CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /

Couverture de couleur

Covers damaged /

Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée etVou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches etou illustrations en couleur
Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées etou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possibl., nage / Les pages totalement ou partielle - ..t obscurcies par un feuillet d'errata, une pelure, elc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possible.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de féduction indiqué ci-décsous.

The copy filmad hera hes been reproduced thanks so the ganerosity of:

National Library of Canada

The imeges appearing here ore tha best quelity possibla considering the condition and legibility of the original copy end in keeping with the filming contrect specificetions.

Original copies in printed paper covers are filmed beginning with the front cover end ending on the last page with e printed or illustrated impression, or the back cover when epproprista. All other original copies ere filmed beginning on the first pege with a printed or lllustrated impression, end ending on the lest pege with a printed or illustrated impression.

The last recorded frame on eech microflche shall contain the symbol - (meaning "r.ON. TINUED"), or the symbol ∇ Imeening "END"I, whichevar applies.

Maps, pletes, charts, etc., mey be filmed at different reduction ratios. Those too lerge to be entirely included in one axposure are filmed beginning in the uppor left hand corner. left to right and top to bottom. as many frames as required. The following diagrams illustrete the mothod:

L'examplaire filmd fut reproduit gráce a la gđndrositd de:

Bibliothèque nationale du Canada

Las images suivantes ont ded raproduites avec le plus grand soin, compta tenu de le condition ot de la nerrert de l'oxemplaira filmet, at an conformite evec les conditions du contret de fllmage.

Les oxemplaires originaux dont le couvarture an pepiar ast Imprimde sont flimds on commengans par le premier plat ot an terminant soit par le dernidre pege qui comporte une emprainte d'Impression ou d'illustretion. soit par le second plat, selon le ces. Tous las autras exemplaires originaux sont filmés an commencent per le promitre pege qui comporte une emprainte d'impression ou d'llustretion ot en terminant par la darnidre page qui comporte una talla empreinte.

Un des symboles suivants apparaitre sur la dernidre image da chaque microfiche. selon le cas: la symbole signifie "A SUIVRE". Ie symbole ∇ signifia "FIN".

Les certes, planches, tebleaux, otc., peuvent àtre filmes à des teux de reduction difforents. Lorsque le document est trop grand pour otre reproduit on un seul cliche. il est filme a partir de l'engle supériaur gauche. de gauche à droite. et de haut en bes. en prenant le nombre d'images necessaire. Les diagremmes suivants lllustrent ie mbihode.

MICHOCOPY RESOLUTION TEST CHANT

 (ANSI and ISO TEST CHART No 2)

THE INSECT BOOK

Plate 1.

BEES ANI) ANTS

FIG.

1. Evimia appendigaster
2. Discolia nobilitata
3. Discolial bicincta
4. Camponotus pennsylvanicus
5. Spharophthalma ferruginea
6. Myzine sexcincta of
7. Discolia dubia
8. Camponotus pennsylvanicus
9. Spherophthalma occidentalis δ
10. Myzine sexcinctal
11. Hielis plumipes
12. Chrysis parvula
13. Sphxrophth:lma occidentalis?
14. Cerceris clypeallis
15. Cerceris nigrescens
fig.
16. Chrysis smaragdula
17. Colletes hyalinat:a
18. Pseudoplisus phaleratus
19. Astatus sayi
20. Apis mellifica
21. Melissodes
22. Xylocopal virginica
23. Megachile latimanus
24. Bembex spinolx
25. Ceratina dupla
26. Bombus ternarius
27. Halictus havipes
28. Epeolus remigatus
29. Bombus pennsylv:micus
30. Bombus americana $\frac{8}{}$
i. Bombus americana 3

THE INSECT BOOK. a popular account of the bees WASPS, ANTS, GRASSHOPPERS, FLIES AND OTHER NORTH AMERICAN INSECTS EXCLUSIVE OF THE BUTTERFLIES MOTHS AND BEETLES, WITH FULL LIFE histories, Tables and bibliographies

BY
LELAND O. HOWARD, Рн.D.
CHIEF OF THE DIVISION OF ENTOMOLGGY, J. S. DEPARTMENT OF AGRICULTURE

TORONTO
WILLIAM BRIGGS
1901

QL463
$+79$
1901
fol.
$p+{ }^{*} *$

Comprthit, igni, If boUPLEDAY, PAGF. \& COMPANY, June, 1w:
fRINTES RY
The Manhattan leFse
474 Wrst likualuay, N V,US A .

INTRCDUCTION.

Persolis who luve nature are apt to be long-iived and their lives are apt to be happy ones. In this country until quite recently few people have realized this iact, and whi'e notably with the Germans, and to a lesser extent with other European nations, we find a love of nature fostered through early childhood, and while there are people of all countries and all occupations who know much aboat the animals and plants which surround them. and many who make collections and study certain groups as a fad or pastime and as a relief from the daily drudgery of life, in the United States little attention has been paid to nature study in the school and in the family until within the past few years. It is true that there have been Americans who were born naturalists and who have pursued their studies in spite of uncongenial surroundings. It is true, too, that almost every country boy is a close observer in his own untrained way, and that he picks up many interesting facts about his natural history environment. But even the youngster of aecided tasies has bee too often discouraged ty his parents, and, further than that, he has few books to help him and stimulate him in the occupation to which his tastes direct hım.

Recently, nowever, a great nature study movement has sprung up amongst us and in this movement the study of insects must play an important part. They are the most easily observed of living creatures. They abound everywhere-in the fields and woeds, in the door-yards, and, unfortunately, even in the household. Subjects for observation are never lacking, and although some prejudice exists against them as insignificant crawling creatures and in large part nuisances and pests from a human standpoint, yet their structure is wonderful, their life histories are most interesting, and among them may be found a wealth of material for the study of broad iife problems of the utmost biographical importance. 1 know a stock broker, an insurance agent, a commercial traveler, a hotel clerk, a minister of the Gospel, a keeper of a beer saloon, a portrait painter, a hardware merchant, a stonecutter an iron founder, a carpenter and builder

Introduction

a wholes:ale wine merchant, a lawver, a chemist, an undertaker, a librarian. an army officer, a navy officer, and any number of physicians and teachers who take the greatest delight in the study and collection of insects. Heaven will bless the oldfashioned country doctor for his self-sacriticing life and the good he has dolce to humanity. That will everywhere be granted. but he deserves an additional star in his immortal crown for the fact that he was the original naturalist in this country. Very many of our early workers were country doctors, and it has been through their influence that many naturilists have been made.

The principal aim of this book is to encourage the study of a rather neglected aspect of nature. The groups of insects which it considers are of very great extent. The wealth of material is so great that it has been only with the greatest difficulty that the book has been held within reasonable bounds. We have other books on insects, many of them much better from several points of view than this can hope to be, yet there has been a distinct object in writing this one, and if I had not thought that it was needed I should never have written it. One of the main desires in my mind in planning the method of treatment has been to encourage the study of life histories of insects. Where possible a typical life history has been given in each family treated. Some of these are moderately complete as to main facts, while others leave gaps in the life-round of the species. Such gaps can in many instances be easily filled by careful study. In a number of important anu interesting groups, however, no typical life history can be given for the simple reason that no one has ever devoted sufficient care and time to the subject. The army of nature workers now springing up should not devote their whole time to the well-trodden paths of long known and clearly ascertained truths when they might just as easily, if they knew just where to look and what to do. study some unknown life-round and learn exact facts which would be contributions to know!edge. Professor L. C. Miall. of England, who has written several most interesting books on insects. has been a leader in this kind of work, hut in this country very few perfectly complete life histories have been worked out. Most of these have been done by economic entomologists, and hence nearly all that we know are of insects of economic importance. Very many others, however, of which we are more or less ignorant, offer

Introduction

fields of study of fascinating interest and through such study will undoubtedly come discoveries of much biological importance. Most books tell what is know'h. but hire we shall try also to point out what is not thnoun but which. hevertheless, can he more or less easiḷ fount out.

Something more is necessary, however, than life history study alone. One must know the relations of the creature he is studying and, moreover, he must know exactly what it is. Therefore synopuc tables of the larger groups have been given, and, in addition to this, full title references have been giver to all works and papers which will assist in the determinatic n of exact species in each of the larger groups. In this way an attempt hals been made in the first place to foster the study of life histories; in the second place to write in popular style an account of these insects which will interest perhaps those who know litle about insects and who wish to find out something about them in the easiest way; and, thirdly, to put those who have an earnest wish to go deeply into the study in possession of information which will enable them to follow their $\mathrm{s}^{*}, \because, \mathrm{~s}$ much further than this book or any other one book can take ifem.

The choice of the groups of insects treated in the volume may seem odd, but there are good reasons for it. The majority of collectors of insects confine their attention to butterllies, moths, and beetles. The butterflies and moths are most attractive from several points of view and the beetles are compact, easily preserved and easily collected insects, whose classification is most exact and more available than that of almost any other group. The butterflies of the United States have already been admirably theated in a volume of this series-"The Butterfly Book "-by the eninent naturalist, Dr. W. J. Holland, and the same author is preparing a moth book. The beetles need a book by themselves, and such a volume will eventually be prepared. The insects of the other orders have been more neglected and since nevertheless their study is quite as interesting and perhaps even more so than that of the beetles, butterflies and moths, a special oook maly well be given to them.

It has been the endeavor of the author and publishers to illustrate the present volume as profusely as possible. The plates are all original, iinving been photographed from insects either collected especially for the purpose or taken from the collection

Introduction

of the United States National Museum. The text figures for the most part are printed from, electrotypes made from blocks which are the property of the United States Department of Agriculture, and many of them have illustrated previously published articles by the writer.

A word must be said in regard to the literature references which follow the consideration of most of the groups. Nearly all of the papers mentioned have been published either by Government institutions or by learned societies and scientific periodicals. Very feu of them have been published as separate books, but such as have been published in this way, if of comparatively recent date, may be obtained from book dealers. The periodicals and transactions of scientific societies may be obtained through the societies which publish them and through the publishers, but in the case of Transactions and Proceedings, single volumes, and more especially single papers, are seldom sold, and the older ones are liable to be out of print. Moreover, the expense ol purchasing all of the periodicals containing the publications on the different groups of insects will be so great that few workers can afford it. But there is a custom among writers on these topics of securing a certain number of separate copies of their papers. and these are freely distributed, so that it often happens that a person interested can obtain al copy of a scientific paper by writing to the author. The Aınerican Entomological Society, of Philadelphia, has published a little directory containing the names and addresses of those interested in the study of insect life is the United States and Canadil, and from this directory the addresses of all living writers on insects in North Americal can be obtained. Many of these "author's seigrates" can be purchased fiom dealers in second-hand books, and the American Entomological Society, of Philadelphia, and a few other societies here and in Europe offer many of these author's extras for sale, and in some cases publish lists. Moreover, there are certain establishments through which the student can buy nearly all of the works and separates which he needs. These are dealers in natural history books and papers, and many of them publish catalogues which are sent free on application. Bulletin 24, new series of the Division of Entomology. United States Department of Agriculture, contains a list of these dealers which publish catalogues, and this bulletin is sent freely to all applicants.

Introduction

Many systematic papers have been published by the United States Governinent through the Smithsonian Institution, the National Museum, the Departinent of Agriculture, and the Geological and Geographical Surveys. Many of these publications are distributed free of cost to applicants, while others are sold at a moderate price to cover the :ost of publicusion. There is a Government institution known as the Office of the Superintendent of Documents, Union Building, Washington, which publishes lists of Government publications and sends them free of charge to applicants. Frum these lists one can see what has been published and what is still on hand. for distribution, and what price must be paid for the available ones. Many of them are out of print. but these can be obtained tirough dealers in second-hand books. There are two large firms of such dealers in Washington. and these make a specialty of Government publicatiens. They are: W. H. Lowdermilk \& Company, Corcoran Building. and Lewis S. Hayden, 1212F street, N. W.

The subject of how to collect and preserve the different kinds of insects mentioned in this book is treated in al separate section at the end of the volume.

The writer owes warm thanks to several of his associates in Washington, all of whom are specialists in certain groups of insects, for advice and suggestions. These are Mr. W. H. Ashmead, the results of whose labors in the Hymenoptera have been so largely used, and who has read the section relating to this important order; Mr. D. W. Coquillett, a well-known writer on Diptera, who has prepared the table of the higher groups of this order which is given in this volume and who has read the manuscript of the Diptera; Mr. O. Heidemann. to whom the writer is indebted for information concerning the Heteroptera, and who has loaned specimens for illustration from his private collection: Mr. Nathan Banks and Mr. Rolla P. Curric, who have helped with .u. rice regarding the portions of the book which relate to the insects of the Neuropteroid series; Mr. F. H. Chittenden, who has loaned for illustration insects from his private collection; Mr. F. C. Pratt, whose excellent work in the resetting of the insects illustrated on the plates and in the arrangement and mounting of the plates, a most difficult and laborious task, will. 1 trust. be appreciated by the reader.

I wish especially to thank Dr. E. P. Felt, State Entomologist

Introduction

of New York, for allowing me to examine the manuscript of an admirable report on aquatic insects, prepared by lir. J. G. Needham, and which will be published in Bulletin 4^{8} of the New York State Muscum.

TABLE OF CONTENTS

Introductior. Page
List of Plates v
List of Text lllustrations xix
Order Hymenoptera xxi
Table of Suborders and Superfamilies 1
The True Beis (Superfamily Aporded) 2 2
Life History of a Bumble Bee (Bombus fervidus) 4
Wasps 12 12
The Solitary Wasps (Superfamily sifhecoidia) 18
Life History of a Digger Wasp 'Sphecius speciosusSay.)
The Social Wasps and Their Allies (EsperfamilyVespoidea)
Typical Life History 25
Life History of a Parasitic Wasp (Lathas trogoter-matis)
The Ants (Superfamily formicoi,te,i) 34
Typical Life History 37
The Proctotrypid Parasites (Superfamily Proctorve poideal
The Gall-Flies (Superfamily Cerimipoded) 49 49
The Chalcis Flies (Superfamily Chalcidoidea) 53
Life History of a Chalcis Fly (Euplectrns comstocki How.)
The Ichneumon Flies (Superfamily Iihnenmonoided) 57 57
Life History of an Ichr: :mon Fly (Pimpla inyur- sitor,
rr.e. Horn-Tails (Superfamily Siricoidea) 64 64
Life History of a Horn-Tail (Phyllocus integer) 69 69
The Saw-Flies (Superfarnily Tenthredinoidea) 7 7
Life History of the Pear Slug (Eriocampoites limacina)
The True Flies (Order 1)iptera) 76
xi 79

Table of Contents

Table of the Higher Groups 8
The Crane Flies (Family Tipulida) 94
Life History of a Crane Fly (Bittacomorptha (tuzipe's) 95
Families Dixida and Stenoxen
Mosquitoes (Family Cullicida) 98
Life History of a Mosquito (Culex pungens) 104
The Moth Flies (Family Psychodida) 108
The Midges (Family Chironomida) 110
Life History of a Midge (Chironomus minutus) 111
The Gall-Gnats (Family Cecidomyiidar) 113
Life History of a Gall-Gnat (Cicidomyiategumini- cold) 115
Fungus Gnats (Family M1retophilidir) 117
The March Flies (Family Bibionida) 119The Black Flies and Buffalo Gnats (Family Simulii-$d x)$.120
Life History of a Black Fly (Simitium pictipes) 121
Families Orphnephilidx. Blepharocerida and Rhy- phidit 124
The Snipe Flies (Family Leptidar) 126
Soldier Flies (Family Strationviida) 128
Family Acanthomeridr 130
The Gad-Flies or Horse-Flies (Family Tabunida) 131
Life History of a Gid-Fly (Talanns atrutus) 132
The Small-Headed Flies and the Tangle-Veined Flies (Families Acrocerita and Nemestrinidar). 134
Families Mrdatar and Apioceridtr 136
The Bee-Flies (Family Bombriitav) 1 17
Life History of a Bee-Fly (Sistachus orias) 138
The Window-Flies and Stiletto Flies (Families Sce- nopinita and Therecidor) 139
The Robber Flies (Fimily Asilidto). 141
The l)ance Flies and the Long-Legged Flies (Families Empidtida and Dolichopodidar) 144
The Spear-W'inged Flies (Family Lonchopteride) 1.46
The Hump-Backed Flies (Family Ploridw) 147
Life History of the Ant-Decapitating Fly (Apoct- phulus pergundic) 147
Table of Contents
The Flat-Footed Flies and the Big-Eyed Flies (Families Platyperidar and Pipunchlidar)
Page
The Syrphus-Flies (Family Syrphida)
The Syrphus-Flies (Family Syrphida) 149 149
The Thick-Headed Flies (Family Conopida) 150 150
The Bot-Flies (Ostritir) 154 155 155
Life History of a Bot-Fly (Hypoderma lineata)
Life History of a Bot-Fly (Hypoderma lineata)
The Tachina Flies (Family Tachinidar) 155
The Nimble Flies (Family Dexiida) 158
The Flesh Flies (Family Sarcophagita) 162
The House Fly and Its Near Relations (Family Muscidar)
Life History of the House Fly © Muscal domes- 166tica).
The Anthomyia Flies (Fumily Anthomyiida) $16=$
The Dung Flies (Families Scatophagidar and He\%- eroneuridar) 171
Families Helomvida, Phycodromida and Sciomp- 173
id $i d x$
Families Sapromvidide, Lonchatidar and Ortalidar 174
The Fruit and Gall Flies (Family Trupetidor) 175
Families Micropeidur, Sepsidar, Psilidra and Diop- sidur. 177
The Salt Water Flies (Family Ephodrida) 179
The Grass-Stem Flies (Family Oscinida) 182
The Little Fruit Flies (Family Drosophilida) 183 183
Families Geomp iddr, Agromeviddr and Borboridar 185
The Bird-Ticks (Family Hippoboscidro) 187
The Bat-Ticks (Family Nycteribidide) 188 188
Fleas (Order Siphonaptera) 190
Life History of the Cat and Dog Flea (Putexserraticets)
The Caddis-Flies (Order Trichoptera)
193
193
Table of Families 195
Family Phrvgancidar 197
Family Limnephilidr 198
Family Rhyacophilita 199
Family Hidroptilidar 200
Family Sericostomatidar 201
Family Letiocerida 202
Family Hivdropswhidr 203
xiii 204
Table of Contents Pader
The Scorpion Flies (Order Mecoptera) 206
Family Panorpidar
Family Panorpidar Life History of a Scorpion Fly (Panorpa rufes-207
cens). 209
The Lace-Winged Insects (Order Neuroptera) 210
Table of Families 211
The Dobson and Its Family (Family Siatidix)
The Dobson and Its Family (Family Siatidix) 212
Life History of the Dobson (Cory 216
The Snake-Flies (Family Raphicitiar) 217
The False Rearhorses (Fam: y Miopterygida) 219
The Dusty-Wings (Family Comeleonid) 219
The Ant-Lis (Fams (Fanily Hemerobii,da) 221
The Golden-Eyed La_c-Winged Flies (Family Chry- 222oculata) . True Bugs, Etc. (Order Hemip-Plant-Lice, Scale Insects, True Bugs, Etc. (Order Hemip-226
tera) 227
Table of Suborders. 228
Suborder Homoptera 229
Table of Families 231Life History of the Seventeen-Year Locust233
sopidar) - of the Golden-Eye (Chrysopa Life History of the Golden-Eye (Chrysopas 224
(Cicada septendecim)235
The Lantern Flies and Their Allies (Family Futgori-Life History of the Frosted Lightning Hopper236
(Ormenis pruinosa) 237
The Tree Hoppers (Family Mimbracida)
239
Life History of the Buffalo Tree Hopper (Ceresabubalus)
The Frog-Hoppers or Spittle Insects (Family Cerco-241
pidu) 243
The Leaf-Hoppers (Family fassitur) Deitocephatus
Life History of a Leaf-Hopper (..... 245
inimicus) 246
The White Flies or Aleyroutd (Fume Aleyrodes citri) 247
Life History of al White Fly 250Scale Insects (Family Coccidx)

Table of Contents

Life History of the Oyster-Shell Bark-Louse of pag.
the Apple (Mytilaspis pomorum) The Jumping Plant-Lice or Flea-Lice (Family Psyllida 255
Life History of the Pear Tree Psylla (Psylla pyricola)
Plant-Lice (Family Aphidida) 260
Life History of the Hop Plant-Louse (Phorodon hnmuli)
265
265
The True Bugs (Suborder Heteroptera)
269
269 Table of Families Table of Families
270
270
The Water Boatman (Family Corixida)
The Water Boatman (Family Corixida)
273
273
The Back Swimmers (Family Notonsectida)
The Back Swimmers (Family Notonsectida)
275
275
The Water Scorpions (Family Nepida)
The Water Scorpions (Family Nepida)
276
276
The Giant Water Bugs (Family Belostomatida)
The Giant Water Bugs (Family Belostomatida)
278
278
280
280
The Toad Bugs (Family Galguidia)
The Toad Bugs (Family Galguidia)
The Creeping Water Bugs (Family Naucorida)
The Creeping Water Bugs (Family Naucorida)
281
281
The Marsh Treaders (Family Linnobatida)
282
282
The Water Striders (Family Hydromelrida)
283
283
Life History of a Water Strider (Hydrometra lineata)
The Flower Bugs (Family Anthocoridx) 285
The Bed-Bug Family (Family Cimicidia) 287
Life History of the Bed-Bug (Cimex lectularius) 288 288
The Shore Bugs (Family Saldidiv) 289
The Thin-Winged Bugs (Family Henicophalida) 291
The Assassin Bugs (Family Reduviidae) 292
Life History of the Wheel-Bug (Arilus crista:e:: 293
The Ambush Bugs (Family Phrmatida) 294
The Flat Bark-B.ıgs (Family Aradida) 297
The Lace Bugs (Family Tingitida) 298
Life History of the Hawthorn Lace-Bug (Cory- 299 299thuca arcnati,)
The Leaf-Bugs (Family Capsidx) 300
Life History of a Leaf-Bug (Parcilocapsus
lineatus) .
The Squash-Bug and Its Allies (Family Coreida) 302 304
Life History of the Squalsh-Bug (Anasa tristis)
Life History of the Squalsh-Bug (Anasa tristis) The Cotton Stainer and Its Allies (Family Purritioco- 305 rid x^{\prime}).307
Life History of the Cotton Stainer (Dysdercus308

suturellus).
The Stilt Bugs (Family Berytida) 309
The Chinch Bug Family (Family Lygarida) 310
Life History of the Chinch Bug (Blissus leucop- terus) 311
The Stink-Bugs and Their Allies (Family Pentato- mida) 313
Life History of a Stink-Bug (Podisus cyaneizelt-
tris)
tris) 314 314
The True Lice (Suborder Anoplura) .
The True Lice (Suborder Anoplura) 316 316 316
Thrips (Order Physopoda) 318
Grasshoppers, Katydids, Crickets, Etc. (Order Orthop- tera) 320
Table of Families 322
The Walking Sticks (Family Phasmida) 323
Life History of a Walking Stick (Diapheromera femorata) 323
Rear-Horses or Praying Mantids (Family Mantida) 326
Life History of a Rear-Horse (Staguomantis carolita) 327
Cockroaches (Family Blattida) 329
Short-Horned Locusts or True Grasshoppers (Family 332
Life History of a Grasshopper (Melanoplus at-
lanis)
lanis) 334 334
Long-Horned Grasshoppers (Family Locustidix) 336
Life History of a Katydid (Microcentrum retin- (rvis) 339
The Crickets (Family Gryllidir) 341
Earwigs (Order Euplexoptera) 345
Bird Lice (Order Mallophaga) 347
iable of Families 349
The Book-Live and Their Allies (Order Corrodentia) 350
White Ants (Order Isopteri) 353
The Stone Flies (Order Plecopter:a) 361
Dragon Flies (Order Odonata) 363 363
Table of Families 369 369
Damsel Flies 370
Family Caloptervida 370

Table of Contents
Family Agrionidar pacik
True Dragon Flies 371
Family Gomphidar 372
Family Cordulegastrida 372
Family Aschnida 373
Family Corduldde 374
Family Libellulida 375
May Flies or Shad Flies (Order Ephemerida) 376
Spring-Tails and Fish-Moths (Order Thysanura) 377
Suborder Cinura 380
Family Lepismatida 381
Family Japygida 382
Family Campodeida 384
Suborder Collembola 384
Family Aphorurida 385
Family Poduridar 386
Family Entomobryidae 386
Family Symuthurida 387
Family Papiriida 388
Collecting and Preserving Insects 388 389
Collecting Apparatus
Collecting Apparatus
Points on Methods of Collecting Different Orders 389
Collecting Aquatic Insects 394
Rearing Different kinds of Insects 395
Killing and Preserving Insects 396
Preparing Insects for the Cabinet 401
Bibliography 401405

LIST OF PLATES

Plate I. Bees and Ants Frontispiece
Plate II. Bees facing Pag;
Plate III. Bees 2
Plate IV. Wasps and Bees 10
Plate V. Wasps 18
Plate VI 24
Plate VII. 30
Plate VIII. Wasps, Ants and Ichneumon Flies 36
Plate IX. Ichneumon Flies and Chalcis Flies 46
Plate X. Ichneumon Flies 56
Plate XI. Wasps 50
Plate XII. Saw-flies and Horn-tails 68
Plate XIII. 76
Plate XIV. Saw-flies 8.
Plate XV. True Flies 92
Plate XVI. 104
Plate XVII. 116
Plate XVIII. 128
Plate XIX. 140
Plate XX. 152
Plate XXI. 164
Plate XXII. 176
Plate XXIII. Neuropteroid Insects 188
Plate XXIV. 208
Plate XXV. 218
Plate XXVI. 228
xix 238
List of Plates
Plate XXVII. Bugs, Leaf-hoppers and Cicades 248
Plate XXVIII. Cicadas and Leaf-hoppers 256
Plate XXIX. True Bugs 266
Plate XXX 278
Plate XXXI. 280
Plate XXXII. Miscellaneous Orthoptera 288 288
Plate XXXIII. Long-horned and Short-horned Grasshoppers 296
Plate XXXIV. 328
Plate XXXV. Miscellaneous Orthoptera 336
Plate XXXVI. Short-horned Grasshoppers or True Locusts 342
Plate $X X X \backslash I I$. 346
Plate XXXVIII. 352
Plate XXXIX. 358
Plate XL. Dragon flies 364
Plate XLI. 368
Plate XLII. 370
Plate XLIII. 374
Plate XL.IV. 376 378
Plate XL.V.
Plate XL.V.
Plate XLVI. 380
Plate XLVII. 384
Plate XLVIII. 383

LIST OF TEXT ILLUSTRATIONS

Fig. 1. Head and tongue of worker bee
4
4
Fig. 2. Heads of queen and drone
5
5
Fig. 3. Queen cells and worker brood of honey bee 7
Fig. 4. Queen of the common honey bee 7
Fig. 5. Legs of different bees
8
8
Fig. 6. Legs of different bees
9
9
Fig. 7. Sphecius speciosus carrying Cicada to its burrow
23
23
Fig. 8. Adult Cicada bearing eggs of Sphecius
23
23
Fig. 9. Larva of digger wasp in Cicada burrow
24
24
Fig. to. Same, spinning its cocoon
24
24
Fig. II. Immature stages of the digger wasp
24
24
Fig. 12. Cocoon of same
Fig. 12. Cocoon of same
25
25
Fig. 13. Polistes pallipes
25
25
Fig. 14. Polistes rubiginosus
Fig. 14. Polistes rubiginosus
26
26
Fig. 15. Odynerus flavipes and its nest in a spool
31
31
Fig. 16. Tinh!a inornata
Fig. 16. Tinh!a inornata
31
31
Fig. 17. Chrysis sp.
Fig. 17. Chrysis sp.
31
31
Fig. 18. Lælius trogodermatis
Fig. 18. Lælius trogodermatis
35
35
Fig. 19. Goniozus sp. parasitic on larve of codling moth
36
36
Fig. -o. Solenopsis xyloni
Fig. -o. Solenopsis xyloni
37
37
37
Fig. 21. Crematogaster lineolata
Fig. 21. Crematogaster lineolata
38
38
38
Fig. 22. Monomorium minutum
Fig. 22. Monomorium minutum
39
39
Fig. 23. Tetramorium cæspitum
Fig. 23. Tetramorium cæspitum
40
40
Fig. 24. Ants at play
Fig. 24. Ants at play
46
46
Fig. 26. Bæus americanus 50
Fig. 27. Cynips spongifica 51
Fig. 28. Diastrophus nebulosus 53
Fig. 29. Pachyneuron micans 54
Fig. 30. Chalcis ovata 50
Fig. 32. Larve of Euplectrus comstockii 57
Fig. 33. Pupx of same 58 58
$x \times i$ 58

List of Text Illustrations

Fig. 34. Adult of same 59
Fig. 35. Thalessal lunator 62
Fig. 36. Same 63
Fig. 37. Polysphinctar dictyna 63
Fig. 38. Pimpla inquisitor 64
Fig. 39. Same, early stages 65
Fig. 40. Same, cocoons 67
Fig. 41. Tremex columba 70
Fig. 42. Cephus pygmaus 70
Fig. 43. Phyllacus integer 71
Fig. 44. Cimbex americana 74
Fig. 45. Nematus similaris 75
Fig. 46. Nematus marylandicus 75
Fig. 47. Eriocampoides linıacina (Pear Slug) . . . 76
Fig. 48. .. " 77
Fig. 49. . " \quad. . . . 77
Fig. 50. \quad.. \quad. . . . 78
Fig. e,t. Pachyrrhinasp. 94
Fig. 52. Anopheles punctipennis 98
Fig. 53. Culex taniorhynchus 99
Fig. 54. Anopheles maculipennis 100
Fig. 55. " $"$. . . . 101
Fig. 56. " larva and Culex larva . . . 102
Fig. 57. .. pupa and Culex pupa . . . 103
Fig. 58. Psorophora ciliata 104
Fig. 59. Culex pungens 105
Fig. 60. . $\quad . \quad$. 106
Fig. 61. Chironomus larva 110
Fig. 62. . plumosus 111
Fig. 63. Cecidomyia trifolii 113
Fig. 64. Diplosis resinicola 114
Fig. 65. .. pyrivora 114
Fig. 66. Cecidomyia leguminicola 115
Fig. 67. Sciara tritici 117
Fig. 68. Bibio albipennis 119
Fig. 69. Simulium meridionale 120
Fig. 70. " invenustum 121
Fig. 71. " 121
Fig. 72. " 122
Fig. 73. " ornatum 123

Liet of Texi Illubtrations

Fig. 74. Chrysops fugax
 Pafie

75. Tabanus atratus 131
-ig. 76. Anthrax hypomelas 132
Fig. 77. Systochus oreas 137
Fig. $78 . \quad$. \quad. \quad. . . . 138
Fig. 79. Scenopinus fenestralis 138
Fig. 80. Erax bastardi 139
Fig. 81. " apicalis 141
Fig. 82. Mesograpta polita 142
Fig. 83. Eristalis tenax 150
Fig. 84. Rat-ailed maggot 151
Fig. 85. (Estr s ovis 152
Fig. 86. Hypocierma lireata 155
Fig. 87. Winthemia quadri-pustulata 156
Fig. 88. Euphorocera claripennis • . . . 158
Fig. 89. Compsomyia macellaria 159
Fig. 90. Lucilia cæsar 163
Fig. 91. Calliphora erythrocephala • . . . 163
Fig. 92. Sarcophaga sarraceniz 164
Fig. 93. Hamatobia serrata 105
Fig. 94. Morellia micans 166
Fig. 95. Stomoxys calcitrans 167
Fig. 96. Musca domestica 167
Fig. 97. Homalomyia brevis 168
Fig. 98. Pegomyia vicina 171
Fig. 99. Scatophaga furcata 172
Fig. 100. Chxtopsis ænea 173
Fig. 101. Trypeta signalis 175
Fig. 102. Sepsis violacea 177
Fig. 103. Piophila casei 179
Fig. 104. Nemopoda minuta 180
Fig. 105. Hippelates plebejus 180
Fig. 106. Gaurax anchora 183
Fig. 107. Drosophila ampelophila 184
Fig. 108. Sphxroceral subsultans 185
Fig. 109. Olfersia americana 187
Iig. 110. Melophagus ovinus 188
Fig. 111. Nyct-ribia sp. 189
Fig. 112. Pulcis serraticeps 190
Fig. 113. Sarcopsylla gallinacea 191
xxiii

Lise of Text Illustrations

Fig. 114. Caddis fly and larva. 195
Fig. 114. Caddis fly and larva. 21
~ 15. Nest of Hydropsyche
Fig. 110. Hydropsyche sp. (larva) 204
Fig. 117. Corydalis cornuta 213
Fig. 118.
Fig. 119. Chrysopa plorabunda 222
Fig. 120. ." oculata 223
Fig. 121. ." ". 225
Fig. 122. Cicada septendecim 231
Fig. 123. " . (work) 231
Fig. 124. "A (eggs) 232
Fig. 125. ". " (work) 233
Fig. 120. ". " (larva) 234
Fig. 127. Helicoptera sp. 235
Fig. 128. Scolops sulcipes 235
Fig. 129. Otiocerus coqueberti 235
Fig. 130. Ceresa taurina 237
Fig. 131. ." " 238
Fig. 132. Enchenopa binotata 238
Fig. 133. Archasia galeata 239
Fig. 134. Ceresa bubalus 239
Fig. 135. " 240
Fig. 136. Monecophora bicincta 241
Fig. 137. Proconia undata 24?
Fig. 138. Thamnotettix clittelerius 243
Fig. : 39. Erythroneura vitis 244
Fig. 140. Aleyrodes citri 246
Fig. 141. Diaspis pentagona 250
Fig. 142. Diaspis pentagona 250
Fig. 143. 251
14. . \quad rosx 252

Lecanium nigrofasciatum 252
F1. Dactylopius citri 253
Fig. 148. .. longifilis 253
Fig. 149. Pulvinaria innumerabilis 254
Fig. 150. Mytilaspis pomorum 255

Fig. 153. Pachypsylla venusta O. S. 259

List of Text Illustrations

lig. 154. Pear tree Psyll. Parie
Fig. 155. 260
Fig. 156. 261
Fig. 157. Nectarophora (destructor) pisum 261
Fig. 158. Phylloxera vastatrix 262
Fig. 159. 263
Fig. 160 263
Fig. 1 (1. 264
Fig. 162. Phorodon humuli 264
Fig. 163. 266
Fig. 164. 266
Fig. 165. 267
Fig. 166. 267
Fig. 167. Corixa interrupts Say 268
Fig. 168. Notonecta undul ta 273
Fig. 169. Nepa cinerea 275
Fig. 170. Ranatra fusca 276
Fig. 171. Ambrysus signoreti 277
Fig. 172. Galgulus oculatus 280
Fig. 173. Linınobates lineata 281
Fig. 174. Gerris (Hygrotrechus) rennigis Say 282
Fig. 175. Rheumatobates riley 283
Fig. 176. Triphleps insidiosus 284
Fig. 177. Aciacus hirundinis 287
Fig. 178. Cimex lectularius (young) 288
Fig. 179. 289
Fig. 179a. Henicocephalus culicis 290
Fig. 18o. Conorhinus sanguisuga 292
Fig. 181. Reduvius personatus 293
Fig. 182. Rasahus biguttatus 293
Fig. 183. Melanolestes abdominalis 294
Fig. 184. Milyas cinctus 294
Fig 185. Einesa longipes 294
Fig. 186. Arilus cristatus 295
Fig. 187. Phymata wolfif 296
Fig. 188. Aradus robustus 297
Fig. 189. Gargaphia angulata 298
Fig. 190. Corythuc: arcuatt:a 299
Fig. 191. " " (eggs) 299
Fig. 192. Piesma cinere: 300 300
$x \times$ 300
List of Text Illustrations
Fig. 193. Halticus uhleriPag:
Fig. 194. Paecilocapsus lineatus 302 302 03
Fig. 195. Leptoglossus phyllopus
Fig. 196. Metapodius femoratus 301 304
Fig. 197. Corizus hyalinus
Fig. 198. Leptocoris trivittatus , ,
Fig. 199. Anasa armigera 305 305 306
Fig. AD. Ans succinctur
Fig. AD. Ans succinctur Fig. 200. Largus succinctus 307
Fig. 201. Dysdercus suturellus 308
Fig. 202. Myodocha serripes 310
Fig. 203. Nysius angustatus 311
Fig. 204. Blissus leucopterus 311
Fig. 205. 312
Fig. 206. 312
Fig. 207. Murgantia histrionica 313
Fig. 208. Euschistus variolarius 313
Fig. 209. Corimelena pulicaria 314
Fig. 210. Brochymena annulata 314
Fig. 211. Stiretrus anchorago 315
Fig. 212. Pediculus capitis 316
Fig. 213. Thrips tritici 318
Fig. 214. Diapheromera femorata 324
Fig. 215. Stagmomantis carolina 326
Fig. 216. (eggs) 328
Fig. 217. Periplaneta americana i29
Fig. 218. Ectobia germanica, different stages 330
Fig. 219. Periplaneta orientalis ;31
Fig. 220. Melanoplus devastator ; 32
Fig. 221. Schistocerca americana 332
Fig. 222. Romalea micropteria 333
Fig. 223. Melanoplus spretus, laying eggs 334
Fig. 224. Orchelimum vulgare, and eggs 336
Fig. 225. Song note of Cyrtophyllum concavum 337
Fig. 226. Microcentrum retinervis 338
Fig. 227. Diy song of Scudderia angustifolia 339
Fig. 227a. Night 339
Fig. 228. Gryllus assimilis 341
Fig. 229. domesticus. 341
Fig. 230. Anabrus simplex 342
Fig. 231. Song note of the mole cricket 342

List of Text Illustrations

Fig. 232. Song note of the field cricket . . . ${ }_{34}$ Pam
Fig. 233. Day song of the snowy tree cricket . . 343
Fig. 234. Night , ". . 343
Fig. 235. Song ithe wive criciot • • 343
Fig. 236. Forfir.Ala sp. 344
Fig. 237. Menr nal biseriaturi 345
Fig. 238. Gonic cut s abdumina's • . . . 347
Fig. 239. " dissumal. • • . 348
Fig. 240. Atropos divinatoria 349
Fig. 241. Termes flavipes, male and female . . . 350
Fig. 242. ". " false queen, workers and di 353
Fig. 243. Plathemis lydia
Fig. 244. Lepismal domestica 363
Fig. 245. .. saccharina 382
Fig. 246. Lepidocyrtus americanus 383
Fig. 247. "، ". side view and enar . 386
Fig. 248. The hand net frame side view and enlarged parts 387
Fig. 249. The Sanborn net frame 390
Fig. 250. Beating net or sweeping net 390
Fig. 251. A good hand net 390
Fig. 252. Small water dip net 391
Fig. 253. A fumigator 391
Fig. 254. A good haversack 392
Fig. 255. The umbrellit and its mode of use . . . 393
Fig. 256. The Riley breeding cage 393
Fig. 257. The Comstock improved base for breeding case 396
Fig. 258. A good simple aquarium 400
Fig. 259. Pocket cyanide bottle 400
Fig. 260. Spreading board for Lepidoptera . . . 401
Fig. 261. Insect mounted on cardboard triangle . . 402
Fig. 262. Triangle punch . . . 402
Fig. 203. Points for mounting insects 402
Fig. 264. The Marx tray for alcololic specimens . . 403

THE INSECT BOOK

ORDER HYMENOPTERA

This great order of insects, which contains the bees, wasps, ants, gall-flies, saw-flies, ichneumon-flies and related forms 's unsurpassed in interest by any other group of animals. It is a very large order, and comprises nearly 30,000 described species; but the enormous number of undescribed species, particularly of the smaller parasitic forms inhabiting tropical regions and other out-of-the-way localities would probably swell this :umber to more than 300,000 . To indicate the work still to be done in this order it is safe to say that a day's collecting in Central Park. New York, almost under the windows of the great American Museunn of Natural History, or in Logan Square, Philadelphia, within 200 yards of the Academy of Natural Sciences, would result in the capture of a number of species new to science. But the size of the order is its least important and interesting feature. The very great variation in habits and life history, the wonderful social organization of the bees, ants and some wasps, the seeming marvellous intelligence of these crealtures, the remarkable adaptations of structure to environment, the extraordinary interrelations and interdependencies of species seen with the members of the parasitic families, the strange vital $⺊$ 'enonrena of sex-abortion, of virgin birth or parthenogenesis, and the wonderful plant deformations brought about by the gall-makers, unite to render the Hymenopteral a tield of study of never-ending interest.

As a group the Hymenoptera are distinguished from other insects by the following points: Their metamorphoses are complete. their mouth parts are mandibulate, and in most families formed for biting, although in the bees they are so modified as to form a sort or proboscis, and the females are furnished with an extensile sting or ovipositor. All have four wings, of which the hind pair is smaller. The wings are membranous, usually transparent, bear no scales, and are divided by veins or nervures, as they are inappropriately and misleadingly called, into a comparatively small number of cells.

On account of the great diversity of form and structure which exists within these limits, the Hymenoptera have long
been divided into many families and subfamilies. Mr. W. H. Ashmead of the United States Natonat Muscum, whose great work on this order has placed him at the head of all living anthorities on the Hyinenoptera, has recently given us as the result of his prolonged studies an armarement of this enormous complex of foms into ten super-families. and for the sake of simplicity our consideration of the order will follow his classification at the risk of some slight temporary confusion in the minds of those familiar with other general works on insects. The correspondence between physical structure and habits and mode of life, however, is so marked in the Hymenoptera, that these structural super-families are really habit super-families as well.

Economically considered the Hymenopteril as a whole is a beneficial group in its relation to man. Aside from the money industry dependent upon the honey bee, thousands of the parasitic forms destroy noxious insects, very many forms are of the utmost importance as cross fertihizers of trees and plants, and certain galls have a distinct value in commerce.

In the different aspects of the study of this great group there is room for a small army of workers.

TABLE OF SUBORDERS AND SUPER-FAMILIES.

Sulorider HETEROPHAGA, Ashmead. Abdomen much narrowed at its attachment to the thorax. Larvae legless.

Suhordir PHYTOPHAGA, Latreile. Abdomen broad at its attachment to the thorax. Larva with legs.

Heterophaga.

Underside of last segment of the abdomen not divided iongitudinally; the sting or ovipositor, when present, always issuing from the tip of the abdomen......... I
Underside of last segment of the abdomen divided: ovipositor issuing some distance before the tip of abdomen; trochanters always two-jointed.
1-Pronotum not extending back to the tegulx. 2
Pronotum extending back to tegulx, or the latter are absent. 3
-1! 1

Plate II.

BEES

HIG.

1. Bombus terricola ?
2. Bombus moderatus
3. Bombus nevadensis
4. Bombus bimaculatus f
5. Bombus terricola \&
6. Bombus affinis
7. Bombus sonomax
8. Bombus bimaculatus ?
9. Bombus bifarius
10. Bombus vagaths
11. Emphoropsis miserabilis
12. Bombus fervidus
13. Bombus improbus
14. Apathus insularis

HIG.
15. Bombus californicus
16. Anthophora smithii
17. Anthophora edwardsii
18. Eusynhalonia edwardsii
19. Synhalonia atriventris
20. Amegilla marginata
21. Anthophora occidentalis
22. Apathus laboriosus
23. Apathus citrinus
24. Anthedon comptal
25. Xylocopa aencipennis
26. Xylocopa orpifex
27. Xylocopa texana

2-Tarsi dilated or thickened; hairs of head and thorax feathcry.... .Super-family Apoided Tarsi slender; hatirs on head and thorax simple

Super-family spherodidia. 3-Trochanters always one-jointed, (except in the family
Trigonalide.)........................... Trochanters two-jointed (except in the fimmly Pelecinidu, . \therefore. Super-family Proitotropohtit.
4-Petale, or first segment of abdomen simple, without swellings; winged forms with well-developed tegula
Petiole with one or two siwellings: winged forms without or with imperfectly formed tegula Super-fanily formiooidea.
5-Front wings with the marginall v in, if present, linear, never large or stigmated 6
Front wings with a stigma; the marginal vein ustally large and stigmated Super-family lihneumonoidea,
6-Pronotum extending back to the legulae
Pronotum not extending Super-family Cimipoidea.
Super-fimily Chiliciovite.a.

Phytophaga.

Tabix of forelegs with one arical spur

Super-family Tinthriditeotidia.

THE TRUE BEES
(Suporfamaly Apotha)
This great group. comprising about five thomsand species, includes. tll of the trae leese both the honey-githerers which have social communties amb live a strict communty life, and the solitary bees. We

Fig 1 - llead and tongue of worker honey we. (Ricilnu"n from ('hishore) hive alreidy seen in the t.able of superfarmilies that the hand feet of these insects are dilated or thickened, and that the hatrs of the head and thoras are foathery. These preculiar feathery hatirs are found only in the true bees, which iso differ from other Hymextopteraloy the peculiar modification of the mouth-pirts which are lengthened into a structure which is almost like : proboscis. It s. . very conspicuous organ and is filted in many of them for probings deep flowers and for gathering nectar. The mandibles or upper jaws
play no part in this proloncti-like structure, which is composed enturely of lowier lip and lower i.aws, both greatly lengthened.

The eggs of all bees are land in cellis of ofle kind or another in which the larve develop. Sometimes they are fed by the adult

Fige : . If itucen; B, drone of honey luec (firom (heshore)
bees and sometimes a supply of fond is stored in the cell so that atter the egg is laid and the cell is completely closed the mother has no more responsibilty for the growth and development of her offisprin:,

It is among the higher and more specialized bees that we see for the first time the extraordnary community life which is developed among them and certain other Hymenoptera, such as certann social wasps and ants, and practically nowhere else, except among the so-called white ants or 1 ermites, which belong to quite ad dfferent order. With the social bees we find a most perfect communism ; each individual works tor the good of the community. and thus onlv indirectly for its own ends.

In the evolution of this community life strange things have happened. There has come to be a class of individuals which are practically sexless, and are called neuters or workers. These individuals do the mechanical work of the community. They are really structurally females in which the development of the sexual organs has ceased at a certain point. They are undeveloped and infertile females. The other two sexes are represented. but the number of trie fematles, or queens as they are called, is small. only a sufficient number being found to supply egge for the perpetuation of the community. The males are aptly termed drones, since they are drones in comparison with the active and
hard-working neuters or workers. Their function in the community is simply to fertilize the queens at the proper time, and then they are of no further use in the world.

The Apoideal are now subdivided into no less than fourteen fullfledged families. These include the Apida, or true honey bees, the Bombidx, or bumblebees, the solitary bees of the Anthophoride, the cuckoo bees of the family Nomadidx, the small carpenter bees of the family Ceratinidæ, the large carpenter bees of the family Xylocopidx, the mason, leaf-cutting and potter bees of the family Megachilidx, the parasitic bees of the family Stelidx, the sharp-tongued burrowing bees of the family Andrenidx; the blunt-tongued burrowing bees of the family Colletidx, and others.

The habits of the bees of these diverse families vary greatly, and most of the characteristics which they have in common have alreally been referred to. All. from their flower-visiting habits, are of great importance in the cross fertilization of plants, and without their aid the health of the plant world would suffer and its infinite variety would hardly have been achieved.

The most famous of all bees is naturally the common honey bee, an importation from Europe, not a native, which by the hand of man has become a true domesticated animal. The life history of this creature has been so often written about and may so easily be learned by consulting any encyclopedia or standard general work of reference that it does not seem necessary to describe it in detail here. The methods of bee culture in use admit of ready study of its economy.* In this brief summary of the general characteristics of bees we shall, therefore, confine ourselves to the wild and less known forms. A bumblebee has been selected for the typical life history, and little need therefore be said of the large and important family to which that species belongs. except to state that bumblebees now occur in most parts of the world, and that they are especially abundant in temperate and even boreal regions, large numbers inhabiting far northern Incalities where they abound in the brief artic summer, and where they live a short but extremely busy life on account of the crowding together of the flowering periods of sub-polar plants.

[^0]The solitary bees of the family Anthophoridx art in general thickly clothed with hair, and many of them burrow inc the earth, forming tunnels in which they form earthern cells, storing them with a supply of pollen

Fig. 3.-Queen cells and worker brood of honey bees. (From Benton.) bees, and the life of one of them has been studied by the English observer Newport.

The cuckoo bees of the family Nomadidx without exception live parasitically in the nest of other bees, and have undoubtedly originated from other bees through different lines of descent-probably from those of the group just mentioned. As their parasitic hahits would prepare us to learn, their legs are without the scop:t for the carriage of pollen, and their life is practically that of the cuckoo, the female laying her eggs in culls already prepared by some more industrious and conscientious bee. and her larve living at the expense of the ollopring of the cellmaker.

Fig. 4. -Queen of the common honey bee. (firom fintom.)

Curiously enough, these bees seem to be on perfectly good terms with their hosts, visiting flowers in their company and visiting their burrows as unconcernedly as though they were the result of their own labors. Emerton has observed that there is frequently enough food for the larva of the cell-maker and the

Fig. 5.-Legs of different bees: A, Apis; B, Melipona; C, Bombus. (from Insect Lifc.)
larva of the cuckoo bee, and that they both thrive and issue as adults simult:neously. This cuckno life is found with bees of certain other groups, and will be referred to later.

The rather smooth and active little bees of the family Ceratinidre, which have been termed small carpenter bees, are extremely interesting creatures, and are generally metallic blue, blue-black or bright green four-winged flies, not hairy, and are very active in the summer time. They bore tunnels into the stems of pithy plants and form their cells in these burrows. They are very commonly found in brambles. The cells are lined with a delicate silky membrane and are separated from one another by mud partitions. The common Ceratina dupha is a familiar example. With this bee the cells are filled with a paste of honey and pollen upon which the larve feed. The transformation to imago occurs in the latter part of July or during August

From the cells of this bee two very remarkable parasites have been reared by the Rev. J. L. Zabriskie, namely Diamorns iabriskii. Cres., and Axima ialriskii. How.

The large carpenter bees, however, do not confine themselves to the stems of plants. Their burrows are so large that they are frequently made in the dead trunks of old trees and commonly in lumber, and even in the joists of buildings. The commonest of the large carpenter bees in this country is Xylocopa virginica. This large black-bodied bee, as big as the biggest bumblebee, but with a flatter and less hairy abdomen, bores symmetric:al tunnels into solid wood, choosing in civilized regions fence posts and boards. The burrow is a half-inch in diameter, and runs horizontally across the grain for about the length of the insect's body, and is then turned downward at right angles and runs with the grain from twelve to eighteen inches. In this boring the bee progresses at the average rate of about half an inch a day, occupying at least two days in digging the first portion against the grain of the wood. After the burrow is once commenced, their persistence in returning to continue the work, in spite of all obstacles, is very remakable. One of these indefatig'hle bees

Fig. 6.-Legs of different bees: a. Aputhophora; b, Mtlissodis: c, P'erdita; d, Nomada; e, Agapostemon; f, Nomia. (From Insect Life.)
once started a burrow in a lintel over the front door of the writer's house in Georgetown. She was repeatedly driven away, was struck with a broom il number of times, and finally ce:ised from her labors only becaluse kerosene was squirted at her through a syringe with accurate aim. It was the hand of death alone which released her from her work.

The True Btes

The tunnels generally run in opposite directions from the opening, and sometimes other galleries are made, one parallel with the other, using al common opening.

While we may admire the industry of the carpenter bee in doing all this hard work for its young, it is not averse to an easy thing, and will use the same burrow over again, and if an old deserted burrow can be found which was made the previous summer, or even several years previously, it is preferred to the drudgery of making a new one. Moreover, there are other bees which will pre-empt the deserted burrows of the carpenter bees.

After the tunnels are prepared the cells are made and supplied with pollen. With the species under consideration the cells are about seven-tenths of an inch long, and are separated from each other by partitions which are made up of a single flattened band of sawdust and fine chips glued together and rolled up into a llat partition about four layers deep. The side forming the bottom of the cell is concave and smooth, while the o :her side is flat and rough.

Even about the common carpenter bee there is much yet to he learned, and a careful series of studies carried through an entire season cannot fail to show novel facts.

The mason bees of the family Megachilid x (sub-family Osminx x) derive their name from the manner in which they construct small earthen cells unders tones, in the burrows of other bees, in decaying wood, in deserted snail shells, in old galls, and elsewhere. Th se b.es show a great diversity of habit. Their cells are constructed of sand, earth or clay mixed with pebbles and wood scrapings, but glued together so firmly that they are smooth inside. Ten to twenty of them are usually found together, and each one contains a store of honey and pollen, for the larva, of which only one is found in each cell.

One of these bees (Ciratosmia (Osmia) lignizora Packard) has been shown by lir. Packard to be a true wood-borer. He salw it make a tunnel three inches long in maple wood, the tunnel containing live cells and the partitions being made of wood chippings.

The leaf-cuting bees of the same family are common creatures whose habits are extremely interesting. They derive their name from the fact that they cut pieces out of the tender leaves of various trees with which to form their cells. The leaf-cutters

Plate III.

BEES

FIG.

1. Xenoglossa pruinos:l
2. Andrena retlex:1
3. Andrella vicina
4. Megachile inimica
5. Megachile brevis
6. Halictus lerouxii
7. Butechni:a taurea
8. Paramomia nortoni
9. Megachile pollinaris
10. Cuelioxys 8-dentata
11. Agapostemon radiatus
12. Megachile infragulis
13. Osmial distinctal
14. Agapostemon splendens
15. Paranomia nortoni
16. Melissodes bimaculata
17. Melissodes pennsylvanicus
18. Osmian camademsia
19. Cerceris venator

FIG.
20. Larria analis
21. Larria torsilta
22. Oxybelus 4 -notatus
23. Tachytes distincta
24. Xylocopa micans
25. Tichytes validus
26. Ericrocis fumipeunis
27. Nysson plagiatus
28. Melissodes belfragei
29. Xylocopa arizonensis
30. Anthophora ahruptil
31. Philanthus solidagus
32. Nomad:a bicincta
33. Philanthus ventralis
34. Cerceris compacta
35. Apathus variabilis
36. Kombus morrisonii
37. Rombus morrisonii
38. i'hilanthus punctatus

The Insect Boon
(1)
are found in all parts of the world and look much like bumblebees. The pieces of leaf which they cut out very neatly are either oblong or circular, the former being used for the sides and the latter to cover the end of the cell. The burrows which they use vary greatly in situation. some burrow into the ground, others into soft wood, while others make use of chance tunnels. 1 have seen them in accidental auger holes, and in lead pipe, and once knew the nozzle of an old pump to be packed full of cells. according to Professor Putnam, a single female observed by him took twenty days to complete and provision a series of cells under a board. He found there were thirty cells in nine rows of varying numbers. An estimate of the number of bits of leaf used in the construction of these thirty cells amounted to more than a thousand.

The potter bees of this same fannily construct small globular cells of earth and attach them to the stem of a plant.

The parasitic bees of the family Stelida live, like the Nomadid x, in the nests of other bees, choosing indifferently the cell of almost any kind of bee, no matter what its situation. No observations on any of the American species have been recorded, and here is an interesting field of study.

The habits of the European species Stelis minuta have been observed with some care. It was found to be parasitic in the nest of one of the mason bees, a female having laid her egg in the cell after it was partly filled by the mason bee. Unaware of the presence of the parasitic egg, the mason bee continued her work, and ifter neirly filling the cell deposited her own egg on the top of the food mass, closing the cell with a partition, and beginning another one above. The Stelis larva hatched a little earlier than that of the mason bee, and both began to feed. the parasite larva from below and the mason bee larva from above. Unfortunately for those who are interested in the triumph of right and justice, the latter grows very slowly while the parasite larva grows more rapidly, and gradually worked its way upward through the food inass, thus approaching the mason bee larva. In the words of Riley's summary of this tragic performance "the crisis finally comes-the Stelis larval encounters the Osmia larva; a short but deadly combat ensues; the Osmia larva is easily overpowered and killed by the much larger and stronger parasite. and its body is devoured by the latter within one or two days."

The True Bees

The sharp-tongued burrowing tees for I a very large group, with miny common species which fly actively through the summer. The cells als a rule are made in burrows or tunnels in the ground or in hard clay banks. Alldrilla viitm, according to Emerton, digs a straight tunnel into the ground for al depth of several inches or more with short oblique galleries branching off from it. The earthin cells lined with mucus are filled with pollen and honey. This is all done in the latter part of April and early in May. The larver are full grown in less than five wecks, and the adult bees issue all through July and August. To this group belong the beautiful little bees of the genus Halictus, which are often metallic in color. They dig branched tunnels to a depth of from six to ten inches and are semi-gregarious in habit, a great many of the burrow's often being found close together. Emerton has studied the habits of H. parallilus, and states that this bee has two generations each year.

The blunt-tongued burrowing bees live much like those bees which we have just mentioned, constructing their burrows in hard clay soil or in the cracks in stone walls, but the bees of the allied tamily Prosopidx which have been called by Ashmead the obtuse-tongued carpenter bees, burrow into the twigs of bramble. elder and other shrubs, in which after extracting the pith, they construct their cells filled with pollen and honey. The Prosopidie used to be considered parasitic, but the English observer. Fredarick Smith, discovered their true habits a good many years ago. Mr. R. C. L. Perkins has recently stated, however, that some of the Hawaiiian bees belonging to his genus Neopros; 's are genuine parasites.

Life History of a Bumblebee

(Bombus firividus Fabr.)
In our generalization on the habits of the true bees we said little ahout the bumblebees, preferring to let this typical life history speak for itself. The bumblebees belong to the group of social bees. although their communities are by no means as large or as perfect at bose of the domesticated honey bee, nor in fact is the different:a ion of the worker class so marked as with the honey bee. The workers, in fact, more nearly resemble the
females and have few of the structural peculiarities which are so evident with the workers of the honey bee. The bumblebee worker stings severely and this fact makes the close study of their community life rather difticult. It is comparatively easy, however. to study in humblebee's nest. Marlatt, in the Proceedings of the Entomological Society of Washington, tells how the boys in Kans:as aroid the stings and gather the honey. He suid that they (and he was one of them) were led to rob these nests more from the excitement caused ly the danger of being stung than to secure the honey, which, in fact, was not only rank and unpalatalle but in the carly fall, during the hat ving season, was small in quantity. The method followed was to take a one-or-two-gallon jug, such as is commonly used to carry water to haymakers, fill it partly with water and place it, with the cork removed, within two or three feet of the nest. The bees were then thoroughly aroused by beating the nest, immediately after which the brave boys removed themselves hurriedly to a safe distance. The enraged bees would swarm out and begin flying about in widening circies to disco'er the enemy. The jug would at once attract their attention and numbers would fly about it and over its open mouth, which, by reason of the air set in motion by their wings, would give an answering roar to their angry humming. Excited beyond measure by this noise, the bees would fly at the mouth of the jug and one after another would pop into it - the nolse prodtced by those within still further altracting those without-until all had entered. A second disturbince of the nest would serve to draw out and dispose of any of the remaining fighting worker-bees, after which the robling of the nest was easy. After robbing the nest the water and bees in the jug were emptied out on the ground and the bees, although apparently drowned, would soon recover and start off to found new colomes which other boys would probably rob. In later years when Mr. Marlatt became interested in the collection and study of insects this method was employed with unvarying success in the examination of bumblebees' nests in order to secure parasites and the guest insects which inhabit these nests. This method seems to be a discovery of the western farm-hoys, since the writer, although he robbed bumblebees' nests in central New York when a boy was never :ngenious enough to invent such a capital method of avoiding stings.

Bombus firsi, ". .Isn called Bombus forialis, is a species which is eommonl (\%) lit and the northeastern United States with something of an worn and western range and is a fairly typical hemuldebee. $\quad 11$ it approach of winter the old colonies foll, the workers drat the lrones, de males, die and only a few ferntized temales ' 11 'I tiv: These hide themselves away in protected place: 10 is i \because nter in a torpal condition and when spring contes es' of co sta ts out to found inew colony. She collects moss or fin ; ad allen, seeks some depression in te field and legrits : \& wetl under the grass or moss. ond
 cetl, which is ored witt . .1n ...cerminglet with a smatl quantity of pold 1 . $: .11^{1} .111$ He and the formation of annener
 tain a queell with . 'arge 1 1m ! ! ; of workers of various sizes. as
 olservatens upoll this speetes have heen made by Mr. F. V. Civville. Who, alhhough a fimous botanmst, ought to have been an entomologist, juwing from his study of this insect. The precse dutes of the different shed workers, aceordify to this observer, are not evident but in general the larger olles attend to the matending of the covermy of the nest and to the bringing m of honey. while the smalter ones for the most part do the inside housework. the wax patching and the nursing of the young. He never saw this nursing, as a matter of fact, done lev a large or even a mediumsized hee. The eggs are lad several together in cavites in a mass of wax in which, however, are mamy pollen grams. The larvae after hatching remain encased in a shell of wax and soon become separated each from the other by a waxen wall. Here they are fed by a mixture of pollen and honey suppled then by a worker. One of the smatler workers, which (imblle has called the nurse bees, collects nectar and then pollen, preparing the mixture, and then goes to one of the larva, which lie in circular form in their chambers, and injects the brownish. Iluid mixture through a small opening previously made, usually $b y$ another worker. This is greedily eaten liy the larva. Whether the larvex of both females and workers are fed in the same manner and with the s:me mixture could not be decided. but it is known th:t in the honey bee the different kind of food infletences the sise and the function of the hees, a special fond being used to develop queens.

The larve when full grown spin a salk cocoon and transform in pupae. in which stage they remain from two to three weeks and then transform to perfeet bumblebees. The bees emerge from the cocoon after ghawing a lid ahout its apex. As soon as the bee has left, the nther workers citt away the upper half of the cell and remove the detris, and the part which is left furnishes a receptacle fir nectar and honey as it is brought into the nest.

In early Augnst, :tll the bees up to this tume having been workers with the exception of the orighal queen, fermates or gucens, and males, wdre,tes, begin to emerge. Within , few days both sex: leave the old next and do not return.

The methut adopte d ly Coville tor the study of this species is an casy and convenient one and is worthy of description. A hox about three inches deep ar-1 large enough to compon a mest (.1 gond-sized chair-hox will do, was provided with a glass co r and a - nall hole was cot in the - ec. In this tox in the earty summer a nest taken from the frel, was plat I and the apertuse I", cheal for a day. The box :vas the flitted in below a windoy -ash so that the bees could come ance fon the outside without innoying the observer, who remained in the rormm. In collectin- the nest, which had been found during the syy, the ohservel arte.t for the field just before dark, after all the bees were in, provided with a cigsir-box. a botte of chlorotorm, a pair of toreeps and a gauze-covered, wide-mouthed bottle. He approached the nest. poured of little chloroform ir it. We ed until the humming had ceased. opened the top of therolest. Git the leees with the forceps and put the in the bottle nest whth the "comb" being rlaced in the cirer-bot The hees revive afte: beng fiaced in the permanent hox, and he e oloroform, it useal moderately, does not kill the larve.

The studs of the life of a colunv of bu:mblehees w, in und to be a very interestm one. exme bally it ohservati ns nade upon the parasites an sue 1 sects, or nquilin such trequenty found in these ne uts. Many int estinge onts as 3 amporant haluts, esp ctally ds they hear up on t antion of Wherited instrnct or melligence may he the ee this way. Fur example these here are vel cleann in th that Their feces are alh ivs lepusted in a particular tha she the nest.
some of the guest bees frequently d in rimblebee nests belon b to il genus Apathus, or Psi y as \& w called.

The True Bees

These bees resemble bumblebees so closely that it is difficult to distinguish between them and they live apparently in perfect harmony with bumblebees, but are lazy and use the food of the industrious bumblebees, both when adult and when in the larval condition. Bumblebees resent the introduction of one of these guest bees into their nest, but the intruder seems to have very pleasant manners for the alarm and resentment occasioned by his or her presence soon dies away and an amicable relationship succeeds. Whether the guest bee and its larvx consume so much food (they undoubtedly bring in some themselves) that they endanger the health of the colony of bumblebees is a disputed point. The old idea was that they ate so much that the young bumblebees were starved to death, and it was upon this supposition that the writer in his youth wrote the following lines which perhaps will be accepted rather on account of their aptness to the present topic than on account of their rhythmical merit:

Oh! an Apathus sat on a Clirysanthemum A-cleaning her antennx,
And she little thought of the Pyrethrum That would take her life away!
And there she sat, a-taking a rest, And smiled in a satisfied way,
For she d laid ten eggs in a Bombus nest Ard thered soon be the de il to pay.
For her offspring dear, her very first brood. Would hatch in a very short time,
And no trouble she'd have a storing up food. For she worked on the Cuckoo line.
Her young would hatch ere the young bumblebees. And the young bumblebees would die.
When the young Apathi would live at their ease And fatten like pigs in a sty!
So she sat in the sun, this wicked old bee, And scratched her tibix,
And chuckled inside in lazy glee At the business shed done that day.

But the Chrysanthemum on which she sat Belonged to a neat old maid.
Whose plants were her pride (next to her cat), And that day she was out on a raid

Against Aphids and slugs, with a Buhach-gun Filled with Peters \& Milco's best.
And seeing the Apathus, just for fun, She dusted her yellow vest.
How the cheat kicked as she fell on the ground!
And how she did buzz and hum!
But she never got well-she never "came round "-
Her fraudulent life was done.
From this little tale can a moral be drawnHow the bumblebee loafs not a bit;
But works all day from the earliest dawn, And thus 'scaped the death dealing hit?
This moral is good, but please don't forget Those eggs that the Apathus hid!
The Bombus is working and slaving yet,
But it's all for the other one's kid!

WASPS.

The Solitary Wasps.

(Super-family Sphucoidcu.)
To this group belong nearly all of those insects which are known as the solitary wasps, in contradistinction to the social wasps which form communities and live in nests, usually constructed of a paper-like substance, and lead very much the same socialistic life which we see in the social bees. The solitary wasps, in the main, form burrows, just as do the solitary hees, construct cells within their burrows and in the cells provide food for their larve. This food, however, is not the pollen and honey mixture which is found in the cells of the solitary bees, but it is other insects which have been stung and paralyzed by the mother wasp. To this super-family belongs a large assemblage of forms which comprise twelve large families, the habits of all being rather similar.

Nothing can be more fascinating than the study of the habits of the solitary wasps and no more readable book on a natural history topic was ever prepared, not even excepting the famous Natural History of Selbourne or the general volume of Kirby and Spences Introduction, than that entitled, "On the Instincts and Habits of the Solitary Wasps," by George W. and Elizabeth G. Peckham, of Milwaukee, published as Bulletin No. 2 of the Wiscorsin Geological and Natural History Survey. The l'eckhams, already noted for their interesting work on the habits of spiders, and attracted to the study of solitary wasp probably through observing these creatures carry off spiders to stow away in their cells for their young, have spent many summer days in close observation of these industrious, active and most intelligent creatures and have described their observations in the most charming style. They have entered into the lives of the solitary walsps and have shown them to be as interesting in their way as the much-more-

Plate IV.
WASPS ANI) BEES

F1G.

1. Crabro singularis
2. Ag:ipostemon texanus
3. Andrenal melliventris
4. Colletes thoracica
5. Fpeolus lectus
6. Crabro interruptus
7. Andrena texamal
8. Epeolus concavus
9. Solenius scaber
10. Coelioxys dubitata
11. Nomiada modest:1
12. Melissodes rustica
13. Epeolus donatus
14. Xestucrabro 6-matculatus
15. Nomada maculata
16. Melissodes suffusa
17. Epeolus lunatus
18. Pseudocrabro chrysarginus
19. Megachile xylucopuides

Fig.
21. Nomada helfragei
22. Melissodes obligu:i
23. Sphcoodes dichro:1
24. Anthidium interruptum
25. Megachile mendica
26. Nomada grandis
27. Melissodes perplexa
28. Larra americana
29. Anthidium palliven, ris:
30. Megatchile hucephialia
31. Microbembex monodonta
32. Melissodes menuatha
33. Anthidium acbratum
34. Monlia apach:1
35. Megachile pruina
36. Bembex obsoleta
37. Melissodes confus:
38. Monia heteropoda
$42+2$

?

es $=$
<3
为 $\sqrt[3]{3}$
11
t

$\cos +5$
$-\frac{3 i+6}{i+i}$
24
$\left\{\begin{array}{l}25 \\ 25\end{array}\right.$

4yin

+1
37
32

?

27

written-about bees and ants. Their ingenuity in capturing their prey, the care with whish they conceal their burrows, the different individuality among members of the same species, and more astonishing than all, the actual use of improvised tools by these creatures, and many other points which the Pecklams have brought out and described make one wish to drop all other occupations and immediately begin the study of the solitary wasps.

The active little wasps of the family Oxybelide are known in Europe to burrow in the sand and to provision their nests with flies. European writers state that they do not paralyze the flies by stinging as with most other digger wasps. but that they crush the thorax just beneath the wings so as to destroy the great nerve ganglia at that spot. The Peckhams found one of our American species, Oxvbelus quadrinolatus, burrowing in the sand and storing flies after the burrow was completed. There were sometimes a dozen flies in the same nest and all had the thorax crushed. This little wasp carries its prey by clasping the head of the victim with the third pair of legs, and flying thus, with the whole bodv of the lly sticking out behind her, she presents a remarkable appearance.

The wasps of the family Crabronidae are usually larger, but still are rather small insects. Thev burrow in sand and clay and many of them make their burrows in wood -in palings, posts, stumps and decaying logs. They store in their cells a great variety of insects. divocrabro (Crabro) stirpicola was found by the Peckhams to fill its cells with different kinds of flies. Others store spiders and plant lice. The interesting observation was made by the Peckhams on the species just mentioned that it works at night and that "her manners were an agreable contrast to those of the wasps that we had been watching through the day. The feverish excitement of their ways seemed quite in keeping with the burning neat of noon, while Crabro's slow and gentle movements harmonized perfectly with the long shadows of evening." One specimen was seen to work industriously for forty-two hours, toiling from three in the afternoon on July 27. through that night and the day and night following until nine o'clock on the morning of the 29th. "Surely," saly the Peckhams, "she takes the paln for industry, not only from other wasps but from the ant and bee as well." Her burrow was thirty-nine centimeters in length and was made in the stalk of a raspberry or

Wasps

blackberry. The species which belong to the genus Trypoxylon and its close allies as a rule make use of the burrows of other insects. They sometimes store the insects which they collect in the deserted cells of a mud-dauber, and sometimes in the small round holes made by wood-boring beetles in old trees. Many of the species seem to store up plant lice but others capture and paralye different kinds of spiders. There is a very important Wasp which belongs to this group which does not occur in the Umisd itates but which I am trying to introduce. This is the Ampulex which preys upon cockroaches. A correspondent in Mauritius. I'Einmerez de Charmoy, of the museum at Port Louis, has promised to send me some of these creatures alive. He states that they enter the houses and prey upon the domestic cockroach. Perkins, quoted by Sharp, says that in West Africa cockroaches are stung by these wasps and placed in confinement in some such spot as a keyhole and in one case one was apparently prevented from afterward escaping ly the wasp carrying some heavy nails into the keyhole. Rothney, also quoted by Sharp, says, "I saw two or three of these wasps (A ruficornis) collar a peculiar cockroach by the antenna and lead it off into a crack in the bark, but as the cockroach reappeared smiling each time I don't know what was up."

Numbers of other most interesting forms occur here, but those interested must go to the Peckhams' book and to Ashmead's interesting paper entitled, "The Habits of the Aculeate Hymenoptera," published in Psyche, January to May, 1894, and to the papers referred to by the latter author.

The genus Ammophila contains some of the most interesting forms in this family, and the habits of one or more species have been described in the most interesting way by the Peckh ims, by the late William Hamilton Gibson. and I)r. S. W. Williston, and by Mr. Theodore Pergande. These are the insects which use tools. Their burrows are deep in the earth and are carefully concealed by the insertion of a stone, over which dry earth is scraped. When the female returns with a caterplalar, (and she travels unerringly to this concealed burrow for along distance.) the earth and stone are removed, the caterpillar is carried down into th" burrow and the mouth is once more concealed until anoti:caterpillar is brought. The solicitude exhibited by the maternal wasp for fei:. her burrow may be discovered has been vividly

Waspa

described by all of the authors above mentioned. When the burrow is complete the female wasp has been observed to use a stone als a tamping iron to pack the earth into the mouth of the burrow. This is the tool use referred to. Dr. Williston states that he feared to pullish his observation at first, since he might not be believed. Pergande noticed that after the burrow was completed and filled the mother wasp revisited the spot occasionally to satisfy herself that everything was secure against intruders and to make surety doubly sure by placing additional disguising objects over the already disguised burrow mouth.

It was in their study of one of the Ammophilas that the Peckhams noticed a very distinct personality among the females which they watched at work. This personality was not of individual appearance but of such mental attributes as careful painstaking or carelessness and industry or laziness. One seemed to hurry tremendously and spent no time on non-essentials. Allother was an artist, working for a long time on the closing of her burrow, arranging the surface with scrupulous care and sweeping away every particle of dust to a distance. Still another went to the extreme in carelessness, carrying the caterpillar in a very careless way and making a nest which was a very poor affair. Still a fourth was ${ }^{\prime}$ he most fastidious and perfect little worker of the whole season, so nice was she in her adaptation of means to ends, so busy and contented in her labor of love, and in pretty in her pride of her completed work." In fact, they seem to have almost as much individuality as human beings and the result of these observations has a strong bearing on the discussion of instinct. Fabre, the French entomologist, who studied the same insects, considered that they were inspired by automatically perfect instincts which can never have varied to any appreciable extent from the beginning of time. Deviation from the regular iule, he thought, would mean extinction. The Milwilukee authorit:es, however, found that variability was the one unmis. takable and ever present fact, and this variability existed in every particular, in the shape of the nest and in the manner of digging it, whether it is left closed or open. in the manner of stinging the prey and of crushingy it, in the manner of carrying the victim, in the way of ciosing the nest and in the condition produced in the victim by the stinging, some dying and others living for a long time, though nearly motionless. All this varia-

Wasps

bility the Peckhams got from the study of nine wasps and fifteen caterpillars!

The mud-daubers of the genus Sceliphron (formerly and in most books placed in the genus Pelopaus) are among the most interesting members of this super-fiamily. They build their nests of plain mud in sheltered places under the eaves of barns or even in the attics of houses. The food supply with which the cells are stored consists almost invariably of spiders, as many spiders being packed into one cell as the cell will hold. A single egg is laid upon the last spider packed in and the larva eats rapidly, consuming the abdomen of the spiders first and subsequently the rest of their bodies, eating both dead and living spiders. After the egg is laid and the nest closed up new cells are constructed by the same female.

A curious observation has been made by Schwarz in the Washington parks and gardens. He found that one of the Sphegid wasps-Chatybion rorulitum-was engaged in capturing a certain kind of spider which hid itself so carcfully that it w:is most difficult to find. Instead of spending her time in fruitless searching the wasp would entingle hersel in the web of the spider when the latter would immediately dart out from her hiding place, thus exposing herself to the wasp who would easily free herself from the well and chase the spiasi to its retreat.

Life History of a Digger Wasp

(Splucius speciosus Say.)
This large and ferocious wasp, which is in fact the largest wasp in what may be termed the castern central states, that is to saly, from southern New Jersey southward, is very abundant in Maryland, and Virginia and the mid-western states in the month of July, digging great burrows, usually in clayey soils, and storing in them for food the large dog-day Cicada, harvest-lly or lyre-man, or annual Cicada (Tibicen pruinosa Say). During the latter half of July, when the note of the Cicada is tilling the air with Its vibrations, this big wasp is often seen llying about the trees from which the song comes. Suddenly the regular note of the har-vest-lly ceases and in its stead a distressing, discordant cry will
be emitted. The wasp has caught its victim and with a quick sting has paralyzed it and thrown it into a comatose condition

Fig. 7.-Sphecius speciosus say carrying a Cicar' io her burrow: (A \% Inseis latic.) from which it never recovers. In this preliminary struggle often both the wasp and its victim fall to the ground and then the wasp begins the laborious task of dragging its prey back up the tree straddling it with its long legs, although the Cicada is bigget than the wasp, and working sometimes for in hour or more until it reaches a height from which it can tly obliquely down to its nest at some distance aw:y. In Washington, the dryer ard more elevated portions of the lawns, especially slight terraces along the sides of roadways, are preferred by this wasp for its burrows. Damp earth causes the Cicadas to mould after they have been stored in the burrow. The burrow itself consists of a gently slopiug entrance extending for about six inches, when ordinarily a turn is made at right angles and the excavation is continued for six or eight inches farther, ending in a globular cell an inch and a half in diameter. Frequently a number of branches leave the main burrow at about the same point, each terminating in a round cell. Each of these cells contains, alony in August, one or two Cicadas, and in those cells which contain two the larva of the Wasp acquires a larger size, and, as the fellale wasp is a

Fig. S.-Adult Cicada bearing egg of the digher wasp, at a. (Prom Insict Liye.) great deal larger than the male, Riley thought that one Cicada is required as food to develop a male and two to develop a female.

Fig. 9.-Cicada in burrow of sphecius, with fullgrown larsa of digger way feeding.
(from /nsitit lifi.)

The delic ute, white, elongate egg of the wisp is haid under the middle leg of the (scad. .ms when it hationes the larval stiaks out its head and hegus at ence l, draw nourishment from between the segments of its victim. The egg hatches in two or three days and the harva attains full growth int a week, of a little more. It feeds entirely from the outside and when full grown spins a white sitken coioon which is finished at the expiration of two diys. The word silken is somewhat miskeading, since it is mixed with much earth. When it is finished, about a dozen curious, porelike openings are seen in the side of the cocoon, the function of

Fig. 10.-l larva of digger wa-p spinning its cocoon. (from fuscit Life.)

Fig. 11.-sphecin* -pecionus: a, larva: A, papa from below c_{0} satme. frotu bike-n.tural size: 1 , head uf larva:

B, labium of -ame: ρ. maxill. of sameenlarged. (Hrom insert latio.)

21

Plati: V.
WASFS
FIG.

1. Peccilopompilus interruptus
2. Monoli:i quadridens
3. Hemipugonius alienatus
f. Odynetus capral
4. Odynerus campestris
a. Hemipogonius fortis
5. Ancistrocerus capra
s. Fumenes fraternus
6. V'espal horealis:
7. Ceratopales lypungtatus
8. Peslistes metricus
9. Polistes annularis
10. Vespa vulgaris
i4. Sceliphron cementarius
11. Ammophila gryphus
12. Amınophila interrupt:a
13. Vespal carolin:a
14. Sphex ichneumoneus
15. Pompilugaster athops
16. Priomonsx atrat.a
17. Sphecins sperionus
18. Chlorion curnleum

Fig. 12.-a, cocoon of Sphe. cius-natural size: b, en large section of pore. (From Insect Lotic.)
which can only be surmised. Possibly they are for the respiration of the larva before it transforms to pupal and it remains in the cocoon unchanged through the winter, transforming to pupa only the following spring and shortly before the appearance of the true insert. When the adult hatches it gnaws its way out of the cocoon and so on up through the burrow to the surface of the ground, thus accomplishing its life-round in a full year. This big digger wasp is very abundant in midsummer throughout the southern states. It stings severely, and, it is perhips needless to say, should be avoided.

The Social! Wasps and their Allies.

> (Superfamily Vespoidea.)

All of the social wasps belong to this superfamily, and there are also brought into it a number of solitary wasps, as well ass the sy-called cuckoo lies of the old family Chrysidida, and some strange insects that were formerly placed in the parasitic family Proctotrypidx, but which are now made a family by themselves under the name Bethylide. There are other parasitic grot ps in this superfamily, and it also contains the curious creatures known as cow-killess, cow-ants, solitary ants, or velvet ants of the family Mutillidix, which have solitary habits, but closely re-

Fig. is. Polishes pullipes. . After comstack. semble the true alts. All these forms, differing however widely in habit, feed for the most part in their carly stages upon other insects or upon the remains of other insects. The only exception is a small group found mainly in tropical regions, which may he termed the honey wasps, of which the wal Polishes mellifica of Say. which cullen from Mexico, is in example. All of these

Wasps

honey wasps are now brought together into one genus, which is called Necharimia.

The true social wasps, nearly all of which in the United States belong to the Genera Vespa and Polistes. form communities much like those of the social bees. Their communities, however, are not so perfect and are not so persistent as are those of the true honey bee or of the ants, but resemble more nearly those of the bumblebee. There is a form known as the worker, just as with the social bees, and the workers here, as in the other cases, are undeveloped females. Here also, as with the social bees, these undeveloped females or workers may lay eggs which invariably preduce males or drones.

Most of our social walsps make paper combs and nests. They are in fact the original paper-makers, and it is quite within the possibilities that the paper-making idea in the human species wals gained from

tipe 14.-Spring ne: of l'oliste rubiginosus. (.tiker Rrify.) the observation of these insects. Their paper. however. is made from wood pulp-a late derelopment in the human scale of ingenuity. They are particularly fond of seraping the friyed wood fibre from old weather-heaten fence boards and from the sides of old unpainted huildings. These wood tibres are materated with their saliva, and a pasty wood pulp is thus formed with which the nests are constructed.

In our consideration on the preceding group of wasps, we said something shout individuality among these creatures and its inmuence upon theories of instuct. In the social wasp also at least one observation seems to show that mdividuals in the face of an emergence previously unknown to the species readily adapt themselver to new condtions. This observation was made by Miss Mary F:. Murffeldt, of Kirkwood. Mo., who found that in :a vineward where the grape clusters were inclosed in paper bags to prevent destruction by insects the sochal wasps found that the d.amp and roting paper bugs were pertectly adapted to their nest-
building operations, and they thus used this paper already prepared rather than to take the trouble of manufacturing their own wood-pulp paper. This was a good thing for the wasps, but unfortunate for the vineyardist.

It is more difficult to study the economy of the social wasps than that of either the hive bee or ants. As most of the species are very irritable and possessed of venomous stings, it requires considerable tact and courage to investigate their habits closely.

The sire of the communities varies at the season when they are largest, and according to the species, from a few individuals to many hundreds. In one large nest I counted 1,135 cells, and since, as will be shown, the worker cells are used twor or three times in the summer, the colonies become very strong. This count was made with the large bald-faced hornet (Vespa maculat,, but in some of the smaller wasps or yellow-jackets, like Vipagirmamiad, the cells are even more numerous. In one nest of the latter species. Mr. Marlatt tells me that he carefully estimated that it contained about fourteen thousand cells.

These communties of the social watsps, unlike those of the hive bee and of ants, but like those of the bumblebees, have only a temporary existence. On the approach of winter the males and workers perish and the fertile females crawl into such protected situations as crevices in walls or under the hark of tre es and there pass the winter in al dormant state. At the opening on spring each surviving female founds a new colony. At firs: she performs the duties of both queen and worker: a small nest is made, egys are laid in it, and when the larver hatch they are fed and cared for by the queen until they reach maturity. This first generation is composed enturely of workers. They relieve the queen of the duties which belong to them and from this time forth her only duty is to lay egges. Sometimes she assists in the cate of the young but not in the construction of the nests.

The essential part of a wasp's nest consists of a comb formed of hexagonal cells similar in form to the cells of a honey-coml. It difers. however, in several important respects from that of the hive hee: The material of which it is made is paper instead of wax; the comb consists of a single layer of cells instead of two. and the cells ane ustally vertical instead of horizontal. In some species the neste consists of a single comb with one or more stems

Wasp:

holding it in place. In others the comb is enclosed in a spherical envelope of paper with a sinall opeming at the bottom. In the more complicated nests there is a series of combs placed one below the other, and the whole is enclosed in a case made of many thieknesses of paper. The nests are enlarged by adding cells to the edges of the combs. and room is made for these new cells by rem wing the inner layers of the envelope; the furtion removed, however, not being wasted, but chewed up again by the walsps and added to the outside. The nests are suspended from branches of shrubs and trees or from fences and roofs. Some of the smaller species build their nests in the ground and under stumps. In each cell ol ine comb an egg is laid. Owing to the position of the conts, when the larva hatches it is suspended head downwards in each cell and holds its place while young by means of a glue and when old ly its enlarged head end, which completely fills the open part of the cell. They are constantly nursed by the females and workers, and are fed with a brownish fluid which is prepared by the workers or females and consists of the juices of fruits and the remains of other insects which have been chewed up. When it gets furl grown the larva upins a silken cocoon, the lower end of which serves as a cap to the cell, and then it transforms to a pupa. After the adult wasp issues the cell is cleaned out by the workers, and is used agan by the queen, and, as the whole period from the laying of the eys to the emerging of the full-growis wasp is about a month in the northern states, a comb made early in the season serves for several successive generations.

As a rule the males and queens are not developed until toward atumn. At this time larger cells are made for the peception of the egys which are to produce these forms. Thus it a large wasp nest be examined it will be seen that the top combs contain smatler cells and all of the same size, while the lower combe contan larger cells. This habit which the social wasps have of beginning at the top and bulding downward was whit suggested to Gullaver: Laputan philosopher that they should begin ly building the garrets of every house tirst of all and then giadually workng down to the lower stories and the cellars.

The most notille of the social wasps in the United States is the bald-ficed h. net (Vesph madilata) above refered to. It builds the enormmen paper nests commonly seen attached to the
branches of the trees. The great Vespa crabro or hornet of England and Europe, which is the species most commonly referred to in linglish books of reference, was accidentally imported into this country many years ago and established itself in the vicinity of New York City. I believe it was first discovered there by Mr. James Angus. It has since spread and multiplied very slowly, and is not known to occur very far from the place where it was originally discovered. It is rarely found in parts of L.ong Island and New Jers... There is also an unconfirmed report of its establishment near Charleston, S. C. This wasp, which is more yellow in color, builds preferably in the trunks of old trees.

The smaller yellow-jackets (Vespa germanica and V. cuneata) build their nests above ground, in or beneath stumps or stones, and in excavations in the open ground. The underground nests are frequently very large, sometimes more than the size of a halfbushel basket. Access to these nests is gained by a single (rarely two) small opening which leads directly from the center of the nests. The loose paper covering is not as tough and thick as that with the bigy hornet.

These large underground nests may be exterminated, when their location is discovered, by pouring in a little bisulphide of carbon. The time of the application, however, should be chosen, and it should be after dusk; otherwise there is great danger of being stung. The colonies in the large hornets' nests are rather easily destroyed about nightall by drenching then with a bucket of kerosene. This should be done late rather than early, because just at dusk afew late-returning workers will "raise Cain" over the destruction of their home.

The other common social wasps found in this country belong to the genus Polistes. They are the long-bodied, black wasps with folded wings and slender abdomens. They are frequently found in houses in the autumn looking for places to pass the winter.

The nest of the l'olistes wasps consists of a single comb without any envelope. They are found commonly in country barns, and are also attached to bushes and to the lower surfaces of stones which are slightly rased from the ground. Thew are generalle horizontal in this country, but Furopean species build their combs vertically. Polistes feeds upon caterpillars and also vegetable material as well, and its habits in other respects are very much like those of the other social wasps.

Wasps

Mr. F. H. Chittenden tells me that he thinks one of these Polistes wasps wats respons ble for the destruction of the cabbage caterpillars in the center of a large cablage tield near Washington last summer. The waspe would hover about a plant and then alight and walk about it, but tinding nothing woutd continue to the next plant, and so on to the next. In the sumy center part of the tield the cabbuge caterpillars were exterminated, hut in the shatly portions next a patch of woods they were present in great numbers. Wisps do not see well. They tind their prey more by a sense of :ouch than by a sense of sight, and as they prefer the sunshme the: imeonsciously igrored the abundant caterpillars in the shaste.

There are tropical social wasps, most of them belonging to the genus Polyhia, which build enormous nests. It is said that the nest of a Ceylonese wasp reaches a length of six feet, and with a common Sotth American form the paper is so thick and hard that it resembles thick pasteboard, while the outer layer is so fine in texture that one can reddily write upon it with ink and a time pen.

The solitary wasps of this super-family. although differing in structure, resemble greatly in habits the solitary wasps of the super-family Sphegoidea. There is one large fanily known is Pompiluse, of which we have many representatives in this counIty. All of these wasps whose habts are known prev upon spiders. More than a hundred species occur in the United States, and most of them dig hurrows in the ground. some of them. however, using readily notural burrows and those of other insects. Some of them dig their hurrows before they cath their spiters, and others eatch the spiders tirst: and one species has been seen to carctully hang its spider on the branch of a plant where it would not he disturbed by ants while the burrow was bemge mak: occasi molly visiting it in the intervals of work th tind oti whether it was solfe. The hathits of several Pompalits hase heen studed by Mr. and Mrs. Pexaham. There is a tamous Wap on this famelv which in the Southwest is known as the taramtul.t-hiller.

The wasps of the family fimenide are know in ats poterwhps, and store up catempllars, saw-lly larsa, and the barse of beetles. Thev form ghobular cells of chay or samd which are attached ly a small pedestal to some inig. They are silled full

Plati: VI.
WASPS

hig.

1. Notogonius nigripennis
2. Rhinopsis canaliculatus
3. Priocnemis nuperus
f. Agemia mellipes
4. I.yrodon subita
5. Trypoxylon albitarse
6. Trypoxylon allopilosum
7. Tiypoxylon texensis
8. Trypoxylon politum
9. Solemius interruptus
10. Pompilus ferrugineus
11. Odynerus conformis

1; Odynerus megiera
14. Wynerus dossalis
15. Oilynerns tigris
16. Masaris occidentalis
17. Ancestrocerus untascintus

Hig.
18. Vespa sulcata
10. Odynerus fulvipes
20. Odynerus austrinus
21. Masaris texensis
22. Masaris texensis
23. Vespa diaholical
24. V'esp.u germamia
25. Vespal comeata
26. Odynerus annulatus
27. Vespa maculata
28. Polistes pallipes
29. Polistes exilis
30. Vespa vidua
31. Polvhia cuhensis
32. Polistes rubiginosux
33. Polistes bellicosus
34. Polistes amerticanus

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

of caterpillars in just the same way that the mud-daubers fill their cells with spiders, and a single egg is placed in eacio cell. Prof. O. T. Mason says that ertain beautifully shaped Indian vessels and baskets have precisely the form of these cells, and he thinks the observant aborigines may have deliberately copied the insect design.

There is an interesting genus in this group known as Odynerus. These are
 small active wasps, usually with one or more yellow bands. They were probably originally borers, but are most adaptive

Fig. 16.-Tiphia Inornata. (After Riley.) in their selection of places in which to make their cells. They use the old burrows of different bees and wasps, and are fond of using old muddaubers' cells. Ashmead found one sp , les in Florida making its cells in the lock of his front door, and in old holes in a board fence and in old oak galls. Walsh found one building its cell in the cavity of a discarded spool. These wasps also sting caterpillars and store them in their cells.

The insects of several of the families, although resembling in general appearance the other wasps. are probably parasitic in their habits. These are the Sapygidae, the Scolidx, the Myzinidae, the Tiphiida, all well represented in this country, and the

Fig. 17.-Chrysis sp. (.After Mizckard.) curious Thynnidx of Australia, South America and Africa. By parasitic we mean that their larva feed upon or within the living insects instead of such as have been paralyzed by the sting of the parent. or which are already dead. The Tiphia wasps are parasitic upon the big white underground grubs which are the larvae of the May beetles or June beetles, and the larva of Scolia has been found in Europe within the body of another beetle, and

Wasps

Ashmead has found an American Scolia preying upon the larva of still a third beetle.

The so-called solitary ants, of the family Mutillidx, are very common in portions of the United States. Most of them are clothed with hair, which is frequently bright-colored-in some of them being bright red-and on account of the velvety appearance which this hair gives them they are sometimes called velvet ants. In this group there is admirable opportunity for the study of life histories, since comparatively little is known abo. the way these insects live. They are no doubt parasitic in the nests of bees, and in Europe one species is known to live in the larval state feeding upon the larvæ of a bumblebee. Schwarz, in this country, reared one of them from the cells of a burrowing bee. Riley another from the cells of another burrowing bee, and Davidson from an anthophorid bee.

Many strikingly beantiful insects belong to the family Chrysidide. They are called cuckoo flies by the English writers, and goldiespen, or gold wasps, by the Jermans. The colors are usually brilliant metallic green or blue, and the abdomen is frequently tipped with red. The larger species reach the length of hali an inch or more, but the commoner forms in the United States are small insects, seldom reaching three-eighths of an inch in length. They are rather stout-bodied insects, and are readily distinguished from the slender wasps of the preceding groups.

Careful studies of the economy of any of our North American species are greatly needed. Walsh reared Clirysis carulans from the cells of one of the potter wasps (Eumenes fraterna), and Ashmead has seen one of them entering the burrows of a Trypoxylon, while he reared two species from the cells of a mud-dauber and one from the cells of an Odynerus. They are, therefore, either parasites or guests in the nests of wild bees and wasps, and are probably parasites rather than irquilines. In Europe some species of the genus Cleptes are true parasites on saw-fly larve. There is a curious confusion sometimes in an Odynerus cell, for a Trypoxylon will enter one carrying its own store of food with it, and closing the entrance against the return of the female Odynerus; then comes along a Chrysis and lays an egg, from which hatches a larval which devours the stores of the Trypoxylon. The larva of the cuckoo fly is said to transform without cocoon to a pupa, and in this state to pass the winter.

The parasitic family Bethylidx, which Ashmead has transferred from the Proctotrypoidea to the Vespoidea, is a group of small insects. The family Trigonalide, now placed here, but formerly placed near the Ichneumon flies, is also parasitic; they live parasitically in the nests of Polistes and Vespa, agreeing in habits with the Sapygidx.

The Bethylids are all. so far as we at present know, parasitic upon caterpillars and upon beetle larvae, usually upon very small larve. Haliday, the Irish entomologist, many years ago, wrote an interesting account of the parasitism of some little Tineid larvie by a species of Bethylus: but in this case the parasite was observed to drag its little caterpillar victim into a hole in a reed. Possibly this fact had much to do with the original suggestion, which came from Haliday, that the Bethylidee should be placed nearer the wasps than with the true parasitic Hymenoptera. In the typical life history which follows, however, we will see that members of this family are true parasites.

Typical Life History

As has just been shown, the habits of the insects of this great group are so diverse that no one life history could be considered as in any way typical of the whole group. As a matter of fact. the proper and complete study of no one American species has as yet been made. Many of these insects are everywhere to be found, and life histories of surpassing interest and of mich novelty await the first careful person who will care to devote the necessary time to this study. Of course a great deal is known about the general economy of our social wasps and interesting studies have been made by the Peckhams and others on some of the solitary wasps which belong to this super-family, as weil as to the Sphecoidea; lout it is the parasitic forms, especially of the Scoliida, Myzinidx and Tiphiidx, which offer great opportunities. So do especially the Mutillidx and the Chrysididx. Of one of the Bethylidx, I am fortunately able to give some account, since it has been studied with care in my laboraory by Mr. August Busck, from whose unpublished notes the following interesting story is drawn.

Life History of a Parasitic Wasp

(Luelins /rugolermatis Ashm.)

When N.r. Busck was making some studies for me in the summer of 1807 . on the life history of the tussock moth, he made the interesting discovery that the egrg masses of this famous shadetree defoblator were sometimes eaten by the larvae o, ertain dermestid beetles which are ordinarily known as museum pests, feeding upon skins and furs, stuffed birds and pinned insects, and which. although known to feed upon dead and dry animal matter, were hardly to be suspected o ating living amimal matter. But we found (and this is by the way) that these museum pests were really destroying the sound eggs of the tussock moth. This interested us so much that egg masses with dermestid harva were brought into the insectary for most careful observation. Then it was found that with the dermestids had also been brought in a most interesting parasite which proved to be Latius trogoderma-tis-a Bethylid. The Leelius is a little, black, slender, active, fourwinged fly; and the female, when it finds one of these dermestid larvae, at once jumps upon its back and lings firmly, in spite of the struggles of the victim. As soon as the poor beetle larval quiets down a bit, Laxlius places herself crosswise over the thorax and. curling her abdomen around under the side. inserts her sting just behind the second or third pair of legs, par:alyzing the dermestid instantly, the sting apparently having entered one of the large thoracic nerve ganglia. Then the parasite relaxes its hold and begins pulling the legs and hairs of its victim with its mandibles, its antenne vibreting in a contented manner. The pulling of the legs is evidently an attempt on the part of the parasite to see if the stinging has done its work with perfect effect. Having satisfied herself by all sorts of tests that the paralysis is complete, she proceds to lay an egg, attaching it to the skin of the dermestid on the under side of the rody, first pulling out the hairs carefully so that the egg can be firmly attached to the skin. If in the course of this operation, or even before the eqge is laid, another dermestid larva comes within har range of perception, she leaves the first victim, mounts and stings the second, or even a third or a fourth, each time testing the completeness of the paralysis with the utmost care. Before attaching the egg she thrusts her sting into the spot several times, apparently making an orifice through
which the larva, after hatching, can thrust its head, or which it can at least enlarge casily so as to fisent its head. The egre is oval، soft, translucent, about at third of a millimeter loner apparently has no peduncle, and is not very firmly attached to the skin of the dermestid. From one to six eires are laid upon a single victim. In a few davs the larva hatch, yellow in color and very indistinctly jointed. Immediately on hatching, their mouths are closely applied to the skin of the paralyzed dermestid and they begin to grow, not so rap:dly as the somewhat similar Euplectres. which will be described in a succeedingehapter, but still rather rapidly, reaching futl glowth in from ten to fourteen days. When full grown, a group of these larva with their heads inserted at

Fig. 18. -hadias fresutirmatas: dermestid larva at right. showing egges of parasite: full grown parasite larva at left; adolt paranite in centre (origimal). a central point, look not unlike the petals of a carrous flower growing out of the shriveled dermestid larva. When only one Laeltus larva occurs upon al lost it sometimes. enters the sucked-dry skin and spins its cocoon within it. but generally the white, rather loose, silken cocoons are spun outside the skin of the demestid, which shows large holes where the parasitic larve have been at work. After the cocoon is formed the larval remains wit' it, motionless, for ten dass or more, linally transforminer to a white pupa with red eyes. This white color changes cradually to black and in eight to ten days further the adult lly issses from the end of the cocoon through a ragesed hole. The entire life duration of a generation, in the summer-time is from thirty to thity-five days and the fasect passes the winter as a larva in its cocoon. the cocoons of the winter generation being firmer :han those of the summer brood :!nd darker in color. Mir. Busck onservece that a female will faralyze all dernestid larsie with which it comes in
contact, but it does not use them all for egg-laying. The sting does not kill the dermestid larva but simply paralyzes its motor nerves. It remains alive, as is evident from the fact that its alimentary canal continues to work and excreta are emitted from the anus. In spite of all the precautions taken by the mother Laxius to assure herself of the complete paralyzing of her victim, occasionally this is not complete and atter a few days the dermestid larva molts. In sach cases, of course. the eggs of the parasite perish. Mr.

Fig. 19-Gemozet sp.a a paranite of the Coding moth. After Martate.) Busck found the phenomenon of parthenogenesis to occur with this insect, a virgin female in one instance having labl eggs which hatched and the larver were reared to the adult condition, all of the individuals, as was quite to be expected, being males. The volume of the eggs laid by a single female is surprising. It lays more than twice its bulk in eggs. The female drinks water greedily and possibly takes other food. In confinement it will perish if left without water.

An undescribd Bethylid of the genus Goniozus in Kansas has a similar life history, according to Popenoe and Marlatt, but this one is of greater economic importance since it attacks the larva of the codling moth-the vorm so commonly found in apples. Just such a cluster of parasitic larvie as is described above was found by Marlatt upon an apple-worm in the interior of an apple.

Plate Vil.
WASI'S

Fig.

1. Isodontia philadelphica
2. Xenoglossal spriuna
3. Monedula carolina
4. Bembex fasciatus
5. Ammophila vulgaris
6. Priononyx thomx
7. Aınmophila pictipennis
8. Ammophila luctuosa
9. Aınmophila gracilis
10. Ammophila pruinosa
11. Arachnophroctonus tropicus
tig.
12. Pompilus mauris
13. Sophropomp. ss ingenu.s
14. Arachnophroctonas atrox
15. Entypus americanus
16. Priocnemis thanmmpennis
17. Isodontia tibialis
18. Mygnimia ustulata
19. Pompilus philadelphicus
20. Sphex pennsylvanicus
21. Pepsis formosa
22. Salius magnus:

Thelngect Book.

THE: ANTS

All of the true ants belong to this group. They are all very characteristic in appearance and there are very few other insects which can be mistakeal for them, except possibly the so-called cow-ants, or velvet ants, of the family Mutllide (super-family Vespoidea), or the so-called - , te ants, which belong to all entirely different order ind which: really should not be called ants, if popular names are to concide at all with scientilic classatication. The true ants, however. as shown in the synoptic table, are readdy distinguished from all other Hymenopteria, aside from their general and more characteristic :ppearance. by the one or two swellings on the petiole of the atdomen.

We have seen with the bees and with the wasps that while some species are social and live in communities, others are solitary in their habits. With the ants, however, it is different: ill species

Fig. $=0 .-$ Solemprin xylomi. Ajtir Mi Couk. live in communities and are social insects. Social life with certain of the ants is carried to the greatest extreme known in nature. The differentiation into different castes or forms of individuals of the same species is carried to a much higher extent than with the bees and the wasps. We have seen. with the bumblebees, the beginning of a separation illto two clisses of workers, that is to

The Ants

say, there are large workers and small workers which have different functions in the community. With the ants this becomes almost the rule and when we consider all ants we lind that there may be eight distinct castes, not all in the same individual species, though tive my occur in the same species. There are not only the ordinary winged males and the ordinary winged females, the large workers and the small workers (workers major and workers
 minor, as they are termed), but with certain species there is a well developed and well adapted caste which does the principal fighting for the community and which is known as the soldier. The workers, as with the bees, are simply infertile and undeveloped females. They never have wings. The true temales have wings, but after the nuptial tlight they are discarded and only at certain times in the year are winged individuals seen in an ant community. The true workers, when examined as to their internal anatomy. seem to differ principally from the true females in that they lack the receptaculum seminis.

Fig. 21.-Cremastogaster lineata. (After Mi Cowk.) There are, however, with certain ants forms which never have wings and which in the female sex possesses a receptaculam seminis, and there arecorresponding wingless males, that is, males which never develop wings. These are, then, sexually competent males and females, neither of which ever develop wings. This adds two more structural, forms to the possible number of forms in a community, and they are called ergatoids. This is a term which will come more frequently into use and should he mentioned. It applies to both sexes, but the females are said to be ergatogynous and the males are s:ild to be ergatandrous. The eighth possible form occurs
exceptionally and seems to be intermediate between female and worker.

The community life of ants and their industry, thrift and supposed foresight have been the subject of observation and comment since the earliest times. The hiblical references are familiar to all and the old ideas are well formulated in part in La Fontaine's charming fable of the Grasshopper and the Ant. Milton, Prior and many other poets have sung praises of the amt, and it is safe to use the trite expression and say that it is "fabled in song and story." In "'The Royal Dream Book," an English north-country chapbook, it is said that " to dream of ants denotes that you will live in a great town or city, or in a large family, and that you will be industrious, happy, well-married and have a large family."
The ints form a very large group. More than two thous:ind species have been described. Sharp estimates that there are probably five thousand species in existence. There is a marked uniformity of structure as wellas of
 habits in this great group and the systematic workers have so far made only eight families, of which the Camponotidx, or common stingless ants, and the Myrmicidæ, or stinging ants, are the most familiar examples to persons living in the more northern United States. Representatives of the curious ants of the family Poneridxe nicur in the Southern States.

Many stories have been told of the supposed intelligence of ants, but perhaps it will not be out of place to tell one more which has not been published. In one of the greenhouses of the Department of Agriculture at Washington, a medium-sized black ant occurred in considerable numbers, attracted by the presence of plant lice and mealy bugs upon the hothouse plants. As is well known, ants are especially fond of the nectar secreted by these

The Ants

insects. A number of years ago some liberian coffee-trees were started in the gieenhouse. On the under side of the leaves of these coffee-trees, there exist at the bases of certain of the leaf ribs some very minute, nectar-secreting glands. The ants soon found this out and sipped the nectar. Then the idea occurred to some clever ant that these nectar glands would be the best ptaces in the world for mealy bugs to live and grow tat and they would in consequence secrete a great deal more nectar then they would if they lived on other parts of the teaf. But the nectar glands were too small to accommodate even one grod-sized mealy bug. So, the word was passed around and the ants gnawed the edges of the gland and enlarged it so that it would accommodate a good-sized mealy bug, which was carried to it. Joubtless to the delight of

Fig. 23 - Tetramorium caspitum. the ants, the result was as we may imagine it to have been anticipated. The mealy bug thrived exceedingly. The gland was enlarged still further and a whole family of mealy bugs was raised in the same bole. Thus a custom grew up and many such greatly enlarged glands were found after a few months. Here was an ant, then, apparently taking advantage of an opportunity which was new not only to the experience of the individual, but new to the experience of the race, and if we adopt the most reasonable of the definitions of instinct here seems to have been displayed positive intelligence of a high order.

In all of these stories of the seeming intelligence of ants and of $b^{\circ}{ }^{\circ} \mathrm{s}$, and of other insects as well, it must be remembered that we are running a great risk in our interpretations for the reason that we make them from a human standpoint, that is tis say, that we consider these insects as though they had human personalities. The observer and the narrator inject their own personalities into the subjects investig: ed and in fact they use words which carry with them meanings which may not be warranted by the facts. This fact is brought out strongly by the German
writer Bethe, who wrote. in 1898, on the psychological qualities of ants and bees. He shows, for example, that while we see, all we know about bees and other insects is that they are intluenced by the light and that it would be most unscientitic to say that they do anything as highly psychical as seeing until it is proved. Some of the peculiar and apparently highly intelligent things which ants do, such as recognizing the enormous number of members of the same colony and fighting instantly members of other colonies, and such as finding their way to their own nests and to food supplies and communicating intelligence of the location of food supplies from one to the other, have been carefully tested by this author who concludes that he can find nothing in the phenomenal exhibited by hees or ants to prove the existence of any psychical quality. "They learn nothing, but act mechanically in whatever they do. their complicated retlexes being set off by simple physiological stimuli."*

It is interesting to note in passing that Bethe's conclusions were anticipatod for a number of years ly the famous American naturalist, Samuel L. Clemens (Mark Twain). If any reader does not believe this let him consult Chapter XXII of a "Tramp Abroad".

No one who has read Bethe's account of how ants find their way by ant-traveled paths and how easily they are lost when but a very short distance from the path, can help thinking of Mark Twain's inimitable "chapter in natural history" which also wakes a responsive chord in the mind of every one who has attempted to see intelligence and design in the movements of the isolated ant. "During many summers, now: I have watched him." says Twain, "when lought to have been in better business, and I have not yet come across a living ant that seemed to have any more sense than a dead one. *** 1 admit his industry, of course ; he is the hardest working creature in the world,-when anybody is looking, -but his leatherheadedness is the point I make against him. He goes out foraging, he makes a capture, and then what does he do? Go home? No, -he goes anywhere but home. He doesn't know where home is. His home may be only three feet away, -no matter, he can't lind it. He makes his capture, as I have sald: it is generally something which can be of no sort of use to himself or anybody else it is usually seven times

[^1]
The Ants

higger than it ought to he; he hunts out the awkwardest place to take hold of it; he lifts it bodily up into the air by main force, and starts: not toward home, but in the opposite direction; not calmly and wisely, but with a frantic haste which is wasteful of his strength: he fetches up against a pebhle, and instead of going around it, he climbs over it backwards dragging his booty after him, tumbles down on the other side. jumps up in a passion, kicks the dust off his clothes. moistens his hands, grabs his property viciously, yanks it this way, then that. shoves it ahead of him a moment, turns tail and lugs it after him a moment, grets madder, then presently hoists it into the air and groes tearing awaty in an entirely new direction; comes to a weed; it never occurs to him to go around it, he must climb it; and he does climh it. dragging his worthless property to the top-which is as hright a thing to do as it would be for me to carry a sack of flour from Heidelburg to Paris by way of Strasburg steeple; when he gets up there he finds that is not the place; takes a cursory glance at the scenery and either climbs down again or tumbles down. and stants off once more-als usual in a new direction. At the end of hail an hour he fetches up within six inches of the place he started from and lays his burden down * * *." After continuing this charmingly aimless work for some time and meeting another int and fighting him about nothing, "ealch starts off in a different direction to see if he can t tind an old nail or something else that is heavy enough to afford entertainment and at the same time valueless enough to make an ant want to own it."

W'asmann has just published some important observations in which he shows that ants of the genus Lasills appear to determine direction only by paths previously traveled by members of the same community and which they distinguish by the sense of smell located in the antennate, but that certain ants of the genus Formica proceed directly to the desired point without following paths, using apparently sight as the directing influence. Some little understood sense of orientation, however, may lead to this result and such a sense of course would be instinctive.

The community life of ants seems almost perfect. It nas been likened to a perfect republic where each works for the good of the whole community, each having his appointed work, laboring constantly for the good of all, and each ready to sacrifice himself for the good of all. Most of the writings on the habits of ants

The Ants

deal with European species. Little is known of an exact nature about the full details of the life history of any one species which inhabits the northern half of the United States Random notes and occasional observations have been pullishes, but a thorough, conscientious study of all of the aspects of the life of one of our commoner forms is still to be made. Even the little red ant of households (Monomorimm pharaonis), or the pavement ant (Telramorium (aspitum), or the common black carpenter ant (Camponolus pemuşizanicus), or any of the common species of Lasius or Formica, afford subjects for investigation which may everywhere be found and which should 're studied through one or two years by some careful ohserver willing to record all that he cees.

There need be no great interruption trom the weathet nee colonies of ants can le studied to advantage indoors. Sia joinn Lubbock, in his charming book entitled. "Ants, Bees and Wasps," carried such colonies along for several years. He kept in captivity, in fact, alout half of the British specties of ants, as well as a considerathe number of foreign forms, and for several years he had gencrally from thirty to forty communities under observation. He found that the most convenient method was to keep them in nests consisting of two plates of common windowglass about ten inches square, and at a distance apart of one-tenth to one-fourth of an inch, in fact, just sufficiently deep to allow the ants freedom of motion, with slips of wood around the edges, the intermed ate space being filled up with finc earth. The nests were kept covered over, exiept when under actual observation, since ants very nuch dislike light in their nests. On one side a small docr was left. These glass nests were either kept in shallow boxes with loose glass covers, resting on baize, which admitted enough .iir, 0^{-}on stands surrounded either by water or by fur with the nairs pointing dounward. Some of the nests were arranged upon stands. Comstock tells how the habits of ants can be studied in a school-room by establishing a colony in an artificial nest. His arrangement practically follows that of Sir john Lubbock. He takes two $;$ ieces of windowglass ten inches square, a sheet of tin eleven nehes square and a piece of plank ore and one-fourth inches thick, twenty inches long and at least sixteen inches wide. He cuts a triangular piece, about an inch long on its two short sides, from one comer of one of the panes of glass. From the sheet of tin he makes a tray

The Ants

three-eighths of an inch in depth. On the upper surface of the plank, a short distance from tiee edge, he cuts a deep furiow. This furrow is kept tilled witn water in order to prevent the escape of the ants. The tin trily is placed on the plank, within the lurrow, the square pane of glas, is laid i.? the tray, and along the edges of the glass are laid four strips of wood athout a half an inch wide and a little thicker than the height of the arits to be kept, the'l a layer of tine carth is placed in, and the pane of $y^{\text {basiss }}$ of which one corner has heen cut off is !atid on the strips of wood, and the whole is covered with something which will keep the nest dark.

The general features of the community life of ants of the commoner genera may be briefly summarized as follows: A community is supposed to be founded by a single queel : hich lays white or yellowish, clongate egres, which hatch in two weeks or more. The larvar are white, legless, helpless creatures which, in the beginning of the colony, are atiended by the queen and which develop into workers. As the community grows, egg-laying is contimuous, new queens are born and these pair with the males and ay eqge, the workers, as soon as they begin to make their appearance, taking care of the larvae, feeding them and carrying them about from chamber to chamber in order to secure the suitable warmth and moisture. In different parts of the community will lee found larvae of comparatively similar size, the smallest ones in one place, larger ones in another, and still larger in another. These larvex have to be fed for a ruonth or more, according to the species. and when full grown transform to pupx, sometimes naked, sometimes covered with a silken cocoon. The cocoon is usually white, and is also carried about to suitable places by the workers. When an ant colony is disturbed the workers are seen scurrying at, sut, carrying the ee cocoons, endeavoring to carry them to a place of safety, and the common idea is that these e zoons are egges, but they are a great deal larger than eggs. In three to four weeks the pupx emerge, and in emerging from the cocoons they are helped by the workers, which are said to take the greatest care of them. unfolding their legs and helping them expand their wings. The males die very soon as a rule, but the females and the workers are very long-lived. Lubbock kept two queens for more than seven years, and certain workers more than six.

The life of an ant community is practically perpetual, thus differing greatly from the community life of wasps and humblebees. The nests vary greatly ir form. Some ants oecupy galleries and chambers in the ground. Others make atensive kalleries and chambers in decayn. : wood. Others build mounds.. Still othere construct nests of a paste-like substance, and in tropical regions there are extraordinary variations i. the manner in which nests are built and in the material which composes the neats. The ants themselves feed upon a great variety of substances. Under natural conditions they are both carnivorous and vegetable feeders, eating various plant sulstances, fruit and other insects, as well as tre dead bodies of higher animals. They are especially fond of the sweet sap of certain trees. and of the secretions of plant lice, of scale insects, and of certain leaf hoppers and tree hoppers. In an old community the number of ants may he very great, extending hight into the hundreds of thousands, and it is a matter of common observation that while the ants of one community are perfectly able to recognize other members of the same community, no matter how great their number, they also recognize at once and ether resent or have nothing to do with members of other communities, even of the same species.

The battes of ants. the slave-making habits of certain species, the extraordinary variety of the guest insects which are found in ants' nests and their diverse functions in the community. the rebations of ants with plant lice and other insects which afford them one of their articles of diet, histe so often been described in other works that it would be a sain repatition to dilate upon them here. The strange facts connected with their arricultural pursuits, with the occupation of mushroom-growing which is cultivated by certain species, the remarkable features of the lives of the honey ants and, in falt, everything connected with ant conomy offers most fascinating reading, even to persons not especially interested in nature.

The honey ants deserve more than passing mention, even though they are found in this country orly in the far West and at high elevations. The pecularity of these creatures is that nne form has the abdomen distended the size of a currant and entirely filled with grape sugar, or "honey." The nest is a low, gravelcovered mound about six inches in diameter and two or three

Fig. 24-Ants at play. (Redravin jrom .M. (iok.)
They become simply animated pantries for the use of the others in time of want. Dr. H. C. McCook has written a charming book upon this subject, which is entitled, "The Honey Ants and the Occident Ants," and the same distinguished enionologist and divine has written another book, entitled. "The Agricultural Ant of Texas," which gives ar most interesting account of the most interesting ants found in this country, and which includes at the same time many ohservations, scattered hereand there throughout the volume, on other ants to be found in the United States.

A word may well be said of the household ants. The little red ant (Monomorium pharaonis) has become thoroughly domesticated passing its entire existence in houses and having its nests in the walls or beneath the flooring. The little black ant, (Monomorinm minnlnm) and the pavement ant of the Eastern Stittes (Tilramorillm (aspilnm) are also frequently found in

WASI'S, ANTS ANI) (CHNF:UMON FLIES

Pl.ate VIII.
fics.

1. Mutilla 4-guttata
2. Disymutillat zelaya
3. Spharophthalona sackeni
4. Sphatrophthalma fenestrita
5. Spharophthalina orcus
6. Spherophthalına simillima
7. Spherophthalma cypris
8. Myzine nameat
9. Photopsis imperialis
10. Sphaerophthalma macra
11. Brachycistus idiota
12. Tiphia inormatal
13. Myzine name:a ?
14. Photopsis imperialis
15. Spherophthatma auripilis
16. Bracheistus castane:a
17. Discola lecontei
18. Myaine obscura
19. Nomixphagus sanborni
20. Nomizphagus sanborni
21. Mutilla urnata

Fis.
22. Filis Ximtiana
23. Otontomachus lammatodes
24. Pogonomiyrmex barbatus
25. Flis 4 -inaculata
26. Formica integra
27. Formica integra
28. Pogonomyrmextransversim
29. Labidus mexicana
30. Att:i fervens
31. Cimponotus melleus
32. Camponotus melleus
33. Iphialalax eurygaster
34. Phasgoneura sulcata
35. Attil fervens
36. Amphibolips contluens
37. Hemiteles thyridopiervgis
38. Thalessa nortoni
39. Glyptomornha ligatus
40. Labidus sayi
41. Helcon ligatus
42. Trogus 4 -leonus

houses. They are not sodestructuve to hrusehold effects as they are annoying through their preactice on articles of food. A friend once end me a beatuful story of how he noce bought a piece of backberry pie one night, in a dontv lighted rantroad eatugg house in a western town. He began to eatt it and dwavered an acid thavor which he did not expect. and, carre:ng it to the light, found it swarming with Mounmorremen fharatoms. Thas is not ant ancommon experience and smple indiates the cou thess mumbers in which these hate creatures occur sometimes in houses. How to get rity of these ants is a difficult and serious question. Their nests, occurring usually in walls, are hard in locate. Trapping them with sweetened sponges afterwards soaked in hot water is apparenty sometimes amont hopeless on actount of their intinite number. Carefut watching, however, will ustally show the crack through which most of them enter the pamery or the dining room, and then squitting in kerosene with at birge syringe through this crack will often stop the incursions: or, the crack maly be packed with cutton soaked in kerosene, driving it in with al table knife.

Dr. Wiltimm M. Wheder has recently pubtished some very importint studies of the pecular ants of the fambly Po. nide, as they ociur in Texas (Biological Bulletin. Von. H. No. I. Octoter, 1000). These ants make rather primitive nests and they setm to be generadized creatures from a socialistic standpunt. They do not seem to feed one annther tike the speciatized ants, but they have the same babits regarding the cleanliness of the individua and of the nests. Their tarvae differ from those wh other ants... do their eqges. They are not nearly so prolitic is are otner ants and the feeding habits of the lirvae are very remarkithle. The workers capture another insect. cut it inte piecess and scatter the pieces dmong the larvie, which insert their long necks through the cut surfices, feeding upon the juices of the reenty killed insect. Dr. Wheder found that there is no such sharp distinetoon between the sterile and the fertile fermale with the boneride as with the more specialized ants. He tinds an irregulat polvmorphism i- both sexes. The workers have the same habit of opening the cocoons and drawing out the puper what are realy to transtorm. Ten or a doren workers were observed to gathe around a prematurely extacted pupa and lick it for homs

One of the most interesting features of the study of ant colo-

The Ants

nies is the wonderful diversity of guest insects which are found in them. Insects of several different orders may he found, including beetles, grasshoppers, plant lice, bark lice and Thysanurans as well as mites. All these creatures play some part or another in the economy of the community. Severala are cared for by the ants and furnish food through their secretions. Others hee at the expense of the ants, ether als true parasites or as partakers of ant food. Wasmann has long made a study of these :ant guests and his papers afford such fiscinating reading that they should be generally translated into English for the benefit of persons engaged in nature study.

Typical Life History.

From the observations of Dr. McCook on the agricultural ant of Texas a nearly complete typical life history could be drawn up, but the geographic range of this ant is so uncharacteristic of the greater part of the United States that it does not seem wise to devote the necessary space to such a treatment. The absenee, therefore, of a typical life history in such an abundant and common group as the auts will serve to emphasize, as strongly as anything which has been said, the ease with which novel and important observations can be made upon insects. It is the earnest hope of the writer that some studeut will take up, for example, the large carpenter ant, Campomotns pemnswamicus, study it most carcfully and compare his observations with those of turnjean writers upon congeneric forms, although, as a matter of fact, representatives of this particular genus are not abundant in Furope. Whocver hegins the careful study of this: large carpenter ant must first read br. H. C. McCook's interesting paper entuled "Notes on the Architecture and Habits of the Pennsylvania Carpenter Ant " published in V'ol. V'. of the Transactions of the Aiserican Entomological Society, Γ P. 277-289.

THE PROCTOTRYPOID PARASITES

(Suptr-family Pmetotrypuidica.)

With the consideration of the insects of this group we first meet with forms which were formerly grouped together in al section called the Hymenoptera parasitica, the true parasitic Hymenoptera. In the old system this included the families Ichneumonidx, Braconidx, Chaleididx and Proctotrypide. Other groups have been added since, and entomologists now, following Ashmead, consider the Proctotrypoidea, in spite of their invariably parasitic habits, to be more closely allied to the Vespoidea and Cynipoidea than to the Ichneumon flies and the Chalcis thes. This is undoubtedly true as to structure, and it will be remembered some of the Vespoidea which we have just been considering are parastitic in their habits, while, as will be seen when we take up the Cynipoidea, some of these insects too, although most of them are gall-makers, are truly parasitic in their life.

How internal farasites livi:- The development of the larvie of those parasitic insects which live within the bodies of other msects has been the subject of much speculation and some investigation. How these creatures breathe, nourish themselves, move, cast their skins, and pass their excrement have been mooted points. Cuvier thought that thene larvae breathe by placing their sparacles in relation with those of the insect in which they live. Ratzehurg showed that some of them have a curious catudal appenduge with very thin walls, and this he thought acted as a bood gill, oxygen being gained through its walls from the purified hood of the host insect. Boisduval concluded that they do not take nourishment through the mouth; that they do not breathe, and that thev void no excrement, the larva being analogous to the fertus in mammals. Which lives the life of the mother. Newport described the larver of certain Ichnemmon thes as having no anus, the rectum and its oritue being rapidy developed at the final molt of the larvae. The older authors thought that these
larvic attack only the fitty tissues of the host, or that they nourish themselves exclusively on the lymph.

Through the work of a recent French author, Seurat, we now understimd better how these internal paresites live. They have very sharp jaws, and use them in order to pieree the tissue of the host. The digestive tube has a very voluminous stomith which is closed hehimd, and which serves as a storchouse for food which is digested hater. A small quantity of food digested at once suffees for the immediate wants of the larse. The voiding of the excrement takes plate only in the interior of the cocoon, the stomach not opening until the lirva changes to pupa. The parasite larva feeds upon the fat and hood and the lymph. and in most cases devours everything except the skin and the air cessels. It respects the v "cera up to the last limit, and only sacritices them at the end. In the youngest of these
 internal parasites the air ressels have not appeared, and they breathe by absorbing oxygen through the skin from the blood of the insect in which they live. The skin is very delicate and the oxygen passes through by osmosis. A little later the air vessels begin to appear and become very complicated, bramching all through the skin. The skin in fact appears as if carpeted with an extremely rich network of fine breathing tules. In no place do these breathing tubes open through the skin but the oxygen is absorbed into them through the skin from the blood of the host. When the parasite leaves its host its spiracles or breathing holes open, and the outside air enters through them into the air vessels. Contrary to the old idea, these internal parasites sometimes molt, and the cast skin slips from the anal end of the body into the open space behind it. A remarkable observation has been made by Marchal, who states that a single egg of Encyrtus laid in the egg of a little Tineid moth dwides up into a great number of embryos which develop into individual larve in the larva of the host.

These remarks are general, and apply in a way to all of the
parasitic Hymenoptera. In the Proctotrypnidea a curious hypermetamorphosis occurs in certain eger parasites in which there are three distinct forms of the larva of the same species, one form resembling the little aquatic amimals of the genus Cyclops.

The egrs of the Proctotrypoids are ovate, with a peduncle at the end. Nearly all of the lavee lise within other insects. Very many of them live in insect egrss, undergoing their transformations within these eggs, sometimes a half-dol n or more being found within a single erg-shell. Still others live within the larvae or the pupæ of insects, in which case they gnaw their waly out before spinning cocoons. or sometimes trmsform within the body of the host, in which calse there is usually no cocoon, the skin of the host giving ample protection. The insects of one gen,us, Trichacis, develop in the nervous system of the larvex of one of the little gall midges, while the larva of another gerus, Polygnotus, develop in the digestive tract of the same insect.

As just stated, many of them develop in the eggs of other insects, such as butterflies, moths and true bugs, as well as grasshoppers. Many times students interested in rearing butterlices from the egg will be disappointed, instead of hatching out caterpillars to find numbers of the extremely minute black fourwinged tlies of the Proctotrypoid genus Telenomus, which make their appearance through minute perforations in " eagy-shell. The egres
 of the mourmmotoak butterily (Eutancsad antiona) are especially apt to suffer in this way.

Other Proctotrypoids live in the larvx of gall-flies, gall-gnats, of many kinds of tiess of butterflies and moths and beetles, and in plant-lice, and the ergs of spiders, as well as of bugs, butterIlies and moths. Some of the species (of the genus Baxis) which live in spider eggs are very curious, wingless creatures of simple form.

The curious family Pelecinidx is plated in this super-family by Ashmead, and it forms an exception to the remainder of the

The Proctotrypoid Parasites

insects with which it is thus associated from the fact that the trochanters are not divided; that is to say, they appear to be formed of but one segment. They are very curious creatures with an extremely long and slender abdomen, and look: like lihneumon flies. This elongation of the abdomen occurs only in the female sex. The male has a more normal abdomen. In their early stages they are probably parasitic upon the larvae of beetes. Pelcimus polvturator is our commonest species, and Professor Forbes states that he has bred it from May beetle larva.

THE GALL-FLIES

(Suncrefamily (ymifuitita.)

To this group belong the true gall-flies, as well as certain insects which are inguilines, or gall-fly guests, and also certain forms which are true parasites. Although we call the Cynipoids the true gall-flies, there are many other insects which make galls, such as some of the two-winged flies of the families Cecidomyiidx and Trypetidx, certain caterpillars, a few Chalcis tlies, and a few beetles, as well as certain mites and scale insects. Certain of the oak galls formed by Cynipoids were early used in the manufacture of ink, and later for tannin, so that when one speaks of gallflies these creatures are always thought of. They are small dark

Fig. 27-1 ymipmepmpifica., (fter Riley.) colored four-winged flies, at once distinguishe. allies by the venation of the wings and the struc. as pointed out in the analytical table.

Those which make galls lay their eggs in the ussues oi the growing plant, and the larve when hatened feed upen the plant cells and their contents. A very slight gall deformation may result, but in the majority of cases there is a rapid growth of plant-cells and a curious enlargement of variable shape which is called a gall.

The nature of the gall has long been a disputed point. It was at first thought that it was a parely vegetable growth and

The Gall-ifies

that t:e..: gene .: " punce $1, \cdots$
ruls fuund within it were the result of spontaneous ter it wass supposed hat galls were citused by the isects and the injection of it poisonous liquid.

Fig. 28.-Diantrophus nebulosus. (After Rivicy.) With the true gil los. however, the gall apparently does not commence to form until after the egg hitches. It is supposed that the larval secretes a liquid which catuses the ahnormal growth of the plant, the plant cells which are most active in growth and subdivision being directly affected.

The egg of the gallnly is slender, and has a very lonir petiole which is six to ten times the length of the egre body, and this is inserted by means of a very long curiously formed ovipositor. A grood account of the method of oviposition reported by Riley from observations made by Pergande will be found in the Proceedings of the Entomological Society of Washington (Vol. III. pp. 260-20~).

Most of the Cynipoids make galls upon oak. Others, however, are found upon rose bushes. All parts of the plant are affected roots, stems, twigs and leaves, as well as leaf petioles. In some galls but a single larva develops, while in others very many develop. The oak galls of commerce are European galls, but some of nur native galls would undoubtedly be found to possess commercial value through the quantities of tannin they possess.

The origin of tannin in galls: has been the subject of investi-
gation by Kraemer. He finds that gallic acid is formed at the expense of the stareh during the chrysalis stage of the insect. With the maturing of the winged insect, the gallic acid is changed to tannic acid. The transformation of gallic acid into tannin is accomplished by the condensiation of twe molecules of the former with the loss of one molecule of water.

Most of these insects are single-brooded and develop but one generation in the year. Under unfavorable circumstances. howwer, this period may be greatly lengthened, and circumstances are on record where the flies ilave enrerged only atter two or three years. Certain moisture conditions favor the proper issuing, and when these are lacking the development is retarded.

Some very curious alternations of generations occur among these insects. Of certain spectes, and indeed of certain genera. for years only the female sex was known, and it was afterward discovered, first by Riley and afterward by Adler, that what had been considered two entirely distinct forms were really the same species, but that one generation included both sexes while the alternate generation comprised only females which reproduced parthenogenetically.

One of the most peculiar facts connected with the gatl-flies is that a particular part of the plant is always affected by the same species, and that each species of the same generation alwas prosuces a deformation or gall of exactly the same character, so that the gall alone identifies the species of insect, and in fact for al long time generic and specific names were given to the galls before the insects were named, the name subsequently being applied to the insect itself.

The full development of none of the American grall-making Cynipoids has been studied with the care which this subject should have and doubtless there are many interesting and important facts yet to be discovered.

The guest gall-flies closely resemble the true gall-flies, but lay their eggs in galls already formed by the true gall-flies, their larve living upon the plant growth produced by the true gallfly larve.

The parasitic gall-flies live as true internal parasites in other insects, mainly flant lice and the larva of dipterous insects.

About fifteen hundred species of this super-family have been described.

THE CHALCIS FLIES

(Supcr-fumity Chativinitia.)
This group of parasitic Hymenoptera is probally the largest in number of species of any of the corresponding Hymenopterous groups. It is a well detined and well limited group structurally speaking and comprises undoubtedly many thousands of species. Only a small proportion of the species have as yet heen described. As a rule the insects are so small that they attract no attention from the averase collector and the pacity of our specilic knowledge of the group possibly arises from this fact. The writer was the first entomologist in America to undertake the systematic study of the Chalcidoidea and he and his colleague, Mr. Ashmead, have

Fig. 20.-Pachymeuron micans, 1 llow.
(Auther's aldustrota'n) had the fiedd practically to themselves for the past 20 years. In the course of this time, however, we have described many houndreds of species and have learned many interesting facts about the strange life histories and relationships with other insects, many more of which remain to be noted by careful observers. Almost all of the forms are truly parasitic, the exceptions being certain gallmaking species belonging to the genus lsosoma and its allies and possibly the seed inhabiting species of the genus Megastigmus. Nowhere in mature is there a more marked example of the corelation between structure and habits than occurs in this family. This co-relation descends to the relation between the parasites and their hosts so that it is possible for an experienced person on seeing a new species of Chalcis fly to tell precisely what kind of an insect it will be found to be parasitic upon. For example, the

Pi.ate: ix.

ICHNEUMON FLIES ANI) CHALCIS FLIES

116.
117. Thalessa atrata
118. Odontomus stigmapterns
119. Thaless:a lunator *
120. Thaless:a lunator of
121. Eremotylus texanus
122. Chalcis mariae
123. Chaleis ovata
124. Ophion macrurum
125. Anomalon apicialc

FIG.
10. Pimpla conyuisitor
11. Melanobracon simplex
12. Pesectinus polvturator
13. Tetrachorocheta insolens.
14. Iihneumon curtator
15. Kihneumon seminiger
16. Ichneumon malacus
17. Exetastes scutellaris

species of the genus Copidose na are always parasitic within naked caterpillars. Those of the genus Bothrothoras are always parasitic in small dipterous larve. The economic fimportance of the group is great. They are the mose effective parasites of many of our most injurious insects. For example, in a certain year in the

cotton fields of Nurthern floridil us per cent. of the egges from which would have hatched the voracious cotton caterpillar were killed by the minute Chakisl parasite, Trahogramma pritiosa.

Life History of a Chalcis Fly (Euplicirus comstuckii, Itow.)

It goes without saying that the full life of the internill-feeding parasites of this group is very difficult and practically impossible to follow so lons as they are within the boly of the host insect. In our earlier consideration of the super-fanily Proctotrypoidea We lave given sonte general remarks upon the development of all internal-feeding parasitic Hymenopterous larva, and those remarks will apply in general to the Chalcis thes. There are some of them, however, whose larve do not feed internaliy. These are especially those which are parasitic upon the larvec of mall-making insects. If a gall be cut open, it is quite likely that there will be found within it the larva ol a Torymus cone of the Chalcis tlies)

The Chalcis Flies

feeding externally upon the gall making larva, and there is a quite large group known as the Elachistinx which are parasitic upon caterpillars, the larva of which feed also outside the skin of the host insect. It is one of these which has been selected for our typical life history. It wass studied in the summer of 1878 in the cotton fields of Alabama by Mr. E. A. Schwarz, but it has a northward spread and is parasitic upon caterpillars of certain Geometrid moths--measuring worms.

The adult parasite, which is a little black, shiny, four-winged fly and which, when seen under a strong lens hais a number of

Fig. 32.- Larva of Euplectrus comstockii, on cotton caterpillar. (fourth R'chort (E.S. fine. (iom.) strong, dark colored bristles upon its back, lays its eggs to the number of from three to fifteen in a group upon the middle of the back of the wriggling caterpillir. Each egg is brown in color, almost black before hatching, is elongate oval, strongly convex above, and somewhat flattened beneath. The individual eggs although laid in a group are sufficiently separated from each other to allow for the development of the larvie. They hatch ahout two days after being laid. The delicate egg shell splits Iongitudinally in the middle of the back and discloses the white, grub-like parasite larva, which gradually works the egg shell more and more down the sides of its body where it remains visible as a black line for some hours. As soon as the grub has freed its head from the egg shell it pierces the skin of the victim, and thereafter remains stationary with its head buried. As soon as it has fairly begun to feed, the white color changes to a hright louish green, and the spiracles and the constrictions between the segments are readily seen. The growth of this larval is extremly rapid. In fact, we know of no insect larva which has a more rapid development. In midsummer it reached full growth in three days from the time of hatching. In September

Fig. 3.-Fup.e of Fuplectrus comstockii. from fourth Riport (S. fint (om.) this larval growth took four days. When full grown the farasitic grubs crowd each other, and if there are five or more of them on a caterpillar they form a semi-globular lump of very striking
appearance. Usually their growth is uniform. A retardation in the development of individ "nls in the group results in death. When full grown they tia, white onit relax their hold.

The poor caterpila. : which up to min t the has shown no signs of being affected, excell ly its ackly y wwish color and by its very slow growth, colli., en and dice as oon as angle one of the parasitic larvae withdrav., ...it ar "une fate overtakes those parasitic maggots which are at the time less advanced in their development. If one of the larvxe be removed ly hand, Schwarz found, both the victimized worm and the remaining parasites quickly dry up. After the larval turns yellowish white and relaxes its hold on the caterpillar, it works its way around underneath the

Fig. 34-Euplectru- comatorhii, Ilow. Adult.

belly of the host and spins a series of silk threads attaching the caterpillar, which is now a mere empty skin, to the leaf. Then the parasitic larvae take their places side by side across the under side of the caterpillar skin. fasten it for nearly its whole length to the leaf, spin al little more loose silk of yellowish white color, and transform to pupe. This silken web does not form a series of cocoons since it is so lonse that the hack pupa can plainly be seen between its strands. The caterpillar skin protects these pupe just as a roof would do. After first transforming, the pupa is

The Chalcis Flies

dark yellow, but soon becomes black, especially on the head and abdomen. In from three to eight days the adult parasite emerges.

Just think what a speedy development this means!-t wo days for the egg stage, three days for the larval stage, and three days for the pupal stage-an entire generation in eight days. Even the prolific and rapid-breeding house tly cannot beat this. It is altogether the shortest development of any Hymenopterous parasite that has been studied, and it is due to this great rapidity of development of this parasite. together with the abundance of certain other parasites, that the famous cotton caterpillar of the South, an insect which used to damage the cotton crop annually to the amount of fifteen millions of dollars, is periodical in its attacks and while very ahundant sone years is very sarce in other years. louring the summer when Mr. Schwarz studied the species in Central Alaboma he found that there was an almost complete destruction of the caterpillars in the carly part of October, and that thas destruction was principally due to this parasite.

Plate X.

ICHNEUMON FI.IES

IIC.

1. Ichnetmon wilsoni
2. Ciyptus americants
3. Latmpronota americana
4. Cryptus extrematis
5. Kehneumon longulum
). Iehmeumon v :-alhum
6. Exctastes fiscipennis
7. Ephis.. s irrorator
Q. Crvptus nuncius
8. IChne tunon unifiasciatus

1t. Kihmemmon llavizonatus
12. Ichneumon divinator
13. Fxochitum mundem
14. Fxochitum mundum
19. Thyreodon morio
16.
10. lihneumon cocruleum
17. Ophion biline:atum
18. Heteronelma tlavicomis
19. İnicospilus purgatus
20. Ichnemmon viola
21. Labena apicalis
22. Certansomal apicalis
27. 1'aniscus geminatus
24. Arotes amornus
25. Lablena grallator
26. Compsocisptus caliptera
27. Opheltes gratucopterus
25. Aromalon cur*m
29. Hoplismenus morulus

THE ICI VEUMON FLIES

(Supcr-fumily Ichucumonoidea.)

Until quite recently this great group comprising what are popularly know ${ }^{-}$as the lchneumon flies* was considered by entomologists to form but a single fannily-the Ichneumonidre. but Ashmead has justly decided that the group is of super-family rank, and in a recent paper has carefully worked out the genera of the world, recognizing no less than 1,140 distinct genera, very many of which inhabit the United States. The species of the Ichneumonoidea are without exception parasitic upon other insects, and for the most part upon insects which are injurious to vegetation. Caterpillars are especially subject to the attacks of the Ichneumon flies. In his paper upon the Hymenopterous parasites of North American butterflies, published as a cnapter in Mr. Scudder's great work "The Butterflies of the Eastern United States and Canada," the writer has described a large number of Ichneumon flies which lay their cgers in huttertly larvas, and which issue as adults cither from the citerpillars or from the chrysalids. One of the most fiequent disappointments met with by collectors of butterfles in trying to rear to the adult condition the larva of some interesting or rare species is the ultimate realization of the fact that some lchneumon fly has had her eqgs in the rare specimen before th was captured. Not only do larsa of butterfies and moths suffer from the attacks of members of this group, but also beetle and tly larvae and more rarely the larve of other orders. They are on the whole distinctly beneficial insects, and as will be shown in the detailed life history which follows, they may be responsible for the absolute saving of great damage to the shade trees of our cities as well as to agricultural crops by their widespread destruction of injurious insects.

[^2]

Fig. 3 万. Thale ona lunator. FFrom /nsect /ift

Fig. 37.-P'n!̣̆phincta dictynx a parasite of spiders.
Authur's stlustratoon.,

The Ichneumon Flises

Life History of an Ichneumon Fly (rimpla inquisitor; Sily.)

This important but widespread parasite of caterpillars occurs in Californis, Tixas, Lowa, Illmons, Missouri, Ohio, New York, New Hampshire, Massachusetts, Virginia, District of Columbia, and is probably to he found in all parts of the United

States except possilly in the very coldest portions. It is parasitic upon a large number of different kinds of larve of moths feeding upon such concealed spinners as the tent caterpillar of the orchard and the army worm of the forest (Clisiocampa americana and C_{\circ}°. disstria) and upon certain stalk borers and gall makers, leaf folders and certain of the larger leaf miners. It is by far the most abundant of the parasites of the white marked tussock moth (Orgwit limostigma) a fimous shade tree enemy of the northeastern United States. The adult Pimpla is shiny Wack in color and has a wing spread of, on the average, three-quarters of an inch, the length of its body being about one-balf an inch, but it varies greatly in size, the adults issuing from well fed 'rvae exeeeding these measurements and under-fed specimens transforming into much smaller adults. Upon the tussock moth caterpillar and apon the army worm of the forest the female Pimpla will lay her egrgs when the larva are full grown or just after
they have spun their cocoms, the later time berne semimgle preferabes. When enther apeces is athundant there newly spun cocoons are the rallying, ints of large nembers of the we lomptas. Une of the fems.ale" alter rummeg about hor a kew second will suddenly thrust its ovipositur through the coconn mete the bods of the caterpillar which will wrthe with prun. The Plumpla, however, will remain apparently undistursed and push its envpositor in to its full extent, remaining motronless in this poathen for about five minutes during which tume the sbdomen is shathly moved in a peristaltic mamer as it foreng the exges ott and down through the ofipositur. She wall then turn round, take al step or

two, and finally give the citterpillar what is .ppacmely al cout de grace with two or there thriste in quick suceession. Sometimes the same operation in repelted. The exgr are not thrust into the body of the cilterpill.re when the hitter is cmelosed in its cocoon but sometimes are to lee fomd bone leetween the cocom and the caterpillar and sometimes not firmly attheched to the skin of the caterpil standing upright un end. The eryss are dongate, somewhat wider at one end than the other, pure white in color and perfectle smooth appearing highly pelished. The average length is one men., and the greatest wilth about one ${ }_{6} 5$

The Ichneumon Flies

ald eight-tenths mam. The duration of the egg state must be veiv short and is probally maly a matter of lut a few hours. Alter h.itchang the l'mpla lirvie when at work upon a just spun up tussock moth caterpular teed externally upon the body of the caterpillar, the mouth-parts closely appled in the skin and in fact obvously sucting lofod through is minute orilice. Their growth is rapid and there is no pereepthbe casting of the skin. In mide summer the larve wilf hecome full grown in four davs, when they are mearly ten man. long, ly three man, an greatest dameter, funsform i: sh.upe, and slightly curved. The color is yellowsh white. Theysuon hegin spinning cocoons. These cocoons, at first white and atterward furning gradually to a pale yellow brown, becoming muih the same color as the cocnon of the lussock moth. are denser in structure and are composed of a considerably finer quility of silk. They are long oval in shape and are closely appliod together athering so firmly that it takes some little force to sepmate them. They are applied side by side and so closely that their ove. nutine becomes more or less angular at the point of applataton. IWo days alter the spinning of the coconn in madsummer the larva changes to pupio and adults issue sometumes acterly as six das liter, making the entire life round of the specios amout lifteen d.uss.

It sometames happens that atussock encth caterpillar is stunge When it is just on the point of transforming. l ut in such a case the transformation to pupa is accasionally accomplished. The recently fommed pupa is also occasionally stung. Contrary to the general rule holding when caterpillars are eaten out by the Pimpla larve the lotter seem to leed within such pupe and evidently to spin their cocoons within the caterpillares pupa stion so that one will frequenty lind an apparently perfect pupa of the tussock moth within its cocoon which, however, contains four or five cocoons of the Pimpla packed close together and completely tilling it.

The number of Pimpla larva nourshed by a single tussock moth caterpillar varies from one to ten. with perhips an average of three or four. This is the case in the summer time, but in the autumn more are found. Ten or fifteen in a single cocoon are not unusual at this time the pear. while in one case the Writer his seen twentw-three mole j'impla cocoons in a single cocoon of the tussoct moth. This particular cocoon mass was
cross-sectioned and is shown at f in the accomponying figure. When fall comes and the feeding and breeding seaten is past, all living adividuals of this particular parasite will he found snugly packed away in the barval state withon the bodes of some host ensect and the winter is passed by them mainly in the harval conduon in their cocoons. With the appooch of spring, however, they transform to pupe and ahout the time when the youns hast caterpullars hegun to hatch from thelr egigs the adult parasites conerge reads for the summers campaign.

Int thes at of emerging it is interesting to notice that as with mams other parsistic Hymenoptera and in fact with many other thewts the malese arule issue before the 'enales and wait with impatuenec or t pamonship of the fair sex. from one lot of cocoons stui - the whter in the spring of isyof, forty-mine malen 1 . at her reen March od and : tat efore a smgle female put in an appearance. On March 13 th and 14 th a smgle temale ixaled eath day: on the 17th elotht more: on the lath three more: on the ioth fourteen more. and on the 2oth twents more. In the ineanume the number of
 males resuing had rapidly fallen lig $40-$ - 'ocmono of Pimplatamuivitor off and they eventually cesed to make their pererance. The number of members of hoth sex Wals approximately equal.

A curious fict may be noticed concerning the cocoons from which these early spring individuals issued, that is to save the over-willering woons. We hase seen that an entre generation alay he produced in a spate of fifteen days in madsummer. hut. of course, in colder weather the development is slow and the time may be much extended. Again, in the absence of proper host insects the females may live for several weeks without having opportunity to deposit their eggs. The midsummer coionns are rather thuffy and although more closelv spun than are the coenons of the tussock moth ctterpillar, they ure still rather hoose and the outer silk in particular is loosely spun. With the over-wintering cocoons. however, it is at once noticed that they are of a closer. lougher and more pariment-like consistency. There is less of
the loosely spun silk with the individual although more of this loose silk surrounding the whole mass in any given host cocoon. Thus it seems as though the parasitic larvac in preparing for the winter appreciated the degree of cold which they would have to experience and wisely prepared for it by making their habitations thicker and tighter aggainst the inclemencies of the weather.

As albundant and hardy as this species seems to be it does not escape the attacks of enemies of its own. Certain soldierbugs have been seen to capture the adult females of the Pimpla when they were engaged so assiduously in egg-laying that they were blind to their surroundings. This is not surprising since one can approach them during this process so closely as to be able to study them well with a small hand lens. Then, too, secondary parasites have been reared from their cocoons, that is to say, internat parasites of their own, and sill more strange to relate. Hymenopterous parasites of these secondary or hyperparasites have also been reared from the Pimpla cocoons. An extraordinary chain of links in the development of species is thus brought about and may be studied by any one during almost any summer in one of our northeastern cities. When the tussock moth caterpillars appear in great numbers on our shade trees during a given season, it will almost invariably be found that this Pimpla is present also in great numbers and that the majority of the caterpillars are stung by it. This means that the following se, son there will be an unusual number of adults of the parasitic insect which is now termed thr primary parasite. So great is this albundance that the first generation of tussock moth caterpillars is practically wiped out of existence. Then comes the second curious fact. that the secondary parasites become enormously abundant and kill off the abundant Pimplas. At the end of the same season or at the hegimning of the next the tertary parasites put in their appearance and the secondary parasites are destroyed, thus giving relicf again to the primary parasites which once more begin to be abundant and ready for the next case of super-athondance of the host caterpillar. This little chain of species depending upon species offers one of the easiest and most interesting series of observations which may be made by any school class in the part of the country indicated.

Plate XI.
WASPS

ITM.

1. Chalybion texanum
2. Notocyphus texanus
3. Splex texinlus
4. Ceropilles nigripes
5. Palmodes ruliventris
6. Sphex tenanus
7. Priononyx brunnipes
8. Sphex flavipes
9. Priononys ferrugineus
10. Sphex beltragei
11. I'riocnemis unifiscialus
12. Pepsis carule:
13. Ceropales clegams
14. İntypus marginatus

FIG.
15. Pepsis marginatus
16. P'seudagenia bombycina
17. Sericopompilus cinctipes
18. Pexcilopompilus navas
19. Pedinaspis levifrons
20. Hemipogonius heilighrodtia
21. D'arispompilus contiguns
22. Prioenemis fulvicornis
23. Priononyx bifoveolitus
24. Batozonus algridus*
25. Priocnemis terminatus
26. Salius texanus
27. Ammophila toluusta

THE HORN-TAILS

(Super-family Siricoidca.)

These insects form an old series of Hymenoptera, known as the wood-eaters-Xylophaga. They are distinguished from the true saw-nies by the fact that the foreshanks have only one spur at the tip irstead of two. They have the same broad abdomen and broad head and thorax.

The group iniludes the families Oryssidx, Siricidx, Xiphydriidæ and Cephidx. The larva of all of these insects are woodborers, living in the stems of plants, and even in the trunks of trees. The adult flies are called horn-tails, because the end of the body usually bears a spine or horn. The ovipositor is fitted for boring instead of sawing, and with it the female bores into woody tissue and lays her eggs. The group is not a very large or a very important one, although it contains many common species. A noted example is the European Ciphus fygmaras, which bores into the stems of whent. This species was accidentally introduced into this country some years ago, and is now found in portions of Canada and New York State. Its damage. however, has not attracted the attention of farmers of late. The large pigeon Tremex (Trimex columb, is a not uncommon enemy to shade trees in certain of the northern states. It attacks the elm, oak, sycamore, and several varieties of maple. The holes of this borer may be recognized by their regular, evenly-cut shape, about the diameter of a lead pencil. Isolated shade trees along roads and in streets are fivorite habitats. The writer, as a boy, saw them in great numbers in the maple trees on the grounds of the old lthaca Academy, at lthaci, New York. In midsummer a large number of females would be seen boring into the trunk of a single tree laying their eggs. The female plunges her borer perpendicula ly into the trunks, holding it at right angles to the abdomen. The insertion requires evidently great muscular effort, and the egg is deposited at the bottom.

The Horn-Tails

Fig f1. Tremex columba, (From Insect hifi)
It was a common sight to see females which, after laying, had been unable to withdraw the ovipositor, so that they had been
 held to the trunk until they died. The eggs are oblong-oval and peinted at each end.

The common parasites of the larva of these horn-tails are the very large and extremely longtailed Ichneumon flies known as Thalessal lunator and Thalessa atrak. These lchneumon flies lay their eggs in the burrows of the Tremex. and their larva feed upon Tremex larvae.

The exact facts concerning the life of the Tremex larvie in trunk of the tree have not been studied, and the species is such a common one that it will be
an interesting matter for some observer to work out the life history in detail.

Life History of a Horn-Tail
 (Ihyllacus integrr; Norton.)

This insect, which is known as the willow-shoot horn-tail, is found throughout the eastern part of the United States. The female, after boring a hole some inches below the tip of a willow twig, pushes her ovipositor in an oblique direction into the pith of the twig, inserting the eggs at the bottom of the puncture.

Fig. 43.-Phyllecus integer. (from Inscet Lifi.)
She then girdles the twig below the eggs to prevent it from growing any farther, obviously to prevent the egg from being crushed by the rapid growth of the plant. After a week the eggs hatch, the young larvae lore their way down through the pith to a distance sometines more than two feet, filling the channel behind them with their excrement as they proceed. The eggs having been laid in the spring, the larve feed all through the summer and become full-grown in late fall. fling
the lower end of the burrow for half an inch with frass. They then eat a passage through the side of the twig about a quarter of an inch above the prospective cocoon, but without cutting through the bark. Then the cocoon is spun in the burrow and the larva remains within it all through the winter, changing to pupa carly in the spring.

In young willow groves, the shoots of which are intended for basket-making, the withered tips should be pruned off as soon as noticed in the spring.

THE SAW-FLIES

(Supcr-family Tinthredinoidia.)

The saw-flies derive their name from the fact that the ovipositor of the female is peculiarly constructed, so as to act like a saw. There are two saws set side by side in a groove underneath the body and can be shoved nut and moved up and down. They are used to make the proper aperture in leaves or other vegetable tissues in which the eggs are placed. The head and thorax are wide and the base of the abdomen is not slender. The front shanks bear two spurs.

The eggs are, as just indicated, liin in plant tissues, in apertures made by the female saws.

The larvas as a rule are remarkable from their resemblance to caterpillars. Some of them look so much like cutworms that one might almost e epect is hreed moths from them instead of dies. They have, 1 owever. from twelve to sixteen prolegs, instead of ten, which is the usual rule with the caterpillar. Many of them also have the habit of curling the body around so as to embrace the twig upon which they may be walking. Many of them feed exposed upon the leaves of plants in much the same way as do caterpillars. Others, however, are covered with slime and look more like slugs than like insect lirvex, while still others are covered with a white, waxy excretion which completely disguises them.

There are a few leaf-miners in this group, while in the family Nematide are many gall-makers. A few make cases in which they live. Nearly all descend to the surfice of the ground to transform to pupx, and spin silken cocoons about themselves.

This super-family is particularly well represented in the United States, and its species in fact seem to be more abundant in temperate and cold regions than in the tropics. About two thousand species have been described.

The Saw-Flies

Many saw-flies are so infurious to vegetation as to possess much economic importance; the larch suw-lly (Nemalus erichsomii), in certain years, has destroyed large sections of larch forests in northern New England through the work of its

larvar the imported currant worm (Nimatus ribesti) is a famous enel. of currants in most parts of the United States; the common rose slug (Monostegia rostr), next to the so-called green flies and the rose chafer, is the most abundant enemy to rose

The Saw-Flies
bushes in different parts of the country, while the large and handsome Cimbex amertialla, known as the American satw-lly, is frequently found upon elms, willows and birches in sutficient numbers to almost entirely defoliate. them. The yellow-spotted willow slug (Nemaths a'thtralis, Say) is a common enemy to willows in the United Stites.

The life histories of all of the species just mentioned are well known, hut there are very many forms which need caretul study.


```
The sin flie:
```

Sivei 1 nf se species of the genus Pontanial which make the curious ff on willow leaves are conventent forms for stustr, and th wal nd careful life history of any one of then would te a velu lite e 'tribution to science.

Th a pe-family Tenthredmodea was formerly considered a f. 1 mily 'se' nthredmade-but it has been justifiabl separated by :ir. ishm ad into eleven distinct families.

Life "tient ry if the "Pear Slug"
 (i:n anpoblis /imacinn, Ketziu.)

Hhs incs: the larva of which is commonly known as the peall 'ug, binf \because, to the group which has the slimy caterpillas

115 17-- l'ear slug a, adult saw fly, female: A, larta with lime remowed; c, ame in nor
 a, b, rombeh enlarged, After (Marhory) referied to above. In fict, its scientific name, l/macilla, indleltes this fact, suce limax is aslug.

This slime, dark olivegreen, slus-like creature occurs commonly upon the leaves of peat, derty. plumandalled fruit trees during most of the summer. Frequentlyitociurs in such extraordmary: numbers with the later broods that the leaves of the tree turn brown, d. and fall to the ground i. midsummer. So metumes. when the slugs are very abundant, the sound of the cating of myriads of mouts, resembles the falling of a fine rain upon the leases. There es some times thirty or more feeding upon a single leaf.

The adult insect is a small glossy hak, four-wanced the about one-fifth of an inch in letgyth.

The exges are laid in April and May. The nxapostont ot the female is thrust obliguely though the skin of the le ff tro: i befow. not reachang through the upper surface, however. 1. saw

Pl.ate XII.

SAW-FLIES AND HORN-TAILS

Fig

1. Cimbex immericana
2. Lophyrus prilttii
3. L.ophyrus ibbotti
4. Cimbex imericima
5. Trichiosoman triang̣ulum
6. Bactrocerus pallimacul.a
7. Harpiphorus fascicula
8. Zarail inulatia
9. Pteronus ventralis
10. Dolerus arvensis
11. Strongvlog:aster apicalis
12. Schizocerus zabriskei
13. Mumophadomis bardus *
14. Pteronus ribesii

FIG.
15. Monophadnus hardus 8
16. Nematus erichsonii
17. Dolerus aprilis
18. I.yd: luteicornis
19. Cladius isomera
20. Hylotoma scapularis
21. D'illrurus pinicola
22. Jinus integer
23. Tremex columbil $\%$
24. Urocerus alhicornis
25. Xyphidri:i albicornis
26. Orysus terminalis
27. Tremex columba?

The Ihsect Book

of the female is moved rapidly with a swinging lateral motion from side to side, forming an irregular cell or pocket of an oval outline. The egg is quickly passed down between the plates of
 moulted larval skin; h, larva after casting last *kinsomewhat enlarged. (Afticr lharlitts.) the ovipositor, and dropoed into the pocket thus made, the time occupying little more than a minute for the operation. A single salw-tly usually deposits only one egg in the same leaf, and after laying the egg she goes around to the upper side of the leaf and examines it carefully, rests awhile, ard then flies to another lealf and repeats the operation. The egge is oval, slightly flattened on one side, and remains. in the leaf about two weeks. It increases in size apparently by absorbing the plant juices.

The young larva on hatching makes a semb-circular cut through the upper surface and crawls on the top of the leaf. At first it is near! y white in color, with a yellowish brown head. Almost immediately a slimy, olive-colored liquid beyins to exude over the whole body; the head appears black under the slime. and the body hecomes dark. The anterior segments of the thorax swell out and the head is retricted, so that the little larva appears club-shaped. It hegins feeding on the upper surface of the leaf, eating out small holes the size of a pinhead. This work

Fig. fo- - lear Slug, illustrating methed of ox i. bosition and cmergence of laraa of cutting of cell hemeath • pidermis, with owipesitor, h, adme after egg ham leve:n dejnsiuted; c, since after ex. 4 e of harsi-enlarged. (Afier Lha"hatt) contimes and increases as the larval graws until the leaf becomes entirely skeletonized. Full siac is reached in less than a month. The larval casts its skin four times, and usually eats its cast skin
ior its first meal after each molt. When full grown it molts a fith time, leaving its cast skin as a slender line of slime attached to the leaf. It now appears as a light orange-yellow worm, perfectly clean and dry, with no slime. It then crawls down the plant to the ground, penetrating for half an inch or more and forming a little cell the sides of

Fig. 50-- Pear Slug: a, cocoon;
b, contracted larva; c, pupaall enlarged. (After ihirlatt.) which it moistens with saliva, thus forming a kind of cocoon of firm texture, more or less impervious to water.

Near Washington the first generation of larvx leaves the trees by the end of June, and a second generation begins to appear soon after; but in New York State many of the individuals of the first generation pass the winter in their cocoons. The insect hibernates below the surfice of the ground, and the flies appear the following April or May.

No insect is easier to destroy than the pear slug. All of the insecticide mixtures kill it readily, and even throwing dust over the leaves will destroy it.

THE TRUE FLIES

(Oriler Diptcra.)

All the true flies, that is, those insects which are called flies and have but two wings, belong to the order Diptera. They are the only insects which possess but two wings, with the exception of the males of the scale insects, and a very few May flies (genera Cloron and Canis). Some insects in other orders have one pair of wings so greatly aborted that they appear two-winged as in the genus Psectra, one of the Lacewing flies. The wings are membranous and usually transparent and bear no scales, except in the mosquito family. The hind wings are represented only by two knobbed projections called halteres, or poisers. The nictamorphosis is very complete, the larve being always footless and usually apparently headless maggots and the puper either somewhat resembling those of butterflies and moths, with compariatively free legs and wings, or they are enclosed in the larval skin. Their mouth-parts are formed for sucking. The true flies comprise an enormous number of species. The most numerous of all of the orders of insects are the Coleoptera, or beetles, the Hymenoptera, which we have just discussed, and the Diptera, and for superiority in point of numbers the precedence must probably be given to the Diptera. About forty thousand species are known and it is estimated that the number yet to he described will bring this number fully up to three hundred and fity thousand. agrainst three hundred thousand which we have estimated for the Hymenoptera. Not only have the true flies a superiosity in point of numbers, hut entomologists are concluding that they probably stand at the head of the insect system in point of evolution. that is to saly. they are the most highly specialized of insects. While they do not possess the apparent specialization in the way of intelligence and in other respects seen with the bees, wasps and ants. the very completeness of their transformations and the highly specialized organization of the adults of several families support this view.

The True Flies

The order is not a popular one among entomologists and collectors. Aside from the fact that observations upon their life history are by no means as interesting as some of those which we mentioned in the preceding order, they have none of the Weauty which attracts students and collectors to buttertlies and moths and they have not the definiteness of structure characteristic of the beetles and they are much more difficult to preserve in collections in perfect condition. The hard-bodied, easily collected, and readily pinned beetles seem much more attractive. But the Dipteral in many respects possess a peculiar interest and their study is of enormous importance from many points of view. Even in point of beauty, many of the families possess species of striking color and graceful shape; and, everywhere abundant as they are, they are easy objects to collect. It is true that with some of the delicate species, especially the mosquitoes and crane flies, it is almost impossible to preserve specimens in good condition. Still, with many of the groups they keep well when simply killed and pinned and preserve their colors much better than do the dragon thes, for example.

Very many species, and in fact entire groups, are harmful to man through damage to growing crops and to livestack. One of the most famous crop enemies in the world, the so-called Hessiam tly, is a dipterous insect, and most of the insect parasites of livestock lelong to this order. As late as i884, Ir. S. W. Williston, then of Yale University, an authority upon this order, wrote: "As a whole, the order is a beneficial one to the human economy. While we maly resent the troutlesome mosquito's and the impertinent house-llv's molestations, and while the black tly and the horse-fly may cause the death of many horses and cattle, yet the larger number are purely parasitic in their habits, either in the larval or adult states, upon other and usually injurious insects. Many others, too, act as beneticial scavengers of unwholesome matters, which would otherwise often loring disease and death." Since Williston wrote these lines, a whole class of baneful work accomplishod ly thes has been discovered. That is their agency in the spread of disease.

As earle as 1×64, Leidy attributed the spread of gangrene in hospitals during the Civil war to the agency of the house-lly, and the terrible disedse known as malignant pustule was afterward discovered to be caused by the bite of one of the gad-llies which
carried the bacillus of anthrax from diseased cattle and ber its bite inserted it into the circulatory system of human leeings. The carriage of the purulent ophthalmiaia of the Egyptims by the house-tly was later demonstrated, and the spread of the disease known as "pink-eye" in the South has been shown by Hubbard to be facilitated by little midges of the genus Hippelates. A.n Englisha army surgeon hals aseertained that the tsetse-fly of Africa carries pathogenic geras from diseased cattle and by its bite transfers them to the blood of healthy cattle, and late investigations have shown that certain flies, and especially the common house-lly, are responsible not only for the spread of Asiatic cholera but of the everywhere prevalent and dreaded disease known as typhoid fever. A vital stimulus to this line of investigation has been given by the discovery that certain mosquitoes are responsible for the spread of malarial fevers and a very great interest has been excited and an enormous literature has sprung up within the last few years concerning this line of investigation. This interest has become even more intensitied by the experimental proof obtained by the United States Ar,ny Yellow Fever Commission of the agency of certain mosquitoes in the spread of yellow fever. The whole subject of the agency of insects in the transmission of disease is one of the most prominent subjects of inedical investigation at ihe present time and nearly all of the insects concerned in this work belong to this order Diptera; so that, in spite of the benefits to humanity which the parasitic species bring ly their destruction of injurious insects and in spite of the beneficial function which many Dipteral exercise as scavengers, this incident of the lives of many of them, added to the ravages of many more on crops and domestic animals, inakes the order al distinctly and markedly injurious one.

Many strange features in life history occur with the flies. With some no eggs are laid and living larva issue from the body of the female. Such tlies then become practically viviparous, or "larviparous." With others, although these are few in number, the development within the body of the female goes even farther and when the insect emerges from the body of its mother it is already in the pupal condition. Such forms are called pupiparous." We have mentioned the wings of the Diptera, but in some forms there are no wings. Such species, and they are also few in number, are usually parasites, and the loss of wings is one of the degradational features consequent upon the parasitic life.

The True Flies

See the bedbug among the Heteroptera, the true lice (Anoplura) and the burd lice (Mallophaga). With those species which lay eggs the larval development is usually rapid; and with some forms. particularly those which are true scavengers and feeders upon carrion or upon excrement, it becomes very rapid. The possibilities for enormous multiplication are apparently greater in this order than in any other group of insects. It is estimated that the progeny of a single house-fly, if undisturbed, would in the course of a single suminer reach high into the billions in numbers, while an almost equally rapid multiplication takes place with some of the mosquitoes.

There is great variation in habits in the group. Most flies prefer the sunshine and are most numerous in the middle of sunny days. A few, however, such as the mosquitoes, fly at night. These, however, are the great exception. Very many tlies frequent flowers, and thus exercise a beneficial function in the cross-fertilization of plants. Many species-comprising, in fact, whole families-are aquatic or sub-iquatic in their early stages. and some possess the faculty of living under what appear to be most disadvantageous conditions. Some of the flies of the peculiar family Ephydride, for example, live in the strongly alkaline lakes of the far West where almost nothing else can live.

It is surprising how little of an intimate and exact nature is known concerning the life history of most flies. It is true that maggots are not attractive creatures, but the mode of life is so variable in the different groups of flies and the transformations are so remarkable that a very great interest attaches to many of these life histories. Unfortunately, however, very few observers have done any work in this direction and it results that there is room for an army of workers who will find it especially easy in this order to add to scientific knowledge. It will be noticed in the consideration which follows of the different families that full observations have not yet been recorded in many of them from which typical iife histories can b . drawn up. This is a sad state of affairs and it is one which observers of nature should endeavor to remedy. As an exaniple, it was not until 189 e that a full account was published of at single one of our common Nortt : zerican mosquitoes and even so ubiquitous an insect as the he...e-fly was neglected in this country until a comparatively recent . ate. It is a: : ange fact, although not impossible to explain, that our com-
monest forms are neglected ly students. One not only does not find them in collections, but when an attempt is made to find what is known about their lives it often results that no information can be gained from books. The reason for this in part is that everyone thinks that everything must be known about these common things.

The classification of the fipteral is complicated. The order has been split up into many families and the determination of species and genera in many of these families is exceptionally difficult. For the following table of the fannilies and higher groups the writer is ind.bted to Mr . I). W. Coquillett. and it is taken in part from the advarice sheets of a paper about to be published by the U. S. National Museum.

TABLE OF THE HIGHER GROUPS

Antenne conspicuous, inserted at upper end of the face. sometimes many-jointed. proboscis ustally furnished with terminal lips, body rather soff and britte, legs approximated, wings usually present and frequently furmshed with a discal cell; adults oviparous or larviparous, never in all their shages living externally on mammals, birds nor honey bees (Suborder
PROBOSCIDEA) PROBOSCIDEA)
Antennae usually inconspicuous. commonly inserted near the middle of the sides of the face and composed of from one to three joints, the apex furnished with a stike or hearing several long bristly hairs, prohoscis never turnished with terminal lips. body integument tough and leathery, legs on one side of the body usually widely separated from those on the other side, wings, when present, never furnished with a discal cell; adults pupiparous living externailly upon mammils. birds or honey bees (Suburder EPROBOSCIIEA)6:

Suborder PROBOSCIDEA Latr.

1-Discal cell. when present. ustully' furnished with three veins that extend to the wing-maren: frequently four or five posterior cells are present, the third vein sometimes forked; if the second basal and diseal cells are contluent the color
of the body is usually mettallic greenish or the antennal style is usually aptcil, intennx sometimes composed of more than three joints: heid of the larves of a tirm texture and delinite shape, pupes not inclosed in the old larval skin, or if inelosed this never forms a hard. cotindrical puparium, the pup, or the imigo issuing through alongitudinal and transverse lissure (Section Orthorhapha) . . 2
Discat ecll. when present, never furmshed with more than two veins: never more than three posterior cells are present, the third vein never forked: when the second basal cell is confluent with the discal the color of the body is never metallic green: antennat never more than three-jointed, the terminal joint usually furnished with a slender arista which is generally dorsall, empodium bristle-like or wanting : heid of the lars:a soft and molvile except the mandiWes. the pupa inclused in the hardened skin of the larvia, which is ruptured circularly near the allterior end during the emergence of the imago (Section Cislorhapha) . . 30

Section ORTHORHAPHA Brauer.

2- Joints of antemase more than three in number: the last one seldom furnshed with a slender stble or arssta: antenne and legs ustally very limg and skender: hody also usually slender, and rather deleate (Subsection Nimoceral. 3
Joints of antenne never more than three in number; the terminal one much fonger than the others and frequently annulate. sometimes furnished with a jointed style or aristat: antenne and legs usually short and robust; body often elongited (Subsection Brachiviera).............. is

Subsection NEMOCERA Latr.

3-Antennax usually longs and slender, the joints nsually longer than broald, and nearly alwals provided with verticels of bristly hatirs, the structure frequently very different in the opposite sexes of the sime species; eves seldom broadly contiguous above the antennie in either sex. sometimes narrowly contiguous above and below the antenna, the facets of a uniform size and not separated by a transverse line into an upper and a lower portion; body usually slender and clongate, pulvilli wanting (Super-family Tipuloi،l',

Mati XIII.

SAW-FIIE:S ANI HORN-TAII.S

$1 \mathrm{IF}_{6}$.

1. Aridus bimaculatus
2. Calamenta clavatus
3. P:arrurus apicalis
4. Teithredo lobata
5. Microxyelia anca
6. Happiphorms tarsatus
7. Pseutosiohla excavata
8. Macrophya trisyllata
9. Hylotoma humer.atis
10. Harpiphorus variamus
11. Rhogog.ater mimbipennis
12. I'anrurus cyaneus
13. Macrophya epinola
14. Hylotom: pectoralis
15. Allantus hasibaris
16. Tenthredo rufopectiss
17. Urocerus abdominalis ?

Hisi.
18. Tenthredo hasilaris
19. Hylotoma rubra
20. Holerus albifrons
21. Hylotoma Mcleayi
22. Holerus tejonicus
23. Tenthredo rufipes
24. Urocerus abdominalis:
25. Tenthredo cinctihilis
26. Pamphilius brumnicans
27. Holerus servicus
28. Abia kennicotti
29. Xeris caudatus
30. Tenthredo grandis:
31. Tremex sericeus
32. Tenthredo verticalis
33. Trichosoma lamuginosa

The True Flies

Antennex rather short. never furnished with verticels of bristly hairs, of the siume structure in both sexes, eyes frequently hroadly conuguous alove the antenna, but always sepilrated below it, pulvilli frequently well developed. body rather robust (Super-family bihionoidia).............. II

Super-family TIPULOIDEA Coq.

4-Thorax never furnished with a distinct V-shaped groove near the middle of the upper side, discal cell always wanting ;
Thorix furnished with such al groove. discall cell usually present. mostly large thise, some of them the largest in this subsection; crane-flies................Family Tipulidu.
5-Last subdivision of the veins which reach the wing-margin at least nine in mumber. hind margin of the wings encompassed by a vein. tibiar never furnished with a pair of spurs at the apex of the inner side.................... 6
Last subdivision of the veins which reach the wing-margin not more than eight in number, tibie sometimes furnished with a pair of terminal spurs.

