THE JOURNAL

OP. THE

FQR UPPER CANADA.

APRII, 1864.

PROVINCIAL EXHIBITION FOR 1864.

The next Annual Exhibition of the Agricultural Association for U. C., will be held in the city of Hamilton, during the week commencing on Tuesday the 26th of September next. The Priee List of the Arts \& Manufactures Department will be found in this number of the Journal, to which we call the particular attention of all who may be in a position that will enable them to contribute of their fine or industrial art products.

It will be noticed that the prizes vary somewhat from those offered at the. Tast Exhibition-several of the unimportant ones having been struck out, and a few new ones added, such as for resin, tar, turpentine, and a few other new natural or mechanical products, and that the prives have been increased in amount for many of the more important items.

With a view to aiding in the development of the flax interests of the province, the council of the Association, in addition to the liberal prizes offered by the Association and by the Canada Company in the Agricultural Department, for raw and scutched flax, have now offered in this department two very liberal prizes of $\$ 60$ and $\$ 40$ reäpectively, for the "Best 6 varieties of linen goods manufac"tured in Canada from Canadian flax; each "specimen of cloth to contain not less than 12 "yards." We look for a spirited competition for these prizes.

We would suggest to our meebanics and manufacturers that they commence early to prepare their articles for Exhibition-goods gotup in a great hurry and at the latest moment, are seldom got up well, and are in almost all cases sent in too late to be classified and arranged, causing much dissatisfaction not only to the judges; but to the competitors themselves and to the public. Manufacturers should also be cautioned against putting a larger amount of work and finish upon their articles than is necessary or appropriate to fit them for the purposes to which it is intended they shall be adapted. The instructions given to the judges are, that their decisions shall be based on the combination of quality, style and price, and the adaptation of the article to the purpose or purposes for which it is intended. A striot observance to this principle in the preparation
of goods, will prevent disappointment to many who would otherwise fail to obtain prizes.

At every Exhibition we notice a large amount of fine and elaborate work on articles of the coarser and more useful kinds, entirely out of place and inappropriate, except in articles of luxury and ornament, and manifesting a great want of proper taste in the producers. The very height of excellence in a manufactured article consists in the material and workmanship being good, and that both these shall be applied with such good taste and appropriateness as shall thoroughly adapt it to the use or ases for which it is intended, and so as to be afforded at such a price as shall suit the requirement of the market for which it has been prepared.
Space will not allow of our publishing the Rules and Regulations in this number, but we shall endeavour to do so in the issue for May.

FLAX AND LINEN MANUFAOTURES

There is every prospect of a large increase in the growth of flax in this province during the coming season, over former years, and of the erection of several new flax scutching mills in adidition to those already established, and to the six or eight machines of Rowan's, and Sandford and Mallory's, now in use in various districts. Messrs. Perine Brothers, of Doon, in the county of Waterloo, have in operation four scutching mills, besides rope, cordage and twine works; and are now erecting machinery at a cost of some ten thousand dollare, for the manufacture of linen goods. Wo see no reason why, with the raw material produced in the province, we should not largely manufacture linen sheetings, towellings, tickinge, sail cloths, baggings, cordage, twines, and linen thread for domestic mixed cloths, for home consumption. The liberal prizes offered for linen goods at the next Provincial Exhibition will, we trust, furnish a satisfactory index of the progress which will by that time have. been made in this branch of our new manufactures, although we cannot expect to attain to any great resulta by so early a date.

Owing to the scarcity and high prices of all kinds of cotton goods, and the certainty of their continuing so for a long time to come, a more favourable period than the present cannot arise for establishing linen manafactories in the province. The high pricesfof cotton gords are sure to be upheld sufficiently long to develop new enterprises of this kind that may now be commenced, and should the cotton market three or four years hence, correspond in prices with those ruling previous to the war, the incidental protection given to home manafactures
by the imposition of a necessary revenue tariff will then be ample to enable the manufacturers to compete in their products with imported goods.
We have in our cities, towns and villages, an abundance of female and juvenile laborers, whose services could be made available in such manufactories, but which is now a burden on the communities wherein it exists.
These industries would also be the means of starting into existence rope and cordage works to use up the coarser portions of the flax, not adapted for the linen cloths; and in connection with other flax products we hope ere long to see oil mills established for the manufacture of linseed oil, and have no doubt but a fair return for capital thus invested rould be realised, as there is a home market for a much larger quantity than we can produce for some years to come.

LINSEED OIL AND OIL CAKE.

The March number of this journal contained a very excellent article from the Grocer, on the manufacture of rape and linseed oils, as conducted by an extensive English firm. This subject bas a peculiar interest in Canada just now; from the fact that the cultivation of flax and flax seed is becoming extensive both in the Upper and Lower sections of the Province, and will, in all probability, soon be reckoned amongst our staple products.

The manufacture of oil and oil cake has been commenced in Montreal and one or two other localities, and efforts are now being made to establish a joint stock company in this city, to be under the management of Mr. Banks, a gentleman recently from England, and who is most thoroughly acquainted with this branch of manufactures.
A meeting of a few of our merchants and basiness men was held at the Corn Exchange, on the 17th of February, when it was resolved "to form a company under the Limited Liability Act, with a capital of $\$ 10,000$, to be increased afterwards if found desirable; believing that such a manufacture "would be found of great benefit to the city, the surrounding country, and the stockholders." About one half of the necessary amount of stock has been subseribed for, and with such probabilities of realising large returns on the capital proposed to be expended, as has been shown by those interesting themselves in organizing the company, there is not much doubt but the whole will soon be taken up. We have seen the names of those Who have already become subscribers for stock, and are satisfed that no more reliable parties can be found in this city.
We have no very certain means of ascertaining
the exact quantity of flax seed grown in Upper Cannda for the past few years, but bave reason to believe that in 1862 it was from 25,000 to 30,000 bushels; and that in 1863 the prodace had increased to about 45,000 bushels. Reserving 5,000 bushels of this as seed for the present year, would leave about 40,000 bushels to be mannfactured into oil and oil cake.
Messrs. Lyman, Clare \& Co., of Montreal, have already purchased of last year's crop, about 40,000 bushels of seed, which would seem to indicate that the entire year's produce would largely exceed our estimate ; but they have no doubt secured a large proportion of Lower Canada growth, as flax is extensively cultivated there.
The cost of machinery for an oil mill, with one double hydraulic press, steam engine, bedstones, tanks, weighing machine, and all other machinery and fittings necessary to complete such an establisbment, is estimated to be under $\$ 5,000$. Such a press and machinery would work 400 bushels of flax seed per week, which estimated at $\$ 1.50$ per bushel, and with wages of the valious hands necessary to work it, cost of fuel, casks, rent, freight and sundries, would amount to a total weekly outlay of about $\$ 760$. The return for this expenditure is estimated at 400 gallons of boiled oil, 300 gallons of raw oil, and 168 cwt. of linseed cake, which, at present market rates, would realise the sum of $\$ 1,007$; or a profit of $\$ 247$ on the week's operations, towards wear and tear of machinery and dividends to stockholders.

The quantity of oil produced by this machinery could be largely increased, if necessary, by working night and day, as is usual in English oil mills; but on the lowest estimate as here given, there would be a consumption of at least 20,800 bushels of seed per anmum, at a total cost of $\$ 31,200$; producing 36,400 gallons of boiled and raw oils, and $8,736 \mathrm{cwt}$. of caide, representing at present prices a total value of $\$ 52,364$; or a saving to the country of upwards of $\$ 21,000$ per annum on the working of a single one press mill, by manufacturing the seed at home instead of sending it to a foreign country, and importing the oil therefrom for our own consumption.

This one illustration will serve to show the immense advantage of having such manufactures conducted within the Province, as can be supplied with the raw material of native production, and for which a home market is already established.

The following is the prospectus of the company referred to, which we hope soon to see in operation :

Prospectus.

The objects of this company are to erect suitable mills in Toronto, for the manufacture of linseed oil
and oil cake from flax or linseed. Owing to the greatly increased breadth of land sown with flax in Upper Canada the last few years, of which the present one promises to exceed all former jears, any difficulty which might previously have existed in obtaining a sufficieney of the seed, is at once obriated. The consumption of oil in this Province is necessarily very large, and the demand is at present supplied from England and the United States, with the exception of that manufactured at Quebec and Montreal, C.E., and Bridgeport, C. W., which forms a very insignificant portion. The manufacture has been found very re. manerative. It is evident that the oil manufactured within an essy distance of where the seed is grown, can be sold to much better advantage than oil which bears the necessary expense of freight and other charges from England, and has to pay a duty of twenty per cent. before going into consumption; it is also certain that the cake will meet with ready sale at remunerative rates, on account of its well known fattening qualities, and being particularly adapted for milch cows; this fact being fully established in England, the quantity and quality of the milk and butter produced from the use of it being remarkable.

There is not a doubt of the suceess of this enterprize, as the want of an oil mill bas long been felt in this city and its vicinity. Toronto is admirably situated for the purpose, being the chief seat of trade in Upper Canada, and being a distributing point, and in a central yosition commanding the trade of Upper Canada, offers superior inducements for the erection of mills at this point.

The cultivation of fiax in Canada will add very materially to our resources, and the Government being alive to the importance of the subject, have done a great deal to assist private enterprize in developing this rapidly growing trade. It remains only to erect the necessary machinery to avail onrselves of the advantages of our position, to retain within ourselves the benefits of a manufacture which is protected by so large a duty, and is in such demand, besides assisting the general progress of the country. The profits to be obtained have been satisfactorily ascertained by parties of great experience in the trade, and allowing liberally for all contingencies, twenty-five per cent. is coufidently expected.

MLACHINE STRETCHED LEATHER BELTING.

Our motto is "Encourage Home Manufactures," by purchasing them in preference to imported goods, whenever they can be obtained of good quality and at fair market prices. This is a truly patriotic principle that all who desire the well-being of their country should endeavour to carry out, and will be sure to re-act to the benefit of the purchaser, as well as the manufacturer and the public generally; for by such means will capital be kept
in the province - manufacturing communities created to furnish home markets for agriculturists -surplus populations of cities and towns not adapted to agricultural pursuits furnished remunerative employment-and a certain degree of inde pendence of foreign nations for supplies of the necessaries of life established.

The machine shops and factories of the province use large quantities of machine stretched cemented and riveted leather belting, heretofore bcught principally from our neighbours on the south side of the lakes. Mr. J. C. McLaren, of Montreal, has just forwarded to the Museum of Manufactures of the Board of Arts in Toronto, a card of several samples of this description of belting of his own manufacture, comprising widths from 3 to 12 inches, single and double; round twisted lathe belting ; and rounded leather cord to be used for all purposes for which ordinary sash-cord is used.

This belting is of excellent quality, and can be seen at the Board Rooms by any person who may desire to examine $i t$. Price lists for the various kinds of belting, and also of difierent sizes of fire-engine hose manufactured by him, are attached.

If the manufacturers in all new branches of industry in the province would follow the example of Mr. McLaren and a few others, in sending specimens of their productions to the Board, a very interesting museum of home manufactures would shortly be formed, which would afford to strangers visiting us a good idea of our manufacturing capabilities; and to the contributors themselves a medium for submitting their productions to the criticisms of the public. Mr. McLaren's advertisement appears on the cover of the journal.

MECHANICS' INSTITUTES RE-DNIONS.

When in the winter of 1862-3 the managers of the Toronto Mechanics' Institute first originated a series of entertainments for their members, of an amusing as well ne instructive character, under the appropriate name of Re-Unions, they conferred a benefit on other Institutes besides their own. These gatherings have not only become very popular, but profitable, promising to be of great pecuniary benefit to the impoverished treasuries of many of these useful Institutions.

Wenotice that the Hamilton and Gore Mechanics' Institute held the first of a series of these Re-Unions on the evening of the 6th instant, when the Directors were gratified by having their large Hall "filled almost to overflowing," and no doubt realised a vers handsome profit therefrom. .

These entertninments were suggested to the Hamilton Institute by a letter from the President
of the Institute in Toronto; and as the information there given may be interesting to other similar bodies, we insert the letter and comments thereon, as published in the Hamilton Evening Times of the 12th ultimo.
"We have great pleasure in drawing the attention of our readers to the following letter. There are two very strong reasons why the suggestions thrown out in it should meet with serious attention. It is worthy of attention and support as a scheme devised to free the Mechanics' Institute here from its financial embarrassments, and aid in freeing it from the debt which now cloge its energies and impairs its usefulness. Secondly, it is wortby of attention on account of its own intrinsic merit. In Toronto, where we believe these Re-Unions were first got up, they immediately became popular. Not merely were full houses secured, but on many occasions bundreds had to be refused admittance on account of want of room, and that in a hall quite as large if not larger than our own. W_{θ} understand that the matter will be at once taken up by the Board of Direotors here, and that there is every probability that the first of a series of Re-Unions will be announced for an early day. All that is needed is that those competent to render assistance should do so promptly and willingly. If they do the Re-Unions must be successful, if there is a particle of literary or musical taste in Hamilton. The following is the letter referred to :-

Toronto, March 9, 1864.
Mx Dear Str,-I have just received a copy of your annual report, and regret to notice that your Institute, like many others, is labouring under financial difficulties; I also notice the canvass you propose to mak_{θ} amongst your members and others for special subscrip. tions toward meeting your liabilities. Why Inow address you is to suggest another mode, auxiliary to the canvass if you please, as apailable for raising fands; that is by holding as series of Re-Unions similar to those now being held by our Institate. You have an admirable Hall for the purpose, a Military Band is stationed in your city, which no doubt might be had occasionally if considered desirable, and you bave sufficient available musical and literary talent in your community to render them successful.

When our Re-Unions were first organized, it was with a view of bringing the members of the Institute together to spend a pleasant evening in literary, musical and social intercourse; they have now become a source of profit to the Institute, and of cheap and popular entertainment for the publio, of an elevating character.

Our charge for admission is ten ceats each person, and we have usually from 900 to 1000 in attendance. For the first series of ten, member's season tickets were issued, admitting a gentleman and two ladies for one dollar; and although this charge was too low, yet, after crediting to the rent account the sum of $\$ 15$ for
each of the ten entertainments, a net profit of $\$ 170$ was realised. Four special Re-Unions have since been held, no season tickets being issaed, and the profits realized, after charging against the proceeds the usual amount for rent of Hall, has averaged $\$ 30$ per night. We pay a moderate remnneration to a musical conductor, who attends to rehearsals and plays accompaniments when necessary. We occasionally engage some professional talent, which is also given to the Institute at a moderate remuneration. Amateur assiatance is generally given gratuitous.

On four occasions the band of Her Majesty's 16 th regiment has been secured, and with very satisfactory results-their performances being always popular.

I think it is now demonstrated that, by judicious management, these Re-Unions may be rendered not only subservient to the healthful and elevating recreation of the people, but to the relief of many of the Mechanic's Institutes from their financial embarrassments. Several Institutes have already made a commencement, of which I notice those of Whitby, Cobourg, Newmarket, Bradford and St. Catherines. and I believe with considerable success. I beg to direct your attention to a letter from Mr. Longman, our very efficient Secretary, to one of the Directors of the St. Catherines Institute, which you will find in the January No. of the Journal of the Board of Arts and Manufactures, for further details of management of the Re-Unions.

> I am, Sir, yours veay truly, $$
\text { W. Edwards. }
$$

President Toronto Mechanics' Institute.

Alezander Rutherford, Esq., Superintendent
Hamilton and Gore Mechanics' Institute.

NOTATION.

The following letter and comment refers to an article in the January number of this Journal, originally copied from the New York Post. Neither the writer of the letter, or the editor of the Reporter, appeare to be aware of the fact that by the French system of notation-now in general use in the United States and Canada--the billion is not equal to a million of millions, but to a thousand millions; a trillion to a thousand billions; a quadrillion to a thousand trillions, \&c. With this explanation, the writers will see that the amount "eighteen septillions" is properly expressed by 24 ciphers after 18.

Sangsters's Arithmetic, the authorised teat book of the Council of Public Instruction for Upper Canada, on systems of notation says: " Tror a certain distance, the English and French methods of division agree ; the English billion is, however, a thousand times greater than the French, \&c. \&c. We shall prefer the French method."

lo the Editor of the Sanitary Reporter.

Sir,-In the article on "The Wonderful Proparties of Figures," which you have inserted in yester.
diay's paper, (No. 34) I was surprised to find that the amount "eighteen septillions," was expressed by 24 ciphers after 18.

Now, you must know that those figures express 18 quadrillions, not 18 septillions; a billion heing equal to a million of millions, not a thousand millions; a trillion being equal to a million of billions, not a thousand billions; a quadrillion being equal to million of trillions, not a thousand of trillions, \&e.

And, therefore, to express 18 septillions, one would require, after the 18,42 ciphers, thus:-
septillions sextillions quiatillions quadrillions trilitions 18,000,000; 000,000; 000,000; 000,000; 000,000;

$$
\begin{aligned}
& \text { billions } \\
& 000,000 ;
\end{aligned} \text { millions. } 000,000 .
$$

I think this old way of placing a semi-colon between each 6 figures, and a commar between each intermediate 3 , facilitates notation.

Inoticed a few years ago a similar error in a leading journal, in its article on Japanese policy, quintillions being treated as only equal to thousands of quadrillions, and quadritlions as equal to thousande of trillions, \&c.

I am, sir, yours obediently,
Ctril A. Greaves.
[We inserted the paper alluded to in this letter without any comment. It was a reprint from a respectable Canadian journal, and we published it (yet, at the same time, doubting the accuracy altogether of the calculation) for the purpose of exciting some correspondent to go thoroughly into the subject, and we are much obliged to Mr . Greaves for his communication. With the wellknown formula, and a table of logarithms, it is no very difficult task to arrive at the truth.Eb. S. R.]

PROVINCIAL EXHIBITION.

PRIZE LIST-ARTS AND MANUFACTURES DEPARTMENT.

The following is the Prize List of the Arts and Manufactures Department of the Agricultural Association's Exhibition, to be held in the City of HAMILTON, on Tuesday, Wednesday, Thursday, and Friday, September 27th, 28th, 29th, and 30th, 1864. The Rules and Regulations will be published in the next issue of the Jourbal.

CLASSIFICATION OFPRIZELIST.

arts, Manueactures, Ladies' work, \&e., so.

Class 40-Cubinct Wace and other Wood Maunfactures. Cabinct Ware.

