CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

1

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Instltute has attempted to obtaln the best orlginal copy avallable for filming. Features of this copy which may be bibliographically unlque, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
 Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations /
Planches et/ou illustrations en couleurBound with other matenial /
Relié avec d'autres documents

Only edition availabie /
Seule édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mals, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilnié le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de coileur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print vanies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This hem is filmed at the reduction ratio checked below /
Ce document est filmé au taux de ríduction Indlqu'́ ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library,
Geoiogicai Survey of Canade
The images appearing here are the beat quoilty possibie considering the condltion and ingibiiity of the originai copy and in keaping with the fliming contract specificationa.

Originei copice in printed paper covers are filmed beginning with the fromt cover and ending on the last page with a printed or iilustrated impres. sion, or the back cover when appropriste. All other originai copies ave filmed beginning on the first pege with a printed or iliustrated impresslon, and ending on the last page with a printed of Illustrated Impression.

The last recorded frame on each mierofiche shaili contaln the symbol \rightarrow Imeening "CON. TINUED"), or the symbol ∇ (meaning "END"). whichover applies.

Maps, piatee, charts, otc., may be filmed at different reduction ratios. Those too ierge ta be entircly Inciuded in one exposure are filmed beglnning in the upper ieft hand comer, ieft to right and top to bottom, ea mony framce as required. The foliowing diegreme illustrate the method:

L'axempiaire filmd fut raproduit grace ita gdndrosite de:

Bibliothique, Commission Gśologiqua du Cpnada

Les Imagee suivantes ont dté raproduites avec le plus grend soln, compte tenu de ia condition et do ia netret' de l'axemplalre flimd, et en conformite avec ies conditions du contrat de filmage.

Lee exemplaires origineux dont is couverture on papior eat imprimie sont flimis on commonçant par ie premler piat at en tarminant soit per le dernitre page qul comporte une empreinte d'impression ou dililuetration. solt pur is second plat, selon le eac. Toue les autres exemplaires originaux sont fiimés en commençant per la premidre page qui comporta une empreinte d'impreasion ou d'Tilustration et en terminent per Ia dernidre page qu: comporte une telle empreinte.

Un dea symboies suivants apporaitra sur la dernlire lmoge de chaque microfiche. selon le cas: Io symbole signifie "A SUIVRE", lo symbolo ∇ signifie "FiN".

Les cartes. planches, tabioaux. ore.. peuvent itre filmáe do doux de reduction diffírents. Lorsque le document cat trop grend pour ätre reprodult on un seui clleht, il eat filmé a portir de i'angle supd́rieur gauche, de gauche 1 droite, at de haut en bas. en prenent le nombre d'lmeges ndecesairs. Len diagremmes suivents illustrent la mithode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE lnc

$\$ 653$ Eost Man Street
Rochester, New York 14609 USA
(716) 482-0300 - Phan
(710) 188 - $5989-6 a x$

BRITISH COLUMBIA DEPARTMENT OF MINES

Hon. Wm. Sloan, Minister.
R. I. 2oumis, Depnty Mininter. W. Fueme Ronenteon, Provincial Mineralogiat.

BULLETIN N0. 4, 1917

GEOLOGY AND ORE-DEPOSITS OF ROSSLAND, B.C.

By EVEREND LESTER BHUCE Geological Survey of Canada

SUBMIITED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PIIILOSOPHY IN THE FAOULTY OF PURE SCIENCE,

COLUMBIA UNIVERSITY

VIOTORIA, B.0.:
 1017.

from the

GEOLOAICAL DEPARTMENT,
CULUMHIA UNIVERSTTY
侸ilixitryof Nex Yort.
LOIXA 『II NO2

6

BRITISH COLUMBIA DEPARTMENT OF MINES

Hus. Wи. Nion, Slinister.

BULLETLS NO. A. I:Mi

GEOLOGI ANI ORE-IDEPOSITS OF ROSSLANI, B.C.

 OF THE JE(iREE OF HOC'TOIR OF PIHLONOPHY IN THE FACLITY OF PURE NC'IENCE, COLCMBIA I'N'VERSITY

VICTORIA, bec.:
 10:2.

To the I/m,

 to the Ihepurtment for julaijeation.

I lise the honomir to le:
Sir,
Yobur uhediall smant,

I. invial llimeot an

CONTENTS.

\therefore
Ninamary and lumeluwiall. -
1'hy*iograpl! \dagger
1'nluservin N
Trlamais- 111
Jıramslo. 11
Tiorclary 11
Quatrriary 1.
Nkelch of limioglenl IliwlorsN
Fidonomile Vicology Is
 I
Minernlagy : 1
Hibllograjhy : 1

 loomintor lioveraniens.

GLOLOGY AND ORE-DEPOSITS OF ROSSLAND.

is liumon lismon lintet:

 Sminne.

The thedr-wnek minn whell the Pulluwhy

 uf hlise theala.

 asalstunce lit correlath,
other artichens on n!inerred ln t'w varlon

 lin.e.

1 mre

TIII.

I'ulasilte.
Iorphyritle monzonite.

Xornull munzonlle.
IHorlte prominys.
Xelsen armmollorltr.
Trlavele. Tuffa, ugalomerater. aml thows.

Monnt Itoberts slatis and tufrs.

[^0]The ore-deposits consist of: (a) Gohd-puart\% velas; (b) botitle gold-copper deposits. Structuraliy, the latter oceur as fiswnre-veins, replacement dejosits, and inpregnathons. The ores are chiefly prrhotle, burite, chalcopyrite, with other sulphides in less amonnt, and fref gold. These have beon deposited in two perinds of mineraization corresponding to the two great batholithic intrusions. The localzation has heen bronght abont malny by the peculiarlifes of the fissuring of the grambar igncons rocks under torshanal stressos and hy the finthence of the various wall-rocks on precipltation,
filyalogrinity.
 folded mountains whth strike-finlts. Lomserontimed arosion redmed the topography to a postluature condlion. Tpllft followed, and stream orosion, alied to a conslderable extent by finciation, has carvel whe stribht valleys along the ohl fanithines. Thus libe momiain misses are separated by pronomed depressions wheh laly has used as homdaries for the mountaln systems. each system having a trench of the same mame to tho west of lt. The Rocky Jonntain system has to the west of it the Inock Momitain tronch dubling it from the Pureeli system. West of the latter is the l'urcell trench, ocempled hy the northward thowhi kootenay river, marklng the bomndary hetween the I'urcelis and Solkirks. To the wost of the Selkirks is the Seikirk trench, in which the Colmmha rlver flows southward, dividing the Solkirk system from the Columbia system. In this latter divislon Inaly has made a subdivision of the group of monntains between the Kottle river and Lower Arrow lake. These are the lossland mountains and sirround the minhg distriet and town of losesland.

This whole aroa has been smbjected to many and complex changes. The crmmplat and altered older rocks presont evdduce of the monntaln-making epuchs throngin wheh they have passed, while the great masses of coarsely crystalline lgneous rocks now exposel at the surface show that much materlal must have been removed hy erosis agencies. Consollated streamgravels mark the comrses of old rivers, and the smoothed and ronded momntaln outlines show the work of a glacial perlod \ln which all hut the highest peaks of the Rossland mountilns were covered whth ice.

As a result, the topography is marked by an mpland sirface of gentle curves and lon gradients heneath while the remont strenms have inched deep valleys. The work of the streams. asslsted hy the work of the ralley glaciers, has largely destroyed the old upland surface, but from high polnts, by fimagining the deep recent vallegs filled h, the ohl slopes can he approxlmately restored and a mental picture ohtalned of a gently rolling surface hroken by a falrly large number of resloual hills rising above it.

Over a large area in eastern Brithsh Columbia and the ndjohing States the concordance of summit-levels, when vewed from an elevation. is a striking featire. When seen from the top of mountalns reachlig 6,000 feet or ower. the ridges and rommded peaks of the lossiand mountains fall Into an upind that. while hy mo moins aboolifely flat, yet preseuts a rather smooth surface. The slopes 2 re always less than 10 degrees, excejt where loiated mountaln masses rise alove the surface. Benenth thesc gentle slopes the rlvers have cut deeply. The Columbla hat cit 2,000 feet b low the polnt where the siope increases, and Sheep creek has intrenched itself nearly to the same extent. The rocks underlsing the nolnmi are of varying reslstance, fut the undulating surface is only locally affected by the liful of rock molerlying. Granites. slates, and shales hive alike been bevelled acros: withont the genoral smoothness of the milines lielng lost.

It has been suggested by Daly* that thas accorlance of summits is due 10 . Ilpine ghatiation and to the position of the tree-line. Wherever peaks wore high enongh to smport glaciers, erosion by that ageney would tend to reduce the higher points more rapldy than the fower and so produce a more nearly unform surfice. Frosion above the line where rocks are protected by forest-growth is more nctive than on the surface covered liy vegetation. Hellee beciluse of glaclal erosion in high altitudes and more active weathering the higher points whll wear down more rapldy than the fower and so reach an approximate level.

The theory more widely apmealed to is pemeplanation or the reductlon of a land area approxlmately to sea-level. lifevation, with the resulting rejnvenation of the stroms, would lead to the insision of steep-sided valieys below the level of the old surfuce.

[^1]In the reglons adjohing that mader particular comslderathon an erosion surface of Eocene

 and lureell ratges of western Dlontana as appearlug like a "maturely dissecterl plateau."

 developed, or was completely destroyed ly a linneene peneplahi, in the careades.

If any permplain of Eocene age was ever developal ofer the hossiand momitalns no remmants
 eroslon whel was ended ly the doposition of rlvir-sravefs. These are helieved to he EoceneOngocene lit age. Thoy may ropresent the deposit of rejuvenated streams carrying down great loads of materhal from a bewly mplifted hand surface that hat sutrered deep smberial deeay and had been approximately inse-levelied. Snch a seypuence of events seems quite posslble, but, so far as olserved, no physlographle hroofs of it remaln.

