The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Culoured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restoted and/or laminated/
Couverture restauree et/ou pelliculeeCover tivle missing/
Le titre de couverture manque
\square Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleusBound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, iorsque cela ètait possible. ces pages nont pas ėté filmées.

L'Institut a microfilmé le meiileur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$
$\square \begin{aligned} & \text { Pages damaged/ } \\ & \text { Pages endommagées }\end{aligned}$
$\square \begin{aligned} & \text { Pages restored and/or laminated/ } \\ & \text { Pages restaurées et/ou pelliculées }\end{aligned}$

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Titie on header taken from:/
Le titre de l'en-tete provient:Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Génèìique (périodiques) de la livraison

Additional comments:/
Commentaires supplëmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de rëduction indiqué ci-dessous.

devored espectality to the interests of owners and oberators of

Flour Mills, Saw Mills, Planing Mills and Iron-Working Establishments.

Vol NII-NO. V
TORONTO, CANADA, MAY, 1889.

THE TORONTO WHEAT CLEANBR.

THE machine illusitrated herewith is designed to do all the cleaning required in a mill of medium siie. There is combined in this machine, separator, smutter and brush, each dietinct from the other.
The grain is fed into the shoe at the top of the mathine, and after passing through the sieves, is caught by 3 current of air before entering the scouring cylinder. Ifter leaving the scouring case, it is subjected to another surrent of air, passing from thence to a second pair of sieves, from which it discharges into a hopper, feeding directly to a horizontal brush. The Liush is partially encased by a corrugated adjustable concave, arranged so that it may be set to or from the brush when running. The concave is corrugated parallel lengthWise with the brush, thereby insuring the frequent turning over of the grain in every possible way belore it enters the other air grumk, where another current of air acts䇾pon it.
The manufacturers claim for this machine over all others the advantages of extreme simplicity, ability to accomplish in a small space, and with one belt drive a large amount of work. It dispenses with the cost of setting up two or more machines, besides saving the space which such machines usuully occupy. These are advantages of no small importance to millers. In nn other way than by the method ot arrangement shown in this machine, can a brush be maḍe to wear as evenly and work as evenly on the grain. The nanufacturers do not hesitate to say that this machine driven by a three-inch belt will clean at least thirty bushels per hour. Machines will be made in three sizes, adapred for any capacity.
This machine is manufactured by Messrs. A. Laidlaw \& Co., Toronto, who will cheerfully answer all inquiries concerang it.

MELTING ZINC.

ZINC is troublesome to cast, and more troublesome when small thin molds are io be cast. Lining the mold with whiting and water which must be allowed to thoroughly dry, will often cause the metal to fill the nold well. Burning of the einc (oxidizmg_{2} may be prevented by covering the metal white in crucible or ladle, with a layer of common salt, a little muratic acid, which amounts to the same, as a coat of zinc oxide is immediately tormed on the surface of the melied metal, which effectually prevents further oxidaton from action of oxygen in the atmosphere.
It is an improvement to keep a layer of charcoal on top of the zinc, or any nther soft metal which can be melted in a ladle. The coating of oxide forms a protection against oxidization to only a certain degree, while the inyer of charcoal tends to reduce the oxide again to its rictallic form. Indeed, it is possible so recover lead, tin, zunc and antimnny from the "dross" or oxide which gatiers in the ladie. It is only necessary to melt the oxi e with charconi, salt. and soda to get it again into usciul shape.

Tac dross should be powdered, likewise the salt, charcoal, and soda. Mix them rogeiher and melt. The soit and salt melt into a pasty mass and the carbon untes with the oxygen of the drosg, leaving the metal free but burning of the charcoal. The salt and soda act simply as fux in reducing the oxides.

BRITISH COLUMBIA LETTER.
 By R.E. Gossmble

IT is within the memory of the present generation when the same peaceful, prosperous condition of things did not exist in the sunset province of British Columbia that now characterizes its welfare. It will be remembered that Lord Dufferin, in his diplomatic mission to the province some years ago, refused to pass under arches in the streets of Victoria, the mottoes on which were too suggestive of disloyalty. The feelings that actuated the citizens of the Island City was not then inspired by malevolency ot disposition or lack of love for the empire, because British Columbians of that day, and some of them are to this day, more British than
sources of the confederation, and at the same time seeing no hopeful signs of the conditions of the union being fulfilled, it is little wonder that her people should tak: the utterances of such men as Mr. Mills-that it would be better to let Britsh Columbia cut adritt and sink quietly into the arms of Uncle Sam and become a prospecting ground for Yankee speculators, than that the Dominion of Canada shnuld bs bankrupted in order to make good the terms of a bad bargain-as the expres. sion of the general Canadian sentiment and act upon it in good fatth. The invaluable services of Lord Dufferin in restoring confidence in the pledges of 1875 can never be truly estimated. The wonderful success of the syndicate in completing the union by rail five years before
the most sanguine had predicted, and the consequent prosperity to British Columbia, and the great impetus it has given to the development of wonderful latent resources demonstrate at once two things: The shortsightedness of those who opposed a policy that has opened up hopes and aspirations for Canada, once undreamed of, and the wisdom of those men who gave this country a constitution. The latter were either wise as statesmen or builded better than they knew. The niche in the Canadian arch which the province of Britush Columbia will inevitably fill, will be an honorable one, more especially when it is considered that in addition to her vast riches of yet undeveloped mines, fisherles, timber and agriculture, her geographical position makes Vancouver described by Mr. Van Horne, at the Toronto Board of Trade dinner, as "The Tyre of the Pacific," the converging point for the future steamship lines from China and Japan, India, Australia, New Zealand, South America, San Francisco and Alaska, as well as the export port for the same. Does it not once more in the history of human affairs demonstrate that the stone that was rejected by somewf the nation builders has become the head of the corner ?
As the object of your excellent journal is not in the line of all the resources which constitute the national wealth of British Columbia, I shall not refer to the agriculture phases of the Province, although agriculture is not regarded as particularly a preminent feature in what we are capable of. It may be surprising to many to be told that com-
the penple of Great Britain, but the greater force of strong self-interest. Their cause was stronger even than what is implied in tha: term; it was nne of self-preger. vation. I solated from the other provinces not only by a range of mountains practically unsurmountable, but by 2 stretch of 2,000 miles of prairie and desolate expanse of rock, muskeg and forest, with no other intercourse than with a forcign nation accessilie only after a week or two's sail, at San Francisco, or with far-away England, by a six months' vovage around Cape Horn. Not only that, but they had allied themselves politically with other provinces to form part of a confederation, the success of which at that time was quite as problematical as that greater expansina of political alliance now discussed under the name of Imperial Federation, the conditoon of which was union by railfoad connection, and consumm. ated in the completion of the C. P. R., but which, at that time, was a probletn $s 0$ great that some Canadian statesmen did not hesitate to denounce British Cnlumbia as the white elephant of Canadian affairs. Under these circumstances, isolated from the country with which she was connected by what appeared an unnatural union, buffeted for the burdens which she imposed: on the re-
paratively limited as is its agricultural area, British Columbia is capable of producing more and better fruit than the present ertire product of Canada aud the United States. From a horticulturist point of view it represents the summum bonum of the world. It has also extensive wheat and graving areas, of the rictest possible character in the Spallumcheen, Oknagan, Shuswap valleys, and away north as far as Fort Simpson. I shall not take up the time of your readers in discussing the fisheries wealth of the provinceithat is already recognized as the salmon grounds of the world, with an undeveloped sea coast extensive as that of the Atlantic, and Japan currents to convey fish food in the place of Arctic currents in the eastern side of Canada. Her fisheries will yet support 2 population of not le's than 50,000 . It would not be a part of the objects of this correspondence in speak of our mines, the treasures of which in gold, silver, lead, copper, iron and coal it would only be the veriest guess work to estimate. Any one of these elements is sufficiently fertile in itself to make this a great and a rich province, if it possessed no other, but what is more particularly interesing in this connec-
tion is the vast timber wealth of British Columbia, to which the world is looking as a final resort for its lum. ber supply.

No ccmputation can be made of the tumber area, or the market value of 1 t , which British Columbia possesses. Comparatively speaking, it is an unexplored regron, and everywhere there is timber. The interinr : a "sea of mountans," the sides of which and the valleys between are covered with forest almost impenetrable, although the destruction by forest fires has been something e.ormous in recent years, seriously diminishing its value and drowing out and away to the north the fur bearing animals. But for the needs of the present generation, and so far as they are accessible, the forests of cedar, Douglas fir and spruce are sufticient for all practical purposes. Notwithstanding that there are 25 sawmills in operation at the present time with an annual output of abou: $275,000,000$ feet, the evidences of their operations are scarcely perceptible as yet, and but a very limited survey is necessary to impress one with the extraordinary resources in timber which the province possesses. Her torests are very dense and her cimber very large. After a limit has been culled by a sawnill company here, it is still so rich in standing trees that ato Eastern lumberman would regard himself as wealthy in owning it. The density of the forests, and the great size to which the Oregon pine and cedar grow, even when the soil is comparatively worthless for agricultural purposes, are due to the climate and to the quantity of noisture with which the pools are constantly fed. In the east, it is regarded as a sort of maxim that the land that grows heavy tmber must necessarily be good land, but here, that rule may almost be reversed. The roots spread out enormously and absorb everything nutritious to them within reach. A British Columbia forest is almost inaccessible, if not wholly so, on account of the vegetation that luxuriates. The moss sometimes completely envelopes the trees, trunk, branches and all, and the appearance of this is striking when observed to its fullest extent, and is one of the things remarked by visitors. It is not a rare thing to see ferns glowing out of this bed of moss, extending all over a tree. This feature of the country, the denseness of the foliage, very seriously interferes with the enjoyment of the sportsman.
In future letters 1 shall endeavor, having given the foregoing as a preliminary, to go more fully into details of the lumber industry in l3ritisl Columbia, and if it be not interestung to your readers it will certainly not be the fault of the subject.

a dynamo without danger.

THE Troy, N. \mathcal{H}., Times, states that Charles F. Wingler, an electrician of Hoosici ralls, exhibned at the factory of Miller, Hall \& Hartwell, to the engineers of that ctty, recently, a dynamo upon which he had been experimenting for the past five years, which avoids all self-1nduction and work, withunit danger to those operating it. To accomplish the object it was necessary to do amave entirely with self-induction and prevent contrary curkents, which if the ordinary electric machines are sodangetous. It pras also necessary to dispense with the wire which forms a part of the electromagnet. Thic was found ty be no small task, as a certain amount of wire is reeded to produce a strong magnetic field. The inyentor deercame the difficulty with a clever contrivapre, a set of compound electromagnets having beep made which required less than a quarter of the wirefused in the ordinary magnet. The danf:er was redured in greater proportion. The dynamo exhilnte thas dsed to operate ninety-six incandescent lights and one arc lamp. The wires at any point may the touched withous the least shock or any ot the dangcrous effecis usually attending contact with an electric current. / The inventor placed both hands on the brushes and nothock was given, and there was no plare in any part of the apparatus where there was danger. Mr. Wingler as an experiment, made an arc lamp of his arms. He wound the postive and negative wires around the two carbons, and holding one carbon in each band, brought them together, giving the same dazzling light ieen in the lairose which light the streets. He was obluged to drop th. - .ms, as the intense heat made thein too hot to be held. The wires were connected at the Mill:r, Hall \& Hartwell factory with gas and water pipes, and it was impossible to receive a shock from the pipes. Miller, Hall \& Hartwell have formed a stock company, recently incorporated, for tise manufacture of the dynamos. The power used to operate the dynamo is not expensive, all of the lights at the tactory being operated with less than 4 -horse power-half the power absorbed by an ordinary dynamo of equal size. A num. ber of patents have just been received for the dynamn, but foreign patents are still pending.

JOTTINGS OF A TRIP OVER THE MARITIME PROVINCES.

By I. A. Monkisos.

Ia my former letter, written shortly after my arrival in St. John, 1 referred to the lumbermg interests of New Brunswick. In some respects the provinces are about on a par. In both of them the lumbering up to 1870 cleared out the most of the good timber, so that the present lumbering operations are making a iery thorough clean-up of all the timber and material, such as spruce, cedar, hemlock, birch, etc., and by the end of this century, or very early in the next, the lumbering business of both provinces will practically be at an end and the forests exhausted. This will be a serious matter in a number of ways:-
(1). lumber will have to be brought Irom Ontario and Quelvec for necessary purposes of building and manufacturing.
(2). A very considerable portion of the population now emplojed in lumbering, saw-milling, and shingle. milling operations, will have to find remunerative einployment in other lines of industry, or emigrate.
(3). A considerable amount of invested capital and plant will become unremuneratuve to a very great extent, and therefore practically almost valueless.
(4). Present and added capital and labor will have to seek employment in other and more permanent lines of industry, national development and usefulness.
In virw of these facts and conditions 1 may be permitted, from a practical standpoint, aith the wimnst boud-ciell, to offer suggestions, not only in the line of this industiy, but as bearing on the provincial and national gooc.. It this were the only important industry of these provinces which was likely to assume such a condition as I have indicated, it would seem almost as if the disturbance in financial, mechanical or indus:rial aspects would soon rectify itself, but what I have indicated as likels to result in lumbering business has already taken place, to some extent, in ship-building, shipping and fishing business. The first of these industries (ship-building) has been an important factor in financial and mechanical matters in both these provinces for sixty years past, and where twenty years ago it was nothing unusual to find fity to one hundred vessels on the stucks each winter in the harbors of S. John and Portand, many of them of large proportions, during this present winter scarce a dozen were built, and these altogether fishing craft of no particular value or importance. The settlers along the East River, at New Glasgow, N. S., also tell of the river for miles being lined with vessels under construction each winter in years Wuae by, but this winter scarce a vessel is on the stocks over the whole range of the river, and these are only examples of every other ship-bulding place in the whole range of the ports and rivers of the provinces. This is a result of the unprofitableness of investment in wooden shipping, and the general dulliness and scarcity of freights for this class of shipping, growin;, out of the partial decline of the lumbering and fishing interests, and the desire for rapid freight transit, which, while it gives profitable employment to faster (iron) steamships, leaves much less to do for the old style coasung craft.

Then the partial decline of West India and other trade has rendered shipping and shipping business of less value, so that it is important for those who have had, as well as for those who now have, investments in these and other decreasingly remunerative lines to see carefully where investments can be obtained which have a reasnnable promise of permanency and profitableness. Many of the wealthier men of the city of Halifax, who have made their money to a large extent in shipping and commission business, have been putting it of late years into bank, loan and insurance stocks, and as 2 result, this litte city has five chartered banks with a paid-up capital of four millons, besides three private lankers with a repor ed capital of a quarter of a million, and with loan r. unt,enny and insurance and other stocks, making a sums total is about eight to ten millions invested in this way. This thing can be overdone. Banks serve a useful purpose, but are only a means to an end. In the decelopment of the agricultural, mineral and mechanical industries, requirements and resources of a country, banking establishments have their legitimate place and sphere of usefulness. Their multiplication bejond the necessities of commerce retards rather than advances progress. To make them an end, practically defeats their purposse. It may serve the desire of investors in bank stocks and grant them a life of com. parative indolence, but the industrial resources of a country are not developed, nor the wealth permanently increased, by investments in this way. It is also a misfortune when the capitalists of a country in seeking in. vestments, do not with some show of patriotism at least, endeavor to develop the natural resources of the coun-
try, and so permanentily increase the wealth thereot. It is to be regretted, too, that all over this fair Canadian heritage of ours there are men in and out of business whose patriotism is based on the personal gain to them. selves which will result from their actions or opinions, and who would barter our national bithright for some visionary "pottage" fad of present com.nercial emolu. ment. (This is a digression fiom $\mathrm{m}:$: subject, but as these "jottings" are written in spare moments on the train, 1 may se pernulted an occasional break in the argument to relieve the monotonousness of the position, even though there may not appear at first sipht to be any relation between the "position" and the "arg". ment ").

These provinces have within their borders, in practically unlimited abundance, all the natural materials required for the profitable permanent investment of all the brains, capital and labor they can command. There ought not to be a single pound of merchant iron or steel, pig, bar, or plate, imported into this Dominion. It is the fault of the people of Nova Scotia that there is, be. cause I do not believe that any one of a dozen sites in Pictou county in that province, can be excelied on the face of the earth for the location of a profitable puddling furnace for smelting iron, on account of the quality and apparently unlimited quantity of iron ore, limestone and coal, in immediate and convenient proximity to each other. Very much credit is due to the Londonderry Co . tor the energy and perseverance they have displayed in developing their works under some mechanical disadvantages as to the location of their raw material, and also to the Nova S :otia Steel Co. at New Glasgow, for the pertinacity with which they have stuck to and developed their rolling mill business until they now have proved their competence to supply bar and plate steel of most excellent quality at reasonable prices and with a profit to themselves. It is to be hoped that these pioneer establishments will soon be followed by others, and then from these will spring up a large variety of es. tablishments using iron for raw material and manufacturing such machines, implements and a.ticles of merchandise as not only these, but the other provinces, to some extent require. The development of the local fields will make considerable demands on the iron in. dustry and the development of gold and gypsum mining on both iron and coal.
In my next letter 1 will take up the machine shops, planing mills and other manufacturing establishments, and may express some caustic opinions.

SHARING PROFITS.

Dundas, ONT., April 9, 8889
Edior Mrchanical and Mulancio News.
Dear Str, - We have before us your paper for Aprih, in which an arucle appears on sharing profits "ith employees, which must have been written under a misapprehension as to the name of the firm. The system, we understand, was introduced by Messrs. Peter Bertram $\& C 0$., of the axe factory here, to insure the regalar attendance of the workmen, increase the output without addition to plant or machinery (as their work is by the piece) thus bringing mutual benefit to both employers and employees as the result has shown.

Yours truly,
John bertram \& Sons.

INSURANCE RESTRICTIONS ON OIL FUEL.

THE Hartford Insurance Company has laid down the following strict rules in regard to the use of crude petroleum as a fuel:

1. No storage of crude petroleum for fuel shall be allowed in any postion where, in case of accident, it can finw toward the insured premises, or within less than 30 feet if wholly under ground, or 100 feet if wholly; or in part above ground. This excludes all storage in briler rooms, or adjacent to premises, or feeding from oil cars.
2. Delivering of oil to furnaces must be by suction or other process, whether by pump, vacuum, or any other appliances that will accomplish the end sought, the supply in be lower than the furnace, so that, when not being used, the flow shall be away from, and not toward the premises. This prohibits the feeding of oil by gravity pressure or by other means from a storage supply higher than the premises.
Where the foregoing conaitions are fully compliod with, and storage tank, if wholly under ground, is 100 feet or more from risk, or it wholly or in part above ground is 200 feet and upwird distant, permission to use oil for fuel will be granted without extra charge. If storage tanks are located less than 100 feet and not lem than 50 feet of riak, wholly under ground, or from 100 feet to 200 feet if whelly or in part above grourd, the extra change will not be less than tweaty-ive cemth

alsstem ctter.