Sect.		1st Prize.	2nd Prize.
1	Bed Room Furniture, se	\$10 00	\$600
2	Centre Table	800	400
3	Drawing Room Sofa	800	400
4	Drawing Room Chairs, set of.	800	400
5	Diniog Room Furniture, set of	1000	600
6	Side Board.	800	400
7	Wardrobe	600	300
	Miscellaneous.		
8	Coopers Work	\$600	\$3 00
9	Corn Brooms, 1 doz	200	100
10	Handles for Tools for Carpenters, Blacksuiths, Gunsmiths, Watchmakers, \&c., \&c., collection of	800	400
11	Joiner's Woris, assortment of.	800	400
12	Machinc-wrought Moulding, and Flooring, 100 feet of each......	600	300
13	Turning in Wood, collection of specimens	600	300
14	Turned Hollow Wooden Ware, assortment of	600	300
15	Veneers from Canadian Woods, undressed ..	800	400

sect.
Claks 40-Continued.
list Prize.
16 Veneers from Canadian Woods, dressed and polished 800
17 Wash Tubs and Pails, three of each, Factory made.400
2nd Prize.
18 Willow Ware, six specimens40019 Extra Entries.
Clafs 4i-Carriagen and Sleighs, and Parte thereof.
${ }^{\text {Sect. }}$ Axle, wrought iron
1st Priże.
2nd Prize.
200
$\$ 400$
300
2 Bent Shafts, half a dozen
300
4 Buggy, double seated 1000
Buggy, single seated 800
Buggy, trotting..
1200
1200
7 Carriage, two-horse, pleasure 1000
9 Carriage Hubs, Rims or Fellows, and Machine-made Spokes, the best assortment. 700700
700
11 Express Waggon
1200
12 Sleigh, two-horse pleasure 1000
14 Springs, one set steel carriage 500
16 Sulky, trotting 500
16 Wheels, one pair of oarriage, unpainted 400
Class 48-Chemical Hanuractures and Preparationso*
Sect. Essential Oils, assortment of
300 300
Glue, 14 lbs
Isingless, 11 lb
Glue, 14 lbs
Isingless, 11 lb 1200
600
Medical Herbs, Roots and Plants, native growth
Medical Herbs, Roots and Plants, native growth 600
Oil-Coal, Shale, or Rook
Oil-Coal, Shale, or Rook 300
7 Oil, Nent's foot, half gallon
7 Oil, Nent's foot, half gallon 500
9 Resin, 30 tbs
9 Resin, 30 tbs 800
10 Tar, 1 gallon
10 Tar, 1 gallon 500
11 Turpentine, spirits of, 1 gallon
11 Turpentine, spirits of, 1 gallon
13 Extra Entries
13 Extra Entries1st Prize.
Clags 43-Decorative and Useftul Arts, Dravinge and Designse
${ }^{\text {Sect. }}$ Carving in WoodIot Prize.lat Prizo.
1000
2 Drawing of Machinery, in perspective 600
600
3 Decorative House Painting
600
4 Engraving on Wood, with proof
600
600
Goldsmith's Work 600
7 Geometrical Drawing of Engine or Mill Work, coloured 600
8 Lithographic Drawing, plain 600
10 Mantlepiece in Marble 1000
11 Mathematical, Philosophical and Surveyor's Instruments, collection of 1500
12 Modelling in Plaster 600
13 Monumental Headstone 600
14 Picture Frame, ornamented gilt
400
15 Penmanship, business hand, without flourishes 400
17 Seal Engraving, collection of impressions 600
18 Sign Writing 500
19 Silversmith's Work.
2nd Prize.$\$ 600$
400400
400400
400
400400400
1200
20 Stained Glass, collection of specimens600
1000
21 Extra Entries
Class 4t-Fine Artg.
Class 4t-Fine Artg.
Professional List-Oil.
Professional List-Oil.
Sect. Animale, grouped or single. 1at Prize.
nd Priza.
8 Landscape, Canadian subject 1200400400300200200400800400
800and

Sect.	Clasu 44-Continued.	1st Prize.	2nd Prize.
4	Landscape or Marine Painting, not Canadian subjeot	1000	600
5	Marine Painting, Canadian subject .	1200	760
6	Portrait, from Original Sittings.....	10.00	600
In Water Colours.			
7	Animals, grouped or single	700	500
8	Flowers, grouped or single	700	500
9	Landscape, Canadian subject...................................	700	5.00
10	Landscape or Marine Painting, not Canadian subjectt	700	500
11	Marine View, Canadian subject	7.00	5.00
12	Portrait, from Original Sittings.	600	400
Pencil, Crayon, \&c.			
13	Crayon, coloured.	600	4.00
14	Crayon, plain ...	600	400
15	Crayon Portrait, from Original Sittings	600	400
16	Pencil Portrait, from Original Sittings......	600	400
17	Pencil Drawing	600	400
18	Pen and Ink Sketch	600	400
Anateur List-Oil.			
19	Animals, grouped or single.	800	5.00
20	Historical Printing	800	500
21	Landscape, Canadian subject	800	500
22	Landscape or Marine Painting, not Canadian subject	800	500
23	Marine Painting, Canadian subject:	8.00	500
24	Portrait, from Origiaal Sittings	$8 \cdot 00$	500
In Water Colours.			
25	Animals, grouped or single	700	500
26	Flowers, grouped or single.	500	300
27	Landscape, Canadian subject.	700	500
28	Lnndscape or Marine Paiuting, not Canadian subject	700	500
. 29	Marine view, Canadian subject...........................	700	500
.30	Portrait, from Original Sittings	600	400
Pencil, Crayon, \&c.			
31	Crayon, coloured.	500	300
32	Crayon, plain	500	8.00
33	Crayon Portrait, frem Original Sittings	500	300
34.	Pencil Portrait, from Original Sittings	500	300
35	Pencil Drawing	500	800
36	Pen and Ink Sketch	500	800
Photography.			
37	Ambrotypes, collection of	600	400
:38	Pbotograph Portraits, collection of, in duplicate, one set coloured	1000	600
39	Photograph Portraits, collection of, plain	800	500
40	Photograph Landscapes and Views, collectio	800	600
. 41	Photograph Portrait, finished in Oil	800	500
: 42	Extra Entries..........i.		
Sect. Class 45-Groceries and Provisions. ${ }^{\text {4st Prize. }}$ 2nd Prize.			
2	Burley, Pot, 25 Ibs...	${ }^{\text {S }} 00$	200
3	Biscuits, an assortment of	600	400
4	Bottled Fruits, an assortment, manufactured for sale	600	400
5	Bottled Pickles, an assortment, manufactured for sale	600	400
6	Buckwheat Flour, $25 \mathrm{lbs} . .$.	300	200
7	Chickory, 20 lbs., prepared	300	200
8	Indian Corn Meal, 25 lbs...	300	200
9	Ontmeal, $25 \mathrm{lbs}$.	300	200
10	Sauces for Table use, an assortment, manufactured for sale.	600	400
11	Sonp, one box of common	400	300
12	Sonps, collection of assorted fancy	600	4.00
13	Starch, 12 lbs. of Corn.............	2.00	1.00
14	Starch, 12 lbs . of Flour.	2.00	1.00
15	Starch, 12 lbs. of Potatoe	200	1.00
16	Sugar, 20 lbs. of Sorghum..	5.00	800
17	Sugar, one lonf of Refined.	500	800
18	Tobacco, 14 lbs. Canadian manufactured.	500	300
19	Wheat Flour...	700	500
20	Extra Entries...		

Class 46-Ladies' Worls
${ }_{1}^{\text {Sect. }}$ Bead Work

Ist Prize
Braiding
Braiding 800 800 800
Embroidery in Muslin
Embroidery in Muslin 300 300
Embroidery in Cotton
Embroidery in Cotton 800
Embroidery in Silk
Embroidery in Silk 300
Embroidery in Worsted
Embroidery in Worsted
Gloves, three pairs
Gloves, three pairs 300
Guipure Work
10 Hair Work
.
. 300 800
11 Knitting.
11 Knitting. 300
12 Lace Work
12 Lace Work 800
18 Mittens, three pairs of Woollen
18 Mittens, three pairs of Woollen
14 Needle Work, orammental
14 Needle Work, orammental I...
en..
en..
15 Netting, fancy
15 Netting, fancy
16 Plait for Bonnets or Hats, of Canadian Straw 200 300. 800
17 Shirt, gentleman's
17 Shirt, gentleman's 800
18 Socks, three pairs of Woollen 300 300
19 Stockinge, three pairs of Woollen
19 Stockinge, three pairs of Woollen
20 Tatting
20 Tatting 200
21 Wax Fruit 200 300
22 Wax Flowers
22 Wax Flowers 600
23 Wax Shells, a collection of
24 Worsted Work
24 Worsted Work 00 00
25 Worsted Work (fancy) for framing
25 Worsted Work (fancy) for framing 300 300
26 Worsted Work (raised)
26 Worsted Work (raised) 300 300
27 Extra Entries
27 Extra Entries
Class 47-Machinery, Castings, and Tools.
Soct. Blacksmith's Bellows
1st Prize.$\$ 400$
2nd Prize.
$\$ 300$
2 Castinge for General Machinery1000600
3 Cast Wheel, spur or bevel, not less than 50 lbs . weight 800 500
4 Castings for Railways, Railroad Cars and Locomotives, assortment of 1200 700
5 Hand Power Weaving Loom600400
6 Edge Tools, an assortment 15001900
7 Engine, Steam, stationary, of one to four horse power, in operation15001000
8 Engine, Steam, stationary, five horse power and upwards, in operation. 2500 1500
9 Engine, Hot Air, one to four horse power, in operation on the ground 1500 10.00
10 Pump, in metal 600400
11. Refrigerator600400
12 Saws, an assortment. 1000 600
13 Saw Mill, in Model or otherwise 600 400.
14. Sewing Machine, manufacturing 800 500
15 Sewing Maohine, family 800 500
16 Scales, platform 500 300
17 Scales, counter 300200
18 Shingle Splitting Machine 600 400
19 Strates, an assortment of. 600400
20 Smoke Consuming Furnace, in operation on the ground 1200 700
21 Tools for Working in Metals, assortment of 1200 700
22 Turning Lathe 700400
1200 700
23 Valves and Gearing for working steam expansively, either in model or otherwise, prin-ciple of working to be the point of competition
24 Extra Entries
Class 48-Motal Work (Miscellaneous) Including Stoveso
Miscellaneous.
Miscellaneous.
Sect. 1st Prizze.
2nd Prize. 1 Coppersmith's Work, an assortment
800 500
2 Engineer's Brass Work, an assortment
800 600
3 Fire Arms, an assortment 800 500
4 Files, collection of cast steel 200
5 Fire Proof Office Safe 800 500
6 Iron Fencing and Gate, ornamental. 500
7 Iron Work from the hammer, ornamental. 700 400
8 Iron Work, ornamental cust 700 400
9 Lock-Combination Bank Lock... 500
11 Malleable Fardrare Manufactures, an assoxtment
800 500
800

$18 t$ Prize.	2nd Prize.
600	400
600	400
800	500
600	400
800	500
600	400
600	400
600	400

Stoves.

20 Cooking Stove, for wood ...
21 Cooking Stove, for conl
22 Furaiture for Cooking Stove, one set
23 Hall Stove, for wood
24 Hall Stove, for coal.
25 Parlour Stove, for wood
26 Parlour Stove, for coal.
Class 48-Continued.
12 Nails, 20 lbs of pressed...........................
18 Nails, 20 lbs. of sut............................. ..
14 Plumber's Work, an assortment
600
800
600
.
500
16 Sheet Brass Work, an assortment
600
400
17 Tinsmith's Work, as assortment
600
400

27 Parlour Grate

$\begin{array}{ll}600 & 400 \\ 6 & 00\end{array}$

8 Parlour Fire Place complete ingluding setting of grate so as to eono.. arrangement for ventilating room

Class 49-Miscellameous, including Pottery and Indian Work。

Ifiscellaneous.
${ }^{\text {Sect. }}$ Artificial Leg. 2 Artificial Arm
3 Brushes, an assortment
4 Model of a Steam Vessel
5 Model of a Sailing Vessel
Pottery.1st Prize.2nd Prizo.600,0006004600600400
6 Filterer for water 300 2007 Pottery, an assortment.. 800800
8 Sewerage Pipes, stoneware, assortment of sizes. 1000
9 Stoneware, an assortment 1000
10 Slates for roofing 800500600- 00
Indian Work.
11 Buckskin Mittens, one pair. 200 100
12 Clothes Basket20015 Moccasins, one pair of plain500
16 Moccasins, worked with beads or porcupine quills, one pair
Class 50-Musical Imstruments. Sect.
2 Melodeon1 1et Priso.1000

Olass 51-Natural History-

Sect.
mirds-Collection of Stuffed Birds of Canada, classified, and Common and technical names attached1st Prize.$\$ 8.00$
2 Frsers-Collection of Native Fishes, stuffed or preserved in spirits, and common andtechnicul names attached
800 600

600
3 Insects-Collection of Native Insects, classified, and common and technical namesattached

4 Mammalia and Reptiles of Canada, stuffed or preserved in apirits, classified, and common and technical names attached
5 Minerals-Collection of Minerals of Canada, named and classified8006 Pants-Collection of Native Plants, arranged in their natural families, and named.800
7 Stuffed Birds and Antasals of any country, collection of.
8 Extra Entries.
2nd Prize.
6004001500120 C2nd Prize.600600

100
100
100
100
200

2nd Prize.
$\$ 600$

600

Sect. Clasa 52-Paper, Priniting, Bookibinaing, and Typeo 1st Prizo:			
1.	Bookbinding (blank-book), assortment of	$\begin{array}{r}18 t \\ \$ 5 \text { Prza. } \\ \hline 00\end{array}$	$\begin{aligned} & \text { 2nd Prizeo } \\ & \text { \$3 } 00 \end{aligned}$
2	Bookbinding (letter-press), assort	500	800
3	Letter-press Printing, plain	500	300
4	Letter-press Printing, ornamental	500	300
5	Paper Hangings (Canadian paper), one dozen	6.00	400
6	Papers-Printing, Writing, and Wrapping, one ream of each	6.00	400
7	Papers-Blotting and Coloured, one ream of each..	600	400
8	Pocket Books, Wallets. \&i., an assortment.	600	400
9	Printing Type, an assortment......................... ...	600	400
10	Extra Entries.		
Class 53-Saddie, Engine Hose, Trunk Makers' Work, and Leather.			
Saddlery, fo.			
Sect		1st Prizo. $\$ 800$	2nd Prizor
2	Engine Hose and Joints, $2 \boldsymbol{s}$ inches diameter, 50 feet of copper rivetted Harness, set of double carriage..	\$800	${ }_{5} 00$
3	Harness, set of single carriage	7.00	400
4	Harness, set of team.	500	300
5	Harnesa, sot of Express.	600	400
6	Hames, carriage or gig, best assortment... ...	500	300
7	Hames, team or cart, best assortment.	500	300
8	India Rubber Belting, Engine-Hose, \&c., an assortment	800	500
9	Leather Machine Belting, an assortment ..	800	500
10	Saddle, Ladies' full quilted.	800	500
11	Saddle, Ladies' quilted safe.	600	400
12	Saddle, Gentlemen's full quilted.........	7.00	400
18	Saddle, Gentlemen's plain shaftoe	600	300
14	Trunks, an assortment........	800	500
15	Valises and Travelling Bags, an assortment.	500	
16	Whips and Thongs, an assortment	600	
Leather.			
17	Beit Leather, 30 lbs	400	300
18	Brown Strap and Bridle, one side of each	400	800
19	Carriage Cover, two skins (whole)	400	
20	Deer Skins, three dressed	300	
21	Harness Leather, two sides.	400	300
22	Hog Skins for saddles, three	400	
23	Patent Leather, for carriage or harness work, 20 feet		400
24	Skirting for saddles, two sides		300
	Extra Entries...		
Class 54-8hoe and Bootmakers' Work, Leather, de.			
Boots, ¢c.			
			Prizo-
	Boote, Ladies', an assortment..	\$7 00	
2	Boots, Gentlemens' sewed, an assortment ..		400
3	Boots, pegged, an assortment..		300
4	Boot and Shoemaker's Tools, an assortment		500
5	Boot and Shoemakers' Lasts and Trees, an assortmen		500
6	Shoemakers' Pegs, an assortment..	400	800
7	Shoes, India Rubber, an absortment ...		400
Leather.			
Sect			
8	Calf Skins.	\$3 00	\$200
9	Calf Skins; grained.		
10	Calf Skins, two moroceo		200
11	Cordovan, two skins of.		200
12	Dog Stins, two dresied		200
13	Kip Skins, two sides..		200
14	Kip Sking, grained	800	200
15	Linings, fir skins	800	200
16	Patent Leather for bootmakers, 20 feet	600	400
17	Sheep Skins, six coloured		200
18	Sole Leather, two sides		200
19	Upper Leather, two sides	300	200
20	Upper Leather, grained, two вides.....................................	300	200
21			

Class 55-Woollon, Flax, and Cotton Goods; and Furs and Wearlng Apparelo

Sect.1at Prize
8800
Bags, from flax or hemp, the growth of Canada, one dozen 400
Bags, one dozen cottọ
600
600
Blankets, woollen, one pair
500
500
Calico, unbleached, one piece
Calico, unbleached, one piece
800
800
Carpet, wroollen, one piece
Carpet, wroollen, one piece
700
700
Carpet, Woollen stair, one piece
Carpet, Woollen stair, one piece
700
700
Cassimere oloth, from Merino wool, one piece
Cassimere oloth, from Merino wool, one piece
700
700
Cloth, fulled, one piece
Cloth, fulled, one piece
700
700
Cloth, broad, one piece
Cloth, broad, one piece
500
500
10 Counterpanes, two
10 Counterpanes, two 1000
600
12 Check for horse collars, one piece
500
500
Drawers, factory made, woollen, one pair
Drawers, factory made, woollen, one pair
500
500
Flannel, factory made, one piece
Flannel, factory made, one piece
500
500
Flannel, not factory made, one piece
Flannel, not factory made, one piece
500
500
Flannel, scarlet, one piece
Flannel, scarlet, one piece
500
500
Fur Cap and Gloves
Fur Cap and Gloves
1000
1000
Fur Sleigh Robes, Buffalo, Wolf and Raccoon (an assortment)
Fur Sleigh Robes, Buffalo, Wolf and Raccoon (an assortment)
500
500
20 Horse Blankets, two pairs 500
21 Kersey for horse clothing, one piece 500
Linen Goods, one piece 500
23 Oxford Grey Cloth, one piece 500
Overcoat of Canadian Cloth 500
25 Satinet, black, one piece 600
Satinet, mixed, one pieci 500
Sheep Skin Mats, dressed and coloured, an assortment 600
28 Shirts, factory made, three each, woollen and Angola 500
29 Silk and Felt Hats. 500
2nd Prize.\500{ }_{8} 00$
400
300500
400400400400800600400800300
300300300600300300300800300300400300400
Stockings and Socks, factory made, woollen, three pairs of each 400400300
Stockings and Socks, factory made, mixed woollen and cotton, three pairs of each 31 Stockings and Socks, factory mad300200
800
32 Suit of Clothes of Canadian Cloth 500
600
33 Tweed, Winter, one piece 400
84 Tweed, summer, one piece 400
35 Twine, linen and cotton, an assortment 300 200
Winsey, checked, one piece. 500
37 Woollen Cloths, Tweeds, \&c., an assortment800600
38 Woollen Shawls, Stockings, Drawers, Shirts, and Mits, an assortment 1000 600
89 Yarn, white and dyed, oue pound of each 800200
40 Yarn, fleecy woollen, for knitting, one pound 300200
41 Yarn, cotton, two pounds 300200200 300
42 Yarn, linen, two pounds
42 Yarn, linen, two pounds
43 LINEN GOODS-FOR THE BEST 6 vabieties of IINEN Goods, Mandeaotured in lebs than 12 yards60004000
44 Extra Entries

Class 56-Forelign Manufactures.

