The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restauree et/ou pelliculese
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relide avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the ext. Whenever possible. these have been omitred from filming/
Il se peut que certaines pages blanches ajoutdes lors d'une restauration apparaissent dans ie texte. mais. lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ótre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommageiesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachèes

Showthrough'
Transparence

Quality of print varies/
Qualitś inégale de l'impression

Includes supplementary material/
Comprend du ma:ériel supplémentaire

Only editicn available/
Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues. etc.. have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc.. cnt éé fi!mées à nouveau de facon à obtenir la meilleure image possible.

Additional comments:/ Continuous pagination.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmó au raux de réduction indiqué ci-dessous.

New Sories. TORONTO, 天卫BHyAST, 1347.

Volexix. No. 2

Canadian Agricnitural Societues.
As this is the season for frost and snow, probably the readers of the Cultivator would prefer, that the editorial articles should not be confined to practical Agricultural topics, but rathen to the discussion of such matters as would be calculated to promote a better system of organization among agriculturists ; and also, be productive of an union of effort among all classes of our mixed population, in developing the agricultural and manufacturing resources of this fine and naturally highily favoured Province. In following up the subject of Agricultural TSocieties a little farther than what was done in the leading article-in the December number of this Magazine, we shall briefly récapitulate that portion of what was published, that refers to the system of organization, for the benefit of such of our readers as have nint read the article alluded to, and : shall then show how the inhabitants of the entire country would bé benefited, were auch a system of organization carried into practice. The three:grades of Agricultural Societies, viź: Township, District and Provincial, arè to be constituted upon sưch a bassis? that thiey will be but so many links in one chain; and the procecdings'of each should
be collected and published in a suitable form, and sold at the lowest possible rate, for the benefit of the entire Ganadian population, who are desirous of becoming auquainted with the science and practice of Agriculture. As has been already clearly, stated, the Government appropriation to each District, should be equally divided between the District Agricultural Society, and tḥe Township Societies in the District. The Townsbip Societies are to he governed by Directors, chosen by the members of such Societies, and each Township Society shouldhave a share of one-half the Government bounty granted to the District, in proportion to the actual amount of subscriptions raised by them severally. The District Sociefies should be placed under the government of Directors, chosen by the Township Sorieties, which bódy should be called a District Board of Agriculture, and the members of which should be indemnified for the loss of time and travelling expenses incurred, while attending the Agricultural interests of the District. The Provincial Society shọuld be. p'aced under the control of Directors, chosen by the District Boards, which body should be designated the Provincial Board-of Agriculture, and should receive a liberalinatronage from the Provincial Goyernment. The
members of the Provincial Board should be paid for the services they may render their country. We have not the least hesitation in stating, that the country would be benefited some hundreds of thousands of pounds annually, from the course that would be - pursued by the District and Provincial Boards of Agriculture. So strongly are we convinced of this fact, that we shall repeatedly bring the importance of a better system of orgarization before the attention of the Agricultural classes of Canada, in the hope that persons of influence in various sections of the Irovince, will very soon see the propriety of uniting their efforts to secure this object.The most important feature of the system of organization here submitted is, the publication of the transactions of the Township, District and Provincial Societies, which should be executed with much care by the Provincial Board of Agriculture. With a riew of illustrating this subject, in a clear and practical manner, we shall give a few cases that came under our notice within the part few months, which would serve as suitable subjects to be included in the reports of Agricultural Societies, which as has already been explained, should be published in the transactions of the Provincial Board, in a cheap and suitable slape for circulation and preservation.

A farmer in the fownship of Albion, lately exhibited a sow two years old in this city, which weighed, in pork and lard, six hunired and fifty odd pounds. The same parson butchered, in the year 1842, six pigs fourtecn months' old, being one litter, which averaged each upwards of 500 lbs . of pork. The pigs were of the improved Yorkshire breed.

A very respectable farmer, of the Society of Friends, residing in the Township of King, in conversing with us on the cultivation of land for wheat stated, that the last ten crops of wheat he has grown on his farm, has in no instance yielded him an average of less than thitty-six bushels per acre, and in one season the average per acre was fortyeight bushels, in another forty-four, and in
three others forty bushels, and a fraction over per acre. In the whole of our experi. ence, we have never heard or even read of a statement of this kind. In questioning our friend respecting his sy stem of farming, we learned that it differed only from that practiced by his neighbours, in the unusual depth he ploughed his summer fallows, and in the practice of sowing his wheat, by ploughing the seed furrow wide and open, so that the seed was invariably covered a good depth, and the young plants came up in rows, by which means the air circulated much more freely between the plants than would have been the case had the plants been scattered equally over the whole surface of the ground.
A. farmer in the Township of York assured us the other day, that after paying all the expenses of the farm, he realised a profit last year of ± 650. Another Farmer, near Cobourg, also states, that he cleared a profit of £750. from his farm, dusing the year 1845.

These are undoubtedly rather extreme cases, but hundreds of them exist in the Province, and we maintain that it would do every man who is prospering in the world, in the business of culuvating old mother earth. no harm to publish to his brother farmers the mode and result of his agricultural operations ; and if all who are capable of doing this act of generosity and patriotism, would make it a point to do it, certainly it would have a very salutary influence on the productive interests of the country. Thousands who are now dragging out a bare existence, and who are scarcely able to educate their families, clothe and bring them up in a respectable manner, would take courage from the good example set them by their more successfu neighbours, and would by degrees be ir aced to make experiments in the system of cul tivation whach had proved successful in th hands of other farmers. It is pretty certai that farmers will not write themselves, an therefore Agricultural Societies will have do the work, or else it will not be done all. We fancy that a very considerab? amount of information might be collected b
the Agricultural Societies, and we feel quite certain, that a much greater amount of good would accrue from this source than from the premiums awarded at the exhibitions. Every person who is at all acquainted with these matters, will readily comprehend the utility of the reports we have reference to, but it is rather a difficult matter to point out, how these valuable reports can be collected, in the absence of the improved system of organization, we have recommended for the consideration of the people of this Province. As mere suggestions will neither cost the writer nor the public anything, we shall show how a very successful beginning might be made, in collecting experiments in farming, and other facts that would be of use to the mass of mankind; if published in a suitable shape for general circulation. Every Agricultural Society in the Province, might with much propriety, appoint a special committee for the purpose of publishing either a quarterly, semi-annual, or annual report, in which all the best experiments made in agriculture, in the location, where the society is established, and every other circumstance connected with the productive interests of that part of the country, should be exabodied in a report: and published. If all the Agricultural Societies of Canada would adopt this course, such institutions would become very popular, gad Canada would soon rise in importance, both in the estimation of her own sons and in that of their fellow-subjects in the British Isles.

It is difficult to judge w̧hat influence theṣe suggestions may have; we trust, however, that they will at least be the means of causing some of the scciéties to publish ag. ricultural reports. There can soarcely be any question, but that our best ṭarmersthose that the masses should feel a pride in copying after their experience-would most willingly, if proper!y solicited, communicate any information they may possess, to the committee appointed far the purpose of collectin's and reporting unon the state of arcicultural inprovement. As this is unnuestionably an efficient method of getting
up a spirit of emulation, in the cause of agricultural improvement, we trust that it will be acted upon by the various Agricultural Docieties in the Province.

The Proviscialy Advertisen for February, will go to press as soon as the arruyal of the next British Steamer, which will connan the latest news, and also, a full account of the price of produce, in the British market. This course shatl invariably be adopted, so that the Agrecultursts throughout the entire Province, shall be in pussession of the prospects of the markets, at the. earliest possible date. The publishers have determined, that the Cult*vator shall be mailed in future, on the 10 th of each subsequent month.

The Canada Farmer.-This is the title of an Agricultural paper that has lately made its appearance in this city. It is published by Mr.R. Brewer, Book and Stationary Warehouse, Fing: street. We do not look upon the Canada Farmer in the light of an opponent, but rather hail its birth as an ally, and as such we shali ever consider it, so long at least as the editorials are written in the good taste, that is displayed in the number before us. The Canala Farmer is issued semi-monthly, on a sheet the size of the Provincial Advertiser, ond is afforded for seven shilling s and six pence per annum, in ádvance.

Towaship of Yoric Agriculvural Society.

The annual meeting of this Society took place on the 4th instant, and we were delighted to see such a good attenuance of members, at which meeting the following gentlemen were elected to oflice: Franklip Jackes, Esq., President, X . Desw Secretary, and JacobiSmder, Treasurer. These gentlemen were in office the past year, and the only changes in the Society worthy of notes, were the appointment of committee, to report upon the state of the Arriculture of the Township, either quarterly or semi-annually, as the committee may deem proper ; and the renewing of the system formerly prartised, of holding nueatings once per momb, to discuss questions of general interest to Agriculuariss. The subject for discussion on the evening of the 20th inst, at PloughInn Hotel, Hogigs AJills, is " what system of Earm Mranagemenr, ix best adapted to the Tornship of , Xork.". Welhope to attend the neeting in quep: tuon, and, shall be delighted to witness a large attendance of the Yeomanry of, hiss Township.

Homp and Flay Oultare.

This subject is again resumed in this paper, with a view of urging the farmers of this Province, whose soil is adapted to the growth of these plants, to grow them extensively, and to introduce the most labor saving machinery for preparing the fibre for market, that is used in othicr countries. Our readers will doubtlean recollect, that we published a very elaborate report from David Mryerle, Esqq., of Missouri, aboat four years since, in which every branch of the hemp growing business was illustrated in such a clear manner, that the greatest novice in such matters could obtain a pretty correct knowledge of the husiness, by carefully reading the repoit, or essay in question. Mr. M. was employed by the United States Government, as agent to instruct the farmers of Missuuri, the nature and operatione of hemp growing; and at the period he commenced his operations, the article of hemp produced in the Western States was of a very inferior description, so bad indeed that it was only used for the most inferior purposes, and the entire quantity grown in the Mississippi Valley, in the year $1 \& 41$, amounted to only 4000 tons. In the space of six years, through the instrumentality of Government Agents, the hemp crop of the Western States, has been increased from 4000 tons to 30,000 tons. About three milhons of Dollars annually, have thus been retained in the country, which would otherwise have gone to Russia. There is now every reason to believe, that the Western States will supply, not only the markets of the United States, with the article of a superior quality of hemp, hut that Great Britain will also draw a very large share of her supplies from this quarter. When we look at the trifling amount of business in hemp growing that has been done in Canada, in comparison to what has been done in the Wester. States, we are disposed to make a bitter complaint at the indifference, that our inen of influence evince, in relation to all matters of a public interest, and especially to such as would have a tendency to increase the product and wealth of the country. Canada should supply the British market with some hundreds of thousands of pounds worth annually of hemp and flax, and as we have repeatedly stated, the only reason why this cannot be done, is the fact that it ts next to impossible, to get the deep rooted prejudice of our farmors removed.The hett method that we are able to suggest, for
stimulating our farmers to engage in the growth of hemp and flax is, for Government to adopt a sumilar course, to the one pursued by the United States Government. Farmers not only require information, but efficient machnery to preparc the raw material of these plants for market.Labour here is high, and to counteract the pre. judicial influenco of high latour, efficient machinery should be employed to lessen the costa of preparing the article for market. A few hundreds of pounds expended by Government, in the purchase of machinery and in premums, would secure a successtul beginning in the hemp and flax growing business. With the trifing sum of one thousand pounds, models of machi. nery could be imported into the Province,and the business under notice could be placed upon such a footing, that ecme hundreds of tonwould be brought into market the following season. If Government could be induced id encourage this interest, we feel confident that the exports of hemp and flax in a very few years, would nearly equal that of wheat, besides a very considerable amount of money could be kept in the country, for the supply which is now required of fax and hempen goods purchased in the British markets. We shall once more do our Humost to persuade the Canadian farmers, to turn thets attention to the growth of other crons besides wheat, and among the many that might bo grown with much protit, are hemp and fax.The following extracts are taken from the monthly Visitor, which clearly illustrate the improvements that are made in hemp and far: machinery, in the United Stales:-

Hemp and Flax Rotting and Dressing Ma chines.-As connected with the growth of hemp and flax in th's country, to become probably an extensive substitute for cotion, and an article fo export, Z.C. Robbins, Esq., Mechanic Enginee and Agent, for procuring patents at the city 0 Washington, has called our attention to the hemp and flax dressing machines, for whici through him letters patent have been lately if sued. These machines are the invention Mossrs. G. W. Billings and John Harrienn Missouri. They were exhibited at the fair of th New York American Instituti in 1835, an received the flatering award of a gold medal.

Their first patent is for a method or precemes water-rolting hemp or finx, which they perfecti accomplith in from tiree to four days, withou

Minury to the health of the workmen emploged in andling it, or to the neighborhood where it is arried on. The complaint of the common mode I water-rotting in Kentacky, has been that the ime taken up from fall to spring, in which the, emp was immersed, created al the water courses poisonous quality deleterious to health. The pvenion of Messrs. B. and II. rots the hemp h the greatly lessened time: this is, principally one by the application of steam to the raw ticle.
Their second patent is for a machine for breakIg and scutching hemp and flax, which operates - follows:-The hemp or flax is placed upon a solving endless apron, which conducts it bereen a pair of pressure rollers, (the pressure ing very great): from these it passes between series of fluted rollers, and then it emerges on a series of rotating blades and knives, the ends which are secured in a radical position in cirlar heads. Over the rotating knives, and parel with the same, are arranged three vibrating ives, so arranged and combined, that they ke in succession, one after the other, between ch of the rotating knives, thereby giving the mp or flax a thorouga scutching while passing in the fluted rollers, by the double action of rotary and reciprocating movement of scutchblades.
Their third patent is for a revolving hackle.is constructed and operates as follows:-The ckle teeth are arianged apon a cylinder in tinuous rows, commencing at the centre and erging spirally to the right and left round the he to the ends of the cylinder. In front of the olqing hackle, a nelastic rest is placed at a able distance; the hemp or flax to be operat: upon-by the hackle is placed between the re of the rest aind the toothed cylinder; the pliar arrangement of the hackle teeth canises a.to open and sprend the substanae ácted 1.gradually to the entire length of the rest; eby insuring a thorough and equal action every part.
the aid of these inventions, hemp or flax be water-rotted, broken, dressed, and baled, erchantable order, ready for market, in the e of a week from the time of its being taken the field.
tten stone and turpentine, or gin, rubbed ith a clean cloth, gives a fine , polish to

Unbunnt Brick Houses.