S($1: 1: 1$)ING operations in Manitoba bave progressed favorably since m last time of writing. Seeding was partially stopped for about a week, by a light snow and cold weather, during the latter portion of March, but with thas exception, the weather conditions have been very favorable. The springs are usually dry in this rountry, or rather I might saty, the early portion of the sprong is usually dry, Rain during seccling time is tare occurrence. The iry weather is very favorable on veding, which commences as soon as the snow is of the around, and the frost out deep enough to harrow. Numt the time the grain is all in the ground, the rainy s.ionon commences and then follows about a month of pretty wet weather. This year has been no exception to the rule so firr. We have had two light showers, but not enough to interfere with seeding, and the weather ha, been cleat; warm and dry. Seeding has therefore sulle on rapidly, and by the 1 gth of April a great many of un farmers were practically through with their wheat secding. Some who were a little behind the majurity, were not through for a week later. At the time of wruing, early sown wheat is showing up nicely, and farmers are busy sowing oats and barley. Keports as far as received, point to an increase in the acreage of wheat of about one-third over the acreage of last year. linere will also be a latge increase in the acreage of other grains this year. The early and favorable spring is siving farmers every opportunity to put in a big crop, and they are taking advantage of these conditions to he fullest extent.
Our dry springs have one disadvantaye, which is not known in the east. In this prairie country the wind gets a full sweep of the fields, and we occasionally have winds here ton. On light soil, when loose and dry, the wind will occasionally blow the grain out of the ground. I have known instances where the grain was blown into ricines, and sometimes blown off the fields on the unbroken prairie. Damage from wind, however, is of very rare occurrence, and could be largely prevented by rollmg the land. Very few farmers, however, roll their land here, as time is a great object in the spring. We have had one very heavy wind this spring, lasting about irelve hours, and some slight damage in seeded fields is reported from one or two points where the soil is light. Nothing to speak of, however, and it is not too late to repair the injury. Allogether the outlook at the time of "roting is very encouraging. Our rainy season will be the next thing in order, and if that comes on in good tume, a good harvest will be just about assured.
It is reported heie that dissensions have arisen among the stockholders in the Lake of the Woods Milling Cumpany, operating the large 1,200 barrel mill at KeeWittin. Important changes in the company are looked for, and it is said that an investigation of the company's aliurs is being nade. It is stated by some who should know, that the company has not found the milling industry very profitable so far, and it will be no surprise If this turns out to be the case. This has not been a very tavorable scason for Western millers. Even those "ho were well established, and had their expenses down tue, have found it a poor season for profits. The Keewatin company have therefore had a bad year to commence with, and with new enterprises on a large scale, "always takes some little time to get things running woothly. The Keewatin Company had its full share of lluuble at the start, in getting the mill into satisfactory shape, and a grod deal of time was lost, owing to the listance of the mull from a foundry. As soon as the - innany had flour ready for the market, the management of the institution began a vigorous onslaught upon pices. The manager of the company is understood to hive introduced has flour to the market with the asserthon that prices were 100 high, and quoted figures away under current prices. This seemed a peculiar course to follow, for a person who had goods to sell to declare that prices were too high. A similar announcement was aiso made in Manitoba in regard to wheat, but in an o, iossite direction, namely, that the price of wheat to famers was too low, and that the company would be "illing in buy at higher figures. Later on, the Kee\checkmark utin company offered to deliver flour in Winalpeg at whout 30 ceats per 100 under prices ruling here. This 1 uting in prices, taken with the extra expenses at the ommencement, and the ansatisfactory season, makes it -1 matter of no wonder it the first balance sheet of the rinpany should not show a very satisfactory balance on the profit side.

Notwithstanding that the past winter has not been a favorable one for milling, and that prospects for the inmediate future are not very bught, there does not secm to be any dieposition 10 sinn building mew mills in
this country. A number of new mulling schemes are talked of and it is quite probable that several small country mills-that is mills with a capacity of trom 75 to 150 barrels per day-will be established here this simmer. Ontario parties are interested in several of these schemes. Neepawa, Morden, Boissevain, Killarney, Birtle and other points, are among the places where mills may ire started. Bonuses are offered or expected in about every instance, varying from $\$ 2,000$ to $\$ 0,000$. Moyer $\& \mathrm{Co}$, of Listowel, Ont., are among those who are negotiating to start a mill here. Manituba has now a considerable number of country mills of the class mentioned, nearly all of which have been establi-hed through inducements offered in the way of bonuses. It is very questoonable, however, if the majorty of these mills have been operated with profit. On the contrary, it is likely that a number of them have not proved very profitable investiments, from one reason or another. Some have been established by persons without capital, and put up as cheaply as possible, the main object being to get the bonus. Such mills, of course, are not profiable investments, as they cannot be operated to advantage. The establishment of a mill at one point, has often caused a feeling of rivalry, and led to the bonusing of a mill at another town in the district. In this way the mills have been multiplied. It has been an easy matter to work up bonuses, as the larmers are led to believe that they would get higher prices for their wheat, if a mill were built. This, however, has not always provec true, as the millers often could not afford to pay higher prices than were offered by grain buyers. A great many of the smaller country mills throughout Manitoba are only operated alout half the time, and this would seem to indicate that they could not be paying verv well. We would therefore advise Ontario millers who think of coming to Manitoba, to consider the matter very carefully, and not to jump at the conclusion that milling will pay better here than in the East. A small bonus should not be any inducement for a miller to come up here to start a mill, unless there is good reason to believe that the enterprise is one which would pay on ordinary commercial principles, and without the bonus consideration. It is one of the great arguments against bonusing, that i: frequently leads to the establishment of unprofitable enterprises. If the enterprise is a good one, well and gond, but a person should not go into an enterprise for which a bonus is offered, unless it is one which could be under. taken with every likelihood of success, without the bonus. There may be profitable openings for a few country mills in Manitoba, provided they are established on the most approved principles, by practical men, with capital. Hut with the milling mdustry ieduced to almost a science, it is a question if the small mills can compete to advantage with the large mills. In Manitoba at the present time, flour is being shipped from the large mills into towns and districts where small mills are running.
Hasungs Bros. \& Co., of Winnipeg, have after all decided to change the location of their mill which they intend building this summer. When they first announced that they would build a 600 barrel mill, bonuses were at once offered trom several quarters. Port Arthur offered the largest bonus, amounting to $\$ 10,000$ cash, 2 free building site. and tax exemiption for a period. The company favored Winnipeg, but the city council did not seem inclined to grant a bonus. Port Arthur was therefore selected, and it was understood that all arrangements had been made to build the mill there. But at the last moment, the Winnupeg council has decided to offer Hastings Bros. $\&$ Co. tax exemption for ten years and a tree site for the mill worth about $\$ 5,000$. This the Company has decided to accept in preterence to the much larger bonus offered by Port Arthur. The advantages in favor of Winnipeg are: competition in freight rates, and nearness to the base of supplies. By building the mill here, the ompany will be able to concentrate their business in one quarter. The company intend establishing a number of elevators at points throughnu Mantoba, and if the mill had been built at Port Arthur, the company would also have been obliged to open an office in Winnipeg, for the management of their elevators and grain purchasing department. Thus the business would have been divided between Port Arthur and Winnipeg, causing extra expense. We rongratulate Port Arthur upon its not getting the mill, as the town was paying altogether 100 much for the mill, in proportion to the benefit to be derived therefrom. Even had the mill been established at the Port, the business and investment of the companv would still have been largely in Mantobn. The main benefit to Port Arthur would be from the employment of labor, and a flour mith, even when on a very lurge scale, is not a great employer of labor.

The decision of the department at Ottawa to allow
the grain interest here to have full coutrol of the selec tion of standards for grading western wheat, has given general satisfaction. Local grain men have felt confident all along that the Government would decide the matter in favor of the western interest. Hereafter standards for grading Mantoba grain will be selected at Winnipeg instead of Toronto, by a board of nine persons, who shall be residents in the West. The inspec tor at l'ort Arthur will be a member of the board. Brandon, Regina, and Yurtage la Prairie will have one member each, and the balance will be from Wianipeg

Glectuial 国epartment.

New Source of Elecraiciry.-A new source of electricity has been discovered by l'rofessor Braun, of Tubingen. Hitherto it was found impossible to trans form mechanical work direct into electricity. The German professor says that he has succeeded in doing this. Physicists have known for some time that currents may be produced in metal wires by bending them Professor 13 raun has found that nickel wire developgsthe strongest currents by, winding it into a spiral and con necting its ends with a delicate measuring apparatus (multiplicator). 'The phinter of the mulfiplicator de fected considerably accofding as the piral was elon gated or compressed, showing the relatively strong currents were created; the furrent flowing during the elongation of the spiral in a dyection oppostte to that in which the wire had been ryr in its passage through the draw plate. The interent in the phenomena observed will be enhanced as roon. as there is a prospect of increasing the strengen of the curretts to a degree which will render theor available for prattical purposes. A Professor Brawn has succeeded in purting in circuit a num ber of spirals like galvanic elements, and thus obsaining stronger currents, there is a probability of constructing enginés which will perform useful work Yet we cannot help thinking, remarks Iron, that the? currents would prove too feeble, and that they would develop but little mechanical energy on account of the great molecular friction. Should the anticipations of the discoverer be fulfiled, however, the currents would supply to the engineer the cheapest means of tranforming work into electricity direct. Professor Braun's experiments also confirm the well-known law of reciprocation. In passing through a spiral the current of Bunsen's elements, he could prove an elongation or compression of the spiral according to the direction of the current.
electrical vs. Rofe Transmission of Power.Of the several methods of transmitting power to a distance, that by means of wire ropes lias nisually been re ferred to as the most economical for moderate distances, and the success of the rope transmission, which for many years has been in operation at the Falls of Schatfhausen, on the Khine, has been cited as justifying this opinion. It seems that hereatter the plant is to furnish a demonstration of the superiority of electric transmission. A correspondent of Industrics says that "After two years of negotiations, the company who own the Schafthausen teiedynamic transmission plant have at last succeeded in overcoming the obstacles, legal and otherwise, which hitherto stood in the way of an extension of their system, and they are now erecting five more turbines on the left bank of the Rhine below those now at work. The water for actuating these turbines will not be taken froon the Rhine fall, but it is part of water now running to waste over a weir of 600 feet in length the concession for which was obtained by the company in 1863. Each of the new turbines will be of 300 -horse power, the total quantity of water available being forty tons per second, with a fall of thirteen feet. Instead of using teledynamic transmission, such as is employed in the other station, the company propose to use electric transmission of energy. There will be dynamos at the turbine station, and cables stretched across the river, by which the current will be carried into Schaffhausen, and there be used to actuate electromotors." The substi:ution of electric transmission for the comprissed air at the Chapin mine, Michigan, say's the Enginceringr and Mining Fom_{1} nal, is frow admitted to be desirable from an economic standpornt, and this is, with the exception of the Burmingham, England, compressed air system, the largest plant of the kind in the world. It would seem therefore, that electrical transmission of energy is destined to supersede both wire rope and compressed air transmussion, except, possibly, under circumstances which are specially favorabie to the latter thile unsuitable to the former. The results of experiments, as shown by the actual substitution of one sysitm for the onber, outweigh all arguments based on fine mathematical calculations, or on theoretical deductions, and we.therefore attach special importance to this ananuncement.

PUBLISHED MONTHLY.

CHAS. H. MORTIMER,

 ofice, 81 King street Woat, TORONTIO, - - OANADA.
A minemtisemenis.

Adverticing ratex sent promptly upon application. Orders for absertising hould reach thas office not later than the agtio dhy of the month inmediate. 1y wreveling our date of isure.
Changes in mivernventents will le made whenever desirel, without cont o the advertiar, but to inaure proper compliance with the instructions of the advertser, requets for change should reach thic office as easly as the aznd day; of the month.
Special artertisements under the headings "Fior Sale," "For lient," \&c., if not exceeding five lines, so cents for one insertion, or 95 cents for two ineettions. If over five lines, 10 cents prer litie extra. Cash mind accompany all orders for adi ertisements of thisclass.

GHANGKTPTIONE.

 scribers in the Duminion, or in the United States, wat free, for $\$ 1.00$ per annum, so cents for six months. Sudscriftions mast is paid strictly en ditrance.
The price of sulscription may be remitted by currency, is registered let. tet, or by postal order payable to C. H. Mursimer. Please do not senid cheyues on : xal banks unless as cents is added for cost of dixount. Monev sent in unregistered letters must be at senders sick. The sending of the paper may le considered as evidence that we rrceived the money. Subscriftions.frow ali forion cowntries, embraced in the Geneial Y^{3} atal Union will be sccepted at $\$ 1.25$ per annuin.
Sulncribess may have the mailiur address changed as often as desirable. When oriering chamst, atavers grive the oll as well as the wew aldiress. failure upon the part of subacribers to receive their papers promptly and exularly shoutd be notified at once to this office.

Cortequondence is invited upon ali topics jertinent to the mechanical and milling industries.
This puper is in no mann-r identifed with, or controlled by, any manu facturing or inill.furmishing buisness, nor will a bestowal or refucal of pat romage influence its course in any; degree. It seek s recognution and support from all who are intereted in the material advancement of the Donunion a a manufacturing country, and will aim to faithfully tecord this advancemen month bv month.

Reallern of the "MECHANIC.1L ANB
MILIING NEWS" Mill confer it tever MILLING NEWS" will confer a fulvor
wow the publinher and derdce muferisul "pon the publinher and clerdie gnuferisal when openiny corgenponnlesuce whth riltert inerw. Drop tu a pontal cami when fon hote woriftem to cin adfertiser, flice wh hin metine, geftimy the benefit. Don't foryet this.

THE: Ninster of Agriculture is being urged to extend the Canadian patent term to 20 years, divided into four optonal terms of five years each, with progres sive tees of $\$ 10, \$ 20, \$ 30$ and $\$ 10$ for each term respectively.

Wcall the attention of manufacturers to an important advertisement published in this paper, asking tenders for the supply of pumping engines and other materials required in the extension of the Toronto water-works system. The latest date for receiving tenders is the 3 rd dav of June.

ONE of the strongest evidences of the decline of the timber supply in Michigan may be seen in the fact that the numerous saw mills destroyed by fire are rarely rebult. The Georgian Bay district and British Columbia are destined to engage the attention of lumber manufacturers to a large extent in the near future.

MANITOBA shipments of : Aour to British Columbia are reported to have almost dropped off. Manitoba dealers are getting such good prices for their wheat east that British Columbia has been neglected. It would be well, however, for Manitoba millers to use evers exertion to retain the position they have gained in competition with Oregon millers on the l'acific coast.

FROM the fact that some of the milling joumals of the United States have commenced publishing the seductively worded advertisements of patent medicine manufacturers, we are lead to infer that the manu. facturers and users of inilling machınery across the border are not enjoying good health. This is the season when people are heard to complain that their system is run down, but long " system" millers at least should not be troubled from this cause. A revival of the export fiour trade would, we believe, prove the best tonic for both long and short "systems." Canadian millers are sick also-sick of unjust treatment. They require the same treatment as manufacturers in other lines are receiving in order that therr health may be restored.

TIIE Toronto Ahail brielly sums up the situation in ihese words:- The millers, backed by Conservative nembers, have asked in vain for relief from a position that, in consequence of the unjust bearing of the tariff upon them, is worse than frec trade. Other manufacturers oppressed by the tarif have haid their case before the Ministers; but neither they nor the Conservatives who have helped them have beell able to make the slightest impression. The Cabinet is either careless of industrial interests or it is too weak to act."

THE Dominion Govermuent is asked to impose an export duty of $\$_{4}$ a ton on taw wood ashes, to come into effect at sonme fixed date to enable contracts now made to be completed. It is believed that the imposition of this export duty will check the destruction of the torests, and enable the Canadian manufacturers of pot and pearl ash to continue a trade which has been an important one in the past, but is now on the verge of ruin. The large prices which American buyers are willing to pay for raw word ashes, has incteased the cost of manufacturing pot and pearl ash in Canada, to a point where it is found impossible for the manufaturer to export at a profit.

T E note with pleasure that the effort to establish an annual exhibition in the city of St. john, N. B., is meeting with success. Notwithstanding that the Provincial Government has declined to assist the project, we learn that the stock of the Exhibition Association has nearly all been applied for. The holding of such an exhibition will stimulate production and improvement in the maritime provinces, and what is of equal importance, will attract visitors from the West, thus developing interprovincial trade and strengthening the bonds of Canadian nationality. Success to the St. John Exhibution.

AN organization has been formed in New York for the purpnse of developing trade with the countries south of the Unted States. The total imports of these countries amount to about $\$ 450,000,000$. Only is per cent. of these imports come from the United States, the larger proportion being supplied by Enyland and France. We agree with the Empire that the opening for Snuth American trade is just as good for Canada as the United States, and unless we go in and possess the land we shall find the ground prenccupied. A subsidized steamship line is declared to be one of the most important things necessary to secure the trade.

THE oatmeal millets' combination, which an pears to have met with very indifferent success from the start, is sadd to have dissolved into its original elements. Half a dozen members of the organization met in this city a few days ago, and decided to disorganize. The persons who oppose the appeal of the flour millers for an increase in the flour duty, on the ground that if granted they would combine and increase prices, should be able to sec in the fate of the natmeal millers' combine, the lack of foundation for such an opinion. If the owners of twenty or :hirty oatmeal mills find it impossible to mantain a combination, how absurd t is to suppose that the owners of two thousand flour mills scattered over the Dominion from Prince Edward Island to British Columbia, should succeed in doing so!

WE direct the attention of engineers to the valuable paper on "Steam Boilers and Boiler Joints," by Mr. St. John, Ste-mboat Inspector, Toronto, appearing in the present number of the Mechanical and Milling News. This paper was originally read before the Society of Engineers, of Toronto. Its length renders it impossible for us to print it entire in the present number. Our readers will doubtiess look eagerly for the concluding portion, which will appear in our issue for Juse. We may state that we have made arrangements to publish from tume to time the interesting papers read before the Society of Marine and Stationary Engineers of this city. The members of these Sucieties, as well as stationary engineers throughout the Dominion, are invited to possess themselves of the information contained therein by becoming subscribers to this journal.

OCCASIONAILLY we find an American journal which is not so blinded by American conceit as to be incapable of making honest coniparisons. One such, in discussing the small proportion of American exports to Mexico and South America as compared with those of England and other European countries, makes a comparison of English and American business methods which is anything but favorable to the United States. After referring to the trouble which European firms take to learn the language, requirements and business customs of the people with whom they desire to trade, the journal
in question concludes by saying: "We call them 'greasers' and drop the matter. We talk absut push and American melhods. It is a name that we have given to ourselves, we have nut earned it through out. side testimony."

THE old proverb which declares that " It's an ill wind that blows nobody good," has found anothes illustration in the use which has been made of the wreck of the great Nova Scotia timber raft which went to pieces on its way to New York. The Hydrographic Office at Washington conceived the idea that the foating logs might serve to indicate the general direction of the ocean currents. Instructions were accordingly issued to the masters of vessels to note the position of each log which might come under their observation, with the object before stated. As the result of these observations the office at Washington has issued a carefully prepared pilot chart. This chart, which represents the courses which the logs took after the raft was broken up, and the points in mid-ocean in which they were found, shows at a glance the general direction of the currents, and gives an object lesson to the mariner that could scarcely have been given in any other way.

MR. L. A. MORRISON, of Toronto, a gentleman well known in manufacturing circles throughout Canada, has lately returned from a prolonged visit to the Maritime Provinces, during which, as a wide. a-wake business man, he los! no opportunity of acquaint ing himself with the resources of that portion of the Dominion, as well as the character and methods of its people, more particularly those engaged in manulacturing. The results of these observations Mr. Morrison has kindly consented to place betore the readers of the Mechanical and Milling News in a series of articles extending over several months. Mr. Morrison comes back strongly possessed of the idea that as Canadiass we have in this broad Dominion a grand heritage, out of which to construct a powerful and prosperous nation. His reasons for thinking thus, will doubtless be fully set forth by his own pen. It is our hope that this series of articles may help to bring the business men of east and west closer together, and tend to the promotion of inter. provincial trade, as well as a deeper patriotism for our common country.

YEAR or two ago the milling industry of Great Britain was in a very depressed condition. I: was then that the editors of American milling journals were given to offering cold comfort to the British miller by assuring him that while his condition was certainly an unpleasant one, he must make up his mind to grin and bear it, as the superiority of American wheat, American machınery and American brains was certain to insure the continued supremacy of American flour in the Brttish mark 't. To-day, the tables are turned in tavor of British millers. The advance in the price of wheal in the United States, due to a short crop, has increased the cost of American flour to an extent which will not allow it to be exported and compete with the product of British millers, with their abundant supplies of grain from Russia and other countries. In consequence, the British millers who, bv the way, have also greatly im. proved theır milling facilities, are grinding at a profit, while American millers are surveying their idle mulls and sadly wondering whether it will ever be possible to regain their lost advantage in the British markets. In the case of the British millers the whirligig of time has certaunly brought is revenges.

THERE are numerous evidences to be met with of the growing respect for Canada on the part of the people of the United States, or at least that portion of them whose gond opinion is worthy to be desired. The growth of this feeling is due, we believe, to admiration of the pluck and enterprise which Canadians have exhibited of late years in carrying to successful completion such gigantic undertakings as the construction of the Canadian Pacific Railway-designed to open the way for the population of our vast territories ia the Northwest and on the Pacific coast, and also to stimulate and develop our commerce, both domestic and foreign. The head of one of the largest manufacturing concerns in the city of Philadelphia who recently visited Canada after an absence of ten years, expressed to us his surprise at the development which had taken place in the interval since his former visit. In his opinion the progress made by the Dominion during the last decade has been not one whit behind that of the United States. He could easily see that Canada's progress in the future would be much more rapid than in the past. The means of intercommunication by rail and water having been provided, rapid increase of popolation and commerce would undoubsediy follow.

DR. Ryerson, of Toronto, has done the public a service by calling attention in a recent lecture br.fure the Canadian Institute to the prevalence of color Windness, and the need for perindical scientific tests of the ability of railway employecs to distinguish color of ugnals as a safeguard to the lives of the travelling publir. Dr. Kyerson says: "I feel sure that an examinatuon of five hundred to one thousand employees would whow a percentage of color blindness." In most con. tunental European countries we are informed the examination and elimination of the color blinil on railroads is under Gevernmental direction and control, but in canada, the matter is left entirely in the hands of the railroan companies. Dr. Ryerson appears to think that under the Canadian system tests are not made scientifi. rally or as otter. as they should be. If this can be shown to be the case, the public should unanimously call for legislation which will result in proper attention being given to this important matter.

HEN journals published in the interesls of
Un 'ed States millers, and naturally desirous of securing as wide a market as possible for American iluur, are compelled by a sense of fair-play to admit the justice of the demands which Canadian millers are making for an increase of duty on imported flour, the lominion Government would seem to be left without a single argument, except the one of political expediency, for refusing to allow the millers to share in the protection accorded by the National Policy to the other manufacturing industries of the country. The Milling linsincer, of Mitwaukee, refers to the subject as follows: "The millers of Canada are on the warpath and propose to have an increase in the duty on American flour or know the reason why. Their grievance, as they state it, is that whereas the American miller has to pay a duty of 50 cents per barrel on flour imported into Canada, the Canadian miller, if he imports American wheat, has to pay a duty of $731 / 4$ cents per barrel, it being estimated that it takes $4 \frac{3}{4}$ bushels of wheat to the barrel of flour. This being the fact, the Canadian millers have a strong case, and if rixht, should be successful in their appeal. A country which does not protect its home industries cannot expect to prosper." The Milling World, of Buffalo, remarks: "Disinterested sympathy outside of Canada will certainly be with the millers in this case. They certainly have the right to adequate protection freely granted to other manufactures." What does the Government propose to do about it ?

SYNOYSIS of the report of the Labor Commission has appeared in the daily papers. We are pleased to learn from the report that the rate of wages paid in Canada at present is higher than ever before, while the cost of the necessaries of life is less. Many of the recommendations centained in the report are of a coinmendable character, such, for example, as the following: That the hours of labor should be as short as possible; men running stationary engines should be certificated; bollers should be inspected; boards of arbitration and conciliation to settle labor disputes should be established; employees should always be paid in currency and not in scrip; liquor should not be sold in the vicinity of mines; wages should rank as a preferential claim upon an insolvent's estate ; the em. ployment of children under fourteen years of age should be prohubited; in factories where women and children are employed, the hours of daily labor should not exceed ten, and night work should be abolished ; wages should be paid not less frequently than once a fortnight; the school curriculum should be so changed as to fit the scholar for a mechanical calling ; greater safeguards should be provided by railroad companies against accidents to their employees; Sunday labor should be prohibited. The carrying out of these suggestions should meet with the approval of all who have at heart the progress and welfare of humanity. There are other recommendations in the report however, the wisdom of which is not so apparent, as instance the following: The Government should set aside a labor day-in order we presume, that certain loud-mouthed agitators may bave an opportunity of impressing the public with a sease of their greatness; garnishment of wages should be done away with-in order, we suppose, that the dishonest mechanic or laborer may cheat his grocer and butcher.

The first exhibition will le opened at Santiano. Nor, 23, 2889. It has trut a single object-tinc introduction of the best thour mill machinery into Chili. It practically recognites the necossity of the very best machinery to enable Chili to compete as an exporter of flour: that the present export of Chilian wheat would be worth more to the rational wealth if it was converted into four. There are alowt 750 four mills in Chili, but colly throe are of the modetn sysem for crushing, insead of griading, whene.

Mr. f. Brennon is erecting a shingle mill at thelpston, Ont. The Longford lumbler Co., have taken out 25,000,000 feet of lors.
Miessrs. Boxtal and brikey ate aboult to start a phaning mill in Windsor, Ont.
Mr. Brimaconne's nill at Tyrone, Ont., has treen rebuilt, and is again rumning.
T. W. Fiett's saw mill all Nelson, New Mrunswick, was recently burned.
The now mill at Collingwoot, Ont., will be run night and day during the coming season.
The Giilnours and the Rathbuns have each about 800,000 fiest of logs on the Moira River.
Messrs. Roop \& Bent, Springfield, N. S., have purchased a new outfit of saw mill machinery.
14. Williams' planing mill at Cimplellford was recently dam. aged by fire. l'astially insured.
The two nillls of the lieck C.o., at Penetanguishene Ont., will cut about 35 million leet this scason.
The Rathtun Company's mill at Lime Lake, Ont., was bur.ed recently. Loss $\$ 1,500$; insurance, $\$ 1,000$.
Col. Martin's saw nill at Eletcher, Ont., was burned on April and. The estimated loss is $\$ 2,500$, partianly insured.
Mr. A. T. Mohr has keased the old Malloch \& Adanis mill at Sandy Hook, Ont., and will begin operations at once.
Mr. John Gorman of Fitzroy, Ont., is erecting a steam siw mill on the Mississippi, which will be operated this season.
One of Messrs. Mcl.achlin Hros. mills on the Madawaska River was started on the th April, the earliest ever known.
Mr. Alexander Gibson, Si. John, N, B., has purchased the Mcl-agran mill at Blackville, N. B. for the sum of $\$ 22,000$.
The Hepworth saw mill and a million feet of lumber adjacent thereto. narrowily esciped destruction by fire a few days ago.
A. Doolitite's saw mill near Centreville caught fire while the workmen were at dinner. April 88 th , and was totally destroyed. Loss. 82,000 .
Mr. Dyment's new mill at Thessalon, Ont., is to be fitted up with all the latest Improved machinery, and will cut 80,000 . feet a day.
Tire new Melaren-Ross Lumber Ca, which will operate in British Columbia, has a capical of $\$ 500,000$. of which $\$ 350,000$ is paid up.
Messrs. Ross. Hall \& Brown have purchased the machinery in the Winnipeg Lumber Company's mill, for their new nill at Rat Portage.
A fire which took place at St. Angele. SL. Sauveur, Que., the other day;, damaged Marquis' saw mill to the extento $\$ 6,000$. No insurance.
11 is said to be possible for Canada to secure a profitable trade with lapan in finished lumber, planeed and matched sluff, sashes and doors.
Blair \& Johnston's mills at Uhthoff, Ont., were consumed by fire on April toth : also about 30,000 shingles belonging to Mr. W. Richardson.
Meesra. W. S. Kamscy \& Ca. are puting an new foundation under the mill at lackson's Point, (mL., and making olther im. provements.
The new Company which has taken the Chemainus Mill, B. C., will erect throe large saw mills throughout the province during the coming summer.
Mr. James McLaren, of Auckingham, Ont., is sending away a large gang of men to his recently purchased timber limits in British Columbia.
A. F. Dulmage, Government Tirmber Inspector at Rat Porrage. is reported to have suddenly dissappeared, keaving a shortage of 520.000 i 1 his accounts.
I. C. Schlichaut. mill-owner at West Iorne, Ont., had a fiager of his left hand severed and two others badly crushed, by a circular saw in his inills recently.
The Eau Claire Lumber Company. of Calgary, will be permilted to purchace the land now leased from the Dominion Government, upon which its mills stand.
Mr. Jamea Mclaren has engaged Mr. Isace N. Kendall, of Carkion Place, Ont., to superintend the mechanical part of the construction of his saw mills in B. C.
Mr. A. Thompson, of Strathroy, is making active preparations for the erection of a mew saw mill there, which he hopes to have in running order in the course of a tew weeks.
Morris a Banks intend estublishing a saw mill at Shawnigan 1 Hike, B. C., and expect to secure the right to cut timber sll around the lake withia a mile from the shore.
In the Dominion Partiameat Hon. Mr. Foater stated that the Governmeat had nod yot definitely decided as to whether they would remove the duty from expert logs or not.
Mr. E. Southworth, of the Marmora suw mill, was recentily ruack in the eye by a firiag piece 0 l lumber and will ione his sight. Last summer- he was caught ia the mechisery and almoel killed.
The sudden death of Mr. James Burnes, who curried on an exteasive milliag business at Wanseed. Ont., cocurred recently. The decened was much respocted by a whde circle of friende.
Mesars. Dodee and Hugben, I'resident and Vice.Preadent of the Loe Angeles Plianime Ca, were in Brisish Columbia receanly.

The partnership existing Beitween James Anderson and John Grady, under the name of the Vancouver Lumbter Company, Vancouver, B.C., has Ixen dissolved, J. Grady reliring from the business.
The Donilnion I.umber Company has applied for incorporation. The chief place of business will Le at Veuve Cily, in the townships of Katter nne Dunnett. Nipissing District. The capital slock is to le $\$ 2600,000$.
The Nortliern Pacific l.umber Company is being formed to carry on lumbering, milling, mining, and general butiness. Capp. tal 1000,000 . Among the slockholders are Frank Rose and I. T. Ross, Quebec, and L. G. Litite, Montreal.
Mensrs. Moiles Bros, of Sault St, Marre, Mich., in order to avoid payment of a mortgage of $\$+5,000$ on their mill, removed all the machinery and moveabte property to Canada. The firm has recently purchased a site at Spanish River.
Mr. E.. R. Eddy has advertised for sale his large smmilll and piling grounds in Hull, P. Q., a mill site in Nepean, and targe piling grounds in Hull, P. Q., a mill site in Nepean, and harge
valualle timber limits up the Ottiwa and its tributarics. The sale valiulthe timuer limits up the Ottawn and its tributaries. The sale
will take place on the zath of August, unless the property is pre viously disposed of by privale sale.
Mr. D. Ross, of Whitenvouth, Man.. Last winter took out over 3,000,00c iees of lows and has them all piled on the river bank handy to his mill. The mill, though compuratively mall, works night and day during the sawing se:ison, and turns out 24,000 feet per day.
A Donald, B. C., paper says: This week a Dominion land surveyor surveyed four mill-sites on the banks of the Columbia east of Donald. One of the four hac been applied for by a gentileman largely interested in the saw mills at Beaver. Four sites were also surveyed at Revelstoke, all of which are applied for.
In the Dominion Parilament, Hon, Mitr. Costigan hus given notice of a resolution to provide that the rates and dues payable under the Culters Act and the classification therein sel forth, may be changed by Ordet in-Council, and to make better provision respecting the reduction of the number of cullers and the arnuities payable in conscquence, and to provide that culling and measuriag under the Act shall be compulsory only in respect of square and wavy timber.
At S. John, N. B., there are 18 lumber manufacturing concerns, whose total equipment of muelunty is: at gangs, 24 shingle machines. 27 lath machines, seven rotaries, six single saws, 3 mulays, two paling machines, 19 box machines, four clap. board nachines, cight stave machines and seven heading machines. During 1888 St. John turned out 157.026 ,928 feet of deaka, 58,340,000 shingles, $103,446,000$ piecess of lath, 364,200 boxes, 902,000 pieces of claftoard, $3.411,819$ staves and 400,800 preces or heading. A lotal of 1,611 hands was employed, and $\$ 395,045$ was paid out in wages for the jear.
It is predicted by some, says the Northuestern Lamberman. that owing 10 improvements in the methods of making wood pulp. the time is not far distant when most of the refuse of the mill may be profiably converted into pulp. It is said that a good erough print paper for ordinary newspapers, can be made from pulp made trom sawdust and shavings. Ihip manufaciured from slabe and edgings has a longer fibre, and will consequenily produce a better grade of paper. From two to three conds of mill refuce, not iacluding sawdust, will make a ton of pulp worth at present market conditions seb. Nobody peed look for the time, however, when a puip factory will be a regular atuchment of a saw mill. It is ose thing to run a saw mill, but quite another to opernte pulp works.
The quantity and value of forest products exporied from Otawa to the United Sates for the first quarter of the precent year, are as follows:
Lumber fiet.................. $26,3266,855 \quad \$ 387.52 \mathrm{~m} 67$ $6.747+450$
387.528
7.978
75

Hemlock burk, cords.
Railway ties, picees ${ }^{-}$
Shingles, M.
994
9.575
Box shooks.
poles, hop, pieces.
Poosts, picees.
Hood, cords
Doors and mculdings.
pickets, pieces .
9.575
562.500
$5,020 \infty$
1,93280
1030

Total value of
373.949
mher fer consumption, ft..
16,458.228
in bond for export, fl..
Total, ft......... $\overline{36,326,855}^{20,1}$
1,32320
$36,785,11$

In the senate
last week, in reply 10 a question as
331∞ the Government inteaded lakiag with regard to the sawdust numsance, the Hon. Mr. Abbott, on behalf of the Rovernmeat, said that the question of compelligg lumbermen to deposit samiuss elsewhere than in the rivers, or to destroy it, was one affocting an enormous manufacturing interen, and that, so far as the government had been advised, the proposed dentruction of anill refuse would involve a very lagge oulley. He was greatly in hopes that the representations of the damage the depositing of sawduat in the rivers and streatss rendered to the fisheries and navigation woold be found exagserated, altbough there was no doubl that a sreat atmount of injury was dowe by the present system of throwing it in. to the streams. It was announced last year that the fowerameat inceaded taking action in the matter, and he was happy to laform the house, that investigation had been diligently pursued ever simce parliament met hast sescion. As regards the Ottawd river, a survey had beea made, and the report of the experts who have beem intrested with the work, confirms to a considerable decree the report of the committee of the Sienale, which was laid before the government last summer. Sioce then the mill owaers had dearod to be heand, and represented that they misht have a volce in the investigation, which is still being continued. On behalf of the lumbermen, Sanford Fleming was enguged to report oa the saw. dust qwestion. As soon as this report was received on bethalf of the government. he promised the whole quesion would be goes linto and some revedy adopted for the evils which the depock of to thelr exteat and tuportaces.

A TERRIBLE CATASTROPHE.