Foreign Articles will be admitted for exhibition only; but Certificates will be awarded to any article of worth or peculiar merit.

ALPHABETICAL LIST OF THE PRINCIPAL ENGLISH PUBLICATIONS FOR MONTH ENDING FEBRUARY•29.

Bates (Hen. W.) Naturalist on the River Amazons, 2nd edit., 1 vol. post 8vo........ 0120 Murray. Beeton's Dictionary of Universal Information: Science, Vol. 8 , 880 , 68 . comp. 1 vol... 0150 Beeton. Blyth (E) Catalogue of Mammalia in Museum Asiatic Society, 8vo................... 0 o 0 Wriliams if N Browno (W. A., L.L.D.) Money, Weights \& Mea. of the Chief Commer. Nations, fap..... 10 istanford. Buckmaster (J. C.) Eloments of Mechanical Physics, roy. 18mo......................... 0 o 8 8 6 Chapman. \& H Crocker (Jas.) Proposal for Geographical System of Measures and Weights, 8vo....... 0 o 8 . Macmillan. Evans (John) Coins of the Ancient Britons, arranged and described, roy: 8vo 1110 1 0 . R. Smith. Goschen (George \mathbf{J}.) Theory of the Foreign Exchanges, 3rd edit, revised, 8vo.......... 0
Hague (Joha) Recreation in connection with Mechanice' Institutes, 8vo.................. 0
Journal of Botany (The) British and Foreign, edit. by Berthold Seeman, vol i, $8 v 0 . . .1$
Kerrison (Lady Caroline) Plans and Estimates for Labourers' Cottages, cr. 4to.......... 0
Kirchoff (G.) Researches on the Solar Spectrum, 2nd part, translated, 4to. 0
Lawson (Wm.) Geography of the British Empire, 2nd edit, revised, fcap. 8vo........... 0
Michaclis (Gustav) New System of English Stenography, adap. from Stoize, 12mo..... 0
Miles (William) General Remarks on Stablee, 2nd edit. imp. 8vo

$50 E$. Wilson.
06 Cornish.
5 0 Hardwicke.
36 Hatchard.
50 Macmillan.
30 Simpkin.
80 Tribner.

- 10 Simpkin.

Cseful Bereitts.

Cement for mending Glass, Marble, China, Earthenwareg dic.

White shellac, 1 oz ., dissolved in 2 oz . of spirits of wine, 10 graing of borax dissolved in 2 drachms of sulphuric ether. After the ingredients are dissolved, put them together.

Put it on the edges of the broken ware with a brush or feather; then burn it off with a spirit light. Put the pieces together. hold them until they set, and they will be as firm as they were before they were broken.

Volatile Soap, for removing Paint, Grease Spots, \&ce

Four table-spoonfuls of spirits of hartshorn, four table-spoonfuls of alcohol, and a table-spoonful of salt. Shake the whole well together in a bottle, and apply with a sponge or brush.

Ho Bronze.

1. Small figures are covered with size or varnish, and when this is nearly $d r y$, any bronze powder is duated on. When dry and hard, the superfluous powder is removed, and the figure is varnished.
2. Iron is first cleaned, and then dipped into a strong solntion of sulphate of copper.
3. Paper is bronzed by mizing the bronze powder with gum-water, applying it to the surface, and when dry burnishing it.

Bromaing Liquida for Electrotype Copper Medals.

1. Crocus, or plumbago and water, made into a paste. Clean the medal, apply the paste, and expose to the heat of a clear fire for a minute. When cool, polish with a brush.
2. A solution of liver of sulphur, or sulphuret of potassium.
3. Verdigris 2 oz ., eal ammoniac 1 oz ., vinegar 1 pint. Boil, dip the clean medal for an instant or two in the boiling mixture, wash it with hot water and dry.

Bronzing Tin Castingo.

When clean, wash them with a mixture of one part each sulphate of iron and sulphate of copper, in 20 parts water; dry, and again wash with distilled vinegar 11 parts, verdigris 4 parts. When dry, polish with coloothar.

Browning for Cun Barrels.

1. Aquafortis and nitric ether, of each 1 oz., sulphate of copper 4 oz., tincture of sesquichloride of iron 2 oz ., water 3.0z.; mix. Apply once or twice to the clean barrel, and when dry, polish with a brush, or varnish.
2. Sulphate of copper, nitric ether, each 1 oz ., water 1 pint. Mix, and digest for a week.
3. Nitric ether 3 oz., gum benzoin $1 \frac{1}{2}$ oz., tincture of sesquichloride of iron $\frac{1}{2}$., sulphate of copper 2 drachme, rectified spirits $\frac{1}{2} \mathrm{oz}$. Mix and add 1 quart water.
4. Nitric ether and tineture of sesquichloride of iron of each $\frac{1}{2}$ oz., sulphate of copper 2 scruples, water 10 oz .
All the above may be varnished with shellac F oz., dragon's blood 2 drachms, rectified spirit $\frac{1}{1}$ quart. Dissolve, filter and apply.

A. Watervproof Giuc.

Melt common glue in the smallest possible quantity of water, and add by drops linseed oil that has been rendered drying by having a small quantity of litharge boiled in it-the glue being briskly stirred when the oil is added.

Casemhardening Iron.

1. Iron heated to redness is sprinkled with ferroprussiate of potass, and, when the salt has fused, the metal is plunged into water.
2. The iron is enclosed in a box and surrounded with animal horns, hoofs, bones, or skins, first charred and powdered. Cloze the box lid, heat it strongly in a furnace and let it cool. On removing the iron, it is hardened on the surface, being superficially converted into steel. When goods are wanted hard, but not brittle, they are plunged while hot in oil.

Seleted grticles.

PUBLIC AND PRIVATE DIETARIES.

Below are given some extracts from a paper read before the Society of Arts, on the subject of public and private dietaries, by Edward Smith, M. D., F. R. S., \&c., being a continuance of the subject of the paper published in the February No. of the Journal. The paper as a whole is not applicable to the state of Canadian society, but still it contains much valuable information of im. portance to private families; and especially to managers of publicinstitations with which dietaries are connected. The funds for the support of these institutions are either supplied by legislative and municipal grants, or by the donations of benevolent individuale, and should be managed with the utmost economy consistent with the well being of their inmates:-

The amount of nourishment which a people obtains must exert a large influence over the national character. An ill-fed nation can scarcely be a healtisy one, and certainly it will be deficient in bodily strength and enterprise, whilst a sufficiently fed people, having these characteristics in a high degree, will be able to acquire wealth, which may be regarded as the material foundation for the stability of an empire and for influence among nations. Hore' I regard the sufficiency of food acting upon the masses of a population as the cause, not the consequence, of national greatness, but in the diffusion of the blessings which flow from wealth it may be expected that the consequence may in its turn re-act as a cause.

We have the happiness to be citizens of a country which equals, if it does not excel, any nation of ancient or modern times in the health and longevity of its people, the distribution of bodily vigour and mental energy, and the advantiges of wealth with its attendant intelligence, comfort, and influence; and I have reason to believe that to this may be added the fundamental cause-the general abundance of food among the people. Yet it does not follow that these conditions have attained to their highest development, any more than that from them could be inferred the state of any section of the community or of any individual in a section. There is still doubtless need for progress in reference to the masses which constitute the nation, as there are, and always will be, multitudes who, in their individual relation, add little to the national wealth, and need the aid of others to procure the means whereby their own existence may be prolonged.

In the paper which I have now the bonour to read to you, I hope to include both those who are sufficiently and those who are insufficiently fedthose who add to the wealth of, and those who are a burden to, society; and to show how the means of the one may be increased, and how the burden of the other may be lessened.

The principles which will guide me are to -show in what way the largest amount of nutriment oan be gained by those who have money to spend in private dietaries, and upon how little cost those may be supported who are fed by public dietaries.

The communication which I made to this Society two months ago, may be regarded as an introduction to the present one, since it gave the means of ascertaining the relation of the nutriment contained in various foods to a given cost, and it remains now to group together the cheaper foods in such a manner as will maintain health and meet the tastes of the people.
It was shown that the only practicable method of dealing with foods in relation to their nutritive value in a given dietary, is to ascertain the carbon and nitrogen contained in them, and estimate the cost of these elements at the market-price of the food. In reference to carbon, the cheapest foods were stated to be maize (or Indian corn), barley meal, rye meal, butter milk, peas, fresh vegetables (under certain conditions), oatmeal, bones, wheaten flour, and rice. As to nitrogen, the cheapest fonds were butter milk, skimmed milk, peas, skimmedmills cheese, maize, barley and rye meal, oatmeal, liver, fresh herrings, wheaten flour, fresh vegetables when cheap, dried herrings and bones. Maize,
barley and rye, butter milk, peas, fresh vegetables when cheap, oatmeal, wheaten flour, and bones appear in both lists, and are therefore the cheapest foods.

On the other hand the following foods are the dearest in reference to carbon:-Tea, beef, new milk cheese, butter, dried berrings, mutton, skimmed milk (when dear), pork, fresh herrings, and new milk, and in reference to nitrogen :-Tea, dried bacon, green bacon, pork, mutton, new milk (when dear), beef, and potatoes (when dear). Tea beef, mutton, pork, and new milk (when dear) appear in both lists.

The general result is to show that farinaceous foods and bones are the cheapest, whilst meats are. the dearest: that milk and cheese occupy one or other list according to the cost of the different kinds, and that sugar and fats occupy a middle place.

When the hydrogen is calculated and reckoned as carbon the relative positions of some of the foods are alightly altered but the extent of the change may be seen on reference to the column which I added to the table which was printed in my paper on December 16, 1863.*
The author stated that from actual experiments made, it is ascertained that a man in middle age and in good health, and with a fair amount of bodily exertion, requires food furnishing a daily supply of 4,300 grains of carbon and 200 grains of nitrogen; and that a reduction of about $\frac{1}{10}$ th may be allowed for women. The average daily dietary of the Lancashire operatives during the existing depression varied but little from this estimate, and abundant evidence is furnished that the health of this class of persons has not only been maintained but evidenlly improved. A few examples are selected out of a large number, from tables prepared by a commission of which Dr. Smith is a member, and issued by the Government showing how far experience sustains this position, and furnishing also a correct ingight of the modes of living adopted by our unfortanate Lancashire brethren in their distress.

No. 1. Male.-Carbon, 4,787 grains; nitrogen, 132 grains dnily; cost ls. $11 \frac{1}{2 d}$. weekly. Bread, 101bs.; sugar, 1lb.; butter thla.; and coffee, 2oz.; so that he lived on bread and butter and coffee.

No. 2. Male.-Carbon, 4,528 grains ; nitrogen, 165 grains daily; cost $2 s$. 2d. weekly. Bread, 8 lbs.; onions, 2 lbs. ; treacle, 1lb.; bacou, $\frac{1}{2}$ lb. ; cheese, 交lb.; tea, toz. He ate bread and treaole, bread and bacon, bread and onions, bread and cheese, and teu without milk or sugar.

No. 3. Female.-Carbon, 3,801 grains ; nitrogen, 164 grains daily; cost 18. 9d. weekly, and out of 2 s . nllowed for food, saved 3d. weelly to redeem her clothes. Bread, 121bs.; treacle $\$ 21 \mathrm{lb}$.; bacon 1 llb ; 3 herrings, and coffee, loz. Sbe obtained bacon or herring five days per week, with much bread, and coffee sweetened with treacle, and was well nourished.

No, 4. Female.-Carbon, 3,011 grains : nitro-
gen， 109 grains daily；cost 1s．113 B d．weekly． Bread，8lbs．；sugar $\frac{1}{2} l \mathrm{lb}$ ．；treacle $1 \frac{1}{2} \mathrm{lb} . ;$ bacon 2 oz. tea， 1 oz ；and coffee， 1 oz ．She lived on bread and treacle，tea and coffee，and bacon only on Sunday，and was ill nourished．

Case No．5．Female．－Carbon，3，777 grains； nitrogen， 165 graius daily；cost， $2 \mathrm{~s} .0 \frac{1}{4}$ d．weekly． Bread， $8 \mathrm{lbs} . ;$ oatmeal，lillb．；treacle $1 \mathrm{ll} . ;$ bacon， $\frac{1}{2} 1 \mathrm{lb}$ ．；meat $\frac{1}{2 l} \mathrm{l}$ ．；skimmed milk， 2 pints ；and coffee loz．She had meat or bacon daily，oatmeal por－ ridge and treacle，or stirabout with treacle，bread and coffee sweetened with treacle．This was the best arrangement of food which I met with，and she was abundantly nourished．

Case No．6．Female．－Carbon，2，832 grains ； nitrogen， 117 grains daily；cost， 1 s .10 d ．weekly． Bread， 8 lbs．；sugar，$\frac{1}{2}$ lb．；treacle，lib．；bacon $\frac{1}{4} 1 \mathrm{~b} . ;$ 1 herring ；and tea，20z．This was an ill－arranged dietary，and she was ill－nourished．

In drawing up model dietaries I have endea－ voured to obviate the defects now mentioned，and to meet the requirements of the system ：－
1．By providing sufficient nourishment．
2．By selecting well－known foods．
3．By giving such variety as would permit the meals to be varied，and to correspond with that of the community，and particularly，whilst not per－ mitting a deficiency of nouriehment，to introduce almost daily some kind of meat for dinuer．

4．By introducing fresh vegetables at a cost of 2d．per week．

The following are selected from those which cost from less than $3 \frac{1}{d}$ d．to less than $4 \frac{1}{2} \mathrm{~d}$ ．per day， at the prices in the North of England：－
No．1．Carbon， 4,004 grains；nitrogen， 201 grains daily；cost，1s．113 $\frac{3}{4}$ d．weekly：Bread，91bs．； oatmeal，llb．；meat，$\frac{1}{2}$ lb．；bacon，$\frac{1}{2}$ lb．；skimmed milk， 3 ，pinte；buttermilk 3 pints；and vegetables 4lbs．This would give milk porridge twice a day， with breadand regetables daily and meat fivetimes a week．

No．2．Carbon，4，122 grains；nitrogen， 207 grains daily ；cost，2e．weekly ：－Bread，81b．；oat－ meal， 1 IIlb．；treacle，亲lb．；bacon，$\frac{1}{2} \mathrm{lb} . ; 3$ herrings； skimmed milk， 7 pints；and vegetables 4lbs．－ This would give animal food and vegetables daily， with milk－porridge and oatmeal，pudding，and bread and treacle．

No．7．Carbon，4，433 grains；nitrogen， 198 grains daily；cost， 28 ．4d．weekly ：－Bread，101bs．； oatmeal，lilb．；treacle，交lb．；buttor，$\frac{1}{1} \mathrm{l}$. ．；meat，$\frac{1}{2} \mathrm{lb} . ;$ bacon $\$ 1 \mathrm{l}$. ；skimmed milk， $3 \frac{1}{2}$ pints；and vegetables $3 \frac{1}{2}$ lbs．This gives no coffee，much bread，with butter or treaole，oatmeal pudding with treacle， milk porridge，and meat five days weekly，with vegetables daily．

No．8．Carbon，4，991；nitrogen， 221 grains daily；cost，2s． 4 td．weekly．Bread， 10 lbs．；oat－ meal， $2 \mathrm{lbs} . ;$ treacle，$\frac{1}{2} \mathrm{lb} . ;$ meat，$\frac{1}{2} \mathrm{lb} . ;$ bacon．$\frac{11 \mathrm{~b}}{}$ ； skimmed milk， 33 pints；and vegetables， 4 lbs． This is an excessive dietary，and differs from the last only in supplying meat daily；and offering more oatmeal pudding．

No．9．Carbon；4，434 grains；nitrogen， 210
grains daily；cost，28．412d．weekly．Bread 8 lbs ．； oatmeal，2lbs．；sugar， 1 llb．；treacle，1lb．；skimmed milk， $3 \frac{1}{2}$ pints ；buttermilk， 3 pints；coffee， 20 za ． bacon，1lb．；and vegetables，4lb．This would give bacon，vegetables，and bread daily，with oatmeal pudding and treacle，milk porridge and coffee．

Such are examples of how much nutriment may be obtained from food to which the people are accustomed，and offering three meals a day with the usual variety，and usually including 2oz．of some kind of meat，at a cost up to $4 \frac{\mathrm{~d}}{\mathrm{~d}}$ ．per day． The articles selected are the chespest farinaceous foods，American bacon，which is the cheapest fat， and skimmed milk，whilst sparing use has been made of butchers＇meat，sugars，and the dearer fats．

Let us now look at the subject in another，and to my mind more satisfactory light，and ascertain how much nutriment can be afforded at a meal for sums not exceeding 12d．for breakfast，2d．for din－ ner，and Id for tea，or supper，or a total cost not exceeding $4 \frac{1}{2}$ per day．For this purpose I will again turn to the dietaries which I have prepared for the Government，and in order to apportion the daily nutriment to the wants of the system，at the period of the three meals，I will state that the amount of carbon required is 1,500 grains at break－ fast， 1,800 graims at dinner，and 1,000 grains at supper，whilst that of nitrogen required at those meals is 70 grains， 90 grains，and 40 grains，res－ pectively．

Breakfanat．

No．1．－Oatmeal brose．Carbon，1，397 grains； nitrogen， 74 grains ；cost，1d．Oatmeal，6oz；trea－ cle，loz．；skimmed milk，$\frac{1}{2}$ pint；water， 1 pint．
No．2．－Milk porridge and bacon．Carbon， 1，564 grains；nitrogen， 69 grains；cost 1 1 d． Skimmed milk，$\frac{1}{2}$ pint ；oatmeal $\frac{1}{2}$ oz．；water，$\frac{1}{2}$ pirt ；bread， 4 oz．；bacon， 2 oz.

No．5．－Rice，milk，and bread．Carbon，1，551 grains；nitrogen， 75 grains ；cost $1 \frac{1}{d}$ d．Rice， 2 oz．； skimmed milk， 1 pint；treacle，loz．；spice；fat， $\frac{1}{2} \mathrm{oz} . ;$ bread， 4 oz.

No．6．－Coffee，bread，and butter．Carbon， 1，190 grains；nitrogen， 56 grains；cost $14 d$. Coffee and chickory，of oz．；skimmed milk，妾 pint； sugar，$\frac{4}{4}$ oz．；water，$\frac{3}{2}$ pint ；bread， 6 oz ；butter， $\frac{1}{2} \mathrm{Oz}$ ．

No．8．－Oatmeal brose，bread and bacon．Car－ bon， 1,990 grains；nitrogen 88 grains；cost， $1 \frac{1}{2} \mathrm{~d}$ ． Oatmeal， 5 oz．；treacle， 1 oz．；skimmed milk，$\frac{1}{4}$ pint； water，$\frac{3}{2}$ pint；bread， 3 oz ．；bacon， 1 oz.

No．9．－Rice milk，bread，and bacon．－Carbon， 1,889 grains；nitrogen， 76 grsins；cost， $1 \frac{1}{2} \mathrm{~d}$ ． Rice，2oz．；Skimmed milk，$\frac{3}{4}$ pint，treacle， 1 oz．； water，$\frac{1}{8}$ pint ；bread， 4 oz．；bacon， 2 oz.

No．10．－Tea；bread，and butter．Carbon，1，081 grains；nitrogen， 46 grains ；cost， $1 \frac{3}{3} \mathrm{~d}$ ．Tea，$\frac{1}{8} 02$. ； sugar，$\frac{7}{2}$ oz．；skimmed milk，$\frac{1}{4}$ pint ；water，$\frac{1}{2}$ pint ； bread， 6 ox．；butter，$\frac{3}{4}$ oz．

Nos． 8 and 9 show，in a striking manner，the amount of nutriment which can be obtained from the cheaper farinaceous foods，cheap milk and cheap fat，whilst the contrast between them and Nos． 6 and 10 show how wasteful is the expendi－ ture upon the dietary when tea and coffee are introduced．With the two last mentioned excep－
tions the quantity of nitrogen is universally sufficient.

Dinner.

No. I.-Bread and cheese. Carbon 1,150 grains ; nitrogen, 66 grains ; cost $1 \frac{1}{\delta} d$. Bread; 802.; cheese 1 oz .

No. 2.-Suet pudding, bread; and cheese. Carbon, 1,496 grains; nitrogen, 74 grains; cost, 14d. Flour, 4 oz.; Suet, $\frac{1}{2}$ oz.; ; skimmed milk, 4 pint; bread, 4 oz.; cheese, $\frac{1}{2}$ oz.

No. 3.-Rice pudding, bread, and cheese. Carbon, 1,673 grains; nitrogen, 83 grains; cost $1 \frac{3}{4} d$. Rice, 3 oz.; skimmed milk, 1 pint.; suet $\frac{1}{2}$ oz.; sugar, $\frac{3}{4}$ oz.; spice, and salt ; bread, 3 oz.; cheese, $\frac{1}{2} \mathrm{oz}$.

No. 4:-Fish. Carbon, 1,387 grains ; nitrogen, 101 grains; cost, 1 委d. Fresh herrings, 9 oz. (2); dripping, $\frac{1}{2}$ oz.; potatoes, 8 oz.; bread, 3 oz .
9.-Faggots, peas pudding, bread and cheese. Carbon, 1,513 grains; nitrogen, 140 grains; cost, 2d. Liver 3 oz.; bacon, 1 oz.; herbs and peas; 3 oz.; bread 2 oz.; cheese, $\frac{1}{2}$ oz.
11.-Irish-stew and bread. Carbon, 1,568 grains; nitrogen, 72 grains; cost, 2d. Meat, 3 oz.; potatoes, 12 oz .; onions, 1 oz .; bread, 4 oz .

12-Hasty pudding, herring, and potatoes. Carbon, 2,144; nitrogen, 119 grains; cost, 2d. Flour, 6 oz.; skimmed milk, $\frac{1}{2}$ pint; water; treacle, 2 oz ; 1 herring ; potatoes, $\frac{1}{2} \mathrm{lb}$.

Two of these largely exceed the standard quantity in carbon, viz., Nos. 2 and 12 ; whilst four, viz., Nos. 2, 4, 9 and 12, exceed it in nitrogen. No. it is quite insufficient for a man, whilst No. 12 is much more than enough.

Supper.

1.-Oatmeal brose, as at breakfast.

- 2.-Milk porridge. Carbon, 1,034 grains; nitrogen, 61 grains; cost, 1d. Skimmed milk, $\frac{3}{4}$ pint; oatmeal, 2 oz. ; bread, 2 oz .; fat, $\frac{8}{8}$ oz.
3.- Bacon and bread. Carbon, 1,250; nitrogen 43 grains ; cost, 1d. Bacon, 2 oz.; bread, $5 \frac{1}{3}$ oz.
4.-Tea, bread, and butter. Carbon, 670 grains ; nitrogen, 29 grains; cost, 1d. Tea, $\frac{1}{b}$ oz.; sugar, $\frac{3}{4}$ oz.; skimmed milk, $\frac{1}{3}$ pint ; water, $\frac{5}{8}$ pint; bread, 4 oz ; butter, $\frac{1}{4}$ oz.
5.-Coffee, bread, and butter. Carbon, 925 grains; nitrogen, 42 grains; cost 1 d . Coffee, $\frac{1}{8}$ oz.; sugar, $\frac{1}{2}$ oz.; skimmed mills, 1 pint; water, $\frac{5}{8}$ pint; bread, $5 \frac{1}{5}$ oz.; butter, $\frac{1}{2}$ oz.
In each of the first three there is an excess of the standard requirement, whilst the fourth corroborates the fact already mentioned, of the impossibility of providing an economical dietary where tea and butter are introduced.
For those who cannot afford even so cheap a diet as the foregoing, Dr. Smith recommends Indian corn, meat, pease, bread, buttermilk and skimmed milk, as affording the largest amount of nourishment ait the least possible cost.
In regard to the dietaries of charitable Institutions, the author affirms some general principles which ought to be adhered to in their management:
A.-There must be a proper apportionment of the food according to sex and age. This is a subject of much difficulty, since there are no scientific data which refer to each year of life; and the relative wants of a man and woman vary with the size and activity of their bodies, rather than simply with sex, so that oven a scientific man can only make a near appreciation to the truth. At present the reduction in the dietary for a woman, from the normal dietary for men, varies from half to a quarter, and it is only until a boy reaches the age of sixteen that he is considered to need the dietary. of the man, and in both, I think, the dietary allowed is much under the requirement. From a consideration of the products of nutrition which pass out of the body, I do not think that the average dietary for women ought to be less than nine-tenths of that for men, neither being employed at hard labour.

The importance of the apportionment to age is exceedingly great, for it is only during the period of youth that growth progresses, and for liealthy and suitable growth there must be sufflcient food, and hence if the latter be withheld the former is deficient, and from the finality of the period of growth the loss can never be regained. Honce it is of far greater consequence that there should be abundant food given to a youth than to an adult, since the former can never regain his loss, whilst the latter can tolerate with comparative impunity, much variation from his proper nourishmeat. I have entered at length into this subject in my work on "Health and Disease, as Influenced by the Qyclical Changes in the Euman System," which may be found in our library, and I shall now only state that, in my opinion, above twelve years of age the dietary allowed ought to be that of a man ; from the age of ten to the age of twelve, that of a woman; and that below ten years and abore one year of age, there ought to be three scales of dietary embracing the ages from two to five, from five to eight. and from eight to ten, or, as it is far more natural, the dietary under the age of ten should be unlimited in quantity.
B.-The food supplied should be, in nature and variety, similar to that which they will obtain in later life. While it is a fact of the highest interest that the body can adapt itself to a great variety of circumstances to which it had not been accustomed there can be no doubt that the changes are attended by risks, and that there are those who suffer from or sink under them, and in a wide point of view are not desireable. Hence, I would train up the body of the child as it shall be nourished when it becomes a man. I need not particularise the foods with which all are familiar, but precise information on this point will soon be supplied. As to variety of food, there can be no doubt that, within limits, it tends to improve the relish for and assimilation of food, and hence to increase nutrition, whilst beyond those limits, as we see amongst the well-fed classes, it lessens the appetite and the quantity of food that is eaten. Our ordinary habits do not seek for much variety at the first and. last meals of the day, whilst one unvarying food at dinner would soon become unacceptable. Yet even in that there is less diversity than at frrst sight appeare, since all the food may be wound up under the terms, meat, potatoes, pudding; and
the only variation is the kind of meat, and the components of the puddings, and the mode of cooking them. The dinner, then, should be varied, so that the same kind of meat shall not be always supplied and that some change of food, or mode of cooking shall occur daily.
C.-The last observation may be regarded as trite and unnecessary, since it is admitted in most dietaries to a limited extent, but the next one, viz., that with variety in food there shall be uniformity in nourishment, is mach disregarded. Thus, to select one frommany dietaries which bave been sent to me for my opinion on their fitness. On four days a. week children from the age of five to the age of nine, have for dininer 3 oz. of cooked meat and 8 oz . of potatoes, which contain between 1,200 and 1,300 grains of carbon, and nearly 70 grains of nitrogen, whilst on two days 10 oz . of suet pudding is alone allowed, containing about the same quantity of carbon, but only two-thirds of the quantity of nitrogen; but as the digestibility of the two diets must be very different, the defect of the latter is doubtless much greater than the chemical constituents indicate. On one day in the week there is rice padding, and if we add $\frac{1}{2}$ pint of milk to each 1 lb . which is no doubt beyond the mark, it will yield less than 800 grains of carbon and 27 grains of nitrogen, or a defect of morethan one third of carbon and nearly two-thirds of nitrogen. I may also make use of the same dietary to show another defect in the selection of food in poorlaw dietaries: 16 oz . of rice, potatoes, or other vegetables, are allowed indifferently at dinner, the amount of carbon in the rice being nearly four times as great as that in other vegetables, whilst the proportion of nitrogen in potatoes and vegetables is only one-third and one-fifth of that in riee. Thus, whilst the alteration of foods is necessary it is manifest that by the present system even good guessing at truth is not effected, and that such recondite questions as the nutritive value of foods can only be answered by scientific authority.
D. True economy consists in keeping the poor in health and strength at the least cost, and not simply in finding the cheapest dietary upon which they may live. Hence, list, a selection from the foods to which they are aconstomed, of such as will yield the greatest nutriment at the least cost; 2nd the cooking of them 80 as to obtain the whole of the nutriment from them; 3rd, by supply of proper kinds of foods with sufficient variety of flavour; by well ventilated rooms and by exeroise in the open air to keep up the relish for foods, for under such circumstances the food is better assimilated by the system (that is to say, less of it is wasted), and the cheaper and less savoury foods are with equal chemical value equally nutritive with others of a more costly kind.
E.-Of separate foods, I will refer to two or three. For all persons below adult age, skimmed milk or butter milk, oatmeal and bread should be given twice a day. The mid-ary meal should always consist of meat and vegetables. The meat may be prepared as soup thrice a week with advantage, and to it should be added well-digested bones, pearl barley, and other vegetables, according to some of the numerous formulæ puiblished by the Government, and of which the following three have been specially arranged by me:-
soupg.

It is desirable that dried herbs be used, and these, with the other vegetables varied on each occasion. This with bread alone, or, better still, with some kind of pudding, would suffice for thedinner on the soup days.

The use of tea and coffee should be restricted to the aged and the sick, or to special occasions.

In reference to fresh vegetables, when they are bought, it should be observed that, as they are dearer than bread, their use should be limited, but When they are grown by the labour of the paupers they promote healthful exercise, and supply food at a nominal cost. It is important to bear in mind that the necessity for any given quantity of fresh vegetables is relative only, whilst they may be eaten with equal adrantage in large or emall quantities, provided there be a corresponding supply of other fresh food.

On dietary of prisons Dr. Smith-says:-
In prison discipline there are but two circumstances affecting the dietary which render it different from that of workhouses, for in both alike it is a duty to sufficiently feed the inmates, and to do this with the greatest economy. These are simple confinement with its implied restriction of fresh air, and exertion, and mental activity, and the influence of the labour ezacted under hard labour sentences; and where these two influences have been estimated in a scientific manner there can be no difficulty in establishing a system of dietary which may meet the wants of the prisoners, and be everywhere uniform or equivalent.

Now what is our knowledge upon these two subjects. As to the effect of seclusion, we know theoretically that it would lessen the activity of all the vital functions, and thereby in itself be attended by less waste of the tissues of the body, and so far less food would be needed (as each of us would find if we kept in our room for a week) but practically it has been found that the weight of the body is lessened in confinement, a fact resulting either from the defioient supply of food which was obtained, or from a diminiehed use made of that food, and hence, without proving either alternative, it was concluded that more food was required in a state of seclusion than would have been necessary in the ordinary circumstanoes of life. Upon this was based a scheme of dietary whioh
was accepted by Government, in which the quantity of nutriment varied with the duration of imprisonment, in the following remarkable manner :

	Imprisonm		Nitrogen
as8	1, 1 to 7 day	19,86	889 gr
"	2, 7 dajs to 21 dajys,	26,748	1,211
*	3, 21 days to 4 months,	29,588	1,323
"	4,4 months and above,	33,782	1,566 "

As the compilers of this scheme were instructed that the dietary was not to be an instrument of punishment, it follows, that, in their opinion, mere duration of seclusion excited such an influence as to demand nearly double the amount of Cood at one period which was required at another, and that meat was required only in the conditions of the 3rd and 4th classes. It is usual to say that according to this scheme, the amount of food must be increased as the duration of imprisonment increased -or, in other words, that the offect of soclasion is a necessity for increased food, but in truth, if there be any logical sequence in the sobeme, it is the contrary, for it begins with an amount of food which we have shown to be only about half of that which is required by the system, and it is only when the seclusion has continued 4 months that it is thought necessary to supply as much food as the system really requires. The truth is, that in ascertaining the cause of loss of weight by seclusion, there were two valid agencies, only one of which was considered, and absurd as it may seem, it was not seen that giving a man only half the food which he required would lead to loss of weight of body, apart from any other agency whatever.

But the recent experiments made by Mr. Milner and myself for the British Absociation, by which not only the change in weight, but the quantity of nutritive and effete matters entering and leaving the body was ascertnined in a scientific manner; it was proved that seolusion with inactivity does lessen the vital activity of the body, and causes a larger portion of the food to leave the body unused thay ocours under ordinary circumstances, and hence that the ordinary diet out of prison would not suffice for the same person in prison without labour. The remedy for this is simple, and I shall again refer to it.
Then as to the relation of food to prison punish. ments. It may be known to you that these punishments are usually oakum-picking, turning a crank, or working a hand-wheel, and to these are added in some prisons the exeraise of the shot drill, or various kinds of handicraft. There is the greatest diversity in the labour exacted by these methods, as I shall subsequently prove, but in addition to this, there is the greatest diversity as to the selection of them and the rotation of their use in different prisons. Thus, as I placed upon record more than five years ago, we find that in our county prisons some find no labour at all, others only that of ordinary trades, others have crank labour alone, others treadwheel labour alone, whilst in many, one of the two, or both of the two latter forms of hard labour are conjoined with some kind of trade. In many the treadwheel and crank are unprofitably employed, whilst in many others they are used as mills or pumps. In some, women even work the orank and the tread wheel.

In some the treadwheel and crank are exceptional employments; in others they are universally used, but for a small part, of the sentence; whilst in a third class they are the constant employments during the whole term of imprisonment. In most gaols they are ohiefly employed for short sentences, and therefore for small crimes, and with insufficient food, whilst the light occupations are reserved for long sentences, with greater orimes, or frequent repetition, and excessive food. In some they are worked for an hour without intermission; in others thirty, twenty, fifteen, ten, and down to four minutes only. In some they are enforoed for three hours daily, and simply as exeroise ; whilst in others the labour endures ten hours. In many, boys of fourteen years of age work the wheel and the crank; whilst in others able grown men make shoes or pisk oakum only.
In: some the ordinary rate of the ascent on the treadwheel is fifty-six steps per minute, whilst in others it is so low as thirty. In some the ordinary pressure on the crank is seven pounds; at others, twelve pounds; the pressure being certain, and demonstrated by weights in one, and uncertain, depending upon the turn of a sorew, in another. In some the ordinary number of revolutions per day is 14,400; whilst in others, in which the crank is still the chief instrument of punishment, it varies from 13,500 to 6,000 or 7,000 , at the disoretion of the surgeon, the prisoner being still without disease. In some the day's work may be performed in any part of the twenty-four hours with the index in sight of the prisoner; whilst in others it must be performed before the night, and with the index outside the cell, and so that the prisoner is unable to ascertain, from time to time, how much labour he has yet to perform. In some, pumping is employed for an honr only, and even during that short period, as at Reading, there is no method of determining if any individual prisoner is labouring or not; whilst in others the labour is for the whole day pumping water into the sewers.
Oakum-picking is no labour in one prison, and hard labour in another; and in the latter it is two pounds for a day's work at Wandsworth and Westminster, and three pounds at the Coldbath Fields, whilst it is five pounds at a workhouse. In some the prisoner by good conduct obtains a lighter labour; a commendatory badge, and a pecuniary reward; in others it is tread wheel from the first to the last; whilst in many, as at Wandsworth, the change of labour is due neither to crime, sentence, nor conduct, but to the number of prisoners.

With such diversity in the conditions upon which the dietary must depend, the Government Commissioners did not attempt to determine the true influence of each agent, neither did they insist upon a uniform plan of punishment being adopted before they prepared a scheme of dietary to meet it, but simply by ascertaining the effects of given dietaries upon the weight of prisoners condemned to hard labour (no matter what and how varied that labour was) they framed a socheme which should not only meet the requirements of the labour exaeted (itself unknown) but be equal to the effect of simple seclusion without labour-that also unknown. The result of such extriordinary guessing was, as might be expected, most anoma-
lous. Thus, during an imprisonment of 7 days, no difference of food was supposed to be required, Whether the prisoner performed the most severe labour with which we are acquainted-treadwheel labour- or was entirely at rest: Under 21 days, (treadwheel and other hard labour being exacted) he obtained as an equivalent for each. 7 day's labour over the requiremente of rest, only 1 pint of soup (containing $3 \cdot \mathrm{oz}$, of cooked meat, 3 oz : of potatoes, 1 oz , of barley-rice or oatmeal, and 1 oz. of onions, or leeks) affording about 1,100 grains of curbon, and 55 grains of nitrogen, or enough to meet the requirements of continued treadwheel labour for about $1 \frac{1}{2}$: hour only. For longer terms hard labour for 21 days was considered equal to no labour for 4 months, and to need the diet, class 3, which is below that of the unemployed Lancashire operatives, and for 4 months to be equal to no labour for an indefinite period; and to require the dietary of Class 4 , containing enough food to supply the wants of the system on the ordinary conditions of out-of-door life: When the term of hard labour exceeded 4 months; it obtained a dietary of its own, in. which 4 oz. of cooked meat: was given four times, and 3 oz . thrice a week with bread, vegetables; gruel, and cocoa, containing 36;603 grains of carbon, and 1,610 grains of nitrogen; a dietary more expensive and luxurious than the others, but not greatiy exceeding: No. 4 in nutritive value.

The utter insufficiency of the allowance made for hard labour may be more strikingly seen when I quote the effect of these punishments as experimentally proved by myself side by side with the requirements of the system of the unemployed labourers.

Thus, the Lancashire operatives, when unemployed, required $30 ; 100$ grains of carbon weekly. Average crank labour requires 45,000 grains, and treadwheel labour requires 60,000 grains; but the amount allowed to the prisoners at hard labour is 19,860 grains, 26,748 grains, 29,581 grains, 33,782 grains, and 36,603 grains, quantities differing among themselves to the amount of nearly double of the least quantity, and below the maximum required quantity from one-third to three-fifths.

Surely no further proof can be required to show that no uniform dietary could be possible under so many varying and controlling conditions, and that in providing this scheme the information on which it was based was mostdefective, and that guessing, in a.great degree, took the place of scientific deduc. tion. Hence, in the absence of evident and sound guiding principles, it is not to be wondered at that the scheme was not accepted readily by the visiting justices of prisons, and even now from one-third to one-half of these prisons rejeot it, and adopt schemes which themselves are even less based on principle, and which exhibit the most astounding diversity.*

Considering the national importance of this subject, Dr. Smith considers that the following amongst other questions now demand solution :-
A.-shall the principle be adopted which was finally laid down by Sir James Graham, that the

[^0]dietary shall meet the requirements of the prisoner under the different conditions of prison discipline, and thus maintain his health and strength, or shall it be made an instrument of punishment, and for any period be insufficient for the wants of the system? Without this, no step can be taken in the inquiry, and it must be for the legislatiore to decide the question. It must, however, be borne in mind, that if it be decided to give insufficient food, you take the subject out of the hands of science, and must let justice fix the amount of deficiency, for although it is evident that deficient food must lead to injury of health, as its action is slow and the different degrees of health are not marked by clear lines, it is impossible to estimate accurately the injury inflicted. It is a dangerous mode of punishment, and particularly when it is often repeated.
B.-The system to be pursued in goal discipline must be fixed so that a sentence shall always and everywhere carry with it an absence of labour or a definite kind and amonnt of labour. Hence it must be determined whether labour shall be a part of all goal discipline or not, and certain kinds of labour must be selected and prescribed, and thus the sentences may be without labour, with medium labour, and with hard labour. In my evidence before referred to (Question 842), I affirmed the principle that labour should be a constituent part of every sentence, on the ground which at first sight may appear paradozical, that, within limits, it would allow the food supplied to be less costly, for without labour it has been shown that food is wasted, and either the system must be ill-nourished, or the higher kinds and more costly food, as meat; must be given so as to supply an increase of vital atimulant in the form of nitrogen. In some cases; therefore, it misy be shown that the exertion supplies its own food, and as this is a most important principle, I will quote the answer which I gave to Question 827, "Would you explain to the committee a little on what principle you would act in that case:"" "It would seem that the right course of proceeding would be this, to determine the amount of food:which is necessary to maintain a person in fair health in the open air, and to endeavour so to arrange that it shall also maintain the prisoner in health in a state of confinement. The difference of the two conditions is mainly, or perhaps entirely, this; that in confinement you have less vital action in the body, less digestion of food, and less assimilation or conversion of food into the tissues of the body. The aim, therefore, should be so to arrange the prison disoipline that there shall be suoh an increase of this assimilation over the present amount, with inection, as shall enable the cheap food, which is sufficient for the support of an agricultural labourer, to keep the prisoner in health. If that be not done, it will be necossary, as we do at present, to give more nitrogen. With the deficient assimilation existing in confinement, you must increase the vital action of the body; but if you adopt the other course, that of giving exeroise of fresh air, such as a labourer would have, you do not need to give a proportionate increase of nitrogen; you therefore assimilate the conditions of the prisoner much more to those of an ordinary labourer, either in quantity or in quality. I also give my assent to the proposition
contained in question 836, viz., "Whenever you have a deficiency of labour you might make either the labour or the open-air exercise, whichever it may be, more or less a substitute for the amount of nitrogen which otherwise would be supplied in meat."

*	x	*	*	*	*

I have only one further remark to make, and that will have reference to the unfair position in which medical men are now placed in reference to this and other subjects. It is expected not only that medioal practitioners shall be well fitted for the practice of their profession, but that they shall also be authorities upon the various recondite questions which are only accessory or incidental to their practical knowledge. Hence upon questions of lunacy, public health, poisoning, and dietary, it is expected that any medical man who may be in any way connected with the case under investigation should give opinions quite in accordance with the most advanced knowledge of the day. This is not required in other occupations in life. A graduate in arts must be acquainted with mathematics, but is it expected that every graduate should be able to fill a professorial chair, or to resolve the most abstruse problems of the science? Is a lawyer expected to be familiar with each department of the law, or an artist equally capable of excellence in every walk of art? Why, then, is it not well recognized, that the essential duty of a medical practitioner is capability for the treatment of disease, and that questions on collateral subjects should be regarded as special ones, to be solved, not by the busy practitioner, but by those specially given to such investigations. It is unreasonable to require a workhouse or goal surgeon to give a scientific opinion upon, and to frame dietaries for those under his care if the nim is to pass beyond the region of ordinary observation and to establish something recondite, as for example a dietary which shall sufficiently nourish the body at the least cost.

In the discussion which followed the reading of this paper, Dr. Smith was highly complimented on the able and scientific manner in which he had treated the subject.

Dr Lankester believed the losses arising from the improper use of diet would be more than enough to feed the whole population. He was not in favor of insufficient feeding of prisoners, but did not believe they were overfed, or that any of them would remain in durance for the salke of the food they got in prison. He did not hesitate to say that in many cases the system of diet and discipline was advantageous-men who went in as emaciated and enfeebled drunkards, often came out as strong men. He almost wished there were prisons for respectable people who could not restrain themselves within proper limits, both in eating and drinking. Six montis in Clerkenwell or Pentonville would put them on their lege again, and enable them to go on prospering for years without incurring any doctors' bills.

THE THEORY OF THE ORIGIN OF PETROLEUM. *

It is probable that all instances of solid bitumen found on or beneath the surface of the earth have resulted from the hardening of drops or reservoirs of liquid coal oil. The fumps and crystals of graphite found in the oldest rocks, like the lumps of amber found in the newest, were doubtless oily substances involved by sand and mud. Flakes of anthracite are found in the centre of rock crystal. Gelatinous animals and mucous plants abounded in these ancient seas, and ought to have provided, by their death, plenty of animal and vegetable hydrocarbon for the mineral. The old red sandstones, like more modern formations, present us, for our cabinets, innumerable flattened fish, converted into bitumen; some in soo perfect a state that every scale can be counted, and every sculptured line upon them submitted separately to the microscope ; others an undistinguishable mass or daub of tar. Some rocks have been so thoroughly cbarged with animal dead matter that they emit a fetid odor whenever struck, and are technically known as stinkstones. The bituminous limestones and shales of many different geological ages are so many reservoirs of animal and vegetable oil, produced by the death and decomposition of successive foral and faunal creations, perhaps principally coralline. The fossiliferous black shales of the central-belt of the State of New York underlie Lake Erie, cross Ohio and Kentucky into Tennessee, and return through Indiana and from the beds of Lake Michigan and Huron. In middle Kentueky; the faces of the rocks are smeared and streaked with oil, fried out of them by the sun, so that the surfaces are blackened as if with tar.
Up to the horizon of these black slates, ascending in the columns of deposits, gelatinous sea organisms, both animal and vegetable, seem to have conatituted the principal, if not the sole, apparatus for generating Petroleum, But Dawson has lately discovered in the sandstones over them a true angiospermous exogenous tree, not much, if any, lower in the scale of development than those of which our forests are composed. Corniferous trees began also to abound, and coal beds to be deposited in groups. Thence the higher we ascend towards and through the second and the third or great coal measures, the more abundant became the vestiges of fresh water and land vegetation, until, in the tree stumps of the coal beds of Nova Scotia, we find small land animale. The mosses and ferns, the rushes and reeds, minute and gigantic, of which the coal beds came, suggest the vegetable origin of coal oil. For it is near or between the three systems of coal measures which succeed eaoh other in ascending from the top of the upper Silurian to the coal measures proper that the amazing discoveries of subterranean reservoirs of oil had taken place. It is impossible to suppresis the suspicion that Petroleum is a product of the slow decomposition of vegetable tissue.
But the oil wells are not sunk in coal measures, but through them at the edge of the great coal area: The oil is never fonnd in coal beds; nor have the subterranean reservoirs of oil apparently any connection with coal beds, nor even with coal slates,

[^1]or bituminous shales or pyroschists, as they are called. Black slate, cannel, fat coal, like lignite, peat and living wood, will yield the oils and gases by distillation, but the geological distinction must be carefully preserved between the free Petroleum of the rocks and wells and the distilled Petroleum of the old oil works.

The connection of the oil regions with the coal basins of western Pennsylvania and Virginia, and eastern Ohio and Kentucky, is, in good measure, a geographical deception. (In the report of a geological reconnoissance of Indiana, 1859, 1860, under D. D. Owen, State geologist, and published in 1862, Profesosr Lesquereux expressed the opinion that the mineral oil of the borders of the coal field comes from the lowest great bed of the coul measures, I. B., page 285. The opinion ofsuch an authority is to be carefully considered.) The Oil creek rocks, dipping southward, pass 500 or 600 feet below the coal measures. The nearest coal bed to the more northern springs occurs on the highest hill tops, many miles away. The hills in the vicinity of some of the wells are capped by the conglomerate base of the coal measures at least a hundred feet thick. The shales and sandstones of the valley belong to formations X, IX, and VIII descending, called by the New York geologist the Catskill, Chemung, and Portage groups, extending over all the southern counties of western New York. The southern dip carries down these oil bearing rocks, and the wells must deepen in the same direction. Mr. Ridgeway reports (July 10, 1862) the lowest oil-bearing sand rock, capping the hills near Waterford, on Le Boeuff creek, and the same sandstones appear on Big French creek, tull of plant remains.

The following wells show the dip in a wellmarked manner: The Phillipps well on Oil creek, is 460 feet deep; the Brawley well, at the mouth of Cherry run, 503 feet; the Cornwall well, 530 feet; the Avery well, over 700 feet; and at Titusville he estimates the proper depth at 1000 or 1,200 feet.
In the Mahoning coal oil region in western Pennsylvania and eastern Ohio, near the line, the three oil-bearing sand rock strata are beneath the lowest coal bed. The "Costinental" boring at Edenburg, in Lawrence county, penetrated, in descending order, the following formations before it struck the oil : First, the superficial drift, 80 feet thick. Second, sandstones and shales, 200 feet thick, the bottom layers of which consisted of fetid black shales, from which coal gas blew off with violence. Third, the first white sandstone, 50 feet thick, arranged in three strata, a softer middle between harder upper and lower formations; the whole mass esid to be thin, going east, and holding abundance of gas in its crevices. Fourth, shales and slates, 45 feet thick, charged with oil and gas. Fifth, the second white sandstone, 75 feet thick-softer, coarser, and tougher, or more difficult to bore through than the first, and full of gas; after passing through which they atruck the great oil stratum, 448 feet from the surface. Crawford's boring, not far off, went down 580 feet, through another shaley formation, and struck oil, supposed to come up through a crevice from the third white sand rook.

That there is an intimate connection between the
character of these sand formationsand the character of the oil which issues from them is indubitable. The rule among the miners is, as stated by Mr. Clark in the "Proceedings of American Philosophical Society," (June, 1862. p. 57,) that the harder the rock may be to drill, the lighter in color, purer in quality, and smaller in quantity, will be the oil obtained therefrom; and the softer the rock, the darker and more abundant the oil.
The chemist of the Canada surve日, Mr. Hunt, insists strenuously " upon the distinction between lignitic and bituminous rocks, inasmuch as some have been disposed," he says, "to regard the former as the source of the bitumen found in nature, which they conceive to have orginated from a slow distillation. The result of a careful examination of a question has, however, led us to the conclusion that the formation of the one excludes more or less completely that of the other, and that bitumen has been generated under conditions different from those which have transformed organic matters into coal and lignite; and probably, in deep water deposits, from which atmospheric oxygen was excluded."
Mr. Hunt instances in support of this view, the fact that the highly inflammable pyroschists or black slates of the Utica and Hamilton groups contain no soluble bitumen, and that the Trenton and Corniferous limestones at the base of the Silurian system are impregnated with Petroleum, and give rise to Petroleum springs, although no fossil land plant has been found in them. The fact that a considerable portion of the tissues of the lower marine animale is destitute of nitrogen, and very similar in chemical composition to the woody fibre of plants, forms another link in the chain of reasoning on this distinction between bituminous and lignitic rocks, The black slates, and even the coal beds are, in fact, layers of mud, charged slightly or to excess with lignitic matfer, peat, or humus, part of which has assumed the form of glance coal and part the form of mineral charcoal, but almost none of which is soluble in benzole or sulphuret of carbon; whereas these liquids easily dissolve out the ready-formed bitumen from the rocks which may contain them. But whenever a coal bed became a repository of dead fish, like the eight-foot coal at the mouth of Yellow creek, at the bend of the Ohio, or as in the case of the two foot stratum of phosphatic iron-ore deposited between the two benches of the Deep river coal bed, at Egypt, in North Carolina-how different an aspect the mineral then wears, glossy with soluble bitumen!

Mr. Hunt argues with much force that the mere fact that intermediate strata, porous enough to absorb all the floating bitumen in their vicinity, are nevertheless destitute of any, is enough to prove that the accumulations of oil now furnishing the world with light, never came from the sub-volcanic distillations of the beds of coal in their neighborhood, but that the mineral has been generated by the transformation of organic matter in tho strata where it is. Mr. Wall has shown that the asphalt of Trinidad and Venezuela (belonging, however, to a much later-upper miocene or lower pliocene-tertiary age) occurs in limestones, sandstones, and shales, associated with beds of lignite or fossil wood, and is confined to
particular strata which were originally shales containg vegetable remains which have undergone "a special mineralization, producing a bituminous matter instead of coal or lignite, and not attributable to heat, nor of the nature of a distillation, but due to chemical reaction at the ordinary temperature and under the normal conditions of climate." He describes, also, wood partially converted into bitumen, when removed by solution, woody fibre remains.
The theory of the genesis of coal oil is, however, far from being cleared up by such facts. It is true that the oil is not found in immediate contact with coal beds made of land or fresb-water plants; but on the other hand, coal oil regions are geographically connected with coal bed regions, whether of devonian, carboniferous, oolitic, or tertiary age. Coal beds are said to underlie the Rangoon oil wells. Tertiary lignites abound in Trinidad, Venezuela. Lombardy, and middle Asia. The lower devonian horizon of the Canada black slate oil region yields coal beds in Pennsylvania. The structural difficulties attending the solution of the problem remain.
Fissures are filled with oil, and gas, and salt water, and different wells strike them at different depths, The oil-bearing sand rocks seem charged from top to bottom with gas and blow off from every fiseure as it is passed through by the auger. Whence comes this gas, if not by subterranean distillation? It is impossible to postulate the gas first and oil afterwards; for that order would require the generation of pressure sufficient afterwards, and the oil would be in the condition of a mechanically explosive fluid. The gas must be a subsequent expansion of the oil, as it is in the case of coal-mine fire-damp. Whence, then, comes the oil, and why has it collected in reservoirs? How are such reservoirs preserved, and what is their extent? It is easy, after these questions have been answered, to describe the mechanical propulsion of the oil to the surface, partly by gravity and partly by the pressure of the gas it has itself generated, through nitural fissures producing natural oil springs, or through artificial auger holes. The intermittent action of most of the flowing and spouting wells is like that of the Iceland geysers, where steam is the motive mower. The oil men of the Mahoning valley say that more gas is blown off in winter than in summer.

At the Edenburg well, above referred to, the blast of gas is sometimes violent enough to stop the pumping engine for half an hour at time. Mr. Clark reports a periodicity or daily maximum in the paroxysms. He noticed for soveral weeks that they recurred with singular regalurily a few minutes after eight o'cluck in the evening, when the engine was forced to stop for twenty minutes or half an hour.

In the almost unchanged horizontal posture of the westeru coul measures no considerable fracturing or fissuring took place. Faults of all kinds are uncommon and very small when they exist at all. The rise of stratifioation from the Alleghany river towards Lake Erie is a fraction of one degree. The original contents of the rocks have therefore been preserved. Not so with the anthracite basins on the south-eastern side of the great coal area. Crushed and upturied and overturned, contorted
and fractured in every part, this part of the earth's crust has been dried and hardened, and exposed to ohemical action from the superincumbent drainage waters, nntil its various formations (the coal beds included in the number) have been metamorphosed and partially re-crystallized. The oils which they contained have been lost by dissolution and evaporation. The bituminouscoals have become anthracites, and the last oil spring on the headwaters of the Lehigh, the Schaylkill, the Juniaia, the Potomac, or the New river ceased to flow many millions of years ago. In the West, on the contrary, in equally ancient, nay, in identically the same rocks, the Petroleum still remains, having had no outlet; always hermetically sealed and under pressure. It remains partly condensed in coal beds and black shales, partly distributed through the sand rooks and limestones, and partly filling up the joints which the shrinking of ages has produced. Possibly a small portion of it may be held in caverns through the more soluble limestone strata. Especially important are the water bearing horizons.

The vertical cleavage planes and few downthrow fissures which ezist play but a subordinate role to these. Rain waters percolate from every bill surface and valley bed, sidewise and downwards, leeching every permeable stratum that will give up its salt and oily contents. Along the outcrops of every coal bed issue innumerable springs of painted water. At the base of every great sandrock, and on the top of the clayey deposits next below it, collect the mixed proceeds of the drainage in a standing sheet of oily brine. Capillary attraction and hydrostatic pressure perpetually re-enforce the reservoir. The weight of rock on top and the pressure of disengaged oilgas sends its filaments forward and upward by every secret crack to the surface again, holding it in every part ready for an explosive rush into the air when an artificial outlet is provided. If there be no fissure in the locality, the oil wells descend to the sheet of water at about the same depth. Where fissures intercept them they are of various depths and fortune, for a well may pass a fissure where its walls are polished and tight together. A well may also pass the water sbeet where some change in the porosity of the rocks above and below has taken place to oppose a like obstruction. In some parts of the western coal field, the dip is as high as five degrees, and the basins from five to ten miles wide. Sharp flexures make local dips of thirty degrees or more, and a central subanticlinal is sure to subdivide the basin. In the secondary basins thus formed, the wells are more perfeotly artesian as to the salt water; but it is upon the subdividing anticlinals that the gas and oil collect. In such regions it is asserted that all the blowing and many of the spouting wells are ranged along the summits of such anticlinals. In the case of some of the old gas-blowing salt wells, their actions demonstrate that they have been bored past one gas-bearing atratum to another deeper salt water atratum ; for when the water is allowed to rise in the auger hole, by stopping the pumps awhile, then the gas and oil no longer come up, the brine stopping their issue. In the case of neighboring wells of different depths striking a slanting fissure, the one which strikes it
highest up will deliver gas; another, striking it lower down, will deliver oil; a third. striking it still lower down, will deliver nothing but salt water.

