulertaken owing to the sprat of a mhereblons promess the wall of the vein. Hoth cat es recovererl.
 for", in dealing with flambs and other thatomes ("struma") sitnatod at the inlet of the thorax the surgenn is very often in grave dombtas to whether oneration is institiahle. There is one gland in partionlat, the remowal of whirlo we hase several times fonnd very tronblesome rim areomet of hereding. It is sitnatel in the angle luetween the juginlar and the subelavian vein at the peint where the extronal jughlar.

 the immonate together with its trihutary veins.
ligature of the inmominate vein is, however, in the presene of adhesions mot alwas possible without a preliminary division of, or an onteplantic oremtion on, the claviole, the first and sechme costal cartilages, on the mambrimm storai. 'The latrge
 similar to that for excision of the mambrimen aterni is mate in the supmatemal
 attachment of the sterno-mastoid musele is dividerl, the joint rapmle ofremed, the artienlar cold of the elaviele mased up, the costorelavioular ligament divided, and the chavide pulled fomibly downame. If this fails to sive sutticient ateres, the tiost costal cantilate must be divided and pulled downwaris amblentwats. If still f:ather room is rughired, the secome costal ratilage and the jumetion of the
 similar to that for ligathre of the vemat eava.

Tributaries of the Innominate Vein

85. Ligature of the Thyroidea Ina Vein. (If the sualler hrameles of the
 revioal, internal mammaty, superion interostal, and thyroidea ina veins, only the
 is often ligatured in : tre operations and the perbmande of haw thathentomy.
 unt "inferiones" the only prepere designation for the veins which deacent fiom the

 hy an exeerdingly small inferior thymid vein.

The thyroidea inne veins antastomose freely with one another and form allexis(Pleans, thyr. impar.). One or two main trinks can, however, In readily isolated on one or other side of the midulle line for the eontrol of hemortage. 'formane
them an uri: inn is made alove the stermm (lonpitndinal or transerse) dividing the skin nind the wia connecting the sternothyroid miseles in the mirdle line.
86. Liga of the "Common" Jugular Vein. In surgieal nomenelature the internal jugnar vein of the anatomists is called the emmon jugnlar vein, in order to distinguish it from that jortion of the internal jugnlar vein alove the entrance of the common facial vein, mul we do not see why this momendature (propmed by Kranse) shonld nut $l_{\text {ke }}$ adopited lig anatomists.

Ligature of the "common" jugnlar vein is one of the most inmerartant in the chapter on ligatnre of veins, not merely lecanse it is very fromently womded, e.! in the excixion of malignant tmmonrs, hut also lnecanse it has often to be ligatured in dealing with infeetive conditions in its trihutary areas, expecially in comneetion with certain compleations of otitis menlia. The "common", jugnlat is more ensily ligatured than the intermal jugnlar vein ; hut int orker to a woil the riak of embolisut, it is anly adopted when the thomulns alrealy extends farther down, otherwise the interal jugnlar alowe the entrance of the common fiefal win is to le ligatured.

Is a rule, the "emmon" jugntar rein can le tied on one side withont any fear of serions eongestion. Fiatal iliaturbinmes of the revelral rironlation oerne ouly in exeeptional cases.
 ing of the batin, the case leinge me in which the latemal sims was most abomal. It was of a diminutive size, while the jhenalar vein of the opposite sifle wasalso sor small that the escape of the venoms lomel from the cranimm was eonsiderably interfered
 From an exmmination of a momber of skolls, Jinser fonme a very shadl jugnlar formmen present in 3 per cent (egenemally on the left side).
 jugular vein, expecially the right, what lateral suture may be sulstituted for ligatme where practicable. It is admitted that this emmot be done in rases of resection for malignant disease. Nohede's expriences show that lateral suture of these veins is at very safe operation. Sometimes the vein may even be opnod tor remove an infective
 of suture of the jugnlar rein.

The common jugular vein is expesed in the same way as the conmon canotid (ride

 fingular vein with only temporary disturbanee of the rirenlation

Tributaries of the "Common "Jugular Vein

87. Superior Longitudinal Sinus of the Dura Mater. Bleeding from . curth

 of this simus may he controlled ly plugging, which is aftern the only methot possible. ganglion).

Beeding from the supurticially situated simmser ran be death with he ligature, "af. the superior longitudinal, the lateral (on one side) and the oecipital sinus. Ligature of the superion longitudiual siuns has further been recommended by Delageniere as a eure for epilepsy, a fact which also proves that mo disk is attached to the queration. For the methot of perfoming the oprotion, we refer to the ehapter on trephining.
88. Ligature of the Lateral Sinus. Of the intracmaial vesons, the lateral simus, next to the midelle meningeal artery, is most frequently the objeet of surgical interference. The sinus on one side is often divided and ligatured in exposing cerebellar tumonrs, partieularly those situated in the angle near the pons.

The sigmoid portion of the simus is opened in inflammatory eonditions of the tympanic eavity and mastoin cells when the wall of the sims has been involved, and infective thrombosis and pyemia are threatened.

[^45] plugheet. (Nee chapter on trephining.)
89. Ligature of the Occipital Sinus. The suall mesial wecipital sinus which extend from the Foreular Herophili to the furamen manm is ligatherel in extiput-

90. Ligature of the Spheno-parietal Sinus. Thi, simb, which owelpion a grown
 may give rise to tromblesone bibeding if womberd in trephining aver the trmperal reging. It may reqnire domble ligature.
91. Diploic Veins. Oecosionitly in the conrse of tryhiming, severe veloms haemorlhge may arise from ingury to a hager liphine win, in which oare the bheding
 and comuminate by emissiry wins with the simmes of the duat mater and with veins outside the cranimu.
92. Ligature of the Buperior and Inferior Ophthalnic Veins. When the urlit is opwed from withomt onn necomut of urhital cellulitis, the ghention of higaturing the.
 extent into the peryroid plexns, una arise in orker to prowent the lackward extension of :In infective thrombus, above all to the simms.
93. Ligature of the Internal Jugular Veins. Thu intrmal jugular vein is ligathred during the extirgation of tumbirs sitmated high ul in the nerek, unere

 effects.

Occasionally, howerer, the tumour reathes si near the base of the winl that phagging alone is possille. Illugging is in these censes priter reliahle, "wing to the presence of the lone, and secondary laemorthane seldom we.ms.

Madelung in a dissertation 'rollected 11 eases of ligiture of the internal jugular vein, in none of which Ind results wete oberved. It is letter, howerer, to fillow rechete's advice, and rlose the vein lig hateral suture if prailh', when it has omly
 minitumly goorl.

Ligature of the internal jughlar vein play- a very impertant part in comertion with the treatment of comphieations of otitis media, mure experially thromansis of the lateral sims: Its objeet is to prevent the pronticom of emblism from the detachuent of an infective elot:- It is detinitely indiaterl wheneser trephinides the
 interction.

The "nemation is pertomed ateonding to the vales given fin ligature of the
 the higature is aplined at a higher level, provided no thrmons has alrealy extembed
 and ponterior lacial veins, seldom ca! for sepabate ligature.
94. Ligature of the External Jugular Vein. There is me impritint joint in romeretim with ligature of the external jughlar win. The vell ghens in the ande
 Injaries in this situation are apt to he followed lag aspination of air an the menth of the vein is kept open lig the cersieal fiscria.

Ligature of the wein low down is therefore a meresary preantion, when tivisim
 arifiee of the vein correspouls chavely to the origin of the sterm-mast min musele from the chavicle, behinul whieh it lies.

The vein is atways divided in opgations on the neth in which omr nomal incision is used (i.e. from the mastoid provess to the hyoid lume). Anormpanied liy the great auricular nerve, the vein mus vertioally downwark on the miter surface of the sterno-mastoinl lunscle (rirle lig. 2!?).

[^46][^47]95. Ligature of the Anterior Jugular Vein. Thin vessel, whieh terminates in the external jugular veit, minst t.a remembered whell dividing the ateruo-mastoid muscle at its origin. The vein lies hehiml the musele.

The anterior jugnlar vein is mueh more freynently ligatured in the comme of operations in the middle line of the neek where it lies immer cover of thee platysina. It in systematicalty tied in goitre ngerations in which the transwerse curved iurivion is employed (\%.\%).
96. Ligature of the Subclavian Vein. Suxt to the" "commom" jugular, the largest tributary of the immominate is the sulselavian vein.
 mentions two cases in which suture was anceessfully periarumed, and not long nge we emploged a lateral suture in a case where the veil was alerinlentally torn in the course of the removin of malignunt flands. Phugging may ulso lne employed, hut it is not to lee adived on acromint of ther risk of a clot beeming detached atd giving rine to pulnonary cmindi-m.

The vein has, however, lneell sureessfully ligatured. A deseriptinn of the procedure is given in No. 17 num Fig. 36 . It must lee remembered that the sul, elavian vein croses the first ril, in fromt of the sealemis anticus, while the artery passes lehind the latter. This mak, ligature more diftienlt on aceonnt of the clavicle, equecially somewhat externally.
97. Ligature of the Axillary Vein (winle Figs. $\ddagger=-4$). The axillary win is frequently ligitured, rat. in exrision of malignant glands adherent to it. The vein lies in front of and to the inner side of the artery. (for it expenver, we the method illustra - I in Figs. 4-44.)
98. Ligature of the Veins of the Arm. It is mineressary to give a spectial deseription of the terlmiphe fin ligature of the veins of the arm, as they phrsue a course similar to that of the arteries, with the exreption of the replialie, hasilic, and median veins. They, however, rarely reve ire to he ligaturel sercially, though, perhaps, insufficient attention is paid to the madiations tur preventing displacement of elot in severe infective comditions of the arm. Their sumerticial pusition readers their recognition eany in the furcarm or elhow for heening oir transtusion. The

Branches of the Inferior Vena Cava

99. Ligature and Suture of the Common Iliac Vein.

iliac vein is only employen in of thes of extreme neressity of ature of the common long-contimeld pressure on the vein, a collateral where, in eminserplence of established. All circumseritnel inguies to the vein shomblumetion has heen alrealy
 (vide to 53 and artery, while the right vis The left win lies helind and on the inner side of the artery, while the right vein liex behind the right artery.
100. Ligature of the Hypogastric Vein (Internal Niac). Ligeture if ther internal iliar vein is not so serims an operation as is that of the common iliae win. It is undertaken to prevent the developnent of puerperal inamian in caves where the uterine venoms plexuses are throulmosel. Bumn ${ }^{1}$ surcessfully ligatured butl: internal iliac and ovarian veins in a rase of this deseription, while Trendelenhary hard periously carried Freund's shgestion into practice. Dhmmis aneration was pertormed intrajeritomeally, a methorl whieln allowed him to detemine exactly the prosition aml extent of the thrommasis. For the teelnique of ligature of the hylogastric vein, see Internal lliae Artery (N o. 51, Fig. 53).
101. Ligature of the Common Femoral Vein. As a manlt of Bram; olmend tions, ${ }^{2}$ whiclishowed that the femoral vein was almost the only outlet for the hood from the lower extremity, ligature was for a long time carefully awidel. The researches of Kammerer, Niehergall, and Jordan, however, agree with v. Bergmami:

[^48][^49]experimental investigations in sloming that the risk of palmene iv very slight (only three eases are kuown), althongly it is, of monss, much preiter if the common fimoral artery is also tierl.

 uro ill efferts are, as a rile, to lne experterl from ligeture, althongh suture isa siter methul.
102. Ligature of Tributaries of the Femoral and Internal Iliac Veins. There is 110 partienlar interest atticherl th the expmine and ligature of the voins of the
 for the erresponding artory. In the rase of infective throminois and thrombo-

phlehitic, whinh is so often met with in the aterp veins of the calf, mene attention shomhl he given to the puestion of ligatmong the vein high up (ơ\% the p"pliteal

 in that it is suprerieial and does not areombany any artery.

1 3. Ligature of the Long Saphenous Vein. (if atl the vitus, tht lumg siphenths is the me most fremently ligatured at thee inesent time. ligature is

In the mider forms of variense veins a complete come ean be ohtained toy ligatomes

[^50] "ipxarance of the symptoms was noticend.

In the more manavated rases total excision of the variense veins (Mardhag) gives excellent resnlts. Phrtinl excision of the main comvolution, an premation we hase performed several times, is nlan satisfactory. . Iccorliigg to Stein, Miller ohtained only :5,

In very uggravated cases, Tavel' has seemed sutisfacory efferts hy prolncing
 carlolic (from 1 to :3! injections).

 dehilitated or ellerly. We have known a patient to die suddenly from pulmonary combandin the day he was allowed ont of hell three weeks after partial excision on' a hunch of veins and ligation of the vein almeve.

The lomg saphenoms vein may with advantage (he ligatured for the enre in pheditis, the uphard extension of the thrombusis lering thas prevented.

The vein is ligathred immediately ahose the throminseel purt, when it is "ploped

In the rase of a varix, on the wether hanl, the operation aimes at relieving the hylrostatie pren-ure. The iudiation here is to ligature the vein high up, in order to prevent the transmission of the pressare ley sile hranches.

Procedure. (1) Alrowe. The poxition of the common fellumal artery han ing heen deternineel hy its pulsation, the femoral vein is fomme bying to its inmer side. An incision is made over the vein parallel to the inmer part of Prouart's liganeme (, 7 i). The long saphenous vein pierces the thin cribriform faseia, rowering the saphemps grening, to open into the common femoral vein. The lower fateiform whe.
 to sce whether the vein is not donble, in whirh sase a secombl ligature is refuirel.

The olld operation of fercutaneoms or sulputameons higuture in masatisfactory, for one eannot then tell if the rein is nut fomble, and the ligature cammet alsin he applied sutficiently high.
 below the internal thlerosity of the tibia on the anterninternal inplet of the hanh. The saphenons nerve accompanies the vein. Is the prosition of the vein is mot always constant, mellifue incision is more ailvisable than the hongitutinal onne shown in fig. 6.).
104. Ligature of the Short Saphenous Vein. Where there are commminating hanerles hetween the short saphembin and the lomg suphenoms wins, the former may have to be tied immediately lelow the binint at which it cuters the popliteal win. It is also ligatnred in acute infective conditions of the area wheln it dains.

I vertical ineision is mate in the pupliteal space similar to that for ligature in the pepliteal artery (Fig. 6\%). The vein is fomm lying ont the fascial let ween the two heanls of the gastrocnemins acrompranied by the commonieans tibialis nerve.
105. Ligature in the Portal Area. Ls the purtal sein is moly ligaturen for

 shonld le ted in cases of thrombosis, alld alwe all of infective thrombris, firther experence alone can tell.

Ligature of the portal vein is, accorling to Ito and Omi, fatal, unies. a wollateral rivenlation has beell previonsly ;rovided by such measures as momentotisation or Eek's fistula, in which an unastomosis is made with the inferior vena cava. Ligature of the portal vein gives rise to degenemative procesmes in the liver, which are, if course, taprable of compenation.
106. Ligature of the Superior Mesenteric Yein. Mayo Rolson (according tu Gordmann) has successfilly ligatured the superior :ncsenterie vein fir injury. Is a rule, however, serioms disturbanee in the intextinal arte. follaw ligature of the vein.

[^51]
SEC'TON 111

Introduction

: 118: - IIf

 1 liablumed.

 walls of the eranial ravity exert- an inguinc: and paraly-inge effert on the ental

 hillimorr.

A. METHODS OF EXPLORATION AND RELIEF OF CEREBRAL TENSION

1. Puncture of the Skull and Brain. (11) (irmernl Rrmatix. Neisser anul

 Pollack ' deserve great eredit for their exeellent work onf puncture of the brain in the diagmosis and treatment of nervons comblitions. The authors have drawn attention to the insuffieient notice that is taken of these important diagnostic aids in text-heoks on medieine and neuropathology. Honse physicians, on the other hamd, make extensive use of the procedire, and we know of one medical teacher who systematically of the methol to his stulents. Pmeture of the atmbomen is, however, munils more dangerons than pmeture of the hrain, as in the former there is the risk of theoperator wounding the intestines or other viscera, wherens in the latter there is little fear of him prodneing any injury if the operation is properly performed.

It is advantageons to adopt a correct method of procedare. Neisser and Pollack attribute the intronluetion of cereloal pmetnre for collections of Hinid, to Middeldorpf and Maas. Middehorpf pulbished his investigations on the sulyject in 1 Nisf, and Mas advoented pmeture, enpercially in coses of alseess, as a preliminary to further operative measures. Gibier and Spitza were the first to make injections into the hrain throngh drill-holes in the sknll, while Sonehon ${ }^{2}$ as a result of mumerons experiments laid down the technique in 1 s 99 . Sehunidt, ${ }^{3}$ as a nemrologist, deserves the credit for having ealled attention to the adrantages to le derived from surgital expluation, especially in connection with cerelral abseesses originating in otitis media. Sefmidt regards the dangers of exploratory pmeture as of the slightest deseription. On the uther ham, r . Bergmamn has issued a waming as to the risk of pmeture with aspiration, while layr, ${ }^{\text {a }}$ ation, pins his faith to the nse of large iustrmments to puncture with in cases of tmmor. It is obvims, therefors, from this discrepancy of "pinion that definite restrictions must he establisherl. Wie shall tirst, howerer, comsider the teclunique of exploratory puncture.

Atbert kocher shas deseribed the method misuatly amplayed in ome climic. Thes patient is prepared as if for trephining, the stalp being shaved, aud thoroughly puritied with soal and hot water, and afterwards with ether mul alvohol. Fiftern to thirty minims of al per cent solution of noverain, to which two drops of a solution of adremalin have treen addend, are injected nuderneath the epirmaial apmemosis down to the lone, and a steridised drill is then applied at the desired print, which has been previomsly determined by a craniometer or hy other handmark, and is driven through the shin down to the lame. The home is then gently hored throwh, the oprerator emphying less foree aceording to the depth reathed by the instrmment. In this way there is no risk of the drill laning jlungeal inte, the dura after the imuer tathle of the skull hais heen panetrated.

Onee the drill has heell apherd, it mant the kept strictly in the line in which the needle is to the inserted. It munt alser $l_{\text {e }}$ withdawn in the vame difertion :as it was: introcheed, an that the skin will mot owhele the opening. The meedle of an exploring syringe, 7 em. lomg, is then pmaded throngh the duta in a similar direction. The best instrmment to cmploy is a storilised "recorl" syringer titted with a metal piston, and holding 15 or at most 30 minimes If Sehimmellmsehs wetal syringe is nsed, a glass corraertion minst the attached to it in frome in arder ton asrertain if the
thid
ligenamis ease, which is quoted hy bi Beck and instanerel ats a warning hag B. Bergmam, has demonstrated that the thad must mever he forcibly withdiani, as otherwise dangerons heoling may result. The atyect of exphatory phather. is simply to prose the premence of hinid; and omly the smallest amomit shomblabe

[^52] syringe well titting, forcible or exessive anpiration heing avoded, if punture is to be free from danger.

Neisser amb Pollatek employ an elertric drill which they alsar hor for buring thromgh the woft parts, fimbing that it is mo mome dangeroms than the hamblaill in

 the brath that latere exploring instrments cath lave safely employed, or that an injury can be immediately revtited if it oremos deep down in the womer Trephining is se
 is only the greater ineomvenience ratailed on the patient ly the preliminary preparat

 drill-lole.
 when it is desired to make an injection into the hrain or lateral ventribles, as, for

 given as slowly as pussible.
 who hat onve hat the experience in the past-motem remm of timeling that his pationt
 of the skull, will nevor again fial to puncture the bain if there is the slightrat anspiemon af the combitions we have reforred tu lnines frevent, an matter whether the

 alal explomine syringe.

of the brain. If it is necensary, the opening em be rapidly enlarged with eutting foreepis.

Hemorrhage from the edges of the hone cam always be controlled by means of plugging with was. The opening itself ealses no harm, as, if it is aseptic, it readily
closes.
hoyen's drills are well constructed and very serviceable instrmments for boring a small hole down to the inner table, after which the onening can be rapiolly conlarged with the spherical harr depieted in Fig. 77 (the point of which is bhant) withont rivk of ingury to the vessels in the dura. With a small sporm, sharp only at the sider, the opening in the inner table can le enlarged to the same size as that in the onter table.

Fli, ib.

$$
\text { rıк. } \therefore \text { I. }
$$

Doyen's larrs. That replite sented in Fig. Tis is uned for trilhing the hole into the vitrumss, whil. thes cimening is calargeal with the instrument shown in ドig. 7 .

Having removed sutheient lone, if no extra-dhas lesion is fomme, the opreator picks up, the chat with fine. sharp hooks and a erneial eprening is made in it with the knife. The surface of the bain can then be investigated, or, if necessary, examined more deeply with a lange: exploring needle or gronved director, without danger to the large vessels. In this way it is cany to puevent the oremrence of small extravasations (size of a hazel mot) which Neisser and lollack ohserved oedasionally after simple poneture. The advantages of the simple operation, in which the drill is inserted through the thicker tissines. are moluabted, eg. in puncture of the posterior cerehal fossa, a promedure which has proved thoroughly succearnal in the himbe of Neiswer.

On the other hamb, if there is reason to suspect the presence of a thmomr, the secomel "pration is mone advisable, althongh Neiser and loblack loralised is frontal tmmonr ly simple phatetme, the diagnosis of which womhl ,therwise have leen impossible. It mmst he atmitted that if simple pmotme or the nomlification which we recommem for tumons is suthecient to estahlish the nature of the case, either is of a thitling dessription in comparison with the ostegnlastic operation, and further the truth of Neisser atal lollark's views will he contirmed that even rejeated pumetme is justitied il the apmoxinat. prestion of the thmone an therehy he determinet. In
 in the eomrse of which the thmome was diselnsed twiee.

To awod reletition, the reader is referred to the"
 for pancturing the hain fors sminered collertions if bond and phs are eromidered. In the diagram which
 Neisser and loollack for aremate pumeture are deppetrid. They vary to a certain extent, lowever, in ditlement innlividhals, just as the treatment heres iny rertain erats.

On the other haml, the prints at whieh the neerlle shomlal he inserterl in order for
 aseertain at what perints the lateral ventricle can be reached without the nevessity uf perfoming an extemsive preliminary operatiom.

When there is an acemmation of that moler inereased pressure in the ventriche,
 hean recorded from simple panetme of the rentriele. The methods of pernetrating the ventriele are very alfferently deseribed. This may arise from the fact that the pmetme of a sonnd ventriele with its minimmo eontents is very diffiontt, lwambe the needle maty emsily womm the walls, so that it is not easy muler momal combition to establish experimentally the best method. It is easy, however, to enter the
ventricle from various places when it contains a collection of thind. . Iuthorities are agreed that puncture from the lateral aspect should be performed by passing in from behind and above the ear, over a point corresponding to the posterion enid of the
 this situation (about 3 cm. behine and ahove the extermal anditury meatus) keell, at
 sides, comble even wash it ont. He pierees direetly towards the sumuit of the "pmente auricle. Mayo hobsom, following Frazief, pmetures at the proterior bart of the tirat temporal convolution. In a case on which we gherated, int Jome 1 N9 1 , we mide a puncture directly inwards from the poterine extremity of the temporal aront. We were ahle to witholraw a drachm of boomy seroas thid, lme we did met atterwarts anceed in introlucing a drainare thle, althengh the needte wat wery exatly introlued behind the perterior end of the comples striatum, athose the flene of the hateral ventricle, the evacuation of the ventriele being no complete that the walls had fallen together. It apmared to nas, therelires, desimatle to phature paratlel to the direction of the sigittal diameter of the ventriele, becanee when the ventriele onntains very little thind the risk is not run of pmenting the opposite wall, as is the ciase when the paneture is directed thansersely. The sentride in the samital direction is of comsiderable extent. One cimp pueture in the sagittal plame, which corre-pondr with the main portion of the ventricle, from the from, from anove, and from behind ; but in order to aviod the centres of known function, it is beot tor pans in oblipnely from

 with thied. In onr experience, tom, the drainage from ahnw has prowed sati-fietory, as the drain in this direction rms the least risk of ingurine the "plmate wath of the wentrick, so lung as it is allewed merely to cinter the miner intion of the sentricle, its fimther entrane heing prewnted hy a ring or thang on the surface of the aknll.
 peint, and have been able on many weminns to rath the whtride with arombey where the latter has heon either fill on ampts.
 are comvideret in the sertio dee ling with cerebal thung:aphy.
2. Trephining for Exploration and for Relief of Cranial Tension (Decompression).

 made in fomer days even for explomation.

 asombatell with fintantic wlens. lirom histury we learn that thene indinations were

 hased injury, bine has simply to refire the methenk of womb trathent. It the

 ining to the hatu and its memhanes when woml infertion was a dialy oremremere.
 romplete development in the form of asepsix, trephining, an far as the danger of infectim is concerned, has become just as safe as any other form of opration.

free from danger; but when the conception of trephining lecomes widened to that of eraniotony and craniectomy we are no longer justified in speaking so eontidently.

The diploe of the skull lnmes differs from other bone marrow in the great number of its bood-vessels. There is a copions stiply from the abundant swall arterial vessels from withont and from within, and astill fnller one through the communications between the external and internal veins, which mite with wide nud sometimes sinns-like venous phees in the bone itself. The dipluie veins possess evell a less degree of eontractility than in other hones. Cushing has shown that the diploë The dindoic veins can, winjections introluced into the sinuses of the dura mater. especially when there is any this account, give rise to very severe loss of hood, increased distension with boonl.

It can be confidently asserted that, provided asejwis is ginaranted, there shonla never be any hesitation about trephining in any ease of cercloral pressure. We have. regretted many sins of omission in this reapect, but very seldom have we had occasion to repent the performanee of an operation. Every precaution must, however, la. taken to prevent severe haemorrhage and eonsequent shock.
(a) Anest of Homonvhetr dwing Trephiming. The arrest of hecmorrhage is influenced to a considerable extent ly the selection of the anesthetie. Ia excitalin. and restless patients the venous bleeding is inereased by foremble expiraticn. A patients, and when only a limited orefore advantages when dealing with intelligent deep nareosis with a general anesthetic.

Braun, in his excellent worl. 1 deec.
brain was removed under local aneesthwa a cance in which a recurrent tumour of the the dura can be rendered inselnitive by iny. Aceording to his testimony, even (Hackenbrueh's method). Heedsitive, by infiltrating the tissues down to the bone dura beeome quite insensitive weinhan supports the statement that even the hone and mider the epieramim. He has anm hadf an hour after the injection of Braun's solution antesthesia.

In small treplining operations we have always fomed the dura to be insensitive aftur loeal infiltration, while the bleeding from the suft parts as well as from the lume
is also diminished.

In this conncetion Brann has demonatrated that when coeatin and suprarenin are employed, the hamostatic effects of the latter constituent are very considerable, althongh not, however, sulfiecent in the case of an extensive operation.

Where local anasthesia camot he employed, most surgeons of experience regard Choroform-morphia nareosis as the most advantageons, Horsley in pratieular drawing, attention to the disadrantages of ether. As descrihed elsewhere, al eup of hot teat with brandy and sngar is, given an honr lefore opreration, a precantion against $\mathrm{p}^{\text {nos }}$ Mrerative collapse and purdmonia which Heidenhain regards as of great inmportince. Half an hour lefore operation $\frac{1}{\text { t }} \ddagger \mathrm{gr}$. of merphia is injected hy podermieally, whil. sulsequently the minmum of chloroform is given by the drop methorl. Cocain on nowoain and suprarenin injected at the site of operation accelerates the anas shesia. They are administered monst effectively ten minutes after the injection of mompia. It must also be remembered that chloroorm diminishes the hemornage by reducing the which risk ether may he cmpre is therefore always the dauger of collapse, to avoid

Hamorrhage from the notit lauts ran be readily by Cushing. the simple and effective measures which be readily enntrolled, and it is surprising that advantage of more regularly.

Heidenhain ${ }^{2}$ and v. Haeker ${ }^{3}$ insert deep ovedapping low sutures through :luentire thickness of the dividet stalp. Lut although this cheeks the hamorrhage very effeetively, it is a method which is ly no means easy to adopt. Strong needles are required to trausfix all the tissues of the scal], down to the bone, and if a large flap, i,
${ }^{1}$ Local Anosthesire, Leipzig, 1904.
${ }^{3}$ v. Hacker, Cintralbl. f. Heilenhain, Centralh. fo (hir., 1:04. No. 39. No. I.
turned down, a eomsideralle number of stit h-holes, are made and no small amome of strong thread is neeesiary for this contimons suture

We have found the methor of service in exposire of the cerelellum, when in oceipital thap is turned down, but like Hacker we only insert the shtures on the consex (upper) side of the inci-ion, as it is easy to control the heeding from the flap by pressure on its lase and the alplication of a few artery forcels. Jike Heilenhain, we have fomed that the constriction suture can be retained withut any hamfind results, even till the wome is healed.

It is quite unnecessary to adopt these measures in t^{1}.. event of the incision leing
 attachment of the auricle. The alylication of Esmareh's elantic land mund the greatest circmuference of the skull (as practised lye Corning and Matas) is murh simpler and more effective:

Cushing ${ }^{1}$ hats deserilned a pmematic tomminget which is applied romed the head and then inthated, althongh he hats abminned its nse since November 190., as he fomen that it could not ine sulmitted to repeated sterilization. Se now employs at rubber land, and, to preent it slipling downards, he secures it with a lmadage. passing from the glabella to the external oecipital prutuberance.

We insariably make use of a strong elastic band about $\mathbf{3} \mathbf{c m .}$. hroad, which whel, stretched is of comrse of narrower dimensions amd which should le knotted at the back of the heal, secured with a clmm, and held in position ly a gatue bandage reaching from the glabella to the encijpint.

The ahove are the measures to be aldited for the control of hemornhage from the sealp during operation. The permancht arrest, however, requires firther consideration. At the close of the opration Cushing simply stitches the womd with interrnpted sutures and applies pressure by means of a firm bandage. We prefer to close the wound with a continuons suture of strong silk thread inchuding the whole thicknese of the seally. This entirely prevents the possihility of hemorrhate and does away. with the neeessisy of firm compression, which is not only difticult to apply but in many cases proves unreliahle.

Bleeding from the exises of the bone may be more troublesome to control. In onr experience we have found that adrenalin injected twenty minntes lefore the operation (along with novocain) materially diminishes the heeding even from hrowe. Jn any caxe, it is the large veins which hiced to the greatest extent. According to Frazier of Philadelphia, who has had excellent results in the surgery of cerebral tumbins, in operations on the ofecipital region the emissary veins are sometimes very numeronand present great variations. Tley may often give rise to great trouble.

No metholl has yet treen diseovered ly whieh the heemorrhage from these weincan be controlled, as they freguently thain off highy congested hoow from the interion of the skull. The bleading is mast eftectively controlled by plugging the diploe with wax as Horsley recommends. According to Heidenhann the bleeding is materially diminished hy the use of rapid! otating sawing instruments, especially the Cryer Sudeck burr.

If, as oceasionally hapmens, the bleeding from the bone is so brisk as to bur dangerous to life, we lave no other choice liut to comperss (or temporarily ligature) one or briat carotids, as Frazier meommends in extreme cases. For this purpose y.s. advise the nse of Hilsteml's metal clamps, instend of circular constriction, ans with a metal clamp, the grip, of which can be graduated, the large vessels are omls partially obstructed, and the danger of severe cerebral amania is atoided. Wiemploy small clamps: and attach a piece of string to them which enables us to effect their removal even if the wound is practically elosed.

The arrest of hamorrhage from vessels on the dura and the surfare of the brait: $\mathrm{i}-$ dealt with in a later chapter.
(b) I'artinl Cirrumssriberl C'reniectomy. Just as every surgeon ought to lu. familiar with the method of performing cranial and carebal puncture, wo ought he th

$$
{ }^{1} \text { Mrd. Ners, Srw York, March } 1904 .
$$

2 "Exatirpation von Ilingeschwisten," Areh. r. Langenbeck; Bil. 64.
jnssess, it thorough knowledge of the "meration of ciremmerils. Ilhining. for in the latter case the indimations are genemally of an urgent nather, as, for example, in a cate of cerebral hamorrhage with rapinly inereasing intanmaial presure.

The apphances nlready mentioned for the prophylactir arrest of hamurrhige must
 It is abo advisable to te providen with Braun's nowomin anl adrenalin tahlets, for the prohluetion of local amesthe ia, muler whieh limitell openimgs in the sknll ean le readily effected, aud whie we a strong inthenee on the extent of the bleding.

The old trephin! (w a a "rwwn alwint $2-3$ rinn. in diameter) is atill the best instrument when a cicmuseriln wning in the skull is thesired. There is hu risk of dangerons hemorrhage when an ning of this size is mack, the wome, if aseptic, ul tily cieatriving very firmly, and ossification taking phace to such an extent that one need have fir, hesitation in entirely removing the dise of bone. On the wther hand, the dise may le kept in sterile solntion till the completion of the opration when it may ler rephateed (Cushing).

A lomgitulinal incision in the soft parts is sutticient for the removal of a shatl dise of bone, and the beeding from the edpes of the seald can he completely comtrolled by foreible tantion with shamp hooks. When the imer table has heell punctrated the diser of bone is removed with a strong elevator, and the elges are trimmed with a shary spon or foreeps. Luy extra-dural effiusion can be reached by pushing a blumt dissector mulemuath the bome, should evilence of such not $\mathrm{lne}^{\text {manifest in the }}$ circumference of the trephine opening. To opell the hura, it should lee seizell with fine sh. , howks athl ineivent with a deliear. knife thrometh hoth layern (which are easily reengnisel), parallel to the vesich. and after it has heroll raised ly as much as prasilhe. the blate of a hout-puinted pair of setionors can lne inserted and the "prening enlarged to the desired extent, a second incision. being the" madre in it tro versely to the first. Auy large vessels in the thals if dura thes formed coas easily l_{n} catught : tied with catgut, care being taken hot t" injutre the pia mater.

The brain an now he proted with a large needr. or, if necessary, incised without feat of injoming the.

ト゚1.. 79.-Lane sorcep. ressels on the smface. If more room is rempired, or if the situation of the trephine openiug is not quite acenrate, it is easy to enlarge the opening in any direction.

Luer's forceps are the best for this purpose, as they do not calle any concussion or splintering of the bone. la an cmergeney, or if the skull is perticularly hard, the "pening ean le mpidly enlarged with Lame's prowertul skull forceps
(r) Eirtensire Resection of the sholl. Although the alove methonl (limited resec. tion) is atill employed for explenatory operations, a more extensive resection of the *kull is particularly indicated in the operation of decompression. Here it is necessary to remore a large portion of the skull in order to make room for the cranial contents. The indications for this operation are twofold: (1) To relieve the symptom, of general and local pressure in the case of epilepsy (originally suggented by us and made the subject of careful researeh in 1893). (2) To diminish the intracranial pressure in cases of new growth.

Two inuportnnt works have reecently appeared, one briedrieh of Greifswald ${ }^{1}$ ${ }^{1}$ Friedrich, "Die nperative Beeintlussharkeit les Epileptikergehirns," . 1 wh. f. Klin. Chir. Bil. I .
and the other ly Cushing of Baltimore, ${ }^{1}$ which afford excellent tentimony to the value of operation in the above conditions. Following our adviee, Friedrich attacks the bone and dura over the mutor ara, while Cu-hing devised an original methol (interinuscular methol) in which he provides for the expausion of the lirain by trephining over the temporal region. Both metherls have their own indications. Whenever a large portion of the skull is to be removed, a general anesthetic is essential. At the same time a level anasthetic may in also used, while all prophylactimeasures for the arrest of hemorrhage must lie efficiently arranged so that the ineision in the soft parts cha be made withont the operator loing encumbered ly any bleeding. When a straight imcision will suffiee, it is the simpler methon, hat a curved or thap incision must be made in cases where a conviderable mount of bone is to be removed. Friedrich makes a large skin Hilp similar to that ado 'ed in Wigner's osteoplastic methoul. The skin incision must always lo made lim. on

Fis. so.-Trephining for decompression (Cushing's temporal method).
more outside the circumference of the bone to be removed, and this is still more inportant when recourse is had to a curved incision (Cushing). The stitehes in the skin must never be placed so as to lic over the edges of the bone.

The incision is carried right down to the bone, and the soft parts are raised along with the periostcum with a sharp elevator down to the base of the Hap. The layer of muscle must not be injured in any way as it forms an excellent cushion when the soft parts are replaced.

The prescrvation of the muscles is an important factor in the formation of artificial cerabral herniar, and is the essence of Custing's temporal uletation (intermuscular) for dealing with cerebral tunours (Fig. 80).

In the latter operation the curved incision only divides skin and fascia which are turned down off the outer surface of the thin temporal fascia The temporal musele is incised parallel to its fibres down to the pfriosteum, the elges are retracted, aud
${ }^{1}$ Harvey Cushing, The Establishment of Cerebral Hernit, etci, Surgery, etc., Chicago, Oct. 1905.
 by this methol in inoperable thmours of the hrain, and enormons evebral herniae have lenel toleated without giving rise to sutmednent ill effirts.
 resected in varions ways. It maty ln satil on primoiple that the simplest methorl is that in whioh a small opening is first malo annl enlangel as remirem (wife the
 such as Horsley, Frazier, and Chshing. The initial prening is make with a trephine, althourf Frimbieh nses the Collin-lnyen spherieal drill. Whatever instrmbent is nsed ior making the original oproning, shitahle forceps umat fur emphered for its enlargenent.

Horsley enlarges the "pening with a large-sikel Liston's rintting binceps which allow of the mpide romoval of large piomes of bous. Lemes firceps are equally satisfactory, but if such instrumenta are nsed, the primaty trephine opening mast
 ('ushing and kianse) or the ('ryr-sulemek furs (nsed by Frimproh and Frazier) induive merely a small drill-hole to legin with.

Suleck's rotatory limr, whidh, armorling tu Frazier, had heen presiomsly desuribet by Cryar, and other electromotor drills is very eonvenient and canses less bleeding fronn thi lnome than cutting instruments are respmoithe tors. It oreasiomally fails or proves very tromblesome when employed on a harel thisk skill. binhlgrents and de Vilbis's foreeps work mhmimhly for thin bones, such as the temporal (in ('ushing's oyraration), litt for dense thick lume strong forceps are more reliathe. Kranse uses all extra strong pair ol Dahlgren's furceps. It is alvisable, therefore, to have gomge and Lamed forrepa at lanill as well as the ordinary Inne foreeps.

Tor relieve the intracranial pressime, the dnat must be removed as well. It in first incisend in the manner deseribed for exploration, i,f. in the line of the larger vesvels, after whid it is , liviled transwersely, and : he vessels are ligatured. The pointed tlaps of dura so formed are then raised and divided romul the feriphery of the

F1... $=1$,

FH: 8:.
-i!er Sillewh Lurrs. opening, a procedure whieh atfords less riok of inging to the holging brain underneath it. Friedrich makes an opening in the lone from f if tor rim, in dimeter, and that in the dura from 3 mp to 7 cm. Conshing maintains that for the relief of
 almost to the edges of the bone. As has already beren statet, the pia mater must le carcfully preserved while removing the dura. C'mshing as a rule makes the opening in the bone from $\boldsymbol{f}_{\text {to }} 8 \mathrm{~cm}$. in limmeter. With regard to the closine of the wound, ('ushing first mites the temporal munslo with intermpted stitches of tine silk and then eloses the soft parts over it. The larger the womm, the bure essential it is, in our opinion, to use a deep eontimous silk suture which includes all the beeding vessels.

As the exposure of the cerehedlon will lwe consinlered in a later chapter, the reader is here simply referred to Fig. $\mathrm{E} \mathbf{3}$, taken from Cnslinge's work. illustrating the oceipital decompression operation. The incision is mate in the form of a erossbow, the arel of the curve being made high up in order to preserve the oollateral anastonosis between the occipital and temporal vessels. The vertient limb of the ineision reaches down to the spine of the second eervieal vertebra, and soft parts and minseles are turned down as far as *le lomanen magnum.

After removal of the periostemm the thinmes part of the posterion fossa is opened

On looth sides, and the opening in enlargenl first laterally amd then upwarls to the lateral sinus and downwarls to the fommen magnme. If enlargeel towards the middle line, the cmisary veins deserilend by Frazier will be eneomentered hand give rise to severe heeding. The latter are only dealt with when the median hridge of hone is to be removel for the furpme of expuwing and ligaturing the oceipital sinus.

Cushing also remover the whole of the expmeed dura, bint expressly states that the

 inereased cereloral pressinte.

B. OSTEOPLASTIC TREPHINING

3. Osteoplastic Resection of the Skull with the formation of a Flap. (Ontert-
 the brain itwelf, he it simply for the alpliention of al ligature on for the remonal of at

 perieranionu．

 hatimet．

 is turnal dewit．

 is slight amb may he easily arrested hy phoginge．

 （o）unke tlec antinnation of the greation imporaible．

 ［utformed for relief of tellsion．

fin．$=1$ ．

 ems ery

 athes a line whid falls a little insibe the incivion in the art piats．The salw line
 sinking in．The base of the lumg thal is thell ent thongh with a ghamerl ehisel．

 nead be made．Fre the large verack emoring the hase of the thap．On the

of the head, the dural Hay, may be invertent i... the have leving plared mpwarlas and the convexity downwarls, the harge veins in the hase of the dumal Hap, leing divideel.

It in important that the line of ineinion in the dura shombd not coincide with the

The resulte of anterphastic tryphining in akilled hands are shown in at commmication by Cushing (Now. 190.5), in which be shated that ont of 100 chases he hard mot haill a single fatality. This *how, that, if the proper rase is seloetes! nud the
 tecluighe is gewnl, onfe need not le wo diffident in mulertaking it as omr experience lal ne to state in the fourth crlition of our work. The indientions for "premtion mutst, however, Ine nhesolutely clear. The fart that half the skill may ose turned down with impunity is no excuse for

 to "perations on the lrain, jarticularly the renowal of thmomes, which reppire plenty of renim.
 which the Haps are minch larger, possesces advuntages wer simple trephining. Incramse in the liatere it is amelh more ditherult to ohtain proper subsedpent access if the trephine "prening is wot exactly over the de-ired sint, or if the deeper gart if the womm late to line enlargive.
4. Oircular Craniotomy. Lamelonghe has put forward the the
 that the sutures arre tou, soon nosified, arol that the lox of the skull having lecembe rigid, the developpuent of the irain has heell interfered with. He hats therefiore cht out longestrips of iwne, a therely formond artificial sutures. The alvantages of this prowedure have, righty; leen very much dispment. The bext methen of procedure is the circular
 after comersing with the a alwnt idiow and microcephaly. It i. relatively a less mevere "pration than hemiemaniomy, and it is attended with lens hamorrlage. We perfirm it in the following mammer: 1 sagittal incision is made over the midele line of the sknll from the
 the skin atim owepito.frontalis, which are stripled downwards as a Hap, with the haml, just ins is done in the font mortenu demm. The periostemm, which has remained intact uron the Inme, is divinted horizontally at the level of the hases of the reflected thaps, aind the skull is then stwn all rommi, just an a postmortem, hat not at suel a law level.

Onc place is drilled throngh with a Suleck-Kimmed opherieal hur, and a bole, ahout 2 cm . in diameter, is made down to the dura, which is then carsfflly separated from the lame. The dura is more adherent to, the lane at the situation of the sutures, amil to some extent alsor where the vessels lie. A strip of bone. $\frac{1}{2}$ cmin. broati, is rapidly removed with entting forcens. Opposite the bagitulinal sinms, in fromt and behini, one mast be experially careful in separating the duat fromi the bone ; lout even here it can lur easily aceomplisherl.

In this way the roof of the sknll becomes quite movable: hut it is necessary to divide the duri to prevent onsifiation pruceeding from it, the impurtannere of whicl?, as we have alrealy mentioned, has recently Inen pointed ont ly Beresowsky in
 lringe...

The operation is attended with very slight hatmorhage in chiliten. Shonld the heeding le severe, it is recommended to pmstpone the division of the durat for two days. The skin flaps are simply folded bisek inte position of the dunated hor a
contimumanture. We have performed the opration nt one xitting withont cansing any shock, and have nesed mendy a collorlivin dressing; lint where there is any heeding of importance it is Incter to apply pressure of hemalage.
5. Oraniotomy for the Covering in of Onseous Defects in the skull. The
 of late yeurs more than is necessary; and has exercioul their inventive fountions. Donbtless the promliarity of the cerdmal eirenlation is Inpentent on the presence of a mapule which is exsentially tense. Small defects are, thamks bartly th the onterplastic properties of the outer laver of the dara, as a rule, eventually closed. Gometimes, however, the deticieney lnownex tilled with such a firm sar that ine ingury to the rirenlation in the aknll invernes. for this to fremr a wry large defeet is repuisite. The eavering in of such defects has, however, distinet disulvantages, expectinly when the cenitente are puthologienl.
 aremint of a lesion of the lateral xims following a emmimited fracture, an extensise trephining wax performed with resulting hernin rerelri. Tlle slight intelleethal
 as sorm ns a tirm plate was apliend, lout leel repeatedly to epilepitifinm attirch - fromr the presulure conneeterl with its nase.
 whether, when a large defeet in the whull is issonciateyl with intelleretnal disturnmere. a tirne elosure with pressure prohlures real heretit, and whether this is attanalle with-

 luse directed towards the versels sumplying the salp, and is taken trom the in wherliate, neighbonrhomb. Instend of merely raising the perieranimun and akin from the lume,
 saw (Xicoladoni). The distinetise feature of :his ipreation is that mot only is: an excellent long jolate obtainet, but, as we shall point out later in spaking of revections and amputations in general, the osteoplantie layer of the surface of the Inone, i.e. the deep hayer of the periemanim, is. retained gnite intart. The fiact that the Irome breaks into spdinters has no disalvintage whatever. The lager of lome

 hong layer le tirmly conneeted wis the somad lane. This applies in garticular to

 atudied the bechaviome of tranoplanted lume in defeets of the shill, and has rome tu

 investigatinns, in that it brings alout healing of bong defects solety on aromit of the introntuction of lime salts, cimses a very slow healing. Ineramse it "In mese littlo resistance to the pernetration of the gramalations. The host material for this purpore

Acerrding to Barth, the implanted material itself disinplears, but into this solal layer of loiled bone gramlation tiswe grows from the diphe, from the dua, and from the pericrinimen in the well-known fashion, and rapistly take on the form of the absorled implated material. Comedons bone is mome casily grown into than
 inner surface of the tibia, it is hetter to satw out it slighty cmrem liyer of lome of the necessary stape from the epriphysis of the tibiat ly means of a tine donille-d pred saw (similar to that used for opening the spinal canal in the jwist-mortem rown), and to place it securely in prosition. If dead lome be enployed it must be boilen.

In the strictly heterophastic methool, the celluloin phates of A. Framkel harve advantages over the others, as they are readily dixinfected and easily ohtainable.

Framkel very rightly starts with the idea that it is not dexirable that adhesion shomb take place between the implauted portion and the cerebral membrantes, as is unawoidable in the glamalation formation to, which the implanted bone gives rise. But it shonld le mentioned that these allusions letween dura and skull liring about no real disulvantages, aml that, according to Beresowsky, it is only in defoets of the char that adhesim with the imer membranes of the brain is to be feared. Further, it is only an intact pia which can atford proteetion against eicatrical provesses extending to the cerebral cortex.

It is well, therefore, when the phia-arachomid is latid bare, to follow frial advire and to interpmse a layer which dhess mit lead tor adhesion with the sulyatent membrane, either his ecluloid phate, as a bermaneut heterogenenus hayer, securely intrenticed without dainage, with suture of the skin: in (ass we have elsewherr mentioned, on the gromuls of beresowsys insestigatims) we may employ antoor hetero-phatie Imae, ome of the serons nembrames (fore exanmpe, a piece of tumica
 growing grambitions.

Schifme ' (Durantes clinie) has pulbisheed the results of thirty-t wo trephiming "preations on chess, in which he fomm that large defects in the skull and dura were replaced by dense comective tissule wheh ultimately becaure adherent to the cerelnal sontex, and led to printial disurpearance of the nerse elements (ginglion eells) and the the hain) were wherverl. So motor or sensury disturbances (epilepsy or problase if

C. SPECIAL INDICATIONS FOR TREPHINING

There eatn he no servier renderel in romsindering at this stage the mumerons "militins: in wheh trephiming may be indieated, an that moly a few mecesmary

6. Trephining over the Sinuses of the Dura Mater. The superior hongitudinal.

 When the sims is mily slightly injured, as hatpenenl, for example, it a case of gam-
 renedy : lont when an infertive thrombsis has to be factel, a condition most rommen in the lateral sims seromblary to inflammation of the middle car mull mastoid cells, the

 lomgitudinal simus has Ineen recently reanimentimel simus. ligature of the superion epilepsy, a sugention made as the rewalt of ended hy Delacerniere in the treatment of

 a sutficicht collatemal anastomosis.

Similiarly, interference with except in the sense that from the eredrat circulation is sedfom to be expeted.
 veins in the anterion portion of the lrain. The lignont find its way directly into the on the rentral side of the point at which the veins proevedine therefore lhe applied
 owt he attempted withont dine comsideration in in we this methon of treathent shomb
 if the mesial phare, int this is disputed he Danas it Horsles, entirely to the ripht

[^53]of $1 \frac{\mathrm{~cm}}{} \mathrm{f}$. from the middle line the lome must le cantionsly divided and the dum carefully sepmrated. The thin walls of the lawne are more realily torn that the Walls of the sinus itself.

