## CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

## 圖

Canadien Institute for Historicel Microreproductions / Institut cenadien de microreproductions historiques

The Institute has attempted to obtain tha best original cupy availabla for filming. Faatures of this copy which may be bibliographically uniqua, which may alter any of tha images in tha reproduction, or which may significantly change the usual method of filming, ara checked below.

## Coloured covars/

Couvartura de coulaur

Covars damaged/
Couvertura endommagte

Covers restored and/or Iaminated/
Couvarture restaurde at/ou pelliculde

Covar titla missing/
La titra de couvertura manqua

Coloured maps/
Cartes ghographiques an coulour

Coloured ink (i.e. other than blua or black)/ Encra de couleur (i.a. autre qua blaue ou noira)

Coloured plates and/or illustrations/
Planches at/ou illustrations an coulaur

Bound with othar matarial/
Ralis avec d'autras documents

Tight binding may causa shadows or distortion along interior margin/
La raliura sarrie peut causer de l'ombra ou de la distorsion le long de la marge interiaure

Blank leaves added during restoration may appear within tha taxt. Whenever possible, these have bean omitted from filming/
II sa peut qua cartaines pages blanchas ajoutdes lors d'une rastauration apparaissant dans Ia taxta, mais, lorsqua cala était possibla, cas pages $n$ ' ont pas ite filmées.

L'Institut a microfilmé le mailleur examplaira qu'il lui a été possibla de se procurar. Las détails de cat axemplaire qui sont peut-ttre uniques du point de vue bibliographique, qui peuvent modifier une image raproduite. ou qui peuvent axiger une modification dans la móthode normale de filmage sont indiqués ci-dessous.

## Coloured pages/

Pages da couleur

Pages damaged/
Pages andommagiesPages ra: it it:d, Plaminated/
Pager re su ac: s.i.upellicultesPages discol wr:sf stained of foxed/
Pages décolo es, Lachates ou piquies

Pages detached/
Pages détachies

Showthrough/
TransparancaQuality of print varies/
Qualitá inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(as)/
Comprand un (des) index

Title on haadar takan from: / Le titra da l'an-tite proviant:

Title page of issua/
Page de titra de la livraison

Captıon of issual
Titre de départ de la livraison

Masthead/
Genérique (périodiquas) da la livraison

Additional comments:/
Commentaires supplémantairas:

Copy has manuscript annotations.
Pagination is unnumbered.

This itam is filmed at the reduction ratio checkad below/
Ca documant ast filme au taux de réduction indiqué ci-dassous.


The copy flimed here has been reproduced thanks to the generosity of:
Ontario Institute for Studies in Education, R.W.B. Jackson Library

The Images eppeering here are the best quallity posslbie considering the condition and logibiiity of the original copy end in keepling with the filming contract specificationa.

Original coples in printed peper coveri are fllmed beginning with the front cover and ending on the last page with a printed or illustrated Impression, or the back cover when appropriate. Ail other original copies are filmed beginning on the first page with a printed or lilustrated impre... sion, and ending on the last page with a printed or lilustrated impresaion.

The iast recorded freme on eech microfiche shall contaln the symbol $\rightarrow$ (meaning "CONTINUED"), or the symbol $\nabla$ (meaning "END"). whichever appiles.

Maps, piates, charts, otc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many fromes as required. The following diagrams lifustrate the method:

L'exemplaire filmb fut reproduit gràce ila gónérosité de:
Ontaric institute for Studies in Education, R.W.B. Jackson Library

Les images suivantes ont dtb reproduites evec le plus grand soin, compte tonu de la condition ot de is nottote de i'exempioire fiimb. et en conformith evec ies conditions du contrat de sllmego.

Les exemplaires origineux dont la couverture en pepier eat Imprimíe sont fiimds on commencent par lo promier plet et en terminent soit par io dernid̀re page qui comporte une empreinte d'Impression ou d'lllustration, soit par ie second plat, selon le cas. Tous ies eutres exempioires originaux sont fiimbe en commencent par ia premidre page qul comporte une emprelnte d'impresslon ou d'illustration ot en terminant par Ia derinidre page qui comporte une toiie empreinte.

Un des symboles suivants apperaitra sur is dernildre lmage de cheque microfiche, selon ie cas: Io symbole $\rightarrow$ signifie "A SUIVRE". ie symbole $\nabla$ slgnifie "FiN".

Les cartes, planches, tabieoux. atc., peuvent Atre flimés des taux de reduction diffdrents. Lorsque lo document est trop grend pour dere reprodult on un soul cliche. li est flimo do partir de ioangie supóriour gauche, de gauche tdrolte. ot de haut en bas, on pronant ie nombre d'images nécesselre. Les diagrammes sulvants lilustrent le móthode.


## MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)


APPLIED IMAGE Inc
1653 East Main Street
(716) 482-0300 - Phon
(716) 20t - 5969 - Fax

# SOLUTIONS OF THE PROBLEMS 

IN TEE

ONTARIO HIGH SCHOOL ARITHMETIC


TORONTO
THE HUNTER-ROSE COMPANY, LIMITED 1910

# This Key has been prepared for the use of Teachers and Private Students 

## COPYRIGHT, CANADA, 1910

By THE HUNTER-ROSE COMPANY, Limited
Toronto

Press of The Hunter-Rose Company, Limited 12-14 Sheppard Street, Toronto

## SOLUTIONS OF THE PROBLEMS

in the

## HIGH SCHOOL ARITHMETIC

## Measures and Multiples

Page 15
10. The required number is the G. C. M. of 13949 and 14558.

Page 16
13. It must be a mult. of $2,3,4$ and 5 or of 60 , and must therefore be 360 , as this is the only multiple of 60 greater than 300 and less than 400.
14. It is the G. C. M. of 34037 and 307007.
15. The other $=244188 \times 84 \div 1428$ (see pp. 14-15).
16. Since $96=2^{5} .3$ the other may be $2^{3}$ or $2^{5} .3$.
17. The cther must have the factor 17 , because the G. C. $l_{1}=17$, also the factor 7 because the L. C. M. has the factor 7 and neither of the other numbers has it. It. may have the factor 5 ; but cannot have the factor 2 . $\therefore$ it must be $7 \times 17$ or $5 \times 7 \times 17$.
18. The side of each square is the G. C. M. of 465 and 682 , or 31 . $\therefore$ there are 15 on one side and 22 on the other, or 330 in all.
19. Length of rail is G. C. M. of 3143 and $2471={ }^{\prime} \mathrm{ft}$. Distance arourd the field $=11228 \mathrm{ft} . \therefore$ number of rails $=11228 \div 7 \times 8$.
20. Greatest weight $=$ G. C. M. of 7000 and $5760=40$ gr. Least $=$ L. C. M. of 7000 and $5760=1008000 \mathrm{gr} .=144$ lb. avoir.

## Fractions

## Page 63

i. See Arith., pp. 44, 45.
2. Multiply to 4 decimal places and the result lies between 138.280 and 138.281 .
3. Reduce ' vulgar fractions.
4. $\cdot 142857142 \ldots \div 5=.0285714285 \ldots=.028571 \dot{4}$.
5. The remaining digits may be 0 's and $\therefore$ the least value is .8397 ; they may be 9 's, and $\therefore$ the greatest value is $.8397 \dot{9}=.8398$.
6. $1769 \div 5=353 \cdot 8$; this $\div 3=117.933 \ldots$; this $\div 7=$ $16 \cdot 847619047 \ldots=16 \cdot 8476190$.

$$
9.9 \div(5280 \times 12)=9.9 \div 10 \div 11 \div 9 \div 8 \div 8=8 c
$$

8. $17 \div 42=.40476+$ and $\therefore$ lies between .4047 and . 4048.
9. See Arith., page 33.
10. $\frac{876}{1159}=\frac{\frac{878}{1158} \times 50}{50}=\frac{37 \frac{917}{111^{78}}}{50}=\frac{38}{50}$ most nearly.
11. The sum of these fractions is $2^{\frac{6}{17} 7^{1}}{ }^{\frac{1}{0}}$, which is less than the next integer, 3 by $\frac{479}{1170}$.
12. Express the vulgar fractions as decimals.
13. $.834 \times .623=.519582$, which differs from .52 by .000418 and from .519 by .000582 , \&c.

## Page 64

14. Since one factor of 180 contains a digit in the ten's place, the other factor must be carried to at least the sixth dec. place.

$$
\text { 16. } \frac{6 \frac{1}{3}}{7}=\frac{19}{21}=\frac{19 \times \frac{17}{17}}{21 \times \frac{17}{18}}=\frac{17}{18 \frac{1}{9} \frac{5}{9}} \text {. }
$$

17. Divide 1 by 3.14159 by contracted method.
18. Assuming $\frac{514}{1006}$ as the value of the fruction, its denominator must be $\frac{1000}{511}$ of its numerator, or $\frac{1000}{511}$ of $209=\& c$.
19. See Arith., pp. 49-51.
20. A cabic foot of water will make $\frac{11}{1} \mathrm{cub}$. ft . of ice. $\therefore \frac{1}{1} \frac{1}{0}$ cub. ft. of ice weigk 1000 oz ., \&c.
21. In 45 horrs 15 ac . are nown by 4 men, $\therefore$ in 22 hr . 11 ac . are mown os $\left(4 \times \frac{1}{1} \frac{1}{5} \lambda\right.$.) men $=6$ men.
22. A bought $\frac{3}{4}$ of it, B $\frac{4}{5} \quad \frac{t}{4}$, or $\frac{1}{5}$ of it. $\therefore$ A and B bought $\frac{19}{2}$ of it. $\therefore$ he received $\$ 50$ for $\frac{1}{8}$ of $\frac{1}{80}$ of the land. $\therefore$ the value of the lard was $\$ 6000$.
23. Supp $\cdots$ - gets $\$ \cdot 00$, then $A$ gets $\$ \cdot 30$, then $C$ gets $\$ .09$, then B gets $\$ \cdot 39$, and the whole sum divided would be $\$ 1.78$. But $\$ 12.46=7$ times $\$ 1.78$, \&c.
24. Reduce to decimals and find $\frac{1}{8}$ of their sum.
25. 12 men do $\frac{4}{5}$ of the work in 160 hours, or the whole work in 200 hours. $\therefore 15$ men would do it in 160 hours, or $\frac{7}{8}$ of it in 140 hours, or 14 days.
26. He loses $\$ 10500 \times \frac{1}{5} \times \frac{{ }^{6} 5}{50}=\$ 1365$.
27. Suppose the cask holds 6 gal. The value of the mixture will be 90 c . $\because 5+50 \mathrm{c} .=\$ 5 \cdot 00$, or $83 \frac{1}{3} \mathrm{c}$. per gal.

## Page 65

28. B's cost $=\frac{2}{1} \frac{0}{7}$ of $\$ 306=\$ 360, \therefore$ A's cost $=\frac{8}{\theta}$ of $\$ 360=\$ 320$.
29. When B runs 200 yd. C zuns 190 yd. $\therefore$ wher B runs 190 yd. C runs $\frac{1909}{2} 0$ of 190 yd. $=180 \frac{1}{2}$ yd. $\therefore$ when A runs 200 yd . C runs $180 \frac{1}{2}$ yd., and $\therefore$ A wins by $19 \frac{1}{2}$ yd.
30. Whole seling price of $535 \mathrm{lb} .=\$ 52.10+\$ 6.75$.
31. The usual rate is $21 \frac{1}{3} \mathrm{ml}$. per hr ., the increased rate is $23 \frac{7}{\mathrm{TI}} \mathrm{ml}$. per hr. The increase is $1 \frac{3}{3} \frac{2}{3} \mathrm{ml}$., which is $\frac{1}{1}$ of the usual rate.

## SOLUTIONS OF THE PROBLEMS

32. The value of the house $=\frac{4}{3}$ the val. of the lot. $\therefore$ the val. of both $=\frac{7}{8}$ of val. of $\operatorname{lot}=\$ 2100 . \quad \therefore$ val. of lot $=\frac{3}{7}$ of $\$ 2100=\$ 900$.
33. An increase of $\frac{2}{15}$ in $\frac{3}{4}$ of the price $=$ an inc. of $\frac{2}{15}$ of $\frac{3}{4}$, or $\frac{1}{10}$ in the whole price.
34. Divide the sum into 91 equal parts and give them respectively $17,20,24$ and 30 of these parts.
35. In 1 day $A$ would rec. $\frac{4}{4 \frac{4}{45}}$ and $B \frac{3}{248}$ of the sum. $\therefore$ both would rec. ${ }_{3}^{2}$ of the sum, or the whole sum in 35 days.
36. Total selling price $=\$ 6133.75$; first sale brings $\$ 2027.30 . \quad \therefore$ remaining 3135 bus. must sell for $\$ 4106.45$.
37. In one day they can do $\frac{1}{10}+\frac{1}{15}+\frac{1}{20}$, or $\frac{13}{60}$ of the work, $\therefore$ they can do the whole work in $\frac{\beta_{1}}{13}$, or $4 \frac{\mathrm{~A}}{15}$ days.
38. Suppose A gets $\$ 4$ and B $\$ 5$ for each unit of time they work, then when A earns $\$ 12, \mathrm{~B}$ earns $\$ 20 . \quad \therefore \mathrm{A}$ will receive $\frac{1}{3} \frac{2}{2}$ of $\$ 60=\$ 22 \cdot 50$.
39. $6 \mathrm{yr} .=\frac{1}{3}$ of father's age $-\frac{1}{8}$ of father's age $=\frac{2}{15}, \& \mathrm{cc}$.

## Page 66

40. $\$ 9000 \times \frac{2}{2} \frac{8}{5} \times \frac{8}{4}=\$ 12937.50$.
41. The selling price of $306 \mathrm{gal} .=\$ 1089.70$.
42. If the cost of the first is the unit, the second cost $1 \frac{1}{2}$, the third $2 \frac{1}{6}$, the fourth $3 \frac{1}{4}=$ a total cost of 8 , making the unit $\$ 3000$.
43. $\$ 4064.55 \times \frac{27}{7} \times \frac{9}{85} \times \frac{21}{20}=\$ 4076 \cdot 163$.
44. When C receives $\$ 400, B$ gets $\$ 420$ and $C \$ 441$. $\therefore$ A receives $\frac{4}{1} \frac{4}{2181}$ of $\$ 3783=\$ 1323$.
45. $\mathrm{II}^{2}$ of $2607 \mathrm{lb} .=474 \mathrm{lb}$.
46. The time till midnight $=8$ of the time past noon. $\therefore \frac{8}{3}$ of the time past noon is 12 hours. $\therefore$ the time past noon is $4 \frac{1}{2}$ hours.
47. After the first drawing $\frac{2}{3}$ of the wine remains;
after the second $\frac{2}{3}$ of $\frac{3}{3}, 8 \mathrm{zc}$. After the last drawing there will remain $\frac{2}{3}$ of $\frac{3}{3}$ of $\frac{2}{3}$ of $\frac{2}{3}$ of $\frac{2}{3}$ of 150 gal .
48. See Arith., pp. 36, 37.
49. $\frac{1}{8}=\cdot 125, \frac{1}{8^{2}}=\frac{.125}{8}=.015625, \& c$.
50. On $\$ 400$ of liabilities he can pay $\$ 300-\$ 50=$ $\$ 250$, \&c.

## Page 67

51. The cost of the carriage $=\frac{8}{5}$ of cost of the horse. $\therefore \frac{8}{5}$ of the cost of the horse $=\$ 280$, \&c.
52. One $=\frac{2}{5}$ of the other. $\therefore \frac{9}{5}$ of the larger $=18, \& c$.
53. If the charge for a cow for a unit of time is $\$ 2$, then the charge for a horse is $\$ 3$. Each horse for 3 units of time would cost $\$ 9$; each cow for 4 units of time would cost $\$ 8 . \therefore 2$ cows and 3 horses would cost $\$ 43$, and 3 cows and 2 horses would cost $\$ 42$. $\therefore$ A should pay $\frac{4}{8} \frac{8}{6}$ of $\$ 42 \cdot 50=\$ 21.50$.
54. The vote of the elected candidate $=\frac{19}{4} \frac{9}{0}$ of $\frac{10}{3}=\frac{38}{8} \frac{8}{8}$ of the vote polled. $\therefore$ the other received $\frac{87}{7} \frac{7}{8}$ of the vote polled. $\therefore \frac{2}{75}$ of the vote polled $=50, \& c$.
55. The total volume of 1 lb . of each $=\left(\frac{1}{8} \frac{1}{0}+\frac{1}{\sigma} \frac{1}{\sigma}+\right.$
 mixture weighs $3 \mathrm{lb} ., \& \mathrm{c}$.
56. Sum of the first 5 numbers $=34.5 \times 2+19.3 \times 3=$ 126.9; $\therefore$ the sum of the other two $=26.98 \times 7-126.9=$ 61.96, \&c.
57. On every $\$ 16$ the customer paid he was cheated $\$ 8 . \quad \therefore$ on $\$ 9.60$ paid he was cheated 45 c .

## SOLUTIONS OF THE PROBLEMS

## Compound Quantities

## Page 71

1. $1000 \div 100 ; 1000 \div 10 ; 1000 \div 100 \div 10$.
2. $1000 \div 1000 ; 1000 \div 10 ; 1000 \times 10$.
3. $12 \times 100 ; 15 \times 1000 ; 21 \times 1000 \times 1000$.
4. $123456789 \div 100 ; 123456789 \div 1000 ; 123456789 \div$ $1000 \div 1000$.
5. $8.56 \times 1000 \times 100 ; 5.632 \times 1000 ; 12468 \times 1000$.
6. Expressed in metres these quantities are 14.6 , $2 \cdot 27,1623,1634000$, then add.
7. Expressed in cm. these quantities are 567800 , 13648.9, then subtract.
8. $12 \mathrm{Km} .5 \mathrm{~m} .8 \mathrm{~cm} .=12.00508 \mathrm{Km}$., then multiply by $8 \times 12$.
9. $103 \mathrm{Km} .=10300000 \mathrm{~cm} .=64 \times 1760 \mathrm{yd} . \therefore 1 \mathrm{yd}$. $=10300000 \mathrm{~cm} . \div 64 \div 1760$.
10. 66000 m . in $3600 \mathrm{sec} .=66000 \div 3600 \mathrm{~m}$. per sec.

## Page 72

11. In 1 min . the train goes $1 \mathrm{Km} .=1000 \mathrm{~m}$., which . $\therefore=20$ spaces. $\therefore 1$ space $=50 \mathrm{~m}$.
12. The man's height $=5 \mathrm{ft} .10 \frac{1}{2} \mathrm{in} .=70.5 \mathrm{in} .=70.5 \div$ $39.37 \mathrm{~m} .=70.5 \div 39.37 \times 100 \mathrm{~cm}$.
13. $29.5 \div 39.37 \times 1000$.
14. $10 \mathrm{~m} .=1000 \mathrm{~cm}$. In taking onc-half of one part and two-thirds of the other we have taken one-half the whole string and one-sixth of the other part; but onehalf the whole string is $500 \mathrm{~cm} . \quad \therefore$ onc-sixth of the other part is $100 \mathrm{~cm} . \therefore$ the other part is 600 cm .

## IN THE HIGH SCHOOL ARITHMETIC

15. No. minutes $=65 \mathrm{Km} . \div 80 \mathrm{~m} .=65000 \mathrm{~m} . \div 80 \mathrm{~m}$. $=812 \cdot 5=\& \mathrm{c}$.
16. 1 yd. $=36 \mathrm{in} .=36 \times \frac{5}{8} \mathrm{~cm} .=36 \times \frac{5}{2} \times 10 \mathrm{~mm}$.
17. $1 \mathrm{Km} . \div 1 \mathrm{~m} .5 \mathrm{~cm} .=1000000 \mathrm{~mm} . \div 1050 \mathrm{~mm}$.
18. $1200 \div 100 ; 1200 \times 100 ; 1200 \div 10$.
19. These expressed as ares are $12.64,4.68,1000$, then add.
20. Expressed in dekares those are 10 and $\cdot 1$.
21. $7.5645 \mathrm{Ha} . \times 27=204.2415 \mathrm{Ha}$.
22. $100 \mathrm{dm} .=1$ Dm.; $\therefore 10000$ sq. dm. $=1$ sq. Dm. $=1$ are $=1000 \mathrm{ma} . \quad \therefore 1 \mathrm{sq}$. dm. $=1 \mathrm{ma}$.
23. $1 \mathrm{a} .5 \mathrm{da} .=1.5 \mathrm{a} .=1.5 \mathrm{sq}$. Dm. $=1.5 \times 10 \times 10 \mathrm{sq} . \mathrm{m}$. $=1.5 \times 10 \times 10 \times 100 \times 100$ sq. cm .
24. 100 c 0 sq. $\mathrm{m} .=1 \mathrm{Ha} .=2 \frac{1}{2}$ acres $=12100 \times 9 \times 144 \mathrm{sq}$. in. $\therefore 100 \mathrm{~m} .=110 \times 3 \times 12 \mathrm{in}$. or $1 \mathrm{~m} .=39.6 \mathrm{in}$.
25. $1 \mathrm{~s} .=1 \mathrm{cu} . \mathrm{m} .=(100)^{3} \mathrm{cu} . \mathrm{cm} .=\& \mathrm{c}$.
26. One million $\mathrm{cu} . \mathrm{cm} .=1 \mathrm{cu} . \mathrm{m} .=1 \mathrm{~s}$.
27. 1 ds. $=.1$ s. $=.1 \mathrm{cu} . \mathrm{m} .=.1 \times(10)^{3} \mathrm{cu} . \mathrm{dm} .=100$ cu. dm.
28. 1 s . of earth $=2 \frac{1}{2} \mathrm{~s}$. of water $=2 \frac{1}{2} \mathrm{cu} . \mathrm{m}$. water $=2 \frac{1}{2}$ $(100)^{3} \mathrm{cu} . \mathrm{cm}$. of water $=2 \frac{1}{2}(100)^{3} \mathrm{~g} .=2 \frac{1}{2}(100)^{3} \div 1000 \mathrm{Kg}$.
29. 1 s . ice $=\frac{10}{1} \frac{\mathrm{l}}{\mathrm{c}} \mathrm{s}$. water $=\frac{1}{1} \frac{1}{2}$ of $1000 \mathrm{Kg} .=\& \mathrm{c}$.

## Page 73

30. $1 \mathrm{cu} . \mathrm{m} .=(10)^{8} \mathrm{cu}$. dm. $1 \mathrm{~s} .=1 \mathrm{cu} . \mathrm{m} .=1000$ $\mathrm{cu} . \mathrm{dm} .=1000$ litres.
31. 1 litre $=1000 \mathrm{cu} . \mathrm{cm}$. wh. weigh $1000 \mathrm{~g} .=1 \mathrm{Kg}$.
32. $1000000 \mathrm{~g} .=\mathrm{wt}$. of $1000000 \mathrm{cu} . \mathrm{cm} .=\mathrm{wt}$. of 1000 cu. dm. $=\mathrm{wt}$. of 1000 litres.
33. The vol. of the sol:d=vol. of water displaced wh. weighs 1000 g . and $\therefore=1000 \mathrm{cu} . \mathrm{cm} .=1 \mathrm{cu} . \mathrm{dm}$.
34. 1 Kl . of water $-10001 .-100 \mathrm{cu} . \mathrm{dm},=1000000 \mathrm{cu}$.

## SOLUTIONS OF THE PROBLEMS

cm., and $\therefore$ weighs $1000000 \mathrm{~g}=1000 \mathrm{Kg} . ; \therefore 1 \mathrm{Kl}$. of air weighs $1000 \div 770 \mathrm{Kg} .=8 \mathrm{c}$.
35. $11 .=1 \mathrm{cu} . \mathrm{dm} .=1000 \mathrm{cu} . \mathrm{cm}$.
36. $1 \mathrm{Kg} .=1000 \mathrm{~g} .=1000 \times 1000 \mathrm{mg}$.
37. 1 tonneau $=1000 \mathrm{Kg} .=1000 \times 1000 \mathrm{~g}$.
38. 10 cu . m. of water $=10000000 \mathrm{cu} . \mathrm{cm}$., and $\therefore$ weighs $10000000 \mathrm{~g} .=10000 \mathrm{Kg}$.
39. 11. of water weighs $1 \mathrm{Kg} . ; \therefore 11$. of mercury weighs 13.5 Kg .
40. 11. of water weighs 1000 g.; $\therefore$ ratio $=1840: 1000$.
41. 1 ton $=2000 \mathrm{lb} .=32000 \quad$ oz. $=32000 \times 28.35 \mathrm{~g} .=$ $32 \times 28.35 \mathrm{Kg}$.
42. 5 Km . per hour $=500000 \mathrm{~cm}$. per $3600 \mathrm{sec} .=\& c \mathrm{c}$.
43. $1 \mathrm{ch} .=66 \mathrm{ft} .=66 \times 12 \div 39.37 \mathrm{~m} .=\& \mathrm{c}$.
44. 250 ac. $=1568160000$ sq. in. $=1568160000 \div(39.57)^{2}$ sq. m. $=156816 \div(39 \cdot 37)^{2} \mathrm{Ha} .=\& \mathrm{c}$.
45. 229 miles $=229 \times 5280 \times 12$ in. $=229 \times 5280 \times 12 \div$ $39.37 \mathrm{~m} .=229 \times 5280 \times 12 \div 39.37 \div 1000 \mathrm{Km}$.
46. $1 \mathrm{mile}=5280 \mathrm{ft} .=5280 \times 12 \mathrm{in} .=5280 \times 12 \div 39.37 \mathrm{~m}$.
47. $\therefore 8 \mathrm{Km} .=5 \mathrm{miles}$; but $8 \mathrm{Km} .=8000 \mathrm{~m}$., and 5 miles $=316800$ in. $\therefore 1 \mathrm{~m} .=316800 \div 8000$ in.
48. 1 tonneau $=1000 \mathrm{Kg} .=$ the $w t$. of 10001 .

## Roots of Numbers

## Page 81

2. $9 \frac{97}{12!}=\frac{1158}{121}, \quad \therefore$ square root $=\frac{94}{1 \frac{1}{1}}=3 \frac{1}{1}$.
3. $\cdot 027=\frac{25}{905} . \quad \therefore$ square root $=\frac{5}{30}=\frac{6}{6}$.
4. $12825=3^{3} \cdot 5^{2} .19$. $\therefore$ multiplicr $=3 \times 19$.
5. $90250=2.19^{2} .5^{3} . \therefore$ multiplier $=2^{2} \times 19$.

## Page 82

12. The units digit of its square must be the units digit of the square of 7 , which is $9,8 c$.
13. The square root lies between 335 and 336 .

16 . The cost in cents $=\sqrt{5625}=75$.
17. Number on each side $=\sqrt{567 \times 7}=63$.
18. Pop. in $1901=$ pop. in $1881 \times \frac{1}{1} \frac{8}{3} \frac{8}{6} \frac{25}{8} \frac{5}{0} 0$. . Sinc this fraction is the square of $\frac{19}{1} \frac{9}{8} \frac{25}{6}$ or $\frac{77}{7}, \therefore$ the pop. in . $=$ pop. in $1881 \times \frac{77}{7}$.
19. The sum of the numbers in the first row $=(1+2+$ $\ldots+12$ ). Let this $=N$. Sum of second row $=2 N$, of third $3 \mathrm{~N}, \& \mathrm{c} . \quad \therefore$ total $=(1+2+\ldots+12) \mathrm{N}, \& \mathrm{c}$
20. If both numbers were the same $2 ;$ the smaller, the product would be $43923 \div 3=14641 . \therefore$ the smaller $=\sqrt{14641}=121$.
21. If both were equal to $t:$ smaller the product would be $1512 \times \frac{\pi}{7}=1296, \& c$.
22. If all were equal to the smallest, the product would be $307 \div 6=512$. $\therefore$ the smallest $=$ the cube root of $512=8$.

## SOLUTIONS OF THE PROBLEMS

## Mensuration

## Page 111

1. Area of floor $=480$ sq. ft.; of carpet $=357$ sq. ft . Area painted $=123$ sq. ft. $=13 \frac{2}{3}$ sq. yd. $\therefore$ cost $=\$ 1 \cdot 64$.
2. Diagonal $=\sqrt{216^{2}+195^{2}}=291$ yd. $\therefore$ distance saved $=216+195-291=120 \mathrm{yd}$.
3. Width in $\mathrm{ft} .=\sqrt{40^{2}-24^{2}}+\sqrt{40^{2}-32^{2}}=56$.
4. Area in acres $=160 \times 50 \div 160=50=500$ sq. ch.
5. No. $=480 \times 10800 \div 24$.

## Page 112

6. The surface is a trapezium. See page 88 .
7. Dimensions inside the road are 77 yd . and 48 yd . $\therefore$ area of road in sq. yd. $=85 \times 56-77 \times 48=1064$.
8. Reduce area to feet and take the square root.
9. No. $=(15 \times 9 \times 144) \div(27 \times 18)=40$.
10. 2, page 111 .
11. Altitude bisects base. The altitude, $\frac{1}{2}$ base, and side form a right-angled triangle.
12. The ladder, in its new position, forms with the wall and ground a right-angled $\triangle$. Ladder 30 ft ., wall to the top of ladder $24 \mathrm{ft} . \quad \therefore$ dist. of the bottom of ladder from the foot of the wall $=\sqrt{30^{2}-24^{2}} \mathrm{ft} .=18 \mathrm{ft}$.
13. Draw the diagram.
14. Half the altitude in $y d .=4840 \div 90 \frac{1}{3}$.
i5. Area $=11.02 \mathrm{ac} .=11.02 \times 4840 \mathrm{yd} . \quad \therefore$ the side $=\sqrt{11.02 \times 4840} \mathrm{yd}$.
15. If length was the same as breadth cost would be $£ 38 \div 5=152 \mathrm{~s}$. Area would then be $152 \div 9 \frac{1}{2}=16$ sq. yd. $\therefore$ width $=4$ yd.
16. See No. 7.
17. 12 ac. $=120$ sq. ch. $\therefore$ width $=5$ ch.
18. Apply formula or. page 87 .

## Paģe í13

20. Are $\bar{c}_{6}=10000$ plan, $\therefore$ linear measurement $=\sqrt{10000}$ or $100 \mathrm{plan} . \quad .24 \mathrm{yd} .=\frac{2^{4}}{\mathrm{~T} 00} \mathrm{yd}$. in $\mathrm{plan}=8.64 \mathrm{in}$.
21. The diagonal of the end of the stick equals the diameter of the end of the tree. Diameter $=\left(12 \div \frac{23}{7}\right)$ ft . $=$ 告竞 ft . Now side of stick : the diagonal : : $1: \sqrt{2}$ $\therefore$ side $=\left(\frac{4}{1} \frac{1}{2} \div \sqrt{2}\right) \mathrm{ft} .=2.699 \mathrm{ft}$.
22. Cost in pence $=21 \frac{1}{2} \times 13 \frac{1}{3} \times 6$.
23. Length of string $=\sqrt{24^{2}+18^{2}+7^{2}} \mathrm{ft} .=30 \cdot 505 \mathrm{ft}$.
24. Apply formula page 87.
25. The diagonal divides the quadrilatera! into $2 \triangle s$ whose sides are $20,30,40$ and $25,32,40$ chains; or into $2 \Delta s$ whose sides are $20,32,40$ and $25,30,40$ chains. Apply formula.
26. Diameter of $\odot=$ diagonal of square. The dia. of sq. $=\sqrt{8^{2}+\mathrm{o}^{2}} \quad \mathrm{t} .=8 \sqrt{2} \mathrm{ft} . \quad \therefore$ are of $\odot=\frac{22}{\rho^{2}}(4 \sqrt{2})^{2}$ sq. $\mathrm{ft} .=100 \frac{4}{5} \mathrm{~s}$. ft .
27. Perimeter of semi-circle $=$ semi-circumference + diameter, circumference $=2 \cdot \frac{22}{7} \cdot 2 \mathrm{ft} . \quad \therefore$ semi-circumference $=6 \frac{2}{7} \mathrm{ft}$.
28. If $r$ is the radius, then $\frac{32}{T} r+r=80$.
29. Inner radius $=(420 \div 4) \mathrm{ft}$. and the outer radius $=$ $\left(560 \div \frac{44}{7}\right) \mathrm{ft} . \quad \therefore$ breadth of road $=(560-420) \div \frac{4}{7} \mathrm{ft}$.
30. 1000 times the circumference of the wheel equals one mile. $\therefore$ the circumference $=3.28 \mathrm{ft} . \quad \therefore$ dia. $=$ $\left(5.28 \div \frac{22}{7}\right) \mathrm{ft} .=1.68 \mathrm{ft}$.
31. Radius of pond $=\left(220 \div \frac{44}{4}\right) \mathrm{yd} .=35 \mathrm{yd}$. Area of pond $=\left({ }_{7}^{2} 9 \times 35^{2}\right)$ sq. yd. $=3850$ sq. yd. $\therefore$ area of outer circle, including both path and pond, is $(3850+120)$ sq.
yd. $=3970$ sq. yd. $\therefore$ radius of this circle $=\left(\sqrt{3970 \div \frac{2}{7}}\right)$ $\mathrm{yd} .=35.541 \mathrm{yd} . \quad \therefore$ width of $\mathrm{road}=(35.541-35) \mathrm{yd}$.
32. The length contains 3 ft . as many times as the width contains 2 ft . Area of rectangle 3 ft . by 2 ft . $=$ 6 sq. ft. $\therefore 240$ sq. ft. contains $(240 \div 6)$ of these rectangles $=40 . \quad \therefore$ the length $=(\sqrt{40} \times 3) \mathrm{ft} .=18.973 \mathrm{ft}$.
33. Circumference of circular field $=\left(\frac{22}{7} \times 15\right)$ rods $=$ $47 \frac{1}{6}$ rods, and perimeter of square field $=(4 \times 14)$ rods $=$ 56 rods. $\therefore$ square field by $8 \frac{8}{7}$ rods.
34. 7, page 112.

## Page 114

35. External dimensions are 36 in., 24 in ., 18 in . Internal dimensions are 34 in., 22 in., 17 in . No. of cu. in. of material $=36 \times 24 \times 18-34 \times 22 \times 17=2836 \mathrm{cu}$. in.
36. Side of sq. $=\sqrt{80} \mathrm{in} . \quad \therefore$ length $=(\sqrt{80} \div 8)$ in. $=$ 1.118 in.
37. Area field $=\left(40 \times 5 \frac{1}{2} \times 3 \times 30 \times 3\right)$ sq. $\mathrm{ft} . \quad \therefore$ side of sq. $=\sqrt{40 \times 5 \frac{1}{2} \times 3 \times 30 \times 3} \mathrm{ft} .=243.721 \mathrm{ft}$.
38. 6, page 112.
39. See page 87.
40. Area $=2\left\{(9 \times 10)+\left(10 \times 7 \frac{1}{2}\right)+\left(9 \times 7 \frac{1}{2}\right)\right\}$ sq. ft. $=\& \mathrm{c}$.
41. Rad. $=\frac{7}{45} \times 55$ in. $=\frac{83}{4}$ in. $\therefore$ area of circle $=$ $\frac{22}{7} \cdot\left(\frac{35}{4}\right)^{2}$ sq. in. $\therefore$ side of sq. $=\sqrt{\frac{22}{7} \cdot\left(\frac{35}{4}\right)^{2}}$ in. $=\frac{35}{4} \sqrt{\frac{22}{7}} \mathrm{in} .=$ $\frac{85}{4} \sqrt{3 \cdot 142857} \mathrm{in} .=15 \cdot 512 \mathrm{in}$.
42. 15 , page 112 , and 32 , page 1,3 .
43. Side of square $=25 \mathrm{yd}$., sides of rect. $=10$ and 40 yd .
44. Side of field $=\sqrt{10 \times 4840} \mathrm{yd} .=220 \mathrm{yd}$. Length of wire $=(5 \times 4 \times 220)$ yd. $=4400 \mathrm{yd}$. Cost of wire $=\$(4400$ $X \cdot 03)=\$ 132$. No. of posts to a side $=84 . \quad \therefore$ no. of posts required $=4 \times 84-4=332$. Cost of posts $=\$(332 \times \cdot 08)=$ $\$ 26 \cdot 56$. $\therefore$ total cost $=\$(132+26 \cdot 56)=\$ 158.56$.