The articles we published in the secend and third volumes of the Cultieator, on this subject, was published in the report of the Commissioner of Patents, and have subsequenty gone the rounds of the American newspapers. We observe by a late number of the Prairic Farmer, that this style of housis are highly approved of in llinois, and are being extensively introduced in the North Western States. The Editer of this p :per highly approves of low sottages made of unburnt brick, provided that they are built upon a gocd-stoze or burnt brick foundetica, and well protected from the rains by projected roof, cr verandahs; and lie also spenks in very favourable terms of another description of buildingo, that is coming into exclusive use in the, State of Wisconsin. The materials used in constructing this nerv style of buildings, are lime and clean gravel. The Editor does not clearly l'y down the propertions nor the operation of huilding, but havi", lately met with a farmer in wisconsin who is practically acquainted with the whole opęration, we are enabled to furnish our readers with all the facts, necessary to secure success to this mode of constructing walls. The ingredients to be used, are small gravel ind limc. The lime and gravel must be mixed in such proportion, that the former will set the latter; to securc this point; about one-seventh of the whole must be lime. A good foundation is first required, and after the material is thorestghiy saturated with water and mixed to the consistency of thick morter, it is laid up on the wall in layers of about one fcot in thickness each; which is allowed to dry before another layer is laid on the wall, as each layer is laid the, edges of the wall is, neatly trimmell with'a sharp spade, so as the work proceeds the wall is finished. We have not sufficient experience in this description of wall, to warrant us in recommending it to the Canadian public, butfrom what we have heard spoken in its favour, we can consider it worthy of a further investigation.

An Exsclent and Cheap Pudding.-One pint

 of rice ; twelve apples of good size, and sour ; pare, core and slice them; mix the rice and sliced apples, and pute all into a bag and boil for hale, au hour. The bag must be large enough to allow the rice to swell, -and yet no larger than the rice, when swelled, will Gill. Eat with any sauce that suita the taste ; butter and sugar are excel. leñt.
Harresting 2 acblnes.

There are at the present time, no less than seven different machines patented in the United States, for cutting wheat and other grain by horse-puwer, all of which are highly; spoken of by the American press. The only two that comes within the reach of the Canadian farmer's purse, or indeed that would be adapted to the circumstances of this country, are Hussey's and McCormick's Reapers.These cost about $£: 25$ each, and will reap in a most perfect manner from ten to fifteen acres per day. They are both in the country, and were employed in the Newcastle and Home Districts the past harvest. We shall have them on sale at the Provincial Agricultural Warehouse, and shall invariably warrant any machine of this kind we may dispose of, to reap not less than ten acres of heavy grain in a day of ten hours, with the aid of a man and boy and span of horses, and also to be not more liable than other machinery to get out of repars. The following notices of those machines are taken from the Prairie Farmer :-

Ifussey's Reaper.-This machune bas beeniong in use, and prelly well known. It will eut, of wheat, yuedung 20 bushels per acre, if snualy driven, wath the same pair of horses, from 12 to 15 acres per day. If requires-io do good busi nes3-to be driven wath as hugh a talu of apped as can well be reached without a trot; and being precty highly geared is somewhat liabie loget out of urder. It wall however cut wet or green wheat, and will do a tolernble basiness in the way of mowing. The raking of is a hard piece of work; though a stout man will follow thall day. A great disadvantage attending this implement is the fact that the wheat is raked off entoris own path, and must be bound as faot as the instrument proceeds, requirng from five to seven men in athendance, who must all stop work or be s.opped with it.

McCormach's Reaper.-A large number of these have been in use among us whe pert seasan, and we belleve they have given a groed degree of eansfacton. The cutung , pppatus is a saratghe sick'e edge; which possesses some advanrages over that adopted by the one just named, while at he eame time it is hable to some ofher dis. advan:age. It phes easer whileat work, and of
conise requires less puwer ; but it will not cut grass, nor very damp or greer grain, and must as a consequence be used on straw well dried and ripened. The raking is nnenormumily hard process, and will test the energies of a stout minn; and when doare, the grain is left in an uneven condilion for bonding. It is, however, out of the way of the machine, and may be taken care of at leisure. The implement is simple and not easily put out of crder, and will cut, with one pair of horses, from 10 io 18 acres per day. We believe it comes fully up to the warrent of the patenlee; which does nol, however, include perfection in all the details-a fact which leaves ronm for some harmless suspicion on the part of those purchasers who think they have secured an implement without defect.

Fiemp Imported into Great Britaln.

It appears by a late report of the Liverpool Board of Trade, that the quantity of hemp imported into Great Britain, in the year $1845,931.850 \mathrm{cwt}$. The average value of the article is £30 sterling per ton, which would make a grand total $£ 1,397,775$ sterling. An acre of deep rich soil will average 800 lbs . of clean hemp, and it would be quite safe to calculate upon a ton from three aeres of land adapted to this crop. Land for hemp requires to be very rich, and if it be harvested before any of the seeds are formed, there is no danger of the ground being covered with the hemp plants, among the crops that are grown after hemp. Instead of summer fallowing land that is naturally too rich in vegetable mould, it would be found a profitable system of farming, to manure such land liberally, and after cultivating it we! to sow it with hemp, at the rate of twi bushels per acre. As soon as the hemp i removed off the ground, one deep ploughing will be quite sufficient for a crop of wheat Forty bushels of wheat to am acre has fre quently been grown after hemp, by this styl of farming. Ahout the first of February homp should be spread out on the snow, ani by the first of April, it will be in good orde for getting out. An ordinary hand will g. out and prepare for market, one hundre il pounds of hemp in a day, and by employin
the most improved machinery, nearly double that quantity of work may be done by each man employed on the machine per day.This subject is one that deserves the greatest possible degree of attention at the hands of every proprietor of farms in the Province, and it is one also, that should be encouraged by every Agricultaral Society in the Piovince.

The benefis of encouraging Agricaltural Improvemont.
Not many years ago the State of Maine was entirely dependant on other countries for a supply of breadstuffs. The loss from this source became so alarming to the commonwealth, that its legislature imposed a tax on every description of rateable property, for the purpose of raising funds to encourage the growth of breadstaffs. A premium; or bounty of six cents per bushel was offered by: the State Government for every bushel that could be grown in the State. This liberal bounty encouraged the farmers to grow wheat, and in less than eight years, upwards of $\$ 00,000$ bushels of wheat were grown in that northern region in a single season; and we understand that the law has been finally repealed, beçause the country can now supply itself with the staff of life, withaut the and of legislative enactments. By the subjoined extract, it will be seen that very liberal encouragement is held out to the cultivators of the soil-in the Island of Cuba,

If premums be given at all, they should be liberal, especially when they are intended to encourage the importation of Improved Stock, \&c. \&c. Upon the strength of the Provinoial Agricultural Society's premium of $£ 10$ for the best Stallion, Mr. Nathaniel Davis, of the neighborhood of this city, lately purchased the celebrated horse Alfred, who on three occasions was exhibited at the exhibitions of the New York State Society, and in every instance, he and his stock took. the first, premiums, This horse has been imported by Mr. Davis, with a view of getting the first prize at the next provincial Exhibition, which he will stand a very good chance of doing, unless some one imports a better animal.- If $£ 25$ be awarded instead
of $£ 10$, the result would be that a great number of choice importations would be made, and from which the cuuntry would receive mach benefit. The argument applies with equal force to every description of articles, and in our opinion money is. wisely laid out in this way, if it only influence men of property to import choice articles from other countries:-
"One thousand dollars to the person who, during the month of December, 1845, thall soonest prepare and put into the mest perfect state of tillage, one cabelleria of land, with the improsed American plow, worked by mules and managed by whites. One thousand dollars to the person who shall, on the first December, 1846, show two cahellerias of land well stocked with red clover of six menths' growth Twenty thousand dollars, in annual instalments of $\mathfrak{x} 2,000$, to the first persen whe, during the year 1845,46 , and 47 , shall set up cr cstablish a sugar estate or plantation, in which the cultivation of the cane shall be performed by thirty white families, consisting of a married ccuple each at least. One thousand dellars for the introduction of the bean used in the sugar estates of New Orleans, as an article of fcod. Fcur thousand dollars to the person who shall show, !on the first of December, 1848, an artificial plantation of trees of three years' growth. SiA thousand dollars to the person who shall introduce from the East Indies, 200 thriving and luxuriant stecks of sugar cane, \&ic. Twelve. thoușnd dillars in annual instalments of \$2000 to the person or persons who shall set up, during the years 1815 and 1816, a permanent establishment for the improvement of the breced of horses-fcur stallions, viz. one of each of the following breeds to be kept for public service, at prices to be fixed by the owner; cne Andalusian; o e Arab; one Norman; and one English; and to be of the gen: wine breed, cf gocad.ferm, size, Sce: Six thousand dollirs, in annual instaiments $c \S \$ 1000$ io the persen who shâll import from England one bull inid six corrs of the finest and most reputed breed of that cuustry. Two thousand dollars to the person who, nit the first of December, 1846, shall show a herd of the largest sized swine, introduced from the Uuted St tes of Amcrica or any other country. One thousand haw d dillars to the persen'whoshall, on the first December, 1846 , present or preduce a. breed of the largest demestic or barn-docr fowls (gallinas) hatched or bern on the Island, of a breed iniredued from the United States, cf America, or

Profis of Farming in the Westorn Statea,

Many are led to suppose, that agricultural pursuits are inuch more proatably carried on in the Western St tes, thin in C"nada; but from the best data we hivo at our command, we are in. clined to the opition that the farmers in this Province, have no good reasen to ensy the position of the agriculturistry of the Western States, or inded of any other part of the Ltwon. One thirg appears w us certan, thit in pont of nalural advantages, Western Canada cspecially, will favourably compare, with any other scetion of America of equal extent of territory; and if evidence be required to prove that capital can be more profitably employed here than in the West, the best and most conclusive that can be given, is the testiniony of the hurdreds, who have migrated from this country to Illuois and Wisconsm, during the past few years. The great majority who left this country for the West, during the past eight or ten ycars, are not worth as much property at this period, as they were when they first seltled in the West, while those who remnined upon their farms, and quietly attended to their busincss, hare more than doubled the value of their property in Canada, within that period. We are quite aware that the profits from farming in Canada is not tery great, where a farmer is obliged to employ much hired assistance, but we know of no part of America where in proportion to the nmount of capital, labour, atd skill expended in the cultivation of the soil, a larger proportion of the products will be profits, cr a larger net dividend may be realised from investments in land, than in his Proviace. It is difficult indeed to conjecture what the profits on farming may be under the operations of free traue, ${ }^{\circ}$ 't t it is pretty clear, that the Canadian farmers cannot passibly be in a rerse condition than are the farmers of the United States. We shall it an early perind, go more fully into the details cf this matter, with a view of proring the position assumed in the foregoing remarks, but in the mean time shall lay before our readers, an extract frem a letter written by Mr. Hiram, Kennecoit, dated December 1846, for the Prarze Farmer, in which he has pointed out in a very concise manner the profits, that can be realisedfrom farming in Illinois, as well as what the sail of that country is c pable of producing: -
"Ard here I would 're understood ps placing the whole of northern Illmuis and wouthern Wisconsin in the same category, as regards soil, climate and
the faciliy of producing wheat generally. I an aware that it is the general impreasion, that the country west of Fox River, is better adapted to raising wheat than my own neighbourhocd; and such, to zome extent, is my uwn opinion. Bu taking into consideration their diatance from market, and the fact that although their crop is no so liable to be injured by the rust, it is still mor liable than with me, to be injured by winter billing I therefore hold that we , re are all on the sam focting. I further hold, that 1 n average gield o wheat throughout all this regien, in faverable sea sous, is about 25 bushels to the "cre. I hay grown as high as 45 bushels per acre, on a smn piece of threc or four ecres, and under favorabl circumstences ; but have inore frequently nct ge over 18 or 20. In fixing this average, I telie int consideration the different modes of prepariig of ground for the crop, from sod wheat to wheat aft summer-fallowing. Further, that as a general rul not more than 100 acres out of 160 , is ausceptib) of preducing good wheat; that the balance through out all this region, is for the present to a gre, extent waste land, and pays but little if anythin That its average minimum value is, what it fixed at by law in regulating our taxes, $\S 3 p$ acre, The interest, then, for the use of 100 acre must te computed upon the assessed ralue of 10 acres, at $\$ 3$ per acre; and including wear in tear of fences, at a rate of not less than 12 p centues per annum.
"We have nixt to add to the coast, or dedu from the prefits $33 \frac{1}{2}$ per cent, to cever losses frod blight, winter-killing, insects, \&c. For it is a fo well known to all in this region, that we cann count upon more than two crops cut of the thr put into the ground. For although there may and are exceptions to this rule, still as " gener thing the losa from an entre or partual failure, w come up to cur estimate.
"Now I shall probably differ from many fu" as much in my estimate of the value of the cro upon the farm, as in my estimate of the risk lending the business: Which I place-taking of year with another and our chances of oltaini the best price the market affords-at 50 cr per bushel. I certainly have never seen the tid that my crop would not command this price some one scazon of the yonr, and that too at : own door.
" Next, the cost of preparing g̣round for sel ing, where the farmer does his own breaking * powing-allowing him a reasonable comprn tow for the use ot his team and for his own la -will vary from 75 cent to $\$ 150 \mathrm{c}$. (Youl sec by referring to my article upon praitie bre ing in your May No, that I estimate the cos breaking at a less figure than is usual--say less thon \$1.123c.) Furiher, that the coes harvesung will vary from $\$ 1$ to $\$ 1.25 \mathrm{c}$. I 81. West of Fox River the price is yin $\$ 125 \mathrm{c}$. It is true that by the ure of machin large fields can be harvested at a less figure: such cases will long remain exceptions. all thene thing: premised, which apprared ion
explanation or comment, we find the cost of rowing a bushel of wheat about as follows:Interest at 12 per cent. on value of 160 acres. estimate for stacking, as you will save this expense in the price of labor by deferrng your threshing until atier harvest, at 8 cents per bushel, - -
Risk, or 33 per cent. upon $\$ 12,50 \mathrm{c}$, value of 25 bushels,

Whole cost per acre,

$\$ 10,14$ Cost per bushel, 40 c ; profit per acre, \$2,50
"Now, if any are inciined to question my estinates, let them remember that I give the rule, not the excepuons; and that, too, after an experience and observation of the facilities of rowing wheat in this region, of 14 years. I am ware that there are frequent instances where ndividuals have realized larger profits. But as a roof of thy correctness. I will here state, that I leared in $1845, \$ 800$, from a field of 80 acres. But I wish I had stopped there ; for last season I
oit more than one-third of thai sum, in losing
not counting grain), near 70 acres which was
oot worth larvesting. Some may, say you are
iistaken in your estimate; for it costs nothing
ormapare the ground where wheat is sown after r with corn All nonsense. No one raises corn, r rather no one should raise corn, on a large cale, in this region, for the profit of the crop lone. My principal object in growing it, is for he express purpoee of preparing the ground for heat, and to afford my land the best rotation I m acquainted with.
"Again, should any one say to himself. He on't mean me, for I have raised on iny farm pod crops for three, four, and five years in sucpssion. Yes, friend, I do mean you ; for if such - the case, your land by this time must need movaling; and you will remenber that I have ade no special estimate of this expense, as well some others that the farmers is liable to incur hnving in my own mind included it all in the $3 \frac{1}{\frac{2}{2}}$ per'cent. loss, or risk.
" In conclusion, you will perceive, Messrs. ditors, that freeing the business from all advenions or speculative notions, here still remains a asonable and living profit io reward is for our re and labor in this species of husbandry.
" In hazarding these remarks in relation to heat culture in this section generally, the old cd experienced wheat grower niust neithet acse me of temerity or common-place, if I offer him nothing that is new, or of interest. I write the benefit of the hündreds-aye, thousands, neis beginners, that are every year, pouring into - country."

The Turbine.-We learn from a recent number of an English paper, that a French machine has recently been introduced into use, which operates as a powerful water engine, and denominated the Turbinc. It consists of a horizontal wheel, furnished with curved fluat boards, on which the water presses from a cylinder, whicd is suspended over the wheel, and the base of which is divided by curved partitions, that the water may be directed in issuing, so as to produce on the corresponding float boards of the wheel its grtatest effect. The construction of the machine is simple ; its parts not liable to get out of order ; and, as the action of the water is by pressure, the force is under the most fuyorable crcumstences tor being utilized. The effective power appears to equal that of the overshot wheel, but accompanied by soue conditions which renders it peculiarly valuable. In'a water wheel you cannot have great esonomy of power wathout a very slow motion ; but in the turbine, the greatest economy 1s, accompanied by a rapid motion. It a turbine be working with a power of ten horses, and is. supply of water be suddenly duabled, it becomes twenty horse power; if the supply be reduced to one half, it still works aive horse power: whilst such sudden and extrene changes would altogether disarrange water wheels, which can le constructed for the minimum, and allow the overplas to go to waste." By the employinent of a close pupe, water is now brought from a distance to several French factones, and there telivered with full force due to the altitale of its souree on the turbine. N. IV. Far. \& Mrach.

Lost Appetite.-Horses lose heir appetite from various causes, viz: Excessive tatigue, want of a change in food, dirty fodder, mouldy corn, or a dirty manger, \&ec. but most frequently by the approach of some disease. So soon as you discover a horse has, lost his appetite, observe, the following treatment:
Take from the neck vein half a gallon of blood. Take rasnfotida, a guarter of an ounce ; salt, one table,spoonful; sạssafras tea, one quart; inix and give them as a drench.

On the second day, take of glauber salts, one pound warm water', one quart ; after dissolving the salts, give it as drencli and in two or three days the appetite, will be restored, unlcss the aniaial is labouring under sơme disease, which may be agecrained by the symptoms--Mason's Farri.

Oqitivation of Oanadian Sumec.

The indıgenous sumac of Canada, might be made a very profirable article of culture, for the purpose of dying and tannug. The description of leather that is tanned with the bark, boughs, and berries, of this highly ornamenta! shrub, is very rauch used of late years, and the entire stock is imported from the United States and Fangland. Probably one establishment might manufactare all the white leaher that would be required, to supply the wholc Canadi, n market, but 4 does not follow from this circumstance, that the !usiness should be altogether neglected. Sumac might be grown as an article for exporiaticn, and would doubtless make a profitable return for the capial invested in its cultivation. The best course that could be adopted to obtain a full crop of the shirub, would be to thoroughly cultivate a prece of old sward land, and sow the seed eariy in the spring ; either broad cast or in drills. Ths phans should come up so closely together, that they could not grow a greater height than ten feet, and not exceed one inch in diameter at the base. The leaf is the most valuable portoon of the plant, and is that which is so hignly prised as an article of commerce.The crop is cut and cured something after the style emplayed in a grom crop, end the leaves are thrashed off with flails, and separated from the stalks wuth a rake. Although the cultivation of the Sumac may not be an object of primary importance, still it is a subject worthy of consideration, and should be put to the test by seme of our Canadian genilemen farmers - who are desirous of advancing the prosperity of this naturally fine Province.

Pitts Grata Grinders.

This machine, of which the accompanied drawing is a correct representation, is draven by the power of two horscs, to a speed oi five hundred revoluions in a munute. It will grind, in a most perfect manner, from fifteen to twenty bushels of oats, peaye, barley, or other course grams in an hour. The bladss, or cutting prancuple of the machne, may be taken out and groand wath a very mifing trouble, and can be set to grind course or fine, to sult the taste of the owner.Persons hnving gaw mills, or who employ water power for any of the other parposes, for which
power is used in the Province, would find that a profitable business could he done, in grinding course grouns for their neaghbours with this mill. On sale at the Provincial Agricultural Warehouse, Toronto. Price $£ 10$ each, payment on delivery.

Etamp Extracting Machines.
There are a great variety of machines scaitered through the couniry for pulling atumps, most of which are very expensive, and are more or less liable to get out of repair. The most expensive kind that we have any knowledge of costs $£ 150$. We have machines on sale at our Warehouse. that only cost $£ 17$ 10s., that will pull as many stumps in a given time, and of the largest size, as any other machine that has yet been invented. The profit we make on these machipes, preciudes any abatement upon the apove terms, and the cash mast invariably be paid on delivery. As a proof of therr value we would stace, that one of thooe machines puiled last autumn, with the aid of two men and a horse, the pine stomps standing: on forty acres of ground, in the short period of five weeks. The land in question was considered very stumpy, and many of the atamps were of the very largest size.

Mrarraln in dattle.

A subscribercalled at our office a few days since, who stated, that he had lately lost ten head of cattlle, worth at least 560 , through this disease, and it almost invariably proved fatal to stock that was attacked with it in his neighbourhood. IIc also stated, that he would give any man ± 5 who would furnish him with a ceriain remedy. This paper has been established for the sole purpose of supplying Agriculturists with information of every description that would be of use io them in their honourable parsuit, and we shall at all times be most happy, in answering any inquiry that may be put to us, on any subject that we may be familiar with.

Bleeding and physic, have in thousands of instances been found to be an effectual antidote for this complaint. The animal should be bled copiously in the neck, and either a pound of salis, or common salt mixed with a half an ounce of nitre, given to a full grown cow or ox, will effect a cure in nine cases out of ten. Animals attacked with Murrain, should be housed in comfortable quarters, and they should not only be treated as above described, but should have some warm gruel given them every few hours.
We select the following from the Ohio Cultivator, which doubtless is worthy of a trial by those whose stock of horned cattle are attacked with this very frequently fatal disease :-
Cune of Munrany in Cattie-Mr. Bateham. —The bloody murrain is a disease that so frequently prevails, wath fatal results, among catule in this part of Olno, that I have thought proper to detail a course of successful ireatment, practised recently on a favourite ox. I will piemise that itie characteristics of murrain on the case, were as cleariy developed as any I ever saw in my expernence ot thinty-eigh years in this region of country, where this destructive malady has, diways been a severe scourge to dealersin cathe

On the morning of the Jth of December ull., one of my oxer was lying dewn, and when my son went to feed the cattle, he reported to me that he thought the ox was not well. . I immediately went to him and found hirn' disischened to get up or walk, and lie would not eat, and drivingisugar, \&c.

Farmers' Olabs and Llbraries

It is with a great degree of satisfaction, we are onabled to present to our readers the following spirited communication, on the above subject. As was stated on a former occasion, the rapid ndvance in Agricultur Il improvement in England, must be very much attributed to the Agricultural Clubs, in successful operation in that country. There is no good reason why the furmer's sons of Canadashould not combine ther energies through the medium pointed out, in order that they may matetially assast cach other in cbtamng a knowledge of the principles thich regulate their important professio :. We would gladly see Farmer's Clubs and Libraries cstablished in every township in Canada, and every influence thit we can bring to bear, to effect this object, shall be mest i. dustricusly cm-ployed:-

Lindria Cottage, Cambono',

 Janzary 1st, 1847.Dear Sar,-You have at various times in the protious volumes of the Culticator, urged the ancessty of contributions from the pens of practic 1 men on agricultural matters, and although I cannot bodst of mach practucal experiectec in farming affars, I will venture a few hints on a subject, whuch will, I hope, prose as interesti g to others as it is to me.
It is but a year or so, since I loft the couiter for the pluysh, and durng that tume I hase been muck surprosed at the apathy displayed by the young men of Conada, towards that wheh ought to be the granad clyect of all true Canadians-agricultural amproveme.i. It may uppear somenhat presumplueus in me-a merc norace in rural occu-pation-to attenpt a correction of thes crrer, but haoniug that it cxists amongst the greater portion of our youts men, and that ocne are wiling, throush a mistalen bashfuhess, to step formerd and "break the ier." I will oflit seme sugecstens, which, Luaugh brief, will if acted upon, matcriallj assist to raise " Joung C nada" from its preseal disgraceful pesitien. Thicre is scarcely a township in the Province, which cannot beast of a Debating Suciets, where our yaung men mect each other, with grave faces and logicai looks, and with much deliberative wisdom determine the linotty question, as to whelher the ox or the horse is the more useful animal 3 or which possesses most utility, fire or water 3 Now, Mr. Editor, I have not the le?st desire to ridiculo these Debiting socicties, but I cannot refrain from noticing the
paucity of the subjects introduced at these ma inge, and the little improvement likely to be deri from a discussion of such trivial metters. important reformation in this one particular, wo do much towards creating a desire for a bea knowledge of systematic and improzed cultivati Let these Debating Societies be converted i Young Farmer's Clubs-at the usual pericd mecting, let some one of the members rerd aloud article, or articles selected from an Agriculu work or Pericdical. (The Cultivator has, I P sume, subscribers in every tornnship)-let su members as may be willing, delwer their opinid on the article read-and the gre:t change that r be perceived where this alteration may be offect rill amply repay these who may cxert themsel to bring it about. With each "Young Farme Club," I wrould cennect a Ycudg Farmers' Libry -supported by some small amual subscriptid (s) 5 s .) and composed of the most practio agricultural and mechanical works of the day-4 first selection to consist of these treating mo plainly on the leading features of cvery-day fand ing. Thes library must be gorerned by the usp officers, kept in the building chosen for the discu sions of the club, and the bcoks circulated at 4 periodical meetings of the members; and as further stimulus for exerton and improremend I would propose that an annusl premium be awart ed for the best essay, written by any member, some subject bearing on agricultural improvemen to be decided at a meeting for the purpose the premium to be a gocd, standard, agricultur work.

That this plan may be brought into operation every township, Lhave not the least doubt, coul a few energetue young men be found to co-cperate and I am cenvinced that when chee such a more ment is made, Canada will assume a new rsped and that those who may assist in directirg th step of "Young Canada" on the right path, wi be luoked upon by the next gencration, as the tra patrots and great benefacters of their country.

Hoping that ere the present winter elcses, cred tor nship Debating Scciety will be courerted into Ycung Farmers' Club; and have in connection Young Farmers' Libriry.

I rcmain, yours \&ec.,
C. Clariz.

Important Invention for Preparing ITemp at Flax.-Mr. Fleiechman, connected formerily wil the patent office at Washingion, who has ro
ently travelled in Europe, has exhibited and placed in the hands of the editor of the Visitor, pecimens of the product of flax prepared by a themical process. The inventor is a Frenchman: for the right of using it in his dominions, the King of Hanover paid the inventor 30,000 fuineas, nearly equal to $\$ 100,000$. The article as exhibited' to us, both in its complexion and exture, was very superior to the same article prepared in the usual method of water-rotting.M. F. represents the chemical method ask yery imple, easy and. cheap; and the saying in rastage is full thirty per cent. May not this process be of the same nature as that which enaples the manufacturers of Dundee in Scotland, o bring into use in the linen manufacture the American hemp?

Alderines Cows.

In reading the various articles in the Agriculurist, on the different breeds of cattle, I have hought that the little that has been said about Alderaey cows was not so complimentary to that breed as they deserve. I send you, therefore, a Ew short notes taken when I.was in the Island of Tersey, on the coast of Nurmandy, where the dairy s principally attended to, as well as in Alderney nd Guemsey.
Some gentlemen have not thought the Alderney Wow handsume; but in truth, she is the hand-- omest of coovs for the dairy, although she may pot fill the eye like a thorough-bred Durham, in food conduon, so much esteemed by every expenenced dary-maņ; yet there are thousands of amiles who want one or two cows, ruch in milk nd butter, mald, gentle, and melligent, on exellent ter:ns wath the milk-maid, and the Aldercy, of all onhers is the covo. She is well adapted dor the lady of a snug rural mansion, and ail daryhen would find it to their interest to keep two ure Alderneys to every tweive cows, the advan-. ages of which are welh understood in some parts f Scotlanid, and perhaps a dary of twenty wellhosen ammals of this breed would compete with ny twenty cows tuu the United States, when buter of superior quality fetiches a good price. In aort; the finest spocimen ol an Alderncy is a true. mblem of a malch cow, and any person keeping - is breed mezely for the dairy, who once gets one ${ }_{j}$ eds and treats her properly, will never be whithout. be.

A good Alderney cow in. Jersey; is expected to yleld $7 . \mathrm{lbs}$. of butter a week, and many have been known to produce double that quantity for a shiort period. Some give from 16 to 18 quarts of milk per day, during themonths of May and June.; and I was told of numerous instances of cows which yielded from 10 to 14 los. of batter each, in a week. Major Barns, the Governor informed me that he had a cow which gave 25 quarts of milk a day; but ordinary cows did not ayerage more than 10 quarts a day, yielding 7 lbs . of butter, each, in a week. It wasstated, that, in summer, 9 or 10 quarts of milk would produce a ponnd of butter, and, in winter, when the cows are par-snip-fed, the same quantity of butter may be ob. tained Prom 7 quarts. The general average yield of each cow, old and young, is rather more than 365 lbs . of butter in a year, or aboat 8 quarts of milk:per day. (a)

The cows there, are universally tethered, and are moved, watered, and milked, three times a day. They are fed principally onlucern, or clover, but the quality of their butter is never considered so good, when thus fed, as when they range on a natural pasture.

The milk, when strained, stand's at about 10°. inches deep in the vessel, till the cream has all, risen, which usually occupies three doys in sum. mer; and in winter, in order to hasten its rising, the vessels are covered, and placed on the hearth at bed-time. Consequently, shimming is niever performed but once, and then not hefire the milk has become coagulated or turned snur. In the operation of skimming, the cream is first detnched from the edge of the vessel-all, rnind, and then is raised up together, as much as pnesible, and by inclining the whole mass over the vessel intended to receive the cream, the latter will sometimes slip off at onse from the congultted milk. At the bottom of the vessel there is a' smallihnle stoppe 3 with-a peg, which is occasionally withdrawn, in order to drain off the serous or watery potion of the milk, and thereby separate it from the cream. Missouri, Oit. 19th, 1846.-An. As.

To make tal Best Stilsing Phastif.-To one pound of resin, melted, and while on the fire, add oue wine-glassful of bole Armoniac, rabbed fine, one ditto Tenice turpentine, and a lump of sheep's suet, the size of a walnut (without the hull); stir we.l, when thoroughly heated and mixed, pour into an open-mouthed jar, and stir tull, çold..

The Preservatlon of Roofs.

A writer in the Boston Cultivator, referring to wooden roofs and therr rapid decay, gives the following cheap and singular method of preserving them tor many years. He observes-" A friend of mine, who untes much ciose observation witi. large experience in building, states that the best preservation of shingles that has come within his knowledge, is to soak them in an alknline solution of quick lime before they are put on.The plan adopted by him for the purpose, is to prepare a box in which to dissolve the lime, similar to that used by plasterers, and have it elevated, so as to permit the lime water to be drawn from it, into another box in which the shingles are to be placed that are intended to be impregnated with the alkaline solution. A sufficient quantity of quick lime is put in the upper bos, which is slacked and reduced to a thin wash, and well stirred up, when it.ts permitted to settle.
"The shingles are set on end, with their buts down, in the lower box, whech is sufficiently deep to permit the parts which will be eaposed to the weather when they are put on in courses, to become soaked, by drawing down the alkaline lime water from the upper box into the one below in which they are placed. They should remain in this solution for some hours, when they are removed and suffered to dry, and others substitute i in the box, to undergo the same operation before they are nailed on the lath.
" No part of white wash or lime should be permitted to pass into the lower box; it being the causstic alkaline solution of the lime only, which is beneticial ; it is 2 powerlul antiseptic, interposing nowerful obsacies to the decay of wood or vegetable matter of any kind. The presence of the insoluble particles of the lime would tend to p:event the entrance of the transparent solution.
"The tendency of white wash to preserve wood frosi rotung, is universally acknowledged, but it (should be borne in mind, that it is the alkaline sotuun of the lime only which has this tendency, and wat the gross, insoluble principles of the lime which remain for a time in the form of a scale on the surface to which it has been applied, has nothing to do with its antiseptic powers, and that where the design of its application is to preserve the wood only, it would better accomplish the
object by being much more diluted than it generally is, so that the alkaline qualuty would be more thoroughly absotbed than is usually the case. It is a very curious and interesting fact, that water at the freezing point dissolves twice as much of the alkaline ingredient of lime as boiling water does, so that the use of hot water to dissolve lime is worse than useless."

To take Spots from Leather Gloves.-Suspend them in a jar over the strongest liquid ammonia (hartshorn). The fumesalone will remove the spots; be very carcful not to let the liquid touct the gloves, or it will leave a mark even more unsighty than the spot it has removed.
F. G. Willson's Improved Barn.

We take great pleasure in presenting to the subscribers of the Cultivator the accompanied plan of a Barn, and communication, from the pen of Mr. Francis G. Willson, Salifleet, Gore District. The specifications, costs, and utlity of the Barn are so cleasly laid down, that it is uneces. sary for us to add a single word in irs favor; we would, however, be guilty of an act of ancourtesy if we were to neglect to thank Mr, Willson fot this gratuitous specimen of patriotism. Mr. W., like the conductor of this paper, is a descendant of one of the oldest Canadian families in West. ern Canada, and he doubtless feels a warm desire to seo his native country advance in substantia! improvements, in as great, if not a greater degree than does the neigbbouring Reppublic. The Editor of the Gultivator would rejoice to see the young men of Canada employ their pens, in pushing forward the car of improvenent, as has been done by the writer of this communication. There are hundreds of young men in Canada. who are abandanily able to communicate their thoughts and experience on paper, which, if communicated to the world through such magazines ts the Cultivator, would have a beneficial infuence on the.productive interests of the Province. It is quite too bad, that such a large proportion of the matter in the Cultivator, should be taken from similar works published in other countries, when there is such a large amount of valuable knowledge on every subject discussed in its columns, in the possession of Canadian farmers, who are so indifferent to their esountrys welfare, that instead of nllowing their light to shine, they put it under a bushel.

fig 3

$10 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 90^{\circ} 80$ 80

To the Editor of the B. A. Cultivator.
Sm,-I send you a plan and elevations of a barn, which I buit in June, 1845, of a new and excellent construction, and well adapted to the circumstances and clamate of Canada. As I have carefully studied "Loudon's Encyclopecdia of Cottage, Farm, and Villa Architecture," and other works on the subject, I know of no plan more smple, economical and effective, and differs materalily from anything of the kind treated of in that work.

The construction of the frame is shown in the elevation, figures 1 and 2 ; figure 3 represents the ground plan, in which are seen a large close shed for catule, a, driving floor, b, granary, c, oats bin with a lockup lid, d, cleaning-roón, c, claffroom, f, with a chaff-shde, g, fanning mill, h, spurwheel, pinion and driver, i, horse-course, levers and wheel, l, small glass windows, l, l, l, l, windows filled in with rolling blinds or lufferLoards, with slots three inches wide for light and ventilation, and may be closed tight, m, m, stable for seven horses, n, five single and one double stall, with manger and oats-boxes, 0 , two rows of inside posts that support the purlins and mow bearus, p, z, cattle mangers, q, q, dotted lines represemt bars that runfrom past to post, to divide off catte, r, cistern to coutain 200 barrels, s, whth pump, t, earth bridges to the floor, $u, u_{3} u_{2}$; in figure 2, are foar doors opening into the shed end of the barn, twelve feet wide and eleven feet high Irom top of the sill, the two upper ones are pierced with two buils' eyes, to let in light and air to the catele, v, roling blmds for ventilating mows, 20 , stone wall laid in lume and sand, x and y, in figure 1 , inside girts and braces framed into purlin posts, shown by dotted innes' at z, dotted lines at, S.c, show the purin plates and braces, twentystx pars of rafiers are shown at a^{\prime}, outside plate, upon whech the fout of the rafters rests, b, outivide gitts, c, window to the cattle shed, with lufferboards, d^{\prime}, glass windows to the cleaning-room, c, doors to the chafif room and feeding board of the mebine, f ' f ' it will be seen that the mows are contamed over the three beanis, $s^{\prime} s^{\prime} g^{\prime}$ in figure $\stackrel{?}{?}$, the tenons of the lower beams come: through the posts at h, figure 1 .

Construction - The foundation is of stone, eighteen inches thick, and two feet high above ground, and laid in lime and sand, and the sills are belded in mortar. Size of the timber; the sills, poata, and beams are 12×12 inches; plates,
8×10 inches; girts, 8×6 anches ; sleepers, $10 \times$ 10 inches ; studs and braces 4×5 inches, rafter 7×4, and 4×4 inches, (the outside posts an eighteen feet between shoulders)-there are fou rows of twenty-four posis in all, supporting thre rows of eighteen mow beams, and fout strings o plates to support the roof. All the small timbe was found cheapest and best whipsawed out d large umber; the rafters are well epiked to th purlins and plates, which acts as a tie and pref vents the buiding spreading the purlins; also re move the latteral thrust ; care was taken to brea; joints in the lathing of the roof, so as to form on even, strong, connected sheet the wind canno move; the sides of the building are covered wit weather boarding, and the roof with shingles; th. floors ot the granary, chaff-room, cleaning room threshing-floor, immeduately above these, an driving floor, are :wo inch plank, well matche rogether ; the floor of the stable is lond dow loose between the narrow sills of the stall parti tions; a small door opens in front of every sta: above the manger to put in feed to the horses ; al the inside partutions, and all of the doors are incl stuff matched; the doors are hung on paten boiler plate hinges, boleed and screwed on; the whole division for the cattie ss not flonred; the cattle mangers are three meh plank, suspended and fustened against the side of the sill; on plank eighteen inches wide, forms the bottom another ejghteen inches the side, making with the breadth of the sill, two feet eight mehes wid for the bottom. The cistern, ε, figure 3 , is dus twel: feet deep, and sufficiently large to contaif 200 barrels, and in clay will do well if plastered an inch thick with three coats on the clay leaving a rebate in the earih at the top, to receiv a stone wall two feet deep, and two feet thich (inserting a waste pipe) to support a brick dom over the top with manhole in the centre, and $t w$ holes for pumps and gutter pipe; the covering to be made strong and secure and covered wit earth, so that catle may walk over it, or th cistera may be made ontside the building, wit crooked suction pipe to the pump. The thresh ing machinery, with rakers, is placed on a flod on one of the side mows, over the chaff-room cleaning-room, and granary, and throws th straw off on the driving floor at 8 , figure 3 , by th help of a short inclined plane, which can bere moved when the straw may be stowed away of the mows, without its falling below; the tainiin mill is get up eighteen inches from the low

Thor, with the tail of the mill fitted through the "artition of the chaff-room, where a smooth inlined plane takes the chaff through a door into The yard; the tanning mill is driven by a belt bassed round the shaft of the drum, which gives the proper motion; a belt is sometimes taken hrough the partition at b, figure 3, to drive a traw-cutter, or root-slicer, \&c.
Remarks.-This barn is 75×52 feet, and conaing three mows the whole length of the buildng, without a single stick of timber to obstruct lhe stowage ; the braces seen at g^{\prime}, g, figure 2 , bove the beams are only at the ends of the building ; the mows are covered with poles, with the exception of over the stable, and gramary, nd cleaming-room, because hay and grain will - oreserve better where the air has free access nderneath; the mows are very convenient for pitching off, (in driving through the building rom end to end) un each side, and thence upon the middle ; the inside girts form a ledge on each fide of the middle mow; the part-for ihe cattle is 52×45 feet, and can be divided off at pleasure fith temporary bars, for each kind of cattle, and - as all of the advantages of stabling without the disadvantages; namely; the cattle can always ave large quantities of straiw to lie on, and saves the disagreceable labor of cleaning stables. When he manure'accumulates to the depth of eighteen nches, and partially rot:en, it may be removed a the spring into a heap outsidé, to undergo the ast process of fermentation. The levers are made o take out of the machine, not to interfere with attle ; one door is commonly left open for the nulle to pass out or in ; spouts and troughs lead fom the pump to the horses and catle. The mall door in front of each stall is an advantage f feeding each horse without the others being isturbed. There is a ventilating blind at the apex f each gable, and the whole building is well venilated! The threshing machine is all under sheler, and conveniently placed for discharging the traw ; as it falls down on the lower floor, it can e pushed either into the catule shed, or out into he yard at the opposite door, or the inclined lane removed, and a man to stand at the tail f the raker, and mow it: away when a mow ecomes vacant. As the.grain comes from the mning mill; it can be convenıently shovelled into he grauary and locked up, as it is perfectly. leaned for market ; the chaff goes. into the yard a the opposite direction, and only requires occa-
sional hauling back. This inachine is generally worked with , five horses, sometimes four, but may be worked with eighthorse日. It will thresh and clean ready for market, in good wheat, 200 bushels per day of ten hours, with five horses and five men; but if a constant elheaf pitcher is re. quired, it would take six men and boys-mo boys would do as well as men to tend, the fanning. mill and drive. This fanning mill is entirely of a new construction; the invention of which I claim. When turned by hand it will tlean as fast as two men will shovel in, and performs two eperations at once through, and cleans in a most extraordnary manner. It is made to go steady and simultaneous with the rest of the machine. At some future time, I may send you a working draft of this mill, and déscription also.

There is one observation which Loudon often repeats; that is, that all buildings in the country where at all practicable should be placed with the angles north and south, so that the sun may shine on all sides throughout the year; such a building will be dryer and last longer." To make this barn still more comnodious, there might be at some additional expense, a large cellarage ander the floored part, either for roots \&c:, or it might be used for live stock. In that case it would be better to have this end of the building upon a gently sloping knoll, so it would be easily drained and be half above ground.* This building will cost $£ 200$, and does away with a number of unsightly sheds, generally seen patched up against the sides of a barn, and is besides much cheaper, and might be rendered architectural according to the taste and means of the proprietor.

Yours respectfully,
Fipancis G. willsos:
Saltfleet, January 9 $\mathbf{~ t h , ~} 1847$.

* This barn contains three immense mows the whole length of the building, and is sufficiently large, for the hay and grain of 100 acres, of well cultiyated land, which has been tully proved.

To Prevent the Rapages of the Clothes Moth: -You have nothing to do bat to place shallow boxes in ynour drawers, with a a liule spitite of turpentine in them ; and os the turpeltine eyaporates and penetrates the cloth, the lariva will protrude. and be found dead on the surface:-Anis Ag.

Isinglage and gin, dissolved together' by' solow heat, makes a good cement for glams.-Ame ag.

Comonte for Tards and Floors.

A correspondent of the Agricultural Gazette, speaks of the value of "tar compost;" so called, for forming ground floors of carriage houess, barns, stables, alse for walks, barnyards, \&c.., for which purposes it 13 represented to be excellent, " being thoroaghly dry, wholesome, cleanly, smooth, easily repaired, noiseless under monon, and inimical to vermin, lesides beng so very cheap, only costing fiom 3d. to 43 d . [6 to 10 cts] per square foot."

The writer describes his mode of making such floors thus "Lay down a good sold concrete of broken bricks and tiles or chalk, or both materials mixed together, only they should be broken Very enall, having thade this quite level, pour on it coal tar, until the rubble is just covered. Then sif hrougha fiae sieve a mixture of coal ash and sand, or coal dust and powdered lime, or all mixed together, or any one separately, it makes very little difference. I prefer quicklime, ashes and sand, in equal parts, but I have used limedust alone, and found it answer, though it is longer drying, and is not quite so firm. Miy plan is to sift on plenty, and have the work well rolled or trodden, supplying more sifungs as it becomes necessary. The proper quantuty of effungs will work in without any trouble at all, if time be allowed and the floor as used. Sometimes two or three coats are wanted, and are always best : often one will do. After the first coating upon the rubber, no more is necessary to be done elther for an extra coat or a reparring coat, than to pour down some tar and spread it about with an old brush, covering it with sifings. Any labourer can mend or even make a floor of this sort.

* * *The reason I preter brick rubble to atones is this: I have found that by long wear, a small stone, or an edge ot a prece of a larger size, will work up; whereas broken bricks or chalk will salurate partly with tar, and will wear down with the rest of the surface. I think the value of such a bottom for a stable would be greatly enhanced by its impermeability to the drainage from animals."

Another correspondent of the paper above mentioned, gives his mode of making a similar cement, as follows:-
"Two parts sified coal ashes and one part of quick-lime, to be thoroughly mixed together in a conical heap; then proceed as in mixing up fine mortar, making a hollow in the top of the cope,
and pouring in gas tar, not gas water, or halfan half, as it sometimes comes out of the reservoin but the thick tar, and gradually mix as you wou? mix water with the mortar or plaster, until th heap is about the consistence of pretty atiff mor tar, In forming my yards and sheds for cow: and those attached to loose boxes for horses, tw years ago, in order that all the fluids should drail towards a tank, I employed this compound spread about three-fourths of an inch thick, on surface formed with stone broken very small and a small quantity of fine gravel scattered ove them and then rolled down, to prevent unneces sary waste of the cement. This was laid oved and then patted down with an iron shovel. I the course of two or three days, just before it ges hard, pass an iron roller over it. In the cours of a week, if property done, it will be as firm a stone, and not affected either by drouth or wet in any degree. My yards have been in use, covere with muck during two winters, and exposed dr and clean to the sun during the two summer, ans I perceive rio change. ** * * I have als used this covering for the top of stone walls, fo which it answers admirably."-Albn Cul.

Sources of Plants.

Apple-All varieties of the apple are derive from the crabapple, which is found in all parts of the world.

Asparagus-This was brought from Asia io America.

Almonds are the fruit of a tree which grow chiefly in the Indies.

Coffee is a native of Arabia Felix.
Cork is a bark of a species of oak, which grow in Spain and Portugal.

Camphor is the concrete juice of a tree, a spe cies of the laurel, which grows in Borneo, Suma tra, and other parts of th: East Indies.

Chocolate is made of cocon, this nut grows in both Indies, on trees from 30 to 60 feet high.They grow in bunches of 72.

Cloves are the flowers of a plant which grow in the Moluaca Isles and East Indies.

Cabbage was brought from Holland.
Currants came to us from Greece.
Horse radish was brought from China.
Lettuce was brought from Ho'land.
Nutmeg-This grows in the East Indies.
Onions and Garlics are natives of Asia and Africa.

Oats-The oats is considered a native of / sowing, we have found to be as good a preventive iexico.
Peaches-The peach inse is a native of Persia. n its wild state it is small, bitter and poisonous. Potato-This is a rative of South America.-in its native state it is small and bitter.
Pine Apple-This grows in the West Indies. Rye originated in Tartary and Sibena.
Raisins are drned grapes; they rupen on the ines, and are dried in an oven or in the sun.They come to us from the Mediteranean.
Sugar cane is a native of China, from whence derived the art ot making sugar.
Tobacco is a native of South America. One pecies has been discovered in New Hollandobacco. was first carred to England by Sir Valter Raleigh.
Tea is a natuve of no country except China and fapan, from these places the world 18 supplied.rea is prodared from an evergreen shrub 5 or 6 eet high. The leaves are first steamed over oiling water, and then dried on copper plates ver a fire.-Frarre Farner.

Remedy for Smut in Wheat.

Mr . Tucker-To ascertain the most effective emedy for smut in wheat, we tried the following xperiments in 1841 :-
Ten squáre rods of sandy loam land we divided pro sis equal beds. Upon each we sowed threeparths of a quart of wheat.
No. 1. Sown with smutty grain. Yield, 212 uarts. One smut ball to 19 grains.
No. 2. Sown with smuty grain, or rather, a ery few balls of smut, the grain being quite lean. Yield, $5 \frac{1}{3}$ quarts clean grain, ând a pint fscreenings. One smut ball to 168 grains.
No. 3. Smutty srain washed in lime water nd brine. Yteld, $4 \frac{1}{2}$ quarts; one pint screenggs. One smut ball to 176 grains.
No. 4. Snututy grain washed in lime-wậter and ine, and plastered. Yıeld, 4 quarts clean grain. ne smut ball to 74 -grains.
No. 5. Smutty grain washed in lime-water and ine, and limed. Yield 7 quarts clean-one gill reenings. One smut ball to 1120 grains.
No. 6. Smutty grain washed in lime-water, ine, and ley, and ashed. Yield, 7 quarts clean, e pint screenings. Óne șmut ball to 840 grains, dhe largest growth of siraw.
Soaking wheat in brine:and liming it before
against smut as any which we have used. 1.
D. H. W.
-Alb. Cult.
New Grist Mull.-We have been shown the model of a mill, invented by Asa Barber, of Stephentown, Rensselear Co. N, Y. and now the sabject of a pending patent. It acts upon features truly novel. The grinding is effected by first cracking the grain, when it is passed to another chamber, where it is reduced still more. It may then, if not sufficiently fine, be returned to the cruslang apparatus as often as it shall be required so as to do, to produce good flour. The machanery consists of a peculiar fluted cylinder which opprates upon a concave bed of furrows or grooves. Mr. B., who is a menber, of the "National Association of Inventors," promises that we shall fully describe his mill, with engravings, at a subsequent time.-Eurela.

Computing Machine.-We have seen a machine for computing figures by any of the rules of addition, subtraction, multiplication or division. It operates in the most simple manner, and is equally simple in its construction, This is the invention of a Pole, by the name of Slonimski, who received very large presents from the Emperor of Russia, for his invention. We can say of our own knowledge that this is an excellent machine, and can do any sum in those rules with great speed ind enture accuracy. Mr. S. lins assigned his claim to a Patent Right in the United States, to Mr. S. J. Neustadt, of this city who is applying, for, and will probably obtain the same. These machines may be made and sold for from $\$ 3$ to $\$ 10$ each. -Eurela.

Rotary Steam Engine-Mr. A. Buffum, a member of the "Nation al Association of Inventors" of this city, has ma de a discovery in rotary engmes which he thinks will take the lead of all others. Mr. B.'s plan he s the merit of simplicity, and looks as plausible as ny plan for a rotary can. He expects to be able to ? arnish a ten horse power engine for $\$ 50$, and r..e that will not occupy more than two square feet afroom -Eureka.

A Fine Blue-wash for Walls...-To two gallons. of white-wash, add one pound of blue vitriol dissolved in hot water, and one pound of flour, well mixed,

Scionce and Agricalture.

Tho past fifty years have been remarkably dis tinguished by numervus and extraordinaty inprovements in the useful arts. A freatportion of thase have resulted from the direct application of scientific priucupies. The wonderfal advanceman: in nearly aill banches of manufacture, whach so emin aily disturgushes the prebent century from the past," is largiy andebled to science. It was a thonough huowledge of chemistry ard mechanical philusuphy, that enabled James Watu to place the sutan engine at once befure dee public as a powerfal nud efficient machine-a machine which has witinin the memoly of nadhliaged men, almost changed the lace of civilized conntries, ard has spread tuwas, wilages, and cultivated fields, in regions where, bat for this invention, nothing would be seen but unbroken forests.
Very great advanages have resulted from the precision with which the punciples of mathemitics and mechancal phasophy, may be applied in arriving at practicat results. The aecurate knowledge of piessure and torce, in constructing machamery, and in civil engineerng, wh ch calculation enables us to obtain, betore trial, is of the gleatest amportance. The mathematician, who hass the force of gravity, may sit in his cloget and te!! us, wathout error, the velocity of a falling body, and the precise ancrease in its rate of descent; or he may determene, by calculation, trom a hnowledge of this velocity, the exact length of a pendulum to beat seconds. The engıneer may ascertain, betore he erects his work, the best form of an arch, 10 afford the greateat s.rength aganst the pressure of a superincumbent weight, or he may calculate accurately, the ang.e at which the lock gates of a canal shou'd mett, to give the greatest becurny againn the pressure of the head of water upon them, before a sangle tral has ever been made.
Interesuing and important practicn results are also obtaned to the manufacure of various articles of com nerce, by the appication of the pranciples of chemsiry. Geology has renlered great ait in the art of mining, ta all its d-partments. Nit only in explozations for the more valuable motils, unt for the coanser, bat ant less mporant aricles, salt, and coals, teas of thousands maght o ien have been saved, by a knowledge of the rebrinns and character of the ruc'sy sarata at the surface of the carth. \dagger

* A single instan'e of this advancement is mentioned by J. F. Herschel, in the fact that a man can now projuce abjut two huadred in nes as mwh entern goods, in a given im ${ }^{-}$, troin the raw matrial, as he can'd seventy or eighiy years ago.
+ Soune years ago iwenty thpusand pounds Ware expended in Elag'and ial a us less seacch fur coal in Histing ssnds. Alhhough these were som- apparent in licatuons, a geulogist cuald at once have predic ed faiiare. "All ale famdiar," says James Hall, "with the mining enterprizes,

The precision with which the principles of nt tural phiilosophy have been variously applied machinery aad eagineering,-and chemisiry an geology in manufactares and mining - bas led the apparently plausible conclusion, that not les important resulis might be at once ohtained b the application of science to agriculture Fror the raud advancement of science wrthin the pre sent age, the opiation seems to be gaining ground that some great and extraordinary results ar about to take place? that the slow progrees it agraculture whech practice and explrience har effected, will soun cummence taking rapid an powerful strides, that we are about to rethon the vell of obscurny and uncertainty, which hang over so many operations in culture, understan every prucess, and so completely control th. growth of pants, as almsot to set man free fron the labour of tiling the earth by the sweat of hi brow; orin other words, that the agr.cullura millenium is nearat hand. But a more thoroug examination, will clearly show that we luave n. reasons for drawing such a conclusion; that th oher sciences, have as yet, acromplished directly tut little for agriculture; and that yeits of aloy and patient experments must yet determine man points, which are already by many persons take for granted. 'The same precivion with whict conclusions have been arrived at in other arts, is entirely out of the question here. A great dealo uncertainty must, for a long time yet to coms attend the application of other sciesmes to the ar of cultivation. The investugation of question strictly chemical, is far easier than to determuo the intricate and combined relations exisung be tween chemistry and vegetable physiology. the first place, the analysis of soils 15 one of the most difficult of all kinds of earthly amalysis. the next, vegetable chemistry is involved in great deal more uncertanty than oth \times depart ments of the science Thirdly, the changes whict are constantly taken place in the growth of plante variously influenced as they are by the atmosphere by drought or moisture, by the nature of the so: and the many different materials of which it con sists, some fitted for assimilation, and others no: -are from these causes, and the tume required t effect them, and the minute quantitues os matte controlling them, often emirely beyond the closes observations, and can be determined but ver imperfectly by an examination of the final resuit?

Now, the objcet of these remaks, is not to de nounce nor discourage the application of eciend to agriculture; but directly the reverse, to preven a total rejection from the disappoinument and dis
now less drequent, in search of conl along the val ley of the Hudsun, in winch there have been ex pended more than half a million of do"lars withy the last fifty years." And Murchison, in his trea tises on the geolugy of Wales, remarks, that mor wealh has been expended in the useloss searc for cual in that part of the country, than all ih geological investigations of the whole world hay cost.
gnst, which must follow the practice of holding
The relations of vegetable physiology to the ap falso hopes. If an enterprise is attended witi|practice of horticulture, are vastly more important peculiar difficulies, that enterprise is not forward;, than to agriruiture. The far greater number of ed by representing it as easy of aceomplishment, by, species which come under the cognizance of the conceaiing its difficuities and overstaung its ad-f horuculturist, and the variety of treatment they rantages. Thuse who are falsely allured at the, need, render it very necessary that he should unouiset, will, from the disappointment resuiung, derstand the nature of accimation, the influence be led to reluse even the benefite which maght be of heat, coid, mossture, and ferulty, on the gersecured. Hence, one of the greatest injuries topmuauon, and action of the roots, stems, leaves, science, is to invest it with false colors. On the and various other parts of plants. Such knowother hand the highest benefit is to strip it of its, ledge would be aiso highty advantageous to the arificial dress, and exhibit its trde character, that, enterprising agricuiturist, whose ebject, aside
proper cautivn may be used, and success instead of chagrin be the consequence.
A brief glance at the different ways in which cience is expected to benefit agiculture, may erve to show in what direcuon the greatest assis: lance will be affurded.
In the first place, a more certain result is to be ooked for in no quarter, than in the application prthe principles of mechancal phlosophy to the construction of farm implements and machines A great and decided benefit has already followed rom this cause; and no doubt machnes might be huch improved, simplified, and rendered lighter, Ind at the same tume stronger, by a strict obserance of the nature of forces, of the mechanical owers and elements of machinery, to determune precisely where strength is indispensable, and phere also it is not needed; and in changing and dapting the moving power in the best possible nanner to effect the intended purpose. It is highly ssential, that every thing of the kind in constant mploy, and requiring for its use, perhaps thouands of repeated motions of the hand in a single ay, should not be encumbered with a needless ound in weight. The laborer who uses the handoe, usually makes witi it no less than two thouand strokes in an hour, or twenty 'housand 1 a day of ten hours. If in any part, where ren to the amount of half a pound, then the agregate force uselessly expended, would amount bo less than, ten thousand pounds, or five tons, a single day. In larger machines worked by orses, including wagons and carts, as well as reshing machunes, and even plows and harrows, ere is no doubs in nearly all cases a waste of bwer. A strict regard to mechanical principles. id their mathematical application, throughout. e numerous implements, tools and maclines, nslanily in use by every farmer, would be of the ghest benefit. An entire volume might be Fitten on this subject alone. It is true that the anufacturer of these, is the person directly ncerned ; but farmers too are deeply interested the improvement.
Those sciences, however, which are regarded more particularly aud directly apphcable to riculture, are vegetable physiology, and chemry, and geology. The intimate connection ween vegetable physology and vegetable smistry, and hetween geology and the chemsof the sols, render them all in a. manner inarable and they will be mosily considered ether.
productions for general culture, and who should theretore understand the effect of rentoval to an unlike climate and soll.
But this science ofien becomes very aseful to the common furmer. A knowledge of physiology, and of the enor wous quanciry of mosture which plants perspare insensibly from the leave日, would have wholly prevented the very common" and pernicous error, that weeds preserved moisture in the earth, and shade contiguous plants from the effect of drought, while in fact every weed is an outlet through which moisture as well as nourishment is rapidly drained from the soil. An acquantance with the principles of botany would have prevented the prevalence of the equally perncious notion, that the weed so common in wheat, termed chess, could êver be transmuted to whear, a plant not only of a different species, beyond the boundary of which, a plant by no, change ever passes, but is also of a different genus. A knowledge of the fact, that no root of a plant can long remain alive, which in a growing state, when deprived of its breathing apparatus, the leaves, would have prevented the wild attempt practiced some years ago, of endeavoring to, destroy patches of Canada thistles, by carefully digging up every fibre of the roots from a depth of several feet; while a sumple, obvious, and efficacious remedy consisted in merely starving the roots, by cutting off unremittingly the supply from the leaves for a proper lengith of time. Were the vital impnrtance of the leaves to the health and perfection of the seeds of plants properly understood, the practice of "topping" corn would never have been restored to. In.numerous other cases, this science serves to throw light on operations of culture, and to assist correct practices.
An intimate andimportant connection exists between agriculture and chem sury combined wah vegetable physuoligy. In some cases, considerable accuracy of reasoning, and certainty of application may exist; in othors, all seems as. yet involved in uncertainty. The triple relations of the am?lysis of plants, of soiis, and of manures, and the deiermination of the consutuens of each, promise, perhaps, more unporiant resuits than any other department.
The knowledge of the organic consituent of plants, compnsed of various combinations of the four elemenis, carbon, hydrogen, nxygen, and nutrogen, may afford some very useful suggestions in practice: By knowing for-instance the pro-
portions of the constituents, we can often arrive at a comparative value of different kinds of gram. Analysss shows that some vegetable products concain more starch than others; some abound in gluten; some contam a large portuon of oily matter, nad others are distnguished for other ingredicuts. Now, some oi these are best adapted; to one object, and nthers to nnother ohject If for instatire, in freding ammols. it is intended to fatten thein, those grains would be poonted our as best, which mort latgely contain oil; if to make them grow m flesh and muscular parts, those which abourd in gluten; if the olject is to make a cow veld butter, food conraning oily matter should be given ; if to yield checse, beans, peas, and clover shosld be given; and if milk in quanTity merely, succulent food should be employed. But although in these instances, analyses may suggest weful practices, yet the amount of the benefit must be determined by practice. Theory may pointou' one course ae better than another, but the differe ee may be so small, as not to merit attention in practice, which can only be determinea by direct expriment.*

Tue difficuty of armiving at a correct practical conclusion, in retation to the quantity of nuthment in gram and wher food by analysis, will be evident from the tact, auoundantily proved by some of the best farmers in New-Engle ad as well as in Wes-1 tern Aew-Y orh, that corn ground and botied with water, is more effecure in tatteming hogs, than twice the annount fed in the dry grame.

Analysis, in other cases, will show the comparative value of different varieties of the same grain A very valuable ingredient in wheat is gluten; of this, French wheat has been found to contain 12 per cent.; Bavarian, 24 per cent H Davy obtained 19 per cent from winter, and 24 from summer wheat ; from Sicillian, 21, and from Bubbary wheat, 19 per cent. But the uncartainty of permanent dependance on such analys,s is proved ly the face that the nature of the snil may considerably influence the result Hermbsixdt found that the same wheat which, with vegetable manure only, gave scarcely 10 per cent. of givent, yielded more than three times as much when manured wilt powerfal ammal substances, rich in ammona Sime varietues of the potato are fund to contan more starch than other virieties, and this quanuity is alsu controlled to some extent by soll.

The analysis of plants will also indicate what plants ate best to cmploy as manare by blowng on the green crop. A considerable portion of nurogen is essemual to the growth of wheat.Now clover is also found to contam a large por-

[^0]sion ; lience a crop of clover becomes eminen: uselui ns manure for thes grail. Wheat aborad its nutrogen cluefly from the soil, and is cons quently exhausting ; clover obtans it mos from the arr, and is not exhnusting, but becom: in this way the provider tor the watts of 1 wheat.
Analysts has aroo proved that in addation the usual organce eicmens, there are about orgame or carthy consumente, noss of whi are mearably found in the same epecies, undo indepensable tu us heathy giwwh. These es polash, soda, lime, magnensa, altiman, sulid iron, ma ganese, sulphur, phuggh rus atd ch? rine. These substances are derived by the phat from the sool ; hence a ferute soil-ouse fro which plants may draw hase essental consil? ents, must of course contain them. Here th intumate relatoon between the consituents plants and of soils is at once cbvious. Hen sols which are destiture of a part of these ingr dients, or contain them in very small proporticy is necessarily sterile; or it they le destitute one only, the same resull inust take place, if it one is an essenmal angredient of the crup gro ing upon them.* And heie it is that the gre benefits to le derived fum ana'ses of eoils, once lorce themselves a, on the mind. If a so is darren, determane as constiaturs-see what wanung-what is in excess, uply at once deficient ingredicat, or counterad or netutral. the injurious one, and fertility is restored. A s was shown to II. Davy, which, though apparen abounding in every enriching material, was: capable of yiclding a crop. He found by exan nation, that it was poisoned by a consideraj portion of sulphate of iron or copperas. decomposed this sulphate by applying line, a the difficulity was removed. Here the reme was simple and certain, but such cases yo rarely occur in practice.

As different plants draw from the soll the sal substances in unlike proportoons, analyses of the plants will show which substances are most larg

* Those plants, says C. W. Johnson, which y sait, never grow on lands which do not cuntain those in which carbonate of lime is found ne dlourish in soils from whech this is absent. Pla rhich abound with mitrate of potash such as sun-flower and the nett:e, always languish in s: fre: from that salt; but when watered with a wr solution of it, their growth is very materia"ly moted, and saltyctre is then feurd in them, uf analysis, in very sensible propertion. The ss writer states, that an old pasture became, in st of various liberal top dressings of different manu incapable of preducing a luxuriant crop. At peat ashes were found to preduce the best resul an increase of more than a ton of hay per acre These peat ashes were found to contain one-eid of their weight of gypsum, which was the ingred the soil needed. Gypsum itself was then app with the same successful result.
pled for the different crops. Andit points out reason of the fact long since known, that a field fich may bear a profitable crop of one kind, y be unable to yield a good recurn of another; d that by alteration or rotation, different pornis are variously abstracted, and time left for erestoration of each by various processes in fure, and by astiticial means. But the fact at these mgredients vary in the same plants, ows the sieat necessity of caution in drawing actical conclusions. Justus Liebig, one of the pat eminent chemists of modern times, but lose deductions are olten deficient in value, In a waut of sufficient corroburation by actual periment in cultivation, says that one hundred trs of the stalks of wheat yield 1.55 parts of prganic constituents ; barley 8.5 .4 parts; and ts only 4.42 parts, all being of the same comsition "We have in these facts," he then adds, - clear proof of what plants require for their fowth. Upon the same field which will yield ly one harvest of wheat, two crops of barley d three of oats may be raised." But every good mer knows that oats is exhausting to an exordiary degree, insiead of being less so than, fley, and only one-third as much as wheat, ac=, Fu.ng t. this cunclusiun of Liebig. Some of B best farmers ol New York, never suffer an oat pp tugrow on land ever appropriated to wheat. ofessor Juhnston has, however, demolished ebig's reasoning, by showing that these inorgaconstituents are not only different in compoon, but greatly varinble in quantity, the oats netimes considerably exceeding the barley, and - wheat varying from 3.5 per cent. to 155 per ht. But neither of these chemists appear to re considered the composition of the grain, nor have remembered the difference in the weight of crop. Superficial reasoning and general ories often appear beautiful ; but thorough intigation in detail, and the results of actual prace, will frequently exhibit their uncertainty and or.
A department of analysis, perhaps the least ble to crroicous results, is the examination of nures. Fertilizing substancestare known by ir effects applied separately to plants or in mixe; or by the tact that fertile soils and well ; pra plants are found to contain them. Nov, Iysis will show what proportion of the fertilizmaterials exist in different kinds of manure; hence the value of manures may be ascertainat least to some extent, by a previous chemical mination. A comparison of common manure I guano, exhihits this principle in a striking
on of manure yields 2 lbs . and 4 cz . of potash.

Here it will be seen that most of these enriching ingredients are from thiriy to 70 tumes as great in quantity in guano as in common manure. Esperiment accordingly proves that guanio often produces from thirty to seventy times as great a growth in plants, as an equal quaniity of manure.

One of the most powerful manures is poudrette, a preparation from nught-sol. Let us see what kind of comparison analysis whil drad between this substance and guano:
A ton of night-soil yields 6 pounds 7 oz . of potash.

	ano	66 "	8 \%	
"	night-soil	" 4 "	10 "	soda.
"	ano	36	15 "	
"	ght-seil	120		h. acid
"	uano	283	9	"*

Here we seen that guano sill vastly exceeds even mght-suls in these imputant requistes to feruhty, alhough the latter pussesses a very striking superionty in composition uver cumanon manure. We.aecordingly find in practice, that the comparative valuc of these different minnures is very neatly the same that analysis indicates, when the average of experiment is taken.
There are many other substances which chemistry pomts out as valuable for manure, which are found useful in pracuce. Many of these, however, if used singly, or mixed with only one or two others, often give uncertain results, frequently proves failures, and sometimes are a positive ingury. Sulphate of ammonia, nitrate of soda, sulphate of lime, silicate of potash, and other salis have been known to produce extraordinary growth; but in other cases were valueless. So many causes control therr action, that this uncertainty must continue to exist. The soil may be alrendy supplied with them; drought may derange entirely their action ; and other influences now unknown may produce a similar result.
Common barn-yard and stable manure, though not so powerful, appears to be more universally beneficial than any other from the eertainty, of its operation. This certainty is dependant on the great number of its ingredients. It contains a large portion of decaying vegetable matter derived from the pulverized hay consumed by the animal; it is rich in ammonia and other animal matters, resulting from the secretions; and it contains many salts, derived from both these sources. Poudreue posspsses neariy the same advantages; and guano, fiom its great quantity of animals matter and enriching ealts, rarely fails if properly applied. With single substances, howeyer, there is great uncertainty, until. experiment points the way.

[^1]Wheat was found by II. Davy to contamamore nitrate of potash than any other farm product, yot the authot of Bratish Hashudry says, "althourgh at his generally occastoned an merease of straw, the yefld of gram has noi deen maproved; and the crops hate in many astances been found unusu illy subjectito madew," simulur experaiments, by the writer, have produced ino faverable result. Ifente we pereenve that supplyang, sumply, an essentat mgiedient, dow not alvays answer the parpose. Artítud guano, made by an observance of the mathysts of ine ndatal heogh asefal has not been fund uedriy so powerial as the later. Nitrugen, suppacd properly to planis, causes a; heakhy dad tapal ghonth, yet akhough thes element ea.sis ancumbaned ds a component of the
 of phats, bley wat peash ior want of at befure they wat diun a paracic of af foom the ars. Heace in all cheimical d, dachon retane to manares, the experments of the chativator only are to be depenwid on, and to reman as the dectsive test. Suggestions of incalculable mportance may come from thtory, but prachice alune must prove the.r value.

The importance of the analysis of soils, to determane deticient aggiedients, anal then to supply drlects, has bean already adverted to. Although its value thas apperas to be very great, and has been mach extelled by chemual writers and thei imitators, yet there are dificulties in practice whichreaderextreme canhom indrawng conclusions very nedessay. The constiants of plants may lubed be deterabiaed with nach accuracs, and the different mgredients in manutes, and ther consequent adaptation to those plants, and of their comparatiscly fertliciag effects, may be ascertained frequently in the laboratory. But the extensive dillusion of these ingredients thrnarh lruad acres of soil, and the excee liagly numut propotion which some bear to the whoie buit of the soil, renders the determination of these proportions, il not the actua! extsence of the insicdients, difficult if not imposible Adisingwathed ch wist toid the wract, thet ior ordnary earthly substances, the detection of athousandel part required shimal analysis.Minuer puitions of sobue constituents are more ersily ditectril than ot other=. Bat suppose a ten-thou-andt't pir the utho-t limit, for agriculrural pracice, a few unstancers will show the int lrquas; of ana'ysix in cases whid nay occut

4 considerable pirtion of sulphate of lime or gypum is lound to e rist in ted clover, and o her legumănous pants Hence a reason that gypsum so cminentay busfits the gron th of red clover. And hence reason wond here sugfest, that to determine the finess of a soil for clover, an anatysis shonid be made, if it con ain gypeum, all is right, anl the clover will flonaish, but if not, then 1 dressing of this material must be ap plicd. This is the theory, Let us compare it wi li prartice A hundred pounds of gypsum to the acre has often doubled the clover crop; and a tench part of that quantity, or ten pounds to
the acre, will produce in sume cases very sensibie eflects. Afier it is spread on the ground, and before any senoible effect is produced on the crop, the rain has usaudly dissoved it and carried it truo the soll, and anongst the ivotw of the young phams. It thas becones minarely diffused through the soh. Now, whll andysis detect its presence? If the soll is a foot d cp. half a grain to a pound will madicate a handed pounds to an
acue. Y one foustent thas halt a grain to a pound is only ducesy laxariaut growih of red clover.forth part of hat 13 only one humreuth and forty-thumsanddh pat, yet this mana e potion orten is found to exert a very vasib e intluence in anall, though far beyond the each of ordinary wh a crep of clover of a ton and-a half or timrty puads of gypsum in ats sems and leaves.

* Agan, in enty pronds of musiate of ammonia appled to an acre of rye, added five bushels to the product.* But this is only one seventy-thousandih prat of the soil One hundreth and forty pounds of guano added more than sixteen hundred pounds to an acre of hay But this manure, when diffused through the suil, ennetitu'ed only about a ten-houvanlth part; its proportion oi phisphoic acd, forming about on + +1ghth, and a very important ingrestient, wuld br whont one cidhty-thuusandth part, its sulpharic acid would coustiluie less than a two-hund-ed-thousandth part, aad is potash aboint one three-hundredthThussandth part I am not aware that many wheur is clainn sufficient shill to d -trmine such small proportions in the soil, yet these expriments show their geent practical influence when exisung as added constiluonts.

The anmoli'a of the atmosphpre is considered by eminent chemints as ho'ding a very important relation to the healihy and vigormts growh of phants, yet is presence has never heer directly detected, and only indirectly by favmable opportunities when absorbed in snow or ra in-water. Cminent and accurate experiments had not discuvered even this until within a few ymars.
It is not denied that a bright light may be thrown on the practice of agriculture by carefinly conducted analyses of soils. The results of many examinations difference between fertile and barte: soils. But these analyses were conducted with the most rigid care and accaracy by men of such skill and em nenee as could hardly be ex-p-cted to be at the service of any common practical farmer. And afterall accurate e erperiments an calivation would detern ne all hat is necessary in many points of practice, and would in aity case be needed as a test of the truth of the dheory.
It is to be hoped that chemisis \cdot ill continue to pursuc their investigations on doubtial poinfs, unil certainty, if possible, "'2y be arrived at; and that all well-es:atiahed facts may have ad

* Johnston'e Lectures, Appendix, p. 20.
xtensive application in farming as their value nerits. But it mast be admuted that there has been a disposition to take too anuch for granted, had to overstate the certanty of success in conaecung chemistry wath agnculure- The precision eo strikutg in other sciences, and wher applicauons of thes science to vartaus arts. dues ho. hold in case of the gruwath of plants, which, hough guverned by fixed laws, is tuo inuch cuntroiled by cutcumbances and too mach utscured from view, to be thorvaghiy understuwd. This growih is suw and mimerceptibie to the sight, plants are sarrounded by an minsobie arr auve ground, and are haden irvin view beiow ground, ther surfaces recenc nourshatient by purts onty seen by poweffad ueruseupes; wie nuarshament is drawn trom whors and floang gases in the air, fand liquads an the earth charged wath many substances in manue proportions; and the whule process is enarecy beyond the reach of the clojest ecrutiny of the eye.

It is not surprisng therefore, that there should he a diffierence of opinion among high auhorities. The consutuenss of vegetable mould have led to mach dispute, and no less than twenty different substances have been discovered or named by varrous chemists. Dr. Dana, in attempting to prove the muniny of applying lime and potash as manures, showes that nearly all soits contam lime and potash enough for the growth of all the crops which may be produced on the land for thousands of jears. Yet other chemists dwell on the importance of these substances appired as manures, and drest expenment shows their unilut.*' Lueb!g says, that "wheat does not floursh in a saudy soll, and that a calcareous soil is also unsumabie for us growth, unless mixed with a consderable quannity of clay,"-" because ibese sors do not contan alkales in sufficient quantuy.' But Johnston shows not only that excelicnt wheat crops are reaped from thrse sonts, but that iurups, universally admitted to be finely adapled to sandy land, contain ma singie crop of ordmary producuveness, nearly ten umes as mach porash and soda, as a crop of fity busheis of wheat with the straw meluded: The coniradictions of chemists on the single artucle of gypsam alone would perhaps fill a volume.According to Koliner, us action depends on the power possessed by lime so form, with the oxygen and carbon of the atmosphere, compounds which nre favorable to vegetation; according to Mayer and Brown, it merely umproves the physical pro-: perturs of the soil; whule according to Riel, it is an essental constituent of the plant. Hedwig called it the sanva or gastic jusce of the piant; Humbolut and Thaer consudered it a sumuiant;

2 It has bern assertained by Leibig and others, that the benefit of ume is owmg to the porash 11 contams. Lime has ocen applied with great success to sons in Western New York, which contaned many broken fragments of lunestone. The lime was trom localunes, where, by the analyes of D_{r}. Beck, no polash cxisted.

Chaptal ascribed its action to a suppused power of supplying water \dagger and carbonceacid to planta; and Davy regaded it as an essenual constiment of planis. \ddagger Accordingly to Lichig, it fizes the ammunia of the atmosphere, according to Sprengel, it supplies suiphur for the formation of the legumn of leguminuas plants; and according to Dana, it merely assists the decompustion of other substances in the soil.

Thu yuestion has been much ofiener asked than answercel, "Who shall decide when ductors disagree?" If great men who have spent therr whic nves in examining such questons, are so much at vanance, to what puwer is the farmer to iuvh, to dissoive the thick mist and remure his duabre, an relation to such matters? The answer camot be avoided, To repeated, varying, and actuai experamints to znactical cultration.Such experments have lung since eshabished the value of gy psum, hame, and other manures; while eminemt chemists are still disputing, not oniy on their theory of actor, but whether they are really of any value whatever.

The distinction must be drawn between The Application of Science to Agriculture, and Tue Science of Agriculitere. The former has been already explaned; the later consists of the facts which practuce has established, and the truths it has developed, reduced to a system, and in some degree arranged under fixed principles. The Science of Agriculture explans the theory and operations of draining, plowing, subsoling, and manurng, of rotation of crops, of cultivating the soil, of adapting culture to crops, and many other practices which distunguished the best modern specimens of farming. It is a systematic arrangement of knowiedge, which the experience of centuries has accumulated. Many of ats principles, It is true, are those of other sciences; but they were usualiy discovered in the course of cultivation, before thuse sciences had a distinct exisience. A professor of one of our colleges has cited the praciices of drainugg subsul prowng, renchng, and cloverang and plastenng, as spectmens of the application of science to agricuiture. But these have all resuhed enturely from experience; they are inderd specimens of scienific farming, but they originated from the science of agriculture, as just explained, and not from scumet to agricature in its common acceptaticn.

The best modern practices of agriculture, are in nearly all cases much in advance of the theory. It is for this reason that the cause of agricultural
\dagger The opinion that gypsum owed ats efficacy to the absurption of mossure, has been common in this country. II. Davy expised a portion of gypsum to the air three fogey nights, and found it absorbed only a i20h part. Calcuatarn will show hat wo bushers spread over an acre, would absorb at the same rate, a siratum of moisture oniy one-milionth of an mach in thickness, or five. thrusand tumes ihimer than paper.
\ddagger Hluteck.
improvement would be much better served by holding up for imitation the experience and management of the best farners of the day, rathes than a too trequent references to chemucal authoray. How many of our celizens might have avoided shipwreck of their property, and made handsome profis, if they had followed the best established courses of cultuvaton. But, have any fanted tor want of howng the scremers? Sume of our farmers make money rapully- lhat is, they farm wocll. Odiers make a scanty living; and others are reduced to insolvency. What is the reason of the suceess of the former-what the cause of the fallure of the latter! Is a a knowledge of chem.siry in one case, and a deficiency in the other? No one will ever think of ascrib. ing the resalts to such couses.

It is not denied, that important aid may yet be derved trom agrecultural chemistry. But its advance must be siow and attended with caution. Years of careful and accurate analyses of soils, and of the trial of manures, separate and mixed, in connection whe experments on growing crops performed with the utmost judyment and precision, call only setle uikewain puints, Reasons will thus be rendeted cleurly by science, and practices eap'ained, enforced and established But these experiments must be performed chefly by the enurprising few, and noo by the co:nmon farmer. The stady 19 mateed deeply interestung and fisuating, and eiery one who has a knowledre of the natural scieners, will not unfrequently find useful appitications in the every-day business ot life. But to hold dem up as a means by whald the young farmer is to conduct his business moot profitably, while he yet remains wholly or practicaily itgorant of the most improved madern syatems of practice and management, cannos be foltowed by the best results. The most :mp ortant knowiedse must be first attained, and aferwards that wheh is less essembal in practice. It posible, mether should be neslected. We shouid not d-nonce any sudy becruse it is eneompased with some difficulies. Chemistry is aflording many valuable suggestions ion trial and practace; and as Piolessor Johnston very justly remarls, "It is fonlish to refuse to avail ourselves of the morning lught beculuee it is not equal to the mid-diy sun."- By J. Thomas, Trans. N. Y. State, Ag. Sociciy.

Maple Sugar.

One of the most cosily imports that is brought into this Colony, is Sugar. It is a leading artice, as comaracial men term it, and as every body consumes the article, it eppeare, that by common consent every Grucer Merchant makes up his mind to supply the luxary of sugar to his castomers, whitout any regard to profit. If it were practicable to make an exact calculation on the returns ohnained from the salee of sugar, it wouid be found that the net proceeds would not equal what the arucle cost the cunarry, when lad
down at the various ports of entry. We with be understood to mean that the profits are small, that they will not cover the lusses sustain ed in bad debts, extra clerkship, wrapping pape and other charges that are male against th braach of trade. If Canada could by any procer place herself in a position, to be independent other countries for sugar, the only interests tha would be affected by this arrangemen', are th Revemue and Shipping. If this result could b achieved, so far as the actual weath of the coum try is concerned, the gain would be engual to th surplus products of wheat. The inporation sugar costs the Canadian people more than wha is realised from the ammal esports of wheat, i an average of ten years The reaton why whed has become such an important article in Canad is, because it is the largest and nost politubb article of export. If there were no more grow in the country, than what wisamual'y consume by the population, the i.mpert merchants wou! lose an impurtant item of eapuit, to p'ace to thei credit in the markets, from whence they dra their surplips of sugar \&c Aomportante as is th exp rt of wheat from Cannin, sij", ha' porrio of thes arlicie that is rally the growis of C.unade would fall short in a serims of ern or fifion year of supplying the country with sugar Then the entire amount of sugar requited for hom consumpuion, costs the country as much as realises from the sale of us pronerpal expo: wheat ard flour, and if the conatry conald be pro mably suppled ninh oll that would be required home piaducison, at as cheap, if not cheap rate than it could be unported, it is very cerint that it is in point of national we.th, equally valuable an intercst to foster, and encuarage that of wheat.
We are of opiaionthat sugar can be producer in Canada, from the juce of the maple, the sta fof the maize-plant, and the sugar-beet, of at ve. surcrior quality, in a sufficient gumatity to supp the l:ome consumption, and which can be o forded at as cheap a rate, as at co did be umpori from the Southern Sizte, or the West Ind :Isiands. As the season for mahins Mape Sug is fast approachana, we shall offer a tew han Whach we urus, with te forand usciua and accep abic to the fruends of haprovemens. Wah prop management, ten mainuns of maplouces meg be tapped nnoualiy, for fify yross to come, Wessern Canada, which at an abrage of th and a half puands per tree, would give à retu

Fiwenty-five millions of pounds of sugar anually, which, at the rate of $£ 2$, per 100 lbs . wuld be worth a half of millions of pounds curncy. Many are of opinion that manufacturing ggar from the maple, is an unprofitable business, It hose who jump at conctusions, never study e casts of anything that is produced on their rms. To thastraie this matter, we would ask ie farmer who is in the habit of cultivating heat, and whors also in possession of a flourishig grove of sugar mapies, to make the experireat, to test whuth branch of business whll leave he largest proporion of profits, after all the exenses are paid. We will suppose the land for heat to be summer fallowed, and the quantity filuvated to be ten acres, which shall yield venty-five bushels per acre, and which shall fing in the market one dollar per bushel, or the nitire crop to be worth the sum of $£ 60$. The umber of sugar maples to be tapped, is to be 00J, which, bestdes molasses and vinegar, will ive a yield m an average of seasons of 3000 lbs . t sugar, thas at two pounds per 100 lbs ., will be t60, being eq al to the amount of the value of he supposed yeld of wheat from ten acres. If very charge be honesily made against both of hese experments, the writer feels confident, that he profits will be greater by 25 per cent. on the ugar operation, than on the wheat.
Where the sugar bush is preperly attended to, a ceater average than 3 liss. per trec may be made. tome tress will y-eld annually fr on δ to 10 lbs isugar, but a greater average than 3 lbs. per re cannot safely be given, when a great numor of sagar groves be inciuded in the average. smart ac-ive man, in three weeks time, will hake from 60 o or 700 lbs . of sugnr, wilhout emrloyiag the least assistance. We have frequently het with instances, where this, and even greater hats than this had beendone by ambtious young hen, who adop:ed this course to raise ready toney, to enable them to make a payment on ach harms. It woaid he pieasing to see such intances more frequentiy, and also to see the maness who have an aldudance of sugar maple, hale a more profiaticie ase, f their very valunle forests. Tiau brat quaidy of sugar can be hade sirom the ma, ic. For oruinary parposes, ic onity thing necessary is corealaness, and withat cnie in thas respert, the manafaciurer need or hope to obtain a very superior quality of sgar. The young man who obiained the first
premium at the New York State Agricultural Exhbition, at Auburn, in answer to some inquiries that we put to him stated, that he observed great care in keeping his sap perfectly clean, and also throughout the entire process of evaporation, the same rigid exactness was observed' in regard to cleanliness. He run the hot sugar into connical vessels, and at the bottom of which he bored a half inch auger hole, which was kept plugged until the sugar became thoroughly hard. The top of the sugar was covered with three layers of a thick woollen blanket, and on which he poured about a pint of water every morning, for three weeks in succession. The water filtered through the loaf of sugar, and had the appearance of brown molasses, and the sugar to all appearance and taste, could not be distinguished from the first quality of imported loaf sugar.
A.small quanity of lime water is found very useful, to prevent fermentationin the sap, and it will also facilitate the crystalization of the syrap. In some instances a filterer made of animal charcoal, has been used with great success, in clarifying sugar, or rather the syrup, before it is made into sugar. This spesies of charcoal is made by charring the bones of animals, and before they are fit to use for filtering syrup, they must be pounded down into fine powder. It must then be put into a box to the depth of twelve inches, and the syrup must be poured into the box and aliowed to filter through. A little plaster of Paris might be used with the charcoal, to cause it to adhere more closely together, by which means the filtering process will be made more complete.

We hope that the Agricu'tural Societies aroughout the Province, will encourage the manufacture of sugar, and by doing so they would have the satisfaction of rendering the country a most waluable and efficient service.

Sponge Cakc.-One pound of sugar, half a pound of flour, eight eggs, one teaspoonful of essence of lemon or rose water, and half a nutmeg grated. Beat the yolks of the eggs, flour and sugar together, then add the whites beaten to a high froth, when just ready for the oven.Bnter some tin pans and put in the cake mixture rather more than an inch deep. Bake in a quick oven for tiventy minutes; when cold, cut in squares.-Gen. Fur.

The Parenip-o-itz Oaliare and Nut:itive Properties.
There are but few farmers in our country who have not experienced great inconvenience for the want of succult nt food for their milch cows and yeaning ewees in early spring, at thot period when winter fodder becomes exhausted, and before the pastures nfford sustenance for these useful animals. To endeavor to supply the deficiency shall be the object of this paragraph. In reflecting upon the subject and comparing the relative merits of the several vegetable products usually cultivated in our country, he conviction has been forced upon our mind that there is no.se better adapted to such purposes that the pursuip. In the quantity of product, under the influence of good culture and congenial soil, it will produce as much upon any given quantaty of land as any other of the root family.

It may be proper here to remark, that whereever parsnips or other roots are fed out to cattle or sheep, they should always be accompanied by portions of dry food, as hay or fodder ol some kind, to correct any ill effects which might otherwise result from the succulent nature of roots.

There is one qualaty connected with the nature of parsnips which renders them a most avaling spring feed. They may be left in the ground where they may be grown, all winter, without being the least imjured. This operates as a great saving of labor in the fall, when potatoes, turnips, beets, carrots, and indeed, all other roots have to be dug, and buried, or housed in some dry cellar to preserve them from the effects of frost. Thus left ont, the parsnips will be found in spring, when they may be wanted to be led out to the stock, just as good as they were before the frosts of winter set in.

As to the number of bushels of parsmps which may be grown on an acre of land, that depends entirely upon the quality of the land, the kind and quality of manure, the manner in which the ground may be ploughed and put into fine tilth,. and upon the cleanliness of the after culture. All: the circums:ances to which we have alluded con- ? curring, a thousand bushles of parsnips in a favorable season may be grown on an acre-we say may be, because more than that quantity has been raised on that quantity of land. It is, however, gafer for those who may design to enter into their culture to fix their expectations upon 500 bushele, as that quantity we think, with ordinary good
tending, may be set, down as an average yueld
This is not the time to undertake their cultur but as we like that farmers should look we ahead, we revert to the subject now, in order tha they may be providng manure, and selecting good prece of deep sandy-loam, to begin the cul ture of an acre or two of parenips next apring Parsups delight best in a deep soll in the char acter named above-the kind of manare bes adapted to ther growth, is a compost formed o 7 paris well rotted stable dung and 1 of ashe -the quantity may be set down at ten double horse Lart loads, to which should be added bushel of plaster and two of ground bones, the whole to be well mixed together, and suffered to lie in pile two or three weeks before being used If the bones were moistened with 10 pounds oi sulphuric acid, diluted with a 100 pounds of wate and permitted to digest a few days before being put in to the compost, their effects would be more prompt, as they would then immediately give out their nitrogen as well as phosphoric acid.-Am. Far.

Ice-House3.

-

"1st. An Ice-house alove ground.-An Iee. house above ground should be built upon the plan of having a double partition, with the hollow space between filled with some non-conducting substance.
"In the first place, the frame of the sides should be formed of two ranges of upright jorsts, 6 by 4 inches; the lower ends of the joists should be put into the ground uathout any stll, whach is apt to let air pass through.- These two ranges of joists should be about two feet at the top. At I the top these jolsts should be morticed into the cross-beams, which are to support the upper floor. The josts in the two ranges should be placed each opposite another. They should then be lined or faced on one side, will rough boarding, which need not be very tight. Tms boarding should be nailed to those edges of the jotsts nearest each other, so that one range of jonsts shall be ourside the bulding, and the other inside the ice-room or vault.

The epace between these boardings or partitions should be filled with wet tan, or sawdust, whichever 18 cheapest or most easily obtained. The reason for uaing soet material for filling this space, is, that doring winter it freezes, and until

3 again thawed, little or notice, will melt at the des of the vault.
"The bottom of the ice vanlt should be filled ant a fuot.deep with a small block of wood; ese are levelled and covered with wood shavmgs, fer which a strong plank floor should be land to eeive the ice.
"Upon these beams above the vauit, a preity ht floor should also be laid, and this floor should covered several inches deep with dry tan or vdust. The roof of the ice-honse should have asiderable pitch, and the space between the upIr floor and the roof should be ventilated by a tice window at each gable end, or something uvalent, to pass out the warm arr which will camulate beneath the roof. A door must be pided in the side of the vault to fill and disarge it ; but it should always be closed up. ther than the ice, and when not in use should kept closed altogether.
2d. An Ice-house belozo ground. This is only proughly made by building up the sides of the with a good brick or stone wall, land in mortar. fide of this wall set joists, and build a light oden parttion against which to place the ice. pood floor should be laid over the vault as just cribed, and this should also be covered with tan or sawdust. In this floor the door must cut to glve access to the ice.
Its regards the bottom of the vault, the floor, latice windows in the gables for ventilation, , the same remarks will apply that have just foiven for the ice-house above ground, with addition that in one of the gables, in this case, ot be the door for filling the house with ice. f the ground where ice-houses of either kind built, is not porous enough to let the melted drain awiy, then there should be a waste pipe arry it off, which slould be slightly bent, so as nys to retain enough of water in it to prevent passage of air upwards into the ice-house. Iorticulturist.

Why some men never succeed - Because they er do any thing properly. They are either in a harry or are so blundering and heedless, ave such inadequate notions about adapting ns to anend, that whatever they undetake . If they grow wheat they sow the same mnds year after year, plowing each time about e inches deep, never taking any pains eiher clecting or cleaning the seed, till their cropis
diminish in quantity, and deteriorate in quality, 90 ; that each year finds them poorer than the one bofore. If they grow stock, they take no pains in procuring the best, but raise whatever comes to hand. That is never half cared fur, but is allowed to take its chance, and depend upon what it can get ; and so on through the whole catalogue. The ground slides away from under their feet continually; and though they may toil harl and save rigidly in some part of their management, they economise so badly in the balance, that the good is neutralised.

To Boil Salt Meat Tender.-Put the meat over the fire in cold water, and never suffer it to boil faster than a gentle simmer, or it will be hard and tough. When done, beef will separate easily $\}$ from the bones-ham and tongue from the skin. A large shovelful of wood ashes may be put into the water in which ham or smoked tongue is to be boiled, and some hay at the bottom of the pot. Allow a quarter of an hour for every pound of ham. For corned ribs or plate pieces of beef, when well boiled, take the bones out carefully, and put it into good shape by wrapping about it neatly, all the fat and loose hanging pieces; then put it between two pieces of thick planks, lept for the purpose, and press it until perfectly cold, wihh a weight, say fifty-six. It makes large smooth slices when cut, and at breakfast or lanch it is positively delicious. $-A m$. A g.

Hen Management.-A Mrs. Dakin communicates to the Poughkcepsie Journal the fact that from 30 hens, she gathered in a little more than eig.at months, 3,532 eggs and raised 200 chickens. These eggs are one cent each, and the chickens at one shilling per head, would be worth the sum oi $\$ 60,32$, which may be considered a pretty good interest on the 30 hens and their leed and shelter.
The management of Mrs. D. is as follows:

1. Provide a warm, dry shelter for winter.
2. Feed with oatssuaked in warm water for 12 hours belöre feeding.
3. Burn clam shells and pound fine; let them have as many as they can eat, and you may have eggs from January to December.

I manage my chickens by feeding oats and rye ground, two bushels of oats to one of rye. Keep them in a warm shelter at night.

To prevent the pip, or gapes, change the male every year, and your chickens will be healthy -Pr. Far.

Making Candles.-Many farmers are accustomed to make up their supply of candles for the year about this time; and the common mode is to make them by dipping. The N. Y. Farmer and Mechanic gives the following rules for doing this, which are declared to be a great improvement upon the common method. It is common, with unskilled persmns, in making candles, to heat the tallow boiling hot, and ta dip the wicks into it very rapidly; the consequence is, that the tallow runs down the candle, leaving the top of it very small, and the botom with an immense butt, which $1 s$ further formed into a bell shape by the dripping from at. The rule given is that the tallow should not be so hot but that a finger may be dipped into th whout inconvenience; and the dipping should be done in a very deliberate manner, particularly the lifing out, which should occupy nearly a minute each time. The tallow will thas be taken on readily, and will cool at once, without any sunning down, and the cancle will be of even size, and without the butt, which is to be cut away, before it is used.

To make " King Oil."-Take 1 oz. green copperas, 2 oz . white vitriol, 2 oz . common salt, 2 oz. lingeed oil, 8 oz. molasses, and 1 pint urine; boil for 15 minutes over a slow fire, and when nearly cold, add 1 oz . oil vitriol and 4 oz . epirits surpentine-apply with a feather. This applicatiow I have tried on several severe wounds on horses, in very cold weather, with the best results. If applied early, it will keep out alt cold, and cause the wound to suppurate and heal soon. (It need not be bandaged.)

Liqusd Cpodeldoc, for bruses and sprains of horses, and for pains and rheumatism on myself. -Tane 1 quart whaskey, and dissolve in it 6 oz . castile soap, heaung it over a slow fire tullit is completely incorporated; then letit cool, and add 1 oz . of camphor.

I band the foregoing recipes in an agricultural paper some years ano, and having tried them effec. tually, can recommend them to ohers. Ifinserted in thy paper, I think some of thy subscribers may be led to say, as I have done, "this recipe has been worth more to me than the whole cost of the paper for a year."

Green II:Il, Col. Co., O.

How to Cleane Furniture.-Oil rubbed eve varmsh, when discolored by water, will restore th color and polish. I must remember to teil thi to Betsey, as she scolds terribly at the hot wate spoilng the varnished bedsteads; if the oil don succeed, a little varnish will, but the hot wate must be used. Betsey and I had a long talk abou the best method of cleaning furnitare, and the fol lowing recipes are decided on as the best. Var nished furniture should be nicely washed wit warm soap-suds on a very soft cloth, and wipe perfectly dry with a fine soft towel; and the polished wath a latle sweet oil, rubbed on an carefully wiped off again with a silk handkerehe Mahogany furnture mast be kept perfectly clean or it bespeaks bad housekeeping. Should it be come mouldy or otherwise solled, wash it clea with warm soap and water, then polish by rub bing on a paste made of equal parts of beeswa) soft soap and spitits of turpentine melted together when this is well rubbed in, spread on a thin con of hard betswax, let this be thoroughly rubbed i wath a hard brush, and then polish with a sili handkerchief.-Ex. Pa.

Mecipe for Coloring Green.-For ten or tweld pounds of the material you wish to color, take on ounce of indigo and one pound of oil of vitric stirring it for halfan hour in an earthen vessellet it stand twenty-four hours. Make a stron decocton of equal parts, of the bark of lucko and black oak, with water enough to wet ten twelve pounds of matenal to be colored; to tinł add one pound of alum, and strain it through thick bag ; place at over the fire, and when near bolling, add the liquid blue, then let it star twenty minutes, and strain it well. . Should an sedment remam, another stranung will ba na cessary-ihen put in your yarn dry, strr, it a fe minutes over the fire, and afier ten. minutes aij ing, rinse it well in cold water. The stronger! yellow dye, the darkes will be the green.

A Valuable Linemrent for sore Throats, Eruist or Sprains.-Tate one egg and beat it fine, th adt' one half gill of spirits turpentine and beat age one half gill good vinegar and mix well, then a one half gill alcohol, and when well mixed app externally, and rub till it disappears. A trifle gum camphor is usually added to the mixt? when not wanted for immediate use.

Buckwheat for Coloring.-The fresh blossoms hd succulent stems of buck wheat have been aplied in Europe to the purposes of dyeing wool, c. The infusion, by the addition of preparations bismuth and tin, produces a beauuful brown plor. From the dried fluwer bundles, different fades of green aro obtained. The Silerian pecies of wheat, in paricuiar, yields a fine yelfw, which, upon boiling the wool still longer in he dye, changes into a golden tint, and at length ecomes a beautiful yellow.-Far. Ency.

For the Ladies. - A new way to make Calicoes ash well.-Infuse three gills ofsalt in four quarts boiling water, and put the calicoes in while hot fod leave until cold. In this way the colors are andered permanent, and will not fude by subsehent washing.

To remove Worms from Trecs.-Mr. Editor: I was lately in conversation with a reepectable rmer, who related the following instance of bcessful treatment of trees infeated with worms: e bored, wilh a nail gimblet near the root of the ee.a hole about an inch deep, into which he inaduced about as much calomel as could be lifted a quartur of an inch of the point of a penknife, pd plugged it up tight with a plug made of a teen branch of a tree. In 48 hours the worms re all killed. The trees were from 21 to 4 ches in dianeter.
This mode of getting rid of insects, by treating fem wilh ealivation, may strike some as parking of the marvellous; but the source from hiich I had it, leaves me no doubt of the fact.
N. H.

Mich Far.
To Remove Dust or Motes from the Eyc.(rmers, as well as many oller persuns, are often expres d in their labors as to get dust or motes their eyes, and frequeatly suffer consederably frive they can find means of retief. The folwing simple remedy is almost always near at nd, and in most cases will prove effectual:Il a cup or goblet with clear cold water, quite the brim, and place the eye in distress in such position as to be completely within the water the cup; then rapidiy open and shut the ese a w times, and the dust or mote will be innmediely washed away. If a cup or other vessel be pt at hatd, the eye may be placed in a spring or foket of water.

Baldwin and Mhode-Island Greening.-Nio two varieties of apples--fruits of the highest excellence, too-are sohardy, uniformly productive, and profitable in all soils and situations, as these. We have noticed both of them this.season, in orchards in various parts of the country, where other sorts, often productive, have almost entirely failed, and yet these are giving alundant crops of large, fair, fruit. We doubt if any better market sorts all points considered, can be found for soils of medium quality.-Hforticulturist.

Subsoilnng and Manuring.-C.E. Crosman, of

 Rochester, says, in the O!no Cultzvator, "I raised 410 bushels of carrots on one quarter of an acre; 550 bushels of potatoes on two acres; about 600 bushels of onions on one acre;; and over 1000 . bushelsol beets, (several kinds) on three-quarters of an acre. I plow with a double tean as deep as possible, and subsoll each furrow-addang plenty of compost manure."Profitalle Crops.-The following is the produce of 10 acres of land, for three years, belong. ing to Charles Tenney, of Riga, Monroe county, New York:-
40 bushes of corn per àcre, at 50 cts - $\$ 20000$ 30 " "w wheat, " at 872 cts.- 26250 2 tons hay per acre, at $\$ 10$ perton, 20000 35. bushels of clover seed, at $\$ 7,-$ - 24500 3 colts:wintered on clover straw, - .. 2500
$\$ 93200^{\circ}$
The expeñe was estimated as follows:-Interest on land, $\$ 50$ per acre, $\$ 105$; manure, $\$ 3$; ploughing both cröps, $\$ 20$; seed, hoeing, \&e., $\$ 35$; harvesting, $\$ 60$; cleaning clover seed, 823. Total, \$264; leaving a nett gain of $\$ 689.50 \mathrm{c}$, or $\$ 68.65 \mathrm{e}$, per acre.-Alb.Cullt.

Cream that has becn suffered tostand untilrancid, or shghtly mouldy, which is ofirn the case, should never be clurned; it may make very palatatle cream cheese, but abumnably bad butter: Cream never rises from the milk after thirty-six hours' standing. This may be proved by the lactometer. It becomes more solid, and thus appears thicker, but nothing is gained in quantity, and much lost in quality, by suffering it to stand. too long before skimming.-Am. Ag.

To pretent the smoking of a Lamp.-Soak the: wick in strong visegar, and dry it.well before you use it; it will then burn sweet and pleasant.

A Meoolpt for making RIah

New listen all ye matrone, who would save your husbadni cash,
And are willing on a washing day to dine on savory hash,
And save yourselves the tronble of roasting and boiling,
And the lear chat each and every dish is in the the course of spailing,
I'll teach how, with economy, you may save your scraps of meat
That are tett from Sunday dinners, and make a hash complete.

Take beef that has been roasted, and rather anderdone,
And trom it take off the fat, the skin, and every bone,
Then cat it up in pieces, see no cartilege remains,
Pick out each little piece of bone, and all the stringy veins,
And pound at in a mortar, or whth sharp chopping knife
Mince it like meat in winter, when Christmas pies are rife.

Now boll some white potatoes, which, having mashed with care,
You must pass through a wire sieve, to ree no lumps are there,
Then-mix them wuth your minced meat, and rub throughout the whole
Some little buts of butter, which well in flour you roll;
Or you may use the dripping that oozes from the roast,
Which every good and careful cook takes care shall not be lost.
Now season well with pepper, with aalt, a little sage,
And cayenne, but for shis spice your own taste must be the guage.
You may chop a hult onion, or chives, to give it zest.
The taste of your own family, of course you know the best;
Some much dislike an onion, or shallot, in their food,
You may leave them out with safety-'tis equally as good.
Your hash now being seasoned, youturn it in a plate,
And smooth and four it o'er the top, and set before the grate,
Or place is im an oven, till handsomely 'tis browned,
And ret it to the table hot-a nice dish 'twill be found.
If any other meat you have, as mutton, veal, or lamb,
'Twill answer equally as well if minced up with some ham.
T.

Horse Fork, for unloading Has,-This is of the last inventions which we have noth but we are by no meane sure that it will p the least useful. The machine consists of a rope, and two pulleys. The pulleysare fast to the rafters of the barn. The fotk is adju in the hay, and the other end of the rope ia pal under a puliey wheel, and a steady horse attad to it, and the hay zaised at oncr. It is sai unload 30 or 35 tons in an afternoon, with o
It is the invention of Mr Garrett Brown Buchs co. Pa. 'the success of it is vouched by two persons in the N. Y. Farmer \& chanic. From the degcription of it we sho think it might be casily improved upon. - Pr.

Sioellings.-Swellings on oxen, cotrs, other domestic animals, may be easily scatte by usoing an ambrocation composed of the lowing ingredients. One quart proof spirits, half a pound of soft soap, and half an ounce of phor. The soap has to be dissolved in the and the camphor added after the mixture is pord into the bottle. These articles, prepared in manner above described, form a liquid opodeld with which every farmer should be sappt Lameness in oxen, from swellings on the legs neck, is quite frequent, erpecially $4 t$ seabons w their assistance is of most consequenice to farmer, and when, consequently, he can but afford to permit of their lying still $-E x$.

The British American Cultiva (FOR 1847, NEW SERIES)

Published by EAST wood \& Co. Yonge St. Tor Edted by W. G. EDMUNDSON.
Terms-One Dollar per year: Four ed for Three: Enght for Five; Twelve for Se and Twenty for Ten Dollars. These are Terms when the above numbers and no mor ordered; but in case n person orders any of above quantities, and remits the amount, and terwards remits a further sum, amounting in whole to Ten Dallars, as anany copies as mount to that sum, will be forwarded, at a Dallar each; and any subsequent order? any quantity, at the same rate.
All payments to be made invariatly in adro and free of postage, addressed to the Publig

Primed for the Proprietors, by J. CLELA Booz and Job Printer, Post Office 1 King Street, Toronto.

[^0]: * All results of this kind are greatly influenced by circumstances. For instance, experimentsaccurately conducted, have shown that Indian corn, ground and boiled, will fatten hogs more than twice as fast as the same amount of raw material.

[^1]: * London Ag. Gazette:

