IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences
Corporation

CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoretion may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a ofté possible de se procurer. Les détails de cet exemplaire qui sont peut-etre i-niques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPage tamaged/
Pagr: endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualitė inégale de !'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:
Title page of issue/
Page de titre de la livraison
Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Various pagings.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed begirning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last reccirded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à pertir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

royal CANADIAN SERIES.

ARITHMETIC

FO:

PUBLIC SCIIOOLS.

$$
14450
$$

TORONTO:
CANADA PUBLISHING COMPANY (LIMITED)
1882.

C.ER3

Entcred according to Act of the Parliament of Canade it the Ycur One Thousand Eight Hundret and Eighty-two, by the Canaina Publishing Combany (Limited), it the Office of the Ministir of Agriculture.

Tus simpl pract trave

PREFACE

Tue distinctive purpose of this work has been to furnish a simple, lucid, and systematic exposition of the theory and practice of Arithmetic, covering the ground which is usually traversed by the pupil before entering the High School.

Arithmetic, it may be said, is above everything else a practical study. The art of computation is undoubtedly of much value in the practical concerns of every day life; but the habit of investigating the principles on which this art is based is not of inferior importance. The former gives to the student a mastery of figures, which will be serviceable in commercial and scientific pursuits: the latter tends to concentrate his attention ; to induce habits of patient abstraction and accurate thought; to familiarize him with the laws of reasoning, and to lead him to cxamine carefully the grounds of every inference he draws.

The difficulty hitherto met with in text-books on Arithmetic is that the theoretical has been made subordinate to the practical. But if the theory is imperfectly understood, and the principles are not comprehended, then questions can only be solved mechanically. Hence the necessity of first making the rules intelligible, and then impressing them on the mind by copious and practical illustration. With this object in view, two :mportant principles have been kept in mind: (I) That the exercises shall be so constructed as to require the pupil to think; and (2) That they shall consist largely of examples selected with especial reference to the pursuits of an agricultural and commercial people.

A comparison of the present work with those which are specially valued on account of the character and number of the problems they contain will, it is believed, show that it comprehends everything that is usually regarded as of practical importance in Arithmetic. The prominent features of the work may be enumerated as follows:
(1) The investigation of the principle on whath a rule in Arithmetic depends always precedes the statement of the rule itself.
(2) Every process employed in the solution of a question is referred to some general law or axion in the theory of numbers.
(3) These general truths, as they may be called, are distinctly enunciated and are printed in italics. If self-evident, they are illustrated by simple numerical examples; if otherwise, more extended demonstrations are given: in every case, the truth itself is stated in a clear, concise form.
(4) The solution of money problems, and the application of reduction to concrete quantities in their simplest form, leading the pupil gradually up from the abstract to the concrete, are placed earlier in the course than is usual, and are thus made available in subsequent exercises.
(5) The logical relations of the several parts of Arithmetic are lucidly marked by their arrangement. For example: Reduction is not treated as a separate rule, but so much of it as belongs to Multiplication falls under that head, while the rest takes its proper place as one of the practical applications of Division.

As will be apparent, considerable space has been taken up with exercises for rapid mental work, the importance of which, if the principles which underlie them are fully brought out by the teacher and grasped by the pupil, can hardly be over-estimated. It is confidently believed that the exercises will be found sufficiently numerous and varied, and that the examples solved in Ex. 26, 42, 43, 51, 57, 58 and 59, and in the Examination Papers 1 to 6 , will aid in the illustration of the general principles which form the key to all problems in Arithmetic. The work, as a whole, it is hoped, will prove of the highest service to both teacher and student, and merit a permanent olace among our Canadian educational textbouks.

Toronto, June, 1882.

Defint Arabic Romat Numes Additi, Subtra Multip Divisio Examp

Definitı Greates Least C

Definiti Reducti Addition Subtrac Multipli Division General

Canādiaı
Sterling
ha rule in ent of the a question theory of d, are dis. elf-evident, ; if other. : in every rm.
pplication dest form, o the con1 , and are

Arithmetic example: :o much of ead, while ical appli. jeen taken ortance of ly brought hardly be exercises d that the 59, and in stration of roblems in will prove and merit ional text.

CONTENTS.

Chapter j.-Simple Rules.

> Definitions Page
Arabic Notation
2
Roman Notation
9
Numeration
11
11
Addition
Addition 16
Subtraction
31
Multiplication 47
Division
72
Examples on all previous Principles 98
CHAPTER II.-Factoring.
Definitions
Greatest Common Divisor. 106
Least Common Dividend 107
Definitions Reduction of Fractions. 116
Addition 120
Subtraction 126
Multiplication 128
Division 132
General Examples on Fractions I 34
Chapter IV.-Concrete guanthines. 143
Canảdian MoneySterling Money${ }^{1} 48$153
Reduction of Sterling Moncy Pane
Addition 154
Subtraction 156
Multiplication 159
Division 16 I
Λ voirdupois Weight 16
Apothecaries'
165
165
Troy
155
155
Long Measure
109
109
Square
Square
171
171
Cubic
Cubic
172
172
Time "
Time " 176
Dry
Dry 179
Liquid 180
General Table 182
CHAPTER V.-DECimals.
Definitions 185
Addition of Decimals I 86
Subtraction 187
Multiplication 187
Division I87
Circulating 192CHAPTER VI.-Percentage.
Definitions 194
General Examples on Percentage 195
CHA 'TER VII.-Measurements.
Practical Problems in Measurements of Surfaces and Solids 198
CHAPTER VIII.-Bills or Accounts.
General Examples of Accounts 201
Examination Papers 203
Answers... ... i to xxv

1. A U
2. A N the
3. The
wh
is
4. A Ur
5. $\Lambda \mathrm{n} \mathrm{A}$
tic
6. A Co obj
7. Λ nur is a

Paraf

Arithmetic for Beginners.

CIIAPTER I. DEFINITIONS AND PRINCIPLES.
 NOTATION AND NUMERATION.

1. A Unit is one, or a single thing.

Ex.-One : one boy; one dollar.
2. A Number is a unit, or a collection of units, and answers the question How many?

Ex.-Three, Five, Twelve, Sixty.
3. The unit of any number is one of the collection of units which form the number.
Ex.-The unit of eight is one; the unit of six horses is one horse; the mit of twenty dollars is one dollar.
4. A Unit may be either abstract or concrete.
5. An Abstract Unit is one that does not refer to any particular object or thing.

Ex.-One.
6. A Concrete Unit is one that is applied to some particular object or thing.

Ex.-One cent, one quart.
7. A number is Abstract or Concrete, according as its unit is abstract or concrete.

Ex.-Three, Seven, Twelve, Forty, One Hundred, are Abstract Numbers.

Three Dollars, Seven Gallons, Twelve Men, Forty Books, One Hundred Cents, are Concrete Numbers.
8. All numbers in ordinary use are formed from the charac. ters $1,2,3,4,5,6,7,8,9$, o.

$$
E x .-384,0072,165 .
$$

9. The Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, are read one, two. three, four, five, six, seven, eight, nine, and are called Digits, or Significant figures.
10. The Figure 0, called nought, zero, or cipher, has no value, and is termed the Insignificant figure.
11. The Art of Expressing Numbers by means of these or other characters is called Netation.
12. Notation is of two kinds, Arabic Notation and Roman Notation.

ARABIC NOTATION.

13. Arabic Notation is the art of expressing numbers by means of the characters $1,2,3,4,5,6,7,8,9$, .
(It is so called because it was introduced by the Arabs.)
14. The next number above nine is ten, which is expressed by the figure one placed to the left of the figure nought, meaning one ten and no units; in the same way eleven, or ten units and one unit, may be expressed by the figure one (imeaning one ten) placed to the left of the figure one (meaning one unit), and so on for the rest of this order.
15. The complete order will then be :

The pupil will notice that the first part of each word agrees with the right-hand figure in the number ex.
17. Th
18. The

Forty Fifty, Sixty, The
ea
to
19. We pr
ni
16. In like manner, all mumbers in the next group are expressed by using the figure two, followed by the
rom the charac.
e read one, two, , and are called
cipher, has no figure.
neans of these
on and Roman
ng numbers by 7, 8, 9, o. oduced by the
ch is expressed ft of the figure ts; in the same it, may be exne ten) placed one unit), and
ented by 15
". 17
" 18
" 19
of each word the number ex.
ext group aro ,llowed by the
original digits in order, the number twenty (written 20) meaning two tens and no units, the rest being formed by proceeding as before, thus:

$$
\begin{aligned}
& \text { Twenty-one, represented by } 21 \\
& \text { Twenty two, } \\
& \text { Twenty-thre, }
\end{aligned}
$$

17. The next group will express three tens, called thirty, and a certain number of units, the successive numbers being formed in the same manner as before.
18. The remaining groups will commence with the following key words:-

Forty, represented by	40	Seventy, represented by 70	
Fifty,	"،	50	Eiglty,

The pupil will again notice the likeness the first part of each word bears to the digit in the number opposite ts it.
19. We now come to the greatest number that can be expressed by two figures, viz., 99, meaning, of course, nine tens and nine units.

EXERCISE 1.

1. Write down the following numbers in figures:-Four, Eleven, Twenty-six, Thirty-seven, Forty-five, Sixtyeight, Seventy-seven, Fifty-nine, Eighty, Ninety-two.
2. Write down the smallest and also the greatest number expressed
by one figure.
by two figures.
by the tigures two and three.
by the figures three and nine.
by the figmes nine and one.
by the figures one and seven.
by the figures seven and eight.
by the figares eight and two.
3. Write down in order all the numbers

From twenty five to forty-seven. " sixty-three to seventy-eight.
" Seventren to eleven.

* forty-seven to thirty-three.

4. Write down the number of words, and also the numbe of letters, in this sentence.
5. Count the numbers between fifty and seventy five.
6. Write down any numbers you can make
by using both the figures 6,8 . by using both the figures 7,6 . by using both the figures 8,7 .
7. We seft off at the number 99 , and must now show hor to represent a number having one more unit than 9 The required number is called one hundred. and i written 100, -the figure I meaning one hundied unit: the next figure 0 meaning no ten units, and the lastc meaning no units.
8. We thus arrive at one hundred, two hundred, etc., ank by combining the hundreds group, and the precedim, group of tens, and the simple group of units, w complete all numbers that can be formed with thre figures.

Ex.-One hundred and sixty-four is written 104 meaning one hundred units, six tens of units (or sixt units), and four units.

Four hundred and four would be written 404, thr zero meaning that there are no units in the tens grouf

Eight hundred and sixty is written 860 , the zero in plying that there are no units in the units group.
22. We now see the importance of the figure 0 as a meat: of keeping other figures in their places, for without i 404 would be 44 , four tens and four units ; 860 woul be 86 , or eight tens and six units.
23. The hundreds group or order brings us up to the numbe 999, the largest that can be written with three figure:

Ex.-Write down the number Three Hundred an Seventy-ninc.

The three, standing for hundreds, must be place on the left of the required number, in the humdred
d also the numbe d seventy-five. ke
8.
, 6.
7
st now show hot aore unit than 99 - hundred. and ne hundied unit: nits, and the lastc
mundred, etc., anc and the precedin, up of units, w ormed with thre
r is written 10 of units (or sixt
written 404, th n the tens grour 860, the zero in: units group.
ure 0 as a mear: es, for without i units ; 860 woul
up to the numbe with three figure: ree $\mathrm{H} n \mathrm{ndred}$ an must be place in the hundred
place; the seventy or, seven tens, we must put in the next place, to the right of the three-that is, in the tens' place; and the nine, which means just nine units, must be in the next or units' place. The number then stands thus:-

Hundreds.	Ten.	Units.
3	7	9
	or, 379.	

If the number had been three hundred and nine, then, there being no tens, the tens' place would be filled by zero, as 309 . If the number had been three hundred and seventy, then, there being no units, the units' place would be filled by the zero, as 370 .

The number 083 , meaning no hundreds and eight tens and three units, should be written 83, for it can be of no use to express hundreds when there are none.

EXERCISE 2.

I. Write down the following numbers:-One hundred and seventeen; three hundred and eleven; five hundred and eleven; five hundred and seventy-five; eight hundred and ninety-nine; four hundred; sixty-nine; five hundred and seven; eight hundred and sixty; four hundred and ten; nine hundred and nine; seven hundred and eighty-seven.
2. Write down, in order, the numbers between one hundred and five and one hundred and twenty.
3. Write down all the numbers of three figures in which the two left hand figures are seven and nine; in which the two right hand figures are eight and nought; in which the outside figures are six and seven; in which the outside figures are seven and nought.
4 Write down the greatest and least number composed of three figures.
5. Write down all the numbers formed from the figues six, eight and nine.
6. Write down, in order, all the numbers made up of the figures three, nought, nine, commencing with the smallest number.
7. How many numbers are there between one hundred and one hundred and ninety-nine; between ninety. seven and one hundred and nine.
8. Write down, in order, all the different numbers formed by using
24. We next proceed to numbers of four figures, the first one after 999 being written 1000, and called one thousand. The remaining numbers of four figures are formed by writing thousands in the fourth place, hundreds in the third place, tens in the second place, and units in the first place from the right. Thus 7809 represents nine units of the first order, no units of the second order or tens, eight units of the third order or hundreds, and seven units of the fourth order or thousands. The whole number is read seven thousand eight hundred and nine.
25. The pupil will by this time see that one unit of ny of these urders has the same value as ten units of the next lower order, that is to say:-One thousand is the same in value as ten hundreds; one hundred is the same as ten tens; and one ten the same
as ten units.
26. We sheould therefore naturaily expect to meet after the order of thousands a fifth order representing ten themsands, and this is the case; but instead of givinf it a new name it is known as the order of tens of thousands. Thus 86079 represents eight tens of thousands, six thousands, no hundreds, seven tens, and nine units: or eighty-six thousand anc: seventy-nine.
rs made up of the mencing with the
en one hundre? ; between ninety. numbers formeủ
28. Pr cceeding as before, we obtain (after one hundred thousand), two hundred thousand, three hundred thousand, and so on until we reach ten hundred thousand. This is expressed by a new name, and called a million.
29. After counting to a million, we proceed to count one million, two millions, three millions, and so on as far as ten millions, which forms the seventh place from the right, or the seventh order.
30. After this hundreds of millions will follow tens of millions, just as hundreds of thousands followed tens of thousands (Art. 27); and hundreds fol. lowed tens (Art. 20). We then come to ten hundreds of millions, which is called a billion.
31. The figures $\mathrm{I}, 2,3,4$, etc., when they stand alone, or when they occupy the first place, denote simply so many units or ones, and are called units of the first order. When they occupy the second place, they represent tens, and are called units of the second order. When found in the third place, they stand for hundreds, and are called units of the third order, and so on. This may be illustrated by the following table:-
The ist order of units is called units.

And we may extend this table to trillions, quadrillions, etc.
32. The pupil must now practice writing down on the slate any number that may be read.

Ex.-Express in figures the number nine hundred and seventy thousand six hundred and eight.
Here the highest order of units is hundreds of thousands, and there are nine of them; the next order is tens of thousands, of which there are seven; the next order is thousands, of which there are none; the next hundreds, of which we have six; the next tens, of which there are none; the next units, of which we have eight. To write the number we first set down the units of the highest order, and this is hundreds of thousands; then the tens of thousands, thousands, hundreds, tens, units, one after the other, always putting in a cipher or zero for the order of which there are no units. The number must then be written

970608.

Too much attention cannot be paid to the
lacing of the zero.

EXERCISE 8.

1. Write the following numbers in figures:

Nine thousand and forty-eight.
Five thousand and seven.
Forty-three thousand six hundred and fifty-nine.
Five hundred and thirty-six thousand three hundred and two.
Four hundred and five thousand three hundred and thirteen.
Five million forty-three thousand and thirty-seven.
Sixty-four thousand seven hundred and ninety-two.
Three hundred and fifty-six thousand and ninety-seven.
Nine million three hundred and forty-five thousand and twenty-seven.
Eighty thousand and fifty-six.
Nine million ninety thousand nine hundred.
Eighty-three thousand and seven.
Nine thousand and ninety.
on the slate nine hundred ght.
undreds of n; the next e are seven; re are none; x ; the next xt units, of dber we first and this is s of thou. s, one after zero for the umber must
raid to the
aine. e hundred
ndred and
seven.
y-two.
ety-seven.
asand and

Write $h:$ following numbers in figures:
Three hundred and seventy-five million eight hundred and sixty-seven thousand seven hundred and ninetynine.
Eleven thousand and seventy-one.
Six million eight thousand seven hundred and four.
2. Write down the greatest and least numbers that can be formed

	using 4	
"	" 5	5
"	6	
"	7	

3. Write down, in order, all the numbers of four figures having 3 for the left hand figure and 72 for the two right hand figures.
4. Write down the greatest and least numbers that can be formed by using all the figures $7,3,0,5$.
5. Write down all the different numbers that can be formed by using all the figures $7,0,0,8$, and name the greatest and the least.

ROMAN NOTATION.

33. In Roman Notation seven Capital letters were used to express numbers. The letters were

	and	or	m	I
V	"	"	"	5
X	"	"	"	O
L	"	"	"	
C	"	:	"	00
D	"	-	"	
M	"	"	"	100

All other numbers being expressed by combining these letters in different ways. Hence Roman Notation is the expression of numbers by letters.
Notr to Teacher.-As the writing of numbers by Roman Notation requires a more extended idea of Addition and Subtraction than the pupil has yet obtained, it may be omitted until after these operations have been learned.
34. They are combined with the following results:

1. When any letter is repeated its value is repeated. Thus, X stands for 10 , and XXX stands for 30 ; C stands for $100, \mathrm{CC}$ stands for 200.
2. When a letter of less value follows one of greater value, its own value must be added to that of the greater.

$$
\begin{aligned}
& \text { Thus, } V=5, \text { VIII }=8, C=100, C I I I=103, \\
& X=60 .
\end{aligned}
$$

3. When a letter of less value comes before one of greater value it takes away its value from that of the greater.

$$
\text { Thus, } X=10, I X=9, L=50, X L=40
$$

4. When a letter of less value stands between two of greater value the less must be taken from the one that follows it, and the remainder must be added to the ore that precedes it.

Thus XIX $=19, \mathrm{CXL}=140, \mathrm{CXC}=190$.
5. A bar over a letter or letters makes it as many thousands as there are units in the letter or letters.

$$
\begin{aligned}
& \text { Thus } \overline{\mathrm{V}}=5000, \overline{\mathrm{~L}}=50,000, \overline{\mathrm{C}}=100,000, \overline{\mathrm{IX}} \\
& 9,000 \text {. }
\end{aligned}
$$

$$
=9,000 .
$$

A letter is not usually repeated more than three times. Thus 400 would be written $C D$ rather than
35. These methods will be found quite sufficient to form all ordinary numbers, and although this Notation could be used in business and other calculations, the process would be very tedious, and for this reason is not used. The characters are chiefly employed to mark the hours on clocks and watches, to number volumes and chapters of books, to indicate the values of coins, bank-bills, etc.

> table of roman notation

$$
\begin{aligned}
& \text { One. } \\
& \text { Two. } \\
& \text { Three. } \\
& \text { Four. } \\
& \text { Five. } \\
& \text { Six. } \\
& \text { Nine. }
\end{aligned}
$$

esults :
lue is repeated. tands for 30 ; C
one of greater to that of the
$\infty, \mathrm{CIII}=103$,
before one of from that of
, XL $=40$.
between two of 1 from the one st be added to
$\mathrm{XC}=190$.
es it as many tter or letters.
$=100,000, \overline{\mathrm{X}}$
1ore than three rather than
cient to form Notation could as, the process on is not used. to mark the : volumes and lues of coins,

Ten.
Eleven.
Fourteen.
Fifteen.
Sixteen. Eighteen.
Nineteen.

XX	Twenty.	CD	
XXI	- Twenty-one.	D	- Five hundred.
XXX	- Thirty.	DC	. Six hundred.
XL	Forty.	DCC	- Seven hundred.
L	Fifty.	DCCC	- Eight hundred.
${ }_{\text {L }} \mathrm{C}$	Sixty.	CM	Nine hundred.
${ }_{\text {C }} \mathrm{C}$	Ninety.	M	One thousand.
		MM	Two thous
$\underline{\mathrm{CXV}}$	25000	5000	DLCXL . 550140
$\frac{\mathrm{CXX}}{\mathrm{CLXIV}}$	120000 M	1000000	$\bar{M} D X C$. 1000590
CLXIV	164000		DxC . 100059

EXERCISE 4.

Write the following in Arabic and also in Roman Notation :
I. Thirteen.
2. Seventeen.
3. Nineteen.
4. Twenty-six.
5. Thirty-eight.
6. Forty-four.
7. Ninety-seven.
8. One hundred and fifty.
9. Two hundred and eighty.
10. Seven hundred and thir. ty-eight.
ir. Eight hundred and forty. four.
12. Twelve hundred,
13. Eighty-seven.
14. Six thousand.
15. Fifteen hundred.
16. Eleven thousand.
17. Eight hundred and eighty. cight.
i8. Seven thousand five hun. dred and ninety-two.
19. Four thousand seven leundred and eleven.
20. Fifty two.
21. Thirty-nine.
22. Forty-three.
23. Sixty-seven.
24. Ninety-one.
25. One thousand eight hundred and eighty-one.
26. Twenty-seven.
27. Forty-nine.
28. Seventy-three.
29. Sixty-eight.
30. Eighty-four.

3r. Ninety-seven.
32. One hundred and ten.
33. Five hundred and fifty.
34. Seven hundred and forty.
35. Nine hundred and ninety.
36. Sixteen hundred.
37. Fifty thousand and five.
38. Three hundred and eighteen.
39. Seven hundred and nine-ty-six.
40. One thousand and ninetysix.
4r. Tiventy-five thousand.
42. Fifty-nine thousand three hundred.
43. Eighty-seven thousand and forty.

NUMERATION.

36. Numbration is the art of expressing in words those numbers that may be given in figures or letters.
37. If the pupil clcarly understands the method of express. ing numbers in Notation, there will not be much trouble in reading any number that may be set down in figures. To read large numbers more easily, the figures are separated by commas into periods or groups, commencing from the right hand; and the method that is nearly always adopted is that in which each period or group consists of three figures.
38. The first or right hand periud contains units, tens, and hundreds, and is called the period of units; the second period contains thousands, ten-thousands, ard hundred thousands, and is called the period of thousands; the third period contains millions, ten-millions, and hundred-millions, and is called the period of millions; and so on for the others. This can b ϵ more clearly seen from the following table :-

> 5th Period. trillions.
> 543 4th Period. Billions.
> $\begin{array}{lll}2 & 7 & 5 \\ 3 r d & \text { Period. }\end{array}$ millions.

The value of the figures in the above table, expressed in words, is eight hundred and ninety-six trillion, five hundred and forty-three billion, two hundred and venty-five million, four hundred and fifty-six thousi. ci, one inumed and forty-five. This table may bo cxter 'e, to wiy number of orders. The periods after tinhers in their order, quadrillions, quintillions. iliions.
39. He
b
(a) Poin

1. 1
2.
3.
4.
5.
6.
7.

(b) Writs
I. N
2. T
3. Si
4. Se
words those letters. od of express. not be much y be set down re easily, the :o periods or nd; and the that in which ures.
its, tens, and f units; the cousands, ard iod of thou. , ten-millions, e period of This can be le:-

Hundreds.

14 1st $P: H 0$,

 Unis.expressed in trillion, five undred and fty -six thoutable may be periods after 2s, quintills , and non-
39. Hence we have the following rule for reading large num bers easily:

RULE FOR NUMERATION.

Point off the number into periods of three figures each, beginning at the right hand; then begin at the left hand, and read the figures of each period separately, adding the name of each period except the units' period.

Ex. 1.-Read 261034.
First point off by commas, thus: 261,034 . The number will then read

261 thousand, and 34 -
Ex. 2.-Pead 4604792816.
Point off thus ; $4,604,792,816$, and read:
4 billion, 604 million, 792 thousand, 816 .

EXERCISE 5.

(a) Point off, read and write:
I. IIG234.
2. 6523 I .
3. 20703.
4. 71005.
5. 3104.
6. 48000.
7. 60029.
8. 141120.
9. 101207.
10. 68978.
II. 72020 .
12. 8ovor.
13. 857000 .
14. 91029.
7640.
$\begin{array}{lr}15 . & 7640 . \\ 16 . & 800900 .\end{array}$
17. 256824^{2}.
18. 1008003.
19. 212375647.
20. 609003588.

2I. 897856846 .
(b) Write in figures and read:

1. Nine in the 1st pericd.
2. Two hundred in tlee ist perind.
3. Sixi; in the and period, two in the ist.
4. Seven hundred in the 3rd period.
(b) Write in figures and read:
5. Two hundred and thirty in the 3rd period, sixty in
the Ist.
6. Eighty-one in the 4th period, five hundred and one in the 3rd, seven in the 2nd, twelve in the rst.
7. Thirty in the 5 th period, six hundred and three in the ist.
8. Seven hundred in the 5th period, eighty in the 4th.
9. Eight in the $4^{\text {th }}$ period, seven in the 3 rd, fourte $: 1$ in the 2nd, and ten in the ist.
ro. Fifteen in the 6 th period, eighteen in the 4 th, two hundred and seven in the 3rd, and eighty-one in the Ist.
(c) Point off, read and write:
I. 60701892 .
10. 50607801 .
11. 600000 .
12. 49000000 .
13. 593006070500.
14. Igorgooorgoo.
15. 163194568.
1. 3050050183 .
2. 5000204 .
3. 594900 .
II. 12000012 .
4. 2007980134 .
(d) Write in figures:
r. Eighteen in the 2nd period.
5. Two in the 3rd period, sixty in the 2nd, one hundred and fifty-three in the ist.
6. Sixty in each of the 4th, 3 rd , 2nd and ist periods.
7. 60 million, 200 thousand, 500 .
8. 402 billion, 348 million, 213 thousand, 20.
9. 78 trillion, 640 billion, o million, 6 thousand, 16 .
10. 6 billion, 542 million, 25 .
11. Six billion, five hundred and forty-two million, twenty-
five.
12. Four hundred and two billion, three hundred and forty-eight million, two hundred and thirteen thousand and twenty.
iod, sixty in red and one ist.
nd three in
n the 4 th. fourte 1 in
ie 4th, two -one in the
(1) Write in figures:
13. Five million, eight thousand, nine hundred and fortynine.
14. Two hundred million, three hundred thousand, eight hundred.
15. Twenty-nine billion, five hundred and ninety-nine million, six hundred and one.
16. Four trillion, five hundred and fifty-eight million, two hundred and forty-thousand and seventy.
17. Thirty-two billion, one million, three hundred and forty-three thousand, four hundred and four.
18. Five hundred and fifty-five million, seven hundred and seventy-seven thousand, six hundred and sixtynine.
19. Eight hundred and six billion, seventy million, five thousand, two hundred and six.
(e) Express in Arabic Notation, and also in words:
I. XIX.
20. XXI.
21. X .
22. XLV.
23. LXV.
24. LXIV.
25. LXXIX.
26. LXXXV.
27. CX.
28. CXIX.
ii. C.
29. CXIV.
30. CLX.
31. CXC.
32. CCLX.
33. CCXC.
34. DCXXIX.
35. DCCCXI.
36. CML.
37. MCCLIX.
38. LXXVI.
39. MDCCCLXIX.
40. $\overline{\mathrm{V}} \mathrm{CXCIII}$.
41. XVII.
42. MM CXXII
43. MMMD.
44. CDL.
45. XLVIII.
46. DXXXVI.
47. MDCCXCIV.

3ı. $\overline{\mathrm{X}} \mathrm{CXVI}$.
32. CCCLXXXI.
33. L.CMXCIX.
34. $\bar{M} M D C X I I$.
35. $\overline{\mathrm{V}} C D L X X$.
36. CCLXV.
37. MMMDCXXVII
38. xix.
39. liv.
40. cdii.
41. dexxyi.
(\Leftrightarrow) Express in Arabic Notation, and also in words :
42. Ixxxv. 43. xviii. 44. Ixxvii.
45. LXVII.
46. CLXIV.
47. CXXXV.
48. CXLIX.
49. MNIX.
50. DCLIII.
51. CXCIX.
52. V̄DLIX.
53. I) LX.
54. XXXID.
55. LIXCCCXLIV.
56. XVVDCCXLIX.
57. MMMMXC.
53. $\overline{\mathrm{V}} \mathrm{MDCCXLIX}$.
59. MīXXVCILXXIX. 60. MDCCCLXXXII.
(If more examples are required for practice, those found in the subsequent Exercises will answer the pur-
pose.)

ADDITION.

40. The Addition of two or more numbers is the method of finding how many units are in all the numbers if taken together.

The number of units found is called the sum of the given numbers.

Thus the sum of 4 and 5 is 9 , for in 4 there are four units and in 5 there are five units, and if we connt five more units after we get four we obtan 9 units.
41. This is often written $++5=9$, the sign + meaning that the numbers on each side of it are to be added to. gether. It is called Plus.
42. The sign $=$ means that the expressions on each side of it are equal, or of the same valuc. It is read Equal to.
E.r. $3+6=9$ would be read three plus six equal to nine, and it means that the sum of 3 and 6 is ninc.
43. Th

[^0]43. The following table should be committed to memory by the pupil, who should at the same time be quite sure, by counting, that the sums are correct:

ADDITION TABLE.

44. The following method will make the pupil quick at adding numbers, and should be practised by recitation as well as on the slate or paper:

Ex. I.-Add by 2's from I to 19.
Resuli:-1, 3, 5, 7, 9, 11, 13, 15, 17, 19.
Reason.-I and 2 make 3, and 2 make 5, and 2 make 7 , and so on.

Ex. 2.-Add by 2 's and 3 's alternately, or one after the other, from I to 31 .
Result.-1, 3, 6, 8, 11, 13, 16, 18, 21, 23, 26, 28, 3 1.
Reason.-I and 2 make 3 , and 3 make 6 , and 2 make 8, and 3 make II, and so on.

EXERCISE 6.

$1<$ These questions should be solved mentally.
Add:

By 2's from 4 to 50.	By 5's from i to 6i.
By 3's from i to 43.	By 5's from 7 to 82.
By 3's from 6 to 51.	By 6's from o to 72.
By 4's from i to 53.	By 6's from 2 to 80.
By 4's from 5 to 45.	By 6's from ro to 88.

By 2's and 4's alternately from I to 49.
By 3's and 4's alternately from otos 56 .
By 2's and 5's alternately from 4 to 60.
By 3's and 5's alternately from 7 to 63 .
Begin with I and add 2 successively thll the sum equals ior.
Begin with 2 and add 2 successively till the sum equals
Begin with 2 and add 3 successively tiil the sum equals 101.

Begin with 3 and add 3 successively till the sum equals
c pupil quick at ised by recitation
19.
ke 5 , and 2 make
ely, or one after
$3,26,28,31$.
e 6 , and 2 make
tentally.
m I to 6r.
mi 7 to 82 .
m o to 72 .
m 2 to 80.
m 10 to 88 .

Berin with 3 and add 4 successively till the sum equals 103.

Begin with 4 and add 5 successively till the sum equals ro4.
Begin with 5 and add 7 successively till the sum equals 103.

Begin with 6 and add 8 successively till the sum equals 102.

Begin with 9 and add 9 successively till the sum equals 108.

$$
\begin{aligned}
& 4+2+3+7+1+5+9+6+3=\text { what } ? \\
& 8+3+5+9+2+0+4+7+8=\text { what ? } \\
& 6+5+2+1+9+7+6+8+4=\text { what ? } \\
& 9+8+6+7+4+1+5+3+8=\text { what ? } \\
& 7+8+9+0+7+8+9+0+7=\text { what ? } \\
& 8+9+5+8+9+7+0+9+8+2+6+1+4+3=\text { what? } \\
& \text { Add: }
\end{aligned}
$$

By 7's from I to 7r.	By io's from o to 120.
By 7's from 3 to 87.	By io's from 13 to 153.
By 8's from o to 96.	By ir's from I to 100.
By 8's from 6 to 102.	By ir's from 4 to 92.
By 9's from 2 to 92.	By i2's from o to 144.
By 9's from 10 to rog.	By 12's from 3 to 135 .

Add rapidly the following :
$4,6,5,3$, and 7.
$6,4,8,2$, and 5.
$10,9,5,3$, and 6.
$10,3,7,9$, and 8.
$14,5,3,6$, and 10.

$$
\begin{aligned}
& 13,5,6,10 \text {, and } 3 . \\
& 12,10,2,0, \text { and } 9 . \\
& 27,10,3,8 \text {, and } 7 . \\
& 36,12,7,4, \text { and } 10 . \\
& 11,12,10,9, \text { and } 8 .
\end{aligned}
$$

Add the numbers,
$2,3,4,2,3,4,2,3,4$, etc., till the sum $=63$.
3, $4,5,3,4,5,3,4,5$, etc., till the sum $=84$.
$2,4,6,2,4,6,2,4,6$, etc., till the sum $=96$.

Add alternately, $5,6,5,6,5,6,5,6,5,6$, etc., till the sum $=88$. $6,4,6,4,6,4,6,4,6,4$, etc., till the sum $=100$. $7,5,7,5,7,5,7,5,7,5$, etc., till the sum $=120$.
$8,9,8,9,8,9,8,9,8,9$, etc., till the sum $=119$.
45. All numbers may be added together by means of the preceding table, and we will first add numbers when the sum of each order in them is less than 10.
46. To add numbers together, they must be of the same kind.
$E x$. -5 peaches and 4 apples, if added together, make neither 9 peaches nor 9 apples. In the same way, 5 tens and 4 units make neither 9 tens nor 9 units.
47. Hence, when we add, we should always place figures of the same kind in the same column, that is, units under units, tens under tens, hundreds under hun-
dreds, etc.
48. We thus have the following

RULE FOR ADDITION.

1. Write the numbers to be added, placing figures of the same kind in the same column, that is, units under units, tons under tens, etc., and drazv a line beneath.
2. Begin at the right, and add the figures in each coumn from
bottom to top.
3. Place under each column the result obtained by adding its
4. To test the result, proceed in the same way, adding from
top to bottom. The two sums should be the same, if the work be correct,

Ex. 1.-Find the sum of $422,3+2$, and 134 .

Ne write the numbers, placing units under units, tens under tens, hundreds under hundreds. We begin at the units' column and say: 4 units and 2 units are 6 mits, and 2 units are 8 units, and we write the 8 under the units' column. Next, 3 tens and 4 tens are 7 tens, and 2 tens are 9 tens, and we write the 9 under the tens' colunin. Next, i hundred and 3 hundreds are 4 hundreds, and 4 hundreds are 8 hundreds, and we write the 8 under the hundreds' column. Hence, the entire sum is 8 hundreds 9 tens and 8 units, or 898 .
In practice we shorten the work in this way: 4 and 2 are 6, and 2 are 8; 3 and 4 are 7 , and 2 are 9 ; 1 and 3 are 4 , and 4 are 8 ; making 898 .

Ex. 2.-Add 3214, 2312, and 3453 .
Here 3 and 2 are 5 , and 4 are 9 , which we place under units' column. Next, 5 and 1 are 6 , and 1 are 7 , 3214 which we place under tens' column. Next, 4 2312 and 3 are 7 , and 2 are 9 , which we write under 3453 hundreds' column. Lastly 3 and 2 are 5 , and - 3 are 8 , which we set under thousands' column, 8979 making the sum 8979.
es of the same der units, tens
coumn from

EXERCISE 7.

The first thirty of the following que tions should be worked mentally.
(a) 1. A farmer harvested five loads of hay one day and six loads another day; how many loads did he harvest in the two days?
2. Henry's father gave him seven cents, and his brother gave him five: how many cents did he get in all?
3. John worked six days one week and six days the next week: how many days did he work in the two weeks?
4. I have six cherries in one hand and eight cherries in the other: how many have I in both hands?
5. Thomas has seven apples in one basket and nine in another: how many has he in both ?
6. There are seven sheep in one pen and seven in another: how many sheep are in the two pens?
7. How many are seven dollars, four dollars, and two dollars?
8. I had nine trees in the garden, and I set out five more: how many trees have I now in the garlen?
9. Cora bought some paper for eight cents and some pens for eight cents: how much did she spend?
10. James had eight plums, Joseph had nine, and John had four: how many had they in all?
11. There were ten wild ducks flying, when four more joined them: how many ducks were then in the flock?
12. How many are eight cents, six cents, and five cents?
13. There are seven books on one desk and six on another: how many books are on the two desks?
14. Joseph had three cents, his aunt gave him five, and his brother gave him cight: how many had he then ?
15. One hen had four chickens, and another had nine : how many chickens were there altogether?
16. Herbert had four apples, his brother gave him three, and his sister two: how many did he then have?
17. One word contains ten letters, and another seven: how many letters are there in the two words?
18. Mary had nine books, and her mother gave her three more: how many had she then ?
19. A man gave nine dollars for a plough, eight dollars for a rake, and six for a harrow: how much did he give
20. Ho dol
21. Da pea did
22. Ho
23. A five
24. Ho bir
25. Wi plu
26. In oth
27. Ho
28. Sus her
29. Ho
30. Jan thr how
31. A
the fou
and his brother get in all? days the next he two weeks? hit cherries in nds?
t and nine in
en in another:
lars, and two
out five more:
en?
nd some pens d?
ne, and John
en four more in the flock?
d five cents?
x on another:
a five, and his he then ?
or had nine : :?
e him three, n have?
seven: how
ve her three
it dollars for did he give
20. How many are nine dollars, three dollars, and four dollars?
21. David gave seven cents for apples, eleven cents for pears, and eight cents for peaches; how many cents did he spend ?
22. How many are six and three and five ?
23. A boy bought a pencil for ten cents and some peris for five; what did both cost?
24. How many are eight birds, seven birds, and two birds?
25. William spent nine cents for pears and eight for plums; how many cents did he spend altogether?
26. In one window there are nine panes of glass, in another six; how many are there in the two ?
27. How many are eight and five and three ?
28. Susan had eleven pears; her father gave her five, and her mother three; how many had she then ?
29. How many are seven and five and six?
30. Jane paid six cents for silk, seven cents for a spool of thread, nine cents for pins, and four cents for tape; how much did she pay for all?
31. A man owns 4 farms; the first contains 1143 acres, the second 2320 acres, the third 3425 acres, and the fourth 20Io. How many acres does he own ?
(b) Add together

(1)	(2)	(3)	(4)	(5)	(6)
23	43	27	36	72	123
62	36	31	22	17	241
-	-	-	-	-	-
(7)	(8)	(9)	(10)	(11)	(12)
181	5431	7654	5346	6135	4523
712	2364	1235	2453	3844	2236
-	-	-	$-10)$	(17)	(18)
(13)	(14)	(15)	(16)	1216	3701
7840	2253	152	21020		
2105	4314	2203	2701	1293	34917
33	2432	3322	1082	2005	22032

(b) Add together :

(19)	(20)	(21)	(22)	(23)	$24)$
313291	133072	3093124	202020	9334567	1212021
201306	101	2101003	333222	40101	2301304
211002	3303	3003251	262626	623311	33330
123100	12322	2020	102101	2020	201000

50. We now come to the case, in which the sum in any column is equal to 10 , or more than 10.

Ex.-Add together 378, 691, and 421.

$$
\begin{array}{r}
378 \\
691 \\
421 \\
\hline 1490
\end{array}
$$

Writing units under units, tens under tens, cte., as before, we say: 1 unit and 1 unit are 2 units, and 8 units are 10 units, which are equal to 1 ten and 0 units. Set down the 0 units under the units' column and take the i ten to the next, or tens' column. Then, 1 ten (which we carry) and 2 tens are 3 tens, and 9 tens are 12 tens, and 7 tens are 19 tens, which are equal to 1 hundred and 9 tens. Set the 9 tens under the tens' column and carry the I hundred to the next or the hundreds' column. Then, I hundred (which we carry) and 4 hundreds are 5 hundreds, and 6 hundreds are 11 hundreds, and 3 hundreds are 14 hundreds, which are equal to ithousand and 4 hundreds. Set down the 4 hundreds under its own column, and as there is no thousands' column, we must simply place the I thousand under the place where the thousands' column would be. Thus we have the answer, 1490. In short:
51. The
51. The work might be written thas:

(23)	
4567	1212021
4567	2301304
0101	33330
3311	201000
2020	20

e sum in any
$42 I$.

Now 10 units
$=$
I ten +0 units
1 hundred +8 tens +0 units
13 hundreds $=\frac{1 \text { thousand }+3 \text { hundreds }+o \text { tens }+o \text { units }}{1 \text { thousand }+4 \text { hundreds }+9 \text { tens }+o \text { units }}$
This is exactly the same result as we had before.
52. We thus obtain the following complete

RULE FOR ADDITION.

1. Write the numbers to be added, placing figures of the same kind in the same column.
2. Begin at the right hand and add each column separatcly. If the amount of any column be less than 10, place it under the column added; but if the amount be 10 or more, place the right-hand tisure of the amount under the column added, and carry the left-hand figure or figures to the nent column.
3. Proceed in the same reay through all the cohums, and set down the whole amount of the last column.
4. As in the former case, the best way of proving the correctness of the result is by adding from the top line
downwards.
5. In adding numbers, the pupil should be always tanght to add without repeating the sum each time a new figure is added.

> Ex.-Add together 869, 4931, 2687, 1072.

$$
\begin{array}{r}
869 \\
493 \mathrm{I} \\
2687 \\
1072 \\
\hline 9559
\end{array}
$$

Begimning at the right, we say 2 and 7 are 9, and 1 are lo, and 9 are ig, instead of saying, 2 and 7 are 9 . 9 and I are 10 , io and 9 are 19.
After placing down the 9 units we carry the r ten, and begin to add the second column in the samo way, 6 saying, 1 and 7 are 8 , and 8 are 16 , and 3 are 19 , and 6 are 25 , and so on for all the columins.

EXERCISE 8.

1. Add together:

(1)	(2)	(3)		
756	425	127	(4)	(5)
895	143	127 341	106	6204
784	231	210	341	2413
			121	1231
${ }^{(6)}$	(7)			
7856	276	748	(9)	(10)
$89+3$	483	249	4681	36487
6789	874	8838	7362 8428	10462
4584	965	749	8428 1697	38420
			1697	79549
(11)	(12)			
417	251	4376	(14)	(15)
819	432	8231	5438 7846	59763
234 846	846	2343	7846 829	867
846 721	735	5678	9731	8623
721	897	658	96	$\begin{array}{r} 437 \\ 24675 \end{array}$
(16)	(17)			
749831	12734	(18) 3786	(19)	(20)
8632	63741	3786 97643	8763	1379463
54317	32347	97643 278	48694	207839
432613	87698	278 89784	7687	999
48 460	37	9754 3264	89643	7638
460	$79+$	1640	89643 159	72109
				367294

3. Find the sum of $12+36701+10+9+8764+99910$.
4. Fi
5. Fi
6. Fi 68
7. Fir 8_{4}
8. Wl
9. W!
10. Aclc
II. Wh
11. Fin
12. If 8 and wha
13. Acld
14. Add
(1
3480 2724
5306
1098
6930
7645
2336
4284
3 897
21 CO
7608
63621
25373
25160
57545
80772
93004
$17+17$
62624
34273
are 9, and I are , 2 and 7 are 9 .
arry the x ten, in the samo way, nd 3 are 19, and
S.
15. Find the sum of $789632+4+67+879002+876+970$.
16. Find the sum of $98632+76398+832+97+10029+7384$.
17. Find the sum of $1324+4354653+12+876+97843+$ 68473.
18. Find the sum of $98673+10370634+97+964732+$
$84944^{8}+9+9^{8}+9$.
19. What is the sum of $824786+79+876345+37341+632$?
20. What is the sum of $34688+637+423+98976+38$?
21. Add $181+24+897{ }^{1} 56+881+71512$.
22. What is the sum of $82+873+93+9+824683+1000201$?
23. Find the sum of $3247+864302+84+96703+10001003$.
24. If 83976 be added to 74932 , then their sum to 389727 , and this sum be added to the sum of 83791 and 932016 , what will be the total sum ?
25. Add together the answers in questions $3,7,9,10,12$.
26. Add together:

(1)		(2)	(4)
348037	400375	963172	849652
272465	841681	300725	361728
530634	239724	463248	412381
109871	763256	721003	635403
693036	437891	387356	872545
764543	825432	241653	406223
233638	285678	603280	294867
428432	310720	532176	811236
359763	403521	278321	576037
$21 c 045$	687489	829248	213744
760806	324061	171320	764368
636215	530724	206782	305216
253734	623452	461027	436720
251600	487638	589203	823284
575453	290731	248639	217436
807720	803256	730461	592301
930045	731463	672398	243762
174173	379574	246175	739445
626245	823156	928340	429374
342734	928348	731629	684569
	-		

(4) 361728 412381 635403 872545 406223
811236
576037
213744 764368 305216 82328_{4} 217436
592301
243762
739445
429374
16. On my farm are 1640 oak, 748 ash, 639 beech, is birch, 597 fir, 48 poplar, is 86 apple, and 247 pear tree how many trees have I in all?
17. In one year, a farmer made by his horses $\$ 364$, by h cows $\$ 78_{5}$, by his slicep $\$ 106_{4}$, by his pigs $\$ 184,1$ what did he make in all?
18. One shepherd has 327 sheep, another has 25 more that he: how many have both? 19. By selling a farm for $\$ 6478$ the owner lost $\$ 273$ what did it cost at first ?
20. James was born in 1856: in what year will he be years old?
21. The first of three numbers is 398 , the second is 67 mol than the first, and the third 825 more than the second find the sum of the threc. 22. A grocer lost $\$ 957$, and had left $\$ 5635$: how muc would he have had, if he had gained $\$ 957$ instead o having lost that sum?
23. Commencing with 324 , what is the sum of all the num
bers below 335 ? 24. The population of a village was 1527 , the next yea it gained 421 , the second year 923 , the third year 845 the fourth 1760, the fifth 1099: what was the popula tion at the end of the fifth year? 25. A man left his estate to his wife, two sons, and three daughters. His wife received $\$ 9527$, each son $\$ 5726$ and each daughter $\$ 3784$: what was the value of the
26. A. owns a farm worth $\$ 8920$, three horses worth $\$ 15^{5}$ each, a pair of oxen worth $\$ 98$, five cows worth $\$ 2$ apiece, and sheep worth $\$ 1832$: what is the total
value of his property? value of his property?
27. Washington was born in 1732, and Napoleon 36 year later; Napoleon died at the age of 53 : in what yea
did he die?
8. The yeat the 2210 latto
29. An a 2708 how as A toget
32. A. do has as in the s all th all?
33. Three \$3845 more sum d
34. A ma $\$ 647$, fourth as for as for for bu how n 35. Five p first d \$6597. the fir: they a
36. The fir than t?
ash, 639 beech, and 247 pear tree
horses $\$ 36_{4}$, by h y his pi,ks $\$ 184$,
d by his oats d by his oats $\$ 4$ er has 25 more tha jwner lost \$2734 year will he be second is 67 mol than the second

5635: how muc \$957 instead

7, the next yea third year $\$_{45}$ vas the popula
sons, and three each son $\$ 5726$ he value of the
ses worth $\$ 15$ nws worth $\$ 2$ t is the total
oleon 36 year in what yen
28. The population of a certain city was 23000 in the year 1s 45 ; in the next five years it gained 5630 ; in the next five, 8763 ; in the next 16420 ; in the next, 22109: how many inhabitants had it at the end of the latter time?
29. An army consists of 6450 cavalry, 27846 artillery, and 270874 more infantry than both cavalry and artillery : how many men were there in the army?
30. A. has $\$ 5786$; B., $\$ 6724$; C., $\$ 10536$; D. as much as A. and C.; E. as much as A., B., and D.; F. as much as all the rest: how much liave they in all?
3I. A. has $\$ 84$; B. has $\$ 23$ more than A. ; C. has as much as A. and B.; and D. as much as A., B., and C. together: how many dollars have they in all?
32. A. deposits his money in five banks; in the first he has $\$ 897$, in the second $\$ 673$, in the third as much as in the first and second, in the fourth as much as in the second and third, and in the fifth as much as in all the others: how much money has he deposited in
all? all?
33. Three men enter into partnership; the first man puts $\$ 3845$, the second $\$ 2375$, and the third puts in $\$ 585$ more than the sums put in by the other two: what sum did they all put in ?
34. A man builds seven houses; for the first he receives $\$ 647$, for the sccond $\$ 799$, for the third $\$ 949$, for the fourth $\$_{1467}$, for the fifth $\$ 1986$, for the sixth as much as for the first and fourth, and for the seventh as much as for the third and fifth : how much does he receive for building the sixth and seventh respectively, and how much for building them all ?
35. Five persons deposited money in the same bank; the first deposited $\$ 5987$, the second $\$ 12980$, the third $\$ 65973$, the fourth $\$ 37345$, and the fifth as much as the first and second tugether: how many dollars did they all cleposit ?
36. The first of four numbers is 3125 , the second is greater than the first by 5108 , the third is equal to the sum of
the first and second, and the fourth is equal to sum of the third and first: what is the sum of the f numbers?
37. The ship Orient sailed from Marseilles to Buen.s Ay distant 6375 miles, thence to Valparaiso 2764 mi thence to San Francisco $63+6$ miles, thence to Sandwich Islands 2152 milcs, thence to Melbou 5588 miles, thence to Yokohama 5434 miles, the to Calcutta 5115 miles, thence to Bombay 2257 mi thence to Suez 2006 miles, and thence back to M seilles 1314 miles: what was the entire distat
sailed?
38. Find the sum of four hundred and three; 5025 ; si thousand and seventy; eighty-seven thousand; 20 one hundred and three.
39. Find the sum of 2050 ; three hundred and seventy th sand and two hundred; four million and five; two $:$ lion, ninety thousand, seven hundred and eighty; hundred thousand and seventy; 98002 ; seven mill nine thousand and one; 70070 .
40. Find the sum of two hundred thousand, two hundre three hundred million, six thousand and thirt seventy million, seventy thousand and seventy ; n hundred and four million, nine thousand and for eighty thousand; ninety million, nine thousand; hundred thousand and sixty; five thousand, set hundred; four million, twenty thousand, eight his dred and twenty.
41. Find the sum of all the different numbers you o make by using all the figures:

$$
\begin{array}{lllll}
\text { (1) } & 3, & 0, & 2, & 0 . \\
(2) & 3, & 8, & 9 . & \\
(3) & 7, & 9, & 0, & 0 .
\end{array}
$$

42. Add together all the different numbers of five figur each number beginning with 375 , anci ending with
43. Lily has 17 roses; Laura has in more than Li Charics has 18 dahlias more than Laura has ros and Jennie has 14 dahlias more than Charles: b many dahlias has Jennie?
44. He 43 cen Sar
45. Ma Ma tha Jan pen
${ }^{1 r t t_{1}}$ is equal to the sum of the f
es to Buen,s Ay varaiso 27.54 mi les, thence to mee to Melbou $i 434$ miles, the ombay 2257 mil ence back to M entire distal
hree ; 5025 ; si thousand; 20
and seventy h and five; two 1 and eighty; 22 ; seven mill
nd, two hundre and and thirt nd seventy; n usand and for e thousand; thousand, se sand, eight hu umbers you o

5 of five figur 4 ending with nore than L ,aura has ros n Charles: bu
44. Henry's purse coutains 329 cents; Edward's contains 43 more than Henry's, and Henry's contains as many cents as Sarah's, less 94 conts: how many cents docs Sarah's purse contain?
45. Mary bought a pencil for which she gave 95 cents; Maude bought one for which she gave i3 cents more than Mary; and Maude's pencil cost as much as Jane's, less 23 conts: what was the cost of Jane's pencil?
46. Henry lends \$913 to Thomas, $\$ 473$ to Samucl, $\$ 576$ to Theodore, and has $\$ 576$ left : how many dollars had he at first?
47. A man was 37 years old when his son was born: how old will he bc, when his son has reached the age of 59 ?
48. John throws a ball 30 yards up the road, and another 40 yards down the road: how far must he walk to bring them both back again ?

SUBTRACTION.

55. By Addition we find that 7 units and 4 units make II units. We will now find what in units become when 4 units are taken away. If 1 of the 4 units be taken from 11, the result will be 10 ; if I of the remaining 3 units be taken from ro, there will be 9 units left. Again, take 1 of the remaining 2 units from the 9 and 8 will remain; and, finally, take the 1 remaining unit from 8 and we have 7 units left. Thus we see, that if 4 be taken from in there will be 7 left.
56. This process of finding the number of units left after taking a certain number from a greater number is called Subtraction.
57. The greater number, as the 11 in the above example, is called the Minuend, and the lesser, as the 4 above, is called the Subtrahend. That which is left, as the 7 above, is called the Difference, Remainder, or Excess.
58. This operation is expressed by placing a sign - between the two numbers. The sign - is called Minus. Thus, $10-3=7$.
This is read:-Ten minus three equal to 7 , and means that if 3 units be taken from 10 units 7 units will be left. Here 10 is the Minuend, 3 is the Sub. trahend, and 7 is the Remainder.
59. The following cable should be perfectly understood and remembered by the pupil :

SUBTRACTION TABLE.

ign - between Minus.
qual to 7 , and o units 7 units 3 is the Sub.
nderstood and

60. The following method will teach pupils to be quick at subtracting numbers, and should be practised aloud as well as on the slate or paper:

Ex. 1.-Subtract by 2 's from 19 to I .
Result.-19, 17, 15, 13, 11, 9, 7, 5, 3, 1.
Reason.-2 from 19 leaves 17 ; 2 from 17 leaves 15 , etc.

Ex. 2.-Subtract by 3 's and 2's, one after the other, from 31 to 1 .

Result.-31, 28, 26, 23, 21, 18, 16, 13, 11, 8, 6, 3, 1 .
Reason.-3 from 3i leaves 28; 2 from 28 leaves 26 ; 3 from 26 leaves 23 ; 2 from 23 leaves 21 , etc.

Es Compare these resalts with Art. 44, and notice that Subtraction is exactly the converse or opposite of Addition.

EXERCISE 9.

These questions should be solved mentally.
I. If John is 15 years old and George is 6 , what is the difference in their ages?
2. How many are 16 cents -7 cents?
3. How many are 18 dollars -5 dollars?
4. How many are $14-6$? $16-4$? $12-5$?
5. How many are $18-8$? $20-6$? 21-4?
6. Five balls taken from is balls leave how many?
7. Six cents from 20 cents leave how many?
8. How many are 7-5? $17-5$? $27-5$?
9. How many are $9-6$? $19-6$? $29-6$?
ro What number added to 8 will make 12 ?
11. What number and 9 make 13 ? 14 ? 15 ? 10 i
12. Subtract by 2's from 24 to 0.

In the same manner, subtract
13. By 2's from 25 to r .
14. By 2 's from 3 r to 3 .
15. By 3's from 30 to o.
16. By 3 's from 37 to 1 .
17. By 3's from 40 to 4 .
18. By 4 's from 44 to 0 .
25. Count by 4 's from 2 to 24 . By 6 's from 65 to 5 .
26. Count by 5 's from I to 6 I , and back to I .
27. Count by 6's from 3 to 69 , and back to 3 .
28. Count by 4's from 5 to 53 , and back to 5 .
29. Count by 6 's from 7 to 67 , and back to 7 .
30. What is the difference between nine dollars and fifteer dollars?
31. A man earned fifteen dollars one week, and spent seven dollars: how much had he left?
32. A man hastwo sons, one fourteen years old, the other eight: what is the difference between their ages ?
33. Take nine yards from thirteen yards: how many yards remain?
34. A man had sixteen dollars: he spent eleven dollars of it for a dictionary, and the remainder for paper: what did the paper cost ?
35. A woman carried eighteen dozen eggs to market ; she broke seven dozen, and sold the rest: how many did she sell?
36. William bought sixteen marbles, and he gave his brother seven of them : how many did he keep?
37. Mary had fifteen examples to work out: after finishing nine, how many had she then to do?
38. Take seven books from thirteen books: and how many will remain?
39. A. merchant had nineteen barrels of flour; he sold twelve barrels, and kept the rest: how many did he
lars and fifteer
ek, and spent
old, the other eir ages?
w many yards
ven dollars of for paper
market ; she ow many did
he gave his keep?
fter finishing
d how many
ur; he sold nany did he
40. George had seventeen cents; he lost nine cents, and spent the rest for ink: what did the ink cost ?
41. There were fourteen books on one shelf of a book-case, and eight on another: how many more books were there on one shelf than on the sther?
42. Take eight cherries from fifteen cherries: and how many will remain?
43. Mary is sixteen years old, and Jane seven: how much older is Mary than Jane?
44. A man sold a cart for eighteen dollars; he received for it a barrel of flour worth nine dollars, and the rest in money: how much money did he receive?
45. James's father gave him ten cents, and his mother gave him nine: after spending eight cents, how much had he left?
46. A boy had thirteen marbles; he bought five more, and afterwards lost ten: how many had he then?
47. John had eight books, his father gave him five, his mother two; he then gave four to his brother; how many had he left?
48. A man had sixteen dollars; he gave away seven dollars and afterwards earned nine: how much had he then?
49. A merchant bought some cloth for nine dollars, and some silk for five dollars; he sold both for sixteen dollars: did he gain or lose by the bargain: if so, how much?
61. To subtract one number from another they must be of the 3 rmc kind.

Tiv, $;$ dollars from 8 apples leaves neither 3 dollars no: 3 appies. In tl:c same way, 3 units from 7 thoucandis leaves neither 4 units nor 4 thousands.
62. Hence when we subtract, we should always write numbers of the same kind in the same column, that is, units under units, tens inder tens, thousands under thousands, etc.
63. We thus have the following

RULE FOR SUBTRACTION.

x. Write the numbers to be subtracted, the less under the greater,

The placing units under units, tens under tens, etc., and drawe a line underneath.
2. Begin at the right, and subtract each figure from the one above. placing the result under the figure subtracted.
64. To test the result, add the Subtrahend, or middle num. ber, to the Difference, or lower number, and if the work be correct the sum should be the same as the Minuend, or upper number; or, subtract the lower number from the upper, and the result should be the same as the middle number.
Ex. I.-Subtract 238 from 749.

Minuend	749
Subtrahend	238
Diference	51

We place the numbers, units under units, tens under tens, and hundreds under hundreds. Then begin at the units' column and say: 8 units from 9 units leaves I unit, and we write the I under the units' column. Then 3 tens from 4 tens leaves I ten, and we put the I under the ten's column. Then 2 hundreds from 7 hundreds leaves 5 hundreds, and we place the 5 under the hundreds' column. The answer being $51 x$.
In practice we shorten the work thus: 8 from 9 leaves 1 ; 3 from 4 leaves x; 2 from 7 leaves 5 ; leav. ing altogether 5 rr .
To prove the correctness of the work, we add 238 to 51 I and obtain 749 ; or we may subtract 511 from 749 and obtain 238.

SUBTRAOTION.

The reason for this is as follows: 4 from 9 leaves 5 ; and if we add the $\&$ back again to the 5 , we must obtain the 9 we had at first.
uder the greater, 1c., and drawe a

2 the one above.
middle num. r, and if the same as the ct the lower hould be the
inits, tens eds. Then nits from 9 or the units'
1 ten, and 2 hundreds e place the swer being

8 from 9

5 ; leav.
e add 238
5 II from
Again, if 4 taken from 9 leaves 5 , the pupil will easily see that 5 taken from 9 must leave 4 .
Hence the proof of the work.
Ex. 2.-Find the difference between 3065 and 78195.

$$
\begin{array}{r}
78195 \\
3065 \\
\hline 75130
\end{array}
$$

Here 5 from 5 leaves o, which is placed under the units' column; 6 from 9 leaves 3 under the tens' column; ofrom i leaves a under the hundreds' column: 3 from 8 leaves 5 under the thousands' column; ofrom 7 leaves 7 in the ten-thousands' column.

EXERCISE 10.

(1)	(2)	(3)	(4)	(5)	(6)
469	5642	9874	8072	2741	5462
327	4130	3623	3051	1301	1350

(7)	(8)	(9)	(10)	(11)	(12)	(13)
6408	8420	8742	7839	1243	4785	86493
3207	3^{110}	6331	5427	123	1053	34272
(14)	(15)			(17)	(18)	

972897	985094	987657899		99797:36	9892976
120341	382045	12345	8	512	4730834
(19)	(20)	(21)	(22)	(23)	(24)
75853	89487	75659	87392	75285	88456
45213	32315	32417	43181	43151	32142
(25)	(26)	(27)	(28)	(29)	(30)

546875	347985	973856	825944	756345	914756°
513213	323415	951231	812512	713125	902314

(31)	(32)	(33)	(34)	(35)	(36)
41876	38789	64187	918764	187137	59123
31023	13321	33123	312311	123013	32122
-	-				
	(37)	(39)		(40)	(41)
418764	13912	67134	67583	91276	41877
213321	13311	32132	21033	21230	31232

43. A boy had 36 marbles and gave 24 of them to his play. mate : how many had he remaining ?
44. Joseph caught 295 quail, and John caught 184 : how many more did Joseph catch than John?
45. Wilson had $\$ 6847$, and Joseph $\$ 2437$: how much more had Wilson than Joseph?
46. Thomas having 447 bushels of potatoes, sold 234 bushels of them to Perry: how many bushels had Thomas remaining ?
47. A farmer bought a span of horses for $\$ 346$, and a yoke of oxen for $\$ 135$: how much more did he give for the horses than for the oxen?
48. A drover having 1465 sheep, sold 1235 of them: how many had he remaining ?
49. A gentleman owns a store worth $\$ 4695$, and a gristmill worth $\$ 2135$: how much more is the store worth than the grist-mill?
50. A gentleman gave for a house and lot $\$ 9399$, and for a cotton factory $\$ 8495$: how much more did he give for the one than for the other?
51. A speculator bought some land for \$12897, and a tannery for \$10444: how much more did the land cost than the tamery?
52. A merchant having 9847 yards of cloth, sold 5844 yards of it: how many yards had he remaining?
53. A drover bought cattie to the ar:oxint of 9647 dollars, and sheep to the amount of 5434 clollars: how much more did he give for the cattle than for the sheep?
54. Two men juintly bult a mill fur 7856 dollars; one fur nished 4520 dullars: what did the cther furmish ?
55. The carnings of a factory for a year were 45689 dollars, and the expenses were 21352 dollars: what were the profits?
56. The gross receipts of a railruad were 357845 dollars, and the running expenses for the same time were 213423 dollars : what were the net earnings?
57. A. has a grist-mill worth 1875 dullars, and a saw-mill worth 1032 dollars: how much more is the one worth than the other?
5\%. A farmer had 3672 sheep and 2312 lambs: how many more sheep had he than lambs?
58. A man was driving 534 geese to market, and on the way had 21 stolen from him : how many had he remaining?
59. A farmer had 327 bushels, of oats, and sold 125 bushels of them : how many bushels had he remaining?
60. A merchant in one year sold 18972 barrels of tlour and 7370 barrels of sugar: how many more barrels of flour did he sell than sugar?
61. A ship is valued at 54789 dollars, and its cargo at 40357 dollars: how much more is the ship valued at than the cargo ?
62. A gentleman having 577897 dollars, gave to his eldest son 16805 dollars: how much had he remaining?
63. In all the former examples, the figures of the larger number were either greater or equal to the corresponding figure in the lesser number. We will now consider those cases in which the figures of the larger number may be less than the corresponding figures of the other.

Ex.-Subtract 695 from 932.

$$
\begin{aligned}
93^{2} & =900+30+\underset{\text { tuulirells. }}{2}+\underset{\text { tens. }}{2}+\frac{\text { units. }}{2} \\
& =9+3+{ }_{2}
\end{aligned}
$$

In the same way,

$$
6_{95}=6^{\text {huudroils. }}+\stackrel{\text { tona. }}{9}+\begin{gathered}
\text { unitg } \\
\hline
\end{gathered}
$$

The numbers then stand:

\square.		т.		
9		3	+	2
	$+$	9	+	
2	+	3		

Now, we cannot take 5 from 2 units, hence we ins. crease the latter by 1 ten or so units, thus making it 12 units; then 5 units from 12 units leaves 7 units, which we place as usual. Again, since we took I of the 3 tens to add to the 2 unite we mast have only 2 tens left from which to take the 9 tens, and here, since we cannot take 9 from 2, we must take 1 of the 9 hundreds or to tens and add it to the 2 tens, making 12 tens. Then 9 tens from 12 tens leaves 3 tens, which we place as usual. Again, having taken 1 hundred from the 9 hundreds, we can have only 8 hun. dreds left, and since we can take the 6 hundreds from usual.

The work may be shown thus :

$$
\begin{aligned}
& 237=. \quad . \quad . \quad=2+3+7
\end{aligned}
$$

66. By another method, it is usual to add one, when necessary, to the figures of the Subtrahend, instead of taking one away from the figures of the Minuend.
In the previous example, instead of saying 9 tens from 12 tens leaves 3 tens, we say 10 tens from 13 tens leaves 3 tens, which gives the same result; and instead of saying 6 hundreds from 8 hundreds, we say 7 hundreds from 9 hundreds, so that we only change
67. This system, known as carrying one, is done mentally while working a question in Subtraction, and depends
on the fact that r mit of any order is equal to to units of the next order to the right of it.
68. We thus have the following

RULE FOR SUBTRACTION.

1. Write the less number under the greater, placing units under units, tens urder tens, etc., and begin at the right to subtract.
2. Subtract, if possible, cach figure in the lozier line from the one above it, and set the remainder below.
3. If any figure in the lower line is greater than the one above it, add io to the upper figure before subtracting, and diminish by I the next left-hand fosure in the upper line, and proceed as before.
Proof.-Add the remainder to the subtrahend; the sum should be equal to the minuend.

EXERCISE 11.
hence we in us making it aves 7 units, we took I of have only 2 id here, since c I of the 9 tens, making aves 3 tens, taken I hun. only 8 hun. ndreds from hundreds as

\section*{| 6. |
| :--- |
| $12+\quad 12$ |
| $9+\quad 5$ |
| $3+7$ |
 one, when instead of inuend.
 ag 9 tens s from 13 esult ; and ds, we say ly change
 mentally
 d depends}

(2) (3)

(3)	(4)	(5)
704	1806	572
483	7-u	259
(8)	(9)	(10)
52836	400500	4236
28371	215327	3089
(13)	(14)	(15)
5491	6180	4192
4542	2435	1435
(18)	(19)	(20)
917183	618190	519080
421354	23422 I	324121
(23)	(24)	(25)
527082	816141	423453
232154	135212	141514
(28)	(29)	(30)
826041	46 cg 5	555555
434425	28736	123456

(b) I. From 8_{54} take 578 .
2. From I 799 take 1732 .
3. From 5496 subtract 1492.
4. From 1584 subtract 920 .
5. From 5672 subtract 2356.
6. From 74760 subtract 39817 .
7. From $8+16$ subtract 2918.
8. From 30 Si I subtract 13240 .
9. From 27880 subtract 9226.
10. From $358+6$ subtract 12829.

I 1 . From 75901 subtract 17980.
12. From 37229 subtract 17991.
13. Fronı 100304 subtract 62818.
14. From 1000302 subtract 888772 .
15. From 892201 subtract 300998.
16. From 1000000 subtract 333333.
(c) Find the value of
I. 758901 - 349806.
2. $329500-54650$.
3. 720065991 - 12095899.
4. $10000-390$.
5. 189501 - 188605.
6. $756 ? 5$ - 24319 .
7. 786:99000-17664508.
8. $1370426019-820512055$.
9. 97001 - 50077.
10. 76734 - 977 .
11. $56400-100$.
12. $700000-99$.
13. $5700-500$.
14. $9777-89$.
15. $76000-1$.
16. 90017-3.
17. $23046 y-85340$.
18. $349130-94131$.
19. $40050-80973$.
20. $739745-76378$.
21. $511839-84674$.
22. 601S13-13834.
23. $803460-45009$
24. $910311-87300$.
25. $999830-99001$.
26. $7465676-567+56$.
27. 37823 - 1828 1.
28. $780023-320412$.
29. $74603-43374$.
30. $700-2$.
31. 8004 - 7008.
32. $830240-370+28$.
33. 83001 - 38994
34. $783124-291431$.
35. $70800-8004$.
36. $8467321-3478271$.
37. $3178632-1478371$.
38. 11247863 - 4613278
39. $70001-7$.
40. 9004110 - 30012.
41. 486321 - 198372.
42. 976321 - 123679.
43. 900000 - I.
44. 100010110-99991.

1. Fror
2. Fror
3. Fror clred
4. Fror
5. Fror
6. Fror
7. Fror
8. Fror
9. Fron
10. Fron
11. Fron
12. Wha 13. How 14. How 15. How 16. How
13. Fron
14. The what
15. Mr. sheef
16. How Amer
17. A. bo rema
4 A. pu $\$ 479 \mathrm{c}$
(i) 1. From 65 million take 650 thousand 980 .
18. From nine hundred thousand take five huidred and 50 .
19. From 12 million 12 hundred take 400 thousand 4 hun clred.
20. From 280 million and in take 24 milliun 650 thousand.
21. From twelve hundred and ninety take seventy five.
22. From 6 hundred million take 500 million 5 hundred.
23. From six hundred and 48 take one hundred and 70.
24. From 460 million and io take 920 thousand 750.
25. From 1 million and 20 take 960 thousand.
26. From 756 million 3 thousand take 657 million and 8 .
ii. From six hundred and 90 take seventy-five.
27. What is the difference between 900000 and 123454 ?
28. How much larger is 38607 than 3867 ?
29. How much smaller is 34730 than 38607 ?
30. How much must be taken from 2483 to leave 391 ?
31. How much must be added to 2032 to make $2+83$?
32. From 7630005 take 3270006.
33. The larger of two numbers is 10640 and the less 9535 : what is their difference?

EXERCISE 12.

I. Mr. A. had 350 sheep in two lots; in one lot were 175 sheep : how many were in the other?
2. How many years have elapsed since the discovery of America in 1492 ?
3. A. borrowed from B. $\$ 9780$, and paid $\$ 2176$: how much remained due?

4 A. purchased a farm for $\$ 10000$, and paid thereun $\$ 4790$ how much remained due?
5. B. bought merchandise which he sold for $\$ 1$ 1275, a made thereby $\$ 2114$: what was the cost price? 6. In 1870 the population of a country was 627413 , a in 1880 it was 913279: what was the gain in 1o yea:
7. The sum of two numbers is 9427 , and the greater 5825 : what is the less number?
8. The minuend is 57 , the subtrahend is 27 : what is remainder?
9. The minuend is 67 , the remainder is 20 : what is sultrahend?
10. The subtrahend is 12, the remainder is 18: what
11. A gentleman gave to his son $\$ 3862$, and to his daug ter $\$ 5324$: how much more did he give to his daug ter than to his son?
12. In an orchard there are 425 apple-trees, and 297 plur trees: how many more apple-trees are there the plum-trees?
13. A man travelled 14637 miles during one year and 98: miles the next year: how much farther did he trav the one year than the other?
14. A merchant had 25694 pounds of pork, and sold 198 : pounds of it: how many pounds remained unsold?
15. A speculator bought a quantity of cotton for $\$ 29468$: and sold it for $\$ 516390$: how much did he gain?
16. A man owning 4576r acres of land, sold 23927 acres it : how many acres had he remaining ?
17. A merchant having 98072 barrels of flour, sold 4926 of them : how many had he remaining ?
18. A certain town had 24967 inhabitants, which was 508 more than it had the preceding year: how many ha
19. A merchant sold a quantity of goods for $\$ 38967$, which
20. A man having 21695 feet of umber, cold 7962 feet it : how many feet had he remaining ?
2. If I b of it :
22. A ma part much
23. The 95000 24000 moon
24. If I b what
25. A gen the ho of the
26. A lum feet 0
27. The b the P what
28. A ma had h
29. A mes and 0
30. If two 73462 how r
31. One p 50914 the 01
32. Mour and 2 how 1
33. Bonal when born
34 Sir Is in 179

old for \$11275, a

 he cost price? y was 627413 , a e gain in mo yea: nd the greaters 27 : what is
S 20: what is
r is 18 : what
nd to his daug ive to his dang
s, and 297 plur are there th:
e year and 98 . r did he trav
and sold 198 aed unsold ?
on for $\$ 29468$: he gain?

23927 acres
ur, sold $492 t$
hich was 508 low many ina
$\$ 38967$, whic ow much did

7962 feet
31. If I borrow of my neighbour $\$ 9673$, and pay him $\$ 999$ of it: how much remains unpaid?
22. A man has a farm of 400 acres; part is woodland, and part is cultivated; the former part is 125 acres : how much is the latter?
23. The distance from the earth to the sun is about 95000000 miles; the distance to the moon is about 240000 : how much farther is it to the sun than to the moon?
24. If I bought a ship for $\$ 42650$, and sold it for $\$ 49000$: what did I gain?
25. A gentleman gave $\$ 12462$ for a house and some land; the house alone was worth $\$ 9375$: what was the value of the land?
26. A lumberman having 65° eet of boards, sold 16237^{2} feet of them : how many feet then remained?
27. The battle of Inkermann was fought in the year 1854 ; the Peninsular War was begun 46 years before this : in what year did the latter war begin?
28. A man having $\$ 100000$, gave away $\$ 365$: how much had he left?
29. A merchant owns property to the amount of $\$ 45563$, and owes \$21209: how much is he really worth ?
30. If two candidates for office received in the aggregate 73462 votes, and the successful one had 45309 votes: how many did the other have?
3r. One province contains 55405 square miles, and another 50914 square miles: how many more square miles does the one contain than the other?
32. Mount Sorata, in South America, is 24812 feet high, and 2124 I feet higher than Mount Snowdon, in Wales. how high is Mount Snowdon?
33. Bonaparte was declared emperor in the year 1804 , when he was 35 years of age: in what year was he. born?
34 Sir Isaac Newton was born in the year 1642 , and died in 1727: how old was he when he died?
35. Glass windows began to be used in private houses Engla 4 in the year 1180 , which was 516 years af the discovery of glass by a monk nanjed Benall: what year was the discovery of glass made?
36. Gunpowder was invented by Swartz in the year 13 how long was this before the invention of printit which was in 1440 ?
Find a number to which, if thirty-four thousand thr hundred and twenty-six be added, the result will three million nineteen thousand and five?
38. Cotopaxi, the highest volcano in the world, is 188 feet high: how much higher is it than Mount Etna, 10950 feet high ? how many feet higher is it than Mounca, is 24812 feet high is 17000 feet high ?
40. The highest land in North America is Mount St. Elia which is 15000 feet high, and this mountain is $87{ }^{2}$ feet higher than Mount Washington in New Hamp 41. St. Peter's Church at Rome, which is 450 feet high, 157 feet higher than St. James' Cathedral, Toronto what is the height of the Cathedral?
42. A man willed to his sons $\$ 17496$, which was $\$ 382$ 43. A man owning 2572 I acres of land, sold of it: how many acres had he remaining ? 19395 acres 44. A merchant having 7 保 Sicily, which is 10950 fet than Mount Etna, 17000 feet high ? 41. 157 feer's Church at Rome, which is 450 feet 1 he will to his daughters? 4972 of them: how many barrels had he remaining? 45. John and James played marbles, the former having 49 and the latter 73: how many will each have when James has won 17 marbles from Jchn?

MULTIPLICATION.

9. The numbers that were added together in the examples in Addition were nearly always different. We now come to a short method of adding togetiner numbers that are the same.

$$
E x .3+3+3+3=12 .
$$

In this example we have the number 3 taken 4 times, giving 12 as the sum; but instead of finding this sum by the usual process of addition, we obtain the same by saying 4 times 3 are 12 .
Again, $5+5+5+5+5+5=3$ o, which result is the same as saying 5 taken 6 times gives 30 , or 6 times 5 are 30 .
70. This produces a Table, which may be obtained by ordi. nary Addition, for

I	+	1	=	2	or	twice	1	are	2
2	+	2	=	4		،	2	"	4
3	$+$	3	-	6		"	3	،	6
4	+	4	=	8		"	4	"	8
5	+	5	$=$	10		"	5	"	10
6	+	6	=	12		"	6	"	12
7	+	7	=	14		*	7	"	14
8	+	8	=	16		"	8	"	16
9	+	9	=	18		،	9	"	18
10	+	10	=	20		،	10	'	20
11	+	11	$=$	22		"	1 I	"	22
12	$+$	12	=	24		،	12	،	24

Again,

In the same way four times 6 will be found to be 24 ; five times 7 will be 35 , etc.
71. These results will now be pleced in the form of a Table, called the Multiplication Table, which must be accurately memorized by the pupil.

MULTIPLICATION TABLE.
72. Mult the the The the The n tipl The f
73. The by. by is t is t the duc
The F 66, ma tog
4. The
knc

Since
rep
cen

9 b
Since 7 d
72. Multiplication is, then, a short method of Addition, or the art of repeating one number as many times as there are units in another.
The number which is to be added or repeated is called the Multiplicand.
The number which shows the number of times the Mul tiplicand is to be repeated is called the Multiplier.
The final result is called the Product.
73. The sign of this operation is \times, and is read multiplied by. Thus, in $\times 6=66$, would be read in multiplied by 6 equals 66. Here 11 is the multiplicand, for it is the number which is to be repeated six times. 6 is the multiplier, for it shews the number of times the multiplicand in is to be repeated. 66 is the product, for it shows the result of repeating in six times.
The pupil must clearly understand that while the result, 66 , is supposed to be remerbered from the Table, it may be obtained by adding, in the same way, six in's together, that is,

II	
II	
$\overline{66}$	
Ans.	

74. The following Mental Questions will test the pupil's knowledge of the Multiplication Table:

Ex.-What will 8 peaches cost at 6 cents apiece? Ans. 48 cents.
Since I peach costs 6 cents, 8 peaches must cost 6 cents repeated 8 times, or 8 times 6 cents, which will be 48 cents.
Ex. 2.-If a barrel of flour costs 7 dolla rs, what will 9 barrels cost? Ans. 63 dollars.
Since I barrel costs 7 dollars, 9 barrels must cost 9 times 7 dollars, that is, 63 dollars.

4RItumetic for beginners.

15 The product must always be of the same kind the multiplicand, for it is only the multiplican repeated a certain number of times.
The best practice is to take the different products in th
Multiplication Table, and give the numbers that ar multiplied together to produce these products. Ex.-What numbers give 42? Ans. 6 and 7.
What aumbers give 108? Ans. 12 and 9.

EXERCISE 18.

(a) I. Copy on your slates and fill out the following:

$7 \times 5=$			
$6 \times 3=$	$3 \times 2=$ $2 \times 1=$	9×8	$9 \times 4=$
$5 \times 3=$ $8 \times 6=$	$4 \times 1=$	9×5 9×3	$9 \times 0=$
	$5 \times 3=$	9×3 7×2	$10 \times 5=$
$8 \times 4=$ $9 \times 6=$	$6 \times 1=$	$7 \times$	$12 \times 1=$
$12 \times 8=$	$9 \times 7=$	+	10×10
$12 \times 11=$	11×5 10×6	12×10	10×10 $8 \times 5=$
$10 \times 8=$	$12 \times 9=$	12×12	$11 \times 3=$
$11 \times 7=$	$12 \times 7=$	12×6	$12 \times 2=$
$3 \times 1=$	4×3=	12×4	$12 \times 3=$
$5 \times 1=$	$5 \times 2=$	4×2 6×4	$5 \times 4=$
$6 \times 5=$	7×1	6×4 7×3	$7 \times 4=$
$7 \times 6=$ $8 \times 7=$	8×1	7×3 8×3	$8 \times 5=$
8× $7=$	$9 \times 2=$	+ 8×3	$10 \times 1=$
$10 \times 4=$	$10 \times 3=$		$10 \times$
$10 \times 9=$	$11 \times 1=$	118	$1 \mathrm{I} \times$
1	$12 \times 8=$	+ 12×2	12×5

2. Repeat all the numbers of times 5 , from once 5 to io times 5. Thus, once 5 is 5, 2 times 5 are ro, 3 times
3. Repeat from once 6 to to times 6 , and back from to times 6 to once 6. 4. Repeat from once
4. Repeat from once

7 to so times 7 , and back.
8 to ro times 8 , and back.
(b) I. A 8 q
2. Th ma
3. If for
4. On the
6. Wl
te same kind le multiplican ambers that at roducts.
s. 6 and 7 . 12 and 9.
jwing :

nce 5 to 10 10, 3 times
ck from 10
6. Repeat from once 9 to to times 9 , and back.
7. Repeat from once to to so times io, and back.
8. What two numbers produce by multiplication the following numbers: $2,8,12,40,60,72,12,11,22,36,24$, $44,54,77,81,96,55,84,108,88,132,120,64,49,56$, 63 , etc.
(b) 1. A quart of berries makes 2 pints: how many pints in 8 quarts?
2. There are 12 inches in one foot length of rope: how many inches in 9 such lengths?
3. If i lemon costs 7 cents, how many cents must you pay for 4 lemons?
4. One gallon coriains 4 quarts: how many quarts are there in in gallons?
5. One peck contains 8 quarts: how many quarts are there in 7 pecks?
6. What would 12 pears cost at 7 cents apiece?
7. How much would 5 bags of meal cost at 9 dollars a bag?
8. At 10 cents a pint, how much would 8 pints of cherries cost?
9. At in cents a pound, how much would 7 pounds of sugar cost ?
10. In one week there are 7 days: how many days are there in II weeks?.
11. At 8 cents a quart, what would be the cost of 7 quarts of berries?
12. In 1 florin there are 45 cents : how many cents would there be in 7 florins?
13. At 3 dollars a bushel, what would 12 bushels of grapes cost ?
14. There are 4 gills in one pint : how many gills would there be in 12 pints?
15. If a horse runs 12 miles an hour, how far would he run in 5 hours?
16. In one yard there are 3 feet: how many fect in 8 yards
17. At 6 cents a pound, how much must you pay for pounds of oatmeal?
18. In one foot there are 12 inches: how many inches in
19. How much would 8 pounds of metal cost at 6 cents a pound ?
20. At 8 cents apicce, how much would you pay for 8
21. If one box holds would 10 boxes hold?
22. If a ton of coal cost 9 dollars, what would 10 tons cost ?
23. At in cents an ounce, what would 9 ounces of blue be
24. Six feet make a fathom : how many feet would there be in 9 fathoms?
25. If a bunch of grapes costs 7 cents, what would 9 bunches cost?
26. In one mile there are 8 furlongs : how many furlongs
27. At 10 cents a gill, how much would 11 gills of wine
28. In one bushel there are 4 pecks: how many pecks are
there in 8 bushels? 29. At 3 cents a box, how many cents must you pay for 7 boxes of matches?
30. There is a garden of six rows of tulips, with six tulips in a row: how many tulips are there in the garden ?
31. Each step in a flight of stairs is eleven inches high: how many inches will you ascend in eleven steps?
32. If you work eleven examples each day, how many will you work in six days?
33. How many are seven times seven pounds?
34. There are seven days in one week : how many days are
feet in 8 yards you pay for
any inches in
it at 6 cents
ou pay for δ
1any bushels
10 tons cost? es of blue be
would there
at would 9
ly furlongs
lls of wine
pecks are
pay for 7
six tulips arden?
hes high: teps?
nany will
35. What will be the cost of seven pounds of raisins at nine cents a pound?
36. A sheet of paper can be folded so as to make four leaves: how many leaves will eleven such sheets. make?
37. What is the cost of eight pounds of soap at seven cents a pound?
38. There are twelve inches in a foot: how many inches are there in twelve feet?
39. How many inches in eight feet ?
40. If one barrel of flour costs nine dollars, how much will eight barrels cost ?
4I. If one shot weighs six pounds, what is the weight of seven such shot?
42. What is the weight of eight packages of coffee, if each weighs five pounds?
43. If one pound of rice costs twelve cents, what is the cost of seven packages of a pound each ?
44. What is the cost of twelve pair of boots at six dollars a pair?
45. I bought eleven pounds of glue at eight cents a pound what was the cost?
46. William had six cents; his sister gave him three more, and his mother gave him seven times as many as he then had: how many did his mother give him?
75. The pupil is now supposed to be quite familiar and ready with the Multiplication Table, and we will therefore go on with the different cases that occur in multiplication.
First we will multiply any number by a number of one figure, or by any number frum r to I 2.

Ex.-Multiply 378 ri by 7 .
Multipicand. 37^{81}
$\begin{array}{ll}\text { Multiplier..... } & -\frac{7}{26467} \\ \text { Product........ }\end{array}$

Place the multiplier 7 under the multiplicand 378 r , and bef in to multiply from the right, or units' place. 7 times I tunit are 7 units, which we place in the usual place. 7 times 8 tens are 56 tens, that is 5 hundreds and 6 tens; place the 6 tens in its proper place, and carry the 5 hundreds. 7 times 7 hundreds are 49 hun. dreds, which, with the 5 hundreds we carried, make 54 hundred, or 5 thousands and 4 hundreds; place the 4 hundreds in its own place, and carry the 5 thon5 thousands 7 times 3 thousands are 21 thousands, and the placed on the left.
76. This may be done more easily by neglecting for the time the words units, tens, etc.

Thus: 7 times 1 are 7 , put down the $7 ; 7$ times 8 are 56, put down the 6 and carry $5 ; 7$ times 7 are 49, and 5 (carried) make 54, put down the 4 and carry the 5 : 7 times 3 are 21, and the 5 (carried) make 26 .
The pupil should be satisfied that the same result could
have been obtained by Addition, thus:

$$
\begin{array}{r}
378 \mathbf{r} \\
\hline 26467
\end{array}
$$

77. Thus, when the multiplier does not exceed 12, we have
(a) 1. M
78.
79. M
80. M
81. M
82. M
83. M
84. M
85.
86.

if. M
12.
13. M
14. M
15. M
t6. M
17. M
18. M
19. M
20. M
21. M
22.
23. M
24. M
25. M
26. M
27. M
28. M
29. M
30. M
31. M

EXERCISE 14.

(a) 1. Multiply
2. Multiply
3. Multiply
4. Multiply
5. Multiply
6. Multiply
7. Multiply
8. Multiply
9. Multiply
10. Multiply
11. Multiply
12. Multiply
13. Multiply
14. Multiply
15. Multiply
16. Multiply
17. Multiply
18. Multiply 21607835 by 3 .
19. Maltiply
20. Multiply
21. Multiply
22. Multiply
23. Multiply
24. Multiply
25. Multiply
26. Multuply
27. Multiply
28. Multiply
29. Multiply
30. Multiply

3i. Multiply
(63)
2413
11
(68) 900867

123 by 2. 134 by 2. 223 by 2. 246 by 2. 278 by 2. 495 by 2. 1312 by 2, 2172 by 2. 3629 by 2. 3785 by 2. 4006 by 2. 4308 by 2. 142034 by 2. 1706324 by 2. 3614503 by 2. 462178 by 2. 1203062 by 3. 93420 by 3. 705086 by 3. 1039246 by 4. 217906 by 4. 509367 by 4. 567239 by 5. 6146802 by 6. 4601792 by 5. 962078 by 6. 729360 by 7 . 4286072 by 7 . 237000 by 7 . 23416 by 2.
32. Multuply
33. Multiply
34. Multiply
35. Multiply
36. Multiply 37. Multiply 38. Multiply 39. Multiply 40. Multiply
41. Multiply $12: 57$ by 7 .
42. Multiply 23460 by 6 .
43. Multiply 68913 by 3.
44. Multiply 57802 by 2.
45. Multiply 62819 by 5 . 46. Multiply 93856 by 6.
47. Multiply 28475 by 4 .
48. Multiply 39586 by 5 .
49. Multiply 40697 by 6.
50. Multiply 17364 by 3.
51. Multiply 51708 by 4.
52. Multiply 5876 by 4. 53. Multiply 8546 by 7 . 54. Multiply 502 by 9 . 55. Multiply 246025 by 5 . 56. Multiply 512604 by 8. 57. Multiply 648 by 7 . 58. Multiply 1082 by 9. 59. Multiply 5050 by 4 . 60. Multiply 73046 by 3 . 6r. Multiply 10708 by 2. 62. Multiply 980789 by 8 .

(65)	(66)	(67)
3546	5354	81897
11	12	11
(70)	(71)	(72)
716914	765439	8419829
12	1:	11

(a)	(7.3)
	8270802
	12
	$\begin{gathered} (78) \\ 666666 \end{gathered}$
	Io

83. $82386 \times$

84.	$357 \times$
85.	$864 . \times$
86.	$2079 \times$
87.	$8842 \times$
88.	$3749 \times$

89. 13146×9
90. 876×1.
$91 . \quad 2345 \times 12$.
91. $998 \times \mathrm{II}$.
92. 8134×12.
93. 7312×11.
94. 8183×12.

(74) 3443 11 (79) 999999 12

(75)	(76)	
1345	77777	88888
12	II	12
(80)	(8I)	
4040404	575757	48484.8
II	12	11

109. 960281×11.

IIO. 593514×8.
III. 926847×12.

II2. 760281×9.
II3. 104748×7.
II4. $327071 \times I I$.
II5. 650304×8.
II6. $382637 \times$ I 2 .
117. $6 \times 6960 \times 9$.

I 18.438082×7.
II9. 871406×11.
120. 763867×12.
(b) I. A man sold 195 lambs at $\$ 3$ apiece: how much did he receive for them?
2. What is the cost of 184 barrels of meal, at $\$ 6$ a barrel ?
3. What is the cost of 1987 acres of ground, at $\$ 9$ an acre?
4. What is the cost of 4786 barrels of flour, at $\$ 9$ a barrel ?
5. In I mile there are 5280 feet: how many feet are there in 5 miles?
6. In I mile there are 1760 yards: how many yards are
there in 5 miles?
7. If 9 men can sow a farm in 18 days, in how many days
can one man do the same?
8. If 6 men can build a wall in 149 days, in how many days can one man build the same wall?
9. If 460 bushels of grain will feed one horse 18 months: how many bushels will be necessary to feed 8 horses
for the same time?
10. I
iI. A

13. 1 14. If 15. 16. 17. If 18. If 19. If co
20. W

2I.
22. If
23. Tl

H
25. W
26.

Tc
27. W
10. I bought 245 cords of maple, at $\$ 7$ a cord : how much did the whole cost me?
11. A dealer sold 8 animals, at $\$ 253$ apiece: how many dollars did he receive for them?
12. A girl bought 189 yards of ribbon at 6 cents per yard : how much did it cost her ?
13. What is the cost of 2988 boxes of figs, at $\$ 3$ a box?
14. If a steamer can go 395 miles in one day, how far can she go in 9 days at the same rate?
15. There are ro companies in the Queen's Own Rifles, Toronto, each having 42 men : how many men are there in the regiment?
16. In one mile there are 5280 feet: how many feet are there in 4 miles?
17. If a mill turns out 9757. yards of carpet in one week, how many yards could it produce in 5 weeks?
18. If a ship can carry 7856 barrels of ore, how many barrels could be carried in 6 ships?
19. If a waggon can carry 5837 shingles, how many shingles could be carried in 7 waggons?
20. What would 8 miles of pavement cost, at $\$ 3489$ per mile ?
21. Nine men built a vessel, each one putting in $\$ 8+57$: what was the cost of the vessel ?
22. If a barge can carry 19857 pounds, how many pounds could 4 such vessels carry ?
23. There are 63360 inches in a mile: how many inches are there in 5 miles?
24. How many miles would a yacht sail in going around the earth 6 times, the earth being 24855 miles in circumference?
25. What would be the cost of constructing 7 miles of embankment, at $\$ 35248$ per mile ?
26. If II clergymen are paid $\$ 2212$ doilars apiece in Toronto, what do they receive in all?
27. What is paid to 12 teachers in Hamilton, at the rate of $\$ 862$ each ?
28. In I mile there are 5280 feet: how many feet are there in 7 miles?
29. In I mile there are 1760 yards: how many yards are there in 8 miles?
30. If in one barrel there are 196 pounds of meal, how many pounds are there in 5 barrels?
3I. A. scld 4 horses, at \$175 apiece: how many dollars did he receive for them ?
32. A lady bought 89 yards of silk twist, at 5 cents a yard: how much did the twist cost her?
33. What is the cost of 1786 boxes of grapes, at $\$ 2$ a box ?
34. If a vessel can go 387 miles in I day, how far can she go in 9 days at the same rate?
35. A merchant bought 1789 coats, at $\$ 4$ apiece: how much did he pay for them all?
36. A farmer sold 7 fat cattle for $\$ 97$ apiece: how much did he receive for them all?
37. In I gallon there are 4 quarts : how many quarts will there be in 8451 gallons?
38. There are 160 square rods in 1 acre of land: how many square rods are there in II acres?
39. How many pence are there in 32916 shillings, at 12 pence to the shilling?
40. In I year there are 365 days: how many days are there in II years?

上S In the question, "Bought 149 square yards of land at \$7 a yard," although we have to find what \$7 become when repeated 149 times, yet we may, for the sake of convenience, look upon 7 as the multiplier, the pro. duct being dollars.

78 The next case of multiplication is that in which the multiplier is greater than 12 .

Ex. 1.-Multiply 1396 by 364 , that is, find what 1396 becomes when repeated 364 times.
yards are meal, how
ny dollars

1ts a yard :
\$2 a box ?
ar can she
:ce: how
low much
uarts will
ad: how
gs, at 12
days are
of land become sake of the pro-
ich the

		$\begin{array}{r}1396 \\ 364 \\ \hline\end{array}$
$1396 \times 4=5584$		5584
$1396 \times 60=83760$	Or,	8376
$1396 \times 300=418800$		4188
508144		508144

The number $364=3$ hundreds +6 tens +4 units, hence the multiplicand is to be repeated 300 times, and 60 times, and 4 times. If we then take 4 times the multiplicand, and 60 times the multiplicand, and 300 times the multiplicand, these results added together must give 364 times the multiplicand.
By the previous case, 4 times 1396 gives 5584 . This we put down as usual.
Again, 1396 multiplied by 6 tens is the same as 6 tens by 1396 (Art. 77), and this we tind to be 8376 tens, which result in the addition must (since it is tens) be put one place to the left of the last result, 5584.
Again, 1396 multiplied by 3 hundreds is the same as 3 hundreds by r 396 , and this is 4188 hundreds, which must therefore in the addition be put one place to the left of the tens' result, 8376 .
Having placed these three results ready for addition, nothing remains but to add them together in the usual way.
We thus find that $1396 \times 364=508144$.
In the same way we proceed with any number of figures in the multiplier.
Ex. 2.-Multiply 872 by 307 .

-			872 307
$\begin{aligned} & 872 \times \\ & 872 \times \end{aligned}$			
	$\begin{array}{ll}7= & 6104 \\ 0= & 00\end{array}$	Or,	
$872 \times 300=261600$			26160
	267704		267704

Here 7 times 872 gives 6ro4. There are no tens in the multiplier, hence we might have filled the usual line with noughts, but one nought is enough to keep the next result in its proper plač. 3 times 872 gives 26 i6, and this being hundreds, it must be put one place t_{0}, the left of the nought, which makes the tens' place. Ald as before, and we find $872 \times 307=267704$. Ex. 3.-Multiply 37 r by 2100.

371 2100
37100 742
779100

In this example there are no units or tens in the multiplier, therefore the first result, 37 I , must be placed to represent hundreds, that is, thre plares t^{-}the left of the units' place. The next result, being thousands, viz., 742 thousands, it will be put one place to the left of the last result. Add together as usual.
79. We see from this that any number may be multiplied by 10,100 , 1000 , etc., by adding $1,2,3$, etc., noughts to the right of the number to be multiplied. Thus, $389 \times 100=38900$.

$$
40 \times 1000=40000
$$

80. As there are 100 cents in a dollar, this principle is very useful in expressing any number of dollars as cents.

Ex. r.-How many cents are there in $\$ 84$?
There will be 84 times as many cents in 84 dollars as there are cents in I dollar, that is, $84 \times 100=8400$ cents. Ex. 2.-How many cents are there in $\$ 66_{4} .52$; that is, 64 dollars and 52 cents?

$$
\begin{aligned}
\$ 64 & =6400 \text { cents. } \\
6400 \text { cents }+52 \text { cents } & =6452 \text { cents. }
\end{aligned}
$$

81. Hence, to express any number of dollars and cents as ceats, we have only to remove the point which separates the dollars from the cents, and the result will be the required number of cents.
ens in the usual line keep the ives 26i6, place t^{\prime} place.
he multi. placed to he left of ousands, o the left
ultiplied noughts
e is very cents.
mlars as o cents. ; 2 ; that
ents as h sepa. will be
82. Suppose we have to multiply any number by 16 . We know that $8 \times 2=16$, and therefore to repeat the num*ber 16 times would amount to the same as repeating it 8 times and then repeating this result 2 times; or, since $2 \times 8=16$, it would be the same to repeat the number 2 times and then repeat that result 8 times.
Again, $4 \times 4=16$. We may therefore sepeat the number 4 times, and this r sult again 4 times; each of these methods would give the same product.

Ex.-Multiply 302 by 44 .

$$
362
$$

II

$$
3982
$$

4
15928
Since $44=11 \times 4$, we multiply 362 by 11 , which gives 3982, and then multiply 3982 by 4 , giving 15928 as the final product.
83. The numbers 8 and 2 , or 4 and 4 , are called the factors of 16. (See Art. 74.)

The factors of
are
are
2,
are
are
84. A result in Multiplication may be proved to be correct by using the multiplicand as the multiplier, which should give the same product, if worked correctly.

EXERCISE 15.

As many as possible of the following questions should be worked by factors as well as by the ordinary method.
(1)
(a) $\quad 4624$ $\begin{array}{r}(2) \\ 3846 \\ 39 \\ \hline\end{array}$ $\begin{array}{r}(2) \\ 3846 \\ 39 \\ \hline\end{array}$

35 | (3) | (4) |
| ---: | ---: |
| 8462 | 7846 |
| 47 | 147 |

\begin{tabular}{|c|c|c|c|}
\hline (a)
3976

183 \& | (6) |
| :---: |
| 2243 |
| 144 | \& \[

$$
\begin{gathered}
(7) \\
763521 \\
43^{8}
\end{gathered}
$$
\] \& (8)

1283
$-\quad 144$

\hline (9) \& (10) \& (11) \&

\hline 2526 \& 52365 \& 3678543 \& $$
\begin{gathered}
(12) \\
76783316
\end{gathered}
$$

\hline 136 \& 543 \& 3567 \& 7675316
7615

\hline ${ }_{6}^{(13)}$ \& (14) \& \& (16)

\hline 67854 \& 650345 \& $$
98610275
$$ \& 568

\hline \& 234 \& 35\%99 \& 287

\hline (17) \& (18) \& (19) \&

\hline 3985 \& 987 \& 74 I 5 \& 8097

\hline 733 \& 891 \& 387 \& 869

\hline (21) \& (22) \& (23) \& (24)

\hline 57423 \& 194 \& 3678543 \& (24)
437

\hline 159 \& 57 \& 4567 \& 437
356

\hline (25) \& (26) \& (27) \& (28)

\hline 274
167 \& 43326 \& 999 \& 841

\hline 167 \& 96 \& 999 \& 841

\hline (29) \& \& (31) \& (32)

\hline 3759 \& 8643 \& 3976 \& (32)
907

\hline 3757 \& 923 \& 948 \& 740

\hline (33) \& (34) \& (35) \& (36)

\hline 657 \& 6258 \& 5679 \& 7856

\hline 408 \& 346 \& 507 \& 658

\hline (37) \& (38) \& (39) \&

\hline 9008 \& 3207 \& 6579 \& 8579

\hline 784 \& 2345 \& 3506 \& 4078

\hline (41) \& (42) \& \&

\hline 7058 \& 35768 \& 726 \& 468

\hline 6007 \& 3456 \& 27 \& 554

\hline
\end{tabular}

(z) 36
(b) Mult
1.
2. I
3.
4. 10
5. 630
6.
7. 3
8. 78
10. 68
II. 753
12.
$\begin{array}{ll}13 . & 4 \\ \text { 14. } & 68\end{array}$
15.7

16
17. 70
18.
19. 7
20.

21
22.
23.

24
25.
26.
27.
28.

(45)	(46)	(47)
(z) 3648	4275	8463
30	54	3759
(4)	(50)	(51)
4620	8726	7692
y 24	463	356
(53)	(54)	(55)
37642	37942	27403
57	386	584

(48) $\begin{array}{r}53642 \\ 63 \\ \hline \\ \hline 52) \\ 2146 \\ 179 \\ \hline\end{array}$
(56)

81650
789
(b) Multiply

1.	74 by	,
2.	ro000 by	869.
3.	4698 by	1000.
4.	100000 by	76984.
	6307918 by	20790.
6.	44670 by	145.
7.	367950 by	756.
8.	78609 by	06.
9.	887002 by	903.
10.	684207 by	7006.
11.	7532100 by	486 r .
12.	17565 by	1800.
13.	43450 by.	1700.
14.	685900 by	190.
15.	76980 by	16000.
16.	78600 by	1400.
17.	708060 by	490.
18.	43800 by	38506.
19.	70800 by	69870.
20.	1011 by	754.
21	10009 by	869.
22.	386 by	99.
23.	7815 by	98
24.	6188 by	97.
25.	7289 by	999.
26.	38751 by	998.
27.	67583 by	996.
28.	74189 by	995.

(a) i. Multiply seven thousand six hundred and one by seven.
2. Multiply thirteen hundred and eighty-four by eleven and twelve in succession.
3. Multiply together two, three, four, five, six, seven, cight, nine, and ten.
4. Find the product of three hundred and forty-seven and five hundred and eighty three.
5. Find the product of twelve thousand and three and three thousand and twelve.
6. How much is twelve times four times three thousand four hundred and seven?
7. Multiply together three thousand three hundred, three thousand and thirty, and three thousand and three.
8. Find the square of six hundred and seventy-nine.
(The square of a number is that number mul. tiplied by itself.)
9. Find the square of two thousand seven hundred and forty-seven.
10. Find the square of seventeen hundred.
is. Multiply three millions seventeen thousand and ninety by four thousand and eighty-four.
12. Multiply the square of two hundred and thirty-nine by eleven.
13. Find the product of one thousand three hundred and fifty-six, five hundred and seventy-eight, and two hundred and fifty.
14. Multiply the square of seventeen by the square of nineteen.
15. Multiply six thousand and ninety-seven by nine hun. dred and eight.
16. Multiply fifty-four thousand and forty-nine by six thousand and seventy-five.
17. The two factors of a certain number are 656 and 907 : what is the number?
18. Multiply thirty-seven thousand and twenty eight by 508.
one by eleven seven, ty-seven ree and 1ousand d, three three.
ine.
er mul-
19. The nultiplier being 987, the multiplicand six thousand four hundred and sixteen : required the product.
20. What is the product of 908060 multiplied by five thousand four hundred?
21. One factor is 7r8i5i, the other seven hundred: what is the product?
22. Multiply six hundred and seventy-four thousand two hundred by two thousand one hundred and four.
23. Multiply ninety-three thousand one hundred and eighty-six by four thousand four hundred and fifty-five.
24. How many cents are there in $\$ 5$? in $\$ 60$? in $\$$ IS ? in $\$ 47$? in $\$ 22.05$? in $\$ 872.06$? in $\$ 540.10$? in $\$ 80.80$?
25. How many more cents are there in $\$ 20$ than in $\$ 12.75$?
26. A. earns $\$_{\text {I }} 75$ in a day, and IS. earns $\$ 1.60$: how many more cents does A. earn in 6 days than B. ?
27. A man has $\$ 860.75$, and lends another $\$ 851$: how many cents has he left?
28. How many cents are there in 10 times $\$ 60$?
29. Ho \% many more cents are there in 3 times $\$ 17$ than in 4 times $\$ 3.25$
\rightarrow. A owns $\$ 570.60$ in stock, and bliys 3 times as much more: how many cents will he then have invested in stock?
(d) I. If an orchard containing 313 trees yields 15 bushels of apples to a tree, how many bushels does the whole orchard produce?
2. How many panes of glass are there in 18 windows, if each window. contains 24 panes?
3. How many bushels of wheat will 160 acres produce, at the average ratc of 45 bushels to the acre?
4. What is the cost of 2463 barrels of flour, at 19 dollars a barrel?
5. If a man con earn 83 dollars in one month, how many dollars can he earn in 18 months?
6. What will be the cost of an cstate containing 684 acres, at 57 dollars per acre?
7. A garden has 625 hills of potatoes, and each hill will average 13 potatoes: how many potatoes at that rate will there be in the garden?

8．If 17 men do a piece of work in 91 days，how long will it talic one man alune to do it？
9．What will be the cost of building a line of telerraiph 274 miles long，at $\$ 967$ a mile ？
10．If 1049 pounds of tobacco can be raised from an acre of land，how many pounds will 386 acres proluce？
II．If a mill turns out 628 yards of cloth in a day，how many yards can it make in 297 days？
12．What will be the cost of building 279 miles of railroad． at $\$ 27384$ a mile？
13．A crop of cotton was put up in 340 bates，each bale containing 596 pounds：what was the weight of the entire crop？
14．What is the value of 108 buildings，at $\$ 1895$ each ？
15．What is the cost of 257 yoke of oxen，at $\$ 175$ a yoke ？
16．What is the cost of 428 lots，at $\$ 284$ each ？
17．In i ream of paper there are 480 sheets：how many sheets are there in 217 reams？
18．How much will it cost to build a line of telegraph from Toronto to Lake Nipissing，the distance being 236 miles，at $\$ 1270$ a mile ？
19．If a cotton mill manufacture 658 yards of cloth in a day，how many yards can it make an 309 days？
20．How many yards of cloth are in 265 pieces，each piece containing 32 yards？
21．Sound travels 1142 feet in I second：how far will it travel in 60 seconds？
22．Light travels 192000 miles in 1 second ：how ar will it travel in 494 seconds？
23．A drover bought 685 oxen，at $\$ \mathrm{IO}_{4}$ apu \quad sat was the cost of all of them ？
24．A merchant bought 25 pieces of broadcloth，each picce containing 48 yards，at $\$ 9$ a yard ：how much did he pay for the whole？
25．If the Thumderer can steam 18 miles in 1 hour，how far can she steam in 34 days of 24 hours each？
long will telerraph

1 an acte luce?
day, how
railroad.
ach bale ht of the
each ?
a yoke :
w many'
ch piece
26. A man buught 8969 acres of land, at $\$ 196$ an acre: how much did the whole cost him?
27. In 1 furlong there are 660 feet : how many feet are in 8 furlongs (a mile)?
 there being 200 pounds in each barrel ?
29. What is the value of $3+6$ shares of bank stock, at $\$ 125$ a share?
30. How many pages are there in 5896 books, ther being 394 pages in each book ?
31. A speculator bought 302 cattle, and 293 times as many sheep : how many sheep did he buy?
32. If a body move at the rate of 378 miles a day, how far would it move in 365 days?
33. What is the cost of 1787 barrels of sugar, at 18 dollars a barrel?
34. What is the value of 1982 barrels of molasses, at 15 dollars a barrel?
35. What is the cost of 3784 nieces of broadcloth, at 143 dollars apiece?
36. What will I be charged for 21423 barrels of pork, at 23 dollars a barrel?
37. What must I pay for +7879 bushels of corn, at 65 cents a bushel?
38. How many dollars would purchase 3785 kegs of tobacco, at 34 dollars a keg ?
39. At ig dollars a firkin, what is the cost of 91072 firkins of butter?
40. If $78{ }^{8} 2$ men build a fort in 137 days, how long would it take 1 man to build it?
41. What will be the value of 237 cows, at 23 dollars each ?
12. What will be the r.nst of 397 loads or metal, at 37 dol. lars a load?
43. What is the cust of 2473 tons of wroug.t irun, at 297 dollars a ton?
44. If a regiment consists of in 28 men, how many menare there in an army of 203 regiments?
45. In a factory there are 873 yards of chat't made in i day : how many yards, at this rate, can be made in 313 days?
46. In one load a span of horses can draw 2997 pounds how many pounds would they draw in 327 loads ?
47. There are 15 fields of plants; in each field there are 97 rows, and 256 plants in each row : how ma'ty plants are there in all ?
48. How many letters are there in a book containing 672 pages, each page containing 43 lines, and each line 47 letters?
49. A freight train consists of 21 cars; each car cuntaius 85 barrels, and each barrel weighs 196 pounds: how many pounds are in the entire cargo?
50. The distance from Torontu to Thornhill is 12 miles; each mile contains 1760 yards, and each yard 3 fect : how many feet are there from one place to the other?
51. In an orchard there are 14 rows of plum trees; each row contains 27 trees, and each tree bears 108 plums, how many plums are in the orchard?
52. It requires 1716 rails to fence one side of a squar- garden : how many rails will be required to fence 13 lots of the same size and shape?
53. An army lost in battle 315 killed and 417 wounded; the enemy lost altogether 13 times as many: how many soldiers were killed and wounded in the battle?
54. If two steamers should leave Collingwoud at the same time, and should sail in the same direction, the first at the rate of 18 miles an hour, the second at the rate of 15 miles an hour, how far apart would they be in 36 hours?
55. An army consists of 6 divisions, each division of 4 battalions, and each battalion of $6 \mathrm{r}_{3}$ men : find the number of men in the army.
56. If a planing-mill run 4360 feet of boards a day how many will it run out in ro6 days ?
85. The following mental exercises will be found useful in accustoming the pupils to rapid thought.
The questions should be read out slowly at first, but gradually faster, and each pupil should write upon a slate or paper on tine desk in front the result obtained.
As this is the most valuable work that can be done by the beginner, the teacher should add largely to the number of problems here set.

Ex. 1.-Add I5 to 4 , subtract 9, add 11, subtract 5 : what is the result ?

$$
15+4=19 ; 19-9=10 ; 10+11=21 ; 21-5=16
$$

While the teacher dictates the example, "to 15 add 4 , subtract 9 ," etc., the pupils think ig, io, etc.

Ex. 2.-Take i9, subtract 9 , multiply by 7 , sul)tract II , subtract 9 .
The pupil would think: 19, 10, 70, 59, 50 . Ans. 50.

EXERCISE 16.

1. To 12 add 7 , subtract 5 , add 4 , add 8 : result ?
2. From 25 take 10, add 7 , add 8, take 9 : result ?
3. To 17 add 18 , subtract 7 , add 9 , subtract 5 : result ?
4. 'Гo 26 add 18 , subtract 5 , add 6 , subtract 9 , add 5 , take 8 : result?
5. From 27 take 9, add 7, subtract 10 , subtract 6, add in : result?
6. Add 9 to 15 , subtract 11 , add 10 , suberact 9 , subtract 14: result?
7. Take 4 from 23, add 1 , add 25 , subtract 5 , subtract 20 , add 6: result ?
8. Add 7 to 8 , subtract 3 , add 8 , add 12 , subtract 7 , sub. tract 5 , add 6 , add 4 , subtract 10 : result ?
9. Take 7 from 15, add 6, take 5 , add 10 , take 3 , acld 4 , add 6 , take 7 , add 8 , take 9 : result ?
10. To 13 add 7 , subtract 5 , multiply by 2 , subtract 15 , subtract ro, multiply by 3 , subtract 5 : rosult?
11. From 15 subtract 9, multiply by 3, subtract 8, add 5 , multiply by 2 , subtract 20 , add 8 , multiply by 2 , subtract 9 , add 9 : result?
12. Multiply 12 by 5 , subtract 40 , add 5 , multiply by 2 , subtract 25 , add 5 , multiply hy 3 , add 7 : result ?
13. Take 12 from 48 , add 6 , take 7 , add 8 , take 3 , add 7 , take 9 , add 11 , take 4 , add 3 , take 5 , add 9 , take 10 , add 7 , take 8 , add 9 , add 3 , take 5 : result ?
14. From 16 subtract 9 , multiply by 3 , subtract 7 , add 4, multiply by 6 , subtract 7 , add 9 , subtract 8 : result ?
15. Add 6 to 18 , subtract 9 , multiply by 4 , subtract 25 . multiply by 2 , subtract 40 , multiply by 7 : result ?
16. From 19 subtract 8 , multiply by 6 , subtract 11 , add 7 . subtract 20 , add 8 , multiply by 3 , add 9 : result ?
17. Multiply 7 by 6 , subtract 12, add 4, subtract 14, mul. tiply by 6 , subtract 20 , multiply by 3 , subtract 12 , add 12 : result?
18. Add in to 29 , multiply by 2 , subtract 16 , add 6 , multiply by 10 : result?
19. Take 19 from 39 , multiply by 5 , subtract 50 , add 10 , multiply by 3 , subtract $1 n 0:$ result?
20. To 23 add 7 , multiply by 3 , add in, subtract 50 , multiply by 2 , subtract too, multiply 6 : result?
, subtract 9, add 5 , , subtract 6, add II : subtract 9, sul)tract tract 5 , subtract 20 , 12, subtract 7 , sub. result ?
Io, take 3 , adid 4 , ?
by 2 , sulstract 15 , t 5 : rosult?
subtract 8 , acld 5 , nultiply by 2 , sub-
d 5, multiply by 2 , dd 7 : result ?
d 3 , take 3 , add 7 , 5 , add 9 , take Io, result ?
subtract 7 , add 4 , btract 8 : result ?
by 4 , subtract 25 . by 7 : result?
subtract 1 I, add 7 , dd 9 : result?
, subtract I_{4}, mul3, subtract 12, add
t 16, add 6, multi
btract 50 , add 10 , subtract 5°, mul. 6 : result?
21. Ac'd 7 to 9, sulitract 6 , multiply by 4 , subtract 20 , add 7 , subtract 5 , multiply by 2 , subtract 8 , add 5 : result ?
22. Subtract 8 frum 17 , multiply by 5 , subtract 15 , multiply by 20 , subtract 30 , add 9 , subtract 9 : result ?
23. To the product of 8 and 8 add 6 , sulstract 30 , add 2 , subtract 12 , multiply by 3 , subtract 4 , add 6 : result ?
24. To 19 add 11 , subtract 15 , multiply by 4 , subtract 12 , multiply by 2 , add 9 , subtract 5 , multiply by II: result ?
25. Subtract 9 from 21 , add 8 , subtract 6 , add 11 , multiply by 4 , subtract 7 , add 9 , subtract 8 : result ?
26. To the proluct of 9 and 6 add 6 , subtract 12 , subtract i8, multiply by 2 , subtract 20 , add 5 , multiply by 2 , add 10 , multiply by 3 , add 15 , subtract 7 , add 6 : result?
27. From 23 subtract 8 , multiply by 2 , multiply by 4 , subtract 20 , subtract 21 , add 6 , multiply by 2 , subtract 20 , multiply by 3 , add 8 , subtract 7 , add 9 : result ?
28. T'o 3^{1} add 12 , subtract 10 , add 6 , subtract 7 , subtract 8 , subtract 4 , add 9 , subtract 3 , add 6 , add 8 , add 10 , subtract 5 , add 8 , subtract 2 , add 6 , subtract 7 , add 4 , subtract 6 : result?
29. From 63 subtract 7 , add 3 , add 6 , add 12 , subtract 4 , add io, subtract 5 , add 6 , subtract 7 , add 3 , subtract 6 , add 9 , subtract 8 , add 6 , subtract 4 , add 3 , subtract 2, add 7 : result?
30. Add 7 to 9 , subtract 8 , add 20 , add 14 , add 30 , subtract 4 , add 5 , subtract 6 , add 7 , subtract 8 , add 9 , subtract 10 , add 4 , add 5 , add 8 , subtract 7 , add 4 , subtract 5 : result ?

DIVISION.

86. We have seen that 3 dollars repeated 5 times are 15 dollars. Now let us see how often we can take 3 dol. lars from 15 dollars.
```
15 dollars
    3
12 dollars \(=\) ist remainder.
3
\(\begin{array}{rlll}9 & " & =2 n d & " \\ \frac{3}{6} & & & \\ 3 & & =3 \text { rd } & \\ \frac{3}{3} & " & =4^{\text {th }} \quad " \\ 3 & & \\ 0 & " & =5 \text { th } \quad "\end{array}\)
```

Thus, 3 dollars may be taken 5 times away from 15 dollars, that is, just as many times as it was before repeated in order to produce 15 do lars.
This fact is expressed by saying that 3 is contained in 15, 5 times. In the same mamer it may be shewn that 4 is contained in 12,3 times; and 8 contained in 56, 7 times.
87. Again, since 3 dollars can be taken 5 times from I_{5} dollars, this is but another way of saying that $\$ 15$ can be divided into 5 parts, each part being 3 dollars. In the same way, if 20 units be divided into 4 parts of the same size, each will be 5 units, and since, in repeating the parts in the multiplication, they were, of necessity, the same size, so in this process we will always suppose the parts to be the same size, or of the same value.

When we wish to divide 32 into 4 parts, it is understood that they shall be of the same size, viz: 8 units in this case.

15 dolbefore
ned in shewn ined in
88. This operation, then, is called Division, which is therefore the method of finding the number of times one number is contained in another.
The number which contains, or is divided by the other is known as the Dividend.
The number which is to be divided into the Dividend is called the Divisor.
The number which shows now often the Divisor is contained in the Dividend is termed the Quotient.
89. The sign for this operation is + , placed between the two numbers, and shews that the number coming before it, viz., the Dividen ${ }^{-1}$, is to be divided by the one com!ng after it, viz. : the Divisor, thus:

$$
45+9=5
$$

Reads, 45 divided by 9 equals 5 , and means that 9 may be taken from 45,5 times; or, that 9 is contained in 45,5 times; or, that if 45 be divided into 9 equal parts, each part is 5 .
The pupil should remember that it is the Divisor which always follows the sign of Division.
90. Division will easily be seen to be the converse of Multiplication, for from 7 and 4 we obtained 28 by the latter process, while from 7 and 28 we obtain 4 by the former process.
Every result, then, in the Multiplication Table (Art. 71) will also furnish us with a corresponding result in the Division Table. This is, in fact, the very work done by the pupil in Ex. 13 (a).
91. The following Table can be seen at once to agree with the Table in Art. 7 I.

DIVISION TABLE.

1.
2.
3.
4. D

EXERCISE 17.

Mental Lxercises in Division.

1. How many 4 's are in 12 ? in 16 ? in 48 ? in 24 ? in 36 ? in 28 ?
2. How many loads of 5 tons each are there in 40 tons? in 60 tons? in 35 tons? in 15 tons?
3. How many times can 7 be taken from 14 ? from 42 ? from 63 ? from 84 ?
4. Divide by 3 , from 3 into 3 to 3 into 27 . by 5 , from 5 into 15 to 5 into 45 . hy 7 , from 7 into 42 to 7 into 84 . j 8 , from 8 into 24 to 8 into 88 . by 9 , from 9 into 108 to 9 into 27 . by 10 , from 10 into 10 to 10 into 70 . by 12 , from 12 inte) 132 to 12 into 36 .
5. What is the quotient in,

$45 \div 9$,	$36 \div 4$,	$72 \div 8$,	$56 \div 7$,	$108 \div 12$,	$77 \div 7$,
$81 \div 9$,	$72 \div 6$,	$54 \div 6$,	$132 \div 11$,	$64 \div 8$,	$30 \div 3$,
$16 \div 8$,	$42 \div 6$,	$80 \div 10$,	$27 \div 9$,	$35 \div 7$,	$28 \div 4$,
$16 \div 2$,	$14 \div 2$,	$60 \div 5$,	$35 \div 5$,	$84 \div 12$,	$63 \div 7$,

6. If a box holds 4 pounds of sugar, how many such boxes will be required to hold 3^{6} pounds? 28 pounds? 16 pounds? 44 pounds?
7. 36 is how many times 9 ? 4 ? 6? 12?
8.32 is how many times 4 ? 8 ?
8. 24 is how many times 2 ? 3 ? 4 ? 6? 8 ? 12 ?
9. 48 is how many times 4 ? 6? 8? 12?
II. From a pile of 60 bricks. how many loarls of 12 bricks may be taken away ?
10. If $\$ 56$ be equally distributed among 7 men, how many dollars does each man receive?
11. When apples are 3 cents each, how many can $\frac{1}{1}$ buy for 24 cents?
(In other words, how many times must three cents be repeated to give 24 cents, ; the answer will be 8 .

I could thus buy 8 apples. This must be correct, for each apple costing 3 cents, 8 apples must cost 8 times 3 cents, that is, 24 cents.)
14. If a man travel 6 miles an hour, how long will it take him to travel 54 miles?
15. How many tubs containing 9 gallons each can be filied from a hogshead containing 63 gallons ?
16. If a man drive 8 miles an hour, in what time will he drive 56 miles?
17. A farmer bought some lambs for $\$ 60$, paying $\$ 5$ a head: how many lambs did he buy ?
18. At $\$ 9$ a week, in what time will a man earn $\$ 36$? \$54? \$72? \$81? \$108?
19. If 7 barrels of sugar cost $\$ 63$, what will I barrel cost ?
20. If 6 kegs of powder cost $\$ 72$, what will 1 keg cost ?
21. If a man travel 48 miles in 4 days, how far does he travel in I day?
22. What will be the cost of 1 ton of coal, if 8 tons cost $\$ 64$?
23. If you divide $\$ 84$ among 7 children, how many dollars will each child have?
24. If a man build 72 feet of fencing in 8 days, how many feet can he build in I day?
25. If 9 dozens of fish cost 108 cents, what is the cost of 1 dozen?
26. How many articles at $\$ 12$ each can be bought for $\$ 84$? For \$108? For \$120?
27. How many lots of 5 acres each are in 20 acres?
28. How many barrels, each holding 3 bushels, will be required for 18 bushels of onions? For 21 bushels?
29. How many times can 6 yards of canvas be cut off from a piece containing 30 yards?
30. How many times can 6 cents be taken from 24 cents?
31. Distribute $\$ 28$ equally among 7 people: how many dullars will each receive?
32. What is one of 4 equal parts of 40 ? Of 36 ? Of 48 ?
33. What is one of 6 equal parts of 30 ? Of 42 ? Of 48 ?
34. What is one of 7 equal parts of 56 pounds?
35. A teacher having 66 maps, distributed them equally in a class of it pupils: how many did each get?
36. If 96 pounds of bread are divided equally among 12 persons, how many pounds will each reccive?
37. If 88 dollars are divided equally among 8 persons, how many dollars will each have?
38. If 120 barrels of flour are divided equally among 12 families, how much flour will each receive ?
39. A master having ro8 pupils, divided them intog equal classes: how many were in each class?
40. A picnic party of 11 persons spent $\$ 132$: how much was that apiece?
41. A party of io persons found a purse containing $\$ 100$, which they shared equally: how much did each receive?
42. A lad having $\$ 96$, wishes to divide it equally among 8 friends: how much can he give to each?
13. If you pay 84 cents for a horse and waggon to go 7 miles, how much is that a mile?
++ A man having 120 feet of land, divided it into 6 equal lots; how many feet were there in each lot?
92. In all the previous examples of Division, the pupil must have noticed that the divisor was contained an exact number of times in the dividend. This is mot always the case, for example:
I have 22 pears, and give 4 pears to each boy in the class : how many boys were there?
If there had been 5 boys, I would require only 20 pears; but if there had Lern 6 boys I most have 24 pears: so the only thing I can do is to give the 5 boys in the class 4 pears each, and keep the ther 2 that remain for myself.
93. This number, 2 (in the case before us), is called the Remander, and may be satd to be that which is lett after the divisor has been taken as many tumes a possible from the dividend.
If the remainder be first taken from the dividend, the result must contain the divisor exactly. Thus: 4 may be subtracted from, or contained in, 30, 7 times, but there will be 2 left, and we see that if the 2 be taken from the 30 , the result, 28 , will contain 4 exactly.

Ex. $\mathbf{1}$.-Divide 77 by 8 .
Since 8 times 9 are 72, the quotient must be 9 ; and since 72 is less than 77 by 5 , then 5 must te the remander.

Ex. 2.-What must be taken from 49 that it may contain 9 five times?
The number that contains 9 five times we know to be 45 , and since this number is 4 less than 49,4 must be the required result.

EXERCISE 18.

Mental Examples on the Remainder.

1. Give the quotient and remainder, if any, in-

$$
\begin{array}{rlllll}
18 \div 4, & 21 \div 5, & 62 \div 7, & 41 \div 11, & 39 \div 6, & 71+8, \\
90+12, & 80 \div 7, & 23 \div 12, & 62 \div 9, & 73 \div 8, & 45 \div 9 \\
83+10, & 31+3, & 42 \div 6, & 70 \div 8, & 75 \div 9, & 120 \div 11, \\
140 \div 12, & 93 \div 10, & 48 \div 12, & 79 \div 7, & 80+12, & 100 \div 11 .
\end{array}
$$

2. What number must be divided by 6 to give a remain der 3 and quotient 5 ?
If 6 times 5 , or 30 , be divided by 6 , the quotient will be 5 exactly, with no remainder. Hence, if there is to he a remainder of 3 , the number must be 33 .
$P_{\text {RHOF }}-6$ is contained in 33,5 times, and 3 over for a remainder.
3. What number must be divided by 5 to give-

Qnotient 7 , remainder 2 ?
Quctient 8, remainder 4 ? Quotient II, remaincler 3 ?
4. To giv must b by 12 ?
5. A man much
6. From allowe
7. A. rece men, al among
8. If I had each :
9 Countin and 40
10. How m same nu
is. From T ride 7 be at th
12. How ma they be
13. There ar 3 brys 1 each row
14. John has and kee brothers
15. Four qua many ga 3I quarts gallon me
16. If lamp p in tront 0 A.'s door far will t
17. Find the

Divis
"
4. To give a quotient 7 and remainder 6 , what number by 12 ?
5. A man had $\$$ io', and gave $\$ 9$ apiece to 8 boys: how much had he left?
6. From 93 bushels of oats, how many horses can be allowed io bushels each, and what would be left ?
7. A. receives what is left after driding \$rou among 8 men, and B. receives what is left after dividing \$120 among in men : how much more does B. get than A.?
8. If I had 7 more apples, 1 could give 8 boys in apples each: how many have I ?
9 Counting his marbles by sevens, Joseph had il lots and 4 over : how many had he ?
10. How many could be put in each lot, to have the same number of marbles in each?
II. From Toronto to Hamilton is 40 miles; a man can ride 7 miles an hour : how far from Hamilton will he be at the end of 5 hours?
12. How many will be left over from 93 bank notes if they be tied in packages of 8 ? of Io? of II? of 12 ?
13. There are 75 boys in the class, and 6 rows of seats: if 3 bus have to stand, how many seats are there in each row?
14. John has 47 plums, and gives 5 to each of his brothers and keeps the smallest share himself: how many brothers bad John? what was his own share?
15. Four quarts of milk will fill a gallon measure : how many gallons wonld there be in a pail which holds 3I quarts? and how many quarts will be left alter the gallon measures are filled?
16. If lamp posts be placed if feet apart, and one placed in tront of A.'s door, how many will there be between A.'s door and B.'s dwor, a distance of 139 feet? how far will the enc' one be from B.'s door?
17. Find the divitends, having-
$\begin{array}{ccccc}\text { Divisor } 8, & \text { Quotient } & 11, & \text { and Remainder } & 3 . \\ " & 10, & " & 4, & " \\ " & 12, & " & 9 & " \\ " & 9, & " & 8, & " \\ & & & & 7 .\end{array}$
18. Frank having 68 cents, bought 7 tops, and had 5 cents left: what were the tops apiece?
19. How many 3 -cont postage stamps can you obtain for 35 cents?
20. How many 5 -cent pieces can you obtain for 39 cents?
21. How many 8 -dollar law stamps can be obtained for $\$ 67$?
2. How many 8-cent loaves of bread can be made out of 75 cents' worth of flour?
23. How many times 7 in 8 times 8 , and how many over?
24. How many times 9 in 7 times 8 , and how many over?
25. In 7 times 9 , how many times 6 , and how many over ?
26. In 8 times in, how many times 9 , and how many over ?
27. In 9 times $\mathbf{1 2}$, how many times II, and how many over?

94 All the previous examplos have depended on a thorough knowledge of the Multiplication and Division Tables. No dividend has been larger than 144, and no divisor greater than 12.
The next case is that in which we have any dividend, but the divisor not greater than 12 .
Ex. I.-Divide 9639 by 3.

> 3)9639

3213

The dividend is 9 thousands, 6 hundreds, 3 tens, and 9 units.
First, divide the 9 thousands by 3. The result or quotient is 3 thousands, which is written in its proper place under the dividend.
Then, 3 is divided into 6 hundreds, and gives 2 hun. dreds, which is placed, as usual, after the thousands.
Next, 3 tens divided by 3 gives I ten, and this is placed after the hundreds.

15 cents tain for

9 cents? ined for le out of 1y over? y over? y over? y over? y over?

Tinally, 9 units divided by 3 gives 3 units, which is written in the units' place.
The whole quotient is, therefore, 3 thousand 2 hundred and 13.
Proof:-3213×3=9639.
Ex. 2.-Divide 3955 by 4 .
f) 3955

988-3
The dividend is 3 thousands, 9 hundreds, 5 tens, and 5 units.
Since the first figure 3 does not contain 4 , we say 3 thousands $=30$ hundreds, making, with the 9 hundreds, 39 hundreds. Then 4 is contained in 39,9 times and 3 over. That is, 9 hundreds, and 3 hundreds over. Place the 9 as usual, and carry the 3 hundreds on to the 5 tens, making 35 tens. Then 4 is contained in 35, 8 times and 3 over. That is, 8 tens and 3 tens over. Place the 8 tens after the 9 hundreds, and carry on the 3 tens, which with the 5 units make 35 units. Then, finally, 4 is contained in 35,8 times and 3 over: that is, 8 units and 3 units over.
The quotient is 988 , and the remainder 3 .
The same metlod is used for all numbers, however large, in the dividend.
95. From this we have the following

RULE FOR DIVISION.

Write the divisor to the left of the diatidend, drataing a line betzeen them, also a line bencath the arividend.
If the divisor will exactly divide cach figure in the dividend, place the quotients thus obtainad in the proper order under the tine. This zenll be the required quotient.
If the divisor will not exw..ly davidic cach fisure in the dividend, proceed as follow's :
Divide the divisor into the first firure, if possible; if not, into the first two figures; or, if not then, into the first three. Write this quotient in its owon place under the dividend. If

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

there be a remainder, place it before the next figure in the divider l. Proceed as before, and carry the remainder to the next J: ure in the dividend, but if the divisor zeill not divide, worite a nought below in the quotient, and carry the figure or figures to the next one in the dividerd. Divide these as bcfore, and so on till all the figures in the dividend are taken in. Place the remainder, if any, to the right of the quotient.

Ex.-Divide ir65oi by 12 .
12) 115501

$$
9708-5
$$

Here 12 will not divide the first figure 1 or the two first figures 11 , therefore we say 12 is contained in 116 , 9 times and 8 over; put the 8 with the 5 , and say 12 is contained in 85,7 times and 1 over; take the 1 with the 0 ; but 12 is not contained in 10 ; therefore, next figure 1 with the 10 , and then say 12 is contained in roi, 8 times and 5 over. This 5 is the remainder, and it must be always less than the divisor.

$$
\begin{aligned}
\text { Proof. } 9708 \times 12 & =116496 \\
116496+5 & =116501
\end{aligned}
$$

That is, multiply the quotient by the divisor, and to the result add the remainder, if any. This will give the dividend, if the work be correct.
06. Where the process is thus carried on mentally, and the quotient only set down, it is called Short Division.

EXERCISE 19.

Divide:

\begin{tabular}{|c|c|c|}
\hline 1. 624 by 2. \& 12. 9306 by 3 . \& 23. $\quad 176$ by 4.

\hline 2862 by 2. \& 13. 746 by 2. \& 24. 215 by 5.

\hline 3. 684 by 2. \& 14. 368 by 2. \& 25. 252 by 6 .

\hline 4. 396 by 3. \& 15. 459 by 3. \& 26. 364 by 7 .

\hline $\begin{array}{ll}\text { 5. } & 693 \\ 6 & 848 \\ \text { by } \\ 4\end{array}$ \& 16. 756 by 3 . \& 27. 434 by 7 .

\hline 7. 8488 by 4. \& 17. 928 by 4. \& 28. 336 by 8

\hline 8. 884 by 4. \& 18. 655 by 5. \& 29.
30.

7686 by 8.
8

\hline 9. 5555 by 3 . \& 20. 605 by 5 . \& 31. 378 by 9.

\hline 10. 8642 by 2. \& 21. 9246 by 2 . \& 32. 459 by 9.

\hline 11. 3693 by 3 . \& 22. 136 by 4 . \& 33. 8128 by 4 .

\hline
\end{tabular}

12.
13.

I4. 15.
16. 14
17. 57

ェ8. 61

Divide:
35. 5255 by 5 .
36. 6312 by 6 . 37. 8432 by 8.
$38 \quad 756$ by 3.
$39 \quad 978$ by 2. to. 872 by 4 .
42. 896 by 4 .
43. 675 by 5 .
44. 775 by 5 .
45. 735 by 7 .
46. 8208 by 4 .
47.6075 by 3 .
55. Twenty-seven thousand five hundred and 32568 by 3 . eight.
56. Thirty-two thousand four hundred and ninety-six bysix,
57. Fourteen million eight hundred and sixty-five thousand nine hundred and thirty-two by two.
58. Thirty-six thousand nine hundred and forty-five by nine.
59. Seventy-two thousand three hundred and forty-five by five.
60. Forty-five million eight hundred and twenty-eight thousand nine hundred and twenty-seven by nine.

The pupil should prove the answers to each of the preceding questions, instead of referring to the answers in the book.

EXERCISE 20.

Find the quotient and remainder, if any, in each of the following questions, proving each result :
 4) 3654
(5)
9) 476589
9. $2718065+8$.
10. $7893201+9$.
II. $5013487 \div 6$.
12. $3920384+7$.
13. $8372 \mathrm{I} 46+8$.
14. $4365984+9$
15. $453678+11$.
16. $1496583+12$.
17. $5703214+7$.
18. $6183420+8$.
5) 72584
(6)
12)987654
(3)
3) 8647 I
(7) 11)334523
(4) 7) 40505
(8)
8)639724
19. $3706823+9$.
20. $6175802+11$.
21. 8160937+12.
22. $5117284 \div 7$.
23. $4465037 \div 8$.
24. 7600356ㄷ 9.
25. $3978420 \div 7$.
26. 4301765+ 8.
27. $7400804+9$.
28. $4230569+11$.
49. 9372 by 2.
50. 6185 by 5 .
51. 849 r by 7 .

529656 by 8.
53. 9981 by 9.
first 1 , therefore ke in the contained mainder,
nd to the give the ivision.
39. How many times may 3 be taken from 2702: ?
40. How often is 4 contained in 28032 ?
41. The divisor is 5 , the dividend is 33515 : find the quotient.
42. How many 7 's in 44268 ?
43. How many times must 6 be taken from 49392 to leave no remainder?
44. How many 8 's in 44248 ?
45. How many times 9 is 37845 ?
46. How many times 7 is 42924 ?
97. To divide by 10,100 , 1000 , etc.

The number 3766 may be read 376 tens and 6 units. Thus we see that if one figure be cut off the right of a number, the remaining figures shew the number of tens there are in it : as 376 in the case above.
In the same manner, 3766 may be read 37 hundreds and 66. Thus, if two figures be cut off the right of a number, the remaining figures shew the number jundreds in it: 37 in this case.
98. Therefore we see that to divide by 10, 100 , 1000 , 10000 , etc., we need only cut off one, two, three, tour, etc., figures from the right of the dividend, the quotient will be the remaining figures, and the figures cut off will be the remainder.
(Compare Art. 79.)
Ex.-Divide 8763 I by 1000.
Cut off three figures from the right. The remaining figures, 87 , will be the quotient, and the figures 631 , that were cut off, will be the remainder.
99. This principle is very useful in the matter of dollars and cents, for, as there are roo cents in every dollar, to bring any number of cents to dollars we need only cut off the last two figures as above, and the remaining number will be the required dollars, and the figures cut off will be the number of cents left over,

Ex. -86342 cents will be the same as 863 doliars and 42 cents ; or,

$$
86342 \text { cents }=\$ 863.42,
$$

The dot . being placed to separate the dollars from the cents.
(Compare Art. 81.)

EXERCISE 21.

Divide:

1. 7316 by 10.
2. 83174 by 10.
3. 6192 by 100.
4. 73001 by 1000.
5. 97312 by roooo.
6. 83916 by 100.
7. 513712 by 100.
8. 712934 by 100000 .
9. 392 by 100.
10. 37214 by rooo.
11. 74321 by rooo.
12. 30600 by 100 .
13. 3000000 by 100.
14. 6060600 by 100000 .
15. Express 10862 cents in dollars, etc.
16. Express 312 cents in dollors, etc.
17. How many dollars will be the same sum as 461000 cents?
18. How many cents will be left if 86 royo cents be exchanged for one-dollar bills?
19. How mrany dollar bills will be obtained?
20. How many dollars would buy as much land as 7310700 cents?

EXERCISF 22

1. If 2 waggons of equal size carry 4896 bricks, how many bricks will one waggon carry?
2. If 2 houses are bought for 47054 dollars, how much is one of them worth?
3. If 3 mines cost 156378 dollars, how much does one mine cost?
4. If 3 times a certain price is $\$ 4790$ 1 $_{12}$, what is the price?
5. A grant of 6oI48 acres is to be divided among 4 per. sons: what is each one's share?
6. Divide $\$ 10632475$ among 5 colleges : what will be the share of each ?
7. Eight men have an equal interest in 268112 acres of land : how much has each ?
8. If 9 square feet make one square yard, how many square yards are in 26002197 square feet ?
9. In a market garden containing 8 acres there are 42336 hills of potatoes: how many hills are there in one acre?
10. Add the quotient of 36140292 divided by 9 to the quotient of 31623424 divided by 8
11. Divide 16320743 I by 3 times 3.
12. A man died having an estate of 146329 dollars; his widow received 23193 dollars, and the remainder was divided equally among four hospitals: how much did each hospital receive?
13. I have 327 lemons, and sell 311 : how many remain? how much shall I receive at 8 cents each for those I have sold?
14. At 2 cents each, how many apples can I buy for $\$ 43.44$? The same money will buy how many toys. at 3 cents each ? How many tarts, at 4 cents each ?
15. At 2 dollars a day, how many men can I hire for $3+6$ dollars? For 496 dollars? For 3176 dollars?
16. At 3 cents a spool, how many spools of thread can I buy for $\$ 3.84$? For $\$ 5.73$? For $\$ 49.62$?
17. There are 4 pecks in a bushel: how many pecks are there in 3844 bushels? In 7688 bushels? In I 5376 bushels?
18. There are 4 quarts in a gallon: how many gallons are there in 132 quarts? In 396 quarts? In 792 quarts?
19. How many pounds of sugar, at 9 cents a pound can I buy for $\$ 36.90$? For $\$ 73.44$?
20. At 4 dollars each, how many tickets can be bought for 64 dollars? For 192 dollars? For 1152 dollars?
21. There are 3 feet in I yard: how many feet are there in 27 yards? In 16 yards? In 29 yards?
22. Three feet make I yard: how many yards are there in 69 feet? In 276 feet ? In 828 feet?
23. If 4 pumpkins weigh 108 pounds, how much will 1 of them weigh ? If 3 weigh 108 pounds, what will 1 weigh ?
24. If 4 iron rods of equal length measure 44 feet, what is the length of each? If they measure 132 feet, what is the length of each ?
25. If 3 bushels of turnips will fill one barrel, how many barrels will 255 bushels fill?
26. A man bought a lot for 3792 dollars, which was 3 times as much as his house cost him : how much did his house cost him?
27. Four asylums are to share equally 7248 dollars: now much does each receive ?
28. How many barrels of meal, at 5 dollars a barrel, can be bought for 3575 dollars?
29. At 4 dollars each, how many hats can be bought for 796 dollars ?
30. At in dollars a barrel, how many barrels of vinegar can be bought for 1749 dollars?
31. There are 7 days in one week, how many weeks are in 365 days (one year)?
32. If 9 acres of land cost 1125 dollars, what will 1 acre cost ?
33. If 6 cows cost 1272 dollars, what will 1 cow cost ?
34. If a horse travels 693 miles in 7 days how far does he travel in I day?
35. 1704 acres of land are to be divided equally among 8 charities: how many acres will each receive?
36. If 9 mules sell for 1359 dollars, what will be the sum received for each ?
37. A man bought 12 tons of hay for 180 dollars: how much did he pay a ton?
38. A boy sold II rabbits for $\$ 2.75$: how much did he receive apiece?
39. A girl spent $\$ 3.54$ for buttons, giving 3 cents apiece for them : how many did she buy?
40. X. is worth 15795 dollars, which is 5 times as much as Y. is worth, and Y. is worth 3 times as much as Z.: how much are Y. and Z. each worth ?
41. A.'s land cost 235^{8} dollars, which is 3 times as much as the building of the house cost : what was the cost of the building?
42. A butcher bought 12 oxen for 1704 dollars: what was the average cost of each ?
43. A cooper worked 12 months for 216 dollars: how much did he receive a month ?
44. If 4 yards of tweed will make a coat, how many coats could be made out of 1876 yards ?
45. A grocer spent 366 I dollars in sugar at 7 dollars per barrel : how many barrels did he buy?
46. How many barrels of cider at 5 dollars a barrel could be bought for 2235 dollars ?
47. There are 4 weeks in I month : how many months are there in 5764 weeks?
48. A grocer spent \$i2.75 for baskets at 5 cents apiece: how many did he buy?
49. A school-house was built jointly by 7 gentlemen at an expense of 2625 dollars: what sum did each subscribe?
50. In I bushel there are 4 pecks: how many bushels are in 1176 pecks?
51. A mill worth 43652 dollars was owned by 7 men in equal shares: what was the value of a share?
52. If a train in 8 days runs 2896 miles, what would be the average run in 1 day?
53. A patent valued at 38125 dollars was owned in equal shares by 5 men : how much did each man own?
54. At 6 dollars a gallon, how many gallons of wine could be bought for 2274 dollars?
55. From the sun to the earth is about 92000000 miles; light travels this distance in about 8 mirutes : how many miles does light travel in a minute?
ch did he its apiece s much as ch as Z.: as much ; the cost what was ars : how
any coats
ollars per
rel could onths are s apiece :
en at an bscribe? shels are men in vould be wn? ne could

30 miles; es : how

100 We now come to those cases in Division, in which the dividend and divisor may be any numbers.

Ex.. 1.-Divide 18763 by 16 .

The dividend is is thousand, 7 hundred, 6 tens, and 3 units.
16 is contained in 18 thousand I thousand times, leaving a remainder of 2 thousand, which with the 7 hundred make 27 hundred.
16 is contained in 27 hundred 1 hundred times, leaving a remainder of iI hundred, which with the 6 tens make 116 tens.
16 is contained in 116 tens 7 times, leaving a remainder of 4 tens, which with the 3 units make 43 units.
16 is contained in 43 units 2 times, leaving a final remainder of ir units.
The whole quotient is therefore I thousand, i hundred, 7 tens, and 2 units, or 1172 , and the remainder 11 .
The noughts to the right, expressing the thousands, hundreds, etc., are omitted in practice, because the place of the figures shews their value.

Ex. 2.-Divide 58849 I by 83 .

749
747

The least number of figures on the left of the dividend that will contain 83 is $5,8,8$, that is, 588 thousand, and this contains 83,7 times. 83×7 gives 58 I ; or, in full, 83×7000 gives 58 rooo. Subtracting the 58 r from 588 , we find the remainder to be 7 . Bring down the next figure, 4 , in the dividend, and we see that 74 will not contain 83 ; or, in other words, 74 hundreds will contain 83 no hundred times, and this no hundreds must be expressed in the quotient by the nought.
Since 74 wili not contain 83 , we bring down another figure, 9.749 contains 83,9 times, with a remainder 2 .
Bring down the next figure, 1 , and then, since 21 will contain 83 no times, we place a nought in the quotient and call the 21 our final remainder.
The following proof shews the correctness of the result :

83×7 thousands $=581000$	
83×0 hund	
83×9 tens	
83×0 units	-
Remainder	70
Dividend	

1. When the divisor is greater than $\mathbf{1 2}$, and the different products are expressed, the process is called Long
2. We then have the following

RULE FOR LONG DIVISION.

Write the divisor and dividend as before, leaving a place on the right for the quotient.
Find hove many times the divisor is contained in the fewest number of figures on the left of the dividend. Place this as the first fyrure of the quotient.
Multiply the divisor by it, and subtract the product from these fisures at the left of the dividend.
Attach, or bring dozin, to the difference. the next figure to the right in the dividend.
I.
2.
3.
4.
5. 29
6. 30
7. 39
8. 58
9. 5 IC
10. 752
II. 544
12. 566
13. 709

If the number thus formed will contain the divisor, place the number of times as the next figure in the qustient, and proceed as before; but if it does not contain the divisor, place a nought in the quotient, then bring down the next figure from the dividend.
Prosed in the same manner until all the figures in the dividend are brought down.
The number that is then left is the final remainder.
Proor-The same as in Short Division.
In finding the quotient figure, the pupil will be assisted by seeing how many times the first figure of the divisor is contained in the first figure, or, if necessary, the first two figures of the dividend ; an allowance being made for the carrying figure.
IS If any of the remainders (before bringing down a new figure) be equal to or greater than the divisor, it shows that the previous quotient figure is too small, and must be increased.
E If any of the products of the divisor by a quotient figure be greater than the number above it, it shows that the quotient figure is too great, and must be diminished.
\Leftrightarrow After the first quotient figure is obtained, there must be as many figures written in the quotient as there are figures brought down from the dividend.

Divide :
EXERCISE 23.

1. 588 by 28
2. 759 by 33
3. 86_{4} by 36
4. 882 by 42
5. 2996 by 14
6. 3042 by 13
7. 3995 by 17
8. 5832 by 18
9. 5103 by 21
10. 7524 by 22
II. 5448 by 24
11. 5668 by 26
12. 7099 by 31

	35			
	by 42	28.		
	9315 by 45	29.		
	27715 by 23	30.	31565	
	43692 by 33	31	5173302 by	
19.	82242 by 54	32.	5926431	
20.	88641 by 63	33.	32	
	76875 by 75	34.	692347 I	
	35784 by 84	35.	14293624	
	30618 by 126	36.	56243121 by	
	38232 by 236		2348726 by	
	46448 by 324			

4n. How many times can $\$ 86$ be taken from \$r 7354 ?
41. \$52 from \$7012?
42. \$17 from \$13354?
+3. \$62 from \$3406?
44. \$73 from \$45078 ?
45. \$51 from \$60702?
46. \$55 from \$13415 ?
47. How many 73's in 173 II 95 ?
48. " ". 46's in 76131702?
49. " " $3^{8 \text { r's in 13261467? }}$
50. " " 937's in t3r89212?
51. " " 754 's in 762294?
52. " " II2's in, 5I867?
53. " " 999's in 7281711?
54. " " 8 's in 33490 ?
55. " " 556 's in 3931476?
56. " " 262, 's in $734^{84248 \text { ? }}$
57. " " 736's in 863256 ?

Find the quotients and also the remainders, it any, re sulting from the following divisors and dividends :-
58. 3076 and
59. 269181 and
60. 6739549 and

6r. 2012 and
62. 2305 and
63. 3605 and
64. 808 and
65. 910I and
66. 7305 and
67. 6635 and
68. 7239 and
69. 3827 and
70. 5943 and
71. 7342I and +72698568233.
72. 8_{5043} and $1_{172481547818 .}$
73. Di by
74. Di hu 75. D tw
76. Di sal thi
77. Di an 78. tw thr
79. D nir
8o. Di dre
hu
103. It 16, Th

The wh
24 .
ane
giv
Now $+t$

This wh
103. It was shewn in Art. 83 that instead of multiplying by 16, for example, we could use its factors, 4 and 4 The same principle holds true in Division.

Ex. 1.—Divide 8413 by 24 .
3) 8413
$8 \longdiv { 2 8 0 4 } - 1$

$$
350-4
$$

The factors of 24 are 3 and 8 , those being the numbers which, when multiplied together, produce or make up 24. We therefore divide by 3, which gives 2804 and I over, and then divide the quotient by 8 , which gives 350 and 4 over
Now, the 2804 represents that number of 3 's; hence the 4 that was left on dividing it by 8 must mean four 3 's, or 12.
This 12 with the I left over at first makes in all 13 , which is the exact remainder.

$$
\text { Proof : } \begin{aligned}
350 \times 8 & =2800 \\
2800 \times 3 & =8400 \\
8400+13 & =8413
\end{aligned}
$$

Ex. 2.-Divide 42711 by 99 .
9) $\frac{42711}{\frac{4745-6}{431-4}}$
$4 \times 9=3^{6}, 3^{6}+6=42$ Remainder.
The factors of 99 are 9 and Ir. The final quotient is 43 .
The last remainder 4 means four 9 's, or 36 , and this with the first remainder 6 gives us the true remainder, 42 . 104. We thus have the following

RULE FOR DIVIDING BY FACTORS.

Find the factors of the divisor. Divide the dividend, as usual, by one of them, and then this quotient by the other. This result will be the true quotient.
To find the true remainder, multiply the last remainder, if any, by the first divisor, and to the product add the first remainder, if any. The result will be the required remainder.
105. This principle enables us to divide more easily by any number ending in noughts : for example, 800 . The factors of this number are 8 and roo, so we divide by the 100 first and then by the 8 , and find the true remainder in the usual way.

Ex. 1.-Divide 97643 by 9000.

$$
1000) 97643
$$

$$
9) \frac{97}{10-7}-643
$$

$$
7 \times 1000+643=7643 \text { Remainder } .
$$

106. This might have been done more rapidly thus

$$
9 \longdiv { 9 7 , 6 4 3 } \frac { 1 0 - 7 6 4 3 } { }
$$

For

For we can divide by the 1000 by merely cutting off the three figures to the right (Art. 79), then divide the remaining figures by the 9 , and to the remainder, 7 , attach the figures cut off, making in all 7643 .

Ex. 2.-Divide 976341 by 3700 .

$$
37) 9763^{\prime} 41 \text { (} 263
$$

74
236
222
143
III
32
3241 Remainder.
First cut off the 41 to the right or the dividend, then to the remainder 32 attach the two figures 4 r , and we have the full remainder, 324 r.

EXERCISE 24.
Divide:

1. 436899 by 14 .
2. 300527 by 18 .
3. 8307611 by 16 .
4. 439205 by 21.
5. 4031729 by 24.
6. 843043 by 25 .
7. 7390478 by 28.
8. 736255 by 42.
9. 6310972 by 49.
10. 5084263 by 35 .
II. 5083753 by 48 .
11. 6230749 by 56 .
12. 4003767 by 36.
13. 5726009 by 44 .
14. $\$ 19866$ by 77.
15. 8514 by 99.
16. $\quad 15336$ by 72.
17. \$93312 by 108.
18. 436 I by 10.
19. $\quad 8349$ by 100.
20. $\quad 7630$ by 100.
21. 7491 by 1000.
22. $\$ 860000$ by 100 .
23. 312946 by 10000.
24. 36972 by
25.
26. I3IIII by 400 .
27. 23218 by 60.
28. $\$ 22120$ by 70.
29. 40220 by 1900.
30. 131127 by 12000.
31. 89952 by 500.
32. 7306597 by 30.
33. 4590000 by 306000 .
34. $\$ 13834500$ by 120300.
35. 11579112 ly 890000.
36. 3678900 by 326100 .
37. 796532 by 230 .
38. 46512 by 8000.

How many dollars are there in
39. 4600 cents ?
40. 1000000 cents?
41. 7200 cents?
42. 36000 cents?

Express as dollars and cents,
43. 846 cents. 750062 cents.
45. 81243 cents.
5. A horse can travel 45 miles in a day : how long will he take to go 3330 miles ?
6. The wages of Jones for 17 months come to $\$ 595$: how much was he paid a month ?
7. The cost of 97 sheep was $\$ 388$: what did each cost ?
8. If 95 lots of land cost $\$ 22515$, what is that for one lot?
9. My agent sends me from Montreal 4368 hams, being 13 times too many : how many did I require?
10. If 15 boys work 5475 questions in 15 weeks, how many did each boy do?
11. There are 24 hours in the day: express 66360 hours in days.
12. In the workhouse there are 72 men whose ages amount to 5976 years : what is the average age of each ?
13. I can employ 15 carpenters for $\$ 3555$ for the season: what do I pay each man?
14. There is a new moon every 28 days: huw many new moons will there be in 108192 days?
15. How many battalions can be formed out of 32340 soldiers, giving 420 men to each battalion ?
r6. How many ro-cent pieces would make up $\$ 64.60$?
17. How many 25 -cent pieces would pay a debt of $\$_{4} 68$?
18. A wealthy merchant distributed to 9 So por people, in an equal proportion, $876+32$ pounds of flour: what would each receive, and how much would be left?
19. If 63 gallons make a hogshead, how many hogsheads will there be in i449 gallons?
20. How much would be left from $\$ 2449$ after in 6 men had been paid 21 dollars each?
21. An excursion boat can carry io5 people : how many trips must it run to take 2486 people, and how many go on the last trip?
22. The total outfit of a regiment of cavalry 1200 strong cost $\$ 236400$: what was the cost of each man's outfit?
23. How many miles of road, at $\$ 26000$ a mile, can be built for \$i IO50000 ?
24. To give 236979 , by what must I multiply 1800 ?
25. In an engagement, +376 soldiers use 205672 cartridges : how many is that for each man ?
26. How many feet are there in a mile, if 42 miles contain 221760 feet ?
27. Of what number is 158 both divisor and quotient ?
28. How many bales of cotton, each weighing 427 pounds, are there in a crop of 468419 pounds ?
29. A moulder has 17385 pounds of metal: find the least number of pounds he must buy in order to cast cannonballs each weighing 68 pounds?
30. How many could he then cast?
31. Divide one billion by 256 .
32. The quotient is 345 , the dividend is 273240 : find the divisor.

EXAMPLES ON ALL PREVIOUS PRINCIPLES.

Ex. I.-If 5 apples cost 10 cents, what must I pay for 8 apples?
If 5 apples cost io cents, 1 apple must cost 2 cents, and 8 apples would cost 8 times 2 cents, or 16 cents.

Ans. 16 cents.
Ex. 2.-How many pears at 3 cents apiece ought I to reccive in exchange for 12 apples at 2 cents apiece?
In order to make the bargain even, the value of all the. pears must be the same as the value of all the apples. which is 24 cents. How many pears, then, must there be to amount to 24 cents, at 3 cents apiece?

Ans. 8 pears.
On account of the pears being worth more apiece than the apples, there must be a less number of pears than apples.

Ex. 3.-If 3 men can build a house in 21 days, how long must 7 men be employed to do the same work ?
If 3 men take 21 days, one man would require 3 times as long as 3 men, that is, 63 day's. One man doing the work in 63 days, 7 men would need only 9 days.

Ans. 9 days.
T The pupil must be taught very carefully to distin. guish between Ex. 1 and Ex. 3. It is quite natural to reason thus: If 3 men take 21 days, I man would take 7 days; in fact, this is the very mistake the pupil will be apt to make.

Ex. 4.-A boy bought the same number of oranges as lemons, paying 5 cents each for oranges and 7 cents each for lemons: how many would he get for 84 cents? If the boy had only 5 cents and 7 cents, that is i2 cents. he could only buy I orange and I lemon. Hence, for every 12 cents he owns he could buy one of each, and as he owns $8+$ cents, or 7 times i2 cents, he could buy 7 oranges and 7 iemons.

Ans. 7 of each.
Ex. 5-I gave 11 peaches to each of 8 boys, and kept 5 myself: how many had I at first?

DIVISION.

For the boys alone I would need 8 times in peaches, or 88 peaches; but as I want 5 myself I must have $88+5$, or 93, to begin with. Ans. 93 peaches.
In this problem the 93 is the dividend, the 8 is the divisor, II the quotient, and 5 the remainder. Hence we see that to find the dividend, 93 , we multiply the divisor and quotient together, and add in the remainder.

Ex.6.-A man buys a farm of 150 acres at 80 dollars an acre; he pays $\$ 5000$ down, and the rest in 8 equal yearly payments : what does he pay each year?
The cost of the farm is $\$ 80 \times 150=\$ 12000$. After paying $\$ 5000$ down, there will be left $\$ 12000-\$ 5000=$ $\$ 7000$ to be paid in 8 equal payments. Each payment must therefore be $\$ 7000+8=\$ 875$. Ans. $\$ 875$. apiece
of pears
yys, how work ?
times as oing the /s. days. o distinnatural n would he pupil

EXERCISE 26.

r. A merchant left $\$ 4538$ to his wife, $\$ 3289$ to his daughter, and $\$ 2567$ to his nephew : what was the amount of his property ?
2. I bought a buggy for $\$ 475$, and a pair of horses at $\$ 175$ each : find the whole cost.
3. Which is worth more, 27 houses at $\$ 1125$ each, or 205 oxen at $\$ 140$ each:: and how much ?
4. Divide the product of 204 and 238 , by their difference.
5. Seven hundred and eight men are formed in two rows: how many will be in each row? How many in each row if they were drawn up in four rows? How many if in six rows?
6. From what number must 72 be taken to leave a remainder equal to 3 times 45 ?
7. Find a number to which if 347 be added the sum will be 347 less than 1000 .
8. How many times does a clock, if it sounds the hours, strike in a day?
9. Λ man bought 47 feet of land: for 25 fect he paid $\$+1$ a foot, for the rest $\$ 45$ a foot : how much did all cost?
ro. Add three hundred and sixty-two thousand four hundred and nine to eight hundred and seven thousand nine hundred and eighty-four, and divide their sum by eight.
11. A man left $\$ 14389$ to be divided thus: to his widow $\$ 5000$, to his son $\$ 4000$, to each of four servants $\$$ roo. and the rest to be equally divided among his three daughters: what will each of the daughters receive?
12. There are 24 sheets of paper in a quire: how many sheets in 3 dozen packets, each containing 5 quires ?
13. A farmer bought 3 horses and 4 mules for $\$ 1122$; the mules cost $\$ 144$ each : what did each of the horses cost ?
14. A merchant bought 13 bales of cloth, each bale containing 27 pieces, and each piece measuring 34 yards: what would be the value of the whole at 17 cents per yard ?
15. If 36 men can cut a road in 77 days, how many men can do the same in 21 days?
16. How many yards of velvet at 7 dollars a yard, 8 dollars a yard, and 9 dollars a yard, the same quantity of each, can a dealer buy for 1800 dollars?
17. What number added to the product of 327 and 8 will give 30000 ?
18. When a man's property was divided, his son received $\$ 5148$, and the rest was divided among in churches. giving each $\$ 936$: what was the property worth ?
19. Divide the sum of 5168 and 5206 by three times their difference.
20. How many weeks will it take a man to build 17 wall: of 154 feet each, if he build 22 feet a week ?
21. What must be multiplied by 327 to give 236421 gallons?
22. A. had 75 cows, B. 90 oxen ; each sold his cattle for $\$ 2250$: how much per head did A. receive more than B. ?
23. I bought 16 pieces of print of 33 yards each at 10 cents a yard, and paid for them with tea at 80 cents a pound: how much tea was given ?
24 The quotient is 345 , the dividend 273240: what is the divisor?
25. The divisor is 213 , the quotient 437 , and the remainder 196: what is the dividend?
26. A. has 2280 dollars to lay out for horses and oxen, and wishes to purchase the same number of each: if he pays $\$ 65$ a head for horses and $\$ 30$ for oxen. how many of each can he buy?
27. I bought some books for $\$ 3.57$, and sold them at 20 cents apiece, losing 17 cents: how many books were there?
28. A vessel saus 5712 miles in 48 days: how many miles does she go in a day? how many in 5 days?
20. A man's salary is $\$ 3150$ a year ; his expenses are $\$ 28{ }_{17}$ a year : how much can he save in 6 years ?
30. A.'s income is 5 times B.'s, B.'s income is 3 times C.'s, and C.'s income is $\$ 1325$: find the incomes of all together.
31. How many cases, each containing 6 dozen books, can be filled from 18 parcels, each containing 3124 ?
32. If 27 clerks receive $\$ 3888$ for 16 days' work, how much a day was that for each man?
33. What number is that to which if 17 be added the result is five times $3^{8} 4^{\text {p }}$
34. A man's income is 398 dollars a year: if he spend each year 256 dollars, how much will he save in 12 years?
35. A man had an income of $\$ 3742$ a year (52 weeks); he spent $\$ 1500$, gave to the hospital $\$ 37^{\circ}$, and saved the rest : how much did he save per week ?
36. If 55_{3} be multiplied by a certain number, and 1043 be added, the result is 23000 : find the number.
37. For 21 pigs and 43 calves a farmer received $\$ 40$; the calves were sold at $\$ 2$ each: what was the price of each pig?
3^{8}. Find a number, such that if the sum of 89 and 256 be subtracted from it, the remainder is 12 times 399.
39. A man bought wheat at 47 cents a bushel, and suld it for 55 cents a bushel; he gained $\$ 3276.45$: how many Lushels did he buy?
4. What number must be multiplied by 37 to make the product equal to the sum of 1998 and 3996 ?
41. Eight pounds of tea cost $\$ 4.8 \mathrm{u}$: what was the price of 6 pounds?
42. If II men can sod an acre of ground in 12 days, how many days will 4 men take to do the same amount of sodding ?
43. If 144 dollars would pay for 24 yards of cloth, what will be the price of 56 yards of the same kind?
44. Seven sheep can be bought for $\$ 24.50$: how much will a flock of i33 cost ?
45. If 4 bushels of apples can be boight for $\$ 3$, how many, at the same rate, can be bought for $\$_{5}$ I?
46. If 6 oranges can be bought for 42 cents, how many will ${ }_{5} 6$ cents pay for?
47. In how many hours can 2 boys do as much work as 6 boys in 3 hours?
48. In how many days can 4 boys earn as much as 8 boys in 6 days?
49. In how many weeks can 15 men earn as much as 3 men in 25 weeks ?
50. In how many days will o norses eat as much as 18 horses in 5 days?
51. Divide the sum of 1692 and 1786 by their difference.
52. A man exchanged 159 coats at $\$ 5$ each for a horsc valued at \$144, and the balance in hats at $\$ 3$ apiece: how many hats did he receive?
53. A. traded with B., giving 305 paintings at $\$ 45$ each, and receiving 77 reapers at $\$ 181$ each: which owes the other, and how much ?
54. $\$ 89648$ is 8 times as much as I paid ror a house; but I paid \$126 more than the house was worth : what was it worth ?
d 256 be 399.
d stld it ow many nake the price of ys, how nount of h, what uch will w many, any will ork as 6 ; 8 boys ch as 3 apiece :

5 each, howes
55. I bought 312 harrels of oatmeal at $\$ 5$ a barrel, and sold them for $\$ 2496$: how much was gained on each barrel ?
56. By selling 3i lots for \$3roo I lose \$155: for what should I sell 16 lots to gain $\$ 597$?
57. A man's yearly salary was $\$ 9237$; he spent $\$ 136$ on house repairs; for hired men he paid 4 times as much, lacking \$95; and for other expenses, \$1902: what has he left to put by yearly?
58. I bought 25 sacks of flour for $\$ 125$: what must I sell them for per sack to gain $\$ 75$?
59. What will be the gain on each sack in the last question?
60. Jones sold the same number of plover, snipe, and quail for $\$ 17.70$-the plover at 12 cents, the snipe at 37 cents, and the quail at 69 cents each: how many of each did he sell?
61. Ten thousand railway checks are to be marked by 3 men; the first marks 2:0 an hour; the second and third each mark 150 an hour: how long will they take to mark the whole, all working together?
62. If 59 articles cost me $\$ 43.07$, how much must I sell 23 of them for to gain $\$ \mathrm{r} .83$ on those sold?
63. A man earns $\$ 50$ a month, but it costs him $\$ 30$ a month to live: how many months will he take to save enough to purchase 48 acres of land at $\$ 10$ an acre?
64. I sold 28 horses at $\$ 122$ each; then bought 224 sheep at $\$ 12$ each, 8 cows at $\$ 60$ each, and spent the remainder in calves at $\$ 8$ each : how many calves did I buy?
65. If it costs $\$ 56$ for bricks to build a cistern, when bricks are worth $\$ 8$ a thousand, what will it cost for bricks to build it, when they are worth \$10 a thousand?
66. If 5 barrels of cider are woirth $\$ 20$, how many tons of hay, at $\$ 12$ a ton, will 9 barrels of cider buy?
67. A merchant bought 3 preces of cloth of equal lengths at $\$ 5$ a yard; he gained $\$ 35$ on the whole cost by selling 2 pieces for $\$ 350$. How many yards in each piece?
107. The following examples will be found somewhat simi. lar to those in Exercise 16, and although rather more difficult, the pupil should now he able to solve them mentally with a fair degree of rapidity.
The note in Art. 85 applies equally well to this case.

EXERCISE 27.

1. To 5 add 7 , multiply by 3 , subtract 6 , divide by 5 , multiply by 8 , divide by 4 , add 8 : what is the result?
2. From 15 take 8, multiply by 6, divide by 7, add 10 , divide by 8 , idd 20 , subtract 4 , divide by 3 , multiply by 7 : what is the result ?
3. Multiply 7 by 8 , subtract 2 , divide bv 6 , add 7 , divide by 4 , add 26 , divide by 5 , multiply by 7 , add 6 , divide by 8 , multiply by 4 : result ?
4. Divide 45 by 5 , multiply by 3 , add 8 , divide by 7 , add 31, subtract 4 , divide by 8 , multiply by 9 , add 6 , divide by 7 , add 15 , subtract 9 , multiply by 8 : result?
5. Add 9 to 19, divide by 7 , multiply by 8 , take 7 , divide by 5 , multiply by 12 , subtract 4 , divide by 8 , add 27 : resuli?
6. Subtract 7 from 25 , divide by 6 , multiply by 9 , add 8 , divide by 7 , multiply by 20 , subtract 4 , divide by 12 , multiply by 3 : result ?
7. To the product of 7 and 5 , add 9 , divide by 11, multiply by 12, subtract 3 , divide by 9 , multiply by 10 , add 6 , divide by 7 , add 8 , divide by 2 , add 19 , divide by 9 , multiply by 12 : result ?
8. To the quotient of 63 divided by 7 , add 6 , multiply by 4 , divide by 12 , add 30 , divide by 7 , add 16 , divide by 7 , multiply by 11, add 9 , divide by 7 , add 15 , subtract 7 , divide by 7 , add 16 : result?
9. To the difference between 7 and 15 , add to divide by 6 , multiply by 11 , add 9 , divide by 7 , multiply by 9 , subtract 6 , divide by 8 , multiply by 7 , add 9 : result ?
10. To 23 add 9 , divide by 8 , add 35 , divide by 3 , add 8 , divide by 7 , multiply by 20 , divide by 10 , add 27 , subtract 9 , divide by 8 , multiply by 15 , add 19 : result ?
11. From 41 take 5 , divide by 9 , multiply by 11 , add 12 . divide by 8 , multiply by 7 , subtract 5 , divide by 4 , multiply by 7 , subtract 5 , divide by 9 , add 34 , divide by 2 : result?
12. Add 35 to 9 , divide by 11 , multiply by 25 , subtract 16 , divide by 12 , add 43 , divide by 5 , add 53 , subtract 13 , divide by 5 : result ?
13. Multiply 7 by 8, add io, divide by 11 , add 21, divide by 9 , multiply by 12 , add 12 , divide by 8 , multiply by 11, divide by 22 : result?
14. Divide 72 by 9 , multiply by 7 , subtract 8 , divide by 6 , multiply by 12 , add 12 , divide by 9 , add 52 , divide by 8 , multiply by 10 , divide by 20 : result ?
15. To 61 add 11 divide by 6 , subtract 11 , add 55 divide by 7 , multiply by 6 , subtract 18 , divide by 6 , multiply by 30 , take 50 , divide by 5 : result ?
16. From 85 take 15, divide by 7 , multiply by 8 , add 16 , divide by 8 , add 30 , divide by 7 , multiply by 12 , add 8 , divide by 8 : result ?
17. Multiply 30 by 4 , divide by 12 , add 25 , divide by 7 , multiply by 11 , add 9 , divide by 8 , multiply by 5 , sub. tract 7 , add 3 , divide by 9 : result ?
18. Add 17 to 20 , subtract 9 , divide by 7 , multiply by 25 , subtract 4 , divide by 8 , add 8 , multiply by 4 , subtract 20. add 30, divide by 10, multiply by 8 , add 12 , divide by 12 , add io : result?
19. Divide 56 by 8 , multiply by 9 , divide by 7 , multiply by 8 , add 5 , divide by 11 , multiply by 6 , add 21 , divide by 9 , add 20 , divide by 3 , multiply by 5 , add 15 , divide by 10 , multiply by 8 , divide by 6 : result ?
20. From 63 take 9, add 16, divide by io, add 41, subtract 20 , divide by 4 , add 93 , subtract 17 , add 2 , divide by 5 , multiply by 3 , subtract 8 , add 27 , divide by 7 , sub. tract 10 , multiply by 13 : result?

CHAPTER II.

FAC'TORING.

108. There are two ways of making up the number 6 , either by adding 4 and 2 , or by multiplying 3 and 2 .
As in Art. 83, where the number 6, is made up by multuplying 3 and 2, each of these numbers is called a Factor of 6. Each of them is also an Exact Divisor of 6 .
109. A Factor of a number may therefore be said to be an Exact Divisor of the number.
It is very desirable that the pupil should be able to tell the different Divisors of any number.

Ex. 1.-Find all the Divisors of 18 .

$$
18=9 \times 2, \text { or } 3 \times 6,
$$

Hence the Divisors are 9, 6, 3, 2.
110. The numbers 2, 3, 5, 7, 11, etc., have no exact Divisors or Factors, and all such numbers are called Prime Numbers.
Since the number 3 divides both 6 and 9,3 is said to be a Common Divisor of 6 and 9 . So 5 is a Common Divisor of 15 and 20; 4 is a Common Divisire of 8 , 12 , and 16.
111. A Common Divisor is any number that will exactly divide two or more numbers.

Ex.-Yind a Common Divisor of 16, 20, 24.

$$
\begin{aligned}
& 16=2 \times 8 \\
& 20=2 \times 10 \\
& 1
\end{aligned}
$$

Therefore 2 is a Common Divisor.

Again,

$$
\begin{aligned}
16 & =4 \times 4, \\
20 & =4 \times 5, \\
24 & =4 \times 6,
\end{aligned}
$$

Therefore 4 is also a Common Divisor.
We thus sce that there may be more than one Common Divisor to two or more numbers; and, since 4 is the greater of the two Divisors, it is called the Greatest Common Divisor of 16,20 , and 24 .
112. The Greatest Common Divisor (G.C.D.) is the greatest number that will exactly divide two or more numbers.
p by mul. called a act Divi.
to be an
le to tell

RULE FOR FINDING THE GREATEST COMMON DIVISOR.

Take the least of the given numbers and try its divisors in order, beginning with the greatest.
The first one that will divite each of the other numbers will be the required Greatest Common Divisor.

Ex.-20, 24, and 28.

The divisors of 20 are $10,5,4$ and 2 . The first one that divides both 24 and 28 is 4 . Hence 4 is their G. C. D.

EXERCISE 28.

These questions should be solved mentally.

1. What numbers will exactly divide 12 ? 48 ? 56 ? 81 ?
2. Find the exact divisors of $21 ; 32 ; 49 ; 42 ; 36$.
3. What numbers under 50 are exactly divisible by 2 ? 3? 4? 5? 6? 7? 8? 9? 10? 11? 12?
4. What numbers between 50 and 121 have for a factor 5? 7? 9? 12? Write down the other factor in each case.
5. Write down the simplest or prime factors of 64,54 , 78, 120, 145, 152, 99, 117, 189.
6. What numbers less than 150 are divisible by both 3 and 4 ? 4 and 5 ? 5 and 6 ? 3 and 8 ?
7. Name the three least numbers that exactly contain both 3 and $5 ; 2$ and $5 ; 2$ and $3 ; 3$ and $4 ; 4$ and 5 .
8. Write down in order the prime numbers less than 50 ; between 50 and 100 .
9. What three prime numbers will divide 42 ? 30 ? 105?
10. Find the common divisors of 24 and 30 ; of 27 and 36 ; of 15 and 45 ; of 36 and 64 ; of 72 and 80 ; of 90 and 120.
11. Name all the common divisors of 12, 18 and 20 ; of 24,40 and 60 ; of 36,48 and 72 ; of $24,36,60,72$.
12. Write down the G. C. D. in each part of questions ro and II.
13. What is the G.C. D. of 16,24 , and 36 ? of 9,27 , and 33 ? ef 15,35 , and 50 ? of 18,32 , and 60 ?

The first one ce 4 is their
ally.
8? 56? 81?
t2; 36.
isible by 2 ?
for a factor :tor in each
s of 64,54, e by both 3
tly contain ; ; 4 and 5 . rs less than
? 30 ? 105? ; of 27 and and 80 ; of
and 20 ; of 6, 6o, 72. questions

9, 27, and
115. When the given numbers are large, the G. C. D. can not always be found by inspection.
The following method is then adopted:
Ex.-Find the G. C. D. of 697 and 820 . 697)820(1

697
123)697(5

615

$$
\begin{gathered}
82)_{12} \\
82 \\
82
\end{gathered}
$$

$$
\text { 41) } 82(2
$$

82
Divide the less into the greater number-the remainder is 123, which we divide into the first divisor 697. This leaves a remainder 82, which we divide into the previous divisor 123 , leaving a remainder 4 I . The number 41 is divided into the previous divisor 82, and since it is contained exactly, 4 I is the G. C. D.
In finding the G. C D., if the last divisor is I , the given numbers are : d to be prime to one another.
116. From the above we have the following

RULE FOR FINDING THE GREATEST COMMON DIVISOR.

Divide the less into the greater of the given mumbers, then divide the remainder then obtuined into the previous divisor, and so on, until an exact divisor is obtained. This exact divisor will be the G. C. D. required.

If there be three or more numbers, find the G. C. D. of any two of them. Then find the G.C. D. of this result and a third number and so on. The final result will be the G. C. D. required.

$$
\text { Ex.-Find the G. C. D. of } 585,765 \text {, and } 285 \text {. }
$$

The G.C. D. of 585 and 765 is 45 . The G. C. D. of 45 and the third number 285 i: 15 . Hence 15 is the G. C. D. of the given numbers.

KThe The phil should prove the truth of the result, in other words, see that the G. C. D. obtained will exactly divide each of the given numbers.
Thus:

$$
\begin{aligned}
& 585+15=39 \\
& 765+15=51 \\
& 285+15=19 .
\end{aligned}
$$

EXERCISE 29.

1. Find the greatest common divisor of 161 and 115 .
2. Find the greatest common divisor of 592 and 332 .
3. Find the greatest common divisor of 2013 and 1220.
4. Find the greatest common divisor of 576 and 960 .
5. Find the greatest common divisor of 592 and 1225 .
6. Find the greatest common divisor of 1369 and 703 .
7. Find the greatest common divisor of 1866 and 1492.
8. Find the greatest common divisor of 1029 and 1197 .
9. Find the greatest common divisor of 992, 35^{2} and 672.
10. Find the greatest common divisor of 867,1088 and 714.
11. Find the greatest common divisor of 1134,1386 and 630.
12. What is the length of the longest pole that will measure 8.4 feet, 56 feet and 70 feet ?
13. Wherever we have a Divisor we must have a Dividend. The object of the previous exercise was to find the Divisor. We shall now proceed to find the Dividend, of which certain numbers are given as Divisors. When we speak of a Divisor or a Dividend, we always refer to an Exact Divisor and an Exact Dividerd.
Since $3 \times 4=12,12$ contains both 3 and 4 , and is therefore an Exact Dividend of 3, and also of 4 .
G. C. D. of nce 15 is the
the result, in btained will rs.

51 and 115 . 32 and 332. 13 and 1220 . 76 and 961 . 32 and 1225 . g and 703 . 56 and 1492. 9 and 197. 2, 352 and 7, ro88 and 4, 1386 and le that will
ve a Divi. cise was to 1 to find the e given as or a Divi. sor and an
nd is there. f 4.
118. An Exact Dividend of a given number is therefore a number which will contain the given number without any remainder.
An Exact Dividend is also called a Multiple.
Since 15 contains 3 and also 5 exactly, 15 is a dividend of 3 and also of 5 , and is called a Common Dividend of 3 and 5 .
119. A Common Dividend is a number that contains two or more numbers exactly.

Ex.- 24 is a Comrion Dividend of 2 and $4 . \quad 18$ is a Common Dividend of 2,3 and C .
Now, 36 is a Common Dividend of 2, 3, and 4 ; and so likewise is 24 , and also 12 . And since of the conmon dividends 36,24 , and 12,12 is the least, it is called the Least Common Dividend of 2,3 , and 4.
120. The Least Common Dividend (L. C. D.) of $t w o$ or more numbers is the least dividend that will contain each of the numbers exactly.

Ex.-Tlie L. C. D. of 2,3, and 81524 , Decause 24 is the least dividend that will contain 2 , 3 , or 8 . The L. C. D. of $4,5,12$ is 60 .

All Dividends, Common Dividends, and Least Common Dividends should be found, if possible, by inspection.
121. The following will be found a good method of finding the L. C. D. mentally :
Take 5, 8, and 12.
The L. C. D. cannot be 12 , because 12 aoes not contain either 5 or 8 . The next number that contains 12 is 24 , but this does not contain 5, although it contains 8 . Then we try 3 times 12,4 times 12 , etc., until we come to 9 times 12 , or 1o8. None of these will answer, but the next one, ro times 12 , or 120 , contains both 5, 8, and 12 , and must be the L. C. D.
122. Hence we have the following

RULE FOR FINDING THE LEAST COMMON DIVIDEND.

Take the greatest of the given numbers, and try its dividends in order, beginning with the least. The first one that will contain each of the other numbers zoill be the required Least Common Dividend.

Ex.-Find the L. C. D. of 10, 24, and 30.
The successive dividends of 30 are 60,90 , and 120 ; and since 120 is the first one that will contain ro and 24, the L.C. D. must be I2O.

EXERCISE 30.

These questions should be solved mentally.

1. What numbers below 50 are dividends of 2 ? of 3 ? of 4 ? of 5 ? of 6 ? of 7 ? of 8 ? of 9 ? of 10 ? of 1 ? of 12 ?
2. What numbers between 50 and 145 exactly contain 7? 9? 11? 12?
3. Of what two prime numbers is i2 a common dividend ?
4. Of what numbers is 12 a common dividend? is? 24? 30 ?
5. Write in order each number below roo that is a common dividend of 2 and 3 ; of 3 and 7 ; of 2,3 . and 4 ; of 4,5 , and $6 ;$ of 2,5 , and 7 ; of $2,3,4$ and 5 ; of 3 and 8 ; of 8 and 10 .
6. Write down the L. C. D. in each part of question 6.
7. Find the L. C. D. of 8 and 12 ; of 9 and 12 ; of 2,4 ; 5 , and 6 ; of 2 , 3 , and 10 ; of 3,4 , and 8 ; of 4,5 , and 8 ; of 6,3 , and 8 ; of $2,5,8$, and 10 ; of 3,12 , and 4 ; of 6,18 , and 9 ; of 4,12 , and 16 ; of 8,10 , and 12 .

LEAST

y its dividends tone that will the required
30.

90 , and 120 ; ll contain 10
ntally.
of 2? of 3 ? Io? of II?
tly contain
123. In finding a common dividend of $3,4,12,15$, we need not consider 3 or 4 , because any number that is a dividend of 15 must be a dividend of 3 ; and any number that is a dividend of 12 must be a dividend of 4 .

Hence in finding the L. C. D. of any numbers we may always strike out any one of them that is a divisor of any other.
124. We thus have the following

RULE FOR FINDING THE LEAST COM. MON DIVIDEND OF SEVERAL NUM. BERS.

Piace the given numbers in a line, and first strike out any one of them that is a divisor of any other.
Then begin zieith the loneest dizisor, 2 , and divide by it as often as it is contained in any tuo of the numbers, bringing down any numbers that are not divisible.

Proceed thus with 3, 5, 7, etc., always striking out in any line any number that is a divisor of any other number in that line.

Finally, mulliply tosether the different divisors and all the numbers in the last line.

The product thus obtained will be the required L. C. D.
Ex.-Find the Least Common Dividend of 4,6 , 10, $12,30,45,75,110$.

L.C.D. $-2 \times 2 \times 3 \times 5 \times 3 \times 5=9 c o$. Ans.

Writing the numbers in a line, we first strime out 4 and 6, since each is a divisor of 12 . Then strike out Io, since it is a divisor of 30 . (Art. 123.)
Now divide by 2, and we obtain the quotients as above, of which we strike out 15 , because it is contained in 45 .

Again divide by 2, and then strike out 3 and 25 , for each is contained in 75.
Now, since 2 will no longer divide any two numbers in the line, we try 3 , and then 5.
Finally, multiply together the four divisors and the last quotients, and we obtain the L. C. D. as above.
125. To find the L. C. D. of two large numbers, we first find the Greatest Common Divisor.
Then divide this G. C.D. into either of the numbers, and multiply the quotient by the other number.
The product will be the required least common dividend.

Ex.-Find the L. C. D. of 970 and 1261 .
Their greatest common divisor will be found to be 97.
Then $970+97=10$.
$126 \mathrm{I} \times 10=125 \mathrm{xO}$, which is the required L.C.D.
Proof:

$$
\begin{aligned}
& 12610+970=13 . \\
& 12610+1261=10 .
\end{aligned}
$$

126. If there be several large numbers, find the L. C. D. of any two, then find the L. C. D. of this result and a third number, and so on.
The final result will be the required L. C. D.
As in the case of the Greatest Common Divisor, the pupil should prove the truth of the result by finding, as in Art. 125, if the L. C. D. will contain each of the given numbers exactly.
rine out 4 hen strike 23.)
otients as it is con-
ind 25 , for numbers s and the as above. , we first
numbers, mber.
mon divi.

I.

 to be 97 .L.C.D.
C. D. of ult and a

Divisor, result by l contain

EXERCISE 31,
Find the Least Common Dividend:

1. Of $5,15,9,6$ and 3 .
2. Of $4,5,10,8,18$ and 15 .
3. Of $12,36,25,60,35$ and 72 .
4. Of $63,81,14,54,27$ and 9 .
5. Of $7,72,84,42,12$ and 6 .
6. Of $72,36,180,24,18,9$ and 120.
7. Of $90,10,64,70,45,8$ and 32 .
8. Of $40.24,8,32,20,16$ and 10.
9. Of $29,144,216,180,90$ and 252.

1o. Of $60,78,42,96,56,48$ and 39 .
11. Of 2041 and 8476 .
12. Of 812 and 336 .
13. Of 7056 and 7392.
14. Of 7212,9015 and 24040.
15. Of 7218, 6o15, and 5213 .
16. Of $2712,816,54$, and 15 .
17. Of $250,360,49$, and 700 .
18. Of $32,44,52,13,65$, and 48 .
19. Of $76,748,448,152$, and 38 .
20. What is the smallest quantity of barley that can be carted away in either $20,25,30,35$, or 40 bushel carts, and how many loads would there be of each?
21. Find the least amount of money that can be paid by either $2,3,4,5,11,20,50$, or 100 dollar bilis and how many of each kind would be required ?

CHAPTER III.

FRACTIONS.

127. We have spoken of one dollar, one pound, one pint, one fiot, etc., but have not mentioned any smaller part than one of each. We nust now see how we can express any part of a dollar, a pound, a pint, or a foot.

If we divide a foot, for instance, into two equal parts, zach part is called a half, and written $\frac{1}{2}$-the figure 2 siowing that the unit (in this case a foot) is divided into two equal parts, and the figure 1 showing that we have taken one of these parts.
In the same way, if a foot be divided into $3,4,5,6$, etc., equal parts, each part wiil be called a third, fourth, fifth, sixth, etc., respectively, and be represented by $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{8}$, etc.
It will also be seen that to make up the whole, or the unit, we must take

Two-halves, or
Three-thirds, or Four-fourths, or Five-fifths.
etc., etc.
This will be easily seen from the following figure, where the unit is taken as a foot in length. straight-edge or measure :

The whole equals 12 inches.

One-half	"	6 inches.
One-third	$"$	4 inches.
One-fourth	"	3 inches.
One-sixth	a	2 inches.

Thus we see that we find one-half of any number by dividing it by 2 , one-third by dividing it by 3 , onefourth by 4 , etc.
Hence, $\frac{1}{4}$ of 40 cents $=10$ cents.
$\frac{1}{0}$ of 8 I apples $=9$ apples.
${ }^{\frac{2}{15}}$ of 30 days $=2$ days.
129. Again, referring to our figure, we see that two-thirds of 12 inches are 8 inches, that is, twice as long as one-third; threc-sixths are 6 inches, or three times as much as one-sixth; seven-twelfths are 7 inches. or 7 times as much as one-twelfth.
In the same manner, $\frac{1}{\text { i }}$ of $\$ 44$ must be 5 times $\frac{1}{1 T}$ of $\$ 44$, that is 5 times $\$ 4$, which is equal to $\$ 20$.
So, $\frac{4}{\frac{2}{0}}$ of $6_{3}=4$ times $\frac{1}{9}$ of $6_{3}=28$.
$\frac{1}{1} \frac{?}{8}$ of $26=10$ times $\frac{1}{15}$ of $26=2$,
130. The symbols $\frac{1}{2}, \frac{1}{3}, \frac{7}{6}$, etc., are called Fractions, and represent one or more of the equal parts of the whole or unit.
131. The lower nurs.der is called the Denominator, because it points out or shows the number of equal parts into which the unit is divided, or, in other werds, it shows the size of the parts.
132. The upper number is called the Numerator, for it tells the number of parts taken.
Thus $\frac{0}{1 T}$ is a Fraction, and represents nine of the equal parts of the unit. II is the Denominator, and shows the size of the parts to be elevenths. 9 is the Numerator, for it tells that the number of parts taken is nine.

EXERCISE 32.

E These questions should be solved mentally.

1. Read the following fractions, naming the denomina tor and numerator to each: $: \frac{2}{8}, \frac{3}{7}, \frac{6}{6}, \frac{8}{25}, \frac{7}{36}, \frac{6}{6}, \frac{1}{2} \frac{2}{3}$ $\frac{4}{15}, \frac{7}{15}, \frac{8}{11}, \frac{8}{8}, \frac{18}{18}, \frac{7}{15}, \frac{8}{20}, \frac{7}{26}, \frac{1}{10}$.
2. Write the following fractions in figures:

Five-ninths. Three-sevenths. Two-fifths. Four-sevenths. Five-sixths. Three-eighths. Four-ninths. Seven-ninths. Seven-tenths. Five-sevenths. Eight-nir,ths. Nine-tenths. One-twelfth.

Five-elevenths. Nine-fourteenths.
Eleven-t welfths.
Eight-fifteenths.
Seven-twentieths.
Eight-thirteenths.
Four-twentieths. Eleven-mineteenths. Sixteen-twenty-thirds.
Three-fourteenths.
Four-fortieths.
One-seventieth.
Seventy-ninetieths.
3. When anything is divided into seven equal parts, what is one part called? Three parts? Five parts?
4. What is one of the cleven equal parts of anything called? Seven of the twelve equal parts? Nine of the ten equal parts? Fourteen of the fifteen equal parts? Eighteen of the twenty equal parts?
ins, and s of the tor, be. of equal n other
for it
e equai d shows Nume. :aken is
5. What is meant by one-ninth of a quantity of apples? Seven-elevenths of a heap of oats? Tea-twelfths of a distance? Four-twenticths of the value of a vessel? Iive-sevenths of a man's property?
6. How many sixths in the whole of an estate? Tenths in onc-half of an apple? Quarters in one-half of a yard? Sixths in one-third of a pound? Eighths in one-quarter? Sixtcenths in one-eighth ?
7. What is $\frac{1}{2}$ of 8 ? $\frac{1}{3}$ of 12 ? $\frac{1}{5}$ of 25 ? $\frac{1}{7}$ of 63 ? $\frac{1}{6}$ of I8 ? $\frac{1}{11}$ of 55 ? $\frac{1}{12}$ of 48 ? $\frac{1}{10}$ of 120 ? $\frac{2}{3}$ of 24 ? s of 45 ? ${ }^{4}$ t of 88 ? $\frac{3}{7}$ of 21 ? I' 4 of 39 ? $\frac{2}{3}$ of 27 pounds? $\frac{s}{4}$ of 48 ounces? 4 of 1 ounce, or 20 pennyweights ? $\frac{9}{8}$ of 42 inches? $\frac{5}{1 T}$ of 77 acres? io th 66 yards? $\frac{5}{7}$ of $\$ 84$?
8. How much of anything will be left if $\frac{1}{7}$ be taken away? If $\frac{3}{10}$ be taken away? If $\frac{s}{7}$ be taken away ? If $\frac{5}{T 2}$ be talien away? If $\frac{2}{1 T}$ of it be lost? If $\frac{4}{6}$ of it be given away? If $\frac{9}{10}$ of it be sold? If $\frac{10}{17}$ of i. be lost ?
9. How much of anything must be taken from it to leave $\frac{5}{6}$ of it? $\frac{3}{10}$ of it? $\frac{5}{1^{2}}$ of it? $\frac{9}{T^{3}}$ of it? $\frac{4}{7}$ of it? $\frac{1}{1} \frac{2}{7}$ of it? $\frac{4}{15}$ of it? $\frac{11}{12}$ of it?
10. What part of my farm may I sell to have $\frac{4}{3}$ of it left ? $\frac{s}{7}$ of it? $\frac{5}{11}$ of it? $\frac{12}{10}$ of it? $\frac{s}{1 T}$ of it? $\frac{5}{12}$ of it? $\frac{3}{16}$ of it? $\frac{1}{8}$ of it?
11. A farm contains 260 acres: how many acres in $\frac{4}{6}$ of it? in $\frac{8}{10}$ of it? in $\frac{5}{15}$ of it? $\frac{1}{4}$ of it?
12. If $\frac{3}{4}$ of a vessel be worth $\$ 60$, what will $\frac{1}{4}$ be worth ?
13. If $\frac{5}{6}$ of my property be 100 acres, find the number of acres in $\frac{1}{6}$ of it.
14. If $\frac{2}{3}$ of a number be 16 , what will $\frac{1}{3}$ of it be ?
15. If $\frac{9}{4}$ of a bushel of oats be worth 72 cents, what would $\frac{1}{4}$ be worth? What would a bushel be worth? What would $\frac{1}{1}$ of a bushel be worth? $\frac{6}{12}$ of a bushel? $\frac{7}{13}$ of a bushel?
16. How old is a boy $\frac{3}{7}$ of whose age is just 6 years?
17. If $\frac{4}{6}$ of a pound of tea be worth 72 cents, find the price of a pound.
18. What is coffee worth a pound when 4° cents pays for $\frac{2}{3}$ of a pound ?
19. I bought a lieg of nails: huving but $\$ 8$ I conk on!y pay for $\frac{6}{6}$ of it. What must I yot pay?
133. We have seen that $\frac{1}{2}, \frac{3}{6}, \frac{3}{6}, \frac{1}{8}, \frac{6}{13}$ of the unit, in $A \mathrm{rt}$. 127, was the same in each case, namely, 6 of the 12 equal parts or inches. This shows that a fraction may be expressed in many different forms, and still be the same in value. In other words, if we dscrease the size of the parts we must take more of them, and if we increase the size of the parts we must take fewer of them. Again, if we increase the number of parts thken we must decrease their size, and if we decrease the number of parts taken we must increase their size.
The Numerator and Denominator are called the Terms of a Fraction.
Since $\frac{1}{2}=\frac{2}{4}, \frac{2}{4}=\frac{6}{12}$, etc., we deduce the following $1 m$. portant Principle:
134. If the izeo terms of any fraction be multipliad by the same: number, the value of the fraction is not changed. Ex. $-\frac{3}{3}=\frac{1}{2} \frac{5}{5} ; \frac{2}{3}=\frac{10}{2}$.
Again, since $\frac{n}{1^{2}}=\frac{2}{4}, \frac{4}{8}=\frac{1}{2}$, etc. . we deduce the following important Principle:
135. If the tuo terms of any fraction be divided by the same nur. ber, the value of the fraction is not shangred.
$E x .-\frac{10}{2}=\frac{3}{11} ; \frac{12}{18}=\frac{3}{4}$.
Ex. r.-Express $\frac{t}{5}$ as a fraction, having I_{5} for its denominator, or change $\frac{4}{8}$ to fifteenths.
To obtain I_{5} from 5 , we must multiply 5 by 3 , and since both terms of a fraction must be nultiplied by the same number to have no effect on its value, we must multiply the numerator 4 by 3. This gives us the fraction $\frac{1}{1 \frac{2}{5}}$.
Thus $\frac{4}{6}=\frac{1}{2} \frac{2}{8}$.
136.
137.

Ex. 2.-Change i_{0}^{0} to cighths, that is, express $t_{\text {? }}$ as a fraction having its denominator 8 .
To obtain 8 from 16 we divide 16 by 2 , hence we must also divide to by 2 , to give a new numerator.

$$
\text { Ans. } \frac{1}{8} .
$$

136. When the fraction $\frac{10}{10}$ is changed to $\frac{A}{8}$, the fraction $\frac{10}{18}$ is said to be brought to its lowest terms.
Instead of speaking of $\frac{10}{16}$ of a pound of sugar, we would express the sane amount of sugar more easily by saying $\frac{n}{8}$ of a pound.
15 All fractions should be expressed in their lowest terms.
137. A fraction is in its lowest terms when its numerator and denominator cannot both be divided exactly by any number greater than 1.
Reduce $\mathrm{F}_{\mathrm{T}}^{8}$ toits lowest terms. By dividing both terms by 2 we obtain $\frac{6}{6}$: again divide both terms of $\frac{6}{6}$ by 2 we have $\frac{y}{3}$, which we see is the required fraction.
In other words, ${ }^{5} 3$ of anything is the same as $\frac{3}{3}$ of it.
Instead of having two operations, we might have divided both terms of $\frac{8}{12}$ by 4 , and thus find the lowest terms at once.
This number 4 we know is the G.C.D. of 8 and 12 .
138. Hence to reduce a iraction to its lowest terms we have the following

RULE.

Divide buth numerator ind aenmminator of the fraction by their Greatest Common Dirisor.

FXERCISE. 33.
(a) 1. Change $\frac{9}{4} t$, a fraction having its denominator 8 ; 12, 20; 40; 32; 60.
2. Express $\frac{5}{6}$ ot a yard as twelfths; as sixteenths; as thirtieths.
3. How many twentieths of a dollar must I exchange for a half? for a quarter? for four-fifths? for seventenths?
4. Change

$$
\begin{aligned}
& \frac{8}{7} \text { to thirty-fifths. } \\
& \frac{5}{8} \text { to fortieths. } \\
& \frac{8}{6} \text { to thirty-sixths. } \\
& \frac{4}{8} \text { to forty-fifths. }
\end{aligned}
$$

(b) Reduce the following fractions to their lowest terms:
I. $\frac{5}{10}$,
2. $\frac{1}{2} \frac{4}{6}$,
3. $\frac{2}{3} \frac{5}{5}$,

5. $\frac{26}{32}, \frac{1}{7} \frac{2}{2}, \frac{10}{1000}$.

11. What fraction with lowest terms will express the same as $\frac{80}{120}$? $\frac{42}{83}$? $\frac{\pi 0}{80}$?
12. Shew that the fractions $\frac{38}{88}, \frac{21}{3}$, and $\frac{24}{80}$ are the same in value.
139. Hitherto we have spoken of such parts of the unit or whole as $\frac{3}{5}, \frac{5}{7}, \frac{5}{8}, \frac{7}{10}$, etc., that 1 s , a part less than a whole in each case.
We now come to notice such fractions as $\frac{8}{8}, \frac{10}{7}, \frac{21}{8}, \frac{12}{10}$. etc.
Now $\frac{8}{6}$ means five-fifths and one-fifth, that is the whole and one-fifth besides, which is written $1 \frac{1}{5}$ and read one and one-fifth. So $\frac{10}{7}$ means seven-sevenths and three-sevenths, or $1 \frac{3}{7}$. $\frac{21}{8}=16$ eighths and 5 eighths $=2 \frac{5}{8}$.
140. Such fractions as $\frac{3}{6}, \frac{\pi}{6}, \frac{8}{11}$, etc., in which the numerator is less than the denominator, are called Proper Fractions.
141. Such fractions as $\frac{8}{8}, \frac{10}{7}, \frac{21}{8}$, etc., in which the nume. rator is equal to orgreater than the denominator are called Improper Fractions.
142. The expressions $2 \frac{3}{6}, 6 \frac{1}{4}, 8 \frac{3}{5}$, etc., are called Mixed Fractions, being made up of a whole number and a fraction.
st exchange s? for seven.
of the unit irt less than
$\frac{3}{3}, \frac{10}{7}, \frac{12}{80}$.
is the whole $i_{\frac{1}{6}}$ and read en-sevenths hths and 5
the numeare called
the numeminator are
lled Mixed umber and
143. We see by Art. 139 that every improper fraction may be brought to a mixed fraction by means of the ful. lowing

RULE.

Divide the numerator of the improper fraction by the denominator, and the quoticnt will be the whole number.
Place the remainder, if any, oner the denominator, to form the other part of the mixed fraction.

Ex.-Reduce $\frac{23}{6}$ to a mixed fraction.
Dividing 23 by 6 we obtain 3 for the quotient and 5 for the remainder. Hence $3 \frac{5}{8}$ will be the required mixed fraction.

In the mixed fraction $3 \frac{8}{6}$ the 3 is the same as 8 sixths, which with the other 5 sixths make 23 sixths, $\frac{8}{8}$.
144. Hence, to reduce a mixed fraction to an improper fraction we have the following

RULE.
Multiply the whole number by the denominator, to the product add the mumeraton, and under the sum write the denominator.

Ex.-Reduce $7 \frac{8}{3}$ to an improper fraction.
Multiplying 7 by 5 , we have 35 ; adding 3 to this product gives 38 ; therefore the required fraction is $\frac{53}{8}$.

EXERCISE :4.
(a) Express the following improper fractions as mixed fractions, or whole numbers :

I. $\frac{19}{4}$.	12.	$\frac{9}{5}$ 5.			34.
2. $\frac{21}{8}$.	13.	${ }^{93}{ }^{7}$	24.		35.
3. $\frac{28}{4}$.	14.	${ }^{1}{ }^{3}$ \%	25.		36.
4. $\frac{31}{5}$.	15.	$\frac{12}{3}$.	26.		37.
5. $\frac{19}{6}$.	16.	$\frac{14}{6}$.			38.
6. 29.	17.	$\frac{13}{4}$.	28.	$\frac{108}{67}$.	39.
7. $\frac{31}{6}$.	18.	$\frac{22}{3}$.	29.		40.
8. $\frac{39}{8}$.	19.	$\frac{17}{4}$.	30.	${ }^{\frac{5}{8}}{ }^{8}$.	41
9. $\frac{45}{7}$.	20.	$\frac{27}{4}$.	31.	$\frac{78}{8}$.	42.
10. $\frac{57}{8}$.	21.	${ }^{3} 5$.	32.	${ }^{0} \mathrm{O}$.	43.
11.	22.	$\frac{41}{10}$.	33.	$\frac{24}{5}$.	44.

(b) Change the following mixed fractions to improper fractions:

I. $6 \frac{2}{3}$.	12. $9 \frac{5}{6}$.			
2. ${ }^{\text {a }}$ 3. 6.		24. 9 9\%.	34 35 36	
4. $10 \frac{1}{5}$.		26. $12 \frac{5^{\frac{5}{\circ}}}{}$	36	
5. $9 \frac{1}{2}$.	16. $5 \frac{9}{11}$.	27. $14 \frac{3}{4}$.	37	
6. 3 2. ${ }^{\frac{2}{2}}$.	17. 109.	28. $16 \frac{6_{3}}{}$.	39.	12, ${ }^{2}+2^{\frac{1}{2}}$
7. 8 4.	18. $12 \frac{1}{8}$.	29. $22 \frac{4}{5}$.	49	
$3{ }^{\frac{7}{3}}$	19. $11 \frac{1}{8}$.	30. $32 \frac{3}{7}$.		$1256{ }_{\text {\% }}^{3}$.
5i.		31. $45 \frac{5}{5}$.		40919
$8 \frac{2}{3}$.	22. $8 \frac{3}{\text { s }}$.	33. 5 5		

A

2. How many whole ounces are there in $\frac{60}{9}$ of an ounce? In $\frac{11}{10} \frac{1}{6}$ ounces? In $\frac{1088}{12}$ of an ounce?
3. Take away as many dollars as you can from ${ }^{6,3}$ of a dollar, and what will be left? From? $\frac{10 n}{17}$ of a
dollar?
4. How many boys could receive a dollar apiece out of $\frac{48}{185}$ left?
le dollar? What part of a dollar would be
5. Change $5 \frac{1}{4}$ to fourths.
6. Change 15 to fifths.
7. Reduce ${ }^{13 \frac{1}{6}}$ to sixths.
8. Reduce $8 \frac{3}{11}$ to elevenths.
9. Change $3 \frac{1}{7}$ to sevenths. To fourteenths.
ro. Change $5 \frac{1}{8}$ to ninths. To eighteenths.
II. Change $6_{\frac{5}{12}}$ to twelfths. To twenty-fourths.
10. Change $8_{1}{ }^{\frac{3}{4}}$ to fourteenths. To forty-seconds.
11. Reduce $9 \frac{{ }^{\frac{5}{2} \delta}}{}$ to twentieths. To sixtieths.
12. How many eighths of a pound are there in 25% pounds? In. $30 \frac{1}{2}$ pounds? In mol $\frac{1}{4}$ pounds?
13. How many more quarters of a yard are there in 853 yards than in $32 \frac{1}{4}$ yards?
to improper
14. $16 \frac{3}{8}$
15. 17_{1}^{3}
16. $57 \frac{3}{11}$.
17. $8 \mathrm{I} \frac{5}{9}$.
18. $124 \frac{1}{2}$.
19. $3+2 \frac{2}{3}$.
20. $200 \frac{5}{9}$.
21. $1256 \frac{2}{7}$.
22. $409^{\frac{7}{17}}$
${ }^{3}{ }^{3}$ of a day?
in $\frac{0 n}{0}$ of an ounce?
from $\frac{0,3}{8}$ of a
n : $\frac{100}{12}$ of a
pece out of ar would be
ths. conds.
here in $25 \frac{5}{3}$ nds?
here in $8_{5 \frac{3}{3}}$
23. If we take the two fractions $\frac{7}{12}$ and $\frac{5}{3}$, and wish to know the greater of the two, it might not be known from a glance at the fractions. We will therefore find a method of comparing fractions, that is, finding out the order in which they stand according to their value.
We know that $\frac{7}{12}=\frac{14}{24}$.
Also,
$\frac{5}{8}=\frac{15}{24}$.
Now we have the two fractions $\frac{14}{2} \frac{4}{4}$ and $\frac{1}{2} \frac{8}{4}$, in each of which the size of the parts of the unit is the same, that is, twenty-fourths; but in the first there are 14 and in the second 15 of these twenty-fourths taken. Hence we see at a glance that $\frac{1}{2} \frac{5}{4}$ is greater than $\frac{14}{24}$ by $\frac{1}{23}$, that is, $\frac{5}{8}$ is greater than $\frac{7}{12}$ by $\frac{1}{24}$.
Thus, a.boy who received $\frac{5}{8}$ of a lot of apples would have more than a boy who obtained $\frac{7}{12}$ of the lot.
24. In order to compare the two fractions, they were brought to other fractions, having the same denominator, 24. This is the method we were seeking, and applies to any number of fractions.
\square This same denominator, it will be easily noticed, is the L. C. D. of the given denominators.
25. We thus have the following

RULE FOR COMPARING FRACTIONS.

Find the L. C. D. of all the given denominators.
Bring each fraction to another having the L. C. D. for a new denominator.
The value of the fractions wall then depend entirely on the value of the new numerators.

Mixed fractions must be first brought to improper fractions.

Ex.-Find the greatest and least of the following: $\frac{7}{3}$ of a pound, $\frac{8}{18}$ of a puund, $\frac{7}{8}$ of a pound.
The L. C. D. of the denominators 3, I2 and 9 is 36 .
$\frac{9}{3}$ of a pound $=\frac{2}{3} \frac{4}{6}$ of a pound.
$\frac{6}{18}$ of a pound $=\frac{1}{3} \frac{\pi}{6}$ of a pound.
$\frac{1}{f}$ of a pound $=\frac{2}{3} \frac{2}{8}$ of a pound.

Hence we have 24 parts, 15 parts, and 28 parts of a pound. Therefore $\frac{2}{3} \frac{8}{6}$ or $\frac{7}{6}$ of a pound is the great. est, $\frac{9.4}{3} \frac{4}{6}$ or $\frac{9}{3}$ of a pound is the next, and $\frac{1}{3} \frac{6}{6}$ or $\frac{5}{22}$ of a pound is the least.

EXERCISE 30.
(a) Arrange the following fractions in their order of value:

(b) I. A. owns $\frac{1}{2}$ a ton, B. $\frac{2}{3}$ of a ton, C. $\frac{7}{8}$ of a ton, and D. $\frac{5}{8}$ of a ton : who has the most, and who the least?
2. A. does $\frac{5}{8}$ of a day's work, B. $\frac{2}{5}, \mathrm{C} . \frac{3}{2}$, and D. $\frac{4}{15}$: which should draw the most pay? Which the least?
3. John has $\$ 3 \frac{5}{8}$, James $\$ 3 \frac{4}{7}$, Henry $\$ 5 \frac{3}{8}$, Charles $\$ 9 \frac{4}{1}:$ arrange their names in the order of their wealth.
4. A man rides 19 quarters of a mile, drives $3 \frac{1}{12}$ miles, walks ${ }^{6} \frac{1}{4}$ of a mile, and sails $\frac{1}{4}$ of a mile: which was the longest, and which the shortest?
5. A pole is $\frac{31}{7}$ feet high, another $8 \frac{5}{14}$, another $\frac{5}{7}$, and another $9 \frac{2}{5}$: arrange them in order of height.
6. Which is the greatest and which the least of the following amounts : $\$ 9 \frac{4}{6}, \$ 3 \frac{1}{2}, \$ 4 \frac{8}{40}, \$ \frac{3}{7}$? Arrange them in order of value.

ADDITION OF FRACTIONS.

148. We now proceed to add fractions when the fractions have denominators that are alike.
In this case, since the parts of the unit or whole are the same in each fraction, the sum of the numera. tors will show the number of parts there are alto. gether.
If we add 4 of a pound to $\frac{8}{7}$ of a pound, or 2 and 3 of the same size parts (sevenths), we must obtain 5 of these sevenths, that is $\frac{6}{7}$ of a pound.

28 parts of is the great. $\frac{1}{3} \frac{8}{8}$ or $\frac{5}{12}$ of a
ler of value:

$\frac{1}{10}$

ton, and D. the least?
and D. $\frac{4}{15}$: Which the
iarles $\$ 9 \frac{5}{15}:$ r wealth.
s $3 \frac{11}{1 \frac{1}{2}}$ miles, which was
ther $\frac{6}{7}$, and ight.
east of the Arrange

IS.
re fractions
r whole are he numerare are alto. obtain 5 of
149. Hence we have the following

RULE.

Add together the several mumerators, and under the sum place the given denominator.

Ex.-Add together $\frac{1}{12}, \frac{5}{12}$, and $\frac{3}{12}$.
The sum of the numerators is 13 , so the required frac. tion must be $\frac{23}{1} \frac{3}{2}$.
To add fractions when the fractions have denomina. tors that are unlike.
In this case, since the size of the parts of the unit or whole is not the same in each fraction, the fractions must be brought to other fractions having the same denominator. Then we proceed as in the former case.
150. This gives the following

RULE.

Reduce all the fractions to others having the same denominator.

Add the new numerators, and under their sum place the new denominator.

Ex. I.-Find the sum of $\frac{3}{10}$ and $\frac{1}{18}$.

$$
\frac{3}{10}+\frac{5}{12}=\frac{18+25}{60}=\frac{43}{60}
$$

E If there be any mixed fractions, the whoie numbers are added separately, and then the sum of the fractions is added to that sum.

$$
E x .2 . \text { Add } \$_{5 \frac{1}{10},} \$_{7 \frac{1}{8}} \text {, } \mathrm{IO}_{1} .
$$

$$
5+7+10=22
$$

$$
\frac{1}{10}+\frac{1}{8}+\frac{1}{4}=\frac{4+5+10}{40}=\frac{19}{40}
$$

$$
\$ 22+\$ \frac{10}{80}=\$ 22 \frac{19}{40} .
$$

SUBTRACTION OF FRACTIONS.

151. In subtracting one fractuon from another, the same remarks apply as in the addition of fractions, except that instead of adding the numerators we subtrac: them.

$$
\begin{aligned}
& \text { Ex. 1. }-\frac{5}{6}-\frac{9}{6}=\frac{4}{6} . \\
& \frac{5}{12}-\frac{3}{10}={ }^{25}-18=\frac{7}{60}
\end{aligned}
$$

Ex. 2-From $23 \frac{5}{\frac{5}{12}}$ subtract ${ }^{17}{ }^{\frac{3}{2}}$.
$23 \frac{9}{2}$ In this case we cannot take $\frac{3}{2}$ from $\frac{3}{12}$, that is ${ }^{17 \frac{5}{2}} \quad \frac{9}{12}$ from $\frac{5}{12} ;$ so, as in ordinary subtraction, $\frac{\frac{9}{12}}{12}$ must use one of the next higher order. that is, I unit, or $\frac{12}{12}$. Then $\frac{12}{12}+\frac{5}{12}=\frac{17}{12}$, and $\frac{9}{12}$ $\frac{8}{12}$ from $\frac{17}{17}$ leaves $\frac{8}{12}$. Again, since we used one
of the 23 units, there only 22 left, and 17 from
22 leaves 5 giving the 22 leaves 5 , giving the final result $5^{\frac{8}{2}}$, or $5 \frac{2}{3}$.
The work might be written in the following form:

$$
\begin{aligned}
& 23 \frac{5}{12}=22+1 \frac{3}{12}=22+\frac{17}{12} \\
& 17 \frac{8}{2}=17+\frac{3}{4}=17+\frac{9}{12} \\
& \text { Difference }=5+\frac{8}{12}=5 \frac{2}{3} \text {. }
\end{aligned}
$$

\leq In giving a result or answer, improper fractions should (unless otherwise stated) be brought to mixed fractions, and all fractions reduced to their lowest terms.

EXERCISE 36.

These questions should be solved mentally.

1. Add together and find the difference between : $\frac{1}{2}$ and $\frac{1}{2}$; $\frac{3}{4}$ and $\frac{6}{4} ; \frac{2}{7}$ and $\frac{3}{7} ; \frac{5}{6}$ and $\frac{1}{6} ; \frac{1}{3}$ and $\frac{1}{4} ; \$ 2 \frac{1}{2}$ and $\$_{3} \frac{1}{2}$; $\frac{3}{8}$ and $\frac{1}{2} ; \frac{\pi}{6}$ of a foot and $\frac{7}{8}$ of a foot; $\frac{2}{8} \frac{2}{8}$ of a farm and $\frac{1}{4}$ of a farm ; $\frac{f}{12}$ and $\frac{1}{6}$; $\frac{3}{15}$ and $\frac{1}{6} ; \frac{2}{5}$ of a share and $\frac{1}{6}$ of a share ; $\frac{7}{12}$ and $\frac{1}{3}$.
2. Add tngether $\frac{2}{3}$ and $\frac{11}{12} ; \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$; $\frac{3}{4}$ of a yard, $\frac{1}{8}$ of a yard, $\frac{1}{2}$ of a yard ; $\frac{1}{6}, \frac{1}{10}, \frac{3}{20}$.
3. John had $\frac{8}{8}$ of an apple, and gave away $\frac{7}{5}$ of the apple: what had he left?
4. Bought goods for $\frac{3}{4}$ of a dollar, and sold them for $I \frac{1}{2}$ dollars: what did I gain?
5. A boy paid $\frac{1}{8}$ of a dollar for a book, $\frac{1}{2}$ a dollar for a bag, $\frac{1}{4}$ of a dollar for paints: how much did he spend ?
6. Find the difference between, and also the sum of $\frac{4}{6}$ and $\frac{2}{3} ; \frac{1}{6}$ and $\frac{3}{5} ; \frac{3}{7}$ and $\frac{2}{3} ; \frac{3}{4}$ and $\frac{2}{8} ; 3 \frac{1}{2}$ and $2 \frac{1}{4}$; $5 \frac{3}{4}$ and $4 \frac{1}{8} ; 3 \frac{1}{7}$ and $\frac{5}{7} ; 2 \frac{1}{6}$ inches and $1 \frac{1}{3}$ inches; $5 \frac{1}{2}$ and $3 \frac{3}{8} ; 7 \frac{1}{10}$ and $3 \frac{3}{3} ; 5 \frac{1}{2}$ yards and $2 \frac{3}{4}$ yards; $6 \frac{1}{2}$ ounces and $4 \frac{3}{8}$ ounces; $17 \frac{1}{8}$ cents and $12 \frac{7}{8}$ cents; $20 \frac{1}{1 T}$ oranges and $15 \frac{1}{1} \frac{n}{1}$ oranges; $7 \frac{3}{10}$ dollars and $5 \frac{8}{8}$ dollars.
7. What must I add to $\$ 1 \frac{3}{4}$ to make $\$ 3 \frac{1}{2}$?
8. What must I take from $\$ 7 \frac{1}{2}$ to make $\$ 3 \frac{3}{4}$?
9. From what must $3 \frac{1}{2}$ be taken to leave $2 \frac{1}{4}$?

1o. What would be left if $3 \frac{5}{8}$ yards were taken from $6 \frac{1}{4}$ yards?
II. From what must we cut off $5 \frac{3}{5}$ yards to leave $3 \frac{2}{8}$
yards?
12. To what must $5 \frac{1}{8}$ cents be added to produce $10 \frac{1}{2}$ cents?
r3. What part of a farm must be sold to leave $\frac{3}{10}$ of it ?
14. What must be taken from a square rod of land ($30 \frac{1}{4}$ yards) to leave $15 \frac{1}{2}$ yards?
152. The pupil will have noticed that in adding such fractions as $\frac{1}{7}$ and $\frac{1}{8}$ the result, $\frac{15}{8} \frac{5}{6}$, is just the sum of the denominators placed over their product. The difference of the fractions would be the difference of their denominators placed over their product. For example $\frac{1}{11}-\frac{1}{12}=\frac{1}{133}$.
This may be stated as follows:
The sum or difference of thoo fractions, having i for a numerator, is the sum or difference of their denominators, plactd over their product.

PORERCTSF: 37.

1. $\quad 4 \frac{1}{3}+3 \frac{1}{7}$
2. $19!+131_{2}^{2}$.
3. $5!+6!$.
4. $\quad 25 \frac{3}{4}+14 \frac{1}{3}$.
5. $20_{\frac{3}{3}}^{3}-16 \frac{1}{2}$.
б. $\quad 18 \frac{1}{4}-12 \frac{1}{7}$.
6. $22_{1}^{7}+18 \frac{1}{5}$.
7. $21 \frac{1}{2}+15 \frac{1}{7}$.
8. $33 \frac{1}{3}+24 \frac{1}{4}$.
(1). $\quad 4^{87}-26_{5}^{7} 6$
9. $75_{15}^{6}-36 \frac{6}{6}$.
10. $\quad 1_{1}^{1} 0+6 \frac{2}{5}+18 \frac{1}{5} 8+2 \frac{1}{8} 5$.
$13+6{ }_{5}^{5}-151$.
11. $13 \frac{1}{1}+993+512$ it.
12. $33^{4}-1 \frac{2}{10}$.

IO. $\quad \frac{7}{6}-\frac{7}{35}$.
IT. $4 \%+135+31$.
18. $\operatorname{Nin}_{10}^{5}-{ }_{2}^{5}$.
19. A boy had 4 acres; his brother gave him $\frac{\pi}{n}$ of another, his sister $\frac{3}{4}$ of another, and his father $\frac{3}{3}$ of another: how many had he then?
20. A merchant had a piece of calico containing $3+\frac{3}{4}$ yards, and sold off it $21 \frac{3}{6}$ yards : how much was left ?
21. A man paid $\$ \mathrm{~m}$ for a coat, $\$_{3}^{\frac{N}{3}}$ for a knife, $\$_{8}^{8}$ for a brush, and $\$ \frac{8}{9}$ for a comb: how much did they all cost ?
22. A man bought $17 \frac{5}{6}$ pounds of butter, from which he sold $12 \frac{1}{2}$ pounds: how much remained ?
23. From a cask containing $42 \frac{1}{4}$ gallons of molasses, a grocer drew off $17 \frac{1}{2}$ gallons : how many' gallons remaine?
24. A man bought a horse for $\$ 73 \frac{3}{3}$, a carriage for $\$ 97 \%$, a set of harness for $\$ 37 \frac{1}{12}$: what was the cost of the whole?
25. A man gave away at different times $\$ \frac{n}{7}, \$ \frac{3}{9}, \$_{9} \frac{4}{5}$, and $\${ }_{1}^{2} \frac{2}{4}$: how much did he give away in all?
26. A man started on a journey of $45 \frac{2}{3}$ miles, and travelled 287 miles : how far had he still to travel ?
27. A merchant bought 2723 yards of muslin from one man, $17 \frac{3}{4}$ yards from another, and $321 \frac{\pi}{6}$ yards from a third: how many yards did he buy in all?
28. James has 3 fishing lines; the first measures $12 \frac{1}{2}$ feet, the second $r_{4} \frac{1}{4}$ feet, and the third $I_{5} \frac{5}{8}$ feet: how many feet in the 3 lines?
29. A meichant bought 3 pieces of calico, the first containing $25:$ yards, the second 22 yards, and the third $3+\frac{1}{4}$ yards: how many yards are there in the 3 pieces?
30. If I have $\$ 437 \frac{3}{5}$, and pay out $\$ 341^{\frac{4}{1} \delta}$, how much have I left ?
31. A lady having $\$ 100$, paid $\$ 81$ for a pocket hanclkerchief, $\$ 15 \frac{1}{2}$ for a dress hat, $\$ 46 \frac{\pi}{8}$ for a cloak : how much had she left?
32. A clerk earned $\$ 50 \frac{1}{2}$ per month. He paid $\$ 20 \frac{3}{4}$ for board, $\$ 5 \frac{3}{4}$ for washing, and $\$ 4 \frac{3}{6}$ for other expenses: how much did he save per month ?
33. What number added to $147^{\frac{4}{7}}$ will make $216 \frac{\pi}{0}$?
34. What number added to $307 \frac{1}{7}+210 \frac{3}{4}$ will make $700 \frac{2}{5}$?
35. What number must be added to the difference of 186s $\frac{8}{9}$ and $214 \frac{3}{7}$ to make $1042 \frac{12}{21}$?
36. What fraction added to the sum of $\frac{1}{8}, \frac{5}{T_{2}}$, and $T_{s}{ }^{3}$, will make $\frac{13}{13} \frac{3}{4}$?
37. Bought a quantity of barrel staves for $\$ 160 \frac{5}{8}$, and lumber for $\$ 1136 \frac{2}{3}$: I sold the staves for $\$ 205 \frac{1}{2}$, and the lumber tor $\$ 1240 \frac{9}{16}$: what was my whole gain?
38. A man bought a ton of hay for $\$ 15 \frac{3}{8}$, a larrel of flour for $\$ 9 \frac{8}{12}$, and a barrel of apples for $\$ 3 \frac{7}{\frac{7}{6}}$: what change should be given to him for 3 ten-doilar bills?
39. What must be taken from $35 \frac{1}{2}$ to leave $22 \frac{2}{5}$?
40. From what must $24 \frac{4}{7}$ be taken to leave $63 \frac{22}{3}$?
41. Bought of Davison, Scott \& Co. four cheeses weigh. ing $46 \frac{5}{8}, 48 \frac{2}{3}, 49 \frac{7}{16}$, and $57 \frac{1}{4}$ pounds respectively: what was their whole weight?
42. A pole has three-eighths of its length painted red, two-fifths of it white, and the rest of it blue: what part of its length is blue?

MULTIPLICATION OF FRACTIONS

153. To multiply a fraction by a whole number when the denominator does not contain the whole number ex. actly.
Multiply $\frac{9}{b}$ by 7. Here we have simply to find what 3 parts become when repeated 7 times, the parts tieing fifths. The result will be 21 parts or fifths, which is written $\frac{v_{5}^{2}}{8}$.
Therefore $\frac{2}{6} \times 7=\frac{8}{8}$.
When the denominator does contain the whole num. ber exactly.
Multiply x^{2} by 5 . Here, instead of repeating the number of parts, we will increase their size 5 times, that is, make the tenths become halves, since five. tenths make one-half, and the result will be $\frac{\pi}{3}$, taking the same number of parts we had before.
Therefore $\frac{3}{5_{0}} \times 5=\frac{2}{5}$.
154. From the preceding examples we deduce the following

RULE.

To multiply a fraction by a whole number, divide the denomi. nator by the whole number, if possible, and keep the same numerator; or multiply the numerator by the whole num. ber, and keep the same denominator.

$$
\begin{aligned}
& E x .1 .-\frac{5}{12} \times 3=\frac{6}{6} . \\
& E x .2 .-\frac{8}{8} \times 3=\frac{9}{8} .
\end{aligned}
$$

155. To multiply a mixed fraction by a whole number.

What will 12 pounds of sugar cost at $11 \frac{3}{8}$ cents a pound ? Or, multiply in $\frac{3}{3}$ cents by 12 .

The $11 \frac{3}{5}$ cents may be broken into two partscents 11 cents and $\frac{3}{6}$ cents. We first multiply the $\frac{3}{3}$ by 12 . This gives $\frac{85}{6}$, which is equal to $7 \frac{1}{5}$
\qquad cents. We write down the $\frac{2}{5}$ and carry the ${ }^{139 \frac{1}{5}}$ Then $11 \times 12=132 ; 132$ added to the 7 cents makes 139 cents. The result will thus be $\$ \mathrm{I} .39 \frac{1}{\mathrm{~b}}$.

TIONS.

er when the number $\stackrel{\text { n }}{ }$
find v hat 3 eparts being ths, which is
whole num.
reating the ze 5 times, since five. be $\frac{\pi}{9}$, taking
e following
e the denomi. eep the same whole 1 lum .
imber.
I $\frac{3}{8}$ cents a
wo partsultiply the qual to $7 \frac{1}{5}$ carry the t as usual. he 7 cents 1 thus be
156. From this we have the following

RULE.

To multiply a mixed fraction by a whole number, multiply the fractional part by the multiplier, and reduce this, if possible, to a mixed fraction.
Then multiply the other part of the mixed fraction by the multiplier, and add to the product the part carried, if any.

EXERCISE 88.

$1 \leq$ These questions should be solved mentally.
I. Multiply r^{3}. of a dollar by $2,3,4,5,6,7,8,9,10$, II, 12.
2. Multiply $\frac{5}{18}$ of 2 pound by $2,6,8,12$, 10 .
3. If a basket holds $\frac{3}{30}$ of a bushel of apples, how much can be put into 3 baskets? 5 baskets? 7 baskets? 10 baskets?
4. If each man receive $\$ 2 \frac{3}{8}$, how much will 3 men receive? 6 men? 8 men?
5. At $2 \frac{3}{4}$ cents a yard, find the cost of 3 yards; 6 yards; 4 yards.
6. What will $\frac{6}{8}$ of a ton of hay cost at $\$ 24$ a ton ?
7. How many units in 6 times $\frac{13}{8}$? In 8 times $\frac{5}{10}$? In 11 times $\frac{4}{7}$?
8. At $6 \frac{1}{4}$ cents each, what will 12 pencils cost?
9. Find the cost of 7 dozen pens at $1 \times \frac{1}{4}$ cents a dozen?
10. A man earns $\$ 5 \frac{5}{4}$ a week : what will he earn in a month (4 weeks)?
11. Find the cost of 10 citrons at $15 \frac{1}{2}$ cents each.
12. What will 8 cords of wood cost at $\$ 5 \frac{1}{1-6}$ a cord ?
13. How far can I travel in so hours at the rate of $6 \frac{5}{8}$ mile an hour?
14. A horse eats $2 \frac{1}{2}$ bushels of oats in one week : how much will he eat in two months?

DIVISION OF FRACTIONS.

157. To divide a fraction by a whole number when the numerator can be exactly divided by the wholenumber. If 4 men carn $\frac{0}{9}$ of dollar, how much is that each? This may be written: If 4 men earn 8 parts, how much will I man earn? The fourth part of 8 parts. that is, 2 parts, or ninths.
Therefore $\$ \frac{4}{4} \div 4=\$ \frac{2}{0}$.
When the numerator does not exactly contain the whole number.
Divide $\frac{4}{3}$ of an apple into) 5 equal parts, that is, divide 5 by 5. Here, since we cannot divide the 3 parts exactly by 5 , we must decrease the size of the parts, making each part five times smaller, that is, twentieths.
Therefore $\frac{3}{4} \div 5=\frac{3}{20}$.
158. This gives us the following

RULE.

To divide a fraction by a whole mimber, divide the numerator. if possibie, by the whule mumber, keeping the same denominator; of multiply the denominator by the whole number, keeping the same numerator.

Ex. $1 .-\frac{n}{7} \div 2=\frac{4}{4}$.
Ex. $2 .-\frac{3}{8} \div 2=\frac{3}{10}$.
159. To divide a mixed fraction by a whole number.
5) $13 \frac{9}{2}$

Divide $\$$ ra 3 equally among 5 men. 5 is contained in 13,2 times and 3 over. This 3 with the $\frac{3}{4}$ makes $\frac{15}{4}$, and by the preceding principle the fifth part of $\frac{13}{8}$ is $\frac{3}{4}$. Hence the result inust be $\$ 2 \frac{3}{4}$.
5) $12 \frac{3}{5}$ Er. 2.-Divide $12 \frac{3}{3}$ by $5.12 \div 5=2$, with 2 remaining. $2 \frac{8}{6}=\frac{123}{8}, \quad \frac{1,3}{5} \div 5=\frac{1}{2} \frac{5}{3}$. There. fore, $12 \frac{3}{6} \div 5=2 \frac{13}{25}$.
160. From this we deduce the following

RULE.

To ditide a mised frastion by a whole number, divide the whole number of the mixad fraction by the divisor, if pos. sable, reduce the remaning part, if any, to an improper fraction, then divide as usual.

$$
\begin{aligned}
& \text { Ex.-Divide } 15 \frac{3}{4} \text { by } 5 \text {. } \\
& 15+5=3 \text {. } \\
& \frac{3}{6}+5=\frac{3}{20} \text {. Therefore } 15 \frac{3}{2}+5=3 \frac{3}{20} \text {. Ans. }
\end{aligned}
$$

EXERCISE 39.

15 These questions should be solved mentally.

1. Divide $\frac{\pi}{8}$ of a dollar by $2,3,4,5,6,7,8$.
2. Find the third part of $\frac{10}{1}$ of 2 pound; the fifth part; the eighth part.
3. What does each man get if $\frac{9}{10}$ of an acre of land be divided among 3 men? Among 4 men? Among 6 men? Amoug 9 men?
4. Four men can earn $\$ 12 \frac{1}{\frac{1}{2}}$ a day : what will one man earn? Three men? Six men?
5. At the rate of $\$_{\frac{7}{B}}$ for 3 bushels, what will one bushel of oats cost ? Seven bushels?
6. A man had io gallons of cream, and sold $\frac{z}{2}$ of it for $\$_{\frac{1}{1} \frac{5}{8}}$: how much a gallon did he get ? How much a quart?
7. I sold 3 barrels of meal for $\$ 20 \frac{1}{2}$: what did I get a barrel?
8. A man pays $\$ 12 \frac{1}{2}$ for 5 sheep: how much was it apiece? What would be the cost of 2 ? Of 3 ? Of 4 ?
9. How often is 6 cont:inerl in $13 \frac{1}{2}$? In $15 \frac{1}{3}$? In $12 \frac{8}{7}$? In III ?
10. There are $5 \frac{1}{2}$ yards in a rud of fencing: how many yards in a quarter of a rod? In six rods?
11. I bought 5 barrels of flour for $\$_{15} \frac{\frac{3}{8}}{8}$, in selling I gain $\$ 5 \frac{1}{4}$: what did I sell it at per barrel? If I lost $\$ 5 \frac{1}{4}$, how much did I sell each barrel for?
12. What are apples worth each at $15^{\frac{3}{7}}$ cents a dozen? At $20 \frac{4}{10}$ cents a dozen?
13. A gallon contains 32 gills : how many gills are there in $\frac{7}{8}$ of a gallon? In $\frac{3}{4}$ of a gallon? In $\frac{3}{16}$ of a
gallon?
14. A rod being $5 \frac{1}{2}$ yards in length, how many yards in 3 rods? In Io rods?
15. To multiply a fraction by a fraction. Ex.-Multiply $\frac{3}{4}$ by $\frac{5}{7}$.
$\frac{1}{4}$ of $\frac{6}{7}$, or a quarter of $\frac{5}{7}$, is $\frac{5}{2} \frac{5}{8}$, and $\frac{3}{4}$ of $\frac{5}{7}$, or threequarters of $\frac{5}{7}$, will be 3 times $\frac{5}{28}$, or $\frac{18}{28}$, which equals $\frac{3 \times 5}{4 \times 7}$ that is, equal to the product of the numera. tors placed over the product of the denominators of the given fractions.
The expression $\frac{8}{4}$ of $\frac{5}{7}$ is called a Compound Fraction.
16. A Compound Fraction may thus be called a fraction of a fraction.
17. From the above we have the following

RULE.

To multiply fractions together, or to simplify compound fractions, first reduce each mixed fraction, if any, to an impro. per fraction. Then multiply the mumerators together for a newe numerator, and the denominators together for a new denominator, always reducing the resulting fraction to its lowest terms.
E_{x}. 1 . -Find the product of $\frac{5}{1^{2}}$ and $\frac{8}{80}$.

$$
\frac{5}{12} \times \frac{9}{20}=\frac{5 \times 9}{12 \times 20}=\frac{45}{240}=\frac{3}{16}
$$

The product of the numerators is 45 , and the product of the denominators is 240 , and the fraction $\frac{45}{260}$, when reduced to its lowest terms, is $\frac{3}{16}$, which is therefore the required result.
164. In the above example, instead of finding the fraction $\frac{4}{245}$ and then reducing it to its lowest terms, we may reduce the fraction $\frac{5 \times 9}{12 \times 20}$ to its lowest terms at once by dividing both terms of the fraction by the same number, thus:

5 is contained in itself once, and in 20 four times. Again 3 will divide 9 three times, $\frac{1}{\$} \times \mathbf{9}$ times. Again 3 will divide 9 three times, 44 and we obtain $\frac{1 \times 3}{4 \times 4}=\frac{3}{16}$
165. This method is always used when possible, and the operation is known by the name of Cancelling.
Ex. 2. -Simplify $\frac{5}{6} 11 \frac{7}{6} \times \frac{4}{6}$ of $\frac{10}{2} \frac{1}{1} \times 2 \frac{2}{8}$.
This expression may be written:

Ex. 3.-If a pornd of sugar costs $6 \frac{2}{7}$ cents, what must I pay for $3 \frac{2}{11}$ pounds?
If one pound cost $6 \frac{2}{7}$ cents, the cost of $3 \frac{2}{1 T}$ will be $3 \frac{2}{2}$ times $6 \frac{2}{7}$ rents.

$$
6 \frac{4}{7} \times 3 \frac{4}{2}=\frac{4}{4} \frac{5}{7} \times \frac{8 \$ 7}{X X}=20 \text { cents. }
$$

EXERCISE 40.

1. Find the product of $\frac{4}{5}$ and $\frac{7}{8}$.
2. Multiply ${ }^{\circ}{ }^{\circ}$ by $\frac{9}{22}$.
3. Multiply together $\frac{20}{36}, \frac{5}{8}, \frac{27}{8}$.
4. Find the value of $\frac{1}{16}$ of $1 \frac{1}{18}$ of $\frac{3}{1 \frac{3}{19}}$.
5. Simplify $10 \frac{1}{2} \times 2 \frac{2}{3}$.
6. Simplify $\frac{0}{12}$ of $6 \frac{1}{2}$ of $\frac{1}{3} \times \frac{15}{15} \times \frac{7}{13}$ of $1 \frac{1}{6}$.
7. Multiply $\frac{9}{14}$ of $2 \frac{1}{2}$ of $3 \frac{1}{9}$ by $6 \frac{1}{2}$ of $7 \frac{1}{9}$.
8. Simplify ${ }^{\frac{1}{3}} \frac{1}{6}$ of $\frac{3}{14}$ of $7 \frac{1}{5} \times 3 \frac{1}{8}$ of $\frac{20}{18} \frac{0}{7}$ of $\frac{34}{5}$.
9. What will $3 \frac{3}{6}$ pounds of rice cost at $4 \frac{1}{2}$ cents a pound?
1). Find the value of $4 \frac{t}{5}$ pounds of butter at $27 \frac{1}{4}$ cents per pound.
10. Find the cost of $26 \frac{1}{4}$ ounces of candy at $5 \frac{1}{5}$ cents an ounce.
11. What must I pay for $4 \frac{1}{2}$ bushels of clover seed at \$7要 a bushel?
12. How far can a man, walking $2 \frac{2}{9}$ miles an hour, go in
$17 \frac{1}{2}$ hours ?
13. What number divided by $4 \frac{2}{3}$ wili give $8 \frac{5}{8}$ as a result:
14. What does A. earn in $9 \frac{3}{5}$ weeks at the rate of $\$ 23 \frac{1}{3}$
per week ?
15. What is $\frac{3}{6}$ of $\$_{17 \frac{1}{4}}^{1}$?
16. With a machine, a man cuts $8 \frac{1}{4}$ cord of maple a day: what quantity can he cut in $4 \frac{2}{3}$ days at the same rate?
17. What will $33 \frac{1}{9}$ pounds of tea cost ai $93 \frac{3}{4}$ cents a
pound ?
18. What will $212 \frac{2}{3}$ pounds of meat cost at $7 \frac{1}{2}$ cents a pound ?
19. How many cords of wood will 45 men chop in $15 \frac{1}{2}$ days, if each chop $2 \frac{4}{5}$ cords a day ?
20. Find the amount of the following account : $7 \frac{1}{2} \mathrm{tbs}$ of rice@5 $\frac{3}{4} \mathrm{cts}$ a pound; $9 \frac{7}{8}$ quarts of beans @ $7 \frac{2}{3} \mathrm{cts}$. a quart; $12 \frac{1}{2}$ yards of ribbon (e) $6 \frac{7}{8}$ cts. a yard; $9 \frac{3}{4}$ yards of linen @ $7 \frac{2}{3}$ cts. a yard; $12 \frac{1}{2}$ yards of lace @ $62 \frac{1}{3}$ cts. a yard.
21. A trunk cost $\frac{1}{4}$ of $\$ 16 \frac{9}{4}$, and a valise $\frac{8}{9}$ as much as the trunk; what did I pay for the valise?
22. Multiply 18 times $\frac{7}{9}$ of $5 \frac{1}{4}$ by $\frac{1}{6}$ of 4 times $\frac{5}{6}$ of 3 .
23. Find the cost of $\frac{1}{3}$ of 5 yards of lace at $\frac{3}{4}$ of $\$ 18 \frac{1}{2}$ a yard.
24. What must be paid for $\frac{5}{6}$ of $I_{5} 6 \frac{2}{3}$ acres of land at 4. of $\$ 54 \frac{9}{10}$ an acre?
25. The yacht "Oriole" can make roy knots an hour : how many knots would she sail in $4 \frac{1}{12}$ hours ?

166. To divide a fraction by a fraction.

Divide $\frac{5}{7}$ by $\frac{8}{8}$.
In $\frac{5}{7}$, I unit is contained five-sevenths of a time. Then one-eighth of 1 unit must be contained eight times as often, that is, $\frac{40}{7}$ times. Now, three-eighths of I unit will be contained one-third as many times as one-eighth, that is, $\frac{40}{21}$ of a time.
And $\frac{40}{2 i}=\frac{5 \times 8}{7 \times 3}$
This result will be seen to be the same a that obtained by multiplying the first fraction by the latter in. verted. is, with the places of its two terms chang
167. This gives us the following

RULE.

To divide a fraction by a fraction, reduce mixed and compound fractions, if any, to simple fractions. Then invert the divisor and multiply the numerators together for a ncw nume. rator, and the denominators together for a neve denominator.

$$
\text { Ex. 1.-Divide } \frac{7}{6} \text { of } \frac{3}{4} \text { of } \frac{3}{7} \text { by } \frac{1}{4} \text { of } \frac{4}{4} \text {. }
$$

$$
\begin{aligned}
& \frac{1}{\frac{1}{9}} \text { of } \frac{1}{4} \text { of } \frac{1}{7}=\frac{1}{4} \\
& \frac{3}{1} \\
& \frac{1}{7} \text { of } \frac{3}{4}=\frac{3}{28} \\
& \frac{1}{4} \div \frac{3}{28}=\frac{1}{4} \times \frac{2 \$}{3}=\frac{7}{3}=2 \frac{1}{1}
\end{aligned}
$$

The dividend becomes $\frac{1}{4}$, the divisor $\frac{8}{2}$, which being
inverted is 28 inverted is $\frac{28}{3}$. Then $\frac{1}{4}$ multiplied by $\frac{28}{3}$ gives $\frac{1}{3}$, or $2 \frac{1}{5}$, the required result.

Ex. 2.-How many pieces of cloth $\frac{2}{T^{\sigma}}$ of a yard long can be cut from $\frac{1}{2}$ of $\frac{9}{10}$ of a yard?
There must be as many pieces of cloth as the number of times that $\frac{2}{2^{\frac{2}{5}}}$ is contained in $\frac{1}{2}$ of $\frac{\pi^{9} 0}{5}$.

$$
\frac{1}{2} \text { of } \frac{9}{10} \div \frac{2}{15}=\frac{9}{\frac{9}{4}} \times \frac{3}{\frac{10}{2}}=\frac{27}{8}=3 \text { 3 pieces. }
$$

EXERCISE 41.

1. Divide $\frac{24}{85}$ by $\frac{8}{15}$.
2. Divide $\frac{1}{4} \frac{8}{9}$ by $\frac{6}{7}$.
3. Divide $\frac{38}{91}$ by $\frac{9}{13}$.
4. Find the quotient of $\frac{90}{86} \div \frac{1}{25}$.
5. How oftell is $2 \frac{1}{2}$ contained in $6 \frac{1}{6}$?
6. How many times $2 \frac{1}{3}$ is $18 \frac{2}{3}$?
7. What number must be multiplied by $r \frac{1}{4}$ to give $7 \frac{1}{2}$?
8. The dividend is $12 \frac{1}{4}$; quotient, $3 \frac{1}{2}$; find the divisor.
9. Divide $\frac{3}{7}$ of $\frac{5}{8}$ of 16 by $\frac{3}{8}$ of $\frac{5}{7}$ of $5 \frac{1}{3}$.
10. How many times $\frac{7}{8}$ of $\frac{3}{4}$ of $\frac{5}{7}$ is $\frac{1}{7}$ of $\frac{3}{4}$?
11. Find the quotient of $\frac{3}{14}$ of $3 \frac{2}{3} \times 6$ divided by $1 \frac{2}{7}$ of 6 times $\frac{7}{9}$.
12. How many yards of silk can be bought for \$3172 at \$3 $\frac{2}{8}$ a yard?
13. A man earns $\frac{5}{8}$ of a dollar an hour: in how many hours will he earn $\$ 17 \frac{1}{4}$?
14. How many times $\frac{11}{2}$ of a dollar is $\$ 175$?
15. Divide $\frac{4}{2} \frac{5}{8}$ of $\frac{2}{1} \frac{1}{5}$ of $\frac{9}{2}$. of $\frac{10}{13}$ by $\frac{9}{28}$ of $\frac{3}{3} \frac{0}{8}$ of $\frac{3}{4}$ of 5 .
16. How mush tea at $\$ \mathrm{I} \frac{7}{8}$ a pound can I buy with $\$ 57 \frac{3}{4}$?
17. At the rate of $3 \frac{3}{5}$ miles an hour, how long will I take to walk $45 \frac{\pi}{10}$ iniles?
18. A scarf requires $\frac{5}{6}$ of a yard of silk: how many scarfs can be made from $3^{\frac{1}{4}}$ yards of silk?
19. How many bottles, each holding $1 \frac{3}{8}$ pints, can be filled from a barrel of cider containing $61 \frac{3}{6}$ pints, and how much will be left?
20. A man can run $\frac{1}{2} \frac{9}{0}$ of a mile in $5 \frac{1}{2}$ minutes, how far can he run per minute?
21. There are $2 \frac{1}{4}$ inches in a piece of cloth: how many pieces would be the same length as $123 \frac{3}{4}$ inches?
22. If I pay $\$ \frac{11}{12}$ per pound for tea, how much tea can I buy for $\$ 9$? For $\$ 24$? For $\$ 64$?
23. If a man spend $\$+\frac{2}{5}$ a month on tobacco, in what time will he waste one week's wages, $\$ 27 \frac{1}{2}$?
24. How long will $\frac{13}{13}$ of a cord of wood last a family using $\frac{3}{26}$ of $\frac{1}{2}$ a cord a day ?
25. How long will a boy take to save $\$ 700$, if he carns $\$ 7 \frac{1}{2}$ and spends $\$ 5 \frac{3}{4}$ of it every week ?
26. The "Chicora" steamed 156 miles in $10 \frac{6}{6}$ hours: what is her speed per minute (60 minutes to the hour)?
27. Fractions are often written in this form

$$
\frac{5 \frac{1}{4}}{2 \frac{5}{6}} ; \frac{5}{6 \frac{1}{4}} ; \frac{\frac{1}{2}}{\frac{2}{5}} \text { of } \frac{3}{4} \text { of } 9 \frac{\frac{2}{3} \times \frac{9}{10} \text { of } \frac{9}{4}}{\frac{1}{12} \text { of } 36} .
$$

These fractions are called Complex Fractions.
169. A Complex Fraction is therefore a fraction which has a fraction in either its numerator or denominator, or in both.
170. Since we have seen that a fraction means the division of the numerator by the denominator, it follows that the above fractions can be simplified by ordinary division of fractions.
Thus:

$$
\begin{aligned}
& \text { Ex. } 1 .-\frac{5 \frac{1}{4}}{2 \frac{0}{8}}=\frac{21}{4} \div \frac{21}{8}=\frac{21}{4} \times \frac{8}{21}=2 . \\
& \text { Ex. 2.-Simplify } \frac{\frac{2}{\frac{2}{2}} \times \frac{10}{12}}{4 \frac{1}{3} \text { of } \frac{2}{9}} \text {. } \\
& \frac{2 \times \frac{29}{9}}{4 \frac{1}{20 f} \frac{7}{6}}=\frac{\frac{1}{2 n}}{\frac{29}{7}}=\frac{1}{3} \div \frac{26}{27}=\frac{1}{3} \times \frac{97}{26}=\frac{9}{26} \text {. }
\end{aligned}
$$

E.x. 3.-Simplify $\left(8 \frac{1}{4}+3 \frac{1}{2}\right) \div 7 \frac{1}{5}$.

E Since the expression $8 \frac{1}{4}+3 \frac{1}{2}$ is enclosed in the Bracket (.), it must be simplified first, and the result divided by $7 \frac{3}{5}$. If the bracket were omitted, we should first divide $3 \frac{1}{2}$ by $7 \frac{3}{5}$, and then add the quotient to $8 \frac{1}{4}$, which would give a result quite different from the one required.
$8 \frac{1}{4}+3 \frac{1}{2}=11 \frac{3}{4}=\frac{47}{4}$
$\frac{47}{4} \div 7 \frac{8}{6}=\frac{47}{4} \times \frac{5}{98}=\frac{23}{15} \frac{5}{32}=1 \frac{8}{16} \frac{8}{6!}$

Ex. 4.-Simplify $2 \frac{1}{6}+5 \frac{1}{4} \times \frac{5}{21}-6 \frac{2}{6}$ of $\frac{1}{2}+\frac{3}{11}+\frac{n}{64}$.
$5 \frac{1}{4} \times \frac{8}{21}=\frac{21}{4} \times \frac{8}{21}=2$
$6 \frac{2}{5}$ of $\frac{1}{2}=\frac{32}{5} \times \frac{1}{2}=\frac{19}{6}$
$\frac{3}{11} \div \frac{5}{64}=\frac{3}{11} \times \frac{44}{5}=\frac{12}{6}$
$2 \frac{1}{5}+2-\frac{16}{5}+\frac{12}{5}=4 \frac{1}{5}-3 \frac{1}{5}+2 \frac{2}{6}=1+2 \frac{2}{5}=3 \frac{2}{5}$
The pupil will carefully notice that unless a bracket interferes, the operations shown by the signs \times, of, and \div, are carried out before any of the others.
Thus: In Ex. 4, instead of adding $2 \frac{1}{5}$ and $5 \frac{1}{4}$, we multiply $5 \frac{1}{4}$ by $\frac{8}{21}$, and instead of adding $\frac{1}{8}$ to $\frac{3}{11}$, we sim. plify $6 \frac{2}{5}$ of $\frac{1}{2}$, and $\frac{3}{11} \div \frac{5}{44}$.
A bracket should always be used in any case of doubt. 171. A Bar or Vinculum has the same effect as a bracket The expression $\frac{\frac{3}{4}-\frac{5}{7}}{}$ of $\frac{2}{4} \frac{8}{8}$ has the same meaning as $\left(\frac{3}{4}-\frac{\pi}{7}\right)$ of $\frac{28}{48}$. The value of the expression as it now stands is $\frac{1}{4-6}$. If the vinculum or bracket had not been given, the result would be $\frac{67}{196}$, as the pupil may find.

EXERCISE 42.

Simplify the following expressions :
I. $\frac{\frac{8}{8}}{1 \frac{1}{3}}$.
4. $\frac{I}{1 \frac{1}{4} \times I \frac{1}{2}}$.
$7 \cdot \frac{3 \frac{1}{6}}{9 \frac{1}{2}}$.
2. $\frac{\frac{5}{5}}{1 \frac{3}{4}}$.
3. $\frac{\frac{6}{6}}{1 \frac{8}{5}}$.
5. $\frac{\frac{7}{8}}{1 \frac{1}{3}}$.
8. $\frac{3 \frac{1}{2} \div 2 \frac{1}{4}}{6 \div 4 \frac{1}{2}}$.
6. $\frac{1}{1 \frac{4}{5} \text { of } I \frac{1}{2}}$.
9. $\frac{\frac{7}{8} \text { of } 60_{\frac{8}{10}}^{\frac{8}{8}} \times \frac{\frac{8}{83}}{3}}{\frac{5}{8}}$.

Simplify the following expressions :
Io. $\frac{\frac{1}{6} \text { of } \frac{5}{\frac{5}{3}} \text { of } \frac{9}{12}}{5 \times \frac{3}{8}}$ of $\frac{5}{7}$.
18. $\left(3 \div \frac{3}{4}\right)-2 \frac{1}{3}$.
19. $\frac{\frac{3}{6} \text { of } \frac{4}{7} \text { of } \frac{3 \frac{3}{3}}{4 \frac{2}{7}}+9}{}$.

1 $1 . \frac{8 \frac{3}{7} \times \frac{1}{3}}{\frac{3}{4} \text { of } \frac{4}{3}}$ of 75
12. $26 \times \frac{3}{7}+2 \frac{1}{2}$.
13. $\left(4 \frac{3}{7}-2 \frac{2}{4}\right) \times 3 \frac{5}{7}$.
14. $2+6 \frac{3}{7} \div \frac{5}{6}$.
15. $3 \frac{1}{4}+\left(4 \frac{3}{4} \div \frac{2}{3}\right)$.
16. $4 \frac{3}{4} \div\left(3 \frac{1}{7}+\frac{2}{3}\right)$.
17. $(14-8) \div \frac{9}{4}$.
20. $\left(1,-\frac{3}{5}-\overline{2 \frac{1}{7} \times 5}\right) \times 3 \frac{1}{4}$.
21. $\left(4 \frac{3}{4}+\frac{2}{4}\right) \div\left(3 \frac{1}{7}-1_{1}^{\frac{3}{4}}\right) \times 2$.
22. $\left(\frac{\frac{1}{2}-\frac{1}{3}}{\frac{1}{2}+\frac{1}{3}}+\frac{\frac{1}{3}-\frac{1}{\frac{1}{2}}}{\frac{1}{8}+\frac{1}{4}}\right)-\left(\frac{\frac{1}{4}-\frac{1}{6}}{\frac{1}{4}+\frac{1}{8}}-\frac{\frac{1}{6}-\frac{1}{8}}{\frac{1}{6}+\frac{1}{8}}\right)$.
23. $\frac{\frac{3}{6} \text { of } \frac{2}{9}-\frac{4}{7} \text { of } \frac{1}{8}}{\frac{4}{15} \text { of } \frac{1}{8} \frac{1}{8}+\frac{3}{10} \text { of } \frac{7}{8}}$.
24. $\left(\frac{3 \frac{3}{4} \times 3 \frac{1}{3}}{2 \frac{1}{2}+\frac{5}{16}} \div \frac{6 \frac{2}{3} \times 8 \frac{8}{9}}{8 \frac{8}{6}-6 \frac{2}{3}}\right)+\left(\frac{14 \frac{2}{5}}{6 \frac{9}{7}} \times \frac{5}{7 \frac{1}{11}}\right)$
unless a y the signs ny of the
, we mul. , we sim.
of doubt. a brack eaning as as it now th had not the pupil

GENERAL EXAMPLES ON FRACTIONS.

Ex. I.-What part of 7 times 4 is one-ninth of 72 ? $7 \times 4=28 ; \frac{1}{8}$ of $72=8$.
Now, what part of 28 is 8 ? Since I is $\frac{1}{28}$ of 28,8 must be $\frac{8}{28}$ of it, that is $\frac{2}{7}$.
This question can be written in many ways. Instead of saying, "What part of 28 is 8 ?" we may say, " 8 is what fraction of 28 ?" or "Express 8 as a part of 28 ," or, "What fraction is 8 of 28 ?"
Now the answer to each question is $\frac{8}{28}$. We thus see that we always place in the numerator the quantity which is to be the part or fraction of the other.
Ex. 2. $4 \frac{3}{8}$ is what part of $18 \frac{2}{3}$?
Here we write $4 \frac{3}{5}$ in the numerator and $18 \frac{2}{5}$ in the denominator, and reduce the fraction thus formed to its lowest terms.

$$
\frac{4 \frac{3}{5}}{18 \frac{2}{3}}=\frac{23}{5} \div \frac{92}{5}=\frac{\frac{2}{2}}{\frac{2}{5}} \times \frac{1}{1} \frac{1}{4}=\frac{1}{4}
$$

The pupil should always prove that tise result is correct. Thus:
Show that $\frac{1}{4}$ of $18 \frac{2}{5}$ is $4 \frac{3}{8}$.

$$
\frac{1}{4} \text { of } 18 \frac{2}{5}=\frac{1}{4} \text { of } \frac{23}{5}=\frac{23}{5}=4 \frac{9}{6}
$$

Hence the answer $\frac{1}{4}$ is correct.
Ex. 3.- $\frac{4}{3}$ of 60 is $\frac{3}{8}$ of what ?
Since $\frac{8}{6}$ of $60=48$, the question now stands: " 48 is $\frac{s}{8}$
If 48 is $\frac{2}{8}$, then $\frac{1}{8}$ of 48 , that is 16 , must be $\frac{1}{8}$, and $\frac{5}{8}$, or the required number, must be $16 \times 8=128$.
Proof : $\frac{3}{8}$ of $\begin{gathered}16 \\ Y \$ \$=48\end{gathered}$
Ex. 4.- $\frac{2}{8}$ of 27 is $\frac{5}{7}$ of how many times 3 ?
Since $\frac{2}{3}$ of $27=18$, the question then stands: " 18 is $\frac{9}{7}$ of what?'
This we know by Ex. 3 to be 2 r .
Now we must find how many times 3 this 21 is. We know it is 7 times, which is the required result.
Proof: $7 \times 3=21$. $\frac{\circ}{7}$ of $21=18$.

EXERCISE 43.
I. What must be divided by $I \frac{1}{20}$ to produce $7 \frac{4}{5}$?
2. To what must $\frac{8}{4 \frac{1}{2}}+\frac{4 \frac{1}{2}}{4}$ be added to give $\frac{3 \frac{5}{7}}{4 \frac{8}{1} \frac{1}{1}}+\frac{9}{4}$?
3. What part of $\$ 5 \frac{2}{8}$ is $\$ \mathrm{I} \frac{1}{2}$?
4. What part of a day (24 hours) is $5 \frac{1}{3}$ hours ?
5. $8 \frac{4}{7}$ minutes is what fraction of an hour (60 minutes) ?
6. What part of $\frac{8}{8}$ of a peck is $\frac{1}{8}$ a peck ?
7. What part of $\$ \mathrm{II}$ is $\frac{3}{8}$ of $\$ \mathrm{I} 6$?
8. $\frac{8}{j}$ of a peck is $\frac{8}{3}$ of what ?
9. $\frac{8}{11}$ of 132 pounds is $\frac{4}{4}$ of what ?
10. 12 is $\frac{8}{4}$ of $\frac{8}{8}$ of what ?
11. If $\$ 120$ was $\frac{5}{7}$ of what I paid for a horse, what was the price paid?
12. What is the cost of $2 \frac{2}{1 T}$ loads at $\$ 220$ for 16 loads ?
13. $\frac{0}{13}$ of 39 ounces is $\frac{9}{16}$ of the weight of a parcel : find
its weight?
14. $\frac{3}{2}^{3}$ of $\frac{2}{3}$ of $\$ 47$ is $\frac{5}{7}$ of $\frac{4}{13}$ of a man's rent: find the rent.
15. A. had $\$ 260$, and spent $\frac{3}{13}$ of it, which was just $\frac{1}{12}$ of what B. earned : how much did B. earn?
16. Of how many times 9 is $\frac{s}{4}$ of 20 the five-ninths ?
17. What number is $\frac{3}{6}$ of $4 \frac{4}{9}$ times $\frac{3}{4}$ of 12 ?
18. What part of 42 is 3 times $\frac{2}{8}$ of 30 ?
19. I paid $\$ 50$ for a waggon, and $\frac{3}{8}$ of the cost of it was just $\frac{8}{3}$ of 3 times the cost of the harness: what was the harness worth ?
20. If $\$ 200$ is 4 dollars more than $\frac{7}{8}$ of 4 times my money, what do I own ?
21. Of how many times $\frac{2}{3}$ of $\$ 10$ is $\frac{8}{8}$ of $\$ 25$ the threefourths ?
22. If $\frac{8}{8}$ of 18 years is just $\frac{2}{9}$ of 4 times $\frac{8}{4}$ of a boy's age, what is his age?

Ex. 5.-A man owned $\frac{5}{12}$ of a vessel, and sold $\frac{1}{13}$ of his share: what part had he left?
If he sold $\frac{1}{15}$ of his share, he must have $\frac{12}{1 \frac{2}{8}}$ of his share left.

$$
\frac{12}{13} \text { of } \frac{5}{12}=\frac{5}{13}
$$

The pupil will likely proceed to find what part he sold, that is, $\frac{1}{1 \frac{1}{3}}$ of $\frac{6}{12}$, and then subtract the result from $\frac{6}{2}$, which, although correct, causes a waste of time, for we want to know, not the part sold, but the part left.

Ex. 6.-After giving $\frac{2}{7}$ of his estate to a college, a gentleman had $\$ 55000$ left : what had he at first? If he gave away $\frac{2}{7}$ of the estate he must have $\frac{5}{7}$ of it left ; and since $\frac{5}{7}=\$ 55000$, then $\frac{1}{7}=\$$ IIOOO, hence the whole or $\frac{7}{7}=\$ 77000$.
23. A man gave away $\frac{9}{3}$ of $\frac{3}{4}$ of $\frac{8}{6}$ of $\frac{9}{25}$ of his money: what part had he left?
24. I owned $\frac{8}{8}$ of $\frac{2}{18}$ of $\frac{3}{30}$ of a business, and sold $\frac{1}{7}$ of $m y$ share: what part of the business do I now own?
25. A mine is worth $\$ 2200$; a man owns 3^{3} of $\frac{3}{7}$ of it. and lost $\frac{5}{1 \pi}$ of his share: what part of the mine has he left, and what is he now worth?
26. A man owns $\frac{3}{6}$ of $\frac{8}{6}$ of $\frac{7}{10}$ of an investment ; on sell. ing $\frac{9}{7}$ of his share he finds himself worth $\$ 100$ less than before: what is the value of the whole investment ?
27. B. owned ($\frac{1}{2} \frac{1}{2}-\frac{6}{8}$) of an estate, and sold $\frac{1}{8}$ of the estate: what part of the estate, and what part of his former share does he now own ?
28. A man sold $\frac{1}{2}$ his load to the first one he met, $\frac{2}{3}$ of the remainder to the next one, $\frac{1}{4}$ of the remainder to the next one, and so on: what part of the load had he left after io bargains?

Ex. 7.-A field could be ploughed by A. in 4 days, and by B. in 5 days: in what time could both together do the work ?
A. does the whole work in 4 days, therefore he does $\frac{1}{4}$ of the work in 1 day; also B. does $\frac{t}{4}$ of the work in I day. Both working together would thus do $\frac{1}{4}+\frac{1}{6}$ $=\frac{9}{20}$ of the work in I day. "and B. do $\frac{{ }^{\circ} 0}{20}$ in I day. "، " $\frac{1}{2} \delta$ in $\frac{1}{6}$ day. " " $\frac{2}{20} \frac{0}{6}$ or the whole work in $\frac{0}{9}=2 \frac{2}{\theta}$ days.
Ex. 8.-Two pipes running together can fill a tank in 20 minutes: one of them could alune fill it in 35 minutes: how long would the other take to fill it ?
Both pipes fill $\frac{1}{30}$ of the tank in 1 minute. One pipe fills $\frac{1}{36}$ " " " "
The other must fill $\frac{1}{20}-\frac{2}{35}=\frac{8}{120}$ in 1 minute.
It fills $\frac{s}{140}$ of the tank in I minute.

29. A. can do his work in $5 \frac{1}{4}$ hours: how much can he do in an hour?
30. A. and B. can together do $\frac{3}{4}$ of a job in 6 days : how much can they do in a day?
31. A. can do the work in 8 days, B. in 3 days, and C. in 9 days : how long would the three together take?
32. A man can do $\frac{8}{30}$ of a journey in 1 day: how long will he take to finish it ?
33. A pipe can fill ${ }^{4}$ IT of a vat in 3 hours: how long will it take to fill the whole?
34. A., B. and C. dig a ditch in 5 days; B. and C. can do it in 8 days : how lung would A. take to do it?
35. A. can do a work in $\frac{2}{3}$ of a day, B. in $\frac{1}{8}$ of a day, and C. in I day : how long will the three men take?
36. A. mows 2 acres in 3 days, B. 5 acres in 6 days: in what time can they together mow 9 acres ?
37. A., B, and C. can do a piece of work in a week; A. and B. do $\frac{8}{0}$ of it, B. and C. do $\frac{2}{3}$ of it : how much of it can B. do?
38. Three taps can fill a tank in 30 minutes, 40 minutes, and 60 minutes respectively: how long will they take, all being opened at the same time?
39. A pipe can fill a vat with water in II minutes; another can empty it in 20 minutes : in what time will the vat be filled if both are opened at the same time?
40. A man paid $\frac{1}{8}$ of his debts, then $\frac{2}{2}$ of the remainder: there was then due $\$ 850$: what did he owe at first?
41. A telegraph pole is $\frac{2}{3}$ of its length in air, $\frac{1}{6}$ in water, and the remainder, which is 8 feet, in the ground: what is the length of the pole?
42. A boy in flying his kite lost $\frac{3}{8}$ of the string, then added 65 feet, and found that it was just $\frac{0}{6}$ of the original length : what was the length at first?

OHAPTER IV.

CANADIAN MONEY.

177.
178. T
179. The five cent piece

The ten cent piece
The twenty-five cent piece The fifty cent piece
$=\quad 5$ cents.
$=\quad 10$ cents.
$=\quad 25$ cents.
$=50$ cents.
175. The Dollar, which is equal to ivo cents, is paper money, issued either by the Government or by the Banks of the country, and may be changed into coin at any time by presenting it at the Banks.
There are also Two-Dollar Bills, Four-Dollar Bills, Five-Dollar Bills, Ten-Dollar Bills, Twenty-Dollar Bills, Fifty-Dollar Bills, One Hundred-Dollar Bills, as the Banks or the Government may be pleased to issue.
176. As stated before, the Dollar is represented by the character $\$$. Thus, $\$ 45$ is read: Forty-five dollars.
The cents are often represented by the letter c, thus, 27 c . is read: Twenty-seven cents.
If dollars and cents be taken together, they are written thus: $\$ 84.52$ is read: Eighty-four dollars and fifty-two cents. $\$ 7.08$ is read: Seven dollars and eight cents.

$$
\text { CANADIAN : } O \text { N゙æ゚: }
$$

177. We have seen in Arts. 8 r and 9 r how we change dollars into cents or cents into dollars.
178. The most necessary requirentent in any business is the correct addition of sun s of mon't expressed as dollars and cents.

Ex.-Add together $\$ 30.1$): $\$ 150.75, \$ 80.73$.
$\$ 712.40, \$ 212.04$.
$\$ 30.65$ The amounts are written as in Simple Addi-
150.75 tion. The sum of the cents is 257 cents, 80.73 or 200 cents and 57 cents, that is, two dol712.40 lars and fifty-seven cents. We write the 212.0457 cents under the cents column, and car$\$ 186.57$ ry the 2 dollars, and proceed to add as
179. We see, then, that the Addition and Subtraction of Canadian money is the same as Simple Addition. Care, however, must be taken that the separating dot . be written in its proper place in the sum or difference.
180. We have now to multiply and divide sums of money by any number.

Ex.-Multiply $\$ 24 \mathrm{I} .35$ by 8.
\$24r.35 Writing the numbers as usual, we first anu!.
8 tiply the number of cents by 8 , which gives $\$ 28080$ cents, or 2 dollars and 8 a cents.
lace the 80 cents in the usual place. Again, multiplying the number of dollars by 8 , gives 1928 dollars, which with the two dollars carried from the cents, makes 1930 dollars. The final sum is therefore $\$ 1930.80$.

This is the product that would have been obtained if the numbers had been multiplied as in Simple
Multiplication.
181. To divide a sum of money by any number.

Ex.-Divide $\$ 197.35$ by 5 ; or, in other words, divide $\$ 197.35$ into 5 equal parts. 5) \$197.35 Writing the numbers as usual, we first $\$ 39.47$ divide the number of dollars. This gives or 200 cents. 39 dollars and a remainder of 2 dollars, make up 235 cents, which being divided the 35 cents 47 cents.
Hence the quotient is $\$ 39.47$.
This is the quotient that would have been found if the numbers had been divided as in Simple D_{1}. vision.
41) 5412 ($132 \quad$ Ex.-How often will 4 I cents be con-

I3I
$\frac{123}{82}$
82

This is the same as finding how often 4 I cents is contained in 5412 cents. We therefore simply divide 5412 by 41, and obtain I 32 times.
182. We thus see that Addition, Subtraction, Multiplication, and Division of Canadian Money is the same as in whole numbers.
K The statement in the last Article applies equally as well to United States money.

EXERCISE 44.

I. Add-together $\$ 34.12, \$ 43.24, \$ 21.34, \$ 20.4 \mathrm{I}, \$ 34.12$
and. $\$ 2$ I.32.
2. I gave to A. $\$ 41.23$, to B. $\$ 42.23$, to C. $\$ r_{4 \cdot 43}$, to D. $\$ 3.43$, to E. $\$ 24.02$, to F. $\$ 24.01$: what did I give in all?
3. A man owes A. $\$ 27.18$, B. $\$ 56.43$, C. $\$ 8.94$, D. $\$ 45.73$,
E. $\$$ ro8.99, F. $\$ 62.86$, and G. $\$ 5.09$, E. \$ro8.99, F. \$62.86, and G. $\$ 5.09$: huw much
does he owe in all?
4. Bought of Jas. Foster \& Sons: Knives, $\$ 41.23$; Nails, $\$ 40.32$; Tools, $\$ 34.23$; Fire-arms, $\$ 24.32$; Gunpowder, $\$ 42.43$; Sundries, $\$ 32.43$: find the total cost.
5. I made the following deposits in the Dominion Bank: Cheques, \$4i2.13; Notes, \$401.2I; Silver, \$124.10; Gold, \$132; Drafts, \$30r.24: find the total deposit.
6. Find the amount of the following accounts : $\$ 40.19$, \$73.51, \$90.84, \$I 12.79, \$29.08, \$5.18, \$929.03, $\$ 33.33$.
7. I spent $\$ 800.50$ in Toronto, $\$ 75.40$ more in Hamilton, but \$1or.05 less in London: what did I spend altogether?
8. Bought a farm for $\$ 3273.08$, a house for $\$ 1503.91$, horses for $\$ 429.17$, cows for $\$ 273.54$, sheep for $\$ 290.09$, hogs for $\$ 447.26$, and furniture for $\$ 298.98$: what was the total amount?
9. Bought of Rice Lewis \& Son the following bill: Tackle, $\$ 88.88$; Rope, $\$ 99.99$; Pulleys, $\$ 90.09$; Wire, $\$ 7.70$; Flags, $\$ 17.90$; Steel, $\$ 183.84$; and Cutlery, \$6ri.i2: find the amount of the bill.
10. After lending A. 60 dollars, B. 139 dollars 44 cents, C. 56 dollars 73 cents, D. 78 dollars 17 cents, E. $\$ 93.39$, F. $\$ 45.09$, I had left $\$ 357.28$: what sum had I at first?
ri. Add together 26 dollars 3 cents, 50 dollars 90 cents, 49 dollars y cent, 108 dollars 14 cents, 77 dollars 25 cents, 83 dollars 68 cents, and 40 dollars 8 cents.
12. From $\$ 593.15$ take $\$ 208.28$.
13. I owe a firm $\$ 503.01$, and pay $\$ 267.08$: what do I
still owe?
14. What change do I receive from a hundred dollar bill if I pay for goods worth $\$ 6743$?
15. Find the difference between nine hundred and three dollars and twenty cents, and \$705.82.
16. A. is worth \$19327.30, and B. \$29120.91: what is the one worth more than the other?
${ }^{2}$ 17. What is the cost of 327 oxen at twenty-seven dollars and three cents each ?
18. Find the cost of 13 barrels of apples, each contain. ing three bushels, at 73 cts. a bushel.
19. What will 50 boys receive for 2 days' work of 9 hours each, at the rate of 15 cts . an hour for each ?
20. What will be the cost of 2192 pounds of lard at 9 cts . a pound ?
21. Bought of the Virginia Tobacco Company, Toronto, 5 hogsheads of tobacco, each weighing 560 pounds, at 28 cts . a pound : what was the whole cost ?
22. Find the value of the uniforms for 14 comparies of 90 men each, at $\$ 4 \frac{1}{\frac{1}{4}}$ per uniform?
23. A merchant sold 3725 barrels of flour, gaining 42 cts . on each barrel : find the total gain.
24. What will the paving of 880 square yards of road cost at $\$ 2.05$ a square yard?
25. At 32 cts. a foot, what will 39 reet of rope cost?
26. Messrs. W: A. Murray \& Co. received from Europe ro bales of silk, each containing 27 pieces of 33 yards each: what was the value of the whole at $\$ 2.90$ a
yard?
27. How often will $\$ 85.14$ contain 99 cents ?
28. I buy books at $\$$ r.o8 each, and pay $\$ 933.12$: how many books do I buy?
29. Divide $\$ 1832$ I by $\$ 2.40$.
30. If $\$ 221.20$ be equally divided among 70 men, what
does each get?
31. If $\$ 402.20$ be equally divided among 19 men, how much will remain?
32. A bank pavs off a debt of $\$ 147085.96$ at the rate of off?
33. Bought from Eby, Blain \& Co. 20 boxes of raisins, 22 pounds in each, and paid $\$ 66$: how much is that
a pound?
184. T
34. A dealer sells 15 bags of coffee for $\$ 378$, worth 24 cts. a pound: buw many pounds did he put in each
bag?
35. Jones is worth $\$ 19381.37$, and Brown $\$ 2917.39$ less than Jones: what are both together worth?
36. A man having \$379, bought 97 lambs at $\$ 2.95$
35. Sold J. Cleghorn \& Son 37 boxes of figs at $\$ 2.75$ a box, losing $\$ 27.30$: what did they cost me at first?
38. Received from A. $\$ 19.89$, from B. $\$ 33.24$, from C. $\$ 25.47$ more than from 1 .: how much less was received from B. than frum C.?
39. Bought 359 shares at \$1.20 a share, and had left $\$ 99.80$: what sum had I at first?
40. Bought 324 pounds of $t: a$ for $\$ 243$: if I sold it for ${ }^{15 c}$ c. a pound more than I gave for it, what was my whole gain and se ing price per pound ?
41. A man sold his house for $\$ 1567.30$ and his land for $\$ 3$ I2I.30, and b,ught building lots at $\$ 23.80$ each : how many could he buy?
42. While I was making $\$$ 个o a week, I saved $\$ 98.35$ in five weeks: what d dI spend a week ?
43. Borrowed from A. \$93.86, $\$ 46.3$ r and $\$ 10$ r. 88 ; from B. \$9.c8; and then paid off my debt to C., which was $\$ 197.58$: what had I left?
44. How many 25-cent pieces would pay for 80 horses
at $\$ 102$? at \$102 $\frac{1}{2}$ each ?
45. A man sold 53 bags of flour at $\$ 1.04$ a bag; his neigh. bor sold 13 bags less, but at 15 cts. more a bag: how much more did one get than the other:

BRITISH OR STERLING MONEY.

183. After understanding the coinage of our conntry, it is necessary to enquire into that of Great Britain, on account of the very close relation between the two countries.
184. The smallest coin of Great Britain is the Farthing, which is made of copper.
Four of these pieces make up in value one Penny, also a copper coin.
There are twelve pence in a Shilling (a silver soin). which passes in Canada for 24 cents.
Twenty shillings make the Found, or gold Sovereign.
185. We thus have he following

TABLE OF STERLING MONEY.

| 4 farthings make i penny. | | |
| :--- | :---: | :--- | :--- |
| I2 peuce | " | I shilling. |
| 20 shillings | " | I pound. |
| \&. | | |

Les The farthing being a quarter of a penny, is writ. ten $\frac{1}{4}$; two farthings, being the half of a penny, is written $\frac{1}{2}$; three farthings is written $\frac{3}{4}$.
Thus £7 8s. $7 \frac{3}{4}$ d. is read: 7 pounds, 8 shillings, 7 pence, 3 farthings.
186. We see that any number of pounds are brought to shillings by muitiplying the number of pounds by 20 ; shillings to pence by multiplying by 12 ; pence to farthings by multiplying by 4 .

Ex. 1.-Express $£ 8$ as pence.
r60 shillings.

1920 pence. Therefore $£ 8=1920$ pence. Ex. 2.-Express $£_{2}$ ios. II $\frac{1}{2} d$. as farthings.
$\& \mathrm{~s}$. d. In $£_{2}$ there are 40 shillings, as before, 2 Io rit but we must add to these the ro shillings, which makes 50 shillings.
Again, in 50 shillings there are 600 pence, which when added to the II pence gives 6ri pence.
Finally, in 6II pence there are 2444 farthings, which with the $\frac{1}{2} \mathrm{~d}$., or 2 farthings, makes 2446 farthings.
Therefore $£_{2}$ IOS. II $\frac{1}{2} \mathrm{~d} .=2446$ farthings.
187. In the same way, any number of a higher denomination may be brought to an equal value in a lower denomination.
188. We will now express any number of a lower denomination in units of a higher denomination.
Ex. 1 .-Change 1200 farthings to pounds.
4) 1200 Since + farthings make I penny, 1200 12) 300 farthi:1gs will make just one-quarter of $2^{\prime} 02^{\prime} 5 \quad 1200$ pence, that is 300 pence. In the same manner, 300 pence will make onetwelfth of 300 shillings, that is 25 shil. lings. Lastly, we divide the number of shillings by 20 , to bring them to pounds, which gives i pund and 5 shillings remaining. Hence 1200 farthings $=£_{1} 5 \mathrm{~s}$.

Ex. 2. - Express 3477 farthings in the higher orders.
4) $3477 \quad$ Dividing the farthings by 4. we obtain
12) $869{ }^{1}$ Dividing the 869 pence by remaining.
$\left.2^{\prime} 0\right) 7^{\prime} 25 \frac{1}{4} \quad 72$ shillings and 5 pence over, and $3125^{\frac{1}{4}}$ finally, dividing the 72 shillings by 20 Therefore 3477 farthings $=£ 312 \mathrm{~s} .5 \frac{1}{\mathrm{~d}}$. may be brought to the same value in units of a higher order.

EXERCISE 45.

1. How many farthings in $14 \frac{1}{2} d$? In 273 d .?
2. How many pence in 468 s .? In $£_{55} 19 \mathrm{~s}$. 7 d . ?
3. Express $£ 754{ }^{17}$ s. $9 \frac{3}{4} \mathrm{~d}$. in farthings.
4. How many pounds in 7660 .? In II 4720 d .?
5. Reduce $£_{15} 8$ s. $7 \frac{1}{2} \mathrm{~d}$. to farthings
6. Change 21368 farthings to pounds, etc.
7. Reduce 854 d . to pounds, etc.
8. Bring $£_{3}$ 19s. 7 d . to farthings.
9. Express 4 s . $2 \frac{3}{4} \mathrm{~d}$. in farthings.
ro. Reduce £2t os. o3 d . to farthings.
10. Express in \& s. d.:
(1) 5317 pence.
(3) 38003 farthings.
(2) 16629 farthings.
(4) 720370 pence.
:2. How many six-penny pieces in $£ 52 \S 6 \mathrm{~s}$. 6 d .?
11. How many pounds, etc., in 3729 three-penny piuces?
12. In an English school, half the boys wrote in copy: books, and paid 3 d. cach week; 99 boys paid 21 . a a week; and 59 paid Id. ; how many in the school,
and what was paid in all?
13. To add together any sums of money. Ex. \quad.....Add together $£_{4} 8 \mathrm{~s} .6 \frac{1}{d} ., £_{\mathrm{I}} 9 \mathrm{~s} .11 \frac{98}{4} \mathrm{~d}$., 10S. $4 \frac{1}{2} d ., £_{3} \mathrm{Igs} .11 \frac{3}{4} \mathrm{~d}$.
$£$ s. d. We first place the quantities so that $4.8 \quad 6 \frac{1}{4}$ the same kind are in the same column.
$10 \quad 4 \frac{1}{2}$

| 3 | 19 | 113 |
| :--- | :--- | :--- | :--- |

£ $10 \quad 8 \quad \begin{array}{lll}104\end{array}$

Adding the farthings' column, we get 9 farthings, that is 2 pence and I farth. ing. We write the I farthing in its prope place, and carry the 2 pence to the perre column.

The pence column gives when added 32 pence, which with the 2 pence carried is 34 pence, or 2 shillings and 10 pence.

Write the io pence under the proper column, and carry the 2 shillings to the sum of the shillings' column.
This makes in all 48 shillings, which is equal to 2 pounds and 8 shillings. Place the 8 shillings under the proper column, and carry the 2 pounds.
This, when added to the pounds' column, gives 10
pounds.
Hence the total sum is $£$ Io 8 s . $10 \frac{1}{4} \mathrm{~d}$.
5 As in Art. 51 of Simple Addition, we miry have placed each the under its column, as \& $34 \frac{9}{9} \mathrm{~d}$, but, as in thi ase, we always change ive units of the lower order into units of a higher, write down the remaining units under their ovo colmun,

Add together the following sums of money:

1. £15 los. $9 \mathrm{~d} ., £^{2} 9 \mathrm{~s} .7 \mathrm{~d}$., £1 12 s. rod., £I 18 s .4 d .
2. $£ 89 \mathrm{~s} .7 \frac{9}{4} \mathrm{~d} ., £_{7} \mathrm{I} 2 \mathrm{~s} .4 \frac{1}{4} \mathrm{~d} ., £^{1} 19 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d} ., 15 \mathrm{~s} .8 \frac{9}{4} \mathrm{~d}$.
3. $£ 98 \mathrm{~s}$. Iod., $£ 8 \mathrm{r} 6 \mathrm{~s}$. $11 \mathrm{~d} ., £_{7} 8 \mathrm{~s} .3 \mathrm{~d}$., $£ 8 \mathrm{I} 6 \mathrm{~s} .2 \mathrm{~d}$.,

4. £817s. 5 d., $£ 58 \mathrm{~s} .6 \frac{1}{4} \mathrm{~d} ., £_{7} 4 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d} ., 19 \mathrm{~s} .4 \frac{3}{4} \mathrm{~d} ., £_{18} 8$ IOS. 1 Id., $£ 37 \mathrm{~s} .4 \mathrm{~d} ., £_{5} \mathrm{I2s} .7 \frac{3}{4} \mathrm{~d} ., £^{2} 19 \mathrm{~s} .2 \mathrm{~d}$., $£ 7$ 2S. 4 d .
5. £94 r 5s. $5 \frac{3}{4} \mathrm{~d} ., £ 87 \mathrm{I} 6 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$., £ $£ 117 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d} ., £ 67 \mathrm{I} 8 \mathrm{~s}$. $8 \frac{3}{4} \mathrm{~d} ., £ 84$ rgs. $9 \frac{1}{2} \mathrm{~d} ., £ 98$ os. o $\frac{3}{4} \mathrm{~d}$., $£ 56$ ris. IId, $£ 133$ 3s. 10, ${ }^{4} \mathrm{~d}$., £212 18 s .9 d .

6. $£ 7148$ IIs. $8 \frac{1}{2} \mathrm{~d} .+£ 3596 \mathrm{I} 8 \mathrm{~s}$. $11 \frac{1}{4} \mathrm{~d} .+£ 71416 \mathrm{I} 3 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d}$. $+£ 8$ IIs. $4 \mathrm{~d} .+£ 7186$ 13s. $4 \frac{3}{4} \mathrm{~d} .+£ 714$ 13s. $8 \frac{3}{4} \mathrm{~d}$. + $£ 8 \mathrm{Ig} 6 \mathrm{r} 8 \mathrm{~s} . \quad 10 \frac{1}{2} \mathrm{~d}+£ 8 \mathrm{II} 8 \mathrm{~s} .6 \mathrm{~d}$.
7. $£_{17846} 17 \mathrm{~s} .8 \mathrm{~d} .+£_{3479}$ 13s. 11d. +6783 14s. $5 \mathrm{~d} .+$ $£ 687$ 15s. rod. $+£ 8412$ ris. $4 \mathrm{~d} .+£ 679 \mathrm{I}$ 15s. 7 d . +
 $£_{7358} 13 \mathrm{~s} . \varepsilon \mathrm{d}$.
8. $£_{4738}$ I7s. 2d. $+£ 3947$ 19s. $8 \mathrm{~d} .+£ 7135$ r3s. od. + £914 os. $8 \mathrm{~d} .+£_{4783}$ 15s. IId. $+£ 7 \mathrm{rg8}$ r7s. od. + $£ 8359$ ins. $8 \mathrm{~d} .+£ 8746$ os. od. $+£ 8798 \mathrm{~s} .7 \mathrm{~d} .+£ 9157$
r 5 s .8 d.
9. £3109 os. IId. $+£ 798$ 13s. $4 \frac{1}{2} \mathrm{~d}+£ 9146$ 13s. $7 \mathrm{~d} .+$ $£ 874$ os. $8 \mathrm{~d} .+£ 9146$ 3s. $4 \mathrm{~d} .+£ 8749$ 13s. $5 \mathrm{~d} .+£ 8735$ I9s. $9 \mathrm{~d} .+£ 9146$ 17s. $8 \mathrm{~d} .+£ 874$ 13s. $4 \frac{1}{2} \mathrm{~d} .+£ 68$
IOS. $4 \frac{3}{4} \mathrm{~d}$. 191. To subtract one sum of money from another. $E x$. 2.-Take $£_{3} 5 \mathrm{~s} .8 \frac{3}{4} \mathrm{~d}$. from $£_{5} 4 \mathrm{~s}$. $6 \frac{1}{2} \mathrm{~d}$. $\&$ s. d. Setting down the quantities as usual, we $546 \frac{1}{3}$ say, 3 farthings from 2 farthings we cannot. Add one of the next higher order, that is, I penny or 4 farthings, which makes 6 farthings. Then 3 farthings from 6 farthings leaves 3
farthings. Again, having taken one of the 6 pence, we have to take 8 pence from 5 pence, which we cannot. Add I shilling or 12 pence. Then 8 pence from 17 pence leaves 9 pence.
Again, having used one of the 4 shillings, we have to take 5 shillings from 3 shillings, which we cannot. Add I pound or 20 shillings.
Then 5 shillings from 23 shillings leaves 18 shillings.
Lastly, having used one of the 5 pounds, we have to take 3 from 4 pounds, which leaves one pound. Hence the difference is $£_{1} 18 \mathrm{~s} .9 \frac{3}{4} \mathrm{~d}$.
E The only difference between this and simple sub. traction is that, in simple subtraction, we always add ro, because io units of any order make 1 of the next higher, while in the present case the number of units in the orders above differs in each, that is, 4 in the first, 12 in the second, and 20 in the third. In every other respect the operations are exactly alike.

EXERCISE 47.

1. From ϱ_{58} 19s. $9 \frac{1}{4} \mathrm{~d}$. take $£_{50} 2 \mathrm{~s}$. $4 \frac{1}{4} \mathrm{~d}$.
2. How much greater is $£ 608 \mathrm{~s} .9 \mathrm{~d}$. than $£ 50 \mathrm{Igs} .1 \mathrm{Id}$?
3. I owned £715 IOS., and lost £620 14s. $6 \frac{1}{4} \mathrm{~d}$. : what am I now worth ?
4. Subtract $£ 92004 \mathrm{l} 8 \mathrm{~s} .5 \frac{3}{4} \mathrm{~d}$. from $£ 99153$ 10s. $2 \frac{1}{4} \mathrm{~d}$.
5. A man had $£ 86 \mathrm{~s}$. $9 \frac{9}{4} \mathrm{~d}$. ; he gave away $£ 24 \mathrm{~s} .5 \frac{1}{4} \mathrm{~d}$., and then spent f_{3} os. 4 d . : what had he left?
6. Bought goods for $£ 96 \mathrm{~s} .10 \frac{1}{4} \mathrm{~d}$., and paid $£ 2 \mathrm{I} 7 \mathrm{~s}, 2 \frac{3}{4} \mathrm{~d}$.,
7. What must be put with $£_{47541} 5$ s. $6 \frac{3}{4} \mathrm{~d}$. to make up
$£_{506} 506 \mathrm{~s} .5 \frac{3}{4} \mathrm{~d}$.?
8. A man has in cash $£ 3443$ 15s., a house worth $£_{474}$ 8s. 9d., goods worth £7I3 IIs., a farm worth $£_{574}$, debts due to him £3I5, a vessel valued at $£ 957$ 18s. $11 \frac{1}{2} d ;$ but he owes A. £II5 7s. 8d., B. £74 I 3s. 4 d ., and C. $£ 327$ 18s. $4 \frac{3}{4} \mathrm{~d}$: find what he is really worth.
9. From six hundred and seventy-one pounds eleven shillings and eight pence, take the sum of $£ 600{ }^{1} 5 \mathrm{~s}$. and twenty-five pounds and five pence.
10. To multiply any sum of money by a whole Ex. 3-What will $£_{12}$ ios. $8 \frac{1}{4}$ d. produce when repeated 11 times?
$\underset{12}{\boldsymbol{E}}$ s. d. Set down the numbers as usual. We 12 to $8 \frac{1}{2}$ will, in the first place, leave each it product unchanged under its own $£_{132} 11088 \frac{12}{4}$ column or order, as in Art. 190, thus: Eleven times i farthing is in farthII times io shillings in times 8 pence is 88 pence; pounds is 132 pounds. Ito shillings; in times 12 The result is $£_{132}{ }^{2} 1105.88 \frac{12}{4} \mathrm{~d}$. Now ${ }_{11}$ farthings are 2 pence and 3 farthings. We set down the 3 farthings and carry the 2 pence to the 88 pence, making it 90 pence. Again, go pence make 7 shillings and 6 pence. Place the 6 pence under its own column, and carry the 7 shillings to the ino shillings, making it 117 shillings. But 117 shillings are 5 pounds and 17 shillings. Place the 17 shillings as usual, and carry the 5 pounds to the 132 pounds, making 137 pounds. The work would then appear thus:
s. IId?
: what
S. $5 \frac{1}{4} \mathrm{~d}$., $\mathrm{s}, 2 \frac{3}{2} \mathrm{~d} .$, ake up $1 £_{474}$ £574, 7 18s. s. 4d., worth. eleven - I5s.

$\begin{array}{ccc} £ & \mathrm{~s} . & \mathrm{d} \\ \mathrm{I2} & 10 & 81 \\ & & \\ \hline \end{array}$	

193. This will be seen to agree perfectly with simple mul. tiplication of numbers, and every remark made in : regard to simple multiplication will apply to, the
194. We may, therefore, use the factors of any multiplier, instead of taking the multiplier at once. Ex. 4. -If 24 men earn $£_{3} 15 \mathrm{~s}$. IO 1 did. each, what is earned in all ?-that is, find 24 times $£_{3} \mathrm{I} 5 \mathrm{~s}$. $\mathscr{L}_{3} 15$ Io $\frac{1}{2}$ The factors of 24 are 3 and 8 . First 3 nultiply by 3 , which gives in pounds II $7 \quad 7 \frac{1}{2} \quad 7$ shillings and 7 pence half-penny, or 2 farthings. Next multiply by 8, as follows: 8 times 2 farthings $=16$ farthings $=4 \mathrm{~d}$. 8 times 7 pence $=$ 56 pence. This with the 4 d . carried
gives 0 pence, which $=5$ shillings and no pence remaining. 8 times 7 shillings $=56$ shillings. This, with the 5 s. carried, makes 61 s ., or $£_{3}$ and 1 s .8 Łimes $^{£_{11}}=£ 88$, which, with the $£_{3}$ carried, gives \& $^{2} 1$.
Hence the amount carned is tegl is.

EXERCISE 48.

1. What is the value of three articlos at $£_{4} 6 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$,
each?
2. One man can earn $£ 98 \mathrm{~s}$. $4 \frac{1}{\mathrm{~d}}$. : what will 4 men
earn ?
3. At I7s. $3 \frac{9}{4} \mathrm{~d}$. each, what must I pay for 7 articles ?
4. What does $£ 7418 \mathrm{~s}$. $11 \frac{1}{2} \mathrm{~d}$. produce when repeated 6 times?
5. Find 8 times $£ 18$ os. IId.
6. One-ninth of a vessel is worth $£ 17{ }^{1} 5 \mathrm{~s}$. $0 \frac{1}{d}$ d. : what
7. What will 10 persons spend at the rate of $£ \frac{5}{5 s} .7 \frac{1}{4} \mathrm{~d}$. each ?
8. Find the value of II sewing-machines at $\mathscr{E}_{1} 8$ os. $4 \frac{1}{4} d$. each.

9. If 18 men each subscribe sixty-three pounds and eight pence three farthings, what will the whole subscription amount to?
II. At Id. each, articles cost $£ 1317 \mathrm{~s}$. $0 \frac{1}{2} \mathrm{~d}$., what will they cost at 3 s . each?
10. 29 men are employed on a road: what will be required to pay them at arate of $£_{5} 7 \mathrm{~s} .6 \frac{1}{2} d_{\text {d }}$. each ?
11. What amount must b livic 1 among 35 men that each may receive $£ 132$ us. $3 \frac{1}{4} \mathrm{~d}$. ?
12. A drover makes a profit of $£ 29 \mathrm{~s}$. $2 \frac{1}{4} \mathrm{~d}$. on every animal he takes to market: what will he gain in a day when he takes $3 I$ to market?
13. Of what amount is $£ 81$ os. $8 \frac{1}{2} \mathrm{~d}$. the 187 th part?

16．The＂Dominion＂carried to Liverpool from Quebec 132 head of cattle；on arrival they sold for $£ 87 \mathrm{~s}$ ． 91⿱⿰㇒一㐄 d ．per head：what did the owner receive for them？ 17．Brick is worth in England $£_{2} 5 \mathrm{~s}$ ．7d．a thousand： what will be the cost of brick to build a bake－house requiring io thousand？
18．What must be paid for 12 dozen Christmas geese at

195．To divide any sum of money by a whole num．

When the divisor is 12 or under，the work is carried on mentally，as in Simple Division．

Ex．5．－If £8r $^{2}{ }^{15} 5$ s．o $\frac{1}{4}$ d．be divided among II whomen，what will each receive？or，divide £812 ${ }_{12}$ s．d．Set down the numbers as usual．A 11） 812 I $\frac{1}{73 \text { I7 }}$ in simple division，Ir is contained in 812， 73 times and 9 pounds over， £73 and £ remaining，the eleventh part of $£ 812$ is place，and carry the $£_{9}$ ．Write the $£ 73$ in its proper

Now the £9 must be brought to slillings，and then added to the other 15 shillings，that is， $180+15=195$ ． Again，II is contained in 195,17 times and 8 shil－ lings over．Write the rys．in its proper place，and carry the 8 shillings．

These 8 shillings are equal to 96 pence，and as there are no pence to be added，$I I$ is contained in 96,8 times and 8 d ．over．Write the 8 d ．as usual，and carry the 8 d ．left over．

These 8 pence，with the 1 farthing，make 33 farthings， and x is contained in 33,3 times．Write down the 3 farthings in its place． Each woman，therefore，would receive $£_{73} 17 \mathrm{~s} .8 \frac{3}{4} \mathrm{~d}$ ．
196. When the divisor is greater than 12.

Ex.. 6.-Divide $£_{93}$ 16s. Io $\frac{1}{2} d$. into 99 equal parts. \& s. d. s. d.
99) $931610 \frac{1}{2}\left(18 \quad 11 \frac{1}{2}\right.$

20
$18 t 0$ Herc, £93 will not contain 99, hence it 16 (added) is reduced to shillings (1860), and) $\overline{187} \overline{6}$ (18 the 16 s. added, making 1876 shil$\frac{99}{886}$ 792 94 $\frac{12}{1128}$

$$
10 \text { (added) }
$$

) $\overline{1138}$ (11 lings. This contains 99,18 times. Place this 18s. in the quotient, and bring the remaining $9+5$. to pence (1128), add in the rod., and divide the result, 1138 pence, by 99 . This gives in pence, and 49 pence over. Write the 11 d. in the quotient. Bring the 49 pence to farthings (196), and add the $\frac{1}{2}$ d., of 2 farthings, making 1089
49 place in the quotient.
4 Thus the quotient is 18 s . $11 \frac{1}{2} \mathrm{~d}$.
196 Whe above agrces exactly with the 2 (added) $\begin{aligned} & \text { Work performed in Art. 1oo, the mul. }\end{aligned}$ I98 (2 198

the present case.

197. To divide one sum of money by another.

Ex. 7.-If each person earn 17 s. $11 \frac{3}{4}$ d., how many persons will $\AA_{50} 6 \mathrm{~s}$. Iod. pay? In other words, how many times does $£_{50} 6 \mathrm{~s}$. Iod. contain
Before we can divide one number by another, we have shown that they must be of the same kind. Hence we must bring each of the given amounts to units of the same order, that is farthings.

$$
\begin{aligned}
£_{50} \text { 6s. } 10 d . & =48328 \text { farthings } \\
17 \mathrm{~s} . & 1 \frac{3}{4} \mathrm{~d} .
\end{aligned}=863 \text { " }
$$

The question now is: How often are 863 farthings

STERLING MO.VI:1',
contained in 48328 farthings. This will be found by
division

$$
\begin{gathered}
803) \underset{\frac{4315}{48328}}{5178}(56 \\
\hline
\end{gathered}
$$

Hence 5178
198. From the above we obtain the following

RULE.
To divide one amount by another, reduce cach to the lowest order mentioned in sither. Then diaide as in simple division.

In the preceding examples we have made use of Sterling Money to explain the addition, subtraction, multiplication and division of compound quantities. The same principles apply to all other com-

EXERCISE 49.

1. Find the fourth part of $£_{57} 18 \mathrm{~s} .9 \mathrm{~d}$.
2. Ho'w much more in the fifth part of $£ 798$ 13s. 4 d . than in the sixth part of $£_{33} 17 \mathrm{~s} .6 \mathrm{~d}$. ?
3. What is the value of a sixth share in a vessel that cost £899 7s. 6d. ?
4. Divide $£ 812$ I5S. O $\frac{1}{4}$ d. into II equal parts.
5. It 23 men earn £gr IIs. $4 \frac{1}{2} \mathrm{~d}$., what is that apiece?
6. I paid f9296r IIs. $1 \frac{1}{4}$. fors 11 I lots of land: how much was that for each ?
7. The cost of carrying 149 cattle to Liverpool by the "Allan Line" was $£ 589$ 9s. $7 \frac{1}{2} d$. : how much was
8. What sum of money must be multiplied by 9027 to produce $£^{2} 775571$ 14S. o $\frac{3}{4} \mathrm{~d}$. ?
9. Divide $£^{6} 61$
10. If 14 hundred-weight of sugar cost in Bristol $£_{35}$ 8s. gd., how much is that per hundred-weight ?
II. If 99 bags of figs cost in Glasgow £413 18s. Iol ${ }^{\frac{1}{2} d .,}$ what will a bag cost in Edinburgh, the carriage being $6 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. per bag ?
11. Divide $£_{3} 7 \mathrm{~s}$. $4 \frac{1}{2} \mathrm{~d}$. by $9 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$.
£803 7s. 4 d . by £ 73 os. 8 d.

$$
\text { £go7 4s. od. by } £ 8 \text { rs. if od. }
$$

13. To how many men will $£_{37} 3 \mathrm{~s}$. allow $£_{4}$ 12s. $10 \frac{1}{2} \mathrm{~d}$. each ?
14. How part of $£ 6707 \mathrm{~s}$. is $£ 8315 \mathrm{~s}$. $10 \frac{1}{2}$ d. ?
15. How often is $£ 280{ }^{1} 5 \mathrm{~s}$, o $\frac{1}{2} \mathrm{~d}$. contained in $£_{33971}$ os.
16. How many purses of $£_{12} 7$ s. Io $\frac{1}{4}$ d. each can be made up of $£^{14871} 5 \mathrm{~s}$. ?
17. How many times can $£_{1}$ os. old be taken from $£_{175} 3 \mathrm{~s}$. $6 \frac{3}{4} \mathrm{~d}$., and how much will be left ?
18. After the Table of Money, the most necessary, perhaps, is the Table of Weight, as nearly all the articles of merchandise are bought and sold by weight.
19. The smallest weight used for this purpose, in practice, is the ounce, sixteen of which make up a pound.
20. The Table in full is as follows :

AVOIRDUPOIS WEIGHT.

> 16 ounces (oz.) make i pound, 1 b . roo pounds $20 \mathrm{cwt}$.

It is used in weighing all heavy merchandise, such as iron, groceries, etc.

$$
\begin{aligned}
& £_{17303} \text { I2s. IId. by } 250 \text {. } \\
& £_{7957}^{4 s .} 6 \frac{1}{2} \mathrm{~d} \text {. by } 109 .
\end{aligned}
$$

The pupil should be taught to express every order in units of every lower order ; for example

I T. $=20 \mathrm{cwt} .=2000 \mathrm{lbs} .=32000 \mathrm{oz}$. $1 \mathrm{cwt} .=100 \mathrm{lbs} .=1600 \mathrm{oz}$. $1 \mathrm{lb} .=16 \mathrm{oz}$.
A similar table may be made for every other weight or measure.
202. A different table is used when dispensing drugs, medicines etc., and is called

APOTHECARIES' WEIGHT. 20 grains (gr.) make 1 scruple, sc.
3 scruples " I dram, dr. 8 drams " 1 ounce, oz. 12 ounces " a pound, lb.
203. The following is the table used by jewellers in weighing precious stones, gold, silver, etc., and is called TROY WEIGHT. 24 grains (gr.) make I pennyweight, dwt. 20 pennyweights " 1 ounce, oz. 12 ounces " \quad pound, lb.
FEs The "grain," "ounce" and "pound" are the same in the two latter tables, that is, a grain of gold dust would balance a grain of quinine.
204. All examples in the preceding tables are worked just as in the case of sterling money.

Ex. 1.-In 2 lbs. 5 dwt. of gold, how many grains?
lbs. dwt.
25 Since there are 12 oz . in I lb., there must be 12 times 2 or 24 oz . in 2 lbs.
2402. As there were no ounces given, we have 20 none to add to the 24 ounces.

485 dwt. Again; since there are 20 dwt. in $10 z$.,
24 there must be 24 times 20 , or 480 dwt. 1940 m 24 ozs. This, with the 5 dwt. given, 970 makes a total of 485 dwt. In the same manner, 485 dwt. equals 485 times 24n 11640 grs. or 11640 grains.

Ex. 2.-A quantity of sugar weighing i 1 T. 6 cwt . lo lbs., just fills 5 vats; what will each vat Here we must find the fifth part of the given weight. T. cwt. Ibs. oz. Dividing is tons by 5 , we get 2 tons and 1 ton over. get I T. 20 cwt ., which, with the given 6 cwt., makes 26 cwt.
 with the 13 lbs., makes 113 lbs. $113 \mathrm{lbs} \div 5=22 \mathrm{lbs}$. and 3 lbs ., or 48 ounces over. $48 \mathrm{oz} . \div 5=9 \frac{3}{6}$ ounces. Each vat will thus hold 2 T. 5 cwt. $22 \mathrm{lbs} .9 \frac{3}{6} \mathrm{oz}$. EXERCISE 50.
The first eleven examples to be solved mentally.
(a) 1. What part of a pound of tea is 4 oz ? ? 8 oz .? 12 oz .?
2. What part of a ton is 5 cwt ? 12 cwt ? 8 cwt ? 3. What part of a cwt. is 25 lbs ? 50 lbs ? 75 lbs ? weight? Between I ton and I cwt.? Between ?
dram and 2 scruples? Between 1 hundredweight and 60 oz. and 12 drams?
5. How many 60 pounds?
lb.? In $\frac{1}{8}$ of a lb .? In $\frac{3}{4}$ of a lb.? lb .? In $\frac{1}{4}$ of a
6. How many grains in I pound of old silver?
7. How many ounces in 3 pounds of ginger? In 2 lbs. of quinine? In $\frac{3}{4}$ of alb. of sago? In 1 lb. In 2 lbs .
old silver?
8. How many ounces in $\frac{1}{4} \mathrm{lb}$. of tea, $\frac{1}{2} \mathrm{lb}$. of sugrar, and ouncc? Of $\frac{4}{5}$ of a scruple of quinine at 3 cents an 10. How many ounces in gold coin at \$20 an ounce?
II. Which is the cheaper of the following prices:
(a) $\frac{1}{2} \mathrm{~d}$. a grain or 1 s . a dwt.?
(b) \$5 a cwt. or \$10o a ton?
(c) 20c. an oz. or $\$ 2.50$ a lb. of opium ?
(d) 48 c . a lb. or 4 c . an oz. of spice?
(e) $50 \mathrm{c} . \mathrm{a} \mathrm{lb}$. or $\$ 60 \mathrm{a}$ cwt. ?
(f) \$2 a dwt. or \$50 an oz. ?
(b) 1. Write out a Table for Troy and Apothecaries' Weight like the Table in Art. 201.
2. In 1746 grains Troy, how many oz., etc. ?
3. In 5 lbs. 7 dwt. how many grains ?
4. How many pounds, etc., in one million grains Troy?
5. Find the number of grains in rolbs. I oz. 10 dwt. I gr.
6. How many grains of calomel in 7 oz .3 sc ?
7. Find the number of lbs. in 69 r sc.
8. How many powders of morphine of 1 grain each can be made from 3 lbs. 2 oz .3 dr .2 sc .5 grs ?
9. In 5 cwt. 84 lbs. of sugar, how many one pound packages?
10. How many ounces of 80 -cent tea can be put up from 3 cwt. 55 lbs. 4 oz. ?
11. How many cwts., etc., make 5767 oz .?
12. Change 7359 pounds of coal to tons, etc.
13. A dealer sold to one customer 3 tons 5 cwt. iy lbs. 13 oz. of sugar; to another, 4 tons 7 cwt. 35 lbs. 12 oz . ; to another 1 ton 15 cwt .63 lbs .7 oz . : how much sugar did he sell in all?
14. What is the sum of 15 tons 6 cwt. 45 lbs .5 oz .; 3 tons, 17 cwt .80 lbs .6 oz . ; and 26 tons 3 I lbs. 7 oz .?
15. What is the sum of 21 lbs. 7 oz .12 dwts. $10 \mathrm{grs} . ;$ 28 lbs. 5 oz. 8 dwts. $7 \mathrm{grs}, 7 \mathrm{lbs} .6$ dwts. 15 grs. fi lbs. 6 oz. 20 grs. ; and 9 lbs .7 grs. ?
16. From $16 \mathrm{cwt} .9^{\circ} \mathrm{lbs}$, take $8 \mathrm{cwt} .58 \mathrm{lbs}, 6 \mathrm{oz}$.
17. 7 rom 85 tons 16 cwt. 39 lbs ., take 6I tons 14 cwt .
18. A man sold I_{5} loads of grain, each weighing $1 T$. $270 \frac{1}{3} \mathrm{lbs}$; what did the whole weigh ?
19. If 25 men each buy 16 T. 3 cwt . $10 \frac{1}{6} \mathrm{lbs}$. of goods, what do they buy in all? 20. Each of 56 goblets weighs 12 lbs .3 oz .16 dwt.; find the weight of the whole.
2I. If a Mexican dollar weigh 17 dwit will 96 dollars weigh? 17 dwt. $4 \frac{1}{2}$ grs., what 22. A grocer buys 13 hogslieads of sugar weighing 6 T . $8 \mathrm{cwt} .57 \mathrm{lbs} .$, what did each weigh ?
23. If 31 civt. 18 lbs . of rice be put up in parcels of 3 lbs. 8 oz . each, how many parcels will there be? 24. How many ounces will be left over?
25. How many bags of salt, each containing 2 cwt. 35 lbs ., are there in 3 T. 3 cwt. 45 lbs ? 26. How many forks, each weighing 2 oz . Io dwt. can be made from 13 lbs. 7 oz. 15 dwt. of silver, and 27. A grocer having 17 cwt 69 lbs . of soda, sold 4 cwt . 96 lbs of it, and the remainder he putinto six boxes; how much did each box contain? 28. Divide 7 lbs .6 oz .13 dwt. by 3 oz .15 dwt .13 grs . 29. Divide 131 lbs .2 oz .15 dwt .20 grs. by 2 lbs .7 oz . 9 dwt. 22 grs. 30. Divide 3 T. 2 che 40 lbs . by 12 cwt. 48 lbs .
31. If one-thirteenth of 31. If one-thirteenth of a certain gold coinage b what is the quantity of pure gold in 2 be alloy, weighing 54 grs. each? pure gold in 274 pieces
32. What is the total weight of silver in half a dozen dishes, each weighing 49 oz. 3 divt. 4 grs. ; a dozen
dozen plates, each weighing 56 oz . 17 dwt. ; and a salver,
tons 14 cwt .
eighing a T.
s. of goods,
2. I6 dwt.;
grs., what
ghing 6 T.
parcels of
tere be?
g 2 cwt .
dwt. can
lver, and
ld 4 cwt. x boxes ;

13 grs.
bs. 7 oz.
e alloy, pieces
dozen
dozen
salver,
cwt.
34. What is the difference between $\frac{1}{3}$ of $4 \frac{1}{2}$ of 2 lbs .5 oz . 6 dwt. ; and $\frac{3}{7}$ of $2 \frac{1}{3}$ of 6 oz . Io dwt. Io grs.?
35. How often is $\frac{3}{7}$ of 5 scr . of quinine contained in a package containing 6 lbs 7 oz .?
36. What weight is that of which 17 lbs. 2 oz . is $\frac{19}{18}$? of which $5 \frac{1}{2}$ cwt. is $\frac{0}{13}$?
37. Of what weight is 2 oz .3 dwt. three-seventeenths?
38. What part of 3 cwt. 6 lbs . wou!d just balance 2 lbs . $6 \frac{1}{2} \mathrm{oz}$. ?
39. Add together $\frac{1}{3}$ of $2 \mathrm{lb} ., \frac{3}{7}$ of 5 oz ., $6 \frac{7}{8} \mathrm{dwt}$., and $3 \frac{1}{3}$
grs.
40. By how much does the $\frac{1}{4}$ of $6 \frac{1}{2}$ tons exceed the $\frac{1}{3}$ of 13 cwt. 17 lbs. $5 \frac{1}{4} \mathrm{oz}$. ?
41. How much weight must be added to $3 \frac{4}{41}$ cwt. to make 1 ton 2 cwt . 12 lbs ? and what weight taken from $23 \frac{5}{14}$ tons will leave $\frac{5}{7}$ of $9 \frac{1}{4} \mathrm{lbs}$.?
42. Take from 5 tons of potatoes its third, its fourth, and its fifth part ; what part of $17 \frac{1}{4}$ tons is the remainder ?
205. All distances, lengths, breadths or widths, and heights, are expressed in miles, yards, feet, inches, \&c.
Thus: Toronto is distant from Montreal 333 miles; a room is 20 feet long; a piece of cloth is 22 inches wide ; a flag pole is 80 feet in height.
206. These are included in a table called

LINEAR, or LONG MEASURE.

$$
\begin{array}{ll}
12 \text { inches (in.) make I foot, ft. } \\
3 \text { feet } & \text { "، I yard, yd. } \\
5 \frac{1}{2} \text { yards } & \text { " } \begin{array}{l}
\text { I rod, rd. } \\
40 \text { rods }
\end{array} \\
8 \text { furlongs } & \text { " } \\
\text { I furlong, fur. } \\
\text { I mile, mi. }
\end{array}
$$

207. A yard measure might be shown thus:

The three lagger divisions would zepresent one foot each.
The thirty-six smaller divisions would each represent one inch.
208. Cloih, ribbons, etc., are usually sold by this measure, the following parts of the yard being the most common :

$$
\begin{array}{ll}
\text { Half of a yard, } & =18 \text { inches. } \\
\text { Quarter of a yard, } & =9 \\
\text { Eighth of a yard, } & =4 \frac{1}{2} \\
\text { Sixteenth of a yard } & =2 \frac{1}{4}
\end{array}
$$

a "nail." a "nail."

The Flemish Ell was $\frac{3}{4}$ of a yard, or 27 inches. " English Ell " French Ell " $\frac{.}{4} \quad \begin{aligned} & \text { or } 45 \text { inches. } \\ & \text { or } 54 \text { inches. }\end{aligned}$ These Cloth Measures are now seldom used.
The following measures are used for objects: used for special

1 Hand $=4$ in., for measuring the height of horses,
I Fathom $=6 \mathrm{ft}$., for measuring the depth of water.
I Chain $=$ roo links $=66 \mathrm{ft}$., for measuring roads and
surveying lands. 80 chains =r mile.
209. By Long Measure we would find the length and yards, etc. We now wish to measure the surface
of the floor.
210. If a piece of paper were 1 inch long and I inch broad, it would represent what is called i Square Inch of Area or Surface.
211. A Square Inch is, therefore, a square, one inch in length and one inch in breadth.

213. T
$3 c$
212.

In the same way; a Square Foot is a square, each side of which is one foot, or 12 inches in length, and from the figure we see it must contain 144 square inches.

A Square Yard will thus contain 9 square feet, as seen from the figure where each of the small squares represents a sq. foot.
213. These are all included in the following table, called

SQUARE MEASURE.

144 square inches (sq. in.) make I square foot, sq. ft. 9 square feet
" 1 square yard, sq. yd.
$30 \frac{1}{4}$ square yards r6o square rods
640 acres

I square rod, sq. rd.
I acre, ac.
I square mile.

The pupil will see that the area of the figures in Arts. 211 and 212 were found by multiplying their length by their breadth, thus:

I square foot $=12 \times 12=144$ sq. in.
i square yard $=3 \times 3=9 \mathrm{sq}$. ft . also, I square rod $=5 \frac{1}{2} \times 5 \frac{1}{2}=30 \frac{1}{4}$ sq. yds .
From this we see that part of the above table is derived from the table of Long Measure, the 12 in ., 3 ft . and $5 \frac{1}{2}$ yds occurring there first.
214. We see then that to find the area of a floor, etc., we multiply its length by its width.
Ex. A table to feet long and 5 feet wide contains 50 square feet; for if it were only a foct wicie, it would contain io square feet, but, being 5 feet wide, it must contain 5 times io sq. feet, or 50 sq . f.
215. The only other measurement required is that of a solid block of marble, wood, etc., knowing its length, breadth and thickness,
216. If a block of wood were I inch long, I inch wide and a inch thick, it would represent what is called a Cubic Inch. 217. If the square foot of surface in Fig. 2, Art. 212 had been I in. thick, it would contain 144 cubic inches, and, therefore, if it had been I foot, or 12 inches thick, it would contain
 12×144, or 1728 cubic inches, and be what is known

In the same manner, if the square yard of surface in Fig. 2, Art. 212 had been one yard or three feet thick, it would contain 3×9, or 27 cubic feet, and represent a Cubic Yard.
218. We thus make up the table of

CUBIC or SOLID MEASURE.

1728 cubic inches (cu. in.) make 1 cubic foot, cu. ft ,
27 cubic feet
" I cubic yard, cu. yd.

Now, a 24 cu
Theref 24 cu A feet Fix. Ex 51 $\frac{1}{2}$) 75 2

1 I) 50 4^{\prime} o) ${ }^{3} 37$
written wit
Sq. rds.
12
$\begin{array}{r}30 \frac{1}{4} \\ \hline 366\end{array}$
3
369 y
$\frac{9}{8} \mathrm{ft}$.
6^{\prime} o) $\frac{33^{\prime} 8}{55^{\frac{3}{8} 8}}=$ viding the

The

I. What 3 1n. ?
2. What in. ? 0
3. What $3^{6} \mathrm{in}$?

Now, a slab from the top, i foot thick, would contain 24 cubic feet.
Therefore, being 3 feet deep, there would be 3 times 24 cubic feet $=72$ cubic feet $=2 \mathrm{cu} . \mathrm{yds}$., $18 \mathrm{cu} . \mathrm{ft}$.
A cord of wood is 8 feet long, 4 feet high, and 4 feet wide; or 128 cubic feet.
Fix. Express 7544 yards as miles, etc.
5古)7544 First, we reduce the yards to rods by 22 dividing $5 \frac{1}{2}$, thus:
r1) 5088
Bring the $5 \frac{1}{2}$ yards to half-yards, that is
II; then bring the 7544 yards to half$\left.4^{\prime} 0\right) 137^{\prime} \mathrm{I}-7 \quad$ yards, that is 15088 : then 1 r half-yards 8)34-11 1371 times and 7 half-yards. or $3^{\frac{1}{2}}$ 8)34-I I yards remaining.

Proceeding, as usual, we obtain 4 mi .2 4-2 fur. II rds. $3^{\frac{1}{2}}$ yds., which may be written with the $3 \frac{1}{2} y d s$. expressed as 3 yds. Ift. 6 in .

Sq. rds. Sq. yds. Sq.ft.

12	6	7

$30 \frac{1}{4}$ Ex. A garden is 12 rds. 6 yds. 7 ft . in area. One side is 60 ft . in length ; find the length of the other.
\qquad
3^{69} yds.
9
$\left.6^{\prime} 0\right) \longdiv { 3 2 ^ { \prime } 8 } \mathrm { ft } .$
$55 \frac{28}{6}=\frac{9}{15}$
viding the area 3328 sq. ft . by the length, which is 60 ft .

EXERCISE 51.

$[$ The first II examples to be solved mentally.

1. What part of a foot in length is 8 in . ? 6 in. ? +in .? 3 111.? 2 in.?
2. What part of a yard of rope is 18 in .? 2 ft ? 12 in.? 0 in.? 4 in, ? 3 in, ? 2 in, ?
3. What part on a square foot is 72 in.? 4^{8} in.? 36 in.? 24 in. ? 12 in. ? 6 in.? 3 in.?
4. What part of a sq. yard of sheet-iron is 3 ft ? 6 ft ? 1 ft .? 2 ft .36 in .? 4 ft .72 in ? 6 ft .108 in .?
5. An acre of farm land is worth $\$ 320$; what must I pay for 80 rods? 40 rods? 32 rods? 20 rods? 16 rods?
6. If a wire fence cost 30c. per yard, what is the 2 rods? I furlong? 1 mile ?
7. A cubic foot of metal is worth $\$ 1728$; what is the value of I solid inch? the ninth part of a
cubic yard?
8. A hall-way is 72 inches wide, and takes sixty square yards of matting to cover it; what is its length?
9. A room is 20 yards long and 12 yards wide; how many yards in length of carpet I yard wide will be required for it? Find its cost at 75 c . a yard.
1o. What is the area of a room $3 \frac{1}{2}$ yards by $5^{\frac{1}{7}}$ yards?
$4 \frac{3}{2}$ yards by $7 \frac{1}{2}$ yards?
10. W
(r) 5 c . an inch, or 50 c . a foot, for lead pipe?
(b) foc. an inch, or \$4 a yard, for cloth?
(c) $\$ 6$ a yard, or 50 . an inch, for lace ?
(d) \$r a yard, or $\$ 6$ a rod, for fencing?
(e) 6 oc . a sq. foot, or $\$ 6.50 \mathrm{a}$ sq. yd., of carpet?
$(f) 24 \mathrm{c}$. for 8 in ., or $\$ \mathrm{t}$ a yard, of ribbon?
11. Write out tables for Long and Square Measures, as in Art. 201.
12. Express 213 inches in length as yards, etc.
13. How many yards, etc., in 1649 inches of wire?
14. How many inches in 6 rds. 4 yds. 2 ft .9 in . of
15. What part of a mile is 2 fur. 36 rds .2 yds. ?
16. How many cords of wood are there in a pile 40 yds . long, 2 yds. high and 4 ft . wide?
17. Find the cost of digging a drain 20 feet long. 2 yds. wide, and 14 feet deep, at 90 cents per cubic yard. 20. Find the sum of 12 yds. 4 rds. 3 ft .25 in . ; 33 yds . 2 ft . $10 \mathrm{in} . ; 7 \mathrm{ft}$. $132 \mathrm{in}$. ; $10 \mathrm{yds} .7 \mathrm{ft} . ; 31 \mathrm{yds} .100$ in. ; 76 yds. 89 in .
KIn dividing by 30 , bring both divisor and dividend urths.
2I. The arca of a board is 21 feet; its length is 18 in.,
what is its breadth?
18. What is the area of the four walls of a room, 13 ft . 9 in . wide, 16 ft .3 in . long, and 14 feet high? and what is the cost of papering it at 2 c . a sq. ft.?
19. How many suits of clothes can be made from: I_{3} pieces of cloth, each containing $21 \frac{1}{2}$ yds., if it takes $7 \frac{1}{6}$ yards to make a suit ?
20. In 987,654,321 inches how many miles, etc. ?
21. If I have to measure a distance of 3 furlongs with a line three rods and a half long; how many times will the line measure the distance?
22. In $169,500,087,647$ sq. inches, how many square
miles, etc. ?
23. If a plank be $6 \frac{3}{4}$ inches wide, what length of it will give a surface of 2 square feet?
24. A block of marble contains 1296 cu . feet, its breadtl and depth are each 9 feet; what will be its length?
25. If 17 men reap 19ac. 97 sq. rods in a day, and 8 of them reap one-third of an acre each; how much ought each of the others to reap ?
26. How many sq. yards of block pavement in a street $\frac{1}{2}$ mile long and I chain wide.
3I. By how much does a road 18 miles long exceed one of 12 mi .3 fur. 17 rods ?
27. Thee five farms; the first contains 29 ac . 133 sq . rods, the second 100 ac. 8 r sq. rods, the third 85 ac . 69 sq. rods, the fourth 71 ac. 137 sq. rods, and the fifth 112 ac. 98 sq. rods; how much land do I own?

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
33. If a mountain be $4 \frac{7}{8}$ miles high, express its altitude as a frartion f the earth's diameter, which is 7926 miles.
34. What length is that of which 25 yards is $\frac{15}{2} \frac{7}{7}$ of which 7 feet is $\frac{21}{100}$?
35. What length in reet would require to be added t, a telegraph wire, which reaches only $\frac{7}{2} \frac{1}{4}$ of the dis. tance between Toronto and Thornhill to complete the whole distance, 12 miles?
36. What part of 2 miles would just measure $\frac{3}{4}$ of 10
rods?
37. A block of land is $\mathrm{r} \frac{1}{4}$ miles square, how many acres would there be in $\frac{1}{10}$ of it ?
38. Divide rot square miles of land among 33 persons and give each an equal share; what would each receive?
220. Time is measured by seconds, minutes, hours, days, weeks, months and years, as shown by the following

TABLE OF TIME.

60 seconds (sec.) make 1 minute, min. 6o minutes "، i hour, hr. 24 hours "" I day, da.
7 days "، I week, wk.
365 days " I year, yr.
221. The months of the year are January, February, March, April, May, June, July, August, September, October, November and December. April, June, September and November have each $3^{\prime \prime}$ days, and all the others have 31 days, except Feb. ruary, which has 28 and sometimes 29 days.

The year in which February has 29 days is called Leap Year, and thus has 366 days. Leap Years are exactly divisible by 4 , such as 1860 , 1880, 1888.
Ex. How many hours from 12 o'clock, noon, on the 15 th of December, to 12 o'clock, midnight, on the roth of January next?

Since December has 31 days, there will be 16 days up to noon, and 12 hours more on the last day of December up to midnight. From this time to January roth gives ro days more; in all $16+10$, or 26 days.

- and 12 hours.

$$
\begin{aligned}
26 \text { days } & =26 \times 24 \text { hours }=624 \text { hours. } \\
624+12 & =636 \text { hours. }
\end{aligned}
$$

EXERCISE. 52.
The first seven questions to be solved mentally.

1. How many minutes in $\frac{1}{2}$ an hour? in $\frac{3}{4}$ of an hour? in $\frac{1}{4}$ of an hour? in I $\frac{1}{2}$ hours? in 4 hours?
2. What part of an hour is 30 minutes ? 45 minutes? 20 minutes? ro minutes? 15 minutes?
3. How many days in 2 whs? in $3 \frac{3}{7}$ wks? in the two first months of the year? in 2 years? in $\frac{1}{6}$ of a leap
4. What part of a week is 3 days? 24 hrs ? 22 hrs ? $3 \frac{1}{\frac{1}{3}}$
days? 48 hrs ?
5. A man can earn $\$ 3$ an hour, how much can he earn in a day? in to days? in 15 min .? in I min.?
6. How long from 6 o'clock in the morning to 8 o'clock at night? from midnight to mid-day?
7. Which is the cheaper of the following rates:
(a) roc. an hour, or $\$ 2$ a day, for a cab?
(b) $\$ 2$ a day or $\$ 14.50$ a week ?
(c) Ic. a min. or 50 c . an hour?
(d) roc. for 20 min . or 40 c . an hour?
(e) $\$ 24$ for 3 mos. or $\$ 100$ a year?
$(f) \$ 2$ a day or $\$ 62$ for the month of Aprii ?
8. How many seconds in a year? in a leap year? in the month of June? in the month of August? in the month of February, r880? in a week? in a day? in
an hour?
9. How many minutes in the year 1882 ? in the year 1884^{\prime} in the month of July? in September? in the
the year? in the first three months of 1888 ? in the last three months of the year?
10. How many seconds in 5 hrs .15 min .12 sec . ?
11. How many hours, etc., in 38497 sec. ?
12. How many days from April ist to Oct. Igth ?
13. Reduce 27789 min . to weeks, etc.
14. What part of a week is 6 days, 12 hrs . and 30 min . ${ }^{3}$
15. Find the difference between $\frac{9}{18}$ of a day and $\frac{9}{5}$ of
16. How many days from August 24th, 1883, to Augus:
12th, 1884 ?
17. How many minutes from 18 min . past 9 to 32 min .
to 10 in the morning?
18. What part of a week is wasted by a boy who is idle
for 2 days Io hours?
19. Find the third part of 3 wks .6 da. 14 hrs .17 min .
57 sec .
20. What part of a day is I hr. 52 min .30 sec . ?
21. What must be taken from $\frac{2}{3}$ of 14 da. 9 hrs. to leave half an hour and 8 min .?
22. Find the value of $\frac{9}{10}$ of a day $+\frac{7}{8}$ of I hr. $-\frac{1}{3}$ of I_{3}
hrs. 2 min .6 sec .
23. From half-past 5 p.m., on the 30th of June, to 20 min . elapses?
24. The true year contains 365 days, 5 hrs ., 48 min ., $49 \frac{7}{10} \mathrm{sec}$. ; how many days, etc., in 12 years?
25. Express $\frac{8}{13}$ of an hour in terms of a minute, of a day, and of a week.
26 , What is the period of which 3 hrs .20 min . is $\frac{5}{6} ?$ of which three days is $\frac{6}{7}$?
26. Of what time is 3 min . 10 sec . the seven-fifths ?
27. What time would you have to add to 3 hrs . 5 min . 20 sec . so that it would become $\frac{5}{8}$ of a day?
28. How long would it take a man to complete a journey of 20 miles at the rate of $3 \frac{1}{2}$ miles an hour? And if he started at ro a.m., at what time by the clock would he finish it?
29. Two men start to walk, the one from Toronto, the other from Newmarket, a distance of 32 miles, at 9 a.m.,the one walks at the rate of 3 miles an hour, the other $3 \frac{1}{2}$ miles an hour ; at what time by the clock will they meet?
30. A boy studies on Monday 5 hrs . 30 sec., $\frac{3}{4}$ of $\frac{11}{12}$ of a day on Tuesday, $\frac{5}{7}$ of 12 hours on Wednesclay, $\frac{2}{3}$ of 1o hrs. 20 min . on Thursday, and $\frac{5}{6}$ of 8 hrs. ${ }^{11}$ min. 40 sec. on Friday; how many hours would he study during a school week?
31. A girl commenced to read a book of 320 pages on Monday at $9 \mathrm{a} . \mathrm{m}$.; if she read every day for 4 hours at the rate of 5 pages in 20 min .; at what time would she finish it?
32. Goods are bought and sold, not only by weight, but are often measured: as, a pint of beans, a gallon of milk, a bushel of potatoes, a hogshead of wine.
33. Liquids, such as wine, ale, etc., are measured in a different way from fruits, grain, etc.
34. The latter, and such commodities as are taken up in the hand, are measured by the following

TABLE OF DRY MEASURE.

$$
\begin{aligned}
& 2 \text { pints (pt.) make i quart, qt. } \\
& 4 \text { quarts } \\
& 2 \text { gallons } \\
& 4 \text { pecks }
\end{aligned} \text { "، I qallon, gal. }
$$

Ess The standard measure in Canada is the "Imperial Gallon," containing $277 \frac{274}{1000}$ cubic inches. The law determines the weight of a bushel of different kinds of produce, as follows:

225. Wine, ale, etc., are measured by the tollowing

TABLE OF LIQUID MEASURE.

4 gills (gi.) make r pint, pt.

2 pints	"	I quart, qt.
4 quarts	"	I gallon, gal.

A hogshead (hhd.) of wine contains 63 gals. A hogshead of beer or ale " 54 gals. A barrel of beer or ale " 36 gais.

EXERCISE 53.

\leftrightarrows The first 8 questions to be solved mentally.

1. In a quart of water how many gills? how many half pints?
2. If hickory nuts are 20c. a quart, what is the price of a pint? a half-pınt? a peckr a quarter of a peck ? a half-bushel? three-guarters of a bushel?
31 paid 8oc. for a gallon of Fulton \& Michie's best vinegar: how much was that a quart? a halfpint? for 6 gills? for half a gallon?
3. Bought a bushel of Spanish chestnuts from Cleg. horn \& Son for $\$ 4$; what was the price for half a grallon? for a quart? for 3 bushels? for 4 quarts?
4. Bought from Farmer Jones, potatoes at 6oc. a bush el ; in order to gain roc. on every peck I sell, what must I charge for a bushel ? tor $\frac{1}{5}$ of a peck? for a bushel and a quarter? for half a peck?
5. What part of a bushel of corn is 3 pks? $\frac{1}{2}$ a gal.
lon? 4 gals.? 8 qts.? 8 pints?
6. Which is the cheaper of the following prices:
(a) \$I a bushel, or 25 c . a peck?
(b) 20c. a qt., or Ioc. a pint?
(c) 5c. a gallon, or 6 oc . a bushel?
(d) $\$ 2$ a quart, or 30 c a gill ?
(c) Soc. a peck, or 12 c . a gallon?
7. At 3oc. a gallon, what is the cost of a hogshead of ale? a quart of nuts?
8. How many dozen of pint bottles could be filled from 20 barrels of ale?
io. By how much does the number of gals. in 10000 pts. of wine exceed the number of hogsheads in soooo gallons?
9. How many pints of water in 6 gals. 3 qts. 1 pt.?
10. How many bushels, etc., of nuts in 1387 qts.?
11. How many hogsheads of wine in 6324 gills?
12. I bought 4 barrels of spirits, each holding $15 \frac{3}{4}$ gallons, at $3 \frac{1}{2} \mathrm{c}$. a gill; what can I sell it for, so as to
13. How many gallons of cider at $12 \frac{1}{2} \mathrm{c}$. a gallon can I obtain in exchange for 130 bushels of apples, at 35 c . a bushel?
14. What is the value of 325 bags of beans, each containing 2 bush. I pk., at 70 c . a bushel ?
15. How many loads of apples each containing $27 \frac{3}{4}$ bush. at 45c. a bush., can be bought for $\$ 49.95$.
16. What part of 1 gallon is 2 qts . $1 \frac{1}{4} \mathrm{pt}$.?
17. If 376 gals. 3 qts. I pt. of milk be divided equally among 9 charities, how much will each receive?
18. A man bought $\frac{57}{67}$ of a bushel of nuts and sold them at roc. a quart, but only gave $1 \frac{1}{2}$ pts. to a quart; how much did he receive?
19. A man bought 14 bags of beans, each holding 2 bush. 2 pks., for $\$ 2 \mathrm{I}$, and sold them in boxes of 1 bush. 3 pks. each; find the price per box.
20. What part of 62 gals. 2 qts. I pt. must be taken from a hogshead of wine to leave 42 gals. I pt.?
21. If a vessel is $\frac{\theta_{3}}{3}$ full, and after 70 pints are drawn off, is found to be $\frac{s}{8}$ full, how much did it contain?
22. If a barrel of ale is $\frac{9}{10}$ empty, how many quarts are
still left in it ?
23. How many barrels of ale could be filled from a vat containing 1296 gallons? and how many dozen quart bottles would this quantity fill?
24. How many bushels of clover seed in 5 loads, each weighing i ton 36 lbs .
25. How many bushels of oats would weigh as much as 560 bushels of corn ?
26. How many bushels of oats would a horse eat in 1 year, if fed three times a day, and given 5 quarts
at each meal?
27. What part of a bushel of potatoes would weigh as much as $\frac{2}{3}$ of a bushel of buckwheat?
28. How many barrels of flour of 196 lbs. could be made from 1000 bushels of wheat, if it takes 3 Jbs. of wheat to make 2 lbs. of flour ?
29. Many articles of merchandise are bought and sold by special names, the most important of which compose the following

GENERAL TABLE.

I dozen (doz.)	$=12$ articles.
I score	$=20$
I quire	$=24$ sheets.
I ream	$=20$ quires.
I gross	$=12$ dozen.
I great gross	$=12$ gross.
I stone	$=14$ pounds.
I brl. of flour	$=196 "$
I " pork or beef	$=200 "$

EXERCISE 54.
The following questions should be solved men.

1. How many articles in 3 dozen? in $5 \frac{1}{2}$ dozen? in 2 score? in I score and 3 dozen? in 3 score and ten? in $6 \frac{3}{2}$ dozen? in one-half a score? in $\frac{1}{3}$ of a dozen $+\frac{1}{8}$ of a score? in 5 more than $\mathrm{I} \frac{1}{4}$ dozen?
2. At 60 c . a dozen, what is the cost of half a dozen oranges? of 2 score apples? of 5 peaches? of half a score of lemons? of a gross of pensat 5 c . a doz.?
3. What part of a score is a dozen?
4. If foolscap paper costs ic. a sheet, what must I pay for a quire? for $2 \frac{1}{2}$ dozen sheets? for a ream? for 8 sheets more than half a quire? for 2 quires less in
sheets? for $\frac{1}{4}$ of a ream?
5. Which is the cheaper of the following prices:-

12c. a dozen, or 20c. a score?
3c. a piece, or 30 c . a dozen ?
50 c . a quire, or 2 c . a sheet?
$\frac{1}{2}$ a dozen for 30 c ., or 8 oc . a score?
$1 \frac{1}{2} \mathrm{c}$. each, or 20 c . a dozen ?
2 score for a shilling, or $\frac{1}{2}$ shilling a score?
6. A bought eggs for 30c. a dozen, how much per dozen must he sell them for to gain Ic. apiece? to gain ${ }^{2} 5 \mathrm{c}$. a dozen? to lose $\frac{1}{2} \mathrm{c}$. each ? to gain 20c, a score? to lose ioc. a score?
7. How many score of sheep in 5 flocks, each contain-
ing 9800 sheep?
8. How many boxes, each containing 1 gross, are there in nine million pens?
9. What would 120 gross of spools cost at 50 c . a
10. How many barrels in 1120 stones of flour; and what would the whole cost at \$3 per cwt. ?
11. From 60 reams of paper, how many books of 400 pages each could be made, if one sheet is folded
into 8 leaves?

-1 HITIIMETIC FOR BEGINNERS.

13. How many barrels of beef can be packed from 20 would es, each weighing 1150 pounds, and what 14. What part of cost at $\$ 16.50$ per barrel ? a barrel of a flour?
14. If io eggs weigh a pound, how many dozen would of pork?
15. Three-fourths of a ream is what part of so quires? of a book containing 800 pages? of 450 sheets?
16. A grocer in packing 6 dozen dozen eggs, broke half a dozen dozen, and sold the remainder at 20 cents a dozen. How much did he receive for the eggs? 18. How many reams of paper will print an edition of 2500 copies of the Royal Canadian Reader No. ${ }^{4}$, 12 leaves ? 384 pages, if one sheet make
17. What is the cost of a great gross of steel pens, at $6 \frac{1}{1}$ cents for $\frac{3}{4}$ of a dozen ? 20. At $\$ 22.86$ per ream, what will 9 reams, 6 quires, 12 sheets of paper cost ? 9 reams, 6 quires, 12 21. How large an edition of an Elementary Arithmetic 16 sheets to the volume? reams of paper, allowing 22. How many dozen cabbages can be planted 2 feet apart, in a garden containing 132 rows two feet worth, when brought and what would they be dozen? How many to market at 40 cents per many acres are there in the garden?
acked from 20 ads, and what jarrel?
much as Jit $_{\frac{1}{8}}$,f
dozen would lake 2公 barrels
of ro quires? o sheets?
ys, broke half r at 20 cents r the eggs?
in edition of eader No. ${ }_{4}$ sheet make

1 pens, at $6 \frac{1}{2}$
6 quires, 12
Arithmetic r, allowing
ted 2 feet two feet they be cents per garden?

CHAPTER V.

DECIMALS.

227. In the previous system of notation, we have seen that the figures increase ten fold from right to left. That is, decrease tenfold from left to right. This can be carried out in the same manner to the right of the
units' place. 228. In the numbe the values to $843.5 \cdot 267$, if we call the 5 units, decrease tenfold fort increase, and those to its right Thus, 5 means 5 units.
$\{3$ means 3 tens of unis.

2 means 2 tenths of a unit.
14 means 4 hundreds of units.
16 means 6 hundredths of a unit.
f 8 means 8 thousands of units.
17 means 7 thousandths of a unit And so on for any number.
229. The part 267 is called a decimal, and we shall see that it may be expressed as a fraction, for

$$
\begin{aligned}
& 267=\frac{2}{10}+\frac{0}{100}+\frac{y}{1000}=\frac{200+60+7}{1000}=\frac{267}{1000} \\
& \text { expression } 8425 \cdot 265 \text { win }
\end{aligned}
$$

230. The expression $8435 \cdot 267$ will be read : -8 thousand 4 hundred and thirty-five, decimal twe six seven, (not 4 decimal two hundred and sixty-seven.)
It may also be read:-8 thousand, four hundred and
thirty-five, ana two hundred and! sixty-seven thoused and Es The pupil should bell decimals rapidly, whe well exercised in writing way.
the latter
231. The dot (•) on the right of the units' figure in Art. 228 is called the Decimal Point, and marks the beginning of the decimal part, and the dot on the left is not written in practice.
232. Hence any decimal can be uritten in a fractional form by using the figures of the decimal for the numerator, and writing for the denominator, 1, followed by as many ciphers as there are places in the decimal.
233. For the same reason, we can express the fractional form in a decinal form, by using the numerator for the decimal part and counting off from the right as muny places as there are ciphers in the denominator, supplying ciphers to the left, if necessary.

$$
\begin{aligned}
& E x .3 .-\frac{803}{10000}=10502 \\
& E x .4 .-\frac{707}{100}=75^{\circ} 03 .
\end{aligned}
$$

234. All examples given in the decimal form may, therefore, be worked by Vulgar Fractions, but Addition and Subtraction may also be performed just like whole numbers, care being taken, as before, that only like another.

Ex. 5. Find the sum of $4.02,{ }^{\circ} 0075,16.31$, and $41 \cdot 032$.

$$
\begin{aligned}
& 4 \cdot 02=4 \frac{9}{100} ; \cdot 0075=\frac{78}{10000} \\
& 16 \cdot 3 I=16 \frac{51}{100} ; 41 \cdot 032=41 \frac{8}{10} \frac{8}{100} \\
& 4+16+41=61
\end{aligned}
$$

$$
\frac{200}{100}+\frac{78}{10000}+\frac{9}{100}+\frac{8}{1020}=
$$

$$
\frac{200+75+3100+320}{10000}=\frac{3695}{10000}=\cdot 3695
$$

Hence the sum is $61 \cdot 3695$.
This may also be worked thus :-

$$
\begin{aligned}
& 4.02 \\
& .0075 \\
& 16 \cdot 31 \\
& 41 \cdot 032 \\
& \hline 61 \cdot 3695
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. 1. }{ }^{\circ} 02605=\frac{2}{1085} \\
& \text { Ex. 2. } 122^{\circ} 006=12 \frac{10}{1000}
\end{aligned}
$$ the left is

mal form by merator, and many ciphers
al form in a ecimal part as there are 'o the left, !'

Dechatals.
Ex. 6. - Find the difference between $25 \frac{9}{1000}$ and

$$
{ }^{21} 1_{1000}^{7}=21 \cdot 007
$$

$40 \cdot 935$

$$
\frac{21 \cdot 007}{19.92 \delta}
$$

This may also be worked thus :-

$$
\begin{aligned}
& 40.935-21 \frac{1}{1000}=40,9.95-21 \frac{7}{1000}=19 \frac{0,98}{1000} . \\
& \text { x. } 7 .- \text { Multiply } \cdot 027 \text { bv } .
\end{aligned}
$$

Ex. 7.-Multiply ${ }^{\circ}{ }^{\circ} 37$ by ${ }^{\circ} 042$.

$$
\begin{aligned}
& \text { This may also be worked thus :- }
\end{aligned}
$$

235. From this we see that we multiply as if they were whilole numbers, and then mark off from the right of the product as many decimal places as there are in the multiplicr and multiplicand together, supplying ciphers to the left, tohen necessary. Ex. 8.-Multiply 3I 25 by org6.

$$
\begin{aligned}
& 3125 \\
& 0.196 \\
& \hline 18750 \\
& 28125 \\
& 3125 \\
& \hline 612500
\end{aligned}
$$

In this result the two ciphers on the right of the decimal have no value, and may be struck off, leavlíx. 9.-Divide 0296 by $\cdot 08$.

$$
\begin{aligned}
& \cdot 0296=\frac{\frac{290}{10000}}{0.08}=\frac{8}{1000} . \\
& \frac{290}{10000} \div \frac{8}{100}=\frac{290}{10000} \times \frac{100}{8}=\frac{37}{100}=37 . \\
& \text { Proof : } \cdot 08 \times \cdot 37=\frac{8}{100} \times \frac{37}{100}=\frac{290}{10000}={ }^{\circ} 0296 \text {. }
\end{aligned}
$$ This Example may also be worked thus :

$$
\begin{gathered}
\cdot 08) \cdot 0296(\cdot 37 \\
\frac{2 t}{56} \\
56
\end{gathered}
$$

Now, since there are four places of decimals in the
dividend, two in the divisor and two in the quotient,
we see that the number of places in the quotient cant, always be found by taking the number of places in the divisor from the number of places in the dividend and marking off this difference as the number. of places in the quotient.
We also notice that 37 is obtained by dividing 8 into 296, just as if they were whole numbers.
236. From this we obtain the following

RULE FOR DIVISION OF DECIMALS.

Divide the numbers as if they were zohole numbers, and mark off from the right of the quotient, the number of places then, are in the dividend more than in the divisor, prefixing'
ciphers to the left, if necessary Since
ciphere to the rimal is not affected in value by adding dividend have more places thus always make the $E x$. ıo.-Divide 52.3 by $\cdot 125$ than the divisor. The dividend may be writt ne dividend may be written $52 \cdot 3000$.
125)523000(4184 In the divisor, ${ }^{125}$, we have
500 places; in the dividend 523000 , we have 4 places: rence in the quotient we must have I place, which
gives 418.4 . gives 418.4.

$$
\begin{gathered}
\text { EROOF: }-418.4 \times \cdot 125= \\
52 \cdot 3000=52.3 .
\end{gathered}
$$

often will not termination will be very long, and very the quotient to a ceate, and it is then required to find

Ex. 11.-Find the quotient to four places of decimals when 2.5 I is divided by ${ }^{109}$.
109) $25100000(230275$
$\frac{218}{330}$
$\frac{327}{300}$
$\frac{218}{820}$
$\frac{763}{570}$
545

Now, there are 3 places of decimals in the divisor, and since we are to have 4 places of decimals in the quotient, there must be 7 places in the dividend, or 2.5100000 , and the operation will be performed as shown, and the rootient will be 23.0275 .

EXERCISE 55.

T The pupil should prove the results in each
question. (a.) Express as ordinary fractions in their simplest form:-

$$
\begin{array}{lrrr}
\text { I. } \cdot 495 ; & \cdot 0075 ; & 12 \cdot 8 ; & 68 \cdot 1875 . \\
\text { 2. } & 375 ; & \cdot 225 ; \cdot 0068 ; & 3125 . \\
\text { 3. } 95 ; & \cdot 875 ; \cdot 4375 ; & 8 \cdot 275 .
\end{array}
$$

(b.) 1. The distance from A to B is 42.3 chains, from B to C is 13.06 ch ., from C to D is 8.049 ch ., from C to D is $r 6$ ch., from D to E is 037 ch . How far from A to E ?
2. A man had rooo acres of land, and sold 450.625 acres; how many acres has he left?
3. From 00038 take 36 ten-millionths.

1. What must be taken from 34.634 acres to leave 28.9483?
2. To how many pounds of chicory must 23.859 pounds of coffee be added to produce a mixture of 29.796
3. What is the difference between roo miles anc
4. What is the sum of 18 thousandths, 15 millionths, 81 hundredths, I46 ten-thousandths, 834 hundred. thousandths?
5. What is the cost of 34.5 yds of c!oth, at $\$ 3.15$ per yard?
6. Since 16.5 feet make a rod, how many feet are
there in 23.7 rods?
7. The product of two numbers is 0048 ; one is 06 : what is the other?
8. Divide

$$
\begin{gathered}
\circ 04905 \text { by } \cdot 327 . \\
135 \cdot 05 \text { by } 037 \\
7 I^{\circ} 142 \text { by } \cdot 0071 .
\end{gathered}
$$

12. Divide each to four places of decimals:-

$$
\begin{aligned}
& 150 \cdot 75 \text { by } 30 \cdot 25 \\
& 300.402 \text { by } 12 \cdot 1 \\
& 4.00334 \text { by } 6 \cdot 31
\end{aligned}
$$

13. Find the quotients each to five places of decimals.

$$
\begin{array}{r}
3412 \div 8.4736 . \\
0004134 \div 3243 . \\
00079085 \div 83497 .
\end{array}
$$

238. We have seen that any decimal may be expressed as
a vulgar fraction; we will now reduce a vulgar fraction to its equivalent decimal. The fraction $\frac{3}{5}$ is equal to $\frac{6}{10}$, which may be written $\cdot 6$.
 The former might have been obtained by dividing $3^{\circ} 0$ by 6 , thus :-

$$
\frac{613 \cdot 0}{.5}
$$

and the latter by dividing 1×00 by 25 , thus:-

$$
\frac{2 5 \longdiv { 1 . 0 0 }}{\cdot 04}
$$

239. Hence we see that, while such fractions as $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}$, etc., may be known by inspection to be $\cdot 5, \cdot 25, \cdot{ }^{2}$, etc., any fraction may be reduced to a decimal by simply dividing the numerator by the denominator.

Ex. 1.-Express $\frac{5}{16}$ as a decimal. 16) $5 \cdot 0000(3125$
$\frac{48}{20}$ $\frac{16}{40}$ $\frac{32}{80}$ 80

Here, the value of the numerator is not altered by adding ciphers to the right of the decimal point.

It will then be seen that the position of the decimal point is found as in ordinary division of decimals.

Ex. 2.-What decimal of a pound is the same as $\frac{3}{3}$ of
a pound ?
4) 3.0000 Here the division is carried on by
means of the factors of 32 , that is :
4 and 8. Therefore, $\frac{3}{32}$ of a pound is The previous results the same as og375 of a pound.

- 09375

$$
\begin{aligned}
3125 & =3125 \\
\cdot 09 & =\frac{5}{16} . \\
\cdot 09375 & =93075 \\
10000 & =\frac{3}{32} .
\end{aligned}
$$

240. We have seen in Art. 237 that, in many cases, the divi sion will not terminate, in other words, there will be a remainder, no matter how far we proceed.
Ex. 3.-Reduce $\frac{28}{4} \frac{8}{5}$ to a decimal. 45)28.000) 622

$\frac{270}{100}$	Here the remainder, 10 , is contin- ually repeated; then we see that		
$\frac{90}{100}$	the figure 2 in the quotient must $\frac{90}{10}$		also be repeated, the quotient
:---			
being written 62.			

Ex. 4.-Express $\frac{2}{2} \frac{9}{6} \frac{3}{6}$ as a decimal. 165)103.000(6.64

$\frac{990}{400}$
330
700
660
400

The remainder, 40 , repeats, and therefore the figures in the quotient from the 2 will repeat, and the quotient is written in the form $.6 \dot{24}$.
241. Such expressions are called Circulating Decimals, or Repeating Decimals, from the fact that one or more figures in them circulate or repeat.
The result of Ex. I would, if carried out, be written $\cdot 62222$, etc., and in Ex. 2 the quotient would be written 6242424 , etc.
The dots are placed over the figure or figures that re-
242. Decimals like $\cdot \dot{0} 57$, where all the figures after the point repeat. are called Pure Circulating Deci-

Decimals, like $-62 \dot{9} 4 \dot{7}$, where some of the figures after the point do not repeat, are called Mixed Circu. lating Decimals.
243. These decimals are reduced to vulgar fractions by
the following

RULE.

If the decimal is a Pure Circulating Decimal, place the repeating part of the decimal for the numerator, and for the denominator as rany mines as there ari fogures in the $r e$ peating part.

If a Mixed Circulating Decimal, subtract the part that does not repeat from the whole decimal, place the difference for the numerator, and for the denominator as many nines as there are figures in the repeating part, followed by as many ciphers as there are figures that do not repecit in the decimal.

Ex. $1 .-\dot{\circ} 3 \dot{7}=\frac{37}{090}$.
Ex. 2.- $03 \dot{7}=\frac{84}{800}$.
Subtracting 3 from 37 leaves 34 , which is praced as numerator.

$$
\begin{aligned}
& E x .3 .-5 \cdot 8 \dot{92} . \\
& 5892-58=5834
\end{aligned}
$$

DIVISION OF DECIMALS

Thus, the required fraction will be

5 These results may be proved by dividing the numerator by the denominator
244. All examples on Circulating Decimals are worked by reducing the decimals to fractions. The operations are then performed as in fractions, and the result thus obtained expressed as a decimal.

$$
\begin{aligned}
& E x: 1 .-2 \cdot 9 \dot{0} \times \cdot \dot{2} 4 \dot{3}=\frac{2798}{\theta 8 \theta} \times \frac{2}{\theta}+\frac{9}{\theta}=\frac{2}{2}=\dot{6} \\
& E x .2 .-2 \ddot{2}+1 \dot{3}=\frac{29}{\theta} \times \frac{9}{20}=\frac{10}{80}=1 \cdot \dot{6}
\end{aligned}
$$

EXERCLSE 50.
(a) Express the following fractions as decimals:-

1. $\frac{5}{8}$.
2. $\frac{1}{1 \frac{5}{2}}$.
3. $\frac{1}{10}$.
4. $\frac{17}{20}$.
5. $\frac{1}{2} \frac{1}{5}$.
6. $\frac{1+}{4 \frac{1}{0}}$.
7. $\frac{89}{29}$
8. $\frac{1}{37}$. 14. $\frac{1}{12}$.
9. $24 \frac{3}{3}$
10. $\frac{31}{8}$.
11.
12. $\frac{98}{6} \frac{8}{5}$
(b) Express the following deciare 17. $\frac{10}{10 \frac{1}{8} .}$ 18. $\frac{15 \pi}{40}$. lowest terms:-
13. $\dot{7} 205$.
14. $\cdot \ddot{\gamma}{ }_{2}$
15. - ه $6 \ddot{9}$.
16. 20415^{\prime}.
17. ' ${ }^{2} 35 . ~ 4 . ~ " 093 . ~ 5 . ~ ' 235 \overleftarrow{3} 3$.
(c) 1. Multiply $55 \cdot \dot{6} \dot{9}$ by $\dot{3}$.
18. Find the product of $5 \cdot \dot{4} 1463$ and $\cdot i 2 j$.
19. Divide $\dot{\text { o }} 8 \dot{2}$ by $\cdot 6$.
20. Find the quotient of 3 r. 79° divided by 3.073 .
21. Divide $\cdot \dot{29} 9$ into $2 \cdot 297^{\circ}$.
C. The product of two decimals is $1 \frac{4}{5}$; one of them is $\cdot 245$, find the other.

ciapter ri.

PERCENTAGE.

245. The word Percentage occurs so often in ordinary busi ness affairs, that everyone should know its meaning. If a man has 100 gallons of vinegar, and loses 20 gal. lons, he is said to have lost 20 per cent. If a man has 100 dollars, and by trading, increases it to 140 dollars, he is said to have gained 40 per cent.
246. The term Per Cent. thus means per hundred, and is only a short way of writing per centum (per humdred.)

1 We see that 20 per cent. means 27 on every hundred ; therefore, 20 per cent of anything, is the same as $\frac{20}{100}$, or $\frac{2}{5}$ of it.
Thus:-8o per cent. of 150 pounds of sugar is the same as $\frac{80}{100}$ of 150 , or $\frac{4}{5}$ of 150 , which equals 120 pounds.
The expression \% stands for per cent.; thus, 5% means 5 per cent., or $\frac{1}{8 \pi}$. Ex. I. What is 8% of 150 pounds?

$$
8 \%=\frac{8}{10}=\frac{-2}{25} .
$$

$$
\frac{2}{23} \text { of } 150 \mathrm{lbs} .=\frac{12}{12} \text { pounds. }
$$

Ex. 2. What is 120% of 80 yards?

$$
\begin{aligned}
& 120 \%=\frac{120}{100} \\
&=\frac{6}{5} . \\
& \frac{a}{5} \text { of } 80 \text { yards }=96 \text { yards. }
\end{aligned}
$$

Ex. 3. A man lost 8 horses out of a purchase of 400 ;
what did he lose $\%$?
Here we are to find what he lost on 100 horses, if he lost 8 on 400 .

400 gave a loss of 8 , therefore 100 gave a loss of 2. That is, lie lost 2 per cent.
Proof : $2 \%=\frac{2}{100}=\frac{1}{50}$, and $\frac{1}{50}$ of $400=8$.
That is 8 horses lost.
Ex. 4. A man had a flock of 80 os sheep, and lost 60% of them by disease; how many sheep were left?
Since he lust 60%, he must have ($100 \%-60 \%$) or 40% left.

$$
\begin{gathered}
40 \%=\frac{40}{100}=\frac{2}{5} . \\
\frac{2}{5} \text { of } 800=320 \text { slieep. }
\end{gathered}
$$

Compare this with Ex. 5, page $\mathbf{7 5}$.
247. The expressions on and off occur in a peculiar sense in percentage.
A merchant selling his goods (bought in England) at 60% on would sell them for 60% or $\frac{s}{s}$ more thand) at total cost price. Thus 60% on cost, means $\frac{5}{3}$ more than cost, or $\frac{8}{5}$ of the cost.
Hence 20% on 60 c . a yard is $\frac{6}{3}$ of 60 c ., or 72 c . a yard.
$40 \% 01$ Iod. a pound is $\frac{7}{3}$ of 10 d., or $14 d$. a pound.
Again, a farmer selling a plough at 20% off the cost
would just receive 80%, or $\frac{4}{3}$ of the cost.
Hence 15% off $\$ 40$, would leave 85% or $\frac{1}{2} \frac{7}{0}$ of $\$ 40$, that
is $\$ 34$, making a loss of $\$ 6$.
30% off 8 o bushels would be 70% or $\frac{7}{20}$ of 80 bushels, which is 56 bushels.

EXERCISE 57.

The first 12 questions should be solved mentally.

1. Express the following percentages in their simplest fractional form :-

2. What $\%$ of a man's income is $\frac{3}{4}$ of it? $\frac{1}{6}$? $\frac{1}{10}$?
$\frac{9}{10}$? $\frac{2}{5}$? $\frac{i}{8}$? $\frac{25}{2} \frac{5}{6}$? $\frac{7}{6}$? $\frac{12}{10}$? $\frac{7}{7}$?
yar is the equa!s 120
thus, 5%
3. What is the difference between 30% of my farmand of it? $\frac{\pi}{0}$ of a lot and 60% of it? 50% of $\$ 800$ and 40% of $\$ 800$? $\frac{3}{4}$ of 80 plis. and 80% of 80 pks ? 15%
of 200 acres and $\frac{7}{4}$ of 200 acres?
4. A man owned 60% ot a farm of 640 acres and sold $\frac{1}{2}$ of it ; how many acres had he left?
5. A merchant makes $\$ 60$ on $\$ 200$; what is his gain
6. A had $\$ 600$; at the end of the year lue has $\$ 900$;
what did he gain $\%$?
7. What is gained per cent., if $\frac{3}{4}$ of a farm is sold for
what $\frac{7}{8}$ of it cust ?
8. What is the gain \%, when goods are sold so that $\frac{5}{7}$ of what they all cost is received for half the goods?
9. Sold $\frac{4}{5}$ of a hhd. of molasses for what the whole cost me ; what was my gain per cent.?
10. What per cent, is gained by buying oil at 30 cents a gallon, and selling it at 12 cents a pint?
11. A's money is 50% more than B's; how much per
cent less is D's than A's?
12. If I sell $\frac{s}{8}$ of an acre of land for what $\frac{8}{8}$ of it cost, what per cent. do I lose?
13. What is 65% on $\$ 145$? 40% off $\$ 560$?
14. What is $12 \frac{1}{2} \%$ on $\frac{7}{9}$ of a shilling? 25% of $\frac{1}{1} \frac{2}{8}$ of a gallon? 20% off $\frac{1}{2} \frac{5}{6}$ of a yard? 180% on $\frac{1}{1} \frac{2}{4} \frac{5}{2}$ of a
dollar?
15. What $\%$ on $\$ 9$ is $\$ 12$? \$18? \$13.50?
16. A merchant gains 25%; what is the gain in a sale of $£_{2} 50$ Ios. 5 d., and what is the cost price?
17. A merchant loses $12 \frac{1}{2} \%$; what is the loss in a sale of $\$ 721.70$, and what was the cost price?
18. What per cent. more than $\frac{\pi}{\theta}$ is $\frac{8}{6}$?
19. What per cent. less than $\frac{2}{2} \frac{0}{7}$ is $\frac{R}{15}$?
20. One-fifth is what per cent. of three-fourths?
21. Having used my wagon three years, I sold it for $\$ 66$, which was 40% less than the cost; what was the cost ?
22. If $33 \frac{10}{3} \%$ of what is received for goods is gain, what is the gain per cent. ?
23. Sold $\frac{1}{2}$ of a section of land in Manitoba for what $\frac{1}{8}$ of 5 sections cost; what per cent. was gained on the part sold?
24. A man bought $\frac{3}{8}$ of a coal mine, and sold $\frac{4}{5}$ of his share for $\$ 11,700$, which was 30% above the cost ; what was the cost of the mine? 25. The population of a town of 18000 inhabitants increases 5% every year; what will
25. A man gains $17 \frac{1}{2}$ per cent. on tea; if he sold $40 n$ lbs. and gained $\$ 42$, what did it cost him a pound? 27. A and B each sold 240 acres of land, A gaining $7 \frac{1}{2}$ $\%$ and B losing $12 \frac{1}{2} \%$; in A received $\$ 960$ more than B, what did they pay an acre for the land?
26. A man bought a farm of 160 acres at $\$ 32$ per acre ; he paid $\$ 200$ for fencing, $\$$ r 50 for repairing buildings, and $\$ 18$ for improving the grounds ; at what price per acre mist it be sold to gain 25% on the
27. A farmer raised 20% more wool this year than last; the amount raised during the two years was 1320 lbs. ; what amount of wool was raised each year?
28. A man dying, left $33 \frac{1}{3} \%$ of his property to his wife, 50% of the remainder to his son, 75% of the resiclue to his daughter, and the balance, $\$ 120$, to his servant ; how much did each receive?

PRACTICAL PROBLEMS IN MEASUREMENTS.

248. The pupil should now be able to wak the more difficult of those problems requiring a howledge of Long, Square, and Cubic Measures.
249. The following suggestions, together with those given in Λ its. 214, 215, 219, will be found useful in working I. When mems given:
tions, they sures are given in different denominainstead of being red be expressed in the the highest,帾 to the lowest, thus : $5 \mathrm{yds} .2 . \mathrm{ft} .3 \mathrm{in} .=5^{3} \mathrm{y} \mathrm{yds}$.

$$
\begin{aligned}
& 8 \text { sq.ft. } 72 \mathrm{sq} . \mathrm{in} .=88_{2}^{3} \mathrm{yds} \text { sq. } \\
& 5 \mathrm{cu} .
\end{aligned}
$$

2. Two measure $5 \mathrm{cu} . \mathrm{yds} .9 \mathrm{cu} . \mathrm{ft} .=5 \frac{1}{3} \mathrm{cu} . \mathrm{yds}$. give square measure, hen when multiplied together vided by a long measure must pate measure diure, thus:

Since $8 \mathrm{ft} . \times 5 \mathrm{ft} .=40 \mathrm{sq} . \mathrm{ft}$. then 40 sq. $\mathrm{ft} . \div 5 \mathrm{ft} .=8 \mathrm{ft}$. or $40 \mathrm{sq} . \mathrm{ft} . \div 8 \mathrm{ft} .=5 \mathrm{ft}$.
3. Three measures of length when multiplied together, or a square measure multiplied by a long measure, give a cubic measure. Hence a cubic measure when divided by a long measure gives a square measure, or a cubic measure divided by a square measure gives a long measure, thus:

Since 12 in. $\times 5 \mathrm{in} . \times 3 \mathrm{in} .=180 \mathrm{cu} . \mathrm{in}$. - Then 60 sq . in. $\times 3 \mathrm{in}$. $=180 \mathrm{cu} . \mathrm{in}$. or 180 cu . in. -60 in. $\div 3 \mathrm{in} .=60 \mathrm{sq}$. in.
4. In papering a -60 sq . in. $=3 \mathrm{in}$. the same as that of the area of the paper must be be found by dividing this area by and its length can paper, or its width can be found the width of the area by the length of the paper. [100]
5. The area of the four walls can be easily found by multiplying the length round the room by its height.
6. In painting a surface, if the part not requiring paint be $\frac{5}{6}$, the part to be painted must be the remaining $\frac{5}{5}$.
250. A few examples will show these more clearly.

1 The numbers in brackets refer to the previous suggestions.
Ex. 1 .-A room is 14 ft .11 in . lons, to ft. 7 in . wide, and 9 ft .4 in . high : How many square feet are there in the walls?
$14 \mathrm{ft} .11 \mathrm{in} .+10 \mathrm{ft} .7 \mathrm{in} .=25 \mathrm{ft} .6 \mathrm{in} .=25^{2} \mathrm{ft}$.
$=$ length of the two adjacent walls;
$25 \frac{1}{2} \times 2=51 \mathrm{ft} .=$ length of the four walls; $5^{\mathrm{I}} \mathrm{ft} . \times 9 \mathrm{ft} .4 \mathrm{in} .=5 \mathrm{I} \times \frac{24}{3}=476 \mathrm{sq} . \mathrm{ft} .(5)$.
Ex. 2.-Find the cost of painting the walls in the preceding example at 42 f c . a square yard.

$$
\begin{aligned}
& 476 \div 9=\frac{479}{y}=\text { sq. yds. in the walls; } 42 \frac{n}{7} \mathrm{c} .=\$ \frac{3}{7} ; \\
& \hline \$ \frac{3}{7}=\$ \frac{69}{3}=\$ 22 \frac{3}{3} .
\end{aligned}
$$

E.x. 3.-Find the cost of papering a room 40 ft .7 in. long, 20 ft .8 in . wide, and $12 \frac{1}{7}$ feet high, with paper $\frac{7}{8} \mathrm{yd}$. wide, and $\mathbf{x c}$. a yard, if the windows, doors, etc., take up $\frac{1}{5}$ of the walls?
$40 \mathrm{ft} .7 \mathrm{in} .+20 \mathrm{ft} .8 \mathrm{in} .=61 \frac{\mathrm{ft}}{} \mathrm{ft}$ ($)$; $61 \frac{1}{4} \times 2=\frac{9+5}{2}=$ length round the room ;
$\frac{24 \pi}{2} \times 12 \frac{1}{7}=\frac{24 \pi}{2} \times \frac{85}{7}=$ number of sq. ft . in the walls (5).

- Since $\frac{1}{5}$ of the surface does not reauire papering, we take $\frac{4}{0}$ of it (6);
Then $\frac{245}{2} \times \frac{85}{7} \times \frac{4}{5}=\mathrm{sq}$. ft, to be papered, and $\frac{84}{2} \frac{9}{3} \times \frac{85}{7} \times \frac{4}{5} \times \frac{1}{9}=$ sq. yds. of paper required.
Now to find the length of the paper we divide its area by its width (4).
Thus $\frac{28}{2} \frac{4}{2} \times \frac{85}{7} \times \frac{4}{5} \times \frac{1}{8} \times \frac{8}{7}=$ length of paper required.
To find its value, multiply its length liy the price per yard.
$\frac{243}{2} \times \frac{88}{7} \times \frac{4}{5} \times \frac{1}{8} \times \frac{8}{7} \times 18 \mathrm{c}^{\circ}=\$ 27.20$.

In will be noticed that the different steps a re kept in a fractional form until the end, and then simplimuch labor. this means we can by cancelling save Ex. 4.- A piece of timber with its end 18 inches square contains $5 \mathrm{cu} . y d \mathrm{~s}$: find its value when sold at 40 c . per foot in length.

$$
\begin{aligned}
& 18 \mathrm{in.}=\frac{1}{2} \text { yd. } ; \frac{3}{2} \times \frac{1}{2}=\frac{1}{3} \mathrm{yd}=\text { area of the end. } \\
& \text { Therefore the length must be } 5 \div \frac{1}{2}=20 \text { vordo } \\
& \text { and } 20 \text { vdc }
\end{aligned}
$$

Therefore the length must be $5 \div \frac{1}{4}=20$ yards (3); and $20 \mathrm{yds} .=60 \mathrm{ft}$., hence $40 \mathrm{c} . \times 60=\$ 24$.

EXERCISE 58

1. Find the length of a table 6 ft . 11 in . wide, and con. taining 62 sq. ft. 36 sq. in.
2. Find the length of a room 13 ft . broad, the carpeting of which at $4 \mathrm{~s}, 6 \mathrm{~d}$. per sq. yard costs $\AA_{4} 19 \mathrm{~s}$. 8 d .
3. A block of ice is 45 in . long, 52 in . broad, and contains $16 \frac{?}{4}$ cubic feet: find its thickness.
4. The papering of a room with paper 30 ln . wide at 15c. a yard cosis \$io.8o: how many square yards in the walls, and if the length be i 6 ft . and the breadth in ft., find its height.
5. The cost of painting the walls of a room at 12 c . a sq. foot is \$110.17: the height is 11 ft .6 in ., and the breadth 15 ft .8 in ., find the length.
6. A path $4 y d s$. wide around the outside of a garden 85 yds long and 168 feet broad, is to be paved at 14 c . a sq. yd. : find the cost.
7. It takes $136 \frac{\mathrm{~s}}{8}$ yds. of paper for a room 9 yds .5 in long, 14 ft . 7 in . broad, and 4 yds . 10 in . high: how many inches wide is the paper?
8. Find the height of a room 20 ft . by 15 ft ., the papering of which at I_{5} c. a sq. yd. costs $\$ 15 \mathrm{ft} .$, t
9. A roof is 50 long by ro ft . wide, find the cost of covering it u alate so in. by $4 \frac{4}{8}$ in., if the slates
are worth $\$ \mathrm{C}$ p,
steps are kept d then simplt. meelling save
inches square 1 sold at 40 c . of the end. 20 yards (3); $=\$ 24$.
le, and con.
the carpet4 19s. 8d.
, and con.

n. wide at

re yards in le breadth

12c. a sq. , and the
a garden paved at
yds. 5 in. gh : how
e paper.
cost of e slates

CIAPTER VIII.

BILI.S OR ACCOUNTS.

251. When goods, etc., are sold by one person to another, a Bill or Account is made out by the seller, and sent with the goods to the buyer, to enable him to see the exact cost of the goods bought.
252. If a firm in England sells a quantity of carpetings to a firm in Toronto, the Bill would be sent as follows:

Kidderminster, Oct. 20, 188 i.
Messrs. Jno. Macdonald \& Co., Toronto.
188 r.
Bo't of Edward Hughes \& Sons.
Sept.

420 yds . Aubusson Axminster (1)		5/6	χ 15 s.		
	600 " Brussels, 5 Frame C. "	3/6	105	-	o
	$\text { Soo " " } 4 \text { " B." }$		130	o	-
3	220 " Tapestry, " 2	2/1	22	18	
			¢ 373	8	4

253. In practice, many short methods are used for calcu. lating the amount of a Bill, and should be carefully, remembered and applied as ofter as possible by the rupil. For example:
Since $\frac{8}{4}$ of a lb. costs as much as I lb. all but $\frac{1}{4}$, therefore $\frac{3}{3}$ of a lb. © 8 c oc. $=8 \mathrm{oc},-20 \mathrm{c} .=6 \mathrm{oc}$.
Also, $\frac{7}{8}$ of a yd. (1) $\$ \mathrm{I} .60=\$ 1.60-20 \mathrm{c}=\$ \mathrm{I} .40$.
Again, since $33 \frac{1}{3} \mathrm{c} .=\frac{1}{3}$ of $\$_{1}$,
24 yds. ©(4. $33 \frac{\mathrm{~s}}{\mathrm{~s}} \mathrm{c}$. would be $\frac{1}{3}$ of the cost of 24 Jds . (1) $\$ 1$, that is $\$ 8$.

Since 8oc. $=\frac{5}{8}$ of $\$ \mathrm{r}$,
75 lb . © 8 8oc. would cost $\frac{4}{6}$ of $\$ 75$, that is $\$ 75-\${ }_{15}=\$ 60$.

KE' The mental exercises in Ex. 50, 51, 52, 53 and 54 will be of great assistance in working this class of problems with rapidity.

EXERCISE 50.

Make out, date, and find the amount of each of the following Bills or Invoices:

1. Rice Lewis \& Sons, Toronto, sold to Adam \& Co.,
 Nails @ \$2.95; 270 boxes Glass @r.99; 220 kegs
 2. Virginia Tobacco Company Tin © $\$ 4$. Stuart \& Co., Hamilton 19\% Its. each, © 30c. 50 caddies "Twin Navy," Sweet," 52 Ibs. each, per It.; 25 butts "Dark Sweet," 105 lbs. each, at 16 c . $\frac{1}{2} \mathrm{c}$. ; 20 boxes "Dark 3. T. H. Barraclough In 16 c . \& Co., Toronto : 12 pairs Fren, bought of J. D. King 24 pairs Misses' Tie Shoes at ${ }^{2}$. Shoes @ \$1.75; I2 pairs Men's $\$$. $75 ; 24$ pairs Boys' 4. J. S. Robertson \& Bros., Whis Knee Boots @ \$4.50. Publishing Co., Toronto:, Whitby, buy of Canada per M; 375 Pass-Books © 12000 Envelopes @ $\$ 2.87 \frac{1}{2}$ \$2.40; 64 doz. Lead Pencils 6c.; 29 doz. Slates @ (assorted) @ $\$ 27.75$. Pencils @ $37 \frac{1}{2} \mathrm{c}$.; 18 doz. Maps 5. Geo. Lewis sold to
@ 9c. ; 40 lbs. Maple ${ }^{\text {(apt. McMaster: } 25 \text { lbs. Sugar }}$
 2 lbs. Cream Tartar @ 0 23c.; 4 lbs. Raisins at ${ }_{15 c}$.; 6. Chas. Pollock T 45 c . $28 \frac{1}{4}$ yds. Silk @ per yd.; 287 yds. Velvet yd.; 47年yds. Lace @ \$14 Silk Spools @ 6oc. per doz. $\$ 2.8$ o per yd.; $16 \frac{1}{2}$ doz. 7. P. B. Ball \& Co., Toront \& Bro., Toronto: per doz.; 205 $\frac{3}{4}$ doz. Kid Gloves Squares © $\$ 9 . j 5$ 406 doz. Child's Hose © $\$ 2.0$. $\$$ II 60 per doz.; Scarfs © $8 \frac{3}{4} \mathrm{c}$. each. (6) $\$ 2.25$ per doz. ; Ioo Men's

EXAMINATION PAPERS.

The following papers are similar to those given at the examination for entrance to High Schools and Collegıate

PAPER I.

Ex. I.-Divide $\$ 80$ between Λ and B, so as to give Λ $\$ 30$ more than B . Suppose A to receive his cxtra $\$ 30$ first, then the remainder $\$ 50$, must be twice the amount each receives after this, that is $\$ 25$ apiece. Thus A receives ${ }_{\text {" }}^{\$ 25}$.

$$
A \quad " \quad \$ 25+\$ 30=\$ 55 .
$$

1. Define Greatest Common Divisor, Improper Fraction, Fathom, Per Cent.
2. Express $\frac{7}{17}$ of $\frac{14}{14}$ of $\frac{22}{30}$ as a fraction having 75 for its
denominator.
3. A house is worth $\$ 576$, which is just $\${ }_{5} 56$ more than $\frac{3}{4}$ of $2 \frac{1}{4}$ times the value of a barn: find the value of the barn.
4. A man sells io응 lbs. of sugar at 1 'e rate of 8 lbs . for $\$ \mathrm{I}$, and gains 17 c .: find the cost of .he sugar per lb.
5. What is the greatest number that will exactly divide each of the numbers I 190, 408, 4012, and 1445 ?
6. I sold a farm for 25% more than it cost me to A, who him: what did it cost me?
7. Reduce the fraction $\frac{821771}{800470}$ to its lowest terms.
8. The sixth part of a farm exceeds its cighth part by 20 acres less than its ninth part: how many acres in the
farm?
9. Two men had $\$ 7583$ divided between them; the difference between their shares was $\$_{4} 6_{1}$: what did each get? 10. Λ room is 67 ft . long, in ft. 2 in . high, $38 \frac{2}{\mathrm{ft}}$. wide; the doors and windows take up $\frac{1}{10}$ of the area of the walls and ceiling: find the cost of painting the remainder at

PAPER II.

Ex. 2.-If 7 lbs of coffee are worth as much as 2 lbs. of tea. 3 Jbs. of tea worth I ilbs of sugar, and $4 \frac{1}{2} \mathrm{lbs}$, of coffee cost 48 c , what will $19 \frac{1}{4}$ lbs. of sugar cost ?

$$
\text { I lb. of coffee }=\frac{48}{4 \frac{1}{2}} \mathrm{c}=\frac{96}{9} \mathrm{c}
$$

I Ib . of tea $=\frac{7}{3} \mathrm{lbs}$. coffee $=\frac{7}{2}$ of ${ }^{\frac{\theta}{6}} \mathrm{C}$.
Hence $19 \frac{1}{1} \mathrm{lbs}$. of sugar $=\frac{3}{11} \mathrm{lbs}$. tea $=\frac{3}{11}$ or $\frac{{ }^{\circ}}{2}$ of ${ }^{\frac{9}{6}} \mathrm{c}$.
r. Find the smallest number to be taken from 101443929 that the remainder may exactly contain 25203 .
2. Divide $2 \mathrm{I} 3 \times 84 \times \mathrm{r}$ o times 264 by 30 times 56 multiplied
by 36 .
3. Express in Roman numerals $11_{4} ; 11983$.
4. What is the least number of which each

144, 240,480 , and 960 is a factor?
5. If $\frac{1}{5}$ of a 1 b . be worth 66 a factor ? as $\frac{1}{1+}$ of a bushel, find the and $\frac{2}{7}$ of a lb . be worth as much 6. If I sell my flour at $\$ 2$ a value of roo bushels. $\$ 3$ a bag I gain $\$ 30$: how 1 lose $\$ 30$, but if I charge what did they cost me per bag ? 7. How much water must I put ? $\$ 336$ to make the mixture worth a hhd. of wine worth 8. A and B earn $\$ 840$ bet worth $\$ 1.20$ per quart? $\frac{9}{16}$ of B's earnings : what did each earn ? $\frac{3}{4}$ of A's equals 9. If the difference between each earn ? taken from $150 \frac{1}{2}$, by how 75 and $\frac{6}{7}$ of $121 \frac{4}{6}+\frac{8}{4}$.of $48 \frac{2}{3}$ be ro. The furniture result be multiplied to produce $34 \frac{4}{8} \frac{1}{8}$ of $\frac{6}{100}$? $4-2 \frac{1}{4}$ 10. The furniture of a house is worth produce $342 \frac{63}{100}$? $\frac{5}{8}$ of the furniture costs as much $\$$ roooo, and $\frac{9}{10}$ of $\frac{4}{5}$ of In. A farme: find the cost of both together. $\frac{1}{4}$ of $\frac{4}{7}$ of $\frac{5}{7}$ of the in. A farmer gave his eldest sogether. the remainder to the younger $\frac{1}{1+\frac{1}{1}}$ of his farm, and $\frac{8}{65}$ of less than his brother: how many thus received ro acres 12. A and B traded with equa many acres in the farm? his money $20 \% ; B$ lost $\$ 220$, and of money; A increased A : what did each start with? $\$ 220$, and then had $\frac{1}{2}$ as much as

PAPER III.

Ex. 3.-After spending $\$ 60$ more than $\frac{5}{8}$ of his money, a man had \$izo left : what had he at first ?
If he had spent only $\frac{s}{8}$ of his money he would have had \$6o more left, or \$180.
Then, having spent $\frac{5}{8}$ of his money, he must have $\frac{s}{8}$ of it
Therefore,

$$
\begin{aligned}
P_{\text {kiv }}: \frac{5}{8} \text { of } 480 & =300 . \\
300+60 & =\$ 360, \text { amount spent. } \\
\$ 480-\$ 360 & =\$ 120, \quad " \text { left. }
\end{aligned}
$$

1. What is a pure Circulating Decimal? How do you reduce it to its equivalent fraction?

Express as a decimal:

$$
\frac{3 \frac{1}{3}}{8}+625+\frac{1}{3} \text { of } \frac{7_{5}^{2}}{6} \text { of } 4-1.05
$$

2. One-half the sum of two numbers is 500 , and one-half their difference is 300 : what are the numbers?
3. If $\frac{1}{5}$ of 56 and also $\frac{s}{7}$ of it be added to itself, the sum is just 26 less than double the number: find the number. 4. How high is a pile of wood 12 yds. long, 12 ft . wide, which contains 18 cords?
4. A can do $\frac{4}{8}$ of a job in $2 \frac{2}{8}$ hrs., and B can do $\frac{8}{8}$ of it in $4 \frac{1}{2}$ hrs. : how long would they take, working together?
5. I gain 10% by selling vinegar at 22c. a qt.: how many barrels of 63 gals. each did I buy for $\$ 1058.40$?
6. If $\frac{1}{2}$ of $1 \frac{3}{4}$ be multiplied by $\frac{2}{2}$ of the square of $8 \frac{4}{7}$, and $\frac{2 \frac{1}{5}}{3 \frac{1}{2}}$ be added to the product, from what should the result be $3 \frac{1}{7}$ taken to produce $\frac{1 I^{\frac{3}{3}}{ }^{\frac{2}{2}}}{8 \frac{7}{8}}$?
7. A man worked $6 \frac{3}{4}$ weeks, and, having spent \$I 5 more than $\frac{4}{\text { m }}$ of his earnings, lad $\$+5$ left: what did lie carn a

Paper IV.

Ex. 4.-A man can row 5 miles an hour in still water:
how loug will he take to go 21 miles up a stream and back, the stream running 2 miles an hour? Going up, the stream retards him 2 miles an hour, making his speed only 3 miles an hour. $2 \mathrm{I} \div 3=7 \mathrm{hrs}$., time to go 2 I miles up.
Going down, the stream helps him 2 miles an hour, making his speed 7 miles an hour. $21 \div 7=3$? 1 rs, time to go 21 miles down. Hence, $7+3 \times$ Io hrs., whole time.

1. Divide (to four places of decimals) the sum of 075 and $\frac{75}{10000}$ by the difference between 7.5 and $\frac{75}{100}$.
2. A can do a piece of work in $12 \frac{1}{4}$ days of 9 hrs . each, but with B helping him he can do it in 24t days: how many hours would B alone require to finish it ? ${ }^{2 \frac{4}{5}}$ days : how many 3. I gave away $\$ 35 t$, and then h ad away: what had I at first? $\$ 20.20$ more than I gave 4. A man paves his garden 49 ft . long and io yds. wide at 45 c . a sq. yd., except two grass plots each 7 ft . square :
3. A stream runs haln a mile in 15 min., and a man can row a mile in 10 min. : how much longer will he be in going up, than in coming down, a distance of 32 miles? going 6. What decimal part of 32 miles ? of gold?
4. I paid $\$ 39$ to at $1 \frac{1}{6} \%$: what part of my fartory, worth Co . for insurance lose in case of fire?
5. Divide 570 acres of land among A, B and C, giving B and C equal shares, but A acres more than C, giving B
together.

PAPER V.

Ex. 5.-A, gifing 12 miles an hour, gives B, who goes 8 miles an hour, a start of 40 miles: how long before 13 will be overtaken?

Argoes 4 miles an hour more than B, that is, Λ approaches or overtakes B at the rate of 4 miles an hour, and since he must overtake 40 miles, it will take him $40 \div 4=10$ hours. (B) of a clock.

$$
\begin{gathered}
\text { A goes } 60 \text { min. spaces in } 60 ~ m i n . ~ \\
\mathrm{~B} \\
6
\end{gathered}
$$

Therefore, Λ approaches B at the rate of 55 min . spaces in 60 min .

1. What must be multiplied by 08008 to give 48536.488 gals. ?
2. From the sum of $\frac{4}{5} \mathrm{lb} .4 \frac{5}{6} \mathrm{OZ}$. and $3 \mathrm{I} \frac{1}{3}$ dwt. take the dif. ference between $\frac{3}{6} \mathrm{oz}$. and $\frac{7}{8} \mathrm{dwt}$.
3. Simplify $\frac{9}{38 \frac{1}{4}} \times \frac{174 \frac{4}{9}}{196 \frac{1}{4}} \times \frac{44 \frac{3}{8}}{16 \frac{1}{3}} \div \frac{36 \frac{4}{7}}{40 \frac{8}{2} \frac{8}{2}}$.
4. Two men jointly owned a farm in Manitoba; one hac? 470 acres more than $\frac{2}{5}$, and the other 790 acres more than $\frac{3}{7}$ of the farm: find the share of each.
5. If $\frac{5}{7}$ of a sum of money be decreased by $\frac{2}{0}$ of the sum, tle remainder will be $\$ 62$ more than $\underset{\substack{9 \\ 4 i}}{ }$ of the remainder:
6. A train going 25 miles an hour starts at I o'clock P.m. on a trip of 230 miles; another g sing 37 miles an homir starts from the same place it 12 min. past 4 o'clock P.m.: when and where will the former be overta 4 o'clock P.M.:
7. Divide $\$ 540$ between . George 30% more thaneorge, Henry, and Fred, giving more than the other two tored's share, and Herry \$80 8. By selling my cloth than I lose by selling it at a yard, I gain II cents more gain by selling 800 yards at $\$ 1.05$ a yard: what would I

PAPER VI.

Ex. 6.-If 27 men build 32 yards of fencing in $6+$ hours, how long will it take 36 men to build 108 yards of the same kind of work ? First, looking at the amount of work done, 108 yards will require $\frac{108}{8}$ of the time required for 32 yards.

That is : $\frac{108}{82}$ of 64 hrs.
Again, considering the numb.
$\frac{2}{3} \frac{7}{8}$ of the time required by 27 men, 36 men will require
That is: $\frac{2}{3} \frac{7}{8}$ of $\frac{208}{8}$ of 27 men.
1 In all problems ${ }^{3}$ of $64 \mathrm{hrs}=162 \mathrm{hrs}$.
ponding pair of terms is as the preceding, every corres. proper fraction, and the different fra proper or an im. are multiplied together.

1. How many square yards in an acre? What part of a sq. yd. must be added to ${ }_{15}^{5}$ sq. $\mathrm{ft}^{5}+\frac{7}{13}$ sq. in. to produce 2 sq. ft. 67 sq. in. ?
2. Multiply 40 and 15625 millionths by 1632 ten-thon3. If $\frac{s}{7}$ of the sum of a certain number and it be added to the original number, the and its seventh part, what is the number? 4. Divide $\$ 6000$ ber? than 3 times the amount C and D, giving $D \$ 1800$ more 5. A train leaves Toronto for receives. miles an hour ; another leaves Collingwood, 95 miles, at 13 at the same time, but goes 23 millingwood for Toronto t'ley be just 5 miles apart? 23 miles an hour: when will 6. 1 room is 4 yds. 2 ft art find the cost of papering the $5 \frac{1}{3} \mathrm{yds}$. long, and 8 ft . high : at 6 c . a yd.
3. A and B receive the same salary; A saves $\frac{2}{7}$ of his, but B spends $\$ 36$ a month more than A, and is $\$ 30$ in debt at 8. Ii 12 men in 24 days of does each spend a month ? wall, how many men will he re. each build 192 cu . ft . of 9. A grocer 27 days of so hrs. each? and it was found 45 of a cask of syrup, then 20 gallons, gallons would it contain? 65 of being full: how many
in 64 hours, ards of the yards will will require ary corres. or an im. us formed

ANSWERS.

EXERCISE 1.-Page 3.

1. 4 ; 11; 26; 37; 45; 68; 77; 59; 80; 92 .
2. 1,9 ; 10,99 ; 23, 32 ; 39, 93 ; 19, $91 ; 17,71 ; 78,87$;

3 . $25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40$, 41, 42, 43, 44, 45, 46, 47.
$63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78$; 17, 16, 15, 14, 13, 12, 11;
$47,46,45,44,43,42,41,40,39,38,37,36,35,34,33$.
4. $15 ; 64$.
5. 5I, 52, 53, 54, 55, 56, 57, 58, 59, 6o, 6i, 62, 63, 64. 65 , $66,67,68,69,70,71,72,73,74$.
6. 68,$86 ; 67,76 ; 78,87$.

EXERCISE 2.-Page 5.

1. 117; 311; 511; 575; 899; 400; 69; 507; 860; 410; 909; 787.
 118, ing.
2. 790, 791, 792, 793, 794, 795, 796, 797, 798, 799 ;

180, 280, 380, 480, $580,680,780,880,980$;
$607,617,627,637,647,657,667,677,687,697$;
$700,710,720,730,740,750,760,770,780,790$.
4. 999 ; $\mathbf{1 0 0}$.
5. $689,698,869,896,968,986$.
6. 39 (which is the same as 039), 93, 309, 390, 903, 930 .
7. 98 ; ir.
8. (1) $7,70,7$ со. (2) $68,86,608,680,806,860$. (3) 899 , 989, 998.
(4) 77%.

EXERCISE 3.-Page 8.
I. $9048 ; 5007$; $43659 ; 536302$; $405313 ; 5043037 ; 6_{\ddagger 792}$; 356097; 9345027; 80056; 9090900; 83007; 9090; 375867799; 11071; 6008704.
2. 9999, 1000; 99999, 10000; 999999, 100000; 5999999 ,
3. $3072,3172,3272,3372,3472,3572,3672,3772,3572$, 3972.
4. 7530 ; 3057.
5. 8700, 7800, 8070, 7080, 7008, 8007; 8700 greatest ; 7008 least. EXERCISE 4.-Payo 11.

1. $13, \mathrm{XIII}$.
2. 17, XVII.
3. 19, XIX.
4. 26, XXVI.
5. $3^{8, \text { XXXVIII. }}$
6. 44, XLIV.
7. 97, XCVII.
8. 150, CL.
9. 28 , CCLXXX.
10. 738, DCCXXXVIII.
II. 844, DCCCXLIV.
11. $1200, \mathrm{MCC}$.
${ }^{13} 3.87$, LXXXVII.
12. 6000, $\bar{V} \mathrm{M}$.
13. 1500, MD.
14. $11000, \overline{\mathrm{X}} \mathrm{M}$.
15. 888 , DCCCLXXXVIII
16. 7592, $\overline{\mathrm{V}} \mathrm{MMDXCII}$.
17. $47 \mathrm{II}, \mathrm{M} \overline{\mathrm{V} D C C X I .}$
18. 52, LII.
19. 39, XXXIX.
20. 43, XLIII.
21. 67, LXVII.
22. 91, XCI.
23. 1831, MDCCCLXXXI.
24. 27, XXVII.
25. 49, XLIX.
26. 73, LXXIII.
27. 68, LXVIII.
28. 84, LXXXIV.

3I. 97, XCVII.
32. 110, CX.
33. 530, DL.
34. 740, DCCXL.
35. 990, СМXC.
36. 1600, MDC.
37. 50005, $\overline{\mathrm{L}} \mathrm{V}$.
38. 318, CCCXVIII.
39. 796, DCCXCVI.
40. 1096, MXCVI.
41. 25000,. $\overline{\mathrm{XXV}}$.
42. 59300, M $\overline{\mathrm{LX}} \mathrm{CCC}$.
43. 87040, $\overline{\mathrm{LXXX}} \mathrm{V} M M X L$.

EXERCISE 5.-Page 13.

(a) 1. 116,234. One hundred and sixteen thousand, two hundred and thirty-four.
2. 65,23I. Sixty-five thousand, two hundred and thirty-
one.
3. 20,703. Twenty thousand, seven hundred and three.
4. 71.005. Seventy-one thousand and five.
5. 3, iot. Three thousand, one hunc'red and fur.
6. $4^{8,000 . ~ F o r t y-e i g h t ~ t h o u s a n d . ~}$
$3772,3^{S} 72$,
test ; 7008
LXXXI.
MMXL.
vo hun-
thirty.
three.
7. 6o,029. Sixty thousand and twenty-nine.
8. 141,i20. One hundred and forty-one thousand, one hundred and twenty.
9. 101,207. One hundred and one thousand. two hundred
and seven.
1). 68,978 . Sixty-eight thousand, nine hundred and seven-ty-eight.
11. 72,020. Seventy-two thousand and twenty.
12. 80,oor. Eighty thousand and one.
13. 857,000. Eight hundred and fifty-seven thousand.
14. 9r,o29. Ninety-one thousand and twenty-nine.
15. 7,640. Seven thousand, six hundred and forty.
16. 800,900 . Eight hundred thousand, nine hundred.
17. 2,568,242. Two million, five hundred and sixty-eight thousand, two hundred and forty-two.
18. $1,008,003$. One million, eight thousand and three.
19. 212,375,647. Two hundred and twelve million, three hundred and seventy-five thousand, six hundred and forty-seven.
20. $609,003,588$. Six hundred and nine million, three thousand, five hundred and eighty-eight.
21. 897,856,846. Eight hundred and ninety-seven million. eight hundred and fifty-six thousand, cight hundred and forty-six.
(b) I. 9. Nine.
2. 200. Two hundred.
3. 60,002 . Sixty thousand and two.
4. 700,000,000. Seven hundred million.
5. 230,000,060. Two hundred and thirty million, and sixty.
6. $81,501,007,012$. Eighty-one billion, five hundred and one million, seven thousand and twelve.
7. $30,000,000,000,603$. Thirty trillion, six hundred and three.
8. 7 bo,o80,000,000,000. Seven hundred trillion and eighty billion.
9. 8,007,or4,oro. Eight billion, seven million, fourteen thousand and ten.
10. 15,000,018,207,000,081. Fifte on quadrillion, eighteen billion, two hundred and seven million and eighty-one.
(c) I. $60,701,892$. Sixty million, seven hundred and one thonsand, eight hundred and uinety-two.
2. $50,607,801$. Fifty million, six lundred and seven thousand, eight hundred and one.
3. 6os,ooo. Six hundred thousand.
4. 49,000,000. Forty-nine million.
5. 593,006,070,500. Five hundred and ninety-three billion, six million, seventy thousand, five hundred.
6. 190, rgu,00ı,900. One hundred and? ninety billion, one hundred and ninety million, one thonsand, nine hune
dred.
7. 163,194,568. One hundred and sixty-three million, one hundred and ninety-four thousand, five hundred and
sixty-eight.
8. 3,050,050,183. Three billion, fifty million, fifty thousand, one hundred and eighty-three.
9. $5,000,204$. Five million, two hundred and four.
10. 594,900 . Five hundred hundred. Five hundred and ninety-four thousand, nine
11. 12,000,012. Twelve million and twelve.
12. 2,007,980,134. Two billion, seven million
and eighty thousand, one hundred and nine hundred
(d) 1. 18,000.
2. $2,060,153$.
3. 60,060,060,060.
4. $60,200,500$.
5. 402,348,213,020.
6. 78,640,000,006,016.
7. 6,542,000,025.
8. $6,542,000,025$.
(c) 1. 19. Nineteen.
9. 402,348,213,020.
10. 5,008,949.
11. 200,300,800.
12. $29,599,000,601$.
13. 4,000,558,240,070.
14. 32,001,343,404.
15. 555,777,669.
16. 806,070,005,206.
2. 21. Twenty-one.
3. 10. Ten.
4. 45. Forty-five.
5. 65. Sixty-five.
6. 64. Sixty-four.
7. 79. Seventy-nine.
8. 85. Eighty-five.
9. Iro. One hundred and ten.
10. II9. One hundred and nineteen.
11. Ioo. One hundred.
12. 114. One hundred and fourteen.
13. 160. One hundred and sixty.
14. 190. One hundred and ninety.
15. 260. Two hundred and sixty.
16. 290. Two hundred and ninety.
17. 629. Six hundred and twenty-nine.
18. 8ıi. Eight hundred and eleven.
19. 950. Nine hundred and fifty.
20. 1,259. One thousand, two hundred and fifty-nine.
21. 76. Seventy-six.
22. 1,869 . One thousand, eight hundred and sixt -nine.
23. 5.193. Five thousand, one hundred and ninety-three.
24. 17. Seventeen.
25. 2,2:2. Two thousand, two hundred and twenty-two.
26. 3,500. Three thousand, five hundred.
27. 450. Four hundred and fifty.
28. 48. Forty-eight.
29. 536. Five hundred and thirty-six.
30. 1,794. Oue thousand, seven hundred and ninety-four.
31. 10,116. Ten thousand, one hundred and sixteen.
32. 381. Three hundred and eighty-one.
33. 50,999. Fifty thousand, nineinundred and ninety-niue.
34. 1,001,612. One million, one thousand, six hundred and twe:
35. 5,470. Five thousand, four hundred and seventy.
36. 26_{5}. Two hundred and sixty-five.
37. 3,627. Three thousand, six hundred and twenty-seven.
33. 19. Nineteen.
39. 54. Fifty-four.
40. 402. Four hundred and two.
41. 536. Five hundred and thirty-six.
42. 85. Eighty-five.
43. 18. Eighteen.
44. 77. Seventy-seven.
45. 67. Sixty-seven.
46. 164. One hundred and sixty-four.
47. 135. One hundred and thirty-five.
48. t49. Une hundred and forty-nine.
49. r.org. One thousand and nineteen.
50. 653. Six hundred and fifty-three.
51. 100,099. One hundred thousand and ninety-nine.
52. 5,559. Five thousand, five hundred and fifty-nine.
53. 560,000. Five-hundred and sixty thousand.
54. $3 \mathrm{I}, 500$. Thirty-one thousand, five hundred.
55. 59,34. lifty-mine thousand, three humedred and forty10111.
56. 15,749. Fifteen thousand, seven hundred and fortyuine.
57. 1,003,0go. One million, three thousaud and ninety. 58. 6,749. Six thousand, seven hundred and forty-nine. 59. 1, 525 2 479 . One million, five hundred and twenty-five 6o. 1,882 . One thousand and seventy-nine.

ENERCISF 7.-Page 21.
(a) i. Br loads.
2. 12 cents.
3. 12 days. 4. it cherries. 5. i6 apples.
6. It sheep.
7. 13 dollars.
8.14 trees.
9. 16 cents.
i:) 21 plums.
II. If ducks.
(b) I. 85 .
2. 79.
3. 58.
4. 58.
5. 89.
6. 364.
7. 893.
8. 7795.
9. 8889.
10. 7799.

1 1. 9979.
12. 6759 .
13. 3978.
14. 8999.
15. 6647.
16. 4999.

EXERCISE 8.-Page 26.
1.
3. 2435.
-. 799 .
3. 678.
4. 568.
-. $9^{3} 48$
c. 28172 .
3. 2598.
s. 2584 .

$$
\begin{gathered}
\text { 9. } 22168 . \\
10.164918 . \\
11.3037 . \\
12.3161 . \\
13.21286 . \\
1.23940 . \\
1: .93545 . \\
16.1245901 . \\
17.197351
\end{gathered}
$$

18. 196395.
1. I54970.
2. 2035342.
1. 1384473 .
2. 145406
3. 167055 I
4. 193372.
1. 452318 I .
2. 96379092.

d and fortyalld forty1 ninety. rtj-mine. twenty-five shty two.

cents.

 irds.ents.
anes.
ears.
ents.
acres.

19 .

 18. 98.9.

I. 142.
2. 1512.
3. 625 I .
4. 502 I .
5. 1440.
6. +112 .
7. 3201.
8. 53 Io.
9. $2+11$.
1). $2+12$.
II. I120.
12. 3732.
13. 5222 I .
14. 852556.
15. 603054.
16. $86+201110$.
17. IOO35174.
1). 5162142 .
19. 30640.
2). 57172 .
21. $43^{2} 4^{2}$.
8. 1739183.
9. $13+762$.

Io. $96975+$
11. $18259+1$.
12. 10965339.
13. $156+4+2$.

1. $10859+353$.
2.
3. 9339190.
1. 11178170 .
2. 10306:56.
-. 1067029 I.
3. 4289 trees.
4. $\$ 28+4$.
5. 679 sheep.
6. \$9212.
7. 19'4.
A. N SIF RiRs.

21, 2153.
22. $\$ 7549$
23. 3519.
24. 6575.

25 \$32331.
26. $\$ 11+25$,
27. 182 I .
28. 75922.
29. 339466 m:en.
30. \$136!n..
31. 8764.
32. \$10766.
33. \$13025.
34. \$2114, \$2935, $\$ 10897$.
35. \$14252.
36. 37199.
37. 39351 miles.
38. 154^{691}.
39. $137+0178$. 40. 1369 , 0092). 41.

1. 16665.
1. $4+t^{\text {? }}$
2. 53328 .
3. 37554%.
4. 60 dahlias.
5. 466 cents.
6. I3 cents. 46. \$2538.
7. 96 years.
8. 140 yards.

EXERCISE 10.-「ago 27.

> 22. 44211. 23. 22134. 24. 56314. 25. 23662. 26. 24570. 27. 22625. 28. 29.3432. 30. 3220. 31. 32. 30853. 33. 3
43. 12 marbles.
44. III quail.
45. $\$+410$.
46. 2 I 3 busliels.
47. \$211.
48. 230 sheep.
49. $\$ 2560$.
50. \$1404.
51. \$2453.
52. 4003 yards.
53. 4213 dollas.

543336 dollars.
55. 24337 dellars.
56. I 44422 dollar;
57. 843 dollars.
58. 136o sheep.
59. 5i3 geese.

6:1. 202 bushels.
61. II602 larrels.
62. $1+432$ dollars.
63. 56 Iog 2 dollars

EXERCISE 11.-Pag̊ 41.
(a) 1. 83 .
2. 445 .
3. 22 I .
4. Ios6.
5. 313.
6. 2384.
7. 3335.
8. 24465.
9. 185173. 10. 1147.
(b) 1.276.
2. 67 .
3. 4004.
4. 664.
5. 3316.
6. 34943 .
(c) 1. 409095.
2. 274850 .
3. 707970092 .
4. 96io.
5. 896.
6. $5^{1} 306$.
7. 60964492 .
8. 549913964.
9. 46924 .
10. 75757.

JI. 56300 .
12. 69990 r .
13. 5200.
1.f. 9688.
15. 75999.
16. 90014 .
17. 145129.
18. 254999.
19. 319527.
20. 663367.
21. 427165.
22. 587979.
23. 75845 I.
24. 82301 I.
25. 900829.
26. 6898220 .
27. 19542.
28. 45961 I .
29. 31229.
30. 698.
31. 996.
32. 459812.
33. 44007.
34. 491693.
35. 62796.
36. 4989050.
37. 170026 I.
38. 6634585.
39. 69994.
40. 8974088.
41. 287949.
42. 852642 .
43. 899999.
44. 90100199.
(d) 1. 64349020 .
2. 899450 .
3. 11600800.
4. 255350011.
5. 1215 .
6. 99999500.
7. 478.
8. 459079260 .
9. 40020 .
10. 99002992.
11. 615.
12. 776546 。
13. 34740.
14. 3877.
15. 2092.
16. 40 r .
17. 4359999.
18. 1105.

EXETCISE 12.-Page 43.

1. I75 sheep. \mid r7. 4880_{5} barrels.
2. $\$ 7604$. $18 . \quad 19883$.
3. $\$ 7604$.
4. $\$ 5210$.
5. \$9i6r.
6. 285866.
1. 3602.
1. 30.
1. 47.
1. 30.

I I. \$1462.
12. 128.

I3. 4794 miles.
I4. 5862 pounds.
15. \$221708.
16. 21834 acres.
19. \$38094.
20. 13733 feet.
21. \$8674.
22. 275 acres.
23. 94760000 miles.
24. \$6350.
25. \$3087.
26. 487628 feet.
27. 1808.
28. $\$ 99635$.
29. \$24354.
30. 28153 votes.

3I. 449 I sq. miles.
32. 3571 feet.
33. 1769.
34. 85 years.
35. 664 .
36. in years.
37. $298+679$.
38. 7925 feet.
39. 7812 feet.
40. 8712 feet.
41. 293 teet.
42. \$13667.
43. 6326 arres.
44. 28278 hariels.
45. John 32 ; James 90.

EXERCISE 14.-Page 55.

(d) I. 246.
2. 268.
3. 446.
4. 492.
5. 556.
6. 990.
7. 2624.
8. $43+4$.
9. 7258.

Io. 7570 .
II. 8or2.
12. 8616.
13. 284068.
14. 3412648 .
15. 7229006.
16. 924356.
17. 3609186.
18. 64823505.
19. 280260.
20. 211525^{8}.

2I. 4156984 .
22. 871624 .
23. 2037468.
24. 2836195.
25. 36880812.
26. 23008960.
27. 5772463.
28. 5105520.
29. 30002504.
30. 1659000 .
31. 46832.
32. 182452.
33. 103560.
34. 280210.
35. 42528.
36. 3609 I 8.
37. I6I525.
33. II 5604.
39. 400675.
40. 547476 .

4I. 86499 .
42. 140760.
43. 206739.
44. 115604 .
45. 314095.
46. 563 I 36.
47. I 13900.
48. I97930.
49. 244182.
50. 52092 .
51. 206832.
52. 23504 .
53. 59822 .
54. 4518.
55. 1230125.
56. 4100832.
57. 4536.
58. 9738.
59. 20200.

6o. 219138.
6i. 2I4r6.
62. 7846312.
63. 26543.
64. 37704 .
65. 39006.
66. 64248 .

67． 900.867
63． 9909537.
69．103235616．
70． 8602968.
71．8419829．
72．92618119．
73． 99249624.
74． 37873.
75． 16140.
76． 855547.
77．10666596．
78． 6666660.
79． 119999988.
8v． 44444444.
81． 6909084.
82． 5333328.
83.576702.

84． 1785.
（b）1．$\$ 585$.
2．\＄1104．
3．$\$ 17883$ ．
4．$\$ 43074$ ．
5． 26400 feet．
6． 8800 yards．
7． 162 days．
8． 894 days．
9． 3680 bushels．
Io．\＄1715．
11．\＄2024．
12．tI 34 cts．
13．\＄8964．
14． 3555 miles．

85．69i6o．
86．ェ゙ブ1．
87.35368.

88． $262+3$ ．
89． 118314.
91．8760．
91． 28140.
92． 10978.
93． 97608.
94．8， 432.
95． 981 g 6.
96． 226668.
97． 203236.
93．3，65706．
99．836309ı．
100．15561」2．
101． 5122164.
102． 7732530.
15． 420 men．
16． 21120 feet．
17． 48785 jds ．
18． 47136 brls．
19． 40859 shingles．
20．\＄279I2．
21．\＄76113．
22． 79428 pounds，
23． 316800 inches．
24．I 49136 miles，
25．\＄246736．
26．\＄24332．
27．\＄10344．

103．337682 ．
104． 7873096.
105． 4384552.
106． $104567 \cdot 4$.
107． $18+1625$ ．
108． 37657.6
109．Io563rigi．
IIO． 4748112.
111． 11122164.
II2． 6842529.
113.733236.
114.359778 I．

II5． 5202432.
116． $4591 \epsilon_{44}$ ．
II7． 555264 （．
118．3066574．
IIg． 9585466.
120． 9166404 ．
28． 36960 feet．
29． 14080 yds ．
30． 980 pounds．
31．\＄700．
32． 445 cts ．
33．\＄3572．
34． 3483 miles．
35．\＄7156．
36．$\$ 679$ ．
37． 33804 quarts．
38． 1760 sq．rods．
39． 394992 pence
40． 4015 days．

EXERCISE 15．－Page 61.
（a）I． 161840 ．
2． 149994.
3． 3977 I4．
4．II 53362.
5． $7276 c 8$.
6． 322992.
7． 334422198.

8．I84752．
9． 343536.
IO． 28434195 ．
11．1679990588ı．
12． 584720181340.
13． 694417836 ．
14． 1521808704.

15． 3529163131975.
16． 163016.
17． 2921005.
18． 879417.
19． 2869605.
20． 7036293
21． 9130257
3376821. 7873096. 4384552. $10+567 \cdot 4$. $18+1625$. $37657 \cdot 6$. 10563: 748112. ${ }^{1122164 .}$ 842529 33236. 59778 I. 202432. ${ }^{9} 1 \mathrm{C}_{4}$. 5264 . 66574. 85466. 56404. Go feet. So yds. pounds.
22. 11058 .
23. 16799905S8I.
24. 155572.
25. 45758.
26. 4159296.
27. 99800 I .

28, 707281.
29. 14i3008i.
3). 7977489 .
31. 3769248 .
32. 671180. 33. 268056.
(b) I. 740 .
2. 8690000 .
3. 4698000 .
4. 7698400000 .
5. I3II416i522o.
6. $6+77150$.
7. 278170200.
8. 31915254.
9. 800962806.
1). 4793554242.
II. 366 I 3538 Ioo.

I2. $3^{1617000 .}$
13. 73865000 .

I4. 130321000.
15. 1231680000.

IG. IIOO\&0000.
17. $3+69+9400$.
I.. 1636562800.
1). 4946796000 .
(c) I. 53207 .
2. 182688.
3. 3628800 .
4. 202301.
5. 36153036.
6. 163536 .
7. 30026997000 .
8. 46 Iofi.
9. 754600 g .

Io. 2390000.
II. 12321795560.
34. 2165268.
35. 2879253. 36. $516924^{8 .}$
37. 7062272 .
38. 7520415°
39. 23065974.
40. $3+985162$.

4I. 42397406.
42. 123614208.
43. 19602.
44. 2563912.
45. 131328.
20. 762294.
21. 869782 I .
22. 38214 .
23. 765870.
24. 600236.
25. 7281711 .
26. 38673498 .
27. 673 I 2668.
28. 73818055.
29. 241768.
30. 5118862.
31. 17902976.
32. I 5403736.
33. I 5704325.
34. 2082600.
35. 271541350.
36. 1508741097.
37. 1587852270.
38. 3654860576 .
12. 628331.
13. 195942000.
14. 104329.

I 5. 5536076.
16. 328347675 .
17. $59+992$.

I8. I8810224.
19. 6332592.
20. 4903524000 .

2I. 502705700.
22. I4 185 I6800.
46. 230850.
47. 31812417.
48. 3379446 .
49. 2420880 .
50. $4^{\circ} 4^{\circ 138}$.
51. $273^{8} 352$.
52. $38+134$.
53. 2145594.
54. I4645612.
55. 16003352.
56. 6442185°.
39. $8199+73608$.
40. 982275037 .
41. 3363731415 .
42. 559616 .
43. 257460.
44. 14988456 .
45. I 4925792.
46. II 155248 .
47. 182151828 .
48. 148644288.
49. 1724573025.
50. 8828716566 .
51. 60I 344.
52. 29784450.
53. 7364101944 .
54. 104598273 .
55. I $1860585 \% \mathrm{c}$.
56. 15920205.
23. 415143630 .
24. 500 ; 6. 0. : 1800; 470い; 2205; 872C C
54010; 8080.
25. 725 cents.
26. 90 cents.
27. 975 cents.
28. 60000 cents.
29. 3800 cents.
3). 228240 cents.
(d) I. 4695 bush.
2. 432 panes.
3. 7200 bush.
4. +5797 dollars.
5. I $49+$ dollars.
6. 38988 dollars.
7. 8125 potatoes
8. 1547 days.
9. \$264958.
1). 4049 I 4 lbs .
II. 186516 yards.
12. \$7640136.
13. 202640 lbs .

I+. \$204763.
i5. $\$+4975$.
16. \$12I552.
17. iofi6o sheets.
15. \$299720.
19. 203322 yards.
20. 8480 yards.
21. 68520 feet.
22. $9+848000$ miles.
23. \$71240.
2.4. \$10800.
25. I4688 miles.
26. \$1757924.
27. 5280 feet.
28. 79000 pounds.
29. \$43250.
30. 2323024 pages.
31. 88486 sheep.
32. I 37970 miles.
33. 32.166 dollars.
34. 29730 dollars.
35. 541112 dollars.
36. 492729 dollars.
37. 3112135 cents.
38. I 28690 dollars.
39. 1730368 dollars.
40. ro74354 days.
41. 545 I dollars.
42. I 4689 dollars.
43. 7344^{81} dollars.
44. 228984 men.
45. 273249 yards.
46. 980019 pounds.
47. 37248 o plants.
48. I 3581 I 2 letters.
49. 349860 pounds.
50. 63360 feet.

5 I. 40824 plums.
52. 89232 rails.
53. IO248 soldiers.
54. 108 miles.
55. 14712 men.
56. 462 16o feet.
57. 595680000 miles
58. 291214 cents.
59. $684^{\circ} 0$ cents.

EXERCISE 10.-Page 69.

1. 25
$\therefore 21$.
2. 32.
1. 33.
1. 20.
1. о.
2. 26.
1. 20.
1. 18.

IO. Io.
I. 312.
2. 43 I .
3. 342.
4. 132.
5. 23 I .
6. 212.
7. 121.

$$
\begin{array}{ll}
11 . & 36 . \\
12 . & 97 . \\
13 . & 48 . \\
14 . & 102 . \\
15 . & 210 . \\
16 . & 159 . \\
17 . & 300 . \\
18 . & 700 . \\
19 . & 80 . \\
20 . & 0 .
\end{array}
$$

EXERCIS 30. 74.
(EXERCISE 19.-Page 82.

8.	221.		
9.	185.	15.	153.
10.	4321.	16.	252.
11.	1231.	17.	232.
12.	3102.	18.	142.
13.	373.	19.	131.
14.	184.	20.121.	
		21.4623.	

545 I dollars. r 4689 dollars. 7344^{81} dollars. 228984 men. 273249 yards. 980019 pounds. 372480 plants. I 358112 letters. 349860 pounds. 3360 feet. 0824 plums. 9232 rails. 0248 soldiers. 58 miles. $\ddagger 712$ men. 52 I 6o feet. 15680000 miles 1214 cents. $4^{\circ} \mathrm{c}$ conts.
22. 34 .
23. 44.
24. 43.
25. 42.
25. 52.
27. 62.
28. 42.
29. 7 I .
30. 92.

3I. 42.
32. 5 I .
33. 2032.
34. 2042.

A.D.wers.

xiii
35. 1051.
36. 1052.
37. 1054.
38. 252.
39. 489.
40. 218.
41. 32.4.
42. 224.
43. 135.
44. 155.
45. 105.
49. 2052.
47. 2025.
43. 1507.
49. 4686.
50. 1237.

5I. I213.
52. 1207.
53. Ilog.
54. 10856.
55. $3+39$.
55. $5+16$.
57. $7+32960$.
58. 4105.
5). 14469.
6). 5092103 .

LXXERCISE 20--Page 83.

1. 913-2.
2. 145^{16}-4.
3. 28823-2.
4. $5786-3$.
5. 52954-3.
6. 82304-6.
7. 30411 -2.
8. 79965-4.
9. 339758-1.
10. 877022-3.

I I. 83558 I -I.
12. 560054-6.
13. 1046518 -2.
14. $485 \mathrm{IO} 9-3$.
15. 41243 -5.
16. 124715-3.
57. S14744-6.
18. 772927-4.
19. $411869-2$.
20. $5^{61436-6 . ~}$
21. 680078-I.
22. 731040-4.
23. 53129-5.
24. 844484.
25. $5683+5$ - 5 .
26. 537720-5.
27. 822311 -5.
28. 384597-2.
29. 710443.
30. $589684-9$.

3I. II 5993.
32. $9+4202-10$.
33. 3749195-9.
34. 192850-5.
35. 297691-3.
36. $38975 \mathrm{I}-9$.
37. 779108-10.
38. 490939-2.
39. 9007 times.
40. 7008 times.
41. 6703 .
42. 6324 .
43. 8232 times.
44. 553 I .
45. 4205 times.
46. 6r 32 times.

EXERCISE 21.-Page 85.

1. $73 \mathrm{x}-6$.
2. $8317-4$.
3. $6 \mathrm{I}-92$.
4. 73-1.
5. 9-7312.
6. $839-16$.
7. 5137-12.
8. 7-I 2934 .
9. 3-92.
10. $37-214$.
11. 74-321.
12. 306.

I 3. 30000.
I.4. 60-60600.
15. \$Io8.62.
16. \$3.12.
17. $\$ 4610$.
18. 70 cents.
19. 8610 bills.
20. 73 107 dollars.
xiv
AN Wers.

I. 2448 bricks.
2. 23527 dollars.
3. 52126 dollars.

ㄴ. \$15967204.
5. 15037 acres.
6. \$2126495.
7. 33514 acres.
8. 2889133 sq.yds.
9. 5292 hills.

Io. 7968516 .
1r. 78134159 .
12. 30784 dollars.

I3. I6; \$24.88.
${ }^{1}+$. 2172 ; 1448 ; 1086.

I5. 173; 248; 1588.
16. 128; 191; 1654.
17. 96I; 1922; 3844. 18. 33; 99; i98 gals.
19. $410 ; 8 \mathrm{I} 6 \mathrm{lbs}$.
20. 16; 48; 288 tkts.
21. 8I; 48; 87 teet.
22. 23; 92; 276 yds.
23. 27; 36 pounds.
24. II; 33 feet.
25. 85 barrels.
26. 1264 dollars.
27. i812 dollars.
28. 715 barrels.
29. I99 hats.
30. I 59 barrels.

3I. 52 weeks.
32. 125 dollars.
33. 212 dollars.
34. 99 miles.
35. 213 acres.
36. 151 dollars.
37. I5 dollars.
38. 25 cents.
39. II8 buttons.
40. 3159 Y's; Io53 Z's.
41. 786 dollars.
42. I47 dollars.
43. 18 dollars.
44. 469 coats.
45. 523 barrels.
46. 447 barrels.
47. I44I months.
48. 255 baskets.
49. 375 dollars.
50. 294 bushels.
51. 6236 dollars.
52. 362 miles.
53. 7625 dollars.
54. 379 gal!ons.
55. I I 500000 miles.

EXERCISE 23.-Pago 91.
I. 21.
2. 23.
3. 24.
4. 21.
5. 214 .
6. 234 .
7. 235 .
3. 324 .
9. 243 .

IO. 342 .
II. 227.
12. 218.
13. 229.
14. 257.
15. 228.
16. 207.
17. 1205.
13. 1324 .

I9. 1523.
20. 1407.

2I. IO25.
22. 426.
23. 243.
24. 162.
25. 452.
26. 664.
27. 777.
28. I802.
29. 1945.
30. 4372.
31. 6203.
32. $9216-543$.
33. 5679-350.
34. 12474-40I.
35. 21 I75-499.
36. $81987-39$.
37. $771849-173$.
33. 474536-523.
39. $252384-2534$.
40.201.
41. 13.4.
42. 785
43. 54.
44. 617.
45. I I 90.
46. 243 .
47. 2371.
48. 1655037.
49. 34807.
50. I4076.

5I. IOII.
52. 463 .
53. 7289.
54. 394.
55. 707 I.
56. 23004.
57. II72.

5 Cents. 18 bittons. I59 Y's; 053 Z's. 36 dollars. 77 dollars. dollars. 9 coats. 3 barrels. 7 barrels. 41 months. 5 baskets. ; dollars. bushels. 6 dollars. miles. 5 dollars. gallons. zoooo miles.
$384-2534$
58. $3645-2867$.
59. 4629.

6o. $3+6$.
GI. 19214-542.
62. 34045-1098.
63. 1343-1652.
64. 1 2207-445.
65. 529-2228.
60. 9330291-7000. 1 74. 7973-23.
67. 5006284.
63. 4000059.
69. $574^{8} 362$.
70. $2779458-5888$.
71. 6438192-73401.
72. I 3786926.
73. 537 - 3 .

EXERCISE 24.-Page 95.
I. 31207-I.
2. $16695-17$.
3. 519225-11.
4. 20914-II.
5. 167988-17.
6. $3372 \mathrm{I}-18$.
7. $263945-18$.
8. $17529-37$.
9. 128795-17.
i). 145264-23.

1I. IO591I-25.
12. III263-2I.

I3. III2I5-27.
14. I30136-25.
15. $\$ 258$.

IG. S6.
17. 213.
18. $\$ 864$.
19. $436-1$.
2.. $83-49$.
21. 76-30.
22. 7-491.
23. \$8600.
24. 3I-2946.
25. 3697-2.
26. $327-31 \mathrm{I}$.
27. 386-58.
28. $\$ 316$.
29. $2 \mathrm{I}-320$.
30. IO-11:27.
31. $179-452$.
32. ${ }^{2}+3553-7$.
33. 15.
34. \$II5.
35.13-9112.
36. I 1 -91800.
37. $3463-42$.
38. 5-6512.
39. $\$+6$.
40. \$10000.
41. \$72.
42. \$36o.
43. $\$ 8.46$.
44. \$7500.62.
45. \$812.43.
46. 548 I .99 .

CNERCISE :
I. $\$ 97$.
2. $\$ 25$.
3. $\$ 8$.
4. $3: 5$ parges.
5. $74 \mathrm{r}^{1 \cdots} \mathrm{~s}$.
6. \$35.
7. $\$ 4$.
8. \$237.
9. 336 hams.
i.). 36 jquestions.
11. 2765 days.

I2. 83 years.
13. \$237.

I4. 3864 .
15. 77 battalions.
16. 646 .
17. 1872.

I8. 894 pounds;
312 pounds.
19. 23 hihds.
20. \$13.
21. 24 trips; 7 I .
22. \$107.
23. 425 miles.

24 . 131.
25. 47 cartricece.
26. 528 o feet.
27. 2496.
28. Io97 bales.
29. 23 pounc.'s.
30. 256 balls.
31. 3906250.
32. 792.

EXERCISE 26.—Page 99.
I. \$10394.
2. $\$ 825$.
3. Houses; $\$_{1675}$
4. 1428.
5. $354,177,118$.
6. 207.
7. 306.
8. 156 times.
9. $\$ 2015$.
10. 146299-1.
II. $\$ 1663$.
12. 4320 sheets.
13. \$182.
14. \$2028.78.
15. 132 men.
16. 75 yards.
17. 897.
18. \$15444.
19. 9 I .
20. IIg weeks.
21. 723 gallons.
22. $\$ 5$.
23. . 66 pounds.

EXERCISE 27.-Pago 104.
I. 20.
2. 42 .
3. 24 .
4. 96.
5. 34.
6. 2.4 .
7. 36.
8. 18.
9. 5 I.
10. 64 .
II. 21.
12. 10.
13. 3.
14. 4.
15. 20.
16. 10.
17. 4.
18. 17.
19. 8.
2.) 0 .

IXXERCISE $20 .-$ Page 110.
I. 23.
2. 4 .
3. $6 I$.
4. 192 .
5. I.
6. 37 .
7. 2.
8. 21 .
9. 32

IO. I7.
II. 126 .

I2. Iffeet.
A. NSWERS.
x vii FSERROSE :31.-Pago 115.
I. 90.
2. 360 .
3. 12600.
4. II34.
5. 504.
G. 360 .
7. 20160.
8. 480 .
9. 438480 .
IO. 43680 .
II. I330732.
12. 9744 .
I3. I5 5232.
I4. 72 I 20.
15. 469170.
I6. 4149360 .
I7. 441000.
18. 68640.
19. I59I744.
20. 4200,210 , I 68, 140, I20, 105.
2I. $300,150,100$, 75, 60, 30, I5, 6, 3 .

EXERCISE 33.-Pago 121.
(a) I. $\frac{6}{8} ; \frac{9}{12} ; \frac{1}{2} \frac{5}{6} ; \frac{3 n}{46} ; \frac{2}{3} \frac{4}{2} ; \frac{4}{6} \frac{5}{6}$.
2. $\frac{10}{12} ; \frac{13 \frac{2}{3}}{16} ; \frac{25}{30}$.
3. $\frac{10}{2} 0 ; \frac{5}{2} 0 ; \frac{1}{2} \frac{6}{0} ; \frac{1}{2} \%$.
4. $\frac{2}{3} \frac{\pi}{5} ; \frac{2}{4} \frac{\pi}{0} ; \frac{3}{3} \frac{0}{6} ; \frac{40}{4} \frac{3}{5}$.
(j) I. $\frac{3}{5}, \frac{2}{5}, \frac{3}{4}$.
2. $\frac{7}{8}, \frac{5}{6}, \frac{1}{4}$.
3. $\frac{5}{7}, \frac{9}{1} 1, \frac{5}{7}$. 4. $\frac{7}{8}, \frac{3}{10}, \frac{1}{1} \frac{9}{4}$.

> 5. $\frac{1}{2} \frac{3}{6}, \frac{1}{6}, \frac{1}{6} 0$.
> 6. $\frac{1}{1} \frac{3}{6}, \frac{9}{2} \frac{9}{0}, \frac{3}{23}$.
> 7. $\frac{1}{3}, \frac{7}{6}, \frac{3}{4}$.
> 8. $\frac{2}{3}, \frac{1}{2} \frac{8}{4}, \frac{1}{2} \frac{7}{4}$.
9. ${ }^{7} \overline{3}, \frac{1}{3}, \frac{1}{1} \frac{3}{7}$.
IO. $\frac{1}{3} \frac{1}{3}, \frac{2}{3}, \frac{39}{4} \frac{9}{4}$.

I I. $\frac{2}{3}, \frac{1}{2}, \frac{9}{3}$.
JXERTCISE :34.-Page 123.
(a) 1. 43
2. 7.
3. 7.
4. $6 \frac{1}{5}$.
5. $3 \frac{4}{5}$.
6. $5 \frac{3}{4}$.
7. $5 \frac{1}{6}$.
8. $4 \frac{7}{8}$.
9. $6 \frac{3}{7}$.
12. 13.
13. $13 \frac{2}{7}$.
14. 17.

I5. 4.
16. $2 \frac{1}{3}$.
${ }^{\text {I }} 7.3 \frac{3}{4}$.
18. $7 \frac{1}{3}$.
19. $4 \frac{1}{4}$.

○. $6 \frac{3}{4}$.
IO. $7 \frac{1}{8}$.
II. $7 \frac{1}{2}$.
I. $4 \frac{3}{8}$.
(b)

6. 17.
7. $\frac{2^{5} 5}{8 \%}$.
$\mathbf{x v}$: i
A.VSTPERS

(c) 1. 12 days;
2. 6 days.
2. 6 ounces;

II ounces;
9 ounces.
3. $\$ \frac{7}{8} ; \$ \frac{1}{2}$.

10. $\frac{49}{\overline{0}} ; \frac{9}{1} \frac{3}{8}$.
11. $\frac{7}{1} \frac{7}{2}$; $\frac{1}{3} \frac{6}{4}$.
12. $\frac{115}{15} ; \frac{9}{4}+3$

15. 21 ${ }^{2}$.

EXERCISE E
(a) $1 . \frac{10}{12}, \frac{8}{1 \frac{1}{2}}, \frac{7}{5}, \frac{n}{12}$,
2. $\frac{3}{2} \frac{0}{0}, \frac{1}{2} \frac{6}{0}, \frac{7}{20}, \frac{n}{20}$.
3. $\frac{3}{8} \frac{3}{6}, \frac{1}{3} \frac{8}{6}, \frac{1}{5} \frac{6}{8}, \frac{2}{36}$.
4. $\frac{3}{4} \frac{0}{6}, \frac{27}{4}, \frac{2}{4}, \frac{2}{6}, \frac{2}{5}$.
5. $\frac{6}{7} \frac{9}{2}, \frac{6}{7} \frac{0}{2}, \frac{\pi}{7} \frac{\pi}{2}, \frac{1}{7}$.
6. $\frac{1}{1} \frac{1}{2} \frac{1}{0}, \frac{11}{1} \frac{0}{n}$, $1 \frac{1}{1} \frac{5}{8}$

8. $\frac{48}{8}, \frac{28}{8}, \frac{5}{6}, \frac{4}{5}, \frac{\pi}{80} 0$.
8. $\frac{\frac{48}{6}, \frac{2}{8}}{8}, \frac{5}{6}, \frac{4}{8}$.
(b) I. C has most; Λ least.
2. C most $; D$ least.
3. Charles; Henry; John;
4. Riding-longest; Walk-ing-shortest.
James.
5. $\frac{058}{58}, 8^{88}, \frac{810}{70}, \frac{90}{7} \frac{1}{0}$ feet. 6. $\$ \frac{2744}{280}, \$ \frac{117}{280}, \$ \frac{9}{2} \frac{8}{8} \frac{8}{0}, \$ \frac{13}{2} \frac{20}{80}$.

EXERCISE 37.-Page 130.

1. $7 \frac{1}{3} \frac{2}{5}$.
2. $3=\frac{1}{3} \frac{1}{6}$.
3. $14 \frac{5}{6}$.
4. 4 高.
5. $3 \frac{7}{8}$.
6. $6 \frac{3}{28}$.
7. $4 \div \frac{4}{6}$.
8. $36 \frac{9}{14}$.
c. $57 \frac{7}{12}$.

Io. $22 \frac{7}{16}$.
11. $39 \frac{4}{3^{6}}$.
12. $28 \frac{71}{60}$.
13. $31 \frac{1}{2} \frac{1}{4}$.
14. $624 \frac{7}{5}$.
15. $2 \frac{2}{7}$.
16. ${ }^{2} \overline{5}$.
17. $8_{1 \frac{7}{35}}$.
18. $\frac{5^{\frac{3}{4}}}{40}$.
19. $5 \frac{23}{2}$ acres.
20. $13 \frac{3}{20}$ yards.
2I. $\$ 14 \frac{61}{82}$.
22. $5 \frac{1}{3}$ pounds.
23. $24 \frac{3}{4}$ gallons.
24. $\$ 208 \frac{1}{36}$.
25. \$14.
26. $16 \frac{1}{2} \frac{9}{4}$ miles.
27. $712 \frac{1}{4}$ yards.
28. $42 \frac{7}{5}$ fect.
29. $82 \frac{1}{2}$ yards.
3). $\$ 96 \frac{1}{15}$.
31. \$29 $\frac{5}{8}$.
32. $\$ 19 \frac{2}{5}$.
33. $69 \frac{1 \%}{3} \frac{0}{3}$.
34. $182 \frac{41}{6} \frac{1}{6}$.
35. 1014 $4 \frac{44}{63}$.
36. $\frac{9}{8}$.
37. \$1 ${ }^{4} 4 \frac{1}{4}$.
38. $\$ 1 \frac{3}{4} \frac{7}{8}$.
39. $13 \frac{1}{10}$.
40. $88 \frac{1}{6}$.
41. 20147 $\frac{4}{85} \mathrm{lbs}$
42. $\frac{0}{40}$.

AVSWERS.
1:NiLRCISE 40.-Paco 137.

1. $\frac{7}{10}$.
2. $\mathrm{T}^{2 \frac{7}{2}}$.
3. $\frac{5}{5}$.
4. $1 \frac{3}{17}$.
5. 28.
1. $3 \frac{3}{6}$.
2. $238 \frac{1}{3}$.
3. $\frac{14}{11}$.
4. $16 \frac{1}{6} \mathrm{cts}$.
5. $\$ 1.30 \frac{4}{8}$.
II. $\$ 1.36 \frac{1}{2}$.
6. \$35 $\frac{1}{4}$.
7. 40 miles.
8. $40 \frac{1}{4}$.
9. \$224.
10. $\$ 10_{\frac{7}{2}}^{7}$.
11. $38 \frac{1}{2}$ cords.
12. $\$ 3^{21.25 .}$
13. \$15.95.
14. 1953 cords.
15. \$10.60\%7.
16. \$313.
17. 147.
1. \$23 $\frac{1}{8}$.
2. \$5734.
3. 42 linots.

ENERCISE 41.-Pago 140.

1. $\frac{2}{3}$.
2. $\frac{3}{7}$.
3. $\frac{4}{7}$.
4. $\frac{2}{3}$.
5. $2 \frac{1}{2}$ times.
6. 8 times.
7. 6.
1. $3 \frac{1}{2}$.
2. $1 \frac{9}{19}$.
3. $\frac{s}{7}$ times.
4. $\frac{11}{14}$.
5. $3 \frac{2}{5} \frac{2}{T}$ yards.
r3. 46 hours.
I4. 368 times.
6. $3 \frac{5}{6} \frac{7}{3}$.
7. $30^{\frac{4}{5}}$ pounds.
8. $12 \frac{7}{1}$ hours.
9. 50 scarfs.
10. 44 bottles; $\frac{1}{3} \frac{0}{3}$ pint.
11. $\frac{24^{\frac{n}{2}},}{}$
12. $\frac{1 n 25}{3}$.
13. L $^{8 \prime 3}$.
14. $\quad \frac{20}{7}+1$
; $\frac{8}{1} \frac{2}{1}$.
${ }^{\frac{8}{2}} \mathrm{O}_{0}$
$\frac{\pi}{80} 0$.
t; Walk. 00 feet. $\frac{980}{80}, \$ \frac{12}{280}$.
yards.

EXERCISE 42.-Page 142.

I. I $\frac{5}{2}$.
2. $\frac{17}{60}$.
3. $\frac{2}{7}$.
4. $\frac{2}{9}$.
5. $\frac{1}{7}$.
6. $\frac{4}{5}$.
7. $\frac{6}{1}$.
8. $\frac{2}{3} \frac{4}{5} \mathrm{pk}$,

1. $\frac{9}{20}$.
2. $\frac{1}{3} \frac{2}{3}$.
3. $\frac{2}{4} \frac{3}{4}$.
4. $\frac{8}{18}$.
5. $\frac{9}{3} \frac{1}{3}$.
6. $\frac{1}{2} \frac{1}{7}$.
7. $\frac{1}{3}$.
8. $1 \frac{1}{6}$.
9. $8 \frac{\pi 8}{4 T 5}$.

IO. $\frac{7}{6}$.
II. $7 \frac{1}{1}^{7}$.
12. $13 \frac{9}{15}$.
13. $8 \frac{2}{4}$ 年.
14. $13 \frac{4}{7}$.
15. $10 \frac{3}{8}$.
16. $1 \frac{7}{3} \frac{9}{20}$.
17. 8.
18. $1 \frac{1}{2}$.
20. $\frac{10}{10}$ mile.
21. 55 pieces.
22. $9 \frac{\mathrm{i}}{\mathrm{T}}$;
$26 \frac{2}{11}$;
$69{ }_{9} \frac{9}{12}$ pounds.
23. $6 \frac{1}{4}$ months.
24. 8 days.
25. 400 weeks.
26. $\frac{6}{2 \sigma}$ mile.

EXERCISE 43.-Pağ 144.
9. 80 lbs .

T0. $19 \frac{1}{5}$.
II. $\$_{140}$.

I2. \$30.
13. 32 ounces.
14. \$51199.
15. \$308.
16. 3 times.
17.24.

I $8 . \frac{6}{7}$.
19. \$15.
20. $\$ 35$.
21. 5 times.
22. 12 years.
23. $\frac{2}{2} \frac{1}{6}$.
24. I 10 .
25. $\frac{1}{2}$, , \$100.
26. 1000.
27. $\frac{\tau^{2}}{3}$, $7^{\frac{1}{3}}$.
28. $\frac{1}{1}$.
29. $\frac{\pi^{4}}{2}$.
30. $\frac{1}{8}$.
31. 13:1 days.
32. 5 days.
33. I2: hours.
34. I $3 \frac{1}{3}$ days.
35. $\frac{1}{6}$ day.
36. 6 days.
37. $\frac{2}{1}$.
38. $13 \frac{1}{3} \mathrm{~min}$.
39. $24 \frac{4}{8} \mathrm{~min}$.
40. \$1912.50.
41. 60 feet.
42. I 50 feet.

EXERCISE 44.-Page 150.

1. $\$_{174}$.55.
2. \$I 49.35 .
3. \$315.22.
4. \$214.96.
5. \$1 370.68.
6. \$1318.95.
7. $\$ 2375.85$.
8. \$6516.03.
9. \$1099.52.
10. \$830. io.
II. \$435.09.
11. $\$ 384.87$.

1 3. $\$ 235.93$.
14. \$32.57.
15. \$197.38.
16. \$9793.6r.
17. \$8838.81.
18. $\$ 28.47$
19. \$ 135 .
20. \$197.28.
21. $\$ 784$.
22. \$51975.
23.: $\$ 1564.50$.
24. \$1804.
25. \$125.12.
26. \$25839.
27. 86 times.
28. 864 books.
29. 7630 times.
30. \$3.16.

3I. 16 cts .
32. 58 t months.
33. 15 cts .
34. 105 pounds.
35. \$35845.35.
36. \$92.85.
37. \$129.05.
38. \$12.12.
39. \$530.60.
40. $\$ 48.60$; goc.
41. I 97 lots.
42. \$60.33.
43. \$53.55.
44. 32800 picces.
45. \$7.52.

EXERCISE 45،-Page 155.

1. 58; ro92 far.
2. 56 I6d.; I 3435 d .
3. $72+695$ far.
4. $£_{383} £_{+78}$.
5. $14^{81}+$ far.
6. $£ 225 \mathrm{~s} .2 \mathrm{~d}$.
7. £3 IIS. 2 d.
8. 3820 far.
9. 203 far.
10. 20163 far.
II. 1. £22 3s. Id.
11. 217 6s. $5 \frac{1}{4} \mathrm{~d}$.
12. £39 IIs. $8 \frac{3}{4} \mathrm{~d}$,
13. £3001 Ios. Iod.
14. 2 II 33 sixpences.
15. $£ 46$ I2s. 3 d .
16. 3 I 6 boys;
£3 OS. IId.

EXERCISE 46.-Piggo 157.

1. £27 IIs. Gd.
2. £I8 I $7 \mathrm{~s} .8 \frac{1}{4} \mathrm{~d}$.
3. $£ 63$ I6s. 2 d .
4. $\mathscr{2} 662 \mathrm{~S}$. $\frac{1}{4} \mathrm{~d}$.
5. 59288 s .91 .
G. $£_{4825}^{85} .9 \frac{3}{4} \mathrm{C}$.
6. £99153 IOS. $2 \frac{1}{4} \mathrm{~d}$.
7. £66807 9s. 8 d .
8. $£ 55862$ os. 4 ll .
9. £50650 6s. $5 \frac{3}{4} \mathrm{l}$.
10. $28 \sqrt{17 \mathrm{~s} .} 5 \mathrm{~d}$.
11. $E_{9} 8 \leq$. iod.
12. $\mathfrak{f} 945 \mathrm{~s} .5 \frac{3}{4} \mathrm{~d}$.

13. £3 2s.ol ${ }^{\frac{1}{2} d .}$
14. $\mathfrak{e}^{6} 69 \mathrm{~g} .7 \frac{1}{2} \mathrm{~d}$.
15. £3iog os. 1 id .

16. \mathscr{E}_{+5} 16s. 3 d .

EXERCISE 48.-Page 160.

1. $\AA_{12}{ }^{\circ} \mathrm{Ig}$ S. $10 \frac{1}{2} \mathrm{~d}$.
2. ${ }^{4} 37$ I3s. 5 d
3. $26 \mathrm{Is} .2 \frac{1}{4} \mathrm{~d}$.
4. $\mathfrak{t} 449$ I 3s. 9 d .
5. $£_{144} 7$ s. 4 d .
6. $£ 159$ 15s. $2 \frac{1}{4} \mathrm{~d}$.

- $\mathfrak{£}_{132}$ I 6 s . o $\frac{1}{2} \mathrm{~d}$.

8. £198 3s. 10 新d.
9. £840 ins. 6 d .

Io. $£_{1134135 . ~} 1 \frac{1}{2} d$.
11. \mathfrak{E}_{498} I3s. $6 d$.
12. $\mathfrak{£}_{155} 58 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d}$.
13. $£^{2}+630$ 19s. $5 \frac{3}{4} \mathrm{~d}$.
14. $£_{7} 64$ s. $9 \frac{9}{4}$ d.
15. $\boldsymbol{£}^{1} 5153$ 12s. $5 \frac{1}{2} \mathrm{~d}$.
16. £11078s. 6 d .
17. $£_{22}$ 155. iod.
18. $£_{52}$ ıs.

EXERCISE 49.-Page 163.
k. $£_{14} 9 \mathrm{~s} .8 \frac{1}{4} \mathrm{~d}$.
2. $£_{154}$ Is. 9 d .
3. £ 149 17s. ind.
4. £73 17 s .83 d .
5. $£_{3} 19 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$.
6. $£ 83$ I 5 S. 0
7. $£_{3} 19 \mathrm{~g} .1 \frac{1}{2} \mathrm{~d}$.
8. £794 18s. ol 1 d.
9. $£_{53} \mathrm{I} 2 \mathrm{~s} .5 \frac{1}{2} \mathrm{~d}$.; ε_{12} i3s. 2id d .; £69 4s. 3 2 d d.;
$£_{73}$ os. ol ${ }^{\frac{1}{2} d .}$
IO. $\mathfrak{£}_{2}$ IOS. $7 \frac{1}{2} \mathrm{~d}$.
II. $£_{4}$ ios.
12. 7; II; I6; IO8.
13.8 men.
14. I2 shawls. $15 . \quad 1$.

I2I times.
17. 1200 purses.
18. 1 3 times; $\mathfrak{x}^{6} 3$ s. $3 \frac{1}{2} d$

EXERCISE 50.-Mage 160.
(i) 2. 3 oz. 12 dwt. 18 grs .
3. 28968 grs .
4. 173 lbs 7 oz .6 dwt . 16 grs.
5. 58321 grs.
6. 3420 grs .
7. 2 lbs. 4 oz. 6 drs. I scr.
8. 18465 powders.
9. 584 packages.
10. 5684 oz .
11. 3 cwt. 6 n lbs. 7 oz .
12. 3 T. 13 cwt .59 lbs .

I3. 9 T. $8 \mathrm{cwt}$. i 7 lbs .
14. 45 T. 4 cwt. 57 lbs .2 oz.
15. 107 lbs .7 oz .8 dwt . I grs.
16. 8 cwt. 3i lbs. ro oz.
17. 24 T. I cwt. 71 lbs .
18. 17 T. 55 lbs .
19. 403 T. 17 cwt. 55 lhs .
20. $68 \mathrm{~g} \mathrm{lbs} 8 \mathrm{goz}, 16 \mathrm{dwt}$.
21. 6 lbs . ıо oz, ıo dwt.
22. 9 cwt 89 lbs.
23. 89 ग parcels.
24. 48 ounces.
25. 27 bags.
26. 65 forks ; I oz. 5 dwt.
27. 2 cwt. 12 m lbs.
28. 24.
29. 50.
30. 5.

3I. 2 lbs. 4 oz. 9 dwt. $1 \frac{1}{1} \frac{1}{3}$ grs.
32. 5 I lbs. in oz. 18 dwt. 18 grs. 33. 3 T. 56 lbs . $15 \frac{3}{2} \mathrm{oz}$. 34. 3 lbs. 1 oz. 8 dwt. 14 grs.
35. $884 \frac{\text { ta }}{6}$ times.
36. 21 lbs. $6 \frac{2}{2} \mathrm{oz}$.; $6 \mathrm{cwt} .72 \frac{2}{6} \mathrm{lbs}$.
37. 1 lb. 3 dwt. 16 grs.
38. ${ }^{\frac{1}{7} 7}{ }^{7} \overline{2}$.
39. 10 oz. 9 dwt. 20 每年 grs . 40. I T. 8 cwt . $\mathrm{IO} \mathrm{lb}^{2}{ }_{14 \frac{1}{4} \mathrm{oz} \text {. }}$ 41. $18 \mathrm{cwt} .75 \frac{7}{\mathrm{~T}} \mathrm{lbs}$.; ${ }_{23}$ T. 5 cwt. $19 \frac{37}{3} \frac{7}{2}$ lbs. 42. $\frac{7.3}{207}$.

EXERCISE 51.-Page 173.
13. 5 yds .2 ft .9 in .
14. 45 yds. 2 ft .5 in .
15. 1365 inches.
16. $\frac{4}{11}$ of a mile.
57. $22 \frac{1}{2}$ cords.
18. 770 fathoms.
19. \$56.
20. 9 sq. rd. 13 sq. yds. 1 sq. ft. 3 • sq in.
21. 14 inches.
22. $93 \frac{1}{3}$ sq. $y d s$. ;

$$
\$ 16.80 .
$$

23. 39 suits.
24. 15587 mi .7 fur. 33 rds . 2 ft .3 in.
25. $34 \frac{2}{7}$ times.
26. 42 sq. mi. 142 ac .20 sq . rds. 20 sq. vds. 6 sq. ft. 143 sq . in.
27. $3 \mathrm{ft} .6 \frac{2}{3} \mathrm{in}$.
28. 16 feet.
29. I ac. 14 x sq. rds. 4 sq.
yds. 4 sq. ft. 48 sq . in.
30. 19360 sq . yds.
31. 5 mi. 4 fur. 23 rds.
32. 40 a ac .38 sq . rds.
33. $\frac{1}{213} 1{ }^{156}$.
34. 45 yds.; $33 \frac{1}{\mathrm{~s}} \mathrm{ft}$.
35. 4488 ft .
36. $\frac{75}{5}{ }^{5}$.
37. Ioo acres.
38. $198 \mathrm{ac} .126_{\frac{2}{3}}^{2} \mathrm{sq}$ rds.

EXERCISE 52.-Page 177.
8. $31536000 ; 3^{1 / i 22400 ;}$ 2592000; 2678400; 2505600; 604800; 86400 ; 3600 sec .
9. $525600 ; 527040$; 44640; 43200; 44640; 40320; 131040 ; 132480 min .
10. 189r2 seconds.
11.10 hrs .41 min .37 sec .
12. 201 days.
13. 2 wks. 5 da. 7 hrs. 9 min .
14. $\frac{31}{3} 3 \frac{3}{6}$.
15. 5 da. 54 min .
16. 354 days.
17. 10 minutes.
18. $\frac{29}{89}$.

16 grs.

- 20 零 $\frac{0}{2}$ grs. olb. 14! oz. -Ibs.; $19 \frac{37}{3} \frac{7}{2} \mathrm{lbs}$.

2 ac .20 sq. is. 6 sq. ft.
rds. 4 sq. 8 sq. in.
rds.
rds.
q rds.
.45 min.
\min.
3 sec .
min.
45 min .
hrs.
o sec.
4.

牟 sec .
A.M

ASSWERS.
xxiii
EXERCISE 53.-Page 180.
9. 480 dozen.
10. $1091 \frac{7}{13}$.
(II. 55 pints.
12. 43 bush, 1 pk. 3 qts.
113. 3 hhds. 8 gal. 2 qts. I pt.
14. \$90.56.
15. 364 gals.
16. \$51r.87 $\frac{1}{2}$.
17. 4 loads.
18. $\frac{21}{32}$.
19. $4^{\text {r }}$ gals. 3 qts. I pt.
20. $\$ 3.80$.
21. \$1.05.
22. $\frac{1}{3}$.
23. 30 gals.
24. 14t qits.
25. 36 barrels; 432 dozen.
26. $169 \frac{2}{3}$ bush.
27. $922 \frac{2^{\circ}}{17}$ bush.
28. I7I bush. 3 qts.
29. $\frac{8}{15}$.
30. $204 \frac{4}{4-6}$ barrels.

EXERCISE 54.-Page 182.
7. 2450 score.
8. 62500 boxes.
9. $\$ 720$.

Io. 80 brls. ; \$470.40.
If. 1152 books.
12. 300 stones.
13. 115 brls.; \$18.97.50 14 . $\frac{1}{2}$.

EXERCISE 55.-Page 189.
 3. $\frac{10}{2}$; $\frac{7}{8} ; \frac{7}{16} ; 8 \frac{1}{4} \frac{1}{0}$.
(b) 1. 65.046 ch .
2. $5+9.375$ ac.
3. ${ }^{0} 0003764$.
4. 5.6857 ac .
5. 5.937 lbs.
6. 99.96154 miles.
7. ${ }^{8} 50955$.
15. $416 \frac{2}{3}$ doz.
16. $\frac{3}{2} ; \frac{9}{10} ; \frac{4}{6}$.
17. 13.20 .
18. $83 \frac{1}{3}$ reams.
19. $\$ 12$.
20. $\$ 213.16 \frac{1}{2} \frac{9}{9}$.
21. 2970 volumes.
22. 18 - 5 doz. ; \$726; 2 ac.
8. $\$ \mathrm{ro8} \cdot 675$.
9. $39 \mathrm{I} \circ 5 \mathrm{ft}$.
10. 08.
II. 'I5; 3650; Ioo20.
12. 4.9834; 24.8266; 6344 .
13. ${ }^{\circ} \mathrm{O} 4026$; ${ }^{\circ} \mathrm{OI} 274$; ${ }^{\circ} \mathrm{OOO} 4$.

EXERCISE 56.-Page 103.
(a) 1. 625 .
2. 0625 .
3. 85 .
4. 52 .
5. 35 .
6. 2.625 .
7. 024.
8. 0390625.
9. 24.6 .
10. $4^{8} 4375$.
II. 'II584.
12. 1•5008.
13. ${ }^{\circ} 27$.
14. 083.

15: 123 .
16. 238095.
17. 624.
18. 3 ig.
xxiv
(b) I. $\frac{6}{8} 5 \frac{5}{6}$.
2. $\frac{8}{1}$.
3. $\frac{5}{7}$.
4. $\frac{7}{75}$.

ANSWERS.

(c) เ. $18 \cdot \dot{5} \dot{6}$
2. ${ }^{\circ} \dot{6}$.
5. $\frac{8}{13} \frac{24}{7}$.
6. $\frac{1}{8} \frac{4}{2} \frac{4}{5}$.
7. $\frac{9}{\$ 4}$.
8. $\frac{2,}{22^{3}}$
9. $\frac{1}{4}$.
10. $10 \frac{1}{500}$.
5.7.72.
6. $7 \cdot 3$

EXERCISE 57.-Page 195.
13. \$239.25; \$336.
14. $10 \frac{1}{2} \mathrm{~d} . ; \frac{3}{10}$ gal.; $\frac{3}{4} \mathrm{yd} . ; \$ 2 \frac{1}{3}$.
$15.33 \frac{1}{3} \% ; 100 \% ; 50 \%$
16. $\mathscr{E}_{50} 2 \mathrm{~s} . ~ I d . ; \sum_{200} 8 \mathrm{~s} .4 \mathrm{dl}$.
17. \$103.10; \$824.80.
18. 50%
19. 28%
20. $26 \frac{2}{3} \%$.

2I. \$IIO.
22. 50%.
23.25%.
24. \$30000.
25. 19845.
26. 60 cts .
27. \$20.
28. $\$ 42.87 \frac{1}{2}$.
29. 600 lbs . Ist ycar ;

720 lbs. 2nd year.
30. Wife and son, $\$ 480$ cach ; daughter, $\$ 360$.

EXERCISE 58.-Page 200.
I. 9 ft .
2. $I 5 \frac{1}{3} \mathrm{ft}$.
3. Ift.
4. 60 sq . yds.; 10 ft .
5. 24 ft .3 in .
6. \$166.88.
7. $3 \mathrm{I} \frac{1}{2} \mathrm{in}$.
8. 12 ft .
9. \$9.

EXERCISE 59.—Page 50.

1. $\$ 2750.53$.
2. $\$ 843$.
3. £I89.
4. \$650.10.
5. \$13.84.
6. $\$ 832.70$.
7. $\$ 79^{81.20 .}$

EXAMINATION PAPERS.-Page 203.

Paper I.

2. $\frac{5}{5}$
3. 17.
1. ${ }^{1} 224$.
2. IO $\frac{0}{10} \mathrm{cts}$.
3. \$1200.
4. $\frac{2}{8} \frac{8}{1} \frac{3}{7}$.

PAPER II.

1. 1854.
1. 14839 .
2. CXIV;

х̄мcmlxxxiif.
4. 2880.
5. \$2000.
6. 60;
$\$ 2.50$
$\% 7$ gals.
8. 288 ac.
9. $\$ 356 \mathrm{I} ; \$ 4022$ 。 10. \$8g.II.

SAPER III.

1. 197325.
1. 800 ; 200.
2. 70.
1. $5 \frac{1}{3} \mathrm{ft}$.
2. $3 \frac{1}{3}$ hrs.
3. 21 brls.
4. 74_{4}^{48}.
5. \$16.
I. ${ }^{\circ} \mathrm{OI} 22$.
6. $32 \frac{2}{3} \mathrm{hrs}$.
7. \$90.70.
. . \$68.60.
8. 4 hrs.
9. 432 .
10. $\frac{2}{7}$.
11. A 315 ac.

B127 $\frac{1}{2}$ ac.
C 127누2 ac.

PAPER V.

1. 606100 gals.
2. I lb. 3 Oz. 8 dwt . 2 I grs.
3. $\frac{7}{15}$.
4. 3410 ac; 3940 ac.
5. \$246.
6. 8 min . to II P.M.; $246 \frac{2}{3}$ miles.
7. Henry \$31:;

George \$130; Fred \$ioo.
8. \$240.

PAPER VI.

1. 4840 sq. y ds.;
$\frac{3}{13}$.
2. 6.53055.
3. 196.
1. C \$ 1050 ;

D \$4950.
5. $2 \frac{1}{2}$ hrs.
6. \$4.80.
7. A \$75;

13 ${ }^{\boldsymbol{\pi}}$ III。
8. 16 men .
9. 100 gals.

$$
\sigma
$$

[^0]: 9 anc
 are
 "
 3
 4
 5 "