The compressibility of coal oil gas is one of its most dangerous qualities, increasing indefinitely the dangers of those explosions which annually cost so many valuable lives. Confined in the walls of the gangways and rooms, it issues from innumerable cells or pockets, the larger of which are called "blowers;" sometimes with the noise of heavy rain ; sometimes with small reports. It collects among the timbers of the roof, in the upper galleries of the mine, in deserted portions of the colliery, and especially in those accumulations of refuse coal and slate, called "gob," or "goaf," with which the miners pillar up the superincumbent rocks. These acres of worked-out and filled-up galleries become vast reservoirs of fire-damp. The gas collects especially over the antiolinal rolls. From these great powder magazines, solicited by the least diminution of barometric pressure in the atmosphere, the gas rushes out to fill the working rooms. Long experience has shown that a falling barometer and explosions in coal mines always go together. But the mischief is accumulative. The vaeuum produced by the first explosion is a new provocation to the world of back gas to leave its hiding places, come forward afresh, and produce another, and again another, until the proportion of air to gas becomes too small to make an explose misture; so that, like the stroke of lightning, the coal mine explosion is not a unit, but a series, cause and effect reciprocally acting to produce the last result.

Among the most curious exhibitions of superior lightness of Petroleum to other minerals with which it is found, and of the nice train of reasoning dependent thereon, is the observation of Mr. Vanuxem that the film of black bitumen found in the cavities of the calciferous sand rook of New York, with crystals of bitter spar and quartz, occur on the upper side of the crystals, on the mother liquor of which they once floated as pellicles of oil; and, as the crystal hardened and grew, it moulded the oxydated oil to a sheet of bitumen, brittle, very pulverulent, of a shiny black, yielding little ash, and $11 \frac{1}{2}$ per cent. of principally water. The same mamillary surface, arguing original fluidity, oharacterizes the specimens obtained by the Canadian mineralogist from the Quebec group filling cavities in its limestones, sandstones, and even in the accompanying trap dykes; readily crumbling to a black powder, and, when highly heated, giving off an abundance of strong-smelling, inflammable gas, condensing to a tarry oil, and leaving 80 per cent. of a black residue, which, when heated slowly, burns away, leaving only a trace of ash. The same kind of mineral found at the Acton copper mine is harder, less friable, and more like anthracite. The Petroleum which fills carities in the Montmorencie rocks is still unhardened. It flows in drops from a fossil caral of the Birdseye limestone there; and at Pakenham's it fills the cast moulds of large orthoceratites in the Trenton limestone to such an extent that a pint has been poured out of one. It is, perbapa, from these lower silurian fossil cozalline limestones that the oil makes its way to
the surface through the overlaying Loraine shales to form the Guilderland oil spring near Albany, according to Beck, through the Utica slate on the Great Mountain island, and through the red Medina shales at Albion mills, near Hamilton, according to Mr. Murray.

The next great limestone in the ascending series is the Niagara, and Eaton early made known the oozing of Petroleum from its fossil caste. Hall describes it in Monroe county as a granular crystalline dolomite, including small laminzo of bitumen, which gave it a resinous lustre. Bitumen, sometimes flow like tar from the lime kiln. The corniferous limestone, next above the Niagara, has the cells of its fossil corals filled with Petroleum, the remains of the gelatinous coral animal which inhabited them. Mr. Murray drew attention to this fact in 1844, and cited the Gravelly bay quarries in Wainfleet, Western Canada, as examples.

The oil springs of Enniskillen, as well as the lake of solid bitumen in the same township, half an acre in extent and two feet thick, no doubt have their deep-seated sources not in the black shales of the region, but in the corniferous limestone underneath. These black shales belong to the base of the Portage and Chemung group. The wells sunk in them soon strike the argilaceous shales and limestones of the Hamilton group, and go through them toward the corniferous limeBtone, specimens of which yielded to Hunt's analysis from 7.4 to 12.8 per cent. of bitumen, fusible and readily soluble in benzole.

In the blackish Marcellus shales, at the base of the Hamilton group, are found septaria or nodular concretions containing Petroleum. The same phenomenon recurs at the top of the Hamilton group. Still higher up, the Portage and Chemung sandstones (formation viil,) are often bituminous to the smell, and contain Petroleum in cavities, or hardened into solid seams. A calcareous sand rock in Chataqua county contains more than 2 per ct. of bituminous matter. These are the rocks around the famous oil springs of the Seneca Indians. It is only necessary to ascend the series of these devonian sandetones to their upper part among the rocks of the Catskill group, or just beneath them, to find oneself in the oil regions of northern Pennsylvania and Ohio. described by Dr. Newberry and others.

There only remains to be noticed that anomalous deposit of the Albert coal in New Brunswick, made famous by long litigation and the discussion of genlogists, described by Professor Dawson in his Acadian Geology, and called, by Dr. Wetherill, of Philadélphia, Melan-asphalt.

Its position has been misinterpreted by sereral observers, who have reported it a volcanic injection of bitumen into a fissure of the earth many feet in width, by the force of which large pieces of the wall rock have been torn off and carried forward in the mass. It seems, however, pretty well made out, that it was originally a horizontal bed or lake of Petroleum, hardened and covered up by sand and olay deposits of carboniferous age, and afterwards upturned, bent over and fractured 80 as to assume its present posture. It is not properly a coal bed, therefore, but a mass of har-
dened coal oil; which can be, and, in fact, has been, mined like a col bed, and the product dsed wholly for making gas. Dr. Wetherill's analysis gives:-Coke, $44 \cdot 35$; volatile matter, 55.55 ; ash, $0 \cdot 10$. Specimens of Cuban asphalt analyzed at the same time, gave: Coke, $32 \cdot 00$; volatile matter, $67.60 ;$ ash, 0.40 ; or, subtracting the ash and uniting the oxygen and nitrogen : Carbon, $86 \cdot 123$; hydrogen, 8.971 ; oxygen and hydrogen, $4.906=$ $\mathrm{C}_{a 3} \mathrm{H}_{42} \mathrm{O} \cdot \mathrm{N}$. Like Cuban and Egyptian asphalt, this Albertine (as it is commonly cnlled) is highly electrified by friction; which coal is not.

From the New York Iribune Almanao.

THE PRINCIPAL STATES OF EUROPE : THEIR GOVERNMENTS, AREA, POPULATION, ARMY and Navy.

Great Brttain.

ABEA AND POPULATION.
Aresin Tag. Population

Fogland and Walea		Aresin Pag. eq. m8. 68,153 31,324 32,512	$\begin{gathered} \text { Population } \\ \text { la } 1861 . \\ 20,061,725 \end{gathered}$
gcotland			3;081,251
Ireland..		5,764,543
	Total	121,989	28,887,519

BAITIEE DEPENDENOIEB.
In Europe: Gibraltar, Heligoland, Malta and
In Europe : Gibralcar, Hellgolana, Biata ana

In Asia: East Indía Company's Possessions, Ceylon, Hong Kopg, Labuan

121 168,130

In Africa: Gambia, Sierra Leone, Gold Const, Cape Colony, Natal, 8 t. Helena, Meuritius, Seychelles.

875,797 187,745,750

In America: Labrador, Canada, New Brunewick, Nova Scotia, Prince Edward Island, Newfoundland, British Columbia, Vancou: ver's Island, West Indies, Hondurus, Gulana, Falklaind Islands

149,985 953,045

In Australis: New South Waien, Quenslai.................
Victoria, Sonth Australia, West Australis,
Tasmania, Netr Zealand
Total ….............. $\frac{1,448,902}{1,211,089}$
Parliament.-House of Lords has 465 peers: namely, 30 spiritual lords (26 English and 4 Irish bishops and archbishops) and 434 secular lords, viz., 3 princes of the royal house, 20 dukes, 21 marquises, 112 earls, 22 visoounts, 213 barons, 16 Scottish peers, 28 Irish peers (for life).

House of Commons has 654 members, namely, 496 English and Welsli, 53 Scottish, and 105 Irish.

Army and Nazy.-According to the army estimates in the budget of 1862-3, the English army consisted of 14,066 cavalry, 129,562 infantry; total, 143,628. The British Army in India consisted of 7,062 cavalry, 14,000 artillery, 54;837 infantry; total, 75,899.

According to the navy list, April, 1862, the English fleet consisted of 372 steamers nfloat,' with 117,465 horse-power, 40 steamers building, with 21,360 horse-power, 144 sailing vessels afloat; total 566 , with 14,748 guns. There were also 170 steam gunboats and 147 coasting vessels, ao as to make the complete number of vessels enamerated in the navy list 885.

[^2]

PREMCH DEPENDENOIES.
In Apja: Pondichery; Kariknl, Yanaon, Mahe, Chandernagor, 6 provinces in L. Cochin Chinat. In Africa, exclusive of Alglers: Senegal, Reunion; Ste. Marie, Mayotte
$510 \quad 2,219,878$
In America: Martio
olque, Guadelupe, Guyana,
$4,622 \quad 447,328$
St. Plerre, and Míquelon
In Oceania: Marquesas Isles, Pomotou, Wallie, Gambler, Toubousd, Soclety Islands, New Caledonis

Total
452
99,460

The Chambers.-The Senate consists of not over 150 members, appointed for life by the Emperor, and of the archbishops, marshals of the empire; and admirals, who are de facto entitled to seats.

The Corps Legislatif consists of 267 members: At the election which took place on June 7 and 8; the different opposition paities eleeted together about 30 members against 5 in 1857. The total number of votes cast for the opposition caindidates were estimated at about $1,900,000$ against 571,859 in 1857.

Army and Navy.-The French army was composed, in 1862, as follows: Gendarmerio-1 regiment, 28 legions, 4 battalions, 5 squadrons, 129 companies, 24,535 men. Infantry- 115 regiments; 376 battalions, 2,953 companies, 252,652 men. Cavalry- 64 regiments, 385 squadrons, 9 companies, 62,799 men. Artillery-22 regiments, 227 battalions, 7 squadrons, 63 companies; 16,646 horses, 1,362 cannon, 39,882 mèn. Engineers3 regiments, 1 division, 6 battalions, 73 companies, 7,486 men. The total strength of the ariny on the peace footing was 404,192, and on the war footing 757,725.

The fleet, in the same year, consisted of 94 ironclad screw steamers, with 1;142 guns and 21,136 horse-power, 187 other screw staamers, with 5,662 guns and 61,760 horse-power, 86 wheel steamera, with 534 guns and 19,540 borse-power, 111 sailing vessele, with 2,380 gun 8 -total 478 vessels, with 9,718 guns, and 102,436 horie:power.

Rengila.

AREAAND POPGIATION.
Arealingoo.
sq. mgi Yopulation.

Rusgia in Europ	$\begin{aligned} & 89 . \operatorname{mo} \\ & 90,134.53 \\ & 0.000 \end{aligned}$	Yopulation. 69,850,752
Caucasla ...	8,073.78	4,257,704
Ruesia in Asia	282745.97	4,070,038
Russia in America	24,208.00	54,000
Kingdom of Poland	2,257.81	4,800,000
Grandduchy of Finland	6,870.00	1,680,000
	304,340.09	74,193,39

Army and Navy.-The Russian Army is com-posed-1, of netive troops ; 2 , of reserve troops; 3, of irregular troops. According to the reports of

[^3]the Ministry of War, the effective of the land forces was, in 1859, as follows:

	Gens.	Officers.	Soldiers.
Active Army.	834		783,352
Reserve Troops	${ }^{23}$	9,054	60,873
Irregular Troops........................	30	4,685	92,000
Total	887	84,716	042,225

The nary, on June 1, 1862, consisted of 248 steamers, with 2,387 guns and 37,007 horse-power, 62 sailing vessels, with 304 guns-total, 310 ressels, with 3,691 guns.

Anstria.

Area and Population.-Austria comprises the following crown lands, each one of which has B provincial diet:

Nationalities.-As to nationality the Austrian ompire contains 7,889,925 Germans, $11,044,882$ northern Slavi, $3,982,774$ southern Slavi, $2,989,136$ western Roumanians, 2,642,953 eastern Roumanians, 4,947, 134 Magyars, and $1,217,532$ other races.

Among the northern Slavi there are 6,132,742 Czechi, Moraviansand Slovackians, 2,159,648 Poles and $2,762,482$ Ruthenians; among the southern Slavi, 1,183,533 Slovenians, 1,337,010 Croats, $1,438,201$ Serbins, \& 24, 030 Bulgarians ; among the western Roumanians, 2,557,913 1 talians, 416,725 Friulians, 14,498 Ladinians; among the other races, 3,175 Albians, 2,255 Greeks and Bohemians, 16,131 Armenians, 146,100 Gipsies, and 1,049,871 Jews.
Parliament.-The Austrian Reichsrath (Council of the Empire) consists of the House of Nobles and of the House of Deputies.
The House of Nobles consists of the princes of the imperinl house who are of age, of heads of noble landed families, appointed as hereditary members, of the archbishops and bishops of princely ranke, and finally of life members.

The House of Deputies consists of 343 members, delegated by direct election, by the diets of several crown lands. The following crown laids have as yet sent no delegates: Hungary (85), Croatia and Slavonia (9), Venetia (20). The Diet of Transylvania elected deputies (26) for the first time, in September, 1863.

Army and Navy.-The Austrian army, in 1863, was composed se follows:

[^4]| | Active. | Non-active. |
| :---: | :---: | :---: |
| Infantry | 162,318 | 442,000 |
| Cavalry | 40,344 | 52,760 |
| Other Troopg | 46,018 | 92,936 |
| Total........... | 248,680 | 587,605 |

The navy consisted of 64 gteamers with 647 guns, and 51 sailing vessels, with 340 guns; total, 115 vessels, with 987 guns.

Prussiae

Area and Population.-Area, 5,103 geographical square miles; population (3rd December, 1861) $18,500,446$. The number of the non-German popuIation amounts to $2,480,609$, and consists of $1,950,199$ Poles, 233,379 Mazures, 7,652 Rassubes, 82,232 Wends, 10,324 Bobemians, 48,544 Moravians, 136,990 Lets, 414 Courlanders, 10,502 Walloons, and 363 Hollanders.

Representative Chambers.-The House of Lords consists of all princes of the royal blood, all princes formerly sovereign but now subject to the King of Prussia, hereditary peers, peers for life, $90 \mathrm{~m} \in \mathrm{mbers}$ elected by the wealthiest classes, and 30 members elected by the municipal corporations of as many principal cities,

The Chamber of Representatives consists of 352 members, who are elected by indirect universal suffrage for three years. The last election tools place October 28, 1863. In the new Chamber the "Party of Progress" counts about 140 members; the "Left Center" which differs butlititle from the former, 82; the "Parliamentary Union" (Right Center), 4 ; the Moderate Liberals, 7; Catholics, 25 ; Poles, 27 ; Conservatives, about 40. The members not classified will mostly vote with the majority.

Army and Navy.-The Prussian army, in 1863, was composed as follows:

Regalar Tron	Peace footing. 191,033	War footing. 356,532
First levy of the Landwelr		123,923
Troops in garrison	8,265	158,966
	199,298	634,421
To these must be added:		
Officers...	8,000	10,000
Gendermes	2,250	2,250
Two divisions of the School of Under Officers	980	980
Compeny of Under Offleers of the Gusrd ...	70	70
Feldjager............	77	77
Invalids	2,102
Total...	211,778	647,798

If a second levy of the Landwohr ie raised, there must
be added
05,496

> Total

743,294

INTERESTING PHOTO-CHEMICAL DISCOveries.

At a recent meeting of the Manchester Literary and Philosophical Society, Professor Roscoe exhibited the light emitted by burning a portion of a fine specimen of pure magnesium wire 1 mm . in diameter and 10 ft . long, whioh had been manufactured by Mr. Sonstadt. Profesbor Bunsen and the speaker had examined the photo-chemical action of the sun compared with that of a terrestrial source of light,"and for the purpose of this comparison they chose the light evolved by the combustion of magnesium wire. They showed that a burning surface of maguesium wire which, seen from a point
at the sea's level, has an apparent magnitude equal to that of the sun, effects on that point the same chemioal action as the sun would do when shiaing from a cloudless sky at a height of 9 deg. 53 min . above the horizon. On comparing the chemical with the visible brightness of these two sources of light, it was found that the brightness of the sun's diso, as measured by the eye when the sun's zenith distance was 67 deg. 22 min . is 524.7 times as great as that of the burning magnesium wire, whilst at the same zenith-distance the chemical brightness of the sun is only 36.6 times as great. Hence the value of this light as a source of the chemically active rays for photographic purposes becomes at once apparent. The extract from the memoir referred to is as follows:-"The steady and equable light evolved by magnesium wire burning in the air, and the immense chamical action thus produced, render this source of light valuable as a simple means of obtaining a given amount of illumination expressed in terms of our measurement of light. * * The combustion of magnesium constitutes so definite and simple a source of light for the parpose of photo-chemical measurement, that the wide distribution of this metal as a source of light may even become of technical importance. A burning magnesium wire of the thickness of 0.297 millimetre evolves, according to a measurement we have made, as much light as 74 stearine candles, of which five go to the pound. If this light lasted one minute, 0.987 metre of wire, weighing 0.1204 grm . would be burnt, In order to produce a light equal to 74 candles burning for ten hours, whereby about 20 lbs . of stearine is consumed, 72.2 grms . of magnesium would be required. The magnesium wire can be easily prepared by forcing out the metal from a heated steel press having a fine opening at the bottom; this wire might be rolled up in coils on a spindle, which could be made to revolve by clockwork, and thus the end of the wire gaided by passing through a groove or between rollers, could be continually pusbed forward into a gas or spiritlamp flame, in which it would burn." Professor Roscoe stated that great credit was due to Mr. Sonstadt for the able manner in which he had brought the difficult subject of the metallurgy of magnesium into the present satisfactory position, and expressed his opinion that, even for photographic purposes, the application of the metal will prove most important.-Mr. Bruthers, Mr. Parry, and other photographers present, corroborated Dr. hoscoe's opinion respecting the value of such a source of light for photograpy. Since the meeting Mr. Brothers made an experiment upon the magnesium light, which he reports as follows"The result of an experiment I have just tried is that in 50 seconds with the magnesium light I bave obtained r good negative copy of an engraving, the copy being made in a darkened room. Another copy was made in the usual way in daylight, and in 50 seconds the result was about equal to the negative taken by the artificial light. The sun was shining, but there was a good deal of fog in tho atmosphere."

SUBSIITUTES FOR GUTTA PERCHȦ.