## IN THE HIGH SCHOOL ARITHMETIC

45. $\mathrm{Cu} . \mathrm{ft}=1728 \mathrm{cu}$. in. $3 \mathrm{ac} .=(3 \times 4840 \times 9 \times 144)$ sq. in. $\therefore$ thickness $=\{1728 \div(3 \times 4840 \times 9 \times 144)\}$ in. $=$ . 0000918 in.
46. If $r$ is the radius, then $\frac{44}{7} r-2 r=12$.
47. Side of square $=\sqrt{14} \mathrm{in} . \quad \therefore$ dia. $=\sqrt{14} . \sqrt{2} \mathrm{in} .=$ $\sqrt{28}$ in. $=5.291$ in.
48. Area in sq. $\mathrm{ft} .=3 \times 3 \frac{3}{8} \times 5 \frac{8}{8}=64 \frac{1}{21}$.

## Page 115

49. Rad. of end in ft. $=\frac{7}{47} \times 22=3 \frac{1}{2} . \quad \therefore$ area of end in sq. ft. $=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} . \quad \therefore$ no. of cu. $\mathrm{ft} .=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 40=1540$. $\therefore$ no. of cords $=-1540 \div 128=12 \frac{1}{32}$.
50. If side of cube be 1 in ., when diminished it is $\frac{7}{8} \mathrm{in}$. $\therefore$ new vol. $=\left(\frac{7}{8}\right)^{3} \mathrm{cu}$. in. $=\frac{84}{5} \frac{3}{2}$ cu. in. $\therefore$ it is diminished by $\frac{1}{51} \frac{99}{2}$ cu. in., \&c.
51. Aisle + row of desks equal at least 44 in. Take one of the outside aisles of the wi $h$ of the ronm. $\therefore$ no. of rows $=(22 \times 12 \div 44)=6$.
52. Space $=$ sq. $+\frac{1}{4}$ circle (rad. in.) $+\frac{1}{4}$ circle (rad. 6 in.) $+\frac{1}{4}$ circle (rad. 9 in.) $+\frac{1}{4}$ circle (rad. 12 in.) $=\& c . \quad$ Peri. $=$ $\$$ circumference (rad. 3 in .) $+\& \mathrm{c}$.
53. No. of sq. ft. $=(90 \times 15 \times 8 \times 12+60 \times 12 \times 7 \times 14) \div$ $144=1450$, \&c.
54. Dia. stick $=\frac{7}{22} \times 120 \mathrm{in} .=38_{\mathrm{I}_{\mathrm{T}}} \mathrm{in}$. If we deduct 10 in. for slabs and $i n$. for cut, there will be left as many planks as cuts. $\therefore$ every plank will require $2 \frac{1}{4} \mathrm{in} . \quad \therefore$ no. planks equals the greatest whole no. in $\left(38_{\mathrm{T}^{2}}^{2}-10 \frac{1}{4}\right) \div 2 \ddagger$ $=12$.
55. Circumference $=\frac{44}{7} \times 12 \mathrm{in} . \quad \therefore$ length of arc $=\frac{78}{860}$ $\times \frac{14}{7} \times 12 \mathrm{in} .=15 \frac{5}{7} \mathrm{in}$.
56. Area of $\Delta s$ in sq. ch. $=40 \times 23+40 \times 29=2080=$ 208 ac.

## SOLUTIONS OF THE PROBLEMS

57. Area in sq. yd. $=\frac{1}{2} \times 60 \times 280$. Formula page 111 .
58. Sector $=\frac{50}{860}$ of the area of $\odot . \quad \therefore \pi r^{2}=\frac{380}{50} \times 230$ sq. ft . $\therefore r=22.9545 \mathrm{ft}$. and peri. $=2 r+\frac{5}{56} \cdot 2 \pi . r$.
59. Vol. by first pipe : vol. by second pipe : : $3^{2}:\left(4 \frac{1}{2}\right)^{2}$ $\therefore$ time $=2 \times \frac{3^{2}}{\left(4 \frac{1}{2}\right)^{2}} \mathrm{hr} .=\frac{8}{8} \mathrm{hr}$.
60. Sector $=\frac{1}{2} \frac{1}{7} \frac{5}{5}$ circle, and arc of sector $=\frac{1}{2} \frac{1}{2} \frac{5}{5}$ circumference $\odot$, but $\pi r^{2}=275$ sq. in. $\therefore r=5 \sqrt{\frac{7}{2}}$ in. $\therefore$ sector $=2 \cdot \frac{22}{7} \cdot 5 \sqrt{\frac{7}{2}} \times \frac{1}{2} \frac{1}{7} \frac{5}{6}$ in. $=24.589$ in.
61. No. of cu. $\mathrm{ft} .=\frac{22}{7} \times \frac{3}{2} \times \frac{8}{8} \times 30=212 \frac{1}{7}$.

## Page 116

62. In 1 hr . it travels $2 \times \frac{22}{7} \times 11 \mathrm{ft} . \therefore$ in 1 day it travels $2 \times \frac{22}{7} \times 11 \times 24 \mathrm{ft} .=553 \frac{1}{7} \mathrm{yd}$.
63. No of cu. in. of lead $=\left(208 \times 160 \times \frac{1}{16}\right)=26 \Delta 0 . \quad \therefore$ cost $=\$(2080 \times 6.5 \div 16 \times \cdot 07)=\$ 59.15$.
64. Let $x$ be the distance. Then from similar triangles (page 90), $\frac{11}{5 \frac{⿺}{6}}=\frac{x+7}{x} . \quad \therefore x=6.2 \mathrm{ft}$.
65. Formula 4, page 110. Area $=\left(\frac{1}{2} \times 4.7 \times 1 \frac{1}{3}\right)$ sq. ml. $=\left(\frac{1}{2} \times 4.7 \times 1 \frac{1}{3} \times 640\right)$ acres.
66. Length of pole : $29 \mathrm{ft} .8 \mathrm{in} .=5 \mathrm{ft} .10 \mathrm{in} .: 7 \mathrm{ft} .5$ in., \&c.
67. Apply formula page 107.
68. Radius of base of circular cistern $=\left(20 \div \frac{44}{7}\right) \mathrm{ft} .=$ $\frac{35}{15} \mathrm{ft}$. Volume of water $=7 \times \frac{22}{7} \times\left(\frac{3}{1} \frac{5}{1}\right)^{2} \mathrm{cu} . \mathrm{ft} .=2 \frac{45}{15}{ }^{0} \mathrm{cu} . \mathrm{ft}$. The side of the square base $=(20 \div 4) \mathrm{ft} . \quad \therefore$ the area of the base $=25$ sq. ft. $\therefore$ the depth of water $=2 \frac{45^{\circ}}{1}{ }^{\circ} \mathrm{cu} . \mathrm{ft}$. $\div 25$ sq. ft. $=8.90 \mathrm{ft}$.
69. Apply formula pages 107-8.
70. Slant height $=\sqrt{4^{2}+9^{2}} \mathrm{ft} .=\sqrt{97} \mathrm{ft}$. and circumference of base $=\frac{4}{4} \times 4 \mathrm{ft} .=\frac{17}{7} \mathrm{ft} . \quad \therefore$ no. of sq. $\mathrm{yd} .=\left(\frac{1}{2} \sqrt{97}\right.$ $\left.\times 17^{8} \div 9\right)=13.75$.
71. The height and radius of base of cone cut off are half of the height and radius of the original cone. $\therefore$ area of base of large cone is 4 times area of base of small one. $\therefore$ the volume of large cone is 8 times that of the small one.
72. Side $\triangle=12$ in. $\therefore$ area $=6 \times 6 \sqrt{3}$ sq. in In $\odot$ $2 \pi r=36$ in. $\quad \therefore r=\frac{1}{2} \cdot 2_{2}^{7} \cdot 36$ in. $=\frac{88}{11}$ in. $\therefore$ area $=\frac{22}{7}$. $\left(\frac{8}{1} \frac{8}{7}\right)^{2}$ sq. in. Diff. in area $=\left\{\frac{22}{7} \cdot\left(\frac{68}{1} \frac{3}{1}\right)^{2}-36 \sqrt{3}\right\}$ sq. in. $=40.737$ sq. in.
73. Let $r=$ rad. $4 \pi r^{2}=616 \mathrm{sq}$. in. $\therefore r^{2}=\frac{7}{88} \times 616$ sq. in. $=49$ sq. in. $\therefore r=7$ in. Vol. of sphere $=\frac{4}{3} \cdot \frac{22}{7} \cdot 7^{3} \mathrm{cu}$. in. $=1437 \frac{1}{3} \mathrm{cu}$. in.

## Page 117

74. Area of $\Delta=84$ sq. in. Whole area $=13^{2}+14^{2}+$ $15^{2}+84=674$ sq. in. Per. $=3(13+14+15)$, or 126 in.
75. Dif. of two spheres whose radii are 2 in . and 1 in .
76. Dia. of sphere=edge of cube, \&c.
77. Circumference of wheel $=\frac{22}{7} \times 14 \mathrm{ft} .=44 \mathrm{ft}$. Distance traversed in $1 \mathrm{hr} .=(44 \times 50 \times 60 \div 5280)$ miles.
78. Dist. trav. in $1 \mathrm{rev} .=2 \cdot \frac{22}{7} \cdot \frac{7}{2} \mathrm{ft} .=22 \mathrm{ft}$., and in $1 \frac{1}{2}$ rev. $=33 \mathrm{ft}$. Train goes in $1 \mathrm{sec} .33 \mathrm{ft} . \therefore$ in 1 hr . it goes ( $\frac{38}{3} \frac{8}{6} \div 60 \times 60$ ) miles $=22 \frac{1}{2}$ miles.
79. Vol. of cube $=27 \mathrm{cu}$. in. Vol. of one coin $\frac{22}{7} \times \frac{3}{8}$ $\times \frac{3}{8} \times \frac{1}{8} \mathrm{cu} . \mathrm{i}_{\text {L }} . \quad \therefore=27 \div\left(\frac{32}{7} \times \frac{3}{8} \times \frac{3}{8} \times \frac{1}{8}\right)=488+$.
80. Vol. of $\mathrm{re}=\frac{8}{3} \times \frac{29}{7} \times\left(\frac{9}{2}\right)^{3}$ cu. in. $\therefore \mathrm{wt}=$ $\frac{4}{3} \times \frac{22}{7} \times\left(\frac{9}{9}\right)^{3} \div 30 \mathrm{lb} .=12.728 \mathrm{lb}$.
81. Let $r=\mathrm{rad}$. of sphere. $\therefore 4 \cdot \frac{32}{7} \cdot r^{2}=$ surface of cylinder $=\left\{\frac{44}{7} \cdot 4 \cdot 12+2 \cdot \frac{22}{7} \cdot 4^{2}\right\} \quad$ sq. $\quad:=\frac{44}{7} .64$ sq. in. $\therefore$ $r=4 \sqrt{2}$ in. $\quad \therefore$ vol. sphere $=\frac{3}{4} \cdot \frac{22}{7}(4 \sqrt{2})^{3}=758 \cdot 556 \mathrm{cu} . \mathrm{in}$.
82. Length of cylinder $=\left(42-2 \times 2 \frac{1}{2}\right)$ in. $=37$ in. Vol. of cylinder $=\frac{22}{7}\left(\frac{5}{8}\right)^{2} \cdot 37 \mathrm{cu}$. in. Vol. of ends $=\frac{4}{3} \cdot \frac{22}{7}\left(\frac{5}{2}\right)^{3}$ cu. in.

## SOLUTIONS OF THE PROBLEMS

 Slant height $=\sqrt{r^{2}+49} . \quad \therefore$ curved surface $=\frac{22}{r} r \sqrt{r^{2}+49}$ $=3 \times \frac{24}{7} r^{2} . \quad \therefore r^{2}=\frac{49}{8} . \quad \therefore$ vol. $=\frac{7}{8} \times \frac{22}{5} r^{2}=44 \frac{1}{2} \frac{1}{2}$ cu. in.
84. 'Area of zone $=$ areas of 2 sectors 'ingle $105^{\circ}$ ) + area of equilateral $\Delta$ (side 12 ft .) + area of right-angled $\triangle$ (equal sides 12 ft .) $=\frac{1}{1} \frac{0}{8} \frac{8}{8} \times \frac{22}{7} \times 144+36 \sqrt{3}+72$.
85. 3 (side of cube) ${ }^{2}=1$ sq. in. $\therefore$ side $=\sqrt{\frac{1}{3}}$ in. $=$ .577 in.
86. Area of rim $=\frac{32}{7}\left(3^{2}-2^{2}\right)$ sq. in. $=\frac{22}{7} .5$ sq. in. Area of outer surface $=2 \cdot \frac{22}{7} \cdot 3^{2}$ sq. in. Area of inner surface $=2 \cdot \frac{22}{7} \cdot 2^{2}$ sq. in. $=\frac{22}{7} \cdot 8$ sq. in. $\therefore$ whole surface $=\frac{22}{7}$ $(5+18+8)$ sq. in. $=97 \frac{3}{7}$ sq. in.

## Page 118

87. If radii are 2 in . and 3 in . the vis. are $\frac{4}{3} \times \frac{22}{7} \times 2^{3}$ and $\frac{4}{3} \times{ }^{22} 7^{2} \times 3^{3}$ and are $\therefore$ in the ratio of $2^{3}$ to $3^{3}$.
88. Vol. $=\left(12 \times 1760 \times 7 \times \frac{5}{3}\right)$ cu. yd. $\therefore$ time $=\{12 \times$ $\left.1760 \times 7 \times \frac{5}{3} \div(20 \times 400)\right\}$ days $=30_{5}^{4}$ days.
89. Inner rad. $=\frac{3}{4} \mathrm{in}$., and outer rad. $=1 \frac{1}{4} \mathrm{in}$. Area of end $=2_{7}^{2}\left\{\left(1 \frac{1}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}\right\}$ sq. in. $=\frac{22}{7}$ sq. in. No. cu. ft. $=$ $\left(\frac{22}{7} \div 144 \times 20\right) ; \quad$ weight $=\left(\frac{22}{7} \times \frac{20}{144} \times \frac{115 n 0}{10}\right) \mathrm{lb} . \quad \therefore$ cost $=\$\left\{\frac{22}{7} \times \frac{20}{144} \times \frac{11500}{16} \times \cdot 08\right\}=\$ 25.099$.
90. External vol. $=(40 \times 30 \times 20) \mathrm{cu}$. in., and the internal vol. $=(37 \times 27 \times 17)$ cu. in. $\therefore$ plank contains $\{(40 \times 30 \times 20)-(37 \times 27 \times 17)\} \mathrm{cu}$. in. $=7017 \mathrm{cu}$. in. But a sq. ft. of plank contains ( $12 \times 12 \times 1 \frac{1}{2}$ ) cu. in. $=216 \mathrm{cu}$. in. $\therefore$ no. sq. ft. $=(7017 \div 216)=32 \frac{3}{7} \frac{5}{2}$.
91. Perp. bisects chord. The $\perp, \frac{1}{2}$ chord and radius form a right-angled $\triangle . \therefore \frac{1}{2}$ chord $=\sqrt{26^{2}-10^{2}}=24 \mathrm{in}$.
92. The line joining pt. to centre, the tangent and the radius to the point of contact of tangent and circie, form a right-angled $\triangle . \quad \therefore$ tangent $=\sqrt{\bar{j}^{2}-4^{2}} \mathrm{ft} .=5.744 \mathrm{ft}$.
93. The diagonals bisect each other at right angles.

## IN THE HIGH SCHOOL ARITHMETIC

94. Let $x=$ perp. on chord 12 units in length, then $14-x=$ length of other perp. $\therefore x^{2}+6^{2}=$ rad. $^{2}=(14-x)^{2}$ $+8^{2} . \quad \therefore x=8 . \quad \therefore$ rad. $=\sqrt{8^{2}+6^{2}}=10$.
95. Let $x=$ length of corner cut off. $\therefore x \sqrt{2}=$ side octagon. $\therefore 2 x+x \sqrt{2}=40$ yd. $\quad \therefore x=\frac{40}{2+\sqrt{ } 2}$ yd. $=20$ $(2-\sqrt{2}) y d .$, and $2 x^{2}=$ area of corners cut off $=800$ (6$4 \sqrt{2})$ sq. yd. $=1600(3-2 \sqrt{2})$ sq. yd., but area of sq. $=$ 1600 sq. yd. $\therefore$ area of ortagon $=$ diff.
96. Area of zone = areas $n f 2$ sectors (angle $120^{\circ}$ ) and of 2 equilateral $\Delta$ 's (side 8 i.).
97. No. of gal. $=8 \times 10 \times 9 \times 62 \frac{1}{2} \div 10=4500$.
98. Vol. in cu. $\mathrm{ft} .=\frac{2 ?}{7} \times 4^{2} \times 4$.
99. Wt. of sphere of water $=\left(\frac{4}{9} \cdot \frac{22}{7} \cdot 3^{3} \div 1728 \times 62 \frac{1}{2}\right) \mathrm{lb}$. $\therefore$ wt. of :ron $=8 \times\left(\frac{1}{3} \cdot \frac{22}{7} \cdot 3^{3} \div 1728 \times 62 \frac{1}{2}\right) \mathrm{lb} .=32 \frac{1}{2} \frac{1 \mathrm{lb}}{} \mathrm{lb}$.
100. No. of cu. ft. of ice $=4 \times 4840 \times 9 \times \frac{1}{2}$. $\therefore$ no. of cu . ft . of water in it $=4 \times 4840 \times 9 \times \frac{1}{2} \times \frac{1}{11}$. Weight in tons $=4 \times 4840 \times 9 \times \frac{1}{2} \times \frac{10}{1} \frac{0}{1} \times 62 \frac{1}{2} \div 2000=2475$ tons.

## Page 119

101. Vol. of earth $=40 \times 32 \times 8 \mathrm{cu} . \mathrm{ft} . \therefore$ wt. in tons $=$ $40 \times 32 \times 8 \times 2 \times 62 \frac{1}{2} \div 2000=640$ tons.
102. 98, page 118.
103. Vol. of pail $=60 \times 1728 \div 62 \frac{1}{2} \mathrm{cu}$. in. Area of base $=\frac{22}{7} \times 6^{2}$ sq. in. $\therefore$ depth in in. $=\left(60 \div 62 \frac{1}{2} \times 1728\right) \div$ $\left(\frac{22}{7} \times 6^{2}\right)=14.661$.
104. Height cone $=\sqrt{12^{2}-8^{2}} \mathrm{ft} .=\sqrt{80} \mathrm{ft}$. Vol. $=\frac{1}{3} \cdot \frac{22}{7} \cdot 8^{2}$. $\sqrt{80} \mathrm{cu} . \mathrm{ft} .=\& \mathrm{c}$.
105. Vol. of water replaced by stone $=\frac{22}{7} \cdot 14^{2} \cdot 4 \mathrm{cu}$. in. $\therefore$ wt. of stone $=\left(8 \cdot \frac{22}{7} \cdot 14^{2} \cdot 4 \div 1728 \times 1000\right)$ oz. $=\& \mathrm{c}$.
106. Wt. of water $=449 \mathrm{lb} . \quad \therefore$ no. gal. $=44 \cdot 9$.
107. No. of cu. ft. emptied per $\mathrm{hr}=\frac{1}{2} \times 2000 \div 62 \frac{1}{2}=8$. Area of base $=\frac{22}{7} \times\left(\frac{7}{8}\right)^{2}$, or $38 \frac{1}{2}$ sq. ft. $\therefore$ height that water rises per hr. $=8 \div 38 \frac{1}{2}$, or $\frac{18}{7} \frac{8}{7} \mathrm{ft}$.
108. Vol. $=862 \frac{5}{7} \mathrm{cu} . \mathrm{ft}$. (page 107) $=5391 \frac{27}{2} \frac{7}{8}$ gal.
109. No. revolutions $=$ distance $\div$ circumference of wheel $=55000 \mathrm{~m} . \div\left(1.4 \times 2 \times \frac{22}{7}\right) \mathrm{m} .=6250$.
110. No. sq. metres $=6.175 \times 4.12$.
111. Sq. root of $15227 \cdot 56=123 \cdot 4$.
112. $18.49 \mathrm{Ha} .=1849$ ares $=1849$ sq. decametres. $\therefore$ one side is $43 \mathrm{Dm} .=430 \mathrm{~m} . \quad \therefore$ perimeter $=1720 \mathrm{~m}$.

## Page 120

113. Since the cube is a 3 -metre cube the area of each face is 9 sq. $\mathrm{m} . \therefore$ whole surface is 54 sq. m. $=.54$ sq. Dm. $=.54$ ares $=54$ ca.
114. If the dimensions are $2,3,4$, linear units, the volume is 24 cribic units. $\therefore 8$ cubic units $=1$ cubic m . $\therefore$ linear unit $=\mathrm{a}$ half metre. $\therefore$ whole surface $=52 \mathrm{sq}$. half $\mathrm{m} .=13 \mathrm{sq} . \mathrm{m} .=13 \mathrm{sq} . \mathrm{Dm} .=13 \mathrm{a} .=13 \mathrm{ca}$.
115. If the block is a metre thick it will cover $4.5 \mathrm{sq} . \mathrm{m}$. $\therefore$ if cut into 100 sections it will cover 450 sq. $\mathrm{m} .=4.5$ Dm. $=4.5 \mathrm{a}$.
116. The surface measures $20 \mathrm{Ha}=2000 \mathrm{a} .=2000 \mathrm{sq}$. $\mathrm{Dm} .=200000 \mathrm{sq} . \mathrm{m}$.; and the thickness is $.03 \mathrm{~m} . \quad \therefore$ vol. $=200000 \times \cdot 03$ sq. m .
117. A side of the field measures $10 \mathrm{~m} . \therefore$ area of field $=100 \mathrm{sq} . \mathrm{m} .=1 \mathrm{a}$.
118. If the length and breadth are 3 and 2 units respectively the area is 6 sq. units. $\therefore 1$ sq. unit $=4 \mathrm{Ha}=$ 40000 sq. m. $=(200)^{2}$ sq. m. $\therefore 1$ linear unit $=200 \mathrm{~m}$. $\therefore$ length of field is 600 m ., and width $400 \mathrm{~m} . \quad \therefore$ diag. is $100 \sqrt{52} \mathrm{~m} .=8 \mathrm{c}$.
119. The path is 60 m . long and 1.5 m . wide, and $\therefore$ has an area of $90 \mathrm{sq}, \mathrm{m} .=90 \mathrm{ca}$.
120. Area $=7 \times 7 \times \frac{27^{2}}{7}$ sq. $\mathrm{m} .=154 \mathrm{ca} .=1.54 \mathrm{a} . ;$ smaller portion $=\frac{3}{\gamma}$ of this area $=.66$ a.
121. The vol. $=3 \times 3 \times 3 \mathrm{cu} . \mathrm{m} .=27 \mathrm{~s}$.
122. $1 \mathrm{Ks} .=1000 \mathrm{cu} . \mathrm{m} . \quad \therefore$ edge $=10 \mathrm{~m} .=1000 \mathrm{~cm}$.
123. Vol. $=40 \times 30 \times \frac{1}{5} \mathrm{cu} . \mathrm{m} .=24 \mathrm{~s}$.
124. 20 cu . units cost $\$ 54$. $\therefore 1 \mathrm{cu}$. unit cost $\$ 2 \cdot 70=$ cost of $27 \mathrm{~s} . \therefore 1 \mathrm{cu}$. unit $=27 \mathrm{~s} .=27 \mathrm{cu} . \mathrm{m} . \therefore$ linear unit $=3 \mathrm{~m}$.
125. A vol. of $1 \mathrm{cu} . \mathrm{m}$. has a surface of $\frac{5}{2} \mathrm{sq}$. m . its depth must be $\frac{2}{5} \mathrm{~m}$.
126. The vol. when the water is 1 dm . deep $=4 \times 2.5 \times 1$ $\mathrm{cu} . \mathrm{m} .=1 \mathrm{~s}$, which requires 1 min .
127. First tap pours in 10 l . in $6 \mathrm{sec} . ;$ the second 501 . in $20 \mathrm{sec} .=15 \mathrm{l}$. in 6 sec ., or 25 l . in 6 sec . for both. Vol. to be filled $=9 \mathrm{cu} . \mathrm{m} .=90001 . \therefore$ no. sec. required $=$ $90001 . \div 251 . \times 6=8 c$.
128. If a piece 1 m . long be cut off its vol. will be $\frac{2 \pi}{7} \times$ $(1.4)^{2} \mathrm{cu} . \mathrm{m} .=6.16 \mathrm{cu} . \mathrm{m} .=6.16 \mathrm{~s} . \quad \therefore$ no. of m . in the 'length of the $\log =61 \cdot 6 \mathrm{~s} . \div 6 \cdot 16 \mathrm{~s}$.

## Page 121

129. Length of an edge of the box $=1 \mathrm{~m} .+2 \times 5 \mathrm{~cm} .=$ $1.1 \mathrm{~m} . \therefore$ total vol. $=(1 \cdot 1)^{3}$ cu. $\mathrm{m} .=1.331 \mathrm{~s} . \quad \therefore$ vol. of box $=331 \mathrm{~s}$.
130. The cistern $=4$ cubes each containing a million litres $=$ one million $\mathrm{cu} . \mathrm{dm} .=1000 \mathrm{cu} . \mathrm{m} . \therefore$ an edge of the cube $=10 \mathrm{~m} .=$ depth of cistern.
131. Sides of the triangle, in dm., are $13,14,15, \therefore$ are $=84$ sq. dm. $=84$ sq. m. $=.84$ ca.
132. The trapezium $=$ a rectangle of the same width and 2 m . long. $\therefore$ width $=.375 \mathrm{~m}$.
133. The height is $10 \mathrm{~cm} . \therefore$ vol. $=\left(\frac{1}{8}\right)^{2} \times{ }^{2} \times \frac{10}{8} \mathrm{cu}$. $\mathrm{cm} .=1155 \mathrm{cu} . \mathrm{cm} .=1.155 \mathrm{cu} . \mathrm{dm} .=1 \cdot 155 \mathrm{l}$.
134. The height is $60 \mathrm{~cm} . \therefore$ vol. $=(40)^{2} \times \frac{6 n}{5} \mathrm{cu} . \mathrm{cm}$. $=32000 \mathrm{cu} . \mathrm{cm}$., and $\therefore$ its wt. $=32000 \times 11.4 \mathrm{~g} .=364.8 \mathrm{Kg}$.

## Miscellaneous Theorems and Applications

## Page 135

2. Take any number, say, 53768. This number $=$ $53000+768$. Since 1000 is divisible by 8 , any number of thousands must also be divisible by 8 . Therefore, any remainder obtained on diviaing the number by 8 must result from dividing 768 by 8 . Since 768 is divisible by 8 , the number must be divisible by 8 . The same argument will apply to any number.
3. Since the sum of the digits is the same for both numbers, the remainder must be the same when each is divided by 9 . The fractional parts of the quotients obtained by dividing the numbers by 9 are therefore the same, and therefore the difference between the quotients is an integer; but this difference is the same as the quotient obtained by dividing the difference between the numbers by 9.
4. Such a number is evidently divisible by 21 .
5. See No. 5.
6. Since it is 3 hours later, the place must be $15^{\circ} \times 3$, or $45^{\circ}$ east of London.
7. The ship must be $15^{\circ} \times 33^{\frac{82}{6}}$ west of Greenwich, $\therefore$ its longitude is $53^{\circ} \mathrm{W}$.

## Page 136

13. The dif. in long. is $59^{\circ} 29^{\prime}$. Each"degre of long. corresponds to 4 min . in time, and each min. of long. to 4 sec . in time. $\therefore$ the dif. in time is 3 hr .57 min .56 sec.
14. The dif. in time corresponds to $17^{\circ} 43^{\prime}$ in long.
15. The dif. in time is $5 \mathrm{~min} . \quad \therefore$ the second steamer must be $1^{\circ} 15^{\prime} \mathrm{w}$. of the first.
16. The dif. is 8 hr . in time, or $120^{\circ}$ in long.
17. The time meridian of Hamilton is $75^{\circ} \mathrm{W}$., and of Dawson $135^{\circ}$ W., $\therefore$ the dif. is $60^{\circ}$ in long., or 4 hours in time.
18. It would be 8 hr .20 min . after $5 \mathrm{a} . \mathrm{m}$.
19. The time meridian of Kingston is $75^{\circ}$ W., $\therefore$ the dif. is $1^{\circ} 29^{\prime}$ in long., or 5 min .56 sec . in time. Since Kingston takes the time of a place $1^{\circ} 29^{\prime}$ east of it, the standard time is faster than the true time.
20. The required nutil. $2 \mathrm{r} \div 154=45 \div 126$, \&c.
21. The first should have paid $\frac{8}{18}$ of $\$ 104=\$ 64$, \&c.
22. If there was but one 50 cent piece the total value would have been $\$ 1 \cdot 50$. But the total sum is 7 times this. $\therefore$ there were 750 cent pieces, \&c.

## Page 137

27. When the first gets $\$ 21$, the second gets $\$ 27$ and the third $\$ 28$. $\therefore$ the first receives $\frac{21}{5}$ of $\$ 3648$.
28. The sum of their ages 18 years ago was 39 years, $\therefore$ A was then 26 and B $13, \& c$.
29. It will be divided in the ratio of 33 to 13 .
30. If one gal. be taken from each, the mixture would contain $\frac{8}{7}+\frac{5}{6}$, or $\frac{71}{4 y}$ gal. of wine and $\therefore \frac{18}{4}$ gal. of water.
31. The cost of 6 lb . of the mixture is $\$ 1.80$, or 30 c . a 1b., \&c.
32. Since there is a loss of 3 c . per lb . oi. the coffee and a gain of 15 c . per lb . on the chicory, they must be mixed in the ratio of 15 to 3 .
33. The mixture is worth $\$ 100$, and $\therefore$ must contain $83 \frac{1}{3} \mathrm{gal}$. of wine and $16 \frac{2}{3}$ of water.

## SOLUTIONS OF THE PROBLEMS

34 The given mixture contains $\frac{98}{100}$ of 75 , or 72 pints of alcohol. $\therefore \frac{84}{100}$ of the second mixture $=72$ pints. the second mixture $=72 \times \frac{109}{84}$, or $85 \frac{5}{7}$ pinics. $\therefore 10 \frac{5}{7}$ pints of water must be added.
35. B's share $=\frac{3}{4}$ of A's share $+\$ 31.75 . \quad \therefore \frac{7}{4}$ of A's share $+\$ 31.75=\$ 338 . \quad \therefore$ A's share $=\$ 175$.
36. If they had all been men the amount paid would have been $\$ 270$. When a boy is substituted for a man it reduces the amount paid by $\$ 4.50, \therefore$ the no. of boys $=$ $\frac{\$ 270-\$ 162}{\$ 4.50}=24$.
37. When B runs 390 yd. C runs 360 yd. $\therefore$ when B runs a mile, C runs $\frac{3}{3} \frac{60}{9} 0$ of $1760 \mathrm{yd} ., \& \mathrm{c}$.
38. If A's step is 13 units in length, B's is 11 units. $\therefore$ when A goes 91 units, B goes 99 units. $\therefore$ when B has gone $100 \mathrm{yd} .$, A has gone only $\frac{9}{81} \frac{1}{8}$ of $100 \mathrm{yd} ., 8 \mathrm{c}$.
39. When the first has gone 11 rounds the second has gone 14 , and $\therefore$ the second has gained 3 rounds when he has gone 14 rounds, and $\therefore$ he has gained 1 round when he has gone $4_{3}^{2}$ rounds, $\& c$.
40. When the first has gone 12 rounds, the second has gone 14 and the third 15 . They will then be first together.

## Page 138

41. The faster train travels 20 miles farther each hour than the slower, $\therefore$ they must have met $\frac{135}{26}$, or $6 \frac{3}{4}$ hours after starting, and $\therefore$ the distance was $80 \times 6 \frac{3}{4}$ miles.
42. To pass the man the train must gain 110 yards. It gains 27 ml . per hr. $\therefore$ it gains 110 yd . in $8 \frac{1}{3} \mathrm{sec}$. In the opp. direction it would pass him at the rate of 33 ml . far hr., \&c.
43. The train gained 88 yd . on the first person in 10 sec ., or 18 ml . per hr. $\therefore$ the rate of the train was 22 ml . per hr. It gained 88 yd . on the second in 9 sec ., or 20 ml . per hr. $\therefore$ the rate of the second person was 2 ml . per hr.
44. His rate down stream is 8 ml . per hr . and rate up is 2 ml . per hr . If he goes down 1 ml . and back again, it would take $\frac{1}{8}+\frac{1}{2}$, or $\frac{5}{8} \mathrm{hr}$. $\therefore$ if he takes $2 \frac{2}{3} \mathrm{hr}$. he may go down $2 \frac{2}{3} \div \frac{5}{8}$, or $4 \frac{4}{T_{5}^{4}} \mathrm{ml}$.

45-7. See Arith., page 131.
48. In $53 \frac{1}{2}$ hr. the clock loses $15 \mathrm{~min} . \therefore$ in $26 \frac{1}{3} \mathrm{hr}$. it will lose $15 \times 26 \frac{1}{3} \div 53 \frac{1}{2}=7 \frac{41}{107}$ min.
49. The work which $A$ does in the 12 days could be done by $B$ in 6 days, and the work that $C$ does in the 12 days could be done by $B$ in 24 days, $\therefore$ B could do the whole work in 42 days, \&c.
50. The additional 10 men will work only half the time that the 5 men remained away, \&c.
51. The 3 taps would empty $\frac{1}{30}+\frac{1}{60} \sigma+\frac{1}{3} \frac{1}{0}$, or $\frac{1}{48}$ of the vessel in 1 min., \&c.
52. If the wages of a boy be the unit, then the wages of a woman is $3 \frac{1}{3}$, and of a man $5 . \quad \therefore$ the wages of 15 men, 18 women and 26 boys would be 161 units, which is equal to $\$ 64 \cdot 40$. $\therefore$ the unit is 40 c ., \&c.

Page 139
53. A man can do ${ }_{1}^{\frac{1}{68}}$ and a boy $\frac{1}{2^{4}}$ of the work in 1
 day. $\therefore$ they can do the work in $1176 \div 65$, or $18 \frac{9}{65}$ days.
54. There are 40 days' work to do. '. one man does $16 \frac{1}{2}$ and the other $23 \frac{1}{2}$ days' work, and the $\$ 120$ is divided in this ratio.

## SOLUTIONS OF THE PROBLEMS

55. The whole work consists of 40 days' work for a man and 100 days' work for a boy, or of 18 days' work for a man and 144 for a boy. $\therefore 22$ days' work for a man $=$ 44 days' work for a boy. $\therefore$ a man does twice as much as a boy, \&cc. $\therefore 9$ boys would do the work in 20 days, or 1 boy would do it in 180 days.
56. If $A$ had worked at the same rate as $B$ he would have earned $\$ 29.70 \times \frac{1}{1} \frac{0}{1}$, or $\$ 27$. $\therefore$ the times they worked are in the ratio of $27: 30$.
57. Suppose A's wages per hour to be the unit, then B's wages per hour would be $\frac{11}{15}$ of the unit. A works $11 \frac{3}{4}$ hr . and would earn $11 \frac{3}{4}$ units. B works $15 \frac{3}{4} \mathrm{hr}$. and would earn $15 \frac{3}{4} \times \frac{1}{1} \frac{1}{5}=11 \frac{1}{2} \frac{1}{6}$ units. $\therefore$ they would both earn $23 \frac{3}{10}$ units $=\$ 13.98$. $\therefore$ the unit $=60$ c., \&c.
58. Suppose A anc B had worked as long as C, then the whole work would have been done, and $\frac{3}{10}+\frac{2 \frac{1}{4}}{12}$, or $\frac{39}{80}$ of the work a second time. They can all do $\frac{1}{10}+\frac{1}{12}+\frac{1}{15}$, or $\ddagger$ of the work in 1 day. $\therefore$ they can do $1 \frac{39}{3}$ of the work in $1 \frac{39}{8} 9 \times 4$, or $5 \frac{19}{20}$ days.
59. $20 \times 1 \frac{1}{2} \times 18=540$.
60. Each contains $18 \times \frac{1}{6} \times 4$, or 12 board feet; 480 feet would cost $\$ 18 \times \frac{180}{1000}=\$ 8.64$.
61. Cost $=\$ 25 \times 28 \times 32 \div 1000=\$ 22.40$.
62. Number of feet of lumber $=80 \times 20 \times 2 \frac{1}{2}, \& c$.
63. Length of the four walls $=120$ feet. $\therefore$ amount of lumber $=120 \times 18 \times \frac{5}{4}$, or 2700 feet.
64. Whole length of fence $=2310 \mathrm{ft}$. and the whole width of the boards $=39 \mathrm{in} . \therefore$ number of feet of lumber $=2310 \times \frac{3}{1} \frac{9}{2}, \& c$.

## Page 140

65. Amount of lumber in planks $=1320 \times 8 \times 2$ feet. Amount of lumber in scaintling $=1320 \times \frac{3}{12} \times 4 \times 3$ feet. Total $=25080$ feet, \&zc.
66. Number of strips required $=9$, each 21 ft .9 in. long. $\therefore$ amount of carpet $=i 95 \frac{3}{4}$ feet, or $65 \frac{1}{4} \mathrm{yd}$.
67.7 strips each, 18 ft .4 in . long, \&c.
67. 8 strips are required, the first being 15 ft .5 in . long and the others 16 ft . long, \&c.
68. It will require 5 strips of carpet each 18 ft . long, or 30 yd . of carpet, costing $\$ 36$. Also 74 feet of border costing $\$ 18.50$. If the border is cut without waste 4 feet less are required.
69. Each step requires 18 in . of carpet, or 10 yd . in all.
70. Whole length of walls to be papered $=108-18$, or 90 ft ., \&c.
71. 48 strips each 9 feet long $=144 \mathrm{yd}$. of paper, or 18 single rolls, \&c.
72. No. of yd. in walls $=72 \times 9 \div 9=72$, and in ceiling $=20 \times 16 \div 9=35 \frac{5}{9}$. Tutal $=107 \frac{5}{6}$, \&c.
73. Area of walls $=114 \times 12$, or 1368 sq. ft . Area of ceiling $=30 \times 27$, or 810 sq. ft. Amount deducted $=51 \mathrm{sq}$. ft., \&c.

## SOLUTIONS OF THE PROBLEMS

## Commercial Arithmetic

## Page 142

13. $10 \%$ of the no. $=13 . \quad \therefore 100 \%$ of no. $=130$.
14. No. of boys $=60 \%$ of $60=36$. $\therefore$ total no. $=96$.
15. Weight of oxygen $=11 \frac{1}{9} \%$ of $10 \mathrm{lb} .=1 \frac{1}{9} \mathrm{lb}$.
16. $112 \frac{1}{2} \%$ of average last term $=225 . \quad \therefore$ average last $\mathrm{t} \in \mathrm{rm}=200$.
17. $114 \%$ of no. $=285 . \quad \therefore$ no. $=\frac{100}{114}$ of $285=250$.
18. $88 \frac{3}{4} \%$ of no. $=710 . \therefore$ no. $=\frac{100}{88 \frac{3}{4}}$ of $710=800$.
19. Weight of water $=1.804 \mathrm{gr} .=\frac{1}{8} \frac{8}{6} \frac{9}{0} 0$ of the whole, or $36.08 \%$.
20. A loaf will now cost $125 \%$ of 10 c., or $12 \frac{1}{2}$ c.

## Page 143

21. $90 \%$ of remainder after battle $=360$ men. $\therefore$ remainder after battle $=400$ men. $\therefore 80 \%$ of original regiment $=400$ men. $\therefore$ original regiment $=500$ men.
22. No. $=25400 \times \frac{100}{26.3}=96578$ (to nearest integer).
23. 2nd year's earnings $=105 \%$ of 1st year's earnings. $\therefore 205 \%$ of 1 st year's earnings $=\$ 6560 . \quad \therefore 105 \%$ of 1 st year's earnings $=\$ 6560 \times \frac{108}{68}=\$ 3360$.
24. $62 \frac{1}{2} \mathrm{lb} .=$ weight of $1 \mathrm{cu} . \mathrm{ft}$. of water. $\therefore 2000 \mathrm{lb}$. $=$ weight of $32 \mathrm{cu} . \mathrm{ft}$. of water. $32 \mathrm{cu} . \mathrm{ft}$. of water become ( $110 \%$ of 32 ) cu. ft. of ice, or $35 \mathrm{f} \mathrm{cu} . \mathrm{ft}$. of ice.
25. A creditor receives $30 \%$ of the debt. He loses $70 \%$ of the debt. $\therefore$ he receives $\frac{3}{7}$ of amount of loss; i.e., he receives $42 \frac{8}{7} \%$ of amount of loss.
26. The increased value $=220 \%$ of $\$ 4000=\$ 8800$.

## IN THE HIGH SCHOOL ARITHMETIC

27. He saves $7 \frac{1}{2} \%$ of a year's salary in 1 year. $\therefore$ he saves $100 \%$ of a year's salary in $\frac{100}{7 \frac{1}{2}}$ years, or $13 \frac{1}{3}$ years. 28. $10 \%$ of greater nuinber $=20 \%$ of smaller number. $\therefore 32 \frac{1}{2} \%$ of smaller number $=39$. $\therefore$ smaller number $=$ $39 \times \frac{100}{32 \frac{i}{2}}=120 . \quad \therefore$ greatèr number $=240$.
28. Moisture $=\frac{29 \cdot 07}{100}$ of $2000 \mathrm{lb} .=581 \cdot 4 \mathrm{lb}$.
29. Imports from Canada $=\frac{38,720,000}{149,459,555}$, or $25.9 \%$.
30. $33 \frac{\dot{3}}{3} \%=\frac{1}{3}$. A's money $=\frac{4}{3}$ of B's money. $\therefore$ B's money $=\frac{3}{4}$ of A's money $=75 \%$ of A's money.
31. $50 \%$ of the silver money $=\$ 1 \cdot 50 . \quad \therefore$ the silver money was $\$ 3 . \quad \therefore$ the paper money was $\$ 9$.
32. The number of girls is $62 \frac{1}{2} \%$ of whole number. $\therefore 25 \%$ of whole number $=50 . \quad \therefore$ whole number $=200$. $\therefore$ no. of girls $=125$.
33. A does $20 \%$ of work in two days, and $B$ does $37 \frac{1}{2} \%$ of work in three days. Whole amount done is $57 \frac{1}{2} \%$ of work. $\therefore 42 \frac{1}{2} \%$ of work remains to be done.

## Page 144

35. $33 \frac{1}{3} \%$ of the man's share was worth $\$ 12000$. $\therefore$ the man's share was worth $\$ 36000 . \therefore 30 \%$ of value of mine was $\$ 36000$. $\therefore$ value of mine was $\$ 120000$.

36 . $60 \%$ of $\$ 4000=\$ 2400 . \quad 40 \%$ of 3 times the value of the house $=\$ 2400 . \quad \therefore 3$ times the value of the house $=$ $\$ 6000$, or value of the house $=\$ 2000$.
37. Suppose the 1 st is 10 , then the 2 nd is 8 and the 3rd $6 . \quad \therefore 1440$ is divided in the proportion of $10,8,6$.
38. $\frac{1}{2}$ is $100 \%$ of $\frac{1}{2} . \therefore 1$ is $200 \%$ of $\frac{1}{2} . \therefore \frac{1}{5}$ is $40 \%$ of $\frac{1}{2}$.
39. C receives $4 \%$ of selii. g price. $\therefore \mathrm{A}$ and B receive $96 \%$ of selling pricc. $\therefore$ A receives $80 \%$ of $96 \%$ of selling price, or $76.8 \%$ of selling price.

## SOLUTIONS OF THE PRC BLEMS

40. 126 gal. $=504$ qts. 2 gal. $1 \frac{3}{5}$ qt. $=9 \frac{9}{5}$ qt. $\frac{9 \frac{8}{5}}{504}=$ $1 \frac{1}{8} \frac{9}{7} \%$.
41. 1 lb. Av. $=7000$ grs.; 1 lb . Troy $=5760 \mathrm{grs}$. He sells 5760 grs. for the cost of 7000 grs. $\therefore$ on 5760 grs. he gains the cost of $1240 \mathrm{grs} . \therefore$ on 1 gr . he gains $\frac{1 \sigma^{4}{ }^{\circ} \mathrm{D}}{}$ of cost of $1 \mathrm{gr} . \quad \therefore$ he gains $21 \frac{1}{8} \frac{9}{6} \%$ of cost.
42. $90 \%$ of cost $=\$ 15840 . \quad \therefore$ cost $=\$ 17600 . \quad \therefore 110 \%$ of actual value $=\$ 17600 . \quad \therefore$ value $=\$ 16000$.
$43.3 \%$ of half of the number is $1 \frac{1}{2} \%$ of the number. $\therefore 3 \frac{1}{2} \%$ oi the number $=21 . \quad \therefore$ the number $=600$.
$44.6 \%$ of twice the number $=12 \%$ of the number. $\therefore 17 \%$ of the number $=175 . \quad \therefore$ the number $=1029 \frac{7}{17}$.

## Page 146

2. $85 \%$ of bill $=\$ 850 . \quad \therefore 15 \%=\$ 150=$ discount.
3. Original amount of bill was $\$ 200$; discount was $\$ 30 . \quad \therefore$ rate of discount was $15 \%$.
4. Marked pricc was $\$ 5$ per ream. $\therefore$ price, after discount, was $87 \frac{1}{2} \%$ of $\$ 5$ per ream. $\therefore$ cash price was $98 \%$ of $87 \frac{1}{2} \%$ of $\$ 5$, or $\$ 4 \cdot 28 \frac{3}{3}$ per ream.
5. To make a gain of $\$ 3$, the article must sell for $\$ 15 . \therefore 90 \%$ of marked price $=\$ 15 . \quad \therefore$ m.p. $=\$ 16 . ~ i \frac{2}{3}$.
6. $87 \frac{1}{2} \%$ of marked price $=\$ 4 . \quad \therefore$ m.p. $=\$ 4.57 \frac{1}{\frac{1}{5}}$.
7. $80 \%$ of marked price $=\$ 3 . \therefore$ marked price $=\$ 3.75$.
8. Reduced price $=90 \%$ of marked price. Customer pays $90 \%$ of reduced price, or $81 \%$ of m.p.
9. By previous result 10 and $10 \%$ off leaves $81 \%$ of original price. But $20 \%$ off leaves $80 \%$ of original price. Hence difference is $1 \%$ of original price, or 12 cents.
$10.95 \%$ of marked price $=\$ 7.60 . \therefore$ m.p. $=\$ 8.00$. $133 \frac{1}{3} \%$ of cost $=\$ 8 . \quad \therefore$ cost $=\$ 6$.

## Pase is tradedskerunt

11. Marked price $=140 \%$ of cost. $\therefore$ selling price $=$ $90 \%$ of $140 \%$, or $126 \%$ of cost. $\therefore 26 \%$ of cost $=\$ 2.60$.
12. Cost of 150 axes at $\$ 2.50$ per dozen is $\$ 31.25$. $\therefore$ net cost is $90 \%$ of $\$ 31 \cdot 25$, or $\$ 28 \cdot 12 \frac{1}{2}$.
13. $66 \frac{2}{3} \%$ of marked price $=30 \mathrm{c} . \quad \therefore$ m.p. $=45 \mathrm{c}$.
14. Marked price $=140 \%$ of cost. Cash price $=70 \%$ of $140 \%$ of cost $=98 \%$ of cost. $\therefore$ loss was $2 \%$ of cost.
15. Giving $16 \frac{1}{2} \mathrm{oz}$. for price of 16 oz . equals a discount of $\frac{1}{2}$ on $16 \frac{1}{2}$. This is $3 \frac{1}{3} \%$.
16. See solution of 15 .
17. $95 \%$ of usual cash price $=\$ 3 \cdot 42$. $\therefore$ usual cash price $=\$ 3.60 . \quad \therefore 90 \%$ of m.p. $=\$ 3.60 . \quad \therefore$ m.p. $=\$ 4$.
18. Nine gallons of mixture contain 1 gallon of water. $\therefore$ he can throw off $\frac{1}{9}$, or $11 \frac{1}{9} \%$.
19. $45 \%$ would reduce the price to $\$ 550 ; 30 \%$ and $20 \%$ to $\$ 560$.
20. The selling price of one article is $\frac{1}{1} \frac{2}{5}$, or $\frac{4}{5}$ of the list price of one article. $\therefore$ discount is $\frac{1}{5}$, or $20 \%$.
21. $90 \%$ of marked price $=110 \%$ of cost. $\therefore$ m.p. $=122 \frac{2}{8} \%$ of cost. $\therefore 95 \%$ of m.p. $=116 \frac{1}{9} \%$ of cost. $\therefore$ gain is $16 \frac{1}{6} \%$.
22. $80 \%$ of $90 \%=72 \%$. $\therefore 20$ and $10 \%$ off $=28 \%$.
23. $90 \%$ of 1st reduced price $=85 \%$ of original price. $\therefore 1$ st reduced price $=94 \frac{4}{9} \%$ or original price. $\therefore$ discount $=5 \frac{5}{\varepsilon} \%$.
24. $90 \%$ of reduced price $=\$ 3.60 . \quad \therefore$ reduced pi:ce $=$ $\$ 4$. $\therefore$ marked price was reduced by $\$ 1$, or $20 \%$.
25. Goods sell for $95 \%$ of $105 \%$ of cost; that is, for $993 \%$ of cost. $\therefore$ loss $=1 \%$.

## SOLUTIONS OF THE PROBLEMS

## Page 148

2. 5 c . was the discount off 50 c ., or the rate was $10 \%$. $\therefore$ original price was $\$ 5$ and the selling price $\$ 4.05$.
3. The article must sell for $\$ 1.75 . \quad \therefore 75 \%$ of the marked price $=\$ 1 \cdot 75 . \quad \therefore$ m.p. $=\$ 2 \cdot 33 \frac{1}{3}$.
4. $5 \%$ of selling price $=4 \%$ of list price. $\therefore$ s.p. $=80 \%$ of 1.p. $\therefore 20 \%$ of 1.p. $=10$ c. $\quad \therefore 1$. p. $=50$ c.
5. On Jan. 1st there is no discount; on Nov. 20th the discount is $5 \%$; on Oct. 27 th it is $10 \%$.

## Page 149

5. Gain 1st year $=12 \frac{1}{2} \%$ of $\$ 6000=\$ 750.75 \%$ of $\$ 750=\$ 562 \cdot 50 . \quad \therefore$ capital 2nd year $=\$ 65652 \cdot 50$. $20 \%$ of $\$ 6562 \cdot 50=\$ 1312 \cdot 50$. $\frac{1}{2}$ of $\$ 1312 \cdot 50=\$ 656 \cdot 25 . \quad \therefore$ capital 3 rd year $=\$ 7218.75$. $\therefore$ gain $=40 \%$ of $\$ 7218.75=\$ 2887.50$.
6. The sheep cost $\$ 1920 . \quad \therefore$ they are sold for $120 \%$ of $\$ 1920$, or $\$ 2304.5 \%$ of $240=12 . \quad \therefore 228$ sheep were -sold by the drover for $\$ 2304$, or each sheep sold for $\$ 10 \cdot 10 \frac{1}{1} \%$.
7. Paper must be sold for $112 \frac{1}{2} \%$ of $\$ 1000$, or $\$ 1125$. 1200 reams $=24000$ quires. 24000 quires sell for $\$ 1125$, or 1 quire sells for $4 \frac{1}{1} \frac{1}{6} \mathrm{c}$.
8. He loses $\frac{1}{8}$ of each gallon bought. $\therefore$ he must sell $\frac{7}{8} \mathrm{gal}$. for 20 c ., or 1 gal . for $22{ }^{\circ} \mathrm{c}$.
9. A gain of $20 \%$ on $\frac{1}{3}$ of the goods is equivalent to a gain of $5 \frac{2}{3} \%$ on the whole anount. A loss of $10 \%$ on $\frac{3}{3}$ of the goods is equivalent to a loss of $6 \frac{2}{3}$ on whole amount. $\therefore$ he neither gains nor loses.
10. That which costs 7 cents, is sold for 12 cents. $\therefore$ he gains 5 cents on 7 cents, that is, $\frac{5}{7}$, or $71 \frac{3}{7} \%$.
11. $\frac{2}{3}$ of the goods sell for cost of the goods. $\therefore$ the goods seil for $\frac{\pi}{2}$ of cost of the goods. $\therefore$ the gain is $\frac{1}{2}$ of the cost, or $50 \%$ of the cost.
12. He must sell $80 \%$ of a gal. for $120 \%$ of cost of a gal. $\therefore$ he must sell one gal. for $150 \%$ of cost of a gal. $\therefore$ he must increase cost price by $50 \%$.
13. $90 \%$ of cost of flour per hundred $=\$ 2 \cdot 70 . \quad \therefore$ cost per hundred $=\$ 3.00$. Sold at $\$ 2 \cdot 55$, the loss would be 45 c . per hundred. 45 c . is $15 \%$ of $\$ 3.00$.

## Page 150

$14.85 \%$ of cost $=\$ 4 \cdot 25 . \quad \therefore 115 \%$ of $\cos t=\$ 5.75$.
15. $5 \%$ of cost $=20 \mathrm{c} . \quad \therefore \operatorname{cost}=\$ 4.00 . \quad \therefore \$ 4 \cdot 25=$ $106 \frac{1}{2} \%$ of cost, and gain is $6 \frac{1}{4} \%$.
16. At firstsale received $112 \frac{1}{2} \%$ of original sum invested. At second sale received $112 \frac{1}{2} \%$ of $112 \frac{1}{2} \%$ of original sum invested. At third sale received $75 \%$ of $112 \frac{1}{2} \%$ of $112 \frac{1}{2} \%$, or $94 \frac{59}{64} \%$ of original sum invested. $\therefore$ loss $=5 \frac{5}{6} \%$.
17. He sells $\frac{9}{10}$ of original number for $\frac{9}{8}$ of total cost. $\therefore$ at same rate he would sell the original number for $\frac{10}{8}$ of $\frac{2}{8}$, or $\frac{5}{4}$ of cost. $\therefore$ he sells each sheep for $\frac{5}{4}$ of $\$ 8$, or $\$ 10$.
18. ${ }^{9}$ is of the cargo must be sold for cost of cargo. at same rate, the cargo would be sold for $\frac{10}{9}$ of cost. $\therefore$ advance is $\frac{1}{y}$, or $11 \frac{1}{3} \%$ of cost.
19. $110 \%$ of cost of 1 st $=\$ 198 . \quad \therefore$ cost of 1 st $=\$ 180$. $90 \%$ of cost of $2 \mathrm{nd}=\$ 198$. $\therefore$ cost of $2 \mathrm{nd}=\$ 220$. $\therefore$ wtal cost $=\$ 400$ and loss is $1 \%$.
20. The paper cost $\$ 6$ per ream. $\therefore$ to gain $20 \%$ it must sell for $120 \%$ of $\$ 6$, or $\$ 7.20$ per ream. $\therefore 95 \%$ of ma:ked price per ream $=\$ 7.20$. $\therefore$ marked price per ream $=\$ 7.20 \times \frac{100}{15} . \quad \therefore$ m.p. per quire $=\$ 7.20 \times \frac{1 n ⿺ 辶}{85} \times \frac{1}{20}=37 \frac{1}{1} \frac{7}{8} \mathrm{c}$.
21. $125 \%$ of cost of $16 \mathrm{qt} .=\$ 1.00 . \quad \therefore$ cost of $16 \mathrm{qt} .=$ 80 c . $\therefore$ cost of $15 \mathrm{qt} .=75 \mathrm{c}$. Hence gain on 15 qt . would be 25 c., or $33 \frac{1}{3} \%$.
22. $\frac{2}{3}$ of sclling price $=\frac{3}{4}$ of cost price. $\therefore$ sciling price $=\frac{9}{8}$ of cost price. $\therefore$ gain $=\frac{1}{8}=12 \frac{1}{2} \%$.

## SOLUTIONS OF THE PROBLEMS

23. He sells 11 qt . for 18 times cost of $1 \mathrm{qt} . \quad \therefore$ sells 1


24 . $114 \frac{2}{7} \%$ of cost of 1 gal. of mixture $=\$ 1 \cdot 20 . \therefore$ cost of 1 gal. of mixture $=\$ 1.05 . \quad \therefore$ each gal. of mixture contains $\frac{10}{1} \frac{5}{2} 5 \mathrm{gal}$. of whiskey, and $\frac{20}{155} \mathrm{gal}$. of water. $\therefore$ water is $\frac{00}{103}$, or $\frac{4}{21}$ of amount of whiskey.
25. He sells $15 \frac{3}{4} \mathrm{oz}$. for the cost of $16 \mathrm{oz} . \quad \therefore$ he sells 1 oz . for the cost of $\frac{64}{65} \mathrm{oz}$., or for $\frac{96}{6} \operatorname{cost}$ of 1 oz . $\therefore$ he gains $\frac{1}{63}$ or $1 \frac{37}{8} \% \%$.
26. For 8 papers he pays 5 cents, and sells the same for 16 cents. He gains $\frac{1}{3}$, or $220 \%$.
27. He must receive $125 \%$ of $\$ 190$, or $\$ 225 . \quad \therefore$ horse must be sold for $\$ 225+\$ 10$, or $\$ 235$.

## Page 151

28. She buys 100 for 25 c. Ten are lost. She sells the remaining 90 for 54 c . $\therefore$ on 25 c . she gains 29 c ., or $116 \%$.
29. B paid $115 \%$ of what A paid. $\therefore$ C paid $120 \%$ of $115 \%$, or $138 \%$ of what A paid. $\therefore 38 \%$ of what A paid $=\$ 190 . \quad \therefore$ A's cost $=\$ 500$.
30. B's cost $\left.=\frac{{ }_{2}^{2}}{2}\right\}$ of A's cost. C's cost $=\left(\frac{1}{2} \frac{1}{8}\right)^{2}$ of A's cost. D's cost $=\left(\frac{1}{2} \frac{1}{6}\right)^{3}$ of A's cost. $\therefore$ C's gुain was $\left(\frac{2}{2} \frac{1}{0}\right)^{3}$
 of A's cost $=\$ 5 . \quad \therefore\left(\frac{21}{2}\right)^{3}$ of A's cost $=\$ 11291$ i.
31. The gain is $20 \%$ of cost. $\therefore 20 \%$ of cost of 1 bush. $=8 \mathrm{c} . \quad \therefore$ cost of 1 bush. $=40 \mathrm{c} . \quad \therefore$ selling price $=48 \mathrm{c}$.
32. $110 \%$ of cost of 1 st cow $=\$ 60 . \quad \therefore$ cost of 1 st cow $=\$ 54{ }_{1}^{\prime \prime} .125 \%$ of cost of 2 nd and 3 rd cows $=\$ 120 . \therefore$ cost of these two $=\$ 96.6633 \%$ of cost of 4 th and 5 th cows $=\$ 120 . \therefore$ cost of these two $=\$ 180 . \quad \therefore$ total cost was $\$ 330 \mathrm{n}$; the selling price was $\$ 300 . \quad \therefore$ loss was $\$ 30_{11}{ }^{\circ}$ on


## IN THE HIGH SCHOOL ARITHMETIC

33. $110 \%$ of cost of 1 bush. of mixture $=50 \mathrm{c} . \quad \therefore$ cost of 1 bush. $=455_{1}^{5} \mathrm{c}$. On 1 bush. of oats the loss would be $4{ }^{6}{ }^{6} \mathrm{c}$. $\therefore$ on 100 bush. of oats the loss would be ${ }^{5}{ }^{n} 1^{9} \mathrm{c}$. On 1 bush. of corn the gain would be $5{ }_{1}^{5} \mathrm{c} . \quad \therefore$ on ( ${ }^{6} \frac{000}{1 L^{0}} \div$ $5_{17}^{5}$ ) bush. of corn the gain would be $\sin ^{n}{ }^{n} c$. $\therefore$ no. bush. of corn $=83 \frac{1}{3}$.
34. 3 articles are sold for 4 times cost of 1 article. $\therefore 1$ article is sold for $\frac{4}{3}$ of cost of 1 article. $\therefore$ gain is $\frac{1}{3}$, or $33 \frac{1}{3} \%$.
35. A's increased capital $=\frac{8}{5}$ of sum each invested. 1 's increased capital $=$ sum each invested $+\$ 100 . \quad \therefore$ sum each invested $+\$ 100=1 \frac{2}{5}$ of sum each invested. $\therefore \frac{7}{5}$ sum each invested $=5100 . \quad \therefore$ sum each invested $=\$ 71 \frac{3}{7}$.
36. $115 \%$ of cost $=\$ 16 \cdot 10 . \quad \therefore$ cost $=\$ 14.00$. Selling at $\$ 20$, the gain would be $\$ 6$, or it of cost, or $42 \frac{1}{7} \%$.
37. The total cost was $\$ 88.75$. He sells $90 \%$ of 315 gal., or $283 \frac{1}{2}$ gal. He receives payment for $94 \%$ of $283 \frac{1}{2}$ gal., or $2666^{40}{ }^{40} \mathrm{gal}$. To make a gain of $40 \%$, he must sell $266 \frac{49}{100}$ gal. for $140 \%$ of $\$ 88.75$, or 1 gal. for $46.6+c$.
38. The article is sold for $105 \%$ of actual cost. If the cost had been $95 \%$ of actual cost, to gain $10 \%$ the selling price would have been $110 \%$ of $95 \%$ of actual cost, that is, $104 \frac{1}{2} \%$ of actual cost. This is $\$ 1$ less than former selling price. $\therefore \frac{1}{2} \%$ of actual cost $=\$ 1 . \quad \therefore$ actual $\cos t=\$ 200$.
39. Jones' present cap. $=120 \%$ of $\$ 9600=\$ 11520$, which is $75 \%$ of Smith's original cap.

## Page 152

2. S.P. $=\$ 6000$. Com. $=\$ 150$. Amt. remitted $=\$ 5850$.
3. $98 \frac{1}{2} \%$ of S. P. $=65 \frac{3}{3} \mathrm{c} . \quad \therefore$ S. P. $=66 \mathrm{3}$ c. per bus.

## Page 153

4. $\$ 32$ is com. on $\$ 1600 . \quad \therefore$ rate $=2 \%$.
5. S. P. $=\$ 1 \cup 00 . \quad \therefore$ rate $=4 \%$.
6. Com. $=\$ 104$ on a sale of $\$ 5200 . \quad \therefore$ rate $=2 \%$.

## SOLUTIONS OF THE PROBLEMS

7. Com. for selling 1 acre was $\frac{1}{2} \%$ of $\$ 125$, or $62 \frac{1}{2} \mathrm{c}$. $\therefore$ no. of acres $=\$ 50 \div 62 \frac{1}{2} \mathrm{c} .=80$.
8. Com. on $\$ 10000$ is $\$ 75$, or $\$ 3$ on $\$ 100$, or $\frac{3}{4} \%$.
9. Com. is $2 \frac{1}{2} \%$ of $\$ 650$, or $\$ 16 \cdot 25$.
10. He must receive $\$ 100$ the price of the horse and his com. of $2 \%$, or $\$ 102$ in all.
11. He keeps $\$ 5$ out of $\$ 105$ sent him, or $\$ 25$ out of \$525.
12. The amount invested is $\frac{100}{102}$ of sum sent to agent. $\therefore$ amount paid by agent for goods $=\frac{10}{10} 0$ of $\$ 1750=\$ 1715_{\frac{3}{3}}^{3}$.
13. The com. was 1 脑玉 of $\$ 3570$, or $\$ 70$.
14. The agent invested $\$ 2400$ and retained $\$ 80 . \therefore$ on $\$ 100$ invested, his com. was $\$ 3 \frac{1}{3} . \quad \therefore$ rate of com. $=3 \frac{1}{3} \%$.
15. He collects $\$ 1000$. Com. is $\$ 55$. $\therefore$ he pays $\$ 945$.
16. He invested $\frac{1}{1} \frac{0}{2} \frac{0}{2}$ of $\$ 1224$, or $\$ 1200$.

## Page 154

17. Cost $=\$ 9600$. Com. $=\$ 120 . \quad$ Amt. remitted $\$ 9720$.
18. S. P. of coal $=\$ 5700$. Com. $=\$ 28.50$. Net proceeds $=\$ 5671 \cdot 50$. Gross cost of 1 M of lumber $=\$ 18 \cdot 18$. $\therefore$ no. of feet bought $=\$ 5671.50 \div \$ 18.18 \times 1000$.
19. S. P. of flour $=\$ 16000$. Com. $=\$ 240$. Net proceeds $=\$ 15112.50$. Gross cost of 1 cwt . of cotton $=\$ 15 \cdot 11 \mathrm{q}$. $\therefore$ no. of cwt. bought $=\$ 15112 \cdot 50 \div \$ 15 \cdot 11 \frac{1}{4}$.
20. $\$ 150$ is com. on $\$ 12500 . \quad \therefore$ rate $=1 \frac{1}{5} \%$.
21. Gross cost of 1 cwt . of sugar $=\$ 5 \cdot 30$, etc.

## Page 155

23. S. P. $=\$ 3750$. Freight $=\$ 75$. Com. $=\$ 75$. Net proceeds $-\$ 3600$. Gross cost of 1 cwt . of tea $=\$ 45.87 \frac{1}{2}$.
24. He receives $4 \frac{1}{2} \%$ of sales, or $\$ 54$.
25. $43 \%$ of sales $=\$ 380 . \quad \therefore$ sales $=\$ 8000$.
26. $\frac{3}{\%}$ of sales $=\$ 40 . \quad \therefore$ sales $=\$ 5333 \mathrm{k}$.
27. Com. for selling cotton $=\frac{1}{6} \bar{\sigma}$ of selling price $\boldsymbol{c} f$ cotton. Com. for buying sugar $=\frac{1 \frac{1}{2}}{101 \frac{d}{2}}$ of $\frac{9 .}{100}$ of selling price of cotton $=\frac{2}{2} \frac{288}{60} \frac{8}{0}$ of selling price of cotton. $\therefore$ two
 cotton. $\therefore{ }^{1 \frac{1}{6} \frac{1}{5}}$ of selling price of cotton $=\$ 220$. $\therefore$ cotton sold for $\$ 4060$.
28. Total cost of 1 cwt . of sugar $=\$ 5.07 \frac{1}{8}$, the com. for buying being $7 \frac{1}{8} \mathrm{c}$. But com. on sale of wheat is $\mathrm{I}^{\frac{1}{0} \mathrm{O}_{0} 0^{\circ}}$ amount of sale, or $\frac{2}{85}$ of amount left to purchase sugar. $\therefore$ com. on sale of wheat, sufficient to buy 1 cwt. of sugar $=\frac{1}{3^{1}}$ of $\$ 5.07 \frac{1}{8}$. $\therefore$ total com. when 1 cwt . of sugar is bought is $7 \frac{1}{8} \mathrm{c}$. $+\frac{1}{6} \frac{1}{6}$ of $\$ 5.07 \frac{1}{3}$, \&c.
29. The first com. is calculated on $\$ 4060$. The second com. is calculated on $\$ 3940 . \quad \therefore \$ 120$ is the com. on $\$ 4060$ $+\$ 3940$, or $\$ 8000 . \therefore$ rate is $1 \frac{1}{2} \%$.

## Page 156

31. See solution of 30 .
32. See solution of 30 .
33. Selling com. is calculated on $\$ 1734$. Buying com. on $\$ 1649$. Selling com. is $1 \%$ of $\$ 1734$, together with com. on $\$ 1734$ at same rate as in buying. $1 \%$ of $\$ 1734=$ $\$ 17 \cdot 34$. $\therefore \$ 85-\$ 17 \cdot 34$, or $\$ 67 \cdot 66$, is the com. on $\$ 1734+$ $\$ 1649$, or $\$ 3383$, at buying rate. $\therefore$ buying rate $=2 \%$.
34. In buying he paid $\$ 81+\$ 79$, or $\$ 160$ less than he 1. neived when seaing. The com. was $\$ 2$ less. $\therefore \$ 2$ is com. on $\$ 160 . \therefore$ rate is $1 \% \%$.

## Page 158

4. Prem. for 1 yr. $=7 \%$ of $\$ 4000=\$ 35$.
5. Prem. for $1 \mathrm{yr} .=\$ \%$ of $\$ 1800=\$ 11.25$.
6. Policy $=\$ 8000$. Prem. for $2 \mathrm{yr}=2 \%$ of $\$ 8000$.

## SOLUTIONS OF THE PROBLEMS

7. Prem. on $\$ 4000$ for $1 \mathrm{yr} .=\$ 30$. $\therefore$ rate is $\frac{3}{4} \%$.
8. The rate is $2 \%$ for 3 yr ., or $\frac{2}{3} \%$ yea.. $y$.
9. Policy $=\$ 4000$. Prem. for $1 \mathrm{yr} .=\$ 21$.
10. Policy $=\$ 937.50$. Rate $=1 \frac{1}{3} \%$.

## Page 159

11. $\frac{1}{2} \%$ of policy $=\$ 8 . \quad \therefore$ policy $=\$ 1600 . \quad \therefore$ value $=$ \$2133\}.
12. $1 \%$ of policy $=\$ 37 \cdot 50 . \quad \therefore$ policy $=\$ 3750$, which is $\frac{5}{8}$ of value.
13. 1st company received the prem. on $\$ 10000$ at $\frac{3}{4} \%$, or $\$ 75$, and paid the prem. on $\$ 4000$ at $7 \%$, or $\$ 30$.
14. Policy $=\$ 7940+\frac{3}{4} \%$ of policy $\therefore 991 \%$ of policy $=$ $\$ 7940 . \quad \therefore$ policy $=\$ 8000$.
15. See solution of 15 .
16. Policy $=\$ 15800+5 \%$ of policy $+\$ 100 . \quad \therefore 993 \%$ of policy $=\$ 15900 . \quad \therefore$ policy $=\$ 16000$.
17. See solution of 15 .
18. The company receives prem. on $\$ 40000$ at $1 \frac{3}{4} \%$, or $\$ 700$. It pays the prem. on $\$ 16000$ at $2 \%$, or $\$ 320$, and on $\$ 10000$ at $21 \%$, or $\$ 225$. $\therefore$ it carried a risk of $\$ 14000$ for $\$ 155$, or $1 \frac{3}{28} \%$.
19. Let $\$ 10000$ be the risk. See No. 20 .

## P:夕ge 160

22. Divide loss in pisportion to risk carried. When $\$ 100000$ is divided in prop. of $5,8,20$, the first company loses ${ }_{8}^{5}: 8$ of $\$ 100000,8 \mathrm{cc}$.
23. Prem. on furniture $=\frac{3}{4} \%$ of $\frac{2}{3}$, or चंक of value. Prem. on house $=7 \%$ of 3 of 5 times value of furniture $=$ $\pi{ }^{9} 0$ of val. of furniture. $\therefore$ total prem. $=1 \frac{8.30}{80}$ of val. of furniture $=\$ 13.25 . \quad \therefore$ val. of furniture $=\$ 2000$.
24. See No. 23.

## IN THE HIGH $\mathrm{SCHOO}_{4}$ ARITHMETIC

25. Sum of policies $=\$ 45000$. Total prem. $=\$ 316 \frac{2}{3}$. $\therefore$ rate $=\frac{1}{2} \%$.
26. 16, page 159.
27. $2 \frac{1}{2} \%$ of policy $=\$ 75 . \quad \therefore$ policy $=\$ 3000 . \quad \therefore$ value $=\$ 4000 . \quad \therefore$ he must sell 500 bbl. for $\$ 4000+\$ 1000+\$ 75$.
$\therefore .3 \%$ of $\frac{3}{3}$ of value $=\$ 21 . \quad \therefore$ value $=\$ 4666 \frac{2}{3}$.
28. He paid out $\$ 2500+\$ 9+\$ 500=\$ 3009$. He received $\$ 750{ }_{5}^{\circ}$ of $\$ 2500=\$ 2250$. $\therefore$ he lost $\$ 759$.
29. Suppose he insures for $\$ 1000$. Then the value $=$ $\$ 1000-1 \frac{1}{4} \%$ of $\$ 1000=\$ 987.50$. He receives $\frac{4}{5}$ of $\$ 1000$, or $\$ 800$, which is $\$ 187.50$ less than value. But this is $\frac{1}{\$}$ of the sum given; $\therefore$ the value is $\$ 987.50 \times 4=\$ 3950$.
30. $\$ 3000=\frac{1}{2}$ of $\$ 5935+$ prem. $\therefore$ prem. $=\$ 32.50$.

## Page 161

32. $\$ 4000=\therefore$ of $\$ 4925+$ prem. $\therefore$ prem. $=\$ 60$.
33. $\$ 15000=\$ 14750+$ prem. $+\$ 100 . \quad \therefore$ prem. $=\$ 150$.
34. Suppose value $=\$ 12000$. 1st Co. received prem. on $\$ 8000$ at $1 \frac{3}{4} \%$, or $\$ 140$, and paid to the 2 nd prem. on $\$ 2000$ at $1 \frac{1}{2} \%$, or $\$ 30 . \therefore$ net prem. of 1 st Co. $=\$ 110$. Loss of 1 st Co. $=\$ 6000-\$ 110=\$ 5890$. I.oss of $2 \mathrm{nd}=$ $\$ 2000-\$ 30=\$ 1970$. Loss of owners $=\$ 4000+\$ 140=$ $\$ 4110 . \quad \therefore 2$ nd Co. lost $\$ 3920$ less than 1 st when the owners lost $\$ 4140$. $\therefore \$ 49000$ less when the owners lost $\$ 41 \div 0 \times 49000 \div 3920=\$ 51750$.
35. Suppose my brother's is worth $\$ 4800$ and mine $\$ 7200$. Prem. on mine $=\$ 33.75$, and on lis $\$ 20$. The dif. is $\$ 13.75$ when val. of mine is $\$ 7200 . \quad \therefore$ the dif. is $\$ 12$ if the val. of mine is $\$ 6283_{\mathrm{T}}{ }^{7}$.
36. $\frac{1}{4}$ of policy $=\$ 15 . \quad \therefore$ policy $=\$ 6000 . \therefore \frac{1}{2}$ of val. $=\$ 5985$.
37. Policy $=\$ 18000+1 \frac{1}{4} \%$ of policy $+58 \dot{4} . \quad \therefore 98 \frac{7}{3} \%$ of policy $=\$ 18084 . \quad \therefore$ policy $=\$ 18312.91$.

## SOLUTIONS OF THE PROBLEMS

## Page 163

1. $2 \%$ of $\$ 5000=\$ 100$.
2. On $\$ 1$ the tax is $1 \frac{1}{2} \mathrm{c}$. $\therefore$ on $\$ 2500$ the tax is $\$ 37.50$.

3 . On $\$ 1$ the tax is $2 c$. $\therefore$ on $\$ 12000$ the tax is $\$ 240$.
4. On $\$ 1000$ the tax is $\$ 15$. $\therefore$ on $\$ 2000$ the tax is $\$ 30$.
5. On $\$ 1000$ the tax is $\$ 12 \cdot 50$. $\therefore$ on $\$ 750000$ the tax is $\$ 9375$.
6. On $\$ 135,000,000$ the tax is $\$ 1,500,000 . \therefore$ on $\$ 1000$ the tax is $\$ 1,500,000 \div 135000=\$ 11!. \quad \therefore$ rate is $11!$ mills on the dollar.
7. Tax on $\$ 1000=\$ 18 . \quad \therefore$ tax on $\$ 800000=\$ 14400$. Cost of collection $=2 \%$ of $\$ 14400=\$ 288 . \therefore$ net taxes $=$ \$14112.
8. $98 \%$ of $\operatorname{tax}=\$ 19600 . \therefore \operatorname{tax}=\$ 20000$ on $\$ 1,200,000$. $\therefore$ tax on $\$ 1000=\$ 20000 \div 1200=\$ 16 \frac{2}{3}$.
9. His tax will be $1 \frac{4}{5} \%$ of $\$ 800=\$ 14 \cdot 40$.
10. His tax is $\$ 16$, since his assessment is $\$ 1000$.
11. Tax on $\$ 1400=\$ 21 . \quad \therefore$ net income $=\$ 1979$.
12. Tax on $\$ 1100$ is $\$ 17 \cdot 60$. $\therefore$ tax onl $\$ 1000$ is $\$ 16$.
13. $1 \frac{3}{4} \%$ of his inc. $=\$ 28 . \quad \therefore$ his inc. $=\$ 1600$, which is $25 \%$ of his capital. $\therefore$ his cap. $=\varnothing 6400$.

## Page 164

14. On $\$ 1400$ the tax is $\$ 21 . \quad \therefore$ tax on $\$ 1000$ is $\$ 15$.
15. Total taxes $=\$ 10150$, which is $2 \%$ of the assessment. $\therefore$ the assessment $=\$ 507500$.
16. A man whose gross income is $\$ 1000$ pays tax on $\$ 600$, which is $\$ 9 . \quad \therefore$ his net inc. $=\$ 991$. The man whose inc. is $\$ 995$ pays no tax and is $\therefore \$ 4$ better off.
17. O11 $\$ 255000$ tax is $\$ 4250 . \quad \therefore$ on $\$ 1800$ tax is $\$ 30$.
18. On $\$ 93$ co00 tax is $\$ 15000$. $\therefore$ on $\$ 900$ tax is $\$ 14 \frac{1}{3}$.
19. $\$ 16$ is tax on $\$ 1000 . \therefore \$ 2 \frac{3}{7}$ is $\operatorname{tax}$ on $\$ 1500 . \therefore$ inc. $=\$ 1900$.
20. He pays $\$ 66$ taxes, $\$ 22.50$ insurance, and loses $\$ 300$ interest. $\therefore$ house costs $\$ 388.50$ yearly, or $\$ 32.37 \frac{1}{2}$ per month.
21. Jee 18.

## Page 166

2. Duty on $\$ 290=\$ 46 \frac{1}{2}$. $\therefore$ duty on $\$ 100=\$ 16.03$. $\therefore$ rate $=16.03 \%$.
3. Total cost $=\$ 2.96 . \quad \therefore$ he sells for $125 \%$ of $\$ 2.96$.
4. The cost would be $\$ 2 \cdot 60$. To ake the same rate of gain he would sell for $125 \%$ of $; 2 \cdot 60=\$ 3 \cdot 25$. The amount of gain in (3) is 74 c . To make the same amount of gain he would sell for $\$ 2 \cdot 60+74 \mathrm{c} .=\$ 3 \cdot 34$.
5. The invoice price and the ad valorem duty $=\$ 360$. $\therefore 120 \%$ of inv. $=\$ 360 . \quad \therefore$ inv. $=\$ 300$.
6. Invoice price is $\$ 40 \times 63=\$ 25 \cdot 20 . \therefore$ duty of $15 \%$ $=\$ 3.78$.
7. With duty the cost per gal. is $46 \mathrm{c} . \quad \therefore$ selling price would be $125 \%$ of 46 c ., or $57 \frac{1}{2} \mathrm{c}$. Selling price, without duty, would be 50 c. $\therefore$ reduction $=7 \frac{1}{2}$ c.

Page 167
8. The area of the section is $\left(\begin{array}{l}36 \\ 3 \\ \frac{8}{2}\end{array} \frac{1}{2}\right)^{2} \times \frac{2 \pi}{7}$ sq. ft. $\therefore$ no. of cords in $\log =\left(\frac{38}{28} \times \frac{1}{2}\right)^{2} \times \frac{2}{9} \times 30 \times \sqrt{1}$. $\quad \therefore$ export duty $=\$ 1.50 \times\left(\frac{35}{3} \times \frac{1}{2}\right)^{2} \times \frac{24}{7} \times 30 \times 1, \frac{1}{2}=\$ 2.34+$.
9. 1 sq. ft., board measure (i.e., 1 in . in thickness) contains $\frac{1}{12} \mathrm{cu} . \mathrm{ft}$., or $1 \mathrm{cu} . \mathrm{ft}$. contains 12 feet, board measure. $\therefore$ the stick contains ( $20 \times 3 \times 2 \times 12$ ) feet, board measure. $\therefore$ export duty $=\frac{\$ 2 \times 20 \times 3 \times 2 \times 12}{1000}=\$ 2.88$.
10. The specific duty on the tobacco was $30 \mathrm{c} . \times 50$, or $\$ 15 . \quad \therefore$ the ad valorm duty was $\$ 250 . \quad \therefore 12 \frac{1}{2} \%$ of value (invoice) $=\$ 2 \cdot 50 . \therefore$ value $=\$ 20$.

## SOLUTIONS OF THE PROBLEMS

11. $140 \%$ of total cost to dealer $=\$ 304 . \quad \therefore$ cost to dealer $=\$ 217 \frac{1}{7}$. The specific duty was $\$ 30 . \therefore 115 \%$ of invoice price $=\$ 187!. \quad \therefore$ invoicc price $=\$ 162.73+$.
12. If there were no duty, the dealer would sell for $140 \%$ of $\$ 162.73+$, or $\$ 227.82+$. $\therefore$ price would be reduced by $\$ 304-\$ 227 \cdot 82+$, or $\$ 76 \cdot 17+$.
13. The whole cost was $\$ 4384$, and cartage expenses $\$ 100$. $\therefore$ invoice price and ad valorem duty $=\$ 4284$. But duty was $20 \%$ of $95 \%$ of invoice price, or $19 \%$ of invoice price. $\therefore 119 \%$ of invoice price $=\$ 4284 . \quad \therefore$ invoice price $=\$ 3600$. $\therefore$ price of 3600 bottles was $\$ 3600$.
14. The duty was $\$ 1800-\$ 1200-\$ 75$, or $\$ 525$. On $\$ 1200$, invoice, the duty was $\$ 525 . \quad \therefore$ rate $=433 \%$.
15. If the duty on cases had been also $20 \%$, the total duty would have been $20 \%$ of $\$ 30$, or $\$ 6$. But the duty on cases was $35 \% . \quad \therefore 15 \%$ of invoice price of case was $\$ 7.50-\$ 5$, or $\$ 1 \cdot 50 . \quad \therefore$ invoice price of case was $\$ 10$.
16. The number of pounds of raisins was $15000 . \therefore$ the specific duty was $\$ 150$, and $\therefore$ the ad valorem was $\$ 120$. The invoice price was $\$ 1200 . \quad \therefore$ rate of ad valorem duty was $10 \%$.
17. Twice the ad valorem duty, together with $\$ 24=\$ 56$. $\therefore$ twice the ad valorem duty $=\$ 32 . \quad \therefore$ ad valorem duty $=\$ 16$, and specific duty $=\$ 40 . \quad \$ 2=$ specific duty on 1 doz. $\therefore \$ 40=$ specific duty on 20 doz.
18. The invoice price was $\$ 20 . \quad \therefore$ the ad valorem duty was $\$ 3.00$; and hence the specific duty was 75 c . the bale contained 75 sq. yd. $\therefore$ the width was 3 yd .

## Page 168

19. Cost of a roller is $\$ 1$ and of a shade $\$ 2$. The ad val. duty on a roller $=30 \mathrm{c}$., and on a shade 30 c . The total duty on a shade and roller $=\$ 9.90 \div 12=82 \frac{1}{2} \mathrm{c} . \quad \therefore$ specific

## IN THE HIGH SCHOOL ARITHMETIC

duty on a shade is $22 \frac{1}{2}$ c. $\therefore$ each shade contains $4 \frac{1}{2}$ sq. yd. The width is $1 \frac{1}{2}$ yd. $\therefore$ the length is 3 yd .
20. Inv. price $=\$ 20 . \quad \therefore$ ad val. duty $=\$ 3 . \quad \therefore$ specific duty $=\$ 12 \cdot 50$, or $12 \frac{1}{2} \mathrm{c}$. per ft. $\therefore$ wt. per $\mathrm{ft} .=2 \frac{1}{2} \mathrm{lb}$.

Page 169
3. A received $\frac{1}{3}$ of the gain and must have supplied $\frac{1}{3}$ of the capital, or $\$ 4000$.
4. Smith received $\frac{3}{4}$ of the remaining $\$ 2000$ and $\therefore$ his cap. was $\frac{3}{4}$ of $\$ 8000$, or $\$ 6000$.
5. $\$ 1000$ is the gain on $\$ 4000$ cap. $\therefore \$ 5000$ is the gain on $\$ 20000 . \quad \therefore$ D invested $\$ 20000$.
6. Page 168.
7. Page 168.
8. The net gain after paying manager and bookkeeper was $\$ 8640-\$ 1200-\$ 1050=\$ 6390$. This sum is divided in proportion to each man's investment for 1 month; that is, in prop. to $14400,12000,48000$, or $6,5,20 . \therefore$ C will receive ${ }^{20} \mathrm{i}$ of $\$ 6390$. C will also receive $\$ 600$ as manager and $\$ 700$ as bookkeeper.

## Page 170

9. A contributes $\$ 4000$ fror 4 mo. and $\$ 2000$ for 8 mo. $=\$ 32000$ for 1 mo . B contributes $\$ 4000$ for 6 mo . and $\$ 1000$ for $6 \mathrm{mo}=\$ 30000$ for 1 mo . C contributes $\$ 4000$ for $12 \mathrm{mo}=\$ 48000$ for 1 mu. Divide the gain in prop. to their investments for 1 mo.
10. A's gain on $\$ 100$ capital $=\$ 32, \mathrm{~B} ' \mathrm{~s}=40, \mathrm{C}$ 's $=\$ 48$. $\therefore$ gain on $\$ 100$ in 2 mo. $=\$ 8$, or $\$ 4$ per mo. $\therefore$ A's cap. was invested for 8 mo .
11. In 1 month A's gain was $\$ 300$, B's $\$ 200$, C's $\$ 200$. If $\$ 300$ is gain on $\$ 3000$, then $\$ 200$ is gain on $\$ 2000$.

## SOLUTIONS OF THE PROBLEMS

12. The cap. for the first 4 mo. was $\$ 27000$, for the fifth and sixth mo. $\$ 24000$, and for the last 6 mo. $\$ 20000$. Hardy received, as manager, $\$ 800$ for first 4 mo., $\$ 200 \times$ $\frac{24}{27} \times 2$, or $\$ 355 \frac{5}{9}$, for the fifth and sixth mo., and $\$ 200 \times \frac{20}{27}$ $\times 6$, or $\$ 888 \frac{8}{9}$ for the last 6 mo . In all, he received $\$ 2044 \frac{4}{9}$ as manager. The balance, $\$ 3955 \frac{5}{9}$, is .divided in prop. to investments for 1 mo .
13. Their capitals are in the prop. of $1,2,3,6$.
14. B's men tid 4000 days' work, C's $3600 . \quad \therefore$ the $\$ 12000$ should be divided in the ratio of 10 to 9.
15. A owned $\frac{1}{4}$ of the vessel and lost $\frac{1}{4}$ of his share. $\therefore \frac{1}{18}$ of value of vessel $=\$ 1000 . \quad \therefore$ val. $=\$ 16000$. B lost $\frac{1}{4}$ of $\frac{1}{3}$ of $\$ 16000$, and C lost $\frac{1}{4}$ of $7^{5}=$ of $\$ 16000$.
16. The net cap. is now $\$ 40000$, the original cap. was $\$ 20000 . \therefore$ there is a gain equal to cap. $\therefore$ Smith's gain is $\$ 8000$.

## Page 171

17. Suppose the cost of pasturing 1 sheep for a week to be 8 units, then cost of 1 cow is 14 units, and of 1 horse 21 units. Total cost of 3 horses for 9 weeks is 567 units; of 7 cows for 6 weeks is 588 , and of 30 sheep for 4 weeks is 960. $\therefore$ total cost $=2115$ units $=\$ 176 \cdot 25 . \quad \therefore 567$ units $=\$ 47 \cdot 25$.
18. The rent is $\$ 40$ a month. Terry paid the first three months' rent, $\$ 120$. Terry and Tucker paid the next four months' rent, that is, $\$ 80$ each. Terry, Tucker and Taylor paid the next four months' rent, that is, $\$ 53 \frac{1}{3}$ each. Terry and Taylor paid the last month's rent, that is, $\$ 20$ each. $\therefore$ Terry paid $\$ 120+\$ 80+\$ 53 \frac{1}{3}+\$ 20$, or $\$ 273 \frac{1}{3}$. Tucker paid $\$ 80+\$ \$ 3 \frac{1}{3}$, or $\$ 133 \frac{1}{3}$. Taylor paid $\$ 53 \frac{1}{3}+$ $\$ 20$, or $\$ 73 \frac{1}{3}$.
19. $\$ 117 \frac{3}{4}$ is the selling price of 1 share. $\therefore \$ 4710$ is the selling price of $4710 \div 117 \frac{3}{3}$, or 40 shares.
20. Net selling price of each share is $\$ 117$.
21. $\$ 8$ is the income on each share.
22. 1 share costs $\$ 91 . \therefore$ no. of shares $=100$. 1 share sells for $\$ 91 \frac{7}{8} . \quad \therefore$ gain is $\$ \frac{7}{8}$ per share.
23. Each share cost $\$ 96 \frac{1}{4}$, and sold for $\$ 94 \frac{7}{8}$. $\therefore$ I lost $\$ 1 \frac{3}{8}$ on each share, or $\$ 118.25$ on 86 shares.
24. Cn $\$ 95$ I make a gain of $\$ 5$, or $5 \frac{5}{1} \%$.
25. Same as the preceding.
26. On 1 share I receive $\$ 8 . \quad \therefore$ rate $=8 \%$.
27. $\$ 6$ is the inc. from 1 share, or $\$ 240$ from 40 sh . Each share costs $\$ 75 \frac{1}{4} . \quad \therefore 40$ shares cost $\$ 3010$.
28. 1 share pays $\$ 7$ dividend. $\therefore 5 \%$ of the cost of 1 share $=\$ 7 . \quad \therefore 1$ share costs $\$ 140$.

## Fage 175

19. $4 \frac{1}{2} \%$ of the price $=\$ 5$. . price of 1 share is $\$ 111 \frac{1}{y}$. $\therefore$ stock is quoted at $\$ 111 \frac{1}{3}-\$ \frac{1}{8}=\$ 110 \frac{7}{7} \frac{1}{2}$.
20. Inc. on 500 shares $=\$ 3000$. S.P. $=\$ 104 \frac{3}{4} \times 500$.
$\therefore$ no. of shares bought $=1043 \times 500 \div 125=419$. $\therefore$ income $=\$ 8 \times 419=\$ 3352$, or a gain of $\$ 352$.
21. If he had 100 sh . of $3 \%$ stock his dividend would be $\$ 300$. The 100 sh. sell for $\$ 6700$, which will buy 67 shares at par, and will pay $\$ 268$ div. His div. is thus reduced $\$ 32$ when he has 67 shares of $4 \%$ 's, or $\$ 480$ when he has 1005 sh .
22. Similar to the preceding.
23. To gain $\$ 150$ on 48 sh . I must gain $\$ 3 \frac{1}{8}$ per sh.
24. His dividend is $\$ 4$ per sh., or $\frac{1}{30}$ of the cost of the sh. $\therefore$ the second div. $=\frac{31}{30}$ of the first. But the second is $\$ 496$. $\therefore$ the first is $\$ 480$.

## SOLUTIONS OF THE PROBLEMS

25. 1 sh . pays $\$ 3$ div. $\therefore$ net inc. after paying tax is $\$ 2.94$, which is $3 \frac{1}{2} \%$ of cost of sh.
26. Int. on mortgage $=6 \%$ of $\$ 1,600,000=\$ 96000$. Dividend $=\$ 5 \times 240 \cap 0=\$ 120000 . \quad \therefore$ net income $=\$ 216000$. $\therefore 35 \%$ of yearly gross receipts $=\$ 216000$, \&c.
27. The amount of preference stock is 5000 sh . and the div. on it is $\$ 40000$. The balance, $\$ 15000$, will pay $\$ 3$ per sh. on the 5000 ordinary sh.
28. In the former $\$ 1$ is the inc. from $\$ 128 \frac{1}{8} \div 6$, or $\$ 21 \frac{17}{8}$ invested, and in the latter from $\$ 99 \frac{1}{8} \div 5$, or $\$ 19_{4}^{89}$. $\therefore$ the latter is better.
29. The net gain is $\$ 60000$. $3 \%$ on the whole stock would require $\$ 30000$. $\therefore$ the additional $5 \%$ on the pref. shares requires $\$ 30000 . \quad \therefore$ no. of pref. shares $=6000$.

## Page 176

30. The div. $=8 \%$ of $\$ 200000=\$ 16000$, which is $5 \%$ of the increased cap., which is $\therefore \$ 320000$.
31. No. of shares $=80 . \quad \therefore$ selling price $=\$ 7200 . \quad \$ 2400$ invested at 95 buys 25 shares and pays $\$ 87.50$ div. $\$ 4800$ invested in $5 \%$ stock at par pays $\$ 240$ div. $\therefore$ total div. $=\$ 327.50$.
32. The stock sold at $\$ 90 . \therefore 112 \frac{1}{2} \%$ of cost $=\$ 90$. $\therefore \operatorname{cost}=\$ 80$ per sh., or $20 \%$ discount.
33. If $\$ 4$ is the inc. from $\$ 100, \$ 3$ is the inc. from $\$ 75$.
34. He gets 500 sh . of $5 \frac{1}{2} \%$ stock, the div. on which is $\$ 2750$. He gets 500 sh . of $7 \frac{1}{2} \%$ stock, the div. on which is $\$ 3750$. The brokerage on 1000 sh. is $\$ 1 \times 1000=\$ 250$.
35. 150 sh. pay $\$ 750$ div. $\therefore$ div. from 2 nd stock $=$ $\$ 810$. $\therefore$ no. of sh. of 2nd stock $=810 \div 6=135$, which cost $\$ 120 \times 135=\$ 16200 . \therefore$ selling price per sh. of 1st stock $=\$ 16200 \div 150=108$.
36. 15 mills on the $\$=1 \frac{1}{2} \% . \quad 98 \frac{1}{2} \%$ of taxable inc. $=$ $\$ 1379$. $\therefore$ taxable inc. $=\$ 1400$, and whole inc. $=\$ 1800$. $\$ 5$ is the inc. from $\$ 115$ invested, $\therefore \$ 1800$ is the inc. from $\$ 41400$.
37. On 1 sh. bought at $\$ 88 \frac{1}{8}$ and sold at $\$ 91 \frac{7}{8}$ the gain is $\$ 3 \frac{3}{3}$, or $\$ 300$ is the gain on 80 sh.
38. If he invested $\$ 1200$ in $6 \%$ stock at 120 his inc. would be $\$ 60$, and from $\$ 1800$ in $5 \%$ stock at 100 , the inc. would be $\$ 90$. Total income would be $\$ 150$, which is $\frac{1}{6}$ of the given total. $\therefore$ he invested $\$ 7200$ in 1 st stock.
39. Inc. from $\mathrm{s}^{2-1}=\$ 48$. Inc. from interest $=4 \frac{1}{2}$ of $\$ 1080=\$ 48 \cdot 60$. $0.41=60 c$.

## Page 178

4. From May 1st to Nov. 14th is 197 days. $\therefore$ the interest is $\$ 1400 \times \frac{8}{80} \times \frac{18}{97}$, or $\$ 60.449$.
5. The time is 1 year and 300 days, or 666 days. $\therefore$


6 . The time is 1 year and 195 days, or 560 days. $\therefore$ the interest is $\$ 1275 \times_{\frac{1}{0} \frac{8}{0} \pi \times \frac{5}{3} \frac{8}{8} 0}$, or $\$ 156.493$. $\therefore$ the amount is $\$ 1275+\$ 156.493$ or $\$ 1431.493$.
7. The interest is $\$ 5500 \times_{\mathrm{T}, 5}^{4} \times \frac{1}{2}$, or $\$ 110 . \therefore$ the amount of the payment is $\$ 5610$.
8. The interest on $\$ 550$ for 2 years is $\$ 44 . \quad \therefore$ on $\$ 550$ for 1 year is $\$ 22 . \quad \therefore$ on $\$ 100$ for 1 year is $\$ 22 \times \frac{10 \%}{10 \%}$, or $\$ 4$.
9. 146 days $=\frac{2}{3}$ of 1 year. The interest on $\$ 840$ for $\frac{7}{5}$ year is $\$ 58.80 . \therefore$ the interest on $\$ 650$ for 2 years is $\$ 58.80$ $\times$ 旁 $\times$ 析 $\times 2 \times 650$, or $\$ 65$.
10. The interest on $\$ 1440$ for $1 \frac{2}{3}$ years is $\$ 72$. $\therefore$ on $\$ 100$ for 1 year is $\$ 72 \times \frac{3}{5} \times \frac{10}{40}$, or $\$ 3 . \quad \therefore$ the rate is $3 \%$.
11. The interest on $\$ 4 C 0$ for 3 years is $\$ 448-\$ 400$, or $\$ 48$. $\therefore$ on $\$ 100$ for 1 year is $\$ 48 \times \frac{1}{4} \times \frac{1}{3}$, or $\$ 4$.
12. See solution of 11 .

## SOLUTIONS OF THE PROBLEMS

13. The time is 73 days. The interest on $\$ 1500$ for 73 days is $\$ 15 . \quad \therefore$ on $\$ 100$ for 365 days is $\$ 5$.
14. The interest is $\$ 600-\$ 500$, or $\$ 100$. The int. for 1 year is $\$ 500 \times \cdot 04$, or $\$ ? n . \quad \therefore$ the no. of years is $\frac{1000}{20}$, or 5 .
15. See solution of 14 .

## Page 179

16. The interest is $\$ 100$. $\therefore$ the time is $100 \div 6$, or $16 \frac{2}{3}$ years. The amount is double the principal. $\therefore \$ 579.89$ amounts to $\$ 1159.78$ in the same time.
17. $4 \%$ of the principal is the interest for 1 year. $\therefore$ $100 \%$ of the principal is the interest for 25 years. $\therefore$ any sum of money will double itself in 25 years.
18. $\frac{x^{3}}{50}$ of the principal is the interest for 1 year. $\therefore$ the principal is the interest for ${ }^{100}{ }^{\frac{1}{2}}$, of $33 \frac{1}{3}$ years.
19. The interest for 1 year is rod or ${ }_{2}^{2} \frac{1}{6}$, of the sum loaned. $\therefore$ the interest for 3 years is $\frac{3}{25}$ of the sum loaned.
20. The interest for 1 year is 05 of the principal. the interest for 4 years is $\cdot 2$, or $\frac{1}{3}$, of the principal.
21. (a) For 1 year the fraction is $\frac{7 \frac{1}{2}}{100}$, or $\frac{18}{800}$. $\therefore$ for 4 years the fraction is $\frac{8}{1 \pi}$. (e) For 1 year the fraction is $\frac{18}{10} \pi$, or $\frac{2}{86} . \therefore$ for $\frac{1}{2}$ year the fraction is $\frac{1}{2} 5 .(g)$ For 1 year the fraction is $\frac{1}{10} . \therefore$ for 292 days, or $\frac{4}{5}$ year, it is $n_{3}^{3} s$.
22. $\mathrm{I}^{2}$ of the sum loaned is the interest for 1 year. the sum loaned is the interest for 12 years.
23. $\mathbf{r} \frac{8}{\delta \pi}$ of the sum loaned is the interest for 1 year. $\therefore$ the sum loaned is the interest for 20 years.
24. $61 \%$ of the sum loaned is the interest for 1 year. $\therefore$ the sum loaned is the int. for $100 \div 6 \frac{1}{3}$, or 16 years.
$25.4 \%$ of the sum loaned is the interest for 1 year. $\therefore$ the sum loaned is the interest for 25 years. $\therefore$ twice the sum loaned is the interest for 50 years.
25. The rent for a year amounts to $\$ 240$. The rent amounts to $6 \frac{1}{2} \%$ and $1 \frac{1}{4} \%$ of the value; that is, to $7 \frac{1}{2} \%$ of the value. $\therefore 7 \frac{1}{2} \%$ of value $=\$ 240 . \quad \therefore$ value $=\$ 3200$.
26. The taxes and the interest $=9 \%$ of the value $=\$ 720$. $\therefore$ rent for 12 months $=\$ 720 . \quad \therefore$ rent for 1 month $=\$ 60$.
27. The interest on $\$ 511000$ for 365 days, or 1 year $=$ $\$ 280 \times 73$. $\therefore$ the int. on $\$ 100$ for 1 year $=\frac{\$ 280 \times 73}{5110}=\$ 4$.

## Page 180

29. If the 1st rate was $1 \%$, the total int. would be $\$ 4$ $+\$ 10$, or $\$ 14 . \quad \therefore 1$ st rate is $2 \%$.
30. If the 1 st rate was $1 \%$, the total int. would be $\$ 6$ $+\$ 36=\$ 42 . \quad \therefore$ lst rate is $\frac{1195}{4}{ }^{2}$, or $2 \frac{1}{2} \%$.
31. If the 1 st rate was $1 \%$, the total int. would be $\$ 1.25$ $+\$ 5.06 \frac{1}{=}=\$ 6.31 \frac{1}{4} . \therefore$ 1st rate is $25.25 \div 6.31 \frac{1}{4}$, or $4 \%$.
32. Interest $=\$ 2 . \therefore$ amount $=\$ 102$.
33. Interest for 9 mo . at $4 \%=3 \%$ of principal. $\therefore$ $103 \%$ of principal $=\$ 540 \cdot 75$. $\therefore$ principal $=\$ 525$.
34. $102 \frac{1}{2} \%$ of principal $=\$ 820 . \quad \therefore$ principal $=\$ 800$.
$35.103 \%$ of principal $=\$ 1339 . \quad \therefore$ principal $=\$ 1300$.
35. The amount of taxes $=\$ 750$. Interest for 219 days at $6 \%=\frac{3}{3} t^{9}$ of $6 \%$ of principal $=33 \%$ of principal. $103 \frac{3}{8} \%$ of sumı deposited $=\$ 750 . \quad \therefore$ sum $=\$ 723.93+$.
36. $\$ 1500$ in 9 months at $8 \%$ amounts to $106 \%$ of $\$ 1500$, or $\$ 1590$. $\therefore \$ 1650$ in 9 months is the better offer.
37. The interest on $\$ 250$ in the time $=\$ 25 . \therefore$ the interest on $\$ 250$ for lalf the time $=\$ 12 \frac{1}{2} . \quad \therefore \$ 262 \frac{1}{2}$ is the amount of $\$ 250$ for half the time. $\therefore \$ 275$ is the amount of $\$ 2611^{\frac{9}{1}}$ for half the time.
38. Int. for 4 mo . at $8 \%=2 \frac{2}{3} \%$ of principal. $\therefore 102 \frac{2}{3} \%$ of principal $=\$ 462 . \quad \therefore$ principal $=\$ 450$.
39. The int. $=11 \%$ of prin. $\quad \therefore 111 \%$ of prin. $=\$ 506 \cdot 16$.

## SOLUTIONS OF THE PROBLEMS

41. A offers $\$ 2180$, payable at end of 3 years. B offers $\$ 455$ now, $\$ 455$ at end of 1 year, $\$ 455$ at end of 2 years, and $\$ 455$ at end of 3 years. These sums at end of 3 years amount to $\$ 568 \frac{3}{3}, \$ 530_{6}^{5}, \$ 492 \frac{1}{2}$, and $\$ 455$ : in all $\$ 2047 \frac{1}{2}$, at end of 3 years. C offers $\$ 1600$ cash, this amounts to $\$ 2000$ in 3 years. $\therefore$ A's offer is the best.
42. Amount of $\$ 1200$ for 1 year at $5 \%=\$ 1260$. Amount of $\$ 1260$ for 1 year $=\$ 1323$. Amount of $\$ 1323$ for 1 year $=\$ 1389 \cdot 15 . \quad \therefore$ at end of 3 years I must pay $\$ 1389 \cdot 15$.

## Page 181

43. The yearly income from the business was $15 \%$ of $\$ 15000$, or $\$ 2250$. He loaned $90 \%$ of $\$ 15000$, or $\$ 13500$. $\therefore$ yearly interest was $8 \%$ of $\$ 13500$, or $\$ 1080 . \therefore$ loss in yearly income was $\$ 2250-\$ 1080$, or $\$ 1170$.
44. At the end of 6 months he nust pay months, at $6 \%, \$ 2800$ amounts to $\$ 2884$. . 'gain, at end of 6 months, is $\$ 384$.
45. The interest for $7 \frac{1}{2}$ years is $\frac{5}{\frac{5}{8}}$ of the sum loaned. $\therefore$ the interest for 1 year is $\frac{3}{10} \div 7 \frac{1}{2}$, or $\frac{1}{24}$ of sum loaned. $\therefore$ interest for 2 years is $4 \frac{1}{6} \%$ of sum loaned. $\therefore$ rate is $4 \frac{1}{6} \%$.

46 . The interest on $\$ 100000$ for : month $=$ the interest on $\$ 1000$ for 100 months $=$ the interest on $\$ 5000$ for 20 months. $\therefore 3$ of the interest on $\$ 100000$ for 1 month $=$ the interest on $\$ 5000$ for $\frac{2}{3}$ of 20 months = the inter on $\$ 5000$ for $1 \frac{1}{j}$ years.
47. The interest on $\$ 1.33 \frac{1}{3}$ for the time is $\$ .33 \frac{1}{3}$, or $\$ \frac{1}{2}$. The interest on $\$ 1.33 \frac{1}{3}$ for 1 year at $5 \%$ is $\$ 1_{1}^{1}$. $\therefore \$ \frac{1}{3}$ is interest for 5 years.
48. He sold the flour for $112 \frac{1}{2} \%$ of $\$ 2000$, or $\$ 2250$. The interest for 6 months at $5 \%$ is equal to $2 \frac{1}{2} \%$ of the sum. $\therefore 102 \frac{1}{2} \%$ of sum deposited $=\$ 2250 . \quad \therefore$ sum $=$ 51951.21 . $\therefore$ he had left $\$ 250-\$ 1951 \cdot 21$, or $\$ 298.78$.

## IN THE HICH SCHOOL ARITHMETIC

49. The interest for 12 months $=6 \%$ of principal. $\therefore$ the interest for 2 months $=1 \%$ of principal. $\therefore$ the interest for any number of months is equal to $1 \%$ of the principal multipligd by or ihalf of the number of months.

Page 186

1. Six months after Mar. 1st is Sept. 1st. $\therefore$ day of maturity is Sept. 4th. From June 4th to Sept. 4th is 92 days. $\therefore$ discount is $\$ 1000 \times \frac{5}{100} \times \frac{92}{365}$, or $\$ 12.60$. $\therefore$ proceeds $=\$ 1000-\$ 12 \cdot 60=\$ 987 \cdot 40$.
2. Three months after Jan. 15th is April 15th. day of maturity is Apr. 18th. From Feb. 1st to Apr. 18 th is 76 days. $\therefore$ discount is $\$ 1250 \times \frac{6 \frac{1}{2}}{100} \times \frac{76}{365}=\$ 16.92$. $\therefore$ proceeds $=\$ 1233.08$.

Page 187
8. Sixty days after Feb. 14th, 1909, is April 15 th. $\therefore$ day of maturity is April 18th. The note is discounted 63 days before it is due. $\therefore$ discount $=\$ 2356.50 \times$ $\frac{6}{100} \times \frac{63}{365}=\$ 24 \cdot 40 . \quad \therefore$ proceeds $=\$ 2332 \cdot 10$.
11. The date of maturity is May 9 th. The interest on $\$ 480$ for 92 days at $5 \%=\$ 480 \times \frac{{ }_{1}{ }^{5} \sigma}{} \times \frac{0}{36}{ }^{2} 8=\$ 6.05$. $\therefore$ the amount of the note is $\$ 486.05$. The time from Feb. 18th to May 9 th is 80 days. $\therefore$ discount $=\$ 486.05 \times$ $\frac{{ }^{n}}{100} \times \frac{80}{385}=\$ 6 \cdot 39 . \quad \therefore$ proceeds $=\$ 486.05-\$ 6.39=\$ 479.66$.

Page 188
14. See Arith., page 184.
15. The interest for 1 year is $1 \begin{aligned} & \text { 㰴 } \\ & \text { of sum loaned. }\end{aligned} \therefore$ the int. for 73 days is $\frac{1}{10}$ of sum.
16. For 95 days the int. is $\frac{95}{565}$ of $\frac{6}{105}$, or $\frac{57}{86} \overline{6} 0$ of face of note.
17. The note is due in 95 days. $\therefore$ the discount is $\frac{95}{885}$ of $\frac{6}{106}$, or $\frac{5}{56} \frac{7}{65}$, of face value of note.
18. The discount is $\frac{79}{368}$ of $\frac{10}{100}$, or $\frac{1}{80}$, of face value.
19. The discount is $\frac{90}{305}$ of $\frac{\frac{1}{08}}{08}$, or $\frac{2 \frac{27}{825}}{\frac{2}{25}}$, of face value of note. $\therefore$ seller of note receives $\frac{17 \frac{7}{8} \frac{8}{8} 9}{2}$ of face value.
20. The discount is $\frac{80}{885}$ of $\frac{8}{10 \pi}$, or $\frac{24}{18 \frac{4}{8} 5}$, of face value. $\therefore \frac{1}{1} \frac{2}{8} \frac{21}{25}$ of face value $=\$ 360 \cdot 20 . \quad \therefore$ face value $=\$ 365$.
21. The note is due Sept. 4th. $\therefore$ it is discounted 95 days before due. The discount is $\frac{98}{368}$ of $\frac{8}{10 \pi}$, or $\frac{8}{8 \frac{8}{8} \frac{8}{5}}$, of face value. $\therefore \frac{17}{8} \frac{8}{8} \frac{7}{2}$ of face value $=\$ 870$. $\therefore$ face value $=\$ 888.50$.
22. The note is due Sept. 28th. $\therefore$ it is discounted
 or $\mathrm{r}^{\frac{8}{8} \frac{5}{2} 5 \delta}$, of the face value. $\therefore \frac{178}{1 \frac{8}{8} \frac{9}{2} \%}$ of face value $=$ $\$ 357 \cdot 98$. $\therefore$ face value $=\$ 365$.

## Page 189

23. The discount was $\$ 730-\$ 724 \cdot 60=\$ 5 \cdot 40$. $\therefore$ the discount for 365 days would be $\$ 5.40 \times \frac{3 \mathrm{AS}}{45}$, or $\$ 43.80$. $\therefore$ the discount from $\$ 730$ for 1 year is $\$ 43.80$. $\therefore$ the discount from $\$ 100$ for 1 year is $\$ 6 . \quad \therefore$ rate is $6 \%$.
24. The discount from $\$ 10^{n 7}$ for 73 days is $\$ 10$. $\therefore$ the discount from $\$ 1000$ for 365 days is $\$ 50$. $\therefore$ the discount from $\$ 100$ for 1 year is $\$ 5 . \quad \therefore$ rate is $5 \%$.
25. The discount for 58 days was $\$ 20 \cdot 30$. $\therefore$ discount for 365 days would be $\$ 127.75$. $\therefore$ discount from $\$ 100$ for 1 year would be $\$ 127.75 \times \frac{100}{\frac{10}{K 25}}$, or $\$ 7 . \quad \therefore$ rate is $7 \%$.
 the note. $\therefore$ the discount for 1 year would be $\frac{1}{7 / 4} \times \frac{888}{88}$, or $\frac{1}{8}$ of face value. $\therefore$ rate of discount $=12 \frac{1}{2} \%$.

## IN THE HIGH SCHOOL ARITHMETIC

27. The note is due Sept. 2nd. $\therefore$ it is discounted 80 days before due. $\therefore$ discount is $\frac{80}{305}$ of $\frac{8}{10} \pi$, or $\frac{3}{8} \frac{2}{25}$, of face value. $\therefore \frac{1793}{7}{ }^{\frac{7}{85}}$ of face value $=\$ 358.60$. $\therefore$ face value $=\$ 365$.
28. The discount from $\$ 1460$ for 1 year would be $\$ 87.60$. The discount was $\$ 1460-\$ 1448 \cdot 48$, or $\$ 11.52$. $\$ 87.60$ is discount for 365 days. $\therefore \$ 11.52$ is discount for $365 \times \frac{1}{8} \frac{1}{7} \frac{5}{6} \frac{2}{3}$, or 48 days. $\therefore$ note was due 48 days after May 23 rd.
29. The discount from $\$ 292$ for 1 year would be $\$ 23 \cdot 36$. The discount was $\$ 2.88$. $\therefore$ the discount was calculated for $365 \times \frac{24}{23} 30$, or 45 days. $\therefore$ note was legally due 45 days after Dec. 20t11, that is on Feb. 3rd. $\therefore$ the note was made 93 days before Feb. 3rd, or on Nov. 2nd.
30. The interest on the note $=\$ 1200 \times_{\frac{1}{0} \sigma} \times \frac{09}{365}=$ $\$ 12.43 . \therefore$ amount of note $=\$ 1212 \cdot 43 . \therefore$ discount $=$ $\$ 1212.43 \times \frac{10}{100} \times . \frac{83}{865}=\$ 12.56 . \quad \therefore$ proceeds $=\$ 1212.43-$ $\$ 12 \cdot 56=\$ 1199.87$.
31. Suppose the face of the note is $\$ 365$. Then the discount for 93 days is $\$ 6.51$. $\therefore$ the bank pays $\$ 358.49$ for the note. $\therefore$ on $\$ 358.49$ the bank receives $\$ 6.51$ interest in 93 days. $\therefore$ on $\$ 100$ in 1 year they would reccive $\$ 7 \cdot 127$.

## Page 191

13. From Jan. 1st to Mar. 15 th is 73 days. The interest is $\$ 400 \times{ }_{1}{ }^{\frac{8}{80} 5} \times \frac{73}{\frac{7}{85}}$, or $\$ 4.80 . \therefore$ the note at this date amounts to $\$ 404.80$. The payment is $\$ 20$. $\therefore$ the balance of the note on Mar. 15 th is $\$ 384.80$. From Mar. 15 th to July 10 th is 117 days. The interest. on $\$ 384.80$ for 117 days is $\$ 7 \cdot 40$, which is more than the payment made. From Mar. 15 th to Sept. 20th is 189 days. The interest is $\$ 384.80 \times 1 \frac{5}{6} 0 \times \frac{3}{3} \frac{5}{8}$,,$~ o r ~ \$ 11.96$. The amount
of the note is $\$ 384 \cdot 80+\$ 11 \cdot 96$, or $\$ 396 \cdot 76$. The two payments amount to $\$ 156 . \quad \therefore$ the balance of the note on Sept. 20th is $\$ 240.76$. From Sept. 20th to Dec. 24th is 95 days. The interest is $\$ 240.76 \times \frac{\frac{9}{0} \sigma}{\frac{9}{0}} \times \frac{95}{365}$, or $\$ 3.76$. $\therefore$ the balance on Dec. 24 th is $\$ 240.76+\$ 3 \cdot 76$, or $\$ 244.52$.
14. The interest on $\$ 950$, from Jan. 25 th to March 2nd, 1908, 37 days, is $\$ 6.74$. Principal and interest amount to $\$ 956.74$. The payment is $\$ 225 . \therefore$ the balance is $\$ 731 \cdot 74$. The interest on $\$ 731.74$, from Mar. 2nd to May 5 th, 64 days, is $\$ 8.98$. $\therefore$ the amount on May 5 th is $\$ 740.72$. The payment is $\$ 174 \cdot 19$. $\therefore$ the balance on May 5 th is $\$ 566 \cdot 53$. The interest on $\$ 566 \cdot 53$, from May 5 th to June 29 th, 55 days, is $\$ 5.98 . \therefore$ the amount on June 29 th is $\$ 572.51$. The payment is $\$ 187.50$. $\therefore$ the balance on June 29th is $\$ 385.01$. The interest on $\$ 385.01$, from June 29th, 1908, to Jan. 1st, 1909, 186 days, is $\$ 13.73$. $\therefore$ the amount due on Jan. 1st, 1909, is $\$ 398.74$.

## Page 194

1-8. See solutions on pages 192-3.
9. He is entitled to the use of $\$ 2400$ for 6 mo ., or $\$ 14400$ for 1 mo . He has had the use of $\$ 800$ for 3 mo ., and $\$ 600$ for 5 mo., or $\$ 5400$ for 1 ino. $\therefore$ he should still have the use of $\$ 9000$ for $1 \mathrm{mo} . \therefore$ he should keep the balance, $\$ 1000$, for 9 mo .

10-11. See page 193.
12. See No. 9.
13. I am entitled to the use of $\$ 2400$ for 30 days, and $\$ 800$ for 60 days, or $\$ 120000$ for 1 day. $\therefore$ I should keep the balance, $\$ 1000$, for 120 days.
14. I owe him the use of $\$ 16000$ for 1 day. He must allow me the use of $\$ 30000$ for 1 day. $\therefore$ I ought to have
the use of $\$ 14000$ for 1 day, or the whole debt, $\$ 2000$, for 7 days.
15. Suppose the debt is $\$ 1000$ and see No. 14.

## Page 195

16. Count time from June 20th. $\$ 500$ is due in 30 days; $\$ 600$ in 29 days; $\$ 450$ in 102 days; $\$ 800$ in 141 days. The equated time is 82 days; that is, Sept. 10th.
17. The equated time of the debit side is $63 \frac{3}{3}$ days, counting from May 1 st. The equated time of the credit side is $27 \frac{9}{3}$ days, counting from May 1 st. Jones should pay $\$ 2400$ in $63 \frac{2}{3}$ days; the payments made [are equal to $\$ 1500$ paid in $27 \frac{7}{3}$ days. The interest on $\$ 2400$ for $63 \frac{2}{3}$ days $=$ interest on $\$ 153000$ for 1 day. The interest on $\$ 1500$ fo: 27 days $=$ interest on $\$ 41500$ for 1 day. Jones should have the interest on $\$ 111500$ for 1 day , or the interest on the balance, $\$ 900$, for 124 days. $\therefore$ halauce should be paid 124 days after May 1st; that is, Sept. 2nd.
18. The amount of $\$ 900$ at $8 \%$ per annum, from Sept. 2nd to Jan. 1st, is $\$ 923.87$.

Page 198
7. The balance to his credit on each succeeding Jan. 1 st will be: $\$ 204, \$ 312 \cdot 16, \$ 424 \cdot 646, \$ 541 \cdot 632, \$ 663 \cdot 297$, $\$ 689.83$.
8. The anount of $\$ 1$ is $\$(1.04)^{3}=\$ 1 \cdot 124864 . \quad \therefore$ $\$ 124864$ is the int. on $\$ 1 . \quad \therefore \$ 150$ is the int. on $\$ 150 \div$ $\cdot 124864=\$ 1201 \cdot 31$.
9. The amount of $\$ 1$ is $(1.04)^{4}+(1.04)^{3}+(1.04)^{2}+$ (1.04) dollars, that is, $\$ 4.4163 . \therefore$ the anount of $\$ 150$ is $\$ 4.4163 \times 150$, nr $: 2662.45$.

## SOLUTIONS OF THE PROBLEMS

## Page 199

10. The amount at simple interest is $1 \cdot 15$ of the principal. The amount at compound interest is 1.157625 of the principal. $\therefore$ the difference is 007625 of the principal. $\therefore$ difference on $\$ 1275$ is $\$ 1275 \times \cdot 007625$, or $\$ 9.72$.
11. The amount at simple interest is 1.24 of the principal. The amount at compound interest is $\mathbf{1} 26247696$ of the principal. $\therefore$ the difierence of interest is $\cdot 02247696$ of the principal. This difference is $\$ 100 . \therefore$ the principal $=\$ 100 \div \cdot 02247696=\$ 4449$.
12. In 4 years, at $4 \%$ per annum, the amount is $(1.04)^{4}$ of the principal. $\therefore$ the principal $=\$ 1200 \div(1.04)^{4}$ $=\$ 1025 \cdot 72$.
13. The amount of $\$ 1200=\$ 1200 \times(1.03)^{4}=\$ 1350.61$.
14. The amount $=\$ 1450 \times(1.025)^{3}=\$ 1561.49 . \quad \therefore$ the interest $=\$ 1561 \cdot 49-\$ 1450=\$ 111.49$.
15. Interest for 73 days, or $\frac{1}{3}$ of a year, is .01 of the principal. $\therefore$ amount of $\$ 1$ in 2 years and 73 days is $\$ 1$ $\times(1.05)^{2} \times(1.01)$, or $\$ 1.113525 . \quad \therefore$ int. $=11.3525$ cents.
16. In 2 years and 3 months, at $4 \%$ per annum, the amount is $(1.04)^{2} \times(1.01)$ of the principai; that is, 1.092416 of the principal. $\therefore$ the interest is 092416 of the principal. $\therefore$ the principal $=\$ 400 \div \cdot 092416=\$ 4328.25$.
17. The population at the end of 4 years is $(1 \cdot 1)^{4}$ of that at the beginning; that is, 1.4641 of that at the beginning. The increase is 4641 of original population. $\therefore$ the original population was $13923 \div \cdot 4641$, or 30000 . $\therefore$ present population is 43923 .
18. Amount $=\$ 1789.25 \times(1.04)^{6}=\$ 1789.25 \times 1.26532$. (See page 265).
19. Amount $=\$ 1 \times(1.06)^{8}(1.04)$.
20. The amount in $2 \frac{1}{2}$ years, at $4 \%$, is $(1.04)^{2} \times(1.02)$, or 1.103232 of the principal. $\therefore$ the principal $=\$ 16989.7728$ $\div 1 \cdot 103232=\$ 15400$.
21. The amount in 4 half-years, at $2 \%$ each half-year, is $(1.02)^{4}$, or 1.08243216 , of the principal. $\therefore$ the principal $=\$ 10824 \cdot 3216 \div 1 \cdot 08243216=\$ 10000$.
22. The amount is $(1.05)^{3} \times(1.01)$, or 1.113525 , of the principal. $\therefore$ the interest is $\cdot 113525$ of the principal. $\therefore$ the principal $=\$ 82.82 \div \cdot 113525=\$ 729.53$.

## Page 200

24. In 7 years the amount is $(1.1)^{7}$, or $1.9487+$, of the principal. In 8 years the amount is $(1 \cdot 1)^{8}$, or $2 \cdot 1435+$, of the principal. $\therefore$ the sum of money will double itself in a little more than 7 years.
25. The difference between the interest for the second year and that for the third year is the interest on the second year's interest; that is, is the interest on the first year's interest and the interest on $\$ 1 . \quad \therefore \$ .05$ is the interest on $\$ 1$ for 1 year. $\therefore$ the rate is $5 \%$.
26. At $3 \%$ per half-year, the amount in 1 year is $(1.03)^{2}$, or 1.0609 of the principal. $\therefore 6.09 \%$ compounded yearly equals $3 \%$ per half-year.
27. The amount at the end of a half-year is obtained by multiplying the principal by a certain fraction. $\therefore$ the square of this fraction $=1.06 . \therefore$ the fraction $=$ $\sqrt{1.06}=1.029+. \quad \therefore$ rate per half-year is $2.9+\%$.
28. The interest $=.21550625$ of the principal. $\therefore$ the amount $=1.21550625$ of the prin. $\therefore$ the amount in 1 year is found by multiplying the principal by the fourth root of 1.21550625 , which is $1.05 . \quad \therefore$ rate $=5 \%$.
29. The amount in 2 years, at $10 \%$ yearly, is $(1 \cdot 1)^{2}$, or 1.21 , of the principal. The amount in 2 years, at $5 \%$

## SOLUTIONS OF THE PROBLEMS

half-yearly, is $(1.05)^{4}$, or $1.21550625 . \therefore$ the difference, or $\cdot 00550625$ of prin. $=\$ 55 \cdot 0625 . \quad \therefore$ the prin. $=\$ 10000$.
30. The table on page 264 shows that $\$ 1$ amounts to $\$ 2$ at $2 \frac{1}{2} \%$ in $28+$ years, and at $7 \%$ half-yearly in $20+$ half -ars, or in $10+$ years.
31. See table page 265.
32. $\$ 1$ amounts to $\$ 2.40622$ in $18 \mathrm{yr} . \therefore$ rate is $5 \%$.
33. $\$ 1$ would amount to $\$ 2.0122$. $\therefore$ time $=12 \mathrm{yr}$.
34. Amount of $\$ 1$ is $\$ 1.2$ in 4 years. $\therefore$ in 8 yr . the amount of $\$ 1$ is $\$ 1 \times(1.2)^{2}=\$$ ' 1 , and in 2 yr . the amount is $\$ 1 \times \sqrt{1.2}=\$ 1.0955 . \therefore \quad$, ount of $\$ 100$ in 8 yr . is $\$ 144$, and in 2 yr . is $\$ 109.5$ :

## Page 204

11. The P. W. of $\$ 100$, due in 2 years $=\$ 100 \div(1.05)^{2}=$ $\$ 90.702$; of $\$ 150$, due in 3 years $=\$ 150 \div(1.05)^{3}=\$ 129.575$; of $\$ 200$, due in 4 years $=\$ 200 \div(1 \cdot 05)^{4}=\$ 164.540 . \quad \therefore$ the debt would be paic now by $\$ 384.82$.
12. The $P$. W. of the 1st quarter's rent $=\$ 25 \div 1.01$, of the 2 nd $\$ 25 \div 1.02$, of the $3 \mathrm{rd} \$ 25 \div 1.03$, and of the 4 th $\$ 25 \div 1.04$. Total P. W. $=\$ 97.572$.
13. The amount of $\$ 100$ in 3 mo . at $6 \%=\$ 101 \cdot 50 . \therefore$ the discount off $\$ 101.50$ is $\$ 1.50 . \therefore \$ 7.75$ is the discount off $\$ 101.50 \times 7.75 \div 1.50=\$ 524.42$.
14. P. W. of $\$ 3140$ due in $8 \mathrm{mo}=\$ 3000$. Cash price $=95 \%$ of $\$ 3140=\$ 2983 . \quad \therefore$ latter is better by $\$ 17$.
15. P. W. of $\$ 133.65$ due in $3 \mathrm{mo}=\$ 132$.
16. Cash cost $=P . W$. of $\$ 255$ due in $3 \mathrm{mo} .=\$ 250$. gain on $\$ 250$ is $\$ 5 . \quad \therefore$ rate of gain is $2 \%$.
17. P. W. of $\$ 4 \cdot 18$ due in $9 \mathrm{mo}=\$ 4 . \quad \therefore$ cash price is 5c. better.
18. Cash value of A's offer $=\$ 7.21$; of $\mathrm{B} ' \mathrm{~s}=\$ 7.14$.
19. Cash cost $=\$ 405$. Cash selling price $=\$ 427.09$. gain on $\$ 405$ is $\$ 22 \cdot 09$, or $5 \cdot 45 \%$.
20. Cash value of goods at time of sale $=\$ 1545 \div 1.02$ $=\$ 1514.706$. Cash selling price $=\$ 1600$.
21. I pay now $\$ 5000$, and $\$ 5300$ at the end of a year. The P.W. of $\$ 5300$, due in 1 year, is $\$ 5300 \div 1 \cdot 05$, or $\$ 5047.62$. $\therefore$ the present cost of the farm is $\$ 10047 \cdot 62$. I receive at the end of 3 months $\$ 12120$. The present worth of $\$ 12120$ due in 3 months, is $\$ 12120 \div 1.0125$, or $\$ 11970.37 . \quad \therefore$ my present gair is $\$ 1922.75$.
22. The int. on $\$ 100$ in 9 mo. $=\$ 6 . \quad \therefore$ the bank discount $=6 \%$ of $\$ 530=\$ 31.80$. The true discount on $\$ 106$ is $\$ 6 . \therefore$ on $\$ 530$ it is $\$ 30 . \quad \therefore$ diff. $=\$ 1.80$.

## Page 205

23. On $\$ 103$ the true discount $=\$ 3$ and the bank discount is $\$ 3.09$. $\therefore 9 \mathrm{c}$. is the dif. on $\$ 103$, or 90 c . on $\$ 1030$.
24. The P. W. $=\$ 200 . \quad \therefore$ the int. on $\$ 200$ is $\$ 10$ in 6 mo. and would be $\$ 20$ in 12 mo. $\therefore$ the amount of $\$ 200$ is $\$ 220$ in 12 mo. $\therefore$ the true discount off $\$ 220$ is $\$ 20 . \therefore$ the true discount off $\$ 210=\$ 20 \times 210 \div 220=\$ 191$.
25. See solution on page 202.
26. There are three interest payments each of $\$ 180$.
$\therefore$ present value $=\frac{\$ 180}{1.025}+\frac{\$ 180}{(1.025)^{3}}+\frac{\$ 180}{(1.025)^{5}}+\frac{\$ 4000}{(1.025)^{3}}$.
27. See solution on page 202.

## Page 212

1. $20 \mathrm{~s} .=\$ 4 \cdot 86 \frac{2}{3} . \quad \therefore 21 \frac{1}{2} \mathrm{~s} .=\$ 5 \cdot 23$.
2. (a). The premium is $\frac{1}{4} \%$ of $\$ 3560=\$ 8.90 . \quad \therefore$ cost $=\$ 3568.90$.
3. Prem, on $\$ 3750=\$ 1 \cdot 50 . \quad \therefore$ cost $=\$ 3751 \cdot 50$.
4. $\$ 100 \frac{1}{1}$ buys a draft for $\$ 100 . \therefore \$ 7500$ will buy a draft for $\$ 7481 \cdot 30$.

## SOLUTIONS OF THE PRORLEMS

5. A draft for $\$ 100$ would cost $\$ 99 . \therefore$ rate is $1 \%$ discount.
6. Net proceeds $=\$ 850-\frac{1}{10} \%$ of $\$ 850=\$ 849.15$.
7. Cost will be $\$ 465+1 \%$ of $\$ 465+50 c .=\$ 470 \cdot 15$.
8. If $\$ 1100=5742 \mathrm{fr} . \quad \therefore \$ 1=5 \cdot 22 \mathrm{fr}$.

## Page 213

13. Cost $=1_{1 / \bar{\gamma}}^{7} \mathrm{~d} . \times 12000=17250 \mathrm{~d} .=\$ 4.86 \frac{2}{3} \times 17250 \div$ $240=\$ 349 \cdot 79$.
14. Cost $=\$ 1 \times 1500 \div 5 \cdot 16=\$ 290 \cdot 70$.
15. $£ 1200=\$ 4 \cdot 80 \frac{3}{8} \times 1200=\$ 5764 \cdot 50$.
16. $£ 1=5 \frac{40}{9} \times \frac{109 \frac{1}{8}}{100} . \quad \therefore 1500=\$ 7275$.
17. $\frac{103}{100}$ of $\$ \frac{40}{9}$, or $\$ 4 \cdot 80=£ 1 . \quad \therefore 2400=$ z 00 .
18. If $£ 1500=\$ 7300, \therefore £ 1=\$ 4.80 \frac{2}{3}$, when is $109: \%$ of $\$ \frac{40}{9} . \quad \therefore$ exchange is quoted at 9 .
19. $£ 1=\$ \frac{49}{9} \times \frac{109 \frac{3}{8}}{100}=\$ \frac{175}{36} . \quad 294000 \quad \mathrm{fr} .=\$ \frac{1-5}{36} \times \frac{100}{2530} \times$ $294000=\$ 56510 \cdot 76$, the interest on whic is $\$ 2920$, which is $5.16 \%$.
20. By the circu us exchange, $\$ 10000$ 10 $0 \times 5.4 \times$ $\frac{100}{185} \times \frac{35}{2} \times \frac{1}{220}$ pound $£ 232117 \mathrm{~s} .41 \quad \mathrm{v}$ cirt shange $21=\$ \frac{44}{9} . \quad \therefore \$ 10000=220450 \mathrm{c} .1 \mathrm{~d} \quad 2708$ s. 3 d .
21. The agent's com. $=-12 \cdot 50 . \quad$ proceeds $=$ $\$ 12187 \cdot 50$. $\$ 99 \frac{1}{4}$ pays for Iral for $\$ 12137.50$ pays for a iraft for 31227
22. $1800 \mathrm{fr} .=\AA \frac{300}{-2}=s \quad \frac{1800}{25.2} \quad 342.857$.
23. $\$ 1=\frac{1}{4.866564}$ po $=\frac{51}{564}$ fiorins $=2.487 \mathrm{fl}$.

## General Problems

## Page 214

1. Cost of keep $=\$ 1.75 \times 11 \times 17$. . tc 1 cost $=$ $\$ 327 \cdot 25+\$ 253=\$ 580 \cdot 25$. Selling price $=\$ 52$.
2. Interest $=\$ 1022 \times \frac{93}{365} \times \frac{55}{10}$
3. A should receive
4. The third gets $1-\frac{2}{5}-\frac{1}{3}$, or $\frac{4}{18}$ the farm. If $\frac{4}{15}$ of the farm onst $\$ 1884$, then will cos 2826.

5 Cost 10 apples $=12 \mathrm{C} \quad \therefore=\quad \therefore$ gain $=25 \%$.

7. Area in acres $-1200 \quad \cdots)=-\quad$ ost $=70 \mathrm{c} . \times 7 \frac{1}{2}$.

8 Com $=85 \mathrm{c}$ - $3^{6} 0$ on $5133.87 \frac{1}{2}$.

## Fage 215

9. Simple nterest Compound int. $=\$ 400$ ( $1.071^{3}-\$ 400$.
10. 40 shares $u$ | cic $-\frac{1}{3} \times 40=\$ 3485$.
11. $35 \%$ of cost $\quad \cos t=\frac{100}{45}$ of $\$ 153=\$ 180$.
12. Totai cost $=\quad+\$ 21=\$ 45$. S.P. $=\$ 50$.

1 Side in rods $\quad=20 . \therefore$ cost $=50 \mathrm{c} . \times 20 \times 4$.
14 First suld bet, of $\$ 720=\$ 180$.
15. L'ost $=4 \frac{1}{2} \mathrm{~s} . \times 4000=£ 900=\$ 4.87 \times 900$.
16. Premium $=7 \%$ of $\$ 18000=\$ 157.50$.
17. No. of shares $=5100 \div 85=60 . \quad \therefore$ inc. $=\$ 4 \frac{1}{2} \times 60$.
18. Apply f. rmula, page 87 .
19. Total S.J 5.11. Cash discount $=\$ 5 \cdot 11 \div 20$.
20. The fiaj. is 2 on every 12 votes polled. $\therefore$ the lumber of votes polled was $240 \times 12 \div 2=1440$.

## SOLUTIONS OF THE PROBLEMS

## Page 216

21. Int. $=\$ 15.07$ on $\$ 137$ in 2 years, $\therefore$ int. on $\$ 100$ in $1 \mathrm{yr} .=\$ 15.07 \times \frac{10}{1} \frac{0}{8} \times \frac{1}{2}=\$ 5 \frac{1}{2}$.
22. Specific duty $=12 \mathrm{c} . \times 450 \times 110=\$ 5940$. Ad valorem duty $=21 \mathrm{c} . \times 450 \times 110 \times \frac{1}{10}=\$ 1039.50$.
23. No. of strips $=9$, each 21 ft . long. $\therefore$ no. of $y d$. $=60$.
24. Goods costing $\$ 100$ are marked at $\$ 120$ and sold for $\$ 120-40 \%$ of $\$ 120=\$ 72 . \quad \therefore$ loss is $28 \%$.
25. $3 \%$ of liabilities $=\$ 480$. $\therefore$ liabilities $=\$ 16000$.
26. No. of shares bought $=5176 \cdot 50 \div 76 \frac{1}{8}=68$. $\therefore$ brokerage $=\$ \frac{1}{8} \times 68=\$ 8.50$.
27. They will receive $\frac{5}{23}$, $\frac{7}{23}$ and $\frac{1}{4} \frac{1}{3}$, respectively, of $\$ 4669$.
28. If they worked the same time, A would do $\frac{8}{5}$ as much as B. $\therefore$ the $\$ 22$ is divided in the ratio of $6: 5$.
29. If the goods cost $\$ 100$, he first asked $\$ 75$ and afterwards sold them for $\frac{\pi}{4}$ of $\$ 75$, or $\$ 93 \frac{1}{3}$, thus losing $6 \frac{1}{2} \%$.
30. The taxes on $\$ 500$ at $\$ 18$ per $\$ 1000=\$ 9 . \quad \therefore$ net inc. $=\$ 891$.
31. Side of field $=110 \mathrm{yd} . \therefore$ length of walk in $\mathrm{yd} .=$ $440^{\prime}-4=436$. Area of walk $=436$ sq. yd. $\therefore \operatorname{cost}=15 \mathrm{c}$. $\times 436$.
32. Int. for $1 \mathrm{yr} .=\mathbb{F}:{ }_{\mathrm{r}}^{\mathrm{r}} \cdot 84 . \therefore$ no. of $\mathrm{yr} .=33 \cdot 39 \div 14 \cdot 84$.

## Page 217

34. On every $\$ 72$ invested he makes $\$ 3, \& c$.

 $\therefore \frac{18}{8}$ of cost $=\frac{18}{8}$ of $\$ 170=\$ 2436 \frac{2}{3}$.
35. The net taxes on $\$ 1000=\$ 18 \cdot 62$, \&.c.
36. If $\$ 12$ be deducted, the balance may be divided between $A$ and $B$ in the ratio of 1 to $2, \& c$.
37. Cost of 7 lb . tea $=7 \times \frac{3}{2}$ of coffee $=7 \times \frac{3}{2} \times \frac{{ }^{\text {星 }} \text { of }}{}$ cocoa, \&c.
$39.22 \%$ on $80 \%$ of the goods $=17.6 \%$ on all. $\therefore$ $17.6 \%$ of the invoice $=\$ 633 \cdot 60$.
$40.97 \%$ of debt $=\$ 1008.80 . \quad \therefore 96 \%=\frac{9 \cap}{17}$ of $\$ 1008.80$.
38. Cost of goods $=\$ 53.60 \times 1 \frac{00}{2}=\$ 2680 . \quad \therefore$ the amount remitted $=\$ 2680+\$ 53.60$.
39. Cost of 8 lb . of the mixture $=\$ 3 \cdot 60 . \quad \therefore$ the selling price of $8 \mathrm{lb} .=\$ 3.60 \times{ }_{1}^{108}$.
40. A supplies $\frac{82}{117}$ of the cap. and $\therefore$ receives $\frac{33^{2}}{117}$ of the gain.
41. Cost $=18 \mathrm{c} . \times 16 \times 124 \div 9$.
42. Loss $=\frac{3}{8}$ of $\$ 3200-\frac{14}{100}$ of $\frac{3}{8}$ of $\$ 3200=\$ 1179$.

Page 218
46. Interest $=\$ 39(1.04)^{10}-\$ 39=\$ 39 \times 1.87298-\$ 39=$ $\$ 34 \cdot 046$. See table, page 265.
47. Wholesale price $=115 \%$ of cost. $\therefore$ retail price $=$ $110 \%$ of $115 \%$ of cost $=126 \frac{1}{2} \%$ of cost. $\quad \therefore$ gain $=26 \frac{1}{2} \%$.
48. $\frac{3}{4} \div \frac{1}{2}$ of $\frac{5}{6}=\frac{3}{4} \times \frac{3}{1} \times \frac{6}{5}=\frac{9}{8}, \frac{3}{4} \div \frac{1}{2} \times \frac{5}{5}=\frac{3}{3} \times \frac{3}{1} \times \frac{8}{8}=\frac{5}{4}$.
49. In $22 \frac{1}{2}$ sec. the train goes $18 \times 1760 \times 22 \frac{1}{2} \div 3600$, or $198 \mathrm{yd} . \therefore$ length of bridge $=198 \mathrm{yd} .-90 \mathrm{yd}$.
50. The weight of each will be $\frac{98}{8}, \frac{7}{7}, \frac{7^{8}}{6}$, respectively, of 60 lb .
 $\left(\frac{9}{7} \frac{8}{4}\right)^{2} \mathrm{cu} . \mathrm{ft}$.
52. If cost $=\$ 100$, gain $=\$ 20, \therefore$ selling price $=\$ 120$. $\therefore$ gain $=\frac{1}{6}$, or $16 \frac{2}{3} \%$ of selling price.
53. Amount of $\$ 100$ in 9 mo . at $7 \frac{1}{2} \%=\$ 105 \frac{5}{6} . \quad \therefore$ the true discount on $\$ 105 \frac{5}{8}=\$ 5 \%, \therefore$ disct. on $\$ 422 \cdot 50=\$ 22 \cdot 50$.
54. Decimal $=\frac{714285}{999999}=\frac{142857 \times 5}{142857 \times 7}=\frac{5}{7}$. See page 52 .

## SOLUTIONS OF THE PROBLEMS

55. $115 \%$ of prin. $=\$ 373.75$. $\therefore$ prin. $=\$ 373.75 \times \frac{1}{1} \frac{0}{1} \frac{0}{5}$.
56. Prem. rec'd $=\frac{{ }_{6}}{\frac{7}{\delta} \sigma}$ of risk. Prem paid. $=\frac{9}{6} \sigma$ of $\frac{2}{3}$ of risk $=\frac{{ }^{\frac{6}{\delta} \delta}}{}$ of risk. $\therefore$ net prem. $=\frac{1}{\frac{1}{0} \%}$ of risk $=\$ 4.30$. risk $=\$ 1720$.
57. Had he worked 40 days he would have received $\$ 16$. Fy being idle he lost $\$ 8.40$. Each day he was idle he lost $56 c . \quad \therefore$ he was idle $\frac{840}{86}$, or 15 days.
58. Balance after 1st payment $=\$ 15000+\$ 750-\$ 2500$ $=\$ 13250$. Balance after 2nd payment $=\$ 13250+\$ 662 \cdot 50$ $-\$ 2500=\$ 11412.50$. Balance after 3rd payment $=$ $\$ 11412 \cdot 50+\$ 570 \cdot 625-\$ 2500=\$ 9483 \cdot 125$.

## Page 219

59. 3 lengths require 2 cuts and 4 lengths 3 . For 2 cuts the cost is $\$ 2$ per cord. $\therefore$ for 3 cuts the cost is $\$ 3$.
60. $\$ 14=\operatorname{tax}$ on $\$ 1000 . \therefore \$ 7=\operatorname{tax}$ on $\$ 500 . \quad \therefore$ salary $=\$ 900$.
61. Square of the greater $=35643 \times 3 . \therefore$ greater $=327$.
62. Assets $=\$ 3000 \times \frac{\pi 8}{100}+\$ 50=\$ 2000$.
63. Let $\$ 500$ be the face of the note. Then the discount $=\$ 500 \times{ }^{7 \frac{7}{65} 5} \times \frac{8}{10}{ }^{\frac{8}{0} \%}=\$ 8 . \quad \therefore$ the banker pays $\$ 492$ for the note. $\therefore$ the int. on $\$ 492$ in 73 days is $\$ 8$.
64. Cost $=\$ 22.50$. Selling price $=\$ 22.50 \times \frac{114}{1}=\$ 25.65$. No. of lb. sold $=375 \times \frac{{ }^{\circ} 0}{10}=337 \frac{1}{2}$.
65. When the discount is $40 \%$ the selling price is $60 \%$ of list price. When the discounts are $20,10,10$, the selling price $=\frac{40}{100} \times \frac{90}{100} \times \frac{90}{10 \pi}$, or $\frac{81}{178}$, or $64.8 \%$ of list price.
66. The no. of strips $=11 \mathrm{ft} .+\frac{7}{8} \mathrm{yd} .=4$ i, i.e., 5 strips. Since the pattern is 8 ft . long each strip will require 24 ft . of carpet with the exception of one, which will only require 20 feet. $\therefore 116$ feet or $38 \frac{3}{3} \mathrm{yd}$. of carpet are required. No. of sq. yd. in room $=20 \times 11 \div 9=24 \frac{4}{4}$. No.
of sq．yd．of carpet $=38 \frac{3}{3} \times 29 . \quad \therefore$ no．of sq．yd． wasted $=29-24 \frac{4}{9}=4 \frac{5}{9}$ ．

67．Bank discount $=\$ 508 \times \frac{27}{10}=\$ 137 \cdot 16$ ．True dis－ count $=\$ 508 \times \frac{{ }_{1}^{27}}{127}=\$ 108$ ．
$68.2 \%$ of his whole income $=\$ 18.28+2 \%$ of $\$ 400=$ $\$ 26.28 . \quad \therefore$ his income $=\$ 1314 . \quad \therefore$ his capital $=\$ 1314 \times$ $1 \frac{100}{8}=\$ 21900=£ \frac{21900}{4.86 \frac{2}{3}}=£ 4500$.

69． 5 cents will buy $\frac{5}{7}$ of a quart of milk．$\therefore$ each quart contains $\frac{2}{5}$ of a quart of water．$\therefore$ the ratio is 2 to 5 ．

70．Saving $=\$ 7950 \times \frac{3}{75}-\$ 7950 \times{ }_{14}{ }^{\frac{3}{0} 6}=\$ 18$ ．
71．Sum $=\$ 12750 \div(1.05)^{4}$ ．Divide 4 times by 1.05 ．

## Page 220

72．If the value is $\$ 1000$ ，the premium $=2 \%$ of $\$ 600$ $=\$ 12$ ．Expenses $=60 \mathrm{c} . \quad \therefore$ total cost $=\$ 12.60$ whes the value is $\$ 1000 . \quad \therefore \$ 75.60$ is cost when value is $\$ 6000$ ．

73．A draft for $\$ 347.50$ will cost $\$ 347.50 \times \frac{98}{108}$ ．
74． $120 \%$ of cost of one $=75 \mathrm{c} . \quad \therefore$ it cost $\frac{1}{\frac{1}{1} \frac{0}{2}}$ of 75 c ． $=62 \frac{1}{2} \mathrm{c} . \quad 80 \%$ of cost of the other $=75 \mathrm{c} . \quad \therefore$ it cost $\frac{100}{80}$ of $75 \mathrm{c} .=93 \mathrm{zc} . \quad \therefore$ total cost $=\$ 1.56 \% . \quad \therefore$ loss $=6\} \mathrm{c}$ ．

75．Actual cost is the principal which will amount to $\$ 510$ in 3 mo．at $8 \%$ ，which is $\$ 500$ ．

76．If 4 s ． 2 d ．or $50 \mathrm{~d} .=\$ 1$ ，then $1 \mathrm{~d} .=2 \mathrm{c}$ ．， $1 \mathrm{~s} .=24 \mathrm{c}$ ．， and $\mathrm{El}=4.80 . \quad \therefore$ value $=\$ 4.80 \times 350+24 \mathrm{c} . \times 5+2 \mathrm{c} . \times 7$ ？.

77．Square of no．of bush．$=1849 . \therefore$ no．$=43$ ．
78．Let the liabilities be $\$ 1200$ and assets $\$ 400$ ．But $\$ 100$ of assets realize only $\$ 40 . \therefore$ on $\$ 1200$ of liability he pays $\$ 340 . \therefore$ on $\$ 1$ he pays $28 \frac{1}{3} \mathrm{c}$ ．

79．The note is due on Oct．18th，and is $\therefore$ discounted
 $\therefore$ the proceeds $=\frac{\text { 部鳎 }}{}$ of the face $=\$ 560 . \therefore$ the face $=$ $\$ 560 \times$ 影鲥．

## SOLUTIONS OF THE PROBLEMS

80 . If he had sold all at $\$ 4$ he would have realized $\$ 540$. He makes $\$ 1$ more on each bbl. sold for $\$ 5$. $\therefore$ he inakes $\$(615-540)$ more on 75 bbl . sold at $\$ 5$.
81. A's capital is $\$ 2400$ for 1 mo ., and B's is $\$ 2100$. $\therefore$ the gain is divided in the ratio of 8 to 7 .
82. In 10 years he earns $\$ 400 \times 3+\$ 475 \times 3+\$ 550 \times 3$ $+\$ 625=\$ 4900$. By the other method he would earn $\$ 400+\$ 425+\ldots$ to 10 terms $=\$ 5125$.
$83.2 \%$ of the risk $=\$ 360 \cdot 50 . \quad \therefore$ risk $=\$ 18025 . \quad \therefore$ the value $=\$ 18025 \times \frac{3}{2}=\$ 45062.50$.

## Page 221

84. The number must be a multiple of $2,3,5,6,8$ and 12 , or 120 . It must also be a perfect square, that is, every prime in 120 must be squared. The prime factors of 120 are $2^{3}, 3,5 . \therefore$ the least number is $2^{4}, 3^{2}, 5^{2}$, or 3600 .
85. Assessment $=\$ 3000$. $\therefore$ tax on $\$ 1000=\$ 17 . \quad \therefore$ rate is 17 mills on the dollar.
86. The selling price $=\frac{1}{2}$ of $\frac{3}{3}$ of $\frac{?}{10}$, or $\frac{27}{87}$, or $33 \frac{2}{4} \%$ of list price.
87. Int. $=\$ 48(1.04)^{16}-\$ 48$. See table, page 265.
88. Pres. value of 68 c . due in 3 mos. $=\frac{8.8 \mathrm{c}}{1.0}=66 \frac{2}{3} \mathrm{c}$. $\therefore$ gain $=11$ 䂞c. per lb .
89. Consumer's price $=\$ 9875 \times \frac{1}{1} \times \frac{8}{3} \times \frac{5}{4}=\$ 16293.75$.
 on $\$ 2800000 . \therefore$ tax on $\$ 1000=\$ 12 \frac{1}{2} . \quad \therefore$ rate $=12 \frac{1}{2}$ mills.
90. L.C. M. $=11154-13=858$. See page 14 .
91. Pres. val. of $\$ 5=\frac{100}{103 \frac{1}{2}}$ of $\$ 5=\$ 4.83$.
92. Discount $=\$ 52 \cdot 65$, which is $14 \%$ of $\$ 4680$.
$9 \dot{9}$. Int. for $7 \mathrm{mo}=\$ 11 \cdot 20 . \therefore$ int. for $9 \mathrm{mo} .=\$ 14.40$. $\therefore$ sum $=\$ 334 \cdot 40-\$ 14 \cdot 40=\$ 320$. On $\$ 320$ the int. is
$\$ 11.20$ in $7 \mathrm{mo} . \therefore$ int. on $\$ 100$ in 1 yr. $=\$ 11.20 \times \frac{10}{8} \frac{0}{80} \times$ $11^{2}=\$ 6 . \quad \therefore$ rate $=6 \%$.
93. The discount $=\frac{68}{365}$ of $\frac{8}{80}$, or $\frac{128}{25}$ of the face. $\therefore$ the proceeds $=\frac{8}{8} \frac{8}{2} \frac{9}{29} 8$ of the face $=\$ 719.92 . \quad \therefore$ the face $=\$ 719.92 \times \frac{{ }_{8}^{8} 1 \frac{2}{8} \frac{2}{9} 5}{8}=\$ 730$.

Page 222
96. See solution, page 202.
97. ( $\frac{2}{5}$ of $\frac{1}{5}+\frac{7}{20}$ of $\frac{4}{5}$ ) or $\frac{9}{25}$ of the invoice price $=\$ 810$. $\therefore$ the invoice price $=\$ 2250$.
98. No. of shares $=7140 \div 84=85$. Gain on each $=\$ 11$.
$99.82 \%$ of cost $=\$ 24 \cdot 60 . \therefore$ cost $=\$ 30 . \quad \therefore$ gain $=20 \%$. 100. See page 202.

1. Cost of $4 \mathrm{lb} .=\$ 2 \cdot 10 . \quad$ S.P. $=\$ 3.20 . \quad \therefore$ gain $=\frac{1}{2} \frac{1}{3}$, or $52{ }^{\text {i }}$ \% $\%$.
2. If he had $3 \$ 10$ bills, $4 \$ 5$ bills, $6 \$ 4$ bills, the total value would be $\$ 74$. But the value is 7 times $\$ 74$. $\therefore$ he had $21 \$ 10$ bills, \&c.
3. Page 162.

Page 223
4. 32, page 113.
5. The least number divisible by $4,5,9,12$, is 180 , which $=2^{2}, 3^{2}$. 5. To make this a cube the additional factors 2. 3. $5^{2}$ must be introduced, making (2.3.5) ${ }^{8}$, or 27000.
6. Divide the sum in the ratio of 17 to 9 .
7. If 3780000 is represented by 3 , then 6700000 is represented by $3 \times 6700000 \div 3780000=5 \cdot 3$, which is nearer 5 than 6, \&c.
8. The risks are in the proportion $2: 3: 4, \therefore$ the loss is divided in the same ratio.
9. Simple int. $=\$ 58.50$. Compound int. $=\$ 57.3048$.

## SOLUTIONS OF THE PROBLEMS

10. Length of walls $=60 \mathrm{ft} . \therefore$ no. of strips $=24.10 \mathrm{ft}$. $\therefore 18 \mathrm{in} .=6 \frac{2}{3} . \quad \therefore$ each strip is 7 times the length of the pattern, or $3 \frac{1}{2} \mathrm{yd} . \therefore$ no. of yd. $=3 \frac{1}{2} \times 24=84$.
11. 65, page 219.
12. No. of shares $=2304 \div 96=24$. Net selling price $=$ $\$ 94 \frac{3}{3} \times 24=\$ 2265$. Dividend $=\$ 1 \frac{1}{2} \times 24=\$ 36 . \quad \therefore$ loss $=$ $\$ 2304-\$ 2265-\$ 36=\$ 3$.
13. Out of each $\$ 105$ he invests $\$ 100$. $\therefore$ amount invested $=\frac{1000}{10} 5$ of $\$ 4200=\$ 4000$.
14. $\frac{4}{5}$ of the oil is sold at $120 \%$ of its cost realizing $\frac{4}{8}$ of $120 \%$, or $96 \%$ of the whole cost.
15. 63, page 219.

## Page 224

16. $128 \%$ of cost per $\mathrm{M}=\$ 21 \cdot 12 . \therefore$ cost $=\frac{10}{1} \frac{0}{8}$ of $\$ 21 \cdot 12=\$ 16 \cdot 50 . \quad \therefore$ gain would be $50 \mathrm{c} . \times 36.84=\$ 18.42$.
17. $3 \%$ of taxes $=\$ 172.80 . \quad \therefore$ taxes $=\$ 5760$ on $\$ 320$ 000. $\therefore$ taxes on $\$ 1000=\$ \frac{5780}{3} \frac{80}{20}=\$ 18$.
18. If both rates had been the same as the first the interest would have been $\$ 8.24$ less. $\therefore$ interest on $\$ 787$ at the rate of the first $=\$ 39.35 . \quad \therefore$ first rate is $5 \%$.
19. A invests $\$ 2$ for B s $\$ 3$; B invests $\$ 3$ for C's $\$ \frac{18}{4}$; C invests $\$ \frac{18}{8}$ for $D$ 's $\$ \frac{38}{8} . \quad \therefore$ the capital is divided in the proportion of $2,3, \frac{15}{4}$ and ${ }^{23}$, or $16,24,30$, and 35 .
20. The duty on $\$ 1278$ is $\$ 159.75$, or $12 \frac{1}{2} \%$.
21. His wages for the other 3 months would be $\$ 15$.
22. The net earnings $=\$ 290056$, which will pay $\$ 4$ per share on 72514 shares.
23. He has left, after paying board, ${ }^{\frac{7}{n}}$ of $\$ 1200=$ $\$ 840$; after paying rent ${ }_{3}$ of $\$ 840=\$ 672$; after paying for clothes $\frac{88}{80 \pi}$ of $\$ 672=\$ 571 \cdot 20$; after paying for books $\$ 500$; after paying loan $\$ 300$, or $25 \%$ of salary.

## IN THE HIGH SCHOOL ARITHMETIC

24. Selling price of $50 \mathrm{oz} .=\frac{50 \times 50}{49}$ or $51_{\frac{1}{3} \mathrm{y}} \mathrm{c} . \quad \therefore$ gain on 49c. is $2{ }^{\frac{1}{6}} \mathrm{c}$.
25. 36 c . more would have given 3 c . more to each.

Page 225
26. $A$ and $B$ can do $\frac{1}{8}$ of the work in 1 fay; $B$ and $C \frac{1}{1} \frac{1}{8}$, and $C$ and $A \frac{1}{1 \frac{1}{2}}$. $\quad \therefore$ twice the work done by $A, B$ and $C$, in 1 day, is $\frac{1}{8}+\frac{1}{10}+\frac{1}{12}$, or $\frac{37}{120}$. $\therefore$ they do $\frac{37}{240}$ of work in 1 day, or the whole work in $\frac{240}{37}$ days.
27. Area of outer circle $=\frac{22}{2} \times 400$ sq. yd. Area of inner $=22^{2} \times 18^{2} . \quad \therefore$ area of walk $=2388_{\%}^{6}$ sq. yd.
28. Com. for selling $=3 \%$ of $\$ 5100=\$ 153$. Com. for buying $=\frac{{ }^{2} 0^{2}}{2}$ of $(\$ 5100-\$ 153)=\$ 97$.
29. $98 \%$ of the taxed income $=\$ 465 \cdot 50 . \quad \therefore$ the taxed income $=\$ 475$.
30. Prem. $=\$ 48 . \quad \therefore$ loss $=\$ 48+\frac{2}{5}$ of $\$ 4090$.
31. He bought 50 shares and $\therefore$ brokerage was $\$ \frac{1}{2}$ per share.
32. Average gain on whole $=5 \%$ of cost $=\$ 63 \cdot 50$.
33. One sq. in. on map $=64$ sq. miles. $\therefore 1_{\frac{1}{6}}^{\frac{8}{6}} \times 1 \frac{1}{8}$ sq. in. $=64 \times 1 \frac{5}{18} \times 1 \frac{1}{3} \times 640 \mathrm{ac} .=60480 \mathrm{ac}$.
34. If the cost is $\$ 100$, the selling price $=130 \%$ of $\$ 75$ $=\$ 97.50$. $\therefore$ loss is $\$ 2.50$ on $\$ 100$, or $2 \frac{1}{2} \%$.
35. Duty $=24 \%$ of $\frac{{ }_{10}}{}$ of $\$ 1.40 \times 150=\$ 45.36$.
36. 81, page 220.

Page 226
37. Interest for $5 \frac{1}{2} \mathrm{yr}$. at the first rate $=\$ 45 \times \frac{5 \frac{1}{2}}{3}=$ $\$ 82.50$. $\therefore$ interest for $5 \frac{\mathrm{yr}}{} \mathrm{y}$. at $2 \%=\$ 27.50$.
38. Area $=6400$ sq. rods. $\therefore$ length of side $=80$ rods. $\therefore$ length of diagonal $=80 \sqrt{2}$ rods.
39. When B goes 95 yd . C goes $90 \mathrm{yd} . \therefore$ when B goes 100 yd . C goes $\frac{90}{95}$ of $100 \mathrm{yd} .=94 \frac{14}{1} \mathrm{yd} . \therefore$ B wins by . $\frac{5}{18} \mathrm{yd}$.
40. If the tea cost $\$ 1$ per 1 lb ., he sells 12 lb . for $\$ 17$, or $\$ 1.41 \frac{1}{3}$ per lb. $\therefore$ he gains $41 \frac{2}{3} \%$.
41. A can do $\frac{1}{5}$ of the work in 1 day, $B \frac{1}{8}$ and $C \frac{1}{4}$. $\therefore$ the money is divided in the proportion of $\frac{1}{5}, \frac{1}{6}, \frac{1}{7}$, or $42,35,30 . \quad \therefore$ A gets $\frac{42}{107}$ of $\$ 21 \cdot 40$.
42. The interest $=\$ 187(1.04)^{13}-\$ 187$. Use tables.
43. The manager receives $\frac{1}{8}+\frac{1}{3}$ of $\frac{7}{8}$, or $\frac{5}{12}$ of the profit. $\therefore \frac{6}{12}$ of the profits $=\$ 6000$.
44. $3 \%$ of $\frac{2}{3}$ of value $=\$ 35 . \quad \therefore$ value $=\$ 1800$, or $\$ 6$ per bbl. $\therefore$ selling price $=\$ 36+115 \%$ of $\$ 1800=\$ 2106$.
45. The 6 boys earn $65 \mathrm{c} . \times 6=\$ 3.90$ below the average. $\therefore$ the men earr. $\$ 3.90$ above the average. Eiach man earns 10 c. above, $\therefore$ there were 39 men.
46. $16 \%$ of the liabilities $=\$ 500$.
47. If the farm is divided into $:$ equal squares, the area of each is 40 ac ., or 6400 sq. rods. $\therefore$ the side of each is 80 rods. $\therefore$ the sides of the farm are 320 and 400 rods. Perimeter $=1440$ rods.
48. True discount $=\frac{24}{124}$ of $\$ 558=\$ 108$. Bank discount $=\frac{24}{100}$ of $\$ 558=\$ 133.92$.

## Page 227

49. $125 \%$ of cost of one $=\$ 200 . \quad \therefore$ cost $=\$ 160 . \quad \therefore$ gain on it $=\$ 40 . \quad \therefore$ loss on other $=\$ 40$, and $\therefore$ its cost $=$ $\$ 240$. $\therefore$ loss on it $=\frac{1}{8}$, or $16 \frac{2}{3} \%$.
50. Draft for $\$ 5000$ costs $\$ 5075$. $\therefore$ draft for $\$ 100$ costs $\$ 101.50 . \quad \therefore$ rate is $1 \frac{1}{2} \%$ premium.
51. 15, page 159.
52. If proceeds $=\$ 100, \operatorname{cost}=\$ 70$, and gain on $\$ 70$ is $\$ 30$.
53. $\frac{9}{11} \mathrm{cu} . \mathrm{ft}$. of copper weighs $\frac{6}{11} \times 550 \mathrm{lb} .=300 \mathrm{lb}$. $\frac{5}{11} \mathrm{cu} . \mathrm{ft}$. of tin weighs $\frac{5}{11} \times 462 \mathrm{lb} .=210 \mathrm{lb}$.
54. $\frac{3}{3}$ of S. P. $=90 \%$ of cost, $\therefore$ S. P. $=135 \%$ of cost.
55. A should have paid $\frac{2}{6}$ of $\$ 370=\$ 148$. $\therefore$ B should pay him $\$ 16$.
56. Difference $=\$ 200(1.035)^{15}-\$ 200(1.07)^{7}(1.035)$.
57. $95 \%$ of taxes $=\$ 9690 . \quad \therefore$ taxes $=\$ 10200 . \quad \$ 17=$ taxes on $\$ 1000, \therefore \$ 10200=$ taxes on $\$ 10200 \times{ }^{10000}$.
$58.96 \%$ of S. P. $=\$ 1872 . \quad \therefore 4 \%$ of S. P. $=\$ 78$.
58. $\$ 1$ is the income from $\$ 24$ invested in the first, or from $\$ 25$ invested in the second.
59. New length $=\frac{11}{10}$ and width $=\frac{8}{7}$ of the originai. $\therefore$ area of base of new solid $-\frac{1}{10} \times \frac{8}{7}$, or $\frac{44}{36}$ of the original. $\therefore$ the thickness $=\frac{38}{14}$ of the uriginal, $\therefore$ it is diminished $\frac{0}{44}$.

## Page 228

61. B's cost $=\frac{106}{100}$ of $\$ 2500$. C's cost $=\frac{95}{100}$ of $\frac{198}{100}$ of $\$ 2500$.
62. 26880 marks $=26880 \times 2 \frac{1}{8}$ francs $=\$ \frac{26880 \times 2 \frac{1}{8}}{5 \cdot 16}$.
63. In 10 days, $A$ does the work that $B$ could do in $\frac{10}{9}$ of 10 , or $11 \frac{1}{y}$ days. $\therefore$ the money is divided in the ratio of $11 \frac{1}{8}$ to 11.
$64.90 \%$ of cost $=\$ 2925, \therefore$ cost $=\$ 3250 . \quad \therefore 125 \%$ of invoice $=\$ 3250, \therefore$ invoice $=\$ 2600$.
64. Suppose A's cap. is $\$ 1500$ and B's $\$ 2400$. A has $\$ 1500$ invested for 4 mo . and $\$ 750$ for 8 mo ., which is equivalent to $\$ 12000$ for 1 mo . B has $\$ 2400$ for 4 mo . and $\$ 800$ for 8 mo ., or $\$ 16000$ for 1 mo . $\therefore$ gain is divided in ratio of 12000 to 16000 , or 3 to 4 .
65. 4. $2^{2} r^{2}=120 . \therefore r=\sqrt{\frac{105}{11},} \therefore$ vol.$=\frac{4}{3} \cdot \frac{2 R}{r} \cdot \frac{105}{11} \sqrt{\frac{105}{11}}$ $=123.582 \mathrm{cu} . \mathrm{in}$.

## SOLUTIONS OF THE PROBLEMS

67. Had there been 50 geese the selling price would have been $\$ 25$, or $\$ 5$ less than it was. Each turkey is worth 25 c. more than each goose, $\therefore$ the number of turkeys $=\$ 5 \div 25 \mathrm{c} .=20$.
68. Area $=1.44 \mathrm{Ha}=144 \mathrm{a} .=144$ sq. Dm. $\therefore$ side $=12$ Dm., $\therefore$ perimeter $=48$ Dm. $=480 \mathrm{~m} .=48 \mathrm{Km} . \quad \therefore$ time in hours $=.48 \div 5=.096$, or 5.76 min .
69. If wholesale price $=\$ 100$, cost $=\$ 75$, and $\therefore$ net selling price $=\$ 110 \times \frac{94}{100}=\$ 103.40 . \quad \therefore$ gain on $\$ 75$ is $\$ 28.40$.
70. Page 192.
71. $94 \frac{3}{4} \%$ of S. P. of wheat $=\$ 3790 . \quad \therefore$ S. P. $=\$ 4000$. $\therefore$ com. $=\$ 210$.

Page 229
72. The int. at $2 \frac{1}{2} \%$ for the given time $=\$ 616 \cdot 35-$ $\$ 558 \cdot 60=\$ 57.75 . \quad \therefore$ int. at $6 \%=\$ 138.60 . \therefore$ sum $=$ \$420.
73. Take a risk of $\$ 400$. Prem. received $=\$ 16$. Prem. paid $=3 \%$ of $\frac{3}{4}$ of $\$ 400=\$ 9 . \quad \therefore$ dif. is $\$ 7$ on a risk of $\$ 400$. $\therefore$ dif. is $\$ 27$ on a risk of $\frac{7}{7}$ of $\$ 400$.
74. The dif. between $107 \%$ of cost and $92 \%$ of cost or $15 \%$ of cost $=\$ 1.05, \therefore$ cost $=\$ 7$.
75. B's gain $=\frac{1}{2}(\$ 715-\$ 275)=\$ 220$. A's $=\$ 495 . \therefore$ the cap. is divided in the ratio of 220 to 495 , or 4 to 9 .
76. In 2 days $A$ and $B$ can do $\frac{2}{5}+\frac{2}{3}$, or $\frac{1}{3}$ of the work. $\therefore$ C has $\frac{18}{5}$ to do. He does the work in 14 days, $\therefore$ he does $\frac{1}{3} \frac{8}{6}$ in $\frac{8}{3}$ of 14 days.
77. Interest $=\$ 32(1.02)^{15}-\$ 32$.
78. Pop. at the end of 3 years $=(1 \cdot 13)^{3}$ of pop. at the beginning. $\therefore$ pop. at the beginning $=1442897 \div(1 \cdot 13)^{3}$.
79. He requires $\frac{3}{4}$ of 110 , or $82 \frac{1}{2} \mathrm{oz}$. of gold and $27 \frac{1}{2}$ of silver. To get $82 \frac{1}{2}$ oz of gold he must use $\frac{2}{2} \frac{4}{2}$ of $82 \frac{1}{2}$ oz., or 90 oz . of his alloy.
80. 23, page 205.

## IN THE HIGH SCHOOL ARITHMETIC

81. 30 shares of the first stock pays $\$ 120$ dividend. the div. from the second stock is $\$ 132$, and since it is $\$ 3 \frac{1}{2}$ per share, $\therefore$ no. of shares of second stock $=132 \div 3 \frac{1}{2}$. $\therefore$ cost of second stock $=\$ 75 \times 132 \div 3 \frac{1}{2} . \quad \therefore$ price of each share of the first stock $=\$ 75 \times 132 \div 3 \frac{1}{2} \div 30=\$ 94 \frac{2}{7}$.
82. Cost of farm at end of year $=\frac{106}{00}$ of $\$ 4000=\$ 4240$. Cost of taxes $=\$\left(\frac{104 \frac{1}{2}}{100} \times \frac{18}{1000} \times \frac{3}{5} \times 4000\right)=\$ 45.144$. Cost of repairs $=\frac{103}{100}$ of $\$ 500=\$ 515$. Total cost $=\$ 4800 \cdot 144$.

## Page 230

83. Selling price $=130 \%$ of $\$ 40=\$ 52$, which is 3 of price asked. $\therefore$ price asked $=\frac{4}{3}$ of $\$ 52$.
84. For every $\$ 7$ invested at $5 \%, \$ 5$ is invested at $7 \%$. $\therefore$ the part invested at $5 \%=\frac{7}{12}$ of $\$ 450$.
85. The lots cost $\$ 1000$ and $\$ 400$. Gain on cheaper $=$ $\$ 200$, loss on dearer $=\$ 300 . \quad \therefore$ net loss $=\$ 100$.
86. Suppose 100 lb . consumed, $\therefore$ duty $=\$ 6$. After reduction in duty consumption $=150 \mathrm{lb}$. and duty $=\frac{2}{3}$ of $\$ 6$ $=\$ 4$. On 150 lb . the duty is $\$ 4$, or $2 \frac{2}{3} \mathrm{c}$. per lb .
87. Radius $=35 \mathrm{~cm}$., vol. $=\frac{4}{3} \times \stackrel{2}{9} \times(35)^{3} \mathrm{cu} . \mathrm{cm} . \quad \therefore$ weight $=1311.566 \mathrm{Kg}$.
88. Total area in sq. ft. $=4(30+21) \times 8 \frac{1}{2}+2(30+21)$ $=2994 . \quad \therefore$ cost $=29{ }^{9}{ }^{4}$ of $12 \mathrm{c} .=\$ 39.92$.
89. The work requires 36 days' labor. One man works $\frac{1}{2}(36-5)$, or $15 \frac{1}{2}$ days, and $\therefore$ earns $\$ 126 \times \frac{15 \frac{1}{2}}{36}$.
90. Second man's present cap. $=112 \%$ of $\$ 4000=$ $\$ 4480$. $\therefore 80 \%$ of first man's cap. was $\$ 4480$.
91. If $\$ 3$ is the inc. on $\$ 84, \$ 7$ is the inc. on $\$ 196$.
92. 10 of A's steps $=11$ of B's. $\therefore 8$ of A's $=8 \frac{1}{3}$ of B's. $\therefore 3$ goes 9 yd . while A goes $3_{5}^{4}$ yd. $\therefore$ B goes 100 yd . while A goes $97 \frac{\pi}{9}$ yd. B wins by $2 \frac{2}{8}$ yd.

## SOLUTIONS OF THE PROBLEMS

93. 18, page 213.

## Page 231

94. Prem. received by first $=\$ 120$. Prem. received by second $=\$ 48$. First loses $\frac{2}{3}$ of $\$ 4800-\$ 120+\$ 88$. Second loses $\$ 1600-\$ 48$
95. 2 men and 1 woran earn $\$ 3.25$. $\therefore$ no. of women $=45 \cdot 50 \div 3 \cdot 25=14$.
96. Gain on 435 bus. $=$ cost of $13 \%$ of 435 bus. $=$ 56.55 bus. Gain on 325 bus. $=$ cost of $11 \%$ of 325 bus. $=$ 35.75 bus. Total gain $=$ cost of 92.3 bus. Gain on 760 bus. at gain of $12 \%=$ cost of 91.2 bus. Dif. $=$ cost of 1.1 bus. $=\$ 1 \cdot 10 . \quad \therefore$ cost oî 1 bus. $=\$ 1$.
97. Solution, page 202.
98. $27573=101 \times 3 \times 7 \times 13$. 101 must be a factor of each number, and the other factor of each must contain 2 digits. $\therefore$ the other factors must be 21 and 13 , and the nos. are $101 \times 21$ and $101 \times 13$.
99.37 oz . of gold and 3 of silver are worth $\$ 629+$ $\$ 3 \cdot 30=\$ 632 \cdot 30 . \quad \therefore$ weight of $\$ 632 \cdot 30$ of the alloy is

99. 11, page 187, or solution, page 183.
100. S.P. of $\frac{3}{8}$ of $\frac{4}{5}$, or $\frac{3}{10}$ of vessel $=\$ 11700 . \therefore$ S.P. of whole $=\$ 39000$, which $=130 \%$ of cost. $\therefore$ cost $=$ $\$ 3000$.
101. No. of acres $=40 \times 35 \div 160=8$ ? , \&c.
102. 15 , page 164.

Page 232
4. Duty $=2 \frac{1}{2} \mathrm{c} . \times \frac{8,}{\frac{8}{100}} \times 3825=\$ 84 \cdot 15$. Total cost $=4 \mathrm{c}$. $\times 3825+\$ 36 \cdot 25+\$ 84 \cdot 15=\$ 273 \cdot 40$.
5. A's share $=\$ 4 \cdot 20+14 \%$ of B's share. $\therefore 114 \%$ of B's share $+\$ 4 \cdot 20=\$ 369 . \quad \therefore$ B's share $=\frac{10}{1 \frac{0}{1} \frac{0}{4}}$ of $\$ 364 \cdot 80$.

## IN THE HIGH SCHOOL AK. THMETIC

6. If he rides 8 miles it will take 1 hour to go and $2_{3}^{2}$ to return, or $3 \frac{3}{3} \mathrm{hr}$. for tire trip. $\therefore$ he can go 3 times as far, or 24 miles in 8 houss.
7. He buys at $\$ 75$ per share and sells at $\$ 81$, and $\therefore$ gains $\$ 6$ on $\$ 75$ invested, or $8 \%$.
8. Suppose the S.P. is 1c. per grain. The druggist receives $\$ 70$ for $\$ 57.60$ worth of goods. $\therefore$ he gains $\$ 12 \cdot 40$ on $\$ 5 \% \cdot 60$, or $21 \frac{1}{3} \frac{9}{6} \%$. The customer pays $\$ 70$ and loses $\$ 12 \cdot 40 . \therefore$ his loss is $17 \frac{5}{\%} \%$.
9. If receipts $=\$ 100$. Cost $=\$ 60+\$ 20=\$ 80 . \quad \therefore$ gew $=25 \%$ on cost. 2nd outlay $=$ in of $\$ 60+\frac{1}{10}$ of $\$ 20=$ $\$ 64 . \therefore$ S.P. $=\frac{5}{4}$ of $\$ 64=\$ 80 . \quad \therefore$ ratio of selling price, is $5: 4 . \therefore$ the loaf will now sell for $\frac{1}{5}$ of $7 \frac{1}{2} \mathrm{c}$. $=6 \mathrm{c}$.
10. A and B can do $\frac{1}{5}$ in a day. $\therefore$ in 3 days they do $\frac{3}{3}$ of the work. $B$ can do $\frac{1}{5}-\frac{1}{8}$, or $\frac{8}{40}$ in 1 day. $\therefore$ he can do $\frac{2}{5}$ of it in $\frac{2}{5}$ of $\frac{40}{3}$ days $=5 \frac{1}{3}$ days.
11. Total cost $=\$ 43 \cdot 80$. S.P. $=\overline{7}$ of $\$ 43 \cdot 80=\$ 54.75$. S.P. of $24 \mathrm{lb} .=\$ 12 . \quad \therefore$ S.P. of the $80 \mathrm{lb} .=\$ 42.75$.
12. Net S.P. $=\$ 7900$. $\$ 100 \cdot 25$ will buy $\$ 100$ draft. $\therefore \$ 7900$ will buy draft for $5 \frac{100 \times 7900}{100.25}=\$ 7880.30$.
13. Total outlay $=\$ 30+\$ 15+\$ 47 \cdot 50+\$ 150=\$ 242 \cdot 50$. Rent $=\$ 420 . \quad \therefore$ net gain $=\$ 177.50$ on $\$ 3000$, or $5 \frac{1}{1} \%$.

Page 233
14. Area $=640$ sq. rods. Pcrimeter of square field $=$ $4 \sqrt{640}$ rods. Radius of circle $=\sqrt{640 \times \frac{7}{22}}=14.269 . \quad \therefore$ perimeter $=14.269 \times 6 \frac{2}{7}=89.7$ rods.
15. S.P. $=\frac{8}{8}$ of $100 \%$ of cost $=133 \frac{1}{3} \%$.
16. When the faster goes 9 rounds he gains 2 rounds on the slower. $\therefore$ he gains 1 round when he goes $4 \frac{1}{2}$ rounds, or 1800 yd .

## SOLUTIONS OF THE PROFLEMS

17. If there were no expenses he would have paid 70 c . on dollar. Loss on bonk debts $=\$ 8000 . \therefore 30 \%$ of liab. $=\$ 8000$.
18. Int. on $\$ 100$ for $2 \$$ years at $4 \%=\$ 9 . \quad \therefore \$ 62 \cdot 10$ is the int. on $\$ 690 . \therefore$ first sum $=\$ 230$. Int. for $1 \mathrm{yr} .=$ $\$ 13 \cdot 80 . \quad \therefore$ time $=\frac{62 \cdot 10}{13 \cdot 80}=4 \frac{1}{2} \mathrm{yr}$.
19. $\$ 450$ is the int. on $\$ 11250$ at $4 \%$. Pres. val. of $\$ 11250$ due in 15 years $=\$ 11250 \div(1.04)^{15}=\$ 11250 \times \cdot 55526$ (page 267).
20. 16, page 204.
21. Take half of the 1 st quantities and $\frac{1}{3}$ of the second, and take the difference in the results. $\therefore 6 \frac{2}{3}$ bus. rye sell for $\$ 6$, or 1 bus. sells for 90 c.
22. The inc. from the first $=\frac{8}{8} \%$ of the investment,
 either investment.
23. Expenses $=\$(1100+400-118750)=\$ 312 \cdot 50$. Prem. $=\$ 20$, taxes $=\$ 16 \cdot 50 . \therefore T_{1000}^{15}$ of 8 of val. of farm
 $\$ 276$. $\therefore$ value $=\$ 6000$.

## Page 234

24. If A earned 70 c. per hour, B would earn 60 c . A works 13 hours and B 15 hours. $\therefore$ the pay is divided in the ratio of 91 to 90 .
25. Wt. of water in oz. $=1_{1}^{11} \times 30 \times 5 \times 1_{2}^{0} \times 1000$.
26. Duty $=20 \%$ of $95 \%$, or $19 \%$ of invoice. $\therefore 119 \%$ of inv. $+\$ 81=\$ 3773 \cdot 60 . \quad \therefore$ inv. $=\$ 100$ of $\$ 3693 \cdot 60$.
27. $\$ 480$ will buy $1500 \mathrm{yd} . \therefore$ S.P. of $220 \mathrm{yd} .=$ gain on 1500 yd . But S.P. of $220 \mathrm{yd} .=$ cost of 220 yd ., or $\$ 70 \cdot 40+$ gain on 220 yd. $\therefore$ gain on $1280 \mathrm{yd} .=\$ 70 \cdot 40$, or $5 \frac{1}{2}$ c. per yd. $\therefore$ gain $=\frac{5 \frac{1}{2}}{32}$, or $17 \frac{18}{10} \%$.
28. Pres. val. $=\$ 500(\cdot 71068+\cdot 67684+\cdot 64461)$.
29. If the amount of insurance is $\$ 1500$, the total premium is $\$ 34 \cdot 25$, \&c.
30. Cash val. $=\frac{100}{10}$ of $\$ 2100+\frac{100}{104 \frac{1}{2}}$ of $\$ 2100=\$ 4048 \cdot 40$.
31. Net earnings $=\frac{14}{100}$ of $\frac{9}{10}$ of sale $-\frac{1}{10}$ of sale $=$ ${ }^{\frac{2}{0} \frac{8}{0} \sigma}$ of $\$ 56250$.
32. When the first goes 5 rounds he gains $\frac{3}{3}$ of a round. $\therefore$ he gains a whole round when he goes $6 \frac{2}{3}$ rounds.
33. Page 168.

Page 235
34. Other $=924 \times 12 \div 84$. See page 14 .
35. $£ 460=\$ 4.862 \times 460=\$ 2238.667 . \quad 10 \mathrm{~s} .=\$ 2.433$.
$8 \frac{3}{4} \mathrm{~d} .=\$ \cdot 175$. Total $=\$ 2241 \cdot 28$.
36. $\frac{12}{100}$ of the 1 st $=\frac{15}{100}$ of $2 \mathrm{nd}=\frac{18}{100}$ of 3 rd . If the third $=\$ 3000$, the $1 s t=\$ 4000$, and the 2 rid $=\$ 3200$. $\therefore$ $\$ 612$ is divided in the proportion of $4000,3200,3000$, or $20,16,15 . \quad \therefore 1 \mathrm{st}={ }_{81}^{20}$ of $\$ 612=\$ 240$.
37. $\$ 5 \cdot$ ó $2 \frac{1}{2}=75 \%$ of cost, $\therefore \$ 7.00$ is $\frac{700}{562 \frac{1}{2}}$ of $75 \%$, or $93 \frac{1}{3} \%$ of cost.
38. 19, page 136.
39. Suppose he sold the 1st for $\$ 200$ and the 2 nd for $\$ 300$. Cost of $1 \mathrm{st}=\frac{1100}{32}$ of $\$ 200$ and of the 2 nd $\frac{100}{0} \frac{0}{4}$ of $\$ 300$. $\therefore$ gain $=\$\left(500-\frac{8000}{23}-2 \frac{280.0}{4}\right)=\$ \frac{1090}{207}$ when the proceeds $=\$ 500 . \therefore$ gain is $\$ 16$ when the proceeds $=\$ 1656$.
40. They must be mixed in the ratio of $1 \frac{1}{2}$ to $3 \frac{1}{2}$ (page 128). $\therefore$ no. of 1 lb . of $1 \mathrm{st}=\frac{1 \frac{1}{2}}{5}$ of $80=24$.
41. Consider a sale of goods tha. cost $\$ 1$ and sold for $\$ 1 \cdot 40$. No. of lb . of butter received $=\frac{18}{2} 5^{0}=5 \%$. Value of butter $=\frac{28}{8} \times{ }_{i 0}^{\circ} \times 15 \mathrm{c} .=75_{b}^{\circ} \mathrm{c} . \quad \therefore$ loss $=24 \frac{2}{6} \%$.

## SOLUTIONS OF THE PROBLEMS

42. Sells $35 \frac{3}{3}$ in. as 36 in., or $\$ 35 \frac{3}{4}$ worth as $\$ 36$. Sells $\$ 353$ worth for $120 \%$ of $\$ 36$, or $\$ 43.20$. $\therefore$ gain $=\$ 7.45$ when cost $=\$ 35.75 . \quad \therefore$ gain is $\$ 134.10$ when cost $=$ \$643. 50 .
43. $105 \%$ of prem. $=\$ 63 . \quad \therefore \$ 60$ is prem. on $\$ 9000$.
44. Sup. the 3 rd caul do $\frac{1}{12}$ of work in 1 day, then 2 nd can do $\frac{1}{15}$, and 3 rd $\frac{1}{20}$, and all can do $\frac{1}{12}+\frac{1}{15}+\frac{1}{20}$, or $\frac{1}{6}$ in 1 day. $\therefore$ they could do all the work in 5 days. But it really takes 45 days, $\therefore$ the third would do it alone in $12 \times 9$, or 108 days.

Page 236
45. Dif. in taxes paid $=\$ 21 \cdot 40$. If salaries of each had been same as 2 nd , the dif. in taxes would have been $2 \frac{1}{2} \%$ of $\$ 20$, or 50 c . less. Dif. would then have been $\$ 20 \cdot 90$. $\therefore$ Tरण융 2 of salary $=\$ 20.90$.
46. 57, page 67.
47. 19, page 136.
48. 89, page 118.
49. C's S. P. $=1 \cdot 191016$ of A's cost. $\therefore$ A's S. P. $=$ $\sqrt[2]{1 \cdot 191016}$, or 1.06 of A's cost. $\therefore$ each gained $6 \%$.

50 . Let $\$ 1=$ cost per lb . Sold 5 lb . for $112 \%$ of $\$ 5$, or $\$ 5.60$. If $4 \frac{1}{2} \mathrm{lb}$. is sold for $\$ 5 \cdot 60$, or 1 lb . for $\$ 1 \cdot 24 \frac{4}{9}$, the gain is $24 \frac{1}{8} \%$.
51. Sum of rates $=39$ miles in 4 hours, or ${ }_{1}^{3} \mathrm{~m}$. per hr . Dif. $=5 \mathfrak{l}$ miles in 7 hours, or $\frac{3}{3} \mathrm{~m}$. per hour. $\therefore$ twice faster rate $=10 \frac{1}{2} \mathrm{~m}$. per hr.
52. 9, page 194.
53. Gain $=14 \%$ of $\$ 600=\$ 84 . \quad$ Cost $=\$ 516 . \quad \therefore 114 \%$ of cost $=\$ 588.24$.
54. 47, page 66.
$5^{5} . \mathrm{Amt}^{2}=\$ 100\left(1.04^{3}+1.04^{4}+1.04^{3}+1.04^{2}+1.04\right)$.

## Page 237

56. Prime cost $=\$ 18.75$. Freight $=\$ 43.75$. Specific duty $=\$ 3.75$. Ad val. duty $=\$ 3.75 . \quad \therefore$ total $\cos t=\$ 70$. S. P. $=\$ 87.50 . \quad \therefore$ gain $=\$ 17.50$.
$57.110 \%$ of 3 times amt. paid for labor $+94 \%$ of amt. paid for lebor $=\$ 3637 \cdot 92$. $\therefore 424 \%$ of cost of labor $=$ $\$ 3637.92$, \&c.
57. Net proceeds $=96 \frac{1}{2} \%$ of $\$ 9800-25 \mathrm{c} . \times 1400=\$ 9107$.
58. $18 \frac{3}{4} \%=\frac{8}{18}$. Cap. at end $=\left(7^{\frac{1}{8}}\right)^{4}$ of cap. at beg. $\therefore$ cap. at beg. $=\$ 1303.21 \times\left(\frac{1}{\frac{q}{p}}\right)^{4}=\$ 655 \cdot 36$.
59. 15, page 159.
60. Sum of rates in yd. per sec. $=(99+132) \div 6 \frac{3}{2}=\frac{30}{9}-$. Diff. $=(99+132) \div 47 \frac{14}{4} . \therefore$ twice the faster rate $=$ $\frac{382}{6}$ yd. per sec. $=80 \mathrm{ml}$. per hr .
61. Cost $=\$ 3450$. S. P. $=\frac{11}{10}$ of $\$ 1.04 \times 3000=\$ 3432$.
62. No. of shares of $4 \%$ 's $=84$. S. P. $=\$ 98 \times 84 . \quad \therefore$ no. of shares bot. $=98$.
63. 10, page 170 .

## Page 238

65. Total sales $=\$ 11600$. Storage $=\$ 125+\$ 120=\$ 245$. Com. for selling $=\$ 120+\$ 80=\$ 200$. Total expenses = $\$ 512 \cdot 48$. Bal. $=\$ 11087 \cdot 52$.
66. $\$ 1$ at the end of each year would repay $\$ \frac{1}{1.07}+$ $\$ \frac{1}{(1.07)^{2}}=\$ 1.80802$ (page 267). $\therefore$ yearly payment $=$ $\$ 1500 \div 1 \cdot 80802$.
67. Sup. he buys 7000 grains for $\$ 1$, then he sells 5760 gr. for $\$ 1 \cdot 30$, or 7000 gr . for $\$ 1 \cdot 57 \frac{7}{7}$. $\therefore$ gain $=57 \%$. $\%$.
68. Total vol. $=176.785 \mathrm{cu} . \mathrm{in} . \therefore$ surface of single plate $=353.57$ sq. in. $\quad \therefore$ rad. $=\sqrt{353.57 \times{ }_{27}^{7}}$.
69. As assignee, A receives $3 \frac{1}{2} \%$ of $\$ 7290=\$ 255 \cdot 15$, and as creditor, $: \$(7290-255 \cdot 15)$, or $\$ 3126 \cdot \mathbf{0} 0$.

## SOLUTIONS OF THE PROBLEMS

70. $108 \%$ of cost per $\mathrm{lb} .=30 \mathrm{c} . \quad \therefore$ cost $=27 \frac{7}{\partial} \mathrm{c}$. Total $\operatorname{cost}=\$ 77 \frac{7}{8} . \quad$ S. P. $=\$ 85 \frac{5}{\%} . \quad \therefore \$ 61 \frac{5}{7}=$ S.P. of 200 lb .
71. Sup. A earns 56 c . per hr., then $B$ earns 48 c . and C 42c. A works 33 hours, B 38, C 43 . $\therefore$ their wages are in proportion of $56 \times 33,48 \times 38,42 \times 43$, or $308,304,301$.
72. No. of $\mathrm{bbl}=\frac{100}{102 \frac{1}{2}}$ of $\$ 6150 \div \$ 6=1000$. Total $\operatorname{cost}=\$ 6400$. S. P. $=\$ 7360$, or $\$ 7.36$ per bbl.
73. Present val. of debt $=\frac{100}{103 \frac{3}{4}}$ of $\$ 7470=\$ 7200$. 100 shares must be sold.

## Page 239

74. ${ }_{4}^{5}$ of $\frac{5}{8}$ of cost $+\frac{85}{100}$ of $\frac{4}{9}$ of cost $=\frac{193}{180}$ of cost, and $\frac{13}{5} \frac{5}{5}$ of $\frac{6}{9}$ of cost $+\frac{3}{3}$ of $\frac{4}{6}$ of cost $=\frac{35}{56}$ of cost. If $\frac{13}{180}$ of cost $=\$ 260 \therefore \frac{1}{3}$ of cost $=\$ 100$.
75. They must be mixed in ratio of $2 \frac{3}{5}$ to $3 \frac{2}{5}$, or 13 to 17 (page 128). $\therefore$ no. of 1 b . of 54 c . tea $=13$ of $34=26$.
 But Stuart received $\$ 50$ more of this bal. than Brown $\therefore 1^{1}$ of balance $=\$ 50 . \therefore$ bal. $=\$ 700 \therefore$ total profits $=\$ 1100$
76. $\frac{19}{8 \%}$ of total rate on investment $=51 \% . \quad \therefore$ total rate $={ }_{i}^{i}=\% . \quad \$ i_{i}^{3}=$ income on $\$ 100$ invested. $\therefore \$ 3$ is the income on $\$ 56 . \quad \therefore$ market price $=\$ 55 \frac{1}{2}$ per share.
77. By accepting the latter he should gain $3 \frac{1}{2} \%$ o $\$ 2700$, or $\$ 94 \cdot 50 . \quad \therefore$ worthless sales $=\$ 94 \cdot 50+\$ 21 \cdot 50$.
78. S. P. per acre $=\$ 210 . \quad \therefore$ no. of acres sold $=140 \chi$ $75 \div 210=50$.
79. 20, page 213.
80. The share of 1 st will amount to $142 \%$ of the sum willed to him, and of the 2 nd $124 \%$. $\therefore$ their shares mus be in ratio of 124 to 142 .

Total lb.
$\therefore$ and C ages are 04, 301.

Total
ost, and of cost
or 13 to
$=26$. balance. Brown. $=\$ 1100$. $\therefore$ total 3 is the
$3 \frac{1}{2} \%$ of $\$ 21 \cdot 50$.
$1=140 x$
the sum res must

## IN THE HIGH SCHOOL ARITHMETIC

## Page 240

82. Page 130.
83. The $\$ 165$ is divided in the prop. of 32,55 and 45.
84. Prem. I paid $=\$ 80+\$ 135=\$ 215 . \therefore$ prem. received $=\$ 241 \cdot 50$, which is $13 \%$ of amount insured.
85. $\frac{9: 3}{100}$ of $\frac{4}{3}$ of selling price per $1 \mathrm{lb} .=\frac{124}{0}$ of $5 \mathrm{c} . \quad \therefore$ selling price per $\mathrm{lb} .=8 \frac{1}{3} \mathrm{c}$.
86. The int. on $\$ 120$ is $\$ 5$, and $\therefore \$ 10$ for twice the time. $\therefore$ the discount off $\$ 130$ is $\$ 10$, and $\therefore$ off $\$ 125$ is $\$ 9 \frac{8}{13}$.
87. Vol. $=7025 \mathrm{cu}$. in. $\therefore$ area of base $=(7025 \div 14)$ sq. in. $=501.78$ sq. in. $\therefore$ side $=\sqrt{501.78} \mathrm{in} .=22.4 \mathrm{in}$.
88. If A is paid $\$ 2$ a day, B is paid $\$ 3$ and $\mathrm{C} \$ 3.75$. $\therefore$ A would earn $\$ 12, \mathrm{~B} \$ 21, \mathrm{C} \$ 30$. $\therefore$ the $\$ 42$ is divided in prop. of $12,21,30$.
89. On the 276 yd . he gains the cost of 41.4 yd ., and on the 398 yd . the cost of $27.86 \mathrm{yd} . \therefore$ total gain $=$ cost of 69.26 yd . If he had sold the 074 yd . at gain of $11 \%$, he would have gained the cost of $74.14 \mathrm{yd} . \therefore$ cost of 4.88 yd. $=\$ 4.88 . \quad \therefore$ the cloth cost $\$ 1$ a yard.
$90.120 \%$ of cost $=85 \%$ of (cost $+\$ 49) . \therefore 35 \%$ of cost $=85 \%$ of $\$ 49 . \quad \therefore$ cost $=\$ 119$.
90. Rent $=\$ 1860$. Premium $=\$ 86.80$. Taxes $=\$ 186.75$. Total outlay $=\$ 620$. Net income $=\$ 1240$, which is $8 \%$ of $\$ 15500$.

## Page 241

92. P. W. of 1 st $=\$ 11000 \div 1.02^{6}=\$ 11000 \times 88797$ $=\$ 9767.67$. P. W. of $2 \mathrm{nd}=\$ 2000\left(\frac{1}{1.02}+\frac{1}{1 \cdot 02^{2}}+\ldots \frac{1}{1 \cdot 02^{5}}\right)$ $=\$ 2000 \times 4.71346=\$ 9426.92 . \therefore$ diff. $=\$ 340.75$. Use table, page 266.
93. 1st inc. $=\$ 630 . \therefore 2 n d$ inc. $=\$ 702 . \therefore$ no. of slares of second stock $=702: 4 \frac{1}{2}=156 . \therefore 156$ shares cost $\$ 210 \times 78$.

## SOLUTIONS OF THE PROBLEMS

94. Amount of $\$ 250$ in $2 \mathrm{yr} .=\$ 300 . \therefore$ amt. of $\$ 1=$ $\$ 1.20$ in $2 \mathrm{yr} . \quad \therefore$ amt. of $\$ 1$ in $1 \mathrm{yr} .=\$ \sqrt{1 \cdot 20}=\$ 1.0954$. $\therefore$ rate $=9.54 \%$.
95. Cash value of goods $=\frac{100}{102 \frac{1}{2}}$ of $\$ 304 \cdot 50=\$ 300 . \quad \therefore$ cash S. P. $=\$ 375$. Amt. of $\$ 375$ in $8 \mathrm{mo} .=\$ 390$.
96. 74, page 229.
97. If the S. P. of each was $\$ 99$, the cost of the 1st is $\$ 90$, and of the second $\$ 110$, and loss would be $\$ 2$.
98. 29, page 155.
99. The dif. between $\frac{1}{87}$ and $\frac{1}{98}$ of the sum invested $=$ 12. $\therefore$ the sum invested $=\$(87 \times 99)$, which buys 99 shares of $4 \%$, or 87 shares of $4 \frac{1}{2} \%$ stock. $\therefore$ the dividends are $\$ 396$ and $\$ 391.50$.
100. Page 192.

## Page 242

1. 89 , page 240 .
2. The int. on $\$ 860$ is $\$ 15$ in $79+$ days $=80$ days. $\therefore$ it was due 80 days after Mar. 23 rd $=$ Iune 11 th.
3. He sells the barrel as $\left(\frac{8}{15}+\frac{8}{17}\right)$, or $\frac{258}{\frac{8}{8}}$ of a barrel, and $\therefore$ gains $\frac{1}{285}$, or $\frac{20}{51} \%$.
4. Vol. of each brick with mortar $=\left(9 \times \frac{9}{2} \times 4 \times 1 \frac{7}{8}\right)$ $\mathrm{cu} . \mathrm{in}$. Vol. of wall $=(45 \times 17 \times 4 \times 1728) \mathrm{cu}$. in., $\& \mathrm{c}$.
5. If each had $\$ 100$ at first, they would now together have $\$ 61+\$ 14 \bar{j}=\$ 206 . \quad \therefore$ each had $\$ 100 \times \frac{184 \cdot \frac{20}{20} 0}{2}=\$ 80$.
6. ${ }_{8}^{8}$ of $\frac{7}{1}$ of cost $=\$ 714$. . . the cust $=\$ 734 \cdot 40$.
7. 30, page 160 .
8. (a) Amount of $\$ 1=\$ 1 \cdot 12 \quad \$ 728$ is amt. of $\$ 728$ $\div 1 \cdot 12=\$ 650$. (b) Amt of $\$ 1=\$ 1 \cdot 1236 \quad \therefore \$ 728$ is the amt. of $\$ 728 \div 1 \cdot 1236=\$ 645 \cdot 92$.
9. Let $r$ yards be the radius of inner circle. $\therefore$. $\because(r+22)^{2} \quad r^{2}=12 \times 4840 \quad \therefore r-409$.

## Page 243

10. $\$ 93$ invested at $6 \%$ yields $\$ 5.58$ inc. If $\$ 9$ is to be the inc. on $\$ 100$ invested, $\therefore \$ 5 \cdot 53$ is the inc. from $\$ 62$. 11. Duty on 1 gal. $=\frac{1}{6}$ of $\%$ of $\$ 1 \cdot 75=\$ .31 \frac{1}{8} . \quad \therefore$ no. gal. $=\$ 268.80 \div \$ .31!=864$.
11. 21 , page 188 .
12. Net proceeds of sale $\$ 8500-\$ 212.50-\$ 240.80=$ $\$ 8046.70$. It costs $\$ 100{ }^{3}$ to send $\$ 100$. $\therefore$ the consignor receives $\frac{909}{80} \frac{0}{3}$ of $\$ 8046 \cdot 70=\$ 8016 \cdot 64$.
13. He gained $\$ 1.05$ on each bbl. of 1 st, and lost 70 c . on each of the $2 \mathrm{nd} . \therefore$ the no. of bbi. must have been in the ratio of 70 to 105 , or 2 to 3 .
14. Cost of the land at the end of the year $=\$ 57.50 \times$ $308 \times \frac{104}{10 \%}=\$ 22006.40$. S.P. $=\$ 21988$.
15. A's share $=\frac{77}{7}$ of $80 \%$ of total yanits $=\$ 675$. $\therefore$ profits $=\frac{\pi}{2} \frac{1}{7}$ of $\frac{1000}{80}$ of $\$ 675=\$ 2000$ on $\$ 0400$, or $31 \% \%$.
16. Rent $=\$ 360$. Int. $=\$ 180$. Ins. $=\$ 37.50$. Taxes $=$ $\$ 57$. Water rates $=\$ 15$. Loss on saic $=\$ 60 . \therefore$ Diff. $=$ $\$ 10 \cdot 50$.

## Page 244

18. 9, page 194.
19. 27 , page 155.
20. 32, page !13.
21. The time in d $\because y=380 \times \frac{2210 \cdot 10}{2596 \cdot 92} \times \frac{24944 \cdot 10}{30441}=265$. Int. on $\$ 100$ in 365 days $=\$ 22.1010 \times 3{ }^{3} 8 \times 3.1991 \mathrm{~T}=\$ 10$.
22. Sinppose the material inas to cost $\$ 600$ and the labor $\$ 300$. Real cost of materiai $=\$, 300+18_{5}^{5}$ of $\$ 300=$ $\$ 615$, and of the labor $-\$ 100+9^{9}{ }^{2}$ of $\$ 200=\$ 234$. Total cost $=\$ 899$, which is $\$ 1$ below the estimate. the est1mate was $\$ 9000$.

## SOLUTIONS OF THE PROBLEMS

23. Total cost $=\$ 4.87 \times 7490 \div 25.22 \times \frac{1}{1} \frac{18}{8}=\$ 1663.27$. Selling price $=\$ 4.87 \times 420=\$ 2045 \cdot 40$.
24. 66, page 238.
25. 16, page 195.
26. If the cash price is $\$ 1$, the credit price would be the amt. of $\$ 1$ in $6 \mathrm{mo}=\$ 1.05 . \quad \therefore$ ratio is 100 to 105.
27. $\$ 21.87$ is $\frac{21}{3} \frac{8}{6} \frac{7}{6}$, or $\frac{320}{1000}$ of $\$ 30$. The first reduced price is the same fraction of the marked price that the second reduced price is of the first, and that the third is of the second. $\therefore$ the selling price is obtained by multiplying the marked price by the cube of this fraction. $\therefore$ the cube of the fraction is $\frac{729}{1000} . \therefore$ the fraction is $\frac{9}{10}$. $\therefore$ the rate of discount is $10 \%$.

## Page 245

28. The duty on the wine, without water, is $\$ 60$ ad valorem, and $\$ 37$ specific; that is $\$ 97$ in all. 30 gal. are spirits, $\therefore 26 \%$ of the mixture is 30 gai. $\therefore$ the mixture $=115_{13}{ }^{\frac{5}{3}}$ gal. The spec. duty on the mixture $=\$ .25 \times$ $115_{1}{ }^{6}{ }^{6}=\$ 28 \frac{1}{1} \frac{1}{3}$. The ad val. duty $=30 \%$ of ${ }_{10}{ }^{\circ}$ of $\$ 200=$ $\$ 54 . \therefore$ total duty $=\$ 82 \frac{1}{3}$. $\therefore$ gain in duty $=\frac{14}{12}$. Loss in value of wine is $\$ 20 . \quad \therefore$ net loss $=\$ 5 \frac{1}{13}$.
29. 18, page 213.
30. 45, page 236.
31. The dif., $\$ 525$, is the int. on $\$ 10.50$ for 1 year. $\therefore$ the rate is $5 \% . \quad \therefore 5 \%$ of amt. at end of 1 st year $=$ $\$ 10.50 . \therefore$ amt. at end of 1 st year $=\$ 210 . \quad \therefore$ principal $=\$ 210 \div 1 \cdot 05=\$ 2 \mathrm{c} 0$.
32. Pref. stock receives $\$ 2 \frac{1}{2} \times 1500$, or $\$ 3750$ more than the average. $\therefore$ ordinary receives $\$ 3750$ less. But ordinary receives $\$ 1$ per share less. $\therefore$ no. of shares of ordinary stock $=3750 \div 1 \frac{1}{2}$

$$
\text { 33. } \therefore \text { P. of } 60.8 \text { yd }=\$ 5.70 \times 64 \times \frac{0}{8} \text {. }
$$

34. Let cost $=\$ 3$. $\therefore$ cash selling pr. $=\$ 4 . \quad \therefore$ credit S.P. $=\frac{9}{8}$ of $\$ 4=\$ 4 \cdot 50 . \quad \therefore$ gain on $\$ 3$ is $\$ 1 \cdot 50$, or $50 \%$.
35. Dishonest gain $=\frac{\frac{3}{4}}{35 \frac{1}{4}}$, or $\frac{1}{4}_{\frac{1}{7}}$ of marked price. Actual S.P. $=\frac{4}{4} \frac{8}{7}$ of $\frac{5}{4}$ of cost $=\frac{6}{4} \frac{0}{7}$ of cost. $\quad \therefore$ entire gain $=$ $\frac{1}{4} \frac{3}{7}$ of cost $=\$ 124 \cdot 80 . \quad \therefore$ cost $=\$ 451 \cdot 20 . \therefore$ dishonest gain $=\frac{1}{4}$ of $\$ 451.20 \times \frac{6}{4}=\$ 12$.
 ${ }^{2}{ }^{26} 0$ of $\$ 2500=\$ 2025 . \quad \therefore \%$ obtained $=\frac{2025}{850}=81 \%$.

## Page 246

37. One cent is the unit. Int. on $\$ 325=\$ 126 \cdot 75$, which is represented by 12675 when one cent is the unit.
38. $11520 \mathrm{~m} . \mathrm{b} .=11520 \times 2 \frac{1}{8} \mathrm{fr} .=\$\left(11520 \times 2 \frac{1}{\mathrm{f}} \div 5 \cdot 16\right)$.
39. Total S.P. $=\$ 3500$. Com. $=\$ 140$. Bal. to be divided $=\$ 3360$. Suppose B's was werth 100 units per bbl., then A's is worth 110 and C's 116 . Total val. of A's would be $125 \times 110$, or 13750 ; B's 15000 , C's 26100 . A should $\therefore$ receive $\frac{13}{5} \frac{3}{8} 50$ of $\$ 3360=\$ 842 \cdot 30$.
40. Surface in sq. ft. $=2 \frac{1}{2} \times \frac{2}{5} \times 12 . \quad \therefore$ cost $=\$ 1.25 \times$ $2 \frac{1}{2} \times \frac{2}{7} \times 12$.
41. 16, page 195.
42. 20 and $25 \%$ off leaves $60 \%$ of cost. $\therefore$ S.P. $=6$ of marked price. $\therefore$ S.P. is $\sqrt{\cdot 6}$, or $\cdot 7746$ of lst reduced price. $\therefore$ the reduction in each case is 2254 , or $22.54 \%$.
43. P.W. of $\$ 2 \mathrm{CO}$ due in $8 \mathrm{mc} .=\$ 200 \times \frac{78}{7}=\$ 189.87341$. P.W. of $\$ 2.00$ due in $12 \mathrm{mo} .=\$ 200 \times \frac{25}{7}=\$ 185 \cdot 18518$. Total F.W. $=\$ 375 \cdot 05859$. P.W. of $\$ 400$ due in 10 mo. $=\$ 400$ $X_{i}^{i}=\$ 375 . \quad \therefore$ Loss $=5.86$ cents.
44. Policy $=\frac{3}{4}$ val. + prem. But prem. $=3 \%$ of policy, $\therefore 97 \%$ of pol. $=\frac{3}{4}$ val. $\therefore$ policy $=\frac{75}{7}$ val.
45. 7, page 198.
46. Outside vol. in cu. ft . $=7 \frac{1}{6} \times 3 \frac{2}{3} \times 2 \frac{1}{2}=71 \frac{2}{3} \mathrm{~g}$. Inside vol. $=7 \frac{2}{3} \times 3 \frac{1}{2} \times 2 \frac{1}{3}=62 \frac{1}{\frac{1}{8}} . \quad \therefore$ vol. of boards $=9{ }_{3}{ }^{7} 6$ cu. ft. $\quad \therefore$ surface $=110 \frac{1}{3}$ sq. ft. $\quad \therefore$ cost $=2 \mathrm{c} . \times 110 \frac{1}{3}$.
47. If the cost of the house is the unit, the cost of the farm $=3 \frac{3}{3}$ units. S. P. of house $=\frac{9}{10}$, and of farm $=$
 unit $=\$ 812$.

## Page 247

48. $\$ 129600$ amounts to $\$ 178506 \cdot 25$ in 2 years. $\therefore$ the amt. in 2 years is obtained by multiplying the principal by $\frac{178506 \cdot 25}{129600}$. $\therefore$ the amt. for 1 yr . is obtained by multiplying by the square root of this fraction, or by $\frac{1025}{8 \%} . \therefore$ the
 original sum $=\$ 129600 \div \frac{178506 \cdot 25}{129600}$.
49. P. W. of $\$ 618$ due in $4 \mathrm{mo} .=\frac{109}{\frac{00}{3}}$ of $\$ 618=\$ 600$. Cash price $=96 \%$ of $\$ 618$, or $\$ 593.28 . \quad \therefore$ dif. $=\$ 6.72$.
50. If laid lengthwise, it requires 8 strips, 7 being 21 ft . long and one 20 ft ., or 167 ft . of carpet. If crosswise it requires 9 strips, 8 being 18 ft . io ig and one 16 ft ., or 160 ft . of carpet. $\therefore$ no. of sq. yd . required when laid crosswise $=1 \frac{8}{g} \times 3=40$. But area of the room is $35_{8}^{5}$ sq. yd. $\therefore$ waste $=4 \frac{4}{y}$ sq. yd.
51. P. W. of $\$ 224$ due in $2 \mathrm{mo}=\frac{100}{100}$ of $\$ 224=\$ 221.78$. P. W. of $\$ 274$ due in $4 \mathrm{mo}=\frac{1}{\frac{1}{0} \frac{0}{2}}$ of $\$ 274=\$ 263.63$.
52. 29, page 155.
53. Cap. at end of $3 \mathrm{yr}=(\$ 18052+\$ 500) \frac{b}{d}=\$ 15460$. Cap. at end of $2 \mathrm{yr}=(\$ 15460+\$ 500) \frac{5}{6}=\$ 13300$. Cap. at end of 1 yr. $=(\$ 13300+\$ 500) \frac{5}{e}=\$ 11500 . \quad \therefore$ original cap. $=(\$ 11500+\$ 500)_{8}^{\frac{s}{8}}=\$ 10000$.
54. Page 202.
$55.82 \frac{1}{2} \%$ of $\frac{3}{8}$ of the goods $=49 \frac{1}{2} \%$ of the whole, and $76 \frac{1}{2} \%$ of $\frac{2}{6}$ of the goods $=30 \frac{1}{2} \%$ of the whole. $\therefore$ the amt. realized $=80 \%$ of whole value. If the whole val. would realize $81 \%$ of claims, then $80 \%$ of value would realize $80 \%$ of $81 \frac{1}{\%}$, or $65 \%$.
55. Time required to plough 1 strip and to turn $=4 \frac{1}{2}$ $\min . \therefore$ in 9 hr . he ploughs 4800 rods. $\therefore$ no. of ac. $=$ $\frac{4800}{160} \times \frac{11}{12 \times 3 \times 5 \frac{1}{2}}$.

57 . On $\$ 500$ the interest is $\$ 10 \cdot 20$ in 73 days, \&c.

## Page 248

58. Suppose he bought 4 lb . Then he sold 1 lb . at a reduction of $10 \mathrm{c} . \quad \therefore$ he intended to gain 90 c . on the 4 lb ., which is $30 \%$ of cost. $\therefore$ cost of $4 \mathrm{lb} .=\$ 3$.
59. P. W. of $\$ 5.70=\$ 5.62 \frac{1}{2} . \quad \therefore$ cash S. P. $=\$ 5.62 \frac{1}{2} \times$ $\frac{106 \frac{2}{3}}{100}=\$ 6$, which amounts to $\$ 6 \cdot 12 \mathrm{in} 6 \mathrm{mo}$.
60. Net inc. on each share $=\$ 4.90$, which is $7 \%$ of cost. $\therefore$ cost of 1 share $=\$ 70 . \quad \therefore$ market value $=\$ 69$. .
61. Total cost $=\$ 2220$. 3. P. $=\$ 672+\$ 1495+\$ 345=$ $\$ 2512$. Com. $=\$ 75 \cdot 36 . \therefore$ net S. P. $=\$ 2353.20 . \therefore$ gain $=\$ 133 \cdot 20$, or $6 \%$.
62. The loss $=\frac{1}{1}$. But the loss is equal to the discount on the amount of the marked price above the cost; that is the loss may be obtained by multiplying the cost by the square of the discount fraction. $\therefore$ the discount fraction is $\frac{1}{4}$, or $25 \%$.
63. Taking 7, 6, 5 as the length, breadth and height, area of walls and ceiling $=172 . \therefore$ each sq. unit costs $\$ 2$ $=$ cost of 4 sq. yd. $\therefore 1$ sq. unit $=4$ sq. yd.; but area of floor $=42$ sq. units $=168$ sq. yd.


## MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART Na. 2)


APPLIED IMAGE inc
1653 East Mein Streat Rochester, New York 14609 USA (718) 482 - 0300 - Phona
(718) 288 - $5989-F 0 x$

## SOLUTIONS OF THE PROBLEMS

64. Value of $1 \mathrm{oz} .=934 \frac{1}{2} \mathrm{~d}$. $\therefore$ gold valued at $(1869 \times$ 240)d. weighs 480 oz ., or 40 lb . Troy.
65. 66, page 238.
66. The price of the mixture is $37 \frac{1}{\frac{5}{6}} \mathrm{c}$. per lb . They must be mixed in ratio of $2 \frac{1}{\frac{5}{6}}$ to $2 \frac{1}{16}$ (page 128).

## Page 249

67. 37, page 151.
68. Let $\$ 100=$ cost. $\quad \therefore \$ 70=$ new cost. $2 \frac{1}{2}$ times the gain on $\$ 70=1 \frac{3}{4}$ times the gain on $\$ 100 . \quad \therefore \$ 100+$ gain on $\$ 100=\$ 70+13$ times the gain on $\$ 100 . \quad \therefore \frac{3}{4}$ of gain on $\$ 100=\$ 30 . \quad \therefore$ rate of gain $=40 \%$.
69. It costs $\$ 2 \cdot 80+\cdot 20 \mathrm{c} .+6 \cdot 3 \mathrm{c}$. or $\$ 3.063$ to buy 1 cwt . of flour. Com. on sale of apples is $\frac{3}{10 \sigma}$ of amount of sale, or $\frac{3}{07}$ of imount left to buy flour. $\therefore$ com. on sale of apples, sufficient to buy 1 cwt . of flour, is $\frac{3}{W_{7}}$ of $\$ 3.063$. $\therefore$ total com. when 1 cwt . is bought $=1 \frac{5}{9} \frac{3}{7}{ }^{\circ} \mathrm{C}$. Hence no. of cwt. bought $=\$ 63+1 \frac{6}{6} \frac{8}{7}{ }^{\circ} \mathrm{c}$.
70. Vol. of plate in cu. in. $=4 \times 4 \times \frac{2}{7} \times 2$. Vol. of shot $=\frac{4}{3} \times{ }^{3 / 3} \times(\cdot 05)^{3}$.
71. The eagle $(\$ 10)$ contains $\frac{28}{4} \frac{8}{8}{ }^{6} \times{ }_{10}$ oz. pure gold.

 $\$ 4.866+$, which is very nearly $109 \frac{1}{2} \%$ of $\$ 4.44 \frac{4}{1}$.
72. He gives 35.28 in . for $90 \%$ of M. P. per yd. $\therefore$ he gives 36 in . for $91 \frac{1}{4} \%$ of M. P. per yd. $\therefore$ he could give a disct. of $8 \frac{8}{40} \%$.
73. $\$ 1200$ amounts to $\$ 1389.15$ in 3 yr ., or to H 影合 of the prin. $\therefore$ the amt. in one year is $\frac{21}{2}$, or 1.05 of the prin.
74. Page 129.
75. 27, page 200.

## Page 250

76. The cube is $\cdot 0959 \ldots$ The fourth power is $.0439 \ldots$
77. The ratio of the prod. of the two smallest to the prod. of the two largest=ratio of the smallest to the largest. $\therefore$ when the smallest is 4 the largest is 6 . Similarly the ratio of the intermediate one to the largest is 4 to 5 . $\therefore$ when the largest is 6 the intermediate one is $\frac{1}{5}$ of 6 , or $4 \frac{4}{5}$. $\therefore$ the nos. are in the ratio of $4,4_{5}^{\frac{4}{3}}, 6, \& c$.
78. Former rate is $2 \frac{1}{2} \%$. $\therefore$ he must pay $3 \%$ on $\$ 2500$.
79. Suppose A gets $\$ 24$, then B gets $\frac{5}{4}$ of $\$ 24$, or $\$ 30$; C gets $\frac{7}{8}$ of $\$ 30$, or $\$ 35$; D gets $\frac{9}{8}$ of $\$ 35$, or $\$ \frac{315}{\frac{5}{5}} . \therefore$ it is divided in proportion of $24,30,35, \frac{3}{8}{ }^{5}$, or $192,240,280$, and 315.
80. 11, page 187.
81. The refund $=30 \%$ of $7 \frac{1}{2} \%$ of $\$ 42134=\$ 948.015$.
82. The length is 11 and width $\frac{8}{8}$ of original; $\therefore$ area of end is 11 of $\frac{2}{2} \frac{3}{3}$, or $\frac{285}{85}$ of original. $\therefore$ the thickness is

83. Incomes below + incomes above $=£ 500000 . \quad \therefore 2^{1} \frac{1}{0}$ inc. below $+8_{2}^{10}$ inc. above $=£ 25000$. But $\frac{70}{50}$ inc. below $+\frac{1}{8} \delta$ inc. above $=£ 18750 . \quad \therefore \frac{\sigma^{5}}{5} 0$ of inc. below $=£ 6250$.
84. 9, page 194.
85. Suppose he invests $\$ 100$ in oats, $\$ 125$ in barley and $\$ 270$ in wheat. The total selling price $=\$ 108+\$ 118.75+$ $\$ 307 \cdot 80=\$ 534 \cdot 55$, which is $\frac{1}{24}$ of the actual sum. $\therefore$ he invested $\$ 2400$ in oats.

## Page 251

86. $\frac{2}{8}$ of no. of votes cast $=832 . \therefore$ no. cast $=3328$. $\therefore 18$ of no. of electors $=3328 . \quad \therefore$ no. $=4096$.
87. They will beat $7,8,9$ times in of a min., or thus: the time between successive heats is $\frac{9}{7}$, $\frac{\circ}{8}, \frac{\circ}{6}$ sec., and the 1.c.m. of these is 6 sec .

## SOLUTIONS OF THE PROBLEMS

88. $2000 \times 2000 \times 50 \div 360 \div 33000$.
89. $\frac{5}{7}$ of work is done in 20 days. $\therefore \frac{25}{2} \frac{5}{8}$ could be done in 25 days. $\therefore \frac{8}{28}$ is done in 5 days by 3 men. $\therefore \frac{5}{7}$ is done in 20 days by 5 men.
90. Proposed gain $=8 \%$ of $\$ 600=\$ 48$. Actual gain $=$ $\frac{1}{1 E}$ of $\$ 600=\$ 50$.
91. Page 131.
92. Suppose the two lots are put together then there will be $50 \mathrm{c}^{\circ}$ : each coin, and the total value of the two lots is $\$ 22.50$. Also the dif. of their values is $\$ 1 . \therefore$ the value of the given lot $=\frac{1}{2}$ of $\$ 23.50=\$ 11.75$. If they were all 25 c . the val. would be $\$ 12 \cdot 50$, or a reduction of 75 c . $\therefore$ no. of 20 c. pieces is $75 \div 5=15$.
93. I want 364 oz. nickel, 336 lead, and 392 tin. The alloy used is $\frac{2}{8}$ nickel. $\therefore$ to get 364 oz . nickel I must use $\frac{8}{8}$ of 364 , or 910 oz . of the alloy, which will contain $\frac{\mathrm{g}}{\mathrm{B}} \mathrm{B}$ of 910 , or 234 oz . lead. $\therefore 102 \mathrm{oz}$. lead must be added.
94. 51, page 247.

## Page 252

95. If the cask contains 4 gal . wine and 3 water, then after the operation it will contain 3 gal. wine and 4 water. $\therefore 1$ gal. of wine must be drawn off, or $\frac{1}{}$ of the mixture.
96. When the first goes 5 rounds, the second goes 7 , and the third 9 . $\therefore$ when the 1 st goes $2 \frac{1}{2}$ rounds the 2nd goes $3 \frac{1}{2}$ and the third $4 \frac{1}{2}$. $\therefore$ they are then all together for the first time.
97. $1 \div 2 \cdot 302585=.43429$.
98. The 3rd gains 100 yd. on 2 nd in 6 min., and 200 on the 1 st in 8 min . $\therefore$ 3rd gains $16 \frac{2}{3}$ yd. per min. on the 2nd and 25 yd . per min. on 1st. $\therefore$ the 2 nd gains $8 \frac{1}{3} \mathrm{yd}$. per min. on the 1 st . $\therefore$ he will gain 100 yd . in 12 min . from starting.
99. The 8 boys receive $27 \mathrm{c} . \times 8$, or $\$ 2.16$ below the average. Each man receives 18 c . more than the average. $\therefore$ the no. of men $=2 \cdot 16 \div \cdot 18=12$.
100. The present worth of $\$ 5 \cdot 10$ due in 1 yr . is $\$ 5$. $\therefore$ rate is $2 \%$.
101. $150 \%$ of cost of mixture $=45 \mathrm{c}$. per $\mathrm{lb} . \quad \therefore$ cost $=$ 30c. Total cost of $47 \mathrm{lb} .=\$ 14 \cdot 19$. Cost of 25 lb . of 32c. tea $=\$ 8.00 . \quad \therefore$ cost of 22 lb . of the first two kinds $=$ $\$ 6 \cdot 10$. If the 22 lb . were all 25 c . tea, the cost would be $\$ 5 \cdot 50$, or 60 c . less than the actual cost. $\therefore$ no. of lb . of 37 c . tea $=60 \div 12=5$.
102. 1 centimetre $=.3937$ in. $\therefore 1 \mathrm{cu} . \mathrm{cm} .=(.3937)^{8}$ cu. in. 277.27 cu . in weigh 70000 grains. $\therefore 1 \mathrm{cu} . \mathrm{cm}$. weighs $70000 \times(\cdot 3937)^{3} \div 277 \cdot 27$.
103. Let $r$ be the rad. of the circle. Then area of square is $4 r^{2}$, and of the circle $\frac{22}{T} r^{2}$. $\therefore$ the circle is $\frac{1}{1}$ of the square. $\therefore$ the cost is $\frac{1}{1} \frac{1}{2}$ of $\$ 3 \cdot 20$.

## Page 253

4. 28 , page 155.
5. No. of shares of 1 st stock $=500, \therefore$ div. $=\$ 2750$. No. of shares of 2 nd stock $=500, \therefore$ div. $=\$ 3750$.
6. 16, page 213.
7. No. of sec. $=5 \mathrm{~m} . \div 1140 \mathrm{ft} .=23 \frac{3}{y}$. In $23 \frac{3}{1} \mathrm{sec}$. the train goes ${ }^{817 \mathrm{fit}} \mathrm{mi}$.
8. The U.S. dollar contains $\frac{9}{10}$ of $412 \frac{1}{2}$ grains of pure silver. The Can. dollar contains $\frac{87}{8}$ of 360 grains of pure silver. $\therefore$ the ratio is $\frac{20}{10}$ of $412 \frac{1}{2}$ to $\frac{87}{4}$ of 360 , or 165 to 148 .
9. Vol. of coue in cu . in. $=\frac{22}{2} \times 25 \times 4.1 \mathrm{cu}$. in. of silver weighs $\frac{10880}{1828}$ oz. $\therefore$ wt of cone in oz. $=\frac{10800}{179 B^{2}} \times$ $38 \times 25 \times 4$.
10. Average S.P. $=\$ 5.40 . \therefore$ the wo kinds were in the ratio of 40 to 60 , or 2 to 3 , (page 128).

## SOLUTIONS OF THE PROBLEMS

11. 12, page 170.
12. 9, page 194.

Page 254
13. Apply formula page 87 to find area.
14. Cost of mixture $=75 \mathrm{c}$. a pint. But 7 jc . is the cost of only $\frac{5}{8}$ pint of wine. $\therefore \frac{3}{8}$ of the mixture is water.
15. In 1 hr . A does $\frac{1}{8} \sigma$ and $B \frac{1}{8} \mathrm{~T}$ of the work. $\therefore$ joth

16. $\frac{88}{7} r^{2}=1386, \therefore r=10.5 . \quad \therefore$ vol. of sphere $=\frac{4}{3} \times$ ${ }_{7}^{2} 2 \times(10.5)^{3}=4851 \mathrm{cu}$. in. Edge of cube $=16 \mathrm{in} . \quad \therefore$ vol. of cube $=4096 \mathrm{cu}$. in.
17. Face of $\mathrm{draft}=\$ 400 . \quad \therefore$ no. of shares $=50$.
18. Suppose weight of each is 120 grains. The first contains 110 of gold and 10 of alloy, which is the same in value as $110 \frac{2}{3}$ grains of gold. Similarly the second is the same in value as $108_{5}^{\frac{1}{5}}$ grains of gold. $\therefore$ the ratio is $110 \frac{2}{3}$ to $108 \frac{4}{5}$, or 415 to 408 .
19. The $\$ 12$ is $2 \%$ of the total com. $\therefore$ the total com. is $\$ 600 . \quad \therefore 1$ st com. was $\frac{1}{2}(\$ 600+\$ 12)$, or $\$ 306$. $\therefore$ value of goods $=\$ 306 \times 1 \frac{100}{2}=\$ 15300$.
20. The diff., $\$ 1.9968$, is the int. for 1 year on the second year's init., that is, on $\$ 49.92 . \quad \therefore$ the rate is $4 \%$.
21. Page 202.
22. The diagonals bisect each other at right a::gles. $\therefore$ the area is $\frac{1}{2}$ of the prod. of the diagonals.

## Page 255

23. Rent $=\$ 216$. Premium $=\$ 19$. $\therefore$ net inc. $=\$ 216$ $-\$ 66=\$ 150$, which is $6_{\mathrm{T}}{ }^{6} \%$ of value.
24. 1 cu . ft. of water weighs $1000 \times \frac{437.5}{480} \mathrm{oz}$. Troy. $1 \mathrm{cu} . \mathrm{m} .=\left(\frac{5280}{1700}\right)^{3} \mathrm{cu} . \mathrm{ft} . \quad \therefore 1000$ kilo. $=1000 \times \frac{437.5}{490} \times$ $\left(\frac{5280}{1700}\right)^{8}$ oz. Troy.
25. Measure $=\left(3 \frac{1}{8} \times 5 \frac{1}{2}\right) \div\left(\frac{3}{4} \times \frac{7}{8}\right)=26 \frac{4}{8} t$.
26. $A, B$ and $C$ do $\frac{1}{\frac{1}{1}} \frac{1}{10}$, or $\frac{7}{20}$ in : day. $\therefore A$ can do $\frac{7}{26}-\frac{1}{6}$, or $\frac{11}{66}$ in 1 day. $\therefore A$ and $C$ do $\frac{1}{86}+\frac{1}{10}$, or $\frac{17}{6}$ in 1 day.
27. 1 rouble $=38.177$ pence $=38.177 \times \frac{25.2215}{240}$ francs.
28. Discount for 100 days $=\$ 182.50 \times ? \frac{29}{5} \times=\$ .50$. $\therefore$ on $\$ 179$ the bank makes $\$ 3.50$ int. in 100 da,
29. Circumference $=\mathbf{2 2} \mathrm{ft} . \quad \therefore$ re dius $=3.5 \mathrm{ft} . \quad \therefore$ area $=38.5$ sq. ft.

3C. Suppose it holds 30 pints and $\therefore$ contains 25 of wine and 5 of water. The second mixture contains 18 of wine and 12 of water. $\therefore 7$ pints of wine were drawn from the 25 pints, $0 \frac{7}{23}$ of the mixture.
31. Sup. 30c. the cost of tea and 16 c . of coffee. $\therefore$ gain on coffee $=\$ 44.80$. T.oss on tea $=\$ 13.50$. Net gain $=$ $\$ 31 \cdot 30$. $\therefore$ tea cost 60 c . per lb .
32. $\$ 2$ is the com. on $\$ 100 . \quad \therefore$ rate $=2 \%$.

## Page 256

33. Cash cost $=\$ 30 . \quad \therefore$ cash $S . P .=\$ 36$. The in $\$$. on $\$ 36$ is $\$ 1.20$ in 10 mo .
34. 462 gal. $=\frac{30 \times 462 \times 8}{1728} \mathrm{cu} . \mathrm{ft}$. Surface of base of cistern $=\frac{22}{7} \times \frac{7}{2} \because: \frac{7}{2}$ sq. ft. $\quad \therefore$ depth $=\frac{30 \times 462 \times 8}{1728} \div$ $\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \mathrm{ft}$.
35. The sheep at $\$ 5$ and $\$ 6$ will balance each other. A sheep at $\$ 4$ gains $\$ 1 \frac{1}{2}$, and one at $\$ S$ loses $\$ 2 \frac{1}{2}$. $\therefore 5$ sheep at $\$ 4$ will balance 3 sheep at $\$ 8 . \quad \therefore$ the numbers may be $5,1,1,3$, or $5,2,2,3$, \&c.

## SOLUTIONS OF THE PROBLEMS

36. Cost of cloth $=£ 1500$. S. P. $=\$ 10000$. Com. for selling $=\$ 500$. Duty $=\$ 4.86 \frac{2}{3} \times 1500 \times \frac{1}{4}=\$ 1825 . \quad \therefore$ net proceeds $=\$ 7350$. Each barrel costs (with com.) $\$ 2 \cdot 10$. $\therefore$ no. of bbl. $=3500$. S. P. of apples $=£ 1750 . \quad \therefore$ gain $=$ Ł250.
37. If second investment had been equal to the first the dif. in incomes would have been $\$ 134-\$ 125$, or $\$ 9$. Had he invested $\$ 3000$ in each the incomes would differ by $\$ 5$. $\therefore$ amt. invested in the first $=9$ of $\$ 3000$, or $\$ 5400$.
38. Vol. of pile $=3000 \mathrm{cu} . \mathrm{ft} . \quad \therefore 24 \mathrm{cu}$. units $=3000$ cu. ft. $\therefore 1 \mathrm{cu}$. unit $=125 \mathrm{cu} . \mathrm{ft} . \therefore$ the linear unit is 5 ft . $\therefore$ dimensions are $20,15,10 \mathrm{ft}$.
39. $\mathrm{Sum}=\$ 1500 \div(1.0075)^{4}$.
40. Their areas are 8505 and 8784 sq. yd. $\sqrt{8505}=92$ + and $\sqrt{8784}=93+. \quad \therefore$ the side of the only square between them in area is 93 yd .
41. Rate with the stream $=4 \frac{1}{2} \mathrm{ml}$. per hour. $\therefore$ rate of stream $=1 \frac{1}{2} \mathrm{~m}$. per hr. $\therefore$ rate up stream $=1 \frac{1}{2} \mathrm{ml}$. per hr . $\therefore$ time to return $=2 \mathrm{hr}$.

## Page 257

42. 57, page 67.
43. Suppose dist. $=240$ miles. Rate of A train is 30 and B train 40 mi . per hr. When B train starts A train has gone $150 \mathrm{mi} . \therefore$ at $11 \mathrm{a} . \mathrm{m}$. they are 90 mi . apart. they meet at $\frac{80}{7} \mathrm{~h}$ h. after $11 \mathrm{a} . \mathrm{m}$., or $17 \frac{1}{7} \mathrm{~min}$. past 12 .
44. Amount of $\$ 1$ in a year $=\$ 1.08 . \quad \therefore$ amt. in 3 mo. $=$ the fourth root of $1.08=1 \cdot 01942$. $\therefore$ quarterly rate $=$ $1.942 \%$.
45. If they can pay $12 \%$ on $10 \%$ of their capital, they can pay only $\frac{10}{1}$ of $12 \%$, or $8 \% \%$ on $14 \%$ of their capital. 46. Page 190.
46. External vol. $=12 \times 10 \times 8$, or 960 cu . in. Internal vol. $=10 \times 8 \times 6$, or 480 cu . in. $\therefore$ vol. of metal $=480 \mathrm{cu}$. in., which weighs $89 \mathrm{lb} . \therefore$ wt. of 960 cu . in. $=178 \mathrm{lb}$.
47. Sup. the sum is $\$ 4 . \quad \therefore$ S. P. per yd. $=10 \mathrm{c} . \quad \therefore$ cost $=8 \mathrm{c}$. To gain $50 \%$ he must sell at 12 c ., or $33 \frac{1}{3}$ yd. for $\$ 4$. 49. It is 5 hr .20 min . later, or $12.35 \mathrm{a} . \mathrm{m}$.
48. Dif. in dist. travelled by train and man in 8 sec . is 88 yd ., or $22 \frac{1}{2} \mathrm{mi}$. in 1 lu .
49. Each sold at the same fraction of cost. . the
ube of that fraction is $\frac{\$ 8 \cdot 64}{\$ 5}=\frac{1728}{1000} . \quad \therefore$ the fraction is $\frac{12}{10}$ nid the rate of profit is $20 \%$.
50. $\$ 1$ amounts to $\$(1.01)^{4}=\$ 1.0406+. \quad \therefore$ rate $=$ $4.66 \%$.

Page 258
53. Cost of wheat $=\$ 7760$. Com. for buying $=2 \%$ of $\$ 7760=\$ 155 \cdot 20$. Net S. P. of lumber $=\$ 7915 \cdot 20$, which is $97 \%$ of gross S. i. of lumber.
54. $18000 \mathrm{fr} .=£ \frac{18000}{25 \cdot 2}=\$ 4.86 \frac{3}{3} \times \frac{18000}{25 \cdot 2}$.
55. The areas are in the ratio of 4 to $9 . \therefore$ the radii and also the circumferences are in the ratio of 2 to 3 . $\therefore$ cost of second fence is $\$ 30 \times \frac{3}{2}=\$ 45$.
56. Amt. unpaid at end of 1 st $\mathrm{yr} .=\$ 2560+\$ 128$ $\$ 650=\$ 2038$. At end of $2 \mathrm{nd}=\$ 2038+\$ 101.90-\$ 650=$ $\$ 1489.90$. At end of $3 \mathrm{rd}=\$ 1489.90+\$ 74.495-\$ 650=$ \$914.395.
57. 80, page 220.
58. 1, page 186 ; 31, page 189.
r.9. They are evidently together for the first time at the end of one hour. When the fastest has gone 20 rounds the 4 th has gone only $\frac{1 \frac{1}{2}}{2}$ of 20 , or $18 \frac{1}{3}$ rounds. $\therefore$ if the

## SOLUTIONS OF THE PROBLEMS

4th has a start, equal to the time it takes him to go $\frac{2}{3}$ of a rounn, he would finish with the 5 th. $\therefore$ he should have a start of $3_{T^{7}}^{7}$ min. Similarly for the others.
60. They both fill ${ }^{\frac{1}{\delta} \delta}+{ }_{3}^{\frac{1}{5}}$ in $1 \mathrm{~min} . \therefore$ in 12 min . they fill $\frac{28}{3}$. The first pipe will fill $\frac{9}{35}$ in $\frac{9}{85}$ of $30 \mathrm{~min} .=7 \frac{5}{7} \mathrm{~min}$. 61. 21, page 188.

Page 259
62. 16, page 213.
63. A receives $\$ 200$ and pays $B \$ 150$ a ${ }^{\prime} \mathrm{C} \$ 125$. $\therefore$ A loses $\$ 75$. B receives $\$ 150$ and pays $D \$ 100 . \therefore$ B gains $\$ 50$. C receives $\$ 125$. D receives $\$ 100$.
64. Sup. each cost $\$ 2000$. $\therefore$ B's cost $=\$ 1700$ for each. $\therefore$ B's S. P. $=\$ 2040$ for one and $\$ 1275$ for the other. The dif. is $\$ 765$, which is 5 times the given dif. $\therefore$ each lot cost A $\$ 400$.
65. 121 sq. units $=\frac{1}{10}$ ac. $=484$ sq. yd. $\therefore 1$ sq. unit $=$ 4 sq. yd. $\therefore$ the linear unit $=2 \mathrm{yd}$.
66. Sup. he bought 300 yd . at $\$ 1$ a yard. He sells 150 yd . at $\$ 1 \cdot 20$ and 50 yd . at 50 c ., receiving $\$ 205$. To gain $15 \%$ he must receive in all $\$ 345 . \quad \therefore$ he sells the remaining 100 yd . for $\$ 140$, or $\$ 1.40$ a yd ., which is $16 \frac{2}{3} \%$ above the marked price.
67. The int. on $\$ 93$ is $\$ 4$ in 1 year, or $\$ 3 \frac{1}{3}$ in 10 mo. $\therefore$ the P.W. of $\$ 96 \frac{1}{3}$ due in 10 mo . is $\$ 93$. $\therefore$ the P.W. of $\$ 4335$ is $\$ 4185$.
68. They approach each other at the rate of 23 mi . per hr.
69. Total vol. $=18 \times 18 \times 3$, or 972 cu . in. Vol. of hole $=\frac{22}{7} \times 7 \times 7 \times 3$, or 462 cu. in. $\therefore$ vol. of block $=510 \mathrm{cu}$. in. Surface of 4 sidc: $=18 \times 3 \times 4$, or 216 sq. in. Surface of top $=18^{2}-2 \times 7 \times 7=170$ sq. in. Circular surface $=$ $14 \times \frac{2}{7} \times 3=132$ sq. in. $\therefore$ total surface $=216+340+132$ $=-38$ sq. in.
70. 9842 roubles $=£ 1316$ 2s. 11.7d. Afterwards 9842 roubles $=£ 12946$ s. $10 \cdot 3 \mathrm{~d} . \quad \therefore$ gain $=£ 21 \mathrm{l}$ s. $1 \cdot 4 \mathrm{~d}$.

## Page 260

71. The discount $=\$ 16$. The banker has to pay int. on $\$ 984$ for 73 d . at $3 \frac{1}{2} \%$, which $=\$ 6 \cdot 888$. $\therefore$ his gain is $\$ 16-\$ 6.888=\$ 9.112$.
72. îi 1 e sold both at $2 \% \mathrm{com}$. he would realize $\$ 16$. $\therefore$ he made the extra $\$ 10$ by the increased com. on the secoud lot. Every $\$ 100$ at $4 \%$ increases the com. by $\$ 2$. $\therefore$ the S.P. of the second lot was $\$ 500$.

13 . The amount in 3 years is $\$ 16872.96$. $\therefore$ the int. $=\$ 674.9184$.
74. Area of end of wire $=\frac{22}{7} \times \cdot 05^{2}$ sq. in. $\therefore$ length of wire in in. $=1728 \div \frac{28}{7} \div(\cdot 05)^{2}$.
75. If the two lots are mixed there are 1.$\} \mathrm{lb}$. of each worth $\$ 10 \cdot 15$.
76. Duty $=£ 72$. $\therefore$ total cest $=£ 792=\$ 3854.40$. Net amount of sales $=95 \%$ of $\$ 4 \_00=\$ 3990$.
77. $68 \mathrm{~d}_{\mathrm{n}} . \mathrm{s}$ ' wages $=$ sum and int. for 4 days. 72 days' wages $=$ sum and int. for 6 days. $\therefore$ int. for 2 days $=4$ days' wages. . . int. for 4 days $=8$ days' wages, or the wages of 2 men for 4 days.
78. Side of field $=279 \mathrm{yd}$. Tength of walk $=283 \times 4$, or 1132 yd. $\therefore$ area $=4528$ sq. yd.
79. When $A$ gres 34 rounds he has gained 1 round, or $\frac{1}{1} \mathrm{mi}$. on B. $\therefore$ in 40 rounds he gains $\frac{8}{17} \mathrm{mi}$.
80. $59{ }_{2}{ }^{1} 6 \%=\frac{3 \pi 9}{6} \frac{9}{5} . \quad \therefore$ S.P. $=\frac{258}{826}$ of marked pr. This fraction is the fourth power of the fraction by which the first reduced price is obtained from the marked price. $\therefore$ the reduction fraction is $\frac{4}{5}$, or each discount $=20 \%$.
81. Draw the figure. The area $=2$ sectors $\left(\angle 150^{\circ}\right.$ and rad. 100 ft .) +2 sectors ( $\angle 30^{\circ}$ and rad. 60 ft .) +2 sectors ( $\angle 90^{\circ}$ and rad. 20 ft .) + erquilateral $\angle$ (side 40 ft .).

## SOLUTIONS OF THE PROBLEMS

## Page 261

82. Circumference $=572$ yd. $\therefore$ diameter $=182$ yd.
83. Find the equated time and add int. to Oct. 12th.
84. Sup. cost $=20$ c. per gal. He sells at 25 c . per gal. Total S.P. $=\$ 2250 . \therefore$ no. of gal. sold $=9000$. No. bought $=7500 . \quad \therefore$ each gal. sold was only $\frac{5}{6}$ of a gal.
85. Larger segment $=$ a sector with $\angle 300^{\circ}$ + equilateral $\triangle$ side $r$. Smaller segment-sector $\angle 60^{\circ}$-same equilateral $\Delta$.
86. Whole gain $\%=12 \frac{1}{2}+7=19 \frac{1}{2}$. $7 \frac{19}{6} \frac{9}{3}$ of $\frac{98}{100}$ of sales $=\frac{119.5}{100}$ of cost. $\therefore$ sales $=1.2956$ of cost. $\therefore$ advance $=29.56 \%$.
87. The bullet must travel the 545 yd . in $2 \frac{1}{2} \mathrm{sec}$., and $\therefore$ sound travels the 545 yd . in $1 \frac{1}{2} \mathrm{sec}$., or 1090 feet per sec.
88. Slant kerght $=6 \sqrt{2}$. Area of cone $=\frac{28}{2} \times 12 \times 3 \sqrt{2}$ $=159.98$ sq. ft. Area of cylinder $=\frac{29}{7} \times 12 \times 3=113.14$ sq. ft. Total area $=273.12$ sq. ft. $=30.34$ sq. yd. Cost of 1 sq. yd. $=20 \mathrm{c} . \quad \therefore$ total cost $=\$ 6 \cdot 07+45 \mathrm{c} .=\$ 6.52$.
89. $£ 750=\$ 3645$. Com. $=\$ 182 \cdot 25$. $\therefore$ net S.P. $=$ $\$ 3645-\$ 182 \cdot 25-\$ 262 \cdot 75=\$ 3200$, which is $\frac{4}{8}$ of cost. $\therefore$ cost $=\$ 2400$.
90. Dif. in long. $=214^{\circ}$. $\therefore$ dif. in time $=14 \mathrm{~h} .16 \mathrm{~m}$. $\therefore$ it is 14 h .16 m . later, or $7.26 \mathrm{a} . \mathrm{m}$. of the next day.
91. The base consists of 2 triangles whose sides are $104,85,45 . \therefore$ using formula the area of the base is 3744 sq. in. $\therefore$ vol. in cu. ft. $=3744 \times 125 \div 1728=270 \frac{5}{6}$.

## Page 262

92. 5 ac. keep 20 oxen 10 weeks. $\therefore 8$ ac. keep 32 o. 10 weeks, and 8 ac. keep 29 oxen 16 weeks, or 320 -ュn are kept 1 wk . by the grass on $8 \mathrm{ac} .+10 \mathrm{wks}$.' growth
of grass, and 464 oxen are kept 1 wk. by the grass on 8 ic. +16 wks.' growth of grass. $\therefore 144$ oxen are kept i wk. by 6 wks.' growth on $8 \mathrm{ac} . \therefore 24$ oxen are kept 1 wk. by 1 wks.' growth on 8 ac ., and 24 oxen are kept $a$ wks. by $a$ wks.' growth on 8 ac., and 45 oxen are kept $a$ wks. by $a$ wks.' growth on $15 \mathrm{ac} . \therefore(32-24)$. or 8 oxen are kept by 8 ac. of grass for 10 wks. $\therefore(70-45)$ or 25 oxen are kept by 15 ac . of grass for 6 wks .
93. $\$ 2.40$ is the int. for - year on $:$ hrst year's int. $\$ 2.496$ is the int. for 1 year on the sec $d$ year's int. $\therefore$ $\$ 096$ is the interest on $\$ 2.40$ for 1 year. $\therefore$ the rate is $4 \%$. $\$ 2.40$ is the int. on $\$ 60$. $\quad$ the first year's int. $=$ $\$ 60 . \quad \therefore$ the original $\ldots . .2$ was $\$$ isuo.
c. The sides are 40.5 rods and 58 rods. The diagonal is 72.5 rods.
94. The loss is $\frac{1}{16}$ of cost. $\therefore$ the discount fraction is $\frac{1}{2}$, or $25 \%$. Hence the marked price was $\$ 120$.
95. Find its value 6 months ago, as on page 202, and find the amount of that value for 6 months.
96. Cash cost of the goods when sold is the P.W. of $\$ 520.20$ due in 3 mo ., which is $\$ 510 . \quad \therefore$ cash S.P. $=\$ 551$, which amounts to $\$ 575.96$ in 4 mo .
97. In 1 min . the no. of $\mathrm{cu} . \mathrm{ft}$. of water which flows is $29 \times 7 \times 7 \times 880 \div 144$. Vol. of reservoir 1 in . in depth $=$ $187 \times 96 \times 9 \div 12$ cu.ft. The 2 nd of these divided by the lst is the required no. of min.
98. He sells $388 \frac{1}{2}$ yd. for the cost of $\frac{777}{2} \times \frac{8}{3} \frac{8}{5} \times \frac{8}{4}$ yd. $\therefore$ he must sell the rem. for the cost of $777 \times \frac{5}{4}-\frac{777}{2} \times \frac{3}{3} \frac{8}{5} \times \frac{5}{4}$ yd. But he sells the rem. as $\frac{777}{3} \times \frac{3}{3} \frac{9}{7}$ yd. $\therefore$ each yd. of the rem. is sold for the cost of $1 \frac{125}{05}$ yd. $\therefore$ he must mark it at $\frac{12}{5 \frac{3}{4}}$ of $100 \%$ of cost.
99. By (a) the cost will be $100 \frac{1}{2} \%$ of $\$ 5000=\$ 5025$. By $(b)$ the cost will be $\frac{100}{99 \frac{1}{2}}$ of $\$ 5000=\$ 5025 \cdot 1256$.

