Pages Missing

THE Canadan Hortccuturist

AUGUST, 1903

Volume XXVI

LINDLEY

AFEW years ag" the Lindley, or Roger's No. g, was a favorite red grape with vineyardsts, and it was planted quite freely in commercial vineyards. It was also a favorite for the dessert table, for its quality is excellent and its pretty and peculiar red color shows up its bunches finely in the dessert dish, along with Niagara and Concord, making a display of our emblematic colors, the red, white and blue.

In some instances vinevards of Lindley have yielded splendid crops, amounting in one case to an average of about thirty pounds to the vine; but it was not long before the variety hegan to fail in productiveness and become unprofitable. Perhaps this failure was due to the thrip, which is very troublesome on vines of the Lindley, for they weaken them by sucking the sap from the leaves. Anyway, whatever may be the reason, we find that of late years our Lindlevs never give a good yield of fruit, and it is very difficult to select out bunches that are really perfect. We cannot, therefore, recommend the Lindley as a market variety, and, since it is scarcely the cqual of the Delaware in quality, it cannot displace that exeellent little srape for the dessert tabie.

Perhaps if we could succeed in destroying the thrip this grape might recover the plare
it held when I'resident Wikler, of the celebrated Massachusetts Horticultural Socicte, denominated it and Jefferson "the Muscats wi . Imerica," and when in the Bushberg catalugue it was recommended as a "fine table grape, one of the best of the red hybrids."

It was on the encouragement given by such favorable statements that about ten luars ago we planted a rineyard of Lindlers at Maplehurst, but every year they have been srowing less satisfactory, until now we expect soon to be obliged to ront them out, for they are only a breeding place of thrips. which swarm over to the other varieties.

Lindley is an excellent keeping grape. holding its rich flavor in ordinary storage, well on into the winter, and in a dry atmosphere it turns almost to a raisin.

There is a grape called Mary in our collection which very closely resembles Lindley, so closely indeed that experts are puzzierd to decide whether it is really distinct or nut We notice, however, that it is a better grower, that the bunches are more compact, amri, if anything, brighter in color. Perhaps it may prove hetter able to resist the vexatious thrip than the Lindley, and, if so, it will establinin its distinct identity.

Feditoxial gites and domments

TOP BLDDING.

GR:AFTING has usually been looked upon by the farmer and fruit grower as the only method by which the top oi a tree might be changed to some other variety. The operation of budding, which is really grafting with a single but instead of a scion with two or three buds may, however, be practised in almost every case with as much success as grafting. Grafting is best done early in the spring, at which time there is often such a rush of other work that it has to be put off and is then neglected. Budding is done during the summer, when it is usually more convenient to get time for doing it.

The practice of budding is particularly adapted to the top working of young trees when the main branches are not more than an inch or so in diameter, for the buds may be inserted on branches of this size, and the wound made when the branch is removed heals over readily. Detailed directions for budding may be found elsewhere in this number.

A WARYING TO FRUI' GROWRRS.

THE Fruit Division of the Department of Agriculture, Ottawa, issued the following warning to fruit growers about the last of June: It is to be feared that the wet weather at present prevailing will lead a good many orchardists to neglect spraying. Last year the summer and autumn were wet, and many growers of fruit failed to give their orchards more than two or three sprayings. Cool moist weather is peculiarly favorable to the development of fungous growths, and it is only be scizing cucry opportunity and spraying whenever a day or two of dry weather comes along that sound clean fruit can be sccured. Wet weather should be an incentive in greater diligence
in spraying, rather than an excuse for not spraying. Eternal vigilance is the price of safety in fruit growing, and it behooves every one who desires a full crop of firstclass fruit to spray early and often.

ORCHARD (ULITVATION.

THERE is a danger that on account of the wet weather orchards will not receive their usual cultivation, which is urgently needed to destroy weeds, arate the soil, and conserve soil moisture for future use. If the ground is not stirred it bakes, cracks open, and evaporation goes on rapidly. By stirring the soil through frequent cultivation, thus keeping a loose mulch on the surface, capillarity is broken up and moisture retained. As soon as it is possible, therefore, to get on the ground after a rain, the cultivator should be started in the orchard and kept going as steadily as time and weather will permit.

FRLIT PROSIPCCIS.

THE following is a summary of the crop report, as obtained by the Firuit Division of the Dominion Department of Agriculture: Early apples are reported a good crop in all sections. Winter apples will be only medium. The fruit has been singularly free from the ravages of insects and fungous diseases, though a few correspondents are noting the development of some scab since the wet weather has set in. The fruit division a few days ago issued a timely warning that spraying with the Bordeaus misture would be doubly necessary as long as the wet weather continued.

Pears in Southern Ontario and Georgian Bay districts are a good crop. In Eastern Ontario they are a failure in many places.

Plums are a heavy crop in all the plum growing sectinns, but the rot is developing
with the wet weather, and will, if it continues, cause a serious depreciation.

Peaches are also a large crop. Mr. J. L. Hilborn, of Leamington, says: "Peaches of all varieties except those subject to curl leaf are heavily loaded. The Elberta, a variety much subject to curl, has suffered very little where it was sprayed early, but where spraying was done late or not at all many of the trees will probably die."

Small fruits are a heavy crop everywhere except in the eastern portion of the province, where the drought is responsible for the failure.
THE "KING" APPLE.

THE "King" is one of the favorite varictics in the market, but unfortunately it is so shy a bearer on its own roots that it is not at all profitable. It has, however, frequently been noted that by topgrafting it on any vigorous stock it becomes much more prolific.

The Fruit Division, Ottawa, invited correspondence upon this subject, and has received some valuable information. Mr. C. L. Stephens, of Orillia, has the King topgrafted on Duchess, and finds that its bearing qualities are quite satisfactory. Mr. Wm. Read, of Jarrat's Corners, has twelve King trees grafted on Duchess, and reports equally good results. Mr. Judson Harris, of Ingersoll, has an orchard of two and a half acres, the crop from which the past eight years has never brought him less than \$500. Many of these trees are Kings grafted on Russets. Mr. Robert Murray, of Avening, has a number of King trees on their own roots and others grafted on Tolman Sweets, and notes that the top grafted trees are the only ones that give him paying crops.
The experience of these growers and many others goes to show that it would be a very profitable piece of business to top-graft at least some of the early apples to be found all
over Ontario with Kings. The King is an apple that exactly fills the biil as a fancy market varicty, as it is of excellent quality, color and size, and well known in the English market: If its only defect, want of productiveness, can be cured by the simple method of top-grafting, it should prove a boon to many people who have vigorous trees of undesirable varieties.

THE (ilfir Packatie Foh gilapes.

0UR readers, who have been hoping to see a market in Great Britain for Canadian grapes, may be interested in a view of the interior of a salesroom in Covent Garden, London, England. These old wicker baskets, which have been in use from time immemorial in that country, may look clumsy to us, but owing to their great strength they endure shipments for years; thus avoiding that most serious annual expenditure for baskets, which bids fair to 1 ecp the Canadian fruit grower poor. Onze when fruit prices were high, the gift packige came into use, and was looked upon as a saving of trouble; and so it was, but can we afford the luxury? Very often the money we fruit growers pay the basket maker exceeds our own share of the proceeds of our fruit crop. Indeed, the basket bill of many a fruit grower in the Niagara district reaches $\$ 1,000$ in a single season. Is it not time to call a halt and ask ourselves whether, after all, this old world conservative custom of using such fine strong baskets, as are shown in the illustration, is not worthy of introduction into Canada. Such baskets would last for generations, and are retu: ced free by the carrying companies, so that when once a stock is secured the basket expense is over.

Of course in this we refer only to home markets; for it would be almost impracticabe to have export packages returned, even if they were so made that they could be iested.

Fig. 26ji. A. Fruit Salesroum in Coviaj Garmen, Lonlon.

The illustration is furnished by Mr. W. A. McKinnon, chief of our fruit department at Ottawa, who calls attention to the "packages in which grapes are sold with bloom undisturbed," and also to the packages of peaches and melons.
WESters Mark..t for scmaer fritts.

THAT a northwestern trade for Southern Ontario fruit will develop a hundred fold in the near future, owing to the rapid settlement of northern Ontario, Manitoba, and the Northwest, there is no manner of doubt. Southern Ontario will send to the latter pnints, not merely advance supplies of early fruits, but in a large measure will contribute the whole supply. Tine
northerly limit for many of the carly nd tenderer fruits, as well as for some later and hardier varieties, is found somewhere in old Ontario. The very low winter temperatures of the northern points enfeeble, if they do not kill, fruit trees, vines, and bushes, while the comparative shortness of the season that is free from frost adds to the difficulty of producing fruit on a large or profitable scale. Berries, grapes, peaches and apples are demanded in the west now in large quantities, and as settlement continues and wealth increases the market will widen more and more. The Ontario fruit grower will do well to look to the northwestern market.

Winnipes should be a great shipping centre for Ontario fruits of ail kinds. Strawberries are sold there by a commission firm at 18 cents a box. These berries come, we are informed, from Oregon. Berries from Ontario could be sold in Wimnipeg with handsome profit at io cents a box. But before this can be done an opening must be made in the market against the active opposition of the aforementioned commission firm, a proper car must be found to carry the
berries thither, and the railway companies must be induced to build and to use this car.

What is true of berries is true of most other Ontario fruits; there should be an ever-increasing market in the west. Cooperation and patience in establishing the market, a little experimenting on cars for shipping, and a deal of suasion towards the railway companies, are necessary to the accomplishment of this important object.

FRUIT TRADE WITH THE WEST IN A CRITICAL CONDITION.

THE Fruit Division, Ottawa, gives olit the following statement: Nume:ous requests have been reccived from Manitoba and the Northwest Territories for Ontario fruit of the best quality, put up in neat and attractive packages of the sort that western dealers prefer to handle. There are immense possibilities in this western trade for the Ontario fruit growers, but up-to-date methods of packing and shipping will have to be adopted at once, or the whole of this great and growing business will be captured by the Americans.

Fruit Inspector Philp, of Winnipeg, writes that matters have come to a critical stage, and that unless Ontario now makes a determined bid for the trade the market will be occupied almost exclusively by fruit from California, Oregon and British Columbia. In the case of apples, even Kansas and Missouri are likely to be strong competitors. According to Mr. Philp, the packages wanted in the Wimipeg market are the following: Early apples, the bushel box; pears, the half box, holding twenty pounds of wrapped fruit; peaches and plums, the crate holding four boxes, similar to those used by California shippers, and which are well known in all Canadian markets.

It is very important that Untario shippers should realize the critical stage at which this trade has arrived, and that they should make a united effort to capture the western market, not only by perfecting the details of their ow 1 end of the business, but by taking up the matter of transportation with the express and railway companies in order to secure if possible a better and quicker service to Wimipeg. At present fruit is frequently forwarded by express from Toronto to Winnipeg via Smith's Falls, and even via Montreal, to connect with the through trains. The result is that the fruit is on the road from IS to 24 hours longer than it would be if sent via North Bay, and consequently it does not arrive in Winnipeg in the best condition. If the carrying companies can be convinced that Ontario growers are prepared to maintain a steady shipment of fruit in modern packages, and not merely to send. west the fruit that the east dioes not want, put up in all sorts of antiquated shapes, there is little doubt that adequate service will be provided at a rate which will compare favorably with that now enjoyed by Oregon and Califoriina shippers.

FRUTr P PACKAGES

THIE box is fast coming into popular favor as a suitable package for shipping apples in, as well as pears, and many shippers say that the barrel will soon be a thing of the past. However, it will be some time yet before the barrel will be entirely superseded. There are several points in favor of the box, and it is, undoubtedly, by far the best package for early and tender fruit; there is less bulk of the fruit together, and it is, therefore, much easier to keep it at a cool, even temperature. It has plenty of ventilation; there is not so much pressure necessary to kecp it tight; it is a handy package to handle; it is square in shape, and utilizes the space on cars or on vessels to better advantage. If to be shipped in cold storage, the fruit can be cooled down to the necessary point very quickly, but it takes a long time to get a barrel cooled to the center. In price, there is little difference between the box and the barrel. The raw material has risen in price, so that a god barrel will cost about 35 cents laid down; what is called the bushel box is laid down for about 12 cents, or $121 / 2$ cents. It takes three boxes to the jaurel, so it will be seen that the difference in cost is very slight.

It is claimed that nothing but the very choicest fruit should be shipped in boxes, so that the fact of the fruit being in boxes would mean that it was of the very best quality, and that no second grade should be boxed. In British Columbia they use boxes almost entirely for shipping their fruit, and their second grade is shipped in boxes as well as the first, and where no barrels are used this must certainly be done, and it is hard to see how it can be avoided, or just why it should not be done, providing it is properly marked and branded as required by law.

There is as yet no standard fixed as to the size the box should be, and any and every kind and size is being used. Some use the bushel box, so called, holding about onethird of a barrel; others use what is called the $40-\mathrm{lb}$. box, holding about one-quarter of a barrel, and for extra fancy stuff, especially pears, which are wrapped in paper, a much smaller package, containing only about two or three dozen fruits. There is a difference of opinion among growers and shippers a.s to whether there should be a standard fixed, or whether everyone should continue to use the size that suited them best. In the St. Lawrence valley, in the neighborhood of Montreal, they are using what is called the Cochrane case, which is fitted with pasteboard squares like an egg case. These are used for choice specimens of Wealthy and Fameuse, and it has been highly profitable. The fruit must be of uniform size to fit the squares, and this matter of uniformity in size should be a cardinal point in packing fruit in all kinds oŕ packages. It need not all be large, but the large specimens should be put together. A smaller size can be put up, in which the only difference will be in the size. In all other respects these should be as good as the first, clean and well colored; and these will often-in fact, in most cases-bring as much money in the British market as the larger ones; but good judgment must be used in the grading, as to uniformity, cleanliness and color.

The question of packages for fruit was discussed at the last annual meeting of the Ontario Fruit Growers' Association, at Walkerton, but there was such a diversity of opinion as to which was the best size of box to use, that no definite conclusion was arrived at.

However, the matter will come up again,
and if it is necessary to have a standard size for the barrel, and the size of the basket is fixed by statute, then we must have some definite standard for the box as well. They must be of different sizes like the baskets, so
as to have a small package for very choice fruit for export, but buyers will waint to know when they buy a box of fruit what it should contain.-Farmers' Adrocate.

OUR ASSOCIATION AND THE FALL FAIRS

IN his published address Mr. G. C. Creelman, the superintendent, made the foilowing remarks touching on the way in which out work may help to make the fall fairs of our province a greater success than they have been hitherto:

I believe that the Fruit Growers' Association can materially assist the fairs. We are now making arrangements whereby there will be an active local Fruit Growers' Association in every part of the province. The Ontario Fruit Growers' Association has done splendid work up to this time, but now the time has arrived when they must extend their yearly meetings into a series of meetings, in which the individual farmers may take part. The local Fruit Growers' Association should be asked to consult with the Fair board, and to revise the prize list so far as fruit is concerned.
First: Then we can go a step further and secure the co-operation of the Fruit Experiment Stations. If these stations are any good at all, they must have demonstrated to a large extent at least what is best in the way of fruit for the localities in which they are located. These stations are receiving government money, and their object is to assist those interested in horticultural matters. Are you making enough use of them? Are
you asking the superintendent of the station to co-operate with your board? Take the information he has to give and make use of it. If he will not give it, I as secretary of the Fruit Growers' Association will undertake to see that he does give it. But I have no hesitation in saying that these men are anxious to help the farmers in their vicinity. Each secretary should write to the director of the Fruit Experiment Station for his district and ask him what varieties he would recommend for the prize list, or what varieties should be cut out.

Second: The local horticultural societies ought also to assist materially. Give them a place in your main building for the exhibition of hardy varieties of plants, shrubs and flowers. They ought to be asked to have their officers there at certain hours during the fair, to explain how these plants and flowers have been produced, the mode of growing them, etc. An opportunity should be given to ask how to grow this or that. To-day people are discouraged by seeing exhibits so far superior to their own plants and flowers, because they do not know how to produce them. Let us take the other associations into our confidence; they are only waiting to be asked.

Fig. 2632. James Fletcher, F. R S. C., I i. D.

A
MONG the most acceptable and most effective agricultural convention speakers is our friend, Dr. James Fletcher, of Ottawa, entomologist for the Dominion Experimental Farms. His name appears frequently on the programs for dairy conventions, live stock meetings, the Ontario Fruit Growers' Association, and the Ontario Entomological Society annual meetings. The school teachers' conventions also welcome him. Just now he is on his
annual official visit to MIanitoba, the Northwest and British Columbia, and we take advantage of his absence to give our readers a sight of his genial face, and a note or two as to his work. Dr. Fletcher is not fond of kecping his personal affairs before the public, and so we will have to be content with but a brief note as to his career.

Dr. Fletcher was born in England, but has lived in Canada for so many years that his attachments to this country lave become
thoroughly established. He has great faith in Canada, and is giving his whole energy and thought to assist the farmers of Canada in developing our unlimited resources. For some years after coming to Canada he was attached to the parliamentary library at Ottawa. At the same time he continued his studies of insects, and soon became one of the live working members of the Ontario Entomological Society. To Dr. Fletcher and to Dr. Bethune the society owes a great deal, for they have, year in and year out, kept up the interest and maintained the continuity of its existence.

When Sir John Carling established the system of Dominion farms in 1886, he selected an ex-president and active member oi the Ontario Fruit Growers' Association as director, and he also appointed the most active member of the Ontario Entomological Society, Mr. James Filetcher, as Dominion Entomologist. A few years ago Queen's University, Kingston, conferred upon these two gentlemen the degree of Doctor of Laws. May they both live long to enjoy their honors.

Dr. Fletcher has been one of the active ${ }^{\text {sel- }}$
lows, and an efficient officer of the Royal Society of Canada, and has contributed several valuable studies to the proceedings of that body. He has not found time to collect his material into book form, but his papers and investigations may be found scattered through half a dozen scries of reports for the past twenty years. While he is a firstclass investigator, we consider his strongest point is his ability to interest an audience, and to arouse their enthusiasm in agricultural work. His instruction is clear, inspiring, and wholesome. He quickly gains the attention of his hearers, at the same time he knows enough not to weary his audience. His geniality beams out in his talk, and i.s gets the confidence and sympathy of the people to whom he is speaking. He is generous to others, not seeking to monopolize time, attention, or credit-he is just the kind of man that one likes to work with. Every one is pleased to see Dr. Fletcher's name on the program, or at the head of an article, and the fruit growers of Caiada will be exceedingly pleased to see his portrait on these pages.

OUR BARTLETT PEARS IN ENGLAND.

The pear imports are heavier now than ever. More than half the quantity received is drawn from France, though California is now becoming a keen competitor of the continental pear growers. liair quantitics are drawn from Holland and Belgium, but the French and Californian are best in quality. As a pear-growing country Canada has no equal. We have, during the last five-andtwenty years, had much experience of imported pears, and we have no hesitation in saying that the finest William pears evar marketed from outside sources came from Canada. The French William has had a high repitation in Covent Garden market
for over twenty years. The California William is fine. But those sent us from Canada two years ago to report upon officially were of mammoth proportion, with a clear yellow skin, and a melting sugary and juicy flesh. In quantity they were worth from 3 s. to 6 s . a dozen fruits. Then again, from Austraiasia we have have had some fine pears sent into London. The colonial pear trade should be made a•large business, and when the growers set themselves to satisfy the market's need they will find our merchants only too anxious to get their fruit.-S. Morgan in Birminghan Post.

COLD STORAGE OF FRUITS

STORAGE OF PEARS AND APPLES.

BULIEETIN 123 of the Ontario Agricultural College, by J. B. Reynolds and H. L. Hutt, treats of an experiment with cold storage of pears and apples, which will be of interest to many of our readers. We give below a summary of the bulletin, a complete copy of which may be obtained upon application to the college.

The two fruits made use of for this experiment were the Duchess pear and the Fameuse or Snow apple, and the conditions experimented upon affecting the keeping of the same were: (1) different temperatures; (2) different sizes of fruit, and (3). different styles of packing., The temperatures aimed at were 31 and $3 S$ degrecs. The fruit was all first class, but was graded into large and medium sizes. The styles of packing were as follows:
A. Fruit in an ordinary packing case, holding one-third of a barrel, without wrapping paper or filling.
B. In the case unwrapped, with excelsior at top and bottom.
C. In case wrapped in tissue paper, with excelsior top and bottom and beiween the layers.
D. Same as C, except oil paper was used instead of tissue paper.
E. Same as D, with heavy wrapping paper between box and the fruit, making the box airlight.
F. In barrel packed in the ordinary way (used on apples only).
From the results obtained the following conclusions are drawn:

1. For lons stovase, the modium-sised grade sires iettor results than the largest sised grade of fruit. This is evidently a mater of maturity; the larger fruits are on the whole riper than the smaller ones, of piekerd at the same time. It would there-
fore appear profitable with choice varieties to pick the larger iruits, if intended for shipping or storing, a week or two earlier than the medium-sized ones.
2. The style of packing is a most important considcration. The fruit wrapped with either tissue or oiled paper and packed between layers of excelsior gave by far the best results. The wrapping and filling has a two-fold effect of preventing bruises and preventing the spread of decay throughout the package. In the unwrapped fruit three or four decayed specimens were frequently found in a group, showing that decay had spread from one apple to adjoining ones.
3. The lower temperature is the more facorable one for the long storage of fruit. Further experimenting is necessary to ascertain the most suitable temperature for the various classes of fruits, but those under the test kept well at $3 I$ degrees.
4. Under cuen the most favorable conditions there is a limit beyond sidhich it is unprofitable to hold fruit in storage. Cold storage postponcs, but camnot avert, maturity and decay. The limit for the Duchess pears was reached beiween Christmas and New Year's while the Snow apple kept well into March.
handling of fruit after remotal froms cold storage.

It has been charged against cold storage that produce quickly deteriorates aiter being removed from cold storage conditions. That it usually docs so, is quite atatural. If the produce has been held for a considerable length of time in cold storage, the process of decay has been working, though very slowly. When the produce is removed from the low temperature into surroundings havorable to rapid decty, it is not to be cr-
pected that it will resist deterioration so well as if fresh.

Careful handling after removal from cold storage will lengthen the life of the fruit. In the apple experiment two basketfuls of sound apples were selected from the same lot after examination. At the time of selection, the apples having been examined in a warm room, they were quite wet, owing to deposition of moistire from the warm air of the room upon the cold apples. They were "wets," as they are termed in the old comtry markets. One basketful of these wets was allowed to remain in the basket as they were. The other basiketful of these wets was removed from the basket and spread out thinly over the table. The former lot remained wet for some time, the latter dricd off quickly. Next day they were removed to the cellar and left there in the same way as described. After ten days they were again cxamined, with the following results:

First lot (left in basket)-Sound, 70 per cent; discolored, 30 per cent. (i2 per cent. rotten).

Sccond lot (spread out thinly)-Sound, 89 per cent; discolored, II per cent. (5 per cent. rotter).

The difference in these two lots was simply one of drying off quickly or remaining wet. It would have been better, of course, if they had not been allowed to become wet at all. To this end, the fruit should be warmed gradually, moisture not being allowed to form on its surface; or the warm air should be kept from contact with the fruit, by a covering or an air-tight package, until the fruit has attained tife temperature of the surrounding air.
cold storace from the fruit grower's
point of view.
The foreyoing account shows that certain results may be reached be cold storage. It remains to be considered (x) whether or not
such storage can be made commercially profitable, and (2) if so, how storage facilities may be obtained ijy the grower.

Considered Commercially. In considering the commercial side of the question, we must remember that the plan of storage recommended above as securing best results involves two items of additional expenditure : first, the extra cost of packing; and secondly, the cost of storage. The extra cost of packing, Mr. A. W. Pcart, Burlington, Ont., who has packed a good deal of fruit in this way, estimates as follows:
"Extra labor in wrapping, four cents per box.
"Wrappi:،g paper and excelsior, seven to cight cents per box.
"Total extra cost, seven to cight cents per box.
"As against this, however, it must be borne in mind that four boxes of bare pears will make about five boxes of wrapped ones."

There is also to be added on the credit side the saving of fruit from bruising and decay by the superior method of packing; and this, for the fruit grower who looks to the future, means, besides the actual saving of fruit, the possibility of establishing a repatation for furnishing an article of first-class quality.
As to the cost of storage, the wisdom or unwisdom of incurring the expense will depend entircly upon the state of the market when the fruit is larvested, the probable difference between present rates and rates a month or thice or six months hence, or the difference between local prices and prices in the forcign markets (for storage implies storage in transit as well as in the warehrues). In fact, this being a commercial question. is snlved as all commercial questinns are. bey taking the risk, and depending ujom increase in prices in repay cost ni holding and slupping. . Is to the probability of profit from such a venture we quate the fni-
lowing from the United States Year Book for 1900: "Most storage establishments store apples in carload lots at about forty cents per barrel for the season ending May rst, and it is rarely the case that sound fruit does not advance more than that in price by March ist, while a rise of $\$ \mathrm{I}$ or even $\$ 1.50$ per barrel is not infrequent."

Cold Storage Cunsidered Mechanically. As to the question of securing cold storage accommodation, there is, first of all, the cellar, a vailable to all. For late fall and winter storage a well-ventilated cellar will serve the purpose of the family in preserving apples and late pears. In this statement there is, of course, nothing new; but it is necessary to repeat at this juncture that there are three reasons for the spoiling of fruit in cellars: First, the fruit, all or part of it, may be of poor quality when stored. Then the handling, packing, or manner of storing the fruit may be careless. Finally, the storage room may be budly ventilated and uneven in temperature. The cellar should be well ventilated, with the window or vindows open as much as possible, so long as the temperature does not drop below freezing. If the windows are left open, the temperature of the cellar will require carefui watching, and a thermometer suspended about the middle of the room is advisable. A proper average temperature for a misture of fruit and vegetables is 36 degrees F., and the temperature of the cellar should be kept at that point as steadily as possible. Of course, with early fruits that are stored during the warm weather of September and October this temperature cannot be reached, nor yet in the spring with latekeeping fruits. The cellar, however, cven at these times, will likely be cooler and steadier in temperature than any place above ground, not artificially cooled; and therefore, it is better to make the most of it. Fruit that is intended for long kecping should be packed and stored immediately
after picking, and not left in heaps in the orchard or the shed.

A small ice-storage is another means for preserving fruit. This is superior to the cellar in warm weather, and, therefore, gen.crally more suitable for this purpose. For private purposes, an ice-storage may be built for $\$ 250$ and upward, according to the size and style of insulation. It includes a refrigerator, or storage room, and an ice house attached, where the ice is stored in the winter and does its duty without being rehandled. The refrigerator is cooled after the most approved fashion by the circulation of air between that chamber and the ice house.

While this kind of storage is generally satisfactory if properly constructed, it has limitations inseparable from refrigerators cooled by ice. The principal of these limitations is that of temperature. It is difficult to keep the temperature down to the lowest desirable limit in summer, and in winter there is danger of freezing. Especially is this the case while the ice is being put in, and afterwards.

The third method is the large co-operative storage, owned and operated by a company of fruit growers, situated at a railway depot and in the midst of a fruit growing district. This kind of storage accommodation has many advantages. The fruit stored here can be marketed p-omptly and without long hauls. A large company can afford to build a well-equipped plant, well insulated, and well provided with the best arrangements for refrigeration, and to cm ploy a capable manager to look after the fruit and see that the temperature and humidity of the various rooms are of the proper degree. While a faiily satisfactory plant on a large scale can be refrigerate 'by the use of ice, the larse plants of the future will be cooled by machinery. There is an account of such a plant in the April number of the Canadian Firticulturist for x noz.

A fourth means of storage is the large warehouse, where space may be rented. There are a few of these in Ontario now, there will be more when the demand increases. The rates at these are moderate, so moderate that it can rarely happen that the fruit grower will not have a good margin of profit after deducting the cost of storage from the advance in the price of fruit during the storage season. A price list at hand from a large cold storage warehouse gives storage rates as follows:

Barrel, ro cents per month, 25 cents per season ending May ist. Bushel box, 5 cents per month, I_{5} cents per season. Box contaiaing one-quarter barred, 4 cents per month, 12 cents per scasom.

SUMAIARY.

1. Apples and pears keep best when wrapped singly in paper, and packed in a shallow box not larger than a bushel. They ship best when, in addition, they are packed in layers with excelsior between.
2. Apples keep better at a temperature of 3 degrees than at a higher temperature. The experiment does not show what is the best temperature for pears.
3. Cold storage cannot make bad fruit good; neither can it keep bad fruit from becoming worse. Only good specimens will kecp for any length of time in cold storage, or will pay for storage.
4. For long storage, it pays to select the best fruit and to pack it in the best manner known. The extra habor arid the enst of
material are more than repaid in the greater quantity and better quality of fruit left at the end of the storage period.
5. With apples and pears at least, and, it seems likely, for most kinds of fruit, the fruit should be picked and stored in advance of dead ripeness. The maturing process goes on more slowly in cold storage than on the tree or bush.
6. With the two kinds of fruit tried, apples and pears, the medium sizes of fruit keep longer than the largest, all being perfect specimens and picked at the same time. It would, therefore, be an advantage, especially with pears and peaches, to pick the larger specimens first, and leave the smaller to mature later.
7. Fruit, on being removed from cold storage, should be allowed to warm gradually. and moisture should noe be allowed to deposit upon it. But if the wetting camnot be prevented, then the fruit should be spread on and dried as quickly as possible.
S. With all kinds of fruit there is a time limit beyond which it is unprofitable to hold the fruit in cold storage, or anywhere clse. That limit, for sound fruit, is dead ripeness. luchess pears can be kept profitably until late in December; Fameuse, ur Snow apples, umtil March or April. The time limit has io be determined for each kind of fruit.
8. In addition to proper conditions in the storage room, the most important points in the storage of fruit are the selection of sound fruit, grading into uniform sizes, one raricty noly in a case and carcful packing-

Pear Trees do not often reach great size, but they do achieve greatness sometines by the fruit they produce. Under modern sys "cms of cultivation this is not so remarkable; but it is recorder in a quaint volume nf Scottis? lore, published in the carly part of the nincteenth century, that at Melrese a
single pear tree for fifty years yielded the interest of the money paid for the garden and a house in it; while in 1793 two trees there yickied oo,coo pears. Such an enormous crop would be difficult to surpass now, nontwithstanding the immense improvements that have been effected in fruit culture.

THE SELECTION OF BUDS FOR BUDDING..

AT a recent mecting of the American Nursarymen's Association, Proz. L. H. Baitey took as the subject of his address, "The Whole Question of Varieties," and at the close of his remarks a question was asked which should be carefully considered by every propagator of trees at this season of the year.

The question was put by λ Ir. George λ. Swect as follows:

As I understand Prof. Bailey; his suggestion is that the practical nurseryman must select his buds from a known bearing tree of valuc, and thercby get a valuable strain of that variety. Now, the point that occurs to me is this: ive will say that we go to Mr. Hale, who is a great peach man, and say that we want some buds from the best Crawford peach that he has on his place, and we get a package of buds and bud them. Now, next year, is it assumed by Prof. Bailey that we must send to Mr. Hale asain and set our stock of buds from that particular arce, or are we at liberty to use the buds that come from the growth of that tree, assuming that parent tree to have been the most valuable Crawford to be grown? If fhe takes that position, of course it would
simplify the question of bud selections; but if he accepts the latter proposition, where is the limit to come? Are they going to deteriorate in the second or fourth generation, or are they all going to propagate true to name, as the original? That is practically what our nurserymen are now doing. I should like to know if, with that limitation, it would be possible to cut sufficient buds from one tree to carry on the business?

Prof. Bailey-I am glad to have that question brought up, because it is exceedingly important, and because on that hinges the feasibility of the whole scheme. I am free to say that I camnot answer Mr. Sweet's question. There are four or five questions involved which have been up a number of times before societies: one comes before a mecting of this sort with more or less theoretical ideas of things which are going to come in the future. I do not expect any murscriman ever can live up to these ideals in the besinning, but we are going to work along that line, reaching them as nearly as possible. Now, to come down th the great question of Mr. Swect's. I am sn much interested in this matier muself that on nwn place I have plated a small orchard of

Northern Spies. I have grafted part of these this year with scions from a King apple tree : I have grafted the other with scions from mursery trees which ten years ago were taken from that same apple tree. for the purpuse of finding out whether in the ten intervening years there has been deterioration. I believe, as a matter of theory, that it is the best for the murserymen every year to go back to his bearing tree, but I do not think you can do it; it is only in rare cases and in special varieties that you can do that. and just how long these nursery trees can be propagated without deteriorating I do not know and no man knows. I believe one reason why the Crawford peach is ruming out is because we are propagating from so many different strains of it: bat whether by reason of a strain having been introduced that chanced
to deteriorate in the nursery row. I camot say. liy own opinion is that we ought to ory to rencer back from the original tree as often as we can, and, when the opportunity arises, once in five years, or once in ten; and I believe the oftener we can renew. the safer we are. without saying that we are not safe if we do not renew. I know, however, that there is such a thing as individuality in a tree. and I am perfectly sure that a great deal of individuality passes over. At present we are thiming out the cattle in the dairy herd by means of the Babcock test; we are finding that mane cows never pais. for their hoard. and are thinning out these cows all the time. I wish we could apply a Baboock test to our orchards by means of which we could eliminate those trees that do not pay their board. or at least that we never should propagate from those types of trees.

BCDDING FEUIT TREES

IN Ontario budding is usually performed in the months of July, August and September, the later date being for young trees which have a long season of growth; such as peach trees in thrir firsi yea: from the secd. The essential conditions are, (I) that tae bark can be raised casily, and (2) that the growth of the season is so nearly completed that the new layer of wood inside the bark has acguired some consistency, and has ceased to be thin and watery. It is this new wood which, in its ripening process, is to grow the bud fast th the young tree: therefore, the importance of its being in the right condition. This may be known by the young tree begiming to inrm its terminal buds. in completing the siason's growth.

The buds to be pat in are chained irnm shonts of the current year:s growth, and
they are usually more periect if grown in full sumshinc. As soon as cut, the leaves are to be removed-all but about a third of an inch of the footstalk. which is left to hold the bud by when putting it in place-and three inches or so of the immature point of the shoot is rejected, as are also two or three of the lower and imperiect buds. A prepared "stick of buds" (as it is termed) is shown at a in Fig. 2ri33. Several of these "bud sticks" may be prepared at one time, if desired, but they must be kept in a danip cloth until used, and on no account allowed to become wilted. Scims ior grafting, being fully ripened woul, will not be scriously hurt be a slight wilting, but this would run huds. When properly managed, bey being wrapped in damp nonss (sphasnom) and incloserl in waterproni paper, these "bud
sticks" may be sent a thousand miles by mail or express. This is a great convenience in the way of obtaining promising new fruits for trial.

The knife specially made for budding is most suitable, but one who has had some experience will succeed with other knives-a first rate "Barlow" has done good work. It should have a thin blade, a very keen edge and a half-rounding point. And it should be used for no other purpose than budding. An ordinary knife must be at hand also, to be used in any trimming of the young tree that may be required.

The budding may be done in the branches of a large tree if desired: but in tine case of a young peach tree (or a young tice of any

Fis. 26.33.
kind) it is best done within two or three inches of the sround. A smooth place in the tree, or branch-the " stock," as it is called-is selected to receive the butl: and if any leaves or young shoots are in the way they are to be remon d: and the dirt is to be wiped off with a ras. so that nothing wiil interfere. An upright incision, about an inch in length, is made with the rounderl point of the budding knife, just throurgh the bark, holding the knife in the fingers about as a lead pencil is held: then a short cross incision is made at the upper end of the first onc. as at b in Cig. 2633.

Now comes the raising of the bark, which is a very particular operation, for it must be done without touching the soft layer of new wood under the bark. If the soft, new wood is touched a wound is made, and while this wound is healing the bud which is put in perishes, instead of growing fast to the stock. The raising of the bark must be done gently, beginning at the upper end of the incision. This is done with the thin piece of bone at the end of the handle of the knife, pressing on the cut edges of the incision and lifting slightly on both sides and the whole length of the incision. In the aibsence of the regular budding knife, a thin, smooth piece of wood may take the place of the piece of ivory, but the expert budder requires neither, as he uses the rounding point of the budding kinife-and saves time. Fig. 2633 at c shows the incision made and the bark raised, ready for the bud.

A bud is now to be cut from the prepared scion, which is held in the left hand with the lower end extending outward. The knife is made to enter about half an inch below one of the buds and is drawn toward the operator, nearly horizontally so as to make a thin slice of the wood along with the bud, and coming out about three-fourths of an inch above the bud. Fig d represents the bud ready for insertion. ('The piece of footstalk of leaf is not quite long enough for comenience in holdings). Some take out the thin slice of wood, but this is mnecessary, and som times injurious.

The bud is taken hold of bey the footstalk left for the purpose, and inserted under the raised bark. begiming at the upper end of the incision and pushing it down gently th the lower end. In case a pertion of the bud extends above the cross incision it is in be cut off so as to make a sood fit, according to ein Fis. 263.3.

Tying is done at once, in order in exelude air and moisture and assist the healing process which is (1) wite the incision. using
both ends of the material, wrapping moderately tight, continuing upward and covering all the incision but leaving out the bud and the piece of footstalk, and finishing with a knot at the upper end.

The tying begins at the lower end of the bud with the stock. Any soft material an- to 2 swers for tying: woolen yarn, narrow strips of calico or muslin, etc. When much budding is to be done, prepared basswood bark is used, or raffia, which is to be had in the seed stores. The latter is prepared from the leaves of a kind of the palm tree found on the island of Madagascar.

The short piece of leafstalk will remain green, and in a week or ten days will drop off on being touched. If it dries up and sticks fast after the ten days have passed, the bud has failed. But if the bark can still be lifted the tree may be budded again, selecting a new place on the stem.

The tying may remain from two to three
weeks, but will need occasional looking after, so that it may be prevented from cutting into the tree, which it is apt to clo if the tree is growing rapidly. In that case, it may be untied in a week or so, and tied again but less tightly.

After the final untying, nothing more needs to be done until the next spring. About the time the sap begins to meve, the top of the young tree (or branch) is to be cut off about three inches above the bud. The sprouts from the stock will then start, even more readily than the bud, but they must be rubbed off from time to time, so as to throw the sap and the force of the growth to the bud: and in July or August, the stub-the three incines of wood left above the bud in spring-is to be cut off with a sloping cut on the side opposite the bud. This wound will soon heal over and the work will be perfected.-E.rchange.

THE ASH HEAP AND HEN MANURE.

THE horticulturist should make an cconomical disposition of two things that are generally regarded as household muisances-the ash heap and the droppings of the poultry house. There is nothing that will lighten and loosen a stiff soil so quick!y as coal ash siftings. Mr. Allen, the celebrated bulb culturist, of Long Island, thiniss there is nothing so good in its mechanical effects and he uses large quantities on his lily beds. Take your ashes every'morning as they come from the stoves and before they get wet, sift them through a coal sifter, the coarse part you use on your walks about the premises: the func, dust-like portion you carry to the henhouse and scatter it over the droppings. It will absorb the gases that arise, kecp the floor dry and the air pure-
a sort of dry earth system. Every few weeks when the weather permits, the contents of the hen house are wheeled out and spread as a top dressing over the beds of peremials. Will it do any good? Yes, four-fold.

Firstle, it has charitably aided that ash heap to ase its existence: secondly, your hens shall feel better and your labors shall be rewarded with more eggs : thirdly, it does the soil of that flower bed good by loosening it, and fourthly, it does the plants good by feeding them. Why, next func the pronias will fairly clap their hands with joy. Did you ever dream that a four-fold blessing lay concealed in your ash heap?-P(a. Horticultural Socicty Report.

SYSTEM OF GROWING STRAWBERRIES

NEARLI every one who grows strawuerries for home use or for market has his own ideas as to how the plants should be set out and cared for. If perfectly satisfactory results are obtained by the system already in use, it is well to be conservative about adupting new methods of culture: but few are ever perfectly satisfied, and any suggestions whereby desired results can be attained more nearly may be worth considering.

There are four general methods of growing strawberries-the hill system, the hedge row, the matted row, and the modified matted row. In the hill system the plants ar: set out in check rows about $21 / 2 \mathrm{ft}$. by 2 ft . apart, and no runners are allowed to furm. This continual clipping back concentrates the vital forces in the original plant, and instead of expending the greater part of its energy in reproducing new plants, it goes to developing fruit crowns of great strength and vigor. Everything that will aid in this development should be supplied in liberal quantities. Plant food and moisture are two of the most essential requisites. Aim to grow plants with such a multitude of crowns that a bushel basket will not cover them. This system is of special value when one desires to grow extra large fancy berries of high color and quality. It is more generally used by amateurs than by commercial growers; still, this is no reason why it should not be commercially successful for a fancy trade. For the home sarden there is no better method, as the best berries are mone too good for the family. It is quite important to make a wise selection of varieties, frot not all stool up equally well. Marshal, Parker, Jarle and Brandywine are excellent for this purpose in locations where they succeed.

The hedge row system naturaily follows, for it is really a modified hill system. The plants are set out in rows about 3 ft . apart and 18 to 24 in . in the rows. The first runners should be allowed to root, placing them so that they form a continuous row with the plants originally set. They should not be nearer than 4 to 6 in . for best development. After a row has once been formed, keep all rumners cut off by a wheel disk attached to the hand or horse cultivator frame. Nearly all that has been said in regard to the development of the fiait crowns in the hill system applies here, the crowns develuping amazingly when once the tendency of runners to vines is checked. The hedge row system has the adrantages of the hill system without entailing so much labor and expense. It allows one to cultivate right up to the plants, thus saving moisture and doing away with a certain amount of hand work. When the fruit is ripening, it is exposed to the sunlight, and size, flaver, firmness and color are obtained. Sample, Clyde. Haverland and Glen Mary are standard varieties that do exceptionally well grown in this way. When the merits of this system of culture become more generally known, the writer is convinced that the up-to-date commercial strawberry grower will adopt it. to the exclusion of others.

The matted-row system consists in settin:; the plants in rows $3^{\frac{1}{2}}$ or 4 ft . apart, 2 to $2 \mathrm{I} / 2 \mathrm{ft}$. in the row, liecping off all rumners for several weeks until the plants become established, then allowing the rumers to form until a space iS in. to 2 ft . wide is corcre:l. On strong soil and with abundane of moisture. large yields of medium grade berries can be nbtained. This method is very generally practiced, probably becatse it requires the least care. Its disadrait-
ages are many. After the matted row is formed, cultivation practically ceases, ex cept in a very narrow strip, the plant-producing tendency is developed to the detriment of the fruiting strength, and vigor دus crowns are few. The plants stand so thickly that in cloudy, wet weather the fruit is apt to decay, to lack flavor and color, and run small after the first pickings.

The modified matted row differs from the foregoing in the fact that after the plants have run so as to form a medium wide row, the rest of the rumners are clipped off as
soon as formed, and also the weak plantsthe row thinned out so that the remainder have a better chance to develop. It is a great improvement over the matted row, and fine berries can be grown.

The strawberry plant is a wonderful little organism, and it is only by carefully studying its behavior under different conditions and modes of culture that we are able to learn how to develop its various functions to suit our individual needs.-G. A. Drear in Country Gentleman.

THE TWIG-BLIGHT OF THE APPLE, PEAR AND QUINCE

HP

PROF. WM. LOCHHEAD,
o. A. C., GuE: pia.

IT is probable that the year 1903 will be known among horticulturists as the year of the twig-blight, if we are to judge at the time of writing (July 10), from reports from the whole of the southern section from Niagara to Windsor. The disease scems to be widespread, and is producing alarm in the sections which are infested.

Although much has been written about this disease, yet the story of the blight is always an interesting one, and is not as well known among fruit growers as it shiseld be. In spite of all that has been done and written, we do not know of any sure, easy method of controlling the disease. It is true that the cause of the trouble, and the mode of infection have been determined, but it is also true that there is no easy practicable remedy. It can be kepit under control by cutting out the affected parts and burning them, but a continuance of this practice renders the trees unsightly, and practically uscless in a few years.

The Cause: The cause of the trouble is a bacterium or microbe. which enters the
plant through the blossom and tips of growing shoots. It is very frequently observed that some of the flower clusters turn black, as if they had been frost-bitten. The young fruits are also killed, and the disease spreads rapidly to the twigs and limbs. In a limb which has been killed by the blight certain characteristics make their appearance:
I. The leaves clie in about two weeks after the limb or twig is killed:
2. They remain attached to the stem, and the tree appears as if it had been scorched with lightning or a hot fire:
3. The imer bark and cambium layer .f the limbs are destroyed:
4. The bark becomes almost black or dark hrown:
5. At the close of the season of growth there is a distinct line of separation between the diseased and healthy wood, but during the growing season there is but a gradual change in color observed in passing from the healthy to the dead wood.

The greatest amnult of damage is done within a few weeks of the first appearance
of the blight, and usually the disease ceases to spread with the close of the season. In such cases the bacteria are virtually all dead before winter sets in, for they cannot withstand drying out of the twigs. In some cases, however, the disease lingers on into the winter, and actually survives the winter. According to Mr. M. B. Waite, of Washington. whenever infections occur in late summer and autumn there is a likelihood that the bacteria will winter over.

Spring Infection: In the spring when the sap gorges the tissues of the twigs and limbs, the dormant bacteria revive and begin to invade new areas. The warmth and moisture combined favor the rapid development of the disease, and upon the exudation of the gummy substance from the bark of the diseased twigs many bees, wasps and flies feed. The flowers visited by these insects are inoculated, and soon show symptoms of the blight. Even after the blossoming period the bacteria may be carried to the tips of growing shoots and find entrance thereto.

Condition of Trees Infected: Unfortianately for the fruit grower, the trees that are making the most rapid growth are usually the most easily infected and injured. One grower reports that the pear orchard which was badly infested with the Psylla this and last spring has almost entirely es. caped the blight. but that the orchard which escaped the Psylla is blighted very severely.

Niame and -Lppearance of the Bacterium: The scientific name of the twig-blight is bacillus amyororous, discovered by Prof. Burrill, of Illinois, in 1879. The bacteria are very minute being about one twentythousandths of an inch in diameter. They are oral, rather than round, and are colorless.

Reasons for Supposing These Bacteria are the Cause of the Blight: I. These bacteria can be taken from a diseased twig
grown in pure cultures, and when pear, apple or duince twigs are inoculated with the bacteria from the cultures the disease or blight is produced. 2. In such inoculated twigs the bacteria are again found in abundance; and 3. The same kind of bacteria are found in blighted trees. -

Some of the Theories as to the Origin of Blight: 1. The action of the hot rays of the sun during very humid weather derange the machinery of the plant; 2 . The action of a small bark beetle, $X y / e b o r u s p y r i$, often called the blight beetle, which causes the portion of the twig attached to die; 3. The freezing of the immature wood in autumn and winter produces a poison which the currents of sap distribute, causing the death of the parts; 4. A fungus was supposed to bring about the blight, but this fungus has never been discovered; 5. The action of lightning ar 1 atmospheric electricity scorches the twigs; 6. A bacterium enters the plant and kills the tissues. This last theory is the one generally accepted at the present time.

Treatment: Since it is believed that only the bacteria of the late infected portions winter over, it is evident that if these late infections were citt out and burned there would be but a small chance for infection the following spring. But we cannot teil these late-infected parts from the others; so, to be sure, we would cut out all the blighted parts of the tree. In years like this this cutting would be a formidable task, especially at a time when the fruit grower is already overworked. This work may be done any time when the tree is dormant, but the best time is the fall before the leaves fall, for then it is quite an easy matter to distinguish blighted from healthy limbs.

If it were practicable it would be wise :a cut out blighted twigs whenever they show themselves, for the discase tends to intensify from year to year.

SPRAYING POTATOES
 Now is the thme to prevent blight and rot.

แ

W. T. MACOUN, C. E. F., OTTAWA.

NOTWITHSTANDING the fact that year after year the potato crop in Canada is very much lessened by blight and rot, and that this blight can be prevented to a large extent by spraying, comparatively few farmers spray their potatoes to prevent this disease. It has been known for about eighteen years that Bordeaus mixture will prevent the blight, and it has been frequently demonstrated by experimenters and by other growers of potatoes that the crop is much increased by spraying. In order, however, to get potato growers to spray it is necessary to keep constantly demonstrating the value of it. The results of the tests made at the Central Experimental Farm, Ottawa, in 1902 and 1903 should be sufficient to induce everyone who lives in a disease-infected district to spray.
In 190 eight varieties were tested. The average increase in yield per acre of the eight varicties, where sprayed, was 94 busheis. In one variety, however, there was an increase of 171 bushels, and in another 155 bushels per acre.
In 1902 eleven varieties were tested. The average increase in yield of marketable potatocs, where sprayed, was 120 bushecs per acre, the yicld per acre of marketable pot:toes from the sprayed being 310 bushels 12 lbs. per acre. and from the unsprayed 189 busheck $5+\mathrm{lbs}$. The cost of the bluestone, which is the principal expense. was $\$ 7.08$ per acre. or it 4 lbs . at 7 cemts per Ib. In spraying large areas the cost would be less. At to cents a bushel, an increase of 120 bushels per acre would mean $\$ \mathrm{f}_{\mathrm{S}}$, or after deducting the cost of the bluestone, about $\$ 40.00$.
The object of spraying is to destroy the spores of the disease on the foliage. If the misture is 1 ot there when the spores are
there the disease will usually spread very rapidly and soon the tops are destroyed. The foliage should be kept covered with the ni.ixture from the middle of July, when the spores may be expected to appear, until the end of the season, and from four to five sprayings will be found necessary. In 1902 the vines were kept growing 18 days longer by spraying. The vines were sprayed on July Ioth, July 22nd, July 3oth and August 13 th, and probably even better results would have been obtained if another spraying had been made.

Formula for spraying to prevent potato l. light and rot:

Copper sulphate (bluestone), 6 lbs .
Cinslaked lime, 4 lbs .
Water, 40 gallons.
Dissolve the copper sulphate with hot water or by suspending for several hours in a coarse bag in a wcoden or carthen vessel containing four or five or more gallons of water. Slake the lime in another vessel. If the lime when slaked is lumpy or granutar it should be strained through coarse sacking or a fine sieve. Dilute the sulphate of copper solution to about 20 gallons, and the lime mixture to about 10 gallons, and then pour the latter into the former, then dilute to forty gallons and stir the misture thoroughly.

Stock solutions of copper sulphate and lime at the rate of i lb. to i gallon of water may be prepared and kept in separate covared barrels throughout the spraying scason mol diluted and mised when needed.

While the potato beetles are active, 8 oz. of Paris green should be adder to each 40 gals. of the Bordeaus mixture. The mixture should be applied be means of a spray pump with a good nozzle in order to get a fine spray, which is necessary to get best results.

A NEW GOOSEBERRY FRUIT WORM

BY

PROF. WM. LOCHHEAD,
o A. C., GUELPH.

THERE is evidently a new pest working on the green gooseberries, the life-history of which I am not familiar with. This pest is working havoc in the plantations of Mr. Stanley Spillest, of Nantyr, and has caused most of his gooseberries to fall prematurely to the ground. My attention was first called to the wori: of this insect on the return of Prof. Hutt from an official visit to the Nantyr Experimental Station a few weeks ago, when a small box of infested gooseberries was handed to me with instructions to cletermine the cause of the falling of the fruit, and their premature reddening. Beyond these particulars there was nothing else that attracted attention, or indicated that anything was wrong.

Four or five days after the box was received the fruit began to soften at the core, and an examination showed the presence of a small caterpillar in every fruit. It had eaten away some of the pulpy tissue near the core, and the fruit had collapsed, and incipient decay had set in.

The caterpillar at this date (July i3) is between one-third and one-half an inci : n length: is white, with a slight tinge of green: it tapers slightly towards both ends; its head and cervical shield are dark brown; each segment of the body has several (eight) little elevations, from the centre of each a hair arises; it has three pairs of true legs and five pairs of pro-legs, 'hence it is probably the larva of a moth.

The caterpillar occasionally comes to the surface, as exit holes are sometimes visible, and if a caterpillar is taken from one berry and placed on another it will soon ralee its way inside. As a rule, I think it perers to
eat somewhat close to the skin of the fruit, rather than near the core.

The accompanying letter from Mr. Spillett shows how the pest is affecting his plantation. He very naturally would like to know if any other grower is suffering from a similar cause.

It is impossible to give the name of the pest at this stage of its life-history. It is probable that arsenical poisons will have to be used early in the season, just after blossoming, to control the pest, for once within the fruit it camnot he controlled. It is probable also that fall cultivation may be a means of destroying the hibernating stage, although this cannot be definitely ascertained until we know the full history of the insect.
Editor Canadian Horticulturist:
For four years the fruit of all the thin skinned American varieties of gooseberries has been dropping from the bushes just as they are fully grown. This falling has grown worse every year, till now almost every berry is down. At first I attributed this falling to drought and over loading, and resorted to close pruning and mulching to prevent it, but no change in results. E. D. Smith, M.P., of Winona, has had a similar experience. For the last two years I have had strong suspicion that this falling, which has now become serious (at first enough was left upon the bushes for a nice crop), is caused by the presence of a maggot in the berry, as every berry, after lying on the ground for a few days, has a dark spot appear upon the surface of the skin which gradually enlarges until the whole pulp becomes red, but not ripe. Again, the thick
skinned foreign varieties are never so effected.

A lady here informs me that she picked up a tin pailfull of these fallen berries, for they look all right when they first fall. She set the pail upon a table, where it remained all night. Next morning she was surprised to find the pail literally covered with small worms or maggots.
Upon his last official visit Prof. Hutt, of the O. A. C., took away a pint of those fallen berries to investigate, and following his instructions I have a pint put up in a glass jar with thin muslin tied over to see if any grubs make their appearance.

This year I have kept my bushes sprayed continually with flour of sulphur in the hope
that the offensive smell would prevent the fly from depositing eggs, but with only failure as a result.

Pearl, Downing, Champion and Red Jacket have not a dozen berries each left upon the bushes.

The first thing is to detect and know the hly that deposits this egg, for I have no longer any doubt of this being the cause.

It seems a great pity that just as we have got such a perfect variety as Josselyn that such a pest should appear upon the. scene. I should like to know if others have their gooseberries effected in this way. Last year we lost about 25 per cent. of the crop, but this season 100 per cent.

Nantyr. Stanley Spileett.

THE PRESERVATION OF FRUITS FOR EXHIBITION PURPOSES.

B
PROF. H. L. HUTT, O. A. C., GUELPH.

MOST of the large exhibitions, as well as the smaller township and county fairs, are held at a time when nearly all of the small fruits are out of season. Consequently we seldom if ever see a good display of these valuable small fruits on exhibition. That they can be preserved in good condition for such a purpose was fully demonstrated by the clisplay of strawberries, raspberries, currants, gooseberries, etc., made by the Ontario Agricultural College at the Pan-American Exposition at Buffalo.

We have at the college also a collection of fruits in antiseptic fluids, some of which were put up four years ago for the Paris Exposition, and others that have been in the jars seven or cight years and are still in good condition.

In the collection put up for Paris and

Buffalo neat glass jars of various sizes, with large mouth and glass stoppers were used, but for less pretentious exhibitions the ordinary glass fruit jars should answer the purpose well.

For the benefit of those interested in exhibiting fruits at the fall fairs, as well as for the many inquirers we have from time to time wanting to know how these fruits are kept, we give below brief directions for preserving fruits in this way.

The fruit should be carefully selected, and if possible shown on the branch just as it grew. This prevents it floating to the top. as it would if the jar were not full of fruit. Strawberries are best shown by picking them with long stems and tring the berries about a central twig so that each berry stands out separately. Care must be taken (to aroid all :ruising, and the fruit should be
ari:ngel in the jar to show it to the best advantage. Lsually n.ost of the leaves on fruit clusters have to be removed. When the fruit has been placed in the jar the preservatice flaid shotild be poured on so as to entirely cover all the fruit and fill the jar. The tops should be sereved on tightly, mahing it air tight. Neat gum labels may be used to show the variety. The printing should be large and legible, and the labels as small as possible to avoid covering any more fruit than necessary. 'To avoid bleaching as much as possible it is best to wrap the jars in paper and store them in a cool dark cellar tili they are wanted for cxhibition. .
The findids mentioned below are those recommended by Dr. Saunders, of (ttawa, for the preparation of the display at the Paris exhibition:

Ficil . No. 1.
Formalin (Formaldelavile). 1 pound (if oz.): water, it pounds; alcohol, 5 pints. Allow the mixture to stand, and should there be any sediment. pous off the clear liquid and filter the remainder through filtering paper. This 2 per cent. solution of formalin or iormaldehyde has been found very uscful for prescring striwberries son as in give them a matural appearance.

EITID Nr. 2.
A solution of boric acid in the proportion of 2 per cent. Dissolve 1 poomed of boric (limacic) acid in +5 gablons of water, agitaie until dissolved. then add spints of alonhro. If the muin is nent clear. allow it in stand and settle, when the clear upper portion ma: be poured ofif, and the remainder billered.

Firin No. 3.
. solutima ni zine chloride in the propmer-
 of zinc chlorible in 15 prounds oi water. agisate until lisorolved. then add one and twothird piats of adroblow. Illow the mixture :a ctand sanil setided, then puner afo the char

FIUlD No 4.
Sulphurous acid, I pint; water, S pints; alcohol, I pint. Allow the mixture to stand, and should there be any sedin.ent, pour off the clear liguid and filter the remainder.

List of fruits, with names of preservatives to be used in each case. Where two fluids are named, either may be used, but the first is preferred:

Stanberries-Sulntion No. 1 , formalin.
Rasplerries, red-No. 2, bozic acid: No. I. formalin.

Raspberries. white-No. 4. sulphurous acid: No. 3. zine chloride.

Raspberries, black- ilo. 2, boric acid.
Blackberies-No. 2, boric acid: No. 1, formalin.

Cherries, red or black-An. I, formalin; ㅅo. 2. boric acid.

Cherries, white-No. 4. sulphurous acid: No. 3 , zine chloricle.

Currants, red-No. i. formalin: No. 2 ,
Currants, white-No. \& sulphurcus acid; boric acid.
ㅅo. 3. zinc chloride.
Currants. black-No. 2, boric acid.
Goroseberries-No. 1. iormalin: No. 2, boric acid.
. 1 pples. Sren and russet-Xo. 3, zine chloride.

Apples. more or less red-No. 2. boric acirl.
\therefore pples, white or yellow-ion. 4: sulphurous acid.

J'ars, russet-Non. ふ. zinc chloride.
lears. green or yellow-Šn. 4. sulphurrous acid.

Plums, darh colorchl varictics-Nin. 1 formalin: lo. 2. boric acid.
llums, green or yellow-Nio. 4, sulphurnus acid.

I'eaches. apricots. nectarines or gainees-. No. q. sulphurnus acid: Non. 3, zinc chlori.?: Cirapes. red or black-Nion. 1, formalin: Ar. 2, burie acil.

ans acirl.

NOTES FROM THE NORTH

ツ
CHAS. IOLNG,

PERHAPS a few observations on how our fruit trees have come through the winter and the condition they are in at this date in the far away north may be intercsting to you. Early in December, 1go2, we had a sharp frost before the snow; which usually falls in sufficient depth to prevent the frost getting into the ground, con sequently many half hardy plants, roses and shrubs, more especially those which have a tendency to keep on growing into the winter were badly frozen. None of mine have been killed outright, but when the dead wood was cut off this spring they were a sorry looking lot. By the way, tell your readers of the Canadian Horticulturist in New ()ntario that the Rambler roses are not sufficiently hardy here. I am sorry to say don't plant them, but they don't ripen up their wood before winter, and covering them will not save them. Perhaps more on these roses have been sold in this district than all the other shrubs put together. Sold upon the recommendation of travelling tree agents that they were hardy as a pop lar. It is a case of throwing away monery the same as in former years, when we would not plant anything in the apple line exacept a Spex, King, or Baldwin, not one of which, as far as I know is alive to-day: The reason for this I will leave in some nae with more horticultural knowledge than maself.

The winter, as a whole, was iairly mild. aldhnugh we had a drop to 30 below zero. but there was plenty nif sum on the ground at that time. Spring opeoced up early, or rather the shmw went away snmer than usual, with warm, bright sumuy days and l:ard irosty nights, inleal weather for mak-
ing sugar and inducing sun scald, but bad for fruit buds, the comsequence is that most plums and cherries were destroyed in the bud. I found that the English Morello buds were less effected than even the ()stheim, whic! is supposed to be very hardy. Of the sweet cherry fruit buds which were strung along the branches. only a few opened. and the: had not strength enough in them to form fruit. Pears came through fairly well. and apples minjured. Of the small fruits, straw berries promise an immense crop, and there is plenty of moisture in the ground to develop it. Of the cight or ten varieties of raspleerries, Cuthbert has as usual proved the most tender. Grown alongside of Brinkle's orange, both were frozen to the snow line, but the latter makes so much batter growth in the spring and is so much finer inz quality that for home use it is to be preferred to the former. Of the reds, Loudon is to be preferred to all others I have tried. Currants and sooseberices are a good crop. This would mean with you an extraordinary crop.

The crop prospects I might sum up thus: Fall apples, very grod: winter apples, good; pears. fair (this would be poor with you); sweet cherrics, none: sour cherrics, good; plums, a few (native phums seem no better (han European or Japan) : raspberrics, very gool (toms of wild fruit will go to waste in the womds and along the roadsides): currants and soosclerrics, very gond; strawberries, vers grond (I cxpect I quart to the plant).
.'n insect pests have troubled us so far this yar.

CANADIAN PARKS ALONG THE NIAGARA RIVER

NOT only all patriotic Canadians, but lovers of mature the world over, are more or less interested in the preservation of the natural beauties of Niagara. The policy of the Niagara Falls Park Commissioners, as outhed by Mr. J. 15. Langmuir beiore the recent convention of the American Park and Out-door Irt Association, shows that the commissioners are aiming at making the Niagara iromicr a beanty spot that Camadians may be proud of. Mr. Langmuirs address was intended in some measure as a reply th those who have criticized what they called vandalism on the part of the Canadian commissioners ind allowing the various power companies on cut up the gucen Vietoria lark. In the course of his arkiress lee reicrred to the financial difficulties which the commission had had in face and the happes solution oi these by the concessions to the power companies and nthers, which in a short time will prowide an ammal revelue oi albout a parter of a million dollars. 'This the commission proproses to expend in developinge the beaty of the river fiont. in preserving the matural conditious in a locality sn histroric, amblankinge it the resting phace of ifed millions who conse la ser it.
 sinl:

Will yon permit me to venture to take an outlook into the future, the near future. 1 hope, and picture in your mind's eye the completion of all the plans and projects of the Dark Commissioners on the Canadian side of the river. It is doubtless known to some of yon, at least, that the river bank from Lake Erie to Lake Ontario is vested in the commission. This reserve, now in the process of being made the full width of ($($) feet at all points, will be completed. the bank of the river protecied from crosion br the construction of an electric railuay on the shore line from Lake Eric to the park, a well-constructed and well-kept road, ormamented with shate trees along the entire: bank of the aiver. forming an avenue to gucen Xietoria lark. Within the park the works of constraction in comnection with the power plants completed, with omly two artistically designed prower buildings in sight, the river bank alrong the uper roteds. the Mufferin islands, and the entire groumb abrove the Fialls restored and beautitiod on correspond with the fimished portion oi the park merlow k ing the cataract. The me sighty huillings worlomkin:s the Falls, in nae of which we are num sitting, torn down. mad a fine artietio structure for shelter and refechory jurpuesm rrecied. amp the whot.if the crimol, reats amil walks in the park
brought up to the highest standard of asthetic taste. Then, passing from the park surrounding the Falls to the lower gorge of the river, with its magnificent srandeur from the base of the cataract until its majestic banks and rushing waters merge into the quiet scenery of the lower river, we come to the liagara Glen, immediately north of the whirlpool. conaprising 100 acres of territory, unigue in its unrivalled and primitive wildness, which be the construction of roads, walks and means of access will have become one of the most fascinating resorts in the gorge, as well as a ver: paradise for botanists. The Queenston Heights Park, with its grand panoramic
views, will be completed and restored, from the historic momument on the summit to the shores of the river below, with the whole river gorge. from the Falls to Queenston, improved and restored and its magnificent views and vistas opened up. In fine, the whole shore of the Niagara river, from Lake Erie to Lake Ontario, will be restored and converted into one continued series of avenues and parks for the recreation and enjoyment of the millions of overworked and tired humanity, where they can come for a time from the turmoil and toil to this Mecea of peace and quietness, to commune with the majesty of nature and the eternal.

BRAMPTON'S NEW PARK.

THE modern idea that parks and pleasure grounds are a mecessity in the upbuilding of a respectable town or city is iast gaining gromed.

We are glad to be able to record the fact that the town of Bramptom, which has lous been famous for having one of the largest set of grecnlinuses on the continem, is unw
the pussessor of one of the finest parie properties whe foum in any town of its size in the Dominion. This it owes to the generosity of Mr. IV. I. Gage, the well known publisher of Toronto, who, on Domiaion rlay donated to the town for park purposes a valuable property adjoining the county buildings costing S20.000.

WOMENS CLUBS.

THE ladies of our Horticultural Sucieties might protitably form themselves into a club for the discassion of questions of Domestic Science or Home Sanitation. The iollowing subjects for such chabs are surgested by Home and Elowers:

1. What can a woman du ior improved smitatinn?
2. Disoras the water supply of the arighimrlanorl.
3. Discuss inguritios wit the soil athoit a dwriling and danger thercirom.
 rums.

nuisance which threatens the health ois th: neighborhod? Is there any preventive tu be had?
4. Discuss the best means oi ventiating the romus in a linue.
5. Ire the children exposed on any danger from discase in the surroumblings it selomel? . Ippmint, if necessary, a committec (o) investigate this. Can individual drinkings cups be supplied in the schonl? Are the themrs nit the schmolrnom kept free from dust? Dho the children sit in draughts? Are the unhb:ablings in a cimitary comdition?
\therefore Is the sare nerocery fors .a. andite

Fig. 26j4. A Bealtiful Street in Dayton, Ohio.

COMMERCIAL BODIES AND CIVIC IMPROVEMENT.

m
E. L. SHUEY,
IN "thr: how of mirnove:nfint wohk."

THE day is past when improvement of home surroundings is wholly a matter of private choice: when only an ogcasiomal "sweet will" decides whether weeds or fowers shall grow over the premises and sidewalks, and whether the principal ormaments of the rear tard shall be tin cans.
deatly kept yards. well trimmed sidewaiks and clean strects are now regarded as high evidence of the city's prosperity as much as large factories, and are ome ni its best means of attractine: desirable citizens. The city mose adoertise as well as the busiuess man torlay if it wombld attract capital, Fowal men and wom:on and lan-abiding citi-天:

Efforts are made by many cities to draw factories and business enterprises to settle within their limits. The advantages of railroad and steamboat communication, the nearness oif markets or of raw material, the excellence of labur-all are arguments fregiently used with manufacturers and investors to prove a city's opportumitics. But in recent dass it has been recognized that another clement must be named: attractiveness of the home life the beauty and healthfuhnss of the city, the excellence of its selomols. . Ill these are now seen on be essential to the growing town. In view of this. the improvement aud beatifying nit the cit! strects. parks, houlewards, aurd cuen of its yards and houses. become matters unt
smply of individual preference but of public concern. The investment in attractiveness is no longer municipal extravagance, but prudent expenditure. hence the organization of iniprovement assoc:ations, usually composed of people of a neighborhood. or in smaller cities of an entite commmity, has come to be a recognized method of encouraging an esprit de corps which is wemtial to the best growth. Such societies have as their purpose not only the beautifying of external conditions but also general improvement and instruction. The Neighborhood Improvement Assuciation is not, it is true, a recent form of organization. but its cxten-

Fige 20jF. A Corner in Gritoin of Wratincinotise Aik Brake Co., Pitasitкi., la.
sion and importance are more iully recosnized at this time.

The improvement association secks the general good and asks assistance irom evers class of kindred sucial. colucational and civic orgsumatioms. In the list of the possible belpers are the commercial aide mumicipal bonlies of many cities. While these ar: formed volumarily or he law for the promotion of business emterprises or for legishfirn for the citys Erovernmone and the wiorat. phacical and financial safely oi the eroprorabien. yet the application oif these innctions is wide and variod. lacal and municipal
bodies-city, town and village councils, etc.-have it within their power very materbally to assist these organizations by encouraging and passing well plamed ordinances for securing the gencral purpose for which they are formed so far as they pertain to common interests.

It is within the power of these civic bodies
(1) 'To see that the strects and alleys are kept neat and attractive:
(2) To provide for the collection of garbage. reinse. cte.
hoth of these are important, not only for the sake of appearance, but more especially for the sake of the general health of the commmity: With good laws, well enforced, backed by the interest of active improvement associations. a town may be revolutionised in a short time. Without the active assistance of well orgamized, interested citizens, it is difficult to enforce even the grood laws. In improvement association is an excellent director of public opinion and educator of personal interests.
(3) To make reasomable but exact rules for grood sidewalks, roadways, planting of trees. cic.
(t) 'To provide for parks.
(5) ln short. io put into the form of ordinances and to prowide for their enforcement, proper laws for municipal care of puibic health and improvement, and to enlist members of improsement associations or similar orgraizations in their best develonment.

It is important that the work be in harm:om. remembering that members of other sacietie witen are willing to give irecly nf their tin:e and effort in encourage this feacurc.

In aimont cuer! city, the boards of trade, the commercial clubs and similar organization are the represemtatioe horlies for husimow parpues. Pheir chiget is the proper .rlorricing of the cit! intercets. . No betlar man can be wath in accomplish this
purpose than that suggested by the encouragement of the organization of improvement associations within the limits of the city. This is as legitimate a purpose as any scheme for public welfare can be. It is therefore suggested that members of this organization ought
(1) To become familiar with the plans for home and neighborhood beantifying oi other cities through a committee on improvements.
(2) To encourage the organization of improvement societies in the city, having one for each neighborhood if the city be large enough. It is necessary that some one take the initiative and give the movement the benefit of well organized beginnings. It is important, too, that there be a body easily reached, to which defmite information may go till the improvement society has found its place. What more natural than that representative organizations of the city's interests should foster a definite movement of this kind ${ }^{\text {? }}$
(3) To assist by influence, counsel and funds in practical organization of inuprovement societies amons property holders. A society of this kind will do better if given sufficient means from the begimning to foliow up its work of encouragement, prizes for good work, examination into cond:tions, dissemination of information, and the score or more of directions into which it may extend its efforts.
(4) To bring proper pressure to bear upon factory owners to assist in the beantifying of their neighborloods, thus amphasizing the attractiveness to the sturdy laboring classes of the city itself. It may be difficult to attain this directly, cither by law or be effort of commercial organizations. but neighborhood organizations-which incerest employer and cmploge-will often attain it. There is no longer any reason for the existence in most cities of the ugly, unsighty aud disgracoful appearance of

Fig. 2636. Waste Papek Recertacie, Decisad be one of the Members of the butions for cluls Spring fichd, Ohio, I.cague. The advanages are a cover with funcls for the whicta the can an be lifited from she pole and replated. The back Whethe can is sherster hhan the from which mikes it fall wer if mos hume in place.
iii a 11 ! factories and their neighborhoods. Vinite the people of he neighborhood for a common purpose, interest the factory owner at least to the extent of cleaning and beautifying his own premises. and the results are soon attained.
5. Encourage the umion of local societies with other socicties through the league, for mutual information and assistance. Nothing will bring better return than this work and contripurpose. The difficulty in the past has been the iso- lation of the organizations and the waste of energy through lack of knowledge of what others attempted. It is the aim of the Cational League, with the encouragement of commercial organizations and local societies. in unite their efforts and to disseminate information.

With such a union of effort of all local bodies orgamized for the city's gond, there must conse some excellent results-and the city's goorl mame sreatly magnified Numerons are the illustrations of its excellent adrantages, proving that the reasons here given are not theory hut practice.

In this present age sreat interest is mani-

Fig. 2637. Millis. Mass., Rahlway Station Grounds.
fested in railway stations and the grounds about them. The more cultivated tastes of the traveling public demand beauty of surroundings. Whether that beauty be simple or ornate depends upon the situation. The public at large does not care to enter a train from a marble palace in the city and be domped on a dark, ill-smelling platform at
its home station, the station itself looking like an immigrant depot. Railuay companies are allakening to a sense of their responsibilites in this regard, and a few well planned stations and grounds may be found in the l'nited States. The Millis, Mass., railway station and the grounds about it were designed by Mr. Edward P. Adams. landscape architect, of Boston, Mass. The drives are graceful, and so arranged that a blockade of vehicles cannot occur. Persons in carriages alight under cover. She!ter is provided for horses. A novel but excellent feature is the library and reading room on the second floor, for passengers and employes. This, and the pretty little parks about the station proper and about the freight ise across the tracks, makes waiting for .. tram a thing to be born with equanimity. Instead of an eyesore to this village of less than a thousand inhabitants. the station is its pride.

A RELIABLE ROSE.

ONE of the most beautiful and reliable roses in cultivation is the Mrs. John laing. My experience with this meritorious variety in the nursery has been very pleasant and satisfactory in every way. I had it planted in nursery rows with other raluable sorts and was surprised and delighted to see it bloom so strong and comtinunusly. The roses are large and very full. of a grand. clear bright pink color. The iragrance is delight ful, and this. with other attractive features, makes it a general farorite with those who see it. The plants are
strong, vigorous, and begin to bloom early and continue to bloom until very cool weather. Last year mushes were full of buds and others just opening, October 16. During several very cold mights, frosting and ireczing water slightly: the roses were not affecied. To keep for very late flowers I place a few papue bags over the buds at night and tie them on to prevent being blown off. The Mrs. Laing has sreat beaty and exquisite fragrance, combined with hardihome and a propensity io continuous blome-ing.-Farm and Home:

FLORAL NOTES FOR AUGUST
 BY

WM. HUNT,
O. A. C., GUELPH.

FREESIAS.-Bulbs of these sweetscented little Cape flowers should be potted now so as to be sure of a few sprays of their deliciously perfumed blossoms during the Christmas holidays. Plant about five bulbs in a four or five inch pot in fairly light rich loamy soil. The bulbs should be planted so that the pointed tips are just under the surface of the soll. A few pieces of broken pot. gravel, or coal cinders may be placed in the bottom of the pot before ..lling in the soil, so as to secure good drainage. Give the snil a good watering after the bulbs are petted, hat do wot give them any more vater bintil the soil shows signs of dryness. Stond the pots ouside in a partially shaded position where they do mot get the full heat of the sums rays during the hottest mort of the day. As som as the grats-like folize begins to appear abneve the snil, water may be given them more frequently. 'Take the pots inrowers early in September before the irnet fowhes them. Fhere is mothing more ac-
ceptable in a window of plants than a pot of freesias when in bloom, and the bulbs are so inexpensive and easy of culture that no phant lover should be without a pot or two in the window or greenhouse. The bulbs also under proper treatment renew and even increase in numbers from year to year, a fact that makes them of even more value than many of the winter and spring flowering butbs.

Eastrer Linmes.-These showy sweet scented favorites, that are in such demand through the winter, and more especially for Eastertide decorations, have not of recent years been such an unqualified success as they were fifteen or twenty years ago, when Lilium Harrisii could frequently be seen sax or seven feet in height and bearing eight or ten of their beantiful white blossoms, but recently plants three or four feet in heiglit with even thee or four perfect blonms are oftentimes difficult in obtain. The lily dincase is responsible for this change. and ther. securs to be un certain remedy for the diis-
ease at the present time. If any of our readers. however, desire to try a bulb or two of either Lilium Harrisii (Bermuda lily) o: Lilium longiflorum-which is considered by many growers to be less liable to disease than L. Harrisii-they should be secured as early as possible to have them in flower at Easter in the winhave them in flower at Easter in the window. A seven inch pot for the largest size bull will be necessary, whilst a six inch pot will do for a second size bulb. The method of potting, soil, and future treatment as recommended for the Freesias will suit the lilies mentioned.

Window Boxes and Hanging Baskets. -These will require plenty of water, as the plants will by this time have a mass of roots to absorb the moisture, as well as a large amount of growth to support. The soil in them will also have become very much exhausted. An application of liquid manure, made from fresh cow manure prepared as described in July number of Horticulturist, will be found a good stimulant that will help to carry the growth and beauty of the plants through until late autumn.

Pansies.-If carly blossoms of these pretty bewitching flowers are wanted early next spring, the seed should be sown now. Sow the seed in a shallow box, about two inches deep and of required size. Place the box in a partially shaded place until the plants have attained their fourth leaf, when they should be transplanted into a cold frame, where they can be given the protection of a sash, or of even a few boards during severe weather. A bow about ten inches deep and minus the bottom boards, placed over a good rich spont of soil in the garden will answer very well to winter a dozen or two of pansy plants in.
Petargoniems.- Plants of these spring
fiowering favorites should be cut back some time in August. Prune them back to within an inch or so of the two-year-old wood. Give them very little water, keeping the soil barely moist until growth commences. As soon as the new growth is about a quarter of an inch in length, they should be repotted. Shake all the soil from the roots and repot them into soil to which neariy one half of fine sharp sand has been added. Give them a size smaller pot than they have been growing in, and do not over water them until growth has well started. When the growth is about two or three inches in length, repot them into pots two sizes larger, using a rich loamy compost and some pieces of broken pot for drainage. The new growth can have the tops pinched off once or twice during the winter if it is inclined to grow spindled. Pelargoniums, or Lady Washington geraniums as they are sometimes called, are very liable to attacks of aphis or green fly when in the winciow. A strong solution of tobacco water, or fumigating the plants with tobacco smoke, will destroy these pests to window plants. Keep the plants outside until early in September until danger from frost is probable. The shelter of even a sash and frame for a few weeks in early autumn is often preferable for many other plants besides pelargoniums, as oftentimes we have several weeks of beautiful warm weather after the middle of September, when many plants that are to winter in the window or greenhouse will do much better out in a cold frame or somewhere where they can be protected from slight frosts if necessary. But care must be taken to watch the thermometer closely for sudden changes in temperature, or possibly the plants may be exposed for just one might ton many and be mipped by the frost.

Fig. 263 S.

TUBEROUS ROOTED BEGONIAS

แY
IVM. HUNT,
(1. A. C., GUEIIM.

AMONC the almost immmerable varieties and types of flowering begonias now grown, there is none more deserving of attention or more beautiful for summer decorative purposes than the tuberous rooted varieties. Whether grown as pot plants entirely, or started carly in the season in pots and then tramsferred to the flower bed or border later on; or if even the dry tubers are put at once into the open ground at the proper scason, they will, with only awerage attention and catre, and a farly suitable position given
them to grow in, give a grand display of their beantiful and show wax-like blossoms, both single and double, and in such : varicty of shade and color that well repays the flower grower for the comparatively litthe skill and care required in their culture.

And yet how very few amateur plant growers there are who are thoroughly successful with them. Some can, however, grow them to perfection, as is evidenced by the splendid specimens that are seen at aimost crery foral exhibit that I have had the pleasure of jurging: specimens that ha:
been grown entirely in a window, or in a sheltered position out of doors, or perhaps in a cold frame.

The collection of Tuberous Begonias at the O. A. C. was possibly the one feature that attracted the most attention and excited the most admiration amongst the forty or fifty thousand excursionists who visited the college greenhouses during the recent June excursions. The fact of the intense interest shown, and the many questions asked as to the culture of these begonias, has led me to write the following brief notes regarding their care and treatment. The accompanying cut (Fig. 2638), from a rather poor photograph of a group of these plants at the O. A. C., will give some idea of the floriferous habit and the beautiful foliage of the tuberous begonia.

Selicting Tubers.-Select good, firm, sound tubers; pulpy or soft tubers seldom produce good healthy plants, even if they grow at all. The best time to procure tubers is when they are dormant and just before they start into growth. Late in March or early in April is about the best time to secure them, as that is the time they start their growth as a rule, after having been kept dormant and dry all the winter.

Starting Tubers.-Start the tubers in April in small pots. A pot about three times larger in diameter than the tuber will be about the size. Use plenty of small broken pieces of pot or fine gravel stones for drainage in the bottom of the pot, onethird full will not be too much. Use a mixture of soil composed of one-third part of fine sharps sand and two-thirds of light, rich loamy potting soil. If soil of a heavier nature is used, use fully onc-half sand, weil mixed with the same quantity of soil. When proted. the top of the tuber should be aboit on a level with the surface of the soil. Give sufficient water to thorouginly monisten ail the soil in the pot, and do not give any nome water until the soil shows signs of drymess,
but do not on any account allow the soil o become dust dry. Keep the soil barely moist until growth has well commenced, when water can be given a little more freely. Stand the pot in a warm place in the window or greenhouse, but in such a position that the sun does not strike directly on it, especially during the hottest part of the day, as the sun will scorch the leaves, more particularly if they are damp from recent watering.

In about three or four weeks from the tinte of starting the tubers they will probably show a little growth. As soon as the growth has attained to about three inches in height, the tubers will most likely have grown a sufficient supply of roots to allow of the plant being repotted. This can be ascertained by carefully knocking the plant out of the pot to examine the roots. If a good supply of roots has been grown, the plant should be potted on into a pot about two or three sizes larger. A well established and nicely rooted plant will require a pot fully three sizes larger than the one it was started in.

Reporme.-In repotting use a little less. drainage; an inch of drainage will usually be sufficient. Good loamy soil, fairly well enriched with dry cow manure and about one-sisth part of fine sand mixed with soil will make a good soil for these begonias to grow and flower in. Press the soil fairly firm around the roots of the plant. being careful not to break the ball of earth around the roots or damage them when repotting. Water the plant thoroughly once after repotting, and do not give water again until the sril shows signs of drymess. When growth has frecly commenced the plant can be watered more frequently, but too frequent and ton heare waterings before growth has well commenced, and allowing the sum to strike directiv on the foliage, especially after watering. are oftentimes the cause of failure in the culture of begonias.

Apter Treatment.-A temperature of 60 to σ_{5} degrees and a partially shaded position, well sheltered from strong draughts and high winds suits these begonias, whether they are grown in the window or out of doors. Sweeping winds are even more harmful than the sun when the plants have become hardened, but partial shade in the hottest part of the day is very beneficial if good bluoms and clear, clean foliage is desired. A cold frame covered with a sash thinly shaded with a coat of whitewash and the frame placed so that it. slopes and faces towards the north will suit tuberous begonias very well during the hot summer months. The sash can be removerl during the hottest part of the day to advantage, more especially if the plants are shaded tolightly from the direct rays of the sun. Plenty of ventilation by tilting the sash should be given both night and day; as these begonias dislike a too close humid atmosphere to grow in. Partial shade, careful watering, plenty of air, shelter from winds, and a fairly rich light loamy soil are the main essentials necessary for the successful culture of the tuberous begonia.

Drying off and Resting Tubers.-Towards fall, when the flowers and foliage begin to look shabby and rusty, less water should be given the plants. When the foiiage has become nearly yellow and the flower stems begin to decay. no more water should be given them, but they should be removed to a dry warm shed and kept quite dry and free from frost. A dry temperature of about 45 or 50 degrees suits the tuberous begonia splendidly when dormant in th?
winter, but at no time should either the growth or the tuber be exposed to a temperature below 40 degrees.

Where a number of these begonias are grown it is customary to shake the tubers out of the soil and pack them in sand, charcoal, eic., but I have had the best results by cllowing the tubers to dry off in the soll they have grown in, and by placing them away in the pots in a dry cool temperature 15 or 20 degrees above freczi:?g point, and keeping the soil perfectly dry during winter until the following spring, when they are shaken out of the pots and treated as I have described.

I have omitted any mention of the starting of these begonias from seed, as I consider their culture from seed is not only a delicate operation to be successfully carried out without the aid of a green house or at :cast a sash and frame, and as the tubers can ie purchased very cheaply when dormant snd give quick results, it is scarcely worth while waiting for the more tedious and uncertain results attained when the plants are raised from seed, as it would take at least two seasons before seedling plants could be had in flower if the seed was started in pots in the window.

Tuberous rooted begonias are decidedly an amateur's flower, and are much easier grown than many varieties of window plants if given only fair treatment in their culture. Too much water, when the tubers are first started, and improper drainage is too often the cause of failure in the culture of the tuberous begonia.

THE HOME GROUNDS

AFRIEND, who has spent some money and much time on his home grounds, is not satisfied with the result, as the effect is not what he supposed it would be. He supposed that a lawn primarily meant an expanse of grass surrounded and partially covered with trees and shrubs. We say, "we will walk on the lawn," and the thought of soft, velvety, close-shorn grass is immediately present. William Robinson, the noted English landscape gardener, speaks of it as a garden, while to give the true idea of it to people on this side of the ocean we must call it the home grounds. A good lawn includes trees, flowers, shrubs, rocks in some localities, etc., and the value and effect of a lawn consist in the arrangement of these things. Mr. Robinson advocates, in the garden, the treatment of the "garden" in a mamer which will harmoniously unite it with the landscape beyond, thus making a beautiful whole of the near and distant surroundings of the house. The house must be architecturally in harmony with the locality, and then the grounds, before and behind the house, if there be room, must correspond with the architecture of the buildings, and with the topographical and other points oi the landscape to be seen from that point. If everything is in harmony, according to nature's work there, the lawn effects will te satisfactory to the artist and to the unskille:l as well. The front doorstep is a good point ground. And if there be any landscape befrom which to study the lawn, and its backhind the buildings it must be studied from the back stoop, if there be one.

VIENTED FROM THE: FRONT DOOR.

The planting of the lawn, therefore, must be planned from the view at the front door. In general terms. it may be stated that, as a
rule, the front lawn must be an area of grass, bordered by trees, shrubs, and sometimes flowers. The friend mentioned planted his trees and shrubs mathematically distant from each other, and in regular lines. .The trees have grown to a good size, and now all distant points are shut out from view, and the turf of the lawn has become spotted and uneven in color. He forgot when he planted his choice trees that they would some time grow to large size, some of them at least, and so now he is "cabined, cribbed, confined " in a shady grove, with no outward look. The ground was made fertile and decply worked, and the plants were well and carefully set, where himself and his hired man decided they would best be placed. The future prosperity of the trees was well provided for, but no account was made for ultimate size. Any good landscape gardener would probably have suggested to him that with care such trees would grow tall and wide, and that they should have been so planted that the beautiful distant views should never be completely hidden. The popular notion that a lawn is a place for us to treasure beautiful trees, flowers and shrubs, is cutirely misleading, being too narrow, so that in attempting to get and preserve beautiful things we deform our grounds, whether they be large or small. We are apt to plant too much, and to spoil beautiful pictures which would be far more attractive than the possession of rare plants, often too crowded to preserve their natural beauty and real value. Open outlooks are frequently lost through the ambition to have a fine specimen of some rare tree or shrub. TO Bromber the outlook.
As far as practicable, the lawn should be so planted that it may seem as wide as possible to be made. Planting the borders in clumps with peninsulas of grass ruming
into and apparent！behind them makes the ！：： n lewh as if it cextends outward indefin－ itely：adding materially to the broad effect where the area is decidedly limited．These points of turf can be put where there is a line of view to a beautiful distant landscape， and so be made doubly useful．．I New Hampshire man whose lawn was large an－l set full oi trees and shrubs，fomen that his house was too much shaded for good health． Su he employed an intelligent boston land－ scape gardencr io advise him what best en do to keep a grod lawn and also plenty of sumshine．Most of the trees around the outside were left．some needing a little prun－ ing：the trees in the central portions were dug out．and the shrubs were dug out and planted in masses in the corners，leaving an upen area of grass which looked larger than the original lann，and giving mobstructed views of neighburing hills and mountains in three directions，and \mathfrak{c} et when the grounds were viewed from a neighboring hill they appeared to be as shady as they were before and improvements had been made．A ber－ berry heolge along the strect in front was left．so that the effect of an enclosed Eng－ lish＂garden＂was retained，while the ap－ fiarent size of the grounds was doubled．as riened from the street．A lawn men－ tioned hy lacob Riis in his＂Making of an ：！merican．＂as＂decorated＂by cast－iron ghass．has recenth had half its trees cut out， and yet those left are sn scattered about the iawn that it impresses the cheserver with a？ scuse of comfincment．ai cromding．while a neighbors lawn．wen two－hirds the size．is so planted that it appears much the larger of the twro．Just beyond is a lawn cut in
 chlores．so that from the strect the bouse apr－ parse to be sre in a samall lawn back from the fromb．mare retired and cut nit from
 large，with is berhery inder in front．The subural effert is epuiled．as ine as landseape．
ibeatut is concerned．Such instances re （w）common，and from them one may learn how not to do it．

TKEES SIOUID BE IN MARMON® WITH sしたROL゚NIがG．
It makes little difference as to what trees and plants are used，provided they are s， placed that they are in harmony with the： surrounding conditions．But it is general！！ beter，in order to secure satisfactory results in the long ram，to use trees and shrubs ne：－ tive to the locality．The white spruce of Northern New lork is quite sure to live ： 0 a mach greater age，and to retain its sym－ nectry，than the Norwat spruce，which i sencrall！used because it grous faster，cost， isss to propagate，so is cheaper at the ous－ set．In 30 to $\mathfrak{3 0}$ years the Norway spruce －．ill begin to fail，while the native sort win scarcel have attained maturity of growth． and then it will retain its beaty another half century or more．In arranging the trees the largest（when full grown）are to form the background of the plantation，being careful not to plant so as to hide fine distani views in the future．Tlem．as far as color is comecrned，the darkest foliage should be farthest from the viewpoint．

ficmion mens．

The mower beds，if ant，should general？ be placed against the fommdation walls of the huse，or along the borders of the slmuin－ bery．．I small lawn will lonk large and iivele if no shrubs or flewer beris are cut intio the expanse of turi，because the eye has mo aciple of measurement．while if two or three Anower beds or mounde of camas or bulbnis flowering plants are set in the middle of th： lawn，the ordinary cye easily estimates the listanes bella cen the beds and the border oi the lawn．and sn it lnoks limiterl．The more the heds or shrubs are multiplied，the smaller verms the lawn on the inexperieneer exe．Tn all cases．whether at the first plans－
ing. or in making changes, the matter should be studied up from the front door steps, ur from the most common point of view for the family, and the work must be so clone that there shall be an unbroken expanse of green in the middle, with the trees aml shrubs and flower borders around the ontside, thus getting the biggest handsome picture possible under the circumstances. IV: do not want : haphazzard, inartistic dottins about of plants on our lawns, nor a Parisian rus, nor a set piece of mathematical patchwork. Neither, on the other hand. do we want a tangled wildwood. We want a solid background of dark green, with a scattered mass of lighter green flowering branches and the shrubbery nearer the eve as a stand or set in our favorite place at the
house. If the neighboring lawns or fields are maturally or designedly beatiful, the boundary lines of the bome grounds can be set sparsely with strips of grass between, so as to make the lawn seem to extend far away. Jut if the adjoming areas are msighty or negrected, then the boundary should be set so thickly as to hide the nearby property, except where there is a fine distant scene, and then low shrubs can be made to hide the near undesirable spots. In all cases the arrangement should be as mata:ficial as possible, unless the buildings are large and architecturally ornate, when an artificial planting arrangement is proper and witen desirable-D. .1. A. Nichols, in IV ickly Illustrated Butfalo E.tpress.

RUDBECKIA, GOLDEN GLOW.

IN the year 1808 I photographed a group of Golden Glow. Rudbeckia, and the picture is here reproduced. This species has mon becon widely dissemmated, forming one oi a trio of most excellent recent introductions. Hydrangea paniculata grandiflora and Clematis paniculata being the other two. It is a singular fact that they all blow late in the seasom, when most needed, and are all oi the easiest culture. Each reguires an ample supply of monsture for the best results, and are perfectly hardy. Luckily diey combine tirece divisions of plant life the shrub, the perenmial and the vinc. Gapan furnishes two an them and the wesiern prairies the third, the Rurlbeckia laciniata fl. pl.

We are all faniliar with the black-eved Susan, the Rurblheckia hirta oif the hotanists. R. Jacinata is a near relative. and in its syp:mal from smmewhat rescmbles it. except thit the disk flowers, thase minute blano cotering the cone, are a dull grecuish color. instead of yedlow, and the whrile nower barger.

Fin zitio. Grisue: Grinw.
in the doubling up of the Golden Glow, these disk flowers have changed into ray flowers. The black-eyed Susan will thrive in dry soil, but the other being indigenous to the borders of swamps and low meadows, reguires a fair amount of moisture. The origin of this duuble form is yet unsolved. Ahout 1894 John Lewis Childs found it in his grounds among some unknown plants sent him by some of his customers. From it he increased the sterek that has, in the mam. reached the gardens of the linited States and Europe.
While I bought three plants in the spring of 1 Syg from Mr. Childs, I had three given me in the fall of 1895 by Mr. Jensen, the superintendent of Humboldt Park, Chicago, who called it .t douhuc k...ci....... \cdot. Childs gave it the name Golden Glow, and I bought from him in order to compare it with those receivel from Al . Jensen. They proied identical. Mr. Jensen had seen, in the fall of 1805 . a large clump of it in the garden of a German in Chicago who had received is a year or so before from a relative, and traded some geraniums for a few roms. This traces it back in asy3 or iSut. It this later date it was blooming both in Mr. Child's dlace and in Chicago.

- I writer in an English paper about a Tear ago clamed that it was introduced to Euglish gardens nearly twenty ycars ago under the name R. lactigata. Mr. lialconce in an crlitorial note in Gardening dispels this illusion in a clear and forcible manner. The mere fact ihat a plant so attractive in ald its parts. so hards in comstitution, sn readily grown and rapidly increased. was: unknown in this conutry mail within the past fow years cren in the larsest collec-
tions and among the most intelligent proiessionals and amateurs, is evidence enough that it was not known in English gardens twenty years ago.

The group illustrated is composed of three plants obtained from Mr. Childs which were placed in their present position in the spring of $18 y$ g. Some young plants from the outside of the group have been taken away. The group is supported and protected from damage by the winds by an iron hoop four fect in diameter placed about four feet irom the gromod and fastened to four strong stakes set among the plants. This is put in place when the plants are some five feet high. 'The hoop-which is of round iron-is slipped over nearly all the plants. Enough of the outer row of stalks are left ontsite the hoop to hide it and the stakes; these are then distributed evenly along the hoop and tied lonsely, allowing each stock three or four inches play. IV hen a heave rain. accompanied by winds, con. : they are apt to become top heaw and may break. In such cases: run temporarily a heavy but soft string around the whole group, well up towards the top) and draw it in guite close-h-thus bunching it as one would a sheaf of wheat. This is removed when the storm is orer and the blooms dricel off. In this wat one stalk supports the wher and damage is seldom dome. It is steh a striking ormamental sroup upon the iawn that it pays to devote some extra care in it. The drin) from a lawn hose comaction is carried under this group be tiles. thus affording it an extra : momet of moisture. Where phan! are hiot given chnigh water the himms are much smaller.-Giardonims.

BUDDING ROSES

ONE of the casiest and best ways to propagate roscs is by budding. I have the Hermosa, and desiring io make more plants of the same kind, thought I would try budding it on the wild rose; having one near by, I inserted two buds of the Hermosa about the midelle of July, and in about three wecks they measured tein inches in height. and had buds almost ready to expancl: since then I have given them but little care and attention. but they still coiltinue ${ }^{(0)}$ blooms. and are in suorl condition for winter. Although I had never heard of any one budding the rose, my experiment proved a grand success.

The process of budding is the same as that of the peach. pear. apple, etc., which has been explained through the columms of this paper before. but for the bencit of new subscribers, or those who perhaps did not observe closely the process, I will give an explanation with illustrations.

Select a bud from the rose yon wish to propagrate. and cut about onc-fourth oi an inch above and below the bud. taking out an elliptical piece with a littic wond bencath it, as shown in lig. 1 .

For the stock, take any hardy or wikd rose, cut a ' I -shaped incision throush the: bark near the roots (Fig. a), carnamis ron-.. the conds or bark of the incision and insert the bud; then wrip lirmly ahore and below the bud with a strip of cloth about one-fourth of an imeh in width. commencings at the boitom and passing abroce the bud, rcturning again and tying just below, covering all but the bud, as shown in liig. c.

In about ten days aiter buddias. if dome in spring or carly summer, murap it. and if the operation has locen suecessiul, whelt it is monst sure to be if properly rinne. chat the ald stack ofit ahout two inches alrued the houl: and when it has made a mew simot. io
it to this stump to make it grow straight.
If budding is clone in August or later, rewrap in about ten days, and let the bud an:I stock alone matil spring. then cut off the stock above the bud, and encourage growth. The bud will not start till the following spring, though its union with the stock can readily be distinguished by its plump and fresh appearance.

Buds of clifferent roses, red, white, crim-

Fic. :GG:
son. ctc. may be inserted in a single stock, thereby producing a rose tree of many colors.

It is mot necessary to burd on the wild rose only, hat ii gro have some other :ingle rose cou wish to improve, insert a bad or buds oi sume nice waricty and I think you will be pleased with the result.

Every lady reader shouldi me this mode of propagating. for it is rery simple, and casily dome. and you can have a rose realy for bonm in the sanie lengh of time it would require a cutting to from roors. - Fiam and Fiveside.

COPY for journal should reach the oditor as early in the month as possible, novir later than the 12th. It shoula be addressed to L. Woolvorton, Grimsty, Ontario.

BUBSCIRPTION PRICE, $\$ 1.00$ per gear, entitling the subscriber to membership of the Fruit Growers' Association of Untario and allats priviloges, includiag a copy of its valuable Annual Report, and a share in ita annual distribation of plante and troes.

REDITTANCES by Registered Letter or Post-OMfe Order addressed The Secretary of the Fruit Growers Association, Parliament Buildings. Toronto, aro at our risk. Recoipts will bo acknowledged apon the Addross Label.

ADVERTISING RATES quoied on application. Circulation, 5,500 copies per month. COpy received up to 20 th.
LOCAL NEWS.-Correspondents Fill greatly oblige by sending to the Editor early intelligenca of local erente or doinge of Hortacultural Societies hikely to be of interest to one readers, or of ant mattere which it ia desirable to lrilg auder the notice of Horticentariste.

ILLLSTRATIONS.-The Editor will thankfailg zecenveand beloct phowgraphs or drawings, anitable for reproductiol

NEWSPAPERS.-Corros rondcuts sendilis newsoavers should be careful to mark the paragrapho thoy Fish the Editur to see.

DISCONTINUANCES. - Romeuber mat tho puunsnor mast bo notified by jetter or post-card Fhen a subscrilcr wishes his paper stopped. All arrearages must bo paid. Returning your papor will not onallo ub to discontinue it, az uc cannot end your name ou our books aniess sour Post Office sddress is giren. Societies should send in thoir revieed fists in Jamanrr. if possible. otherwiso to take it for grantor that all will continuo members.

ADDRESS monoy lettere, fubscriptions and business lettors of orery kind to tho Secretary of the Ontario Fauit Growers Association. Dopartment of Agriculture. Toronto.

WELCOME HOME.

It has mot yet been amomeed in the Horticulturist that the Editor has been absont for the pase three monthe enjoging a honcemonn in Europe. Ne are pleased to state that after an cujo, able tour of the Old Wiorld, Mr. Wionlerton is expected in return carle mot month, when he will resume his accustrmed charge of our journal. It is unt ion late. on lyohali of all the readers of the Horticulturist to wish its home-coming editor many years of persomal prosperity and happoiness, as well as added years of useiuhuss as its pmpular and efficient editor.

Stk. - Tour atention has no doubt bern directed to the fact that mauy spruce trees. widely used thenughout the province for onamental purposes. are dying. In some cases the limbs begin to dic
next the trunk and extending gradually out to the tip. and in other cases the outer portion of a limb will die first and then the trouble will gradually work inward till the limb is quite dead clear to the rrunk. Certain limbs are attacked while many others remain quite green and healthy looking, but gradually imb after dimb is attacked until the whole tree is destroyed, Is this caused by some insect pest. or what is its cause-and what is the remedy? I shall be very greatly obliget if you wili favor me with any information which will anable me to save some fine, well grown trees on my front lawn, which are being attacked in the way I have described.
©shawa.
I. K M.

Answered by Prof. Wim. Lechhead. (). ... C., Guelph.

It is difficult to state definitely the cxact canse of the deing of the spruce trees from the deseription. but I venture to suggest that the cause is the Siruce gall-lowse. Mr. N. dows not state a charactaristic of the work of the sall-louse, mamely th: gill-like :srowth on the terminal twigs. The
insect, according to my observations, works on the outside, and not near the trunk. The terminal twigs will often curl from the effects of the unequal growth. In my experience also the limbs do not readily die for some time as far in as the trunk. With regard to treatment of the gall-louse, the infested twigs may be cut and burned about the first week in May, when there is a wool1y secretion on the twigs containing many eggs. About ten days later a soap solution may be applied if the cutting has been meglected. These remedies can be used when the number of trees affected is small, and the size also small. When the trees are both numerous and large much can be done by spraying, but nature will often come to our assistance by sending along parasites, which will do more to keep the lice in subjection than all the sprays. We should be pleased to get samples of the dead twigs from Mr. M., for it may be that the gall-louse is not the cause of the trouble in his case.

WOOI ASHES FOR STRAWBERRIRS.
Sir.-After clearing up my old strawberry plot would it be advisable to sprinkle unleached wood ashes over it? G. S. W.

Hawkesbury, Ont.
Answered by Prof. H. L. Futt. O. A. C.. Guelph.
lou can seldom go astray in applying plenty of unleached wood ashen upon : strawberry plantation, or in fact upon ans of the small iruits. The ashes furnish a large ansount of potash and a lesser amoment of phosphoric acid. The extent to which the smil requires these can only be determined by makins experiments, but usually samly soils are more or less delicient in potash. amd it is upon such soils that ashes give the hest results.

IEF COTMON MAPLE SCADE.

Sir, -I send you a sample of something that is rapidly covering our maples. I, among others.
would be pleased to learn the name and history of the pest.
J. M. M.

Waterloo.
Answered by Prof. Wim. Lochhead, U. A. C., Guelph.

For some years this pest has not been distructive, but this season it seems to have gathered force, and is proving quite serious in some sections. Alarming reports come from Woodstock, and Waterloo is becoming anxious as to the effect this pest will have upon the maples.

This insect is quite conspicuous in carly June on infested trees with its cottony secretion. This waxy substance is secreteri by the female at the time the eggs are being deposited, and forms a protective covering for the eggs. At one end will be noticed the oval, brown scale, the remnant of the mother insect, for the insect belongs to the family of scale insects (Coccidx), to which also belongs the terrible San Jose scale, about which much has been said, done, and written during the last few years.

The egss laid by a single scale are ver: numerous, and begin whateh about the end of June or the beginning of juld. At this time swarms of minute lice may be seen crawling on the infested twigs. they swon fix themselves to the bark by inserting their beaks. and begin to suck the sap of the tree. In a short time the young begin to form scales ni their own by secreting a waxy substance through ectain pores on their body. In September they hecome arblt. Tixe makes die before winter, but the iemales migrate from the leave. to the twiss. where they remain all winter. In spring the iemakes grow rapidly. and the exgs ate laid. as already described, in the contums sack in Jume.

Ilith regard to remerlies, it may be said that whenever a few of the cotinly sacs apprav the best plan is to cut off and burn the infested twigs. for by doing so the thousands of cigs. will be destroved.

However, when, by reason of numbers, this operation becomes impracticable, resort must be hat to spraying solutions. Kerssene emulsion and whale oil soap solutions are perhaps the most effective. The standard kerosene emulsion should be diluted with ten parts of water if used alone. Some authorities recon:mend the use of the min-ture- the standard emulsion is diluted with one pound of fish oil dissolved in ten gallons of water.

The best time to apply the mixture is about the first or second week in July, when the young lice emerge from the eggs. They are then easily killed. Winter or fall treatment is also valuable. The same substance may be used, but the solutions should be stronger than those used in summer.

In some cities where the cottony scale made its appearance good results were se-
cured by applying a strong stream of water against the cottony sacs when they contained the eggs, and before these hatched.

By reason of the abundance of parasites this pest is seldom troublesome more than two scasons.

PROPAGATLXG CLEMA'ISS.

Sir,-I bave a thrifty cleme tis Jackmani. Can I propagate it by lajeling, and wien would be the best time?
G. S. II.

Hawkesbury, Ont.
Answered by Prof. H. L. Hutt, O. A. C., Guclph.

The Clematis can be readily propagated by layering the young shoots any time now after the wood has become somewhat mature. The new vines should be covered with a couple of inches of rich earth and should be kept moist until the roots have formed.

Proceedings of the New Jershy Horticultural Society for 1903.-A verbatim report of 265 pages of the 2 Sth annual session of that society held in January of this year. This report contains much valuable information, given in the form of questions and answers, and the promptness with which it is published makes it of additional value to those interested.

The zsth Annual Reyort of the Ontario Agricultural Cohiege and Experimental Farm For 1902.-This report is made up of seventeen parts, written by the heads of the various departments, and contains valuable informetion on a wide range of subjects. Probably that of most interest to our readers will be found in the Report of the Biologist and Horticulturist. A copy of this report can be obtained by applying to the Department of Agriculture, Toronto.
The Woonlot, a Handiook for the Owners of Woodmand in Solitherinew Enghand. (Bulletin No. +2 , Bureau of Forestry. U. S. Dejiartment of Agriculture.) This is another of those valuable publications on forestry which the U. S. Department of Agriculture sends free to those interested in the care of private woodlands. The purpose of the bulletin is to show how second growih woods should be treated in order to yield larger returns in the long run than is possible under other methods. Thirty full page diagrams
are given, showing examples of typical cuttings in thinning timber.
The Ninth Annual Report of the Frutr Experiment Stations of Oatario. - To those interested in fruit growing in Ontario this is one of the most valuable reports published. It contains reports from fourteen fruit experiment stations, in as many different parts of the province, on all classes of fruits grown in the country. Careful notes are given on varieties new anc old, and many of the newer ones are shown in beautiful photographic illustrations. This rerort can be obtained free upon application to the Nepartment of Agriculture, Toronto.

Lectures on Forestry, my B. E. Fernow, Li..D. -This is a little booklet of 86 large pages, contammg the ten lectures on forestry delivered by Dr. Fernow at the Kingston School of Mining last winter. The lectures are excellent, and cover in a general way the whole subject of forestry. It is also well illustrated and is well worth the prise at which it is offered, 25 s . The writer of the introduction, however, makes a mistake in trying to give Qutcas Cniversity the credit for thus being the first to male a beginning in Forestry cducation in Canada. He probably was not aware that forestry has been regularly taught at the Oatario algricultural College for the past twenty years.