Sir W. Holmes has forwarded to the Council of the Society of Arts, from Demarara, somo speci-
mens of a gum termed "Balata," the produce of the Bullet tree (Sapotä Multeri), which grows in that colony, and which, he states, possesses the properties of gutta-percha' and may be used as a substitute for it. The specimens include ndt only the inspissated juice, but also a bottle of the juice itself. Mr. Ondaatjie, colonial surgeon, has forwarded to the Oouncil, from Ceylon, a specimen of the Alstonia Scholaris, which he states may be used as a substitute for gutta-percha. It is stated to possess the same properties and is as workable as the latter. It readily softens when plunged in boiling water, is soluble in turpentine and chloroform, receives and retains impressions permanently, and is adapted for seals to documents. The tree abounds with milky juice, like the gutta-percha, has a flesiby bark and porous wood, and belongs to the natural order Apooynea. The natives believe that the tree is very poisonous, and olass it among their most virulent poisons, but Mr. Ondaatjio states that his experiments with the juice, \&e., have proved the contrary. These specimens are sent in response to premiums offered by the Society for the discovery of a substitute for gutta-percha.
The following letter accompunied the specimen of Balata, sent by Sir W. Holmes :-
By the last mail I received your "Subjects for Premiums" for the session of 1863-64.

My object in addressing you is to advise, that by this packet I forward a box containing samples of Balata in its milky state. and also dried or coagulated. I entertain the hope that these samples fully meet the requirements of the 77th Section of your list of premiums, in reference to a substitute for india-rubber or gatta-percha, but I also trust it will be found more valuable than india-rubber or guttapercha by themselves, possessing much of the elabticity of the one and the ductility of the other, whilst it requires a much higher temperature to melt or soften it.

After these preliminary observations I must go somewhat into detail. I was Commissioner, representing the colony of British Guiana, at the International Exhibition of 1862. Amongst the varied contributions from the colony was a morsel of the dried milk of the bullet tree (Sapota Mulleri-Miq?); it weighed perhaps half a pound. Amongst the numervus individuals. who visited the Guiana department was Mr. Charles Hancock, who is well known in the gutta-percha trade. This gentleman was struck with the appearance of the specimen, and obtained a portion for experiment; he reported favouratly as to its utility and value, a result most gratifying to me, as I had received adverse opinions from leas experienced persons. This happened, I think, in July, 1862. From that time to the present I have been engaged in inyestigations how to produce the material cheaply, and how to dry or coagulate it rapidly. In both particulars I believe I have succeeded so far as to warrant the introduction of steam machinery to be applied to its extraction, and by a fortunate accident I have discovered how to dry or coagulate it, preserving the characteristic of elasticity at a single operation, by the addition of a simple ingredient not very costly.

The samples forwarded consist of-1stly, a bottle of milk, as cxtracted from the tree by tapping;

2ndly, of lumps or cakes, weighing together five lbs., of this milk prepared for the market; and, 3rdly, some balls to shew, by the result of the process discovered by me, that this material is nearly as elastic as india rubber; indeed, as far as i I can judge, Balata cannot be rivalled by either : that material or gutta-porcha, possessing, as I before stated, much of the elasticity of the one and the ductility of the other, without the intractability of india-rubber or the brittleness and friability of gutta-percha. Amongst the useful properties poseessed by Balata, I believe the fresh-milk of the bullet tree to be the best waterproofing material yet discovered, and further, that Balata, as prepared by me, will supply the great want of the day, as a good insulating medium for tolegraphic purposes.
The bullet tree is a magnificent timber tree, often squaring 30 to 40 inches and is muoh used, especially in Berbice, for building purposes. The milk, when quite fresh, is so bland that it is sometimes used as a substitute for cow's milk, and the fruit is delicious.
The bullet tree abounds in many districts of the colony; indeed, I may say, throughout this part of South America, and I trust that Balata may ere long be added as an important item to the exports of the colony, and tend to prove that the International Exbibition of 1862 has in this instance also been productive of practically useful results, not only to this community, but to the interests of science and art generally.
I annex a letter from the Honourable:William Walker, Government Secretary of the colony, and Chairman of the Correspondence Committee of the Royal Agricultural and Commercial Society of British Guiana, which is affiliated to the Society of Arts, in order to fulfil the conditions specified in the prospectus.
the influence of engineering science ON NATIONAL PROSPERITY.
(From the Addreas of J. R. McLean, Beq., F.R.A.S., Preajdent of the Institution of Civil Engineers, on taking the chair for the first theme after his election, January 12, 1864.)
" I will now attempt to point out the causes of the enormous increase of the income of Great Britain, representing the profits of many hundreds of millions sterling inveated in railwayy, canals, mines, ships, and other works in this country, in India, and in our colonies.

Fortunately the railway system, since the introduction of the locomotive engine, improved by Stephenson, gave it vitality, has been a complete success in the reproduction of capital, in the enormous saving in the cost of transport, and in the facilities it affords for the development of mines, and of nearly all branches of national industry.

After theopening of the Manchester and Liverpool Railway, the accumulated wealih of Great Britain, which, previous to that time had been but sparingly invested in public undertakinge, and was for the most part hoarded, or placed on doubtful . securities, was thrown lavishly into the railway system ; and, although: for a time this led to the belief, that the supply of capital for the construction of such undertakings wes inexhaustible, and induced excess of speculation, temporary distress,
and isubsequent diatrust in the system; yet the progress of : railways ever since that poriod has been steady, and a reproductive profit has been assured on a capital of nearly $£ 400,000,000$. This vast capital has been created because railway securities, on the principle of limited liability, occupy the highest place in public estimation, for investing : the realised profits of the country, in consequence of the facility with which they can be purchased, and transferred in amounts suited to the requirements of every class of society; and this leads to a constant accumulation of capital by inducing people to save a portion of their incomenot merely for their own support in an after period of life, but for the benefit of their descendants. Thus railway securities afford the means of transmitting wealth, as printing does knowledge, from one generation to another.
The beneficial effects of the railway system have not been confined to Great Britain. Before the introduction of railways the land was nearly the only safe means in Europe for the investment of capital; and, in consequence of the competition for this security, the interest was reduced to a minimum rate, and was barely sufficient to induce people to save a portion of their income. The construetion of railways, by inducing saving, has established a wealthy and educated middle class in most countries in Europe, who have not only developed the industrial resources and increased the capital of the country to which they belong, but have also, as in this country, promoted education, and humanized the conduct of all classes of the poople.

I have only one more remark to make on railways as a cause of the increase of wealth. The land occupied by railways in Great Britain is under tro hundred thousand acres, including stations and and other conveniences, and to obtaiu possession of this land it bas been necessary, during every session of Parliament, for the last thirty years, to engage the services of the ablest counsel, and the most eminent engineers, in the committee rooms of both Houses, at an incalculable expense. The land used for agricultural purposes is about forty million acres. Yet the railway system, occupying only. about one half per cent. of the total area of the land, now prys nearly:as great an amoupt of income and property tax as is paid by the whole of the farmers of Great Britain.

Another source of wealth is the great deposit of coal, and iron, stone, and other minerals-in nearly every part of the kingdom.

The most important of these is coal. The quantity of coal raised in Great Britain is now about one hundred millions of tons yearly, prodaced by the labour of about three hundred thousand men.

We are indebted to Professor Liebig, the celebrated German chemist, for data by which we can estimate the value of this enormous quantity of fuel, by comparing it with wood or any other produce of the soil.

Liebig informs us, that every acre of fertile land will produce yearly about two tons and a half of wood, or other crop. which contains about the same quantity of carbon (80 per cent.) as one ton of coal. The one hundred million,tons of coal now raieed annually from our mines contain about eighty million tons of carbon; and to produce the equiralent of this in wood would require one year's growth
of, in round numbers, one hundred millions of acres of land-an area about four times larger than the arable and pasture land of England, (which does not exceed twenty-five million acres) and as nearly as possible equal in extent to the area of the kingdom of France. Yet this supply of fuel, even if it existed in the form of wood, would be practically useless as a substitute for coal; the labouring population of the kingdom would be unable to cut and convert it, the whole of our railways and canals would not suffice to transport it, while the cost of these operations, if no other obstacle intervened; would prevent them from being carried on beneficially, The development of coal then, is mainly the cause of the increase of wealth, but if railways had not proved reproductive investments, this mineral would have added little more to the wealth of Great Britain than it did in 1815.
The serious question as to the permanence of this fuel, on which the wealth of the nation so much depends, has been prominently raised.
Since the great discovery of Murchison, that coal underlies, and may be found with reasonable certainty under the lower neit red sandstone and permian formations, which extend over millions of acres of Great Britain; and if beneath them at greater depths, under all the measures which overlie the permian, and which, together, comprise upwards of one half the area of Great Britain, we may consider our coal-mines to be practically in. exbaustible, and that we have not to fear any deficiency in quantity, arising from the exhaustion of the mineral, but rather the practical difficulty of obtaining it from a great depth below the surface, in consequence of the central heat of our globe, which, it is alleged, will ultimately and within a defined and not distant period, reduce the production to a limited supply.

Much may be said in support of the theory of central heat, but I think undue importance has been given to it, as a difficulty in mining operations. A comparatively thin coating of clay, or fire-bricks, surrounding a blast furnace filled with nulteniron, affords such protection that the hand may be placed without inconvenience on the outer surface of the brick-work, and it is difficult to understand how any internal hent can penetrate through the crust of the earth-estimated to be thirty-four miles in thickness-so as to interfere with the temperature at the comparatively small depth from the surface at which mining operations are carried on. I am of opinion that the heat, which undoubtedly exists in some mines, arises, not from central beat, but from superincumbent pressure, and defective ventilation. The gases in the coal are highly compressed, and, when liberated by mining operations, are at a high temperature; but we know that with large shafts, air may be conveyed to any depth'that has yet been reached in mining operations, without in the slightest degree altering its temperature; and that by a proper enlargement of the air passages, air descending the shaft may be distributed through the workings, so as to lessen the liability of accident from explosion, or serious inconvenience from hent, at any depth to which shafts can be sunk. The system of sending compressed nir down the shaft by means of water is found to abate inconvenience in deep mines owing to an excess of temperature.

I therefore think that the time when we shall experience a want of coal, arising from exhaustion, or from difficulties occasioned by the depth of the mines, or an excess of temperature, need not at present in any way influence our conduct in the development and use of that important mineral ; especially as the power (which is the substitute for labour) derived from coal is so cheap, that wo are enabled to consume daily for our domestic comforts, for machinery in the conversion of minerals, and for other manufacturing processes, and for export, a power equal to twelve millions of horses, at a cost, at the mine, of not more than one penny per. horse-power, working ten hours a day, and no saving in consumption of this enormous quantity of coal can be made, except by employing more expensive labour as a substitute.

With this power at our command the cost of sinking to and of raising miserals from the greatest depths, is inappreciable; while the intringic value of coal, when compared with any other fuel, is so great that it may be drawn profitably from almost any depth-the only limit being the strength of the machinery and materials required to raise it.

The next mineral in importance is ironstone.

In the year 1862 the production of ironstone and iron ore in the United Kingdom, amounted to $7,586,956$ tons, which, by the operation of five hundred and sixty-two blast furnaces, was conver ted into $3,943,469$ tons of pig iron.

The importance of the iron and coal trade as a source of wealth is proved by the fact, that the declared value of the iron and coal exported from this country during 1862, either in a raw, or a manufactured, or a partially manufactured state, was nearly $£ 25,000,000$, due altogether to the development of our natural resources; and this sum represents the cost price only, and is exclusive of carriage, or freight and proftis of trade, which may fairly be taken to represent one half more.

In 1862 our other mines prodaced the following quantities of minerals, viz. :-

Tin ore...	14,127 tone
Copper ore	224,171
Lead ore	95,311
Zinc (blende).................	7,497
Pyrites (sulphur)	98,433
Salt	981,598
Fire-clay, china-clay, and porcelain stone	853,803

These minerals, and the metals produced from them by means of coal, have enabled us, with the assistance of the shipping interest, to obviate to a great extent, the effects of the failure in the supply of cotton; for, notwithstanding the great decrease of the export of cotton goods (to the extent of $£ 10,000,000$ in the year 1862), the total amount of exports during the financial year just ended (1863) has been $£ 124,137,812$, exclusive of carriage and freight, and we have thus boen enabled to pay for all imports, and partially to nlleviate the distresg among the cotton operatives in Lancashire.
I will not occupy your time in detailing all the various profitable employments which result from mining and manufacturing operations, but will only refer to, perhaps, the most remarkable of them-ship-building.
The Government returns for 1861 show, that in
that year 975 ships, representing 200,839 tons, were built and registered in the United Kingdom; —of these 91,095 tons were constructed of iron, the average of the iron vessels being a burthen of 430 tons each.

And this, it should be remembered, is exclusive of iron ships built in private yards for the Royal Navy, and of the ships constructed for foreignersl

The iron screw steam-ships, in consequence of their great and regular speed, due to engineering skill, have practically become an extension of the railway system over all parts of the world, and have eanbled us more freely to exchange the products of our industry for those of other nations, thereby conducing to the employment, the intellectual and bocial enjoyment, and the convenience of the people, and providing for the further increase of population and universal wealth.

On these considerations I am justified in stating, that the increase of the income of England since the jear 1815, has not arisen from the land; but that it is mainly due to the discoveries of our great engineers. There remains still to be considered the question of the distribution of this wealth, which has been the means of providing profitable employment for millions of a rapidly increasing population, who, but for such industrial undertakinge, must have remained a burthen on the land, and a cause of poverty and discontent; unless reduced in number by famine, or by extensive emigration.

We may also congratulate ourselves that this wealth has not been employed in reproductive undertakings alone, but that the great cause of education has felt the stimulus of it, and that every year the importance of developing and directing the intelligence of the people is more distinctly recognized."
'IEE INVENTION OF THE CARD-MAKING MAOHINE.

> Whittemore-1797.

We do not rank the card-setting machine among " the most important American discoveries and inventions," and yet we cannot omit it from our account, for it is generally regarded as coming nearest in its movements to the acts of intelligence of any piece of mechanism that has ever been devised. Two delicate needles dart forward and punch the lenther; the wire is drawn in from the reel and cut off at the proper length; a fork sweeps forward and bends the wire into the form of the letter U; a pair of pincers seize the bent wire and thrust it deftly into the holes prepared for it; and finally a presa rises on the opposite side of the leather and bende the wire at the proper angle to make a perfect card. All of these varied movements go on automatically and continuously, and if a crooked or imperfect tooth is made, the machine instantly stops of its own accord. This last, the stop-motion, is the only material improvement made in the machine from the form in which it was originally devised by its first inventor.

A few years since a manufacturer of these machines, a Mr. Earle, of Leicester, Mass., had a very fine machine on exhibition at the Mechanics' Fair in Boston, when the Rev. Mr. Pierpont came along with a friend and stopped to look at it.
"Here," Mr. Pierpont remarked, "is the machine that more than any other impresses me with the feeling that it must be endowed with thought."
At that time the stop-motion had not been invented, and great efforts were being made to devise it. With this in his mind, Mr. Earle replied :-
"Yes, all it needs to be a perfect sentient being is a conscience."
In the course of that season the stop-motion was perfected, and when Mr. Pierpont passed through the nest Fair, he reminded Mr. Earle of the previous conversation. Mr. Earle replied :-
"The defect is now remedied. The machine has got a conscience, and it does just what a conscience ought to do-it stops at the first wrong step."

We have heard a gentleman speak repeatedly of visiting a large card manufactory in New Jersey. While he was talking with the proprietor a man came out of the mili and went off to his house. Some 15 minutes afterward our friend went into the factory, and found a very large room full of machines in active operation, with not a single person in the building to attend to them!
The card-setting machine was invented by Amos Whittemore, who was born at Cambridge, Mass., April 19th, 1759. His father was a farmer, but Amos early showed a fondness for mechanical pursuita, and, on arriving at the proper age, he became an apprentice to a gunsmith. Long before the expiration of his apprenticeship his master confessed that he could teach him no more, and advised him to set up business for himself. Some years later he became interested, with his brother William and five others, in the manufacture of cotton and wool cards, conducting their business in Boston, under the firm of Giles, Richards \& Co., and supplying nearly all the cards then used in the country. Ausos attended to the mechanical department.

It soon occurred to him that if a machine could be devised to perform the operations, it would supersede a vast amount of hand-labor, and would be of great value. After long and patient meditation the plan had so far taken shape in his own mind that he was ready to communicate his idea: to his brother William. This brother encouraged and assisted him to the utmost, and a chamber was set apart for the construction of a model. IIere the enthusiastic inventor devoted himself to the perfecting and embodying of his plans with such zeal as frequently to neglect his food and sleep. In the course of three months the machine was so far advanced as to punch the leather, and to cut, bend, and insert the wire ; but the bending of the teeth at the proper angle completely baftled his genius, and he began to despair of success. While his mind was on the stretch to overcome the obstacle, one night during his sleep the idea was presentod to him in a dream. Rising early in the morning he hastened to his workshop, and, before he broke his fast, he was able to announce to his brother that the machine was perfected.

Steps werc immediately taken to secure a patent, and this was obtained on the 2d of June, 1797. The brothers determined also that a patent should be taken out in England, and that the inventor should visit that country for the purpose. At that time but two vessels traded between Boston and

London, and in one these, the Minerva, Mr. Whittemore sailed in the spring of 1799 . He was absent a year, his return voyage occupying 59 days.

On the 3d of March, 1809, the patent was extended by a unanimous vote of Congress, for 14 years from the espiration of the first term. In 1812, the Legislature of New York passed an act incorporating the "New York Manufacturing Company," with a capital of $\$ 800,000$, of which $\$ 300,000$ was directed to be employed in the manufacture of cotton and wool cards. On the 20th of July, 1812, this company bought of the Messrs. Whittemore their patent right and entire machinery for $\$ 150$, 000 . In 1818, the cumpany sold all of its manufacturing property to Samual Whittemore, a brother of the inventor, who is reputed to have made a very large fortune in the manufacture of cotton and wool cards.

After the sale of his interest in his patent, Amos Whittemore purchased a pleasant estate in West Cambridge, and retired from active business. Here, after a pure and blameless life, he died in 1828, at the age of 69 years.-Scientific American.

Purification of Coal Gaso

It has already been observed that dry hydrate of line ceases to absorb sulphuretted hydrogen gas, in the purifiers, before being saturated with that gas. By observations upon the absorption of the pure sulphuretted hydrogen by hydrate of lime, I find that the latter ceases to ahsorb the gas, even in the most favourable circumstances, when a quantity which varies from one-fourth to one-half of an equivalent of gas is absorbed, instead of la whole equivalent, as might be expected; and that, of the small quantity absorbed, a portion is taken up by the hydrate of lime, slowly and with diff. culty. I am convinced from these experiments that the quantity of sulphuretted hydrogen which hydrate of lime can take. up in the dry purifiers is not under estimated at one-fourth of an equivalent. It is also to be observed that, unless attention be paid to have the hydrate of lime in a certain state of dampness, the absorption may be considerably less. Now, the hydrate of lime may be made to occasion the absorption of two whole equivalents of sulphuretted hydrogen, or eight times the above quantity, and this large absorption to take place with incressed force, and with certainty at all times, by preparing it in a particular manner. Three and a half parts of quicklime are slaked with a solution of nine parts of anhydrous sulphate of soda, in 14 or 15 parts of tepid water. This gives a mixture of $4 \frac{8}{8}$ parts of hydrate of lime with about 20 parts of crystallized sulphate of soda, which is dry, or ouly slightly damp, It is the matter to which the coal gas is to be exposed in the dry purifiers. To prepare this mixture, instead of dissolving the anhydrous sulphate of soda, it may be ground, and be mixed with the quicklime, previously slaked in the usual way. An addition of 11 parts of water is then made to the mixed powders- $3 \frac{1}{2}$ parts of quicklime, slaked, 9 parts of ground sulphate of soda, and 11 parts of water]-which water combines with the sulphate
of soda, and gives a dry powder, consisting of hydrate of lime, with crystallized or hydrated sulphate of soda. This mixture (however prepared) absorbs sulphuretted hydrogen with unahated vigour, till conipletely saturated, and then has an olive green colour, and consists of sulphate of lime or gypsum, and the bi-hydrosulphuret of sodium. This residuary product would, I believe, bring a price equal to that of the sulphate of soda consumed, or perbape considerably greater. The sodamakers could economize it in different ways. If water be poured over the mass, the bi-hydrosulphuret of sodium is, I find, dissolved out with much ease, and a pure pulverulent gypsum remains, which might be available as manure. The solution of bi-hydrosulphuret of sodium evaporated to dryness may be readily reconverted into sulphate of soda, by a slight roasting, with accees of air, one proportion of the sulphur escaping in the form of sulphurous acid. It could be managed, in favourable circumstances, to throw the latter into a sulphuric acid chamber. Otherwise, carbonic acid gas (as by Gossage's patent) might be passed over the residuary matter in question, without dissolving it, and the sodium converted into carbonate of soda, with the escape of two proportions of sulphuretted hydrogen gas, which last would be burned in the sulphuric acid chamber; or the solution of the bihydrosulpturet of sodium, separated from the sulphate of lime, might be treated by itself with the varbonic acid, and the soda converted into carbonate of soda, with the recovery and useful application, as before, of the sulphur; or carbonate of soda may be used instead of sulphate of soda, but is not so cheap.
Sulphate of soda may be added to the, liquid lime-purifiers with the same advantages. T. G.
We have used this mode of purification (which we have taken the liberty to insert) with great success both in this country and nbroad. It was pointed out some years ago to the Editor by Proffessor Grabam, the present Master of the Royal Mint. It may be observed that the above process also remuves the ammonia from the gas, the sulphate of lime which is formed being the active agent. Care must be taken not to use the sulphate of soda as obtained in making nitric acid from nitrate of soda. The dry method of parification by the abore system is to be preferred to the wet method.-Sanitary Reporter.

Preservation of meat.

The importance of preserving ment, whether for our sailors or for other purposes, annnot be overrated, and various ways of effecting this object have been, from time to time, devised. The methods hitherto adopted, on a large scale, have been the packing of cooked meatin air-tight cases, or impregnating it with salt, and keeping it in barrels immersed in brine. The first, though effectual for preserving the ment for almost any length of time, leaves the flesh, even when the utmost care is taken in the process, more or less insipid and tasteless; the second though also preservative for a considerable time, renders the meat not only flavourless, but absolutely extracts from it, as Liebig tells us, nearly all its nutritive properties, as well as those peculiar properties which
are necessary for keeping the human body in health. It is well known that a long continuance of such food, thus prepared, engenders scuryy. The Admiralty are now making experiments with a process devised by Dr. Morgan, an Irish gentleman; and a few days since some animals were slaughtered, and their carcases subjected to this process in the presence of the officers of her Majesty's Victualling Department at Deptford. A bullock having been killed in the usual way, the chest was immediately opened, and a metal pipe with a stop-cock inserted in connection with the arterial system. This pipe was connected by means of elastic tubing, with a tub filled with brine, placed at an elevation of about twenty feet above the floor. The stop-cock being turned, the brine was forced through the arteries of the animal, and, passing through the capillaries, flowed back through the veins, carrying with it all the blood, making its exit by means of an incision provided for that purpose. Aboutsix gallons of brine passed thus through the body, washing out all the blood from the vessels. Having thus cleared the vessels, the metal pipe was connected with another tub, similarly placed, containing the preservative materials to be injected, and, at the same time, their esit, after traversing the body, was prevented. On communication being made, the liquid was forced into the vessels, and, by means of the pressure, it penetrated into every part of the animal, and might be seen exuding from any point where an incision was made. The liquid used on the occasion of the late experiments consisted of six gallons and a-half of brine, ten pounds of sugar, thrse-quarters of a pound of saltpetre, with half a bottle of catchup and an infusion of cloves and pepper. The whole process is very rapid, and is extremely simple, requiring nothing that can be called machinery. It took no longer than three minutes to send the first six gallons of liquid through the animal to wash out the vessels, and about three minutes more to inject the animal with the preservative liquid. Indeed, so rapid is whole proceeding, that, even on the occasion above referred to, where the men were uvaccustumed to the work, and the arrangements were necessarily imperfect, the time occupied was only twenty minutes from the killing the animal to the complete infiltration being made. The berst is then skinned, cut up into pieces, large or small, as may be required, and taken to a drying-room, where it is hung until thoroughly dried, after which it is paoked in boxes with sawdust and charcoal. It is confidently believed that the meat treated in this manner will stand any climate. So far as its preservative powers have been tested in this country, the process is stated to answer the purpose. A purveyor at Portsmouth has for some time past treated meat in this way with success, and sells it in the regular course of trade. It is obvious that any variety of liquide, chemicals, or condiments may be thus injected into the animal and the meat flavoured in any way that may be thought desirable; the ment may also be dried like hams or bacon, if so wished. Indeed, it would seem that the method is peculiarly fitted for this purpose. In hot countries, and in countries where animals are abundant, and where now they are bred almost entirely for their wool, fat, or hides, the process
seems especially valuable, as by it the meat, instead of being thrown away, might be rendered available for export for food to other countries. The Victualling Department have had a few animals thus prepared for experiment, and it is intended to send the meat out on vojages to various parts of the world to test its keeping qualities. So little machinery is required, that a ship's crew could readily carry out the process at any place where they could land and animals were abundant, and thus lay in a store of meat which, although, no doubt, salted to a certain extent, would not have the same disadvantages in a sanitary point of view, as meat preserved in brine-pickle.-Grocer.

Coalman Geological Question.

The various kinds of coal with which we are acquainted are believed to be of vegetable origin, the remains of forests of a former epoch, and the theories as to their formation are well known; but there appears to be one fact connected with the subject which, as far as we can learn, has been entirely overlooked, and which will go to prove that the trees and plants which are now furnished in all parts of the world differ from those of the epoch to which we allude. When wood and land plants of any description are burnt, we always find that the ashes which remain contain carbonate of potash, from which source that salt is commercially supplied. On the other hand, when sea plante are burnt their ashes abound in carbonate of soda, and until of late years this salt was entirely derived from that source; it is now, however, also obtained from: common salt. We have, therefore, a supply of these two alkaline salts, the one from the ashes of land plants and the other from the ashes of sea plants. But as we find neither the one salt nor the other in the ashes of any coal that we have examined, and as we do not find any account of these alkaline bodies being found by any otter analyst in any variety of coal, we have reason to infer that coal is not derived from a vegetable kingdom similar to that with which the earth now abounds.

Now, neither wood nor coal contain the substances which thiey respectively afford by destructive distillation ; but the elements of each beingliberated by heat reunite and form certain well-known compounds, those produced by wood essentially differing from those produced by coal under the same circumstances, and whilst the ashes of the wood charcoal afford carbonate of potash, the charcoal or coke of coal does not, as we have before said, yield that substance.

We readily admit that the elements constituting wood might undergo certain changes in the earth during its transformation into coal, so that the destructive distillation of coal in the present day may give rise to products differing from those of wood similarly treated; but we would ask, What has become of so imperishable a compound as the carbonate of potash, which, if coal be derived from forests similar to those of our own time, it ought to contain? We might also ask a similar question as regards carbonate of soda, supposing it be contended that the origin of coal has been from sea plants.-Sanitary Reporter.

The Wrongs of the stomach.

In most of the early literature is to be found a dialogue between Body and Soul, in which each accuses the other of their mutual perdition, recapitulating the offences which have produced it. Something similar might be written, with good effect, dividing the imaginary conversation betweon, let us say, the Stomach and the Man, and making an attnck of gout the subject of their reoriminations. The man might accuse the stomach of having done its duty so badly that he is tormented with a burning fire in his extremities,' which will neither let him eat, drink, walk, nor rest. The stomach might plead justification, and say that she had lighted the said fire:as the only means of getting a moment's rest from an intolerable task-master. Again the man might complain that he had lost all enjoyment of life, that his spirits were depressed, his mind gloomy, his appetite gone, his once fine muscular system reduced to firbby indolence; that his food did him more harmithan good, so that it had become a misery to eat, and that every meal was followed by a leiden oppression which rendered life an insupportable burden. The stomach, having listened to all this, delivered in a tone of angry accusation, would reply: "My case is just as bad as your own. Once upon a time, before you took to evil courses, I wias as healthy a stomach'rs you could meet in a day's march; I went through my work regularly, and did it so cheerfully and so well that, like some unreasonable masters when they get hold of a willing servant, you seemed to think I could do without rest and didn't care even fur an oceasional holiday. Then you heaped burden after burden upon me. Before I had well digested your breakfast for you, you thrust a dinner upon me large enough for three stomachs. Not satisfied with that, you wound up the day with a supper, drenching me all the time with ale, wine, spirits, tea, coffee, rum, more wine, and more spirits, till I thought you had taken leave of your senses; and when I heard you gronning in your sleep, starting up every now and then as if apoplexy had broken into the house, and was going to carry you off, I said to myself: 'Serve him right if it did.' And in this way you went on year after year, reating all my remonstrances with contempt. I gave you hendache after headache; I tried to call you to reason with half a dozen attacks of influenza; gave you a billious fever ;a made you smart with rheumatism ; twinged you with gout till you roared. But all to no purpose. You went on making me digest till the work broke my back, and now ican digest no longer." This reproach might be made even pathetic, by a description of the stomach watching its hard tasks come dowu to it from the regions above between dinner and bed-time. First comes a plate of soup and bread, and a glass of sherry; "I can manage that," says the stomach. Then a plate of fish, with more bread and more sherry; "and that," adds the stomach, "t though these sauces
don't quite arree with me." Then comes beef, or don't quite agree with me." Then comes beef, or mutton, or both, and stout, ; then a dish of tart. "Confound this pastry" says the stomach, "it gives me more trouble than any thing else; but if the master will only stop here, I think, if I put out all my powers, I can get even this rubbish out of the way." But she has hardly taken this hopeful view of the case, when down come cheese, celery,
apples, oranges, nuts, figs, almonds, and raisins, port, sherry, cluret, and a tumbler of hot Hollands and water. "Good gracious, was: there ever such a mess?" exclaims the stomach; "what can the man nean? Does he think one pair of hands can manage all this?" : Still the willing slave goes to work, when presently there is a rush of tea from above, with a thin slice of bread and butter. And when the stomach, with infinite labor, has got the Hodge-podge into some sort of homogeneous shape, and is preparing to take a nap after her exhaustion, lo 1 a devilled drumstick rushes into its laboratory, two devilled: kidneys, a bottle of stout, and three tumblers of hot brandy and water.London Review.

Brafinwork and Longevity.

The philosophers ought to have length of days for their portion, seeing how their pursuits ought to elevate them above the disturbances of life. And such is in fact, the operation of their mode of life, by which their faculties are furnished with constant entertainment on subjects which would seem to lie out-side the range of uneasy passions, while creating or excitiog the noblest moral emotion. And an unusual amount of healthy longevity is, in fact, found among philosopherswhether mathematicinns, naturalists, or speculative students. Such things have been heard of as strifes in those serene fields of thought: such sights have been seen as faces furrowed with fretfulness, or working with passion; but the old age of many philosophers is, at this moment, an honour to their vocation. Peter Barlow was, when he lately died at 82, the same Peter Barlow that he had been to two generations of friends and disciples. Sir David Brewster is still active and occupied at the same age. The late Mr. Tooke did not puzzle his brains about the currency too much to be still up to the subject at 86. Sir Roderict Murchison is past 70, and so is Sir J. Herschel. Literature ought to have the same operation as science; but it seems to have more room for agitations and anzieties except in the case of authors who live in and with their work, exempt from self-regard. Jucob Grimm was a very perfect example in the philosophic serenity which a literary career can yield; and he lived to 78. There is something remarkable in the longevity of literary women in modern times, even if we look not beyond our own country. Mrs. Piozzi and Mrs. Deianey perhaps scarcely enter within the conditions; and the still lamented Jane Austen was under an early doom from consumption; but Miss Edgeworth was above 80 when she died; Joanna and Agnes Baillie were older still; and Mrs. Trollope died the other day at 84. The artists who have departed lately have been old. Biot was 87, and Vernet 74. Our Mulready was 77, and Cockerell, the architect, was 73.-Once a Week.

Oxycen Gas.

At a lecture delivered to the shampooers and attendants at the Hammam, Jermyn-Street, on Monday night, by Dr. Leared, Physician to the Hospital for Consumption, a novel mode of producing oxygen gas in a perfectly safe, cheap, and simple manne:, was introduced for the first time in public by Mr .

Robins, the analytical chemist. The method consists in treating chromate of potash and peroxide of barium with diluted sulphuric acid. The operation is performed in a common glass jar or retort, and at the ordinary temperature. To those who are accquainted with the plan hitherto adopted of heating madganese in iron bottles this discovery will need little recommendation, and it is difficult to predict to what discoveries and improvements in the economy of life and light it may lead. Meantime it is interesting that this discovery should have been first introduced to the public within the walls of an institucion where the body is so largely benefited by natural processes of oxygenation.

A New Pigment.

A new pigment, says the Mining Journal, calculated at the same time to increase the resources of the decorative painter, and to afford a ready means of preserving iron and other metals, has recently been introduced at Paris by Mr. L. Oudry of the Auteuil Electro-Metallurgic Works. He first obtains an absolutely pure copper by throwing down the metal by the galvanic process; be then reduces the precipitate to an impalpable powder by stamping. This powder is then combined with a particular preparation of benzine, and used in the same way as ordinary paint; beautiful bronzed effects arc produced upon it by means of dressing with acidified solutions and pure copper powder. The articles painted with the new material have all the appearance of electro-bronze, whilst its cost is less than one-sixth ; it will last from eight to ten years. Mr. Oudry also proposes to substitute benzine oil for Innseed and other oils, over which it possesses great advantages.

Our Machinery

What a contrast does the work of the machinists of the present day present to those of a hundred years ago! At one time, as Mr. Smiles observes, an engine of any size, when once erected required the constant attention of the engineer, who almost lived beside it in order to keep it in working order, such was the friction of its parts and the clumsiness of its construction. At the present time, however, almost absolute perfection of working is obtained. When the 5,000 different pieces of the marine engines designed for the Warrior were brought together from the different shops of Mesers. Penn, although the workmen who built them up had never seen them before, yet such was the mathematical accuracy of their fit that, immediately steam was got up, they began working with the utmost smoothness. As a new-born child, as soou as it enters the world and expands its lungs, begins to stretch its limbs, so this gigantic engine, immediately steam began to expand in its cylinder, at once exerted its huge members with the smoothness and ease of life.-Once a Weel.

The Metal Vanadium.

The metal called Vanadium, discovered in English pig iron, is used in the preparation of writing ink. To a solution of nutgalls is added a minute portion of vanadic acid, and the ink thus obtained is intensely black and indelible by the ordinary agente which destroy the color of the ink in conmon use.

Rateskin Gloves.

An exchange says:-"It is rumored that a company of Frenchmen has been tormed in Chicago, for the purpose of catching all the rats possible, curing their skins and exporting them to Paris, to be used in the manufacture of gloves. For years what is called 'French kid' gloves have been made from the skins of these animals, caught in Paris and other parts of Europe ; but the demand being greater than the supply it has become necessary to extend the rat catching arrangements to America, and no finer field than Chicago for such operations can possibly present itself."

How Clags Chimmeyg were Invented.

Argand, the inventor of the famous lamp which bears his name, had been experimenting for some time trying to increase the light, but to no purpose. On a table before him lay the broken neck of an oil flask. This he took up carelessly, and placed it, almost without thought, over the wick. A brilliant flame rewarded this act, and the hint was not lost on the experimentalist, who proceeded to put his discovery into practical operation at once.

Is Flax Exhaustive?

It is believed by many that flax is an exhaustive crop, but it is to be doubted if it is more so than most of the small grains. All of them are so if the land is continually cropped and nothing returned to the soil. Experiments of Professor Johnson showed that flax is less exhausting than either wheat or oats, judging from the amount of phosphoric acid given by its ash. Dr. Hodges, of Belfast, Ireland, recommends the application of 48 lbs . muriate of potash, 16 lbs soda ash, 54 lbs. bone dust, 56 lbs . sulphate magnesia, 34 lbs. gypsum, per acre, as a manure for flas land.

Death in the Sweetmment Jarso

A child was recently poisoned in Pennsylvania, so that death ensued, from eating apple-butter which had been kept in a glazed jar. This glazing contains an active poison-the oxide of lead-which is dissolved by fruit acids, and is extremely dangerous to life. All such substance as apple-butter and the like should be kept in wood or glass vessels, so as to avoid the possibility of mischief. The above is not a solitary instance, as many similar have occurred.

Lighthouse illumination.

Lighthouse illumination produced by a magnetoelectric apparatus has been in successful operation at the South Foreland and Dungeness beacon for two years. Currents of air produced by the rotation of masses of iron in the neighborhood of powerful permanent magnets generate the current of electricity, which igaites pieces of carbon intensely, thus producing the light.

Preventing Incrustation or Steame Boilers.

Mr. John Travis, of Royston, Lancashire, proposes the use of Irish moss, or silicate, arseniate, or phosphate of soda, to prevent incrustation of stemmboilers. From 6 lbs. to 8 lbs per weck, usually suffices for 40 or 50 horso-power boiler.

[^0]: * I cannot on this occasion onter further into this question, but woild refer to my pepers published in the Philanthropist for 1856, and to thie evidence given before the House of Lords, in 1803.

[^1]: * From Ioport of ס. 8. Commiagloner of A griculture.

[^2]: * The Ionian Islands, which were since 1815 under British pro tectorato, were, in 1863, with the consent of the British government, annexed to the kingdom of Greece.

[^3]: * 1 geographical square mile aboat equal to 21 English square miles.
 \dagger According to a letter in the Monitcuir de b Armice, dated gai goon, Cochin Obina, Sept. 6, 1863, a treaty has been concluded between France and the king of Cambodia (In Farther Indla), by virtue of whicli this whole Kidgaom la placed under the protoctorate of France. France also recolves the right to egtablish a sot tlement on the banks of the river Oambodia or Mei Kong, at Nam Van.

[^4]: - The Russian possebsions in Amorica wore formerly the pro perty of a company, but at the ond of the yaar 1868 they wore formally incorporated with the Buasian empire.