When it is necessary to wound the dura in the meighburhond of the simme, it is well to provile sutfieient same, in order to be prepared for all emergendes, fon there are commonisations hore with the diplnie veins (spheno-parietal sims), amb

 to the other.

downward contimation of the sulperior longithinal sinus lelow the level of the external ocecipital protulerance. It is ligatured in providing relief for cerebral tension as well as for the removal of cerebellar tumours. As already mentioned, when hemorrhage which ertaken for decompression, it is often diffienlt to arrest the during the exposure and ligature of the sinus.

 bole and puncture of the descendin. worn of the lateral ventricle.
 frequent operation, becanse thrombosis and suppuration secur most frequently in this sinus in conserpuence of its implication in inflammation of the midulle tatr. It is expecially the deventhing limh of the sinus with which we are concemed in this operiation. The point for trephining is determined by feeting for the most prominent pant of the base of the mastoid proeess, which forms an projection behind the attached margin of the auricte. There is a ridge, a fingers-mreadth higher, which passes chlingely backwards and mpwards, and corresponds to the posterion extrenity of the
tempral crest. Petween this ridge and the almese-mentioned prominemee, "n the immer surface of the lume, is the lateral simis. It correspmels to the pesterion part of the middle third of the mastoid process, und can le followed a little farther downards In yond it. With the auricle applied to the shull, an incision is made correponuling to its prosterior free lorder (Fig. i6). Superiorly, the incision divilos some tibres of the tempmal musele. The preriosteum is divided at the same time, and the thap, is aeparated forwarls, the attaclment of the semomantoin being detached with the kinfe and the pasterior margin of the wound retractel backwarls. On chiselling throngh the bome the wall of the sims is expmed. The emisary mastoin sein

beath followed inginy to the lateral sims: in all the cight cases or, ilated hy Gargolphe and Piery. bepace, in Fobrury 1900, hat it rewnery hy phesing, in a patient in whom a plinter of bone land womden the sinns. Marh nome frequently, however, we desire to atom ngming the sims in onmations in this sithation, copecially in "pening the mastoind cells.

On the other hame we have tor open the sinms in mane of infertive themmens

 Intween the buse and the sinus wall.

 hamorrlage, especially from the midille meningtal attery hat metre torenty sumpems

 the extravasated hood.
 in extroumal bematomata, the rexilt of laceration of the midelle menimeal antery.

 indiations for "peration were fomm in desending nemitis of the right optie merve with amblyonia, ingiry to the ripht oedomoter, with penis, and some interferne

 the facial nerse.

These multiple foeal symptome as well is the atfertion of the lege withont the
 intradural, rather than an exasomal, hemanoma, lucanse the bown in the fommer may lave a wider and more mempal distribution. Dultijle nowe lesoms at the hase of
 circumstances point in that direction, lead to a diagmosis of intradumal hemorrlage, beranse the dura is with ditfientey striphed off in that region. Simmitanemis paralys. of the optic amb enemotor nerves alone, as also choked lise on the same sille, are l-y min means musual, even with extradural hiematomata.

We may direct special attention to a further peenliarity, mamely, that in sumbural hematomata it oceasionally happens that the prablysis is not "crosed," and is "herefore liable to surgest an extradural, or a central, lesion of the "川prsite side.

Stabel reports a ease of right subdural haematomit (90 e.e.), "perated on hy hahn, in which there was deviation of the heal and eyes to the right, emmplete paralysis. of the right lower facial region and of both right extremities, while on the lelt side there was merely spasm, with inereasel reflexes in the leg and arm. We cannot
 shown in disenssing loeal cranial pressure, we regard the right-sided paralysis as due only to displacement of the fals cerelni. We have publishel a mase, after personal observation, which proves that, in intrahral extravasation, the lonal pressure is much less than the general or eonductet pressme, hemuse the bloud distributes
itself more, and may cause n lesion of the opmosite cortical centres (in Haln's rinse there was great tension of the (ura on the oplowite side), or may interrupt the conduction along the filmes of the corona radiata.

By trephining, not only mat the blood extravasated under the dura be removed, but the nource of the blonl may be diseovered and the hamorrhage successfully: arrested by ligaturing the bleeding artery on the surface of the brain. Schneider ${ }^{-1}$ of königslerg, for example, in a case of phatured wound in the left temporal region, with aphasia and increasing right-sided piresis, trephined, divided the dum, cleared ont the extravisated blood, ligatured a spurting branch of the middle meningeal artery: and sutured the dura with entylt. The lemiplegia improved on the second day after the operation and the aphasia on the third day.

Mention must le made of the aid to the riagnosis of sulndural hamorrhage afforded by the presence of blood in the cerehro-spinal thid drawn off by means of Quinekeds lumbin puncture.

Intracerehral hemorthages, which have given rise, bemiplegin have also been stlecessfally treated ly trephining imel opening into the extravasition so as to let out
the hookl.

Horsley insists on the neeessity of surgieal interference in contusions of the brain, and in extravasations of homen into the substance of the brain. In his eommunieation, to the International Medital Congress in Berlin, Is 90 , he stated that he could not laceration of the brain, whether wonh not have interfered in complieated cases of aetive measures in all eases of simple laceration standing. Further, lie also adrises the orenrmence of epilepy sooner or later which was satsed ly operation, and eor. He referred, in this connection, to a cane treatment in whieh death ocemmed (with ented it with a simi', one with expectant The suceessful ease was that of a medionl and convolsions) within eight days. frontal, parietal, and temporal lole medial math with extensive laceration of the existed for ten days and wass followed log com hemiplegia and meonscionsmess hat means of extensive trephining and washinur ont of Cheyne-Stoken respiration. By entire left smblural space, complete recovery resulted bo thelot, which ocenpied the resume the practice of his professim.

Cushing - lats also remorted and
of the skull in which he remosed and was of interesting canes of fracture of the hare trephined over the temporal bone (intermmendar wethod) effisions of hood. 11. withont further disturbanee. He furthermacnar methond) and the patient recovered after a head injury, the vecipital hone shoud hads that where bulhare symptoms develop
by his advocaty of trephining in the new-born (indh sides of the middle line. inportant range of possibilities, which the oh-born, Cushing has opened up an sideration. In a maer published log the ofstetrichan must take into eareful conthe new-horn, he states that he foun him ${ }^{3}$ dealing with snhmmal hamorrhages in soon after birth, that the embse of death wathorn ehildren and in children who died the surface of the brain.

The hemorrhare ino tear at their npler end durimemony arises from the large mid-cerchral veins, which they are most easily torn, as in the orer-miding of the parietal bones. In this situation Hence the thickest deposit of homal is foum andmaral mace they are least supported. in the region of the centre for the lower ower the upper end of the motor cortex are chiety found in sinastie ecor the lower extrenity. It is here also that the leabos the basal ganglia chiefly sutfer, and pasy (Little's lisease). In fratures of the hase, this emane.

When the spuptons there are maging of the fond to the presene of a sublural hamorrlage, if. when couvulsions, and moreover whenelle, niow pulse and respiration, dilated puphs, and lumbar puncture, the brain shonld be ext fonnd nixed with the spinal fluid after.

[^54]an osteophastie flap of the parietal hames. Cinding has effeeted this with meces in both sides.
 other mental disturbances associated with el anges in the hrain foliowing a hanmorthage.
'irephining may also le perfoned with lenefit in mon-tramatie harmorrhage awas proved hy the lorilliant e're of a case recontly moler the eare of Khol of Clum. In the cases described hy A. Framkel, and corecetly differentiated hy him from

 rate immediate death from cerchal comprewion in ta $h_{\text {e }}$ avoided ly relicving eerehral persure. The presence of apmasmementing to a tetamie emblition, and of maliateral
 allows the diagnesis. to me mate with anticient ce:tainty.

Abernetly long ago drew attention the the hallematess of the lume owerlapming
 in the case of an ohl man. For further information we mint refer the realder to the

 that the first ohjeet of the trephining, even in hamornage of the wermal moninge. must be to find the hiematoma, or, more comreetly, the harmathmatia. Ther remmail of
 compression. Aecording tu Wiesnam, presure sympoms may he entrely abent even with 7 a c.e., and this is in agreement with experimental womation: on the
 i., over \& oi the normal wright of a manis hrain (1430 grams), or exactly a if the nomal volume of the shill (1:00 c.e.). When, therefore, the exatue of hinul at the site tiephined is too sumall to aceome for the symptoms, it in whisille th searelt in annther place.

It is ouly after the homel has heen remenel that the phestion of ligature of the heeding artery arises. Mon frephently we lave to deal with the midille meningod artery. Ble eding from this veserl terminates fatally, acemeling to Wiemamin in 51

 This point lies two tingers-beadth almose the egematic arch, and a thmolis-breadth belinal the external angilar provess of the frontal bone ; but it strike omly the anterion binath of the artery. In order to expose the posterio: lramel at the same time. the trephine mast he applied immediately above the midele of the ogematic arelh. In adlition to be intergment- and the periosteum, some vertieal thines of the

 downards and backwards, to the posterior extremity of the gyomatio arch, and
 the skin and the strong temporal fiacia, and ligatment the sumpertial temproal artery, the inesiom is carriwl down to the hane at the penterion horker of the tempral

 - phanems temporal, muler which the meningeal arteries lie, is experet. The bone here is sery thin loirier (and we agree with hime) reemmembe trephining of em. (2 inc.) anve at mint miskay hotwon the rxtermal anditory meaters and the frontal
 chiselled out alove the zygoma. The midnle meaingeal attery liw in the alymertieal surface of the darn, leing occasomally imbedded in it.

[^55]Kronlein, who has hat great experience of bleeding from the middle meningeal, has deternined the two points nt which the extravasation from the menterior and of Krianlein lie in a line drawn horizoutally likely to be met with. These two point. that for the anterior braneh leing 3 to f back wards from the supraorbital margin, of the frontal lwome, while that for the posterior inind the exterual augular proress line drawn vertirally upwards from the posterior is where the above line intersects a

Fitio ss. - Lisgature of the middle meningeal artery.
extravasations (as he once oher
magmm, Kroinlem gives a third point which reach almost as far as the foramen right or left half of the superior curve for trephining, viz. below the $1:$:iddle of the steiner, after investigating a curved line of the cecipital hone.
invariahly at the crossing point of hundred skulls, has found the anterior branch the midde of the ghandia mal the a vertical line flrawn from the mid point between drawn from the middle of the glabelle of the mastoid process, with a horizontal line 90 per cent of the cases, is at the crossing the skull. The posterior branch, in line, with a vertical line drawn upwards in front of the above-nnentioned horizontal

8．Trephining for Abscess of the Brain．－Cerethral almeresors like sulnhural abseesses，most frequently urise from an extension of the intlamparory process in the eoverings of the hain（aknll and soft parts），the indan mation ：：ener originating in

 metastatic in origin（e．\％，in ostemmelitix staphymyentea）．

When due to an mingry，a rerehnal ahseens may oneenr in any sithation，nisually． however，on the eomses surface of the brain，the antiseptic treathent of the womm hasing prevented the unthreak of a diffine meningitio．The skill in suel enses is trephine！over the seat of the injury．

In regard to the methal in which trephining is preformed，it is mont important． when once sinplurative inflammation has wearred in the region of the bran，to
 operation is，of ewirse，not to he comidererel．

If there is an existing defect in the hane，eaf，a depresuad facture，the latter munt he enlaged with entting forrepe，or with Lame：forcepin if the lene in wery hatal．The extent of the sulumal collection of pms must then be determinem，ame the In me eom－ pletely removed for a comednumbing distance．The dura is then thoromghly cleansed and opened，the siae of the י！ening depending on the extent of dismonation present． Ocasionadly the dura in the region of an absess appar，markedly pale．The
 larger vessels on the surface of the dura ate ligatured，after whinh the dara is ine ised， and the abseress fredy nened．

 has to he evamated at the sides of the trephine chanime．

Wie lately onerated on a patient in when a acrehal aheress hal rimptured into the

 complete，and at the autopsy we learned that we might have preventel the fatal exten－

In contast to the tramatio vane，there arre hefinite sithations in which ereremal
 fromal simeses）and from the tympuic eavity and its anmeses（otitis media and
 of the hufertion．

 these canes it is alviable to follow the wollen male and invariahly attank the abseres therongh its ongion in the skill itself．Fin an ahsees in the fromtal home，the fromtal sinus and rof of the mese must tirst benemen．When the sumere of infertion is in the tympaid eavity the mantoil antrmin attackerl，and after the later has heen opeled the track ly which the sulpmation process late extembed is followed out． Maeewen laid down this rule in his elassical work，oll whirh the apecialist：knowledre Was urigimally hased．Millee（Trantmami）hav reently urped in strong terms that
 ahsess of amal origin．Kitase has opened ahocesses on the porterion surface of the petrons－temperal with suceess，sulsepuently phaging them．

In many eases，wen when an examination ly an amal sperialist has failed to

It womld ine mere repetition to deserile the steps of the oneration at this stage，as they are dealt with moder trephining of the frontal simus and mastuin antrmi．It should le noted，however，that as in every case where there is the smadle：s smpinion of intracranial suppration，the essential feature of the operation comsists，ats in the ease of injuries，in a thormughe exposine of the area of suppuration．This means that the early stages of the operation must be devoted to providing ettieient access．
9. Trephining for Cerebral Tumours. - In trephining for cerehml thmours

Wagner's onterplastic operation is the one commonly used, und except in those meses in which the tumomr enn lee very exantly lowalised, the thy, turned down mmat be of considerable size (cf. urrest of hemorrhige, gb ITS). As ulready stated, the ostepphatic operation is more difficult to perform than is simple trephining, mal in denling with a cerelornl tumomr this diftichlty is even more markerl. No operutor should therefore uttempt the removal of a cerehral tumonr unless he has obtnined a large monont of experience in trephining.

Hevere vemons bleeding monst always hee expetan, on aceomnt of the increased intrucranial pressure. We ngree with the views Cushing has evolved as a result of his brilliant experiments, that the inerense in the intmeraninl pressure initially. produces a state of venons congestion, but that the oronequent obstruction the passage of blowl throngh the bran (dysulimorrhysis cerehri) is owercome by a rise of blond-pressine resnlting from irritntion of the minnotor centre.

Frazier has very properly observed that the latter rise in blood-pressure will suddenly fall whenever the intracmaial pressure is reduced. This both Cushing und the mothor have contimed, while Frazier attributed the shoek mod collapse that frequently follow oprations on cerebral tomours to this cause. In udition, the lows of blool, and prisilhy the action of the andesthetic, tend to argravate the eomdition.

One is therefore inelined to follow the clear instrietions Frazier lins given in connection with the two-stuge onneation, mmely, first to extimate the blown-pressure with a sphygnomanometer mul observe whether a smhlen or signifiont fall oecors after opening the skull and turning down a thap of dura, as in the event of a matered fall in the hood-pressure a few days shomld be allowed to elapse before conpletion of the operation. Honsley ulays opreates for rerelmal tmmours in two stages (a methond mo alopted by v. hergmann in eaver of large thmonrs), in whish case the wommb must le very seemrely chased before the seeond part of the operation is molertaken.

After reflecting the flaj of dura, the operntor enoonnters mother compliation which, us Frazier has shown, groves very tronblesome, viz. an emomous bulging of the brain. The prolapee of the bram may be either "initial" or "consecutive," the fommer cansed hy the inereased intmeramal preswime: the latter, which may be very serions, by a loeal cerlema of the brain following themal or merhanieal injury (Canon). The surgeon must therefore mpinlly acede ly inspection, palpation, puncture, and incision, whether the operation should be eontimerl. If not, the womad must he instantly clowerl. In a vase on which heen and Frazier opraterl, the opening comblonly le closed by means of inserting a flap of perieranium between the edges of the chati.

If these "perative dampers are kept in mind and steps are adopted to combat them, in many cases it will he fomm that the tumour is sitnated smperfieially, that it proceeds from the dura, and that it only amses death me hanionlly, first givine rise ${ }^{\prime}$ to severe hemarhe, vomiting, epileptie attacks, and mental distmbances. It is at great injustice to persevere in the merlinal trentment of a case when a patient exhibitthe symptoms we have mentioned, and is becoming blind and mentally disordered. simply hecanse one has tow little fath in the aid of sugery. Becanse, as has been already stated, the consolation in all these operations is that even if it is impossible to remove the tumour, one ran always be assmed of the certainty of relieving the cereloral pressure.

After this description of the attembant dangers, we find the operation performed as follows :- The patient is carefully prepred, stimulants and morphia being administered, with ether as the andesthetic. The whin is cleansed with the strietent antiseptic precantions and should le thoronghly protented even during the opration by means of sterile cloths attiehed to the whonitedges with akin elips. A peliminary injection of novocain and adrentin may be administered ten minntes before the incision is made.

[^56]A rolber hamd is finstemed romul the skull, the pationts hemi and shomblers are elevated, and eare is taken to have the mpratimg table heated. A large emrend incision is then made throngh the soft parts down to the laner, ant the flat of lume (Wagner), the hase of which is lehow, is mapped ont with a Irill and the C'ryer-sindeek burr or (iigli sulw (erife xipum). The hase of the thap is then brokere ly raising it up ou a strong elevator, the hamorrhage being nerented by muns on llorsley: wax.
 by a cructial incision.

The pexsition of the tumomr is then determineal, and, provided that the patient:shexshpressure permits of preveding with the operation, the brain is ine ise in, after fomble ligature of the vessels in the pia mater. The edges of the wommel in the brain are lachl
 not tow close to it, however, on areome of the greater heeding that is cheomerem.

If the tmoner is seprated with the tingers, sterilisal gloves must always l_{n} worn, as it is of the greatest impurtance to a woid even the slightest risk of infection. Tine

 The womed is then packed with strips of indoform ganze wrmeg ont of carbulic lotion, and the dura is arenrately sutured, the vessils leneng ligatured with time silk, ulter which the skin ineision is closed with deep shtures, inclnding all the havers of the seath, and the Iressimgs are applienl.

The gamee packing should not be removed for five or six days, by which time it has herome sonewhat lonsened lay the fonmation of gramblation tissine. The superticial dressings tmast le elangend whemever any diacharge soaks thromgh, and antiepptic gamze must le reapplied.
 is contident of the presence of a cerehellar thmour, it is often imponswible to deride in which lobe of the cerebellan it is sitnated, i.e. it is more ditlienlt to lowalise exactly a tumonr in the cerebellum than one in the cerehrm. Cerelnellar atany (disturlames of equilibrium in stanling and walking. withont artmal motor atasy), giddinese, marked pressure symptoms (choked dise, headache, vomithig), and also rigidity of the neek, are sympoms ammon to tmmons in varinus ponitions. It is only when the thmom invales the base of the brain and involves apeeial eentres and nerve-rogts on one sile, that one tan detinitely lwate the side on which the thmoner is sithated. In exposing the eerelelluan, therefore, an "inerator minst employ a method which enables him to examine the whole pesterion surfane of the eerebellmm, i.e. both right and left loles. This is all the more imbinated by the liat that the ineivion to expmse lyoth sides of the pusterior fossia intlicts less injury than the exposition of one side omly.

The incision pases vertically mpards hehint the mastoid process on one side and is carvied a fingers-breadth ahose the sulperior curved lime of the oreiphe and wer the extermal owipital protnberane to a corresponding puint on the other side.
 nevoeain and adremalim may lee injected with abrantare. A centinmons or a series of intermpted hoop sutures may also he inserted ahove the convexity of the incision in order to comtrol the hemorthage from above (Hedenhain and Hacker). The Weeding from the edges of the Hap ean lme easily arrestent by eompressing the Hap between the fingers of the left hand and elamping the hanches of the mainartmy (occipital) and vein with forcens.

The perinstemu is now detached with a knile and elevator Trom the oecipital bone along with the attachments of the nerk mosilos as far down as the foramen manmu. after which the posterior fussa is opened and the dira freely sepmated all romul, which mint be done carehully in the region of the simses, expecially the recipital simus, although the bone covering the lateral sims may be more fredy removed. The oprening is then enlarged in all directions till the dura eovering the eerebellum is expoed in its whole extent (Fig. N 9).

The freer the exprosure, the less will the brain le injured in looking for the 13 .
thumer. The dura is mot upelled till one is certain that a large part of looth cereledlar hemiopherew and the vermiform process can the directly examineed. A thap ineivion, convex npwarls, is then mate with a tine kife mull the eriges of ther dura are retructed with small shary howik:,

Fiv. 89. - Eivosare of lenth cerelnellar loles. The tigure alve shows
 reswes; a large atol eonslant sibus in the lone transmitting a tribntary uf the lateral sinus; the lateral sinus; the external
ocipitai potulerance. the inferior surface, as mo nerverrons were involved. Inesterior aud wot from thmour on the right side as the dise on this side was the experted to find the diagmonis proved correct exeep with regaril the was the more comgented, and our situated on the left side, and at firnt cenarll the thast pwint. The thmour was whated on the left side, and at first cori!. omly he detered as a firm areal muder

 removal of a thmour in the region of the cerebellipoutine ansle.
packing may be ins . . The accompanying two fozing continnes seroform ganac excellent work on cerebellar themour 1 In Fis figures are reprenduced from Frazier:
 has been ligatured and eut and noted that more bone may have to he removed higher upg well reen. It should in. preserve the external oceipital protuberance as a protection for the undery desimalile to

[^57]

 to the areas in well sere.
he entirely removed and huth sides of the cerebedhm exposed. Acourding to l'ioghe

D. CRANIO-CEREBRAL TOPOGRAPHY

In order to avoil having to make monereswarily large trophine amenings, ra\%

 mere previsely this is effireted (experially in the early stagen) the smaller is the
 thell of comrse thore must ine me, hesitution in turuing hown a large cisterp plastie Hap.
in previons elitions of this work we mempinned that it is a mistake to eronsiger
 fissure, while the methonk whirh heyenill on the reengnition of the fissure are mot the
 almondant prof that the moter erntres are emontained exchusively in the premental

Fis. 93.--1mintion of the nutor areax in man (Krause). Nite, they are all situaterl in the precentral gyris.

The experimental results of these observers in the case of the ane lave been confirmed ly Kranse in man hy means of mipelar stimulation of the brain. Kranse used a small induetion coil, fitted with two Leclanche cells. One large flat platimum eleetrode was plaeen on the lanly, while the other, a small spherieal phatinum point, insulated and sterilised, wais mplied th the brain, the latter being stimulatell with a weak current. Fig. $9 \cdot 2$, taken from his work, illustrates the prisition of the varions. centres whieh he was able to determine hy this methorl.

We reproluce, mapled ont in the figure of the left hemixpher. (Fig. 91), those areas with whose localisution we are mont exaetly nequaintel. The lettering is so arranged that those areas which in man may be regarded as fully settled are in:lieated in hatek. The remainitst centres, on the wher hand, ahont which there may be a doubt, or which are not exartly telineated, are indiented in mol.
It will be elearly seen from this figure, the cerehmal surface of which is drawn from nature, that the mijority of the known entres are groupel romul the preentral

[^58]

 detime earety the pasjtion of the prevelitat sulems．

 errimal motor areas lio exehnsively in the pyrma eentman anterior．

mate josition of the entical areat for the mavere of the trunk，and that the tempror－
 －mell athd tiste，and in part also the tavile rentre，are sithaterl mon the mesial surface．Fig． $9: 3$ gives a sutfiejent ioleit of the relations．We have also to dotine the vishal region，bectuse distmrlatares of vision，esperially in the firm of hemiamopia，
 mechanisum of sight is very extemively momented in the rortex of the weripital bine luth＂ן⿴⿰⿱丶㇀⿱㇒丶幺十 the limits of the oceipital lole with a fair mumut of prevision．＇The wripital lole is separated from the parietal ly the parieto－ocopital tisalme，whirh lies I rmo．in front of the lamenta．Its pastorion extremity lies a little abose the extermal ometpital protulerance，while，below iat anteriorly，it joins the tempert－xplemoinal lube．

 sted hambs，grambated in millimetres，one of which is phaed horizontally almae tho attachment of the amricles，and embraces the equator of the heal from the eflabella to

second band, fixed firmly at right angles to the above, is stretched sagittally in the middle line from the external oeeipital protulserance to the glabella. A third hand is made to slide upon this, and is so arranged that it can lee plated at may desired
no le to the sagital hand.

When one end of thi
earriod round to the glabeila, in fixed over the lambdoidal suture and the other of Poirier, hut which, however ane is oltaned which corresponds to the Sylvian line
 part of the first temporal convolution (and therefore also to the anterior part of the Sylvian fissure), posteriorly, it overlies its lower part.

Fin, 94. -Kocher's ramionter, showing the equatori .. vigittal, and movable hath in poition, the latter of which determines the prembral and sind mian fisobles.

In Fig. 9.s the lines are inticated which can be rapidly and casily mapled out on any heal by emplowing our apparatus. If the movable meridian hand is phated midway between the glabella and the extemal oreipital protuberance. and at an angle of 60° to the sarittal haml, it will overlie the preentral sulens. We have therefore named this, the lienes preventmalix. By trisecting the part of this line, which reaches from the mesial line of the vertex to the eqnatorial line, we can exactly detine the origins of the superior und inferior fromtal sulei.

In this way, as may lee seen ly comparing figs. 日is and 91, the linea pre-
 the centres in the precentral grins and at the lase of the third frontal gyris. it is satisfactory th note that anthorities like Neisser and Polack, who have emploged our

If the band lee rotated backwarls so that it forms an angle of 60° with the sagittal one, a lime is olitained which is termed ly us the limere limitmos, lneranse it demotes pretty exactly, below the pint where it aroses the linen temproralis 1 , the homblary leetween the temporal and oceipital lohes, while above the erossing it "rompends tur the jumetion of the supra-marginal and angman comvolutions. The

 represents the horizontal equatorial line athe the sagithat

 and liminda, preses the first tempral consolution luelwern
 - weech efntre is hadell with vertital lines, the visuil rexion is lotted.
 ghanella. This line corresponds, Detween the precental line and the linea lituitans, th the first temporal rinwhan, and, where it cromes the presentral hine, it corremonds to the anterine end of the Sylvian fisatmes The funterine end of the liuea
 the orejpital and parietal holes. A glamere at the figure aftirdon ineter explamatio than it is prisilhe to give in words. In will he seen, we have andhered th the methrod of pereentage measmements which was intronduced hy Hare, and fully worked ont hy Miller. Compred with ahsolate distances the methen his the advantage that it can le applied to auy form of skull.

We cannot, therefore, mulerstand how Kranse, who has fully recugnised the significance of the precentral suldras, still prefers to ley guided by the determination of the fiswire of Rolande.

E. SURGERY OF THE SPINAL CORD AND ITS COVERINGS

(a) Puncture of the Subarachnoid Space. LImmar puncture, which was introlneed hy Quineke, has now become a very importime therapentie as well andiagnostic measure. As we have already stated in the chapter on anesthesia. Bier utilised it for predueing anesthesia of the spinal cord, or canda equina, and sinee less toxic sulstanes are now used for the injection, and their effeet in rendered more beal by a eombination with alrenalin (Brame, the methen has heen resened from the disrepute into which it had been brought by the alarming aecidents that oceasionally followed. We have fonnd the results of novocain injections (Merek) most satisfactory.

The methenl of puncture has leen explained in the chapter on anesthesial. The chief indication for hmmar puncture, as it is bally termed, is for diagnostic purposes. Not only ean the prevence of effiusion of bood and of inflamuatory exmdations in the subarachomid space be revealed, hat the nature of the intlammatory process can also be extablished by hacterial examination. This may be of eomsiderable value, and shonld never be omitted in doubting cases.

A firther indication for its use is the determination of the pressme existing in the subarachoids space of the spinal cord and hrain, and the natme of the effinsion into these apmees. lery special care must he exercised if cerehompinal thid is to lee withdrawn for therepentic pmposes by hambar pancture. Lambar pmeture does mot five any very certain meanse of the pressure inside the oknll, as the pressure may fall very quickly in the ripinal cavity, and remain high in the cranial eavity. Finther, the Hhid in the hombar region (Volke) may he richer in allmmen than it is in the ventricles. The tramsmates in cases of thmour, for example, are rieder in alhumen than they are in cases of hydrocephalns. Lastly, eases of sulflen death have securred from hmmar juneture, because where there has been a high intraranial pressure sinden dimimion of the pressure in the canal has cansed the cerelellime to 10 foreed domn into the spinal canal, with the rexult that paralysis of rexpiration has onenred from pressure on the mednlta. (immpredt has eolleeted mo less than seventeen such cises.
(b) Extensive Exposure of the Spinal Cord. Exposilre of the spinal cord is mulertaken when the function of the corl as a conducting structure (rather than as a central organ) is endangered by presine, as the result of an inflammatory process, the growth of a tmmonr, or an injury of the vertelrae. The most usual conditions, which
indieate expesinre of the corl, are:indieate expesinre of the corl, are :-
(1) Fractures of the vert hara when the corl is eompressed either as a resilt of a dislocation or by a fragment of bone, which camot otherwise be replaced or remonert.
(2) Intlamatory conlitions, which are marely due to onteompelitis staphylomy. cotica, but are generaly of a thbernhous nature, the cord becoming eompresed and
damaged hy the spread of the disenve.
(3) Tumours, whiel, interfere with and which may either be extra- or int the combetion in the corl ly their growth,

The presence of a tumome urgently calls. results have been reported, in both extm-and in olveratim, and a mumber of billiant
 conts were oltained, the mortality heing 10 per cout the spinal cord 31 per vent of generatly from hamorrhage. Michosh, 1 however, ophernte eanse of death is whork,
 from the operation.

The chicf reasen why surgical interfurence has hitherto failed is, that it is muler-

taken at too late a stage, and further, that the patient s bealth has deterinated as a

 Anerhach and lirodnit\% have revently published particulars of a hrilliant case in whirh a tumour in the eervical protion of the erom extembing up to the athas was suceessfully removel.
 combitions, more expecially in tulnereular disease of the vertenne, ats in there "ases
 infrequently renoved hy appopriate orthondie and general treatment.

It may be regaried as an axion that "pration is imbieaterl when, aftere ame weeks of correct meehanical and ge neral theatment, the paralysis and othor evileneres of pressure show mus materiai improvement, on do ust disalpear althgether within a few months.
'Tremelenharg's adviee is to "preate after the tulnereuhns diseane is heakd, if there is still pressime on the cord from the dextruction or displarement of the lanues. His results have proved entirely satisfactory.
 spine. Natmrally when the injury has mot given rise to comblete interruption of combetion, and when after emintind treatment and whervation mimpownent ran be reeggised in the paralysis and sentry disturlances, a devision can be mone ca-ily arrived at. One must mot, however, moluly delay in relieving the prowne, althngh excellent results have been obtained by laminertomge ewo atter a lone intersal has elaped (MeCosh, Mmme, and others). In two caves Munvo fomm only a circhuseribed collection of thaid, the evacuation of which prembeed the desired ethert.

Sultan' has recorded the results ohtained by Tremdelembig. who has had a wide experience of spinal sugery. In children. when the canse of the pataksis was due to an epidural ahscess, gramlation tissue, or narrowing of the splual camal, experially in the lower part of the spine, very gratifying results were ubtained by lamine tomy.

The guestion of operation in recent severe lesions of the come die to frathes and disloations of the vertehne is also surombed with meertainty. If one is intheneed hy the experienee of 1 lumro, who fomm that during a periad of ten yars, only in one of thirty rases of injury in the upher dorsal anm cervical region din resteration of function oecur without operative interference, while in the same perion there were three emplete recoveries after neration, one uaturally leans towarls surgical intervention in every case. The canes must, however, be viry carcfully selected, und if the temperature is very low (as: often ocemps early with high lesims of the cond) the question of opreation shomal not be considered. In all Dmarcis tases, where there Was severe crushing of the ervieal cord, the patients sncemmerl. If there is sulden, complete cessation of molility :md sensatiom, with immeliate tot. : lass of the temblom rethexes, we mast conelude that there is an irreparable total transwerse lesion of the abrel: but if, on the other hand, evilences of inemplete divisiom of the cord hecome aplarent in a few hours or days, if not at one (i.e. slight semsation remaining), then the prognosis is muth more favomable.

Many cases have heen described (Mectosh) in which, at tirst, althongh all the sigus of a total tramserse lexinn were present, impmement and recovery followed ondatim. On the strength. therefore, of this evilence, surgieal interferene wombl acem to ine indicated, even in the most denperate cases.

Mixter and Chase have shown that in spite of the loss of combluction, nemal times may still exist in the ermished area of the cord.

The question whether the artual combetivity of the cond eati here-establi-heed hy early suture in eases where it has luen completely diviled (as has herot attempted hy Fowler and stewart ${ }^{3}$ cammot he detertaned with certainty from the cases, that hase been pu! lished.

10. Technique of Laminectomy. The terlmique' is simple in ordinary, i.f. not

者

is mate over form ar five vertehal spines, dividing skin, fasolia, and suprotial museles (above, the trapezins, and the fasia covering the rhmonits, ephenins apitis

 their hases and turned over to the left. Ithe lamina have heen ent across with bons foterp, - xponing the ofinal dinta.
a del below as far as is necessary, namely the longissimms dorsi, with the iliocostalis and the aceessorius farther ont. The lomgissinus dorsi is rased and retracted towatrs the middle line, and, withont detarlment of the museles (semi-spinalis, multifidus) which are in direet contact with the arches, a broad chisel is appled
to the roots of the spines, which are then divited, and foribly retracted to the other side with strong hooks. Hamorrluge is considerably lessened by avoiding excessive dissectior. of musele off the lones. The vertelmal arches are now suthiciently exposed and a pair of forepsis inserted under them oll earls side, nfter which they are eut neross and removed. The dmat then lies exprosed.

The osteoplastie exposure of the eorl is shown in Figs. 96 and 97 .
bickhan! ulso advocates un osteoplastic operation, employing, however, the method deseribed ly Trban in 190?.

The nomal operation, as practised hy most experienced surgeons and reeommended by Harte, who collected a series of 92 cases, is performed as follows: A lons mesial ineision is made over four or five vertebral spines. It is important to carry the incision sulticiently high up, as the lesion of the eoror is freqnently at a higher level than is expeeted. The museles are rapinlly separated with the knife on lmith sides from the spinons processes and retracted with strong hooks eovered with gana, thrmgh which presaure ean be applied and the beeding, which is often considerable, controllect.

There is no ndsantage in trying to separate the museles sulperiosteally, an the priosteum can be more easily detaehed from the roots of the spines and firm tho posterior surfaees of the urehes. The most important point, aeenrding to MeCosh, i. to effiect the separation as rapidy as possible withont stopphing to seenre ressels, hy. which means the bleeding is most effectively reduech.

Having examined the extent of the ingury, the opmator then proeceds to divide. the bases of one, two, or three spines with strong specially-curved cutting forecp (Horsley), after which the lamine on either side are removed with Luers gonge
foreeps.

The bleding, es an before removal of the bone (or immediately after exponime of the fatty tissue and the renous arches between the dina und the bone) may he on severe that it is advisable to plug the wond and delay, for a day or two, the completion of the operation. The two-stage operation has prowed monst suceessinl in Auerlach's and bromitz's hames, and is specially to be recommended in ditficult cases.

The extradural fatty tissue and veins are then ineised in the middle line, after which the further procelure will chenend on the nature and extent of the lesion. If the tumour is sithated within the dura, or if the dura is implicated in the intlammatory process, and easeons or gramulation tiswe has been depmited on its imner surface, or if it is thickened and adherent, the dura must then be split open in the mikile line with sifsors.

On opening it the eseape of eercbroninal huid may lee excessive, so that it is advisable, first of all, to lower the head and shoulders, as is recommended by Auerbach and Brodnitz.

The spinal eord is mow exposed. If the tmonor or disensed foches is situated on its anterion aspect, or if the operator wishes to divide the nerveroots, the cord must lee lifted up on an anemysm ncedle. If neressury the nerves may even be divided in the dorsal and hombar regions where their loss does not involve any material disturbance. When the spinal cord is found to be cut aeross, the question of suture may be eonsiderel, hut only if the cut edges are not bruised.

The dura is finally closed with interrupted sutures without drainge, lut if the Heeding has not been entirely arrested a drain minst be inserted.

F. SURGERY OF NERVE-ROOTS

(a) Intracranial and Intraspinal Nerves

There is this similarity hetween the surgery of the brain and the surgery of the intraeminal and spinal nerves, that in both cases preliminary trephining is necesary.

[^59]Operative measures take the form either of division of the sensory nere-rmits or of extirpation of the ganglia with which they are assonciated. Apart from the meripherally sitnated ganglin of the sympathetic, ganglion extirpation is limitel to the trigeminal nerve. On the other hand, division of semery nerve-routs is mulertaken in connection with xpinal as ell ats cranial nerves.
11. Extirpation of the Gasserian Ganglion, Division of its Root and Intra-
 Although the removal of the Gasserian gauglion is an operation of compratively reeent date, it has oceasioned a considerable ammit of literature, partly from the fant that brilliant results have been obtained lyy its means ${ }^{1}$ in the treatment of trigeminal neuralgia, and partly lneranse of the almont insin, wrable dittienlties which are necasionally encomitered and for whel a large momber of operative suggestions have lnew devised.

Those alone who have frequent "Inortunities of performing the operation can really lople to master the diftioulties in technique associated with it, and can expect to ohtain the gratifying results: which may he provered even in the most ohntinate casex of neuralgia, without causing injury to the neighomring structures.

In the last edition of this work referenee was made to the statistios collerted
 U1, to the end of the year 190., Cushing of Baltinume had exeised the giaglinn entire in 34 chses (purtially in three) with only whe fatal result, i.e. a mortality of 2.0 .5 per cent). In another series of 100 eases enollewted hy Carson, the death-rate is given as 11 per eent, while C'mshing further mentions 50 cases operated on hy leser and himself in which the mortality was only E_{o} per cent. Kranse had previonsly opreatend

These figures show the advanees which have been made in terhmiphe sine the year 1889, when the operation was musucessfully attmpted hy Macewen and Horsley, and since 1s:30, when the first snecessful mese was intimated ly fore, with a sceond case in 1891 . Rase employed the preryguin romte which was uriginally suggested by J. F. Mears in INst, hint this methenl, although simplitiod hy Sowaro in 1s? 9 , has how been abmumed. It is to horsley that the credit is mamly due for having hrought intengeneral recegnition the "temporal," or, its ('nshing torme it, the "high temporal" "preration, to distinguish it from the most recent "low tempral" or "tempororsplenoidal" methool. Horsley nsed it originaly simply for the section of the main divisions of the trigeminal meve, performing his first shetess-
 exeision of the gangliom.

The method has heen naned after IGartley and Kanse, heremse these two surgeons, partienlarly liranse (Hartley and Kranse, li91), tirst devised it for the intracrimial section of the divisions of the trigeminal. In 1 sig kranse prowluced it cases, in 13 of which the operation was snecessful. Audrews, Mallmmey, and J. lioherts, Keen, Tiffiny, and others, all reported caves shortly after that of Khuse. It is interesting to observe that krawe still adheres th the "high temprial" methend which he has performed on 49 oreasions.

The latest process of reaching the ganglion, viz. by the tempro-shlemoidal route with division of the exgoma, was, aceorling to Peyram," orginated hy Doyen in 1ag:3, and was carried out in a cumbrous form hy loirier, till it wats finally perfected hy Quenn in 1s94. Since then it has fomm many adlerents and has provided the most sitisfactory statisties. In omr fourth edition we alluded to this methoml as Cnsining's "peration. Cushing himself states that Coelho tirst suggested the moditied resection of the zygoma, whieh Iexer has lately still further simplitied. From the statistios already given the "low temporal," or temporo-sphenoidal route should be eelected, and sinee we adopted it our results have been considerably improved.

[^60]We always nse the same incision an that deseriberl and illustrated muler section of the rent of the third division of the trigeminal nerve, tis we comsider that the branches of the facial nerve are least inimeel by this methon (a peint also reeognised ly Lexer), and further lecanse it entails mo division of mustle. For the direction of the shin incision, divivion of the fascia, renection of the aggomat and the methorl of raising the periostemm together with the mincle, the reader is referrel to fige. 10x. 10. 20:

As the photograple (fig. 9 s) shows, practically no distigure ent is produced.
Conshing mod Lexer turn down a tempral Hay, similar th that w the HartleyKranse methorl, but mot extending so high nj on the skill.

They andentour to avoid injury to the hraneles of the farial nerve by paying

Fis. 95. - Percial attention to the direction of the skin incision where it hegins and terminaters. Lexer phemes the lnare of his thap almost exartly in the direetion we have recommemberl for awoiding the factial nerve, viz, along a line corvenpmaling to the lower part of our angled incision (rile Fig. 99), i.e. the penterion extremity of his incision on the root of the eygoma lies a finger's-1, walth in frome of thr ear, white the anterion cind i.: plated wor the lunly of the matur lune a little lehind its fromtal proces. The comsexity of the that does not exteme abure a horizontal line thromph the tip of the anriche:

Cubhing deens mot carry tho. anterion limb of his incision far forward, so as to aroid the frental haneh of the fatial nerow, and disseets the skin and temperal fiascial downwards and fornarde, before he divides the termpanal muscle.
The tlin, in turned down together with the periostemm, and the anterior and posterine extremities of the zygona are exposed and divided with a (iigli's satw, ellisel, orstrong luna-fincepm. Posterionly, the eymoma is rivided at its mont, whine anterionly it is cut across at the losly of the makio ow that sulfirient room may le ohtained. Cushing remoses the entire zygomatic arch sulprerinteally, and maintains that this method is adsantageons even from the print of view of distigurement, as with the sulserpurentinking in that oerns, the atrophy of the museles of mastication in less moticeable. Liemosal of the geroma complicates the operation to a eonsiderable extent, while there is a further risk of the facial nerse heing tom when the bone is forcibly depressed with a howk, whish may result in facial paralysis. Powsibly the cane reported loy Auvehutz might !av "ithamed in the salue "ay. The fasclia and path of fat lyin: under the areh intae he carefully preserved.

The lowent part of the tempenal forsa is mow exposed, down to the infratemporal rest, and the periostemm and soft parts are carefully separated from the base of the *kull (i.e. from the great wing of the sphenoid), till the shary, luader of the pterygoid proeses hehum whieh the foramen wale lies, is onserven. Hamorthage from the

 or felt．

 all the dura，whinh has net yet hote incixel．

 differth to eontrol．

With the low tempral nonning（renching at mont 3 cm，in height）there is，further， less chance of the brain lxing injured where it is held omt of the＂way hy means of a retruetor．Aecording to Cushing，Kranse，who employs the higher opening，has repreted sugerfieial lirnising of the hrain at eight autonsies，and loplinert has leseribed a case of heminlegia（and death）as at result of presome ly the retrator during

The dura is then rapidly sepuratel from the lone with the finger or with forcels covered with panze（or a blunt dissector）as far as the foramon spinosim，wate and rotmmen．Lexer，like kramse，now ties the expesed midhle meningeal artery；so that the dura may lee more freely raised towards the rof of the ganglime，at the same time awoiding the risk of aecidentally tearing the artery．${ }^{1}$

A number of surgerns，following r ．Ihergham，regard it as very important that the patient should sit upright lefore the dura is upened in order to limit the venons hemorrhage and the loss of cerebroxpinal thit，white at the same time the lowering of the pressure permits of the hrain leing retracted．

The dura is now incisel hy cutting on to the lnone in the interval betneen the second and third divisions of the nerse，and detaehed harkwards along the outer and ulper surfaces of the ganglion as far as the root．The ront is then elevated from its bed hy passing a long slender spatula underneath it，and if prosilhle it should lee raised up with a look or small aneurysm needle to emsure that it is thoronghly isolatel．

The root is graxped with a pair of Kocher＇s long artery foredw，ant the ganglinn is raised and freed tos much as $\mathrm{l}^{\text {missilde，after which the secomd and third divisions }}$ are divided at their exit from the skull．Traction is then mate on the ganglion by bulling on the third disision，thus atretehing and facilitating the section of the tirst division of the nerve．Finally the root is torn away．－

Very free hiemorrhage is encomitered，and attempts th control it ly phogging are apt top prexluce severe shock similar to that cansed by retraction of the dura hy a spatila．It is for this reawon that Cushing carefully obserses not only the phlse hut also the hlomen－pressure during the＂peration in order that any fall of bloml－pressure due to interference with the vasomotor centre may he at once recognisel．

The after－treatment is carried out on general lines，the wombl heing completely closed as soon as one is consinced the hemorrhage has heen arrested．Shomld some oozing still continue，a drain or strip，of ioloform gauze should he inserted．

12．Summary of the Technique which we regard as best．Excision of the

${ }^{1}$ Kranse grasin the vessel with artery forcepn，where it lies exposell letween the dura and the foramen spinosmm for a distime of about 1 cm．，anm ligatures it on the proximal sile，alter which the forepp are removell．Ile thens separates the dura as liar as the upper horiler of the petrons temporal，arrests the hamorrlage，and hy blunt dissection frees the ganglinn from its hell and granpos the root with forceps．

C＇ushing，on the other hand，finds on sepurating the dura that the artery rum a straight conrse letween the two fixel points，viz．the foramem spinosman and the grove in the parietal bone，and that， as it is not almormally stretchel，it can lee easily avoided．Lexer has shown that when the bone has been removed down to the base of the shall，as described above，the artery can be flite realily ligatured ex ciacraiially．

In certain circumstances the lest methoi of arresting the lamorrhage is by means of temporary occlusinn of the common carotid．
${ }^{2}$ All surgeons are agreed in regarll to restricting the haphorrhage that owers on freeing the imer surfice of the ganglion．Lexer avoins frecing the ganglion these，while Cushing pootpones it to the last，and only reparates it just hefore dividing the liranches and the root，as does K ranse also．Lexer legins liy raving up the third division on a book，and then passess a loope of thread ronnd it，so that by pulling on it the ganglion will he put on the atretch．He then separates the dura on the upurr surface of the ganglion until the ophthalmic slivision in front and the root posteriorly are exposed．The latter is thenl pulled upon ly meaus of a hook．He now divides the second division and the root，after which the frat livinion is expueed by drawing down the ganglion，and hent acrom，leaving the ganglion only connected with the third division．

Kranse first of all divides the second and thind divisions，and after haviug freed the gauplion grasis it in forceps and twists out the first division aud the root．Cusling，who las pullished excel－ lent statisties，divides the liranches first，then frees the ganglion thormulily ly inhit dissection and tears out the rout．The risk of injuring the cavernons sinus is thus greatly dinimished．The bleeding following aecidental tearing of the sinus ls very copions．

 the opration he will hlo well to prowtive it sumal times wh the maver, and take every

Flta. 100.-Excision of Giserian gaglion throngh an angular incinion. The zygoma i divided in front and ledind and turued downwards, the tempral mow le heing freed and drawn forwarin. The skull is opened, and the bone at the hase of the shall removed. The dura is raised ul, exponing the midule meningeal artery at the foramen spinown and the third divivion of the trig-minal nerve.
the ganglion is especially indimated, as it affords the most ceatain cure of farial nemalgia. The onnerator must be prepared for these cases, the difticulties of which may te to a large extent overcome by attention to the following points.

In the first place, ligature of the external carotid (Friedrich) is of real advantag, an it limits the bleeding, althourg it may be dispensed with hy an experienced surgeor It is easily performed and might also be combined with temporary eompression of the internal carotid.

The position of the patient is of great importance. The half-sitting jrsture (advoeated by Villar and Ricard) is to he reeonmented. The head must, however, hang well back over the end of the table, so that the bood and cerebrospinal fluil
may escape freely insteal of eollecting at the lnse of the sknll, and wo that the lnain may fall lack into the craninl eavity.
 convex downwards (as in our methonl) or lne horeeshereshapet, with the convexity mpwris (Hartley Krame). The lranches of the facial nerve (zygnatientemporales)
 where they eross the malar lone (as in our methes and in Cnshing's). The incinion we employ is shown in Fig. 100, the supreticial teluperal vessels.s Incing ligatured
 from the in! !er horder of the og gomatie arrh, after which the latter is divideal :ublperionterally in front and helinil.

Surgeons who have had little expericmee of the equation will time that a sulfaccial
 by turning it downards considerably more rown is ohtained. Finther, it is casier when trephining to remove the Whene (as Hor:loy invariahly denes) instead of insisting ont an interplastic oleration. The repsition of the heme is of no real advantage when one considery the small size of the defert that is left. It is also alvisitle to raise the periontemmand noft parts not only on the tempmal side but alan, on the base of the skill, anm to remove the bone to within a fingers.lrealth of the fomamen spiminmm, ovale, mul rotumbm, a procelnue which makes the determination of the ganglion more easy and entails less removal of hane on the tempural side. We detach the periostemm amil woft parts on the temperal side for a distame of 3 cm canl for an epmal distanee on the muler surfare of the skill, and then with a few strokes of the chisel atuve and at the sides, rapinlly remove as laree a piece of bone as possible from this arta. On rising the flat of lone it lreaks asily at its lower lorder:

Aftor the foramen owale las lnen exposed and the dura elevated, the latter is then incisel wer the third divisiom of the nerve (which is $i j$ mum. long), and is disected Dack wards from this puint wif the upler surface of the gangliom. On aceonnt of time allherions this must le ethecterl lyy means of a fine knife or a didieate dissectur with compratively sharp whes. The middle meningeal artery whieh asemble on the dura ean casily he trated to the foramen opinosum, and when the dura is raseen up it can be redily reached and ligatured. If a preliminary ligation of the carotid has $\mathrm{I}_{\text {re }}$ on performed, the artery cout he simply ent acros at the foramen spibusimm, thas avoiding further trouble in detarhing the dura from the lase. The durat shonld be raised hy means of a slender tlexible spatula. and the pertion covering the upper surfare of the
 from before hackwards as far as pusiblle. The alhesions here are very firm, mul in frecing then the operator must eat down on to the ginglien mutil, aecording to lrat, the smenth ravity in which the rent of the ganglim lies is suddenly entered.

This "pirtion retrogasericume" or plexns trinugharis is contirely free from adles ionwith the dua for a length of 9 mun, acoording to leyrand, so that the root ean therefore he unost easily isolated in this, aprice with less rivk of injury, and after it hits beell raised up on a look, it is granpell with suitable forects (without imbluding the dura) and mity !reduall! twistel ont. Of conse on the immer sile, where the petweal simuse open into the cavernus sinus, it is necessary to keele close to the ront.

If the root has heen thonoughly isolited and grasped with forcels, rone need mot make a pint of remeving the samgling. We have never met with a -ater in which nenralgia reenred after the ront of the ganglon had heen torn away.

Surgeens who hath had considerahle everience of the "preation rate the pundion from its hed hy hamt dissertion, and, after incising the dura in a forward direction, ent throngh the seeond and thind divisions just in front of their respective formana, after whith the ganghou is tom uth lay the rome, and the time division twisted, or better, simply eut with the knife. This entails, however, very severe ble to the tearing of the veins which arcompany the neves and thine which enter the home on the muter sinface of the ganglion, and for the arrest of which phasing is necemary.
 arain being inserted if the bleeding has been completely arrented.

 Poth unthers jointly pulliohed their expermental remerves，while ne little eredit is to le ussigned tu Van fieluchten．Prazier herformed the tirst sheresonnl operationt

Simple division of the root，which constitutes a preliminary stage of the more
 The ment severe bleeding follows erearation of the ganglion on its moler and innor
 however，in section of the rent．

 The ouly question is whether the equeration fultils its real whel，i．e．whether ly disisisu of the root a permathent degeneration of the tiberemming rentratly from the ganglion is ohtained，with the resilt of a radieal cure．Frazier，spiller．and linn Celauclaten are of one opinion that degeneration exemes down to the lonlhempinal rant， whike，neeorling to the lint－naneed anthor，the tibres remain permanemty atrophied．

If this is the rases simple settion of the tome has certainly alsantageo ower
 injury to neighlouring parts，hat ulan in regard to the eombitions of the es．＂．Withont any premitions lucing taken，mes ill ethects are motieed on the ege，and the wo－alleal trophic ehanges are ahacht．

Frazier and spiller leno for the explamation of this in the fart that，atoworling to Krenzurlis rescarches，sympathetio merve－fiberes are containel ian the that division of the trigeminal just as Bulge had previously demponateol the existeme of piphil－
 the firat division）peripheral to the granglion．

Frazier peints nut the finther adsantage that the mether rome，which rme internal
 the sensory resot is divided，by wheh means atrophy of the mmshes of mistication can tre awoiled．

In foner cases cepreated on ly Frazier，there was no repr－tition of the bain，worile we lave alsor found lailliant innediate resints with，up to the present，we revirence．

In our opinion there is a future before this operation：and we comsider that it should replare extirpation of the ganglion，at any rate in dithentt cares asomeciate，with remtimnons heeding，or when the ganglion is tirmly allurent．

The teelnique of the opration lats alrealy leed dar rikell in aletail under expision of the ganglion．If the root camot le satisfactorily expmed and ent aerons low down， it may be divided at its junction with the ganglion．In thumers of the ganelion，the granglion inust，of comrse，be removed．
（r）Intracrumal section ut the Divixims of the Trigemimel．This＂preration has been occasionally resorted to in diftieult cases．Ilorsley performed it in lsse（the first intracramial opration on the trigeminal nerve），and also in 1 sinf，buth times with sucess，while it was also undertaken in 1891 by Hartley and in Leter ly Krause． We have resorted to it in cases where excision of the ganglion was impracticable on account of jucessint blecling．According to Vian Gelmehten，in lest bhum performed the operation，which wan sulsequently repeated ly Doyen．

Abre considers the methot as effective as excision of the ganglion and rewomends its general adeption．

In this operation only the second and third divisions are divided，so that it is mot to tre undertaken when the neuralgia also affects the first division．In comparison

[^61]with the methox described in (a) and (1) the difticulties are considerably less as it is relatively easy to isolate the seeond and third divisions; nud the only guestion in the technique is whether the nerves should be cut across or torn out in the manner pratised ly Thiersel for the peripheral braneles of the trigeminal.

Van Gehuchten ${ }^{1}$ contends, and Spiller contirms his view, that when the branches are divided on the distal side of the ganglion the cells in the latter do not ntrophy; but that when the nerves are torn out, a degeneration, not only of the nerve-fibres but of the corresponding ganylion cells, takes place right up to the hulbospinal root.

Van Gelmeltem, from his experiment., recommenels extracranial avulsion of the principal hranches; while Chipault a maintains that eomplete peripheral resection oif all three divisions of the nerve in most eases given as good resiults as the mueh more serions resection of the gangliom. Lncomplete peripheral resection is less sutisfactory: Dege has recorded the results of resection of the peripheral nerves (Krause) in 5:5 patients, whose sulseepuent history he was able to trace. Only 11 were free from recurrence, while of the others the average period of freedom was two years nud two months. In 75 resections he had three deaths. The immediate results, which we have chserved after intracranial seetion, have lxen entirely satisfactory, hut have not always been permament. Aceording to Jan Gehuchtens and Sipiller's experiments, exeresis with Thiersch's foreeps is preferable to simple division. It is essential, however, to issolate thoroughly the branchess lefore twisting them."

Abse has recorded satisfactory results from the method he adopits for preventing the reunion of the nerves after division, viz. ly the interjosition of gutta-pereha tissuc between the dura and the respeetive foramina.

We agree with Bockenheimer that it is just as difficult to expose the lrameles of the trigeminal at the lase of the skull extracranially as it is to attempt intractanial exposinte, esperially of the seeond division.

There is still another proecdure, which is comsidered in a later ehapter, for the cure of trigeminal neuralgia, viz. resection of the sympathetie.
13. Division of the Posterior Roots in the Spinal Canal. The performance of intralumal resection of the posterior nerve-roots at the point where they leave the cord is only to be considered waen the pain is eaused hy atfections of the meninges and cimmot lee relieved by any other means, as also in the case of neuralgia when all other methorls of treatment have failed.

The results of this operation have hitherto lreen far from eneonraging. Not ouly does Chipalt record two fatalities in 7 cases, hut it is eertain that the recoseries, in other reported instances (McCosh, Munro) were incomplete, loeal pain persisting innd even motur paralysis being abservel, so that the operationss shonld be restricted to cilves of extreme neressity.

In regard to the techinipne, the reater is referred to the deseription of laninectomy. After the dirat has been oprened, the nerve-roots may with comparative case he lifted up) ind divided, either close to the cord or at the point where they pierce the dna.

If severe bleeding is eneountered either hefore or after the dura has been openced, the operation may with advantage le performed in two stages.

G. SURGERY OF Individual Peripheral nerves

(a) General Remarks on Surgery of Nerves

Fipmose of periphemal nerves is, as a ruke, undertaken with the olject of either
 conditions of the nerve, i.r. nemalgia. Permanent abolition of condmetion is obtained

[^62]by urulsion or tearing onf of the nerve (Thierseh's Seurexeresis). Simple section, neurotomy and neurectomy, afford mueh less reliable resilts.

On the other hand, motor nerves are also cut down upon in order to restore their function, expeeially when the s:orve is ulherent to, or is compreswel hy, some aljacent strueture. Removal of the pressace and the separation of the allosions often effect a permanent eure in neuralgia, wible nerve-stretehing is employed for the same purpose. By simply frecing the nemve motor symponas can also be eured, and there is no doubt that surgery lags leehind in regorl to the treatoment of tramatio lesions of nerves, e.g. by removing an effinsion of home either in wromm a merve, the fimetion of the nerve ean be restored even if it has leen inpmired for a comsiderable time. Tunours and ciatrices in the course of a nerve may be excised and conduction reestablished by suture. The ends of the merve mast ire sintured som after division, otherwise they retract and beoone surronmed by a mass of eonneetive tissine.

It is essential that healthy nerve-fibres shonlal be brought into aecorate contact and be anpported in loose conneetive tissue.

Tubulisation of nerves has been cmployed with arlvantage in order to prevent the formation of allesions at the site of suture, and to ensure the ontgrowth of nerve-fibres from the central into the peripheral ent. Foraminti wrap wh the nerve in an artery removed fresh from an amimal or in one that has been harilened. If a fresh artery is ntilised only delimate adhesions are formed with the intima; if a hardened artery is employed, it is tirst of all drawn over a ghass tube, then fixed in formalin, washed, and boiled.

When the ends of the nerve cannot le appoximated, portions of fresh animal nerve may be made use of to fill up the gap in order to aid the downgrowth of nervetibres from the central end.

I form of nerve-grafting which is of shecial interest in eomection with the eure of paralysis (facial) comsists in the umion of a divided nerve with one still in momal commection with its centre. We shall sleal more fully with nerve grafting in considering the surgery of the nerve, only mentioning here that it has also leen ennployed in the extremities in cases of infuntile paralysis. Harkentrueher reoorls a case in whieh a very satisfactory result wa." olotaned hy implanting the posterior thbial newo into the paralysed arterior tibial nevw. He exposes the nerves in the lower thind of the thigh where they are deeply sitnited. The pastorior thal nerve is divio. d for onethird of its thickness, split longitudinally mowarls, and the freed prortion grofted into a slit in the anterior thbial nerve. As an altemative, one might endeamor hy moling the nerves almost completely across, to apmoximate them emb to enil, so that the sutures maty be inserted laterally away from the cut sufface.

(b) Cranial Nerves

In the chapter on trigeminal neluralgiat we have abrealy encroached on the surgery of individual eranial nerves. We shall now consider the subjere methorlically:

Is fall as we nre aware, there is an entire absence of operations on the olficetory nerve.
14. Surgery of the Optic Nerve. The optic nerve is expoxel in excixing thmoms sithated in the orbit whieh are in contact with or irowing from the nerve. In incision carried horizontally outwards from the extormal canthas atfords gond access to the spare lehomel the eyeball. By detaching the ophital perinistemm mpards and lownwatis, and removing in wedge of bume with a chisel frem the onter wall of the orhit, the onter and posterior surface of the evelnall ean he readily exposed withont entailing any injuy:

Krinlein's ontergliantie rexection is the operation renmelly employal. We practise it in the monlitied form recommemberl hy Franke (Fig. 101).

An incision is matle below the eyebrow on the outer half of the suprambital margin and is prolonged downwards to the jmmeton with the inframbital margin, from which point it is thels carried hackwarls over the malar lome to the midrle third of

[^63]${ }^{2}$ Deutshe merl. I'orheuschr., 190i. No. 25.
the zygoma. The zygoma is divided subperiosteally, and the zygomatic (exterual angular) process of the frontal bone, whieh fcrms a distinet erest, and which, along with the sphenoid, helps to form the postero-lateral wall of the orbit, is ehiselled through subperiosteally as far as the spheno-maxillary tissure. The malar bone is then divided through the antero-inferior angle of the incision, the line of division extending baekwards into the spheno-maxillary fissure and outwards as far as the attachment of the masseter, after which it is forcibly dislocatel out of the wound. The rest of the erest-like projection of the sphenoid, which forms the lateral wall of the orbit, is elipped away, this exposing the orlital fat in which the nerve is embedded and the lachrymal gland (Fig. 101).

Our incision has the advantage over that recommended hy Krionlein in that (as Bockenheimer has shown) it canses no injury to the branches of the facial nerve either to the upler or the lower lid. The distigurement is in conserpence less; while

F16. 101. - Osteoplaxtic exporare of the orlit.
it has the further advantage of giving more room, esprecially above, as it enahles the operator to divide the hone more easily and more freely. The importance of this is observed from Heilbron's statisties of $1: 20$ cases, in which it is shown that after Krimkin's operation for the removal of tumours of the orbit, the mobility of the cye was frepuently impaired, as the museles and their nerves could not be sufticiently preserved. The lneter the aceess the less liable is the optic nerve to be injured.

Ocasionally even more room may be required than is given ly onr moditication of Krönlein's operation. Czermak has recommenled in cases where Krönlein's operation gives insufficient room, the removal not only of the lateral border of the orlit, hat of the whole malar bone as well, the latter leeing divided at its articulation with the superior maxilla and the zygoma. The disarticulation of the superior maxilla should tre undertaken through a special incision.

Aceording to Heilbron, ${ }^{1}$ l号ecker berfurms a still more thorough operation, while

[^64]Rollet's operation, in which the skin incisions correspond to the line at whieh the bone is divided, is also an excellent methorl as regards the direction of the skin incision.

Tumours in the upler and inner parts of the orbit must lwe approaelied by a different ronte if the eyehall is to le preserved, namely, hy our normal incision for exposing the mpler part of the nasal cavity. An incision is made from the eyebrow on to the bridge of the nose. The nasal lome and the nasal process of the superior maxilla are divided, while the ethmoid may jerlaps also be removed (vide Operation to expose the nasal cavity).

Our method permits of the bone leing replaced without eausing subsequent deformity, ania as the branches of the facial (ramms maximus, and rami zygomatico-temporales Bockenheimer) remain uninjured, the movements of the lids are in mo way impared.

The osterplastic methorl of exposing the orbit, which was originally propowed ly

Fib. 102. - Ramitications of the fictial nerve (after Bockembeiner), to illustrate the proper direction of incision on the face. The tigure shows the hiree harge branches which ascend over the zygmat. the sulnzggmatic hranches, mult the division which is distributed to the neek and lower lip.

Kroulcin, has given satisfactory results in dealing with tumours of the optic nerve, at well as with single tumours in the orhitul fat. According to Heilbron, it is mesuitable for the extraction of foreign bodies. Not long ago we successfully extracted a bullet by means: of temporal resection. In inflammatory conditions of the orhit an osterphastic nemation is mot inelicated.

We are not aware of any operation having heen performed on the oevolo-monor and trochlear nerves. Un the other hamd, the fifth cranial nerve (trigeminal) and its branches are dealt with surgically for the treatment of neurulgia.

Before the introduction of the intracranial operation of excision of the Gasserim ganglion or its root, the divisions of the trigeminal nerve were severeal as near ns
bossible to the base of the skull. But although the second and third divisions could be divided in this way, section of the first division was impracticable.

Division of the peripheral branches of the trigeminal is at the present time practised more frepuently than the intracranial operation, because in neurexeresis (Thiersch) a much more effeetive method of treatment has been found than that of simple neurotomy'. It was devised as a result of van Gehuchten's histological and

Fis. 103.-Ligature of the supmoristal artery. Exposare of the supranhital netwe. Infroorbital nerve. Opruing of the frontal sims.
exprimental work. Only a limited protion of a nerve requires to be exposed, after which it is seized with strong forceps, twisted, and torn out hoth from its central and beriblieral comections. According to van Gehnehtom, when the nerve is partly torn out instead of leing simply divided, a greater effect is produced on the central ganglion eells, more espeeially on those in the Gasserian giaghion, and in the sensory root to the bulhospinal eentres. The methox whieh Blun first practised on the infraorhital nerve gives the greatest certainty of suc:esx, while, as no extensive preliminary dissection is required, the opreration is greatly simpritied. In the following sections
we therefore deseribe typigal operations lyy which detinite portions of the nerve are most casily and most safely expenerd, and legin with the oprations to expose the main trunks at the lase of the skull.
(11) Fibst (Ophthalmir) Dicision of the Trigrminal. Derm.-(Of the three branches of the ophthanie nerve, the lachrymal, which supllies the lachrymal gland, is of no surgical interest. Only the nasal and frontal branches require eronsideration.
(1) Frontal Serve (Fig. 10:3). In the aecompanying figne (Fis. 103) both branches of this nerve are shown exposed, the larger supraorbital nerve lying external and the smaller supratrochlear internal. The supraorbital notels frepmently a formen), whieh ean be readily felt throngh the skin on the orbital margin, transmits the nerve as it pasies from the orbital eavity on to the forelead, the artery of the sume name oceupying a superficial position. The supratroblear brameh lies $1 \frac{1}{2}-\frac{2}{2}$ cm. to its inner side, and ascends vertically over the inner eanthus.

To expose these nerves an incision is male along the lower boraler of the cyelrow down to the supraorlital margin, thms awoiding the zogematieo-temporal branches of the faeial nerve which pasis horizontally forwards, as well ats thowe branehes which ascend from lelow to supply the pyrmmitalis masi and corrugator supereilli maseles (Fig. 102). The terminal luamoles of the frontal and sumatorbital arteries are divieled and ligatured.
by depressing the eyehall and frecing the artery (which has lwen alleady tied) both nerves are followed baekwards under the periostemm of the row of the orbit till the parent stem is exposed. The latter is then seized and twisterl out with Kocher's artery forceps.

If the smaller supratroblear nerve ean be isolated by itself, earla nerve may be twisted out individually. The somalled smparbital nemalgia, which is met with in malaria, and in disease of the frontal sims, ete., will practically always yield to this treatment.
(:) Nasal Nerve. The nasal nerve gives off the long root to the eiliary ganglion and the two long eiliary nerves (whieh may lee the seat of eiliary nemralgia) and then divides into the ethmoidal branch which suplies the inner surfare and tip of the nose, and the infratrochleat banch which is distributed to the eyelids amel root of the nose.

The nerve is exposed by an ineision extenting from the middle third of the eyebrow downwards towards the lnidge of the nose, i.e. the merer protion of our bondal masal ineision. The periostemmand perionhital tissues are rarefully raised off the roof and inner wall of the ondit, until the nerve is observerl muning transversely towads the anterior ethmonal fommen. If possible, the periostemn should be sepurated father back and the nerve traced buek to the origin of the infratrochlear, so that the main root can be torn out. Utherwise one must twist out the ethamoidal lumeh alove, and seareh for the infratrochlear branch close to the inner eanthas, and then twisi on at least streteln it where it is embedded in the soft parts.
 of the Superior Maxillary Nerve at the Base of the Skull. When the superior moxillary neve is expesed at the foramen rotumelum (Figs. lot and lois) the only branch which exatres is the middle meningeal nerve to the durs mater. On the other hand the central operation has the disalvantage that bramehes of the facial nerve, which pass by way of the Vialian uerve into Merkel's ginerion and into the palatime nerves for the miseles of the palate, are paralysed.

The dissection to reath the fommen rotundmen is ditfient. Langenbeck introdneed a tenotomy knife at the onter margin of the orloit below the external tarsil ligament. This pmeture method is now given m, as one eat mever be sure of avoiding injury th neighbouring structures. The infaomital artery is liable to injury.

Poirier, withont resceting any home, reaches it by dismeting down to the pterygomaxillary tiswure through a vertical ineision hehind the frontal process of the matar and extenling down to the zygomatie areh. This methon, howover, gives very little room. The rule now, therefore, is to perform a temporary rescetion of the malar aecording to the method of Brüs, and aceording to Lïcke's procedure in the modifica-
tion of Lossen-Braun's operatien, which preserves the attachment of the masseter, or according to that of Krönlein. All these methools possess the clisadrantage that in consequence of the cirection of the incision the liranehes of the facial nerve are not avcided with certainty. ${ }^{1}$ (inssenhauer's methenl is one which gives very good access, but has the same fault. Friedlanker, for the second as well as for the third division of the fifth nerve, has employed that portion of our incision for the thirl division of the fifth which rums from the eyebrow along the posterior looder of the malar and the mper horler of the aygomatic areh in combination with the methos)

Fri, 104. - Resection of the semoll (numior mandary) division of the trigeminal nerve.
described by us for resecting the malar bone. He merely divides the zygonatic arch farther hack.

On the grounds of our principle, therefore, of regarding all incisions with disfavour which run at right angles to the branches of the facial nerve, we carry out our method as follows:-The incision is the same as that for exposing the infroorbital nerve, but longer, i.e. beginning over the infraorbital foramen and at the inmer end of the infraorlital margin, and this is carried horizontally outwarls over the lower part of the ${ }^{2}$ of the malar hone to the zygona. The mugular artery is drawn asile or ligatured at the inner end of the incision, whilst Stenson's duet and the greater
${ }^{1}$ Compare Bockenheiner, Langenberk's . I rehir, Bul. $\mathbf{i} 2$.
branch of the facial nerve lie below it. At its inmer end the incision passes down to the bone letween the lowest fihres of the orhicnlaris palpehrarun and above the origin of the levator labii smerioris. The former umsele, nlong with the periostem, is dissected 11 , as far as the orbit, the latter is seprarated snl periosteally only so far downwarls as that the infrombital nerve may le exposed at the infrowrhital fomanen and secured with in temaculum.

The onter gart of the incision basses above the origins of the zygomatic muscles,

 at the foramen math:

Which are sepmated sulperiosteally downwards, and the suterion filues of the masseter are detached from the ! wer and immer part of the malar bone. 'lhe outer and inmer surfaces of the malar are hid bare be means of a periostemm detarher fifig. 10t!. previons to cincelling it through. The madar jucess of the upher jaw is hared, upon its anterior surface ny to the infambital fommen, and unn its npper surfae as far hatek as the sphemo-maxillary fissume, and is then detached with the chisel in and a way that the roof of the infraorbital canal is carrial with it. Anteriorly, the process is chiselled through from above the infraorhital nerve, downwards and antwards, to just below the anterior emb of the origin of the masseter, aml then mamards
through the outer wall of the antrum until it incets prosteriorly the section through the orbital plate. In this way the outer prart of the orbital plate and the superiorexternal wall of the antrum, together with its hinder a gle, renuain in conncetion with the malar bone, and are levered out along with it.

Before this can be done, however, the upper edge of the wound must be drawn upwards to expose the fronto-nalar suture (Fig. 10t), which is so chiselled through towarls the posterior part of the spheno-maxillary fissure that its upper border, ulong with a portion of the zygonatic crest and of the orbital plate of the sphenoid, is removed along with it. After the zygonatie arch is chiselled throngh, the inalar bone is dislocated upwards and outwards from the large wound with a strong sharp hook, and the orbital fat is carefully raised by a blunt retractor. The infriarbital nerve, which is kept draw: upon, can now readily be followed above the opened-up, antra? cavity as far as the foramen rotundum. A small hook is now inssed lehind the descending spheno-palatine nerves aronnd the main trunk which is then canglit with fine strong forceps, twisted, and wrenched out (Thierseh). The infraorlital artery, which accompanics the infraorbital nerve, is either avoided or ligatured. According to Potterat, the nerve lies immediately to the inner side of the insertion of the external pterygoid muscle, coverell by a ridge of the great wing of the sphenoid which must be cut away with the chisel. The operation is completed by putting the nalar bone back into position (fixation sutures being unnecessary) and closing the wound with sutures. The resulting sear is not disfiguring.

We have seen no bad results follow opening of the antrum. It is obvious from the above description that our procedure differs from the Lossen-Brann methoul, not merely in the more suitable skin incision (to avoid the branches of the facial nerve), but in the fact that the nalar, together with the soft parts, is thrown upwards and outwards, thus giving onuch freer and easier access.

Alexander Frankel, in resecting the second division of the fifth nerve, discards all external incisions. By an osteoplastic method he throws the anterior wall of the antrum upwards and outwards, and ly opening the npper and posterior wall of the antrum, after the manner of Langenheck's operation for division of the superior dental branches, he exposes the nerve from below, aided by an artificial light.
(2) Exposure of the Kygomatic (Orbital) Nerve. An incision 1 cm . long is carried down to the bone, leginning close to the outer commissure of the eyelid. and passing obliquely outwards and somewhat downwards. The periosteum is detached from the outer wall of the orbit, and both branches of the nerve are torn across at their entrance into the foramen at the orbital surface of the malar bone.
(3) The sphenopalatine nerves cannot be divided individually. They are seen in exposing the main trunk of the superior maxillary division at the foramen rotundum (vide No. B. 1 and Fig. 106).
(4) The sulerior dental nerves may be divided alone (v. Langenbeck) by everting the upper lip and making a large incision down to the bone, above the level of the teeth, and then sawing or chiselling through the outer wall of the antrum (and its mucous menbrane) from the osseons anterior nares as far hack as the pterygoid
process.
(5) The Infraorbital Nerve (Fig. 107). The infraorbital nerve is the branch which is most frequently the seat of neuralgia. This nerve may be stretched or avulsed through an incision from the mouth which divides the mucous membrane and periosteum along the line of reflection from the upper lip to the canine fossa. The soft parts, including the periosteum, are separated upwards as far as the infriorbital foramen, through which the nerve makes its exit half an inch below the middle of the infraorbital margin. The nerve is raised on an aneurysm needle, grasped with artery foreeps, twisted, and finally torn out in the manner recommended by Thiersch.

A very good method, but one requiring an external incision, is the following:An incision, 3 cm . long, is made in the line of our normal incision for the upper jaw beginning at tise centre of the infraorbital margin and passing horizontally outwards to the upper extremity of the malar bone. This incision is preferable to the curved
incision Wagner uses, because the branches of the facial nerve to the museles lelow are avoided, as well as those to the orbicularis palpelmarum. The incision is then cartied down to the bonc above the origin of the levator labii superioris. The periostenm is now separated downwards as far as the exit of the nerve from the infrourbital canal, where, after being isolated from the infraorbital artery, an ancurysm needle is passed under it. The periostenm is next sepuratel hackwarls over the infmorhital margin and along the floor of the orbit until the entrance to the infriorbital camal

Fig. 106. - Expositre of the second (superior maxillary) division of the trigeminal nerse at the foramen ovale.
is felt or seen (Wagner). The thick anterior part of the roof of the canal is then removed with the hammer and chisel. In this way a considerable extent of the nerve is exposed and can be either stretched or removed. If the antrum has not been opened the wound heals by first intention without leaving any deformity ; indeed this is the rule even when the antrum has been opened.
(6) Of the branches of the spheno-palatine ganglion only the palatine nerves can be attacked separately. They may be injected in the neighbourhool of the larger palatine foramen in order to produce anesthesia in front and to the inner side of the hamular process.
(c) Thiml (Interian Maxillury) Divinion of the Trigeminal Serve. (Fig. 10w.) The third division of the trigeminal nerve consist, at the foramen owate, of motor (posteriorly and externally) mud mensory portions su intimately united that they cunnot he sepurated. Central divixion of the werve, therofore, has the evil etfeet of promencing a severe concomitant inging which is not intended, namely, milateral paralysis and ntrophy of the muselex of mastiention. Happily experienee shows (atso in our own

 fufionhtal berve. Upeuing of the frontal sinus.
fatients) that this milateral guralysis of the museles of mastieation does not interfere greatly pres with the function of the jaw. It merely diminisles the firmness of closine of the jaw and the lateral movement towark the onowite side. These madesirable resalts of division of the trunk of the neve at the foramen owale nake it justifable to attemp a cure hy stretching on dividing individnal preripheral haturese. in spite of the macertainty of the result.

Operations on the biviarles of the third division of the fifth newe are so often followed by recurrence of the hemalgia that nothing remains hat to expose the trunk
of the nerve at the foramen ovale（risf．los）．The mont certain methot of perform ing this operation is hy resecting the zygomatic areh（Lincke，Bruns，Brimn，Lossen， Krünlein）．

We are firmly of the opinion that here alon only those incisions are to lee emplayed which avoil injuring the lmaneses of the facial nerve．

Fig．108．－Exposure of the thirl（inferior maxillary）division of the trigeminal nerve at the foramen ovale．

The incision（Fiy．109）${ }^{1}$ begins a finger＇s－breadth ！ 1 whin！the frontal prowss of the malar，and is carried obliquely downwards and backwards to the ponterior extremity of the zygomatic areh，and from thence upwards and lackwards in front of the ear at right angles to the first part of the incision．This second part of the incision is carried down to the bone，the superfieial temporal vessels leing ligatured．The
${ }^{1}$ O．Hillebrand has described as a new method this lower incision with a slight indification，and praises the cosmetic result．
mecsion divides the skin, and the strong temporal fanciu is cut through a finger's br wh above the zygona. The malar is now exposed sulperiostenlly immerliately belind its frontal process, and is chiselled through vertically. The zygonn is diviled posteriorly close to its root, and the whole zygomatic arch is then carefully drawn c,wn with a hook. The outer surface of the temporal muscle is now exposel covered whth and its posterior and lower horder is sepmrated from the skull and drawn n. Il forwards with a bluut hook over the infra-temporal crest, at the same time detachinge the feriosteun and soft parts from the under surface of the skull (sphenoid).

Fig. 109. - Incision for resecting the third (inferior maxillary) division of the trigeminal nerve at the foramen ovale. Exposure of the facial nerve.

This method has the great advantage that all the structures in the retromaxillary fossa can be pushed aside at once, which is not the case if the muscle be detached from below. If the access is not free enough, the insertion of the muscle into the coronoid process nay the divided, or the process itself, after keing thoroughty isolated, may tee nipped off with bone pliers as in Pancoast's and Kronlein's method. There is in special rcason for spuring the muscle ; but its separation does less injury than its, division, and gives a clemer field for operating.

In this way the entire soft prarts along with the periosteum are detached inwards from the under surface of the skull, thus exposing without any further dissection the
outer aspect of the base of the pterygoil jrocens, behind the sharp edge of which the formuen ovale is easily palpable, alvut 3 em . devjer than the zygomatic process of the mahar. Occasionnlly there are two openings from whieh the nerve emerges. The somewhat severe haemorrlage can le easily arrested ly plugging. The larger vessels, branches of the maxillary, lie in the parta which have been drawn downwards, with the exception of the mirdle meningenl, which lies posteriorly. The trunk of the nerve can now he seized with a strong but small blunt look and drawn into view : the lwest phan is to granp, it with a mmall strong pair of foreeps and draw it out eutire. If the hemorrlage has cerasel the wound can be clowed at once; but if not, or when it is not quite certain that the cntire inferior maxillary nerve has been divided (lecause it is difticult 10 decide, when the 1 natient is under the anasthetie), the wound shombl lat stuffed with iodoform ganze, and after one or two days secondary ligatures intronlucerl. The zygoma is replaced and sutured, nuteriorly and josteriorly, to fix it in position. The resulting sear is hardly visible.

Lexer has ineorrectly descriled our method as a mere "simplifiention" of Krönlein's operation, from whieh it really differs. He does not simplify our method to advmitage by merely making an ineision over the aygoma, as this neeessarily involves injury to the frontal branehes of the ficcial nerve.

It is generally unneceswary to resect the malar cither at its orhital phate or at its junction with the upper jaw, except when the necond trigeminal lranel is to be resecterl at the foramen rotumhm. Krönlein has quite rerently (Arch. f. KI. Chir. Bl. xlii.) deweribed a retroluceral methosl; he splits the clecek along with two-thirls of the masseter. and liy removing the whole of the coronoid process of the mandible he is able to tace the individual bramehes u_{1}, to the base of the skull. If the cheek and the anterior two-thirds of the masseter le divided transversely as far ass 1 cm . anterior to the lobule of the ear, one cunnot be certain that no brateches of the facial ure injured. This methorl has already been enployed, in a moditierl form, hy Dikulicz, who saws through the lower jaw. The advantage of Miknlicz's metlonl is that by turning up the entire aseending ranus of the faty free access is ohtainerl, lut the operation is rendered mueh more serious. Bruas and Sommenhurg go still deeper, town from the angle of the jow on the nerves.

Sinultaneous exposure of the second and third divisions, as alrealy mentionerl. eannot safely be performed exceplthy total remetion of the zyingma. Even then it is not a convenient operation to perform, and the intracranial rute is to he preferred, if one is not content with exposure and avolsion of the main leripheral branches.
(l) Buccinator Verve. The bnerinator nerve is the only sensory twig of the anterior braneles of the inferior maxillary morve, the others are purely motor and eall for surgieal interference ehiefls in cases of milateral trisulus.

It is the sensory nerve for the regina of angle of the lumpth. Lying to the inner side of the coronoid process of t - low $\quad \because$, on the insertion of the temporal amscle, it is to le secured at the anteri, Worlat of the pareess, whether the afration be performet from without or from sithin.

Tle operation fron within (Holl) is the sinuber. Dfter opening the mouth willely, and feeling foi the riture at the anterior lumber of the ramus of the jaw, we make an incision down upn it through the hatons membrane and the filres of the buceinator musele on the iter surface of which the nerve runs. The nerse will Ine exposed passing trans erse f fonwards yon the process. lamas was the first to employ this methorl.

Yuekerkanil's incision for exposing the nerve from the outside whein rums horizontally below . malat lone and zygoma immediately alove Nenson's duct, involves the serions sisk sof batring the ramus maximus of the facial nerve, Preference must lee gen to bockenheimer's incision, which is 4 em. long, and extends from the angle of the month the incisura intertragiea, the cuntre being placed over the anterior bor r of the masseter. After the pail of fat in the eheek is exposed, the nerve will effaml lying on the outer surface of the buceinator musele. It may le ne an the - wit the filores of the muscle and reach the nerve at the inner surface of $t \ldots$ - monoid proeess.
(2) Aurieulo-Temporal Nerve. The auriculo-temporal nerve (Fig. 110) is exposed by an incision extending vertically upwards from the root of the zygoma through the skin and fascia. This exposes the tempral artery, behind and under caver of which is the nerve.
(3) Inferior Dental Nerve (Fig. 110). (a) By trephining the aseending ramus through an incision along the angle of the jaw. Velpenu und Linhardt advocate a

Fit. 110. - Ligature of the facial artery. Lagature of the femporal artery. Trephining the ascending ramms of the jaw to expose the inferior dental nerve.
method, whieh is preffrable to that of Kïln and Bruns, in whieh the ungle of the jaw is chiselled through. The incision in "the middle line of ther inling ramus,"
 that the branches of the facial nerve sulpllying the maseles of th. "nd lower lip, ramify. After making a curved incision ulong the angle of the j_{i}. e dissection must be continued cautiously, and cure must he taken to draw ibonwads the supramaxillary brumeh of the facial nerve (compare the posterior part of the normal incision for the anterior triangle). The tendinous tibres of the masseter are separated
upwarde from the jaw with the knife and periostenm elevator, the musele is retraeted miwards as far as the mper enge of the woumb, and a piece of lwine is chiselled ont from exactly the eentre of the ascending ramms (Velpeau and Linhardt). In this way the merve is exposed as it enters the interior dental canal. This methex is a very preeise one, and is sure to strike the nerve. It is hess severe than bruns' method of chiseliing ont a piece of lme from the posterior loorder of the mans; and it is easier than the sommenburg-Liieke operation, which eonsists. in detaching the periostemm along with the internal pererygoid musele from the inner surface of the ramus as far as the lingula. If primary healing axerurs there is now interference with the function of the jaw.
(h) Paravicini's methen. The mouth having been widely omened by means of a White's gay, the sharp imner erlge of the anterior lumber of the aseending ramms is felt for, and an ineision made along it through muents membrane and periosterm down to the bous. The imer edge of the womel is now separated sulpurementeally from theinner surface of the rames liy a blunt instrment motil the spine is felt at the imer enge at the opening into the inferior dental canal. The nerve is fomme with certainty lnelimel the spine. The operations is exeedingly simple, and deves murch less injury than operations from the outside, lnit has the disaldsatutage of proslueing a wound in the montl; from which infeetion may proeeed. Moreover, the shower healing of an infected wound, combined with the fate that the internal lateral liganent is attaeled to the spine, entails a longer himbrane to the opeming of the moutlo.
(t) Mental lifruels of the luferior Dental Nerve. The terminal portion of the alove nerve, namely, the mental nerve is exposed by drawing the lower lip well down from the jaw and dividing vertieally the mueons memblnane at its line of refleetion oppesite the interval inetween the first and seromel biensipul teeth: the periostemm is then divided, when the ners- will he fomm energing from the mental formmen. Cenerally, however, the seat of nemalgia is mure proximal in comeetion with the teeth-sin that the newse mast be expesell before it enters fle inferior dental canal.
.) The Mylohyoid Branch. This twig may le exposed from In-low where it lies intween the lower jaw and the insertion of the maghyond musele on the inferior surfare of the latter.
(6) The Linghal Newe. The lingmal nerve may also be expmed by limavienios intrabuceal mothonl (ef. No. 3b). The following methorl, howerrer, is simpler, Incause the merse as it passes forwards hetween the anterion pillar of the fances amble rent of the tomgue lies very superticially, indeed jnst under the muens membrane. . 111 that is reppired to expose the nerve is t make a small longitmbinal ineision

 the oprevation is that the womel is insife the month.

Ton avoid this drawhate we lave sought to expese the berwe firem the outside and from below, namely, where it gasser abose the submasillary glime. The incision is a part of our normal incision fin the superior triangle of the work. It expoeses the lower border of the summaxillary glant, which is larmel nowards, and the nerve is then secured where it is commetell through the submaxillary ganglion with the subnaxillary gland immediately in front of the internal pteryghiol bumele. The "peration is considerally monu diftientt than that previonsly mentioned, int it prssesses the alvantage that primary healing is ohtained with certainty.

Lastly, the nerwe may also lee secured ly trephining the rammo of the hower jaw in the same way as for the inferior dental nerve, or from below (Sommenme-Lacke).

Division and avulsion of the nerve may le imbleated in lingnal neuralgia, raperially in cunnection with eimerer of the tongue.

So fir ats we are aware, there nre no special oprations comnectal with the alndueens, ulthongh the question of nerse-grafting might lee considerel.
15. Facial Nerve (Fig.s. 109 and Iiil). The farial nerve is lialle to be injuret in any operative interference behiml the angle of the jaw (removal of glandular and other tumours) as well ax in oprrations on the pratid (excision of parotid tumonrs,
and in incision of a phlegmonous protitis). The nerve is decply placed and is partly covered by the parotid. In the case of simple tumours it call generally he preserved, but in malignant thmours the nerve has freguently to be surrificel.

In nerve-grafting, we now possess a means of repairing a nerve injury, and it is enjecially in comection with the facial nerve that this operation has heen most successful.

The results are infinitely hetter than after the facial nerve is stretelied in cases of facial spanm, althongh the latter operation proves in many cases suceessful.

We have frerguently streteled the facial nerve and would always try its effert before resorting, like Kemenly, to division nal nerve amatomosis. Wie therefore reproduce our description of the operation to expos the facial nerve.

Operation: In partial agrement with Henter, Liolker, and Kanfmam, we make an incision hehinal the angle of the jaw along the anterior londer of the sternomastoid as far as its attachment to the mastoid process: the attachment of the lobnle of the car is then divideal by extending the incision upwards in front of the tragus: The tissues to be divided are somewhat ilense, comsisting of processes of the parotideomasseteric fascia passing to the cartilage of the ear.

The knife is nsed cantionsly until the lobules of the parotid gland come inte, view. A bhat hook is inserten, and the lobules are detached forwards with a tissine dissector. The small bleeding vessels must tre secured with foreeps, otherwise the view is obsemred. The tendinons anterior border of the sterno-nastoid is recogmised in the floor of the woind, the anterior border of the mastoid process is felt for, and then each strand which passes forwards is irvitated mechanicatly to see if the facial miseles contract. The nerse runs from behind forwards over the powterior lorder of the digastric, and slightly downwards muder the parotid as a fine cord 2 em. in thickness. It lies at a distance of 2.5 em. (1 im.) from the surface, finly 1 em. deeper than the auterior borler of the sterno-mantoid and the mastoid provess, abont midway between the angle of the jaw and the zygoma. (In Fig. 109 it is drawn rather too high.) The posterior auricular artery lies posterior to the womul, while the exten alal carotid lies under the digastric musicle.

In exposing the nerve for the purpose of stretching it in facial s.pasm a general aniesthetie must not le employed, becanse the stretehing must be so measmred that it prodnces a distinct, but not a total paresis, whieh can readily be bronght about liy slight traction with an anenrym neelle. Even if at tirst some spasm emtimes this soon eompletely disappears. An ohd lady operated on hy us in this way recovered connpletely within fonrteen days after having complained of the spasm for six years. The parevis gradually disalplears:
lmpertant constrimitions to the sulport of nerve-grafting or merveanastomonis have been made ly Harvey Cushing, ${ }^{1}$ Frazier and spiller, antl Destell, ${ }^{3}$ while Manasse and barago lave studied it from the experimental point of view.

Up to 190. the facial nerve had been grated on twenty-two oceavions (l)estelle), the. anastomosis heing mate with the posterior branch of the spinal accessory fifteen times, and seven times with the hypughossal. Athonsh very different opinims ane helid regarding His's view that every nerve is an outgrowth of a nerveredl, and that regeneration only takes plate by a downgrowth of filmes from the enental into the peripheral end, and also regarding the views held by bethe and Nissl, Ballanee and Stewart and other investigators, that regeneration can take place in the peripheral portion of the nerve, the fact remains that neve impulses can be reestablished ly anastonosing twa different dividel nerwe. Aremeding to Cobling, the reelit of having demonstrated experimentally the trath of this merve-rossing is the to Langley.

Chshing maintains that one must assme from harisons rescarches that there
 peripheral comeetion by some sort of chemietactic influenee, so long as: all mechanical obstruction has heen removed, irrespective of whether the peripheral portion con-

[^65]tributes to the process by autoregeneration or not. We lave therefore to nid this natural tendency by the removal of all obstructions. We know that when the edges of a wonnd are areurately situred, divided nerves heal of their own areord, and ulso that it is diffient in the case of semsory nerves to prevent ragenemation securing, if there is no olsatacle to the subserphent ontgrowth in the case of amsory merves, r.\%. the trigeminal.

I'nion of the distal emu of the nerve (or as in Lym Thomass coise, of the main brameses) with the spinal accessong or hymghesal nerve, has been intronhered as a methoul for the relief of facial paralysis. Ballane and stewart first performed the "peration on man in 1895. The effeets of the anastmusis are that the nerve-end mite and there is re-establishment of museular tome and volmutary mosele power even if the pralysis has existed for a lome times provided the musides are uot gnite

Fils. 111.-Finco-lypoglowal anatomonis. Frakiers operation.
atrophed. In facio-aecessory anastomesis an artive and imleponlent inmervation of the miscles of the face is obtained, but the face twiteles with every volmentary mavement of the . ismider.

Ballance, Körte, and Frazior therefore prefer to ntilise the hyprofonsal, Wectuse, firstly, the nerve-centres are closer to one amother, and secomelly, lacalase it is canser to improve the effert by edncative methoms.

As regards the method of amstommis to be emploned, it has luedi prover that
 aplears to in more certain, and is applicable to extreme cases where everything repends on eombetion throngh the new union; end-tosside mion, wn the ither hamd, is "wervel for those cases wher, in the ease of failure, one is motliug to ritk purai,sis of the healthy nerve nsed for graftiug.

Technique: An ineision, 10 cun. long (i.e. longer than that repuired for simple (exposime of the facial neve), is made along the amterion lomerer of the sternomastoil
extending up on to the mastoid process. The posterior border of the parotid is exposed and displaced forwards. According to Frazier, the nerve enters the gland by passing forwards on the outer surface of the styloid process and the digastric musele 1 emb. alowe and the sume distance intermal to the tip of the mastoid process. When the lesion is situated higher up, as is the case in diseases of the midllle car, and in chills in which degenerative nemritis has lewn proved to exist right ul th the gemienlate ganglion (Spiller), the nerve mast he followed to the styloid foramen and livided as elose to it as prossibles.

The hypuglossal mowe is then isolated at the point where it horks romen the commencement of the extponal carotiol artery. If the spinal aceessory nerve is selerted, it must he followed from the front of the transwerse process of the athas (whieh is always easily felt) t.l the muler surfare of the sterm-mastoid. Diy drawing the masele ont wards the nerve can le remered distinctly visible.

The distal end of the farcial nerve is uow either fimplanted in at lateral slit in
 its central rum mited to the peribleral end of the farial nerve. with fine sutures includins as far as possible omly the merve-sheathes hy division of the nerve
 nsed, sio that as little ciratricial tiaste as pessible may he propluced from the lomg. continned presence of a forcien lunly.
16. Acoustic Nerve. Thmons not infrepmently orche in connertion with the cighth eranial nerwe and prive rive the serioms pressure symptoms althomsh they are senerally small and easily remmed. Tlue duestion is merely one of corret diagnisis.

The disaretion to expuse the anditory nerve at the lame of the shall is an extensive
 anyle.

In leseribing the surgery of the ceremellan, we gate an illustration from Fratiers work (Fig. 90) which shows how the pustering aspect of the petrons temperal with the entering anditory nerve ean bee expmed ly trephiniug the werppital lunce and depresing the revelnillun downwards and inwaris.
 interference.
17. Vagus Nerve. The surgery of the tenth ranial newhe is impurtant firstly on areont of its laygeral hanelies and recombly on acemut of its cardian and pmonemary Intameles.

 of the reemrent larsugeal it is desirathe that the nerve comb domble he mited. this may repuire a plastio "peration, ays. lengethening the nerve, anm if the fald letween
 aceesony, porided the latter is amailable.
 the sensory nerve for the liryns, is axpmed by drawing downwat the lower edge of

 of the tharo-hyid miske. It is of very great ingrortance th hate in mind the comers
 in "prutions septic 1 mellumbia (s.rhlurhp pmenmomir).
 cutaneoms semsory nerve is to le considered.

The anthor has stretelel the nerve with permanent benefit in a case of arnted neuralgin limited th the sumering laryugen nerve.
(b) Intiprion Larymgeal. Lerme Paralysis of the inferior laryngcal nerve is a common complication in goitre, and securs still more frequently after excision of tha
thyroid, wecially if the oneration has Inem performed by a surgenon who has no areat experience of this lrand of surgery. Formately the lomaseness which results from milatenal paralysis of the laryngeal muselox is penerally wily temporary, since the other vocal cord cones in contat with the paralysed emorl arross the midille line in phonation.

Still in some cases the hoarseness may prove jersistent, when the quention has to be considered of implanting the peripheral end intu the trunk of the vagus or of

 oroipital inforios. likature of the shlulavinu artely.
18. Spinal Accessory Nerve (Figs. II:. $11: i$). 'Th' eleventh mamial mever

 amb divided in facio-acersory amastomosis, since its division, Invoml causing drooping of the shouhler and atrophy of the trapeaius, resilts in un serions loss of function.
 mised to the horizontal prsition.
 the internal, jugular vein, lemeath the mper third of the stemoreleinomastoid musele.

It gives brameles to the sterno-reledo-mastoid mad trapezius maseles. In spanmodic comblitions which are linited to these two moneles, the stretching or tearing ont of the nerve gives incml results. The nerve is to la avoided, however, in operations in the
 lymphatic glands in this region. To expme the nerve we employ the mastoid pertion of our nomal imeision, viz. from the mex of the mastoid process to lelow the ungle of the jaw. The external jugnar vein and the great morionlar nerve having lnen freed, the stembmastoid masele is drawn forcilhy lackwarls. The spimal-accessory nerve

 the prominent transerse process of the atlas. It lies rlome to the under surfate of the mmsele. The oceipital artery pisses backwinds over the netwe. The lowest branch of the facial nerve to the maseles of the ehin may ceme into view at the burer edge of the wotanl, and is to Ihe aboided. Higher mp, the uerse is cosered hy the posterime Indly of the digastrin: musele. Anteriorly it is accompanied by the artery to the sterio-rleidn-mastoid musele from the external canetid.

It is easier "wexme the nerve lower down, i.s. at the posterion horder of the strono-mastoid. loig. 113 shows the transerse incision mate through skin amd phatymat, rather helow the middle of the stemomastoid. The extermal jugnlar vein,

Fiti. 114. - Ligature of the limgat artery ahove the greater connu the hyond. Ligature of the common caroth at the level of the crleohl eartilage. Ligature of the inmominate artery. Ligatnre of the first part of the axillary artery. Ligature of the internal mammary artery.
which descends weross it, is drawn forward and the superfiein! cervical nerve, which crosses the stermo-nustoid musele, is not interfered with. After division of the fascia, the nerve is seen passing oblipnely lnackwards from the penterior border of the sternomastoid to beneath the anterior border of the trapezius.
19. Hypoglossal Nerve (Fig. 114). As already, mentioned, the hypoglossal nerve has recently hren preferrell for nerve-anastomosis in facial palay.

It is looked for at the outer side of the eommeneement of the extermal earotid artery (round which it hooks), from which point it should be followed up and disseeted out, if there is danger of its lecing injured during the removal of a tumour.

The ineision to expose it vorresponds to the middle third of our normal incision for the superior triangle of the neek, and is the same as that made for ligature of the external curotid (Fig. 114). After we have divided the skin, phatysma, and fascia, the anterior lorder of the sterno-mastoid is freed and retracted baek wards, care being taken to avoid the external jugular vein and the great auricular nerve. The common facial wein is drawn lackwards and the external carotid exposed. The lypoglossal nerve will be found lowking round the outer side of the artery from belind, before the latter gives off its bramehes (the superior thyroid artery alone is below the nerve), mal then passes underneath the digastric and stylohyoid to reaeh the anterior surfate of the hyoghossis musele.

H. SPINAL NERVES

(a) The Upper Four Cervical Nerves (Fig. 115)

The upper four cervical nerves maty have to le divited in spasmodic contractions of the eervical museles, particularly spasmodic wry neeck, and also in occipital neuralgia. We lave described (see p. 443) the methon we employ fur the treatment of spasmodic tortieollis, viz. myotomy, whieh serves the sume purpose as division of the nerve withont learing the muscles of the neek promanently paralysel.
ladieal eure in severe cases of musentar spasmin or ohstinate nenralgia which cannot be localised to the area of one individual nerve, can only he obtained hy dividing the nerves where they emerge from the spinal eamal. Kramse recommends the following operation:-

An incision, begimning hedow the external oecipital protuberance, is carried transversely out wards to the insertion of the stermomastoid, from which jwint it deseendalong the pesterior lworder of the minsele to the level of a line drawn horizontally through the hyoid home. In the mpler portio of of the ineision the trapucius, splenius, and complexns are divided at their attachment to the skull, the bleedivag at this stage being very considerable. The great and third oecipital nerves are alsog cut across.

T'his imsenlo-entaneous Hap is retracted and the deep museles of the subsecipital triagle are exprexd, viz. the rerths eapitis anticus major, and cbliquus ap itisherior and inferior minseres, with the trachelo-nastond at the outer limit of the: wound running obliquely forwards and upwards.

The tirat cervical (subvecipital) nerve will he found in the suboceipital triangi. between the oeciput and the athas lying behind th: vertebral artery whieh run. transversely inwards to the foranen magnum. It i , "ntially a motor nerve, uad
 lies outside the spinal cumal.

The great weipital (the posterior primary division of the second cervical nerve) lies below the inferior obligue muscle and furnishes the sensory suplly to the whole of the batck of the sealp. It is easily recognised ly tire course it pursues over the posterior surface of the inferior oblique muscle. According to Krause, the ganglion of this nerve also lies extra-vertebral, i.e. after the nerve lats passed out bet ween the atlas and the axis.

The third cervical nerve runs lackwards between the axis amd the third cervical vertebra vertically below the second nerve. Internally it gives off the thirit oceipital nerve as its main cutaneous branch, and gives off the small occipital upwards and externally.

The sensory branches of the fourth cervical nerve run downwards amd phy no part in occipitat neuralgia. In spasmotic conditions of the neck the nerve exerts only an indirect action on the cervical vertelra through the longus colli aud scalene unscles.

Fig. 115. - Exposure of the upper three cervical nerves through an incision aloug the posterior horler of the steruo-mastoid. The transverse processes of the cervical vertelgre are sech, with the attachnients of the museles.

We regard Kriuse's opration as difficult and severe. Further, in oceipital neuralgia, it is uncommon for all three upper cervical nerves to be involved. The posterior as well as the anturin $\mathrm{u}^{\text {nrtion }}$ of the subrecipital is purcly motor. As a rule, therefore, onty the second and third cervical nerves need tee exposed. The posterior primary division of the second nerve is the great occipital, and its anterior division takes purt in forming the small occipital. The posterior primary division of the third nerve is the third oweipital, while the anterior division helps to form the small oceipital ns well as the great auricular and superticial cervical nerves.

The second and third cervical nerves are exposed as follows:-Incision through
wkin and fascia from the mastoil process along the pow cior border of the sternomastoid muscle from under which various small cutaneous branchen emerge. The sterno-mastoid is retracted forwards and the fibres of the splenins capitis and colli which pass obliquely upwards and forwaris, are cut across along with the traehelomastoid. The strong complexus muscle is drawn buckwards and it and the levator anguli scapule remain josterior.

By following the nerve-branches alrealy mentioned the trunk of the thirl cervical nerve is uow olmerved emerging from beneath the projecting transwerse process of the axis, and sending its anterior branch downwards over the scalenus medius, and the posterior (small occipital) hackwards.

Fig. 116.-Ligature of the occipital artery and exposure of the small occipital nerve. Great occipital uerve.

After dividing the attachments of the levator anguli scajulee to the transverse processes (and drawing the musele forwards) we see the short strong belly of the obliquus capitis inferior, round the outer border of which the great occipital nerve hooks. Following up the nerve we find its exit above and hehind the transverse process of the axis. The muscle may have to be divided.

If the obliquus capitis superior is also divided, the exit of the first cervical nerve (or suboccipital, the posterior primary division) may be exposed between the arch of the atlas, which can be plainly felt, and the occiput. This, however, is very rarely necessary:
20. Great Occipital Nerve (Figs. 115 and 116). Being the sensory nerve to the
back of the neek and head the great oecipital is frequently the seat of neuralgia, for which treatment hy isolation anl avulsion is justifiel.

The great occipital nerve (posterior division of second cervical) becomes superfieial at the outer bomler of the trapezius after piercing the complexus monsele. The nerve is found internal to the oceipital urtery, lwoth structures converging towards ane another.

If, for neuralgu, one wishes to find and xtreteh the nerve nenver ifx origin, the incision must be made deeper (Fig. 116). A transverse incision is earreed outwards from the middle line opposite the projecting hifid spine of the axis. At the outer angle of the incision the ponterior edge of the sterno-mastoil musele und the small oceipital nerve appear. The compuratively thin trapezins is dividen, as also are the fibres of the strong splenius capitin, which ameend obliquely upwards and out wards underneath it ; aml, lastly, the vertieal fibres of the powerful complexus muscle having leen divided, the deeply placel fibres of the superior aud inferior oblifue muscles are exposed. The large nerve curves round the lower border of the latter muscle and pmasess upwards and inwards across its surface. Here the nerve gives off motor branches to the muscles at the nape of the neek, and is thereafter purely sensory. The trachelo-mastoid muscle extending oblignely downwards at the outer lorder of the complexus can be spared.

The operntion deseribed in the previous section (H, a) for exposure of the three upper cervieal urrves is, however, preferable.
21. Small Occipital Nerve (Great Auricular, Supericial Cervical Nerves) (Fig. 113). These nerves appear close together from nnder the posterior horder of the sterno-mastoid and radiate upwards and forwards on the side of the neck. They are easily exposed by dividing the skin, platysma and fascia along the middle thiril of the posterior lorder of the sterno-mastoid, and defining the border of the musele. It is here that they are injected in producing "conduction" aniestresia, aml may also be stretched one after the other, as they are purely sellsory nerves supplying the whole of the side of the neck.

By drawing forwarls the sterno-mastoid and the large inderlying vessels, and dissecting deeply at the anterior border of the splenius, trachelo-mastoil, and levator angnli scapule, we reach the exit of the third cervical nerve below the attachnent of the scalenus medins to the transverse process of the axis. This nerve really belongs to the three branches namel, and may thus, along with the third oceipital, be made accessible for opreration (vide description in H, ,).

The small occipital nerve can also be expresed along with the occipital artery on the occiput as shown in Fig. 116.
22. The Fourth Cervical Nerve (Supraclavicular Nerves and Phrenic Nerve). The fourth cervical nerve (like the third) may call for surgical interference, as it is not infrequently the seat of neuralgia in malignamt tumours of the neck, p.!! in maliguant goitre. Along with the third it contributes largely to the formation of the phrenic nerve, and care must therefore be taken to guarl against injury.

The fourth cervical nerve is of clief interest in that it provides an execllent gnide to the phrenic nerve, which mnst be exposed and avoided in operations on the neek.

Fortunately the phrenic pursues a very detinite course which urakes it possible to isolate it and to deal only with the main sensory branches of the fourth cervical nerve. It runs vertically downwards on the anterior surface of the scalenus anticus (which can easily be feit), aud enters the thorax by crossing the insertion of the muscle into the first rib.

The phrenic nerve can be readily exposed, and may he stimulated in cases of arrested respination with a faralie current. In eollape during long severe operations we have been able to maintain strong enough respiration for twenty minutes by alternate faradic stimulation with a strong current of first one phrenie then the other, till natural breathing was restored, at the sume time raising the blood-pressure by saline injections.

(b) The Lower Four Cervical Nerves (Brachial Plexus)

The brachial plexus, which is formell by the hower four cervicul nerves (five to eight) and the large first dorsal nerve with twige from the fourth ervical and wecond dorsal nerve, oceupies a charucteristic position and ean lee readily expmed liy an incision in the supraclavicular fossu. The dissection t, expme it is the same an thuz for ligature of the sulclavian artery alove the clavicle (Fig. 117).

F'l. 117 . - Ligature of the external carotill with the origins of the lingual, facial, and occipital arteries. Ligature of the subchavian artery:

Like the sulchavian artery, it appears between the scalenus anticus and medius, being situated for the most part alwe the artery, although the lowest brachial nerve trunk may pisss lnehin! it on the first rib. Here the plexus can be stretched for spasmodic conditions in the arm. It was on the brachial plexus that the first experiments in nerre-stretching were made by Nussbanm and Billroth.

The omohyoid muscle lies in front of the plexus, and in the fatty tissue in front of it run the superficial cervical and the suprascapular arteries. The large transversalis colli artery passes between the cords of the plexus.

Thicepen in

aerig jrosinula in

Itrpp farc..at

Clana

Inner head of trice pion
Supromprorunda:
Nusenhar loratulz

Latelssim:** Jursi th.

Trleroim lit.

 forte and siferion pmbimia arters.

 which can lee eqparated und reonguisen are wortly of mention．

23．Anterior Thoracic Nerves．Thewe herves whirh sumply the perteralis majur and minor must h^{2} remembered hy the opmatur when ligaturing the uxillary artery immediately lelow the elaviele，as they eros．low artery at this print（mide Ligature of the Axillary Artory）．

24．Short and Long Subscapular Nerves．Suphying the subsapular aur latissimus domi muscles，these merves must he lurne in mine when eloaring the axilla of malighant glands．Their relations ate shown in Fige ！is，and they are exposed hy a similar methes to that for the arteries of the same name which they arempany．
 of the long thomacie artery．It bas sertieally downwards in the serraths magmes，
 Thoracice Aitery）．

26．The Circumfex Nerve（N．Axillaris）．The rircmultex merve is of importance trecanse from its position it is sperially expensel to damage when the atm is athmeren
 a emoth or in a case of dislocation of the heal of the hamerns）．hajury to it gives

The reader iss referend to the deseription of ligature of the asillary artery and of the pusterion circumalixatery，the illustrations in comuretion with wholl we here

 （eider rhapter on Laveal Anaenthesia）．

27．Suprascapular Nerve．The suprancapmar meve is liahle to iujury in the

 inferins）．＇The newe is expmed hy an ineivion along the onter thind of the spine
 supraspinatus batuscre．
 joint．

28．Nerve to the Rhemboids（Dorsalis Scapulæ）．Tlur In－TM tu the levatur
 sempulie artery（mide Ligature of this Artery）．
 the meat of nembalgia．

29．Lesser Internal Cutaneous Nerve（N．Cutaneus Brachii Medialis）．In

 nerse in the nemen－atasinar limulle．

30．Internal Cutaneous Nerve（N．Cutaneus Antebrachii Medialis）．Thi，
 is aste expmed in ligaturing the axillary artery at its torminations．It pineres the

 ul：ar side of the fintarim．

31．Musculo－Cutaneous Nerve，luthe expente of the ferminations of the

Almeve the mithlle of the "piper urim. The ineisiom desemuls alomg the intermal bicipial sulens from the lower part of the prominence of the coraco-braehingis. The minsentar filores of the hiceps are expmeen, ant the musele irawn outwaris, The
 museld, throngh whiel it penetrates in urier th wach the antsrion surface of the brachialis nutions musele.

Higher me, the nerve may ke fomul hy making an incision ower the prominene of the coraco-hrachiadis, and passing lnetween this musele and the shost heal of the hirepos.

 throngh the fasmia down to the misentar fibres. The cephalie vein is asoided. Atore
 and the nerve fomme towaris che midhte of the brachialis autions lying muler the thin fasela covering it. Care minat le taken that the onter hwriler of the hrachialis antiens is not expmed instean of the hirepor.

The entaneons branel, (N . entanens muthrachii lateralis) of the musemberntane ons whiel smplibes the radial side of the forearm as fiar as the hase of the thumb;

 felt in the fohl of the ellow.
32. Median Nerve. The median nerve can be readily expmeel in its whole length. In the axilla it lies to the outer side of the axillary artery (ride ligature of the Axillary Artery).

It can ulso lee easily exposed in the midelle of the mper arm, where it liess in the internal hieipital snlens, and erosses from withont inwirts in front of the lrachial artery (Fig. 118). The nerve accompanies the lrachial artery in its whole length, lying external to the artery unowe, aud internal to it below.

In the bend of the ellow the nerve lies eonsilerably to the inner side of the artery.

The median nerve (Fig. 120) lies half a rentimetre internal to the lirachial artery at the enter edge of the pronator teres masele. The vessels mind nerve are supported posteriorly by the hrachialis antiens musele. In this operation it is to be loorne in mind that the artery and nerve descemb from the internai licipital sulens, and therefore one minst not pass to the inter side of the hieeps tendon. The musewhocuthmons nerve pierces the fiselia extenal to the hiepos tembon in the growe bet ween it and the silpinator lomgus.

On the frout of the forearm the nerve lies between the Hexor sublimus and thexor Imofundus digitormumuseles (Fig. 1:23).

In the "ipere thim. Incision in the interval inetween the supinator lomgns and Hexors, as in ligature of the vadial artery. The promator ratio teres, which here "users the nerve, is divided intermal to the alme vessel. In the miner thitel of the incision the temlinoms arel of the flesor sulimisis digitornm is seen with the nerve descending hehind it: it minst l_{n}. diviven when the merve is to l_{n} expmedel farther down. It tirst the ulnar artery lies th the radial side of the nerse, and then brases almost at mee muler it as it arrhes downwards and inwards thwarls the nhar side of
 the interosseons membrathe.

 misele, necompanied liy the median artery.
 nif the palmaris loughes templon.
 hecial bet ween the tembens of the thexor digitormum malimis.

Of the lorames of the median the following are to be momsiderel:-

Fili. 121.-Melian nerve, auterior interosseons nerve, interosseous artery:
mar fascia.

(c) Common Palmar Digital Branches

In the palm the branches of the median nerve lie on the flexor tendons immediately underneath the strong palmar fascia. The two divisions of the nerve, which are distributed to the first four tingers, may be exposed by the same incision as that for the deep palmar areh.

An ineision is carried through the skin and the strong anterior annular ligament at the junetion of the thenar and hypo-thenar eminences. The large nerve lies upon the common flexor sheath and divides into two divisions, the outer supplying the thenar muscles (with the exeeption of the adduetor), both sides of the thuml, and the outer side of the index finger; the inner supplying the two outer lumbricals, the ulnar sille of the index, both sides of the middle and the radial side of the ring finger (Fig. 122).

(d) Anterior Interosseous Nerve

The Anterior Interosseous Branch of the Median Nerve (Fig. 121) is seen passing outwards from the median in exposing the latter in its upler third. The

anterior interosseous nerve (with the artery) is exposed in exactly the same mamer as the median nerve in the middle third of the forearm. After the median has been exposed, the anterior interosseons braneh may be seen upon its onter side passing deeply between the flexor longus prollieis and the flexor profundus digitomm to reach the interosseous membrane.

(e) Palmar Cutaneous Branch of the Median

The palmar eutaneous braneh of the median nerve may be exposed by the same ineision as that for the median itself above the wrist-joint, where it pierees the fascia and deseends to the paln.

(f) Palmar Digital Branches

lieference has already been made to the eommon pralmar diyital branehes in exprosing the median nerve in the palm of the hand. The digital branehes of the median are the largest sensory nerves of the fingers. They are shown exposed in Fig. 123.
33. Ulnar Nerve. At the point where the axillary artery is tied in the arm, the ulnar nerve lies on the artery in the antero-internal nerve-bundle along with the two internal cutameous nerves and the inner head of the median nerve, at whieh point it is easily found.

Lower down in the arm it lies in the internal bicipital sulcus.
Incision over the inuer head of the tricens along a line asecnding vertically from the internal epicondyle. The strong fascia is divided behind the white line corresponding to the internal intermuscular septum. This exposes the muscular substance of the inner head of the triceps, in the moxt superticial fibres of which lie the ulnar nerve and the inferior profunda artery.

Behind the internal condyle of the humerus at the ellow, the ulnar nerve again occupies an absolutely definite position (Fig. 1:4).

Incision through skin and fascia upm the posterior surface of the lase of the internal epicondyle. The nerve lies close to the lone along the inner edge of the triceps, disappears below between the two heads of origin of the tlexor earpi ulnaris which spring from the epicondyle and the olecranon respectively, und rests upon the flezor profundus digitorun. The terminal branch of the inferior profunda artery lies alongside the nerve.

In the upper third of the forearm the ulnar nerve furnishes the guide to the ulnar

Fig. 124. - Uhar nerve at the internal epicondyle.
artery between the flexor sublimis and protundus (vide Ligature of Cluar Artery, Fig. 120).

The ulnar nerve is exposed in the same way as the artery in the lower third of the forearm and at the pisiform bone.

Branches of the Ulnar Nerve

(a) The palmar cutaneous branch to the lall of the little finger is only of importance in regarl to the promuction of local aluesthesia.
(1) The dorsal cutaneous branch which sulplies sensation on the hark of two and a half fingers passes on to the dorsum of the hand a finger's-breadth lelow the styloid process of the ulna, which is easily felt through the skin.
(r) The palmar loranch divides in the palm of the hand a fingers.hreadth below the pisiform, above and to the ulnar side of the hook of the unciform (which can be distinctly felt) into a superficial branch which passes beneath the paluar fascia on the nuseles of the lyypothenar enninence to give digital brancles to one aud a half fingers
and into a deep branch which dips down on to the interossei, which it supplies along with the lumbricals and the adductor pollicis.

These branches can be exposed at the point mentioned above, and to the ulnar side of the hook of the unciform. The terminal branch of the deep division is seen in ligature of the deep palmar arch (vide Fig. 122).
34. Musculo-spiral Norve (N. Radialis). In the axilla, at the point where the terminal protion of the axillary artery is ligatured, the musculo-spiral nerve lies along with the circunflex nerve posterior to the artery.

In the upper third of the arm. The musculo-spiral nerve in the upper third of the arm is exposed in the same manner as for ligature of the superior profunda artery on the inner side of the arm (Fig. 118). The nerve lies lehind the artery, descending on the tendon of the latissimus dorsi and then passing towards the back of the lumerns between the inner and long heads of the tricejs. In looking for it care must be taken not to go too far back, as otherwise one gets lehind the nerve and artery which are here in relation to the bone in the internal bicipital sulcus. The nerve is recognisel by its characteristic position on the latissimus dorsi.

Aloove the middle of the posterior surface of the arme (Fig. 1:5). As a guide t., the incision, a line is drawil along the posterior surface of the upper arm from a point a finger's-breadth behind the posterior border of the deltoid and close to the long head of the triceps down to the tip of the olecranon. The incision begins below the level of the posterior axillary fold, and passes downwards along this line in the interval hetween the long and outer heads of the trieeps, which are separated from one another down to the bone. The nerve lies between the inmer and outer heads of the triceps after having passed under the long head at the lower border of the latissinus dorsi. larallel to and in front of the nerve lies the superior profunda artery, which is ahn, in contaet with the inner surface of the humerus.

At the bend of the elbow the musculo-spiral nerve, together with its hifurcation into radial and posterior interosseous nerves, lies in the interval between the supinator longus nud lraehialis anticus muscles.

An incision is male nt the lend of the elbow in a line prolonged from the external bicipital sulcus along the anterior edge of the supinator longus muscle. The median cephalic vein is drawn aside, and after division of the fascia, the nusculocutaneous nerve appears at the lower part of the incision beside the bicepss tendon. The latter nerve pierces the fascia to supply the skin upon the radial side of the anterior aspect of the forearm. By passing towards the bone at the outer loorder of the brachialis anticus muscle, we find the radial and posterior interosseous nerves, the one in front of the other, and beneath them the terminal branch of the superior profunda artery.

Branches of the Musculo-Spiral Nerve

(a) The uyper external cutanerms branch (n. evtaneus liruchii posterior) which surplies the skin on the posterior snrface of the upper arm is looked for at the point where the musculo-spiral nerve crosses the tendon of the latissimus dorsi (rid ligature of the superior profunda artery in the upper thiril).
(b) The lover extermal cutanerous brench (n. cuttuneux antebrachii dormedix) which is distributed on the buck of the forearm pierces the fascia in the external livepital sulens lnelow the middle of the arm (vide Fig. 5).
(c) The pusteriur interosseoms nerve (wemus payimelus). (Fiy. 106.) The posterior interosseous nerve is the motor nerve to the sumbutors anal extensors in the forearm. To expose it an incision is carried vertically downwards from the hemb of the ralins, along the radial asprect of the posterior surface of the forearm, in the interval between the radial extensors and the tendinons extensor communis digitormm. The fiscia is livided between the glistening tendinous origin of the extensor commanidigitorum and the muscular fibres of the ramblal extensors, the latter leciny drawn forwards with bunt hooks. The supinator brevis musele mow nplears, the tibres of which pass in a characteristic manner obliquely downwards and forwards. The nerv:

Fit.. 125.-(1) Ligature of posterion circumblex artury, circumilex neris. there amil mperior prolumla arters:

 ＂xtemsors of the thmmb and inclex finger，which lie niwn the powterior surface of the malins．In the lower thirl of the ame the terminat loranch guses on to the inter．

 hayers of extenom uniseles．

 nerve can be folt hirongh the＂in on the huek of the lower eme of the ruthins．

（g）Thoracic Nerves

35．Intercostal Nerves．Of the twolve thomeie nerves，eleven are termed inter
 artery of the sume name，mad，exrept nt their emmenement mal termination，lio

They smply sensation to the whole of the skin of the thorax（ineloding the mamma and the alulomen）throngh their lateral entan onts lirmedes（which are given off vertically between the axillary und mummary limes），and their anterior eltaneems
 reethis ulklominis．

By exponing the intercostal nerves on the punterior surfare of the thoris，atid st retelning or dividing them in enses of nenrulgia（im the thans or nlxhomen）all the branelres are afficted with the exception of the pestecior pimary divisions，which ran ouly be reached by dissecting the buscles of the litek off the posterior surfnees of ：ly． vertehral ardes and transerse prowesses．

Thre interenstal nerve lies letween the imterenstal maseles lndow the urtery： It may lee exposed in the sallue way as the urtery－for the pripme of atretching it in intercontal henralgin（Fig． $1: \begin{gathered}\text { ）}\end{gathered}$ ，if me has mily to do wibh a single nerve，the incision
 the leme．The extermal intercostal manem is sepmetated from the lower lurder of the

（h）The Lumbar Plexus

The lumbar plexis is formed liy the first，secomet，thind，and purt of the forrth hambar merves，receiving also a twig of cormmminationf from the twelfth dorsal nerse．

Thu semsury hamenes derivel firm it are distributed not to the alnhemen，bint t．． the ingminal region，the outer，imer，amblanterior asperets of the thigh，and the ＂יIner gart of the pmedendi．liain in these regions may therefore I_{c} deadt with surgimally．

36 and 37．Ilio－hypogastric and Ilio－inguinal Nerves．Both these nevser ant enemmered in expmeing the kidney from Inhind ；they lie on the anterion smface on the quadrathis lumbrim，at the outce harder of which they pase betweet the intermal whigue and tramsersalis．（The ermennatia．of the imferontal nerven als，lic：
 Neplurotmy）．

MICROCOPY RESOLUTION TEST CMART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1653 Eost Moin Streel Rochester, New York 14609

USA
(716) 402 - 0300-Phone
(716) $288-5989$ - Fox

The ilio-hypogastric nerve runs above, and the ilio-inguinal through the extermal ablominal ring to the mons vencris and the uper part of the pridenia. The ilin-

Inghinal in more easy to remgnise and can lo injeeted for the probuction of local anasthesia in oprations on the spermatie cord ar rombl ligament.
 the ilio-imgmal the "prer part of the inner side of the thigh.
38. External Cutaneous Nerve (N. Cutaneus Femoralis Lateralis). This urwe supplies the skin on the outer sirle of the thigh as far ats the kines. lat the ilite fossat

 rither at the onter edge of the wigin of the sartorits, or over its anterior surfate.

39. Genito-crural Nerve (N. Genito-femoralis). 'This meve divirles into a armal and a gemital bande the former of which deneedrls on the onter vide of the femonal artery to shlply the skin on the anterion smefae of the thigh, while the latter enters the intomal ablominal ring and is distributed to the spermatic eorel, the dartos and the wrotum (or lahimm). Both hanmers ran le readily bigented daring operations in the region of the femomal ressels (mile Fig. low), or an the olnomatio rord in the inginal eanal for the prounction of lowal amesthesia.
40. Anterior Crural Nerve (N. Femoralis). This, the prineipal herve fur the

 bloek the nerve in tetamts.

The nerve sulplies the lower gart of the fiont of the thigh with eommon wasa-

To expose the nerve at lomparts lisament (Fig. 1:S) a transerme incision is

 the sheath of the ilionsoms, is opened. The merve lies immediately moler this to the

 the vasenlar from the wismbar onmpatment.

 remse fasciat lata, the inmer border of the surtorins is expened and retmeter ontwards.

Branches of the Anterior Crural Nerve

 and at which they ean he injeeted tu prohere lowal antesthesiat are hown in the illustrations in the chapter on lonal amienthesiat.

 the area in front of and brlow the patella, ly the other it suph hims the inner side of the ley mill foot.

The newe aremmpmies the femonal artery as fitr as the oproning in the alductor magnos, and follows the enorse the intemal siphemons vein at the kote mal in the leng.
 of the thigh and in Hmiters canal (ligg. les).

To expose the nerve abeser the infromel romelyhe at the fomme .. incision is mate in fromt of the sultorins, under which the nerve patses downwarls and hatekwads : the nerve lies at the edige of the tendon of the adduetor magnes.

At the finer. An incixion is made immediately lehind the inner tulneronity of the tibia at the posterior edge of the sartorins, beneath which the nerwe descends, in the groove letween it and the tendon of the gracilis. The internal siphenons vein, which cun be felt throngh the skith, hes upen the faveria in frome of the nerve.

In the log. The nerve, accompmien hy the internal saphemons vein, mux for its. whole length along the imer horler of the tihia, anl in the line of the incisions for ligaturing the prosterior tibial artery. ('i. Ligature of powterior tibial arters.
 at the anterior horder of the internal mailuolus.
41. Obturator Nerve. The lowest meve of the hmbar plexus croses ower the brim of the 1 . Whis and reaches the immer side of the thigh ly passing through the ohtmator groave of the thyroid foramen, where it gives off hamelres to the strong adnctor museles. Its sensory portion is of impertance in the diaguosis of olturator hermia, giving rise to neuralgic pain on the inner side of the thigh.

The incision the same as fir ligature of the internal circmotlex 1 , ramel of the profunda femoris descends vertically from a point a finger's.brealth intertal to the middle of Poupart's ligament. The skin, superficial fascia, and sulperticial layer of the fiscia lata are divided. The internal saphenoms vein which lies now the faseia is drawn mutwards. The strong peretineal fasciat is divided just internal to the femoral rein. Aftor defining the onter lorler of the peetinens muscie, the latter is separated from the or pulbis and fascia over the oliturator externis, and is drawn well innards. The strong transversely-striated faseia over the ohthator externus musele is now divided, and the finger, passed above the upluer lorder of the mowele, feels for the muler sirfinee of the horizontal ramms of the pubis, iefow which the artery leaves the whturator formen on the anterior surfare of the extemal whmator minske acempranied hy the whinrator nevere, which lies athese it.

(i) Sacra! P!exus

The sacral phexus is formed hy the greater part of the for rth hmmar nerve, the fifth lumbar, and the first three saleral nerves. Leying on the postero-lateral wall of the pelvis (in front of the pyriformis and lechind the pelvie fascia and peritonemm, to the side of the rectum aul the contents of Donghisis pouch), it is unt infrepuently involved in disetwes of the pelvie organs. There is no dombt that in many rases of pelvie neuralres, and seliatica, surgeons fatil to diseover the sonree of the miselief in the pelvis itself and are tow larkward in mulertaking freeng of the nevercoots and the plexns from pressure and adhesions.

In opreations of this sort, it must he remembered that the internal ilane antery lies in fromt of the upher part of the plexiss and gives off the whiteal attery, which rums backwards hetween the hmmonsarral cord and the tirst sumal root, and the sclatie autery I tween the second and third sictal roots.

42 and 43. Superior and Inferior Gluteal Nerves. These are the mutor netwes to the muscles of the hirtock, and atecompany the correxponding arteries (ghteal and scliatic), \%.e:
44. Small Sciatic Nerve. This. nerve call un envily exposed. It amompanies the selatic artery and the great miatic nerve in the bintowk, and thengh its ghteal and perineal hraneless supplies the lower part of the huttock and p^{n} rinetme, while it. main divivion is distributed on the posterior angeret of the thigh.

In the huttork it is expesed lyy the methoul described for ligatme of the sciatio artery (y.r.). In the thigh the small seefitic nerve is reacherl hy the same incision an serves to expene the great sciatic nerse (see lig. 1-3!). The berne lies undemeath the tascia but muth more superticial than the great sciatio nerve.
 tw the trigeminal nerve in surgiall importanee. It is offen the seat of neuralyia, which may be either tramatie in origin or mere oftell due to pedvir and spinal disease.

It is the largest bramel of the phexis, and haves the felvis through the great

 accessible for surgical interforratere．

 internal pepliteal nerves lite elone to ont another as far as the lower thiri of the thigh．

 iin the y fladrathes lemoris lower down．

 selatie lisament，the latter ol whirh paswes inwards lions the tip of the isehial gpine， atforl a fooml grale t ，the point at which the artery leaves the pelvi．．The bower
 isclial spinur．

The conran of the small seiatic nerve comrenmak to the contimation of the trink （1）the artery（ドig．log 9 ）．It a deeper level and mone external the loroad，easily－ palpable tomb of the great seliatie nerve can le lelt ruming downwards on the boue wer the bise of the ixeliat spine ant the ohturator interms masele（Fig． $1: 3!$ ）．

In the thigh．Fhe trunk（i．p．I core it divides intw intermal and external popliteal nerves）extends maly to the lawer thish of the thigh，in which pesition it ean hereatily expreal（F゙y．l：29）．
 from the fold of the buttock from it point minway hetwern the tulner iseliii and the posterior border of the great trochanter．IIter division of the skin anel fisecia，the lower horder of the ghatens matimmis expesed ant drawn mpards son an to expose the onter edge of the bieeps，which rims obliquely townwards and ontwarls．between the fascia lata amb the biceps is the smable selitie nerve．The larese trmak of the ereat

 artery，which may le ligatmed where it lies unom the ahluetor mingms maseld．
belour the milelle af the thigh．Ineision Mron the prosterion aspere of the thigh midway bet ween the semitendinosis and semimembranosus internally and the bieeps externatly．On the skin being divided，the small siatie nerve ajpeas either uman of moker the tascia．On pasxing decply lnetween the alowe maseles we find the great
 dividel into its two main lrancles．
（a）The Internal Popliteal Nerve with its Branches．The internal jupliteal
 the middle of the popliteal spatee．
 －pate ofposite the knee－joint．The short siplemons win is to lu a wided at the lower part of the incision．It asembls between the two leats of the gestromemins ant
 The dissertion is contimed throngh efiat to the immer side of therse strmethees and

In the ley．The posterior tilnial new er hes close to the outer side ol＇the pasterion＇ tibial artery：it is therelore exposed in the same way as the artery（rix．lish）．

has a very definite cours and aceompanies the short sumpons sein. It hes on the outer side of the vein in tha giastrocnemins and nuder en of the calf (Fig. 130).
behing the external malleolns the short siphenoms neme, which is formed lig the mion of the nersus commuicans tihialix with the nervis commmicans fihmaris, lies

Filo. 130. -Ligatum of puplitual arters:
on the fascia close to the vein milway hetween the tendo. Achillis and the malleolus It is distribe ed to the outer border of the fint.
 leximing a finger's-breadth helow and in front of the sustentacilum tali is eariond horizontally hatekards along the imer border of the font alowe the prominenee of the abduetor hathoris musele. After division of the shin and fasecia the alnhector halheiis expmsed, and separated downwards from the smbacent deyp fasciat. On dividine the later we find the plantar vessels inposite a line continned downards from the pasterior border of the internal malleolns. The pesterior tibial nerve lies immediatels below the artery.

F'I; 1:31.-(1) Internal vaphenons nerve at the knee. (2) lowe lesior tibial artery and werve in the upper thinel. (3) The silles int the lower thime. (1 The same hehima the internal untleolus.

(4)
(Ving eolnurs of prat.

[ows. tilinl a
tiont. ithlat :
-Imery fincia.

Fri, 1:3.- 1) Mantar arch, (2) and (3) Internal and "xtermal phatar artery and nerve.

Fif. 133.-Interint tibial artery amb nelo.

In the wode. All ineivion is matle in a line from the print of the lewe the the grat

 The umsenlar sulnatane of the ubuhetor hathieis is expemed, intil the artery is fomal passing buler it inte the sule. The thexor hevis digitorme biew extermal to the urtery.

 hallucis lies more dee ply.

 of the ball of the lieel forwarila in the direetion of a line from the print of the hat to the fonrth tore. Oll division of the shin, abmulant fat, anul the stronge plantar

The external platar nerve liex lneside the eorresumbing artery, the former In-ing. relatively melh smaller than the hatter.
(b) Peroneal Nerve (External Popliteal) with Branches. This new which

 the external comuly if the iemme.

 above the head of the tibula. This neve may alow he felt thremsh the skim umen the external eombly of the femm.

 arcompanies the anterion tibial artery on the interosesens. ligalment. Its relations abowe are, lawewer, diffierolt.

 the heald of the fibula muler coser of the extemar lomgn- digitemm, whikt the. mimsonle-rintaneons nerve extends vertionlly downards alluge the same intersal.

In its further womse the anterior tibial nerve arempanios the murerion thial anter?

On the firmin erf the leg. As the newe here aremplomes the artery in its whole lemgth, it is expered in the same mamer as the atery (\%.\%).
 in the interepate betwern the first and seromblene.

 fibmen. Cumpare expmonre of the exteriur phpliteal neron in front of the head if the filmla, Fig. 1:34.

On the outer xidte of the le! (Fise 1:3).

 pass in bet ween these mundes and the extemsin longns digitormu. On drawing the
 more superficial as it desecends.

 throngh the skin in this sithation.

O" the dersam at the fimet. Here the werve smplies all the teres exeept the anjacent sides of the tirst and secomd tome.

The musenlo-entaneons nerwe is mene sulnerticial than the dersalis pedis antery

(j) Pudendal Plexus

The pmemeal plexus and its hatureses is important, in spite of its amall sian, ats

 The plexus is formed by the thirl sateral nere with commonications from all the other sampal nerves.
 of oprerative interest. Tavel has made a detailed stuly of its surgieal treathent.

Professor Strasser, who has made conreful insestigation of its distribution desorile the pulie nerve (with the artery) as enelosed in a shath of fascial (Aloweks callal) which is derived from the lambia conering the obturater interms. and which lien a tingers-hreadth below the jumetion of the ohtmator farmiat with that of the lower

It is very important that the twigs innervating the amms shomble lew differentiated

 *illall satro-semiat te untch.

In the prriucume. Hitherte stretching and division of the internal purbie hase

(sphineter ani, transversus perinei smperfieialis and profnudus, shineter vaginat. sphineter uretlire, isehio-cavernosns, and bulbo-eaveruosis museles).

The inferior hemorrhoidal nerve supplies the skin hehimed the anus, the perineal nerve, the skin in front of the amms, the perinemm, ${ }^{\text {wisterior }}$ putions of serotmen anf labna, the labia minora, vilva, and the vaginal and urethral memems membrane. This. dorsalis penis (elitoridis) smplies the penis and clitoris, and to some extent thre labia minora.

In the lithotomy position, an incision is made in the sagittal direction along the imer border of the tulner ischii (Tavel's incision is x to 10 em. long midway leet ween the thber ischii and the nuns) dividing skin and subeutaments fat. The origin of thro isehio-caveruosins musele from the anterior part of the tuber iseliii is exposed, and behind it the less distinct sulperficial transverse perineal muscle. The two divisionof the nerve are fond paswing forwards from nuder the great sacro-seiatic ligament. The miner, is. deeper, hraneh (measming from the skin) jasses forwards meler cover of the transversins preinei mosele, and may be divided. Of the branehes which are almerticial to the thansversms permei, those going to the labia must often be trin across; their comrse caln easily be reeognised hy pintting the nerve on the stretch. The artery can be felt on the inmer surface of the olturator intermus and after the fascia has heen opened the nerves whiell are smperficial to the vessel can be raisend with it dissector. As advised hy Tavel and the anthor, the affected limelhes can then le twisted on artery foredin from the periphery and torn out hy 'lhierselh's methonl.

(k) Coccygeal Plexus

Nenralgia of the plexns, coceydinia, may require surgical interference.
The plexus, which is manly formed ly the fifth sictal and the coecygeal nerver. is phated on the front of the origin of the enceygens munle, through (or helow) which the lowent sensory nerves simplying the region of the ene sx are given off.
46. Ano-coccygeal Nerves. Neuralgia of these nerves is enred by exciving the rereyx, as this procelure insures their division.

(l) Sympathetic Cord

Recently endeavom: have lneen made to obtain information regarding the funetinn of the sminathetie nerve by operative measures and to inthenere pathological rom ditions ly its removal, without posessing aderpate knowledge of the phesiongial effects of interference with the nerve.

The cervical sympathetic has lieen dealt with surgically in the hope that pilepsy. Basedows disease, and trigeminal nemalgia might he cured liy its total or partial excision. These hopes hase leen so little fulfilled that it does not seem justifialus. to perform a complete excivion of the cervical sy mathetic, and thas destroy at ome stroke all the sasomoter werses of the heal and noek, the sympathetic nerves to the
 "ervieal sympathetic gamglia), withont having an exart kuowledge of the comserghent injurinns effects of smoh a prowedure.

 the ueves whinh aseend from it (earotid and jugulare sympathetic), since we has. demonstrated that the latter measure exerts a farmurable inthence on cexphthalmo and trigeminal neuralyia.

47. Division of the Cervical Sympathetic above the Superior Cervical

 Ganglion. The nerk loeing fully extended, an incivion is carried down wards thrmgh whin and fascia from the tip of the mistoid, proeess, the great aurioular nerve and tha. external jugular win being retracted or dividend, and the muterior border of the sterne: mastoid musele exposed ind lowked hack wards. The proninent internal jugnlar win is freed posteriorly, and the vagns nerve is recognised from its position bet ween thevein and the arotid artery, the latter lying farther forward and at a deeper level. Care must be taken not to draw the sympathetie: forwarl along with the vessels.

Hy dissecting deeply on to the anterion surface of the vertelore in front of the origin of the levator anguli seapulae and sealene mascles, the eharacteristie greyish spindle-shaped ganglion, which measures abme \because (.m. in length, und which extends from the secoml to the fonth transwere process, is exposed lying on the prevertebral faselia and miscles. Its rephatie hramehes, which are maimly assonelinted with the intermal carotid, are siven off the mper end of the ganglion, and may be raised on a hook and divided.

The t wigs to the extermal carotid aml its hamehes, as well as those th the larynd (and pharynx), and also the shperior cartiac nerves, arise from the lower end of the ganglion, and most not he injurel. After a few homs, slight pitasis, eontraction of the pripl, and swelling of the cheek are distinetly ohsorvable.

SECTION IN

 SURGERY OF THE EXTREMITIEN

 SURGERY OF THE EXTREMITIEN}

(a) General

The nuggery of the extremities has been partially wondered in the previons sections on the exposite of vessols and nerses. The remainind portion of the sulijeet will he treated in a separate section. It maty be stated that this bramel of sumgery is mus which can le best practised on the eadaver as a repular emorse.

It is a fied suited to the work of the practitioner, leceanse the "prations ran lne performed without bleeding, expert assistance is not neeessury, and heal anmenthenia is generally sutfieient. It would he menformate if this hraneh of surgery were to he wrested frיm the practitioner ly the specialist.

Surgery of the extremities is no longer limited, ats it was till a companatively recent date, to the ligature of ressels, to excisions and amputations and to thes. mechanical correction of embatures. Its mange has heen greatly extembed, and practitioners have even get to realise fully the adsantages of oneratioe interferene in certain types of casts.

We no longer contine ourselves to ligatime of a vessel for the arest or prevention of hamorlhage, for the treatment of an anemrysm, ette, ats vesels are now ligatmed to improve the fow of bonel in a limb (in cases of lymphatic elephantiasis, and varis), and to prevent the dangels of embolisun (a prosimal ligature or lyy incision of the sessed and remosal of the thrombis): while suture is undertaken int the case of lateral inguries and in the excision of an anemrsin. One evengoes the length of transplanting vessels for existing leferts (hy inserting a portion of a vein into ant artery) when the contimuity tamot he repaired lig the method devised by Pity-the insertion of a magnesimu tuhe. Finther, one does not hesitate in cases where gangrene is imminent after severe arterial lesions to completely reverse the circolation (Carel and (inthrie).

The peripheral nerves now ponses a surgical impertance of their own. It iathowledged that it is a mistake not to remite a divided newe as unickly as pessible.
 esperially: when a nerve has been erusherl or torn, to the comfortable poliers of leisse-rtler to remove subserquent thickenings and adhesions.

It was not only the question of nere suture that led us to consider cambladivichal nerve, lint the kinwledge that a thorongh acpuaintanee with the conse of aven the sinaller nerves is essential, if the fullest advantages to be derived from lowal antesthesia are to bo obtained. "Conduction" andenthesia (Bhatui) whit tu bie more extensively uidised than has hitherto been the cerse, ind dombtess it will ho more generally adopted when practitioners make themselves more faniliar with the anatonical conse of the nerve-tronks.

The treatment of tetams by exposure and boeking of the nerve-trunks has alrealy.
profuced excellent results, and it is lecoming more manifest that the poison of tetams reaches the central nervons system through the peripheral axis eylinders, and that it can he arrested hy lividing or blocking the nerves.

Further, ever since the tirst edfion of this work was pmblisherl, we have andeavoured to show low the deeper tiswhes and he extensively expmed without calsing injury to the nerves. The normal incisions which we instituted have since that time been greatly extendeld (Kinstuer's and l'famenstiel's ulnhminal incisions) su, that it is unn possible to divite tissues freely withont proklucing the slightest permanent injury.

Cushing las recently Jrawn attention to the importance of necurate suturing of womds so that the nerveends are hroght into contart when their division has proved unawidable, becanse, depending perhaps on smue chenotactic proese, there is a temleney for the central emi to semb processes to mite with the motor end organ in the peripleral portion, as som as some legree of contact is restored (evell withont direct suture).

Cushing mentions ats an example ther regeneration of entancons branches and of the spinal aceessory nerve after extensive remonal of glands in the neek that follows: accorate closme of the womal, arrest of hemorrlage and asepsis.

(b) On Nerve-anastomosis, Nerve-transplantation, and Nerve-grafting

In the foregoing rlapter we have alrady emandered the ghention of urweanantomusis, nerve-transplantation, and nerve-gratting in eommetion with the surgery

 ing nerve-tibres remite, and that on this supposition the mion of merve-enis whish
 that the eentral nerve organ after some undiths ikgin sembs muliminished nerve impulsew inter the correspmbins peripheral purtion of nerve, as well as into at nerve

 enteprise in this fieln, to unlertake anastommes, with luathy newher in anitahn. retsisw of infantile paralysis.

 on the recurrme laryngeal, phrenic, and pinal areessmy:

(c) Surgery of Muscles

 -pecially considered in our rematk in momal inerisims.

 the layers of the alnominal wall are split (not diviles) in the direction of their thites mus the lines of division of the hasers cross math other in there diventions.

When a musele has to lue diside: at right angless to the direction of its fibres,

i.e. the mosele shoufd be divided an far as possille nway from the point of entrance of its nerve. In many incisions that are advorated little attention is paid to this point, e.y. in lapurotomy many surgeons do not hesitate to employ vertical incisions, especially at the outer borler of the rentus, guite regardless of the fact that the nerves pass onliquely downwards and inwards. When a larger incision is repuired, mueh less harin is done, and less subseduent distarlunee of function results if the rectus is eut right across, than by cmploying a vertical incision which inevitally divides its: nerves of sipply:

In she neek we have illustrated the incisions which shond be employed for the removal of extensive tumonrs. Here, agin, they show how a large nusele like the sterno-mastoid may be cut across withont any subserguent harm, if the division is made at a distmuce from the point of entrance of its nerve.

The same holds good in myotomy for the relief of spasm, and we refer the reader to the deseription of the operation for spasmodie torticollis (1. 44:3). By seprarating its attachment from a bone a muscle may be thrown out of use, and the spasme effertively cured, without the necessity of producing definite atrophy:

Muscle-transphantation is ass a rule effected ly transplantation of its telulon, i.e. a new insertion for the tendon is provided and the function of the muscle is altered without actually displacing the musele itself.

Transposition of the theshy part of a muscle is limited practically to the hroad museles of the abdomen and cecasionally of the neck. In the case of inguinal mad rentral herniae, insteal of the employment of simple fascial sutnres, the museles may. le slid over one another. After the peritoneum and deep, fascies, have been muited up, the broad alxominal muscles and also the rectus ure slid over the line of suture, and fixed with stitches. Museles caiable of contraction furnish a strong orotection ygainst hernia.

In the neek we have on several occasions had to undertake tran quantations for cosintic reasons atter a pre-ious opreation had left a lepressel scar. The latter, especially when situated immediately below the lower jaw, can only be cured ly, careful suture of the phatyma afte: excising the eientrix. Very satisfactory result: as regards apmearance can thus lee chtained. It is inmortant, therefore, to minte the platysma separately in all those cases.

(d) Surgery of Tendons

Far greater importance is now attached to the surgery of temdons (tenoplanty) than to the surgery of mureles. It is remarkalhe what can be acomplished since the introluction of asepsis in the way of dividing and displacing tendons withont t!e, risk of necrovis. formerly one had to lee eontent with a sulventaneons tenotomy. but we are now in a pesition to oltain an. lesired amount of elongation withont trusting to natures methonk.

Let us te':e as an example the tendo. Achillis, the tendon which one is most rommonly called upon to lengthen. Instend of simply cutting it across, we divide it in a Z shapeed namer (Bayer's incision, according to Vulpius), the distance hetween the two horizontal limhs of the Z corresponding to the amount of lengthening requirel. The two ends of the tembon are then aremrately mited ly sutures (eife Fig. 136).

In regard to the methom of suturing the ends of the temdon, we have alway: fomb ordinary sinple stitehes sinftiejent, provided the needle is inserted at a litile. distance from the cut edge and that there is no tension. The alsence of tension is of much more impurtance than the actual variety of stitch employed. If tronsion camot le avoided, the Wilms-Siever stitell will he found very serviceable. In this form of suture the ends of the tendon are first aproximated and are held in position ly stitches inserted as in Fig. 137.1 According to Niever, a strain of 5 kilos (11 lbs. .)

[^66]can be borne for several days, anl active movements can le hegm at an wioly stage without risk, a point to which great importance must be attached.

While we must le careful to avoid any tension, there is no necessity to rush in the otler extreme mid elongate a tendon monecessarily. If the anomint of elongation is accurately gauged, the function of the musle is unickly restored, in contrist

Fiti. 1:3is.

F11: 13\%.
to the resmits obtained after simpic tenotomy. We no nger employ rigid lan ? in the case of tendo-Achillis, as shight movements prohnce monarm, and atetisu movements may he permitted with alvantage after the tirst werk.

Figs. $1: 36$ ainl $1: 37$ illastrate the mothon of dividing and the method of remitinge the tendon. To expose the tembo-delidlis, a fons posterion incision is made. It is then split lomgiaudinally into two biteral halres, whith are cut obliquely above and belos 'by cutting oblipnely one - * bromer surfaces to snture).

If it is split in the frontal (comal) plame, the results a. not so satisfactory as the split tendon is only half as thick. Tra attempt the operation subentameonsly entails worse results from inaceuracy.
leswides the temb-Adhillis, contractmes in rither sitnations, e!, the forearm, may be successfully dealt with hy lengrthening one group of temions and shortening the other, either by excision of portions of the tendons (obligne section) or by simple plication, the latter method, however, proving less satisfactory:

To shorten a tendon, the rednndant portion may either ine simply excised hy means of two parallel obligue incisions, and the edges mited end to end with tine sutmer, or the teminn may be shortened by plication. In the latter case, care must be taken to avoid teaving any thickening which would interfere

f1c: 13s. with the mbbility of the tembon. According to Hoffia and borst, thiekening of a tendon interferes consillerably with the function, as, for example, in "trigger" finger. It can le avoided by excising portions of the temdon in the manner shown in Fig. 138 , where the three layers of tendon are reduced to one-third their diameter. By the inchasion of the three adjacent surfaces in the sutures, firm union is olstaned and the thickness of the tembon is not interfered with.

Temdon shortening and elongation give excellent results in mpastic cases (earebral palsy of infants), in Littlés disease, and in spastie and puralytic conditions from other causes.

Eyually good results are also obtained by transplanting and grafting oprerations, expeially in the ease of poliomyelitis anterior aeuta, where only individual muscles or groups of $11 . a s e l e s$ are ${ }^{\text {antraly }}$ seel.

The essential feature of sueh olerations consists in dividing the tendon of an nctive nusele as clowe to its insertion as possible, and grafting its upler prortion either laterally into a slit in the tendon of the paralysed (or weak) musele, or dividing the latter tendon and joining them end to end.

Here also the grafted tendon must exert the right degree of tension so that the desired effect may he proluced when the musele contracts. This is best illustrated by an example.

Let us suplose a case in whieh the invertors of the foot are paralysed while the evertors are normal, the font oreuruing the valgos prosition.

Fic: 139. The object here is to bring the for into aetive inversion and to support and raise the sunken inner side of the foot. The tibialis posticus tendon (as well as the flexor tendons) is first exposed by an incesion below the internal malleolus and the sheath is orenerl. Similarly the peronei tendons are both exposed and their sheath is opened belind the external malleolus. By following them down to the outer border of the foot, the peroneus longus is ilentificel and cut across as low down an ןossible.

The upper end of the latter tendon is separated up to the point whre it fuses with the muscular tissue, and is pushed with a lows :lender pair of eatel foreeps through to the inner side hetween the tibia and fibula and the deep, muscles, where it is pulled out through the ineision for exposing the tibialis postieus. Instead of unduly prolonging the latter incision to attain this, it is better to make a separate small womel throngh whiel the tendon is pulled. The foot is then phaced in correct position, i.e. in the position of normal inversion and at right angles. The tendon of the peroneus longus is pulled upon until a slight amount of tension is prodncel, and is applied to the tendon of the tibiatis postieus, the latter being now only cut aeross or slit in order to make the anastonosis. If astepsis can be guaranteed it is better to eut the tendons across and unite the two ends with fine sutures, the wound being then stitched up, without drainage. The dressings and handages nust retain the foot in proper position for one or two wecks so as to avoid any passive strain on the sutures.

It is very rarely that one has to transplant tendons or moseles whiels have the same action, for they gencrally replace each other in time without any operative interference being required. One has more frequently to transplant tendons which are antagonistie in action, and whenever possible we prefer to select those that are doubly represented, e.!. one of the two peronei. The results obtained by splitting a normal tendon and uniting only one half into the paralysed muscle are not so satisfactory, and in conseruenee the operation is rarely performed.

We maintain, in opposition to Vulpius, who insists on a plaster bandage being worn for at least six weeks and then relieves the resulting stiffiness by massage, baths, and eleetrieity, that if fine silk has been used as the suture material, active movenents should be hegmen in the course of a week or fortnight. Goot stiteltes of tine silk keep the ends of the tendons together so securely that there is absolutely no need to fear over-streteling of the young tendinous cicatrix.

Equally exeellent results are obtained in the ease of the hand by i adon anas tomoses of this type, and after a few months or years, marked improvement or eomplete restoration of function may be expected.
 fuadricepsextensor ean he chitained lyy trimsplantation of the sartorins, semitendinoms and biceps tendons. Here there is mosparate temben into which the active museles can be grafted, and one has to fall lack "pwin the tiverl pwint athiorded by the insertion of the "!medriceps into the putella, i.e. the provimal end of the netive tendon is inserted into the periostemm and fiscia covering the lateral edges of the pitella (molified Lange's methos). Fiven emtmetions it the knee many ine permanently relieved necording to Conlivilhand Hensmin ly tramplanting the flexor temdens into the extensor apmatus.

(e) Surgery of Articular Ligaments

We woull merely observe in commection with the liganents, that the treatment esperially of trammatic lesions of joints, sheuld ine muldh more active than it is at the present time. I large mmher of cases of so-called chromic arthritis might ine prevented were the torn ligaments promptly sutured and the lanse eartilages removed. Lignments heal comparatively well, and if inersistent interference with movement after injury to a joint is to le prevented, conditions imnst lee estahlished whieh promote the enrliest restomation of movement. Sintnre is a means to this emb, if ne knows how to open into the joint without cansing damage to its finnetim. The methods of 1 erforming arthrotomy ate considered in the following elapters.

If operation is carried ont promptly one often diseovers far more serions lesions than the clinienl evidence womld singest, lesions which womld readily explain any subsequent innd persistent limitation of finnetion. In the clbow-joint in cases of supposed simple sprain (distortion) we have ohserved complete tramswerse rupture of the anterior ligament ecemsionally with sepration of the internal eondyle (the carly stage of a posterior dislueation of the ellow) when the case winlt otherwise have heen regarled as a simple sprain.

In dividing an articular ligament it is preferable to detiech it along with a layer of bone, so that solid union will more ensily wewn. Thas, in old-standing fractures of the patella, r . Bergmamn has advieed repaation of the tubercle of the tibia as a preliminary to wiring the patellia.

Similarly, in many cases of arthotomy, it is anvisable to sepmate the supertieial bony attachments of the capsule and higaments mether than to divide them transversely.

(f) Surgery of Bones

The oprative treatment of lones ditfies a a orroling as to whether the formation of new bone is, or is not, desired. The bone marrow, whiel is so essential a fiactor in hemogenerix, may he regarded merely in the light of a foreign laxly enelosed in a strong lony shell. When it is inthmed or is the seat of a smbinative prowess it may be entirely removei without cansing the least damage to the hone (this applies to the diaphysis).

The formation of new bone proceeds from the periosteum and the sumerticial osteoplastie layers. These layers must he carefully preserved if new bone is to develop, ea\% in many canes of ostentomy, resections of jointe, and in certain disiarticulations.

Ollier has shown that the regenerative process is to a considerable extent influeneed by the manner in which the periostenm is detached. If a hlunt elevator is employed for the purpose, practimally mothing except the chastic tissue of the periosteun is detached. With the knife, on the other hand, numerous minjured bone-forming elements are preserved along, with the periostemm. With the sharp periostemm elevator (rugine, raspatory) the two boneforming elements of the imner layer of the periosteum are raised intact, viz. the ostengenetic layer and the superficial bony lamella on its inner sur:ace.

In amputations, on the other hand, new. Inome formation in an a rule to be avoideri. for it has lne"l shown that the stmm, then retains in a greater degree its original form. (Our asmistant, J)r. V. Steiger, has pullished for max a harge mumber of examples proving this pmint.) Henre as we shall see int the ehapter inl anlutations, the hest sthmise are ohtained by uno-oxterplastic methoks.

The guestion of a suhstitnte for the marrow is of mo little importance when the marrow has been removed or when cavities in the bone have heent beft which will take a considerable time to till 11 . After earlier attempts, Mowtig mul Mon'hot have produced their ioxloform lome-filling wheh has proved the bext material for the parpone. It consists of 60 parts of thely pow lered ixdoform and to purts eadh of *permaceti and rexane ril, the melting-puint of the mixture being in $)^{\circ} \mathrm{C}$. It is shakent IIf hefore use and is poured in at Hind state into the eavity, after all the heeding has heell completely stoppuel, and the cavity has lreel dricel ont with an cleetrir tore air apparatus or a sterile dry cold-air lellows. The envity mant la abohately clean. Sillnermark has shown that the filling slowly heremes replaced ly fone tismes whieh grow from the periostenm mad marrow. Mosetig hat similarly filleyl up cavities left in the soft parte, partieulaly after resections of a juint. In the bme cases, in whish ho used the filling with sureess, the cavities were chiefly the results of chrouie and tuberenlar osteonyelitix.

A. ARTHROTOMY, OSTEOTOMY. AND RESECTION

(a) Technique in General

The terin "resection," which is noed ehictly in connection with surgery of the joints, implies the removal of an intermediate portion of a limh, ats distinet from ampmation, where a terminal protion in removed. As a resection neecessitates the employment of surecial incisions to expuse the joint of lume, arthrotomys and osteotomy must first he the subject of emsideration, although they acthally comprim only part of a resection.

To Langenbeck lelongs, the credit of having called attention tu a very important point in the exeision of a joint or hone, vi\%, that the incision through the soff partshonld he as simple as prosihle, and that in cleming the hones we should retain them in their normal contimity with the periontemm. Ind ollier mist be recongised at having shown, by his experiments and ly the excellent results of his operations, the signitieanee of carefnlly preserving the preriostem in its comtinuity with the attarh ments of the capsule, ligaments, anel tendons. But, nevertheless, it does not seem to us to be censistent with the sipirit in which these masters worked to adhere strintly to their methorls. All that is neeessary is to adhere to the prineiples which we owito their latours and to their gemins.

We agree with Konig in hix opinion that the day for typieal resections is past, and that arthrotomy and ostentomy, with removal of nothing hut the diseaved noft purts and bone, shond replate the sterentyped exeisions that were formerly the rule. Kippeler has applied the term" Atypical" to such reseetions, hut the name conves: an undue impression that there is some irregularity in the methols of performaing these operations, whercas most exatet mbes are preseribed. We consider we have made a still further improvement lyselecting for all joint incisions those methonlwhieh are specially devised to cause as little injury to the soft parts as possible, anul which preserve also the nerve-smply of the museles by preserving the smaller branches. We must keep in mind the importance of individnal museles and theil insertions for the function of the joint. From this point of view some of our methenlmay well descrve preferenee.

Lastly, there has heen a distinet advance in the mole of preserving the attach
oilleni. riginal ber if ations,

II the h will (withof or the ach of lakicon erling: Chor cle.til. which st leit whish ie anll
ments as the ligaments mal tendens. Komig und Tiling introlised the arlmirable plan of shiselling off " ese structures uloug with the buny jrreess or whell of cortical bone te which they ure attucherl. We have to endenvonir to yrare the cortex of the
 as jonsible, so that now we semarate the priontenm ulong with a superticinl layer of bone with in shmp rasputory like the " lingine" nseal hy ollier in order to ensure a letter preservation of the germinal layer of the periontenn. The preservition of a thin layer of lwine lemets to more new formation of bune than when the jeriostemm alone is separited, us is proved ly Ollier's reamathes (see Introluction). We therefore consider thut, when it can lex conveniently done, the sulseortical methoxl of resection is leetter than Jangenleek's subpriosteal methonl, or than Ollier's su!,
 more rapidly, and nttempts ut movennent may $1 x$ made sominer, is tendinomes and ligamentons attachments are pexplally sellvitive, and therefore delay the early resamption of uctive movement which is sol inlurtant to the prohnotion of a gmol thectional resinte.

The morlern methon for urthrotomy, ostentomy, and typieal excixions whieln is

(1) To employ as simple un incision as pusxille (Langenluek), eare lreing taken t" place it in the intervals mot merely In'twent the mumblex, liguments, and tembins, but also the smallest vessels aml merves, und in ablition to make nse of the nentral a ones Inet ween the muselen sufplied by different merves.
(ㅇ) To detaels subeortically the eajsinle, the periontemu, and the ligamentons and temdinous nttachments, and to remove all the disenved hone aml disensed soft tiswues of the joint but only as mush of the artionhar smrfares and healthy arljarent bome as is necessary in orider to ulitain a letter finurimal rexnit.

The methol amplogen to onen a joint ambexpose a lame should in no way bind the surgeon ns to what his next action is to lne. The incision shonld Ine equally suited for enses where, ufter the npening of the joint, nothing finther needs to lie done, or where fatt or all of the symovial membrame, or the urtionlar ents of the bones, need to lee remover. The tirst ineision remains the sathe. Fior all the large joints we have conle to employ one type of incision whied may he termed the "howked
 chapter.

The following varieties of operations on joints ran le differentiated:-
(1) In urthrotomy, for example in evachating all effin-ion, or in removing a lowse horly, the ineision is carried into the juint ravity through shin, ammomesis, calsule, and symovial membrane.
 and thickened syovial membrame, whel is rewerally mbervatar, and the fibrous

 eartilage and removing the molerlying tulnerenbe ngambations.
(3) la onterarthootomy the incision is made right down throngh the periostemm, the soft parts lecing then sepratated subeortieally in one Hap, and the lome removerl in the same Way as one shells ont u simple thamer.
 tony, the capsule is exposed and entirely cut away, but in arlitition th this the articilar culs of the bollesise removerl.

 ingertamt $l^{\text {rint, and one which surgenins, wiftell lase sight of in the comere of }}$ oprations. Fo form of treatment is so injurions as the fatal expectant treatment
 dense and inelatice from inflammat of a joint in which the emuls of tl.
nges. The secomel point is the formation ewrll thiteri. How rith bue expere to
 atraight acrows, us whe formerly the practice? (Oue must, on the eonitrary, carefilly imitnte the form of the artionlar emals in oraler to jerovide for the neechanial retpirements of certinin fortis of misement.

(b) Indications and Contraindications

 wonll otherwise Inerome mone merions. Whatever statisticm may leve lronght forward at the present time, even in ommection with tulnerenhar iathanmations of jointe, carly anul complete expenitre of the joint, with thomukh removal of the tulservular tisarnes,
 germallent enre.
 and of "linat during the earliest stage of thlervenlous disense of the joint, when the

When we eonsider the distressing and tembons comree that follows mon-oneratiar treatment in the varions types of simple pastie arthritis mul in the proliferative. defomative, and ndhexive forms, monlern anrgery is still far lom timind, only atow anrgems Ining listinetly in favonor of arthotomy. The reasom of this timidity lies in the fact that the majonity of operators persiot in ulhoring to the ohbor methexhe of excision. The incixims we suggest lere are not intemerl mevel, for resertions, bint

 easer, withont allonding to the eontmandiations. Ilvese refer to the later stages, in Whith, areording to some surgeona, operative interfe is first indicaterl.

We asain repeat : A well-esecuterl resection is the omly arfe methen hy which a permanent and complete radieal enve of a tuleronlons joint ean lic whtained in a short patee of time. We have never yet resected a jerint "enrerl" ly injertion, even hy the relebrated ioxlofomininection with or withont prolonged tixation, withont
 in the symovial membrane, in the sense tis-lnes with which it is rovered, or in the

of the local comblitions whirlh may intorfere witl the suceres of a resertion in
 ronsilaration. In evely rase where there is a simus, mixerl infertion (experially.
 in which one is sure of lneing alle tur remove all the rliseased tiswien tugether. 'The.

If resection is to Ine unleotaken, the sinus mimst, first of all, Ine olumed ul, with
 tisones mast then le elisinfected, a reanlt which is most satisfactorily attained hy means of the thermo-tantery: Where this method is mot practionhle the surfacem the syovial membrane and of the Inme should lee swabled wer with ouls. alrobul, after which the resection can le performed muler irrigation with very hon waliate lotion. I'he after-teratment mont then, withone exception, le earried ont byy antiveptic packing and seconelany suture.

The seeoml great eontrandieation tor reneetion is attionded by anything whieln mat!

comeronly in eares of general caseons - Ilpmative intlammation of the joint, where

 Those individhals who show evidenere of artive thlerenlonis in other orgatis are mont shsceptible, in which ouses chare is genurally a rise of tempemthe slartly ufter the
 with mome dywneea, "I mee of heaviness, irritahitity, anl as alight mumut of

We might with alvantage further melition anomg the comerainliations two

 couditom of the soft parts as well as the lane, and to rembere dedinerately all the

 the mipure min. Sot longe age a rase of eomplete paralysive of the arme ater ma operation laating min homr mul a halt mone muler our motioe and the surgeron was completely minplassed lig the explanation of the resulting cometition.
 lys sulserguent hamorrlage, whidh retards the heatinge of the wonul evell though it be whly burendhymans in its mature. If a tomruig flet therefure is neel, it must

 In wer extremity is not always: free from alverse eriticism. Wie regarol liores spinal

(c) After-Treatment

 1. maintained during. as well in atter, the "peration. Tlae aversion that many
 to sertare primaty mions.

 of any organisms which may le intrenturel int" the womal daring the "preration is thens fimilitaten.
 in all crivitios left in a lanie or juint. This is antainual (1) ly rubhing in iseloferm pwiler previonsly disibferted in mblimat. letion. in lag tilliag the ravity with

 right diays.

Wie employ phaster landages rely extemively, amb always in juinats such as the knee and ankle where ankylosis is the objeet in view after resections. If their alp biattion is dittioult as in the hip and Nombler, weight extension will prove sutlicient. In the conse of the ellow and wrist, silints (erpecially the wire variety) bily lee used with
 in the case of the knee and ankle. This ran he attaind lye naking the cout end of the
femur convex or angled (Tavel) and the corresponding surface of the tilha coneave. In the ease of the ankle the tibia and mallerli are fitted in a similar manner into the astragalus or on caleis.
(3) By the thorough removal of womd aretions ly employing dranage for a longer time than is necessary in other wounds, Irainage mines being often left in joints for eight days instend of twenty-four hours. This, however, intromeses a risk of delayed infection. The drainage openings must therefore lee well covered with antiseptic dressings no that decompsition of the bond in the dressings themselves may be presented.

A thick layer of iodoform ganze, previously disinfected in is per cent carlumic lotion, forms the lest dressing, and over it several layers of freshly-prepared rorrosive suhlimate gamze shomld be plaved and changed at first every few hours and later two or three times a day:

In spite of this, drainage of boon from the raw ends of the lome is not always sutticiently complete, and the reparatury prowesses by wheh the ende of the lane are
 with, while the resumption of movement is also delayed.

To obtain this result with rapidity we have frequently adopted a procedure which may be termed "the disheation or secondary repmsition method." In the ellow and hip, for example, after resecting the ends of the lones we bring them into a dislecated position, so that the sensitive sawn ends of the bones are merely in contact with the soft parts, and after ten to fourteen days, when the skin incision is quits healed, they rim be casily replacel in proper ponition. The patient then begins at once to move the limb, which by the nsual method he is finite mable to manage, in spite of every effort and desire. If a movalle joint is reguired, as in the ellow and hip, it is essential, too, that the movements of the museles shonld be commenced early, if the function of the joint is to be restored in a short space of time. By menns of an apparatus provided with the means of elastie Hexion and extension, while the axis of movement is maintained, the treatment is greatly assisted.

If one is sure that the joint cavity is thomoghly dry, and all the recesses have been filled with indoform paste, the womd may be completely closed hy stitehing ilp the capsule, mmseles, fasciat and akin, primary ninion being readily oltained.

If arthotomy or osteoarthrotome is milertaken for arthrodesis (Alliert) i.\% to amklose a lowse or Hail joint, the joint monst he efticiently immobilized from the beginning of the "保ration with rigid Iressings eveli in ther rase of the shoulder, chow, atll hip.

With mearel to the kinee, wrist, or ankle, we do not generally aim in the first place at ohtaining a movalde joint, bint prefer atm attempt to sereme gronl solid mion, so that the molility of the peripheral parts may lue hetter maintained. This is of ofecial inns stance in the conve of the font and still more in that of the hand. With the hame secomely fixal on our donsithexer splint, the patient recowers the movernents of the fingers in the shortest prosible time.

- ffer reserction of the kie the patient may he allowed to leave his leed in a fort misit, the limh heing immonilizel in phaster if laris in the fully extemed fuxitim.

In regaral to oltaining sulnsegulent mohility of a joint mention most he manle of
 the emels of the joint. I portion of the joint ratsale, tembon, or muside has heron

 to the emelnsion that in order to entahlinh umenemt in a stifl joint. the best methend
 fat. For exams, in the moe of the knew, after the allesioms have heen selumated,

 ticial laser of fat. The thap is rotateyl son that the comblyon of the femur ure covered,

the results often proving very satisfactory. Hofimam (firaz) has interposed a layer of periosteum over the raw ends of the lone with ergally goonl results. In ankylosis of the elbow-joint a portion of periostemn can be removel from the tibia and apmiend over the raw end of the bxinc:

(d) Operations on the Foot

1. Resection of the Phalanges and Metatarsal Bones. Viilr Fing. It1.
 2. Resection for Hallux

Valgus. We have invariably ohtained sitisfactory results liy chiselling off the imer half of the head of the first metatarsal bone, the prujection which makes adduction of the toe an impossilility. In incision is made down to the head of the hone on the dorsal aspect, the joint calsule is opened, and the projecting portion of the head is ehiselled off at the print where the

Fil. 110. curred articular surface joins the internal combly of the metatamal.

We ean contimn Riedel's statement that the first metiatarsal beemen emrsed, i.p. the anterior portion hecomes adducted, owing to the pressine exerted by the out wawd displaced great toe. If, therefore, a welge of hame is reluoved behind the head with its hase on the imer aspect as is recommended by Reverdin, this adduction will herome more marked.
3. Osteoarthrectomy at the Tarso-Metatarsal Joint and Anterior Tarsectomy. This is a very important opreation in infective disenses (experially tulnerculomis) of the ant rion tinsal joints, hecanse the cenvities of the majority of the joints are in rommmication with one another scparate symovial cavities are most frequently fomm at the joint between the first metatarsal and intemal cmeiform, at the anterior and pooterion surfaces of the enboind, betweren the. head of the astragalns and the seaphoid, and lastly bet wreen the astragalus and ns calcis (Figg. 141). In tuhurcular owtitio, which frepuenty hegins in the hases of the metatarsal henes, excision of the bases and of the articular surfares of the
 (tarso-metatiassal resection). When, however, the tarso-metatarsal joints are involved, it is safer to excise the math hoid as well as the bomes ahove mentionerl. If the discelse in still more diffuse the artienhar surfaces of the axtrag gills and in calcis must atso he remover.

The excision is performed by means of twe dorsolatual imeisions (Fig. 141). The internal incinion extembs ivon th. Inesterion third of the tirst metatarsal lathekards ans fine as the imere anpect of the heal of the astragalus, which is hrought into view by ablucting the foot. The persterior

Fili. 1 1t.-Fiver.jon ol the atherior tarmas Manal atr. rampoment of the - 3 lom iat ralsiliox. part of the incision divides the thin muly, su as to asoid opening the pime of the anklejoint which projerts forwards on the the neek of the astragalus. Lirginning
internal to the extensor tendons of the great toe, the incision divides the attarhment of the tibialis antiens to the first metatarsal and interual comeiform, and exposes the dorsal surfaces of the euneiform and scaphoid hones. The noder surfaces of those hones are now laid hare, the tendon of the tibialis posticus lying posteriorly and inferiorly:

The external incision, which is placed external to the extemsor temons, extends from the posterior third of the fifth metatarsal to the upper surface of the os calleis in front of the external malleolus. The tendon of the permens tertius is separated from its insertion into the base of the fifth metatarsal, and the dorsal anspects of the eulmid and outer metatarsals are expmed. To lay hare the muler surfices of these bones, the tendons of the peroneus brevis and longns must be seprated and drawn backwarls, the latter from the groove upon the onter and muler surfaces of the enlouid.

The hases of the metatarsal trones and the articular surfaces of the astragalus :ani os calcis are now removed.

In severe cases, especially where ahscesses and advanced disease in the soft part, exist on the dorxam of the foot, it is advisable to join the two latemal ineisions in front ly means of a transverse one, i.e. to make a dorsal Hap, hut ouly throngh the skin and fascia so as to preserve the tendons, nerves, mul vessels, which can le evaily retracted to allow of the bones leing dealt with. If the dorsal Hap is made down to the bone so as to inslude the tendons, vessels, and nerves, the operation lneromes momecessarily severe, anit the subseypent suturing of the temons is tedions. It ionly done when there is disease of the soft parts. The division of the tendons is not of so modh importance as they beeome ton long and must he shortened. In the lant case on which we operated by means of a dorsal hap an extremely nseful and movahe: foot was the rexilt.

Ondinski and Catterina, in a molitied form, have suggested a mew methon of performing anterior tarsectumy, hy sllitting the foot anteroposteriorly through the interspare letween the second and thind metatarsals, according to Catterina, and draning asumber its two anterior prortions, care heing taken not to injure the phatar arth and the external hantar nerve.

The shortened foot is extremely useful hoth for support and movement.
4. Osteo-Arthrectomy at the Mid-Tarsal Joint. This operation is nuen fretuently perfomed in the form of a cunciform exrision in talipes varus. Thi-wedge-shatped excision gives excellent results, especially in ohdstanding club fonot. Indeed, if the resection is sutticiently extensive, the results are better than by ang uther methend of operation.

The ineision is legron owe the dorsel aspert of the astragaloseaphoin joint, pasiutus whicuely downards and backwards towards the onter boider of the heed (mide rif: 14:). The muscmo-entaneons nerve is seen lying unm the favcia at the upper angl. of the womul, while the short saphemems nerve alymers at its lower angle: thene nerves are drawn aside, and one or two veins are seized and twisted. After division of the fasela, the tendon of the peronens tertins npmars at the upper end of the wound, while at its lower part are the peromei tendoms in contact with the nuter surface of the on calcis. After their sheathe have beens slit up, the tembons are drann aside with hont lowks. The "apuste is divided over the head of the astragalhs, anal the juint openel. The attachment of the celpsinle is t^{\prime} "ul separated from the neek on the astragalus as far as the grome on its mulder sumbere (wide Fig. 143). After ex prsing and drawing downards the n!per Inorder of the extenson lovevis digitermon the ealentere-culwid juint is opened (ridr Fig. 144). The neek of the asstragalus nud th. greater prowess of the os calcis are mow divided with a chisel, and dawn well ont on the womed with a shap double look, so that they may be complately freed frem the is ligamentous commections and removed. In orter that the fert may he domsiflexed th less than a right angle by fimby preswing together the osseons surfices, it is necessan! in aggravated cases of club-form, to shell ont the whole of the seaphoid nud to chiril off a portion of the cubuid. The introduction of a dramage tulne is not necessury,

nound is closed by a continuons suture. The font is kept dorsiflexed and the knee. bent lyy means of a plaster of laris handage, whels extends mpards beyond the knee. To ensure a satisfactory result it is generally neeessary to elongate the tendo Aehillis.

The important points to be atteulerl to in orler to attain this cond are, to ohtain primary healing, to see that the foot is capable of heing Hexed to less than a right
 . Achillis.
5. Excision of the Scaphoid. Apart from a lecaliser tubereuleni- attiection of the seaploid which is of rare neeurrence, removal of the seaphoid is undertaken in certain forms of flat-foot and talijnes valgus. The shape of the forot is greatly

 the eontane ed soft purts in the sole down to the lwone, the main feature of the "pration consisting in the division of the cupne between the head of the astragalus. and the mavieular, a methorl, however, more simply mulertaken through a lomgitulinal ineixion along the inner border of the foot alnve the abmetor hallueis musele.
7. Excision of the Astragalus. It is unecessury to five a special deseription of excision of eath of the sumaller tarsal hones, we these are "perations which are
 nevessury in tuberculosis, in injury, and in elub-font, the two later comblions calling e-precially for excision of the astragalus.
 appet of the ankle, as leseriled by Vong for excision of the muklejoint. This ineision begins a hamblhemeth atwo the ankle at the anterion surface of the tibula, and extends downwards to the outer side of the extensor temems (premens tertius) and the braneles of the musculo-cutaneons nerve, wer the onter surfare of the antragaln- to the tulnerosity at the hase of the fifth mete tarsal Ime. The incision

enters the ankle and mid-tarsal (Clopart's) jointe, exposing the bouly and houd of the astragalus. The capsule of the joint is thoroughly separated from the neek of the astragalus, anl the strong interosseous calcaneo-astragaloid liganemt is dividerl. 'the eameule is also separated along the onterion loreders of the lower embl, of the thinathe

Flı. 145.-Excivion of the istragalu(external incision).

Fi'r. $14 i$. - loromal ser:ion thonght the awhle-joint (ltenle).
fibula, and the anterior and penterion bands of the external lateral ligane of of the ankle-joint are divided at the anterior and penterior surfaces of the bexly of the astragalus. The ligamentons connection with the os caleis is detached externally and along the posterior border of the astragalas. Hy foreible inversion of the fonst, the astragalus is now raised to such an extent that and elevator ran lne intronduced under it an as to diviu; the ligamentons attachuents upm the inmer axpect.

Astrugalectony, which is reconmended for chnb-foot by lesisel-Hagen, ensores an excellent position of the font if the external malleolns is at the same time shortemerl. The functional result, however, is not yuite satisfe tory, owingr to the ineongrinty of the surfaces of the tibia and on calcis.
8. Excision of the Os Calcis. A longitndinal incisim is. made deremuling alomy the inner aspect of the tendo Achillis to the lower and hindermost purt of the greater tulurosity of the os calcix, and from thence transersely around the heel, and forwards along its outer aspect to the tulnerosity at the base of thee fifth metatarsal bone. This gives sutticient rom when the solt parts are flexibe.

The tendo Achillis is: detachen from the penterior surface of the tuberosity : and the joint-rapsule at the posterior and outel

Fit. 147. Excivion of in cialci. alinect of the os caleis, together with the calcaneo-fimmar land of the extermal lateral ligament, is divideti. After the peroneal tendons have heell drawn upwards, the interosseous ealeaneo-astragaloid ligameat is ent across, and the dorsal and phantar calcaneo-enboid liganents are defached from the external and plantal asipeets of the us calcis. The point of the heel is now well drawn over to the inner side so as to spose the tendon of the tibialss postiens, whieh is then displaced upwards over the
sustentaculum tali. Lastly, the os calcis is seized with a strong pair of forceps, and the internal lateral ligmanent of the ankle-joint, the suhjacent calcureo-astragaloid capsule, and (anteriorly) the ligaments connecting the tilia with the seaphoid and os calcis are detached.

Landerer recommends a mesial longitudinal incision extending from the tendw, Achillis over the heel into the sole of the font. By this incision he removes not only the os calcis, but, if necessary, all the other bones of the tarssis. He asserts that the: star does not in any way interfere with walking.
9. Astragalo-Calcanean Arthrectomy and Posterior Tarsectomy. Excision of the joint between the astragalis and os calcis was performed by Amandale lyy two

Fic. 148, - liesection of the posterior tarsus (Korler'). lateral curved incivions, although it cam also lee ciffected ly the methorl above leseribed for exeising the os calcis, or by a molifieation of the following methord for excision of the posterior tarsus.

Escrivisu of the pesterior tarisus-that is to sity, the simultaneous removal of the astragalus and os calcis, and sometimes also of the adjacent articular surfaces-gives good results with thre foot maintained in its normal prosition, because the teg passes down inte the: defeet (Kocher, Kummer).

In the method which we recommend it is a neeessury condition that there shonld be a possibility of preserving the tendons and museles (permei, tibialis anticns, and posticus) which move the foot.

The incision begiming upon the onter aspeet of the tendo Aehillis, a hand-brealth ahove the ankle-joint. is continued downwards behind the external malleolus and the: peronei tendons, and thence forwards to the tuberosity at the base of the fifth metatarsal lonce. Ifter we have opened the sheaths of the peronci tendons mal displaced the latter forwarls, as has been deseribed in excision of the astragalus and os calcis, these two bones are removed, and the articular surfaces of the boncs of thi. ley and of the cuboid and scaphoid are sawn off. It is desirable to retain some of the external malleohs, so that the peroneal tendons may hook ronnd behind it. If the posterior part of the os calcis can be retained, it maty be utilised osteoplastically in the sume way as in Pirogotf"s amputation of the foot, as indicated by the serrated liness in the figure.
10. Arthrotomy and Resection of the Ankle. Fxcisions of this joint do nut always give satisfactory result., on necount of the complexity of the joint, and of the presence of discase in the uljikent astragalo-tarsal joints, together with their hounes, evpecially the os calcis. Hence the constant enchenvors to improve the technigne of the operation. The incisions have leen made upon all axplects of the joint, and in every direetion.

The ineision, to obtain a good resilt, must give free access to the ankle-joint ant to the astragalo-caleanean articulation. It is still better if it affords ann opportunity. of examining the tendon sheaths, especially of the peronei.

Vogt makes an antero-hteral longitudinal incision: König and liedel nahe bilateral incisions with chiselling off of the malleoli; Meinhardt schmidt makes tha same thgether with a posterior incision; Hinter, an anterior transverse incision, which had beel previously employed by Sabatier, Heyfelder, and Haur ock; Liebrecht make a posterior transserse ineision ; Wackley and Textor make the same combined with a posterior longitudinal incision; Busch, Hahn, Ssabanejeff, an inferior stirmpp-shatual incision with suparation of the tulnerosity of the os calcis; Moreau, Langenberk, - 'lier, Chauvel, Girard, lateral incisions sometimex along with transverse incisions.

We have noditied the eurved lateral incision, which we introduced along with lieverdiu, in that we place it farther back, extend it higher up the limh, and carry the curve down to the level of the astragalo-caleanean joint, thus giving more rom,
and allowing of the astragalus leing exeised if, as often happens, the astragalu-calcanetan joint is also diseased. Our incision is therefore analogous to the one firyt rerom: mended by Allanese on Catterina's initiative, and later ly Donenstein (I igs. 149, : So).

The skin and faseia are divided, while the extermal wa;henous wein and nerve, which lie immediately behind the incision, are preserve..

The ineision terminates at the tendon of the peroneus tertins and awoids the musculo-ntaneous nerve. The sheaths of the peroneus longns and brevis are then exposed and slit upwards behind the fibula as far as the upper end of the wound. The temons have to le divided in some cases so as to afford more room, hut each is

Fli. 149. -Incinion for arthrotomy of aukle on right sile.
secured with silk in order to he sutured at a later stage. The periosteum is neprated from the outer and lower aspect of the external malleolus and the joint opened inte in front of it.

The capsule is now detached along the outer surface of the astragalus, exposing it as far as the fibula. The three bands of the cxternal lateria; ligament are divided elose to their attachment to the tip and inner aspect of the ext. rnal malleolns.

The culsule, together with the periosteum, is separated from the anterior border of the tibia as far as the internal malleolus, the extensor tendons being hooked upwarls, a similar method being adopted at the posterior surface of the fibula so as to leave the tendon sheath of the peronei in relation to the periostcum.

The foot is forcibly dislocated inwards over the internal malleolus, so that the upper surface of the astragalus looks downwards and the sole of the foot upwards, as

Fic. 150.-Exctwion of ankle by curvel iucislou. The skin and faseia are retractel, the external malleolns hoing exposed subperiosteally : the capsule is letaclied from the astragalns (the onter axpect of which is exposed), and the peronel temdons are diviled.
shown in Fig. 1:it. If the lome is softened the internal malleolns is not infrequently broken in accomplishing this, lnut it is just in such cases that this neceident entuils no injnry:

The makle joint is now well exposed, and can he thoronghly examinel, as nlws ean
 joint are so inwolvel that removal of the whole astragaho is newessury. In tulerenlar affections it is often desirable to try this methol to chanre the ridhance of all the disease, mend there are no spereial dittienlties in conneetion with the opreration.

If there is no necessity for exciving the antragalns, all that need lee done is arthreetmy or excision of the anklejoint.

The strong internal lateral ligament should be left attionched to the tip of the internal malleollos, mond should only le divided if the dixeans lee extensive. It shomhla be divided close to the lwone, or letter, a smperficial layer of lyme shonld le taken along with it, us the flexur tembens lie. immediately behind the matheolus. The joint can now be easily serapeal ont and the astragahes remioverl. If the astragahes is to be retaineel, the astragalo-cak canean joint should not lee opened unnecessinily, an arcident which will twe avoided ly preserving the attachments of the cajpule on the prosterior and laterad aspects of the astragalus.

Finc. $1.0-1$, Resection of the entire tarsin (Whatimirutr, Mihnlic\%).

Fi., 1,:3 hams the realt atter amphe resection of the tarsa- trom at photograph of a c:ane operated on ly the anthor).

The methen athe deseriked keeps intart the ligmentous appatus umon the maner aspect of the joint, as well as the sulport of the extemal mallendis mpen the onter aspect, athl thas porides as far as presible against lateral displatements of the foot.
 angles to the leg ly means of a daster of laris hambare, applied at meres and retained antil the wome is thoronghly leated. If the womd leats ly first intention the patient call leate his bed in two or three weeks. At a later stage it is alvisable to maintain the sonel position of the foot by means of a Searpaiss ohere.
11. Total Tarsectomy. Wladimin ift and Mikulic\% have adled to our measures for
preserving the foot by a methorl of operation whieh they have employed for lisease of the posterior tarsas, it methox which we regard as sipmerthous for diselase of the pusterior tarsuss when the soft parts of the sole an! heel can te retained, but one which we consider expeecially mathable in disease affecting all the lomes and joints of the tarsms, as it aftorels the f"nswibility of ohtaining a nseful fons. After the entire tarsus has been excised, the sawn hases of the metatursal lnmes are applied to the sawn surfares of the lanies of the leg, the font leing hronght into a vertieal position eontimums with the nxix of the leg. The patient walks minn the auterior surfaces of the heals of the metatarsal hones, the tones leing markedly dorsitlexed. If the seaphoid and
 surfare is olltained.

The same prineiple is applied hore an in lirongoffes ampmataion, in which the posterior part of the font is rotated 90° su as to chagsate the leg.

As, however, Miknlizis methen! presmlunes a defect of the skin of the hesl, whind is an exceptinnal comation, mul in the presence of whieh the management of the incisions is self-evident, we prefer to deserile the methon of operation in a typinal case, namely, when the disease affects the entire tarsins nad leaves an available shin. covering.

The incinion is just the same as that for exrinion of the posterior tarsus, namely,
 ankle-joint, and extending downwards behind the external malleolns an! $1^{n+w h e i}$ tendons, and then forwards to the fifth metatarsal bone. As in the methonl alrealy ?! ereribel, the hones and joints between the leg and the metatassus are laid hare liy separating the temdn. Achillis and periostemm from the os calcis, and hy freeing the peronei tembons from their sheathis and drawing them forwards. The insertions of all the long tendons of the font (perbiens tertins, brevis, and longus) are detached from the apher, onter, and under surfaces of the tarsins respectively, as also are the insertions of the tihialis antieus and postiens from their mper, inner, and mader sinfaces. In doing this the hlombersels and nerves are to lee preserved.

Laucnstein, in cases where the ankle-joint is stifl, recommends that the boot he. fitted with a suitable eylinder sole, the romuled arface being transwerse to the axis of the foot.

(e) Operations on the Lez

12. Supramalleolar Osteotomy. This operation is performed for the corrertion of club-foot. The tibia and timbat are divided throngh an incision which rums from alove obliquely downards and inwats alove the internal natledns, and hy this means the adduction of the foot is removed.

The foot, however, then assmes the ublucted pasition that is met with in a lotis
 opreation should he restricted to tases in which other methods have failed or in which the deformity hisw recirrea.
13. Resection of the Lower Third of the Leg. In the cilse of extensive dinease of the lower third of the homes of the leg, it may be ahmissible, by means of a very long foxtero-extemal incision, to expme and reme a sline of lone from the posterion surface of the os calcis, imal to apply its raw surface to the sawn surfine of the thinal diaphysix.
hronluit\% hass alophten suggestion with a slight alteration in the direction at
 methods.
14. Osteotomy of the Tibia. This operation, which is trepuently mudertaken. presents no difticulty, as the inner surface of the tilia is sulventaneons. It i . performed after osteomyelitis to remove a sertuestrum, a wide gutter shaped opening being ehiselled out on the imer aspeet of the tibia through which the foens in the marrow is reached. To till up the galp in the diaphysis of the tibia it is advisable to
turn the whin from both sides into the cavity mo that it may becone ndherent to the edges of the lone, a process which may be facilituted either liy pressure with inoloform gauze or ly fixation mails.

Osteotomy of the thin and fibnla is nlan modertaken in rachitic curvatnres. The hone is divided with the chisel without detachment of the periostenn! throngh a wmall incision along the anterior edge of the tibia (the wime ramation le ing perfurmed on the fibula on the outer side) genemilly below the midille of the lwate.

In malmited fructures the operation viries in regard to the individual case. In gem valgum a wedge of hone may be removed on the inmer side of the tihia below the epiphysenl cartiluge.

The akin and geriostenn are divided two tingens-health below the level of the joint in the line of cleavage of the whin, i.r. transersely inwards from the tulurvele
which of the typinal le akis, minely; ve the numei lreids wire by Hy the iolls. of treherd ure the mirler
oot he le axis
ection - from y this Putt's (1, the which

Fito $1: 1$.
of the tibia to the edge of the calf munder. . Niter watation of the periontemm the chisel is applied in the direction of the skin imesion. The attardinent of the ligamentum patelle must not lee injured, because the haran leetween it and the tibia may communieate with the joint. In an aggravatel case of gemm valgme it is bettep to remove a wedge from the tibia having its base direrted inwards, atherwise, with the log in the staight position, there is tor wreat a strain on the lead of the fibubt, and pramysis of the external popliteal nerse whieln winds romm it may be the resinlt. Luksh (Nicoladoni) prefers to remove a prisum of hine from the tibia.
15. Resection of the Tibia. Resection of the thinatmalne necessary in arnte osteonyelitis with extensive neerosis: or the entire diaphysix may have even to le removed. We have always found that, provided the provistemm is retained and the tibulat is preserved as a shpport, complete regeneration of the thia is to bexperted. Although the upper end of the fihula projects upwards and the leg has a tembery to take the varns position owing to the traction of the new-formed amd somewhat
consulidaterl Inniy tiwsue, a perfertly functiomal juint (empalle of hemring weight) is oltained. In ensex of total remection of the tihia where it has not heell possilibe to preserve the periontenn, the fibma of the other limil, may be transplanted. In an

16. Resection of the Fibula. The diaplysis, and indeed the entire filmhis, may
 the ease of a tumour or whell it is to he need as a sulntitnte for another lwome), without interforing with the supporting power and artivity of the limh, or with tho nowements of the font in ull directions. The extermal peplitenl nerve is to the woided as it winds romul the merk of the filmin, und the peromeal artery is to $l_{\text {ne }}$ Inrne in mind as it runs down behine the lewer half of the filmb.

fin. 12.is. - Revertion of the lower third of the legr.

F'is. $^{\circ} \mathbf{1 5 6}$. - Oiteotomy of the fenmor. C'Itweiform anteotomy of the thbia.

(f) Operations on the Knee

17. Arthrotomy, Arthrectomy, and Resection at the Knee-Joint. (1)
 many methesks which have leen propsed for freely "pening the knee-joint. None of them, howeser, gives sutficiently free access in so simple a mamer as the transverse enrsal incixion with its convexity lelow: It must, hawever, be carried as far backwards as to inelule at least two-thirds of the circmaterenee of the kure. It is mit quite clear which sargeon has the merit of having introlnced it, as Park alprans th have first made the soggestion, and Texter is mentioned as the father of the methot. Erichsen, however, has doue much to pepularise the mametion.

Polkmann reconmends it homzontal incision through the centre of the patellat. while Diakonow (Starkow) divides the patella and the patellar liganent in a vertical direction, and wetaches the tibial attachment of the latter together with a shell if trone. Like most mesial incisions it has the mlvantage of simplicity, amd is at anded with less ingury to neighloming struetures.

We have completely rephareal ome former methent of excinion hy hatans of at
 opened the joint (arthrotomy) it allows one to proceral to whatewrentent of reswation

 inf faet, nfter exeinios for alifinse tulnerenhosis of the kiece, the whin is plared in
 "xtenow mparaths intact, m that we maty le fres to continue the equration in

 the methorl of arthrotomes.
 places it "un the immer sielc of the joint. It is Ineter, howerer, toplare the ine ision on the ontsile, beranse shombl the knere give way sulsedmently it is ulame always in the direction of gemen valgum. It is innertant, therafore thist the resintance of the tisisues on the bumer side shomblet be diminished by dividing them, and for this reason we matintain that the external ineision is preferathe. We shall reseribe on proedure ss we are in the hahit of performing it on the living subject.

The ineision (Figs. lit. l.5s), wheh hegins over the vastus extermes a hambs. brealth above the upper border of the patella, extemes at firnt vertically down wards a finger'shreathl external to it, mul then cames sheflaty inwards po elid at tha

anterion boraler of the tiliat just helow its tuherosits. Ifter tiviting the skin, the dellace Iancia latat is expmand alli! elivirlerl, it.s libres, whieh rum oblidulely down watas and furwaik, beinas very thiek luelow, It the
 the ollter erger wit the vasthe restemme is experapl allal lis iderl: helow this, are expersed, firint almere dewn warls, the whter surfiter of the empalle, amte fitty tissule, allat the witer man of the ligatimentime |ritell:e, which is timen down to the tulerele of the tiliis, the liatter, alomer with ther ligimentand the geriostemin oi the tihais, lntily then wetarlord sulnemetionthy and rettateded inwards.
 Wommel the ralsialle of the joint is divideal wer the miltor asperet of the coxtermal
 of the symaial promel he. himel the ghatricepos is ex pased. Laner dowis, haw"ver, whe kerple mone to the mishlle line, suthat withent dretiching the ealionle firm therextermal remilamar var. tilage, the antorion ex tremity of the latter mas lue att away lown the tibia, atirl, alonge with ther eip, sule, splabited from the
 The ligaturntum pate ellar is then pallerl tor the inmer sid. witlatamplawk, allil altor livitling the anteriom mfromityof the intronal armilmareartilage in iront of the anturion ermaial liganernt, the me nivens, alenge with the rabsale athel priestemin of the thlat, is detarlied froms the eartilagimons margin of the internal rondyle.
 dividel, with the bantus externas atpraring ahow, and in the lawer end of the womet the eapmile, fitt, and the outer colge of the liganentum patellir. 11，the

 alume ：ath the promentuly hen．

The patella shonld mow be dislonated orer to the inner sile (Fig. bati), and lay detaching the capme from the tilia internally and externally, the leg can be mare and mure ient, matil finally it is mompletely Hexed. Next the attardments of the crucial ligaments are severed from the spine of the tibia
 (or a piece of bone is detached ulthig with themin) is far as the posterinu attachments of the semilmar cartilages, which, lomg with the crucial ligaments, are sepratated as far as the punterior surface of the thina (Fig. 160).

If it lue necessany tor rebese the embs of the bemer. the MIPrer attachments of the eracial ligaments atre spamated from the intracumlyloin finsod in surlo a way that they, along with the veminnaur rartilages, retain their anmeetion with the fensterion wall of the "pipule and the periontem. Next the cal sille is diviled at the elge of the cartilaze of the femme and if it is fout to be remorend it is drtacheod hack wards sulpmerionteally as far as the nly attachinents of the lateral ligaments. The femme is now sawn convexly lex.en the level of the sepmatad lateral ligaments, while the tilnia, after the cilpule and periosteme atre selamaterd from its fonterion anteet, is sawn in a condare mamer.

If the dinense extemis. nume deply into the bones, the lateral ligaments, after chiselling thromgh the "pi condyles, are more exten sively separated from the loneses. la the cave of the femmer it is expecially ins. mertant, after separation of the periostemn and capmind.

 and the cracial lisaments are selamed from the interomylond notelo of the femur and the "pher surface of the thia in contimity with the capmule.
 llacel hy Kimig fore peserving the attachments af the ligatments), and tor displate
them backwards, in continuity with the periosteum, as far as the level of the sall line (Fig. 161).

In order to further firm ankylosis by areurate apposition of the lones, the way in which the ends of the bones are sawn offi is a most important matter. To avenid forward disphament of the femur mon the tibia, the sat has leen directed at all kinds of angles, and a great variety of means of fixing the sawn surfaces has hern employed. Nails and sutures have heen used. As, however, these oftent tear omt, and do not fultil their abjeet, Albert, in Vienna, and others, have bevelled the surface dhring the sawing. We have got by far the lest results lyy satwing the femmer ans to leave a convex surface, and the tibia so as to produce a rorrexponding comoase surface. This methonl was recommended by Metager, and hy Fenwiek, first in 1851, and hater in another pulieation, where he reperts twenty-ight rases in which the
 extimate the direction of the saw, the bony surfaces may be bronght into suld acemath. contact and may be so firmly presseel together that all further artitieial memus of fixation are quite superfluons, provided, of comse, that the limb is firmly fixed to a splint in the fully-extended position. ${ }^{1}$ Sawing the femmer in a conved direction has the further atsantage of more certanly avoiding the eppipyseal line, a matter of great importance one aunother, all that weoth of the femur. After alapting the two sawn surfares to through the skin and fascia, regmire is to introduee a sutmee which penetrates decply By this phan, jnst as in simple wounds of the wift purted throngh speeial ngeninges. tained eomplete mion ly first intention in momeroms cases, we that ofter eight years ohteen days the patient cmu get up either in the plaster cose applicel after the elt to fomror the limb may he immobilisel in a special water case ap parter the opratiom, able to stand on the leg six weeks after the operationghs bandage. The patient is accoment of suppration or ot fer the operation. In thrise eases in which, "in employed, the emels of the bone local infection, ghen-womed treatment mant be suffaces. In suld eases it is went amot be fixed tongether loy making cirved satw
 the external incision differs from the other meethony of the kine-joint ly means of laid bare as far as possible frome other methots in that the diseaterl calsule is separation of the crucial and buterat onter aspect: the meision, the sulbemtiond
 the shlue:

If the calisule is :so diseased throughout that one is certain leforehand (e.g\% in tuherculoms syoutis and arthritis) that it most he remosed in fote, whether a resection of the emblo of the bones may repuire to be done in addition or not, ome proeeds as follows: -

After the skin incision, a portion of the vastus exterms and the fascia lata atre divided (Fig. 15s), the attachment of the patellar liganment is separated, the capmene of the joint is not cont into, bint its outer surface is expened over its eutire miner and lower extent, and the viseral hayer separated from the hones, which in the cese of the femme may he easily done right up to the edge of the articular eartilige, ats the pouch hehind the guadriep is is selanated from the hone ly a distinct hayer of fat.

[^67]The entire capsule is then divided along the edges of the articular cartiiage of the femmr, tibia, and patella,1 the patella leing detached along with the ptadricepy and liganentum patellae. In whildren the separation of the attachnents of the liganents and the detachment of the epicomlyles can be done with the knife.

In arthrectomy, in embtast to arthrotomy, the seminnar eartilages are remosed, as they are also disensen, and it is not possible to preserve then in rembsing the capsule from ahme or lyelow. The nature of the operation, expereially in tuherentesis, is governed ly the prineiple that all the diveased tisunes, whether oyn wiai membrane, cartilage, or hone, must the as thom, mity rembed as if dealing with a matigume themonr.

After-twaturnt. When the capsule is preserved, it is to be carchally sutured, after which the flap is brayght inte pmitio: with a few deep sutures, and then, after providing for drainage, the continusus entaneons suture is applied. To sorenre
 amd folds. When sinuses and olnen womble exist, the carities are stutferl with ionloform gatuze, the skin being retained in pusition iny introndeing tempnary sutures, whieh ate removed after one to ten days, and the d tinite suture is introluced (secombary suture) aceording to the phan recommented hy ns, and more revently amewhat nowlified by Bergmam, Sprencel, thelierieh, and others. When there is
 transverse elliptical incision with removal of the patella is a very suitable methorl
 Mosetig's iodbform filling, beanse it gives exeellent aeeess and the dressing is simulitied.

The limbls should alwass he fixed from the legiming in the extemed 1 mestion in phaster of Paris extending from the tulner iseliii to the mathendi, the Dandages being applied so that the wime ean be dressed without the least movenent of the lim!, while the foot may the left free and nowed from the tirst.

Atypimal reserfines in commetie: with the kine-joint-for exalmple, resection of ne or other contyle or tuherovity are only justifiable whe ome is certain of bringing about ankylosis of the other tulnerosity on eondyle with the oplimsing lome.

In resection of the knee, bone ankylosis, is the ohect in view, while in arthrectomy fibrons ankyosis is, ats a mul- mulesirable. When ankylosis is fibrous or cartilaginons, ass is often the case in children even after reseetion, it is very difticult to prevent
 The question may le raised whether temdon transplantatimn shomblat he mulertaken to prevent this, iny freeng the insertinns of the bieeps and rither the semitembinesms or semimpmbanons and miting then with the fascia anl perinstemm the colge of the patellia.
18. Meniscotomy. Excision of a semihnar cantilage las freguently to be undertaken, as a result of injury, and is imblieated mued more often than is gernemally sumpod. The so-ealled dislocation of the cartilage (generaily the inner) is not it true dislocation, and it wond be hetter if the terim were no longer conployed. It consists rather in a conshing of the eartilage with mpture and diphlacement of the torn emds which beeone locked and give rise to the well-known symptor af a hose bedy in the joint:" The condition is emred ly partial or total exeision mi. cartilage.
 in arthrotemy, is used on the inmer side of the kine. After division of the skin and faseia, the eapsule is opened ower the cartiage ly an incision from the internal lateral liganent to the liganentum patella. The condition present ean then be seem, lis flexion and slight abluction of the knee, any tags propecting intu the joint an onservel and either the whole or memely the anterior part of the cartilage may be exeised. The entire cartilage need only be removed when it is no longer connected with the

[^68]capsule or when it is thickened or senvitive. The wound is clasely stitched withont
drainage.
The sulsequent movements are thoroughly rentored, lint the knee has a tendeny: to a sligilt degrese of genu varmm.
19. Arthrotomy for Habitual dislocation of the Patella (congenital). Thi. matella may lee dixplaced ont wards either from congenital reasons or as the ponlt of a trama. The dixplacement reems very readily on aceome of the angle formed ont
 preponderating pull ont wards.

Plication of the calsule on the immer side of the patella with a rampart suture ("mantrmatit") has producel satisfaetory results, while at the sume time the aunnenrosis of the vastus internus is split longitudinally and sutured as far as possible in a transverse direction.

Krogins has described a methorl, i.e. transplantation of musele and temdons, which promises still hetter results. He raines a long brigge-like strip of the vastus intermis along with its fascial extensiom and stitehes it to the outer side of the patella throngh
 shaped ineision may he nsell with adsantage.

F11: $16:$

1.14. 16:3.
20. Excision of the Patella. This in in impritant "peration for primary dixamof the patella (which is not meommon) in orler to prevent diffise disease of the joint. The individual steps of this very simple operation are- longitudinal ineivion, disi-ina of the fascia and of the smooth-walled bursa which i s generally fomme umblerneath it, stripping off of the pradriceps faseia and of the priostemu, and, lastly, sepmation from the anterior wall of the ealsule. After remosing the patella the cut edgeo of the eapsumbe ean lne united in the loggitudinal direction without diationty, the joint being elosed and the extensor a!paratus re-extablisheml. The results are very sitifuctory, as a completely movalle juint cam lee oltained (h). hummer).

(g) Operations on the Thigh

21. Supracondylar Osteotomy of the Femur. The ineision, whether inn the muter or inner side, is afong the line of cleavage of the skin, and passes obliy th: from :above downsards and forsards through the skin and the faseia lata, whiel in expecially strong on the outer side. The vastus (intermes or cxtermes) is exposed at its posterior lorder und drawn mpards, while the periosteum is split vertically abmic
the epieomlyle and selparated forwardis and harkwarlo, and the lene divided with a elisel for two-thirds of its brealth, the remainder being broken aeros.s.

The superior internal (or external) articular artery is to $l_{\text {n }}$ lowked ont for, and internally expecially the deep, bramelo of the amastomotic artery. Along with Macewen (to whom lelongs the credit of devolnging this "neration) we were the first to perform asteotomy of the femur for gem valgime.

An incision alme the internal con lok, a fingere-senalth in front of the insertion of the tendon of the adduetor masmis, mant he resarded as the mormal one, as it awoins the smperior internal articular artery. Moreover, the lane is mere eavily reached from the imer side, and, after diviling the skin and the erelitively thin deed fiscia, it is neeessiry, in order to reach the premontem, to Free and hook aside the lower horder of the visthis interms. liy this plati the soft farts cem lee emsinred agriust injury better tham ly the widely alented prowedure of Marewen, who intichluees a chisel down to the bome throush fuite a sumall opeming. We employ a chisel with a blunt projection at one side.

After dividing the greater part of the hone the rem mainder is fractured. The after-treatment is penerally carried out by mems of a arefully-alphied phastor of laris hmolage: We have, however, given mp this phan and now apply weight-extenxion in order to pevent stiffiness of the kneejnint. The small womed is sutured and covered with a collantion dressing.

Supra-comlyloid ontentomy has completely taken the phace of Ogytmis ingenions methent if intra-artionlar division of the internal condyle of the femme for the femoral form of knock-knee. It is fin preferable to every form of intenclasia or forcible rednction withont opreation. It is not so irepuently employed for contricture and ankylosis on the knee in had position, heeanse in exrellent result is got lay removing a wedge from the fermur and tibia and dividing the capsule of the joint, liy which means the eure is more permanent, as there is less chance of heaving hehind some diveate in the joint. In emur own experience, in eertain cases of contancture where there is a slight degree of movement at the joint, simpra-wombloid ostentomy gives a letter result than excisime the limb, leing loronght into the extende: ${ }^{\text {mosition withont injuring }}$ in any way the movements of the joint.

An incisins is mate extermal to the phadrief pe (vastus externus), and the latter muscle is detaclad off the bone and retrated forwards along with the joint eapsinle. A wedge with the lase forwards is eut with the chisel sutticiently high alove the articular cartilage to avoid

F'i., lifi. -rhitotomy of the fetutur. ('mutiform osters. tomy of the tibia. opening into the joint.
22. Osteotomy and Resection of the Femur. lartial reections of the femomal diaphysis are modertaken in the treatment of acnt: and chromic instemenelitis, eapecially in the latter, where loeal pain and fever may otherwise remain for a considerable length of time.

An incision may le made along the whole length of the outer side of the thigh without entailing any real danage on neighhoming strnctures. It should follow the posterior lorder of the vastus exterme after dividing the skin and the strong fasela lata (iliotibial hand) i.e. it may extend from the lase of the great troelanter across whieh the terminal branch of the external ciremmex artery mons, to the external eondyle over which the superior external inticular antery passes. The whole diaphysis of the femur is, however, only removed in the perfomance of extensive sequestrotomy after aente osteomyelitis.
23. Osteotomy and Sub-trochanteric Cuneiform Resection of the Femur.

Osteotomy below the trochanter is of historical interest as the operation whieh first brought osteotomy into notiee. It whs introxluced by lhea Barton. It was extensively employed by Volkmann, and Adlams mud Nayre have shown its advantages. It is un excellent operation for all malpositions of the hip which cannot be remedied or stiffiness in the position of extrene flere, in old hip-joint disease with ankylosis, glad when eure orcurs with ankylosis, as in and adduetion. In had cases one is with restoration of the movements ut the joint circumstances excision of the hip the atrophied condition of the muscles. This wonlif le unfavourable on prcount of subtrochanterie osteotomy, which is equally difticulty is overemme by nemse rf The operation is easily perfomen, and if asepwitficient in correcting the deformity.

Fili. 16:\%.Subtro hanteric onteotomy. a simple fraeture

By snbtrochanterie osteotony a marked improvement can also be made in the mosle of progression in old-standing, as well ns in congenital dislocations of the hip. The opreration in these cases is often far less serious than the severe open operation necessary for replacing the head of the femme into the acetabilum when rednction camnot be effeeted in may other way. If the dislocaterl head is well re-

Fil: 166.
tained and movable in its false position, it is Inetter to leave it there and to be content with straightening the limb ly an oxteotony.

A transverse meision (nr) still better, an obligne incision in the direction of the line of division of the bone) is made down to the lwo on the outer side, throngh the skw mind tendon of the ghtens maximm; hehind the tendinons insertion of the vastus minter. St the level of the base of the great trochanter and lefow the trochanter
mine to the incixion. The boum inal lranch of the external ciremuflex artery runs paralle. inwards so n sfo jrevent the chiselled throngh obliquely downwards, forwards, athid when the limb is fencibly alnducted. frament fron theing displaced inwards or forwa:

For the after-treatment, in cases. of laris bandage is all that is repuired : he bad position is easily reetified, a plaster bringing the limb into gooxl position, weight-extension is any diffieulty in at one

II which It wam antages. emedien kylosis, 8 one is the hip count of cans ormity. us than
murked in the ing, as of the often operaead of when other ell re-

(h) Operations at the Hip and Pelvis

24. Arthrotomy and Resection of the Hip.-(11) Eirrixiun at the Ilif, by, the

 only in partial excision, ife. for the remonal of the miterior part of the capmen and

 the opreration for eongenital dishation of the hip, the reader shombe eonsult the works of Ilotlia and Lorenz.
 (i) inders) long, is carried downwards from the anterior sngerion spine ${ }^{5}$ the ilian divining the skin and faseia. The external entaneons nerve lies to the imer side. The ineision strikes the interval hetween the sartorims witl: the moderlying rectus femoris (arising from the anterior inferior iliae spine) and the tensor faseite femeria. la the lower part of the womal the transverse hanch of the extemal ciremmetlex artery may be dividen between two ligatures. The nerk of the femur is then reachend, and the eapsule oprened. If plenty of room is willtel, it is meiverl longitudinally from its in per limit downwarrly along the attachment of Bertinis ligament to the intertor--hanterie line.

This methorl allows of a simple "r cmueifurin osteotomy of the neek of the femur heing performed, and we have employed it in the case of cona valal. It can further be andypted in malmited fractires of the neck, for the remowal of a froms of disease in the hemel and anterior aspect of the neck, and for making an acetahnlum in a case of

Fis. 1sia.-Incision fur arthrotomy of hia. "Mogenital dislocation of the hijp. When. however, a thor agh inspection of the joint lats to he made, whe whe the rasule or part of the acetabulmm has to he remowed, it allows a very insutheient anoum of xpace.
(l) I'anterion. Methonl. The ponterior ineision gives much more mom, if the joint is to be freely expmeel, "spectially if the following method is employed :- The ineision is an angular (or curvel) one, extenling from the base of the viter surface of the Ereat trochanter mpards to its anterion superior angle, and from thence oblipnely n! wards and backwards in the diretion of the firnes of the glutens maximus. The akin and fatty tissue are divided (Fig. 167). At the lase of the troclanter branches of the external circumfex artery are divided mul ligatured. The dense aponeurotic insertion of the glutens maximus is now diviled mpon the σ.ter aspeet of the trochanter, exposing the periosteum and the insertion of the gluteus medius, which covers the
whole of its upper lwader, the detmehment of the ghotens maximus lneing thas facilituted (Fig. 168).

The ulper and latek part of the incision divides the glotens maximus in the direction of its fibres, nul generally some vessels of comsinlermble size, whinh mant lee ligntured. When poxsible, a still hetter plan in to expme the uper beralep of the chatems maximas and to retract it downwmin if it is weakly develoned.

I fatty layer now aplonars, and ufter divinling it, the juterval is rearhed lhet weren the lower loriler of the ghatens medins mul minimus almove, and the pyrifomix lnolow, The lrond temban of insertion of the ghlitens medias (attarhed to the onter side of

Flo. lin.-. Arthrotoms of I
 the great trochanter), and muder it the temdon of the ghtems minimms (attachal in the
 down th the anterion intertorliniterice line and detached fowards. The limb heine thexed and rotated ontwarls, the ilio-femomal liganent is then selarated from the
 If the tendon of the prifarmix, and on llexing and rotating the thigh inwarls the

 in front with the temfon of the obtume ine then ret racted batekweds, begimin!
$112 g$ thil 4in the millat tre of the

extermus．In this way the periostemm ewering the inner surface of the treelobiter， tomether with the strmetures attacheal to its panterion surface，are refleeted in their continnity（Fig，16：9）．

 shatei，is of special inmurtance for the finture aluhation of the thigh：while the

are mainly suplied by the inferior fotuteal nerve，ane drawn downwarde The
 Which，however，is givell oft so high upthat there is nu four of injurine it．

 capmle at the neek ot the femmerepuive to he ligathred：while the transedse braneh of the external circumflex artery may alos meal simila treatment where it winds round the hase of the trombater imbler the vastas extemons．．Ls a rule it is sumbelent to catch the small vessels with forceps and to twist them before chosine the wombl．

When the symovial membrane is tulnerdulms mul has to the exeised, it is emas, lefore

 to remove the pusterior wall of the empale in lifor. The lignmentime teres is dividend ly entting on to the heal of the lene from inehinal nul helow, the limh leing jwwerfilly mednetend, flexed, and rotated inwaris. The heme is then diverateal hack wards, and the acetahbum rendered visible. The tuherenhens tissue is now remewey with serissors

Fin. 170.
Noop for the reposition of the beat of the fermur in the open operation for congenital dislocation of the hip. mal forceps mad serapeed with a sharp spens, white the womm surfures ure awabinul with a solution of carlonie atal alenhol.

Of the munermis methorl. emplayend for excising the hip wr. kuow of worle which allows of surth free inspeetion of the joint with an little injury to thre minseles, nemes, mind beme. It is a further development if Langenteek's methoul hy tho. obligne incisimu, which, hewiwher: does mot admit of extirpation of the eapsolle alome with at the. same time prexervation of the bene. We alall theremere di, pellese with a compativoln of this with other methoxle of onn rationt.

If :un arthrotheng is sullicient, or vily lame is to la remonom. the capsinte is "phomed at onve atomy the upper lureter of the beritionis, frem the acetahmun to the neck of the femmer, and the capsule, pryidenm, and macoliar maretions are retarhen from the neck and the trechanter: The temen insertions which havi. leed detached sulperionteally (ow along with a bayer of lwome) anterionty, and pusteriomly, are then repliared owe the tron hanter and sutured. Fien when the diveave impliates the anterion aspect of the neek of the femme. we have fomment this methend Iketter than an anterior incinion. bardenhener employ a still ume drantic methond by excining the joint completels together with the synovial membune and calpule without onnomg the later, o.. hi remosing the head and neck of the femm and the acetabhom, and employing th. Larghi-Sprengel transwerse incision.

His methral certainly ensures ther most thorough remeval of all the disease, but it necessarily entails sacrifiec of the "piphysis and of two whech might have hate preserved, since the synovial membrane enselops most of the neck of the lone.

As regarels after-treatment. the emfo of the twac tast not I_{n}. hept ahsolutely rixid, as is done in the knee with plaster of laris, hecause here a momble joint is desined. The after-treatment is lest carried out by weight extension, at the sume time elevating the p ehis and maintaining both limbs in an abulueted position. The initial dressinge must eonsist of several layers of strongly-antiseptie gauze, whieh should not be changed
incfore intl, mill ull thow dividerd werfully IN, mil scixars with winm! witl : denloul. nethons hije w. ONs if e juint (1) the le. It nt .f th. werm, inn $1,{ }^{\prime}$ it 1 the. C di, of this atinn. ient. Minc. Hille if the Millun il the 1 1 ml whel miter. hisw cally

26. Arthrotomy in Congenital Dislocation of the Hip. In the provinuse chapter we alludent to the miterior "pration which is the one neme gelpmiar with anthorities on
 vitisfartory resilts.

 the latek if the didenated houl of the Inolic.

A lever, whid we hatse binnul tor the
 wards twards the aretalmilum letwome the leand mat the smonth surface of the dorstum ilii "th whirll syum iad membran. alse extemes, mutil it slipe ower the In" terior margin of the aretaholum. It the same time ly fare ifly alndorting the limb, and butating it out warla on cery uftels inwards, the head ot the lnothe which now rests in the hollow of the instrment is levereal int" the ate etathinum ley carrying the hatude of the instrment forwarls. The womal is simply rlowed with a contimumssuture covererl with molonlient, and the limb, is then gut m, in plaster.

Fir lomgranding mintomgenital dislonations, ollier ann Mikulirz (mulny a transerse indision with its combexity denmmarrls oner the troblantere, the tip of Which is rhiedted offt Rydygier hese a

ト14. $17:$. - iprengel l° iteivion. -imilar Hap and oyeaks with praise of the

26. Osteotomy of the Pelvis. To oblaina tree aceess tw the onter surface of the ilitunand the the Mrev and posterior aspects of the atetabulum, Sipengel has devised
 emmection with certain antes of congenital and old-atanding dislonations. Sprengel has ly this means emred onstinate cases of pelvir sulphation. It is, however, a more severe preation than omr pusterior methonl.

He caries an incision downards from the anterior sumerior spine of the ilimen betwen the anteriur berder of the tensor fasi ise femoris and the sartorins, dividing the dense fascia lata, A few small vessels are ligatured, and the womb is then extended lackwards along the crest of the ilimm, dividing the fascia amb the arigins of the glutens netius and minimus, which are stripned off the pelvis with a shary raspatory. By turning down a thap in this manmer one ohtains a very gool view of the hip-joint and of the margin of the acetabulm. We onve removed a tramatic exostonis from the acetalmar margin ly this methond. The advantage of sprengel's incision is that the cotire soft paits thigether with the periosteun can be raised in a siugle piece.
27. Resection of Half the Pelvis. We tirst performed this opration in 1884 on it man, aged fifty-ohe, suffering from osteochomalrosareoma of the pelvis.

The tumomr, which was first notieed six weeks after an injury, rapibly increased in size, and was attemed with pain and interference with the joint movenents. The right iliae fossa was almost entirely ocupied by a large irregular, dense, hillowhy thunour, eovered here and there by thin shell of hone and pushing the ghtei before it, causing pain on pressure, and ereaking on the hip-joint.

Fitc. 173.-Excision of bip and innomimate lone for a tumour of the pelvi-

It the operation (9th Jemember 18st) the fuhis and ischiun were sawn through 2 cmi. intermal to the acetabuhnm, and the ilinm was separated prsterionly at the sitero-iliae joint. The npper end of the femme had also to lee resecterd.

On 19th Janamy the patient was allowed to attempt walking, aud on l6th Mareh he was diselarged, able to get abont with the aid of erntehes. His eondition on lith July 1 NB (Fïr. 173) was reported as follows:- Liotient has been very well since the oreration, and logant to do light work one month after leaving hespital. Ils. can now do light agricoltual work, and ean walk for an hone without fatigue.

He limps in the same way as a patient after excision of the hip, i.r. Walks on the points of his toes and swings his leer forwarls. The leg is in normal fesition innl the knee cant he fully extembed. There is 4 ins. of shortening. Of passive mowements there is a range of 970 degrees, and of artive movements almomal extemal rotat tion is possible. Nomal active extemsion ; passise hyperextension of tis legrees. Pasxive abolnction aud. . Thetion up to 70 degrees on buth villes.

The upher conl of the femmer is ouly $1 \frac{1}{t} \mathrm{in}$. from the midelle lime of the herly, and is on the same level as the anterion superior spine of the ilime of the elposite side. The femome artery is torthous and pulsates strongly. The lurizuntal ramus of the pmbis is $1 \frac{1}{} \mathrm{in}$. in length. The temme cand be phesed upwamk and downwames to the extent of all inch of sen. There is a heruial protrision of the ablenmen the size of omes fist.

Soon after this cesve lioux performed a similat Operation, and recently we have opemated on another case in a low, aged thinteron years, fon saromita of the pelvis. The steps of the operation eane they were as follows:- An depend on the extent of the disease. In this the crest of the ilium, and themee ansion was mathe from the siero-iliae joint along

After this ineision the ablene along l'onpart's ligathent. Pompart's ligament and the ilinemal minseles are divided ulong their attarchments to separated from the tumome is far as, and the fase ia transwersalis and peritonemm are
 chtaneons, ets.) have to he dive, are retmeted inwards. The sumber nerves (external being graspal with formps.

The maseles whieh lie hehind Ponpat's ligament and external to the large vesests are then sepatmed ame diviled. The ereths femoris, saterins, temsor fasedia femoris. hlunt instrmuent andents of the ghones medmes and minimms are deinehed with a hlunt instmment ind divided as far hate an the sumer-iliare joint. IIt. int-separ-

(i) Operations on the Fingers and Hand

(1) Prelimiant:y Remerkis on Ofmertions on the P"inyters. The opreations whidh the surgeon is called upon to perform on the fingers comsist in the oprening of atheresses, the removal of tumons, the resection ot the smatl joints for aente neevisis of the articular extremities and for tulseronlons arthritis, exelsion wh an entire phatand for thberenlous onseonyelitis (spinat ventosat, and, lastly; amputations for injuries aud gillurene of the tingers

While we are sorcely ever called upm to expese the suthll arteries and herves, it is often neeessary to make incisions so an to avoid them. As a rule, therefore, incisions, whether mate merely throngh the soft parts, or in resecting the bones or joints, should be plated on the lateral anjerts of the fingers: donsal amb patmar
 or for the purpose of suturing divided tembons. The dhef mass of the subeutamerms soft parts of the fingers is made mp of the temons, which are absint mon the smallem lateral surfares. Ithe flemer tembons lie upon the periontemm. Opmosite the mindlle
 latter are erescentie on transverse section, with the ronvexity towards the bene, the former heing rylimhtieal.

The two divisions of the thexor sublinuis temben, after embmeing the temben of the flexor profundus, are inserted into the latemal smfines of the midibe phahmas. The Hexor profunlas tembon, after basiog through the slit in the fexor shblimis tembon, is insarted into the hase of the teminal phatoms. Is fat as the lases of the terminal phalanges the temons are enelosed in a fibrons tube contimons with the pibhar fasein, and from the heath of the metacarpal hnote downwarls they are survomaded in adition by closed syumvial sheaths, which, in the ase of the thumb and little finger, "pronch and often commmicate with the common Hexor shenth in the pahn. Vinenla tendimm pass from the bones and the apisule of the joints to the under surface of the tendons.

The extensor tendons of the fingers are athached hy some of their tilnes to the
bases of the first phalanges, upon which they divide into three divisions. The tendons of the lumbrieal muscles and interossei (Hexors of the first and extensors of the second and third phalanges) pass under the lateral divisions to join the middle portion and to be inserted along with it into the base of the middle phalanx. The lateral portions, after extending laterally over the first interphalangeal joints, unite again upon the dorsum of the second phalanx and are inserted into the lase of the terminal phalanx. All the extensor tendons are flat and fascia-like.

The extensor primi internodii pollicis is inserted into the base of the first phalaux of the thumb; the extensor secundi, placed somewhat dorso-ulnawards, is attachell by all threc divisions to the base of the terminal phalanx.

As the terminal phalanges have tendinous insertions only at their bases, incisionmay be made anywhere aceording to the indications; that is to say, they may lue placed either mesially or laterally.

The digitol arteries amd nerves give off branches which pass towards the dorsal aspeet of the second and third phalanges. Lateral incisions over the middle phalanges are to be made nearer the dorsum, as the digital vesse!s and nerves come more into relation with the flexor tendons.

The palmar and dorsal digital vessels and nerves are of considerable size opposite the first phalanges, and here again the palmar vessels lie more towards the Hexntendons (the nerves being anterior to the vessels), so that incisions may be male laterally. Towards the lase of the first phalanges, however, after the skin has leen divided, the deeper ineisions are to be curved towards the palmar aspect of the finger in order to avoid the broad tendinous insertions of the lumbrical and interonseon,s muscles. When a choiee is possible, it is hetter to make an incision upon the ulnar phalanges) wind radial aspect, hecause the lumbrical muscles (flexors of the first
(b) Preliminary Remarks on Opervations on the Iland
to be made in the hand in consequence of the ind. Incisions are often required inflammations and abscesses are met with of the frequency with which infective especially of the palm, are large enough to allow of the dit of borly. The arteries, Besides the incisions necessary to even. of the direct application of a ligature. ligature of the vessels, there are evacuate decp, collections of matter, and for the hand, he it for inflammatory atfection of required in operating on the tendons of the

On the dorsum we lave s. deal only with teaths or for suturing wounded tendons. part can be felt through the skin anth tendons and nerves whiel for the most Large vessels are only met with belind and alour the as guides in making ineisions. and these, like the nerves, can be felt through the metacarpal bone of the thumb,

On the baek of the hand a line to the wrist separates the arens drawn along the middle of the third digit up, The dorsal carpal areh and the metacarl respectively ly the radial and uhar nerves.

The extensor temlons at the wrist hal arteries are comparatively suall vessels, which extend downwarts as far as the fore the most part separate synovial shenth. the hand the radial nerve ean as the middle of the metacapus. On the dorsum in the dorsal braneh of the ulnar nerve over the base of the second metacarpal hone, and interval between the first and second per the base of the fifth metacarpal. In the can also be tracel upwards upon the lnctacipas, on the dorsum, the radial arter! - lase of the first metacarpal and then upon thic

The radial vein is visible as it ascends across the hollow between the tendons of the extensor secundi and extensor primi internodii pollicis.

Eirmmination of the Structures which can be felt beneath the Skin. In the paln the vessels and nerves run in the intervals hetween the metacarpal bones, while thi. tendous are placed over them: all lie under the strong palmar fascia which gives oft processes to join the tendon sleaths nipon the fingers. Between the prowessex the fascia ends in concave arches which, by means of the septa passing from them th he attached to the dcep transverse ligament, serve to separate the flexor tendons and lumbrical nuscles from the digital vessels and nerves.

Under the pralmar fascia is the bundle of Hexor tendons with the lumbrieal musele:

Fir: 17t.-Excision of the phalanges and 1st metacarpal hone.

Flt: 175. Fixci-ion of the phalanges and metacarpal lnones. (cormand section of the wrist, after Honle.)
 ". "On of the nhar nerve can he felt throngh the shin and molled from side to side wer the hook of the unciform: lastly, immedhately alnove the lall of the thmul, is the progertion of the ow trityr:inu, wer which the sipertimial volar branch of the rulial artery, which may le felt throngh the skin, diememik to cmombete the surertieial pahnar arch. Two fascial envelopess survond the wrist, one a part of the general fascial envelope thickened by transverse fibres, the other sitnated deeply aromel the higaments of the wrist-juint. Besides these, np"n the palmar aspect is the strong anterior ammar ligament which hidges ower the tembens menpying the hollow of the carpal lmies, and gives origin to some of the musides of the thmmb.

[^69]ineisions upon the fingers are plaeed near the dorsum, and this is to be the more particularly attended to the farther they extend towards the tips. In the case of the fingers it is desirable in removing a bone to make bilateral ineisions, in order to prevent unilateral contraction of the sear and consequent lateral leending of the finger. The extensor tendons and nerves on the dorsum are to be aroided, the incisions being made over the bones where they can be felt beneath the skin.

When not contmindicated, the subpreriosteo-capsular resection is to be performed. The head of the bone is first exposed hecanse it can be more easily rendered movable.

In the case of the metacarpal lone of the thmm, the extensor brevis pollicis along with the periostem is detached to one side, and the muscles of the ball of the thumb are detached to the other, the tendon of the extensor ossis metacarpi pollicis leing separated from the lase of the lone. In the case of the remaining metacarpal hones, the interosseous muscles are separated along with the periosteme. The carpo-metacarpal joint of the thmm is the only one with a seprate synovial membrane, the others lieing continuous with the intercarpal joints.

(k) Operations on the Forearm

Incisions lave to low made on the forearm to ligature wounded ressels, to suture nerves and tendons, nud, not infrequently, to resect or suture fractures, and in the treatment of pendarthrosis, as well as to open deep-seated abseesses under the miseles (associated with shlpuration in the tendon sheathe), and nuder the periostenum in ostennyelitis.

Incisions on the .fesor surfiner of the forearm should be made so as to aroid, on the one hand, the radial artery and radial nerve, and, on the other hand, the baedian nerve and the anterior interosseons nerve and artery.

The whole length of the radius aud the interossenus membrane may lee ent down mpon withont fear of injuring the nerves ly an incision letween the supinator longus and the flexors, as this is the frontier line leetween the structures supplied by the the flexoms, und the hest phan is to pass down letween the supinator longus and retracted inwards alone with the radial artery. In the lewer shird of the fore may he radial nerve must be left to the outer side of the inewion the forearm the the radial artery to pass on to the cos sife of the incision, tecanse here it leaves exposed the whole length of the dorsum of the wrist. In this way we recently osteomyelitis. At the mpler eud merinlary camal of the radiux in a case of diffuse detached and retracted ontwards whie womed the fibres of the suphator herevas are end are detached inwards. If it be necessiry to ex pronator ghadratus at the lower from the radins, the museles attached to the radins mene the interosseons membane viz. the pronator radii teres in the midelle third, the radial atteded and separated, suldimis digitorm lelow it, and hehind it the Hexor lomgor athinent of the thexor half of the arm the interosseons memb. ne can are longus pollicis. In the frower these museles without interfering with their attachments, led fromse the thimer side of are no brameles of the median nerve to injure. In the nemperse hatf this level there after division of the pronator radii teres and Hexor whlinix liait of the forearm, plan to free the median nerve aun teres and flexor sulbimis digitorm, it is a good anterion interosseons nerve. Wy then tol lass to its nuter side, as if in seareh of the membrane to the outer side by disseetion down to the mulins and the interosseons injured is the one going to the flexor lomentioned ne ves, the only lnameh likely to be on the interosseons membrames are not ingus pollicis. Ahscesses situated dep down sumpuration legiming in the tendon sher renently met with as the result of extensive
 by the phasterior interosseons nerve, may be marm, the museles of which are supplied ulna, as the dorsal hranch of the ulume nerve pase malong the Whole length of the at the lower end of the ulna. Fiurther, thise pise under the flexor carpi ulnaris quite the extensor tarpi nharis, which receives its nerve-sunply at a highe revel. Inder of
may le made on the radial side in a line from the hend of the radius to its styloid process, but eommeneing $=1$ ins. below the hend of the radins sio as to aroid mijuring the posterior interowseous nerve as it pierees the supinator brevis, the incision passing down between the radial extensors of the wrist and the extensor communis digitormm. After retracting the radial extensors out wards and the eommon extensor inwards, the extensors of the thmmb ure exposed with the pusterior interosseons artery lying in the interval between the abhutetor longhs pollieis (the muscle placed farthest to the rudial side) and the extensor longns pollieis. In the lower half of the forearm, where the radial extensors appear from under the obliquely-placed extensors. of the thumb, the radins must he cut down mom leetween the latter and the temon of the supinator longus, the dorval brimeh of the radial nerve leing aroided. In the lower thirrl, to the milna side of the miseles of the thmm, incisions may la made leetween all the tendons on the ponterior surfiaee, becatse there are here no vessels or nerves to be avoided.
30. Osteotomy and Resection of the Ulna. The ulna liex sulentanemsly along the whole length of the forearm, int the interval letween the flesor and extensor carpi ulnaris muscles. It can therefore be excised either putially or completely withont any difficnlty and withont injury to the surronnding strurtures. Staphylomyentic and tulerculons ostitis are not infregnent indications, while in fraetures of the mper third of the bone, it may lne nevessury to wire the frugments in order to sernre satisfaetory eopptation.
31. Osteotomy and Resection of the Radius. The rulius is much less casily accessible than the wha. The head of the madins can always le felt under the skin at the outer part of the ponterior surface of the elhow, and ean therefore le resected by a part of the incision, the direction and pmaition of which is fully deswribed in our methen of excision of the ellow.

The middle third of the diaphysis may le felt upout the posterion surface of the limb between the radial extensirs of the wrist and the extensonss of the fingers. It may be cut down upnom here withont fear of vessels, nor do the brameles of the nerses come into fuestion, as the aljacent muscles reeeive their nervesmply higher mp. The mprer thirl of the radius is eovered by the suphator brevis musele, through which the pesterior interossonss nerse passes hackwards. The lower third, hesides heing covered hy the smpinator homs aid the two radial extensons, which rum all the way aloug it, is also corered by the pronator quadnatus, and by the extensors of the thumb, whieh pass oblignely over its posteroextermal aspeet.

An incision extending down to the radius in its whle length is cmly powsible along the line for ligature of the radial artery, ly drawing the radial nerve to the outer, and the radial artery to the inner side. In the upper third the nerve lies well to the radial side of the artery; in the lower fomrth it winds tor the dorad aspeet of the wrint. In recent as well as ohl fractures of the randins, it may be nereessary to perform osteotomy and wire : he fragments, ats otherwise fractures in the uper and middle thirds often mite sery unsatisfactorily.

(1) Operations at the Elbow

Operations in the region of the elbow mainly comprise incinions into the joint for resection or for suturing the brome. It is only on its posterolateral aspect that the joint is readily reached without danger of injuring neighbouring structures: hence this site is cbosen for opening the ellow-joint, and we prefer our cursed lateral incision. It is only in the region of the supracondyloid rilges that the humerns is sen superficial that it can be cat directly down on withont hesitation. The best guide to the level of the joint is furmished by the head of the radius, felt from the posteroexternal aspect. Other important landmarks are the two epieondyles and the olecranou process.

The tendon of the bieeps can he easily felt at the front of the ellow with the pulsation of the brehial artery on its inner side. Lying lehind the internal cpicondyle
is the uluar nerve. In most reople the median basiic vein, which is selected for venessetion, is generally visible at the bend of the ellow.
32. Arthrotomy, Besection, and Arthrectomy of the Elbow. In arthrotomy and excision of the ellow-joint, just as in all other joints in whieh a free exposure of the cavity is desired in order to remove aceurately ull disensed tissues, we adhere to the principle of making a somewhat more complicated skin incision, in order not ouly

Filt. Riti.-Arthrotony of the elbow and wrist.
this by the following methol of operation :- to preserve all the museles along with their attachneents, but especially also to spure the nerves which vulply them. This was the main reason why we enplloyed the posterior curved incivion for arthrotomy of the shonker, and why we subsequently also modified the methods which had been employen fur excision of the elbow.

To begin with, we employed the simple methol of Langenberk with a posterior longitndinal incision, whieh was re-intronluced by Treves, Park, and Maisommenve; hut we found, esprecially in tuberculous disease which was localised in ur had extended to the region of the head of the radius, that the uecess was mot so satisfactory. Ollier's bayonet-shaped incision is an excellent methorl for gaining this access, but it has the disadivantage of throwing the anconens out of action. It is true that th. obligne midhlle jortion of Ollier:s incision extends through the interval hetween the onter head of the triceps and the ancomens; but as the hranch from the musculospiral nerve which supplies the. latter muscle descends as an ont. rumer from the liranch suplying the outer head of the triceps, it in neressarily divided, with the resnlt that the anconems atrophies. As it is our special dhty in the cast: of the elhow to ohtain an activelymovahle joint, the function of the ancomems ought to be preserved, as it serves to stretch and tix the rapsile of the joint. We attain
With the elbow Hexed to an angle of about 150°, an angnlar incision (Fig. 17 ti)
 2 in.) above the line of the joint, and is carried downwards practieally parallel to the axis of the humems, pie. fertically downwards to the head of the radius, and from thence along the outer border of the anconens to the postorion borter of the mhit, 3 inches helow the tij, of the olecranon; finally, the ineision terminates hy curvine inwards over the inner sur: of the ulna. The first part of the incision extemis down to the outer horder aml external eondyle of the limmems, bet ween the suphatur

hich
main
$\mathrm{p}^{\mathrm{mos}}$
thro-
why
the
yed
yeld
reck
in-
longus and radial extensors anteriorly, and the edge of the trice 1 s josteriorly: below the external condyle it passes down to the lone between the extensor carpi ulnaris und the outer border of the anconeus, and divides the strong capsule over the head of the radius together with the annular liganent at its attachuent to t 'e ulna. The lower end of the ineision divides the lower fibres of the anconens transversely at their attachment to the posterior lorder of the intna, heeanse the musele extends for a along the interval between the forearn. The ineision, therefore, falls acemrately alng the interval between the museles sulphied by liranehes of the musculu-npiral

Fli. 178. - Arthrotomy of the eltow after the forearm has been dislocated inwardy the outer ath
 is seell below. In the upler part of the wound from it. The cint surface of the :umbens periosteally (or subertically) from below womp supimator longus is seet detiched sublongior and brevior, extensor communis digitommand, as are also the extensor carpi iadiali,
norve and those supplied by the posterior interosseous, thus avoiding the possilility of subsequent museular atrophy. The bone having luen exposed and the capsule diviled, the outer head of the triceps, together with the preriostemm and the nipler from the posterior surface of detached subperiosteally from the humerus, the anconeus olecrumon, ard the triequs-inneoneus the insertion of the triceps from the tip of the the olecranon to its immer side. The external juint iering extended) displaced over of the extensor tendons and the eapule hateral higament, with the attachments separated subcortically with a sharp raspatery from to the external condyle, are drawn forwards. The joint has now raspatory from below by means of a chivel and rawn forwards. The joint has now become so movable that the forearm can bee
completely dixlocatenl inwardy (Fig. 178). The whole extensor apparatus, Inoth usregards muscles and nerves, is preservel in its contimnty, and the internal lateral ligament is still intact. If eomplete resection is to be performed, nfter dislonating the joint as ulove des ribed, the internal lateral ligament is selpirated sulperionteally. Hong with the museles from the inner lworler of the una and the internal condyle of the humerux, and the enels of the bones are removed. In sepurating the laterid ligaments it is better to remove a slell of lome along with them, so as to prewerve their attachnent to the periostemm.

For many years we have leen in the habit of making furved sewn surfaces in performing excisions ; here mot, us in the knee, merely to join the lenes firmly trgether. lout also ias order to ensare an angular movement (Hexion and extemsion) at the new joint. It in emperially impertent to salw the olecranon it a curved direetion, in order to preserve a lever into which the triecon is inserted. This geses a long way towneds preventing partial dishention forwards of the forearm.

We have already staterl that as compared with the simple punterior longitudinad imeinions, of which Langenleck's is the mont generally employed, the curved incisions. expecially mdvocated ly Ollier, have the great adiantage of giving more room and letter expmure of the joint, expecially in the region of the heal of the rablins. It is not very likely that any one will care to cmploy transwerse incivions (straight or rarved), either alone or ermbined with me in two lomgitudinal incinims. The main directions of the ineision minst always $I_{\text {se }}$ longitulinal if the mimeles ame the in nerves are to lee preserved. The maly metlienl which we need refer to is that of Smguste Sélaton, which is mentioned ly Faraluenf. It has nearly the sume direetion an our ineivion, loxing earried homgituditally over the external coudyle of the homerns and then lending at aright angle from the heat of the radius towards the uhat. Nélatoris objeet in employing this incision is to thorongly expme the leeal of the ratins, lut, like Ollier, he pays little attention to

F1.. 17. the preservation of the anemener. Hneter, and, aeeording to Faralnenf, Maramsons have aloo reommended wina incisinns which are allied to ours, hut plamed with a different olject. Compured with onur com method, the lateral transerse incision of Cavazzini is the reverse of an inaprovement,
 the manarer we have advised.

So other incision gives equally goos aceess to all parts of the joint with so little. injuy and with sidell complete preservation of the important extemsen alymaths.
 completely expose (from the minside) and exeise the capsonle, of to renect the lumes
 extent.

For canes in which the dinease in comatined to the obecramen, the simple posterion Inggitudinal incision of Langenary has the adrantage that it is ceuried direetly down ufon the seat of disease. When the risease is limited merely to the external condyle
or the head of the radius, Cavazzini's transverve external incision is coctasionally o: value. In all casien, on the other hand, where a thorongh view into the joint is desinen, our methex above deseribel has feat alvantages, while it is always move advisable to make it a rule to open into the joint.
difer-firnement ame Resulta of Resertion oft the Ellmin. In the ellnow more than in any other joint one can count with greater certainty on obtaining a freely-movalle joint, provided the disease has lieen thoroughly removel and a meednuically somul new joint hax heell constructevl. S. plaster handages are requisite, as active correvt position be resumed in a fer days. The forcarm must, however, le placeel in ablucterl. It shombld not lee bandageer to telulency to lecome rotated out wards and pronation as is the usinal practiager to the loxly in the poxition of udduetion and radins and uha are in contact with the should be placel sot that the ends of the wards). The forearm is simply pheed vertieally upright and (whieh is rotated ontmeans of a curved nplint.

In tulnerenlar cases the surfaee of the womend should the swabled with an alcoloblic solntion of carbolie and either thomughly smeared with freshly-sterilised ionloform powder or paste after the bleeding has lieen carefully stoppeel, or the civity of the womed may be filled with Mowetig's iexloform filling. A drain is inserted throngh a special opening on the miterior aspect of the joint. If the operation has been strictly aseptic, drainage may, however, he dixpensed with, after the joint has leen filleil with the almove-mentioned paxte.

When rescetion has been undertaken for an old-standing dislocation, the sawn :rface of the hmmerus should le smenred with ionoform paste and aetive movenents. legum as som as possible. The sume remark applies to the radins mul mha, but ns a rule one tries to aroid sawing off the artienlar ende of the lones of hoth the miner and forearm. Apart from faulty division of the joint surfaces, negleet of starting netive movements at an early stage must be regarded as a frequent enuse of snloseqnentin
stifness.

In tulnereular cases complieated by mixed infertion (ximmses) and also in those cases in which conservative treatment has heen persisted in for too long a perion, and where the proper time for operation has expired, it is best mot to attempt to obtain a movable joint, but to treat the womd hy the ofen methenl with ionloform plugging and procure solid lxny mion.

Doring the after-treatment the upher arm whould be laid Hat on a table, and while the patient holds it steady with his other hand, he at th.. same time carries ont movements with the furcarm which is in the upright position. guided by means of an elastic apmaratus. Passive morensent e movement. edecidy harnful.

Mention must lastly le made of the methon which, dedeededy recommends furi obtaining mobility in an maylosed joint, i.e. by the interpe son of a portion of the joint capsule and aponeurosis. The teehnipuc, however, must be deeided in each individual case.

The lnest resultex are obtained by interposing the brachio-radialis musele (smpinator longns). It should lee detached from the external supracomlylar ridge and stiteled to the inner side of the triceps tendon, a Hap of priostemm leing also placed over the joint surface. In tubereular casex it may lee necessary to ensure mobility by inter
josing a hayer of deep fascia.

(m) Operations on the Upper Arm

Very exten .- operations have often to be performed on the upper arm for nevosis, for tumours of the humerus, and for pseudo-arthrowis. In 1898 we completely excised the humerus for diffuse sareoma. The operation is done with least injury to the adjacent structures by making an ineision upon the outer aspect of the hunerntrom the anterior border of the deltoid downwards along the external bicipital sulcuscircumblex artery is ligatured the cephalie vein is drawn inwards, and the anterin. circumftex artery is ligatured below the head of the hunerus. The lower part of the
mully o： joint is shore

than in

 walle semul active aceul in 1s，amed nl and of the 1 onts－ ion liyof the
ugh a trictly filleet
34. Arthrotomy, Arthrectomy, and Resection of the ghoulder-Joine. (1) disme the fir ,.t -in dinease of the hend of the lones, or in old-standing naterior dislocrationes (178.e 180 whl 181).

The head ait the humerus overhap the glenmid casity to n considerable extent anteriorly. The diameter of the Intter in the horizontal direction is only half that on the eartilaginons pertion of the head; so that to expese the heal "fom the front is easy, while expmare of the glemed is diftiecult.
 cmap simplest methos is liy the anterior longitudinal incixion
 i: it r, Ollier, Clanged and his pripils. The impresennent ly
 por.h d downardes thromel it fre the (instead of the vertical ": n it rational promghe it from the acromionin), aplatars to ine i: 1 . the subserpurnt movennents of the arm.

The incision legegins upon the clavicle above the coracoid process, anal passes down wards alomg the anterior border of the deltoid. The edge of this musele, which he
 the erplatie vein, which is drawn inwards alony with the peetoral masele. the delt mit loing drawn outwards. The upper and anterior fibres of the latter minsele are divided chese to the clavicle, and a bianeh of the acromio-thoracie artery which lites monder
is ligatured.

The muarles nttacherl to the comendil prixees, viz. the peetombin minor, the whort bead of the bicepm, bunl the coracorbmehialis, now alyear, in front of which, at the lower purt of the wombl, the upiner enlge of the wimoth tombon of the pertoratia major is secol pasiug to its insertion intu the hamerns. The arm being slightly
 Inare at the enter lworlar of the alme muncles, where the

 the liceps tendea is lifted out shath, amb the joint is open-
 anterior and ponterior muscles. The te dons which are inserted into the upper end of the humerus and the capsule, vie the subseapmaris into the lesser themerosity; the simpaspinatus, infraspinatis, and the ter minor into the greater tuberosity, are now seprated close to the bone by meas on ertieal cuts made parallel to the hicipital groove. In doing this the humerus ir tated nrst outwards and then inwards. No transverse incision is to be made in t e psule. In cases in which the humerus must
be exposed farther downwards，the anterior and posterior circumblex arteries und the circumflex nerve which surromed the surgical neerk must be borne in mind，and the former if necessary ligatured．Catterina lias ohtained better access from the front by carrying the ineision oblignely across the claviele，diviling the latter in its outer third，and disiocating it baekwards along with the deltoin，after tinst of all dividing the attachment of the trapezius abneve and the coraco－davieular ligament helow，
（b）K．xection firm，behime（Figs．1N：to 186）is employed when the divense involves more expectially the glenoid cavity，or in diffise disense of the joint．

The shin incision，as shown in Fig． 18.2 ，is warried from the acromionelavientar joint over the top of the slomider and alonge the mper horder of the weromion to the

 onter part of the spine of the seapmba （ront of the acromion），and frons thener downwards in a enerved diree tion towamk the posterior folld of the axilla，ending two fingers＇－Incadth above it．The IIP品r limb of the incinion passes throngh the smerius ligamburnt right inte the atromic－ chavicular juint（the strong tibres of Which are diviled），inul in the rent of its conrse divides the insertion of the triperius along the mprer lowder of the spine of the seapnial．The de．－ renting limb of the incision dividen the dense fasciat at the persterion． larder of the deltoid，and expeses： the filmes of the latter．The thuml， is now introliced heneath the smooth muder surfaere of the deltoid so as to sepmate it from the deeper muscles： （with which it is rommeted mercly by lowese cellulat tissue）up，to its urigiu from the arronion，anel it． posterior filmes are divided．The． finger is then earried along the mper border of the infrimpinatiss musel． as as to fire it＂Inosite the cuter lorder of the spine nud the roete of the ：：crominio．

In a similar n！ammer the lower lumeder of the ammarpinatus is de－ tacthed with a hlunt dissertor from the upler border of the gpine of the． ratpulat，in corler that the finger may the passed from abowe madermati， the rent of the atmonion．The root of the armanm，which is now freed，is chiselle， through ohliphely towards the neek of the seapmiat and the ．．．romial purt ion，almge with the deltoid，is foreibly pashed forwards with the thumbs over the head of the hamerne．
 nerve whieh passes muler the museles from the sipmoppinums into the infraspinam－ fossa by avoiding too deep division of the seambar sime ；the nerve is alsal prote．． by the transverse ligament of the sempila．It is desirable before chiselling the I ．，

lustead of alividing the ront of the aeromion，the fornation of the pester：or flat may le simplified by merely detaching the sempular origin of the deltoid suleortie tiit： this allows of a sulbserpent very tirm umion．
－Ifter reflecting the neromio－deltoid Hal，the head of the Innte is reatily accersibl．
in its upler, outer, mud posterior aspects, covered hy the tenduns of the external rotators, viz. the supraspimatus, infraspinatus, and teres minor museles. The posterior surfaces of these muscles are also exposed. An incinion is now mate over the head of the bone, and in order to avoid umiecessary injury this must lee done necurately. The nssistant pushes the head of the humerus backwards mul mowards, rotating it at the same time outwards, till the bicipital gronve is folt. Posteriorly, where the museles and their tendons are inserted into the greater tuberowity and the spine of the greater

 is luserted to divide the spinee of the seapmla.
tuberosity, a lomgitudinal incision is earried down to the bone in the coronal plane. It extents upwards throngh the eapsule along the anterior edge of the insertions of the external rotator muselex nud over the highest part of the lread of the humerns, so
 Henoid cavity. The insertions of the external rotators are now sepurated from the grenter tulnerosity and druwn baekwards. The birephstendom is freed from its growe and drawn forwards, so that its sheath may he inspectenl. The whole proeedure is made ensier by earrying the ellow forwards mol at the same time rotating the arm outwards, and pushing it bnekwards.

In this way the entire head of the humerus and the glenoid fossa ean be freely expesed, and if it is not necessary to perform a complete excision, the anterior wall of the capsule and the inscrtions of the anterior nuseles can be preserved. In other cases the insertion of the subscapularis into the lesser tuberosity is detached upwards and inwards.

The eircumflex vessels and nerve which emerge from under the teres mincr can be preserved: indeed, if the operation be properly performed there need be no fear of injuring them.

When the head has been thoroughly eleared, and especially if it be exeised, an

 heen thrown forwards. The capsule has been incised immediately belimat the long temton of the liceps, at the uyper borider of the sulpraspinatus.
excellent view of the glenoid is ohtained, much hetter than is possible by the auterior incision; and as it is most important to remove all the infected tissucs in talerculondiscase, this complete exprosure of all parts of the joint is the great advautage of the method. Moreover, this free exposinte is ohtaned without interfering with the function of the deltoid or other museles of the shoulder: Jet another advantage over the anterior method is, that when the disease in the head is limited or absent, only the posterior maseles requite to the seprated, while the materior part of the capsule, the coraco-humeral band, and the subseapularis musele are preserved intact. and in this way there is no tendency or the head of the bone to Ine displaced upwards towards the eoracoid, which so frequently occurs as the result of the anterior operation. The method is therefore enpeeially valuable in partial arthrectomies.

Neudorfer has recommended un incision below the acromion, while MacCormac recommends a posterior longitudinal incision, but they have not fonnd favour, as they do not give sufficient space.

Fig. 185, -Excision of shonhler from belime. The deltand is separated from the acromion and the spine of the scapula; the bone is not yet divhded. The capsile has heen incised at the upper forder ithe supraspinains, and has been siripeet hackwirde off the hemb of the himerus along i ec greater tulerosity.

The excellent resulty to be obtained by our method are shown in Fig. 186. It
represents a resection of the shoulder-joint performed by Dr. Lardy for fracture through the tuberosities of the humerus with rotation of the head of the humerus. The photograph was taken five months after operation.

In ankylosis of the shonlder Coville ohtains a movable joint by the interposition

Fis. 186.-- Excision of the shouhter Ior tulnercular disease, with fracture and rotation of the heal of the homerus. of a flap of the deltoid. If the anterior operation is used, a strip of the deltoid is taken from the front of the clavicle; but with our posterior methol it is even better. to detach a Hap from the fibses attached to the spine of the scipnla, and stiteh it to the intact anterin, wall of the capsule.

Total Arthrectomy of the

 Shoulder-Joint. Lardenheuer the 1 rforms a total extracapsular excinion of the shoulder in a similar mamer to that alrcaly deseribed for the hip. The advantages of this onetiation have been dealt with in connection with the knee, of which the procedure was given in full detail. He detaches the insertions of the museles along with a scate of home behind, in front, and below, nuld then removes the head of the humerus below the attachment of the capsule withont opening into the joint. The selpula is then divided above the capsule with a saw or chisel and the coracoill process is dctached, hy which mean. he is able to remove completcly the whole joint together with the calpule and artienlar chals of the bones.From the proint of view of a radical removal of the tubereulmmtiswue sueh an opreration is certainis. the mont thorough, but, as has heecil alrealy pointel out in the case of the hin, healthy beme is mecriticel (since the limits of the cisease celltnot be determined beforehami). while the newly formed foint sur: fures camot le elosely fitted to cach other. In addition, the subseapmar bursa musi he opencd, and may prove a source of infection. Thi use of the method shoull he restrieted to advanced cases of diffine. disease.
The cxcellent functional results that Bardenheuer obtains, in spite of the an necessary sacritice of hone, depend on the fact that a complete removal of all thedisease is effected. In our minion, however, equally gool results can lee obtained li, less drastic measures, combined with suitable after-treatment.

After-trentment. We agree entirely with Bardenheuer that active movement: should be commenced at an curly stage, if satisfactory functional results ane to in
obtained. We also agree that in the shonder, as with the hip, the after-treatment should start with extension. Dardenhener propery alplies extension with the amn strongly alndetenl (it may (cwell ine chevated), beramse the patient reeowers the power of aldinetion well enough, thanks to the weight of the arm; while the abducted pesition further allows satisfartory areess to a posterior womm, Elevation forwarls, which is maturally combined with it when the patient is revembent, is only of advantage for later are. For the initial exercises, the arm is kept mived up by means of a weipht and prilles, so that the patient has mot tor rontemb against the weight of the arm.
 openings. The womed, whi.h has beroll well sumeared with imblofon, should then he. dressed with a plentiful supply of indoforn ganza. over which several layers of antiseptic ginke: are aplien, on that the deep dressinge need not lee changed for the space of from eight to tell diass. fin suitahle cases we do mot emphy drainage, and oltain primary miom if the cavity is filled with indoform paste (Mosetig).

When the musedex are mull atrophied. plaster landages shomble le applied and a stiff joint ohtained, while if simses arr present, the wound must he treateri by the open methonl and prackend.
35. Resection of the Clavicle, and of the Sterno-Clavicular, and Acromio. Clavicular Articulations. As the chaviche is sulsentanemens throughout its whole length, its extixim is a simple matter. prowidel it can le done subperiostealiy. After
 nerves, and fiscia, the periostemu is divided and retherted. The rlavicle shonld he
 clavicular attaroments of the sternomastoind and trapezins moseles are detacheed from the upger surface, and the clavicular purtinus of the pertoratis major and doltoid from
 costo-cla vionlar liganent are to ine sequatent.
 warls and slightly mpards, athog the rlavide. The skin and faselia are disseeted
 heing divided. alome with small hamedes of the "atermal jughlar vein ledind the
 divided well wide of the tumme, the clavionlar insertion of the traperins being also

 part of the hene in front of the limits of the thmmer, ame retlected from the lower surfate. The knife in scisoms are omly necesary for division of the temdimus insertion of the sulblavins inte the jnetion of the middle and onter thing of the claviele and for the conare-chavieular and ensto chavienlar ligaments. Befine dividing these tough structures the acromin-clavienlar joint is opened, ani th nuter cond of the chaviele forcibly fulled up wavd with a henok. The sulnetavian so which lies behinel the sulplavius musele, is than wasily avoilem.

 because the menisens tarilitates the sepatation of the artionlar cmbs. When, hows ever, the excixion cammot mate suluapmbernerioneally, the tmasterse vein at the supmasternal inteln mont be kept in mind in dividing the interembiventar ligannent,

 out for. In extensive division of the sublavius mesele and the ensto-tavienlar

 indicaterl in dislocations.

36. Resection and Total Excision of the Scapula (Fix. $\mathbf{N O}_{\text {(}}$).

of the seapula was firmt performed by Langenbeck (Hies) in 18i5. Ceci, and mon recently Piequé and Dartigues have shown what excellent funetional results can be obtained after its complote removal. A useful arm is oltained even although part of the clavicle or the head of the hmmeris is removed. The difference, however, hetween a subperiosteal and prosteal removal is very considerable, wo far as the sulsequent functional result is conerned. The sulpreriosteal operation is employed mainly in cases of acute ostemnyelitis with neeroxis, where the periostemm has alrealy lreen efparated to a considerable extent ; the operation is then comparatively casy. Inneeessary injury to neighbouring parts may be avoided by beginuing the disseetion over the spine of the seapula and keeping close to the hone; while it is of the utmost
 importanee that the supraseapular nerve, which is in cluse contact with the lack of the neek of the lane, should not be injured. In such enses, as has leell proved by Bockenheimer's recent experiences, alnost complete regenemtion of the scapula results, while the normal mobility of the slonkler is also restored. (On the other hame, when we have to deal with it tmmonr, all hope of movement at the shoulder minst be abandoned, and one must be content to pres verve the valuable movement: of the ellow; hand, and fingers. Total rxcision is really only indieated in the varions forms of sarcoma; allid then, to avoid recurrence, ont has to. remown the muscles as well, i.r. the museles which are inserted into the xeapmla or which palss from it to the arm.
 tiur Tumomers. A conved incexion is made along the acromion and ypine of the seipmiat as farr as it.: vertebral lorder. A second incision is carried along the vertebral lorder of the lone from its superior to its inferior angle. As far as the function of the arm is: con-
 retained, beratse the trapezins ind deltoid musiles are attached, the former to it. inner and the latter to its outer lmoder. If the whole aremion is to lee removed, the incision extends at one into the memoniorlavienlar joint. If a portion of the nomonion is to be preserved, the lone is divided with the chisel at the place selected.

The lower triangular Hap is thrown back ower the posterion tibere of the deltoid anterioly, and the ascembing prortion of the trapezius prosteriorly, as far as the mper elge of the latissimus dorsi. The finger is introndiced umber the exposed posterior Inorder of the deltoid, and the mosile is divided (if the disease admits) chove to tho
 arromion has heen chisellet throngh.

In this way the prasterior surface of the shonlder-joint, together with the tendems of the extemal rotators, is expeseel in the same way as in our methorl of excisime the shoulder-joint by the proterior incixion. It the artionlar prortion of the seapula cin he retained, misele after monele is cont acrose mpon an elevator, on mon the finger
introduced leneath them. If, however, the artieular protion of the seapula most be e removed, the tendons are detached from the head of the humerns just us in excision of the shoulder-joint, viz. the supraspinatus, infraspinmtus, und teres minor from the grenter tuberosity, the subscapularis from the lesser tulerosity, and farther down the licipital ridge.

The eircminfex nerwe and the ponterior ciremuflex artery are to h avoided, or the latter may have to be ligatured at the lower lworler of the terem minor, whilst further hackwards the dorsalis scapmie artery minst le ligatured.

Next follows the division of the trapezins. The finger is intralueed under its fibres from the place where the acromion is divided, ned the muscle is detached nleng the aromion and spine. The acromial hranches of the aeromiothoracie artery will reynire to le ligatured in separating the anterior part of the minsele.

By drawing downwards the seapula, which has now lecome more movable, the museles attached to its upper border are sepurated from lefore hackwards, viz, eoracelimechialis, short head of biceps and pectoratis minor from the comeoid process (or the prosess may the chiselled off) the omo-hyoid (with ligature of the sinpraseapular artery) mud the levator anguli seapular at the piper angle, branches of the posterior seambar artery being ligatured.

There still remains the broal insertion of the serratus magmes at the vertebral borver, in dividing which the smapma is to the rotated towards the spine. Lastly, the insertions of the thin rhomboid museles are cut arross, the posterior scapmlar
 Instiens smperior mimele, being ligatured if neressury.

Buchanan (1900) has collented seventy-two cases of Langeniberk's total exrision of the sapula, with $1: 3$ per cent deatho. In ninety-two raves partial excision was performed with $1^{\mathrm{N}} \mathrm{p}^{\mathrm{n}} \mathrm{r}$ reut deaths.

Quénn and henom have shown that the smberpnent functional results atre better if the acromial end cin be retained and the momains of the calowhe, as well as the stmmp of the minseles, are sutneel to it.

In a partial exeision, especially of the scapmlar spine, shorter inrisions alomg the sime lines shomblime made. An anterior inrision is only repuired for the removal of the coracoid provess. (forkl finmetional results are obtained provided the articular and arromial portions of the seapula can me retained.

As regards the after-treatment of a total excision, the cosential feature is to provide a fixed goint for the head of the humerns. In the first plane the heal must lae fixeed lys stiteling the capsule and any available stmops of temdens tor the elatiele, silk sintures being osed, after which the stability and fimetional efficieney of the joint may pusibly lax increased ly suture of the musile.

The י1pher horder of the deltoid, apart from the portion that may have heow left attachel to the acromion, is then stitened ahner with the traperins, omo-hyoid and levatonanguli seapmbe, while the musples arising from the comeroid provess are sutural to the elaviele.

The almove preemutions are still more neressury if the head of the humerns, with or withont a portion of the diaphysis, has Inein reninved along with the scapmlat. Evron then, howerm, the nsefil mencments of the ellow, wrist, and tingers are preserverl.

B. AMPUTATIONS AND DISARTICULATIONS

(a) Introduction

Hince ome last edition, thre advanes marle in the methonds of performing amputations and disartionlations lie in the direetion of $]^{\text {suging even more attention than furmerly }}$
to obtain a Leseful stump, Bier having given a neful impetus to the efforts in this direction. Since asejsis has heen ensured and perfect henling obtained in aumputations on provision of the best care has been hestowed on the shape of the stump as well as attained. To illustrate this we function. Further, greater simplicity has heen evolution of the different methorls of aumpuntine thirl edition the chapter on the out : and we whall dearrike the normal promedure whind the nmmer of carrying thent

(b) Evolution of the Methods of Amputatior.

The oldest notherl of performing ampatation of the limhs, which :ow it wene.. itself was enfurcefi ipon the older surgeons, is extremels simple. A eircular incisinn is carried down to the bone above the part of the limb to lee amputated, whl the sint parts are stripped off the bone, so that when the later is sawn across they gan let

made to cover the stump without any tension. If the lwone camot thus lee shelled out through a transverse incision alone, a single, or two longitudinal incivions should leadded, also carried down to the bone (racket and rectangular thip). This simple process has in course of time undergone so many variations that the most moolern surgery has, as it were, had to rediscover it. Neudirfer, Bruns, and others have shown that the best eovering for the end of the loone is oltained by placing over it the periosteum and the soft parts entire, with as little injury us jowsible, the soft purts leing divided down to the bone, and the periostenn ent throngh farther ulp, an as to get a covering for the sawn surface.

In order to show the connection between the different methods of aumutation we give in Figs. 188 to 190 a general view of the evolution of the more complicated incixions from the simple circular methoris.

The circular nethod (better called the transverse methox) is the oldest, and consists in carrying a transverse incision right romd the li...b in a plane at right angles to its long axis. If the plane is oldique to the axis of the joint, an oval incision results

Fic. 191.

IV. Two longitudinal iucisions adled to the cireular incision : rectaughar flap.

V. Angles of the rectangular Hap ronmed off: rommed flap.
(Fig. 189) (better described as the ohdique method, the oval often being of an irregular form). From the transverse cireular and oblique circular ineisions, all other methots are derived by the addition of longitudinal ineisions with rounding off of the angles formed. If a longitndinal incision be added to a circular one, a merket incixion results, and hy rounding off the conners, the so-called owal inrision, hetter termed the lanceolute infision (as an oval with a pointed extremity is not really oval). If two longitndinal incisions are added, rectemgntar then,s are produced, and by rounding off the corners the typienl horse-xhore thap is the rexult.

The trinaverse circulur incision, or shortly the trunsurse incision. (Figs. 188 and 193), is the fundamental type of one method of amputation. It originated as a single incision from Celsus, as a double incision, with higher division of the nuseles, from Cheselden and Petit (Schede). The process of sawing the lone higher up was introduced by Lonis and Boyer. According to Freres's description, Celsus divided the soft parts on one side and seprarated them from the bone, in fact practising what, with
some molifiention, has been lately recoumended by Bruns and "eudörfer. The present circular method was introluced ly lell and Hay (Treves).

While this operation is sinple in execution, it has a number of disalvantages which prevent it heing universally employed. (1) Since in an amputation one endenvours to preserve as much as possible, the oblique incision is preferable whenever there is more healthy skin on one side than on the other, or when the skin on one side in more adhyted for a covering. (2) The sepuration of the skin to a sufficient extent is difficult where the limb to le amputated is conical. (3) In the transverse circular incision t cicatrix cones to lie upon the end of the stump, which is not the case with the uolique incision. Figs. 193 and 194 sufficiently illustrate the different positions of the lines of suture.

It is evident, therefore, that on the above grounds the ohlipue circular iurixion (Figs. I88 and 194) has a fur wider range of employment, because it is applieable to most cases, is easily prerformed, and gives a movable skin-covering free from a cicatrix over the end of the stunyp. The oblique circular incision is, therefore, the methan to he selected in the majority of amputations and disarticulations when no special indications are to le fulfilled.

The eireular incision (transverse or oblique) in one plane does not always give sufficient spree for dividing the deeper parts, especially the bones; and it is on acconnt of the nechanical difficulties that more complicated incisions are employed, viz. thro aldition of lomgitudimal inrisions to the circular one.

Fig. 193. - Position of the line of suture by the lransserse circular incision.

116. 19.4.-Pbovilion of the line of suthre liy the oblinge incision.

The molke (Fig. 1s!) and its variety, the lumeolure incisiona (Fig. 190) give letter. aecess to bones and joints, ald are therefore to be preferred in ditheult disarticulations, if the indieation is to retain as many museles as possible in the stmmp, as in disartim, lation (and high amphtation) at the hip, shonder, and carpe-metacarpal joint of theand the larger nerves ent fage of this incision is that the larger vessels can lie ligatured requires more practice thant the racket. the limb is severed. Tho lanceolate ineisism

Veudorfer (Wimach), and subserpe methonl for all ampmations, that in whie Chant, have reconmented, as the typual to the lounc, which is then chisellel a longitudinal incision is tirst made down removed with subperiesteal (sulcortical) throngh at the upher end of the incision and then divided transwersely at a lower level. This of the soft parts, the later lofing

The tap methots (Figs. 191, 19.2) ine This is practically a racket incision. and masele (havaton), and the tramstivim form of skin Haps (Lowdhan), of skin the skin or sulbiacent musele demand special (hermate) are more satisfactory when limb, and when the obligne incision is too attention ulpol one or other aspect of the respards the skin of the sole and thed the diffienlt. This is the case, for example, ass alvantage of the Hap methol, whiel, the muscles of the shoulder and hip. The distype, the oblique circular ineision is the defen in a less degree to its fundamental type, the ohligue circular ineision, is the defective nutrition of the skin.

(c) Performance of the different Methods

The transerse cirrmlar method (Figs. 195, 196). The skin and superficial fascia are divided circularly at right angles to the axis of the limb, first upon the under and
 of retracting the skin, ami position of the kuife

Fiu. 196,-Transverse circular inelsion: sayittal section, to bow the hollow cone whith is leit after salwing thronght the labue.

Fhi, 197.-Oilique incinion: the lower ent mamle by cutting across a fold of akin raised in, between the finger and thmil.

Fli, 19s. -Oblique incision : the upher eud made by cutting across a toht of shin raised up between the fiuger and thanb.

Fig. 199.-Obligue incivion: position of the knife in order grithally to carry the incision deeper throush the soft parts of the flap.
always he able to be approximated over the lone without the lonet tensiou. The Ireriustum sinculd be divided as high up as possible, the soft parts being n 'tracted with long gauze compresses to protect them while the bonc is being sawn. The bone is sawn through 1 em . below the level at which the periostcum is divided.

By making a serics of circular incisions (the superficial parts being retracted to allow the deeper parts to be divided at a higher level), a funnel-shaped cut surface is obtained, at the bottom of which is the sawn surface of the lrone. A broad apposition
of ull the soft parts is ensired（Fig．196）．The mustex are atitched over the lains stump，with huried suturem as far me the skin．

The whligue or omal incision（Figs．197，190，199）．The＂elliptical＂methon is attrihuted by Treves to Sharp，and Sompurt，while the ohligne incivion which w．
 imbiented hy making short incivions into a folld of skin raised up lnetween the finger and thumb，the distal incision leing made at right anghes th the surfeer，mal

Fin：200．－The Lym－Thomas Forceps． the proximal one paratlel to the surfae（F゙is． $1: 10$ ． 19א）．The upher eul lies it thee lend where tha． tone is to lne sawn thromgh；the lower com lies an a distume lelow it erglal to the diameter of the limb．After dividing the skin und fuse in，tho． operator seizes the lower ellipme of skin with the． left hand（Fig．1：t9），diaws it mpards，athe diville： the minseles down to the lwome，the erlye af the kinit：
 skin aud musele is formed which inereases in thirk ness thwards the line of division of the．Innue． leviostemm nud home are theated as in the trina－ verse circular ineision．The musenhoentanems hay is now foldel over the wemmel．
 tannot le retained，then，after the skin incisinn has－ Feen made，the fower end of the skin flap in reizell and dissected up from the suljacent tissules th the level of the upper end of the ineision，the colye of the kinife lning kept vertieal to the muselos stind never directed townals the tlap．Ifter the－kin has leew dissected un，the muscles and $\mathrm{I}_{\text {wne }}$ an＂ dent with in exactly the salme way an in the tran． verse eirevhar methenl．

The werke！inrision nemel ita moxlitimutinn．ther Inncestute invisien（Figs，18：190），Malgaiggle i． the originater of the racket methorl，Sernitetten in the hanceolate iucision．It comsists in the andition of a longitudinal incivion directed upward tom a transcerse（or ohligue）rirenlar incisin，the longitudinal incinion extembing mpwarde th the level at whieh the bone is to le divided．When ponsible the lomgitndinal ineision is plared wer mintermmeular septum which separates two areas of nerve－sumply，extends down to the lwone，avoid． periostem，which is then separated ing the vessels and merves，and dividos the．
 incision．In disirticulations the joint is opened liy the fongituliual inguent cirentar capsule separaterl from the lone．

Sendorfer first divides the bone with a chisel throngh the longitudinal incision and shells it out sulpmeriosteally down to the level at which the cirenlar incisin，is male．At thix stage Lym－Thomas＇s compression forceps（tournipuet）can be mplied with mbantage to eontrol the heeding（Fig．$\because(00)$ ．The skin is then ent throngh tramsersely or oblipuely and retracted，after which the museles are divided and the bone is sawn across，if this has not nlrealy been done，as Nendörfer advise．．The museles are then carefully stitched in layers so that the coverings of the stump may be freely movable．

Just an the oblique incision is the most iuportant and most nniversal metlod of amputation in simple cases，so is the racket incision the type of amputation for all
 umi consequatly the maximum of mawiment, experially in the neighbourhoorl of musenlar joints sulth av shomlder, hip, thmits, und ellow. The racket methonl pron ales atively movable atiming wholl the Inine has reformiol, or even if the lame

 The more comsenient anl elegant monlitiontion of the latter jurnows. if there is nue gllestion of retaining the meriontemu.

 the exerntion of the on ration. They are therefore everywhere "plicenthe when the -imple circular ineision is difliwht to pertion on arcomet of the density und tension
 umpmatiens at the anklu joint.

 thate methent in the strive mone of the torm: in mashing the thape lue diveres mp all the

 two curverl incisioms. The skin and farlia are divided, and just as in the simpli. "bligue inaisien, the lowrer colge of the High is misel up and the mansles ure divided midiguely down to the lene. Two oblipue ma surfares are thex oltatine d, which in the ease of Hipes of equal length are apphed to one another. With Hiphe of unerphal longth the harger ane (generally the anterior) eovers the main bart of the whinal

 then consisting cully of whin and fartia.

Nention minst ine mate of that variety of the thap methen in whict. .

 the introndertinn of amentheties and of Bmardis prophylatio arest of hamorhage:
 ligatured with fine silk, while the nerve-trumbs ane sthught for, drawn formards, and
 athy irritatom fromp pessure or adhesions. Severe pain may result from inwohement of the merneend in the semr. The bumbers are then sutnred in hayers and the okin i. closed with a contimons suture. When the wound surfacts camnt lue hronght into complete "plosition and sutured in their whole extent, as elass Irain (with
 possible into the cavity widen is left.

(d) Methods of obtaining functionally useful Stumps

In the upper limb a stunp, is functionally good when it can control its artificial limh without giving rise to prin, while in the cuse of the lower limb, it must in
 direet pressure of the artiticinl limal when the body weight is impesed on it. There is
 thus some difference between the essell. tials of a gewal stump, in the upper amil if the lower extremitiex, as a stmm, which might prove emmently suitable. for the urm is uncer similar conditions. quite nindens in the neg.

Much nttention has recontly been paid to the intportance of this weight. hembing capmeity ann! its intronlnction has led to great practieat improvement. Bier, who was the pioncer in this movement, was the first th show how
 capalhe of therring weight, allosugh his opreation is mow regaried as town complientel in certain rases. Thait there was bunch romu for imprownent is shown by Crainer: Whan rollowtend 96 rases of amputation through the. thigh and leg, 70 of the atmunn le:ing
 weight.

While the majonity of surgeomes pe. fer to use a periosteoplastion methend of ampuation themgh the shaft of a home. a metheel intrenluced by Wather in 1x13 and improved hy (Illiee (Schede), Bier was the lirst to intrenfuce on prin ciple the onterplastice proeess, migimall! Nuggented by lifugoll, und lirst :yphinil ly (tritti

The theory on whinh Biar fommend his methoul, manely, that the ratw sime Citere of a luble is athel remains teneler. and that therefore the mednllary cowity mimat le covered liy at thip of lume which is in nomal comuction with its pretio. temm, has leoll proved to be masomul Thens, in his migimal methext, he limed to construet what wats pratically :an artiticial fonot ont of the periostem.n thrned romid in the form of a thap, but later ulong with x. Bibselsherg he devisel the simpler form of esterphistie thap t" rephace the diperienteall onmation ho. had ahatudu.ed. Mirseh next came for wanl with his olserviations that nselesw stimips of varions typers contld le mand. calaible of Inairing weight ly treatment with gymasties, 3 maswage, mul grachally incroasing pressure. Honsell (if Brnus's clinic) has contirmed this fant
for stmaps formed liy the sub-ineriosteal methenl.
I The tirat communieation, II. Zeiturh. f. Chir. Bu. 34

In oplosition to Bier's view, Hirseh and lange ' have correctly shown that the protection of the maw end of the bone from pressure is of far less importance than the removal of all sensitive struetures at the olreration, especially the periosteunn mal, according to Bunge, mion the marrow. This view culminated in the introduction of the neriosteal method of ampmation.

In the hitter methon it has Inen eonclusively proved by Bunge, v. Eiselsherg (Ranzi), Moskowiez, Amberger, Manninger, and Steiger* (of our clinic), that the

 resnlt ill regard to bearing jrennme.
eicatricial sulwn mal of the be is not in its.lf temer, even thongh the medulhary cavity has Inern left opell.
 in the marow, Hange) which leads ultimately to the prowhetion uf enostoses, ned ean most easily be prevented by a complete remosal of the prevostemm covering the and of the stimp, althongh the experience of Ilirwh and unselves folso nows that exostoses chn be preventerl by arenstoming the limhembly traning weight on its surfitere.

[^70]We here reproduce some charaeteristic radiographs which have been published by Steiger in our elinie. Fig. 201 represents the alpearance ufter morteoplistic moputation of the leg (Bier and Eiselsberg methe I), in a man aged fort y-six. As some necrosis cecurred and a sinns formed, a second amputation was performed. The stump after the first, i.e. osteoplastie, operation was well rounded, the lones mited, and there was no tenderness on pressure. At the second operation un uperiosteal

Fin. 203.-Secondary aprivisteal anumtalion of leg. Excellent weight-10aring stump (Finkhianser). amputation (Bumpe) wh. performed. The re-ult is "xcellent und the stump lears the weight of the hody without any bain. As Fig. $20: 2$ shows, the stimul is smooth, romad, and devoid of any exostoner.

Fig. 203 and 204 give a further comparison betweell the aprerionteal mad sulpuriostenl methork.

In the emace of the child (Fimkhanser) cleven years old, the ley waw minntated elsewhere liy the sulperiosteal method withont, unfortunately; in tandingrab of the stimp having lreen tahen. A secomd amputi:tion was found necessary owing to pain. The result of this trpical aneriosteal stump (Fig. 203) was perfect.

The ajpearamees of the sultureiosteal stump from a man fifty-one years old are quite typical (Fig. 응) In spite of the fact that the stump is well rounded, an exostosis formed whieh was tender on pressure and prevented a lucket limh. being worn.

That perfert atmin! wan lee oltained ly the smbperiontal methend is shown ly the radingraph in Fiz. 206 , which represents the case of a man who hard all nisteophastic ampmtation
 stumpsare well romuled off, we not tender, and hear weight admirahly.

Steiger has investigated and compured $\$ 1$ cases of ampuration through the heng and 15 cesses of ampatation throngh the thigh from our clinic, in whid barime
 by all three methols, viz, almiontenh, sulynuriosteal, and usterplastie, provided (1) that the operation is correctly performed, (2) that primary union occurs, mul (3) that the stump is at an carly stage acenstomed to lear weight and can thus adapt itself rapidly to its new function.

The following guestions must be considered:
(1) Whieh methorl can be most relied umon to give a stmmp which tan bear weight in the event of complications leing present, experially in the healing of the wound? The miswer is not ditfieult. With the ostroplastic methon there is nost chanee of neerosis, the milperiosteal method leads to exostoses ans the result of inflammation, while only the aperiosteal methon can furnish a useful stump in the presence of such complications. Banzi mud Autfenherg,' from v. Eisel-herg's elinir,

 whained hy Bunge: : aperinstenl methoul.

 projerts free fromp periost inm.

[^71]tions throngh the shaft of a long leme．When primary union is obtaned，and consenfuntly the stmpl is at an early stage aceustomed to lnaring pressure，excellent resnlts are intainel．limge maintains that the functional results are alvo gooll even

When no care is taken mgarling the position of the sear and no special after－treatment is adopterl．

If this were sh，the measures for the suhsepuent utility of the stump that Hirsch alopts，viz．massagn，etce，would lee superfhons except in regard to its pressure
bearing finction. It is letter, lowerer, mot to connt on this, for there is mo donltit that, as regards the question of learing pressime on the stmmp, great rar. must l_{n}. taken to ensure that the cicatrix will wot le expmend on the end of the limb, i.p. ath obligue or flap ineision most le nserl. We call only depart from this rule in the case of a high ampuataion or disartivalation of the thigh, beranse then the artiticial limb, takes its purchave from the pelvis. In every amputation tho merves monst lne rint slom? in order to prevent the pasibility of their becoming allierent in the ciantrix.
 tions: first, to avoid a painfinl stomp, and second, to prevent atrophy. Arepon is, of course, an essential, mind fine non-sensitive scars lnoth in the soft jants anll in the bone, the periostemm of whidn is very sensitive to intlanmation, arw only whaned ly
 the sear. The ealges of the whand must be clean ent innl stiteliol withont tomsion or
 mimputation as in all operations colsewhere.

If asepisis is secured, the scar mont le proterted from every form of medianieal injury, especially from pressure and tension, if the stomp is to lie painless. Nerve cicatrices-so-called ampintation nenromata-give rise to the greatest pain. We have already stated how they can le avoided. fiurther, the ciontrix in the skin must he s) placed that it is not exposen to pressure betweren the enil of the lwome and the
 especially must not le contimums with that in the musile imil home. F'o aroid theme
 superfieial and deepe eidatrices shoulal unt le iniale parallef.

Similarly the ciontrix in the minsle onght met to be placed Inetween the lenne ant the surface of the artificial limbs, and the same male applies even mere foreily to the.

 sur exponed to pressire. Hence it is leetter to remone the periostemin entirely frim the cond of the stmmp. It is rertainly mot a matter of indifierence whether the edges
 pressule.
 stump, is readily adapted to Inaring prosure, for luere, as in alisatioulations, the emal of the bone is very emsily rommen off:

Muscular atrophy, on which the prowhetion uf a ronieal atump depends, is prevented ly providing a new insertion for the musdes. When the mondes cammot
 i.e. those that have an antagonistio netion. One alvintage of disintionlation is that the normal insertions intu the epplipsis are retainet.

 teme dehillis lxeing employed in the rase of the legimil the phatrierje in that of

 are inclined to the levief that the intergnation of the tombon provents the formbation

 amil Lanburie finds its justilieation.

(e) Amputations of the Foot

37. Removal of the Toes and Individual Metatareal Bones (Fig. 207). As it rule it is advisalle not to perform partial amputation of a toe, bint to disarticulate it at the inetatarwo-phalangeal joint, as otherwise the stump is only all inconvenience.

Amputations and disarticulations of the toes are analogous to those of the fingers. For the phalanges and interphalaugeal joints the oblique cireular incision is indicaterl, whilst for the metatarsi and metatarso-phalangeal joints the racket incision (the hanile on the dersmin) is made.

In the rase of the great and little the the dorsal portion of the incision is not plated over the middle of the phalanx and metatarsus, but more towards the middle line of the font, sin that the cicatrix mul he ont of reach of lateral pressure. The

 H110 20 cat tixe at Hue Incta. tarso. plalangeal inim, athl of thes 2ull tow Hong with its metacarpal Imme: min. putation through the: :ivl tm.
 taval lunio.

 Ihe tows in! the turtations. flalinkual juints.

 tarvo lle-latarmal joints, ly me:anof " jlatar thay witl shont conisex dogsal incinion.
 inturnal anni extimal phatar than.

38. Disarticulation of all the Toes (Metatarso-Phalangeal Disarticulation)

 inerixin is carrial mand it where it energes from the general cutameons enselone of

ball of the toes. A dorso-lateral incision is added over the metatarso-phalangeal joints of the great mul little toes. In this way two rectangular Haps are formed.

The foot leing held nt right angles, the extensor tembons are divided as high up as 1 osssible, the lateral ligaments and the dorsal and phantar portions of the capsule are divided with a smalt knife, and, lastly, the plantur tendons. The dorsal and plantar tendons are thens stitchell together or to either side of the joint eapsule.
39. Amputation through the Metatarsus (Fig. 209). This operation has the advantage over the tarso-metntarsal disarticulation that the insertions of the ehief muscles of the foot are all retained, not merely the tibialis ${ }^{x}$ wistiens and proneus longus, lint also the tibialis anticus and the peroneus brevis and tertius. Hence the foot retains its normal movements, in all directions. It also provides a very servieeable

Fig. 210. - Lisfrane's amputation. Formation of lorsal and plantar tlaps (lorsal view).

Fil: 211,-linfrances :unputation (plantar view).
support, as the ingortant projection at the hase of the tifth metatarsil is left, and the only nue which is wanting is that of the head of the tirst metatarsal.

A flap is takell from the sole. The incision, which should langin and terminate slightly on the dursum, is carried across the sole, in the furrow het ween the digits and the lall of the thes, as in disartienlation of the toes, while the u!per extremities of the incision extend 1 cm. alnowe the level at which the lone is to be divided. 'The thap is then dissected up ofl' the lames, and a short dorsal thap, extowding 1 em. below the line of division, is eut, after which the metatarsal bones are one by one freed and cut acros.
40. Disarticulation at the Tarso-Metatarsal Joints between the metatarans anterionly and the three ennciforms and enlnid posteriorly (Lisfrane's operation) (Figs, 210 mid :11).

The line of the joiut lies immediately lohind the tuherosity of the fifth metatarsal on the outer side of the foot. The guide on the inner side is the slight prominenee of 는
the base of the first metatarsul. With n finger of the left land on each of theme fixed pointa, an incision is curried ulong each side of the foot, and then acroas the sole at the level of the ball of the toes, thus forming a romnded flap on the sole. This flap, which is thicker posteriorly, is hen dissected lack as far as 1 cm . in front of the line of the joint. A convex incision is then made on the dorsmin, 1 cm . in front of the line of the joint, and, after retraction of the skin, the periostenm is divided close to the important tendon insertions, and pmashed lurek with a raspatory ins far as the joint.

The line of the joint is convex forwards and ontwards, having an upward indentation eornewponding to the retreating middle conneiform bone, which lies, as compared with the internal cmeiform, as mueli as 2 to 3 mm. lehehind the convex joint line, and 1 cmin . behind it an compared with the external. The joint is oprened opposite the first, third, fourth, and fifth, and lastly opmsite the recoul, metatarsal. The

Fis. 212.-. Interior intertanal anulutatom (Jager . Iloriznutal sertion of foot (after licitzomanio).

Flo. 213. - loosteriur inhertarsai dinartichations (Clopart). (Jorsal virwi)
strongest ligament is that hetween the internat cmeiform and the hase of the secome metatarsal (Fig. 잉(1), and it is cmly after this hats heen divided that the joint can l_{x}. Opened ont. Division of the hame of the secomed metatarsal in a line with the other joints is rather an allanutage than otherwise.

Is in all opreations nom the foret, the vessels are retained in the phantar thap.
In cases where there is :an insothesent shin covering, remmal of the projere iner internal cmatorm (Hey and Fimalnenf) does not interfere with the fure tomall artivit! of the fort any mure than dhes the typinal Lisframes mpration. as :lac insertion of the tibialis anticus is still retained, or the temdoms may In again stitched in arcurate position.
41. Anterior Intertarsal Disarticulation (Jiger, Bemai) (Fig. $\because=12$), In (wnell thi.
 across. The operation is performed in a maner similar to Lisframes, lat the phatur

in retaining the strong liganents whith answ fron the os calcis th the culsoid nud scaphoid bones.

The Bona-Jäger operation is a type of one of the "irrugular" amputations of tho foot, beause here ammation is combined with disartionlation. But event these irregular typus are justitialile, as every cam: must the considered ont its own merits, many of the terldinous insertions and supporting lwny parts lneing premervenl. We have alrealy referred to the removal of the atiterior half of the interual rmmeiform leme. Sinis. larly, disarticulation of the first metatarsal can be preformed instearl of Lisfrances amplutation, the other metatarsals leeing sawn arcoss, aud the valmable siljort of the tulerosity af the tiftlo uratatarsal retained. Further, it is sometimes an arl vantage to remowe only the first threo metatarsuls with the three cmeiform bones, an!! to letain the forrth und tiftl with the culsoid; or, on the conntrary, to remove the latter lomes und leave the first metatarsal and the enneiforms. These cases ure exceptions to the rule of ampintating the fort transvenely.
42. Posterior Intertarsal Disarticulation (Chopart's operiation) (Fign. 2l3 :unl 이4). The disartieulation takes phace leetweren the os calleinambastrugahis posteriorly and the enlond and santhand anteriorly. The opration ofton results in a had stimel from the
 and pressure oxeurring at the anterior and lower part of the ous calcis. This is masily melerstomb since all the temblus on the darsimm of the foot have beeti diviterl. while the pewerfoll temble Aehillis is left intact. It is necessin!, therefore, to elongite the troila, Dehillis, so that the stlolng may lee retained at right angres to the leg until the extensors have spilited a tirm attachment to the deejner part of the rieatrix. Instrarl of
 and ligannents on the shisinn with the fort at right angeres.

Internally the joint line hies hehint the projerting tubrerele of the seaphoind.

 front of the line of the joint.

The dorsul tembins are cut with the foot at right angles. The dornal incinion is carried down to the lone arrons the maphoid and cuboid, the joint injwale being then stripinell luck for a distance of 1 cm . The joint tretween the head of the astrigahis and the mephoid, which is convex downwards, is then apened from alove. Jowards the onter lworler of the foot the knife must le directed towarde the texe, for the ontor bart of the calmonombid joint is concave moteriorly, i.e. the line of the joint is join hapet. If the knife be married ton, far lack, it will upen the antragalo-calonamin joint.
 the callamen-onloid ligamerits.

 is first exeised from the Jorsum, the lwate ane then disurticulated at ('hopart's joint,
 along with the akin of the wole are retainesl: the latter is redumbant mol folded ut figet, lint nomithrinks.
43. Intertarsal Amputation. When the wift pirts ure insufficient for as C'honsurt's

44. Subastragaloid Disarticulation (Milgitigulo, Tretor) (Fig. Olis). A rucket-
 below the lip of the extemal mallenhes, amb the cirenlar incision earried romme the font at the leval of Choplarts juint. The inceision is somewhat similar to that at

 slightly upwards lemeath the hemed of the astragalus sur as to diviele the strmig

 and lastly fromits immer and josterior shrfaces. The greatest ditticulty is met with at the inmer sile in elearing the projoreting anstentanolan tali.
 aff. The istramins tits well into the lecel rap. The stumy lears Weight excedlently.
45. Subastragaioid Ostroplastic Amputation. This orv"nion, intrulueed ly

[^72]Jower surface of the matrugalis, from which the artienlar cartilage has Inew wawn off. The rircumstances in which this yperation is callerl for are exceptional.

Sisabanejeff has alwn receutly descrileyl an osteroplantic anhastragaloid ampuation.
46. Disarticulation at the Antalo-joint (Nyme's opreration) (Fign. 216.220). This opention was performisl ly Syme ly moans of a Hap taken from the heel. The.

 imputation morlitien!.
 a avity still exists letween it and the lonem.

The racket incision is preferalhr, the Hip, which is taken from the inmer sinhe of the font, commencing at the tip of the external mallewhos (Fig. ollis). This methon

Fin...2ls-Corohat wat tion throught the: inkle. joint (llester).

 tembins, and the extumsor tembluns are cut arross at the level of the retracted shin. Thur ankle-joint is opened, and the inner a-pert of the us ealeis is disserted from ahove downwarls from the internal Hap ty keepping close to the Imme. The mallentiare

MICROCOFY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Inc
1633 Eost Wain Street
Rochester, New York 14609
USA
(716) 482-0300-Phone
(716) 288 - 5989 - For

Poncet has shown that a very good stmmp can also be ohtained by means of a dorsal flap. Guyon's wave-shaped incision is still letter (Fig. 익), extending fomm the front of the ankle-joint baekwirds to the lower part of the tip of the os caleis. When enough skin camot be seenred to cover the epphywis and the articular surfiee of theend of the tibia, samer has tumed down a strip of skin from the leg whieh he phares over the wound like a stirmp, leaving the rest of the raw surface to arambate.

 tion derives its importance from the fact that it was the first osteoplantio operation introduced. It dates from 1854.

The tuberosity of the os caleis is sawn off and applied to the sawn mufare of tho thintand fihma. The great advantage of retaining the thlerosity of the os calcis is that it fills the eavity or enp in the heel flap, and that the skin of the hatter is woll momished. It is this preferable to the original operation of Syme.

The simplest and best methox of performing the opreation is as follows:Tenotomy of the tendo. Achillis is first performed. 'The foot leing lachl at at right angle, an incision is carried from the midille of one malleolns vertically downwards in the axis of the leg and ateross the heel to end at the middle of the opposite matleolun (stirmp incision). The whole of the incision extends down to the hene so as to divide all the tembon rompletely. Its extrmities are muted ly a wromblinision passing

 amd externally; the lieal and outer sumiter of the astagalins and the tip of the revernal malluolus mere oxpeed.
forwards acrose the dorsum of the toot exactly at right abgles the the stirnp incision, and reaehir a full thmbis-breath in front of the line of the amklo-joint. It is carried throngh the skin and faseiat only, the extensor temoms heing divided at itretracted edge:

The ankle-joint is now opened from the frort. Le lateral ligaments are divided, and the astragalus is exposed us far baek as its superior sufface. The tulerosity of the on rateis is then sawn off vertically immediately behind the astragahs in the same
plane as the heel incision, and is turned upwards alng with the skin of the heel. The malleoli are freed and sawn off 1 cm . above the line of the joint. It is unnecessary to preserve the periostcum as osscous union is obtained. The sawn surfaces are brought into accurate apposition ly suturing the flap. The subsequent gait is excellent.

In order to avoid the tilting of the os calcis, which in our opinion is very considerahle, many surgeons have sawn the os caleis obliquely (Giunthner, Sedillot, Sehede, Volkmann), or horizontally (Busk, Bruns, Pasquier, Lefort), or in a curved or angular direction (Bruns, Böckel). Kïster considers Lefort's method of sawing the os calcis horizontally far better than the typical Pirogoff operation, because in the latter the thin skin of the heel is easily abraded. We regard this as unusual : our patients always find the stump extremely useful. It depends entirely on the mamer in which the operation is performed. Kisster proposed not to salw the os calcis at all, lunt to disarticulate the foot along with the astragalus, and to phace the os caleis directly below the leg (intererurocalcanean disarticulation). He employs a convex incisinn 1 cm . below the malleoli as far as the prominence of the fifth metatarsal, with a somewhat shorter dorsal convex incision aeross the astragalo-scaphoid joint. The astragalus is removed. The lower flap is hrought up over the anterior surface of the os calcis.

If the os ealris is to be sawn horizontally, it is advisable to make an owal incision

Fis. 2:1. - Onteoplastic disarticulation of the foot (Pirogoff).
legiming (Fig. : Etis) horizontally helow the tip of the external mallewhs. Through this horizontal incision access is oltained for sawing thromg the lome.

Tauber has further modified lirogoft"s operation by making an internal thap, similar to that deseribed in the previous section under Syme's operation. Instead of turning up the soft parts off the os ealeis in the internal flap, he saws through the hater bone in the sagittal plane, and applies the inner half to the sawn "nds of the hones of the leg.

All these modifications have a disadvantage over the methoel first deseribed, viz. that part of the scar comes to lie nearer the nuder surface of the foot.

The original Pirogoff method is still the lest, hecame the tuberosity of the os calcis is most frequently maffected hoth in diffuse tuherenlons disease " the joint and in injuries.

(f) Amputations of the Leg

48. Amputation of the Leg (Figs. 29-2-29). In the description of amputations in general we have already alluded to the incisions that may be used in amputating throngh the leg, and have also shown how stumps in this region can he obtained when are eapable of hearing weight. An apriosteal amputation shombl bee performed at all levels.

The lines of incision at the varions levels are shown in Figs. 2.22 and 293.
The longer lapy is always taken from the front unless there are special reasons to

what

 talus ixionFic：22e2．－Amputation Howgh the matheoli．

the contrary．At the ankle，it consists only of win ami faseia，while everlit．
the flap largely consists of skin and fiscia is there in 1m，munele on the inner of the tibia．
 longer thap shonid be taken in the midhle third freme the anteretwormal ingere of the leg．Farabent also spaks hishly of an antern－exterual that．

After disserting mp the Hap as far as the mper emi of the indision the murlio． which have not yet the en divided，are cut transersely． One has to be careful i．the interonemons space tur coit exnetly tramsersely so that the vessels may mot he injured in their fong axis．

The perinsteun in then divided ly a cirenher incision． and pushed downwards for a distance of I cin．，at which level the bone is sawn through，thus leaving a proierting end of bare lone．Sharp，ediges，experially the anterion border of the tibia，shoukd ie romuled oft：，while the tibula shonled ahways lne divided 1 to $:$ em．highor than the tibia so that it may not project into the soft prats．

In the region of the pprer and lower epiphymes the
 sharp margins rounded ofl with cutting foreves．Here． where there are no maseles，the der ph fascia is：brought direetly over the samu surface of the bone so that the skin may be freely movalle．Wilme atthins the latter oljoject by interposing the tendo Achillis Wetweell the thap and the end of the bone．We merely mention that Ollier and Kimmer use the skin of the heed as a eovering for the stump，to emsure that it will lne ahle to hear weight，while Kummer waits mutil it las ineeome emontacted by the formation of granulation tisure．

It is convenient here to deseribe the typieat osterphastic

 thomerh tho leg lelow the kince，in the mindle thinel，and through tho． wallenti．
method，which，althongh it atfords groel renults，is mot ．．．simple as the aperiosteal method．

We pointed out，in diseussing amputations in general，that bier first mhnited a complieated methol which was sulsequently simplified by Lamz and（ileid．W．． agree to a harge extent with Storp and Bunges dencription of the mothod as performed by Eiselsherg，with，however，a few morlifications．

Bunge describes the very simple operation ats follows：In antero－int mal skin Hap is dissected up，the centre of the flap correspording to the imber surfate of the

thus laid bare, so as to allow the bade of the saw to be applied paralled to the immer surfare of the tibia, from which a layer of hone is removed subjacent to the rectangular flip of periosteum. This liyer is next broken aeross with an elevator at its betse, at

 and bone ；the periostemm has hern stripped rather higher than the bave of the flap of hone．
which level the perisistem is separated still farther upwards and the soft parts． divided circularly．The hones are then siwn across and the osseons Hap is sutured over the sawn surface of the tibial．

The principle formalated by stom can be carried out in a simple way by retaining
the contimity of the asterphastie Hap with the akin. This may la done ly ehiselling
 along with. the skin, the periostemm covering the lateral and pasterior surliaed of the tiloia a: well as that of the tiluhat hoing also retrincterl.

It is desimble (and not ditasolilt) toretain the ronsianity of the derper parts with
 how this maty lee dome, the suw being still userl. 'The disidsantage of the disel is that it often canses eomsiderable sulintering. We eonsider it unneressiry to provide

 enable ns to divide the minstles transsersely down to the bume. The skin over the

 The tibulat is mow diviteal at a higher level, after which the thina is viwn iuroses rencesly wo that it will fit the thap.

In regaral to the varions methofs of dealing with the thick lumades of the calf, we wonlal simply mention that Treses, following lley and Lere, utilises them in the that

 circular incisioms with a lomgiturlinal incision down th the lume.

 bone. In the theseription of amputations in gemeral, we hame alreaty mentioned that
 to bre dealt with.
'The anterior and jwaterior tibial vessels -the former lying apmo the interonemons

(h) Amputations at the Knee

 excellent stump, as regarels weightheatring, illostrited in fig. © 0 oj): if these are wot retained, there is no oljeet in the ampontation. I seemol important print in deedins:

not. Sathanejeff has shown that ere"l when the joint is dimaned, "form of high amputation throngh the leg, which momits of the remwal of the diseaverl symovial me:phane, is still persilhe. After comsideration of these two main puinte, all methenh.
 prineiphes we dexerile the different methenk.
 bueregoint is healthy, to retain the capmole, while the wane remark mplies to the preservation (or umi-premervation) of the patella. 'The latter is alwnys of tase when

 the nuterior surface. The whlighe ineinion is to be preferred as the large size of the
 of atili.
49. Disarticulation at the Knee (Fig. :3x, :39). This is merfumed if the

are eatetully stiteled atul aeepsis is complete. Oning tu the wreat hrealth and thirkness of the emilyles there nust he uo latk of skin taken from the sidme. For this reason the ohligne incision in mone suitalle than aly of the tlap methoch. An excellent stump, is got if aseptir healing neme.
 whline oval iucisim, beginming gusterionly "Innsite the level of the joint, and ending anterionly four fingers-hreath below the tulherele of the thias. If the legh he
 falls in the contimation of the long axis of the thigh (Fige :!es). After diseecting me the skin and fascia, the empule with the liganentmu patellae, the semilnata catilases, and lateral ligaments, are cut through anterinty and laterlly: the crucial ligaments. are selparated from the apine of the tiliat the pesterion pait of the capmbe is cat through along the tilia, and the operation is completed ly making a transverse incisien throagh the soft parts posteriorly. The elice vessels requiring ligature are tie lupliteal artery and vein, but the artienlar anterien and hame he to the gastromenime. may alon repure tying. The popliteal nerves are palled out and cut across high ! ! !

When the cavity of the juint is retained it is necessing to int odnee into it a damage tube thomgh a serecial opening on each side of the jutella. The skin womd (ain then be completely eloned.
to the conical charater of the limh in this situation, the whlighe incision is uore diffeult. Simphacation of the incision throngh the museles (ly making a cironlar incision through them in one phane as in the old ('elans operation) is reommembal

Fig. 230.

 a flap of skin and fascia only being placed over the large cut surface of the muselen. If the maseles are atrophied, the anterior flap of sibin and rascia should contain the: whole thickness of the quadriceps.

When the artifieial limh takes its purehase from the pelvis, a weight-leating stmul

50. Amputativn of the Femur through the Condyles (Carden and Buchanan)

Ciaricis: wed oft the cmalyes in at arriol direction throngh their greatest breadth,
 dmpnation thromgly the condyles shomblake the place of disartionlation at the

 the of linge imrision is prolomed anteriorly wn ats to plate the sear well away from

 withont "rening the joint, and then strijりed downwands off the lume to lnelow the epicunigles of the femme. In incision is then armied rommed the femur down th the

 asipect of the limb are dividerl.

The stumps which we have seen from this oneration (and our teacher Liicke was very fond of the method) were all painless, ${ }^{1}$ and bore pressure exceedingly well, in spite of the fact that the bone cicatrix was directed downwards. Moreover, the skin was always freely movable upon the stump, hecause the fascia was placed over the sawn surface of the bone, and the scar lay entirely on the posterior aspect of the stump.
51. Osteoplastic Amputation of the Femur through the Condyles (Esabanejeff). Ssabanejeff has devisel a form of osterplastic cmputation through the condyles in whieh the anterior flap contains a piere of hone sawn from the anterior surface of the

 tilhia is sawn throngh obliguely upwatis and backwards as high as the lutal of the fibula, and the thap eontaning the upher section of the bour is thrown backwarras. Ihe line of section thengh the condyles of the femur is chow..
tibia. After retraction of the anterion Hap the saw is aplied elose to its anterior edge and carried in an oblique, or, hetter, slightly eoncave direction backwards to the posterior surface of the tibia, so as to remove from it a eap of bome (Fig. 2:34). The Hap containing the piece of thone is reflected upwards as int the operation just described, ifter dividing the capsule ant the lateral ligaments. The condyles of the femur are then divided obliquely as lig. 234 shows, i.e. from above downwards and

 Whe to variations in execution and after-treathent.
backwards, after which the soft parts posteriorly are tht though transwersely at the level of the joint.

In this way the skin and lmone (anterior surfiee of tihia) most aronstomed to bean pressure are loth bronght below the fiace of the stimp, which is therefore ath excellent one. The eapsule, as well us the insertions of the sartorins, grmilis, and, if necessary, the bioeps, are retaimed. We are inleloted to Jjelitizin for the inter of
 Abrashanow has intronlued a reverse operation, viz. the formation of a pasterior that containing the posterior half of the theremities of the thbia, wheh are applied to the horizontal and frontal sawn surfaces of the fenmer and patella.

These methods may be appliathle when a portion of one of the bomes containing a focus of disense must be removerl. Aceording to Higenteiner, Wibther has tided them on the living sulyert and has obtaines gool and permanent finuetional results.
52. Supracondyloid Amputation. Whell sutfeient skin cillmot lee gett to eover the comlyles a supracondyloil anputation mmst be performel. The amputation an be performed either by an ohlifue incision or by the thit methond. In the litter ratse

 anterion thap, le made, the alduetors pall the femme inwarls and forwank and rimse it to press against the imer corner of the womml. I ficmatite anputation with many
 a small posterior Hap are manle, the latter leing replamed ty a merr comvex indision. In this methot also we prefer to make the anterion thit slightly wo the imer side.
 combles, by sawing the lone comexly and romaling ofit the empers. If the wins (i.e. a tlap of skin inn fiscial) is not to lie trusted on acemont of whesons, infiltration or defective mutrition, it is well, aceorling to Wihns, only to lisseret ny the skin to the upper border of the patellat, to divite the ghadricepis tembon at this priat. and

 is eovered.
53. Osteoplastic Supracondyloid Amputation of the Thigh (Gritti) (f゙ies. :3:\%) and 236). An oval incision is mate with its uphr end sitnated posterioly above the promineme of the eondyles, its lower emb anterionly ther fingers' - Ineadili lndow the
patella. The lygmentum patellae is divided obliquely and a portion retained for sulsequent suture. The knee-joint is now opened, and the eapsule detached upwards along with the skin Hap abwe the emdylen, where the periosteum is divided all round and stripped off the hone two centimetres higher, i.e. the level of division of the bone. The femme is suwn through transwersely immediately alove the combles, preferably leaving a convex surface. The cartilage is removel from the patella in such a way as to lenve a eoneave osseous surface, which is applied to the consex satw surface of the femur and held in position ly a few sutures whieh mite the bargin of the patella and the pitellar ligiment to the periontemon of the femme.

 जhape of the stmmp, oltained. In 111 reperten! cases he fomm the montality from the operation was only $7 \cdots$ per cent.

Sillermark's modification of Mosetig's opreation, in which the stmop, of the
 demribed in former editions of this work.
54. Amputation through the Middle of the Thigh. The mase of muscle here atferets the chuice of methon (riofe Figse 230 and ≥ 331). In the typical method a

1 Reciste ohe thirutiti: Bukarest, 190:3. No.. 11 amal $1 \leq$.

long anterior (slightly intemal) and a comvex prosterior thap are made (evid Fig. 330). If there is mum musele the skin and faseia only are dissected hack, and the momeles are cut transwersely. If the mmseles are atrophied a Hap consisting of skin, faspia, and musele is taken from the flatrivep. The oprontion is perfomed aceording to the rules for anriosteal amputation (midr General hatroluction), i.e. the peri temm is alividerl I to $!\underline{\prime \prime}$. above the level at which the hone is to be sawn acrun leaving the stmup bare. 'The sharp' edges of the swow brome are rounded off with home forceps.

Methoms whith realt in the mar lying on the stump are only permissible when the ftlestion of weighthearing has not to lee ennsidered, and then omly if the condition of the wound is simplitied or impored hy it, i.e. if the operation ean be performed more expeditiously and with smaller womm smfaces. In musenlar limhe two short Haps are manle, and after retructing them, a slean out is carried transversely through the museles (Lisframe and Esmarch). I very chean womm can also le made liy dividing the mnseles by transtixion after the skin has leeen divided. This opreation is equivalent to the lanceolate ineision as illustrated in Fig. ©31. In very museular limbs the periostemm is separated njuards for several centimetres so that a sulficient covering of skin and soft parts may le obtained.
55. High Amputation of the Thigh. When a ligh anputation of the thigh is perfomed, the artiticial limb, must take its smport from the pelvis (tuber isehii) and there is 10 necessity for trying to whtain a stump rapable of bearing weight. The stump mast, however, be freely movable, so that the artiticial linh can lee fnlly eontrolled.

The teehniture of high amputation and disartieubation is therefore very similar. The maket incision, whirh we mentioned in the introductory chapter as being - becially snited for this purpose, shonld le alopted (mide Fig. .e.3i).

With a racket incision the hamorhage is casily controlled, a consideration which is here of more importanee than lower down in the thigh, where an Esinarelh's elastic tonrminnet wan be realily applied. Iby placing the longitndinal incision on the outer side of the thigh along the poxterior burler of the vastus externus, one can eut bohby down to the lone. The perionteum is then raised abd the bone divided at the proper level [two-fifthe of the diameter of the linb above the level at which the soft parts are divided (Nendiatter)], the lower end of the fomm being hrought out at the wound.

In clastic touninghet is mow aplied, and having !revionsly indieated hy a smatela "It the skin the level at which the limb is to lre amputated, we rapidily make a cirenlar incision with two shecessive swerps of the knife. It is often more andeisable to indine the incision a little oblignely downwards and forwards. An assistant graspis the soft parts and controls the vessels with his tingers, or Lym-Thomas's carellent forceps-tombiguet (Fig. $\operatorname{OO} 0(\mathrm{O}$) may he applied and the soft piats in front and ledrind seromrly clantued.
56. Disarticulation at the Hip (Firs. $\because 37,03$ 人, and 239). ('msirlering the mass of musele whirh smmmmas the hip-joint amb the great importanee, after
 stump, high imputation through the thigh with smbreriostal removal of the urper
 regathed as the nombal promerlure. We miaty refer the reader to what has heren satid in sueaking of amputations in gromal. Experience has tanght us that here, just as in the shomber, a movalle musenlar stump is of the greatent worve in enabling an artiticial limbto he worn.

A very different procedure must be adoped when it is necessary th renowe as mueh as possible of the reeper soft parts, as, for ex:muple. in matignant riserse. Lecording to the inlieations, therefore, difterent methonds of amputation must be employed, and these may he dassified into two main gronps.

The method pratised ly Beck ind Vernenil, and impoved upon ly liose (extirpation method), is to be regarderl as the tyje of methons in whieh the deep soft parts must also be removed. For all eases, on the other hand, where the

Fiv. $2: 3$. - Disaticuation at the hip for disease affecting the sofe parts in front. Bxtirpation methon by the oval (or lameolate) incision. The man veosels are linst tied : the sirtorins imi ilio-psoas muscles are divided and the joint is opened anteriorly. The pertinens is erromeonsly represented as divided, whereas the anterion sumface of the muscle shomblave heets representel.
 (1043 , Treves) and kerr is indieated. An external nacket on an external lanererlate ineision is mate, mul a combined excision and amplotation performeel, an apecially
 who, hy means of an external longitndinal ineixim, dividey the insertions of the
 low dowr as pussible hy the rirentiar medtom.
 Ins, diminishes the lons of hanen, is it permit - of the part of the opreation whim mint

The remarkalle daturer and bumptality whirh formerly attembed the "peration

 may therefore le neel with adrantage in certain cirrminstances.
 example of berk (Linming), removed the thigh like a thomeme beg dividing the larger vemels letweoll two ligatures, and ligaturing the others inmediatels atter dividing

 of the incision is th the plawe ower the Femoral comens (Fig. $2: 37$). In thi- way all haeding is perentent, with the exepption of that from the ohtmatem, shatemb, weriatic:
 the beeding ressels after diviting them, finther hiemontaze i- redueed to a binimum.

 herding.
 in the region of the hip, can he retained, the luble shan : shelled out from the

have indantages in individual rases, lnt as a rule they are unnecessury. Trendelenburg transfixes the limb with steel roxls pussed towards the inner side from the excision womm, aud then winds a rmbler tule ronnd them in the form of figures-offeright. Semn passes a double

Fiti. 238. - Cormal section of the hip and knee-joints (after Henle). rubler tulke throngh the limb from the womed for resecting the hip-joint, and ties the soft parts in two halves. Wyeth prevente the rubber tomerniquet from slipping lig transfixing the limb throngh its rowt with two large steel pina. Bram ligatures the external iliac vessels, and from this womd an assistant compreseses the internal iliae, a plan which, he asserts, is attended with least hamorrlage.

A cireular incision is mate through the skin at the level extimated in the usinal way, the monseles are divided down to the bone at the lovel of the edge of the retracted skin, and, after dividise the periostemm, thr bone is siwn atros.s. The vessels are now carefully ligatured and the tomrnignet removed.
hastead of the simple eircular ineision it is better to make all owal incinion extembing upwards on the outer sile of the bone (Fig. $\mathbf{Z} 36$): if necessary we may adopt Liston's plan of making short imterion

Fin. 239. - Disarticulation at the hir-jomt.
and pristerior skin Haps and dividing the maseles cercularls:
 onter surface of the femur, and dissert out the hase anhpriosteally liy detaching
with a knite the attachment of the primistemm at the line andes, the insertions of the maseles (ghtei, pyriformis, wharator extemus, whtarator intermas amd gemblli,
 the leser troelanter, and the attalaments of the rapishle in the region of the antorior
 romill the femme.

 great trowhater and throngh th. beres of the ghatens maximus, bat is shater than 'ihges of the ghuters maximus are sperated in the orlinary one for exeision. 'I the line of the incision amd drans yart. Bratheles of the ghateal and rimomithex arteries ate ligatmred, the capsonle of the joint is divided, and the insertions of the
 are separated from their attachments close to the trowhater. The lead of the fomme is nusi dislocated, the ligamentum teres leing divided or torn throngh. The suft parts are reparated forwads and batiowals from the groat trochatoter as far down as the lesser trochanter, where the strong insertion of the ilio-bisats is divided with a knife.

After completely arresting the heeding, the limb is held up ventioally, and an Fanareh's tomrnignet applied in the form of a tigure-ofecight aromul the highest part of the thigh and pelvis. The crossing of the tignre-ofeeight must te upen the bosterior and outer aspert -that is to say, lehind and above the great troblanter, so that sutficient pressure is exerted anterionly.

The hub is now amputated helow the trechanters. The skin inmi...e is cireulan. The skin is then retracted, and the muscles are ent with a clean and fown the the lone. The soft coverings mast alwass be abmonatly ealenl: ' 1 for. The bone is then sawn arros, and all visible vesselx-lirst the fommom, then the profowe vessel
 ligatured, and the tomrininuet removed.
 and graspen] while the remating comections are freed from it sulyreriosteally, using the chisel for the linea asprem and insertions of the tendons, after wher it in down ont of the womd. Drain'; are introdnced throngh spocial openings elose to the resection and inmputation womds, looth of which are closed by liyers of suthes. In this waty primary healing ean low obta. -l in six to ten days.
 operation and the methods entidoyed hy Vill.man., dinym, and lirverin.

57. Amputation of the Pelvis and Interilio-Abdominal Disarticulation. (Our

 two eases of resection of the immonate bone, and those of lions, show that this that the tirst ases of amputation of the hip along with the immminatr, remorded by Gayet, shomblall have died.

 of osteosareona of the pelvis, and in all death rapidly followed from slowe, or sepsis. Girarl of bern was more fortmate, having performed the provation suresofully in
 upper end of the femm, so that the opemtion was mod easier than in rave where the thmour springs fiom the peivis. Lastly, two cases were oprathed on for hipginit

 on suceessfully (Jaboulay's method) hy Salistseheff in W!es: the cane was a dithoult one amb neeessitated ligature of the common iliac artery ant sepatation of the symphysis. Finally, we performed the operation with a fatal remit on a loy with an extensive pulsiting sarcoma of the pelvis. The ease will be pmblisherl. Karljan also operated misuecessfully.

The hatest eollection of easen has lwell made hy Keen and Da Conta,' who reported an minsuccessful ease in 1903. Deeording to their figures only is out of 19 easen have recovered. But this npparently harge mortality, 73.7 1rer cent, is inereased if the indications for "preration in the snecessfnl cases are examined. Bardenheuer's ense was one of tulereculosis, and it muy farrly he asked whether suth a formidable operation is really indieated in tuberculosis of the pelvis. Girard's nusuceessful case was also one of tulserculowis of the hip-joint. Even if the hip-joint is involvel one can combine a resection of the $p^{\text {nelvis with excision of the hip as houx and the muthor have proved }}$ (vide Rescetion of half the lelvis). The reader is alse referred to sprengel's methent of resection for extensive dimase of the pelvis.

Freemmis rase is not an interiho-alnhminal disartienlation, lont an amp tation of the pelvis. The fact that the oferation was considered possille shows thas the conditions were nure favourable than in those cames in which disurticnlation is indieated

In looth of Girard's two suceessfinl cases t!le sarcoma was situated in the thigh and not in the pelvis, eases in which one 1 . ty keep close to the bone- (partly sub periosteal) in disseeting the pelvis, thms making the opreration incomparally more simple and horkless. One of his cases died of mestastasis after six monthe, white the diseas recurred in the second case after alout the sume perionl. The operation amounter rather to a resection of half the jelvix, as disarticulation at the hip, had heen gerformen on a previnus oceasion.

Salitscheff's case was one of sarcom of the pelvis, which from the desseription lat extended ehiefly downwards round the femur. The further career of this patient i not reported. The tmour was partly eystie, and was limited by a thick capsule.

Since the previous calition was published we have operated on yet another case o
 ly the operation. " 0 very gloomy, as Morestin observed in the deseription of his cense even when the operation is clearly indicated, and where nothing but interilio-alxlomina disurticnlation remains to he performed. We regard it, therefore, as the duty of th surgerei in every case to determine whether resection of one half of the pelvis, o what is more advisable, partial resection of the pelvis with or withont excision of th hip, will not answer the purpose, and also whether or mot anputation of the pelvi (Freeman) with retention of the pesterior part of the ilium is possible, for in the latte aase the opreration is less severe ; finally, in the case of a rapinly-growing, sof vascular sareoma of the pelvis, whether it wouh lie beter to try the effect of trea ment by the Röntgen ray's and Coley's Huid, as, if the size of the tumour undergoe any reduction, there is more prospect of the operation proving sureessful.

Keen has reviewed the various incisions that have heen adopted, and there appean to be no doubt that the same incision cannot invariably le employed. But the dire tion of the incision is not after all a matter of prime importance. The control of th hemorrhage is of greater moment, for hitherto in all the nnsuccessful cases deat has been due to hemornhage generally in the first few hours. Nanu's and Keen cases died on the seeond and twentieth days respectively from gangrene.

Secondly, in determining the incision one must always have in mind whether resection or at least amputation of the pelvis may be sufticient. Freeman's and Keen cases are typieal instanes of this point, and we here reproduce the two tigures fro Keen's article showing the line of division of the hone.

By preserving the posterior part of the ilimm anshown in Figs. 940 and ≥ 41, th difficulty comected with separation of the saero-iliac joint (a process which general ocempies time) is surmounted. Retention of the descending ramus of the puhis a part of the ascending rums of the ischium dispenses with the separation of the ro of the penis, an operation acempanied by much bleeding (Keen).

A still greater advantage of leaving these portions of hone, is that there is necessity for the attachment of the mascles to the pelvi- being divided, for mo matt how rapidly this is eflected, division of the museles is al ysaccompanied by excessi blecding. As in liose's methon of diaarticulation at the hip, large prorions musele should be seized with erushing forceps, applied at some distance from the

[^73]reported sees have al if the cave was ration is was also combine ce proved anethont
tation of the ronindicated. the thigh artly subore simple he divense amounted performed intion had patient is Isinle. er case of ts offered f his case, abrominal uty of the pelvis, or, ion of the: the pelvis the latter wing, soft, t of treatundergoes
re arpears the dirieetrol of the ases leath nd Keen's whether a and Keen's gules from
d 9.4 , the 1 generally pullis and of the root
there is nu - no matter y excessive portions of from their
attachments and divided letween clamps. Lam Thomas's forcens are exeellently adipted for this pmrpose, as the tisnues ran le transtived ly the small blate.

On the basis of experiments and of our minfonate experiones with two patients, we should proced an follows in a case of saremat of the pelvix, in which eomatition alone an interilionbalominal disartienlation is imdinated. The median hasilie vein is expered and everything is prepared for intravenons injection. The patient is pheed on a well-warmed opration table, and and enema of ten and bramly is administered.

An incision is made parallel to Pomart's ligament exacely similar to that used in ligature of the common iliac artery (1 in Fig. :12). (This might l_{s} e affected nuder leval anesthesia.) The fascia is divided in the form of an angular thap, the museles are seprated in the direction of their tibres, the fasceia is tramsversatis raised along with the geritonem, and the intermal iliae fosso and the eommon iliae artery

Fifs. 240 and 241. - Lines of section of pelvis in Keen aml Freeman's cases of amputation of pelvis.
are exposed. The artery is temporarily controlled with a suitable compressor or clamp, (Halsted), and after the vein has heen emptied by elevating the limh, it is also clamped. We regard temporary closure of the vessels as a necessary precention against collapse from acute anemia. The immer smface of the pelvis is now carefully investigated, the limits of the tumour are defined, and the proposed lines of section of the pelvis determined.

The dorsal aspect of the immonate bone is then similaty examined. This is most satisfactorily effeeted through an incision in the salne direction as that for
 that we recommend for posterior cerision of the hip at the upher border of the ghtens maximus, The great sacrossiatic notel is thus expored, and the line at which the bone is to hee divided is detined.

After its filyes have leell split the ghtelns maximus ean lee lawn downwards with a hook without any aprecie se beeding and the bone is expmed at the uper
borler of the great nacro-seintic notel, where it is to be divided or, alternatively, the lower end of the saero-iliac synehondrosis in exposed.

The tendon of the pyriformis is next cut acrows and the trunks of the great and small sciatic nerves are expowel and divided in the lower part of the great nacrosciatic notch. The shock incurred by division of the great seiatie nerve may he avoided ly an injection of novomin. With a hammer and chisel the base of the ischial spine is then eut through to the outer side of the internal pudie artery and nerve, and the inner anject of the gemelli and the oliturator internus followed down-

Fig. 24:-Interilio-ablominal disarticnlation. The graluated thickness of the black lines and the numbers inlicate the course of the incisions.
wards to the sacro-sciatie ligament, the deseending ramus of the ischium being then chiselled through into the foramen ovale above the attachment of the ligament to the ischium and tuberosity; in this way the tuber ischii is only held by the ligameut and the muscles of the perineum.

The anterior and posterior incisions are now joined, as shown in Fig. 242 (No. 3), erushing forceps are pushed underneath the gluteus medius and minimus in the proposed line of section of the ilium, and the muscles are then divided between two
clanpm, the appuivation of the elani, being preferable to division of the museles at the rathachment to the lone.

A finger is now inserted into the anterior ineision (Fig. 2: $2 .$, No. 1), two puirn of clamp, forerps leing introluced along it and the alxhmimal muslew are clamped just above the crest of the ilinm. They are then dividend between the foreeps as far mas the line of mection of the crext powteriorly.

The iliop-soms is next dealt with. The extermal iliar vessels, together with the ilio-inguinal and genitocrumal nerves, are raisall and retracted; but the nerves which descend at the side of the ponats an! iliaens, namely, the anterior crumal and the external eutaneons, are diviled. The iliopmons is ent arross let ween two forcepm, and
 noteh niwards along the selected line.

The anterior portion of the tlap incision (No. 4, Fig. 24:) is now carried vertically downwards on the anterior surface of the adhectors, thins exponsing the horizontal and descending ramms of the pulis, with the femoral vessels lying extermally. The latter are ligatured above the origin of the profundinse that the internal ciremmeflex vessels may le retained in the flap. The pubis is next divided with a chisel or Inne-forceps as shown in Fig. 240 or Fig. $2+1$ ($\mathrm{K}_{\mathrm{c}} \mathrm{en}$), seprating the attachment of the internal and external obturator museles from the formuen ovale. The obturator externus is then ent across. The inmominate lone can now le drawn downwards and outwards, being only held liy the levator ani. The grelvic faseia and periastemm are divided at the entrance to the true pelvis as far an the horizontal mums of the pmbis, preserving the obturator vessels and nerve, and the strip of fassia by which the levator anj and coceygeus are attachen.

Finally, the skin incisions 4 and 5, Fig. $\mathbf{2 4 2}$, are completed, the adduetors and the hamstrings are divided at their origin from the tuher ischii, and the vessels are tied seriatim.

The forceps, which still grasp the anseles, are now removed one at a time and the vessels are tied. After transfusim, the tempmory clanp on the common iliae artery is removed and any hramehes of the ohturator, ciremutlex, gluteal, and sciatie arteries which may still the bleeding are immediately secured. Our ineision corresponds in the main with that of Savariand and Keen.

(k) Amputations of the Hand and Fingers

58. Amputation and Disarticulation of the Fingers (Figs. $\because 43$ and 244). The chief rule in the case of the fingers is to elldearour to retain a stump, no matter how short, provided the tendons remain connected with it, and that it can be eovered with sound skin. A Hap from the palmar aspect is preferable, as it avoids a paimar eieatrix, whieh is exposed to pressure. The oblique circular ineision is most to be recommended, and is letter than Faraheuf's lateral-palmar incision for the index and little finger. For a disartieulation the line of the joints is easily made out, beeause with the finger flexed they are always placed on the distal side of the dorsal hony prominenees (Fig. : 4.3). In disarticulations at the interphalangeal joints the knife is applied over the joint line, and direeted oblignely downwards towards the palmar aspect. The attachment of the extensors at the base of the phalanx, then the dhrsal part of the eapsule, the lateral ligaments, the anterior part of the capsinle, and lastly the flexor tendons, are divided, the latter leing divided at the hase of the phalanx, while the finger is held in the semi-flexed position. The eunds of the extensor and flexor tendons are then carefully sutured to the remains of the capsule.

In amputations the palmar tlap must be turned back in order that the rest of the ineision may be earried round the honc. In dividiag the tissues down to the hone the finger nust be held midway letween flexion and extension, so that hoth tendons are put slightly on the streteh and retain their function. The ends of the tendons are stitehed to th. $\quad \because$. iding tendon sheaths or to each other.

In disarti: . . finger at the metaearpo-phalangeal or at the carpo-metacarpal
joint the racket or linnerolute incinion is used, the longitudimul protion of which is carried 11 pwards over the lack of the joint (Fig. 944). The tendons are dividenl in the middle powition of the land (mo that the movements of the latere may not be interferel with) and are nutured to the remains of the capsile. The periostem is divided and seprated along with the capnule.

In metacarnophalangeal disarticulation of the thmob, the index finger, and the little finger, the dorsal part of the incisiom is phaced towaris the middle line of the hamd insteml of over the middle of the lome or joint.

In dimarticulating a finger, with or without its metacarpal hone, the transverse incision follows exactly the line of the weh of the fingers (Fig. 136) : incivions munt not le made higher up in the palan.

In disarticulation of the thumbat the metacarp-phalangeal joint, it is impertant that the long tendons shonld be properly stitched, becanse the metacurpal of the thminb is movalle, and the long extensors (with the alsluctor pollicis) are the only museles which opmose the action of the short Hexors in the thenar eminence.

Dinarticulation of the Thumb (or Little F"inger) whomy woith its Metmenryal. In dis. articulation of the first and tifth digits at the carpo-metacarpal joint, the strong museles which form the themar (and hypothenar) ellanence must be preserverl intact. As was pintell ont

Fic. 243. -To show the line of the joints in the flexel position of the finger.

Fis: 24 i.
Disarticulation of little tinger.
index fluger. ring finger along with its netacarpal boue.
thumb nlong with its metacarpal bout.
(Dorsal aspect of hand.)
in the general consideration of amputations, a racket or lanceolate incision with a lones handle (\because : ? Pe Fig. $: 44$) is to be preferred. Further, the handle of the racket should not be nade quite on the dorsum, but should be phaced more internal, towards the margin of the interosseus space. It is carried right down to the periosteum and hone and the latter is shelled ont subperiosteally, and disarticuhated at the proxinal end by means of a transverse or oblique incision round the finger.

The long temens should not le divided in the longitudinal portion of the incision, but should be eut across in the transverse part, the metacarpal bone oecupying a position midway hetween extension and Hexion. They should be stitched to the remains of the capsule which has been left attached to the periosteum. The long extensor tendons in prarticular (viz. extensor longus, extensor brevis, and abrluctor pollicis) must be carefully stitched, as in action they are antagonistic to the short powerful Hexors as well as to the abductor. In conclusion, it nust not be forgoten that the metacarpal may reform after a subperiosteal removal.
59. Diearticulation at the Wriat-Joint (Fige : itis). Viry dithirent methonla ure alminsible for this operation, an for ampitation through the formarm, the olject leing to obtuin as long a atump an powsilse. In contrust to the main mhe for the fext, ant amputation mist not le performed transversely throngh the wriat us long us "o movable tinger or portion of the hand can be retainel.

An oblighe cirenlar inciwion is made, the upher ene of which isplacel at the level of the wrist-joint lehininl, while its lower ent extembs lownon to the palm, the width of the Hap correxpmoling to the diameter of the wrist. With the hamel fully thexed towards the pulan the extensor tembions and the pusterior ligament are dividend, whilst, below the projecting styloid processes, the literab ligaments und tembons (extensor earpi ulnaris and the three extenasors of the thumb) ure ent across ume the joint is openeel. The bunde of flexor tendons is meparated from the curpmes muld dividel ulong with the skin at the extremity of the pulmar tlip. The pithuar thay, has the molvintage of being very vell nomrishen, of pussessing tine tactile wensibility, mul, in certan circumstanees, of forming a movahle musentar stmul, while it further usoids leaving
 is shared hy Dubrenil's methonl, recommendeal by Treves, in which a that is taken

Fhi, 245.-Disartienkation of mindle finger. Dinartionhation of the hath at the wrint-joint. Ampatation throngh the fovearm.
 be taken not to have the ceatrix over the eme of the radins, where it is expesed to the greatest pressure. As the stmmp is not divertly expensed to any presombe, an (oblique incision (dorsal thap) or a cireular incision extending half the diameter of the limb below the joint, may also be mopted. The tlexor and extensor temons shoubl be sutured over the enil of the stump to cusure that their function will not be. impaired.

(l) Amputation of the Arm

60. Amputation of the Forearm (Figs. 24.5 and $2+(i)$. As there is no necessity to provide a stump, capalbe of herring pressine, cither a ciremlar or whligue incision may be made, the ficl, in the latter cane being tiken from either anpect of the arm. Trever rightly states that in the museular phert of the forearm flipe operations are preferabie to either of the alove methods on aeconit of the diffienlty of refleeting the skin and fascia.

Further, in the upler half of the forearm, where there is a considerable thickness of muscle, the racket incision should lwe ithoped, the bones being shelled out sub)periosteally, and the divided minseles carefnly sutured over the ebs of the stump.
61. Disarticulation at the Elbow (Figs. $24 \overline{2}, 24 \mathrm{~N}, \mathbf{2 4 9}$). As in anputation in the region of the knee-joint, so also at the ellow, disarticulation at the joint itself is
to be preferred to amputation through the forearm high up, provided the joint itself is healthy and the muscle insertions at the ends of the bones of the forearm can be retained.

If, while the joint is healthy, the lones of the forearm minst lee removed, it is here also a great advantage if a minsenlar stmmp can le oltained with its nerve-sulply uninjurel. The simple racket incision described muler the general principles of amputations, in which the suft parts of the forearm are divided circularly down to the bones, und the latter shelled ont sulpreriosteally as far ns the joints, is the mont simple procedure and gives the lest functional resnlts (Fig. $\mathbf{2 4 7}$).

The most satisfactory incision for shelling ont the bones of the forcarm is the external J-incision we employ for resection of the elhow, as it entails least harm, the preration being subeapulo-sulperiosteal.

If the muscles camot le preserved the obligne ineision will be fomed to give a good stump. Further, the circular incixim assumes the form of the obligue incision if the amputation is performed with the forcarm held in the fully-extended position (Miller).

In the operative course the error is repatedly made of regarding the tip of the olecranon as the guide to the line of the ellow-joint. The head of the radins is the proper guide. It can always lie felt at the posterior aspect of the elbow.

An oblique incision is made on the dorsal aspect, hegiming at the line of the joint, and extending a hand's-breadth lelow the tip of the olecranon. With

Fif: 946. -Transwerse section through the upper third of the forearm (from a photograph).
the elbow bent to an angle of 135° the incision is parallel to the prolonged axis of the upper arm. The posterior flip, together with the periostemn, the antoneus, and the insertion of the triceps, is dissected up leyond the tip of the olecranon as far as the posterior surface of the humerus. In front, the soft prarts and capsule of the joint are divided transversely. The flap leing held aside, the radio humeral joint is opened from withont inwarls.

Furabuenf, on the contrary, makes the oblique incision in the reverse way, commencing at the tip, of the olecranon and extending downwards aeross the front of the forearm as far as a hand's-lreadth below the ellow-joint.
62. Amputation through the Upper Arm (Fig. $\mathbf{2} 50$). In order that a hroal covering may be obtained for the stmpl, it must le horne in mind that the upper arm is markedly tlattened from side to side. Flaps are to be taken from the brond aspect. Accordingly, when obligue incisions are made, the mper end should fall over the internal bicipital snleus. The biceps retracts to a great extent. A simple circular incision answers admirably if the soft parts are snfficiently pushed lack sntperiostcally.

The surgieal neek of the humerus limits the height up, to which a nseful stump can be got in amputating through the upher arm, because the capsule cextends down to this level internally. The other factors determining the finture usefulness of the stump are the insertions of the deltoid, pectoralis major, and latissimus dorsi museles, these being the chief adductors and abluctors of the stump.

In amputating near the shoulder it is very essential that the funetion of the museles should be retained, the best incisions to use here being either the racket or lanceolate
olate

 forempm. The soft parts are retrated npwarls, and the joint is of nell from in front.
sariety. The lomgitulinal portion of the ineisim is made in the interval letween the misenlar groups supplied by different nerves, i.e. it shomble be made down to the bone at the anterior border of the deltoid letween the internal and extermal rotators of the
humerus. The transverse portion encircles the limb about three-fifths of its diameter below the level at which the hone is divided, after the periosteum has been detached and the bone sutwn across.
63. Disarticulation at the Shoulder (Figs. 251, 252). What has beell said regarding disarticulation at the hip-joint alplies to amputation at the shoulder with even greater force. If the soft parts, especially the museles, can lie preserved, a musculo-periosteal stunip should always be ensired by shelling out the bone. This ean be done either by combining excision with high amputation, or by the racket or lanceolate incisions. Just as in the thigh, the important point is, that the longi tudinal portion of the incision shonld lep placed in the interval letween two muscular groups, smplied by different nerves. For this reason we crive preference to the adoption of the anterior racket and the anterior lanceolate incisions.

Fis: 248.-Ligaments of the elbow-joint.
Fig. 249.-Disarticulation at the ellow joint. (Longituliual section throng the elhow-joint, alter Branter.)

When there is considemble laceration of the soft parts, e.\%, after an injury, or they are invaded ly a new growth, the inciaion must of conse be variol to suit tha individual mase. If the museles hiat to heremoved, a lanceolate ineision (Fig. 25? is to be preferred an it affords the lnst covering for the stmmp. It is a matter of 1 diffeculty to ligature the main vessels through the longitudinal part of the incision The principle of the methonl is, therefore, the same as that employed hy hose fo the hip, the main vessels being ligatured throngh the first incision, the remainin heeding boints being at oner secmed as the tissues are divided.

Just as at the hip, the typieal disanticmation at the shonder (racket incision) earried out ly performing a cireular annutation at the level of the fold of the axill and then shelling out the humerns ly an anterior longitudinal incision similar to tha employed for excision of the joint.

Especially in the ordinary cases requiring disarticulation, viz. crushes of the arn

Fig. 250. - Amputation through the upper arm.

Fig. 251.-Disarticulation at the shoulder-joint.
the method we will now describe would naturally suggest itself. As severe shock and anæmia are often present, serious hemorrhage ninst le avoided.

An incision beginning over the elavicle is carried vertically downwards external to the eoracoid process. The upper part of the anterior fibres of the deltoid are divided, and forceps are at once applied to the bleeding points. The cephalic vein, whiel aseends in the interval between the deltoid and peetoralis major, is ligatured, as also are the acromial braneles of the aeromio-thoracie axis artery. The lone is reached

Fic: 252.-Disarticulation at the shoulder hy the racket incision. The incision is mate along the anterior elge of the deltoid, commencing above the coracoid process, which is exposel along with the origins of the short heal of the hiceps and the coraco-brachialis. The anterior borden of the deltoid has been divided where it covers the coracoid, and the pectoralis major an ieltoid are separated and divided lower down. The long head of the liceps is exposeil, alons which the incision is carried down to the hom.
by passing between the anterior horder of the deltoid and the pectotalis major, ane the eapmile is slit upwards along the hicipital groove. The insertion of the suh scapularis is detached from the lesser tulerosity, and lower down the insertions of the pectoralis major, latissimus dorsi, and teres major are sprarated subperiosteally fron the region of the hicipital groove, the anterior circumblex artery heing ligatured. The insertions of the supraspinatus, infraspinatus, and teres minor are then separated fron the greater tuberosity, so that the head of the hmmerns may be protruded upw forwards out of the womel.

Tlie racket incivion is now completed by dividing the skin eireularly at the level of the axillary foids. The vessels and nerves are then easily isolated, the former being igatured and the latter divided. The sulweapular artery and nerves cau be grasped ant dealt with. The circuntles nerve, which consses wer the teres major and behind the bone to supply the deltoind, is to l_{k} carefully avoided, ats the deltoid is the chief musele of the future stump.

The methorl above described resembles very closely the reaket methot of sipence. ${ }^{1}$ Larrey's racket metheal, recommended ly Faralnent, in which the longitulinal incision is placed externally, is not to be preferied, as it does not anom the circmutlex nerve, and therefore canses $b^{\text {naraly }}$ ysis of the deltoin.
64. Interscapulo-Thoracic Amputation (Fig*. 25:\% 2.54). In this opreration,

Fig. 253.--hinowal of the upper extiemity torgether with the shoulder crirlle.
dependent for suecess on the mobility of the shoulder girdle, more especially of the scapula.

Fin. 254.-Disarticalation of arm and shouller girlle, anterim incision, tullowen by division of clavicle pectorals, main vessels, an! brachial plexns. The chest wall is seen on the left ; the anterior aspect of the seapula covered ly the subscambaris occupies the flom of the womml.

In 1898 Berger found that out of 46 cases there were only two deaths directiy due to the operation, while ten were alive and well one year after the operation.

Buchaman has compiled an exhaustive list of the eases up till 1900 which were
operated on by lerger's methonl. In 1737 a patient, whese tam and seapula were completely torn off as a result of a machine :cceidel:* was surownfully trented in St. Thomas's Hospital, and in Ison Cunning performed the first alcressful operation for a gmashot womm, and in LxNG Crostr one ior thmon: Ir '8N7 Berger wrote an exhanstive monograph containing a rlear description of the details of the operation. Buchanan gives a list of $|x|$ cames (131 for tumonr) with 16 jer cent of deaths. To these may be udded 31 cases in which, after disirtienlation at the shonlder, the seapula was subsequently excised with 6.6 per cent of deaths. Since the introduetion of antisepties the mortality has been redneed to x per cent.

Jemmbin and Riche have collerted lsx cases with a mortality of $11 \cdot 1$ per cent. They draw onerial attention to the fact that lefore 1887 the mortality was 29 per cent, but that now it is ouly $7 \times{ }^{\circ}$ per cent. To Lister, therefore, as well as Berger, much credit must be given. They mention x cises of surcoma in which a radical care was oltained, although in Kiister's case there wals a reenrrence after ten years' interval.

We would here allude to the necessity of making a thorough examination of the humerus in all new growths atfecting it, in case excision or disarticulation at the whoulder-joint might not still lee possille, and especially in cases of tumour of the seajula whether resection might not be sulficient, possibly combined with excision of the shoulder-joint.

The operation is performed through a raeket or lanceolate ineision, such as we alwars cmploy for amputations near the trunk, and is carried out as follows:-

Iroplyylactie control of hemorrhage is oltained ly ligaturing the large vessels, while the extent of the incision lats often to he greatly moditied as it depeuds on the amount of skin involved in the disease.

Operation. An incision down to the hone is made along the claviele, and after separation of the periostema with a raspatory, the clavicle is sawn through in its inner third, and pulled outwards with a sharp, hook. The posterior layer of the periostemm and the underlying sulelavius musele are then carefully divided, the trunks of the brachial pexus expowed, and the individnal cords isolated and divided after injection with movocain.

The axillary vein occupies an anterior position inmediately behind the subchavius musele, while the artery lies close helow the nerves of the plexus. Both artery and vein are ligatured and divided.

It it le desired to restrict the hamorrhage to a minimum, it is necessary to secure the branches of the subelavian which pass outwards in front of the sealeni. These are the ascending eervieal passing vertically upwards, the superticial cervical passing upwards and outwards, the suprascapular passing horizontally beneath the elavicle, and, lastly, and most importunt, the transversalis colli artery, whieh passes outwards and backwards over or through the brachial plexus to supply the levator anguli scapulie and supraspinatus muscles, and is continued downwards as the posterior scapular artery along the vertical border of the scapula, hetween the rhomboids and the serratus postieus superior. No inportant hemorrhage need then be anticipated.

The operation is now proceeded with according to the method originally proposed by hose for disarticulation at the hip-that is to say, as if the arm and seapulat eonstituted a tumour which one had to excise. An incision is carried round the arm as is indicated in Fig. 254 , and the skin, fascia, and the two pectoral museles are divided. When the axilla containg infected glands the museles are divided close to the thorax. In the absence of infected glands the muscles are divided close to their insertions into the humerus and coracoid process respective y. The eephalic vein, which runs in the groove in front of the deltoid, is avoided.

The dissection is continued along the outer wall of the thorix, i.e. the serratus, magnus through the loose cellular tissue towards the ventral surface of the scapula, infected glands, should they exist, being at the same time raised from the thorax. When the posterior fold of the axilla is reached, the latissimus dorsi is divided close to its insertion, or nearer the thorax if the glands are involved.

The trapezius is now detached from the upper border of the elavicle and the
acromion process (if necessary the Lynn Thomas forceps being used to control the bleeding), after whieh the arm and shoulder are rotated outwards so as to completely expose the ventral aspeet of the scapula and its muscles. At the upper angle the thick insertion of the levator anguli scapule is divided, and brunehes of the posterior scapular artery secured. The thiek serratus magnus and the thinner romboids are then divided in succession along the vertebral border of the scapula. The arm and the scapula being now drawn away from the trunk, the trapezius is separated from the spine, and the omo-hyoid from the upper border of the scapula, and the arm and shoulder girdle are removed without appreciable loss of bloorl.

We performed this operation in 190^{2} on a boy for a diffuse sarcoma of the seapula, which involved the shoulder-joint and the upper portion of the humerus. Only two teaspoonfuls of blood were lost, and in five days the wound was simply covered with a strip of eollodion, a single glass drainage tube having been inserted through a speeial opening in the posterior fold of the axilla.

Our deseription thus corresponds essentially to the interscapulo-thoracie disartieulation of Berger, who, along with Farabouf, Adelmann and Chavasse, has gained distinetion for the development of the best 1 rocedure. Bergmann also, according to Nasse, performs the operation in the same way as above described. Esmareh has added to the method the sawing of the elaviele and preliminary ligature of the subclavian vessels. If the tumour has invaded the skin extensively, Keen's plan of utilising the skin from the whole length of the upper arm may be employed.

[^74]

[^0]:

[^1]:

 an hour, waxhell nut with hot water, then with mold water, aul afterwarils dited.
 a "Impermeable" does not withetand the antion of hot water.

[^2]: 'I.amgenlwek's .I rehir, Bil. i2.

[^3]:

[^4]: ${ }^{1}$ Irwterfir Klinit, 1901, voll Layden und Klemperer.

[^5]: 1 "Operation in Xtherintosiratimu," Beit, :.: hlia. Chir. But. 35.

 * "On Mixell Aneathesia with Ether and Chloroform," M/unch. med. IIorliensihr. Bn], 20, 1901.

[^6]: Git is not by chanco that we have hai only one fatality in thirty－fise gears in private practice， where for mont of the time we have employed the same anasthetist．

[^7]: I Ifevesche Kinik, v. Lejrien unil Kl+mperer, 1 !nt.
 4 Gans (Weno York Mel. Rerov, 190t) uses only sterile water to produce anavethesia in operaticns abnut the rectum. I to lif c. cm. are injected.

[^8]:
 ＂iven：yehivle，Bl．10，and Dentsche Zeitschö̀t f．EMir．Bu． 10.
 ${ }^{3}$ Irch．f．Rlin．Chir．Bu． 71.
 －We refer to his new hambook Die lucule I Inësthesie．Leipzig，1905

[^9]: ${ }^{1}$ Langenleck's Archir, Bil. 74.

[^10]: ${ }^{1}$ Iewtache Zeitsche. f: Chir. But. 73.

[^11]:

[^12]: 1 Nime Vork M/el. Jintr:, 1885.

 and water to 1000 g .
 evanomis, wheh lasted half an hour, ocenr from the inaivertent mixture of fier eent alremalin (larke) with a 1 per cent cocaln solntion. Se.cm. of the soluthn weve hifentrad.

 + Fig. 18 ("ntlier) gives nn excellent hlen of the point where the nevelle enters hetweth the fourth and filth lmmbar verteliue.

[^13]:

[^14]: 1 Sull. de la si io de Chir., 1001, at sire, Itim.

[^15]: ${ }^{1}$ According to Tinker (Juhns Hophins Iforp. Reports, Sept. 1902), the credit for introduclag ether is really due to Dr. Mortou.

 2 Buston Med. and Sury. Journal, Oct. 1805. ${ }^{3}$ Kerista de med. de Madrid, 1905, No. 865.

[^16]: Pathonf, woring muler Kronecker, found that paralysis of the renpialory centre and leath from carliac paralysis ocelorred in one hour whin 20 th. of ehtoroform to 100 litres of air. With 5 c.c. a satisfactory narcosis was mointained for eeveral hours, annl for a longer perion this required an increase to 7 cm . if the bonly temperature was kept up. Kappeler tomml llat for salisfactory marcowis 91 grams of elloroform to 100 lirres of air were necessary as an initial dose, bat that men required 50) c.cm. Accorling to 1'. Bert the two extremes are 10 grams per 100 litres for rapil amesthesia, and
 20 grams for sulilen deatl.

[^17]: ${ }^{1}$ Sot. Med. and Surg. Journal, 1904.
 ${ }^{2}$ Langenbeck's A rchir, Bu. 75.

[^18]: 1. Deterl. Tijissth. mur Cicneshunde, 1902.
[^19]: ${ }^{1}$ Broms has called attention to the fact that the alterotlects of cther revalt from its impurity. Profesong Drechsel informas us that even with the purent ether oxome is generatel if it be exporel to the light.
 2. Aunals of Surgery, 1904.

[^20]: ${ }^{1}$ Hölscher, "Experiment. Untersuchungen," etc., Lenyeub, Arch. Bu. Ivii. 1898, s. 175.
 ${ }^{2}$ Grossmam, on this account, entirely rejects the mask introluced by Juillard, and recommends his own molificalion of Wanseher's mask.

[^21]: 1. Inmals of Niriter 1904.
 and shbitzler, of frequent occurrence.
[^22]: I A short time aga wo saw a latality necur during efther amantheria heratere the somach hat but
 veriting.
 accorling to Allan a highor tempreature of the surromenting air is dangerons. In animals

[^23]: 1 I.rneet, March 1901.

[^24]: It requires an malnly greater ammont of watchfonens to keep at a diatane dangers whicharromal

 and is thus mo longer satmatel, but tembered ustion, a dircetion which also appies to stemu not sult ipeted to pressure.

 3 NEot. Med, tend Nerg. Juemen, Der. 1901.

[^25]: I Nafmey, who, with Kionig. has alrealy mate such valuable contributions to the subject of disnfeetion, has rerently contirmed this statement.
 ${ }^{2}$ Mantenffel first recommembed their use in Germany, while Dinlerlein, Blmberg. Perthes, and specially Friedrich, by litrolucing seanless gloves, have lironght them into general use.

[^26]: ' Ifeike has latel: shown hy experiments on ammals that with frequent ehage of gloves even gherations with infected bands cim he earried out with impmity, that is to sing, without any remiltant infection of the woms.

 - We wond draw special attention to llarokers excellent hook on the eleauding of the ha ete.

[^27]: ${ }^{1}$ Loman and Birmiughani, 1904.
 ${ }^{2}$ Parl and Sirwey reject solt minp on acemut of the injury it calleex to the skin. They righty consiler that the was ingredients of Schleich's "martle soap "are masuitahle. Dr. Saltikoll, at our request, has experimented on threals to determine to what extent waxing of silk, up till lately so common, prevented the access of orgatisus. Ther result was that germs were found to bee ahbe to jase easily throngh a layer of wax. while it was powed to materially binter the action of elemical antise, ties, exactly as Piul , nill Sarwey hall inescribel.
 ${ }^{3}$ Compare Ginstein's recommendation on this boint. According to Haggler noill spirit is not
 ore valual e than alernol. more villal et that alerion.

 4 Reilnchr. f. Miruryif, B1. $\overline{3}$.

[^28]: ${ }^{1}$ Paul and Sarwey have endeavoured to demonatrate t'o sreat diflerence in the microlnes contamed in vaious parts of the skin aceording to its quality; and Blumberg has shown that even in the most superficial serateh there exist colonies of pathogemic ormaninus.
 does not irritate the skin or precipitate bloal or albmuen.
 ${ }^{3}$ Langenbeck's I rehir, Bil. it.

[^29]: ${ }^{1}$ Ifeite has recently hromght forwaril mmerons pronfs of how ilried secretions, pins, etc., get into the air, anl stick to the clothes, on which they are conveyed inte the oprerating rom.
 ${ }^{2}$ In many of the high and elegant operation romens now in voghe this indication camot be efficiently carried out. Hanging lights are for the same reason oljectionable.

[^30]: ${ }^{1}$ Kroing, that worthy inventigator in the realan of antisencis, considers that he is in a position to meef every requirement by bringing forwaman aninterrofted merien of casen of healmg hy fint intention
 sul Zweifel says that the stitch-loles often contan pos on the seremth day: Kromig haself almits, from statisties collected by Alel, that in fiftysix laparotomies stiteled with chmol-catgnt, 10 per cent snppurated, 7 per cent wibout any other canse. This is not to he womberel at when we consider that eatgat is nothing more or less than a deal organic mutrient substame. A serons secretion, free from lacteria, ly no means implies, as Hagler and dotsistein showel, that the ligature causing it is not infectel.

[^31]: aquenus sulutinu of formalin for 2 wenty-four hours, washing for twelve heurs and then treatiug with the solution of ionliue in potassiuna ionlide.
 ${ }^{2}$ This is the reason why the leet of onsersers (compare the carefnl experiments of Krünig ancl Blumberg) constantly overrate chmical dixiufection. The antisepties camot be complewly washed out
 of a threal.

[^32]: ${ }^{1}$ Langenbeck's .Archir, Bu. it.

[^33]: 1 Consilemhle value should be attached to the application of Ilinted alcoliol, recently reviven and hroushtinto faronr igatin hy silzwelel. According to Epatein, o pe. cent alcohol is most eflicient and increases the ethcien"y oi other antisepties, such as snblinate. Silzwelel, Elsner, as well as Minervini
 is capable of preventing the developmeat of staphylacoci. That touching with prore carbolic acid, as reeommendel by Brmas and Homsell, may he of use mmprectain circmustances, eig. where slonghs are already present, is umdoubted.

[^34]:

[^35]: ${ }^{1}$ Imentselier Chirucymentyicse, 1404.
 a Recur de chir., 1901.
 2. 1 mericen Journal of $1 / m$. Niener, Sept. 1900.

 + Brit. Mer. Jutri., Vet. 190 t.

[^36]: ' (1. Jurdan, lur. cil.

 ${ }^{3}$ l'aris surkical Congress, 1904.

[^37]: Lindure, Inct:\% IAiss., Leipriy, 1:0t.

[^38]: ${ }^{1}$ Cf. four olservations hy Kïrte pmlilished by Falkenberg in Iangenlieck's Arhir, Bd. $\mathbf{5} 0$.
 ${ }^{2}$ Journal of Amer. Med. Assec., June 1904.

[^39]:
 2 Compare the almirable compilition hy Tillaman on lipature of blomesessels of the prelis. Tilmann caleulates the mortality from ligature of the common iliae artery at 55 , per cent (Dreint) compl

[^40]: ' Irelt. intermel. de chirmryie, Ganl, 1904.

[^41]: 1 We regret that anatomists have not employed the term romamon femoral artory，the the two matin murces
 mititul．

[^42]: 1. Simmi. Klin. V'urlitigri 1905.
[^43]: ${ }^{1}$ Techniune apérutoire des anastummes. vesculuires, ptc., I.yon, 1902.
 ${ }^{2}$ A tunuls of Surgery, Fel. 1906.

[^44]:

[^45]: ${ }^{1}$ Brous Batmge, Bal. 1 .
 " hinir. Bul. 28.

[^46]: ${ }^{1}$ Schewel, Rostoch, 158%.

[^47]:
 11 .

[^48]: 1 rion. .i. Viebuitsh., Berlin, Nin. 1404.

[^49]: ${ }^{2}$ Hie obrerschenkichame. etc., Leeipzig, 1 sil.

[^50]: ${ }^{1}$ Reifi. :. Klin. Chir. Brl. 14 .

[^51]: ${ }^{1}$ Dissertation hy steils, 1902.

[^52]:

[^53]: ${ }^{1}$ Irrutache Zeilschro. fo: 1\%ir. Bin. Bi.

[^54]: ' I rch. fïr Kilin. Chir., 1886, Bu. xxxiv.
 3 Intracranial Hen" shages of the New Born,"
 ${ }^{2}$ Loc. cit.
 Amer. Jour: of Met, 太̌., Oct. 190.

[^55]:

[^56]: ${ }^{1}$ According to Cushing, Blackhurn foumel twenty-eight thmonrs, movt of them operable, is the original sonrec of disease in patients in his asylum.
 ${ }^{2}$ We partly follow Heidenhain's excellent description. He las anceessfully operated on three successive cases of cerebral tumour (1 rch. f. Klin. Chir: Bil. 64).

[^57]:

[^58]:

[^59]: 1 Antuls if Nurgery, 3, 190\%.

[^60]: ${ }^{1}$ As far as we can julge from our own experience, and from the literature pultished on the whitect, excision of the ganglion gives most certain end-realts as soon ws the immediate risks hase betil removel.
 ${ }^{2}$ Thise de Borleaux, 1902.

[^61]: I Americun Jumrn．wf Med．Nc．，Nov． 1898.
 －Bull．ucal．miyule cle men．Iwligique，Aug． $1 \$ 03$.
 $14 \prime$

[^62]: I IBll. "rull. culvele helyigue, Alng. 190:3.

 ${ }^{3}$ laplate (Nem Jeort Mrad. Jomermerl. Dec.

[^63]: 1 Langenheck's Irchir, B4. 73.

[^64]: ${ }^{1}$ See details of Krönlein's operation, Domela and Heilhron, I', rlin, 1:0É,

[^65]:
 ${ }^{2}$ Unir, of I'ennsulcounie, Mirl. Bull., 190:3.

[^66]: 1 'aken from Wilms-Sinver's article in the Cintrolb, f. (\%ir. Bul. 4), 190:.

[^67]:

 ditlicult with his methoul.

 sets great value one it. He has, howeser, overlooked the fret that it had alveady hoell acematoly

 any donht almat a tolal rencetion thene cosen (r.g. Volkmanis trans verse patellar ine ision), if there i-

 tion (I Imets of surgery, $1 \pm 06,3$).

[^68]: In casev wi ere extracapsular exeision of the capsule is indicaten, Kister is perfectly justified in Mmphasising the neceaxity of removing the patella on principhe, which has for long heen our practice in

 We intend shortly to publish onr cases in conjunction with Dr. A. kocher, who has stndied the sibject experimelially.

[^69]: 29. Excision of Phalanges and Metacarpal Bones, of Interphalangeal and Metacarpo-phalangeal Joints (Figs. 174 and 175). For the phalanges und their

[^70]:
 ${ }^{2}$ Bern Dissertation, 1903.

[^71]:

[^72]: - Irmesche med. Hochenschr., Janary 1 s:93.

[^73]: 1 clinique internalimule, vol. is.

[^74]: ESD OF VOL. I

