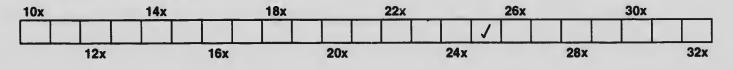
CIHM Microfiche Series (Monographs) ICMH Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadian de microreproductions historiques


Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below. L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured covers /		Coloured pages / Pages de couleur
Couverture de couleur		
		Pages damaged / Pages endommagées
Covers damaged /		
Couverture endommagée		Pages restored and/or laminated /
 Couverture endominagee		
 		Pages restaurées et/ou pelliculées
Covers restored and/or laminated /		
Couverture restaurée et/ou pelliculée		Pages discoloured, stained or foxed /
	V	Pages décolorées, tachetées ou piquées
Cover title missing / Le titre de couverture manque		
		Pages detached / Pages détachées
Coloured maps / Cartes géographiques en couleur		rages detached / rages detachees
Coloured maps / Carles geographiques en couleur		Observations in 1 To an annual statement
	V	Showthrough / Transparence
Coloured ink (i.e. other than blue or black) /		
Encre de couleur (i.e. autre que bleue ou noire)		Quality of print varies /
		Qualité inégale de l'impression
Coloured plates and/or illustrations /		
Planches et/ou illustrations en couleur	<u> </u>	Includes supplementary material /
 Fidicites evou illustrations en couleur		
 	ليتعما	Comprend du matériel supplémentaire
Bound with other material /		
Relié avec d'autres documents		Pages wholly or partially obscured by errata slips,
		tissues, etc., have been refilmed to ensure the best
Only edition available /		possible image / Les pages totalement ou
Seule édition disponible		partiellement obscurcies par un feuillet d'errata, une
		pelure, etc., ont été filmées à nouveau de façon à
The last the state of the second s		
Tight binding may cause shadows or distortion along		obtenir la meilleure image possible.
interior margin / La reliure serrée peut causer de		
l'ombre ou de la distorsion le long de la marge		Opposing pages with varying colouration or
intérieure.		discolourations are filmed twice to ensure the best
		possible image / Les pages s'opposant ayant des
Blank leaves added during restorations may appear		colorations variables ou des décolorations sont
within the text. Whenever possible, these have been		filmées deux rois afin d'obtenir la meilleure image
omitted from filming / Il se peut que certaines pages		possible.
		possible.
blanches ajoutées lors d'une restauration		
apparaissent dans le texte, mais, lorsque cela était		
possible, ces pages n'ont pas été filmées.		
Additional comments /		

This item is filmed at the reduction ratio checked below / Ce document est filmé au taux de réduction indiqué ci-dessous.

Commentaires supplémentaires:

The copy filmed here has been reproduced thanks to the generosity of:

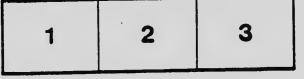
National Library of Canada

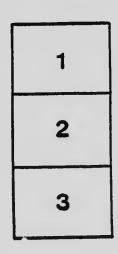
The images eppearing hare are the bast quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and anding on the last page with a printed or illustrated impression, or the back cover whan appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and anding on the last page with a printed or illustrated impression.

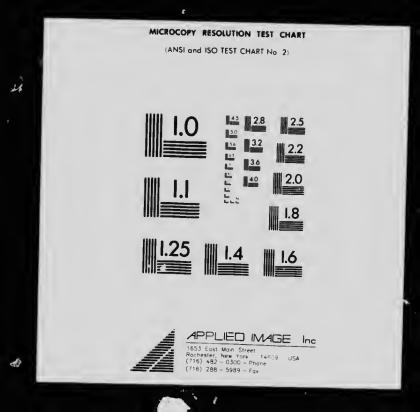
The last recorded frame on each microfiche shall contein the symbol \longrightarrow (meaning "CON-TINUED"), or the symbol ∇ (meaning "END"), whichever epplies.

Maps, pletes, charts, atc., mey be filmed et different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right end top to bottom, as many frames as required. The following diegrams illustrate the method: L'exempleire filmé fut reproduit grâce à la générosité de:


Bibliothèque nationale du Canada


Les images suivantes ont été reproduites avec le plus grand soin, compte tanu de la condition et de la natteté de l'axamplaira filmé, at an conformité avac les conditions du contrat de filmage.

Les examplaires originaux dont la couverture an papier ast Imprimée sont filmés an commençant par le premier plet et an terminent soit par la dernière page qui comporte une empreinte d'Impression ou d'illustration, soit per le second plat, selon le ces. Tous les eutres exemplaires originaux sont filmés en commençant par le première page qui comporte une ampreinte d'impression ou d'illustration et an terminant par le dernière page qui comporte une telle empreinte.


Un des symboles suivents appareitra sur la dernière imege de chaqua microfiche, selon le ces: le symbole → signifia "A SUIVRE", le symbola V signifia "FIN".

Las certes, planches, tableaux. etc., peuvent être filmés à des taux de réduction différants. Lorsqua le document est trop grand pour être reproduit en un seul cliché, il ast filmé à partir de l'angle supérieur geucha, de gauche à droite. et de haut en bes, en prenent le nombra d'imegas nécassaire. Las diagrammas suivants lilustrent la méthoda.

1	2	3
4	5	6

CA. M. 6232

CANADA DEPARTMENT OF MINES

HON. ARTHUR MEIGHEN, MINISTER; R. G. MCCONNELL, DEPUTY MINISTER.

GEOLOGICAL SURVEY

WM. MCINNES, DIRECTING GEOLOGIST.

MEMOIR 117

No. 99, GEOLOGICAL SERIES

Geology and Ore Deposits of Ainsworth Mining Camp, **British Columbia**

BY S. J. Schofield

OTTAWA J. DE LABROQUERIE TACHÉ PRINTER TO THE KING'S MOST EXCEL'ENT MAJESTY 1920

8-2

No. 1773

PLATE I.

76153

A.

CANADA

DEPARTMENT OF MINES

HON. ARTHUR MEIGHEN, MINISTER; R. G. MCCONNELL, DEPUTY MINISTER.

GEOLOGICAL SURVEY

WM. MCINNES, DIRECTING GEOLOGIST.

MEMOIR 117

No. 99, GEOLOGICAL SERIES

Geology and Ore Deposits of Ainsworth Mining Camp, British Columbia

BY S. J. Schofield

OTTAWA J. DE LABROQUERIE TACHÉ PRINTER TO THE KING'S MOST EXCELLENT MAJESTY 1920

No. 1773

CONTENTS.

ļ

CHAPTER L

Introduction.	PAUE.
General statement	
Field work and acknowledgments .	1
Location and area	
Means of communication	-
Previous work	4
Bibliography	4

CHAPTER H.

General character of district		•1
Topography		0
Regional.	• •	
		ti
Foce.		7
Climate		

CHAPTER HE

General geology	
General statement.	
Ainsworth series	
General statement	
Point Woodbury formation	• • • • • • • • • • • • • • • • • • •
Early Bird formation	
Princess formation	
Ainsworth formation,	·
Jocephine formation	
Age	•
Sloean series	
Silver Hoard formation	
Star linestone	
Ruth argillites	••••••
Ruth argillites	•• ••• ••••
No. 1 limestone.	• • • • • • • • • • • • • • • • • • • •
Skyline formation.	• • • • • • • • • • • • • • • • • • • •
Age	• • • • • • • • • • • • • • • • • • • •
Granites	• • • • • • • • • • • • • • • • • • • •
Greissic granite	• • • • • • • • • • • • • • • • • • • •
Granite	• • • • • • • • • • • • • • • • • • • •
Age and correlation	
Lamprophyrie dykes	
Camptonite	
Superficial deposits	• • • • • • • • • • • • • • • • • • • •
rieurocene deposits	
Recent deposits	
6183-1	

.

CHAPTER IV.

• PAGE,

Structural geology		
Regional	the second s	 -25
Local	······································	 25
	<pre>interaction in the second s second second seco</pre>	 25

CHAPTER V.

ological history																							
Pological history Introduction Palæozoic sedimentation		• • •			•	• •	• •	• •	• •		• •	• •	•	• •	• •	• •		•	• •				
Palæozoic sedimentation . Point Woodbury caust				•••	•••	• •	•	• •	•••	• •			·	• •	• •	• •	•	• •	• •		•		• •
Point Woodbury cpoch. Early Eird operh		••••	• •	•••	•••			•••	• •	• •	• •	•		•	• •	• •	• • •	• •	• •	•	•		
Early Bird epoch.			• •	•••	•••		•••	• •	• •	•••		• •		•		• •	•	• •	• •	•	• •		• •
Princess epoch			• •		•••	•••	•	• •	•••	•••	•••	• •	• •	•	•	• •	•	•••	• •	•	• •	•	• •
Ainsworth epoch.		•••	• •	••••	•••		• •	•••	• •	•	•••	• •	• •	•	-	•	• •	• •	• •	•		•	• •
Ainsworth epoch Josephine epoch Silver Hoard apoch		• •	•••	•••	•••	• •	• •	•••	• •	•	• •	• •		• •	•	• •	• •		• •	•	• •		• •
Silver Hoard epoch Sykline group					•••	• •	• •	•••	•	•••	• •		• •	• •	•	• •	• •	• •	• •	•	• •	• •	• •
Sykline epoch	••••			•••	• •	• •	• •	• •	• •	• •	• •	•••	• •	• •	• •	•	• •	÷	• •	• •	• •	• •	
Sykline epoch		• •	•••	•••	• •	• •	• •	• •	•	• •	• •	• •	• •	• •	• •	•	• •	•	• •	• •	• •	• •	
Jurassic Cretaceous	• • •	• •		• •	• •	•	• •	• •	• •		• •	• •	• •	• •	• •	•	• •	÷	• •			• •	
Cretaceous Tertiary		•••	• • •	• •	• •	• •	•••	• •	• •	•	•	•	• •	• •	• •	•	• •	÷	• •	• •			• •
Tertiary Quaternary		• •	•••	• •	• •	•••	•••	• •	• •		• •	•	•••	•••	• •	•	• •	• •		• •	• •		
•	• •	• •	• • •	• •	÷ +	• •	• •	• •															

CHAPTER VI.

Economic geology	
Introduction.	· · · · · · · · · · · · · · · · · · ·
Mineral production of Ainsworth mining division.	1
Ore deposits	• • • • • • • • • • • • • • •
Distribution	• • • • • • • • • • • • • •
Mineralogy.	• • • • • • • • • • • • • •
Native elements.	• • • • • • • • • • • • • • • •
Sulphides	• • • • • • • • • • • • • •
Oxides	• • • • • • • • • • • • • • •
Halides	
Curbonates	• • • • • • • • • • • • • • • •
Ores.	• • • • • • • • • • • • • • • • • • • •
. Age of deposits	• • • • • • • • • • • • • •
Age relations of replacement deposits and true fissure v	· · · · · · · · · · · · · · · · · · ·
Are relations of dykos and ore density	eins
Age relations of dykes and ore deposits	•••••
Age of deposits.	• • • • • • • • • • • • •
Origin of the ore deposits .	· · · · · · · · · · · · · · ·
Future of Ainsworth mining district	• • • • • • • • • • • • •
Description of mines and prospects	• • • • • • • • • • • • • •
True fissure veips	
Fissure veins cutting bedding planes at an angle	
Highland.	
r lorence	
Party Bird	
United Glengarry	

ii.

 $25 \\ 25 \\ 25 \\ 25$

Fissure veins parallel with bedding planes	
Maestro.	4
Banker (Diamond, Little Phil)	
Spokane	
Trinkett	
Albion	
Highlander	
Tariff	
Replacement deposits in limestone	
No. 1 mineralized zone	
No. 1	
Silver Hoard	
Crown	
Gallagher	
Other properties	
Star and Sunlight	
Tiger	
Ayesha	
Krao	
Buckeye	

CHAPTER VII.

hysiography	and the second
Origin of Purcell trench	
Summary	
Geography	
Topography	•
Geology	
Structure	
Origin.	
ulex	

Illustrations.

мар		Ainsworth, Kootenay district, B.C. Topographical edition	In pocket,
	1742.	Ainsworth, Kootenay district, B.C. Geological edition	· · ·
	1749.	Diagram showing mineral claims in Ainsworth mining camp, Koot- enny district, B.C.	48
	1784.	Diagram showing geology of the second level of the Highland mine.	54
	1785,	Diagram showing geology of the mineral claims of the Florence Silver Mining Company, Ainsworth, B.C.	
	1786.	Diagram showing geology of the underground workings of the Florence Silver Mining Company, Ainsworth, B.C.	+ 4
	1787.	Diagram showing the geology of the Sunlight and part of the Star mineral claims	**
	1788.	Diagram showing the geology of the Ayesha mineral claim, Ainsworth, B.C.	*6
	1789,	Diagram showing geology of the Spokane mineral claim, Ainsworth, B.C.	44

üi

1700 D:	PAGE.
 1790. Diagram showing a cross-section of the vein at the face of the lowe tunnel of the Early Bird mineral claim, August 25, 1914. 1791. Diagram showing geology of the Crown tunnel of tunnel of the crown tunnel of the cr	r Tara ta
1791. Diagram showing geology of the Crown tunnel, Ainsworth, B.C 1792. Diagram showing geology of the transition of	. in pocket.
Ainsworth BC	
Plate I. Photograph of a model of the Ainsworth mining	. "
Plate I. Photograph of a model of the Ainsworth mining camp	contispieee.
III. Ainsworth from above the Bluebell mine looking west, Riondel in	67
Figure 1. Index map showing position of Ainement	68
2. Diagram showing the classification of Amsworth.	3
	6
4. Longitudinal section along the main main the literation	26
5. Diagrammatic cross-section (cost and up that	39
6. Diagram showing the geology of the Purcell trench, British Columbia	52
build and the geology of the Purcell trench, British Columbia	63

i۳

Geology and Ore Deposits of Ainsworth Mining Camp.

CHAPTER I.

INTRODUCTION.

GENERAL STATEMENT.

Historically, the country in the vicinity of Ainsworth is one of the most interesting in British Columbia. It is situated in the narrow longitudinal trench (Plates II and III) occupied by Kootenay lake, which in the early days before the advent of railways formed the only means of communication for the numerous prospectors who were attracted to the country by the hope of discovering mineral wealth. Since Ainsworth was on one of the main waterways its hot springs¹ attracted the attention of these pioneers, and it was early prospected with fair results. From that time until 1913 the eamp was rather quiet due to the rush to the Slocan and to the Yukon. A few men who believed in the future of the Ainsworth camp remained there and with the limited resources at their disposal slowly proceeded with the development of the camp. At present their hopes have been realized, as Ainsworth is now a steady shipper with prospects that it will continue to be such for some time to come.

The principal producing mines in the district are the Bluebell on the east shore of the lake, No. 1, Florence, and the Highland; but several other minor properties ship irregularly.

The field work in eonnexion with this report was not confined to the aetual mining eamp of Ainsworth, but, in order to solve the problems which demanded attention, the region to the north and south was examined with the result that the formations in Ainsworth and around Kaslo have been eorrelated. A study was made of the geology of the walls of the treneh from Kaslo as far south as the International Boundary, and new information has been eollected which bears on the origin of the Pureell treneh, as the valley eontaining Kootenay lake is ealled.

¹The following analysis of these waters is said to have been made in 1899, by A. 11. Holdich, Royal School of Mines, London, England:

"The water was colourless, not quite clear, no particular smell, but taste salty. Reaction to litmus paper distinctly alkaline. The solid matter in solution is as follows:

Sodium carbonate Sodium silicate	31.1	grains per 1m	perial gallon.
Sodium chloride	7.2	66	66
Linie carbonate	26-2	44	4.
Magnesia sulphate	3.6	44	44
Oxide of iron	0.9	44	66
Total solids	78.5	46	14

No bromine or iodine, and the iron which probably exists as carbonate is very small. 1 consider the water too alkaline for general use though there may be special cases where it might be useful from a medical point of view."

PAGE.

pocket.

66

tispiece.

67

68

3

6 26

39

52 63

FIELD WORK AND ACKNOWLEDGMENTS.

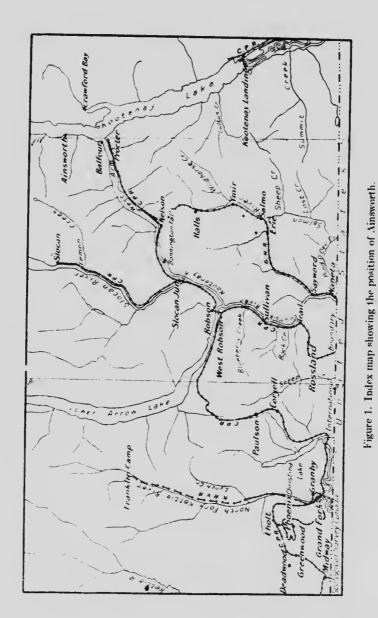
The completion of the study of the stratigraphy of the Purcell series; which make up the greater part of the Purcell range, in the eastern part of which occurs the Pre-Cambrian-Palæozoie contacts, naturally led to researches on the rocks which lie west of the Purcell series and are exposed on the eastern and western shores of Kootenay lake. In the latter part of the season of 1913 and the early part of the season of 1914 the eastern shore of Kootenay lake, together with the country lying between Kootenay lake and the western outcrops of the Purcell series, was examined in a reconnaissance, the main object of which was to determine the relationships of the Purcell series and of the so-called Selkirk series exposed on Kootenny lake. The results show that the rocks exposed on the shores of Kootenay lake are probably metamorphosed Palæozoic rocks. In August, 1914, a detailed examination of the geology and ore despoits of the Ainsworth mining camp was begun and was earried on for the remainder of that season and during the season of 1915. Two months of the summer of 1918 were spent in a re-examination of this district.

The officers of the Consolidated Mining and Smelting Company, Limited, and the owners of the several mineral properties in the district, especially Mr. W. M. Hewer of the Florence Silver Mining Company, were of great assistance in expediting the examination of the ore deposits. Mr. S. S. Fowler, manager of the New Canadian Metals Company which operates the Bluebell mine at Riondel, gave the writer the results of his investigations on that property. These cover the exploration of the ore deposit from its initiation and hence are invaluable.

Acknowledgment is made to the assistants in the field: V. Eardley-Wilmot during 1914 and O. D. Boggs during 1915.

F. S. Falconer, topographic of the Geological Survey, is to be credited with the topographic map.

LOCATION AND AREA.


The Ainsworth map-area (Figure 1) lies in the Ainsworth mining division in southern British Columbia. Coffee creek forms its southern boundery and Woodbury creek, approximately, the northern boundary. The western limit is marked by the contact of the sedimentary rocks which cuterop around Ainsworth with the Nelson granite on the west. The eastern boundary is marked by the western shore of Kootenay lake. The total area of the map sheet is about 15 square miles. The chief town of the area is Ainsworth. l series; part of to re-"xposed part of n shore ay lake onnaisof the y lake. ike are etailed g camp on and spent

ipany, striet, ere of : S. S. erates ations om its

dley-

dited

divihern lary, hich The The n of

MEANS OF COMMUNICATION.

4

Access to the area is usually through Nelson, either coming from the coast or from the east by the Crowsnest route of the Canadian Pacific railway. Within the area itself a good wagon road about 5 miles long ascends by a somewhat circuitous route from Ainsworth to the No. 1 Skyline, and Silver Hoard properties. Another road je as the Highland mine with Ainsworth. A road skirts the shore of the lake as far as Cedar creek, from which point a trail continues the communication to Kaslo. A trail follows Woodbury creek from its mouth to the glacier from which Woodbury creek takes its origin and another trail ascends Coffee creek to the Kokanee glacier, the source of Coffee creek. From the Highland mine a trail leads to the Gallagher property and other trails of less importance give access to the numerous prospects of the area.

PREVIOUS WORK.

G. M. Dawson¹ was the first investigator of the rocks and ore deposits of the Ainsworth mining camp and his results were published in the Annual Report of the Geological Survey of Canada for the years 1888-1889. In this report he classifies the schists which occur along the shore of the lake in the Ainsworth district as Archæan in age and correlates them with the Shuswap series on Shuswap lakes. The sedimentary series which overlie this series are tentatively assigned to the Palæozoic from the Cambrian to the Carboniferons. The work of the writer suggests some changes in this elassification. The ore deposits in the Ainsworth district are described in some detail. R. G. McConnell² re-examined the area and a few of the ore deposits in 1894 in his reconnaissance of the West Kootenay area.

In order to estimate the tounage of zinc in British Columbia, a commission was appointed which examined the properties in the Ainsworth district which contained any quantity of zinc³.

The reports of the officials of the British Columbia Bureau of Mines from 1896 to the present contain many important descriptions of the several mines and prospects.

BIBLIOGRAPHY.

Dawson, G. M.-Geol. Surv., Can., Ann. Rept., vol. IV, 1888-9, pt. B. The Commercial, Winnipeg, July 15, 1892.

McConnell, R.G.—Geol. Surv., Can., Ann. Rept., vol. III, 1894, pt. A. Geol. Surv., Can., Sum. Rept., 1894, p. 33.

Geol. Surv., Can., Sum. Rept., 1895, p. 25A.

Gwillim, J.C.-Can. Rec. Sc., vol. VI, 1895.

Can. Rec. Sc., vol. VII, 1897, p. 293.

Brock, R. W.-Geol. Surv., Can., Sum. Rept., 1898, p. 67A. Geol. Surv., Can., Sum. Rept., 1899, p. 84A.

Kendall, J. D.-Min. Jour., 1900.

¹Dawson, G. M., Geol. Surv., Can., Ann. Rept., 1888-1889, vol. 1V, pt. B. ³McConnell, R. G., Geol. Surv., Can., Ann. Rept., 1894, p. 30A. ⁴Report of the Zinc Commission, Dept. of Mines, Mines Branch, 1906.

from the n Pacific iles long e No. 1, Highland as Cedar o Kasło. m which ee creek lighland import-

deposits Annual 89. In the lake vith the overlie orian to in this scribed of the

omnisdistrict

Mines several

B.

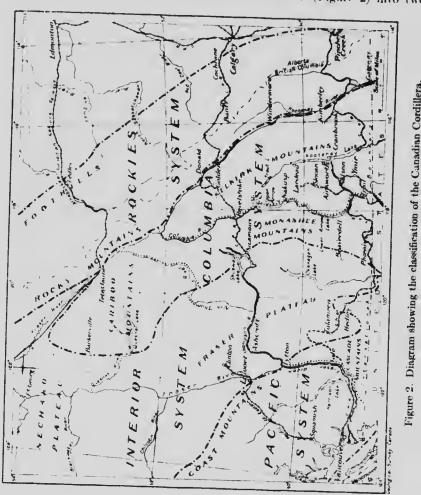
A.

Ingalis, W. R.-Report of the Commission to investigate the zinc resources of British Columbia and the conditions affecting their exploration.

Dept. of Mines, Mines Branch, 1906.

Thomson, F. A.-Can. Min. Jour., vol. XXXIII, 1912, p. 830.

Schofield, S. J.—Geol. Surv., Can., Sum. Rept., 1914, p. 38. Lakes, Arthur—Min. and Eng. World, 1915, p. 411. Schofield, S. J.—Trans. Can. Min. Inst., vol. XVIII, 1915, p. 202.


Geol. Surv., Can., Sum. Rept., 1915, p. 93. **Rickard, T. A.**—Min. and Sc. Press, vol. CXIII, 1916, p. 765. **Uglow, W. L.**—Economic Geology, vol. XII, 1917, p. 643. Schofield, S. J.—Trans. Can. Min. Inst., vol. XXI, 1918, p. 422. Trans. Roy. Soc. Canada, 1919.

Reports of the Minister of Mines for British Columbia, 1890-1918.

CHAPTER II. GENERAL CHARACTER OF THE DISTRICT. TOPOGRAPHY.

REGIONAL.

In the southern part of British Columbia, the Interior Plateau regions separates the North American Cordillera in Canada (Figure 2) into two

main divisions, each of which, in contrast with the Interior Plateau region, is characterized by alpine mountain topography. Each division is sub-divided into mountain systems by well-defined topographic features.

au region into two

ミュレイシ Figure 2. Diagram showing the classification of the Canadian Cordillera S T T I T E LUNI + روي دوي TO ANTINA IN authlice Survey Canada

region, is subThe eastern division consists from west to east of the Columbia, Selkirk, and Rocky Mountain systems. The great intermontane depressions which individualize the above ranges are the Selkirk depression, occupied by the south-flowing Columbia river, which separates the Columbia range from the Selkirk range; the Purcell trench, occupied for the most part by Kootenay lake, which subdivides the Selkirk system, and the Rocky Mountain trench, occupied in its southern part by the south-flowing Kootenay river and in its northern part by the Columbia river which flows northward and crosses the main line of the Canadian Pacific railway at Golden. This trench separates the Selkirk system from the Rocky Mountain system, the most eastern mountain system of the Canadian Cordillera.

LOCAL.

The area occupied by the Ainsworth sheet (Map 1704) lies on the castern slope of the Selkirk range which forms the western side of the Purcell trench occupied by Kootenay lake. Viewed from the vieinity of Riondel across the lake (Plates I, HI), especially when the evening shadows bring ont the contrast in the topography of the region around Ainsworth, it ean be seen that the country rises in a series of giant steps about 1,000 feet in height, the first step coming abruptly out of the lake. These steps bear a simple relationship to the relative hardness of the underlying bedrock, as ean be seen from an examination of the topographic and geologic maps. In the upper part of the slope the barren rough hills of the eountry underlain by granite are in marked contrast to the more rounded topography of the lower slopes which in general are underlain by sedimentary rocks of varying resistance to the agencies of erosion.

The area is drained by three main creeks which from north to south are Woodbury, Cedar, and Coffee creeks. All three enter Kootenay lake through deep canyons and are characterized by falls and rapids. The valleys in their middle courses are trough-shaped. Coffee c.eek and Woodbury creek rise in several branches in the Kokanee glacier which occupies the summit of this local range and from which streams radiate in all directions, the three streams mentioned above flowing to the east into Kootenay lake.

CLIMATE.

The climate in the vicinity of Kootenay lake in very healthful. The winters are short and not cold and the summers are dry, especially in the months of July and August, but at no time is the heat unpleasant. In fact, the elimate of Kootenay lake is one of the most pleasant in British Columbia and this, combined with a fine contrasting scenery of mountains and lakes, makes it an ideal place of residence as well as a desirable pleasure resort for the summer months.

CHAPTER III.

8

GENERAL GEOLOGY.

GENERAL STATEMENT.

The stratified rocks in the vicinity of the Ainsworth mining camp form part of the Selkirk Mountain range which in its turn belongs to eastern ranges of the Cordillera carved out of the sediments once deposited in the Rocky Mountain geosyncline. Dawson', the pioneer in the geology of this region as well as in that of the greater part of British Columbia, classified the sedimentary rocks as belonging to the Shuswap (Archæan) and to the Niskonlith and Selkirk series, both of Cambrian age. In 1895, McConnell, in his study of West Kootenay, called the slates which overlie the Selkirk series the Slocan slates. The subdivisions of the rocks at Ainsworth are briefly described on the West Kootenay map sheet.

The writer, from the results of this study of the rocks on the east side of Kootenay lake and eastwards to the Rocky mountains, believes that the rocks at Ainsworth are all probably of Palæozoic age and were metamorphosed by the intrusion of the West Kootenay granite batholith.

The sedimentary rocks at Ainsworth are cut by the West Kootenay granite batholith, an igneous complex ranging in age from the Júrassic to possibly the Tertiary. At Ainsworth the granite in the western part of the sheet is of Jurassic age.

The lamprophyric dykes which are the last evidences of igneous activity at Ainsworth are faulted by the majority of the vein fissures wherever the two have been seen in association. A dyke in the Bluebell mine, according to Mr. Fowler, manager of this property, is an exception and cuts the ore-body.

Over the most of the area, the eroded surfaces of these rocks are covered by glacial drift.

¹Dawson, G. M., Geol. Surv., Can., Ann. Rept., 1885-1889, vol. 1V, pt. B.

mp form eastern ed in the ology of olumbia, .rchæan) In 1895, h overlie at Ains-

east side that the etamor-

ootenay Júrassie part of

igneous fissures Bluebell ception

cks are

Table of Formations.

Period. Formation.		Lithology.	Thickness Feet.	
Quaternary Recont Glacial		Calcareous tufa; sand and gravel, Till,		
	Unconformity.			
Jurassie	Nelson granite	Lamprophyre dykes. Gneissie granite. Granodiorite, granite.		
	Intrusive Contac	t.	- tangan gi i sana kargajiyan di	
Upper Carboniferous	Silver Hoard formation	Argillites, limestone (fossili- ferons) Limestones, argillites	4,000 3,200	
Carboniferous or Pre-Carboniferous		Hornblende schists, quartzites, and limestones Limestones Garnetiferous mica schists and quartzites Siliceous limestones Garnetiferous mica schists and quartzites	3,000 600 1,250 2,300 1,800	

-Base unexposed-

Tabular Statement of Geological Record.

Quaternary	Post-glacial Glacial.	of calcarcous tufa from hot springs
Tertiary	•••••	Erosion: uplift in early Tertiary, dissection of the Cretaceous peneplain and formation of the Purcell trench (Kootenny Lake valley) and tributary valleys by erosion.
Upper Cretaceour	· · · · · · ·	Erosion: unroofing of the Nelson batholith in early Upper Cretaceous period, followed by peneplana- tion of the Jurassic mountrins.
Lower Cretaceous		Erosion: dissection of the Jurassie mountains.
Jurassic		Vein-filling, fissure formation, dyke intrusion, intrusion of the Nelson batholith, C.ogenie movements, formation of the Selkirk and Purcell inountains.
Upper Carboniferous and Pre-Carboniferous		Deposition of the Ainsworth and Slocan series of sediments.

9

AINSWORTH SERIES.

GENEHAL STATEMENT.

The Ainsworth series, as the term is used in this report, includes the group of sedimentary and volcanic rocks which lie below the Silver Hoard formation of the Slocan series at Ainsworth. The dividing line between this series and the Slocan series which lies conformably upon it is entirely arbitrary and the contact a transitional one. The top of the series is placed at the base of the massive linestone of the Star linestone which outcrops on the Star and Sunlight mining claims. The base is not known since the rocks of Point Woodbury formation pass under the waters of Kootenay lake.

POINT WOODBURY FORMATION.

The rocks of the Point Woodbury formation outcrop on Woodbury point and occupy the whole of the point from the foot of the bluff of Woodbury knob to Kootenay lake. The rocks of this formation consist of rusty wenthering, micaceous quartzites and garnetiferous mica schists intruded by dykes of gneissic granite and pegmatite, which are generally parallel to the bedding planes but in places lie at a small angle to these planes. The quartzites are thin-bedded, fine-grained, tough rocks in which biotite can be seen with the naked eye. They are smooth and stained by iron oxide on weathered surfaces. The garnetiferous mica schists are distinguished by the presence of reddish garnets which occur very abundantly in some of the beds. The biotite which makes up a large percentage of the rock gives it a glistening appearance. On the weathered s. 'ace the garnetiferous mica schist is rusty brown in colour. It frequently weathers to a dark brown, micaceous earth. The dykes of gneissie granite which cut the rocks of this formation vary in thickness from a few inches to 3 feet. The measured thickness of the formation is 1,800 feet.

EARLY BIRD FORMATION.

This formation is named after the Early Bird mineral claim, the workings of which are located in it and in the neighbourhood of which the formation is well exposed. Good exposures occur along the road and trail from Cedar creek to Woodbury creek, in the canyon of Woodbury creek, and on Woodbury knob. The typical rock is a massive, thick-bedded, blue grey limestone, in which many of the beds are separated by thin layers of mica schist. The limestone weathers to a rusty brown colour and is rough to the touch, and as it is very resistant to weathering the outcrops form steep cliffs, examples of which can be seen along the shore of the lake from Princess creek to Woodbury knob.

PRINCESS FORMATION.

Good exposures of this formation occur along the wagon road to the Florence Silver mine and along the road from Ainsworth to Cedar creek. The predominant rock is a glitte ing mica schist, in many cases garnetiferous, interbedded with micaceous quartzites. The mica schists weather udes the er Hoard between entirely series is e which t known vaters of

oodbury f Woodof rusty ntruded parallel planes. by iron distinndantly itage of ace the reathers nich cut o 3 feet.

e workformaiil from ek, and d, blue yers of s rough s form c from

to the ereek. arnetieather 11

to a brown micaceous earth and the quartitics usually have a brown iron stain on the weathered 'surface. Lithologically, the rocks of the Princess formation closely resemble those of the Point Woodbury formation. The beds of quartite in many cases show minute foldings and crenulations. Under the microscope the mica schist is seen to be composed of blotite mlea with a large amount of secondary hornblende and interlocking grains of quartz. The gradation from the Early Bird formation below and to the Alnsworth formation above is transitional. The thickness of the formation is 1,250 feet.

AINSWORTH FORMATION.

The limestone which makes up almost the whole formation is well exposed in the eliffs along the shore of the lake from Coffee creek to Ainsworth. The rocks can be seen in great detail in the lower tunnel of the Florence Silver mine. The limestone is massive and greyish white in colour. White layers of marble are exposed in some localities and some black, shaly members are also present. Under the microscope the limestone is seen to consist of interlocking grains of calcite with some grains of quartz. The cand grains vary in amount in different parts of the limestone and in places the weathered outcrop is made up almost entirely of sand, coloured brown with oxide of iron.

Metamorphism.

On Woodbury creek the limestone of the Ainsworth formation is altered to a hornblendite by the intrusion of the gneissic granite with which it is in contact. The hornblende occurs in large, needle-like crystals of a greenish black colour and under the microscope looks like secondary hornblende. It is very probable that the hornblende was originally augite. Small grains of quartz also occur in this rock.

Interbeds of schist occur between the limestone bands. The physical and chemical nature of this limestone seems to be favourable for the deposition of ore, although up to the present none has been found in it in commercial quantities.

Thickness.

The thickness of this formation varies somewhat in different localities, but it is on an average 600 feet thick.

JOSEPHINE FORMATION.

The base of the Josephine is marked by the upper contact of the Ainsworth limestone and the upper contact occurs at the base of the limestone (locally known as the Star limestone) which occurs on the Star and Sunlight mineral claims (Map 1787). Good exposures of the rocks of the Josephine formation outcrop on the road and trail from Ainsworth to the lower tunnel on the Sunlight claim, on the No. 1 tram-line, and on the two forks of Woodbury creek.

Distribution.

The rocks of the Josephine formation form a broad belt from north to south across the centre of the area and have been traced southwards to 76183-2 Queens Bay, across the west arm of Kootenay lake to the slopes of Narrow creek, and northwards to the valley of Kaslo creek in the Slocan map-area

Thickness.

The Josephine formation has an average thickness of 3,000 feet. It i apparently thicker in the vicinity of Coffee creek than in the vicinity o Woodbury creek.

Lithology.

The rocks of the Josephine formation are heterogeneous in character comprising from the base upwards a succession of mica schists, alternating thin-bedded quartzites, and green hornblende schists with narrow lenses or bands of limestone, and at the top staurolite schists (Maps 1784, 1785 1787, 1788). The above-mentioned bands are too narrow to trace and map in the field, especially as they pinch out in an irregular way and are really long lenses.

Mica Hornblende Schist. This schist can be best seen on the cliff below the Banker claim and in the lower level of the Florence Silver above the Ainsworth limestone. The schist consists mainly of biotite mica, and hornblende. The unweathered surface is a dark, blackish green with a development of biotite mica on planes of schistosity. It weathers to a soft, brownish green earth.

Hornblende Schist. This rock is a dark green, glittering schist which weathers a rusty brown colour, especially on the walls of the joint planes, and in many places breaks up into small rhomboidal blocks 3 by 3 by 2 inches. Microscopically the schist consists almost entirely of pale green secondary hornblende in interlocking needles and small grains of quartz with minor amounts of magnetite. The rock has a distinctly schistose structure. In close proximity to the veins, the green schist loses its coherency and colour from the action of mineralizing solutions and circulating waters and becomes a soft, whitish, chy-like material. This transformation is especially prominent along the main vein of the Highland mine. The hornblende schist is believed to be a basic volcanic ash which was laid down in water and subsequently altered by regional metamorphism and by the intrusion of the Nelson granite. Economically the hornblende schist is very important since the ore-bodies of the Highland mine and some of the ore-bodies of the Florence Silver mine occur near the lower contact of this rock with the associated quartzites.

Quartzites. The quartzites are of two kinds, a heavy-bedded, massive variety which occurs near the Banker ore-body and a very finely laminated variety which can be seen in the vicinity of the Spokane ore-body and on the road from the Krao to the United mineral claim. The massive type oecurs in beds up to 2 feet in thickness and is a tine-grained, dense, almost pure quartzite. The laminated variety has a banded appearance due to the alternation of light grey and brownish grey lamine. The weathering colour is a light brown derived from the limonite which forms from the alteration of small grains of pyrite occurring between the laminæ. The surface of the laminæ has a silvery sheen due to serieite. Under the f Narrows map-area.

et. It is icinity of

haracter, ternating lenses or 84, 1785, race and and are

the cliff er above nica, and with a lers to a

st which t planes, 3 by 2 le green f quartz schistose loses its eireulats translighland h which netamorhe hornnd mine he lower

massive minated and on ve type , dense, mearance e. The h forms haninæ. uder the microscope the quartzite is seen to be composed almost entirely of small, interlocking grains of quartz with very small amounts of calcite. All gradations exist between the pure quartzites and the hornblende schists. The quartzite is a waterlain sandstone silicified and altered by thermal metamorphism. In the northern part of the area, north of the Highland mine, the quartzite bands have been sheared so strongly that they have been ehanged to quartz mica schists, strongly resembling those of the Point Woodbury formation. This suggests that most of the quartz-mica schists of the Ainsworth area have been derived from quartzites by regional metamorphism. Economically the quartzites are important in that several ore-bodies occur in them, notably those of the Banker, Spokane, and Trinkett mines.

Limestone. The limestone members of the Josephine formation are well exposed in the vicinity of the Krao, Libby, Highland, Dictator, Tiger, Florence Silver, and Sunlight mineral claims (Maps 1785 and 1787). The limestones occur generally as long, narrow lenses with a maximum width of 50 feet in the neighbourhood of the Krao. An attempt was made in the field to trace and correlate the several lenses, but on account of the lenticular character of the bands and the paneity of outcrops it was found to be impracticable. The Krao limestone is banded white and grey, the white variety which is almost pure calcite, strongly resembling marble. In the neighbourhood of the Dictator claim and near the eastern boundary of the Spokane claim the limestone is dark blue to black in colour and highly argillaceous. The Libby limestone, which outcrops on the Libby mineral claim and in several levels of the Highland mine, especially the seventh level, is a dense, white erystalline limestone in which can be detected numerous needles of tremolite. Microscopic examination shows that the limestone is composed of interlocking grains of calcite with slender needles of tremolite equal in amount to the calcite. The binding effect of the needles of tremolite makes the Libby limestone tough in nature and difficult to replace by mineralizing solutions.

The limestone in which the main ore-bodies of the Florence Silver mine occur is coarsely crystalline and of a grey and white colour. The microscope shows that it is an almost pure limestone composed entirely of interlocking grains of calcite. In the neighbourhood of the ore-bodies it has been altered to a soft, granular mass and is rather difficult to determine as himestone. When traced along the strike away from the influence of the ore-bearing solutions, the limestone gradually resumes its unaltered character.

Andalusite and Staurolite Schist. The andahisite and staurolite schist which forms the upper member of the Josephine formation is a somewhat micaceous, black, schistose argillite in which a great number of knots occur. The schist weathers to a rusty brown colour. The knots are so highly altered in most eases that their mineralogical determination is impossible except by their crystalline form which is that of staurolite. Dawson¹ mentions a sheared conglomerate occurring underneath the Star limestone. Very careful examination of the rocks of this horizon, in many localities, failed to reveal any conglomerates. The staurolite schist when

¹ Dawson, G. M., Geol, Surv., Can., Ann. Rep., vol. 1V, 1889, p. 47B, 76183-21

sheared shows the knots in rounded form and it may be that Dawson ir his hurried visit mistook these staurolite schists for a sheared conglomerate which they resemble very strongly.

The following composite section of the Josephine formation, taken from measurements of the sections exposed in the underground workings of the Highland mine and from the exposures along the Highland tram-line gives in some detail the lithology of this formation and its succession. The thickness of the individual members varies in different places, especially the Libby limestone.

Silver Hoard formation	No. 1 linestone. Ruth argillite. Star limestone.	Feet.
Josephine formation	Staurolite schist Laminated quartzite. Green hornblende schist Laminated quartzite. Green hornblende schist Laminated quartzite, some mica schist Libby limestone. Biotite schist. Laminated quartzite Botite schist. Laminated quartzite. Biotite schist. Laminated quartzite. Biotite schists, some limestones and laminated quartzites	$500 \\ 150 \\ 175 \\ 45 \\ 225 \\ 300 \\ 50 \\ 175 \\ 50 \\ 80 \\ 60 \\ 1, 200 $
Ainsworth formation	Total	2,990

AGE OF THE AINSWORTH SERIES.

The Ainsworth series includes the conformable sedimentary formations which are expesed from the western shore of Kootenay lake to the base of the Star limescone. Previous workers' classified this series at Ainsworth as Shuswap (Archæan) and Niskonlith (Lower Cambrian). In 1914² as a result of the study of the series of rocks lying east of Kootenay lake and west of the western limit of the Cranbrook map-area (Map 147A), the writer found that the Purcell series passed conformably under the rocks designated as Shuswap by Dawson. Hence this series exposed on the eastern and western slopes of Kootenay lake in the vicinity of Ainsworth (Map 792) must be later in age than the Purcell series and cannot be Shuswap or pre-Beltian. The abundant sills of pegmatite in the so-called Shuswap series are unmetamorphosed, whereas the series itself corrists entirely of highly metamorphosed rocks. These pegmatites, becoming more numerous as the terrane is descended on the lower slopes of Kootenay lake and along the shore of the lake itself, are genetically associated with the Nelson granite of Jurassic age. In the old report the contact between the socalled Shuswap series and the later rocks was placed where the pegmatite sills cease to appear in the associated schists; but for the reasons given above it will be seen that these sills cannot be used in determining or delimiting the age or stratigraphic relationships of the so-called Shuswap

¹Dawson, G. M., Geol. Surv., Can., Ann. Rept., vol. IV, 1888–1889, pt. B. McConnell, R. G., Geol. Surv., Can., Ann. Rept., vol. VII, 1894, p. 30A. Brock, R. W., Geol. Surv., Can., Sum. Rept., 1899, p. 84A. Schofield, S. J., Geol. Surv., Can., Sum. Rept., 1914, p. 136

awson in lomerate

n, taken workings ram-line ecession. specially

Feet.

mations he base nsworth n 1914² ake and e writer signated nd west-2) must or prep series f highly rous as d along Nelson the sogmatite s given g or dehuswap

leol. Surv.,

series and the later rocks and that the schists that have been called Shuswap rocks are really metamorphosed equivalents of sediments which are Beltian or post-Beltian in age.

In the Ainsworth area, the Ainsworth series consists of a conformable set of sedimentary rocks which underlie conformably the rocks of the Slocan series which are Pennsylvanian in age. Hence the Ainsworth series is Carboniferous or pre-Carboniferous and probably post-Beltian in age.

SLOCAN SERIES.

The Slocan series of bedded rocks were given that name by R. G. McConnell¹ in 1895. Previous to this, Dawson² has recognized the entity of the series without giving a specific name to it. He considered the series to be Palæozoic in age and probably Carboniferous. The name Slocan series is applied in this memoir to the group of rocks which was originally defined by Dawson in 1889 and called Slocan series by McConnell in 1895. For convenience, at Ainsworth the series is divided into the following formations:

(Skyline formation Mainly nrgillites, some argillaceous limestones (in Sloean series ... Silver Hoard formation ... Limestones, argillites.

SILVER HOARD . ORMATION.

This formation is named after the Silver Hoard mineral claim on which the rocks, especially the upper limestone member, are well exposed. The southern boundary of the formation is fixed by its contact with the Nelson granite in the vicinity of the Neosha mineral claim. From there, the boundary crosses the area in a northerly direction through the Star No. 1, Silver Hoard, and Gallagher mineral claims across the two forks of Woodbury creek, where its outcrop is marked by the appearance of white cliffs of linestone, and thence beyond the northern limit of the area.

The rocks of the Silver Hoard formation can be classified into three members as follows:

Silver Hoard formation	••	thickness. 	$950 \\ 1,950 \\ 300$	feet.
Total thickness.		-	3,200	 64

Star Limestone.

The Star limestone can be followed as a nearly continuous band from the Neosha claim northwards through the Broken Hill, Star, and Buckeye mineral claims across the two forks of Woodbury creek beyond the northern boundary of the area. The Star limestone was correlated by Argall³ with the Krao limestone outcropping on the Krao mineral claim, but investigation did not confirm this, since in following the exposures southwards it was found that the Star limestone outcrops just west of the United claim

¹McConnell, R. G., Geol. Surv., Can., Sum. Rept., 1895, p. 24A. ²Dawson, G. M., Geol. Surv., Can., Ann. Rept., vol. 1V, 1889, p. 31B. ³Argalt, Philip, "Report of the Commission to investigate the zinc resources of British Columbia" Mines Branch, 1996.

and hence is separated from the Krao limestone by several hundred fe of hornblende schists, quartzites, and andalusite schists.

The Star linestone (Map 1787) consists almost entirely of greyic white and white, coarsely crystalline limestone somewhat sandy in place It occurs in beds from 3 inches to 1 foot in thickness. The total thicknes of the limestone is estimated to be 300 feet, but as the beds are much contorted and folded this thickness is only an approximation. The limestone in many cases weather to a sand and are generally slightly stained with brown oxide of iron.

The limestone in many cases occupies depressions and in the area unde lain by this member numerons "sink holes" occur giving rise to "kars topography" to some extent. These sink holes are formed by collaps of the roofs of caves eaused by the solution of the limestene by undergroun water. These depressions are quite common just north of the Star clain and close to the crossing of the No. 1 train-line.

The upper and lower contacts of the Star limestone cannot be definited defined. The approach to the contact from the underlying staurolite schis to the limestone is first indicated by the occurrence of thin limestone band in the schist. These bands increase in number and thickness until the schist bands entirely disappear and the massive Star limestone is reached At the upper contact the limestone passes into the Ruth argillite in a similar manner.

Ruth Argillite.

The Ruth argilite outer — 5 on the trail which crosses the Ruth minera claim to the No. 1 mine — 1t consists of two members, a lower one abou 500 feet thick of staurolite schist similar to that described above, which occurs below the Star limestone, and an upper one of greyish brown argillite which occur in beds from 3 to 6 inches thick. The argillites are in place schistose with biotite developed on the schistosity surfaces and weather a rusty brown colour.

No. 1 Limestone.

The No. 1 limestone is well exposed in the vicinity of the No. 1 and Silver Hoard mines where it forms part of a belt which stretches across the area from north to south. The band becomes wider as it outcrops to the north. The limestone is greyish white to white in colour and is coarsely crystalline. It occurs in beds from 2 inches to 2 feet in thickness. Locally the limestone is contorted and broadly folded, for example in the workings of the No. 1 and Silver Hoard mines. In places thin bands of black argillite occur between the limestone beds.

SKYLINE FORMATION.

The Skyline formation res.3 conformably on the Silver Hoard formation. The most accessible sections are to be found on the wagon road from the No.1 mine to the Skyline mine and on North fork of Woodbury creek.

The rocks of this formation form a broad belt across the western part of the Ainsworth area, in contact with the eastern edge of the intrusive

ndred feet

of greyish in places. I thickness much conlimestones ined with

rea underto " karst y eollapse derground star claim

definitely dite schist one bands until the s reached. a similar

h mineral one about ve, which argillites in places veather a

No. 1 and eross the ps to the coarsely Locally workings argillite

d formaad from creek.

ern part intrusive Nelson granite. The lithology is simple, the rock types being chiefly argillite with minor bands of limestone.

The argillites occur in beds 1 to 3 inches thick. They are greyish brown in colour and weather rusty brown.

In the neighbourhood of the granite batholith they are hard and siliceous, but show no great effects of contact metamorphism. From this it is concluded that the contact of the granite and the argillites underground is very steep, probably nearly vertical.

The limestones are of two varieties, dark blue argillaceous limestone in flaggy beds and greyish white crystalline limestone in beds from 3 inches to 6 inches thick. The dark blue limestones which occur near the western edge of the area. on the trail following the north side of north Woodbury creek about 200 yards from the third bridge crossing the creek contain fossils in an imperfect state of preservation. The fossils collected were submitted to E. M. Kindle, who reported as follows:

"The rock slabs show numerous sections of erinoid columns, a small coral and some small light-coloured bodies which may possibly represent Fusulina. The character of the metamorphosed rock is such that these show clearly only on surfaces which have been subjected to long weathering. It appears rather an unpromising collection on which to base correlations at first sight. Nevertheless some deductions may be made from it.

"Crinoids are found from the Ordovician to the present and the stems or columns can seldom be used to determine the genera and species of limited range. But a rather extended acquaintance with Rocky Mountain sections has shown me that horizons are seldom if ever met with below the Upper Carboniferous in which crinoid stems are abundant and other fossils very rare or wanting. The collection shows numerous examples of five-sided and star-shaped crinoid stems, a variety of form more frequently met with in the late Palæozoic and Mesozoic erinoids than earlier in the geological section."

"The presence of the poorly preserved coral demonstrates a Post Cambrian age for the fauna. The general appearance of this coral together with the dominance of crinoid stems in the fauna leads me to consider the fauna as probably not later than Jurassic nor earlier than Lower Carboniferous. As a provisional correlation it may be placed in the Upper Carboniferous."

AGE OF SLOCAN SERIES.

Dawson¹ first referred the rocks included under the name Slocan series in this report to the Carboniferous, as follows: "The stratified rocks of the Gold and Selkirk ranges, referred to, have not yet been closely studied from a lithological point of view, and no attempt is, therefore, made in this report to do more than broadly characterize them by their more evident features. Neither is it possible, as yet, to speak with any certainty as to the geological periods to which these rocks should be referred, as no fossils have been obtained from them. It is believed, however, that the whole of these rocks above those of the Shuswap series (No. 1) are in all probability Palæozoic in age, and analogy with what is known elsewhere in

¹Dawson, G. M., Geol. S. w., Can., Ann. Rept., vol. 1V, 1888-1889, p. 32.

British Columbia, suggests that they may eventually be referred to vario systems, including the Carboniferous and extending down to the Low Cambrian.'

Nothing further was discovered concerning the age of the Slocan seri until R. W. Brock in conjunction with R. G. McConnell mapped the We Kootenay map sheet (792) in 1899. In his summary report of 1899, pa 84A, Brock makes the following statement: "No definite informatic has so far been obtained regarding the date of this series, but it supposed to be of about Carboniferous age. Unfortunately, the only fos-form so far obtained, does not throw much light upon the question. It is brachiopod, probably a Chonetes, which was found this summer in a ca bonaceous linestone boulder, in all probability, from the Slocan serie It was picked up in the drift behind Nelson."

The next advance in the determination of the age of the Slocan serie is due to Brock.¹ He found poorly preserved fossil forms which resemble fragments of crinoid stems and crinoid joints in a sedimentary series of slates and limestones which he states "are certainly Palæozoic and probabl about Carboniferous. No doubt they correspond to the Sloean series of the West Koo, enay district."

The first discovery of fossils in the Slocan series proper was made b M. F. Bancroft while working with C. W. Drysdale² in the Slocan map-are (Map 1667) in 1916. Fossils were found in the lower limestone member which fixed the age of the series as Post-Cambrian and probably middl or upper Palæozoie.

The Slocan series in 1917 was placed definitely in the Carboniferou (probably Pennsylvanian) by the discovery by Baneroft of fossils in the northern continuation of the Sloean series in the southern Lardeau³. Hi conclusions are as follows: "The first three lots of fossils are from lime stones which continue far to the northwest beyond the area explored in 1917. R. W. Broek, in 1903, found erinoid fragments in these rocks on the Beaton-Trout Lake wagon road and in one other locality near the head o Murray creek, a tributary of Salmon creek on the Arrow Lakes watershed

"The fourth lot of fossils are from the "lime dyke" anticline which is also a conspicuous feature for miles through the Ainsworth, Trout Lake and Lardeau mining divisions. C. W. Drysdale found fossils in June 1917 in the Laurie formation, which would indicate the persistence of these Palæozoic rocks north to and beyond the main line of the Canadian Pacific railway.'

The discovery by the writer of fossils in the Sloean series in the Ainsworth mining earnp extends the area of Carboniferous rocks as far south as Ainsworth.

¹Brock, R. W., Geol. Surv., Can., Sum. Rept., 1903, pp. 50A and 53A.
 ³Drysdale, C. W., Geol. Surv., Can., Sum. Rept., 1916, p. 57.
 ³Baneroft, M. F., Geol. Surv., Can., Sum. Rept., 1917, p. 36B.

to various the Lower

bean series I the West 1899, page formation but it is only fossil n. It is a ' in a carcan series.

can series resembled series of probably series of

made by map-area members y middle

oniferous ils in the au³. His om limeplored in ks on the c head of atershed.

which is ut Lake, une 1917 of these n Pacific

he Ainssouth as

GRANITES.

GNEISSIC GRANITE.

Distribution.

The gneissic granite occurs as narrow dykes intruded abundantly into the Point Woodbury formation and less abundantly into the Early Bird and Josephine formations. In general these dykes are injected parallel to the bedding of the surround'ug sediments, but in some cases at a small angle to the bedding plaue. These dykes are well exposed on Woodbury point and in the cliff just north of the delta at the mouth of Woodbury creek. In addition to these narrow stringers there are four masses sufficiently large in area to show on the accompanying map, namely the area on north Woodbury creek, that on the Star claim, that on the Ruth claim, and the long ellipitical mass extending between the No. I mine almost to the Neosha mineral claim. The rock type which is very constant both in mineralogical composition and in physical appearance is well exposed at the crossing of the first bridge on North Woodbury creek and on the wagon road as it approaches the No. I mine. The outcrops of these masses usually stand out as low hills and cliffs.

Lithology.

Exposures of the gneissic granite in the field are whitish in colour and strongly resemble outcrops of the massive crystalline limestones, especially at a distance. In the hand specimeu the gneissic granites are all light grey in colour and show distinct gneissic structure. The rock has a fine-grained, even texture and is composed of quartz, feldspar, and biotite. The microscope shows that the rock has been somewhat crushed and has a distinctly gneissic structure. The mineral constituents are quartz which is abundant, orthoelase feldspar, and biotite, with minor amounts of microcline and plagioelase feldspar.

External Relations. These granites are everywhere intrusive into the sediments, generally in planes parallel to the bedding. Their relation to the Nelson batholith is unknown as they were nowhere observed in contact with that rock. The large mass on Woodbury creek is also intruded in a similar fashion. The other masses, as shown on Map 1742, cross-cut the bedding planes of the sediments. The amount of contact metamorphism which was eaused by these minor intrusives cannot be stated since the netamorphism eaused by the intrusion of the main Nelson batholith masks the effect of the minor intrusives. In one locality on the north fork of W. Abury creek the Ainsworth limestone is locally altered to a hornblendite. As an intrusion of the gneissic granite is in close proximity to the hornblendite and since this metamorphism was not seen in any other locality it may have been eaused by the local intrusion of gneissic granite.

Age of the Gneissic Granite.

The gneissie granite cuts the sediments of the Silver Hoard formation, a member of the Slocan series of Carboniferous age. It was not seen contact with rocks younger than the Slocan series. Hence its position in the geological time scale cannot be definitely fixed but is post-Carboniferd From the similarity in physical and ci.emical composition between gneissic granite and the Nelson gramety which will be shown later to Jurassic in age, it is concluded that they are closely related in age. To Nelson granite and the gneissic granite were intruded at the same time during the Jurassic monutain-building period—but the gneissic gran which occurs only in relatively small bodies solidified before the monuta building forces had ceased to act and hence took on a gneissic structu whereas the Nelson granite which occurs as a batholith covering an a measured in hundreds of square miles remained fluid long after the motain forces had ceased to operate. This difference in the size of the bod naturally implies a difference in their relative length of time necessary cooling and accounts for the contrast in the grain of the two rocks.

GRANITE.

The granite of the Nelson batholith which occurs along the border the Ainsworth map-area is very constant in mineralogical composition a is very different from the gneissic granite described above. It is w exposed on the upper reaches of Coffee creek and on the hill above the SI line mine where its cross-cutting character and metamorphic action can easily seen and studied.

Lithology.

In the hand specimen the granite is light grey in colour and is characterized by the presence of large phenoerysts of pink orthoclase feldspar. So of these phenoerysts are an inch in length clongated parallel to the "C axis and in many cases show plainly the Carlsbad twinning. The composition of the phenoerysts has been determined by J. C. Gwillim¹. I remarks that the small flakes of biotite are scattered through the crysta and that the analysis, as given, shows considerable lime and soda for a orthoclase.

SiO ₂ . Magnet ForO.	···· ·································	. 59-86
K ₂ O.		. 20+26
CaO		5.76
		. 0.78
		101-95

Gwillim states that the lime is probably present as calcium earbonat Quartz is very abundant and with the white coloured feldspar plagioclas occurs in the groundmass. The femic constituents consist either biotite or hornblende, or both in varying proportions. Microcline ar perthite occur as an accessory constituent in the granite. Titanite is rath

20

¹Gwillim, J. C., Can. Rec. Sc., vol. VII, 1897, p. 295.

rboniferous, between the later to be a age. The ame time ssic granite e mountaine structure, ng an area the mounf the bodies ecessary for is.

e border of osition and It is well we the Skytion can be

e characterbar. Some the "C" he composillim¹. He he crystals oda for an

59-86 20-26 12-39 5-76 2-90 0-78 .01-95

....

carbonate. lagioelase, either of celine and ce is rather rare, and shows its usual diamond-shaped cross section. The following analysis of the Nelson granite is recorded by R. W. Brock¹.

0 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1
1.1
1.
1.1
4 1
4-3
0.5
- 0-0

Brock says concerning this granite, "The Nelson granite, which has been carefully studied, is a sort of granite representative of the monzonite group of rocks, intermediate between the alkali and lime-soda series of rocks, and about on the boundary between granite and diorite.

Another analysis of the Nelson gra. .e is given by Gwillim². It is evidently a more basic phase and somewhat altered.

PiO ₂ straining to the second		 60-09
- 本本学校で通りません とうしょう とうしょう しょうしょう		17.20
		6.73
		8-24
Na ₇ O		 2.45
MgO	the second second second	6-23
		 0.47
		2019 44
		$101 \cdot 41$

External Relations. The Nelson granite cuts the Skyline formation which is of Carboniferous age and its relation to younger formations is unknown as no newer rocks have been found in this part of the Selkirk range. The contacts of the granite with the surrounding sediments are well exposed and show that cross-cutting relations exist beyond doubt. Also many blocks of the sediments are enclosed in the granite, many of them occurring miles from any sedimentary series. They are especially abundant at the head of the south and north forks of Woodbury creeks in the neighbourhood of the Kokanee mountains, the loftiest area between the Kootenay and Slocan lakes. These masses of included sediments are highly metamorphosed, consisting of mica schists and micaceous quartzites which weather a very rusty brown and appear in strong contrast to the surrounding light grey granite. The strike of these included masses of sediments is generally north and south and hence conforms to the general strike of the sedimentary series around Ainsworth. From this general uniformity of strike it is concluded that convection currents were not very operative in the cooling Nelson batholith in this region. These blocks evidently represent remnants of the old sedimentary roof of the batholith which sank quietly in the uprising molten granite batholith.

The degree of contact metamorphism induced by the intrusive granite in the surrounding sediments is not great. Around the eastern edge of the batholith which comes within the Ainsworth map-area, contact metamor-

¹Brock, R. W., Geol Sarv, Can, Ann. Rept., vol. XV, 1902-1903, p. 101 * ⁴Gwillim, J. C., Can, Rec. Sc., vol. VII, 1897, p. 295.

phism is very slight, the only visible effect to be seen in the nieghbourh of the contact is a slight silicification of the nrgillites, which increases t hardness. As the contact is left and the exposures are examined down slope to Kootenay lake which is really going deeper in the zone of m morphism surrounding the batholith, metamorphism is apparently greathe argillites are changed to andalusite schists, the limestones to mark and the sandstones are highly silicified and changed to dense, cherty quzites.

Age and Correlation.

The youngest formation with which the Nelson granite was found contact is the Skyline formation which holds fossils of Carboniferons *i*. In studying the relations which the granite bears to the main folding the Selkirk range it is seen to be contemporaneous with or slightly yound than the chief orogenic movements which affected the region. The of these movements has been shown to be Jurassie⁶.

Further evidence of the Jurassic age of the granite and of the conte porary age of the orogenic movements which built the Schirk and Pur Momitain ranges is furnished by the character of the material making the Cretaccous sediments of the Rocky momitains to the east.

Period.	Formation.	Condition of deposition.	Lithological charact
Tertiary	Edmonton.	Freshwater Brackish and freshwater	Sandstones. Sandstones and shales.
Upper Cretaceous	Colorado	Brackish	Shales. Sandstones and shales. Shales.
	Upper Blairmore		≯andstones, conglomer (granite and chert p bles).
Lower Cretaceous			Shales and conglomeration (quartizate and chert)
and Orelateous	Kootenay Fernie shales	Subaerial	bles). Sandstones and shales. Coal.
Devonian and Carbon-			Shales.
iferous Lower Palæozoie	· · · · · · ·	Marine	Linestones and quartzi Linestones and shales.
Pre-Cambrian (Beltian).	Disconformity. Purcell series	Continental	Mainly quartzites m argillaceous quartzite

Table Showing Character of Sediments.

It will be seen from the above table that eonglomerates are found fi in great amount at the base of the Blairmore formation. The pebbles conglomerates consist of quartzites and ehert derived from the quartzites the Beltian rocks which make up the great part of the Selkirk rang Evidently in Lower Blairmore times the Selkirk range was approaching t maximum of elevation and was undergoing rapid erosion. The Upp Blairmore formation also consists of conglomerates and sandstones, but them in addition to pebbles of quartzite and chert, pebbles of granite occ

schoheld, S. J., Geol. Surv., Can., Mem. 76, 1915, pp. 95-97.

ghbourhood creases their ed down the re of metaitly greater, to marbles, herty quart-

as found in iferons age a folding of tly younger b. The age

the contemand Purcell making up

cal character.

and shales.

and shales.

conglomerates and chert peb-

conglomerates and chert peb-

and shales.

and quarizites. and shales.

artzites and s quartzites.

found first pebbles in uartzites of sirk range, oaching the The Upper ones, but in anite occur for the first time and in great abundance. The presence of the granite pebbles at this horizon is interpreted to mean that the Selkirk range was unroofed during Upper Bhirmore times and that the Nelson granite batholith which forms the core of the Selkirk range in southern British Columbia was exposed to rapid erosion. Hence it is established that the first intrusion of gramodiorite into the Selkirk range took place before the deposition of the Upper Cretaceous. The superposition of the marine Fernie shales upon the marine Devono-Carboniferous linestones suggests that the period of stability which prevailed throughout British Columbia until the Triassie was interrapted during the upper Jurassie. The Selkirk mountains received their initial form probably at the close of the Jurassie or in early Kootenary times. If mountain-building and orogenic movements are contemporaneons, it may be concluded that the first intrusion of gramodiorite in the Selkirk range commenced towards the close of the Jurassie and continued until the mountain-building reached its maximum in Kootenay time.

LAMPROPHYRIC DYKES.

In the Ainsworth area, as well as in the Selkirk Mountain system, there are many narrow dykes of dark igneous rock, which can be traced along the strike, in many cases, for distances measured in hundreds of feet. As the dykes seldom exceed a width of 8 to 10 feet in the Ainsworth area and arenot important economically, only a few of them were mapped although they occur sporadically over the whole of the area. They are especially abundant in the Josephine formation. The type rock can be examined on the Florence wagon road about 100 yards north of Cedar creek where the dyke is well exposed. The same dyke is exposed on the lake shore. In general trend these dykes have two main directions, one parallel to the strike of the formations as in the case of the dyke at the mouth of the Star tunnel and of the dyke in the workings of the High-and mine and the other almost at right angles to this direction, that is, across the strike. The dykes which conform to the strike of the formation, also conform to it in degree and direction of dip, whereas the cross-cutting dykes dip almost vertically.

CAMPTONITE.

Camptonite is the most common rock type in the Aipsworth area. In the hand specimen it is a dark grey, brown weathering rock which contains phenocrysts of hornblende and in p' ces biotite. In some cases the hornblende crystals are 3 inches in length and some of them show rounded and embayed forms which contain small, round inclusious of calcite arranged in linear fashion parallel to the long axis of the crystal. The dyke of this rock exposed near the portals of the lower Star tunnel is remarkable for the size of the hornblende crystals in it as well as for the great number of inclusions it contains of the Nelson granite. The porphyritic type is rather the exception and the fine-grained variety which contains a few phenocrysts of plagioclase and biotite is very common. The chilled margins of the porphyritie variety have the characteristics of this type. Microscopic Description. Under the microscope the hornblende strongly pleochroic dark brown variety embedded in a fine-gra groundinass of biotite and plagioclase, near an andesine in composit Apatite and magnetite are quite abundant.

Age of Dyke Intrusion. The age of the intrusion of the lampropl dykes cannot be definitely determined. They cut the members of Slocan series which is of Carboniferous age and carry as inclusions fragm of the Nelson granite which is of Jurassic age. Hence the dykes are older than very late Jurassic or early Cretaceous. A study of the fis veins, especially those of the Highland mine (Map 1784), shows that dykes are faulted by these fissures and that they are highly altered by action of the mineral-bearing solutions which are responsible for the deposits of the Ainsworth camp. The dykes are unconformably over by deposits of the Quaternary. From a regional study of the ore depo of British Columbia¹, it is concluded that the ore deposits of the Ainswe camp as well as most of the ore deposits of British Columbia are associa with the cooling stages of the Jurassic or early Cretaceous batholiths, since the dykes are highly altered by the mineral-bearing solutions wi deposited these ore-bodies, it is suggested that these dykes may be a ciated with the cooling stages of the Nelson granite batholith, but at a si previous to the one in which the ore-bodies were formed, which would very late Jurassie or early Cretaceous.

SUPERFICIAL DEPOSITS.

PLEISTOCENE.

The greater part of the Ainsworth map-area, especially that Γ underlain by the sedimentary series, is covered with glacial drift whic made up of compact sand clay in which are boulders and pebbles derifrom the local bed rock. Glacial erratics are of common occurrence.

RECENT.

The valley floors are covered with modified glacial deposits which e sist of cross-bedded sands and gravels. The gravels consist of roum pebbles of various rocks derived from the surrounding terrane. In stream deposits, such as those of Coffee and Woodbury creeks, the pebl are mainly granite with minor quantities of limeston³ and slate.

The hot springs at Ainsworth are at present depositing an apprecia quantity of calcareous tufa.

Schofield, S. J., Trans. Can. Min. Inst., vol. XXI, 1918, p. 422.

nblende is a fine-grained composition.

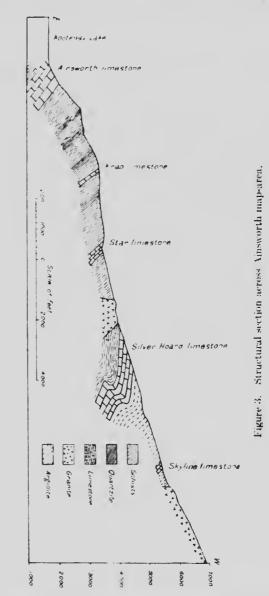
amprophyre ibers of the ns fragments ykes are not f the fissure ws that the tered by the for the ore bly overlain ore deposits e Ainsworth e associated holiths, and tions which nay be assout at a stage ch would be

y that part rift which is bles derived crence.

s which conof rounded ne. In the the pebbles e. appreciable CHAPTER IV.

STR' LTURAL GEOLOGY.

REGIONAL.


The Rocky Mountain geosyncline, which includes the greater part of the Selkirk and Rocky Mountain ranges, consists of Beltian, Palaeozoie, and Mesozoie sediments. The western border of this geosynchine passes through Coeur d'Alene and Shuswap lakes, along whose shores is exposed the old erystalline complex from which the above-mentioned sediments were derived in part if not wholly.

To the west of the almost horizontal Tertiary and Cretaceons strata which make up the elevated plateau of the prairie provinces, lies the folded region of the foothills, in which is found the most easterly evidences of orogenic movements in the Rocky Mountain geosyncline. The folds in the foothills trend in a northwest-southeast direction and represent the most easterly effects of the strong compressive forces which built the Rocky Mountains proper lying to the west of the foothill area. The central and eastern parts of the Rocky mountains consist of a series of overthrust fault blocks of Palæozoic and Mesozoic strata striking in a northwest-southeast direction and dipping to the southwest; in the western part of the Rocky mountains, anticlines and synclines of Pre-Cambrian and Cambrian rocks make up the dominant structure. The age of the orogenic movements which built the Rocky mountains is early Tertiary.

The wide Kootenay-Columbia valley lies between the Rocky mountains on the east and the Selkirk mountains on the west. This topographic feature, which is of first importance in the structure of the region, is called the Rocky Mountain trench. The sediments which form the greater part of the Selkirk mountains range from Beltian to Carboniferous in age and include the Purcell series, Ainsworth series, and the Slocan series. They are folded into anticlines and synclines which in this region, strike north and south-a direction different to the folds of the Rocky mountains. The mountain-building forces which affected the Selkirk mountains are of Jurassie age and earlier than the forces which built the Rocky mountains to the east. Therefore, the Rocky Mountain geosynchinał has suffered two orogenic movements, one at the close of the Jurassie, which laid the foundation of the structure of the Selkirk mountains, and the other in early Tertiary time, which elevated the croded Selkirk mountains and imparted the Rocky Mountain structure to the sediments derived from the erosion of these Jurassie (Selkirk) mountains.

LOCAL.

The Ainsworth map-area, situated on the western slope of the Purcell trench which holds Kootenay lake, forms part of the central portion of the ¹ "kirk mountains. The sediments around Ainsworth, which strike north south and dip to the west, form the eastern limb (Figure 3) of a syn-

cline. The western limb of the syncline has been destroyed by the intrusion of the Nelson batholith, but its northern continuation is seen in the Millford syncline of the Blue ridge north of Kaslo.

ke north of a syn-

CHAPTER V.

GEOLOGICAL HISTORY.

INTRODUCTION,

The formal consider the Ainsworth map-area are too limited in range to allow of the interpretation of the geological record with any degree of certainty, from them alone; therefore, a brief description is given of the general region of which the are $\frac{1}{2}$ around Ainsworth forms part.

The sedimentary rocks exposed around Ainsworth are Carboniferous and in part possibly pre-Carboniferous in age and are cut by granites (gneissie granite, Nelson granite) and lamprophyre dykes of Jurassic age. These Carboniferous and younger Palaeozoic rocks are underlain by the Purcell series¹ which includes the greater part of the rocks of the Purcell range to the east. The contact between the Purcell series (Beltian) and the overlying Pakeozoic rocks around Ainsworth has not been observed, but it is believed to lie in the vicinity of the water-shed east of Kootenav lake, since there is an apparently continuous record of sedimentation from the Beltian of East Kootenay to the Carboniferons of Ainsworth. To the west of Kootenay Lake trench the intruded mass of the Nelson granite separates the Carboniferous rocks of Ainsworth from the older Pre-Cambrian and possibly pre-Beltian rocks around Arrow lakes. These Pre-Cambrian series form part of the oldest land area in British Columbia, from which the sediments of the Ausworth and Purcell series were derived by the processes of erosion.

PALEOZOIC SEDIMENTATION.

The earliest geologic record in the Ainsworth map-area is one of sedimentation, and, from observations of the rocks exposed on the east side of Kootenay lake and in the area around Procter where the geological section which is concealed by the waters of Kootenay lake can be seen, it is a late phase of a long period of sedimentation.

POINT WOODNURY EPOCH.

This oldest epoch of sedimentation at Ainsworth gave rise to the quartzose mica schists and quartzites of the Point Woodbury formation, which were laid down in the sea as siliceous muds and later hardened into sandstones. These sandstones were subsequently silicified and altered to quartzites and mica schists by the mountain-building forces and the heat caused by the intrusion of the Nelson granite of Jurassic age.

EARLY BIRD EPOCH.

The sea during this epoch evidently was of such a nature that calcarcous muds were deposited in it which later changed into the siliceous lime-

ntrusion Millford

¹Schofield, S. J., Geol. Surv., Can., Mem. 76, 1915. 76183-3

stone of the Early Bird formation. It would seem, therefore, that there was a deepening of the water during the period, accompanied by stability of the land mass to the west which was undergoing a slow process of profound surface weathering and erosion.

PRINCESS EPOCH.

The mica schists and quartzites of the Princess formation show a return during that epoch to the conditions which prevailed during the Point Woodbury epoch and indicate the same origin for the z - liments of the two formations and their metamorphosed equivalents.

AINSWORTH EPOCH.

A return to the condition prevailing during the Early Bird epoch evidently occurred during the Ainsworth epoch in which limestones were deposited. The linestones of the Ainsworth formation are not as siliceous as those of the Early Bird formation and, therefore, were probably laid down farther from the shore.

JOSEPHINE EPOCIE.

The conditions prevailing during the Josephine epoch caused the deposition of lime muds (later metamorphosed to limestones) and fine sund dater metamorphosed to platy quartzites). But the most characteristic feature of the epoch was the deposition of basic volcanic ash which was haid down at intervals during the progress of sedimentation. These ash beds later were changed to green hornblende schists. In many cases the quartzites contain very thin lamina of green hornblende schist showing that volcanic action was intermittent. Since no massive layas were identified in the field it is concluded that the centre of eruption lay some distance from the Ainsworth area. These ash beds furnish the earliest evidence of volcanic action in the Palacozoic and the first since the deposition of the Purcell laya⁴ in the Beltian. The final phase of the Josephine epoch was the deposition of mud, later metamorphosed to andalusite schists.

SILVER HOARD EPOCIL.

Sedimentation with alternating deposition of line muds and muds continued during the Silver Hoard epoch. These muds were later changed to linestones, and alusite schists, and argillites.

SKYLINE EPOCH.

The conditions prevailing in Silver Hoard epoch continued during the Skyline epoch and since the remains of marine organisms are found in the metamorphosed muds of this formation it is concluded that marine condi-

[&]quot;Schofield, S. J., Geol. Surv., Can., Mem. 76, 1915, p. 76.

at there tability of pro-

i returu > Point he_two

och evies were äliceous id down

e d'eposne sand eteristie ich was ese ash ases the ing that lentified ce from of volhe Purwas the

d mids danged

ring the d in the e condi $\underline{29}$

tions with land to the west prevailed during the whole period in which the Ainsworth and Slocan series were deposited, although no fossils were found in any ϕ - the formations older than the Skyline.

JURASSIC.

No record of Jurassie sedimentation is preserved in the Ainsworth area; but the period is a very important one economically and structurally, since the main orogenic movements which laid the foundations of the structure of the Selkirk and Purcell mountains took place near its close. In addition, the magma which later solidified to form the Nelson granite and which forms the bedrock of such a wide area in the Kootenay, rose in this area which had been weakened by crustal movements. These movements folded the sedimentary strata into regular anticlines and synclines which strike in a northerly direction. After this crustal movement came the intrusion of lamprophyre dykes. The cooling stag s of the intrusion of the Nelson granite furnished the materials which were concentrated in favourable localities te form ore deposits.

CRETAGEOUS.

The Cretaceous period in the Selkirk mountains was one of erosion in which the rugged mountains were worn down to x surface characterized by meandering streams and a slightly rolling topography. The products of this erosion went to form the Cretaceous formations of the Rocky mountains.

TERTIARY.

The T, $_{\rm exp}$ riod in the Selkirk range is characterized by an uplift which was $\alpha_{\rm exp}$ oraneous with the building of the Rocky mountains. This uplift in parted increased vigour to the shuggish streams and enabled them to open up the present valleys of the range.

QUATERNARY.

The Quaternary period was marked by refrigeration and glaciation, the results of which are seen in the glacial cirques, V-shaped valleys, faceted spurs, and fretted topography. Evidence of a complicated history of the Quaternary period — been recorded in an earlier memoir⁴ and the reader is referred to that publication for a full description. The period of refrigeration was followed by a period characterized by a milder climate which caused the ahnost complete disappearance of the ice cap and the gradual approach of present day conditions.

³Schofield, S. J., Geol. Surv., Can., Mem. 76, 1915, pp. 85 and 103, 76183-34

CHAPTER VI.

ECONOMIC GEOLOGY.

INTRODUCTION.

The deposits of economic importance in the Ainsworth mining camp are entirely silver-lead ores. Previous to 1914 the zinc which is invariably associated with the silver and lead in the primary deposits was worthless or detrimental to the ores: but owing to the increase in value of spelter and the erection of a smelter at Trail for the recovery of zinc, its presence now adds to the value of the deposits at Ainsworth.

As stated above the deposits at Ainsworth are entirely silver lead the chief mineral being silver-bearing galena except in the case of No. 1 mine, the present workings of which expose only the oxidized ore zone of an original sulphide deposit. The ore deposits may be classified according to form as follows:

1. True fissure veins.

(a) Cutting the bedding planes at an angle. Highland, Florence, Early Bird, United, Glengarry.

- (b) Parallel with the bedding planes. Maestro, Banker, Diamond, Little Phil, Spokane, Trinkett, Albion Highlander, Tariff.

² Replacement deposits in limestone.

No. I, Silver Hoard, Star, Krao, Gallagher, Crown, Florence, Buckeye Ayesha.

30

ng camp variably vorthless ster and ence now

ver lead; of No. 1 • zone of ecording

t, Albion,

, Buckeye,

Vear.	Time	fiold, lode	Silver.	er.	l.a.d		Zinc.	. J	Totals
		Ounces.	Ounces, Value	Value.	Pounds.	Value.	Pounds,	Value.	division.
			1	40		~		~	
			374,097	250,665	3,156,592,				.15.626
	900.0		204.01%	313, 697	3, 513, 237				440.54
	11.12		167.147	92,515	1.978, 201				159,801
	3, 766	16	248, 165	151.751	1.344.377				207.930
	5.215	No.	352, 167	205,451	3, 366, 962		•		349,465
	3, 908	(22)	324,343	159.121	0.755.412.		-		131.011
	4, 039	10	320.719	158,916	3, 083, 039,				110 961
	21, 132	::-	108.678	55, 187	4, 2969, 727				218,012
	14,569	71	90,004	48, 026	3, 091, 645				165.023
	3, 331	1	112.105	107.10	1.002.114			;	100.273
	19.431	13	165,915	105,2731	3, 173, 353				267, 190
		111	301.322	15 7. (HH)	3.654.775			:	304 NES
	170 XC	121	314, 142	1:7.762	4,700.216				342,181
	252.15	162	352.555	172,505	10, 298, 343			250,000	
	21. 250	F	233,010	115.397	2, 558, 353		13. 11/13. NOV	95. 859	
	129	*7	11.375	399,1833	2×9,000				
	. 32.741	.0v	301,755	174.354	4, > 63, 594, 4				371.760
	923 425	10	147,015	253, 905	9,027,861		150.680,	1.200	616,450
	(15: 411)	1000	329.576	171.714	N. (MIC, 525	252,433	2NO.000	12.390	468 534
	12,630	151	289, 565	136, 675	3, 436, 184	143.259	678, 940	76.381	STX XCC
	14.11	1	321.202	200,366	7.841.869	454,000	625.971	68, 106	733, 402
•	N2.4VI	-	224,461	173.261	6, 395, 350	505.872	918,601	69, 501	749.014
	41.967	1	018, 069	210.213	6. 200, 262	107 208	640 001	A1 407	(167) 244

¹ Report of the Minister of Mines for British Columbia.

	1903-	1010	10.00	1010			10122	1.1.1.1
July,	1907 (inc.)	1908	1909	1910	1911	1912	1913	1914
Highlander	144			1				
Gallagher Krao	79 995	19	73				10	· ·
Maestro New Jerusalem	201 19	126 31	65	35	113		157	1,2
Highland .	4,331		195	304	22		1,130	2.9
No. 1 Spokane United	324 493 182	19 13	21		137	524	4.017	4,8
Pontiac	1.1		30					
Jessie Bluebird Ayesha		25		35	10			
Silver Hoard Fjorence						202 62	-1,287 16	
Bluebell Early Bird	1,663	2.229	4,907	1,262		3,720	7,209	4,7

Production of Ainsworth Mines in Tons, Reported at Trail by the Canadian Mining and Smelting Company.

ORE DEPOSITS.

DISTRIBUTION.

Most of the silver-lead deposits are associated with the limestone band which occur quite commonly in the Ainsworth and Slocan series, although some of the important mines, for example the Highdand, are in the schist and others like the Spokane and the Banker are in quartzites. The ore consist of galena and zine blende in a gangue of calcite, siderite, quartz and fluorite. The ore in the Bluebell mine, which was deposited under morextreme conditions of temperature and pressure than other deposits, i characterized by the presence of the contact metandorphic dimeral diopside

MINERALOGY.

The miderals described under this head are grouped according to Dana' system of classification.

NATIVE ELEMENTS.

Casike, H. C., Jour. of Geol., vol. XXI, 1913, pp. 1-28.

anadian

3	1914
10	
157	1,232
130 017	2,915 4,885
287 16	43
209	$\frac{4}{57}$

nie bands although ne schists The ores , quartz, ider more posits, is diopside.

to Dana's

it occurs has been in several er in the invisible, accondary wan ores¹ nent of a sulphides Sulphurie acid and ferric sulphate (derived from the oxidation of pyrite) exert a powerful solvent action both on silver sulphide and on its companion sulphides, such as galena, chalcocite, orpinent, and stibuite. Of these silver sulphide is the least affected." And further he says: "A mixture of sulphurie acid and ferric sulphate has a powerful solvent action on metallic silver . Equilibrium in silver-bearing solutions between ferric, ferrous, and silver sulphates is such that the reduction of ferric solutions to the ferrous condition by any means will rapidly precipitate the silver in metallic form."

Native Copper, Cu. Native copper is found on the tables in the mill of the Bluebell mine and is evidently derived from the crushed and altered zone of cross fissures which intersects the main ore-bodies. This crushed zone is usually stained green from the solution of the copper-bearing sulphide and its redeposition as malachite by descending surface waters. The copper is probably secondary.

SULPHIDES.

Galena, Sulphide of Lead, PbS. Galena is by far the most important mineral in the Ainsworth camp because of the association with it of the silver values. In general, it is coarse-grained and almost invariably banded and has a gnessic appearance, owing to the simultaneous reflection of light from the cleavage planes of alternate bands. This structure is common in galena ore both in the Ainsworth camp and in the neighbouring Slocan district.

Attention was first called to the banded or gneissic galena by Carlyle' in the following words. — The ore has been deposited along fissures, both in the open cavities, and by impregnation of the country rock, and in the cavity-filled veins can be seen the banded structure described elsewhere, or the solid, usually big enbed galena, shows lines of foliation parallel with the walls, but it is evident that further motion has occurred along some of these vein fissures, after the ore has been deposited." Observations by the writer shows that the lines of foliation mentioned above are not usually parallel with the walls of the fissure but are parallel with the lines of foliation which cross the fissure at a small angle. Uglow² has contirmed and elaborated the theory put forward by Carlyle that the gneissic form of the galena is due to shearing after the galena was deposited. Uglow considers that flowage also was an important factor in the formation of the gneissie structure.

The fine-grained variety, steel galena, is found in the Highland mine, especially in the ore-body on the 5th level. The galena is always silverbearing, earrying about 20 onnees to the ton.

Zine Blende, Sphalerite, Sulphide of Zine, ZnS. Zine blende is a common mineral in the silver-lead deposits, especially in the Bhuebell and Silver Hoard ore-bodies. In the Silver Hoard deposit the sphalerite is the typical resin jack. It is coarse in texture and is associated with the galena. In the Bhuebell, the sphalerite is fine-grained and intimately mixed with

Warlyle, W. A., Rept. of Minister of Mines. British Columbia, 1896, p. 47. (Uglaw, W. L., Leon. Geol.

the galena and pyrite. The composition of the zine blende from Ainsworth is not known, but an analysis of blende from a similar deposit—the Cork-Province on the south fork of Kaslo creek – furnished by the manager Mr. Zwickey, is as follows:

Ag	3 per cent.
Pb	1 "
Zn	124 **
Ca.,	1.6

Iron Pyrites, Disulphide of Iron, FeS_2 . Pyrite is widely distributed throughout the deposits and is especially abundant in the Bluebell mine.

Pyrrhotite, Magnetic Sulphide of Iron, Fc_7S_8. Pyrrhotite occurs abundantly in the Bhuebell mine, both in large masses and in rare cases as well-defined crystals.

Chalcopyrite, Copper Pyrites, $CuFeS_2$. Chalcopyrite occurs sparingly in the Bluebell mine.

Mcccasite, Disnlphide of Iron, FeS₂. Marcasite was actually determined only in the Highland mine where its crystal aggregates have the form typical of marcasite, coxcomb pyrites.

OXIDES.

 $Quartz, SiO_2$. Quartz occurs in small amount in nearly all the deposits

Limonite, $2Fe_2\theta_3$, $3H_2\theta_3$. Limonite is common only in the oxidized zone of the No. 1 mine as a product of the decomposition of the sulphides of iron. This oxide forms the largest part of the ore shipped from the No. 1 mine,

HALIDES.

Fluorite, Fluor Spar, Calcium Fluoride, CaF_2 . Fluorite occurs moscommonly in the Early Bird claim where the purple and pink varieties are abundant in the form of cubes and irregular masses associated with ealcite. In the Silver Hoard it is a common gaugue mineral and in the Highland it occurs in the vein in association with ankerite. It has been found occasionally in the No. I mine. Altogether fluorite i one of the moscommon gaugue minerals in the deposits of the Ainsworth mining camp.

CARBONATES.

Calcite, Calcareous Spar, $CaCO_{3}$. Calcite is a common gaugue mineral since the ore deposits in general occur as replacements in limestone. If occurs as regular masses and as rhombohedral crystals similar to thos described and pictured by LeRoy⁴ from Phoenix and by Drysdale² from Rosshand.

Ankerite, Ferriferous Dolomite (Ca (Mg, Fe, Mn) (CO_{δ})₃). Ankerite wa found only in the Highland mine, on the third level, where it was associate with fluorite.

Cerussite, Lead Carbonate, White Lead Orc, PbCO₃. Cerussite is not ecommon mineral in the deposits of the Ainsworth mining camp. It wa

⁴LeRoy., O. E., Geol. Surv., Can., Mem. 21 ⁴Drysolade, C. W., Geol. Surv., Can., Mem. 77.

om Ainsosit—the manager

nt.

tributed mine. • occurs cases as

sparingly

ly deterhave the

deposits. oxidized sulphides the **No**, 1

urs most ieties are h calcite. Highlund en found t^he most amp.

e mineral tone. It to those ale² from

erite was issociated

e is not a . It was found in crystalline form in a solution cavity in galena in the Highland mine. Although the No. I mine is a deposit of oxidized silver lead ore, eerussite was not identified in it with any degree of certainty.

ORES.

The ores mined at Ainsworth consist essentially of two varieties.

(1) Oxidized earthy ore containing native silver, as in the No. 4 mine. The values of the No. 4 ore for the years 1912, 1913, and 1914 as given by the Annual Report of the Consolidated Mining and Smelting Company are as follows.

	Oz. Ag per ton.	РБ,
1912	95-7	3.22
1913 1911	37.5	1.68
	32+0	1.015

(2) Primary ores consisting of galena, zine blende, and iron pyrites, as seen in the Highland mine. The ore is a milling proposition. The values of the concentrates are as follows:

		Oz. Ag per ton.	Ph.
1913 1914	•	$\begin{array}{c}15.4\\25.6\end{array}$	55-65 78-17

The ratio of concentration¹ varies from 1 to 7 to 1 to 10 depending on how carefully the work is performed.

AGE OF DEPOSITS.

AGE RELATIONS OF REPLACEMENT DEPOSITS AND TRUE FISSURE VEINS.

The relationship of these two types of deposits was seen in the Ayesha claim (Map 1788) where the replacement deposit occurs at the upper contact of a limestone belt with a selist. The replacement deposit with a north and south strike was cut by two distinct fissures trending approximately east and west, and dividing the deposit into three distinct portions arranged *en échelon*, since the portion north of each fault was stepped to the west. Ore occurs in each of the fissures, especially in that portion which joined two of the replacement bodies. The lissures are identical in character with the lissures described as occurring in the Highland mine. The mineralogy of the lissure veins and the replacement deposits is identical even to the proparties of silver to lead in the galena. The above evidence supports the corclusion that the fissure veins and the replacement ore deposits are contemporaneous in their formation. This conclusion is further substantiated by the occurrence of replacement ore-bodies and orebodies of the true fissure type associated with the same fissure in the Florence mine.

AGE RELATIONS OF DYKES AND ORE DEPOSITS.

In the description of the Highland mine which follows, it is stated that there is a horizontal displacement of 30 to 130 feet along the fissures. The basic lamprophyre dykes which were faulted by this movement were also highly altered in the vicinity of the fissures by the ore-bearing solutions, thus proving that the ore deposits are younger than the dykes. If the

¹ Report Minister of Mines, B.C., 1914, p. 149.

dyke in the Bluebell mine cuts the ore-body, as stated by Mr. Fowler the manager, the above statement must be modified to some extent. Whe the writer observed the dyke in the Bluebell mine it was very badly decomposed throughout and its relations to the ore-body could not be determine with any degree of certainty. From its position as a bounding wall to large ore-body and from the high degree of alteration which it showed, the writer was inclined to consider the dyke as pre-ore deposition; but the opinion should not be given as much weight as that of Mr. Fowler who hcarefully watched the evidence upon this point that has been brought hight during the development of the mine. In the Slocan district, which in close proximity to the Ainsworth camp and where the conditions of odeposition show the same features, LeRoy has found dykes which cut fiore-bodies. From the facts presented above it can at least be conclude that the dykes and ore deposits are nearly contemporaneous in age at that the dykes have no genetic connexion with the ore deposition.

AGE OF DEPOSITS.

The determination of the age of the deposits of the Ainsworth minicamp is a dillicult matter since the information at hand is very meag-It can only be stated that the deposits are younger or contemporaneo with the period of dyke intrusion and obler than the glacial deposi-From a general study of the region it is believed that the dykes are close related in age with the intrusion of the main mass of the West Kooten granite batholith (the Nelson granite) which is of Jurassic age.

ORIGIN OF THE ORES.

(4) ore-bearing solutions emanating from the granite in the promatorate stage of cooling (since fluorite is a common gargue mineral in tmajority of the deposits), rose in fissures and at favourable localit formed ore-bodies either in the fiscures (as in the vic'nity of the quartzr hornblende schist contact in the Highland mine) or in the rocks cut the fissures (as in the Florence mine where the mineral-bearing solutio attacked and replaced the limestone bands). The ore in the No. 1, Silv Hoard, and Bluebell deposits evidently spread laterally from the fissure the contact of the replaceable limestone with the overlying imperviargillites or schists forming replacement ore-bodies. This action to place even where portions of the contact were overturned, as shown in t No. 1 and the Silver Hoard.

FUTURE OF AINSWORTH MINING DISTRICT.

The prospects for the continuance of mining in the Ainsworth distr are good. The success of the Highland in proving that the ore-bod extend at least to 700 feet below the outcrop in the case of veins of the tr fissure type and the occurrence of the replacement deposits in limeste 350 feet vertically below the outcrop in the Florence mine, augur well deeper mining, especially as, so far as can be determined, the tenor of to ore does not appreciably decrease at depth. The failure to discoworkable ore-bodies on the Tariff, Highlander, and Banker veins at to depth reached by the Highlander tunnel need not be considered discourfowler the t. Where lly decometermined ; wall to a nowed, the ; but this er who has pronght to t, which is ions of ore ch cut the concluded n age and 1. 0

rth mining ry meagre, quoraneous 1 deposits, are closely Kootenay

the pnenneral in the e-localities quartziteeks ent by g-solutions o. 1, Silver e-fissure impervioction-took own in the

T.

rth district ore-bodies of the true i limestone gur well for enor of the o discover eins at the discouraging: for the occurrence of the ore-bodies in this type of vein is to be looked for only on the flat portions of these veins and the ground between the tunnel and the surface has not been explored.

A study of the various mines has shown that the ore-bodies so far discovered have three well-defined modes of occurrence and in the future economic development of these deposits, this face should be kept in mind and should govern the methods of exploration of the veins. These different modes of occurrence are fully described in this report.

The great increase in the efficiency of concentrating processes arising from the introduction of flotation, which in the Ainsworth district is still in the initial stage, should increase the output of this camp and enable properties which are at present idle to resume operations.

The country between the Ainsworth map-area and Kaslo creek, in which very few mineral claims have been staked, exhibits geological features similar to those found at Aiusworth and is. therefore, considered to be worthy of attention by prospectors.

DESCRIPTION OF MINES AND PROSPECTS.

True Fissure Veins.

FISSURE VEINS OFTENG BEDDING PLANES AT AN ANGLE.

Highland Group,

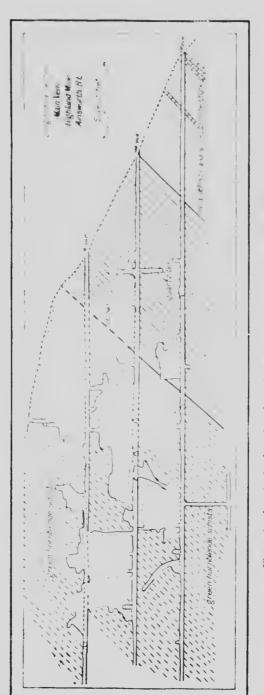
The Highland group is operated and owned by the Consolid. ⁴ Mining and Smelting Company of Trail, B.C. The group is situated Cedar creek, 14 miles from Ainsworth, with which it is connected by a wagon road. An aerial train carries the ore from the mine to the mill on Kootenay lake at the mouth of Cedar creek.

Geology. The country rocks which outcrop on the Highland group belong to the Josephine formation which consists of mica schists, crystalline, siliccons linestones, quartizites, and green hornblende schists striking approximately north and south with a dip of 45 degrees to the west. The series is cut by mica and non-mica dybes generally parallel with the bedding of the sedimentaries. The majority of the dykes are of the non-mica variety and have widths of from 3 to 15 feet. The presence of these dykes (Map 1784) in the sedimentaries, parallel to the strike, is very important as they form good horizon-markers in the determination of the throw of the fissures. A non-mica dyke follows the main fissures of the Highland mine, in places occupying the fissure and in places lying to one side of it. The dykes as well as the green hornblende schist in the immediate neighbourhood of the fissure are highly altered to a whitish yellow mass which requires considerable care in mining. This soft material has evidently been formed by the alteration of the immediate wall rock by the action of descending surface waters which are highly charged with sulphuric acifrom the decomposition of iron pyrites. This decomposition of the warocks makes the determination of the character of the rocks along the fissure rather a difficult matter.

The fissures (Map 1784) which are three in number tren Fis.ures. approximately northwest and dip to the cast at an angle of 75 degree the most southerly one is the main vein, whereas the other two, terms angle veins, are of less importance. The fissures are well-defined and sho a horizontal displacement along the vein of from 20 to 130 feet (Map 1781 The direction of displacement is the same in all three fissures. Anoth feature of these fissures is the fact that the amount of ore in the fissure roughly proportionate to the amount of displacement that has taken plaalong the tissure. This apparent relationship may be quite fortuitons, b on the other hand it is possible that greater movement, gave use to co ditions more favourable for the passage of ore-bearing solutions. In th quartzites the lissures are clean and narrow with some breceiation alor the walls which are comparatively unaltered except for some silicificatio The filling is usually of quartz with very little sulphides as a rule. In t hornblende schists, the walls of the fissures have been badly decompose In most cases, the vein which contains good are shoots in the green hor blende sehist narrows very rapidly and contains very little ore when passes into the quartzites.

Ore. The ore consists mainly of coarse-grained galena usually with banded structure, giving it a gneissic appearance, and a fine-grained varie which also has a gneissic structure but is less in amount than the coargrained variety. Zine blende and small amounts of pyrite, marcasin and chalcopyrite in a quartz gaugue complete the mineralogy of the or Ank rite and fluorite occur in cracks in the ore and are the last prima minerals deposited in the veins.

Ore-Bodies. The distribution of the ore-bodies bears a striking reltion to the quartzite-hornblende – hist contact. From an examinatiof the accompanying section of the trighland mind (Figure 1) it can be sethat the ore-bodies occur as tabular measus apparently both in the quarities and in the hornblende sebists and are at the upper contact of tquartzites with the schist. In the section the ore-bodies appear to occur w within the quartzites, but when it is recalled that the displacement alo the fissure is 30 to 100 feet, it will be seen that the schist and quartziare in contact on opposite walls for the same distance. The ore-bodies follow the green hornblende schist to the displaced quartzite-hornblen schist contact, but do not occur to any extent in the region where the quarites form both walls of the fissure. As the contact of the quartzite and tschist dips about 45 degrees to the west, the ore-bodies pitch in the sandirection.


Mine Workings. Access to the ore-bodies is secured by means of f tunnels driven approximately along the strike of the vein, the three up tunnels being approximately 100 feet apart and the two lower tunn 200 feet apart, thus giving a depth of 700 feet below the outcrop. evidently netion of mric neid the wall along the

bez trend 5 degrees; o, termed and show lap 1784). Another 5 fissure is iken place itions, but se to cons. In the tion along icification, e. In the composed, reen horne when it

illy with a ned variety he coarsemarcasite, of the ore, st primary

tiking relacamination an be seen the quartztact of the o occur well ment along 1 quartzite ore-bodies hornblende the quartzzite and the in the same

eans of five three upper ver tunnels crop. The

39

ore is mined through the tunnels by overhead stoping and carried by an acrial train to the null on Kootenay lake at the mouth of Cedar creek.

Florence Silver Mining Company.

The board of directors of the Florence Silver Mining Company is F. R. Wolfle, president and manager; A. F. Kelly, vice-president; D. E. Saunders, secretary-treasurer; J. A. Lavender; and A. M. Frost. The mine is under the direct supervision of W. M. Hewer.

Situation. The Florence Silver Mining Company owns a group of claims comprising the Skylark. Florence Silver fraction, Mountain Cougar fraction, James R., Laura M., Hope, O. T. K., Twin, Fergus, and the Power fraction. As seen from the accompanying map (No. 1785) showing the location of the mineral claims, the Mountain Cougar fraction, the Florence Silver fraction, and the Skylark are situated on the shore of Kootenay lake about 2 miles north of Ainsworth and the other claims adjoin these on the west. The main entrances to the mine are on the Laura M. claim and are connected with Ainsworth by a wagon road which passes near the mouth of Cedar creek.

Geology. The Early Bird, Princess, Amsworth, and Josephine formations outcrop on the claims striking about north and south with an average dip of 45 degrees to the west (Map 1785). A description of these formations has been given in a previous chapter. The two most important horizons economically are the limestone bands and the quartzite hornblende-schist contact, where they are crossed by the fissure. The limestone bands are members of the Josephine formation which is composed mainly of hornblende schists, banded quartzites, and some limestones. The limestones which occur in the Florence Silver mine are coarsely crystalline and grevish white to white in colour, and are composed almost entirely of interlocking grains of calcite with no associated secondary minerals such as tremolite. Hence they are very easily replaced by mineral-bearing solutions. The two bands which have been developed are about 45 feet apart and are from 6 to 8 feet thick. They strike north and south and to the west dip at an angle of 40 degrees, but the dip is modified by slight folds so that in some cases the limestones are approximately horizontal. In the immediate neighbourhood of the ore the rock is decomposed to a soft sugar-like mass of calcite and quartz and in other places it has been silicified.

The quartzites, which are overlain by mica schists and green hornblende schists, are about 25 feet thick and have the dip and strike of the surrounding rocks. The quartzites are tough and are banded light and grey in colour on fresh fracture, but change to a reddish brown colour on the weathered surface. The hornblende schists are green in colour with a glistening surface when fractured. They weather a dark rusty brown. These rocks are very similar to the quartzites and the hornblende schists exposed in the ore-bearing horizon of the Highland mine.

Fissure System. The fissure has a strike approximately east and west with a dip of 42 degrees to the south. It has been opened up at intervals on the surface from the workings of the Twin elaim to those of the Laura M. The rocks for a distance of 40 feet on both sides of the replacement

−by an •k.

is F. R. anders, s under

oup of Congar Power ing the Porence potenay n these L, claim car the

e formiverage e formportant e hornnestone mainly s. The stalline irely of such as lutions. and are æst dip that in nediate ce mass

n hornof the nd grey on the with a brown, schists

nd west itervals e Laura cement ore-bodies in the limestone have been so badly decomposed that it is difficult to determine the exact point where the fissure crosses the limestone bands. In the mica and hornblende schists the fissure is well defined and in the stopes on the second level it shows smooth, slickensided walls. The dip there is 42 degrees to the south.

Ore. The ore consists of a coarsely crystalline mixture of galena and zine blende with some pyrite and chalcopyrite. The gangue is altered and decomposed linestone, calcite, and quartz. The galena in the quartzitehornblende schist stopes is coarse-grained shipping ore with minor amounts of zine blende, whereas that of replacement bodies is coarse-grained and fine-grained, the two varieties generally showing a gneissic or sheared structure. An analysis of the mill feed, supplied by the company, shows: Pb 7 '4 oz.; Zn 7 '0 oz.; Fe 11 '0 oz.; Ag 2 '5 oz.

Ore-bodies. The ore-bodies of the Florence mine are of two varieties: (I) replacement deposits; (II) ore-bodies of the true fissure type.

Replacement Deposits. There are two ore-bodies (Map 1786) of this type which are continuous from the surface at an elevation of 2.621 feet to the lowest level at an elevation of 2,285 feet. Exploration has not been carried below this point, but there is no doubt that the ore-bodies will continue to greater depths. These bodies, since they follow and replace the limestone, usually at its upper contact (Map 1786) with overlying sehist, strike north and sonth with an average dip of 40 degrees to the west. In an intermediate level between the second and the lowest level the ore and the rocks are horizontal, showing that minor folds occur at irregular intervals. The length of the ore-bodies along the strike of the limestone bands has not been determined, although they have been followed for 50 feet without reaching an end in either direction. In many places the foot-wall of the galena mass is composed of a mixture of iron and copper pyrites from 1 foot to 2 feet thick, which is known locally as the iron dyke. In other cases a similar mixture of sulphides occurs in the hanging-wall side in contact with the overlying schist.

Ore-bodies of the True Fissure Type. Ore-bodies of this type occur in the fissure at the contact of the quartzite and the schist. The occurrences are very similar to those described in the account of the Highland mine. The ore-bodies are about 100 feet long and about 3 to 6 feet wide, and pitch about 40 degrees to the north along the fissure. There is no replacement of the wall rocks of the fissure and the ore breaks from the walls clean and smooth.

Workings. The mine is opened up by three tunnels, the two lower tunnels being connected by a raise from which an intermediate level is being driven.

Early Bird.

Situation. The Early Bird mineral claim is situated on the west shore of Kootenay lake about 2 miles north of Ainsworth. It is easily accessible by water. It ω owned by Mr. Pringle of London, England, and in 1915 was under bond for three years by A. Baglow who at that time was shipping ore to the Trail smelter. Geology. The voin was entirely enclosed by the Early Bird formation of which the staple rock is a very massive, grey, micaeeous limestone in beds 6 to 8 feet thick. The limestone weathers a rusty brown. In many places interbeds of micaeeous schist occurs with the limestone which dips on the average 35 degrees to the west and strikes north and south.

Fissures. Two fissures are exposed on the claim, which strike approximately north 75 degrees west with a dip of 80 degrees to the south. They are of the nature of gash veins which show no apparent displacement along the fissure and appear to be typical of the veins of this formation. The character of the veins of this type is well shown on the south wall of the eanyon of Woodbury creek where they are numerous and well exposed. A cross-section of the Early Bird vein is shown in the accompanying cut (Map 1790).

Ore. The ore consists of massive galena and zine blende with minor amounts of pyrite and chalcopyrite. The analysis of the ore furnished by Mr. Baglow shows the hand-sorted ore to run 45 per cent lead and $12\frac{1}{2}$ zinc. The silver runs between 15 and 20 ounces to the ton. The value of the ore shipped in 1914, Mr. Baglow states, was \$30 per ton.

United.

Situation. The United is situated on the Ainsworth-No. 1 wagon road about 4 miles from Ainsworth, at an elevation of 3,350 feet above sea-level or 1,590 feet above Kootenay lake.

Geology. The rocks in the immediate vicinity of the deposit consist of green hornblende schists which strike about north and south and dip 45 degrees to the west. The upper contact of the schist with the overlying andalusite schist is located at the base of a steep cliff about 150 feet west of the shaft. The lower contact of the schist with the underlying banded quartzites lies about 700 feet east of the shaft. A dyke of camptonite 4 to 5 feet wide, conforming in strike and dip with the enclosing schists, passes just east of the shaft.

Fissure. The fissure strikes north 70 degrees west and dips 70 degrees to the south. In the neighbourhood of the shaft it is well defined, but could not be traced for any distance east and west.

Ore. The ore which was seen in the open-cut just north of the shaft showed about $1\frac{1}{2}$ feet of galena on the hanging-wall. From the ore on the dump it was concluded that the vein contained a large proportion of coarse ziac blende with which is associated coarse-grained galena which could be hand-sorted.

Orc-bodics. As the workings were filled with water at the time of the writer's visit, no information was obtain 1 concerning the distribution of the ore in the vein.

If the fissure extends eastwards to the quartzites, the most favourable place for the location of the ore-bodies is in the green hornblende schists near and at the contact with the underlying banded quartzites.

Workings. The vein is opened up by means of an inclined shuft which is reported to be "170 feet deep¹ with levels extending east and west in the

Report of the Commission appointed to investigate the zinc resources of British Columbia, 1906.

mation tone in n many ch dips

pproxi-They at along the The of the xposed. ing cut

1 minor shed by and $12\frac{1}{2}$ while of

wagon t above

misist of dip 45 cerlying bet west banded te 4 to 5 , passes

degrees ut could

he shaft e on the of coarse h could

e of the ution of

ourable schists

ft which st in the vein at the depth of 50 feet and for a distance of 80 feet on either side of the shaft. From the shaft and this drifting (it is claimed that the vein has not been stoped at any place) it is said that 500 tons of ore was shipped to Revelstoke by the former operators."

Glengarry.

Situation. The Glengarry is situated at an elevation of 3,345 feet above sea-level or 1,555 feet above Kootenay lake. It is connected with Ainsworth by a wagon road.

Geology. The rocks in the neighbourhood of the Glengarry belong to the Josephine formation. The shaft is sunk in banded quartzites which are underlain and overlain by green hornblende schist, the thickues of the quartzite bands being 120 feet, 200 feet, and 20 feet. The thickness of the overlying schist is only an estimate as exposures are poor.

Fissure. The fissure strikes north 70 degrees west with a dip of 68 south. The fissure had not been prospected along the strike so outs extent is unknown. The shaft was tilled with water when the property was visited in 1915 and 1918 so that an underground examination was impossible.

Ore. The ore on the dump consists mainly of zine blende and some cube galena and the gangue appeared to be quartz and calcite. Part of the material of the dump was stained green with the decomposition products of chalcopyrite or cupriferous pyrite. The ore is said to run 8 to 10 ounces in silver and 44 per cent zinc⁴.

Workings. The workings consist of an inclined shaft which is reported to be 65 feet deep. The shaft is filled with water and the vein can be examined at present only in a trench near the shaft, where it is exposed for a distance of 15 feet.

FISSURE VEINS PARALLEL WITH BEDDING PLANES.

All the veins of this character occur in the quartities of the Josephine formation. Examples are the veins outeropping on the Diamond, Little Phil, Maestro, Spokane, Trinkett, Josephine, Tariff, Alpine, Highlander, and Banker. They are true veins 1 to 6 feet wide striking approximately north and south with a dip corresponding to the dip of the enclosing quartzites which varies from 25 degrees to 50 degrees to the west. They are well defined and since they occur in the quartities which are very resistant to weathering can be easily followed on the surface for some distance - in the case of the Spokaue vein a length of almost 3,000 feet is exposed.

The mineralogy is rather simple, the galena with small amounts of zine blende and pyrite occurs in a gangue of quartz, calcite, and crushed quartzites. The galena has usually a gneissic structure and a massive character which easily lends itself to hand sorting and the zine blende appears to be relatively smaller in amount than in the fissure veins which cross the bedding planes of the sedimentaries or replacement deposits.

(Report of the Commission appointed to investigate the zinc resources of British Columbia -76183 - 4

From observations over a limited field it is suggested that the orebodies ocenr associated with rolls or changes of dip in the surrounding quartzites, the most favourable locality being the areas of low dip which are preceded or followed by areas of high dip. This phenomenon is well shown in the Banker and Spokane veins.

Maestro, Banker (Diamond, Little Phil).

Position. These claims occur on the wagon road from Ainsworth to the No. 1 mine about 3,000 feet above sea-level at 1,240 feet above Ainsworth.

Geology. The rocks exposed on the claims consist of quartzites, green, hornblende schist, and some siliccous limestones, all belonging to the Josephine formation which strikes approximately north and south with a dip of 30 degrees to 45 degrees to the west. These rocks are cut by a lamp-rophyre dyke, about 6 feet wide, which is exposed in the lower tunnel on the Little Phil claim. In order to give some idea of the variations in the lithology, the following thicknesses of the rocks traversed in the above-mentioned tunnel are given, starting from the portal of the tunnel:

	l'est.
Green hornblende schist	120
Dyke (lamprophyre	G
Green hornblende schist	5-4
Siliceous limestone	20
Banded quartzite-	60
Green hornblende schist	20
Banded quartzites	3
Veins	h S
Banded quartzites	60
Green hornblende schi-)	85
Banded quartzites shee	2

These thicknesses are only apparent as the strata dip west at angles of from 45 to 60 degrees.

Vein. The same vein occurs on the Diamond, Little Phil, and Maestroclaims and has been followed throughout the claims by underground workings. It varies in thickness from 6 to 8 feet and follows the bedding plane of the enclosing quartzites, that is 45 degrees to the west. The filling consists of altered and silicified quartzites which are cemented together by quartz and calcite. The ore-bodies usually occur at the banging or foot-wall of the vein and consist of massive galena with small amounts of zine blende and pyrite. In many places a layer of gouge occurs on the hanging-wall which in some cases shows slickensides.

Spokane, Trinkett, Jeanette Mineral Claims,

These three claims adjoin the Maestro on the north and are evidently a continuation of the Diamond-Maestro mineral zone. They lie above the town of Ainsworth, from which they may be reached by wagon road, and have an elevation of 2,500 feet above sea-level.

Geology. The rocks which² outerop on these claims consist of banded quartzites, green hornblende schists, and siliceous limestones of the Josephine formation which strike approximately north and south with a dip of 30 degrees to 60 degrees to the west. These rocks are ent parallel to the bedding by non-mica dykes 6 to 8 feet wide (Map 1789). e oremding which s well

worth Ains-

tzites, to the with a lampnel on in the phove-

.

*

gles of

aestro workplane filling gether ing or mts of on the

dently ve_the 1, and

anded ephine of 30 ie bedFissures. The fissures are concordant with the enclosing platy quartzites which strike approximately north and south with dip of 25 degrees to 45 degrees to the west. They follow the two horizons in the quartzites which are rarely more than 6 feet apart, passing from one to the other at irregular intervals. The cross-cutting fissure joining the two horizons contains the same vein-filling as the main vein. This feature is well shown on the Trinkett and Jeanette mineral claims. This type of fissure, which is parallel with the bedding planes of the surrounding rocks, has not been observed in the hornblende schists.

Vein-filling. The ore consists of cube galena and fine-grained galena with small amounts of zine blende, pyrite, and chalcopyrite in a gangue of quartz. The quartz in many places holds inclusions of small angular fragments of the quartzites and the vein-filling contains many small cavities which are lined with crystals of quartz.

Ore-bodies. So far as may be judged from the limited field of observation the ore-bodies seem to occur in areas of low dip which are preceded above and followed below by areas of high dip. The galena in the orebodies is usually fine-grained containing in intimate association small quantities of zine blende and pyrite. The contents of the massive erroshipped to the smelter in ear-load lots, according to Mr. McDougald, p.,mager of the Spokane mine, was as follows:

Pb	Zn	Ag oz.)	Weight alb. dry.
62.8	4.9	17-7	51, 537
63-1	4 3	20.9	a0, aar
59 S	1.6	18.9	165, 66 1
4-1 - 1	7.8	13+8	151, 5(N)
45-1	6.2	18-0	67,332

Albion.

Situation. The Aibi — nineral claim is situated just south of the Banker. The elevation or , ac tunnel is 2,500 feet (barometric) above sealevel or 800 feet above Ainsworth.

Geology. The rocks exposed on the Albion claim consist of mica sele. , quartzites, and linestones of the lower part of the Josephine formation cut by gneissic granite and lamprophyre dykes generally parallel to the strike of the sedimentaries, which is north and south with a dip to the west Map 1792).

Veins. As shown in Map 1792 there are three veins which strike and dip concordantly with the enclosing sedimentaries. The veins consist mainly of quartz with small amounts of galena, zine blende, pyrite, and chalcopyrite. In the vein which occurs in the raise from the crossent to the north, galena was seen to the thickness of 6 inches.

Highlander.

The following description of the Highlander mine is by Argall¹.

"The Highlander vein was discovered in 1890. It outcrops on the summit of the steep escarpment on the western side of lake Kootenay,

Report of the Commission appointed to investigate the zine resources of British Columbia, Department of Money Miney Branch, 1966, p. 152 $76182 - 4\frac{1}{2}$ about 1,100 feet above high water. A short tunnel intersects the vcin 100 feet below its outcrop and development is continued by a shaft for a depth of 170 feet from the outcrop of the vcin. Later, a main tunnel was started, now known as the Highlander tunnel, to open up this vciu at a depth of 750 feet vertically below its apex, or 1,000 feet on the dip of the vcin. The portal of this tunnel is situated about 350 feet above the lake and one mile south of the town of Ainsworth.

After penetrating the wash, the tunnel entered the mich schists of the district, and at a distance of 225 feet from the portal intersected what is known as the "Tariff" vein. (See Plate No. I). At 350 feet the schists gradually became harder, passing by insensible gradations into gneiss, through which the tunnel penetrates for a distance of 1,200 feet. In the centre of this mass of gneiss the crystallization becomes coarse, the rock in places presenting a granitic appearance, but on nearing the main lode again becomes schistose and the vein is intersected at 4,560 feet from the portal, with a westerly dip of 45 degrees giving the following general section. The footwall portion shows a banded structure of quartz and dark slaty rock, containing some scams of calcite, occupying a width of 2 feet (Plate No. II), next comes 2 feet of grey porphyritic vein filling, possibly a portion of a small dike, the hanging wall of which is polished and shows slickenside markings. Resting on this wall is a seam of quartz and slate breccia cemented by a porphyritic ground mass. The remaining portion of the vein consists of dark schists containing irregular lenses of vein quartz, the whole occupying a width of 25 feet between walls, but does not contain pay ore in any part, truly a rather disappointing showing after so much expense. On drifting to the south, however, pay ore was found in the foot wall portion of the vein.

On reference to Plate No. I it will be seen that this main vein was cut in the exact position that the prolongation of the dip from the surface workings on the Highlander vein would indicate; therefore it was assumed to be the Highlander vein; but considering the 900 feet of unexplored ground between this tunnel and the surface workings on the Highlander, it must be freely admitted that it is simply a matter of conjecture. A basic dyke four feet in thickness cuts almost vertically through the vein on the tunnel horizon, as shown in Plates I and II.

The hanging wall streak of this composite lode is continuous quartz that has been drifted on northerly for about 80 feet, showing a fairly regular seam (averaging 30 inches thick) of white and blocky quartz, but devoid of mineral.

Crossing these quartz lenses in the tunnel, at about right angles to the dip, is a sheeted zone showing four open fissures, varying from 0.5 to 4 inches in width, as seen on the line of the main tunnel; giving a basis for the impression that this portion of the vein has an easterly dip. Passing westerly along the main tunnel, the mica schists become harder, more silicified, and various breaks or open fissures occur between the hanging wall of the Highlander vein and the face of the main tunnel, a distance of 1,014 feet.

On account of poor ventilation and the amount of water that was issuing from the joints and fissures, I found it impossible to examine carefully the rock structure between the Highlander vein and the face of the 1,

e vcin t for a cel was n at a of the ne lake

of the vhat is sellists. gueiss, In the ie roek in lode ant the ection. k slaty (Plate portion censide breccia he vein whole oay ore quense. portion

ras cut workbe the etween freely our feet orizon,

quartz regular devoid

s to the for the resterly hicified, of the feet.

at was le carele of the t innel. One large fissure was, however, encountered said to contain mostly ,00se calcite, which burst out several times in the tinnel but was timbered up closely at the time of my examination.

At the present face of the tunnel, 1,014 feet from the hanging wall of the Highlander vein, another vein was encountered with a strike north 50 degrees west, and dip 25 degrees westerly. This has been opened up on both sides of the tunnel for a total distance of 50 feet, and consists of 50 irregular quartz lens varying from 2 inches up to 15 inches in thickness, showing come very pale iron pyrites with a little siderite and calcite, a clay gouge of about 6 inches and a hanging wall of mica schist. This point is 2.640 feet from the portal of the tunnel and chout 1,400 feet, vertical iclow the surface of the mountain. The vein conforms, as far as can be seen, with the strike and dip of the schists, and while the showing is very poor, there is a possibility that drifting on the strike of the vein might open up some pockets of pay ore. Work, however, had been suspended in this place for some time prior to my examination.

The last 300 feet in the main tunnel is a poor piece of work, crooked, and at extremely bad grade, but on account of the numerous slips and open assures that have been encountered, all of which are discharging considerable water, it was doubtless an expensive and rather difficult place to operate.

Returning now to the point where the Highlander vein was intersected 1.560 fect from the portal of the tunnel) a drift extends southerly along the foot wall; while the vein was entirely barren where intersected, some blende was discovered at about 50 fect south of the tunnel and continued for 100 feet in length; then 50 feet of barren vein came in, followed by about 150 feet of pay streak, showing zine blende and galena. Sample No. 51 was taken across the pay streak 320 feet south of the tunnel, and gave the following result: silver 4 ozs, lead 21 8 per cent, zine, 7+2 per cent; width sampled 2 feet. At 400 feet south a winze had been sunk 52 feet, the vein having rere a dip of 45 degrees to the west and varying from 6 to 12 feet wide. At the collar of the winze there is a very good bunch of galena which carried iown nearly 2 feet wide of pay streak. following the hanging wall, for a distance of 30 feet along the winze, and from 18 inches to 24 inches of mixed zine blende and gangue resting on the foot wall.

The voin here shows a banded structure with a large development of calcite as voin filling, together with siderite and schist: the banging wall is very smooth and regular, next to it a 6-inch clay gouge occurs, the whole tormation presenting the general appearance of a bedded deposit. A drift has been advanced about 40 teet northerly from the bottom of the winze and in places this shows quite a mass of porphyry and zine blende fragments, encrusted with siderite and zine blende in alternating layers. The galena in the vein rather favours a calcite gangne, makes near the banging wall gouge, and invariably contains a sprinkling of enalcopyrite.

The general order of mineral deposition around the porphyry breecia is first a film of siderite; then zine blende, third siderite, and fourth zine blende as a very thin outer coating of the fragments, and beyond that the siderite ground-mass cements everything solidly. Thirty feet south of the winze on the main level, a raise has been put np about 200 feet, which, for the first 60 feet shows a very fair veiu with a pay streak, varying from 18 inches to 24 inches of blende and galena, the siderite and calcite gaugue being very similar to that seen in the winze below, but the galena is less plentiful. Sample No. 52 was taken across this vein in two ents, for a width of 18 inches, about 30 feet above the level. It assayed: silver 1.9 ozs., lead uil, zinc 13.9 per cent. The main level extends on the vein 300 feet southerly from the winze, for the last 200 feet showing a porphyry structure, and it looks as if at this place a grey porphyry dyke occupied part of the vein.

Two cross-cuts have been driven into the hanging wall of the vein between the main cross-cut tunnel and the face of the southern drift, without showing up any mineralization, but the foot wall portion, as opened on this level for a distance of 350 feet, shows an extremely well mineralized deposit with a pay streak that would average about 2 feet wide of a composition similar to that indicated in the samples above referred to, both of which were taken from two cuts across the vein. The best showing is in the bottom of the level but owing to the wet nature of the country and the prevalence of fissures in this rather open vein structure, mining below the level will, no doubt, be hazardous and expensive. A tunnel can be brought in 320 feet deeper, but it will necessitate 'riving about 2,800 feet and would not be warranted without considerable further development on the vein and the opening up of large quantities of pay ores.

The water is pumped from the winze and the ore hoisted by compressed air delivered from the Taylor Air Compressing Plant situated on Coffee creek about two miles south of the mine. There is no opening to surface except the main tunnel; the only ventilation in the mine is that supplied by the compressed air, which is insufficient, as carbonic acid is very prevalent, and in many of the workings a candle will scarcely burn.

Although there are 900 feet of backs above the tunnel level available for stoping no prospect raises have been put up, except the one described. One or more raises should be pushed through to surface, as in such a strong vein there is every probability of good shoots of pay ore being found above the tunnel level.

It is interesting to note a comparatively flat deposit, conforming to the planes of schistosity of the enclosing rock, which continues so regular and strong at a depth of nearly 1,000 feet from surface, and under such a mass of superincumbent rock.

The appearance of the Highlander vein in places would suggest that a small stratum of limestone had been in part replaced by ore, and the solution and recrystallization of the limestone had resulted in considerable settling of the hanging wall and general rock movement adjacent to the vein. There is also evidence that in various places a porphyry dyke occurs within the vein.

The Highlander property has the appearance of having had far too much money squandered on the main tunnel, in search of elusive veins at great depth, to the neglect of the large veins, which is really a first-class prospect and deserving of thorough development. vein witheened dized impoth of ng is intry ining innel 2,800 ment-

essed 'offee rface ea by ilent,

lable ibed. rong bove

ng to gular nch a

that solurable o the ecurs

r too ns at -class The Highlander tunnel is connected by wire tram with a concentration mill on the shore of the Kootenay lake. The tram serves to transport both the milling and hand-sorted ore, and the latter, together with the concentrates, is shipped in barges from the mill. This mill was not examined as it has not been operated for some time. The management was, at the time of my visit, figuring on shipping the crude ore in bulk to the smelter, after a preparatory hand sorting, and in this way securing the benefit in a smelter rate from the carbonate of iron and lime that the ore contains, and saving the loss incident to concentration. Though the freight and smelting charge must be necessarily higher than the combined rate on concentrates, yet, the management considers the bulk shipments more profitable. Considering the low tenor of the ore and its intimute association with the gangne, the experiment does not appear very favourably to me."

Tariff.

Situation. The Tariff mineral claim has an elevation of about 2,050 feet above sea-level or 290 feet above Kootenay lake, and is situated about one mile south of Ainsworth with which it is connected by a wagou road and trail.

Geology. The rocks met with in the Tariff mine consist of mica schists, quartzites of the Josephine formation, and gneissic granite cut by lamprophyre dykes from 4 to 6 feet wide.

Fissure System and Ore-bodies. The Highlander tunnel which intersects the Tariff vein at depth was inaccessible on account of foul air and the lower workings of the Tariff were unsafe and the following description is quoted from Ingall⁴ who thoroughly explored the mine workings in 1905.

"The so-called Tariff vein, where intersected in the Highlander tunnel, is simply a elay gouge with an inclination varying from 10 degrees to 30 degrees westerly. The vein, as followed in the south drift, varies from merely a clay parting up to a couple of feet in thickness of quartz and calcite. Near the end of the drift a cross-cut was pushed into the foot wall 80 feet, and a drift was advanced 20 feet southerly on a small veinlet, showing a sprinkling of blende and galena near the face. Generally speaking one would scarcely recognize anything in this drift as an important mineral vein. It is practically an irregular series of small quartz lenses conforming to the planes of schistosity, containing in places some calcite and a little elay gouge. Practically, there is no mineralization in the vein at this depth, and as no connection has been made with the Tariff workings at surface there is nothing to show that it is the same vein, though the probabilities are strongly in favour of its being so.

The main workings on the Tariff vein consist of an incline-shaft, 175 feet vertically above the Highlander tunnel (aneroid reading). Passing down this incline everything is stoped out from the first level to surface.

On the second level the vein has a strike of north 20 degrees west and the dip from surface to this level is 25 degrees westerly. The level extends from 250 feet, and the ground has been fairly well stoped out on either side

Report of the Commission to investigate the zine resources of British Columbia, Department of Mines, Mine Branch, 1906.

of the shaft. The v cin is regular in strike and dip and is stoped to a width of about 3 feet, the workings in places reaching 5 feet in width. The vein occurs in mica schist and is conformable with the planes of schistosity; the hanging wall is extremely smooth and regular.

On the third level a cross-cut east, behind the shaft, passes through the foot wall and opens up a parallel vein, 50 feet distant from the main vein, on which about 250 feet of drifting was done. I could not detect any particular values in the north drift, but the southern one showed some zinc near the face.

Passing south from the incline-shaft on this level I found the stoping had not been carried below the door. The vein there is practically all quartz, showing a little disseminated pyrites. In the southern face of the stopes it consists of 2 feet of quartz on the foot, and close to the hanging wall a 1-inch scam of fine grained blende carrying galena in fine speeks.

The face of the drift 10 feet farther south shows quartz and schist only, for a width of 2 feet, and is barrer of pay mineral. In the north end of this stope, 30 feet north from the face of the drift, the vein shows for a width of 30 inches. Next the hanging wall there is 1 inch of blende, then 2 inches of quartz followed by 9 inches of fairly solid blende (containing, however, some quartz breecia), and below that 18 inches of quartz and schist with a little blende distributed through the joints and cleavage plains. This ore, however, does not continue for any considerable distance along the level, inasmuch as at a point 10 feet farther north the vein is apparently filled with quartz for a width of 3 feet and shows no appreciable mineralization.

Descending to the next level, which extends north only, or in the opposite direction to the last, considerable stoping has been done, and in one place a winze has been put down and a small stope opened below the level. Practically, however, this level forms the bottom of the northern stopes, just as the level above forms the bottom of the senthern ones. This north level for the greater part of the distance consists of quartz and calcite, the former predominating. I could detect but little mineralization at any point. At this level a short drift extends souther! showing a vein about 2½ feet wide, mostly quartz but not containing pay minerals. A winze was started in the floor of the level and sunk 5. c, showing a fair yein of quartz and calcite but no pay minerals. T shaft extends at least 50 feet below this level at which point water was encountered. The level previously described has been recently under water and was smeared with mud and very difficult to examine. There was no one present to represent the owner of this property, which has been abandoned for several years, and the workings were scarcely safe, but having been informed there was considerable zine showing in the old workings, I ventured to make the examination without a guide.

Judging from the stopes, the vein so far as developed, contained one good shoot of galena together with a little blende, near the surface; which has been to \sim intents and purposes stoped out to the extreme boundaries of the shoot, — d in depth, so far as any pay ore could be followed. Other shoots may, however, be found by development on the strike of the vein to the south. lth ein ty;

igh ain my inc

ing all the ing

iist.

r a nen ng, and ns. ong tly zathe in

the orn es. nd ion ein ils. air at The ral ied

one ich ies ier oin

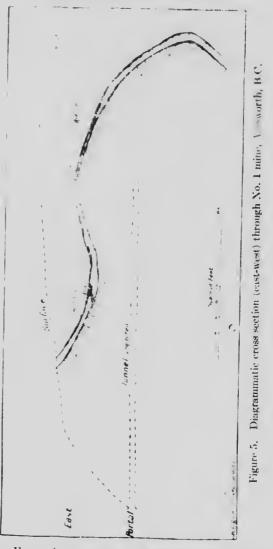
to

51

It is evident that the ore shoot splits in depth in two prongs, and the ore becomes more siliceous; quartz predominates and little, if any galena or blende can be noticed in the lowest workings. This fact, taken in connection with the showing made on the drift from the Highlander tunned augurs hadly for a prohtable exploration of this vein in depth. The easterly vein reached by a cross-cut from the incline-shaft has the best showing at that depth, and the few traces of ore found in the workings from the Highlander tunnel also occur in this casterly vein, at least the probabilities are such: for, as previously stated, wither vein has been connected between this tunnel horizon and the oid workings above,"

Replacement Deposits in Limestone.

NO. I MINLRALIZED ZONE.


One of the most important mineralized zones in the Ainsworth camp is the upper contact of the Silver Hoard formation (No. 1 linestone member) eith the overiging glossy black argillites of the Skyline formation. This zone strikes almost north and south and conforms to the dip of the surrounding sedimentary rocks, that is, in a general way, about 45 degrees to the west. It passes through the No. 4, Silver Hoard, Crown, and Gallagher claims and extends south to the Nelson granite west of the Neosha mineral claim and north beyond the limits of the Ainsworth maparea. No mineralization was seen north of the Gallagher claim, or south of the No. 1, but this extension north and south of the above limits is worthy of attention. The mineralized zone is marked at the surface by the presence of iron oxide which usually runs high in silver and since the outerop is soft and easily eroded, it usually lies in a slight depression filled with drift.

No. 1 Mine.

Situation. The No. 4 mine is situated 6 miles from Ainsworth at an elevation of 1,200 feet above sea-level or 2,140 feet above Kootenay lake.

Geology. The No. 1 ore-bodies occur in the No. 1 linestone, the youngest member of the Silver Hoard formation of Carboniferous age. The linestone is a dense white, crystalline variety which is very like a marble in appearance. It occurs in beds from 3 inches to 8 inches thick with a general dip to the west, although minor folds and overturned folds occur occasionally (Figure 5). This linestone is overlaid conformably by black argillites of the Skyline formation. The argillites are glossy black in colour and somewhat sheared. No igneous rocks were seen in the immediate neighbourhood of the mine, but a small intrusion of gneissic granite occurs just west of the mine buildings.

Mineralogy. The ore consists of a dark brown, decomposed mass consisting mainly of iron oxide, some lead carbonates, and wire silver. In places sulphide ore is visible and shows the presence of galena and zine blende with some pyrite and chalcopyrite. The gaugue is chiefly silicified and altered limestone which sometimes shows traces of the sulphides of lead and zine. The limestone when occurring in the ore shows the development of quartz crystals in cavities. The metallic sulphides often penetrate into the second of the foot-wall as minute stringers and replacement masses, but in no case were any cross veins seen which might represent the avenues through which the ore solutions passed.

Ore-bodies. From the accompanying diagrammatic cross-section (Figure 5) it can be seen that the ore-bodies occur as replacement deposits in crystalline limestone, near or at its upper contact with the overlying black argillites. The ore zones are two in number, one along the upper contact of the limestone and the other from 7 to 20 feet from this contact, in the limestone. Numerous interfacing stringers unite these ore zones, thus giving rise to a great many horsts of limestone. This arrangement of the ore-bodies taken in connexion with the structure gave the impression at first sight of a very complicated system of ore-bodies.

Structure. The structure at No. 1 mine is simple on the whole The ore zones follow the bedding planes of the limestone which the ore replaces and hence, as shown in Figure 5, occur in the form of synclines and of an overturned fold. The point of the overturn which occurs between the first and second levels in the southern part of the mine plunges to the northso that in the northern end of the property the overturn is found between the second and third levels. This explains the fact that as one goes from the southern end of the property to the northern end on the first level, the deposit illips to the cast, then becomes vertical, and in the northern end dips to the west. The deposit on the third level is almost vertical with a slight dip to the east in the northern end of the mine, but there the whole sedimentary series at Ainsworth dips to the west, it is very probable the limestoneargillite contact will be found to have a westerly dip at no great depth. Additional support is given to this sutmise by the fact that in the extreme southern end of the third level the contact has a dip of 85 degrees to the west.

An analysis of No. 1 or (furnished by the Canadian Mining and Smelting Company is as follows:

Measture	
Au	6.5
Ag	Thranker (1)
Ph	S 7 - 21 -
Fe	A men
Sitt	a di seconda
ALO,	23 8
C'(14)	
5	29.0
Zn	1.5
	9.1

Silver Hoard.

Situation. The Silver Hoard mine is situated 7 miles by wagon road in a northwesterly direction from Amsworth, at an elevation of 1,300 feet above sea-level or 2,540 feet above Kootenay lake.

Geology. The Silver Hoard ore-bodies occur on No. 1 mitocalized zone. The limestone (No. 1 limestone) is a dense, which have variety in beds from 6 to 8 inches thick, dipping in general about 15 degrees to the west but exhibiting minor synclines and overturned folds. The functione is overlain conformably by the glossy black argillites of the Skyline formation. No igneous rocks were found in the vicinity of the mine.

Mineralogy. The ore consists of a mixture of coarse galena and zine blende with minor amounts of pyrite and chalcopyrite. Native silver occurs in cracks in the ore and in the limestone in the immediate vicinity of the ore and, as wire silver, in the small cavities. The gaugue consists mainly of green fluorite with minor amounts of calcite. Small pieces of silicified limestone occur in the ore-bodies. The ore and gaugue in many places penetrate by means of fissures into the foot-wall as minute

ere-

ent

g-Ls

ıg

er

t.

stringers and small replacement masses. No cross veins which might represent the avenues through which the mineralizing solutions passed, were detected in the workings.

Ore-bodies. The ore-bodies occur as replacement deposits in the No. 1 limestone at and near its contact with the overlying black argillites and like others which occur as replacement deposits in linestones are irregular in character. The ore occurs in two distinct zones in the No. 1 linestone, the upper zone occurring at the contact with the black argillites and the lower occupying a position in the himestone foot-wall from a few feet to 25 feet below the upper horizon. No oxidized ore was seen at the time of the writer's visit, but Dawson' states that at the time of his visit in 1889, the outcrop of the ore-bodies was almost completely decomposed, resembling the ore of the No. 4 mine. The states also that he was informed that shipments from this oxidized ore ren 105 onnecs in silver. The normal moxidized ore runs about 20 ounces in silver to the ton.

Structure. The structure of the Silver Hoard deposit is identical with that of the No. 1 (Figure 5). The ore zones dip to the west from the surface to the 100-toot level where a shallow syncline – occurs which passes into an open anticline. Between the 100-foot level and the 200-foot level, the ore zones change from a westerly to an easterly dip. – Below the 200-foot level no information as to the structure is available, but it is probable the ore zones follow the folding of the rocks which, on the whole, dip at an angle of 45 degrees to the west.

Crown.

Lecation. The Crown mineral claim occurs on the No. 1 mineralized zone halfway between the Silver Hoard and the Gallagher. The portal of the tunnel has an elevation of approximately 4,425 feet above sea-level or 2,665 feet above Ainsworth. It is reached by a trail from the Silver Hoard mine.

Geology. The mineralized zone (Map 1791) occurs at the upper contact of the No. 1 limestone with the overlying black, glossy argillites of the Skyline formation. The present workings have not explored the mineralized zone to any extent, the main tunnel having been driven past the zone into the black, glossy argillites which are generally barren in the Ainsworth area.

Ore. The ore consists of a brown, earthy, decomposed mass which in appearance resembles that of the No. 1 mine, but the values in the Crown mineralized zone are unknown. In the development of the property, this mineralized zone (Map 1791) should receive first attention.

Gallagher,

Situation. The lower tunnel of the Gallagher is 3,925 feet abave sea-level or 2,165 feet above Kootenay lake and from the portal a trailheads to the Highland-Ainsworth wagon road.

Geology. The are-badies of the Gallagher are situated in the No. 1 limestone of the Silver Hoard formation which in this locality is folded into

⁴Dawson, G. M., Geol. Surv., Can., Ann. Rept. 1888-89, p. 52B.

a structure similar to that shown in the No. 1 mine (Figure 5). This structure can be seen in the raise from the main tunnel (1916). The workings are entirely in the No. 1 limestone.

Mineralogy. The ore being mined at the time of the writer's visit consisted of oxidized earthy ore which is reported to run high in silver. In the report of the Minister of Mines, British Columbia, for 1889, an assay is given which shows this earthy carbonate to run 280 onnees to the ton in silver, for 95 tons shipped to the smelter.

Ore-bodies. The ore-bodies which at present constitute the Gallagher mine consist of irregular replacement deposits in the No. 1 limestone. These bodies are spaced irregularly and no systematic arrangement was observed. From studies of the No. 1 mineralized belt it is evident that the main mineralization occurs in the No. 1 limestone near its contact with the overlying black argillites. The development work on the Gallagher has not explored this contact and if further development work is considered, the most likely place to find ore is at the above-mentioned contact.

Production. The production in 1915 was 13 tons; and in 1917, 31 tons.

OTHER PROPERTIES.

Star and Sunlight.

Situation. The Star and Sunlight claims are situated east of the No. 1 mine. The lower tunnel on these properties has an elevation of 3,536 feet above sea-level or 1,776 feet above Kootenay lake. A road, now difficult to follow, leaves the Ainsworth No. 1 mine wagon road above the United claim and reaches the Star shoft and cabins.

Geology. The geology of the claims is given in detail (Map 1787) in order to show the lithology of the Star limestone, the gradational contacts of the Star limestone which is characteristic of the limestone formations, and the structural features of the gneissic granite. All the rocks dip from 25 degrees to 40 degrees to the west and strike approximately north and south.

Ore-bodies. The imsafe condition of the shaft where the ore was extracted prevented an examination of the ore-bodies or the ore. It is reported^{μ} that the ore consisted of galena and lead carbonates with very little zinc.

Workings. The workings consist of a number of open pits, a shaft, an incline, and two tunnels. The lower tunnel has been driven (Map 1787) for a distance of about 800 feet, but no vein nor ore-body of any value was struck.

Tiger.

Situation. The Tiger claim is situated on the south slope of Cedar creek at an elevation of 3,450 feet above sea-level or 1,690 feet above Koot-enay lake. It can be reached by trail either from the Highland or from the lower tunnel of the Star.

Report of the Commission appointed to investigate the zine resources of British Columbia.

Geology. The deposit occurs in the lower part of the Star limestone in the horizon represented in the lower Star tunnel (Map 1787). The rocks consist of staurolite or andalusite schist and whitish grey crystalline limestone. The rocks strike almost north and south with a dip of 50 degrees to the east. In the long cross-cut tunnel chiefly staurolite schist with small bands of limestone occur. In the upper workings an anticline was noted which showed the ore occurring in the limestone at the contact with the overlying schist. Evidently, as in the majority of the replacement deposits, this contact, as well as the limestone in the immediate vicinity of the contact, is the most promising place for the formation of ore-bodies.

Ore. The ore consists of coarse-grained galena which occurs as crystals in the open spaces in the vein, showing the cube and octahedron faces. Some zinc blende and a little pyrite which is sometimes copper-bearing complete the mineralogy of the ore. The gangue is quartz and silicified limestone.

Ore-bodics. The ore occurs as replacement bodies either in the limestone itself or at the upper contact of the limestone with overlying staurolite schist.

Ayesha.

Situation. The Ayesha mineral claim is situated on Cedar creek about 3,500 feet above sca-level or 1,740 feet above Kootenay lake and can be reached by a trail from the Highland wagon road up Cedar creek.

Geology. The rocks exposed in the Ayesha consist mainly of limestone with bands of staurolite or andahusite schist. The horizon is probably near the base of the Star limestone. These rocks strike north and south with a dip of 45 degrees to the west.

Fissure System. Two fissures (Map 1788) are exposed on the Ayesha with a general northwest trend and dipping southwest at angles of from 60 to 65 degrees. Along each fissure there is a horizontal displacement of 15 and 20 feet, the northern wall of the fissure being displaced to the west in each case. The fissures are identical in character with the fissures described in a previous paragraph, both in the strike and dip and in the character of the displacement along the fissures. The mineralogy of the fissure to the lead in the galena. The above evidence supports the conclusion that the fissure veins and the replacement deposits are contemportant.

Ore. The ore consists of coarse-grained galena with small amounts of zine blende and pyrite. The gaugne is calcite and quartz.

Ore-bodies. The ore is a replacement deposit in limestone at its upper contact with the schist and hence conforms in dip and strike with the limestone. Ore occurs in each of the fissures, especially in that portion which joins the two replacement bodies.

Workings. The deposit is opened up by three shallow shafts and by open-cuts. The tunnels, one of which is on the Anna May, were not driven far enough to reach the ore-bearing horizon.

Krao.

Situation. The Krao is situated on the wagou road from Ainsworth to the No. 1 mine, at an elevation of 3,250 feet above sea-level or 1,490 feet above Kootenay lake.

Geology. The rocks outcropping on the Krao claim belong to the Josephine formation and consist of hornblende schists, coarsely crystalline limestone, the most important member, and banded quartzites all striking approximately north and south with a dip of about 45 degrees to the west.

Ore-bodics. At the time of the writer's visit (1915) the shaft was filled with water and the workings inaccessible. The following description of the Krao is taken from the Report of the Commission to investigate the zine resources of British Columbia 1906, page 163.

"At the Krao mine the limestone exhibits a sheeted structure and there is probably a fault running parallel with the creek at this point, but no evidence of it could be detected other than the continuous sharp depression, as previously noted. In the sheeted zone at the Krao the limestone is impregnated with galena and some blende, siderite often filling the fissmes while the circulating waters have dissolved irregular pipe-like cavities in the limestone, which have later become lined with mineral, chieffy galena, next to the limestone, with an outer coating of blende and siderite. The deposit has been stripped at surface for a width of about 60 feet and a length of 150 feet, and 6,858 tons averaging 22 ozs, silver, 12 per cent lead, and 8 per cent zine had been quarried out, hand sorted, and shipped to the smelters prior to October 31, 1905. The ore apparently runs fairly well in silver, and wire silver is a common occurrence in the cavities and joint planes within the mineralized area.

Three men were at work shooting out the ledge for a width of about 30 feet, sorting it over and sacking the sorted ore for shipment. The opencut had reached a depth of about 12 feet. The fissure near the hangingwall appears to be the larger of the group, and contains considerable iron oxide resulting from the decomposition of the originally contained ores, in fact all the sheeting planes near the surface, and many of the vugs and pipes, are tilled with this oxidized material in which rich silver ore and wire silver are very often found.

A shaft was sunk on the hanging near the main fissure to a depth, I am informed, exceeding 100 feet, but at the time of my visit the water level was reached at 35 feet at which point a cross-cut extended about 10 feet into the sheeted zone, exposing a mass of white crystalline linestone penetrated by numerous irregular tubes and vugs, lined with galena and siderite (Plate X111, Figure 2). The galena has also penetrated the crystalline linestone for some distance from those tubes and vugs and from the fissures in its mass (Plate X111, Figure 1). The vein was exposed at this depth for a length of about 30 feet, extending for a short distance on either side of the shaft. The northern face exhibited a very rich appearance owing to the good showing of galena, while the south side was much poorer in galena and nuore quartzose. The shearing has a strike of north 45 degrees west and a westerly dip of about 80 degrees. I should judge from the hardness of the linestone that it was somewhat silicified by the ore-bearing solutions which circulated within it. This property presents, on a small scale, the same phenomena as the Blue Bell property on the east side of Kootenay lake, very little development has been carried out, and one can only class it to-day as a very promising prospect, in which development in depth may prove up good payable ore deposits."

Workings. Since the report of the Commission was published, a long transel has been driven through the Crow-Fledgling mineral claim to intersect the Krao himestone with its possible ore-bodies. The tunnel has an elevation of 3,060 feet (barometric) above sea-level and passes through the following rocks in the first 850 feet of its course starting from the portal. The remainder of the tunnel, which is the most important part from an economic viewpoint, was inaccessible on account of foul air.

Banded quartzites. Vein (small amounts of galena)	Feet. 350
Crystalline limestone	185 45
Crystalline litnestone	
Banded quartzites Remainder	215 inaccessible.

Buckeye.

Situation. The Buckeye mineral claim adjoins the Josephine on the north. It is connected with the Highland wagon road by a good trail. The elevation of the main tunnel is 3,540 feet above sea-level or 1,780 feet above Ainsworth.

Geology. The ore deposit proper occurs in the Star limestone which in this locality is quite siliceous, the weathered surface being characterized by the presence of sand. This limestone is underlain by a dark grey andalusite mica schist which is exposed in the lower tunnel of the Buckeye. Underneath this schist occurs the platy quartzites which were exposed in the extreme northern face of the first level of the Highland mine. The Star limestone is overlain by another belt of andalusite mica schist.

Orc-bodies. The ore-bodies occur as replacement deposits in the Star himestone and are irregular in their boundaries. The replacement bodies are associated with a fissure vein which strikes north 40 degrees west and dips 70 degrees to the south. The amount of movement along the fissure could not be ascertained.

The ore consists of pyrite, zine blende, and galena in a gaugue of silicified limestone, calcite, and quartz.

Workings. As the old shafts and tunnel were inaccessible the following description of the conditions of this deposit in 1905 may be of interest.⁴

"Development work on the Buckeye consists of two inclined shafts 100 feet apart, each about 40 feet deep, and one tunnel 200 feet long driven in under the shafts. The surface showing of zinc ore is considerable, but the work done does not seem to have been carried sufficiently far to expose the ore at depth. The two shafts are located on a northeast and southwest

Report of the Commission appointed to investigate the zinc resources of British Columbia, Dept. of Mines, Mines Branch, 1966.

line, while the tend of the vein appears to be more north and south. There was too much water in both shafts to permit examination of the bottom. To the south of the first one a distinct mineralization is visible on the surface. The second shaft was started outside of the vein, with a view to intersecting it at a depth of about 70 feet, but it was never sunk to that depth.

The tunnel, which is about 75 feet below the surface showings, was driven as a cross-cut for 70 feet. At that point a body of zinkiferous ore has been intersected and followed for 45 feet. The ore-body only shows in the roof and has not been raised upon. Drifting in the tunnel was continued for an additional 150 feet through country rock, when a second shoot of zinky ore was encountered at the breast, where it can be seen. This exposure appears to correspond with the principal surface showings and seems worthy of attention. In order to learn its extensions the tunnel should be continued. The work was evidently left immediately after ore was broken into, as it was considered of no value by the owners, who at that time were looking for clean silver-lead ore, and not for a matrix of zine and iron ore with more or less galena mixed through it. A sample of the face (top and bottom), taken on the vein for width of 18 inches assayed 23 per cent zine, but carries less than 1 oz. silver to the top."

A lower tunnel to tap the ore-bodies at depth has been driven at an elevation of 3,540 feet, or 100 feet below the outcrop. The tunnel penetrated the andalusite schists but did not reach the Star limestone which contains the ore-bodies. In 1918 preparations were under way to continue the first level of the Highland mine to reach the Buckeye ore-bodies.

76183 - 5

CHAPTER VH.

PHYSIOGRAPHY.

ORIGIN OF THE PURCELL TRENCH.

(Kootenay Lake Valley.)

SUMMARY.

(I). Orogenic movements first affected the Selkirk range in southern British Columbia in the late Jurassic period.

(II). The first granodiorite intrusion of the West Kootenay (Nelson) batholith took place in the late Jurassic period.

(III). The batholith was unroofed in the Upper Blairmore time.

(IV). The upland surface of the present Selkirk range was formed by erosion during the period from late Jurassie to early Tertiary. This period of erosion was brought to a close by the Laramide orogenic movements which built the Rocky mountains and raised the upland surface of the Selkirk range almost to its present height.

(V). The Purcell trench and similar master valleys of the Selkirk range were cut into this upland surface during the Tertiary and Quaternary periods and hence are antecedent river valleys.

GEOGRAPHY.

Every one who erosses the Canadian Cordillera by way of the Crowsnest pass or the southern route is struck by the beauty and even north-south continuity of the great longitudinal valleys or trenches. In east to west order the trenches are: the Rocky Mountain trench (Kootenay River valley) separating the Rocky mountains on the east from the Selkirk mountains on the west; the Purcell trench (Kootenay Lake valley); the Selkirk valley (Columbia River valley); the Okanagan Lake valley; and the Fraser River valley (Figure 2).

The Purcell trench is situated in the Selkirk mountains⁴ and crossethe International Boundary line at longitude 116 degrees 30 minutes (Figure 2). It extends from the boundary in a northwesterly direction and joins the Selkirk trench at the northern end of Upper Arrow lake, a drowned portion of the valley of the south-flowing Columbia river. Daly⁺ considers the valleys of the Duncan and Beaver rivers to be the northern extension of the Purcell trench, whereas the writer considers the northern portion of the trench to be the valley occupied by Lardo river, Tront lake, and Beaton creek which flows into Upper Arrow lake and thus joins Selkirk valley and Purcell trench.

¹Nomenclature of the mountains of western Canada: Geographic Board of Canada, April 2, 1918. ²Daly, R. A., Geol, Surv., Can., Mem. 38, 1912, p. 26.

The following facts support the change in the delineation of the Purcell trench:

The Purcell trench is a valley formed by an antecedent river and the valley occupied by Lardo river, Trout lake, and Benton creek is of similar origin.

The valley of Duncan river parallels the strike of the rocks and is probably a subsequent river.

Kootenay lake occupies the central portion of the trench and is drained from a point near its centre by the west-flowing Kootenay river which empties into Columbia river. The southern portion of the trench is occupied by the north-flowing Kootenay river.

TOPOGRAPHY.

In a view from one of the higher peaks of the Selkirk range, the most striking feature is the series of almost unbroken ridges, having an approximate elevation of 7,000 feet. The ridges trend in all directions without relation to the underlying structure and evidently represent the remnants of an uplifted and dissected peneplain. Numerous peaks having elevations of from 8,000 to 9,000 feet project above this old land surface and great valleys have been carved to a depth of 6,000 feet below it. The ridges form convenient highways for exploration once this upland surface is reached. In marked contrast to those of the Selkirk mountains, the ridges of the Rocky mountains to the east have remarkably constant northwest trend and have a direct relationship to the structure of that system, in that they are great northwesterly-trending fault blocks.

GEOLOGY.

The Purcell trench is carved in a series of sedimentary rocks ranging in age from Beltian to Carboniferous. This series is intruded by masses of granodiorite, offshoots of the west Kootenay batholith of Jurassic age (Plate II). The following is a condensed geological table:

	Unconformity. West Kootenay (Nelson) batholith	Till, unconsolidated gravels and sands.	
Carboniferous Carboniferous or Pre-Car- boniferous	Hocan series (fossiliferous).	Mainly quartzites, argillaceous quartzites, limestones and their metamorphosed equivalents.	

STRUCTURE.

Viewing the geology of the whole trench as shown on Figure 6, it will be seen that the sedimentary series forms a huge and almost symmetrical bow, convex to the east. The general dip is almost everywhere towards the inside of the bow at an angle of about 45 degrees, so that in the northern part of the treach the rocks strike northwest with a dip to the southwest, bending gradually until in the middle part the strike is north-south with a dip to the west, and in the southern part southwest with a dip to the northwest. The granite masses, the eastern fringe of the west Kootenay-Nelson batholith, have had no effect on the general strike of the sedimentary series and it is seen that the Purcell trench is earved into the terrane without reference to its structure.

ORIGIN.

The origin of the Purcell trench has been described by Daly¹ in the following words: "The Rocky Mountain trench and the Purcell trench are likewise located on zones of profound faulting: in each case the constructional profiles may have been grabens as typical as that of the middle Rhine or that of the Dead sea ". The geology of the Purcell trench in the neighbourhood of the International Boundary line was worked out in greater detail by the writer in 1913 and it was found that the faults marked by Daly on the geological map as occurring on each side of the Purcell trench were not present and that the valley in this locality was not a graben². The area was again examined in 1915 and these results were confirmed. In 1916 Drysdale³ made an examination of the section in the neighbourhood of the International Boundary line and again confirmed these results. In 1915, the area in the vicinity of Procter on Kootenay lake was carefully examined for evidence of faulting. This locality was especially favourable for geological field work since the formations cross the lake almost at right angles. The formations were followed from the high mountains on the east side of the lake across Pilot point and into the mountains on the west side of the trench and ... very persistent linestone band dipping northwest at an angle of 45 degrees was used as a horizon marker. A fault parallel to the trench would have offset this limestone band, but no evidence of a break was found. At the north end of the trench Baneroft has found no faults. From the above facts, it may be concluded with certainty that faulting played no part in the formation of the Phrcell trench. In 1915, the writer stated his belief that the Selkirk mountains4 were mountainbuilt for the first time at the close of the Jurassic. The facts on which the conclusion was based may be summarized as follows:

The present drainage bears no relation to the underlying structure.

The sediments of the Cretaceous in the neighbouring Rocky mountains to the east are, in part, made up of the products of the erosion of these Jurassic mountains.

The following table shows the succession of geological formations of the Rocky mountains in tabular form:

⁴Daly, R. A., Geol. Surv., Can., Mem. 38, pt. 2, 1912, p. 600. 4schofield, S. J., Geol. Surv., Can., Sum. Rept., 1914, p. 41; Geol. Surv., Can., Mem. 76, 1915, p. 168. 4Drysdale, C. W., Geol. Sucv., Can., Sum. Rept., 1916, p. 61. 4Schofield, S. J., Geol. Surv., Can., Mem. 76, 1915, pp. 160-169.

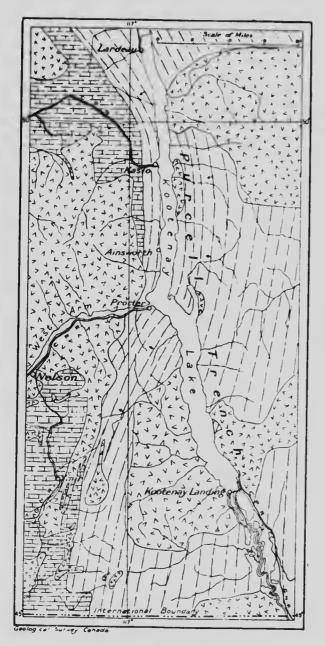
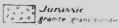



Figure 6. Diagram[showing the geology of the Purcell trench.

Legend

Carbonifernus limestones guartaite mica-schists and altered volcanics

Pre-Carboniferous to Beltian quartz tes, limesto es schists

Period.	Formation.	Condition of deposition.	Lithological character.
Tertlary	Paskapoo (Edmonton Bearpaw.	Freshwater. Brackish and freshwater	
Upper Cretaceous.	Helly River series . Colorado	Marine Brackish Marine	Shales. Sandstones and shales, Shales
	Upper Blairmore	Subaeriai	Sandstones, conglomerates (granite and chert peb- bles.)
Lower Crelaecous .	Lower Blairmore.	Subaerial	Shales and conglomerates (quartzite and chert peb- bles.)
	Kootenay	Subaerial	Sandstones and shales. Coal.
Upper Jurassie . Devonian and Carbon-	Fernie shales	Marine	Shales.
iferous Lower Palaeosole	••••		Limestones and quartzites. Limestones and shales.
Pre-Cambrian (Beltian).	Disconformity. (Purcell series) Galton series)	Continental	Mainly quartzites and argillaceous quartzites.

Geological Formations of the Rocky Mountains.

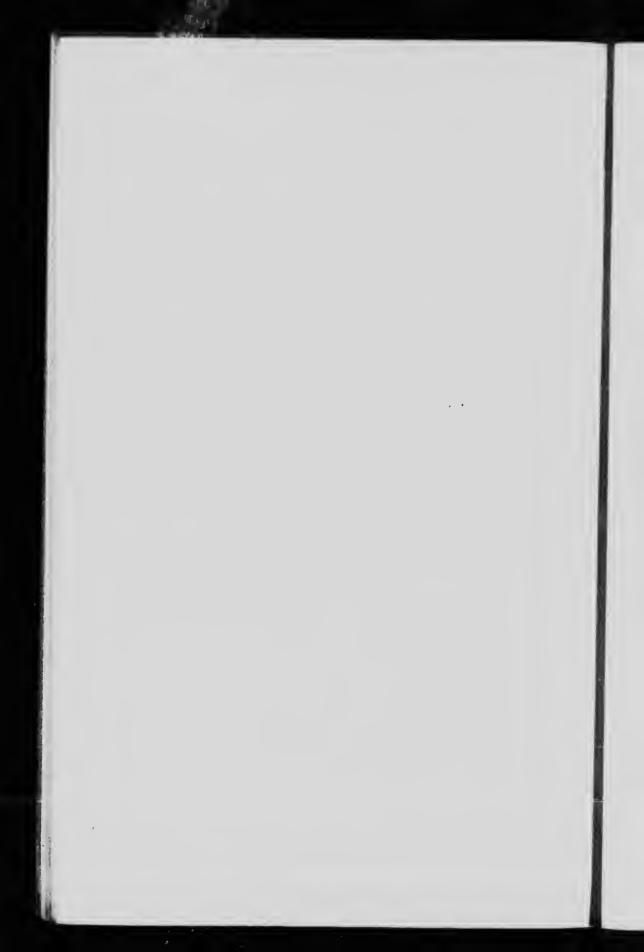
From an examination of the above table it will be noticed that con" glomerates are first found in great amount at the base of the Lower Blairmore formation. The pebbles in these conglomerates consist of quartzites and chert derived from the quartzites of the Beltian rocks which make up the great part of the Selkirk range. Evidently in Lower Blairmore time the Selkirk range was approaching the maximum of elevation and was undergoing rapid erosion. The Upper Blairmore formation also consists of eonglomerates and sandstones, but in it, in addition to pebbles of quartzite and chert, pebbles of granite occur for the first time and in great abundance. The presence of the granite pebbles at this horizon is interpreted to mean that the Nelson granite batholith which forms the core of the Selkirk range in southern British Columbia was unroofed and exposed to rapid erosion during Upper Blairmore time and furnished the pebbles for the conglomerate. Hence it is established that the first intrusion of granodiorite into the Selkirk range took place before the deposition of the Upper Cretaceous. The superposition of the marine Fernie shales upon the marine Devono-Carboniferous limestones suggests that the period of stability which prevailed throughout British Columbia until the Triassic was interrupted during the upper Jurassic period. The Selkirk mountains received their initial form probably at the close of the Jurassic or in early Kootenay time. If mountain-building and igneous intrusion are contemporaneous, it may be concluded that the first intrusion of granodiorite in the Selkirk range commenced towards the close of the Jurassie and continned until the mountain-building reached its maximum in Kootenay time.

du

for

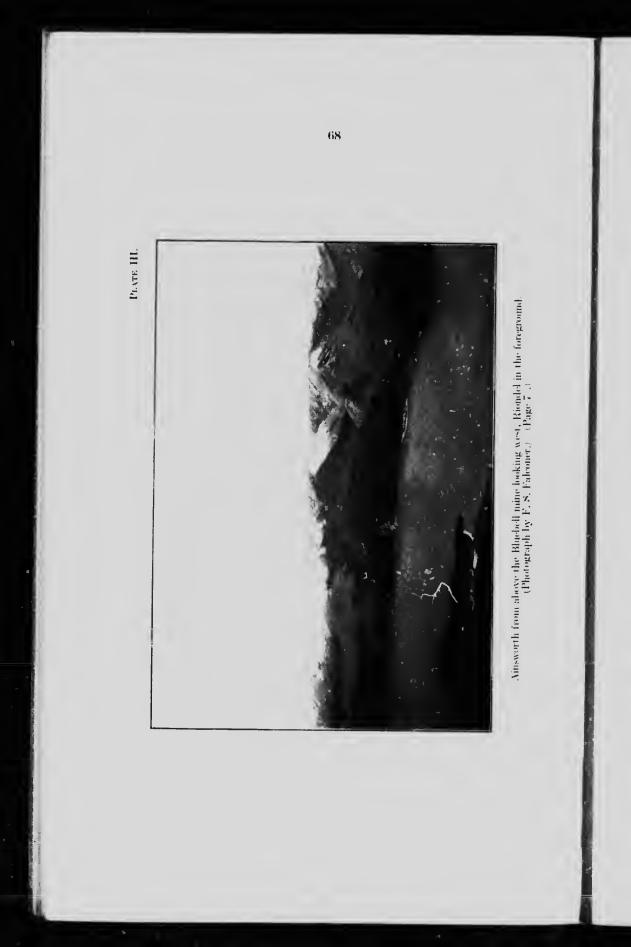
bec

1


U P

L

Tabular History of Selkirk and Rocky Mountain Systems in Southern Britin Columbia,


Selkirk mountains.	Pe	riod.	Rocky mountains,					
Uplift of peneplain	Eccene		Orogenic movements (Laramide Revolution). Freshwater sedimentation. Brackish and freshwater sedimen					
Late maturity (final) bath- olith unrooled	Upper Cretaceous	1 4 4714347284143	Marine acdimentation. Brackish sedimentation.					
Youth (initial) Possible initiation of oro-		Lower Blairmore Kootenay	Subserial sedimentation, Subserial sedimentation, Subserial sedimentation,					
genic movements Stable marine condition Stable marine condition	Upper Jurassic	Carboniferous	Marine sedimentation. Marine sedimentation.					

In early Tertiary, the Laramide revolution took place, causing an uplift of the Selkirk mountains and the formation of the Rocky mountains. The effect of this uplift in the Selkirks was to slowly raise the old land surface formed during the Cretaceous almost to its present height, with the natural result that the streams which meandered over the old surface were rejuvenated and cut their present valleys into the old peneplain. As these streams bore no relation to the underlying structures, the valleys cut by their rejuvenated descendants, the present main valleys of the range, bear no relation to structure. Thus the main valleys of the Selkirk range have been earved during the Tertiary and Quaternary periods in a peneplain which was formed during the Cretaceous and early Tertiary periods. Such has been the origin of the Purcell trench which contains Kootenay lake.

A the state

INDEX.

69

A .

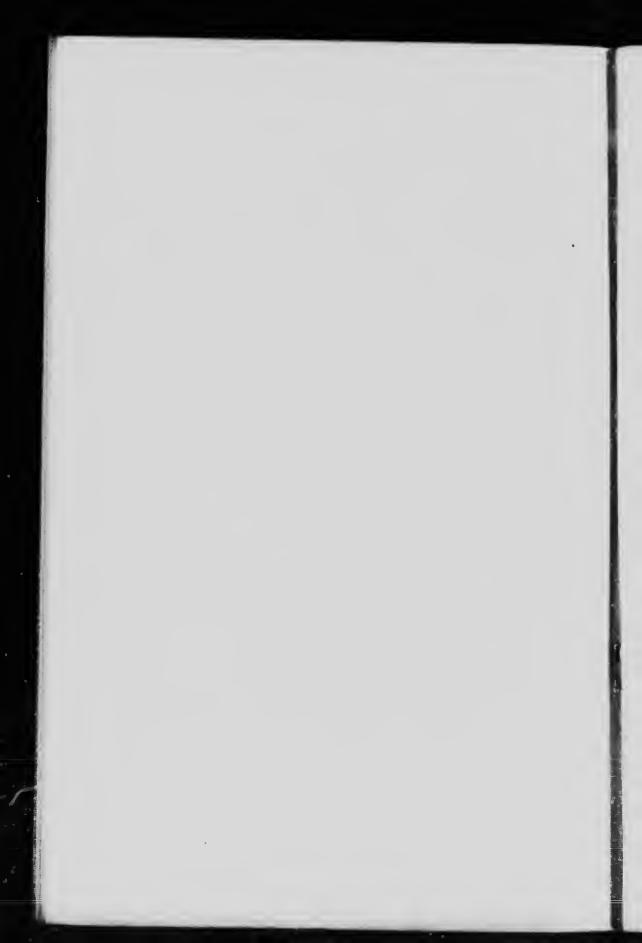
Actional of amounts	PAG
Acknowledgments	
Ko relations of replacement denosity and true figures trains	
insworth	3
" openh	
epoen	
" limestone	· · · · ·
" mines production of	1
" mines, production of	
entering contrapted and a second	
district, future of	
" division, mineral production of	d
" aprice	3
	10 .
bion mineral claim, description and geology of	i
talvate granite	4
a second products a state the second s	
" Nelson granite, Brock " " Gwillim	2
" Gwillim. " No. 1 mine, Canadian Mining and Suudime Courses	2
dalusite	a
dalusite kerite.	1
kerite	
ea	0
gall, P	
gall, P	. 15. 4
esha mineral claim	2
" description and geology of	0
description and geology of	. 5

в.

n

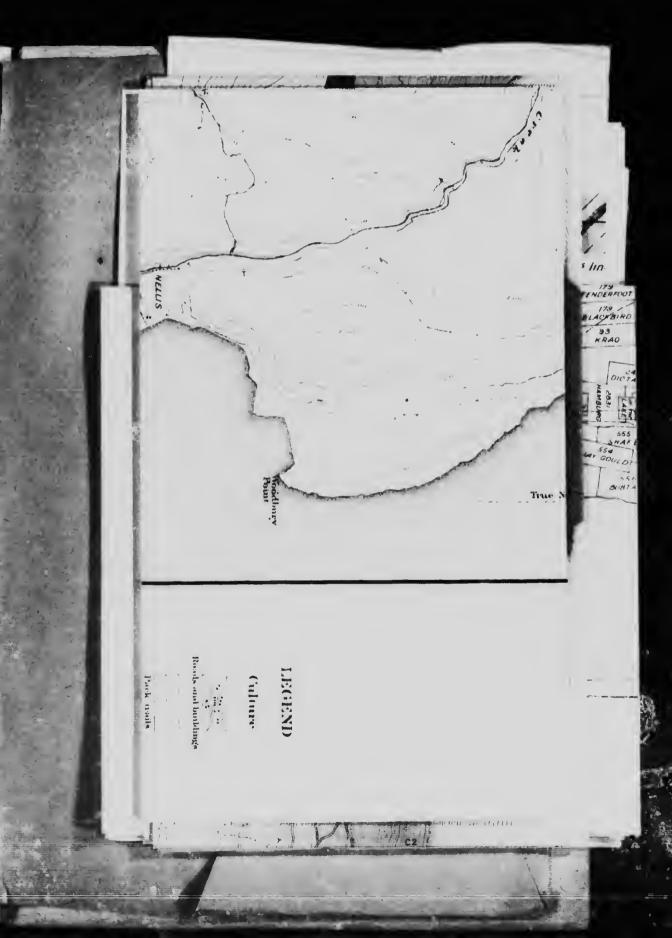
Baneroft, M. F.				• • • •	۰.		• • •											
Baneroft, M. F Banker minc	••••••	• • • • •	• • • •	•	• •	• • •	• • •	• •	• • •	• •								
" mineral claim description	and modern		• • •	• • • •	• •		• • •	• •	• • •		• •			· · ·			-13,	
Bibliography. Bluebell mine	and geology	oi	• • •		• • •	• • •	• • •	• • •	• • •	• •	• •	• • •	• • •	• • •	• •			
Bluebell mine.		• • • • •	• • • •		• • •	• •	• • •	• • •	• • •	•	. •	:		• • •	• •			
Boggs, O. D. Brock, R. W.	••••••••••••	•••••	• • •	• • • •	•••	• •	• • •	• • •	• • •	• •	1,	а,	-8,	32	. :	33,	-34,	
Brock, R. W. Broken Hill mineral claim			• • • •	• • • •	•••	• •	• • •	• •	• •	• •			•	• •	• • •		•	
Broken Hill mineral claim			• • • •	• • • •	• • •	• •	• • •	• • •	• •	• •	• • •	• •	• • •	• • •	• • •		. 18,	
Buckeye mineral claim "description a	• • • • • • • • • • • • • • •	• • • • •	· · · ·	• • •	• • •	• • •	• • •	• • •	• •	•••	• • •	• •	• •	• • •				
" " description a	nd molom		•••	• • •	•••	• • •	• • •	• •	• •	• • •	• • •	• •	• • •					
the second secon	na georogy i	u.			• • •	• • •	• • •	• • •										۰,

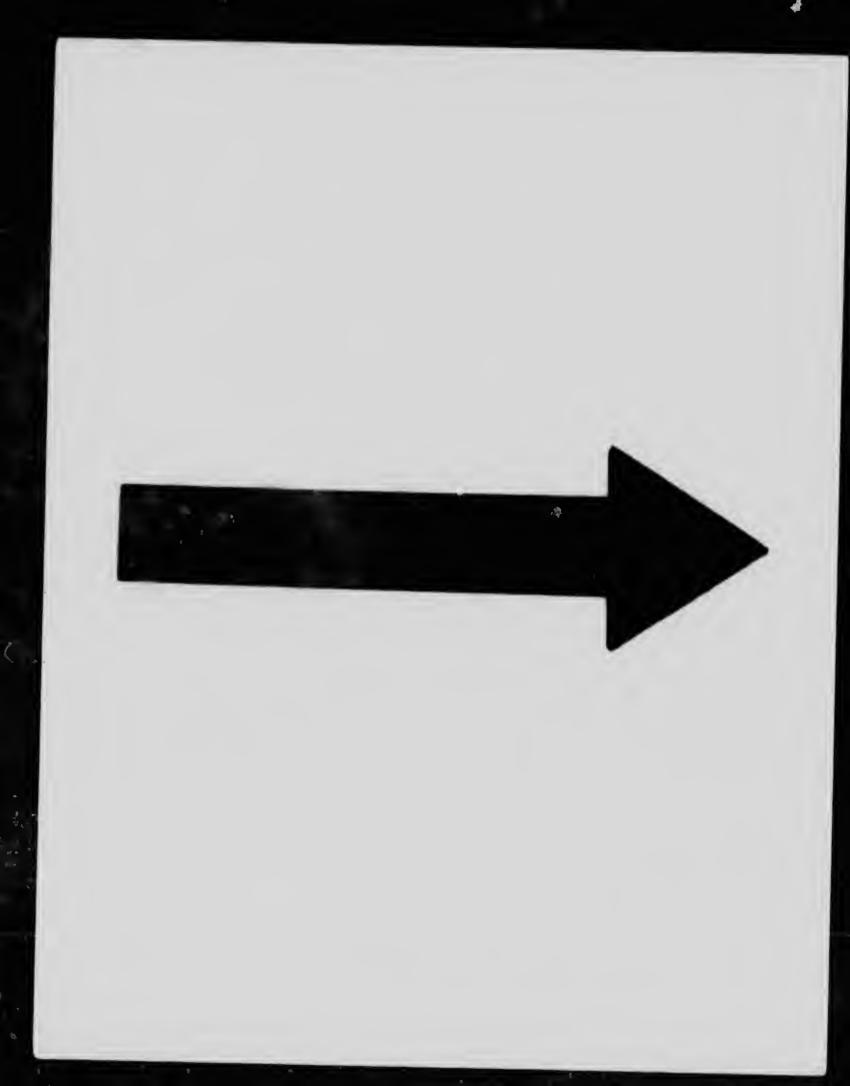
	4
•	

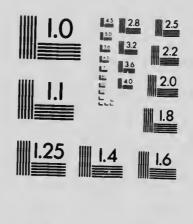

Calcareous spar.		
Calcite		3
Calcium fluoride.		3
Camptonite	•••••••••••••••••••••••••••••••••••••••	*: 8
Canadian Mining and Smolting C.		- 2
Banadian Pacific railway	hipany	- 3
Carbonates		
arboniferous	•••••••••••••••••••••••••••••••••••••••	3
arlylo W A		1
edar crock		3
		. 3
		3
		3
nour d'Alor a la la		0
AP	* * * * * * * * * * * * * * * * * * * *	9
onee cheek	2. 7.	ģ
onsolidated Mining and Smelting	Company, Limited	
		7, 0
		3
" pyrites		3
ork-Province deposit		3
retaceous		3
row-Fledgling mineral claim.	and goology of	2
rown mineral claim, description a	and geology of	- 5
and a second the second s	mer georgy off	5

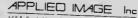
D.	
Daly R A PAGE	
Daly, R. A. PAGE Dawson, G. M. 6	2
Deposits, age of 4, 8, 13, 15, 17, 5	
Diamond mineral claim, description and geology of	
Dietator elain	
Drysdale, C. W	
Dykes, age relations	
E.	,
Eardley-Wilmot, V	,
Daily Dild Child	
" " cpoch	
Anneral chain, description and geology of	ł
F.	
Falconer, F. S.	,
Field work	
" " " parallel with bedding planes	
43 Florence mine	
" Silver Fraction claim	
" Mining Company	
"Mining Company 40 "Mining Company 2 "Iter spar 40 Fluorite 34 Possils 34	
Fluor spar	
Fasily 34	
Fawler, S. S 17, 18, 22	
Fraser River vulley	
Fasile 34 Fossils 17, 18, 22 Faser River vulley 2, 36 Frost, A. M. 40	
G.	
Galena	
Gallagher mineral claim, description and goology of	
Geology, economic	
Gleoingy, teconomic	
Classis drift 25	
Glengurry uneral claim description and molony of	
Gneissic granite	
8ge 01	
" "lithology	
Granite, age and correlation. 19 analysis. 22 4 attempt schemes 20	
CAUCIDAL ICRALIONS.	
Granites	
Gwillim, J. C 19, 20 20, 21	
Ш.	
Halides	
House W M	
Highland group, description und geology of	
Highlanden mine	
History, geological	
Atomorente senist	
Hot springs.	

	1.	PAG
ngnil, E. D		
ames R. clain) eanctte mineral claim, description and geology osephine epoch formation urassic	y of	11. 19,
	К.	
(nslo		
Sinslo "creek Sielly, A. F. Sindle, E. M. Sokance glacier. "mountain. "mountain. Soctenny lake. "Lake valley Strao limestone. "mine		4,
machar chann, in scription and glorogy o	L.	
amprophyric dykes aura M. claim avender, J. A cead "carbonnte 		
" carbonnte .eRoy, O. E .ibby linestonc " mineral claim .imestonc	· · · · · · · · · · · · · · · · · · ·	34.
imestone. .imestone. .ittle Phil mineral claim, description and geol- .oceation. .ower Blairmore formation	ogy of	. 22,
	М.	
		0 17
AcConnell, R. G AcConnell, R. G Maestro mineral clnim, description and geology Magnetic sulphide of iron. Marcasite. Mica hornblende schist Middle Palæozoic Mineral production of Ainsworth mining division Ameral production of Ainsworth mining division Mineralogy Mines and prospects, description of Mountain Cougar fraction clnim	y of	4, 8, 15,
darcaste. dica hornblende schist diddle Palæozoic diperal production of Ainsworth mining divisio		
fineralogy fines and prospects, description of, fountain Cougar fraction claim	•••••••••••••••••••••••••••••••••••••••	
	N.	
Varrows creek Native elements Velson batholith " analysis, Brock Gwillim Seoshe mineral claim	· · · · · · · · · · · · · · · · · · ·	17, 20,
" " analysis, Brock " Gwillim		15,
Neogha mineral claim.		
Gwillim Neeshe mineral claim New Canadian Metals Company Niskonlith (Lower Cambrian) No. 1 limestone.		1, 19,


0.		
Okanagan Lake valley. Ore deposits. " " age relations " " " classification of. Ores. " origin of. " values of. O.T.K. claim. Oxides	100 00 00 00 00 00 00	E. 60 32 35 35 35 35 35 35 35 35 35 35
Р.		
	6 2 2 0, 1 1 4 4 1 2 2 1 0 4 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	9800801277010221
Q.	-	
Quartz Quartzite Quaternary Queens Bay	34 12 29 12)
R.		
Recent Replacement deposits and true fissure veins, age relation of in limestone Riondel Rocky Mountain geosyncline """"""""""""""""""""""""""""""""""""	24 35 51 25 65 65 60 16 19	
8.		
Saunders, D. E. Section, Josephine formation Selkirk depression "Mountain system, tabular history of series "valley (Columbia River valley) Shuswap (Archean) "lake	40 65 2 60	
" lake	14 25 28 15 34 53	


		PAGE	
•	" mineral chain. " description and geology of. " tunnel Staurofite schist Steel galena Sulphite of lend " " zinc Sulphides		0 88 11 10 15 17 13 12 14 19
	Sunight mineral claim, description and geology of a second s		
	T. Table of geological formations, Rocky mountains """ formations. ""showing character of sediments Tabular statement of geological record Tarriff mineral claim, description and geology of Tiger nineral claim, description and geology of Tropography ""mineral claim, description and geology of ""mineral claim, description and geology of "True fissure veins and replacement deposits, age relations of Twin claim """	· 9,	$ \begin{array}{r} 64 \\ 61 \\ 22 \\ 9 \\ 49 \\ 29 \\ 55 \\ 6 \\ 13 \\ 44 \\ 35 \\ 40 \\ \end{array} $
	Uglow, W. L., United claim " mineral claim, description and geology of. Upper Blairniore formation " Palazozoic.	22,	$33 \\ 15 \\ 42 \\ 64 \\ 18$
	Ψ.		
	White lead ore		34 40 7 4
	Zine. ^a blende ^a ^a analysis Zwickey, Mr		30 33 34 34

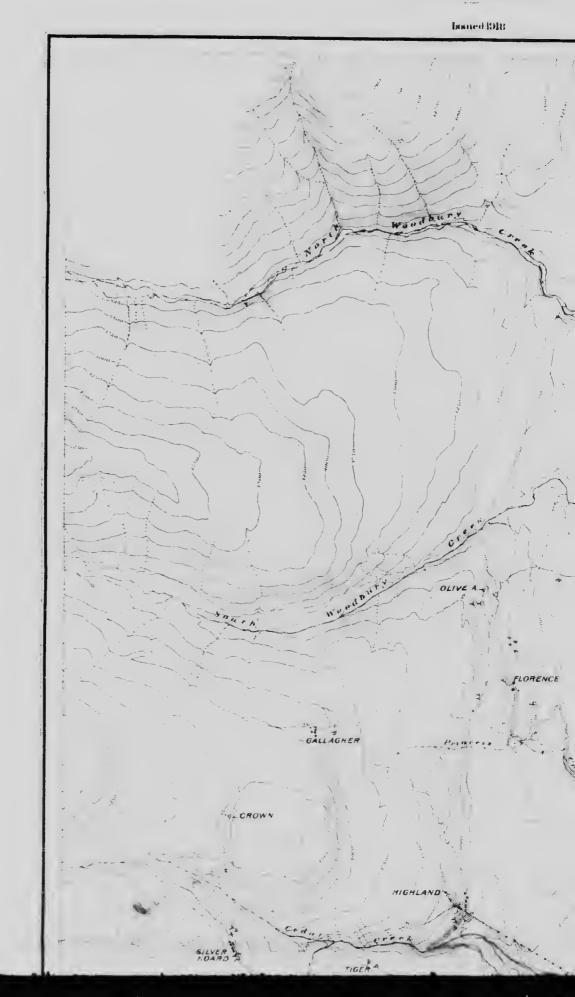




MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

1653 East Main Street Rochester, New Yark 14609 USA (716) 482 - 0300 Phone (716) 288 - 5989 - Fax



۰.

Canada Department of Mines

GEOLOGICAL SURVEY

WILL AN MENNES DIPE. T.N. REPLOTIS

incs

NEW DEPUTY VINIO EN

EY Renedarsh

LEGEND

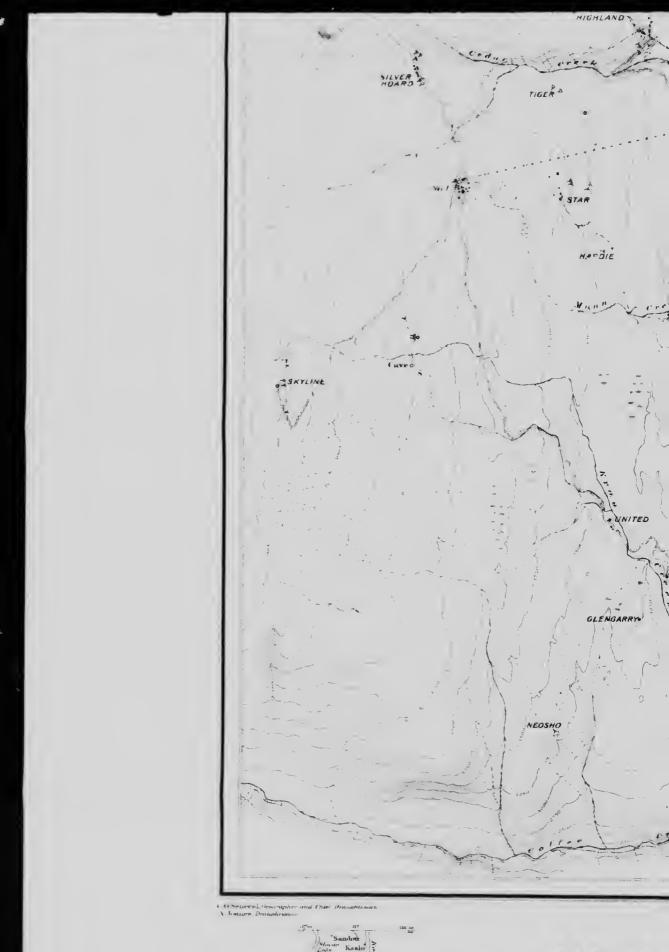
Culture

Roads and buildings

Pack mails

Trails

Mill Traniways


Aerial trainways

Churches I Post offices

t Cemeteries

Shai't houses

Tunnels

Slorau MAP Au #2 TT

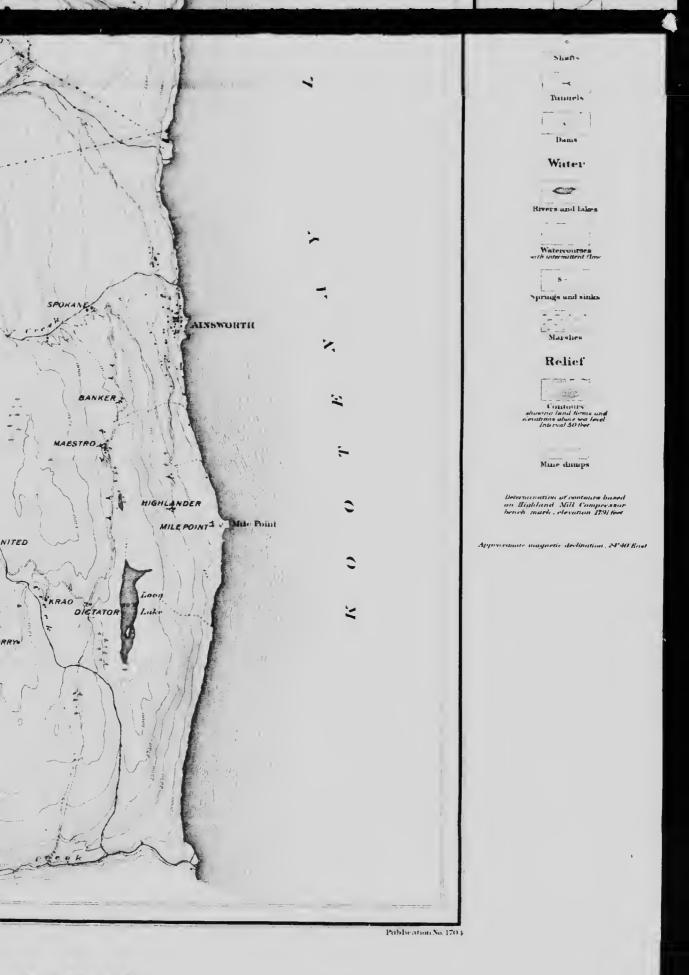
Nelson

OTTARA

The sould as Miles on I fact the

Konteusy

H


1 11

AINSW KOOTENAY E BRITISH COL

TIGER

Scale, 24

Peet 2005 1000 1000 0 Metres 500

SWORTH

NAY DISTRICT

SH COLUMBIA

TOPOGRAPHY F S.FALCOWER, 1914-1915

Scule, 24000

Pers 2000, 4000

Metres annu Ison

-

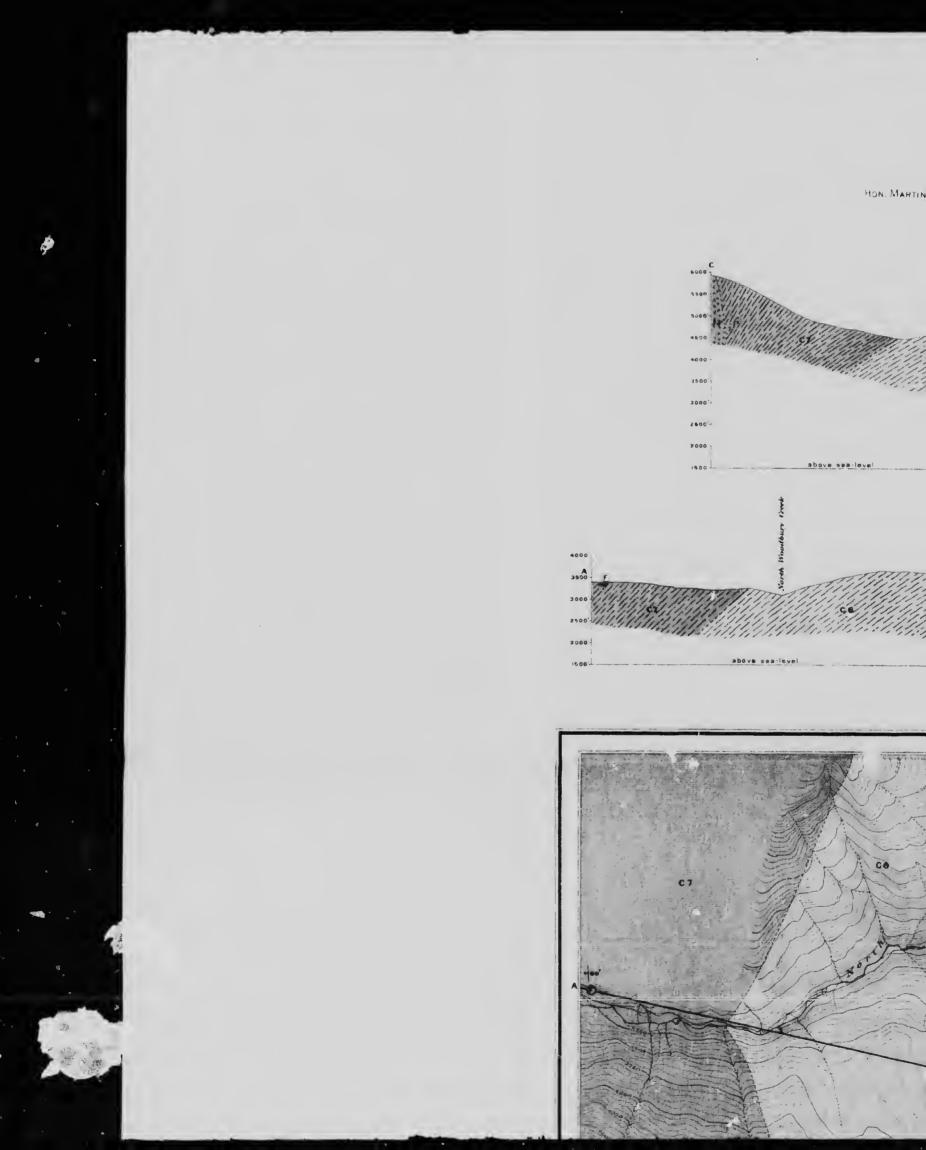
LEGEND

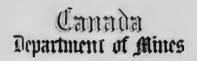
True North

Foint Point

Culture

Roads and buildings

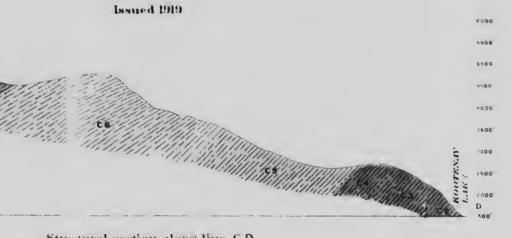

Pack trails


Trails

Mine tramways

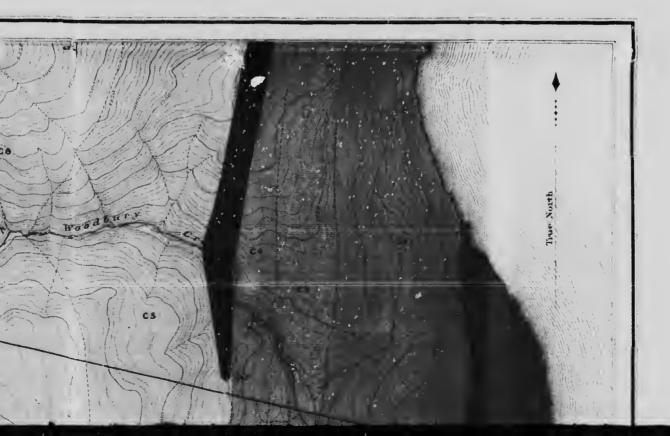
------Aerial trainways

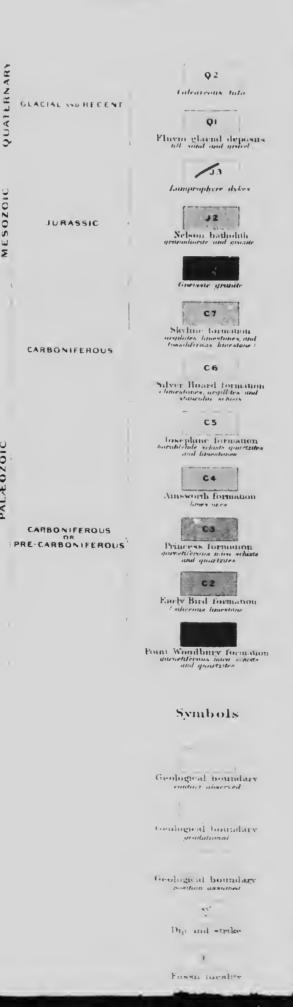
.

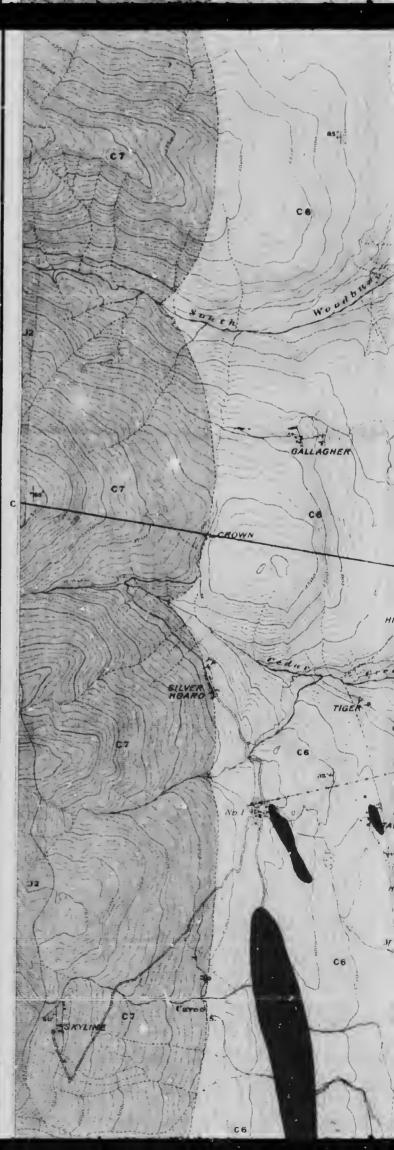


N. MARTIN BURI L. MINISTER, R.G.MCCONNELL, DEPUTY MINISTER.

GEOLOGICAL SURVEY


WIL 14" MOINNES DIRECTING GEOLOGIST




Structural section along line C D Scale, horizontal and vertical, \$5,000

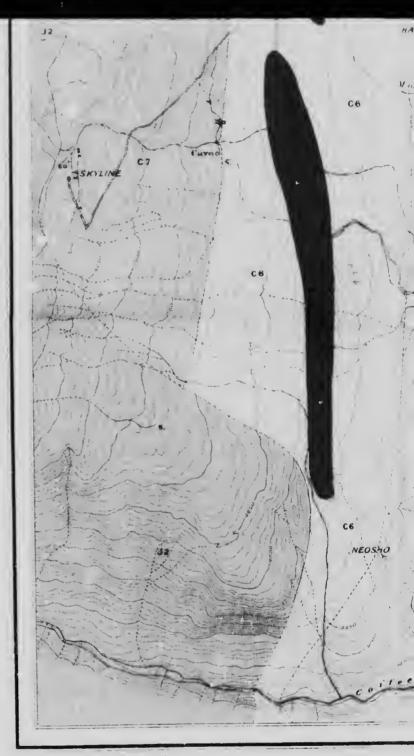
Structural section along line AB Scale, horizontal and vertical 14,000

LEGEND

MESOZOIC

PALÆOZOIC

.


surdage if benefitary

Composit beambars generational

Gradiage at burnetars position associat

> tio t Diposiel scienter

F Fassil basality

(O Sensecul, designapher and third Draughtsman A Justics, Disauchtsman

ко

DOOL

Springs and smas-

Morshes

Relief

Constantion showing board torray and developed above was level Interval 300 tors

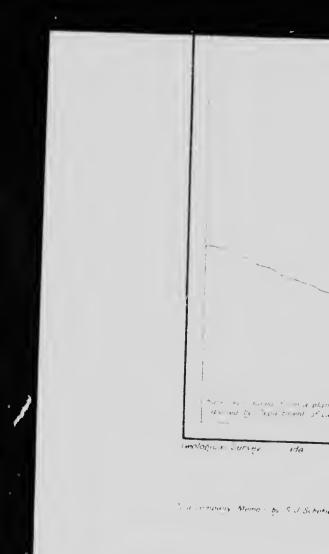
Mine dumps

Determination of contours haved on Righland Mitt Congression beach mark selection (1914)

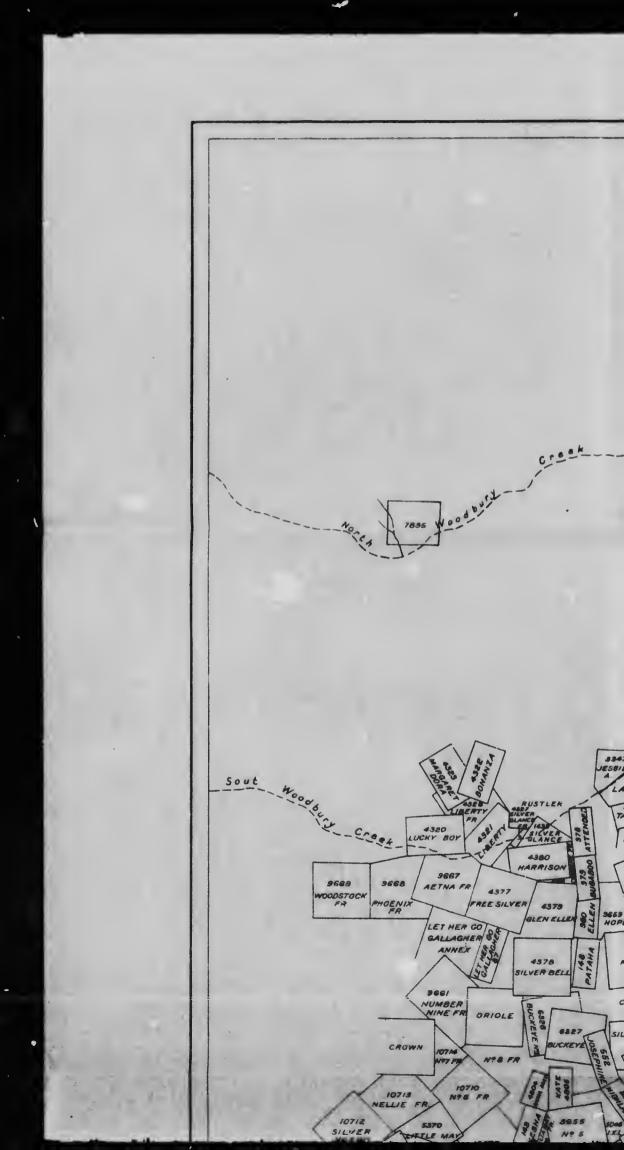
Approximate magnetic declination, 24'40 Kent

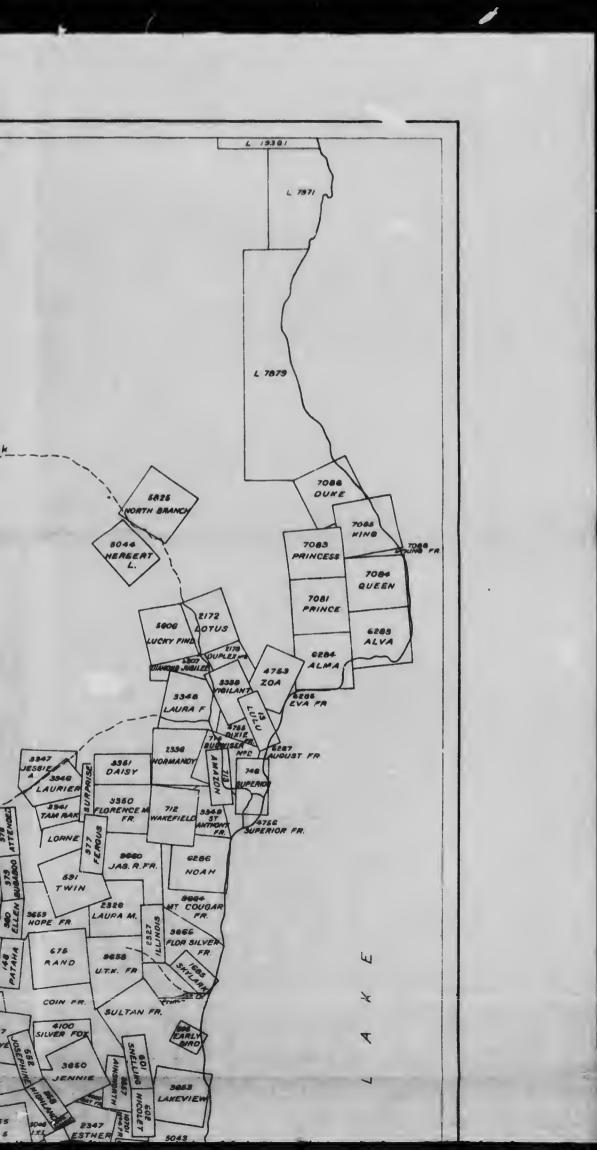
Publication No 1742

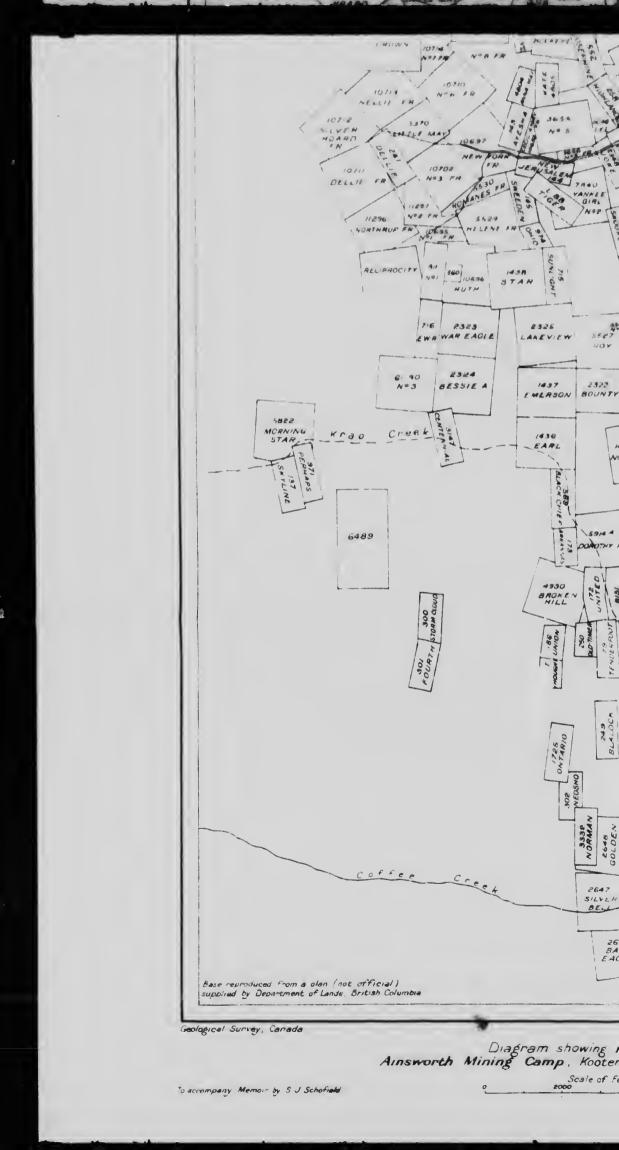
AINSWORTIN KOOTENAY DISTRICT BRITISH COLUMBIA


 Scale, 21000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000
 2000

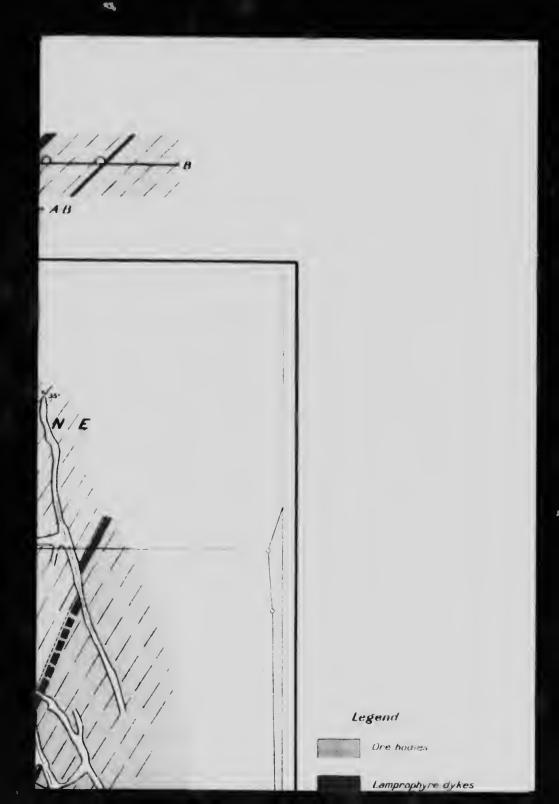
2000 FEET TO I INCH


GEOLOGY S J. SCHOFIELD. 1915 AND 1918

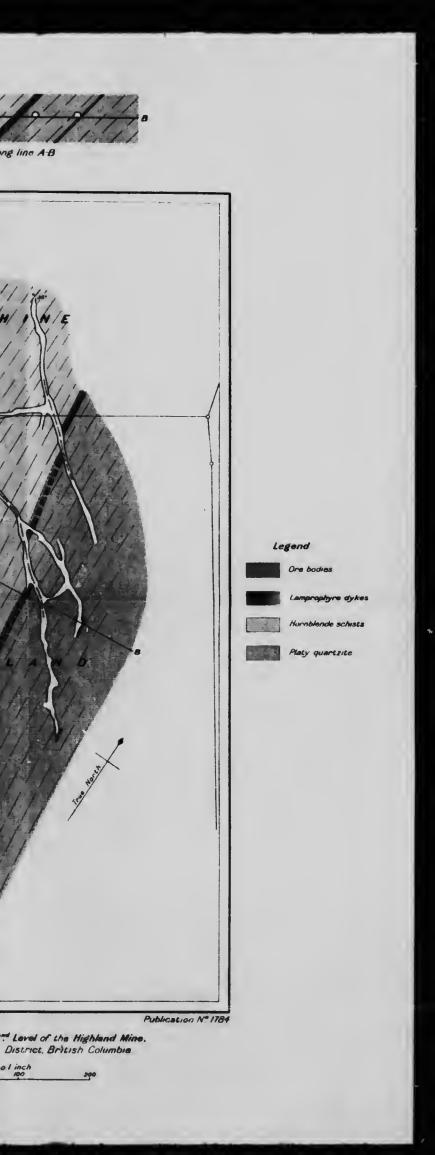

TOPOGRAPHY FS.5ALCONER /9/4-/9/5

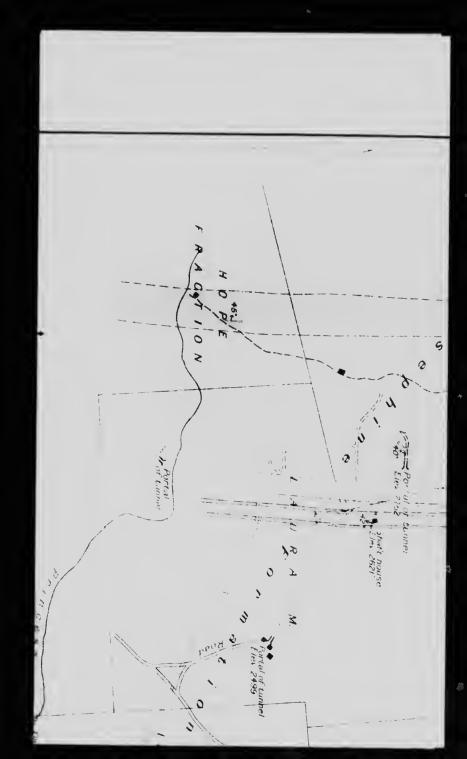

> 4 G

SECONNU 33349 0 + + e . e i r e t "it official) Us Eritish Columbia plan +nus ida Diagram showing Ainsworth Mining Camp. Koo 2000 Scale S J Schotielo 0



owing **mineral claims**, Kootenay District, British Columbia. ^{Scale} of Feet





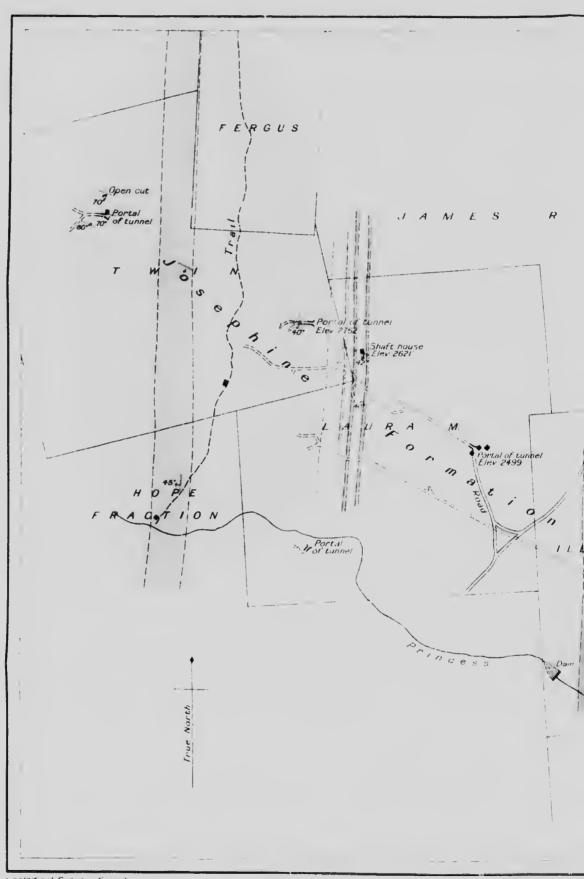
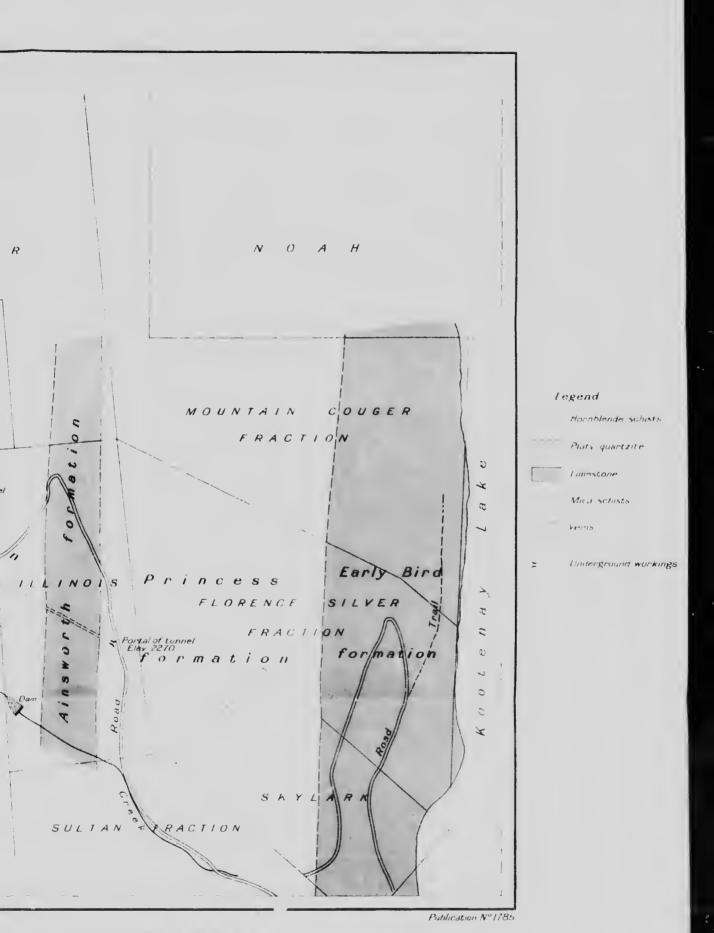

Geological Survey. Canada

Diagram showing goology of the 2rd Level of Ainsworth Mining Camp, Kootenay District, Scale. 100 Feet to I inch

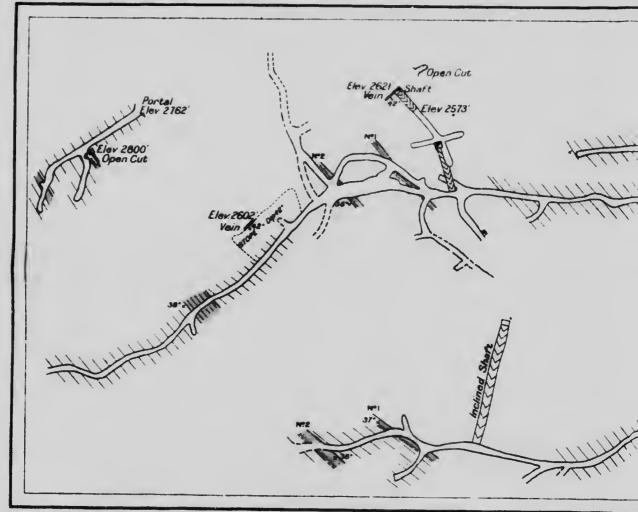
100



Geological Survey, Canada

Diagram showing geology of certain milieral claims of the Ainsworth Mining Camp, Kootenay Distri

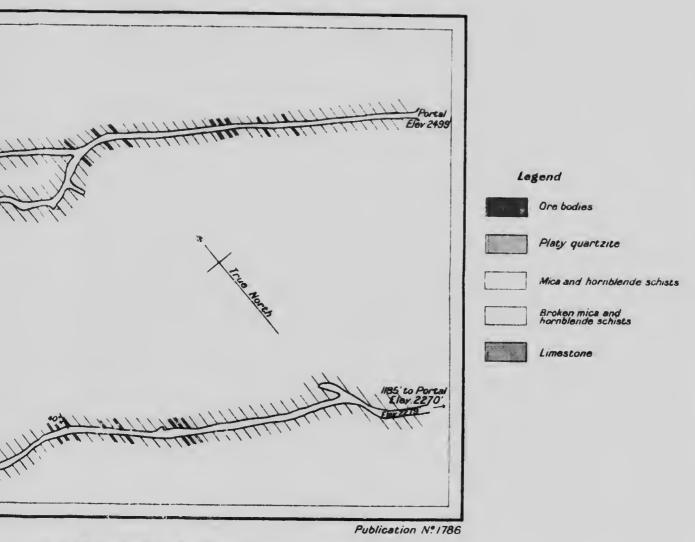
200 0 200 400 *00



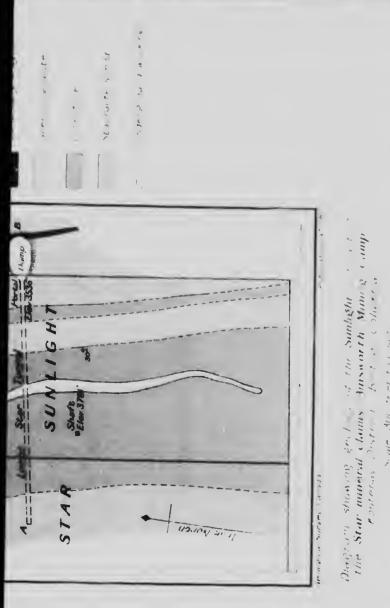
ms of the Florence Silver Mining Company. ay District, British Columbia

et to Linch 640 800 1000

Amsworth Mining Camp, Kootenay District, H Diagram showing geology of the underground workings of the Scale 100 feet to linch inclined Shart ar's 1 New 4 ALL ALL Geological Survey, Canada


100

Geological Survey, Canada.

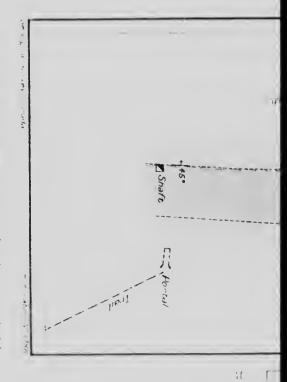

Diagram showing geology of the underground workings of the Flo Ainsworth Mining Camp, Kootenay District, 200

Scale, 100 feet to I inch

the Florence Silver Mining Company, vice, Pottish Columbia

ch 200

Side Sur ser Linger d'un



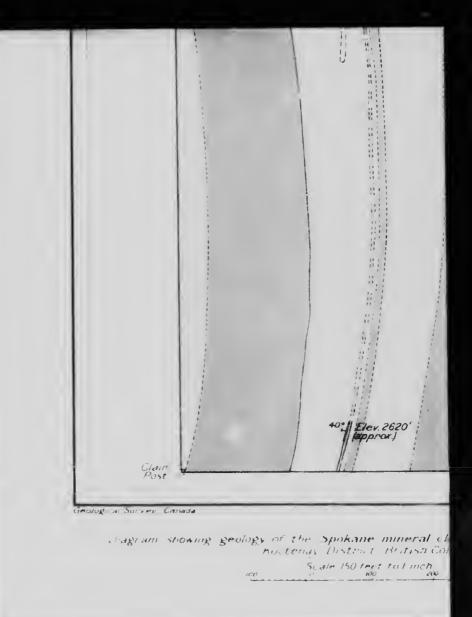
Lower Star Tunnel M Scale, 300 feet to I meh

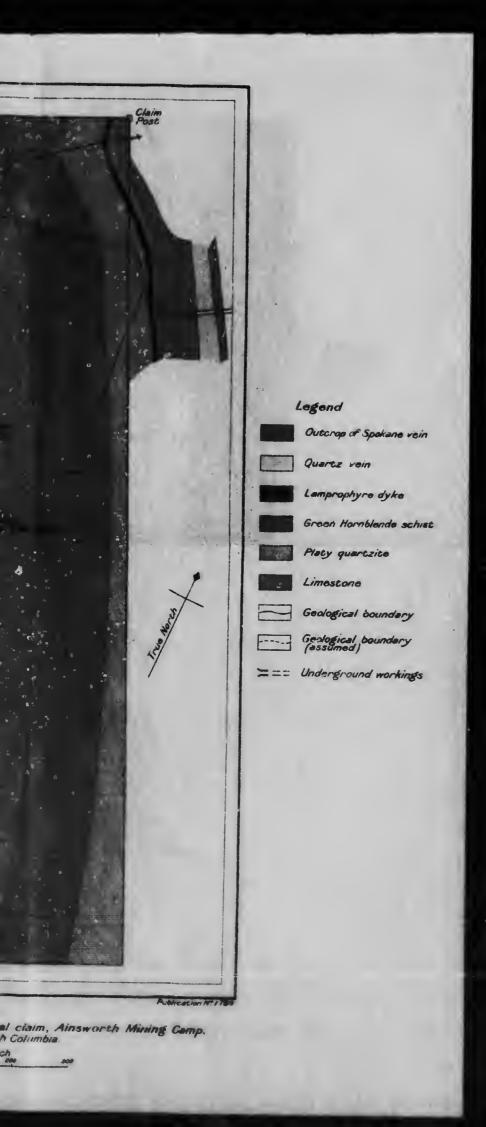
of the Sunlight and part of Ainsworth Mining Camp, British Columbia feet to I inch

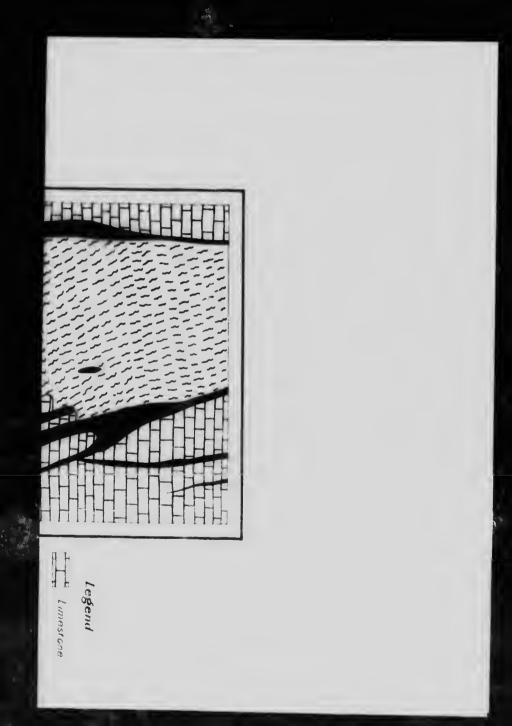
Marte Mard

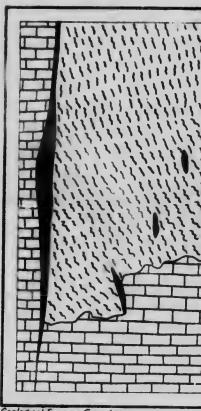

Servist

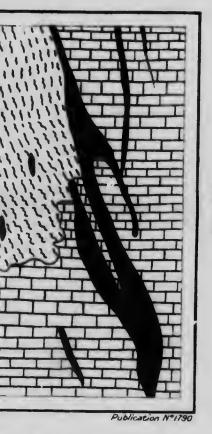
Dage is so work general of the Avesha more al chim dinsworth Mining Comp. Postoria, District British Constants


Scare Still met to . . net die

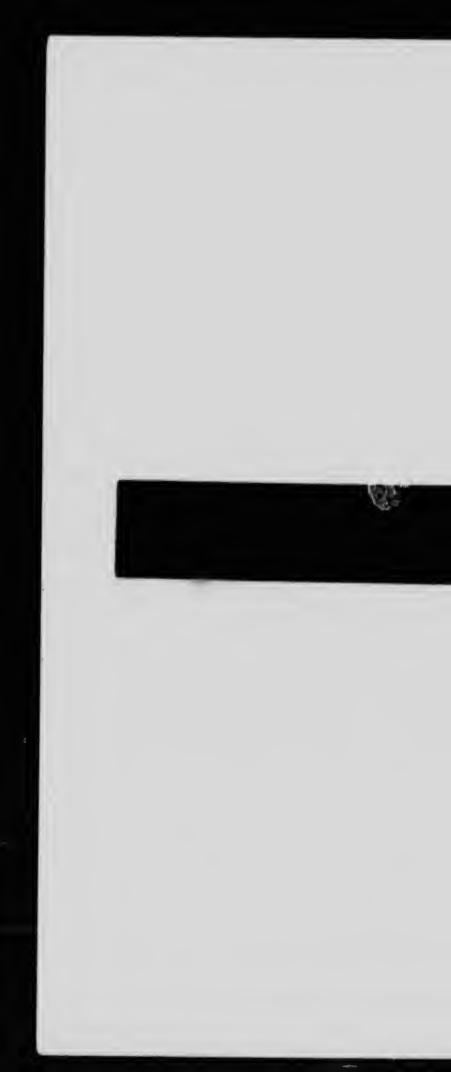

Diagram snowing geology of the 1 Ainsworth Mining Camp, Postenay Dist Scare 300 foet to 1 in

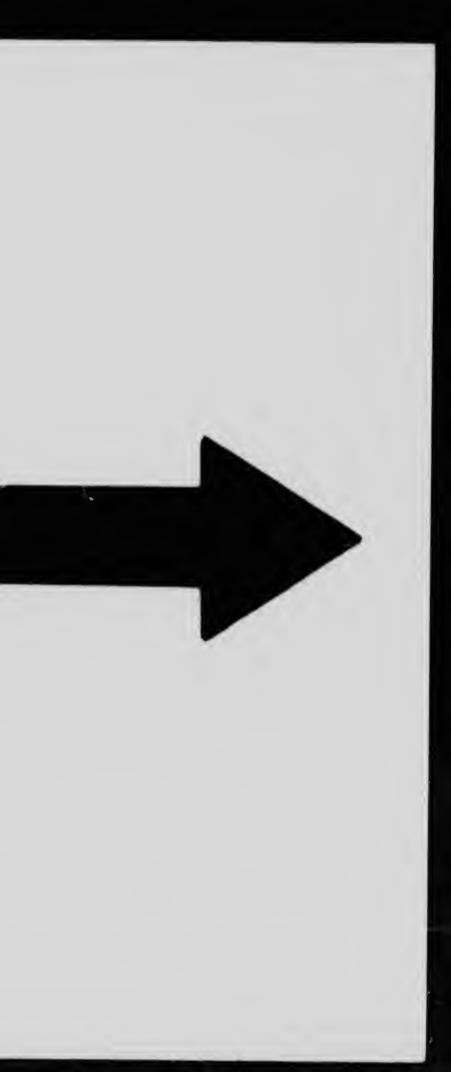


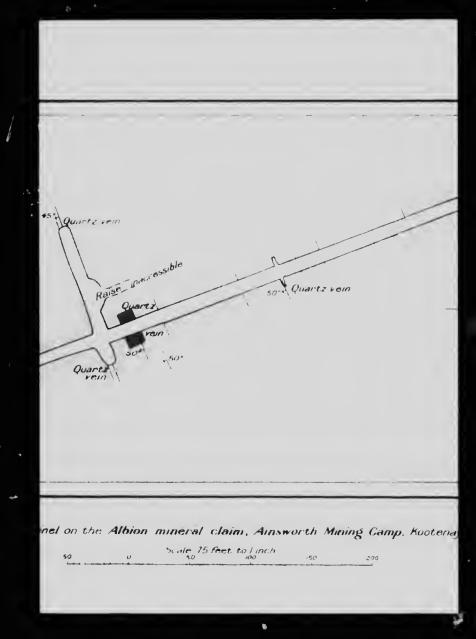

of the Ayesha mineral claim enay District, British (olumibia net to I inch 400

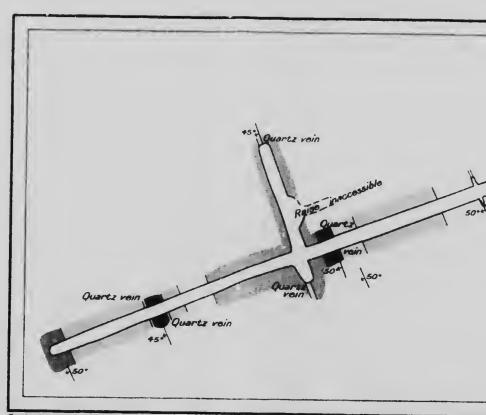


Geological Survey, Canada.

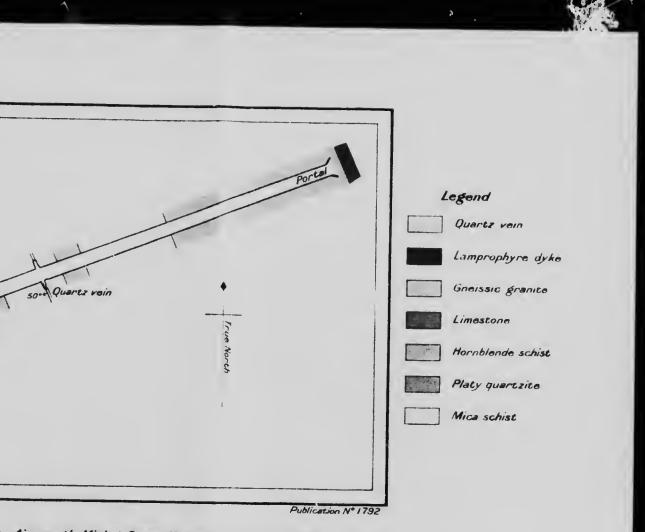

Å


Cross-section of vein at the face Early Bird mineral claim, Augus Mining Camp, Kootenay Disti Scale of Fee 0 ۷

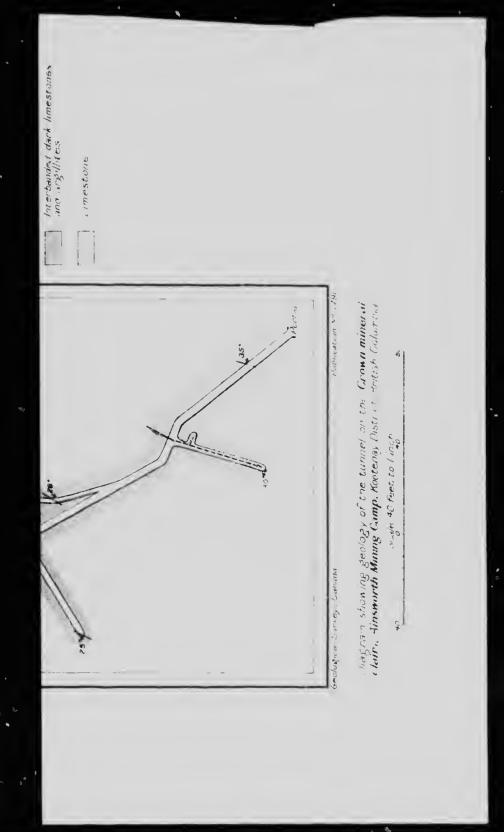

the face of Lower Tunnel on the **n**. August 25th, 1914, Ainsworth ay District, British Columbia. We of Feet

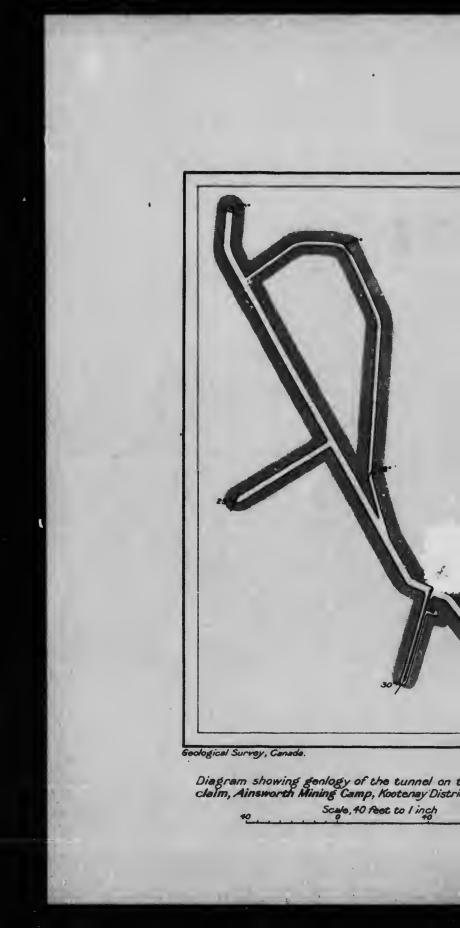


MICROCOPY RESOLUTION TEST CHART (ANSI and ISO TEST CHART No 2) 43 30 30 32 32 32 32 32 32 32 32 40 40 40 40 40 40 40 2.5 1.02.2 2.0 1.8 1.25 1.6 APPLIED IMAGE Inc 1653 East Main Street Rochester, New York 14609 USA (716) 482 - 0300 - Phone (716) 288 - 5989 - Fax



Geological Survey, Canada


Diagram showing geology of the tunnel on the Albion mineral claim, Ainsw


so Scale, 75 Peet to / inch

, Ainsworth Mining Camp, Kootenay District, British Columbia.

olinch 150 200