WE are indebted for the following tacts and illus. trations concemung a terrific beoler explosion at Hartfort, Conn., to the Comimetion; published by the Hartford Steann Boiler Inspection and Insurance Co.
At 4.50 a.m. February 18, 1889, a tubular boiler of about sixty nominal horse power exploded in the cellat of the lark Central Hotel, corner High and Allyn strects, Hartford, Conn. The building, a fine looking five-story brick structure, was completely demolished and the inmates were buried in the ruins. The work of rescue began it once, and ten persons were taken uut more or less severely injured and sent to the huspital ; while twenty-three bodies, many of which were so muthated as to be scarcely recog nizable, were sent home and buried by sympathizing friends. In several cases whole families perished. The loss is estimated at $\$ 75,000$, none of which can be recovered, as the property was covered by fire insurance only, which does not indemnify against loss or damage by explosion. Such was the vinlence of the catastrophe that the r ar and shock of it were heard and felt fo. wiles around the city, and surrounding property suffered a damage of thousands of dollars.

Our illustrations vill give the reader a good idea of the appearance and magnturde of the hotel. Fig. 2 shows it as it was before the explosion, and Fig. 1 shows what was lett standing of the rear portion of the building. This had afterwards to be pulled down, thus making the destruction complete.

The cause of this terrible disaster was an iron boiler of the horizontal tubular type, about four years old, and of the following dimensions: diameter 54 inches ; length 16 fl .3 inches ; shell plates of Bay State refined ron, $5 \cdot 16$ inches thick, double riveted; heads (iron) "s inches thick; tubes 3 inches in diameter, 15 feet long and 58 in number. Two engineers were eniplojed, one of whom has held a marine license; one of them stood watch by day, the other by night. The boiler was inspected annually by the State Inspector of Steam Boilers, First Congressional District, and was last tested by hydrostatic pressure in August, 1888, and a certificate given conformably to law; for a steam pressure of 75 lbs. per square inch. It is not true, as was stated in various papers, that this boiler had been inspected by the Hartford Steam Boiler Inspection and Insurance Company. This company had never inspected the boiler in ques. tion, aro had it any knowledge of it.
The work of recovering the fragments of the boiler was undertaken promptly after the explosion, and as fast as they were bringht out of the ruins they were carefully measured, and the work of reassembling them was be-

Filg. 2. - Tif: Hortit Br:fore, thl: Expleston.
gun. The result is shown in Figs. 3 and 4. It will be readily seen that. although a tew small pieces were lost, the five principal pieces into which the boiler separated (see lines of fracture, Figs 3 and 4) were recovered, and their position, conditions, etc, carefully-noted; and these tell the story of the explosion.
It was thought at one time, before the wrect. was cleared up, that owing to defects and general structural
weaknesss known to have existed in the building, it was possible that the building had fallen first and in its fall wrecked the boiler; but as soon as the pieces of the boler were exhrmed from the ruins, that velief was dispelled, and it was apparent that a boiler explosion was the cause of the calamity, and not the effect.

There was some diversity of opinion as to the cause of the explosion, but it was thought from the first, by the representatives of this company, that there was no evidence of low water, nor any appearance of overheat-
of 108 lbs. (see United States Steamboat Inspector's Manual, p. 76), and a bursting pressure of some 375 lbs . The steam nozze and manhole of this boiler were placed upon the same sheet, the openings being $8 \frac{1}{2}$ inches und $12 \frac{1}{2}$ by $16 \frac{1}{2}$ inches respectively. It will be apparent from a study of the illustrations that this portion of the shell would not be as strong as othe; parts of the shell of like area. Under an excessive pressure the longitudinal section of the middle part in the line of the man-hole opening would be the weakest, and there would be a distortion, as it flattened down in assuming an oval shape under a gradually increased pressure, from a concentration of the strain at that part. That this was the case seems demonstrated by the drawing down of the plate on that line; for this was the only place, so far noticed, where there was any perceptible reduction of thickness in the plate along a line of rupture. This strain would have to be withstood by the manhole frame ; and when that fractured, the opening being so close to the edge of the sheet, rupture and explosion were inevitable. (See Fig. 5.)
The man-hole frame is thought to have been shattered, but no pieces have as yet been found.

It, as we believe, tinis middle sheet was weal:er than the others, a much lower pressure than 375 lbs . (the theoretical bursting pressure) would cause rupture. Suppone, then, for the purpose of our computation, that the pressure at the time of rupture was $2: 50 \mathrm{lba}$. per square inch, the corresponding temperature being 388° Fahr. It is true that we cannot tell the height of water in the boiler at the time of the explosion with precision, but the fact that the fusible plug was found intact and that it readily fused when subsequently heated, establishes beyond dispute that there must have been at least enough water to cover it ; and our calculation will assume this to have been the case. On making this assumption we find that the boiler contained $5,552 \mathrm{li}$ of water
and 48 lbs of steam. When the explo-
fig. a.-The bakk Cantrai, hothl aftek the Exblosion. ing upon the shell piates or heads. This opinion was fully sustained by the subsequent discovery of the back head of the boller with the fusible safety-plug still unmelted.
The shock of the explosion (which was telt for miles around the city), and the general destruction of the hotel and injury to adjoining pioperty, mast, of necessity, have arisen from the release of a very considerable force; and this force we believe to have been the stored energy in the water contained in the booler at the time of the explosion the appoximate amount of which we will endeavor to compute from the available data. In view of all the facts that have been brought out by investigation since the explosion, we are of the opinion that it cannot be accounted for upon any other hypothesis than that of the pressure greatly in excess of the seventyfive pounds allowed by the State Inspector's certificate, -how much greater, is a matter of ronjecture. The steam gauge, one of the Bourdon patent was found in the ruins in a dismembered condition (unfortunately it had been so badly shattered as to be of little service in unraveling the mystery), but it was noted that the steam tube or Bourdon spring had been straight. ened nut so as to receive a permanent set ; and there were no indications that this had resulted from any other cause than a high pressure. As Bay State refined stamps were found upon the plate of the boller, it will, perhaps, be fair to assume it to have been of the tensile strength usually accorded to that quality of iron plate ; that $15,45,000 \mathrm{lbs}$. per square inch of sectional area. This, in a boiler of 5.16 inch thickness, double riveted, and 54 inches diameter, would give a safe land

pound of steam at the assumed pressure and at atmospheric pressure is $1200^{\circ} .2-1146^{\circ} .6$; or $53^{\circ} .6$; and this, multiplied by 48 lbs , the weight of steam in the boiler, gives $53.6 \times 48=2572$. British thermal units. Now if we add this to 977,150 (the heat given off by the water) we have 979,722 heat units, which is the amount of heat given off in the form of mechanical energy. Since one ion ized, the temperature of the remaining water being thereby reduced to 212 degrees. The assumed original temperature theing 388 degrees, the fall in temperature was $388^{\prime \prime}-212^{\circ}$, or 176°; and this multiplied by 5,552 lbs. gives 977,150 liritush thermal units, which is the amount of heat given off and immedrately converted into mech. ical energy. The difference between the total heat of a
witer and steam in the boiler, at the temperature due (11) 200 pounds pressure, was sufficient to raise 756,345 ,ono pounds one foot; or, if we assume that the boiler and fixtures weighed 6 tons, it would have been sufficient, if applied vertically to the boiler alone, to raise it in the ar to a height of niany thousand feet.
We may more fully understand the magnitude of the frorce confined within the boiler by comparing it with the destructive effect of the wind at the time of a violemt hurricane that destroys buildings and uproots large trees. The wind, we are told, has a maximum velocity at such times of one hundred miles per hour, and exerts a pressure of 50 lbs . per square foot; while in the boiler uncer consideration the pressure is believed to have been $200 \times 144=28,800 \mathrm{lbs}$. per square foot.

Fig. 5-The Injtial Ruptuxk thoolgil the man.Hotic.
Many of the most destructive explosions of which we have any knowledge, have been caused by an inoperative salety valve, an accumulated pressure, and a full supply of water in the boiler; indeed the greater the quantity of water at such times, the more disastrous the effect.
There are many stories in circulation as to the want of care and proper management of this boiler. The

coroner is now engaged in an investigation, and n is hoped that he may clear up the myatery of the aufety. valve, and among other things, tell us whether it was purposely set fast, or became so in some ofher way. It was of the commoa lever variety, with a conical valve 3 inches in diameter, and it was amply large, when in working onder and intelligently used, to discharge all the steam the boiler was capable of making. Fig. 6
shows the value as it appeared after the explosion. The observed tendency of a conical valve to stick in its seat, and the ease with which it may be tampered with, have led to the introduction oi various improved safety-valves. Figs. 7, 8, and 9, represent portions of the head. There are other details of the boller that might be discussed with advantage, and will be, in a later issice of the lescenotive; but it would not be courteous for us to discuss them now, while the official investigation is in progress.

The facts that we have outlined seem to justify the

following hypothesis: That the fire was not properly banked by the engineer who went of duty at midnight ; or that if it was, one of the two tramps who were allowed to sleep in the fire-room, and lost their lives there, had opened the damper and closed the fire-door atier the enxineer was gone, prohably not realizing the danger of the act ; that the salety-valve was inoperative and that steam accumulated until the atrain on the shell reached the limit of strength of the weakest point, which weakest point is shown by the explosion to have been the manhole frame and middle course sheet ; that the explosion wrecked the partition wall in the cellar, against which the boilet was placed, and that it then raised the building, dieplacing coanecting walla, joints, and supports, drawing them inwardly with the exception of the front

wall on Hugh street, which, not being connected, was blown outwardly, and fell into the street.
Explosions of boilers similarly placed have not always wrecked the building as completely as this one did, but of course there is the possibility that the other explosions were not so violent. When boilers are placed bereath buildings (and it is impossible to avoid placing them so, in some cases), the result is apt to be very serious in the event of an explosion, for such walls as are not blown down at the tume are often so badly shattered that they have to be pulled down and rebuilt. In this case if more of the main walls had remaned standing it is probable that beams and other parts would have lodged against them in such a manner as to save many of the lives that were lost.
We shaii be giad to record for the benefit of our readers the result of the coroner's inquest, and also to

Fig. g-Lower half of back hand.
describe some examinations and tests of our own concerming the iron-boiter plates, giving the conclusions we have drawn from them and discussing some other matters not reterred to in the present article.

FAILORE OE TRE COPRER SYNDICATB.

DISASTER has fallen upon the French copper syndicute, the most impudent and the most gigan. tic corner attempled in modern times. The great syndicate has gone the usual way of combinations of that sort. It did not own the property it sought to control. It smply aimed to speculate on a gigantic scale, and the Freachmen have discovered that a single firm, however strong fimancially, agninst the whole world fignts a losing fight. That discovery has cont them from $\$ 35,009,000$ to \$ $\$$ popogoco. May the knowledre they have gained atiiffy them for thair outiay. They attcompted too much.

It is known that copper can be produced and laid down in the markets at prices ranging from 10 cents a pound downward to 7 cents and even less. The syndicate proposed to put up the retail price to 17 or 18 cents a pound, or even higher. That was where they made their mistake. They oftered large prices and stinulated production. Overproduction swamped them. Meanwhile, the consumers have only been slightly hurt. The damage falls on the syndicate. Another lesson has been added to those that illustrate the folly of attempting speculative corners in important products.-/rom Indws. try Gasetle.

STRRL CASTIMGS.

N a paper read before the American Society of MeI chanical Enyineers, Mr. K. T. Morgan, Sr., said :
All of the conditions apecified for casting of iron must be duplicated in the manutacture of steel castings, but on higher and more exacting planes. In the manufacture of iron castings, most of the practice of the world has been carried on (governed in many conditions necessarily specified here as to the use of mixtures of material) by grades bought from leading producers accordins to the standard fixed by the ureaking and eye test, using cupolas or air furnaces, with coke and coal to do the melting. All the operations depend on the crude teats last specified, and the rellability of the supply of the best materials from reputable manufacturers of coal, coke and iron. A great many responsible, reputable founders, having expertenced, practical men employed in their foundries under such conditions, have turned oui some of the most varied, complicated and best castings made for years. Some few of the modern and beat have had their chemical laboratoties, and as far us material is concerned, have gone beyond the general practice of iron founders and are certainly entitled to the best results. But while these show by comparison the possibility of getting the best iron castinga, just as wrought iron has been manufactured in rolling mills under similar crude practical conditions, the manufacture of the many grades of steel required for the best steel castings of varying sizes and kinds, has made necessary all the higher conditions of chemical and practical knowledge combined. Steel castings, by whatever method the stecl is melted-whether open-hearth, Bessemer, crucible, or some other-require each a different treatment to produce similar results in two different kinds and sizes of castings, foliowing with keener practical care every operation specified for iron cactinga. After this, practical machine and other testing records should be made, so that every known practical chemical operation shall have been recorded for cuture use, with a careful watch also upon the practich' use of castings made. All this takes time, just as has Leen necessiry for the steel rail men to find out its recessaiy gnod qualities. Steel castings require higher class conditions than iron, depending more on the chemical than practical, but requiring both to a higher degree for steel than iron. The manufacturer having the best general conditions, and who will have the desire and determination to take none but the best stock, will ceriainly make the best steel castings. To enable him to do so, it will be necessary for him to get the best encouragement possible from the purchaver of steel castings at lowest competing. price, ius wiil be wiiling to pay more for the best castings made under careful and costly conditions, than for castings not $\mathbf{s o}$ good made under inferior conditions. This latter enters into the question as much as either and all of the others.
Steelcastings made an annealed well have an average of at least four time the tensile and wearing qualities of best cast iron. With the many conditions specified here carefully attended to, the splendid results attained by leading manufacturers of iron castings in the leading countries of the world are posstible, and I have not the least doubt that their success will be fully equalled in time in steel castings. Ot this we have many satisfuctory evidences already from some leading manufacturers of steel casting:, who have tumed out complicated examples both large and small.

We barn from the Gravenhurst Banner, that Mesmrs. Mickle, Dyment i Soa have about completed a wery sucoesful sensoa's
 In the townaships of Oakley and Mindon (ive compa)-ben million foot ; from Sithestourse and Ridout townahips -five millico feet, these fifteen millioas will be watered in Black river and uluen to the Barrie and Brudford mills for manufacture; from the townships of Draper, Macaulay, McLean, Ridout and Sherbournefincen million feet, will be brouzht down the Muskoka river and Labes Romenu and Muskoka to Grawenhurt for manufucture at the mills bere; and an additional swo milition foet from the lakes will be manoufictured at Clarke's mill, Wiadermere, with about two million foet on Muskoka Bay, left over from last year, the firma will have a g. ind toctal of $34,000,000$ foet to be cut into hamber durian the eosuling summer.

Steam boilers and boiler joints.

hr O. P. si. Juns, steanmaar isapectok, fukonto

I\mathbf{N} considering the steans boiler, it would require more time than we have at our disposal to.night, to even briefly trace the evolution of the boiler of the present day, from its predecessors; much ingenuity has been exercised to obtain the various ends which were desired to be met. The great development in the steam engine, and the use of steam as a motive power, has called for a corresponding advance in steam generators. Theory and practical experience have long since indicated the economic advantages to be obtained by the use of high steann pressures, with high grades of expansion. The difficalties that stood in the way of the safe and succesaful use of high pressures, have gradually been met añig overcome, until the 7 and 10 pound pressuies 80 commonly used 50 years ago, have made way for pressures varying from 75 to 200 pounds per square inch. One of the chief obstacles in the way of this progreas, was the difficulty ob obtaining steam generators of sufficient strength and simplicity, combined with reasonable cost for construction and ypaintenance. Cast iron, copper, wrought iron, and steel hazee successively been used as materials for the construction of boilers. With the advent of the "Hessemer" and "Siemens" steel, it would seem that we can scarcely look forward to any further advance in the direction of obtaining'm stronger material, but this is a progressive age, and we cannot tell what new discoveries may be made in the futurt
The great variety of shapes in which boilers are made, is due to the object of the designers in trying to secure streagth, econnmy, sufficiency, durability, etc. All of these points are important, and worthy of every consideration. In what I shall say to you to.night, however, 1 propose to deal with the first and most important of these points, that is strength.
If the strength of the boiler was the only consideration, we would make it spherical, or a hollow ball, for the reason that the sphere or glave is the strongest known form to resist internal pressure. Hut fer many reasons, such 2 boter could not be made economical or efficient, and we are therefore compelled to fall back upon the next strongest form which is the "cylindrical." The question naturally presents itself: Why is a cylindrical boiker stronger than a flat sided boiker, or an elliptical boiler, or any other of the various shapes which might he used? It is a well known law in hydrostatics that when steam or gas of any kind is confined in a closed vessel, the pressure is exr.red equally in all directions, and the line of pressure is always at right apgles to the line of resistance. In acting against the circumference of a cylinder, the pressure would therefore be regarded as radiating from the axis, and exerting a uniform tensional strain throughout the surrounding material. The pressure at work, therefore, at any given point in the circumference to rupture the cylinder long-tudnally, or in a line parallel to its axis, is counterbalanced by an equal pressure upon the opposite point, on a line drawn through the centre of the circle, and as this pressure must be exerted on equal areas, in order that the action and reaction may be equal, the force at work tending to rupture the cylinder in a line parallel to its axis may be considered as the pressure exerted on the semi circumference. From this it will be seen that under pressure the cglinder is perfectly at rest. Assuming it to be a true circle, there is $p o$ distortion of its shape. In the case of a flat-sided figore, however, it is quite different. In the fat-sided figure s, the top and bottom

are sirengibemed at the corners by their attachment to the sides, and the sides are in like nianner strengthened by their atiachment to the top and bottom. If this Efgure be subjected so internal pressure, it would gradually assume she shape shown by the dorted lines, and it ithe pressure was increased and the material was suff. ciently fexible and elassic, it would gradually assume i.ie form of a cyliader-this distortion of its orignal shape and its constart variation under increasing and decreasing pessures, would subject the material to a strain consin'erably in excess of that due to the pressure alone. To 'oold soch a figure in shape, it would tequire to be slayed f.om top 30 bontom, and from side to snde.

Returning to the cylindrical form, we will next consider the force at work to rupture it in a plane parallel with its axis, and its strength to resist such rupture. As I have already said, the force at work tending to rupture the cylinder longitudinally, may be considered as the pressure exerted on the semi circumference, but as the pressure is exerted equally in all directions, at follows that it is not equally effectuve in producing a strain perpendicular to the diameter. To illustrate this we will assume Fig. 2 to be a cylinder 42 inches diameter, 4 of

an inch thick and s inch deep (or long). 1 take this slee for the reason that it has long been the standard for an iron boiler to carry 100 pounds per square inch as a working pressure, and is therefore familiar to you all. If we consider the force at work to rupture this cylinder at any point in its circumference, say at A, it will be seen that assuming the material so be of equal stremgth and thickness, the same force would be at work to rupturg it at B, and this would appear to be the semi-circurfiference, A C B multiplied by the pressure, but as this pressure is exerted equally on all portions of the circumfexence in lines radiating from the centre, $; \boldsymbol{x}$ is exerted directly upwards and downwards ouly alowfine vert. al diameier C D; as we recede to the right the left of this line the prossure is exerted diagonally with correspondingly diminithed vertical effect, untiy at the points A and is it vanishes ahogether. If we, atike P Q_{a}, a very small portion of the circumterence, zind 5 the angle it makes with A B, we find the force/ exerted on the arc 1 , 4 . along the radius which rapes along is centre, will be pressure multiplied by 1 . Q. (i we decompose this force, the vertical component will be pund to equal the pressure $=$ P. \times p. q. \times cosine of the angle S, bus p. $q . \times$ co. sine S is equal to the base of a rigith arigled triangle having the chord of the arc P. Q. for iti haypothenuse, and projecting the two extremities of this baty upon the diameter AB at $m \mathrm{n}$, we have the veri iical component of the pressure equal to $P \times m$ a. It we take in fike manner the balan e of the semi. circumference, we fith the sum of all the vertical components will equal the diameter A 13, hence the rule for calculating the strength of a cylinder, S equal iensile strength of material, $t=$ thickness and 1$)=$ diameter, then Kule $=5 \times 2 t$. $=$ bursting pressure.
1 may perhaps explain the counterbalancing of the pressure in a way more readily understood. Suppose that instead of a cylinder as in figure 2 , we had a semicyindrical figure as in Fig. 3. Assuming this figure to

be f^{2} inches diameter $:$ inch long, and the pressure 100 libs. per square inch, it will be seen at once that the pressure on the semi-circumference A B C, must be counterbalanced by the pressure on the diameter A 1 . Were this not the case we would have the area of the semi-circumference $=\frac{42 \times 3.1416}{2} 63.9736 \times 1 \times 100$ liss. $=$ 650.36 pounds upward pressure, and the diameter $42^{-} \times 100=4200$ lbs. dowaward pressure. Assoming the weight of the vessel or form as being 100 pounds, and we would have 6597.36 lbs upward pressure against 4200 $\times 100$ or $\$ 300 \mathrm{lbs}$. downward pressure, and we would have solved the problem of the man who triod to lif himself over the fence by the straps of his boots. From this we see also that the cylimdrical shape is stromger than the ellipical as in Fig. t. We have she smader diameter $A \mathrm{~B}=40$ inches, and the larger diameter $=$ C 3$)=44$ inches, $A \quad B=40$ inches $\times 100$ pounds $=4000$ pounds, while C $D=44 \times 100=4800$ pounds.

In this illustration we have used a cylinder of 1 iach in keagth. If we join to this a second riag also : iach long, we have twice the surtace acted upon by the pres. sure, coasequently twice tive gmss pressure, but at the sume time we bave twice the material to withstand the pressure, consequently we see that so far as its inbereat strength to withstand interaal pressure is concerned, the leagith of the cyliader makes so difference, bua while this is srue in so far as incerall presume is concerned,

It is nut so when expansion and contraction are con. sidered as an element of weakness. In a cyliuder with flat heads, the sicength imparted to the shell by the ends renders it less liable to distortion at the ends than at the centre, and were the naterial of which it is com. posed sufficiently elastic, it would, if subjected is increasing internal pressure, gradually assume the shape of a barrel, and frout that approach the form, of a sphere or glove.

It is difficult to determine to just, what extent the heads strengthen the cylinder, but joimay be asoumed that where the length of the cylupder does not exceed twice its diameter, its strength yery closely approximates that of a sphere.
We have considered thgy'trength of a cylinder to re. sist rupture in a plane phrallel with its axis. We will now consider its streggth to resist rupture in a plane at right angles to its axis, or in other words, its strength to resist being tontif from end to end. In this case it is plain that the force at work in tear t apart, is the pres. sure multuplied by the area of the heads or ends, and that its sterngth to resist such pressure is the strength of the material multiplied by the sectional area of the circumference of the ring or cylinder. Referring to Fig.

2 ayain, and assuming the stre:3th of the material to be the same across the grain of the plate, as it is lengthwise of the plate (and in boiler steel as manufactured at present there is found to be very litile difference), say 69,000 pounds per square inch, we find the resistant streagth to be $(12 " \times 3.1+17) \times .25 \times 60,000=1,979,208$ pounds, and this dividel by the area of the head1,979,208
$\frac{1,979,208}{4 \geq 2 \times .7854}=1428.56$ joundis per square inch required to tear the cylinder apart endwise. Comparing its strengit in this direction, with its strength to resist fracture longitudinally, as found by the rule already demonstrated, we find $\frac{60,000 \mathrm{lbs} \times(.25 \times 3)}{42^{\circ}}=$
Pequired to rupture the cyliader longitudinally, or just oretuall the strain required to tear it end from cond. When we consider that the area of the ends is ofien very inuch retuced by tubes, flues, etc, this proportion is considerabls. itcreaser. Nofwhitstanding all shis, is must not be comeloded that a cylindrical boiler is always more liable 20 burs from longitudinal, than from transverse weakness. Thire are elements of weakness in the unequal expansion and contraction of boilers, and from mether causes which readers their strength more mearly equal in both directions, than would at first appear.
In our consideration of the strengit of the cylimier, we have assumed it to be of uniform stivagth and thickness throughoul. Theoretcally such a boiler subjected 30 increasing internal pressure would gradinlly stretch until the limit of elassicity was reached, whedie would give way all around at the same instant, and literialy be "blown to atoms." This argument is of course hylopthelical. In practice t would be found than there woult always be some lipe of weakness where the fracture would take place. And this brings me to the second part of my subject this eveaing, viz, boiker jouats.
If we could draw hoiver shells in the same manner as sonall tubes are drawn, or $口$ we could roll them from a solid blork as focomotive tires are rolled, we would not require to make the careful calculations that are wow pecessary to derermine ste exact streagth of the boiker joint. Unil some method of constructing shells out of solid metal is devised, we will be compelled 10 join the edges of iron and sreel boiker plases by either welding or rivecing. Weldine is a coaly process, and camber al. ways be depended upon, consequently we are in a man. aer compelled to fall buck apone rivetiag as a means of joining the edges of boiker plates.

Probably few eagumeers can be found who wozld wemture to asoert that the lap riveted joinsts of a new boitor are stromper than the solid plate; yet surange as it may appear, this was the gemeral opinion not a grem many years arpo. By what meeliod of reasoning thrs wew wat reached it would be hard to say, bur is was oaly slier repeated experiments had demonstraied ins fallucy shat the error was abandoned.
(i-rlerally speaking, the riveted joints are the weakest pant of a new boiler, particylarly where no large, unstreugthened drum, or man holes are made.
since the strength of any structure must of necessity le the strength of its weakest part, the subject of rivetm: lecomes all important in arriving at a correct cstimate of the strength of a boiler.
THE "CASE" INTBR-RLAVATOR FLOUR DRESSER.

W^{E}E present herewith illustration of the above machine, which Messrs. John Inglis \& Sons, of Toronto, have the exclusive right to manufacture and sell in Canada. The machine is compactly built and handsomely finished, the frame being made of selected hardwood and the body of select light wood. It is designed with the object of economizing space. The Inter-Elevator round reel is mounted on an iron shaft, and has a solid, dust-tight head, which effectually prerents specking. A series of iron spiders attached to the reel shatt, support the Inter-Elevators, which pass spirally the length of the reel. These elevators carry up :the stuck, greatly mereasing the boting capacity of the avending side of the reel, and discharge their contents in a thin, even sheet, against the silk on the descending side, thus utilizing two-thirds of the circumference of the reel. The spirality of the Inter. Elevators causes them to act as conveyors, carrying the stock slowly and evenly the entirelength of the reel. Another advantage lies in the continual division of the stock, cach elevalor taking up a portion of th, thereby separating, agitating and keeping it alive. The tail of the reel is moveable, and ny a simple device the cloth can be effectively tightened at any time.
The cloth cleaner is a revolving $c a \quad$ cloth and is so adjusted as to keep the cloth meshes free and open without wear. img the silk.
The conveyors are bullt side by side, and are driven by a five-inch sprocket and chain from a ten. unch sprocket at the bead eud of reel shaft. This insures a consid. crably faster nootion to the conveyor than that of the reel itself, and thereby prevents any danger of dioke-ups. The machize is driven b) pulley or sprocket at either head or tail.
Where the reels are placed one aiove the otber a short cross shan is used at head end of one of the machines, fitted with a suitable wevel gear for driving reel. The other reels are driven by sprocket and chain frum the tail ead of this ane. The cut offs are very cos. veniently arranged for adjusting them trom elther side. I positive cut of can be obeanned at any desined point.
The manufacturers offer to supply anachments for - hanging over old bexagon reets of any sive or lengith (1) the Case Inter.Elevalor Round Reel.

POINIS AEOUT ADVEIEMSING.

N
 ofien met with the stavement " 1 do mor meed so adverise jusx now ; I am uaskive to sill my oriers: when husioess bexins to slacken up I shall perhaps avail mysif of your collomas." It is the old stery of the leaky roof which did wot meed repairing when the weaker was fair, and could sor be repaired while it rained The asest busivess men and ithe anop successul ones are those who keep their mames promisemtly betore the public when trade is good as well as whee it is poor. The sime so boom a sown is whel everybody is inveremed in it. Whea the incerens fails, ane nigite as well try to sweep back the recoleseg wavet of the commens to withstand the stampede of waming conidewce. Whem itade is drvink, is the tiane so make onc's buinems so well known shas when the dill samen comme there will : ill be cestomiers to liecp the mampinctiver bmy. Seid a bosimess man "I mons advertive of I mould ger good iscults trom any mean on the road. Before I advertiseth inj) uravellers cmering an effice weid be sold 'we are rot acquaimed wish your homen' and in many caves 1 und shat they could not mowe an onder wijich per. $\therefore 1$ ance would be siven to a comepriour before their cyes. is soen as I began ro advertive I had a divious ex. i"riewoe. My men frumd that k was equivalut to a -lter of morelaction from a manad frimed. 'Oh ves c have meticod your anvertivemunt and we foel ac-

they have hrard so much that they feel acquainted. A constant and conunual advertisement in a reputable journal which is constantly seen, is like the dripping water which is wearing away the finty rock, slowly it may be but surely. Circulars are thrown in the waste basker. Catalogues may find lodgment on a shelf, but the frequent arrival of a reputable journal is a constant and sure reminder which sooner or later must bear fruit. It is the non-advertiser who complains of hard times. When everybody is rushed, it is no trick to secure custom, it is when his neighbors are idie, that the man who has wisely kept his name and goods before the public, finds humself so well known that he gets his full share of what patronage is to be had. The time to make hay is while the sun shines. Repair the roof while the weather is favorable, and there will be noleak when the storms come.-Dix.e.

THE CARE OF PLANING TACBINES.

NOTWITHSTANDING all that has been said and written from time to time upon this subject, says the Timberwan, still many operators of planing machines complain of their machines making wavy work, and in many cases candidly admit that with all diligence and careful investigation they have failed to discover the cause thereof. There is a maxim that there is pever an effect without a cause to produce it, and when a well constructed machine turns out wavy work, there must be a cause, which if sought for by a careful and skilful oper. ator, there is no good reason why it should nix be discovered, and when discovered the circumstances of the case should always sugnest the proper renzedy.
It is true there are many light, cheap made machioes in ase that never can be expected to run out smooth mork, for the lack of sufficient stremgth to resiat vibra.

tion. For such mactines there is but one effectual remedy. But a well constructed machine of sufficient weight and solidity to resiss vibration mader all ordinary condfions should sever turn out wavy work. The causes which lead to this effect are so many; that we shall sot attempt at this time to poime our all of them, but caly some of the most prominent omes that are most frequently met with.

Unbalanced cytiaders, cumer meads and knives are no dowbe the mosp frequent, and mither the cytinders nor matchers should be allowed to rom in this condition for one hour sfter berag discovered. It is son caly the damage so the beaber sad repmation of the will that is involved by such conditionst but serious injory to the jownals will be the recolt if allowid to rim for any beagth of time in this comdicion. The side of the jownal aext so the heary side of the hasd or cytimier wiri be con. standy presed axainge tive boos, in its eforts to find its true comere of gravity, and the reack will be that this side of the shath will mear emincly upen one niace and seas beceme oval or eepes shaped. In this candition it sever cin be succesinilly rime even if ever so well bul. smod smerwands, winterx comanar hantives.
Rosed jomonals and well balanced rats as owe of she mecemenies for sood smoch werk. Oiver casses sometimes mere oblecure may combine to cuese wary werk, coven wiven the cominiom jone reforred to are all camgived wink A ctivider may be lowse in she beves or the mounce her may mex be property mijneded, but these things ine to aniby devecial br sim experienced epernor than moch condivioms shouid mex be milomod vo cring. Ampaing that wim perince a viluation in the pricipol wolking parts of a machime s apt to mavifot tovif ypos the surdece of ine immber.
Leeve rofis in their temes and inqunfoce gmoing is

worn so that there is play between the boxes and the journals. With the top rolls it makes but little difference, but with the bottom ones, especially upon the end to which the gears are attached, it makes all the difference in the world. The gears by which they are driven in many cases become worn, and perhaps by neglect or oversight may run so close together as 10 bottom and crowd each other, this causes the shaft, when loose in the boxes, to be constantly in a state of vibration. In such cases these vibrations of the rolls will surely manifest themselves in a wavy appearance upon the surface of the lumber. When such is discovered to be the case the gears should be carefully adjusted so that they may run free and smooth without any tenclency to lift, and then if the rolls still continue to vibrate in the boxes and keep up that wavy appearance, there is no other remedy but to have the boxes taken out and bushed so as to fit the journals.

Old, bard and uneven belts with thick laps is another cause of inferior and wavy work. A belt of this kind whenever it passes over the pulley, gives it a jerk that will cause a vibration in the cyllinder and never fails to leave its trade mark upon the surface of the lumber in the shape of a corrugation that is easily recognized by the experieaced operator.

There are so many things about a planing machipe to be looked after in order to turn out gond smooth work at all tumes, even with the best machines in the market, that it nuay be truly said that "eteranal vigilance is the price of good planiong."

CONCEMTRATION IN MANOFACTURE.

T N manufacture, the tendency is towards the concentration of effort, as agaiust trying to cover so much ground, says the Americam Mackemist. The manufacturer who imagines be cal cover all the ground, is likely to find bimself in competition on every liae winh thooe who are perting a good deal of energy into each particular live be is workng at. It is the case of $t 00$ many irows in the fire. Some of them will be burned and nowe of them properly bealed.
When the builder of machise rools wauts a stean engine to dave his works, be could, of course, bauld it ; but doing so would be a very unwise proceeding on his part. His peighbor who builds steam engines can sive him a better job at hatf the movey. He has expended yearx of esergy in finding out how to build sood exgines at suall coss.
Time was whea a machinist was an allaround man. He tursed his work in the lathe, plamed it on the plaver, chipped and flied it at the vise and fored it to the machime on the thoor. This has been changed by degrees, until now a manuficturer who should try to work on this plan would be comsidered on the wrome track.
After all, is it any worse polvcy than to expect so build pretty mach everything ia the machise live in ome ma. chine shop? There is really mo difierence that we can see. It is in einmer instance a rase of division of emergy, with the quotiemt too small for the beat practical purposes. The suactioniss who is equally sood at every detail of live busimess muar permin a goed deal of his emergy to lie dorpamat. It is a waste of materion. It is shie to asoume that if he had spent more time in ane perscalar direction be would have become mere proficient in that drection than be has by 800 great a diversaty of application. Thea all be has to do is to stick to that live in whuch be cana socomplish mone. By daing so be anas more anemey for himanion and for some ons clec.

 H. P. Whaileticem,

distance in glectrical transmission.

II is conceded by all electricians that the cost of electrical transinission increases rapidly with increase in distance, white the efficiency, or percentage of the power at the generating station which can be delisered at the receiving station decreases as the distance increases. Mr. Cieo. W. Mansfield, in a paper read before the American Institute of Mining Engineers, gives the following table which illustrates the rapid increase in cost of the electrical plant :
Tibles showingr cost of Cimplicti l:lictric I'lunt fior Transmission of Macor larions Dishentics. Pbicmbial at Ciontrall Shatiqn, scio Vills. L.oss an Lime, sopir cint. Coppor Hizes, gring athd citurn.
M. P.
Trans. cost of
mitted
ont: Milis.
Cost of Cost of Totat Cost of Line Con- D) namos Plant.
strurtion. 太 Motors.

1	5
5	25
10	200
25	200
50	1,000
100	2000
500	
	10,000

	\$ 12,500	57.900	\$ 250	5	20.230
5	60.500	7.500	S75		
10	125,000	10.000	1,750		136,750
25	312,50	10.000	+.350		3 3 (6,5950
50	625,000	12,500	S.730		
100	1,250,000	$13.75{ }^{\circ}$	17.500		1.281.250
500	$6,50,000$	15,000	6.6 .500		6.327.500

1	5	50,000	\$15.000	5 -30	5	69.350
5		=50,000	15.060	375		
10		;00,000	=0,000	1.750		521.730
35		1,250.000	-0,000	4,350		1,274.350
50		2.500,009	25,00	8,ijo		2.33i.75"
100		5.00\%),000	27.500	17,500		5.045,000
500		25,000.000	30,00	6,900		+.(0)9.500
One HTSuntid mutw.						
1	\leqslant	200,000	\$30,000	350		230,550
5		1,000,000	30,00	\$75		1.030, 575
-		$=1,000,000$	+10,000	1,730		2.011 .750
=j		3,000,000	+0,000	4.351		5,0+4,5j0
50		10,000,000	30,000	8,730		0,058,750
100		20,000,1000	35.000	17,500		0,672.j00
500		70,000,000	,	6,500		10,123,500

In explanation of this table, Mr. Mansfield says:
"I have calculated these figures on the arbitrary poteatial of $\mathbf{j} 60$ volts, which is very inw for the eransmis. suon of large powers; nevertheless it was necessary to assume some basis. This potential is generally ased to-day for power circuits.
"It will be noticed that the cost of copper is the principal item. To reduce this 1 will state the follow. ingr electrical fact:
"The cost of copper decreases as the square of the poreatial increases. Take, for instance, the extrenve case in the last table, tivz, 500 horse-power transmitted 100 miles. If we double our posential, making it 1,000 volts, the cost of our copprer will decrease wo noe.quarter, or $\{10,000,000$. If, now, we apain doubde, we decrease in one quanet apain or, at 2,000 volts potental, the cost of copper would lee $\$ 2,500,000$. The total cest of the clectric plant at this potental is $5:$: $1=2,500$. Ohvinousy; there is a limit on the incremse of ponential: and in the transtrission of such emormous powers I would place that limit at ope more doulding, or 4,000 onls. This is a possible inltage, for there are many electric light circuits in nop large cities 10. day of this potential, and even higher.
"One thousand volts is a safe and casily handied pro. rential ; and if ihis posential were weed, a large saving would evidently be effected. J'mesumr Thompsum has decised and patented a method whereby; very high porleatials can be used in overcome distance, and as the receivang station be refluced is hower surfe-womina pmeatints. This phainily means a trememotoos saving in

These figures will give some idea, say's the Afilling Inuincir, of the cost ot an electrical transmission plant. To transmint 100 horse.power five miles, allowing for an increase of potenti, to 2,000 volts, requires an investment of about $\$ 20,000$ in addation to the cost of the power plant at the generatug station. This would indicate that electrical engineers have yet to work out a cheaper plan in order to compete with steam power. There is no question but the next few years will witness some remark:able declopments in this direction.

wirs clotr.

T11F cl issification of wire cloh differs in different countries, but as a rule the small numbersadenote the large, and the higher numbers the smidter sizes of the meshes. In Germany the numier off the cloth gives the number of threads found to the space of one l'russian inch ; in Austria, to one Viennese inch ; in France and Swilzerland, in one larigian inch ; in England and the United States, to one English inch. Consequently the numbers of the wire cloth bear the same proportion to each other as that fof the lengeth of the various inches; and are best illustgated by their reduction to the metric systen.
One meh Engiftsh measure equails.......
25.40 mm .

Dryssian Viennese
parisian

26.15 "
20.34 "

The difference between the Prussian and Viennese measure is so small, that they can be accepted as the same for all practical purposes, and this renerally forms the type for the classification of most of the wire cloth in use. Whether round wire is used or square wire, the nunders are the sanne. The shape is only of importance in the final application : for assortiug and sifting of the gran, the round wire is preferred, but for cleaning purpobes where friction is required, square wires have been fifind to do better service : their tune of service, howeter, is short, as the sides of the wire. subject in the fonstant frictuon, soon lose their sharp edge and lecome tound.

Mchinerait

The Allason rater mills are ixein; ripully convered into a fomady.
fohn Firelerickon will start a sumgle mill near Oysuer Ilarthor. Vimeauret INand. B. C:
 Suumber :it Welland, Cht.
It is said that the cothent of stealle engines at the lames bexposi. twon will leo like finest ever sem.
The Whadsar Beart of Trate have approintelta commister so maduce manuracturets to bocate in that town.
Mr. K. Whataw; of Woudsock. Ont., hass tive enntract to surpily : e e 2,200 thoike to the Windsur waternotks.
 soot evension to thetr foundry and machine morke
A new flaner meighing over threce an a half tons was hately

A free bublding, ste, caerigtion from tavatoon, freere waver and eketric lights, will ire given as an imlucement to start a foundry in collaripuoat.
Sti.000 stuck has lieen sulscritued to the fioonomy bis:kine Ca.
 le cominuetreed.
 chnety for miaking hatchets, and expect to to alde to torn out 300 fer day.
James Ciamyteau is remosing hus wood-working matinery trom Amherstlurg 10 Wimbor, and mill sum a sush, deur and thind factory at ithe taller guree.
1r. Colcmasa is said to lie naikiag meparations for the ercetion the palmay leack in Sisafieth.
A fourreem.yeat-ohd som of Itr. Kolech Stewant, (ivetph planime nuils, that three of his fingets severily em the ofter day whike working around a circul, r suw.
A ncw steam raproc has lavely leen arlaced to the inom.working ertalhahrient of Hestrs. l'iace it Ctark, Harwick, N. S The frem are erecting a plow factory.
slising Ifectrotices have weed as a mait to give up the townis

Mt, Alicen iluiker, whon has for the pasis rew yewn neprecenved

It is cind on the sureneth of IIre sie.0no incouns moted hy ive ionn of Kal livelage in aid of the erection of smelimg werks at that gince, Itrof. Ibwers has soid $\$ 1 \$ 0.000$ of the Compming:

It the :amual neetuxk of the Ale :lary Alanufacturing Company. L.ondon, Oat., Mr. Jolin Meldary was clected preadent; W: A. Gimishore, vice-preshdent; George Mechary, treasurer, and W. A. Gima, secretary.

Messrs. Stahtselimidt, Klotz, Bontwick and others, of I'reston, have applied for incorporation as a joint-slock company, to be known as the Dousinou of Cinnd.i Manulacturing Company, to mamuficture school, office, hank and church furniture, und fittings, etc.. with at cippital stock of \$100,000.
Since the death of Mr. Eirrington Gilison, sentor suember of tha tirm of 5 E (jibson \& Sinns, planing mill operators, Halifax, N. ©.. his sons Fiulton, and liatwin (iibsoll, have undertaken the contin. unnce of the tusiness. The factory is well stocked with the latest inplproved machinery for making all clasees of tuilders'

Instructions ing the Hritish Admiralty are to the effect thut more care must be takers in, the use of forced dratt. The applingoes for creating llaft are not tofe used at full power except for ltief perioals in envergencres. and not, under ordinaty circumstances, for the purpose of wetting ups stiam quickly. All rapld changes in the temperature of hoikers is to ye avoided.

A St. John. N. A., pituer semisks that consideralite machinety thas tween introfiterel theres of late ycars. for the manufacture of small fuantere, In the eatly diops thig Cinadians would cut nothing fut deals of went leet in kength, and bertain standard widihs. Alt that was left of the low was regarded do refluse. Now all the ends and edging are wotked up into box luhtier, larrel hends, etc.
The Canada lipe and Founitry Company bave given notice that they will uppiy for letters of incorporation for the purpose of ananufacturing gas, water. swland other pipe all descriptions of castings, and also machinety. with a capit. 1 bo 100.000 . libe cor. pornte akembers are Messrs. Thos 'I. TYrnbull, F. W. Wilsom, F. Ikown. Wm. Kodikn, jr., Wim. Clendinneag, jr., Iohn Clen. dinneng and Wm. G. Withers, all of siodreal.
The . Miflins: Fincinecr of Mitwaukee says: "Two or three castern concerns are comphaining lweauge in Einklish manufac turer unat - up his catalogue fiv copphan their cuts and descriptive matter. Thist is nathin;:. A miafarnishlige concern over in Can-

 stein :unt another thing to preck pucherts, hand so fir the Canadian

 making thlting cloth, alth meth the influstry is neat prosperoms
 In furnoce yeats. alike no propurtionaly increase of jucce is obenimed. In inso the price of raw matrtuil rose. white that of the favished
 which is purtly ascritant to the action of hostije tariffs, as in Get.

 now indile nathe from sow iluss. © The process is a new ouce but is covisuming: all the saw dust fom o:re mill, and is proving a succose The guper miate nholly frow siw dast is said to form admitalike sheeting. and is fit for inuiliding after terving the milh. locing tarned and dried. In ihe production of the tecter quality of pioper one-juarter of waste. jajee is used. the semaiarder leciag sim dust. It is extintateri thaty alout $\mathbf{1 2 , 0 0 0}$ toas of saw duss are convertel into paper andually.
Un ilutil ist. dreth itmoved anc of the most promiment Gaperss in the Anmeticat manufacturing workt. in the person of Mr. Fi- I:
 Wis. Mr. . Nis mored to Nilwarkee in 18,6 , and in $2 \mathrm{~S}_{57}$ purclacertia small muxchinc shop. from which grew the mammoth concern of to-dayi leccased was in his suxty-fith zear. The Allis Co., it willise sememlered, sopeneri a tranch establishoment in Canada. and built a numiker of mills hese, ime sflerwards sold out to the fech. T. Smilh $\mathrm{r}^{\circ} \mathrm{O} .$. anil semoved from Cinade.
It is statod that a call has lieen isswell to the boiter manadacturers of fennsilvanila and adjecent Stakes. to meet in conveation in I'ittsiders. Aprit 10. Tive wheret of the macting is 10 form an orpanifation to lecomprosorl of the beading manufacturens of steam boikers with a vicw 10 create a preater intetest in the wamanacture of toikers of all kisds and make itre usc of sis: very beap mavertal coingulsory. Ity doin: this. loiker makers expect to dectome the mundice of explosions, apil cstablish a miniaman price which mill
 munm for suycetior slyle and workmanashig.
λ new system has linet discovered, it is slated, of concing bore with coppecs. II :he connwcrocment of the preseat reme experi-
 the parpose of rect: Wex the efficacy of the methed. A pioce of inom. after feing raised to almosst a whicc hrat, was shem sherunghly sprinkled with a whic coloeed pooder. It was wext resubinilich 30 hece untit the powier jo its orginal form hed eanivety tieng
 of molred eoppret, and allowot to remarn there for aet henper shan a secumi. It was then removed and altured te coel. Aher ecoting 18 was olverved to lec completely covered with ceppar.

Mr. I. H. Inectreninidge. the insuructor in mectamical onjimeer. ing in the Ietrigh Umiversity, U. Si, A., has lavely treen making somere cxperiments for the determiantion of the preamee encroed in
 surned in the phomer mear its lower ewh, so as so prevem anf
 hotes were drolted in the cylinder mese the brotom, and a steam

 ice takon which woeln show the presture cxaried in foreian the

PAGE

MISSING

PAGE

MISSING

THE BAG AND HESSIAN FACTORY OF CANADA.

BAGS

of every quality and size.
lost conplete ame BBST Equippe buyf Fuctoy in the Dominion.
w..… THIRTY THOUSAND BACS The CANADA toronto acewts : messis. stank brethens, TORONTO ACENTS: EME8SNS. STARK

A Special Feature in the
MLCHIIERI POR MANUPACTURING HESSLAN CLOTH.
Every quality and evory width can be supplieal neme day cen ordercal.

BAG PRINTING IN COLOURS

We are now printing 5,000 to 10,000 Bags daily, and are turning out the BEST WORK in the country, at the IOWEST PRICES.

BAG PRINTING IN COLOURS.
gañalian rubber company of montieal. Superior R ubber Goods.

$\Longrightarrow) \mathrm{OUR}(=$

Rubber Belting

IS UNEQUALLED IN AMERICA.
ALL MIMDS OF RUBEEN PACXIMCS. BUBEER. EMCIME, HYDAAMT, SUCTION, STEAM BREWEHS' ANB FIAE MOSE.

Western Branch,Cor. Yonge\&Front Sts.,Toronto J. H. WALKER, Manager.

It is Automatic. IMEXPEMSIVE AMD PROFITABLE. Iasy to run and keep in order. MOST SATISFACTORY.

Reduce your breaks - Increase your capacity - Make better flour and more room in your mill. Full Particulars on Application. Write ior Circulars.

Bodmer Bolting Cloth - Avery Seamless Steel Buckets A Full Line Mill Supplies. ROLLS RE-GROUND AND RE-CORRUGATED.

\rightarrow Custings of all Descriptions - \rightarrow.

Four his dectined to cents jeer sick at Winmipeg.
Mithlumt's ele witors have at capheity of $\$ 00.000$ bushels.
 lught.
A Penetang bim tath of batdung a new roller mill at Graven. hurst, Ont.
Messtr. J. Martyen S (o., will etect a 30,000 hushel elevator at Ilunstoll, Ont.
 mill at Exanalle.
Mr. fos 11 Wiarder has charge of Win. Niseder's roller mill at Bolxalgerint. Ont.
L.fifors are Leing mande tor the estathatheme of a roller mall an Plot Mound, Man.
It is ramored that the ofd grast mill in Ihelorime, Math. is to be Howed to lonsectime
 fitted up with the toller procer:
The contrava for the efection of a flome and oatmeall mill on Cannington (on) hus lxen given.
 the one tecentit destroyed by fire.
A deate for conacying groun. cer. coal, etc., has been patented In libenezer tosher, Kincardine, Ont
line byduw fratung a tomus of 51.500 and ste for a gnst mall at Aalsa d trug. Ont., has lxeia carmed.
Mr. Iohn l'ewes has sold hus grist mall at Kimberily. Ont., and intends movims to Wiashangton Ierntory.
The imp:ovements to the G. T. R. elevator and what at Col lingwoxl. Ont., ate tewg rapudy pushed formard.
The Whate /ion, figren says that of every eigh loaves the l.ondoner eats, seven are made fooll foremg wheat

Mr. McGum, of the Laike of the Woods atiling Co.. expuces to leave ticenam sthorily and take up his tesudence at Wimmper.
The mill whets on the Welund canal are agan revolving as the result of the letung in of the water uto the canal a few days аg.
the muntuphatices of Kussell and sher creek. Man. have exch woted seisw tow.rds the etetion of a tlour mill at Russell village.
The watchoure of IS. \&E: Raser, at Cayuga, Ont., containing S.000 bushets of gran mas totally destroyed by fite on the nught of Apull $\mathrm{r}_{\mathrm{z}} \mathrm{h}$.
Messts Moodle, the well-knoun mullers of Rulgetown and thannulle, are going te parchase the old keeler four mills at Thosold. Omt.
The hagest gran cargo that ever passed through the Welland canal was i.nken down a few days ano and comprised 71.500 bushels of corn.
th is estmated that there are atoout a million bust:cls of wheat in inhand elevaters in the Nortimest, and over a million more stored at Pors Anthur.
The Niturgeon kiver grist and siw mall. Velonging to the Roman Citholic mission at St. Allert. Ni, W. T., was burned on the zith March. L.0ss. Sie.000
The Wimnipg malless ate trying to so arrange maters that they will tee abic to cloxe therr offices on Saturtay afternoons and give theis eniphoyers a hath holday.
Whamster is Kinste. who have cirried on a lumbenng and mill. ang tusiness for ten years past at Strathclars, Man., have dissobvet partnesshup, Mr. Kayle returng.
Amencin corn with an impori dury-0f-75 cents ber bushel is sud to be cnterng (Canada at such a mate that holders of Cinnadian laticy aud peas find at hate to compete.
The neus comes from Winnipes that the take of the Wools Muing Co. lass maugurned a flour wint by seling at a consider. able seduction on the jnoes of compentiors
Northuest advices state thas . Messrs. Moyer \& Cio.. of Lastowel. Ont., ate jrotosurg to exaldish a mill at Momen, Man., if given a 1 2nn of 56,000 . so te trpaud with intetest.
Brackimen is Kerr. propnetors of the suanich outmeal and fluur m:lls, Vine ave: Istand. ate etecting a large trick buiding at Victoria. where they will to a tour and feed busincss.
The gunnon of the salue of frozen wheas bot seed is to ixe de. cutch as the expetamental farm limadon, wath samples taken from wheat seguazly grated hy the inspector at Winnipeg.
The Ontano steaulyont and freight managers and agents have, it is sadd, thected to kee; the rutes for flour and grain as last year and to charge to points east of Monsteal the Montreal rate plus the arbixaty rate agreed on.
A lone Hoje tespatch states that Mr. John Helm's four mill
 3:ave leen set on fire liy some eval tisposed! person. We have not leamed the amuant of the lose
Some samples of whext groun in the high altuutes of the Bim. ahya mount uns of India have leen received at the Ouawat Experi. mental Fatm, and ate snid to mature very carly. It is thought they many poove suitalic for " , Narthwest.
Thre Ginan Trank Ruilwar have been summoned to appear invose she Intertate Comnietce Commission at Washington, to ansuce clarges of giantung relatos and accepting tess than pubfished rates on tranic saken hy it from goines in the United States ot points in cinnada.

Bradstret's esthmates the quantity of wheat on hand in the L'nited States and Camadia Marrih 1, 1889, at about 200,000,000
 busthels. Thus is some 20,0wo.vo
as being on hand ore year ano.
Toronto gran men wamt there eny to te mate the dostribung pomet for gran comung over ille C. P. R. This grath is at presemt sent for distribution to Carteton junction. A movement is also on foot to establish in Toronto an option market.
The takers of Montreal recenty held a meeting to discuss the proposed increase of the duty on thour. It was deculded in the event of the proce of tlour teeng increased by an addation to the duty, to mise the price of bread propertionately.
The malls at Hunter Ruver, P. B. 1., wheh thad just been fited up for an oatmeal mill, were completely destroyed by fre with their contents recently. The buildug was insured, but there was no insurance on the new machiury. grain and meal.
We are informed by the Delomirec Times that Win. Preston, of Strmiford. Ont., is going to build a first-class roller millat Boissevain, Manitoka. with a capacity of 300 birrels per day. The building is to le built of solid stune, $30 x 48$, qo feet high.
We regret to loarn that a freshet the other day did great damaxe to the grist mill of Duncan Walker, as D.iytac's Mills, in Southwold township. The whole structure was nearly carried away. and its contents. including the engine and hoiler, were badly damaged. The loss is placed at over $\$ 2,000$.
A St. Thomas despatch informs us that Atessts, May Bros, who purchased the Laching Cumplell nournge mill on Tallowe street some months ago tor So,coo, hate had workmen engrageq at in ever stuce, and have now cumpleted one of the fanest mulls gnithe Wiest. having phaced in it over 35.000 worth of machnery.
b) S. Clemens, of Gatt, and J. A. Matrkle, wadian agent at Brate, have submuted a proposition to the towincouncil of bitte, Man., to thuld a too harrat tlour mull in the tofn for a twonus of
 rural muicipality, of Brite also to wive them $\$ 4.000$ in debentures. for which they plazantee special rotes for fristing to actual residents of the municipalaty.
Mr. E. Odllam, hate of Japan, in an addreess to the members of the Vancouver, B. C.., hard of Trade on the sntiject of trade between Canada and Japane, said the konsumption of wheat flour was yrowing ripudy, bun Californa wis supplying most of that demand. He had imported : ame itour from the Otawa valley. which was made from a maxture or Nosutoka and Renfrew wheat. which he toughtat retail prices, fad could tay it down at a less pree than the current prices in Jopan and still make a small profit.
Anerican milless, who have ofly one kind of wheas to grind the year round, and those devotees of single wheat milling, who would tet the baker to the blending. fill be interested to know satys the ifflers Gateftr, thatit is not fn uncommon thing in linglisla nulls for millers to grind a mixture of six different kinds of wheat. A this nioment a miller of ourfacquaintance is grnding a mexture of Californian, Hungarian. Rö́ssian Azima, Dede Agatch, Currache and English, divided into 18 parts, and is getting a yeld of 71 per cent. on the uncleaned whicat.
Fred Smuth is years of age, son of Mr. W:alter Smith, of Tilsonburs. bad a close call from beinn smothered by falling into a bin containing some 5.000 bushels of oats in Mr. Tillson's oatmeal mall there. Just after falling, the spout conveying oats to the drying pan was opened' and the boy was drawin down with the grain until his foet stopped the oats munning through the spout. Some of the other handf in the mill happeniug to hear his cres. gave the alamn, a board fas knocked off the bin. allowing the oans to run out on the flow, and the lan was drawn out from under about seven foet of dits. almost smothered.
The Brivifh Lecretary of Stase for India, has arranged a conference betyetn millers and the various chairmen of the Chambers of Commadee throughout England, to discuss the lest neans of improyng the condition in which Indian wheat arrives in Great 1yftain. There is reason to telieve that dirt and anferior seeds are mixed with ladian wheat to add to profits, and that the system of - fair average guality; by which the aceeptince of cargoes 15 govemed. lends itself to stech frauds. It is proposed to provide that if cargoes contuin an excess of a per oent of such dirt and mixure there must in a reduction of price. It is claimed that shipments of Indian wheat contain 26 per cent of dir and infenor seeds.
The Winniper Sisn says of the Keewatin Milling Co. . The names of the stockt.olcers in this enterpnse indicate that the Canadıan Packic railroad takes more than an ordinary interest in its management. Sir Donald A. Smith holds \$0,000 stock: Sir George Stephen a similar amount, A. Gislman, of Montreal. $\$ 50,000$: Mr. Mitchell, the manaker. $\$ 20.000$: I. Mather. $\$ 20,0$ coo The erection of the mill cost albout 5275,000 and the tio clevators in connection. 558.000 . It is sald that at present there are some 3000000 bushels of whena in these elevators. λ few cars are arriving daily. It is calculated that between the buying pectiods of each year the mill will require between 500,000 arid 600.000 husshels 10 keep it running. If this is 50 , it is probable that there will be a considetabie shortare this season.
A ikelecille despatch says:-One of the finest water privileges in the country is at Glen l.exis, a point on the Morra river just south of Hop lake. There is no lack of water, bus the dam which holds it back causes the inundation of hundreds of acres of hand. The righs of the mill owner 10 keep the water dammed back has been tested in the courts and establisted by legal decisione. Failing throurh hegal means, argrieved partes have tesorted to viakence. For the second sime the dam was biown up by dynamite last summer, and about a week afiet the mills were lyurned. Nah. ing daunted. the owner proeected to reluvild. The dam was replaced, and the mill was so near oonvptetion that it was intended to stant operations in a few days, but news has been reccived that the dam has again tecen blown ug.
A correspondent writes to the Toronto Wirld Irom Buark's Falls, Ont., as falows: 1 word albout the water power will now Ere in phace. It is nor at anl uitiised as it should ve. There is
use of ft. Anll that having now leing gobbled by a Torontoled as the largest credtitor, is not at present running. A curoous fea ture aloult thes mill, its about many others in thes section, it the they keep a tire walled in with stone at the bank of the hier coo. stanily tmrning up refluse slaths, blocks and pieces of humber, tic, thut would te made geod use of elsewhere. It is said thatity done to keep them from accinnulating in lange quantites and the beitg in the way of the work. It may bee mentioned fuss liere bat there are two other wery fine water power privileges within a mive of this place.
The Cianadian Pacifu's new grain elevator, just completed at For Williant, on take Superior, Elevator B, as it is called to dis tingulsh it from the first elevator built there by the Canadian Pacitic Railway company, has a capucity of $1,40,000$ busbets Thete are it elevating legs, each capable of elevation 7,000 bushers per hour. Each of these lexs is furnished with a self.cleaning bood the invention of W. I. L.oss, the company's Superintendent of hatldangs. Owing ton pravision having to be made for trghemion the belt which carries the elevating buckets, there has always been a certaun angemit of gran semanning in the boot, which requires to be irequenfly cleaned ous by hand, and always so when changiog from, one gmin to another. This thoot has and ingentous armare. nuefit, by which a shield is attached to the frome carrying the pultey. This shield is always just kept clear of the buckets, ao mater what position the pulley takes in the boot while tightenime the beit from tinue to time. Grinn men will understand the adran tages of always having a clean boot to start elevating uith. To whole of thuse lesss are driven by friction clutches attached to ble shaftug. two lanes of which are run the entire length of the eth. vator. These two lines of shafting ate driven by a single massire seven-ply rubber belt g^{\prime}, inches wide and over 300 feet long. The method wass first tried in Elevator 13 at :Iontreal, and found to work so satisfactorily that it was decided to accept the sam arrangement at Fort willam. This elevaing inachinery, with steam shovels, will enable a train of th cars to be unloaded and stowed away in the bins in twenty minates.

PUBLICATIONS.

WE have received from J. H. Brownlee, D. L. S, Brandon, Man., a copy of his new 2jc. Indexed Map of Manitoba. The map is orgginal and graphic, telling as it does its own tale of the young province. The fourteen pages of indexing make a complete guide to the map, which is folded into a neat cover for pocket or office reference. Mr. Brownlee's idea is to supply to eastern people a reliable low priced map-and in this be has succeeded. For further particulars, address J. H. Brownlee, Brandon, Manitoba.
We have been favored with a copy of the fourth bol. letin issued from the Experimental Farm, Ottawa, re lating to the results of the experiments with Ladogz wheat as an early ripening grain suitable for the Northwest. These results are said to be of a very satisfactory character.

PERSONALS.

Mrs. C. H. Waterous, wife of the founder of the Wateroos Engine Works at Branford, Ont., died recently at Montreal Goldic's mill at Guelph. Ont., was closed down for a day or tro recently out of respect to the memory of Edward Nessin, an std emplojec.
Mr. Thos. Goldic. of Guelph, accompanied by Mr. Cargith M.P., had an intervicw with Sir John Macdonald recently, to urge an increase in the duty on flour.
It is stated that Mr. Valancey E. Fuller having leen appoinad managing director of the Coclirane Rollet Atill Company at Escinatha, Mich., will shortity leave Hamilton to teside there pemanemply.
Thefe died at Hamilton, Ont., a few days ago. Mr. La D. lifely, st., one of the oldest millests in Canada. Mr. Birelv curind on a nuilling business for upwards of iwenty years near Stooer Creek. Ont.
One of the oldest manufacturess in the Irovince of New Bhasswick. departed this life on April soth, in the person of Mr. C. D. Eierett. Mr. Everett settled in New Brunswick upwards of sirty fears ago, and founded flouring mills, whach balf a centary aro did a large business. He also cstablished extensive tide sownik. Half a ecnutry sho. when the export of machinery to the colomina was Sorbiden in England. Mr. Everett brought out the fat stationary engine and steam machinery ever employed in ite lower Itoovinces. This plant had been taken apart and pectrect in hogsheads, under which discuise it made a safe passere pee the Customs authorities. Mr. Evereti was 87 Years old.

The quantity of lumber of all kinds on the Totique ziver, ive Brunswick, during the past winter is greater than for many yeus past. It is estimated that 75.000 mallway ties wall go dowa the ratious streams this sparg. The cut of spruce lons is sud so be one.hall greater than last year, or neasly, $80,000,000$ fect.
λ sinple method of measuring Ielting in the mall, and satd to be rety clrscly correct. is as follows: Thie sum of the dianneter of the cousside and insite on the roll in incles. multipliad by the number of turns nande hy the lecta, amed this produce multupied bo the thecimal . 1309 , will ise the length of the telt in feel.

Kober: C. Blair Belledune, N. B., has secured a pet ent on a composition composed of crushed or flax moll meal boiled in a solution of washing, soda dissolved boiling water, for removing and preventing the formation of scale in steam boilers.

THE FLOUR DUTIES．

T has been pointed out，says the Montreal Trade Rirdiow，that while in 1881 there was invested $\$ 13$ ．－ ：$\cdot 3$ wit the flouring mills of Canada，which employed to min：ind produced an annual output of $\$ 41,772,372$ ， kere wiss in ：sted in the woollen mulls $\$ 5,272,376$ ，the Mivection of whose output of $\$ 8,113,055$ gave employ－ kat to 0,8 ，, men，women and children．The differ－ px in the untput is indeed a marked one，and the macer of the employees is very different，the former mopying men－heads of families－and the latter，men， katn and ．hildren，the two latter classes，as investi－ wion has slown，earning mere pittances．As to the nin which the fiscal policy encourages the two in－ cryies respectively，it is to be noted that while the padian woollen manufarturer is protected to the extent freen and a half cents a pound，and 20 per cent．on eralue of tis cloth，the miller is absolutely discrim－ ated apamst by from twelye and a half to thirty cents sbarrel．
Sot unnaurally the millers object to this condition of ings and have been doing so most emphatically，as fiess the deputanon after deputation which they have a：to Oltana to urge their clicim，and so far to practi－ Ey deafears，inasmuch as political exıgen ：ies will not fat of the desired change bein：：made．Not being krous of makir．g the National Policy＂jug－handied，＂ ftamers and amenders sought to protect the Canadian mer as well as the manufacturer，and in consequence cay wis mposed on wheat，coal also being protected Le interest of the Maritime Provinces．However，
although wheal，coall and woollens，among other things， were made dutiable，it was found impossible to place flour－the manufactured wheat－on the same footing as some of the other articles for whose protection the tariff provides，and in consequence，with protected wheat，the Canadian flour miller finds humself discriminated against as the figures cited have shown．Indeed，Canada an－ nually imports laıge quantities of flour to the disadvan－ tage of the $\$ 13,857,923$ of milling capital，and of the 6,400 heads of tamilles who formerly made their living out of its production．No wonder that the millers kick． It will therefore be well tor the Minister of Finance to look into the matter and satisfy hunself as to what it is possible to do in the way of＂evening up＂things which， as the figuresshow，are in a very disadvas：tageous position．

SHORT SYSTEM MILLING．

THE products of the oreaking operaton atre the same in the short as in the long system，the per－ centages only differing．With the short method fewer middlings are made，and thex are more uniform ${ }^{\prime 2}$ size and therefore more easily purified The perceatage of patent flour from these，runs from 204030 aptording to the variety of wheat used．For ieducing these pure middlings I use a mill－stone．：If the midedingsare pure， 1 consider there is no be terimachine for the purpose，it being understood that the stone should be kept in pro－ per order．
If there are no impurities in the stock to be reduced， most assuredly the stone will put nune in，and it has this great advantage，that with it we can reduce the
middlings to four at once without flaking the material， and thus reduce the volume of our second middlings to a mere nothing．
The percentage of flour made on the breaks，also vartes with the variety of wheat，the amount made on the first two hreaks which is fit for patent flour，gener－ ally running from 30 to 40 per cent．
Thus we have got rid of about 60 per cent．of the flour，and so far used only three operations，the bran re－ tion being kept separate．
The middlings fiom the third or brap break，if the two previous breaks have been propenfy made，will be found so smbll in quintity and of such poor quallty，that it is only a paste of jime and wind＇to try to purity them．
We have now ouly the 3rd break middlings，a few 2nd middling and the germ fock to handle．Two re－ ductions on smgoth rolls mill be plenty for this．
I do not belifevèmsizeng．I have tried it thoroughly， and find that 1 can make a much cleaner and more satisfactory flour by coming down close at every oper－ ation．This method produces a little flaked material
 the only iow grade we make．

I have materially added to the purity of our flour during the past month by changing some of the ree！s to the round form on a very simple method．It has in－ creased our capacity considerably，and the flour is much clearer．The cost of the change was so small that it is not worth mentioning．The remainder of the reels will be changed just as soon as we can shut down for a day or two．

12．J．MciUULAN， MIL，HKIGHT，
Marinu Storest，－Parketutr，ome．

Corrcspondence solicited．
Established 1859.
REYNOLDS \＆KELLOND，

34 KIKC STREET EAST，TORONTO．

THMEWELL © SON，

Thise lunn and Specifctions pronured for all cearesinthan，part of the province．HIBaving had
 Wilhis＂＂r are in a positun to supply working plans，

Акти．，T．Tімкипй．，M．C．S．，C．E．，
IkTILEK W．TishwatiL．

SAW MILL FOR SALE．

 B．
CHER PUMP AMD HBATBR POR SALE．
 H．N．SCHMMIDT，Middma）．

FAVORIIE

fiill Buckets．
\rightarrow
lanufacturer and Dealer，
JOHI RADICAN，
I！cud 21 Kelly st．，
RAMILITON，ONTT．
sent fen pacts．

FOR BAIE．

—玉ORSA工玉—

JOSEPH HALL MACHINE WORKS
Ifon Turning lathes
Fire EXtinguishers
Fire Exxinguishers
Wood Turning 1
Wood Turning 1 inthes．
Sind Hell Machine．
Sand het Machine
Unright Borine Machine
Emery Whicel trame
Re：ming Maching
Facing Anchine
Facing Machine
Borizontal Iron Boring latles．
Tunching Machine：
l＇out Drilling Machinc
Iron Column Drilling Machine
Gonk Drilling Machine．
Xut Tapping Machinc．
Cuting－ofr Machine
Ser to incl land－Kollers． 338 da．
Travelling Crine and Crines
Cyunder 88 in． 36 secotc $10 n \mathrm{n}$ and lienter．
Cylunder 28 in．$x .36$ stroke atw whed so st ．in
din．，in une casting．
New ：iodel Vibrators．
Porable Engines．
Horse Powers．
－All for alle at sacrifrec prices，and may be seen in the
John Livingatone，Trustea
il York Clambers，Toronto，agth Jan．， 2889.

Water＇Vorks Department
Notice is hereby givat that the Committee on Water Works of the Municipal Corporation of
the City of loronto is prepared to receive

TENDERS FOR MATERIAL

Required for extending the Works and incteasing

 the supply as folloux：10，tou feet of 48 inch diameter．fiexible joint， cast iron pipe or 30.400 fecs of 88 ．inch diameter，
stecl plate pipe．with cass iron flexible joints 4.500 fect of 48 ．inch diameler．flexible joints ；or
cast iron pipe：or 6,000 fett of 60 －inch diameter．stecl plate ppe ，with cast iron flexille joints．
Two ${ }^{28}$ ．inch double screw valves．
Two 3oinch doulle screw valves．
Two 24 inch double screw walves．
${ }_{3}^{2}, 500$ feci of 36 inch diameter cast iron spigo
and fauce fipe
Abint 88.000 fot of 12 itich cost．iron spigot Aldout 46,000 fett of 6 ．inch cast iron spigot and faurel pipe．
Thirty
20
Thiry 12．inch valves．
Thiny Ginch valves
Thiny \＆inch valres
imperial wallone apang engines each of 2$\}$ million imperial mallons capacity per 24 hours；or swo
pumping cenginc，cach of 3 millon impocial tons capacity per 24 hours，with boikers．
Spectifcaions．forms of tender and any furher information cin be had upon application to the
office of the Superintenucut of the Departinent office of the Superintendent of the Departinen
at the address ivelow Sealed tenders for
thereof，addressed to the undersigned any portion therof，adurcsed to the undersiyned and marked
on the outside．
caid Tender for fipe．＂e ec．as the case may be．will be reccired by regiscered letter
 $3^{\text {rid }}$ day of junc． 889.
The lowest or any
cepted lowest or any tender nor neressarily ac－

> JAS R BOUSTEAD Chairman Committec on Waler wior

Water Works Deparment．
City Hall，Toronto．Onti， 22 th April， 1889.

the Supplies required，dater of delivery，Ne，may be had by applying to the undernigned，or to the Indian had by applying to the undersigned，or to the Indian Conmistioner at Kegina，or to the Indian Office，Win． Conamis niper．
 Hiper． Yanties may tender for each description of goods（or for any fortion of each description of poods（separatater or for all the goods called for in the Schedules）and the or for all the goods called for in the Schedules）and the Deparnvens reserves to tiself the right to reject the Deparniens reserves to itself whole or any part of A lender．
 Hiach sender muct be accompanied by an accepted cheque in favor of the Superintendent General of Indian cheque in favor of the Superintendent General of Indian Affairx on a Canadian thant，for at least fie per cent． of the amount of the tender，which will be forfeited if the party tenderime deceline：to to enter ine 2 contract hased an such tender when called upon to dus，or if he Le not accepted，the cheque will be returned．
 Each tender inuct，in addition to the signature of the tenderer，Le ingned hy two surcties aceeppable to the Deparmiene for the Departmien for the proger verfformance op the contracs． lhe lowest or any tender not tiecessarily accepted． This adverticement is mot to le inserted accephed． no claim for payment by any newspaper not having had such authotity will be admited．
 1．VANKOUGHNET， Dignty of Suprrintemdent－Gencral of Sndian Afoirs． Depantment of Indian Affairs， Ottawn，April， 8889 ．
 MILERS＇
 ANDD

INSURANCE COMPANY．

нr．as opyick，

 2＊Church Street，Toronto．
JAMES COLDIE，GueIph，President．

W．H．HOWLAND，Toronto，Vice－President．

DIRECTORS

h．McCUILLOChigalt
geo．pattison，prestos
W．H．STOREY，Acton．
a．Watts，brantroxd
S．Neelon，St．Catharines
H．N．BalRd．Torosto
W．BELL．GuElpis
W．WUSON．TORONTO
J．L．SMink．Toronto
HUGH SCOTT，Managing Director． DOUGLAS SUTION，Sccrelary． GEO．HANSON，Inspector．

OBJFOTE．

To prevent by all possible means the occurrences of avoidable fires．
To obviate heary losses from the fires that are unavoidable by the nature of the work done in mills and factories．
To reduce the asst of the insurance to the low－ eat point consistent with the safe conduct of the basimess．

The Combinert Jomer and Fix－
pemaen on the bouprese of 1887 weval pemaer on the bundrens of 1887 rome nder Firty per cent．（ 80% ）．

COMPARISON OF DECIMAL WITH THE BINARY AND OTHER SCALES.

THI: following table has been prepared for the use of machinists and other mechanics who have occasion to use ordinary steel seales as found in the market at the present time. These scales are usually dwided into eifhlis, sadcemths, thirth seconds, siats fouths, tenths, twentieths, fiftecths, humdredths, twelfhes, twenty-fourths, etc. The table shows at a hance the relative value of these divisions, and their decmal equivalents.

THE MANUFACTURE OF BRASS.

BkaSS is formed by fusing together copper and zinc. Difierent proportions of these metals produce brasses possessing very marked distinctive propertics. The proportions of the different ingredients are stidum precisely alike, these depend upon the requirements of various uses for whinh the alloys are intended. jeculiar qualities of the constituent metals also exercise considerable influence on the results. Brass is tabled to have been accidentally formed at the burning of Corinth, $1.46 \mathrm{l} . \mathrm{C}$; but atticles of brass have been discovered in the Egyptian tombs, which prove it to have had a much greater antiquity. Brass was known to the ancients as a more valuable kind of copper. The yellow quality was considered a natural quality and was not supnosed to indicate an alloy. Certain mines were much valuct, as they yielded this gold-colored copper, bu: after a time it was found that by melting copper with a certain earth, calaming, the copper was changed in color. The nature of the change was still unsuspected.
Alloys of copper and zinc retain their malleability and ductility when the zinc is not above 33 to to per cent. of the alloy. When the zine is in excess of this, a erystalline character begins to prevail. An alloy of one copper to a zinc may be crumbled in a mortar when cold. Yellow. brass that files and turns well mav consist of copper four, rinc one intwo. A greater proportion of ainc makes it harder and less tractable; with less zinc it is more ienarions and hangs to the file like copper. Yellow brass, ropper two, zinc one, is hardened by the
addition of two to three per cent. of tin, or made more malleable by the same proportion of lead. Copper, zinc, in and lead in varying proportions form alloys, always in definite quantity for a given alloy. The ease with which some of the metals are burned away at comparatively low temperatures renders it a very easy matier to make several different kinds of metals from the same mix. This very thing occuss, and the great difficulty in getting bearing-brasses uniform in quality causes some engineers to babbitt all bearings as the best way to insure uniformity: One lot of castings may be soft and tough, another hard, and so on.

Zinc is added the last thing as the crucible comes out of the furnace, and the mixing of the mass is a matter of uncertainty: If the metal is too hot for the zinc a large percentage goes off in the form of a greenish cloud of vapor, and the longer the stirring goes on the more escapes. The two metals which enter into the composition of brass have an affinity for each other, but they must be brought into intimate contact before they will combine. Some brass founders use precautions to prevent volatilization of the more fusible metals, introducing them under a cover of powdered charcoal on top of the copper.

The Necpman Man. Ririsister, siys Dr. Harrison of that place. offers to build a mill of 125 barreis capacity with storage aluched. for a boan of $\$ 0,000$: lall the amount to be repaid in five years and like talance in ten years without interest. The amount to ic securct to the municipalizies ly a firt morigage on the propery and ty an asignment to them of an insuarnoc policy for the Amount.
 woll. in lixd with great advantuge in m.aking joints, fitung topke et. Drop of in collected in many mills and factories to ie chened
 purpore which it is reasonable to stpprose, is patentel. It may le
 weral "stories," the interior either hined with, or ctre comsistng
 Tponred the ail to lee clemed. 'The puritied oil passes of throught an excolpe pije in the leotem. "The different shelves or "stories" ane pxrforited, and cowered to a herght of alout two mehes woth fiv loox- cotton, through which the wil one percolate the of an loo x ans.
 conel underne.th. The dirty cotton is occasion.llty rephated my clem. This is alsom the most ine ${ }^{\prime}$ gensive way of effering it that Khow of. It in,ibo necesory to atd that the appratus mas stand in a warm place. 'The cleming of the oil with chemieals os
 washing it may still retain traces of acids, rembering it unft fes lubricatug purpores.
The urethod hitherto employed for preventiag condenstion of deam eylinders is by jacketing the cylimer, cither with sume nos. combluctung material or with hve stean. Mr. Bryan Bonkin, jr., las, however, made a new departure in heating cyhnders, whish promises to give sood results, if we may jultge from the prelinin. ary experiments tried at the works of Messrs. Bryan, Donhin \& Ca. Bermondxy. I.ondon, S. E. The apparatus employed consiss of a sertes of Bunsen hurners, placed at interials round she stam eylinder, the gins jets heating the cylinder walls up to a temper. ture equal to or exceeding that of the entering stenti. The steam on enterng is therefore not chilled. and the expansion cune is riferel. One feature in this invention is the thurough command "hich cin le obtumed ower the temperature of the cyhender. fis or many burnen can lxe employed. and the gits flames an te rinced or lowered to any degrex, to suit what is found to le the most cronombeal iemperiture to work with. Of cource, agains the sating due to the absennce of condensed water in the cylioke. must te placed the cost of the gas consumed in he atime the meal of the evtinaler. Wie hase not been furnished with fiumes, brete are informed that the resulte obtained at presemt in licate a sarigy of 25 per cels. in the weight of feed mater or steans used per ind. eated horme.power.
The artesian wells of Dakota are prohably the moxt remarkable for prensure, and the immense ghantity of water suppliced, of any ever ofened. More than a hundred of such wells, from 500 w 1,600 feet deep, are to. thay in successful operation, distribtied hiroughout 29 connties, from Giankton in the extreme south to l'embina, in the extreme North, giving forth a conctan, ine marying stream. which is in no wise affected by the increased nez. ler of wells, athd showing a gauge pressure in some instances as high as 160.170 .175 and 187 pounds to the siquire inch. This tremenclons jower is utilized. in the more important towns, fx water supply, fire protection and the driving of machincry, at 2 wonderfil sving of the original cost of phant and maintenase when companed wath steam. In the city of Yankton a so-hore power turbine wheel, operatung a tow mill by diay, and an ckean loglis phant by ught, is driven by the force of water flowing from artesam well. the cont of obraining which was no greater the woukd have teen the cost of a stann engine developing the same jower, not counting the continual ounhay neoessary flad stemen |xyet cmploged) for fiect, repinits and the salaries of engineer and fireman. What has treen accomplished through the aid of natural gav and cheap fael in bubling up manufactorios ciectices. may some day 10 sizalled on the prairies of Dakota by uppies the mexhaustible prower stored in matures reservors beneath ibe surface-Harfer's llagreine.

As dynamos and steam engines are being introluced more and more men prate houses, and in neighorheords where vibration ocensomilly accompanymg ther operation is oljectionable, some means for preventugg the trouble is of spectal interest at this unce. Diamous forms of funnthans have lecen proposed for thas purpose. very fex of which. if any, have proved satisfactory. In a secent communication to the sweicte . s Ingenicurs Civis, M. G. Atthoni describes at method of overs aing tire difficultics caused by viloration and noise from cugines. and the proint upon which be Lays sjecial atfoss is. it the case of machinery, the increase of the mass of the syisem to le isolated and its carriage by on ctasic leroly, stich as rubbir. . I large trench is dug out, at the boitonof whach is phaced jhanhing, sur mountext lis a covering of shet iroc, on wheh are diveributed a number of rubiber cylinders, constituting at the same time an elastic and electric insulation. On top α Hecse eylinders there is phaced a second plate of shect 'ron, riwed to a frome-work so as to pive stiftness to the whote. On this is built a foundation in the usual uiny, proviston being nade for it foundation iwits, and suticient sjace lecing left to properly aker of periodically cleaning the arough of any extraneous matter, niab. out disturionj; the elastic suspenston. The foundation noed ax Ife of masonry, atad in some cases it might ine adiantigeoss is rephoce is ly a caisson filled with sind, which may be eavily matported. 'the trench surrounding the foundation is corered an the top lyy a phank forming a borker, but so as 10 allow of horitane movement. The steam and exhaust pipes are given a sjimal tran at their ujpict ends so as to permit: of their being clastic under the moventent which zakes phace, and so as to avoid the springiag α joints. In the pantientat case referred io, the oscistatory mo white mass, wethich and nothing is more curious than to x vilmating without one iceing abte to fect the slightest viluration or It the celpe of the trench.

Pie J. A. CONVERSE MANUFACTURING CO.

A. W. MORRIS \& BRO.,

Toronto Brancle
 © FRONT STREET EAST,

W. C: Bowntil., Manager.

Tricphumen $\mathbf{4 8 \pi}$.
Herlifex Brunch :
AEMNER \& HART'S WHARF. f. I.somes, Manager.

IIinniney brunch :
MERRICK, ANDERSON \& CO. Agкints.

西县
Sample orders will alrays receive the greatest we.

Cordage, Red Cap Binder Twine,

 JUTE AND COTTOK BACS, CALCINED AND LAND PLASTER.Factories at Montreal, Que., and Port Hope, Ont. (G) HEAD OFFICE,

MONTREAL. BRANDS, ELECTROTYPES

NOVEL DESIGNS rok PRINTING
SUPPLIED GRATIS.

\intUR Bags Works have only been in operation a few months, but nevertheless we are pleased to be able to state that our daily sales exceed those of any similar concern in the country. This is accounted for by the fact that our plant and facilities are vastly ahead of what are ordinarily in operation, and the goods umed off cannot help but be superior in workmanship, appearance, and general uniformity. The Finest Bag finting Press on the American Continent is running in our works.

Full stock of our Manufactures at all branches.

W. MORRIS \& BRO., - MONTREAL, QUE.

GOIDIF \& MCOUITOCII, G-AIT, - ONTAIRIO. I 1 PORTED--manufactured under Canadian Patents controlled by us.
All. Who intend) to make changes will do well to see us before doing so.

LONDON MACHINE TOOL CO.,

 LONDON,ONTARIO,
manulaciukers or
Machinist-:-and-:-Brass -:-Finishers'-:-Tools.

L. A. MORRISON, with A. R. WILLIAMS, Qeneral Agente, TORONTO, ONT.

no you wat "Catalogue Printed

 04 Latkeylau cont

IMAPORTANT TO BTEAM USERE.
THE PREVENTION OF BOILER EXPLOSIONS
and other accidents to steam bollers.
When were jour Bolers last inspected? Are they in safe working order? Are they giving the greatest power at the least cost ?

The Boiler Inspection \& Insurance Company of Canada. Heul Office,

TOHONTV.

二|All Sizes Kept in Stock, and Orders Filled Promptly. \mid 二. dealens
Cotton and Rubber Belting,
LaCE LEATHER, BELT HOOKS AMD MILL sUPPLIEs.

Victoria Wire Mills.
ESTABLASHED 1859.

Perforated Sheet Metals,
Steel and Iron Wire Cloth, WIRE CUARDS FOR MILL WIMDOWS, ETC.
B. Greening \& Co., HAMILTON, ONT. - ॥-

Nenct for Catalogne, montioning your requirementa
w. Stallschmidt \& Co.

Office, § School,

Church and Lodge

FURNITURE

Preston, - Ontario.
seid for catalogue.
GEO, F. BOSTWICK, Refresentatioe.

Toronto.
24 Front Street West,

STRAMUSERS Dratrinu the marnicen of compritant the OINENRAS of CHE CITAR, enn oblale nober, (natelligerne and rullable men, bu ajmising to CAMADIAM ASSOCIATLON
stationary enemeg A. M. Wichens, President, Glate Otioce T rand St, West, Toronto.

manupactureks of

ELECTRIC

 MACHIMEof All Kixite.
Are and Incanderen DYMAKOS and LMES

ELECTRIC MOTORS, plating maching ANNONCIATORS, CALL BELLS,
medical batterir ETTC.

Cor. Bay \& McNab Stu, MAMILTOM, - ONTM Send for circulars and brice list. BARLEY CLEAME The abcure machine is unsurpassed for thoroughly, densi)
wheat, oals, batley and other grain. Read the following te wheat oacr, batley and other grain. Read the followian te
monials: Meiss. A. Laiblali \& Co., Parkdale Gentlemen, - Yours of the ast received and noted, We bey
found your liarley Cleaner (No. 1 , apacity ano buchels pee

 seacon, and find that the average increace in the weight was tot
pounds per toushel, and the average waste (light grain, dith de pounds per bushel, and the average wasce (light zrain, dirt, de
slout one bushel in seventy-five. It increased the vise of barfey three so five cenis pers bushel.
Yours truly.

Mksss. A. Laidlaw \& Co., Toronto.
Toronto, Juve 3rd, itho.
In reply to enquiry as to the working of your Harley; Machines, we would state that they have civen m rai
atisfaction. Had we anv light weikht harles in our mection last seaven, weare certin we could sak tivel; as to their merits. They tun well and lax, ami are eavily driven. Wishing you every succas, we growi Yours very truly, \qquad
IT WLL PAY MILLERS, OWWERS OF ELEVATOM8, ETC., TO ExAMINE THE MERITS OE THA8 MAENINE.
Send for circular and lestimonials.
 GEORCIAN FOUMORY, HEAFORD, ONT C. Barber, Propriotor Improveo CANADIAN TURBMES

The Best and Cheafest. Moost Kefiable and Ese
nomical Wafer Wherl in the Mfarine. Agents for Maritime Provinces: Messks, A. Rom Sons. Amherst, Nova Sicotia.

Also complote Saw Mill Outhte and Supplim A large list of Gemeral Pratterns. connesfondenck solicitid

MANTEAOTURED ATE

 TOROINT BAG WORKSThe Pioneer Factory in Canada for Printing
 Original Designs for Brands Prepared Free of Cost. Send for samples and price lists. Winnipeg Branch : GRANT \& HORN, Agents, who carry a complete stock of our goods.

DICK, RIDOUT \& CO.,

11 and 13 Front street East, - TORONTO

LEATHER

PTTHER

Guaranteed in every respect equal to the best American or English Belting.

OHFIOH AIND FASMORY=
70 King STREET EAST,

MILL BUILDERS

Mewrecturas of MILLING MACHINERY

- Special Machinery for the Short System of Milling

AGENTS FOR MILLERS' SUPPLIES.

MESSRS. JAMES JUNES \& SON, Thorold, Ont.
Chelitenham, March 8th, 1889.
Gents, - As my mill has been running some months, 1 am now in a position to give my opmon on your Short System of Milling. 1 will say it is no trouble to run it ; there is no choking; the machinery runs complete. I cannot speak too highly of the Stone Roll for purified middlings. It is easily regulated The bran and shorts are clean and the flour is up to the standard. Altogether 1 am well pleased with the mill and its work, and have to thank you for tho manner in which you completed the contract.

SOMHTHING NHW

After several yeurs experimenting on the best mill for custom milliny, we have lately broulft out OUR MODEL CUSTOM ROLLER MILL, Which is the Simplest, Cheapest and Best Custom Mill ever offered.
We guuruntee to produce as good results as can be proluced from the wheut used. Parties dexiring to change, fromthe long system to the short system, or chenge from stomes to rolls, or buille mew mills, will flud it to their interest to consult us before plecing their omler. For further purtesmlens, apply to

JAMES JONES \& SON, - THOROLD, ONT.

WE WANT IT KNOWN TO EVERY MILLER

DOBSON'S

Patent Flour Dresser

Is guartuteed to be SUPEIRIOL TO ANY OTHELI HOLTING DEVICE for
Clear, Clean Bolting, or Re-bolting of all grades of Flour.
they cannot be beat on any stock,
Are being extensively culopted for the entire bolting in both new ame ohl owills.

Finely designed and mechanically constructed, slow speed, occupies small space, and has immense capacity.

Manufactured for the Canadian trade by
THE HERCULES MFG. CO.
PETROIIA, - - ONTARIO.
Send for price lists, testimonials, de.
Sutisfaction guaranted.

卫卫耳卫 COCFRANE

 ONE BELT DRIVE \Rightarrow

 ONE BELT DRIVE \Rightarrow
 CONTINUOUS TRAIN OF ROLLS
 FIRMLY ESTABLISHED AS IHE
 MOST PERFECT SYSTEM KNOWN

We refer you to the following millers

USING THE COCHRANE ROLLS：

\bullet
Not one of whom could be induced to return to the old style of Belted Rolls．
\qquad
－
 \qquad \because GIVE US A TRIAL

IF WE DO NOT PROVE ALL WE CLAIM WE WILL REMOVE THEM AND MAKE GOOD

ALL DAMAGES SUSTAIMED．

WE ARE NOW PREPARED TO FILL ALL ORDERS PROMPTLY．

ROLLS RE－GROUND AND RE－GORRUGATED

TO ANY CUT DESIRED ON SHORT NOTIGE．

The W．P．Cochrane Rolleer Mill Supply Co．（Limited．）

Callenders used in Gruin Mills，Rubber Factories，Paper Mills，Rolling Mills．

THE GUTTA PERCHA \& RUBBER MFG. CO

Omce and Warehouse : 43 YONCE ST., TOROHTO, ONT.

OF TORONTO.

Factories

I2I TO 155 WEST LODGE AVE.,
ORICINAL MANUFACTURERS PARKDALE, ONT.
PATENT PREEEED AND ETRETCHED DOUBLE ETRIP
RUBBER BHITING
"red STRIP,"
"LION" BRANDS OF

RUBBER BELTINC.

"MALTEEE CROSS,"
"BaKER FABRIG,"

"AJAX,"

BRANDS OF

FIRE HOSE

THE BESST IN TEIF WOIID.
ILsa, manceactruneses or RUBBER CLOTHIIG, CARRIIAGE CLOTHS, ORCAN CLOTHS, ETC. THE CUTTA PERCHA \& RUBBER MFG. CO. OF TORONTO, - 43 YONCE ST., TORONTO. z THE ONLY RUBBER FACTORY IN ONTARIO.

NORTHEY \& C0.'S

 SPECIAL STEAM PUMPS.

NORTHEY \& CO.,

Office and Works : Cor. Front and Parliament Sts.

Independent AIR PUMP Condenser:
for attaching to

- High Pressure -

Steam Encuraz MARINE and STATIONARY.

CREAT ECOMOMT
In FUEL and POWP (iUARAVTEED.

Prices and particulars on application.

PARKIN \& CO.,
Bail Elent ric lichte

electric lighting apparatus

GALT FILE WORKS

Manufacturers of all kinds of files and raspa. All de scriptions of re.culting done promptly. Terms and dis. counts given on application. Addres G.ALT, ONT.

THE "EASTLAKE"
SHEET STEEL SHINGLES Wire and Storm-Proor,

Dutrable ant Chenx: OUI MANITOBA ANO SPECIAL BTEEL GINB is apecially adaptod for Elova. tore, Warshouses, etc. Imitation Brick for Churches, School Homm and Dwellings.

SEND YOR CIRCULAR.
mbTLLLIC ROOFIIGGCO. (ILA.)
82 7-2 YONEE 8T.,

