CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée

\square
Covers restored and/or laminated /
Couverture restaurée etou pelliculée

Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and'or illustrations /
Planches et/ou illustrations en couleur

\square
Bound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

\square
Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurées etou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquéesPages detached / Pages détachées
Showthrough / TransparenceQuality of print varies /
Qualité inégale de !'impression
Includes supplementary material /
Comprend du matériel supplémentaire

\square
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelıre, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux rois afin d'obtenir la meilleure image possible.

This hem is filmed at the reduction ratio checked below I
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmad hare hes been raproduced thenks to the generosity of:

National Library of Canada

The imeges eppeering hare ore the best quelity possible considaring the condition and lagibillty of the original copy and in keeping with the filming contract spacifications.

Original copies in printed paper covers are fllmad beginning with the front cover and anding on the lat page with a printed or illustrated impression. or the back cover whan appropriate. All other originel copias era filmad baginning on the first page with a printed or lllustratad impres. sion, and anding on the last page with a printed or illuatrated imprassion.

The leat racordad frame on each microfiche shall contein the symbol \rightarrow Imeaning "CONTINUED"), or the symbol ∇ (maening "END"). whichover epplies.

Maps, pletes, charts, atc., mey be filmed ot differant reduction ratios. Those too large to be entiraly includad in ona exposure are filmed baginning in the upper laft hand corner, left to right end top to bottom, ae many framas as required. The following diegrams illustrate the method:

L'exempleire filmb fut reproduit grace a la góndrosit' de:

Bibliothèque nationale du Canada

Les imeges suivantes ont dté reproduites avec le plus grend soin, compte senu de la condition at da la narreré de l'axamplaira filmb. ar an conformite avac les conditions du contrat de filmege.

Les examplaires originaux dont le couvartura an papior ast Imprimde sont fllmes an commengant per le promiar plet et an terminent soiz par la derniere pege qui comporte unt emprainte d'Impression ou d'illustration, soit per le second plat, salon le ces. Tous las outres exemplairas originaux sont fllmds en commencant par le pramiére page qui comporto une amprainte diemprassion ou d'illustretion ot en terminant par le dernid́re pege qui comporte une telle emprainte.

Un des symboles suivents appareitra sur la derniere imege de chaque microfiche. selon te ces: Io symbole signifia "A SUIVRE". Io symbole ∇ signifia "FIN".

Les certes, planches, tableaux. etc., peuvent étre filmds à des taux de reduction difforants. Lorsqua le document ast trop grand pour otre reproduit on un soul clichd. il ast filmd a partir de l'angle supdrieur geucha. de gauche id droite. ot de haut on bes, en prenent lo nombre d'imegas ndcessaire. Las diagrammas suivants lllustrent le mothode.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

CA. M. 623?
CANADA
DEPARTMENT OF MINES
hon. Arthur Meighen, Minister; R. G. McConnell, Deputy Minister.
GEOLOGICAL SURVEY
Wm. Mcinnes, Directing Geologist.

MEMOIR 117

No. 99, Geological Series

Geology and Ore Deposits of Ainsworth Mining Camp, British Columbia

BY

S. J. Schofield

OTTAWA
J. DE LABROQUERIE TACHE PRINTER TO THE KING'S MOST EXCEL VET MAJESTY

Phetograph of ar at of binworth mining ramp. (Mondel by L. Shichart.) I'age :-

76153

CANADA

DEI:ARTMEN゙T OF MINES

GEOLOGICAI, SURVEY

Wm. Melsweg, Hinferivi, fipotorist.

MEMOIR 117

No. 9!), (ibinogical Sieries

Geology and Ore Deposits of Ainsworth Mining Camp, British Columbia

BY
S. J. Schofield

OTTAWA
J. vr. LABKOQLERIE TACHE

1920

CONTENTS.

(HADTERE I.

Introuluction Paus.
(imbral ntatemont 1
Fieh! work and neknowlergnenta 1
lareation and aren 2
Menin of connmmication 2
Previons work 4
Bibliography...4
CHAPTEKII.
General churacter of district.
H
H
'Tujngraphy i
Regimat. i
Iar:.
7
7
Climate. 7
CHADPrill IH.
General grohigy
N
N
Cieneral statement x
Ainsworth merios
10
10
Gomeral statement
10
10
I'oint Woothury formation 10
Parly Bird formation 10
Prinecse formation
10
10
Ainsworth formation 11
Jorephine formation. 11
Age
14
14
slocan seriew
15
15
Silver Iloard formation 15
Star linıratone
15
15
Ruth argillites 16
No. 1 limestone 16
Skyline formation. 16
Age
17
17
Granites 19
Gneissic granite 10
Granite
20
20
Age and correlation
22
22
Lamprophyrie dykes. 23
Camptonite
23
23
Superficial deposits.
24
24
Pleistocenc deposits 24
Recent deposits 24
76183-14
Structural geolog.
Regional. 25
Local. 25
('IIAM1:R
Genlogical history
Introduction 27
Paleozoic selimentation 27
Point Woorllury rporh 27
Barly lisu epoch \because
Prineess epoch 27 27
Ailusworth epoch 2.
Jusephine epoch. 28
Silver Hoard epork 28 28
Sykline epoch 28
Jurassie 25
Cretaceous. 2!)
Terliary 29
enaternary ?!
('llalrtirk VI.
Economic geology
Introduction. 30
Mineral production of dinswonth mining division 30
Ore deposits 32
Distribution 32 32
Mineralogy. 32
Native elements: 32
Sumphider :3 :3
Oxides. $3: 3$ $3: 3$
Malides. :3
Curbonates: 34
Ores. :3
Age of deposits :3.5
Age relations of replacement deposits and ruc fishare weins 3.)
Age relations of dyken and ore deposils :35 :35
Age of deposits 3.5
Origin of the ore deposits :36
Finture of Ainsworth mining district 36 36
Deseription of mines and prospects. 36 36
True fissure veins 87
Fissure vilus ent ting bedtling olates at :an :mate 87
Highland
37
37
Flormere
H
H
Early liird
11
11
llnited.
llnited.
42
42
(ilangarry 43

('IIIITH:K VII

Origin of luredil tronch
Simumary..... (0)
(ieography....... 60
Topography.......

Structurr... 62
Origin. 62
Inılex..................... 69

Illustrations.
Map 1704. Ainsworth, Kootmay district, B.1': 'Tupheraphical adition In wroher.
1742. Amsworth, Kootmay district, 1B.'. (imakieal mlitun.
1749. Diagram showing mincral clams in Ainsworth mining camp, Kinotdnay dist rict, 13.C:
1784. Diagram showing geology of the seromd heved of the llightamed mine.
178.5. Diagram showing gerlogy of the minerat daims of the Fhorence Silver Mining Company, Aimsworth, 13.('.
1786. Diagram showing geology of the madergroumd workings of thi Florence Nilvar Mining Company, Ainsworth, B.C'
1787. Diagram showing the geology of the sumbight and part of the star mineral claims
1788. Diagram showing the gevlogy of the Ayosha mineral claim, dinsworth, B.C
1789. Diagram showing geology of the Somame mineral claim, Ainswarth, 13.C:
PAGE.
1700. Diagram showing a eross-section of the vein at the faee of the lower
tunnel of the Early Biril mineral elain, August 25, 1914 In pocket.
1791. Diagram slowing geology of the Crown tunnel, Ainsworth, B.C "
1792. Diagram showing geology of the tunnel on the Allion mineral elain Ainsworth, B.C.
Plate I. Photograph of a model of the Ainsworth mining camp 4
II. Looking south along the I'ureell treneh, delta of Lardo river in
II. Looking south along the I'ureell treneh, delta of Lardo river in
67
Figure 1. Index map showing position of Ainsworth 68
2. Diagram showing the elassification of the Canadian Cordillera 3
3. Struetural section across Ainsworth map-area 6
4. Longitudinal section along the main vein, Ilighlaud mine, Ainsworth, 26 26
B.C
39

6. Diagram showing the geology of the Pureell treneh, British Columbia 52 63
page. pocket. " tispiece.

Geology and Ore Deposits of Ainsworth Mining Camp.

CHAPTER I.

INTRODUCTION.

GENERAL STATEMENT.

Historically, the country in the vicinity of Ainsworth is one of the most interesting in British Columbia. It is situated in the narrow longitudinal trench (Plates II and III) occupied by Kootenay lake, whieh in the early days before the advent of raitways formed the only means of communieation for the numerous prospectors who were attracted to the country by the hope of discovering mineral wealth. Since Ainsworth was on one of the main waterways its hot springs ${ }^{1}$ attracted the attention ${ }^{\text {a }}$ of these pioneers, and it was carly prospected with fair results. From that time until 1913 the eamp was rather quiet due to the rush to the Slocan and to the Yukon. A few men who believed in the future of the Ainsworth camp remained there and with the limited resources at their disposal slowly proceeded with the development of the camp. At present their hopes have been realized, as Ainsworth is now a steady shipper with prospects that it will continue to be such for some time to come.

The principal producing mines in the district are the Blucbell on the east shore of the lake, No. 1, Florence, and the Highland; but several other minor properties ship irregularly.

The field work in connexion with this report was not confined to the aetual mining eamp of Ainsworth, but, in orter to solve the problems which demanded attention, the region to the north and south was examined with the result that the formations in Ainsworth and around Kaslo have been eorrelated. A study was made of the geology of the walls of the treneh from Kaslo as far south as the International Boundary, and new information has been eollected whieh hears on the origin of the Pureell treneh, as the valley eontaining Kootenay lake is eallet.

\footnotetext{
1 Tbe following analygis of these waters is said to have been made in 1899, by 1. 11. Holdich, Royal School of Mines, London, England:
"The water was colourless, not quite clear, no particular amell, but taste salty. Reaction to litmus paper distinctly alkaline.

Tbe solid matter in solution is as follows:

Sodium carbonate.	31.1	grains per lmperial gallon.
Sodium silicate.	9.5	
Sodium chloride	$7 \cdot 2$	" "
limie carbonste.	26.2	" ${ }^{\prime \prime}$
Musgnesia sulpbate	3.6	" "
Oxide of iron	0.9	" "
Total solids	78.5	" ${ }^{\text {c }}$

No bromine or iodine, and the iron which probably exists as carbonate is very small. 1 consider the water too alkaline for general use though there may be specia! cases where it micht be weful from y seedica! point of view."

FIELI) WORK ANi) A('KNOWLF! (MENTS.

The completion of the study of the stratigraphy of the Pureell series, which make up the greater part of the Purcell range, in the eastern part of which orcurs the Pre-Cambrian-Paloozoie contacts, naturally led to rescarches on the rocks which lie west of the Purcell series and are exposed on the eastern and western shores of Kootenay lake. In the latter part of the season of 1913 and the early part of the season of 1914 the eastern shore of Kootenay lake, together with the country lying between Kootenay lake and the western outcrops of the Pureell series, was examined in a reconnaissaner, the main object of which was to determine the relationships of the Pureell series and of the so-called Selkirk series exposed on Kootenay take. The results show that the roeks exposed on the shores of hootenay lake are prohably metamorphosed Pałæozoic rocks. In August, 1914, a detailed examination of the geology and ore despoits of the Ainsworth mining camp was begun and was earried on for the remainder of that season and during the season of 1915. Two months of the summer of 1918 were spent in a re-examination of this district.

The offieers of the Consolidated Minitig and Smelting Company, Limited, and the owners of the several mineral properties in the distriet, expecially Mr. W. M. Hewer of the Florence Silver Mining Company, were of ${ }_{F}$ great assistance in expediting the examination of the ore deposits. Mr.s.s. Fowler, manager of the New Canadian Metals Company which operates the Blueboll mine at Riondel, gave the writer the results of his investigations on that property. These cover the exploration of the ore deposit from its initiarion and hence are invaluable.

Aeknowledgment is made to the assistants in the field: V. EardleyWilmot during 1914 and O. D. Boggs during 1915.
F. S. Falconer, topographer of the Geologieal survey, is to be credited with the topographic map.

LOCATION AND AREA.

The Ainsworth map-area (Figure 1) lies in the Ainsworth mining division in southern British Commbia. ('offer ereek forms its southern bound?-y and Woodbury creek, approximately, the northern boundary. The western himit is marked by the contact of the sedinientary rocks which caterop around Ainsworth with the Nelson granite on the west. The eastern boundary is marked by the western shore of Kootenay lake. The total area of the map sheet is about 15 square miles. The chief town of

Figure 1. Index map showing the position of linsworth.

MEANS OF COMMUNICATION.

Access to the area is usnatly through Nelson, either coming from the coast or from the east by the Crowsnest route of the Canadian I'acific railway. Within the area itself a good wagon road about 5 miles lone aseends by a somewhat cirenitous route from dinswortl: to the No. 1 Skyline, and Silver Hoard properties. Another road j is the Highland mine with Ainsworth. A roal skirts the shore of the lake as far as Cedar creck, from whiell point a trail contimes tho comm nication to Kaslo. A trail follows Woolbury ereek from its mouth to the glacier from which Woodlury creek takes its origin and another trail aseends Coffee creek to the liokance glacier, the sonree of Coffer ereek. Fron the Highland mine a trail leads to the Callagher property and other trails of less importance give accesis to the numerous prospects of the area.

PREVIOUS WORK.

G. M. Dawson' was the first investigator of the rocks and ore deposits of the Ainsworth mining camp and his results were published in the Annual Report of the Geological Survey of Canala for the years 1888-1889. In this report he classifies the schists which occur along the shore of the lake in the Ainsworth district as Archatan in age and correlates them with the Shuswap series on Shuswap lakes. The sedimentary series which overlie this series are tentatively assigned to the Paleozoic from the Cambrian to the Carboniferons. The work of the writer suggests some changes in this elassification. The ore deposits in the Ainsworth district are described in some detail. R. G. MeConnelle re-examined the area and a few of the ore deposits in 1894 in his reconnaissance of the West Kootenay area.

In order to estimate the tounage of zine in British Cohmbia, a commission was appointed which examined the properties in the Ainsworth district which contained any quantity of zinc ${ }^{3}$.

Ther reports of the officials of the British Columbia Bureau of Mines from 1896 to the presint contain many important descriptions of the several mines and prospeets.

BIBLIOGRAPHY.

Dawson, G. M.-Geol. Surv., Can., Ann, Rept., vol. IV, 1888-9, pt. B. The Commercial, Winnipeg, July 15, 1892. Ge... Surv., Can., Sum. Rept., 18:34, p. 33. (ieol. Surv., Can., Sum. Rept., 1895, p. 25 A.

1 lim, J.C.-Can. Rec. Sc., vol. VI, 1895.
Can. Rec. Sc., vol. VII, 1897, p. 293.
Brock, R. W.-Geol. Surv., Can., Sum. Rept., 1898, p. 67A.
Gcol. Surv., Can., Sum. Rept., 1899, p. 84A.
Kendall, J. D. - Min. Jour., 1900.

[^0]Ingalis, W. R.-Report of the Commission to investigate the zine resources of British Columbia and the conditions affecting their exploration.
deposits Anlual 89. In the lake rith the overlie rian to in this scribed of the
omnisdistrict

Mines several

Dept. of Mines, Mines Branch, 1906.
Thomson, F. A.-Can. Min. Jour., vol. XXXIII, 1912, p. 830.
Schofield, S. J.-Geol. Surv., Cun., Sum. Rept., 1914, p. 38.
Lakes, Arthur-Min. and Eng. World, 1915, p. 411.
Schefirld, S. J.-Trans. Can. Min. Inst., vol. XVIII, 1915, p. 202. Geol. Surv., Cin., Sum. Repl., 1915, p. 93.
Rickard, T. A.-Min. and Sc. Press, vol. CXIII, 1916, p. 765.
Uglow, W. L.-Economic Geology, vol. XII, 1917, p, 643.
Schoficłd, S. J.-Trans. Can. Min. Inst., vol. XXI, 1918, p. 422.
Trans. IRoy. Soc. Cunada, 1919.
Reports of the Minister of Mines for British Columbia, 1890-1918.
from the n Pacific iles long No. 1 Highland as Cedar o Kasko. m which e creck lighland
importimphand
import-

CHAPTEK 11.

GENERAL CIIARAGTER OF THE DISTRICT.

 TOPO(ilRAPII.
HEGIONAL

In the sonthorn part of Briaish (ohumbia, the Introrior Phatau regio spharates the North Amerie:an (ordilhera in (antala (ligure 2) into tw

Figure 2. Diagram showing the classification of the Cunadian Cordillera
man divisions, each of which, in contrast with the Interior Plateau region, is characterized by alpine mountain topography. Each division is subdivided into mount ain systems hy well-definel topograplice features.

The catern division consista from west to east of the commbia, Solkirk, and Rocky Mountain systems. The great intermontane depres. dons which individualize the above ranges are the selkirk depresion. occupied be the south-flowing Columbia river, which separates the ('ohumbia range from the Solkirk range; the Purcell trench, oecupied for the most part by Kootenay lake, which subdivides the solkirk system, and the Row. Mountain trench, oceupied in its southern part by the sonth-flowing Kootenay river and in its northern part by the Colnmibia river which flows northward and crosses the main tine of the Canadian Pacific raihway at Golden. This trench separates the Selhirk system from the looky Mome tain system, the most castern mountain system of the Canadian Cordillera.

LOCAL.

The area orcupied by the Ainsworth sheet (Map 1704) hien on the eastern slope of the selkirk range which forms the western side of the Puredt trench occupied hy Kootenay lake. Viewed from the vicinity of kiondel across the lake (Plates I, III), especially when the eveluing shadows bring ont the contrast in the topography of the region around Ainsworth, it ean be seen that the country rises in a series of giant step) about 1,000 feet in height, the first step coning abruptly out of the lake. These steps bear a simple relationship to the relative hardness of the underlying betrock, as ean be sern from an examinution of the topographic and geolugie maps. In the upper part of the slope the barren rough hills of the eountry underlain by granite are in marked contrast to the more rounded topography; of the lower slopes which in general are underlain by sedimentary rocks of varying resistance to the agencies of erosion.

The areat is drained by three main crecks which from north to south are Woolbury, C Codar, and Coffee creck-. All three enter Kootenay lake through deep canyons and are characterized by falls and rapids. The valleys in their middle courses are trough-shaped. Coffee cerek and Woodbury creek rise in several branehes in the Kokanee glacier which oreupies the summit of this loeal range and from whieh streams radiate in ath direetions, the three streams mentioned above flowing to the cast into Kootenay lake.

ClIMATE.

The climate in the vicinity of Kootenay lake in very healthful. The winters are short and not cold and the summers are dry, especially in the months of July and August, but at no time is the heat unpleasant. In faet, the elimate of Kootenay lake is one of the most pleasant in British Columbia and this, combined with a fine contrasting seenery of mountains and lakes, makes it an ideal place of residence as well as a desirable pleasure resort for the summer months.

CHAPTER III.

GENERAL GEOLOGY.

GENEIRAI, STATEMENT.

The stratified rocks in the vicinity of the Ainsworth mining erunp form part of the Selkirk Mountain range which in its turn belongs to eastern ranges of the Cordildera carved out of the sediments onee deposited in the R:ocky Mountain geosyneline. Dawson', the pioneer in the geology of this region as well as in that of the greater part of British Cohmbia, classified the sedimentary rocks as belonging to the shuswap (Arehean) and to the Niskontith and Selkirk series, both of (ambrian age. In 1895, MeConnefl, in his study of West Kootemay, called the slates which overlie the Selkirk serios the Slocam slates. The suldivisions of the rocks at Ainsworth are briefly deseribed on the West Kootenay map sheet.

The writer, from the results of this study of the rocks on the cast side of Kooteray lake and castwards to the Roeky mountains, believes that the rocks at Ainsworth are all probably of Pakeozoie age and were metamorphosed by the intrusion of the West Kootenay granite batholith.

The sedimentary rocks at Ainsworth are cut by the West Kootenay granite batholith, an igneons complex ranging in age from the Jirassicto possibly the Tertiary. At Ainsworth the granite in the western part of the sheet is of Jurassic age.

The lanuprophyric dykes which are the last evidences of igneons activity at Ainsworth are faulted by the majority of the vein fissures wherever the two have been seen in issociation. A dyke in the Bluebell mine, according to Mr. Fowler, manager of this property, is an exception and cuts the ore-body.

Over the most of the area, the eroded surfaces of these roeks are covered by alacial drift.

[^1]9
Table of Formations.

Quaternary ...	Post-glacial Glacial.	Lirosion: deposition of the delta leposits, deposition of calcarpous tufa from lint springes. Erosion: deposition of gliscial drift.
Tertiary		Eirosion: uphift in early Tertiary, diswetion of the (retaceous peneplain and formation of the P'urcell trench (Kootenny Lake valley) and tributary valleys by erosion.
Copper Cretarcoup....		Erosion: unroofing of the Nelson batholith in early Luper (retaceoux prrick!. followed hy peneplanation of the Juraswic mounts ins.
Lower Cretaceous		Dirosion: dissection of the Jurassic nuuntains.
Jurassic.		Vein-filling, fissure formation, dyke intrusion, intrusion of the Felson batholith, C. Prenic, movements, formation of the Selkirk and Purcell inountains.
Coper Carbonilerous and Pre-Carboniferous.	Deposition of the Ainsworth and Slocan series of sediments.

AINSWORTH SL:RHES.

(iRNEIIA!. statrimbint.

The Ainsworth sories, as the term is used in this report, inmbles the gromp of sedimentary and voleanir rocks which lie below the silver Itomel formation of the slowan series at dinsworth. The dividing line between this series amd the slocan series which lies comformably upon it is entirely arhitrary and the contact a transitionat one. The fol of the series is phared at the hase of the massive limestone of the star limestone which outerops on the siar and sunlight mining elains. The hase is not known sinee the rocks of Point Woodlury formation pass under the waters of Konteray lake.

POINT WOODUURY FOHMATION.

The rocks of the Point Woodhury formation outerop on Wimelthury point and oecupy the whole of the point from the foot of the bluff of Wionihury knol, to kootenay lake. The rocks of this formation consist of rusty wenthering, micareous quartzites and garnetiferous mien schists intruded by dykes of gneissic granite and pegmatite, which are generally parallel to the bedding planes but in places lie at a small angle to these planew. The quartzites are thin-bedled, fine-grained, tough rocks in which biotite can be seen with the naked eye. They are smooth and stained by iron oxide on weathered surfaces. The garnetiferous mica schists are distinguished by the presence of reddish garnets which ocel, vary abundantly in some of the beth. The biotite which makea up a large percentage of the rock gives it a glistening appearance. On the weathered s. "ace the garnetiferous mica schist is rusty brown in colour. It frrouently weathers to a dark brown, micarcous earth. The dykes of gneissic granite which cut the roeks of this formation vary in thickness from a few inches to 3 fect. The measirefl thickness of the formation is 1,800 feet.

FARLY BIRD FORMATION:

This formation is named after the Early Bird mineral claim, the workingw of which are located in it and in the neighbourhood of which the formation is well exposed. (iood exposures occur along the road and trail from Cedar creck to Woodlbury creek, in the canyon of Woodbury creek, and on Woothury knob. The typieal rock is a massive, thick-bedded, blue grey limestonc, in which many of the bedsare separated by thin layers of micas schist. The limestone weathers to a rusty brown colour and is rough to the touch, and as it is very resistant to weathering the outcrops form steep cliffs, examples of which can be seen along the shore of the lake from Princess creek to Woodbury knob.

PRINCESS FORMATION.

Good exposures of this formation occur along the wagon road to the Florence Silver mine and along the rual from Ainsworth to Cedar creek. The predominant rock is a gl'tte ing mica schist, in many cases garnetiferous, interbedded with mirac:ous quartzites. The mica schists weather
to a brown micaceous earth and the quartzites usually have a brown lron stain on the weathered nurface. Litholugically, the rocks of the Princess formation closely resemble these of the Point Woodloury formation. The beds of quartzite in many cases show minute foldings and crenulations. Under the microscope the mica schist is seen to he composed of blotite mlea with a large amount of eccondary hornblende and interlocking grails of quartz. The gredation from the Early Bird formation below and to the Alnaworth formation above is transitional. The thickness of the formation

AINSWOHTH TOMMATION.

The limestone which makes up alriost the whole formation is well exposed in the cliffs aloug the shore of the lake from Coffee ereek to Ainsworth. The rocks can be scen in great detail in the lower tunnel of the Florence Silver mine. The limestone is massive and greyish white in colour. White layers of marlle are exposed in some localities and some black, shaly members are also present. Under the nicroscope the limestone is seen to consist of interlockuggrains of caleite with some grains of quartz. The cand grains vary in amount in different parts of the limestone and in places the weatherel outcrop is made up almost entirely of sand, coloured brown with oxide of iron.

Metamorphism.

On Woodloury creck the limestune of the Ainsworth formation is altered to a hornblendite by the intrusion of the gneissic granite with which it is in contact. The hornblende occurs in large, needle-like crystals of a greenish black colour and under the microscope looks like secondary hornblende. It is very probable th t the hornblende was originally augite. Small grains of quartz also occur in this rock.

Interbeds of schist occur between the limestone bands. The physical and ehemical nature of this limestone scems to he favourable for the deposition of ore, although up to the present nonc has 'seen found in it in commercial quantities.

Thickness.

The thickness of this formation varies somewuat in different localities, but it is on an average 600 feet thich.

JOSEPHINE FORMATION.

The base of the Josephine is marked by the upper contact of the Ainsworth limestone and the upper coriact occurs at the base of the limestone (locally known as the Star limestone) which occurs on the Star and Sunlight mineral claims (Map 1787). Good exposures of the rocks of the Josephine formation outcrop en the road and trail from Ainsworth to the lower tunnel on the Sunligit claim, on the No. 1 tram-line, and on the two forks of Woodbury creek.

Distribution.

The rocks of the Josephine formation form a broad belt from north to south across the centre of the area and lave been traced southwards to 76183-2

Queens Bay, across the west arm of Kootenay lake to the shopes of Narrow creek, and northwards to the vally y of Kaslo creek in the Slocan map-ares

Thickness.

The Josephine formation has an average thickness of 3,000 feet. It i apparently thicker in the vicinity of Coffee creek than in the vicinity o Woodbury creck.

Lithology.

The rocks of the Josephine formation are heterogeneons in character comprising from the base upwards a succession of mict sehists, alternating thin-bedded quartzites, and green horublende schists with narrow henses of bands of himestone, and at the top staurolite schists (Maps 1784, 1785 1787, 1788). The above-mentionel bands are too narrow to trace and map in the fiedd, especially as they pinch out in an irregular way and are really long lenses.

Mica Hornblende Schist. This schist can be best seen on the elif below the Banker clain and in the lower level of the Florence Silver above the Ainsworth limestone. The schist consists mainly of biotite mica, and hornblende. The unweathered surface is a dark, blackish green with a development of biotite mica on phanes of schistosity. It weathers to a soft, brownish green carth.

Hornblendc Schist. This rock is a chark green, glittering schist which weathers a rusty brown colour, especially on the walls of the joint phanes, and in many phaces breaks up into small rhomboidat blocks 3 by 3 by 2 inches. Nicroscopieally the schist consists ahnost entirely of pale green secondary hornblende in interlocking needles and small grains of quartz with minor amounts of magnetite. The rock has a distinetly schistose structure. In close proximity to the veins, the green schist loses its coherency and colour from the action of mincralizingsolutions and circulating waters and beromes a soft, whitish, chay-like material. This transformation is especinlly prominent along the main wein of the Highland mine. The hornhbende schist is believed to be a basie voleanie ash which was laid down in water and subsequently attered be regional metamorphism and by the intrusion of the Nelson granite. Economieatly the hornblende schist is very important sinee the ore-boeliess of the Highland mine and some of the ore-bodies of the Florence Silver mine oceur near the lower contact of this rock with the associated quartzites.

Quartzites. The quartzites are of two kinds, a heary-bedded, massive varety which oceurs near the Banker ore-body and a very finely haminated variety which cim be seen in the vicinity of the spokane ore-body and on the road from the Krao to the Vnited mineral claim. The massive type oceurs in beds up to 2 feet in thickness and is a tine-grained, dense, ahmost pure quartzite. The haminated variety has a banded appearanee dure to the alternation of light grey and lorownish grey laminare. The weathering colour is a light brown derived from the limonite which forms from the alteration of small grains of pyrite oecurring between the laminx. The surface of the hamina has a silvery sleen due to sericite. Under the
f Narrows map-area.

It is icinity of
haracter, ternating lenses or 84, 1785, race and and are
the cliff er above iea, and with a ers to a
it whieh t planes, 3 by 2 le green quartz schistose loses its cireulats transfighland h which etamorhe hornnd mine he lower massive minated and on ve type , dense, earame r. The h form: laininx. lder the
mieroseope the quartaite is seen to be composed almost contirely of small. interlocking grains of quartz with very small amounts of calcite. All gradations exist between the pure quartzites and the hornblemde selists. The quartzite is a waterlain samdstome silicified and altered log thermal metanorphism. In the northern part of the area, north of the Ilighland mine, the quartzite bands have been sheared so stromgly that they have been ehanged to quartz mica sehists, strongly resembling those of the Point Woodhury formation. This suggests that most of the cuart z-mic:a sehists of the Ainsworth area have bered derived from quartzites hy regional metamorphism. Eeonomically the quartzites are important in that several ore-hoolies oceur in them, notably those of the Banker, somane, and Trinkett mines.

Limestome. The limestone members of the Josephine formation are well exposed in the vicinity of the Krao, Lible, I Iighland, Dictator, Tiger, Florence silver, and sumlight mineral claims (Maps 1785) and 1787). The limest ones oecur generally as long, narrow lenses with a maximmm widt of 50 feet in the neighbourhood of the Kraw. An attempt was make in the field to trace and correlate the several lenses, hut on aceomet of the lenticular character of the hands and the pancity of outcrops it was fommed to be impracticable. The liran limestone is banded white and gres, the white variety which is almost pure calcite, strongly rewembling marble. In the neighbourhood of the Dietator elam and near the eastern bonndary of the Spokane clam the limestome is dark blue to black in colour and highly argillaceous. The Libly limestome, which outerons on the Liblyy mineril claim and in several levels of the Highland mine, especially the seronth level, is a dense, white erystalline limestone in which rail be detered numerous nedles of tremolite. Mieroseopic examination shows that the linestone is emposed of interlorking grains of calrite with slember nerelles: of tremolite equal in amount to the calcite. The binding effere of the needles of tremolite makes the Libly limestone tongh in nature and difficult to replace by mineralizing solutions.

The limestone in which the main ore-boties of the Florenee Silver mine oceur is coarsely erystalline and of a grey and white colour. The microseope shows that it is an ahmost pure limestome composed entirely of interloeking grains of ealcite. In the neighbonthood of the ore-bodies it has been altered to a soft, gramiar matss and is rather diffient to determine as limestone. When traed along the strike away fron the influenee of the ore-hearing solutions, the limestone gradually resimmes its unaltered character.

Amdalusite and Staurolite Schist. The :mblalnsite and staurolite schist whech forms the upper momber of the Jonephine formation is a someWhat micareons, latack, sehistose argillite in which a great momber of linots weme. The sehist weathers to a rusty brown colonr. The knots arre so highly altered in most easess that there mineralogical dotermination is impossible exepet by their erystalline form which is that of stalurolite. Dawson' mentions a sheared conglomerate occurving maderneath the star linestome. Very carroful examination of the rocks of this horizon, it many localities, failed to reveal any conglomerates. The staurolite sechist when

[^2]sheared shows the knots in rounded form and it may be that Dawson ir his hurried visit mistook these stanrolite sehists for a sheared eonglomerats which they resemble very strongly.