The early Tertiary sedments are introded and tilted ly granite rocks whleh now underlle most of the congomerate remmants. The tilted heds are levelled by the upland surfaee, a harge part of which eonsists. however, of the granle of these Tortlary lathollths. The coarsely crystallue charactir of the inneons rocks shows that a considerable depth of overburden has been removed slace thelr eomsoldation. It is evldent, therefore, that the age of the upland eannot lic eitrlier than lillocene.

This long perlod of hase-levelling was closed ly uplift and the refuvenated streams hegan to inelse narrow steen-sided gorges la the old surface. It seems as if the uplift was progressive with temporary base-levels wheh allowed the streams to liroaden ont thelr valleys. Further uplift left the former valley-bottoms as rock lunehes. The gorges were ent to a eonslderable depth. but before much dissection of the interstream areas oecorred, ellmatle ehanges bronght on glacial conditions. The beginulug of thls period was, no doubt, marked hy valley glaeiers wheh finally liceame large enough to mite into a contlnental glacier covering all but the highest mountalus. The elose of the perlod was agatim marked by valley placlers.

The effect of the continental glacler was to romd and smooth the surface The valley glaclers, on the other hand, deepened the gorges already cut, leaving an evidence of their activity in hanging valleys. NeCambridge ereek, a trlhntary of Trail ereek wheh joins it half-way from Rossland to Trall, has a deeldelly hanglug relation to the main streatu.

At the close of the glatial period large supplles of delorls were emptled Into the rlvers from the valley glaclers still exlsthys about thelr leendwaters, and, as a result, thelr loeds were aggraded. The Columina was filled to a depth of probably 400 feet with stratitled gravels. With the disappearanee of the glaclers, the snpply of deloris diminlshed and the river legan to ent Into thls deposit, and. as it swing from side to side, terraces at differeut levels were produced. This process Is stll active in parts of the Columbin's comse. The terraces of Trall ereek are cut in fine white sllt, with a thin surface layer of pebbles on cach terrace. These terraees are found almost to the altitnde of lossland. The formation of deposits in the Columbla would uormally produce a ponding of water in lts tributars, but; as the terraces neeur almost 2,000 feet abose the Colmmila, thls explanation is lnsuffielent. It is posslble that a tongue of lee occupled the main valley after Trall Creek valles was free, and \ln the lake thus formed the whlte sllts were lad down. The whlthdrawal of the barrier was followed by the productlon of terraces in the usual wiy.

A pecullarlty In the drainage relation of Trall creek and Lattle sheep ereek mas be related to the same phemmenon. The headwaters of these two streims are falrly elose together and for a little distance they flow in nearly purallel valleys. At the town of Rossland the divide is notched by a low and fairly wide gap. If we assume that the ponded lake in Trail Creek valley

[^2]rose high cuongh to flow nerons the difle Into Littie shepp creek, the ocenrrence of thle depreswion ha casliy explalned as dur to vulley-cntting when the Trall Creek lake emptled ly way of LIttle Sheep creek.

The regional events affectlig the physiography may he summarizel as:-

1. Cratacoms-Eoepue erosion cycie possibly enrrled to late maturlta.
2. Early I'llocene evele earrleal to late maturlty or old age.
3. Iate l'iocene-diris I'lelstaeplie gorge-cuttlig.
4. IPeintocene glaeiation.
\therefore. Incent terrace-cutthe.
 grapile forms of loenl inmortinee. Ifard rocks are exposed an ribges staming alove the general level. while eanily weathered rocks age matked lis guiches whth hat small whemas.

One of the very prominent ridges forms a elff on commona aremur at the west end of Rossiand. It rises about ill feet abowe the rock belich on whlelt it stands. and whele the
 elliptleal mass of fulaskite lutinslie into monzonite. The latter weathers more rapidy than the yonnger alkili syenite. leaving it standing ont as a prominent rldge. Simiar pulasklte ridges are fonma near the $O . K$. mine and at severnl polnts on the rond from Rossiand to 'Trall.

The Centre Stor gulch and that in which the Josir tramway ls hult owe their positions to soft ulea dykes. The streams in both these valieys are small, while the valleys are deep and steep-sided. In the Centre Ntar gnleh verticnl rock-faces 20 to $a \operatorname{fent}$ ln height rase from the valley-floor. These walls are mon\%onite. whlle mo donht the roek between them la mien lamproplyre, sinte the mbe-workligs show a dyke of almost the exact width of the gileh which would project to the surfaep at that point. The weatherlig of mien dykes can he observed nt many places. In the raliroal entting* monzonite shows no weathering, while miea dykes already whow a tendenes to take spineroblini forms.

l'alezozolc.
The early part of the geologleal record is missing in the Rossland distriet, the earliest formatlou belug late Palmozic. The hasal groub luchodes several types of rops of different orghas and donhthess of different agr. All have, however, passed through severe reglount metamorphism and form such an litricate complex that, for the present, they are grouped under one mame. They are ln part ignoms, In part marlite sedinentary. No later marlne sediments ocenr. The only othor sedmentaty bods are the eariy Tertary ponglomerates and the Plelstocene grarels, sands, and slits of presh-water origln. The dominant roek types are lgneous. fuciuding deen-seated 1 m risions of hitholthic and posslby laccolithle structure, dykes, surfaep flows and volcanic fragmentals. The absenee of sedintentury deposits of known age makes the correintlon of the great series of igheous rocks a matter of mmeh unestalints. Some types are so slmilar in composition that n silght varlation might produce a facles in one very uearly resembling a rock type which is ordinarliy quite disthet and posslbly of different age and origh. Added to this, the aetlon of minerallzing solutions has so altered the rocks that slmflar end rosults have heen prombed frour rocks that were un donbt origimaliy qulte different.

Bount Rolucrts Formulion.

As mentinned alove, this is not a single rock wim. but consists of mumy whose intricate strueture and rither serere metamorphinm has, as yet, made their sejurathon imposslule. Some of these types are quite distinet and they wil le deverlined. lut no attempt will be made to ontline the distrimition of each.

The largest exposure of thas emmplex occurs as a loroad hand on the wextern slope of Red
 extends well n) the eastern shope of Monnt Itoberts, from which the formation takes lts aame. Other sumall onterops are found lin the IDeer lark range and on Monto Chisto and Columbia and Kootenay mountalns.

Thre typea are found with gratations from one to the other whloh sum to arghe for a close relatlonshlp lin deposition, although the end ummbers may be deposited under very different couditlons. These types are:-
(a.) A woft black, possibiy carionaceous, slate:
(b.) Iighter coionred. harier. and more arenaceons niate:
(c.) Tufaemins bedm, with ןusslily intercalated tows.

The first two tyven often show a distluct gradation from one to the other, and then seems to he due to orlginal differences rathor than to alternton shee dejwithon. Tine black wiates are
 calcareous. The arenacems forms are fincly banded. dio both to ditiorences la monr and in
 rarleties often contaln cherty concretlons, amel it was in such a varlety above the $\boldsymbol{O}, \boldsymbol{K}$. ulne that Mr. Brock disemored the only fossils yet found lathls formathon lin thls urea. la all the siaty
 prohably belonghig to thas same complex. untcrops on the roan to the commbla and Footenay. It is ight inff in colonr, int llttie uitered. and shows indistinct hedding. in a preat part of the areal where these rocks are expmed slleciticaton mud the aterathon of the shlinides disseminated pientifuly thronghout them has so atered the original claractor as to miake the recogaltion of thelr usture und structure very dificnit. The dip is fy ho means comstant. Thare seems
 inatholiths. These intrisions have to a greater or fess degree disturioel the strata alkere thello. and where eroslon has reached down uimost to the figenns rock the sediments expmodel are thed and twisted ont of the m. anai dlp and strlke of the rocks firther from the contacts and not so directiy nffected by the ipmeons ionly. The iverage strike is nearly nort in and sunth, and on the western wiop of IRed monntain tine dij is to the west at low angles. On the anstem
 the lgneons rocks semaratiag the two areas were intruded alnis a fine of structurai weakness, probahiy an old fanit.

The effect of the ratrinns igneons iavaslous oat the Monat Roherts formation has becn very conslderahie. The meciandeal effects inve lieen the fracturing and thithg of the older rocks; the chemical effect is expressed by their severe alteration. The nmount of inrite, prrhotite, arscmopyrlte, and chaicopyrite dissemanated through the rock is sufficient to give the surface a reddsh coionr in many piaces from the oxldation of these manerals. Sinjuides con he deimsited conteniporaneonsiy in sedinuents. fint the locallyation of the disseminatlons at Iossiand aiong certain zones, rather than in certain ineds. Is eviolence that they are lintroberod rather than original. Shiphiden were driosited In the veins from ligneons somrces, and the disscmbanted smiphides of the woliments proinaing come aiso fiom lghems soarces. sillicification also accompanied the ore-defositlon and the same process affreted the mediments. The effect does not
 part of the area the inger of alombt Itolierts formation that corers the batholithle rocks is rather thin, and so no part is any great distance from bueons rocks prou where the surfice dlstance is considerabie. Aiso the lymeons rocks often ent neross the bedding, aud hence iapregnathg soiutiuns have had a fivourabie olportunlty to enter and diffise through the beds for long distances.

The condltious under which the varlous rocis of this period were deposited mast have varied consideraiby. Argilacems, are scents, and caleareons shates, possibiy with congioneratle members, are assoclated with voicanic fragmentals. The lower ineds are aimost putirely shaies and were deposited probaiby under suimerial deita conditlons and in shaliow water near shore. The occurrence of marine organisus shows that at some periods the sea covered thls area, and the presence of some llmestone marks an interval of fallig deep and anlet waters. It diferent thmes and beoming bore frepuent in the latter part ocenred voicanle eruptions. The fine ejectamenta were weil assorted, frobabiy by falling futu the sem. and now form weil-handed tuficerons livers. These lectome more and more frequent untif tho comformable ineds referred to the Triassle coundst largeiy of such material. Thus the rock record of the Nount lioberts formation is that of a iand area of silght cnougin relief to produce ftne-grabined delta deposlts with whlch are associated marine leds. There was conslderable contempmoneous voicanle
 materlai constituted the whoie suppis of deiris.

The determination of tite atge of the Momit IRoberts formation depends on lts lithoiogieal character and on a few joorly preserved fosslls. On the basis of the organisms it has heen
belleved to be ('arlomie. Lithologhealis. It Is very slmblar to the Iower Cache Creek Beries, deserlbed hy lawson.* Hls descrlithon of sheh rucks on the Thompson river ls perfectly aplibeable to the Dlount Roberts formation int liosslami. Le repognlzel the shallow water or eonthental character of the sedments In nonthern lifitsh Colnmblu. He snys:-
 littoral comitlons towirt the west slups of the fobl ringes, probalily lndicathg the exlstence of land areas there."

 The present outerop of statid reforible to thas period forms a broid morth-and-south belt extendfing north of the Thomsion ricor and vonth of lipmblic, Washlugton. Enstward lt thlns out

'Thivsste:

The rocks referred to the Trlassie are voleanle fraguchtals. with assoelated flows and
 rocks aml the correhatlon is purely lithologhe.l.

The Clustic:

 vounger ln age, the rolenale framentals liocoane the dombant roeks and thatiy entirely replace the slates of the ispleal Monnt lioherts formation. These latter beds are piaed as Trassle.
 afle. hat most of the suries emsist of flacer material. la some plames so the that the rock la very dense with a embltolal frature. The material is manally rather porfectly sortion, prodneing a Well-uarked handing often with vory thlu lamina. The colon: varies from light to ark prey. The heds are nearly vertheal at thmes. lint ordnarily the dip ls stepl the west. So far as ean
 wolnt about 100 fort below the smmmit of Monnt Iboberts. Jhe plinsive rocks capping the peak are lurbontal. and for this reasen have been assignorl to a later perbod. Asablated whth the chastic bets are thin dykes and possibly interbedded thows of rocks with about the compostlon of andesites.

Augite l'orphyrite.

The parent rock of these small intrusives and dows forms onf of the important rock-masses
 mountain. on Red momitali, und at several other polnts.
lin allearance there is some varintlon hathe different locallies, but in genernl the roek
 prefish-hlack prisms of 1 yroxme usuatly vishbe to the naked eye. llorublende needles and laths of feldspar are sometimes present. The sige of the individnals rarles greatls, imd often In shurt atistances the rock will change from a tye crowded with large well-formed phenoerysts to a deuse, decp green varlety with mo whomests vislble. This maty he due to the agglourratle stricture that can often he seen un weathered simfices, oval patches then showing with a llghter colonr than the surroundug rock. These seem to be of the same composition as the roek hetween them, and lrobably represent frimments prodnemb hy slight uovement after the first erystallo.
 a ther texture.
 of these mister-joints is not constant. In the northeest drlft of the fombeenth level of the Contre Star the strike ls $\mathbb{N} .14^{\circ} \mathrm{F} . . \mathrm{dij} \mathrm{Gm}^{\circ} \mathrm{F}$. Finst of the shaft on the same level the strlke

[^3]Is $\mathbf{N} . \mathbf{7 5}^{\circ} \mathrm{E}$.; while still farther east in the same drift it is $\mathbf{N} . \mathrm{in}^{\circ} \mathbf{F}$., dip 85° S.E. In the same workings a contact between augite parphyrite and diorite porphyrite is exposed. The piaty Jointing passes from onc rock into the other without any apparent change.

The relation of the anglte porphyrite to the Mount Roherts is that of an Intrusion which along the borders sends out sllis into the sediments, but on the whole sins an irreguiar contact and hreaks across the bedding. It seems to have a laccoithic relatonship to the beds, which are found both above and below the porphyrite in wome of the mines. Ipparently the augite porphyrlte is the deep-seated rock representing the volcante period in walch the tuffs lying above the Mount Roberts siates were ejected. Its consolldation this represents a considerahie fength of tlme, and the productlon of the aggiomeratic strueture found in the poribhyrite is more easlly understood.

The contact between angite porphyrite and other igneous rocks ls seldom sharp, but the typleal rocks are usually separated by a zone of hybrid rocks several feet wide. This is the case between dorite porphyrlte and augite porphyrite and between monzonite and augite porphyrite. Stllefficnton ly mineralizing solutlons has also served to mask contacts. Dlorite porl byrlte occurs in bands in the anglte porphyrite in a way that suggests dykes, but often a gradual transitlou from one to the other seens to argue for differentlation. Thus typical dlorite porphyrite with needle-shaped piagioclases and hornhlendes gradualiy aequires stout augite prisms, and flally the rock becomes typical augite porphyrite. Ilowever, the elosely slmilar compositlon may make posslble the crystallizing of pyroxene from a hornblende rich magma near the contact with pyroxene-benring wall-rocks, and so the border-zone may have the appearance of a transition rock when in reality the dlorite porphyrite is younger.

Agaln, in the case of the monzonite and auglte porphyrite, the contact is a quise rather than a definite line. Wherever typleal representatives of the two are in sharp contact a fault is the expianatlon. The contact hetween the eastern mass of monzonite and the auglte porphyrite of the central area has a varying pitch to the west. In the upper workings of the War Eagle the pitch is very low and the contact surface is unduiating. The result is that the drifts follow the contact-zonc for considerable distances, and it seems wider than is actually the case. Rocks later than the monzonite have sharp contacts with the augite porphyrite.

As has lieen shown, the augite porphyrite is intrusive into the icwer conformable beds that are of late Carbonic age, and for this reason th has been consldered to be Triassle. The flows interhedded with the purely volcanle fragmentals bave compositlons very nearly that of the auglte porphyrite and are beileved to be of the same age, and bence the upper part of those beds may also be Trlassle. Triassic beds of grent thickness are found both to the north and south, and in Ithologleal character the IRossland beds are very similiar to the Nicola serles, for which Dawson* gives the followhy sectlon:-

> Ilmestone
> Feet.
> Flne-gralned feldspathic roclis sometimes well bedded $\mathbf{3 0}$
> Tnffe or ash rocks bassing lito aggiomerates with some fine-gratned felsites, srey, burpllsh, and green 7. 540
> Chlefly dlabase agglo nerate; several catcareous lieds. Dark felsttes 3,930

Slnce there are at Kamioons, 160 milec: Triassic and 3,000 feet on the suake river to $i L$ have been assigned to the Triasslc, although no pa

Jurassic.

 .

 .}e north of Rossland, nearly 15,000 feet of , uth, \dagger the IRossland rocks of simllar character montologlcal erldence has been found.

The rock types referred to the Jurassic are all lgneous. They are of three chief varletles, with some smaller assoclated nasses of other types. The lmportant rocks are: (1) A representative of the widespread grey Netson granodiorlte; (2) dykes and Interfingering maeses of a diorlte porphyrite that is belleved to he closely related to it; aud (3) the wormai monzonite. The mlnor rock types are iamprophyrlc dykes. Besldes these, some fow-rocks may also helong
to this age.

[^4]
Jelaun firamonlorite.

 tufts of the Domut loberts formation. Tice small oval exposimes are . 'mpletely surrombled by atrathed rocks a'd anem to indeate that the hatholith underitex a labege pirt of the older rocks

 sedlinents. Duly's exphanatom of the zolur is that, an the latholith laviaded the encioning rocks.

 to the present surface helng almost parailel to the contact of the lathoilth with its roof.
 whth the hormal mongonlte are expowed, lut near the lig loop of the firent Northern Railway, west of Itossland, granodorite and porjolyritic monoonite are in contact in oue of the chts. The luterflugering of the two rocks is so intinate thit the revative nge is uncertali, but the monzonite is heileved to be the sonnger. The tomgue-ike mins of monzonite in the area sonth of Little sleep creek has the apinarnince of a real fitruslon into the granodorite. Puiaskite and a nimber of inter laske dykes uiso cut the gramodlorlte.
 probabiy was litruled at the time of the thithg of the ('arhonle and Triasic bedn. Its age is

 maklog emoch with fmmenke accompanying intrusions of grantic rocks.

Diorite I'wphyro.

Ochurlng as Irrequlat tongues and masses, esurelally in the nuglte porphyrit. . at rock which, while somewhat shimar lin anmarance to that rock, yot has certalu illstinctive cinaractoristles. On the weathered surface it in quite easily recognlzed, herde-shaped bormbende crystals and Lath-shaped feldspars standing ont prombently Anglto is ocemsionally present, more cominonly on the lurders of the mas. Tite lock slows a rather wellomatiod flow structure. and this urlentation of the feldsurs glves it an almost sllky lintire ou in fresh fracture.
 bocks of the strutfled rock somethos of iarge size are fonnd entirely surronnded by the porphyry. Lividently they have been torn of ly the lutrusice and corrlad to their present positlon. It is also appurently intrusive into the augle jorphyrlte althongh at many of the contacts one seems to grade into the other. This may le due either to asslmblatlon of the oider os the rounger rock, or, as prevlousiy suggested. to a sort of mass action of the broxenehearing augite porphirlte on the normally hornhlendic dorlte porplyry. resulthy the formation of ingoxene insteat of harnbilende.

[^5]The correlation of the dlorite porphyry as Jurasale rests on its apparently close relationahip to the Nelmon granediorlte. Mineralogleally the two are utet millke, although the usumby porphyrite dlorite perphyry with flow-structure is quite different lin uppearance from the maselve mongramar granodiorite. The former. however, by it varintlon towards a more feldapathic nud granular rock hecomen very similar fin appearance to the sramodionte. The evidence of thls varlation is clearly shown on the seventh level of the lic bol. The first crossent to the nortli from the mmin worklugs wert of the whaft passen from angite porphyrite inte diorite
 diameter. The first 40 to 50 feet of the drill-cores show typleal diorlte porphyry. This gradually: changes to a light grevish gramilar roek as the central ;art of dhe pipe-ilke intrusion in reached. In deeper levels larger maxses are encomntered, nud these multe no that lu the deepest workling n harge part of the country rock comsists of n greylsh granitle rock that la probalily Nelson granorlorite. Firom thls gradation it weems that the dorite porphyry in a border facles of the inthollth of grnnodiorite, representlig the thigerlig ont of the magma into the older formathoms. The flow-structure may be due to a part of the magma having reached the surface, but. lu purt at least, may le the result of convecton currents. slace it ls often developed in tongues whith certainly did unt connect with surfuce flows.

The relationship, between dorlte forphyry and monzonlte is a duntind one. The two nre oftell fomed in contact in the mine-workings, hut so intmately aswoclated and so like in nipearance that the relative age is uncertnin. The dorlte porphyry is very frequently fonid ly ing octween augite porphyrlte and monzonlte, lat wo far mon lutrisions of dlorlte porphyry futo monzonite have been found undergrount. A dyke-like mass of it on the surface near the drinhall is possibly a roof pendant mabsorleed in the monzonite lathollth. Both miea and non-mileal dykes cut the dlorlte porphyry, and it fx niso Introded ly dyke representntlies of the later granitic intrusives.

Normal $2 f o n z o n i t e$.

Occupying an irregular oval area five milles lonk by one and three duarters wide is a mass of monzoulte. The greater diameter is enst and west, with the city of Rossland near its western end. The outlme of the musw ls very lrregniar, and it ls hroken by many intrindons of later rocks. A broad belt of alluvhm hides the rocks th the valley of Trall creek, hint they are prolahly mostly monzonlte.

This area is not occupled ly one constant rock type, lmit shows whe varlations in appearance and in composition. The must easily recognized varlety is n emarsely grnmilar dark-grey rock made up of feldspar, piroxene, horublende, mad isually some miea. Varlations conslst hit differences both in relatlve quantitles of the varlons minerals nid in slze of grain. The different varleties are not nil strletly of the same perfon, hat are often found as intruslons into or incluslons in other types. l'sually the more coarsely crystalline and more feldspathle seem to he later than the darker finer-gralned ricks. Sometimes definte fragments of one are fonnt in the other, as if entire soldification hrit tnken place liefore the later rock appeared. A tother times the inchided types serim to he - cgatlons or possibly earller crystallizatlons resoried. On the whole, however, all these are: her shmilar rock types and are no douht merely facles of the sanie Iutruslon.

Although the borders of the monzontte mass are very Irregular. It sends very few definte dykes Into the enclosing formatlons. On Columbin and Kootenay hlil a dyke-like mass cuts across augite porphyrite, and at a few other places dykes from the momzonlte intrude the Mount Roherts. The later age of the monzonlte is lw shown ly the truncation of the altermate hands of slate and augite porphyrlte on the sonthern border of the monzonlte. Indergromad the evidence is not always satiofnctory. The very flat and undulating nature of the contact as the monzonite plunges under the cover of anglte porphyrite allows the drifts to follow the contact-zone for a conslderable distauce and makes the location of the pout of contact dilticult.

The normal monzoulte is cut by a porphyrltle monzonite that seems to be very similar to it, and niso by an immense number of hasle dykes, some of which may represent hnsle reslduals from the monzonlte magma. whlle others belong to later perluds of latruston. it ls also ent hy pulaskite dykes from the alkall syenite and ly wellmarked dykes of granite porphyry. A large dyke of this character lis found sonth of Trall creek, nud others nre fonnd at the Re Roi, one outcropplng Just lielow the headworks.

These latter dyke were formeriy thelieved to te reiatel to the Nelson granodiorite, wince the largest of them memed to be connected with a mass of that rock. For this reason tho granodiorite was mapled as later than the ronzonite. Buliding operations bave exposed the contact of this dyke with a puinakite dyke which it cuta. Fividently it does not belong to the granodiorite but to a nuch later intrmalou. The other evidence seems to foint to the monzonite being later than the granodlorite, and as no defluite intrusions of dorite porphyry into monzonite have been froved, the moazonitc is considered to te yonnger than the porphyry. The rather slmiar mineraiogical character of the uonzonite and granodiorite muggests that they belong to tho same period of activity, the monzonito rcpresenting a later, tho granodiorite and diorite porphyry an eariler intrusion.

Jurassic Fiffualve.

One reprenentative of the effusives connected with the Igneous activity of Jurassic age is belicred to still exist. As previously described, volcanic tuffs and possibiy lavas form a large part of Mount Roberts. The greater part of these are tilted at high angles. One hundred and twenty-flive fect below the summit the dip $18 \mathrm{~J} t$ derees west. At the summit, however, is a lava-flow that is horizontal, with its lossaitic folnting showing as vertical columns. It has the appearance of truncating the edges of the lower beds. its composition in that of an augite latite and it probably is the surface representation of one of the Juraselc batholiths.

Tertiary.

Eоcene-Oligocene.

Although not occurring witbin the limits of the special Rosmand map-shert, the later congionerate, lelleved to be enrly Tertiary, is here descrlied, since the relation of tho Igneons rocks to it in a measure fixen the age of the futruslyen. Two areas of this conglomerate are found near Rossland. The larger lies ten milies to the west on the top of Sophie mountain, the other alout four miles soutb-eant on the top of Lake mountain. It is iliely that thene are remnants of a once continuous deposit.

Tbe conglomeraten of the two areas are ilthologically ldentical. As a rule they are coarse, with some lenticular bands of finer uaterial. Tbe pehbles range from grit particies in the finer bands to boulders of a foot or over in dinmeter. The larger pairt of the conglomerate has pebbles averaging an inch or lesm. Quartzite, cluert. slaty materlai, serpentine, grey granite, gneiss, sandstone, jasper, and quartz are all represented. Towards the base greenstone pebbles and few angular llmestone fragments ure present. Mr. lirock* also reports pebbles of an earlier conglomerate. The binding is wlliceons. The heds on Sophle mountain now dip at rather high angles. They were prohably lald down with a considerahle laitlai dip. but their present attitude can have been attained only by a conslderalile tilting even if the initial dip is giveh a maxinum vaiue. The strike is nearly north and sonth, with the dip to the east.

The character of the sedhents points to deprostion hy winaction and the two rennants probably lie in the same old strenu-valley. The heterogenelty of the uateriais is evidence that tbe stream was rapld, tbe flner grit-lenses representing deposition In the eddies of the stream. The thlckness of the conglomerate is conslderable and the suppiy of detritus was evidently large, probably due to the uplift of an old deeply wenthered land-surface. The character of the surface upon which it was dejosited is unknown, slnce it is now mostiy underlain by igneous rocks intrusive into lt.

The pebbles of the conglomerate are derived from the siates and greenstones of the Mount Roberts formation and from granitic rocks of the type of the Nelson granodiorite ind the associated series. Many of the fragments come from rocks not known in the immedlate ueighbourhood. On the western side of Sophle mountain a 50 -foot dyke of porphyritle rock oceurs in the conglomerate. Frock* mentions such dykes and refers them to the Rossland granite. The Lakn Mountair eonglomerate is cut by a fresh granltic rock which Daly calls the Sheppard granite.

On the basis of a rather scanty flora Daly has refcred these beds to the early Tertiary, and from their general character they seem to be almilar to the Kettie River couglomernie and

* Summary Report, Geological Survey of Canada, 1000, page 6 ta.
to the Coldwater group deserlived iy Jawon in the Kamboim diwtrlet, foth of whleh have been cousidered of Encene-Oignocene age.

Miacene-pliocene.

Intrusive into the early Pertiary sedments are hathoitho of two distinet types of neidic rocks. The earlier of these is represented in the Rosniand area by the pulankite dyken which are inelieved to be tongue from the Itosmiand alkall syentte, the maln mass of whieh lies three miles north-west of Rossland. The later Intrusive is the Sheppard graulte occurring on lake mountain, and to it are supposed to ivelong the granite-jorphyry dykes fonnd uenr losmiani.

Three iarge tongues of pulaskite lie close to the laportant mines. Oue lles wint of Jed mountaln, striklug north and south, another forms the ridge at the western end of Columbia arenue iu the town, while a third lies south of Trali ereek on the slopes of Ieer I'ark mountaln. Many other dyhes are exposed aiong the upper road to Trall, the first of those forming a wellmarked ridge as far north as the Columbia and Kootenay miue.

The pulaskite is usualiy a coarse-textured iwre-white to dcep-pink rock, made up almost entirely of large lath-shaped feldspars whith some hornblende and biotite. In the typleal rock the dark-coloured minerais are very suberdinate in amount. The pulanklte bas been ilttle affected by metamoryhism and resists weatherlug agents well. As a resuit, the outerops of the dykes form prominent ridges with a thin soll cover.

The pulaskite euts all the previousiy dewerlinel formations. The broad baud west of Red monntalu iutrudes Mour' Itoberts sediurents, the eiliptieal mass in the town is Intruslve into normai monzonite, and the dykes on the Trail road cut porphyrific monzonite. Near the Le Rod mill. In a rock-cut on one of the rallway simrs, a uarrow pulaskite-porphyry dyke of pecullar spotted appearance also cuts porphyritie monzonite. The pulaskite is eut ly very few dykes of any kind. Ou the Trall road a basaltie dyke a foot wide cits a pulaskite dyke about 50 feet wide. The st:ike of the two is the same. Fornierly the pulasklte wan thought to ie the youngest important formation in the district. Buildiug operations in the part of the town south of Trall crt $: 2$ have, however, exposed to better advautage the pulasklte tougue and the granite porphyry with which it is involved. The iatter cuts across the pulaskite and shows a chilied zone along its borders.

Granite I'urphyry.

The granite porphyry is a ight-coloured distinctiy joriphyritle rock with phenocrysts of white feidspar set in a ground-niass that is sometlmes a falut pluk. It is very fresh-and unaltered even in the vieinity of the ore-deposits. Two dykes of this rock of some size ocenr. The iarger of the $t w o$ is found with the pulaskite south of Trail ereek, exposed as a small hufr on the street. The second is just beiow the Lec Roi head-frame. This and several smaitar ones are cut by diamond-drill holes underground. Tite strike of dykes of this intrusion is unique, belng aiways nearly east and west, whlie the strike of all others is north aud sonth.

The granite porphyw is very similiar to what inaly bas ealled the Sheppard granite, a small exposure of which oecurs on the top of take momitain. This is lutrusive luto the early Tertiary. The relatiou of the pulaskite to this congionerate is also iutrusive, and hemee these two igneous rocks are Mimeene or llioeene in age. No hasle dykes are found in the grantte porphyry, and henee the suecession of these fate Tertiary rocks seems to be: (1) Itossiand granite and assoelated pulaskite; (2) inasaltie dykes; and (3) Sheppard grantte and assoel bed granite porphry. The physiographle vilations previously disenssed make the age of the porpugry late Mivecue or early Plioene.

Dukes.

Besides the dyke-rocks just mentioned whleh ean be referred to bathoilthie masses, there are an Inmense number of dykes of various kinds, many of wheh likeiy are the fial exprassion of Jurassic igneons activity, some of whieh are of earlier age, while others are undoubtediy Tertiary.

Porphyritic Monzonitc.

Many thades of thls roek, both as pipe-shaped Intrustons and as more or less regular dykeilke forms, are found in the augite porphyrite, Neison granodiorite, and normal monzonite. The rock is dark grey and very fresh. It makes a rather handsome building-stone and has been used

II woure of the liomand pibite huilding. Mineralagheally, it is mieh like the normal monawite, int lin the finir" ilmeric: a gradaton from in very wimlar jorjhyritle monzonite lito a gulankle
 nud dykow of juinaklte are found entthg the porphyrltic inonzonlto. The mowt jrominent

 wualler that the py roxclue.

I, мmpruphtive Hykrn.

 Iuter mensurlug ajes foet on the elovonth fevel of the foritre Ntar. The difi varlem, lut whether

 inrger ones. There is nfso eften a change in charnctor in what methes without doult to he purts uf the wnue dyke. Thus mten dykes in defth womethmes theone noti-mien higher up, and large
 monly mude hetwerol the dykes an "mien" aml "non-mien" does not always hold, attongh it

Thuke of the Jonie Tyne.

 are large and traceathe for n conmidernthte diatance on the surface and in lepth. They conmlst of soft hlack rocks wlth very uliundunt hotte. They are very pasily eroded nud the onterop is marked ly gulches. Finuits are localized nlong them, and this along with thelr softicse glven considerathe trouhte fin ming, and wherever the dykes aro targe the drifts have to he thubered.
 wall-rock. Later dykes, usuaily mon-mitea variotles, are somutimes lutruled along the wilis of miea dykex, or, as lin the Wickel Hate. In the mams of the dyke itself. At thes a later dyke enn the seen followlig one whil for a distance, tiven cuttlug neroms and pollowlig the other wail.

The prominent roframitatlyen of this type are the Fickel Plate dyke. naned froll lis occurrence nt the Vickel Plate mue. the Jowic dyke cut lyy the Josic shaft, and lts offahoot the Tramiray dyke. The rock in all these has n practlealiy identlonl appenrunce. All dlp at steep angies, the Vickel Plate heling aimost verticnl, white the Jowif dips stpeply to the west. The Tranicay in a wnalier dyke und jotns the Josie hoth borizontalty and in defth.

Vor Fiagle Tunc.

In thim group are luchuled dykes with of rather wide petrographic rauge, fut apparentiy rather closeiy retated in orlgin. They are dark grey to back, dejending on the relative amount of fetdspar. whlch is usually the only mucroscofie minerai and as a rule has needie-shaped forms. These dykes have marked coinmonr jotiting nul so are easily distlugulshed from the dykes of the Jowic chass. They are iater than the Josic dykis. The chlef large and jerstatent representatlos of the IVar Fagle tipe are the East und Vieat I'ar Eugir dyken, whteh consist of a hand of parntlel and rather barrow dykes whtch unite and difle along looth strike and dlp in the most int riente fashlon.

Centre Star Duke.

The C'entre Star dyke. Ilke the Fant and W'est War Eagle dykes, is in the upper levels a zone slmilar to thomp descrthed above. Helow the sixth level these separnte tongues unite into one iroad strong lyke so different in nymearance that it merits a sejaratc descriptlon. It is traceahle to the deepest workings. attalning a w. 3 of 25 to 30 feet. It has marked columnar tructure. The rack misist: chicfly of feldspar. pyroxene, and wien, and in general npmenrsnce Is very slmilar to the porphyritic monzonite previously deacrlhed.

[^6]
Nomiviar Tym.

 [rovliots tider.

 Hии:

 ufl ly the un- ltero magum.

(f1.arekniby.

 :

 ufter the shachal berlod are well preserved lit tertaces nlong the columbla rlver. They conslat

 thle 1^{-}
"-Jtisin, with the bird kluds uaturilly predominating.
t deposits of the reglon conslst of the faus linllilige ut the presed the wherever the if. of the monutalu streanas decreanes sufticlently to allow then tu dejosit thedr loads.

The character of thewe fans variow with the eharneter of the depwalting atroam, heing coarme in
 character of conntry through whileh the atroum noww. Trall creek in bulldiur a deltn in an eldy of the Columbia river which in maile up of the very flue silte prevtomsty mentoied, which it in prodirg in itw lower course.

SKRTCH OF GFOHOMIC.A, HISTORY.

 ouly from inte Carbonle tmes. The conditions then obtalutus were unrlue, as shown by the Itnewtonem, oceamionally develofnel, and ly the premence of marine fosmlls. The predominanew of the clantle sedimente that form the whaten In evtilence that the aren iny near enough the altoro of that age to reccive the flner medlmenls bronght down from the old land. There was couwherable voleanle netivity un shown lig the tuft interbedided with the marine sed!monts, and this increamed ateadily throurghit the Trhnswle, which is almont completely reprementerl by tufs and fows. The Intrumive representative of this pertod in the nuglte popilyrite which meemin to bave n roughly laccollthle form in the older part of the medimentary serien.

 was probably the deepsentel phenomenon witelt nccompantel the extrnalve volenile activity repremented by theme inter tulfs.

A long perlod of demelathon, Insting through the Cretaceons and prolnaby part we the early Tertinry, ent depply luto the elinstlem. nows, nud 'uro Ivem, powallyy relumak the whole region to n condition oi fost-maturlts. This perlod of actlye degradatlon of the incid-snrface was followed ly river depmettion In the Focene am: Olsocene. 'ibe deposite, an showil hy the remants still left. are conglomeraten with grent and sulden varintlons tu the size of the pebllen. They meent to have been luld down lin falry ranid gtreams.

Thls second pertod of sedmentation was followed liy the intrusion of in serles of balhollthe of alkallue charncter representell by the pulanklte and by the Sheppard gramite. There are mo exlruntiven recognized am belonging to theap, aluce the crombon perlods that followed have acourad off great thleknesses of overlying rock. The Inat of thene !ntrustons may have isen In Pllocene Ilmes, andit was followed hy in perion of erosion long emourh to allo.. surface of low gradlents to develop, hevellug the formuthonand exposing the lateat granitio rio. a, so that fupy now form the surfuce formallon over wide areas.
t'plift of this post-maturmi surface ns a unit refingenateal the streams whilh Inelwed thentselves In steep-sided valleys to a depth grenter than thit of the prosent ralleys. This perlod

 probalily had as tis trat effect in pritul of valley ghelation. is the condithons lieceme more extreme the amount of lice Increaseal mith the whole Cordllifan aren was coverph. excepting the hgher peakm. Beturn of more hormal coniltions agaln brought on valiey ghelation. Une of thege tongues occupled the Colnmbla valley for some thme nfter the disnipwarance of the lee
 streams with mbudant debists, wheh tilled the old valloy to a comsinerable depth, Exearation
 terruces nt several elevations on the columbla and lis maln thllatarles.

ECONOMC GROLOGI.

Mistorical Review.
The earllest mbing in the West Kootenay Dostrlet was that dome for homd by the Hudson's Bay Compung on Kootenay lake in the early twentles of the list century. The ludustry, how-
 worked along the Wext Kootenay creeks, and In 188.5 the Dewduey trall, baswlug dowil Trall ereek past the present site of Rosshand to the fast Kontemay flacers, was hallt. In the elghtles

 (blneik.

l's rrinotite (bina-k) cutting cibalcogyrite (white). bome line.

the Boundary District was staked. In 1883 ore was discovered at Ainsworth, on Kootenay lake. nnd in 1886 discoveries of rleh ore nenr the present town of Neison led to its extahlishment as a trading-post. The first cinim to lie staked in the lossiand district was the Lily May in 1887. It was relocated in 1809. In 1590 two miners from the Lall/ Mal/ crossed the vailey of Trail creek and In one day locatml the Centre Star: War Eagle, Idahn, lirginh, and L.c Roi claims. The Le Roi, which afterwards hecane silh a wonderfin jroducer, was given for the payment of $\$ 12.50$ for recording fees.

Development was at fist slow owing to lack of transportation facillies, but the hullding of a wagon-road to Trall in 1893 led to enongh ore helug shlpped to encourage investments. In 1895 the Trail smeiter and a tramway to the mines were started, the smeiter beginuing operations in 1806. In that year came the first rallway connection, the Red Mountain Raliway to Spokane. A period of infiation followed ing the usual depression retarded development to a considerable extent. As a result of the filinre of the suall original companies, strong corporatlons were formed and up-to-date plants were instalied. with a great reduetion in working costs. A further step in this direction wis the construction of a inwer plant at Bonnington Falis, on the Kootenas river. In 18:6, a sudden decine in War Fagle stock had a bad effect on the reputation of tie camp, and labour troubles closed some of the mines for a part of 1901. Litigation over the troublescme apex law under which the chaims were staked added to the difficuities, int this was finanly settled by the amignmation of the companies. and the developneut of the camp in recent years has lieen steady and unlnterrnpted.

Types.

The Rossland occurrenees are of two classes, gold-quartz veins and hotitle gold-copper deposits. Brock has classified the latter on the hasis of structure as: (1) Fissure-velns with or without replacement of the country-rock; (2) lodes or zones of fissuring or shearing with the ore-ininerais forming a network of veinlets in the fractures and eating into and repiacing in whole or in part the lutervening fragments of the country-rock. replacing the wall-rock or developlig along partlcular fractures; (3) irreguinr impregnations in the country-rock.

Fissuaing.

The more hmportant orediposits are of the first two of these types, and the fissure systems seen to have controlied almost cutirely the payable ore. The fissuring is extremeiy complex and of different ages. It may best he cousidered as (1) fissuring taking place hefore mineral deposition aud (2) fissuring after "o, osition. Not all fissures of the first ciass are mineraized, and no doubt there are fissurt: i..ter than the earliest ore-deposition and eariler than the last iumertant introduction of minerais. Of the eariler fissures there are then two varleties(a) mineralized and (b) non-mineralized. Fven the miueralized fissures are not sluphe in history, hut prohaby represent two or more periods of movemeut, with a distinct character of minerniluntion comectel with e:ach movement.

The area of most hitense rock-dislocation lies on the western slope of Red mountion. mostly between the Jusie dyke on the west and the Nickel llate dyke on the ans. Within thls imult the most important oredeposits so far discovered are sltmated. The most pronounced Hissure is prohally that of the Le Roi-Contre star vilu system. The strike of thls is approximately N. G1 0° F.: the dip rather steep to the north. with an arerage hetween the second and tweifth levels of a degrees. In the Centre Star workings it is a falrly detinte single zone, int In the le lioi it divide: hoto three known as the mah, north, and sonth velns. The war Eugle Is much less rogular. Its gelieral trend is alont N. gin° W.. the dp to the northeast. Retween the first level and the eighth the dip averaged ge degrees. The conthmation was not found on the ninth level, hut a diamend-irlil hole ran hinto ore bio feef to the north-east of where the vell should have been. This has been followed downward to the slxtenth level whith arerage dip of 38 degrees. It has heen consldered that a flat fault had thrown the veln to the extent indicated. Recentiy, however, what semms to le the conthuati in of this lower zone has heen fodnd above the ninth level. and it seems likely that the two are separate parallel shear-zones.

Three other veln systems are recognized, hut both the dip and strike of these are variable.
 fret north of that \%one. The fecyton has a stribe of $\mathrm{N} .30^{\circ} \mathrm{W}$. A peonilar feature well marked

In some purte of the Hollurill veln la an openlug of the phaty joluthig of the recks. The filling
 deposit. The character of the fissure lat the ghemos rocks remalus falrly coustant, luta a rather gemern aswoclation of the thsures whth the contacts letwen dorlte pmophyry and the other rucks is to he olserved. Wherever the frieture-\%ones pass luto the slaty rucks of the Mount Hoberts formatlou the tlesures lase thelre eleanent defintte nathre and licome zones of mashlug and crompling lu the soft, sledellug clastle formathens.
 They are characterlstkenly nearly the morth and sonth lustrke, and the dili may le elther to the enst or west, hat is manally at high amgies. The majority of these have pissed through more than me berlod of movement. The earlest dislecathons were assochated with the lat rision of a great mumer fimprophyric dyken mostly parryhg large ammuts of botte. These wift dykes have locallzed all hater flswarlug temblug th ansthong near parailellsm whth themselves. Nearly every one of them has well-harked falts elther withlu its own mass, along one or both walls. The slithensides show that these subsequent movenents have somethas
 on the wall of a mica dyke, ome of wheh was rertleal. the other dhyed eb diarees to the somth. bater fractures cutthig across the dykes lose thele eleareme ldently lu the dyke materlal, while those that meet them at in small angle are deflected. In some canew never cmerging out the opmolte shate, In other cases ouly after havlur rin pirailel to the dyke for some distance. Thas
 fatite crossing lt.

The age of the fissures is fised la a pemeral way, shace they cut che formatoms as late as the monzonite and are helleved not to cut the pulaskite. Only a few ansle dykes, and these not of the klud assoelated $w^{\text {sh }}$ the fissures, are fombl the thater ruck. The mechaules of the

 lamprophyric $\mathrm{b}_{\text {, ses and }}$ and ammut of movement wond be ronghly proportlonal to the size
 the urea of gratest fracturc. If the movement abour these was of a differental mature the stress developed th the block hetweell would be rotathonal, and wonld he redleved by a set of fractures correspoudlug to the ore-filled fissures descrlhed.

The mumber of fissures later than the ore-demostion is larpe. lint thelr effect on the wrebudes is not mportant. The displacement is in most cases only a few feet and from a pratical standpoint is neglighle. In many cases these secoll to have lieen merely an osellathon. often along an old fant-zone, which left the "posite sides of the fanlt in about the same relatre position ax before the mowement. The strlke of these later fissures ls nsually mortherly. The dap ls elther to the cast or west aud usially falrly stepl. Only a few of them can he traped with any degree of certainty for any Lreat dastance elther aloug the strlke or down the dip. A detinite slugle fanlt tu one diff may hreak iuto a large momier of small oles lu Workiugs ming a few hundred feet away. some of the major fants can be taced downward for three or fund levels, bint loblow that it is homossihle to he snre of the hently of any excepting those associated with the lamper dyken.

Thif: Ores.

The ores of the Rossland distrlet full into two large classes. The lmpurtant type comsts of a mixture of smblibles. The other conslsts of free gold lin tuart\%. This later tope while less impurtant than the first. has produced conslderable gold, althourh tome of the deposits are now belu; worked. The lest example of this kind of beposit ls at the ofk. mine, where the reln consists of ghartz with free gold and only a small smomut of sulphides.

The mherals apmarlug in the sulphlde type of ore-iodles are birlte, prrbatite, chaleo-
 disseminated thronghont the comutry-rock, especlally In the Monnt Roherts formation, and thas varlety is only sughtly arifprous. It is also found as a prominent coustltuent of the velufillings and there may carry considerahle gold. Pyrrhotle is apparently of two gromeratiothe later variety heing auriferons, whale the firet lo. at bext, low erade. fhateopytite la ma

Irsmopyrite ocenrs loth as impregnations and as a mimor constluent of the large ore-bodles; mulyblenite, sphalerlte, gaiena, aud magnetite ure occusional minorals.

The mineralogical character of the ores even of the nulphlde type varles widely. Fiven In barts of the same vein the rulalve amonats of the varions comstlatits are bot at ail the same. In generai, however, it may he suld that. in the mhes on Iterl maniali, ingrliotite ls the most abundant ore-mineral, followed ln order liy byrte and chalcopyrite. la the working mines
 especially fin the Nonnt Roberts formatlon, these latter mberals hecoume the more prominent, and maguetite is also commouly present.

The detalls of the mburals occurrlug lu nomu of the fuportant stones whll show more eleariy this variatlon. Namples from the Josle system of velus show oniy profotite from the flifh and thateenth leveis, whlle sumples from the fourth nud seventh levels show ingrhotite and chatcopyrite, but ln varying moportlons. On the fonth level pyrbotite prevominates, whife In whe stope of the seventh leval ehaleopyrlte ln the more abundant. In the fratre Star-Le Roi leln systom tho sume varlation Is olisorval. Hut intrinotle is always in excess of chaicopyrite and varyfug amomis of pyrite appar. In the Wur Eagle velus a sample from the third level shows pyrrhotite alone. One frout the fourth has lyriohotite, chaicoprite, and soume siohaierite.
 surface samples from volns lat thont loberts formatlon whow a wher mberulogicat range.
 tlte. molyt:Ienlte, arsenoprite, and chaleoprite lu differing proporthos at various poluts. At
 and stlbulte in about thes order of abundance.

 some of the velns calcite becomes more fimportant with a
mall anomits n large variety of mherats is found, such as wollantonite, garnet, epidote. chan. botlte, serpentine, actinolite, and zeolltes.

In the gold-(fuartz veins along with free gold mome suljhldes are fomm. These are, however, very subordinate in anomit. The gangue in thls cine is entlrely ynart\%.

The metais recovered from the ltossland ores are gold, silver, and eopper. With goid as the most important. The gold content to the ton of ore decreasial stadily to 1001 f , failing from 2 oz. a ton In 1894 to 0.330%. In 190t. Since then it has rlsell to 0.44 oz. nul for the last few years has remaineu fairiy constant. Sllver has dropmed with many tinctuatlons prom 2.85 oz. In 1804
 decrease is dine less, probabis, to faibure in the ore value than ta decrave lin minhug, transportathn, and smeiting costs, whleh altows much lower-grnde ore to be trented than formeriy. Tie values to the ton piotted for the threc metals glve curves whleh, In the case of eopper and sil rer, show a mather murked sympathy. The goid curve does not follow the others very ciosely. Thus it seems ilkely that sliver is mainiy associated with the chalcolsrite. whlle goid uny oceur with the other sulphldes or as frue gold ln altered and sillelthed country-rock. It is certaln, at any rate. that a varying preceutage of the goll does exist in the free witce, but whether In the sulphlde or in the wati-rock is less cettabi. Molymbulte, bismuthinite, amilarsennpyrlte, are
 Jumbo. (ialeua ani sphalerite carry conslderable sllyer.

Pidagenesin of the Ohe-minerils.

Not only does the relative amonnt of the different oreminerais viay in different vein systems, and even b^{\prime} different farts of the sume symem. bint also the order of dejusitlon. Examinatlon of ore sumples reveals a rather chmplex semence in mberaization, and it is quite evident that there aro at least two perlods of sulfhlde-dejosition. The tirst perlod consisted chleffy of the Introdnctlon of prite and pyrmotite reiatlvely jumr lut the pechons metals. Iater disturhances were pollowed by a second sulphlife ieriod characterized hy chatcopsrite. prite, and pyrrhotite, with posslbiy other minerals, ail of which curried considerabiy more goid mud silver than the firsi minerailzation. The cousideratlons upon which these phatements are made are as follows: (1) It ls evident from the ore ansuriations to he given in ciotall inter that pyrite and pyrrhotite occur as the carilest of the suiphide minerais cut hy chalcoj. rite, and that there are instances

In which pyrrhotite in found undoubtediy later thin cluncopyrite; (2) at nome places at least the pyrite and pyrrhotite are very low frade, while lin other pinces they rank as Important ore-minerals; (3) mome of the large stopes of nolld nuiphldg do not carry their values uniformly distriluted, fut in streaks which may possifly he ilue to a luter sulphide jeriod: (4) veins are known carrying inixed sulphides with good rolues up to a cross-dyke, beyond which one mineral, and that very low grade, forins the fissure-filling.

Dolished specimens of ore from the C'entre Stur fourth lepn! stope 410 , fifth level stope $\mathbf{5 8 S}$, and thirtcenth level, Le Hoi elghth level stope 80 , and dosie boofoot level show only pyrrhotle. Specimens from Centro Star third level, Josie $1.3 M$, aud he hot 1,000 show pyrrhotlte and chalcopyrle, the pyrrhotite helng the older mineral. Another sample from the 1,200 -foot level of the Le Rof has pyrite cut by chalcopyrite. Ores from the 1,100 and 1,200 foot levels of the Centre Nifar and the elghth of the War Eagte conslst of pyrite cut ly pyrrhotite. In the City of Spokane tumel, Centre Star stope 43f, Niehet Jlate 300, and War Eigte 1,452 the order ls pyrite, pyrrbotite, and chalcopyrite. Ore in the Hamilton veln, however, sinows prite cutting pyrhotitc, und in the 787 stope of the Josie chalcopyrite is cut hy atringers of prrhotite. A small strluger of sphalerlte cuts chalcopyrite in ore from War Eugte stope No. 1152. A minjle from the surfuce exposures on the Corcy has pyrrhotite cutting inagnetite. Determination of ugeneril c ier of deposition from such scatterem anmples is Inale to introduce criors, fint as there la evldence from the $0 . e^{-}$values for at least two perlods of pyrite and pyrrhotite deposition the following order Is suggested:-

1st. $\left\{\begin{array}{l}\text { 1. liyrite and magnetite. } \\ \text { 2. Iyrrhotite. }\end{array}\right.$
3. Pyrite.
sud. 4. Chalerpyrite.
(5. Pyrrhotite, sphalerite.

The relation of pyrite and magnetite and pyrrhotite and sunalerite is not shown in the samples examined. The paragenesis of the accessors ore-minerals armenoprite, molylidenito, bismuthinite, and galena is also unknown, lut as they are all of rather high gold and silver content they probably belong to the perlod represented lys Nos, 3, 4, and $\%$.

The mineralogy and order of deposition is somewhat slmiliar to tiat at Duckiown, where Kpmp* found pyrite, pyrrhotite, chalcopyrite, and finally a conrmely crystailine variety of pyrrhotite assoclated with later quartz veins which cut the chalcopyrite.

The sulphide-deposits occur as well-deflned fissures or as intersecting veinlets replacing fractured wall-rock. The stralght and lersistent Hamilion veln to the west of the Jnsie dyke is of the first class, and the chalcopyrite vein in stope 737 of the Josic ls a farticularly good example of the simple flssure. It also lies to the west of the Jogic dyke. It has a falrly reguiar whidh of 12 fect and is nlunost vertical. The country-rock ls diorite porphyry but little attacked and not much fractured. At places the almost soild clanfopyrite which forms the fillig may penetrate for a short distance into the wall, lint the houndary hetween clean ore and harren rock is remarkally sharp. At various points a thin layer of rock, conslsting mostly of secondary biotle. Neinrates fresh diorlte porphyry from solid ore.

The predominant structure of the deposits is that of zoncs of crushlng with rephement of the conntry-rock. Sometimes this replacement is so complete that none of the friction lirecela is left. Whlle at nther places pleces of altered rock stlif remalin. Only parts of a fragment may he replaced, and samples are somethes fomm in which the auglte pheloerssts of augiteporphyrite country-rocks ate perfectiy retadned ln a ground-mass of suiphides. . thong the borders of solid sulphlde masses ore stringers are found working outward into the enclosing rock in in network which hecomes less distlnct as distance from the maln mas fucreases untll only the merest threads of sulphide are ohservahle. Nlteration processes extend still farther linto the country-rock. Is a ruic no oppn fiswres are fomm. hint some sinall upenings exist. These are Hned nent the veln with well-erystallized calclte mol zoolites evidently helonging to the last stages of mineralizatlon.

The minerals cumomily fonnd metasomatically replacing country-rock are pyrlte, prorhotite, chalcopyrite, molybdenite. mpinlerite, galena, arsenopyrlte, quariz, calcite, actlable, and blotite. Pyrite a:m arsmopyrlte are fonnd both masive ami as well-formed crsstals. especially lu the

[^7]Monnt Rolerts medinents, of the non-metaific minerais froducel ly the vefo-forming soluthons botite is the most prominent. in the wall-roek nenr the ore a brownish rudiating variety of this minerai is often alundantly dovelomed, somutimes formine a luyer 3 to 4 inches thlek of aimost pure biotite. Qurtz and enicitr are uino found in considerable amounts bordering the suiphidem and working out into the mantured rock, lint on the whole the affect of the solutions seens to have been to remove hoth slifin and entelum from the rocks affected. This is very weil shown In analyses of fresh and altered momzonlte and amgite porphyrite.

	20.	21.	34.	35.
Nill.	[00, 80	40.02	64. 49	37.3?
Til:	0.80)	0.46	0.70	0.87
A12),	17.06)	11:13:	10.51	13.30
$\mathrm{F}_{2} \mathrm{O}_{1}$	0.97		2.71	
Ferl	7.00	14.014	5.20	16.10
Mas)	0.14	0.11	0.10	0.10
Mg(5.41	12.(9)	3.50	10.81
(:1)	9.5 ${ }^{\text {2 }}$	1.05	7.08	1.47
('ul)				Trace.
$\mathrm{N}_{2} \mathrm{H}$	1.31	8.17	4.33	8.55
Na, 1	3.6	0.87	3.50	0.33
$\mathrm{H}_{1}(1)$	0.16	0.13	0.07	0.14
$\mathrm{H}_{2} \mathrm{O}+$	1.14	2.82	1.18	3.01
$\mathrm{I}_{2} \mathrm{O}$)	0.19	0.03	0.:9	0.19
S	0.43	0.39	0.:	0.36
CO.	0.28	0.24	0.10	Trace.
	Im, 39	D8.37	100.04	98.75

Note.-Analyses taken from reports of the Inepriment of Mines, c'anada.
No. so-Anglte porihyrite, , foxie drift, War Eiagle. 10 feet In foot-wall side. Fresh.
No. 21 - Iugite porphyrlte aitercd to bintle in the veln.
No. 34-Monzonite east of mica dyke, $\mathbf{T O n - f o o t}$ level, Ler Roi.
No. 3:-Monzonite ultered to west of mica dyke. Too foot level, Le koi.
The samples were evidentiy taken as free from sulphides as possilife, and the change shows ciearly the character of the alteration. lion, potassium, and magneshm, have lucreased while sllica, calclum, and sodmm bave diminishem. At other points in the veln different conditions might give different reactlons with precipitation of the eloments here removed. and bence slififfication and the intiodnction of cillelte.

The existence of contact-metamorphic conditiotis in the deeper zones is marked ly small anonnts of a deep-red garnet in the sulphides and the rather almidant occurrence of epldote and actinolite in the wall-rocks of the lower levels. The amomit of epdote is sometimes iarge enough to give the rock a bunderl appearance, and a sample from the tenth level of the War Eagle is at least one-thirl epidote. Apparently the alterations at depth occurred under high pressure and temperature, whlle those of the mper part are characteristic of aqueons solutions at moderate temperatures and pressures.

Ore-shoots.
The distrinution of values is not unlform, bint, as in most ore-deposits, they are concentrated In filvourable localtles. The sizc of the ore-shoots depends somewhat on the way in which the term is defined. Lower-grade ore can now be worked than could formerly, and hence the size of a shoot increases with the decreased operating costs.

Probably the largest body of ore ever worked In the camp was that opened up by the Le Roi. This was found on the east slde of the Josic dyke. It bad a stope length of 600 feet and was followed down to the 900 -foot level. A width of 30 to f) feet was mined. The values were not evenly distributed, but occurred In zones through the sulphides. The largest stopes now being worked are No. 1452 on the fourteenth level of the War Eagle and No. 895 on the Le Roi s00-fuot level. The former has been opened for a length of about fion leet and a width of 30 to 40 feet . It has been crosscut 200 feet below the fourteenth level. The ores here are pyrite and pyrrhotite

The relathon of the ore-shoots to the character of the core . In Influencemb by the

 luns taken ghace.

There are alsu cases where the sulphates have ennthated on the olmaite whe of the dybe

 followed the ore-zone. lint was stopind or detlected at the fintersectlig dyke or fault, and as a
 far as the litersection. On the third level of the Wing Eighe the workhigs follow fault-zone k Whth well-marked walls. Thls is erosned by a stromer fanlt with a heave of : faet. North-
 good ore that follows the font-wall of K for $12-5$ feet and then erosses to the hatighewall.

 payable valnes.
 flled fissure has heen cut lis a aboly fat fant. The relatlve movement bas been about 15 feet. In the part of the veln above the finlt the values are too low to mbe, whlle that jait lielow the fault carrles good ore.
 character. W:I the whole, whllo the tissure syitems remaln lin the sume formatlon, the character of the ores evoll in the deepest workligs remalns the same. When, howerer. they bass elther laternlly or in depth intu the Monnt lioherts formatlon the charucter lmmedately changes. The fissures are less dlsthet and rame of them aro almost eatlrely film with finc granular calelte.

Genesis of the Dhiosits.
The composithon of the ore solnthons cin be nuproxlmatels determincal from the minerals that have lech depostenl and the changes produced nenr the fiswires. The maln sulnstances are:-
silica.
 blebs. In phaces, hr:wever. the wall-rock is sillelted and thy quartz stringers are ohservable.

[^8]

 woluthons from other mourcion.
forlhontifo.

 rell, while the "Inteve jarts are thlial whli sulphitios.

F'7urndex.

 recordal lis the inther rare aceurrenee of atilnite.

Iron. Viskel. colinll. dimf topper.

 whiltious wero supersaturated with ferrons componnds, sluce su iarge an amonnt of prrbotite

 Nlekei nul colmit are present onis la smil mmounts.

Ithulics.

I'otnssinm-lenring minerais are abmalant in the aitervi rock. blotite is the most common of these and somethes forms the mase of the alteral rock. Evilentiy alkatics wern in eon-
 originnl monzonile and gianoudorite has lneell removed nud jolassinm adifol.

Gold and Nifere.

 to sullose that thoy wror ind in wohtion in the same manmer and preelighated by the snme reactions ns the buse metais. A varving amonut of golit even in tise suiphites is in tho frep state. liut the larger part is pvilentig in some sort of chemical eomboumb.

Nature of the Sulrent

The probiem of the mature of sointions tint could carry the metaile siements mentioned above togetior with miny that wemr in minor amomis, next arlses, liecker fonm that many
 Silvar shipulde and gil. differ from tibe others in this rexpect. fint acenrifug to de Senarmont they are dissoival in water, saturated with hydrogen suiphide, at high temperature and pressure. The Rossiand ort sointions had a comsiderable guantity of potassinm which may be assumed to act in the sumb manucr as sodium, and hydrogen sulphide no foubt was aiso present in quantity. Borie acid aud fuorine probably aided soiution to some extent.

From these conditions it in comeindmi lind the solntions from whicis the Rossiand ores were

All of theme, excepting a madl part of the NiO, which miny he deriven from the wali-roeks, wre prolubiy contriluted by the areat batholitim that luve ut varioun tham intruded the older rocks. There in evidence of varions jurfolm of inluromization, aul wo doulot the are motutions were difforent, lut at all thew the metalm wore likoly froment un sulphilew lit moluthon in
 with mine carlon doxider boric achl, and finorlue.

The fremence of garust and opldote Indientem tint the lower phat of the doponlts us how

 tempraturen. The lint minerim to form-unmoly, the zoolitew nud calelte-crystalizal at

 no donht alden by the restims between the wall-rockn whe the ore-hearing aolutions. It the rotentlon of the metnille suiphiden depended on the frespace of potumalum ? reanovil of that element by the blotityation of the country-rocks would hecensarly chume the drionition of part of the oreminerals.
 arlien doxde and flumine must hive been magmatle. As prevousiy mown, there were at lenst two periods of minernlimatlon. The first period jrolmbly correspond to the closing uctivilles of the Jurasme latholthe intimanas that ended with the lutrusion of tite groat mas of normal monzonlte. The later more aiknline magma of the palanklte invasion introblucoll much amaller
 nmonits of gold, and to it is attributed the prolinetlen of the richer zones lin the uider deposits und the vary rich lmprogmations that ure foumd bear pulasklte dykes.

The history of the oredeposits ung he summurland us follows The latholithe invasious of Xedson gramodorite, dorlte porghyry, und monzonlte were accon. mated ly fraturing of the wher rocke ly usomewhat torshond stress. In these fracture-zones the woluthos nud enamitlons. trom the coolhg magua dobesited rather low-grade nulphlem. The futrashon of the Terthry

 tepusitlon.

Secondury rearramgement ly dowending witers has had but hitto affect out the Itosshand
 malachlte has developeol. hut as these sumas do mot extemil to a great deptlithe mala mass of
 to about ton feet the imount of winter pmomil lucronses. In thas zone flat dlamond-drill holes are always wet und same carry n lange flow of whter. Helow the for-foot level the numbut of water atcadily decrenses until at 1.000 feet the worklnges are practleally dry und no pumphig is uncessin ry.

I'ETROGIRAIIS OF THE, IGNBOIS ItOCKS.

The great matholthic or laccollthe Intruslous affecthg the Ikossand distrlet fall luto two groups-the earller Menozole perlod of ubite purphyrlte, monzonlte, and gramomiorlte intruslyen, and the Tertary perlod of more nchille charncter reprencuted ly alkall syente and granitic rocks with some dykes of a more basle clurneter.
l ROCKB OF THE Batholitili Intrusions.
Augite l'orphyrite.
 greylsh to greenloh llack, whth prisme of dark-greenlsh pivoxene vislble to thi naked eye. They are usually peary square. They vary in alze aud nay become no small as to be unrecog izable.

Hiaritr Imphtur！．

小いいte．

WIxan dirunolimitt．

1／on：onile．

 shows a ciono aspament．

Pulenalit:

 *

Nhrpmel liour its.

 -

 : मिए

Gimulte low whirl.

l'orphuritic Jonionite.

"owlor Norr lifhr.

 GIIIE \& ! b

 I dyke

 lime lín!l!.

I mevixif:

Kitwanlill:

. Ifinette.

にffesine 'Iypes.

dugite Latite.

 In :11nilysis of that roek is given.

11.-Monzenite. Rasiand, 7 (he feet. Le Roi mine.

1.-. Nilson gramediorla. two miles sonth of Tratl.
1.- Angite purphyry. Iosic drift. War lithlo mine.
 west of Rossland.

					-
	11.	$1{ }^{\circ}$	V1.	N	Xi,
		11.2.1			
1? 1 1\%	1:1,141	$\cdots \cdots 11$:3.4.13	ill 3.6 (t)
(1) $1+$ nelas se		411,! $10 ;$	$\because 4.31$	+16.131	44.ti)
	-1.91:	1..i!	11.60	1.1:	0.17
- ${ }^{\text {a }}$	4.1.10	10.0.	(1).	- M ${ }^{\text {\% }}$	1.1:
T-utitu	:1. 10	-...:		7.1.7	(1.tM)
'inrulinuder	$\because \because .76$:11.61		
If lux	1.1.1	1.4.5	1.11	11.71	:1.1.\%
Masu*tit.	1.1.	11.47	1.80		. . .
	1.-'"	1.15		11.\%1	
llıtilı	\cdots	11.4	: 1.1 i	1.:31	-3. 110
íi口lln	-.in	1.	- . $1 .:$		
Mnsi.nvite			- 3 ! 1 :		
1'Ilarit"	1:, こ.		1::1:1		
Il:itit"	11...20		11.4.5		. .
1:1laib'	1, 3.1		(1). 1		
l'rit'					191
	$\because 17.41$	11:0112-	$!8.1 .14$	07.7-	It.a\|

* Netol.

No. 11. ('litss אillfomathe.
fraler Eialline.

sub Liallear Kutallanose.

(hedrr lirittallar.

No, Vi. Thase Silfoumur.
Orater tiallatro.
Range Inverghasab.

No. X. 'lass busialame.
Grder fierminelte.

Snh Rature Monzubura.

MiNLiRAIGM:

 rock-forming constlunents are not included. lowariptlons uf tiose withe fomm in tite alisenssion of tise petrograplis.
 amb the orominerals are practionlly always masive. Nost of the mberats of the following

Nintur: Fibmitwis

 ares.

Siruilimpt.

 Prolmoter allal a little -ibulte.

 IIf to 111 wr lin prest.

[^9]

 octaliedra.

(BXIDA:

1

C.IHI:O.NATF:S.

 rhomionedron folllt. These are oftelt twimed. Other spectmens show combinttoms of the

$$
\begin{aligned}
& \text { 14humbohtadra . } 1111 \text { 40. } 41 \\
& \text { (1.0.7 } 0 \geq 1 \\
& 0-9 \\
& \text { 1ㄴN를 }
\end{aligned}
$$

 serping surface waters trickle lato tha hine Workings.

[^10]

Shlitivter.

 "f a reejos.

 orn-liatting ticionres.

 of "plutto aloler certain zantis.

 of this variter is white whth a perirly lastre.
 exhlasion of the lasal bilateold. The colonr is al fint pink.

 The viariaty ls white whith a delleate pearly lastre.

Gimelinitr.- (imelintte has been repurted as redalish white wellefomed tramsluctut crystals of rhomb.nhedral halit ocenring ln the War Latul Workhass.*

 secomary mimerals developed by the ore solutions.

Biotife--The hiack mica is alse produced rather commonly in the weightomehoud of the ares.
 biotle.

 of the alterathon of a proxente or similar bask ruck, serpenthe also common in fissinres sud along fialt surfices.

[^11]

 III. 17-1!

 of Coulidia, 1!ma.
Smmary leppt., (i,S.C., 1!mи, I't. A. i. SI.

 I'urallefs. Fingraphieal Jomr., Jume. 1 !eal.
Memolr :'s, g.s.c.

VICTORIA, B.C.:

Frialed by Wiliam M. Ccllin, I'rinter to the King's Mosi Excelleal Majesig.

[^0]:

[^1]: - Journal of licologs, lol. Xlll., page lus.

[^2]: *Tranation. Loyal Society of Canada, 1890, 1.
 \ddagger Professional I Iaper $2 \overline{4}$ Linlted States (iroingical Surves.
 \ddagger Hulluth $3 * 4$, Unlted States Geolorleal Surw's.
 H'lorimionai l'aper ig, Unitid states ficological survey.
 If Journal of Geology, Vol. XX., page 189.

[^3]:
 +Geologteal Suriey of Waslington, Buheth No. 1, nage 17.

[^4]: - V1I. Annual Report, Geologlcal Survey of Canada. Part n, page 54.
 \dagger XXII. Innual Report, E:nlted States Geological Survey. Part 2, page 580.

[^5]: - Summary Report, Geological Survey of Canada, 1900. page i4.

[^6]: - Imtr Mining Camp, Memolr 04, Geological Surrey of Canada, page 30.

[^7]:

[^8]: * Ransoms. 1'IP. 62. Vinted 'es Geologteal Survey.

[^9]:

[^10]:

[^11]:

