The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bitliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/

Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text Whenever possible, these have been omitied from filming/ II se peut que certaines pages blanches ajoutėes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

\square

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiques ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/ Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Quaiité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(esi/
Comprend in (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de dépare de la livraisonMasthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

DECEMBER, 1873.

Price in Canada $\$ 150$ per An. United States - \$200 "

JIE FIRST SWI:DISH STEAMBOAT

THE FIRST SWEDISH STEAMBOAT.

In 1804, an English engincer, Samuel Owen by name, was sent to Sweden by his emplogers, Messrs. Fenton and Murray of Loeds, to crect a steam engino for a person called Edelcrantz, and was cmpliyed in vaious engincering undertakings throughout Swedon until the yuar 1809, when he established himself as an engineer and ironfounder at Kungsholmen, an island forming part of Stockholm, where he worked more than thirty years producinf. steamors and steam cogines. He was the fist to introduce the former into 8 weden. His first attempt was made in 1816, by placing on board a craft, which he called the Witch, an 8 -horse condensing engino which drove a propeller with four blailes.

Our engraving on page 259, which wo reproduce from the columns of the Engineer, is a copy from Owen's original drawing. With this arrangement the Witch had a speed of four and a-half knots an hour, which was even in those days considered to be too slow. In 1818 this engine was taken out of the Witch and put on boa'd of a steamer called the "Anphitrite." It was connected through gearing with side wheols, and a specd of between five and six knots was obtained. This was the first passenger boat in Sweden. From this it will be seen that Owen was the father, 60 to speak, of steamers in Sweden, and is acknowledged as euch by the Swedes in general who are now erectiog a monument to his honour in Stock. holm; this monument is to be unveiled on the 12 th of May next, the l00th andiversary of Owea's birth, and a scholorship will also b- created at the engineering college, which will be called the Samuel Owen's Scholarship. Ho died in Stockholm in 1854.

SINGLE RAIL RAILWAYS•

Hadoan's Ploneer or Single Rall Carafan

The present system of railway construction is just now the oljject of many attempts at alteration, or rather of adaptation to the requirements of the difierent localities in whic hatt empts are being made to extend the great pioneer and improver of civilization. We have already referred to the very narrow gauge roads which Jave veen so succesefully carritd out ${ }^{\prime}$ n Wales, and more recently we described a locomotive constructed in the United States for use on a single elevated rail. Our illustration on page 262 is of a new cheap railway, the invention of Mr. J. L. Haddan, C. E., engineer in chief to the Imperial Ottoman Government. It is from the columns of The Envineer, to which journal we are indebted for the following descrip ion of this curious invention.
"Sany attempts, (eays Mr. Had dan) havo been mado with the vies of substituting one rail \& or two in the construction of railways and tramways, though hitherto with but indifferent success; for as a rule we find that three rails or running surfaces of different lesterials have simply been substituted for the usual pair of iron rails.
"The practical experiments hitherto made in this direction have been principally confined to existing ro is, where the rentral rail is supposed to carry the grcater part of the weight, the equilibrium being maintained by huge side wheels runring on the road itself. In France and Portugal considerable success bas attended this system, though theoretically it is far from being perfect, especially for a constantly changing load, such as passengers; moreover, it is open to the objection of requiring a first-rate road."

Mir. Haddan then states that it has been his endesvour for some years past to provide an economical railway suitable for a country like Turkey, where all the conditions are very unfavourable to railway construction proper, and so very different in every respect from England. "Money at 20 per cent., traffic inconsiderable, countrg very rough, all materials and skille d-labour to be imported, no no ion of the value of time, water scarce, enterprise unknown, labour fur from plentiful, fuel dear, soil for the most part rocky or marshy, distances enormous, transport often impossible, produce generally agri-cultural-and thereforo bulky-difficult and costly of trans. port, no crosc-roadr, few, if any, important ma iufacturing centies; the only feasible outlets are the river-beds, for the most part far too stecp for railway use, and whose valloys moreorer are generally far too narrow and precipitous to admit of making detours f r so moderating the inclines as to render them practicable for railways. In Asia Minor it has been foundim-
possible to penctrate the country, except with miles upon miles of gradients of 1 in 30, and only then by means of the sharpest of curper, frequent tunnels and viaducts, and the heaviest of earthworks."

Mr. Haddan, after somo remarks on the working of ordinary lines, goos nn: "To obtain porfect economy in the construction of a railway, all tho parts of a train shou? weforb the samo per metro run, else we shall find our ralls anc bridges too string fur the weight of the carriages, or not strong enough to support the pondervus engine. Seeing that the disparity of woight hetween our carriages and engines is as much as 4 to 1 , it shows us that by simply reducing the weight of the ougine to that of the carriages we should obtain off the reel an economy of 75 per cent. in the first cost of rails and girders, and in addition no mean saving of wear and tear. Next, the moment we leave the level and attempt inclinos our engine has to be made still heavier, and mighty brakes-worse than useless in ascending-have to be made use of for the descents; whereas, in fact, the steeper the inclines the more we ought to lishten our burdens, but, unfortunately, the very reverse is the case in practice.
"All such objections (says Mr. Haddan) have been carefully met in designing the Pioncer, which the author considers peculiarly suitable, for Tu key, the colonies, and even the mountainous portions of our own country. The Pioneer or steam caravan, has its origin in a wooden post and rail railway erected some thirty years since at Posen. It worked for many years drawn by horses, and later on by a stati-nary engine, but locomotive steam traction could not ve made use of owing to the fact that weight was in tho-e days necessary for obtaining power in the locomotive-a burden which the wooden fence could not stand. Many enginecrs have since attempted to overcome this difficulty, but it seems to mo that the Fell horizontal grip, where unlimited adhesive power can be obtained quite irrespective of the weight of the engine, is the only practical means of overcoming the difticulty. The permanent way of the Ploneer consists of a wall of a minimum height of 2 ft . 3in. and l4in. thick, surmonnted by a single rail and sleeper, which fimply consists of a 1 fin. plank laid on edge in cement and tipped with thin half round iron strips. The wall rarely excecds 2 ft . 3in. in height, because the gripping powers of the locomotive allow the gradients to be traced nearly coincident with the natural surface of the ground, that is to say, with its grosser features. Of course little dips are not gone into, aud ravines are made light of and spanned by sandwich arches in masonry, or with a single ircn girder of but a few inches in width. The locomotive and rolling stock are, so to speak, "twin," and mount astride the wall like a man on horseback, or rather like the panniers on a donkey. The carriages aro thus double, one-half on cither side of the wall, the roof being common to both; there is a space of about 18in. in width between the two halves, forming as it were a passage between them, in the upper part of which are situated the single wheels which are to run on the summit of the wall; the lower part of the passage is open from end toend to allow the carriage, when hong on the wall, to hang down to a depth of 2 ft . 3in. on either side. The locomotive is purposely extended as much as possiblo cnd is articulated, water in one section, fuel in another, boilers in another; by which means its weight per metre does not exceed that of the carriages or wagons when laden. The weight per metre run is about 8 cwt. The total length is 24 ft .8 metres, and its power is sufticient to take 100 passengers up an incline of 1 in 10 at a speed of fifteen miles an hour. The great economy manifested in the constraction of the Pioneer permanent way is owing to nine major points and divers less important ones:-(1) The load is spread out over as great a length as possible, and concentration of weight is carefully eschewed. (2) The lond or weight of the train is evenly distributed throughout. (3) No banks or cuttings are requirel, owing to the special powers of the locomotive enabling the train to follow the natural surface of the soil. (4) No transverse levelling of the soil is required, because the train does not rux on the ground, but on the top of the wall. (5) The size of th, rolling stock is reduced to the minimum, sufficiently lar 0 to accum.nodatc passongers almost singly, and goods piecemeal, whereby the size and cost of tunnels and under-bridge, are reduced to a mere trifls. (6) The light weight of the - n ncer permits rapid travelliag even over the roughest grouna. (7) Tho timo of construction may be measured by montho 'nstead of years, an important economical item, where interes. on
money is so high as in Turkey. (8) When constructed in fron the whole is tranfportable. (9) The Pioneer, owing to its climbing powerp, can follow a crow line more nearly, and can open up hitherto inaccesible poritions; and, moreover, can follnw up the rivers (in their beds, if neresfary), which frequtatly form the only means of communication in most n.ountainous countries.
"The loeomotive is fitted on its underside with two pair: of horizontal whecle covered with leather, which grip the wall on either side with any dosired force. Owing to the constant changes of gradient incidental to following the natural surface of the ground, the intensity of the grip should constantly vary, which is effected by a screw and levir arrangemeat acted upon by the draw-bar, which attaches the engine to the train. Thus, as the in lines are steep or mederate, so does the pull on the draw-bar vary, and by its action on the horizontal driving-wheels open or close their fe'1 embrace, modemting the adhesion or grip precisely in the proportion that the gravity of the train varies in its ascents and descents. Thus the whole weight of the train is secured for adhesive purpnses.
"Ihe equilibrium of the loramotive is maintained hy the grip of its horizontal whecls. The train is compofed, firntly, of a locomotive, then of a raravan of articulated carriages, each articulation being about 7 ft . long, the whole concluding with a brake-van, fitted like the engiue with four borizontal wheels. The whole mass is attached together by rigid couplings, which, while freely permitting articulation do not allow of the smallest Jateral motion; that is to say, that no single carriggo can lose its balance, upheld as it is by jts two companions fore and aft; and as the whole train is convinuous, the horizontal whecls of the engine at one extremity of the train and those of the brake-van at the other, effectually maintain the equilibrium of the whole train and prevent all oscillation whalsoever. A train of twenty-four of our basket carriages, capable of accommodating uinety - six passengers, will measure in length about 50 metres, and will weigh about 20 tons $=8$ cwt. per metre run. Eah double cerriage contains four pas. sengers, two on el herside of the wall and facing each other. The seats are compnsed of slung strips of carpet-like American chairs-the balance of the passengers is consequently always preservtd, even on the stiffest inclines. The brakevan is fitted with a stair passage to allow of communication with both sides of the truin. I spoke of the permanent way as a brick wall-in some cases I should adopt stone or corcrete; and in marshy distriits a light wooden or iron viaduct, con. sisting of a single line of posts or columns In all cases the extcral dimensions of the wall or fence must be the same, so that thourh different soi's may be differently treated, get the permanent way will be contiduous. That portion of the wall or other structure which the horizontal whee's wurk auainat is eepeciwlly preyared for the ir gilip. In the cas * of the wall it consists of a string of $\mathrm{cement}^{\mathrm{m}}$, and where posts and rails are used, of light iron ur whod rafters sirutted to recist compression. In semi-tropical countries it is very difficult to avoid interference with the water-cheds. The Pioncer leaves innumernble rp nings in the wall fnr this purpose, the number, of the se culverts po:itively diminishing in lieu of increasing the cont. Necersarily posts and rails would be used in the most espo-ed positious, and in crossing rivers or aims of the sta. In Asia dlinor as in many other places where no cross feeder roads exift, t becones neceseary that the main line should accommodate as large an area as possible. Therefore the Pioneer double line is not constincted as at home, side by sude, but the up-line takes quite an independent route from the down-line, touching every now and then at the importint towns. Where only a single line is used it forms on slteruate days an 'up' or 'down' line.
"The cust of the Pioncer may 7 ary between 5300 and $\mathbf{£ 1 0 0 0}$ per li'ometre, a safe rule beirg t. divide an ordinary rallway cstimate by ten. Most of the railways in Turkey run but one train eit er way in the twenty-four hours, all the rest of the day the whole of the vast capital is lying idle. The Pioneer whil, on the contrary, ruu its caravans all day long, and compete with is giant opponent like the hare with tho tortoine."

Mr. Faddan concludes bis paper with a few exiracts from his work, "The Proper Gauge for Turki h Railways."
We have only to ad thit a line on this sustem is to be constructed from Alexandretta to Allep o, a distance of ninetyeight miles. 'The cost is put dorn at $\mathfrak{f 1 0 0 , 0 0 0}$. The anaual
ontiay for camel and mulo transport, accomilig to Mr Consul Rkénc's rep rt, avernges per annum $\mathcal{E} 50,000$ Th.. company therefore, expect a profit of at least 30 per cent. or 40 per cent. The worke, Mr. Haldan stat f , will require twelve months only for their construction The flrst train on this systom is now being constructed for the company in Munich.

PUNCHING COLD IRON.

By Coleyan Seclers.

At the meeting of the Franklin Institute, held in December 1873, two cold punched hexagon muts were exhibited by Messrs. Hoopes and Townsend, bolt, nut, and washer makers of Philadelphia. These specimens are worthy of attention from the fact that one of them had a hole one quarter of an inch in diameter and one inch deep, the othere was perforated with a hole half an inch in diameter and one and a half inches deep.

These specimens are remarkable when we take into consideration the cft-made statement "that the maximum thickness of iron that can be punched cold is about the diameter of the punch," as the depth of the smallest nut is four diancters of the puach, and the largest one three diameters of the punch.

In conversation with Mr. Barton Hoopes. who has conducted these experments, I learn that he has since succueded in punching a half-inch hole through an inch and three-quarters thickness of wrought iron; the punching which came out of the hole I have examined, and it differs in no respect from ordinary punchinge, but it has been compressod to seven-eighths of an inch in length-that is, the punching shows an irregular cylinder half-inch in dimeter and seven-eighths of an inch long. The metal forming the punching is not condensed into a smootly cylinder, but shows the usual roughness common to all iron punchings, while the punched holes are very smooth.

The punch and die hole were the sume size, and there has evidently been a side flow of the cold metal upon the entrance of the punch, and the operation may in a measure be considered a piercing one, up to a certain depth and finally the punching out of the residuum after it has attained that depth.

In punching the quarter-inch hole througla one-inch iron, the punching showed a very smooth surface, and was only three-cighths of an inch lung, seemingly very much compressed.

I have examined the punches used in this curious evperiment; they differ in nc respect from ordinary punches; they are made of good steel and hardened in some peculiar manner unknown to me.

Bars of ion one inch square, punched with a quarter inch punch, show a sensible widening under the action of the punch, and a bar of inch and three quarters squrre iron, punched with a half-inch punch, is swelled sudewise to an inch and thartecn-sixteenthi, showing conclusiv. Iy that some of the iron has been forced sidewise.

The machines used in driving the punch through this great thickness are said to be of unusual strength and accuracy of construction.

Aygrican Paterts_-The number of American prtents granted since 1836 is about 140,000 . The number of apphialions for pateats has stcadily increased from year to year, until it now averages from 20000 tu 21,000 per anoum, and the number of patents granted annually is from 13,000 to 15,000. To perform the woris of examining this large num. ber of a"plications, the corps of exptre examiners has betn increased from time to time until it now numbers abuut 100 ; twenty-four principal (xaniners, and the same numb r of first, second, and thind assistant examinerf, logether with a special examiner of trade marks and aiso of ivterferences. The clerical force has been correspondingly incras d, so that the ofticials of all grades now errpluyed in the office may be stated in ronnd numbers as about 500. I shoul! be remembired, when comparing the number of English and American patents, that in the Stutes many designe, \&c., are patented which aro only registere.l in Et.gland.

TIE TRANSIT OF VENUS.

1.

We need hardly inform our readers that it is intended that 1874 is to witness an asironomital effort of an international character and of a magminte without precedent. The Govcrmet ts of Grent Butain, France, Gimany, Rufsia, and America, have long made their plime for taking observations in varnous quarters of the worle of the tratisit of Ventes, to be looke: for on Dec. 8th, 1874 . Prolinbly few who have read the enntroversial articles in the daily papers on lhis subj ct are aware that many of our astronome s have been looking forward to thas event for mearly fifty yinars It is well to understand be fore entering on the subject that the organisation of the barions expeditions is the result, in at all events most cases of long matured plans. A year , go, on the occasion of the annual Gicenwic h visituti, n, a visitor rem red o_{1} the ompliteness and cire with which a map had "alrendy" been drawn up showing points connected with the stations for observing the transit, to which the reply was made that that particular map had been executed for considerathly ov r thirsy yeare. It i, not our aim to enter into nuy distusrion as to the prectac adva:atage of each ditall in the plan to at is being carrid out, but we may observe that if England, France, Russia, and A beri a - for the charye of error applies to at all wents these fir, so that they inust be ioclided in the derignation ured by the Times, "the Astionomir Royal at dhes ficuds" if, we sar, Eugland, Fiance, and IRusia and Amuricarare going to "rend expedations to find an astronomi. cal mare's deat, ' the mistake has been made after great de. hberather. We have just satd, however, that our oljecet is not to take up any controveris; we moy fucher add, that it is not to bandle the subject in an aburuse wiy. We have watted purposely until the preparations were so faradvanced as to enable us to deal with them in a practical fashion, which we can now do, noticing auy new and peculiar features in the instruments employed.

Looking at the project from an enginecr's point of view, wo will thrst cousider the nature of the work required, and with the assistance of a tew cuts put the problem before one readers, stripped as far as jossible of difficulties and te. hnical expres. sions, although in dong 30 we must frequently ignoro minor procesees and corrections.
'l'o enable those who may know dothing of this matter to follow what is said, it must be first expl-ined that a transit of Venus is the passige of Venus directly between the earth, and the sub, so that from the former she i-seen to cross the sun's dise, standing out against it as a round black spot. Venus und llercury are the only inferior planets-that is to eay, the only two planess whe revolve ronnd the sur inside the orbit of the earth; they are, therefore, the only bodies, the woon excepted, that ever pass between the sun and the parth. Both alercury and Venns frequently pas, the carth, as their periods of revolution are much less than hers, but as their orbits are in planes inclined at consideraide angles to herf, an actual tranait only ocurs when either of then overtakes avd passes her, as it were, veiy near a point of intersection of the orbits (vide Fig. 1), When the planct is seen ngainst the sun in the manner we describe. Thus, if A be one intersection of the orlits of Venus and the carth, it is evident that Venus will only be seen against th sun when she parse's the earth at a point very near A-in other words, near the node of her orbit. At olher times she would appear to pass above or below the sun if she could be -een, which as a matter of fact, is impossible, both because her dark side is then towards us, and also because if it were not so, the brightness of the sun would make her light imperceptible. A transit of Venus, in fact, corresponds to an eclipse of the sun, only that Venus is too far away frim us to hide the entite dise as the moon does, she only covers a very small cpot of the sun as she crosses it. Venus passes the carth at intervals occu ring r.ther more frequently than every eighteen monthg. It is not asecessary to give the exact intervals, but, as they o: cur rather more frequently than would form any exact division of any complete number of years, the points at which they take place come earlier and earlier on the earth's orbit. 'Thus, in lig. 1 , the arrow showing tho direction of the earth's motiou, we may suppose Venus to pass her consecutively at A, B, and C. After passing at A, n yearand a half, (or more strictly speaking nearly a year and two.fifths) will elapee, and passage 13 will take place, and so on C, D, \&c., the siath conjunction, F, after an interval of nearly eight years, occurring very near
the enme spot as A. Thas, as the writer in the 7imes puts it, the conjunctions $=$ passages may be -upposed to form a fivefpoked whed, whose spokes move slowly backwards, and whenever one occurs rlose to n nodo a "transit " takes place. This happenp, hovever, only nbout cvery 112 veare, when it may occur either once or twice. For example, if the conjuni. tiun indicated by I happened very close to a node, then both N and D wind be too far from the node for Yenus to be seen in line with the -un; bat if the node was nealy half way between N nd I, then both thoce two would be vincivi as tran-its, in one case Venns being feen n-ar the northern lumb of the k , m , and in the other near the southern In this way it hajpens that a taansit will occur in 1874, abd agan iu 1882 Both willbe, of course, at the asme part of the earth \times ort it, viz, in December, so that the southern pole of the earth will in each case bo towards the sun, but Vinus will be seen fiom the northern hemispere to cross the sun, as it were, high up and low down respectively.

In these practical times, however, it may be asked, why is all this a matter to interest suyone except astronomers; that is to say, to interest them so kecnly as 10 cause large sums of money to be expended by civilized nations in observing the pheasmena referred to ? 'Phenanwer to which is that a well. obsurved transit of Venus enables us to measure th di-tance to the suv, and, 1 deed, to all the world; which constitut the solar syotem. The labours of astronomers have lurnished us with a map of our sybtem on which the relative distances have been determined, hut thi re is some doubt as to the seale they have supplied to the map in question. Nry, what had bien laid down as the sun's distance, namely, $55 \frac{1}{2}$ milloons, of males is now believed to be incorrece by perhapsas much as $4 \frac{1}{2}$ millions We look th the coming transits to decide thi, quistion Further, since the masses of the heavenly bodies have been calculated on the supposition of their d stances b ing correct, it follows that with a dec ease of distance must be made one of bulk, so that the mass of our entite systen) (the earth and moon excepted) awaits its fresi estimate after the coming transit.

Some sordid ohjector, however, may not see the neressity for wanting io know all these matters, junt as Mr. Peter Magnus told Mr Pickwick he did not ree the necessity for anything original; and to this there is nu answer, except the admission hat thete is no necessity for it. We have gone ou very well, it may be said, thiakıug that the sun was 95 millions of miles away, why disturb hm and bring him nearer and make him smaller? Nay, we yot on very tairly once, and were well satisfied in thinking that the earth was flat, and the sun, moon, and stars pretty little twinkling things moving tound us. There is clearly no necessity for knowng the sun's distance, but. it may be added, there is no necessity for railroads, submarine telegraples, or mail-an observation that has sיme point, inasmuch as the dircovery of America itself was due to astronomy. Two opportunities are now afforded u; of measuring the vast dimensions of the solar system which will nut again occur for 112 years; it is elearly the duty of civilized nations to arail themselves of them. It it hardly right to call upon astronomers to predict all the uses that may le made of the information in an age when new sceneces spring up so rapidiy round us. It may be sufficient, perhaps, here to indicate one. Almost the only method of determinng longitude is by observations of the moon's appanent place among the siars. The accuracy of the result depen ts on our knowledg of the moon's motion and path in the heavens, and this depends directly on the action of the sun. As l'rofessor Forbes, in his able paper read at Glasgow last wiuter, says, "In the luar theory an equation appears connectiog the relative mas es of the earth and sun with the solar parallax, so that if we know the one wo can fiud the oth r." Thus, by meins of the moou we may in time form an estimate of the sun's distance; but surely it is very mportant to have the value of the smis dis. ta cee directly, und to check or improve our lunar tables, ou which so mach depends, to the fullest poisible extent. Few people ate aware of the magnitude of the errors in the exi-ting intps of the world and globes. Thus, in facilitating observations of longitude, we perform a nost practical work. Concisely, then, the distance to the sun or to Venus-'or the $r \cdot$-lation between them is known-does this: it furniehes a srale to our map of the solar system, and it facilitates the ac. curate measurement of the world.

To come, however, to how the sun's distance is measured by means of the trangit of Venus. It may be well to consider

What means would naturally suggest themselves for measuring the sun＇s distance generally，and why they fail in the accom－ pli－hment of the olject．The astronomer Royal has made this matter so clear in his Ipswich lectures on popular astrono－ $m y$ that we cannot do better than refer any reader to them for a more full description of the stibiect．
The distance to a heavenly body is ascertained on the same principle as that of an carthly one．A base line is mrasured， from the extrimities of which angles are observed to the dive tant boily，and its distance becomes known．To do thif，how． ever，the base must bo carefully determined and there must bo some fixed line to meante the angles from．In terrestrial surveye，one end of the base is generally visible from the other rand，so that at each may be measured the anglo between the di－ rection of the base line and the line pointing to tho distant object．In celestinl work this is impossuble；the dirrection of the axis of the eath，however，within certain limity furni－hes the necessary line of reference，on a similar principle to the use of the priasmatic compass in surveying．This，in Fig．2， 3 phose at stition a the angle a to be measured between the moon and the celestil north pule，or，in other words，the moon＇s north polar distance，and again，at the station b the angle b or b ，which will be the moon＇s north polar or south polar distaner，it is clear that the distance a, b being known， the moon＇s distance ought to follow．This actually may serve to represent proce－ses which are carried on at the Greenwich and the Cape of Good Hope Observatories；but the distance wen to the inoon cannot be accurately oblained in this way， owing to the disturling influence of the refraction．It may， however，serve our pulpose as an illustration，and the angle a ， M，b ，which would folluw from subtract ag b from a ，is theo－ reincally the moon＇s parallax，that is 10 say，the angle sub－ tended at the mion by the two points on the earth．Strictly speaking，the angle should be referred to points at the circum－ ference and centre of the earth．As a matter of fact in this process the aogles are measured from the vertical at each sec－ thon，and corrected for the wint of sphericity of the earth， which prevents the vertical from pointing to the earth＇s true centre，but，as we have said，we do not want to get entangled in correctiuns and details．It is sulticient here to observe ihat refraction takes away from the accuracy of the calculation， however performed，in the case of the moon，and if th． s be so， its tufluence on the measurement of the sun with a bot atmo－ splatere in a state of vibration，is much greater and this delicate operation becomes impossible．With the moon the diniculty is dimmished by measuring her distance from a near star，but，ia the case of the sun，this again is out of the question，stars be－ comang invisible anywhere ne，r it．

Fig 3 exhibits auuther proposed method of measuring the sua＇s＂istance．When the moon is half illuminated，or＂dicho－ tomised，＂the angle $f 1 / \mathrm{S}$ being a right angle，the measure－ ment of the angle $M E S$ ，combined with the known distance of the moon $M \mathrm{E}$ ，gives a determination of the sun＇s distance， but the roughness of the moon＇s surface i ；such，and the angle M $\mathrm{E} S$ is aleo so near to a right angle，that the method is prac－ tically valueles：．Whe velocity ot light and the variation in the apparent time of phencmena，such as the eclipse of Jupi－ ter＇s satcllites，when the earth was at fariou，distances fr m that planet，have been brought to bear on the solution of the quesion of the sun＇s distance with some success．But we whll now pass on to show the mat in which it is obtained flom a transit of Venus w＇en well served，which as yet can hardly be said to have been done．

There are two viethods of dealing with the question，known as Halley s aud Ielisle＇s methods－the former is based on the fact that tho mioston b tween the tistances of Venus and the sun are snown，though，as we have said，nut the actual distances．zpeaking runghly，if the distance betoreen Venus $a_{a} d$ the earth is called 2 ，that between Venus and the sun is 5

Let us suppose the transit observed from two places situa－ ted as shown in Fig．4，which may serve to represent the ac－ tual stations in Rodrigut z and Northern India，in the coming tran－it of 1874，at the commencement of the phenomenon，the direction of the rotation of the earth and apparent path of Venusacross the sun being shown by the arrows．It is quite clear that at If Venus，will be seen 10 cross the sun＇s disc on the line a b ，while a^{\prime} I she will be seen to move along $a^{\prime} b^{\prime}$ ． nupposing the entire phenomenon to be seen from cach station， which is neces ary for the success of Halley＇s method，we ob－ tain the duration in time，which is the same thing as a certain
angle for the passage or line ab，as observed at krrill lint I，and，white wo have the length of a＇b^{\prime} observed from lidha Now the distance of the base，I I ，being known，and thir angles at Venus equal and opposte，we have ia the sumala triangles the distance $v v^{\prime}$ ，or the distance letweea $a b$ anlal $a b$ Hence we get four points on the circumference of a cirtle whose dimensions become determined

For the full application of Halley＇s method，anuther physi． cal firsture of the occurrenco must be turaed to acomat Firr the explanation of this we mut refer to Fig $S_{\text {，inorubutir it }}$ and our explanation again maialy from Sir G Arys Ipswich lectures．

Let S s，and $A \operatorname{B}$ be the sun and earth respeetively，onf viow being taken from a point on the side of the earth remote from the sun，say from Mars，co as to get an oblique downwarid wew of the phenomenon．We will sugpose the earth，am in the cise of the transit of 1769 ，to have its north pole inclint d thusul， the sun，or in other words，we nuppose a June than－it wha it is summer in the northern hemisphere Venus［いいいak ablly from V to v ．When at V ，an ubserver at A will see hur flat in contret with the sun＇s limbat S ，but at a stathoman any outher meridana，as for example，near c（khown in a dotled linn lo．－ cause it is on the side of the carth rest the sun，an＇，wh ciahd from us），Venus will be in the line $c V$ ，produced，that is，whe will not yet be seen on the sun＇s disc．In shor＇．λ ，＂hose position nearly corresponds to the apparent point of contat of Venus on the sun＇s limb，bees the phenomenon comme me herst． Now suppose A to be a point so chosen thatils might terminates in time for it to arrive at a before the transit is ealled，then we can see in the same way as befure that Venus，now at c ， will be seen on the sun＇s limb at ε ，from our station t ，alh．r it would appear to have left it，as been from a station on any other meridian－for instance，the one that is at thes moment at c ．Thus，an observer at A sees the tramsit commence eirly， and having come round to t ，he sees it terminate late，bo that to him the time of transit has been kreatly lengthened＇Phat it is possible，in the abstract，to select a siation with a asht shurt enough to occur during the interval of transit is obrientis， seeing that we have only to go near enough to the pole to whe a night as ghurt as we like，or andeed，no might at all．（In the same principle，we may select another station 1 ，in the sonth－ era hemisphere，where transit is seen to commence in the morning and terminate before 12 ，at evening，gets tor $\%$ ．On the principle wo have just explained，Vinus will be sien to come late on the sun s dise from B ，and to leave it early from b ．so that at this station，the tume of transit whll be redeced to a minimum．Thus，in 1763 ，at Wardhoe，in lapland，the dis． ration of the transit of Venus was 5h． f （min．，white at Ota－ heste it was 5 h ．and 32 min ．Of the 22 mats difference in dura． tion about 12 min ．Was due to 11 ardhoe being towards the nortb，so that Venus appear．d to cruss a lower and bioader part of the sun＇s dibc than as seen at Otaheite，and 10 mm ．Was due to the pusition of the meridians at A and a and B and b a just now explained．It is obvious that in a large diff rence of duraion a small entor of observation will tell but hitle；for erample， 5 seconds is only $\frac{1}{2} f$ part of 22 win．，and thus if the whole of the 22 min ．is dependent on the dista ce of Venus，or if it is， 88 it is termed，a tunction of it，which in the cisse，it is clear that we have very favourable observations for the sulu－ tion of our problem．

It is necessaty，however，to add that such favourable cir－ cumstances can seldom be expected to offer thems lves．For instance the coming transit is a Decemberone，when the south pole is towarus the sun，and there is no tation availatile for securing the observation of ingress in the evenung，and the egress on the following morning，as just des ribe I．Again，it is often found that uncertain we ther prevents the double ob－ servation of bouh ingress and egres，especially at statione selected from the equator；thus it happens that the second method we nave referred to，that of Delisle，comss into use．

In Fig．6，Which we suppose to be a plan showing the posi－ tion of the sun，earth，and Venus at a transit，an observer at E would see Venus on the limbat S ，when，to one at e she wohk be in the line $V \mathrm{~L}$ ，and be still invistble．Now，suprosing Venus to remain stationary at V ，an observer at e，wherever the earth moved him round to E＇s present position would see the same phenomenon as was seen at E ，and at the same locil time，that is，with stars and sun in nearly the same relative positions as they were to the first station at E ；if，however， Yenus moves，we can select a station which will be at e about

the time when Venus reaches v ，and thus an observer sees the contact long after the observerst F ，although he sees it at early morn instead of evening，as he would if Venus remained at V and he had to come rouud to E to see her against the sun．

In short，the phenomeda which would be seen in the reru－ lar arrival of the fame local time to the successive stations ure secu earlier at the more westerly station，owng to Venus＇ motion on her path causing her to meet the second station， and thus，as it were，arrive carlier and earlier in local time．

We come，then，to this－the transit is seen to commence some time carlier at a more westerly station，owing to the motion of Venus from V to v ．Now the ime that Venus takes in performing an entire revolution－or 360 lieg，arc－round the sun is known；therefore the are sbe describes in any given number of minutes is known，or，what is the same thnng，the time being observed，the anele $\mathrm{V} S \mathrm{~b}$ becomes known－that is $E S e$ and since in this last tiangle，the base E e is known，wis have the neces ary elements for the solution of the triangle， the angle at the base $e \mathrm{ES}$ being obviously consequent on the position of E and e ．Hence it follows that the distance $E S$－ the suu＇s cistance－may lee obtanned．For thin method it is clear that a single observation－that is，the ingress or epress alone －is valuable，and consequently there is a much better selec－ tion of stations open As compared with Halley＇s method however，Delisle＇s has the diradva：tage of being dependent on longitude，while Hulley sonly requires latitude，which is more eabily determined．Delifle＇s，however，so much better suits the circumstances of the 1874 transit，that the English，French， Iussians and Anericans have all selected certain stations favournble for the observation of the phenomena－that is， either the ingress or egress．

The selectuon of the individual stations，with the question of instruments，we reserve，however，for another article

GANG BAND SAW－MILL．

We illustrate on page 266 ，what we regard as a valuable impiore ment，and one at the present moment of great impor－ tance to the American lumber trade．Notwithstanding the fact，that the timber of this conntry is being consumed at such a fearfilly rapid rate，as to threaten to exhaust the sup－ piy within a ft w years，it is well known，that an enormour， waste in sawing is constantly going on．The great rapidity with which lumber can be cut with circular saws has caused the extensive adoption of citcular saw－mills；and although the nectssary thickness of these saws consumes in kerf，vety much more than gangs of recip ocating sawe，still，the speed with wath thelogican be couverted intolumber and marketed， by the use of circular faws，has rendered the latter very popu－ lar with lumber manufacturers，thusenabling them to increase the capacity of their mills and turn the ir money quictitr．

The inventor of the gaug land saw－mill，AIr．M．Siliman，of Brooklyn，N．I，has supplied means，whereby equally as rapid conversion of logs into lumber is possible as with circu－ lar sa－mills，＂hile，at the eame time，very thin saws may be employed．With circular saws，cutting two－inch planks，not less than twelve per cent．of timber is wasted in the kerf． Wha Mr Sillanans invenilion，this waste can be reduced at leart one－half，a very much larger percent ge of raving being effected with thinner lumber．The advantages of rectprocat－ lug sumbingangs are thus secured，while，at the eame time， rapluity ol cuthus，is atiained equal to that of a circular savi－ mill．Tue evgravin：will illustrates the construction of the mall．Upon examination，it well be seen that simplicity is a characteristic of the invention．It consist，in the arrange－ meat in juxtaposition with each other，of sets or beries of band saws，aud in the combination of shafts with the upper and lower journal－boxes of the pair of pulleys or whecls of opposite saws to eachetiuft，having a right－band thread on one half，and a left－liand thread on the other balf，intermediate shafts con． nectidg each pair of screw shafts ly suitable bevoled geas， Wherely the satw of the several pars may be uniformly ad－ justed Jaterally，cither towards or from cach other．

Journal boxes composed of two parto，are ise d，ong capable of slading virtically within the other．A screw passes through the viritally sliding mit，and impinging against the botiom of the other part，is ，ited by a worm gear．This mechan
nism is controlled，and the tension of the siw adjusted hum the sides of the machine，by means of a hatbel－wheel，wiow at the left of the engravfog．The adjustment for thi，hile ai lumber is effected by horizontal shafts abovo and below，pre－ viously referred to，which have right and left scre W ，（llt i_{1} oha them，and which are simultaneou－ly operated liy mam．If two vertical thafts，shown at the right of the engravilis＇Ili．． right and left hand screws respectively pass through－llun blocks which carry the bearings of the saw pulle．g，＇11．1－
 band saws，while at the same time，the blades at hift for allel with each other．

As we have given special attention to the invilulill it having been patented through the＂American Artisin l＇，ht Agency，＂we give it as our opixion that thas merhond if． m ． ploying band waws is attended with no practical dill inll－iot met with in the use of single band saws．The piactitilit ，il cutting lumber with band saws havalceady been fuil！If 1 un－ strated．The only draw－back has been，that the bithl a．sin． mill could n ，t tura out the same amount of work in a－ m_{t} time as the circular saw－mill or gidge of reciprecititis：
With band saws used in gange，as herein describe l，thin，ill．． tion will be removed；and when the great saviur of ham， effected by the invention is taken into cons detatlon，w regard its ultimate success as certain．－American $\mathbf{~ 1 - t e s e . ~}$

HILL＇S Patent vertical boiler．

The boiler which we illustrate on page 267 posm Eがい sivisal novel and useful features，which deserve the attention of tha．．．e who may examine it at Manchester＇The details of（romitmitan will be obvious al a glance．Fig． 1 and plan show an or hant boiler，Fig 3，and plan show a boiler in which the whinte mitt： shell is enveloped in a smoke box which can be liftel a li is a moment．Iuterually the boilers are nearly alihe．Vinia water tubes are fixed in the fire－bor．This has luoll dat：r before repeatedly，but not as in this case．The tulns movery of beng bent and fitied directly into the tube plate，al filfed into malleable castings，as thown，in groups These antris： are tapered and y round at the outer conds or legr，atil theo tapered ends are drawn into slightly conioal boles in thitio bol，by the bolts aud nuts passing through the outer -1.11 hs shown．Any tule，or rather any gioup of tule＇s，an be tiheta ont by removing the nuts on the outsude of the le lfe：：shi wh withdraving the bolts allowing the group of tulees to da atid into the fire－bos，whence it can betaken for repairs ot r．bat al of tubes．

It will be feen that the arrangement is cheap and－imple and we understand that several of these bonters whin ars at work have given very satisfactory realls．＇ 1 her mathede castings afpear to：tand ve y well．and give no tronble il abl kiod．The facilities fur manufacture are obvourly preat，and the boiler deserves extended adoption．－The Engineer．

AMERICAN LIGHTKOLIS：

We publish th＇s week，on page 270 ，two more esamith ot American lighthouses，both denigued for the se，．．witi Calsfornia，but neither of which are yet completel＇din firs of these is for Piedras Blancas，a point about miduay lulwita the lighthouses on Points（onception and I＇mos，and wis－ fant about 150 miles from each．An appobiliturn 1 $\$ i 5,000$ was made for this work，whith is to hath a mm urder light and fog signal．The eite belongs to the 1 mitu States．

The second illustration sinows the lighthouse for the Straits of Karquince，Caljfornia．An appropriation＂f ミ＇＂＂＂ was made for this work，to maik the entrance to the strat： of Karquincs．A Jocation on the sotuthern shate，iftionte Mare Island，was recommended，but as none sumtable＂．a－ found，the final selcotion of site was made on the suathern end of Mare Island．

Tue twn tallest rhimacys in the world are at lounacnd Caemical Works，Glangew，an I St．Rollux，Glackin the tormer 454 feet high，and the laticr 432 feet

NEW AND GIGANTIC TELESCOPE.

(From the Scientific American.)

Among the many ideas which have been elicited by the disu-si"n in these columan regarding a gigantic or "million dullar" telescope, we have recently had submitted to our examination one which secms to us quite novel, ingenious, andi. althongh untried, not unprastical. It is a scheme for a huge invtrument, to be built on either the Gregorian or Cossckramilan sisstem, in which the image is first recesved on a large parabolse mirror located in a position diametrically npproite to the objective in a refracting telescope, thence reflected backto a secondary mirror, which, in accordance with the respective 85stems, is tither concave or convex, and by the last re-reflected to the eyepiece, the tube of which passes though an orifice in the centre of the large glass. It is hardly requisite to explain the immene labor and, in fact, almost insuperable diticulties which would be encountered in constructing a reflector of the proposed size-ten or fifteen feet in diameter-of metal, and mounting the same. The: grat mirror in the telescope in Melbourne, Australia, though but 38 fect in diameter and weighing 3,498 pounds, required 1270 bours of continuous labor to bring it into the last polishn; stage, while its adjustment and mounting exacted the picest engineering skill. In brief, it may be safely asserted that a metallic mirror, of the large size nbove noted, supposing it could be successfully constructed, would, from its great waght but far more on acculunt of its consequent flcrure, be practuenlly useless

Mr. Daniel C. Cbapman, of this city, who is the originator of the phan we are about to describe, suggests both a mude of making a mirror of light weight, and also a method of supporting the same. The reflector, he says, may be constucted of glass. A mould of clay, metal, or cement, of the required shape, is carefully furmed and placed in a suitable furuace, cavity upward. Over the latter a huge plate of wiass is disposed, and the heat applied. At a certain temperature, the giass begins to soften, and in such state may be bent, fitted into the mould, and subsequently annealed. The whole 38 then removed and placed on a plane. The glass is taken from its bed, disposed convex side up, and a backing of ce. mest or plaster, the composition of which is previously determined by expcriment so that it shall have the same coefficicut of expansion as the glass, is appiied, to several ınches in thitiness. The mirxor is next inverted, placed on a turniug table, aud carciully ground or finished withia, into the exact form necessary. But little labour, comparatively speaking, nill here be required, as an approximate or nearly true curve, will, it is believed, be taken by the glass in fitting itself to the mould. The reflecting face is, lastly, silvered ly Dr. Draper's process, a solution of Rochelle salts and nitrate of silver being applied, which very quickly deposits a fine uafurm metallic surfarc. It will be noted that the inventor thus obtains a reflectur of light plaster and glass, the weight of which is necesearily quite small.
Next, for its suspension, and this will be rendered clear by the engraving on page 263. On the rcar of the plaster Licking are made a number of projections, arranged with sockets to recelve the ends of any number of braces. The latter are of ruod, strong and well seasuned, and covered with some preserving material. These, extending from various points on the back, meet at the centre of a huge copper spherc, which encloses the eatire apparatus except the marror, and then intersecting, spread again to sbut against the interior periphery of the alove. The mode of arrang ng these stages is, of course, a matter of enginccring detwil, and will depend greatly on local circumstances. The shell of the sphere comes, as shown in the chyraving, just to the edge of the mirror, but has nothing to do with its support, the braces being solely for this purpose. The secondary nursor is held by two slays, which extend from the carcumference of the reflector and meet at a calculated distunce from the same. It is not necessary that the reflector is phaced at the surface of the globe, but it may be pliaced at or near the centre, leaving an opening of the samo size in the globe, with perpendicular sides, thus requiriog littie or Do counterpuise. The standards and stays huldinar the sumall mistor may be attached to the extremo cxternal surfuce of the glove, thus giving a largo base and greater stemdiness. The shays loward the poles are so artanged that the lower one is detacied when nearing the horizon, in casc it shuuld
be desirable. By this method there is nothing, so far as we can now see, to prevent the successful constructing and using of a telescope of very large size.

Through the centre of the large glass is made an opening, and in this is a telescope tube, suitably jointed and terminating in an egepiece within the globe at the obecrere's seat. The situation of the latt-risclearly shown in the llhestation, and it is suitally supported so as to bealways vertical. By this arrangement the observer is constantly localed in the right pusition; and by placing a partition of some non-conducting material between hituand the backing of the retlector 80 as to leave an intermediate space of four or five inches, a warm room to workin may bo gained, and a means of keeping the braces dry provided.
The grest sphere pivots in a ring, the axis of which is in. clined to point to the pole, and is pivoted at one sufe in the cap of a single heavy pier. Bet 7 w the giobu is a vanit filled with water or other liquid. in which it floats aud from which it receives it principal support. It is evident that the motion of the apparaius will chus be gיsceptible of casy regulation, and may be effected by simp mechanical appliances arranged with counterpoises and, veraed by the observir. As our object is not to enter into 1 . e mioor detals of this plan, but rather to exbibit the inlea upon which it is based, further explanation is deemed unnecessary. Theiaventor thinks that a mirror of fifteen feet diameter may be constructed and mounted as we have described. As compared with a refracting telescope with an objective of corresponding size, and a focal lengeth of 200 feet, the refractor mould give a sun pisture 20 inches in diameter; the reflector, having 100 fect focal length, would shew an image 10 inches in similar dimension. In point of quantity of lizht, compared witb Herschel's reflector, which was nearly five feet in diameter, the fochl distance being still 100 feet, a 15 foot mirror would gather nearly 14 times as much. For photography a great rellectiog telescope could not be aevantageously employed, as it would fall to give sutticiently fine defioition of the object ; but for spectroscopic work, it would be very useful and especially valuable for heat investigations with the thermopile. As a searcher for faint comets and double stars, frown the large amount of light received, it would lead to results of great importance, and enable us to examine aud resolve vebula befure whel the highest magnifying power now existing fatls.

Tac completino of the Hoosac Tunnel and the rapid progress of the Sutro have caused the mi eres both in the Ea-t and in the West of America to look with interest upin what has been an i is projected in conn-ction whit tunoel driving. It is in Germany, says the Ma,"ing. Journal, that the great tunnels have been constructed, and these have been matde exclusiv. Iy for mining. There is the: great tunnel at Freiberg, twemyfour miles long; the Ernst-Aurusi and the Georg at Clansthal, thirteen and a-half and ten and three-quarter miles repectively; the Jos:ph 1I. at Schemnita, nine and a-juarter miles; the Rothsc hooberg at Freberg, elght miles; the Mont Cenis, seven and a-half mites, which about completes the European list. In the United Stales we have the Hoosac, in
Massachusett, five miles long, the Sutio, in Nevala, for openMassachusett, five miles long, the Sutio, in Nevala, for opening up the celebrated Comstuck lude, this tunnel, althoubh
only four miles long, will, with its ramifation- to the various only four miles long, will, with its ramification- to the various
mines of the district, prove one of the most important in America, the Sierra Madre tunuel at Black Hawk, comuluaced during the present year, and which will be twelve miles long, as well 28 San Carlos and Union l'acific tunuels which are under two and a-half miles. The Erast. Angust tunnel was driven at the rate of a mile per sanum, and it will be interesting to notice how long it will take the Americans, with all the approved applianaces at present to command, to complete the nearly similar Sicrra Madre Tunnel.

Statz Assayer Bartictt of Maine asserts that several factories are in operation in that commonwealth producing cheap sugar and syrup from saw-dust and other substances. The sogars and syrupe are corrected by sulphuric acid, lime, and other ingredients. Maine, with its vasts foreste, may yet rival Louisiana as a sugar and eyrup-producing district.

AMERJCANJIGITHOUSES.

(For Notuce, sec paye 268.)

lighthouse at piemhas blancas, coast of california.

lighthouse at the exmhance to the sthatts of karuuines, california.
new city hall, Montreal.

Mechanics' Magazine.

MONTREAL, DECEMBER, 1873.

Maddan's Ploneer.
 Punching Cold Iron.

Amerlcan Patents.
Transit of Venus. \qquad
Gang Band.Saw Mili.
Patent Verifal Boller.
American lidghthouses..
Gigantic Telesrope......... Tumnels
Yondtng of Vexsel \qquad
Our Iron Industries....
Reviews
Goid MinIng on Lake Superlor..
... 276
Dnminion Matters........ 280
Rallway Maters......... .. 28
Betis and Carillon Ma-
chine
The Australian Fever
Tree..
. Patant Crane 283 Srientitic News.............. 285 Berchtold's Steam En-
\qquad
Water Supniy, PrevenIton of Waste............
Subsitute for Link Mo.
tions..
.. 289
Dangerous Paper Welght 289
To Inventors.

LOADING OF VESSELS.

It will be remembered by many of our readers that complaints were made lact autumn by captains of ressels loading wih grain at the Port of Montreal that they were subject to unnecessarily severe restrictions and overeight in the matter of loading. It was even said, we believe, that such a comrse, if - p.rsisted in would be of great damage to the port inasmuch as these severe regulations would have the effect of leading ship owners to seck some other port for such freight. The subject is an extremely important one in itself and in its relation to Canadian commerce. The vast products of the Western Statesand of our own Dominion in the West are every year secking inore and more the St. Lawreace as the shortest and mo-t natural outlet to the Great European Market; and this branch of trade in itself promises at no distant period to become of gigantic proportions Under these circumstances it is plainly vident that ail restrictions which can be removed from the development of this industry should be removed as soon and as completely as possible. liat on the other hand there is very much to be said. It is a well-known fact that veseels are nor to a very great extent operladen and bady laten. Then again grain is known to be a treacherous cargo, especially when, as is the g neral case now, it is stowedin bulk. This danger ari-cs from the fact that the cargo poured in quickly by elevators has not time to settle at all, and even if it does settle somewhat it scon settles more during the royage and thus leaves an empty space under the deck. The grain thus is at liberty to move from side to side with the motion of the vessel, or to shift over to one side and give the ∇-ssel a permanent list. This is avoided, to a certain extent, by the use of shifting boards fitted vertically along the middle line of
the vessel from end to end of the hold and also by transuirse bulkheads divid g g the hold, so as to enable the grain to ke trimmed closer up under the beams. In the caes of atram. ships, however, these precautions have not been deemed so necessary, since they are not so liable to be heeled over bly canvass as sailing ships, and it is stated that many steamships have been sent to sea without provisions of this nature d is a consequence of the nature of the cargo and, aleo, of a certan amount of carelessness in handling it there have been so many lasses during the past year or two that the subject has received scientific investigation. The Committee of inlond, has recently published a very interesting pamphlet on the stowage of grain cargoes, containing " Reports upon the Theory of Rolling and Stability as affecting the Seaworthar-s of Vessels, and on the Stowage of "rain Cargo," by Mr. Simos Fraser Mackie, of Lloyds' Agency, New York, and by the Surveyors of Lloyd's Register of British and Foreign Shpping. Mr. Mackie says that grain in bulk may le clasfetl as a semifluid having an angle of repuse of 30 degrees at rest, wus that when accompanied by motion, as in the case of a shupat sea, it should be taken at about one-half of what it is whea ashore, or say 15 degrees. He says also that loose grainin the hold of a vessel will evidently commence to move as soon as the list of the vessel exceeds the angle of repose ; and as it is almost certain that a vessel will roll through a greater angl: than 15 degrecs, it is almost certain that bulk grain will move more or less on every voyage. But the mere movement or working of a grain cargo is not what is meant by a shift of cargo ; and the great danger of a grain cargo lies in ita liablity to move.

The practical application of all the statement and theor and its peculiar interest to us will appear on tlancing at to following list of steamers lost at sea between the 1st Juuary 1872, and the 31st March, 1873 :

We are indcbted for the above list to the columns of Engineering, which remarhs as follows: "Of 62 (r n steamers lost during the above mentioned dates) no less than 20 wire laden with grain on the homeward voyage and they ripreset. ed a tonnage of over 20,000 tons grose, and a moncy valoed nearly half a million sterling. Of the iwenty steamurs lawed with grain that never reached port, six are known to hare capsized in consequence of the cargo having shifted, ard as in most of the others all hands were lost and the ressels nere principally news ones, it is fair to assume that a large propertion of them foundered by capsizing, owing to the bad stoming
of a treacherous caigo" In the ab ive list Montreal certainly on upies no enviable position, and in view of the facts and thorins advanced we are of opiaion that the harbour authorities axercised no more thin a very necesfary amount of superviston and restri tion in the matter of loading grain. There isat stake in the matter nit only the vessels and the crews, but aleo a lance amount of human food, the former of course, the fluman life it of paramount importance, but the last has prohaly a guatereffect than any on the price of flour and the rates of freight and insurance. In view of this condition of abiur; there are few interested or uninterested person-, wo anagine, who would not favour even more severe regulations than the cexisting rather than a removing of such as are now in furce, and it appears but reasonable that the reputation of the fort is more at take among underwriters and such others as mig trust to th list we have printed than among shop taptans and others niterested in getting a ship to sea as quichly as, pornible

oid iron industries.

The question of duties is one which just at present occupies very prominently the attention of all our merchants and ca. pilalints We take adsantage of this to bring before our rad rs' notice the sulntance of a circular received by us some rime since on the suliject of protection to our iron industry. The weular sturt; with the unquestionable statement that the importance of the iron industry can hatdy be over-estim. atud, that it cmploys vast copital and gives employment to great number of skilled hands. It then goes on to state some facts in conuection winh the iron trade of Canada as follows:
"The mor orance of the iron trade of cinneta will be apparert from the following figures, showing the imports fur the past five years, distmgni-hng the amounts paying the different rute of duty and that entered free.

For the five years ending June 30, 1873:

"The incacase from year to year is remarkable, and is owing tothe weat developement of our ralway system, and the ever oncrustus danad for machiucry in every branch of industry. The sory iemakable merease for 1872-73, orer the previous bar, s not so mueh due to the larger quantity importuc., as to tse \cdot hanced value. The relative ratio of increase of quantity mas about the same. With the anguseatation of our populalmon, trade ind wealth, this increase must continue for years to c. me
'. It does seem, therefore as if the time had arrived for some stop to hue takin, tending to the establishment of iron works in different parts of the country, where the ore exists in such quaituty and v, and whin such facilities for bringing it and the necessaty luel together, as to justify the inventment of caputal
"it will be re narked that the greater portion of iron imports enter frec, and a small portion only pays 5 per cent. That enterd free is looked on, to a certan extent, and under present cIr umst ances, I roperly so, as raw material, secing that is not yit mumfutured in this country; but once works are estab'thid wr thi couversion of the true raw material, the ore th 0 mis hantable shape, the imported article ceases to be such, and comes into competition with a boune manufacture.
"It is a fact, that, within the last three months iron has been imported into Canarfa from the United Stater, manufactured from ore takon out of the Hull Mines, near Ottawn.
"Now what is th." result wo sec here? Our own raw material sent out of the country to the United States, to which it pays a 20 per cent. duty ad valorum, yiclding a comparatively small profit to the (amadian seller, returning to the count y as so-called raw materinl, yieldang a large profit to the manuficeturer in the states and paying no duty to our exchequer. The wages and profit involved in its manufacture are all lost to Czabda.
"At the present moment negotiations are going on with capitalists in Great Britam, having in vew the investing of large amounts of capital 10 the erection of work for the wanufacthre of pis, bar, rilroad, and other forms of ron, in the Province of Ontaio, Quebec, and Nova Siotia, aud it appears that the efforts wonld be successful, could those willing to inve-t, be guaranterd a certain eceurity over and above the ordinary cummercial aspects of the investmeat.
"It appears that to afford this it would be stifheient to increase the duty on iron, now piying 5 p.c. to $7 \underline{d}$ p. c ,or 10 p.e, and to place a duty of Epc. on all such articlesnow on the free list as would be manufactured in the proposed establishments. This increased duty, while aftording a tatugble protection to the manufacturer, would not reasibly be felt in the conutry."

With reference to the iron ore, there is noquestion but that we are abundantly supplied with that. The main question is as to the futl and this difficulty is by no means eacy to be surmounted. It is a difliculty the solution of which, however, becomes more casy esery year as our means of intercommunication extend. As our railroads are extended the bringing together of the ore and fuel becomes a matter of less and less dificulty and the day is not far distant, wre believe, when this industry will have taken firm root among us. 'lhat it will ever become a great onc, at any rate in the e central provinces without coal measure, is, to bay the least, very problematical. Smelting operations are, we believe, to be undertaken before long, on a somewhat extensive scale in Ontario, and data will thus soon be afforded on which to come to some definite conclusion on the subject. In this connection we would remind our readers of some remarks of ours on the utilization of our rast deposits of peat. In the course of those remarks we alluded to the advantage such action would have in retaining, in this Irovince, the useful labour of the numerous body which fluctuates between the valley of the St. Lawrence and the Urick-fields and other indusiries of the Northern United States. This result, if it could be attaince would be of imnuense benefit to the country at at large; and if in connection with it the additional industry of smelting oưr iron ore with peat charcoal could be taken up there would bo a much greater result attrined. The iron produced by this means would be of impoitance not 80 much from its quintity as from its quality. For cerlain purpoces iron produced by this process would command always a price that should ensure success to its producers. With respect to the subject of tariff we are not prepared 10 go into it at any length but are certainly of opinion that in certain cases the cheapest market is not by any means the best. At all events there is a good opportunity in this Province to create a very useful induetry which would in itself be valuable and would further have a bentficial influence by affording to many of our inhabitints that labour which they now seek elsewhere. If this end could be secured by reasonably taxation we think the attempt should be made as soon as possible.

Tine Guardian advocates the conetruction of a railway from Nanaimo to Esquimalt, by which the mineral wealth of the island would be developed, and the location of the terminus of the Canadian Pacific Ruilway rendered a matter of induffer. ence to Victorians.

'IRANSIT OF VENUS.

We reproduce on page 203, for the benefit of our readers, the first of one or two articles on tho approaching transit of Venus which have just appeared in tho linjaneer. The phenomenon is occupying the attontion of all soientifio men Just now to a great catent and tho results of tho oxpeditions now being fitted out by Eogland, France, IUssia and America aro looked forward to with Intense intorest. The question, as the writer states is, not merely a theor + ical astronomical problem, but js one with practical application to the very geography of our carth. The importance with which it is regarded by men of science may bo fithered from the fact that preparations have been making for the coming observations during the past half centurs. That the results may be expected to be as corrut as possible may be argued from the friendly scientitic cooperation und rivalry of the leading astronomers of the leading nations of the earth.

We are compelled, from want of space, to defer our descriptions of the New City Hall at Montreal and of the Birmingham Aquarium until nest month.

REVIEWS.

The Ayerican Artisan. Brown and Allen, New York.
We have been compelled by force of circumstances, which have eomewhat delayed our publication, to postpone noticing the recent change in this vory interesting and ably conducted journal. The present volume appears in monthly numbers instead of weekly as bef re. We cannot say we are altogether pleased with the change since the oftener we soe such a journal the better. The munthly, however, is much larger and shews, if possible, more care than ever, especially in the matter of the engraviags which are of a very high degree of excellence. The cover is ornamented by a spirited engraving e promintat fyature in which is a view of the celebratod East River Bridge as it whll appear when comploted. The Artisan constitutes now a monthly magazine of undoubted scientific ability and is at the same time a journal which few, if any people, can redd, in these days of universal education without intense intcrest.

We congratulate the publishers on the ty pographical beauty of their publication and wish the Artisan every success in its new form.

How to Kafe Money be Patexts : by Chatles Barlow. London, E. Marlborough \& Co.

We have just received the third edition, recently pablishod, of this work. It is not very long since we referred to the furmer edition as a work of great practical value to inventors nad patentecs, and the fact that a new edition has been called for proves that its usefulness is being realized. The work is replete with useful hints and saggestions, and contains moroortr some very sound advice to inventors on subjects on which thej are apt to go somewhat astray. As a guide in securing patents it will be of greater service to Eoglish patentees than to Canadian ones, but even to the latter it cannot fail to be of service sometimes, and the general truths as to the disposal of patente, \&c., are of universal application and are put forth in the clearest and most forcible manner by one who is an authority on the subject.

GOLD MINING ON LAKE SUPERIOR.

We condense the follewing from a report, in the Toronto Qlobe, of a paper read before the Canadian Instituto by Mr Peter HeKellar.
The general characteristics of the Huronian slates of Lake Supetior resembled those of the most gold bearin; formations of tho world so much that I invarinbly looked for gold whenover I came across veins in them, but always failed until the summer above mentioned. The excitement caused by the Silver Mines of Thunder Bay spread amongst the Indians, who also began to look for metalliferous veine, by bringing si imens from every white rock that they could come across. I'wo of these, J. Baptist and M. Putchat, who were in the employ of the H. B Co, under Mr. Neil Whyte, of the Beau Blanc Post, one of which showed the ores of lead, copper, and iron, which are very common in the veids near the coast, but not in the old rocks back. Mr. Whyto sent the specimen to Fort Wil. liam in the winter of 187071 to show them to mo to see if they were of aoy valuo. Mr. John McIntyre, of Fort William, got the Indians to bring in mure specimens, snd some of the wall rock which was talcose slate. From the appearance of the vein-stone and slate I felt confident that the vein did carry gold, although the specimens did not show any ; so Mr. Mcintyre sent two of the Indians along with me to show it. We started in July, 1872, following the Dawson Road a distance of 45 miles, to Lako Shebandowan, where we procured a canoe and provisions for the rest of the journey, which was 30 miles by Fater, to bring us to the next end of the lake; then, according to the Indians' calculations, 25 miles to the vein, by portages, small lakes, and streame, which afterwards proved to be only $12 \frac{1}{2}$ miles when tho road was cut out and measured.

On reaching the place 1 commenced my examination, and was soon rewarded by finding the free gold in the form. of thin leaves coating the bitter spar. At the point of expesure the lode is running elong in the face of a steep hill, and large blocks of the vein rock had fallen down, making it appear to the Irdians to be running at right angles to its real courote, therefore they were unable to trace it up or find it in any other place. Before leaving for Thunder Bay I traced the vein by its outcrops for about tbree-quarters of a mile, finding it of similar character throughout.

The rock formation consists of the usually finc testured, greenish slates of the Huronian series-such as dioitic, chloritic, talcose, silicious, and fine grain micaceous slate, interstratified with beds of f-rruginous quartz and magoetic iron ore. There magnetic beds are from 20 to 150 feet in width and show a ribbon-like siructure, being interlaminated with layers of quartz, and can be traced for miles along their strike, no doubt the time will come when some of them can be worhed with profit. The rock on either side of the lode for some dis. tance is composed of the greenish slatos, talco ce, chloritic, and dioritic, with the massive dioritic and iron ore beds, while to the ncrth-west of the lode, about a mile, lies a graai thickness of the above-mentioned zoicaceous states, which are dark in colour, and in places pass into clay slate, showiog a transverse cleqvage. These are cut in every direction by masses or irregular veins of quartz, which appear to belong to the gash-vetn system. Again, to the south east, some two miles beyond the vein, are developed great thicknesses of greenish-white, sticious, slate conglomerates. The whole of these slates seem to lie conformably on one another, dipping to the N. W., at an angle of 50° to 80°. About threc-fouths af a mile to the N. E. of the vein lies the Jack-fish Lake, which is over a mile and a half in length. Its bed is worn out of massive reddrsh granite which must have been forced up through the above mentioned slaty strata, as we find it displaced and altered in appearance next the granite. In coming from the S. W., we find that the slates within half a mile of the Lake chango in their strike fom E. N. E., around to the N., and then to the N. N. W., the angle of dip increasing with the change of striko from 50° until it has reached the vertical, then after passing the broudest part of tha granite, west of the Lalse it again changes and gradually gains its orisinal dip and striko. To the south-east side of the granite and Lake, the change in the strike of the slates is light, but their dip is acarly verticdl, besides they aro chavged into a sort of gneiss fur some dist ince from the granite. The gereral width of this igncous belt of rock is one half to three-fourths of a mile. It extends northeastward for many miles, intersectiog the strike of tho slates at a small augle. On Jackfish Lake, where it terminates
abruptly in its westward course, with the exception of the small branches it sends forth, it fyrinds out to a mile and on bhalfin width. I'lere binn hes cut the slates in all directions near the Lake, lut the most of them at no great distance seem to fall in and follow the cleavage planes of the slates. Some of them are seen to continue for several miles from their nucleus, as it were.

The ve n may be said to consist of 2 ribs or bands of quarte, callaveragina fom 1 to 3 feet in thackness, with a parting of taico es slate of 2 to $\&$ fect in thickness, mahing in all a width of 7 or 8 feet. The slaty garting 38 filled with crystals of iron pyritea, and carry fome gold, but whether in paying quanitifes or not la uld not say. The quartz make an ageregate thick. ness of $2 \frac{1}{2}$ to 4 fect, it is charged with galena, and conpr r, and iron pyrites, with some zinc blende, gold, and the sulpharet of tilver. The latter occurs through the quartz in bunches, consisting of an aborescent nucleur of the malleable ore, around whinh, from one to several mehes, the quartz is rendered very dark from the presence of thin leaves and minutes particles of the silver ore. Nuggets and leaves of gold arealmost invarin. bly found in the e uranches. The gold is al ofurd in leaves coa ing the bitter spar, anil in small nuggets penetrati"g the quartz, galena, zinc blende, copper and won pyrites. It serms to be present in more or less quintities throughout th. whole lode as shown by maty trials both by the fire assay and the simple way, crushing, roasting, and washing. It maverive you a better idca of the value of this lode when I tell you that Captain W. B Frue, of Silver Islet, and associate: paid $\$ 20,000$ for less than a half interest, on the etrengeth of the specimens and the description I had given of it.

The result of the 126 lbs. of ore sent to the Wyandotte Smeltis g Works, wis an average of $\$ 505$ to the ton, about $\$ 40$ of silver, the rest of gold-the button of gold produced, which weirhs some two ounces or more, is in the possession of Sifs. J. Mclntyre, of Fort William, to whom it was presented by Captain Wm. B. Frue. We do not expect that the average of the ore will equal the above result, unless the mine improves much in depth. We could scarcely expect such a large average when the ore is thero in such large quantities. Take the mines on the great Comstock lode, Nevada, which have paid millions of dollars in dividends, and the average yieid of them was from $\$ 20$ to $\$ 46$. It may seem strange to hose unacquainted with mining how those low grade ore mines can be worked with profit, when mines yielding from $\$ 1,000$ to $\$ 2,000$ per ton are only ordinary mines. The simple reason is this-that whenever ore yields an amount greater than the expense of mining and redacing, as long as there is plenty ot it, the mine can be worked with profit, which will increase in proportion to the amount annually worked, and the percentage of the ore over and above the cost of working. The expense of working a ton of ore in different mines varies from three dollars to thousands, this grtat difference being due, principally, to the amount of waste ground that is required to be removed in procuring the ton of ore
having thoroughly examined the out-crops of the lode in question for about three-quarters of a mile along its strike, and having been there when i, was being cross-cut in several places from one of which about 100 tons of ore were taken, and judging from the character of the lode throughout, I am satisfied that there will be no lack of ore, as the whole of the quartz seems to be morc or less auriferous, and therefore can be cheaply worked, or in other worde, at a low rate per ton; 60 that it could be worked with profit at a small fraction of the yield of the sample gent to Wyandotte, say, $\$ 50$, or $\$ 20$, or even, less per ton when we know that ore cas be mined at a much lower figure, where labour and supples are much more expensive, than with us. Tako, for sxample, the above mentioned mines on the Comstock lode, Nevada. According to Mr. J. Ross Browne's official report to the United States, the total expense per ton of working the ore in several of these mines was from $\$ 7$ to $\$ 7$, that, too, six to eight years ago. Again, take the Black Hill Mine in Australia, the ore of mhich, could not have cost $\$ 3$ per ton for miniug and reducing as shown by Mr. A. R. C. Selwyn, Dircctor of the Geo. logical Survey (see page 281 of the Geological Report of Progress for 1870.71$)$. He states that the average gield of the ore from this mine was only 2dwts. $2121-100 \mathrm{grs}$. of gold per ton, yet it paid the proprictors 10 per cent. on the capital in. vested.

Besides the precious metals in tho Jackfish Lake lode, the
oro consists largely of zalens, with considerable enpper pyrites. The galena eapeulally could bo saveri, and I have no doubt it would pry the total expense of workiug the ore. In the first place. I beliove it to be a true fissure vien. Although it seems, from an examination of one point only, to conform in dip and strike with tho formation, it does not, for I find that one of the large magnetic bed.; lies about 800 feet to the south-eagt of the north-easterly exposure of the vien, while the two cone within 100 feut of each other at the southwesterly exposure, where the vein is lost in low land; in the next place, it and the beddec. lodes, which aro numerous, are distinctly different in character as well as in the ores they bear, the lattor being finely granu ar schistoso, and holding iron pyrites and magnetic ore. It differs also from thoso of what appear to be the gash-vein system which prevails in the above-mentioned fine, micaceoue strata, in being persistent in its course for a long way, in beiag rare in the locality and also in the ore it carries, and its quartz being less transparent and vitreous Again, the vein-stone is identical in charact. r as well as in the ores it contains, with that of the Heron Bay lodes, ono of which runs with the stralification and the other across it at right-angles of which I will give a brief descrip. tion furthcr 2 n . For a vein to run with the cleavage or stratification is no proof aguinst its orcupying a tru. fissure, as is generally belicved, fur the direction of fissure depends on the way the forces that caused it were sppled, which Fould be moro likely to bo exerted along the lino of bedding, the way it had previously been when fotding or tilting the strata in the way we flau it. But allowing that it did not occupy a true fissure, the surface charaoteristios of the lode and of the enclosing formation show clearly that it is ouffiiently extensive in depth for all practical mining purposes I have been more particular in describing this voin by reason of its buing further daveloped than any cf its kind in the section. Besides, if wo can show, as I believe we have, that there is one good gold-bearing lodu in this locality, we can safely calculate on the existence of others where there is such a large tract of nnexplored country lying on the same forma. tion.

Another vein ${ }^{\circ}$ near Partridgo Lake, 25 miles frum Mille Lac, on the Dawson Road was traced by the outcrops for a mile along its strike, without any apparent diminution of size. It disappeared in a lake at the ono end and in low land at the other.

It seems to run along in a broad band (half a mile or more in width), of fine textured dark and greenish.gray slates, which scem to cousist of talcuse, chluritic, silherous aud porphyritic slates, which are cut occasionally by small granite veins. These strata dip a: a high angle to the nortb-west, and are enclosed ca the ore side by reddish granite, and on tha other by a peculiar semi-crysta'line pirphyritic rock. The relation of these rocks to one another has not been traced out. ' I'he vein spems to be very large, averaging from 6 to 14 feet in width, composed of vitreous quartz with $8 n$ occasional thin parting of soft talcose slate. The quartz is partly stained red by the oride of iron, and blue and green by the carbonate of copper. It serms tt-berprinkled, as it were, all over with copper and iron pyrites and small partletes of gold. The latter serms to be so evenly distributed through the veinstone that there is little room for choosing in selecting speci nens. A fragment of the vein, weighing from 80 to 90 lbs , was sent to Montreal, along with other specimens from another part of the vein three quaters of a mile off. The ascays by Dr. Gırdwood, of Montreal, yiclded from $\$ 27$ to $\$ 30$ to the ton, there being but a dullar or so difference in the yield of the two places. The gold is very casily ext:accilas it se-ms to be free through the quartz.

The fact of the gold being eo svenly distribated through the quariz, and the quartz being in such large quantitics, are, I b lieve sufficient evidence, although only $\$ 27$ to $\$ 30$ perton, to show that this is a raluable mine. The above description of the lode, furmations, \&c, are given as received from the di-coverer of the gold, who had taken specimens and geological notes When there, and can be depended unon. I may state tiat this vein is distinctly different in character from tne Jackfish Lake gold lode. Being on Indian territory, no work has been doae on it since.

So ne time during the aummer of 1872, Messrs.W. Pritchard, J. Mchauren, and A. or P. Syretto, explorers, and all of Fort William, were prospectiug near the Pic River, which lies over 150 miles to the N. E. of Fort William, and discovered two

DETAILS OF HORIZONTAL ENGINE AT VIENNA. (FOT description, see page 287.)

veins of quartz near Heron Bay, carrying considerable galena, zinc blende, iton and copper pyritep, also gold and silver, as proven by the assays made by Mir. McDermid, of silver Islet. It lies in the talcose and chloritic slates of the Hilurodian serles which occupy the coast of Lake Superior for ten or twelve miles, and runs back towards White lake some 60 miles or more I bave not seen the reins myself, but I will give their character, \&c, as near as I could gather from those who heve.

The veins lic within a mile or so of the Bay; at the surface their widthe vary from 1 to $\{$ feet, composed of vitreous quartz with some bitter spar; all the specimens I saw from them were charged with the above mentioned ores. One of these veins seems to conform in dip and strike with the slates, wh ch strike about E. N. E, with a dip nearly vertical.

The other bears nearly N. and S, intersecting the slates, upon this a shaft was sunk rome 40 feet last winter. The lode is eaid to be much wider in the bottom (5 to 6 feet), and richer in ore than at the eurface.

I noticed, in going up the Pic River some years ago, 2 large patch of gianite, similar in sppearance to that abore mentioned as occurring on Jr ckfish Lako near the gold mine. It is enclosed within the slater, and lies within about a mile or of the Heron Biy lodes. It must have terminated between the river and the luke shore near Heron Bay, as I examined the coast and could not find it pass on. Not having seen its linc of contact, I am unable to say what relations it bears to the slates. Having seen it in about the same position in recard to each of these gold-bearing lodes, which lie about 150 miles apart, I thought it worthy of mention, as it may or may not have onsething to do with the presence of the precious metals in these veins.

Since the discovery of gold at Jackash Lake, there have betn many lodes of quariz found on this side of the Height of Lan! in the vicinity of Kqshaboie and Shebandowan Laker, which are said to yield by fire assay fro.n a feve dollars up to $\$ 100$ or more per tod, but as far as I am aware, none of them show the free gold, and, with one or two exceptions, the galena, zinc blende, and silver ore are want ng. These, as get, are totally undeveloped, but in all probability some of them will be good.
N., we know that these metalliferous slates occupy a large portion of the country fiom Thunder Bay westward, between the Ameri an boundary and the Lawson Route, extending in a fevp places to the north of the latter in broad belts. From the results of the partial explorat ons alrearly made-of which I have given a short account in this paper-we must conclude that the metalliferous wealh locked op in this extensive tract must be very great berween gold, silver, lead, and iron. On the American side of the line, in Minnfsota, in this sante formation, near where it crosse, bave been dircovered large depobts of irod, which will soon be made available, as they commenced last summer to build a railway from Lake Superior to tap them. In order to explore acd work it to advan. tage it would be neceasary to have a railway connection betw-en Lake Superior and the chain of water courses on the He ght of Land which penetrates the above mentioned tract in all directions in the form of lakes and strenme, otherwise none but rich mines of the f recious metals could be worked, iron mines being out of the question, there beine 45 miles over a rough road from lake Superior to the nearest body of this chain of waters. This ralway connection we expect to have in a few years, as the Government is going to build the link between Lake Superior and Fort Gar:y as soon as the surveys are finished.

Briaviour or Chloridx of Stlyer wita Comenctrated Sulpbcaic Acid aidd fith Sulution or Chloride or fron - It is generally maintained that chloride of silver is not at all, or only imperceptibly, attacked by sulphuric acid. This is decidedly erroneous. If chloride of silver, either precipitated and wached, or crystallised, or even fused, is heated with concentrated sulphuric acid for some time in a covered porcelain capsule, the chloride of silver is completely decomposed and dlesolved, with escape of hydrochloric acid. The precipitated chloride decomposes most readily Chloride of filver is aiso soluble in chloride of iron, a fact which must not be overlooked in determinations of zilver.

DOMINION.

Two one thousand gallon tanks aro being put down in London for fire purpozes.

Tha Cariboo gold clalms are all washing up over wages.

Mr. Alex McNab has been appointed Provincial Engineer of Nova Scotia.
-The St. John's, P. Q, Woolien Mills are getting in some Iron machincry. The profits for the past gear havo licen very good.

- The flrst cup and wacer were made in the 8t. John's, P. Q., Stone China Ware factory on the 4th inst.

Tin Teeswater salt works are suspended for the present. In a short time the directors will hold a meeting for consultation as to future working.
A ngw and finely finished pasengar car for the Riviere du Loup Railway has just been co-apleted at the New Brunswick Hailwsy workshop, the first t ،rned out by the Company.

Tirs clearing of the woxd uff the Louisburg Railway Line commenced on Saturday the 21st alt., at Loulsburg, the ancient capital of Cape Breton.

Savgral of the Goderich ealt works have commenced operations. They are now in full blast, working night and day. The prospects are favourable for the season's business.

The plaster trade of Windsar, N.S., and vicinity is opening. Since the 23rd of March, 17 ve-sels, carrging 3,940 tons, have cleared at Windsor for the Uaited States ports. Diaring March, seven veseels, carrying 1,400 tons, left Cheverie for the States.

Tis Bothwell Advance understands that the G. W. B. Co., have signifi d their willingness to assist in furthering the proposed scheqme for "tapplug" the Thames. St is probable that definite action towards accomplishing the work will be taken during the ensuing summer.

Tar Coaticook Enitting Company have received an order from a house in Ontario for the mauuficture of 1,000 dozen shirts and drawers. The Company have given orders for the erection of a warehouse near the factory, 24×60 feet, which the local faper affirms is to be built in vine days. Mr. Charles Merrill has the contract.

Mangayege in Nova Scotia - Manganese has been found on the Six-mile ruad, near Wallace, Nova Szotia. As a ditch was being dug, large quantities of the mi zeral were discovered, and samples were sent to Halifar pend pronounced pure and valuable.

The Government surveyors have eatered upon their work on the mainland. Mr. Torner, with Mr. Bonson, takes the survey on the Yale road. Mr. Ralph will push forward the townetip survegs, and Mr. Pinder will complete some surveys at Port Moody, left unfinished by the Royal Eagineers.

The Almonte Gazetle says:- A liner named Sabourin, in one of Mr . McLachlin Bros. Ebanties, made on the $\because 6$ th inst, a stick of quare white pine meas'ring 69 feet in lenuth, with a girth of 29 inche $\boldsymbol{b y} 30 \mathrm{in}$., free from rot, knol or shake, and straight on four lines. Notwithstanding its immense size, it and another stick containing 164 cubic feet were drawn to the river, a distance of $2 \frac{1}{2}$ milea, by one team, making a load of 520 cubic feet.

Detroir is to have a self-propelling steam fire engine. Its preliminary trial in Mancheste:, N. H., resulted sati:factorily, as it climbed the various gradesit had occasion to ascend very casily, and tarned corners with little, if any, loss of power.

Clamdian Irongromu.-The discovery of large deposits of rich ima ore in the provinces of Quebec and Oncario, is rousing attention to the subject of the mac. afacture ot iroo in Canada. The large : mportalion of iroa from Eugland into all parts of the Domíion and jts marked increase duriog the past year, when prices ruled unusually high, are facts which have not escaped attention.-Engineering.

RAILWAX MATTERS.

Baron Reuter is making some progress with hit Persian concession. Onc-third of the railway from Eestit to Tehersn has been surveycd, and a commevcemeat bas been made with the earth-worke, baliasting, and laying of aleepers. Very opportunely Dr . Titze, the Baron's Austrian geolobist, han discoverc 1 extensivacual mines ncar Kasbin, directly on the line of the rallway.

Whits the now irun brifgo over the Winooski River, near Waterbury, Vt., was being tested Saturday afternoon by Governor Smith, and the suilroad officials, the western span fell into the river, a distance of tairty feet, carrying with it four cars loaded with iron, weighiog 213 tons. Two labourera went down, bit weio not seriously hurt. The accidont was duc to the breakiag of the lower chord of the span, supposed from a defect in the iron. The loss, which is beavy, falls upon tho contractor.

Dunnag the great storm of Deeember 5 th, (says the American Railroad Qazelle) some of the Michigan roads experienced much trouble from fallen trees. A train on the Crand Rapids and Indiana was obliged to cut through 100 trees between Traverse City and Clam Lake, forty-seven miles. On the Jackson, Lansing and Saginaw a train was twelve hours ramning from Otsego Lake to Wenona, 112 milcs, baving cat through 200 trees, one of which, fell iust in front of the locomotive, smashing the bead light and pilot. On the Detroit and Bay City a train cut through three hundred trees in the run of 110 miles. eighty of them in fifteen miles.
M. de Lesssps has modified his original plan with respect to the Central Asian Railway. Acecrding to his modified proposals the line will commence at Ke:on, instead of at Oren. burg, and it will run to Jekaterinburg. At this point M. do Lesseps proposes that the line should bifurcate. If M. de Lesseps' ideas prevail oue fork will direct itself to the north, so as to traverse Siberia, and the other fork will rua to Troick, 'lorkestan, Taschkead, and Samarcand. The Pacific, the Iudian, and the Atlantic Oceaus would be united by this means. M. do Lesseps has sent his son, who is accompanied by Mr. Stuart, to india, in order to ascercain the best route fo. a line from Yeshawur to Samarcand.
Tus Chesapeake and Ohio Railroad Company hare, for two years, been trying to tunnel through Clurch Hill, in the eastern part of Birhmond, but the work has been attended with nnexpected impediments. It was supposed it could be completed for 300,000 dols., as there were no rocks, and the cintract was let at that price. The tunnel runs 80ft or 90 it. below the surface, through a slippery blue clay, which has the babit of caving in at tho most unseasonable times in the most disagreeable manner. The contractors long ago gave up and the railroad company was compelled to take the work. Six or seven men bave been killed, while the repeated cavings have undermined many houses over the line, which is about threequarters of a mile long, and is not yet open.

Tus Tituswille (Penosylvania) Herald says:-"With the present low prices the question of employing petroleum as fuel is agaln agitated. The latest intelligence apon the subject cumes from Cauada, where a man named Relighine has been trying an experiment on a locolutive belonging to the Canada Southern Railway, with an average consumption of four gallons per mile. The engine steamed quite freely and made good time with a train of thirty cars. This would be about a barrel for every ten miles. The most simple ccatrivance for burning petroleum is either by means of a jet of stcam or compressed air passed at right angles over the orifice of a pipe in such a manner that the oil will be sucked up and tbrown into the furnace in the form of a fine spray, where, if properly adjusted, it will undergo perfect combustion. The cost of the apparatus is trifling. The whole point, it scems to ug, turns upon cheapness, and as the market might go up rapidly with lny marked increase of demand, there seems to be an indispos:tion to try the experiment. There can be little doubt that oil will be found in many parts of the ccuntry where at present it is not thought of, in which case a new and unlimited market for its utilisation as fuel would naturally follow." A Californian paper states that oil has been found on the bank of the Pajaro iiver.
tile bells and carillg. machine. Woncester CATHEDRAL.

So much intarest han been recently expresseci concerning the bells and bell-chiming arrangements in Warcester Caihedral, that we are led to give a view and plan (f the bella aod bell-chamber, together with a view of the carillon machine recently completed there. The proposal to ratoe funds by subscription, to provide the cathedral with a clack and peal of bells, was origioated by the Rev. Richard a nttiry; minor canon of Woriester, and by his perseverance and di.votedness to the obj ct it has been succesefully carried out. In his appeal Bir. Cattley said, "I have felt anxious for some time past that the noble tower of our cathedral, which rears itself with so much grandear, not only over the cits but also over the rich valley of the Severn that envituns it, should, wihh the sacction of the Deman and Chapter, be fuminurd with a clock, in whichiall the resources of modern art (ircluding, If practicable, daily telegraphic communication wath Gr ettwich Observatory), together with the most finished worhminship, should be combined. And sot only so ; but, in outer to complete a schemo worthy of Worcester, which frum us rising importance now takes no mean place amongyt the cultes of Eugland, I propose that we provide a peal of twelve bella, in the key of D flat, on the heavier of which the noted Westminster quater-chimes would be bounded; and a bell of great power and magnitude, much after the model of the beeds Town-ball bell, the note of which would be B flat, welghung nearly 5 tone, on which to strike the hours. The carrying out of this latter part of my plan is tho hinge on which the whole practical utility of the scheme would turn, because ly such a grand aeasure only would the tims be distinctly indicated in every part; thos all other elucks could be regulated with perfect truthfulness; and I also make bold to say, without fear of contradiction, that the changes at the quarters, correspmading with the celebrated chimes to which I have just alluded, and answering to the deep-toned hour-bell, will prevent a combination which has not as yet been equalled, and will, mureover, only be surpassed when the unfortunate ' Big lien' passes succesfully through the founder's lunads."
The sum named at first as the probable cost was about 4,0001 . The greater part of the money was speedily ruised, and the work was put in hand.

The castiog of the bells was saccessfully completed by Messrs. John Caylor \& Co., of Loughborough, and the tone is pronounced exccedingly fine.

The ringing peal consists of twelve, the weight of the tenor being 50 cwt ; note D, flat. They are dedicated to the Twelve Apostles, and the name of the Apostolic Patron is cast in beautiful 15th-century letters on the waist of each bell. The Cambridge Quarter Clock Chimes necessitate an extra bell soundiag D nataral. This is decicated to St. Paul.
The weight of each bell, with the title and note, is as fol-lows:-

No.	crt. grs. lb		
1. S. Matthias................. A flat	G	3	19
2. S. Judas Jacobi. G ilit	7	0	22
3. S. Simon Zelotes F	7	2	10
4. S. Jacobus Alphxi E fiat	8	3	0
5. S. Mathreus D flat	10	1	21
6. S. Bartholomæus C	11	0	24
7. S. Thomas...... B llai	12	0	0
8. S. Philippus A Alat	15	2	11
9. S. Andreas G flat	21	2	11
10. S. Joannes. F	26	1	8
11. S. Jacobus.................. E flat	34	2	12
12. S. Petru3 D flat	50	0	
Extra Quarter Bell S. Paulus D	0	2	
Total.	221	3	12

There is also the great bell, on which the hours will be sounded by a new and powerful clock, constructed by Messrs. Joyce, of Whitchutch, Salop, (from the designs of Mr E. B. Denison, Q.C.), weighing 4 tons, 10 cwt .; making a total weight of metal of 15 tome, 11 cwt ., 3 qrs., 22 :bs. This bell is a fine casting, and the note B flat is a remarkably true and full one The ornamentation is of the same character as the peal bells There are also four coats of arms on the waist - (1) England; (2) See of Worcester; (3) Dean and Chapter of Worcester ; (4) City of Worcester. Beund the crown is a text of Scripture

plan of the bells and bell chamber, worcester cathedral.

Eph. $\mathbf{\nabla} .14$ - "Surg: qui dormis et exurge a mortuis, et illu-
minabit te (hristus." (See Durandus de Campanis.) Also, on the lower part of the bell, in addition to the founder's nime, is the following : - "In usum Ecclesia ('athedralis Christi et beate Mario Virginis in Civitate et Comitatu Vigorniensi. Anno Domini MDCCCLXVIII."
The following is the estimated expenditure :-
Bells, oak frame, and all necessary fittings complete... $£ 2,677$ llock, about
Timber trussing, floors, \&c., about. Architect's commission, about. Gins fittings
Chiming apparatus (Ellacombers).
Wire for tover windows, about \qquad
Incidental expenses, including takiag ciown old bells,
printing, advertising, \&c.. about \qquad
£\{,714
The large bell whs tolled for serrice for the first time by Mr. Denison avd the Rev. K. T. Ellacombe, on Sunday, the $17 \mathrm{th}^{2}$ of Jamuary, 1869, in the company of Mr. Cattloy and others.

A desire baving been expreased for the restauration of the sneient musical chimes, which had fallen into decay many years ago, Messrs. Gillett \& Bland, of Whitohorse-road, 'roydon, who have brought the machinery for such chime's to grat perfection, fere called in, and have constructed a machine on a new end patented principle, o great improvement upon the origasl patent which was first applied to a set of Belgian bells in Boston Church. Since then the firm have effected many improvements, all of which have becn intro-

I duced in the piece of mechanism under notice. It may be well to state that the chimes are the quarter-chimes of the clock. Mr. Ellacombe's chiming-hammers strise the bells inside with round hammers pulled by ropes, so that the succiss of the tunes or chimes depends catirely upon the skill of the performer; but the carillon machine is an automatio musician, the tunes being played entirely by machinery, and let off by the clock at the proper times. The carillon ma chine is constructed to play trenty-cight tunes on fifteen bells butat present it will play seven tunes onls on the ringing peal of twelve bells, occasionally introducing the great bell of $4 \frac{1}{2}$ tons, which inas a grand effect. The trines are original, composed for the purpose. This wo are disposed to regard as a mistakc. Known tunes would have given more general satisfaction. When two extra bells are provided (which ars cssential in order to render the music of the Worcester carillons the finest in England), the other three barrols will be pricked with seven tuncs on each. There are thiriy-four keps to the machine, only twenty-four of which are now used. The man nine is wound up every morning, and plays oight times in the course of twenty-four hours, a period of three hours clapsing between each performance. The same tune is repeated three times on each occasion, and it continues in action four minutes and a half at the expiration of trenty-four hours the tune changes inveluniarily, and in lise mananer the seven tunes of tho barrol are consecutively played. Its connczion with the clock is by means of a lever, which, by a mochanical arrangement, is gently drawn when the timo approaches, dislodging a pin, and thus setting the machine in motion. The motive power is obtained by weights, and the speed, as in
cloifs, is regulated by revolving vanes, capable of casy and instantancous adjustment. The barrel, which is exactly on the same painciple as that of a musical bcx, and is constructed to play seven tunce, is studded with brass pins, and n its revolu tion releases the detents and lets the hammer descend upon the bell; a cam-wheel of peculiar construction, continuonsiy revolving, immediately draws the hammor back into a striking position, and forces the detents back into their proper place. When the bells are requared for ringing, by a simple ariangement a bar is turned domn o the keys, which prevents the machne being set in motion, so that the ringing may continue for any length of time withont fear of interruption. 'She works of the machine are enclosed in a massive cast-iron frame bolted toget'acr with iron nuts and bolts, and 7 ft . long, 4 ft . wide, and 4 it . high, and weighing over $1 \frac{1}{2}$ ton. The motive power is given by weights, weighing 14 cwt ., which are suspended by a steel line (280 ft . in length) from the iron barrel which drives the main wheel, and thus sets the whole machane in motion. The four musiral burrels have ecven tunes on call and are σ ft long, 12 in in diameter, and are made of malıgany, each being puicked with 1,100 brass pins, onecighth of an minh square. There are twentyosix hammers for striking the bells, some of which weigh 2 cwt., lt cwt., and 70 16. cach, altogether weighing $1,202 \mathrm{lb}$. The weight of the whole machine, inchading hammers, cranks, lines, \&e., is nearly 4 tons of metal.

The great advantages claimed for the new system of carillon machinery are, that instead of the hammers being lifted up by the pins on the musical barrel (in the way common to all chiming machines on the old system), the two actions of liftugg the hammers and letiong them of to strike the bells are separated, so that the monient the hammers are released by the small pins on the musical :arrel, wey are again instantly raised into the striking position, their actions being perfectly simultaneous

To show the facility with which the carillon machine acts upon the bells, it is stated that, notwithstanding the great weight of the hammers, an ivory key-board could be attached, the same as in a pianoforte, so that the funes could be played upon the bells by the tingers as easily as playing a church organ, and any number of tunes could be played by haring a series if musical bar: els with seven tunes on each.

THE AUSTRALIAN FEVER TREE.

A. question of considerable general interest was recently discussed at a mecting of the French Academy of Sciences. The subject was the remarkable sanitary influence of the 'eucalyptus globulus, when planted in marshy grounds; and the tree, in brief, at seems, has the curious and valuable power of destroying the malarious element in any atmosphere where it grows.

The species is indigenous to Tasmania, and is known among the colonists by the name of the Tasmanian blue gam tree, on account of its dark bluish tinged leaves. Growing in the valleys and on thickly wooded mountain slopes, it often attains a height of from 180 to 220 feet, with a circumference of trunk of from 32 to 64 fect. The foliage is thin and oddly twisted, surmounting, with Ω thin crown, the top of the pillar-like stem. The wood exhales an aromatic odor, and, after seasoning, is said to be incorruptible. For this reason, it is largely used in the building of piers, vessels, and other structures exposed to the ravages of the weacher. It is largely exported, to the aggregate value, an authority states, of $\$ 4,000,000$ per ycar.
To the peculiar camphor-like odor of the leares and the large absorption of water by the roots is doubtless owing the face of the beneficial influence of the tree. Where it is thickly plante in marshy tracts, the sub-soil is said to be drained, as it by extensive piping.

Miasma ceases, we are told, wherever the encalyptus fourishes. It has been trled, for this purpose, st the Crpe; and, within two or three years, completely changed cae climatic condition of the unlualthy parts of that colony. Somewhat later, its plantation way undertaken, on a large scale, in various parts of Algiers, situated on the banks of a river, and noted for its cxtremely pestilential air; nbout 13,000 eucalypti were planted. In the same year, at the time when the ferer scason used to set in, not a single case oc.
curred, yet the trees were not more than nine feet linds Since then, complete immunity from fever has been mals.t.un. ed. In tho neighboarhood of Constantina, it is also stat...l, was another noted fever spot, covered with marsh water lith in winter and summer; in five years, the whole ground was dried up by 14,000 of these trees, and farmers and chilicin enjoy excellent health. Throughout Cuba, marsh dexedse's ate fast disappearing from all the unhealthy districts where this tree has been introduced. A station house, agana, at whe end of a railway viaduct in the Department of the Var, "as o pestilential that the officials could not be kept there lom-1r than a year ; forty of the trees were planted, and it is now dy bealthy as any other place on the line.

La Nature, to which journal we are indebted for ther wh. graving on page 278 of the peculiar leaves and flowers of the tree appears, adds that careful experiments have: pruv if that, in a medicinal preparation, it cures the worst cases of ntintmittent fever, against which quinine proves powerles.. It is also valuable as a disinfectant, and asa dressing for woumh, While more recent investigatious point to the fact that it may be rendered of great service in catarrhal affections.

DE LORIERE'S PATENT CRANE EXGIBITFD IT VIENざA.

In the illustration on page 274 we illustrate a crant trhl. bited at Vienna last yearby Messrs ('. E. De Lorin're *'", Victoria street, Westminster. We cannot better d serthe it that in the inventor's own words. The oly.et of the apfarit's combined with the gearing is, bays M. De Loriere, "t", mun effectually utilise the accumulated power, in a thewlinit in motion by applying it at the point of greatest ethi! !n! through the medium of a compound motion, thus ove r_{1} winus the difficulty of the dead points and mahiog cffecture fruti beretofore lost."

The apparatus is a combination of cranks and level, connected together, and described as follows: First, the arramement of cranks and levers that are coupled by conathatsrods laving no loat motion, the arms of the levet trum the fulcrum being of the same relative length as the , ruths Second, the arrangement of levers that have lost uwhoa. which is produced by travelling bearing; working in the shots shown in Figs. 1 and 2. The workiog of the appasatio sas follows :-The hand crank maried CI, is placed at $\mathrm{n}:$ It ansles to the cranks A. The force exerted upon the crauh dirug that portion of its revolution which is most effective 1-t:atsmitted directly through the sy stem of ngad crantsedmblerer A, being then at their point of greatest fficienc y, 1/w whin: and levers maked M, not transmitting any of it manl tue moveable bearings workiog in the slots of the lesers marked M, have iaken up the lost motion and beceme eta.c. tive. But at this point the cranks and lever marhed A, are at dead point, or nearly so, and not affective, is yond this portion of the revolution of the hand crabk 41 , the power is applied through one or the other of the uts. tems marked 3 , alteruately at their points of weatest efficiency until they are at dead pointe, witen the fort is anain transmitted through until it has nearly reathits dead point again, and so on alterately. By thiv combuntion the power accumulated in the fly-wheel is constamh hins discharged upon the cranhs at thein most aftecture leviaht, and the power is discharged sudden!y as by comensom. thus making the momentum of the lly-wheel far more ther ture than in any apparatus heretofore in use - Engineer.

Rollep Screirs.-Messrs. Charles Farbairn and (in Tyne Patent Nut and Bolt Works, Gateshead, are now mahiog screws of all sizes by a very curious and successfai process Brirfly described, the process consists in rolling bars of lie ited iron between two peculiarly grooved plates. Tlir risult : quite satisfactory; specimens of the work now jying lie fure us leave nothing to be desired. By planing away one sil of the ecrews and treating the surface with acid, it becomes evident that the fibre of the metal follows all the thread of the screws, which are therefore superior in strength to cti screws from which the metnl is remored.

SCIENTIFIC NEWS.

[Fe should be olad to receive scientife nowt, suitable to this part of our paper, from any of our corresjondents.]

Actical experiments show that water which remains overnelht in lead pipes in New York contains 1.10 of a grain of lead to the gallon.

Accondivo to M. Maleafana, by placing flowers in boiling water and collecting the distillate at once, a product much superior to that afforded by placing the nowers in cold water and raising the heat is obtained.

Tue influence exercised by the moon on meteorological phenom pa has been the subject of a communication to the Acadénie des Sciences of Paris, by M. Marchaud. From examinirg the distribution of storms between the years 1785 and 1872 he supposes that he detects some relation between the a pearance of storms and the age of the moon, and he attempts to show by tables that the moon has an appreciable infinence on the temperature and pressure of the air, on the state of the हky, aud the distribution of rain.

Wind. Indicators.-In a communication to the Academio des Science, M. Tany objects to vanes as indicators of the wind, snoce they indicate a direction when there is no wind, and they do not indicate the force or velocity of the wind. He would subs'itute a little fag suspended by a cord from a metallic ring pulleyed on a vertical rod.

Survers have been made by the Tuscarora of the bed of Pantic Ucean over 1000 miles from Cape Flattery. A submarme mountain has been discovered 2400 ft . in height, to which the grade of the eastern slope is 123 ft . to the lineal mile. The greatest depth detected was $15,240 \mathrm{ft}$; the bottom of the Pacific Ocean being a blue, black, and brown mud, with assc and occasional mixture of gravel and shale.

Ina letter to the French Society of Horticulture, a chemist, 3. Frèmont, mentions that a good way of preserving cut flowers in a state of freshness is to dissolve sal-ammonise, or Chloriydrate of ammonia with the water in which the stems are put, in the proportion of five grammes per litre of water. Tbey will thus often be kept fresh for a fortnight. The experiment is one which can be easily mado.

Solner for Unitima Brass and Stsel. Tho dificulty of $f_{\text {nding a }}$ material suitable for permanently joining brass with s.ect or iron, on account of the unequal expsasion of the two metals, is well koown, on which account it may be of service to note that Dr. Dingler recommeads the following alloy posecsany the properties necessary to insure a permanent ad. besmn tin, 3 parts; copper, $39 \frac{1}{2}$ parts; and zinc, $1 \frac{1}{2}$ parts.

Tas: Ramans used the large slone specus, or aqueducts, instead of ordinary pipes, because they could not depend cither apon the ir leaden pipes or their terra colta pipes to resist the force of such streams of water as they hed to deal with. aothog but the c , Dcrete stone was strong enough. At the precot time we understand that cast iron pipes are frequently borsung in the streets of Rome. This seems to show that the old hemans knew what they were about.

Tue manner in which liqueur bon-bons are made is extremely $\mathrm{sin}_{\mathrm{t}}$ le. The sugar preparation, reduced to a fine forrder, is epre:d over a tray, and upon this single drops of the liqueut are ailowed to fall: the tray is then shaken, and the pulverised sugar fums a conting round the seseral drops of flaid, which can be nereased at will to any thickness. The manufacture of bon-bons is carried on all over France, and in Paris alone there are nearly 20 shops devoted to it, cmploying over a thousaod hands. The men get from a franc and a half to cight fancs a day, and the women from one to four francs; while the amount of indirect industry, such as making bores, packets, crackers, and fancy goods, is enormous. The last pubinhed statistice show that the arrectmeat trade of France exceeds twelvo million francs. Perlapi the greatest marvel 15 to find that tho country itself expends ten millions of this fum.

Conymacial benzole often contains quite a large proportion of petrotem, which leaves a dieagrecable o lour when the benzolo is anployed for the removal of grease. da a test for ite presence a small piece of p tch is placed in a terit tute and the suspected liquid poured upon it. Pure benan'e will readily dissolve the pitch, forming a tarry mass, while adutterated benzole will be less and less coloured in proportion to tho amoust of petroleum contained in it. Coal far will dissolve easily in pur: benzole, but forms distinct layers when impure material is employed for the solution.

Plans by Telsorapil-At the Paris academy of Sciences, M. Dupuy de Lome has recently exhibited an invention for sending a plan or topographical sketch by telegraph Uver the plan or map is placed a semi-circular plate of glass graduated. On the centre is a radial arm, also gradunted, whit h carries on a slider piece of mica with a blade-point a tixed cye-piece is adjusted: and, looking through this, the mit point is carried successizely over all the points of the plan to be reprotuced, and the polar co- rdinates of each not d. The numbers thus ubtained are transmitted by telegraph, and they are laid down by the receiver, whe uses a similar arravgement to that described.
Is extracting the saccharine juice from the beets, the Germans use centrifugals, cold maceration, ind diffusion, the latter most largrly, while in France few of these improved processes are employed. Yarious other points may be noticed in which the Germass use better methods, the result being a larger yield of sugar of first run. The three per ceut. of superiurity of the German sugar manufacturers over the Fremh is summed up as follows:-Superios quality of German beetr, 1.57 pez cent. ; preservation of beets, $0 \cdot 40$, extraction of juice, 025 ; washiog the scums, 0 10; black washwaters, care on various points, 0.25 ; inferiority of German sugar in quality, 0.50 ; total 3.00 .

Andsbsey discovered that pulverised charcoal applied to sheepskins protuces depilation Charconl tahes up oxysin from the air, or the fatty zubstance present in the neightourhood of the glands of the hair. An exidation takes place in the pores of the skin, which destroys the glands and loosens the hair. Finely powderell charcoal is mixed with suffinnt water to make a thin paste, and the hides immersed for funu or five days and weil turaed over in the meantme. After this the hair can be taken of at once. Hides treated with charcoal do not require further treatment, as is the case now with the lime procesi, a ad after being washed with water they are ready for tanning. The sbarcoal can te used over afyn. Animal or vegetable coal can be used in any quantuty, hating no deleterious property whatsoever ; and for each hide six or ten pounds, with th - necessary quantity of water, are suff ite t The temperature should ve 61 deg. or 70 deg. Fah., aud ran casily be maintained by introducing steam into the vats. The tanning process is facilitated, as no lime is left behind to neutralize the tannic acid.

In the Tourial of the Fraviklin Institute, Irofessor E A. Dolbear communicates notices of an instrument of great ingenmey for ehowing optico-accoustic effects. The followinz 1 l'rutissor Dolbenr's description of it : "- Thake a tube of any materini, from one to two inches in diame ter, any anywhore from twoinches to a foot or more in length. Over one end paste a piece of tisue paper or a thin piece of rubber, or poldheaters skin, either will do. In the centre of the membrame with a drop of mucilage fasten a bit of looking glass not more thin an cighth of an ioch square, with the reflecting side outward of course. When dry, tako it to the sunsinine, mand with the open end of the tube at the mouth, hold the other end so that the beam of reflected light will fall upon the white wall or a shect of paper held in the hand. Now speak, or sing, or toot in it. The regular movement of the beam of light with the persistence of vision presents riry bematifal and regular patterns, that differ for each different pieh and intensity, but are quite uniform for giten conditions. If a tune like "Anld Lang Syne ${ }^{\text {" }}$ is tooted slowly in it, care being taken to give the sounds the same intensity, a serics of curpes will appear, whe for each soond and clike for a given sound, whether reached by ascension or descension, so that it would bo porsble to indicate the tune by the eurses; in other words it is a true phonautograph.

THE MANCHESTER AQUARIUM-(Ground Plan.)

BERCBTOLD'S STEAM ENQLNE.

Mensrs. Scheller and Berchtold, of Thalwoll, Zarich, exhibited at the Vienna exhibition a small steam engine, which we illustrate this week bg a double page engraving, besides perspective viens and a number of details on pages 278 and 279. This engine is constracted on Berchtold's patent, which covers the goneral arrangement of parts, as well as the very unique valve gear.
The general arrangement of the machine, which is exceedingly compact, will be clearly seen from the ongravings. Its principal feature is that the bedplate is made it contain both air pump, hot well, and condenser, which aro placed underneath the crosshead guides The air pump, as illustrated, is doable-ncting, 125 millimetres (4.92 in .) diameter by 400 millimetres (1575) in stroke; in the engine at Vienna, however, these dimensions wero respectively 160 millimetres and 300 millimetres. The pump is worked by a somewhat complicated arrangement of levers. Convenient access can be had to the air pump valves by the two doors in the casing, the valves themeselves being rectangular in shape. The arrangement of passages by which the condensers, pump chamber and hot well are all got into a very limited space is certainly ingenious, and will be casily anderstood from an inspection of Fige. 12 and 13, page 279. The cylinder is bolted on to a trong flange on the end of the bedplate, and overhangs withcut other support. It is 300 millimetres (11.8 in .) diameter by 600 millimetres (23.62 in) stroke, and is ateam jacketted, the steam passing through the jacket on its way to the valves. The jacket and back cylinder cover are properly cleaded. The piston-rod head worksi n a slipper gaide of large sarface, and the crankshaft has its main veariog brasses adjustable both Weys, the plammer block itself forming part of the bedplate. The section used in the arms of the flywheel, which will be seen in the perspective viewr, deserves a word of praise.
The valve gear is somewhat complicated, but we shall endeavoar to make it clear by the aid of Figs 5 to 9. It is one in which the valves are actuated from the governor spindle, and the cut off entirely under tite control of the governor itself. The governor runs at the same number of revolutions as the crankshaft, and is driven by bevel gearing; it is of the ordia. afy type, bat weighted. The valves are four in number, two steam and two exhanst. They ais flat perforated dics (Figs. 5 and 7), working in a horizontal plane, and aro kept tight both by the steam pressure, and by small springs. The exbaust palves (onder the cyinder) are worked from a grooved disc revelving on the lower end of the governor spindle by means of the arrangement shown in Fig. 11. The levers on the steam valve spindles are connested with dashpots and spsiggs, of much the same kind as are usod with Corliss val-
ver; the way in which the dificulty of want of room for the connecting rods is got ove, (see Fig. 7), is very nemt. All the leversare made straight-sided throughont their length, slotted behind the spindled, and the two sides nippod together by a tightening screw, Figs. 7 and 11, so that no koymays have to be cat in the spindles. The centre lines of the tro dastpots are not in the same plane, but one lies about an inch higher than the other.
In the figtores A, is a hcrizontal lever working on a pin at M, and embraced by a brass slide B, on the apper surface of which are cast a coaple of parallel webs enclosing a small channel L. A cam with very sharp corners (almoet lozengeshaped in fact) revolving always with the governor spindle, and shown dotted in Fig. 7, works against the side of B, and so communicates a continnal rocking motion to A , in a horizontal plane. Upon the lever A, itself is the falcrum of another lever F, which can move in a vertical plane, and which has at the end farthest from the governor, a steel striker H , which, by pressing the piston rods of the dashpots, can opeu the valves. The opening motion of this striker is in the sume direction (towerds the crankshaft) for both the valves; in the one case it presses directly on the end of the rod, and in the other it presses on the inner side of a steel hook, the arrange lent being as shown in Fig. 3. E, is a block fixed to, ana revolving with, the governor spindle, and baving a groove in it, of which one half is at one level, and one half at another, the two being joined by stoep carved which are seen in Figs. 5 and 6 . A pin in the end of the lever F, works in this groove, and this lever therffore receives (in addition to the horizental vibration given to it by A), quick motions up and down, alternating with periods of rest in each positior. The limits of the up-and-down motions are so adjusted that the two corresponding positions of the striker H are exactly oppo-ite the two centre lines of the dashpota, which, as before explain d. are at difforent lovelai D is the moveable slide of the governor, and has apon one of its faces (the one furth.est from the crankshaft) an oblique straight groove, in which works a pin in the lever 0 . This lever can move upon a fixed pin jin a bracket K) st its uppar end, but only changes its posinon when the upward or downwand motion of the gover tor slide compels it to do so by giving a side motion, by means of the groove, to the pin above meltioned. The lower ead of C, works in the channel I, on the top of ine block B, previously mentioned, this channel being sufficiently long to allow C, to remain in gear, whatover may be the position of the lever A, The lever F is compound, the end nearest E, being separately joiuted upon a vertical pin, and prevented from sharing the sideway motion given to F by 1 so that it sluays remains in the slot in E .
The action of the gear is as follows: suppose the striking
end of II to bo the level of the lower rod, as the piston to be at the commencement of its stroke. The cam on the governor spindle, pressing against the slide B, moves the lever A, and consequently also F and II, and in this way opens the valve. Directly the point or the cam leaves the slide B (as shown in Fig 7), the spring (we mentioned beforo that the geaoincludes spring boxes aud dashpots) closes the valve, and therefore presees back F, and so keeps B in contact with the can. The thape of the cam renders this closing motion practically inetantancous. Durieg all this time the pin in the end of the lever l', has been stationary in the higher half of the groove in E, as is seen in Fig. 5. On approaching tie end of the stroke, however, its position is rapidly changed, and the striker is brought oppesite the centre of the higher dashpot, so that when the second lobe of the cam comes in contact with B, aud moves A and F^{\prime} again, the ralve belonging to the other end of the f ylinder is opent d, and so the process goes on. It will be seen that the position of B upon the lever A is determined altogether by C, and the position of B itself is detramincd entitely by the governor (through the slot in D), the position of 13 is al:o controlled by the governor As the cam on the governor spindle works against 1 , a little conviderition will make it clear thai upon the position of B upon A, depends the duration of contact of the lobe of the cam, which in its turn determines the seriod during which the valve remains open, and by this means the cut-off is broug'it entirely under the control of the governor.

Fig: 3 and 4 (page 278) fyow a modification of the gear we have just describid, whic! has also been introduced by Herr Berchtold. In this capa a grooved disc revolving contiuuously with the governor gendle, imparts to a striking lever an oscillatory motion, alternating with periods of complete rest. The striker itsplf is separate from the lever, and slides in V-guides upon it. It is connected by a link with the governor slid'ing bush 'This connexion is so arranged that the upward and downward motion of the latter moves the striker away from or towards the valve rods; its position in this direction obviously determines the time during which the striker is allowed to press against the rods; in other words, controls the cut off. The dashpots in this case pre in the same plane, but the skape of the stiiker heal is so arranged that, while it gears with one valve rod, it simply pushes the other side. The lead is of course constant, as in all such gears, no matter what position in reference to the spindle the governor may give to the striker. An engine with this gear is working at Mcssrs. Schelier and Berchtold's shops.-Engineering.

WATER SUPPLY—PREVENTION OF WASTE

In our last issue wo intimated our intention of explaining to our readers a system of inspcction of water supply recently adopted with great success by the municipal authorities of Liverpool, England. The originator of the system is Mr. Deacon, water engineer of Liverpool, and we cannot do better than give extracts from a paper read by him before tho Assoctation of Municipal and Sanitary Engineers. The explanatory diagrams are from The Engineer.
"In the fclowing paper I propose to state, first, what appear to me to be the inducements to undertake systematica!ly the prevention of waste, next my experience as to the working of the district waste water meter system ; and I will begin by submitting to you the three following propositions, which have failed in gaining universal acceptance, owing principally, as I believe, to the auperficial manner in which the subject has been considered:-
"Proposition 1.-The prevention of waste of water, or, in other words, the conservation of all water not actually required for domestic or manufscturing purposes is, or may be accompanied by vast sanitary benefits arising from the more efficient action of existing drains, as well as from the dryness of the subsoil of dwellinge.
"Propssition 2.-The provention of waste by the system hereaft r described is practicable, and, apart from all sanitary considerations, it is by far the most economical mode that can be resorted to for increasing the av,ilable water supply, while it will always diminish the working expenses in cases of supply by pumping from wells.
"Corollary.-Towns and districts at present supplied on the iutermittent system, when tho total supply is more than
sufficient to meet the nccessities of the people, which is the caso when more than ten to fifteen gallons per head per day are taken for domestic purposes, may obtain constant supply, accompanied by a surplus of water or by a cor:esponding reduction in the working expenses of the supply."

With respect to the first proposition, that the prevention of waste is or may be accompanied by vast sanitary benefits arising from the more efficient action of existing drains, as well as from the dryne-s of the subsoil of dwellings, I would call attencion to the very prevalent notion that a towa cannot have too much water, and that all the water which can be passed into the mains should, if possible, be given to it, as it is conducive to cleanliness, and as the sowers require it The prevention of waste is assumed to be equivalent to stinting the supply, when in reality it inay have the contrnry effect Take the common case of a town demanding twenty-five gal. lons per head per day for domestic purposes. Now ten gallons per head per day is probably the maximum quantity actually used for such purposes. Of the remsiaing fifteen gallons a large proportion is lost by defective filtings and misuce, and flows down a few isolated drains to the sewers. But the max. mum waste due to this cause considerably exceeds the aver. age, and it exists where the pressure on the mains is greatest, viz., in the lower parts of the town $\rightarrow 80$ that the greater purt of such waste water enters the sewers near their outtalls, where it is useless: while at their upper ends, where water is most required, the supply to the sewers from this cause is trifling. Among the sewers of a town many are or ought to be permanently self-cleansing, and without entering upon the consideration of the various circumstances which conduce to so desirable a condition, I may say that all sewers which are not self-clearsing, with the reasons why they are not self. cleansing, should be systematically tabulated, and if want of water is the cause - which is certainly not alsags, and, I think, not usually so-thecure is very simple when you have a surplus of water, formerly wasted, to use for this most beneficial purpose.

Imagine the influence on a single system of sewer, if only a quarter of a gallon per head per day of the population whose drains fall into it were used for flushing that system. I wall give, as an example, a single existing case, and in most towas there are many cases more straking. The sewer system to which I refer carries aspey the refuse of 52.000 persons. There are in it about 250 dead ends of branch sewers, of whach probably 100 require artificial flushing to keep them abso lutely free from duposit. A quarter of a gallon per head per day will give 4000 gallons for each of those sewer ends every month, a quantity which, whether flushing cirect from the mains or the taak system, which is by fur the best, be adopted is more than ought ever to bo used. It vould, in short, fill \& 4 ft . by 1 ft . 10 in . sewer to the crown for 145 ft . of its lenyth

But the private drains also require finshing. It is certan that the dribole of waste water will never flush them, the small pipes of ordinary water-closets kept running all might will never do it; but the regulating system delivering its tho gallons through a lin. pipe will do it most effectually, and that cistern will help you greatly in your work. Of course there are other private drains, but the dribble of waste water, if it exists, is no advantage to them.

I have spoken of the proportion of the lost fifteen gallons due to defective fittings and misuse, and I now cornce to the remainder of that quantity which leaks from innumerable defects in public and private service pipes. Tbjs water subss into the subsoil; it renders healthy solls unbealthy; it makes the houses damp, and certainly milifates against the cleanliness of the lower orders. But its influence for harm dees not end here. Part of it reaches the sewers, and even though it may get into them, it can only do so by damaging the buck. work and water. lhe second proposition and its corollary is to the effect that the prevention of waste by the Eystem hereafter described is practicable, and that it is, apart from all sanitary considerations, by far the most economical mode that can be regorted to for increasing available water supply while it will always diminish the working expenses a cases of supply by pumping from wells; while towne and distruts at present supplied on the intermittent system, when the total supply is more than sufficient to meet the necessities of the people, which is the case when more than ten to fifteen gallons per head per day is taken for domestic purposes, may ob ain constant supply, accompi nited by a surplus of water or by a corresponding reduction in the working expenses of
the cupply. I think I may satisfy you ns to the truth of this statement by giving an example of the cost of the work in a district of Liverpool where the consumption was 20 per cent. below the average befure the prevention of waste under the bew syetem tras cummenced, and the pipes in which, being rery old, required in a great number of instancos to be entirely renewed Add to this the fact that the corporation relaid at the rown cost all defective private service pipes not within the dwellings, and you can understand that I bave good grounds for saying that while the saving was a minimum the cost was a maximum. The district in question contains 31,0011 prsons ; the saving of water between former constant and present constant supply was 21.33 gallons per head per day, and between former intermittent and present constant 742 gillons per head per day; and the saviug of water be. tween former and present constant service was obtained at a cost to the corporation of less than a farthing per 1000 gal . lons In districts containing a better class of property the saving is often greater, while the work to be performed in obtainug that faving is far less. When we consider this in connection with the fact that water obtained from new works asually costs sil. te Gd. p 1000 gallons, we must admit the last propusition as an established fact.
The inducements to undertake systematically the prevontion of waste have beeu laid before you in what appear to me their mest striking aspects. But to those who have taken up the sulject in practice many other important features, which I am onable to cousider in a short paper, eugge-t themselves. I will, theretore, at once describe to you the method by which the the prevention of waste and restoration of constant service is beng rapidly carried on in Liverpool.

To be continued.

A Daverong Paper Weight.-A writer in the Boston Transcript says.-"A young lady in a house on Lonishurg Sfuare the other diay in passing through an entry perceived a suggestion of fire, a smell of something burning, sufficiently out f the common course to arrest her attention. Finding the furnace fice and soft-coal sitting-room fire with nothing unusual to account for this smell of fire, she continued to the front drawiug room. Now the forenony was bright, the curtain and shades withdrawn, so that the rays of the sun were hotly streaning in at the windows in full blaze upon the centre-table, where rested a round-top glass paper-weight, under which a mass of papers lay. Here was the fire. The papers were burning smartly. She disposed of them in the grate, and taking up the glass found it burning hot; acting as a burning glace, it had concentrated the rays of the sun scficicutly to cause combustion. It should be told that the prper botiom of this glass was for some reason gone - either worn off or torn off."

A ur 3 E cuttle-fish (according to Mr. Harver, of St. John's, Sewfoundland), was iecently observed by two fishermen of the Newfoundlan 1 corst. At first sight it appeared like a large sail or the débris of a wreck. On reaching it, one of the men struck it with his giff, when it immediately showed ggos of hf; ant r arid a parrut-like beak, wh ch, they said, masas bueas a 6 ggallon keg, will which it struck the bottom of the bat violently It then shot out from about its head tro huge alms and brgan to twine them round the boat. One of the wen stized a small axe and cut off both arms as they las over the gunvale; whereupon the fish backed off to a consilerable disfance, and ejected an immense quantity of inky flad, that darkencd the water for a great distance round. The mea mimated the body to have been 60 ft . in lengthand 5 ft . in dameter One of the arms, which the men brought sshore, was nufortunately destioyed, but a clergyman who saw Hassured Mr Harvey that it was 19 in . in ciameter and 6 ft . 1/ hength Tha other arm had 6 ft . of its leagth cut off brfore learmes st Junu's; the remainder which measured 19 ft , in length, is about 3 in . in circumference, except at the extremny where it broadens like an oar to 6 in. in circumference. The largest of the sucking discs was an inch and a quarter in diamiter. The men estimated that they left about 10 ft . of the aron aftached to the body of the fish, which would make Habout 35 ft . long.

A SUBSTITUTE FOR LINK MOTIUNS.

The following method of working steam expansively is suggested by Mr Hugo Bilgram in the Journal of the Franklim Institute, as a substitute for links and link motions:-

By the arrangement of levers ropresented in Fig. 1, the end $\mathbf{E}_{\text {, of the }} \mathbf{T}$-sh nped muddle piece is guded in a curve \mathbf{X}, \mathbf{X}, which between 15 , and G, so nearly coincides with the are of a circle Z, Z_{1} that practically it cannot be distinguished from the latter. The rods A C and B D form the guides of two points of the middle I inere, and have their respective fulcrums in A and $B, a s$ the engraving shows. For it's remarkable property this combination may be utilised to substitute the links of reversible engines that are exposed to destructive influences; for instanco, of crane engines in foundries, where the sand suspended in the surrounding air causes a considerable wear of the sliding parts of the engines, and necessitates frequent repairs. It may also be appled on cheap resersible engines, especially :f their manufacturers are not provided with sutable facihties to give the link its proper curvature.

In Fig 2, II and I represent the eccentric rods of a Stephenson's link motion, in which the lank is substatuted in this manner. A plain cunnecting piece A, B. takes the place of the link, and may be suspended in the usual way. To the ends of the eccentric rods are also attached the two guiding rods A (' and IS D, to which the T rhaped middle prece is fastened by the pins C and D, the end of whel E, moves dirertly the valve-stem V, or the rocker. 'the point E being guided in relation to $A B$, as though at was moving in a slot conform to Z Z, this arrangenent produces the same motion as the ordinary link. By the way of suspension, the corrections of the irregularitics between fore and back stroke can be accomplished in the modified link motion as well as in the original one.

A rule for the choice of proper dimensions can be only empirical. A good result may be obtained if the rods $A C$ and B Darn made equal to, or at least not much shortor than, the link A B. The dimensions of the 'r-shaped lever are casily found by first swecping the circle $Z Z$ of the proper radius, then drawing the chord A B of a length equal to that of the link. and sweeping two ares, $a a$ and $b b$, from A and B, with radiiequal to the length of the guiding rods. If, now, the chords $A E$ and $B E$ (E being the vertex of arc Z Z) are perpendicularly divided in two equal parts by the lines C K and $D \mathrm{~L}$, then the respective points of intersection C and D , with the arcs a a and $b b$, together with the vertex E, represent the three characteristic joint centres of the middle piece. The application of this arrangement is not restricted to stephenson's link motion only, as it may be applied to any other expansion gearing in which a link is used.-See page 278.

TO INVENTORS.

C. E. G., in the Scientific American, lays down the following masims for the guidance of inventors:-

1. Know definitely what you want to accomplish, stick to it, and let other matters go, for the time.
2. Post yourself thoroughly as to the laws governing the action of each part of your machine.
3. Always b ar in mind that whatever is gained in time is lost in power, snd vee versa.
4. Thiak over every machine, of a nature similar to yours, which you have seen, and when your idea is clear in yous head, compare it with those of inventors who have preceded you in the same line.
5. Be sure that the cost of your device will not prevent ite use.
6. Avoid all compl cated arrangements ; make every machine of as few parts as possiblo.
7. Imagination, judgment, and memory are the faculties to empliy. Imagisalion will bring forti new forms and actions, judgment will compare them with other devices and determine their rclative value, and memory will store up the results for future use.

A large English Company is about to open an iron mine near Lyndhurst, Ont. Operations will b; carried on which will involve the outlay of large sums of money and the employment of a considerab.e number of hands.