8
6-Veins of the wings bearing long hairs or scales........... 7
Veins bare, in the outer hallf of the wing thres of the veins are forked and there are two cross-veins ; rather large and rare flies...................................mily Dixidr.
7-Wings long and slender the veins and body bearing flattened scales: mosquitoes.... Franily Cullicidut.
Wings usually hroald. like the body covered with long hairs ; small, moth-like tlies Family Psychodidr.
8-First two weins never coalescing and then separatiog into four branches
First two veins near their bases coalescing for a considerable distance and then separating into four branches, the remaining vein forked: rather small, very rare flies.

Family Stmoximidr.

9-Posterior margin of the wings encompassed by a vern. of the tibier furnished with a parr of long. apical sputs....... 10
Posterior marerin of the wings not encompassed be a vein. tibia never furnished with a puir of apical spurs. ocelli wanting. antemace of the make frequertly fe.ther-lake or with a pentil of long halrs....... Family Chironomidar.

10-Tibix not furnished with apical spurs, ocelli usually wanting. wings mostly with only three veins of which the last one is forked : small, deltate flies; gall gnats.

Family Cectidompridtr.
Tibiar furnished with a pair of spurs at the apex of the inner side, ocelli present.............. Family Myctophilidix.

Super-family BIBIONOIDEA Coq.

11-Ocelli absent, or the wings covered with a net-work of creased lines. or the discal cell present
Ocelli present, wings never furnished with a discal cell nor with a net-wurk of creased lines, the front tihiax are sometimes greatly swollen, or in some casee are furnished with a circle of short spines. . F: m mily bihionidat.
12-Vertex of head not furnished with ocelli; flies of small size, 13
Vertex of head furnished with ocelli, wings rather long and narrow 14
13-Antenna of nealy an equal thickness, wings unusually broad. the vems on the posterior portion faint; the back-tlies . Family Simnliidır.
Antenna very thick at its base, rapidly tapering to al stylelike, jointed apical portion, the palpi are almost as long as the antenna; very rare flies.. Family Orphuphilhdut.
14-Wings furnished with a net-work of creased lines, discal cell never present.

Family Blepharoceridar.
Wings never furnished with creased lines, discal cell present; rather large lies .

Family Rhiphidr.

Sub-section BRACHYCERA Macq.

15-Empodium broad, similar to the two pulvilli, third joint of the antenne frequently ammulated. body and legs not provided with stout bristles (Super-fimily Tahamoidea) it
Empodium narrow, bristle-like, or wanting, third joint of the antenna never annulated, body and legs frequently furmeshed with stout bristles 21

Super-family TABANOIDEA Coq.
16-Calspteres very large or the tiba not furnished with terminal spurs

17

Calypteres small or rudimentary, at least one pair of tibix provided with distinct spurs at the apex of the inner side......................................amily Leptidt:. 17-Third joint of the antemnax distinctly annulated........... 18

Third joint not annulated........................... 20 18-Discal cell lying in the middle of the width of the wing, posterior margin of the wing encompassed by a vein.... 19
Discall cell lyin between the middle of the width of the wing and the custa, posterior margin of the wing not encompassed by al vein. Family Siratiomsiidid.
19-Tibia never furnished with terminal spurs, calypteres rudimentary; large tlies from Middle and South America...Family Acanthomeridt.
Tibix provided with terminal spurs on at least one pair. calypteres very large; horse-flies.... Family Tabamidr.
20-Head small, much narrower than the very convex thorax, calypteres very large; hump-backed tlics.

Family Acrocrida.

Head at least as wide as the depressed thorax. callypteres very smalt; tlies not at all hump-backed. Family Nime'strmida.
21-When five posterior cells are present the fourth vem ends before the axtreme apex of the wing: when less thatn tive the anal cell is much ionger than the second basal and the third vein ends helow the tip of the wing. discal cell always present (Super-f:mily Bomlehoitit.)..22
When tive posterior cells are present the fourth vein ends below the extreme apcx of the wing, when less than five the anal cell is wainting, or, if present, is shorter of scarcely luger than the second hasal, or the third vein ends before the extreme apex of the wing, discal cell sometimes coalescing with one of the other cells.....24

Super-family BOMBYLIOIDEA Coq.

22-Wings provided with less than five posterior cells....... 23
Wings provided with five posterior cells, fourth vein ending before the wing tip, antennal style much narrower than the third antennal joint: mhabit the sonthwest F.mily Aprociridx.

23-Style of the antemiac that. much wider than the thard antennal joint : Luge, clonqute, nearly bare thes . F.amly My dadde.

The True Flies

Style of antenne, when present, much narrower than the third antemal joint, fourth vein ending helow the wing tip

F:mily Boulvysidat.
2.1-Discal cell wanting or coalescing with one of the other cells, fourth vein coalescing with the fith for a consuderable distance, of the wings having two longitudinal and three or four ollique veins issuing from the second (Super-fimily Phoroided)
Discal cell usually present. fourth vein not coalescing with the lith, wings proviled with more than two longitudinal weins (Super-fimily Asiloidtia). 25

Super-family ASILOIDEA Coq.

25-Apex of the third vein usually situated helow the extreme tip of the wing, body sometimes met.llic green or huish. 26
Apex of the third tein situated at or above the tip of the wing. hody never metaltic green or Wuish, proboscis furnished with terminal lips, anal cell much longer tham the sciond bisal, three posterior cells present. third rein forked, antemne not furnished with a style or anistat

20-With five posterior cells in each wing, anal cell alwats present and much longer than the second basal, third vein always forked

27
With less than five posterior cells, anal cell sometimes wanting: when present it is shorter or only slightly longer than the second basal cell
27-Prohoscis furnished with terminal lips, face strongly retreatmg on its lower p.rt, not bristly.... Family Therevidu:
Proboses sharp-pointed. not provided with terminal lips. face projecting forward or convex on its lower part, provided with strong bristles or longy hairs

Family Asthdre
28-Secund basal cell. when contluent with the discall the color of the hodr is never metallic green, intal cell sometimes wanting, third eein sometimes forked . Family limpid.r.
Second basall cell coniluent with the discal, anal cell always present, third vein never forked. color of hody usually: met.illic green.......... ... Famuly Dohichopodidat:

Super-family PHOROIDEA Coq.

29-Wings furnished with more than two longitudinal veins. fourth vein coalescing with the fith beyond the apex of the second basal cell. then separating into three bratheches, axilliry lobe and cell wanting, anal cell very narrow...

Family Loirchopheride:
Wings furnished with two longitudinal veins, situated near the costa, the second vein sending three or four indistinct vems obliquely toward the posterior margin of the wing Fimily Phorids.

Section CYCLORHAPHA Brauer.

30-Anal cell present, distinctly longer than the second basal, the discal cell sometimes wanting, both basal cells usually present (Super-family S.rphoidera).
Anal cell, when present, shorter than the second basall, but one or both of these cells trequently wanting (Superfamily Muscoidia) 34

Super-family SYRPHOIDEA Coq.

31-Prohoscis short and robust, no supernumary vein between the third and fourth veins
Proboscis slender and elongate or the wings provide 1 with supemumary vein between the third and fourth vains. 3 ;
32-Head less than one-half as long as the thorax, the ace and front broad........................ Family Plat ifizidr.
Head unusually large nearly as long as the thorax. exeept on the occiput almost wholly covered ly the eyes..... Family Pipunculid.
33-With a supernumary vein between the third and fourth veins. crossing the small cross-vein, the proboscis usuatly short and robust . F.mulv Shrphith:
With no supernumary vein, the proboscis vet slender and elongate Compty Cid.

Super-family MUSCOIDEA Coq.

34 -Lower, oir posterner, collpter distimt. uncoilly projecting beyond the upper (bimup Cithptimate).

The True Filies

Lower calypter minute or wanting. eyes broadly separated in both sexes (Coup Aidlyphrar) 40

Group CALYPTERATE Desv.

35-Oral opening large, the prohoscis well developed. 36
Oral opening very small, the proboscis and palpi rudimentary. the antenne very short and somewhat concealed in cavities; rather large, rohust tlies..... Family (Estratar.
36-Pleura bearing a perpendicular row of bristles above the posterio: cuase.
Pleura no: hearing such a row of bristles. those of the abidomen we:ak
37-Antennal arista hairy or plumose, at least on the hasal portion 38
Antennal arista bare of pubescent Family Tachumitur. 38-Arista of antenne hairy nearly or quite to the apex. legs usually very fong, abdomen provided with stout hristles Fimily Divtidtr.
Aristal hare on its broad apical portion or the bristles of the abdomen weak, legs short and rohust

Famly sarcophagidar.
39-Fourth vein before its apex strongly curving toward the third Family Musidds.
Fourth vein not or only slightly curving tow:rd the third...
Family Althominids.

Group ACALYPTERAE Maca.

40-Auxiliary vein distinct, separated from the first and termmating in the costa, the anal cell present.
Auxilary vein absent, or confused with the first vein... E_{2} 41 -Anterior oral inargin bearinge adistinct bristle on either side 4^{2} Anterior oral margin never bearing such bristles, their places sometimes occupied ly several short bristly hars... fi 5
42-Costa of the whes bearing numerous spines, or the bristles of the front confined to the upper half. th
Costat of the wings not heset with spenes, front usually bristly from the vertex almost the antenna............. 4

43-Third joint of the antenne noticeably longer than broad.... F:mily Siofophagrita.
Third joint broader than long, the last section of the fourth vein usually much longer than the preceding section...

Family Heteroneurider.
44-Front edge of the wings not beset with spines 1 Sipssitur in couplet 51).
Fiont edge of the wings beset with short spines, thorax convex, third joint of the antennee nearly circular.

Fanily Helomrividx.
45-Tibia bearing an erect bristle on the outer side before the apex, anal and basal cells present

46
Tibixe not furnished with such a bristle, anal cell present . 48
46-Body convex, the face and cheeks not unusually bristly... 47
Body greatly depressed, the face and cheeks unusually bristly Family Plosodromidit.
47-Sixth vein of the wings prolonged to the wing-maruin.....

Sixth vein oblterated hefore reaching the wing-margin....mily saprombridu.
48-Legs usually short and robust, abdomen usually ovate and rather short, in the female furnished with il horny ovipositor

49
Legs and body usually very clongate and slender, ahdomen of female not furnished with a horny ovipositor, bristles of the front contined to the upper half.
i1
49-Basal and anall cells large, the latter usually prolonged at its lower apical angle

ヶo
Basal and anal cells smalli, the latter not prolongeal at its lower apical angle, bristles of the front contined to its upper hallf.

Family Loncharda.
50-Auxiliary vein gradually curving to the costa toward its apex, bristles of the front confined to the upper half
...Family Ortuldte.
Auxilary vein alrupth bent forward near its apex. Wriste of the front extending from the vertex almost to its lower end.

Family Tipettid.
51-Face in protile retreating on its lower part. palpi ustally large, thid and tourth veins usually stronylu convergmin toward their apices...Famly Marofeiddr.

Face perpendicular and somewhat projecting forward on its lower part. palpi minute, third and fourth veins parallel or dwerging toward their apices.

Family Sipsidir.
52-Femora and usually the body short ind rohust 54
Femora slender and clongated, hody also usually elongalted. anall cell present.

53-Fourth vein parallel with or diverging from the third vein. Family Psilidar.
Feurth vein usually curving toward the third at its apex (Miiropeitid،r, in couplet 51).

54-Head nearly hemispherical, not prolenged laterally .55
Head prolonged laterally, the eyes stabted at the apices of the prolongations, front femora very robust
. Family Diopsidar.
55-Anterior oral margin bearing al distinct bristle on either side . 58
Anterior oral inargin not bearing such bristles..... 36
56-Anal cell usually wanting the second basall cell usually confluent with the discall cell.... 97
Anal cell distinct. second hasal cell usually separated from the discial ce! (Agrombilidit in couplet 60).
57-Antennal aristal frequently long-pectinate on the upper side, head usuatly much wider than high, fate usually provided with bristles especially on each side, and the oral opening sometimes excessively large

Fimily Ephisidride.
Antenual armat never long-pectinate, head not wider than high, fice not bistly, and the orall openmen never unusually large . Family Oscinine.
98-Arista of antennte bare. body short and rohust. (x)

Arista usually flamose: if bare the fhoty is some what slender . 59
59-Hairs of the antennal aristat long and few in number, second basil cell usually condluent with the discal cell. Fanily Drosophilidar.
Hairs of the arista short and numerous, sometimes wornting: second hasall cell separated from the discal ceil.

Family Gomeridit.

liarl kiv.

SAW-H:LII

Hli.

1. Sihizocerus plunigerat:
2. Macrocephus tritascialts
3. Fimphytus mellipes
4. L.yala ocreatia :
5. L.iphyrus lecontei
6. Sihizocerus plamigera?
7. Hylotoma carrukes
8. Eimphytus cinctipes
c). L.yda oerealta ?
9. Periclista purpuridonsum
10. Monoctents juniperi?
11. Hylotomat clavicornis
12. Phymatocera fumipe mis
13. L.yda multusignata
14. Neurotoms fisi iat:
15. Monoctenus juniberi :

is. Fenthredo formosal
(4). Hemichroat allhiduvariata
16.
17. Macrophya incerta
18. \%.ariea ambericalla
19. Liolyda plagiata
20. Strongylogaster somiculat.1
21. Wolerus coloradensis
22. Macrophya formosis
23. P'arasiobla rufocinctus
24. Trichiosomal crassum
25. P'teronus trilinc:atus
26. Pachynenatus extensicornis
27. Strongylogaster terminalis
28. Dolerus similis
29. I'teronus coryli
30. Horpiphorus intermedius
31. Xiphidrial provancheri
32. Panrurus areolatios
33. Xeris morrisonii
34. Tenthrede discrepants

MIC OCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

60-First joint of the posterior tarsi slender, longer that the second joint Family Agrombitidu. First joint greatly dilated, shorter than the second.

Family Borborida.

Sub-order EPROBOSCIDEA Latr.

61-Head greatly depressed, projecting forward or downward body usually depressed; living on mammals (except bats). hirds, or honey bees.. Family Hippoboscitur.
Head rounded, projecting backward upside down over the tholax, body usually nearly cylindrical; living upon bits . Family Nycteribiidix.

have long antenne
and very long slender legs which are so slightly attached
that it is difficult to
capture a Tipulid
without breaking one or more of them.
The thorax has a
V-shaped suture on
the back and the
wings contain numerous veins and usually a perfect discal cell.

Crane tlies are frequently taken for big mosquitoes, but they differ entirely in habits and do not bite, although those of the genus Elephantomyia have a long proboscis, even longer than that of a mosquito. The larva of most species live in the earth but some lise in water, in decomposing wood and
*The term "daddy \ln ng. leg" " in this country is applied exclusively to the we called harvest spiders of the family l'halangida.
even upon the leaves of plants. Some of the earth-inhabiting forms destroy grass and grain by injuring the roots. They breathe through two :an spirates which in aquatic species are placed at the tip of a long process. The pupal stigmatic tube is set anteriorly, the salme change from the anal end to the head end taking place in the transiormation to pupa as cecurs with the mosquitoes. The pupa itself resembles somewhatt a Lepidopterous pupa.

The adult flies are commonly seen in the late summer and are found in pastures and woods, sometimes, especially with the smaller species, swarming towards sundown. More than one thousand species are known and about three hundred of them occur in tile United States. Certain forms appear in the early spring and there is a curious wingless genus-Chione:a-the species of which are found upon the snow.

The wings of the crane flies are generally clear but are sometimes beautifully marked and spotted as in Limnobia and Tipula. The large and beautiful Pedicia albovittata Walk has striking brewn bands on a white wing surface. It is found in the White roolintains and the Catskill mountains, as well as in the far northwest and in Alask:l. Bittlicomorph.l with its short wings and banded le rs and swollen feet is a most striking form. The California genus Holorumsia contains the giants of the family and H. gralldtis has a wing spread of more than three inches. The colors of the crame tlies are usually dull, but in Ctinophora the body is frequently brilliantly marked with red. In this genus the abdomen is pointed so as to resemble the ovipositor of some Hymenopterous insects and the male abdomen is swollen at the tip .lmost like that of one of the so-called "Scorpion flies" of the family Panorpidx (q. z.).

Life History of a Crane Fly

(Bituromomplat clatipes Fab.)

Comparative'y few species of this family have been carefully studied. but in his important paper on the "Entomology of the Illinois River and Adjacent Waters." Mr. C. A. Hart records some interesting facts concerning this species. The genus Bittacomorpha is found exclusively in America and the larvae of the in-

The Crane Flies
sect under consideration were found in the early spring in a shallow swampy slough full of rushes and swamp grač. In the mass of dead stems, grass and leaves, through which a broad stream of water ran slowly, were found the cylindrical rustybrown larva of Bittacomorpha, which 7 their appearance look like bits of decaying grass stem. Their stomachs were found to be fitied with diatoms, mud and dead vegetable tissue and the larvae had evidently fed on the diatomaceous grow th which coated the decaving ste is. At the anal end of the bory was a long respiratory tube bearing two pairs of spiracles at the end. About the end of March they showed some swelling and within the loose skin the solt white pupx were found. The thoracic respiratory tube was rudimentary and the tube was coiled between the larval and pupal skins. On April 6 th the first adult llies issued. Later, in September, a number of adults were seen flying, which indicates either an emergence of the same generation both in fall and spring or two generations annually, the offspring of the fall thies remaining in the larvall state through the winter and giving forth adduls in the spring. The eggs have not been observed and a more careful study of this species is needed.

FAMILIES DIXIDAE AND ETI JOXENiDA

The little midges of the Dixidx resemble mosquitoes, but they do not bite. They all belong to the single genus Dixa, which is so distinct from the other Diptera as to constitute a group of family rank all by itself. We have less than ten species in this country. The Dixas seem intermediate between the mosquitoes and the crane flies. They are found in damp places in forests, and in the larval state are aquatic. The larval is considerably like that of a mosquito, and might by the careless observer well be taken for the larval of a mosquito of the malaria bearing genus Anopheles. The Dixa larva has fringes on * upper jaws like those in mosquito larva, but it differs in having leg-like projections from the first two segments of the abs omen. It is found in shallow water and breathes air as do the mosquito larve. The pupa has respiratory siphons on the thorax just as does the pupa of mosquitoes.

Stenoxenida is a family name proposed by Conrillett for a single little fly of curious venational structure-Stenoxemus john-soni-which is known only from Delaware Water Gap, N. J.

MOSQUITOES

(Family Culicidu.)
This group includes the familiar insects known as mosqui-toes-not al large group, but a very important one, not only from the fact that mosquitoes abound in so many localities and are great annoyances to man and animals, but also from the fact that

Fig. 52-Anopheles punctipennis: Female with male an tenna at right, and wing tip showing venation at leftenlarged. (Author's illustratom.) they are active agents in the transfer of disease. They are found in great abundance in tropical regions, in temperate regions and even far to the North. Travelers in Alaska state that the abundance and voracity of the Alaskan mosquitoes is beyond description. They occur with equal abundance in Lapland and in Greenland.

So far as definitely known the larve of all mosquitoes are aquatic, although they are true air-breathers: that is to say, they must come to the surface of the water to breathe. They are rapid breeders, and pass the pupal
condition also in the water, but tloating normally at the surface They pass through several generations in the course of a year, and hibernate as adults. Hibernating mosquitoes may often be found during the winter months in barns and in the cellars and cold garrets of houses or in sheltered places like outhouses and under bridges and stone culverts. In the extreme southern states many mosquitoes are active all through the winter, and mosquitobars are almost as necessaty at Christmas time as during the summer. Even as far north as Baldimore, inosquitoes sometimes bite in houses in December and January. In places where there are prolonged dry spells, and very heavy rains are only expected alt certain seasons of the year, dult mosquitoes live through the dry spells and lay their eggs as soon as the rains come. This is the case in the lry regions of southwestin cuantry, and is :Iso the case tropical counties where the entire year is divided into a wet season and
 short palpi which distinguish "ulex from Anopheles; toothed front tarsal claw at right-enlarged.
(Aubhor's iliustrutton.) a dry season. In those countries the wet season is generally considered as comparable to our winter, yet it is the active breeding searnn of mosquitoes, while the dry season. which is supposed to be comparable to our summer, is the season when the adult mosquitoes live on and on. With these insects, as with so many others, the life of the adult seems to be dependent only upon

Mosquitoes

the opportunity of propagating the species. The main purpose of the adult is propagation

The adult male mosquito does not necessarily take nourishmeat and the adult female does mot necessarily rely upon the hood of the warm-hlooded animals. The mouth-parts of the mate are so different from those of the female that it is probable

Fig. 54 - - Anopheles maculipennis: Adult: male at left, female at rightenlarged. (Author's illustration.)
that if it feeds at all it obtains its food in quite a different manner from the female. They will sip witter or any liquid substance, and appear to be especially fond of beer and wine. The females are normally, without much doubt, plant-feeders, and very few of them get an opportunity to taste the blood of a warm-bodied animal. They will feed upon other than warm-blooded animals. They have been seen puncturing the heads of young fish; they
have been seen puncturing the chrwsils of a butterts, athal they have been seed sw irming alout turtles when the latter are on land. The larvie as the controry, feed upon all worls of minute organisms loatung in the water, such as the spores of aldere and monute aquatic amims.小. They are all furmshed with mony bristles at the mouth, and these bristles are kept in constant viloraton drawng particles thoatmar or in ampension in the water into the mouth cavity.

Five genera of maspuitoes are represented in this country, namely Anophels, Actes. Megrahumes, Psorophora and Culex. Most of our species belong to the genus Culex, and one species of this genus has been selected for the typicall tife history which is given.

The mosquitoes of the genus Anoplites are the ones which are

lige 55-Anopheles maculatennis: E.gefromindow at left. fromalmbe: at "mhth-greastly enlarged. (.iathur's illustritaon.) responsible for the transfer of mallaria. The micro-organism of malaria is a protozoon which in the human being inhabits the red-blood corpuseles. It underpoes a sporulating developinent in the red-blood corpuscles, the spores
ing thrown into the blood serum afterward entering other ond corpuscles extracting their red coloring matter and destroying them. The full life round of the malarial parasite, however, is not completed until it has been taken with the blood of a human being into the stomach of a mosquito of the genus Anopheles. Here, and here only, is the sexual generation of the parasite developed. Certain of the parastes which undergo no development in the humin body, when they are brought in.o the stomach of the Amopheles continue a sexual development, unite and give birth to elementary forms, knouth as blowts, which penetrate the stomach wall of the mosquito, enter the salivary glands, and are thus with the poison directed into the body of the next h. hin beirg punctured by this mosquito.

We have in the United States three species of mosquitoes of this malarial ge is Altopheles. namely A. matulipennis= quadrimaculatus=ilaziger. A. punctipennis and A. irwcians.

The mosquitees of the genus Aibis are excessil sly small. Those of Migarhinus and Psorophors are very large, and include the forms known in various p.rts of the country as salhinippers. Porrephara is distinguished by possessing upright sales on the legs; Megarhinus by its curved teak. Anophele's is distinguished

Fig. gho-Figure at top, half grown lanea of Anopheles in feeding position, just beneath surface film. Figure at frottom, half grown larva of C_{L} ex in ${ }^{\circ} \mathrm{r}$:athing position-greatly enlarged.
ur"s allustration.)
from Culex by the fact that the falpi of the female are nearly as long as its beak. while in Culex the female palpi are very short.

Mosquitoes as a rule do not lly very far. Those of the genus Alnopheles appear to be of extremely short night. Those of the genus Culex will not lly far away from their breeding 102
place unlees they are carried by light and continued winds. In heavy winds they cling to the nearest point of attachment. They are carried long distances ty railroad tains, and many localities where mosquitoes were uaknown have become infested by the introduction of rallways or improver at of the through train service.

Many localities can be practically rid, nosquitoes by the adoption of any one of three measures: eitaer by the drainaige of the swamps or ponds in which they breed, or by the use of kerosent: upon the surface of the waters in which they breed, or

Fig. 57.-l'upa of Culex pungens at left; pupa of I'wply :ex maculipennis at right-greatly enlarged. (Aus ur's 'ersor, pionn.)
by the introduction of fish ir " "ishless fe.o that they may eat the larve of the mosquito In all mosy sito-extermination work, however, it must he remembered that they will breed successfully in any transient pool of water or in any receptacle were water is left standing for a week, no matter how small this receptacle may be. They may breed in collections of water in the hollows of old stumps or in old bottles or in old discarded tomato cans. They breed profusely in rain-water barrels, and in rain-water tanks. and in ohl wells, and even in cess-pools where the adults are able to gain access to such pools. Therefore every possible source of this kind must be hunted for when one is engrged in mosquito extermination.

Mosquitoes

Life History of a Mosquito
 (Culex pungens Wiedemann.)

This common and widespread mosquito, which occurs from the White Mountains in New Hampshire to Cuba, and from British Columbial to Mexico, lays its eggs, numbering from 200 to 400 , in a raft-like mass on the surface of the water. The eggs

Fig. 5 s - l'sorophora cilata: lemale-eniarged. (Author's allustrathon.)
are laid side by side, standing on end and stuck close together in longitudinal rows six to thirteen in number and with from three or four to forty eggs in a row. The egg mass is gray-brown

Plate XV

TRUE FLIA:S

Fics.

1. Physocephala tibiadis (Conopide) Atlantic States
2. Chrysopil: ornata (Leptide) Atlantic St.ıtes
3. Psorophora ciliata (Culicida) U. S.
4. Pyrgota undata (Ortalide) Eastern half of U.S
5. Eimpis ravida (Empide) N. H.
6. Musca domestica (Muscida) Cosmopolitan
7. Helicohia quatrisctosa (Sarcophagide) 1). C.
8. Bittacomorphat clavipes (Tipulida) U. S.
9. Pyrgota valida (Ortalida) Northeastern U. S.
10. C:amptoneura picta (Ortalidae) U. S.
11. Morellia micans (Muscida) Eistern U. S.
12. Sarcophaga sarraceniae (Sarcophagide) Fastern U. S.
13. Calobatal Lascival (Micropezide) Southern IJ. S., W. I., S. A.
14. Tetanocera plumosa (Sciomyzide) Northern U. S., Brit. Am.
15. Phormia terrenova (Sitcophagide) Northern U. S.
16. (alliphomia erythrocephata (Sarcophagida) N. A. Eur.
17. Pachyrhina ferruginea (Tipulidx) N. A. Mex.
18. S . Bibio albipennis (Bibionida) Northeastern U. S.
19. Scatophaga stercoraria (Scatophagidx) N. A., Eur.
20. L.ucilia caesar (Sarcophagida) N. A., Eur.
21. Cinomyia cadaverina (Sarcophagida) Eastern half U. S.
22. Bombyliomyia ahruptal (Tachinida) N. A. Mex.
23. Odontomyial hinotata (Stratiomyida) Westem half U. S.
2.4. Oliersia americama (Hippohoscide) U. S.
24. Trichopoda pennipes (Tachinida) N. A.. Mex.
25. (ionial capitata * (Tachinidae) N. A., Mex.. Eur.
26. Fchinomyia algens (Tachinide) Northern N. A.
27. 1’:mzeria radicum (Tachinide) U. S. Eur.
28. Ocyptera cardina (Tachinide) N. A.
29. (instrophilus equi (Oestrida) N. A., Eur.

3r. Gonia capitata o (Tachinidae) N. A., Mev., Eur.
32. Jurinia metallica (Tachinida) Southern U. S.. Mex
33. Archvtas aterrima (Tachinide) N. A.، W. J.
i4. Hypoderma Iinu:ata (Oestrida) N. A., Eur.
35. Tabanus lineola (Tabanidae) U. S., Mex.
30. Chrysops niger (Tabanida) Eastern half N. A.

38. Tabanus costalis (Talbanide) Atlantic States
39. Cuterehra bucala (Oestridx) Eastern U. S.

41. T:avanus lasiophthalmus (Tab:anidat) Fastorn N. A.
.42. Talbams atralta (Talomiata) E:astern U. S., Mex.

from above and silvery white from below, the latter color being due to the water film. The eggs are laid early in the morning before dawn and in warm weathe will hatch by two o'clock on the afternoon of the same day. The larvae are active little creatures known as wrigglers which are so often to be suen in rainwater barrels and horse froughs. The anal end of the body is provided with a leng respiratory tube into which two large air vessels extend quite to its tip, where they have a double orifice which is guarded by four tlaps. This tube issues from the eighth

Fig. 59-Culex nngens: Egg mass, with enlarged eges, at left and young larva below-enlarged. (Authur's illustration.)
segment of the abdomen. The ninth segmert is armed at the tip with four tlaps and six hairs. The flaps are gill-like in: appearance, though they are probat's simply locomotary in function. The mouth parts are curiously moditied and are provided with ongr cilia which are kept constantly in vibration, attracting and directing into the mouth minute particles of amimal and vegetable matter which are to be found in the water. The wriggier remaids at the surface of the water when breathing through its respiratory tube but descends when seeking for food. It undergoes three

Mosquitoes

different molts, reach.es maturity and transforms to a pupa in a minimum of seven days in hot summer weather, taking much longer in the early spring or when the weather grows cool in the fall. The pupal is well il'ustrated in the acompanying figu:e and differs radically from the larva or wriggler from the fact that it now breathes from the ear-like or trumpet-like organs issuing

Fig, (ro-Culex pungens: Full-grown larva at left, pupa at right-enlarged. (Author's illustration.)
from the thorax instead of from a respiratory tube at the other end of the body. The pupa remains at the surface of the water in an upright position but when disturbed wriggles actively to the bottom, floating upwards again in a very short time. The pupa stage lasts in warm weather but two days, at the expiration
of which time the skin splits on the back of the thorax and the adulı mosquito works itself out, resting upon the old pupa skin until its wings unf Id, and then flies away. The duration of a single generation mav be within ten days; say sixteen hours for the egg, seven day for tle larva and two days ior the pupa.「his time, however, may be indefinitely extended if the weatier be cool.

THE MOTH-FLIES

(Finmily Psychodidu.)

There are certain very small, weak flies which look like little moths, from which fact they have been termed "moth-flies," which are frequently found upon windows and upon the under surfaces of leaves, and which have broad wings, rather thick antenne, and which are densely clothed with hairs, even the surface of the wings being hairy. These are the flies of the family Psychodidae. They are so small and so fragile that they are difficult to preserve, and though there are probably very many species only comparatively few have heen described.

The arrangement of the wing veins in these flies differs from that of all other flies, and possibly represents the lowest or most generalized type in the Diptera, although there is good reason to helieve that perhaps the Tipulidx more nearly represent the primordial fly.

In larval habits thev are interesting and variable. Some of them live in dry cow dung; others on fallen leaves immersed in the water of pools or small streams, while others live in rapidly running water, and others are found in rotten potatoes. The larva are remarkable from the fact that they have both tracheal gills and open spiracles, so that they can theoretically both breathe air and use the oxygen in the water.

One of the European forms (Pericoma canescens) has been carefully studied by Miall and Walker (Trans. Ent. Soc. London. 18n5), but the larva of none of the American forms were known until very recently, when Kellogg discovered the larvx of Pericomat califormiensis in the streams of the Sierra Morena Mountains near Stanford University, California. With Kellogers larva no tracheal gills were found but they may have been retracted. On the under side of the larva are curious sucking discs, through which it attaches itself to objects under the water, a structure which seems to be necessary in order to prevent the larva from
being carried down the stream. They were found on the stones of the stream bed, not usually submerged, but always at the very verge of the water, sometimes submerged, sometimes above the water surface, but always wetted by the current or spray. They look something like a sow-bug or pill-bug (Oniscus) in shape, but are narrower. Kellogg's figures and descriptions may be found in Entomological News for February, 1901.

Less than twenty species have been described in the United States.

THE AMIDGES
 (Fimily Chiromomidn.)

The w.ects of this family, commonly known as "midges," are sınall, delicate tlies with simple wing venation and no ocelli. The antenna of the males of most genera are strongly plumose, and the flies themselves are frequently seen tlying in swarms with a dancing motion. When at rest the front legs of these thes are lifted and are used

Fig. Gu.-Chironomus sp.: a,h, larva:
r. eggs. (After Kibis.) as feelers. The larva ate mainly aquatic, but some live in decomposing natter and in soft carth. They are softskinned and worm-like in form and frequently bloodred in color. The aquatic forms are usually found in shallow pools and streams and make larval cases of silk and mud or decomposing leaves; but sonie are found at the bottom of lakes of great dep:․:. Professor S. 1. Smith having dredged them from the bottom of Lake Superior at a depth of nearly a thousand feet, and Packard "as found them living in salt water in Salem harbor. The larva of Chironomus plumosus, figured herewith, abounds in great numbers in the waters of Chalutauqua Lake and other fresh water lakes of the United States. These larva form all important fish food but the family has no other economic value.

The flies abound in the spring, even before the snow has left the ground. Ur. Williston has seen them in the Rocky

The Midges

Mountilins rise up from the ground at nightfall in the most incredible numbers, making a humming noise like a distunt waterfall. Many species are common to Europe and North Anlericia, belonging to the so-called "circumpolar f.anna." The eggs of Chironomus are laid in the late eve ling or early arorning in a dark gelatinous mass which swells up on touching the water and which is attached to some object close to the witter's edge. The larve differ in form and habit, hut there are two types. In one there are four long anall tulules which function is blood-gills, as in the fishes, and the pupe bear bunches of long filamentary tracheal gills. These larvie are large and red and are called in England "hlood-worms." The larvie of the second type have no anal thbules and the fupa has a pair of short, breathing trumpets, as in the mosquitoes, instead of the thread-like tracheal gills. Larvas of the first type burrow; those of the second type often live at the surface of the waiter and

Fig. fiz-- Chitemomupumonun: adult and pupa. Aftir kider.) feed on weeds. These generalizations are taken from Miall and Hammond. One European species has heen found to lay eggs while yet in the pupal stage. A genus of this farmity-Ceratopo-gon-is composed of very minute biting tlies. The so-called "-rinkie" of the north woods, called "no-sec-um" by the Maine Indta.'s, belongs to this genus, and other species are found from Canada south to Chili.

Life History of a Midge (Chironomus minutus.)

The life history of no American species of this family has been worked out. That which follows is taken from the observations of Mr. L. H. Taylor, of Leeds, England, as given in the

The Mules
Work onl Chirowomus by the above mentioned authors. The lorve are found in gelothons tules attoched in stontes in slow or switt-running stre:ms. When disturbed they leave there eises and erowl like messuring worms or swiol with ol ligure-of-obght moton. The larval is pile green in color and olout neven 1 min. fong and hois no anal hood-gilts. When ohout to pupate the thorax is much swollen. The pupe live ot ketatinous cases - -hehed to stones, eich cise having a shaghty protruded onfice at either end so thot the witer flows through impelled ly the motion of the hody of the pupa. The pupa breathes by means of respiratory trumpets which are so small as to sugerest that the insect also breathes cutancously or in some other waly. It is armed with strong hooks on the ahdominal stgments by means of which. when mature, it tears its wiy through the case and rises to the surfice of the water. In this position the skin of the thorax cracks and the adult lly emerges.

THE GALL-GNATS

(Fiamily Cocadomyudu.)

The minute flies of this family are small delicate fies some-
 many-jointed, and are furnished with whorls of ha: 1 t. . \& . $\because=$ have only a few longitudinal veins and but a chete ceres it . some penera. The legs are not swollen, and the hody i \& i.:are clothed with hatrs which are easily rubbed off.

In this country these thes have not bath shatrie. .adily studied with great care. There are many species, however, and some of them are known only by the Work of their larvix. Ahou: one hundred species have reen desoribed in the L'nited St.ites.

The larix differ considerably in ther habits, but
 most of them form galls on

 cannot stratly be called galls

 red or vellow:

comen.

the larval state, in stems of wheat. and annually damages the wheat crop of the

Fig. 64.-I iplosis resinicola. (After Comstock.) United States to the extent of many millions of dollars. It is supposed to have been introduced into the United States in the straw brought over for bedding by the Hessian troops during the War of the Revolution. Hence the popular name. Other American species form curious galls on willow, one of them for example
resembling a pine cone. Another species lives on the surface of the maple leaves. Still another forms a gall in the stem of Chrysopsis. There are also several Cecidomyiid galls on golden rod. suntlowers and Aster. The species of two genera have been found in Europe to give birth to young $w^{\text {a }}$.ile in the larval state. This phenomenon is known as pedogenests, but hats nut hesen ohserved in any American forms.

Fig. 65. I'phtan pyivora

Life History of a Gall-Gnat
 (Cccidomyiur lignmonicold Lint.)

This insect, commonly known as the clover-seed midge, occurs throughout a large part of the United States and breeds in the flower heads of the common red clover. It was first noticed in New York State in 1879, but has since been found in most of the clover-growing regions of the country.

The very minute, long, oval, pale yellowish eggs are pushed down by the female between the hairs which surround the seed capsule of the yet undeveloped florets. They are generally deposited singly, but are sometimes found in clusters of from two to five. After young larvax hatch they work their way through the mouth of the flower to the seed. They feed upon the seed. usually destroying it, and when full grown work their wily out of the closed florets, wriggling violently until they fall to the ground where each forms atm ovall, compressed. rather tough cocoon of fine silk with particles of the surrounding earth

There are two generations annually in New York, and three in the District of Columbia.

The species also breeds in white clover, and is frequently so numerous as to destroy the clover-seed crop over a large section of the country.

The remedy is a simple one, and affords an excellent example of the value of accurate knowledge of the life history of injurious insects. It is the custom in the northern states to cut clover twice in the season, once when the clover is in full bloon, for hay alone, and again in the autumn for seed. If the hay crop be cut from two to three weeks earlier than usual the first generation of the insect will be destroyed and the seed crop in the autumn will not be affected, or if least only to a comparatively slight extent.

Plati: XVI.

TRUF IPIIFS

116.
117. Stratiomyia discalis (Stratiomyida) U. S.
118. Tabanus trimaculatus (Tabanida) Southeastern fourth U. S.
119. Strationnyia norma (Strationyida) Northeastern fouth U. S.
120. Tipula abdominalis (lipulidac) Eastern half U. S.. Cam.
;. Tahanus trispilus (Tabanide) Northeastern fourth U. S.
h. Strationyiat badius (Stratiomyida) Northeastern U.S., Brit. Am.
121. Pangonia tranquilla (Tabanidae) Northeastern U. S., Can.
122. Hermetia illucens (Stratumyida) Southern U. S. . Mex.. W. I. . S. A.
123. Tabimus fuscopunctatus (labrandie) Southeastern U. S.
124. (..enombia ferugine: (Leptidie) Atlantic States. Fiur.
125. Sirstus decorus (Strationyidie) N. A.
126. Pedici.t alhivitta (Tipulidar) Northeastern U. S.
127. Tahanus bicolor (Tabanidie) Northeastern U. S., Can.
128. Tahimus atfinis (Tabanida) Northern U. S.. Brit. Aın.
129. I.eptis mystacea (L.eptidie) Fistern N. A.
130. Chrysops excitans (Tilbanide) Northern U. S., Brit. Am.
131. Chrysops hilaris (Tahanidx) Northeistern U. S., Can.
132. Chrvsopila thoracica (Leptide) Fastern U.S.
133. Tahanus septentrionalis (Tabanide) Northern N. A.
134. Dialysis rufithorax (I.eptidx) Northeastern U.S.
135. Chrysops fugax (Tabanidx) Northeastern U. S.. Brit. Am.
136. Chrysops fugax (Tabanida) Northeastern U. S.. Brit. Ann.
137. (hrysopila velutina (leptida) Eastern half U. S.
138. Cyrtopogon bimacula (Asilidx) Northeastern U S.. Brit. Am.
139. Ommatius thbialis (Asilida) Eastern U. S.
140. I.:phir:a gilval (Asilidx) Northeastern U. S.. C:an.
141. I.ampria bicolor (Asilida) l:astern U. S.

2N. L:ampri: mubriventris (Asilida) Southem U. S.
20. Ceraturgus cructialis (Asildate) IEastern halt U1. S.

FUNGUS GNATS

```
(Firmily . I/ycitophididu.)
```

The flies which belong to this group are known as the fungus gnats, from the fact that many of them breed in fungi. These insects are so delicate in structure that they are difficult to collect and study and are not so well known as they should be. although nearly a thousand have been described. More than a hundred species have been described from the United States. They are delicate and as a rule rather slender little flies. The wings are generally clear, but sometimes they are smoky or with

Fig. 6\%,-Sciaratritici. (Alicir (impilletr.)
large spots as in those which helong to the genera Platyura. Scinphila and Mycetophila. The temale abdomen is frequently diseended and expanded toward tine up, as in Platyura pectoralis Coq. and Asintulum montanum Rower. With those species whose larvar live in tungi or decaying wond or other vegretable matter, the larvae are usually slender. cylindrical maggots, more or less worm-like in appearance. Some of them somewh.t resemble
snails and construct delicate cocoons. It was formerly supposed that with some of the species the larva formed galls on leaves, as, for example, one species was supposed to belong to the genus Seiara which makes the beatiful crimson, eye-like spots often seen on the leaves of the silver maple, but the larve in these spots are now thought to be Cecidomyian and it is doulved whether any true Myectophilids ever make galls. Some of the Sciaras also have the curious halbit when in the larval state of traveling in great armies so close to each other as to almost form one mass. They have then been called worm-snakes. They travel in a solid column several deep over each other at the rate of about an inch a minute. In Europe they have from this habit been called the army-worm. but in this country the term army-worm is applied to a caterpillar. Otie of our American species of this habit has been reared by lratt and proves to be Sciara fraterna. Some species live in the sup of trees, and injury to the bark of a maple or an elm causitug the sap to flow in the spring frequently attrates these little midges which will lay their egges there and subsequently little matgots will be foumb. One species, known as Epudpus sidpiti, is sad ly Hopkins to be the catuse, or at least the tramsmitter. of the disease known as scab among potatoes. He also finest that the same insect will breed in healthy potatoes. The use of scably seed potatoes offers favorahle conditions for the attack of these insects as these are attracted to the scably spots under which they breed and are thus brought into contict with the growing tubers. Another species feeds upon ripe upples. One of the Seiares has been called the yellowfever fly in the southern United States, since it made its appearance in extraordinary numbers during a yellow fever epidemic. It has, however, no connection with the disease. Certain of these fungus innats jump actively as well as tly. Seiara trifici Coq., figured herewith, in its ${ }^{\text {arval }}$ stage damages young growing wheat plants.

THE MARCH-HLIES

(Fumily Bitiomidu.)

The flies of this farmily are not especially interesting. They are of medium size and are rather thick-bodied and rather hairy but are weak tliers. Their wings are frequently smoky. Some species, as Scatopse, are very small. There seems to be nothing especially interesting about the group. although more than three hundred species :re known. The larvax are cylindrical and have transwetse rows of bristles and the head, which is rately obvious in dipterous larve, showseres. They feed upon exeremental or vegetable sulbstances and are said to attack • e roots of growing yrass. One of our commonest specties is Bitho alhipennis. This species sometimes occurs in enormous numbers. In the spring of 1891 , according to Oshorn, it abounded in parts of lowa and was erroneously reported as doing muth damage to regetation. In this form the wings are white, quite contrary to the general rule in the family. Other species are of a deep red color with dark wings. The larva of some species of this bamily have been found on the surface of snow. The tlies of the genus Seatnpse breed in decaring vegetable material. in sewers, and in human excreta, Sadopse puliario is common on our windows at certain seatons of the year and, as it is all excrement tly, is a dangerous inhabitant of houses.

THE BLACK FLIES AND BUFFALO GNATS

(limmil! Simulicha.)

These insects, known as black thes, sand flies or buffalognats. are small. siout, hump-backed, biting tlies with broad wings and rather short legs which are sometimes speckled, and with short. straight, simple antenna. The eves of the male are very large and frequenty touch each oil? + r.
 and the insect in this sex does not hite. The family contams only the single genus Simulium of which the black dies of the north wouts and the butfalio gnat of the Mississippi and Missouri valleys are well known examples. They rival the mosquito in their hlood-thirsty terndencies and not only do they attack human-beings, but poulery and domestic animals are frecuently killed ly them. There is one case on record in which al man was killed by innumerable bites. In certain seasons they multiply enormously, alight in thousands on cattle and produce death through their poisonous bites as weil as from loss of bood. Unlike mosquiteres they tly and bite in the day the and are often seen in large numbers flying in broght sunshine. The lanve are aquatic and unlike mosquitoes asatia, the larvae of which tive m starnant witter. Simulium larvie frequent well aterated and frequently swiftly running strems. They are found most abundanty un rocks or logs so near the surfite is to callese a rapid ripple.

The Black F lies and Huffalo Gnats
On one oceasion in the South the buffato gnat plague was averted

Fig. ;o.-....malium invenuntum, (Arom L:S. Ilifl dsr.) by the removal of a jan of hogs in a shagrish boyou ower which the water ran shallowly with sufficient speed to make a perfeet breeding place. When the logs were removed and the ohd sluggish current was resumed the breeding places had been abolished. In the typicat hie history which follows. the issuingr of the tly is mentioned hut it should be stated here that with another species in the southwest Mr. H. G. Hulbard while watching the surfice of the water salw aduts issue in great numbers with such force and velucity that as he expressed it they appeared as if shot out of a gun.

Typical Life History
(Simulium fictigis Hagen.)

The larve of this species occur abundantly on the rocks in the hillside streams about lthaca, N. Y., where the writer wals familiar with them as a boy. The boes who bathed in the streams in that region feared these larvie. catled them lecelhes and supposed that they would attach themselves to the skin ind suck hood. They are huwever. perfectlhirmle :. The life history of the species has heen carefully worked out by Miss R. O. Phillips
 in an unpublishes! paper from

Which the following acount is condensed. The adults witl in $\because \because$ early part of Mave ot the begimmak of the lirst cotthatoms warm weather in the sprong. The exges are deposited on lewts over whill the witter is flowing. The thes hover m litte swarms a foot or two al ove the rock, rapidly liying back and foth, and accosionally dortang down and depositmg thell eggs betcoth the water on the dat suffice of the rock. The bitch of eregn hesomes at kesst a loot or more in diameter and is dietmitly observable at some distance on aceount of the light vellowish color. When the water in very shallow alld its velucity slight the thes sometimes crawl over the surface of the rock and depost eggs without tying. Only a small proportion of the eggs produce larvas. The larva hatch about eight days alter the exges are

Fig iamulium invemustum, make.
 laid and in thes stoger the insect may be found at any season of the year, in summer as well as in winter, and it is in this state that it holorantes. The larver die in these or lour hours whert platced in puter Watcer. IFstencd to the roik lis the ann,l end of the hody they ascume an elect nostion and mowe the beas romand oceasionally with a circting motion.
Thev mos mbese themselves and as they grow larger they sometmes allow themselses to he washed into deeper water. boddeng by a thre:s which they spin as they fo. The theseal a man from the mouth but is attiched alloge the side of the hody different sergments. Sometimes al lorex cluster of lorfid r to the same thred which they e:an escend in much the ber as do spiders. Not much lood is taken in the Who. .e. buring the summer the length of the larvall life is about four wecks, varving with the temperature and the velocity of the water. When tull grown the lan va spins its cocoon, lirmly attaching it to the rock and ako to adjaisnt cocoons. The length of the pupal stage in about three werks. Over-wintering latvae transform to pupe about the 12 th of April. the lirst thes appearing on the ad of Mily. The newly issuing lly surrounded ly a
bubble of water quickly arises to the surface of the witer altad Hes away instantly. the silky pubescence keeping it from ketthing wet. The tirst generatwon having appeared in early Maty. stlccicsull chetherattons are produced from this tume on during the sumamer and par of the atutumn. A. of the thes captured fromt the lirst lrood in one mstance Wete fer males and this maty le the rule lut towiords attomm the males lessall to appear in gleater numbers and towards the last of Augunt ne.uls all on the sprecimens taken Were males. On Seplember 2. 1888. the present writer eipthed tits specimens of the fly at Ithata and all were males with the exception of one. Adults were

Fig. 7.3.-simulium ornatum, early stages
ffor fizic:
observed on the wing as lite as the loth of Uetober.

FAMILIES ORPHNEPHIIIDAE. BLEPHAROCERID AE AND RHYPHIDA

These three fanilies are not especially well represented in the faunal of the United States and comparatively little need be said about two of them.

The Orphnephilidie are small brownish or yellowish flies without bristles or hairs. We have only one described species in this country, viz, Orphnephita testacia Ruthe, common to Europe and North America. Nothing is known about the transformations of any member of this family:

The Blepharocerida, however, are insects of much greater interest and especially on account of their curious larva and on dccount of an unusual arrangement of the viens in the wings which has been pointed out in the table of families. The adult nies look somewhat like mosquitoes but do not bite. The eyes are divided, the upper half containing large ocelli and the lower half small ones. The larva are very peculiar looking objects. having appparently but seven segments and being furnished with conical leg-like structures on most of the segments. On the under side of the body is a row of circular suckers by which they attach themselves to rocks in swift running streams. Each of the suckers is surrounded by a little fringe of tracheal gills or there are tufts of such gills near the sides of the body. The pupa is formed within the last larval skin but subsequently the skin is cast so as to leave the pupa naked. The pupa also clings to the rocks, the skin of the back being hard and making a sort of scale never the hods. On the underside, however. it is delicate and soft and furnished with six suckers be which it clings to the rocks so firmly that they can hardly be removed without breaking them. Comstock has watched the flies sssue from the pupa skins. The pupae oceur on groups so as to form hlack patches on the rocks, Each one rests with its hedd down the stream. The fly emerges through a split in the skin between the thorax and
aldomen, working its way out slowly and holding itself upright in spite of the wherent. Where only a quarter of an inch of water fle. d oves ther me "ds flies were able to hold to the pupa skins wit that hind the body being free from the water. The win , thatexpanced and they flew away. Where the water was deep " :e 'lies were carried down the stream and possibly perished. The commulest species of the northeastern states is Blepharocera capilatal. Loew, which occurs in the District of Columbia, in central New York, in the White Mountains d in Canada.

The family Rhyphide, the members or which have been called the "false crane flies," is composed in general of small flies with broadly rounded and spotted wings. It is a small family and only two genera are represented in this country. The early stages of none of our American species are known but in Europe they are described as long, slender, worm-like creatures which are found in decaying wood, in cow dung, in decaying fruit and even in dirty water.

THE SNIPE FLIES

(Fimily Ioctidue.)
These are slender, rather smallfies, somewhat resembling the robher flies, on account of their long legs and slender bodies. They have usually smoky wings and velvety bodies, some of them slightly resembling yellow-handed wasps. They are not especially numerous. Some of these flies are predatory and destroy other insects and this may be the habit of all. They are sluggish in their habits and are easily caught. The larva are predaceous. and variable in their habitations. Some are found in water, others live in decilving wood, or in the earth, in moss, in dry sund, or in the burrows of wood-boring beetles. There is a curious resemblance between the babits of the species of the genus Vermileo and the well-n nown ant-lions. the larve forming conical pitfalls in the sambl in which to catch small insects. Flies of the genus Atherix lay their egers, as do the females of the Stratiomyiid gemus Odontomyia, in misses on dried branches overhanging the water. The masses become very large and pear-shaped from the curious filet that a number of females add their eggs to the same mass, frequently dying after egg lowing and leaving their bodies attached to the egg mass. The larve are crlindrical and sometimes bristly, and may have tleshy: appendages resembling prolegs on the abdomen. Atherix has seven pairs of these prolege. The larva of one species has been found by Hant in damp earth.

The families Xylophagide and Conomyide which will be found mentioned in some books are merged with the Leptids. The Xybophagids are rather slender fles with the abdomen pointed in the female sex. The Camomyids on the contraty are stout, rather large thes. The lave of some of Xylophagids live under lark and prey on other insects and the larvae of Conomyia live in the earth and are also probally predaceous.

Nearly three hundred species are known, of which rather more than fifty occur in the United States, but the full life history of none of our American forms is known. Vermileo, the form whose larva resembles that of the ant-lion, does not occur in the United States.

SOLDIER FLIES
(Family Stratiomyiada.)
There are certain rather broad, but rather flat-bodied flies of divers structure. but separated from other flies by the characters given in the table, which are not especially remarkable in their appearance except in come aberrant forms, and which are not especially numerous or notable, which are grouped together in this fimily. Comstock has called them the "soldier flies," on account of bright colored stripes with which some species are marked. They are also dark colored and metallic and are not hairy or lristly. Some of the brightly marked ones look like Syphus lies and some of them have a superficial resemblance to some of the solitary wasps. The wings are usually clear, but are sometimes smoky or brown. They are found generally in marchy places on flowers and vegetation, and their larve live in the water, in the earth, in moss, in decaying wood, and in ants ${ }^{\circ}$ nests, and there are observations on record which seem to show that the larve of the curious American genus Hermetia may live in bee hives, and in the nests of wild bees. At all events, H. illutions nas been seen hovering about bec hives and thrusting its uggs through craleks in the hives. The aquatic species are not corefined to fresh water, but at least one is known to inhalit salt valter. and one form lives in some of the alkaline lakes of the western states.

Some of the larvac are carnivorous, while others feed upon decaying vegetable matter.

The aquatic foms feed upon very small aquatic organisms. The engs are laid in overlapping layers upon the conder sides of the leares of aquala plants, or they are laid upon the surface of the water. The larvae are elongate pointed and thattened. We hardly know enough about the development of any one North American form to draw up a tspical life history, but several of

$$
1.0
$$

Piate XV'I.

TRUE FLIES

FIG.

1. Anthrax fulvohirta (Bombyliide) Eastern U. S.
2. Anthrax alternata (Bombylidae) Eastern U. S.
3. Systuechus vulgaris (Bombyliida) Northeastern fourth U. S.
4. Anthrax hypomelas (Bombyliide) Eastern halt U. S.
5. Exoprosopa fisciata (Bombyliida) Eastern half U. S.
o. Bombylius major (Bombyliida) N. A., Eur
6. Anthrax sinuos: (Bombyliida) U. S.
7. Exoprosopa ca!:ptera (Bombyliidx) Western half U. S., Mex.
8. Anthrax tegminipennis (Bombylida) Northeastern fourth U. S., Can.
9. Laphria canis (Asilide) Northeastern U. S.
10. Spogostylum simson (Bombyliidie) U. S., S. A.
11. Dioctria albius (Asilidie) Northeastern U. S.
12. Laphria pubescens (Asilidie) Northern U. S.
13. Erax æstuans (Asilidx) N. A., W. J.
14. Laphria sericea (Asilida) Eastern U. S.
15. Dasyllis thavicollis (Asilidax) Eastern U. S.
16. Asilus orphne (Asilidx) Eastern U. S.
17. Deromyia sp. (Asilidx)
18. Dasyllis posticata (Asilidx) Atantic States
19. Asilus sericeus (Asilidx) Eastern U. S.
20. Mallophora orcina (Asilidx) Southeastern U.S.
21. Proctacanthus milherti (Asilidx) Eastern half U. S.
22. Mallophora orcina (Asilidx) Southeastern U. S.
23. Proctacanthus philadelphicus (Assilida) Eastern U. S.

Tha Ineect Book.

the aquatic and subaquatic species have been studied by Hart in his interesting moestigations of the entomology of the lllinois River. He finds that Stratiomyia seems I prefer the shore and Odontomya the water. The larve are harge, opaque, greenish brown or gray, obscurely striped, and when in the water are found upon vegetation near the surface or floating about, and when on shore crawling about over the mud and in the green scum : 2 olten found on wet banks. The pupa is formed within the tarval skin, but oceupies only the head-end, the remainder of the skin being tilled with air which causes the pupa to tloat at the surface of the water. When the tly is ready to emerge the larval skin splits transversally on the fourth segment and the tly emerges while the case is tloating on the watter or resting on the shore. Hibernating larva and pupa are found in large numbers on loose drift on the shore, emerging, in Illinois, in early summer. Hart thinks there are two generations annually. He watched the egg-laying of Odontomuia cinchand O. vertehrata. They chose dead branches in the water, reeds and the stems of various plants. The female generally stood with the head downwards, and the long and narrow eggs were placed in an irregular oval mass to the number of several hundred closely latd with their tapering ends inserted between the ends of those next to them.

The larva and pupe are frequently parasitized by certain Chalcss ilies (Smicra rifofimorata and S. microgaster.) Hart made an extremely interesting observation when he found the batter parasite mutilatirg with its jaws an egg mass of one of these flies. I hronw of no ubservat on parallel to this. The eggs above referred to were laid june $1: t$, and hatched in ten days. The stomache of the larvae were found to contan mud for the most part, with a little vegetable matter, and here and there a datom.

About one thousand species of Stratiomyiide have been described, of which about two hundred are found in North America.

This is a small and relatively unimportant family of flies of which but a single genus and half a dozen species are represented in Vorth America and all of these are southern forms. They include some of the !argest tlies known and resemble the gadthies and bot-mies more than the flies of any other family in general appearance.

THE GAD-FIIES OR HORSE-FLIES

(Simily Tirtanida.)
The insects of this importime family are known as gad-flies, horse-flies or deer-1lies. T, this group belong the active, strongnlying creatures which ann y herses to such an extent when one is driving along , woodul road, especially in pine woods, and also the smaller yellowish or greenish dies which annoy forest animals, and which bite human beings when in the woods. The proboscis of all of the tlies of this lamily is in the female sex adapted for piercing and sucking, the males, as in all of the bloodsucking thes, including the mosquitoes, being harmess, and the proboscis not iddapted for piercing the ski:n of mammals. The bites do not appear to be as painful as those of mos'puitoes or of Wack thes, and apparently no poison is injected, but any one of these flies may be responsible for the tramsfer of the bacillus of anthrax or "malignant pustule," as it is called. The adults are great water ": .kers,
 and are usually , 1 st abundant in the vicinity ot mand ponds and streams. This has suggested to Porchinskr, the Russian entomologist, the desirability of couting such ponds with kerosene,

The Gad-lifes or Horse-Filies

and his expermonents resulted in the destriction of great numbers of Tishomals.

The tarsa: of the Tabande hee in the earth or in water and are carmsorous, feeding bpon soft-bodied insects and water smath. The spentle-shaped brown of hack egess are depostled in summer in groups attached to the leaveen or stems of herloige The gad-thes vary greatty in color and siace and the smatler ones of the gentus C"hrwops, sometimes called "deer flies." are frequently gutite smath and bolored with yellow or green. The harger ones varv through graw and hrown to hiack. Our largest Hidd-lly is Tishoms Americimles forst., which is an inch and a بharter long, and hats a wing-spread of two and onc-hall mehes. It inhabits the Somthern States. Ahout $1, f(x)$ spectes are known, and perh.ips $2(x)$ oczar in this country.

Typical Life History of a Gad-Fly
 (likbums atratas foab.)

This $<$ one of the eommon large Watk haree-lies which has at verv wide destributan in the United States. Its larve have heen vtuded he Walsh.
 Olley and Hart. Hart his found the ergis masses in July on the dry bark of at stick tojecting from the water. Foom these cgys lavie hatched August fith. Larvit of this spectes were 1 sund commonls in Water, among vegetation and in the sand of the sambly shores of the Hlnois River. Pupe maly be found in the early summer, and the adults appear tron May to July, living aft through the summer. The spectes is apparently single-brooded, that is to sals. has but one generation annually,
and hibernates in the larval stage, the adutts manly emerging in July after a short pupal perod, the eggs bellig laid without deliy and producing larvat a week liter. The egg is ahout 2.5 mm . long. with a dalleter of 4 mm ., dark-brown, sub-cylndrical, more or less t.pering at the end. As they arr laid in masses they point olliquely upwards, and are stuck in four or five tiers, one above the other, and all gummed together in a firm mass. The larval is shining and of a transparent, whitish color, with a giecnish thge marked with conspicuous durk-hrown or goldgreen irregular bands. The ege is parmitiaed by the little Hymenopterous insect known as Phanurus hamizoris Ashim.

THE SMALL-HEADED FLIES AND THE TANGLE-VEINED FLIES
(Familics Acrocerida and Nimestrinida.)
The Acrocerid flies, which have been called the "smallheaded" flies by Comstock and which in some books are known under the family name of Cyrtidx, are of medium size and with a strongly convex thorax so as to app ar hump-backed. The head is very small and is composed almost entirely of eyes. Both the flies of this family and of the Nemestrinidx would be described as little fat flies from their stout bodies. The Acrocerids are sometimes of brilliant metallic colors and are rather well represented in North America since we have representatives of ten genera comprising more than thirty species. The flies of the genus Pterodontia, of which one species (P. anatis) occurs in our Southern States, are of very extraordinary form. They look like minute inflated bladders, the head being extremely smatl. The larvae of the small-headed flies are chiefly parasitic, living in spiders or in their cocoons. In Europe one species lives in the body of a spider, leaving it to pupate, while in this country Emerton has found the larva of one of these flies living in the webs of a common spider, presumably having eaten the spider itself.

The flies of the family Nemestrinida resemble somewhat in general appearance certain wild bees or the bee-flies of the family Bombylidia. Their mouth parts are frequently of great length and they are used in gathering nectar from the tlowers. They are rate in the United States, only four species being known to occur here. The life history of none of them has been worked out. One of the European species of the yenus Hirmoneura is in its early stages purasitic in a beetle larva. The parent fly lays her eggs in the hurrows of some wood-boring insect. When the larvee hatch they come to the surface of the log in which they
were born, tilt themselves upwards and are blo, naway by the wind, falling to the ground and entering the bodies of the white grubs upon which they feed, or they may attach themselves is the bodies of the beetles and so be carried into the ground when the female enters to deposit her eggs.

FAMIIIES MYDAIDA AND APIOCERIDA

The tlies of the family Mydaidx, for which there is no other popular name than the "Mydas-flies," are large and rather slender forms. frequently black with yellow or red bands and with smoky wings. They much resemble the robber-flies of the family Asilidx. to which they are rather closely related. They are quite abundant in this country, though rare elsewhere in the world. The flies are predatory like the robber-flies and feed upon other insects. The early stages are known in only a few species. The larva of Mydas fulripes Wallsh lives in decaying sycamore trees and is probably predatory on other insects living in such locations. This larva is nearly two inches long. Other species are said to be predaceous in the larval stage and on the larvex of the gigantic lon.:- horned beetles of the genus Prionus, which are generally found in dying or dead trees and usually in the roots. The remarkable species known as Mridas lutipennis Loew, which occurs in Texas and New Mexico, has dark orange-yellow wings of the same shade as those of the so-called tarantula-killer (a very large wasp known as Pepsis formosa). This is obviously a case of aggressive or protective mimicry, and the same phenomenon is seen with some of the siender hlack and yellow-banded flies of this family, which look like Scoliid wasps.

The flies of the family Apioceridx also look something like the robber flies. but our species are all western. They are rather large and slender; some rest on the ground and others hover over flowers like humming-birds. The early stages and transformations are not known.

THE BEE-FLIES

(Family Bombyliudu.)
The handsome, stout-bodied, active flies of this family are commonly known as "bee-llies" from their superticial resemblance to bees. There are over 1.400 species known. They usually have spotted or banded wings and their bodies are clothed with hair. They poise in the air in their flight and are most frequently found in sunny openings in the woods. They are distinguished from allied flies by the characters mentioned, by their venatiol, slender legs, small, close three-jointed antennx and rather long proboscis. They are distinct. ely flower-flies, fiequenting blossoms and feeding upon the pollen and nectar which they are able to reach with their long beak. Some of them some-

Fig. 76.-Anthrax I.ypomelas.
what resemble the gad-flies of the genus Chrysops, and others, like Sistrophus, have a slender abdomen swollen towards the tip and look like mud-dauber wasps. Their larval habits are extremely interesting and they are parrasitic upon wild bees and in the egg-cases of grasshoppers as well as upon certain caterpillars. On the whole they may be termed beneticinl insects.

Typical Life History of a Bee-Fly

(Systachus orcas O.S.)
This species is a Western form and is parasitic in the eggcases of the so-called Rocky Mountain Locust or Western Grasshopper. It is unfortunate that the life history of no good representative of the Eastern species in some one of the other genera which may be supposed to live in the nests of wild bees has heen worked out. Here is
 al field for some intelligent Eastern worker. The eggs of the present species have not been observed but the larves are found in the egg-pods of the grasshopper or near them and of different sizes during most of the year. The larvae begin to transform to the pupa state early in the summer and the pupa pushes itself hallf-way out of the ground in order to disclose the fly. Flies continue to issue during the summer. Normally there is but one generation annually lut there is a great tendency to retardation and sometmes the larvar remain over unchanged until the second year. The larva is a stout, plump, curved, grub-like looking creature with an opaque whitish color with small dark-brown head. The pupa looks something like the pupa of a lepidoptero. insect but bears many spines on the head and thorax and the dorsal ridges of

Fig. 78.-S. oreas, puph. (Aftor Nido', the abdominal segments also beatr row's of spines while other portions of the body carry soft dark hairs.

THE WINDOW-FLIES AND THE STILETTO-FLIES

(Familics Sconopinida and Thercidede.)

The Scenopinid flies, which Comstock called the windowflies for the reason that they are quite commonly seen upon the windows of houses, are small, active, shining black tlies of which we have a half-dozen species in North A:nerica, the commonest being Scenopints fenestralis Linn., which is common to both Europe and North America. Its specific mame, fenestralis, is due to its window-loving habit. The larve of these flies resemble those of the following family, and are long and very slender, white in color and with apparently many joints to the body. They are frequently found under carpets and in decayingr wood; also in woolen blankets, and Riley has stated that he found one

1ig $79-$ Scempinus fenestrali.. (Affer Smith.) in human expectoration. This, however, was probably accidental. The manager of a storage warehouse noticed many of these slender, white larve under carpets sent in by his customers for storage. He was worried at their number since he supposed that their presence might indicate the advent of some new kind of carpet moth. He was assured, however, thatt they were considered as predatory in habit, and that they feed upon clothes moths and other insects found in such places, such as book-lice. Nowhere, hewever, does there appear to be any record of any definite ohservations on this point. One observer tells me that he tried to decide this question, but that the insect intended for
prey turned out to be more aggressive and ate up the Scenopinus larval. They are apparently always especially abundant, as 1 am informed ly Mr. Chittenden, in the sweepings in feed stores and the flies are always to be found around the windows in such establishments. The probability is very streng that they feed upon such small, soft-bodied insects as tlour-mites and book-lice. Mr. Pergande tells me that he has seen them eat the pupe of one of the little stored-grain beetles (Silatams surimamonsis) and also disabled house-flies which he hald offered them, as well as their comrades of their own species.

The fimily Therevida comprises a group of rather small and rather slender tlies, frequently of variegated color, and looking something like robber-llies. They have been called stiletto-flies. The flies themselves prey upon other insects, principally other thes. They are not als active as the que robber-flies, nor are they as strong, and as a result they choose weaker prey and have the habit of lying in wait upon leaves and bushes and even upon the ground for their prey to come near them instead of flying athout atetively in search of it as do the robber-lies. Their larva are very curious and are found in rotuing wood or in earth which is full of vegetable mold, and seem to feed upon loth decaying animal and vegetable matter. They have been found feeding upon dead caterpillars and pupae. They are very long and slender, and have apparently twenty segnents to the body including the head. This appearance, however, is deceptive, and is due to a seeming division of the anterior segments.

TRUI: FIIES

FlG.

1. Frax maculatus (Asilidx) Southern U. S., Cent. Aın., S. A.
2. Erax rutibarhis (Asilida) F:astern U. S.
3. Mallophora fautrix (Asilidae) Southeastern U. S., Mex.
4. Deromyia termatus (Asilidx) Southeastern U. S., W. I.
5. Proctacanthus rufus (Asilida) Atlantic States
6. Erax rutibarbis (Asilida) Eastern U. S.
7. Promachus ustardii (Asilida) Eastern U. S.
8. I'romachus vertebratus (Asilidx) Eastern half U. S.
9. Midas luteipennis (Mydaida) Southwestern US.
10. Systorchus solitus (Bombyliidax) Southeastern U. S.
11. Wasyllis thoracica (Asilidix) Eastern U. S., W. 1.
12. 1)asyllis sacrator (Asilidae) Northeastern U. S., Can.
13. Anastechus bitidulus (Bomhyliidix) U. S., Eur.
14. Spogostylum pluto (Bombyliidix) U. S., Cill.
15. Anthrax cevx (Bombylieda) Southeastern U. S.
16. Felimus funestus (Bombyhidax) Northeaster., U. $\$$.
17. Anthrax alcyon (Bombyliida) Western half U. S., Brit. Am.
18. Exuprosopa fascipennis (Bombyladx) Eastern U. S., W. I.
19. Bombylius pygmous (Bombyliaia) Fastern U. S., Can.
20. Exoprosopa decora (Bombyliid. ; .. adle U. S.
21. Lepidophora lepidocera (Bombylida) Fastern h.ali U. S.
22. Bombylius varius (Bombyliida) Northeastern U. S.
23. Fulonchus smaragdinus (Acrocoridac) Cal.
24. Toxophora illuphitea (Bombylida) Eastern U. S.
25. Anthrax fulviana (Bombyliida) U. S.
26. Sparnopolius fulvus (Bombviida) Eastern U. S.
27. Psilocephala hamorrhoidalis (Therevida) U. S., Can.

2X. Thereva frontalis (Therevidx) Northeastern fourth U. S.
29. Spogostylum analis (Bombylidac) U. S., Cam.
30. Neocota weedii (Fmpida) Miss.
31. Rhamphomyia rustica (Empidx) Northeastern U. S.

THE ROBBER-FLIES

(Fiamil. Asilida.)

The strong, hairy, acture, predatory tlies, known as robberthies, form this group. They are very numerous and afe always conspicuous. tlying with a darting motion and preying upon many different kinds of insects. They are, as as rule, rather slender, but extremely strong, and are furnished with a large, tapering, hard beak, enclosing a sharp l.encet which is thrust out and cuts a severe wound in the body of the insect captured. The tip of the beak is bearded with stiff bristles which hold it securely in the wound into which it is crowded. Fitch silys, "These tlies atre inhuman murderers. They are savages of the insect world, putting their captives to death with merchess cruelty. Their large eyes, divided into such a multitude of ficets, probably give then the most acute and acturate vision for espeying and seizing their prey; and their long. stout

Fig. So. - Finax losterdi. legs, their bearded and bristly head, their whole aspect indeates them to be of a predatory and ferocious character. Like the hawk, they swoop upon their prey, and grasping it securely between their forefeet they violently hear it away." Nearly all of their victims are captured on the wing, and any flying insect is liable to be caught by them-other tlies, bees, beetles, moths. butterflies, grasshoppers, and even members of their own species, so that they are true cannibals. Just as with the praying Mantis, or cearhorse, the female frequently resents the caresses of the male, and grasps him and eats hin. They will also feed upon catterpilars, but rarely. Persons engaged in bee culture especially fear these robber-flies, which are known rather generally in this country as bee-killers. One of Ur. Fitch's corre-
spondents a-5t an interesting atcount of the damage done to his upi.arv. F i. robler-tly captured bees by making rapid dashes col: hingtin on the wing, then wrapping its legs abont the bee. 1.1 Mis if it itighty to its own body it immediately sought a in in lil weed upon which to alight and devour ies prey, plewink, hoe in the body and sucking out the llus. . and soft intari. 1 i it, leaving unly the hart outer skil' Upon the
 hundre ' (il the", mall ' 'e, were found accomblated ir 1 single 1 .. The cul thought that it was through the work : :"e mbher lies hat during certain seasons m a be raising region in New York not a single

Fig. ht - Ficax apicalis. (Alfer Comeorki.) hive threw off a swarm. The beak if a robber-lly is so strong that it . an pierce the skin of a human being, bine fortunately none of these creatures h.is ret acquired the hombit of feeding upon warm-blooded animals.

Some robber-tlies are very delicate and slender, as in l.eptogaster, some of them being almost as slender as midges. upon which they probably feed. and fooking half starved, in spite of their voracity. The colors of the robher tlies are variable. but nearly all are very hairy or lisistly or spiny. In this fanily some good cases of wh.t is called "aggressive mimicry" are seen, aggressive mimicry meaning a resemblance of a predatory insect to the insects upon which it ferds, thus facilitating the capture of its prev. We should not fear grizzly bears if they looked like harmess, peace:tble human beings. Thus the robber-lly known as Diromvia ammilata Bizot, looks like the common wisp Polistes metricus Saly: while some of the tlies of the genera 1), ittis and Mallophora resemble bumbleces. In some of the later the hind shanks are modified so as to look very much lik the pollen-bearing hind legs of the bumblebees. This curious seractural modification can be of no service to the tly excer ${ }^{\circ}$ in increasing, its resemblance to the bees. Then also, ats another illustration, one of the robher-flies of the genus Laphrat resemHes a big wasp of the genus Vesp.t.

The larve of the robber-flies much resemble the larva : the gad-!lies, although the adults are so widely different. They hee
in the earth, and in decaying wood, and prev upon the barvae of wood-borng beetles. In the ground they have been known to feed upon the eggs of grasshoppers. Harris has described the early stages of one species (Asilu) sericells) which he thought ted in the larval stage upon the roots of rhubarb. Harris was seldom mistaken, but it is safe to say that as a rule the larve are carnivorous. The pupe are bristly, and have the head and the segments of the ahdomen provided with spines w: hassist them in making their way out of the ground or the decaying logs which they inh bit.

The group is a lery large one and comprises about three thousand described species, of which four hundred or more inhabit this countr:. The detailed hife history of some voll er-fly is a great desider.tum.

THE DANCE-FLIES AND THE LONG-LEGGED FLIES

(Fimilics Empidida and Dolichopodidtr.)

The flies of the family Empididæ are rather slender, sordid, uninteresting-looking creatures, usually of small size. They are sometimes called dance-flies, because they are often seen in swarms in the woods flying up and down with a dance-like movement. By "dance-like" is not meant the slow, gliding movement of modern waltz, but the robust up and down backwoods jig movement. It is a very large family comprising more than eleven hundred species. They resemble the robber-flies somewhat in form and also in habits since they are predatory and capture other insects. Some of them have the curious and as yet unexplained habit of carrying little silken webs with them when they fly, although no one really knows how they spin these webs or where they get them. Their use has also been a mooted point, but it has been suggested that they act as parachutes or aid in the capture of their prey.

Aldrich has studied what is probably this same phenomenon. He finds that the males of an Empis carry little oval masses larger than themselves, which are really not composed of silk, but of bubbles of a viscid sulstance. The purpose of this structure is to attract the female. Aldrich says, " When numerous males were flying up and down the road it happened several times that a female was seen to approach them from some chokecherry blossoms nearly. The males immediately gathered in their path and she with little hesitation selected for a mate the one with the largest balloon, taking a position upon his back * * * The pair would settle down toward the ground, select a quiet spot *** here she would continue to hold the male beneath her for a little time. The male meanwhile would be rolling the balloon about in a variety of positions, fuggling with it, one might almost saly. After the male and female parted company the male inmediately
dropped the balloon upon the ground and it was greedily seized by ants." It seems probable that this observation by Professor Aldrich will explain all of the cases in which dance-flies are seen to carry such structures.

Many of the species do not capture their prey by flight, but run rapidly about on the ground catching other insects with their front legs. The female, as in certain other predatory groups which we have mentioned or will mention, resents the approaches of the male, and if he be incautious seizes him and dispatches him at once. The only time at which he can with safety make his advances is when she is busy eating some insect.

The larvæ of the dance-flies are cylindrical, and live in the earth under leaves and in decaying vegetation. They are said to be probably carnivorous. One species was reared, however, from human freces in the course of certain investigations made by the writer on the subject of the flies which may cary the germs of tpyhoid fever, but of course they may have been preying upon othe: insects which were feeding in this substance. The pupæ are seid to be free and to possess two points at the front end.

The Dolichopodid flies are rather small and rather slender species, usually greenish or bluish in color and more or less metallic. Their wings are clear, or thev may be dusky or obscurely banded. They possess long legs, from which fact they are called by Comstock "the long-legged flies," which, however, does not seem to be a good popular term, since there are other lies with much longer legs. Just as with the dance-flies, these creatures are predatory and capture small flies of other groups, and even soft-bodied worms. They are found in damp places upon the leaves of aquatic plants, and some of them are able to run rapidly over the water. The proboscis is short and not as strong as with the robber-flies. It is a large group, and about twelve hundred species are known. Many forms occur in this country. With none of the species, however, has a good full life history been studied out. The larve live in the earth or in decaying vegetable matter; some are found under the bark of trees or in flowing sap. They form a cocoon and the pupa has two long breathing tubes on the back of the thorax.

THE SPEAR-WINGED FLIES

(limily L.onchoptoridar.)

The flies which belong to this group have not the slightest general interest, but they are structurally very different from other tlies, showing even more differences than are necessiry to the establishment of the group as a separate family. They are very minute creatures, some of them being only one-twelfth of an inch in length, and they are also slender. But two species are known in this country, both belonging to the genus Lonchoptera, and both occurring also in Europe. They are common all through the summer in damp, grassy places, as on the banks of wellshaded streams. Their larve apparently undergo very interesting transformations, but no studies have been made in this country and in Europe-the knowledge of entomologists dated back to some incomplete ohservations made by Sir John Lubbock as long ago as 1862-until within the past year de Meijere of Holland has described, with tigures, the early stages of Ionihoplera lutea. The larvae live under leaves and decaying vegetable inatter on the surfice of the ground.and have the pecular habit of transforming to what may be termed a semi-pupa or a wingless maggot-like creature within the last larval skin. subsequently transforming to a true pupi. The calleiul working out of the life history of these nies ought not to be difficult, and such careful work is decidedly needed.

THE HUMP-BACKED FLIES

(Family Pluorida.)

The little dark flies of this family have no popular name, unless we adopt that of Comstock, "the hump-backed tlies." which is characteristic enough. They may easily be recognized by the two very dark, thick veins on the front margin of the wings. There are not many species, but individuals are excessively common in this country, flying in swarms, and frequently being found upon window panes. Their larval habits are various, hut they breed in decaying animal and vegetable matter. The flies lay their eggs on dead chrysalids, on dead snails and in decaying vegetation. and the maggots which hatch develop rapidly. They are slender, and the pupa which is contained in the hardened last larval skin breathes by means of two slender processes issuing from the fourth segment. There niss heen some discussion as to whether the larvie of the dies of thes fanily are ever directly parasitic in other insects. hut it seems to he accepted that one species is a true parasite in the hives of the honey bee and a most interesting form has recently heen discovered which is a true parasite of ants. In other cases. these plies undoubtedly lay their eggs on diseased or dying insectis.

Life History of the Ant-Decapitating Fly

(Apociphalus pergrandici Coquillett.)

It would he rather a misnomer to call this a typical life history since this form seens peculiar in its habits and rather aberrant among the Phoricax. but the observations which have been made upon it by Dr. W. H. Fex and Mr. Theo. Pergande have heen more complete than any which have been made upon other members of the family, so it is here included. A common black ant, Camponotus fennsyizumious, is the host of this litte-

The Hump-Backed Flies

hump-backed lly. In the District of Columbia and in New Hampshire the lly may be found in midsummer darting about the moving ants on tree trunks and slsewhere and finally succeeding in laying its egg, somatimes after a struggle, on the neck of the ant. The egg hatche; and the young larva bores directly into the head of the ant. As it enlarges it eats out the whole head cavity, the head breaks off from the body of the ant and moves about independently, propelled by the body of the contained maggot which extrudes partly from the neck hole. The larval of the fly transforms to pupa within the last larval skin in the cut off ant's head and the adult fly issues in the course of from two to three weeks. To see an ant's head walking off by itself is a curious sight, yet it is common enough where this fly abounds. Dr. Fox named it, appropriately enough, " the antdecapitating fiy "

THE FLAT-FOOTED FLIES AND THE BIG-EYED FLIES

(Familics Platypcsida and Pipunculidue.)

The flies of hoth of these families are common looking little creatures and most uninteresting in appearance to the general ohserver. The tlies of the family Platypezidx have been called "flat-footed flies." It is a small family of little flies which are also found in shady places. The hind feet of many males are very broad and flat from which comes the name of the family, The larva live between the gills of toad stools.

The members of the last named group are called by Comstock "the big-eyed flies" for the reason that they have very large heads which seem to be composed almost entirely of eyes. They are found in shady places and their larve so far as known are parasitic within the bodies of leaf-hoppers. The pupa is said to resemble that of one of the Syrphus flies.

THE SYRPHUS FLIES

(Fimily Syrphida.)

The syrphus flies (for they have no other vernacular name). comprise many of the most interesting of the dipterous insects. It is a very large family and more than three hundred species are known to occur in the United States. As a rule they are rather stout-bodied flies, varying greatly in color. Sone are metallic greenish as in Microdon and Psilota, while others are banded with yellow in different ways. As a rule the abdomens are rather broad and are rather apt to be flat, but in some, as in Baccha and its allies, the abdomen is slender. The syrphus flies are flower flies

Fig. 82.-Mesograpta polita: a, larva; b, puparium; c, adult. (from Inscit Life.)
par excellince. They fly in the sunlight and are easily taken by sweeping flowering plants. Almost all types of bees and wasps are mimicked by them and so generally does this occur throughout the family that syrphus thes form the most striking instances of protective mimicry. There are syrphus flies like honey bees, bumblelees, social wasps and solitary wasps of several kinds. They are rarely to be seen except in the middle of sunshiny days. some of them resting occasionally upon leaves, but more frequently they are to be found about flowers, while others seem to le almost constantly upon the wing.

The habits of the syrphus flies in their early stages vary greatly. Very many of them in the larval state feed upon plant lice and other small, soft-bodied insects. I have seen currant bushes upon which there was hardly al leaf which did not support a thriving colony of plant lice and which had not become curled and distorted in consequence, and yet within a very few days, while the distortion of the leaves remaned, not a plant louse was to be found but under each leaf instead of the flourishing group of lice was a fat, full-grown syrphus larva which had destroyed all of the previous inhabitants and was now ready to transform.

These larvae do not have a distinctly differentiated head. The external mouth-parts are either entirely lacking or there are two or four usually dark-colored hooklets. The body is smooth and usually glistening. When ready to transform, the last skin of the larva contracts and hardens and assumes an oval shape and a darket color and the pupa is formed within it. When the fly is ready to emerge. the front end of the old skin is pushed out and the perfect fly escapes. The hooklets on the mouth of the larva occur with those Fig. 5.j.- Frimatio tenax-drone fly syrphus fly larve which feed upon
 other insects and they serve to grasp and pierce the body of the prey. Those larva which do not have such hooklets have other habits. They may feed in the decaying wood of old trees or logs; they naty live in manure or solt mud impregnated with decaying vegetalle matter; they may be found in the sap of trees or in the stems of certain tender plants or in fungi. Still others are common in ants' nests and others again are guests in the nests of bumblebees. With such variable habits there must necessarrily be considerable variation in structure and as a result of this mode of life those forms which live in soft mud or manure, which may be almost a liquid, and some of those which live in very damp, decaying wood, have long slender projections at the end of the body bearing spiracles or breathing holes at the tip, so that when the body of the larval is buried in the semi-liquid mass in which it is feeding this long tail still protrudes to the air, enabling it to breathe in comfort. These larva have been termed

The Syrphus Flies

"rat-tailed maggots" and are very curious objects which are frequently sent to entomologists for name.

Those which live in ants' nests belong to the genus Microdon and are among the strangest insect larva known. They do not look like inseet larvar, and, in fact, resemble certain land shells. Curiously enough, they have been described and named as species of mollusks. In falet, certain insects have given shell students a good deal of trouble, for, as will be shown when we study the caddis-llies, certain cases constructed hy these insects have also been described as shells. The Microdon larva does not appear to be jointed and the upper surface of its body is covered with a network of bristles which usually hold a coating of dirt. There is no trace of any head and the sides of the body profect, formirg a sort of fringe around the edge. The soft pupa is formed within the last larval skin and does not alter its shape. Just what these larvex do in the ants' nests is not well understood. Perhaps the ants gain some secretion from them. As a matter of fact they are sometimes found elsewhere. The adult tlies of this genus are usually dull-colored, are slow tliers and are

Fig. St--Rat-tailed magget.
(After Smith.) found on the borders of low-growing woods. The flies have been seen laying their eggs in the ant hills and the ants have been seen to drive them away but they re turned again, undiscouraged by the impolite rebuff. This fact would noi seem to indicate that the larve are of any service to the ants.

Those syrphus flies which live, in their early stages, in the nests of bumblehees belong to the genus Volucilla, and the flies of this gerius rather closely resemble bumblebees. Their larva were for a long time considered to be parasitic upon the young of the bumblebees but later observations have practically disproved this and we are forced to conclude that the Volucella larve are simply scavengers, feeding 4 on the waste or excretia of the hee larvex and even upon the dead bodies of those which die. The bumblehees seem to realize that the syrphus tlies are not inimical to them. since they allow them free access to $!$! : nests and do not seem in the least disturbed by their presence

The most fannous of all the syrphus tlies is the one ehich commonly goes by the name of the drone tly. It is Eristalis tinax and its larva is one of the rat-tililed maggots. It is a cosmo-

PIATI: XIX

TRUI: FIII:S

Ili.

