CIHM
 Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / ilotes techniques et bibliographiques

The institute has attempted to obtain the best original copy availabie for fiiming. Features of this copy which may be blbliographicaily unique, which may atter any of the images in the reproduction, or which may significantiy change the usual method of filming are checked beiow.

Coioured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée

\square
Covers restored and/or laminated /
Couverture restaurée et/ou pellicuiéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couieur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations /
Planches et/ou lllustrations en couleur

\square
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seuie édition disponibie
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'institut a microfllmé le meliieur exempialre qu'il iul a été possibie de se procurer. Les détails de cet exemplaire qui sont peut-être unlques du point de vue blbilographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans ia méthode normaie de filmage sont indiqués ci-dessous.

Coioured pages / Pages de couieur
Pages damaged / Pages endommagées
Pages restored and/or laminated/
Pages restaurées eV/ou peliicuiées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou plquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une peiure, etc., ont été filmées à nouveau de façon à obtenir la meilieure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below I Ce document est filmé au taux de réduction indiqué ch-deseous.

The copy filmed here hes been reproduced thanks to the generosity of:

Universits do Montrial

The images appearing here are the best quailty possibia considoring the condition and iagibility of the original copy and in keeping with the filming contract spacifications.

Originai copias in printed paper covers ara flimad baginning with tha front covar and ending on the iast page withe printed or iliustratad impression, or the back cover when appropriate. Ail othar originel copies ara filmad baginning on tha first paga with a printad or Illustrotod impression, and anding on tha last paga with e printad or iliustratad imprassion.

The last recorded frame on aach microficha shali contain the symboi \rightarrow (meaning "CONTINUED"), or the symboi ∇ (meaning "END"), whichever appiias.

Meps, piates, cherts, etc., mey be filmed at diffarant raduction rotios. Thosa too larga to be antiraly included in one exposure are filmad beginning in the upparieft hand corner, ieft to right and top to bottom, as meny fremes as requirad. The foliowing dlagrams iliustrate the mathod:

L'oxempleire filme fut reproduit grace it ia gónérosit' de:

Univorits do Monerdel

Les images suivantes ont étó raproduites avec io pius grend soin, compte tanu de in condition at da ia nattat' de l'oxampiaire filmd, at en conformith avec ies conditions du contrat de flimege.

Les axempiaires originaux dont in couvarture an papiar ast imprimie sont filmés en commencent par le pramier piat ot en tarminent soit par ia darnidre page qui comporte une emprointe d'impression ou d'iliustration, soit par ie sacond piat, saion io cas. Tous ies autres exempiairas originaux sont flimf́s en commoncant par ia promidre page qui comporte une empreinte d'impression ou d'lilustration ot en terminant par in darnidra pagd qui comporte una tolie emprainta.

Un des symboles suivants apparaitra sur la dernlitre image de chaqua microficha, seion ia cas: io symbola \rightarrow signifia "A SUIVRE", ia symboie ∇ signifio "FIN".

Les cartes, planches, tabieeux, atc., peuvent dtre filmós à dee taux da réduction differants. Lorsque in documant ast trop grand pour Atre reproduit en un seui cilché, il eat film'́ a partir de i'engia supóriour gaucha, de gauche idroite, ot de haut on bas, an prenant io nombre d'imagas nifcassaira. Les diagrammes suivants lliustront is mothode.

MHCROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

$$
C E B R-5
$$

THE PREVENTION OF TUBERCULOSIS

BY
Samuel G. Dixon, M. D. OF Philadelphia

President of The Academy of Natwral Sciences of Philadelphie: Commissioner of Health of the Commomwalth of Pownsylvania

Read before the Section of State Medicine of the British Medical Association
at Toronto, Canada
August 21, 1906

THE PREVENTION OF TUBERCULOSIS

Science knows no limitation of race, language or geograply. The earnest scientist rejoices in the discovery of every new truth, whatever the nationality of the patient scarcher who was so fe: , ware as to uncarth it. On the other hand, the discove:er is w :i:\%, and eager to share his newly acquired knowledge with his fell . . .estigators throughout the brond domains of the carth, regariless of no: i ality or birthplace. If this is true of science in general, it is truc in a greater degrec of our own beloved science of medicinc. By the devotecs of no other is the grand coneeption of the brotherhood of man so completely and so fractically recognized.

Especially has the growing custom of holding medical and hygienic conventions, conferences and cougresscs in the various great cities and scientific centres of the world, thus affording members of the profession opportunities for personal as well as literary intercourse, eontributed to the strer.gthening of this entente cordiale.

This is the second time that this : :sociation has met on American soil, and again it holds out a hand - '. ndly grecting to its brethren across the imagilary line wlich seps. is two great nations. distinct indeed politically, but ore in all that constitutes unanimity of sentiment, harmony of aspiration toward a nobler and truer life, and community of tabirs for the auvancement of medical seience, and hence of humamiy at large.

I appreciate the courtesy extended to me in having been requested to appear before th:: distinguished body, and to contribute my humble mite towards the great treasury of knowledge which it is constantly amassing.

Nine years have elapsed since your last assembling on this continent. In that brief space of time what changes have taken place 1

The science of bacteriology, then comparatively in its infancy, has taken its place as one of the most important departments of medicine. Serum-therapy, then cherished by but a few enthusiasts, the butt of crass medical wits, has established itself firmly as a therapeutic method of no uncertain value. By its means it has been found possible not only to prevent the spread of some of the most serious communicable diseases to a considerable extent, but also to greatly lessen their mortality.

In March, 1882, came the startling amumicement oi one of the great masters in bacteriology-Koch—that he had discovered the micro-organism of the tubercle. This annotincenent was received with acclamation throughout the scientific world, for it held out a hope that, through the means of this discovery, a possibility might have been created of checking the ravages of a disease which was responsible for the destruction of human life to a far greater extent than any other.

The years slipped by, however, and no sign was given from any of the great laboratories of the world. In the summer of 1889 I visited London to study the techical methods used in the bacteriological laboratories of King's College and the College of State Medicine. While working in Professor Klein's College, I was staining a smear of tubercle bacilli which had been kept in a tube from an incubator to which the students had free access; the temperature, therefore, was by no means constant. At first club-shaped bacilli developed; then gradually, the tube having been allowed to remain at the temperature of the room for several hours out of the twentyfour, for a few days considerable variations from the form heretofore recognized were disclosed to my astonisheu eye.

The impression made upon my mind was a profound one. I felt convinced that the irregularity in growth might properly be designated as an involution form. Some of these forms were clubshaped, some curved, and some branched. Did they not represent bacilli of attenuated virulence and reduced strength? If so, might they not be availed of in establishing a tolerance for the tubercle
bacillus in animals and even in man? The more deeply I pondered over this discovery, the more thoroughly was I convineed that there was a valuable truth concealed in it. On my return to America I immediately instituted a series of experiments, with the result that I was able to produce a less virulent culture than had hitherto been recognized. I felt no hesitation, therefore, in giving these results to the publie, which I did in the columns of the Medical Neres of Philadelphia in a memorandum entitled "Possibility of Establishing Tolerance for the Tubercle Bacillus." This article appeared on October 19th, 1889, and was aecompanied by a cut representing tuberele bacilli in other forms than those before recognized. I then said :
"In considering a means for overoming infection by tuberculosis, it is possible that a condition of tolerance to the action of the tubereulous bacillus must first be established. To this end two hypotheses may be suggested:
"First. It is possible, that by a thorough filtering out of bacilli from tubereulous material a filtrate might be obtained and attenuated so that by systematic inoculations a change might be produced in living animal tissues that would enable them to resist virulent tubercle bacilli.
"Secondly. To bring about a chemical or physical change in living tissues that would resist tuberculous phthisis, it is possible that inoculations with the bacillus would have to be made; yet before this could be done the power of the virulent bacilli would have to be diminished, otherwise the result would be most disastrous."

I considered it possible that the unrecognized forms shown in the cut might perhaps represent the condition of bacilli necessary to prove the truth of the second hypothesis, particularly as animals inoculated with these organisms have survived subsequent inoculations with virulent tuleercle bacilli.

This was, so far as I know, the first note proclaiming that an active campaign had been opened on the tubercle bacillus, and specifying in terms of considcrable definiteness the means whereby the war was to be carried into the enemy's country.

Later in the same year (1889) I delivered an address before the New Jersey Sanitary Association on the general subject of "tuberculosis," in which I stated that guinea pigs inoculated with this attenuated virus would "resist the action of virulent virus for months at least."

Professor Koch aunounced in August, 1890, that he had succeeded in developing a substance which had the power of preventing the growth of the tubercle bacillus in man. At that time, however, no hint was given of the method of preparation of the new substance.

On September 6th of the same year an article from my pen appeared in the Medical and Surgical Reporter of Philadelphia, in which, referring to my first announcement, I said:
"It will probably be interesting to the scientific world to know that the results published last October have been corroborated by a series of inoculations of the prepared virus into guinea pigs, rabbits, and opossums, after which they have resisted matter so virulent that all animals not previously inoculated with the changed virus took on tuberculosis when inoculated with such matter."

On November 15th, 1890, I announced through the Philadelphia Times and Register "That, following out the hypotheses advanced in my terse article in the Medical Nezes of October, 1889, had given the most brillant results."

Three days later I took occasion to lay before the Academy of Natural Scierces of Philadelphia a report summarizing more in detail my work of investigation on the tubercle bacillus in the bacteriological laboratory of the Academy, and stating that animals treated with the involution form of tubercle bacilli continued to resist injections of virulent bacilli.

Realizing the danger of introducing live tubercle bacilli into the human economy, I was with many others laboring to obtain the active principle that would produce immunity. To accomplish this, I submitted the tubes containing tuberculous bacillary growths to the action of ether, and also of a saturated solution of chloride of sodium. The mixtures were then passed through a Pasteur filter
without pressure. This active principle, when subcutaneously injected into tuberculous animals, caused a febrile reaction. The tissue in the immediate neighborhood of the tubercles became hyperaemic, and the symptoms manifested resembled those produced by the introduction of the original mass. This was published in the Medical News of Philadelphia, January 17th, 1891.

On May 1 th th of the same year I had the honor of delivering the annual address before the State Board of Health of Pennsylvania, on the occasion of the Fifth State Sanitary Convention, and selected for my special theme, "Tuberculosis, Its Causes and Effects, Its Treatment and Prevention." In this address I touched upon the question of the relationship between the bovine and the human bacillus of tubercle, and expressed m. self as follows:
"Scientifically it will be of particular interest to have the bovine and human tubercle bacillus differentiated, yet for all sanitary purposes we will have to consider the tubercle bacillus of the cow accompanied with it nidus as being destructive to human life; for it is well established that the bacillus of man will produce in the lower animal economy-such as the cow, dog, guinea pig, opossum, etc.-the deadly malady, and that the bacillus of the cow will also bring about a like disturbance in the same line of animais; and, further, bacilli from the rabbit, etc., will in turn reproduce tuberculosis in the cow."

The bovine tubercle bacilli arc much more virulent in the lower animals than those sf human origin.

In a paper entitled "Possible Relationship Between the Tuberculous Diathesis and Nitrogenous Metabolism," read before the Academy of Natural Sciences of Philadelphia, November 26th, 1894, I called attention to the antagonism of nitrogenous products of the tubercle bacillus, and to its propagation in the tissues of human beings. The idea that those who suffer from gout rely develop tuberculosis is an old one, and apparently not withou substantial foundation. Hence I argued that, as in gout the tissues are overcharged with metabolic nitrogenons products, the direct introduction of such matter prepared in the laboratory of Nature might bring about a condition in the tissucs of those suffering from tuberculosis
which would render them resistant to the tuberculous process. I was able to announce successful results in a few cases of lupus vulgaris by the use of taurin, creatin, urea, uric acid, and similar products. and at the same time called attention to a vegetable product very sinilar to urea named thiosinamin, which had just come into use abroad as a therapeutic agent for tuberculosis.

I further called attention to the possibility of establishing a lithemie habit involving excessive assimilation and metabolism of proteid substances together with increased oxygenation, in order to antagonize or substitute a tuberculous diathesis involving deficient assimilation and decreased oxygenation.

One of the most important events in the history of the campaign against tuberculosis in America in recent yeare has been the inauguration in Philadelphia of that magnificent foundation, the Henry Phipps Institute for the Study, Treatment, and Prevention of Tuberculosis, of whi九 Dr. Lawrence F. Flick, the Medical Director, has just issued the annual report for the second year, ending February Ist, 1905. The careful analysis of the conditions, sociological as well as medical, of the 1,561 patients treated is worthy of study. A number of valuable reports and monographs, prepared by members of the medical staff, are therein published. One of these is by Dr. Leonard Pearson, State Veterinarian of Pennsylvania, who is also veterinary surgeon of the institute, and is entitled, "A Review of Recent Investigations and Observations Upon the Immunization of Animals against Tuberculosis."

Referring to the tuberculin of Koch, he said:
"It was at last established that while tuberculin has a specific effect upon the lesions of tuberculosis, and in some cases causes the lesion to become encapsulated, to recede, or to disappear, this effect is by no means constant, and is not sufficiently frequent to make this mode of treatment of practical value.
"Some modified tuberculins have been produced by Koch, E. Klebs, von Ruch, von Behring, Buchner, Hirschfelder, Maragliano, and others, but none of them has been sufficient to render an animal immune to tuberculesis permanently or to a practical degree."

The investigations of Stroebe, Arloing, Courmont, Nicolas, Spengler, Hahn, Baungarten, Maragliano, Babes and Broca, Ferran, Niemann, McFarland, Petterson, von Behring, Dixon, Grancher, Ledoux-Lebard, Hericourt and Richot, Trudean, McFadyean, and Schlegel are all referred to, more or less in detail. He then goes on to say that "Progress in this line did not occur until efforts were made to immunize animals against living tubercle bacilli bv the use of living tuberele bacilli by Dison in 1889," as published in the Medical Nea's of October 19th, 1889.

In the Ui:iiersity Mcdical Butletin of April, 1905, Drs. Pearson and Gilliland puiblished an article upon cattle infected with tuberculosis, siving a line of experiments which consisted in treating them by intravenous injections of a suspension of living human tubercle bacili, the resuts of which went to prove a marked curative power of suc!t treatnent in young growing animals.

Dr. IF. P. Raveacl's report after a visit to Marayliano's laboratory is to the cficet that from a laboratory standpoint the experinenter ins stacecoled in producing a serum whell protects experimental aumals against the poisons of the tubercle bacillus. The earative value of this scrum is not so well established. This latter view is stepported by elinical reprots on this subject presented by three members of the medical staff of the institute-Drs. Joseph Walsh, William H. Stanton, and H. R. Landis. Five cases were placed under treatment. As compared with other cases under observation at the same times, the results could not be said to be in favor of the scrums treatment.

Dr. Ravenel refers to the fact that in the atumn of 1903 Dr. Alexander Marmorek, at that time conncetel with the Pasteur Institute in Paris, announced that he had produced a serum $\cdot \cdots$ 'ish was vaccin?! and curative.
"The true toxin," he holds, "is formed by very young, , what he terms prinitive, bacilli." This nay be so, yet ny work has denonstratel that the toxin is also produced by old or involuted or degenerated bacilli : therefore, if we fail to obtain a prophylactic serum and
have to continue the use of the bacill: themselves to produce immunity, the involution form will be preferable to the young, vigorous micro-organisms, as there will be less danger of their reproducing themselves and overcoming the animal economy before they produce immunity.

As stated in his "Investigations on the Experimental Illness Caused by the Inoculation of Degreased Tubercle Bacilli," ${ }^{2}$ Cantacuzene, experimenting on guinea pigs, only used dead bacilli of bovine origin, as they prove more fatal than those of human origin. The bacillary bodies were isolated from their environment and completely cleansed and degreased. This was accomplished by paper filtration and prolonged washing in normal salt solution, drying in a vacuum, and then submitting to the successive action of methyl-alcohol and benzine in a Soxhlet apparatus in continous circulation.

The general symptoms and cellular reactions after the inoculations both of f.ial and non-fatal doses were most carefully noted both macroscopically and microscopically in the various organs, tissues, and fluids, including the blood.

Additional cxperiments were made by submitting the degreased bodies to the action of Gram's iodo-ioduretted solution before inoculation.

His conclusions in brief are:
I. Dead tubercle bacilli completely degreased are toxic. A sufficient dose is followed by speedy death.
2. In non-fatal doses the inoculation is followed by an illness from which the animal recovers completely in about three months.
3. The inor tlated animal reacts typically to tuberculin for several weeks.
4. Degreased bodies of tubercle bacilli treated by Gram's solution lose their toxicity.
5. We can hasten enormously the resorption of the degreased bodies and of the tuberculous neo-formations by daily injections of

[^0]iodide of potassium, which stimulate to a high degree the phagocytic properties of the mononuclear leucocytes.

This brief seview of the work done during the last seventeen years in search of a cure for and a prophylactic against tuberculosis demonstrates that immunity can be produced in the lower animals at least ; yet so far our profession stands in this field of research about where it did at the beginning of that period.

We have not been wholly successful with our extracts, but with the bacilli themselves a higher degree of immunitv has been attained. For this reason I have taken the liberty on this great occasion to sum up the results accomplished in order to fix upon the minds of us all just where we stand, and to plead with you that we may unite with renewed energy in the search for the active principle, so that we may venture to use it upon the human economy without incurring the danger that must attend the introduction of the bacilli themselves in our present state of knowledge.

The Conumonwealth of Pennsylvania, covering a domain of 45,000 square miles, and maintaining a population of seven millions of people, has recently passed a great health law, which confers upon the Commissioner of Health both the funds and the authority to pursue original investigations in search of a means to combat tuberculosis.

I have, therefore, been working to obtain that substance which we know produces immunity to this disease in cattle, and yet while nothing has been obtained which will warrant results being given to the world I am tempted, because of this occasion, to suggest the line of thought upon which my new work is being executed, hoping to tempt my co-workers to help me follow out investigations to either a positive or negative conclusion.

The results of postmortems and the vaccination of cattle with tubercle bacilli have taught us that there is not only something curative, but also preventive. Tuberculin is not an antitoxin. It is a diagnostic agent, and stimulates an incapsulation of tubercle foci, and also causes a special degree of febrile reaction in tuberculous animals.

Therefore, I am injecting cows, in the tissue of the neck, with twenty cubic centimeters of concentrated tuberculin with the idea of producing a re-action, and while the temperature is rapidly rising, drawing the blood and separating the serum which is tested for its active principle by being introduced into both healthy and tuberculous animals, the re-action being carefully noted. The normal serum, of course, is also being injected into check animals.

Upon second thought I appreciated the . that we have immunity more marked in some parts of the body $\cdot \boldsymbol{n}$ in others, which suggests the possibility of the latter containing an antitoxin, yet so far we have failed, as I have said, to get an antitoxin of sufficient potency to be curative. This failure is likely due to the fact that in the first place, if it is produced by the tubercle bacillus, we have not used the right solvent. It has occurred to me, therefore, that it might be possible to obtain the antitoxin by the use of fluids from the animal (but more certainly if we take the serum from those parts of the body which are more naturally immune, like the pancreas). If this protective substance, on the contrary, is produced by the animal cells, would it not be best in making our anti-tuberculous serum to take the blood, not from the general economy, but from parts of the animal which show the greatest tendency to immunity; therefore. from the pancreatic vein.

Again, I am trying a line of experiments by intercepting the blood in the portal system, and using solvents to extract any antitoxin that it may contain before it is acted upon by the liver.

This is an intimation of the line of work now being conducted in the very newly created laboratories of the Commonwealth of Peunsylvania, too new, however, and the time allotted me by this Association too short to venture to give any further details upon this occasion. The results of the work, however, will be published by the State Government from time to time. Should these results be successful, I shall be content, in view of the great good which will accrue to humanity, regardless of credit to myself.

C-

[^0]: 'Annales de l'Institut Pasteur of Paris for November 21 st, 1905.

