IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

(C)

1

2

The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which may be bibliographicilly unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/

Couverture endommagée

Covers restored and/or laminated/

Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes gbographiques on couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relić avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se paut que cartaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, cep pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du foint de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiquess cl-dessous.

Coloured pages/
Pages de couleur

Pages dameged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurbes et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages it́tachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégalo de l'impression

Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, atc., have been rafilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filméas à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of the Public
Archives of Canada

The images appearing here are the best quality possible considering tho condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when eppropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \longrightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

La bibliotheque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernlère page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiére page qui comporte une empreinte d'impression ou d'illustration et en terminent par la derniére page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symboie \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, plenches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grend pour être reproduit en un seul cliché, il est filmé à partir de l'engle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

$$
\begin{gathered}
1884 \\
(109)
\end{gathered}
$$

REPORT

Winnipeg and Hudson's Bay Railway \& S.S. Co.

(i)

IV. Muriooch, C. E.

Wixsmes, Manitohm, May 2sth, Isst.

'To Hugh Sutherlan!, Esc., M. P., President Winnipeg \& Hudson Bay Railway ant Steanship Co.

Sir,-I herewith sulmit the following report to aceompany a statement of the finamelal lasis of the W. \& H. B. R'y \& S.S. Co.

The Dominion Govemment of Canada, in pursumee of their declared policy have decided to grant but me charter for a railway from this point to Hudson's Bay, they refused to erant, during last session, a chartre to the Wimipeg, San Franciseo and H. B. R'y, amd the Montreal ('mupany now dissolved in acoordance with section 12 of the Act of incorporation, which took effect on the twelfth day of May, 1884. Your company have now the only charter in existence, and therefore, most vahable, having no competitors and guaranted against any. In addition to the main line they have the valuable branch from a point north of Lake Wimipegoosis, westwarl to the Canadian Pacific Railway, through a fine country unsurpased for timber and minerals, which alds much to the value of the charter, from the all-important fact that the products of the West will then be carried by the shortest ronte to the seaboard and will be a remmerative additional source of revemue to the main line.

The geographical position of Wimnipeg, the initial point of railway am the entrepot to the great North-West, is, as nearly as possible, half way from the Atlantic to the Pacitie, being about 1.283 miles from each in a straight line, and only 593 miles from the heal of navigation for ocean steamships on the Nelson River via railway 83 miles from its mouth above where it empties into Hudson's Bay, at which place, which is known as Limestone Falls, there is a basin three miles in width capable of holding the British navy, having a depth of 60 feet or more water, where vessels could remain with entire safety winter and summer.

Public opinion is so weil satistion as to the practicalility of Hudson's Straits fir strom mavightion that I shall do no more than fuetr for your information, the compantive distmese to Liverpor

$$
\begin{aligned}
& \text { From Wimipug to Montreal, "ia Chicuso.... } 1,70: 3 \text { milen } \\
& \text { " rim C.P.R. ronte. . . . } 1,4+40 \text { " } \\
& \text { " Montrmal to Liverpor } 2,990
\end{aligned}
$$

$$
\begin{aligned}
& \text { And a total over the secomil-maniol rome of . . } 4,430
\end{aligned}
$$

The distunce from Wimnipeg to Livery I win Limestome Fills is :3,617 milas, or $81: 3$ milas shorter than then horest, mul 1,076 miles shortere than the lomgent ronte. Limestone Fs, on the Nolson River, is 34 miles farther to Liverpool than Nontreal, mal 16 miles nemer than Now York. This mbmatage in distance of enurse npplies to the Pacific tradr, British Colmabia mul Jnpm being nearer, "if Limestome Finls, by 1,117 miles than ria Montreal, mal 2,136 miles marer than via New York.

From Limestome Falls to liverpol there womb be ss miles mome of water carriage than to Churchill Harbomp, which mons $1 \geq 2$ miles of milway emstruction sumed, nes well ns its opromion for all time to rome. The North-Westem States would be bencfited nearly as much as Manitolm, nom the same as our North-West Territories, and are now morent in their ngitation for the comstraction of the Hulsm's Buy Railway, which wonll be in liveet commaniention with waterways eia Rad River and Lake Wimnieeg to Sea Finlls, on the Nelson, which is penctionly the heal of mavightion on Lake Winnipeg, und distant ly
 ain ham of Mimesota mal Dakota, now restimated at l:000,000
 way carmige 241 miles to Limestome Finls, the hom of muightion on thr N Nom River rlowing smmer, mol by milway to Wimipeg in wintre:

Tho products of the Grat Saskntehewan valley from the West womld tre transiomen at firmal Rapils, to and from burne, an the milway, amo alse the Western limen line commeting with the Camalian Pacitie Railway wonld join the man line at this important junction, which matme has siven a water power for manfacturing purpuses manpmsisel. 'The length of the (iraml Rapids is marly three miles, moll the fall in that listance tifere. Looking forwarl to the time when the immense productive arm of the Saskatchewn malley shall peme its golden havest, of gram down the chamel of that mighty river, in the stembont and barer limes of the future, comveying its what to the sembarl, is not this peint destineיl to berome a Canalian Mimnenpolis? It repuires no prophetie oge to see in the near futme the development of this manibernt water power, and the hailding up by its mems of a city that may rival any "pen this continent, with a harbour in Cross Lake, the hanks of which are suited for the construction of twenty miles of wharess and humbrols of elevators, where flects of barges conld lie sufely ont of the combernt, and the shipping of the river, and of Lake Winnipeg, find thair cargones, it is not difficult to conceive, that the wilderness of the present may be som trmsferrel into the city of the future,

Falls is 6 miles River, is er thant Pacific inlls, by w York. mene of miles of torme. meh ins tre now \therefore Bny ays cia hich is tant low the. $(0) O, 000$ le mil--igation ijeg in t would ailwny, Pacitic which passed. fall in mimense harvest Mat and not this ires no masnint may hanks harves out of eg , fiml of the

In promoting such growth this railrom will phy mimportant part.
 struet that pertion of milwny from Limestom Pialle to Son Pinlls, on the

 [wrion between the latter peint and W'imiperg, which memis trathic over our own roma, avoilling large onthys in trmanert. tion over other romb,
 rosts of trmepertation on omr own short line to omselves, instend of over a hage molitional leneth of line to foreign enporations, rin New York or Montreal, which I compute would be at lemst half a million dollars saver.

This is the shomest pessille ponte, and the chenpest to construct and operato, lwing common tonll peints which will le sarvoul be the com-

 Sea Falls; matil that perion of milway betwern hea Palls mad Grand
 on the man line whon the survers are comphented.)

From the sonth, mal the milway is "onstrueded leetwon (iraml Rapids and Wiminem, all freight mal passengers canceme bey water to Son Falls. 'Thus, matil the line is completed, by the waterways of the comentry ulone, pressengers mid products can be taken form the centre and westem portions of this continent to Eimene with the nid of the first $2+1$ miles of the Hudson's Bay milway. 'This is a startling fiat mot heretofore comsiderel, mal membs cheap tmasportation for expertation of our pero-
 ported to this conatry. We may rasomally expect an emomons incronse in volmur of such importations, ns reduced mates of transport will enable Wenters here to purehnse from Gerat Britain, , ide this short route, hurge funtities of groels which are now purchased in the United States, comseguently increasing British mannfactures while devoloping this fertio. comitry, at the same time not forgetting the advantages of this railway ns a military roal wer ming ronte on the continent, which is obvions to all.

Tor eontinue, let us examine the sperial east-lommel gran tarifl of the Gamalian Pacific Railway. From (irenfell to Port Arthor, a distance of $71+$ miles, their mate is 38 cents per 100 pounds or $288-10$ eents pror momel. Now, it is to be presmmed that this tariff is perpared liy experienced hands, to cover not only operating expenses, hat the interest on ceppital expenditure.

The the same rate per mile, it gives I!) cents as the cost of transporting a bushel by all rail route to Limestome lialls. Contrast this with the cost of reaching the sea by other routes:-

```
Route 1.-Winnipeg to Montreal, all mil. . . . . . . . . . . . . 40c prer hus.
    " 2.- " " l't. Arthur, " ............ 25 s-10"
    Pt. Arthur to Montrenl by hoat . . . . . . . . . . . 25 \(^{25}\) s-10 "
    " 3.-Wimiper to Duluth, all rail.............. 33 f-10"
    Duluth to Montreal, boat. . . . . . . . . . . ; 330 , 10
```


But, while controsting our all mil ronte with their rail and watrer
 nse buir water ronte we con nise ours. Thking the distance from Wimaperg to sen Fulls at 352 miles it is astimate that hy water come bing a inshel of gram conld be dolivered on the cars at the hem of mination for fone cents ; to this mhld Camalian Pacific Railway tarifl atas for the : $2+1$ miles from thenere to limestome Fallsamel we have 7 - 70
 romb two of $1+3-10$ cents per bushel andover route the of 21 ! $9-10$ cents pi hinhol. Now, if we camot compete with such diflerences in tariff, and prying oprating expenses, in what position mast the opposing limes the placed!

It would be prematme and injulicions for me to indicate what I Whink this enrrying trule can be done for, although I feel contident the ahove tigures are in excess of what will be reguired to make the roud a financial suceess. I content myself, therefore, with the lasis of the (Gmalian Pacitic Railway tarifl', supposing that no one will be harly enongh to controvert such high muthority.
cost.
On consulting the accompanying plans, shewing the line the roul is to traverse, I have classified the ilifferent sections, between points marked thercon, in comparison with the known cost of railways already constructel in a similar country, and therefore assume my estimate to be approximately correct, with a margin rather over than under the actual cost.

The free land grant ly Order-in-Council lated the 7th May, 1884, embness in the Province of Manitoha, 6,400 acres per mile of line, and ontside to the seabourd, including hoth the Nelson and Churehill harbors, 12,s00 acres per mile of roal, together with the branch line from the west, which will be selected either along the line of railway or elsewhere, as may bo armaged between the Govermment and Company on classification of the lambs to be taken, which is an important asset.

No better security for the investment of capital com be obtained than the bonds issued upon lands under the above conditions. Aside from the free land grant the value of the charter is so important for the successful development of this comitry, and the mornons amount of varied products to be transported over it, wonld alone justify its construction, mul I an safe in stating that it will prove : most profitable security to all investors in its bonds ; indeed so popular is the moldrtaking in the North-West aml in the adjoining States that numerons public mectings have been held throughout this country and across the line in Minnesota and Dakota, shewing the people are a unit in demanding the charter from the Dominion Government, and it is a
matter of congratulation with the public at hare that n chmerer is whanded lay the present Compmy fors so protitable amb innportant an madertaking in the vital interests of this comotry.

HESCHDTHON OF CHUNTMY

through which line pasises, necording to Mr. Adrian Nobison, C. E. and explorer.

From Wimipeg to Gromd Rapits the distmen by the rmilway line
 equally good hy easy dranage, entting benver dams which canse flooning in phaces, and there is to per cent. of the timber, empmsed of sprace and tammac, merehantable and fit firm saw-mill purposes, which is now being manatactured by mill operators from W'imipeg; and immedintely to the West of the Line up to Pelican River there is a productive farming comatry secomed to mone in the North-West. At Gramel Rapids there is phenty of gravel for ballast. The spot selected for erossing the Grent Sinskatehewn is at the Home of the Rapink where two islands divide the chamel called Rocher Rouge, and the banks are 20 feet in height. There is plenty of stome here of a suitable description for bridge purposes, and any qumatity of cedar for ties. 'The bridge will be some 700 feet long. At this point to the west and tributary to the railway as a somee of revonue, is the finest spone timber in Camath, avernging fifty million feet B. M., per fifty spmomiles of aren, within fifty miles, which will be brought to the railway eia the Saskatehewan River.

From the sinkatehewam we shall receive buth bitmminons and nuthracite coal, hrought in barges from the mines, say 1,000 miles of river mavigation, at a cost of mot more than s3.50 per ton, aldse.50 for tranfer und milway charges, mul se.00 per tom at the mines, and conl should he hid down in Wimiperg from this somee at si.00 per ton fust one-half of its present price. From the temminal point on Hembine's Bay wo slmbl recoive direct from Enrope, withont delay or bomding formalities, the merchandise that dribbles mone or less slowly over the lines to the sonth. This tralfic with immingant moveables will fully occupy the southward brom trains during that part of the year whon such carriage may he looked for ; the sea fishories will suphy the sonth os far as Chicago, and the varions imlustries opemed up on Halson's Bay will give their quota to solve the garstion of an all yeme romd paying tratlie, tegether with the fisheries of Lake Wimipeg abombling in the finest white fish in the world heside lake trout, 200 tons of whirh were shipped to Chiengo this last seasm, amd with malway facilities this industry will increase, amb be somee of reveme to the romb.

From Grand Rapils to Sea Falls we immeliately enter the Huronim formation, which continues to the west branch of the: Nelson River; there is twenty-five per cent of timber iand, and the bahance is of secomd and third quality; between the enst and west hanch the lam is samly and level, and continues as far as the end of section ! as seen on plans; here we cross the height of land, which is hardly perecptible being a watershed twenty feet across and five feet hirh.

The brilging here is important: the main chamel is 100 feet wide, with 20 feet of water, and the approaches of three-gurares of a mile long will be in about four feet of water.

The East Branch will reguire there bilyges, ench boo feet lomg. Rock fomalations in an average of 6 feat of water; is feet mbere water level.

From Soa lalls to Fox River there is 25 per cent. of No. 1 land, 25 per cent. of No, 2, balance of No. 3-the hater requiring dramage which benser dams hase fooded. On some portions, sphagmmm moss, to the depth of two feret, covers the gromed like a bamket, on top of which ripe strawheries are found in profusion. Burning the moss, and

Fox Riser will require two hinglges, one of 100 feect and one of 400 feet. The bmoss are (00 feet high. The comitry letween the nhove points, with the exception of the first thirty-five miles, is good level land, and is havily coverod with timber from the Nelson River sonth and eastward for 2.50 miles, consisting of spruce, Norway pine and Banksinn pine, and will yied $20,000,000$ feet per fifty spuare miles of area. Oxford Honse is sisty milas sonth-east from the malway line, and is situated on a stift clayey sail, which here promeers harley and all kinds of garien vegetables in perfection. eThis locality is zemurkable for its aboundance of wild grosebormes, aeres of ground in some places being covered with goosiberry hushes. The lan to the north of the lake, opposite to Oxforl Honse, rises to an elevation of nbout 200 feet, and appears to be higher than any other gromal in this part of the comatry. 1 was informed that it consists antirely of soil, moderlad by drift materials, no rock cropping up in the vicinity:

From Fox River to limestone Finls, a distance of sixty miles, this portion is coverel with moss thee feet deop, eansed by heavers damming the small waterways of the comatry, which may be easily removed in the fall of the year, mul rechain this portion of the comentry. The spruce timber lying on the erromd is of an averge size of flom barrels in diameter, showing that the gromid mast he rieh to prodnce a growth of such size; the trees lie in thonsmods, cansed by the water remmining on the surface, from the action of beavers, as the combry lies high nbove the man river and tributaries.

The banks of the Nelson are 283 feet above the river, and a level comitry on both sides. At this point the Nelsom is three miles wide, with a depth of water over 60 feet; and on the sonth lank it slopes back for a mile extending along the shore, with coulees leading parallel to the hanks, atfording facilities for the milway to reach the head of navigation, and crossing with a 700 ft . midge at Limestone Falls, n few feet above the water.

From Limestone Falls to Port Nelson is an open comntry ; along the river there is no timber, and is easy for railway construction, with an average fall of 33 feet per mile.

At Seal and Gillan Islands, according to Adrian Neison, C.E. and Explorer, the banks there are 111 feet high, and the river has a depth of 23 feet of water, and only 200 feet of dredging is required at the Islands to give a continuous ship chamel to Linestone Falls.

NELSON RIVER AND BARBOUR.

The Nelson is the great trunk river which diseharges all the waters which have heen gathered into Lake Wimipeg from every point of the

Rock level. 11, 25 tinag. oss, to which 4, and if 4100 nhove level south e and les of e, and kinds :or its bring lake, $t, n+1$ intry. minte-
s, this uming ed in pruee els in wth of nining high

level

 wile, slopes amilel ad of a fewge the
d and pth of th the
compass, and has a volume egmal to ahour finar times that of the Othma at the ('npital of the Dominion. Its! ength is ahout tor miles, in which distance it has a descent of 710 fret from the surface of Lake W'imiperg. If wembl the kehgth of the Saskitchewn to that if the Nelsom, we shall have a total of 1,300 mile from the : arme of the fomer in the Rocky Momitains to the month of the latere at Ilowsomis Bay.
'The Nolsom may be aseembed hy large river stemomes to a distaper of about eighty miles lrom the sea, acemblime to somuling made by l'mo fessor Bell. He also says in his reprot of 1579 -so :-
"Most of its estuary becomes dry at low tide, but a chammel runs through it near the centre, as far as the homi of tide water. I sommod this chamel in a mumber of phaes, in 1875 , '79 mil 'so, mul althongh an averare depth of abont two fathoms at low water was lomad, continuous sommangs throughout minht ':ave shown interventions on' shallower water in some places. As stated in previoms reports, there is a section at the hem of tide, or hotween the tidal portion and the regular inhand chanmel of the river, in which not more than 10 feet of water was fomm. This may extend for nhont two miles alowe, ahove which an apparent eontimons chamel, with a depth of alont 20 feet, necording to our sommlings, extends to the lowest Limestome Rapid, which is the tirst lareak in the navigable part, mul is between to mul 50 miles from the head of tide, or from 70 to 80 from the open sea. If the section referred to were deepened, stemmers coming in from the sea might enter this part of the river and fim perfect shelter, or oven proeced up the strem to mapoint below the rapid referred to. In contimation of the channel rimming down the estunry, a "leal", of deeper water extemds into the Bny, and forms the "North River," or " York Romds," with excellent anchorage. The tides at the mouth of the Nelson river amount to 15 feet."

Sir Thomas Button's Jourmal, 1612 :--"After which time, came on the new winter, with much storny weather, as he was constraned to winter there, in a small rile or creek on the north side of a river in latitude $57^{\circ}, 10^{\prime}$, which river he named Port Nelson, after the name of his master (whom he buried there), putting lis small ship in the foremost and barraendoe both of them (with piles of fire and earth), from storme of snow, ice, rane, floods, or what else might fall."

Ellis states that the Nelson is six miles wide at the entrance, with a very good chamel about a mile brond, and from five to fifteen fathoms decp.

Robson made extensive soundings of the Nelson River, and published a plan of ahout 40 miles length of it mal the Hayes' River. He gives excellent depths up as far as Flamboro Head, a distance of 20 miles from the mouth. Above here are two islands, Gillam and Seal Ishand, where Robson says ships conld lie in safety summer or winter.

In 1782, La Perouse, the French Almin!, with n seventy-four-gun line-of-battle ship, and two frigates of thirty-six guos ench, anchored at the mouth of Nelson River, not finding sufficient water in Hayes' River. He landed 250 men, mortars, guns, and provisions for eight days.

Certainly these were large-sized vessels to be in these waters, and it proves that the French considered the taking of the forts a matter of
impentanese, und also that, the water at the menth of the "Nolsen was of π gerol depth.

A line to (\%urhill frem bimestone Fialls would man over tmen land

 Long Island on the anat shore of Hulson's Pay, nsw well nes lignite foon Monser river for motion, manfarturing and fomestic purposes.

The finel is involuable for oprenting the rond, havine it sur rlose at
 lighting purperses is fonm in the viemity.

Iron in immense gmantitios existes in sight, on Mansfind Iotmal and at.
 arais cmanerated in this report which I newd mot particularian now. Susfies it to say that, the minerals are se ahmolant, and diversified in charactere, embiacine all the pereme motals as wroll as all minomats for aro-
 vicinity of Ifolson's Bay.

Whem in the wide wond rat be fomm ervater indmemente or a
 ment, than in this mailway, whirh is designen to develope thess: illimit-

 thereby insuriner resular payment of interest to homdomars.

I herewith metach extract, from ar parer on "Northern Waters," hey
 and strats," their resmares in minerals, fishorios, timber, fins, game, other froxlorts, ise.

 improvers farthar within lunl."*
 anmor the: worls, where the finetery's men liven monfortally in hats on

 Europens havernes livel in the cemotry abmo the bay, that they mex never eontent t , live ont, of it aghen, and this fact is prowl in our own Province wery day, the climme during the wimbermothe at, fork
 warmer these than in this Provines.

Summary of the: opening and elosing of Hayes River, opmsit. Fork

 rek mind ior （s，(1)－ 1 int the：

	Imil：of （1）	Muls：of C\％meniat．
18：31）	． Mny_{17}	beramone ${ }^{\text {a }}$
18：3．：	$2+$	Nosmitury 18
18．41．	12	$1 ;$
184．7	$2 \because$	21
18．7）．	＂：11	$2 \times$
18.515	21	21
Istire．	1 k	1：1
1868.5	119	20
1×76.	－ 11	27
1×7.5	，！！	1.7
1×80.	2%	21

 （iovermment in 1880 ，show that the Buyes River，nt York Finctory，for

 age rlosing for se gears was about，the 20th of November．It mast la． borme in mind that the llayes＇is hat a small iver in comprism with it，s meighber，thr Nelsem，which is distant from it at York about，six miles．The Nefon closess mueh latere than domes the llayes，if inde：s it can bu：said it clases at nIl．

It is interesting，then，to wote the empravison between the openine of the：harhers of Yook nud Montreal，thomoh a fortnight is hare given
 ice livat forms：

	Mumbiral．	Forls．
Operning of hartur	lut May：	1st，Jume．
Closing of hurbur	thof N゙心．	10th Nov．

This proves emglasively that the harlor at York is open mul elan
 uppeneh doeks latwoen these dates．At a pert on Nidsom liver thess dates wonlil be：extmond．

The：Meteroloerical Depmerment，at Tormote，！ave kindly eriven me many statistics of their stations at York amd Womse，and a fiew extracts from themare given herewith，thomoh it is impmsible to make many erm－ parisons，as the meturns lom swme monthes if either sumberer or winter have not luen mase to the hend offire．

Lowest temperature on : my day during your.

1876,	Manitoln. -44	Moose.	York. - 53
1877,	. -47		- +15
157s,.	-33i	-3.7	- .3:)
157!,.	-..)	-4i)	
isto,.	-4.4	- 39	-40
1851,.	-40	--39	- 3!

Highest temproature on any day during yan.

	Manitola.	Moose.	York.
$1876, \ldots \ldots \ldots \ldots$	97		99
$1878, \ldots \ldots \ldots \ldots$	93	92	106
$1879, \ldots \ldots \ldots \ldots$	93	84	
$1850, \ldots \ldots \ldots \ldots$	90	87	
$1881, \ldots \ldots \ldots \ldots$.	93	91	

The mean creorege temperature for sereral monthis at Monse.

	1878.	1879.	1880.	1ssi.
May,	47	40	40	48
Sume,	57	5	5)	47
July,	01	60	59	64
Angrist,	(63)	58	55	61
September.	5)	49	52	52
October, .	41	4.5	:38	33

The mean acerage temperature for several months at York.

	1876.	1878.	1882
May,	38	33	35
June,	49	65	52
July,	.7	74	68
August,	56	59	5.5
September,	46	38	49
October, . .	26	22	28

The meen werage temperature for several months at Wimipeg.

	1876.	1877.	1875.	1879.	1880.	1881
May,.	53	is	45	53	5	57
June,	60	57	65	64	i3	$6:$
July,	67	68	70	6s	66	0
August,	64	64	${ }_{6} 7$	(6)	62	66
September,	83	56	52	\square	52	.) 1
October,	37	39	:36	4	38	34

From July to Octoher the temperatme at Moose and Wimiperg is very much alike. In September and October, Moose has the hest of it.

It will be moderstood that the realings for York and Moose are taken at the forts, which are on tide water, and have been described as most
exposed, but they give us a fair iden of what the climate is about the Bay, ns fur north as York or Churehill.

The fact of the water in the rivers rushing down before the ice is broken up at lower levels, proves that the climato inland is more genial, and this is the case with all the rivers flowing into the Bay.

According to Ballantyne, wegetation in the valley of Hayes' River, thirty miles from its month, on the 23 mol ome, was fomd hy him to be in an alvanced state, the trees hoing eovered with foliage, and on the 25th June he deseribed the Hill River: "Along its genthe sloping hanks the comntry was terming with veretable and animal life."*
E. S. Niathesom, C. E., Muller date Fol. thl, 18St, writes me in reply to my question as to how he stoonl the cold at the mouth of the Nelson River, when survering it, luring the winter of 1882-83, as follows:-"I fom the elimate mach milder than I had expecterl. In November we lailt our shanty in five or six days and eommeneed work, and for nearly four monthis we slept out without tonts, and there were not more than ten days, during that time, in which we had to remain in camp through inclenency of the weather. When you take into consideration the exposed place in which we were working, viz, on the Nelson River and the sea coast, you can rest assured that the cold would not prevent men or machinery from working farther inlame."
"In smmmer, when the wind is about west-south-west, it hecomes sultry, and if it happens to blow fresh, it comes in hot gusts, as if it hlew from a fire, and the hardest gusts. bring the greatest heat; hat this is not the case when the wind blows from any other point." \dagger

This was written in 1752 as a proof that a genial and hospitable region lay in that direction, for it must be explained that at that date nothing was known of the interior to the south-west of York Factory. It is most likely that the "chinook" or warm winds from the Pacifie may reach even as far east as the Bay, and produce the "hot gusts" mentioned ly Robson. We know that for a certainty a genial and hospitable region does exist in the position indicated by him.
"I took the temperature of the sea upwards of twenty times during our voyage (ahout 550 miles north of Moose on the east main coast), which extended over the greater part of July, August and September, and found it to average 53 Fah. I also noted the temperature of the rivers we visited, and found that the arerage of five of them was $61^{\circ} \mathrm{Fah}$. We bathed in the water almost daily, and found the temperature agreeable. We saw no ice, with the exception of a little "bay ice "at the commencement of our journey, which had been driven into the neighborhood of the mouth of Moose River, after northerly winds had prevailed for many days. There was very little rain, and only two or three days of for. Average temperature of the sea at three to four feet below surface for trials during three month.s was $5: 3^{\circ}$, and of the air 621°. These observations were taken at various hours between 7 a.m. and 9 p.m." \neq

In the nutumn of the same year (1864) the schooner Martin arrived at Moose Factory from York with a portion of the cargo of the Prince Avthur, about the end of October. She renched Moose Finctory just in time to be hauled in out of the fast forming ice." (Letter of Charles

[^0][^1]Horetaky, lately in the Hudson's Bay Company's service, to Col. Dennis, 4th Nov., 1878.)
"In regard to the country for agriculture, the comntry that I have spoken of, south and south-west of James' Bay, lies in the latitude of Comwall and Devonshire, in Enghand, and sonthward of that, it is in the same latitude as the northerly parts of France; and while these countries enjoy execptionally favorable conditions, there is no pecularlity of climate that would make the district I have referred to, worse than the average of the face of the earth in those latitudes, ant, therefore, 1 think it is likely to le of value for agriculture, as far as elimate is concerned.
"The temperature helow the inmediate surface of Lake Superior is 39° Fah.; along the enst shore of Hudson's Bay it averaged 53° in the summer months.
"What is the liability to summer frosts in the comntry around Hurlson's Bay? In the larger aren of agricultural land south and southwest of James' Bay, I think not very great. In 1s77, on my homeward journey, 1 left Moose Factory on the 1st of October, and at that time all the tender plants-the tolneco plant, castor oil bean, conmom limas, cucumbers, bolsams and other tender plants-were perfeetly green, standing in the open air ; : mol probably remaned so for some time aftre I left as we had no frost. And at the posts of the Hudsmis Bay Compmy, inhand, they are not often troubled with early autumn frosts.*
"How ainout late frosts in the spring ! No late frosts in the spring, I think the sowing is done on an average at the same time as in corresponding latitudes in Lower Camala. I have spoken of the southern region. Furthur to the north west, at Norway House, in 1879, they harl a frost in the latter part of September, which highted the tender plants and it was remarked as the first that had ocemred there in thirty-four years. Wheat ripens perfectly every year in that regiom.
"Where is that! About twenty miles down the Nelsom river from the north end of Lake Winnipeg. The climate there, I think, is as gowl as in Manitola on accome of certain favorable conditions.
" Moose Factory enjoys the most favorable climate on the Bay. Son are there away from the inthence of the open sea. James' Bay is far south, and comparatively narrow, and the water is warmer than at York Fiactory." \dagger

Ellis mentions that in the spring of $17+7$, "the ice in Hayes' river gave way on the I 6 th May, floating gently to sea. On the "ith June ninteen bark canoes, laden with furs, passed down on their way to York Factory, and on the next day, seventy more,"-a clear proof that the rivers, inland, had been open at least in fortnight or three weeks previously. ${ }_{\text {t }}$

Prof. Hind, in the course of his evidence:-"We must bear in mind that ice is often fomm in the lakes near the water-shed, west of Lake Superior, about the middle of May, and Lake Winnipeg is sometimes impassible at its northem extremity during the first week of June. From these comparsions it will be seen that the climate of the Nelson River

[^2]valley is of an exceptiomally finwoble chanacter away from the const line. It can samedy excite surprise that there shonld be a large tract with a good climute and great depth of soil of drift clays in the vicinity of the valley of the Nelson River, for it is the lowest portion of the whole basin of Lake Wimniper, and is consegnently under the influener of the drainage waters from three homdred thousand square miles of land lying altogether to the south of the narow depression, not, perhess, more than forty miles broad, through which the Nelson River finds its way.§

hun's belative intensity.

Prof. Hinl gives us some very valmable data respecting the inflane of the sun during the long lays experieneed in these northern regions, and I give a table prepared by him:-

Table showing the Sun's Rolative Intensity, and the Length of the Day in Latitudes $40^{\circ} \mathrm{N} .50^{\circ} \mathrm{N}$. and 60 N .

		latitule 10 N .		1atibule 50 N .		latitule $60^{\circ} \mathrm{N}$	
		Sinn's Intensity	Lampll of 1 ass.	Sun's Intensity	Length oi day.	Sun's Intensity	Length of Dity.
May	1	SO	13.46	77	14.30	70	15.44
،	16	8.5	14.115	$8: 3$	15.16	$7!$	16.56
"	31	SS	14 : 3	87	15.50	$8 i$	17.56
June	15.	90	1.1 .50	S!	16.08	SS	18.28
July	1.	910	14.11i	S!	16.04	SS	18.18
* ${ }^{\prime}$	16.	87	14.34	86	16.te	8.4	17.42
"	31.	S4	14.05	Sl	15.04	71	16. 3
Ang.	15.	$7!$	1:3.36	74	14.15	(is	13.24
-	30.	79	13.02	13.)	13.34	.7	14.05
Sept	14.	6.5	$1 \because 20$.s	$1 \because .32$	46	$12 \cdot 46$
،	29.	.7	11.14	17	11.36	:3is	11.26

"The conditions required for the alaptation of a ecrtain area to agrieultural purposes, apart from altitude above the sea and the character of the soil, are generally reduced to two, namely, the mean temperatme of about 90 days, as daring the smmer or growing months, and the degree of humidity during that period.
"There are, howerer, two other conditions which exereise a very great influence upon vegetable growth throughout an area extending over many hundred miles to the north. These are the measme of thr sun's intensity as regards light and heat, and the duration of the tength of the clay. As we move from Manitoba say in lat. 50° to Peace River in lat. if (or Vork in 57°), this important fact has to be noticed, that the length of the day in summer increases in a greater ratio than the sun's intensity of light and heat diminishes. It is not heat only which affects the growth of vegetation, it is also the duration of solar light in the day. The longer the day the greater the total amount of heat and light which will be received by vegetables."

Look at the table and you will see that in lat. 40° the smis intensity is 88 , on May 31 st, the day being 14 hours 38 minutes long. In lat. 500° the sun's relative intensity of light and heat on the smme day is 87°, but the day is 15 hours mad 50 minutes long. In lat. 60° the sun's intensity on the 31st May is represented hes S5, but the day is 17 hours 26 minutes long. The day is widely ditferent in length, and the heat and light have a longer time to act on vegetation under the more northern merislians.

In comnection with the above table, a comparison of it with the metcorological tables given in this report, will prove hight interesting.

EXPOSED POSI'TON OF FOR'T', VEGETATION, STOCK, ETC'

"The presont situation of the Prince of Wales Fort, on Churehill River, is vastly coll, and, for that reason, very inconvenient, as are all the other factories in the Bay, all the others being fixed with a view only to profit, and this alone for profit and strength, and therefore surromded on all sides, without any shelter, by frozen sea and river, exposed to all storms, being vastly colder than a few leagues up the river amongst the woods, where the factory's men lived confortably in huts and tents all the winter, hanting, shooting and fishing the whole season. When the cold continued at York Fort, and there was ice in the river, fome leages above they had a fine spoing all the trees in bloon and very wam wather. At present the fartorios of Noose and Albany are sitnated very monppily, being placed in the swamp, at the months of the rivers, for the Companys aim leing tratle, they lon't regard the soil, aspect, or sitnation where they fix them, powided they
 natives ean come in their cannes."*

It is likely, for the ahore masons, that reperts gemembly hemed give surf a misarable aceome of the privations and hardships men sulfion under when living at the trading posts ahont the Bay, whether of the French or English.

Moose and York Factorios are, however, not so mueh exposed but that they can grow plenty of vegrables for their own use, as is assured us by all who have visited these places. Dr. Bell was told at Moose, in 1875 , that the previons year they eropped 1,700 bushels of good potatoes. He also saw oats, barley, heans, peas, turnips, beets, carrots, cabbages, and onions grown there.

minerals.

The Geological Reports of 1879-80 give very encouraging prospects of the likelihood of vahable minerals being tound about the Bay. I quote from the reports of the alove named years.
"Minerals may, however, become in future the greatest of the resources of the Hudson's Bay. Little direct search has, as yet, been mate for the valuable minerals of these regions. In 1875 Í found a large deposit of rich ironstone on the Mattagami River. In 1877 incxhaustalle supplies of good manganiferous iron ore were diseovered on
the islands near the enst main const, mud promising quantitics of galena nround Richmond Gulf, and nlso near Little Whale River, where a small mount had previonsly known to exist. Traees of gold, silver, molybdenmon and copper were likewise noted on the enst main const. Lignite was met with on the Missinabi, gypsum on the Moose, and petroleumbearing limestone on the Alittibi River. Small quantities of anthracite and various ornmmental ..ones, and some rare minerals were collected in the course of our explorations around the Bay. Soapstone is abundant not far from Mosyuito Bay, on the east side, and iron pyrites between Churchill and Marble Island on the west. Good building stones, clay and limestones, exist on both sides of the Bay. A cargo of miea is said to have been taken from Chesterfield Inlet to New York, and valuable deposits of plumbagia are reported to occur on the north side of Hurlson's, Strait."

Many of the navigators of the past century mention the fincling of minerals.

In answer to the question asked by the Select Standing Committee on Immigation and Colonization of the Honse of Commons, Ottawa, thl April, 188:3, in a genemal way, in the Hudson's Bay territories, "mre there many useful minerals ?" Dr. Bell's answer was:-"As far as owr know there are, but very little searel has becomate there. I ean, howwer, mention mumerons minerals which are abremy known to exist. They embrace iron, as hematite, magnetite, chay, irmstone mol rich marniferons iron ore on the east main coast, copper in its mative state mad in rarious combinations; learl, silver, goll, molydrum, antimony, manganese, chormium, phospate of lime, jalle, chrysophras, agate, cormolian, malachite, jaspor, serpentine, jet, lazalitr, petrolem, asplait, peat, anthmate, bitmonous coal, lignite, limestonce, granite samdstone, and samb for glass-making, monding sand, elays, mols, ochres, gylsum, iron pyrites, salt, medicinal waters, sheet mica, soapstome mil plambago. These are all known to oceur, many in varions parts of the torritory, and most of them certainly well worthi looking after."

Many yems ago, Sir John Richardson was convinced that it wond aot be long before the value of the mines of Hudson's Bay territory would far surpass that of the fur trade.

Mr. Dickson, formerly in the service of the Company, thas refers to the mineral deposits on the shores of the Bay:-"At a certain point an the east coast of Janes' Bay there is a vein of magnetic iron, so extensive that, when exmmine by a practical English miner, in 1865, it was pronounced by that gentleman to be one of the most valuable veins of ore in existence. Plumbago, in a pure state, is also to be found in the same locality; and at this place is the commencement on the sea coast of a range of mineral-bearing rocks, which extend along the mainland, and among the islands near the sea shore, for a distance of 600 miles, with a width of from 50 to 200 miles or more, into the interior of the eountry. * * * At certain points on this runge a partial examination has been made, showing that galena, iron, and copper are procurable in almost unlimited quantities, and during a thirteen years' residence at various parts on the east coast, I had ample opportunities of.' examining both its geological and mineralogical formations at a great many points, both in James' and Hudson's Bay, and have no hesitation
in stating that I beliew it to the the most valuable mineral region in the Bominion, perlaps on the Continent."

Mr. Hoftiman, Chemist of the Ceological Survey of C'mala, malyzed a specimen of mithracite, from Long Islam, on the mast comst with the following result :-*

> Volatila romblastihlo mmttrix. I .on!
> Whter . 3 . 4.5
> Ash . $0: 3.5$
> $100 \cdot 00$

Mr. Holliman reported also the composition of the Monse River lignite, as follows:-" Λ piece of this lignite, immersed in water for wor threr days, remaned apparently maflected; it had mot disintomrated, now imparted any eoloratian to the water.

This specimen having heen kept in the faboratory for months, may be regarded as having been thoromghly air-dried.

Two proximate nalyses by slow and fust eoking gave:-

Fixed cadmon.	.S\%a, iokinus. . . 45se	$\begin{aligned} & \text { Fw, whin: } \\ & \text { +f(0): } \end{aligned}$
Volatile combustible matter.	. 33680	+1:39
Water	1174	11.74
Ash	2.4.4	2-84
	$100 \cdot 00$	$100 \cdot 00$

FIMBER
"Some of the timber fomm in the comatry which sonds its watems into James' Bay may prove to he of value for export. Amoug the kinds which it prochuces may he mentioned white, red and pitch pine, back and white spruee, baksam, larch, white cedar mul white bireh. The mamerons rivers which converge towards the heal of James Bay offire facilities for "driving" timher to points at which it may lee shipped by sea-poing vessels."

In millition to the above list, in another report, Dr. Bell gives the following kinds of trees:-White elm, momain maple, pigeon cherry, momntain ash or rowan, green willow, cotton-tree, cypress.

On the heal waters of the Moose River, white pine is ahundant and of goon size. Red pine also exists, and extends rather further nowth than the white. Then there is "Jack pine," or "Cypress," or mone properly Banksian pine, which, though not a timber tree in its somthem extension, hecomes so in the northem region, which is its home. In the Allany region, I have seen large groves of this tree, quite different from the ordinary serubley variety, and from which one or two very goodsaw logs might he ent. Then there is tamarae of gool growth, and white

[^3]
on in the

 analyed with thespruce cerlar in the somtherin part, a gent dal of white lirell, mul other trees, which will some day be valuable.

In the comutry, between the "pher purts of the Nelsom and Churchill, where the egreen wools, like spruce or tanarac oeche, the erromed is eovered with moss mul is npt to be wet. When that is harnt ofl', poplir grows up and the land is dry.
"If the mavigation of lludson's Bay becomes pacticable, it seems to me, if there is mueh timber in that locality, it will be a valuable itron of expert. Perhaps you can tell us what the extent of the timber resemurens of these rivers that fall into Ihmson's Pay are-whether there is likely to be a large oxpmet of timber fiom that region! 'The Moose River, whish is prerhaps the most valuahle for timber, has some perhaps, twelty principal brunches that spread out and eover a transeerse area of more than 200 miles from the neighorhes, of the Ottawa westward, to beyond Michipicoten Valley. These join tognether and fom several tine burge strams rmming northwarl parallel to cach other, and they mite: to from the Moose, which falls into the heal of danes' Bay. The someth(an purts of these stremms are clothed with white and red pine, and, as you go northward, you have gook celar, spruce and tanmace and the Banksime pine. The southom hrmaches of the Almuy also attiond valuable timher ; hot northward of that, 1 donot think you comld say ther timber wobld he vahable for export commercially, is lomg as whe have the of are rivers to ball batek unom. As to the limits of timber gemorally, 1 hnve paid a grood deal attention to the subject of scientific foresting, and have promarel maps showing the northern limit of every tree that oreurs in Comma. 'The most northern specios is the spruer, the limit of which rums from Seal river north of ('hurchill to the month of the Mackenzie river, or in a north-westward direction; and on the other side of the Bay, from Richmond Ginlf up to Ungava Bay in Hodson's Bay and Strits, and down to the Straits of Belle Isle: The whole comery to the southward of that line is wooldel."
"Yon surak of that being the mothern limit. Fow a considmabla, distance south of that the timber would not be merehantable! No. It is sermbliy, but it hecomes larger as you go south mul westworl. In my hast repert there is a map showing the nombern limits of thinty of the principal trees. We have alont sixty species of timber trees east of the Rocky Monntains and thirty west.'

Sir Geo. Simpson testified that the timber abont James' Bay was "smill stunted pines."

Dr. Rae, at the sane time, sail that ahont Monse Factory, on James' Bay:-"There are pine woods. It is well-wooled. Tharw are extensive forests. About two, or two-and-in-hn!f fert in dimmetrer is about the largest I have seen."*

(EENERAI, FISIHERIES.

Besides the whale, conl and sulmon fishories, the waters of Hudson's Bay, and the rivers fialling into it, contain many excellont oil-porducing and edible fish.

Hearne says he saw the walrus in such mombers, on the sea shore north of Churchill, "That the whole beach seemed to be in motion," and
he also says," scals of varions sizes and colours are common in most parts of lhidson's Bay, but most numerous to the north." "Sen unicorns are also known to frequent the Bay and Strait." "White whales (porpoises) are also cery plentiful in those places."

Dr. Bell reports finding the pike, pereh, herring, whitefish, grayling. soal trout, semp,in and eaplin, hesides pike, pickerel, carp, chub and speekled trout in then proper waters. White porpoise nowond, and the walrus mal narwhat me killed in considerable numbers.

Doblis mentions the same list of tish as given above, and states that $1+, 000$ " tish larger than mackerel "are taken at Alhany in a season for the wint (re's supply.

Fox speaks of the great store of tisla to be fomm.
Homrne enumorates " mussels, crahs, starfishes, whilks, periwinkles, eockles, weallops, and many other kinds, which are foum on the beaches in rreat plenty."

The whitefish abound in some of the rivers, and are, at places, caught in winter through holes ent in the ice.

SAIAON FISHERIES.

It is not generally known that large quantities of salmon are taken in Hulson's Bay mil strait, and from one or two of the rivers of the Hudson's Strait, a considerable mumber of barrels, in a salted condition, are exported every year by the Hudson's Bay Company.

Dr. Bell caught in specimen of sahmon, attaining a weight of about 10 lis., on the east coast of the Bay. He found the Indians fishing with gill nets, set in nbout two fathoms of water. They were taking them in considerable nmbers, the fish having a strong resemblance to the common salmon (S. Solar) in outline, fins, head nad month, and the flesh the the same color and flavor. The avernge size is however smaller, the largest which they saw during the smmer weighing only abont 10 lbs., but many were nearly as heavy. They were eanght all along the eastcomeanst. The Indians also killed them with spears (like those used by the Mic-Mac Indians), in the mouths of small rivers, and in the shallow arms of the sea.

According to Hearne, the season for salmon in the neighhorhood of the Churchill River hegins at the latter part of Jume and ends about the midulle or latter part of August. This writer states that in some years sahmon are so plentiful near Churchill River, that he has known upwards of two hundred fine fish taken ont of four small nets in one tide, within a glarter of a mile of the fort.

Prof. H. Y. Hind says:-" If Hearne he correct in his statement, that the season heorins the latter part of June, it is a fortnight or three weeks earlier than the season for salmon on the Lahrador coast."

At the Moravian Mission Stations, Hopelale and Nain, on the Labralor, and not more than three himbled miles north-west of the Straits of Belle Isle, the salmon are always expected at the first spring tide after the 1 (ith of July, and the col generally approach the const about the same time as the salmon. Indeed, it should be stated, if Hearne's statement be correct, the commencement of the fishing season on the north-west coast of Hudson's Bay is as early as at any part of the Labrador const, north-west of Hamilton Inlet,
n in most a unicorns mes (por-
, grayling, d speekled he walrus
states that season for
riwinkles, te beaches
es, caught
are taken cers of the condition,
about 10 ling with g them in the comflesh the maller, the nt 10 lhs., the enstc used by e shallow
orhood of about the me years lupwards le, within
nent, thant ee weeks
the Labe Straits ring tide ast about Hearne's n on the the Lab-

Mr. E. S. Mathieson, U. E., who spont lant wintur nt Fork Finctory and on the Nelson River in cuginere work for a milrond compmy, states that Hoarno is perfectly correct ntwat the nbmanace.

This, in the futme, will heof erent importance to the makets in this Province and to the south. A large mmaber of carlomes of whitefish mother kinds, are now being sent south and east as fin as Chiengo and even to Buthoto, the tish going from lakes Wimipeg and Manitoln. These markets enn be supplied with salmon from Hndson's Bay, three weeks morlier than from the Northern Latmones

When the Imbinns nom fin traders are tishing for salmon, on the const of Hutson's Bay, north of the Nelson River, the entire const of Lahralor, laming an averare of years, is hocked by iee, from the straits of Belle lsle to Cape Cludleigh, and is imacessible to fishermen.

This fact is a most importmont one.
Ellis mentions finding plenty of salmon nt the mouth of the Nelsom River.
"Sinhon are in some sensons very manorous on the morth-west side of Hulson's Bay, particularly at Kimppes Bay mud Whale Cove. At the latter phace I once found them so plentiful, that had we heen provided with a sulficient mumber of mots, casks, and sult, we might soon lave londed the vessels with them."

The stmmer Dianu, owned ly the Hulson's Bay Company, is a reffigerator ressel, and is regubarly in the trate to Ungavin Bay. She takes cargoes of fresh salmon to Englanl, where it is sold for from 1s. Gil. to 2s. fol, per pound. Some of her cargo has been reshipped on to Australin.

The Rev. M. Harvey, of St. John's, Newfomillanl, writes me ns follows:-"We have here a tleet of ower twenty tine sealing steamers. At present they are laid $\begin{aligned} & \text { por the most part for nine or ten months of the }\end{aligned}$ year, as remmerative employment camot he fomen for them, when the seal fishery is over. These would make a splemidil fleet for the mavigntion of Hinlson's Bay, whin eonld he rasily carried om daring four monthe of the yem. They are about ato to (i.0) toms harthen, and their service cond be hal cheap. It wonld be a good phan to charter a couple of them for experimental paremses. Not more than thre or four have been erushed rluring the 20 years which have elapsed since the introduction of steaners in the seal tishery. These were lost by heing "nijperl" in the heavy arctic ice through whel they plongh their way in semel, of seals."

The Rev. M. Harvey is the anthor of the works on Newfombllaml.
These ressels might be used in the salmon trate: mul, as salt has been found in large gunatities close to some of the stramin which thow into Lake Wimiper, it wonk seem ns if a profitable and extensive traule is awaiting levolopment in that meseet alone. Both fresh and salted salmon may yot rank amonsist the heaviest exports of Hudson's Bay.

WHALING.
Before a Committee of the British Honse of Commons, Jr. Rae, in answer to a question:-" Do you suppose there would be a sullicient quantity of fish of that kind (whales) to support a settlement?" testi-
fied:-"I think not. When I went in 1846-7, I saw a good many whales. When I went in 1853-4, I saw only one or two small ones."

Before the smme Committee, Chpitain Javid Herd, who commanded consting vessels, in answer to the grestion:-" What are the capmbilities of Hudson's Bay with regard to whaling, answered :-"I have been going there for the last 22 years and have never seen a whale but once, that was last year, I snw one whale." "Assuming that there are whales there, is the state of the sen, with regnril to ice, such that whaling can be carried on in it!" "No, I do not believe that it could. I do not believe myself that whales will ever go amongst ice."

Mr. A. Isbister, witness before the same Committee, stated:-"In Hudson's Bay itself, there are also very good facilities for the whale and senl fishery. It was stated the other day, 1 think, by one of the commanders of the consting ships, that he had seen no whales: I hinpen to have a book hee containing an officinl report, laid before Parliament, of the imports from Hadson's Bay for ten years, from 1738 to 1748 , in which it is stated that the Company imported in the year 1747, us many as $1,31+$ whale fins, which of course represented more than 600 whales. It does not say whether they were black or white whales."

It would seem in the light of later evidence, that Mr. Ishister was correct in his statement, and that Dr. Rae and Capt. Herd did not seem to know much about the extent of the whale fishery, although the latter haul sniled in those waters for 22 years.

For half a century, at least, the north-western part of Hudson's Bay has been regularly frequented by a large number of American whalers, and, I am told, by whalers from 1 , undee and other Seoteh ports.

An inspection of the report of the United States Commissioner of fish and fisheries for 1875-76 fortmately gives us some information as to the extent of the whale fishing in Hudson's Bay. That report shows that between the years 1861 and 1874, American whalers made about 50 voyages, giving an average of mither more than four vessels for each yrar, and the avorage catch anmally moment in value to $\$ 124,000$ worth of that tish. 'The total of the eleven years' catch amounting to $81,871,023.26$, there being 22,241 gallons sperm oil, $804,26.5$ gallons whale oil, 399,729 pounds of whalebone. It is also to be remembered that the retums submitted are those of very reeent date. In all the early history of American whale fishery, Davis' Strait was a favorite whaling ground, and vessels appear to have grone into Hudson's Bay, and out again into Davis' Strait, but the record of their catch are given as being generally mude in Davis' Strait

The presence of so many whales in Hudson's Bay suggest conclusions as to the supply of food for this enormous marine mmmal."

The question has been asked, Where do the whales come from that are found in the north-western part of the Bay? I happened to meet with n rather peculinr passage in a scientific work lately published.

During the years 1862-66-68-70-71 the bark Ansel Gibbs, sailing from New Bedford, Mass., whaled in Hudson's Bay, being lost there in the latter yenr. From the book referred to I copy the following :-" The daily papers have lately referred in brief terms to the recent capture of a whale in the Artic Ocean, with n harpoon cmbedded in its flesh. The whale in question was taken by the ship Cornelius Howlemd, off Point
d many nes." munded mbilities en going ace, that es there, be carbelieve
\qquad d:" In hale and re comypen to ment, of 1748, in as many whales.
ster was rot seem te latter n's Bay whalers,
r of fish is to the iws that bout 50 for each 124,000 miting to is whale that the history ground, ain into enerally

Barrow, the northermost eape of Alaska, and of the mainland of North America. The harpoon was marked " $\boldsymbol{\Lambda}$. (.," referring, as was supposed to the ship Ansel Gibhes of Now Bedforl, which has lecen engaged for ten or twelve years in the whale fishery. Chses have before oceured of whales being enptured nt Cumberland Inlet with harpoons in them that mast of have beeninserted in the Artic Ocemn, lut this is snid to be the first instance anthentiented in which the movement of the whale was in the opposite direction."
'This would lowk ns thomgh whales rateren! Hudson's Bay by its several entrances, aud went out agnin as in the other whaling gromds.

In a letter to me reedived a few days ago from a whating enptain in New Bedford, it is stated that whers rome into the Bay from Fox Chamel.

Robson, Homrne, Dohbs and Ellis, as well ns cther emrly writers on Hudson's Bay, constantly refire to the presence of black whates in the Bay as well as the swarms of "white whales" which abound all over the Buy proper.

I have not on haml (though I have sent for them) the statisties showing the quantities and value of the oil, whalebone, ete., taken from the Bay to Great Britain by the whalers from Dumdee and other ports, but I an informed on good anthority that the moont is very large. An American whaling eaptain states that he saw a whaling ressel from Dundee.

Ellis says that at one place in the northern part of the Bay: "Fox saw no less than forty whales at one time, and it is a thing out of question, that all sorts of fish, hat more especially the larger sorts, sea-unicorns and whales, are found in great numbers in these northern parts."

I give several extracts from American whalers under another heading, which show the dates at length of the whaling season in the Bay proper.

One eaptain reports, on the 15th May, that he got realy for whaling and cut the ship out of the winter's ice.

Several others say that tl:ey come out when the senson is over, or up to November lst.

Sir Edwarl Parry reports having seen black whales in Fox Channel, and his crew killed one on the 1st August, 1882.

Fox Channel has two connections with Hudson's Bay, one on each side of Southampton, and whales can range in and out through these ns well as through Hudson's Strint.
"My comfort is, that the quantity of whales and sea-mors that place affordeth, will, when whale-oil comes into request, drive the merchant to send the mariner to visit the Isle of Brooke-Cobhmm."

Fox predicted exactly what has come to pass, for at Marble Island is the chief whaling ground of the Americans, who now have an average of at least four vessels, each year, at that place.

It is therefore positively proved that the whaling grounds of the Bay are exceedingly valuable, and a source of profit to our American cousins.

It may be interesting to some to know that the whalers wintering in Hudson's Bay are in size from the Isabel, of 95 tons, to the Northern Light, of 513 tons.

The Pioneer, in 1864, left home on the the June and returned 18th September, sane year, with 1,391 harrels oil and 22,650 pounds of whalebone. Her cargo sold for $\$ 150,000$. That same year the value of margors taken out of the Bay moment to $\mathbf{s} 427,638.86$.

The above figures are from the report of the United States Commissioner of Fisherics, and are therefore aceurate.

I may say that several times I have hearl the statement made that the value of the catch of the yours 1861-74 was $\$ 10,000,000$. This is wildly absurd, the figures being, aceording to the reports for those years, s1,371,(023.36.

Imacemate quotations are as impolitic as they are absurd and misleading.

COD FISII,

little seems to le known as to the extent of waters in Hudson's Bay, where the cond is to be fomod. Dr. Bell says the Bishop of Nonsonee informed him that he hat heard of a few "real" cod having been canght near Whate liaver on the cast main, where the water is deep, and Dr. Bell himself has seen plenty of rock cord taken at various places on the east const of James' Bay. He says:-"There appears to be no reason why the common conl should not he foumd in Hulson's Bay. The conditions as to temperature, depth of water, ete, are favomable, and its food, especially the caplin, is amblant. 'The latitudes of the prolitice tishingGromends of the Athantic const of Labmalor are the same as those of Hudson's Bay. The guestion whether or not Col-fishing grounds are to be found in this great Bay is so important that it deserves a thorough trial."

Hearne, in a foot note, remarks:-"In the fall of 1768, a fine rock coll was drove on shore in a high gale of wind, and was eaten at the governor's table, but I never head of one being caught with a hook, nor even saw an entire tish in those parts, their jawhones are, however, frequently fonnd on the shores. Kepling (caplin) in some years. resort to the shores near Churchill River in such multitules to spawn, and such numbers of them are left dry anong the rocks as at times to be quite oftensive."
"In 1877, col and caplin were taken in abundance by Newfoundland craft in the vicinity of Hebron, not far from the entrance to Hudson's Straits, about the listh of August. That the caplin oecurs in immense shoals in nortlem Hudsun's Bay has long since been noticed by Hearne and others. This tish is also in abmance on the coast of south Greenland, but the point to which special attention is directed, as regards the movement of the salmon, the caplin and the cool, is the boad fact that the season in nonthern Hudson's Bay is so much earlier and so much longer than on the Atlantic eonsts of northern Labrador, where the fishing interests have assunted such imposing proportions. Hearne tells us that the salmon tishing at Shurehill begins in the latter part of June; he also mentions the ocenrence on that coast of innmmerable shoals of applin coming in shore to spawn as soon as the ice leaves the const. Gencrally the caplin precede the cod and satmon on the Newfoundland const. It is mot likely that the halits of this fish have changed under similar conditions in Hudson's Bay.
ned 18th ounds of e value of tes Commule that This is ase y"urs, and mis-

Hudson's Moosonee on caught and Dr. es on the (1) reason he ennti1 its foorl, : tishingthose of uls are to thorough

fine rock

 n at the hook, nor however, rs. resort and such be quite
mundland

 Hulson's immense Hearne Gireenrards the fact that so much the fishe tells us f June; shouls of he coast. undland d under"Hearne could seareely have made us a hetter enumeration of the general fool of the cod than he has given us in his narrative, and the only conclusion which suggests itself in relation to his remarks upon the cod, is, that this fish not being an artiele of eommeree in Hudson's Bay, has never yet been sought for there. When the fool of the coll is stated to be in great abundanee, it is more than probable that the voracious fish will be relatively abundant." \dagger
"When we had run almost across the Bay, and were got near some banks to the northward of Churchill River, the captain expressed his regret that they were not tried for conl; for it seemed highly probable, he said, that there was almost as many to be taken there as at Newfoundland." \ddagger

military.

It does not seen to be generally known that on three occasions bodies of British regular troops have been brought from England in sailing vessels through Hudson's Strait and Bay, landed at York Factory, and proceeded by the usual water route to this city.

In 1846, a wing of the 6th Foot, a detachment of Artillery, and a detachment of Royal Engineers numbering 383 persons, including 18 officers, 329 men, 17 women and 19 mhildren, arrived at York Factory on the 7th Angust, and after a stay there of eleven days, proceeded to Fort Garry, which they reached in thirty lays time without any easualty.

The troops carried with them one nine-pounder and three sixpounders, and left twenty-four grons at York, to be forwarded after them.

These troops returned by the same route, in 1848, and a scuad of 70 pensioners took their place that same fall, and these were again followed by a like number in summer of 1849.

Some of these soldiers and their descendants are amongst our most respected and worthy fellow-townsmen.

IMMIGRATION.

It must not be lost sight of that nearly all the early white settlers of this Province and the many settlements of the Northwest, came in via the Hurlson's Bay. Lorl Selkirk, in 1811, sent out the first detachment others followed, and the first agrieulturists who raised the grain which has since become so famous for its quality, experienced the delays incidental to the long passage in sailing ships.

Sinee that day, it is not to much to say, that thousands have travelled by the same route, in perfect safety:

This fact camot be denied, and the statement of it speaks volumes in favor of the safe navigation of our northern waters.

We have, in the very hart of our Dominion, an immense inland sea which never freezes, it is comected with the Athantic Ocean by a wide passage which never freoges over, and is open for navigation for at least tive or six months, if not during the whole year. This great boly of salt water has emptying into it a large number of rivers, many 0 : them

[^4]navigntionable for large river steamers for long distances inland, they are well stocked with the finest edible fish, and in some places their banks are clothed with timber, much of which is valuable for export. 'The islands of the Bay, and many localities on the manland are rich in mineral bearing rocks and forms of conl. The northem waters are freguented by selools of whale which are ahraly affording a bountiful harvest to the enterprising whalds. At all points in the great Bay, porpoises abomed, which supply hides and oil. fims are obtained from the full list of fur-bearing mimals frequenting the aljacent comotry. Large game supports, in a great measure, the Indian population. Feathered grame is so phentiful, that at a single post, 36,000 geese are killed in the autumn, as the year's supply. Vegretablesare rased at all the forts in the somthern part, and at some of those in the north. Horses, cattle, ete., are kept, and abmonace of fodder is found for them. At least three harbors are frequented by ships, and for 274 years sailing vessels of all deseriptions, from the pinnace of 20 tons to the 74 -gun man-of-war, have anchored in them after passing through the Strait and across the Bay. British regular tropss and immigrants have sailed through the Strait and landed at these harbors.

Should we not, as Camalians, anxious for the full development of the great natural resources of our comitry, take what nature offers so freely, and make use of her bountiful sifts.

sourtis of REvTANE.

1st.--Transportation of grain from Manitoba, the N. W. Territories, Minnesota and Dakota (in the United Statess); these two states alone have $15,000,000$ hashels of wheat available for export ammally at present, and taking Manitola and the North-West at 5,000,000 bushels more, a a ailable for export on the completion of the line, we reasonably caleulate on $20,000,000$ hushels of wheat to ship to Europe ; this would make 50,000 car loads of 400 hashels or $\geq 4,000$ pounds cach, equivalent to 5 train loads of 28 cars per train, daily throughont the year, and the quantity will surely and steadily increase, bearing in mind that this is only one of many sources of revenuc.

2nd.-Passengers' and scttlers' effects and mails from and to Europe: vi\%: all importations from Europe for this North-West combtry, which is at present very large and will increase yearly.

3rd.-Tramsportation of railway iron, rails, cte. It may he fairly assumed that all the raik and fastenings will be brought from Europe vie this routs, and as railway construction is only leginning in this combry, large and increasing quantities for many years must come cia this railway, not only for construction but also for renewals, also locomotives, etc., on account of the enormons saving which will be effecter in transportation as against the Atlantic Ports.

4th.-Timber alone, existing along the line of railway and country tributary to it will be a large somee of revenue to the road ; this will find a market in England and also for local purposes. The quatity of a wailahle timber tributary to the road is safely estimated by experts at 26 billions of feet board measure, which, taken at 7,000 feet per ear,
and, they aces their or export. re rich in s are frebomntiful Bay, porfiron the r. Large eathered od in the rets in the ittle, etc., mast three sels of all war, have the Bay. frait and
pment of offers so es alone y at prebushels asonably is would givalent and the t this is Europe: y, which e fairly Europe : in this, ome cill lso locoeffected
would take sixty years to ship at the rate of eight trains of twenty-four cars each per diem, rumning 300 days in the year.

5th.-Coal for local consmmption and mamifacturing purposes.
6th.--Transportation of cattle. Cattle and sheep are an important industry in the North-West Territories, and also in Montama, in the United States. They can be driven to the Grand Rapids, and fatten on the way through a country alounding in the freshest grasses, with abondance of water; conseguently, they have no suffering or shrinkage, and they are worth more there than at the port of Montreal, for that reason, for shipment to lurope, and with the great advantage of only having railway transit of twenty-four hours' duration. Horses from the Lest imported English and American breeds are being raised on the westorn ranches for supplying the European markets, great care being taken by the breeders to select the best strains of two different kinds, many ranchers making the industry a specialty, sparing no expense to attain suitable stock for the proluction of racers, hanters, cavalry, carriage and farm animals.

7th.- Transportation of all kinds of salted, fresh and camed fish to supply southern, western, and castern markets; this industry will insrease very rapidly soon after the construetion of the railway, and will include all products arising from the fisheries, such as oil, porpoise hides for leather, ete.

8th.-Iron ore for local manufactures, lead, gypsum, petrolem, moulding sand, building stone, etc.

9th.-Agricultural products for shipment, such as cheese, butter, tallow, hides, frozen fresh beef, etc.

10th.-Local passengers and way freight, arising out of huilding new towns, including plant and supplies engrged in the mining, lmmbering and fisheries industries, and the traffic arising out of tourists to the sea coast.
11.-The available assets of the Company are:

Free grant of $6,195,200$ acres of land on the main line alone, at $\$ 1$
\$6,195,200 00
Timber on Company's reserve, $2,000,000$, at $\$ 1$ per $11 \ldots \quad 2,000,00000$
Ss,195,200 00
The estimated receipts on timber, lumber and grain alone, tributary to the road nett, shews a safe amual revenue of 8 per cent. on the total cost. In addition to this, there will be large and increasing receipts from itw transport of passengers, coal, live stock, fish, furs, minerals, ete., ete., which cannot be accurately estimated on until the road is opened for tratfic.

The railways in the United States to the south of us have reaped the best harvest from these swamp lands: first, a crop of ties ; second, telegraph poles ; third, fence posts ; fourth, fence rails; fifth, hop poles; ustimated at $\$ 200$ per acre nett on timber alone.

The Great Saskatchewan river is entirely tributary to the Hudson's Bay Railway, and not to the C. P. R., and it is settling up fast. The
branch line will be a very large trilnatary source of revenue to the main line, and the Canalian Pacific Ratway and its branches west, south and south-west of Winnipeg, are all tributary to the Hudson's Bay Railway, it being the shortest road to the sea; no corporation, however powerful, can coerce the channels of commerce, and the outlet is via Hudson's Bay.

When the monopoly clause expires, and foreign railways can cross the boundary line, the carrying railway trade of a large ratius of this Western continent will find its seaport at Hudson's Bay, and over this road.

With the above sources from which a revenne is to be derived, and a country rapidly filling up, with an Agricultural and Mining population, combined with the fact which should be strongly impressed upon intending emigrants, that the Great North-West has now the only extensive fertile arcas of farming lands available for settlement on this continent, the United States having disposed of nearly all of their Agricultural lands.

CHARACTERISTICS OF THE RAILWAY.

The first consideration in builling the railway is perfect location or alignment, consistent with tapping the important points where revenue is to be derived trom, keeping curvature at a minimum, and the grades as easy as the country will admit of, and building the railway bank as high as the snow-fall is deep, in order to have perfect operation throughout the year.

DISTANCES.

The main line distances will be as follows:-

From. To	Miles.
Wimnipeg Little Saskatchewan	. 149
Little Saskatehewan. Grand Rapids.	89
Grand Rapids.........Sea Falls	114
Sea Falls.............Fox River.	181
Fox River Limentone Falls.	60
	593
Limestone Valls to Liverpool	. 3024
Wimmipeg to Liverpocl	. 3617

RIGHT OF WAY.

The right of way, or ground enclosed by the Company's fences, is 99 feet wide or $1 \frac{1}{2}$ Gunter's chains, containing 12 acres per mile, excepting at terminal points where greater widths are required for erecting shops and working yards, ete., also at way stations, and at the end of divisions, in almost all cases the lands will be free to the Company, thas reducing the cost of construction.
the main south and - Railway, powerful, Hudson's can cross us of this over this ved, and a opulation, on intendextensive continent, rricultural

ocation or

 e revenue the grades - bank as through-It is advisalle to build the line of railway aside from the centre to allow for constructing a doulle track which may be required mueh earlier than at present anticipated.

GRADING.

The banks to be 12 feet wide at formation level with slopes one and one-half to one, and the cuttings to be 22 feet wide at formation ; slopes in earth euttings one and one-half to one, in rock one-fourth to one.

GRADIEN'TS.

The gradients of the railway ascending northerly not to exceed 26-40 per mile with the traffic and ascending southerly :2-80 per mile so as to give the greatest carrying eapacity.

curvature.

Curvature will be reduced to a minimum in all cases, and not to exceed a 4-0 curve or a less radius than 1433 feet on the main line.

bridginc.

The bridging of rivers of 100 feet span and upwards are intended for permanent structures of the most approved Truss pattern with masonery substructures built wide enough to admit of a double track when required; culverts and smail waterways to be built of timber to admit of rapid construction, to be replaced by permanent structures without impeding traffic hereafter.

GUAGE.

To be standard guage of 4 feet, $8!$ in. between rails.

RAILS AND FASTENINGS.

Road to be laid with steel rails of approved section and quality weighing 56 per yard, and fastened with fishplates or splices of steel with four bolts and nuts to each joint.

TIES OR SLEEPERS.

Of the best available timber eight feet long not less than six inches face and six inches thick to be laid two feet centres or 2,640 per mile.

SWITCHES AND PROGS.

To be of the best working patterns in use. Standard-1 in 9 .

SIIMNGS.
20 miles of sidings are allowed at the two ends of the road ; two to three, as may be requirel, at the ends of divisions, and one mile at each way station.

B.LIII.AS'IN(:

2,000 culie yards has heen allowed throughout both for siding and main line.

flencenci.

Posts to be eight feet long and not less than four inches in diameter at the small end, to be placed $16 \frac{1}{2}$ feet apart, and the right of way to be enclosed with five strands of barb, wire fastened securely to each post.

TELEGRAPII LINE,
Would require 32 posts per mile throughout, with ordinary gauge of wire, instruments and batteries.

WATER STATIONS ANI (OAI. SIIEDS.

To be about 15 miles apart.

SRCTJON HOUSES.

One to each five miles of railway for maintenance purposes are required to keep workmen together so that they and their lorries and tools may at all times be immediately available for services required from them. At unimportant points these houses could be used for way stations until such times as business increases sufficient to warrant the erection of regular stations.

WAY STATIONS.

Combined for passengers and freight purposes, with dwelling for agent overhead, will be built at first only at those points where fuel and water is necessary, and afterwards at a distance of ten miles apart as the traffic developes, and at all divisional points suitable buildings will be erected as the requirements of traffic demands. At terminal points where the general offices are established, buildings will be erected capable of accommodating all the staff of the various departments engaged in operating the railway, with freight sheds, engine houses, turn-tables, etc.

ELEVATORS.

At Sea Falls and Limestone Falls, elevators will be built of sufficient capaeity to accommodate the traffic.
ul ; two to ile at each
siding and
diameter way to be ch post.
; gauge of
poses are rries and s required d for way arrant the
of suitable dimensions will be required at Sea Falls and Limestonc: Falls.

LOCOMOTIVES AND ROLJING STOC'K,

Locomotive engines, both for passenger and freight service, must he of the strongest and best types specially constructed for this clizate and water, from designs furnished from, and adapted to the requirements
of this country.

The rolling stock to be of the best manufacture in use, and interchangeable in their parts.

The following detailed statement of cost of construction is arrived at upon the surveys and explorations of Mr. Adrian Neison, C.E. and Explorer, and Mr. Bayne, C.E., Dr. Bell, of the Geological Survey; and from other reliable sources.

The estimated cost may be reduced by having less sidings, ballast, rolling stock, stations, ete., and only furnish as the railway traffic develops.

CONSTRUCTION.

CLASSILICATION.	QUANTITIES.		RATES.	cost.
RIGHT OF WAY- 99 ft . wide, 12 acres per mile	No. $7,116$	Units. Acres.		Free.
LAND- lor Shops and Stations, Winnipeg....	200	"	\$ 500	\$ 100,000
CLEARING- 7,116 acres, less between Wimipeg and Sclkirk, 360 acres	6,756	"	20	135,120
CLOSE CUTTING- One-quarter chain wide for $\mathbf{6} 93$ milcs. .	1,186	"	15	17,790
GRADING- 10,000 culic yards per mileSidings, 104 miles, equal . . Main Line, 507 miles, egual Of Rock Section, 88 miles, equal	$1,040,000$ $5,0.00,000$ 88			280,800 $1,363,500$ 1,408,000
Off-take-Ditches and cutting Beaver dams	100	"	1,000	100,000
BRIUGING:				1,086,514
Tressels, RoadCrossings, Cattle Ciuards, Culverts \qquad	593	miles.	1,000	593,000
TIES-2,640 per mileMain Line	1,565,520	ties.	2.5	391,380
Sidings	274,560	"	$2 . \mathrm{c}$	68,640
RAILS- 88 tons per mile, 56 lbs , per yard Main Line Sidings	$\begin{array}{r} 52,184 \\ 9,152 \end{array}$	tons.	$\$ 30$ 30	$\begin{array}{r} 1,565,520 \\ 274,560 \end{array}$
FISH PLATES-Three tons per mile, 16 lhs . per pair-				
	1,789 312	"	3.5 3.5	62,265 10,920
BOLTS AND NUTS-One ton per mile, 5 lbs. per joint- Main Line	693	"	60	3-5,580
Sidings .	104	"	60	6,240
SPIKES - Three tons per mile, 洛 $\times 0.1 / 2$ Main Line SIDIN(is	1,79 312	"	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 88,950 \\ & 15,600 \end{aligned}$
POINTS, CROSSINOASAWITCHES Complete	300	sets.	110	33,000
TRACK LAVIN(; Distributing Ties Main Line Sidings	5938	miles.	325 325	$\begin{array}{r} 192,795 \\ 33,800 \end{array}$
BALLASTIN(i-: 2,000 cubic yards per mile Main Line Sidings	$\begin{array}{r} 1,186,000 \\ 20 \mathrm{~s}, 000 \end{array}$	culs. ${ }^{\text {yds. }}$	40 c 40 c	$\begin{array}{r} 474,400 \\ 83,200 \end{array}$
TELEGRAPI LINE-Complete	593	miles.	215	1:27,495
FENCING-Complete- Four Strands Barb Wire	593	"	700	415,100
SECTION HOUSES-Five miles apart-	120		1,000	120,000

CONSTRUCTION.-Comtimuer.

$\cos \mathrm{T}$.

Free.

$\$ 100,000$

135,120

17,790

280,800
1,363,500
1,408,000
100,000
1,086,514
593,000

391,380
68,640
$1,567,520$

62,265
10,920

33,000

192,725
33,800

474,400
83,200
127,495

455,100
120,000

CLASGLFICATION.

STATLONS AND OFFICLS-
1 Winnipeg Depot and Ciencral Offices.
1 Little Baskatchewan division terminus
1 Grand Rapids
I Sea Falls
1 Fox River
1 Limestone Falls
54 Way Stations, 10 miles aphrt, (a $\$ 3,000$
FREIGHT SIUEISB-
2
1 Winnipeg
1 Litte Saskatchewan
1 Grand Rapids
1 Sea Falls
is ..
2 Limestone Falls
COAL SHEDS -
Winnipeg
Little Saskatchewan.
Grand Rapids
Sca Falls
Fox River
Limestone Falls
At Way Stations 40 (a) $\$ 2,000$
WATER TANKS, COMPLETE-
Winnipeg, capacity $(00,000$ gallons,
Little Saskatchewan,
Grand Kapids,
Sca Falls,
Fox River,
Limestone Falls,

MACHINE ANI) WORK SHOPS
Winnipeg
Little Saskatclic wan
Grand Rapids
Sea Falls
Fox River
Limestone Falls
ENGINE AND ROUNI HOUSEK-
Winnipeg
Little Saskatchewan.
Grand Rapids.
Sen Falls
Fox River
Limestone Falls.
TURN-TABLES-
Winnipeg
Little Saskatchewan
Grand Rapids
\qquad
\qquad
Sca Falls
Fox River
Limestone Falls
costr.

CONSTRUCTION.-Continued.

1.00
CAI
sCa
st:C
sTA
Cinnip
Eint

Total

EQUIPMENT:

RECAIFTULATION.

Construction	
Equipment	\$1.4,944,660
	:350,120
	\$18,300,790
Total cost per mile.	
" ${ }^{\text {- }}$ (without equipments.	\$:30,000

I have the honor to he. Sir,

> Your obedient Servant,

WILLIAM MURDOCH, C.E.

[^0]: 'Ballantyne's Il udson's Hay.
 : Dr. 13ell, 187π.

[^1]: t liobson. pare U.

[^2]: See T'able of mean areruge at Moose, for September of varions years, on page 4!.
 \dagger Dr. Bell before House of Commons C'olonizalion Committee.
 ; Ellis, page 209.

[^3]: *Geological Survey, 1876, page 423.

[^4]: *Sanuel ilearnc, 179\%
 \dagger Hind's Report.
 : Robson, pare 20.