The following composite section of the Josephine formation, taken from measurements of the sections exposed in the underground working: of the Ilighland mine and from the exposures along the Highland tran-line gives in some detail the lithology of this formation and its suecession. The thiekness of the individual members varies in different places, esperially the fibhy limestone.

AGF: OF TIIE AlNSWORTII SERIES.
The Ainsworth series includes the conformable sedimentary formations which are expeed from the western shore of Kiootenay lake to the base of the Star limestone. Previous workersi elassified this series at Ainsworth as Shuswap (Archean) and Niskonlith (Lower ('ambrian). In 1914^{2} as a result of the study of the series of roeks lying east of kootrnay lake and west of the western limit of the (ranbrook map-irea (Map 147A), the writer found that the Purcell series passed conformably under the rocks designated as Shuswap hy Dawson. Hence this series exposed on the eastern and western slopes of Kootenay lake in the vicinity of Ainsworth (Map 792) must be later in age than the Purcell series and cannot be Shuswap or preBeltian. The abundant sills of pegmatite in the so-ealled shuswap series are unmetamorphosed, whereas the series itself cor ists entirely of highly. metamorphosed rocks. These pegmatites, becomug more numerous as the terrane is deseended on the lower slopes of Kootenay lake and along the shore of the lake itself, are genetically associated with the Nelson granite of Jurassic age. In the old repori the contact between the socalled Shuswap series and the later rocks was placed where the pegmatite sills cease to appear in the associated schists; but for the reasons given above it will be sern that these sills camot be used in determining or deliniting the age or stratigraphic relationships of the so-called Shuswap)

[^3]awson in lomerate
n, taken workings ram-line ecession. specially

Feet.

500

150 45 45 325
series and the later rocks and that the sehists that have been called shaswap rocks are really metamorphosed equivatents of sediments which are Beltian or post-Reltian in age.

In the Ainsworth area, the Ainsworth serios consists af a conformable set of sedimentary rocks which undorlic conformally the rocks of the Storan sories which are Pennsytvanian in age. Hener the dinsworth serios is C'arboniferots or pre-('arbonifarons and probably post-bchtian in age.

HIO('AN NEIRIE.

The Slocan series of bedeled rocks were given that name hy R. (i. Mre'onncll ${ }^{1}$ in 189\%. Previous to this. Dawron has recognized the entity of the series without giving a specifie name to it. He wonsidered the serices to be Palaozoic in age and probably ('arboniferous. The name Nlocan series is applied in this memoir to the gromp of rocks which was originally. defined by Dawson in 1889 and called Slocan scries loy Mar ommeld in 1895. For convenience, at dinsworth the series is divided into the following formations:

$$
\text { Sloran serif's ... }\left\{\begin{array}{l}
\text { Skyline formation.... . Mainly nreillitra, some argillacrous limestours (in } \\
\text { Silver Hoard formation. Iimes fossili, rous). }
\end{array}\right.
$$

SILV゙ER IIOARD - ORMATION.

This formation is named after the Silver Hoartl mineral chaim on which the rocks, especially the upper limestone member, are well exposed. The southern bonindary of the formation is fixed by its contaet with the Nelson granite in the vicinity of the Neosha mineral claim. From there, the boundary crosses the area in a northerly direction through the Siar No. 1. Nilver Hoarel, and Gallagher mineral claims across the two forks of Woodbury creek, where its onterop is marked by the appearance of white cliffs of limestone, and thence beyond the northern limit of the area.

The rocks of the Silver Hoard formation can be classified into three members as follows:

Star Limestone.

The Star limestome can be followed as a nearly continuons hand from the Neosha rlain northwards through the Broken Hill, Star, and Buckeye mineral claims across the two forks of Woodhury areek beyond the northerin boumdary of the area. The Star limestone was correlated hy Argall ${ }^{3}$ with the lirao limestone outcropping on the Krao mineral claim, but investigation did not confirm this, since in following the exposures soutlowards it was found that the star limestone outeropes just west of the Cuited elaim

[^4]and hence is scparated from the Krao limestone by several hundred fo of horublende schists, quartzites, and andalusite selists.

The star limestone (Map 1787) consists almost enti-ely of greyi white and white, coarsely crystalline limestone somewhat sandy in place It oceurs in beds from 3 inches to 1 foot in thickness. The total thickne of the limestone is estimated to be 300 feet, but as the beds are nueh co tortei and folded this thickness is only an approximation. The limeston in many cases weather to a sand and are generally slightly stained wit brown oxide of iron.

The limestone in many ceases occupies depressions and in the area unde lain by this menber numerous "sink holes" oreur giving rise to "kar topography" to some extent. These sink holes are formed by collaps of the roofs of eaves eaused by the solution of the limestene hy undergroun water. These depresions are quite comnon just north of the Star chai and close to the crossing of the No. 1 tran-line.

The upper and lower contaets of the Star limestone cannot be definitel defined. The approach to the contact from the underlying staurolite schis to the limestone is first indicated by the oecurrenere of thin limest one band in the schist. These bands increase in number and thickness until th schist hambe entirely disappear and the massive Star limestone is reachere At the upper eontact the limestone passes inco the Ruth argillite in a simila manner.

Ruth Argillite.

The Ruth argillite onter on the trail which erosses the Ruth minera claim to the No. 1 min - it consists of two members, a lower one aboul 500 feet thick of staurolite schist similar to that described above, whic oceurs helow the Star limestone, and an mpper one of grevish brown argillite which occur in beds rom 3 to 6 inches thick. The argillites are in place schistose with biotite developed on the schistosity surfaces and weather rusty hrown colour.

No. 1 Limestone.

The No. 1 limestone is well exposed in the vieinity of the No. 1 and Silver Hoard mines where it forms part of a belt which stretehes across the area from north to south. The hand becomes wider as it outerops to the north. The limestone is grevish white to white in colour and is coarsels ressalline. It oceurs in beds irom 2 inches to 2 feet in thickness. Locall the limestone is contorted and broedly folded, for example in the working: of the No. 1 and Silver Hoard mines. In places thin bands of black argillite oceur between the limestone beds.

ほKYLINE FORMATION.

The Skyline formation res s conformably on the Silver Hoard formafion. The nust acressible sections are to be found on the wagon road from the No. 1 mine to the Skyline mine and on North fork of Woodbury creek.

The rocks of this formation form a broad belt aross the western part of the Ainsworth area, in contact with the pastern edge of the intrusive
ndred feet

of greyish

 - in places. 1 thickness much conlimestones ined withrea underto " karst collapse derground tar claim

definitely

 lite sehist ne lands until the = reached. a similarh mineral ne about -e, which argillites in places reather a

Yo. 1 and cross the ps to the coarsely Locally workings argillite
d formaad from - creck. intrusive

Nelson granite. The lithology is simple, the rock types being chiefly argillite with minor bands of limestone.

The argillites oecur in beds 1 to 3 inches thick. They are grevish brown in colour and weather rusty brown.

In the neighbourtood of the granite batholith they are hard and siliceous, but show no great effects of contaet metamorphism. From this it is concluded that the contact of the granite and the argillites underground is very steep, probably nearly vertical.

The limestones are of two varieties, dark blue argillaceous dimestone in flaggy heds and grevish white erystalline limestone in beds from 3 inches to 6 inches thick. The dark blue limestones which oceur near the western edge of the area. on the trail following the north side of north Woodbury creck about 200 yards from the third bridge crossing the ereck contain fossils in an imperfect state of preservation. The fossils collected were submitted to E. MI. Kindle, who reported as follows:
"The rock slabs show numerous sections of erinoid columns, a small coral and some small light-roloured bodies which may possibly represent Fusulina. The character of the metamorphosed rock is such that these show clearly only on surfaces which have been subjected to long weathering. It a a_{1} pears rather an unpromising collection on which to base correlations at first sight. Nevertheless some deductions may be made from it.
"Crinoids are found from the Ordovician to the present and the stems or columns can seldom be used to determine the genera and species of limited range. But a rather extended acquaintance with Rocky Mountain sections has shown me that horizons are seldom if ever met with below the Upper Carboniferous in which crinoid stems are abumdant and other fossils very rare or wanting. The collection shows numerous examples of five-sided and star-shaped crinoid stems, a variety of form more frequently met with in the late Palæozoic and Mesozoic erinoids than earlier in the geologieal section."
"The presence of the poorly preserved coral demonstrates a Post Cambrian age for the fauna. The general appearance of this coral together with the dominance of crinoid stems in the fama leads me to consider the fauna as probably not later than Jurassic nor earlier than Lower Carboniferous. As a ?rovisional correlation it may be placed in the Upper Carboniferous."

AGE OF SLOCAN SERIES.

Dawson ${ }^{2}$ first referred the rocks included under the name slocan series in this report to the Carhoniferous, as follows: "The stratified roeks of the Cold and selkirk ranges, referred to, have not yet been closely studied from a lithological point of vicw, and no attempt is, therefore, made in this report to do more than broadly characterize them by their more evident features. Neither is it possible, as yet, to speak with any certainty as to the geologieal periods to which these rocks should be referred, as no fossils have been olitained from them. It is believed, however, that the whole of these rocks above those of the Shuswap series (No. 1) are in all probability Palæozoic in age, and analngy with what is known elsewhere in

[^5]British Columbia, suggests that they may ceventally be referred to vario systems, ineluding the carboniferous and extending down to the low (ambrian."

Nothing further wis diseovered conerring the age of the Slowan seri until R. W. Brock in conjunction with R. (i. Me 'onnell mapped the We Kootengy map sheet (792) in 1809 . In his summary report of 1899, pat 8.AA, Brock makes the following statement: "No definite informati has so far been olitained regarding the date of this series, hat it supposed to be of about Carboniferons age. Contortunately, the only fos form so far ohtained, does not throw mach !.ght upon the ghestion. It is brachiopod, probahly athonetes. which was found this summer in a ca bomarous limestone boulder, in all probability, from the Sloc:an serio It was picked ip, in the drift behind Nelson."

The next adsame in the determination of the age of the slowem seric is due to Brock. He fomed poorly preserved fossil forms whieh resemble fragments of crinoid stems and crinoid joints in a sedinentary series slates and limestones which he states "nre certainly Palecozoie and probabl about Carboniferous. No douht they correspond to the Slocan series the West Kow, emay distriet."

The first discovery of fossils in the slocan series proper wats made 1 M. 1.' Baneroft while working with (?. WV. Drystale ${ }^{2}$ in the slowan map-are (Map 166i) in 1916. Fossils were found in the lower limestome member which fixed the age of the series as Post-C:unlorian and prohably middl or upper Paleozoie.

The slocan series in 1917 wals placed definitely in the (arboniferou (probalby Pennsylvaian) hy the diseovery hy Baneroft of fossils in th northern continuation of the Sloean series in the southern Lardeau ${ }^{3}$. Hi conclusions are as follows: "The first three lots of fossils are from lime stones which continue far to the northwest beyond the area explored in 1917. R. Wr. Broek, in 1903, found crinoid fraginents in these rocks on the Beaton-Trout Lake wagon road and in one other loeality near the head o Murray creek, a tributary of Silmon ereek on the Arrow Lakes watershed
"The fourth lot of fossils are from the "lime dyke" anticline which i: also a conspichous feature for miles throngh the Ainsworth, Trout Lake and Lardean mining divisions. (C. W. Drysdate found fossils in June 1917 in the Laturie formation, which would indieate the persistenee of theso Palaozoic rocks north to and beyond the main line of the Canadian Parific milway."

The diseovery by the writer of fossils in the sloean series in the Ainsworth mining eamp extends the area of Carboniferous rocks as fir south as Ainsworth.

[^6]to various the Lower
'an seric' the West 1899 , pigic formation but it is only fossil 11. It is a in a earan series.
rall series resembled series of probably series of
made by map-area members y middle ils in the ar^{3}. His om limeplored in ks on the head of atershed. which is ut Lake, une 1917 of these n Parefie

GRANITES

(iN\&INAlf (ikINITE,

Distritution.

The gumiosic gramite oreurs as narrow dyke int ruded abmelantly into the Point Woodlury formation and less abumdantly into the barly Bird and Josephime formations. In general these dyeke are ingereal parablel
 angle to the bedding plate. These dekes are well exposed on Wowdhars point and in the cliff just north of tine lelta at the mouth of Woorlhmer creek. In addition to these narrow stringers there are four mase es suffiriently large in areal to show on the arempanyiug matp. uamety the area on morth Wooslbury werk, that on the star claim, that on the kuth elaim, and the long cllipitical mase extembing betweron the No. I mine almont to the Nroshat mineral elaim. 'I!n roek type which is verse roustant looth in mineralogical composition and in physigal appearanee is well ceposed at the crossing of the first bridge on North Woodlbury ereck and on the wagom road as it approarhers the No. I mine. The outerope of these masere usually stand ont as low hills: and rliffs.

Litholog!!.

lexposure: of the gneissif granite in the field are whitis! in eolome and strongly resmble wuicrops of the maswe erystaltime limestones especially at a distamere. In the hame sperimen the giefscie granites are all light arey in colone and show distinct gucisile strueture. The rowk has a fine-grained, even texture and is composed of quartz, feldepar, and biotite. The microseope shows that the rock has bern somewhat crushed and hats it distinctly gneissic structure. The mineral constitueuts are quart\% which iabundant, orthoelase feldspar, and liotite, with minor amounts of microcline and plagioelase feldspar.

External Relations. These granites are everywhere intrusive into the sediments, generally in planes parallel to the bedding. Their relation to the Nelson batholith is unknown as they were nowhere olserved in contact with that roek. The harge mass on Wiondmury creek is also intruded in a similar fashion. The other masses, as showin on Map 17.12. eross-cut the bedding planes of the sediments. The amount of contact metamorphism which was eansed by these minor intrusives ramot be stated sinee the netamorphism eansel by the intrusion of the main Nelson batholith maskthe effect of the minor intrusives. In one loeality ou the north fork of W. thury ereek the Ainsworth limestone is locially altered to al hornbendite. As an intrusion of the gneissie gramite is in close proximity to the hornblentite and since this metamorphism was not seen in any other loeality it may have heen eaused by the local intrusion of gncisic granite.

Age of the Cineissic Granite.

The gneissic granite euts the sediments of the Silver Hoard formation, a member of the siocan series of Carboniferous age. It was not seen contact with rocks younger than the Slocan suris. Hence its position in
the geological time seale eannot he defintels fixed but is post-Carbonifer From the similarity in physieal ant' ciednical composition between zncissic granite and the Nelson grat... which will he shown later to Jurassic in age, it is concluded that they are elosely related in age. Nedeon granite and the gneissice granite were intruled at the same tim during the Jurassice monntain-hniding period-hut the gneissic grar which ocenrs only in relatively small borlies solidified before the momnts hinding forces had eeased to ant and henee took on a gneissic struett whereas the Nelson granite which ocenrs as a batholith covering an a measured in hundrods of spuare miles remained flnid long after the no tain forces had ecased to operate. This difference in the size of the bou naturally implies a differonce in their relative length of time necessary cooling and accounts for the contrast in the grain of the two rocks.

(iRANITE.

'The granite of the Nolson batholith which oreurs along the border the Ainsworth map-area is vers constant in minoralogieal composition : is brey different from the gneissic granite desoribed abowe. It is w exposed on the upper raiches of Coffee arreck and on the hill above the st line mime where its crossecutting character and metamorphie aetion can casily seen and studied.

Litholoyg.

In the hand specimen the granite is light prey in colour and is charact ized hy the presence of large phenoerysts of pink orthoclase fellispar. So of these pherocersts are an inch in length rongated parnllel to the " axis and in many cases show plainly the (arlshad twinning. The comp ition of the phenoerysts has beell determined hy J. (\because. Ciwillim ${ }^{1}$. remarks that the small flakes of biotite are seattered throngh the cryst and that the analysis, as given, shows considerable lime and soda for orthoclase.

Ciwillim states that the lime is probably present as calciun carbonat Quartz is very abmolant and with the white coloured feldspar plagiochas occurs in the groundmass. The fomic constituents consist either biotite or hornblende, or both in varying proportions. Mirrochine an perthite occur as an aceessory constituent in the granite. Titanite is rath

[^7]rboniferous. etween the later to be age. The ame timesic granite mountaine struct ure, ng an area the momif the bodies cessary for s.
e borter of osition and It is well se the skytion ean be
characterar. Some the " (:" he composillim ${ }^{1}$. He he crystals oda for an
rare, and shows its usual diamond-shaped cross section. The following nnalysis of the Nelson granite is recorled by R. W. Brock'.

Brock says concerning this granite, "The Nelson granite, which has been carefully studied, is a sort of granite representative of the monzonite group of rocks, intermediate between the alknli and lime-soda series of rocks, and about on the boumlary hetween granite and diorite.

Another analysis of the Nelson gra. or is given le fiwillim². It is evidently a more basic phase and somewhat altered.

External Relations. The Nelson granite cuts the shyline formation which is of Carboniferous age and its relation to rounger formations is unknown as no newer rocks have heen fuoud in this part of the solkirk range. The contacts of the granite with the surrombling sediments arr well exposed and show that cross-enting relations exist beyond doubt. Also many blocks of the sediments are enclosed in the granite, many of them ocenrring miles from any sedimentary serios. They are espectiallyabundant at the head of the south and north forks of Woodhury ereek: in the neighbourhood of the Kokanee mountains, the loftiest area between the Kootenay and slocan lakes. These matsess of included serliments are highly metaniorphosed, consisting of eniea schists and miraceous quartyites which weather a very risty brown and appar in strong contrast to the surrounding light grey granite. The strike of these included masses of sediments is generally north and south and hence conforms to the general strike of the sedimentary serics around linsworth. From this general uniformity of strike it is concluded that convection currents were not very operative in the cooling Nelson batholith in this region. These blocks evidently represent remants of the old sedimentary roof of the batholith which sank quietly in the uprising molten granite batholith.

The degree of contact metumorphism induced by the intrusive granite in the surrounding sediments is not great. Around the eastern elge of the batholith which comes within the dinsworth map-area, contact metanor-

[^8]phism is wery shagh，the ouly visible affert to be sem in the nieghburh of the comtact is a slight silicitiontion of the urgillites，which inereases t
 whope to Kontemy bike which is reatly going derper in the zome of m morphisala surrombline the hat loolith，inetamorphism is apparently great the argillites arre changel to amplasite sehists，the limestones to marl ：and the sambenws are highly silieified and ehanged to dense，charty qu ヶitい。

> Ayr' amel correlation.

The yomgest formation with which the Niken granite was fomm contact is the skylime formation which holds fossits of Carhoniferons In studying the relations which the granite herars to the manin folding the selkirk rmge it is seen to he contemporanems with or slightly yon than the chacf orogenie movements which afferted the region．The of these moveracints hats heru shown to be Jurassies．

Further evilenw of the furassic age of the grmate and of the conte porary age of the orogenic mownemes which huilt the Selkirk and Pur Mombtain rauges is furnishet hy the character of the material making the（＇remecous sediments oi the Rorky momitams to the rist．

Table shouving Character of Sediments．

Proriml．	Formation．	Comrlition of deqmaition．	Lithologiosal rharset
Tirsiars	Pavkajк， Bilimonton． Buarpaw Helly Hivior seriss （ olorable （1ppor Mairstore	Freslawater	
		IBrackish und frexh water	fiandstones and shater．
		Marine ${ }^{\text {a }}$ ．．．．	shatex．
		Hrurkish Marine	siankerones and shales．
		－${ }^{\text {Gumburiat }}$	Shales． yimilntones．conglomer
			（granite and chert ble：s）．
Lewar Cretareous	Lawer Blairmore． Kuotenay．	Subaerial	Shates and conglomer
			quartaite and chert 1）（ен）．
		Sulsurial．	Sandstones and shates．
Upper Jurassic Devonian and Corlron－ ifernus Lower lahamaia．	Frornic shates	Marine	Coal． shases．
		Marine．	Liriestones and quartzi
Ire－Cambrian （IM－Itian）．	Disronformily． ？urcoll mries fialton serio．s	Continental．	Mainly fuartzites nu argillacerous guartzite

It will be seen from the above table that conglonacrates are fomm fi in great amount at the base of the 13haimore formation．The pebbles conglomerates consist of quart zites and ehert derived from the quartzite the lieltian rocks which make up the great part of the Selkirk ran Evidently in Lower Bhairmore times the Solkirk range was approaching maximum of elevation and was undergoing rapid erosion．The Upt Blairmore formation also consists of conglomerates and sandstones，but them in addition to pebles of quartzite and chert，pebhles of granite oce

[^9]ghbourhood creases their down the IV of meta－ illy greather， tio nurbares． herty quart－
an fomm in iferots age I folding ol thy yomuger The nge the conterm－ and Purectl making up

sal character．

and staters．
and aluates．
conglomerates ind clurt petb－
conglomerates and chert pebb－
ind shales．
and quarlzites． and shales．
artzites and quartzites．
for the first time and ing great ahmalaner．The presenere of the gramite pebbles at this horizon is interpreted to mem that the Solkirk rimge was muroofed during Upper Bharmere times and that the Nelsongranite hatho－ lith which forms the eore of the selkirk range in southern 13itish colnmbia was exposed to rapid crosion．Hence it is entablishend that the first intru－ sion of grmoctiorite into the selkirk range took phare hefore the deposition of the tpper（retaceons．The shperposition of the marine Fernie hates upon the marine I ）womo－arbouiferous ！inestomes suggeste that the periond of stahility which prevailed thromghont British Cohtumhia until the＇Triassie＇ was interrapted during the upper furaside．ne sedkirk montains reveried their inital form probahly at the close of lle Jurasie or in early liontenary times．If mometain－huiding amb orogenic movements are ceptelempor－ ameons，it may be conchaded that the first intrusion of gramontiorite in the selkirk ramge commenced towards the close of the lurassie：mul coutimued until the monntain－huilding rearhed its maximm in Kimetemy time．

L．AMPROPIVRIC HYにた。

In the Sinswortharem，is well an in the sidkirk Momeninsyatem．there are many narrow dykes of dark igneons rock，which＂ain be tracel along the strike，in many cases，for distances measured in hadreds of fere．Is the dykes seldom cexeed a width of 8 to 10 fere in the Ainsworth area and are not important reonomically，only a few of them were mapped atthongh they oecur sporndieathe ower the whole of the area．They are experiathy ahmedme in the Josephine formation．The typre roek can be examined on the Florence wagon road about 100 yards north of（＇edar ereek where the dyke is well exposed．The same dyke is exposed on the lake shore．In genern trend these dykes have two main directions，oun parallel to the strike of the formations as in the casse of the dyke at dhe menth of the star timmel and of the dyke in the workings of the Ilighand mine and the other almost at righ＇angles to this direction，that is，aresese the etrike．＇The dykes which conform to the strike of the formation alon comform io it in degree and direction of dip，whereas the cross－culting dykes dip almont vertically．

（：．IMPTONITE．

Camptomite is the most common rock type in the linsworth atea． In the hand specimen it is a dark grey，brown weathering rock which con－ tains phenoerysts of hornblende amel in p^{\prime} ees biotite．In some cases the nornhlende erystals are 3 inehes in length and some of them show romeled amd embayed forms which contain small，round inchusions of cateite arranged in limetr fashion paratlel to the long axis of the erystal．The dyke of this： rock exposed near the portals of tee lower star tmmel is remarkahbe for the cize of the hornblente crystals in it as well as for the great number of inelu－ －ions it contains of the Nelson granite．The porphyritie type is rather the exeption and the finc－grained variety whieh contains a frew phenoeryste of phamelasp and hotite is very common．The ehillow martine of the porphyritie variety have the characteristics of thie type．

Mirroscopic Description. L'uder the mirroseope the hornblende atrongly phochroie dark brown variety embedded in n fine-gra gromilmass of hiotite and plagiochase, near an andesine in composi Apatite and magnetite are quite nhmadant.

Age of Duke Intrusion. The age of the intrasion of the lampropl dwkes ramot be definitely determined. They ent the members of slomaseries which is of ('urboniferons age and carry an inclusions fragu of the Nelsongrante which is of Jurnssic uge. Hence the dykes are older than rery hate Jurnssir or carly ('retareous. A study of the fis velins, e:perially those of the Highlame mine (Map 188.), shows that dykes are faulted by these tiswures and that they are highly altered by netion of the mineral-bearing solutions which are responsible for the deposits of the Ainsworth emmp. The dykes are menformaly over he cheposits of the Quaternary. From a regionat study of the ore depe of British C 'olumbin' it is conchulech that the ore deposits of the Ainsw cminp as well as most of the ore deposits of British (Cohumbia are associa with the cooling stages of the Jurassie or early (iretaceous batholiths, since the dykes are highly altered lye the minerab-benring sohntions wi deposited these orebodies, it is suggested that these dykes may be a ciated with the cooling stages of the Xilsongranite hatholith, hat at a st previous to the one in which the ore-hodies were formet, whieh woult very late Jurassic or early ('retaccous.

sUPERFICIAL DEPOSITS.

PLEISTUCENE.
The greater part of the dinsworth map-aren, especially that I undertan by the sedimentury scries, is covered with glacial drift whie made up of compact sand clay in which are boulders and pebbles deri from the local bed rock. Glacial erratics are of common oceurrence.

RECENT.
The valley floors are covered with modified glacial deposits which sist of eross-bedted sands and gravels. The gravels consist of romm pelbles of varions rocks derived from the surromating terrame. In stream deposits, such as those of (coffee and Woodhury creeks, the pebl are mainly granite with minor quantities of limestono and slate.

The hot springs at Ainsworth are at present depositing an apprecia quantity of calcareous tufa.

[^10]mblente is n fine-grained composition.
amprophyre abers of the ns fraguchts ykes are not of the fissure ws that the tered liy the for the ore hy overlain ore deposits e Ainsworth associnted looliths, and tions which lay be assout at a stage clt would be

- that part rift which is bles derived rence.
s which conof rounded ne. In the the pebbles appreciable

(HADIFR W.

STR' 'TURAL (;EOIOCiY.

R1:CilloNAL.

The Roeky Momtain geosyneline, whel include the greater part of the silhirk and Roeky Momatim ranges, comsiste of Bultian, lablarizaic. and Mesozoie sediments. The western horder if this geosyuctine passes through Come d'Alene and shaswap lakes, along whose shores is exposed the old erystalline complex from which the alover-mentioned sedinments were derived in part if not wholly:

To the west of the almost loorizontal Tertiary and (retaceons strata Which thake up the clevated platemu of the prairie provinees, ties the folded region of the foothills, in which is foment the most cmeterly evideneres of orogenie movements in the Rocky. Monntain geosyneline. The folls in the foothills trend in a northwest-southenst direction and represent the most easterly effects of the strong compressive forees which haile the Rocks Momtains proper lying to the west of the foothill aren. 'line cent ral nul eastern parts of the Rocky monntains consist of a series of owerthrust fault blocks of Palmozoic and Mesozoie strata striking in a northwest-woutheast direction and dipping to the southwest ; in the western part of the Roeks. monntains, antictines mad synclines of Pre-chantrim and ('multrian rocks make up the domimant strueture. The age of the orogenie movements which lmilt the Roeky mountains is carly Tortiary.

The wide Kootenay-(columbia valley lies between the Roeky momntains on the cast and the Solkirk mountains on the west. This topoEruphir feature. which is of first importance in the strueture of the region, is ealled the Looky Mountain trench. 'The sediment: which form the greater part of the selkirk mountans range from Beltian to Carhoniferous in age and inelude the Pureell series, Ainsworth series, ind the Flocan series. They are folded into amticlines and symelines which in this region, strike north and sonth-a direction different to the folds of the Rocky mombains. The momentan-building fores which affertel the selkirk mountains are of Jurasie age and eartier than the forees which built the Rocky mountains to the east. Therefore, the Rowky Mombtain goosynchimat has suffered two orogenic mowements, one at the elose of the Jurasisic. which laid the foumbition of the strueture of the Selkirk mometains, and the ot her in carly Tertiary time, whieh elevated the eroded silliark momathins and imparted the Rocky. Mountain stracture to the sediments derived from the erosion of these Jurassic (r)dkirk) monntains,

JOCAL

 trench which holds Footenay lake, forms part of the eentral portion of the
'kirk mountains. The sediments aromed Amsworth, which strike north outh and dip to the west, form the eastern limb) (Figure 3) of a sym

Figure 3. Structural wection :urosi limiworth matp-area.
cline. The western limb of the syndine has been dest royed be the int rusion of the Nelson batholith, but its northern continuation is seen in the Millford symeline of the Bher ridge north of Kinslo.
ke north of a s：yn－

（HIPTLER V

GEOLOGICMI HISTORY．

パTRO川川（＂IION゙。

 range to allow ，the int mpintal of of the geologieal reeord with any degree
 general region o wh h lhe ：me aromal linsworth forms part．

The sedimentary rocks aposed aromed Ainsworth are Carboniferous and in part possibly pre－（＇arboniferons in age and are cont by yranites （gncissic＇granite，Nelson granito）and lamprophyredykes of durassic age． These（arboniferons and younger Palaozone rocks are undertain by the Pureell series ${ }^{1}$ which inclades the greater part of the rocke of the Pureell range to the east．Thee contact betweren the Pureell seriess（Beltian）and the overlying labeazoin rocks arombl dinsworth has not bern observed， but it is believer to he in the wienty of the water－shed east of liont mas lake，sine there is an appornty contimons record of sedimentation foom the Beltian of East kiontemy to the（＇arhoniferons of Ainswoth．To the west of liootraay I．ake treveh the intrubed mass of the Xelson gramite scparates the（arboniferons rocks of Answorth from the ohter Pre－t ：un－ hrian and pessibly pre－Beltian rocks around Arrow lakes．These Pro－ （＇ambrian series form part of the oblent land areal in British Colmmbia， from which the sediments of the diusworth and lureell series were derived ly the processes of crosion．

PALEOZOIC：SEDHMENTATION．

The earliest geologic record in the Ainsworth map－area is one of redimentation，and，from observations of the rocks expened on the mast side of Kootenaty lake and in the areal aromel Proeter where the geological section which is concealed he the waters of Footruay lake c：m he seron， it is a late phase of a long period of sedimentation．

This oldest epoch of sedimentation at Ainsworth gave rise to the quartzose mica schists and quartzites of the Point Woodhury formation， which were laid down in the sea as siliceous muds and later lurdened into sandstones．These samdstones were sulsequent ly siliefifed and altered to quartzites and mica schists loy the mountain－huilding forces and the heat caused by the intrusion of hee Nelson grante of Jurassic age．

FHARLI BIRIS FIPOCH．
The sea during this rpoch evidently was of such a nature that calcar－ cous muds were deposited in it which later changed into the siliceous lime－

[^11]- Fome of the katy Bird formation. It would exem, Herefore that there

 fombl-urfare wathering :nml eromon.

 thring that eporh to the eromelitions which prevailed dming the Point
 formations athl their metamorplanel cquivalents.

SI.

 dently oremred during the dinswoth rporh in wheli limestomes were deporited. Tlow limestome of the Dinsworth formation are not as silierous
 firtherffom the shime.

 lat down at intervals during the progron- of - elimemtation. Ghese ash

Eedimentation with altermating deposition of lime monls aml mads entimued during the silver Hoard eporh. These muts were later eltatered tu limestomes, amdalusite selists, and argillites.

※KYLINF FPOr'll.

The eonulitions prexaling in silver Hoard eporl comtinued during the skyline eporh and since the remains of marite organisms are foum in the metamorphosed muds of this formation it is concluded that marine condi-

[^12] of 1 1ro－ leristic ich wils C：： $1: h$ ors thor ing that antition （er from of vol－ hre Per－ いいた ！！ lingual
tions with land to the west presailed deming the whole period in whel the
 in atry ．the formations ohlere than the skitime．

Su recorl oi hama－id serlimentation is promered in the dinsworth area：but the perion is a very important onte cemombically and st ruethrally， －ine the main orogenice movements which laid the fommbations of the strue－ ture of the selkirk amd Pureell momentains tow plate near its close．In ardition，the magma which later solidifiod to form ，he Nelson granite and which forms the hedrock of surle a wide area in the Kootemay，rose in thes aren which had been weakened hy erustal movemonts．These mosements folded the sedimentary strata intu regular antielines and spuelines whielo －trike it a mortherly direetion．After this crustal movement rane the intrasion of lamprophyre dyeses The rooling stag－of the intrasion of the Xelson granite firnisheel the materials whele were concemtrated ia favomrahla localitien form orn depesits．

The（＇retaceons periot int the selkirk momatains wate one of eresion

 prochets of thi erosion went tuform the（retacoons furmations of the lacky momut：nins．

TERTIURY．

＂lıer． which wat．

＇The＇Quaternary periond was marked her refigeration and mhatiation，

 is referme to that pumbeation for a full deseription．The period of refriger－ ation was followed hy a period characterized los a mildor chmate which
 ：uproach of present daty conditions．


```
    76183--3b
```


ECONOMIC GEOLOGY.

The deperits of exonomir importanere in the Jineworth mining camp
 associated with the silver and lead in the primary depmest: was worthless
 the erection of a smolter at Trail for the recovery of zince, it- presener now aldes to the vahue of the deporits at . Dinsworth.

As stated almer the deposits at Jinsworth are emtirely silver leal the chief mineral heing viler-beating galena exept in the iase of No. miae, the present workings of which expose only 'lae oxilized ore zone of an original sulphite deposit. The ore doposits nay be elasified aceording to form as follows:

1. Tru- fissure wins.
(a) Conting the balding phane at an :angle.

(b) l'arallel with the bedling plame.

Manstro, Banker, Diammel, Little Plit, S'pkank; Trinkett, Dibion Highlamler, Tariff.

- Replacement dranits in linemome.

Nio. 1, silwer Homed, star, Krao. Gallagher, Crown. Hhemee, Buckeye Aymo.
Report of the Minister of Mines for larminh Columbiat
Miurral Pronluction of lle .tinsecorth Mining Dirision'.

Prouluction of . linsureth Mines in Tome. Reported at Trail by the Cimenden Mining and smelting ('mupary.

Juls.	$\begin{aligned} & 194.2 \\ & 1907 \\ & \text { (intr.? } \end{aligned}$	$1!61 \mathrm{n}$	1!,49	1910	$1!111$	1!1:	1:11:3	1614
Huplilaniler	14							
Giallather	i9	1:4	7is				10	
Kras	90.							
3tapgtru	201	1:4	(i.i)	in	11:		1:7	1, 2
Sur Jurusuletn	19	is						
llikhland	4,3:31		15	30.4	11		1.1:10	2. 91
Nir 1	3:4	19	: 1		1:17	89	+.1017	f.54
Surtianio	49:3	$1 .:$						
[mind	18:							
Pontas			30					
Jetsor 1314ebiry		2.9		3.3				
Ifwsha					10			
silver Ilmard						20:	1.2ni	
Fiorenee						tio	16	
Hlurbel!	1.1463		1.964	1.2tio		3.730	7.30\%	4.73
farly llied								

 ame of the important mines, for example the Highdamb, are in the sehist and others like the spokane and the Banker are in (quartaites. Tha one consint of galemand zine honde in a gangue of calcite, siderite, quarta and flowere. The ore in the Blachedh mine. Whach was deposited under mor - virme conditions of temperature and pressure than otler deporit-.

MINFRALGOK.

 $-1-1 \cdot \mathrm{FH}$ of लataification.

 :t phate in erack- hotk in the cometry rock and in the ore itedf. It has here

 primary stato being intimately :asomiated with the gale 1.1 : and invisibla The method of solntion of the silver and its precipitation in the serocodar form is charly explaimed he reoke in a paper on the Matachewan ore in which he makes the following gencral statement: " lanrehment of primary silver deposit is brught athont heractions of silver or its sulphime wish the sulphides oif irom and their prombete of oxidation . . Smplari

[^13]

 tion hy any masns will rapidly preripitate the sifur in motallin form."

 The wopmer is :ruballị aromblary.

ッ1.1.11111:

 rlistrict.
 in the following worls. "The ore has beron drpasitad alome tisonres, bint in the upen ravitios, :and by impreqution of the rambtry rork, and in the

 parallel witl: the wall- of the fiselare but are parallal with the lime of folittion

 ghrixisio -trurture.

 hather Phedell, the -phalerite is finc-ramed and intimately mixal with

[^14]the gukena and pyrite. The combusition of the zine Wende trom Ains worth is not known, but all amalysis of hembe from a similar deposit - the Cork-Proviner on the sonth fork of kislo ererek furnished ly the manage Mr. Zwickey, is as follow:

Iron Pyrite, Disulphite of Irom. Pos. I'yrite is widely distrimuted thronghout the deposits and is exmerally abmant in the Blachedl mine.

Pyrrhotite, Magmetie silphide of Iron, Fross. P'yrrhotito oecur: ahmontly in the Bluebell mine, looth in harge mases and in rare cases at well-defined erystals.
 in the Bluehell mint:

Mercasitr, Dismlphite of Iron, Dicis. Marasite was actually deter mimed only in the lightmi mine where its crystal aggregates have the form typieal of matranite, cosermh perite.

OX11)E.
Qumre, sio). Quartz ocerors in suall amome in mearly all the doposits
Limmite, $2 F_{1} \ell_{3}, 3 H_{2}=$. Limmite is common only in the oxidizer zone of the No. 1 mine as a prodhet of the deromposition of the sulphide of iron. This oxile forms the largest part of the ore shipped from the No. mine.

11.11.11上:

 (emmonly in the Early Biral cham where the purphe and pink varieties ar
 In the sibur Hoard it is : 1 common gangue mineral and in the Hightan it wems: in the win in asomiation with ankerite. It has hern fome weceriontally in the No. I mine. Itongether thonite i one of the mos

1:ABBHNATE:
 fince the ore deposits in geforal oreur :1s replarements in limesone. I
 doseribed and pictured hy I. Rosshaml.
 foumd only in the lighland mine, on the third level, where it was areociate with thorite.
 commm mincral in tho deposits of the Ainsworth mining ramp. It wat

[^15] sit-the manager
tributerl mine.
occurs cases as paringly ly deterliave the
deposits. oxidize.l culphidles the No. 1

115: 1 mos ietios art. h calcite. lighilumel (1) folnd 1_{10} mos : 1111 .
fonnd in reystallime form in atolntion catvity in falenat in the lightamb mine. Althongh the No. I mine is a teposit of oxidized silver lean ore, erernsite was not incentilied in it witl any kegree of mertanty.

(1R1ON.

(I) Oxidized earthy ore contaming mative silver, as in the Nus 1 mine.
 the Ammat lipert of the ('omsolitated Mining athe Smelting (ompany are us follows.

	1/2. İpritun.	
191:	1.7	' $\quad 1$
$1!+13$		=
1!11	(3).11	1.115

 as seen in the llig!atand mine. The ore is a milling propm-ition. The values of the conerentratere are is follows:

 how earafally tho work is performerl.

The relationship) of the ae twe trpes of deposits wate sern in the Iyeshat
 contad of a limestone belt with aschist. The rephacement depmit with at
 mately east and west, ame diveding the deposit into there dintinet jotions

 Which joined two of the replacement lombes. 'lobe lissires ane it entical in character with the lissures dexeribud as ocrarring in the Highbum mime.

 Ifposits are contempormonous in their formation. I\%his comblasion is
 honties of the true fissing tipu asombinted with the stanm fixare in the folorence inine.

In the deseription of the llighlamel mine which follow:, it is stated that there is a horizontal displacement of 30 to 130 feet along the fissures. The basic lamprophyre dykes which were fatted by this movement were also highly altered in the vicinity of the fissures by the ore-bearing solutions, thus proving that the ore leposits are vomagr than the dykes If thes

[^16]
itit

 hght dirime the development of the mime．In the showat diatriet，whinh

い，ば いだ いだいいのばの。

The determination of the：：Lge of the deposit o of the Sin－worth mini amp is a lillient mattor sime the information at hathe i－wery mag

 ：rgilltes or shist．forming repharoment ore－hation．Thi－artion W
 Nu． 1 amb the silwer Harart．

The prepoer－for the contimathe of mining in ：he Sin－worth dist
 extend ：t le： fissure typ and the wermerne of the replacement deposte in limest

 workable ore－bodies on the Tarif．，Hightander，and Banker weins at

$\therefore \| \omega l+1$ llı Wh＇mo Ily dor＂am
 will lo ： low or l，the
lolt 1li＝ r whollo orolyght tu t．whill is いい日－of orr rle（＇llt the
 ！： 1 发 ： 1111

1tl｜\｜llllllig

 ｜न لporsita．
 Kimothay
 Mral in the －lomalition 4 1 art \％itr－部： 4－ 0 lutimis 1．I．silum ＂lisure inpervin． rtion tran ＂w in in the

Ith divant mir－lurlie－ of the truc 1 limm－ cur wall for （HIOI of thi ＂discower rins at the discomrar－

True fissure Veins．

Mighlund（irouns．

 ＂：

 Heldime of the sedmentame．＇Ya majority of the dykes are of the

 impertat at they form gool horizon－mathers in the datrmination of the

wheh require consilemble eaw in ming. Thin-af material has. evident heen formed lis the alteration of the immediate wall resh hey the wetion
 from the acompmition of iron prites. Thi- hemmpmition of the wh racks makes the drarmination of the daranter of the fowh shong th ti-surer rather an dillerult matter.

 the mant =mitherly yin is the main win, whereid the other two, trom

 pasere into the quartzitco.

 minerat= kepn-iterl in the wiss.

 th:t the ure-hatio- or-

 lirretion.
 tumets driven appoximately along the strike of the vein, the there a
 200 feet apart, thins giving : thepth of illy fert how the outconp.
－videnty netion of mrie nesid the whll atong the：

Ari trint ；Hegrese； 11，tarmed aml haw 1，11 にない。 Anothor －lisallir in ken harm itors．hut －to＂onl－ - In the tion along infifation． In thr （0） ren hirro． when it
lly willa Mil wimy he amar－ m：Mrisitn， of the ore． prmary

Thing rala－ annination ：n b hu• phartz－ ：ant of the －wer tilith ：ahong 1 4n：rtatu （1） hornhemble the 㑑：artz－ it．athel the in．the satme
ans of five hreer＂pper （er tmunt－ （ryp．The

Figure 4．Longitudinal samentahng the a in win，Hightand mine，An－worth，hat
ore is mined through the tumels hererhead stoping and earried he an arrial tran to the mill on kootenay lake at the month of cerlar creck.

Florner siller Mining C'ompeny.

 Wolfe, president and manager: A. F. Kelle, vireprevident: D. F. Sammers,
 the thiret supervision of 11 . N. Hewer.
situntion. The Fhornere Siter Minimg (ompany owns a gronp of rlame comprising the skyark. Forene Siluer fraction, Momatain (ongar fraction, James R., Laura M.. Heqr, (). T'. K.. Pwin, Frgus, and the Power
 toeation of the mineral daims, the Xomintan Cougar fraction, the Forence situer fraction, and the shelark are situated on the shore of komenay take ahont 2 nilds north of Ainsworth and the other ehams atjoin these (101 the west. The main entrances to the mine are on the Lamat M. clam and are comperted with Ainsworth hy a wag rost which pases mear the momth of Cedar ereck.

Gendog. The Jarly Bird, Prineess, Ainworth, and Jusephime formations outcrepon the clatims striking about horth and somth with an average dip of $4 \overline{5}$ degrees to the west (Map 17si). A dexeription of these formations has been given in a previous ehapter. The two mos inmprtant horizons eremominally are the limestome hants and the guartzite horn-hemble-selinst contart, where ther are crossed hy the fissure. The limerome hetarl: are membere of the Josephine formation waich is composed mainly of hombumbe selists, banded guartzites. and some limestomes. The limestenes which oreme in the Fherene Silver mine are coarsely eryathene :and grevish white to white in colour, and are composed almost critirely of
 tremotite. Heme ther are very casily rephacel hy mineratheraring solutions. The two bambe whel have heed developed are about 4.5 fee apart and are from ti 10 s feet thick. They strike north and nomblatid the west dip) at an angle of 40 degrees, but the dip is modified bey shight foltes what in ome "ase the limestones are approximately horizontat. In the immertate mightomehent of the ore the rock is derompened to a soft surar-like mass of calcite and gurate and in other places it has been silicified.

The quartzitus, which are overlain he miea sehist : and green hornWhate selists, are ahout $2 \mathbf{D}^{\circ}$ fere thick and have the dip and strike of the auromoting rock: The quartzites are tomghand are handed light amb grey in colour on fresh fracture. but change to a reddish browe colour wit the wathered surface. The hornhtemle sehists are green in colour with a glistening surface when fractured. They weather a dark rasty brown. These focks are wery similar to the quartzite and the hornhbede sehists (xposed in the ore-bearing horizon of the Highand mine.

Fissure siystem. The fissure has a strike approximately arast and west with a dip of 42 degrees to the south. It has heen opened up at intervals on the surface from the workings of the Twin elatim to those of the Laura 3. The rucks for a distance of 40 feet on buth siftes of the replacement minlers, - nuter
ollp of ('ongar Power ing the lorence ontelaty 11 these l. Mam (:at' the
(1) formwernge (1) formportant - Iぃrı-tr-tolle mainly
${ }^{\prime}$ The stalline irchly of - - 1 (h) :ts lutions. :1111 :10r : $1=1$ dip that in umdiate -

Horn-- wit the nd eres on the with is hrown. schists
nd west itervals Laura erment
ore-herties in the linestone have heren en hatly deromperad that it i- diftemht to determine the exact point where the fissure oxnses the limestome hames.

 12 degiees to the somith.
 zinc bende with sembe prite amb ehaleoperite. The ganger is altered and deromposed limestome, alcite, and phart\%. 'Phe walenat in the fuartzite-
 uf zinc hemele whereas that of replamement lomes is ewar-r-gramed and
 tracture. An antalys of the mill feet, -uppliod hy the eompany. -hows:

(Dif-budies. The wrehonlies of the Fhomene mine are of two varieties: (I) rephaement deposite: (II) ore-hodies of the trace fissure type.

 lowest leved at an chevation of 2.2x.7 feet. Fxplotation has mot hern carried below this puint, hat there is no donht that the ore-hodias will rontinme to greater hepths. There hodies. since they follow and replace the lime-
 morthand sont with an arerage dip of fo degrees to the west. In an intermediate leved between the reeond and the lowret level the ane and the

 been determined, athough they lave heren followed for stl fent without reaching an emt in cither direction. In many places the fontwall of the
 foot to ! feet thick, which is kuown locally as the iron drek. In whet
 tate with the overlying sehist.
 int the fisure at the emotate of the ghat \%ite atal the sehist. Fhe oreurrences are very similar to those deserihed in the areonat of the Jighlame
 and pitch abont 40 degrees to the morth along the fiswure. There is mo rephacement of the wall rocks of the fissure ame the wre beaks from the walls: "heth and smooth.

 lumg Irivan.

E:rrly Bird.

Nifuntion. 'Thw Early lied mineral chan is sithated on the weat shore of hootenay lake about 2 mikes north of Ainsworth. It is rasily aeressible. liy water. It owned hy Mr. Pringle of Lomden. Finglanel, and in 1915 was ander hond for three years by. A. Jaglow who at that time was shipping are to the Truil smplter

Geology. The vein was entirely enclosed by the Early Bird formation of which the staple rock is a very massive, grey, micaceous limestone in beds 6 to 8 feet thick. The limestone weathers a rusty brown. In many places interbeds of micaceous schist occurs with the limestone which dips on the average 35 degrees to the west and strikes north and south.

Fissures. Two fissures are exposed on the claim, which strike approximately north $\overline{\mathrm{i}}$ degrees west with a dip of 80 degrees to the south. They are of the mature of gash veins which show no apparent displacement along the fissure and appear to be typical of the veins of this formation. The character of the veins of this type is well shown on the south wall of the eanyon of Woodbury creek where they are numerous and well exposed. A cross-section of the Early Bird vein is shown in the accompanying cut (Map 1790).

Ore. The ore consists of massive galema and zine blende with minor amounts of pyrite and chaleoprrite. The analysis of the ore furnished by. Mr. Baglow shows the hand-sorted ore to run ts per cent lead and $12 \frac{1}{2}$ zine. The siber rams between 15 and 20 ounces to the ton. The value of the ore shipped in 1914, Mr. 13aglow states, was $\$ 30$ per ton.

C'niterl.

Situation. The Enited is situated on the . Ainsworth-No. I wagon rond abont 4 miles from Ainsworth, at an elevation of $3,3 \overline{0} 0$ feet above sea-level or 1,590 feet above Kootenay take.

Fcology. The rocks in the immediate vicinity of the deposit consist of green hormbleme schists which strike about north and south and dip 4 ij degrees to the west. The upper eontact of the sehist with the overlying andatusite schist is located at the base of a steep diff ahout ho feet west of the shaft. The lower contact of the schist with the underlying banded quartzites lies about 700 fent east of the shaft. A dyke of camptonite 4 to 5 feet wide, conforming in strike and dip with the enclosing schists, passes just past of the shaft.

Fissure. The fissure strikes north 70 degrees west and lips 70 degrees to the sonth. In the meighbourhood of the shaft it is well detined, but could not be traced for any distance east and west.

Ore. The ore which was seen in the open-cut just north of the shaft showed about $1 \frac{1}{2}$ fect of galena on the hanging-wall. From the ore on the dump it was conchuted that the vein contained a farge proportion of coarse ziact hende with which is associated coarse-grainel galena which eould be hand-sorted.

Ore-boties. As the workings were filled with water at the time of the writer's visit, no information was obtain I eoneerning the distribution of the ore in the vein.

If the fissure extends eastwards to the quartzites, the most favourable place for the location of the ore-bodies is in the green hornblende schists near and at the contact with the underlying banded quartzites.

Workings. The vein is opened up by means of an inclined shnft which is reported to be " 170 feet deep" with levels extending cast and west in the

[^17]mation tone in n many ch dips

he shaft

 ron the f coarse It could e of the ution of
:ourable

 schists shaft. F'rom the shaft and this drifing (it is chamed that the wein has not
 Revelstoke lis the former operators."

Cilenumiry.

 . A wworth hey atigon roal.
 the Josephine formation. The shat is sunk in hamderl quart ates whioh

Finstre. Ther limure strihes morth To degrees west with :t dip of in

1ts ©xtent is unknown. The haft was tilled with water when the pro-
 w:s imposible.

 the material of the dump war stained green wis the decomposition produets of chaleoprite or compriferous prite. The ore is sad to rum s to 10 ances in silver :and 11 per "ent \%ine!.

Worliagge: The workings consist of an incline ahaift wheh is reported to be dia feet deery. The shaft is fithed with water and the rein rean be. "xamined at present only in at trench near the shaft. where it is expmeme for : distance of lis feet.

All the wins of this charabter owere in the quartatos of the somphine
 Phil, Manstro, Simkane. Trinkett. Jowphine, Tariff, Apine, Hightmater. :and Banker. They are true vein- I to difet wide striking abproximately.

 well delined and sine they oreme in the quartzites whieh are very resistams to weathering em he mally followed on the surface for some distame -in

The minemathes is rather simple, the gatema with small amonnts of

 appeare to be relatively smaller in : amomet than in the fissure reins which

[^18] hombes ocenr as-ariated with roll- or changes of dip in the surmmoting quartaites, the mont favorable loeatity being the areas of low dip which are precolded or fothowe by areme of high dip. Thi- phemomenom is well -hown in the Banker ath sumane wins.

 worth.
 green, hernh henderhist and some silierons limentones, all behomging to the Jomphine formation which strikes approximately north and sonth with a dip of 30 hagree to 4 . degrees to the west. There roche are ent by a kmprophyre dyke, shont is feet wite, which is exposed in the bower tumed on the listle Phil elaim. In order to gior some iden of the variations in the lithology, the following the knewe of the rocks traversed in the ahovethe :1t inned tumel are given, starting from the pertal of the tumel:
\[

$$
\begin{aligned}
& \text { (irrem hourntilentie wreliot } \\
& \text { ishe lanupronlist }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { liandual duartzath... } \\
& \text { (iratalamblarder adtiol } \\
& \text { 13anded quartant. } \\
& \text { Virin. } \\
& \text { Banded quartzite - } \\
& \text { (iremen lornhlatalu- -.hie) } \\
& \text { Bathled yuartato fiaco. }
\end{aligned}
$$

$\begin{aligned} & 11 \cdots 1 . \\ & 1 \because 01 \end{aligned}$
if
'11
1,1
\cdots
$:$
6,1)
4.;

 irum lo to dill degrew.

 fout-wall of the rein and comsit of massive galden with amall ammanto of

These there elsims adjuin the Maretro on the moth and are esidenty a contimation of the Diamond-Manetro mineral zome. They he above the
 have an clevation of 2 .ato feet ahove seri-lever.

Cirnleng. The roeks whichouterop on thene daims consist of hambed
 formation wheh arike amproximately north and sonth with a dip of 30 degrese to fill degrese to the west. These rocks are emt parathel to the here
 which well

 to fis thegres to the west．They fothow the wo horizons in the gunatzites which are rarely more than fore fart，pasing from one to the oflur at irregnar intervals：The cross－entimg fisemere juining the t oo horizons cont times the same win－filling as the matin wem．Thise featore is well－hens （ill the Trinkett and lemette mineral elame．Thi tope of fissure，whels

 ＂hiclo are limel with rersmale of guartz．

P1，	$\%$		Weisht llf．drw．
位	$4!$	17.7	
（6） 1	4.8	20 4	B（）． Sati
an		1．9 9	int 1 H1 1
4.1 1	－	13．6	131． 5 （4）
か．1	$6 \cdot 1$	14．0）	1．9，33： 2

｜／lion＂．

 icher or ato feyt alocer Dinsworth．

 -1 rikn oi the sedimentaris，which i－mith ：mind－omth with ：l lip to the wo． 1：1！ 1 に！2）．

Ilig！limule $\boldsymbol{r}^{\text {．}}$

[^19]
 depth of 170 fert from the wterop of the wein. hater, a main tumed wan started, mow know as the lighlamer tmmel, to ofren up this wein at a

 amb ome mile -math , if the town of Ainswoth.

 through which the tumel penctrates for a distanere of 1,200 fert. In the erntre of this mass of gucise the rystallimann heomes earse, the rowh in places presenting a granitic :aperarane but on nemring the main londe
 partul, with a westerly dip of fis degres giving the following generah sertion. The footwall pertion shows a hamed structure of guartz and dark ant
 N. II), next comes 2 feet of grey porpheritic vein filling, possibly a pertion of a small dike, the hanging watl of whel is polished and shows slickenidde markings. Resting on this wall is a sean of guatt and slate berectia camented by a porphyritie gromal mass. The remaining portion of the webs fonsists of dark sehists containing irregular lenses of win quart $\%$, the whold orempring a width of 2.5 fert betwern watls, but does not contain pay or in any part, truly ar rather dis:uppinting showing after so much expenser On drifting to the sonth, lowever, piy ore wats fomm in the foot wall portion of the wein.

On reference to Phate No. I it will be seen that this main win was ent in the exact position that the protongation of the dip from the surface workings on the Highlander wein woukd indiente: therefore it was: asemmed to be the Hishlimuler vin; but eonsidering the gotu feet of mexplored gromal betwern this tumed and the surface workings on the Highlander, it must be freely almitted that it is simply a mater of conjecture. A basic dybe four feet in thickness cuts ahnost wertically through the wein on the tumnel horizon. as shown in Phates I and II.

The hameme wall streak of this emposite loche is emantome guarta that has heerd dritted on mortherly for ahont st feet, showing a fairly reqular sitam (averaging 30 inches thick) of white and hocky fuatz, hut devoid of mineral.
(rosesing these quartz lenses in the tummel, at about right :angles to the dip, is a shered zone showing four open fisures, varying from to to t inches in width, as seen on the line of the main tmmel; giving a basis for the inpression that this portion of the vein has an ensterly dip. Pasing westorls along the main tumed, the mica sehists berome hardir, more silieifiot. and various bre:ks on open fissures oceur between the hanging wath of the Hightander vein and the faee of the main tumel, a distanee of $1.01+$ feet.

On accome of poor ventiation and the amome of water that waissuing from the joints and fisures. I foumb it imposibhe to examine calt-
 ar lail：

 up）clowly at the time of my examination．

 ：11．

Returning now to thr mint where tho llighlantar vein wils interserotal

 －first a film of sidorita：then ainc lilende．third siderite，and fourth aine hemele as at very thin outer coating of the fragments，amd heromel that tha aborite grommi－huiss coments evoryihing solidly．

Thirty feet south of the winze on the man level, a mise has here put up : about 200 feet, which, for the first bo feet shows a very fair wein with "pay streak, varying from 18 inches to 24 inches of hemede and gatena. the siderite and eateite gangue being very similar to that sem in the winz" below, but the galcmi is hess plentiful. Sample No. i2 was taken across this rein in two cuts, for a width of 18 inches, ahout 30 feet above the hered. It assayed: silver $1: 0$ ozs., lead mil, sime $13: 9$ per cent. The main level (atemos on the win 300 fort southerly from the winze, for the last 200 fert of which the toke heromes haril anil unprohetive, the face of the drift showing a porphyry structure, mul it hook as if at this phace a grey porphery d.the ocerpied part of the wem.

Two drosseruts have leen driven into the hamging wall of the wein betworn the man cross-at thmel and the fare of the southern drift, without showing up any mineratization, but the foot wall portion, as opencl on this level for a distance of 3 30 fert, shows an extremely well mineralized doposit witha pay strad that womh arerage ahout 2 feet wide of a composition similar to that indiented in the samples above referred to, both of which were taken from two col- across the wein. The best showing is in the buttom of the level hat owing to the wet nature of the country and the prevalome of fisure in thi rather une wem structure, mining bulow the hevel wilh, now doutt, be hatardons and expensive. A tumel
 fore and would iot be warmated without eomsiderable further development of the win and the opening up of targe quantitios of pay ores.

The water is pumperd from the win\%e and the ore hoisted hy conspressed air delisered from the Paylor Air Compressing Plant sithated on Coffere rerek alont two miles south of the mine. There is no operning to surface asept the main funtel; the only ventilation in the mine is that supplien by the eompresed atir. Which is insufficiont as cartonie acid is very prevalent, and in many of the worhings a cantle will scaresty hurn.

Athough there are !oo fore of hacks ahowe the tumel hevel avaitable for stoping monerect raise have bern put up, exerpt the one deseribed. Whe or more raises should he pushed through to surfare, as in sur has st rong win there is cevery probalility of good shonts of pay ore heing fomed above the thmel lavel.

It is interesting for mote a romparatively flat deposit, conforming to the planes of selistowity of the ondowing rock, which continues so regatar and atrong at a depth of nearly 1 .hoof fort from surface, and under such a mas-s of superincumbent rock.

The appatranere of the Highlander wein in phaces would suggest that : small stratmon of limestond had then in part replaced he ore, and the solution and recrestallization of the limestone had rewulted in considerable - + tling of the hanging wath and general rock movement adjacent to the vein. There is also evidene that in varions places a porphyry dyke occurs within the vein.

The Hightumter property has the appearanee of having had far ton much money squandered on the main tunnel, in search of elusive veins at great depth, to the negleet of the harge verins, whelh is really a first-chasis prospert and deserving of thorough development.
'The Highlamber tmum is conmereal by wire tram with a comerntrstion mill on the shore of the liontemay lake. Fhe tratu serves to transport both the milling amd hemol-worted ore, ame the later, rogether with the concentrates, is shipperl in harges from the mill. This mill was mot
 Was, at the time of my visit. liguring on shiphing the crmbe ore in butk to the smolter, after a probarators hame sorting. and in this wise serouring the: benefit in asmolter rate from the rarlmate of iron :uml lime that the are contuins, athd saving the losis incident to conerent ration. 'Thungh the freight

 mir."

T'urij.

 and tritil.

 phyre dykes from ito 6 foret wide.

 lower workings of the 'rariff were unsato and the following description is guteted from Ingall who thoroughly explored the mine workings in 190 .
"'The so-ealled 'herift vein, where intersected in the Highlamber tmmel. is simply a clay gouge with an inclination varying from 10 elegrens to 30 degrees westerly. The vein, as followed in the south drift, varies from merely a clay parting up to a conple of feot in thickness of ghart a and ratbite. Near the end of the drift a cross-ent was pashed: to the foot wall St) feet, atml a drift was adramed 20 feet southerly on : smatl veinlet, showing a sprinkling of bhonde and galenanear the face. Gencrally speaking one would seareoly recognize anything in this drift :as an important mineral vein. It is pratetically an irregular meries of small guart\% lenses conforming to tho plan's of selistosity, contaning in places some' calrite ant a little clay gonge. J'ractically, there is mo mineralization in the vern at the depth, amal as no rommetion hats been made with the Tariff workings at surface there is nothing to show that it is the samo vein. thenght the probabilitices are strongly in favour of its heing so.

The main workings on the 'Tarill vein consist of an incline-shaft, 175 feet vertioally above the Ilighbater tmmel (aneroid realing). I'assing down this incline everything is stoped out from the first lowel to sirfene.

On the second level the vein has astrike of north 20 , legrees west and the dip from surface to this level is 25 dogrees westerly. The level extends from 250 fert , and the gromed has hecu fairly well stoped out on cither side

[^20]

 the hathging wall is extremely stmonth: thel regular.

 partioular salues in the berth drift, hut the sombern ome showed some gine nesir the fices.
 had wot heren earried hedow the atoor. The win there is practieally all fyarth. howing a litthe dissminated prites. In the sombern face of the *topes it comsints of 2 fere of glarth on the foot, ant close to the hanging Wall al-ind acam of time gramed hembe carrying galena in fine sperhs.

The face of the drift 10 feet farther south shows quate and selist omly, for at what of ? feet, and is harrer of pay mineral. In the morth end of this stnme, 3 beet forth from the fine of the etrift, the wein shows for : wielth of :so inehes. Fist the hamging wall there is i ineh of himde, then 2 inchers of pharta follewed lis 9 inelhes of faitly solid bleme (eontaining,
 echist withat litte blende distributed thromgh the joints and eleavage plains. This ure, however, durs not comtinus for any comsiderable distance along
 fillenl with guart\% for a width of 3 feet and shows mon apreriable mineraliza tion.

Deremding to the mext level, which exteme morth moly; or in the "pposite direetion to the last, comsiderable stoping has berel dome, and in
 lewel. l'actieally, howerer, this here forms the bottom of the nothern topes, jus as the level abowe forms the botom of the monthern ones. This north level for the greater part of the distame eonsiste of quartzand raldete, the former predominating. I could detect but little mineralization at any puint. At this level a short drift extemds sonther showing a vein : hont 21 foet widn, mostly quarty hut not containing pily minerals.
 rein of quartz and calcite but no pay minerals. T" sbaft extemde at Lean 50 fort helow this level at which point water was oncomered. The herel previonsly deseribed has been recently under water and was smeared with mmel and very diffientt to examine. 'There was no ome present to reperent the owner of this property, which has bem ahambened for seseral rears, and the workings were seareely safe, hut having bern informed there was considerable zine showing in the old workings, I ventured to make the examination without a guide.

Jhtging from the stopes, the vein so far as developed, contamed one good shoot of galem together with a little bembe, near the surface; which hais been to " "intents and purposes stoped out to the extreme boundaries of the shoot, 1 in depth, so far as any pay ore could be followed. Other shoots mas, however, le found by development on the strike of the vein to the south.

Replacement Deposits in Limestone.

 tion. The mineratizel ame i marlond at the surace he the preatme of

for 1 Mine.

 just west of the mine huildinge.

Mincralogy. The ore comsits of a dark brown, decomposed masis consisting mainly of irom oxide, some leal rablomates and wire silour. In places sulphide ore is visible and shows the presernee of galenat atad zime hende with somur prrite and chalcopyrite. The gangue is chliefly silicified and alterel limeston:: which somatimes shows trares of the sulphidese of
 opment of quart: erystals in catvities. The metallic sulphides often

Ore-bodies. From the aceompanting dongrammatio crossesertion (Figure 5) it can be aeren that the ore-lodies oreur as replacement deposits in rystalline limestone, near or at its upper contart with the overlying blark argillites. The ore zones are two in number. one atone the upper contact of the limestone and the wher from 7 to 20 feet from thic contact,

 －mbly

 いいい。
 ing（＇umplali is ：1－follow ：
$31 . \operatorname{mor}$
$31 . \operatorname{mor}$

Nillar／luaid．

 Xo igneonss rocks wire foumb in ther vieinity of the mine．
 hatenele wh minor anolats of prite athl chaleoprorite．Dative siluer weurs in crachs in the ore and in the limestons in the immediat．vecinity of the cre amb，as wire silwer，in the small ravition．The gamgue consists mainly of grewn fluorite with minor amomus of raleite．Small pierese of
 many pare pernetrate ly means of fiesures into the fuot－wall as mimute

 wetered in the workings.

 the me of the No. 1 mime. Ho -tatue aho that har wan informed that hip-

 fir dy gres to the west.

Cromer

 Hoatil mis:

 zone to :my extent, the main tmand hasing hem drisen past the zome into
 areil.

Oif. Thr orn comsiats of a hrown, carthy, derompomed mats, which in
 mineratizel zome are maknow. ho the deveropment aif the property.

Sinllapher.

situmtion. The lower tumel of the (aillagher is 3.025 feret abme
 feats to the Dightamt- Dinswarth wagon road.

Cedoleg. The ure-bulies of the (iallagher are situated in the No. 1 limestome of the silver Ifardf formation which in this heratity is fulded into

[^21]
 are entirels in the No. 1 limentome.

Mimerolog!g. 'The ore lwing mine! :t the time of the writer's vi-it

 bank argillites. 'The devernoment work on the (iallagher has not explored

Production. Tha proluction in 19月5 was $1: 3$ tonc; and in 1!91, :3 t1IT.

Stai and simlight.

Situation. The star and smaligh elams are sitmated cand of the

 rall tofollow, lawe the Ainworta No. I mine wagon ro:d alowe the ['nited Mab: amd raches thestar hof and cabins.
recology. The grologn oi the dams is given in detail (Map 1iso in order to show the lithonge of the star limestane, the grandional eontarta of the Star limestome which is phatateriatio of the lim-tome formations, and the struetural features of the gheisice gramite. All the rocks dip from 2.7 degrees to 10 degrese to the west and strike appoximately morth and south.

Orr-bodies. The masafe comdition: of the shaft where the ore was rexfracted prevented an examination of the orr-hodies or the ore. It is report-
 zine.

Horkings. Tho workinge comsist of a number of open pits, a shaft.
 178\%) for a distame of ahom sot fert, but mo wein nor ore-tomedy of any valute was struck.

Tiger.

Situation. Ther Tiger ratim is situated on the somth slope of Codar

 lowier tumed of the Star.

[^22]deology. The depesit oferes in the lower part of the star limestone in the horizon represented in the lower Nat tumel (Xap 1787). The rock ronsist of staurolite or madahsite sehist amd whitish grey erystallinn limetome. The rocks strike almost north and south with a dip of 50 degrere to the cast. In the long eroweret tmmel chiefly staturolite sehist with small bands of limestome orenr. In the pper worlinges an ant icline was noted which showed the ore orcurring in the limestone at the contare with the
 this contare, as well as the limesteme in the immediate viemity of the eontart, is the mest promising phare for the formation of ore-luetiers.
 in the open pares in the vein, showing the rube and wedabedron fares. some zine blende and a little perite which is eometimes eopper-bearing emphete the mineratugy of the ore. The grange is gatate and silicified limestome.

 whin-

$.1 y$ shin.

 with hande of ramrolite or amblatite whist. The horizon is prohably nar the hase of the star limenome. These rewhestrike berth ant south with a lip of fio legrees to the west.

 1.5 :and 20 fret. the northern wath of the fionler hemg dioplamel to the west
 Werribed in a previons paragraph, heth in the strike and dip ame in the rharater of the displamement atome the fi-mbers. The mineratogy of the fisenter wins and the repherement deposits is smilar ceron to the propertion of silver to the keat in the galenal. The abowe evidenere supperte the con-
 alluons in origin.

Ort-bedis. The ore is a rephacement wemit in limesome al its upper contart with the erhi-s and hernere conforman in dip and atrike with the lime--tome. Ore oreurs in cach of the fiwures, werefithy in that portion whirls joins the two replarement herlies.

Kicu.

Siluation. 'The Kran is sitnatted on the wagon road from dinsworth
 frot allowe Kootronay latir.

 limestons, the most important member, and hataled quartzites all striking

Ore-hodics. At the time of the writer's visit (1915) the whaft was filled

 is prohahly a fanlt rmming parallel with the rereek at this peint, hat movi-

 planes wilhin the minerallenel areat.

 silere atr very oftenfomme.

 a westerly dip of alomet so degroes. 1 shomble julge from the hardmese of
 whidt cirenlated within it.

This property presents, on a small seale, the same phemomenat as the Blue Bell property on the east side of Kootenay lake, wry little development has been carved out, and one ean onty chass to thay as a very promising jrospect, in which development in depth may prove up good payable ore deposits."

Harlmges. Since the report of the (ommission was published, a long thand has been driven thromge the ('row-Fledghing mineral elain to interseet whe krat hemestene with its poseshle orcoboties. The tunnel hate an eievation of 3 , hif) feet (harometrie) abow sea-lowed and pases throngh the following rocks in the first siof feet of its eomese starting frem the portal. The remainder of the tumel. which is the most important part from an ceommic viewpoint, was inacecsible on ace ount of foul air.

Bucleye.

Situmen. The Burkeye mineral elaim adjoins the Josephine on the north. It is comected \because ith the Ilightand wagon road he a groed trail. The chevation of the matin thand is $3,5,50$ feet alme scatered or 1,780 feet ahow linsworth.

Cicoloyy. The ore deposit proper ocenrs in the star limestone which in this lecality is quite siliceous, the weathered surface being characterized by the presene of sand. This limestone is underlain hay a dark grey : andalisite misa sehist which is exposed in the lower tunnel of the Buckere. Coberneath this: sehist oecurs the platy quartzites which were exposed iu the extreme uothern fate of the first level of the Highland mine. The Star limestome is overiain by another belt of andalusite mie: schist.

Or-biodies. The ore-borties occur ats replacement deposits in the Star limestone and are irregular in their boundaries. The replaeenent hodies arf assoriated with a fissure vein which strikes north 40 degrees west and dips 70 degress to the south. The amount of movement along the fissure rould not be assertained.

The ore consists of prite, zinc blende, and galena in a gangue of silicified limestone, calcite, and quartz.

Worlimys. As the old shafts and tumel were inacessible the followiug description of the conditions of this deposit in 190) may be of interest. ${ }^{1}$
" Developenent work on the Buckere consists of two inclined shaft100 feet apart, ea chabout 40 feet deep, and one tumel 200 feet long driven in under the shafts. The surface showing of zine ore is considerable, hut the work dome dos not seem to have been earried sufficiently far to expose the ore at deptly. The two shafts are located on a northeast and southwes

[^23]line, while the tend of the vein appears to be more north and south. There was too mueh water in both shafts to permit examination of the bottom. To the south of the first one a distinct mineralization is visible on the surface. The second shaft was started outside of the vein, with a view to interseeting it at a depth of about 70 feet, hut it was never sumk to that depth.

The tumnel, which is about in feet below the surface showings, was driven as a cross-cut for 70 fecet. At that point a borly of zinkiferobsis ore has been intersected and followel for tis feet. The ore-body onty shows in the roof and has mot been ratised upon. Drifting in the thmel was continued for an additional hof fret through country rock, when at second shoot of zinky ore was rancomentere at the breast, where it can be seent. This exposure appears to correspond with the principal surface showings and seems worthy of at tention. In order to learn its cestensions the thand should be continued. The work was evidently left immediately after ore Was broken into, as it was considered of no vahe hy the owners, who at that time were looking for clean silver-hest ore and not for al matrix of zine and iron ore with more or less gabenal mixed through it. A sample of the face (top and bottom), taken on the rein for width of 18 inches assaged 23 per cent zine, but carries loss than 1 o\% siluer to the top."

A lower tumed to tap, the ore-bodies at depth has bern aresen at an pheation of $3,5+0$ feet, or 100 fere below the outcrop. The tumal prometrated the andalusiter sechist: hat did not reach the star limestone which coutains the ore-hodics. In 1918 preparations were umder way to continue the first kevel of the Highland mine to reateh the Buekeye ore-bodies.

CHAP'TER VII.

PHYSIOGRAPHY.

ORIGIN OF THE PURCELL TRENC'H.

(Kootenay Lake Valley.)

SUMMARY.
(1). Orogenic movements first affected the Selkirk range in southern British Columbia in the late Jurassic periofl.
(11). The first granodiorite intrusion of the West Kootenay (Nelson) batholith took place in the late Jurnssic period.
(1II). The batholith was unroofed in the Upper Blaimore time.
(IV). The upland surface of the present Selkirk range was formed ley erosion during the period from late Jurassie to early Tertiary: 'This perion' of erosion was brought to a close by the laramide orogenic movement. which hilt the Rocky mountains and raised the upland surface of the Selkirk range almost to its present height.
(V). The Purcell trench and similar master valleys of the Solkirh range were ent into this upland surface during the Tertiary and Quaternar: periods and hence are antecedent river valleys.

(iEOGHAl11Y.

Every one who erosses the Canalian Cordilleral le way of the ('rownest pass or the southern route is struck live the baty and even morth-south continuity of the great longitndinal valleys or trenches. In east to west order the trenches are: the Roeky Momatain trench (L゙otemay River walley separating the Rocky momatains on the east from the selkirk mountain on the west; the Pureell trenelh (Kontenay Lake valley); the Selkirk valle (Cohmbia River valley); the Okungan Lake valley; and the Frase River valley (Figure 2).

The Pureell trench is situated in the Selkirk momatains ${ }^{1}$ and erosece the International Bomalary line at longitule 116 degrees 30 mimut (l:̈gnre 2). It extends from the bomblary in a northwederly direetion and joins the Selkirk trench at the northern end of Upper Arrow lake. : drowned portion of the walley of the somth-flowing Cohmbia river. Dily considers the valleys of the Dumean and Beaver rivers to be the northern extension of the Purcell trench, whereas the writer considers the northern portion of the trench to be the valley ocmpied by Lardo riser, Tront lake. and Beaton ereek which flows into L'pper Arrow liake and thens joins Selkirk valley and Purcell trench.

[^24]The following facts support the change in the delineation of the Pureell trencls:

The Purcell trenel is a valley formed by munteredent river and the valley occupied by Lardo river, Trout lake, and Benton crook is of similar origin.

The valley of Duncan river parallels the strike of the rocks and is probably a sulsequrent river.

Kootenay lake orrmpies the central portion of the treneln and is drained from a point near its centre hy the west-flowing Kootenay river which empties into Columbia river. The sonthern portion of the trench is oernpied by the nortle-flowing Kootenay river.

Topoghabliy.

In a view from one of the higher pataks of the selkirk range, the most striking feature is the sories of nhmost moloroken ridges, having an aproximate clevation of $\mathbf{7 , 0} 00$ feret. The ridges trend in all directions without relation to the malorlving strmetne and evidently represent the remnants of an uplifted athd diswerted pencplatin. Nomerous peaks having elevations: of from 8,000 to 9,000 feet project abowe this old land surface and great. balleys have luren raverd to a depth of 6,000 feet below it. The ridges formionvenient highwass for exploration one this upland surface is reached. In marked contrast to those of the selkirk morntains, the ridges of the Rocky momatains to the east laveremarkably constant northwest trend and have a direct relationship to the strueture of that system, in that they are groat northwesterly-troming fault bloms.
(iFOloMY.
The Purcoll trench is carved in a serics of serlinentary rocks ranging in ago from Beltian to (:arhoniforous. This series is intruded by masses of gramodionite, offshoots of the weat Kiootomy batholith of Jurasoic age (Ihate II). The following is a comelenserl geological table:

-THLCTI'1RF.

Viewing the geologg of the whole trench as shown on Figure f , it will be seron that the sedimentary sorice forms athge and almost symmetrical bow, comvex to the east. The gemeral dip is almost everywhere towards the inside of the bow at an angle of abomt tidegrees, so that in the northern part of the trench the ronks strike northwest with a dip to the sumthwest, bending erathally with in the midello part the st rike is north-sonth with a (lip to the west, and in the southera part sonthwres with a dip to the northwest. "The gramite masese the eastern fringe of the west Footenty*irlsom hatholith, have had no effere on the general strike of the sediment-
 withent roference to its itructure.

ORICIN.

The wrigin of the Purredl treneh has hern dexribed by Daty in the following worls: "The Rooky Mombtan tremeln atid the Purcell tremeh are likewise loceated on zanes of profonad fanlting: in carla rase the comstructional profiles maty have berengrabens as typual as that of the midelle
 andighourlood of the International Bommelary line was worked out in greater detail hy the writor in I! IJ 3 and it was fomme tlat the fanlts marked hy Daly on the geological map as oferoring on each side of the Pureell trench wore mot present allul that the valley in this lociality was not a grabmá The area was again examined in $19 \mathrm{~S}_{\mathrm{s}}$ and these rexults were eonfirmed. In l! 1 ti Drysulale ${ }^{3}$ mathe an exinmination of the seretion in the neighbourhood of the Intermational lzomelary lime and again confirmed these results. In 1915, the aren in the viemity of Proeter on liontenay lake was carofnlly examined for coidener of fanlting. 'This locality was cepereially favomrable for geologiral field work simere the formations crose the lake almost at right angles. Tha formations were followal from the high momentans on the bast side of the lake across l'ibot point and into the momentans on the west side oî the tremeh and .. very persistent lincestome band dipping northwest at an angle of 45 dogroes was nsed ats a horizon marker. A fand parallel to the trench wonld have offeret this limestone band, bit mo evidenere of a break was fomme. At the north embl of the tremeh Baneroft has fomme mo fants. From the alove facts. it may he concluded with certainty that faulting played no part in the formation of the Purerell trench. In I!se, the writer stated his belief that the selkirk monntans were mometanbuilt for the first time at the close of the Jurassio. The facts on which the conchasion was bared may be smmmarized as follows:

The present drainage beass no relation to the mukerlying stracture.
The sediments of the Cretareomsin the nerighbonring liocky monmtains to the east are in part, made mp of the prositats of the erosion of theso Jurassic: inomentilins.
'The following table shows the suecession of geologieal formations of the Rocky momntains in tabular form:

[^25]

Figure 6. Diagram'showing the geology of the Purcell trench.
(ieological Formations of the Rocky Mountains.

I'eriont.	Formaton.	Comdition of depositon.	1.thologieal elmaster.
Tertlary	P'askajox: Edmonton lisarpaw Ilelly lliuer meries ('olorada C'pper IBlairmore		
		Ilrackish and fresh water	Nandetones and shalem.
Upper Cretaceous		Marine ${ }_{\text {M }}$	Shales. Nundstonew and mhales,
		Marine	Shalstonew and
		Subacrlal	Sandstonre, conglomerates (granite and cliert pel)
		Subaerial	Shates and eonylomerates
Lower Crelapeous	Lower 13lairno	Subaerial	-hatea and eonglomerates (guartzite and chert puil)
	Kontenay	Subaerial	Sandestones and whales.
Upper Jurasaic Devonian and Carbonifierous Lower I'alinozolc.	Fernie shates	Marine	Coal.
		Mnrine Marine	Simestones and quartziten. Timeat anes and shales.
1're-Canbrian. (IBeltian).	Disronformity. l'urrefl series. Gaton acries.	Continental	Vainly quartzites and argillaceou* quarlziteg.

From nn examination of the alowe tuble it will be noticed that con ${ }^{-}$ glomerates are first found in great amount at the buwe of the Lower Blairmore formation. The pebhles in these conglomerates consist of quartzites and chert derived from the quartzites of the Beltian rocks which make up the great part of the Selkirk range. Evidently in Lower Blairmore time the Selkirk range was appronching the maximum of elevation and was undergoing rupici erosion. The Upper Blairmore formation also consists of conglomerates and sandstones, but in it, in addition to poblbles of quart zite and chert, pebbles of granite occur for the first time and in great abundance. The presence of the granite pehbles at this lorizon is interpreted to mean that the Nelson granite lnatholith which forms the core of the Sclkirk range in southern British Columbia was muroofed and exposed to rapid erosion during Upper Blairmore time and furnished the pebhes for the conglomerate. Hence it is established that the first intrusion of granodiorite into the Selkirk range took place before the deposition of the Upper Cretaceous. The superposition of the marine Fernie shales upon the marine Devono-Carboniferous limestones suggests that the period of stah)ility which prevailed throughout British Columbia until the Triassic was interrupted during the upper Jurassir period. The Selkirk mountains received their initial form probably at the close of the Jurassic or in carly Kootenay time. If mountain-luilding and igneous intrusion are contemporaneous, it may be concluded that the first intrusion of granodiorite in the Selkirk range conmeneed towards the close of the Jurassie and continned until the mountnin-building reached its maximun in Kootenay time.

Tabular History of Selkirk ant Kochy Mountain Systems in Southern Brif: in Columbia.

In carly Tertiary, the Laramide revolution took place, rausing an uplift of the Selkirk mountains and the formation of the Rorky mountains. The effect of this uplift in the Selkirks was to slowly raise the old land surfaee formed during the Cretaceous almost to its prosent height, with the natural result that the streams which meandered over the old surface were rejuvenated and cut their present valleys into the old peneplain. As these strams bore no relation to the underlying structures, the valleys cut by their rejuvenated deserndants, the present main valleys of the range, bear no relation to strueture. Thus the main valleys of the Selkirk range have been earved during the Tertiary and Quaternary periods in a peneplain which was formed during the Cretaceous and early Tertiary periods. Such has been the origin of the Purcell trenelo which contains Kootenay lake.

Pr nt 5

INDEX.

A.

Acknowledgments. PAGiE
Age relations of replacement deposits and true fissure vrins. 3.5
Ainsworth
Ainsworth
2
2
" epoch
88
88 19
limestone
limestone
mines. production of.
32
32
mining canp. 1
" division, mineral production of 30 30
series $10, \quad 11$
age of.
Albion mineral clain, deseription and geology of 14
Analysir, granite 45
90
" Nelson granite, Broek. 21
" No. 1 minc, Canadian Mining and Sucltiny Company 21
Andalusite 5 5
Ankerite. 1.3
Area. 3.4
Argall, \mathbf{P}
Ayeshar mincral claim 15, 4.5
description abt geology of. 35
B.
Baglow. A.
Bancroft, M. F. 41
Banker minc 18
Bibliography 13, 32 44
Bluebell mine
Boggs, O. D) 1. 2, $8,32,33,34,36$Brook, is if-. 218. 21
Broken Ilill minernl claim Broken iniminernl claim
l3uckeye mineral claim... 15
description and geology of. 58
(.
Calcarcous spar 34
Calcium fluoride 34
CamptoniteCanadian Mining and Smelting Company.Canadian l’acific railway.$2: 1$
Carlronates 4
arboniferous 34
Carlyle, W. A 18
Cedar creek.
7.37
7.37
Cerussite
Cerussite
34
34
Chalcopyrite
34
34
Timate
Timate 7
Coeur d'Aiph
2. 7. 20
2. 7. 20
Communication. meanc of
Communication. meanc of
2, 35,37
Consolidsted Mining and Smelting Company, Limited
Consolidsted Mining and Smelting Company, Limited 3_{4}^{4} 3_{4}^{4}
Copprr, native. 32
Cork-Province deposit 34
Cretaceous. 34
Crow-Fledgling mineral claim. 29
Crown Inineral claim, clescription and geology of 5
D.

F.

Eardley-Wilmot, V
Farly Bird claim.

" formatio
10, 19
mineral clain, description and geology of. 19
41
F.

Falconcr, F. \mathcal{S}
Fergus claim.
Ferriferous dolomite... 40
Field work. 34
Fissure veins cutting bodding planes nt nn angle ${ }_{37}^{2}$
" ${ }^{6}$ parallel with bedding planes.. 37
Florence mine.. 37

" "Mining Company
Fluor spar
description and geology of
34
Fossily.
ㄱ. 34

Frost A. M
Frost. A. M.

G.

Galena.
Gallagher mincral clnio. description and geolo... 33

general.......
atruetural... .. 8
Glacial drift. 25
Glengurry inineral claim. description and grology of 8

Granite, age and correlation.. 19

- analysis..... 22
" external relations. 20

Granites...

19. 20

II.

Halicles
Hewer, i:. M
Highland group, lescription und geology of
" mine... lescription und geology of
mine..

1, 24, 32, 34, 35
Highlander ntincral claim, description and geology of
37
35
45
Ifistory, geologienl.
Hope claim.
Hornblende schist
Hot springs.
I.

d.

44
28
28
Jurussic...... formution...
11, 19,23
k.

I.
L.amprophyric dykes....... 23

Lead
34. 36

Libley limettone.

Limonitr hitter Phil mineral claini, deaription and geology of.
I.ocation.

4
low er Islarmore formation
22. 64

M.

Meconnell, R. G.
Mr! mapald. Mr
Man-atire mineral rlnim, dfatription and geology of............ it
Magnetic sulplide of iron. 34
Marcasite..
34
Mica liornhlende sehist... 12
. 18
Mneral production of Ainswuth thining division................................ 31
Mineralogy. 32

N.

Sarrows repek.
12
Native elementa
32
Virkon latholith... 19

17, 20, 21

Nenuha mineral claim.

New fanadian Motals fompany
Niskoalith (Iover Cambrian)
15, 19

No. 1 limestonr. 16
mine dastription and meology of

1. 12. 34

- minfralizad zone and meology of 51
o.
Okanagan Lake valley. pacar.
Ore deposits 60
ape relations 35
Ores.
" origin of 35
- value of 36
35
40
Ozides. 40
34
P.
Palsenzoic rocks $\begin{array}{r}27 \\ \hline\end{array}$
sdimentation
sdimentation
Plysiography
60
Pilot point 62
Pleisterente
24
Point Woodlury eporh
0, 19
l'ost-Cambrian
18
Power fraction 40
Prineess ercek
Prineess ercek 10
eporh. 28
Pringle, Mr 10
Procter.27, 62Purcell series....2, 27
trenclı1. 701
geography
" " geology:
61
" ". (Kootenay Lake valley) 61
" " \quad origin of 60, 62"' " "opograpliy.6261
l'yrrhotite. 34
Q.Quartz.. 34
Quartzitc.
Quartzitc.
Quternary 12
Queens Bay 12
R.Recent
Replacerrent deposits and true fissure veins, age rolation of. 24
Kiondel. in linnestone 51
Rocky Mountain geosyrdine 2.5
" " ystem, tabubar history of 65
" " Kootenay Rivar valley). 7. 2516
clain. 19
s.
Saunders, 1. F.
Section, Josephine formation
Selkirk depression.
" Mountain system, fabular history of
" suries.0.5
vulliy (Columbia River valley)
(Archatan)
Silver.
lake.
" Hoard rporh. 30. 32 2 s
" " formation 15
" Hineral clain, deseription nind geology of 33, 34
parie.
16
sink holern 40
Skylark clainm. 28
skylinc churla. 16. 21formation.$21)$
Slucan wrr 17
" " uge of 3.3
phalerite... 13. 32
ppokitn' JHilt 44
igokane moneral chain, doaeription and geology uf $1!$- ifar limuthontone.11. 13, 15* limestune.15
litnoral elatit 5
tunnel. 13
taurolitr achist
$3: 1$
$3: 1$
Sterl gald na..
33
33
sulphite of lond $3: 3$
Sulphinl.w. $3: 3$
5.5
Sunlight mineral clam, dewoiption and moohgy of 34
Tinhte of meological formutions, liow monntains64
9.61
" forntations. 23
9
" show ing claratior of mediturmes.
Tabular atatement of geeboginai record.Tariff mineral claim, Maseription und medhgy of..44'l"rtiary.Topography
Tiger mincral riain, deaseription and mology wi. r
Trink•1t 11111214
minneral elaim, dencrip ion :tml groliges of
 8.5
Truin claim $41)$

I.

- ylow, W. I...
(nited rlaint
mineral clana, loserip33154?
Cpper Blairminer
Cpper BlairminerW.
Whime lend or
Wiolthe, I'. It.
Woocliury ererk
Work previous
Z.
Zine. t. 30
" bionde. 33
34
Zwirkes, Mr 34

MICROCOPY RESOLUTION TEST CHART

(ANSI and 15O TEST CHART No. 2)

Cimbial:
 Inpartumit of thimes

geological surver

incs

er

Mat Tenlamers

Atrical traduwates
-
Churwhes

Hust offles
Tormos

Lusit homenem
-........

Shinf.
-- -

Tunnels

Roblwatur No $1: 0$

WW'DHTH

iculc. 2man
\qquad
Noman
MCH

LEC(EEND
Cislture

lisuds and buildungs
\qquad
\qquad
Patk notils

Truens
\qquad
Miцe trimbata
\square
…......... -
Arrial tranways

(1am
 Apparturemt of fitucs

*. Martin Burt a Minister, R. G. Mc Connell.Deputr Minitiea

GEOLOGICAL SURVEY

Wil I... Mínnfs Directing Geologist
Inamad tin!

Gate, hogizomal and vertionl, घi.0.00

Structural sertion blong line $A B$
Scalc. homantal and vertical 14.00 n

1.1:(il:N1)

MESOZOIC

CARBONIFEAOUS
paleozoic

Difver Iloard torinatizis
cs
lempiphine formation

Sumbols

Guoblugal bumbers

Wabervai homatar rthutisnat
fo-clugn:-1 boumatar
pusituon uxturne

Ht, ond -tmkn

sou - - -

1hablication Na 15-4:

 KOOTENAY DISTRICT
GEOLOGV
S J. SCHOFIELD.
1915 Ano 1918

TOPOIRADHY
19/4•19/5

reolgical Suriey, Canada
Dlagram showing
hing Camp. Koote
Alnsworth Mining Camp. Koote
\qquad

owing minenal claims

Kootenay District. British Columbia
icale of feet

A A

Legend

Ore hocsices

Geologrcer Survey. Canada
Diagrom showing geology of the 2:4 Level a Ainsworeh Mining Camp, Koocenay Distryet.

beolggical Survey. Carnarla
Dragram showing geology of certain mineral claims of r.
Ainsworth Mining Camp. Kootenay Dist
200 \qquad Scale
a00 400 teer triling

ms of the Florence Silver Mining Company. ay District, British Colurnbia
er trilumh \qquad

Geological Survey, Canada

Geological Survey, Canada.
Diagram showing gealogy of the underground workings of :": flo Ainsworth Mining Camp, Koozenay Distric,

"18, co Portar Thar 2270

Publication N: $/ 786$
Florence Silver Mining Company. irerish Columbia

Diagram showing geology of the
che Star minenal ciaims, Ainswo
Mootenay District, Brits
Scale, 300 fent ton
lower Ster funnel
an Scale, 300 fret women

Legendlamprophyre dyke
Fingerssic graniteLimestone Limit Staurolite schist
= - underground workings
of the Sunlight and part of Ainsworth Mining Camp,

British Coluntibia
feat to l inch

Pbit

H
クuヵ马27

Cross-section of voin th the face
Early Bird minenal claim. Augus Mining Camp, Kootenay Dist,

Publication N"1790
the Pace of Lawer Tunnel on the
n. August 25.h.19/4, Ainsworth
dy Districe, British Columbia
vo of feet 2 ,

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

APPLIED IMAIGE Inc
1653 Eost Main Street
Rochester. New york 14609 USA
(716) 482-0300-Fhone
(716) $288-5989-59 x$

Quareril
nef on thes Alhion mimeral cilaim. Ainswurth Mirinis Camp. Kooterid

Goalgicel Survey, Ganads
Diagram showing geology of the tunnel an the Albion minenal claim, Ainsw

LegendQuartz vainLamprophyre dyke
\square Gneissic gramicoLimestoneHornblende schist
\square Platy quartzite
\square Mica schist

$$
0 \text { clinch }
$$

∞
17e =rbandiat dark limespurson anc minlues
$[-\cdots$

*in . war acteret to linch
-

Goological Survay, Cenade.

Diagram showing genlogy of the tunnel on 2 claim, Ainsmorth Mining Camp, Kootenay Distry

$$
\sigma
$$

$$
7
$$

[^0]: ${ }^{1}$ 12 Mawson, G. M. Geool. Surv.. Can., Ann. Rept., 1888-1889, vol. IV, pt. B.

[^1]: ${ }^{1}$ Dawnon, G. M., Geol. Surv., Can., Ann. Rept., 1885-1859, vol. 1V, pt. B.

[^2]: ${ }^{1}$ Dawson, G. M., Fiml, Sury. Can. Anm. Rep., :ral. 1Y, 1894, p 4715
 $7618: 3-2 \frac{1}{2}$

[^3]:

 sichoticll, © J, (ieol surs., ('an, Sum. lhept , 191i, p. 136

[^4]: 14eConacll: R, Gi Geol. Surva; Can. Sum. Rept , 1805, p. 24A.
 2Dawson, G. S. Geol. Surv, Can Ann. IRept., vol. 1V, 1889. p. 31B.
 ${ }^{3}$ Argall, 'lhilip. "Report of the Commassion to investigate the zine resourees of British Columbia" Mines Erancl:, :min?

[^5]: ${ }^{1}$ Dawson, G. M., Geol.s - -., Can., And. Rept., vol. 1V, 1585-1859, p. 32.

[^6]: Hrock, IR. W. Geol. Surv.. Can. Sum, Rept.. 1903, pp. 501 and 53 A .
 (imot. hurvi. (8n., oum. Rent

[^7]: ${ }^{1}$ Gwillim, J. C., Can. Rec. Sc., vol. V1I, 1897, p. 235.

[^8]:

[^9]: ＂rliohelat，心．J，（ieol．Nurv．，Can．Mem．56．1915，pn，95－97．

[^10]: ISchofield, \&. J. Trans. Can. Min. Inst., vol, XXI, 1918, p. 42\%.

[^11]: isthofield，S．J．，Geol．Surv．，Can ，Mem．－6． 1015.
 $76183-3$

[^12]:

[^13]:

[^14]:

[^15]: Hellow, () E Giol turs. (ian., Ment ? 1.

[^16]: ${ }^{1}$ IReport Minister of Mines, B.C., 1914, p. 119.

[^17]: IReport of the Commiesion gppointed to inventigate tho zine resource of British Columbia, 1904.

[^18]:

[^19]:

 Tils： 1 －

[^20]: Hieport of the Commission to investigate the zine requrces of Mritish Columba, Department of Mines. Man Branch, thoti.

[^21]:

[^22]:

[^23]: ${ }^{1}$ Report of the Compansion abpointel to investigate the zine resources of British Columbis, Dept. of Mines, Mine branch, I! fo.

[^24]: 1Nomenclature of the mountains of westert, Canada. Gimgraphic Board of Canada. April 2, 1918.
 2Daly, R. A. Geol. Surv., Can., Ilem. 38, 1912, p. 20.

[^25]:

