IMAGE EVALUATION TEST TARGET (MT-3;

Photographic Sciences
Corporation
 (716) 872-4503

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

回

Canadian Institute for Historical Microreproductions / Institut canadien de micrcreproductions historiques

The Institute has attempted to obtain the beat original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, of which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommage

Covers restored and/or laminated/
Couverture restaurde ot/ou pelliculde

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes gtographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illuatrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or diatortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distorsion le long de le marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutdes lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas ote filmdes.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilme le meilleur exemplaire qu'il lui a úté possible de se procurer. Les détails de cet exemplaire qui sont peut-dtre uniques du point de vue bibllographique, qui peuvent modifier une image reprodulte, ou qui peuvant exiger une modification dana la méthode normale de filmage sont indiquats ci-dessous.

Coloured pages/
Pages de coulour

Pages domaged/
Pages endommagtes
Pages restored and/or laminated/
Pages restaurées et/ou pelliculdes
Pages discoloured, stained or foxed/
Pages decolordes, tachetées ou piqubesPages detached/
Pages détachéesShowthrough/
TransparenceQuality of print varies/
Qualit' inégale de l'impressionIncludes supplementary material/
Comprend du matérial supplémentaire

Only edition available/
 Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une palure. otc., ont d́té filmdes à nouveau de façon à obtenir la meilleure image po-sible.

This item is filmed at the reduction ratio checked below/
Ce document est filmd au taux de reduction indiqud ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of the Public
 Archives of Canada

The images appearing here are the best quailty possible considering the condition and legibility of the original copy and in keeping with the filming contrict specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too lerge to be entirely included in one exposure are filmed beginning in the upper laft hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grace alo gênórosité de:

La bibilotheque des Archives publiques du Canada

Les images suivantes ont éte reproduites avec le plus grand soin, compte tenu de la condition et de le netteté de l'exemplaire filmé, ot en conformite avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc.. peuvent êtrefilmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, Il est filmé à partir de l'angle supérieur gauche, de gauche à droite. at de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

This proof is sent to you for diseussion only, and on the express understanding that it is not to be used for any other purposo what-ever.-(See Sec. 47 of the Constitution).

ennadian \$ociety of ioil enginers,
 INCORPORATED 1887.
 TRANSACTIONS.

N.B.-This Socicty, as a body, does not bold itself responsible for the facts and opinions stated in any of its publications.

CEMENT TESTING.

By Cecil B. Satit, Ma. E., A.M, Can. Son.C.E.

This subject has sn often been written on, and is being so continually and persistently investigated, that it furms, as it were, un inexhaustible mine.

But this very feature shows how very important and yet how little understood it is, for, when investigators continue to disagrec, the presumption is, that there is either a lack of agrecment as to the basis on which the investigations are made, or else a failure, up to the present, to solve all the intrieate mazes of the problem, or indeed a combination of the two.

To illustrate the first point, a tabular synopsis (Table I) is presented, giving the present standard tests in use, in various countries, aceording: to the latest obtainable information. The varistions, ill many cases, are too great to be reconciled, in others trifling; but it is evidently diffieult to compare results obtained in different countries, aml a hopeless task to ever briog them to a uniform stondard. What it behooves us, as Canadian Engineers, to do is to take such sensible and immediate action on the subject as will eommend itself to the good graces of all of us, if possible, or, if' not, of a great majority of those who test the manufnctured article.

However, bofore proposing a mode of combucting such tesk as will (according to the author's experience) be of practieal utility to practical nen, the following Table (Table II) is gresonted to the Society, as embodying results whieh have been obtianed duriag the list two sessions, in making ordinary commercial, private and stadent tents (chiefly eommorcial and private).

Many results have been disearded as being inaccurate, ably only those are reeorded here which are believed to be very alose to the truth much closer than is ordinarily obtained.

These results have been classified aecording tp comntry of mannfacture, and somewhat on a seale of increasing temsile strongth.

Let us eonsider the various qualitios given in their talmbar order.
(a) Specifir: Growity.

I'te average of Candian Portlands $=3 \cdot 11$
The average of English Portlands $=3 \cdot 10$
The averace of Belgian Portlands $=3.055$
The average of all Portlands $(16)=3.09$.
It would scem advisable, therefore, th specify a minimum for Portands of $3 \cdot 10$.

The samples were not dried or prepared in any way; if'they were dried for 15 minutes, according to linglish practice, it is probable they would go somowhat highor.

It will be notieed that the only (wo Pertlands (?) whose speeitic gravity was low (Belgians Nos. 16 and 17) were both poor cements, one, No. 16, sets slowly, and the briquettes made for 4 week tests, and immersed in water after 34 hours, were found slonghed down in tho tanks, and had evidently run and set over again! Thoy would not give any test to speak of. Evidently the hydraulie property, in $\mathbf{2} \mathbf{4}$ hours, was not

nough to hold theu together, while tho other one (No.17) failed in the blowing test. Aicogether, it is doubtful whether these cements are Port. lands or naturals, although sold as tho former, owing to their colour beipe urau

1893-1894.

ve)
high for present facilities for fine grinding ; this would let in 3 out of 4 Canadian Portlands tested, 1 out of 10 English Portlands tested, 2 out of 4 Bekgian Portlands tested, or in all 6 out of 18 brands. Thereare signs, however, that the English manufacturers are waking up to finer grinding, and will soon fall iuto line; there is no reason why educating influences should not bring grinding down much finer still for ordinary brands, but for the preseut, too much severity would defeat the object in view. (For tests on the effect of fine grinding, sec Series I of Experiments.)
nonish to hold them together, whilo the other one (No. 17) finiled in the blowing test. Altogether, it is doubiful whether these oements are Portlandsor mamrals, although rold as the former, owing to their colour being aray.

TABLE II.
CONDENSED TABLE OF CEmENT TEST

$\begin{gathered} \text { Derignation } \\ \text { of } \\ \text { Origin. } \end{gathered}$	Ein				Residue \% on Sicves.				$\begin{gathered} \text { Blowing } \\ \text { test } \\ \text { reanilt. } \end{gathered}$	Time of retting In air.		A verage 'lensile Strength in lbs. per nq. in.																							
									Neat Cement.			$\begin{gathered} 3 \\ \text { mov } \end{gathered}$	$\left\lvert\, \begin{gathered} 4 \\ \text { no. } \end{gathered}\right.$	$\frac{1_{2} \text { to } 1}{\frac{1}{\text { montli. }}}$		$\begin{gathered} 1 \\ \text { we. } \end{gathered}$	2 to 1.																		
					$\begin{aligned} & \text { No. } \\ & 20 \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} \text { No. } \\ 50 \end{array}\right\|$		$\left\|\begin{array}{l} \mathrm{No} \\ 120 \end{array}\right\|$		Incipient	Fnll.					(3ys. ${ }^{3}$	wk. ${ }_{\text {I }}$	\|wks ${ }^{2}$	$\left\lvert\, \begin{gathered} 3 \\ \mathbf{k}= \end{gathered}\right.$		$\left\lvert\, \begin{gathered} 2 \\ \text { nins } \end{gathered}\right.$	$\left\|\begin{array}{c} 3 \\ \text { nos } \end{array}\right\|$	$\begin{array}{\|c\|} 4 \\ \text { moss } \end{array}$	$\begin{gathered} 6 \\ \text { nnos } \end{gathered}$	$y \text { ear }$					wk	${ }^{2} 120$				
Canarlian N	N	Dealer	$3 \cdot 01$	33	0		125			very goorl	$4^{\circ} 00^{\prime}$	$7^{\circ} 45^{\prime}$	78	71										68		10%	12.5								
Canadian ${ }^{\text {N }}$	N	Maker	${ }^{2} \cdot 96$	333	0	2.91			gout	$0^{\circ}+{ }^{\prime 2} 5^{\prime}$		129	150			${ }_{2}^{2688}$		448	478	492		76		115	$15 *$	162	1:5	163	132						
Cauadian Canalian P		Maker	${ }_{3}{ }^{3 \cdot 12}$	${ }_{26}^{25}$	0				yood	5 $5^{\circ} 00^{\prime}$ $0^{\circ} 33^{\prime}$	$200^{\circ} 00^{\prime}$ $3^{\circ} 10^{\prime}$	$\begin{aligned} & 125 \\ & 3: 35 \end{aligned}$	210 $38 \times$			356 525								...											
Canadian P	P	Maker	$3 \cdot 09$	25	0	0.6	$5 \cdot 5$	$13 \cdot 2$	good	1010'	$5^{\circ} 00^{\prime}$	278	399		459																			
Canadian P	P	Maker	$3 \cdot 12$	24	0	$0 \cdot 9$	$6 \cdot 4$	$13 \cdot 2$	yood	$4^{\circ} 30^{\prime}$	$6^{\circ} 00^{\prime}$	438	588		...	671																			
Canalian P	P	Dealer		24	0	$3 \cdot 01$	13.6\|	$20 \cdot 7$	very pood	$2^{\circ} 00^{\prime}$	$6^{6} 9110^{\prime}$	312	531			611											...								
Cnuadinn P		Dealer		24	0	$2 \cdot 3.2$	$27 \cdot 0$	$40^{\circ} 7$	fair			300	307																						
Canadinn P	P Ge	Dealer	...	23	0	31.45	52:216	61-2	lnd			253	264																						
English	1 7	\| $\begin{aligned} & \text { Dealer } \\ & \text { Dealer }\end{aligned}$	$3 \cdot 07$	33 25	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 10.5 \\ & 14.0\end{aligned}\right.$	21.61	3.7	gool			170	230									.													
Engisil		Deale:	3.09	26	0		$12 \cdot 8$	$22 \cdot 9$	goal	${ }^{1} 3^{\prime}$	$2^{\circ} 00^{\prime}$	390	420																						
English		bealer	$3 \cdot 10$	23.	0	$6 \cdot 7$	19.2	$22^{26} \cdot 5$	groal	25^{\prime}	50^{\prime}	250	386	372		552						232	345	316											
Engliar		Denker	${ }^{3 \cdot 18}$	$2{ }_{24}^{23}$	0		$14 \cdot 2$	22.11	gool	30^{\prime},	$1^{\circ} 000^{\prime}$	3336	477	396				637	627	641		192		204	245	253	257	531		,	198	189			
$\underset{\text { lingish }}{\text { ligel }}$	${ }^{\text {P }}$	- $\begin{aligned} & \text { Dealer } \\ & \text { Dealerr }\end{aligned}$	$3 \cdot 13$	24.	0	$4 \cdot 2$ $4 \cdot 5$	17.5	26-3	${ }^{\text {good }}$	25^{\prime} 	3 ${ }^{\circ} 00^{\prime}$	244 335	362 34	2!																					
Enylish		Dealer	$3 \cdot 13$	24	0	$0 \cdot 25$	$5 \cdot 0$	[2-9]	very gool	20^{\prime}	$2^{\circ} 310{ }^{\prime}$		387	444		495												.							
English		Dealer	${ }^{3} 12$	23	0		$20 \cdot 9$	30.5	bud	27^{\prime}	$3{ }^{3} 00^{\prime}$		34.3			469																			
English		-	$3 \cdot 05$	2.3	0	$5 \cdot 3$	19	130-1	\|some haid	20^{\prime}	$2^{\circ} 30^{\prime}$	304	309			440																			
Belyan		Dealer	2.97 3.03	${ }^{30}$	0																		...	195						48	7				
Kelyinu	${ }^{\mathrm{P}} 16$	Dealer	3.03	${ }_{20}^{261}$	0		$12 \cdot 4$		food	$5^{\circ} 00{ }^{\prime}$	$12^{\circ} 00^{\prime}$	232	332			Fld																			
Belyian	$\stackrel{\mathrm{P}}{\mathrm{p}} 17$	Dealer	$3 \cdot 02$ 309	${ }_{27}^{26}$	0		${ }_{2} 12$	${ }^{20} 1{ }_{9} \cdot 1$	bald	${\stackrel{1}{1} 10^{\prime} 0^{\prime}}^{\prime}$	$5^{5}{ }^{\circ} 00^{\prime}$	${ }_{23} 38$	${ }^{3} 89+$			487							,												
Belgian		Agater	3.08	25	0		$2 \cdot 8$ 6.2	8\| 11.4	${ }^{\text {g }}$	+ ${ }^{1}{ }^{\circ}{ }^{\circ} 0^{\prime} 0^{\prime}$	+ ${ }^{4}{ }^{\circ}{ }^{\circ} 0^{\circ} 0^{\prime}$	${ }_{452}^{255}$				${ }^{492}$															207				
	20			25 25	0	\because	110.8	\%\|…																											
	22 23															485					50														
													345								59														
Tatal....	...																																		

\therefore "per cent. restune no wo. Izu sieve
high for present faelities for fine grinding ; this would let in 3 out of 4 Canadian Portlands tested, 1 out of 10 English Portlands tested, 2 out of + Belgian Portlands tested, or in all 6 out of 18 brunds. Thereare sigas, however, that the English manufacturers are wakiag up to finer grinding, and will soon fall into live; there is no reasen why edueatiog influenees should not bring griading down much finer still for ordinary lirands, but for the present, toe much severity would defeat the object in view. (For tests on the effect of fine griading, see Series I of Experiments.)

TABLE II.
AD TABLE OF CEMENT TESTS. 1893-1894.

The sand briquettes were lightly tamped with a small iron rammer,-C. B. S.

noukh to hold them together, while the other one (No. 17) fitiled in the blowing test. Altogether, it is doubtful whether these cements are Portlands or manirals, although rold as the former, owing to their colour being pray.

It will he noticed, with sntislacion, that Caoadian Portlamla stand "t the top in speritio gravity, judging by tho samples tested, which were, however, ull reeived from manufineturers.

The speevite grovity of nutural cementa mighe be placed at $2 \cdot 95$, althongh it is nut so likrly to be under-run, owing to the ease with which this eun be obtuined.
(b) Witcer required for atunduril ronsiatency.
'l'his is considered, by many, to bo very important; but many tests have demonstruted to the writer that what is espeeinlly needed is that there shall be suffieient to make good briguctes; to err, s:ly, 1 per 'romt, in adding water is falal if' too little, while if too much, it docs not secmin to "ffect the strength of brifuettes at one weck, certuinly not at 4 weeks. This is controury to statements often made regarding the incrensed strength given by a minimum amount of water; but probably what is referred to is an exoess of water suffielent to make a thin batter or soup. Undonbtedly such an umount not only makes the triquettes shrink and rerek in drying, but will reriously affeet the early sirength.

A very peculiar effcet was met with in two Canadian und one English l'orthnds. They were evidently frerh, and when mixed with a normal amonnt of water would work into a pood plastic mass, but in about 1 to 2 minites after the water was added, thry would suddenly sit, so hard that it was useless to attempt to put them in the moulds.
By increasing the per cent. of water to about 30, a thin batter was made, which could be got into the moulds belore this action took place; of course this amount of water made the set vory slow, and dead. ened the iadurating action in 1 week testa.

When tests wero made, seversl weeks later, on these cements, this effect had disappesred ; perhaps someone conneoted with the industry can explain the oause of this notion.
(c) Renidues or Fineness.

The variation is enormous, as the following statement shows :-

Tho English l'ortlands are generully very coarse, as will be seen, and the selected Canadian ones fine.

It is not putting it too scverely to saly thut specifying a certain residue on No. 50 Sieve is n direct premium on coarse grioding, and so, in fact, ure neat tensile tests.

For instnnee, Finglish brinds No. 10, Nu. 11, No. 12, No. 13 and Nos. 14 A. 14 B, nee all evidently ground to pass a specification of 5 per cent. residue on No. 50 Sieve, and are all very coarse when sifted on finer ones, thus plainly showing the fiilure of the specification to obtain as good a product as possible.

The au hor would urge the severest requirements for fineness.
Various papers read and the statements of manufacturers themselves go to show that the increased cost is very slight, not more than 10 c per bbl. betwere ordinary and fine grinding,
$\left.\begin{array}{l}10 \text { per cent. residuc on No. } 80 \text { Sicre } \\ 20 \text { per cent. residue on No. } 1 \geq 0 \text { Sieve }\end{array}\right\}$ as maximums are not too high for present facilities for fine grinding ; this would let in 3 out of 4 Canadiao Portlands tested, 1 out of 10 English Portlands tested, 2 out of 4 Belgian Porllands tested, or in all 6 out of 18 brands. Thereare signs, however, that the English manufacturers are waking up to finer grinding, und will soon fall into line; there is no reason why educating influcnces should not bring arindiog down much finer still for ordinary brands, but for the present, too much severity would defeat the object in view. (For tests on the cffect of fine grinding, see Series I of Experiments.)
(d) 'The trme of incipient and tinal set, as found by tiilmerse needlen, does not suem to affiet the atrength, exeept for very hort texis. When the show nettings are generally stronger, goonl celluent may bo either the one or the ather ; but ordinarily, unlesm for tidal work, aslow setting one hus the desirable fenture of allowing masons to mix and use gool sized batehon of murtar, without onnstint thmpering, which is the practice with quiek setting ones, muoh to their own hurt.
(e) The hlowing test advived by Faija, han Ieteeted a "blowey" tendensy in scevral instances; but much late evidence seem to throw some diseredit on blowing tevts, whether made with hot or bailing witer. on the ground that manufacturers oan, by the addition of sulphate if lime, eause tho cement to be so slow wetting anid wet ao ntrongly as 11 resist the hlowing tendency of ko much nas 3 per cent, of free lime added after the cement had been burnt. If this is a fact, chemienl adalyais will neel to be resorted to marn frequently, to detoet this dangerous ndulterution which is fatal in sen-water nud bad in any ease, :as thu preat ntrengith whiela it gives to cements at carly dates is apt in decrenae at longer priods. Helgian No. 19 eement tested gave higher regulis at I week than at 4 weeks ; this looks a littlo nuspicions.
Cemonis have been tented usmally meat ; the diormane have reacheol
 to he the only rational way of testiug a cement, i.e., in the same comtition as it is uscel.
Thu diffienty, however-and it is a sery serions one-hastinen to get anything like mifiom resuits in sand tests, The variation in putting the mortar in the mouldy has been so muela more than the variation in the cementing value of the cement that the teats were valueless, so that moat testers huve elnigg to neat terte as brines simplo mad a lair index of cementing qualities. That this viow is in fanlt, and misleading, ever! testur will admit, and it is only partly aroiding tho dildiculty to specily a cerrain finenes, strenghand specific gravity in eombination, and eves thenthe resulte are not definite, as each cement is liffermen in value. However, for these who have hucilitiey for teatiog cement, weat only, - and these will probably be in the mujority for sume time to come-it woilld seem that 35 ul lbs. at 1 week neat and 150 lise. ac 4 weeks ueat are casily oblnined, and quite enough to speeify, 11 brands tested woull give this, much strengh and stand the hlowing test, and of these there are 6 brandn fine enough for 13 p.e. residue on 80 sieve and 20 p.er, residue on 120 sieve, with a specific gravity yarying from 308 to $31: 3$, while the six brands which are not strong elough are also ton coarse.

The tests on natural cements are not extensive enough to form a ghorl busis, but it would seou cisy to get 100 tbs. weal at 1 week athd 200 , Ibs. neat at 4 weeks, and a lineness the sume an for Portands.

The tests on No. 2 matural aml No 11 lomand were caniod on for 6 months, and show the datural to be gaining on the Porthad, although cach has evidently nearly reached a maximum. This wonld semen fubear out the idea whieh many people get have, that, in time, a natural eement not being robrithle will eatch upha Porthad long time testa are very mueli needed on this subjeet.

Natural eements beins underbarm (usually) have very moeh leso combining power with sand ; the 1 to 1 natural is not ats sireng as 2 to 1 Porland, nceording to texts made last year as per Table Il, in which the mixtures were made with 15 p.e ut water for 1 to 1 , and 12 p.e. of water for 3 to 1 mixtures, the uortars beiner lightly tamped into the mould with an iron rammer; the tests made this year, however, by means of a uniform pressume, give much higher results lior 1 to 1 naturals, when 20 pec. of water is used, which would seem to be nearer to the amount used in practice, making a solt plastic mortur. (See prevsure texts.)

Natural cement has many uses. It is being passed aside in many quarters,-why? because if immersed in whter fer 1 week or 4 weeks, it will givo low tensile tests. 'That terror of the present day, the testing machine, condemos it.

blowey"

 to throw g water, phate it ly ast ee lime homieal nis dan. ease, :1* © apt t" , higherNow there are many necasione where it womld met he wise to use ang. thing but he best Portlands-winh un haying mortar in extreme first, or where grent inmediate atrength is regnired, or for sul-ayneous work generally, but, on the other hund, no onedomber the durubitity of Hond mataral eement. Works in Buropu huadreds of yours old, and all the work done in the Whited Statis mid Canada previons to 30 years
 ng qualitites.
Moreoser, tret mad" inl No. 1 nutural cement (seo Serics III front testy) show that while it camot he immediately exposed to extrome cold, yet when it is expoved, alter it has set, it will rexist frost theroughly, and lecome stronger than if immersed in water at an ardinary temperature. There are thousiuads of sitnations, where natural coment mortur, 1 cement 2 samd, will be found amply atroeg for the purposes required, in which ease it will be found cheaper than Portland mortar, 1 cen ant 3 smil. Ref:rringahead to Suries III (frost), it will be acel that if mortirs are tested in open nir, the Portlands are weaker and raturals stronger than if the briquettes had been under water. This is a point of much importanee, because if work is to be dono which will not usually be submerged, ay in damp fiundations, abutunnts on land, culverts, ete., then testy mado in open air will givo resulis more fivourable to naturals. In su many words our stadard testes fay: "Let ust est all hydrualie cemente under rater, whether the inortar as used wili be su or net, we will be oo tho s:lict side." This, as a generality, is doulntess best ; but if we comsider what a largo proportion of ecment is used in situntions usmally not sulmerged it wonld semmore rational to text cements under conditions similar to those under which they are to be ased, in ench ense be it in water or air.
As before mentioned, all the sand tests given in tho Table (Table II) wero made ly tamping the mortar liphlty into the moulds with an iron rammer weighing about $\frac{1}{2} \mathrm{lb}$. and $\frac{1}{2}$ inch spuare-section. This has been dowe in as uearly a noiform mamer us possible; abrut 3 layers were tumped, and then a th layer smoothed off with a spatula; avery effort was dirceted toward uiformity in method, and, doubtless, some degree in aceuracy wats obtuined ; but it was felt that the bust possible would only emable comparisons to be made in this laboritory, it would not emable any to be made with results obtained clyewhere. Tho Cement Committee of the Socicty (of whioh the writer was made a member, by invitation) adrived that tests, should be made under a pres. sure of 10 lbs. pur sif. incl. It was not lefined at the tine whether his applied to sand teets only or to ueat tests also ; but the necessity lor pressure is not so great in neat tests, becauseanyone with ordinary skill and practice can make a good neat brigucte, und a light pressure will not affect the result much, as will be shown farther on.

In November last the moulds for applying pressure (see draniu!-),

Bran

No. 21

No. 2ll

No. 1:1 1

No lisll

Brand II

No. $15: 3$

No. 1313

No. 131

No. 9310

No. $10: 3$

No. $11: 3$ which were from a de-ign of the writer's, modined hy Mr. Withyeombe, were eompleted, and sinee then several humbrat mater have been male with them. It would seem a simple mater to mix up mortar, put it under a flungre, and by putting on 10 Hs , per :of. inch, make hriquettes; but theory and practiee must be fellow-lahourers. Now, 1: p.e. of water is considered the correct thing in 3 to 1 mixtures. but with this amount, the mortar would not pack at all in a closed nomuld ander so light a dead pressure, and it is liyht dead pressure that is wanted; even 20 lbs per:q. inch was of no greater (ffect. then 15 p.e. of water was tried, with very little better revults.

It was fiually coneluded to try several series with different pereentages of water, and therely determine the bent per cent. for makiug a good briquette.

TABLE III．

TESTEI IN TENSION．PRESSURE SANI）TESTS

Brand	Mix－ thre．	$\%$ of water．	Pres． sure per sq．in	1 week tests， 1 air，if water．						1 week tests， 1 ail， 27 whter．							
				Ibs．per ${ }^{4} 1$. in．						lbse per mil iti．			Weig＇t $\begin{gathered}2 \\ =\end{gathered}$ when tested $-=\frac{2}{7}$ in $0 \% \geqslant{ }^{\circ}$				
				$\underset{\text { egt. }}{\mathrm{High}-}$	Low． est．	$\begin{aligned} & \text { Aver- } \\ & \text { uge. } \end{aligned}$			High－ est．	$\begin{aligned} & \text { Low- } \\ & \text { est. } \end{aligned}$	$\begin{aligned} & \text { Aver- } \\ & \text { nie. } \end{aligned}$						
No． 2	1 to 1	15	10	15	23	322	$4 \cdot 513$	： 3 ！ 18		12．6：3． $410 \cdot 4$	71	39	59	$4 \cdot 6.4$	$1 \cdot 11$	1：3	795－9
		17．	10	165	100	136	6－24	＋154	7 －9m 10×5	282	20.7	9194		4	－ 113	16×3.7	
		$\because 11$	10	1：10	4	117	$5 \cdot 66$	$5 \cdot 0$	$x \cdot 6 \mathrm{i} 21008 \cdot 6$	292	339		8－53	$3 \cdot 17$	$15: 3$	1643．	
		22	10	$12: 1$	106	113：	$5 \cdot 54$	$1 \cdot 99$	$9 \cdot 8.1121$	$25 \times$	2101	235°	$5 \cdot 49$	512			
No．2I to I			20	47				$4 \cdot 0.0$	1．5．02 $675 \cdot 1$								
		174	20	1.4	111	126	$6 \cdot 37$	$4 \cdot 9$	$8 \times 1060 \cdot 11$	$\because \mathrm{Z} \times$	1600	176		1－3	¢	$17: 3$	
				157	90	$11.1{ }^{-}$	$5 \cdot 67$	$\therefore 13$	！－6：31097－4	297	219	36.4	$\therefore 16$	\therefore	$6 \cdot 12$	$11615 \cdot 6$	
		22！	211	126	111	11！	$6 \cdot 51$	$\therefore \cdot 113$	$3 \cdot 2 \times 110.43$	29.	2： 4	262	\therefore－．a	$5 \cdot 21$			
No． 1 I 1 lo 1		15	10	86	40	622		＋12	11－16 65： 7	112	！－	10.	$3 \cdot 14$	$1 \cdot 11$	$12 \cdot$		
		$17!$	10	（i0）	37	52	$5 \cdot 14$	1－6i0	110：80 $546 \cdot 0$								
		20	10	149	108	1：3	$5{ }^{\text {5 }}$	$5 \cdot 12$	\sim－ 61120.1								
		224	111	129	1211	320	5． 6 ix	$\therefore 19$	＊－761095－1								
No is	110	1.5	20	49	42	45	194	$1 \cdot 18$	15－16 19.95								
		172	20	18.4	145	16.64	6－62	$5 \cdot 28$	$12 \cdot 61.1100 \cdot 6$								
		20	20	1.46	114	13．5：	$5 \cdot 6.3$	$\therefore \cdot 17$	$x \cdot 211111 \cdot 1$								
		22	20	130	108	118°	5－72	； 3	s－29！ $10 \cdot 0$								

TESTED IN TENSION．PRESSLRE SAND TESTS－Contintat．

Hraml	$\%$ of water．	$\begin{gathered} \text { Press } \\ \text { sure } \\ \text { per } \\ \text { sy. in. } \end{gathered}$	1 wetk denta， 1 uir， 6 water．							4 week terse， 1 air， 27 water．						
			Ibs．per $=1$.							11s．pur ery in．						
			$\underset{\text { est. }}{\substack{\text { ight }}}$	$\begin{aligned} & \text { Low. } \\ & \text { ext. } \end{aligned}$	$\begin{aligned} & \text { Aver } \\ & \text { age. } \end{aligned}$	$\begin{aligned} & \text { when } \\ & \text { evered } \\ & \text { in on. } \end{aligned}$					Low． est．	Aver ：ゅe．	when ［ister） 1110%		$\frac{0}{5}$	戠
No． $15: 3$ to 1	15	10	20	1.1	16.2	$4 \cdot 3$	$4 \cdot 0: 3$	1：． 21	$2.51 \cdot 11$	35	1！	28	［．il	3＇sx	15－nis	$411 \cdot 6$
	172	10	13			$1 \cdot 59$	$3 \cdot 4$	11.616	$102 \cdot 1$	48	3	10	4 －lisi	$1 \cdot 1.5$	$11 \cdot 0: 3$	$411 \cdots$
	20	10	13		11	$4 \cdot: 3$	$1 \cdot 17$	$11 \cdot 79$	124	2：	5	1.7	＋-61	1.21	128	1 $141 \cdot 2$
No．17\％		20		3				1・バ	2：1－：			：${ }^{\text {x }}$				161\％
	112	20	7		5					10		$3: 3$	$1 \cdot 7$	4•2：${ }^{\prime}$	$110 \cdot 0$	$361 \cdots$
	20°		17	8	123	$1 \cdot 85$	1－3	$11 \cdot 3$	115	28	19	$\because 1$	$1 \cdot 5$	$1 \cdot 36$	10．80	2543
No． 11361	15	111	25	1	19	4.37 4.49	3．81	［2．37	：1201	31	is	63	4.54	3．09	$11 \cdot \underline{4}$	2971
	174	10	35	15	27	4.49	$4 \cdot 07$	413．3．5	202．：3		92	96	4.72	$4 \cdot 2$	$110 \cdot 17$	996
		10	27	20		4.68	4	$12 \cdot 91$	$303 \cdot 1$	1：1	101	120		4－1s	$10 \cdot 14$	1215
	$22!$	111	$\because 7$	32	242	4.85	$\underline{+} \cdot 2$	12．sid	31501	SS	71	79	$4 \cdot 70$	1． 16	$11 \cdot+1$	7
	，	110	11	$\stackrel{ }{*}$	10	4.81	1－1：3	$11 \cdot 1: 3$	$111: 3$	． 3	：3	46 ！	$4 \cdot 73$	$1 \cdot 11$	1：191s	612 3
No．93）${ }^{\text {a }} 11$	1.7	20	37	13	34	$4 \cdot 66$	＋ 10.5	1：329	4：90；	46	（i2	71！	$4 \cdot 69$	$1 \cdot 15$	$12 \cdot 2$	5：if：
	174	20	33	20	27.	$4 \cdot 53$	$1 \cdot 10$	11.54	263	121	103	114！	$4 \cdot 75$	$1 \cdot 27$	111.15	$1162 \cdot 1$
	$20{ }^{\circ}$	20	29	20	28.	4.8	$11!$	I2．＊	3395	14.3	109	127	$4 \cdot 69$	$1 \cdot 26$	$4 \cdot 17$	1164
	22.1	20	25	29	23	$4 \cdot 86$	127	12．17i	$277 \cdot 1$	10：3	8	95！	4.81	$4 \cdot 3$	11－0！	1053.1
	25	20	27	3	25	$4 \cdot 80$	1－14	12059	32.14	：3	44	49	4．70	$1 \cdot 09$	12.91	1：31．1
No． $10: 3$ to 1		10	37	30	34.	$4 \cdot 70$	4．15	11.10	3013	91）	51	551	$4 \cdot 72$	415	12•07	Bisl 0
	163	10	43	22	31.	$4 \cdot 67$	$1 \cdot 12$	$11 \cdot 6.19$	3148	\bigcirc	6.3	70^{-}	$4 \cdot 84$	13	$10 \cdot 05$	－113．5
	20^{-}	10	4 4	：	$37!$	$4 \cdot 79$	$4 \cdot 1$	$11 \cdot 41$	427	6．${ }^{\text {a }}$	12－	64	4.89	1：32	11．6－	－11－11
	22	10	： 4	$\underline{7}$	30	$4 \cdot 95$	$1 \cdot 37$	$12 \cdot 4$	3：30	a ${ }^{1}$	\％	44	4.88	1－$\because 2$	1：34	800．0
	25	111	： 31	15	23.	4－ย2	$1 \cdot 7$	$1: 3 \cdot 1.4$	：1以年	：11	2.3	28.	$4 \cdot 86$	$1 \cdot 1 . \%$	12.94	品い・
No． $10: 3611$		20	41	27	3isd	$4 \cdot 68$	$1 \cdot 11$	12－14	（1120）	17	52	61	4.95	1． 11	11.04	18：301
	17	21	37	16	27	$4 \cdot 65$	1 113	12－1：	1：37：3	Sis	17	68	4.84	$1 \cdot 31$	$10 \cdot 96$	［15：3
	30°	20	12	$: 1$	35	4.82	$4 \cdot 1$	$11 \cdot!13$	1213	－1	：36	71	$4 \cdot 97$	$1 \cdot 12$	11．03：	－3．3．1
	228	21	：3i	3	$29!$	$4 \cdot 90$	4	12－6is	： $13: 1$	\square	711	75	4.90	$1 \cdot 3$	1193	－ 43
	2.0	20	$3: 3$	$2 i$	31	$5 \cdot 00$	$1 \cdot 3$	$1: 3 \cdot 6$	（10： 11	SY	34	48	$4 \cdot 85$	1.27	$11 \cdot 9$	8ion

 and were for 10 lbs and 20 lbs ．pressure per sy．in．for 1 week and 4 weeks，athd each result tabulated is the average of in briguctex，and the whole table the result of 77 experiments，of 385 briqueltes．

The result，to the author＇s mind，is thetinite， 20 p．e．of water is just sufficient to make a plastic mortar，so that a gond briquelte：can be formed while more water tends to drown the eement and make it weaker at both the I week and 4 week tests，although longr 1 tests would probably show in ecovery in this respect．

This 20 p．c．applies to 1 to 1 and 3 to 1 mixtures，and will probably bo about right for 2 to 1 also，if it is desired to make suth tert．

It is conclusive from the table thut if any standard test under light pressure is to be adopted for sand tests, 20 p.e. of water must bo preseribed as a definite pait of the test, and in this way perfeet miformity whtained. It is understood that the sand used is standard samel dry and sharp, a fince or rounder sand would allow less water to te used. This anount of water, while greater than that nomally given by authorities whase mellod of making simd briquettes is by same severe hammeinge wrocess (e.q. German) is still clowe to the amonnt used in practice.

What we want, it secmes, :s, fist ol'all, a uniform method capalle of application in :ny pat of the Dominion, after that wo want it to appro ch as merly as pos-ille to actualusine, and fortunately the two conditions are in larmony with each other; even at the risk of repetition it is worth sayingy argin, that phastic mortar made with 20 p.e. of water is close to practies, and will give regular amb arconate tests if put into monlds under light pressre. The amount of this pressure does not secem to be of such great importince, but 20 lbs . per sup. inch gives rather sharper-elleed briquetter, with abont the same variation in minformity : and the same tensile strenth per sq. inch. This is equivalent to 20 feet ol masoury, which, of eomse is more than pactice would give ; but the tests do not vary to any extemt when compared with thone made with 10 lis. fer :y. iuch. Therefire it is not deemed ofsoufficient inguntance to sacrifice gend manall resuits. Therefore, 20 llws, per sf. : inch pressure: aul 20 p.e. water was adopted about 1 month ago, and the fillowing resuls obtainel ('Table IV); this thle wil be com-

10
pleted in a few months, when it is intended to complete this paper by additional results on pressure, frost and pier tosts.

Whether the future will bring sand tests to greater uniformity than this remains to tre seen.; but it is believed that, in this way, the sand combining qualities of eements ean be compared with necuraey with one another, and in future such will be the method adopted in the cement laboratory at McGill, subject to the modifications of our eement committee.
It is carnestly to be desired that a code of terts be formulated at onec, and all members urged to test under this code. Let all cements stand or fall under it. In the contest it is believed that Canadian cements can beax good as the be:t ; but to do this, there must be reform oo somo sider, so thut tests made from outputs will show a greater regularity, and eause the cement to commend itself to the consumers of tho artice.

COMIRESSIVE TESTS

These aro doulteless more valuable than tensile ones, in the sense that we use mortar usually, in compression. There are several reasons, however, why such tests are not really necded : -
(1) Because the strong machivery needed would not be generally available;
(2) Because the eompressive strength, after all, varies quite regularly with the tensile, being 5 to 6 times as great at 1 week or 4 weeks, and gradually increasing to 9 to 10 times as great at a year, because by this time the cenent is becoming brittle and has attained its maximum tensile strength. This is more particularly true of Portland cements, as maturils do not get so britule ;
(3) Becanse the eompressive strengt! of eement mortar is so great that we need seldom eoneern ourselses with it, but should rather know the adhesive and teosile strengths should they ever be ealled into play, and, moreover, the strength of mortar in thin joints is much greater than in cubes. Tests on cubes always go higher for samall cubes than for large ones. (See also Series (lVa) teves of mortar joints in brick picrs.)

THANSVERAE TESTS

Have often been adroeated, and the machinery needed may be quite simple; but there are two objections whieh would preclude there being any grcat value in such tests:--
(1) Beeruse the eoefficients of rupture in transvers: testing are known to be at fault in not really indieating the tensile strength of the outer layer or fibre ; this could possibly be avoided by determining. certain corrections as a thesis paper to the Singineering News poia-
ted out;
(2) The main oljection is that a flaw of a very slight amount may be objectionable in such texts if situated ncar the tension lace. Any cement tester knows that bubbles, will occur. They may be very minute, or if of any size may be deducted in tensile tests, while in transverse tests, who conld determine the correction to be mitde? Also tests made show that if tested upside down from position monlded, the results are higher than when tested as moulded. Altoseller, this methou of testing does not seem to commend itsilf to grneral use.

To conclude the subject of ordinary testing for commereial purposes, and with the addition of chemical analysis where available fin seientifie ones also, the foliowing seems to be in gond basis to work int, that tests shonld be made in combination :--
(1) Speceife gravity 3.10 for Portlands 2.95 fir naturals.
(2) Blowing test. In the abence of really final knowledge win the subject to continue to specify pats in stam at $115^{\circ} \mathrm{F}$. fir four hours, in water at $115^{\circ} \mathrm{F}$. for twenty hours, at which time if the pats atre stuck tight to the gromend glass, the cement may be considered safe, white if it has loosened from the plate but has not yet eraeked or warped, it may
be imnersed again for $2+$ heurs at $115^{\circ} \mathrm{F}$., or else placed in water of ordinary temperature for 4 weeks, after which, if no further signs have developed, the remet way lie considered safe.
(3) Fineness :-
$\left.\begin{array}{ll}10 \text { p.c. residue on No. } 80 \text { sieve } \\ 20 & \text { p.e. } \\ \text { " } & 120 " \text { " }\end{array}\right\}$ as maximum.
(t) Tensile strength :--

Portlund. Naturals

Minimum neat	3 days	250	75
$"$	$"$	1 week	350
$"$	4 weeks	450	200

1 to 1 mad 3 to 1 sabal tests with 20 p.c. water, and 20 lbs . per sq. inel pressure to be determioed by testa made and results furnished within the next gear.

SERIES I.
APECIAL TESTA.
On the effeet ef fine grinding:-
(a) 2 oz. ecment pas-ing No. 120 sieve.........Cement

tested at 4 weeks gave 165 lbs., while 2 oz. cement passiug No. 120 Sicve.........Cement 60% sand.

Sand
aree 121 lbs . tested at the same age.
Thus, if in the first instance we consider all but the finest as sand, then our result is only 35 per eent. higher than the 2 nd mixture, showing of how little value the coarser particles were.
(1) No. 8 English Portland (very coarsc) gavo in ordinary test 414 lbs. 1 week neat, 528 lbs .4 weeks neat ; but when all the particles enught on No. 80 sieve were rejected, the results were 393 lbs. in 1 weck, 484 lbs , in 4 weeks, demonstrating the well-known fict that neat tests of Portlands operate apainst fine grindiug, and therefore should be cousidered only in connection fineness and specifie gravity.

(c) Equal portions (samo brand) of residues on No. 50 and N 0.80 sieve were mixed with $22 \frac{1}{2}$ per cent. water, and gave 262 lbs . in 1 week and 324 lbs , in 4 wecks, which is very surprising, and ean only be arcountel for on the ground that the dust of cement elinging on to the cearse partieles was sufficient to hold them together, or elso that the mechanical action of mixing tho mortar broke up many coarse particles into finer ones.
(d) To show the superior vilue of fine cement in sand mixtures, the ffllowing resulta have been obtained :-

These results should be a convincing argument to user, of Portland cement, that fine grinding is worth paying for, because tho finer the same eement the greater its sand-earrying valus is.

The only partial exeeption in the nbove results is No. 2 natural. This is either erratic, heing, however, duplieated, or it not, is easily acenunted for. An underburnt cement is easily ground, and therefore is not apt to te well ground ; very easy grinding will make it fine enough, and the better burnt partieles being a little lefter burot are therefore. harder and escape grinding; but these partieles, not being very hard, are probably bruised ip in mixing, aul form the liest part of the cementing substance ; therefore, when these are silted out, the underburnt fine parfiele has not as great a cementing value as the mixture would have unsifted. On the other hand, the coarse particles in Portland eement are much harder, and are always a detriment in a sand mixture.
series II.
hot WITER TENTN.
(ii) No. 1. Natural cement near, 2 months old, gave when tested the fillowing results :-
(1) Water at temperature 520 F ., $\mathbf{2 0 6}$ lbe nverage.
(2) " " " $122{ }^{\circ} \mathrm{F}$., $\mathbf{2 5 0} \mathrm{lbs}$, a verage.
(b) No. 1. Natural cement 1 to 1,2 months old, gave when tested the following results:-
(1) Water at temperature $47 \circ \mathrm{~F}$., 125 llws average.
(2) "" " " $118^{\circ} \mathrm{F} ., 129 \mathrm{lbs}$ average.
(c) No. 4 Portland, neat, 1 monh old, gare when tested the following results:-
(1) Water nt temperiture $65^{\circ} \mathrm{F}$., 533 lbs , nverage.
(2) " " ${ }^{(2)} \quad$ " $\quad 118^{\top} \mathrm{F}$., 616 lbs, average.
(3) " " " $186^{\circ} \mathrm{F}$., 55 l lbs . nyerage.
(d) No. 4 Portind, 3 to 1,1 month old, gave when tested the foling results:-
(1) Water at temprature $66^{\circ} F_{\text {, }}, 81 \mathrm{lbs}$, average.
(2) " " " $183{ }^{\circ} \mathbf{F}, 81 \mathrm{lb} \div$. average.

These tests, which are very uniform, indiente that for either natural or Pootland cements tested neat or with sand, there is a slight gain in strength, by using het water in mixing.
The adrentage being that fir exposure to frost the ecment will set quieker and rexist the frost action better, by referring ahead to frost tests, it will be seen that coments exposed at about sume temperature (natural cement only tested with hot water in frost) gave much ligher results when mixed with hot water, being io ratio, 94 to 0 for neat cement No. 1 Natural and 117 to 44 for 1 to 1 cement No. 1 Natural.

SERIES III.

FRost on EXPOSURE TESTS.
This serics consist d of various investigations into the strength of mortars when nrixed with different conditions of water and under different exposinres, reference being particularly made to frost. All tests were made in quadrupicate:-
The 1 st set was submerged, after 24 hours, in water of laboratory tanks;

The 2ad set was kept on damp boardsin a closed tank for the whole period, and never al'owed to dry out;

The 3rd set was allowel to set in the laboratory, and then exposed to the severe frost and left in open air for the whole period;
The 4th set were exposed in from 8 to 10 minutos to the severe frost, and lelt there for the whole periond, except to take them out of the moulds when they were set or fro\%en.
TABLE V.

	Tensile Strength.			Compressive Strength.									
Minture. 'Age.				1	2	:	4	'Dates of Exposine				$\begin{gathered} \text { No. } \\ \text { of } \\ 1 \times=t s . \end{gathered}$	Remarks.
	602 171	2×2	$3: 4$					Dec, 6th to Fel. fith.	$+2 \because \mathrm{~F} \cdot+22 \mathrm{k}$	309 (3)	$2 \%^{\prime}$	14	
1 to $1 . \quad$ "	37 276	191	23:3	3200	1780	1600	1900	$\begin{aligned} & \text { lec. } 11 t h 1 \\ & \text { Feb. } 11 \mathrm{~h} \text {. } \end{aligned}$	$\|+5.5\|+3.2 \mathrm{~F}$	40^{\prime} $8^{\prime}(4)$ (4)	:5	20	
$\geq 101 . \quad ،$	16 is 1.50	10\%	111	s00	320	660	410	$\begin{aligned} & \text { Dec. } 12 \mathrm{ch} \\ & \text { felo } 12 \mathrm{th} . \end{aligned}$	- F Wr	$\begin{aligned} & 40^{\prime}\left(\begin{array}{c} 3 \\ 11^{\prime}(4) \end{array}\right. \end{aligned}$	$3{ }^{\prime}$	$\because 1$	
3 tul. ،	$104 \times$	92	97	300	520	230	300	$\begin{aligned} & \text { Dec. } 1:: t h \\ & \text { Felo } \\ & \text { F. } 1: 3 t h . \end{aligned}$	$-515-61$	$\begin{array}{r} 127^{\prime}(3) \\ 10^{\prime}(4) \end{array}$	$10: 3$	21	Nos. Baml4 showal irregular and injuret fractures.
No. 1 Natural Neal.	226221	349	*	1640	1500	2:300	1390	$\begin{gathered} \text { Jan. } 12 \mathrm{th} \\ \mathrm{to} \\ \text { Mar. } 12 \mathrm{th} . \end{gathered}$	$+2{ }^{\text {F }}+45$	$\begin{aligned} +1: \prime(: 3) \\ 11^{\prime} \\ (4) \end{aligned}$	117	$\because 4$	$\begin{aligned} & \text { No. } 4 \text { tenson } \\ & \text { complety } 1 \text { lown } \\ & \text { in fragments. } \end{aligned}$
1 11. "	125. 229	187	11			11	Stil	$\begin{aligned} & \text { Fel. } 5 t_{1} \\ & 10 \\ & \text { April } 5 \text { th. } \end{aligned}$	$\text { is } \mathbf{F}+\cdots \mathbf{F}$	$\begin{aligned} & 8^{*} 0^{\prime}(3) \\ & 10^{\prime}(4) \end{aligned}$	00^{\prime}	21	Some of No. tension injureal an No. is compression.
Neat. ..	$2.50 \quad 2-1$	15!	91	2×00	2000	13:00	1300	$\begin{aligned} & \text { reb. } 131 \mathrm{~h} \\ & \text { April" } 13 t h . \end{aligned}$	$-1:: \mathbf{F}+i$	$\begin{aligned} & 6^{\prime} 0^{\prime}(:) \\ & 10^{\prime}(1) \end{aligned}$	$6^{\prime} \cdot 1$	21	Mined with water at temp. l2e'F.
1 tol. ${ }^{\text {a }}$	$129 \quad 170$	80	117					$\begin{aligned} & \text { Fel. } 14 \mathrm{th} \\ & 10 \\ & \text { April } 16 h \end{aligned}$	-4 F. 11 F	$\begin{gathered} 3^{3} 0^{\prime}(: 3) \\ 8^{\prime}(1) \end{gathered}$	$\because 80$	20	Mixed with water at temp. 11s' F .
N eat. l m	135 2\%	217	249					$\begin{aligned} & \text { Feb. } 26 t h_{1} \\ & 10 \\ & \text { Mar. } 26 t h \text {. } \end{aligned}$	$1 \pi F+\operatorname{lig}_{2}^{1} \mathrm{~F}$	$\begin{gathered} 701(3) \\ 9 \prime(1) \end{gathered}$	711	20	$\begin{aligned} & \text { Mixed with } 2 \% \\ & \text { brine. } \end{aligned}$

Table V is here given, showing the results obtained, and necompanying it is a temperature ehart showing the weather to whish these mixtures were exposed during their whole period.

It will be nuticed that these teets were purposely malle in cold snaps so as to make the testa as severe as possible.
It would "ppear inprobable that mortar immediately exposed to severe frost wruld hecome stronger than that allowed th set in a warm atmospliere, but the results of all the Porthond coment tests, both in tension and compression (with one exception) assert it ; and also that those allowed to set in the laboratory, und then exposed continually, a a the weake of ofll the 4 conditions treated of - this would go lar to dis. pute the advivability of envering up mortar laid in frosty weather.
The nest delnction from the Porthand cement texts is that laboratoly tests made wihh hriquettos submerged give higher resultes than can be expected in ofen air work, and therefore that engineers should ad this to the varime other desenerating conctingencirs, such as bad mixing, dirty samb, itt. A deduction not much evilencel in the Thble is that it is not safe to lay Portland cement mentar below $0^{\circ} \mathrm{F}$, beeause the :3rd and the strics of' 3 to 1 Porthul exposeh at - $6^{\circ} \mathrm{F}$. gave oeular evidenee that their structure was injuren, and the trist-pieces broke most integularly, white the other exposures at about $0^{\circ} F^{\prime}$. gave no exiletice of any injuy at all. Coming to the matural cement mortar in the $\mathbf{j t h}$:mith hith lines, we lind much diflement results. The first one is lesesise, and is that this particu'ar cement mortar camot be laid in zero wenther. The first sel weec all blown to pieces (exeept the (rube), which surprisingly :tem 1890 Itw, while the 2nd set, although not quite blown to pieces, all showed extrome injury.
Thne most pecular result is that his same cement, neat, if given a hew hurs to st in the thenn rate air, will on exposure to the fiont attain a turneth highen of the 1 combitions; this is guite remarkable, that while the Porthand eemnt was strongest when submerged, the Natural ecment was stronger in damp air nad trmpent in frost.
ludeed, the Portlamel ement, in air, for 1 to 1 mixtures, was very little shonger than the 1 lu 1 matnral.
All of the matural cement specimens expmed to first showed a disintegrated layer on the ontside about!" thiek; underneath this the structure was quite vouml, and denteless much of the sariations in tests is due not so much to a weakening thro ngh the whole mass as to a ralumel acetimon': area.

The lat serins mate with 2 per rens. brine in mill weather for 1 month (exposed it $+72^{\circ} \mathrm{F}$) showell that sill inereased the strength, making them as strong as othere were at 2 months, when mixel with fresla water, and also again combisised the advantage to this oatural cement of opena air tests.

It would sem hate either hot water or salt are therefore very otrongthening in their effect. Much ahlitional data on this subject is hoped tor in Part II of his paper.
shries 15 .
sheabing tests.
This series of experiments was cartiod ont with a view of obtaining more inliomation on the shearing strength of mortar. The method alloptel was as follows:-

Three bricks phacen, as shown in -ketel, were emmed toge ther, and tested at the end of one month. It was found that liy placing pieces on' sont wowl at A...f.A., an aetim as mearly as pussilhe a shear was obtaincel, ind gave very sati-firlory results, the pressure being practically concentrated illong the two mon tar joints. Noside preseure: was applied, hecause the desire was to obtain miniunum reults where friction wis not assisting.
The combined etlict ol adhesions :nd friction can easily be computed if the adhesion and super-imposed lead are known.

The results are divided into line mortar, natural cement mortar and Portland cement mortur, also into $\mathfrak{l}^{\prime \prime}$ nod ${ }_{3}^{\prime \prime \prime}$ joints, also into fat, commen, unkeyed bricks and prossed Lapruirie brick keyed on one side. (1) The lime mortar was mixed 1 limo to 3 of standard quartz sand, by weight; (2) uatural cement
mortar was mixed, 1 of No. 2 natural cement to $1 \frac{1}{2}$ standard sand; (3) Portland coment mortar was mixed, 1 of No. 5 Porthand cenent to 3 standard sand. (Seo exhibits of brioks with mortar atlaehed.) 'The test-pleces were ohiefly allowed to stand in the laboritory at a temperature of 55° to $65 \times 1 \mathrm{~F}$., but one set of natural ceurent wortur and two of Portland comen mortar were duplionted by immersing in water for 29 days, alter setting in uir 94 hours before subnerwion.

Theso resules point out matny interesting linets: (a) the frst fuct noticoable is that the results are independent of the thirkiness of joint ; this is true of limo aud ecment mortars. (b) 'The next ono is not evidenoed to any extent in the ' T_{ab} be, but was quite apparent in the testing, viz., that the adhesion of tho mortur to the brick was greatest when the mortar was put on very soft, nod least whon the mormr was dry. This will largely uphold the use of toft morturs by mayons, albeit their renson is a purely selfish one, the mortar being ensy to handle, The tensilo tests of oements made very soft ure lower thun whon the mixture has tho minimum amonnt of water for standard consistency. But for adhesiso tests the cuso is evidently the reverse. It may be here mentioned that in these tests all bricks were thoroughly soaked with water before the joints were laid. (c) Coming now to the lests on lime mortar, the shears wero through the mortar, except in the th experiment, and therefore they are quite inclependent of the key of the pressed briek on the surface of adhesion. This would point out the fact that keyed brick are superfluons in line mortur joints, and the shenring strength per sq, inoh averuges about $10 \downarrow$ lbs. per sy. inelh The tensile strength of the same mixture at the same age was 30 lbs . per sq. ineh und the compressive streugth 102 lbs . per sq. ineh. (d) The natural cement mortar showel distinctly thatits adhesive strength was not us great as its sbeariner strength, which is the reverse of the lime mortar tests. It also showed that the keyed brick aided in sone unknown way, for the results on them are 3 times as great as with the common flat brick. Of course this may have beea, and probably was partly due to the different surline of adhesion. la 5 tests out of 21 made on the mataral eoment mortar, the mortar sheared through, and the average of these 5 was 97 lbs . per su. inch, which gives the sleariag strength proper, while the averige adhesive strenuth of the 13 tests in air which came loose from the bricks was 26 libs. per'sq. inch in common brick, 48 lbs . per sq. inch on Laprairie pressed Lrick, and 38 ths. per su. inch on Laprairie pressed brick for three tests submergel in water for the whole period.

This would show that the adhesive strength is nearly twiee as great on pressed brick as common brick, and that submersion in water lad a rather harmitul effeet than otherwise, on the adhesive strengelh, and was eertainly ol no benefit.

The tensile strength of the same mortar at the same age Wats 13: lbs. per sq. inch; the eompressive strength was not obtained, but would have beca about 1000 lbs . per sy. juch. The hints to be taken from these tests are that pressed briek keyed on both sides will grive unct higher results than fat common bricks, and would probatbly place the slucuring strength of such joints at 100 lbs . per sof. in., and make it lirgely independent of the consistency of the mortar. Also that the shearing streught is very much higher in proportion to the tensile strength than was the lime mortar sbearing streugth to its tensile strength, but abont the same proportion to its compressive strength, i.e., 10 to 1 .

It beconing evident that the thiekness ol joint had no appreeiable effect, the Porthad cement mortar tests were made all $\dagger^{\prime \prime}$ thick. The results are surprisingly low. The adhesion on the common brick is about the same for air drying or submersion in water, and is slighty less than $\frac{1}{2}$ that of natural cement moitar tests of $1 \frac{1}{2}$ io 1 . 'This is a signifieant fact, for while a neat tensile test of No. 2 matmal eement 4 weeks old is 268 lbs ., the No. 5 Porthand is 450 lhs. for the same age, and a 3 to 1 No. 5 Portland is 82 lbs. for sume age. See 'lable of general Laboratory results.) Thus while any test of this ecment would show that a 3 to 1 mixture of the lat ter would be nearly equal to a 12 to 1 test
on tho firmer, yot in their adhesive properties to common briek the heavily dosed sand mixture was ouly half as strong as the natural ecment mur with a smaller dose of'sand ; we might envily have expected this, but he main point is. ix it taken neonunt al in econsidering the comparative values of these mixtures, that tho adhesive etrength of a Porlland cenirnt mortar luravily dosed with sand is low :s compared with a Weaker hot richer mixture of natural oement mortar? 'The shearing of Portland mortar shows that the allicsion to prosest brick is greater than to common hriek, but not in such proprtionas in matural cencots, being $1 \frac{1}{2}$ or 2 to 1 in place of 3 to 1 in the litece. But here again comes out the advantage givan t, lourtiand moment by testing them under water, tho suln nerged specimens aro stronger thin open air ones white in natural cements the reverse is the oaso.
Table VI is here given sommarising the results obtained:

SkRIES IV. (A)
THE STRENGTII OF MOHTAR IN COMPIRESSION IN BRICK MASONRY,
All engineers realise that the strength of mortar is mueh less, tested in cubes, than in thin layers, but just what proportion they bear to one another is not very well known. The following exproriments have been made with a view of obtaining this information.

At the same time that these tests were made, mortar was also made into test picees, nad torted at the same age. We are thus enabled to form an idea of the relative strengiths of mortar in thin joints and in cubes, and also to form an intelligent opinion of the comparative strengths of lime nortar, natural ecment mortar and Portland eement mortar. The mortars of the $4 h^{\prime}, 5$ hh and 6 th tests are identical with the mortars of the shecring tests, and show the same elear superiority of the natural cement $1 \frac{1}{2}$ to 1 over the fortland cement 3 to 1 when used in this manner. The following table summarises the resulte obtained:-

Table VIII.

lionghly speaking, the lime mortar at 1 week 5 to 1 is 6 timen an strong; the lime mortar at I wrek 3 to 1 in $1+$ timen as atrong; the natural eement mortar ne 1 wrek 1 if to $:$ is 4 timow as strong; the Porthand ecment mortar at 1 week 3 to 1 in twien na atrong, wa the same mortur tested in cobes, at the name age.

IR"firring to the amount of' comprension in Trable VII, it will be vern that the amount of compression per fout is much leos aceording as this ratoo in lesn-i.e., the lens yiclding the mortar the nearer does the atrengelt in enbee appreach th the strengith in juints; this is to be ex. pected-breane the more yielling subatunees will be at a mueh greater disadrantage when unanpportel we the niden than if enclosed in a thin masonry joint.

In the 2nd, 3rod, 4th und But texts-at at 17,500 lbs., the load whs releaned, and the peruanent set observed wan av given in the 6th column of the precedling table.

It neems prohuble from thir, therefore, that the lime morturs minat have gieldel to an injurious extent before there were any extermalsigns, But whether this was the case or not, it is impossilile tor say, becaume the compression was quite unifirm up to and in: many cases much past the puints of evident lialure.

It neems fair to suppose that I week and 3 weeks are ahout the minimam and avera:e times which would olape befire the maximum load might be put on a brick wall, and when it is remembered that these joints wero lees than $\xi^{\prime \prime}$ thek. 'The amomit ol compression in a high briek wall under aloat of 80 or 90 llis. juer rye inch is wotl to be very great, and under alond of 300 to 400 lliw . per sa. Gimeh, a lriek wall 60 ft . high in line mortar wouli mut only fitil, fint compress from 2 to ti inches in deing so-the ronnomeson practienly all taking phee in the mortar as in the winciding lorthan erment mineme, the monpression is acen to be vely small.

'I'he mecond pait of this papr will contion twas mals of piers built with presed brick, in which the murtar has had longer time to harden, and intercsting remulta are koked for.
Thu briek in this enae wis as montioned in Table VII, common huilding briek. 'Tle photograph given illuntrates the methorl of werting nud the interenting manner of fillure of 5th test, in which the lines of leant reaintal ce arre elearly detined.

stillis v.

TENEIIS TENTM.
(11) Eirupuration uml crushing texts.

Thinserfes had lor its first intention, in formation on the comparative and bed unl anount of' 'viruration of' moistura from different motars
 ubtain mene refation between ernshing mengela and evapuration, Any law on the mater, if there is any grocral law, will of eonre lake yrars
 lions on this rubject will be fraitful of esultes. 'The mehod if proce lure was un follows :-Mixtures wero kept in lampair 30 days, thou itumersed ! days in water of ordinary tompature, then taken out and
'JABIE IX.

So. 11-Ponto.and.
sbituls V.

Sixthre.	$\begin{gathered} \text { E, 口и. \% } \\ \text { in } 2 \text { alay. } \end{gathered}$	Crushin: vtrumit per mig. it.	Pranduct.	$\begin{gathered} \text { Mux, wt, } \\ \text { of } z^{\prime}, \\ \text { Cutic. } \end{gathered}$	$(\sqrt[1 m .]{2})$	$\frac{\text { Broinct. }}{\text { columnti. }}$
Nenal.	1.14	3025	Ranl!	10.14	22.6	20.2 .1
1101	:1.11	\%211	7:399	10.12	21.71	317.3
21.1	4.30	110:31	619	9.34	210.68	31.1.2
$: 101$	111:39	5.4	\% 6 \%	9.11	20.30	2\%8.4
! Itol	11.49	431	119, 2	5.92	1!9,97	217.9

Sor, 10 - Ponthand.

- Bur diay rific than others.

Mixture.	$\begin{aligned} & \text { Evap. } \% \\ & \text { in } 2 \text { alay } \end{aligned}$		Irabuct.	wt.		
Neal.	4.63	1-6, 6	ctitit	10.00	$\because 1.6$	100.7
1 to 1	4.10	18\%	Tlisi	10.12	21.71	:354.1
2 to 1	5.67	1417	80.31	9.40	20.97	983.1
3101	*. 11	687	538	8.95	20.01	276.2
4 10 1	12.56	412	5176	8.88	19.90	260.0

No. 15-Natural.,

Mixture.	Rivaln\% in 2 llayn.	Crinhlings ntrengiti per mi. ir.	l'roinct,	wt.		
Nent.	6 if	1404	12763	9.10	20, 177	01617.1
1 to 1	8.08	11.17	7300	9.65	21.03	\$47,8
$\because 101$	6, 12	984	1.10 .46	9,12	30.87	293.9
3101	4.31	975	1784;	11,105	20.16	297.9

Nu. 2-Nitural.

Minture,		Crumbing Atrenghis (n'r mit. m	Product.	Ht ,		
Nim.	8.93	23:\%	1.7\%	9.18	20\%	768.7
1101	110.32	70.3	72.4	:0,0]	2016	-1,99.9
2 to 1	8.914	810	723:3	9.2*	2007	3.3.6

weighed; the y wore thenkept in the warm lig air ol' the laboratory at a temperalure of' nbout lise ${ }^{2}$., exaetly 2 days, when they were again weished and hmmedintely eruvhel. 'I'se experiments reeorided in Table IX were all male on $2^{\prime \prime}$ cubers, und 2 days was established, because it was finud ihat at that time the evaporation was practicaly eomplete. Other experiments (not recorded) male on $3^{\prime \prime}$ cubes gave less evuporation
 two show strength and evaporation in diflerent mixures and wiblo hramis of erement. The thive diagram is the product of the other two, anil in quite worthy ol' inspertion, hecansa it would nppenr fromit that it wonld be pussibie to estinate liarly neenrasely, without actually erushing a mpecimen, what loal it would bear.

Reference to the table and diagrams will show that the evaporation inerenses and the strength diminishes with the inerease of sund in the mixture. This is, of course, almost self-evident, but the striking difference in the amount of evaporation for different cements neat is unaccountable. This differenec disuppears as the admixture of sand increases, and we are lell, therefore, to conclude that there is somethiog iniserent in the cement itself, whieh aids it more or has in holding particles of water in suspension. The natural cements show high evaporation neat, so also does the No. 3 Portland, which has a high specife gravity (see genera! tables), aod the cubes of which weighed more than those of the No. 10, whiche evaporated least ; we cabnot necount lor it on the ground of Portlanel and natural, but one thing is evident, that that same guality which enables it to hold water in suspension also aids it in holding partieles of sand together, but not partielen of itself. The third diagram showing the eonvergence of lines on the 1 to 1 mixture is very striking. The prodict of the crushing strength of al to 1 mixture and the ev ipnration per cent. under conditions named is practically constant. This is fir one condition only, namely, 32 duys, with access of water and 2 days drying. This means in plain words that we may possibly be able to test with a balance instead of a crushing machine.

It is probable that the mieroscope would reveal a decided difference of structure in various cements. It is, of course, well known that the underburnt natural eements have softer, rounder and more easily pulverised grains than that produced by the highly burnt elinker of the Portlund. It is pos-ithe, thereforc. that the evaporation qualities of a neat cement would indicate more closely than anything else the degrece of burning practised, indrpendent of the finruess. It will be noticed, by Table II, that the residues on sieves affirril no cloe to the density of the mixture and no guide to determine buforchand the evaporation. Neither does the weight of the specimess vary at all regularly either with the crushing strength or evaporation.

It would seem that the coarse, angular laboratory sand had its interstices just about filled up with a 1 to 1 mixture, and the strength of' the mixture depended directly on the amount of evaporation, in an inverse ratio. The--Evaporation diagram No. 4 is the same as No. 3, except that this product is referred to n aniform section deasity (i.e.) $(\sqrt[3]{\text { reight }})^{2}$; the diagram is practically the same, showing that the variation in weight of test pieces made practically no difference in the resulls, i,e., the per cent. of evaporation determines the strength in 1 to 1 mistures, but is no criterion in neat ones.
(b) Evaporntion and tension tests.

 is again given, and diagrams are ploted showing the relation between the tensile strength and the weight of the dried briguettes in the pressure tests, and also other diagrams showing the produet of tensile strength and evaporation plotted on a base of weights of briquettes.
The X marks in the diagrams show the positions of tests matle with 20 lbs . pressure and 20 p . c. of water, and they are seen to stand at prominent and usually maximum points on the diagrams, proving that this is the best point to seleet of all the tests made.
It will be seen in these diagrams is in those of erushing tests, that in 1 to 1 mixtures the variation of evaporation and strength eombined is not very great, but not se clove as in the former tests.
The 3 to 1 tests are very erratic, as might have been expected with different per cents. of' water and different amounts of pressure. It is evident that each cement has distinetive paalities of its own, because with the same weight of briquete the strengths vary, and this lorings up the important point that in sand test; the strength ought to be rufferred to some basis of weight of bripuette, because a slight variation in weight seems, from Table IV, to alfieet the strength very mueh. It would nut take much evidence to determine the arerage weight, and all tests could be relueed to this by multiplying by $(\sqrt[3]{\text { weight }})^{2}$ which would ehange the seetion density to a standard.

SERIES VI.

sitainR TE×Tン。

Sucrate of lime is soluble in witer, and it was ehiefly a matter of interest to see the effeet of sugar on cements in weakening thera, because it has been assertef by sereral writers that the reverce is the ease ; one iarestigator several years ache slowed by tests that frow $\frac{1}{2}$ th 1 j , e. of sugar would in 4 tw 6 months give a gesin in strongth.
Sugar, in these tests, 2 p . co. of the amonut of eement (by weighte), Was u-ed, and the diaurams attarherl sufficienty indieate the results, In the Portland erment the strength ranges eloeely at 50 p . e. of the ordinary strugth as fir an 6 menthe, while with the matural cements, the sugar effet wat overpowerins. After one week's inmersion the bripurtes showed signs of eracking, and as time went on became completely ehecket, and expanded so muel as to give practically no tests. This is further evidenced (see exhibit of hriquettes) by the upper surface, which was protected by a enating of iron doposited from Momtreal water, being intaet, while the checking was greatest on the bottom where the water had trie aceess.
The lime mixtures, kept in open air, showed encouragingeresults for 2 months, and seemed to prove that the use of sugar, in lime, as prace tised in India, was beneficial; but the 3, 4 and 6 months' tests disprove it. Altogether, it seems evident that this much or more sugar would be damaging in its effects on any kind of mortar in any situation, and it is extremely doubtful whether any sugar whatever would have other
than a weakening effect.

In concluding this paper, the author canot but help leeling that he is, as it were, dipping just on the surfite of a vast subjeet, and that the more one finds out, the larger tho unknown fields beyond appear.

In nuy efforts that have been made, the frefuent manual aid and more frequent sound practical alvice Mr. J. (i. Kerry have been of much serviee, and hero is the place to acknowledge it

The endeavour has been to find out anything of practical use to the Engincering profession; and if any points raised here will fultill this desire, the object of this paper will be, in the main, accomplishem.

In conclusion the author eamot but arknowledge the opportmity given by the Engineering Equipuent of MeGill University. In earrying out the various tests recorded, every faeility has been offered not only for student instruction but for private rescarch, and whenever maything is needed thitt is not posessed, l'rolessor Bavey, the Dean of Engineering, is always ready to have the want filled, if possible. In this way many things not feasible in ordinary eases are practicable, and it is hoped that, in due time, other results of value to the profession may be determined and presented to the Socicty.