1. Hianias lucisi (Asilidie) Somthem U. S., Mex.
2. Fichthodopar pubera (Asidide) Westem hall th. S.
3. Proctacambus bevipemms (Asilide) mullenstem IJ. S.
4. Nicocles amulator (Asilid.e) Cial.
5. Ospriocerus aldaminalls (Asilidar) Westeln hall U. s.
6. Hizomias tristis (Asithder) Shuthern U. S. Mex.
7. Stenoposon inquin:tus (Avilida) Ne-lr.
s. Siropagon dustus (Asilidar) Ticx.
8. Weptincerus eutrophus (Asilida') Tex.
9. Pogronosoma dorsata (Asilide) Eastern U. S.
10. Proctacambus heros (Asilidie) Southerstan U. S.
11. Heteroposen phanicums (Avalida) T(ex.
12. Whanals Histis? (Asilida) Somethern U. S. Mex.

If. Wipsincerns ventrall (Avildere) Allz.
15. Nus: fulvicillda (Andidar) Somblow U \& S. A.
16. Steropengon belvolus (Anli are) Tex.
17. Microstylnm mursime (Avilide) fex.

19. D.andlis astur (Asiluter) Cal.
20. I'rom.tions alliniactatis ' (Asildate) Ariz.
21. Mallophor, guildiamal (Asilidie) Kaln.
22. M.lluphora hombuiles: (Asilide) Suthe:stern U. S.
23. Mallophora clunsicell. (Asilidar) Sombleactern U. S.
24. Prombachus mitipes (Astidare) Southeastem U. S.
25. Promatchus :llhitisciatus o (Asilidar) Ari\%.
26. Curnopgen platson (Asilidar) Western U. S.
27. Laphria safframa (Asilida.) Southeastem U. S.
28. (ivhopogon chisopogon (Asilide) Northe.sitern U. S., (imm.
29. Dromachus princeps (Asilidac) Wash.

politan specie＂，and is rather larger than he honey－l when it closele resembles．It frequents flowers and is comme is lumel in houses on windows lite in the dutumn．The larvie are found in soft mud and in privies，where th y teed upon decayints nimal and vegetable matter trambermmes to pup，within the list harval skin．Osten Sucken，in two int resting．papers on the se－c：lle ＂Bugonia mylh．shows that th dea，which h．a been provalent sulace ancient times and whe hathe the car isse of animatomav generate swarms of aney－hces，has probaloly ．ir en from the lat that this drone fly breeding in arcasee his ament memersally been mistaken for the honey－ice．The leaned kusshath author shows the existence of this myth with many notions including the Chinese and the lapmese．It 1.17 sutioned n many places in ancient literature at 1 wen occurs in the sto．it Sampon，in the book of Judges in in Ond stam，

This fanlive is pontable＂1 mo＂．Frative spoup of thes．
 the esthetic and the scientitic po．of 心ば The wery frequent instances of protective mimicry reterred to ．．nove，in themselves should give a great impetus to the siudy of the group．Morcover． we in this country are most fortunate from the lact that most of our species have been carefully studied and an uemirable mono－ graph by Dr．Williston has beel publshed ly the National Museum，which is one of the most perfect works of its kuld which the entomologist is anle to consult．A cireful work on the life histones of these in ects，how wer，is almost as greatly needed as in the other fammees of llies．The statements which have been given above are general，but in searching for specific accounts of individual life histories we tind that they are lacking．

THE THICK-HEAD FLIES

(Fimily (iompidur.)

The flies of this group are rather closely related to the syrphus flies. They may be called, after Comstock, "the thickhead flies," beealuse their heads are large and conspicuous. The tlies themselves are rather large, but are generally slender and the abdomen is stalked, like those of some wasps. The wings are usually dark and the insects themselves are darkcolored. but some have yellow hands on the abdomen. Those which belong to the genus Myopa are stouter and have hairy legs, almost like those of a robher-fly. The biy-head flies are found upon lowers with the syrphus flies and their larva are parasitic. chiefly upon bumblebees and wasps, but they have also heen found, according to Williston, in the bodies of grasshoppers.

The larvie of these tlie: live in the bodies of the full-grown wasps and hees. It has been supposed that the flies enter the hees nests and plate their egges on the larva or pupa, but the adult flies alwavs issue from the adult hees or wasps, having accupied the imterior of the abdomen. When full-grown they frequently completely fill the abdomen. Williston has seen a Conops following a bumbthee and repeatedly tlying against it and thinks that the eggs are deposited upon the body of the bee and that ofter hatching the larvar bore into the abdominal cavity. In one instance a hig-head dy was reared from the hody of a bunblebee several months after the latter had been killed and pinned in a collection. There is a peculiar genus in this fanily. styogister, in which the female has ann ovipositor which is longer than the entire body. Rather more than thirty species of bighead thes, distributed in sevengenera, are knowin to occur in the Uninted States.

THE BOT-FLIES

(lizmity (Iistridte.)

This family contains the parasitic creatures known as botflies, sever of which are the cause of great suffering and even the death of domestic animals. The bot-lly of the sheep (CEs/rus ovis), the bot-fly of the horse (Gistrophilus equi), the bot-fly of the ox which is known in England as the" ox warble " fly (Hypodermal lilliah, the European species being H. bovis), and certain other forms whose larvie live under the skin of such wild animals as squirrels and rabbits (gemis: Culerebra) and which are sometimes in tropical regions found under the skin of human beings (Dermatobia (bimizemeri) belong to this family. The group is not a large one, comprising only about sixty species and the life history of the dif-
 ferent species is quite variable, comprising many strange and curious phenomena. All, however, are parasitic in vertebrate animals. The tlies themselves are rather large, generally rather hairy, and they are as ale inconspicuous it their coloration. The antenne are small and inserted in rounded pits.

Typical Life History
 (Hypadirma lincata Villers.)

This fly is the ce nmon "ox bot "or"ox warble " of the United States and is known in the southwestern country as the "heel the." Tostock raisers its larva is al:o known as the "grub." Affected cattleare known as "grubby "cattle. Early in the spring
the flies appear and are inmediately attracted to catte, liying their eggs upon the legs, especially just above the hoof, which explains the southwestern name " heel fly." The eggs are occasionally laid on other parts of the body but the neighborhood of the hoof is preferred. They are attached to the hair by means of a clasping projection and usually from four to six are laid together. The animal licks its legs and the larva at once hatches and is carried down into the asophagus, the walls of which it penetrates by means of its strong spines. It then molts and becomes smooth

Fig. S6.-IIypoderma lineala, eggs. (Afier Nitey:) and for several months wanders through the connective tissues of the cow, between the skin and the: flesh, penetrating gradually along the neck and ultimately reaching a point beneath the skin on the back of the animall. The larva then molts again. becomes more spiny, and bores a hole through the skin, placing its anal spiracle near the oritice in order to get air. During its earlier life it probably breathes by an endosmotic method as do the larva of the parasitic Hymenoptera and in fact much as do the aquatic larve of certain other insects.

The larva now develops rapidly. living upon the pus and bloody serom which is produced ly the irritation of its spiny skin. It molts again and is then more than an inch long and yellowishwhite in color. ! works its wily out of the minute orifice which it enlarges and drops to the ground where it contractsand hardens, the larval stin becoming the protecton for the pupa which is formed wothen. In three to six weeks the adnlt lly escapes by pushing off the circulat cap at one end of the puparium.

The life history of this insect was entirely misunderstood untll recent years. It was supposed that the eggs were laid upon the back and that the larva immediately penetrated the skin and lived there without wandering. It was not until 1890 that the true life history, as described above, was ascertained by Dr. Cooper Curtice.

THE TACHINA FLIES

(Family Tachinidar.)

This is a large and importint group of fies, the members of which have ro common name except that of "tachina thes," by which they are generally known to everyone who has studied insects, even if his studies have not carried him into the order liptera, for all or nearly all of these creatures are parasitic upon other insects and a person engaged in rearing caterpillars will often have his ultimate design frustrated through the work of the larver of these flies. As a rule they are medium sized or rather large flies of a gray tint, father unatractive in appearance and perhops resembing the common house-fly as a rale. In fact, one may sav that they belong to the house-fly type. The gray body color is frequently striped with dark
 of lighter stripes and there are some marked exceptions to this general colorational stheme as, for example. in the dark-winged, sometimes red-dish-bodied Trichopodas the slender Xanthomelenas and Hemydas. the redbodied Eichinomyits and those species of the genus Archetas which look like Whe-hotlle tlies. In general the wings are cleal, the bodies are smewhat bristle and the insects fly with a buazing sound which is not very pronounced hut like that of a house-tly. They are active and th usuality in the sunshine, being much less in evidence on doudy d.ovs.

In their rebituons with matn the tachina fies are beneticial the most beneticial group of Diptera, with the possitle exception of the syrphus dies. With the tachina thes, however, the habits are much more unform and the larva feal only upon living insects. By fir the fivorite hosts of these flies are the leaf-eating citerpillars and the numbers which are destroved in a single 158
season by these parasites is quite beyond computation. I have seen vast armies of the army-worm, comprising unquestonably millions of individuals, and have been unable to tind a single specimen which did not bear the characteristic eggs of a tachina fly. These flies were present in such numbers that their buzang, as they flew over the army of caterpillars, could be heard att some distance and the farmers were unnecessarily alarmed since they conceived the idea that the tlies were the parents of the caterpillars and were flying everywhere and laying their eggs in the gralss and wheat. As a mater of fact, one great outbreak of the army-worm in northern Alathan:1, in the earlv summer of 188: was completely frustrated by the tachina tlies, alided by a few other parasites and predatory insects. They also altalk grasshoppers, bugs and beetles, saw-llies and silw-fly larse and bumblebees and wasps.

Their eggs are usually white in color, owal in shape and are stuck by some sort of a gummy substance to the surface of the

Fig Sis. Fuphoruce: - diriperni. Authar's allurtratam. ibseet on which the future larvae are to feed. The small white eggs are frequently seen sucking to the back of some unfortunate catterpillar. From the under side of eath eng there hatches a little magerot which bores its way though the skin of the host insect and penetrates into its body, where it hees, nourivhing it helf upon the fatty matter and lvomph, until it reaches full wrowh, usuallv if not always destroving before it emerges some wit.l orgath so ats to caluse the death of the host insert. It ahmost ins:atiably issues When full growst from the lody of the insect attacked and transforms at or near the sumfere of the ground within the last larval skin, which hardens into al hrown, owal pupariun, Breedng is rapid and there maty be several generations each summer. In

The Tachina Flies

issuing from the puparium the fly breaks away the entire end of the hardened larval skin.

It used to be thought that every caterpillar upon which these eggs were placed was doomed, but it often happens that the mother tachina ny, with a faulty instinct, places her eggs upon the back of a caterpillar which is about to cast its skin and in such instances it frequently moults before the eges have had time to hatch, so that when they do hatch the young larva find themselves out in the cold world instead of revelling in the interior of a well-fed caternillar. So frequently does this occur that a very barge propartana of tachina egges are wasted by the mother flies. The observations of Fernald and his assistants in their work upon the gipsy moth in Massachusetts have given us exact figures in regard to this matter. In one instance 250 caterpillars, each bearing eggs of tachina flies, were fed and carried through their transformation without the appearance of a single adult tly. In another instance 235 caterpillars, each bearing from one to thirtythree eggs, were fed and watcned and from these, 226 moths were reared and only nine were killed by" the tachinas.

An interesting point connected with the life of these llies is brought out when we compare them with the parasitic Hymenopteril. the ichneumon tlies and the chalcis thes. In the latter case we are struck by the extremely definite relation between the kind of parasite and the kind of host. The farasites of a particular genus will attack perhaps only insects of a certain family and it is a very definte rule that parasites of a given subfamily will ittack only insects of a certain order. With the tachina flies, howereer, it is quite different. The same species of lly will lare her eggs not only upon insects of several different families but upon insects of two or even three different orders. This would seen to me to indicate that the parasitic mode of life in the tachina blies is one of comparatively recent acquirement and that sufficient time has not elapsed since they began to take on this habit for so great a differentiation, so great a co-relation between the host relation and the structure of the insects, to grow up. The ancestors of the tachina tlies were probably flesh-flies and the parasitic mode of lite hats come from a graduall change from feeding on dead msects to feeding on tive ones.

Cocuillett has pointed out that in thear instincts these tlies appear to le much stupider than the ichneumon tlies. The hater.
for example, seem to know ly a touch of their antenne whether or not an insect has already been stung by some other parasite and they only in very rare instances insert an egg in the loody of an insect that already contains an eger or larval of another parasite. Moreover, the ichneumon dies seem to grade the number of eggs which they lay in a certain insect to the number of larva which can successfully grow within it. But the tachina dly will altach to : caterpillar three or four times as many eggs as the number of larva the caterpillar can maintain. Thus many tachinid larvae perish for want of food whale some, which are barelv able to exist. produce fles which are dwarfed in size, so that some adult tlies are only one-third as large as others.

As ahove stated, the group is a very large one and fortunately it has been admirably monographed by Mr. I). W. Coquillett, who has also brought together from the records of the U. S. Department of Agriculture an interesting table of these flies in relation to the insects upon which they have been parasitic.

THF: NIMBLE FLIES

(Pamily Dexiidar.)
The flies of this group, of which we have nearly fifty species in this country, most of them belonging to the typical genus Dexia, resemble the Tachinal flies for the most part, although some are quite handsome, as, for example, Etantha liturata, which has banded wings and a striped thorax. The legs of these Hies are usually long and in their early stages they are parasitic in varrous insects, especially in beetles and also in snails. Some of the exotic species are very handsome, as those of the genus Kuthlia.

THE FLESH-FLIES

(Firmily Smaphagraci)
This is a large group of thes, comprising very many species. and as the sciemtific name indicates they are colled "nesh-llies"

Fige Sig-Compomyia man ellaria. because many of them live in the larval state in the bodtes of dedd anmals. Athorgh, ds just stated. many of the so-called theoth-lhes are thest fecders, the trexp ois a whole is at vartioh ore of hathe The larva of sume lise in decavigh vestthle matter and iruits, othe: sher 1 . dung and others .tre pratically parasitic umon lanmer macts. One Henus (Sarco phatia) is . prossite of mamaliatad even of hum whe beiner. depontuge its roung in the nostris where thev cause great suffering and even death. Several species of this tamily are referred to in the medical literature of "mbiasis" which means the parasitism of human beings by thes.

The femates of the flesh-flies may deposit eggs in large numbers or they may deposit huing larve. as fust indteated, the eqges leing hattehed before they have left the bods of the fembere. A number of fumons insects belong to this group. The insect popularly known as the "ecrew: worm fly ${ }^{*}$ is well known in the

(Aw\% " dibus P品. west. It is one of the most impertant of the eneects " math affect domestic animals and its greatest damaze is done in Texis

The Fiests fliew

and ddjoming States. The tly hav it e, on any spot where the sam has leeen minured etther from a sorath liy a batbed. ire fence of the pumetue of a thorn. The raw or slightly be.: f surfice attrach the then which lay therr ergs and the lan vae liwe in the flesh, makng a large sure. I he fly does not contine its

Fig и!-('alliphoratervthoutphala. (.fachon's alhustration) attacks to domevtic anim.als but also frequently attacks man. The most common cases are those where the tly hos laid its chess in the mostrils of some one, kenerally some person with a bad caltarrhal trouble. The eggs hatch and the larva work their wis through the upper nostrils and destroy the tissues. The soft palate is frequently entirely destroyed and fatal cases in men are not rare. The remedy is to swmge out the nosal peassames with diluted carbolic acid. This meser also in It: larval stoge feeds an arrion. Another well
 bothe dly, which is somethas driven into loouses on the approach of a stome. The larere Wue-boitle lly of rather dull color with
 This sis the common "how-fly" of burope and is the species treated by lowne in his classic "Amatomy of the Blow-Fly." Its larvae are mdstmerushatle from thone of the preceding species except in size and they are to be found on meat and dead animals. Roley states ako that it destows the Rocky Mountain locust or western grashepper. The thes of the rue gemus Sarcophagat are very general seavengers, feedmg. however, upon animal matter procticalle exclusively. The common thesh-ily of Europe Sarrophaga (1 rhata does not seem to occur in this country but we have a

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

Plate XX.

TRUE FI.IES

FIG.

1. Milesia virginiensis (Syrphida) Fastern half U. S., Cent. Am.
2. Eristalis occidentalis (Syrphidx) Wasio.
3. Volucella ficiallis (Syrphidx) Nothwestern U. S.
4. Triodonta curvipes (Syrphide) Northern U. S.
5. Syrphus lesueurii (Syrphidx) Northern U. S.
6. Eristalis vinetorum (Syrphidx) Fastern half U. S., S. A.
7. Volucella mexicana (Syrphida) Southern U. S., Mex., S. A.
8. Triodontal curvipes (Syrphida) Northern U. S.
9. Syrphus diversipes (Syrphidx) Northern U. S.. Brit. Am.
10. Eristalis bastardi (Syrphidx) Northeastern U. S., Brit. Ain.
11. Volucella obesa (Syrphidx) Southern U. S., Mex., W. I.
12. Léucozonal leucorum (Syrphide) Northern U. S., Can., Eur.
13. Syrphus torvos (Syrphida) Northern U. S., (ireenland, Eur., Siberia.
14. Lathyrophthalmus aneus (Syrphidx) N. A., Eur.
15. Vollicella fasciata (Syrphidar) U. S., Mex.
16. Xylota chalyba (Syrphida) Eastern U. S.
17. Spilomyial 4 -fisciata (Syrphida) Northeastern fourth U.S.,Can.
18. Eristalis compactus (Syrphidie) Northeastern U. S., Brit. Am.
19. Neromacrus crucigera (Syrphide) Southern U. S., Cent. Am.
20. P'yrophana ocymi (Syrphidie) Northern U. S., Eur.
21. Brachypalpus frontosis (Syrphidae) Eastern U. S.
22. Eristalis tenax (Syrphida) Cosmopolitan
23. Dideal lax:a (Syrphidx) Northern U. S.
24. Mallota cimbiciformis (Syrphida) Eastern half U. S., Can.
25. Sphecomyla vittata (Syrphide) U. S., Eur., Siheria
26. Cheilosia plutonia (Syrphidx) Alaska
27. Temnostomia iequile (Syrphidææ) Northern U. S., Brit. Am.
28. Cheilosia lasiophthalma (Syrphidx) Northwestem fourth U.S.

The Insect Book

larva found feeding upon dead insects in the pitchers of the common pitcher plants and which is often reared from dead insects and from excrement. It is rather a rapid breeder and a

Fig. 92.-Sarcophaga sarracenia. (Author's illustration.)
generation will be developed in ten days in the summer time.
Among the commonest of the flesh-flies are the small species of the genus Helicobia, originally so named because they were reared from a dead snail. They are very commonly found feeding in the larval stage upon the dead bodies of insects.

A majority of the flesh-flies belong to what may be termed the housefly type, i. e., they are gray flies rather obscurely striped with black, but some of them, as just shown, may become metallic in color.

THE HO, 'SE-FIY AND ITS NEAR RELATIONS
(Fimily Muscida.)
The insects of this family comprise what might be known as the typical true flies. The bristle of the antennix is feathery and the abdomen is smooth except for a certain number of bristles near the tip. The larva as a rule feed upon decaying animal or vegetable matter, more abundantly upon animal than
 vegetable. The group comprises many species and includes some of the most common and abundant forms, such as the house-fly (Musca domestica), the horn-fly of cattle (Hirmatohia serrata), the stable-fly (Stomuxys (alcitrans), and some of the so-called "bluebottle" flies. Certain members of this group, such as the horn-fly, and the stable-fly (both species having been introduced from Europe) are very annoying to live stock and produce great Inss by their attacks. Miny species of this group are of much value as scavengers, destroying, through their great number and quick breeding, quantities of decaying animal iratter, but some of them are again injurious ats appears from recent investigations by virtue of the fact that they breed in human excrement
through the carriage and distribution of the germs of diseases of the intestinal tract, such as typhoid fever and Asiatic cholera.

Typical Life H.story
 (.Vuscu domestici.)

This insect, known as i commor، house-fly, is found all over the world. It lays its eggs by pieference in horse manure but in the absence of this substance will oviposit and breed in other excrementitious matter and will lay its eggs in decaying vegetables, although I have been unable to rear it in substances of the last named character. It is also difficult and often impossible to rear it from cow

Fig. 24 -Morellia micans. (Awthor's illustrithon.) dung. In horse mar'ure, tiowever, it flnurishes. The eggs are laid freely on horse manure in an undisturbed conditio - These

single generation in summer approximately ten days. Thus there is aloundance of time for the development of twelve or thirteen generations in the climate of Washington every summer.

The number of eggs laid by an individual tly averages about 120 and the enormous numbers in which the insect occurs is thus plainly accounted for, especially when we consider the abundance and universal occurrence of appropriate larval food. The universal occurrence of uncared for piles of horse manure in cities is therefore not only a source of great discomfort but is inimical to health since the house-lly undoubtedly distributes disease germs. The numbers in which house-fly larve occur in horse manure piles may be understond when the statement is made that from a quarter of a pound of manure from the center of a pile 100 larver and 146 puparial of the house-fly were taken. This would make alhout 1,200 house-flies to the pound of manure. This is not a laur average, but indicates possibilities and is an actual record of an individual case. Experiments conducted by the
writer at Washington indicate that ly cleanly measures in stables. by the daily collection of the manure and placing it in a closed pit or closet or by treating it at intervals of a weck with chlonid of lime, the house-fiy nuisance can be greatly abated and thus the disease danger largely avoided.

There is a general impression that house-flies sometimes bite people, but this is entirely wrong. Its mouth parts are fitted for sucking and lapping up liquids, and not for piereing. The stable-fly mentioned in a previous paragraph is, however, a biting one, and it looks so much like a house-fly that one almost has to let it bite before finding out whether it is a house-tly or not. The stalle-fly is seldom found in houses except just before a rain, and then it comer in at the open windows. From this filct arises the old saying, "Flies begin to bite before al rain." It has been asked why tlies seem to peefer windows and lookingglasses, but the answer is simple enough: when they ate on the windows they want to get out; when they are on lookingglasses they are mistaking them for windows.

Sometimes when a house-fly is examined it will be seen to be fairly covered with little reddish objects which are really living creatures. They are parasitic mites which attich themselves to the bodies of house-flies and certain other insects and inserting their long beaks suck their juices. It is comforting to in th:it the house-fly has these parasites which torment him so. Such retribution is just. And there is another comforting fact: .ouseflies die of fungus dise:lses. Sometimes, especially in the fall. flies will be found behind the picture-frames or in rather dark places, covered with a grisy, fur-like sulstance, which is the manifestation of the fungus disease which has killed it. Then, too, dead flies will be seen with their bodies swollen and appearing more or less striped. These also have been killed by another fungus disease. These epidenic diseases cease in Jecember, and although many thousands of house-flies are killed ly them, the remarkable rapidity of development in the early summer months soon more than replices the thousands thus destroyed.

If we could only get our boards of health in cities to attack the house-fly question and to insist on the proper disposal and treatment of horse manure the insect would soon becone scarce, and perhaps its agency in the spread of disease will induce these officials to look into the matter. It is a noticeable fact that 1(x)

The House-Fly and Its Near Kelations
horses aic very much on the decrease in cities; the motor vehicles of different kinds are becoming multiplied, and with this change will come a decrease, and a marked one in the number of house-flies. In the country and in agricaltural communities there is not much hope in the near future except through better knowledge on the part of the inhabitints and an effort to do awaly with the breeding places of this nuisance.

THE ANTHOMYIA lilIES

(litmil) Anthembriida.)
The flies of this family also as a rule belong the house-fly type. They are generally rather small but of unpronounced color. It is a verv large family and a most difficult one to study and the lifes themselves are singularly unattractive in general appearance. Nevertheless, the hahits of many of the species are of anterest and they feed not only upon decaying vegetable matter hut also upon growing plants and a few prey upon the egges of grasshoppers. Such a wide variation in habit suggests that structaral characters will eventually be found which will split up this large fimily.

Fig. 97,-Homalomyia brevis. (Aluther:- illustration.)
Several species will be found mentioned in f : idical works under the head of " muiasis imterna" and in these cases they have been taken into the stomachs of human beings with spoiled vegetalles. They frequently retan their vitality and issue alive with the fixces. The insects commonly known is little house-fles (Homatomyat i bellaris and H. brecis, frequently seen in houses on windows belong to this family. Thev breed in decaving vegetalle material ar ! dung. The so-called onion-lly (Thorbia (iparrm)

The Anthomyia トlies

in the larval s.ige is occasionally very destructive to onions. working into the bulb and destroying it for food. The cabligge maggot (P. hraswar) woks in the roots of cablage and sometimes does great damage, Some species the the lat stage mine the leoves of plants. Pigomiva thom mines the leaves of hects and has lecome a rather important insect since the cultivation of

Fig. 9N. - P'egrompla vicina. (Aubhor's allustration.)
the sugar beet has assumed laige proportions in this country. One species is said to damage seed corn when placed in the ground and others destroy injurious grasshoppers and there are records which show that other forms sometimes live in tumors under the skin of birds.

THE ' D^{\prime} VG FIIIES

We are coming now to the long sertes of small fat the of rather small flies which are not especially interesting, especially remarkable.

The Scatophagide are rather slender, medium sized tlies, gei:: dily smooth, but rarely with some bristles and yellowish hairs. In color they are usually black and shining, but sometimes yellowish or with a broad yellowish stripe on a dark background. ihe flies of this family are popularly known as dung flies and are attracted to and breed in dung of varic. animals, and al
 in decaying vege- Fig. 9n.-Sca.ophaga furcata. (Authur's fllustration.) table matter.

The Heteroneuridx are rather small, slender, yellowish or black species, which are found in toul, damp places, and whose larvex are found under the bark of trees and in similar situations.

FAMILIES HELOMYZIDA, PHYCODROMIDA AND SCIOMYZIDAE

The Helomyzidx are small, dark-colored flies, looking something like dung-flies. They seem to prefer damp, shady places, and fly in the twilight. In the larval condition they are to he found in fungi and one species in Europe feeds upon truffles. Some of them also lay their eggs in the excrement of dogs and other animalls.

The Phycodromidx are also small, grayish flies in which the abdomen is somewhat darker than the thorax. They are found on ocean beaches, and also on the shores of lakes, upon the different substances, usually vegetable, washed ashore, and they probably breed in such places.

With the Sciomyzidx, the colors are brown or gray, and they are ordinary-looking, medium sized or small flies. Their wings are usually spotted or slightly clouded. The metamorphoses of most of them are not known. These flies are to be captured on high grasses or upon bushes.

FAMILIES SAPROMYZID $\not \subset$, LONCHEIDA AND ORTALIDA

The flies of the family Sapromyzidx much resemble those of the last mentioned group, but the wings are rarely spotted. The abdomen is usually rather broad, and short, and egy-shaped. Their larve are found under the bark of trees or in the burrnws of wood-boring insects, or in decaying vegetation of almost any kind. The flies are commonly found in damp spots near their breeding places.

The Loncheidx is a group which was formerly included in the preceding family and which it very much resembles. The

Fig. 100.-Chatop, is anea.
metamorphoses are not well known, but the larvar of one species have been found in Europe in the stems of weedy plants, and of another in the rootlets of wheat. In this country 1 have bred Lonchara polita from dung.

The Ortalidx comprises a group of flies with usually spotted or banded wings, and frequently of metallic colors. In the larval state they occur under the bark of pine and poplar and in the burrows of wood-boring insects and also in onions, cotton bolls,

Families Sapromyzidx, Loncheidx and Ortalidx

apples. and the fruit of the Osage orange, probably in all cases, however, following the work of some other insect. Strictly speaking, therefore, these flies are scavengers. The brown winged species of the genus Pyrgota are the largest flies of this family which we have in this country. Camptonetira picta Fabr. is a lealutiful little fly with brown wings in which the brown is incised with clear spaces. Chatopsis anca has been reared from corn stalks, which however, as with the other species, had previously been bored by some other insect.

Plate: XXI.

TRUE FLIES

$+16$.

1. Firistalis hirtus (Syrphide) Western half U.S.
2. Eiristalis dimidiatus (Syphidac) Eastern half U. S.
3. Soricomyia chrysotoxoides (Sirphide) Atlantic States, Can.
4. Syphus americamus (Syphide) U. S., Brit Am.
5. Syrphus rihesi (Syphida) Northern U. S., Fur.
6. Fristalis hirtus (Syrphida) Western half U. S.
7. Eristalis albifrons (Sirphide) Southeastern U. S., W. I.
8. Sericomyia chalcopygil (Surphide) Northwestern L'S.
\%. Surphus arcualtus (Sirphidar) Northern U. S., Brit. Am., Eur.
9. Surphus ribesii (Syrphide) Northern U. S. V:ur.
10. Fristalis transversus (Syrphide) Allantic States
11. Sericomyia militaris (Syphida) U. S. Brit. Am.
12. Xylota allilis (Syrphide) Southwestern U. S.
13. Eristalis transversus (Syphide) Atantic States

1ヶ. Bristalis havipes (Syrphata) Northern U. S., Can.
10. Xýlota pigra (Syrphida) U. S., Eur.
17. Tropidea quadrata (Sypphida) Northern U. S., Cin.
18. Syritta pipiens (Syrphidit) Cosmopolitan
19. Helophilus latitons (Sviphide) Northern U. S.
20. Mallota persticata (Syphide) Northern U. S.
21. Batchat fuscipemmis (Sbphide) 1). S.. Cent. Am.
22. Phtyehorus hyperbores (Surphitie) Nort. U. S., Cirecoland.
23. Volucella evectal (Syphide) Northestern U. S., krit. Am.
24. Didea fuscipes (Syrphide) No. thestern U. S., Eur.
25. Helophilus l.titions (Sirphide) Northern U. S.
20. Buch has fusipennis (Syphide) U. S., (.ent. Am.
27. Lasiophthicus pyrastri (Syrphidat) N. A., S. A. Fur., Africa
28. Sommula decota (Surphide) Nottheastern 1). S
20. Temontoma bombyluns (Syphide) Northeastern U. S.
30. Cerial signitera (Syphide) Solthern U. S., Mex.
31. Chrvotoxum derivatum (Sirphide) NurthernlJ. S., Brit. Aın.
32. Spilomyial longicornis (Syrphide) Fastern halt U.S.
33. Mierodon tuistis (Syphidie) Northern U. S., Brit. Am.
34. Zodion splendens (Conopidar) Westem h.lt U. S., Mex.
35. Zodion filvitrons (Conopide) U. S.
36. Conops bulbirostris (Conopide) Somtheastern U. S.
37. (ionops xanthoparcus (Conopidae) Conn.
38. Caterely:a tendrosal (Oestride) Western U. S.
w. I'hysucephala furcillati (Comopicle) Notheantern U. S., Can.
40. Comope excisus (Comopiace) Sutheastern U.S.

THE FRUIT AND GALL FLIES

(Family Trypetida.)

Most of the flies of this family are rather small, although some are above medium size. They are of very striking appearance and interesting habits. They vary from light yellow in color to dark brown or nearly black, and the body is frequently curiously spotted in the lighter specimens. The wings are ilvo beautifully banded and marked. The group is a large one and is w ll represented in the United States, many genera and species occurring withus.

The Tryr tid flies in their early stages live in fruits or in the stems of plants, producing galls. The so-called apple mlaggor of the Northeastern States, an insect which is especially abundant in Maine and

Fig. ror.-Trypeta signalis. (After i:Arbate) New Hampshire, is the larva of Trypeta fomonellic. It eats into the pulp of apples, boring tunnels in all directions through the fruit. It ir said especially to altack the earlier ripening apples. When full grown it drops to the ground and transforms within the last larval skin. The addult insect is a black and white fly with banded wings. One of the large round galls which occurs upon the stems of goldenrod is made by one of these flies known as Trypeta solidaginis. There are sometimes two ot these galls on the same stalk, and they are most conspicuous in the winter time when there are no leaves on the plant. If one cuts open one of these galls it is found to be full of a pithy solid

$$
177
$$

mass, in the center of which is the plump, white maggot of this fly. A famous member of this family is known as Ceralitis capilata, which damages peaches and other fruit in different parts of the world. It is common and injurious in Bermudia, but, fortunately, has not established itself in the United States. Another Trypetid lly which does great damage is Trypefa fudens, the larva of which is known as the Morelos orange fruit worm. It bores into the pulp of oranges, and renders them unfit for eating purposes. These worms are frequently found in Mexican oranges which are brought into the United States in the early fall before the California oranges come on the market. California orange growers are greatly alarmed at the prospect that this insect may be imported into their orange groves and establish itself there, and they are trying to induce Congress to pass a law by which the Secretary of Agriculture shill be empowered to quarantine against Mexican oranges. This would be by no means the first instance in which insect damage has caused national legislation.

The larva of Trapeta fratria Loew mines the leaves of parsnip in many parts of the country.

FAMILIES MICROPEZID A:, SEPSID AE, PSILIDA: AND DIOPSID A:

The Micropeaid tlies are slender, dark creatures of a good size, with a few spots on the wings. Tl zy are rather awkward in shape, their legs being long, and they are not cominon. Nothing is known of their metamorphoses, but they are captured upon decaying and foul vegetable and animal matter.

The Sepsidie comptise a series of small, frequently shining black flies, of rather slerder form, which breed, as a rule, in decaying vegetable material or in dung. The little shining black

Fig roz.--Sepnis violacta. (Author's ulustration.)
species of the genus Piophila, however, breed in cheese, ham fat, and in other fatty or spoiled and decaying animal matter. The little maggot known as the "cheese skipper" is the larval of Pioplita casci Linn. This insect frequently does great damage in packing establishments. The eggs are laid in compact clusters of from five to fifteen, or are scattered singly. Each fumale lays about thirty eggs. The egg is white, slender, slightly curved, one millimeter long, and hatches in thirty-six hours. The larva

Families Microperit.e, Sepsidax, Pstlide and Diopside

Fig. 103.- Piopluila canei : a, larva
h, puparium: is adult.
cipally as a cheese pest, and it is a matter of common obervention that the mother tly seems to prefer the older and richer cheeses in which to deposit her egess. Her tiste is excellent, and, while it is a foir thing to saly that skippery cheese is usually the be t. it will harcidy do to support the condlusion that it is good because it is skippery, although this conclusion is current anong a certain class of cheese-eviters. Readers of this will be reminded of the inimitable scente in the Erasmus Inn, described by Charles Reade in "The Cloister and the He.rth.

The flies of the amily Psilicte are a little stouier and shorter than the Microperids, and are sometimes light in color, though generally dark. The metamorphoses of very few of them are known. Some occur in the stems of plants; others are found in the roots of carrots and cabbages, and the flees themselves are seen commonly sitting upon the leaves of bushes and fowgrowing plants.

The Diopsidae are remarkable from their very curious heads. The nead is greatly broadened with the lyes at the extremities. and the eye-portion is swollen. In somie tropical species this feature becomes so exabserited that the insect looks almost as if it carried bicycle handle bars oll its. hend. They alre small hack flies, usually stouter th.in those of the groups which we have iust mentioned, and they are found in shady wooded places.

THE SALT-WATER FLIES
(finmily Ephyidrida.)
This family includes a number of insects of curious structure and strange habits. The adults are gencrally sordid little flies usually with clear wings.

The larvac, as a rule, are aquatic or subaquatic, and are found in waters strongly impregnated with salt. They occur near salt wells and are found in the strongly alkaline lakes of the West. Some species breed in pools of water strongly impregnated with minerals, and one form is found breeding commonly in the pissoirs of Buropean cities. I have reared Aria hiveutera argentahr. a handsome little species belonging to this fanily, from larve found in a small pool of water which was strongy impregnatcd with horse manure from an adjoining manure heap. The numbers in which the Ephydrid tlies occur in the alkaline lakes in our western country is something astonishing. They are found in the Great Salt lake, in Mono Lake, and others of the same character. The waters of Lake Mono are very heavy ard have a nauseous taste, and when still the water looks like oil and feels slippery to the touch, and it is said that no lish or reptile lives in it. It swarms, however, with countless millions of these larva, which develop into flies which rest upon the surface of the water and cover everything on the shore. The larve and the tlies drift in heaps on the beaches, and hundreds of bushels can be collected. Professor Brewer, of Yale University, has published an interesting account of thein from which these statements are drawn. It seems that at certain times of the year the Indians used to come from far and near to get them for food. They dried the puparia in the sun and then rubbed off the outer skin. The Indiars call this food hoo-chah-ber. Irot. Brewer says that it tastes like patent neat biscuit and if one were ignorant of its origin it would make palatable soup. Another species is found in great quantities in Lake Texcoco, near the City of Mexico.

THE GRASS STEM FLIES

(IV mily Oscinider.)

These are hatle flies, either dark and shining or yellowish in color, and are more or less stout-bodied. The larvie breed in the stems of grasses or are found in decaying vegetable material; some live in the burrows or cavities in plants made by other insects while a few feed on the egg shells and cast skins of

Fig. 10g.- Hippelatex prebijus.
insects. M: omplea Americama feeds in the stems of wheat and rye, and sometimes does considerable damage; the larva of Chlorcps gramillea lives in a gall-like swelling on grass stems, and the larva of Chlorops assimilis mines the leaves of sugar beet. One of the commonest of these flies in this country is a little scavenger knowr as Gaurax anchora, which feeds upon all sorts of dead animal matter, such as the empty egg shells of other insects, the cast-nff skins caterpillars and chrysalids, and spiders' eggs. The little flies of the genus Hippelates are 1.53

The Grass Stem Flies

especially noticeable in the summer time, particularly in the Southern States. They are the most minute of flies, and swarm about the eyes of dogs and domestic animals, and in some places are annoying by getting into the eyes of human beings. These are the forms which were considered by Hubbard to be responsible for the spread of the eye disease known as "pink-eye" in Florida, a complaint so prevalent at times, especially among

Fig. rob.-Gaurax anchora. (Author's Illustration.)
school children, as to cause the schools to close. The species of the true genus Oscinis almost invariably in their larval stage hore into the stems of living plants, especially grasses, but one species lives in the seed pods of the so-called Indian bean tree (Catalpa speciosa). A member of this family is the famous "frit fly" of Europe, and causes great damage to grain crops, especially in North Europe.

THE LITTLE FRUIT FIIfS

(Fimmily Drosophilide.)
This group includes the little fruit flies, or pomace flies, so commonly seen about decaying fruit and also about other decaying vegetation. They are frequently found in rullses in the autumn about dishes containing pears, peaches and grapes. They are attracted to fruit both for food and as places for oviposition, since

their larvae live in decaring vegetable matter. They are also called "vinegar flies," from the fact that their white. slender larvee are frequently found in canned fruits and pickles which have been imperfectly sealed, occuring mostly near the top of the jars, but living without inconvenience in the brinv or vinegiry liquid. and transforming within brown puparia alround the edges of the jar.

Drosophila ampelophila seems to the the commonest species all over the United states, and is manly responsible for the injury to canned fruits and pickles. Hosophilis are found commonly
around the refuse of cider mills and fermenting vats of grape pomace. Forbes has stated that in 1884 they damaged the grape crop at Moline, ill. They attacked most frequently the grapes which had been mutiated by birds or damaged by rot, but, having once commenced on a cluster, they passed from one berry to another, the flies meanwhile constantly laying eggs.

A brood of these flies may develop in twenty days. I have recently shown that these flies are attracted to dangerously foul substances, and that they may be responsible for the spread of certain diseases.

The larval of Drosophila flaveola (Meig.) makes blotch mines in the ic ives of radishes

FAMILIES GEOMYZID $\notin, ~ A G R O M Y Z I D \notin$ AND BORBORID A

The family Geonyzidæ is a small one, and is composed of very small flies about which there is nothing especially distinctive or especially interesting. They are usually rather slender and of a grayish or yellow color, looking something like the pomace flies. Those of which the metilmorphoses are known have larva which mine the leaves of grasses and grains.

The Agromyzid flies, as a rule, are small, insignificant creatures of dull colors. The larvae of some of them feed on living plants, forming burrows or mines in various parts, and especially in the leaves, while the larve of others (of the genus Leucopis)

Fig. 108.-Spharocera subsultans. (Auchor's allustratam.) prey upon plant-lice and scale insects. None of the species, however, appear to have any great economic importance.

The Borboridx are little flies, usually of dark colur, and with clear wings. They are often to be found in great numbers upon dung, and, in fact, appear to breed exclusively in this c..bstance. One of the species of the genus Limosina (L. tema, ints) was found abundantly in Cuba by Osten Sacken, and as it is an African species it is very probable that it was brought over in slave ships. The flies of this family have sonie value on account of their function as scavengers, but they may be responsible for the spread of disease among human beings.

THE BIRD TICE:
(Fomily Hippolvascide.)
This group comprises a series of very remarkable flies which are parasitic upon hirds and mammals, moving quickly about among the feathers and the hair. Unlike other external insect parasites of vertebrate animals, many of them possess wings although they are modified structurally in many other respects as a result of their parasitic mode of life. One of the "nost rem... k able features of the bird ticks (as they are called), is the fact that they not only do not lay eggs but that they do not lay larvar. They are pupiparous insects, the eggs having hatehed and the larva

Fig 109.- Olfersia Americana. (Aiter Mizikurd.) developed until the pupa state is nearly reached within the body of the mother. They are extruded by the parent tly only when nearly ready to become pupa. Bird ticks are not very prolific only a single young is brought forth at a birth. The proboscis of the aluit fly differs from that of other
flies, and consists of two hard flaps which spread apart allowing a tulve to be thrust out from the head.

Very little is known of the intimate life history of any of them. Hippobosa duina is a winged species which oceurs upon the horse and which is known in England as the forest tly. Possibly the best-known species is a wingless form known as the sheep tick (Melophagus orimus). In this insect the larva has been shown to be nourished by secretions from certainglinds of the mother tly. One of the commonest of our North American species is Offersia dimeriana which is found upon several kinds

TRUE FLIES
FIG.

1. Tachina mella (Tachinide) U. S., C.an.
2. (ivmnosomal fulhonosil (T.uhonide) U. S., Can.
3. Trichopod.a cilipe:, (Tachin e: Eastern laill U. S.
4. Winthemba 4-pustulat: (Tachinides) U. S., C.ant.. fur.
5. Epalpus bicolor (Tachinide) Westeln U. S.
6. Euphorocera claripemnis (Tachinide) U.S.
7. Hypostenat variabilis (Tachinidae) U. S., Can.
8. Frichopoda lamipes (Tachinide) Southew U. S.
9. Symphoromyia limatia (Leptidav) Cal.
10. Archytas analis (Tachinidue) U. S., Cian., W. I.
11. Peheteria tessellata (Tachinide) Northern U. S., Can.. Eur.
12. Fpalpus signiferal (Tachinidac) U.S.
13. Tachina rohust: (Tacininide) U. S., Can.
14. Archytits lateralis (Tachinidie) U. S.
15. Belvosia bifasciatal (Tiachinida) U. S., Mex.
16. Jurinia metallica (Fachinide) Southern U. S.
17. Trichopoda formos: (Tachinide) Southern U. S.. Mex.
18. Blepuanipera adustal (Fachinidac) Northen U. S., Cam.
19. Jurimella ambigua (T.khinide) Col.
20. Hemyda atrata (Tachinida) Fastern half U. S.
21. Parndejemia nutiliodes (Fithinide) Western II. S.. Mex.
22. Blephariperat adust: (T Iachinidie) Northern U. S., Cimr.
23. Deje:ania vexatrix (Tachinidae) Col.
2.4. Theloir. leucorona (1)exide) U. S., Eur.
24. Micropthalma disjuncta (F:achinidac) U. S. E:ur.
25. Theresia camescens (1)exidat) Easterit U. S.
26. Archytas hystrix (Tachinide) Somthern U. S.
27. Pollenior rudis (Sincophatsida) Fisstern U. S., lur.
28. Theresia tandrec (bexidee) Southeastern U.S.
29. Myoceral tibialis (1)exidie) U.S.
30. \%idi.1 Vurtebrata (I)exidie) F:astern U.S.
31. Sartophat patlida (Scatophatyde) Northern U. S. Brit. Am.
32. Muscina stabulans (Muscidat) U. S.. Put.
if. Senopterina splematens (Ottaldie) Sontiaern U. S., S. A.
33. Zonosema electa (Trypetidae) U. S.
34. Tetanucera clara (Sciomyadie) Northeisteron U. S.. Cam.
35. Chrvanyia macellaria (Sintcophagiate) U. S., Cent. Ann., S. A.
36. Stumzi. Inugipennis (Ortalde) U.S.
37. Omithomytia elythocephal.ı (Itppolmactale) N. A.. W' I..S. A.
fo. Tritoxal mearva (Ottalda) Eantern laall (I. S.
38. Sepedon fuscipennis (Siomberile) Northeantern U. S.

Thelneect Book.

of birds, such as the horned owl. certain hawks, the ruffed grouse or partridge, and which has a hard, smooth. nattened yullow body. The species which belong to the genus lipoptena live on mammals, and apparently live for a long time. When they tirst

Fig. 110 - Melophagus orinus. (After fiackiard.)
appear they have wings, hut when they have found a satisfactory location on some deer or other animal they lose their wings either by biting them off or casting them. While still winged they may live on birds. In other words, apparently too lazy to fly, they use birds as their means of conveyance until they find thenselves in the immediate vicinity of some deer. That the name "bird ticks" should have been applied to these creatures is very unfortunate, since the name tick ought to be restricted to the spider-like parasites of the family Ixodidae, lut in the case of the so-called sheep tick. which is really il dipterous insect, it is not surprising that the name tick should hate been applied since no one in his senses would think that it is ally unless he were familiar with the intimate structure of the Diptera and of the true ticks.

THE BAT TICKS.

(Fimily Dicteribiadto.)

These are also wingless, degraded, parasitic flies, which have a similar misnomer in the vernacular, and are called bat ticks. They are quite the most extraordinary of all the tlies, the body being small and the legs remarkably long, so that they look

Fig. 1ut.-Nycteriba sp. (After Puckard.)
almost like spiders. The head is very small and the eyes may be entirely lacking. They are rarely more than one-sixth of an inch in length, but the long legs, which are frequently banded with jet black and silvery white, render them quite conspicuous.

FLEAS

(Order Siphomplira.)

The insects of this order, comprising all of the true fleas, are all contained in al single family, the Pulicida. They are all wingless, the mouth-parts are formed for sueking, and the body is compressed from side to side. The antennate are short and thick, and are placed in depressions behind the simple unfaceted cyes. The metamorphosis is complete. They are the \& eatest jumpers known in nature. The fleas are like the mosquitoes, comparatively few in number of species, but very abundant in individuals, ind well represent in structure the degraded form which is the result of a semiparasitic life. Thev prey upon nearly all species of warm-blooded animals, some, and in fact most species of fleas, passing readily from onespecies of animal to another. Very many different kinds of hirds are infested by Pulex arium. while Pulex serraticeps occurs all over the world,

Fig. 112.-l'ulex serraticeps. (Author's allustrition.) 1/11

Flean

infestang cats and dense, both lomestic and wild, upon the Egyptian k hammon and the wmmon furopeam pole-catt the striped hevela, the common hare the rationo and it also butes
 some disolss.on. The ohl statement that the female fles disgorges drops of hlood upon wheh ber young feed, seme trite only to at
 first lelieved that blood was necessiry for the nourshment of the larres. the reddish colored contents of the digestive trart making him think so, lat he found that they would flourish and complete thear metamorphoses

 (Irimm Insat Idi) in sweeppongs in which there was no trace of blood. He concluded that all that hals been said about P. irritans (the human flea of liurope) mourishing its yomy on dried hood is very problematic. Mr. W. 1. Simmons found the: larvie feeding upon a dusi composed of fragments of cuticle. hairs, filers, and putber of dred blond. the list being probatly the natural exereta of the theas. The writer has fed them successfully upon most bread crumbs, and it is reasonably certain that they will feed upon the dust or minute particles of almost ally kind of orgamic matter.

The minute, delicate, whitish egres hatch into slender, wormlike lartee, which. when full-grown, spin delicate eocoons, and transform to pupe, from which issue the adults. Rather more than too species are known, of which about 30 have been found in the United States.

In the recent important and alarming indictments of certain species of insects as carriers and transmitters of certain human diseases, fleas hate not escaped. Grassi considers that the cat and dog flea (P. serraticeps) is an intermediate host of Tania (tape-worms), while Simon and others have brought forward some proof that certain fleas convey the germs of the bubonic
plague from rats to human beings, and from one person to another.

A curious and atherrant tlea is the so-called "chigoe" or chigger of tropicat America (Sircopsil/a penetrans), not to be confused with the so-called chigger of Virginal and southward, which is the larva of a mite. The female of the chigoe, sometumes found in tropical Florida, and frequently brought to our southern se, $1-$ ports (New Orleans. Savannah and Charleston), buries the forepart of her body in the flesh of human heings, the aldomen becoming greatly distended and discharging a number of egges. Ano species of the same genus (s g gallinacia), sometimes calle the chicken flea, buries itself in the eyelids of domestic fowls in our southern states and in other parts of the world.

Life-History of the Cat and Dog Flea

(Puler serraticips Gervais.)
This insect, commonly known as the cat and dog dea, as stated above, occurs on a number of different animals, and in the northeastern United States at least is the common flea, which proves a pest in houses. The true human flea, so-called (P. irrilans), seems to be very rare in the United States, although ${ }^{\prime}$, mmon rough in Europe as traveters and those who have read Mark Twain's account of the "chamois" well know. The eggs of the cat and dog lle: are deposited between the hairs of the infested animals, but are not fastened to them, so tha: when the animal moves about or lies down, targe numbers of the eggs will be dislodged and drop to the ground or lloor, or wherever the animal may be at the time. An easy way to collect them. therefore, is to lay a strip of eloth for the animal to sleep upon, and afterwards crush the cloth into a receptacle, in which the exgs will be found in numbers. The eggs hatch under fivorable circumstances in from two to four days, and the young larva. very slender and elongatc. white in color, and of the structure shown in tre accompanyiner figure, crawl into the floor cracks and feed upon the acctamulated dust. They may be reared under observation, in saucers, between layers of blotting paper, with dust and bread crumbs. Specimens studied by Mr. Pergande, at

Fleas

the writer's office in Washington, showed that the larva casts its first skin in from three to seven days, and its second skin in from three to four days. From seven to fourteen days after hatching, they began to spin a delicate silken cocoon, which, when completed, was almost trinsparent, except where it was covered with dust particles. In the cocoon the pupa, as shown in the accompanying figure, was formed and the insect remained in the pupal condition for four days. Thus an entire generation may be developed in about a fortnight, and since the adult female lays many eggs, it is not surprising that persons having cats or dogs about the house will frequently (and especially where the houses are closed during the summer, and the floors left unswept) find their domiciles overrun with thousands of these active, biting creatures.

The remedies consist in a free use of fresh pyrethrum powder, in spayying the floors and floor coverings with benzine or in thoroughly washing the floors with hot water and soap. On pet animals pyrethrum powder should be freely used.

THE CADDIS FLIES

(Order Trichoptica.)

Almost everyone who likes to watth curious living creatures knows the caddis worms-the strange little larve which construct calses of bits of leaves, twigs, small stones. or sand, and which live under the water of permanent streams or ponds. They are very good objects for the aquarium, and are structurally of great interest. While the case-bearing larva are so well known, it is quite different with the adult insects, which

Fig. It.-(addis Ay and larva.
(from Latiser.)
not only are seldom seen in collections, but have been studied to a comparatively slight extent in this country. They have four wings, which are more or less clothed with hairs, so that the caddis flies look very much like moths. The mouth-parts are rudimentary, and the antenna are thread-like, frecuently very long and many-jounted. The puparesemble the perfect insects in general appearance, and become active before the last molt. The hind wings of the tlies are usually broader than the forewings, and may be folded in repose.

The Caddis Flies
The caddis tlies are oftern seen about the margins of streams and frequent shady places. They do not often fly during the day, but are sometimes attracted to light at night.

The eggs are laid in a double mass, which is gelatinous, and usually green in color. This mass is usually attached to the surface of some water-plant, but it is supposed thai certain species creep down the stems of aquatic plants under water for the purpose of laying their eggs. The larva are all aquatic, with the exception of one form, which lives in damp moss on land, and they are nearly all protected by a case of some form or another. The cases, as just stated. maly be composed of leaves, either attached by their edges or flaced longitudinaily, or they may be bits of stick arranged in many different ways, or stones, or grains of sand, or even water-snail shells may be used for the purpose, attached to the outside of the case, in such cases sand being the main material. All of these different substances are fastened together by means of silk, spun by the larva, and they serve to protect the caddis worms from the predatory insects so often found in streams, and also from fish as well.

In the majority of instances the cases are cylindrical, but sometimes they are curved in a horn-like manner, and in other cases they are very strangely involuted, like a snail-shell. In fact, the case of a caddis worm was once described by a conchologist as a new species of snail-shell. Then there is another form in which the case resembles a bottle with the bottom cut away and the lower part compressed until only a slit is visible. In the majority of instances the cases are free, and the larva crawls or swims about with only its head and thorax protruding from the orifice, but in other instances they are firmly attached to rocks or submerged logs.

The larva itself is elongate and usually cylindrical, and while the head and thorax are tough and horny, the abdomen is thinskinned, delicate, and of a pale color. It breathes by means of tracheall gills, which issue from the sides of the abdomen. It is not known how many times any of them shed rhe skin and a molt has never been observed to my knowledge. They live several months in the larval stage. and some of them pass the winter in that condition. When ready to transform to pupa, both ends of the case or tube are protected by a silk netting, spun by the larva, which transforms in security, well drawn back

The Caddis Flies

from either orifice. When ready to transform to the adult stage the pupa works its way through the guarded oritice, swims to the surface of the water, ind crawts ont, where possible upon a twig or other vegetation, or upon the loak. It may cast its pupal skin while still in the water, the wings remaining mexpanded, but ats soon als it leaves the water the wings expand instantly to their full size, and the tly departs through the air. This statement is based upon an interesting observation by Comstock, who states that the instant expansion of the wings is necessitated by the flet that the insect studied hy him normally emerge from rapidly lowing streams, which dish over rocks, and if much time were required in this wingrexpansion. the water would destroy the wings for purposes of hight, and dash the insect down. The larval food of the caldis ifies is mainly vegetalle, but there is one group which is carnivorous. The order is not a very large one, but more than one hundred and fifty North American species have been described.

As common as are the caddis worms, and as often as thev have been watched in streams and in aquaria, not a single full life history has been recorded in this country, and a tascinating field for original investigation is therefore open to the tirst comer.

Table of Families

Spines on the legs, three ocelli
No spines, only hairs and spurs
Two or three spurs on middle tibiax.... Family Pitryghnethr
2-Last two joints of palpi not elungrated. simple not tlexible... 3
Last joint of palpi, elongate, Ilexible, palpi hairy............ ;
3-Male palpi four-jointed, ocelli absent........................ 4
Male palpi five-jointed. ocelli often present, when alsent the spurs 2-4-4 ...Family Rhracophilhdar
4-No spurs on anterior legs............... Family Hivtrotilida
Spurs present on anterior legs....... Famill Serticostomatitur
5-Basal joint of antenna long and large. wings slender, no ocelli Fimilly Leptocerida
Basal joint of antennal shorter. Wings broader, last joint of palpi inult-articulate.............. . Family Hydropsychidic

This tamily contains the bargest of the caddis bies. Mc Lachlan calls them "the giants of the order." They are found only in the northern portions of the glole and some of the most striking species are boreal, or at least inhabit high mountains. They are not very numerous. One of the largest and handsomest, Neuromar semifasciata Siv. is shown on the accompanying plate, and has heen taken by the writer at night at a light in his cottage in the Catskill Mountains (elevation $\mathbf{2 . 5 0 0}$ feet). The larva live in ponds, swamps, and bogs, and make eylindrical cases of bits of leaves or the fibers of slender-leafed aquatic plants which they arrange in a spiral manner. The ataes of the full-grown larve are nearly of the same diameter at eaten end but with the young larver it is smaller at the tailend and that end is cut off by the caddis worm in order to add the remainder to the front end. The cases are open at both ends and the larve are probably able to reverse their positions within them. The perfect insects conceal themselves during the day and tly at night. Their flight is lumbering, and they are readily recognized while on the wing. Only two genera are represented in the United States, namely Phryganea and Neuronia, most of our species beloriging to the latter genus.

FAMILY LIMNEPHILIDA

The members of this family are smalier than those in the group which we have just discussed but they seem contined very largely to temperate eggions, They are common in Canada, Nova Scotia and Labrador, the North" . st Territory and Alaska, but some forms extend dowi into Lousiana and Georgia. The habits of the larvae are very variable. Some live in torrents, others in still water. The cases are free, but the materials employed vary in all possible manners. It is some of the members of this group which employ snail-shells, and Comstock has found shells containing living snails securely fistened to the case of one of these larve. Thus, he says, "the snail wals afforded comparatively rapid transportation whether it desired it or not." It is also to this group that the single form belongs which lives in moss, the only non-aquatic member of the order. The moss which it inhabits may be at the roots of trees bar removed from water. In England caddis worms are used very commonly as bait by fishe.. :en, and it is generally the members of this family which are so used.

FAMILY RHYACOTHILID A:
The insects of this group have a broader distribution and more of them extend to the south than any of the preceding famiaies. The flies are small or of medium size. The larvie are found in rapid streams and, instead of making free calses with which to move about, their rases are formed of small stones fastened with silk to the rocks-a wise provision, considering the rapidly-running character of the streams which they inhabit. These cases are very slight and loosely formed-merely al few pebbles fastened to the lower surface of a large stone by a few threads of silk, but. living on the under surface of rocks as it does, the insect is less liable to be attacked by fish or predatory insects, and does not need so elaborate a case as do the free swimmers or crawlers. When it transforms to pupa a special protection is formed within the calse in the shape of a brown cocoon, which is thin but of tough texture. We have a few widely-distributed species in this family, which belong to four genera.

FAMILY HYDROPTILID AE

This group deserves only a word. They are the smallest of the caddis flies, none of them possessing a wing expanse of more than ten millimeters. They look in form much like some of the tineid moths, and possess long fringes to the wings just as do some of these moths. They are attracted by lights in the houses near the water, sometimes in great numbers. The larve make very small cases, which are almost seed-like in appearince and are composed of silk dotted with very fine grains of sand. The larvaz are destitute of breathing filaments (probably breathong through the general surface of the skin), and are found amongst water plants or on the surface of stones at the bottom. They have "ery short legs and a distended abdomen. The cases are provided with a slit at each end, and the larve turn around inside the case with facility.

FAMILY SERICOSTOMATIDAE
The caddis thes of this group are usually excessively hairy. They vary mach in form. Their larvae usually inhabit streams and not ponds, and the flies are generally found near the breeding places. The larval cases are usually of the ordinary cylindrical form. They are free, and generally made of sand or small stones, but sometimes the cases are broad and flattened and sometimes they are guadrangular, and the most remarkable of all are those which are constructe 1 in the shape of a snail-shell. An almost perfect helix is made by some of them. and $i t$ is one of these which, as mentioned above, was described by a conchologist as a new species of snail. That was at a time when shell students described the shells and cared nothing for the animal which inhabits them. We have in the United States a number of species in this family, separated into nine genera, most of the forms being northern, although the two typical Sericostomas inhabit Georgia.

FAMIL.Y LEPTOCERIDA.

These are caddis flies with very long antennx, and usually with very hairy wings. It is a large family and widely distributed. About forty species are known from North America, where the genus Setodes is best represented. Some of the caddis tlies are very handsome, and also resemble tineid moths, especially the little tlies of the genus Adela and its allies. Setode's exquisita W:alker well deserves lie specific name. The larve are fiund both in ponds and in running streams, but more commonly in the latter. They are not often found in very swiftly running torrents, since their food is largely living vegetation, which does not grow in such streams. The case is free, and is ordinarily composed of sand, nearly cylindrical, but slightly curved, although there are some cases of different shape.

FAMILY HYDROPSYCHID A:

The caddis thes which should possess the greatest interest for us, because it is a personal interest. belong to this group. Their larva are the only caddis worms which are carnivorous. Thev are found both in streams and in ponds, but more commonly in streams. They are elongate and slender, with short legs, and with anal projections which bear strong curved claws with which

rig. 115 -Trap and larval case of IIsdropsyche. (iluther's slinsirifion. they hold to the surface of rocks or to their cases. Their cases are fixed and are generally composed of bits of stone fastened t"

Fig. 116.-Larva of Hydropsyche, the maker of the trap. figure : 15
(Authe's illustrithen.) large stones or rocks at the bottom of the water. Sometimes severall harve appear to live in company in a common case, being covered by a sheet of silk, to which minute fragments of leaves and sticks are fastened. There is usually more silk in the construction of the cases of these insects than with the caddis worms of the other families which have stony cases. and although the stones attached to it may be few in number, there is apt to be a pretty dense, silken tube. Sometimes this tube is simply covered with slimy mud and has no other foreign objects attached to it . Some of these larver prey upon other aquatic insects and it is probable that this is a seneral habit of the group.

An interesting form which 1 have: watched in Rock Creek, near Washington, inhabits a case shaped like a funnel, the tube of the funnel bent nearly at right angles
with the mouth. The mouth is composed of a netwer': of silk upported by arched bits of twigs. The larsa remains buden in the funnel, watching for its prey to he callght in the open mouth. The cases were preferaly phaced at the edge of slight depressions in the rocky surfice so that the tuhbular portion was protected from the full force of the curremt. On the surfice of a rack ahout eighteen inches in dianeter 1 oo of these nets were counted. The larve of one of the black flies were very abundiant in this streant and were washed into the mouths of these nets and probally formed the prineipal food of the Hydropsyche lirvere. Therefore, this is se of the few erealures which we know which helps to reduce the number of black flies and it must therefore be considered as very beneficial to mankind. The family is a rather large one and nearly thirty species are known to occur in this country, about half of them belonging to the typical genus Hydropsyche. Macronema terratum Hagen is one of mur handsomest species. Its wings are heautifully spotted and handed with yellowish brown. It occurs from Canada south to Virginia.

THE SCORPION FLIES
(Oidier Micoprivar.)
The curious insects of this order are ordinarily called scorpion tlies, although this term apples strictly only to those of the genus lanorpa which have the genital organs of the male alult curiously enlarged and modified so as to resemble the tall of a scorpion. Mecopterous insects have four wings with many verns. The most striking peculiarty is the great prolongation of the head into al stout beak-like orgall at the end of which are hitug mouth-parts. The metamorphoses are complete. Only one family is contained in this onder.

FAMII.Y PANORPIDA:

The representatives of this f.amily in the Unted States are all contained in the genera Panorpa, Bittacus and Borens. The truc scorpon tlies are very common insects in midsummer in most parts of the United Stutes. Some of them have leatutifin, spotted wings and are seen tlying in the hroght sumbigh in places where w.111 herhage abounds. At my eountry place in the Catskill Mountains they are extremely alundant towards the end of July, llying from one blackherry bush to another and resting frequentl: upon the golden-rod plants. All Panorpids are carmua, 心, hut binorpa has not been observed in this country to copture other insects as does Bittacus. The development of the ere insects was unknown until the Austran entomologist. Brauer, in 1803;, succeeded in oltaining egys and rearing the insect. The larvee of Panorpa and Bittacus are found near the surface of the ground and feed upon dead animals, including such sont-bodied mects as caterpillars and gruls. The other gemus. Boreus, is composed of wingless forms which look something like minute wingless grasshoppers. They occur in winter upon snow in our Northem States.

Life History of a Scorpion Fly (Dianorga mfiscins Ramb.)

This species, which is common in our Northern States, is the first Panorpid to be carefully studied in this country. It was found commonly at lthaca, N. Y.. in the summer of 1895 , hy Ir. E. P. Felt, llying in moist woods during July and August and especially along streams and where netles abounded. After contining several females in breeding cages the eggs were ohtained. Thev were laid in an irregular mass, were yellowish white in color, from twenty-four to twenty-nine in each cluster, and from I ch: to 2 cm . below the surface of the ground. The earth was moist

Family Panorpidx

and the larvx hatched in from six to seven days. The young larva when first hatched is whitish, with a light brown head which becomes darker when the body becomes gray. It looks like a caterpillar but the antenna and the eyes are unusually prominent. The abdomen bears a row of ringed spines down the back, those toward the anall end of the body being longer. The larve pass through several stages of growth within the first two weeks. They burrow into little tunuels under the surfice of the ground and remain underground most of the time. They were fed upon raw meat placed upon the surface of the ground. Sometimes they come out of their burrows for feeding. They are cannibalistic and the stronger ones destroy the weaker ones. They wander in search of food and feed upon all sorts ot dead flesh. They reach full growth in from three to four weeks, burrow deeper intr the ground, excavate another cell, and remain as larvx for several months before entering the pupa state. There seems to be but one generation annually, the adults issuing in midsummer.

Plate XXIII.
NEUROPTEROID INSECTS
FIG.

1. Asynarchus punctatissimus (Limnephilidx) Northern States
2. Polystuechotes punctatus (Hemerobiidx) U. S.
3. Mantispa interrupta (Mantispida) Southern States
4. Mantispa brunnea (Mantispidæ) Southern States
5. Neuronia semifasciat:I (Phryganeidx) U. S.
6. Chauliodes lunatus (Sialida) Eastern U. S.
7. Chauliodes lunatus 8 (Sialida) Eastern U. S.
8. Platyphylax subfasciata (Limnephilidx) Northern States
9. Macronema zebratum (Hydropsychidx) Fastern States
10. Danorpa rufescens (Panorpida) Eastern States
11. Panorpis subfurcatal (Panorpida) Northern States
12. Bittacus strigosus (Pancrpidx) Eastern States
13. Bittacus apicalis (Panorpide) Eastern States
14. Chauliodes pectinicornis (Sialidæ) Eastern States
15. Corydalis comutus q head (Sialidax) Eastern States
16. Corydalis cornutus 3 (Sialidæ) Eastern States
17. Taniopteryx fasciata (Perlidx) Eastern States
18. Sialis infumata (Sialidx) Fastern States

THE LACE-WINGED INSECTS

(Order Liuroptera.)

There was a time, and it extended down to comparatively recent years, when all of the insects which would not fit into any of the five principal orders, Hymenoptera, Dipter:, Lepidoptera, Orthoptera, or Hemiptera, were placed in the order Neuroptera, but entomologists of late years inave changed all that, and the old group Neuroptera, as it was formerly considered, has been divided up into a number of distinct crders.

The first step was to separate those which had a complete metamorphosis from those in which the metamorphosis was incomplete. This resulted in the establishment of only one new order, the so-called Pseudoneuroptera, which included those in which the metamorphosis wals incomplete, but the Pseudoneuropteral has again been split up, and we have the Thysanura, the May-flies, the dragon-flies, the white-ants, the Psocids and booklice, the bird-lice, the caddis flies and the scorpion flies, all forming distinct orders, which are treated elsewhere in this work. There remain then those of the old order Neuroptera in which the perfect insect has a biting mouth, two pairs of membranous wings with many veins. and in which there is a complete metamorphosis, the larva being quite dissimilar from the asult, and moreover, in the adults in no case is the head prolonged into a beak-like structure. Even under this restriction of the old order Neuroptera we have still a number of diverse forms in the order, and these are separated into seven well-marked fannilies. It would not be surprising if the old order were still further split up, and as a matter of fact a distinct ordinal name has been suggested for a group of five of these families.

The biting mouth-parts of the Neuroptera as limited at preset.t are not used for the purpose of eating vegetation to any extent, since practically all of the insects in this group are carmivorous and feed upon other insects. Some of them are aquatic,
but the majority of them live on land, and wherever their prey abounds. Many members of the group are most beneficial in the great number of injurious insects which they destroy, while others are few in number of species and rare in individuals, and some of them prey upon beneficial insects.

Table of Families

Hind wings with an anal space.............................. .
Hind wings with no anal space
1-Prothorax quadrangular when seen from above
Family Sialidae
Prothorax long and cylindricill. Family Raphidiida
2-Front legs formed for grasping............Family Mantispida
Front legs of the ordinary type
3
3-Wings covered with a whitish powder
Wings not powdered.
4-Antennae clubbed at end Family Mermelconida
Antenna not clubbed at end
5-Antenna moniliform (beaded).......... . Family Henerobitita
o-Antennæ setiform (bris:le shaped)........Family Chrysopidia

THE DOBSON AND ITS FAMILY

(Fimily Sialida.)

To this group belong the so-called alder flies. fish fies and hellgrammites : in fact, some of them have many popular names. They have four broad wings, of which the hind ones are wide at the base and capable of being folded behind. The wings have numerous veins, both longitudinal and transverse, forming irregular cells. There is a very complete metamorphosis, the larval having strong-toothed jaws and the pupal being quiescent. It is a small family, with only a few genera, but some of the species are so striking in appearance, so interesting in habits, that the group deserves really more extended mention than can be given it here. All of the forms are aquatic or subaquatic in their carlier stages.

Of the typical genus Sialis we have only two species. They comprise the smaller individuals of the family, and frequent vegetation about the banks of streams. Very many eagrs are laid by a single female on the vegetation overhanging streams, from two to three thousiand being contained in a single egy mass.

Most of our species belong to the genus Chauliodes, of which the so-called comb-horned tish-tly' (Chanliodes pertimiornis L..) is the commonest form throughout the United States east of the Rocky Mountains. The eggs do not seem to he known, but the larvax are found in the water crawling along weeds and upon the bottom. They are carnivorous, and feed upon other aquatic insects. and when ready to transform to pupe crawl out upon the bank, and are then found in cavities under stones or even under the bark of trees. The addult insect has a wing spread of three and one-half inches, and is a striking looking creature. Chaulootes lunatus is a large and handsome species with brown wings banded with white. The difference in size between its males and females is very strikins.

Needham says that the larvar if tali, intumata live in trashy

The Dobson and its Family

places filled with alpuatic plants in the border of streams and ponds. They clamber through fallen vegetation with great agility, and push their waly readily through sediment fallen upon the botom. In an aquarium, and probably outside, the long tail is intermittently lashed up and down. This causes a swirl in the water, which is doubtless useful in bringing a fresh supply of well-erated water into contact with the lateral filaments. Wher the larvae are full grown they burrow into the soil for several inches and become , upe without making a cocoon. The adult fly emerges after two or three weeks.

The eggs of Chiluliodes have been found by Needham in the Adirondack region of New York to be very generally parasitized by a very minute egg parasite, a chalcis fly, more than seventy per cent. of the eggs being destroyed in this way.

The most familiar American example of this group is the so-called hellgrammite tly, some account of which is given in the following paragraphs.

Life History of the Dobson

(Corydalis comuta L.)
This is e.ce of the most striking and most curious of insects which occur in North Annerica. Its transformations were first described in part by S. S. Haldeman in 1848. It is interesting to note that at that time, although the insect was well known to most people in the localities where it was found, Dr. Haldeman was never able to discover that it had a vernacular name either in English or German among the so-called Pennsylvinial Dutch. Surely this defect must have been speedily remedied, since the great fourwinged fly with its enormous jaws is now generally known as the hellgrammite. while its great, strong, biting, wriggling larva are familiar to fishermen in many parts of the United States as Dobsons. or crawlers. In fact. it is likely that not one of our insects has so many vernacular names at the present time. In 1889 Professor W. W. Bailey, of Brown University, collected the names in use in Rhode Island alone for this insect, and they are sufficiently interesting to be repeated. They are : Jobsons, crawlers, alnly, conniption bugs, clipper, water grampus,
goggle goy, bogart, crock, hell devils, flip-flaps, alligators, Ho Jack, snake-doctor, dragon and hell-diver.

It will be very easy to infer from these names alone that the .. sect is a very extraordinarv one and somewhat terrifying in its appearance.

The adult is a large creature, having a wing spread of more than four inches, and possessed in the female. of powerful biting jaws, with which it can give a severe pinch to the skin of the person who handles it carelessly. With the male there is a curious modification of the jalws. They are extended into long, curved, piercing organs, which cross when at rest, and which are fully an inch in length. These jaws make the male look particularly

The Dobson and its Family

dangerous, but, fortunately, they do not function as jaws, and are simply used for the purpose of holding the female during marital caresses.

The female lays her eggs in white, chalky-looking nasses about the size of a nickel five-cent piece. These masses are somewhat convex, and contain about three thousand very sinall eggs set on end. They are deposited on the leaves of trees overhanging the water, or on rocks, or the piers of bridges or similar places where the larvx can readily drop into the stream or pond.

Fig. 118.- dalis comuta. (Affer Riley.)
Sometimes they are so abundant as to make the rocks look as though someone hald splashed whitewash upon them profusely with a brush.

The young on hatching drop immediately into the water, descend to the hottom, and during the entire larval life, which lasts two years and eleven months, feed upon other aquatic insects, especially the early stages of the May-flies and stone-flies, They hide under stones in swift-running currents, and possess at the anal end of the body two strong tubercles, each provided with two curved claws, with which they hold tirmly to one object or another. They breathe through several pairs of tufts of
breathing filaments situated just beneath each side of the ahdomen. They also, when they ap;roach full growth, have spiracles, which are closed, however, until the creature is ready to emerge from the water. The number of molts is not recorded. When full grown (two years and eleven months after its birth), the larva leaves the water and cradels about seeking a suitable place for pupation. It does not travel very far, but it crawls energetically while it is about it, curiously enough, climbing trees occasionally, and on several occasions in Illinois they fell down the chimney of a house occupied by the man who kept the toll bridge over the Rock River. They travel on land only by night, hiding under some stone or \log during the day, and it is under stones and logs that they finally pupate.

The larva in color is dark slate-gray, and is remarkally thick-skinned and tough. This fact adds to their value as bait, since one will last a long while. The pupa, however, is light yellow in color, and transforms to the adult tly in about a month. Full grown larvae begin to emerge from the water in May, and the adults are seen tlying a month later.

In rapid, rock-bottomed streams, where these insects abound, the method of catching them is to wade in the streanss with a net and lift up the stones in advance, catching the larva in the pet as they float down with the current.

They bear at the sides of the body. in addition to the respiratory tufts mentioned above, two long tilaments on each side, which are furnished with hairs, and may be of scone service in swimming. Possibly, also, with the very young larve they have a respiratory function. When the larva become large, however, dissection shows that the trachea contained in these filaments are insignificant, whereas each element of the branchial tufts possesses a strong branched trachea.

THE SNAKI:-FIIES

(liomily Rispluidi ha.)

Insects of this family are rapacious foes of other insects, and It is a pity that their geossaplat distribution in the United States is so limited. They are found as a matter of fact practically only on the l'asitic Slope, although one species is recorded from Colorado and another from Arizona.

They are insects of curious structure, the neck being vere long and the female bearing a long, curved ovipositor. The Larve are found under the bark of trees, and Comstock says that in California he has found them commonly under the f, se bark of the Eucalyptus.

The codling moth or ipple-worm has a habit of spenning its cocuon under the loose bark of apple tre is after it laves the fruit, and many of the codling moth larvie are destroved by these Raphidians. In Australia and New Zealand the codlung moth is a great scouriee and sume years ago an attempt was male for send living Raphidians from California to these English u nies in the hope that they might become acclimated and ansist Iruttgrowers in their work against the codling moth. Nothing has been heard from them, however, for severil years, and the probabilities are that the attempt was a fai are, In England these msects are known as snake-lles. from ti - long neck of the adult.

The larve are verv voracto and hunt for their prey with great assiduty. They are, like many other carnivarous insects, capable of fasting for a long ' we. Th ' (eerman entomolngist Stein kept out for eight months without tond, hut stil! living

The pupx is found nak.d under bark and looks like the adult except that it has not the lons neck. It becomes actuve before giving out the adult, just $\sqrt{2}$ do the punx of the caddis flies.
less than ten species inhalul the United States, all of them, as ahove stated, being far wester forms. The full life-history of none of them is known.

THE FAISE REAR-HORSES

1 imily IIrantispitide.)

As the namie would indicate, these insects bear some resemblance to the Mantudx or prasing Mantes, of "rear-he as as they are called in the South lhey have al lome reek, and the strong. dilated and spined ront legs are inserted jus hehind the head, and ecused for captarmg their prey.

Vers tew species inhal , the United St 'es, inly two. Mantispa rob: fa and M. interrupta, having a ve v wide desthbuthan

The 2 "sformations of these creatuees was for of long tim a mystery, but Braucr, of Vienna, fe a 1 ahout thaty ye. ago that they live upon the sogs andy ing of splers. Th eggs are very small, whd very numerou ind eath is placed a the tip of a long stalk, very much the sat wily as ate the rgig of the lace-winged flies which will be deserthe illoter. The esf. are baid in the fall and the lorvar hateh fefe. enter, hut reman hidden withoulfood, un spring. Thent: sealellof the es cocoons if certan sierce them. chter amonle it eggs. II en the egges a narly realy whath the wit thent and the young s: ers is wed! ?ll they are full grown. 'moltin_ only twice, and i changint upe or nymple withint ars.at skin. Just as in el !lam: he pupa is active before givmpry out the tly, ard 4 h is u irough the larval stin, flrat. h the equ: cocoot of sider, a gives forth the adult.

It he get wimph s. wloth belongs to thes famly. the transform ation r singere nott species wheh lives in ' Altformal ha to nt cetl studied, but a South American yecies vers in the ne . 1 wasp.

THE DUSTY-WINGS

(Family Coniopterygida.)
The insects of this family are the smallest of the Neuroptera. Their wings are covered with whitish powder. In Europe their larva have been found to prey upon scale insects and to spin a double cocoon when full grown and ready to transform.

In this country we have only two species, namely Aleuronia westanootii and Coniopteryx vicina, and the life history of neither has been described. Mr. Banks, however, has found the larvx of the Aleuronia upon the leaves of maple trees at Washington, where it was probably feeding upon the young of the cottony cushion scale (Puziluaria innumerabilis) or upon plant-lice found commonly upon the leaves. This larval resembles a small larva of one of the lace-winged flies, but has not the long jaws characteristic of those creatures.

Plate XXIV.

NEUROPTEROID INSECTS

FIG.

1. Platyphylax difficilis (Limnephilidx) Eastern States
2. Isogenes frontalis (Perlidx) Northern States
3. Limnephilus externus (Limnephilidx) Eastern States
4. Neuronia stygipes (Phryganeidx) Northeastern States
5. Pteronarcellis badius (Perlidæ) Western States
6. Hydropsyche grandis (Hydropsychidx) Western States
7. Macronema transversa (Hydropsychidæ) Southern States
8. Corydalis cornutus (eggs) (Sialidæ) Eastern States
9. Leptocerus resurgens (Leptoceridx) Northern States
10. Brachynemurus 4 -punctatus (Myrmeleonidæ) Southwestern States
11. Panorpil lugubris (Panorpide) Southern States

1․ Brichynemurus 4 -punctatus (Myrineleonidæ) Southwestern States
13. Brachynemurus carrizonus (Myrmeleonidx) Southwestern States
14. Panorpa nuptialis (Panorpidx) Texis
15. Brachynemurus carrizonus (Myrmeleonidx) Southwestern States

THE ANT-LIONS

(Family Myrnclionida.)

The so-called ant-lions are interesting creatures which have long attracted the attention of naturalists and of nature students. The average American country boy knows the ant-lion pits in the sand about as well as he knows the curious caddis worms in the brooks. It is rather a large group, and about thirty or more species are known in the United States, three hundred or more comprising the number of described species in the entire world.

The adult flies have short clubbed antenn \mathfrak{x} and four reticulate wings, and are not especially attractive in their personal appearance.

They vary considerally in size, and some of them have a wing expanse of four inches.

The eggs must be laid in the sand, and the larvar when hatched immediately begin to construct little pits. They have flat heads and long jaws, and scrape aloald of sand on the head by means of the front legs, and then jerking the head suddenly upwards and backwards throw the sand to a distance. The future pit is planned as to size, and the larva first excavates a circular groove in the way just described. Then it makes another circle within the first and so on until a conical pit results, at the bottom of which the larva remains in hidin: The sand on the sides lies, when the pit is finished, at such angle that the least disturbance causes it to slide toward the l: :om, and when an ant or some other sinall insect reaches the verge he is apt to slip rapidly toward the open jaws of the larval waiting to receive him at the bottom. In case, however, by great altivity, he seems likely to escape over the margin again, his fall is assisted by the ant-lion at the botton, which throws little showers of sard upwards, and these showers falling upon the struggling insect hasten its descent.

Any little deposit of sand beneath buildings or at the bottom

The Ant-Lions

of cliffs along sandy banks in the warm sunshine may be found to contain numbers of these pits. Large collections of them will frequently be found together, which means that one or more females have deposited their eggs in the same general vicinity. The sand must be dry, and hence usually is in a warm, sunny place. When it is damp the larva cannot dig a good pit.

Professor O. Lugger, at a recent meeting of the Entomological Society of Washington, told an interesting story of how al loadd of sand being carted across a westein prairic, far from any stream and miles from any other accumulation of sand, was accidentally spilled through the breaking down of the cart, and how, after i comparatively short time, he found this sand containing many ant-lion pits. This instance indicates that the strong-flying adults are widely distributed and must be in the habit of flying long distances in search of proper places to lay their eggs. There is, of course, also a bare possibility that the eggs were already contained in the sand.

The jaws are enormous and are toothed, and each jaw is grooved deeply on the under side.

After the victim is practically consumed the renains are jerked away by the head just as the sand is jerked up in excavation.

The duration of the life of the ant-lion larva is variable, depending largely upoll the abundance of food, just as with some of the other predatory larvae which we have recently mentioned. They are able to undergo long fasts, in which event the transformation may hecome indefinitely postponed, but when ants and other food are plentiful they reach full growth in comparatively short time, and spin circular cocoons in the sand, making them of silk, to which, since it is gummy when spun, grains of sand adhere. Within the cocoon the larva usually passes the winter.

There is need of careful study of any one of our common ant-lions. The eggs should be described; the number of molts of the larva should be known, and the duration of the different stages under differing circumstances should be determined. It is prob:able that with most, if not all of the species, there is one generation annually.

THE APHIS-LIONS

(Fitmily Hemerobiialu.)

The insects of this group are medium-sized or large lacewinged flies, the wings being often rather dark colored and spotted with dark spots. There are about thirty species in the United States.

Their larvx are active, predatory creatures, with long, pointed, sickle-shaped jaws, with which they pierce the bodies of plant-lice and other soft insects, sucking their juices through grooves along the inside of each jaw. Some of these larvae are furnished with tubercles along the side of the body, the tubercles being clothed with hair, and they have the curious habit of covering themselves with the skins of victuns which they have destroyed. The tubercles and the long hairs serve to hold these remains in place. One of these little larvie will thus disguise itself to such an extent that it cannot be recognized as an insect. The cocoons are spherical.

There are some very interesting forms belonging to this family which are aquatic in their early stages. Needham salys that those of the genus Sisyra are very curious-looking objects in the larvall stage. They live in or on fresh water sponges, clinging closely to the surfice of the sponge or hiding in it, covering themselves with debris. Those of the genus Clinacia are also aquatic in the early stages, according to Needham, living in the same places.

A good representitive full life history is needed in this f:lmily.

THE GOLDEN-EYED LACE-WINGED FLIES

(Fomily Chrysopidu.)

These little insects are known as the golderi-e yed lace-winged flies. They are generally green in color, and their eyes, while appearing brown in some lights, have a distinct yellowish, almost phosphorescent or metallic glint in other lights, which accounts for the name golden-eyed. They are sometimes appropriately called stink flies. The uncautious observer, attracted by their beatur, on handling them is at once conscious of a disagrecalle and very strong odor which is with difficulty removed from the lingers by soap and water.

The eggs of these little flies are very curious. Each is placed at the extremity of a long slender stalk, which is a most necessary method of egg-placing, on account of the voracity and omnivorous

Fig. 119.-Chry:opai flurabunda. (Afior kidey.! habits of the newly hatched larvie. If they were laid on the surface of a leaf side by side, as is the case with so many other insects, the lirst larvat which hatched would eat up all of the other eggs, fut, issuing as it does from the eerg on the top of this long inedible stalk, finding himself on the leaf there is nothing for him to eat unless he searches fur plant-lice, of which there is generally an abondance nearby. The eggs are usually def outted on leaves or twigs, and, with wise foresight, chistomarily in the middle of a colony of plant-lice, and the young farva after hatching begin immediately to feed upon the nearest prev. They are most voracious, and i t their long, pointed, sickleshaped jaws (like those of the ti. "crobiids) into the body of the nearest soft-boded insect. It shous: be stated first, however, that on hatching, the upper end of the egge is cut off by the lar val jaws.

The Golden-Eyed Lace-Winged Flies

The young larva has an extremely large head, and the sides of its body are armed with immense curved hairs, which give it a very ferocious appearance. It crawls down the egg stalk until it reaches the object upon which it is placed. On reaching it young plant-louse it grasps it between its long curved jaws and rolls it one way or the other, the juicy contents being rapidly extracked. It seems always hungry and always to be feeding when it can find anything upon which to feed, and its rapidity of growth is limited only by the abundance of the food supply. It will eat

one of its own brothers as quickly as any other insect, and when nearly full grown its jars are strong enough to pierce the skin of a human being. In Toronto. Canada, I once felt is sharp prick on the knuckle of one of my fingers, and on looking r down found one of these larva with both jaws sticking through the skin and pumping away with its body in an effort to get some nourishmont. I wattihed it for some time under alens with some interest, and am glad to state that it did not seem satisfied with its meal.

The insect trimsforms to pupa within the interior of a white spherical, silken cocoon, which is very characteristic in appearance, and the addult escapes through al circular hole to which the eap remains attached like a lid.

The golden-eyed lace-winged flies are among the most important enemies of the injurious plant-lice which swarm upon many valuable plants especi:.:ly in the early part of the summer. The mother lly lavs her eggs where possible in the midst of colonies of plant-lice, and these ate rapidly swept out of existence after the eggs are hatched.

A few of these lace-winged fly larva have the sane habit which we have described as occurring with the Hemerobiids, of covering themselves with the skins of their victims. Hubbard his studied a species which feeds upon bark-lice, tearing the scales loose from the bark and devouring the soft contents, and then alding a portion of the debris to the Ioad on its lack.

Untortunately, these beneticial lace-winged ilies are subject to the attacks of certain parasitic chalcis flies which sting their cocoons. The species of the interesting genus lsodromus seem to contine their attacks exclusively to the cocoons of lace-winged thies.

Life History of a Golden-Eye

(Chrysopa ocultha Say.)
This is one of the commonest species in this group, and is often mentioned in books on economic entomology as destroying plant-lice and other injurious insects. The only observer to deseribe its life history with any detail, however, is Marlatt, from whose observations the following statements are drawn.

The eggs, instead of heing deposited in rather large groups, as is the case with other species, are distributed almost invariably singly upon the leaves of trees, and rarely two are found together upon the same stalk. The young larva cuts off the upper end of the egg and on emerging cralwls down the stalk and begins its search for food. Approaching the egg of the pear tree Psylla, for example, it immediately grasps it between its long curved mandibles and rapidly extracts the juicy contents. This is done with great celerity, the dry shell is cast aside, and the whole
operation frequently takes less than a minute. The larva then eats anything in the shape of a living insect which comes its way. It is totally fearless, and atticks with eagerness insects much larger than itself. After ten days it becomes full grown (these observations were made in Maryland in July) and spins up in the curl of a leaf, or in any partial protection, constructing a delicate, slightly oval but nearly spherical silken cocoon, which is attached to the leaf by silken threads. This cocoon is very small in comparison with both the larval which spins it and the adult which enserges from it, and is less than an eighth of an inch long. The adult emerges in from ten to fourteen days. cutting off the upper end of the cocoon in a neat cap. It does not seem to be known whether this cap is partially cut by the larva, or whether, as with other Neuropterous insects, the pupa becomes active before transforming and cuts the cilp through which the fly emerges.

The adult insect is peagreen in color, and when alive has brownish eyes with greenish retlections. It is very helpless, does not

Fig. İI.-('hryonpa oculata: newly hatched larva, with under side of head and claw at side--greatly enlarged. (After Mirarlutt.) feed, and remains concealed in low grass during the day becoming active in the evening and depositing its eggs at that time. Helpless as it is, the disgusting odor which it emits when handled is probably its chief means of protection from its natural enemies.

PLANT-LICE, SCALE INSECTS, TRUE BUGS, ETC.

(Oritir Hemiptera.)

This is another of the old and great orders of msects. It is one of the original Linnean orders and comprises those insects known as the true bugs, true lice and scalle insects. Nearlv 20,000 species have been described, but, as with the other big orders, very many more yet remain to be studied, probathy at least three times as many as are now known.

Although extremely variable in form and strut fure, all of the Hemiptera have the mouth-parts formed for piercing. ind sucking (not biting) and their metamorphoses are incomplete, he woung bug being active and formed much like the old one. In those which have wings the wings are of two distinct types. In one suborder the forewings are thickened at the base and the thinner end parts lap over on the back. In the other type the forewings are of about the same thickness throughout and are usually held in repose sloping in a roof-shaped manner at the sides of the body.

The order as a whole is a most injurious one in its relations with man. Although some of the true bugs prey upon injurious insects the destruction of plants accomplished by others offsets by far this benefit. In fact Sharp salys: "if anything were to exterminate the enemies of Hemiptera, we ourselves should probably be starved in the course of a few months."

The Hemipteral are divided into three suborders $w^{\prime \prime}$ ch we shall consider separately. They are distinguised as follows:

Table of Suborders

Beak jomted, hard and horm
keatk unjointed, Heshs
-Wings when preselat of the ane thatilesss th, onghout mal
 londv: beak inserted ithe monder fart of the heod

Suborder Homapter.s
Forewing thickened it bise, with thmuer extremitte, wheh - "erlap. beak inserted an the frot part of the heat
.Suborder $11:{ }^{\circ}$ a
2-Winglo vecter, parasitic upon mon alld anim. , ithe tom い।...................... Subordet Amphlır.a

SUBORDER HOMOPTERA

A curious and important assemblage of insects belong to the Homoptera. Those creatures which we know as leaf-hoppers, tree-hoppers, cicadas, plant-lice, flea-lice, bark-lice, scale insects, mealy bugs, and white flies all belong here. Their name is legion and they are without exception, destructive to plant life. Their mouth-parts are formed for sucking, and their transformations are incomplete. Their forewings are not modified, as with the Heteroptera, or true bugs, but are more normal and are usually held roof-like over the back when at rest. The front of the head is always bent Lnder so that it touches the base of the front legs. Beyond these points, their structure is very diverse, and beyond the fact that all are plant feeders their habits are also very diverse. In their is.e histories some of them. particularly the plant-lice, the bark-lice and the periodical cicalda (or socalled seventeen-year locust), present some of the most interesting, alud, in face, some of the most astonishing, phenomena in the whole field of biology. The progressive degradation, after birth, of the female of the scale insects, from an active, highly animated creature to a blind. legless, protoplasmic globule, and the contaisting development of the male of the same species. from a minute, crawling mite to a virile, winged, active and highly organized creature whose head is practically all eyes, is one of the most extraordinary life histories among all insects. while the alternate forward and backward development which occurs in the genus Margarodes in this family is even more strange. Then, too, the remarkably adapted parthogenetic life of the plant-lice, with their alternation of food plants and their relations with ants, make their study one of fiscinating interest.

The Homoptera is a large group of insects. No one knows how large. The plant-lice and the scale insects of Europe and North america have been rather well studied. largely on account of the economic interest which attaches to them. Yet, even from North America, many new species are being found, evern in these

Miatl: XXV.

NEURUDTEROII INSECTS

rif.

1. Maracanda conspersa (Myrmeleonidat) Eastern States
2. Myrmeleon immaculatun (Myrmeleonide) U. \lesssim.
3. Myrmeleon rusticiss (Myrmeleonide) Southern States
4. Brachynemurus pergrinus of (Myrmeleonida) Westerr. ntates
5. Brachyncmurus longipalpus o (Myrmeleonide) Southwestenn States
6. Brachyncmunus aigrilabris of (Myrmeleonid.e) Western States
7. Brathynemurus peregrinus t (Myrmeleonide) X'estorn States $^{\text {B }}$
8. Brachyllemorus longipalpus of (Myrmeleonide) Southwestern

Staltes

10. Brachinemurus sackeni of (Mymeleonide) Southwestern

St:le's
11. Acamthatisis congener (Myrmeleonidie) Western States
12. Brachonemurus sackenit (Myrmeleonide) Southwestern

Staltes
19. Acanthaclisis hageni (Myrmeleonida) Southwestern States
14. Acanthaclsis hageni o (Myrmeleonidic) Southwestern States

Suborder Homoptera

groups, each yeir. The tree-hoppers and the leaf-hoppers and some of the other groups, however, are very poorly known, and, in fact, the whole suborder, as it is represented in tropical regions, is but slightly known. Collectors in out-of-the-wily places have neglected this group, and doubtless very many thousands of species will yet be discovered and described. A sinall group of Americin workers, including Messrs. Osborn, Van Duzee, Baker, Gillette and Ball, are doing admirable work upon the leaf-hoppers and tree-hoppers, but there is still room for many more investigators of these interesting insects. They are easily preserved and make an interesting collection. The study of the scale insects may safely be left to the small army of economic workers who have taken up their study during the past ten years, but the plant-lice need many more students. The difficulty of properly preserving the insects of this group. since they must be kept in alcohol or formalin or mounted upon microscope slides, doubtless deters many from entering upon their study. But the life histories of very few of our North American species are known, and many important and most interesting facts are still to be learned about a host of species.

Table of Families

Beak plainly inserted in the head; feet with three segments antennæ minute, bristle-iike
Beak apparently inserted between the forelegs; feet with one or two segments; antenna usually prominent, but sometimes wanting
${ }^{1--O c e l l i}$ three in number; the males with musicul......................... 5
Only two ocelli or none:amily Cicaditidr 2-Antennx inserted in fron males not musicall

Antennx inserted in front of and between the eves........ 3
Antenne inserted on the sides of the cheeks beneath the eyes 3-Prothorax not prolonged above the abdomen................................... 4 Prothorax prolonged into a horn or point above abdomen f-Hind shanks with one or twoFanily Membracida with a crown of short, stout spines.... Fainily rircopist Hind shanks with a row of spines belowinily cercopidit $\because \because$

Feet usually with two segments: wings when present four in

$$
\text { number . } 6
$$

5-Wings transparent .. 7
Wings opaque, whitish...................Family Aleprodidr
Feet 6 .th onlv one segment; males without mouth-parts and with two wings only; fentales wingless and scale-like or gall-like in form, and covered with wax in plates, layers or in powdery form.................... Family Coccidar
6-Hind thighs swollen: :ntennae with nine or ten segments... Family Pss//idac
Legs long and slender; antenna with three to seven segments Famnily Aphididu

THE HARVEST FLIES OR CICADAS

(Family Cicadida)

This is a group of insects commonly known by the popular name of "harvest flies" or cicadas, and frequently in this country by the erroneous term "locust." We have already seen that the term "locusts" should properly be applied to the long-horned grasshoppers of the true family Locustidæ, although it is also, especially by British subjects, applied to the short-horned grass-

Fig. 12.-l'erindical Cicada: .i, male, of the large form: s^{\prime} male, of the small form.
(After kitley.)
hoppers and especially the destructive species. The fimily Cicadide is : group of large insects containing very many tropical species. Their hodies are large, with a wide. blunt head. and with prominent eves on the cuter

The Harvent Flies or Cicadas

angles. The heid has three ocelli placed triangularly on the sunmit between the compound eyes and the antenna consist of a short bisal joint surmounted by a bristle which is divided into about five segments. The tropical forms are sometimes brightly colored but the species which occur in the Unted States are usually greenish marked with black.

The commonest form in the more Northern States is the sncalled "dog-day harvest ily " or "lyreman"-the insect which every summer, toward the end of July or early in August, begins

its doleful but resounding buzzing hum in the tree tops. This sound is familiar throughout the hot days of the late summer and is frequently more noticeable in the early morning and about sundown. This, however, may be due 10 the fact that the day noises of a lown or city are less noticeable at such times. It is supposed that this is an annual species, i. f, that it has but ne generation annusily the larva living in the ground through only nine or ten months of the year. It maty be, however, that it has a much longer larval period, and that only its greal abundance and the interningling of generations accounts for its annual occurrence in the adult condition. This is a point which should be investugated as its life history has never been thoroughly liorked nut. There are other cicadas in the Southern and Western States, some of them rather small in siae, like Teilnga hieroglphicu, and others large, like the big Cocada emarginata.

Life History of the "Seventeen-year Locust"

(Giedde siptinditim. I..)
This insect, commonly known wis perindical cicada or seventeen-year locust, ts taken here because th is the only species of the family whose life history is thormaghly well understood. It is probahlv not typical in tis very exmoded larval iffe. In the North this insect remains ether as larvai or p:ap.i undergenond for sevellteen years. In the South is develops in thirfery years, thus giving rise to tworaces which are known ds tre seplendecter and tredecm raco. The divaling lime between the leo rance corresponds tarly well with the northern :nargin of the no-cillen! boser australl like zone. In some locilities confusion arise. tron: the fact that the insect makes its appearance at shorice intervals than seventeen years. This is accounted for lov tice fot thatt the insect appears in distinct broocis some is which nverlap the territery also lehabited be oflu: broods. There is no reason, honvever, to suppose that the length of life of any larva is of shorter dur:ition than seventeen vears in the North and therteen in the South. The laruest of the Northeasicern brond, made its last apparance in 1885, and is due ag:am in 1902. !t will then we found in great numbers throughout New Jersey, Delaware, part of l'ennsylvania, Mar:, land. northern Virgniai, Ohio. southern Michigan, Indiana, castern lllinois, Kentucky and down the Appalachian chatn of mountains through North Carolina into nortern Cerorgia. It will also appear in afex lesalties in Vermont. New Y̌urí, Wisconsin. W'est Virgimia amd Tinnessce.
 which are peresed in the oviposetor and in this wosy the inseet does pratacally the only damber whath it accomplishes. Then aceur is, enormous stionms and the we:ationener it the twigs. cobled ly the 1 anctures c.anse: \& my of them tor lex Wrokell off the wind. Tice boung amt-like: vishateher fond?

 it forms for itself a litte undergmond ch.maner meat wome rootk.

The Harvent Flles or Cicadas

remaming there, isolated from others and moving, probably very slowly, for seventeen or thirteen ears. It molts four times, the first time after from one year to cighteen months, the second after two ddtitional years, the third after three years more, and the tourth atter another period of three or four years, leaving three or four additional years to elapse before the insect assumes the socalle,t pupal state. The anterior legs of the larva are curiously enlirged ar I esesmble the cutting jaws of biting insects. They are especially designed for digging and transporting earth. The food which it consumes is obtained probably from the soil humus and to some extent from the roots of

Fig 120.- (\%. .d.at septendecim. young plants. After the change to the pupal condition the insect burrows to the top of the ground and, emerging, crawls up the trunks of trees where the skin splits and the adult insect issues. Occasionally, in certain kinds of soil or when the pupa has reached the surface too early, it will construct mud chimneys from the summit of which it eventually issues.

In the great cicadal year of 1885 , I)r. Riley started an interesting series of experiments in order to determine whether the duration of the larvall stage with the thirteen-year race would be prolonged hy transporting the eggs north and accelerated by transporting eggs to the south. This was done on a very large scale and at several localities, the ex:ct locations leing carefully marked and reoorded. No positive results have as yet heen obtained; thit is to saly, no undoubted specimens have issued at either north or south.

The ultimate fite of this interesting species is undoubtedly extinction and its numbers are rapidly growing less. One of the comparatuvely few insects upon which the English sparrow feeds with avidity is the periodical icada and many thousands of them are destroyed ly sparrows each time they make their appearance and before they lay their eggs.

THE LANTERN-FLIES AND THEIR ALIIIES

(Limily Piulsomide.)

To this group belong the well-known lantern-flies of the sropics, but it also includes a host of other species of diverse forms which are separated into no less than 13 subfanilies of

Fig 127-1ledicoptera sp. (iffer ('hdir.)

Fig 12 S - Sindops able lea. fiffir libler
which the Delphacina and Flatinx are best represented in the United States. The tropical forms are large and bright-colored and the true lantern-lies are so-called becatise of the enormous

Fig. Ism.-Otincerus tocuiferti. (Allir Chiter.
enlargement of the fore-part of the head which was formerly thought to be laminous. All are vegetable feeders. Our Ameri-

MICROCOPY RESOLUTION TEST CNART

(ANSI and ISO TEST CHART No 2)

can forms are all small, worse eesembling leaf-hoppers and others loskreay almost like little sumpas. The green Flata (Chlorochroaz (cmes aleeds on corn and the folage of the sugar beet in Illinois and tow where

Life History of the Frosted Lightning Hopper

(Orments frumosa, Siy.)
Tite so-calied "frosted lyhtring hopper," as this little insect is caldor: helongs to the suhtamily flatina, and is one of the mori-wiee forms. It varies frem lead-color to pale preen, and is dusiti ever with a fine ertrte forwder, which makes it appear fresic: The eggs are laid in amall iwigs of sassafras and other lrees :s i continuous raised at:. They are dirty yellow in color, each 1 inm. Iring. and are lad in their sides end to end.

Latrat the middle of May these eggs hatch into delicate little hop:mer: which immediatty sellle on the new growth, insert their :mak: and hegin io pomp up sap. They then copiously secteit i pnowdery waxy secrefion which completely covers thern. Chey grow slowily, melt three times and the adult insect 1ssum foon the last nympitial :kin ahout September, soon afteruard: $:$ immencing to lay the haternating eggs.

$$
2 \%
$$

THE TREE-HOPPERS

(Family Mcmbracida.)
These insects comprise some of the most grotesque species which nature has evolved. Comstock offers the appt suggestion that "Nature must halve been in a joking mood when tree-hoppers were developed." The antennæ are inserted in front of and

Fig. 130.-Ceresa taurina. (Aficr. Mividtt.)
between the eyes and the prothorax is prolonged so that it frequently covers the rest of the body. It is by the curious modifications of this prothorax that the strange and grotesque forms of the insects are produced. The majority of these modifications
have been developed in order to bring about protective resemblance since by these modifications the insects are made to look like different plant structures. The thorn-like process on

Fig. 131.-Ceresa taurina: eggs and young. Aftitr . Murlitht, the thorax of the common little treehopper of the bitter-sweet (Enchenofa binotata) is a good example. The insects customarily rest in such position along the twig of a vine that they precisely resemble vegetable thorns. This family like so miny others reaches its most remarkable development in the tropics but many strange forms accur in the United States. The species just inentioned, when enlari, ed, bears a fanciful resemblance to the partridge and was once the sulject of a charming popular article by the late William Hamilton Gibson, entitled " A Queer Little Fanily on the Bitter-Sweet," puhlished in the Harper's Monthly for August, 1893. A common form is the litte hump-backed species known as Telemona monticola.

Fig. 132-Finchenopa hinotata. (Aftir Lintner.)
which somtimes swarms upon the branches of the Virginia creeper in June. Another most interesting form is that known as Entlita sinnata, which is found upon the leaves of sun-flower and other annual plants. This species lays its egges in the midrib of the upper leaves. The mother insect broods over her eggs

Piate XXVI.
NEUROPTEROII) INSECTS
FIG.

1. Hexagenia bilineata (Fphemerida) Fastern States
2. Chrysopa nigricornis (Chrysopida) Fastern States
3. Ululodes hyalinal (Ascalaphidae) Southern States
4. Perla llavescens (Perlida) Pastern States
5. Pteronarces mobilis (Perlida) Northern States
6. Fphemer: decoril (Ephemeridie) Northern States
7. Aca thaclisis americama (Mymmeleonide) Atlantic Coast States
8. Psammoleon ingeniosus (Myrmeleonidae) Western States
\%. Jendroleon whsoletiss (Myimeleonidat U. S.
9. Brachonemurus nebulosus (Mymeleonide) Florida
10. Brachynemurus abdominalis (Myrmeleomidae) U. S.
11. Gilenurus gratus (Mvrmeleonida) Southern States
12. Rrachynemurus longicaudus (Myrmeleonide) Southern States

until they are hatched and the young fiom the time of hatching until fill grown are constantly attended hy ants which are attracted to the sweet secretion which this insect, together with many others of the same famly, just as with certain of the Jassidee exudes from its anus.

Life History of the Buffalo Tree-Hopper
 (Corcsa bubalus.)

This little insect is probably the species of the greatest economic importance of any of this group of tree-hoppers. It is popularly known by the name of the "buffillo tree-hopper." Its popular name is derived from its supposed similarity in shape to the male bison, the prothorax being greatly enlarged towards the head and projecting at the sides into two strong horns. It

Fig. 133-Archawin gale.ita. (Afiter R.ustiter.)

Fig. 134-Ceresa bubalus. (Afior Marbitt.)

The Tree-Hoppers

1. common all through the United States, from Missourl northHards into Camada, and is sometimes the cause of considerable damme m orchards, particularly to young trees and nursery stock. The injur: is produced by the cutting of the small limbs ly the temale with her sim-like ovipositor, in which process she

makes large noles through the bark in which the eggs are inserted in clusters. The insect flies with a loud buzzing nomse from tree to tree and is very shy. The twigs chosen for eqg- Jaying wie preferally those of two or three years growth athe larious kinds of trees are selected. The eggs are plated in small compound groups :arranged in two nearly parallel or slightly curved slits. About a minute is requaled for the insertion of each e!g. The wound is made in such a way as to cause a certain cessation of growth between two rows of eggs to prevent their leing crushed by the rapid growth of the twig. Each female liys from one hundred to two hunded eggs. The insect hibernates in the egg condition and the young t th in the spring. They molt three or four times before beca. . ig fullfrown and during their life feed upon the juices of the tender twigs and leaves by inserting their beaks and pumping up the sap. The inceet in ths early stages is wingless and is covered on the upper side along the centre with numerous barbed projections.

THE FROG-HOPPERS OR SPITTLE INSECTS

(Fimily Corropina.)

This is a rather large far iily comprising mostly rather small insects, many of which are known as "frog-hoppers " or "spittle insects." The antenna are placed between the eyes, there are only two ocelli and the thorax is not strangely modified as with the Membracidx. Few insects excite more interest among moderately observant people than the true spitte insects which belong to the subfamily Aphrophorina. They are small, rather slender, brown, clay-yellow or grayish species, and after hatching from the egg live in little masses of froth resembling spittle on the stems of plants and trees, frequently on grasses and weeds. In some parts of the south. according to Uhler, the negroes think that horse-flies are developed from these froth specks. When abundant they may do considerable damage to pasture-lands. Philirmus spumarius and P. lineatus are said by Fernald to be common on grass in Massachusetts. The former is abundant in gardens in England
 and was probably introduced from England into this country.

The eggs are laid in the stems of plants

Fig. I in-Monephora bicincta. (Frome (ISS. Meft. Aicr.) in the autumn and hatch in the spring. It was formerly thought that the spittle that soon surrounds the young inse ot was exereted from the anus, but Professor E. S. Morse has recently shown that only a clear liquid containing no brbbles is thus exuded and that the air-bubbles are brought in by a constant thrashing aloout of the anal end of the body. bringins! in air which is retained as bulWes by the visciu quality of the liquid. There are anal appendages which are probably branchial in function, according to Morse.

It is supposed that the purpose of the frothy mass is to protect the soft-bodied immature insects from their natural enemies

- in other words that h is a dsgunse. Rut it renders them very conspicuous ad once their true noture is ancertaired they are all the more casly tound by their enemies and as a matter of foct they are sought for by certain waps which drag them out from there froth and earry them off to prowsion their nests.

No good thorough life history of an American species has heen pullished and here is an interesting and novel field for some observer.

THE LEAF-HOPPERS

Fimily Jassidu.)

This group of in is, which comrrises the form cinarily known as leaf-hoppers, is an extensive group, -i-ing a

Fig 137. - Proco (ia undata. ('rimm
great complexity of forms and by ine \because modern writers is considered as having sup. 'a, nily tank and is generally termed "Jassoidea." They are usually slender insects, with the antennz inserted in front of and between the eyes and having the hind tibix with a row of spines below. They are very abundant growing herbage and have been shown by Professol Herhen Osborn to bring abjut a very extensive although probably ur.. 'ised injury to forage plants in large grazing ranges it the west as well as in nasture lots in the east. He shows that on it acre of p : : "e land the \quad : :quently exists one million leaf-hoppers:and that this million hoppers consume as much grass as a cow if not more. In this restricted sense this family includes the leaf-hoppers now generally placed in the family Teítigonidx which

Fig. 13^{8}.-Thamnotettix clittelferius. (After Lugger.)

The Leaf-Hoppers

are distinguished from the restricted Jassida by the position of the ocelli. Among the leaf-hoppers which maly be especially mentioned are the green spindle-shaped species of the genus 1:edrocephalla which are found abundantly in pasture lands. one species (D. mollipes) occurring commonly in the salt marshes of the Atlantic States. The forms belonging to the genus Proconia a:e rather widely distributed and one of them (P. undata) is responsible for most of the stories of "weeping trees" which

are seen in the newspapers. These insects in all stages (and the species of several other genera have a similar habit) eject a spray of fluid from the anus when disturbed and, when occurring abundantly upon trees, if the tree be shaken what seems almost like a light shower of rain will fall. One if these " weeping tree mysteries," so-called, in Texas some years ago "set the state agog with various explanations of the phenomenon, ranging from the superstitious credence of the supernaturally inclined te the positive denial and derisive laughter of the constitutionally skeptical." It took a brave newspaper reporter to solve the mystery. since he alone dared to clamb the tree and investigate. The common leaf-hoppers of the grape-vine, erroneously called by grapegrowers "Thrips," are known as Ervthroneura titis and Typhlocuba zitifex. They frequently cause the leaves of grape-vines to turn brown and wither. Agallia sanguinolenta prefers open
sunny places, is destructive to clover and attacks a great variety of useful plants such as cabbage, celery, turnips, strawberry, beets and many weeds.

Typical Life History of a Leaf-Hopper (Deltociphalus inimicus.)

This little leaf-hopper is one of the species which is commonly found in pastures and meadows. It has been reared upon young wheat plants by Professor F. M. Webster. The females laid their eggs in November in the tissue of the leaves and the young could be seen developing within the eggs without removal. They were especially noticeable just prior to issuing by their jet black eyes. A few days after hatching the young leaf-hoppers molted and they molted again twice thereafter, the full-grown individuals making their appearance December 22d, giving a life period of forty-one days from the egg to the adult. The species seems to hibernate both in the egg state and in the adult condition and to have several generations each year. Osborn found the eggs inserted under the skin of the leaves of blue grass, making little blister-like swellings near the tips and causing them to turn yellow. Those which hibernate in the egg state issue in great numbers in grass lands early in May. There are two generations each year, the young being most numerous in late May and in August and the adults in June and in the fall. Large numbers have been seen attracted to the electric lights in Illinois. (Forbes \& Hart.)

THE WHITE FLIES, OR ALEYRODIDS

(Finmily Alcyrodide.)

This family, mere closely allied to the Aphididx and frecide than to any enthers, and yet widely different in important features, is a puzzling and abnormal assemblage of insects. They

Fig. sur-sieyurides citri. (firum /nirul fijc.)
ite very small insecis. frequently minute, and infest the leaves of blints, usually on the bewer side. In their early stages they are \because de-like. and muc peomble some of the Coccidae. Unlike the F.eche howeve the development , the two sexes is pracatily parallel, and twat males and fen les are active and winged. futtering atain frome the scale insects, there are two pairs of whys inctead of c, ex exir. All frour wings are covered or dusted outh a whilsh, mednfike secretton. which has given to the group ofe propular name ea white lies. In the immature stages the 244
body may be more or less covered by a secretion of wax, but the most distinctive character is the presence of all opening on the dorsum of the last abdominal segment which is known as the vasiform orifice. In the adults the antennæ are sevenjointed, and the eyes are usualiy somewhat constricted near the middle, and may be even completely divided. The wings when at rest are nearly horizontal, and are broad and well rounded. The wings maly be unspotted, or variously spotted or banded. The Aleyrodidx do not constitute a large group, and but two genera and not more than 150 species are known. Of these both genera (Aleyrodes and Aleyrodicus) are known in the United States, and rather more than fifty species occur within our geographic borders. Doubtless many of these are imported, since they occur more commonly upon greenhouse plants than upon wild indigenous plants. They are found upon both herbaceous plants and upon forest trees. They are very seldom serious enemies to vegetation, although the species occurring commonly upon the orange does considerable damage, which arises not alone from the actual loss of sap and consequent withering of the leaves from the sucking of the insect, but also from the profuse quantity of smut fungus, the spores of which find their nidi in the honey dew secreted by the insects. Their natural enemies are practically the salme as those of the scale insects, but the very minute Hymenopterous parasites of the family Mymarida seem to be their specific internal parasites. In fact, they are too small to harbor any other true internal parasites except che members of this family, which, as a matter of fact, includes the smallest true insects known.

Typical Life History of a White Fly

(Alcyrodes citri, Riley \& Howard.)
This species, which is the only form of any great economic importance in the group and the one to which we have just referred, occurs abundantly in some of the orange groves in Floridal and in northern greenhouses and made its appearance about 1890 in the orange groves of Louisiana. It is not known whether it is an indigenous or imported species. It will probably be found

The White Flies or Aleyrodids

in any northern greenhouse in which orange or lemon trees occur. It is found in the south also upon the china-berry tree, upon viburnum, cape jessamine and the water cak. The following life history account is drawn up from observations made in greenhouses in the city of Washington. The insect passes the winter in the full-grown larval condition. The adult insects issue during April and begin to lay their eggs about or before the middle of the month. About twenty-five eggs are laid by each female. The eggs are very delicate, pellucid, and each possesses a slender petiole or foot-stalk about one-third the length of the

Fig $1+1$.-Aleyrodes citri. (From /nsect Life.)
egg proper. In two weeks the young larva hatches. It is comparatively active and crawls a short distance from the egg-shell before heginning to feed. In from two to four weeks it molts and by the middic of June three skins have been cast. In molting the insect curves the abdomen upwards at more than rightangles, moving it occasionally up and down. It shrinks away from the side margin until it occupies only alout one-third of the original lateral space. The skin then splits at the anterior end or underneath the head. Then the head and prothorax are pushed

The lnsect Book.

out and the skin is gradually worked backwards. At the end of June the adults begin to issue again in numbers, remaining alive for about twenty days. There are three generations annually. When the perfect insect issues from what may be termed the pupa shell, the wings are rolled up and make their appearance with extreme slowness. Just before the adult is ready to issue the pupa shell becomes transparent so that the contained insect, shrunken away from the skin, is plainly seen in all of its stages. The adult just after issuing is at first milk-white except for bright lemon-yellow thoracic lobes. Th adult male is readily distinguished from the female by the anal claspers and by the waxy tufts issuing from the head and from the abdomen. All stages are well represente d in the accompanying figures.

THE SCALE INSECTS

(Fimily Coccidu.)
The insects of this family, popularly known as scai- insects or bark-lice. include forms of great morphological interest as well as very many of great economic importance. In the latter respect they form very injurious enemies to most fruit trees as well as to

Fig. 142.-Wiaspis pentagona. (Authur's allustrataon.)
many other shade and ornamental trees. They occur upun bushes and vines as well and are even in some instances found upon grasses. The grout als a whole is a most alnormal one in its life history. In gencrall terms it may be stated that the eggs are latd by the adult female either immedately below her own body or at its posterior extremity. Certain species do not lay egges but give birth to loving young as do the plant-lice. This abnormal habit is not characterntti of any partucular group of forms lut is found with individual species in one or more genera. The young on hatching from the eggs are six-legged, mite-like

The Scale Insect:

Fig. 143-Diaspis pentagona : adult madc. (Awher's shlustration.)
creatures, which crawl rapidly away from the body of the mother, wander out upon the new and tender glowth of the plant or tree. and there settle, pushing their beaks through the outer tissue of the leaf or twig and feeding upon the sap. Even at this early stage the male insect can be distinguished from the female by certain differences in structure. As a general rule the female casts its skin from three to five times before reaching the adult condition and beginning to lay eggs or to give birth to young. With earh successive molt the insect increases in size and becomes more convex in form. Its legs and antenna become proportionally reduced, its eyes become smaller and are finally lost. As a general rule it is incapable of moving itself from the spot upon which it has once become tixed after the second molt, although certain speches crawl through-

The Scale Ineecit

Fig. 145-1 Diaxpis rosx. (Affer Comsteck.)

Fig. : $46 .-$ Lecanium nigrofasciatum. (Author's illustrutivn.)
out life. The adult female insect then is a wingless, mutionless, degraded, and for all practical purposes legless and eycless creature. She seems simply an animated drop of protoplasm enclosed in a skin. In the armored scales she is absolutely legless and eyeless. The mouth-parts through which she derives nourishment remain functional and become enlarged from molt to molt. Her hody becomes swollen with eggs or

Fig. 11%-Common hot houne mealy bug. I aciylopium (itri. (After cimsfech.) young and as soon an these are laid or horn she dies.

The life of the male differs radically from that of the female. Up to the second molt the development remains practically paralled in the two sexes, but after this molt the male larva transforms to a pupa in which the organs of the perfectly developed fledged insect become apparent. This change may be undergone in a cocoon or under .. male scale. The adult male which issues at about the tume when the female leeomes full grown is an active and ratt er highly organized ereature with two lrond functional wings and long vibrating anternee cothed with hairs. The legs are also long and stout. The hind wings are absent lyut are replaced by ration long tubercles to the end of which is articulated a strong bristle hooked at

Fig 14s-long tabled medy beg. I Actylopeus longifilis. (Affir comsticki.) the ip and fitted into a pocket in the hir: margin of the wings. The eves of the iddult male are very large and strongly facetted. The mouh-parts are absent and curiously enough their place is taken ley supplementary eye spots or simple eves (ocelli). The function of the male seems simply to tind the female. to fertilize her and then de.

The number of gencrations in scale insects varies greatly and no general statement can le made.

The scale insicts found in the Inted States belong to three large groups, the most important and the

The Scale Insects

Fig, 14日- Cottony Maple Scale, Pulvinaria innumerabilis. (Author's illustratone.)
most abundant in species of which is the group known is the armored scales (subtimily Diaspina). so termed because the insect soon alter settling begrns the sectetion of a scale lip me:ms of threads of w:ix exuding from pores in the body which eventually Hend together and form an impervious covering separated from the insect's body. The slapeand character of this scale is of importance in the classitication of the group lut the most importint characters are found in the anal Whate of the hody of the female insect. A second large group well represented in the United States is the group of naked barkliee, known as the subtamily lecmine. In this group no true scale is formed and the body is usually well arched so as to become almost hemispherical. The third group (subfamily (ocene comprises those foms known as mealy-bugs and related forms. These insects have no differentiated seake but are all covered with a white waxy secretion, some of them hawne conspicuous waxy egres sacs at the end of the body of the female.

The majority of species of scale mesets at present found in the United States are not indigenous to this country, but have leen introduced from abroad. most of them from European restons, on plants and poung trees and on fruit catried to this country in the course of commerti.f interchange.

Life History of the Oyster-Shell Bark-Louse of the Apple.

(Alrilaspis fomorm Butché.)

This insect is probally the commonest and most widespread, and consequently the hest-known, of any of the orchard seales. It is found all over the world. It Was probally an European insect originally-alt all events, it was known in Europe during the last century-and was probally imported into this country on nursery stock by the early setters. It is found in the United states practically wherever apples and pears are grown, more ahundantly at the north than att the south, and has often received treatment at the hands of writers or injurious insects. It was

certainly known in this country as carly as 1794. and it unquestionally followed apple culture as it progressed th the west. It was known in the distncts bordering along Lake Michigan in 1840. and in 1868 it invaded lowa and northern Missourr. Ton25

The Scale inserto

day it is present tien in California. It is by no means confined to apple and rear, hut is also found upon quince, hawthorn, ruckthorn. fayely upon raspberry and currant, but also upon linden, hop "ete, horse chestnut, maple, water locust, honey-

suckle, ash. ulm, hickory, cottonwood, willow, poplar, wild grape, rose, fig bitter-sweet, red maple, black ash, white ash, white brech, :ed birch, and very abundantly upon the lilac, so that it will tan easy form to collect and to studiy. In the winter time, if one of the oyster-shell shaped scales is lifted gently with the pront of a needle, it will he found to contain at the narrow font end the shriveled lwily of the female with from
 the beds. semoumes the egges will lee found to be very few in number. fore on the larva or pi:por of a little chalcidid parasite will le then: onder the scale, which will account for the destrucmon of the ezze. In most , fle northeastern states the young hatch from theae eges during the latter part of May or early in June iat in +ifter date farther wouth), and wander out upon the iwize and atile at once. The young twigs are the only parts of 25%

Plate XXVIII.
CICAIIAS ANI I.EAF-HOPIPERS
H16.

1. Carynota mera (Membracide) U. S.
2. Cixius stigmatus (Fulgoridie) U. S.
i. Telamona monticola (Membracida) Northern States
3. Patycentrus acuticonis (Membracida) Southern States
\%. Datyeotis f-vitatus (Membacida) U. S .
h. Orgarius thyparus (Fuleroride) Cal.
4. Tibicon ententifera (Cicialdae) Southern State
5. Melampsalta parvula (Cicadida) Southem States
6. Tihicen striatipes (Cicadider) Souhem St tes
7. Tihieen rimosa (Cicadide) Western States
8. I Allmat heloglyphica (Cicadida) Allantic States, Souther? States
9. Ciada cinctiera (Eicadided Western States
10. Ciend. vitifemnis (Cicaddex) Sombweetern States
1.4. Patypedia putnami (Cicadida) Southern States, Western Statcos
11. Ciada sordidata (Cicadide) Southern States
12. Janthe expansa (Membracidec) Southern States
13. Janthe expans: (side) (Membracide) Southern States
14. Otnectus antonii (filgoride) Southern States
15. (Eicada marsimata (Cicadidat) U. S.
16. Amphiscepra bivittata (Fulgorid.c) U. S.

the tree which seem to be seriously affected. Older twigs, however are also attacked, and many specimens of the insect may be found upon the trunk. As soon as the young insect finds a suitable position it gradually inserts its beak and commences to grow thrcugh the influence of the healthy food sap which it pumps up. Almost immediately, also, the secretion of scale begins. This is first noticed in the form of a white, waxy powder which first is seen in the form of threads, but which soon becomes homogeneous. In a few days the first molt takes place, not as in the ordinary manner with insects by a series of contractions and extensions which work the old shin to the end of the body, from which it is finally freed, but by a sort of loosening and shrinking of the body underneath, all the parts except the proboscis being shed and abindoned with the skin. Strengthened by the secretions from the body, this skin forms the first scale. Presently the skin is shed a second time and mingles with the second secretion. which forms the second scale, which may be noticed at the anterior end of the completed scale of the old individual. As growth continues this second scale becomes too small and is

Fig. 152.-The scurfy bark-louse of the apple, Chimaspis furfurus. (Author's illustration.)
lifted up into the third portion, while the shield proper is secreted by a series of increments, more being constantly added on behind as the insect beneath grows. When full grown the female is ready for reproduction. The male scale is a perfectly distinct

The Scale Insects

object, as indicated in the accompanying figure, and the adult male, which makes its appearance at the time when the femairi; are almost ready for oviposition, is shown at Figure 151. There is but one annual generation in the northern states, and, owing to this fact, the leaves are not attacked, for if the insect were to go on the leaves it would be lost when they fall in the autumn. Upon the fruit it is alinost equally rare, although occasionally a specimen is found in such il location. In the south, however, the insect is two-brooded, and the adults of the first generation are found upon the fruit and leaves without danger to the perpetuation of the species, since their offspring erawl back to the permanent portions of the plant before autumn. As a matter of fact, however, even in the south the insect is very seldom seen upon either the leaves or the fruit.
The insect is subject to the attacks of many natural enemies in the course of its growth. The little ladybirds, as the beetles of the family Coccinellidx are termed, both as larva and adults feed upon these and other scales. There are five distinct species of chalcidid parasites which lay their eggs in the maturing barklice, and while the lice ane young and before they have formed a protective scale they are avidly destroyed by the larve of the syrphus nies, of the lace-winged flies, and by certain small predatory bugs. The most efficient of their natural enemies, however, are probably the ladybirds, since the writer has determined that the internal chalcidid parasites rarely destroy all of the eggs in the over-wintering scales. A large number of scales weere examined in the late winter and carly spring of 1894, with the result that when parasites were found from two to eighteen eggs were found to have escaped destruction, the average number of eggs in uninfested scales being from sixty-five to seventy-five. In two cases, where a parasite had issued late in the fall (and the small round hole of issuing is readily perceived in the scale), eleven and five eggs, respectively, were found. The ladybird, however, eats everything.

THE JUMPING PLANT-LICI OR FLEA-LICE
 (Fimily I'syllida.)

These insects have two-jointed tarsi, antennx eight-or-ninejointed, and the hind legs with somewhat swollen thighs. Their

Fig. 153-Pachypsylla venusta 0.s. (Affer Riley.)
jumping habit distinguishes them from the plant-lice as indicated in the popular name. Certain species exude quantities of the sweet liquid known as honey-dew. which is also abundantly secreted by the plant-lice and by some of the tree-hoppers and leaf-hoppers. Many forms live in galls and there are several species which produce galls of different kinds upon the trees of the genus Celtis, commonly known as "hackberry trees."

The Jumping Plant-Lice or Fica-Lice

Life History of the Pear-Tree Psylla

(l'syllu pyricola.)

This insect is the commonest and the most destructive flea louse in the United States. It is common throughont the north-

Fig. 154.-Peartree Psolla: whut femald matural vire indiated
by side line. (Afer . Wrorkate.)
eastern United States and from Maryland on the south to Michigan on the west. It was originally a European species and is supposed to have been imported into this country about 1832. making its first appearance in Connecticut. The efg is orange vellow in color and very minute. It is attached to the leaf ley a short arm and has a long hair-like stalk projectinge from its end. The newly hatched larval is somewhat larger than the egg and yellow in color with crimson eyes. It passes through several molts and when nearing the nymphal condition. which corresponds to the pupa stage in insects which have complete metanorphoses, it is readily distunguished by
the large wing pads. Its culor is then dark reddish brown.

"ig. 145-Pear.truc Py lla: a, egg:
$\beta_{\text {, }}$ iarva- Wroth grea!'y enlarged? (After Maríitt.) In all the early stages the mseat is lroad-oval and very much flottened. resembling "more nealy some scale insect rather than a periect Ne:a-loune. It is also sluggish in these early stages. When the numph casts its last skin the adult insect enterges. It resembles much more closely a minute cicad:a or harvest-lly than any other homopterous insect. It hibernates in the adult stage in crevices in the bark of pear-trees and ennerges with the first warm spring days, beginning with the laying of the eggs on the leaves before they have fully expanded or even placing them in cracks in the bark on the twigs. The larvar hatch in ten to seventeen days and station themselves on the surface of the leaves or on the leaf petioles. There are four or five generations each summer in Maryland but fewer farther north.

Fig. 156.-I'ear tree I'sylla : pupa. (Ajtur.|horlutf.)

PLANT-LICE

(limmily Aphidilde.)
The plant-lice are very numerous not only in puint of numbers of individuals but also of numbers of species. In many respects these insects are abnormal, especially in their method of development, and they have attracted great attention from naturalists since Bonnet discovered, 150 years ago, the peculiar

Fig. 157-Nectarophora pisum : the green pea plant louse. (Afor Chittenden.)
phenomenon known as parthenogenesis, which is almost invariably the rule amongst these creatures. Their life history is very surprising and their relations with other insects, especially with ants, are most interesting. They are very destructive insects, preying upon practically all cultivated plants, and their rate of increase is so enormous that if it were not for their innumerable
na:, ral enemies they would probably annihilate the greater part of plant life. The classic computation of Huxley that the uninterrupted breeding of ten generations of plant-lice from a single ancestor would produce at llass of organic inatter equivalent in the bulk of five hundred millions of human beings (ahout the

Hig. 158. I'hylloxera vastatrix. (Afier . I/.shine\%.) population of the Chinese Empire) is by no mouns an overestinmate. but if anything all under-estimate. This rat pidity in breeding is not due (1) extreme prolificacy since the number of offspring of a single female is rather small, but rather to the early arge at which the offspring begin themselves to reproduce. Parthenogenesis, which means the virgin lirth, i, ℓ, the birth of individuals from a virgin female, and the fact that with most spectes and during a large part of the year the young are born alive, wecount for this ropidity. Generation after gencration is produced in this way but in all cases sooner or later there comes at true scxual generation composed of both males and females which pair and these females as at rule lay eggs instead of giving birth to living young. In many calses

Fig. 159.-1'hylloxer.a rantatrix: egg and juung. (Afir Marhatt.) it is in this erges stage that plantlice pass the winter. Thus it will he seen that true males make their appearance on'y a single time in a number of gener:ations. Anc:her curiou: feac "are in the life of plant-lice is the fact that while the majority of the generations in the course of a summer are composed of wingless females there comes once or twice

Plant-Lice

during each season a generation of winged females, thus providing for the dispersal of the species and not only for the dispersal of the species but for the return to a perennial plant in the

Fig. 1 (o. - I'hylloxera vastatrix : root form. (After Warlath.) autumn from the weeds, grasses and other annual plants upon which the summer generations may have fed.

Plant-lice are attacked hy a host of natural enemies. The little Braconid parasites of the subfamily Aphidiince are practically exclusively parasites of the plant-lice. Their eggs are laid in the body of the louse, the young live within the body until they reach full growth, and the little fourwinged parasite eventually emerges as an adult. Plant-lice

parasitized in this way hecome swollen and dark in color and can readily be distinguished. These parasites themselves breed with extraordinary rapidity and are frequently responstble for the
practical extermination of the hosts of lice which are frequently found in the wheat fields in the spring. The lady-birds and the :יrvae of the syrphus tlies and the golden-eyed lace-wing tlies as w:li a the maggots of certain midges of the genus Diplosis and nilers feed upon plant-lice and in fact derive the greater part of the: fi od from these creatures. Extreme prolificacy is the means whicl. nature adopis to continue the existence of many otherwise anprotected and much harassed species. In this instance, however, it has taken the form of extreme rapidity of development instead of great proliticacy.

The relationship between plant-lice and ants has lecen often described and is one of the most fascinating topics in the whole field of nature study. The honey dew which is secreted by plant-lice both from the anus and from two tubes upon the back of the abdomen is greatly enjoyed by ants which in a surprisingly intelligent way care for the plant-lice, drive away their natural enemies, carry them bodily to better feeding grounds, recognize the necessity for migrations at times and assist in these migrathons and actually prepare locations in advance of transportation. The term which is frequently applied to Aphids, viz. "the milch cows of the ants. " is a very appropriate one.

Probably the most famous of the plant-lice in the economic sense are the grape-vine Phylloxera (Phylloxira zaslalrix). a species which is said to have cost the French nation more than the indemnity paid to the Germans after the Frameo-Prussian war, the woully root-louse of the apple (Shizonewral lamigera) erroneously known in most parts of the world as the American Wight. and the hop-plant Iouse (Phoroton humuli Schrank). a species which is fist becoming cosmopolitan and which for vears has been the greatest enemy to the hop-growing industry in England and parts of this country.

Life History of the Hop-Plant Louse
 (Phorodon humuli Schrank.)

This insect which we have just mentioned as an extremely injurious species is commonly known as the hop-plant louse and sometimes as the hop blight insect. It is a native of Europe, is a great drawback to the suciess of hop-growing in England. was

Plant-Lice
for many years known in the hop plantations in central New York and in wathern Wisconsin and has within the last ten years made its appearance in the extensive hop-growing regions in Washingum, fregon and nothern California. All through the Middle and Xouthern States occasionally hop plantsare grown in door-yards and this phaili-louse is
 found practically every season upon these plants. The hop is an annual plant, dying down to the ground with the first frost in the atutumn. It is obvious, therefore, that the plant-louse is to be found upon some other plant during the late fall, winter, and early spring. This alternate ford plant as it is called is the plum. Just why plum trees are nearly always found in the immediate vicinity of hop yards is a mystery. The winter eger of the louse is found upon the plum tree usuatly at the base of the buds and somutimes unter the scales of a bud. from these eggs in the spring hatches - in lirst genegation which is composed entirely of virgin females : I the indivebsals of this generation are known as the stemmothers. In twr, ror three days after hatching, having migrated to the minute beaves hursting from the huds, the \because begon in give birth to living young. These also all heing females. Fvery d.sy ef here existence the stemmother wive hirth to several goung varying in nombler from two toseven or eight. lach os these after reaching the age of alwast mght days begins in its turn to yive fith to living young, so that the stetn-tnother may live to soce her grandchilden of the fourth or fitth weneration The third gencration acquires wings, although all are still lemales. By the time the winged generation inakes its appearance the

Fig. 163. - Phorodon humuli: nem mother. (firom Insect laje. 1 hops will have teegun in come up in the fields and the lice $z^{\prime \prime} /$,

Man XXIX

TRUE RUGS

165.
166. Narnia Pallidic, "is (Coreide) Western States
167. $1 . a r$ gus cinctus (P'yorhocoride) Western States
168. Spartocera ditúusia (Coreidee) Southern States
169. Chelmideal vittigeral (Coreide) Western States
170. Namial femorata (Coreidae) Southern States
171. Arhaple carolimal (Pwrhocoride) Couthern States
172. Leptopterna dulabrata (Capsidat) Batitern States
173. Anas:a obliqual (Coreide) Western States

Jalera hematolana (Coreide) Western States
Serphos dil:tatus (Belostomatide) Western States
11. Alydus pilosulus (Corcidit) U.S.
12. Tollius curtulus (Coredide) Western States
13. Convonoris typhexis (Corcilat) U.S.
14. H.rmenstes rethexulus (Corcide) Western States
5. Cilgulus variegatus (Galgulidie) Southern States

Nentha styoical (baloulide) Southern States
7. C.atorhinthat mentical (i. oreide) Southern States
18. Machle:a longal (Pentostomide) Western States
9). Zelus bilohus (Reduvidat) Southern States
20. Apiomeras crassipes (Reduviidae) U. S.
21. Ectrichodial cinctiventris (Reduvida') Westorn States
2. Diplodus luridus (Rcduviidat) U. S.
3. Myodochal serripes (l.vgaridae) U. S.
24. Narvesus caralinianus (Reduvidar) Southern States
25. Belostoma uhleri (Belostomatadia)
25) Fitchia nigrovittat: (Reduviide) Southern States
27. Pyoblampis pectoralis (Reduvida) Sontinern States

2Y. Pabondus cristatu: (side) (Reduviide) Southern States
24. Nalu, ferus (Reduvide) U. S.
30. Coriscus subioleoptratus (Reduviid:c) Northern States
31. Anisups platyonemis (Notonectida) Atlathic States
32. Merohates hesperius (Hydrometride) Atlontic States
i3. Trepolates pieta (Hydrometrida) U. S.
i. Conorhinus variegatus (Keduviida) Southern States
35. Kaitha amora (with eggs). (Belostomatide) Southern States
36. Renacus grisels. With egers of water mite (Hydrachmid). Atlantic States
7. Kath.t amual (Belostomatidas) Southern States
3. L. munntrechos marginatus (Hydrontetride) U.S.
(
?lant-Lice
fly to the hops, settle upon the leaves, and hegin to give birth to the fourth generation which is composed like the second of wingless parthenogenetic females and the same process is repeated until possibly eleven or twelve generations in all have been producad. By the sime the twelfth generation makes its appearance the month of September hils come and hop-picking is well along. All of the lice at this time acquire wings, some of them may be of the twelfth generation, others through the fact that their ancestors have been late born through a series of generations may be only of the fifth generation. The first to acquire wings in the autumn are always females and these fly back to the

Fig. 164. - I'horodon humuli: egglaying female. (From Insect Lifi.) neighboring plum trees. Later individuals of this generation and frequently all of the individuals of an additional generation

Fig. $165 .-$ Phorodon humuli: migrant. (from /nistet lifí.)
on the hop are true males, the male thus making its appearance for the first and only time in the life round of the species. By
the time they have developed the first issuing fen des will have settled upon the plum trees and will have given birth parthenogenetically as before to a generation of wingless individuals which comprise the true females-not the virgin females as

Fig. 1(k).-Thorudon humuli : return migrant. (From Insect Life.)
before-but the true females which must be fertilized by the males. So that, by the time the winged males have developed from the hop and fly back to the plum we have this generation of wingless sexual or true female awaiting them. Impregnation then takes place, the males die, and these wingless sexual females give birth to e winter eggs.

THE TRUE BUGS

(Suborder Hetcroptira.)
The true bugs belong to this group and the common squashbug may be taken as a typical example. In all, the metamorphoses are incomplete and the mouth-parts are formed into a beak fitted for sucking either the juices of plants or of insects or the blood of fishes, birds or mammills. The wings, when present, differ radically from those of the preceding order in that the front wings or wing covers, or elytra, or hemielytra, as they are variously termed are horny at the basal half and membranous for the end portion. When they are folded the membranous portons overlap, that of the right wing covering that of the leit, but there are many exceptions to this rule, and even in the same species, while most specimens will be found with the right wing uppermost, there will be some in which the membrane of the left wing is on top.

The order is a very large one, but has not been scudied with the same assiduity which has characterized the study of other groups. There are not more than half a dozen entomologists or collectors in the United States who specialize in the true bugs. Yet these insects are easily captured and are as readily preserved as beetles and the studying of their varying habits offers a most attractive field. Probably twelve thousand species have been described in the whole world of which only about one thousand six hundred inhabit the United States. This number could be more than quadrupled by careful collecting and, indeed, our most learned authority on the group. Professor P. R. Uhler, of Baltimore, informs me that he infers that we have five thousand species in the United States, of which not more than three thousand species have been brought together in collections, but the number is being added to every month. He thinks that lifty thousand, as an estimate of the existing species in the whole world, would be a very insufficient supposition.

In food hathits the Heteroptera vary greatly. Some of them live strictly on the sap of plants, while others are carnivorous, sucking the bood of other insects, and even the blood of vertebr.ate animals, while still others seem to feed indifterently upon plants and animals. Still others seem to require no other nourishment than the moisture of decaying wood and fungi. Many forms are truly aquatic, others travel about with ease upon the surface, while others seem conlined to the shores of streams and ponds and to the sea beach. The majority, however, live inland under the most diverse conditions on trees, plants and shrubs.

The peculiar odor possessed by many of the true bugs is by no means characteristic of all. The disagreeable and characteristic odor of the bed-bug is approximated by that of the chinchbug of western wheatfieds and by certain Pentatomids. Others sinell like very ripe or over-ripe truit, especially pears, while in some coreidx the odor is aromatic and in others it is spicy like cinnamon. This odor is that of a very volatile oil which is secreted as a method of defense from certain specialized glands situated in different parts of the body.

It will especially be noticed thit there is very much yet to be learned about the individual life histories of the true bugs. In very few of the families has a single species been studied with sufficient care to enable the writer to give a good tupical life history. There is probably no one of the great groups of insects which offers so good an opportunity for the collector, the systematic worker, or the true student of nature who wishes to learn how insects live, to learn so many original and absolutely novel facts as in collecting and studying the Heteroptera. For many years Professor P. R. Uhler has worked practically alone in this country on this easily collected, easily preserved and easily studied group, and although Professor H. E. Summers, and Mr. O. Heidemann have recently taken up this interesting study, an enormous field is open for scores of workers.

TABLE OF FAIIILIES *

Aatenna shorter than the head and nearly or quite concealed in a cavity beneath the eves.............................. 1

- For the greater part of this talle, which, howeser, has been rearranged. the writer is indelted to H. E. Sumners" Bull. 3. Vol. is, Agric. Expt. Station of the Liniv. Tenn., sisy.

Antennae at least as long as the head, wsually free rarelv ball Phymatide) lying in a groove along the side of the pronotuin. 4 1-Hind tarsi without claws

Hind tarsi with two claws . 3
2 -Fore tarsi flattened. ciliated on edge, without chaws; head overlapping prothorax Corixhdir
Fore tarsi not thattened, with two claws: head inserted into prothorax . Nofollichlidir
3-Abdom η with two grooved filaments at tip, forming togee ter a respiratory tube which is not retractule. Nipidar Abdonen without respiratory tube.

Legs formed for swimmine?: tip of athomell with two retractule strap-like appendilges. Bilostomathidar Legs formed for walking; abdomen with no such appendiges.

Ocelli alosent . Nathcoridur Ocelli present (ialgulidur
4-Antenne with therr bases visible from above, usually fourfointed; rarely five-jointed, (not counting the minite intermediate segments sometimes present.)
Scutcllum less than half as long as abdomme.....
Antenna with their bases not visible from above, five-iointed.
Scutclium more than half as long as abdomen.......... 14
5-Beak three-jointed, sometimes four-jointed, with basal segment very short and inconspicuous 6
Beak four-jointed, with plain basal segment 10
o-Body very slender; head as long as thorax Limmohathar
Body of various shapes, but when slender, head shorter than thorax.
Last segment of tarsi more or less bifid, with the cluws inserted before the tip...................... Hi:tromellistar
Last segment of tarsi entire, claws at tip. Hemelytra usually well developed and without cunens. When Hemelytra is absent ocelli are present 7 Hemelytra wit \mathfrak{c} cuncus. Anthocoridia Hemelytral rudiment.iry, ocelli absent......... Cimiciad
7-Hind tarsi with three segments .
:Hind tarsi with two segments . 9

8-Beask long and slender
Sishilit.r
Beak short and stout.
Head globulous lichind the eyes...... Hentionsphalidid Head not so formed Redinzudre

9-Ocelli present. Fore-thighs greatly widened. . . Phrmatida Ocelli absent. Fore-thighs not greatly widened.

Hemelytrat shorter than abdumell........ Aradidir Hemelytria longer than abdoment............ Tingildider
10-Hemelytra without cuneus. Membranc with Iongitudinal veins which are sometimes indistinct. 11 Hemelytra with cuncus. Membrane with one or two eells at base, but otherwise veinless Capshdu
1t-Membrane either with four or five simple longitudinal veins. in which case ocelli are usually present, or with about eight forked veins, in which casce ocelli are absent. . . 12
Membrane with many, usually forked, longitudinal veins which are somethes difficult to see Corblide
12-Membrane with four or five simple longitudinal veins.... 13
Membrane with ahout eight forked longitudinal veins. Ocelli lacking

Parrhoioridu
13-Head with transverse incision in front of octli which are alwatys present

Bervididu
Head without transverse incision. Ocelli usually present. rarely lacking
If-live-jointed antennae with hidden bases. Scutellum more thin half the length of the abdomen, sometimes flat. sometimes very convex and covering nearly the whole abdomen.

THE WATER BOATMEN

(Pimily Corixiduc.")
The little bugs of this family and of the five families which immediately follow are all aquatic in their habits and form the es known to most writers as the Criplocerata from the fact t they appear to have no antenna, since these organs are mdaten helow the head, sometimes in pockets. From their aquatic habuts they are called Hedrocoriser or Hyidrocores in some of the older works, though there are two other ine "ies, the Hebrida and Hydrometride' which have obvious antemax and yet live on the surface of the water and in damp places.

The Corixida are known as "water boamen." They are mottled bugs of oval shape which are found commonly swimming on the surface of ponds and streams in all parts of the United States. They are thattened below and swim with the back upwards. They can descend below the surface and reman there for a long time since they carry down with them a tilm of air held by the tine halirs which cover the body. They are true dir breathers. When cold weather comes on,

 interruptas say. (Afier (hider.) the water boatman, as do other aquatic bugs as well, swims down to the bottom and buries itself in the mud where it remains during the winter and specimens captured in spring are frequently coated with mud. The eggs are laid under water and are attached in numbers to the stems of aquatic plants. The eggs of two Mexican species (Corixa mercenaria and C. femorata) are laid in enormous numbers in lakes near the city of Mexico, and are made into cakes with meal and are eaten by the Indians and half-breeds. They are said to have an agreeable acid tlavor. I

[^3]
The Water Boatmen

ate some once, but it was a stale museum specimen and had anything but a pleasant taste. These Mexican species are imported into England by the ton as food for game and song birds, poultry and fish. Kirkaldy has computed that one ton contains $25,000,000$ of these insects.

According to Miall, Schmidt-Schwedt says that Corixa uses its fore legs to play a tune on its sncut, the note being tolerably loud and sustained. They swim rapidly, their hind legs being oar-like, and they are predatory in their habits, feeding upon other aquatic animals. The beak is strong and sharp and they can pierce the tough skin of one's finger.

Active as these insects are in water they are slow and clumsy on land but when their pools dry up they fly inland in search of oth $: r$ water and are sometimes attracted to light at night. About forty species occur in the United States, all belonging to the genus Corixa. The full life history of none is known, and an easily made aquarium study of any one of our common species is greatly to be desired.

Uhler says: "Few insects are more sprightly and the aquarium acquires a new interest by the introduction of these easily obtainable creatures."

THE BACK SWIMMERS

(Family Votonctidue.)

These water bugs known as the "back swimmers" much resemble the water boatmen, but are very convex on the back and always swim with the belly upwards. This, in fact, distinguishes them from all other water bugs. In their habits they are much like the water boatmen. They are predaceous, and feed upon other water insects and even fish. They are strong

Fig. 168.-Notonecta undulata siay: upper and lower side, beak and leg. (Aficr lugriv.) enough to master a good-sized minnow, and a prick from their beak is as painful as a bee sting. They carry below with them a greater air tilm than do the others, and have to hold fast with their fore legs to some stone or water plant to prevent themselve: from popping up to the surface. They are most active insects, and most interesting creatures for the aquarium. They hibernate in the mud at the bottom of streams, pools and ponds. The eggs are laid in the stems of water plants, which are pierced by the sharp ovipositor of the female. About two-thirds of the egg are pushed into the incision, and the remaining third is left extruding.

About a dozen species are known to inhabit the United States, and these are distributed in the genera Notonicta, Anisops and Plea.

A good life history of one of our common species such as Notonecta undulata, widely distributed in North Americi, is still to be written, but could be made out in any school aquarium.

THE WATER SCORPIONS
(Family Nepidce.)

Yiz. Ify.-Nepa cinerea dinn : a, adult; l, front leg. showing growe to receive rest of limb; e, ege (Afier IViall.)

The Neprds have been called "water scorpions" because their fore legs are swollen and fitted for grasping, and rather distantiy resemble the cheliceres of a scorpion. The anal end of the bredy bears iwo long half-tubes which, when united, form a tube to convey air to the insect when the rest of the body is under water. The water scorpions are either flat and oval or they are long and thin. Those of the former shape belong to the genus Nefa, and of the litter to the genus Ranatra. As with the wate: twatmen and the back swimmers, these insects are predatory, and a large share of their food is the eggs of fish, but they also attack small fish and other water insects.

$$
27^{\prime},
$$

The Water Scorpions
The eggs are laid in the stems of plants in much the same manner as are those of the back swimmers, but the egg itself is pushed entirely within the slit made in the plant by the insects'

Fig. 170.-Ranatra fusea. (After Lugser.)
ovipositor, while there protrude several long filaments (seven in Nepa and two in Ranatra) which are supposed to be pneumatic in function.

The eggs of no American species have been described, and a full life history of any American species is greatly desired.

THE GIANT WATER BUGS

(Fumily Bilostomatida.)
The remarkable insects of this family have long attracted attention. They include the largest of living bugs, are strictly aquatic in their early stages and are predatory in habits, living at the bottom of ponds and feeding upon other aquatic animals including fish. Their fore legs are fitted for grasping their prey and their hind legs for swimming. When full grown, however, their wings are developed and they fly strongly and for great distances. They have been found in the midst of great cities far from ponds and are attracted to electric lights on the tops of high buildings. So attractive are electric lights to these great bugs that they congregate about them in extraordinary numbers and thousinds of them which have fallen to the ground beneath such lights are crushed beneath the feet of passers by. They have in fact become generally known as "electric light bugs." While such hosts of them are destroyed in this way, their numbers do not seem to be reduced, but it is bad policy to have electric lights near tish breeding establishments or artificial fish ponds. The fish ponds in Washington, since the advent of the electric light have become so greatly stocked with these bugs that they are a serious detriment in fish raising. The two most abundant and the largest of our native species are Belostoma americantm l.eidy and Benarlis grisens Say. Both are very large, flat, grayish or brownsh bugs and were long confused. The Belostoma has a double groove on the underside of its fore thighs which is lacking on the thighs of the Benacus. The eggs are large and spherical and are altached to the stems of water plants or to some other convenient object. Of Behaills grisens Uhler says: "lt is the facile master of the ponds and estuaries of the tidall creeks and rivers of the Atlantic States. Developing in the quiet pools, secreting itself beneath stones or rubbish, it watches the approach of a Pomolis, mud-minnow, frog or other small-sized tenant of

Platt. XXX.

TRUF BUGS

Fig.

1. Orsilochus guttatus (Pentatomida) Southern States
2. I'angets bilincaltus (P'entitomidac) U. S.
. Crvomemus mirabilis (l'entatomide) Southern States
Corimelenal atra (Pentatomidae) U. S.
3. Tetyra bipunctat:a ('entatomidat) Southern States
o. Trichopepla semivittata (Pentatomida) U. S.
4. Furygaster altermatus (Pentatomide) U. S.
5. Homamus hijugis (Pentaiomidac) Western States
6. Pachycoris torridus (Pentatomida) Southern States
7. Liodermat congruat (Pentatomidad) Western States
8. Canus delius (Pentatomida) U. S.
9. Brochymenal olscura (Pentatomidar) W estern States
10. Brochymen:ı \&-pustulat:a (Pentatomide) U.S.
11. Brochymena arhore: (Pentatomide) Atlantic States
12. Liodermal satyi (Pentatomidae) Western States
th. Irionosoma pedopioides (Pentatomide) Western States
13. Thy:nt:a custator (Pentatomide) U. S.
14. Fuschistus strvus (Pentatomide) U. S.
15. Fuschistus tristigmus (Pentatomide) U.S.
16. Podisus spinosus (Pentatomide) U. S.
17. Acanthosomal cruciatal (Pentatomidar) Northern States
18. Futhyrhynchis: floridanus (Pentatomidie) Southern States
19. Mutycal grandis (Pentatomidae) Southern States
20. Nezara marginata (l'entatomidx) Southern States
21. Podisus acutissimus (Pentatomidae) Southern States
22. (Fbalus pugnax (Pentatomidx) U. S.
23. Hypselonotus fulvus (Coreidie) Sumthern States
24. Mutycal grandis \& (1'entatomidx) Southern States
25. Chondrociral laticornis (Coreide) Southern States
26. Banasa calva (l'entatomide) U. S.
i1. Menceles insertus (Pentatomidar) U. S.
27. Nezar:a viridula (Pentatomidac) Southern States
28. Leptoglossus corculus (Coreide) Southern States
29. Leptoglossus corculus (Coreida) Southern States
30. Melapodius gramulosus (Coreida) Western States

30 Mozena lineolita (Coreldae) Southern States
37. Chariesterus antennator (nyuph). (Comeide) U. S.

the water, w ien it darts with sudden rapidity upon its unprepared victim, grasps the creature with its strong, clasping fore legs, mlunges its deadly beak deep into the tlesh, and proceeds with the utmost coolness to leisurely suck its blood. A copious supply of saliva is poured into the wound, and no doubt aids in producing the paralysis which so speedily follows its puncture in small creatures."

The genus Zaitha contains similar water bugs of smaller size which have frequently been mentioned and figured from the curious habit of carrying the eggs plastered in a group on the back of the adult insect. For a long time it was supposed that the female sticks her eggs to her own back and the case was supposed to parallel in a way, that of the famous Surinam toad. A German observer, Schmidt, however, found that many males carried eggs, but the method and purpose of attachment remained a mystery until it was cleared up by aquarium observations made by an American, Miss Slater, who found that the female, zis it armis, customarily lays them on the back of the unwilling male. Sometimes she has to struggle for hours to accomplish her fell purpose, but she does accomplish it in the end and her spouse is converted into an animated baby carriage. Says Miss Slater: "That the male chafes under the buden is unnistakable; in fact my suspicions as to the sex of the egg-cirrier were first aroused by wattching one in an aquarium which was tryit. to free itself from its load of eggs, an exhibition of a lack of maternal interest not to be expected in a female carrying her own eggs. Generally the Zaithas are very active, darting about with great rapidity; but an egg bearer remains quietly clinging to a leaf with the end of the abdomen just out of the water. If attacked, he meekly received the blows, seemingly preferring death, which in several cases was the result, to the indignity of carrying and caring for the eggs."

The full life history of none of these giant water bugs has been properly described in this country. The young Belostomas are said to have two tarsal claws instead of one as when adult, but their growth has not been followed. About fifty species of the family are known, of which about one-half inhabit the United States.

THE CREEPING WATER BUGS

(Fomily . Vaucoride.)
These insects are few in number and small in size. They are aquatic and predaceous, tlat-bodied and oval. About thirty species are known, and only seven are found in the United States. The commonest of these, Pelocoris fcmorala Beauv., is widely distributed in this country and is found in waters in which

Fig 171.-Ambrysus signoretti Stal. (Afler (ihler.)
there is ahundant vegetation. - which it creeps and about which It swims in its search for pri \therefore It may be found near the margin of a pool with a grassy bar eeding on little land insects which have accidentally fallen int the water. It's life history should be studied.

Pi.ate XX..I.

TRUE RU(iS

111.
112. I'uschafas variolarius (Pentatomide) II. S

2 Podivis cymbuc (Pentatomala) Numbern States
Mormide: hugens (l'elltatumid.as) U. S
Pges af Murmidea lugens.
Perillas dandus (bentatomidae) Westorn = biter

7. V

Brochymena amulator (P'entatomade) Athom © States
l.ion rma ligat: (P'matomida) U. S.

Masartia histmontia (Pentilte: , Idel Sonthern States Saretros anchor.gro (Pentatomeda) southen States
Poxws punctulotus (P'entatomoler) Southern States

5. He elerells suturellus (P'vrihocoride) Sumthern States
16. Midapmhas femoratus (C oreide) Southern States
17. I'athologixas: (Corevide) Southern States
is lowlils yiga ? (Comeide) Sonthern States
14. Metoprodaic termin.tic (6oreldx) U. S.

20 (Itcopeltis t.mciatus (l. raseidx) U. S.

27 Lepluentis $\mathfrak{i - v i t t}$.t. ((Comende) Western states

25 Vf:

27. Allos: tristis (Coreile) U. S.

29. I.eptoglossus oppositus (Coneide) 1). S.

35. Medmolectes ahdominnals (Rednvida) Werterin Soter
39. Molmolester pirpres (Redhviala) U. S
40. Sirthencol samat.t (Reduvala) Southern volte
41. Pronitas crishatus (Redubale) Southem States
42. Rashus bigut ulus (Redundie) W'evern states

44. Sinc:a dadem.s (Reかlevidie) U. S.

THE TOAD BUGS

(Family Galgulida.)

The odd and ugly little insects of this group have been appropriately termed the "toad-shaped bugs." The short, broad body and the projecting eyes, as well as the dull mottled colors, are toad-like. They are not true water bugs, but live in moist places along the banks of streams and ponds. Unlike the

Fig. 172.-Galgulus oculatus Fab. Greatly enlarged. (After Lugger.)
true water bugs, they have no ocelli, and are in other ways quite different structurally. It is not a large family, and only twenty species are known, of which three inhabit the United States. Galgulus oculatus Fab. is a common species, and its life history should be thoroughly studied.

THE MARSH TREADERS

(Family Limnobatida.)

Fig. 773 .- Limnotrates lineata. (After Comsock.)

These are very slender aquatic bugs with a greatly prolonged head. Wr have only one species, Limnobates lineata Say, which crawls arround on soft mud or on water, preferring stagnant porals. It's full life history does not seem to be known.

THE WATER STRIDERS

(Family Hydrometridu.)
In this group belong most of the curious, slender, longlegged creatures known as water striders, which dart about on the surface of the water with such rapidity that it is very difficult to capture them. It is a large group and contains many different forms which are included in several subfamilies. They are

found upon salt as well as upon fresh water. They have prominent eyes, a stout beak, long antennx, and a usually tapering abdomen. Two different forms of the adult occur with most species, the one winged and the other wingless. The Oceanic forms are most abundant in the Sargassu Sea, resting upon and breeding among the great mass of accumulated seaweed. When storms break up this great island of vegetation portions of it are carried far and wide, and some of the Oceanic water bugs are therefore brought to our shores.

The Water Striders

One of the commonest water striders of the United States is Hygrotrechus remigis Say. It is about a half-inch long, darkbrown in color, and moderately stout. It is everywhere sc. . skimming about on the surface of mill-ponds or similar bodies oi water. It uses its slender, rather hairy hind legs as oars, practh. .lly rowing iiself, and frequently congregates in groups with others of its kind in quiet places as though to talk over old times. Full-grown specimens are seen towards the end of summer, and

Fig 175.-Kheumatohates rileyi. (Original.)
at the approach of cold weather they hide away under the banks of streams in mud or heneath leaves, or at the hottom of the water under stones. and wait until spring. As the weather grows warmer they bob up to the surface of the water and prepare for egg-laying. The eggs are whitish, translucent, and are loug. nearly culinurical, and blunter at one end than at the other. They are stuck on the leaves and stems of the water plants. The young strider does not issue from the egg by pushing off a cap at the end as do other water bugs, but by

The Water Striders

bursting through a slit which opens a little below the blunt end of the egg. The duration of the egg stage is about two weeks.

An extraordinary water-strider, known as Rheumatobates rileyi, was found near Washington, D. C., several years ago by Mr. Otto Heidemann, and has since been proved to be rather widely distributed. It is so extraordinary an insect in its general appearance that it has been adopted for the seal of the Entomological Society of Washington. It is found on still waters, such as canals, and is carnivorous in its habits like the other members of the family.

Although the water striders are truly aquatic, they are structurally more closely allied to the land bugs than to most of of the other water bugs, and especially in that they have free and conspicuous antennx, the water bugs of the group Cryptocerata having, as stated elsewhere, the antenne hidden in a pocket beneath the head.

Life History of a Water Strider

 (Hydromctra lincata.)This rather common form is frequently to be found among the aquatic vegetation at the borders of ponds and slow streams. Its life history has been studied and admirably portrayed in the Canadiall Entomologist for March, 1900, by Mr. J. O. Martin, of Cornell University. The elongated body of the insect is borne on hair-like legs and resembles a bit of twig o- grass. There are several generations during the summer, and the insect hibernates as an addult under the rubbish along the lanks and lays its eggs a arly in May. The eggs are laid sit and are glued to the stems of grasses along the stream. The are about two mm . long and are spindle-shaped. The number of eggs must be sinall, since they are so large that four or five would fill the abdomen of al female. They are covered with a horny coating which hals longitudinal ribs, and are marked with a hexagonal pattern. In seventeen days the young insect emerges from the egg and molts tive times before becoming adult. It feeds upon the juices of insects which fall into the water, and, of course, there are many of these along the grassy borders of

The Watel Stridert

ponds. Mr. Martin has seen ten of these little water bugs surround a single insect, all of their heads in the direction of common interest, and their bodies radiating outward. The body and legs of the bug are covered with minute hairs which prevents the creature from becoming wet, and it is constantly engaged in lifting its legs into the air and drying them, for if they become wet they sink through the surface film of the water.

THE FLOWER BUGS

(Family Anthocoride.)
These insects are all small and are distinguished from those of the bed-bug family by the possession of ocelli and wing covers. The latter are usually well developed but are occasionally abbreviated. The head is prolonged. Less than 200 species are known of which only twenty-two are known to inhabit North America. Some of them, however, are very abundant, as the little Triphleps msidiosus Say, and are frequently found

Fig. 176.-Triphleps insidiosus.
(After Robles.)
in the flowers of different plants. Probably all of the Anthocoridze are carnivorous, feeding on other insects and the little Triphleps just mentioned is a voracious enemy of plant-lice, lace-bugs and other small tender insects. Some forms have been found in ants' nests. The life history of none of them has been worked cut in this country and Triphleps insidiosus offers a good opporiunity for investigation.

THE BED-BUG FAMILY

(Family Cimicidu.)
By more recent authors the family is called Acanthiidx, but the present name is preferable. Only twelve species are known

Fig. 177.-Aciacus hirundinis. (After Osborn.) but the family is notorious because it contains the disgusting parasite of human habitations. The other species are all found in the nests of birds and act and much resemble the true bed-bug. In this group the insects do not possess wings and only rudimentary wingcovers are to be seen. They are llatbodied, the ocelli are absent and the beak rests in a groove beneath the head. Fciacus hirundinis Jenyns is common to Europe and North America and frequently occurs in this country in great numbers in the nests of the common barn swallow. It closely resembles the form found in houses, but is darker in color and has shorter antenna.

Piate XXXII.

MISCELLANEOUS ORTHOPTER.A

Hin.

1. Periplaneta ortentalis
2. Orocharis saltetrix
; Fctobia germanica
3. Anisolabis maritima
;. L'eriplancta ausir.il.asac
h. Periplia eta americana
4. P'eriplaneta orientalis
$16 i$.
5. Ischnoptera pennsvivanicus
6. (iryllus horealis
7. (Ficanthus fasciatus ?
8. (Ficminus fasciatus ?
9. Ceuthophilus grandis
10. Diapheromera femorata
11. Brachvstola magna

Life History of the Bed-Bug
 (cistix lictulurias linn.)

Slovenly man has carried this ahominable hus to all parts of the civilized weild. "Tot. orbis" is the laconk expression of its geographic range given by Lethierry and severin, It has become a trite d mestic animal and has accomuwdated itself well to the environimen? of human haritations. It has lost its wings, but has acquired at thit body which enables it to hide in the narrowest clacks of beds and walls. It has gained the power of subsisting almost ind"f mitely without lood, waiting for its meals with a patience far surpissing that of Joh.

The eggs of the hed-bug ate mn nute white oval objects each having a projectils rim arrand one end. They are land in cluster ; in satch arevices as are used by the Inater bus or con calment, and if h \cdots ion comains from six to tith eggi. Thie egge hatch in about ght diry and the young bug purtes oft the lid enclosed within the projecting rim at the end of the exg. At first the new-born insect is yellowish-white and nearlv transparent, but becomes darker after it feeds and grows until the color of the mature and well-fed insect is trown. The skin is shed

Fig. 178.-Cimex lectulat
young
(R'cudrazon from .' five times and with the last molt the wing pads characteristic of the adult become apparent. The period of growth from egg to adult varies greatly with the temperature and the food supply. Marlatt has r lled them under favorable conditions (feeding them upon the healthy and abundaut blood of a complaisant assistant) in seven weeks, but without food they may remain unchanged for many wecks. Orlinarily but one meal is taken between molts, so that at least five full meals must be taken before maturity and at least one more by the female before she is ready for egg laying. Each female is supposed to lay several batches of eggs.

The pronounced odor of this insect is also possessed by cert:in plant bugs and is produced by certain glands opening on the back of the abdomen with young bugs and on the underside in
the metasternum with the adult. With plant bugs this odor evidently protects them by rendering them nauseous to their bird and other vertebrate enemies. It persists with the hedbug: but here it is detrimental to the species since it reveals its presence to its greatest enemy-man.

The belief that bed-bugs breed under the bark of certain trees and that houses built of the wood of such trees will be

Fig. igy.-Cimex lewtularius: adult. (A'drasin form .Marhals)
infested with bugs, is due only to the resemblance which eertam other hugs, espectally the Aradide, which normally live under tree bark, have to the led-hug. And then, low. from the ability which the bed-bug h s of under oing prolonged fasts, it may te found alive not only in houses which have leeen deseried for a long time, but about old deserted camps in the woods.

THE SHORE BUGS

(Family Saldida.)
The active little hugs of this family which have been dubbed "shore bugs" by Comstock for the reason that they are always found upon the sea beach or the shores of fresh-water ponds or lakes are not numerous in species, although individuals are plentiful. Ninety-seven species have been described and ahout thirty occur in this country. Their color is usually blick, brown or drath with whitish morkings, the head is free and the eyes prominent. They are carnivorous and feed upon other beach inhabiting creatures, being frequently seen with the beak thrist into the hody of some drowned insect. Every sea beach from Cape Cod to the Florida Keys has some kind of these shy little bugs which resemble tiger beetles in their habits. Some of them burrow under ground. The life history of none of then is well known, yet they offer an apr cently easy fieid for investigation.

One swift and strong form from Java has been given the generic name Vilocipeda by Bergruth.

THE THIN-WINGED BUGS

(fumily Henicocephulida.)
This is a remarkable family of whith only twelve species are known, of which two inhabit the United States. It is allied to the Reduvidx, but the front wings are wholly membranous, with a distinct venatoon resembling those of certain saw-nlies. The

Fig. 1gom-IIeniern ephalus culicis. Enlarged. (Orşmal)
front legs are greatly swollen. The American species are Henicocephalus cultois Uhl. and H. formicinis Uhl. The former was found ly Mr. F. A. Schwarz. under stones on the shores of the Great salt lake, Utah, and later on the shores of the Potomac Kiver near Washingtoll.

ASSASSIN BUGS
 (Family Roduaiida.)

This is a large and important family of bugs comprising more than two thousand species of which more than one hundred

Fig 1 io.-Conorhinus sanguisuga. (Redruwn from
i/ariatt.) and fifty inhabit the United States. Its forms vary much in structure and have been divided among thirteen subfamilies and three hundred and thirty-six general. All are predatory in their habits and feed on other insects which they pierce and whose blood they suck by means of their strong, sharp beaks. From this food some of the subfamilies are known as "cannibal bugs" or "pirate bugs." Comstock calls them the "assassin bugs." With many species the beak is so strong as to readily pierce the skins of humarn beings, and one species, known as the "bloodsucking cone-nose" (Conorhinus sanguisuga) so often frequents houses, especially in the southwest, and is sofierie a biter that it is often referred to as " the gigantic bed-bug." it seems, according to Schwarz, to normally inhabit the nests of lield mice. Other species, especially Melanolestes picipes and Redurius personatus, were especially abundant in the eastern states in the summer of 1898. and their bites were responsible for the extraordinary so-called "kissing bug" scare which was greatly advertised by bigg 1si-Kedutiun perom the newspapers. A western species, atue. Author's slliustrathon.) Rasahue binotatus is also a severe buter. Of these "kissing

Assassin Bugs

bugs," Reduvius persomatus, is a cosmopolitan form which, in the northern states, is found in basements and cellars of dirty houses and preys upon bed-bugs and cockroaches. When immature

Fig. IS2.- Rasahus bugutatus. (Author's sibustrathell.) it covers itself with dust and press nts a very odd appearance.

Some very odd species are found in the subfamily Emesidr, which have been called "thread-legged bugs." Their legs are excessively long and they have a peculiar habit of swinging the body up and down. One of them frequents spiders' webs and robs the spiders of their prey.

The eggs of nearly all Reduviids are of very strange appearance and are frequently distinguished by some form of protective resemblance. None of these predatory bugs seem to possess the strong and frequently disagreeable odor so characteristic of many of the plant bugs.

Life History of the Wheel Bug

(Arilus cristatus L.)
This is a large predatory bug common all through our southern states and Mexico and which extends up into southern

Fig. 183.-Melimolestes alnanmalis. (Auther's allustration)

Fig 184.-Milyas cinctus (Aftir kiley.)

Illinois and New Jersey and even to Long Island and Rhode Island. It is popularly known as the "wheel bug" and sometimes by the negroes as the "devil's riding horse" and is referred to in the older books as Reducius novenarius and Prionotus or Prionidus cristatus.

The eggs of the wheel bug look like miniature leather bottles standing on end and in hexagonal clusters, seventy or more in a group, and attached to the bark of trees, on fence rails, or whereever the female chances to be. In this stage the insect passes the winter. In the late spring the cap of the bottle is pushed off and the young bug emerges. The young insect has a blood-red

Fig. 185.-Fmesal longipes. (Affer Luguer.)
abdomen and its thorax is marked with black. In walking it frequently elevates the abdomen, curving it over forwards. It feeds upon soft-boded insects, its attacks, while young, being confined mainly to such weak, delicate species as plant-lice. As they grow larger they attack larger insects and when full-grown destroy large caterpillars. They seem to inject a poison into the wound made by the beak and Glover tells of a bite on his thumb which was severely poisoned and save himgeat trouble. After four molts the peculiar crest on the thorax appears which has given this insect its specific scientitic name cristatus (crested) and its popular name "wheel bug." This is a semicircular longitudinal crest bearing mine teeth, prongs or cogs like a cog-wheel.

The full grown buy is sordill biack in color. It captures its prey not by agility but be stealth. Its coloration is protective and it slowly irawls up to some caterpillar er other msect, ad-

Assassin Buga

vancing one leg after another with a inovement so slow as almost to be imperceptible. When once within striking distance, however, the beak is thrust into the victim which is at the same time grasped with the front legs with il movenent which is quite the reverse of 'ow.

Fig. 186 -Arilus crintatus (Aftre Gitrore)

The wheel bug is a vers beneficial insect. It is a common inhathitant of southern cittes and in such places as Baltomore and Washington is an important factor in the destruction of the numerous caterpillars which defoliate shade trees.

PI.ATI XXXXIII.
I.ON(ゥ-HORNEI ANI) CHORT-HORNEH GRASSHOPPERS

I 16.

1. M.:iv/owneria ingens
\therefore : Mhlalomm h.sctatus
2. Il.puthus aritator

ヶ) (1 i.athtus hypulletatus
3. Amblscoryphat uhter
s. (orchelantum spumbsum

Ili.
4. Tintix are ansus
10. Tettigide: | ${ }^{\text {demorphat }}$

12 Nomotheltx crintaths
13. Combtisice griseal
1.f. Ansilviorsphat retimditolial
15. Oltorisi sembleti

THE AMBUSH BUGS

(Finmily Ihymatida.)

The strong and ferocious predatory bugs of this group numher only forty-three described species, of which but live live in the United States, yet it is structurally and economically an important family. The head is shaped like that of the Aradida, the front legs are enlarged and fitted for grasping, frequently lacking

the tarsi, and its beak and general appearance ally it to the Reduviida. These insects are tough and horny, and in the tropics are apt to be armed with spines. Phymata wolfifi Stal., our commonest species, is yellowish-green in color, with a brown or blackish band across its abdomen. It frequents vellowish flowers like the ox-eye daisy, with which its color harmonizes. disguising its presence from the insects which visit such llowers. and upon which it preys. From this fact Comstock has cilled tnese insects "the ambush bugs," and this insect affords our hest exponent of what Professor Poulton calls "specific agyenesive resemblance "-that is. the resemblance of a predatory species to some special object to facilitate the capture of its prey. The full life history of none of the Phymatids is known, and P. aolfifi should be followed through its lite round by some careful observer.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART Na 2)

THE FLAT BARK-BUGS

(Family Aradida.)
These are small, strangely-formed bugs found commonly under the bark of trees, where they feed upon fungus growths. They are all extremely flat, and look, as Comstock says, as if they had been stepped upon. It is these insects which are often

Fig. 188.-A Aradus robustus Uhl. (After Lusgrer.) mistaken for bed-bugs and that give rise to the idea that the household pest breeds naturally in such situations. The abdomen is broader than the wings, and frequently encloses them like : frame. It is not a large family, less than three hundred species being known, of which about thirty occur in the United States. The prevailing color of these insects is brown, sometimes varied with reddish or pale markings. Araduscrenatus Say is the largest of the species found in this country, reaching nearly half an inch in length, and Aradus simmis Say and Nenroctous simplex Uhl. are the commonest species in the northeastern states. Mr. Heidemann has found the eggs of the last-named species. They very closely resemble the eggs of the bed-bug, having the same size, markings, and the same whitish color. The life history of both these last-mentioned species should be carrefully worked out, as they represent different subfamilies.

THE LACE BUGS

(Family Tingitide.)
The curious little bugs of this family have rather aptly been termed "lace bugs" by Comstock from the fact that the wing veins are thickened and form a lace-like pattern in most of the species. These insects are all small, have two-jointed feat and usually knobbed antennæ. They are all plant-feeders, and

the brown, rusty appearance which the leaves of certain trees, notably sycamores, acquire in summer is due to their attacks. Rather more than three hundred and lifty species are known of which twenty-five inhabit the United States, but there are, undoubtedly, many unnamed and undeveloped forms. As a rule the eggs are laid in leaves and young twigs and the whole life of the insect is spent in sucking sap. They usually overwinter as adults hidden away in hark crevices. There are two subfamilies and the members of one, Piesmina', are not so lace-like as are the others, the Tingitind.

The Lace Bugs

Life History of the Hawthorn Lace Bug

 (Corythuca arcuata Say.)More than twenty years ago I salw most of the leaves of a Hawthorn tree at Washington turning brown and rusty and on examining them found the beautiful little Tingitid, shown at Fig. 190, present in all stages of development. Projecting from the leat surface in groups of from ten to thirty along both sides of the promment leaf veins were certain mi lute brown funnelshaped objects which were found to be the eggs. Each egg is laid on end and is covered with a brown sticky substance which rapidly hardens and holds it to the leaf surfice. This brown gum adheres so strongly to the egg that it is imposs:ble to remove it without crushing the egg, and it is more copious near the bate. so as to give the appearance of an actual inseition into the leaf tissue. The top of the funnel has a porous cap which the insect removes in emerging. The newly hatched bug grows rather rapidly and casts it skin tive times before becoming full grown. While yet immature it is of the same dirly-brown color

Fig. 191.-Corythuca arcuata: eggs and young. (Aficir Comstock.)

Fig. 192.- Piesma
cinerea
(After N'uley.)
as the substance: covering the egg and but little darker than the withering leai. It is of a broad, flat, oval shape, and spines seem ', project from almust every portion of its body. It looks, under the microscope, more like a lobe of prickly cactus than anything else. A sticky honey dew is excreted by these bugs and their cast-off skins adhere to the leaf and make it appear as if there were many more insects present than is actually the case.

During the winter the dead le:ives under the trees were found to contan living and healthy eggs, but the insect customarly hibernates is al full-grown and winged bug.

THE LEAF-BUGS

(Family Capsidu.)

The usually rather slender and delicate bugs known as "leafbugs" or "true plant bugs," having two cells in the wing membrane, belong to this family. More than one thousand species are known, and of these more than twn hundred and fift inhabit the United States. It is undoubtedly the largest group of Heteroptera, and thousands of species are as yet undescribed. Mr. O. Heidemann tells me that he has in his collection more than two hundred undescribed species from the United States. They are not all true plant feeders, and very few of them occur in sufficient numbers to become important crop enemies. Some \checkmark them habitually prey on other insects, and l have seen Camplobrochis grandis sucking the eggs of the imported elw-ieaf beetle (Gallerucella luteola), while Mr. Heidemann states that Lopitea media Say once alighted on the back of his hand, and that (with a true scientific interest) he watched it pierce the skin and suck his blood for some minutes. A common species in the east, Oncognathus binotatus Fabr., frequents the heads of timothy grass. Fulvius anthocoroides Uhl. is fernd commonly on lichens on old stumps. Ligus pratensis, known as the "tarnished plant bug," is present in all tlower and vegetable gardens, and causes what is called the "buttoning" of strawberries. The natural egg place of this common insect is not known. but the rest of its life has been well worked out by Woodworth, although there is probably one more molt than he has observed, i. i., five instead of four. Halticus uhleri Giard. known as the "garden flea-hopper," is common in gardens and is injurious to flowers and vegetables.

The Leaf-Bug
Typical Life History of a Leaf-Bug
(l'acilucapsus lincatus Fabr.)
This insect, known as the four-lined lealf-bug, is tound all over the United States cast of the Rocky Mountains, and is a common garden pest, sucking the say of gooseberry bushes, currants, dablias and many other plants. The insect passes the winter in the egg stage. The eggs are inserted in slits cut

Fig. 193.-Walticus uhleri. (After Chittenden.)
lengthwise into the stems of plants extending through the bark and wood nearly half way to the pith. The slits may be al eighth of iuch in length, and into each of them is pushed fron, two to fourteen eggs. These are crowded side hy side, are ahout 1.6 mm . long. smooth, cylindrical, slightly curved. lightyellow in color. and with the outer third capped with a white striate portion. From these eggs the young hatch in the spring -the latter part of May in central New York-and feed upon the
tender new growth of leaves for from two to three weeks, undergoing five molts. The adult bugs appear early in June, and often spread to the different surrounding plants. Egg-liying begins in the latter part of June ; the adults disappaar i July. and, as above stated, the insect hibernates in the egg stage. There is only one generation each year in New York, but in the southern states there are more. The your insect when first hatched from the egg is of a shining verro..il color, rarked with large blackish spots on the thorax. The antenna and legs

 E.ggs. (After Simgerind;
are of a greenish-black color. The red color is retained until the last stage before the adult is reached, then the large black spots on the thorax seem to mark the beginning of wing pads, which have gradually become more and more appirent after each moit. In the adult insect a radical change in color is found. Th~ general color is bright orange-yellow; the legs and the \mathbf{w} is are of dark apple-green, but the wing covers and the horax are marked with four black stripes.

This life history was first worked out by Professor Slingerland, of Cornell University.
(Fimily (oncitua)
This is a large and importum family, divided into many subfamiles and containing about 1,500 species of which nearly 200 mhabit the United States. The group has no pepular name although these insects. in common with the members of several allied families are known as "plamt bugs." Comstock calls the Coredae "the squash-bug family" after its best-known represen-

Fig 10s-I eptoghosu. phyllopu=

Fig. 10f6.-Metapodius
tative, but of course this is not a distinctive name, nor does it seem possible to coin one. The Coredx are very diverse in shape and structure, some being broad and clumsv and others thin. Some have curiously modified legs like the leaf-footed plant bug (Leptoglossus phyllopus) and the thick-thighed Metapodius (Mitapodius fimoratus) while others have slender normal legs. All of these bugs feed on the juices of plants and some of
them are well-known enernies of crops A curious tropical genus-Phyllomorpha-carries its eggs upon its hack. A common species in the western United States known as the boxedder plant bug (Leptocoris Irizithatios) frequently does much damage to the hox-elder trees which from their rapid growth are commonly planted on western tree clams.

Life History of the Squash-Bug

(Anasa tristis De Geer.)
The common "squash-bug," as this insect is called, is found all over the United States as well as in Central America. It is a serious enemy to garden plants of the pumpkin family reucurhilacear). but does not damage other vegetation. The egg is 1.5 mm . long, stout. somewhat glattened on three sides and is of a

Fig 19K-Ieptocoris trivittata (From (.) S. Dint. Asr.)

Yellowish-brown or dark hronze color. Fiom twenty to forty eggs are laid in a group. each one rather well separated from the others and placed either on the under or upper surface of a leaf, or on a stem. When first hatched the little bug is light green in color with beautiful rose-colored legs. antenne and beak. Later the head and thorax become black and the abdomen gray. Thereare five distinct molts and the full grow'n bug is the dark, sordid, ugly

The Squash-Bug and its Allies

and ill-sinellong creature commonly moticed in vegetable gardens. The adult insect hibernates, thrusting itself into some protected crevice and lays its eggs in the late sprong or early summer. These hatch in about wo week, and the insect may hecome full

Fig. 199-Anasa armigera. (Ajter Chittuden.)
grown in less than a month. There is no evidence that there is more than one generation annually from the District of Columbia northward, but further south there are probably more.

Observers need not be surprised at the failure of the eggs to hatch as they are frequently parasitized by two minute eggparasites Hadronotus allasa and Oencyrtus anasa.

THE COTTON SïAINER AND ITS ALLIES
(Fiomily I'ywhocoridar.)
This is not a large family. It comprises less than three hundred species. and only ahout twenty-five are kno'n in the L'nited States. Most of the species are tropical or sub-tropical. They are distanguished from the lygads by the absence of ocelli. As a rule, they are stout, moderately large bugs, and

Fig aec-1 Larguv nuccinctue.
(frim (f) Ilage Ary)
are frequently marised with red. The commonest of our native species is Largus sucimbills, an insect of very wide distribution, since it occurs from Neu. Jersey to Mexico. It is a brownishblack species with the sldes of the thorax margined with orange or red. It is commonly found alone the torders of oak woods. and the adults appear in July and August. The young stages are of a brilliant st sl-blue color, with reddish legs and a bright red spot at the base of the abdomen.

The full life history of this speites should be worked up.

The Cotton Btainer and It Allies

Life History of the Cotton Stainer

This msect, whith is linumb exdesively ill aur Southern
 It is found also in the We'st Indes. Its natural tood is probably a roser-mallow (Hobiscus). but it feeds upoll the bolls af the cotton plant and alao sticks the juices of oranges. It is harked with real and is a very heouthful inscet, and derives its popular name foom the tact that it stains the coltore in the bursting bolls

Fig. 201.-I)yndercus suthrellus. (frim /usiot /ifi:)
by its excretions, which are of a yellowish color. Experiments hatie been made with this insece looking toward its use as a dye, and the whole substance of the insect can te converted into a rich orange-vellow dye, which ean readily be fixed on woolens or silk by the alum mordant liguor. The eggs. to the number of twenty or thirty, arr " ated upon the le:aves or stalks of the cotton plant, an, are ata, loosely dropped in the sand. The insect molts tive times and breeds apparently steadily all through the year, so that there are several generations. Careful observations on the eggs and the first stage are needed.

THI: StIIT bugs

(limuly licryudu.)
This group, rather closely allied to the Coreide, is of much smaller extent. It inrludes slender plant hugs which have the thighs thickened at the tip. Some of them are very slender and have long. thon legs, from which fact they have been terbacd "stile hugs." Onf: ix species are known to occur in the United States and the life history of none of them has been carefully worked out. Jalusus spimosus, our commonest species, a sluggish little insect which is to be found on the underprowth in oak woods, all through the summer, from Maine to Georgia and westward to Texas and Arizona, would be a good species io study carefully.

THE CHINCH-BUG FAMILY

(Family Lygraidu.)
This is one of the large families of plant bugs, comprising rather more than 1,300 species, distributed in thirteen subfamilies and 208 genera. Of these about 175 species are known in the United States. No good popular name has been proposed for this groep. Constock calls it the "chinch-bug family" from its most famous representative, but of course this is not a distinctive name. The Lygreids are distinguished from other bugs chietly by the membrane of the front wing, which has four or tive simple veins, and by the intennax, which are inserted low down
 on the side of the head. Many of these lougs, when full grown, have the wings either long or aborted, so that in the same species there are both lonywinged and short-winged forms. All live on the juices of plants, and the family contains many injurious forms. The most prominent of these is the chinch-bug (Blissus letucopterus). a little bug which occurs in Central America and the West lindies and all over the United States and north into Canada. It feeds on Indian corn and on wheat and other small grains and grasses, puncturing the stalks, and causing them to wilt. Its great notoriety as a crop destroyer arises from the incalculable numbers in which it appears in dry seasons. The average annual loss which this insect causes to the United States cannot be less than \$20,000,000.

Another very common and destructive insect belonging to this family is the so-called "false chinch-bug" (Neizius 310
angustatus Uhl.) which although it belongs to a different subfamily is frequently mistaken by farmers for the true chinch-bug. It damages grapevines, strawberry plants and many garden vege:ables, puncturing the leaves with its beak and causing them to wilt. The life history of this bug should be worked up. We do not know its eggs, the number of molts or the number of generations. One of these bugs, known as Milanochilus numideus Say, according to Heidemann, feeds on sycamore leaves and passes the winter in the half-grown condition thrust down in the crevices of the "button bolls."

Life History of the Chinch-Bug (Blissus leucoptcrus Say.)

The chinch-bug is a small, dark colored insect with white wings. It is only 3 mm . long and is rather slender. It passes the winter as a full-grown bug, hidden away in clumps of old

Fig. 203.-Nysius angustatus. (After Rilicy.'

Fig. 204.-13liswus leucopterus.
grasses or in other protected spots. The egg is nearly $: \mathrm{mm}$. long, elongate-oval, and of an amber color. About five hundred are laid by each female and are thrust into grass sheaths near the ground, or upon the stem at or under the surface of the ground. They are laid in the spring and the young hatch soon afterwards. The newly hatched bugs are pale yellow at first but grow red. They molt four times before becoming adult and grow darker in color and the adult is dark gray or nearly black. Over most

The Chinch-Bug Family
of the United States there are two generations, the eggs for the second generation being laid in late July or carly August. In all stages the chinch-bug is gregarious and clusters upon grains and grasses in such numbers as to quickly destroy them.

Fig. 205.-Blissus leucopterus. (Afler Riliy.)
They migrate in search of food and after wheat harvest they usually travel to the nearest cornfield and the second generation is developed on this crop. Many of the adults have only half developed wings and this form, which is called "micropterous"

Fig. 206.-Blissus leucopterus.
(After Riley.
is apparently more abundant near the sea-coast than elsewhere. A fungus disease is very prevalent in wet weather a 1 efforts have been made to propagate this disease and (u th some measure of success) artificially introduce it into infested tields.

THE STINK-BUGS AND THEIR ALLIES

(Family l'cntatomidu.)

In this large family of bugs, which comprises nearly four thousand species, of which about three hundred inhabit the United States, we find a curnous difference in habit in that while

Fig. 207.-Murgantia hintrionica.
(A)ter kialey:
 some of them are exclusively plant feeders others feed both upon plants and upon other insects. This differentiation in hahit corresponds in it measure with the subfamily grouping. As a rule these insects are flat and hroad, and the antenna are five-jointed. The scutellum is enlarged and in some (the Scutellerinat) covers the whole abdomen.
Many species possess an extremely bad odor and taste, which has led Comstock to term the group "the stink-bug family." Very many wellknown and common insects belong to this group. The harlequin cabbage buse CMuraththa hrstronlia Hahn. 1 is a Weliknown sfeckes in calbage fieds south il New Jerser. It is a serious enemy to crucheroms veqetables.

In parts of Georgha it is still known as the "Abe Lincoln bug." and in Texas as the "third-party bug." The eggs are very

The Stink-Bugs and Their Allies

teautiful banded objects, laid in clusters on the leaves of cabbage, and the full-grown bug is beautifully mottled with black and red. The so-called spined soldier bug (Podisus spinosus) is a plantleeder, and also preys upon insects, especially caterpillars. The
 beautiful bug known as Stiretrus anchorago is largely predatory, and feeds upon many different kinds of insects. The green soldier bug (Nezara hitaris Say) and the common species known as Euschistus servits are both plant and animal feeders.
Fig zo9-Corimelæna
The eggs of nearly all of these insects are laid in clusters on leaves or other objects, and vary greatly in color and sculpturing. Many of them are parasitizud by the little Proctotrypid flies of the genus Teleas.

rig. 210.-Brochymena annulata. (From Insect Life.)

Typical Life History
(P'ulisus sorierentris Uhl.)

This species which is not uncommen in the northern states lays its egges in small clusters of from ten to thirty each on the bark of trees rit on leaves or other objects. They are bronze in
color growing darker up to the hatching period. They are nearly circular in shape, and are furnished with a well-defined circulai cap. The upper part of the egg is covered by irregular rows of minute short spines, while around the edge of the cap is a row of long, curved, knobbed spines. They hatch in eip it days, and the insect passes through five molts, growing gradually, and

changing in color from yellowish-red to hrownish-vellow. There are three generations in the course of the summer, and the insect hiberr ttes in the idult condition under the rough bark of trees, and in similar protected situations. When young they feed upon very small insects and their eggs, but when full-grown will at tack any insect however large, even full-grown cutworms and the larve of the Gypsy moth.

Mr. A H. "irkland was the first observer to work out the complete life history, and from his full account as published in the report of the Massachusetts Board of Agriculture on the Gypsy moth (1896) these facts have been drawn.

THE TRUE LICR:

(Suberaler Anoplura.)
The true lice are generally referred to in the books as the suborder Parasita. They are all wingless, degraded creatures, possessing to a marked degree the degradational characteristics which result from a parasitic form of life. They have a thin skin the feet are armed with al single long clar, and the mouth-parts consist of a short tube furnished with hooks, from which may be protruded a delicate sucking tube. They are not numerous in species and are all parastic on warm-blooded animals. The lice which are so commonly found on birds belong to a different

Fig. 212.-P'ed iculus capitis group and are structurally quite different from Anopluaia. Six genera and about forty species of Anoplura are known. They are found upon many manmalia, even upon those which live in the water. A curious genus, for example, is found upon seals. The lice of domestic animals and those which are found upon uncleanly individuals of the human race are well known. Three species are found upon human beings in different parts of the world, and are more or less specifically attached to this host. The conditions of modern civilization, however, are gradually calusing these insects to become rare, except in the lowest quarters. Fortunate.; it would no lon'rer be appropriate, or even nossible, in the dilwn of the twentieth century, for a poet of distiuctirn to write lines comparable to those which Robert Burns once composed in the Scottish church.

The eggs of most species are attached to the hairs of the host animal, and the young lice, after hatching, begin immediately to attack the skin. The rate of growth is not recorded, and the embryological and morphological development of the group is not well known. Here is an opportunity for some enthushastic student, who can overcome the natural distaste for these dis316
agreeable parasites, to do some good original work. The old Dutch naturalist, Leeuwenhoek, once started an experimental investigation of Padiculuc restimenti, using his own person as the breeding ground, "ut, beyond the conclusion that the species is very prolific, he reached no results of particular value. Mercurial ointment is a sovereign remedy for the species which attack human beings, white different oily mixtures are used with success on domestic animals.

THRIPS
(Order Mhysipota.)
The very minute insects known as "thrips" belong to this order, which is a very well differentiated group and has apparently no very close relatives among the insects. It is unfortunate that in this country the name thrips has been applied largely by vinegrowers to some of the little leaf-hoopers of the family Jassidx (q. て.), but the name was long preoccupied, both popularly and scientifically, by the physopod insects, which, by the way, atre

Fig. 213 - Thrips tritiea. also sometimes called Thysanoptera. They are very minute, slender insects, with four wings which are also very slender and very short, perfectly transparent and practically without veins. They are fringed, however, with long delicate hairs and lie along the back of the ahdomen when at rest. The metamorphosis is incomplete and the mouthparts are of very curious shape, but probably function in sucking. They are fally intermediate between true biting and true sucking mouthparts. A striking peculiarity of the mouth-parts is that they frequently differ on the two sides. In other words, they are assymetrical. Although the metamorphosis is incomplete, what may be called the pupa is not active. The larvae. however, are not in the least worm-like and resemble the adults. except for the lack of wings. The feet are curiously constructed and have a litte bladder-like vesicle at the tip. from which fact the name of the order was derived.

The thrips are found in the greatest numbers in the flowers of flowering plants and there can be little doubt that they do 318
considerable damage by injury to the essential organs of flowers. Although the statement has been made that they sometimes feed upon other insects, the evidence is not grod. An interesting form in this country lives in the sheaths of timothy grass and sometimes causes the dying of the heads of the grass. Sometimes they are found under bark and in fungi, and in Australial some of them form galls on the leaves of acalias. In the United States, however, they are most abundantly found in flowers and fr.quently in the heads of wheat. In greenhouses thrips are especially noticeable. Dracanas are said to suffer especiall'y from their attacks. They are commonly found on chrysanthemums, on hydrangias, in orange blossoms, and many other flowers. Probably the most injurious species in ihis country, however, is the so-called onion thrips which causes th, disease known as the white blast of onions. The same species is found on leaves of cabbage and cauliflower, squash, turnips, nasturtiums, and many other plants. It is also found in Europe where it occurs on tobacco as well as upon garden plants. It is known as T^{r} rips tabaci lind.

It does not seem to be generally known that parthenogensis hals been found to occur with thrips. Less than one hundied and fifty species are known. but almost no one has taken the trouble to collect these little creatures in out-of-the-way places, and it is reasonable to suppose that the order will be found to be quite numerous in species.

GRASSHOPPERS, KATYDIDS, CRICKETS, ETC.

(Order Orehuptera.)

This is a large and important group of insects which comprises those forms which are known as the straight-winged insects and includes the grasshoppers, or true locusts, the longhorned grasshoppers (including the katydids). the crickets. cockroaches, walking sticks and leaf insects, and the praying mantids or rearhorses. In all these insects the mouth-parts are fitted for biting and the metamorphoses are incomplete. the young when hatching from the eggs resembling the adult except for the lack of wings. The eggs are comparatively few in number and are haid in specialized egg cases. The fore wings are somewhat thickened and rather tough and horny ats a rule, though not so much so as the elytra of beetles and at rest lie closed on the back of the insect so as to protect it and the hind wings. They are called tegmma. The hind wings are much more delieate and are the important ones in tlight. They are furnished with radiating veins somewhat like the sticks of : fan and have short cross-veins forming al sort of network. In repose they fold like a fan and are more or less covered by the fore wings. While the order is not such an extensive one in number of species, it is one of very great economic importance, largely through the ravages which the migratory locusts. or short-horned grasshoppers, make upon agricultural crops in various parts if the world and the numbers in which not only these insects but certain other forms occur, while their comparatively large size and frequently conspicuous appearance, make the group a noted one.

As to size, the Orthoptera probably include the largest of living insects and this is particularly the case in tropical countries. Even in this country, however, it is doubtiul whether any insect exceeds in actual bulk the large lubber grasshoppers of our South-
eastern and Southwestern States. It $\mathfrak{c c}$ estimated that probolly tea thousand spectes of Orthoptera extst in the word, but this estimate is probably a small one. simec. as in the other groups, the sumaller and nore inconspicumes species have not been collected in out-of-the-way places. The average trave "er whop picks up specimens. and even the averate collector, when he goes to some rarely visited corner of the world, will illwists collect the barge and conspecuous things dind neglect the smaller and more insignilicamt specimens. From thes halot, it results that in the lirge museums, like the British Museum, the Berlin Museum and the Viennal Muscum, and cur own National Museum, large. exotic forms from most portions of the world are well represented. but there are comparativety few of the little dull-colored ones.

The order Orthoptera :affords a peculiar interest to the student of the phenomena of protective and iggitessive resemblanes. The family Phasmide includes these remarkalle creatures which are so much like twigs and leaves that they have been called walking sticks and le of insects. It also includes the great group of praying mantids which fedd upon other insects and which. though slow movers, are enalhed to capture their prey by i. :ans of the ir perfect disguise which. in temperate regions, makes the:"n resemble twigs and in tropical regions brings athout an extraordinary resemblance to flowering vegetation. some of them being most highly colored, as the llower mantids, which resembies the most conspicuous orchids.

Another fact which renders this group of especial interest is that many of them are so musical. One often hears of the "song " of the katydid, but as a matter of fact, these insects are not vocalists but instrumentalists. Portions of the body are so modified as to produce musical sounds by the rubling of one part upon another. In the crickets it is the rulbing of the upper - '7gs upon the hind wings. the membraiee heng veened in such al way els to protuce a chirping sound. In some of the grasshopters the sound is brought about by the rubbing of the hind thighs against the edge of the forc-wings, or "termina." These musical powers are contined to the make sex and the tunes which they play are, while songs without words, always fove songe.

Many of the Orthoptera are great jumpers, their hind thighs being thickened so as in enable them to moke great leap). The common name grasshopere is based upun their facility in this

Grasshoppess, Katydids, Crickets, etc.

direction. This reminds me of the little girl. who, being told that the beetles were Coleopterat and that the butterfles were lepidoptera, remarked that the grasshoppers must the the "Grasshopterat." Many of the ()rthoptera Ily well and strongly. The migratory grasshoppers frequently ily for hundreds of miles with dally rests for food. sonretimes in such enormous swarms as to darken the face of the sun.

TABLE OF FAMILIES

Hind thighs stouter, or longer, or buth, that the other thighs; head veltical: ovipositor gentrally extruded: yenerally singurs or chirpers (stridulators)
Hind thighs like the other thighs ; heol usually hent under ; ovipositor concealded: mute.
1-Antennie much longer than the fody, deliestely tapering; sound-producing organs at the inner base of the fore wings (tegminal): onpositor usually prolonged i.tio i hade or treedle

2
Antennee much shorter than the body. not delicatrly tipering; sound-producing organs on the hind thighs and onter edge of the fore wings: owpositor composed of a double pair of short plates which diverge at tip. Farnily Airrdidider
2-Feet (tarsi) four-jointed, nearle similar in structure on all legs: ovipositur (unless, as rarely, coltce:aled) forming as strongly compresed, generally sword-shaped hade. valves not expanded at tip

Family Locustidu
Tarsi three-jointed. those of the fore or hind legs differing from the others in structure; owipositor (unless, as rarely. concealed) forming is nearly culindrical. straight. or occisienally upeurved needle: valves expanded at tip.

Family Cirllida
3-Body ovall. flattened : head neariy horizontal; rapid runners.
F:amily Blaffud،
Body long, narrow; head free; slow movers. 4
4-Head ohlique, generally three-cornered: front legs fitted for grasping, ending in a single claw. Family Manthdar
Head nearly horizontat, generally four-comered; front kers like the other lexs and endmin in two claws.

Fanily Phasmida

THE W ALKING STICK'S

(Fimily Plutsmide)

The insects of this fimily present some of the most striking forms known among the Hexipoda. They consist of the so-called "walking sticks." This name is given to them from the remarkable development of protective resemblance which h.is lyought all of the species to a close imitation of the twigs of different plants. The family reaches its highest development in the trepics, but one species is commor in the Northern States. The family constitutes the section of Orthopterous insects known to the old naturalists as Gressoria or walkers, as contrasted with the runners, fumpers, and graspers (Cursoria, Saltatoria and Raptoria). The body is long and slender, the head is exserted, the legss are long and slender and generally similar. hey gen rally have no wings although some of the tropical species possess : ibbreviated wings. The eggs have a very curious structure and frequently resemble seeds in appearance. They possess the power of raproducing lost limbs, the new limb being weaker than the old ene and generally curved. Certain of the tropical forms in this family re curiously modified so as to resemble leaves instead of twigs. .esaf insects in the tropics frequently hear so close a resemolance to vegetation as to deceive a keen observer.

Life History of a common Walking Stick (Diuphtromire fimurata Say.)

This is the common " waiking stick " of the nothern United Stites and is distributed over the greater part of the country: It has been given the popular name of the "thick-thighow walking stick" owing to the foct that the femora of the raidite lers are somewnat swollen. The eqgs, of which each female lies about one hundred. ate a little less than 3 man. long, owal in shape,

The Walking Sticks

slightly compressed at the sides, and of a polished black color with al whitish stripe on one side. They resemble the small plump seeds of some leguminous plant. They are not laid in elusters or fastened to the plamt but are dropped loosely on the ground where they remain through the winter and hatch the following Mav. Some of them are retarded in their hatching and young walking sticks may be found throughout the summer. In hatching the top of the egg lifts up like the lid of a vessel. The young when first hatched are 4.5 mm . long, and of a uniform pale yellow-ish-green color. They live, as al rule, near the ground and drop readily when disturbed. They molt but twice, retaining the s.ame color until maturity, and develop rapidy, averaging, under favorable circumstances, about six weeks from birth to maturity. When adult the green color becomes gray and brown. This change in color is protective since in the early summer while vegetation is green, the insects are also green; when the foliage turns in the autumn they change color to correspond to a certain extent, and when the foliage is stripped they closely resemble the twigs upon which they rest. The frout legs of the insect are stretched out straight in front so als to inerease the twig-like appearance. The males are smaller than the females and frequently retain the green color in the mature condition, following the rule which holds more or less throughout nature, that the male sex is not so well protected as the female, since upon the latter depends the all-important function of reproduction. There is but one generation amnually and, as before stated, the insect hibernates in the egg state on the surfice of the ground. In spite of the protection afforded by form and color the insect seldom becomes sufficiently abunamitas to be ranked as iujurious although it feeds voraciously upon the leaves of plamts during all stages of growth after hatching. In the few instances where it has become sufficiently abundant to do ncticeable damage it has been easy to reduce its numbers to a minimum by burning over the leaves on the ground during the winter time, thus destroying the hibernating eqges. In 1898 this insect appeared in extraordinary numbers in a black-walnut forest in western New York, so that in the autumn the dropping of the eggs on the leaf-covered earth sounded like a heavy shower of rain.

THE REARHORSES, OR PRAYING MANTIDS

(Family Mantidu.)
The insects of this family formed the old Orthopterous group, known as Raptoria, or graspers. They are predatory insects, and are characterize by having a long, slender prothorax, with the first parr of legs titted for grasping their prey. They are like the Phasmidx, much more abundant in tropical regions than elsewhere, and, while many forms, by their shape and color, exhibit striking instances of protective resemblance, in others are seen in its highest development the phenomenon of aggressive

Fig. 215.-Stagmomantis carolina. (Afir ciluter.)
resemblance. The so-called flower mantids in tropical countries closely resemble the flowers of certain plants, especially brilliant orchids, and in these flowers they lurk awating the visits of insects, which they capture. They have various popular names,
being known in England as "sooth-sayers," or "praying insects," from the attitude which they assume when at rest or when waiting to grasp another insect. The knees are bent, and the front legs are held as though supporting a prayer-book. In our Southern States they are known as " mule-killers," from the curious superstition that the brownish liquor which they exude from the mouth is fatal to mules. They are more comranly known, however, in the south, as " rarhorses," from the rearing attitude assumed when ahout to grasp another insect. The egirs of the Mantide are laid in a curiously-formed egg case which is secreted by the female. They capture their prey by stealth, crawling upon them so slowly that the motion is hardly observable, but when within reaching distance the front legs are thrown out with incredible rapidity. They are cannibalistic in a high degree, and the female often, if not usually, devours the male while in the act of conjugation

Like so many other predatory insects, they have the most voracious appetites. Colic and bilious headaches seem unknown to them. Slingerland has brought together some interesting instances of this voracity in his account of the recent accidental introduction and establishment of the European Mantis religiosa in New York State. His correspondent, Mr. Atwood, writes: "One Sunday a green mantis ate three grasshoppers, each seveneighths of an inch long, a daddy-long-legs, and then tactiled another mantis, and I was ohliged to intertere between them." It is probable that this common Furopean insect was introduced into northern New. York in the eqgestage e? nursery stock. Another foreign mantid has also recently becon. acclimatized in this country. This is Temotira smemsis Smss., of Japam. This large and striking form made its appearance about Philadelphia in 1896, and in 1900 was quite numerous.

Life History of a Rearhorse

(Stasmamantis iarolimu.)
This species, which is common throughout the southein United States, extends as far north as New lersey. It is an austral form, but does not reach the northern limits of the socalled upper austral life zone. The eggs are had in tough cases

The Rearhorses or Praying Mantud
ahout an inch long which are attached to the twigs of trees. The case is tough and horny, and the eggs are laid in parallel row's, perhaps forty in a row, issuing

Fig. 2rfo-mtagmomantis carolina: egy cancs. (A/ier र́vicy.) from a common longitudinal midde line All of the eggs stand on end and are inclined some what toward the central channel. A cluster of eggs hals a bl, ided appearamee, Put consists simply of a continuous ribbon of mucous folded in close fluting and having an egg deposited in the bight or augle of each fold. The egges are deposted simultaneously with the deposition of this ribbon by the mother insect. and the whole mass is at first soft and flexible, but rapidy hardens by exposure to the air. The newlyhatched insect is light yellowish-brown, but after the second mott many of them become green. The number of molts has not been recorded, but there are certainly more than three. At full growth, however, most of the fremales are green, while the males become brown or gray. There is but one generation each year. The young hatch in the earty summer. but complete their growth in the latter part of the season, and the insect hibernates in the egg stage. The eggs are frequently parasitized by a very peculiar chalcis fly, Podugrion mantis, which penetrates the tough equg mass with its long ovipositor, and whose larva feed upon the eggs. Thus egge masses taken by the observer in the winter and kept for the hatching of the young will frequently in the spring give out these parasites instead of the young mantids.

Pram: XXXIV.
I.ON(i-HORNEI) ANI) SHORT-HORN:I) GRASSHOPPER';
116.

1. Platyphyllum concavum
2. Batillus carinatus
3. Bumpedon mubilum
4. Melimoplus femoratus

Ilii.
5. Paroxya Ilorid.a
6. Wactylotum pictum
7. Ansomorpha، huprestoides
8. Bradynotus obesa

$$
\left.\begin{array}{|c|c|}
\hline & 7 \\
1 & 1 \\
1 & 1
\end{array}\right]
$$

COCKROACHES

(Firmily Pluttidu:)

The insects of this family, known commonly as cockroaches, form the old group Cursoria, or runners. The body as at rule is oval and llat, all the legs being similar in form. The head is deflexed or bent under and generally concealled by the prothorax. The hind wings are slightly folded. The insects of this group are very abundant in the tropics but several species have become domesticated and are very abundant in the colder parts of the world. The cockroact .ype is a very persistent one. and insects of this fimily existed in great numbers in geologic periods prior to the tertiary. They are found in considerable number in carboniferous rocks and one form has been found in Silurian sandstone.

The eggs are liad in egg calses as with

Fig. 217-I'eriplaneta americ.ana.
 the Mantida but the subsequent life history is little known. It is supposed that they grow very slowly. Most of them are nocturnall in their habits. They feed on a great variety of
substances, espectially those forms which inhabit houses, but it is supposed that thear natural fond is dead animal matter. Dr. Sharpestimates that there are five thousand species in existence. The spesies found in Ameri an houses are the Americin cockroach (Piriphanidy "amerribla). the German cockroach or croton hug (Eifolva germanicit), the European cockroach or "black beetle" as it is known in England (Periphath ornentalis) and the Australian cockroach (Periphanta allstruhasia'). The egge cases of the Germm coikroach is show'n in accompanying illustrations.

The fermale carries the egg case with her until slie finds a proper place to leave it or until the eggs are nearly ready to hatch. The young roaches grow slowly and pass tharough a variable

number of molts, sometimes as many as seven. The time required lor the development from the eqg to the adult mav he prolonged ly absence of food or low temperature. Four or dive years have heen sald to mave heen occupied in this frowth. The German cockmath has leen shown to reach full-growth in from four and one-half to six monthes and the American cockroach has been raised from the equs to the adult in about twelve months. No suffeiently careful olservations on the life history of the common species appear to have been made, hence the "Typical Life Histor:" must be nmitted with the insects of this fimmly. The anatoms of Periplameta orientalis has been carefully stadied lex Mall and lomny. *and the American household cockroaches have leen treated at some length iy Marlatt. **
*The Inttumy of the 'iektroach.

The eockroaches which have just been mentioned are practically domesticated amimals in sor fir as they have accommodated themselves to the enviromments of civilization. They appear to cat almost everything. whether animal or vegetalve in its nature, Ind they are household pests of the highest rank. They are allso all of them cosmopolitan, or practically so, and have been carried in ships to almost all parts of the world. Our natuve cockroate hes are, most of them, out-door feeders and are exceptionaliy cleanly insects. In fact, any one of the domestic coekroaches, if wateled, will be seen constantly to make efforts to beautify its person. licking its legs and its antemnae in much the same manner in which acalt washes its paus. A curious olservation which the writer once mate indicates th. 1 t it is possible for coskroatches to acquire the tobacic halyit. A cioton bug of the usual inquisi--ive lurn of mind inhathted my office desk, and as soon as I laid down my cigar upon the edge of the drawer the fittle fellow invarially came out of his hiding place and worked vigorously at the moist end. At first he was after the moisture but later the tobacco taste grew and he became as much addicted to the habit as the most inveterate human tobacco user. It may le worth mentioning thiat it secmed to have no apprectiable effect on its licalth.

Cockroathes are fond of darkness.

Fig. 21). I'eriplatheta utientalis. They roam about houses at night, and new houses become stocked with roathes through migrations at might time from over-supplied adjoining establishments. On a dark diy in W:ashmgton I once saw a migrating army of cockroaches, incalculable in number, crossing the street from a dirty restaurant toward bualdings opposite. The majority of the individuals composing the army were females carrying egge calses, and the observation thus hecame one of peychological interest since the migratory anstinet seemed to hwe heen developed by an appreciation of the fact that while the restaurant might support the mothers there woul.' not be food enough for the coming children.

THE SHORT-HORNED CIRASSHOPPERS OR TRUF: I.OCUSTS
 (Fimily Aicriduida.)

The insects of this famly are everywhere allundint both in number of species and individuals. They comprise sonte of the most destructive insects known and the migratory species have devaistited the crops of many countries, more especially Russia, portons of South Europe, Algerla, India, Cape Colong, the

Fig. z:20- Melanoplus devantator. (.Ifiter Nildy.)
Argentune Republie and in former vears some of the western United States. In the insects of this tamily the antenna are short. much shorter than the body, the ovinos tor 'the fimbe 's short

Fig. z=1.-schivlonerea americama. / f/fir liblev.
and composed of tour separate plates and the tarsi are threejointed. The hind legs are the lengest and usually hitve stout femora. especially near the lase. Among the most abundant and injurious species occurring in this country are the western
grasshopper or nugratory locust (Midanoflus sprifus), in insect which damaged western agriculture, espectally in the stites of
 to the extent of more than $82(x)$,oons, (xx), and whith was the suldject of an investgation by apectal goveramental commession lastuge through several years: the common redeleghed bechet (Milanoplus fimur-rutrum), a species closely rescmbling the forcgomg but having shorter wings; the two-striped tocust (Mclamoplus hizullalus), a widespread form which is ahondant almost every year; the Carolina focust (Dissossitiat arolina) , the common light-bro" species seen so frequenty dhong duste reads: the Amer I locust (Sillistocerial ameria alma), more abundant in our biuthern States where it occisionally becomes

Fig. zez.-Rhomateun miernpterum. (Affer (iloter.)
very injurious: and the differential locust chilanntles dyfivinthalis) a spectes which has reconty done great damaige to cotton phantations in Mississippi. The lubler gresshopper of Florid. and Georgia is known as Rhomation mic roptirnu. It birier in color from green twhate and his wery shont wings. It occurs frequenty in enormous numbers in the rice-ticla mear the mouth of the Savamalh Rever, and is an exteme dy deaterable wion on which to step: in fact. it remmed onf of Thatikerats fimmo rembark when he swallowed lue tiret sudtererick ofster. The corresponding lubher gras shopper of the Southwest is Craityfiphemshans, and is a lorpe greenish species.

The Short-Horned Grasshoppers or True Locusts

With the short-horned grasshoppers we come to the first of the Orthoptera which are musical. Almost everyone who walks in the fields knows the rattling or crackling sound produced by certain grasshoppers in their flight. It appears to be under the control of the insect. It can produce it or not. just as it pleases. Some give distinct snapping sounds, or separate, loud snaps. Still other grasshoppers play upon their instruments not during flight but while at rest. Professor A. P. Morse tells how he

Fig. 223.-Melanoplus spretus: laying its eggs. (Aftor kishy.)
watched some of them (Circotetfix verruculatus) on Mu. Washington sunning themselves, occasionally elevating the hinder part of the body and rapidly moving the hind thighs up and down against the wing covers. "producing a distinct 'scritching' sound clearly audible at a distance of three or four feet. This act was repeated several times at intervals of a few seconds."

Life History of a Grasshopper
 (IValunoplus athonis Riley.)

This insect, which is: known as the lesser migratory locust, is a close relative of the common red-legged locust and the western grasshopper. It occurs commonly throughout the northern United States and has for many years made occasionat imjurious outhreaks in a restricted region in New Hampshire where local conditions seem to favor its undue increase. The
eggs are laid beneath the surface of the ground in an egg pod in shape some ting like a bent flask. the eggs in each pod averaging from $t \cdots$. ${ }^{\prime}$,our w, thirty-six in number. Each female in the course th her life usualiy. eposits two of these egg pods although three : 'd wen four haw been laid by the same femalle. The insect pa-se the winter ; the egg state and the young locust or grasshoyt: uain:s: : the spring. The period between hatching and maturity averages eighty to ninety days and the grasshopper passes through four to five molts, the young gra hoppers attaining their full wings only after the last molt. In alout one week after reaching full growth the insects pair and soon commence ovipositing. There is but one annual generation in New England, but two in Missouri. Egg-laying commences late in July and some of the earlier eggs may hatch in the autumn in New England, showing a tendency towards a second generation.

THE LONG-HORNED GRASSHOPPERS

(Vimily Lecustide.)

These insects, known as the long-horned gralsshoppers, or green grasshoppers. comprise those species having very long antennax, longer than the body, having tarsi with four joints instead of three, as with the Acridiidx, and possessing in the female sex a long saw-shaped ovipositor which is composed of six pieces instead of four, as with the Acrididie. They are delicate insects, much more fragile than the short-horned grasshoppers, and are great singers. The males are usually provided

Fig. こ2 1 - Orchelimum vulgare: and it-egg-. (Afic fortic.,
with a musical apparatus consisting of a curious development of the vems and membrane at the base of the weiner eover. A curved owipositor pormits many forms to insent the erers into pithy plants or into the earth. Nearly all of the species are strict vegetable teeders athough some of them are said to be carnivo-

Plate XXXV.

MISCELLANEOUS ORTHOPTERA

HIG.

1. Stenopelmatus fasclatus
2. Microcentrum laurifolia
3. Orchelimum spinulosum
4. Anabrus purpurascens

His
5. Gryllus abbreviatus
6. Locusta fuliginosa
7. Stagmomantis carolina

rous. The commoner forms iave been called the meadow grasshoppers. They are the long, slender, delicate species found on gratss and low-growing plant . A common representative of this group is Orikelimum rulgare. Others are kno vn as the katydids from the resemblance of the male cilll to the word "katydid," hile others somewhat resemble crickets and are found under stones and rubbish in the woods and in caves. The so-cilled western crickets (Auahrus purpurasceus and A. simplex) belong to this group, as also do the ferocious looking creatures of the genus Slethopelmaths, found in the arid regions of the West and which are erroneously considered as poisonous.

The long-horned grasshoppers, or green grasshoppers, are among the most musical of our orthopterous insects. Everyone knows the call of the katydid, and everyone knows Holmes' beautiful poem about this interesting creature. Our commonest katydids ordinarily call "Katy," or saly "She did." rather than "Katy did." That is to saty, they rasp their fore wings twice oftener than three times. "These two notes," salys Scudder, "are of equal (and extraordinary) emphasis, the latter about onequarter longer thala the former; or, if theee notes are given, the first and second are alike, and a little shorter than the last. The notes are repeated at the rate of two hundred per minute, and. while the interval between two series of notes varies to a certain degree, it is seldom greater than two and one-third see ids or less than a second and a quarter." This is Mr. Scudder's tempt to reduce this note to a scale:

It is a noticeable thing with these insects that the day note differs from the night note, and, unlike the katydids, one of the long-horned grasshoppers, known as Scudideria angnstifolia. is noisier by night than ly day. The day tune is played only in the sunshine, and the night tune after dark or in cloudy weather. Scudder was once watching one of these little creatures in the sunshine. "As a cloud passed over the sun he suddenly changed his note to one with which I was already familiar but without knowing to what insect it belonged. At the same time all the

individuals around, whose similar day song I had heard, began to respond with the night cry. The cloud passed away, and the original note was resumed on all des. The day song is reduced to scale by Scudder as follows:

Fig. 23:-1lay song of Scudderia anguntifolia. (Affer Siudier.)

Fig. 227u.-Night song of same. (fiter Sirdider.)

Typical Life History of a Katydid (Microccutmm retineris Say.)

This insuct, commonly known as the angular-winged katydid, is a common species throughout the more southern portions of the United States, extending as far north as New Jersey on the Atlantic Coast. This insect hibernates in the egg stagre. The eggs are flattened, oval, of a slate-brown color, about four mm.. in length, and are laid in a curious double overlapping row on twigs of trees and in other situations. In the south, where the insect has two generations annually they are even laid on the en es of leaves, in which case one row will be found on one side of the leaf and the other row on the other side. They are someumes also lad in peculiar situations, as on the edge of a fence board, and the writer once received a batch from al western correspondent which was found on the edge of a freshly laundried collar which had lad for some time in a bureau drawer. Riley records oviposition on the edge of a piano cover and on a long piece of cord. The females hegin to oviposit in the early fall and continue to lay at intervals until killed by frost. The surface of the twig is first roughened by the jalws and then the ovipositor is moved up and the egrs are laid one after another, the successive ones being pushed for a short distance under the edge of the one immediately preceding, the number varying from two to thirty
in a bunch. Eath lemale lays from 100 to 150 aggs. In the spring the egg splits along its top edge and the young katydud. very pale in color, emerges. In Missourl the skill is cast five times and the perfect insect appears from July to August, the songs being most commonly heard in the latter month. Mr. Siudder, who has studied the notes of erickets and grasshoppers from the musical standpoint, states that the d.ly song of the katydhe differs from the night song. In its northern ramge the insect is single brooded but in the tor southern States there are two generations annaally. The egges of the angular-winged katydad are stung by the curious chalcidid parasite known as E:upelmus mirabilis Walsh, called by its describer the "back-rolling wonder" from the fact that the abdomen is freyuently turned backwards and upwards until it nearly reaches the head, the hind legs being turned in the same direction so that the insect almost forms a ball.

THE CRICKETS

(Fimily Coylhure.)

These insects. commonly known as crickets, have long antennee, longer than the body, as in the Locustider, but the tarsi are threc-jointed ad the ovipositor, when exserted, is spearshaped. The hied legs are long, and the femora are swollen. Many species are wingless, but with those which have wings the tegmina, or upper wings, are deflexed on the outer edge so that they fit closely to the sides of the body. In the male sex the upper wings are frequently curiously modified so as to permit an even more elaborate musical appaiatus than is the case with the Locustidx. The insecte of this famly are not numerous from the point of num-
 (Kidraien from . Marhitt.) ber of species. and lout three distinct types are found in the group. These are the true crickets, typified by the common field cricket;

Fig. 220) firyllus domestucus. (After Mardate.) the mole crickets. forms with very short wings. which are sometimes entioly absent, and with moditied front legs, which superficially resemble those of a mole, and which live during their entire lives underground; and third, the so-called tree crickets, pale-colored nocturnal forms which lay therr eggs in the twigs of different plants, and which sometimes are so alundant that hy there eyg-laving alone they do consideralle damaye to vineyards and to raspberry and blackberry planta$3+1$

The Cricketa

tons. The house cricket, or hearth cricket. Gry/lus domestious, of Furopes is not common on this continent except in Cimada, but two or three species of tield crickets are occasionally found in houses in this country. The common black cricket, found in

grassy pasture lands or fields, lives in burrows under the ground, sssues sometmes in the day, but more usually at night to feed, and take:s blades of grass back into its burrow. The eggs are land in the atutumn, usually in the ground, and are hatched the tollowing summer. The mole crickets live always under the ground and feed upon the tender roots of forage plants, while the tree crickets are, as their name suggests, arhoreal in their halits.

The crickets are the most musical of all insects. Even the male mole cricket consoles himself by fiddlang, and warms the heart of his mate hy playing a tunce which is not cheerful enough for a houschold ditty, but, to our ears, uneducated in the orthopteran musical culture, sounds more like a lament of his sad subterrantan fitte. It has beets reduced to seale by Scudder as follow:
tr

tig. 2j1.-Siong of the mole cricket. (After Simidir.)
The house cricket, or the cricket of the hearth, plays a more cheerful tune, or, at all events, it is supposed to mean comfort and at warm fireside and osterming kettle. It is thus not the muste but the association of ideas which produces the pleasing effect. Couper expressed it perfectly when he wrote:
" Sounds inharmonious in themselves and harsh, Yet. heard in scenes where peace forever reigns, And : nly there, please highly for their sake."
The nome cricket comes from this sound, and is derived from the imatative French popular name, "cricri," and similar

PLa if XXXVI .
SHORT-HORNED GRASSHOPPERS OR TRUE LOCUSTS

HiG.

1. Gomphicerus decussata
2. Melanoplus minor
3. Melimoplus athanis
4. Melanoplus punctatus
5. Hesperotettix viridis
6. Circotettix verruculatus

FIG.
7. Cephalocoma costylat:a
8. Encoptolophus sordidus
9. Melanoplus differentialis
10. Melanoplus differentialis
11. Hesperotettix virıdis

descriptive names are applied to it in many foreign tongues. The common field crickets (Gryllus neglectus, for example) are often very musical at night. Scudder says that sometimes the notes are produced as slowly as two per second, but that they may be twice as rapid. The note is a shrill one, and is said to be pitched at e natural, two octaves above middle c. It is recorded as follows :

Fig. 232.-Song of the field cricket. (After Sculler.)
Perhaps the commonest night song, however, is that of the snowy tree cricket (CEcanthus niveus). This insect has a day song as well as a night song, varying much in intensity. There is a distinct relation between the temperature and the number of notes per minute. Professor Dolbear has reduced this to a mathematical formula. He says :

Let $\mathrm{T}=$ temperature in degrees Fahrenheit; $\mathrm{N}=$ number of chirps per minute. Then $T=50+N-40$. This would give 100 chirps for 65 degrees Fahrenheit.

This formula has been tested in Massachusetts by Dr. Robert Eden and Mr. Walter Faxon, who find that from actual records the temperature is about 63 degrees to 100 chirps, with an error of variation of one degree $\because r$ less in four-fifths of the cases. The day song is annotated by Mr. Scudder as follows, and he states that it is a nearly uniform, equally-sustained trill lasting :o mtwo or three seconds to a minute or two. The insect, however, " often begins its note at a diff rent pitch from the normal one-fourth f above middle c-as if it required a little practice to attain it."

The night song of the snowy tree-cricket is by far the most familiar one. Riley gave the best description of it when he said that it " is intermittent, resembling a shrill re-teat, re-teat,
re-teat," with a slight pause between each." Scudder reminds us that Burroughs has called this noise a "rhythmic beat ;" that Thorealu called it "slumbrous breathing," and that Hawthorne describes it as "audible stillness," and that he says, "if moonlight could be heard it would sound like that." Fitch says that the noise made by these crickets is an invitation to "treat-treat -treat.'

Harrington has watched one of these concerts closely and says, "An interesting feature of its concerts is one of which I have not been able to find any mention in books accessible. While the male is energetically shuffling together his wings, raised almost vertically, the female may be seen standing just behind him, and with her heald applied to the base of the wings evidently eager to get the full benefit of every note produced."

Even the curious calve crickets of the genus Conocephalus have a song. But they sing only by night and in cloudy weather. C. ensiger makes five notes per second and these have been recorded by Scudder as follows:

Fig. 235.-Song of the cave cricket Conocephalus ensign. (After Souditer.)
Why has no one ever worked up a full life history, with all of its interesting details, of one of our commonest crickets? It is earnestly to be hoped that some good observer will answer this conundrum with the following words: "Because it has been left for me to do, and I purpose to do it as soon as possible."

EARWIGS

(Order Euplexoptcra.)

These are the insects which are properly known hy the vernacular name, earwigs. They are so distinct in structure from all other insects that they are now placed in an order by themselves, although formerly they were considered as belonging to the Orthoptera. They apparently have four wings, but the first pair are horny and small and resemble somewhat the elytra of beetles. The second pair are very curiously folded, but when expanded are almost circular in shape and possess veins which radiate from a common center. The mouth-parts are for biting and the metamorphoses are incomplete. The most peculiar structure of the earwigs, however, is the pair of forceps at the end of the abdomen. These forceps are sometimes very large and when opened give the insect a som what terrifying appearance. They are not used, however, as weapons of offense although with some of the earwigs which have wings (by no means all of them are winged) one of the forceps is used to assist in folding the

Fig. $2, G .-$ Forfi. cula sp. (from U.S.Deft.As*r.) these forceps has been discovered. Why they should have been evolved is a mystery. The name earwig is derived from the general idea anongst uneducated people that these insects seek to enter the ears of human beings, causing injury to the sense of hearine. This idea is a very old one and, of course, is totally unfounded. for the earwigs are perfectly harmless. The antiquity of this superstition and the widespread beliet in it are evidenced by the fate that these insects have pra, tically the same name in many languages. The Dutch. German, Swedish. Danish, French, Portugese and Spanish all give it a name with practically this same meaning. Our own

Earwigs
use of it comes from the Anglo-Saxon earaicga. In this country especially in the South the same name is applied to the common house centipede. An early advocate of the doctrine of similia similibus curantur anticipated Hahneman by prescribing earwigs, dried, pulverized and mixed with the urine of a hire, as a remedy for deafness.

There are very few earwigs in the Northern States. Some, however, appear in the South and along the Pacific slope, but no damage has been reported from these insects in this country. In Europe, however, and particularly in England, earwigs are said to be injurious and are said to nibble the petals of flowers. There is considerable doubt, however, as to the accuracy of this inference, which seems to have been made by gardeners. The entomologists who have studied the question of the food of the earwigs have been unable to find thitt they do anything of the sort. They are really carnivorous, living upon dead insects, upon small snails, and upon small living caterpillars. It is suggested that the gardeners have held the earwigs responsible for damage which was really done by other insects, perhaps even the very ones upon which the earwigs have preyed. A curious habit which earwigs are said to possess is that the females brood over the eggs. They take the greatest care of them, collect them when scattered and move them from place to place in an endeavor to secure the best position for their development. When the eggs are hatched, however, the female does not care for her young. From this fact it would seem that the female earwig is not as good a mother as the female Psocus, which as we have shown, keeps her young ly her after hatching and in fact seems to show a decided appreciation of family ties. All of the earwigs are contained in the single family Forficulidx.

SHORT-HORNEI) GRASSHOPIPERS OR TRUE LOCUSTS

HIG.

1. Dissosteira venusta
2. Schistocerca dammitica (side)
3. Heliastus californicus
4. Schistocerca vagans
5. Mestohregma cincta
h. Dissosteira obliterata
fig.
6. Gomphicerus elliotii
K. Aulocira scudderi
7. Trixalis Irevicornis
8. Dictvophomes micropterus
9. Syrhuli admirabilis

THE BIRD-LICE

(Order Malliphagga.)

The very strange parasitic insects which belong to this order are generally known by the name bird-lice. They differ widely from true lice of the order Heteroptera, suborder Anoplura, and in spite of the fact that they are known as bird-lice some of them occur on mammals. From this fact it is evident that the popular name birdlice is a misnomer, and it will be well to adopt Sharp's suggestion and call the Mallophaga "biting lice" as opposed to the sucking lice of the suborder Anopluri.

They are very small and have no wings, and the principal characteristic which distinguishes them from the true lice is that instead of having apparently sucking mouth-parts they have biting mouth-parts. They do not suck the blood as do the true lice, but feed upon the feathers or hair of the birds or mammals upon which they are found.

Fig. 237- Menopon lineriatum (After Osborn.) Their metamorphosis is incomplete. The body is very greatly flattened, and generally hard; the head is large and flat: the atenn \mathfrak{x} are short, and three to five jointed; the eyes are simple; the

The Hird-Lice

baws are usually tonthed and pointed: the legs are strong, and. curiously enough. the front legs are short and wre losed only in arrying food to the mouth. When at rest, the propect forward beleath the hesd. The whole body is usually rather hary.

The efgs are clongate owal and are esstened singly to the i athers or hats of the host. The young katle lo breaking off a croular lad at the larger free end $0^{\text {r }}$ tise egg. The duration of the \because ks stape is not known.

Th. ' n lice when first h-itched look much like the full झf: x : 16 : . "plt that the head is comparatively larger, and the "1tk "hs "f the hody are absent of dull. Just hefore the last 71. some individuals are fulte as large as the adult specimens.

The question as to whether they really draw hood has been (ful, studiad. There will frequently le seen al large dark botch indicating some opaque contents to the stomath, but a cireful exammation on dissection has shown that this blotch is composed of hits of feathers. One species is said ly Kellogeg to live in the pouch of a pelican. where of course. there is no halr, and alout the portion of the membrane to which the lice cling the surfice is raw and bloody, but here kellogg thinks that the food is simply the epidermal scales of the inner will of the pouch.

Such of these bird-lice as occur upon domestic fowls, while not serious pests, undoubtedly cause poultry consideralle annoyance simply by the irritation of the skin by the sharp feet of the par altes. After d hen atfected with burd-liee dies, the invects either es or attempt to leave her body by arabling slowly inward the head. Considering that they do not feed upon the bh d, hat simply upon the feathers, it is curbus that they should de after the death of the hen. Kelloges suggests that their death aproldes jue to the lack of animal heat to which they have been accustomed during the life of the host.

Aquatic birds are affected wath bird-ife que te as atoundantly as those which never enter the water. and to would not he strange if in the lice affecting such birds should he found some modification of the breathing apparatus, but there - such moditication and they are doubtess protected by the do-ce feathers, so that
the y always have a sufficient sumply of air even when the bird or a portion of its body remmas under the water for same time.

It is very rare that bird-lice ever lease the body of the host Iout they do migrate from one herd to ansther whenever two birds come in contact, as during the nesting season or among hirds of gregarious haluts.

In many cisees a given epect of Mallophaga will be found to be contined to a givenspectios on burd or mamanal, hut in other cases one species of parastie will be isund upnn two or more species of berds. Curiously enough, some of these parasite are found in Europe on birds which differ from those upon whi, ide nticalls he same species of parasit. is liund b North lmericia. Seveta spectes may oecur uf the same bird: for example, at least ee spectes betonging to three distinst genera have been found upon the common lowl. Nearly all of these are cosmopolitin .nsects and have been carried upon fowls to all parts of the world. Chickens hatched in an incubatot should "e absolutely free from lice and rem. until they join compar w with wldet that II habit which hens $1 \cdot "$ bather is an ceffort on their part to $\cdots 1 / \mathrm{l}$ of 11 these creatures.

There is littic doubt themselves in dust ritation caused by

TABLE OF \mid MIL

Ant, -nae filiform with il \because live i int n, lalvill palpi.. I Ancuna clubbe ar kno! and a ifour itnts; four-jointed labial palpi 2
1-Antenna three-mon ed: an one claw found on mammals Trily Tri-hodictidue Ante:nate fire-joun if a st the clasesfound on birls Famuly Philopteridar 2-Tusi with ane lis 1 und on mammals...Famuly Gbropida

Tarsi with l laws found on birds...... Family liothedda Anv detar eas unvist it 7 of the habits of these families will be unneci-sar a es de fon differ in al sufficienely marked manner to ne whe te st ch trathicett.

THE BOOK-LICE AND THEIR ALLIES

(Order Corrodentiar.)

The curious little wingless insects known as book-lice, which are found frequently in numbers among old, dusty books in damp places, and the interesting little bark-inhabiting creatures known as Psocids are structurally so different from all other insects that they have been brought together in the order Corrodentia.

Those which are winged have four wings with prominent veins but very few cross veins. The fore wings are larger than the hind wings, and both are held in a roof-shaped manner over the back when not in use. The mouth-parts are formed for biting, and all of these insects have very incomplete metamorphoses.

The true Psocidx (I regret that there is no popular name for these insects, for they are very interesting, and always attrict attention when seen) live to-

Fig. 2 fo. Atropos dininatoria. o kidrazen from . Mardost. gether in curious little colonies on the bark of trees, especially old trees covered with a growth of lichens, or even upon the surface of old fence boards. They possess the power of spinning a certain amount of silk, and each colony is generally covered with a delicate silken web. The egge are laid together in clusters, and the development of individuals is rather rapid.

Psocus renosus is a common form in most parts of the country, and its habits have been described by Hubbard, who has studied it in its southern range upon the trunks of orange trees in Florida. It is small and
smoky-brown in color, and is seen upon the trunks of trees in flocks numbering from a dozen to forty or fifty individuals. They feed in companies and browse upon the lichens, which they cleanly remove from the bark, leaving a clear space behind them. The colonies consist of one or more families, and include individuals of all ages, the wingless young herding with the adult insects. The adults, although winged, do not readily take flight. When alarmed the whole troop huddles together apparently for mutual protection like sheep, but when seized with a sudden panic they scatter in every direction and run rapidly over the bark, their color harmonizing so closely with that of the bark that they are not easily distinguished. Soon after they reassemble and begin to eat the lichens.

The eggs are oval, glistening white, and are laid upon the bark in batches of fifteen to thirty, deposited on end in several rows, and each cluster is protected by an oval, convex shield of gnawed-up wood which adheres closely to the eggs. The females brood over the eggs, see that they are not disturbed, and, when they hatch, lead the young ones forth to pasture.

This insect is fond of shade and moisture, and is most often seen in densely shaded groves and old gardens. The adults, according to Hubbard, hibernate, and begin breeding early in the spring.

Hubbard has also studied another species, Psocus citricola, which is probably a Southern form. With thisspecies the eggs are laid in hollows upon orange leaves in little clusters covered with a shield of black excrementitious matter. Over this is stretched a slight silken web. The embryo is plainly seen through the shell, and when ready to hateh air bubbles are seen which pass in rapid succession between the mouth-parts and collect in a larger bubble within the head. From time to time this larger bubble passes down into the body cavity. The head swells-elongates-distends the eggshell at the end until it bursts, and then the young insect protrudes its body. Air continues to pass through the neck into the abdomen, which becomes greatly distended and elongated, and this distention causes, probably, the bursting of the first larval skin. The process of hatching occupies several days.

This species lives upon the leaves of plants associated in small flocks, and passes the greater part of its life hiding under

Book-Lice and Their Allies

the canopies of webs spun over the egg clusters. Here the mother awaits the appearance of her brood, and here the young insects cluster, sallying forth from time to time with the mother in search of food.

The book-lice belong to another family, the Atropida. They are very small and some of them have been supposed to make a ticking noise which in olden times caused them to be known is "death watches."

These little insects are widely distributed, and are commonly seen on library shelves and in old records in closets. They are omnivorous, feeding on any animal or vegetable matter, and are especially fond of the starch piste used in book bindings or under wall paper. They feed on flour and meal, and are often found in natural history collections, living on the specimens. They are sometimes found in straw heds and in the straw coverings of wine bottles. A case has been recorded in Insert Life' in which they bred so extensively in a mattress of hair and corn husks that "a pin point could not hive been put down without touching one or more of the bugs." They swarmed over the sheets and the walls of the room; bureau draws were swarming with them, and the mattress no doubt contained them by the millions.

PI.ATI: XXXVIII.
SHORT-HORNEI) GRASSHOIPFRS OR TRUE LOCUSTS
+10.

1. Hippiscus wheelerii
2. Trimerotropis vinculata
3. Anconial integra
4. Hippiscus haldemamni
5. Trimerotropis suffusa
6. Acrolophitus hirtipes (side)

Hig.
7. Trimerotropis cyamipennis
8. Hippiscus neglectus
9. Circotettix carlingianus
10. Acrolophitus hirtipes
11. Hadrotettix trifasciatus

WHITE ANTS

(Order Isoptcri.)

Although from thei: peculiarities of structure the insects of this group form a distinct order, there are not many genera or species, and there is in fact but a single family, namely, the Termitidx (unless the curious fanily Embiidx be included here, which would not seem to be justified). All isopterous insects are known popularly as white ants. As the late Dr. George Marx once remarked jocularly to the writer, "they are called white ants because they are not ants and because they are not white."

Fig. 241.-Termes flavipes: adult male. (After Marlatt.)
At this late date it is almost hopeless to attempt to change a popular terin so thoroughly grafted upon the literature and upon the popular inind, but if people would only call them termites, a short and easy word to pronounce, instead of keeping up the bald mis-nomer-white ants-the cause of accuracy and truth would gain. Perhaps there is a slight superficial resemblance between these insects and ants, but they are structurally radically different. They belong at the opposite end of the insect series and are more closely allied to the stone-flies. the May-flies and even the dragon-
flies, than they are to ants. Perhaps, after all, it is not so much the resemblance of the individual ternite to an ant which gave it this name as it was the fact that all termites live together in communities containing different castes and that thus their social economy is in a way ant-like.

The Isoptera undergo practically no transformation, that is to say, they have very incomplete metamorphoses. The young ter-

Fig. 242-Terme. flasipes: id, supplementary queen: h, nymph of winged female; a worker: d. soldier. (Ajter ilarlatt)
mile, when it natches from the egg is an active, crawling, sixlegged creature. It much resembles the adult, except in size, whereas with the ants, it will be rement ${ }^{\text {b }}$, i. the larva is a footless grub which lonks no more like an :duli ' an a garter snake resembles a chipmunk. All species, as just tated, are social and the communities consist of hoth wingless and winged individuals.

The four wings are very long and when in repose are laid flat along the back, extending far beyond the tip of the abdomen. They are membranous and most of the veins are longitudinal. The hind wings are of almost precisely the same shape and size as the front wings, and alcross near the base of each wing is a line of weakness along which the wing breaks off after the so-called nuptial flight. The wingless individuals in each colony are, with most species, excessively numerous and as a rule they are divided into two castes, namely, the ordinary workers and the soldiers. The so-called soldiers also exist with the true ants but they have not in these creatures become such a structurally well differentiated caste as with the termites. In the latter the jaws have become enormously developed and in some cases the soldier is five times the size of a worker. Then, in some species a certain portion of the workers have become changed in form particularly by the elongation of the head into a long, nose-like process at the tip of which is a hole through which is exuded a fluid which is used in making or mending the walls of the habitation. This caste is known as the nasuti, or nosed ones, a tern which must at once remind the admirers of Sienkiewicz of the I'olish warrior, Kharlamp.

The order lsoptera reaches its highest development in tropical regions, and the reading world has been familiar with the main details of the economy of the extraordinary species which build the great ant-mounds in Africa since the days when Smeathman the English traveler, described them in print more than a hundred years ago. The females, or queens, of some of these African species grow to be of enormous size. The abdomen, swollen with eggs, sometimes hecomes as big as a potato, or 20,000 or 30,000 times the bulk of a worker. The rate at which the eggs are laid is extraordinary and it is stated at sixty a minute, or 80,000 and upwards in a day. Listening to an account of this extraordinary egg-laying, which wals given before the Biological Society of Washington by Mr. O. F. Cook, a friend rem.rked to the writer in a whisper, "What al fortune that would mean with eggs at twenty-five cents a dozen!"

In the United States there exist comparatively few species, and only one which has a northward rainge into the territory occupied by most of the readers of this book. This is Tirmes Alaripe's Kull. It is probably a true American species but was

White Ants
accidentally introduced into Furope many years ago. It destroyed the imperial greenhouses at Sihoubron, near Vienna, so that they were replaced by houses with iron frames. Another species which is widely distributed in the United States, but which does not seem to be especially common, is also found in Europe and is one of the most abundant and destructive termites found there. This is Tirme's Incif.ions Rossi. It has not yet been definitely deternined whether tios insect is a n ntive of Europe or of America. It oceurs in all of the Mediterranean countries in Europe and is found in Texas, Kansas, Colorado and Southern California, and perhaps elsewhere. Another species, known as Terme's thluformans Buckley, is a form of curious habits occurring in Texas, in the spring, beneath and within patches of cow-dung, and after midsummer making tubes around grass stems and the stems of other plants, nesting probably deep in the ground Still another Texas form, known as Enterme's migriops Haldeman, is al small species which constructs nests, apparently of cow dung, which are attached to the trunks of trees. Buckley wiote of this form, "It was about sunset on the 22d of October, 1860, when 1 first saw this species in a field, where both workers and nasuti were carrying home seeds of giasses and weeds. Fhey marched in dense columns along pathways lading to a hole near the base of a stump, into which they entered. *** They dwell in the ground where they hive rocms, scldonn more than one to two inches long, connected by tunnels. *** After abins-which are of rare occurrence in that climate-they make semi-cylindrical tubes, which lic on the ground with al length of from three to six inches. These arched ways sometimes intercept each other, being connected with chambers; but they rarely work by dily above the surface and never in bright sunshine."

Of the commonest of our species. Termes flatifes, it is greatly to be regretted that no thoroughly grod account of its life history has been published. The true queen, in fact, has never been found, unless it should turn out that alarge queen found two or three years ago by Mr. H. G. Hubbard in the mountains in southern Arizona should belong to this species. In the Northern States its nests are to be found under almost any decaying log, and. although many entomologists have examined these nests, they have never found the queen. From Baltimore southward,
and perhaps even a little farther north. this insect becomes a sermous pest in houses, particularly in old houses which are rather damp. They make their nests in old beans, such as the main floor joists and construct innumerable tunnels, running usually with the grain, so that, although a great deal of the substance of the wond is devoured, the main longitudinal fibers support the bulding structure for a long time; in fact, their presence in many cases would not be noticed except for the spring flight of the winged males and females. Quite recently a handsome private residence in the city of Ballemore was found to have its timbers on the first floor reduced almost to shells by the workers of this insect. Further south, not only the buildings, but even furniture is destroyed by them in the same way. They seem especially fond of paper, and Forbes has recorded the fact that a collection of books and papers of the state of Illinois was completely ruined by them. A school library in South Carolina, which had been left closed for the suminer, wals found, on being opened in the autumn, to be completely eaten out and rendered valueless. The work of these insects was brought home strongly to the writer on one occasion when a lot of records and doctments stored in a valult in the Department of Agriculture was found to be mined and ruined by them; and again, the floor of one of the largest sections of the United States National Museum was annually undermined anc weakened until it was onrn up and replaced with cement. Whenever an eld beam is found to have been hollowed out, even if no insects are present, it can readily be identified as the work of termites by the fact that all of the galleries are plastered with a brownish, mortar-like substance composed of excrement, from which. appareatly, all nourishing food has beell taken. In Floridat this insect is often the caluse of great damage to orange trees, working around the crown and in the roots of trees, and altogether it is a thoroughly bad character.

In the most general terms the life of a termite colony is about as follows: After the so-called nuptial tlight (which is made usually at a certain time of the year, and with Termes flavifes it is gencrally in the spring) composed of winged individuals of both sexes, male and female, and which always, except when it occurs in houses, attracts birds and other insect-eating creatures so that most of the individuals are destroyed, the wings of the

White Ant:
survivors break off and they ether pair and attempt to start a new colony or they drop in such a situation that workers from some old colony find them, join forces with them, and thus start a new community. The body of the ' 'e femalle, or queen, begins to swell with eggs, grows enormo y, and egg-laying commences. Unlike the true ants or any of the other social Hymenoptera, the youns require very little care from the workers. They are quite active and very soon feed themselves to some extent. The food of the termites is variable. It consists of wood fiber, or their own cast skins, or their excrement, or the contents of the stomach regurgitated by other individuals, or, in the case of the soldiers, they may eat dying or even healthy workers. The enlarged head and great jaws of the solders unfit them, in fact, for any other hind of food. They can not gnaw wood very well, and, as Sharp has expressed it, "their condition may be considered to be that of permanent hunger, only to be allayed by carnivorous proceedings." When the nest is distu"hed and the soldiers get excited they dash their jaws around and trequently sill their fellows, but of course this is more or less accidental, since they have no eyes. When a Callotermes wishes food, according to Grassi, it strokes the posterior part of the body of inother individual with its antenne and by some sort of a rellex action the contents of the alimentary canal of the individual stroked issue from the anus and are Gevoured by the stroker. The habitations of all termites are very cleanly, which is accounted for by the fact that they eat everything, the contents of the alimentary canal being eaten again and again untal all nourishment has been taken out of it. Hubbard, in Jamailat, found that the young feed upon prepared food which is stored up in the form of very hard and tough round masses, some nests containing many pounds' weight. This material is softened by saliva before it can be eaten. The true queens can be distinguished at once by the stumps of their old wings as well as, later, by their enlarged abdomens: but there are in most colonies individuals known as supplementary queens, which are capable of reproduction up to acertain point and undoubtedly help to carry the colony on in case of the death of the true queen. These supplementary queens are undoulntedly female workers whica have been led in a certain way and which develop up to a certain point, although not to the point of becoming winged.

Plate XXXIX.
SHORT-HORNF:) GRASSHOPIPRS OR TRUE LOCUSTS (RIUUCELI UNE-THIRI)
+16.
16

1. Spharagemon hollia :
2. Hippiscus rugosus
3. Melamoplus femur-rulyum
4. Dissosteira cirolin!
5. Schistocerca sanguinea
6. Spharagemon bollii 8
7. Chimarocephala virididasciata
8. Schistocerca americana
9. Schistocera danmifica
10. Spharagemon aquale

Thelntect Buok.

One of these, found by Hubbard in the nests of Termes flavipes in Florida, is shown at Fig. 242.

In America Termes lucifugus has not been studied, but in Europe its history is rather well known. It burrows in wood of different kinds, makes excavations and builds galleries so that it can move from one point to another without being exposed. This suggests that we have as yet omitted to state that all sermites shun the light, except during the nuptial flight; in fact, the workers and soldiers are almost invariably blind, although with certain African species of the genus Hodotermes facetted eyes occur in these castes and they issue from holes in the ground during the heat of the day and cut grass. There seems to be some question, however, whether these creatures really belong to this group. It is supposed also that these galleries keep the right degree of moisture, since in dry air these creatures die. Many thousands compose a community. The period of development apparently occupies from eighteen to twenty-three months.

Probably in the whole range of insects treated in this book there is no species which offers a better and more convenient field of study than the common Termes flavipes. I feel sure that wh.l we know about it is but a small fraction of whit remains to the learned, and it is everywhere so abundant that the earnest observer need never be without material.

Just as with the ants, and also with some of the social bees, so that we may, in fact, say just as with all social insects, in the habitations of termites will be found many guest insects. Such insects in ants' nests are known as Murmecophilons; in termites' nests they are known as Termitophilous insects, and the study of these insects, in the United Stiltes, offers an almost unexplored field. Mr. E. A. Schwarz has paid some attention to them, and in the Proceedings of the Entomological Society of Washington (Vol. I, pp. 160, 101) hals given al list of mine species of beetles found living in termites' nests and has pullished some very interesting notes ihout them. No true hymenopterous parasites of termites are known, unless the curious, hig-headed challis thes of the genus Caratomus should prove to be parasitic upon them.

The dampe done lip temites in tropical regions is very great. In Centrall America it seems almost imposshle to erect wooden telegraph proles which will list for any length of time. since they are tunneed hy these creatures and weakened to their

White Ants

fall in an incredibly short time. Accounts of damage done in houses, both in Tropical America and in Africa, as well as in British India, occur commonly in the literature. A striking account, however, of damage in Rhodesia occurs in the Zambesi Mission Record for January, 1901, written by the Rev. A. Lebreuf, and which is quoted in Nature. '. It is no uncommon thing' silys the writer 'for the colonist, on returning from his dily's labor, to find the coat he left hanging on a nail on his cottage wall and the books on the table absolutely destroyed by these tiny marauders.' Nor is this all. 'On awakening next morning,' writes Mr. Lebouf, 'you are astonished to see in the dim light a cone-shaped object rising from the brick floor a short distance from your bed, with two holes on the top like the crater of a miniature volcano. Upon closer examination you discover that the holes have just the size and shape of the inside of your boots, which you incautiously left on the brick floor the night before. They have given form and proportion to an ant heap. and nothing is left of them except the nails, eyelets and, maybe, part of the heels.'

There are certain insects which belong to the family Embiidx which seem to have a relationship to the termites lut their detailed consideration may well be omitted from this work, since but a single species is known in North Aneerica. namely, Oligotoma hubbardi Hagen, and which occurs rarely in Florida.

THE STONE-FLIES

(Order I'licopicra.)

This orde is not a large one and contains only the single family Perlida, of which thirteen genera are represented in North America and less than a hundred pecies. The stone-tlies have mouth-parts formed for biting; the body is long and soft and flat; the wings are four in number and are membranous, the hind wings being much larger than the fore wings, folded in plates, and lie upon the abdomen when at rest. The antennx are long and thread-like. The larva are aquatic and are usually found under stones in running water. The flies are commonly seen about water courses in the first warm days of spring. and the cast skins of the ny:mphs, or pupa, sticking to stones and logs on the banks of streams are very common objects. The eggs are produced in enormous numbers. They are small and are probably dropped on the surface of the water, as with the May-flies, but some of them, even after they issue from the abdomen enclosed in a kind of capsule, are carried about by the female. One female may deposit 5.000 or 6,000 eggs. The larva when hatched are very active ard are carnivorous in habits, feeding upon the young of the Mav-tlies and other soft-boded aquatic animals. They are as a rule verv tlat in form. which enalles them to crawl under healvy stones it the bottom of swift running streams. The head is large and tlat and the eves are large and compound. They resemble the adults in general structure except that they lack the wing . There are as al rule two long protruding filaments at the allal end of the body. and they breathe by means of tracheal gills. The legs are thattened and are fringed with hairs, fittong the insect admirilhly for swmming. The long antenna are present in the larve also and when the larsal is hidden beneath a stone frequently the antemae curve around upwards, apparently to give it warning of the approach of prey. The faws are strong and toothed but are hidden by the

The Stone-Flies

upper lip. The full-grown nymph is not at all pupa-like and is active.

The enormous number of eggs laid by stone-flies indicates that the chances of successful larval growth are rather small and as a matter of fact these larve are extensively eaten by fishes. It makes no difference to the average fish whether he eats a carnivorous stone-fly larval or a vegetable-feeding May-lly larva. If there were economic entomologists among the fishes these would devote themselves to the destruction of the stone-fly larve in order that the general food supply of May-flies might be leit undisturbed for fish food!

We have said that the larva breathe by means of tracheal gills. As a matter of fact, however, with some species there are no such gills and no spiracles. These larve must take their oxygen from the water through the skin, the ultimate trachex being especially numerous in the spots where the spiracles would be if there were any and the skin at this point is especially thin. This method of breathing has been already mentioned in our accounts of the larva of the Chironomidx and of the larva of the internal feeding parasitic Hymenoptera.

An aquarium student with an aquarium so constructed as to maintain a constant current of water will do good service in fully elaborating the life history of any of our common species.

DRAGON-FLIES

(Order Odonata.)

Excepting the butterflies, there are few more attractive and graceful insects than the "dragon-flies," as the members of this order are generally termed. They are insects which have always attracted attention, and which are known by a variety of vernacular names, of which dragon-fly is the commonest English

Fig 243-A dragon-fly: Hathemiv, Iydia.
term. They are known in some parts of the country as "devil's darning needles;" elsewhere as "snake feeders" or "snake doctors;" in Scotland as " flying adders," and in some parts of England as " horse stingers." Although the insects are perlectly harmless, these names well indicate the existence of numerous popular superstitions. Some believe that they will sew up the cars of bad boys; others that they sting inorses: still othel. that they act as feeders and physicians to snakes, espectally to water snakes.

The Odonata are slender insects with a very large head which moves most easily upon its sender neck, even rotating to a 303
considerable extent. The eyes are very lagge, but the antenna are small and short. The wings are elongate, nearly equal in size, and have many veins, both longitudinal and transverse, so that the entire surface of the wing is cut up into inany small cells. The legs are placed near the front of the thorax, and all curve forward and are used for grasping the prey of the dragon17y, and never for walking. In fact, the legs are unfitted for walking, although they are used to grasp the twig or other object upon which the dragon-lly may rest. All of the dragonflies are aquatic in their early stages. The metamorphosis is complete in so far that the larvae differ radically in appearance from the adults, but the pupa is not quiescent at any time. It is very active, and feed; up to the moment when the final metilmorphosis begins. The jaws in all stages are strong, and both larva and adults are extremely active and are among the strongest and inost graceful flyers of all inseets. Their flight is so perfect that it has been seriously suggested that flying machines should be modeled after the flight mechanism of the e insects.

A very peculiar fealture of the adult is the curious separation in the male of the intromittent organs from the opening of the ejactalatory duct. The former are placed on the under side of the second abdominal segment, while the latter are on the next to the last ventral plate. Therefore, befole copulation, the male curves his abdomen around benfath, so that the ninth segment of the abdomen is brought intu contact with the second, thus transferring the fertilizing fluid to the intromittent organ. The tip of the abdomen of the female is bent around and joins with the under side of the serond segment of the male's abdomen. the male frequently grasping the female around the neck with certain appendages at the extremity of his abdemen. He retains this hold ifter fertilization, and frequently during the entire process of egor-laving. Even with such specics ats descend under the surface of the water to lay their eggs the male has been observed to still retain his grasp of the female's neck, and to be carried down under the water with her.

Uragon-flies capture their prey on the wing and feed upon almost all flying insects, especially the smail ones-that is, the gnats and midges. They alter their direction with pefect facility, and dart here and there. unerringly copturing their prey. Possibly some of the s allest are seized with the jaws, but the larcer $3^{3} 4$

Plate XI.

IRAGON [PIJES

(RID)(CDII ONF-THRU)
116,
dev U. S

2. Perithemis domitias (Lihellulide) U. S., east of Mississippi; W. I. . Argentine Repuhlic
3. Libellul. f-maculata \ddagger (libellulider) Northern U. S.. Fiurope and Asia
4. Jerithenns domitial \& (Libelluldax) U. S., (enst of Mississippi; W. I. . Argenture Republic
5. Pathemis Iydia : (I.ilctlulidae) U. S.
6. Perithemis domitia? (I.ibellulidar) U. S., cast of Mississippi; W. I., Argentine Republic
7. Libellula pulchella \& (Lile-llulidar) (euchec, U. S.
8. Irameal lacerata (Lihellulide) N. A., Hawaitan Isiamels
9. P'achydiplox longipennis ; (Libellulide) N. A.
10. Somatochlora walshii $\frac{3}{}$ (Cordulider) White Mts. of N. H., Me.
11. Lilaellula vibrans; (libelluliday) Eastern and Soutlern U. S.
12. Gomphus phagiatus 3 (Comphidx) Eastera and Suuthern U.S.
13. Libellula plambea (Lshellulidic) N. Y. to S. C.
1.f. Celtheman alisal o (I.ibelluhtar) Cinn, to Ga., Mach., Ill.
15. An.x jumius (Aschnidat) N. A., W. I., Hawabian Islands. K:muchatka, Chin.a
16. Sympetrum ulntisum * (I.小elluliale) Nurthern N. A.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No 2)

APPLIED IMAGE inc

- 6: 3 Eos? Mig Stree:

Rochester New fort * 4609 USA
(716) 482-0300-Phone
(716) 288-5989 - Fa=

ones are undoubtedly captured by the legs, and are consumed during flight, and so rapidly is all this done that it is practically impossible to see the operation. The only way, in fact, that one can know that an insect has been captured is, as Dr. Needham expresses it, to see that the place that once knew them knows them no more.

Flies seem to be their commonest food, but large dragon-flies will eat small ones. Leaf-hoppers and even small butterflies and moths are captured by them. Some forms will occasionally pick up a moth from a weed or a grass stem on which it is resting, and even one of the large swallow-tailed butterflies has been seen captured by a dragon-lly, while Williamsons states that he once saw one holding al large wasp in its jaws. The voracity of a large dragon-fly may easily be tested by capturing one and holding it by its wings folded together over its back, and then feeding it live house-flies. I should hesitate to saly how many it will accept and devour, as I never tried one to the limit of its capacity. Beutenmuller found that one of the large ones would eat forty house-flies inside of two hours, while a smaller one ate twentyfive in ne same time. It is an odd fact that a dragon-fly will eat its own body when offered to him. Even when insufficiently chloroformed and pinned, if one revives, it will cease all efforts to escape if fed with house-flies, the satisfying of its appetite making it apparently oblivious to the discomfort or possible pain of al big pin through its thorax. There is one record to the effect that a dragon-fly has been observed feeding upon the flesh of a dead reptile.

Although dragon-flies are frequently very abundant in swampy regions and about ponds, there are times when they swarm in enormous numbers. Koppen, a German entomologist, has published a chronological account of the records of dragonfly migrations, from 1494 to 1868 . Such migrating swarms seem to have been more frequently noticed in Europe than in this country, but several have been noticed in the United States. For example, Mr. A. H. Mundt, of Fairbury, Illinois, says that between the hours of ; and 7 P. M.. A.ugust 13, 188i, "the air for miles around seemed literally alive with these dragon-flies (Eschna heros) from al foot above ground to as far as the eye could reach, all flying in the same direction, a southwesterly course, and the few that would occasionally cross the track of

Dragon-Flies

the majority could all the more easily be noticed from the very regular and swift course they generally pursued; but even these few stray ones would soon fall in with the rest again. Very few were seen alighting, and all carefully avoided any movable obstacles." This migration was probably caused by the very dry season which had resulted in the drying up of ponds and swamps, and it is piobable that other similar recorded migrations have arisen from the same cause.

Among the insects killed by dragon-flies there must be, of course, some mosquitoes, although the beneficial work of these insects in this direction is greater in the larval stage than in the adult. Dragon-flies are day flyers, $\mathrm{t}: \mathrm{t}$ in cloudy weather and toward evening many moscuitoes are undoubtedly killed by them. Dr. E. A. Mearns, U. S. A., (quoted by Beutenmuller) states that at Fort Snelling, Minn., mosquitoes appeared in vast swarms, and were soon followed by large numbers of dragon-flies after which the mosquitoes were considerably reduced in numbers. Dr. Robert H. Lamborn, noticing in the Lake Superior region the activity of dragon-flies in this regard, years later offered a prize for the best essily or the artificial multiplication of dragon-flies for the destruction of mosquitoes and house-flies. The prize essays by Mrs. Carrie B. Aaron, Mr. Archibald C. Weeks, and Mr. William Beutenmüller were published in 1890 in a very readable and valuable book, but as might have been fureseen the practical value of Dr. Lamborn's suggestion was not substantiated.

The eggs are laid either in the water or are inserted in the stem of some aquatic plant.

In the dragon-flies of two families there is no apparatus for the insertion of eggs into plant scems, and they are therefore either dropped loosely in the water or attached to submerged objects by means of a mucilaginous iubstance which surrounds them. With others, however, there is a curious modification of the end of the body. The sides of the vulva are pointed or roughened, and cut into plant tissue so that the eggs may be pushed into the cuts. Here the female gradually crawls down the stem of a water plant until she is often completely submerged. She is alwavs incased with an air film so that she can continue to breathe under water to a certain extent. The number of eggs is variable, but is usually large. Some : ry curious Hymenopterous parasites live in the eggs of dragon-tlies.

When the eggs hatch the young immediately begin antactive, predatory life under the water, feeding upon other aquatic insects. This food habit is continued throughout their larval or nymphal existence, and as they grow larger they are able to overpower larger and larger insects and even small fish and other aquatic animals. They will kill others of their own kind. and nymphal dragon-flies have been seen to catch and destroy adults in which the wings were not yet expanded. They molt probably a number of times, but the exact number has not been recorded for any species, so far as I know. The most peculiar feature of the larva or nymph is the strange modificition of the mouth. There has been a backward growth of the lower lip and this has become hinged so as to form a long, hinged apparatus with sharp teeth at its extremity. It can be folded to cover the lower face like a mask. The structure has been called a mask, and when it is folded the head of a dragon-fly larva seen from the front looks like that of a bulldog. It is more innocent looking than that of a bulldog simply because we know what a bulldog can do, but the moment that the larva approaches near enough to its prey the innocent looking mask is unfolded and darted out, and the probably unsuspecting aquatic insect or small fish is seized by the teeth at the extremity and drawn back into the mouth.

Dragon-fly larvx breathe in a peculiar way modified to some extent with the members of the different families. The rectum is furnished with very many tracheal branches, forming numerous loops and even penetrating the walls of the intestine. Water is sucked nito the rectum, and "hese "rectal gills," as they are termed, derive their oxygen from this water. This same feature afiords with some species a means of locomotion, for this water which is sucked in for breathing purposes may be ejected violently, the effect of which is to send the larva ahead. This same prinsiple has been used in certain mechanical toys, and applications have even been made for patents on a similar method of propulsion for vessels. With some there are external abdominal gills, both lateral and caudal. while when the nymph becomes full grown and is ready to leave the water breathing is taken up by certain obscure spiracles. There is still some doubt as to the exact method by which they begin to breathe air after leaving the water, and it is a subject which will bear much further investigation.

Dragon-Flies

When the nymph becomes full grown, it has changed its form from a rather slender or ture to a broald and flattened one, not resembling the slender bodied adults in the least. It crawls out of the watter on the bank upen the stems of water plants or upon the roch and later its skin splits down the back, and the adult dragon-tly emerges. Empty skins of these nymphs are very common objects about watercourses.

Rather more than two thousand species of dragon-flies have been described, and of these something less than three hundred inhahit the United States, of which about two hundred and twenty-five species are peculiar to this country. According to Kellicott, about one hundred species are found in the State of Ohio, and Williamson thinks that even more are to be found in Indiana. In many places dragon-tlies are disappearing, owing to the drainage of their breeding places.

Ot account of the beauty of the adults and the interest attaching to their habits, they are becoming favorite subjects for c llections, and there are now a number of earnest students of the Odonata in this country. The recent death of the great master of dragon-tly science, Baron de Selys-Longchamps, of Belgium, December 11,1900 , hals called renewed attention to this fascinating group.

The nymph dragon-tlies are well adapted to aquarium study. They are easily collected and easily kept. The debris at the bottom of ponds can be brought up with a rake, and the nymphs thus collected placed in a bucket and carried home to the aquarium, which should be furnished with sand and aquatic plants. The best time for collecting them is in the spring and early summer.

TABLE OF FAiNILIES

Wings alike, held vertically in repose; eye, constricted at base, peduncled

Front wings dissimilar from hind wings, held horizontally in repose; eyes not peduncled

Platt: XI.I.

I)RAGION FIIES

IIf.

1. Micrathyria herenice ; (Libellulide) Fastern and Southera conists of U. S.
2. Micrathyri. berenice o (Libellulide) lastem and Somthem coists of U.S.
3. Mieratheria herenice of (I.ibellulide) Eistern and Southern co.ists of U. S.
4. Aschna constrictia : (Aschinider) N. A, Kanachatka, Siheria

- Libellula exusta $₹$ (Iabe'luliday Me. and Mass to Vancoured Ishands, N. J. Pal., Ce... Fla.

6. Libellula exusta: (I.inellalide) Me, and Mass. to Vameourer Islands. N. J. Pil., Gil., Flı.
7. Ipiaschn:a heros (Aischinidx) N. A., e:st of Mississippi

א. Mesothemis simplicicollis : (I.ibellulide) U. S. . east of Rocky Monatatins, Mex., W. I., Bahamas
9. Mesothemis simplicicollis of (libeclulide) U. S. , east of Rocky Mountains, Mex., W. I., Bahimas

1-Wings with at least five cross veins between the first and second longitudinal veins and before the first bradk in the wing (antecubitals) Family Calopterygidar
Whigs with but two such cruss veins. Family Agrionidar
2-Arrecubitals of the first and second rows not meeting except at base of wing . 3
Antecubitals of first and second rows running into each other. 4
3-Eyes wide apart . Family Gomphita
Eyes touching at a single point. Family Cor,tulegastritar Eyes touching for some distance. Family Aschmidar
4-Eyes with tubercles behind.... Family Corilulidax
Eyes not tubercled behind. Family Libelullidue

DAMSEL-FLIES
(Fimily Caloptoryside.)
This family and the following, the Agrionidx, are by some l. te authors grouped together, the Calopterygidx being considered simply of subfamily rank and called Calopterygina. Both groups, as pointed out in the table, hold their wings vertically in repose; that is to say folded together over the back, instead of spread out horizontally. They are called by some authors damsel-flies.

The species of this family, and especially those of the genus Calopteryx, seem to live preferably in wooded places along the banks of running streams. Their wings are frequently so dark as to appear almost black, and they have also something of a metallic lustre. The body is strikingly metallic, and of an iridescent green and blue. The large pop eyes, which seer.l alinost stalked like those of a crab, are characteristic and distinctive of this and the following group. The flight is not strong, and they are seldom found far from the banks of the stream or fond where they were born and where they lay their eggs.

We have but two genera in this family, namely Calopteryx and Hetarina. The Hetarinas have clear u ings which however, sometimes bear spots near the tip, and in the males have a brilliant red area near the base of each wing. The Hetxrinas are not woodland species like Calopteryx, but are found near running water in the open.

Pliate XLII.

IRAGON FLIES

fig.

1. Pantala flavescens (Libellulidae) Asia, Airica. America
2. Celithemis ornata ; (Libellulide) Coast of U. S. from Maine to Florida
3. Celithemis ornatal f (I.ibellulide) Coast of U. S. from Maine to Florida
4. Pantala hymenea (hihellulide) U. S., Mex., Cul b.Calapagas lsl:minds
5. Sympetrum corruptum (Lihellulide) N. A., Ochotsk
6. Somatochlora elongat:a v. minor (Cordulidx) Notheastern U. S.
7. Macromia ilinamsis (Cordulidx) Fastern U. S., Quehec
8. Sympetrum mhicundum \& (Lihellulida) Eastern U. S. ind Camada
9. Sympetrum ruhicundum 3 (Libellulidx) Eistern U. S. and Canad.a

FAMILY AGRIONIDAE

These are the true damsel flies, and are the small, graceful species with extremely slender bodies and narrow, clear wings, which are very commonly found flying over large bodies of still water, and with which every one who has ever rowed a boat on a fresh water lake must be perfectly familiar. They are found in great numbers in the reedy borders of the fresh :vater ponds and lakes over the entire country. All of our North American species are small, but in tropical regions they grow to large size, and some South American forms are among the largest species of the order Odonata. They do not fly high in the air, but frequent low-growing aquatic vegetation. The colors as a rule are rather dull, but the slender bodies of some are brilliantly blue, green or even yellow, and sometimes red.

The family is a large one, and about seventy-five species are known in this country. Lestes and Enallagma are the largest genera.

TRUE DRAGON-FLIES

(Fimily Gomplida.)

In this family and the following ones the wings are held horizontally when the insects are in repose; also the eyes are not pop eyes. This group is also by late authors considered a subfamily of the Æschnidx, and is then called Gomphinæ. They are separated from their nearest allies from the fact that their eyes are widely separated. The species are rather large, and with certain forms the end of the abdomen appears much swollen, especially in the male; as, for example, in the interesting form known as Gomphus vastus Walsh.

Kellicott says of these dragon-llies: "Their habits are various. Some are found only about the rapid streams or wave-tossed lakes; others by reedy pools; while others haun. sloughs mantled by lily pads. They do not fly about in apparent sportiveness, as do the Libellulas. The females rest among the adjacent foliagt or on the ground in some ncarby pathway, repairing at intervals to the water's edge or skimming the roughened surface of the rapid stream or disturbed lake for oviposition. The males rest nearer the water, skirt the bordering aquates, or explore the water far from shore in search of the ovipositing females. Copulation is at rest in low herbage or high up in trees. The female oviposits unattended by the male, and the eggs are washed from the tip of the abdomen by repeated dips into the water either in some quiet nook among the weeds or in other species far out on the rough surface of swift stream or wind-disturbed lake. Most species ?y in early summer, some in mid, and a few late in summer."

FAMILY CORDULEGASTERIDAE

This group is also considered by recent authors to be simply a subfamily of the Æschnida. They resemble the species of the foregr'ing group, but the eyes touch at a single point on the top of the head. They are all large insects, and there are comparatively tew of them in : United States. None of them are common. The colors .4 : not metallic, but their bodies are usually banded with brown and yellow, the wings for the most part being nearly clear.

Needham says: "The imagos are strong of fight and are oftenest seen coursing back and forth over some smi'll stream, flying on a regular beat, and passing and repassing the same point at intervals of a few minutes. Tie collector may take advantage of this habit and so station hinself that he may reach the specimen as it passes and capture it if dexterous enough with the net. The nymphs live on the bottom in shallow water, buried in clean sand or in vegetable silt. Though buried, they do not burrow, but descend by raking the sand from beneath them by sweeping lateral movements of the legs. When deer enough, they kick the sand up over the back till on!y the elevated tips of the eyes and the respiratory aperture at the tip ot the abdomen are exposed. By placing a live nymph in a dish of sand and watcr, and watching, its method may be obse ved in a very few minutes. The whole comical performance reminds one strongly of the descent of an old hen in a dust bath." The same authority says that, when once placed, the nymph .vill remain for weeks without changing position, but when some little incect cones nea it throw's out its jaw's and captures it. One s was seen in the nymph stage to capture and eat young trout as long as the nymphs themselves.

FAMILY AECHNIDAE
This is one of the largest groups of dragon-flies, and com prises many of our largest forms. The eyes meet on top of the head. In coloration and generai appearance they are much like the preceding families but with the majority of them the wings are generally clear with nolly apical brown spots and sometimes they are a little smoky. These large dager-flies are abundantly found all through the summer. They are among the first to appear in spring and among the last to disadrear in the autumn. Their flight is very strong, and the large species are most ferociouslooking creatures. In fact, the largest and most powerful dragonfly in the North American fauna is Epiarschna heros Fabr. One of the commonest forms which may be seen in many parts of the country is Allax junins Drury. On account of the strong flight of these insects they are frequently found far away from the place of their birth seeking their prey in the fields and about open places in the woods, busying themselves continually in the capture of flies and even larger insects. The male and female of Anax junius paired are cormmon objects flying over the water. The female seems to prefer to lay her eggs in stagnant pools or in ponds where the surface is covered with duck weed and other aquatic plants. The female submerges her abdomen in la; ng her eggs. According to Williamson, this species appears in large and compact riocks, some of them numbering several hundred individuals, and they pass tack and forth frequently near the ground as twilight comes on, seeking erpecially swarms of midges.

Six genera are represented in this country, mostly the species belonging to the typical genus Æsehna.

Plate XIIII.

IDRAGON IUI.IFS

16.
17. Tetragoneuria sembapae: * (Corduliata) Fisiern U. S. and Canad:a
18. L.ibellula hasalis 5 (Libellulide) Ontario. U. S., cast of Rocky Mountailss

19. Celithemis eponinal o (lihellulidie) U. S. est of Rocky Mts., Cuba
20. Libellualaxillena * (Lihellulida) (ba.. Ita. La.
21. L.ibellula axillema o (libelluldae) Ga.. I Ia.. L.a.

22. Trannea carolina : (Ibellulialie) Miss to lia.
23. Sympetrun semicinctum \& (Libellulida) U. S.

FAMILY CORDULIDAE

With this group we approach the large family Libellulidx, the Cordulida being distinguished by possessing a single tubercle on the hind border of each eye, and in fact these insects are by most recent authors considered to be simply a subfamily of the Libellulidx, which they resemble in most respects. They are medium sized, or large dragon-flies in which the wings are frequently banded with brown, although in some forms the dark markings occur only at the base of the wings, and some are entirely clear. The body colors may be metallic or sordid. These insects, according to Kellicott, oviposit by flying close to the surface of the water striking the water occasionall." with the tip of the abdomen to wash off the eggs.

This is one of the largest dragon-fly groups in the United States, and comprises some of the most beautiful species. With many forms the wings are beallifully banded with brown, either in a series of cross bands or with large blotehes which sometines cover the basal half of the wings. The abdomens of some species are covered with a whitish powder-like substance which is not seen when the insects first emerge foom the nymph, but which, when they grow old is sometimes so abundant as to make the abdomen appear perfectly white. A ch. asteristic feature of these forms, especially those of the typiall gene. Libellula is :late the abdomen assumes the shape of a prism, with a strong sharp lorgitudinal ridge above the flat sides and a that underside. In some forms the wing markings are not dull brown. but become yellowish and in the very handsome and common Litilluta fulchilla, of Drury, the brown sputs alternate with milk-white spots. They are very abundant about stagnant ponds and such pools als harbor water-lilies and rushes. They are favorite tood of the king bird.

The females poise themselves close to the surface of the Water, remaining almost motionless and striking the water with the tip of the abdomen in the act of laying their eggs.

With the exception of the Agrionida these are the most numerous dragon-flies in this country.

Needham says that the nymphs are sprawlers upon the bottom, mainly in shallow watter, or clamber over fallen plant stems, and are protectively colored.

A single egg-mass of one of these dragon-fies has been observed by Needham to contain 110,000 eggs.

Williamson has shown that one of the spectes has the halbit of resting on the top of a rush. each one being, apparently, proprictor of a certain territory. When another one encraaches. "he is quickly hustled away by the rightful and irate owner."

Pi.ate XLIV.

1)KAGON FLIES

FIG.

1. Basiaeschna janata * (.Aschnide) U. S
2. Libedlula cyame: * (Libellulidx) Mass. to Va,
3. Libellula cyalle:a \& (Lihellulide) Mass. to V.s.
. Boncria vinosa : (Aschnida)Camada, Eastern U. S. Atk
Pentomhinia intacta: (Libellulider) Camada to Pi.. West to
S. Dakota, Nev.. Wash.
b. Lencorhinia intactal (Libellulidx) (anoda to Par. west tu

Wallatus (Cordulegastrida) Eastern U.S. and
Caniala tiferum - (Libellulidae) U.S
\& Svipetrum costifermm (Libellalide) U.S.
9. Sympettum costiferum + (Libellulide) U. S

THE MAY-FLIES OR SHAD-FLIES

(Order Ephemerida.)

The so-called May-flies, or shad-flies, are the insects which constitute this order. They are known by one name or the other by almost every one who has seen them swarming about the electric lights curing the summer or who lives in the vicinity of some large watercourse in which these insects breed in incalculable numbers. Structurally speaking, the adult insects are very interesting creatures. They are distinguished from other insects by their short antenne, their extremely large front wings as compared with the very small hind wings, the absolutely atrophied mouth-parts and the long, slender filaments, two or three in number, at the end of the abdomen. The transformations are complete and the early stages are always passed in the water.

The larvæ are active creatures with long, strong legs, and breathe by means of tracheal gills. They both swim and crawl and feed very largely upon vegetable matter, diatoms and conferver being found in their stomachs. They may be found under stones in running streams or swimming among water plants in quiet waters, or they may live at the bottom more or less covered with slime or mui. Some forms burrow into the sand-banks of rivers. The pupa or nymph is also active and feeds. It has small wing pads, and. when ready to transform, it floats upon the water, and the skin of the back opens and the winged insect flies out. The emergence is extremely rapid and the insect flies away almost immediately after the skin cracks. A very curious phenomenon occurs with these insects which is not found with any other insect, and that is that there is a mat after the fly issues from the nymph. It flies away to the shore in the condition called the sub-imago stage and again the skin splits and the true-imago, or adult, issues. This shedding of the sub-imago skin is said sometimes to take place while the insest is flying in the air.

The life of the adult is short: in fact, these insects were named after the Ephemerides of the Greek mythology, creatures which lived but a day, and from this root comes our common

The May-Flies or Shad-Flies
word, ephemeral. But they live longer than a day. They do not eat, since, as we have stated, the mouth-parts are atrophied and the alimentary can:al is not fitted for the digestion of food; but it has been shown that where the air is not too dry some of them can live for several days. It is stated :'rt Curtis kept one alive for three weeks; but in general they de within three or four days, and frequently in a few hours, or even less time. The males are readily distinguished from the females from the fact that with the males the hind legs only are atrophied or feeble, while with most females the fore legs as well as the hind legs are too feeble to support the body. When at rest the front legs are generally extended straight in front of the head, and frequently very close together, the anal setæ usually slanting upwards. As a rule they remain quiet during the day, limiting it ir flight to the cooler hours of sunlight or extending it later in the evening, just after sunset. Where there is al strong artificial ligitt they will fly until late in the night. The numbers in which these creatures swarm are often extraordinary. 1 drove through a dense cloud of then once on the binks of the St. Lawrence River in the month of June when both the rir and the ground and our clothes looked as though the heaviest kind of a snow-storm were raging. Along the shores of the Great Lakes their bodies are frequently massed in great windrows miles in length and of a very considerable thickness.

Most of them couple during flight, the male undern st. Egg-laying is usually performed in fresh water, though one exotic species lays in brackish water. The females of some species discharge the contents of their ovaries at once in the form of a pair of egg-clusters. These upon reaching the water rapidly disintegrate, and the eggs sink to the bed of the river or stre.im. Others drop their eggs gradually, a few at a time, the female either alighting on the surface of the water at intervals to wash off the eggs that have issued, or she creeps down into the water. enclosed within a film of air, to lay her eggs on the under side of stones, after which she lloats up to the surface and either flies away or is drowned. In one case a female has been seen to deposit living larva.

These insects can readily he hred in fresh water aquaria, hut Faton says that it is important not to grow Ranunculus in the aquaria, because the sap exuding from its broken stems appears

Piate XL.V.
IRRAGON FIIES
FIG.

1. Argia violacea (Agrionidar) Me. to Vil., Ill., Tex.
2. Argia sedula f (Agrionide) Val. Tex., Ohio. !nd.
3. Argi: sedula ? (Agrionida) Val. Tex., Ohio, Ind.
4. Argial violace: of (Agrionidae) Me. to Va., Ill., Tex.
5. Libellulat semifinctata! (libellulide) Eastem and Southern U. S.
6. Libellula auripemis; (Libellulide) Coast from N. Y. to Tex., Ohio, Cuba, Isle of Pines
7. Pachydiplax longipennis of (Libellulidat) N. A.
8. Lipicordulia princeps (Cordulida) (Iteloec to Ct., Pil., Md., Gil., Mich., Ill., Tex.
9. Didymops Mamsversal (Cordulide) Quebec to Csil., Mich. Ky., Tex.

$$
\sin
$$

$$
=-20 ;
$$

to be poisonous to the larvx. After the eggs hatch the larvx live upon mud or the small vegetation which grows on stones and the stems of large water-plants. Some of them are apparently predaceous. They cast their skins several times during the first few days after their bith.

These larva, or nymphs, as all of the eary stages of the Mayflies are called, are very important fish food. Forbes has found them to be the most important food of the white bass, the toothed herring, the shovel-fish and the croppies, while the rock bass, the common perch, the striped bass, the darters, the catfish, the suckers, and many other freshwater fish feed upon them very largely. The writer has been appealed to quite recently on the subject of the possible extermination of these insects along the St. Lawrence River, where they cause so much annoyance by their swarming flight, but their value as food for fish would make such an extermination extremely undesirable. The St. Lawrence is noted for its fine fish and the fishing possibilitics attract so many summer visitors to its shores that the temporary annoyance of the shad-nies should joyfully be borne.

The larval life is a long one, lasting from one to three years, and the number of molts is very large. There may be as many as twenty. The adults, as well as the larva, are favorite fish food. Of the swarms that issue, many meet their ultimate resting place in the water, or more strictly speaking, in the s:omachs of fishes. Fishes are so well acquainted with them that imitation shad-flies afford the best bait in certain regions. In England the so-called flies known as duns, drakes, and spinners are all imitations of Ephemerids. Although so enormously numerous in individuals, the Ephemeridal is not a large group in number of species, and only about three hundred have been described. There must be very many more, however, and possib! the difficulty with which these insects are preserved in collections accounts for the fact that comparatively few have heen named. If pinned they shrivel up and dry into such queer shapes that the coloration and structural characters become obscure. Good alpuarium studies for any of our North American species will be found to be interesting and will be of valuable record.

A very good table for determining the nymphs of May-flies has been prepared by Needham, and will be found in Bulletin 48 of the New York State Museum of Natural History, Albany, 1901.

THE SPRINGTAILS AND FISHMOTHS

(Order Thysinura.)

The insects of this order are usually of very small size, and are wingless and have practically no metamorphoses. They comprise the little insects known as springtails, bristletails, fishmoths or slickers. They have three pairs of !egs, the mouth-parts, often hidden, are formed for biting, and the skin is delicate. The order is supposed to comprise the most generalized or simplest forms of insect life and although there is some reason for considering that they are degenerate insects the consensus of opinion is that they are living representations of primordial insects. Some of them possess a very remarkable leaping arrangement in the shape of a spring-like process on the under side of the abdomen, whith enables them to jump in an extriordinary way, some of them have long abdominal appendages or processes at the end of the body, and still others have short leg-like precesses on the under surface of the abdomen. The order as at present understood comprises two suborders, namely the Cinura and the Collembola. Formerly some curious creatures belonging to the genus Scolopendrella were considered as belonging to this order and were placed in a suborder by themselves-the Symphyla-but it is thought now that these little creatures are more closely related to the Myriopoda than to the true Insecta.

The two remaining suborders may be separated as follows: With bristle-like and many-jointed appendages or forceps at the
end of the abdomen. which is composed of ten seqments and does not possess a sucker on the ventral side

Suhorder Cinura.
With a forked sucker on the under side of the first aldominal
segment, and the abdomen, which is composed of not more
than six segments, furnished with a spring-like apparatus near the tip, or without appendages ...Suborder Collimbola.

I’ เ1!: XI.VI.

URACON IIIISS

(K11H:I:U ONI-HHKU)
iki.

1. Lestes forcipatus a (Agrionid.e) IJ. \&
2. Amphiagrion s.ancimos (Agrionide) U.S.

3. Lestes forcipatus $\&$ (Agrionidie) U. S.
4. Amphiagiton sallectum \& (Aglionidie) U. S.

5. Enallagma exsalans ? (Agrionider) Me., N, Y. io Va., Ill. Iex.
6. Hetarina ambericalla * (Calopteryghter) Me. to Md., west to Wis. and Mu.
7. Caloptory angusifumis • (C.aloptorymid.e) l'a., Ohior, Ky. (ia.
 Wis. .llld Mo.

8. Argia putrida (Agrimida) !astern U. S. and C.allada
 C.alliad.
9. Caloptersx maculatal (Caloptervgida) bastern U. S., allal C:anlada
10. Anomalagrion hastarumif (black). (Agrionid.e) Finstern and Southern U. S., Cuba, Hati, Venconelat, Cablapages Ls.
11. Anomalagrion hactatum of (oramge). (Agramidat Fastorn and Southerin U. S. Cuba, Hati, Vemeatal, Cialapagos Ls.
12. Amomalagron hastitum : (Agrionid.e) Eastern and Southern U. S., Cuba, Hati, Venezaclia, Gialapagos Istants
13. Hetarina tricotor s(C.hopterygide) P'a. (i.t. Tex., I). C.

SUBORDER CINURA

There will be no necessity for generalizati is regarding this suborder, aside from the mention of the characters by which it is separated from the Collembola. In this country it is represented by species belonging to three distinct families, which may be separated as follows:

Mouth-parts buried in the head
Mouth-parts not buried.
Family Lepismatidie 1-Anal end of the body with a pair of forceps. . Family Japygidae Anal end of body with long antenna-like processes.

Family Campodecida

FAMILY LEPISMATIDAE

The little insects which are known to housekeepers, particularly in the Southern States, as the silver fish, or fishmoths, or slickers. belong to this family. Thev are covered with scales, usually of a silvery appearance, and have three long antenna-like

Fig. 244 -Lepisma domentica, (Redraten from .Ifariath
processes issuing from the end of the abdomen. These insects are often very troublesome household enemies of books, papers, starched clothing, and occasionally stored foods. They also 3_{5}^{5}
damage the card labels in museums. They move very rapidly, and make active efforts to conceal themselves. They shun the light, and slip from the fingers with ease, the silvery scales coming off and, the insect escapes at the expense of its clothing. In damaging the cloth bindings of books, it is really trying to feed upon the paste witl which the cloth is stuck to the boards. Heavily glazed paper is attractive to them, and they will eat the glaze from drafting linen. They are found commonly in old houses in rather damp places, but one of our species seems to prefer the vicinity of fireplaces, crawling rapidly over hot bricks and metal and showing most surprising immunity from the effects of high temperature. They are readily destroyed by a free use of pyrethrum powder.

Nothing is known about their life history. Their egrgs have not

Fig. 245-1 epinma sarcharina. (Redoun' from Marlatt.) een described, and of the number of molts and the rapidity of .evelopment we are absolutely ignorant. None of these points ought to be especially difficult to ascertain.

Ten or more species occur in the United States, and those which are not found in houses are generally found in decaying wood.

FAMILY JAPYGIDA

These little creatures differ from the other Cinurans in the possession of a peculiar forceps-like structure at the end of the body. They are slender in form, and are found in moss or in shady places at the edges of woods. They look like young earwigs. Nothing is known of their development or life history.

FAMILY CAMPODEIDA

These little insects have elongate and cylindrical bodies, and the first seven of the abdominal segments bear each a pair of appendages on the under surface. We have only three species in this country. They are found in loose, darnp earth in which there is much . agetable mold.

Piali: XI.VII.
DRAGON PIII:S
$1 / \mathrm{f}$,

1. E:nallagma signatime o (Agrionider) lastern U, S.

(1. Aggia apicalis + (Agrimbide I:astern U. S.

2. Agiat putidal (Agrinnida) Fastem (i. S. and C.mad.a. Sombem U. S.

3. I:n Illagma civik f (Agriontada) N. A.
4. Agia putrida\& (Agrimbie) Eatem U. S. and Camada. Sonthern U. S.
5. Finalluma civile + (Agrimidar) N. A.
6. Lates municultus * (Agrionid.x) W. S. and Camad.a
7. Argia bupmetulita $\stackrel{t}{\circ}$ (Agrionidia) N. J. .mad Pia to Fla.

SUBORDER COLLEMBOLA

This suborder is composed of very minute insects which possess the faculty of springing suddenly, and which when alarmed make use of this means of escaping. They are found in the spring in the Northern States on bright sunny days when the snow is thawing, frequently in great numbers on the surface of the snow. They are also fount on the surface of water, in old wells, and even at considerable distances under ther surface of the ground feeding apparently upon vegetable moid.

Five families are represented in the United States, which may be distinguished by the following table:

A ventral spring below the abdomen 1
No ventral spring below the abdomen Family Aphoruridax 1 -Ventral spring on the second from last abdominal segment .

Ventral spring on the next to the last abdominal segment . . 2 2-Abdomen elongate, cylindrical, much longer than broad.

Abdomen globular, but little longer than broad............ 3
3-Last segment of the antennæ long, ringed
Family Smynthitriate
Last antennal segment short, with a whorl of hairs.
......................... Family Papiriidar

FAMILY APHORURIDA

This group is composed of small insects which have no ventral spring. They are soft-lodied, and move slowly, and are very seldom noticed although not uncommon.

FAMILY PODURIDA:

The Podurids are among the most abundant of insects, atthough on account of their excessively small size they do not attract much attemtion.

We have something more than a half dozen species in this country and one of them, Achorules niticola, is the form, as one might know from its name, which is commonly found in the late spring upon the surface of snow.

They are commonty found in deep soil which contains more or tess soit humus, and have been taken in a stiff clay subsoil at a depth of six feet, but they had probably penctrated to this depth ly following the path of rootlets. T iey are found under the surface of water, on mushrooms, and are common among dead teaves in the woods.

The eggs of one species have been observed. They were fifteen in number, spherical. white, and one one-hundred and eightieth of an inch in diameter.

FAMILY ENTOMOBRYIDAE

The forms helonging to this fombly afe found in the carth, in caves, in greenhouses, and in hothouses, on the bark of old trees,

in cellars, under logs, and in similar locahties. One species, Lepidociritus americamus Marlatt. is commonly observed in houses in situations similar to those where one finds the silverfish or slickers. I! is shown in the accompanying figures.

The development of none of these insects is understond, although the eggs of one European species have been recorded as being laid in the spring.

FAMILY SMYNTHURIDA
These are globular-bodied with long four-jointed antennx. The ventral spring is composed of a basal portion and two arms. We halve al half dozen or more described species in the United States. They occur in vegetable modd, upon decaying wood. and feed upon the spores and mycelium of fungi. Some are foriad upon aquatic plants, and some under stones in woods. Lubbock, writing of one of these minute insects, Smbnthurns lutells, salys: "It is very amusing to see these little creatures coquetting together. The male, which is smaller than the female. runs around her and they butt one another, standing face to face and moving backwards and forwards lake two playful lamis. Then the female pretends to run alway, and the male runs after her, with a queer appearance of anger, gets in front and stands lacing her again; then she turns round. but he, quicker and more active, scuttes around ino and seems to whip her with his antenne; then for a bit they stand face to face, play with their antenne, and seem to be all in all to one another."

FAMILY PAPIRIIDAE
These little creatures are found in moss. and do rot seem to be comman, only four species having been recognized in the United States

Plate XLVIII.

DRAGON FIIES

Fig.

1. Argia tibalis ? (Agronida) kastern and Sombarn U. S.
2. Argia thialic ${ }^{\circ}$ (Agrionidae) Kistern ind Southern U. S.
3. Lestes uncittus ? (Agrio adie) U. S. and Canada
4. Enallagma carunculatum ; (Agrionide) Wis., Ohio. Ill. Ind.
5. Fallagmal carunculatum ${ }^{\text {(}}$ (Agrionide, Wis., Ohio. Ill. Ind.
6. Lestes congener: (Agrionide) U. S.
7. Enallagma traviatum o (Agrionidie) N. Y.. M:as.. Ohior. Ind.. 1). (..
s. Enatligula traiviatum * (Agrionidae) N. Y., Mass., Oho. Ind., I). C.
8. Finallagmat calverti (Aerionidie) Northern N. A.
9. Enimlagma antennathom o (Agrionidie) Ohio. N. Y., lowit, III., Ind.
10. I:nall.ıgma antemattum * (Agrionidar) Ohio. N. Y., Inw:I, III. . lıai.
11. Finillugm:a apersum ? Fastern U. S
12. Finallamia durman Fistern U. S. and Camada, Sonthem U. S.
1.4. Fithromma ionditum \& Fistern U. S. suth toll. C.
13. Eryhhommal conditum : fistern U. S. somth to I) $(:$

COLLECTING AND PRESERVING INSECTS

COLLECTING APPARATUS

The old-fashioned entomologist used to go out armed simply with a net, and pin his captures to the top or brim of his hat. Some of the modern entomologist zo into the field laden down with all sorts of apparatus-a large haversack filled with boxes and bottles, two or three different kinds of nets, and with pockets bulging with hatchet, trowel, saw, forceps, knives and other small things. It is just as bad for an entomologist to go out laden down in this way as it is for soldiers to take long marches with unnecessary impedimenta. As a rule one should go out after one class of objects, pre! red. however, to capture other interesting specimens, and he should take with him as prime necessities one net (and a proper sweeping net is the most use?.:), one or two cyanide bottles for killing specimens, a few small pill boxes and a few assorted via * containing dilute alcohol or formalin, and that is really all that is necessary, unless he is after aquatic insects or those which live in old logs or in trunks or branches of trees, in which case a water net or a hatchet will be necessary. Most collecting apparatus can be purchased from dealers in such things. The following firms issue price lists which may be had on application, viz: Queen \& Co., Inc.. 1010 Chestnut St., Philadelphia, Pa.; A. Smith \& Sons. 269 Pearl St., New York City; John Akhurst, 78 Ashland Place, Brooklyn, N. Y.; The Kny-Scheerer Co., 17 Park Place, New York City; American . Entomological Co., 1040 DeKalb Avenue. Brooklyn. N. Y.; Noyes Bros, and Cutler, 396 Sibley St., St. Paul, Minn.

The Net.-There are three main kinds of nets-the light butterfly net, the strong beating: or sweeping net and the water net. The buttertly net, which is a very handy one for catching

Collectin: and Preserving Insects

flies, dragon-flies, int-lions, scorpion-flies and similar insects with more or less fragile wings, is made in a number of different ways and several excel-

Fig. 2.49.-The butterfly net frame. (After Riley.)

Fig 2 50.- Beating net, opened and attached to handle, with frame of same folded. (Aficir Abesentotter.) lent ones are for sale by dealers above mentioned. A fairly satisfactory one can be made at home in the following manner: Bend a strong piece of iron wire into circular shape, the ends being abruptly bent

Fig. 249.-The Sanborn net frame.
down at right angles so as to fit into two grooves cut in the end of a walking stick, to which they are permanently fastenced by a copper wire. A pointed net of silk gauze, tarleton or swiss, a thin light quality being used, is then sewn around the wire frame which should previously be covered with some heavier cloth.

The Suecping or Beating Net.-Very many insects feed or rest upon grasses and low plants, and the beating net, which is made on the same principle as the butterfly net, is a most useful instrument with which to collect these forms. It should have a strong frame and the eloth of which it is composed should be light in color and strong like cheese cloth. The beating net is not necessarily pointed but may be rounded at the bottom. The collector passes the net several times quickly over the low shrubbery or grass and then sits down to examine his captures and remove them to the cyanide bottle. The ring of the beating net should be especially strong, either of brass or iron and of one or two pieces and should be fastened rigidly to the handle either by means of a special device, by clatups, nuts and screws, or by copper wire as

Fig. 251.-A good hand net. above mentioned. The reason for this special strength is that sometimes it is desirable to sweep tough bushes or the low branches of trees.

Ti:p Water Net.-The water net may be a simple sag net with a short handle, the frame being oblong

Fig. 252.-simall water dif net. (Aftcr R...cy.) and the net or bag being of some very coarse material like grass cloth or millinet. A sieve net with sides of galvanized iron and bottom of galvanized wire screen is desirable where one is scraping up mud and sand from the bottom of pools for the purpose of sifting out aquatic insects.

The Siene.-A sieve with cloth sides is an excellent bit of apparatus for sifting out earth, moss, materials of ants nests, etc., the size of the wire meshes at the bottom being larger when it is desired to sift the

Collecting and Preserving Insects

fragments of old decayed trees and smaller when sifting ants nests and ordinary earth.

Chisel alld Trowel. - A small stout chisel for securing insects which hide under the bark of dead or dying trees is a useful instrument. A stout pocket knife will sometimes do the work but something stronger and better adapted to the purpose is desirable. When one is studying underground insects a small trowel is a necessity.

Collecting Forceps.-The entomologist skilled in the use of his fingers and who does not mind an occasiona! sting or bite does not need forceps, yet a small delicate pair made of steel or brass, very pliable and with rounded tips, is useful in picking up specimens and transferring them into vials and boxes. A little dodge which is used by many entomologists in picking up small insects is to slightly moisten the fore finger and touch it to the insect which will adhere long enough so that it can be dropped into the cyanide bottle, vial or pill box. A camel's-hair brush is sometimes used for the same purpese.

Fumigator. - This is a bit of apparatus used by European collectors and to some extent by those in this country. It is used for smoking out specimens which hide in cracks in the ground or holes in hard wood, etc. The accompanying ligure shows the common form. A smoking-pipe mouth-piece (a) with flexible rubber-joint (b) is attached to the cover (c) of a very large smoking pipe head (d). To the mouth (c) of the latter a rubber hose (f) is attached, which has a convenient discharge at its end (g). The pipe is filled with tohaceo, the latter ignited, the cover screwed on and the smoke hown through the mouth-piece in any desired direction. A puff of tobacco smok: hlown gently over the

Collecting and Preserving Insects

deloris on the collecting cloth will often make many specimens move which otherwise play possum.

Harersiack.-A haversack of Water-proof cloth is convenient but by no means indispensable. It should contain various compartments of different sizes for storing away nets, sieve, lirger implements, boxes and vials.

Hand l.ens.-A hand lens is quite necessary for field work with the sinaller forms. Excellent hind lenses are now on the market and can be purchased from any dealer in microscope supplies.

Umbrella.I he umbrella is une of the most useful implements to the collector since he can collect with it insects which live upon the branches of trees and large bushes. Umbrellas constructed especialle for entomological purposes have the inside lined with white linen ind the handle laas a joint near the middle so that it c.m be more conveniently held

Fig 255.-I he uml la and its mode of une (Ajtis A, Aschuctior.)
and more conveniently picked away. The opened and inverted unbrella is held with the left hand under the branch and with the right hand the collector beats the branch, jarring the insects into the convex umbrella cover.

Colleting Sheurs. - These are often used, the blades being composed of that, net-like frames looking something like minute tennis rackets. They are useful for picking up delicate insects which would be apt to be dannaged by the fingers or tweezers.

SOME POINTS ON METHODS OF COLLECTING DIFFERENT ORDERS

Himenoptera.-Many Hymenopteral such as the bees, some of the wasps and many parasitic forms, can readily be collected by means of the beating net or sweeping net from flowering plants. The removall of the stinging species from the net is sometimes rather dangerous. The callous collector will pick them up with his thumb and tore finger, never minding the sting, especially as after a few stings his hand becomes practically inoculated, but a good idea is to have an opening in the bottom of the net which shoild be kept tied with a string. When enough insects are c.anst they are driven to the bottom by swinging the net rapidly through the air, then holding it tightly together with the hand just above the bottom, untieing the string and shaking the insects into a wide-mouthed cyanide bottle. After they are stupefied the contents of the bottle may be emptied out and the desirable specimens selected. The grallflies and the parasites are best collected by breeding. The galls of the gall-flies should be collected when mature and kept in closed jars, the jars being occasionally moistened by putting a sheet of damp blotting paper over the inouth.

Himiplera. -The beating net is used with these insects and they are found to some extent under logs and stones and are also captured in the collecting umbrelia. Plant-lice should be collected in connection with their food plants and at different seasons of the year in order to obtain different generations. One should als collect both winged and wingless forms. Bark-lice or scale insects should be preserved dry in situ on the plants. The collector should have a series of small envelopes or flat card boxes
in which to place these specimens, writing the date, locality, name of plant, collector, and any other remarks that may seem desirable. Nothing air-tight, such as tin boxes or closed tubes, should be used for fresh material as it nearly always molds. Pillboxes are sometimes used but are too small to contain a good quantity of material. A good-sized twig or several leaves should be collected for each species.

Diptera,-Most fies frequent flowers and may be collected with the sweeping net. So many of them are very delicate that the greatest care must be exercised both in collecting and handling. A light sweep net is the best implement and the contents should frequently be emptied into cyanide bottles with plenty of bloting paper to absorb the excess of moisture. Collecting shears are successfully used with these insects.

Orthoptera.-These insects are best collected by using the sweeping net.

Collecting Aquatic Insects.-For collecting forms which live upon the bottom of ponds and streams, Dr. Needham advises the use of the common garden rake. With it the debris may be drawn ashore and the insects picked out by hand. Withdrawn from the water they generally make themselves evident by their active efforts to get back. The rake is especially useful in the spring while there is as yet no new growth of well-ro ted water weeds to interfere with hauling it. The sieve net previously described is used for bringing ashore mud and sand from the Lottom. Those specimens which live above the bottom in still or slowly running water or which crawl among the submerged branches or erect aquatic plants are most of them easily taken by sweeping the plants with any of the forms of water nets. Some of the little ones which cling closely to the water plints can only be discovered by taking he plants out of the water and examining them, a small bunch at a time, in a white dish of clean water. Those forms which live in rapids can be had by picking up the stones and examining them. Some may be taken with a water net. Some are captured by wading into the rapids holding the water net with the left hand and lifting the stones in advance with the rake, the disloged insects tloating into the water net.

In carrying home a day's catch a large quantity of water is not necessary. Needham silys that it is well to have a pail and to

Collecting and Pres ing Insecte

place within it a few smaller receptacles containing a hittle water and pack ordinary water weed between these. The smaller nymphs taken may he distributed among these receptacles so as to diminish the chances of having them eaten by the larger and stouter ones which may be stowed awily in the weed. The latter does not need to be submerged unless left long uncovered in the sun.

REARING DIFFERENT KINDS OF INSECTS

Even the collector of insects who cares little about habits and iife histories desires often to rear his specimens, since they are then in the best condition for the collection and then, too, it is very difficult sometimes to capture some kinds of insects, or they can be obtained only in this way. The methods of re:iring caterpillars in order to obtain the adult butterflies or moths has been admirably treated by !)r. Holland in his "But"rfly Book," and the ${ }^{1}$,reeding cages recommended by him may be used equally well for many of the insects described in this volume. The simplest form of such cage is frequently the bes. and, ils lor. Holland says, with some species the best method is simply to pot al plant on which the insect is known to feed and place it in a box over which some mosquito netting is tied. Glass cylinders or even lamp chinneys placed over small plants growing in pots, the top being covered with
gauze, are frequently used to asvantage in this wor , and glass jars-from the small test-tube to the large morphite bottles and fruit jars and up to the large battery pars-all may be used in rearing different kirds of insects. The large, so-called Riley breeding cage, shown at Figure 256, is a yood one, especially if

Fig. 257.-Comstak improved base for breeding cage. (After Rildy.)
it is used with the improved base invented by Professor Comstock, shown at Figure 257. Some very good breeding jars are sold by the dealers in entomological supplies, but most workers prefer to construct their own cages.

All earth used in rearing insects in the cages or in the bottles should be sterilized and sifted. This is necessary in order to destroy disease germs, in order subsequently to regulate the amount of moisture, and in order to destroy predaceous mites and other insects which might be the cause of damage or confusion. In my office we prepare earth readily and in bulk in a galvanized iron oven $2 \frac{1}{2} \times 1 / 2 \times 1$ foot. The cover is roofshaped, and lifts off by a central hindle. There is a circular orifice in this cover to emit ste:m and facolitate drying. The oven stands on legs and is heated by a single gas jet from a Bunsen burner placed beneath. After two hours' heating the moisture becomes dissipated, and the earth becomes dry and is readily sitted. It is then passed through a sieve, and is in proper condition to use either in large boxes for underground insects or in the ordinary breeding jars and calges.

397

Colveching and Preserving Innects

Irofessor Comstock has invented and descrited root-cage if inder to stady underground insects. This is 1 metal cage - 181 chass shes in.ade narrow, and with galvanized iron additionad -h.f which cen te shpped down over the shass ones so as to keep the cage dark when not under obselbaton. Plants and ser'vare phated in earth between t' fwo ghass shes, and the 1 ! sparatus is then pliced in the ground. In c. 1 be pulled

fis . '. '. ding upon grasses it is well to make a wooden bos two kett decp with bottom perforated with a few du or rules covered with wire netting and containing a good suf olt ${ }^{\text {r }}$ growing grass. The box sheruld be of good size, saly $2 y$ - - i.et. Little upright posts or sticks or laths six inches high whe nit: be nalled to the corners of the box, and gauze mosquito netting or something liner tacked over the whole. This kind of a box is of good service in rearing grasshoppers, which are the most difficult insects to rear. Confined in a small breeding eage they feed hitle, and are apt to fatally exhalust themselves in futile efforts to escape. Boxes for these insects should be about three feet square. and in the earth should be growang not only grasses fut also weeds of various kinds. The long-horned grasshopers (tocustide) are very easy to rear in confinement, and need only he giten an occasional supply of fresh food. This is the case also with the walking-sticks, and mantids, the latter requiring no moisture wistever beyond that which they get from the hodies of their victims.

That reminds me that one of the difficultes encountered in the rearing of insects is the proper maintenance of the :ght degree of moisture. Galls of all kinds are apt the beft ather ton dry, in which case the iswaing of the insect is do iyed far bevond the normal time, or too moist, in which case the hecome cuvered with mildew and spoil. If the jar containing hem be welt open they dry no matter how fiequently sprinkled. If it he closed mildew frequently puts in its appearance. This ditficulty is obviated hy keeping them in al serfes oi jars of the some height, the mouths of the fars beiner covered with grater of prevert the escape of the insects or parasites. Over the whole series is lad a latere sheet of hotting puper which is moistens daily and the insect secim to thrive under this treatment. In rearing Hzmenopterous parisites, the breeding jar thould be tightly closed and
all ucasional strip of mostened blothig puper inserted or they mity be enclosed in glass tuhes with ught absoment stoppers the latter being occasionally moistened. Bees need very dithe moisture and give sery lithe trouble in rearine Woud-boring insects of all kinds mas as a rule te kept perfectly dry of only molatened everv twon thee werks. Inant-小ugs need simply frenty of fresh ford alld tuke care of "emselves with cumpar itive indifference as to there surroundines.

Of all lirves mane are more diffieult to rear than those of the the saw-ll s. Their mouth-parts seem to diry inkess collstantly lubratedty the saliva produed lve maticat: n ind once drad the lieval us.ally des. Fresh lood must ansi antly be suppled and if possile they must \cdots it he allowed the de cend th the surface the - 1 ; the 1 ther must be cill fully cosered with paper, for if $\mathrm{t}: \mathrm{v}$ once lase their proles on a gran ol and they hold it convulsively 1 it is almo:it mposnthe to dmadge It so that they are pract.ally untitted tor agatll \& | a a twis.

The study of scale insects is a s...nple one. The for mints should !e grown in pots and the insects coloniz d in it. Most of the spectes reman stationary or neaty so mot the rlacitoon recorded. the exict stleation of each नdivid isl - ter noservitton being circumserils ! ly ir ? of lak marted: a pen upon the leal.

The difluarn m. - A. Ost iny of : different stylus of aquaria w hich may be pluchase when answ food purpose. A very good orie is shown it the decont ving illustration. Where it is desired to go rathes hor Ighl , the rearing of art batic mee *sand where on - is \% sp some money in 1 parat a the apperatus in ke ab off is rather better

 unch hase so se to me the wethegher than the other. Dies Wheren ection, fres e to the ther are arranged that wh mat be independe te of...t. and the detale we smeply arranged. In e:a , a \quad Ifed incilted glass spltam with a br de dellexed and ! eats this liphasheen consiructedan
 thooughat spre kle it axpit th ritices. 1. drope I distance of sux or eiche h n° the V.- uped septun and , force is

Collecting and Preserving Insects

easily graduated by stop cocks. Rising to the height of the deflexed lip it pours in a broad cascade into the main compartment, impinging on the top of the rock-work grotto. The second or lower aquarium is at present similarly arranged, and derives its supply of water either from the overflow of the first or independently from an overhead pipe, so that its water may be kept either still or running at will. Thus we have arrangements in a small

Fig. 2j8. -A good simple aquarium
space for the rearing of all kinds of aquatic insects. The sliding stream upon the artificial rockwork is particularly adapted for such forms as Simulium, and opportunity is also offered for such species as have the habit of crawling out either on rocks or earth, as the case may be.

KILLING AND PRESERVING INSECTS

The use of alchohol or formalin is the most satisfactory method of killing most soft-bodied insects. Those with harder bodies should be dropped into a cyanide bottle or they may be killed with chloroform.

The Crianide Bottle. -The cyanide bottle is prepared by taking a large quinine bottle or morphine bottle or one of the stout roundt ottomed neckless tules, putting into it a few small lumps of cyanide of potassium and pouring over them al semi-fluid mixture of plaster of paris and water. The bottle is then left open for a few hours until the plaster of paris thoroughly dries. The purpose of the plaster is to prevent the moisture from the deliquescing cyanide from reaching the insects and it is well also to put a piece of blotting paper over the plaster. When one is collecting insects it would be well to cut into strips some soft absorbent paper and stick the slips into the bottle in such a way that the insects' bodies will not rattle about too much.

Priparing Insects for the Cabinet.-In mounting itisects for the cabinet no pins should be used except those made especially for mounting specimens. The long German pins are much to be preferred to the short English ones. The best are the Klager pins, the Carlsbad pins and the Vienna pins, all of

Fig. 259. - Pocket cyanide bottle. (After Rilly.) which can be purchased from the dealer in entomological supplies. The Japanned black pins are the best for most insects since they are not ruined by the verdigris which issues from the bodies of many insects. Specimens should be prepared for the collection as soon after death as possible. If they have been collected in the forenoon they should be mounted the same evening-where possible. Most of the insects which we consider in this book should be pinned through the thorax. Grasshoppers and locusts should have one pair of wings spread. Dragon-flies and most other Neuropterous insects
should have both pairs of wings spread. For this purpose a

Fig. 260.-Spreading board for Lepidoptera. (After R'iley.) spreading board is necessary. Excellent spreading boards are for sale by the dealers but very good ones can readily be made. The spreading board in use for Lepidoptera will answer admirably for any of these insects. One is shown at Fig. 260 and needs no extended description except to state that the central grove in which the body of the insect rests should be bottomed with cork or some soft substance into which the pin can be inserted. While spreading, the time required for drying must be determined by experiment for a given locality and given time of the year since it depends upon the dryness of the atmosphere.

Insects which are too small to pin are preferably mounted upon little triangular cardboard tags. They are glued to the tip of the triangle, the pin being thrust through the base. White shellac or yellow shellac are good substances to use for the glueing. Most of those minute

Fig. 26r.-Insect mounted on cardboard triangle. (After Riley. insects may be mounted to advantage on the side with the

Fig. 262.-Insect funch for cutting triangles or points. (Alfor Raley.) back away from the pin, and it is generally advisable to mount them with the side uppermost. It must be remembered that while an insect has one back and one belly it has two sides. Punches for cutting tags for this purpose may be purchased from the dealers. After the insect is pinned and dried great care should be taken with the labelling. In all cases the date and
the actual locality should be entered upon the label, and, if the locality is such that there is some doubt that the elevation can in future be ascertained with ease, the elevation shculd be also placed upon the label. The name of the collector should be stuck on the same pin, and the name of the insect upon another label on the same pin. That will make three labels, one with the name, one for the collector, and one for the exact locality and date. All labels should

Fig. 263-Points for mounting inserts. (After Riley) be as small as possible, and should be printed in diamond type. After the labelling is done the specimens are ready for the cabinet.

The Cabinet.-In the matter of a cabinet there is considerable room for the judgment of a collector. The so-called Schmidt insect box is an excellent box for a more or less temporary collection, and, in fact, there are many specimens in the museums which have been preserved in these boxes for many years. They are of small and convenient size, book form, cork-lined, tightly constructed, and close very tightly. An insect cabinet

Fig. 264 . -The Marx tray for alcohol specimens. (After Riley.)
with sliding drawers, glass-covered, can be made by any good carpenter, but great care should be taken to make the joints of the drawers absolutely air-tight. When a collection becomes infested with museum pests or mites or Psocids, it can easily be disinfected by pouring into the box bisulphide of carbon. Great care must be used in the handling of this substance, however, as it is inflammable. After the drawer has become disinfected, a teaspoonful. more or less of naphthaline will act as a deterrent against the entrance of other insect pests. For soft-bodied insects which must be kept in liquid. either alcohol or formalin, a permanent arrangement is a very difficult matter. A vial-tray in use by some collectors is a good idea. The one invented and

Collecting and Preserving Insects

used by Dr. George Marx is shown in the accompanying figure. In mounting insects for the microscope Canada balsam is the best medium for most of them, but it must be remembered that with soft-bodied forms tresh mounts will cloud unless the water has been extracted by passing through successive strengths of alcohol.

BIBLIOGRAPHY

HYMENOPTERA

1.--CATALOGUES

E. T. Cresson.- Catalogue nf the described species of North American Ifymenoplera. <Proc. Entom. Soc. Phila., Vol. I, Ithi-1符?.
E. T. Chesion.-Catalogue of species and bibliography. Part fI oi Synopsis of the Hymenoptera of America, north of Mexico. Synopsis and Catalogue. Price, 83. Transactions of the Am. Fintom. Soc., Supplementary volume, 1887. Philadelphia, 1887
C. (G. Di Dalla forks.-Catalogus Hymonopterorum. to vols. Leipaic, $1^{\text {R }} 93-1$ gow

Vol. I. Tenthrelindte: it, Cynpidir: itl. Ich.
neumonidat. etc. TV. Braconidre andi Proctruplde: V1. Chrysiditas:
VII. FFomiclde; Vill, Fonsores: IX, Ves-
pldie x. Apulie. Each volume ian be pur-
chased sejarately.
11.-GENERAL WURKS ON CLASSIFICATION
E. T. Cresson.-Synopsis of the families and genera of the Hymenoptera, north of Mexico, together with a catalogue of the described species apd bibliography. Transactions Am. ${ }_{1}{ }^{3} 7$ fhe secont part contaius the Catatogue of Species and Bibliography.
W. H. Ashmead.-Classification of the horntails and sawties, or the subonder Phytophaga. <Can. Entom., 1898 , parts.
W0 H. Asmmana.-Classification of the bees, or the superfamily Apoidea. <Trans. Amer. Fintom. Suc., 1890. pp. 49-100.
W. II. Asmmeab.-Superfamilies in the Hymenoptera and generic synopses of the families Thynnidx. Myrmoaide, and Mutillide. < Journ. N. V. Eintom. Soc., March, 1899 , pp. $45^{-6 \times 0}$.
W. H. Asmmead.-Classification of the entomophilous wasps, or the superiam y Spliegoidea. <Can. Entom., 1899,7 parts.
w. H. Ashmeats.-Classification of the fossorial, predacerous and parasitic wasps, or tine superlamily Vespoidea. <Cin. Entom., iyco, pp. 145-155, 185-188, cic
W. J. Fox.-A proposed classification of the fossorial Hymenoptera of North America. <Proc. Acad. Nat. Sci. Phila., 1894 , pp. 292-307.
III.-MONOGRAPHS AND SVNOPSES
E. T. Chesson.-A list of the North American species of the genus Anthophora, with descripthons of new species. <Trans. Amer. Entom

E. T. Crestrs:-Catalogue ol North American Apids. < Crans. Amer. Entom. Soc., Vol. VII, 18,8-79, pl. 215-232.

A symonymical reference list of the specles.
W. H. Patton.-Generic artangement of the Rees allied to Meliasodea and Anthophora. <Bul. U. S. Geolog. and Geogr. Survey, Vol. V, No. 3, 1×70, pp. 471-474.
E. T. Crusson.-On the North American apecies of the genus Nnmada. <Proc. Entom. Soc. Phila., Vol. If, 1 H63, pp. $2 \% \mathrm{o}-312$.
1:. T. Crisson.-On the North American species of several genera of A pidx. <Proc. Entom. Soc. Phila., Vol. II, 1864. pp. 373-411.
E. T. Cresson.-List of the North American speciea of Bombus and Apathus. <Proc. Entom. Joc. Thila., Vol. If, pp. 83-116, 1863 .
E. T. Crasson.-On the North American species of the genus Osmia. <Proc. Entors. Soc. Phila., Vol. IIf, 1864, pp. 17-43.
E. T. Crrssonn.-Descriptions of new North American Hymenoptera in the collection of the American Fintomological Society. Family Apidx. <Trans. Amer. Entom. Soc., Vol. VIf, 18,8-79, pp. 6i-136, 201-214.
C. Romertson. - North American bees. Descriptions and Synonyma. <Trans. Acad. Sci., St. Louis, Vol, VIf, pp. 315-356. 1 K07.
C. Roknktson.-Synopsis of the North American spectes ol the genus Oxybelus.
Amer. Entom. Soc., 1880 , pp. $77-\mathrm{x}$
C. Romertson.-Descriptions of new species of North American bees. <Trana. Amer. Ensom. Soc., 1891, Pp. 49 - 66.
Table of luat Andrena.
T. D. A. Cockbakir.-On some Panurgine and other bees. <Trans. Amer. Entom. Soc., $1808, \mathrm{pp} .185-198$.
E. T. Crrsion.-Synoptic table of the North American species of Sapyga. <Trans. Amer. T. Crom. Soc., Vol. Vlli, 18 kv , $3 p$. 20-211. Fiort America, with descriptions of new Necies Tmes. Amer, Entum. Suc Vol \& 1:57. pp. 85-150.
2v 1.h7. pp. 85-150
America, north of Mexico. < Pr in Acc. Wash., Vol. fV, pp. $140-14 \mathrm{~s}$.
W. J. Fox.-The North American specae: Cernpales. < Trans. Amer. Eintom. Sic., 1×12,
w. 䭗. Patron.-Some characters useful in the study of Sphecid.e. < Proc. Roston Soc. Nat. If ist., Vol. XX, isin, pp. 37^{8-385}.
F. F. Koml.-lie Hymenopterengruppe des Sphecinen. <Ann. k. k Naturh. Hol muscums, Wien, fol. V, isup. Part 1, pl. 77-194; Part II. pp. 317-462.
W. H. PATrisi.-The American Bembecidx Tribe Stizini. <Rul. t?. S. Ceolog. and Geogr. Survey, Vol. V, No. 3, 1879, pp.
W. ${ }^{341-347 .}$ fix.-Svnopsis ol the Stizini of Foreal J Frx.-Synopsis of the Stizini of Roreal
America. < Proc. Acad. Niat. Sci. Phila., 1845 . 1P. 264-268.

Bibliography

W. J. Fox.-Synopsis of the Bemhicini of Boreal America. <Proc. Acad. Nat. Sici. Phila. 18:35, pp. 351 174.
A. Hanillikeil.-Momegmphie der mit Nysum und Bembex verwanditen (irahwespen. 7 parts. < Staleer. K. Akad. d. Wissenscli., Wien $1587-133$ - 1,150 P1p., 23 pls.
A. S. Pacxand.-Revision of the Fussorial Hy menoptera of North america. I. Crahronids and Nyssonidx. <Proc. Entom. Six. Phild., Vol. VI, 1806 , pp. $39-114$ and $35 \mathbf{H}^{-444}$ Thl work inimpire re:th1, ns sf the following
 crabrualis.
W. H. Patton.-List of Northerican Larridx <Proc. Boston Suc. Nat. Hist., Vol, XX, 1sso, pp. ${ }^{3 \times 5} \mathbf{3}-347$.
W. J. Fox.-Monograph of the North American syecies of Tachutes. <Trans. Amer. Eintum. SaC. 10y2, Pp. 344232
W. J. Fox- The North American Larrid.e. $<$ Proc. Acad. Nat. Sci. Phila., ises, pp. $467-551$.
K. T. Chrssin. - Descriptions of the species he. longing to the genus . Yysson, inhatiting North America. <Trans. Amer. Entomi. Soc., Vol.

W. J. Fox.-Synopsis of the species of Nysson inhabiting America, north of Mexico. <Jour. N. V. Entum. Soc., March, (My) pp. 113-15.
W. J. Fix.-Synopsis of the North American tiorytes. <Proc. Acad. Nat. Sci. Plila., T. (8,35, pp. 317-53.
F. T. Cwnome-Monograph of the Philanthidx if Nurt America. <Proc. Fintom. Soc.

W. II. Patton.-Notes on the Philanthine. <Pric. Roston Soc, Nat. Hist., Vol. XX,

species of the genus Fucerceris American sprecies of the genus Fucerceris. © Trans.
S. \mathbf{x} In visc, -Monograph of the species Aphilanthopss inhabitir.z. IBoreal Anerica. -Trans. Amer. Fintom. Soce., $\mathrm{S}_{2} \mathrm{~s}, \mathrm{pp}$. 14-26.
W. J. Fix.-The species of $P_{\text {sen }}$ inhahiting America, north of Mexice. <Trans. Amer. Amenica, Soc., ISos, pp. 1-15
W, J. Fisx--Studies among the !ossorial Hymenoptera. < Fintom. News, is, 4, pp. St, x_{1}; 126-12 ${ }^{\text {\% }}$; 201203
W. Syn.there in Alywn, Dhilneis and Mellinus. donidx. <Trans. Amer. Entom. Sux., $\mathrm{I}_{2} \times 2$,
w. $\int_{\text {Finx }}{ }^{3}-$ The Crabronins of Boreal America. <Trans. Amer. Entom. Soc., 15, 5, pp.
W. J. Fox.-0) the speries of Trypoxylan in hahiting America, north of Mexicı. <Trans. Amer. Entum. Sic., $14+1, \mathrm{pp}$. $13^{\prime}, 14^{2}$.
Henhi in Salshike-Svnopsis of American Wasps. Solliary Wasps. < Snithsonian Miscellanenus Collections, $=34$, Wa shingtum, 1473.

II enki the Sal'ol:gk.
Vespides. Monoraphie des guipu wite des ril de la tribu des Vespiens. guepe: siniales \$ wo., pp. 25f. [Separate work]
 Tiatlung Vespa, besmomers uler die amerikaninhen Arten. < Siettiner Fintom. Zeit., Vinl.
Henka we Sai phitu:-Note sur les Polistes amérazains. <Ann. Soc. Entom, France, 1y57, 1p. 3 (n) 314.
H. IV. I.rwis.- Vespin.e of the United States and Candd. <Trans. Amer. Entom. Sice., imp7 [1]. 160. 192.
Euwanis Nok tan.-()n the Clirysides of North Anserica. <Trans. Amer. Fintom. Suc., Vol. VII, 157879. pr. $211-242$.
Frank Aakon. The Nurh American Chrysididx. <Trans. Amer. Entem. Suc., Vol. XII, 18Ns, pp. 2our 248, pls. 6-1u.
A. Mccisakv.-Monographis Chrysididarum arbis terrarum univerai. fisudapest, 18 Q $_{2}$, p. 643 :: Cin. A. Istake.-Synopsis of the Mutillide ef North America. < 'rrans. Amer. Entom. Soc. Vol. 11f, 1870-71, pp. 217-255; Additions and
Corrections, Vol. IV, 1872 -3, pp. 7^{1-76}.
Ch. A. Blake--Catalugue of the Mutillida of North America, with descriptions of new species. $<$ Trails. Amer. Entom. Suc., Vol.

Ch . A. Hzaks.- 3onograph of the Mutillide of North Anierica. <Trans. Amer. Entom. Soc. Vol. XIIf, 184, pp. 174 - 236 .
his samunguph wupressetes the aynopsis by the
W. J. Fox.-The North American Mutillidx.
<Trans. Amer. Fintom. Soc., $1 \$ 28, \mathrm{pp} .217$ - 2022 H. de saussirke and J. Sichkl.-Catalogus specierum generis sculia, Geneva, 1864. \& vo.
G. p. $352,2 \mathrm{pls}$
I.. Mark.-Die Formiciden der Vereingten Staaten von Nordamerika. <Verh, zool.but.
(ies. in Wien, 1886, pp. $419-4.4$.
kanish-Beitrige zur Kenntmiss der nnrdameriJahrb Ameisenfauna. <Part I, Zıxi 1 min ; Part II, I bid., Vol. VIII, pp. 257-360, $1{ }^{2 \times 1 / 3:}$
C. R. Otikn Sacken.-On the Cynipid. of the North American oaks and their galls. <Pruc. Eintom. Soc. Phila. Vol. 1, $1 \$ 6163, \mathrm{pl}$. 47-72 i additions and corrections, 1. c., p]. $241-2597$
$\mathrm{~K}^{2}$
C. R. thtan Sackin.-Contributions in the natural history of the Cynipid.r of the United States. <Pruc. Entom. Suc. Phila., Vol. II
 ${ }_{130}^{38,}$; Trans. Amer. Entom. Soc., Vol. 11

ink valudible comiriliutions to the classiticalion
of genera an 1 specles.
 teruus genus Cynips; with an Appendix, containing hints for a new classification of Cynipide, including descriptions of several new species inhabiting the nak galls of Illinois. <Proc. Fintom. Soc. Phida., Vol. 11, 1363_{3} 64. Pए 443-3m.

Gustay MAyk--Die Genera der gallen bewohnendtn Cyuipiden. <3nter Jahresherichi der Cnmmunalif)berrealsclule imi I. Besirk. Wien,
W. H. Ashmand.-A biblingraphical and syn. onymical catalogue of the Xorth A merican Cyipindx, with description of new species. $<$ Trans. Anmer. Fintom. Sic., Vol. XII, $1 \$_{3} \xi_{5}$

can suhfamilies and of the North American suhtamilies and genera of Cynipidix.
 Flurida, with descriptions of new species and America. <Trans. Arier. Fintism. Soc., Vol. America, Kivans. Arter. Fint.
C. P. (illoterif.-A monograph of the genus Synergus. < I'rans. Amer. Entum. Soc., Ispo, 11p. 85-1us.
2. O. Hnward.-A generic synopsis of the Hymenoptenus family Proct:ntrupidx. < Trana Amer. Fintom. Sic. Vol. X111, 23\%, pp. 1ty -178.
W. H. Asumeais.-A monograph of the North American Proctotrypide. Kul. No. 43, U. S Nat. Museum, $1 x_{13}, 4,13$ pp., 18 pls.
A. Formstrk, -Synoptische Vehersicht der Familien und Ciattungen in den beiden Gruppen det Chalcidix Spin. und Pructotnupii Latr < Jahresher. d. hoheren Burgerschule in Aachen, 2 H 5 h .
F. T. Cemsson.-S•nopsis of the North American apecies belonging to the zenera leucospis $<$ Trans. A
L. O. Howard-Descriptions ol North Anierican Chalcididt frum the collections of the U. S. Department of Agrimare arest to Riley, with hotogical notes described North ether with a list of the descrike No. American species of the lany. Washington Div. Kintom., U. S. Dept. Agric., Washington, 1885.
L. O. Howakd.-A generic synoysis ol the Hymenopterous family Chalcidide. <Hintom. Amer., Vol. 1, 1883-86, pp. 197-199 and 215${ }_{214}$; V̂ol. 11, pp. 33-38.
L. O. Howarlo.-Revision of the Aphelinine ol North America, \& eclinical series. No. 1 fiv. Kintom., 13. S. Dept. of Agric., I $\$ 93$, Pp. 44.
L. O. Howard.-On the Bothriothoracine insects of the United States. <Proc. U.S. Nat. Mus., of the XVf1, pp. 6os-613, 18,76.
L. O. Howarb.-On some American phytophagic Furytomine. <Trchnical series, No. a, Div, Entom., U.S. Dept. Agric. 1\%o.
A sy rovslo of tuob rima and allies.
W. H. A Chalcidine. <t,ntom. Amer., 8×8, pp. 87 - 88
W. H. Avinmrav. - Classification of the old lamily Chalcadida. <Proc. Fintom. Soc. Wash. Sol. fV, 18xh. PP. 242249.
W. H. AsmmRay.-On the genera of the chalcidHies belanging to the subfamily Fincyrtinz <Proc. U. S. Nat. Mus., Vol. XXIf, Pp
32 ${ }^{412,19 x 0 .}$
H. Ahhmead.-On the Chalcideous tribe Chiropachider. <Can. Entum., 18S8. PP . $\mathbf{7}^{2-176}$
. If. Ashmpat.-On the genera of the Cleony midx. <Proc. Entom. Soc. Wash., Vol. IV
1 $\mathrm{N}, \mathrm{y9}$. Pp. 200-306.
. H. Athmesu.-On the genera of the Eu chanidx. < Proc. Fin.
W. I1. AShmpab.-A revised generic table of the Hurytumina, with descriptions of new species < Hintom. Amer., :88x. Pp. 41-43.
W. 11 Ashmead.-1) n the genera of the Eupel mine. <Proc. Entom. Soc. Wash., Val. IV Noph, pp. 4-20.
W. H. A інмвяи.-A synopsis of the Spalaogin. of North America. <Proc. Entum. So Wash., Virl. 111, 'Ko4. Pp. 27-37.
A. Schletterek.-.-ivie Jymenopteren-inup der Evaniden. <Ann. k. k. Naturh. Hot museums, Wien, Vol. IV, 18\&y, Part f. Pp. 10;-140: Part f1, P1, 28, 138 ; Part III, PP. 373-346.
EDWana Norton-Catalogue of our speaies of Ophiun. Anomalon. Paniscus and Campoplex. <Proc. Entem. Soe. Phila., Vol. 1, 1803, Pp. $357-368$.
genera anat spectits of the subfataily ur kenera an
phionithe.
F. Crrshnn.-Descriptions of Nith American Hymenoptera in the colfection of the Entomoogical Siociety of Philadelphia. <Proc Entom. Sic. Phila., Vol. 111, 8\%4, PP 231-10\%.

Connists chiefly if a synerpsis if the North Amert
E. T. Chrsson.-A list of the Ichneumonide of NorthAmerica, with descriptions of new species. <Trans. Amer. Fintom. Suc., Vol. I, i\$17, pp

E. T. CRRHO - Descriptions of new species belonging to the subfamily Pimplariz found in America, north of Mexico. <Trans. Amer America, north of Mexico. < Trans. Amer Entom. Soc., Voi. $111,{ }^{2 R y o-71, ~ P p, ~ P i t y ~}{ }^{143-17 \lambda}$

Gilypha. Arenetra. Lamprribists. Xylonomus. Unontumitus, whih a list uf 311 spec lies
B. D). Walsh.-Descriptions of North American Hymenoptera, with noies by E. I. Cresson. <Trans. St. Louis Acad. Sci., Vol. 111 , 1873. Pp. 65-166.
E. T. Ckrssin. - Notes on the specles belonging to the subfamily Ichneumonides found in America, north of Mexico. < Trans. Amer. Entom. Soc., Vol. V1, 1877, 1pp 129-212.

G. C. Davis.-A review of the 1chs. Amer. Entom. family Tryphonina.
C. C. DAvis.-A monograph of the tribe Bassini.
<Trans. Amer. Entom. Soc., 1nys. pp. 17-50.
G. C. DAvis-Two new species of Clistopyga. < Entom. News, 1803 . Pp, 198-199. Containn talle of speries.
W. II. Anheteam.-Classification of the Ichneumon flies, or the superfamily Ichneumonoides <Proc. U. S. Natt. Mus., 1000
E. T. Ckrswis.-List of the North American species of the renus Aleindes, <Trans. Amer. Entom. Soc., Vol. If, i\$63-69, pp. 377-3 ${ }^{H_{2}}$.
C. V. Riley. -On North American Microgasters, with descriptions of new species. Trans St. Louis Acad. Sci. Vol. IV, No. 2, 2 , British
T. A. Marshale.-Munograph of the British London, 1883 , pp. 12 N, , pls. 1-4. Martaston in lin \$ynupuis.
W. H. Asimpad.-Synupsis of the Hormine ol North America. <Irans. Amer. Entom Scc., 1\%93, PP. 39 -44.
F.owaro Norton.-Catalogue of the described Tenthredinid.e and Uroceridx of North America. <Trans. Amer. Lotom. suc., Vol 1. 1S67, pp. 3^{1-84} and 193-2 SO_{3}; Vol. II 186: - 29. pp. 211-242 and 331-367.
Gives synimnic lalles of kenera and spe les of bunh familles: the
vol. $\mathbf{t t}$ fry. Ho-307.
E. T. Crfsson.-Catalogue of the Tentiredinidx and Uroceride of North America. < Irans. Amer. Entom. Soc. Vol. V1f1, 888, Pp. $33-68$, A ss nonymical reference lisi of the s.
Petif Cambron. - Monograph of the British Thr Chaphagous Hymenoptera. z vols. London, ${ }_{1} \mathrm{SX}_{2}-1 \times \mathrm{K}_{5}$.

Contains an artanyement of the sutsanilies anit wenera of Tenthre fintile, which has loeen retrassituatiun.
C. L. Marlatt--Revision of the Nematinx of North America, a subfamily of leaf-feeding Hymenoptera of the family fenthredinda. <'lechnical Series No. 3. Liv. Entom., U. S. Dept. Agric., ispo, pp. 115
A. 1). Marlitionray. - New species of Ten. thredinids, with table of species if Strongylogaster and Monoctenus. <Can. Entom., 1894, Pp. 124-325.

DIPTERA

1.-Catalogites

C. R. Osten Sackry.-Cstslugue of the deacribed fiptera of Nurth Americs. Wsshing. tun, Smithsunian Institution. iss
C R. Ontrin Sacken. - Catalogue of the described fiptera ol North America. Second edition. Washington, smithmonlan Institution, 1878. <Smithsonisn Miscellaneous Cullectiona, 270.
ins connpielely subrerwites the firsi edition ant

fl-GENERAL WORKS ON CLASSIfication
S. W. Wiliciston.-Manual of the lamilles and genera ol North Americsn Diptera. New Haven, Conn., 18 ,
5. W. Willsticiv- Hihliography of North American Dipterolngy: $8^{878} \mathbf{8 - 1 8 4 s}$. <Kans. Univ. Qusrti, Vol. iV, 180 ob . Pp. 129-144:
F. W. MEGEN.-Systematische teach calinugue. bekannten eunoraimathen sweiffigeligen en vols. Aischen und Hanm ingen insec Althoulfh unly tealing whith the Eurrepean fauna and nouly ant itulused and surenertel in many jans. the wark is olifi the frundalion of the C. R.W. Wirmemann.-Aussereura
R. We. Winmann.-Aussereurupische swei augelige insecten. 2 vols. Hamm, 1828 830, with plistes.
tex riptions of many genera and species be. lonking list the Nurth Americ an fauna.
J. Maccurant.-lliptéres esotiques nouveaux uu peu connus. 3 vols., in $\$$ parts sind $\&$ supple ments. Psris, $18_{3} 8$ 55. <Extr. Mem. Suc Scl. Arts. Lille.
geners and species.
K. Chinem-Fsuna
(Viptera). Fizuna Austrisca. Die Fliegen (Diptera). Nach der analytischen Nethode europaischer (jattungen, der Heschreihung slier in Deutschland vorkommenden Arlen und der Aulzihlung aller bishner beschrieben. en europaischen Arten. 2 vols. Wien, 1862 -64

Atheruigh dealing with the Jiurneean launa. Hitis
work is very usefut one account of the anaiytic
Cow and C. R. OsTEN S
graphs it the Dipterisi Sackpn.-Monographs of the Diptera of North America. parts. W ssington, Smithsonisn Institutian, lecrions.

The several monrwraphs will be found under the
LIFW revertise families.
pera Americie septentrinnalis indikena. ${ }^{2}$ parss. Berlin, isal-72. Originally mol. zeitschrift.

Leer Riptions it 1, ,on Sirrth Amer. n glptera, but
C R. OTTE SACKRX -Westem
k. iptions ui new genera sud ouptera: fe-
 lera imm the region west ol the Mississippi,
and especially from Cislifornis. and especialy from Csiformis. < Bul, U.S ineolige and reogr. Survey of the Territories,
Fh RKAL'gк.-Tie Zweifugit Muxeums zu Wien. Pans f 81 ${ }_{i} \mathrm{Nax}_{\mathrm{s}}$.
filizunnt
inipera
hin Th Nementh Americsn genEutomi emocerous iplera. <Trans. Amer. Eintom. Soc. 18,2, Pp. 144-160.
111. monograplis and synopses
C. R. OMtrn Sackin.-New genera and specie of worth American Tipulndr with short paipi With in sttemptat a new classificstion ol th trioe. ${ }^{2}$ pls. <Pruc. Acad. Nat. Sci, Phila. 1.59. pp. 197-25b.
C. R. Osten Sacken.-On the North American Typulide, Part ${ }^{6}$. CMonographa of the Diptera ol North America, Part iV, ikn momyraph of the Nirth Amerian Tilyuldidie and fyyhotherine.
C. R. Osten Sacken.-Studies on Tipulidx. Part f. Tipullde lengipalpi. <Berl. Fint. Zeitschr., in*6, pp. 153-188. Past il, Tipulida

H. Lonw.-Tsble for determining the North American apecles of the genua Pachyrrhina. < Veth. suol.but. Ges. Wien, 1879, Pp. $513-516$
D. W. Copinilintt.-Synoptic tahlen of the North Americs mosquitoes. <Cir. No. 40, secund series, Div. Entom., U. S. Dept Agric., $19 \% 0$, Pp. 4-7.
N. Banks,-Some Pkychodide from Lomg I sland, N. Y. <Can. Fintum, iko4, Pp. ${ }^{329-333 .}$
T. Kincaid. The Psychodid. of the Pac
J. Winast. <Entom. News, ispo. Pp. 3r-37.

WinNERTz. - Beitrag su einer Nonographie der
Gisllmücken. <Linna Entomol Gisllmücken. <Línnaa Entomol gica, Vol. VIff, 1853: 4 pla.
C. R. Orrms Sacken- -On the North American Cecidomyidx. < Monographa of the Diptera of North America, hy H. Loew and C. R.
B. Disten Sacken, Part I. No. 5, 18\%3, pp. 173-205. menopterous and Iniptercus, inhablting the menopterous and Dipterucs, inhablting the gsia of certain apecies of Willow. Itiptera. Pp. 543-644: Vol. VI, ,No6, pp. 223-329. 1804 ,
 upsis Cecidomyidarum. <Verh. k. k.Synbut. Ges. in Wien Vol X YYerh. k. k. zenl. but. Ges. in Wien, Vol. XXV 1,1876, pp. 1-104.
J. Winnertz, - Heitrag zu einer Monographie der Pilzmikken. <Verh. k. k. sool. bot. Ges. in Wien, 1863, Pp. 63-694.

Useful tur cteteminalim of yenera: no Ameriksa
s|ecifes are des pileed.
J. Winnartz.一Heitragzu einer Monographie der D. Wclarinen. Wien, is67, Pp. 189.
. Wiesul the tine sulfalo gnats or hlack hies ul the United States. A synopsis oi the Dipte rous lamily Simuliid. x <Bul. 10, new enes, Siv. Fintom., U. S. Dept. Agric., $\$ *=$ 1. IAPD. ©6-8y.

Zeitschrevision der Blephsmceridx. <Schle Zeitschr. f. Eintom., neue Folge, Helt VI,
Hersau, 1877.
Amerinton. - On the classification of North American liptera. Sccond paper. <Eintom.

D. W. CixptiLLRTT.-Syion American 1 .eptale genus Symphoromyia. tom. Soc. ${ }^{19} 94$, Pp. 33 -56. attungen ersuch einer Characterstik dex sicht aut die im. Anthen (Lit), mit Ruck findlichen von E . Erlichen Museum beneuen Gattungen. .. e Zweiftügler des Kais.
 The Nularanita 1 . enmprise inc lan
S. W. Williston.-On the classification of North American fiptera. Third paper. < Vintom. Amer. Yol. 1, is85, Pp. 114-116.
de anchLeptuize ond the familice Stratorayl
T. Day. - The species of Odontomyia Inund In the United Suites. < Pric. Acad. Nat. Nei. the United States.
Thila., 8883, Pp. 74×8.
C. W. Jonmain.-A review of the Stratiamyi.e and ()dontomyis of North America. < Trans. Am. Entom. Soc., iNo5, PP. 227-278.
C. R. Geten Sacken.-Prodrome it a mono sraph of the Tabanuds of the United States. \&raph of the irs ol the flution Soc. of Nat. Hist., Vol. If, 1 N75-7
ilwimonnota, Pangonia, Chrywors, Silvius j'art 11. The genus lavenus, ot this an Ampen. difenal Indea (I. C., Mp. 4zi-479). Supple. ment (1. c., pp. 585-560),
S. W. Winistrin.-On the classification of North American Iiptera. Second paper. < Eintom. Amercan Vif. 1, iksy, pp. in 13.
 iw IF-18
S. W. Witisifin.- Notes and descriptions of North American Tabarids. <Trans. Kans. Acad. Sci., Vol. X, iN8S, op. $120-142$.
S. W. Williston.-The North American aperies of Nemestrindx. <Can, Entom., Vol. XV 1883, PP. 69-72.
A. (iskstasckru.-Systematiache Liebersicht der bis jetzt hekannt gewordenen Mydaiden. Stettiner Ent. Zeit., 186%, pp. 65-103
S. W. Willistum.-Notes and descriptions of Mydaids. <Trana. Kans. Acad. Sci., Vol. XV, PP. $53-58,18,8$.
C. R. Outhn Sacken.-Weatern Diptera, etc $<$ Bul. U. S. Geolog and Georgr, S
the Territories, Vol. III. No. 2, 1877 . genera of
Analytical tetple of the North Anien an genera of Encproserya, p. zut; Anlires, p. 278: Argyrsmetha, P. 241; Burabyllus ispecles frnim the Atianic Stalenl P. 247: Plas (Caliturnis species
p. 268 .
D. W. Coquillett.- Monograph of the Lomatina of North America. <Cian. Entom., Vol. XVIIf, 1 * 8 \%, pp. 81-87.
The L.onalina comprise the genera Eucessia. Leptox hilus, Aphiliantus and Oncolion era.
D. W. Copullistt.- The North Americanzenera of Anthracina. t886, PP. 157-159.
the sulfamily Anihrectina.
D. W. Coolillert.-Monograph of the species belonging to the genus Anthrax lrom America, north ol Mexico. <Trans. Ainer. Entom. north
Soc. Vol. XIV, 1887, No. 2, pe. ${ }^{159} 182$.
D. W. Cinutileett.-Revision of the species of Anthrax Irom America, north ol Mexico. Anthrax Amer. Entom. Soc., 1×1 g2, PP. 168-187.
D. W. Cimulimett.-Notes and dercriptions of Nonh American Bombylida. <Trans. Amt Entom. Suc., B89, pp. Mor-112.
W. Cioutrlatt-Revision of the Rombylid genus Epacinus. <CAn. Entom., Isyz, PP. G-11.

1. ${ }^{W}$. Copnimett.-Revision of the Bombylid kenus Aphebantus. < West American Scien tist, L'K. $^{2} 1$, PP, $254^{-264 .}$
D. W. Cofjillett.-Synopsis of the Dipterous genus Therva. <Can. Entom., iSM3, PP. $1 v^{197}{ }^{2614}$
 genus Pabocepltala. <Can. Entoll.. ixas. pp. 222-227.
W. Ciniliceett.-Revision of the fipterous family Therevid. < Journ: N.

- Sinc. September, a8ch. PP 97-301. Siptera, etc. C. R. Onthe Sacolon and (izogr Survey ol the Territories. Vol ili, No. 2,189 Territories. Vol ing, No. 2, 187%, the Western

S. W. Wilisetnw.-On the North American Asio idat-ldaypugoninie, laphrina-with a new genus ol syr, suc. Vol X1, $1 \mathrm{~km} 3, \mathrm{PP}, 135$, Pls. $1,2$.
atulates the yenera of the sultamilies layying kenine anil
the apecies.
S. W. Williston, -On the Nurth American Asilid.e, Part fI. <frans. Amer. Fintom. Soce. Val. XII, ixN5. Pp. 51 7h Tatulates the surei les of inghria and revisey the genera and sper les of the
escejling the genus, Asilus.
W. A. Snow.-fist of Asilidie supplementary to Uaten Sacken's catalizue ol North Amencan fipsera < Kana Univ. Ouart., Vol. [V, sofo, Pp. 173-190.
W. Cont - Briel tables of several pen era have been publishef in the Cin. Entulus, era have been thblisherf in the
a K 93 , PP. 20, 33, $\mathrm{Pa}, 118$ and 175 .
D. W, ComilleRtt. - Ospriocerus. <Entom. News, 18 gs, p. 37.
D. W. Centillett.-Revision of the Nopth American Empidr. < Proc. U. S. Nat. Mus. Vol. XVff, PP. $3^{87}-44^{\circ}, \quad$ A Af .
1f. farw.- in the Worth American Dolichopodidr. < Monographs of the Diptera of North America. Part If, ISbs
J. M!. Atamich.-A revision of the genera Dol. ichopus and Ifygroceleuthus. <Rans. V'niv. Ouart., Vul. II, INIS, PP. 126 .
W. M. Whmelku. - New species of DolichoprdiAcad. Sci. 3 ser., Vol. ff, Zool. Na. 1, pp. 1-77. 1 1 M at.
J. M. Alimica.-New species of Phura. <Can. Entom. 1 Muz, PP. 142-146.
D. W CiwlilikTt.-Synopsis of the Dipterous genus Phota. <Can. Entom., i\&ys, PP. 183180.
G. ple N. Hos'ch.-The Pipunculide ol the Unired States. < Proc. Mast. Soc. Nat. flist., Vol. XXXX, pp. 77-86. 18 yg.
W. A. Snow.-Amefican Platypezid.s. < Kans. Univ. Quart., Vol. III, Part I, 18, 4 , Pp.

S. W. Williston.- Cuntribution to monngraph of the North American SyTphids. <Proc. Amer.
2 (4) 3,32 .
S. W. Willitton.-Synupsis of the North American Syrphidx. Hul. C. S. National Museum, No. 31, 18凶.

This wrak suprersectes the previ ous publications on this fantly
W. A. Svow.-Sinolementary list ol Narth American Syrphid.e. <Kans. C'niv. Quart. Val. III. PP. 249^{-262} 1803.
W. II. Hintek.-A summary oll the members of the genus Chilosia Meig. in North America with descriptions of new species. <Can. Entom., is A, Pp. $227-23,3$.
S. W. Wulloton. The Nurth American species of Coneps. < Trans. Conn. Acad., Vol. IV 18.32, PP. 325-342.
S. W. Willintren.-North American Conopide Stylogaster. Dalmannia, Oncomyia. <Trans. Conn. Arad. Vol. VI, INK, PP, 512.
E゙к. НhatFk. - Monographie der Déstriden. Wien, -x. ivis. itwe mpplements, ty the sanie author, are pubs-
 w. Wísicye 4. Nurth American Tachinid.e S. W: Wiksicyw-Nurth American Nachinide PP. S. 12 . Can. F.intom.,

Bibliography

 7weiturgler des Kaiserlichen Museums iu Wien. Parts IV VII, INLy ow. themp rarts cunasin , INX, ow if the sumajla thifometiqu (exil AB the mighles.
C. H. T. Tiwwomwis. - The North Amertan xenera of Calyptrate Muscul.e. Paper II. $<$ Trans. Amer. Fintum. Nic., IWh, PP. ${ }^{135} 1444$
W. Cundilicstr, - Kevienom of the Tachinide of Amprica, nurth of Mexico, <Technical series, Nis. \%, Div. Kintom., U. S. Dept. Agric., img.
C. H. T Tiswarnt. - The North Amertcan men. era of Cialyptrate Nuscide. Paper fll. <'Trans. Amer. Kintom. ixk., isyz, Pp, 273 ${ }^{176}$ Tsble of the geners of Dexid.r.
H. A. Halinn.-list of North Amertcan Sarcophagidse, esamined hy K. H. Meade, k.mp. lsradlind. Kingland. <Can. Eintom., tos," Vul. XIII, PP. 14t-150.
C. II. T. TinNsinit.-The North American genera of Calyptrate Musicdse. Paper IV. < Trana. Amer. Eintom. Soc., isy, pp. a;y $2 \mathrm{as}_{4}$

Tatiles of the senera of Gatcorphagitw and Muw I.
G. be N. Ifei r, th. -Synopsis of the Cailiphorine of the United States, <Zool. ISul. 11, i Kn, Pp. $2 \mathrm{~S}_{3}-2 y$.
pH
N.
, DE N. Ilstit1-Some Muscine of North America. < Aiol. 13ul. 1, ithy, pp, 1.3.3,
H. A. If ar, H v.-List of $\mathrm{N}, \mathrm{orth}$ Anmerican Anthem nytid.e, examined bv K. II. Meade, Fisq. Iradford, Fingland. <Can, Entom., Hill.XIII,

< lierl. Fintim. <risch. ito Anthomyl? ? < lierl. Fintin. Centsch., isot, pp. thi 2ss.
Scatophagidat. <Journ. N. Vintons family seatuphagid.z. < Jomim. N. Y. Eintoni. Sice.,
11. Seplember, isus, Pp. Ifrority,
< Monographs of the lyiptira Sciomyzide. < Monographs of the 13iptita of North
s. W. Wileistisn-The American ge
. Wicistis.- The Americangenera of Sapromyad.e. <Entom. News, Vol. V, 18 ,
1t. Lanw. The family Ortalidx. <Monographs of the liptera of North America, Part III, 1873. PP. 1-3(x).
II. Idosw.-I In the North American Trypetide. < Montsraphs of the Fiptera of Nortli
H. America, [rart $1,1,3 / 2, \mathrm{Pp}, 49-102$. Trypetina. < Monougraplas of the American Nurth Amenca. Part III, $18 \rightarrow 1$, Pp. a11 147 .
1). W. Cixpt thers. -Notes and descriptions of Trypelid. < Juurn. Ni. V. Entom. Suc.,

11. IANW.- On the Nurlh American Fphydrinidx. < Monographs of the 1 hptera of Nurth Anerica, Part I, iviz, pp. 12yr.172.
. M. Whatink.-The genus (2chehera. < Finlom Wews, 18%, pp. 1211^{123}.
W. Corglileett.-Notes and descriptiong of Manthe, < Joum. *. Y. Fintom. SNe., Marth. 19, M, Pp. 44.49.
W. (ixpl II.k.fit.-New generı and species uf Fincteribitir and is. flippoboncida. \& Can.

SIPHONAPTERA

(). Taschpahzmo.-l bie Flihe. lie Arten der Insektemordumig surthra narh threm Chitmshelef monographishlahorestellt. Halle, iS5is.
P. Mariniw -liet paraniles el lex maladies para sitaires s hei I'tomme, 保 aninaus domestipues et lea animaus muvages avec lesprucis ila pruventêre en contact. Insectes, Arathniden, irustaces. Paris, ixhs.
the Pultitie (A)

iera. <Cin entiminary studles in Siphonal-

TRICHOPTERA

R. Mclachlam, -A monographic revision and gyopsis of the Trichoptera of the k.uropedil

F. A. Kulmanti, - Fienera et species Trichupter A. Kilmanait, - (ienera et species Tirchupter-
orum. a parts. Part I, Prague, isy: jart Moncow, twso.
R. Mcliachian - Notes nn North Amerlan Phryganidar, with especial reference to thome contained in the cuflection of the Mritish Museum. <Éntom. Annual lor $1 \mathrm{th}_{3}$, pp. iss 163.

- A. Il atov.-Phry nich. Lerh. k. k, woll.-\{wil. Ges. in wiell
 Faniden, Verh.k.k, zool.-but. Ges. to Wien
 Histon Suc. Nat. Hist., Vol. XV, 187s, pp. 34 $3 \$ 5$
A. F.. F:A rox the Virth Amertan mper les.
the Trichoptera. RTrans. Entom, Sumily of don, 1973. pp. 135-156.
 Naskn,-I Iescriptions of new North American Neuropteruid Insects. Trans. Anter. Entomi. Suc: ItyN, pp. tue-2is.

MECOPTERA

J. O. Whstwinid. - Monograph of the aenus Pin. orpa. "Trans, Entom. tic. Iamdon, Vol. IV,
J. S. Hisk.-The North American apecies of the genus littacus. Joxm. Coflunibus Hortic
J. S. Hins.-A paview of the panirpd

Sica nurth of Mesico. Ohianitate Unite of America nurth ol Mesico. Ohis! Sute Universtry, Ciniversity Bulletin, series , No. 7 ; ContribuFintomolary, No. Keprinted froni Bul. sit ah. I enison Úniversity, Fil. XI, Art. X, Kebruary, lyos. Columbus, published by the C'niversity, Fehraary, luol, pp. 24!-254, pls.

NEUROPTERA

1.-CATALBGUES
A. I3ANki-A symopsis, cataggue, and bihlioGrashy if the Neurnpterod insects of teniperate Ny2, pp, 32K- 373.
II.-(iENERAL WORKS ON CLASSIFICATHN

Hermann ITrkmestrp. - Handhuch der Fintomo ligie fierlin, $1432-1815$. [3. Rambi K - Ifistorie naturrlle des Neuropteres. Suites at Huffon. Taris, 144^{2}.
fermass HAten-Synupsis of the Neuroptera of Nirth America, with disi of the south Anerican species. Prepared for the Smithsant. Collections. Washinglon intan Miscel laneous
M. Kıwriwk -Neuroptera Germanca. Zwickisu,

 ruali.e ios kudte
Fin. IWalkn. - Versechnis der hin jetit bekintiten Neurupteren ims sinne l.inné's, 天 Veph, zanl

N. Ha*ks, - New rnew ant apecies if Neantic

AıpapuA.-Kéviawn dea Ka phidxdes. vinir t.ntoin., 14y, pp. 6s.isy.
4. A. Halem, stray nutes on the Mymeleon ide. cral numbers.
eral numbers.
 JH. KHy FIDRN. - Dismbula ad mumyeraphlam generis Chrywops leach. ratiulavix, fos,
 sh A. Hasien.-Monneraph He Vat. Itist., Vol. XXII, ixt, pp, zgo-2tey: Parill, l, s., pp. 2 2traz. Nev completerl.

HEMIPTERA

1.-CATABOGL'KS ANJ CHECK-f.ISTS

- I. Ihnen.-Catalogrs Ilemipterorum. Stet.

Pin, iss4. 11 ER.-Check. List of the Hemiptera Heteroptera of Nurth America Published by the Jirinklyn Fintomi. Sic., SWo.
 des Hemipteres. 3 vish, Whalistue
 shtr and the Cryste" erala.
11.-GESERA. WbRKS UN CL.WSisIHCATIUN.
C. W. If aliv Ind fi. A. W. Hexkern-Sinapp-pho.-lise wanzenartiken Insecten. is vols.
 urelle des Insectes. Paris 104 .

Herlin, Iver(4), isarns. Originally published it the Herlis, Fontom. Zeitsehr.
C. SiAl. Hemipera tahriciana secundum exempla Nonsl Svenuk. Vet.-Akad. Ilandl., 2 warts.
1 yon 1 米
I. it himputr-finige nelve Hauptsaize der Marplume wie und syatematik der Khynchoten. Maturh. Tidskr, ishy, b, a37ff.
P. R. I:nlew,-list of Hemiptera of the region west of the Misstsaippi Kiver, includiny those collested durink the Hayden exploratoraryey

 by I'. K. Chler during the explaration "1/ 1435 ,
 and saklid.re, and the Herniptera cullecsed by A. S. 1'ahirt, \$1 1) [11, Nithlaw. and tieoser, Surves. Kul, Whl.
tss -476 .
C. MAl.- Hnumeratio If emipleronum. iptera (or : Index suecierum omatum hucusque cinnitarum cum (haservathombus eystemblicis). - Kongl. Svensk. 'et.oAkid. \$landl., 1470
C. SiAi. Wifidrag thll Hernipteremas Systematik

Ifrwper (Joyeswo. - Chenifisum of tiempicta

 it Tennewes. "lua. Tenn. Aar. t.ir. Su

 Cy. Inlitie

Cnapiry Willian Wimpurneth-Synnguis Ni

 of the L'nited states. Antlles. and Mesicu.
(D) Mactillivisy (icadol w, American D. Mactalliviry Cadrlith, Matc', genera and sp
 a. onnograph if the ketuo fulgora if linn. Eus:
C. Stat. Sile amerikanischen fulsoriden-fiat. tungen synuptiult iremhrichen. Gtettiner Fintrm Reit., inl X.K.M, ispu, pp. as the ful
 Siride. In zek.-I irrelininary review of the North Americallile phacids. 2p. 225-3th.
Wic. Nat Mce: em llerbidx. Cin. Filtom., Iky, vy. igu and K. L'ut.pk.-Aida to a recianition of somne K. Int.Yn- - Aan enera and spectes ot the wh family fulgordar. Trane. Saryland Acad. aci. 1400, PP. 401-434
treati, flie bill ies il \& a
 Otver at Kombl. Vet. Aliad. Firmandl., I was

F. W. finula...-i symeposs sit the subtamilies and genera ul the Nemhracide of North Ainct. and. Satrana. Amer f.ntom. Soro ispa, pp. 251-3to.
V. Shinniket, -Revuecritique dugroape des Tetfisumdes et de la trihu des Cercipsues. Re-
F. Vere et Mas. de Zmotionion the subfamilies and
F. Generansthe bical catalogue uf the described apecies. Hul. III. State I abor. Nat. Hist., Fal 111, 1545, 10 183-501
F., 1). Hali. -A sudy of the genus Clasioptera. - Proc. lowa Acad. Sci., Vol. 111, hanor po.
 Fassundea of North Anmerica,
f. f. VAy in ark. - symopical armangemer.t of the aenera of the Nirth American Jasside, etc. <Trans. Anter tintom. Soc., iky, pp. 245 -107.
I. Sibnomer. - Revue ionnspraphate des iet tikundes, whith colired plates.

 P4\%.
 1llinus. l'art 1 Isal. 111 . Nate lab. Nat

 the flemiteterthis f.una ot lowa. Proc, luw.

11 P4maN and E., 11. Hats, -Therenus lindinp ath a review of the Sorit American aprerps. yon, Dif Hatenp
If finminm and E: II. Hati, - A review on the Fisith American pecies iff liflucenis, Itrar. vavenpert Acad, Naf. Ma Fol. VII $24^{-13} 13^{15}$.
 C゙ísinl. Pryche. Vil.V, ive, 1'
I'. Av IH.OF, -Keview of the Nirth Amert call specier of leeliopsis. D.ntomin. Anter. 18*y. Hp. 10s-1 14.
, Fe. Van Ihask.-A revlaion of the Ninfith American spectes of thiepulus. © Irans. Amer

Sranarki. - Spectes fiypone fieneris Humugt.

Handl., inys
Gimahexles. The North Americnis niecies of

 $\stackrel{135-130 .}{\text { P. }}$
P. Vam Itrafe-Review of the Norih Atherlo
can species of Hythuscupus, a fintom, A 14yo, pl ja1-tio
 can Typhlacybtai. < Peyche, Vol. V, ISH, pp. 311 $1 / 4$.
subfamily te, -American keat hoppris of the Mus Yily TYphlocybine. a Pros. U.S. Nat
(own in - The renus peaphoriveus. oform Cin. suc. Nat. Ilis., vol. XiX, 1400, pp. 187 1. U1 AI
. minouraph if the American Imward a CHul. No s Technical veries Hiy houm

- Sínenmer - Fisuai wur les Cuchenill

I Hir Entum, de France, ind-arfo.

1. H Limstoxk.-Keport on scale insects. éAn. nua, Report of the Commissioner of A rriculture tor the year ikto, Washington, isss, pp. 37t
2. 11^{190} Ciom
includine k ...-Second Report on scale Insects, pina of the lamaly Corciter and a list itho notes, of the other species of scale insects tound in North America - Sectind Keport of the Comell Liniversily Fixperiment Station, isk-
w. H, Ashmea. H . $1 \mathrm{NH}_{3}$, PP. 47-14.1, pls. 1.4.
cid.e. <Trans. Anaer, Fintom. Soc., the Cos. PD.
T. II. A. A.
3. A. Cockereli,-Tahles for the determina tion of the renera of Couccids. Can. F.ntrom.
 cidse. Hul. III.St. Iab. Nal. Hist, Yul. IV,

check-list al the ciccides aupplement in the check-list ol the Coccids. Rul. 11I. SI, Ial

lic Coccidir. Cin Fintom othe Nearc 11. A. Cicknhple, Tahle of North American kermes, based on external characters. - l'syche, III. IX. IWNo, PP. 445.
W. Nawnl. -1 in lie Xiuth American species of of subsenera Hia qpictortus and Hemuserlexta, Zinl. Fintom low it Arle Nis, 3, Aurust, shay: and Hemichionaspis. Sipec. Pul. Mass. Agric. Fxp. Station. August, tix, pp. $5,4,4$ pls
; H. Kinro. The genus hermes in North Amier ica, ©Psyche, July, 1.no, pp ox x_{4}
HAN V lisw. Zur fyormatik der Puslloden Pp. Sis 610 . k, wil -lill., (ies. in Wien, ings
familiew and genera supersedes all prestuos classificatuons

W If, Ashmant,-i)n the Aphilide nif Fhrida, Wift eleseriplisins of new spertes. Fanuly op tace ise Can. PD kact 118 Rem list of tho

c) Kiter - Notesti, inarlh Amerwan l'sulle - Iroc. Hiohes. Soc, Wash., Val. II, $\mathrm{XN}_{4}, \mathrm{Pp}$ 3 - N.
 Mevern ant sturitics.
C. W, Maise, I'syllidelemendat imes. I'roc.

Hemjasin if Whatat - 4 m the gemera oll Aphile found in the C'nuted States. Pruc, Fintoni

Cyring Turmat - Notew of the Plan-ike found in the U'nited States. CTrane. Ill. Horese, Nux., 307, PP, 119 312.

4hent if hew 揭 tes
Cvare Tramas.-A list nf she spectes nf tie tribe Aphidini family Aphidir, Iound in the Cinited sates, which have been herelafore uamud, v. th descriptions of sone new eperwa ind No
C. V, Rieny and J. Nomeri, -Nolee the the Aphadie of the E.mited suies, wilhd smipits - Hul. t.s., Ciecilng and (imyer. Murvey of be

 Penthikine: Mrinell, test riflopha, whe a Crbis Thomas, - Fighth Keport of the sitate Fin tomolemist nn the nu. was and lieqeficul in serls by cyma Thomas

 author's laper in the Ifan, III. Itertic, wx
Gronger P. Buckton. - Monogeabh of the sithish Aphides. 4 vils. Ray wouls; lundm, ix:5 14.3.
 yenera.
J. Lichtinatein. - Les Puceront prem lie. (ienera (ail published.) 185.

Cintains a f:llilligra; iny, os nigwle of genera, ams
O. W. Ofstetwb-Syuopsis of the Aph dif Minnesota. Hal No, fieuloge. and Nat Hist. Survey of Minn., se laul, owi,
\mathbf{H} A
w.
 icanAphidids.-If(si-plani list of North Amepican A phadids. Spec
I'ep!. Finlom., Ixys,
F. Xepl, Finlom, ifosk, zecies zencis Corisa monographice dispsiaite. Abhandi, kim, hihmongrader Wiss. Prag, Ser. 5, Vol, Vill, iss2, Pp, $213-$
F. X, Fitppx, - Khynghelmeraphien, drei moner graphische Ahhandlungen. Pericorid.e, oryy. carenus, Notonect.e. *Aihandl. Kenl. lowhy. (ies der Wiss. Jrag, Ser. 5, Vol. V11, 1s51, PP.

W. Kikkat.ny, - Revision of the Notonertid Faril. Trans. F.niom, Nox, lainden, Alyz,
Josepr forinv.- Ilistory and anatomy of the Hemipteronsgenum lieloatuma. Joum, Acad.
 on Jlimisk, - Fissai nuinugrathuquesur les tiel-
 hearhe - llie Reloslomiden. Monographisclı Wien, sy7i, pp, 3ur- k. k. Zoul. But. Ges, in
A.

 ITP zun pos.

 ilf ixja M. ivi a/2. . IT

 thin ecrrestris.
isw py exs 75%.
 the inmet wllerted by a K ilher durimg the
 liengr hurvey, Vill. 111 ... s, 1977 is 480 432.

© AtAL. It rus bill f duvidermit ins en mien.
 -14ver : |k.ul + - 1 - K7a-147 2

 Table 1 .

 1.4. $\mathrm{Pp} \cdot 111,2 \mathrm{P}$
 I'rux. I.ntem. tix. Wash sol, 11, pP. 332^{-}

 arctic Pentatomed F. Gifknam. Heitrake zu einer Manceraphie der Schilomanzes. liermur's Zeitschp.f.t

 tura. Xist pp. 5
, thains b
P. R. I'Hifk, 一Sutomary of the ('ydnide of Nopth America in senurt upere the lisects allerteal by
 fol :11, $8=-\mathrm{mp}, 360$
 de ha famille des renholonndes. Nmiske de
 ofunt valtitues th 1844 :
Desave-Muncostaphia Alabphrurtim fritan.

 kethireren ind tiozeln whmarutyemben luvekton
 isfo. 20pls.
 tern. South Kensington Buseth: ©rience

 Cra, flarim (wh)
t.. Parare. Ien Prelkultaca

 (SW) 1:1

PHYSAFODA

 simets in the I Mifor Thical teri, with "t as

 repers liseects in the soltee thom ut live lseitish Vlusu syobla sadi vol. Supplement late

Q1 Itp (inntrinutiens en a hip niedse at
Ind Ilf, ivg, IP, sif sif

ORTHOPTERA

 (0)1, Iters of the 1 nited thates and Camada $<\mathrm{H}_{1}+\mathrm{J}$

 lis ivis

$$
11-1.1 \times: 1 / 1+T
$$

1. Stpars Swot11-1 othopterta of the Store sil

 It f+keisun-The trohnjpiepa nit Nes Ingland Ann Kein stass Igri Cil.

 the "ribipters tubtul uithith bfive miles is New Firk 'ity - Hual. Imet IIus. Sut. Hist.

$$
11.1110 x
$$

11 \& (1)ntry - firide th the geners and ilassoff.
 ambrudze, Mass is r
 systerle des cribupteles. el describion des
 lirmathte *inn Mas (1)

 14 fis. 413

Bibliography

HFNM1 DRSA:'Ssi'Rp,-Orthnpterannva Americana [IIngnoses priviminares). Series I III. Kevue et Mag. de Cimil. © X_{501} ol

Cundions on mipithal lalles if treties. lievile lespripthins ut numerosic Suretis Amerla at on thyluera
Samifl H. Scriterr.- Materiale for a mumograph of the North Arencan IJrthiptera. <lhostun Jnumal of Nal. Hist., Vol. V'li, 1ins, PP. 4 4. fou.
untains aynutical ahties and seview if the
Santer H Sct bimar.-Remarks upon the amangement of the families of (Orthoptera. Pric Roston soc. Nat. Hist., Vol. XII, INex my almo separate under the title: Entomolugical Sotes. Vol. 11 . pp. 7 14.
Samifl H. Stionorr. - Synontical jable lor deter. mining North American insects. Orthoptera. < Psyche, Vó, I, ifot, Pp, ity:171.
 if usefill wurks in the sturly in Sinth Amerkan
1Tminteri
S. H. Sidiner.-A list ol the Orthoptera ol New Eingland. Psyche. Sept., 'iaxi, Pl. ifr vif. IV.-MoNOGRAPIIS ANIS SYNOPSES

Sampinl H Scrontr,-Summary ol the U.S. Phasmide. <Can. Fintom., isis5, pp. 21, 30 .
Gerorer R. Gras.-Symopsis of the species oll in sects belonging, to the fam: of Phasmidre, London, 1×35.
J. O. WFstwinti-A catalugue of the Orthopterous insects in the Inntish Museum. Part I, Phasmidie, Landon, $185 y$.
C. Stal.-Recensin Orthopternrum. Revue critique des Grthopteres decrits par limne, lle Greer et Thunherg. Part III. Stackholm, is75.
 nides $+\pi$ many ye ies
Samifl H. Sctomer. - The sjecies ol lidapherim mera (Phasmidx) fuand in (C°. S , and Canada. - Psyche. Vul. IX, Nir, 3(x), Pp, in7 is, April. tivis.
 North Amersa., nurtl| of Nev"1, \& Can.

Henkt sir Sal:- che-Fisui dun sycteme des Nantides. < Mithell. d. Shuciz, F.ntum. Cies. Val. III, IVn Pp, 4, 7s.

Clasvination of the Dianili, fart II comaing
Henki uf Sti'sal mf.-Additions du systeme des Mintidea. (ieneva, ibol

1fevk! we sial hil kr.-NI intules Americains. - Vém Hisi Nat. Mex., 11.1. (ieneva, 1071, iv, pp, ${ }^{2}$ pls.
J (1 WF~TKiwit), Kewsin Insecturum Fimala Danhidrum. Sjertebus nowis ant manns

 < Kiculle ei Mog de Zonil.. ives

 1: Ms

C. Stal. - Recensin Orthnnternam. Revue cril ique des Wribigiteres decrits par linné, Ibe fique des Thumberg. Part I. Acrididit. Stock. holm, is7s, ig4 pp.

A synutical arraniement it the aenefa of the yeites.
Crat's Thumas, -Synopsis ol North American Acridid.t. < Keport U.S. (ieolog. Survey, Vol. V, Part I. $1{ }^{187}$

A sysumatiral arangement if the ilew rient ape
 cles of the 1 'nite, 1 maley: l'am 11 . Sjeciles
Samifer H. Sctronfr.-Spharagemon, a gemus ol EFdipmodide: with a revision of the sy-cies. <Pruc. Hoston Soc, Nat. Hist. Vul. XVII, 1975. PP. Ah7 $471:$.rparate, under the vitle: arom. Notes, ", pp. (k) 7 , symymies.
sy.
SAMPR1 H CrubDtuCan renera of (Fidipadide < Pmo Hust can Renera of (Edjpodide. < Proc. thostun sic. Na). Hist., Noparate, under the itle: Entom. Notes, 1Y, Pp. 77-84. as innurisiof
ix elhila.
Cyris Thimas, - Manual of economic entomol ugy. Part IIf. The Acrididie nf Illinois. $<$ Vinth repert ol ulie State Eintomologist of the State of Illinois, 1881, pp. 73-846. Cuntains assynquisal tathe of keytuthe Gamilles
 kenera, and a key til the llininsls spenles of Aimblat.
 nurti, "il Mexico. < Third Krpurl U.S Fintom. Commission, $1 \mathrm{KN}_{3}$, PP. $\$ 5$ fol. Asyematioal live of the speetes lexritiell from
Henki Dh Salmorr, - Prodiomus (Edipodi "rum Insctirnm ex irdine Orthepteronum. < Mém. Suc. Phys. Hist. Nit. Gerreva, ande. 470. 254 PP
 nen qreires
C. Stal.-Systema Acrilennum. < Hih. Svensk Vet Akad. Ilandl., N:M. pp. 1∞
Samive. H S'rertek - Kevinon of the thrthop teran group Melanopli (icndidere) with special relerence to Nirtl Amenc.an furms. I'roc
Samipi II. Sx'mek. -The Orthopterain renus Ifippisulis. <Psyche. VIl, VI, 1 whz. Gum. tinued in several numbers
Samifl II. Sit subfe - The North Americ, spe cies of ©rphulella. <Can. Fintioni., IX.a. 1p. 17, 1.is.
Samifil II. Actither.-ithe species of the etr thupteran genus lleritaremas arice. InwArad Arts and Sit., Vint XXXV, Non 1.)

Samiel II. Stinum,-Gime genera of rediper dide reatued from the Iryxilid.e. < lisyotie,

 in the Vlelamoshli - J'me l'sengmist Dial

A. 1' Vonar - Kevjsion if the kiveices of Splatagermon. \&Payche. Visl. V1I, im,
I M1, Nr11 Revision uf the Tris.iling af

A P. Monsm. Notes nn the Acridid.r nl New Fingland. <Pryche, 1, 16,4, Pp. 147 167; 11,

 $10, N, p p$.
$1 x, j-2,1, f 1$
Samerl II. Sciporn. - The speciesol Hadrotetix, a genus of (Edipxalin.e. < Psyche, lym ${ }^{2}$ pp. fy (fk .
Philisan - Fissai sur les Acridiens de la tritu des Tetrigidx. <Ann. sioc. Entom. Helg., 1487 . PP. 175-313

1. Hanciok.-The species ol the new genus Neotetix with a key to the genera al Numh Neoteran Tettixir. <Entom. Neus, 1 sey, Pp. 137-141.
1 1. HANCOK $137^{-141 .}$-Symopsis ol suhfamilies and genela ol Nort American Tettigid.t.

s. II. witlifk. - The species of lipcotetix, a North American genus ol IEdipodinx. Psyche, Dec. 11ym. ple 135141.
J. McNeill.-Revision of the Orthopteran genus Trimeroporopis. <Proc. U.S. Natl. Slus., Vol. XXIII, PP ${ }^{343} 3412,11 \mathrm{pl}$.
C. Stal.-Kecensin Orthepterorum. Revue critique des ()rthopteres decrits par Linne le Geer ei Thunberg. <Part 11. Stockholm, 1874, 121 PP.
C. Brinner vin Wattrnwvi- Mingographie
 8 pls.
animical monngrath if the Kalyliles if the Nurll. wi.h full Tilillingraghy and fill synony-
Igmarto finiwak.-Arthropodos del viage al Pacifico, verificado de iwis intos por una comasion de naturalistas enviada por el Gobiemo Español. Insecles Neuropterus y Oropte-

Cuntama a synnical bathe wh the senus cun
 der $\mathrm{P}_{\text {scuduphylliden. < Verh, Zowl. lint. }}$ Ger Wien, ixis. pp $2{ }_{2}$
J. Rentrabachen. Ionographie der Conoce. phaluden. < Verh. Zoxil. Iker. dies. Wien,

Sxmph H. Sumpr - The North Amencan Cell thophyli $=$ Price Aner. Acad. Arts and Sci., CuI. NXX. 15.4.1P. 19-111
 Sudilem. er Price amer acad arls and

- $11+1$ II Siture - -1 preliminary review of the North American 1 te
 Nil I. If hlimith in the United States mid Camada.

 1, M. 笊 S. Hu Patic Colase <C'an. Finturn., By. PP Hif Pra

 14.
- vir ai
 gique tirillides. Twe palls lithever.

C. A. Hart-On the species of (Ecanthus.

 lound in .ourth anterica. Payche, Vol. Vh. W. Mef. PY 433134.
${ }^{4}$ Prece ind Acad -The (iryllide oll Indiana <Prec. Ind. Acad. Sci, 18 i 31 , pp. 126 -144.

EUPLEXOPTERA

II Dohra-Versuch einer Monographie der IIermap,reren. <stettiner fintom. Zeit., Vols. XXIV XXV1, ishs ha
A mbink
Samiki. H. .icupien.-Synoptical tables fur determining North Amencan insects. Orthoptera U. S. Forticularia. < Pysche, Vol. 1, $1 \$ 76$ PP: $1777^{178 .}$
ibirteen specles and pities a lint co lioxiks uneful for the slusty of the faillly.
Samirl. H. Scporr.-Brief Synnpsis of North American Faruies, with an appendix in the American tarwigs, with an appendix n n the Survey of the Territories, Vol. II, No. 3, 1876, Pp. ${ }^{24}{ }^{2650}$
SAmbel H. Compre-Critical and histnrical nutes on Forficularix, including descriptions of new generic forms and an alphaletical synonymic list of the described spectus. <Proc Host. Sice. Nat. Hist., Ju'y-Uctuber, 1876 Vol. XV1il, pp. 2×77^{-332}.
W. F. Kiner.-A revision in the Forriculide with descriptinns ol new species in the British Museum. < Jnum. Linn. Suc. Landon, Zool.

A. dr thimmans und H. Kkat's.- Forficulidx und Hemimerid. \mathbf{x} < 1 as Tierreich, 11 Lielerung. 1g00, pp. 1-142, 41 figs.

MALLOPHAOA

H. Denny- - Munagraphia Annplurorum Briunni.r. < 1 andun, 1×42. 24 pls.
C. (i. A. Gurfil-1nsecta epizoa. Die auf Suuge:hieren und logeln schmamizenden Insekien < Nach Zeicinunges. van C. 1.. Nitzwh. 1etipzig, 1974,21 pls.
 tera. <ximuth Kensington Museuma Science Handboroks. 1 andorn and New Vork. $1 \times \%$.

The Mallonlara 'Allequaril are treated on IM
P. Meonver-l.es Parasites et les maladies para shaires chez 1 homme, les aninatix tomestupues et lex animaux samwages avec lesquels ifs peuvent étre en conlact. <Insectes, Arat handes, (rustacés. Paris. and.
F.. Pancor r.-l.es Pediculines. Iescriptinn ile
 numelles. < Liyden, baso, 3^{6} pls: Supplement, Mx; 17 pls.
O. Tac'hesntrg-Die Malluphagen mit besondere: likeriuksichtignng der von Meyer gesmmelten Arten. Maile, 1 s.s.
 (hagal eaken from linds anil mammals oI Virth lmerim: < Proc. V. S. Nas. Mus.,

CORRODENTIA

 Pawiden. - itemmer 1 nur of /eil., Vuls.

ISOPTERA

If I Hurs - Vonngriphie dir Termitem,

H. A. Hagkn-Monograph of the Imbidina <Can. Entomi. Vol. XV11, 184 s . Unly une sime lea 'a 1 hiv famity has hithertu been
found in the Unile, stalet.

PLECOPTERA

F. J Pictat-listoire maturelle pénénle et particuliere des insectes Neuropteres. Premiere inomosraphie: Famille des Pellades. Geneva, 184142.

ODONATA

W. F. Kiknv. - A synonymic catalogue of Neumpter. Odonata, or dragon-thes. <London,

E. wi. Sivi Iningeliampyet II. Ifar,pn.-Monographie des Calopterygines. <Iluf. Acad. Kelg., Krussels, iss
E. HE SKLy langilamen bt H. Hagen.-Mton ngraphic des (iomphines. <liul. Acad. Hefg., Iirussels, isjs.
F. de Sifly: Lavi,champs.-Synopsis des Agrio. nines six paris. < liul. Acad. Helg. Brussels. I B M 74.
E. bu Spain Ioncichamps.-Synopsis des Cordu. unes. <Hul. Acad. Ikelg., Iirussels, 187,
IL A. Il agen.-Synopsis of the IOdunati Amer ica, < Urec. Heston Soc. Nat. Ilist., Voi.

 nines. <IBul. Acad Relg. ixwa.
 sis des Agrosines. Bul. Acad. Ik.ly., IS4
II A. Haralv.-Syuppis ol the Odonat genus 1.eucorhinia. K'Trans. Anver. Fintoni. Ser, 14 a, PP, 22, $3,3 \%$.
H d. II ar,in.-Synopsis of the Odonata of North America < Psyche, Vol. V, $N \mathbb{N}$, or, Nio. 1 , pp. 241250 , Cahpteryx; No. 2, pp. 303 3.8, Anax
P. I'. C'asiver-Catalogue of the Odonata (I)ragon-fless) of the vicinity ol Philadelphia.
 272. $2 \mathrm{j} / \mathrm{ls}$

1) S Krlifiottr. - The Odonata ol thio. <Ohio Acad. Sci. Special Paper Nos. 2, © $\mathrm{N} . \mathrm{Pp} .114$.
1. If Wi
 (P1) 224333,7 pls.

EPHEMERIDAE

F \int Putifi - Ilintorre natureile xénérale et para thentere iles invertes Nearintites. Seconde mono. krophbe: tanulle des Ephémérines. Geneva, 154345

Bempamev D. Walsh.-List of the Pseudoneur optera of Iltimois conlained in the cabinet of we writer, with descriptions of over lorty new species, and notes on their structural affinities. \therefore Proc. Acad. Nat. Sci. Phila., 1 Kos, pp $301-402$
she generantins, in thertilat yop-308, s table of
Benjamin 13. Walail-O Heservations on certain North American Neuroptera, by H. Hagen, A1 1)., of Koenigslerg. Prussia; transhated from the original French MS., and published hy permission of the author, with notes anc descriptions ol about twenty new North American species ol Pseudoneuruptera. <Proc Entom. Sioc. Phila., Viul. It, 186364 , PP 167-372
untans a mollfication of the tslile of geners of
 tabile of the suld dumilies of the fanily U.linata
A. F. FATON A monograph on the Ephemeridx P? II. The nomenclature of the Fphemeride <Tians. Eintom. Soc. Londinn, 1871, Pp. 1-1/94
A. E. F.ATon.-A Revisional Monograpli of Re. cent Fplemeride, or May-Hies. © Trans Limn. Suc. London; $18{ }_{3} 3-8 \%, 6$ parts.

THYSANURA

K. W. v. Dalla Tokne,-Die Giatungen und Arten der Apterygongrea. <4 Program k.k. Stads-fiymnasiunt, Inusbruck, Pp. 23, thas
I). Itacdilitivenvi- A catatogue of the Thy
 13011. PP. $2^{2 / 17}$ 2\%
A. S. Packakb-Synopsis of the Thysanura of Fissex County, Jass, with descrijutions ol a purt of the Trustecs ol the Peaborly Acidenty
 of Ncience for the year $1 \$>2$. Salem, 1×73, \& P
$2,3-51$.
Jown 1 .
and Thusam-Monograph of the Callembola and Thysanura. < Condon, Ray Socicty, iszza. The Intralustion give, the full bilitiongapity up tis
A. D. Nacfilinmay - North American Thy sanura 111. <Can f.utom., 18:33, Pp 21.4230 .
A. J). Mat (illiminay, - North American Thy s.mur.a IV. <Can Entum., 1\%,3, pp 313114
 1) Maliflisivat - North Aherican Thy

A. I). Naclititukay The Imencan species of Isutons.1 <Can Finturs is.fi, Pp. 47-5\%

INDEX

Aaron. Carrie B., 366
Abe Lincoln bug, 313
Acalypter.x, 90
Acanthiidxe, ${ }_{2} 28$
Acanthomeride, 87, 130
Achorutes nivicola, 386
acknowledgments, xi
Acridiid.x, $322,332,341$
Acroceridir, 134
Aculeat Ilymenoptera, The llabits of the, 20
Adela, 203
Adler, 55
A.ciacus hirundinis, 258

Aedes, iol, roz
Fischr7, 374
heros, 365
SEschnidev, 369, 372, 373,374
Agallia sanguinolenta, 244
aggressive mimicry, 142
agricultural ant of lexiss, the, 46
Λ grionid $x, 3(x), 370,371,376$
Agromyzide, 92, 187
alder flies, 211
Aldrich, 144, ${ }^{1}+5$
Aleuronia, 218
west woodii, 219
Aleyrodes, $2+7$
citri. 247
Aleyrodicus, 247
Alcyrodida, 230, 246, 247
ambush bug, The, 297
American cockroach, 33°
locust, 333
saw- Ay y, 75
Anmophila, 20
Ampulex, 20
Anppulex ruficornis, 20
Anabrus purpurascens, 337
Anabrus simplex, 337
Anas:a tristis le (ieer, 305
Anatomy of the Blow-Fly, 564
Anatony of the Cockroich, The, by Miall and benny. 330
Anax junlus, 374

Andrena vicina, 12
angular-winged katydid, 339
Anisops, 275
Anopheles, 101, 102
claviger-maculipennis-quadrimaculatus, 101
crucians, 101
purictipennis, lot
Anoplura, 82, 227, 316, 347
ant, black, $\$ 6$
black carpenter, +3
ant-decapitating tiy, life history of, $\mathbf{1 4 7}$
ant-lions, 126, 127, 219
ant, pavement, +3
red, 43. 46
Anthocoridx, 275, 23;
Anthomyia Flies, The, 175
Anthomyiide, 90 , 171
Anthophoridx, 6, 7
anthrax. 81, 131
ants, 37
Ants, Bees and Wasps, Lubbock, 43
ants, honey, 45
nests, 128
solitary, 32
stinging, 39
stingless. 39
typical life history of, 48
ants, white, 353
Apathus, 15
Aphidid.e, 230, 262
Aphis-lions, The, 221
Aphorurid.e, 385, 386
Aphrophorin. ${ }^{2}, 241$
Apide, 6
Apiocerida, 87,136
Apocephalus pergandei $\mathrm{Com}, \mathrm{I} 47$
Aporidea, Superfanily, 3,4
apparatus, collecting, $3^{59} 9$
aquarium, the, 309
aquatic insects, collecting. 395
Aradid.e. 272, 290, 293
Aradus crenatus Say, 293
Aradus simitis Say, 293
Archytas, 15^{8}

Index

Arilus rristatus L.., 294
armoretl scales, 254
army worm, 159
Ashnead, W:. II, xi, 2, 12, 20, 31, 32, 33, 47, 56, 59, 73
Asilid.e. 53, 136, 141
Asiloidea, Super-family, 93
Asilus sericeus, $1+3$
Asindulum montanum, 117
assassin bugs, 293
Aster, 114
Atherix, 126
Atropid.e. 352
Atwond, 327
Australian cockroach, 330
Axima alariskii, 3
Bacehti, 150
back-rolling wonder, 3.40
back swinmers, "the, 275
B.eus, 51

Bailey, W. W, 212
Sank4, Nathen, xi, 218
bark lice, 113, 250
bat ticks, l(y)
beating net, 301
bedbugs, S_{2}
bed-bug family, the, 259
bed-bug, life history of, $2^{\varepsilon_{1}}$)
bee, bumble, 6
commion carpenter, 10
cuckoo, 7
bee-flies, 137
bee-fly, typic:l life-history of. 135
lee hives, 123
honey, 6
large carpenter, 9
mason. Io, II
small carpenter, s
bees, blunt-tongued burrowing, 12 leaf cutting. Io
obture-tongued carpenter, 12
paranitic, II
potter. 11
harp tongued burrowing. 12
the true, f
Belontoma americ.anum, 278
lelostomatide 271, 27:
Menacungrineus S.sy, 273
Berytidite, 272, 3ex
liethe. Abrecht, 41
liethy lid.t. 25, 33
leutenmiller 11 ., 3/5, 3th
libis: allipennis, Ins
libmonid.e, sti, Itr
libionotitea, tuper-family, 85, S6
bibliograplyy. fos
liyg-eved tlies. $1+1$
turd lite, 22, 347
burd tictis, 188, 189
hiting lice, 3.47
Bittacomorpha, 95
clavipes Fiat., 95
litticus, 207
black ant, 46
black beetle, 330
black carpenter ant, 43
black ericket, 342
black flies and buffalo gnats, 120
black fly, 80
black horse fly, 132
Blepharocera capitata Loew, 125
Slattide, 322, 329
Hepharocerid.e, 86, 124
Ihissas leucopterus 6ay, 310, 311
blowd-sucking cone-nose, 293
blow-fly, 16.4
blue-bittle fies, 164,160
loisduval, 49
hombilite, 6 ,
Bomhus borealis, 14
fervilus Foubr, 12, 14
Lombytide.e, 87, 88, 134, 137
lionnet, $2(22$
book-lice and their allies, The, 350
liorberidee, y2, 157
lioreus, 2137
lut-llies, 155
lot-llies, rypical life history of, 155
Bothriothorax, 57
lontle, the cyanile, fut
box ehter phant lug. 3 as
lirachicera, 84, हैई
Lirachyweutera argentati, is2
Itrachypuplus maguus, 333
Brauer. I.., 207, 217
Brewer, IV. A. 152
brintletaik. 350
lisckley, 356
buffalog annats, 120
tree hopper, life history of the, 239
liugnaia Dyth, 153
bugs, the true, 226,26
bumblebee. 0
life hintory off, 12
liurns. Robert, 316
liurroughs, John, 344
burrowing leees, 12
Buack, Muguat, 33
Buttertlien of the F.astern l'nited Sitates and C.Inala, The, liv tembler, of Buttertly likek, The, W. J. Iholland. 1.8
button trolls of sycamore, 31 :
cobinet, preparmy insects for the, for catinet, The, $\left\{1{ }^{2}\right.$

C..nis. Jリ

Calliphura erythroceplata. 164

Index

Callotermes, 358
Calopterygidue, 369. 370
Calopterygince 370
Calopteryx, 370
Calypteratic, (ironp, 80, 90
Campodeid. $x, 3^{81}, 3^{8} 4$
Camponntide, 39
Camponotus pennsylvanicus, 43,48 , 147
Ciamptubrochis grandis, 301
Camptoneura picta, 176
Canadian Entomologist, 2*5
cannibal bugs, 203
Capsid.x, 272, 301
Caratomins, 35")
Carolina locust. 333
carpenter lees, $8,9,10,12$
cat and dog llea, life history of, 193
(Gatalpa speciosa, 18 ,
Cecidomyia destructor Say, 113
larvic, ifs
legumenicola 1.int., 115
Cecidomyiil galls, 114
Cecidomyiil... 53, 86, 113
Celtis. 259
Cephidx. 69
Cephus pysmaus, 69
Ceratina dupla, s
Ceratinidx. 6,7
(eratitis capitata, $1 ; 8$

- eratopogon 111
(Ceratosmin, (0)smia) lignivoris, to
Cercopide. 229. 241
Ceresal bubalus, 23)
(h.etopsis aneal $\mathbf{1 7}^{6}$

Chalecidid parasite, 256, 257
Chalecidoidea, 3
Chatcidoidea, super-family, 56
claikeis fies, +9. 53. 56
paravite on lace-winged tly, 22t
chalcis fly, life history of. 57
Challyiut cerverm, 22
de (harmuy, I) Finniere久, 20
('haulioxles, 211, 212
Chathexles, lunatus, 211
pectinicurai 1.. 211
cheese shipper, 179)
thicken Hea, 193
chigger, 193
chigue. 193
chinch-bug. 310
chinch-bug family, thee, 310
chinch bug. life history of. 311
(hionea. 95
('hirmonid.x, 85, 116, 362
Chironomus, 111, 112
ninutus, 111
plumorus, 110
chinel, 3u2
(Hittenden, F., II., M. 14)

Chlorochrmannica, 236
Chlorops assimilis, 183
graminea, 183
(hrycididar, 25, 32, 33
Chrysis, 32
currulans, 32
Chrysnpa oculata say, 224
Chrysopil.e. 210, 222
Chrimops, 132, 137
Chrysopsis, 114
cicadia, annual, 22
Cicada emarginata, 232
cicada, large dog-day, 22
(icada septendecinı 1., 233
Cicadas, 231
(icastid.c. 229), 231
(imbex anericana, 75
(1.nic.air, 271, 288

Cinura, 380, $3^{81} .3^{34}$
(ircotettix verruculatus, 334
Clemens, Samuel I.. (Mark Twain), 41
Cleptes, 32
Climacia, 221
Clisiocampa anericana, $6 \downarrow$
Clisiocampa disstria, 6_{4}
Cluon, 79
clover seed midge, 115
Coccidie, 230, 246,250
Coccin. $x, 25 t$
Cocinellida, 258
cockroach, American, 330
Australian, 330
domestic. 20
European, 230
(iemnan. 331)
cock roathis. 329. 331
("enomyid.e, 12',
Coleoptera, 79
collectirg and preserving insects, 3^{89}
collectir. 5 apparatus, $3^{8,9}$
colle ting aquatic insects, 305
collecting different orders, 3) 4
cellecting forceps, $3 y^{2}$
shears, $39+$

Colletide.e, 6
comb-horned tish-tly, 211
Conistock, I II., 124. 12゙, 134. 139. 145, 147, 147, 197, 199, 216, 237 , 203, 297. 298. $304,313,345$
cone-nose, bloml-sulcking, 293
Comiopterygide, 210,215
(cominpteryx vicina, 215
Conncephiatus, 344
ensiger. $34+$
('oncpid.e. sy, 154
Conorlithis sanguisura, 203
(Cork. (1). F... 355
Copirtownas: 57

Index

Cordulegasteridx. 369. 373
Cordulid.x, 360 . 375
Coreidx, 270, 272, 314
Corisid.e, 273
Corixa 273, 274
femorata, 273
mercenaria, 2,3
Corixidxe, 271, 273
Corrodentia, 350
Corydalis cornuta 1... 214
Corythrica arcuata Say, 300
cotton stainer, 305
cottonstainer and its allies, The, 307
cotton stainer, life history of, 303
conto -ishion scale, 213
Co.ille, F, V., 14. 15
Cowper, $11 ., 3.42$
Crabronidx, 19
crane ties, of
crane fly, life history of, 95
creeping water bugs, 'Ihe, 250
crickets, $3 \neq 1$
western, 337
croton bug, 330
Crypexcrata, 273
Ctenophor., 95
cuckeo bee, :
thies. 32
flics, so called, 25
Culex, wis 102
pungens Wiedemann, 104
Culicid.e, 85, 95
currant worm, imported, 74
Currie, Kolla 1', xi
(ursoria, 323, 329
Curtice, Cooper, 157
Curtis. John. 378
Cuterebra, 155
cyanide bottle, 401
(yclops, 51
Cyclorhapha, section, 84, 89
(ynipoidea, 3. 49, 53
(ynipoils, 54
(yrtider, 134
daddy-longregr, 4
damselffies, 370
d.nnce-Hies, $1+1$
larwe of, 145
1/avidson, A., 32
death watches, 352
deer flies, 131, 132
Delphacin.r. 235
bettexephalus ininicus, 245
Wermatohia cyaniventri), 155
Beronn yia annulata Bignt, $1 \not{ }^{2}$
devil, darning needles. 363
devil's riding horse, 205
1)exia. 162
l|exiid.e, yo, 162

Iiamorus nabriskii Cres. 8
1)iapheromera fenorata Say, 323

Diaspince, 254
Diedrocephala, 2.14
mollipes, $2+4$
differential locust, 333
digger wasp, life history of, 22
Hiopsid.e, 92. 179. 180
1 iplosis, 1t3. 265
1 hiptera, xi, 79, 80, 8t, 10², 15 ${ }^{3}$, 139
methords of collecting, 305
table of the higher groups, 93
Dissosteira carolina, 33.3
Dixa, 97
Hixid.e, 85, 97
dobson and its family, the, 211
dobson. life hlstory if, 212
dog-day cicada, 22
dog-day harvest fy, 232
1oliehopodider, 8:., 1.4. 145
Hysdercus suturethus, 308
dragon-flies, 363
table of families, 363
irue, 372
drone-1ly, 152
1 rosophila ampelophila, 195
flaverla Meig. 1* $\%$
I rosophilidx, 92, 185
dung thes, 175
dusty-wings, The, 218
earwigx, 345
Finton, $i=2$
F.ctobia keтmanica, 330

Edes, Kubert. 343
Plachistin.e, 5^{9}
electric light bugs, 273
Fimbiid.e, 353
Emerton, J. 11., 3, 12
1:nesinx., 204
Empide. 83
Empidide, I4t
Finpis, $1+4$
Enallagma, 371
Finchenopa binctata, 233
Fincyrtusegk, 50
Entilia simuta, 238
Entonuliryid.c. 355. 337
F.phemerida, 377. 37,

Ephydrid.e. 82, 92, 132
Epi, enchua heros, 374
Epidapus scabiei, 113
Eproboscidea, suborder, 83, 93
ergatonds, 38
E:riocanpoides limacin:a, -6
Erintalis tenax, 152
E:rythroneura vitis, 24.4
1Fuantha liturata, 162
Fiumene friterna, 32
Eumenid.c, 30

Index

Fupelmue mirabilis， 340
Euplectrus comstockii， 57
Euplexoptera， 345
Furopean cockroach， $3 \mathbf{j u}$
E：uschistus servua， 314
Eutermes nigriceps， 35 （s）
Eiuvanessa antiopa， 51
Fabre，J．， 21
false chinch bug． 310
false crane flies， 125
false rear－horses． 217
Faxon，Walter， 343
Felt，F．，I＇．，xi， 207
Fernald，C．I1．， 1 （x）． 241
field cricket， 343
fishl flies， 211
fish－fly，comb－horned． 211
tishmotlis， 380,382
fitch，A．， 141,344
tlat bark－bugs，the， 298
flat－footed flies， 149
Flata， 23 6
Fhatine，235， 236
flea－lice， 259
llea，life history of the cat and dog． 193
fleas， 191
flesh－flies，＇i＇he， 163
fies， 82
alder， 211
bee， 137
dance，and long－legged， 144
flat－footed，and big－eyed，I4）
fish， 211
fruit and gatl， 177
gad or horse， 131
halvest，23I
little house， 171
robber． 141
small－headed，and tangle－veined． 134
stone． 361
syrphus， 150 ． 151
the anthomyia， 171
the bot， 155
the caddis． 195
the dung
the flesh． 163
the goblen－eyed lace－winged， 222
the grass stem， 183
the hump－backed， 147
the little fruit flies， 185
the nimble， 162
the salt－water， 182
the scorpion， 206
the snitke， 216
the tithinit， 153
the thick－head，ist
the trice，its
window，and stiletto， 139
flower bugs，the， 287
fiy，blue－bottle，164， 166
green－lwitle， 164
heliger．ummite， 212
life history of a scorpion， 207
the house，ift
＂flying adders，＂ $3^{6 / 3}$
forbes，S．A．，52，136，245． 357
furceps，collecting，302
forest tly， 188
Foriculid．x． 340
Formira，t^{2}
Formicoidea， 3
Formicohtea，Super－family，3？
four－lined leaf－bug， 302
1．os，W．11．，147， 148
frit tly， 184
fros－hoppers or spittle insects， 241
frosted lightning hopper，life listory of， 236
fruit and gall flies， 177
Hiss，the little， 155
l＇ulgorid．e．229， 235
F゙ylvius anthocoroides じわ， 301
fumigator． 392
fungus gnats， 117
gad flies or horse flies， 131
gad－fly， 80
life history of， 132
Galerucellat futeola． $30 \pm$
Galgulidic，271， 231
Galvolus ocutatus Fob．， 251
gall－gnat，life history of， 115
gall－gnats， 113
gall－flies 53
guest， 55
parasitic， 55
gangrene，fon
garden tlea－hopper， 301
Fiastrophilus． 155
liaurax anchora，is 8
（itomy＜idu．92， 1 ：57
（iernan cockroach． 330
giant water bugs．The，2－5
Cibson，Willian liamilton．20， 238
gigantic bed bug．the． 203
golden－eye，life history of， 224
golden－eyed bice－winged thes， 221
golden rol，int
golelwespen， 32
Ciomphitle， 3 6o．3\％
（iomphine， 372
Gomphua vastus Wathh，3：2
Cimiozus， 36
graje－vine I＇hylloser．，265
grashopleer，life histury of， 33.4
lubber． 333
hhort horned， 333
westerit， 33 ？

Index

srasshoppers． 320
green，336， 337
The long－horned，336，33\％
The short－horned， 332
（irassi，11．，Iog2， 35 s
Cirave，Canwell
preen－bottle 17y，1ft
breen llies，it
grassholppera，336， 337
solkier bug． 34
（irearori：i， 323
grill， 155
grubloy tattle， 155
bryilid．e．322，341
（．rylluv domeaticus． 342
neglectuv， $3+3$
guest in．1l－tlics． 55
Rypsy noth report（1 iffor）， 315
（iyropid．e，3＋1）
habits of the Aculeate II yonenoptera， 20
Hathlerry trees， 259
I Jadromotus anas．e．，zox
Ifamatolida serrata， 166
Jahteman，S．S．， 212
Hali，tirs， 12
parallelun， 12
II．alid．ay，．S．II， 33
Halturas ubleri（ibar．I，3ot
hand lens， 3013
Harringion，W．II．， $34 t$
IIart，f．I．．35，126，129，132， 245
hirvert thes， 231
harreat－tly，22
N＂y－1ay，232
haversack， 303
hawthorn lace Jmg，fife hintury of， 300
Jawthome，Nathaniel，3tt
hearth cricket， 342
IJebrid．e，2；3
heel tly， 155,15
IJeidemimn，（i．，xi，2おく， $2^{2} 4.29^{3}$ ．

$$
341.311
$$

Helicobia，Ifis
tells का 1 mite tl？ 212
hellgrammites， 211
IJelon．．．dide，9t，İt
Itemerobidere， $2 \mathrm{IO}, 221,222$
Ilemiptera，az6
Ilemijetera，whme prints on nethols of collerting，sis
Ilemptera，table of abmerdera． 228

 fromiomin（111．，2y？
IIermeth， 123
illucハs． 12^{2}
II以い，（1）Hy，40， 113
Ilcterma．3F0
lleteroneuridee，g1，173
lleterophaga， 2
Heteropteris，xi，227，26g，270， 347 table of families， 270
Hippelates，8：
Hippobosca equina， 153
Ilippoboncidx，93， 188
IIirnoneura， 134
Ilodutermes， 359
IJolland，W＇．J．，ix
Holnes，（I．W．．， 337
IIolorumsia， 95
grandis， 95
1 Iomoptera，227， 228
llomoptera，table of families， 229
llomalomyia brevis， 171
canicularis， 171
honey ants， 45
roney ants and the occident ants， the， 46
honey bee， 5
wasps， 25
hop plant louse， 265
l．ife history of， 265
IIopkins，A．1）． 118
horn－lly， 166
horn－t．il larwe，parasites of，is
horn－＇I＇ail，life history of，it
horn－tails，（fo）
hornet，bald faced，27， 28
of Iingland and kurope，29）
horse tlies，80． 131
horse stingera，4riz
house cricket， 342
house－ity， 8 （），Sts． 32
and its Se．t Kelations，The， 160
life hintory of， 167
IIuldsaral，II，1i．，81，121，184，350， 351 ， 356， 359
hmmpols，acke！thes， 147
Hundey，I＇， 202
Hydrocores，$=3$
Hydrumurise：，2＂，
1 iydrometril lineata， 295
IIydronctrid $x, 271,273,2 \times 3$
IIydrnosychid．c．I！- ，2： 4
Itytroptilid．e．，tッ：．？ot
IIyrotechus remigis，2－4
11 ymenoptera，xi， $1,69,79$
internal feeding p．rrasitic， 362
parasitic，51，55，6\％
sonic points on methed，of collect． ing． 394
Suburders，Table of， 2
Superfamilies．I alsic of，2． 7
Inymenopterolls pativites of dragun－llv． 306
11 yputermal 1m入is， 155
iane．t．a Villers， 155
ichneumun tites，33．6i

Ichneumon fly, life hlstory of, is
Ichneumonoidea, 3, 68
imported currallt worm, 74
insects, collecting and preserving, 3^{89}
rollecting aquatic, 395
for the cabinet, preparing, for
killing and preserving, for
rearing different kinds of, 3$)^{f}$
internal parasites, how they live, in
introduction, vii
lsoptera. 353, 354, 355
Jalysus spinosis, $3(0)$
Japygid. ${ }^{\text {J }}$ 35, $3^{44} 4$
Jassid. \cdot, 229, $2+3$
Jassohle.1, 2.43
jumping plant-lice. 259
katydid, 337
angular-winged. 3.39
" song," 321
typical life history of, 339
Katudils, 320
Kellicott, 1\%. ミ., 368, 372, 375
Kellogs, V. 1... 105, 109). 349
killing and preserving insects, 401
Kirkaldy, (i. W., 274
Kirkland, A. 11., 315
kissing hug, 203
k(n)-chah-bee, 132
Koppen, F.. 365
Kramer, 55
1.a Fontaine, 39

1 aboulleine, 102
lace bugs, The, 209
lacewing fly, it
lace-winged lies, the golden-eyed, 2:2
lace-winged insects, 209
ladybirds. ze 3
1..elius trogolermatis $\mathbf{\lambda}$ shm., 34
1.amborn, Kolert II., 3 the
lantern-fies and their allies, the, 235
1.aphria, 1.12
larch saw-fly, it
1.argus succinctus 307
I.asins, 12
leaf-bug, typical life history of, 302
leaf bugs, the, 301
teaf-cutting bees, it
leat-fo ted plant hug. $30 \downarrow$
leaf-hopper, typical life history of, 245
leaf-hoppers, the, 243
1.ebreuf, A. $3(x)$
l.ec:niin.e. 254
1.eenwenhoeh. 317
l.eidy, Joseph, 80
lens, hama, 303
l.epidoryrtus americanus, 357

Lepisnxitide, 351, 352
1.eptid. $x, 87,126$
1.eptoreride, 197, 203
1.eptoc.rrls trivittatus. 305
l.eptogister, 1:2
l.epenglowsus phyllopus, 3 34
l.estes, $3 \%^{1}$
l.ethierry, 254
1.eucopis, 1.87

Tibellula pukhedla lorary, $33^{\circ \prime}$
l.ibellulas, 372
l.ibellulitier, $: 69.375,375$
lice, the true, 116
life Ilistory of a beenty, typiral. 133
bumblelire, 12
Chalcis fly. 57
common walking-stich, 323
crane Ay, 95
digyer wayp, 22
crad lly. 13:
gatl-gnat. 115
golder.eye, 22.4
grasshopper. 334
horn-til. 71
kutydic, typucal, 339
leaf-bug, typical, j02
|eaf-hopucr, typical, 245
milyre, III
mospuito, 104
parasitic wasp, 44
pear-tree l'sylla, 260
rear-horse, 327
scorpion lly, ab
water-strider, 2res
white He, ! pical, 24%
idhnmmonty, is
an: inpical, f^{3}
bog-ties, typicat. 15 ?
-tinis bugs, typical, 311

Lifillintory of the ant-dtcopitating fly,
147
lead.bug, 2s0)
buffalu tree hojper, 23\%
cat anil dey liea, 193
clikelo-bug 311
ent on stainer, 303
d(i)mon, 212
frosted lightening hoppur, 236
hawthorn lace byg, 3 m
hop pitat livuse, 2fo
houve.ly, 15

" "evar -lisg." - 6

- Surotera.year locust。" typical, 233
suavh hasiong
wheel bug. 29,
limnephiidix, 1y\%, Iyy
1.imnobater hmeata say, $2 \leq 2$
1.imnolatid. $2 ; 1,2^{2} 2$

1 imnobia. 95

inder

Limosina, 187
Limmina venaliclus, 187
Llotheide, 34)
1.1poptena, 18,
little house fies, :;1
locust, 231
American, 333
Carolina, 333
differential, 333
migratory, 333
red-leggeel. 333
two-strijed. 333
typical life history of the " seventiceyear," 233
Iocustifl e. 322, 336.341
locusts, true. 332
Lonch.ea pulita, ::5
Loncheid.e: 91, 175
Lonchoptera, 146
lutea, $: 16$
Lonchopterid.e. 89. $1 \nmid 6$
long'horned grasshoppers, The, 336 , 337
long-legged fies, $1+414$
Lopldea media Hay, 308
Lowne's "Anatomy of the filow.tily, ifat
lubber grasshopper, 333
I. ubbock, Sir John, +3. $+4,146,3 \leqslant 9$

Lucilia cersar, 164
Lugger, O., 220
Lygxid.e. 272, 310
l.ygrids, 307

Lygus pratensis, 301
fyre-man, 22, 232
Macronema zebratum, 305
malignant pustule, :0, :31
Mallophaga, 82, 347
table of families, 34
Mallophora. 142
Mantid.e. 322, 32f, 32)
Mantiv religinsa, 327
Mantispa interrupta, 217
robini., 217
Mantispidlev, 210, 217
march-flies, 1 H,
Margaroules. 228
Mark Twain, +1
Mark Twain's "Chamc's." 103
Marlatt, C. 1.., 13, 2\%. 36, 224, 330
marsh treaders, The, 2n2

Marx, (ieorge, 353, wot
mason bee, 10, 11
Mason. O. T., 31
may flies, 79. 361, 36,2,3i7
Mceosk, 11. (1., tio. 4
M=I.achlan, R., int
Mearns, f:. A., 366
Mecoptera, 20 .

Tegachilidid. 6, 10
Megarhinus, 101, 102
Megastignulis, 55
ale Meijere, $1+\frac{1}{6}$
Melanolestee plripea. 293
Melanoplus atlinis Riley, 338
blvittatus, 333
differentialis, 333
femur-ritirum, 333
spretus, 333
Melophagus ovintis, 168
Membracldir, 229. $=37,241$
Meromyra americana, 183
Metaponlius femoratus, 304
methots of collecting different ordera, 314
Miall, 1.. (\%, viii, 2it
Miall :ind Denny.," The Inatomy of the "inkroach," 330
Miall and lfammond, in
Miall and Wialker, Trans. fint. Soc., fondon, $1 \mathrm{~s}^{895}$, 10 g
Microcentrim retinervis, 33,
Mictrulon, 1 50, 152
Micropezilis, 91, 92, 1:9
midge, life history of, int
midges, 81 , 1 Io
migratory locust, 333
mimicry, aggressive, I_{t}
Monomorium minutun, $\neq 6$
pharaonis, 43, 46,47
Monostegia roser, 74
Morelos orange fruit worm, 1;-3
Morse, A. P., 33-
Morse, E. S., $2+1$
mosquito, life history of, 10.1
mosfluitoes, 80, 81, 82, 94, 102, 103
moth-ffies, The, 10 S
mouraing-cloak butterlly, ${ }^{51}$
mud-danberc, 22
mud minnow, 2;8
mule kiliers, 327
Mumbt, A. 11., 365
Murgantia hiserionica 11 ahn, 313
Murtfeldt, Miw Mary F:. 2 t
Musca dome atici, 1e\%. 167
Muscid.e, (m), ref
Muscoidea, Super-famils, 8,
muscum pests (dermestid beetles), 3t
Mutillid.e, 25, 32, 33. 37
Mycetophila, $1 /$
Mycetophilid.e, si, 11^{-}
Mycetophiliss, 115
Mydaid.e. 87, 136,
Myda-llies, 136
Mydas fulsipes Walah, 136
luteipennis l.ovew, 136
myiasis, 1 fl
my iass interna, 171
Vimarid.e. 247

Index

Myора, 154
atyrioperala, 350
Myrmeleonld.a. 210, 213
Myrmbthix. 31
Mytilaspis pomorum Itonché, 255
Myzinlde, 31, 33
Natucoridet. 271, 231)
Nectarinla, 36
Neelham, J. 1i., xil, 21t, 212, 221, 373. 37(1, 372, 395
Nematider, 73
Nematus erichonnii, it
ribesii, it
ventralis Say, ;s
Nementrinid. 0 . 87, 134
Nemocera, nubvection, 8_{4}
Neoprosopis, 12
Nepa, 2\%: $=77$
Nepidu. 271, 270
net, sweeping or beating. 391
net, the, 3 है
net, water, 391
Nenroctenus simplex Lhl., 39^{9}
Neuronia, $19{ }^{9}$
Neuronia semifasciata Say, 192
Neuroptera, 20 (r)
Neuroptera, 1 iable of Families, 210
Neuropteroid series, xi, 30
Newport, 7, 47
Nerara lilaris Say, 314
nimble tlies. The, 162
Nontadid. ${ }^{2}, 6,7$
no-sec.um, 111
Notonecta, 275
Notonect.t undulata, 275
Notonectid.e, 271, 275
Nycteribidd.e, 9?, $1(x)$
Nyzius angustatus U'hl., 310, 311
Odonata, 36,3, 36,8, 371
Odontomyia, 12f,129
cincta. 120
vertelsrata, 124
Odyneru- 31, 32
(licanthus nivets, 343
(Fistrid.e, (w) 155
(1:4rus oris. 155
Olfersia amerieana, iss
Oligotoma hublardi, 360
Oncognathum binotatis, zor
onion fly, 171
Oancyrius anasex, zofs
ophthalmia, purulent, 81
Orchelimum vulgare, 337
orders. some points on methods of collecting different, 394
Orgyia leucontigmi. 64
Ormenin pruinoma, 236
Orphnephila testacea, 124

Orphnephllid.x, 86, 124

Orthopters, 320,334
some puints on methots of collecting. 345
Orthorhapha, sectiun, it
Orywid.e., (w)
Owhern, Ilerlert, IIリ, 243
Olecinhlee. 92, 183
Osmia larva, 11
(Dsmiinse, 10
Osten satcken, R., 153
$0 x$ bot, 185
ax warlse, 155
Oxybelidix. 19
Oxybelus quadrinotatus, in
oyster-shell bark louse, life history of, 255
l'ackarl, A, S., 10, t10
l'anorpa, 206, 207
l'anorpa rufescen: Kamb, 207
l'ancrpid.e. 95. 20\%
l'apiriid.e. 385, 355
l'arasita, 316
parasitic bees, 11
yall tlies, 55
11 ymenoptera, 5
wasp, life history of, 34
parasites, how internal. live, 19
parasites of horm-tail lierver, 68
parasites, printotrypid, 4?
paremient allt, 43
pear slug, life history of, 76
pear-tree l'sylla, life histury of, 260
leckham, lion. W. ant Flizabeth (i., 18
l'ecklants, The, 19. 20, 21, 30, 33
Pedicia albovittata Walk., 95
I'ediculus vestimenti, 317
legomyia vicina, 172
l'elecinid.e., 51
l'elecinus polyturator, 52
lelixoris femorata, 280
l'elop.e.us, 22
l'entatomillex, 272, 313
l'entalumids, 270
I'epsic furmonal. 130
Pergande. Theoror, 20, 54, 140, 147, 193
l'erucuma californiensis, 108
c:ancreens, 108
l'eriplanet.a american.a, 330
australiasiar, 330
aikentalin, 330
lerhins, 小. (…... 12, 20
lixthene, zos
lhatangiider. 14
lhanurus tubanivorus Ashm., 133
fhasmill $\mathbf{x}, 322,323.326$
Ihil.mum lineatus, 241
spumarius, $8+1$

MICROCOPY RESOLUTION TEST CHART

AANSI and ISO TEST CHART No 2 .

Index

Phillips，Miss R．O．， 121
Philopterid．$x, 3+9$
Phorbia brassice．，1；2
ceparum，1；1
lhoridx．S3． 147
Phoroidea，Super－family， $88, \delta_{9}$
Phorodon humuli Schrank， 265
Phryganea， $\mathrm{t}_{3}{ }^{\text {si}}$
I＇hryg：aneide．107， 13^{8}
Phycodromidex，9t，IT4
Mhyllecus integer Norton， 71
Phyllomorpha， 305
l＇hylloxera vastatrix， 265
Phymata wolfiii Stul， 297
Phymutide．，272， 297
Physopola， 318
Phytophaga， 23
Piesminie， 297
pigeon Trentex， 6_{9}
Pimpla，64，65，66， 63
rimpla inquisitor siay， 64
pink eye，81，18 4
Piophila， 179
casei Linn．， $1: 9$
Pipunculid．e． $\mathrm{Bq}_{2}, 14$ ，
pirate buss， 293
plant bugs， 304
plant－lice，113，226，223，262
plant－lice，junuping， 259
I＇latypezidx， s ，I 49
Platyura， 117
Illatyura pectoralis Coq．， 117
Plea， 275
Plecoptera， 36 t
Podagrion n：antis， 323
Podisus serieventris Uhl．，3I4
spinosus， 314
Podurid．e，385， 356 ，
Poccilocapsus lineatus Fabr．， 302
points on methods of collecting differ． ent orders，some， 3^{194}
Polistes，26， 29
mellitica Say， 25
thetricus siy， $1+2$
Polybia， 30
Polygnotus． 51
Pomotis． 275
Pompilidie， 30
Ponerid．e，39． 47
1ontania， 76
lopenne．E．A．， 36
［potter bees，It
potter－wasps． 30
1＇oulton，E．li．， 297
Iratt，F．C．．．xi， 113
prasing innects， 327
praying Minntis． $1 \neq 1,326$
preparing insects for the cabinet，fol
preserving insects，collecting and， 380
preserving insects，killing and，for

Pr onidus cristatus， 295
Priouotus，136．295
I＇robascidea，Suborder， 83
Proconia， $2+4$
undata， 244
I＇roctotrypid Parasites， 4 ？
Proctotrypioder，3，25，33，＋＇）， 51
I＇rosopid．e， 12
I＇sectra， 79
I＇seudoneuroptera， 200
Psilid．e．92，ェッ！
I＇silota， 150
I＇sithyrus， I_{5}
I＇socillex， 350
I＇socids， 403
I＇socus citrienlu， 35 t
venosus， 35°
Morophora，los，Io2
I＇sychodiche．85， 103
P＇sylla pyricola， 260
I＇syllidex，230， 259
Pterodontia， 134
analis， 134
l＇ulex avium，tot
irritans，192，193
serraticeps．191
lulicidxe iot
I＇ulvinaria innumerabilis， 215
punkie，III
purulent ophthalmia．SI
pustule，malignant．So
lutnam，ド．W．．II
1＇yrhocoride，272， 307
Ranatra，2；6， 277
Ranunculus poisonous to may－ly larve： 3－5
Kaphididd，e，2to， 216
Raptoria， 323
Rasahus binotatus， 293
rat－tailed maggots， 152
Ratzeburg．in
Reade，Chas，IS！
rearhorse，I\＆ 1
life history of， 327
rear－horses， 326
the false． 217
rearing different kinds of insects． 396
rectal gills of dragon－fly larvx， 367
red ant， 43 ， 46
red－legged locust． 333
reduviid egg＇s， 204
Reduvidd．e，272， 203
Redurius novenarius， 295
personatus， 203
Rheumatohates rileyi， 2 if
Khomalcum micropterum， 333
Khyacophilid．e，197，200
Rhyphide，56，124， 125
Riley，C．．V＇，32，54，55，234， 339,343

Inde:

rohber-fies, itI, I 42
larvec of. $1+2$
Kocky Mountain l.ocunt, 132
roue chaifer, it
roue sling. it
Kothney, 20
"Eoy:l lrean look, "loc," 39
Kutilia, 162
Sablid.a, 272, 291
will witer llies, IS2
-alt.aturia, 323
sand Hies, 120
Sapronızzilev, 71, 175
Sapygidix. 31.33
Sarcoplaga, 164
Sarcophaga carnaria, If,4 sarracenice, 164
Sarcophagid.e. yo, If,3
sarcophili, 163
Sarcopsylla gallinace:a, 193 penetrans, 193
saw-rlies, 73
s.aw-fly, American, 75 larch. - 4
scale intects, 226, 229,250
Scatophagid.e.91, 173
Scatopse, 119
pulicaria, II9
Sceliphron. 22
Scenupinide, 38. 139
Scenopinus fenestralis l.inn., 139
Schistocerca antericana. 333
Schmidt, 279
Schmidt-Schwedt. 27t
Schwarz, F.. A., 22, 32, 5, 59, (w, 292, 293. 359

Sciara fraterna, its
tritici Coq., 113
Sciaras, 115
seiomyzide. 91, I.t
Sciophila, 17
Scolia, 3 I
Scoliidie. 33
scolupendrella, 3 no
scorpion tlies, 95,306
scorpion Hy, life history of, 20 \%
Scotrid.e. 31
screw-worm lly, 103
Scudider, S. 11., (15, 33:. 340, 343, 344
Sculderia angustifoli,i, 337
Scutellerines. 313
Sele loncehanıps, laron de, zfo
Sepicher, リI, 92, 17\%
Sericemomatiale, Iy\%, 202
Sctoles expuisita Walk., 203
Scurat, l.., 5!
seventeen-ycar locust, life history of the, 233
Scverin, 259
sliad-fles, 377
Sharp, 1). 20, 226, 330, 347
shears, collecting, 3 3 4
sheep tick. 15.3
thizoneura lanigera, 265
shore bugs, the, 291
short-horned grasthopper, $3: 3$
short horned grasshoppers, the, 332
Siadial, e, 2Io, 2!I
Sialis, 21 I
infumata, 211
Sienkiewicz, II., 355
sieve, the, 391
Silvanus surinamensis, Iqu
silver finh, 352
Simmons, W. J., $1 \mathbf{I V}^{2}$
Simon, 192
simuliiul.•, S6, 120
Sinulitum, 120, fors
pictipes, 121
Siphonaptera, Igl
Siricidic, 6y
Siricoidea, 3. 60
Síyra, 221
Slater, 11 iss, 279
slickers, 350.332
Slingerliand. II. V., 303, 327
small-hearled ties, 134
smeathman. 355
Smicra microgaster, 120
rufofemorata, I29)
Smith, \therefore I.. 110
Smynthuride. 355, 3^{53}
smvihurus Iutens, 333
snake doctora, 36,3
snake feeters, 363
snake fites. the, 216
snipe tlies. 126
snowy trec-ericket, $3+3$
social wasps and their allies. 25
soldier bugs. 08 flies, 125
solitary :nts. 32
wasps, 15,30
some points on methoxis of collecting difierent orders, 314
sooth-sayers. 327
spear-winged tlies, 1 ft
Sphecius speciosus Kay, 22
Splsecoide:, Super-fanily, 3, IS, 30
phegid wasp. 22
spined soldier bug, 3 If
spittle insects, $2+1$
springtails, $3^{*} 0$
squirli bug and its allies, the, 304
life history of, 305
pariwites of. 306
atable-fly, Ith
Stagmonantis Carolina, 327
Stein. 210

Index

Stelidx 6, 6,11
Stelis ninut:a, It
Stenopelmatus. 337
Stenoxenid.x. 55,97
Stenoxenus johnsoni, 97
stiletto-fliea, 139. 140
stilt bugs, The, 309
:.tinging ants, 39
stingless ants, 39
atink-bure and their allies. The 313
typical life listory of. 314
stirk fies, 222
stiretrus anchorago, 314
Stomoxys calcitrans, i66
stone-flies, the, 361
Stratiomyia, 129
Stratiomyiid. 126
Stratiomyiid. x^{3} 37, 128,129
Styoraster. 154
Summers. II. Fi., 270
sun-flowers, $11+$
Surinam tuad, 279
Symplyla, 3^{30}
syrphidie, 8o. 150
Syrphoidea, Super-family, 89
Syrphus, 265
Syrphus fies, $1+9,150$
Systerthus oreas, 133
Syatrophus. 137
heeping net, 39t
Ti\&anide, 87, 131, 132
Tabanoidea, Super-family, s6
T'abanus americanns, 132
Tabanus atratus Fabir., 132
table of families (of dragon flies), 363
(of Ileteroptera), 2:0
of Mallophakg. $3+7$
Tachina Flica, The, 153
'Tachinide, (x) 155
lienia (tape worm), lyz
tangle-veined tlies, 134
tarantula-killer, 30. 130,
tarnivhed plant bus, 301
"aylor. I.. 11., 111
Tele:心, 314
Telemona montieola, 233
Ter. wn 5 , 51
Tenorlera sinensis. 327
Tentbrelinide, ;os
Tenthredinnidea, 3, 3.3. 76
'Termes flavijés, 355, 356, 357, 359
lucifugns, 356, 359
tubiformans. 35 f
Termitide 353
Tetramorium cev-pitum, 43. 46
Tettigia hieroglyphia, 232
Tettigonid.e, 24?
I halcusiatrata, 70
Thalessa lunator, 70

Therevid.e. 85, 139, 140
thick-head flies, 154
thick-thighed metapodius, 304
thich-thighed walking stick, 323
thin-winged bugs, The, 292
third-party bug, 313
Thoreau, $3+4$
thread legged bugs, 29t
Thrips. $2+4.318$
tabaci lintl, 349
Thynnitle, 31
Thysanoptera, 315
Thysanurit, 2(M)
Tibicen pruinosa Siay 22
ticks, the bat, tyo
the bird. 138
tineid egg, 50
Tingitidic, 272, 29)
Tingitinx, 299
Tiphia wasps, 31
Tiphilde, 31, 33
Tipulas, 95
Tipulid.e, $85,94,105$
Tipuloidea, Super-family, $8_{4}, 8_{5}$
toad lums, the, 25 !
toad-shaped bugs, 281
Tolstoi, 6
"iorymus. 57
Tramp Nbroad. 41
trep hoppers, The, 237
Trenex. 70
Tremex columba, 69
Trichacis. 51
T'richodectid:e. 349
Trichoptera, 195
table of families, 197
Trigonalid: 33
Triphleps insidiosus Say, 237
trowel, 302
true bees, t
bugs, 226
bugs, The, 209
dragon-flies, 372
flies, 79
lice. 32,316
locunts, 332
Trypeta fratria Loew, 178
ludens, $1 / 8$
pomonella, 177
solidaginis, 177
Trypetilix, 53, 01, 177
Trypoxylon, 20, 32
tsetse fly, si
tuswock moth. 34. 64, 66
I'yphlocyla vitifex, $2+4$
Tw:ain, Mark, +1
two-strijued lexust, 3.33
Ehler, I. K., 241, 209, 27+, 275
umbrella, 393

Velocipeda, lergroth, 2011
Vermile., 126, 127
Vespa, 20, $1+2$
Vespa crabro, 00
cunc.lta, 29
germanica, 27,29
maculata. 27. 25
Vespoidea, Superfamily, 3, 25, 33, 49
"vinegar ties," 185
Volucella, 152
walking stick, life bistory of a common, 323
walking sticks, 323
Wialsh, li, I), 31, 32
War and Peace, 6
Wasmann, +2
wasp, digger, life history of, 22 parasitic, life history of, ?
wasps and their allies, the social, 25
wasps, honey, 25
solitary, 30
the solitary, is
typical life history of, 33
water hoatmen, 273
water lugs, the creeping, 230
water bugrs, the giant, 273
water net, the, 39 I
water scorpions, The, 2-6
water-strider, life hintory of, 255
water-striders, the, 283
Weuster, F. M1., 245
Weens. Archibald (... 36f)
weeping trees, 2.4.
weatern crickets, 337
western graswhopper, 13.3, 332, 333
wheel bug, 295
life history of, 234
Wheeler. William M., +7
white ants, 353
white llies, The, 2 \& 6
white Hy, typical life history, 247
white marked tussock moth, 64
Williamson, $365,3^{615,}, 374$
Williston, S. W.., 20, 21, So, 110, 153, 154
willow slug, 'The yellow-sputted, 75
window-tlies, 139
wood-caters, 69
Woxdworth, 301
woolly root louse of the apple, 265
Xiphydriid.e, 69
Xylocopa virginica, 9
Xylocopid.e, 6, 9
Xylocrabro (Crabro) stirpicoln, 19
Xylophaga, 69
Xylophagidx, 120
yellow fever, 8 :
Yellow Fever Commisslon, United States Army, 81
yellow-jarkets, smaller, 27, 29
yellow-spotted willow slug, 75
Zabriskie, Rev. J. I... S
Zaitha, 270
Zambesi Mission Record, 360

$$
\nabla
$$

[^0]: * One of the strongest bits of dehcriptive writing known to me is "olstois de st ription of a queentess bee hive, in "Wiar and Peace, where he liken. the approalh of the French army to a hive deserted by the queen bee.

[^1]: * Albrecht Bethe, Archiv. f. d. Ges. 1'hys. I.XX. 15. 100. January, iSgS. A Review by Caswell Grave, American Naturalist, Vol. XXXII, pp. 437-43\%.

[^2]: * Both the scientific and the popular rames of this group were derived from the name of the socalled Egyptian lchneumon or Pharash's rat. Which devours the eggs and young of the croindile and was hede sacred by the ancient Egyptians. The applicability of this tite to the group under consideration is due to the parasitic habits of the Ichneumon ties.

[^3]: - Unsally printed in the books Corisitur. and the type genus as Corisa; lut the 'hange from the older Cornadis and corixu was not justified by the nomenchature rales now in force.

